pmap.c revision 1.258 1 /* $NetBSD: pmap.c,v 1.258 2013/07/03 05:23:04 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/pool.h>
201 #include <sys/kmem.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205
206 #include <uvm/uvm.h>
207
208 #include <sys/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/cpuconf.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.258 2013/07/03 05:23:04 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
261 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
262 #endif
263
264 /*
265 * Which pmap is currently 'live' in the cache
266 *
267 * XXXSCW: Fix for SMP ...
268 */
269 static pmap_t pmap_recent_user;
270
271 /*
272 * Pointer to last active lwp, or NULL if it exited.
273 */
274 struct lwp *pmap_previous_active_lwp;
275
276 /*
277 * Pool and cache that pmap structures are allocated from.
278 * We use a cache to avoid clearing the pm_l2[] array (1KB)
279 * in pmap_create().
280 */
281 static struct pool_cache pmap_cache;
282 static LIST_HEAD(, pmap) pmap_pmaps;
283
284 /*
285 * Pool of PV structures
286 */
287 static struct pool pmap_pv_pool;
288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
291 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
292 };
293
294 /*
295 * Pool and cache of l2_dtable structures.
296 * We use a cache to avoid clearing the structures when they're
297 * allocated. (196 bytes)
298 */
299 static struct pool_cache pmap_l2dtable_cache;
300 static vaddr_t pmap_kernel_l2dtable_kva;
301
302 /*
303 * Pool and cache of L2 page descriptors.
304 * We use a cache to avoid clearing the descriptor table
305 * when they're allocated. (1KB)
306 */
307 static struct pool_cache pmap_l2ptp_cache;
308 static vaddr_t pmap_kernel_l2ptp_kva;
309 static paddr_t pmap_kernel_l2ptp_phys;
310
311 #ifdef PMAPCOUNTERS
312 #define PMAP_EVCNT_INITIALIZER(name) \
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
314
315 #ifdef PMAP_CACHE_VIPT
316 static struct evcnt pmap_ev_vac_clean_one =
317 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_one =
319 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
320 static struct evcnt pmap_ev_vac_flush_lots =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
322 static struct evcnt pmap_ev_vac_flush_lots2 =
323 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
328
329 static struct evcnt pmap_ev_vac_color_new =
330 PMAP_EVCNT_INITIALIZER("new page color");
331 static struct evcnt pmap_ev_vac_color_reuse =
332 PMAP_EVCNT_INITIALIZER("ok first page color");
333 static struct evcnt pmap_ev_vac_color_ok =
334 PMAP_EVCNT_INITIALIZER("ok page color");
335 static struct evcnt pmap_ev_vac_color_blind =
336 PMAP_EVCNT_INITIALIZER("blind page color");
337 static struct evcnt pmap_ev_vac_color_change =
338 PMAP_EVCNT_INITIALIZER("change page color");
339 static struct evcnt pmap_ev_vac_color_erase =
340 PMAP_EVCNT_INITIALIZER("erase page color");
341 static struct evcnt pmap_ev_vac_color_none =
342 PMAP_EVCNT_INITIALIZER("no page color");
343 static struct evcnt pmap_ev_vac_color_restore =
344 PMAP_EVCNT_INITIALIZER("restore page color");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
354 #endif
355
356 static struct evcnt pmap_ev_mappings =
357 PMAP_EVCNT_INITIALIZER("pages mapped");
358 static struct evcnt pmap_ev_unmappings =
359 PMAP_EVCNT_INITIALIZER("pages unmapped");
360 static struct evcnt pmap_ev_remappings =
361 PMAP_EVCNT_INITIALIZER("pages remapped");
362
363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
366
367 static struct evcnt pmap_ev_kernel_mappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
369 static struct evcnt pmap_ev_kernel_unmappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
371 static struct evcnt pmap_ev_kernel_remappings =
372 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
373
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
377
378 static struct evcnt pmap_ev_kenter_mappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
380 static struct evcnt pmap_ev_kenter_unmappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
382 static struct evcnt pmap_ev_kenter_remappings =
383 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
384 static struct evcnt pmap_ev_pt_mappings =
385 PMAP_EVCNT_INITIALIZER("page table pages mapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
391
392 #ifdef PMAP_CACHE_VIPT
393 static struct evcnt pmap_ev_exec_mappings =
394 PMAP_EVCNT_INITIALIZER("exec pages mapped");
395 static struct evcnt pmap_ev_exec_cached =
396 PMAP_EVCNT_INITIALIZER("exec pages cached");
397
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
400
401 static struct evcnt pmap_ev_exec_synced =
402 PMAP_EVCNT_INITIALIZER("exec pages synced");
403 static struct evcnt pmap_ev_exec_synced_map =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
405 static struct evcnt pmap_ev_exec_synced_unmap =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
407 static struct evcnt pmap_ev_exec_synced_remap =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
409 static struct evcnt pmap_ev_exec_synced_clearbit =
410 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
411 static struct evcnt pmap_ev_exec_synced_kremove =
412 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
413
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
420
421 static struct evcnt pmap_ev_exec_discarded_unmap =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
423 static struct evcnt pmap_ev_exec_discarded_zero =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
425 static struct evcnt pmap_ev_exec_discarded_copy =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
427 static struct evcnt pmap_ev_exec_discarded_page_protect =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
429 static struct evcnt pmap_ev_exec_discarded_clearbit =
430 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
431 static struct evcnt pmap_ev_exec_discarded_kremove =
432 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
433
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 /*
456 * pmap copy/zero page, and mem(5) hook point
457 */
458 static pt_entry_t *csrc_pte, *cdst_pte;
459 static vaddr_t csrcp, cdstp;
460 vaddr_t memhook; /* used by mem.c */
461 kmutex_t memlock; /* used by mem.c */
462 void *zeropage; /* used by mem.c */
463 extern void *msgbufaddr;
464 int pmap_kmpages;
465 /*
466 * Flag to indicate if pmap_init() has done its thing
467 */
468 bool pmap_initialized;
469
470 /*
471 * Misc. locking data structures
472 */
473
474 #define pmap_acquire_pmap_lock(pm) \
475 do { \
476 if ((pm) != pmap_kernel()) \
477 mutex_enter((pm)->pm_lock); \
478 } while (/*CONSTCOND*/0)
479
480 #define pmap_release_pmap_lock(pm) \
481 do { \
482 if ((pm) != pmap_kernel()) \
483 mutex_exit((pm)->pm_lock); \
484 } while (/*CONSTCOND*/0)
485
486
487 /*
488 * Metadata for L1 translation tables.
489 */
490 struct l1_ttable {
491 /* Entry on the L1 Table list */
492 SLIST_ENTRY(l1_ttable) l1_link;
493
494 /* Entry on the L1 Least Recently Used list */
495 TAILQ_ENTRY(l1_ttable) l1_lru;
496
497 /* Track how many domains are allocated from this L1 */
498 volatile u_int l1_domain_use_count;
499
500 /*
501 * A free-list of domain numbers for this L1.
502 * We avoid using ffs() and a bitmap to track domains since ffs()
503 * is slow on ARM.
504 */
505 uint8_t l1_domain_first;
506 uint8_t l1_domain_free[PMAP_DOMAINS];
507
508 /* Physical address of this L1 page table */
509 paddr_t l1_physaddr;
510
511 /* KVA of this L1 page table */
512 pd_entry_t *l1_kva;
513 };
514
515 /*
516 * Convert a virtual address into its L1 table index. That is, the
517 * index used to locate the L2 descriptor table pointer in an L1 table.
518 * This is basically used to index l1->l1_kva[].
519 *
520 * Each L2 descriptor table represents 1MB of VA space.
521 */
522 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
523
524 /*
525 * L1 Page Tables are tracked using a Least Recently Used list.
526 * - New L1s are allocated from the HEAD.
527 * - Freed L1s are added to the TAIl.
528 * - Recently accessed L1s (where an 'access' is some change to one of
529 * the userland pmaps which owns this L1) are moved to the TAIL.
530 */
531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
532 static kmutex_t l1_lru_lock __cacheline_aligned;
533
534 /*
535 * A list of all L1 tables
536 */
537 static SLIST_HEAD(, l1_ttable) l1_list;
538
539 /*
540 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
541 *
542 * This is normally 16MB worth L2 page descriptors for any given pmap.
543 * Reference counts are maintained for L2 descriptors so they can be
544 * freed when empty.
545 */
546 struct l2_dtable {
547 /* The number of L2 page descriptors allocated to this l2_dtable */
548 u_int l2_occupancy;
549
550 /* List of L2 page descriptors */
551 struct l2_bucket {
552 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
553 paddr_t l2b_phys; /* Physical address of same */
554 u_short l2b_l1idx; /* This L2 table's L1 index */
555 u_short l2b_occupancy; /* How many active descriptors */
556 } l2_bucket[L2_BUCKET_SIZE];
557 };
558
559 /*
560 * Given an L1 table index, calculate the corresponding l2_dtable index
561 * and bucket index within the l2_dtable.
562 */
563 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
564 (L2_SIZE - 1))
565 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
566
567 /*
568 * Given a virtual address, this macro returns the
569 * virtual address required to drop into the next L2 bucket.
570 */
571 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
572
573 /*
574 * L2 allocation.
575 */
576 #define pmap_alloc_l2_dtable() \
577 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
578 #define pmap_free_l2_dtable(l2) \
579 pool_cache_put(&pmap_l2dtable_cache, (l2))
580 #define pmap_alloc_l2_ptp(pap) \
581 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
582 PR_NOWAIT, (pap)))
583
584 /*
585 * We try to map the page tables write-through, if possible. However, not
586 * all CPUs have a write-through cache mode, so on those we have to sync
587 * the cache when we frob page tables.
588 *
589 * We try to evaluate this at compile time, if possible. However, it's
590 * not always possible to do that, hence this run-time var.
591 */
592 int pmap_needs_pte_sync;
593
594 /*
595 * Real definition of pv_entry.
596 */
597 struct pv_entry {
598 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
599 pmap_t pv_pmap; /* pmap where mapping lies */
600 vaddr_t pv_va; /* virtual address for mapping */
601 u_int pv_flags; /* flags */
602 };
603
604 /*
605 * Macro to determine if a mapping might be resident in the
606 * instruction cache and/or TLB
607 */
608 #if ARM_MMU_V7 > 0
609 /*
610 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
611 * there are no explicit accesses, so there may be always be TLB entries to
612 * flush. If we used ASIDs then this would not be a problem.
613 */
614 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
615 #else
616 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
617 #endif
618 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
619
620 /*
621 * Macro to determine if a mapping might be resident in the
622 * data cache and/or TLB
623 */
624 #if ARM_MMU_V7 > 0
625 /*
626 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
627 * there are no explicit accesses, so there may be always be TLB entries to
628 * flush. If we used ASIDs then this would not be a problem.
629 */
630 #define PV_BEEN_REFD(f) (1)
631 #else
632 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
633 #endif
634
635 /*
636 * Local prototypes
637 */
638 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
639 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
640 pt_entry_t **);
641 static bool pmap_is_current(pmap_t);
642 static bool pmap_is_cached(pmap_t);
643 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
644 pmap_t, vaddr_t, u_int);
645 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
646 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
647 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
648 u_int, u_int);
649
650 static void pmap_pinit(pmap_t);
651 static int pmap_pmap_ctor(void *, void *, int);
652
653 static void pmap_alloc_l1(pmap_t);
654 static void pmap_free_l1(pmap_t);
655 static void pmap_use_l1(pmap_t);
656
657 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
658 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
659 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
660 static int pmap_l2ptp_ctor(void *, void *, int);
661 static int pmap_l2dtable_ctor(void *, void *, int);
662
663 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
664 #ifdef PMAP_CACHE_VIVT
665 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
666 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
667 #endif
668
669 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
670 #ifdef PMAP_CACHE_VIVT
671 static int pmap_clean_page(struct pv_entry *, bool);
672 #endif
673 #ifdef PMAP_CACHE_VIPT
674 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
675 enum pmap_flush_op {
676 PMAP_FLUSH_PRIMARY,
677 PMAP_FLUSH_SECONDARY,
678 PMAP_CLEAN_PRIMARY
679 };
680 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
681 #endif
682 static void pmap_page_remove(struct vm_page_md *, paddr_t);
683
684 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
685 static vaddr_t kernel_pt_lookup(paddr_t);
686
687
688 /*
689 * Misc variables
690 */
691 vaddr_t virtual_avail;
692 vaddr_t virtual_end;
693 vaddr_t pmap_curmaxkvaddr;
694
695 paddr_t avail_start;
696 paddr_t avail_end;
697
698 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
699 pv_addr_t kernelpages;
700 pv_addr_t kernel_l1pt;
701 pv_addr_t systempage;
702
703 /* Function to set the debug level of the pmap code */
704
705 #ifdef PMAP_DEBUG
706 void
707 pmap_debug(int level)
708 {
709 pmap_debug_level = level;
710 printf("pmap_debug: level=%d\n", pmap_debug_level);
711 }
712 #endif /* PMAP_DEBUG */
713
714 #ifdef PMAP_CACHE_VIPT
715 #define PMAP_VALIDATE_MD_PAGE(md) \
716 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
717 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
718 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
719 #endif /* PMAP_CACHE_VIPT */
720 /*
721 * A bunch of routines to conditionally flush the caches/TLB depending
722 * on whether the specified pmap actually needs to be flushed at any
723 * given time.
724 */
725 static inline void
726 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
727 {
728
729 if (pm->pm_cstate.cs_tlb_id)
730 cpu_tlb_flushID_SE(va);
731 }
732
733 static inline void
734 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
735 {
736
737 if (pm->pm_cstate.cs_tlb_d)
738 cpu_tlb_flushD_SE(va);
739 }
740
741 static inline void
742 pmap_tlb_flushID(pmap_t pm)
743 {
744
745 if (pm->pm_cstate.cs_tlb_id) {
746 cpu_tlb_flushID();
747 #if ARM_MMU_V7 == 0
748 /*
749 * Speculative loads by Cortex cores can cause TLB entries to
750 * be filled even if there are no explicit accesses, so there
751 * may be always be TLB entries to flush. If we used ASIDs
752 * then it would not be a problem.
753 * This is not true for other CPUs.
754 */
755 pm->pm_cstate.cs_tlb = 0;
756 #endif
757 }
758 }
759
760 static inline void
761 pmap_tlb_flushD(pmap_t pm)
762 {
763
764 if (pm->pm_cstate.cs_tlb_d) {
765 cpu_tlb_flushD();
766 #if ARM_MMU_V7 == 0
767 /*
768 * Speculative loads by Cortex cores can cause TLB entries to
769 * be filled even if there are no explicit accesses, so there
770 * may be always be TLB entries to flush. If we used ASIDs
771 * then it would not be a problem.
772 * This is not true for other CPUs.
773 */
774 pm->pm_cstate.cs_tlb_d = 0;
775 #endif
776 }
777 }
778
779 #ifdef PMAP_CACHE_VIVT
780 static inline void
781 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
782 {
783 if (pm->pm_cstate.cs_cache_id) {
784 cpu_idcache_wbinv_range(va, len);
785 }
786 }
787
788 static inline void
789 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
790 bool do_inv, bool rd_only)
791 {
792
793 if (pm->pm_cstate.cs_cache_d) {
794 if (do_inv) {
795 if (rd_only)
796 cpu_dcache_inv_range(va, len);
797 else
798 cpu_dcache_wbinv_range(va, len);
799 } else
800 if (!rd_only)
801 cpu_dcache_wb_range(va, len);
802 }
803 }
804
805 static inline void
806 pmap_idcache_wbinv_all(pmap_t pm)
807 {
808 if (pm->pm_cstate.cs_cache_id) {
809 cpu_idcache_wbinv_all();
810 pm->pm_cstate.cs_cache = 0;
811 }
812 }
813
814 static inline void
815 pmap_dcache_wbinv_all(pmap_t pm)
816 {
817 if (pm->pm_cstate.cs_cache_d) {
818 cpu_dcache_wbinv_all();
819 pm->pm_cstate.cs_cache_d = 0;
820 }
821 }
822 #endif /* PMAP_CACHE_VIVT */
823
824 static inline uint8_t
825 pmap_domain(pmap_t pm)
826 {
827 return pm->pm_domain;
828 }
829
830 static inline pd_entry_t *
831 pmap_l1_kva(pmap_t pm)
832 {
833 return pm->pm_l1->l1_kva;
834 }
835
836 static inline bool
837 pmap_is_current(pmap_t pm)
838 {
839
840 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
841 return true;
842
843 return false;
844 }
845
846 static inline bool
847 pmap_is_cached(pmap_t pm)
848 {
849
850 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
851 pmap_recent_user == pm)
852 return (true);
853
854 return false;
855 }
856
857 /*
858 * PTE_SYNC_CURRENT:
859 *
860 * Make sure the pte is written out to RAM.
861 * We need to do this for one of two cases:
862 * - We're dealing with the kernel pmap
863 * - There is no pmap active in the cache/tlb.
864 * - The specified pmap is 'active' in the cache/tlb.
865 */
866 #ifdef PMAP_INCLUDE_PTE_SYNC
867 #define PTE_SYNC_CURRENT(pm, ptep) \
868 do { \
869 if (PMAP_NEEDS_PTE_SYNC && \
870 pmap_is_cached(pm)) \
871 PTE_SYNC(ptep); \
872 } while (/*CONSTCOND*/0)
873 #else
874 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
875 #endif
876
877 /*
878 * main pv_entry manipulation functions:
879 * pmap_enter_pv: enter a mapping onto a vm_page list
880 * pmap_remove_pv: remove a mapping from a vm_page list
881 *
882 * NOTE: pmap_enter_pv expects to lock the pvh itself
883 * pmap_remove_pv expects the caller to lock the pvh before calling
884 */
885
886 /*
887 * pmap_enter_pv: enter a mapping onto a vm_page lst
888 *
889 * => caller should hold the proper lock on pmap_main_lock
890 * => caller should have pmap locked
891 * => we will gain the lock on the vm_page and allocate the new pv_entry
892 * => caller should adjust ptp's wire_count before calling
893 * => caller should not adjust pmap's wire_count
894 */
895 static void
896 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
897 vaddr_t va, u_int flags)
898 {
899 struct pv_entry **pvp;
900
901 NPDEBUG(PDB_PVDUMP,
902 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
903
904 pv->pv_pmap = pm;
905 pv->pv_va = va;
906 pv->pv_flags = flags;
907
908 pvp = &SLIST_FIRST(&md->pvh_list);
909 #ifdef PMAP_CACHE_VIPT
910 /*
911 * Insert unmanaged entries, writeable first, at the head of
912 * the pv list.
913 */
914 if (__predict_true((flags & PVF_KENTRY) == 0)) {
915 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
916 pvp = &SLIST_NEXT(*pvp, pv_link);
917 } else if ((flags & PVF_WRITE) == 0) {
918 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
919 pvp = &SLIST_NEXT(*pvp, pv_link);
920 }
921 #endif
922 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
923 *pvp = pv; /* ... locked list */
924 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
925 #ifdef PMAP_CACHE_VIPT
926 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
927 md->pvh_attrs |= PVF_KMOD;
928 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
929 md->pvh_attrs |= PVF_DIRTY;
930 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
931 #endif
932 if (pm == pmap_kernel()) {
933 PMAPCOUNT(kernel_mappings);
934 if (flags & PVF_WRITE)
935 md->krw_mappings++;
936 else
937 md->kro_mappings++;
938 } else {
939 if (flags & PVF_WRITE)
940 md->urw_mappings++;
941 else
942 md->uro_mappings++;
943 }
944
945 #ifdef PMAP_CACHE_VIPT
946 /*
947 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
948 * do it here as well to keep the mappings & KVF_WRITE consistent.
949 */
950 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
951 md->pvh_attrs |= PVF_WRITE;
952 }
953 /*
954 * If this is an exec mapping and its the first exec mapping
955 * for this page, make sure to sync the I-cache.
956 */
957 if (PV_IS_EXEC_P(flags)) {
958 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
959 pmap_syncicache_page(md, pa);
960 PMAPCOUNT(exec_synced_map);
961 }
962 PMAPCOUNT(exec_mappings);
963 }
964 #endif
965
966 PMAPCOUNT(mappings);
967
968 if (pv->pv_flags & PVF_WIRED)
969 ++pm->pm_stats.wired_count;
970 }
971
972 /*
973 *
974 * pmap_find_pv: Find a pv entry
975 *
976 * => caller should hold lock on vm_page
977 */
978 static inline struct pv_entry *
979 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
980 {
981 struct pv_entry *pv;
982
983 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
984 if (pm == pv->pv_pmap && va == pv->pv_va)
985 break;
986 }
987
988 return (pv);
989 }
990
991 /*
992 * pmap_remove_pv: try to remove a mapping from a pv_list
993 *
994 * => caller should hold proper lock on pmap_main_lock
995 * => pmap should be locked
996 * => caller should hold lock on vm_page [so that attrs can be adjusted]
997 * => caller should adjust ptp's wire_count and free PTP if needed
998 * => caller should NOT adjust pmap's wire_count
999 * => we return the removed pv
1000 */
1001 static struct pv_entry *
1002 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1003 {
1004 struct pv_entry *pv, **prevptr;
1005
1006 NPDEBUG(PDB_PVDUMP,
1007 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1008
1009 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1010 pv = *prevptr;
1011
1012 while (pv) {
1013 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1014 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1015 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1016 if (pv->pv_flags & PVF_WIRED) {
1017 --pm->pm_stats.wired_count;
1018 }
1019 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1020 if (pm == pmap_kernel()) {
1021 PMAPCOUNT(kernel_unmappings);
1022 if (pv->pv_flags & PVF_WRITE)
1023 md->krw_mappings--;
1024 else
1025 md->kro_mappings--;
1026 } else {
1027 if (pv->pv_flags & PVF_WRITE)
1028 md->urw_mappings--;
1029 else
1030 md->uro_mappings--;
1031 }
1032
1033 PMAPCOUNT(unmappings);
1034 #ifdef PMAP_CACHE_VIPT
1035 if (!(pv->pv_flags & PVF_WRITE))
1036 break;
1037 /*
1038 * If this page has had an exec mapping, then if
1039 * this was the last mapping, discard the contents,
1040 * otherwise sync the i-cache for this page.
1041 */
1042 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1043 if (SLIST_EMPTY(&md->pvh_list)) {
1044 md->pvh_attrs &= ~PVF_EXEC;
1045 PMAPCOUNT(exec_discarded_unmap);
1046 } else {
1047 pmap_syncicache_page(md, pa);
1048 PMAPCOUNT(exec_synced_unmap);
1049 }
1050 }
1051 #endif /* PMAP_CACHE_VIPT */
1052 break;
1053 }
1054 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1055 pv = *prevptr; /* advance */
1056 }
1057
1058 #ifdef PMAP_CACHE_VIPT
1059 /*
1060 * If we no longer have a WRITEABLE KENTRY at the head of list,
1061 * clear the KMOD attribute from the page.
1062 */
1063 if (SLIST_FIRST(&md->pvh_list) == NULL
1064 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1065 md->pvh_attrs &= ~PVF_KMOD;
1066
1067 /*
1068 * If this was a writeable page and there are no more writeable
1069 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1070 * the contents to memory.
1071 */
1072 if (arm_cache_prefer_mask != 0) {
1073 if (md->krw_mappings + md->urw_mappings == 0)
1074 md->pvh_attrs &= ~PVF_WRITE;
1075 PMAP_VALIDATE_MD_PAGE(md);
1076 }
1077 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1078 #endif /* PMAP_CACHE_VIPT */
1079
1080 return(pv); /* return removed pv */
1081 }
1082
1083 /*
1084 *
1085 * pmap_modify_pv: Update pv flags
1086 *
1087 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1088 * => caller should NOT adjust pmap's wire_count
1089 * => caller must call pmap_vac_me_harder() if writable status of a page
1090 * may have changed.
1091 * => we return the old flags
1092 *
1093 * Modify a physical-virtual mapping in the pv table
1094 */
1095 static u_int
1096 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1097 u_int clr_mask, u_int set_mask)
1098 {
1099 struct pv_entry *npv;
1100 u_int flags, oflags;
1101
1102 KASSERT((clr_mask & PVF_KENTRY) == 0);
1103 KASSERT((set_mask & PVF_KENTRY) == 0);
1104
1105 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1106 return (0);
1107
1108 NPDEBUG(PDB_PVDUMP,
1109 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1110
1111 /*
1112 * There is at least one VA mapping this page.
