pmap.c revision 1.259 1 /* $NetBSD: pmap.c,v 1.259 2013/07/03 15:24:35 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/pool.h>
201 #include <sys/kmem.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205
206 #include <uvm/uvm.h>
207
208 #include <sys/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/cpuconf.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.259 2013/07/03 15:24:35 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
261 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
262 #endif
263
264 /*
265 * Which pmap is currently 'live' in the cache
266 *
267 * XXXSCW: Fix for SMP ...
268 */
269 static pmap_t pmap_recent_user;
270
271 /*
272 * Pointer to last active lwp, or NULL if it exited.
273 */
274 struct lwp *pmap_previous_active_lwp;
275
276 /*
277 * Pool and cache that pmap structures are allocated from.
278 * We use a cache to avoid clearing the pm_l2[] array (1KB)
279 * in pmap_create().
280 */
281 static struct pool_cache pmap_cache;
282 static LIST_HEAD(, pmap) pmap_pmaps;
283
284 /*
285 * Pool of PV structures
286 */
287 static struct pool pmap_pv_pool;
288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
291 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
292 };
293
294 /*
295 * Pool and cache of l2_dtable structures.
296 * We use a cache to avoid clearing the structures when they're
297 * allocated. (196 bytes)
298 */
299 static struct pool_cache pmap_l2dtable_cache;
300 static vaddr_t pmap_kernel_l2dtable_kva;
301
302 /*
303 * Pool and cache of L2 page descriptors.
304 * We use a cache to avoid clearing the descriptor table
305 * when they're allocated. (1KB)
306 */
307 static struct pool_cache pmap_l2ptp_cache;
308 static vaddr_t pmap_kernel_l2ptp_kva;
309 static paddr_t pmap_kernel_l2ptp_phys;
310
311 #ifdef PMAPCOUNTERS
312 #define PMAP_EVCNT_INITIALIZER(name) \
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
314
315 #ifdef PMAP_CACHE_VIPT
316 static struct evcnt pmap_ev_vac_clean_one =
317 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_one =
319 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
320 static struct evcnt pmap_ev_vac_flush_lots =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
322 static struct evcnt pmap_ev_vac_flush_lots2 =
323 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
328
329 static struct evcnt pmap_ev_vac_color_new =
330 PMAP_EVCNT_INITIALIZER("new page color");
331 static struct evcnt pmap_ev_vac_color_reuse =
332 PMAP_EVCNT_INITIALIZER("ok first page color");
333 static struct evcnt pmap_ev_vac_color_ok =
334 PMAP_EVCNT_INITIALIZER("ok page color");
335 static struct evcnt pmap_ev_vac_color_blind =
336 PMAP_EVCNT_INITIALIZER("blind page color");
337 static struct evcnt pmap_ev_vac_color_change =
338 PMAP_EVCNT_INITIALIZER("change page color");
339 static struct evcnt pmap_ev_vac_color_erase =
340 PMAP_EVCNT_INITIALIZER("erase page color");
341 static struct evcnt pmap_ev_vac_color_none =
342 PMAP_EVCNT_INITIALIZER("no page color");
343 static struct evcnt pmap_ev_vac_color_restore =
344 PMAP_EVCNT_INITIALIZER("restore page color");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
354 #endif
355
356 static struct evcnt pmap_ev_mappings =
357 PMAP_EVCNT_INITIALIZER("pages mapped");
358 static struct evcnt pmap_ev_unmappings =
359 PMAP_EVCNT_INITIALIZER("pages unmapped");
360 static struct evcnt pmap_ev_remappings =
361 PMAP_EVCNT_INITIALIZER("pages remapped");
362
363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
366
367 static struct evcnt pmap_ev_kernel_mappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
369 static struct evcnt pmap_ev_kernel_unmappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
371 static struct evcnt pmap_ev_kernel_remappings =
372 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
373
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
377
378 static struct evcnt pmap_ev_kenter_mappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
380 static struct evcnt pmap_ev_kenter_unmappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
382 static struct evcnt pmap_ev_kenter_remappings =
383 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
384 static struct evcnt pmap_ev_pt_mappings =
385 PMAP_EVCNT_INITIALIZER("page table pages mapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
391
392 #ifdef PMAP_CACHE_VIPT
393 static struct evcnt pmap_ev_exec_mappings =
394 PMAP_EVCNT_INITIALIZER("exec pages mapped");
395 static struct evcnt pmap_ev_exec_cached =
396 PMAP_EVCNT_INITIALIZER("exec pages cached");
397
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
400
401 static struct evcnt pmap_ev_exec_synced =
402 PMAP_EVCNT_INITIALIZER("exec pages synced");
403 static struct evcnt pmap_ev_exec_synced_map =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
405 static struct evcnt pmap_ev_exec_synced_unmap =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
407 static struct evcnt pmap_ev_exec_synced_remap =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
409 static struct evcnt pmap_ev_exec_synced_clearbit =
410 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
411 static struct evcnt pmap_ev_exec_synced_kremove =
412 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
413
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
420
421 static struct evcnt pmap_ev_exec_discarded_unmap =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
423 static struct evcnt pmap_ev_exec_discarded_zero =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
425 static struct evcnt pmap_ev_exec_discarded_copy =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
427 static struct evcnt pmap_ev_exec_discarded_page_protect =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
429 static struct evcnt pmap_ev_exec_discarded_clearbit =
430 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
431 static struct evcnt pmap_ev_exec_discarded_kremove =
432 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
433
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 /*
456 * pmap copy/zero page, and mem(5) hook point
457 */
458 static pt_entry_t *csrc_pte, *cdst_pte;
459 static vaddr_t csrcp, cdstp;
460 vaddr_t memhook; /* used by mem.c */
461 kmutex_t memlock; /* used by mem.c */
462 void *zeropage; /* used by mem.c */
463 extern void *msgbufaddr;
464 int pmap_kmpages;
465 /*
466 * Flag to indicate if pmap_init() has done its thing
467 */
468 bool pmap_initialized;
469
470 /*
471 * Misc. locking data structures
472 */
473
474 #define pmap_acquire_pmap_lock(pm) \
475 do { \
476 if ((pm) != pmap_kernel()) \
477 mutex_enter((pm)->pm_lock); \
478 } while (/*CONSTCOND*/0)
479
480 #define pmap_release_pmap_lock(pm) \
481 do { \
482 if ((pm) != pmap_kernel()) \
483 mutex_exit((pm)->pm_lock); \
484 } while (/*CONSTCOND*/0)
485
486
487 /*
488 * Metadata for L1 translation tables.
489 */
490 struct l1_ttable {
491 /* Entry on the L1 Table list */
492 SLIST_ENTRY(l1_ttable) l1_link;
493
494 /* Entry on the L1 Least Recently Used list */
495 TAILQ_ENTRY(l1_ttable) l1_lru;
496
497 /* Track how many domains are allocated from this L1 */
498 volatile u_int l1_domain_use_count;
499
500 /*
501 * A free-list of domain numbers for this L1.
502 * We avoid using ffs() and a bitmap to track domains since ffs()
503 * is slow on ARM.
504 */
505 uint8_t l1_domain_first;
506 uint8_t l1_domain_free[PMAP_DOMAINS];
507
508 /* Physical address of this L1 page table */
509 paddr_t l1_physaddr;
510
511 /* KVA of this L1 page table */
512 pd_entry_t *l1_kva;
513 };
514
515 /*
516 * Convert a virtual address into its L1 table index. That is, the
517 * index used to locate the L2 descriptor table pointer in an L1 table.
518 * This is basically used to index l1->l1_kva[].
519 *
520 * Each L2 descriptor table represents 1MB of VA space.
521 */
522 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
523
524 /*
525 * L1 Page Tables are tracked using a Least Recently Used list.
526 * - New L1s are allocated from the HEAD.
527 * - Freed L1s are added to the TAIl.
528 * - Recently accessed L1s (where an 'access' is some change to one of
529 * the userland pmaps which owns this L1) are moved to the TAIL.
530 */
531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
532 static kmutex_t l1_lru_lock __cacheline_aligned;
533
534 /*
535 * A list of all L1 tables
536 */
537 static SLIST_HEAD(, l1_ttable) l1_list;
538
539 /*
540 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
541 *
542 * This is normally 16MB worth L2 page descriptors for any given pmap.
543 * Reference counts are maintained for L2 descriptors so they can be
544 * freed when empty.
545 */
546 struct l2_dtable {
547 /* The number of L2 page descriptors allocated to this l2_dtable */
548 u_int l2_occupancy;
549
550 /* List of L2 page descriptors */
551 struct l2_bucket {
552 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
553 paddr_t l2b_phys; /* Physical address of same */
554 u_short l2b_l1idx; /* This L2 table's L1 index */
555 u_short l2b_occupancy; /* How many active descriptors */
556 } l2_bucket[L2_BUCKET_SIZE];
557 };
558
559 /*
560 * Given an L1 table index, calculate the corresponding l2_dtable index
561 * and bucket index within the l2_dtable.
562 */
563 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
564 (L2_SIZE - 1))
565 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
566
567 /*
568 * Given a virtual address, this macro returns the
569 * virtual address required to drop into the next L2 bucket.
570 */
571 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
572
573 /*
574 * L2 allocation.
575 */
576 #define pmap_alloc_l2_dtable() \
577 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
578 #define pmap_free_l2_dtable(l2) \
579 pool_cache_put(&pmap_l2dtable_cache, (l2))
580 #define pmap_alloc_l2_ptp(pap) \
581 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
582 PR_NOWAIT, (pap)))
583
584 /*
585 * We try to map the page tables write-through, if possible. However, not
586 * all CPUs have a write-through cache mode, so on those we have to sync
587 * the cache when we frob page tables.
588 *
589 * We try to evaluate this at compile time, if possible. However, it's
590 * not always possible to do that, hence this run-time var.
591 */
592 int pmap_needs_pte_sync;
593
594 /*
595 * Real definition of pv_entry.
596 */
597 struct pv_entry {
598 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
599 pmap_t pv_pmap; /* pmap where mapping lies */
600 vaddr_t pv_va; /* virtual address for mapping */
601 u_int pv_flags; /* flags */
602 };
603
604 /*
605 * Macro to determine if a mapping might be resident in the
606 * instruction cache and/or TLB
607 */
608 #if ARM_MMU_V7 > 0
609 /*
610 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
611 * there are no explicit accesses, so there may be always be TLB entries to
612 * flush. If we used ASIDs then this would not be a problem.
613 */
614 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
615 #else
616 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
617 #endif
618 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
619
620 /*
621 * Macro to determine if a mapping might be resident in the
622 * data cache and/or TLB
623 */
624 #if ARM_MMU_V7 > 0
625 /*
626 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
627 * there are no explicit accesses, so there may be always be TLB entries to
628 * flush. If we used ASIDs then this would not be a problem.
629 */
630 #define PV_BEEN_REFD(f) (1)
631 #else
632 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
633 #endif
634
635 /*
636 * Local prototypes
637 */
638 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
639 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
640 pt_entry_t **);
641 static bool pmap_is_current(pmap_t);
642 static bool pmap_is_cached(pmap_t);
643 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
644 pmap_t, vaddr_t, u_int);
645 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
646 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
647 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
648 u_int, u_int);
649
650 static void pmap_pinit(pmap_t);
651 static int pmap_pmap_ctor(void *, void *, int);
652
653 static void pmap_alloc_l1(pmap_t);
654 static void pmap_free_l1(pmap_t);
655 static void pmap_use_l1(pmap_t);
656
657 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
658 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
659 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
660 static int pmap_l2ptp_ctor(void *, void *, int);
661 static int pmap_l2dtable_ctor(void *, void *, int);
662
663 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
664 #ifdef PMAP_CACHE_VIVT
665 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
666 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
667 #endif
668
669 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
670 #ifdef PMAP_CACHE_VIVT
671 static int pmap_clean_page(struct pv_entry *, bool);
672 #endif
673 #ifdef PMAP_CACHE_VIPT
674 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
675 enum pmap_flush_op {
676 PMAP_FLUSH_PRIMARY,
677 PMAP_FLUSH_SECONDARY,
678 PMAP_CLEAN_PRIMARY
679 };
680 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
681 #endif
682 static void pmap_page_remove(struct vm_page_md *, paddr_t);
683
684 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
685 static vaddr_t kernel_pt_lookup(paddr_t);
686
687
688 /*
689 * Misc variables
690 */
691 vaddr_t virtual_avail;
692 vaddr_t virtual_end;
693 vaddr_t pmap_curmaxkvaddr;
694
695 paddr_t avail_start;
696 paddr_t avail_end;
697
698 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
699 pv_addr_t kernelpages;
700 pv_addr_t kernel_l1pt;
701 pv_addr_t systempage;
702
703 /* Function to set the debug level of the pmap code */
704
705 #ifdef PMAP_DEBUG
706 void
707 pmap_debug(int level)
708 {
709 pmap_debug_level = level;
710 printf("pmap_debug: level=%d\n", pmap_debug_level);
711 }
712 #endif /* PMAP_DEBUG */
713
714 #ifdef PMAP_CACHE_VIPT
715 #define PMAP_VALIDATE_MD_PAGE(md) \
716 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
717 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
718 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
719 #endif /* PMAP_CACHE_VIPT */
720 /*
721 * A bunch of routines to conditionally flush the caches/TLB depending
722 * on whether the specified pmap actually needs to be flushed at any
723 * given time.
724 */
725 static inline void
726 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
727 {
728 if (pm->pm_cstate.cs_tlb_id != 0) {
729 if (PV_BEEN_EXECD(flags)) {
730 cpu_tlb_flushID_SE(va);
731 } else if (PV_BEEN_REFD(flags)) {
732 cpu_tlb_flushD_SE(va);
733 }
734 }
735 }
736
737 static inline void
738 pmap_tlb_flushID(pmap_t pm)
739 {
740 if (pm->pm_cstate.cs_tlb_id) {
741 cpu_tlb_flushID();
742 #if ARM_MMU_V7 == 0
743 /*
744 * Speculative loads by Cortex cores can cause TLB entries to
745 * be filled even if there are no explicit accesses, so there
746 * may be always be TLB entries to flush. If we used ASIDs
747 * then it would not be a problem.
748 * This is not true for other CPUs.
749 */
750 pm->pm_cstate.cs_tlb = 0;
751 #endif /* ARM_MMU_V7 */
752 }
753 }
754
755 static inline void
756 pmap_tlb_flushD(pmap_t pm)
757 {
758 if (pm->pm_cstate.cs_tlb_d) {
759 cpu_tlb_flushD();
760 #if ARM_MMU_V7 == 0
761 /*
762 * Speculative loads by Cortex cores can cause TLB entries to
763 * be filled even if there are no explicit accesses, so there
764 * may be always be TLB entries to flush. If we used ASIDs
765 * then it would not be a problem.
766 * This is not true for other CPUs.
767 */
768 pm->pm_cstate.cs_tlb_d = 0;
769 }
770 #endif /* ARM_MMU_V7 */
771 }
772
773 #ifdef PMAP_CACHE_VIVT
774 static inline void
775 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
776 {
777 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
778 cpu_idcache_wbinv_range(va, PAGE_SIZE);
779 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
780 if (do_inv) {
781 if (flags & PVF_WRITE)
782 cpu_dcache_wbinv_range(va, PAGE_SIZE);
783 else
784 cpu_dcache_inv_range(va, PAGE_SIZE);
785 } else if (flags & PVF_WRITE) {
786 cpu_dcache_wb_range(va, PAGE_SIZE);
787 }
788 }
789 }
790
791 static inline void
792 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
793 {
794 if (PV_BEEN_EXECD(flags)) {
795 if (pm->pm_cstate.cs_cache_id) {
796 cpu_idcache_wbinv_all();
797 pm->pm_cstate.cs_cache = 0;
798 }
799 } else if (pm->pm_cstate.cs_cache_d) {
800 cpu_dcache_wbinv_all();
801 pm->pm_cstate.cs_cache_d = 0;
802 }
803 }
804 #endif /* PMAP_CACHE_VIVT */
805
806 static inline uint8_t
807 pmap_domain(pmap_t pm)
808 {
809 return pm->pm_domain;
810 }
811
812 static inline pd_entry_t *
813 pmap_l1_kva(pmap_t pm)
814 {
815 return pm->pm_l1->l1_kva;
816 }
817
818 static inline bool
819 pmap_is_current(pmap_t pm)
820 {
821
822 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
823 return true;
824
825 return false;
826 }
827
828 static inline bool
829 pmap_is_cached(pmap_t pm)
830 {
831
832 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
833 pmap_recent_user == pm)
834 return (true);
835
836 return false;
837 }
838
839 /*
840 * PTE_SYNC_CURRENT:
841 *
842 * Make sure the pte is written out to RAM.
843 * We need to do this for one of two cases:
844 * - We're dealing with the kernel pmap
845 * - There is no pmap active in the cache/tlb.
846 * - The specified pmap is 'active' in the cache/tlb.
847 */
848 #ifdef PMAP_INCLUDE_PTE_SYNC
849 #define PTE_SYNC_CURRENT(pm, ptep) \
850 do { \
851 if (PMAP_NEEDS_PTE_SYNC && \
852 pmap_is_cached(pm)) \
853 PTE_SYNC(ptep); \
854 } while (/*CONSTCOND*/0)
855 #else
856 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
857 #endif
858
859 /*
860 * main pv_entry manipulation functions:
861 * pmap_enter_pv: enter a mapping onto a vm_page list
862 * pmap_remove_pv: remove a mapping from a vm_page list
863 *
864 * NOTE: pmap_enter_pv expects to lock the pvh itself
865 * pmap_remove_pv expects the caller to lock the pvh before calling
866 */
867
868 /*
869 * pmap_enter_pv: enter a mapping onto a vm_page lst
870 *
871 * => caller should hold the proper lock on pmap_main_lock
872 * => caller should have pmap locked
873 * => we will gain the lock on the vm_page and allocate the new pv_entry
874 * => caller should adjust ptp's wire_count before calling
875 * => caller should not adjust pmap's wire_count
876 */
877 static void
878 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
879 vaddr_t va, u_int flags)
880 {
881 struct pv_entry **pvp;
882
883 NPDEBUG(PDB_PVDUMP,
884 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
885
886 pv->pv_pmap = pm;
887 pv->pv_va = va;
888 pv->pv_flags = flags;
889
890 pvp = &SLIST_FIRST(&md->pvh_list);
891 #ifdef PMAP_CACHE_VIPT
892 /*
893 * Insert unmanaged entries, writeable first, at the head of
894 * the pv list.
895 */
896 if (__predict_true((flags & PVF_KENTRY) == 0)) {
897 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
898 pvp = &SLIST_NEXT(*pvp, pv_link);
899 } else if ((flags & PVF_WRITE) == 0) {
900 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
901 pvp = &SLIST_NEXT(*pvp, pv_link);
902 }
903 #endif
904 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
905 *pvp = pv; /* ... locked list */
906 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
907 #ifdef PMAP_CACHE_VIPT
908 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
909 md->pvh_attrs |= PVF_KMOD;
910 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
911 md->pvh_attrs |= PVF_DIRTY;
912 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
913 #endif
914 if (pm == pmap_kernel()) {
915 PMAPCOUNT(kernel_mappings);
916 if (flags & PVF_WRITE)
917 md->krw_mappings++;
918 else
919 md->kro_mappings++;
920 } else {
921 if (flags & PVF_WRITE)
922 md->urw_mappings++;
923 else
924 md->uro_mappings++;
925 }
926
927 #ifdef PMAP_CACHE_VIPT
928 /*
929 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
930 * do it here as well to keep the mappings & KVF_WRITE consistent.
931 */
932 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
933 md->pvh_attrs |= PVF_WRITE;
934 }
935 /*
936 * If this is an exec mapping and its the first exec mapping
937 * for this page, make sure to sync the I-cache.
938 */
939 if (PV_IS_EXEC_P(flags)) {
940 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
941 pmap_syncicache_page(md, pa);
942 PMAPCOUNT(exec_synced_map);
943 }
944 PMAPCOUNT(exec_mappings);
945 }
946 #endif
947
948 PMAPCOUNT(mappings);
949
950 if (pv->pv_flags & PVF_WIRED)
951 ++pm->pm_stats.wired_count;
952 }
953
954 /*
955 *
956 * pmap_find_pv: Find a pv entry
957 *
958 * => caller should hold lock on vm_page
959 */
960 static inline struct pv_entry *
961 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
962 {
963 struct pv_entry *pv;
964
965 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
966 if (pm == pv->pv_pmap && va == pv->pv_va)
967 break;
968 }
969
970 return (pv);
971 }
972
973 /*
974 * pmap_remove_pv: try to remove a mapping from a pv_list
975 *
976 * => caller should hold proper lock on pmap_main_lock
977 * => pmap should be locked
978 * => caller should hold lock on vm_page [so that attrs can be adjusted]
979 * => caller should adjust ptp's wire_count and free PTP if needed
980 * => caller should NOT adjust pmap's wire_count
981 * => we return the removed pv
982 */
983 static struct pv_entry *
984 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
985 {
986 struct pv_entry *pv, **prevptr;
987
988 NPDEBUG(PDB_PVDUMP,
989 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
990
991 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
992 pv = *prevptr;
993
994 while (pv) {
995 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
996 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
997 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
998 if (pv->pv_flags & PVF_WIRED) {
999 --pm->pm_stats.wired_count;
1000 }
1001 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1002 if (pm == pmap_kernel()) {
1003 PMAPCOUNT(kernel_unmappings);
1004 if (pv->pv_flags & PVF_WRITE)
1005 md->krw_mappings--;
1006 else
1007 md->kro_mappings--;
1008 } else {
1009 if (pv->pv_flags & PVF_WRITE)
1010 md->urw_mappings--;
1011 else
1012 md->uro_mappings--;
1013 }
1014
1015 PMAPCOUNT(unmappings);
1016 #ifdef PMAP_CACHE_VIPT
1017 if (!(pv->pv_flags & PVF_WRITE))
1018 break;
1019 /*
1020 * If this page has had an exec mapping, then if
1021 * this was the last mapping, discard the contents,
1022 * otherwise sync the i-cache for this page.
1023 */
1024 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1025 if (SLIST_EMPTY(&md->pvh_list)) {
1026 md->pvh_attrs &= ~PVF_EXEC;
1027 PMAPCOUNT(exec_discarded_unmap);
1028 } else {
1029 pmap_syncicache_page(md, pa);
1030 PMAPCOUNT(exec_synced_unmap);
1031 }
1032 }
1033 #endif /* PMAP_CACHE_VIPT */
1034 break;
1035 }
1036 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1037 pv = *prevptr; /* advance */
1038 }
1039
1040 #ifdef PMAP_CACHE_VIPT
1041 /*
1042 * If we no longer have a WRITEABLE KENTRY at the head of list,
1043 * clear the KMOD attribute from the page.
1044 */
1045 if (SLIST_FIRST(&md->pvh_list) == NULL
1046 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1047 md->pvh_attrs &= ~PVF_KMOD;
1048
1049 /*
1050 * If this was a writeable page and there are no more writeable
1051 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1052 * the contents to memory.
1053 */
1054 if (arm_cache_prefer_mask != 0) {
1055 if (md->krw_mappings + md->urw_mappings == 0)
1056 md->pvh_attrs &= ~PVF_WRITE;
1057 PMAP_VALIDATE_MD_PAGE(md);
1058 }
1059 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1060 #endif /* PMAP_CACHE_VIPT */
1061
1062 return(pv); /* return removed pv */
1063 }
1064
1065 /*
1066 *
1067 * pmap_modify_pv: Update pv flags
1068 *
1069 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1070 * => caller should NOT adjust pmap's wire_count
1071 * => caller must call pmap_vac_me_harder() if writable status of a page
1072 * may have changed.
1073 * => we return the old flags
1074 *
1075 * Modify a physical-virtual mapping in the pv table
1076 */
1077 static u_int
1078 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1079 u_int clr_mask, u_int set_mask)
1080 {
1081 struct pv_entry *npv;
1082 u_int flags, oflags;
1083
1084 KASSERT((clr_mask & PVF_KENTRY) == 0);
1085 KASSERT((set_mask & PVF_KENTRY) == 0);
1086
1087 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1088 return (0);
1089
1090 NPDEBUG(PDB_PVDUMP,
1091 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1092
1093 /*
1094 * There is at least one VA mapping this page.
