pmap.c revision 1.26 1 /* $NetBSD: pmap.c,v 1.26 2001/10/18 16:50:30 rearnsha Exp $ */
2
3 /*
4 * Copyright (c) 2001 Richard Earnshaw
5 * Copyright (c) 2001 Christopher Gilbert
6 * All rights reserved.
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the company nor the name of the author may be used to
14 * endorse or promote products derived from this software without specific
15 * prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
21 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*-
31 * Copyright (c) 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the NetBSD
48 * Foundation, Inc. and its contributors.
49 * 4. Neither the name of The NetBSD Foundation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66 /*
67 * Copyright (c) 1994-1998 Mark Brinicombe.
68 * Copyright (c) 1994 Brini.
69 * All rights reserved.
70 *
71 * This code is derived from software written for Brini by Mark Brinicombe
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by Mark Brinicombe.
84 * 4. The name of the author may not be used to endorse or promote products
85 * derived from this software without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
88 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
89 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
90 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
91 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
92 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
93 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
94 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
95 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
96 *
97 * RiscBSD kernel project
98 *
99 * pmap.c
100 *
101 * Machine dependant vm stuff
102 *
103 * Created : 20/09/94
104 */
105
106 /*
107 * Performance improvements, UVM changes, overhauls and part-rewrites
108 * were contributed by Neil A. Carson <neil (at) causality.com>.
109 */
110
111 /*
112 * The dram block info is currently referenced from the bootconfig.
113 * This should be placed in a separate structure.
114 */
115
116 /*
117 * Special compilation symbols
118 * PMAP_DEBUG - Build in pmap_debug_level code
119 */
120
121 /* Include header files */
122
123 #include "opt_pmap_debug.h"
124 #include "opt_ddb.h"
125
126 #include <sys/types.h>
127 #include <sys/param.h>
128 #include <sys/kernel.h>
129 #include <sys/systm.h>
130 #include <sys/proc.h>
131 #include <sys/malloc.h>
132 #include <sys/user.h>
133 #include <sys/pool.h>
134 #include <sys/cdefs.h>
135
136 #include <uvm/uvm.h>
137
138 #include <machine/bootconfig.h>
139 #include <machine/bus.h>
140 #include <machine/pmap.h>
141 #include <machine/pcb.h>
142 #include <machine/param.h>
143 #include <machine/katelib.h>
144
145 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.26 2001/10/18 16:50:30 rearnsha Exp $");
146 #ifdef PMAP_DEBUG
147 #define PDEBUG(_lev_,_stat_) \
148 if (pmap_debug_level >= (_lev_)) \
149 ((_stat_))
150 int pmap_debug_level = -2;
151
152 /*
153 * for switching to potentially finer grained debugging
154 */
155 #define PDB_FOLLOW 0x0001
156 #define PDB_INIT 0x0002
157 #define PDB_ENTER 0x0004
158 #define PDB_REMOVE 0x0008
159 #define PDB_CREATE 0x0010
160 #define PDB_PTPAGE 0x0020
161 #define PDB_ASN 0x0040
162 #define PDB_BITS 0x0080
163 #define PDB_COLLECT 0x0100
164 #define PDB_PROTECT 0x0200
165 #define PDB_BOOTSTRAP 0x1000
166 #define PDB_PARANOIA 0x2000
167 #define PDB_WIRING 0x4000
168 #define PDB_PVDUMP 0x8000
169
170 int debugmap = 0;
171 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
172 #define NPDEBUG(_lev_,_stat_) \
173 if (pmapdebug & (_lev_)) \
174 ((_stat_))
175
176 #else /* PMAP_DEBUG */
177 #define PDEBUG(_lev_,_stat_) /* Nothing */
178 #define PDEBUG(_lev_,_stat_) /* Nothing */
179 #endif /* PMAP_DEBUG */
180
181 struct pmap kernel_pmap_store;
182
183 /*
184 * pool that pmap structures are allocated from
185 */
186
187 struct pool pmap_pmap_pool;
188
189 pagehook_t page_hook0;
190 pagehook_t page_hook1;
191 char *memhook;
192 pt_entry_t msgbufpte;
193 extern caddr_t msgbufaddr;
194
195 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
196 /*
197 * locking data structures
198 */
199
200 static struct lock pmap_main_lock;
201 static struct simplelock pvalloc_lock;
202 #ifdef LOCKDEBUG
203 #define PMAP_MAP_TO_HEAD_LOCK() \
204 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
205 #define PMAP_MAP_TO_HEAD_UNLOCK() \
206 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
207
208 #define PMAP_HEAD_TO_MAP_LOCK() \