1113 */
1114
1115 if (clr_mask & (PVF_REF | PVF_MOD)) {
1116 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1117 #ifdef PMAP_CACHE_VIPT
1118 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1119 md->pvh_attrs |= PVF_DIRTY;
1120 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1121 #endif
1122 }
1123
1124 oflags = npv->pv_flags;
1125 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1126
1127 if ((flags ^ oflags) & PVF_WIRED) {
1128 if (flags & PVF_WIRED)
1129 ++pm->pm_stats.wired_count;
1130 else
1131 --pm->pm_stats.wired_count;
1132 }
1133
1134 if ((flags ^ oflags) & PVF_WRITE) {
1135 if (pm == pmap_kernel()) {
1136 if (flags & PVF_WRITE) {
1137 md->krw_mappings++;
1138 md->kro_mappings--;
1139 } else {
1140 md->kro_mappings++;
1141 md->krw_mappings--;
1142 }
1143 } else {
1144 if (flags & PVF_WRITE) {
1145 md->urw_mappings++;
1146 md->uro_mappings--;
1147 } else {
1148 md->uro_mappings++;
1149 md->urw_mappings--;
1150 }
1151 }
1152 }
1153 #ifdef PMAP_CACHE_VIPT
1154 if (arm_cache_prefer_mask != 0) {
1155 if (md->urw_mappings + md->krw_mappings == 0) {
1156 md->pvh_attrs &= ~PVF_WRITE;
1157 } else {
1158 md->pvh_attrs |= PVF_WRITE;
1159 }
1160 }
1161 /*
1162 * We have two cases here: the first is from enter_pv (new exec
1163 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1164 * Since in latter, pmap_enter_pv won't do anything, we just have
1165 * to do what pmap_remove_pv would do.
1166 */
1167 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1168 || (PV_IS_EXEC_P(md->pvh_attrs)
1169 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1170 pmap_syncicache_page(md, pa);
1171 PMAPCOUNT(exec_synced_remap);
1172 }
1173 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1174 #endif
1175
1176 PMAPCOUNT(remappings);
1177
1178 return (oflags);
1179 }
1180
1181 /*
1182 * Allocate an L1 translation table for the specified pmap.
1183 * This is called at pmap creation time.
1184 */
1185 static void
1186 pmap_alloc_l1(pmap_t pm)
1187 {
1188 struct l1_ttable *l1;
1189 uint8_t domain;
1190
1191 /*
1192 * Remove the L1 at the head of the LRU list
1193 */
1194 mutex_spin_enter(&l1_lru_lock);
1195 l1 = TAILQ_FIRST(&l1_lru_list);
1196 KDASSERT(l1 != NULL);
1197 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1198
1199 /*
1200 * Pick the first available domain number, and update
1201 * the link to the next number.
1202 */
1203 domain = l1->l1_domain_first;
1204 l1->l1_domain_first = l1->l1_domain_free[domain];
1205
1206 /*
1207 * If there are still free domain numbers in this L1,
1208 * put it back on the TAIL of the LRU list.
1209 */
1210 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1211 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1212
1213 mutex_spin_exit(&l1_lru_lock);
1214
1215 /*
1216 * Fix up the relevant bits in the pmap structure
1217 */
1218 pm->pm_l1 = l1;
1219 pm->pm_domain = domain + 1;
1220 }
1221
1222 /*
1223 * Free an L1 translation table.
1224 * This is called at pmap destruction time.
1225 */
1226 static void
1227 pmap_free_l1(pmap_t pm)
1228 {
1229 struct l1_ttable *l1 = pm->pm_l1;
1230
1231 mutex_spin_enter(&l1_lru_lock);
1232
1233 /*
1234 * If this L1 is currently on the LRU list, remove it.
1235 */
1236 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1237 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1238
1239 /*
1240 * Free up the domain number which was allocated to the pmap
1241 */
1242 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1243 l1->l1_domain_first = pmap_domain(pm) - 1;
1244 l1->l1_domain_use_count--;
1245
1246 /*
1247 * The L1 now must have at least 1 free domain, so add
1248 * it back to the LRU list. If the use count is zero,
1249 * put it at the head of the list, otherwise it goes
1250 * to the tail.
1251 */
1252 if (l1->l1_domain_use_count == 0)
1253 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1254 else
1255 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1256
1257 mutex_spin_exit(&l1_lru_lock);
1258 }
1259
1260 static inline void
1261 pmap_use_l1(pmap_t pm)
1262 {
1263 struct l1_ttable *l1;
1264
1265 /*
1266 * Do nothing if we're in interrupt context.
1267 * Access to an L1 by the kernel pmap must not affect
1268 * the LRU list.
1269 */
1270 if (cpu_intr_p() || pm == pmap_kernel())
1271 return;
1272
1273 l1 = pm->pm_l1;
1274
1275 /*
1276 * If the L1 is not currently on the LRU list, just return
1277 */
1278 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1279 return;
1280
1281 mutex_spin_enter(&l1_lru_lock);
1282
1283 /*
1284 * Check the use count again, now that we've acquired the lock
1285 */
1286 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1287 mutex_spin_exit(&l1_lru_lock);
1288 return;
1289 }
1290
1291 /*
1292 * Move the L1 to the back of the LRU list
1293 */
1294 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1295 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1296
1297 mutex_spin_exit(&l1_lru_lock);
1298 }
1299
1300 /*
1301 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1302 *
1303 * Free an L2 descriptor table.
1304 */
1305 static inline void
1306 #ifndef PMAP_INCLUDE_PTE_SYNC
1307 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1308 #else
1309 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1310 #endif
1311 {
1312 #ifdef PMAP_INCLUDE_PTE_SYNC
1313 #ifdef PMAP_CACHE_VIVT
1314 /*
1315 * Note: With a write-back cache, we may need to sync this
1316 * L2 table before re-using it.
1317 * This is because it may have belonged to a non-current
1318 * pmap, in which case the cache syncs would have been
1319 * skipped for the pages that were being unmapped. If the
1320 * L2 table were then to be immediately re-allocated to
1321 * the *current* pmap, it may well contain stale mappings
1322 * which have not yet been cleared by a cache write-back
1323 * and so would still be visible to the mmu.
1324 */
1325 if (need_sync)
1326 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1327 #endif /* PMAP_CACHE_VIVT */
1328 #endif /* PMAP_INCLUDE_PTE_SYNC */
1329 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1330 }
1331
1332 /*
1333 * Returns a pointer to the L2 bucket associated with the specified pmap
1334 * and VA, or NULL if no L2 bucket exists for the address.
1335 */
1336 static inline struct l2_bucket *
1337 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1338 {
1339 struct l2_dtable *l2;
1340 struct l2_bucket *l2b;
1341 u_short l1idx;
1342
1343 l1idx = L1_IDX(va);
1344
1345 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1346 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1347 return (NULL);
1348
1349 return (l2b);
1350 }
1351
1352 /*
1353 * Returns a pointer to the L2 bucket associated with the specified pmap
1354 * and VA.
1355 *
1356 * If no L2 bucket exists, perform the necessary allocations to put an L2
1357 * bucket/page table in place.
1358 *
1359 * Note that if a new L2 bucket/page was allocated, the caller *must*
1360 * increment the bucket occupancy counter appropriately *before*
1361 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1362 * the bucket/page in the meantime.
1363 */
1364 static struct l2_bucket *
1365 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1366 {
1367 struct l2_dtable *l2;
1368 struct l2_bucket *l2b;
1369 u_short l1idx;
1370
1371 l1idx = L1_IDX(va);
1372
1373 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1374 /*
1375 * No mapping at this address, as there is
1376 * no entry in the L1 table.
1377 * Need to allocate a new l2_dtable.
1378 */
1379 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1380 return (NULL);
1381
1382 /*
1383 * Link it into the parent pmap
1384 */
1385 pm->pm_l2[L2_IDX(l1idx)] = l2;
1386 }
1387
1388 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1389
1390 /*
1391 * Fetch pointer to the L2 page table associated with the address.
1392 */
1393 if (l2b->l2b_kva == NULL) {
1394 pt_entry_t *ptep;
1395
1396 /*
1397 * No L2 page table has been allocated. Chances are, this
1398 * is because we just allocated the l2_dtable, above.
1399 */
1400 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1401 /*
1402 * Oops, no more L2 page tables available at this
1403 * time. We may need to deallocate the l2_dtable
1404 * if we allocated a new one above.
1405 */
1406 if (l2->l2_occupancy == 0) {
1407 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1408 pmap_free_l2_dtable(l2);
1409 }
1410 return (NULL);
1411 }
1412
1413 l2->l2_occupancy++;
1414 l2b->l2b_kva = ptep;
1415 l2b->l2b_l1idx = l1idx;
1416 }
1417
1418 return (l2b);
1419 }
1420
1421 /*
1422 * One or more mappings in the specified L2 descriptor table have just been
1423 * invalidated.
1424 *
1425 * Garbage collect the metadata and descriptor table itself if necessary.
1426 *
1427 * The pmap lock must be acquired when this is called (not necessary
1428 * for the kernel pmap).
1429 */
1430 static void
1431 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1432 {
1433 struct l2_dtable *l2;
1434 pd_entry_t *pl1pd, l1pd;
1435 pt_entry_t *ptep;
1436 u_short l1idx;
1437
1438 KDASSERT(count <= l2b->l2b_occupancy);
1439
1440 /*
1441 * Update the bucket's reference count according to how many
1442 * PTEs the caller has just invalidated.
1443 */
1444 l2b->l2b_occupancy -= count;
1445
1446 /*
1447 * Note:
1448 *
1449 * Level 2 page tables allocated to the kernel pmap are never freed
1450 * as that would require checking all Level 1 page tables and
1451 * removing any references to the Level 2 page table. See also the
1452 * comment elsewhere about never freeing bootstrap L2 descriptors.
1453 *
1454 * We make do with just invalidating the mapping in the L2 table.
1455 *
1456 * This isn't really a big deal in practice and, in fact, leads
1457 * to a performance win over time as we don't need to continually
1458 * alloc/free.
1459 */
1460 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1461 return;
1462
1463 /*
1464 * There are no more valid mappings in this level 2 page table.
1465 * Go ahead and NULL-out the pointer in the bucket, then
1466 * free the page table.
1467 */
1468 l1idx = l2b->l2b_l1idx;
1469 ptep = l2b->l2b_kva;
1470 l2b->l2b_kva = NULL;
1471
1472 pl1pd = pmap_l1_kva(pm) + l1idx;
1473
1474 /*
1475 * If the L1 slot matches the pmap's domain
1476 * number, then invalidate it.
1477 */
1478 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1479 if (l1pd == (L1_C_DOM(pmap_domain(pm)) | L1_TYPE_C)) {
1480 *pl1pd = 0;
1481 PTE_SYNC(pl1pd);
1482 }
1483
1484 /*
1485 * Release the L2 descriptor table back to the pool cache.
1486 */
1487 #ifndef PMAP_INCLUDE_PTE_SYNC
1488 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1489 #else
1490 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1491 #endif
1492
1493 /*
1494 * Update the reference count in the associated l2_dtable
1495 */
1496 l2 = pm->pm_l2[L2_IDX(l1idx)];
1497 if (--l2->l2_occupancy > 0)
1498 return;
1499
1500 /*
1501 * There are no more valid mappings in any of the Level 1
1502 * slots managed by this l2_dtable. Go ahead and NULL-out
1503 * the pointer in the parent pmap and free the l2_dtable.
1504 */
1505 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1506 pmap_free_l2_dtable(l2);
1507 }
1508
1509 /*
1510 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1511 * structures.
1512 */
1513 static int
1514 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1515 {
1516 #ifndef PMAP_INCLUDE_PTE_SYNC
1517 struct l2_bucket *l2b;
1518 pt_entry_t *ptep, pte;
1519 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1520
1521 /*
1522 * The mappings for these page tables were initially made using
1523 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1524 * mode will not be right for page table mappings. To avoid
1525 * polluting the pmap_kenter_pa() code with a special case for
1526 * page tables, we simply fix up the cache-mode here if it's not
1527 * correct.
1528 */
1529 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1530 KDASSERT(l2b != NULL);
1531 ptep = &l2b->l2b_kva[l2pte_index(va)];
1532 pte = *ptep;
1533
1534 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1535 /*
1536 * Page tables must have the cache-mode set to Write-Thru.
1537 */
1538 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1539 PTE_SYNC(ptep);
1540 cpu_tlb_flushD_SE(va);
1541 cpu_cpwait();
1542 }
1543 #endif
1544
1545 memset(v, 0, L2_TABLE_SIZE_REAL);
1546 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1547 return (0);
1548 }
1549
1550 static int
1551 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1552 {
1553
1554 memset(v, 0, sizeof(struct l2_dtable));
1555 return (0);
1556 }
1557
1558 static int
1559 pmap_pmap_ctor(void *arg, void *v, int flags)
1560 {
1561
1562 memset(v, 0, sizeof(struct pmap));
1563 return (0);
1564 }
1565
1566 static void
1567 pmap_pinit(pmap_t pm)
1568 {
1569 #ifndef ARM_HAS_VBAR
1570 struct l2_bucket *l2b;
1571
1572 if (vector_page < KERNEL_BASE) {
1573 /*
1574 * Map the vector page.
1575 */
1576 pmap_enter(pm, vector_page, systempage.pv_pa,
1577 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1578 pmap_update(pm);
1579
1580 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
1581 l2b = pmap_get_l2_bucket(pm, vector_page);
1582 KDASSERT(l2b != NULL);
1583 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1584 L1_C_DOM(pmap_domain(pm));
1585 } else
1586 pm->pm_pl1vec = NULL;
1587 #endif
1588 }
1589
1590 #ifdef PMAP_CACHE_VIVT
1591 /*
1592 * Since we have a virtually indexed cache, we may need to inhibit caching if
1593 * there is more than one mapping and at least one of them is writable.
1594 * Since we purge the cache on every context switch, we only need to check for
1595 * other mappings within the same pmap, or kernel_pmap.
1596 * This function is also called when a page is unmapped, to possibly reenable
1597 * caching on any remaining mappings.
1598 *
1599 * The code implements the following logic, where:
1600 *
1601 * KW = # of kernel read/write pages
1602 * KR = # of kernel read only pages
1603 * UW = # of user read/write pages
1604 * UR = # of user read only pages
1605 *
1606 * KC = kernel mapping is cacheable
1607 * UC = user mapping is cacheable
1608 *
1609 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1610 * +---------------------------------------------
1611 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1612 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1613 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1614 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1615 */
1616
1617 static const int pmap_vac_flags[4][4] = {
1618 {-1, 0, 0, PVF_KNC},
1619 {0, 0, PVF_NC, PVF_NC},
1620 {0, PVF_NC, PVF_NC, PVF_NC},
1621 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1622 };
1623
1624 static inline int
1625 pmap_get_vac_flags(const struct vm_page_md *md)
1626 {
1627 int kidx, uidx;
1628
1629 kidx = 0;
1630 if (md->kro_mappings || md->krw_mappings > 1)
1631 kidx |= 1;
1632 if (md->krw_mappings)
1633 kidx |= 2;
1634
1635 uidx = 0;
1636 if (md->uro_mappings || md->urw_mappings > 1)
1637 uidx |= 1;
1638 if (md->urw_mappings)
1639 uidx |= 2;
1640
1641 return (pmap_vac_flags[uidx][kidx]);
1642 }
1643
1644 static inline void
1645 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1646 {
1647 int nattr;
1648
1649 nattr = pmap_get_vac_flags(md);
1650
1651 if (nattr < 0) {
1652 md->pvh_attrs &= ~PVF_NC;
1653 return;
1654 }
1655
1656 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1657 return;
1658
1659 if (pm == pmap_kernel())
1660 pmap_vac_me_kpmap(md, pa, pm, va);
1661 else
1662 pmap_vac_me_user(md, pa, pm, va);
1663
1664 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1665 }
1666
1667 static void
1668 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1669 {
1670 u_int u_cacheable, u_entries;
1671 struct pv_entry *pv;
1672 pmap_t last_pmap = pm;
1673
1674 /*
1675 * Pass one, see if there are both kernel and user pmaps for
1676 * this page. Calculate whether there are user-writable or
1677 * kernel-writable pages.
1678 */
1679 u_cacheable = 0;
1680 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1681 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1682 u_cacheable++;
1683 }
1684
1685 u_entries = md->urw_mappings + md->uro_mappings;
1686
1687 /*
1688 * We know we have just been updating a kernel entry, so if
1689 * all user pages are already cacheable, then there is nothing
1690 * further to do.
1691 */
1692 if (md->k_mappings == 0 && u_cacheable == u_entries)
1693 return;
1694
1695 if (u_entries) {
1696 /*
1697 * Scan over the list again, for each entry, if it
1698 * might not be set correctly, call pmap_vac_me_user
1699 * to recalculate the settings.
1700 */
1701 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1702 /*
1703 * We know kernel mappings will get set
1704 * correctly in other calls. We also know
1705 * that if the pmap is the same as last_pmap
1706 * then we've just handled this entry.
1707 */
1708 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1709 continue;
1710
1711 /*
1712 * If there are kernel entries and this page
1713 * is writable but non-cacheable, then we can
1714 * skip this entry also.
1715 */
1716 if (md->k_mappings &&
1717 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1718 (PVF_NC | PVF_WRITE))
1719 continue;
1720
1721 /*
1722 * Similarly if there are no kernel-writable
1723 * entries and the page is already
1724 * read-only/cacheable.
1725 */
1726 if (md->krw_mappings == 0 &&
1727 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1728 continue;
1729
1730 /*
1731 * For some of the remaining cases, we know
1732 * that we must recalculate, but for others we
1733 * can't tell if they are correct or not, so
1734 * we recalculate anyway.
1735 */
1736 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1737 }
1738
1739 if (md->k_mappings == 0)
1740 return;
1741 }
1742
1743 pmap_vac_me_user(md, pa, pm, va);
1744 }
1745
1746 static void
1747 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1748 {
1749 pmap_t kpmap = pmap_kernel();
1750 struct pv_entry *pv, *npv = NULL;
1751 struct l2_bucket *l2b;
1752 pt_entry_t *ptep, pte;
1753 u_int entries = 0;
1754 u_int writable = 0;
1755 u_int cacheable_entries = 0;
1756 u_int kern_cacheable = 0;
1757 u_int other_writable = 0;
1758
1759 /*
1760 * Count mappings and writable mappings in this pmap.
1761 * Include kernel mappings as part of our own.
1762 * Keep a pointer to the first one.
1763 */
1764 npv = NULL;
1765 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1766 /* Count mappings in the same pmap */
1767 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1768 if (entries++ == 0)
1769 npv = pv;
1770
1771 /* Cacheable mappings */
1772 if ((pv->pv_flags & PVF_NC) == 0) {
1773 cacheable_entries++;
1774 if (kpmap == pv->pv_pmap)
1775 kern_cacheable++;
1776 }
1777
1778 /* Writable mappings */
1779 if (pv->pv_flags & PVF_WRITE)
1780 ++writable;
1781 } else
1782 if (pv->pv_flags & PVF_WRITE)
1783 other_writable = 1;
1784 }
1785
1786 /*
1787 * Enable or disable caching as necessary.
1788 * Note: the first entry might be part of the kernel pmap,
1789 * so we can't assume this is indicative of the state of the
1790 * other (maybe non-kpmap) entries.
1791 */
1792 if ((entries > 1 && writable) ||
1793 (entries > 0 && pm == kpmap && other_writable)) {
1794 if (cacheable_entries == 0)
1795 return;
1796
1797 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1798 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1799 (pv->pv_flags & PVF_NC))
1800 continue;
1801
1802 pv->pv_flags |= PVF_NC;
1803
1804 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1805 KDASSERT(l2b != NULL);
1806 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1807 pte = *ptep & ~L2_S_CACHE_MASK;
1808
1809 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1810 l2pte_valid(pte)) {
1811 if (PV_BEEN_EXECD(pv->pv_flags)) {
1812 #ifdef PMAP_CACHE_VIVT
1813 pmap_idcache_wbinv_range(pv->pv_pmap,
1814 pv->pv_va, PAGE_SIZE);
1815 #endif
1816 pmap_tlb_flushID_SE(pv->pv_pmap,
1817 pv->pv_va);
1818 } else
1819 if (PV_BEEN_REFD(pv->pv_flags)) {
1820 #ifdef PMAP_CACHE_VIVT
1821 pmap_dcache_wb_range(pv->pv_pmap,
1822 pv->pv_va, PAGE_SIZE, true,
1823 (pv->pv_flags & PVF_WRITE) == 0);
1824 #endif
1825 pmap_tlb_flushD_SE(pv->pv_pmap,
1826 pv->pv_va);
1827 }
1828 }
1829
1830 *ptep = pte;
1831 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1832 }
1833 cpu_cpwait();
1834 } else
1835 if (entries > cacheable_entries) {
1836 /*
1837 * Turn cacheing back on for some pages. If it is a kernel
1838 * page, only do so if there are no other writable pages.
1839 */
1840 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1841 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1842 (kpmap != pv->pv_pmap || other_writable)))
1843 continue;
1844
1845 pv->pv_flags &= ~PVF_NC;
1846
1847 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1848 KDASSERT(l2b != NULL);
1849 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1850 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1851
1852 if (l2pte_valid(pte)) {
1853 if (PV_BEEN_EXECD(pv->pv_flags)) {
1854 pmap_tlb_flushID_SE(pv->pv_pmap,
1855 pv->pv_va);
1856 } else
1857 if (PV_BEEN_REFD(pv->pv_flags)) {
1858 pmap_tlb_flushD_SE(pv->pv_pmap,
1859 pv->pv_va);
1860 }
1861 }
1862
1863 *ptep = pte;
1864 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1865 }
1866 }
1867 }
1868 #endif
1869
1870 #ifdef PMAP_CACHE_VIPT
1871 static void
1872 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1873 {
1874 struct pv_entry *pv;
1875 vaddr_t tst_mask;
1876 bool bad_alias;
1877 struct l2_bucket *l2b;
1878 pt_entry_t *ptep, pte, opte;
1879 const u_int
1880 rw_mappings = md->urw_mappings + md->krw_mappings,
1881 ro_mappings = md->uro_mappings + md->kro_mappings;
1882
1883 /* do we need to do anything? */
1884 if (arm_cache_prefer_mask == 0)
1885 return;
1886
1887 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1888 md, pm, va));
1889
1890 KASSERT(!va || pm);
1891 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1892
1893 /* Already a conflict? */
1894 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1895 /* just an add, things are already non-cached */
1896 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1897 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1898 bad_alias = false;
1899 if (va) {
1900 PMAPCOUNT(vac_color_none);
1901 bad_alias = true;
1902 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1903 goto fixup;
1904 }
1905 pv = SLIST_FIRST(&md->pvh_list);
1906 /* the list can't be empty because it would be cachable */
1907 if (md->pvh_attrs & PVF_KMPAGE) {
1908 tst_mask = md->pvh_attrs;
1909 } else {
1910 KASSERT(pv);
1911 tst_mask = pv->pv_va;
1912 pv = SLIST_NEXT(pv, pv_link);
1913 }
1914 /*
1915 * Only check for a bad alias if we have writable mappings.
1916 */
1917 tst_mask &= arm_cache_prefer_mask;
1918 if (rw_mappings > 0) {
1919 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1920 /* if there's a bad alias, stop checking. */
1921 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1922 bad_alias = true;
1923 }
1924 md->pvh_attrs |= PVF_WRITE;
1925 if (!bad_alias)
1926 md->pvh_attrs |= PVF_DIRTY;
1927 } else {
1928 /*
1929 * We have only read-only mappings. Let's see if there
1930 * are multiple colors in use or if we mapped a KMPAGE.
1931 * If the latter, we have a bad alias. If the former,
1932 * we need to remember that.
1933 */
1934 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1935 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1936 if (md->pvh_attrs & PVF_KMPAGE)
1937 bad_alias = true;
1938 break;
1939 }
1940 }
1941 md->pvh_attrs &= ~PVF_WRITE;
1942 /*
1943 * No KMPAGE and we exited early, so we must have
1944 * multiple color mappings.
1945 */
1946 if (!bad_alias && pv != NULL)
1947 md->pvh_attrs |= PVF_MULTCLR;
1948 }
1949
1950 /* If no conflicting colors, set everything back to cached */
1951 if (!bad_alias) {
1952 #ifdef DEBUG
1953 if ((md->pvh_attrs & PVF_WRITE)
1954 || ro_mappings < 2) {
1955 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1956 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1957 }
1958 #endif
1959 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1960 md->pvh_attrs |= tst_mask | PVF_COLORED;
1961 /*
1962 * Restore DIRTY bit if page is modified
1963 */
1964 if (md->pvh_attrs & PVF_DMOD)
1965 md->pvh_attrs |= PVF_DIRTY;
1966 PMAPCOUNT(vac_color_restore);
1967 } else {
1968 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1969 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1970 }
1971 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1972 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1973 } else if (!va) {
1974 KASSERT(pmap_is_page_colored_p(md));
1975 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1976 || (md->pvh_attrs & PVF_DIRTY));
1977 if (rw_mappings == 0) {
1978 md->pvh_attrs &= ~PVF_WRITE;
1979 if (ro_mappings == 1
1980 && (md->pvh_attrs & PVF_MULTCLR)) {
1981 /*
1982 * If this is the last readonly mapping
1983 * but it doesn't match the current color
1984 * for the page, change the current color
1985 * to match this last readonly mapping.