1095 */
1096
1097 if (clr_mask & (PVF_REF | PVF_MOD)) {
1098 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1099 #ifdef PMAP_CACHE_VIPT
1100 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1101 md->pvh_attrs |= PVF_DIRTY;
1102 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1103 #endif
1104 }
1105
1106 oflags = npv->pv_flags;
1107 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1108
1109 if ((flags ^ oflags) & PVF_WIRED) {
1110 if (flags & PVF_WIRED)
1111 ++pm->pm_stats.wired_count;
1112 else
1113 --pm->pm_stats.wired_count;
1114 }
1115
1116 if ((flags ^ oflags) & PVF_WRITE) {
1117 if (pm == pmap_kernel()) {
1118 if (flags & PVF_WRITE) {
1119 md->krw_mappings++;
1120 md->kro_mappings--;
1121 } else {
1122 md->kro_mappings++;
1123 md->krw_mappings--;
1124 }
1125 } else {
1126 if (flags & PVF_WRITE) {
1127 md->urw_mappings++;
1128 md->uro_mappings--;
1129 } else {
1130 md->uro_mappings++;
1131 md->urw_mappings--;
1132 }
1133 }
1134 }
1135 #ifdef PMAP_CACHE_VIPT
1136 if (arm_cache_prefer_mask != 0) {
1137 if (md->urw_mappings + md->krw_mappings == 0) {
1138 md->pvh_attrs &= ~PVF_WRITE;
1139 } else {
1140 md->pvh_attrs |= PVF_WRITE;
1141 }
1142 }
1143 /*
1144 * We have two cases here: the first is from enter_pv (new exec
1145 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1146 * Since in latter, pmap_enter_pv won't do anything, we just have
1147 * to do what pmap_remove_pv would do.
1148 */
1149 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1150 || (PV_IS_EXEC_P(md->pvh_attrs)
1151 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1152 pmap_syncicache_page(md, pa);
1153 PMAPCOUNT(exec_synced_remap);
1154 }
1155 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1156 #endif
1157
1158 PMAPCOUNT(remappings);
1159
1160 return (oflags);
1161 }
1162
1163 /*
1164 * Allocate an L1 translation table for the specified pmap.
1165 * This is called at pmap creation time.
1166 */
1167 static void
1168 pmap_alloc_l1(pmap_t pm)
1169 {
1170 struct l1_ttable *l1;
1171 uint8_t domain;
1172
1173 /*
1174 * Remove the L1 at the head of the LRU list
1175 */
1176 mutex_spin_enter(&l1_lru_lock);
1177 l1 = TAILQ_FIRST(&l1_lru_list);
1178 KDASSERT(l1 != NULL);
1179 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1180
1181 /*
1182 * Pick the first available domain number, and update
1183 * the link to the next number.
1184 */
1185 domain = l1->l1_domain_first;
1186 l1->l1_domain_first = l1->l1_domain_free[domain];
1187
1188 /*
1189 * If there are still free domain numbers in this L1,
1190 * put it back on the TAIL of the LRU list.
1191 */
1192 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1193 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1194
1195 mutex_spin_exit(&l1_lru_lock);
1196
1197 /*
1198 * Fix up the relevant bits in the pmap structure
1199 */
1200 pm->pm_l1 = l1;
1201 pm->pm_domain = domain + 1;
1202 }
1203
1204 /*
1205 * Free an L1 translation table.
1206 * This is called at pmap destruction time.
1207 */
1208 static void
1209 pmap_free_l1(pmap_t pm)
1210 {
1211 struct l1_ttable *l1 = pm->pm_l1;
1212
1213 mutex_spin_enter(&l1_lru_lock);
1214
1215 /*
1216 * If this L1 is currently on the LRU list, remove it.
1217 */
1218 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1219 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1220
1221 /*
1222 * Free up the domain number which was allocated to the pmap
1223 */
1224 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1225 l1->l1_domain_first = pmap_domain(pm) - 1;
1226 l1->l1_domain_use_count--;
1227
1228 /*
1229 * The L1 now must have at least 1 free domain, so add
1230 * it back to the LRU list. If the use count is zero,
1231 * put it at the head of the list, otherwise it goes
1232 * to the tail.
1233 */
1234 if (l1->l1_domain_use_count == 0)
1235 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1236 else
1237 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1238
1239 mutex_spin_exit(&l1_lru_lock);
1240 }
1241
1242 static inline void
1243 pmap_use_l1(pmap_t pm)
1244 {
1245 struct l1_ttable *l1;
1246
1247 /*
1248 * Do nothing if we're in interrupt context.
1249 * Access to an L1 by the kernel pmap must not affect
1250 * the LRU list.
1251 */
1252 if (cpu_intr_p() || pm == pmap_kernel())
1253 return;
1254
1255 l1 = pm->pm_l1;
1256
1257 /*
1258 * If the L1 is not currently on the LRU list, just return
1259 */
1260 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1261 return;
1262
1263 mutex_spin_enter(&l1_lru_lock);
1264
1265 /*
1266 * Check the use count again, now that we've acquired the lock
1267 */
1268 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1269 mutex_spin_exit(&l1_lru_lock);
1270 return;
1271 }
1272
1273 /*
1274 * Move the L1 to the back of the LRU list
1275 */
1276 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1277 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1278
1279 mutex_spin_exit(&l1_lru_lock);
1280 }
1281
1282 /*
1283 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1284 *
1285 * Free an L2 descriptor table.
1286 */
1287 static inline void
1288 #ifndef PMAP_INCLUDE_PTE_SYNC
1289 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1290 #else
1291 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1292 #endif
1293 {
1294 #ifdef PMAP_INCLUDE_PTE_SYNC
1295 #ifdef PMAP_CACHE_VIVT
1296 /*
1297 * Note: With a write-back cache, we may need to sync this
1298 * L2 table before re-using it.
1299 * This is because it may have belonged to a non-current
1300 * pmap, in which case the cache syncs would have been
1301 * skipped for the pages that were being unmapped. If the
1302 * L2 table were then to be immediately re-allocated to
1303 * the *current* pmap, it may well contain stale mappings
1304 * which have not yet been cleared by a cache write-back
1305 * and so would still be visible to the mmu.
1306 */
1307 if (need_sync)
1308 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1309 #endif /* PMAP_CACHE_VIVT */
1310 #endif /* PMAP_INCLUDE_PTE_SYNC */
1311 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1312 }
1313
1314 /*
1315 * Returns a pointer to the L2 bucket associated with the specified pmap
1316 * and VA, or NULL if no L2 bucket exists for the address.
1317 */
1318 static inline struct l2_bucket *
1319 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1320 {
1321 struct l2_dtable *l2;
1322 struct l2_bucket *l2b;
1323 u_short l1idx;
1324
1325 l1idx = L1_IDX(va);
1326
1327 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1328 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1329 return (NULL);
1330
1331 return (l2b);
1332 }
1333
1334 /*
1335 * Returns a pointer to the L2 bucket associated with the specified pmap
1336 * and VA.
1337 *
1338 * If no L2 bucket exists, perform the necessary allocations to put an L2
1339 * bucket/page table in place.
1340 *
1341 * Note that if a new L2 bucket/page was allocated, the caller *must*
1342 * increment the bucket occupancy counter appropriately *before*
1343 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1344 * the bucket/page in the meantime.
1345 */
1346 static struct l2_bucket *
1347 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1348 {
1349 struct l2_dtable *l2;
1350 struct l2_bucket *l2b;
1351 u_short l1idx;
1352
1353 l1idx = L1_IDX(va);
1354
1355 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1356 /*
1357 * No mapping at this address, as there is
1358 * no entry in the L1 table.
1359 * Need to allocate a new l2_dtable.
1360 */
1361 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1362 return (NULL);
1363
1364 /*
1365 * Link it into the parent pmap
1366 */
1367 pm->pm_l2[L2_IDX(l1idx)] = l2;
1368 }
1369
1370 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1371
1372 /*
1373 * Fetch pointer to the L2 page table associated with the address.
1374 */
1375 if (l2b->l2b_kva == NULL) {
1376 pt_entry_t *ptep;
1377
1378 /*
1379 * No L2 page table has been allocated. Chances are, this
1380 * is because we just allocated the l2_dtable, above.
1381 */
1382 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1383 /*
1384 * Oops, no more L2 page tables available at this
1385 * time. We may need to deallocate the l2_dtable
1386 * if we allocated a new one above.
1387 */
1388 if (l2->l2_occupancy == 0) {
1389 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1390 pmap_free_l2_dtable(l2);
1391 }
1392 return (NULL);
1393 }
1394
1395 l2->l2_occupancy++;
1396 l2b->l2b_kva = ptep;
1397 l2b->l2b_l1idx = l1idx;
1398 }
1399
1400 return (l2b);
1401 }
1402
1403 /*
1404 * One or more mappings in the specified L2 descriptor table have just been
1405 * invalidated.
1406 *
1407 * Garbage collect the metadata and descriptor table itself if necessary.
1408 *
1409 * The pmap lock must be acquired when this is called (not necessary
1410 * for the kernel pmap).
1411 */
1412 static void
1413 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1414 {
1415 struct l2_dtable *l2;
1416 pd_entry_t *pl1pd, l1pd;
1417 pt_entry_t *ptep;
1418 u_short l1idx;
1419
1420 KDASSERT(count <= l2b->l2b_occupancy);
1421
1422 /*
1423 * Update the bucket's reference count according to how many
1424 * PTEs the caller has just invalidated.
1425 */
1426 l2b->l2b_occupancy -= count;
1427
1428 /*
1429 * Note:
1430 *
1431 * Level 2 page tables allocated to the kernel pmap are never freed
1432 * as that would require checking all Level 1 page tables and
1433 * removing any references to the Level 2 page table. See also the
1434 * comment elsewhere about never freeing bootstrap L2 descriptors.
1435 *
1436 * We make do with just invalidating the mapping in the L2 table.
1437 *
1438 * This isn't really a big deal in practice and, in fact, leads
1439 * to a performance win over time as we don't need to continually
1440 * alloc/free.
1441 */
1442 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1443 return;
1444
1445 /*
1446 * There are no more valid mappings in this level 2 page table.
1447 * Go ahead and NULL-out the pointer in the bucket, then
1448 * free the page table.
1449 */
1450 l1idx = l2b->l2b_l1idx;
1451 ptep = l2b->l2b_kva;
1452 l2b->l2b_kva = NULL;
1453
1454 pl1pd = pmap_l1_kva(pm) + l1idx;
1455
1456 /*
1457 * If the L1 slot matches the pmap's domain
1458 * number, then invalidate it.
1459 */
1460 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1461 if (l1pd == (L1_C_DOM(pmap_domain(pm)) | L1_TYPE_C)) {
1462 *pl1pd = 0;
1463 PTE_SYNC(pl1pd);
1464 }
1465
1466 /*
1467 * Release the L2 descriptor table back to the pool cache.
1468 */
1469 #ifndef PMAP_INCLUDE_PTE_SYNC
1470 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1471 #else
1472 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1473 #endif
1474
1475 /*
1476 * Update the reference count in the associated l2_dtable
1477 */
1478 l2 = pm->pm_l2[L2_IDX(l1idx)];
1479 if (--l2->l2_occupancy > 0)
1480 return;
1481
1482 /*
1483 * There are no more valid mappings in any of the Level 1
1484 * slots managed by this l2_dtable. Go ahead and NULL-out
1485 * the pointer in the parent pmap and free the l2_dtable.
1486 */
1487 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1488 pmap_free_l2_dtable(l2);
1489 }
1490
1491 /*
1492 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1493 * structures.
1494 */
1495 static int
1496 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1497 {
1498 #ifndef PMAP_INCLUDE_PTE_SYNC
1499 struct l2_bucket *l2b;
1500 pt_entry_t *ptep, pte;
1501 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1502
1503 /*
1504 * The mappings for these page tables were initially made using
1505 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1506 * mode will not be right for page table mappings. To avoid
1507 * polluting the pmap_kenter_pa() code with a special case for
1508 * page tables, we simply fix up the cache-mode here if it's not
1509 * correct.
1510 */
1511 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1512 KDASSERT(l2b != NULL);
1513 ptep = &l2b->l2b_kva[l2pte_index(va)];
1514 pte = *ptep;
1515
1516 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1517 /*
1518 * Page tables must have the cache-mode set to Write-Thru.
1519 */
1520 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1521 PTE_SYNC(ptep);
1522 cpu_tlb_flushD_SE(va);
1523 cpu_cpwait();
1524 }
1525 #endif
1526
1527 memset(v, 0, L2_TABLE_SIZE_REAL);
1528 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1529 return (0);
1530 }
1531
1532 static int
1533 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1534 {
1535
1536 memset(v, 0, sizeof(struct l2_dtable));
1537 return (0);
1538 }
1539
1540 static int
1541 pmap_pmap_ctor(void *arg, void *v, int flags)
1542 {
1543
1544 memset(v, 0, sizeof(struct pmap));
1545 return (0);
1546 }
1547
1548 static void
1549 pmap_pinit(pmap_t pm)
1550 {
1551 #ifndef ARM_HAS_VBAR
1552 struct l2_bucket *l2b;
1553
1554 if (vector_page < KERNEL_BASE) {
1555 /*
1556 * Map the vector page.
1557 */
1558 pmap_enter(pm, vector_page, systempage.pv_pa,
1559 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1560 pmap_update(pm);
1561
1562 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
1563 l2b = pmap_get_l2_bucket(pm, vector_page);
1564 KDASSERT(l2b != NULL);
1565 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1566 L1_C_DOM(pmap_domain(pm));
1567 } else
1568 pm->pm_pl1vec = NULL;
1569 #endif
1570 }
1571
1572 #ifdef PMAP_CACHE_VIVT
1573 /*
1574 * Since we have a virtually indexed cache, we may need to inhibit caching if
1575 * there is more than one mapping and at least one of them is writable.
1576 * Since we purge the cache on every context switch, we only need to check for
1577 * other mappings within the same pmap, or kernel_pmap.
1578 * This function is also called when a page is unmapped, to possibly reenable
1579 * caching on any remaining mappings.
1580 *
1581 * The code implements the following logic, where:
1582 *
1583 * KW = # of kernel read/write pages
1584 * KR = # of kernel read only pages
1585 * UW = # of user read/write pages
1586 * UR = # of user read only pages
1587 *
1588 * KC = kernel mapping is cacheable
1589 * UC = user mapping is cacheable
1590 *
1591 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1592 * +---------------------------------------------
1593 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1594 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1595 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1596 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1597 */
1598
1599 static const int pmap_vac_flags[4][4] = {
1600 {-1, 0, 0, PVF_KNC},
1601 {0, 0, PVF_NC, PVF_NC},
1602 {0, PVF_NC, PVF_NC, PVF_NC},
1603 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1604 };
1605
1606 static inline int
1607 pmap_get_vac_flags(const struct vm_page_md *md)
1608 {
1609 int kidx, uidx;
1610
1611 kidx = 0;
1612 if (md->kro_mappings || md->krw_mappings > 1)
1613 kidx |= 1;
1614 if (md->krw_mappings)
1615 kidx |= 2;
1616
1617 uidx = 0;
1618 if (md->uro_mappings || md->urw_mappings > 1)
1619 uidx |= 1;
1620 if (md->urw_mappings)
1621 uidx |= 2;
1622
1623 return (pmap_vac_flags[uidx][kidx]);
1624 }
1625
1626 static inline void
1627 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1628 {
1629 int nattr;
1630
1631 nattr = pmap_get_vac_flags(md);
1632
1633 if (nattr < 0) {
1634 md->pvh_attrs &= ~PVF_NC;
1635 return;
1636 }
1637
1638 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1639 return;
1640
1641 if (pm == pmap_kernel())
1642 pmap_vac_me_kpmap(md, pa, pm, va);
1643 else
1644 pmap_vac_me_user(md, pa, pm, va);
1645
1646 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1647 }
1648
1649 static void
1650 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1651 {
1652 u_int u_cacheable, u_entries;
1653 struct pv_entry *pv;
1654 pmap_t last_pmap = pm;
1655
1656 /*
1657 * Pass one, see if there are both kernel and user pmaps for
1658 * this page. Calculate whether there are user-writable or
1659 * kernel-writable pages.
1660 */
1661 u_cacheable = 0;
1662 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1663 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1664 u_cacheable++;
1665 }
1666
1667 u_entries = md->urw_mappings + md->uro_mappings;
1668
1669 /*
1670 * We know we have just been updating a kernel entry, so if
1671 * all user pages are already cacheable, then there is nothing
1672 * further to do.
1673 */
1674 if (md->k_mappings == 0 && u_cacheable == u_entries)
1675 return;
1676
1677 if (u_entries) {
1678 /*
1679 * Scan over the list again, for each entry, if it
1680 * might not be set correctly, call pmap_vac_me_user
1681 * to recalculate the settings.
1682 */
1683 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1684 /*
1685 * We know kernel mappings will get set
1686 * correctly in other calls. We also know
1687 * that if the pmap is the same as last_pmap
1688 * then we've just handled this entry.
1689 */
1690 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1691 continue;
1692
1693 /*
1694 * If there are kernel entries and this page
1695 * is writable but non-cacheable, then we can
1696 * skip this entry also.
1697 */
1698 if (md->k_mappings &&
1699 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1700 (PVF_NC | PVF_WRITE))
1701 continue;
1702
1703 /*
1704 * Similarly if there are no kernel-writable
1705 * entries and the page is already
1706 * read-only/cacheable.
1707 */
1708 if (md->krw_mappings == 0 &&
1709 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1710 continue;
1711
1712 /*
1713 * For some of the remaining cases, we know
1714 * that we must recalculate, but for others we
1715 * can't tell if they are correct or not, so
1716 * we recalculate anyway.
1717 */
1718 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1719 }
1720
1721 if (md->k_mappings == 0)
1722 return;
1723 }
1724
1725 pmap_vac_me_user(md, pa, pm, va);
1726 }
1727
1728 static void
1729 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1730 {
1731 pmap_t kpmap = pmap_kernel();
1732 struct pv_entry *pv, *npv = NULL;
1733 struct l2_bucket *l2b;
1734 pt_entry_t *ptep, pte;
1735 u_int entries = 0;
1736 u_int writable = 0;
1737 u_int cacheable_entries = 0;
1738 u_int kern_cacheable = 0;
1739 u_int other_writable = 0;
1740
1741 /*
1742 * Count mappings and writable mappings in this pmap.
1743 * Include kernel mappings as part of our own.
1744 * Keep a pointer to the first one.
1745 */
1746 npv = NULL;
1747 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1748 /* Count mappings in the same pmap */
1749 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1750 if (entries++ == 0)
1751 npv = pv;
1752
1753 /* Cacheable mappings */
1754 if ((pv->pv_flags & PVF_NC) == 0) {
1755 cacheable_entries++;
1756 if (kpmap == pv->pv_pmap)
1757 kern_cacheable++;
1758 }
1759
1760 /* Writable mappings */
1761 if (pv->pv_flags & PVF_WRITE)
1762 ++writable;
1763 } else
1764 if (pv->pv_flags & PVF_WRITE)
1765 other_writable = 1;
1766 }
1767
1768 /*
1769 * Enable or disable caching as necessary.
1770 * Note: the first entry might be part of the kernel pmap,
1771 * so we can't assume this is indicative of the state of the
1772 * other (maybe non-kpmap) entries.
1773 */
1774 if ((entries > 1 && writable) ||
1775 (entries > 0 && pm == kpmap && other_writable)) {
1776 if (cacheable_entries == 0)
1777 return;
1778
1779 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1780 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1781 (pv->pv_flags & PVF_NC))
1782 continue;
1783
1784 pv->pv_flags |= PVF_NC;
1785
1786 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1787 KDASSERT(l2b != NULL);
1788 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1789 pte = *ptep & ~L2_S_CACHE_MASK;
1790
1791 if ((va != pv->pv_va || pm != pv->pv_pmap)
1792 && l2pte_valid(pte)) {
1793 #ifdef PMAP_CACHE_VIVT
1794 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1795 true, pv->pv_flags);
1796 #endif
1797 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1798 pv->pv_flags);
1799 }
1800
1801 *ptep = pte;
1802 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1803 }
1804 cpu_cpwait();
1805 } else
1806 if (entries > cacheable_entries) {
1807 /*
1808 * Turn cacheing back on for some pages. If it is a kernel
1809 * page, only do so if there are no other writable pages.
1810 */
1811 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1812 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1813 (kpmap != pv->pv_pmap || other_writable)))
1814 continue;
1815
1816 pv->pv_flags &= ~PVF_NC;
1817
1818 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1819 KDASSERT(l2b != NULL);
1820 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1821 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1822
1823 if (l2pte_valid(pte)) {
1824 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1825 pv->pv_flags);
1826 }
1827
1828 *ptep = pte;
1829 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1830 }
1831 }
1832 }
1833 #endif
1834
1835 #ifdef PMAP_CACHE_VIPT
1836 static void
1837 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1838 {
1839 struct pv_entry *pv;
1840 vaddr_t tst_mask;
1841 bool bad_alias;
1842 struct l2_bucket *l2b;
1843 pt_entry_t *ptep, pte, opte;
1844 const u_int
1845 rw_mappings = md->urw_mappings + md->krw_mappings,
1846 ro_mappings = md->uro_mappings + md->kro_mappings;
1847
1848 /* do we need to do anything? */
1849 if (arm_cache_prefer_mask == 0)
1850 return;
1851
1852 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1853 md, pm, va));
1854
1855 KASSERT(!va || pm);
1856 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1857
1858 /* Already a conflict? */
1859 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1860 /* just an add, things are already non-cached */
1861 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1862 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1863 bad_alias = false;
1864 if (va) {
1865 PMAPCOUNT(vac_color_none);
1866 bad_alias = true;
1867 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1868 goto fixup;
1869 }
1870 pv = SLIST_FIRST(&md->pvh_list);
1871 /* the list can't be empty because it would be cachable */
1872 if (md->pvh_attrs & PVF_KMPAGE) {
1873 tst_mask = md->pvh_attrs;
1874 } else {
1875 KASSERT(pv);
1876 tst_mask = pv->pv_va;
1877 pv = SLIST_NEXT(pv, pv_link);
1878 }
1879 /*
1880 * Only check for a bad alias if we have writable mappings.
1881 */
1882 tst_mask &= arm_cache_prefer_mask;
1883 if (rw_mappings > 0) {
1884 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1885 /* if there's a bad alias, stop checking. */
1886 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1887 bad_alias = true;
1888 }
1889 md->pvh_attrs |= PVF_WRITE;
1890 if (!bad_alias)
1891 md->pvh_attrs |= PVF_DIRTY;
1892 } else {
1893 /*
1894 * We have only read-only mappings. Let's see if there
1895 * are multiple colors in use or if we mapped a KMPAGE.
1896 * If the latter, we have a bad alias. If the former,
1897 * we need to remember that.
1898 */
1899 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1900 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1901 if (md->pvh_attrs & PVF_KMPAGE)
1902 bad_alias = true;
1903 break;
1904 }
1905 }
1906 md->pvh_attrs &= ~PVF_WRITE;
1907 /*
1908 * No KMPAGE and we exited early, so we must have
1909 * multiple color mappings.
1910 */
1911 if (!bad_alias && pv != NULL)
1912 md->pvh_attrs |= PVF_MULTCLR;
1913 }
1914
1915 /* If no conflicting colors, set everything back to cached */
1916 if (!bad_alias) {
1917 #ifdef DEBUG
1918 if ((md->pvh_attrs & PVF_WRITE)
1919 || ro_mappings < 2) {
1920 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1921 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1922 }
1923 #endif
1924 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1925 md->pvh_attrs |= tst_mask | PVF_COLORED;
1926 /*
1927 * Restore DIRTY bit if page is modified
1928 */
1929 if (md->pvh_attrs & PVF_DMOD)
1930 md->pvh_attrs |= PVF_DIRTY;
1931 PMAPCOUNT(vac_color_restore);
1932 } else {
1933 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1934 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1935 }
1936 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1937 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1938 } else if (!va) {
1939 KASSERT(pmap_is_page_colored_p(md));
1940 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1941 || (md->pvh_attrs & PVF_DIRTY));
1942 if (rw_mappings == 0) {
1943 md->pvh_attrs &= ~PVF_WRITE;
1944 if (ro_mappings == 1
1945 && (md->pvh_attrs & PVF_MULTCLR)) {
1946 /*
1947 * If this is the last readonly mapping
1948 * but it doesn't match the current color
1949 * for the page, change the current color
1950 * to match this last readonly mapping.