1986 */
1987 pv = SLIST_FIRST(&md->pvh_list);
1988 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1989 & arm_cache_prefer_mask;
1990 if (tst_mask) {
1991 md->pvh_attrs ^= tst_mask;
1992 PMAPCOUNT(vac_color_change);
1993 }
1994 }
1995 }
1996 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1997 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1998 return;
1999 } else if (!pmap_is_page_colored_p(md)) {
2000 /* not colored so we just use its color */
2001 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2002 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2003 PMAPCOUNT(vac_color_new);
2004 md->pvh_attrs &= PAGE_SIZE - 1;
2005 md->pvh_attrs |= PVF_COLORED
2006 | (va & arm_cache_prefer_mask)
2007 | (rw_mappings > 0 ? PVF_WRITE : 0);
2008 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2009 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2010 return;
2011 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2012 bad_alias = false;
2013 if (rw_mappings > 0) {
2014 /*
2015 * We now have writeable mappings and if we have
2016 * readonly mappings in more than once color, we have
2017 * an aliasing problem. Regardless mark the page as
2018 * writeable.
2019 */
2020 if (md->pvh_attrs & PVF_MULTCLR) {
2021 if (ro_mappings < 2) {
2022 /*
2023 * If we only have less than two
2024 * read-only mappings, just flush the
2025 * non-primary colors from the cache.
2026 */
2027 pmap_flush_page(md, pa,
2028 PMAP_FLUSH_SECONDARY);
2029 } else {
2030 bad_alias = true;
2031 }
2032 }
2033 md->pvh_attrs |= PVF_WRITE;
2034 }
2035 /* If no conflicting colors, set everything back to cached */
2036 if (!bad_alias) {
2037 #ifdef DEBUG
2038 if (rw_mappings > 0
2039 || (md->pvh_attrs & PMAP_KMPAGE)) {
2040 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2041 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2042 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2043 }
2044 #endif
2045 if (SLIST_EMPTY(&md->pvh_list))
2046 PMAPCOUNT(vac_color_reuse);
2047 else
2048 PMAPCOUNT(vac_color_ok);
2049
2050 /* matching color, just return */
2051 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2052 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2053 return;
2054 }
2055 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2056 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2057
2058 /* color conflict. evict from cache. */
2059
2060 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2061 md->pvh_attrs &= ~PVF_COLORED;
2062 md->pvh_attrs |= PVF_NC;
2063 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2064 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2065 PMAPCOUNT(vac_color_erase);
2066 } else if (rw_mappings == 0
2067 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2068 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2069
2070 /*
2071 * If the page has dirty cache lines, clean it.
2072 */
2073 if (md->pvh_attrs & PVF_DIRTY)
2074 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2075
2076 /*
2077 * If this is the first remapping (we know that there are no
2078 * writeable mappings), then this is a simple color change.
2079 * Otherwise this is a seconary r/o mapping, which means
2080 * we don't have to do anything.
2081 */
2082 if (ro_mappings == 1) {
2083 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2084 md->pvh_attrs &= PAGE_SIZE - 1;
2085 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2086 PMAPCOUNT(vac_color_change);
2087 } else {
2088 PMAPCOUNT(vac_color_blind);
2089 }
2090 md->pvh_attrs |= PVF_MULTCLR;
2091 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2092 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2093 return;
2094 } else {
2095 if (rw_mappings > 0)
2096 md->pvh_attrs |= PVF_WRITE;
2097
2098 /* color conflict. evict from cache. */
2099 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2100
2101 /* the list can't be empty because this was a enter/modify */
2102 pv = SLIST_FIRST(&md->pvh_list);
2103 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2104 KASSERT(pv);
2105 /*
2106 * If there's only one mapped page, change color to the
2107 * page's new color and return. Restore the DIRTY bit
2108 * that was erased by pmap_flush_page.
2109 */
2110 if (SLIST_NEXT(pv, pv_link) == NULL) {
2111 md->pvh_attrs &= PAGE_SIZE - 1;
2112 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2113 if (md->pvh_attrs & PVF_DMOD)
2114 md->pvh_attrs |= PVF_DIRTY;
2115 PMAPCOUNT(vac_color_change);
2116 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2117 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2118 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2119 return;
2120 }
2121 }
2122 bad_alias = true;
2123 md->pvh_attrs &= ~PVF_COLORED;
2124 md->pvh_attrs |= PVF_NC;
2125 PMAPCOUNT(vac_color_erase);
2126 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2127 }
2128
2129 fixup:
2130 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2131
2132 /*
2133 * Turn cacheing on/off for all pages.
2134 */
2135 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2136 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2137 KDASSERT(l2b != NULL);
2138 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2139 opte = *ptep;
2140 pte = opte & ~L2_S_CACHE_MASK;
2141 if (bad_alias) {
2142 pv->pv_flags |= PVF_NC;
2143 } else {
2144 pv->pv_flags &= ~PVF_NC;
2145 pte |= pte_l2_s_cache_mode;
2146 }
2147
2148 if (opte == pte) /* only update is there's a change */
2149 continue;
2150
2151 if (l2pte_valid(pte)) {
2152 if (PV_BEEN_EXECD(pv->pv_flags)) {
2153 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2154 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2155 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2156 }
2157 }
2158
2159 *ptep = pte;
2160 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2161 }
2162 }
2163 #endif /* PMAP_CACHE_VIPT */
2164
2165
2166 /*
2167 * Modify pte bits for all ptes corresponding to the given physical address.
2168 * We use `maskbits' rather than `clearbits' because we're always passing
2169 * constants and the latter would require an extra inversion at run-time.
2170 */
2171 static void
2172 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2173 {
2174 struct l2_bucket *l2b;
2175 struct pv_entry *pv;
2176 pt_entry_t *ptep, npte, opte;
2177 pmap_t pm;
2178 vaddr_t va;
2179 u_int oflags;
2180 #ifdef PMAP_CACHE_VIPT
2181 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2182 bool need_syncicache = false;
2183 bool did_syncicache = false;
2184 bool need_vac_me_harder = false;
2185 #endif
2186
2187 NPDEBUG(PDB_BITS,
2188 printf("pmap_clearbit: md %p mask 0x%x\n",
2189 md, maskbits));
2190
2191 #ifdef PMAP_CACHE_VIPT
2192 /*
2193 * If we might want to sync the I-cache and we've modified it,
2194 * then we know we definitely need to sync or discard it.
2195 */
2196 if (want_syncicache)
2197 need_syncicache = md->pvh_attrs & PVF_MOD;
2198 #endif
2199 /*
2200 * Clear saved attributes (modify, reference)
2201 */
2202 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2203
2204 if (SLIST_EMPTY(&md->pvh_list)) {
2205 #ifdef PMAP_CACHE_VIPT
2206 if (need_syncicache) {
2207 /*
2208 * No one has it mapped, so just discard it. The next
2209 * exec remapping will cause it to be synced.
2210 */
2211 md->pvh_attrs &= ~PVF_EXEC;
2212 PMAPCOUNT(exec_discarded_clearbit);
2213 }
2214 #endif
2215 return;
2216 }
2217
2218 /*
2219 * Loop over all current mappings setting/clearing as appropos
2220 */
2221 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2222 va = pv->pv_va;
2223 pm = pv->pv_pmap;
2224 oflags = pv->pv_flags;
2225 /*
2226 * Kernel entries are unmanaged and as such not to be changed.
2227 */
2228 if (oflags & PVF_KENTRY)
2229 continue;
2230 pv->pv_flags &= ~maskbits;
2231
2232 pmap_acquire_pmap_lock(pm);
2233
2234 l2b = pmap_get_l2_bucket(pm, va);
2235 KDASSERT(l2b != NULL);
2236
2237 ptep = &l2b->l2b_kva[l2pte_index(va)];
2238 npte = opte = *ptep;
2239
2240 NPDEBUG(PDB_BITS,
2241 printf(
2242 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2243 pv, pv->pv_pmap, pv->pv_va, oflags));
2244
2245 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2246 #ifdef PMAP_CACHE_VIVT
2247 if ((pv->pv_flags & PVF_NC)) {
2248 /*
2249 * Entry is not cacheable:
2250 *
2251 * Don't turn caching on again if this is a
2252 * modified emulation. This would be
2253 * inconsitent with the settings created by
2254 * pmap_vac_me_harder(). Otherwise, it's safe
2255 * to re-enable cacheing.
2256 *
2257 * There's no need to call pmap_vac_me_harder()
2258 * here: all pages are losing their write
2259 * permission.
2260 */
2261 if (maskbits & PVF_WRITE) {
2262 npte |= pte_l2_s_cache_mode;
2263 pv->pv_flags &= ~PVF_NC;
2264 }
2265 } else
2266 if (l2pte_writable_p(opte)) {
2267 /*
2268 * Entry is writable/cacheable: check if pmap
2269 * is current if it is flush it, otherwise it
2270 * won't be in the cache
2271 */
2272 if (PV_BEEN_EXECD(oflags))
2273 pmap_idcache_wbinv_range(pm, pv->pv_va,
2274 PAGE_SIZE);
2275 else
2276 if (PV_BEEN_REFD(oflags))
2277 pmap_dcache_wb_range(pm, pv->pv_va,
2278 PAGE_SIZE,
2279 (maskbits & PVF_REF) != 0, false);
2280 }
2281 #endif
2282
2283 /* make the pte read only */
2284 npte = l2pte_set_readonly(npte);
2285
2286 if (maskbits & oflags & PVF_WRITE) {
2287 /*
2288 * Keep alias accounting up to date
2289 */
2290 if (pv->pv_pmap == pmap_kernel()) {
2291 md->krw_mappings--;
2292 md->kro_mappings++;
2293 } else {
2294 md->urw_mappings--;
2295 md->uro_mappings++;
2296 }
2297 #ifdef PMAP_CACHE_VIPT
2298 if (arm_cache_prefer_mask != 0) {
2299 if (md->urw_mappings + md->krw_mappings == 0) {
2300 md->pvh_attrs &= ~PVF_WRITE;
2301 } else {
2302 PMAP_VALIDATE_MD_PAGE(md);
2303 }
2304 }
2305 if (want_syncicache)
2306 need_syncicache = true;
2307 need_vac_me_harder = true;
2308 #endif
2309 }
2310 }
2311
2312 if (maskbits & PVF_REF) {
2313 if ((pv->pv_flags & PVF_NC) == 0 &&
2314 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2315 l2pte_valid(npte)) {
2316 #ifdef PMAP_CACHE_VIVT
2317 /*
2318 * Check npte here; we may have already
2319 * done the wbinv above, and the validity
2320 * of the PTE is the same for opte and
2321 * npte.
2322 */
2323 /* XXXJRT need idcache_inv_range */
2324 if (PV_BEEN_EXECD(oflags))
2325 pmap_idcache_wbinv_range(pm,
2326 pv->pv_va, PAGE_SIZE);
2327 else
2328 if (PV_BEEN_REFD(oflags))
2329 pmap_dcache_wb_range(pm,
2330 pv->pv_va, PAGE_SIZE,
2331 true, true);
2332 #endif
2333 }
2334
2335 /*
2336 * Make the PTE invalid so that we will take a
2337 * page fault the next time the mapping is
2338 * referenced.
2339 */
2340 npte &= ~L2_TYPE_MASK;
2341 npte |= L2_TYPE_INV;
2342 }
2343
2344 if (npte != opte) {
2345 *ptep = npte;
2346 PTE_SYNC(ptep);
2347 /* Flush the TLB entry if a current pmap. */
2348 if (PV_BEEN_EXECD(oflags))
2349 pmap_tlb_flushID_SE(pm, pv->pv_va);
2350 else
2351 if (PV_BEEN_REFD(oflags))
2352 pmap_tlb_flushD_SE(pm, pv->pv_va);
2353 }
2354
2355 pmap_release_pmap_lock(pm);
2356
2357 NPDEBUG(PDB_BITS,
2358 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2359 pm, va, opte, npte));
2360 }
2361
2362 #ifdef PMAP_CACHE_VIPT
2363 /*
2364 * If we need to sync the I-cache and we haven't done it yet, do it.
2365 */
2366 if (need_syncicache && !did_syncicache) {
2367 pmap_syncicache_page(md, pa);
2368 PMAPCOUNT(exec_synced_clearbit);
2369 }
2370 /*
2371 * If we are changing this to read-only, we need to call vac_me_harder
2372 * so we can change all the read-only pages to cacheable. We pretend
2373 * this as a page deletion.
2374 */
2375 if (need_vac_me_harder) {
2376 if (md->pvh_attrs & PVF_NC)
2377 pmap_vac_me_harder(md, pa, NULL, 0);
2378 }
2379 #endif
2380 }
2381
2382 /*
2383 * pmap_clean_page()
2384 *
2385 * This is a local function used to work out the best strategy to clean
2386 * a single page referenced by its entry in the PV table. It's used by
2387 * pmap_copy_page, pmap_zero page and maybe some others later on.
2388 *
2389 * Its policy is effectively:
2390 * o If there are no mappings, we don't bother doing anything with the cache.
2391 * o If there is one mapping, we clean just that page.
2392 * o If there are multiple mappings, we clean the entire cache.
2393 *
2394 * So that some functions can be further optimised, it returns 0 if it didn't
2395 * clean the entire cache, or 1 if it did.
2396 *
2397 * XXX One bug in this routine is that if the pv_entry has a single page
2398 * mapped at 0x00000000 a whole cache clean will be performed rather than
2399 * just the 1 page. Since this should not occur in everyday use and if it does
2400 * it will just result in not the most efficient clean for the page.
2401 */
2402 #ifdef PMAP_CACHE_VIVT
2403 static int
2404 pmap_clean_page(struct pv_entry *pv, bool is_src)
2405 {
2406 pmap_t pm_to_clean = NULL;
2407 struct pv_entry *npv;
2408 u_int cache_needs_cleaning = 0;
2409 u_int flags = 0;
2410 vaddr_t page_to_clean = 0;
2411
2412 if (pv == NULL) {
2413 /* nothing mapped in so nothing to flush */
2414 return (0);
2415 }
2416
2417 /*
2418 * Since we flush the cache each time we change to a different
2419 * user vmspace, we only need to flush the page if it is in the
2420 * current pmap.
2421 */
2422
2423 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2424 if (pmap_is_current(npv->pv_pmap)) {
2425 flags |= npv->pv_flags;
2426 /*
2427 * The page is mapped non-cacheable in
2428 * this map. No need to flush the cache.
2429 */
2430 if (npv->pv_flags & PVF_NC) {
2431 #ifdef DIAGNOSTIC
2432 if (cache_needs_cleaning)
2433 panic("pmap_clean_page: "
2434 "cache inconsistency");
2435 #endif
2436 break;
2437 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2438 continue;
2439 if (cache_needs_cleaning) {
2440 page_to_clean = 0;
2441 break;
2442 } else {
2443 page_to_clean = npv->pv_va;
2444 pm_to_clean = npv->pv_pmap;
2445 }
2446 cache_needs_cleaning = 1;
2447 }
2448 }
2449
2450 if (page_to_clean) {
2451 if (PV_BEEN_EXECD(flags))
2452 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2453 PAGE_SIZE);
2454 else
2455 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2456 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2457 } else if (cache_needs_cleaning) {
2458 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2459
2460 if (PV_BEEN_EXECD(flags))
2461 pmap_idcache_wbinv_all(pm);
2462 else
2463 pmap_dcache_wbinv_all(pm);
2464 return (1);
2465 }
2466 return (0);
2467 }
2468 #endif
2469
2470 #ifdef PMAP_CACHE_VIPT
2471 /*
2472 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2473 * right cache alias to make sure we flush the right stuff.
2474 */
2475 void
2476 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2477 {
2478 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2479 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2480
2481 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2482 md, md->pvh_attrs));
2483 /*
2484 * No need to clean the page if it's non-cached.
2485 */
2486 if (md->pvh_attrs & PVF_NC)
2487 return;
2488 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2489
2490 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2491 /*
2492 * Set up a PTE with the right coloring to flush existing cache lines.
2493 */
2494 *ptep = L2_S_PROTO |
2495 pa
2496 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2497 | pte_l2_s_cache_mode;
2498 PTE_SYNC(ptep);
2499
2500 /*
2501 * Flush it.
2502 */
2503 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2504 /*
2505 * Unmap the page.
2506 */
2507 *ptep = 0;
2508 PTE_SYNC(ptep);
2509 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2510
2511 md->pvh_attrs |= PVF_EXEC;
2512 PMAPCOUNT(exec_synced);
2513 }
2514
2515 void
2516 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2517 {
2518 vsize_t va_offset, end_va;
2519 bool wbinv_p;
2520
2521 if (arm_cache_prefer_mask == 0)
2522 return;
2523
2524 switch (flush) {
2525 case PMAP_FLUSH_PRIMARY:
2526 if (md->pvh_attrs & PVF_MULTCLR) {
2527 va_offset = 0;
2528 end_va = arm_cache_prefer_mask;
2529 md->pvh_attrs &= ~PVF_MULTCLR;
2530 PMAPCOUNT(vac_flush_lots);
2531 } else {
2532 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2533 end_va = va_offset;
2534 PMAPCOUNT(vac_flush_one);
2535 }
2536 /*
2537 * Mark that the page is no longer dirty.
2538 */
2539 md->pvh_attrs &= ~PVF_DIRTY;
2540 wbinv_p = true;
2541 break;
2542 case PMAP_FLUSH_SECONDARY:
2543 va_offset = 0;
2544 end_va = arm_cache_prefer_mask;
2545 wbinv_p = true;
2546 md->pvh_attrs &= ~PVF_MULTCLR;
2547 PMAPCOUNT(vac_flush_lots);
2548 break;
2549 case PMAP_CLEAN_PRIMARY:
2550 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2551 end_va = va_offset;
2552 wbinv_p = false;
2553 /*
2554 * Mark that the page is no longer dirty.
2555 */
2556 if ((md->pvh_attrs & PVF_DMOD) == 0)
2557 md->pvh_attrs &= ~PVF_DIRTY;
2558 PMAPCOUNT(vac_clean_one);
2559 break;
2560 default:
2561 return;
2562 }
2563
2564 KASSERT(!(md->pvh_attrs & PVF_NC));
2565
2566 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2567 md, md->pvh_attrs));
2568
2569 const size_t scache_line_size = arm_scache.dcache_line_size;
2570
2571 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2572 const size_t pte_offset = va_offset >> PGSHIFT;
2573 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2574 const pt_entry_t oldpte = *ptep;
2575
2576 if (flush == PMAP_FLUSH_SECONDARY
2577 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2578 continue;
2579
2580 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2581 /*
2582 * Set up a PTE with the right coloring to flush
2583 * existing cache entries.
2584 */
2585 *ptep = L2_S_PROTO
2586 | pa
2587 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2588 | pte_l2_s_cache_mode;
2589 PTE_SYNC(ptep);
2590
2591 /*
2592 * Flush it.
2593 */
2594 vaddr_t va = cdstp + va_offset;
2595 if (scache_line_size != 0) {
2596 cpu_dcache_wb_range(va, PAGE_SIZE);
2597 if (wbinv_p) {
2598 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
2599 cpu_dcache_inv_range(va, PAGE_SIZE);
2600 } else {
2601 cpu_sdcache_wb_range(va, pa, PAGE_SIZE);
2602 }
2603 } else {
2604 if (wbinv_p) {
2605 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2606 } else {
2607 cpu_dcache_wb_range(va, PAGE_SIZE);
2608 }
2609 }
2610
2611 /*
2612 * Restore the page table entry since we might have interrupted
2613 * pmap_zero_page or pmap_copy_page which was already using
2614 * this pte.
2615 */
2616 *ptep = oldpte;
2617 PTE_SYNC(ptep);
2618 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2619 }
2620 }
2621 #endif /* PMAP_CACHE_VIPT */
2622
2623 /*
2624 * Routine: pmap_page_remove
2625 * Function:
2626 * Removes this physical page from
2627 * all physical maps in which it resides.
2628 * Reflects back modify bits to the pager.
2629 */
2630 static void
2631 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2632 {
2633 struct l2_bucket *l2b;
2634 struct pv_entry *pv, *npv, **pvp;
2635 pmap_t pm;
2636 pt_entry_t *ptep;
2637 bool flush;
2638 u_int flags;
2639
2640 NPDEBUG(PDB_FOLLOW,
2641 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2642 pa));
2643
2644 pv = SLIST_FIRST(&md->pvh_list);
2645 if (pv == NULL) {
2646 #ifdef PMAP_CACHE_VIPT
2647 /*
2648 * We *know* the page contents are about to be replaced.
2649 * Discard the exec contents
2650 */
2651 if (PV_IS_EXEC_P(md->pvh_attrs))
2652 PMAPCOUNT(exec_discarded_page_protect);
2653 md->pvh_attrs &= ~PVF_EXEC;
2654 PMAP_VALIDATE_MD_PAGE(md);
2655 #endif
2656 return;
2657 }
2658 #ifdef PMAP_CACHE_VIPT
2659 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2660 #endif
2661
2662 /*
2663 * Clear alias counts
2664 */
2665 #ifdef PMAP_CACHE_VIVT
2666 md->k_mappings = 0;
2667 #endif
2668 md->urw_mappings = md->uro_mappings = 0;
2669
2670 flush = false;
2671 flags = 0;
2672
2673 #ifdef PMAP_CACHE_VIVT
2674 pmap_clean_page(pv, false);
2675 #endif
2676
2677 pvp = &SLIST_FIRST(&md->pvh_list);
2678 while (pv) {
2679 pm = pv->pv_pmap;
2680 npv = SLIST_NEXT(pv, pv_link);
2681 if (flush == false && pmap_is_current(pm))
2682 flush = true;
2683
2684 if (pm == pmap_kernel()) {
2685 #ifdef PMAP_CACHE_VIPT
2686 /*
2687 * If this was unmanaged mapping, it must be preserved.
2688 * Move it back on the list and advance the end-of-list
2689 * pointer.
2690 */
2691 if (pv->pv_flags & PVF_KENTRY) {
2692 *pvp = pv;
2693 pvp = &SLIST_NEXT(pv, pv_link);
2694 pv = npv;
2695 continue;
2696 }
2697 if (pv->pv_flags & PVF_WRITE)
2698 md->krw_mappings--;
2699 else
2700 md->kro_mappings--;
2701 #endif
2702 PMAPCOUNT(kernel_unmappings);
2703 }
2704 PMAPCOUNT(unmappings);
2705
2706 pmap_acquire_pmap_lock(pm);
2707
2708 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2709 KDASSERT(l2b != NULL);
2710
2711 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2712
2713 /*
2714 * Update statistics
2715 */
2716 --pm->pm_stats.resident_count;
2717
2718 /* Wired bit */
2719 if (pv->pv_flags & PVF_WIRED)
2720 --pm->pm_stats.wired_count;
2721
2722 flags |= pv->pv_flags;
2723
2724 /*
2725 * Invalidate the PTEs.
2726 */
2727 *ptep = 0;
2728 PTE_SYNC_CURRENT(pm, ptep);
2729 pmap_free_l2_bucket(pm, l2b, 1);
2730
2731 pool_put(&pmap_pv_pool, pv);
2732 pv = npv;
2733 /*
2734 * if we reach the end of the list and there are still
2735 * mappings, they might be able to be cached now.
2736 */
2737 if (pv == NULL) {
2738 *pvp = NULL;
2739 if (!SLIST_EMPTY(&md->pvh_list))
2740 pmap_vac_me_harder(md, pa, pm, 0);
2741 }
2742 pmap_release_pmap_lock(pm);
2743 }
2744 #ifdef PMAP_CACHE_VIPT
2745 /*
2746 * Its EXEC cache is now gone.
2747 */
2748 if (PV_IS_EXEC_P(md->pvh_attrs))
2749 PMAPCOUNT(exec_discarded_page_protect);
2750 md->pvh_attrs &= ~PVF_EXEC;
2751 KASSERT(md->urw_mappings == 0);
2752 KASSERT(md->uro_mappings == 0);
2753 if (arm_cache_prefer_mask != 0) {
2754 if (md->krw_mappings == 0)
2755 md->pvh_attrs &= ~PVF_WRITE;
2756 PMAP_VALIDATE_MD_PAGE(md);
2757 }
2758 #endif
2759
2760 if (flush) {
2761 /*
2762 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2763 * would need a subsequent call to pmap_update() to ensure
2764 * curpm->pm_cstate.cs_all is reset. Our callers are not
2765 * required to do that (see pmap(9)), so we can't modify
2766 * the current pmap's state.