1951 */
1952 pv = SLIST_FIRST(&md->pvh_list);
1953 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1954 & arm_cache_prefer_mask;
1955 if (tst_mask) {
1956 md->pvh_attrs ^= tst_mask;
1957 PMAPCOUNT(vac_color_change);
1958 }
1959 }
1960 }
1961 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1962 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1963 return;
1964 } else if (!pmap_is_page_colored_p(md)) {
1965 /* not colored so we just use its color */
1966 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1967 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1968 PMAPCOUNT(vac_color_new);
1969 md->pvh_attrs &= PAGE_SIZE - 1;
1970 md->pvh_attrs |= PVF_COLORED
1971 | (va & arm_cache_prefer_mask)
1972 | (rw_mappings > 0 ? PVF_WRITE : 0);
1973 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1974 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1975 return;
1976 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1977 bad_alias = false;
1978 if (rw_mappings > 0) {
1979 /*
1980 * We now have writeable mappings and if we have
1981 * readonly mappings in more than once color, we have
1982 * an aliasing problem. Regardless mark the page as
1983 * writeable.
1984 */
1985 if (md->pvh_attrs & PVF_MULTCLR) {
1986 if (ro_mappings < 2) {
1987 /*
1988 * If we only have less than two
1989 * read-only mappings, just flush the
1990 * non-primary colors from the cache.
1991 */
1992 pmap_flush_page(md, pa,
1993 PMAP_FLUSH_SECONDARY);
1994 } else {
1995 bad_alias = true;
1996 }
1997 }
1998 md->pvh_attrs |= PVF_WRITE;
1999 }
2000 /* If no conflicting colors, set everything back to cached */
2001 if (!bad_alias) {
2002 #ifdef DEBUG
2003 if (rw_mappings > 0
2004 || (md->pvh_attrs & PMAP_KMPAGE)) {
2005 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2006 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2007 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2008 }
2009 #endif
2010 if (SLIST_EMPTY(&md->pvh_list))
2011 PMAPCOUNT(vac_color_reuse);
2012 else
2013 PMAPCOUNT(vac_color_ok);
2014
2015 /* matching color, just return */
2016 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2017 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2018 return;
2019 }
2020 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2021 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2022
2023 /* color conflict. evict from cache. */
2024
2025 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2026 md->pvh_attrs &= ~PVF_COLORED;
2027 md->pvh_attrs |= PVF_NC;
2028 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2029 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2030 PMAPCOUNT(vac_color_erase);
2031 } else if (rw_mappings == 0
2032 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2033 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2034
2035 /*
2036 * If the page has dirty cache lines, clean it.
2037 */
2038 if (md->pvh_attrs & PVF_DIRTY)
2039 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2040
2041 /*
2042 * If this is the first remapping (we know that there are no
2043 * writeable mappings), then this is a simple color change.
2044 * Otherwise this is a seconary r/o mapping, which means
2045 * we don't have to do anything.
2046 */
2047 if (ro_mappings == 1) {
2048 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2049 md->pvh_attrs &= PAGE_SIZE - 1;
2050 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2051 PMAPCOUNT(vac_color_change);
2052 } else {
2053 PMAPCOUNT(vac_color_blind);
2054 }
2055 md->pvh_attrs |= PVF_MULTCLR;
2056 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2057 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2058 return;
2059 } else {
2060 if (rw_mappings > 0)
2061 md->pvh_attrs |= PVF_WRITE;
2062
2063 /* color conflict. evict from cache. */
2064 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2065
2066 /* the list can't be empty because this was a enter/modify */
2067 pv = SLIST_FIRST(&md->pvh_list);
2068 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2069 KASSERT(pv);
2070 /*
2071 * If there's only one mapped page, change color to the
2072 * page's new color and return. Restore the DIRTY bit
2073 * that was erased by pmap_flush_page.
2074 */
2075 if (SLIST_NEXT(pv, pv_link) == NULL) {
2076 md->pvh_attrs &= PAGE_SIZE - 1;
2077 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2078 if (md->pvh_attrs & PVF_DMOD)
2079 md->pvh_attrs |= PVF_DIRTY;
2080 PMAPCOUNT(vac_color_change);
2081 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2082 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2083 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2084 return;
2085 }
2086 }
2087 bad_alias = true;
2088 md->pvh_attrs &= ~PVF_COLORED;
2089 md->pvh_attrs |= PVF_NC;
2090 PMAPCOUNT(vac_color_erase);
2091 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2092 }
2093
2094 fixup:
2095 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2096
2097 /*
2098 * Turn cacheing on/off for all pages.
2099 */
2100 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2101 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2102 KDASSERT(l2b != NULL);
2103 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2104 opte = *ptep;
2105 pte = opte & ~L2_S_CACHE_MASK;
2106 if (bad_alias) {
2107 pv->pv_flags |= PVF_NC;
2108 } else {
2109 pv->pv_flags &= ~PVF_NC;
2110 pte |= pte_l2_s_cache_mode;
2111 }
2112
2113 if (opte == pte) /* only update is there's a change */
2114 continue;
2115
2116 if (l2pte_valid(pte)) {
2117 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2118 pv->pv_flags);
2119 }
2120
2121 *ptep = pte;
2122 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2123 }
2124 }
2125 #endif /* PMAP_CACHE_VIPT */
2126
2127
2128 /*
2129 * Modify pte bits for all ptes corresponding to the given physical address.
2130 * We use `maskbits' rather than `clearbits' because we're always passing
2131 * constants and the latter would require an extra inversion at run-time.
2132 */
2133 static void
2134 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2135 {
2136 struct l2_bucket *l2b;
2137 struct pv_entry *pv;
2138 pt_entry_t *ptep, npte, opte;
2139 pmap_t pm;
2140 vaddr_t va;
2141 u_int oflags;
2142 #ifdef PMAP_CACHE_VIPT
2143 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2144 bool need_syncicache = false;
2145 bool did_syncicache = false;
2146 bool need_vac_me_harder = false;
2147 #endif
2148
2149 NPDEBUG(PDB_BITS,
2150 printf("pmap_clearbit: md %p mask 0x%x\n",
2151 md, maskbits));
2152
2153 #ifdef PMAP_CACHE_VIPT
2154 /*
2155 * If we might want to sync the I-cache and we've modified it,
2156 * then we know we definitely need to sync or discard it.
2157 */
2158 if (want_syncicache)
2159 need_syncicache = md->pvh_attrs & PVF_MOD;
2160 #endif
2161 /*
2162 * Clear saved attributes (modify, reference)
2163 */
2164 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2165
2166 if (SLIST_EMPTY(&md->pvh_list)) {
2167 #ifdef PMAP_CACHE_VIPT
2168 if (need_syncicache) {
2169 /*
2170 * No one has it mapped, so just discard it. The next
2171 * exec remapping will cause it to be synced.
2172 */
2173 md->pvh_attrs &= ~PVF_EXEC;
2174 PMAPCOUNT(exec_discarded_clearbit);
2175 }
2176 #endif
2177 return;
2178 }
2179
2180 /*
2181 * Loop over all current mappings setting/clearing as appropos
2182 */
2183 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2184 va = pv->pv_va;
2185 pm = pv->pv_pmap;
2186 oflags = pv->pv_flags;
2187 /*
2188 * Kernel entries are unmanaged and as such not to be changed.
2189 */
2190 if (oflags & PVF_KENTRY)
2191 continue;
2192 pv->pv_flags &= ~maskbits;
2193
2194 pmap_acquire_pmap_lock(pm);
2195
2196 l2b = pmap_get_l2_bucket(pm, va);
2197 KDASSERT(l2b != NULL);
2198
2199 ptep = &l2b->l2b_kva[l2pte_index(va)];
2200 npte = opte = *ptep;
2201
2202 NPDEBUG(PDB_BITS,
2203 printf(
2204 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2205 pv, pv->pv_pmap, pv->pv_va, oflags));
2206
2207 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2208 #ifdef PMAP_CACHE_VIVT
2209 if ((pv->pv_flags & PVF_NC)) {
2210 /*
2211 * Entry is not cacheable:
2212 *
2213 * Don't turn caching on again if this is a
2214 * modified emulation. This would be
2215 * inconsitent with the settings created by
2216 * pmap_vac_me_harder(). Otherwise, it's safe
2217 * to re-enable cacheing.
2218 *
2219 * There's no need to call pmap_vac_me_harder()
2220 * here: all pages are losing their write
2221 * permission.
2222 */
2223 if (maskbits & PVF_WRITE) {
2224 npte |= pte_l2_s_cache_mode;
2225 pv->pv_flags &= ~PVF_NC;
2226 }
2227 } else
2228 if (l2pte_writable_p(opte)) {
2229 /*
2230 * Entry is writable/cacheable: check if pmap
2231 * is current if it is flush it, otherwise it
2232 * won't be in the cache
2233 */
2234 pmap_cache_wbinv_page(pm, pv->pv_va,
2235 (maskbits & PVF_REF) != 0,
2236 oflags|PVF_WRITE);
2237 }
2238 #endif
2239
2240 /* make the pte read only */
2241 npte = l2pte_set_readonly(npte);
2242
2243 if (maskbits & oflags & PVF_WRITE) {
2244 /*
2245 * Keep alias accounting up to date
2246 */
2247 if (pv->pv_pmap == pmap_kernel()) {
2248 md->krw_mappings--;
2249 md->kro_mappings++;
2250 } else {
2251 md->urw_mappings--;
2252 md->uro_mappings++;
2253 }
2254 #ifdef PMAP_CACHE_VIPT
2255 if (arm_cache_prefer_mask != 0) {
2256 if (md->urw_mappings + md->krw_mappings == 0) {
2257 md->pvh_attrs &= ~PVF_WRITE;
2258 } else {
2259 PMAP_VALIDATE_MD_PAGE(md);
2260 }
2261 }
2262 if (want_syncicache)
2263 need_syncicache = true;
2264 need_vac_me_harder = true;
2265 #endif
2266 }
2267 }
2268
2269 if (maskbits & PVF_REF) {
2270 if ((pv->pv_flags & PVF_NC) == 0
2271 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2272 && l2pte_valid(npte)) {
2273 #ifdef PMAP_CACHE_VIVT
2274 /*
2275 * Check npte here; we may have already
2276 * done the wbinv above, and the validity
2277 * of the PTE is the same for opte and
2278 * npte.
2279 */
2280 pmap_cache_wbinv_page(pm, pv->pv_va, true,
2281 oflags);
2282 #endif
2283 }
2284
2285 /*
2286 * Make the PTE invalid so that we will take a
2287 * page fault the next time the mapping is
2288 * referenced.
2289 */
2290 npte &= ~L2_TYPE_MASK;
2291 npte |= L2_TYPE_INV;
2292 }
2293
2294 if (npte != opte) {
2295 *ptep = npte;
2296 PTE_SYNC(ptep);
2297 /* Flush the TLB entry if a current pmap. */
2298 pmap_tlb_flush_SE(pm, pv->pv_va, oflags);
2299 }
2300
2301 pmap_release_pmap_lock(pm);
2302
2303 NPDEBUG(PDB_BITS,
2304 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2305 pm, va, opte, npte));
2306 }
2307
2308 #ifdef PMAP_CACHE_VIPT
2309 /*
2310 * If we need to sync the I-cache and we haven't done it yet, do it.
2311 */
2312 if (need_syncicache && !did_syncicache) {
2313 pmap_syncicache_page(md, pa);
2314 PMAPCOUNT(exec_synced_clearbit);
2315 }
2316 /*
2317 * If we are changing this to read-only, we need to call vac_me_harder
2318 * so we can change all the read-only pages to cacheable. We pretend
2319 * this as a page deletion.
2320 */
2321 if (need_vac_me_harder) {
2322 if (md->pvh_attrs & PVF_NC)
2323 pmap_vac_me_harder(md, pa, NULL, 0);
2324 }
2325 #endif
2326 }
2327
2328 /*
2329 * pmap_clean_page()
2330 *
2331 * This is a local function used to work out the best strategy to clean
2332 * a single page referenced by its entry in the PV table. It's used by
2333 * pmap_copy_page, pmap_zero page and maybe some others later on.
2334 *
2335 * Its policy is effectively:
2336 * o If there are no mappings, we don't bother doing anything with the cache.
2337 * o If there is one mapping, we clean just that page.
2338 * o If there are multiple mappings, we clean the entire cache.
2339 *
2340 * So that some functions can be further optimised, it returns 0 if it didn't
2341 * clean the entire cache, or 1 if it did.
2342 *
2343 * XXX One bug in this routine is that if the pv_entry has a single page
2344 * mapped at 0x00000000 a whole cache clean will be performed rather than
2345 * just the 1 page. Since this should not occur in everyday use and if it does
2346 * it will just result in not the most efficient clean for the page.
2347 */
2348 #ifdef PMAP_CACHE_VIVT
2349 static int
2350 pmap_clean_page(struct pv_entry *pv, bool is_src)
2351 {
2352 pmap_t pm_to_clean = NULL;
2353 struct pv_entry *npv;
2354 u_int cache_needs_cleaning = 0;
2355 u_int flags = 0;
2356 vaddr_t page_to_clean = 0;
2357
2358 if (pv == NULL) {
2359 /* nothing mapped in so nothing to flush */
2360 return (0);
2361 }
2362
2363 /*
2364 * Since we flush the cache each time we change to a different
2365 * user vmspace, we only need to flush the page if it is in the
2366 * current pmap.
2367 */
2368
2369 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2370 if (pmap_is_current(npv->pv_pmap)) {
2371 flags |= npv->pv_flags;
2372 /*
2373 * The page is mapped non-cacheable in
2374 * this map. No need to flush the cache.
2375 */
2376 if (npv->pv_flags & PVF_NC) {
2377 #ifdef DIAGNOSTIC
2378 if (cache_needs_cleaning)
2379 panic("pmap_clean_page: "
2380 "cache inconsistency");
2381 #endif
2382 break;
2383 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2384 continue;
2385 if (cache_needs_cleaning) {
2386 page_to_clean = 0;
2387 break;
2388 } else {
2389 page_to_clean = npv->pv_va;
2390 pm_to_clean = npv->pv_pmap;
2391 }
2392 cache_needs_cleaning = 1;
2393 }
2394 }
2395
2396 if (page_to_clean) {
2397 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2398 !is_src, flags | PVF_REF);
2399 } else if (cache_needs_cleaning) {
2400 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2401
2402 pmap_cache_wbinv_all(pm, flags);
2403 return (1);
2404 }
2405 return (0);
2406 }
2407 #endif
2408
2409 #ifdef PMAP_CACHE_VIPT
2410 /*
2411 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2412 * right cache alias to make sure we flush the right stuff.
2413 */
2414 void
2415 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2416 {
2417 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2418 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2419
2420 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2421 md, md->pvh_attrs));
2422 /*
2423 * No need to clean the page if it's non-cached.
2424 */
2425 if (md->pvh_attrs & PVF_NC)
2426 return;
2427 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2428
2429 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
2430 /*
2431 * Set up a PTE with the right coloring to flush existing cache lines.
2432 */
2433 *ptep = L2_S_PROTO |
2434 pa
2435 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2436 | pte_l2_s_cache_mode;
2437 PTE_SYNC(ptep);
2438
2439 /*
2440 * Flush it.
2441 */
2442 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2443 /*
2444 * Unmap the page.
2445 */
2446 *ptep = 0;
2447 PTE_SYNC(ptep);
2448 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
2449
2450 md->pvh_attrs |= PVF_EXEC;
2451 PMAPCOUNT(exec_synced);
2452 }
2453
2454 void
2455 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2456 {
2457 vsize_t va_offset, end_va;
2458 bool wbinv_p;
2459
2460 if (arm_cache_prefer_mask == 0)
2461 return;
2462
2463 switch (flush) {
2464 case PMAP_FLUSH_PRIMARY:
2465 if (md->pvh_attrs & PVF_MULTCLR) {
2466 va_offset = 0;
2467 end_va = arm_cache_prefer_mask;
2468 md->pvh_attrs &= ~PVF_MULTCLR;
2469 PMAPCOUNT(vac_flush_lots);
2470 } else {
2471 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2472 end_va = va_offset;
2473 PMAPCOUNT(vac_flush_one);
2474 }
2475 /*
2476 * Mark that the page is no longer dirty.
2477 */
2478 md->pvh_attrs &= ~PVF_DIRTY;
2479 wbinv_p = true;
2480 break;
2481 case PMAP_FLUSH_SECONDARY:
2482 va_offset = 0;
2483 end_va = arm_cache_prefer_mask;
2484 wbinv_p = true;
2485 md->pvh_attrs &= ~PVF_MULTCLR;
2486 PMAPCOUNT(vac_flush_lots);
2487 break;
2488 case PMAP_CLEAN_PRIMARY:
2489 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2490 end_va = va_offset;
2491 wbinv_p = false;
2492 /*
2493 * Mark that the page is no longer dirty.
2494 */
2495 if ((md->pvh_attrs & PVF_DMOD) == 0)
2496 md->pvh_attrs &= ~PVF_DIRTY;
2497 PMAPCOUNT(vac_clean_one);
2498 break;
2499 default:
2500 return;
2501 }
2502
2503 KASSERT(!(md->pvh_attrs & PVF_NC));
2504
2505 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2506 md, md->pvh_attrs));
2507
2508 const size_t scache_line_size = arm_scache.dcache_line_size;
2509
2510 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2511 const size_t pte_offset = va_offset >> PGSHIFT;
2512 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2513 const pt_entry_t oldpte = *ptep;
2514
2515 if (flush == PMAP_FLUSH_SECONDARY
2516 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2517 continue;
2518
2519 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
2520 PVF_REF | PVF_EXEC);
2521 /*
2522 * Set up a PTE with the right coloring to flush
2523 * existing cache entries.
2524 */
2525 *ptep = L2_S_PROTO
2526 | pa
2527 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2528 | pte_l2_s_cache_mode;
2529 PTE_SYNC(ptep);
2530
2531 /*
2532 * Flush it.
2533 */
2534 vaddr_t va = cdstp + va_offset;
2535 if (scache_line_size != 0) {
2536 cpu_dcache_wb_range(va, PAGE_SIZE);
2537 if (wbinv_p) {
2538 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
2539 cpu_dcache_inv_range(va, PAGE_SIZE);
2540 } else {
2541 cpu_sdcache_wb_range(va, pa, PAGE_SIZE);
2542 }
2543 } else {
2544 if (wbinv_p) {
2545 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2546 } else {
2547 cpu_dcache_wb_range(va, PAGE_SIZE);
2548 }
2549 }
2550
2551 /*
2552 * Restore the page table entry since we might have interrupted
2553 * pmap_zero_page or pmap_copy_page which was already using
2554 * this pte.
2555 */
2556 *ptep = oldpte;
2557 PTE_SYNC(ptep);
2558 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
2559 PVF_REF | PVF_EXEC);
2560 }
2561 }
2562 #endif /* PMAP_CACHE_VIPT */
2563
2564 /*
2565 * Routine: pmap_page_remove
2566 * Function:
2567 * Removes this physical page from
2568 * all physical maps in which it resides.
2569 * Reflects back modify bits to the pager.
2570 */
2571 static void
2572 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2573 {
2574 struct l2_bucket *l2b;
2575 struct pv_entry *pv, *npv, **pvp;
2576 pmap_t pm;
2577 pt_entry_t *ptep;
2578 bool flush;
2579 u_int flags;
2580
2581 NPDEBUG(PDB_FOLLOW,
2582 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2583 pa));
2584
2585 pv = SLIST_FIRST(&md->pvh_list);
2586 if (pv == NULL) {
2587 #ifdef PMAP_CACHE_VIPT
2588 /*
2589 * We *know* the page contents are about to be replaced.
2590 * Discard the exec contents
2591 */
2592 if (PV_IS_EXEC_P(md->pvh_attrs))
2593 PMAPCOUNT(exec_discarded_page_protect);
2594 md->pvh_attrs &= ~PVF_EXEC;
2595 PMAP_VALIDATE_MD_PAGE(md);
2596 #endif
2597 return;
2598 }
2599 #ifdef PMAP_CACHE_VIPT
2600 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2601 #endif
2602
2603 /*
2604 * Clear alias counts
2605 */
2606 #ifdef PMAP_CACHE_VIVT
2607 md->k_mappings = 0;
2608 #endif
2609 md->urw_mappings = md->uro_mappings = 0;
2610
2611 flush = false;
2612 flags = 0;
2613
2614 #ifdef PMAP_CACHE_VIVT
2615 pmap_clean_page(pv, false);
2616 #endif
2617
2618 pvp = &SLIST_FIRST(&md->pvh_list);
2619 while (pv) {
2620 pm = pv->pv_pmap;
2621 npv = SLIST_NEXT(pv, pv_link);
2622 if (flush == false && pmap_is_current(pm))
2623 flush = true;
2624
2625 if (pm == pmap_kernel()) {
2626 #ifdef PMAP_CACHE_VIPT
2627 /*
2628 * If this was unmanaged mapping, it must be preserved.
2629 * Move it back on the list and advance the end-of-list
2630 * pointer.
2631 */
2632 if (pv->pv_flags & PVF_KENTRY) {
2633 *pvp = pv;
2634 pvp = &SLIST_NEXT(pv, pv_link);
2635 pv = npv;
2636 continue;
2637 }
2638 if (pv->pv_flags & PVF_WRITE)
2639 md->krw_mappings--;
2640 else
2641 md->kro_mappings--;
2642 #endif
2643 PMAPCOUNT(kernel_unmappings);
2644 }
2645 PMAPCOUNT(unmappings);
2646
2647 pmap_acquire_pmap_lock(pm);
2648
2649 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2650 KDASSERT(l2b != NULL);
2651
2652 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2653
2654 /*
2655 * Update statistics
2656 */
2657 --pm->pm_stats.resident_count;
2658
2659 /* Wired bit */
2660 if (pv->pv_flags & PVF_WIRED)
2661 --pm->pm_stats.wired_count;
2662
2663 flags |= pv->pv_flags;
2664
2665 /*
2666 * Invalidate the PTEs.
2667 */
2668 *ptep = 0;
2669 PTE_SYNC_CURRENT(pm, ptep);
2670 pmap_free_l2_bucket(pm, l2b, 1);
2671
2672 pool_put(&pmap_pv_pool, pv);
2673 pv = npv;
2674 /*
2675 * if we reach the end of the list and there are still
2676 * mappings, they might be able to be cached now.
2677 */
2678 if (pv == NULL) {
2679 *pvp = NULL;
2680 if (!SLIST_EMPTY(&md->pvh_list))
2681 pmap_vac_me_harder(md, pa, pm, 0);
2682 }
2683 pmap_release_pmap_lock(pm);
2684 }
2685 #ifdef PMAP_CACHE_VIPT
2686 /*
2687 * Its EXEC cache is now gone.
2688 */
2689 if (PV_IS_EXEC_P(md->pvh_attrs))
2690 PMAPCOUNT(exec_discarded_page_protect);
2691 md->pvh_attrs &= ~PVF_EXEC;
2692 KASSERT(md->urw_mappings == 0);
2693 KASSERT(md->uro_mappings == 0);
2694 if (arm_cache_prefer_mask != 0) {
2695 if (md->krw_mappings == 0)
2696 md->pvh_attrs &= ~PVF_WRITE;
2697 PMAP_VALIDATE_MD_PAGE(md);
2698 }
2699 #endif
2700
2701 if (flush) {
2702 /*
2703 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2704 * would need a subsequent call to pmap_update() to ensure
2705 * curpm->pm_cstate.cs_all is reset. Our callers are not
2706 * required to do that (see pmap(9)), so we can't modify
2707 * the current pmap's state.
2708 */
2709 if (PV_BEEN_EXECD(flags))
2710 cpu_tlb_flushID();
2711 else
2712 cpu_tlb_flushD();
2713 }
2714 cpu_cpwait();
2715 }
2716
2717 /*
2718 * pmap_t pmap_create(void)
2719 *
2720 * Create a new pmap structure from scratch.