2767 */
2768 if (PV_BEEN_EXECD(flags))
2769 cpu_tlb_flushID();
2770 else
2771 cpu_tlb_flushD();
2772 }
2773 cpu_cpwait();
2774 }
2775
2776 /*
2777 * pmap_t pmap_create(void)
2778 *
2779 * Create a new pmap structure from scratch.
2780 */
2781 pmap_t
2782 pmap_create(void)
2783 {
2784 pmap_t pm;
2785
2786 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2787
2788 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2789 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2790 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2791
2792 pm->pm_stats.wired_count = 0;
2793 pm->pm_stats.resident_count = 1;
2794 pm->pm_cstate.cs_all = 0;
2795 pmap_alloc_l1(pm);
2796
2797 /*
2798 * Note: The pool cache ensures that the pm_l2[] array is already
2799 * initialised to zero.
2800 */
2801
2802 pmap_pinit(pm);
2803
2804 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2805
2806 return (pm);
2807 }
2808
2809 u_int
2810 arm32_mmap_flags(paddr_t pa)
2811 {
2812 /*
2813 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2814 * and we're using the upper bits in page numbers to pass flags around
2815 * so we might as well use the same bits
2816 */
2817 return (u_int)pa & PMAP_MD_MASK;
2818 }
2819 /*
2820 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2821 * u_int flags)
2822 *
2823 * Insert the given physical page (p) at
2824 * the specified virtual address (v) in the
2825 * target physical map with the protection requested.
2826 *
2827 * NB: This is the only routine which MAY NOT lazy-evaluate
2828 * or lose information. That is, this routine must actually
2829 * insert this page into the given map NOW.
2830 */
2831 int
2832 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2833 {
2834 struct l2_bucket *l2b;
2835 struct vm_page *pg, *opg;
2836 struct pv_entry *pv;
2837 pt_entry_t *ptep, npte, opte;
2838 u_int nflags;
2839 u_int oflags;
2840 #ifdef ARM_HAS_VBAR
2841 const bool vector_page_p = false;
2842 #else
2843 const bool vector_page_p = (va == vector_page);
2844 #endif
2845
2846 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2847
2848 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2849 KDASSERT(((va | pa) & PGOFSET) == 0);
2850
2851 /*
2852 * Get a pointer to the page. Later on in this function, we
2853 * test for a managed page by checking pg != NULL.
2854 */
2855 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2856
2857 nflags = 0;
2858 if (prot & VM_PROT_WRITE)
2859 nflags |= PVF_WRITE;
2860 if (prot & VM_PROT_EXECUTE)
2861 nflags |= PVF_EXEC;
2862 if (flags & PMAP_WIRED)
2863 nflags |= PVF_WIRED;
2864
2865 pmap_acquire_pmap_lock(pm);
2866
2867 /*
2868 * Fetch the L2 bucket which maps this page, allocating one if
2869 * necessary for user pmaps.
2870 */
2871 if (pm == pmap_kernel())
2872 l2b = pmap_get_l2_bucket(pm, va);
2873 else
2874 l2b = pmap_alloc_l2_bucket(pm, va);
2875 if (l2b == NULL) {
2876 if (flags & PMAP_CANFAIL) {
2877 pmap_release_pmap_lock(pm);
2878 return (ENOMEM);
2879 }
2880 panic("pmap_enter: failed to allocate L2 bucket");
2881 }
2882 ptep = &l2b->l2b_kva[l2pte_index(va)];
2883 opte = *ptep;
2884 npte = pa;
2885 oflags = 0;
2886
2887 if (opte) {
2888 /*
2889 * There is already a mapping at this address.
2890 * If the physical address is different, lookup the
2891 * vm_page.
2892 */
2893 if (l2pte_pa(opte) != pa)
2894 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2895 else
2896 opg = pg;
2897 } else
2898 opg = NULL;
2899
2900 if (pg) {
2901 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2902
2903 /*
2904 * This is to be a managed mapping.
2905 */
2906 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
2907 /*
2908 * - The access type indicates that we don't need
2909 * to do referenced emulation.
2910 * OR
2911 * - The physical page has already been referenced
2912 * so no need to re-do referenced emulation here.
2913 */
2914 npte |= l2pte_set_readonly(L2_S_PROTO);
2915
2916 nflags |= PVF_REF;
2917
2918 if ((prot & VM_PROT_WRITE) != 0 &&
2919 ((flags & VM_PROT_WRITE) != 0 ||
2920 (md->pvh_attrs & PVF_MOD) != 0)) {
2921 /*
2922 * This is a writable mapping, and the
2923 * page's mod state indicates it has
2924 * already been modified. Make it
2925 * writable from the outset.
2926 */
2927 npte = l2pte_set_writable(npte);
2928 nflags |= PVF_MOD;
2929 }
2930 } else {
2931 /*
2932 * Need to do page referenced emulation.
2933 */
2934 npte |= L2_TYPE_INV;
2935 }
2936
2937 if (flags & ARM32_MMAP_WRITECOMBINE) {
2938 npte |= pte_l2_s_wc_mode;
2939 } else
2940 npte |= pte_l2_s_cache_mode;
2941
2942 if (pg == opg) {
2943 /*
2944 * We're changing the attrs of an existing mapping.
2945 */
2946 #ifdef MULTIPROCESSOR
2947 KASSERT(uvm_page_locked_p(pg));
2948 #endif
2949 oflags = pmap_modify_pv(md, pa, pm, va,
2950 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2951 PVF_MOD | PVF_REF, nflags);
2952
2953 #ifdef PMAP_CACHE_VIVT
2954 /*
2955 * We may need to flush the cache if we're
2956 * doing rw-ro...
2957 */
2958 if (pm->pm_cstate.cs_cache_d &&
2959 (oflags & PVF_NC) == 0 &&
2960 l2pte_writable_p(opte) &&
2961 (prot & VM_PROT_WRITE) == 0)
2962 cpu_dcache_wb_range(va, PAGE_SIZE);
2963 #endif
2964 } else {
2965 /*
2966 * New mapping, or changing the backing page
2967 * of an existing mapping.
2968 */
2969 if (opg) {
2970 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2971 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2972
2973 /*
2974 * Replacing an existing mapping with a new one.
2975 * It is part of our managed memory so we
2976 * must remove it from the PV list
2977 */
2978 #ifdef MULTIPROCESSOR
2979 KASSERT(uvm_page_locked_p(opg));
2980 #endif
2981 pv = pmap_remove_pv(omd, opa, pm, va);
2982 pmap_vac_me_harder(omd, opa, pm, 0);
2983 oflags = pv->pv_flags;
2984
2985 #ifdef PMAP_CACHE_VIVT
2986 /*
2987 * If the old mapping was valid (ref/mod
2988 * emulation creates 'invalid' mappings
2989 * initially) then make sure to frob
2990 * the cache.
2991 */
2992 if ((oflags & PVF_NC) == 0 &&
2993 l2pte_valid(opte)) {
2994 if (PV_BEEN_EXECD(oflags)) {
2995 pmap_idcache_wbinv_range(pm, va,
2996 PAGE_SIZE);
2997 } else
2998 if (PV_BEEN_REFD(oflags)) {
2999 pmap_dcache_wb_range(pm, va,
3000 PAGE_SIZE, true,
3001 (oflags & PVF_WRITE) == 0);
3002 }
3003 }
3004 #endif
3005 } else
3006 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
3007 if ((flags & PMAP_CANFAIL) == 0)
3008 panic("pmap_enter: no pv entries");
3009
3010 if (pm != pmap_kernel())
3011 pmap_free_l2_bucket(pm, l2b, 0);
3012 pmap_release_pmap_lock(pm);
3013 NPDEBUG(PDB_ENTER,
3014 printf("pmap_enter: ENOMEM\n"));
3015 return (ENOMEM);
3016 }
3017
3018 #ifdef MULTIPROCESSOR
3019 KASSERT(uvm_page_locked_p(pg));
3020 #endif
3021 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3022 }
3023 } else {
3024 /*
3025 * We're mapping an unmanaged page.
3026 * These are always readable, and possibly writable, from
3027 * the get go as we don't need to track ref/mod status.
3028 */
3029 npte |= l2pte_set_readonly(L2_S_PROTO);
3030 if (prot & VM_PROT_WRITE)
3031 npte = l2pte_set_writable(npte);
3032
3033 /*
3034 * Make sure the vector table is mapped cacheable
3035 */
3036 if ((vector_page_p && pm != pmap_kernel())
3037 || (flags & ARM32_MMAP_CACHEABLE)) {
3038 npte |= pte_l2_s_cache_mode;
3039 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3040 npte |= pte_l2_s_wc_mode;
3041 }
3042 if (opg) {
3043 /*
3044 * Looks like there's an existing 'managed' mapping
3045 * at this address.
3046 */
3047 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3048 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3049
3050 #ifdef MULTIPROCESSOR
3051 KASSERT(uvm_page_locked_p(opg));
3052 #endif
3053 pv = pmap_remove_pv(omd, opa, pm, va);
3054 pmap_vac_me_harder(omd, opa, pm, 0);
3055 oflags = pv->pv_flags;
3056
3057 #ifdef PMAP_CACHE_VIVT
3058 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
3059 if (PV_BEEN_EXECD(oflags))
3060 pmap_idcache_wbinv_range(pm, va,
3061 PAGE_SIZE);
3062 else
3063 if (PV_BEEN_REFD(oflags))
3064 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
3065 true, (oflags & PVF_WRITE) == 0);
3066 }
3067 #endif
3068 pool_put(&pmap_pv_pool, pv);
3069 }
3070 }
3071
3072 /*
3073 * Make sure userland mappings get the right permissions
3074 */
3075 if (!vector_page_p && pm != pmap_kernel()) {
3076 npte |= L2_S_PROT_U;
3077 }
3078
3079 /*
3080 * Keep the stats up to date
3081 */
3082 if (opte == 0) {
3083 l2b->l2b_occupancy++;
3084 pm->pm_stats.resident_count++;
3085 }
3086
3087 NPDEBUG(PDB_ENTER,
3088 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3089
3090 /*
3091 * If this is just a wiring change, the two PTEs will be
3092 * identical, so there's no need to update the page table.
3093 */
3094 if (npte != opte) {
3095 bool is_cached = pmap_is_cached(pm);
3096
3097 *ptep = npte;
3098 PTE_SYNC(ptep);
3099 if (is_cached) {
3100 /*
3101 * We only need to frob the cache/tlb if this pmap
3102 * is current
3103 */
3104 if (!vector_page_p && l2pte_valid(npte)) {
3105 /*
3106 * This mapping is likely to be accessed as
3107 * soon as we return to userland. Fix up the
3108 * L1 entry to avoid taking another
3109 * page/domain fault.
3110 */
3111 pd_entry_t *pl1pd, l1pd;
3112
3113 pl1pd = pmap_l1_kva(pm) + L1_IDX(va);
3114 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) |
3115 L1_C_PROTO;
3116 if (*pl1pd != l1pd) {
3117 *pl1pd = l1pd;
3118 PTE_SYNC(pl1pd);
3119 }
3120 }
3121 }
3122
3123 if (PV_BEEN_EXECD(oflags))
3124 pmap_tlb_flushID_SE(pm, va);
3125 else
3126 if (PV_BEEN_REFD(oflags))
3127 pmap_tlb_flushD_SE(pm, va);
3128
3129 NPDEBUG(PDB_ENTER,
3130 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3131 is_cached, pm->pm_cstate.cs_all));
3132
3133 if (pg != NULL) {
3134 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3135
3136 #ifdef MULTIPROCESSOR
3137 KASSERT(uvm_page_locked_p(pg));
3138 #endif
3139 pmap_vac_me_harder(md, pa, pm, va);
3140 }
3141 }
3142 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3143 if (pg) {
3144 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3145
3146 #ifdef MULTIPROCESSOR
3147 KASSERT(uvm_page_locked_p(pg));
3148 #endif
3149 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3150 PMAP_VALIDATE_MD_PAGE(md);
3151 }
3152 #endif
3153
3154 pmap_release_pmap_lock(pm);
3155
3156 return (0);
3157 }
3158
3159 /*
3160 * pmap_remove()
3161 *
3162 * pmap_remove is responsible for nuking a number of mappings for a range
3163 * of virtual address space in the current pmap. To do this efficiently
3164 * is interesting, because in a number of cases a wide virtual address
3165 * range may be supplied that contains few actual mappings. So, the
3166 * optimisations are:
3167 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3168 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3169 * maybe do just a partial cache clean. This path of execution is
3170 * complicated by the fact that the cache must be flushed _before_
3171 * the PTE is nuked, being a VAC :-)
3172 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3173 * all invalidations until pmap_update(), since pmap_remove_all() has
3174 * already flushed the cache.
3175 * 4. Maybe later fast-case a single page, but I don't think this is
3176 * going to make _that_ much difference overall.
3177 */
3178
3179 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3180
3181 void
3182 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3183 {
3184 struct l2_bucket *l2b;
3185 vaddr_t next_bucket;
3186 pt_entry_t *ptep;
3187 u_int cleanlist_idx, total, cnt;
3188 struct {
3189 vaddr_t va;
3190 pt_entry_t *ptep;
3191 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3192 u_int mappings, is_exec, is_refd;
3193
3194 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3195 "eva=%08lx\n", pm, sva, eva));
3196
3197 /*
3198 * we lock in the pmap => pv_head direction
3199 */
3200 pmap_acquire_pmap_lock(pm);
3201
3202 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3203 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3204 if (pm->pm_cstate.cs_tlb == 0)
3205 pm->pm_remove_all = true;
3206 } else
3207 cleanlist_idx = 0;
3208
3209 total = 0;
3210
3211 while (sva < eva) {
3212 /*
3213 * Do one L2 bucket's worth at a time.
3214 */
3215 next_bucket = L2_NEXT_BUCKET(sva);
3216 if (next_bucket > eva)
3217 next_bucket = eva;
3218
3219 l2b = pmap_get_l2_bucket(pm, sva);
3220 if (l2b == NULL) {
3221 sva = next_bucket;
3222 continue;
3223 }
3224
3225 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3226
3227 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3228 struct vm_page *pg;
3229 pt_entry_t pte;
3230 paddr_t pa;
3231
3232 pte = *ptep;
3233
3234 if (pte == 0) {
3235 /* Nothing here, move along */
3236 continue;
3237 }
3238
3239 pa = l2pte_pa(pte);
3240 is_exec = 0;
3241 is_refd = 1;
3242
3243 /*
3244 * Update flags. In a number of circumstances,
3245 * we could cluster a lot of these and do a
3246 * number of sequential pages in one go.
3247 */
3248 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3249 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3250 struct pv_entry *pv;
3251
3252 #ifdef MULTIPROCESSOR
3253 KASSERT(uvm_page_locked_p(pg));
3254 #endif
3255 pv = pmap_remove_pv(md, pa, pm, sva);
3256 pmap_vac_me_harder(md, pa, pm, 0);
3257 if (pv != NULL) {
3258 if (pm->pm_remove_all == false) {
3259 is_exec =
3260 PV_BEEN_EXECD(pv->pv_flags);
3261 is_refd =
3262 PV_BEEN_REFD(pv->pv_flags);
3263 }
3264 pool_put(&pmap_pv_pool, pv);
3265 }
3266 }
3267 mappings++;
3268
3269 if (!l2pte_valid(pte)) {
3270 /*
3271 * Ref/Mod emulation is still active for this
3272 * mapping, therefore it is has not yet been
3273 * accessed. No need to frob the cache/tlb.
3274 */
3275 *ptep = 0;
3276 PTE_SYNC_CURRENT(pm, ptep);
3277 continue;
3278 }
3279
3280 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3281 /* Add to the clean list. */
3282 cleanlist[cleanlist_idx].ptep = ptep;
3283 cleanlist[cleanlist_idx].va =
3284 sva | (is_exec & 1);
3285 cleanlist_idx++;
3286 } else
3287 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3288 /* Nuke everything if needed. */
3289 #ifdef PMAP_CACHE_VIVT
3290 pmap_idcache_wbinv_all(pm);
3291 #endif
3292 pmap_tlb_flushID(pm);
3293
3294 /*
3295 * Roll back the previous PTE list,
3296 * and zero out the current PTE.
3297 */
3298 for (cnt = 0;
3299 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3300 *cleanlist[cnt].ptep = 0;
3301 PTE_SYNC(cleanlist[cnt].ptep);
3302 }
3303 *ptep = 0;
3304 PTE_SYNC(ptep);
3305 cleanlist_idx++;
3306 pm->pm_remove_all = true;
3307 } else {
3308 *ptep = 0;
3309 PTE_SYNC(ptep);
3310 if (pm->pm_remove_all == false) {
3311 if (is_exec)
3312 pmap_tlb_flushID_SE(pm, sva);
3313 else
3314 if (is_refd)
3315 pmap_tlb_flushD_SE(pm, sva);
3316 }
3317 }
3318 }
3319
3320 /*
3321 * Deal with any left overs
3322 */
3323 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3324 total += cleanlist_idx;
3325 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3326 if (pm->pm_cstate.cs_all != 0) {
3327 vaddr_t clva = cleanlist[cnt].va & ~1;
3328 if (cleanlist[cnt].va & 1) {
3329 #ifdef PMAP_CACHE_VIVT
3330 pmap_idcache_wbinv_range(pm,
3331 clva, PAGE_SIZE);
3332 #endif
3333 pmap_tlb_flushID_SE(pm, clva);
3334 } else {
3335 #ifdef PMAP_CACHE_VIVT
3336 pmap_dcache_wb_range(pm,
3337 clva, PAGE_SIZE, true,
3338 false);
3339 #endif
3340 pmap_tlb_flushD_SE(pm, clva);
3341 }
3342 }
3343 *cleanlist[cnt].ptep = 0;
3344 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3345 }
3346
3347 /*
3348 * If it looks like we're removing a whole bunch
3349 * of mappings, it's faster to just write-back
3350 * the whole cache now and defer TLB flushes until
3351 * pmap_update() is called.
3352 */
3353 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3354 cleanlist_idx = 0;
3355 else {
3356 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3357 #ifdef PMAP_CACHE_VIVT
3358 pmap_idcache_wbinv_all(pm);
3359 #endif
3360 pm->pm_remove_all = true;
3361 }
3362 }
3363
3364 pmap_free_l2_bucket(pm, l2b, mappings);
3365 pm->pm_stats.resident_count -= mappings;
3366 }
3367
3368 pmap_release_pmap_lock(pm);
3369 }
3370
3371 #ifdef PMAP_CACHE_VIPT
3372 static struct pv_entry *
3373 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3374 {
3375 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3376 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3377 struct pv_entry *pv;
3378
3379 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3380 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3381
3382 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3383 KASSERT(pv);
3384 KASSERT(pv->pv_flags & PVF_KENTRY);
3385
3386 /*
3387 * If we are removing a writeable mapping to a cached exec page,
3388 * if it's the last mapping then clear it execness other sync
3389 * the page to the icache.
3390 */
3391 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3392 && (pv->pv_flags & PVF_WRITE) != 0) {
3393 if (SLIST_EMPTY(&md->pvh_list)) {
3394 md->pvh_attrs &= ~PVF_EXEC;
3395 PMAPCOUNT(exec_discarded_kremove);
3396 } else {
3397 pmap_syncicache_page(md, pa);
3398 PMAPCOUNT(exec_synced_kremove);
3399 }
3400 }
3401 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3402
3403 return pv;
3404 }
3405 #endif /* PMAP_CACHE_VIPT */
3406
3407 /*
3408 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3409 *
3410 * We assume there is already sufficient KVM space available
3411 * to do this, as we can't allocate L2 descriptor tables/metadata
3412 * from here.
3413 */
3414 void
3415 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3416 {
3417 struct l2_bucket *l2b;
3418 pt_entry_t *ptep, opte;
3419 #ifdef PMAP_CACHE_VIVT
3420 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3421 #endif
3422 #ifdef PMAP_CACHE_VIPT
3423 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3424 struct vm_page *opg;
3425 struct pv_entry *pv = NULL;
3426 #endif
3427 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3428
3429 NPDEBUG(PDB_KENTER,
3430 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3431 va, pa, prot));
3432
3433 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3434 KDASSERT(l2b != NULL);
3435
3436 ptep = &l2b->l2b_kva[l2pte_index(va)];
3437 opte = *ptep;
3438
3439 if (opte == 0) {
3440 PMAPCOUNT(kenter_mappings);
3441 l2b->l2b_occupancy++;
3442 } else {
3443 PMAPCOUNT(kenter_remappings);
3444 #ifdef PMAP_CACHE_VIPT
3445 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3446 #ifdef DIAGNOSTIC
3447 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3448 #endif
3449 if (opg) {
3450 KASSERT(opg != pg);
3451 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3452 KASSERT((flags & PMAP_KMPAGE) == 0);
3453 pv = pmap_kremove_pg(opg, va);
3454 }
3455 #endif
3456 if (l2pte_valid(opte)) {
3457 #ifdef PMAP_CACHE_VIVT
3458 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3459 #endif
3460 cpu_tlb_flushD_SE(va);
3461 cpu_cpwait();
3462 }
3463 }
3464
3465 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3466 | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
3467 PTE_SYNC(ptep);
3468
3469 if (pg) {
3470 #ifdef MULTIPROCESSOR
3471 KASSERT(uvm_page_locked_p(pg));
3472 #endif
3473 if (flags & PMAP_KMPAGE) {
3474 KASSERT(md->urw_mappings == 0);
3475 KASSERT(md->uro_mappings == 0);
3476 KASSERT(md->krw_mappings == 0);
3477 KASSERT(md->kro_mappings == 0);
3478 #ifdef PMAP_CACHE_VIPT
3479 KASSERT(pv == NULL);
3480 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3481 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3482 /* if there is a color conflict, evict from cache. */
3483 if (pmap_is_page_colored_p(md)
3484 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3485 PMAPCOUNT(vac_color_change);
3486 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3487 } else if (md->pvh_attrs & PVF_MULTCLR) {
3488 /*
3489 * If this page has multiple colors, expunge
3490 * them.
3491 */
3492 PMAPCOUNT(vac_flush_lots2);
3493 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3494 }
3495 md->pvh_attrs &= PAGE_SIZE - 1;
3496 md->pvh_attrs |= PVF_KMPAGE
3497 | PVF_COLORED | PVF_DIRTY
3498 | (va & arm_cache_prefer_mask);
3499 #endif
3500 #ifdef PMAP_CACHE_VIVT
3501 md->pvh_attrs |= PVF_KMPAGE;
3502 #endif
3503 pmap_kmpages++;
3504 #ifdef PMAP_CACHE_VIPT
3505 } else {
3506 if (pv == NULL) {
3507 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3508 KASSERT(pv != NULL);
3509 }
3510 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3511 PVF_WIRED | PVF_KENTRY
3512 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3513 if ((prot & VM_PROT_WRITE)
3514 && !(md->pvh_attrs & PVF_NC))
3515 md->pvh_attrs |= PVF_DIRTY;
3516 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3517 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3518 #endif
3519 }
3520 #ifdef PMAP_CACHE_VIPT
3521 } else {
3522 if (pv != NULL)
3523 pool_put(&pmap_pv_pool, pv);
3524 #endif
3525 }
3526 }
3527
3528 void
3529 pmap_kremove(vaddr_t va, vsize_t len)
3530 {
3531 struct l2_bucket *l2b;
3532 pt_entry_t *ptep, *sptep, opte;
3533 vaddr_t next_bucket, eva;
3534 u_int mappings;
3535 struct vm_page *opg;
3536
3537 PMAPCOUNT(kenter_unmappings);
3538
3539 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3540 va, len));
3541
3542 eva = va + len;
3543
3544 while (va < eva) {
3545 next_bucket = L2_NEXT_BUCKET(va);
3546 if (next_bucket > eva)
3547 next_bucket = eva;
3548
3549 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3550 KDASSERT(l2b != NULL);
3551
3552 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3553 mappings = 0;
3554
3555 while (va < next_bucket) {
3556 opte = *ptep;
3557 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3558 if (opg) {
3559 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3560
3561 if (omd->pvh_attrs & PVF_KMPAGE) {
3562 KASSERT(omd->urw_mappings == 0);
3563 KASSERT(omd->uro_mappings == 0);
3564 KASSERT(omd->krw_mappings == 0);
3565 KASSERT(omd->kro_mappings == 0);
3566 omd->pvh_attrs &= ~PVF_KMPAGE;
3567 #ifdef PMAP_CACHE_VIPT
3568 if (arm_cache_prefer_mask != 0) {
3569 omd->pvh_attrs &= ~PVF_WRITE;
3570 }
3571 #endif
3572 pmap_kmpages--;
3573 #ifdef PMAP_CACHE_VIPT
3574 } else {
3575 pool_put(&pmap_pv_pool,
3576 pmap_kremove_pg(opg, va));
3577 #endif
3578 }
3579 }
3580 if (l2pte_valid(opte)) {
3581 #ifdef PMAP_CACHE_VIVT
3582 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3583 #endif
3584 cpu_tlb_flushD_SE(va);
3585 }
3586 if (opte) {
3587 *ptep = 0;
3588 mappings++;
3589 }
3590 va += PAGE_SIZE;
3591 ptep++;
3592 }
3593 KDASSERT(mappings <= l2b->l2b_occupancy);
3594 l2b->l2b_occupancy -= mappings;
3595 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3596 }
3597 cpu_cpwait();
3598 }
3599
3600 bool
3601 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3602 {
3603 struct l2_dtable *l2;
3604 pd_entry_t *pl1pd, l1pd;
3605 pt_entry_t *ptep, pte;
3606 paddr_t pa;
3607 u_int l1idx;
3608
3609 pmap_acquire_pmap_lock(pm);
3610
3611 l1idx = L1_IDX(va);
3612 pl1pd = pmap_l1_kva(pm) + l1idx;
3613 l1pd = *pl1pd;
3614
3615 if (l1pte_section_p(l1pd)) {
3616 /*
3617 * These should only happen for pmap_kernel()
3618 */
3619 KDASSERT(pm == pmap_kernel());
3620 pmap_release_pmap_lock(pm);
3621 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3622 if (l1pte_supersection_p(l1pd)) {
3623 pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3624 } else
3625 #endif
3626 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3627 } else {
3628 /*
3629 * Note that we can't rely on the validity of the L1
3630 * descriptor as an indication that a mapping exists.