2721 */
2722 pmap_t
2723 pmap_create(void)
2724 {
2725 pmap_t pm;
2726
2727 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2728
2729 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2730 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2731 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2732
2733 pm->pm_stats.wired_count = 0;
2734 pm->pm_stats.resident_count = 1;
2735 pm->pm_cstate.cs_all = 0;
2736 pmap_alloc_l1(pm);
2737
2738 /*
2739 * Note: The pool cache ensures that the pm_l2[] array is already
2740 * initialised to zero.
2741 */
2742
2743 pmap_pinit(pm);
2744
2745 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2746
2747 return (pm);
2748 }
2749
2750 u_int
2751 arm32_mmap_flags(paddr_t pa)
2752 {
2753 /*
2754 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2755 * and we're using the upper bits in page numbers to pass flags around
2756 * so we might as well use the same bits
2757 */
2758 return (u_int)pa & PMAP_MD_MASK;
2759 }
2760 /*
2761 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2762 * u_int flags)
2763 *
2764 * Insert the given physical page (p) at
2765 * the specified virtual address (v) in the
2766 * target physical map with the protection requested.
2767 *
2768 * NB: This is the only routine which MAY NOT lazy-evaluate
2769 * or lose information. That is, this routine must actually
2770 * insert this page into the given map NOW.
2771 */
2772 int
2773 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2774 {
2775 struct l2_bucket *l2b;
2776 struct vm_page *pg, *opg;
2777 struct pv_entry *pv;
2778 pt_entry_t *ptep, npte, opte;
2779 u_int nflags;
2780 u_int oflags;
2781 #ifdef ARM_HAS_VBAR
2782 const bool vector_page_p = false;
2783 #else
2784 const bool vector_page_p = (va == vector_page);
2785 #endif
2786
2787 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2788
2789 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2790 KDASSERT(((va | pa) & PGOFSET) == 0);
2791
2792 /*
2793 * Get a pointer to the page. Later on in this function, we
2794 * test for a managed page by checking pg != NULL.
2795 */
2796 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2797
2798 nflags = 0;
2799 if (prot & VM_PROT_WRITE)
2800 nflags |= PVF_WRITE;
2801 if (prot & VM_PROT_EXECUTE)
2802 nflags |= PVF_EXEC;
2803 if (flags & PMAP_WIRED)
2804 nflags |= PVF_WIRED;
2805
2806 pmap_acquire_pmap_lock(pm);
2807
2808 /*
2809 * Fetch the L2 bucket which maps this page, allocating one if
2810 * necessary for user pmaps.
2811 */
2812 if (pm == pmap_kernel())
2813 l2b = pmap_get_l2_bucket(pm, va);
2814 else
2815 l2b = pmap_alloc_l2_bucket(pm, va);
2816 if (l2b == NULL) {
2817 if (flags & PMAP_CANFAIL) {
2818 pmap_release_pmap_lock(pm);
2819 return (ENOMEM);
2820 }
2821 panic("pmap_enter: failed to allocate L2 bucket");
2822 }
2823 ptep = &l2b->l2b_kva[l2pte_index(va)];
2824 opte = *ptep;
2825 npte = pa;
2826 oflags = 0;
2827
2828 if (opte) {
2829 /*
2830 * There is already a mapping at this address.
2831 * If the physical address is different, lookup the
2832 * vm_page.
2833 */
2834 if (l2pte_pa(opte) != pa)
2835 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2836 else
2837 opg = pg;
2838 } else
2839 opg = NULL;
2840
2841 if (pg) {
2842 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2843
2844 /*
2845 * This is to be a managed mapping.
2846 */
2847 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
2848 /*
2849 * - The access type indicates that we don't need
2850 * to do referenced emulation.
2851 * OR
2852 * - The physical page has already been referenced
2853 * so no need to re-do referenced emulation here.
2854 */
2855 npte |= l2pte_set_readonly(L2_S_PROTO);
2856
2857 nflags |= PVF_REF;
2858
2859 if ((prot & VM_PROT_WRITE) != 0 &&
2860 ((flags & VM_PROT_WRITE) != 0 ||
2861 (md->pvh_attrs & PVF_MOD) != 0)) {
2862 /*
2863 * This is a writable mapping, and the
2864 * page's mod state indicates it has
2865 * already been modified. Make it
2866 * writable from the outset.
2867 */
2868 npte = l2pte_set_writable(npte);
2869 nflags |= PVF_MOD;
2870 }
2871 } else {
2872 /*
2873 * Need to do page referenced emulation.
2874 */
2875 npte |= L2_TYPE_INV;
2876 }
2877
2878 if (flags & ARM32_MMAP_WRITECOMBINE) {
2879 npte |= pte_l2_s_wc_mode;
2880 } else
2881 npte |= pte_l2_s_cache_mode;
2882
2883 if (pg == opg) {
2884 /*
2885 * We're changing the attrs of an existing mapping.
2886 */
2887 #ifdef MULTIPROCESSOR
2888 KASSERT(uvm_page_locked_p(pg));
2889 #endif
2890 oflags = pmap_modify_pv(md, pa, pm, va,
2891 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2892 PVF_MOD | PVF_REF, nflags);
2893
2894 #ifdef PMAP_CACHE_VIVT
2895 /*
2896 * We may need to flush the cache if we're
2897 * doing rw-ro...
2898 */
2899 if (pm->pm_cstate.cs_cache_d &&
2900 (oflags & PVF_NC) == 0 &&
2901 l2pte_writable_p(opte) &&
2902 (prot & VM_PROT_WRITE) == 0)
2903 cpu_dcache_wb_range(va, PAGE_SIZE);
2904 #endif
2905 } else {
2906 /*
2907 * New mapping, or changing the backing page
2908 * of an existing mapping.
2909 */
2910 if (opg) {
2911 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2912 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2913
2914 /*
2915 * Replacing an existing mapping with a new one.
2916 * It is part of our managed memory so we
2917 * must remove it from the PV list
2918 */
2919 #ifdef MULTIPROCESSOR
2920 KASSERT(uvm_page_locked_p(opg));
2921 #endif
2922 pv = pmap_remove_pv(omd, opa, pm, va);
2923 pmap_vac_me_harder(omd, opa, pm, 0);
2924 oflags = pv->pv_flags;
2925
2926 #ifdef PMAP_CACHE_VIVT
2927 /*
2928 * If the old mapping was valid (ref/mod
2929 * emulation creates 'invalid' mappings
2930 * initially) then make sure to frob
2931 * the cache.
2932 */
2933 if (!(oflags & PVF_NC) && l2pte_valid(opte)) {
2934 pmap_cache_wbinv_page(pm, va, true,
2935 oflags);
2936 }
2937 #endif
2938 } else
2939 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2940 if ((flags & PMAP_CANFAIL) == 0)
2941 panic("pmap_enter: no pv entries");
2942
2943 if (pm != pmap_kernel())
2944 pmap_free_l2_bucket(pm, l2b, 0);
2945 pmap_release_pmap_lock(pm);
2946 NPDEBUG(PDB_ENTER,
2947 printf("pmap_enter: ENOMEM\n"));
2948 return (ENOMEM);
2949 }
2950
2951 #ifdef MULTIPROCESSOR
2952 KASSERT(uvm_page_locked_p(pg));
2953 #endif
2954 pmap_enter_pv(md, pa, pv, pm, va, nflags);
2955 }
2956 } else {
2957 /*
2958 * We're mapping an unmanaged page.
2959 * These are always readable, and possibly writable, from
2960 * the get go as we don't need to track ref/mod status.
2961 */
2962 npte |= l2pte_set_readonly(L2_S_PROTO);
2963 if (prot & VM_PROT_WRITE)
2964 npte = l2pte_set_writable(npte);
2965
2966 /*
2967 * Make sure the vector table is mapped cacheable
2968 */
2969 if ((vector_page_p && pm != pmap_kernel())
2970 || (flags & ARM32_MMAP_CACHEABLE)) {
2971 npte |= pte_l2_s_cache_mode;
2972 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
2973 npte |= pte_l2_s_wc_mode;
2974 }
2975 if (opg) {
2976 /*
2977 * Looks like there's an existing 'managed' mapping
2978 * at this address.
2979 */
2980 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2981 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2982
2983 #ifdef MULTIPROCESSOR
2984 KASSERT(uvm_page_locked_p(opg));
2985 #endif
2986 pv = pmap_remove_pv(omd, opa, pm, va);
2987 pmap_vac_me_harder(omd, opa, pm, 0);
2988 oflags = pv->pv_flags;
2989
2990 #ifdef PMAP_CACHE_VIVT
2991 if (!(oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2992 pmap_cache_wbinv_page(pm, va, true, oflags);
2993 }
2994 #endif
2995 pool_put(&pmap_pv_pool, pv);
2996 }
2997 }
2998
2999 /*
3000 * Make sure userland mappings get the right permissions
3001 */
3002 if (!vector_page_p && pm != pmap_kernel()) {
3003 npte |= L2_S_PROT_U;
3004 }
3005
3006 /*
3007 * Keep the stats up to date
3008 */
3009 if (opte == 0) {
3010 l2b->l2b_occupancy++;
3011 pm->pm_stats.resident_count++;
3012 }
3013
3014 NPDEBUG(PDB_ENTER,
3015 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3016
3017 /*
3018 * If this is just a wiring change, the two PTEs will be
3019 * identical, so there's no need to update the page table.
3020 */
3021 if (npte != opte) {
3022 bool is_cached = pmap_is_cached(pm);
3023
3024 *ptep = npte;
3025 PTE_SYNC(ptep);
3026 if (is_cached) {
3027 /*
3028 * We only need to frob the cache/tlb if this pmap
3029 * is current
3030 */
3031 if (!vector_page_p && l2pte_valid(npte)) {
3032 /*
3033 * This mapping is likely to be accessed as
3034 * soon as we return to userland. Fix up the
3035 * L1 entry to avoid taking another
3036 * page/domain fault.
3037 */
3038 pd_entry_t *pl1pd, l1pd;
3039
3040 pl1pd = pmap_l1_kva(pm) + L1_IDX(va);
3041 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) |
3042 L1_C_PROTO;
3043 if (*pl1pd != l1pd) {
3044 *pl1pd = l1pd;
3045 PTE_SYNC(pl1pd);
3046 }
3047 }
3048 }
3049
3050 pmap_tlb_flush_SE(pm, va, oflags);
3051
3052 NPDEBUG(PDB_ENTER,
3053 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3054 is_cached, pm->pm_cstate.cs_all));
3055
3056 if (pg != NULL) {
3057 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3058
3059 #ifdef MULTIPROCESSOR
3060 KASSERT(uvm_page_locked_p(pg));
3061 #endif
3062 pmap_vac_me_harder(md, pa, pm, va);
3063 }
3064 }
3065 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3066 if (pg) {
3067 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3068
3069 #ifdef MULTIPROCESSOR
3070 KASSERT(uvm_page_locked_p(pg));
3071 #endif
3072 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3073 PMAP_VALIDATE_MD_PAGE(md);
3074 }
3075 #endif
3076
3077 pmap_release_pmap_lock(pm);
3078
3079 return (0);
3080 }
3081
3082 /*
3083 * pmap_remove()
3084 *
3085 * pmap_remove is responsible for nuking a number of mappings for a range
3086 * of virtual address space in the current pmap. To do this efficiently
3087 * is interesting, because in a number of cases a wide virtual address
3088 * range may be supplied that contains few actual mappings. So, the
3089 * optimisations are:
3090 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3091 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3092 * maybe do just a partial cache clean. This path of execution is
3093 * complicated by the fact that the cache must be flushed _before_
3094 * the PTE is nuked, being a VAC :-)
3095 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3096 * all invalidations until pmap_update(), since pmap_remove_all() has
3097 * already flushed the cache.
3098 * 4. Maybe later fast-case a single page, but I don't think this is
3099 * going to make _that_ much difference overall.
3100 */
3101
3102 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3103
3104 void
3105 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3106 {
3107 struct l2_bucket *l2b;
3108 vaddr_t next_bucket;
3109 pt_entry_t *ptep;
3110 u_int cleanlist_idx, total, cnt;
3111 struct {
3112 vaddr_t va;
3113 pt_entry_t *ptep;
3114 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3115 u_int mappings;
3116
3117 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3118 "eva=%08lx\n", pm, sva, eva));
3119
3120 /*
3121 * we lock in the pmap => pv_head direction
3122 */
3123 pmap_acquire_pmap_lock(pm);
3124
3125 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3126 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3127 if (pm->pm_cstate.cs_tlb == 0)
3128 pm->pm_remove_all = true;
3129 } else
3130 cleanlist_idx = 0;
3131
3132 total = 0;
3133
3134 while (sva < eva) {
3135 /*
3136 * Do one L2 bucket's worth at a time.
3137 */
3138 next_bucket = L2_NEXT_BUCKET(sva);
3139 if (next_bucket > eva)
3140 next_bucket = eva;
3141
3142 l2b = pmap_get_l2_bucket(pm, sva);
3143 if (l2b == NULL) {
3144 sva = next_bucket;
3145 continue;
3146 }
3147
3148 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3149
3150 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3151 struct vm_page *pg;
3152 pt_entry_t pte;
3153 paddr_t pa;
3154
3155 pte = *ptep;
3156
3157 if (pte == 0) {
3158 /* Nothing here, move along */
3159 continue;
3160 }
3161
3162 pa = l2pte_pa(pte);
3163 u_int flags = PVF_REF;
3164
3165 /*
3166 * Update flags. In a number of circumstances,
3167 * we could cluster a lot of these and do a
3168 * number of sequential pages in one go.
3169 */
3170 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3171 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3172 struct pv_entry *pv;
3173
3174 #ifdef MULTIPROCESSOR
3175 KASSERT(uvm_page_locked_p(pg));
3176 #endif
3177 pv = pmap_remove_pv(md, pa, pm, sva);
3178 pmap_vac_me_harder(md, pa, pm, 0);
3179 if (pv != NULL) {
3180 flags = pv->pv_flags;
3181 pool_put(&pmap_pv_pool, pv);
3182 }
3183 }
3184 mappings++;
3185
3186 if (!l2pte_valid(pte)) {
3187 /*
3188 * Ref/Mod emulation is still active for this
3189 * mapping, therefore it is has not yet been
3190 * accessed. No need to frob the cache/tlb.
3191 */
3192 *ptep = 0;
3193 PTE_SYNC_CURRENT(pm, ptep);
3194 continue;
3195 }
3196
3197 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3198 /* Add to the clean list. */
3199 cleanlist[cleanlist_idx].ptep = ptep;
3200 cleanlist[cleanlist_idx].va =
3201 sva | (flags & PVF_EXEC);
3202 cleanlist_idx++;
3203 } else
3204 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3205 /* Nuke everything if needed. */
3206 #ifdef PMAP_CACHE_VIVT
3207 pmap_cache_wbinv_all(pm, PVF_EXEC);
3208 #endif
3209 pmap_tlb_flushID(pm);
3210
3211 /*
3212 * Roll back the previous PTE list,
3213 * and zero out the current PTE.
3214 */
3215 for (cnt = 0;
3216 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3217 *cleanlist[cnt].ptep = 0;
3218 PTE_SYNC(cleanlist[cnt].ptep);
3219 }
3220 *ptep = 0;
3221 PTE_SYNC(ptep);
3222 cleanlist_idx++;
3223 pm->pm_remove_all = true;
3224 } else {
3225 *ptep = 0;
3226 PTE_SYNC(ptep);
3227 if (pm->pm_remove_all == false) {
3228 pmap_tlb_flush_SE(pm, sva, flags);
3229 }
3230 }
3231 }
3232
3233 /*
3234 * Deal with any left overs
3235 */
3236 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3237 total += cleanlist_idx;
3238 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3239 vaddr_t va = cleanlist[cnt].va;
3240 if (pm->pm_cstate.cs_all != 0) {
3241 vaddr_t clva = va & ~PAGE_MASK;
3242 u_int flags = va & PVF_EXEC;
3243 #ifdef PMAP_CACHE_VIVT
3244 pmap_cache_wbinv_page(pm, clva, true,
3245 PVF_REF | PVF_WRITE | flags);
3246 #endif
3247 pmap_tlb_flush_SE(pm, clva,
3248 PVF_REF | flags);
3249 }
3250 *cleanlist[cnt].ptep = 0;
3251 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3252 }
3253
3254 /*
3255 * If it looks like we're removing a whole bunch
3256 * of mappings, it's faster to just write-back
3257 * the whole cache now and defer TLB flushes until
3258 * pmap_update() is called.
3259 */
3260 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3261 cleanlist_idx = 0;
3262 else {
3263 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3264 #ifdef PMAP_CACHE_VIVT
3265 pmap_cache_wbinv_all(pm, PVF_EXEC);
3266 #endif
3267 pm->pm_remove_all = true;
3268 }
3269 }
3270
3271 pmap_free_l2_bucket(pm, l2b, mappings);
3272 pm->pm_stats.resident_count -= mappings;
3273 }
3274
3275 pmap_release_pmap_lock(pm);
3276 }
3277
3278 #ifdef PMAP_CACHE_VIPT
3279 static struct pv_entry *
3280 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3281 {
3282 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3283 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3284 struct pv_entry *pv;
3285
3286 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3287 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3288
3289 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3290 KASSERT(pv);
3291 KASSERT(pv->pv_flags & PVF_KENTRY);
3292
3293 /*
3294 * If we are removing a writeable mapping to a cached exec page,
3295 * if it's the last mapping then clear it execness other sync
3296 * the page to the icache.
3297 */
3298 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3299 && (pv->pv_flags & PVF_WRITE) != 0) {
3300 if (SLIST_EMPTY(&md->pvh_list)) {
3301 md->pvh_attrs &= ~PVF_EXEC;
3302 PMAPCOUNT(exec_discarded_kremove);
3303 } else {
3304 pmap_syncicache_page(md, pa);
3305 PMAPCOUNT(exec_synced_kremove);
3306 }
3307 }
3308 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3309
3310 return pv;
3311 }
3312 #endif /* PMAP_CACHE_VIPT */
3313
3314 /*
3315 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3316 *
3317 * We assume there is already sufficient KVM space available
3318 * to do this, as we can't allocate L2 descriptor tables/metadata
3319 * from here.
3320 */
3321 void
3322 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3323 {
3324 struct l2_bucket *l2b;
3325 pt_entry_t *ptep, opte;
3326 #ifdef PMAP_CACHE_VIVT
3327 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3328 #endif
3329 #ifdef PMAP_CACHE_VIPT
3330 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3331 struct vm_page *opg;
3332 struct pv_entry *pv = NULL;
3333 #endif
3334 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3335
3336 NPDEBUG(PDB_KENTER,
3337 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3338 va, pa, prot));
3339
3340 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3341 KDASSERT(l2b != NULL);
3342
3343 ptep = &l2b->l2b_kva[l2pte_index(va)];
3344 opte = *ptep;
3345
3346 if (opte == 0) {
3347 PMAPCOUNT(kenter_mappings);
3348 l2b->l2b_occupancy++;
3349 } else {
3350 PMAPCOUNT(kenter_remappings);
3351 #ifdef PMAP_CACHE_VIPT
3352 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3353 #ifdef DIAGNOSTIC
3354 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3355 #endif
3356 if (opg) {
3357 KASSERT(opg != pg);
3358 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3359 KASSERT((flags & PMAP_KMPAGE) == 0);
3360 pv = pmap_kremove_pg(opg, va);
3361 }
3362 #endif
3363 if (l2pte_valid(opte)) {
3364 #ifdef PMAP_CACHE_VIVT
3365 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3366 #endif
3367 cpu_tlb_flushD_SE(va);
3368 cpu_cpwait();
3369 }
3370 }
3371
3372 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3373 | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
3374 PTE_SYNC(ptep);
3375
3376 if (pg) {
3377 #ifdef MULTIPROCESSOR
3378 KASSERT(uvm_page_locked_p(pg));
3379 #endif
3380 if (flags & PMAP_KMPAGE) {
3381 KASSERT(md->urw_mappings == 0);
3382 KASSERT(md->uro_mappings == 0);
3383 KASSERT(md->krw_mappings == 0);
3384 KASSERT(md->kro_mappings == 0);
3385 #ifdef PMAP_CACHE_VIPT
3386 KASSERT(pv == NULL);
3387 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3388 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3389 /* if there is a color conflict, evict from cache. */
3390 if (pmap_is_page_colored_p(md)
3391 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3392 PMAPCOUNT(vac_color_change);
3393 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3394 } else if (md->pvh_attrs & PVF_MULTCLR) {
3395 /*
3396 * If this page has multiple colors, expunge
3397 * them.
3398 */
3399 PMAPCOUNT(vac_flush_lots2);
3400 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3401 }
3402 md->pvh_attrs &= PAGE_SIZE - 1;
3403 md->pvh_attrs |= PVF_KMPAGE
3404 | PVF_COLORED | PVF_DIRTY
3405 | (va & arm_cache_prefer_mask);
3406 #endif
3407 #ifdef PMAP_CACHE_VIVT
3408 md->pvh_attrs |= PVF_KMPAGE;
3409 #endif
3410 pmap_kmpages++;
3411 #ifdef PMAP_CACHE_VIPT
3412 } else {
3413 if (pv == NULL) {
3414 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3415 KASSERT(pv != NULL);
3416 }
3417 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3418 PVF_WIRED | PVF_KENTRY
3419 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3420 if ((prot & VM_PROT_WRITE)
3421 && !(md->pvh_attrs & PVF_NC))
3422 md->pvh_attrs |= PVF_DIRTY;
3423 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3424 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3425 #endif
3426 }
3427 #ifdef PMAP_CACHE_VIPT
3428 } else {
3429 if (pv != NULL)
3430 pool_put(&pmap_pv_pool, pv);
3431 #endif
3432 }
3433 }
3434
3435 void
3436 pmap_kremove(vaddr_t va, vsize_t len)
3437 {
3438 struct l2_bucket *l2b;
3439 pt_entry_t *ptep, *sptep, opte;
3440 vaddr_t next_bucket, eva;
3441 u_int mappings;
3442 struct vm_page *opg;
3443
3444 PMAPCOUNT(kenter_unmappings);
3445
3446 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3447 va, len));
3448
3449 eva = va + len;
3450
3451 while (va < eva) {
3452 next_bucket = L2_NEXT_BUCKET(va);
3453 if (next_bucket > eva)
3454 next_bucket = eva;
3455
3456 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3457 KDASSERT(l2b != NULL);
3458
3459 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3460 mappings = 0;
3461
3462 while (va < next_bucket) {
3463 opte = *ptep;
3464 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3465 if (opg) {
3466 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3467
3468 if (omd->pvh_attrs & PVF_KMPAGE) {
3469 KASSERT(omd->urw_mappings == 0);
3470 KASSERT(omd->uro_mappings == 0);
3471 KASSERT(omd->krw_mappings == 0);
3472 KASSERT(omd->kro_mappings == 0);
3473 omd->pvh_attrs &= ~PVF_KMPAGE;
3474 #ifdef PMAP_CACHE_VIPT
3475 if (arm_cache_prefer_mask != 0) {
3476 omd->pvh_attrs &= ~PVF_WRITE;
3477 }
3478 #endif
3479 pmap_kmpages--;
3480 #ifdef PMAP_CACHE_VIPT
3481 } else {
3482 pool_put(&pmap_pv_pool,
3483 pmap_kremove_pg(opg, va));
3484 #endif
3485 }
3486 }
3487 if (l2pte_valid(opte)) {
3488 #ifdef PMAP_CACHE_VIVT
3489 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3490 #endif
3491 cpu_tlb_flushD_SE(va);
3492 }
3493 if (opte) {
3494 *ptep = 0;
3495 mappings++;
3496 }
3497 va += PAGE_SIZE;
3498 ptep++;
3499 }
3500 KDASSERT(mappings <= l2b->l2b_occupancy);
3501 l2b->l2b_occupancy -= mappings;
3502 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3503 }
3504 cpu_cpwait();
3505 }
3506
3507 bool
3508 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3509 {
3510 struct l2_dtable *l2;
3511 pd_entry_t *pl1pd, l1pd;
3512 pt_entry_t *ptep, pte;
3513 paddr_t pa;
3514 u_int l1idx;
3515
3516 pmap_acquire_pmap_lock(pm);
3517
3518 l1idx = L1_IDX(va);
3519 pl1pd = pmap_l1_kva(pm) + l1idx;
3520 l1pd = *pl1pd;
3521
3522 if (l1pte_section_p(l1pd)) {
3523 /*
3524 * These should only happen for pmap_kernel()
3525 */
3526 KDASSERT(pm == pmap_kernel());
3527 pmap_release_pmap_lock(pm);
3528 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3529 if (l1pte_supersection_p(l1pd)) {
3530 pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3531 } else
3532 #endif
3533 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3534 } else {
3535 /*
3536 * Note that we can't rely on the validity of the L1
3537 * descriptor as an indication that a mapping exists.
3538 * We have to look it up in the L2 dtable.
3539 */
3540 l2 = pm->pm_l2[L2_IDX(l1idx)];
3541
3542 if (l2 == NULL ||
3543 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3544 pmap_release_pmap_lock(pm);
3545 return false;
3546 }
3547
3548 ptep = &ptep[l2pte_index(va)];
3549 pte = *ptep;
3550 pmap_release_pmap_lock(pm);
3551
3552 if (pte == 0)
3553 return false;
3554
3555 switch (pte & L2_TYPE_MASK) {
3556 case L2_TYPE_L:
3557 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3558 break;
3559
3560 default:
3561 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3562 break;
3563 }
3564 }
3565
3566 if (pap != NULL)
3567 *pap = pa;
3568
3569 return true;
3570 }
3571
3572 void
3573 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3574 {
3575 struct l2_bucket *l2b;
3576 pt_entry_t *ptep, pte;
3577 vaddr_t next_bucket;
3578 u_int flags;
3579 u_int clr_mask;
3580 int flush;
3581
3582 NPDEBUG(PDB_PROTECT,
3583 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3584 pm, sva, eva, prot));
3585
3586 if ((prot & VM_PROT_READ) == 0) {
3587 pmap_remove(pm, sva, eva);
3588 return;
3589 }
3590
3591 if (prot & VM_PROT_WRITE) {
3592 /*
3593 * If this is a read->write transition, just ignore it and let
3594 * uvm_fault() take care of it later.
3595 */
3596 return;
3597 }
3598
3599 pmap_acquire_pmap_lock(pm);
3600
3601 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3602 flags = 0;
3603 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3604
3605 while (sva < eva) {
3606 next_bucket = L2_NEXT_BUCKET(sva);
3607 if (next_bucket > eva)
3608 next_bucket = eva;
3609
3610 l2b = pmap_get_l2_bucket(pm, sva);
3611 if (l2b == NULL) {
3612 sva = next_bucket;
3613 continue;
3614 }
3615
3616 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3617
3618 while (sva < next_bucket) {
3619 pte = *ptep;
3620 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3621 struct vm_page *pg;
3622 u_int f;
3623
3624 #ifdef PMAP_CACHE_VIVT
3625 /*
3626 * OK, at this point, we know we're doing
3627 * write-protect operation. If the pmap is
3628 * active, write-back the page.
3629 */
3630 pmap_cache_wbinv_page(pm, sva, false, PVF_REF);
3631 #endif
3632
3633 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3634 pte = l2pte_set_readonly(pte);
3635 *ptep = pte;
3636 PTE_SYNC(ptep);
3637
3638 if (pg != NULL) {
3639 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3640 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3641
3642 #ifdef MULTIPROCESSOR
3643 KASSERT(uvm_page_locked_p(pg));
3644 #endif
3645 f = pmap_modify_pv(md, pa, pm, sva,
3646 clr_mask, 0);
3647 pmap_vac_me_harder(md, pa, pm, sva);
3648 } else {
3649 f = PVF_REF | PVF_EXEC;
3650 }
3651
3652 if (flush >= 0) {
3653 flush++;
3654 flags |= f;
3655 } else {
3656 pmap_tlb_flush_SE(pm, sva, f);
3657 }
3658 }
3659
3660 sva += PAGE_SIZE;
3661 ptep++;
3662 }
3663 }
3664
3665 pmap_release_pmap_lock(pm);
3666
3667 if (flush) {
3668 if (PV_BEEN_EXECD(flags))
3669 pmap_tlb_flushID(pm);
3670 else
3671 if (PV_BEEN_REFD(flags))
3672 pmap_tlb_flushD(pm);
3673 }
3674 }
3675
3676 void
3677 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3678 {
3679 struct l2_bucket *l2b;
3680 pt_entry_t *ptep;
3681 vaddr_t next_bucket;
3682 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3683
3684 NPDEBUG(PDB_EXEC,
3685 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3686 pm, sva, eva));
3687
3688 pmap_acquire_pmap_lock(pm);
3689
3690 while (sva < eva) {
3691 next_bucket = L2_NEXT_BUCKET(sva);
3692 if (next_bucket > eva)
3693 next_bucket = eva;
3694
3695 l2b = pmap_get_l2_bucket(pm, sva);
3696 if (l2b == NULL) {
3697 sva = next_bucket;
3698 continue;
3699 }
3700
3701 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3702 sva < next_bucket;
3703 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3704 if (l2pte_valid(*ptep)) {
3705 cpu_icache_sync_range(sva,
3706 min(page_size, eva - sva));
3707 }
3708 }
3709 }
3710
3711 pmap_release_pmap_lock(pm);
3712 }
3713
3714 void
3715 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3716 {
3717 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3718 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3719
3720 NPDEBUG(PDB_PROTECT,
3721 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3722 md, pa, prot));
3723
3724 #ifdef MULTIPROCESSOR
3725 KASSERT(uvm_page_locked_p(pg));
3726 #endif
3727
3728 switch(prot) {
3729 case VM_PROT_READ|VM_PROT_WRITE:
3730 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3731 pmap_clearbit(md, pa, PVF_EXEC);
3732 break;
3733 #endif
3734 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3735 break;
3736
3737 case VM_PROT_READ:
3738 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3739 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3740 break;
3741 #endif
3742 case VM_PROT_READ|VM_PROT_EXECUTE:
3743 pmap_clearbit(md, pa, PVF_WRITE);
3744 break;
3745
3746 default:
3747 pmap_page_remove(md, pa);
3748 break;
3749 }
3750 }
3751
3752 /*
3753 * pmap_clear_modify:
3754 *
3755 * Clear the "modified" attribute for a page.
3756 */
3757 bool
3758 pmap_clear_modify(struct vm_page *pg)
3759 {
3760 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3761 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3762 bool rv;
3763
3764 #ifdef MULTIPROCESSOR
3765 KASSERT(uvm_page_locked_p(pg));
3766 #endif
3767
3768 if (md->pvh_attrs & PVF_MOD) {
3769 rv = true;
3770 #ifdef PMAP_CACHE_VIPT
3771 /*
3772 * If we are going to clear the modified bit and there are
3773 * no other modified bits set, flush the page to memory and
3774 * mark it clean.
3775 */
3776 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3777 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3778 #endif
3779 pmap_clearbit(md, pa, PVF_MOD);
3780 } else
3781 rv = false;
3782
3783 return (rv);
3784 }
3785
3786 /*
3787 * pmap_clear_reference:
3788 *
3789 * Clear the "referenced" attribute for a page.
3790 */
3791 bool
3792 pmap_clear_reference(struct vm_page *pg)
3793 {
3794 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3795 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3796 bool rv;
3797
3798 #ifdef MULTIPROCESSOR
3799 KASSERT(uvm_page_locked_p(pg));
3800 #endif
3801
3802 if (md->pvh_attrs & PVF_REF) {
3803 rv = true;
3804 pmap_clearbit(md, pa, PVF_REF);
3805 } else
3806 rv = false;
3807
3808 return (rv);
3809 }
3810
3811 /*
3812 * pmap_is_modified:
3813 *
3814 * Test if a page has the "modified" attribute.
3815 */
3816 /* See <arm/arm32/pmap.h> */
3817
3818 /*
3819 * pmap_is_referenced:
3820 *
3821 * Test if a page has the "referenced" attribute.
3822 */
3823 /* See <arm/arm32/pmap.h> */
3824
3825 int
3826 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3827 {
3828 struct l2_dtable *l2;
3829 struct l2_bucket *l2b;
3830 pd_entry_t *pl1pd, l1pd;
3831 pt_entry_t *ptep, pte;
3832 paddr_t pa;
3833 u_int l1idx;
3834 int rv = 0;
3835
3836 pmap_acquire_pmap_lock(pm);
3837
3838 l1idx = L1_IDX(va);
3839
3840 /*
3841 * If there is no l2_dtable for this address, then the process
3842 * has no business accessing it.
3843 *
3844 * Note: This will catch userland processes trying to access
3845 * kernel addresses.
3846 */
3847 l2 = pm->pm_l2[L2_IDX(l1idx)];
3848 if (l2 == NULL)
3849 goto out;
3850
3851 /*
3852 * Likewise if there is no L2 descriptor table
3853 */
3854 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3855 if (l2b->l2b_kva == NULL)
3856 goto out;
3857
3858 /*
3859 * Check the PTE itself.
3860 */
3861 ptep = &l2b->l2b_kva[l2pte_index(va)];
3862 pte = *ptep;
3863 if (pte == 0)
3864 goto out;
3865
3866 /*
3867 * Catch a userland access to the vector page mapped at 0x0
3868 */
3869 if (user && (pte & L2_S_PROT_U) == 0)
3870 goto out;
3871
3872 pa = l2pte_pa(pte);
3873
3874 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3875 /*
3876 * This looks like a good candidate for "page modified"
3877 * emulation...
3878 */
3879 struct pv_entry *pv;
3880 struct vm_page *pg;
3881
3882 /* Extract the physical address of the page */
3883 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3884 goto out;
3885
3886 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3887
3888 /* Get the current flags for this page. */
3889 #ifdef MULTIPROCESSOR
3890 KASSERT(uvm_page_locked_p(pg));
3891 #endif
3892
3893 pv = pmap_find_pv(md, pm, va);
3894 if (pv == NULL) {
3895 goto out;
3896 }
3897
3898 /*
3899 * Do the flags say this page is writable? If not then it
3900 * is a genuine write fault. If yes then the write fault is
3901 * our fault as we did not reflect the write access in the
3902 * PTE. Now we know a write has occurred we can correct this
3903 * and also set the modified bit
3904 */
3905 if ((pv->pv_flags & PVF_WRITE) == 0) {
3906 goto out;
3907 }
3908
3909 NPDEBUG(PDB_FOLLOW,
3910 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3911 pm, va, pa));
3912
3913 md->pvh_attrs |= PVF_REF | PVF_MOD;
3914 pv->pv_flags |= PVF_REF | PVF_MOD;
3915 #ifdef PMAP_CACHE_VIPT
3916 /*
3917 * If there are cacheable mappings for this page, mark it dirty.
3918 */
3919 if ((md->pvh_attrs & PVF_NC) == 0)
3920 md->pvh_attrs |= PVF_DIRTY;
3921 #endif
3922
3923 /*
3924 * Re-enable write permissions for the page. No need to call
3925 * pmap_vac_me_harder(), since this is just a
3926 * modified-emulation fault, and the PVF_WRITE bit isn't
3927 * changing. We've already set the cacheable bits based on
3928 * the assumption that we can write to this page.
3929 */
3930 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3931 PTE_SYNC(ptep);
3932 rv = 1;
3933 } else
3934 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3935 /*
3936 * This looks like a good candidate for "page referenced"
3937 * emulation.
3938 */
3939 struct pv_entry *pv;
3940 struct vm_page *pg;
3941
3942 /* Extract the physical address of the page */
3943 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3944 goto out;
3945
3946 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3947
3948 /* Get the current flags for this page. */
3949 #ifdef MULTIPROCESSOR
3950 KASSERT(uvm_page_locked_p(pg));
3951 #endif
3952
3953 pv = pmap_find_pv(md, pm, va);
3954 if (pv == NULL) {
3955 goto out;
3956 }
3957
3958 md->pvh_attrs |= PVF_REF;
3959 pv->pv_flags |= PVF_REF;
3960
3961 NPDEBUG(PDB_FOLLOW,
3962 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3963 pm, va, pa));
3964
3965 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3966 PTE_SYNC(ptep);
3967 rv = 1;
3968 }
3969
3970 /*
3971 * We know there is a valid mapping here, so simply
3972 * fix up the L1 if necessary.
3973 */
3974 pl1pd = pmap_l1_kva(pm) + l1idx;
3975 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) | L1_C_PROTO;
3976 if (*pl1pd != l1pd) {
3977 *pl1pd = l1pd;
3978 PTE_SYNC(pl1pd);
3979 rv = 1;
3980 }
3981
3982 #ifdef CPU_SA110
3983 /*
3984 * There are bugs in the rev K SA110. This is a check for one
3985 * of them.
3986 */
3987 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3988 curcpu()->ci_arm_cpurev < 3) {
3989 /* Always current pmap */
3990 if (l2pte_valid(pte)) {
3991 extern int kernel_debug;
3992 if (kernel_debug & 1) {
3993 struct proc *p = curlwp->l_proc;
3994 printf("prefetch_abort: page is already "
3995 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3996 printf("prefetch_abort: pc=%08lx proc=%p "
3997 "process=%s\n", va, p, p->p_comm);
3998 printf("prefetch_abort: far=%08x fs=%x\n",
3999 cpu_faultaddress(), cpu_faultstatus());
4000 }
4001 #ifdef DDB
4002 if (kernel_debug & 2)
4003 Debugger();
4004 #endif
4005 rv = 1;
4006 }
4007 }
4008 #endif /* CPU_SA110 */
4009
4010 /*
4011 * If 'rv == 0' at this point, it generally indicates that there is a
4012 * stale TLB entry for the faulting address. That might be due to a
4013 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4014 */
4015 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
4016 && pmap_needs_pte_sync == 0) {
4017 pmap_needs_pte_sync = 1;
4018 PTE_SYNC(ptep);
4019 rv = 1;
4020 }
4021
4022 #ifdef DEBUG
4023 /*
4024 * If 'rv == 0' at this point, it generally indicates that there is a
4025 * stale TLB entry for the faulting address. This happens when two or
4026 * more processes are sharing an L1. Since we don't flush the TLB on
4027 * a context switch between such processes, we can take domain faults
4028 * for mappings which exist at the same VA in both processes. EVEN IF
4029 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4030 * example.
4031 *
4032 * This is extremely likely to happen if pmap_enter() updated the L1
4033 * entry for a recently entered mapping. In this case, the TLB is
4034 * flushed for the new mapping, but there may still be TLB entries for
4035 * other mappings belonging to other processes in the 1MB range
4036 * covered by the L1 entry.
4037 *
4038 * Since 'rv == 0', we know that the L1 already contains the correct
4039 * value, so the fault must be due to a stale TLB entry.
4040 *
4041 * Since we always need to flush the TLB anyway in the case where we
4042 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4043 * stale TLB entries dynamically.
4044 *
4045 * However, the above condition can ONLY happen if the current L1 is
4046 * being shared. If it happens when the L1 is unshared, it indicates
4047 * that other parts of the pmap are not doing their job WRT managing
4048 * the TLB.
4049 */
4050 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4051 extern int last_fault_code;
4052 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4053 pm, va, ftype);
4054 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4055 l2, l2b, ptep, pl1pd);
4056 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4057 pte, l1pd, last_fault_code);
4058 #ifdef DDB
4059 extern int kernel_debug;
4060
4061 if (kernel_debug & 2)
4062 Debugger();
4063 #endif
4064 }
4065 #endif
4066
4067 cpu_tlb_flushID_SE(va);
4068 cpu_cpwait();
4069
4070 rv = 1;
4071
4072 out:
4073 pmap_release_pmap_lock(pm);
4074
4075 return (rv);
4076 }
4077
4078 /*
4079 * Routine: pmap_procwr
4080 *
4081 * Function:
4082 * Synchronize caches corresponding to [addr, addr+len) in p.
4083 *
4084 */
4085 void
4086 pmap_procwr(struct proc *p, vaddr_t va, int len)
4087 {
4088 /* We only need to do anything if it is the current process. */
4089 if (p == curproc)
4090 cpu_icache_sync_range(va, len);
4091 }
4092
4093 /*
4094 * Routine: pmap_unwire
4095 * Function: Clear the wired attribute for a map/virtual-address pair.
4096 *
4097 * In/out conditions:
4098 * The mapping must already exist in the pmap.
4099 */
4100 void
4101 pmap_unwire(pmap_t pm, vaddr_t va)
4102 {
4103 struct l2_bucket *l2b;
4104 pt_entry_t *ptep, pte;
4105 struct vm_page *pg;
4106 paddr_t pa;
4107
4108 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4109
4110 pmap_acquire_pmap_lock(pm);
4111
4112 l2b = pmap_get_l2_bucket(pm, va);
4113 KDASSERT(l2b != NULL);
4114
4115 ptep = &l2b->l2b_kva[l2pte_index(va)];
4116 pte = *ptep;
4117
4118 /* Extract the physical address of the page */
4119 pa = l2pte_pa(pte);
4120
4121 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4122 /* Update the wired bit in the pv entry for this page. */
4123 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4124
4125 #ifdef MULTIPROCESSOR
4126 KASSERT(uvm_page_locked_p(pg));
4127 #endif
4128 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4129 }
4130
4131 pmap_release_pmap_lock(pm);
4132 }
4133
4134 void
4135 pmap_activate(struct lwp *l)
4136 {
4137 extern int block_userspace_access;
4138 pmap_t opm, npm, rpm;
4139 uint32_t odacr, ndacr;
4140 int oldirqstate;
4141
4142 /*
4143 * If activating a non-current lwp or the current lwp is
4144 * already active, just return.
4145 */
4146 if (l != curlwp ||
4147 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4148 return;
4149
4150 npm = l->l_proc->p_vmspace->vm_map.pmap;
4151 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4152 (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4153
4154 /*
4155 * If TTB and DACR are unchanged, short-circuit all the
4156 * TLB/cache management stuff.
4157 */
4158 if (pmap_previous_active_lwp != NULL) {
4159 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4160 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4161 (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4162
4163 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4164 goto all_done;
4165 } else
4166 opm = NULL;
4167
4168 PMAPCOUNT(activations);
4169 block_userspace_access = 1;
4170
4171 /*
4172 * If switching to a user vmspace which is different to the
4173 * most recent one, and the most recent one is potentially
4174 * live in the cache, we must write-back and invalidate the
4175 * entire cache.
4176 */
4177 rpm = pmap_recent_user;
4178
4179 /*
4180 * XXXSCW: There's a corner case here which can leave turds in the cache as
4181 * reported in kern/41058. They're probably left over during tear-down and
4182 * switching away from an exiting process. Until the root cause is identified
4183 * and fixed, zap the cache when switching pmaps. This will result in a few
4184 * unnecessary cache flushes, but that's better than silently corrupting data.
4185 */
4186 #if 0
4187 if (npm != pmap_kernel() && rpm && npm != rpm &&
4188 rpm->pm_cstate.cs_cache) {
4189 rpm->pm_cstate.cs_cache = 0;
4190 #ifdef PMAP_CACHE_VIVT
4191 cpu_idcache_wbinv_all();
4192 #endif
4193 }
4194 #else
4195 if (rpm) {
4196 rpm->pm_cstate.cs_cache = 0;
4197 if (npm == pmap_kernel())
4198 pmap_recent_user = NULL;
4199 #ifdef PMAP_CACHE_VIVT
4200 cpu_idcache_wbinv_all();
4201 #endif
4202 }
4203 #endif
4204
4205 /* No interrupts while we frob the TTB/DACR */
4206 oldirqstate = disable_interrupts(IF32_bits);
4207
4208 #ifndef ARM_HAS_VBAR
4209 /*
4210 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4211 * entry corresponding to 'vector_page' in the incoming L1 table
4212 * before switching to it otherwise subsequent interrupts/exceptions
4213 * (including domain faults!) will jump into hyperspace.
4214 */
4215 if (npm->pm_pl1vec != NULL) {
4216 cpu_tlb_flushID_SE((u_int)vector_page);
4217 cpu_cpwait();
4218 *npm->pm_pl1vec = npm->pm_l1vec;
4219 PTE_SYNC(npm->pm_pl1vec);
4220 }
4221 #endif
4222
4223 cpu_domains(ndacr);
4224
4225 if (npm == pmap_kernel() || npm == rpm) {
4226 /*
4227 * Switching to a kernel thread, or back to the
4228 * same user vmspace as before... Simply update
4229 * the TTB (no TLB flush required)
4230 */
4231 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4232 cpu_cpwait();
4233 } else {
4234 /*
4235 * Otherwise, update TTB and flush TLB
4236 */
4237 cpu_context_switch(npm->pm_l1->l1_physaddr);
4238 if (rpm != NULL)
4239 rpm->pm_cstate.cs_tlb = 0;
4240 }
4241
4242 restore_interrupts(oldirqstate);
4243
4244 block_userspace_access = 0;
4245
4246 all_done:
4247 /*
4248 * The new pmap is resident. Make sure it's marked
4249 * as resident in the cache/TLB.
4250 */
4251 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4252 if (npm != pmap_kernel())
4253 pmap_recent_user = npm;
4254
4255 /* The old pmap is not longer active */
4256 if (opm != NULL)
4257 opm->pm_activated = false;
4258
4259 /* But the new one is */
4260 npm->pm_activated = true;
4261 }
4262
4263 void
4264 pmap_deactivate(struct lwp *l)
4265 {
4266
4267 /*
4268 * If the process is exiting, make sure pmap_activate() does
4269 * a full MMU context-switch and cache flush, which we might
4270 * otherwise skip. See PR port-arm/38950.
4271 */
4272 if (l->l_proc->p_sflag & PS_WEXIT)
4273 pmap_previous_active_lwp = NULL;
4274
4275 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4276 }
4277
4278 void
4279 pmap_update(pmap_t pm)
4280 {
4281
4282 if (pm->pm_remove_all) {
4283 /*
4284 * Finish up the pmap_remove_all() optimisation by flushing
4285 * the TLB.
4286 */
4287 pmap_tlb_flushID(pm);
4288 pm->pm_remove_all = false;
4289 }
4290
4291 if (pmap_is_current(pm)) {
4292 /*
4293 * If we're dealing with a current userland pmap, move its L1
4294 * to the end of the LRU.
4295 */
4296 if (pm != pmap_kernel())
4297 pmap_use_l1(pm);
4298
4299 /*
4300 * We can assume we're done with frobbing the cache/tlb for
4301 * now. Make sure any future pmap ops don't skip cache/tlb
4302 * flushes.
4303 */
4304 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4305 }
4306
4307 PMAPCOUNT(updates);
4308
4309 /*
4310 * make sure TLB/cache operations have completed.
4311 */
4312 cpu_cpwait();
4313 }
4314
4315 void
4316 pmap_remove_all(pmap_t pm)
4317 {
4318
4319 /*
4320 * The vmspace described by this pmap is about to be torn down.
4321 * Until pmap_update() is called, UVM will only make calls
4322 * to pmap_remove(). We can make life much simpler by flushing
4323 * the cache now, and deferring TLB invalidation to pmap_update().
4324 */
4325 #ifdef PMAP_CACHE_VIVT
4326 pmap_cache_wbinv_all(pm, PVF_EXEC);
4327 #endif
4328 pm->pm_remove_all = true;
4329 }
4330
4331 /*
4332 * Retire the given physical map from service.
4333 * Should only be called if the map contains no valid mappings.
4334 */
4335 void
4336 pmap_destroy(pmap_t pm)
4337 {
4338 u_int count;
4339
4340 if (pm == NULL)
4341 return;
4342
4343 if (pm->pm_remove_all) {
4344 pmap_tlb_flushID(pm);
4345 pm->pm_remove_all = false;
4346 }
4347
4348 /*
4349 * Drop reference count
4350 */
4351 mutex_enter(pm->pm_lock);
4352 count = --pm->pm_obj.uo_refs;
4353 mutex_exit(pm->pm_lock);
4354 if (count > 0) {
4355 if (pmap_is_current(pm)) {
4356 if (pm != pmap_kernel())
4357 pmap_use_l1(pm);
4358 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4359 }
4360 return;
4361 }
4362
4363 /*
4364 * reference count is zero, free pmap resources and then free pmap.
4365 */
4366
4367 #ifndef ARM_HAS_VBAR
4368 if (vector_page < KERNEL_BASE) {
4369 KDASSERT(!pmap_is_current(pm));
4370
4371 /* Remove the vector page mapping */
4372 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4373 pmap_update(pm);
4374 }
4375 #endif
4376
4377 LIST_REMOVE(pm, pm_list);
4378
4379 pmap_free_l1(pm);
4380
4381 if (pmap_recent_user == pm)
4382 pmap_recent_user = NULL;
4383
4384 uvm_obj_destroy(&pm->pm_obj, false);
4385 mutex_destroy(&pm->pm_obj_lock);
4386 pool_cache_put(&pmap_cache, pm);
4387 }
4388
4389
4390 /*
4391 * void pmap_reference(pmap_t pm)
4392 *
4393 * Add a reference to the specified pmap.