3631 * We have to look it up in the L2 dtable.
3632 */
3633 l2 = pm->pm_l2[L2_IDX(l1idx)];
3634
3635 if (l2 == NULL ||
3636 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3637 pmap_release_pmap_lock(pm);
3638 return false;
3639 }
3640
3641 ptep = &ptep[l2pte_index(va)];
3642 pte = *ptep;
3643 pmap_release_pmap_lock(pm);
3644
3645 if (pte == 0)
3646 return false;
3647
3648 switch (pte & L2_TYPE_MASK) {
3649 case L2_TYPE_L:
3650 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3651 break;
3652
3653 default:
3654 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3655 break;
3656 }
3657 }
3658
3659 if (pap != NULL)
3660 *pap = pa;
3661
3662 return true;
3663 }
3664
3665 void
3666 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3667 {
3668 struct l2_bucket *l2b;
3669 pt_entry_t *ptep, pte;
3670 vaddr_t next_bucket;
3671 u_int flags;
3672 u_int clr_mask;
3673 int flush;
3674
3675 NPDEBUG(PDB_PROTECT,
3676 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3677 pm, sva, eva, prot));
3678
3679 if ((prot & VM_PROT_READ) == 0) {
3680 pmap_remove(pm, sva, eva);
3681 return;
3682 }
3683
3684 if (prot & VM_PROT_WRITE) {
3685 /*
3686 * If this is a read->write transition, just ignore it and let
3687 * uvm_fault() take care of it later.
3688 */
3689 return;
3690 }
3691
3692 pmap_acquire_pmap_lock(pm);
3693
3694 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3695 flags = 0;
3696 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3697
3698 while (sva < eva) {
3699 next_bucket = L2_NEXT_BUCKET(sva);
3700 if (next_bucket > eva)
3701 next_bucket = eva;
3702
3703 l2b = pmap_get_l2_bucket(pm, sva);
3704 if (l2b == NULL) {
3705 sva = next_bucket;
3706 continue;
3707 }
3708
3709 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3710
3711 while (sva < next_bucket) {
3712 pte = *ptep;
3713 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3714 struct vm_page *pg;
3715 u_int f;
3716
3717 #ifdef PMAP_CACHE_VIVT
3718 /*
3719 * OK, at this point, we know we're doing
3720 * write-protect operation. If the pmap is
3721 * active, write-back the page.
3722 */
3723 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3724 false, false);
3725 #endif
3726
3727 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3728 pte = l2pte_set_readonly(pte);
3729 *ptep = pte;
3730 PTE_SYNC(ptep);
3731
3732 if (pg != NULL) {
3733 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3734 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3735
3736 #ifdef MULTIPROCESSOR
3737 KASSERT(uvm_page_locked_p(pg));
3738 #endif
3739 f = pmap_modify_pv(md, pa, pm, sva,
3740 clr_mask, 0);
3741 pmap_vac_me_harder(md, pa, pm, sva);
3742 } else {
3743 f = PVF_REF | PVF_EXEC;
3744 }
3745
3746 if (flush >= 0) {
3747 flush++;
3748 flags |= f;
3749 } else
3750 if (PV_BEEN_EXECD(f))
3751 pmap_tlb_flushID_SE(pm, sva);
3752 else
3753 if (PV_BEEN_REFD(f))
3754 pmap_tlb_flushD_SE(pm, sva);
3755 }
3756
3757 sva += PAGE_SIZE;
3758 ptep++;
3759 }
3760 }
3761
3762 pmap_release_pmap_lock(pm);
3763
3764 if (flush) {
3765 if (PV_BEEN_EXECD(flags))
3766 pmap_tlb_flushID(pm);
3767 else
3768 if (PV_BEEN_REFD(flags))
3769 pmap_tlb_flushD(pm);
3770 }
3771 }
3772
3773 void
3774 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3775 {
3776 struct l2_bucket *l2b;
3777 pt_entry_t *ptep;
3778 vaddr_t next_bucket;
3779 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3780
3781 NPDEBUG(PDB_EXEC,
3782 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3783 pm, sva, eva));
3784
3785 pmap_acquire_pmap_lock(pm);
3786
3787 while (sva < eva) {
3788 next_bucket = L2_NEXT_BUCKET(sva);
3789 if (next_bucket > eva)
3790 next_bucket = eva;
3791
3792 l2b = pmap_get_l2_bucket(pm, sva);
3793 if (l2b == NULL) {
3794 sva = next_bucket;
3795 continue;
3796 }
3797
3798 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3799 sva < next_bucket;
3800 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3801 if (l2pte_valid(*ptep)) {
3802 cpu_icache_sync_range(sva,
3803 min(page_size, eva - sva));
3804 }
3805 }
3806 }
3807
3808 pmap_release_pmap_lock(pm);
3809 }
3810
3811 void
3812 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3813 {
3814 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3815 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3816
3817 NPDEBUG(PDB_PROTECT,
3818 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3819 md, pa, prot));
3820
3821 #ifdef MULTIPROCESSOR
3822 KASSERT(uvm_page_locked_p(pg));
3823 #endif
3824
3825 switch(prot) {
3826 case VM_PROT_READ|VM_PROT_WRITE:
3827 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3828 pmap_clearbit(md, pa, PVF_EXEC);
3829 break;
3830 #endif
3831 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3832 break;
3833
3834 case VM_PROT_READ:
3835 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3836 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3837 break;
3838 #endif
3839 case VM_PROT_READ|VM_PROT_EXECUTE:
3840 pmap_clearbit(md, pa, PVF_WRITE);
3841 break;
3842
3843 default:
3844 pmap_page_remove(md, pa);
3845 break;
3846 }
3847 }
3848
3849 /*
3850 * pmap_clear_modify:
3851 *
3852 * Clear the "modified" attribute for a page.
3853 */
3854 bool
3855 pmap_clear_modify(struct vm_page *pg)
3856 {
3857 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3858 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3859 bool rv;
3860
3861 #ifdef MULTIPROCESSOR
3862 KASSERT(uvm_page_locked_p(pg));
3863 #endif
3864
3865 if (md->pvh_attrs & PVF_MOD) {
3866 rv = true;
3867 #ifdef PMAP_CACHE_VIPT
3868 /*
3869 * If we are going to clear the modified bit and there are
3870 * no other modified bits set, flush the page to memory and
3871 * mark it clean.
3872 */
3873 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3874 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3875 #endif
3876 pmap_clearbit(md, pa, PVF_MOD);
3877 } else
3878 rv = false;
3879
3880 return (rv);
3881 }
3882
3883 /*
3884 * pmap_clear_reference:
3885 *
3886 * Clear the "referenced" attribute for a page.
3887 */
3888 bool
3889 pmap_clear_reference(struct vm_page *pg)
3890 {
3891 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3892 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3893 bool rv;
3894
3895 #ifdef MULTIPROCESSOR
3896 KASSERT(uvm_page_locked_p(pg));
3897 #endif
3898
3899 if (md->pvh_attrs & PVF_REF) {
3900 rv = true;
3901 pmap_clearbit(md, pa, PVF_REF);
3902 } else
3903 rv = false;
3904
3905 return (rv);
3906 }
3907
3908 /*
3909 * pmap_is_modified:
3910 *
3911 * Test if a page has the "modified" attribute.
3912 */
3913 /* See <arm/arm32/pmap.h> */
3914
3915 /*
3916 * pmap_is_referenced:
3917 *
3918 * Test if a page has the "referenced" attribute.
3919 */
3920 /* See <arm/arm32/pmap.h> */
3921
3922 int
3923 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3924 {
3925 struct l2_dtable *l2;
3926 struct l2_bucket *l2b;
3927 pd_entry_t *pl1pd, l1pd;
3928 pt_entry_t *ptep, pte;
3929 paddr_t pa;
3930 u_int l1idx;
3931 int rv = 0;
3932
3933 pmap_acquire_pmap_lock(pm);
3934
3935 l1idx = L1_IDX(va);
3936
3937 /*
3938 * If there is no l2_dtable for this address, then the process
3939 * has no business accessing it.
3940 *
3941 * Note: This will catch userland processes trying to access
3942 * kernel addresses.
3943 */
3944 l2 = pm->pm_l2[L2_IDX(l1idx)];
3945 if (l2 == NULL)
3946 goto out;
3947
3948 /*
3949 * Likewise if there is no L2 descriptor table
3950 */
3951 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3952 if (l2b->l2b_kva == NULL)
3953 goto out;
3954
3955 /*
3956 * Check the PTE itself.
3957 */
3958 ptep = &l2b->l2b_kva[l2pte_index(va)];
3959 pte = *ptep;
3960 if (pte == 0)
3961 goto out;
3962
3963 /*
3964 * Catch a userland access to the vector page mapped at 0x0
3965 */
3966 if (user && (pte & L2_S_PROT_U) == 0)
3967 goto out;
3968
3969 pa = l2pte_pa(pte);
3970
3971 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3972 /*
3973 * This looks like a good candidate for "page modified"
3974 * emulation...
3975 */
3976 struct pv_entry *pv;
3977 struct vm_page *pg;
3978
3979 /* Extract the physical address of the page */
3980 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3981 goto out;
3982
3983 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3984
3985 /* Get the current flags for this page. */
3986 #ifdef MULTIPROCESSOR
3987 KASSERT(uvm_page_locked_p(pg));
3988 #endif
3989
3990 pv = pmap_find_pv(md, pm, va);
3991 if (pv == NULL) {
3992 goto out;
3993 }
3994
3995 /*
3996 * Do the flags say this page is writable? If not then it
3997 * is a genuine write fault. If yes then the write fault is
3998 * our fault as we did not reflect the write access in the
3999 * PTE. Now we know a write has occurred we can correct this
4000 * and also set the modified bit
4001 */
4002 if ((pv->pv_flags & PVF_WRITE) == 0) {
4003 goto out;
4004 }
4005
4006 NPDEBUG(PDB_FOLLOW,
4007 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
4008 pm, va, pa));
4009
4010 md->pvh_attrs |= PVF_REF | PVF_MOD;
4011 pv->pv_flags |= PVF_REF | PVF_MOD;
4012 #ifdef PMAP_CACHE_VIPT
4013 /*
4014 * If there are cacheable mappings for this page, mark it dirty.
4015 */
4016 if ((md->pvh_attrs & PVF_NC) == 0)
4017 md->pvh_attrs |= PVF_DIRTY;
4018 #endif
4019
4020 /*
4021 * Re-enable write permissions for the page. No need to call
4022 * pmap_vac_me_harder(), since this is just a
4023 * modified-emulation fault, and the PVF_WRITE bit isn't
4024 * changing. We've already set the cacheable bits based on
4025 * the assumption that we can write to this page.
4026 */
4027 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
4028 PTE_SYNC(ptep);
4029 rv = 1;
4030 } else
4031 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
4032 /*
4033 * This looks like a good candidate for "page referenced"
4034 * emulation.
4035 */
4036 struct pv_entry *pv;
4037 struct vm_page *pg;
4038
4039 /* Extract the physical address of the page */
4040 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
4041 goto out;
4042
4043 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4044
4045 /* Get the current flags for this page. */
4046 #ifdef MULTIPROCESSOR
4047 KASSERT(uvm_page_locked_p(pg));
4048 #endif
4049
4050 pv = pmap_find_pv(md, pm, va);
4051 if (pv == NULL) {
4052 goto out;
4053 }
4054
4055 md->pvh_attrs |= PVF_REF;
4056 pv->pv_flags |= PVF_REF;
4057
4058 NPDEBUG(PDB_FOLLOW,
4059 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
4060 pm, va, pa));
4061
4062 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
4063 PTE_SYNC(ptep);
4064 rv = 1;
4065 }
4066
4067 /*
4068 * We know there is a valid mapping here, so simply
4069 * fix up the L1 if necessary.
4070 */
4071 pl1pd = pmap_l1_kva(pm) + l1idx;
4072 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) | L1_C_PROTO;
4073 if (*pl1pd != l1pd) {
4074 *pl1pd = l1pd;
4075 PTE_SYNC(pl1pd);
4076 rv = 1;
4077 }
4078
4079 #ifdef CPU_SA110
4080 /*
4081 * There are bugs in the rev K SA110. This is a check for one
4082 * of them.
4083 */
4084 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4085 curcpu()->ci_arm_cpurev < 3) {
4086 /* Always current pmap */
4087 if (l2pte_valid(pte)) {
4088 extern int kernel_debug;
4089 if (kernel_debug & 1) {
4090 struct proc *p = curlwp->l_proc;
4091 printf("prefetch_abort: page is already "
4092 "mapped - pte=%p *pte=%08x\n", ptep, pte);
4093 printf("prefetch_abort: pc=%08lx proc=%p "
4094 "process=%s\n", va, p, p->p_comm);
4095 printf("prefetch_abort: far=%08x fs=%x\n",
4096 cpu_faultaddress(), cpu_faultstatus());
4097 }
4098 #ifdef DDB
4099 if (kernel_debug & 2)
4100 Debugger();
4101 #endif
4102 rv = 1;
4103 }
4104 }
4105 #endif /* CPU_SA110 */
4106
4107 /*
4108 * If 'rv == 0' at this point, it generally indicates that there is a
4109 * stale TLB entry for the faulting address. That might be due to a
4110 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4111 */
4112 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
4113 && pmap_needs_pte_sync == 0) {
4114 pmap_needs_pte_sync = 1;
4115 PTE_SYNC(ptep);
4116 rv = 1;
4117 }
4118
4119 #ifdef DEBUG
4120 /*
4121 * If 'rv == 0' at this point, it generally indicates that there is a
4122 * stale TLB entry for the faulting address. This happens when two or
4123 * more processes are sharing an L1. Since we don't flush the TLB on
4124 * a context switch between such processes, we can take domain faults
4125 * for mappings which exist at the same VA in both processes. EVEN IF
4126 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4127 * example.
4128 *
4129 * This is extremely likely to happen if pmap_enter() updated the L1
4130 * entry for a recently entered mapping. In this case, the TLB is
4131 * flushed for the new mapping, but there may still be TLB entries for
4132 * other mappings belonging to other processes in the 1MB range
4133 * covered by the L1 entry.
4134 *
4135 * Since 'rv == 0', we know that the L1 already contains the correct
4136 * value, so the fault must be due to a stale TLB entry.
4137 *
4138 * Since we always need to flush the TLB anyway in the case where we
4139 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4140 * stale TLB entries dynamically.
4141 *
4142 * However, the above condition can ONLY happen if the current L1 is
4143 * being shared. If it happens when the L1 is unshared, it indicates
4144 * that other parts of the pmap are not doing their job WRT managing
4145 * the TLB.
4146 */
4147 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4148 extern int last_fault_code;
4149 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4150 pm, va, ftype);
4151 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4152 l2, l2b, ptep, pl1pd);
4153 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4154 pte, l1pd, last_fault_code);
4155 #ifdef DDB
4156 extern int kernel_debug;
4157
4158 if (kernel_debug & 2)
4159 Debugger();
4160 #endif
4161 }
4162 #endif
4163
4164 cpu_tlb_flushID_SE(va);
4165 cpu_cpwait();
4166
4167 rv = 1;
4168
4169 out:
4170 pmap_release_pmap_lock(pm);
4171
4172 return (rv);
4173 }
4174
4175 /*
4176 * Routine: pmap_procwr
4177 *
4178 * Function:
4179 * Synchronize caches corresponding to [addr, addr+len) in p.
4180 *
4181 */
4182 void
4183 pmap_procwr(struct proc *p, vaddr_t va, int len)
4184 {
4185 /* We only need to do anything if it is the current process. */
4186 if (p == curproc)
4187 cpu_icache_sync_range(va, len);
4188 }
4189
4190 /*
4191 * Routine: pmap_unwire
4192 * Function: Clear the wired attribute for a map/virtual-address pair.
4193 *
4194 * In/out conditions:
4195 * The mapping must already exist in the pmap.
4196 */
4197 void
4198 pmap_unwire(pmap_t pm, vaddr_t va)
4199 {
4200 struct l2_bucket *l2b;
4201 pt_entry_t *ptep, pte;
4202 struct vm_page *pg;
4203 paddr_t pa;
4204
4205 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4206
4207 pmap_acquire_pmap_lock(pm);
4208
4209 l2b = pmap_get_l2_bucket(pm, va);
4210 KDASSERT(l2b != NULL);
4211
4212 ptep = &l2b->l2b_kva[l2pte_index(va)];
4213 pte = *ptep;
4214
4215 /* Extract the physical address of the page */
4216 pa = l2pte_pa(pte);
4217
4218 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4219 /* Update the wired bit in the pv entry for this page. */
4220 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4221
4222 #ifdef MULTIPROCESSOR
4223 KASSERT(uvm_page_locked_p(pg));
4224 #endif
4225 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4226 }
4227
4228 pmap_release_pmap_lock(pm);
4229 }
4230
4231 void
4232 pmap_activate(struct lwp *l)
4233 {
4234 extern int block_userspace_access;
4235 pmap_t opm, npm, rpm;
4236 uint32_t odacr, ndacr;
4237 int oldirqstate;
4238
4239 /*
4240 * If activating a non-current lwp or the current lwp is
4241 * already active, just return.
4242 */
4243 if (l != curlwp ||
4244 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4245 return;
4246
4247 npm = l->l_proc->p_vmspace->vm_map.pmap;
4248 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4249 (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4250
4251 /*
4252 * If TTB and DACR are unchanged, short-circuit all the
4253 * TLB/cache management stuff.
4254 */
4255 if (pmap_previous_active_lwp != NULL) {
4256 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4257 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4258 (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4259
4260 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4261 goto all_done;
4262 } else
4263 opm = NULL;
4264
4265 PMAPCOUNT(activations);
4266 block_userspace_access = 1;
4267
4268 /*
4269 * If switching to a user vmspace which is different to the
4270 * most recent one, and the most recent one is potentially
4271 * live in the cache, we must write-back and invalidate the
4272 * entire cache.
4273 */
4274 rpm = pmap_recent_user;
4275
4276 /*
4277 * XXXSCW: There's a corner case here which can leave turds in the cache as
4278 * reported in kern/41058. They're probably left over during tear-down and
4279 * switching away from an exiting process. Until the root cause is identified
4280 * and fixed, zap the cache when switching pmaps. This will result in a few
4281 * unnecessary cache flushes, but that's better than silently corrupting data.
4282 */
4283 #if 0
4284 if (npm != pmap_kernel() && rpm && npm != rpm &&
4285 rpm->pm_cstate.cs_cache) {
4286 rpm->pm_cstate.cs_cache = 0;
4287 #ifdef PMAP_CACHE_VIVT
4288 cpu_idcache_wbinv_all();
4289 #endif
4290 }
4291 #else
4292 if (rpm) {
4293 rpm->pm_cstate.cs_cache = 0;
4294 if (npm == pmap_kernel())
4295 pmap_recent_user = NULL;
4296 #ifdef PMAP_CACHE_VIVT
4297 cpu_idcache_wbinv_all();
4298 #endif
4299 }
4300 #endif
4301
4302 /* No interrupts while we frob the TTB/DACR */
4303 oldirqstate = disable_interrupts(IF32_bits);
4304
4305 #ifndef ARM_HAS_VBAR
4306 /*
4307 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4308 * entry corresponding to 'vector_page' in the incoming L1 table
4309 * before switching to it otherwise subsequent interrupts/exceptions
4310 * (including domain faults!) will jump into hyperspace.
4311 */
4312 if (npm->pm_pl1vec != NULL) {
4313 cpu_tlb_flushID_SE((u_int)vector_page);
4314 cpu_cpwait();
4315 *npm->pm_pl1vec = npm->pm_l1vec;
4316 PTE_SYNC(npm->pm_pl1vec);
4317 }
4318 #endif
4319
4320 cpu_domains(ndacr);
4321
4322 if (npm == pmap_kernel() || npm == rpm) {
4323 /*
4324 * Switching to a kernel thread, or back to the
4325 * same user vmspace as before... Simply update
4326 * the TTB (no TLB flush required)
4327 */
4328 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4329 cpu_cpwait();
4330 } else {
4331 /*
4332 * Otherwise, update TTB and flush TLB
4333 */
4334 cpu_context_switch(npm->pm_l1->l1_physaddr);
4335 if (rpm != NULL)
4336 rpm->pm_cstate.cs_tlb = 0;
4337 }
4338
4339 restore_interrupts(oldirqstate);
4340
4341 block_userspace_access = 0;
4342
4343 all_done:
4344 /*
4345 * The new pmap is resident. Make sure it's marked
4346 * as resident in the cache/TLB.
4347 */
4348 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4349 if (npm != pmap_kernel())
4350 pmap_recent_user = npm;
4351
4352 /* The old pmap is not longer active */
4353 if (opm != NULL)
4354 opm->pm_activated = false;
4355
4356 /* But the new one is */
4357 npm->pm_activated = true;
4358 }
4359
4360 void
4361 pmap_deactivate(struct lwp *l)
4362 {
4363
4364 /*
4365 * If the process is exiting, make sure pmap_activate() does
4366 * a full MMU context-switch and cache flush, which we might
4367 * otherwise skip. See PR port-arm/38950.
4368 */
4369 if (l->l_proc->p_sflag & PS_WEXIT)
4370 pmap_previous_active_lwp = NULL;
4371
4372 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4373 }
4374
4375 void
4376 pmap_update(pmap_t pm)
4377 {
4378
4379 if (pm->pm_remove_all) {
4380 /*
4381 * Finish up the pmap_remove_all() optimisation by flushing
4382 * the TLB.
4383 */
4384 pmap_tlb_flushID(pm);
4385 pm->pm_remove_all = false;
4386 }
4387
4388 if (pmap_is_current(pm)) {
4389 /*
4390 * If we're dealing with a current userland pmap, move its L1
4391 * to the end of the LRU.
4392 */
4393 if (pm != pmap_kernel())
4394 pmap_use_l1(pm);
4395
4396 /*
4397 * We can assume we're done with frobbing the cache/tlb for
4398 * now. Make sure any future pmap ops don't skip cache/tlb
4399 * flushes.
4400 */
4401 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4402 }
4403
4404 PMAPCOUNT(updates);
4405
4406 /*
4407 * make sure TLB/cache operations have completed.
4408 */
4409 cpu_cpwait();
4410 }
4411
4412 void
4413 pmap_remove_all(pmap_t pm)
4414 {
4415
4416 /*
4417 * The vmspace described by this pmap is about to be torn down.
4418 * Until pmap_update() is called, UVM will only make calls
4419 * to pmap_remove(). We can make life much simpler by flushing
4420 * the cache now, and deferring TLB invalidation to pmap_update().
4421 */
4422 #ifdef PMAP_CACHE_VIVT
4423 pmap_idcache_wbinv_all(pm);
4424 #endif
4425 pm->pm_remove_all = true;
4426 }
4427
4428 /*
4429 * Retire the given physical map from service.
4430 * Should only be called if the map contains no valid mappings.
4431 */
4432 void
4433 pmap_destroy(pmap_t pm)
4434 {
4435 u_int count;
4436
4437 if (pm == NULL)
4438 return;
4439
4440 if (pm->pm_remove_all) {
4441 pmap_tlb_flushID(pm);
4442 pm->pm_remove_all = false;
4443 }
4444
4445 /*
4446 * Drop reference count
4447 */
4448 mutex_enter(pm->pm_lock);
4449 count = --pm->pm_obj.uo_refs;
4450 mutex_exit(pm->pm_lock);
4451 if (count > 0) {
4452 if (pmap_is_current(pm)) {
4453 if (pm != pmap_kernel())
4454 pmap_use_l1(pm);
4455 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4456 }
4457 return;
4458 }
4459
4460 /*
4461 * reference count is zero, free pmap resources and then free pmap.
4462 */
4463
4464 #ifndef ARM_HAS_VBAR
4465 if (vector_page < KERNEL_BASE) {
4466 KDASSERT(!pmap_is_current(pm));
4467
4468 /* Remove the vector page mapping */
4469 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4470 pmap_update(pm);
4471 }
4472 #endif
4473
4474 LIST_REMOVE(pm, pm_list);
4475
4476 pmap_free_l1(pm);
4477
4478 if (pmap_recent_user == pm)
4479 pmap_recent_user = NULL;
4480
4481 uvm_obj_destroy(&pm->pm_obj, false);
4482 mutex_destroy(&pm->pm_obj_lock);
4483 pool_cache_put(&pmap_cache, pm);
4484 }
4485
4486
4487 /*
4488 * void pmap_reference(pmap_t pm)
4489 *
4490 * Add a reference to the specified pmap.
4491 */
4492 void
4493 pmap_reference(pmap_t pm)
4494 {
4495
4496 if (pm == NULL)
4497 return;
4498
4499 pmap_use_l1(pm);
4500
4501 mutex_enter(pm->pm_lock);
4502 pm->pm_obj.uo_refs++;
4503 mutex_exit(pm->pm_lock);
4504 }
4505
4506 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4507
4508 static struct evcnt pmap_prefer_nochange_ev =
4509 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4510 static struct evcnt pmap_prefer_change_ev =
4511 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4512
4513 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4514 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4515
4516 void
4517 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4518 {
4519 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4520 vaddr_t va = *vap;
4521 vaddr_t diff = (hint - va) & mask;
4522 if (diff == 0) {
4523 pmap_prefer_nochange_ev.ev_count++;
4524 } else {
4525 pmap_prefer_change_ev.ev_count++;
4526 if (__predict_false(td))
4527 va -= mask + 1;
4528 *vap = va + diff;
4529 }
4530 }
4531 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4532
4533 /*
4534 * pmap_zero_page()
4535 *
4536 * Zero a given physical page by mapping it at a page hook point.
4537 * In doing the zero page op, the page we zero is mapped cachable, as with
4538 * StrongARM accesses to non-cached pages are non-burst making writing
4539 * _any_ bulk data very slow.
4540 */
4541 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4542 void
4543 pmap_zero_page_generic(paddr_t phys)
4544 {
4545 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4546 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4547 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4548 #endif
4549 #if defined(PMAP_CACHE_VIPT)
4550 /* Choose the last page color it had, if any */
4551 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4552 #else
4553 const vsize_t va_offset = 0;
4554 #endif
4555 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4556 /*
4557 * Is this page mapped at its natural color?
4558 * If we have all of memory mapped, then just convert PA to VA.
4559 */
4560 const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
4561 const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
4562 #else
4563 const bool okcolor = false;
4564 const vaddr_t vdstp = cdstp + va_offset;
4565 #endif
4566 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4567
4568
4569 #ifdef DEBUG
4570 if (!SLIST_EMPTY(&md->pvh_list))
4571 panic("pmap_zero_page: page has mappings");
4572 #endif
4573
4574 KDASSERT((phys & PGOFSET) == 0);
4575
4576 if (!okcolor) {
4577 /*
4578 * Hook in the page, zero it, and purge the cache for that
4579 * zeroed page. Invalidate the TLB as needed.
4580 */
4581 *ptep = L2_S_PROTO | phys |
4582 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4583 PTE_SYNC(ptep);
4584 cpu_tlb_flushD_SE(cdstp + va_offset);
4585 cpu_cpwait();
4586 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4587 /*
4588 * If we are direct-mapped and our color isn't ok, then before
4589 * we bzero the page invalidate its contents from the cache and
4590 * reset the color to its natural color.
4591 */
4592 cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
4593 md->pvh_attrs &= ~arm_cache_prefer_mask;
4594 md->pvh_attrs |= (phys & arm_cache_prefer_mask);
4595 #endif
4596 }
4597 bzero_page(vdstp);
4598 if (!okcolor) {
4599 /*
4600 * Unmap the page.
4601 */
4602 *ptep = 0;
4603 PTE_SYNC(ptep);
4604 cpu_tlb_flushD_SE(cdstp + va_offset);
4605 #ifdef PMAP_CACHE_VIVT
4606 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4607 #endif
4608 }
4609 #ifdef PMAP_CACHE_VIPT
4610 /*
4611 * This page is now cache resident so it now has a page color.
4612 * Any contents have been obliterated so clear the EXEC flag.
4613 */
4614 if (!pmap_is_page_colored_p(md)) {
4615 PMAPCOUNT(vac_color_new);
4616 md->pvh_attrs |= PVF_COLORED;
4617 }
4618 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4619 md->pvh_attrs &= ~PVF_EXEC;
4620 PMAPCOUNT(exec_discarded_zero);
4621 }
4622 md->pvh_attrs |= PVF_DIRTY;
4623 #endif
4624 }
4625 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4626
4627 #if ARM_MMU_XSCALE == 1
4628 void
4629 pmap_zero_page_xscale(paddr_t phys)
4630 {
4631 #ifdef DEBUG
4632 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4633 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4634
4635 if (!SLIST_EMPTY(&md->pvh_list))
4636 panic("pmap_zero_page: page has mappings");
4637 #endif
4638
4639 KDASSERT((phys & PGOFSET) == 0);
4640
4641 /*
4642 * Hook in the page, zero it, and purge the cache for that
4643 * zeroed page. Invalidate the TLB as needed.
4644 */
4645 *cdst_pte = L2_S_PROTO | phys |
4646 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4647 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4648 PTE_SYNC(cdst_pte);
4649 cpu_tlb_flushD_SE(cdstp);
4650 cpu_cpwait();
4651 bzero_page(cdstp);
4652 xscale_cache_clean_minidata();
4653 }
4654 #endif /* ARM_MMU_XSCALE == 1 */
4655
4656 /* pmap_pageidlezero()
4657 *
4658 * The same as above, except that we assume that the page is not
4659 * mapped. This means we never have to flush the cache first. Called
4660 * from the idle loop.
4661 */
4662 bool
4663 pmap_pageidlezero(paddr_t phys)
4664 {
4665 unsigned int i;
4666 int *ptr;
4667 bool rv = true;
4668 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4669 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4670 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4671 #endif
4672 #ifdef PMAP_CACHE_VIPT
4673 /* Choose the last page color it had, if any */
4674 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4675 #else
4676 const vsize_t va_offset = 0;
4677 #endif
4678 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4679
4680
4681 #ifdef DEBUG
4682 if (!SLIST_EMPTY(&md->pvh_list))
4683 panic("pmap_pageidlezero: page has mappings");
4684 #endif
4685
4686 KDASSERT((phys & PGOFSET) == 0);
4687
4688 /*
4689 * Hook in the page, zero it, and purge the cache for that
4690 * zeroed page. Invalidate the TLB as needed.
4691 */
4692 *ptep = L2_S_PROTO | phys |
4693 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4694 PTE_SYNC(ptep);
4695 cpu_tlb_flushD_SE(cdstp + va_offset);
4696 cpu_cpwait();
4697
4698 for (i = 0, ptr = (int *)(cdstp + va_offset);
4699 i < (PAGE_SIZE / sizeof(int)); i++) {
4700 if (sched_curcpu_runnable_p() != 0) {
4701 /*
4702 * A process has become ready. Abort now,
4703 * so we don't keep it waiting while we
4704 * do slow memory access to finish this
4705 * page.
4706 */
4707 rv = false;
4708 break;
4709 }
4710 *ptr++ = 0;
4711 }
4712
4713 #ifdef PMAP_CACHE_VIVT
4714 if (rv)
4715 /*
4716 * if we aborted we'll rezero this page again later so don't
4717 * purge it unless we finished it
4718 */
4719 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4720 #elif defined(PMAP_CACHE_VIPT)
4721 /*
4722 * This page is now cache resident so it now has a page color.
4723 * Any contents have been obliterated so clear the EXEC flag.
4724 */
4725 if (!pmap_is_page_colored_p(md)) {
4726 PMAPCOUNT(vac_color_new);
4727 md->pvh_attrs |= PVF_COLORED;
4728 }
4729 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4730 md->pvh_attrs &= ~PVF_EXEC;
4731 PMAPCOUNT(exec_discarded_zero);
4732 }
4733 #endif
4734 /*
4735 * Unmap the page.
4736 */
4737 *ptep = 0;
4738 PTE_SYNC(ptep);
4739 cpu_tlb_flushD_SE(cdstp + va_offset);
4740
4741 return (rv);
4742 }
4743
4744 /*
4745 * pmap_copy_page()
4746 *
4747 * Copy one physical page into another, by mapping the pages into
4748 * hook points. The same comment regarding cachability as in
4749 * pmap_zero_page also applies here.
4750 */
4751 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4752 void
4753 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4754 {
4755 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4756 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4757 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4758 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4759 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4760 #endif
4761 #ifdef PMAP_CACHE_VIPT
4762 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4763 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4764 #else
4765 const vsize_t src_va_offset = 0;
4766 const vsize_t dst_va_offset = 0;
4767 #endif
4768 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4769 /*
4770 * Is this page mapped at its natural color?
4771 * If we have all of memory mapped, then just convert PA to VA.
4772 */
4773 const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
4774 const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
4775 const vaddr_t vsrcp = src_okcolor
4776 ? KERNEL_BASE + (src - physical_start)
4777 : csrcp + src_va_offset;
4778 const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
4779 #else
4780 const bool src_okcolor = false;
4781 const bool dst_okcolor = false;
4782 const vaddr_t vsrcp = csrcp + src_va_offset;
4783 const vaddr_t vdstp = cdstp + dst_va_offset;
4784 #endif
4785 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4786 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4787
4788 #ifdef DEBUG
4789 if (!SLIST_EMPTY(&dst_md->pvh_list))
4790 panic("pmap_copy_page: dst page has mappings");
4791 #endif
4792
4793 #ifdef PMAP_CACHE_VIPT
4794 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4795 #endif
4796 KDASSERT((src & PGOFSET) == 0);
4797 KDASSERT((dst & PGOFSET) == 0);
4798
4799 /*
4800 * Clean the source page. Hold the source page's lock for
4801 * the duration of the copy so that no other mappings can
4802 * be created while we have a potentially aliased mapping.
4803 */
4804 #ifdef MULTIPROCESSOR
4805 KASSERT(uvm_page_locked_p(src_pg));
4806 #endif
4807 #ifdef PMAP_CACHE_VIVT
4808 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4809 #endif
4810
4811 /*
4812 * Map the pages into the page hook points, copy them, and purge
4813 * the cache for the appropriate page. Invalidate the TLB
4814 * as required.
4815 */
4816 if (!src_okcolor) {
4817 *src_ptep = L2_S_PROTO
4818 | src
4819 #ifdef PMAP_CACHE_VIPT
4820 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4821 #endif
4822 #ifdef PMAP_CACHE_VIVT
4823 | pte_l2_s_cache_mode
4824 #endif
4825 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4826 PTE_SYNC(src_ptep);
4827 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4828 cpu_cpwait();
4829 }
4830 if (!dst_okcolor) {
4831 *dst_ptep = L2_S_PROTO | dst |
4832 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4833 PTE_SYNC(dst_ptep);
4834 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4835 cpu_cpwait();
4836 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4837 /*
4838 * If we are direct-mapped and our color isn't ok, then before
4839 * we bcopy to the new page invalidate its contents from the
4840 * cache and reset its color to its natural color.
4841 */
4842 cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
4843 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
4844 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
4845 #endif
4846 }
4847 bcopy_page(vsrcp, vdstp);
4848 #ifdef PMAP_CACHE_VIVT
4849 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
4850 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
4851 #endif
4852 /*
4853 * Unmap the pages.
4854 */
4855 if (!src_okcolor) {
4856 *src_ptep = 0;
4857 PTE_SYNC(src_ptep);
4858 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4859 cpu_cpwait();
4860 }
4861 if (!dst_okcolor) {
4862 *dst_ptep = 0;
4863 PTE_SYNC(dst_ptep);
4864 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4865 cpu_cpwait();
4866 }
4867 #ifdef PMAP_CACHE_VIPT
4868 /*
4869 * Now that the destination page is in the cache, mark it as colored.
4870 * If this was an exec page, discard it.
4871 */
4872 if (!pmap_is_page_colored_p(dst_md)) {
4873 PMAPCOUNT(vac_color_new);
4874 dst_md->pvh_attrs |= PVF_COLORED;
4875 }
4876 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4877 dst_md->pvh_attrs &= ~PVF_EXEC;
4878 PMAPCOUNT(exec_discarded_copy);
4879 }
4880 dst_md->pvh_attrs |= PVF_DIRTY;
4881 #endif
4882 }
4883 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4884
4885 #if ARM_MMU_XSCALE == 1
4886 void
4887 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4888 {
4889 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4890 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4891 #ifdef DEBUG
4892 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4893
4894 if (!SLIST_EMPTY(&dst_md->pvh_list))
4895 panic("pmap_copy_page: dst page has mappings");
4896 #endif
4897
4898 KDASSERT((src & PGOFSET) == 0);
4899 KDASSERT((dst & PGOFSET) == 0);
4900
4901 /*
4902 * Clean the source page. Hold the source page's lock for
4903 * the duration of the copy so that no other mappings can
4904 * be created while we have a potentially aliased mapping.
4905 */
4906 #ifdef MULTIPROCESSOR
4907 KASSERT(uvm_page_locked_p(src_pg));
4908 #endif
4909 #ifdef PMAP_CACHE_VIVT
4910 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4911 #endif
4912
4913 /*
4914 * Map the pages into the page hook points, copy them, and purge
4915 * the cache for the appropriate page. Invalidate the TLB
4916 * as required.
4917 */
4918 *csrc_pte = L2_S_PROTO | src |
4919 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4920 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4921 PTE_SYNC(csrc_pte);
4922 *cdst_pte = L2_S_PROTO | dst |
4923 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4924 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4925 PTE_SYNC(cdst_pte);
4926 cpu_tlb_flushD_SE(csrcp);
4927 cpu_tlb_flushD_SE(cdstp);
4928 cpu_cpwait();
4929 bcopy_page(csrcp, cdstp);
4930 xscale_cache_clean_minidata();
4931 }
4932 #endif /* ARM_MMU_XSCALE == 1 */
4933
4934 /*
4935 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4936 *
4937 * Return the start and end addresses of the kernel's virtual space.
4938 * These values are setup in pmap_bootstrap and are updated as pages
4939 * are allocated.
4940 */
4941 void
4942 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4943 {
4944 *start = virtual_avail;
4945 *end = virtual_end;
4946 }
4947
4948 /*
4949 * Helper function for pmap_grow_l2_bucket()
4950 */
4951 static inline int
4952 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4953 {
4954 struct l2_bucket *l2b;
4955 pt_entry_t *ptep;
4956 paddr_t pa;
4957
4958 if (uvm.page_init_done == false) {
4959 #ifdef PMAP_STEAL_MEMORY
4960 pv_addr_t pv;
4961 pmap_boot_pagealloc(PAGE_SIZE,
4962 #ifdef PMAP_CACHE_VIPT
4963 arm_cache_prefer_mask,
4964 va & arm_cache_prefer_mask,
4965 #else
4966 0, 0,
4967 #endif
4968 &pv);
4969 pa = pv.pv_pa;
4970 #else
4971 if (uvm_page_physget(&pa) == false)
4972 return (1);
4973 #endif /* PMAP_STEAL_MEMORY */
4974 } else {
4975 struct vm_page *pg;
4976 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4977 if (pg == NULL)
4978 return (1);
4979 pa = VM_PAGE_TO_PHYS(pg);
4980 #ifdef PMAP_CACHE_VIPT
4981 #ifdef DIAGNOSTIC
4982 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4983 #endif
4984 /*
4985 * This new page must not have any mappings. Enter it via
4986 * pmap_kenter_pa and let that routine do the hard work.
4987 */
4988 KASSERT(SLIST_EMPTY(&md->pvh_list));
4989 pmap_kenter_pa(va, pa,
4990 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
4991 #endif
4992 }
4993
4994 if (pap)
4995 *pap = pa;
4996
4997 PMAPCOUNT(pt_mappings);
4998 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4999 KDASSERT(l2b != NULL);
5000
5001 ptep = &l2b->l2b_kva[l2pte_index(va)];
5002 *ptep = L2_S_PROTO | pa | cache_mode |
5003 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
5004 PTE_SYNC(ptep);
5005 memset((void *)va, 0, PAGE_SIZE);
5006 return (0);
5007 }
5008
5009 /*
5010 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5011 * used by pmap_growkernel().
5012 */
5013 static inline struct l2_bucket *
5014 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5015 {
5016 struct l2_dtable *l2;
5017 struct l2_bucket *l2b;
5018 u_short l1idx;
5019 vaddr_t nva;
5020
5021 l1idx = L1_IDX(va);
5022
5023 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5024 /*
5025 * No mapping at this address, as there is
5026 * no entry in the L1 table.
5027 * Need to allocate a new l2_dtable.
5028 */
5029 nva = pmap_kernel_l2dtable_kva;
5030 if ((nva & PGOFSET) == 0) {
5031 /*
5032 * Need to allocate a backing page
5033 */
5034 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
5035 return (NULL);
5036 }
5037
5038 l2 = (struct l2_dtable *)nva;
5039 nva += sizeof(struct l2_dtable);
5040
5041 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5042 /*
5043 * The new l2_dtable straddles a page boundary.
5044 * Map in another page to cover it.
5045 */
5046 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
5047 return (NULL);
5048 }
5049
5050 pmap_kernel_l2dtable_kva = nva;
5051
5052 /*
5053 * Link it into the parent pmap
5054 */
5055 pm->pm_l2[L2_IDX(l1idx)] = l2;
5056 }
5057
5058 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5059
5060 /*
5061 * Fetch pointer to the L2 page table associated with the address.
5062 */
5063 if (l2b->l2b_kva == NULL) {
5064 pt_entry_t *ptep;
5065
5066 /*
5067 * No L2 page table has been allocated. Chances are, this
5068 * is because we just allocated the l2_dtable, above.
5069 */
5070 nva = pmap_kernel_l2ptp_kva;
5071 ptep = (pt_entry_t *)nva;
5072 if ((nva & PGOFSET) == 0) {
5073 /*
5074 * Need to allocate a backing page
5075 */
5076 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
5077 &pmap_kernel_l2ptp_phys))
5078 return (NULL);
5079 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5080 }
5081
5082 l2->l2_occupancy++;
5083 l2b->l2b_kva = ptep;
5084 l2b->l2b_l1idx = l1idx;
5085 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
5086
5087 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5088 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5089 }
5090
5091 return (l2b);
5092 }
5093
5094 vaddr_t
5095 pmap_growkernel(vaddr_t maxkvaddr)
5096 {
5097 pmap_t kpm = pmap_kernel();
5098 struct l1_ttable *l1;
5099 struct l2_bucket *l2b;
5100 pd_entry_t *pl1pd;
5101 int s;
5102
5103 if (maxkvaddr <= pmap_curmaxkvaddr)
5104 goto out; /* we are OK */
5105
5106 NPDEBUG(PDB_GROWKERN,
5107 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5108 pmap_curmaxkvaddr, maxkvaddr));
5109
5110 KDASSERT(maxkvaddr <= virtual_end);
5111
5112 /*
5113 * whoops! we need to add kernel PTPs
5114 */
5115
5116 s = splhigh(); /* to be safe */
5117 mutex_enter(kpm->pm_lock);
5118
5119 /* Map 1MB at a time */
5120 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
5121
5122 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5123 KDASSERT(l2b != NULL);
5124
5125 /* Distribute new L1 entry to all other L1s */
5126 SLIST_FOREACH(l1, &l1_list, l1_link) {
5127 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
5128 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
5129 L1_C_PROTO;
5130 PTE_SYNC(pl1pd);
5131 }
5132 }
5133
5134 /*
5135 * flush out the cache, expensive but growkernel will happen so
5136 * rarely
5137 */
5138 cpu_dcache_wbinv_all();
5139 cpu_tlb_flushD();
5140 cpu_cpwait();
5141
5142 mutex_exit(kpm->pm_lock);
5143 splx(s);
5144
5145 out:
5146 return (pmap_curmaxkvaddr);
5147 }
5148
5149 /************************ Utility routines ****************************/
5150
5151 #ifndef ARM_HAS_VBAR
5152 /*
5153 * vector_page_setprot:
5154 *
5155 * Manipulate the protection of the vector page.
5156 */
5157 void
5158 vector_page_setprot(int prot)
5159 {
5160 struct l2_bucket *l2b;
5161 pt_entry_t *ptep;
5162
5163 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5164 /*
5165 * If we are using VBAR to use the vectors in the kernel, then it's
5166 * already mapped in the kernel text so no need to anything here.
5167 */
5168 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5169 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5170 return;
5171 }
5172 #endif
5173
5174 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5175 KDASSERT(l2b != NULL);
5176
5177 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5178
5179 *ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5180 PTE_SYNC(ptep);
5181 cpu_tlb_flushD_SE(vector_page);
5182 cpu_cpwait();
5183 }
5184 #endif
5185
5186 /*
5187 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5188 * Returns true if the mapping exists, else false.
5189 *
5190 * NOTE: This function is only used by a couple of arm-specific modules.
5191 * It is not safe to take any pmap locks here, since we could be right
5192 * in the middle of debugging the pmap anyway...
5193 *
5194 * It is possible for this routine to return false even though a valid
5195 * mapping does exist. This is because we don't lock, so the metadata
5196 * state may be inconsistent.
5197 *
5198 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5199 * a "section" mapping.
5200 */
5201 bool
5202 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5203 {
5204 struct l2_dtable *l2;
5205 pd_entry_t *pl1pd, l1pd;
5206 pt_entry_t *ptep;
5207 u_short l1idx;
5208
5209 if (pm->pm_l1 == NULL)
5210 return false;
5211
5212 l1idx = L1_IDX(va);
5213 *pdp = pl1pd = pmap_l1_kva(pm) + l1idx;
5214 l1pd = *pl1pd;
5215
5216 if (l1pte_section_p(l1pd)) {
5217 *ptp = NULL;
5218 return true;
5219 }
5220
5221 if (pm->pm_l2 == NULL)
5222 return false;
5223
5224 l2 = pm->pm_l2[L2_IDX(l1idx)];
5225
5226 if (l2 == NULL ||
5227 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5228 return false;
5229 }
5230
5231 *ptp = &ptep[l2pte_index(va)];
5232 return true;
5233 }
5234
5235 bool
5236 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5237 {
5238
5239 if (pm->pm_l1 == NULL)
5240 return false;
5241
5242 *pdp = pmap_l1_kva(pm) + L1_IDX(va);
5243
5244 return true;
5245 }
5246
5247 /************************ Bootstrapping routines ****************************/
5248
5249 static void
5250 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5251 {
5252 int i;
5253
5254 l1->l1_kva = l1pt;
5255 l1->l1_domain_use_count = 0;
5256 l1->l1_domain_first = 0;
5257
5258 for (i = 0; i < PMAP_DOMAINS; i++)
5259 l1->l1_domain_free[i] = i + 1;
5260
5261 /*
5262 * Copy the kernel's L1 entries to each new L1.
5263 */
5264 if (pmap_initialized)
5265 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5266
5267 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5268 &l1->l1_physaddr) == false)
5269 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5270
5271 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5272 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5273 }
5274
5275 /*
5276 * pmap_bootstrap() is called from the board-specific initarm() routine
5277 * once the kernel L1/L2 descriptors tables have been set up.
5278 *
5279 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5280 * spread over a number of disparate files/functions.
5281 *
5282 * We are passed the following parameters
5283 * - kernel_l1pt
5284 * This is a pointer to the base of the kernel's L1 translation table.
5285 * - vstart
5286 * 1MB-aligned start of managed kernel virtual memory.
5287 * - vend
5288 * 1MB-aligned end of managed kernel virtual memory.
5289 *
5290 * We use the first parameter to build the metadata (struct l1_ttable and
5291 * struct l2_dtable) necessary to track kernel mappings.