4394 */
4395 void
4396 pmap_reference(pmap_t pm)
4397 {
4398
4399 if (pm == NULL)
4400 return;
4401
4402 pmap_use_l1(pm);
4403
4404 mutex_enter(pm->pm_lock);
4405 pm->pm_obj.uo_refs++;
4406 mutex_exit(pm->pm_lock);
4407 }
4408
4409 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4410
4411 static struct evcnt pmap_prefer_nochange_ev =
4412 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4413 static struct evcnt pmap_prefer_change_ev =
4414 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4415
4416 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4417 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4418
4419 void
4420 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4421 {
4422 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4423 vaddr_t va = *vap;
4424 vaddr_t diff = (hint - va) & mask;
4425 if (diff == 0) {
4426 pmap_prefer_nochange_ev.ev_count++;
4427 } else {
4428 pmap_prefer_change_ev.ev_count++;
4429 if (__predict_false(td))
4430 va -= mask + 1;
4431 *vap = va + diff;
4432 }
4433 }
4434 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4435
4436 /*
4437 * pmap_zero_page()
4438 *
4439 * Zero a given physical page by mapping it at a page hook point.
4440 * In doing the zero page op, the page we zero is mapped cachable, as with
4441 * StrongARM accesses to non-cached pages are non-burst making writing
4442 * _any_ bulk data very slow.
4443 */
4444 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4445 void
4446 pmap_zero_page_generic(paddr_t phys)
4447 {
4448 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4449 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4450 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4451 #endif
4452 #if defined(PMAP_CACHE_VIPT)
4453 /* Choose the last page color it had, if any */
4454 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4455 #else
4456 const vsize_t va_offset = 0;
4457 #endif
4458 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4459 /*
4460 * Is this page mapped at its natural color?
4461 * If we have all of memory mapped, then just convert PA to VA.
4462 */
4463 const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
4464 const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
4465 #else
4466 const bool okcolor = false;
4467 const vaddr_t vdstp = cdstp + va_offset;
4468 #endif
4469 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4470
4471
4472 #ifdef DEBUG
4473 if (!SLIST_EMPTY(&md->pvh_list))
4474 panic("pmap_zero_page: page has mappings");
4475 #endif
4476
4477 KDASSERT((phys & PGOFSET) == 0);
4478
4479 if (!okcolor) {
4480 /*
4481 * Hook in the page, zero it, and purge the cache for that
4482 * zeroed page. Invalidate the TLB as needed.
4483 */
4484 *ptep = L2_S_PROTO | phys |
4485 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4486 PTE_SYNC(ptep);
4487 cpu_tlb_flushD_SE(cdstp + va_offset);
4488 cpu_cpwait();
4489 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4490 /*
4491 * If we are direct-mapped and our color isn't ok, then before
4492 * we bzero the page invalidate its contents from the cache and
4493 * reset the color to its natural color.
4494 */
4495 cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
4496 md->pvh_attrs &= ~arm_cache_prefer_mask;
4497 md->pvh_attrs |= (phys & arm_cache_prefer_mask);
4498 #endif
4499 }
4500 bzero_page(vdstp);
4501 if (!okcolor) {
4502 /*
4503 * Unmap the page.
4504 */
4505 *ptep = 0;
4506 PTE_SYNC(ptep);
4507 cpu_tlb_flushD_SE(cdstp + va_offset);
4508 #ifdef PMAP_CACHE_VIVT
4509 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4510 #endif
4511 }
4512 #ifdef PMAP_CACHE_VIPT
4513 /*
4514 * This page is now cache resident so it now has a page color.
4515 * Any contents have been obliterated so clear the EXEC flag.
4516 */
4517 if (!pmap_is_page_colored_p(md)) {
4518 PMAPCOUNT(vac_color_new);
4519 md->pvh_attrs |= PVF_COLORED;
4520 }
4521 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4522 md->pvh_attrs &= ~PVF_EXEC;
4523 PMAPCOUNT(exec_discarded_zero);
4524 }
4525 md->pvh_attrs |= PVF_DIRTY;
4526 #endif
4527 }
4528 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4529
4530 #if ARM_MMU_XSCALE == 1
4531 void
4532 pmap_zero_page_xscale(paddr_t phys)
4533 {
4534 #ifdef DEBUG
4535 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4536 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4537
4538 if (!SLIST_EMPTY(&md->pvh_list))
4539 panic("pmap_zero_page: page has mappings");
4540 #endif
4541
4542 KDASSERT((phys & PGOFSET) == 0);
4543
4544 /*
4545 * Hook in the page, zero it, and purge the cache for that
4546 * zeroed page. Invalidate the TLB as needed.
4547 */
4548 *cdst_pte = L2_S_PROTO | phys |
4549 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4550 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4551 PTE_SYNC(cdst_pte);
4552 cpu_tlb_flushD_SE(cdstp);
4553 cpu_cpwait();
4554 bzero_page(cdstp);
4555 xscale_cache_clean_minidata();
4556 }
4557 #endif /* ARM_MMU_XSCALE == 1 */
4558
4559 /* pmap_pageidlezero()
4560 *
4561 * The same as above, except that we assume that the page is not
4562 * mapped. This means we never have to flush the cache first. Called
4563 * from the idle loop.
4564 */
4565 bool
4566 pmap_pageidlezero(paddr_t phys)
4567 {
4568 unsigned int i;
4569 int *ptr;
4570 bool rv = true;
4571 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4572 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4573 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4574 #endif
4575 #ifdef PMAP_CACHE_VIPT
4576 /* Choose the last page color it had, if any */
4577 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4578 #else
4579 const vsize_t va_offset = 0;
4580 #endif
4581 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4582
4583
4584 #ifdef DEBUG
4585 if (!SLIST_EMPTY(&md->pvh_list))
4586 panic("pmap_pageidlezero: page has mappings");
4587 #endif
4588
4589 KDASSERT((phys & PGOFSET) == 0);
4590
4591 /*
4592 * Hook in the page, zero it, and purge the cache for that
4593 * zeroed page. Invalidate the TLB as needed.
4594 */
4595 *ptep = L2_S_PROTO | phys |
4596 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4597 PTE_SYNC(ptep);
4598 cpu_tlb_flushD_SE(cdstp + va_offset);
4599 cpu_cpwait();
4600
4601 for (i = 0, ptr = (int *)(cdstp + va_offset);
4602 i < (PAGE_SIZE / sizeof(int)); i++) {
4603 if (sched_curcpu_runnable_p() != 0) {
4604 /*
4605 * A process has become ready. Abort now,
4606 * so we don't keep it waiting while we
4607 * do slow memory access to finish this
4608 * page.
4609 */
4610 rv = false;
4611 break;
4612 }
4613 *ptr++ = 0;
4614 }
4615
4616 #ifdef PMAP_CACHE_VIVT
4617 if (rv)
4618 /*
4619 * if we aborted we'll rezero this page again later so don't
4620 * purge it unless we finished it
4621 */
4622 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4623 #elif defined(PMAP_CACHE_VIPT)
4624 /*
4625 * This page is now cache resident so it now has a page color.
4626 * Any contents have been obliterated so clear the EXEC flag.
4627 */
4628 if (!pmap_is_page_colored_p(md)) {
4629 PMAPCOUNT(vac_color_new);
4630 md->pvh_attrs |= PVF_COLORED;
4631 }
4632 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4633 md->pvh_attrs &= ~PVF_EXEC;
4634 PMAPCOUNT(exec_discarded_zero);
4635 }
4636 #endif
4637 /*
4638 * Unmap the page.
4639 */
4640 *ptep = 0;
4641 PTE_SYNC(ptep);
4642 cpu_tlb_flushD_SE(cdstp + va_offset);
4643
4644 return (rv);
4645 }
4646
4647 /*
4648 * pmap_copy_page()
4649 *
4650 * Copy one physical page into another, by mapping the pages into
4651 * hook points. The same comment regarding cachability as in
4652 * pmap_zero_page also applies here.
4653 */
4654 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4655 void
4656 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4657 {
4658 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4659 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4660 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4661 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4662 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4663 #endif
4664 #ifdef PMAP_CACHE_VIPT
4665 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4666 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4667 #else
4668 const vsize_t src_va_offset = 0;
4669 const vsize_t dst_va_offset = 0;
4670 #endif
4671 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4672 /*
4673 * Is this page mapped at its natural color?
4674 * If we have all of memory mapped, then just convert PA to VA.
4675 */
4676 const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
4677 const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
4678 const vaddr_t vsrcp = src_okcolor
4679 ? KERNEL_BASE + (src - physical_start)
4680 : csrcp + src_va_offset;
4681 const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
4682 #else
4683 const bool src_okcolor = false;
4684 const bool dst_okcolor = false;
4685 const vaddr_t vsrcp = csrcp + src_va_offset;
4686 const vaddr_t vdstp = cdstp + dst_va_offset;
4687 #endif
4688 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4689 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4690
4691 #ifdef DEBUG
4692 if (!SLIST_EMPTY(&dst_md->pvh_list))
4693 panic("pmap_copy_page: dst page has mappings");
4694 #endif
4695
4696 #ifdef PMAP_CACHE_VIPT
4697 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4698 #endif
4699 KDASSERT((src & PGOFSET) == 0);
4700 KDASSERT((dst & PGOFSET) == 0);
4701
4702 /*
4703 * Clean the source page. Hold the source page's lock for
4704 * the duration of the copy so that no other mappings can
4705 * be created while we have a potentially aliased mapping.
4706 */
4707 #ifdef MULTIPROCESSOR
4708 KASSERT(uvm_page_locked_p(src_pg));
4709 #endif
4710 #ifdef PMAP_CACHE_VIVT
4711 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4712 #endif
4713
4714 /*
4715 * Map the pages into the page hook points, copy them, and purge
4716 * the cache for the appropriate page. Invalidate the TLB
4717 * as required.
4718 */
4719 if (!src_okcolor) {
4720 *src_ptep = L2_S_PROTO
4721 | src
4722 #ifdef PMAP_CACHE_VIPT
4723 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4724 #endif
4725 #ifdef PMAP_CACHE_VIVT
4726 | pte_l2_s_cache_mode
4727 #endif
4728 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4729 PTE_SYNC(src_ptep);
4730 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4731 cpu_cpwait();
4732 }
4733 if (!dst_okcolor) {
4734 *dst_ptep = L2_S_PROTO | dst |
4735 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4736 PTE_SYNC(dst_ptep);
4737 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4738 cpu_cpwait();
4739 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4740 /*
4741 * If we are direct-mapped and our color isn't ok, then before
4742 * we bcopy to the new page invalidate its contents from the
4743 * cache and reset its color to its natural color.
4744 */
4745 cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
4746 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
4747 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
4748 #endif
4749 }
4750 bcopy_page(vsrcp, vdstp);
4751 #ifdef PMAP_CACHE_VIVT
4752 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
4753 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
4754 #endif
4755 /*
4756 * Unmap the pages.
4757 */
4758 if (!src_okcolor) {
4759 *src_ptep = 0;
4760 PTE_SYNC(src_ptep);
4761 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4762 cpu_cpwait();
4763 }
4764 if (!dst_okcolor) {
4765 *dst_ptep = 0;
4766 PTE_SYNC(dst_ptep);
4767 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4768 cpu_cpwait();
4769 }
4770 #ifdef PMAP_CACHE_VIPT
4771 /*
4772 * Now that the destination page is in the cache, mark it as colored.
4773 * If this was an exec page, discard it.
4774 */
4775 if (!pmap_is_page_colored_p(dst_md)) {
4776 PMAPCOUNT(vac_color_new);
4777 dst_md->pvh_attrs |= PVF_COLORED;
4778 }
4779 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4780 dst_md->pvh_attrs &= ~PVF_EXEC;
4781 PMAPCOUNT(exec_discarded_copy);
4782 }
4783 dst_md->pvh_attrs |= PVF_DIRTY;
4784 #endif
4785 }
4786 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4787
4788 #if ARM_MMU_XSCALE == 1
4789 void
4790 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4791 {
4792 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4793 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4794 #ifdef DEBUG
4795 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4796
4797 if (!SLIST_EMPTY(&dst_md->pvh_list))
4798 panic("pmap_copy_page: dst page has mappings");
4799 #endif
4800
4801 KDASSERT((src & PGOFSET) == 0);
4802 KDASSERT((dst & PGOFSET) == 0);
4803
4804 /*
4805 * Clean the source page. Hold the source page's lock for
4806 * the duration of the copy so that no other mappings can
4807 * be created while we have a potentially aliased mapping.
4808 */
4809 #ifdef MULTIPROCESSOR
4810 KASSERT(uvm_page_locked_p(src_pg));
4811 #endif
4812 #ifdef PMAP_CACHE_VIVT
4813 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4814 #endif
4815
4816 /*
4817 * Map the pages into the page hook points, copy them, and purge
4818 * the cache for the appropriate page. Invalidate the TLB
4819 * as required.
4820 */
4821 *csrc_pte = L2_S_PROTO | src |
4822 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4823 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4824 PTE_SYNC(csrc_pte);
4825 *cdst_pte = L2_S_PROTO | dst |
4826 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4827 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4828 PTE_SYNC(cdst_pte);
4829 cpu_tlb_flushD_SE(csrcp);
4830 cpu_tlb_flushD_SE(cdstp);
4831 cpu_cpwait();
4832 bcopy_page(csrcp, cdstp);
4833 xscale_cache_clean_minidata();
4834 }
4835 #endif /* ARM_MMU_XSCALE == 1 */
4836
4837 /*
4838 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4839 *
4840 * Return the start and end addresses of the kernel's virtual space.
4841 * These values are setup in pmap_bootstrap and are updated as pages
4842 * are allocated.
4843 */
4844 void
4845 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4846 {
4847 *start = virtual_avail;
4848 *end = virtual_end;
4849 }
4850
4851 /*
4852 * Helper function for pmap_grow_l2_bucket()
4853 */
4854 static inline int
4855 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4856 {
4857 struct l2_bucket *l2b;
4858 pt_entry_t *ptep;
4859 paddr_t pa;
4860
4861 if (uvm.page_init_done == false) {
4862 #ifdef PMAP_STEAL_MEMORY
4863 pv_addr_t pv;
4864 pmap_boot_pagealloc(PAGE_SIZE,
4865 #ifdef PMAP_CACHE_VIPT
4866 arm_cache_prefer_mask,
4867 va & arm_cache_prefer_mask,
4868 #else
4869 0, 0,
4870 #endif
4871 &pv);
4872 pa = pv.pv_pa;
4873 #else
4874 if (uvm_page_physget(&pa) == false)
4875 return (1);
4876 #endif /* PMAP_STEAL_MEMORY */
4877 } else {
4878 struct vm_page *pg;
4879 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4880 if (pg == NULL)
4881 return (1);
4882 pa = VM_PAGE_TO_PHYS(pg);
4883 #ifdef PMAP_CACHE_VIPT
4884 #ifdef DIAGNOSTIC
4885 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4886 #endif
4887 /*
4888 * This new page must not have any mappings. Enter it via
4889 * pmap_kenter_pa and let that routine do the hard work.
4890 */
4891 KASSERT(SLIST_EMPTY(&md->pvh_list));
4892 pmap_kenter_pa(va, pa,
4893 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
4894 #endif
4895 }
4896
4897 if (pap)
4898 *pap = pa;
4899
4900 PMAPCOUNT(pt_mappings);
4901 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4902 KDASSERT(l2b != NULL);
4903
4904 ptep = &l2b->l2b_kva[l2pte_index(va)];
4905 *ptep = L2_S_PROTO | pa | cache_mode |
4906 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4907 PTE_SYNC(ptep);
4908 memset((void *)va, 0, PAGE_SIZE);
4909 return (0);
4910 }
4911
4912 /*
4913 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4914 * used by pmap_growkernel().
4915 */
4916 static inline struct l2_bucket *
4917 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4918 {
4919 struct l2_dtable *l2;
4920 struct l2_bucket *l2b;
4921 u_short l1idx;
4922 vaddr_t nva;
4923
4924 l1idx = L1_IDX(va);
4925
4926 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4927 /*
4928 * No mapping at this address, as there is
4929 * no entry in the L1 table.
4930 * Need to allocate a new l2_dtable.
4931 */
4932 nva = pmap_kernel_l2dtable_kva;
4933 if ((nva & PGOFSET) == 0) {
4934 /*
4935 * Need to allocate a backing page
4936 */
4937 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4938 return (NULL);
4939 }
4940
4941 l2 = (struct l2_dtable *)nva;
4942 nva += sizeof(struct l2_dtable);
4943
4944 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4945 /*
4946 * The new l2_dtable straddles a page boundary.
4947 * Map in another page to cover it.
4948 */
4949 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4950 return (NULL);
4951 }
4952
4953 pmap_kernel_l2dtable_kva = nva;
4954
4955 /*
4956 * Link it into the parent pmap
4957 */
4958 pm->pm_l2[L2_IDX(l1idx)] = l2;
4959 }
4960
4961 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4962
4963 /*
4964 * Fetch pointer to the L2 page table associated with the address.
4965 */
4966 if (l2b->l2b_kva == NULL) {
4967 pt_entry_t *ptep;
4968
4969 /*
4970 * No L2 page table has been allocated. Chances are, this
4971 * is because we just allocated the l2_dtable, above.
4972 */
4973 nva = pmap_kernel_l2ptp_kva;
4974 ptep = (pt_entry_t *)nva;
4975 if ((nva & PGOFSET) == 0) {
4976 /*
4977 * Need to allocate a backing page
4978 */
4979 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4980 &pmap_kernel_l2ptp_phys))
4981 return (NULL);
4982 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4983 }
4984
4985 l2->l2_occupancy++;
4986 l2b->l2b_kva = ptep;
4987 l2b->l2b_l1idx = l1idx;
4988 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4989
4990 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4991 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4992 }
4993
4994 return (l2b);
4995 }
4996
4997 vaddr_t
4998 pmap_growkernel(vaddr_t maxkvaddr)
4999 {
5000 pmap_t kpm = pmap_kernel();
5001 struct l1_ttable *l1;
5002 struct l2_bucket *l2b;
5003 pd_entry_t *pl1pd;
5004 int s;
5005
5006 if (maxkvaddr <= pmap_curmaxkvaddr)
5007 goto out; /* we are OK */
5008
5009 NPDEBUG(PDB_GROWKERN,
5010 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5011 pmap_curmaxkvaddr, maxkvaddr));
5012
5013 KDASSERT(maxkvaddr <= virtual_end);
5014
5015 /*
5016 * whoops! we need to add kernel PTPs
5017 */
5018
5019 s = splhigh(); /* to be safe */
5020 mutex_enter(kpm->pm_lock);
5021
5022 /* Map 1MB at a time */
5023 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
5024
5025 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5026 KDASSERT(l2b != NULL);
5027
5028 /* Distribute new L1 entry to all other L1s */
5029 SLIST_FOREACH(l1, &l1_list, l1_link) {
5030 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
5031 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
5032 L1_C_PROTO;
5033 PTE_SYNC(pl1pd);
5034 }
5035 }
5036
5037 /*
5038 * flush out the cache, expensive but growkernel will happen so
5039 * rarely
5040 */
5041 cpu_dcache_wbinv_all();
5042 cpu_tlb_flushD();
5043 cpu_cpwait();
5044
5045 mutex_exit(kpm->pm_lock);
5046 splx(s);
5047
5048 out:
5049 return (pmap_curmaxkvaddr);
5050 }
5051
5052 /************************ Utility routines ****************************/
5053
5054 #ifndef ARM_HAS_VBAR
5055 /*
5056 * vector_page_setprot:
5057 *
5058 * Manipulate the protection of the vector page.
5059 */
5060 void
5061 vector_page_setprot(int prot)
5062 {
5063 struct l2_bucket *l2b;
5064 pt_entry_t *ptep;
5065
5066 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5067 /*
5068 * If we are using VBAR to use the vectors in the kernel, then it's
5069 * already mapped in the kernel text so no need to anything here.
5070 */
5071 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5072 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5073 return;
5074 }
5075 #endif
5076
5077 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5078 KDASSERT(l2b != NULL);
5079
5080 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5081
5082 *ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5083 PTE_SYNC(ptep);
5084 cpu_tlb_flushD_SE(vector_page);
5085 cpu_cpwait();
5086 }
5087 #endif
5088
5089 /*
5090 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5091 * Returns true if the mapping exists, else false.
5092 *
5093 * NOTE: This function is only used by a couple of arm-specific modules.
5094 * It is not safe to take any pmap locks here, since we could be right
5095 * in the middle of debugging the pmap anyway...
5096 *
5097 * It is possible for this routine to return false even though a valid
5098 * mapping does exist. This is because we don't lock, so the metadata
5099 * state may be inconsistent.
5100 *
5101 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5102 * a "section" mapping.
5103 */
5104 bool
5105 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5106 {
5107 struct l2_dtable *l2;
5108 pd_entry_t *pl1pd, l1pd;
5109 pt_entry_t *ptep;
5110 u_short l1idx;
5111
5112 if (pm->pm_l1 == NULL)
5113 return false;
5114
5115 l1idx = L1_IDX(va);
5116 *pdp = pl1pd = pmap_l1_kva(pm) + l1idx;
5117 l1pd = *pl1pd;
5118
5119 if (l1pte_section_p(l1pd)) {
5120 *ptp = NULL;
5121 return true;
5122 }
5123
5124 if (pm->pm_l2 == NULL)
5125 return false;
5126
5127 l2 = pm->pm_l2[L2_IDX(l1idx)];
5128
5129 if (l2 == NULL ||
5130 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5131 return false;
5132 }
5133
5134 *ptp = &ptep[l2pte_index(va)];
5135 return true;
5136 }
5137
5138 bool
5139 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5140 {
5141
5142 if (pm->pm_l1 == NULL)
5143 return false;
5144
5145 *pdp = pmap_l1_kva(pm) + L1_IDX(va);
5146
5147 return true;
5148 }
5149
5150 /************************ Bootstrapping routines ****************************/
5151
5152 static void
5153 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5154 {
5155 int i;
5156
5157 l1->l1_kva = l1pt;
5158 l1->l1_domain_use_count = 0;
5159 l1->l1_domain_first = 0;
5160
5161 for (i = 0; i < PMAP_DOMAINS; i++)
5162 l1->l1_domain_free[i] = i + 1;
5163
5164 /*
5165 * Copy the kernel's L1 entries to each new L1.
5166 */
5167 if (pmap_initialized)
5168 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5169
5170 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5171 &l1->l1_physaddr) == false)
5172 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5173
5174 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5175 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5176 }
5177
5178 /*
5179 * pmap_bootstrap() is called from the board-specific initarm() routine
5180 * once the kernel L1/L2 descriptors tables have been set up.
5181 *
5182 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5183 * spread over a number of disparate files/functions.
5184 *
5185 * We are passed the following parameters
5186 * - kernel_l1pt
5187 * This is a pointer to the base of the kernel's L1 translation table.
5188 * - vstart
5189 * 1MB-aligned start of managed kernel virtual memory.
5190 * - vend
5191 * 1MB-aligned end of managed kernel virtual memory.
5192 *
5193 * We use the first parameter to build the metadata (struct l1_ttable and
5194 * struct l2_dtable) necessary to track kernel mappings.
5195 */
5196 #define PMAP_STATIC_L2_SIZE 16
5197 void
5198 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5199 {
5200 static struct l1_ttable static_l1;
5201 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5202 struct l1_ttable *l1 = &static_l1;
5203 struct l2_dtable *l2;
5204 struct l2_bucket *l2b;
5205 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5206 pmap_t pm = pmap_kernel();
5207 pd_entry_t pde;
5208 pt_entry_t *ptep;
5209 paddr_t pa;
5210 vaddr_t va;
5211 vsize_t size;
5212 int nptes, l1idx, l2idx, l2next = 0;
5213
5214 /*
5215 * Initialise the kernel pmap object
5216 */
5217 pm->pm_l1 = l1;
5218 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5219 pm->pm_activated = true;
5220 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5221
5222 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5223 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5224 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5225
5226 /*
5227 * Scan the L1 translation table created by initarm() and create
5228 * the required metadata for all valid mappings found in it.