5292 */
5293 #define PMAP_STATIC_L2_SIZE 16
5294 void
5295 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5296 {
5297 static struct l1_ttable static_l1;
5298 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5299 struct l1_ttable *l1 = &static_l1;
5300 struct l2_dtable *l2;
5301 struct l2_bucket *l2b;
5302 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5303 pmap_t pm = pmap_kernel();
5304 pd_entry_t pde;
5305 pt_entry_t *ptep;
5306 paddr_t pa;
5307 vaddr_t va;
5308 vsize_t size;
5309 int nptes, l1idx, l2idx, l2next = 0;
5310
5311 /*
5312 * Initialise the kernel pmap object
5313 */
5314 pm->pm_l1 = l1;
5315 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5316 pm->pm_activated = true;
5317 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5318
5319 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5320 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5321 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5322
5323 /*
5324 * Scan the L1 translation table created by initarm() and create
5325 * the required metadata for all valid mappings found in it.
5326 */
5327 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5328 pde = l1pt[l1idx];
5329
5330 /*
5331 * We're only interested in Coarse mappings.
5332 * pmap_extract() can deal with section mappings without
5333 * recourse to checking L2 metadata.
5334 */
5335 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5336 continue;
5337
5338 /*
5339 * Lookup the KVA of this L2 descriptor table
5340 */
5341 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5342 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5343 if (ptep == NULL) {
5344 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5345 (u_int)l1idx << L1_S_SHIFT, pa);
5346 }
5347
5348 /*
5349 * Fetch the associated L2 metadata structure.
5350 * Allocate a new one if necessary.
5351 */
5352 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5353 if (l2next == PMAP_STATIC_L2_SIZE)
5354 panic("pmap_bootstrap: out of static L2s");
5355 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5356 }
5357
5358 /*
5359 * One more L1 slot tracked...
5360 */
5361 l2->l2_occupancy++;
5362
5363 /*
5364 * Fill in the details of the L2 descriptor in the
5365 * appropriate bucket.
5366 */
5367 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5368 l2b->l2b_kva = ptep;
5369 l2b->l2b_phys = pa;
5370 l2b->l2b_l1idx = l1idx;
5371
5372 /*
5373 * Establish an initial occupancy count for this descriptor
5374 */
5375 for (l2idx = 0;
5376 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5377 l2idx++) {
5378 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5379 l2b->l2b_occupancy++;
5380 }
5381 }
5382
5383 /*
5384 * Make sure the descriptor itself has the correct cache mode.
5385 * If not, fix it, but whine about the problem. Port-meisters
5386 * should consider this a clue to fix up their initarm()
5387 * function. :)
5388 */
5389 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5390 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5391 "L2 pte @ %p\n", ptep);
5392 }
5393 }
5394
5395 /*
5396 * Ensure the primary (kernel) L1 has the correct cache mode for
5397 * a page table. Bitch if it is not correctly set.
5398 */
5399 for (va = (vaddr_t)l1pt;
5400 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5401 if (pmap_set_pt_cache_mode(l1pt, va))
5402 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5403 "primary L1 @ 0x%lx\n", va);
5404 }
5405
5406 cpu_dcache_wbinv_all();
5407 cpu_tlb_flushID();
5408 cpu_cpwait();
5409
5410 /*
5411 * now we allocate the "special" VAs which are used for tmp mappings
5412 * by the pmap (and other modules). we allocate the VAs by advancing
5413 * virtual_avail (note that there are no pages mapped at these VAs).
5414 *
5415 * Managed KVM space start from wherever initarm() tells us.
5416 */
5417 virtual_avail = vstart;
5418 virtual_end = vend;
5419
5420 #ifdef PMAP_CACHE_VIPT
5421 /*
5422 * If we have a VIPT cache, we need one page/pte per possible alias
5423 * page so we won't violate cache aliasing rules.
5424 */
5425 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5426 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5427 #else
5428 nptes = 1;
5429 #endif
5430 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5431 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5432 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5433 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5434 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5435 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5436 (void *)&msgbufaddr, NULL);
5437
5438 /*
5439 * Allocate a range of kernel virtual address space to be used
5440 * for L2 descriptor tables and metadata allocation in
5441 * pmap_growkernel().
5442 */
5443 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5444 pmap_alloc_specials(&virtual_avail,
5445 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5446 &pmap_kernel_l2ptp_kva, NULL);
5447
5448 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5449 pmap_alloc_specials(&virtual_avail,
5450 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5451 &pmap_kernel_l2dtable_kva, NULL);
5452
5453 /*
5454 * init the static-global locks and global pmap list.
5455 */
5456 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
5457
5458 /*
5459 * We can now initialise the first L1's metadata.
5460 */
5461 SLIST_INIT(&l1_list);
5462 TAILQ_INIT(&l1_lru_list);
5463 pmap_init_l1(l1, l1pt);
5464
5465 #ifndef ARM_HAS_VBAR
5466 /* Set up vector page L1 details, if necessary */
5467 if (vector_page < KERNEL_BASE) {
5468 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
5469 l2b = pmap_get_l2_bucket(pm, vector_page);
5470 KDASSERT(l2b != NULL);
5471 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5472 L1_C_DOM(pmap_domain(pm));
5473 } else
5474 pm->pm_pl1vec = NULL;
5475 #endif
5476
5477 /*
5478 * Initialize the pmap cache
5479 */
5480 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5481 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5482 LIST_INIT(&pmap_pmaps);
5483 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5484
5485 /*
5486 * Initialize the pv pool.
5487 */
5488 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5489 &pmap_bootstrap_pv_allocator, IPL_NONE);
5490
5491 /*
5492 * Initialize the L2 dtable pool and cache.
5493 */
5494 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5495 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5496
5497 /*
5498 * Initialise the L2 descriptor table pool and cache
5499 */
5500 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5501 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5502 pmap_l2ptp_ctor, NULL, NULL);
5503
5504 cpu_dcache_wbinv_all();
5505 }
5506
5507 static int
5508 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5509 {
5510 pd_entry_t *pdep, pde;
5511 pt_entry_t *ptep, pte;
5512 vaddr_t pa;
5513 int rv = 0;
5514
5515 /*
5516 * Make sure the descriptor itself has the correct cache mode
5517 */
5518 pdep = &kl1[L1_IDX(va)];
5519 pde = *pdep;
5520
5521 if (l1pte_section_p(pde)) {
5522 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
5523 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5524 *pdep = (pde & ~L1_S_CACHE_MASK) |
5525 pte_l1_s_cache_mode_pt;
5526 PTE_SYNC(pdep);
5527 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5528 rv = 1;
5529 }
5530 } else {
5531 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5532 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5533 if (ptep == NULL)
5534 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5535
5536 ptep = &ptep[l2pte_index(va)];
5537 pte = *ptep;
5538 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5539 *ptep = (pte & ~L2_S_CACHE_MASK) |
5540 pte_l2_s_cache_mode_pt;
5541 PTE_SYNC(ptep);
5542 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5543 rv = 1;
5544 }
5545 }
5546
5547 return (rv);
5548 }
5549
5550 static void
5551 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5552 {
5553 vaddr_t va = *availp;
5554 struct l2_bucket *l2b;
5555
5556 if (ptep) {
5557 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5558 if (l2b == NULL)
5559 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5560
5561 if (ptep)
5562 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5563 }
5564
5565 *vap = va;
5566 *availp = va + (PAGE_SIZE * pages);
5567 }
5568
5569 void
5570 pmap_init(void)
5571 {
5572
5573 /*
5574 * Set the available memory vars - These do not map to real memory
5575 * addresses and cannot as the physical memory is fragmented.
5576 * They are used by ps for %mem calculations.
5577 * One could argue whether this should be the entire memory or just
5578 * the memory that is useable in a user process.
5579 */
5580 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5581 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5582
5583 /*
5584 * Now we need to free enough pv_entry structures to allow us to get
5585 * the kmem_map/kmem_object allocated and inited (done after this
5586 * function is finished). to do this we allocate one bootstrap page out
5587 * of kernel_map and use it to provide an initial pool of pv_entry
5588 * structures. we never free this page.
5589 */
5590 pool_setlowat(&pmap_pv_pool,
5591 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5592
5593 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5594 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5595 UVM_KMF_WIRED|UVM_KMF_ZERO);
5596
5597 pmap_initialized = true;
5598 }
5599
5600 static vaddr_t last_bootstrap_page = 0;
5601 static void *free_bootstrap_pages = NULL;
5602
5603 static void *
5604 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5605 {
5606 extern void *pool_page_alloc(struct pool *, int);
5607 vaddr_t new_page;
5608 void *rv;
5609
5610 if (pmap_initialized)
5611 return (pool_page_alloc(pp, flags));
5612
5613 if (free_bootstrap_pages) {
5614 rv = free_bootstrap_pages;
5615 free_bootstrap_pages = *((void **)rv);
5616 return (rv);
5617 }
5618
5619 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5620 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5621
5622 KASSERT(new_page > last_bootstrap_page);
5623 last_bootstrap_page = new_page;
5624 return ((void *)new_page);
5625 }
5626
5627 static void
5628 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5629 {
5630 extern void pool_page_free(struct pool *, void *);
5631
5632 if ((vaddr_t)v <= last_bootstrap_page) {
5633 *((void **)v) = free_bootstrap_pages;
5634 free_bootstrap_pages = v;
5635 return;
5636 }
5637
5638 if (pmap_initialized) {
5639 pool_page_free(pp, v);
5640 return;
5641 }
5642 }
5643
5644 /*
5645 * pmap_postinit()
5646 *
5647 * This routine is called after the vm and kmem subsystems have been
5648 * initialised. This allows the pmap code to perform any initialisation
5649 * that can only be done one the memory allocation is in place.
5650 */
5651 void
5652 pmap_postinit(void)
5653 {
5654 extern paddr_t physical_start, physical_end;
5655 struct l2_bucket *l2b;
5656 struct l1_ttable *l1;
5657 struct pglist plist;
5658 struct vm_page *m;
5659 pd_entry_t *pl1pt;
5660 pt_entry_t *ptep, pte;
5661 vaddr_t va, eva;
5662 u_int loop, needed;
5663 int error;
5664
5665 pool_cache_setlowat(&pmap_l2ptp_cache,
5666 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5667 pool_cache_setlowat(&pmap_l2dtable_cache,
5668 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5669
5670 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5671 needed -= 1;
5672
5673 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
5674
5675 for (loop = 0; loop < needed; loop++, l1++) {
5676 /* Allocate a L1 page table */
5677 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5678 if (va == 0)
5679 panic("Cannot allocate L1 KVM");
5680
5681 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5682 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
5683 if (error)
5684 panic("Cannot allocate L1 physical pages");
5685
5686 m = TAILQ_FIRST(&plist);
5687 eva = va + L1_TABLE_SIZE;
5688 pl1pt = (pd_entry_t *)va;
5689
5690 while (m && va < eva) {
5691 paddr_t pa = VM_PAGE_TO_PHYS(m);
5692
5693 pmap_kenter_pa(va, pa,
5694 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
5695
5696 /*
5697 * Make sure the L1 descriptor table is mapped
5698 * with the cache-mode set to write-through.
5699 */
5700 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5701 KDASSERT(l2b != NULL);
5702 ptep = &l2b->l2b_kva[l2pte_index(va)];
5703 pte = *ptep;
5704 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5705 *ptep = pte;
5706 PTE_SYNC(ptep);
5707 cpu_tlb_flushD_SE(va);
5708
5709 va += PAGE_SIZE;
5710 m = TAILQ_NEXT(m, pageq.queue);
5711 }
5712
5713 #ifdef DIAGNOSTIC
5714 if (m)
5715 panic("pmap_alloc_l1pt: pglist not empty");
5716 #endif /* DIAGNOSTIC */
5717
5718 pmap_init_l1(l1, pl1pt);
5719 }
5720
5721 #ifdef DEBUG
5722 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5723 needed);
5724 #endif
5725 }
5726
5727 /*
5728 * Note that the following routines are used by board-specific initialisation
5729 * code to configure the initial kernel page tables.
5730 *
5731 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5732 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5733 * behaviour of the old pmap, and provides an easy migration path for
5734 * initial bring-up of the new pmap on existing ports. Fortunately,
5735 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5736 * will be deprecated.
5737 *
5738 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5739 * tables.
5740 */
5741
5742 /*
5743 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5744 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5745 * find them as necessary.
5746 *
5747 * Note that the data on this list MUST remain valid after initarm() returns,
5748 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5749 */
5750 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5751
5752 static vaddr_t
5753 kernel_pt_lookup(paddr_t pa)
5754 {
5755 pv_addr_t *pv;
5756
5757 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5758 #ifndef ARM32_NEW_VM_LAYOUT
5759 if (pv->pv_pa == (pa & ~PGOFSET))
5760 return (pv->pv_va | (pa & PGOFSET));
5761 #else
5762 if (pv->pv_pa == pa)
5763 return (pv->pv_va);
5764 #endif
5765 }
5766 return (0);
5767 }
5768
5769 /*
5770 * pmap_map_section:
5771 *
5772 * Create a single section mapping.
5773 */
5774 void
5775 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5776 {
5777 pd_entry_t *pde = (pd_entry_t *) l1pt;
5778 pd_entry_t fl;
5779
5780 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5781
5782 switch (cache) {
5783 case PTE_NOCACHE:
5784 default:
5785 fl = 0;
5786 break;
5787
5788 case PTE_CACHE:
5789 fl = pte_l1_s_cache_mode;
5790 break;
5791
5792 case PTE_PAGETABLE:
5793 fl = pte_l1_s_cache_mode_pt;
5794 break;
5795 }
5796
5797 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5798 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5799 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5800 }
5801
5802 /*
5803 * pmap_map_entry:
5804 *
5805 * Create a single page mapping.
5806 */
5807 void
5808 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5809 {
5810 pd_entry_t *pde = (pd_entry_t *) l1pt;
5811 pt_entry_t fl;
5812 pt_entry_t *pte;
5813
5814 KASSERT(((va | pa) & PGOFSET) == 0);
5815
5816 switch (cache) {
5817 case PTE_NOCACHE:
5818 default:
5819 fl = 0;
5820 break;
5821
5822 case PTE_CACHE:
5823 fl = pte_l2_s_cache_mode;
5824 break;
5825
5826 case PTE_PAGETABLE:
5827 fl = pte_l2_s_cache_mode_pt;
5828 break;
5829 }
5830
5831 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5832 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5833
5834 #ifndef ARM32_NEW_VM_LAYOUT
5835 pte = (pt_entry_t *)
5836 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5837 #else
5838 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5839 #endif
5840 if (pte == NULL)
5841 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5842
5843 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5844 #ifndef ARM32_NEW_VM_LAYOUT
5845 pte += (va >> PGSHIFT) & 0x3ff;
5846 #else
5847 pte += l2pte_index(va);
5848 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5849 #endif
5850 *pte = fl;
5851 PTE_SYNC(pte);
5852 }
5853
5854 /*
5855 * pmap_link_l2pt:
5856 *
5857 * Link the L2 page table specified by "l2pv" into the L1
5858 * page table at the slot for "va".
5859 */
5860 void
5861 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5862 {
5863 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5864 u_int slot = va >> L1_S_SHIFT;
5865
5866 #ifndef ARM32_NEW_VM_LAYOUT
5867 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5868 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5869 #endif
5870
5871 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5872
5873 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5874 #ifdef ARM32_NEW_VM_LAYOUT
5875 PTE_SYNC(&pde[slot]);
5876 #else
5877 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5878 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5879 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5880 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5881 #endif
5882
5883 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5884 }
5885
5886 /*
5887 * pmap_map_chunk:
5888 *
5889 * Map a chunk of memory using the most efficient mappings
5890 * possible (section, large page, small page) into the
5891 * provided L1 and L2 tables at the specified virtual address.
5892 */
5893 vsize_t
5894 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5895 int prot, int cache)
5896 {
5897 pd_entry_t *pdep = (pd_entry_t *) l1pt;
5898 pt_entry_t *pte, f1, f2s, f2l;
5899 vsize_t resid;
5900 int i;
5901
5902 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5903
5904 if (l1pt == 0)
5905 panic("pmap_map_chunk: no L1 table provided");
5906
5907 #ifdef VERBOSE_INIT_ARM
5908 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5909 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5910 #endif
5911
5912 switch (cache) {
5913 case PTE_NOCACHE:
5914 default:
5915 f1 = 0;
5916 f2l = 0;
5917 f2s = 0;
5918 break;
5919
5920 case PTE_CACHE:
5921 f1 = pte_l1_s_cache_mode;
5922 f2l = pte_l2_l_cache_mode;
5923 f2s = pte_l2_s_cache_mode;
5924 break;
5925
5926 case PTE_PAGETABLE:
5927 f1 = pte_l1_s_cache_mode_pt;
5928 f2l = pte_l2_l_cache_mode_pt;
5929 f2s = pte_l2_s_cache_mode_pt;
5930 break;
5931 }
5932
5933 size = resid;
5934
5935 while (resid > 0) {
5936 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5937 /* See if we can use a supersection mapping. */
5938 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
5939 /* Supersection are always domain 0 */
5940 pd_entry_t pde = L1_SS_PROTO | pa |
5941 L1_S_PROT(PTE_KERNEL, prot) | f1;
5942 #ifdef VERBOSE_INIT_ARM
5943 printf("sS");
5944 #endif
5945 for (size_t s = va >> L1_S_SHIFT,
5946 e = s + L1_SS_SIZE / L1_S_SIZE;
5947 s < e;
5948 s++) {
5949 pdep[s] = pde;
5950 PTE_SYNC(&pdep[s]);
5951 }
5952 va += L1_SS_SIZE;
5953 pa += L1_SS_SIZE;
5954 resid -= L1_SS_SIZE;
5955 continue;
5956 }
5957 #endif
5958 /* See if we can use a section mapping. */
5959 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5960 #ifdef VERBOSE_INIT_ARM
5961 printf("S");
5962 #endif
5963 pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5964 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5965 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5966 PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
5967 va += L1_S_SIZE;
5968 pa += L1_S_SIZE;
5969 resid -= L1_S_SIZE;
5970 continue;
5971 }
5972
5973 /*
5974 * Ok, we're going to use an L2 table. Make sure
5975 * one is actually in the corresponding L1 slot
5976 * for the current VA.
5977 */
5978 if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5979 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5980
5981 #ifndef ARM32_NEW_VM_LAYOUT
5982 pte = (pt_entry_t *)
5983 kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
5984 #else
5985 pte = (pt_entry_t *) kernel_pt_lookup(
5986 pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
5987 #endif
5988 if (pte == NULL)
5989 panic("pmap_map_chunk: can't find L2 table for VA"
5990 "0x%08lx", va);
5991
5992 /* See if we can use a L2 large page mapping. */
5993 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5994 #ifdef VERBOSE_INIT_ARM
5995 printf("L");
5996 #endif
5997 for (i = 0; i < 16; i++) {
5998 #ifndef ARM32_NEW_VM_LAYOUT
5999 pte[((va >> PGSHIFT) & 0x3f0) + i] =
6000 L2_L_PROTO | pa |
6001 L2_L_PROT(PTE_KERNEL, prot) | f2l;
6002 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
6003 #else
6004 pte[l2pte_index(va) + i] =
6005 L2_L_PROTO | pa |
6006 L2_L_PROT(PTE_KERNEL, prot) | f2l;
6007 PTE_SYNC(&pte[l2pte_index(va) + i]);
6008 #endif
6009 }
6010 va += L2_L_SIZE;
6011 pa += L2_L_SIZE;
6012 resid -= L2_L_SIZE;
6013 continue;
6014 }
6015
6016 /* Use a small page mapping. */
6017 #ifdef VERBOSE_INIT_ARM
6018 printf("P");
6019 #endif
6020 #ifndef ARM32_NEW_VM_LAYOUT
6021 pte[(va >> PGSHIFT) & 0x3ff] =
6022 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6023 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
6024 #else
6025 pte[l2pte_index(va)] =
6026 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6027 PTE_SYNC(&pte[l2pte_index(va)]);
6028 #endif
6029 va += PAGE_SIZE;
6030 pa += PAGE_SIZE;
6031 resid -= PAGE_SIZE;
6032 }
6033 #ifdef VERBOSE_INIT_ARM
6034 printf("\n");
6035 #endif
6036 return (size);
6037 }
6038
6039 /********************** Static device map routines ***************************/
6040
6041 static const struct pmap_devmap *pmap_devmap_table;
6042
6043 /*
6044 * Register the devmap table. This is provided in case early console
6045 * initialization needs to register mappings created by bootstrap code
6046 * before pmap_devmap_bootstrap() is called.
6047 */
6048 void
6049 pmap_devmap_register(const struct pmap_devmap *table)
6050 {
6051
6052 pmap_devmap_table = table;
6053 }
6054
6055 /*
6056 * Map all of the static regions in the devmap table, and remember
6057 * the devmap table so other parts of the kernel can look up entries
6058 * later.
6059 */
6060 void
6061 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6062 {
6063 int i;
6064
6065 pmap_devmap_table = table;
6066
6067 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6068 #ifdef VERBOSE_INIT_ARM
6069 printf("devmap: %08lx -> %08lx @ %08lx\n",
6070 pmap_devmap_table[i].pd_pa,
6071 pmap_devmap_table[i].pd_pa +
6072 pmap_devmap_table[i].pd_size - 1,
6073 pmap_devmap_table[i].pd_va);
6074 #endif
6075 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6076 pmap_devmap_table[i].pd_pa,
6077 pmap_devmap_table[i].pd_size,
6078 pmap_devmap_table[i].pd_prot,
6079 pmap_devmap_table[i].pd_cache);
6080 }
6081 }
6082
6083 const struct pmap_devmap *
6084 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6085 {
6086 uint64_t endpa;
6087 int i;
6088
6089 if (pmap_devmap_table == NULL)
6090 return (NULL);
6091
6092 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6093
6094 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6095 if (pa >= pmap_devmap_table[i].pd_pa &&
6096 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6097 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6098 return (&pmap_devmap_table[i]);
6099 }
6100
6101 return (NULL);
6102 }
6103
6104 const struct pmap_devmap *
6105 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6106 {
6107 int i;
6108
6109 if (pmap_devmap_table == NULL)
6110 return (NULL);
6111
6112 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6113 if (va >= pmap_devmap_table[i].pd_va &&
6114 va + size - 1 <= pmap_devmap_table[i].pd_va +
6115 pmap_devmap_table[i].pd_size - 1)
6116 return (&pmap_devmap_table[i]);
6117 }
6118
6119 return (NULL);
6120 }
6121
6122 /********************** PTE initialization routines **************************/
6123
6124 /*
6125 * These routines are called when the CPU type is identified to set up
6126 * the PTE prototypes, cache modes, etc.
6127 *
6128 * The variables are always here, just in case modules need to reference
6129 * them (though, they shouldn't).
6130 */
6131
6132 pt_entry_t pte_l1_s_cache_mode;
6133 pt_entry_t pte_l1_s_wc_mode;
6134 pt_entry_t pte_l1_s_cache_mode_pt;
6135 pt_entry_t pte_l1_s_cache_mask;
6136
6137 pt_entry_t pte_l2_l_cache_mode;
6138 pt_entry_t pte_l2_l_wc_mode;
6139 pt_entry_t pte_l2_l_cache_mode_pt;
6140 pt_entry_t pte_l2_l_cache_mask;
6141
6142 pt_entry_t pte_l2_s_cache_mode;
6143 pt_entry_t pte_l2_s_wc_mode;
6144 pt_entry_t pte_l2_s_cache_mode_pt;
6145 pt_entry_t pte_l2_s_cache_mask;
6146
6147 pt_entry_t pte_l1_s_prot_u;
6148 pt_entry_t pte_l1_s_prot_w;
6149 pt_entry_t pte_l1_s_prot_ro;
6150 pt_entry_t pte_l1_s_prot_mask;
6151
6152 pt_entry_t pte_l2_s_prot_u;
6153 pt_entry_t pte_l2_s_prot_w;
6154 pt_entry_t pte_l2_s_prot_ro;
6155 pt_entry_t pte_l2_s_prot_mask;
6156
6157 pt_entry_t pte_l2_l_prot_u;
6158 pt_entry_t pte_l2_l_prot_w;
6159 pt_entry_t pte_l2_l_prot_ro;
6160 pt_entry_t pte_l2_l_prot_mask;
6161
6162 pt_entry_t pte_l1_ss_proto;
6163 pt_entry_t pte_l1_s_proto;
6164 pt_entry_t pte_l1_c_proto;
6165 pt_entry_t pte_l2_s_proto;
6166
6167 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6168 void (*pmap_zero_page_func)(paddr_t);
6169
6170 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6171 void
6172 pmap_pte_init_generic(void)
6173 {
6174
6175 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6176 pte_l1_s_wc_mode = L1_S_B;
6177 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6178
6179 pte_l2_l_cache_mode = L2_B|L2_C;
6180 pte_l2_l_wc_mode = L2_B;
6181 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6182
6183 pte_l2_s_cache_mode = L2_B|L2_C;
6184 pte_l2_s_wc_mode = L2_B;
6185 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6186
6187 /*
6188 * If we have a write-through cache, set B and C. If
6189 * we have a write-back cache, then we assume setting
6190 * only C will make those pages write-through (except for those
6191 * Cortex CPUs which can read the L1 caches).
6192 */
6193 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6194 #if ARM_MMU_V7 > 0
6195 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6196 #endif
6197 #if ARM_MMU_V6 > 0
6198 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6199 #endif
6200 || false) {
6201 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6202 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6203 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6204 } else {
6205 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6206 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6207 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6208 }
6209
6210 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6211 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6212 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6213 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6214
6215 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6216 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6217 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6218 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6219
6220 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6221 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6222 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6223 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6224
6225 pte_l1_ss_proto = L1_SS_PROTO_generic;
6226 pte_l1_s_proto = L1_S_PROTO_generic;
6227 pte_l1_c_proto = L1_C_PROTO_generic;
6228 pte_l2_s_proto = L2_S_PROTO_generic;
6229
6230 pmap_copy_page_func = pmap_copy_page_generic;
6231 pmap_zero_page_func = pmap_zero_page_generic;
6232 }
6233
6234 #if defined(CPU_ARM8)
6235 void
6236 pmap_pte_init_arm8(void)
6237 {
6238
6239 /*
6240 * ARM8 is compatible with generic, but we need to use
6241 * the page tables uncached.
6242 */
6243 pmap_pte_init_generic();
6244
6245 pte_l1_s_cache_mode_pt = 0;
6246 pte_l2_l_cache_mode_pt = 0;
6247 pte_l2_s_cache_mode_pt = 0;
6248 }
6249 #endif /* CPU_ARM8 */
6250
6251 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6252 void
6253 pmap_pte_init_arm9(void)
6254 {
6255
6256 /*
6257 * ARM9 is compatible with generic, but we want to use
6258 * write-through caching for now.
6259 */
6260 pmap_pte_init_generic();
6261
6262 pte_l1_s_cache_mode = L1_S_C;
6263 pte_l2_l_cache_mode = L2_C;
6264 pte_l2_s_cache_mode = L2_C;
6265
6266 pte_l1_s_wc_mode = L1_S_B;
6267 pte_l2_l_wc_mode = L2_B;
6268 pte_l2_s_wc_mode = L2_B;
6269
6270 pte_l1_s_cache_mode_pt = L1_S_C;
6271 pte_l2_l_cache_mode_pt = L2_C;
6272 pte_l2_s_cache_mode_pt = L2_C;
6273 }
6274 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6275 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6276
6277 #if defined(CPU_ARM10)
6278 void
6279 pmap_pte_init_arm10(void)
6280 {
6281
6282 /*
6283 * ARM10 is compatible with generic, but we want to use
6284 * write-through caching for now.
6285 */
6286 pmap_pte_init_generic();
6287
6288 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6289 pte_l2_l_cache_mode = L2_B | L2_C;
6290 pte_l2_s_cache_mode = L2_B | L2_C;
6291
6292 pte_l1_s_cache_mode = L1_S_B;
6293 pte_l2_l_cache_mode = L2_B;
6294 pte_l2_s_cache_mode = L2_B;
6295
6296 pte_l1_s_cache_mode_pt = L1_S_C;
6297 pte_l2_l_cache_mode_pt = L2_C;
6298 pte_l2_s_cache_mode_pt = L2_C;
6299
6300 }
6301 #endif /* CPU_ARM10 */
6302
6303 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6304 void
6305 pmap_pte_init_arm11(void)
6306 {
6307
6308 /*
6309 * ARM11 is compatible with generic, but we want to use
6310 * write-through caching for now.
6311 */
6312 pmap_pte_init_generic();
6313
6314 pte_l1_s_cache_mode = L1_S_C;
6315 pte_l2_l_cache_mode = L2_C;
6316 pte_l2_s_cache_mode = L2_C;
6317
6318 pte_l1_s_wc_mode = L1_S_B;
6319 pte_l2_l_wc_mode = L2_B;
6320 pte_l2_s_wc_mode = L2_B;
6321
6322 pte_l1_s_cache_mode_pt = L1_S_C;
6323 pte_l2_l_cache_mode_pt = L2_C;
6324 pte_l2_s_cache_mode_pt = L2_C;
6325 }
6326 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6327
6328 #if ARM_MMU_SA1 == 1
6329 void
6330 pmap_pte_init_sa1(void)
6331 {
6332
6333 /*
6334 * The StrongARM SA-1 cache does not have a write-through
6335 * mode. So, do the generic initialization, then reset
6336 * the page table cache mode to B=1,C=1, and note that
6337 * the PTEs need to be sync'd.
6338 */
6339 pmap_pte_init_generic();
6340
6341 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6342 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6343 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6344
6345 pmap_needs_pte_sync = 1;
6346 }
6347 #endif /* ARM_MMU_SA1 == 1*/
6348
6349 #if ARM_MMU_XSCALE == 1
6350 #if (ARM_NMMUS > 1)
6351 static u_int xscale_use_minidata;
6352 #endif
6353
6354 void
6355 pmap_pte_init_xscale(void)
6356 {
6357 uint32_t auxctl;
6358 int write_through = 0;
6359
6360 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6361 pte_l1_s_wc_mode = L1_S_B;
6362 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6363
6364 pte_l2_l_cache_mode = L2_B|L2_C;
6365 pte_l2_l_wc_mode = L2_B;
6366 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6367
6368 pte_l2_s_cache_mode = L2_B|L2_C;
6369 pte_l2_s_wc_mode = L2_B;
6370 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6371
6372 pte_l1_s_cache_mode_pt = L1_S_C;
6373 pte_l2_l_cache_mode_pt = L2_C;
6374 pte_l2_s_cache_mode_pt = L2_C;
6375
6376 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6377 /*
6378 * The XScale core has an enhanced mode where writes that
6379 * miss the cache cause a cache line to be allocated. This
6380 * is significantly faster than the traditional, write-through
6381 * behavior of this case.
6382 */
6383 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6384 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6385 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6386 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6387
6388 #ifdef XSCALE_CACHE_WRITE_THROUGH
6389 /*
6390 * Some versions of the XScale core have various bugs in
6391 * their cache units, the work-around for which is to run
6392 * the cache in write-through mode. Unfortunately, this
6393 * has a major (negative) impact on performance. So, we
6394 * go ahead and run fast-and-loose, in the hopes that we
6395 * don't line up the planets in a way that will trip the
6396 * bugs.
6397 *
6398 * However, we give you the option to be slow-but-correct.
6399 */
6400 write_through = 1;
6401 #elif defined(XSCALE_CACHE_WRITE_BACK)
6402 /* force write back cache mode */
6403 write_through = 0;
6404 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6405 /*
6406 * Intel PXA2[15]0 processors are known to have a bug in
6407 * write-back cache on revision 4 and earlier (stepping
6408 * A[01] and B[012]). Fixed for C0 and later.
6409 */
6410 {
6411 uint32_t id, type;
6412
6413 id = cpufunc_id();
6414 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6415
6416 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6417 if ((id & CPU_ID_REVISION_MASK) < 5) {
6418 /* write through for stepping A0-1 and B0-2 */
6419 write_through = 1;
6420 }
6421 }
6422 }
6423 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6424
6425 if (write_through) {
6426 pte_l1_s_cache_mode = L1_S_C;
6427 pte_l2_l_cache_mode = L2_C;
6428 pte_l2_s_cache_mode = L2_C;
6429 }
6430
6431 #if (ARM_NMMUS > 1)
6432 xscale_use_minidata = 1;
6433 #endif
6434
6435 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6436 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6437 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6438 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6439
6440 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6441 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6442 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6443 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6444
6445 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6446 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6447 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6448 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6449
6450 pte_l1_ss_proto = L1_SS_PROTO_xscale;
6451 pte_l1_s_proto = L1_S_PROTO_xscale;
6452 pte_l1_c_proto = L1_C_PROTO_xscale;
6453 pte_l2_s_proto = L2_S_PROTO_xscale;
6454
6455 pmap_copy_page_func = pmap_copy_page_xscale;
6456 pmap_zero_page_func = pmap_zero_page_xscale;
6457
6458 /*
6459 * Disable ECC protection of page table access, for now.
6460 */
6461 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6462 auxctl &= ~XSCALE_AUXCTL_P;
6463 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6464 }
6465
6466 /*
6467 * xscale_setup_minidata:
6468 *
6469 * Set up the mini-data cache clean area. We require the
6470 * caller to allocate the right amount of physically and
6471 * virtually contiguous space.
6472 */
6473 void
6474 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6475 {
6476 extern vaddr_t xscale_minidata_clean_addr;
6477 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6478 pd_entry_t *pde = (pd_entry_t *) l1pt;
6479 pt_entry_t *pte;
6480 vsize_t size;
6481 uint32_t auxctl;
6482
6483 xscale_minidata_clean_addr = va;
6484
6485 /* Round it to page size. */
6486 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6487
6488 for (; size != 0;
6489 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6490 #ifndef ARM32_NEW_VM_LAYOUT
6491 pte = (pt_entry_t *)
6492 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6493 #else
6494 pte = (pt_entry_t *) kernel_pt_lookup(
6495 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6496 #endif
6497 if (pte == NULL)
6498 panic("xscale_setup_minidata: can't find L2 table for "
6499 "VA 0x%08lx", va);
6500 #ifndef ARM32_NEW_VM_LAYOUT
6501 pte[(va >> PGSHIFT) & 0x3ff] =
6502 #else
6503 pte[l2pte_index(va)] =
6504 #endif
6505 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6506 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6507 }
6508
6509 /*
6510 * Configure the mini-data cache for write-back with
6511 * read/write-allocate.
6512 *
6513 * NOTE: In order to reconfigure the mini-data cache, we must
6514 * make sure it contains no valid data! In order to do that,
6515 * we must issue a global data cache invalidate command!
6516 *
6517 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6518 * THIS IS VERY IMPORTANT!
6519 */
6520
6521 /* Invalidate data and mini-data. */
6522 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6523 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6524 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6525 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6526 }
6527
6528 /*
6529 * Change the PTEs for the specified kernel mappings such that they
6530 * will use the mini data cache instead of the main data cache.
6531 */
6532 void
6533 pmap_uarea(vaddr_t va)
6534 {
6535 struct l2_bucket *l2b;
6536 pt_entry_t *ptep, *sptep, pte;
6537 vaddr_t next_bucket, eva;
6538
6539 #if (ARM_NMMUS > 1)
6540 if (xscale_use_minidata == 0)
6541 return;
6542 #endif
6543
6544 eva = va + USPACE;
6545
6546 while (va < eva) {
6547 next_bucket = L2_NEXT_BUCKET(va);
6548 if (next_bucket > eva)
6549 next_bucket = eva;
6550
6551 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6552 KDASSERT(l2b != NULL);
6553
6554 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6555
6556 while (va < next_bucket) {
6557 pte = *ptep;
6558 if (!l2pte_minidata(pte)) {
6559 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6560 cpu_tlb_flushD_SE(va);
6561 *ptep = pte & ~L2_B;
6562 }
6563 ptep++;
6564 va += PAGE_SIZE;
6565 }
6566 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6567 }
6568 cpu_cpwait();
6569 }
6570 #endif /* ARM_MMU_XSCALE == 1 */
6571
6572
6573 #if defined(CPU_ARM11MPCORE)
6574
6575 void
6576 pmap_pte_init_arm11mpcore(void)
6577 {
6578
6579 /* cache mode is controlled by 5 bits (B, C, TEX) */
6580 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6581 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6582 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6583 /* use extended small page (without APn, with TEX) */
6584 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6585 #else
6586 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6587 #endif
6588
6589 /* write-back, write-allocate */
6590 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6591 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6592 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6593 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6594 #else
6595 /* no TEX. read-allocate */
6596 pte_l2_s_cache_mode = L2_C | L2_B;
6597 #endif
6598 /*
6599 * write-back, write-allocate for page tables.
6600 */
6601 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6602 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6603 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6604 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6605 #else
6606 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6607 #endif
6608
6609 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6610 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6611 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6612 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6613
6614 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6615 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6616 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6617 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6618 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6619
6620 #else
6621 /* with AP[0..3] */
6622 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6623 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6624 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6625 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6626 #endif
6627
6628 #ifdef ARM11MPCORE_COMPAT_MMU
6629 /* with AP[0..3] */
6630 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6631 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6632 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6633 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6634
6635 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6636 pte_l1_s_proto = L1_S_PROTO_armv6;
6637 pte_l1_c_proto = L1_C_PROTO_armv6;
6638 pte_l2_s_proto = L2_S_PROTO_armv6c;
6639 #else
6640 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6641 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6642 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6643 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6644
6645 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6646 pte_l1_s_proto = L1_S_PROTO_armv6;
6647 pte_l1_c_proto = L1_C_PROTO_armv6;
6648 pte_l2_s_proto = L2_S_PROTO_armv6n;
6649 #endif
6650
6651 pmap_copy_page_func = pmap_copy_page_generic;
6652 pmap_zero_page_func = pmap_zero_page_generic;
6653 pmap_needs_pte_sync = 1;
6654 }
6655 #endif /* CPU_ARM11MPCORE */
6656
6657
6658 #if ARM_MMU_V7 == 1
6659 void
6660 pmap_pte_init_armv7(void)
6661 {
6662 /*
6663 * The ARMv7-A MMU is mostly compatible with generic. If the
6664 * AP field is zero, that now means "no access" rather than
6665 * read-only. The prototypes are a little different because of
6666 * the XN bit.
6667 */
6668 pmap_pte_init_generic();
6669
6670 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6671 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6672 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6673
6674 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
6675 /*
6676 * write-back, no write-allocate, shareable for normal pages.
6677 */
6678 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
6679 pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
6680 pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
6681
6682 /*
6683 * write-back, no write-allocate, shareable for page tables.
6684 */
6685 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
6686 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6687 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6688 }
6689
6690 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6691 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6692 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6693 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6694
6695 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6696 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6697 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6698 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6699
6700 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6701 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6702 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6703 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6704
6705 pte_l1_ss_proto = L1_SS_PROTO_armv7;
6706 pte_l1_s_proto = L1_S_PROTO_armv7;
6707 pte_l1_c_proto = L1_C_PROTO_armv7;
6708 pte_l2_s_proto = L2_S_PROTO_armv7;
6709
6710 pmap_needs_pte_sync = 1;
6711 }
6712 #endif /* ARM_MMU_V7 */
6713
6714 /*
6715 * return the PA of the current L1 table, for use when handling a crash dump
6716 */
6717 uint32_t pmap_kernel_L1_addr(void)
6718 {
6719 return pmap_kernel()->pm_l1->l1_physaddr;
6720 }
6721
6722 #if defined(DDB)
6723 /*
6724 * A couple of ddb-callable functions for dumping pmaps
6725 */
6726 void pmap_dump_all(void);
6727 void pmap_dump(pmap_t);
6728
6729 void
6730 pmap_dump_all(void)
6731 {
6732 pmap_t pm;
6733
6734 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6735 if (pm == pmap_kernel())
6736 continue;
6737 pmap_dump(pm);
6738 printf("\n");
6739 }
6740 }
6741
6742 static pt_entry_t ncptes[64];
6743 static void pmap_dump_ncpg(pmap_t);
6744
6745 void
6746 pmap_dump(pmap_t pm)
6747 {
6748 struct l2_dtable *l2;
6749 struct l2_bucket *l2b;
6750 pt_entry_t *ptep, pte;
6751 vaddr_t l2_va, l2b_va, va;
6752 int i, j, k, occ, rows = 0;
6753
6754 if (pm == pmap_kernel())
6755 printf("pmap_kernel (%p): ", pm);
6756 else
6757 printf("user pmap (%p): ", pm);
6758
6759 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
6760
6761 l2_va = 0;
6762 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6763 l2 = pm->pm_l2[i];
6764
6765 if (l2 == NULL || l2->l2_occupancy == 0)
6766 continue;
6767
6768 l2b_va = l2_va;
6769 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6770 l2b = &l2->l2_bucket[j];
6771
6772 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6773 continue;
6774
6775 ptep = l2b->l2b_kva;
6776
6777 for (k = 0; k < 256 && ptep[k] == 0; k++)
6778 ;
6779
6780 k &= ~63;
6781 occ = l2b->l2b_occupancy;
6782 va = l2b_va + (k * 4096);
6783 for (; k < 256; k++, va += 0x1000) {
6784 char ch = ' ';
6785 if ((k % 64) == 0) {
6786 if ((rows % 8) == 0) {
6787 printf(
6788 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6789 }
6790 printf("%08lx: ", va);
6791 }
6792
6793 ncptes[k & 63] = 0;
6794 pte = ptep[k];
6795 if (pte == 0) {
6796 ch = '.';
6797 } else {
6798 occ--;
6799 switch (pte & 0x0c) {
6800 case 0x00:
6801 ch = 'D'; /* No cache No buff */
6802 break;
6803 case 0x04:
6804 ch = 'B'; /* No cache buff */
6805 break;
6806 case 0x08:
6807 if (pte & 0x40)
6808 ch = 'm';
6809 else
6810 ch = 'C'; /* Cache No buff */
6811 break;
6812 case 0x0c:
6813 ch = 'F'; /* Cache Buff */
6814 break;
6815 }
6816
6817 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6818 ch += 0x20;
6819
6820 if ((pte & 0xc) == 0)
6821 ncptes[k & 63] = pte;
6822 }
6823
6824 if ((k % 64) == 63) {
6825 rows++;
6826 printf("%c\n", ch);
6827 pmap_dump_ncpg(pm);
6828 if (occ == 0)
6829 break;
6830 } else
6831 printf("%c", ch);
6832 }
6833 }
6834 }
6835 }
6836
6837 static void
6838 pmap_dump_ncpg(pmap_t pm)
6839 {
6840 struct vm_page *pg;
6841 struct vm_page_md *md;
6842 struct pv_entry *pv;
6843 int i;
6844
6845 for (i = 0; i < 63; i++) {
6846 if (ncptes[i] == 0)
6847 continue;
6848
6849 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6850 if (pg == NULL)
6851 continue;
6852 md = VM_PAGE_TO_MD(pg);
6853
6854 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6855 VM_PAGE_TO_PHYS(pg),
6856 md->krw_mappings, md->kro_mappings,
6857 md->urw_mappings, md->uro_mappings);
6858
6859 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6860 printf(" %c va 0x%08lx, flags 0x%x\n",
6861 (pm == pv->pv_pmap) ? '*' : ' ',
6862 pv->pv_va, pv->pv_flags);
6863 }
6864 }
6865 }
6866 #endif
6867
6868 #ifdef PMAP_STEAL_MEMORY
6869 void
6870 pmap_boot_pageadd(pv_addr_t *newpv)
6871 {
6872 pv_addr_t *pv, *npv;
6873
6874 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6875 if (newpv->pv_pa < pv->pv_va) {
6876 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6877 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6878 newpv->pv_size += pv->pv_size;
6879 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6880 }
6881 pv = NULL;
6882 } else {
6883 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6884 pv = npv) {
6885 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6886 KASSERT(pv->pv_pa < newpv->pv_pa);
6887 if (newpv->pv_pa > npv->pv_pa)
6888 continue;
6889 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6890 pv->pv_size += newpv->pv_size;
6891 return;
6892 }
6893 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6894 break;
6895 newpv->pv_size += npv->pv_size;
6896 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6897 SLIST_REMOVE_AFTER(newpv, pv_list);
6898 return;
6899 }
6900 }
6901 }
6902
6903 if (pv) {
6904 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6905 } else {
6906 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6907 }
6908 }
6909
6910 void
6911 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6912 pv_addr_t *rpv)
6913 {
6914 pv_addr_t *pv, **pvp;
6915 struct vm_physseg *ps;
6916 size_t i;
6917
6918 KASSERT(amount & PGOFSET);
6919 KASSERT((mask & PGOFSET) == 0);
6920 KASSERT((match & PGOFSET) == 0);
6921 KASSERT(amount != 0);
6922
6923 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6924 (pv = *pvp) != NULL;
6925 pvp = &SLIST_NEXT(pv, pv_list)) {
6926 pv_addr_t *newpv;
6927 psize_t off;
6928 /*
6929 * If this entry is too small to satify the request...
6930 */
6931 KASSERT(pv->pv_size > 0);
6932 if (pv->pv_size < amount)
6933 continue;
6934
6935 for (off = 0; off <= mask; off += PAGE_SIZE) {
6936 if (((pv->pv_pa + off) & mask) == match
6937 && off + amount <= pv->pv_size)
6938 break;
6939 }
6940 if (off > mask)
6941 continue;
6942
6943 rpv->pv_va = pv->pv_va + off;
6944 rpv->pv_pa = pv->pv_pa + off;
6945 rpv->pv_size = amount;
6946 pv->pv_size -= amount;
6947 if (pv->pv_size == 0) {
6948 KASSERT(off == 0);
6949 KASSERT((vaddr_t) pv == rpv->pv_va);
6950 *pvp = SLIST_NEXT(pv, pv_list);
6951 } else if (off == 0) {
6952 KASSERT((vaddr_t) pv == rpv->pv_va);
6953 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6954 *newpv = *pv;
6955 newpv->pv_pa += amount;
6956 newpv->pv_va += amount;
6957 *pvp = newpv;
6958 } else if (off < pv->pv_size) {
6959 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6960 *newpv = *pv;
6961 newpv->pv_size -= off;
6962 newpv->pv_pa += off + amount;
6963 newpv->pv_va += off + amount;
6964
6965 SLIST_NEXT(pv, pv_list) = newpv;
6966 pv->pv_size = off;
6967 } else {
6968 KASSERT((vaddr_t) pv != rpv->pv_va);
6969 }
6970 memset((void *)rpv->pv_va, 0, amount);
6971 return;
6972 }
6973
6974 if (vm_nphysseg == 0)
6975 panic("pmap_boot_pagealloc: couldn't allocate memory");
6976
6977 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6978 (pv = *pvp) != NULL;
6979 pvp = &SLIST_NEXT(pv, pv_list)) {
6980 if (SLIST_NEXT(pv, pv_list) == NULL)
6981 break;
6982 }
6983 KASSERT(mask == 0);
6984 for (i = 0; i < vm_nphysseg; i++) {
6985 ps = VM_PHYSMEM_PTR(i);
6986 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6987 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6988 rpv->pv_va = pv->pv_va;
6989 rpv->pv_pa = pv->pv_pa;
6990 rpv->pv_size = amount;
6991 *pvp = NULL;
6992 pmap_map_chunk(kernel_l1pt.pv_va,
6993 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6994 ptoa(ps->avail_start),
6995 amount - pv->pv_size,
6996 VM_PROT_READ|VM_PROT_WRITE,
6997 PTE_CACHE);
6998 ps->avail_start += atop(amount - pv->pv_size);
6999 /*
7000 * If we consumed the entire physseg, remove it.
7001 */
7002 if (ps->avail_start == ps->avail_end) {
7003 for (--vm_nphysseg; i < vm_nphysseg; i++)
7004 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7005 }
7006 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7007 return;
7008 }
7009 }
7010
7011 panic("pmap_boot_pagealloc: couldn't allocate memory");
7012 }
7013
7014 vaddr_t
7015 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7016 {
7017 pv_addr_t pv;
7018
7019 pmap_boot_pagealloc(size, 0, 0, &pv);
7020
7021 return pv.pv_va;
7022 }
7023 #endif /* PMAP_STEAL_MEMORY */
7024
7025 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7026 {
7027 sysctl_createv(clog, 0, NULL, NULL,
7028 CTLFLAG_PERMANENT,
7029 CTLTYPE_NODE, "machdep", NULL,
7030 NULL, 0, NULL, 0,
7031 CTL_MACHDEP, CTL_EOL);
7032
7033 sysctl_createv(clog, 0, NULL, NULL,
7034 CTLFLAG_PERMANENT,
7035 CTLTYPE_INT, "kmpages",
7036 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7037 NULL, 0, &pmap_kmpages, 0,
7038 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7039 }
7040
7041 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7042 struct vm_page *
7043 arm_pmap_alloc_poolpage(int flags)
7044 {
7045 /*
7046 * On some systems, only some pages may be "coherent" for dma and we
7047 * want to prefer those for pool pages (think mbufs) but fallback to
7048 * any page if none is available.
7049 */
7050 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7051 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7052 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
7053 }
7054
7055 return uvm_pagealloc(NULL, 0, NULL, flags);
7056 }
7057 #endif
7058