5229 */
5230 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5231 pde = l1pt[l1idx];
5232
5233 /*
5234 * We're only interested in Coarse mappings.
5235 * pmap_extract() can deal with section mappings without
5236 * recourse to checking L2 metadata.
5237 */
5238 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5239 continue;
5240
5241 /*
5242 * Lookup the KVA of this L2 descriptor table
5243 */
5244 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5245 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5246 if (ptep == NULL) {
5247 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5248 (u_int)l1idx << L1_S_SHIFT, pa);
5249 }
5250
5251 /*
5252 * Fetch the associated L2 metadata structure.
5253 * Allocate a new one if necessary.
5254 */
5255 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5256 if (l2next == PMAP_STATIC_L2_SIZE)
5257 panic("pmap_bootstrap: out of static L2s");
5258 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5259 }
5260
5261 /*
5262 * One more L1 slot tracked...
5263 */
5264 l2->l2_occupancy++;
5265
5266 /*
5267 * Fill in the details of the L2 descriptor in the
5268 * appropriate bucket.
5269 */
5270 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5271 l2b->l2b_kva = ptep;
5272 l2b->l2b_phys = pa;
5273 l2b->l2b_l1idx = l1idx;
5274
5275 /*
5276 * Establish an initial occupancy count for this descriptor
5277 */
5278 for (l2idx = 0;
5279 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5280 l2idx++) {
5281 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5282 l2b->l2b_occupancy++;
5283 }
5284 }
5285
5286 /*
5287 * Make sure the descriptor itself has the correct cache mode.
5288 * If not, fix it, but whine about the problem. Port-meisters
5289 * should consider this a clue to fix up their initarm()
5290 * function. :)
5291 */
5292 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5293 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5294 "L2 pte @ %p\n", ptep);
5295 }
5296 }
5297
5298 /*
5299 * Ensure the primary (kernel) L1 has the correct cache mode for
5300 * a page table. Bitch if it is not correctly set.
5301 */
5302 for (va = (vaddr_t)l1pt;
5303 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5304 if (pmap_set_pt_cache_mode(l1pt, va))
5305 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5306 "primary L1 @ 0x%lx\n", va);
5307 }
5308
5309 cpu_dcache_wbinv_all();
5310 cpu_tlb_flushID();
5311 cpu_cpwait();
5312
5313 /*
5314 * now we allocate the "special" VAs which are used for tmp mappings
5315 * by the pmap (and other modules). we allocate the VAs by advancing
5316 * virtual_avail (note that there are no pages mapped at these VAs).
5317 *
5318 * Managed KVM space start from wherever initarm() tells us.
5319 */
5320 virtual_avail = vstart;
5321 virtual_end = vend;
5322
5323 #ifdef PMAP_CACHE_VIPT
5324 /*
5325 * If we have a VIPT cache, we need one page/pte per possible alias
5326 * page so we won't violate cache aliasing rules.
5327 */
5328 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5329 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5330 #else
5331 nptes = 1;
5332 #endif
5333 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5334 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5335 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5336 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5337 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5338 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5339 (void *)&msgbufaddr, NULL);
5340
5341 /*
5342 * Allocate a range of kernel virtual address space to be used
5343 * for L2 descriptor tables and metadata allocation in
5344 * pmap_growkernel().
5345 */
5346 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5347 pmap_alloc_specials(&virtual_avail,
5348 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5349 &pmap_kernel_l2ptp_kva, NULL);
5350
5351 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5352 pmap_alloc_specials(&virtual_avail,
5353 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5354 &pmap_kernel_l2dtable_kva, NULL);
5355
5356 /*
5357 * init the static-global locks and global pmap list.
5358 */
5359 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
5360
5361 /*
5362 * We can now initialise the first L1's metadata.
5363 */
5364 SLIST_INIT(&l1_list);
5365 TAILQ_INIT(&l1_lru_list);
5366 pmap_init_l1(l1, l1pt);
5367
5368 #ifndef ARM_HAS_VBAR
5369 /* Set up vector page L1 details, if necessary */
5370 if (vector_page < KERNEL_BASE) {
5371 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
5372 l2b = pmap_get_l2_bucket(pm, vector_page);
5373 KDASSERT(l2b != NULL);
5374 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5375 L1_C_DOM(pmap_domain(pm));
5376 } else
5377 pm->pm_pl1vec = NULL;
5378 #endif
5379
5380 /*
5381 * Initialize the pmap cache
5382 */
5383 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5384 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5385 LIST_INIT(&pmap_pmaps);
5386 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5387
5388 /*
5389 * Initialize the pv pool.
5390 */
5391 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5392 &pmap_bootstrap_pv_allocator, IPL_NONE);
5393
5394 /*
5395 * Initialize the L2 dtable pool and cache.
5396 */
5397 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5398 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5399
5400 /*
5401 * Initialise the L2 descriptor table pool and cache
5402 */
5403 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5404 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5405 pmap_l2ptp_ctor, NULL, NULL);
5406
5407 cpu_dcache_wbinv_all();
5408 }
5409
5410 static int
5411 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5412 {
5413 pd_entry_t *pdep, pde;
5414 pt_entry_t *ptep, pte;
5415 vaddr_t pa;
5416 int rv = 0;
5417
5418 /*
5419 * Make sure the descriptor itself has the correct cache mode
5420 */
5421 pdep = &kl1[L1_IDX(va)];
5422 pde = *pdep;
5423
5424 if (l1pte_section_p(pde)) {
5425 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
5426 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5427 *pdep = (pde & ~L1_S_CACHE_MASK) |
5428 pte_l1_s_cache_mode_pt;
5429 PTE_SYNC(pdep);
5430 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5431 rv = 1;
5432 }
5433 } else {
5434 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5435 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5436 if (ptep == NULL)
5437 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5438
5439 ptep = &ptep[l2pte_index(va)];
5440 pte = *ptep;
5441 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5442 *ptep = (pte & ~L2_S_CACHE_MASK) |
5443 pte_l2_s_cache_mode_pt;
5444 PTE_SYNC(ptep);
5445 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5446 rv = 1;
5447 }
5448 }
5449
5450 return (rv);
5451 }
5452
5453 static void
5454 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5455 {
5456 vaddr_t va = *availp;
5457 struct l2_bucket *l2b;
5458
5459 if (ptep) {
5460 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5461 if (l2b == NULL)
5462 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5463
5464 if (ptep)
5465 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5466 }
5467
5468 *vap = va;
5469 *availp = va + (PAGE_SIZE * pages);
5470 }
5471
5472 void
5473 pmap_init(void)
5474 {
5475
5476 /*
5477 * Set the available memory vars - These do not map to real memory
5478 * addresses and cannot as the physical memory is fragmented.
5479 * They are used by ps for %mem calculations.
5480 * One could argue whether this should be the entire memory or just
5481 * the memory that is useable in a user process.
5482 */
5483 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5484 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5485
5486 /*
5487 * Now we need to free enough pv_entry structures to allow us to get
5488 * the kmem_map/kmem_object allocated and inited (done after this
5489 * function is finished). to do this we allocate one bootstrap page out
5490 * of kernel_map and use it to provide an initial pool of pv_entry
5491 * structures. we never free this page.
5492 */
5493 pool_setlowat(&pmap_pv_pool,
5494 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5495
5496 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5497 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5498 UVM_KMF_WIRED|UVM_KMF_ZERO);
5499
5500 pmap_initialized = true;
5501 }
5502
5503 static vaddr_t last_bootstrap_page = 0;
5504 static void *free_bootstrap_pages = NULL;
5505
5506 static void *
5507 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5508 {
5509 extern void *pool_page_alloc(struct pool *, int);
5510 vaddr_t new_page;
5511 void *rv;
5512
5513 if (pmap_initialized)
5514 return (pool_page_alloc(pp, flags));
5515
5516 if (free_bootstrap_pages) {
5517 rv = free_bootstrap_pages;
5518 free_bootstrap_pages = *((void **)rv);
5519 return (rv);
5520 }
5521
5522 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5523 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5524
5525 KASSERT(new_page > last_bootstrap_page);
5526 last_bootstrap_page = new_page;
5527 return ((void *)new_page);
5528 }
5529
5530 static void
5531 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5532 {
5533 extern void pool_page_free(struct pool *, void *);
5534
5535 if ((vaddr_t)v <= last_bootstrap_page) {
5536 *((void **)v) = free_bootstrap_pages;
5537 free_bootstrap_pages = v;
5538 return;
5539 }
5540
5541 if (pmap_initialized) {
5542 pool_page_free(pp, v);
5543 return;
5544 }
5545 }
5546
5547 /*
5548 * pmap_postinit()
5549 *
5550 * This routine is called after the vm and kmem subsystems have been
5551 * initialised. This allows the pmap code to perform any initialisation
5552 * that can only be done one the memory allocation is in place.
5553 */
5554 void
5555 pmap_postinit(void)
5556 {
5557 extern paddr_t physical_start, physical_end;
5558 struct l2_bucket *l2b;
5559 struct l1_ttable *l1;
5560 struct pglist plist;
5561 struct vm_page *m;
5562 pd_entry_t *pl1pt;
5563 pt_entry_t *ptep, pte;
5564 vaddr_t va, eva;
5565 u_int loop, needed;
5566 int error;
5567
5568 pool_cache_setlowat(&pmap_l2ptp_cache,
5569 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5570 pool_cache_setlowat(&pmap_l2dtable_cache,
5571 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5572
5573 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5574 needed -= 1;
5575
5576 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
5577
5578 for (loop = 0; loop < needed; loop++, l1++) {
5579 /* Allocate a L1 page table */
5580 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5581 if (va == 0)
5582 panic("Cannot allocate L1 KVM");
5583
5584 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5585 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
5586 if (error)
5587 panic("Cannot allocate L1 physical pages");
5588
5589 m = TAILQ_FIRST(&plist);
5590 eva = va + L1_TABLE_SIZE;
5591 pl1pt = (pd_entry_t *)va;
5592
5593 while (m && va < eva) {
5594 paddr_t pa = VM_PAGE_TO_PHYS(m);
5595
5596 pmap_kenter_pa(va, pa,
5597 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
5598
5599 /*
5600 * Make sure the L1 descriptor table is mapped
5601 * with the cache-mode set to write-through.
5602 */
5603 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5604 KDASSERT(l2b != NULL);
5605 ptep = &l2b->l2b_kva[l2pte_index(va)];
5606 pte = *ptep;
5607 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5608 *ptep = pte;
5609 PTE_SYNC(ptep);
5610 cpu_tlb_flushD_SE(va);
5611
5612 va += PAGE_SIZE;
5613 m = TAILQ_NEXT(m, pageq.queue);
5614 }
5615
5616 #ifdef DIAGNOSTIC
5617 if (m)
5618 panic("pmap_alloc_l1pt: pglist not empty");
5619 #endif /* DIAGNOSTIC */
5620
5621 pmap_init_l1(l1, pl1pt);
5622 }
5623
5624 #ifdef DEBUG
5625 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5626 needed);
5627 #endif
5628 }
5629
5630 /*
5631 * Note that the following routines are used by board-specific initialisation
5632 * code to configure the initial kernel page tables.
5633 *
5634 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5635 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5636 * behaviour of the old pmap, and provides an easy migration path for
5637 * initial bring-up of the new pmap on existing ports. Fortunately,
5638 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5639 * will be deprecated.
5640 *
5641 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5642 * tables.
5643 */
5644
5645 /*
5646 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5647 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5648 * find them as necessary.
5649 *
5650 * Note that the data on this list MUST remain valid after initarm() returns,
5651 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5652 */
5653 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5654
5655 static vaddr_t
5656 kernel_pt_lookup(paddr_t pa)
5657 {
5658 pv_addr_t *pv;
5659
5660 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5661 #ifndef ARM32_NEW_VM_LAYOUT
5662 if (pv->pv_pa == (pa & ~PGOFSET))
5663 return (pv->pv_va | (pa & PGOFSET));
5664 #else
5665 if (pv->pv_pa == pa)
5666 return (pv->pv_va);
5667 #endif
5668 }
5669 return (0);
5670 }
5671
5672 /*
5673 * pmap_map_section:
5674 *
5675 * Create a single section mapping.
5676 */
5677 void
5678 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5679 {
5680 pd_entry_t *pde = (pd_entry_t *) l1pt;
5681 pd_entry_t fl;
5682
5683 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5684
5685 switch (cache) {
5686 case PTE_NOCACHE:
5687 default:
5688 fl = 0;
5689 break;
5690
5691 case PTE_CACHE:
5692 fl = pte_l1_s_cache_mode;
5693 break;
5694
5695 case PTE_PAGETABLE:
5696 fl = pte_l1_s_cache_mode_pt;
5697 break;
5698 }
5699
5700 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5701 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5702 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5703 }
5704
5705 /*
5706 * pmap_map_entry:
5707 *
5708 * Create a single page mapping.
5709 */
5710 void
5711 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5712 {
5713 pd_entry_t *pde = (pd_entry_t *) l1pt;
5714 pt_entry_t fl;
5715 pt_entry_t *pte;
5716
5717 KASSERT(((va | pa) & PGOFSET) == 0);
5718
5719 switch (cache) {
5720 case PTE_NOCACHE:
5721 default:
5722 fl = 0;
5723 break;
5724
5725 case PTE_CACHE:
5726 fl = pte_l2_s_cache_mode;
5727 break;
5728
5729 case PTE_PAGETABLE:
5730 fl = pte_l2_s_cache_mode_pt;
5731 break;
5732 }
5733
5734 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5735 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5736
5737 #ifndef ARM32_NEW_VM_LAYOUT
5738 pte = (pt_entry_t *)
5739 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5740 #else
5741 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5742 #endif
5743 if (pte == NULL)
5744 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5745
5746 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5747 #ifndef ARM32_NEW_VM_LAYOUT
5748 pte += (va >> PGSHIFT) & 0x3ff;
5749 #else
5750 pte += l2pte_index(va);
5751 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5752 #endif
5753 *pte = fl;
5754 PTE_SYNC(pte);
5755 }
5756
5757 /*
5758 * pmap_link_l2pt:
5759 *
5760 * Link the L2 page table specified by "l2pv" into the L1
5761 * page table at the slot for "va".
5762 */
5763 void
5764 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5765 {
5766 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5767 u_int slot = va >> L1_S_SHIFT;
5768
5769 #ifndef ARM32_NEW_VM_LAYOUT
5770 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5771 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5772 #endif
5773
5774 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5775
5776 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5777 #ifdef ARM32_NEW_VM_LAYOUT
5778 PTE_SYNC(&pde[slot]);
5779 #else
5780 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5781 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5782 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5783 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5784 #endif
5785
5786 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5787 }
5788
5789 /*
5790 * pmap_map_chunk:
5791 *
5792 * Map a chunk of memory using the most efficient mappings
5793 * possible (section, large page, small page) into the
5794 * provided L1 and L2 tables at the specified virtual address.
5795 */
5796 vsize_t
5797 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5798 int prot, int cache)
5799 {
5800 pd_entry_t *pdep = (pd_entry_t *) l1pt;
5801 pt_entry_t *pte, f1, f2s, f2l;
5802 vsize_t resid;
5803 int i;
5804
5805 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5806
5807 if (l1pt == 0)
5808 panic("pmap_map_chunk: no L1 table provided");
5809
5810 #ifdef VERBOSE_INIT_ARM
5811 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5812 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5813 #endif
5814
5815 switch (cache) {
5816 case PTE_NOCACHE:
5817 default:
5818 f1 = 0;
5819 f2l = 0;
5820 f2s = 0;
5821 break;
5822
5823 case PTE_CACHE:
5824 f1 = pte_l1_s_cache_mode;
5825 f2l = pte_l2_l_cache_mode;
5826 f2s = pte_l2_s_cache_mode;
5827 break;
5828
5829 case PTE_PAGETABLE:
5830 f1 = pte_l1_s_cache_mode_pt;
5831 f2l = pte_l2_l_cache_mode_pt;
5832 f2s = pte_l2_s_cache_mode_pt;
5833 break;
5834 }
5835
5836 size = resid;
5837
5838 while (resid > 0) {
5839 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5840 /* See if we can use a supersection mapping. */
5841 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
5842 /* Supersection are always domain 0 */
5843 pd_entry_t pde = L1_SS_PROTO | pa |
5844 L1_S_PROT(PTE_KERNEL, prot) | f1;
5845 #ifdef VERBOSE_INIT_ARM
5846 printf("sS");
5847 #endif
5848 for (size_t s = va >> L1_S_SHIFT,
5849 e = s + L1_SS_SIZE / L1_S_SIZE;
5850 s < e;
5851 s++) {
5852 pdep[s] = pde;
5853 PTE_SYNC(&pdep[s]);
5854 }
5855 va += L1_SS_SIZE;
5856 pa += L1_SS_SIZE;
5857 resid -= L1_SS_SIZE;
5858 continue;
5859 }
5860 #endif
5861 /* See if we can use a section mapping. */
5862 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5863 #ifdef VERBOSE_INIT_ARM
5864 printf("S");
5865 #endif
5866 pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5867 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5868 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5869 PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
5870 va += L1_S_SIZE;
5871 pa += L1_S_SIZE;
5872 resid -= L1_S_SIZE;
5873 continue;
5874 }
5875
5876 /*
5877 * Ok, we're going to use an L2 table. Make sure
5878 * one is actually in the corresponding L1 slot
5879 * for the current VA.
5880 */
5881 if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5882 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5883
5884 #ifndef ARM32_NEW_VM_LAYOUT
5885 pte = (pt_entry_t *)
5886 kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
5887 #else
5888 pte = (pt_entry_t *) kernel_pt_lookup(
5889 pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
5890 #endif
5891 if (pte == NULL)
5892 panic("pmap_map_chunk: can't find L2 table for VA"
5893 "0x%08lx", va);
5894
5895 /* See if we can use a L2 large page mapping. */
5896 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5897 #ifdef VERBOSE_INIT_ARM
5898 printf("L");
5899 #endif
5900 for (i = 0; i < 16; i++) {
5901 #ifndef ARM32_NEW_VM_LAYOUT
5902 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5903 L2_L_PROTO | pa |
5904 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5905 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5906 #else
5907 pte[l2pte_index(va) + i] =
5908 L2_L_PROTO | pa |
5909 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5910 PTE_SYNC(&pte[l2pte_index(va) + i]);
5911 #endif
5912 }
5913 va += L2_L_SIZE;
5914 pa += L2_L_SIZE;
5915 resid -= L2_L_SIZE;
5916 continue;
5917 }
5918
5919 /* Use a small page mapping. */
5920 #ifdef VERBOSE_INIT_ARM
5921 printf("P");
5922 #endif
5923 #ifndef ARM32_NEW_VM_LAYOUT
5924 pte[(va >> PGSHIFT) & 0x3ff] =
5925 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5926 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5927 #else
5928 pte[l2pte_index(va)] =
5929 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5930 PTE_SYNC(&pte[l2pte_index(va)]);
5931 #endif
5932 va += PAGE_SIZE;
5933 pa += PAGE_SIZE;
5934 resid -= PAGE_SIZE;
5935 }
5936 #ifdef VERBOSE_INIT_ARM
5937 printf("\n");
5938 #endif
5939 return (size);
5940 }
5941
5942 /********************** Static device map routines ***************************/
5943
5944 static const struct pmap_devmap *pmap_devmap_table;
5945
5946 /*
5947 * Register the devmap table. This is provided in case early console
5948 * initialization needs to register mappings created by bootstrap code
5949 * before pmap_devmap_bootstrap() is called.
5950 */
5951 void
5952 pmap_devmap_register(const struct pmap_devmap *table)
5953 {
5954
5955 pmap_devmap_table = table;
5956 }
5957
5958 /*
5959 * Map all of the static regions in the devmap table, and remember
5960 * the devmap table so other parts of the kernel can look up entries
5961 * later.
5962 */
5963 void
5964 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5965 {
5966 int i;
5967
5968 pmap_devmap_table = table;
5969
5970 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5971 #ifdef VERBOSE_INIT_ARM
5972 printf("devmap: %08lx -> %08lx @ %08lx\n",
5973 pmap_devmap_table[i].pd_pa,
5974 pmap_devmap_table[i].pd_pa +
5975 pmap_devmap_table[i].pd_size - 1,
5976 pmap_devmap_table[i].pd_va);
5977 #endif
5978 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5979 pmap_devmap_table[i].pd_pa,
5980 pmap_devmap_table[i].pd_size,
5981 pmap_devmap_table[i].pd_prot,
5982 pmap_devmap_table[i].pd_cache);
5983 }
5984 }
5985
5986 const struct pmap_devmap *
5987 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5988 {
5989 uint64_t endpa;
5990 int i;
5991
5992 if (pmap_devmap_table == NULL)
5993 return (NULL);
5994
5995 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5996
5997 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5998 if (pa >= pmap_devmap_table[i].pd_pa &&
5999 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6000 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6001 return (&pmap_devmap_table[i]);
6002 }
6003
6004 return (NULL);
6005 }
6006
6007 const struct pmap_devmap *
6008 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6009 {
6010 int i;
6011
6012 if (pmap_devmap_table == NULL)
6013 return (NULL);
6014
6015 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6016 if (va >= pmap_devmap_table[i].pd_va &&
6017 va + size - 1 <= pmap_devmap_table[i].pd_va +
6018 pmap_devmap_table[i].pd_size - 1)
6019 return (&pmap_devmap_table[i]);
6020 }
6021
6022 return (NULL);
6023 }
6024
6025 /********************** PTE initialization routines **************************/
6026
6027 /*
6028 * These routines are called when the CPU type is identified to set up
6029 * the PTE prototypes, cache modes, etc.
6030 *
6031 * The variables are always here, just in case modules need to reference
6032 * them (though, they shouldn't).
6033 */
6034
6035 pt_entry_t pte_l1_s_cache_mode;
6036 pt_entry_t pte_l1_s_wc_mode;
6037 pt_entry_t pte_l1_s_cache_mode_pt;
6038 pt_entry_t pte_l1_s_cache_mask;
6039
6040 pt_entry_t pte_l2_l_cache_mode;
6041 pt_entry_t pte_l2_l_wc_mode;
6042 pt_entry_t pte_l2_l_cache_mode_pt;
6043 pt_entry_t pte_l2_l_cache_mask;
6044
6045 pt_entry_t pte_l2_s_cache_mode;
6046 pt_entry_t pte_l2_s_wc_mode;
6047 pt_entry_t pte_l2_s_cache_mode_pt;
6048 pt_entry_t pte_l2_s_cache_mask;
6049
6050 pt_entry_t pte_l1_s_prot_u;
6051 pt_entry_t pte_l1_s_prot_w;
6052 pt_entry_t pte_l1_s_prot_ro;
6053 pt_entry_t pte_l1_s_prot_mask;
6054
6055 pt_entry_t pte_l2_s_prot_u;
6056 pt_entry_t pte_l2_s_prot_w;
6057 pt_entry_t pte_l2_s_prot_ro;
6058 pt_entry_t pte_l2_s_prot_mask;
6059
6060 pt_entry_t pte_l2_l_prot_u;
6061 pt_entry_t pte_l2_l_prot_w;
6062 pt_entry_t pte_l2_l_prot_ro;
6063 pt_entry_t pte_l2_l_prot_mask;
6064
6065 pt_entry_t pte_l1_ss_proto;
6066 pt_entry_t pte_l1_s_proto;
6067 pt_entry_t pte_l1_c_proto;
6068 pt_entry_t pte_l2_s_proto;
6069
6070 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6071 void (*pmap_zero_page_func)(paddr_t);
6072
6073 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6074 void
6075 pmap_pte_init_generic(void)
6076 {
6077
6078 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6079 pte_l1_s_wc_mode = L1_S_B;
6080 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6081
6082 pte_l2_l_cache_mode = L2_B|L2_C;
6083 pte_l2_l_wc_mode = L2_B;
6084 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6085
6086 pte_l2_s_cache_mode = L2_B|L2_C;
6087 pte_l2_s_wc_mode = L2_B;
6088 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6089
6090 /*
6091 * If we have a write-through cache, set B and C. If
6092 * we have a write-back cache, then we assume setting
6093 * only C will make those pages write-through (except for those
6094 * Cortex CPUs which can read the L1 caches).
6095 */
6096 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6097 #if ARM_MMU_V7 > 0
6098 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6099 #endif
6100 #if ARM_MMU_V6 > 0
6101 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6102 #endif
6103 || false) {
6104 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6105 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6106 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6107 } else {
6108 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6109 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6110 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6111 }
6112
6113 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6114 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6115 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6116 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6117
6118 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6119 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6120 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6121 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6122
6123 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6124 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6125 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6126 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6127
6128 pte_l1_ss_proto = L1_SS_PROTO_generic;
6129 pte_l1_s_proto = L1_S_PROTO_generic;
6130 pte_l1_c_proto = L1_C_PROTO_generic;
6131 pte_l2_s_proto = L2_S_PROTO_generic;
6132
6133 pmap_copy_page_func = pmap_copy_page_generic;
6134 pmap_zero_page_func = pmap_zero_page_generic;
6135 }
6136
6137 #if defined(CPU_ARM8)
6138 void
6139 pmap_pte_init_arm8(void)
6140 {
6141
6142 /*
6143 * ARM8 is compatible with generic, but we need to use
6144 * the page tables uncached.
6145 */
6146 pmap_pte_init_generic();
6147
6148 pte_l1_s_cache_mode_pt = 0;
6149 pte_l2_l_cache_mode_pt = 0;
6150 pte_l2_s_cache_mode_pt = 0;
6151 }
6152 #endif /* CPU_ARM8 */
6153
6154 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6155 void
6156 pmap_pte_init_arm9(void)
6157 {
6158
6159 /*
6160 * ARM9 is compatible with generic, but we want to use
6161 * write-through caching for now.
6162 */
6163 pmap_pte_init_generic();
6164
6165 pte_l1_s_cache_mode = L1_S_C;
6166 pte_l2_l_cache_mode = L2_C;
6167 pte_l2_s_cache_mode = L2_C;
6168
6169 pte_l1_s_wc_mode = L1_S_B;
6170 pte_l2_l_wc_mode = L2_B;
6171 pte_l2_s_wc_mode = L2_B;
6172
6173 pte_l1_s_cache_mode_pt = L1_S_C;
6174 pte_l2_l_cache_mode_pt = L2_C;
6175 pte_l2_s_cache_mode_pt = L2_C;
6176 }
6177 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6178 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6179
6180 #if defined(CPU_ARM10)
6181 void
6182 pmap_pte_init_arm10(void)
6183 {
6184
6185 /*
6186 * ARM10 is compatible with generic, but we want to use
6187 * write-through caching for now.
6188 */
6189 pmap_pte_init_generic();
6190
6191 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6192 pte_l2_l_cache_mode = L2_B | L2_C;
6193 pte_l2_s_cache_mode = L2_B | L2_C;
6194
6195 pte_l1_s_cache_mode = L1_S_B;
6196 pte_l2_l_cache_mode = L2_B;
6197 pte_l2_s_cache_mode = L2_B;
6198
6199 pte_l1_s_cache_mode_pt = L1_S_C;
6200 pte_l2_l_cache_mode_pt = L2_C;
6201 pte_l2_s_cache_mode_pt = L2_C;
6202
6203 }
6204 #endif /* CPU_ARM10 */
6205
6206 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6207 void
6208 pmap_pte_init_arm11(void)
6209 {
6210
6211 /*
6212 * ARM11 is compatible with generic, but we want to use
6213 * write-through caching for now.
6214 */
6215 pmap_pte_init_generic();
6216
6217 pte_l1_s_cache_mode = L1_S_C;
6218 pte_l2_l_cache_mode = L2_C;
6219 pte_l2_s_cache_mode = L2_C;
6220
6221 pte_l1_s_wc_mode = L1_S_B;
6222 pte_l2_l_wc_mode = L2_B;
6223 pte_l2_s_wc_mode = L2_B;
6224
6225 pte_l1_s_cache_mode_pt = L1_S_C;
6226 pte_l2_l_cache_mode_pt = L2_C;
6227 pte_l2_s_cache_mode_pt = L2_C;
6228 }
6229 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6230
6231 #if ARM_MMU_SA1 == 1
6232 void
6233 pmap_pte_init_sa1(void)
6234 {
6235
6236 /*
6237 * The StrongARM SA-1 cache does not have a write-through
6238 * mode. So, do the generic initialization, then reset
6239 * the page table cache mode to B=1,C=1, and note that
6240 * the PTEs need to be sync'd.
6241 */
6242 pmap_pte_init_generic();
6243
6244 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6245 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6246 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6247
6248 pmap_needs_pte_sync = 1;
6249 }
6250 #endif /* ARM_MMU_SA1 == 1*/
6251
6252 #if ARM_MMU_XSCALE == 1
6253 #if (ARM_NMMUS > 1)
6254 static u_int xscale_use_minidata;
6255 #endif
6256
6257 void
6258 pmap_pte_init_xscale(void)
6259 {
6260 uint32_t auxctl;
6261 int write_through = 0;
6262
6263 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6264 pte_l1_s_wc_mode = L1_S_B;
6265 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6266
6267 pte_l2_l_cache_mode = L2_B|L2_C;
6268 pte_l2_l_wc_mode = L2_B;
6269 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6270
6271 pte_l2_s_cache_mode = L2_B|L2_C;
6272 pte_l2_s_wc_mode = L2_B;
6273 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6274
6275 pte_l1_s_cache_mode_pt = L1_S_C;
6276 pte_l2_l_cache_mode_pt = L2_C;
6277 pte_l2_s_cache_mode_pt = L2_C;
6278
6279 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6280 /*
6281 * The XScale core has an enhanced mode where writes that
6282 * miss the cache cause a cache line to be allocated. This
6283 * is significantly faster than the traditional, write-through
6284 * behavior of this case.
6285 */
6286 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6287 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6288 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6289 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6290
6291 #ifdef XSCALE_CACHE_WRITE_THROUGH
6292 /*
6293 * Some versions of the XScale core have various bugs in
6294 * their cache units, the work-around for which is to run
6295 * the cache in write-through mode. Unfortunately, this
6296 * has a major (negative) impact on performance. So, we
6297 * go ahead and run fast-and-loose, in the hopes that we
6298 * don't line up the planets in a way that will trip the
6299 * bugs.
6300 *
6301 * However, we give you the option to be slow-but-correct.
6302 */
6303 write_through = 1;
6304 #elif defined(XSCALE_CACHE_WRITE_BACK)
6305 /* force write back cache mode */
6306 write_through = 0;
6307 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6308 /*
6309 * Intel PXA2[15]0 processors are known to have a bug in
6310 * write-back cache on revision 4 and earlier (stepping
6311 * A[01] and B[012]). Fixed for C0 and later.
6312 */
6313 {
6314 uint32_t id, type;
6315
6316 id = cpufunc_id();
6317 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6318
6319 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6320 if ((id & CPU_ID_REVISION_MASK) < 5) {
6321 /* write through for stepping A0-1 and B0-2 */
6322 write_through = 1;
6323 }
6324 }
6325 }
6326 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6327
6328 if (write_through) {
6329 pte_l1_s_cache_mode = L1_S_C;
6330 pte_l2_l_cache_mode = L2_C;
6331 pte_l2_s_cache_mode = L2_C;
6332 }
6333
6334 #if (ARM_NMMUS > 1)
6335 xscale_use_minidata = 1;
6336 #endif
6337
6338 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6339 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6340 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6341 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6342
6343 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6344 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6345 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6346 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6347
6348 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6349 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6350 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6351 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6352
6353 pte_l1_ss_proto = L1_SS_PROTO_xscale;
6354 pte_l1_s_proto = L1_S_PROTO_xscale;
6355 pte_l1_c_proto = L1_C_PROTO_xscale;
6356 pte_l2_s_proto = L2_S_PROTO_xscale;
6357
6358 pmap_copy_page_func = pmap_copy_page_xscale;
6359 pmap_zero_page_func = pmap_zero_page_xscale;
6360
6361 /*
6362 * Disable ECC protection of page table access, for now.
6363 */
6364 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6365 auxctl &= ~XSCALE_AUXCTL_P;
6366 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6367 }
6368
6369 /*
6370 * xscale_setup_minidata:
6371 *
6372 * Set up the mini-data cache clean area. We require the
6373 * caller to allocate the right amount of physically and
6374 * virtually contiguous space.
6375 */
6376 void
6377 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6378 {
6379 extern vaddr_t xscale_minidata_clean_addr;
6380 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6381 pd_entry_t *pde = (pd_entry_t *) l1pt;
6382 pt_entry_t *pte;
6383 vsize_t size;
6384 uint32_t auxctl;
6385
6386 xscale_minidata_clean_addr = va;
6387
6388 /* Round it to page size. */
6389 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6390
6391 for (; size != 0;
6392 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6393 #ifndef ARM32_NEW_VM_LAYOUT
6394 pte = (pt_entry_t *)
6395 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6396 #else
6397 pte = (pt_entry_t *) kernel_pt_lookup(
6398 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6399 #endif
6400 if (pte == NULL)
6401 panic("xscale_setup_minidata: can't find L2 table for "
6402 "VA 0x%08lx", va);
6403 #ifndef ARM32_NEW_VM_LAYOUT
6404 pte[(va >> PGSHIFT) & 0x3ff] =
6405 #else
6406 pte[l2pte_index(va)] =
6407 #endif
6408 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6409 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6410 }
6411
6412 /*
6413 * Configure the mini-data cache for write-back with
6414 * read/write-allocate.
6415 *
6416 * NOTE: In order to reconfigure the mini-data cache, we must
6417 * make sure it contains no valid data! In order to do that,
6418 * we must issue a global data cache invalidate command!
6419 *
6420 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6421 * THIS IS VERY IMPORTANT!
6422 */
6423
6424 /* Invalidate data and mini-data. */
6425 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6426 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6427 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6428 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6429 }
6430
6431 /*
6432 * Change the PTEs for the specified kernel mappings such that they
6433 * will use the mini data cache instead of the main data cache.
6434 */
6435 void
6436 pmap_uarea(vaddr_t va)
6437 {
6438 struct l2_bucket *l2b;
6439 pt_entry_t *ptep, *sptep, pte;
6440 vaddr_t next_bucket, eva;
6441
6442 #if (ARM_NMMUS > 1)
6443 if (xscale_use_minidata == 0)
6444 return;
6445 #endif
6446
6447 eva = va + USPACE;
6448
6449 while (va < eva) {
6450 next_bucket = L2_NEXT_BUCKET(va);
6451 if (next_bucket > eva)
6452 next_bucket = eva;
6453
6454 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6455 KDASSERT(l2b != NULL);
6456
6457 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6458
6459 while (va < next_bucket) {
6460 pte = *ptep;
6461 if (!l2pte_minidata(pte)) {
6462 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6463 cpu_tlb_flushD_SE(va);
6464 *ptep = pte & ~L2_B;
6465 }
6466 ptep++;
6467 va += PAGE_SIZE;
6468 }
6469 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6470 }
6471 cpu_cpwait();
6472 }
6473 #endif /* ARM_MMU_XSCALE == 1 */
6474
6475
6476 #if defined(CPU_ARM11MPCORE)
6477
6478 void
6479 pmap_pte_init_arm11mpcore(void)
6480 {
6481
6482 /* cache mode is controlled by 5 bits (B, C, TEX) */
6483 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6484 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6485 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6486 /* use extended small page (without APn, with TEX) */
6487 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6488 #else
6489 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6490 #endif
6491
6492 /* write-back, write-allocate */
6493 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6494 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6495 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6496 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6497 #else
6498 /* no TEX. read-allocate */
6499 pte_l2_s_cache_mode = L2_C | L2_B;
6500 #endif
6501 /*
6502 * write-back, write-allocate for page tables.
6503 */
6504 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6505 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6506 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6507 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6508 #else
6509 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6510 #endif
6511
6512 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6513 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6514 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6515 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6516
6517 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6518 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6519 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6520 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6521 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6522
6523 #else
6524 /* with AP[0..3] */
6525 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6526 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6527 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6528 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6529 #endif
6530
6531 #ifdef ARM11MPCORE_COMPAT_MMU
6532 /* with AP[0..3] */
6533 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6534 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6535 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6536 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6537
6538 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6539 pte_l1_s_proto = L1_S_PROTO_armv6;
6540 pte_l1_c_proto = L1_C_PROTO_armv6;
6541 pte_l2_s_proto = L2_S_PROTO_armv6c;
6542 #else
6543 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6544 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6545 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6546 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6547
6548 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6549 pte_l1_s_proto = L1_S_PROTO_armv6;
6550 pte_l1_c_proto = L1_C_PROTO_armv6;
6551 pte_l2_s_proto = L2_S_PROTO_armv6n;
6552 #endif
6553
6554 pmap_copy_page_func = pmap_copy_page_generic;
6555 pmap_zero_page_func = pmap_zero_page_generic;
6556 pmap_needs_pte_sync = 1;
6557 }
6558 #endif /* CPU_ARM11MPCORE */
6559
6560
6561 #if ARM_MMU_V7 == 1
6562 void
6563 pmap_pte_init_armv7(void)
6564 {
6565 /*
6566 * The ARMv7-A MMU is mostly compatible with generic. If the
6567 * AP field is zero, that now means "no access" rather than
6568 * read-only. The prototypes are a little different because of
6569 * the XN bit.
6570 */
6571 pmap_pte_init_generic();
6572
6573 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6574 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6575 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6576
6577 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
6578 /*
6579 * write-back, no write-allocate, shareable for normal pages.
6580 */
6581 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
6582 pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
6583 pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
6584
6585 /*
6586 * write-back, no write-allocate, shareable for page tables.
6587 */
6588 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
6589 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6590 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6591 }
6592
6593 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6594 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6595 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6596 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6597
6598 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6599 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6600 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6601 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6602
6603 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6604 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6605 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6606 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6607
6608 pte_l1_ss_proto = L1_SS_PROTO_armv7;
6609 pte_l1_s_proto = L1_S_PROTO_armv7;
6610 pte_l1_c_proto = L1_C_PROTO_armv7;
6611 pte_l2_s_proto = L2_S_PROTO_armv7;
6612
6613 pmap_needs_pte_sync = 1;
6614 }
6615 #endif /* ARM_MMU_V7 */
6616
6617 /*
6618 * return the PA of the current L1 table, for use when handling a crash dump
6619 */
6620 uint32_t pmap_kernel_L1_addr(void)
6621 {
6622 return pmap_kernel()->pm_l1->l1_physaddr;
6623 }
6624
6625 #if defined(DDB)
6626 /*
6627 * A couple of ddb-callable functions for dumping pmaps
6628 */
6629 void pmap_dump_all(void);
6630 void pmap_dump(pmap_t);
6631
6632 void
6633 pmap_dump_all(void)
6634 {
6635 pmap_t pm;
6636
6637 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6638 if (pm == pmap_kernel())
6639 continue;
6640 pmap_dump(pm);
6641 printf("\n");
6642 }
6643 }
6644
6645 static pt_entry_t ncptes[64];
6646 static void pmap_dump_ncpg(pmap_t);
6647
6648 void
6649 pmap_dump(pmap_t pm)
6650 {
6651 struct l2_dtable *l2;
6652 struct l2_bucket *l2b;
6653 pt_entry_t *ptep, pte;
6654 vaddr_t l2_va, l2b_va, va;
6655 int i, j, k, occ, rows = 0;
6656
6657 if (pm == pmap_kernel())
6658 printf("pmap_kernel (%p): ", pm);
6659 else
6660 printf("user pmap (%p): ", pm);
6661
6662 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
6663
6664 l2_va = 0;
6665 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6666 l2 = pm->pm_l2[i];
6667
6668 if (l2 == NULL || l2->l2_occupancy == 0)
6669 continue;
6670
6671 l2b_va = l2_va;
6672 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6673 l2b = &l2->l2_bucket[j];
6674
6675 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6676 continue;
6677
6678 ptep = l2b->l2b_kva;
6679
6680 for (k = 0; k < 256 && ptep[k] == 0; k++)
6681 ;
6682
6683 k &= ~63;
6684 occ = l2b->l2b_occupancy;
6685 va = l2b_va + (k * 4096);
6686 for (; k < 256; k++, va += 0x1000) {
6687 char ch = ' ';
6688 if ((k % 64) == 0) {
6689 if ((rows % 8) == 0) {
6690 printf(
6691 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6692 }
6693 printf("%08lx: ", va);
6694 }
6695
6696 ncptes[k & 63] = 0;
6697 pte = ptep[k];
6698 if (pte == 0) {
6699 ch = '.';
6700 } else {
6701 occ--;
6702 switch (pte & 0x0c) {
6703 case 0x00:
6704 ch = 'D'; /* No cache No buff */
6705 break;
6706 case 0x04:
6707 ch = 'B'; /* No cache buff */
6708 break;
6709 case 0x08:
6710 if (pte & 0x40)
6711 ch = 'm';
6712 else
6713 ch = 'C'; /* Cache No buff */
6714 break;
6715 case 0x0c:
6716 ch = 'F'; /* Cache Buff */
6717 break;
6718 }
6719
6720 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6721 ch += 0x20;
6722
6723 if ((pte & 0xc) == 0)
6724 ncptes[k & 63] = pte;
6725 }
6726
6727 if ((k % 64) == 63) {
6728 rows++;
6729 printf("%c\n", ch);
6730 pmap_dump_ncpg(pm);
6731 if (occ == 0)
6732 break;
6733 } else
6734 printf("%c", ch);
6735 }
6736 }
6737 }
6738 }
6739
6740 static void
6741 pmap_dump_ncpg(pmap_t pm)
6742 {
6743 struct vm_page *pg;
6744 struct vm_page_md *md;
6745 struct pv_entry *pv;
6746 int i;
6747
6748 for (i = 0; i < 63; i++) {
6749 if (ncptes[i] == 0)
6750 continue;
6751
6752 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6753 if (pg == NULL)
6754 continue;
6755 md = VM_PAGE_TO_MD(pg);
6756
6757 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6758 VM_PAGE_TO_PHYS(pg),
6759 md->krw_mappings, md->kro_mappings,
6760 md->urw_mappings, md->uro_mappings);
6761
6762 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6763 printf(" %c va 0x%08lx, flags 0x%x\n",
6764 (pm == pv->pv_pmap) ? '*' : ' ',
6765 pv->pv_va, pv->pv_flags);
6766 }
6767 }
6768 }
6769 #endif
6770
6771 #ifdef PMAP_STEAL_MEMORY
6772 void
6773 pmap_boot_pageadd(pv_addr_t *newpv)
6774 {
6775 pv_addr_t *pv, *npv;
6776
6777 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6778 if (newpv->pv_pa < pv->pv_va) {
6779 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6780 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6781 newpv->pv_size += pv->pv_size;
6782 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6783 }
6784 pv = NULL;
6785 } else {
6786 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6787 pv = npv) {
6788 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6789 KASSERT(pv->pv_pa < newpv->pv_pa);
6790 if (newpv->pv_pa > npv->pv_pa)
6791 continue;
6792 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6793 pv->pv_size += newpv->pv_size;
6794 return;
6795 }
6796 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6797 break;
6798 newpv->pv_size += npv->pv_size;
6799 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6800 SLIST_REMOVE_AFTER(newpv, pv_list);
6801 return;
6802 }
6803 }
6804 }
6805
6806 if (pv) {
6807 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6808 } else {
6809 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6810 }
6811 }
6812
6813 void
6814 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6815 pv_addr_t *rpv)
6816 {
6817 pv_addr_t *pv, **pvp;
6818 struct vm_physseg *ps;
6819 size_t i;
6820
6821 KASSERT(amount & PGOFSET);
6822 KASSERT((mask & PGOFSET) == 0);
6823 KASSERT((match & PGOFSET) == 0);
6824 KASSERT(amount != 0);
6825
6826 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6827 (pv = *pvp) != NULL;
6828 pvp = &SLIST_NEXT(pv, pv_list)) {
6829 pv_addr_t *newpv;
6830 psize_t off;
6831 /*
6832 * If this entry is too small to satify the request...
6833 */
6834 KASSERT(pv->pv_size > 0);
6835 if (pv->pv_size < amount)
6836 continue;
6837
6838 for (off = 0; off <= mask; off += PAGE_SIZE) {
6839 if (((pv->pv_pa + off) & mask) == match
6840 && off + amount <= pv->pv_size)
6841 break;
6842 }
6843 if (off > mask)
6844 continue;
6845
6846 rpv->pv_va = pv->pv_va + off;
6847 rpv->pv_pa = pv->pv_pa + off;
6848 rpv->pv_size = amount;
6849 pv->pv_size -= amount;
6850 if (pv->pv_size == 0) {
6851 KASSERT(off == 0);
6852 KASSERT((vaddr_t) pv == rpv->pv_va);
6853 *pvp = SLIST_NEXT(pv, pv_list);
6854 } else if (off == 0) {
6855 KASSERT((vaddr_t) pv == rpv->pv_va);
6856 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6857 *newpv = *pv;
6858 newpv->pv_pa += amount;
6859 newpv->pv_va += amount;
6860 *pvp = newpv;
6861 } else if (off < pv->pv_size) {
6862 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6863 *newpv = *pv;
6864 newpv->pv_size -= off;
6865 newpv->pv_pa += off + amount;
6866 newpv->pv_va += off + amount;
6867
6868 SLIST_NEXT(pv, pv_list) = newpv;
6869 pv->pv_size = off;
6870 } else {
6871 KASSERT((vaddr_t) pv != rpv->pv_va);
6872 }
6873 memset((void *)rpv->pv_va, 0, amount);
6874 return;
6875 }
6876
6877 if (vm_nphysseg == 0)
6878 panic("pmap_boot_pagealloc: couldn't allocate memory");
6879
6880 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6881 (pv = *pvp) != NULL;
6882 pvp = &SLIST_NEXT(pv, pv_list)) {
6883 if (SLIST_NEXT(pv, pv_list) == NULL)
6884 break;
6885 }
6886 KASSERT(mask == 0);
6887 for (i = 0; i < vm_nphysseg; i++) {
6888 ps = VM_PHYSMEM_PTR(i);
6889 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6890 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6891 rpv->pv_va = pv->pv_va;
6892 rpv->pv_pa = pv->pv_pa;
6893 rpv->pv_size = amount;
6894 *pvp = NULL;
6895 pmap_map_chunk(kernel_l1pt.pv_va,
6896 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6897 ptoa(ps->avail_start),
6898 amount - pv->pv_size,
6899 VM_PROT_READ|VM_PROT_WRITE,
6900 PTE_CACHE);
6901 ps->avail_start += atop(amount - pv->pv_size);
6902 /*
6903 * If we consumed the entire physseg, remove it.
6904 */
6905 if (ps->avail_start == ps->avail_end) {
6906 for (--vm_nphysseg; i < vm_nphysseg; i++)
6907 VM_PHYSMEM_PTR_SWAP(i, i + 1);
6908 }
6909 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6910 return;
6911 }
6912 }
6913
6914 panic("pmap_boot_pagealloc: couldn't allocate memory");
6915 }
6916
6917 vaddr_t
6918 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6919 {
6920 pv_addr_t pv;
6921
6922 pmap_boot_pagealloc(size, 0, 0, &pv);
6923
6924 return pv.pv_va;
6925 }
6926 #endif /* PMAP_STEAL_MEMORY */
6927
6928 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6929 {
6930 sysctl_createv(clog, 0, NULL, NULL,
6931 CTLFLAG_PERMANENT,
6932 CTLTYPE_NODE, "machdep", NULL,
6933 NULL, 0, NULL, 0,
6934 CTL_MACHDEP, CTL_EOL);
6935
6936 sysctl_createv(clog, 0, NULL, NULL,
6937 CTLFLAG_PERMANENT,
6938 CTLTYPE_INT, "kmpages",
6939 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6940 NULL, 0, &pmap_kmpages, 0,
6941 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6942 }
6943
6944 #ifdef PMAP_NEED_ALLOC_POOLPAGE
6945 struct vm_page *
6946 arm_pmap_alloc_poolpage(int flags)
6947 {
6948 /*
6949 * On some systems, only some pages may be "coherent" for dma and we
6950 * want to prefer those for pool pages (think mbufs) but fallback to
6951 * any page if none is available.
6952 */
6953 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
6954 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
6955 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
6956 }
6957
6958 return uvm_pagealloc(NULL, 0, NULL, flags);
6959 }
6960 #endif
6961