209 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
210 #define PMAP_HEAD_TO_MAP_UNLOCK() \
211 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
212 #else
213 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
214 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
215 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
216 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
217 #endif /* LOCKDEBUG */
218
219 /*
220 * pv_page management structures: locked by pvalloc_lock
221 */
222
223 TAILQ_HEAD(pv_pagelist, pv_page);
224 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
225 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
226 static int pv_nfpvents; /* # of free pv entries */
227 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
228 static vaddr_t pv_cachedva; /* cached VA for later use */
229
230 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
231 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
232 /* high water mark */
233
234 /*
235 * local prototypes
236 */
237
238 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
239 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
240 #define ALLOCPV_NEED 0 /* need PV now */
241 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
242 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
243 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
244 static void pmap_enter_pv __P((struct pv_head *,
245 struct pv_entry *, struct pmap *,
246 vaddr_t, struct vm_page *, int));
247 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
248 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
249 static void pmap_free_pv_doit __P((struct pv_entry *));
250 static void pmap_free_pvpage __P((void));
251 static boolean_t pmap_is_curpmap __P((struct pmap *));
252 static struct pv_entry *pmap_remove_pv __P((struct pv_head *, struct pmap *,
253 vaddr_t));
254 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
255 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
256
257 vsize_t npages;
258
259 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
260 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
261 __inline static void pmap_clearbit __P((paddr_t, unsigned int));
262 __inline static boolean_t pmap_testbit __P((paddr_t, unsigned int));
263
264 extern paddr_t physical_start;
265 extern paddr_t physical_freestart;
266 extern paddr_t physical_end;
267 extern paddr_t physical_freeend;
268 extern unsigned int free_pages;
269 extern int max_processes;
270
271 vaddr_t virtual_start;
272 vaddr_t virtual_end;
273
274 vaddr_t avail_start;
275 vaddr_t avail_end;
276
277 extern pv_addr_t systempage;
278
279 #define ALLOC_PAGE_HOOK(x, s) \
280 x.va = virtual_start; \
281 x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
282 virtual_start += s;
283
284 /* Variables used by the L1 page table queue code */
285 SIMPLEQ_HEAD(l1pt_queue, l1pt);
286 struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
287 int l1pt_static_queue_count; /* items in the static l1 queue */
288 int l1pt_static_create_count; /* static l1 items created */
289 struct l1pt_queue l1pt_queue; /* head of our l1 queue */
290 int l1pt_queue_count; /* items in the l1 queue */
291 int l1pt_create_count; /* stat - L1's create count */
292 int l1pt_reuse_count; /* stat - L1's reused count */
293
294 /* Local function prototypes (not used outside this file) */
295 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
296 void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
297 paddr_t pa, unsigned int flags));
298 void pmap_copy_on_write __P((paddr_t pa));
299 void pmap_pinit __P((struct pmap *));
300 void pmap_freepagedir __P((struct pmap *));
301
302 /* Other function prototypes */
303 extern void bzero_page __P((vaddr_t));
304 extern void bcopy_page __P((vaddr_t, vaddr_t));
305
306 struct l1pt *pmap_alloc_l1pt __P((void));
307 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
308 vaddr_t l2pa, boolean_t));
309
310 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
311 static void pmap_unmap_ptes __P((struct pmap *));
312
313 __inline static void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
314 pt_entry_t *, boolean_t));
315 static void pmap_vac_me_kpmap __P((struct pmap *, struct pv_head *,
316 pt_entry_t *, boolean_t));
317 static void pmap_vac_me_user __P((struct pmap *, struct pv_head *,
318 pt_entry_t *, boolean_t));
319
320 /*
321 * real definition of pv_entry.
322 */
323
324 struct pv_entry {
325 struct pv_entry *pv_next; /* next pv_entry */
326 struct pmap *pv_pmap; /* pmap where mapping lies */
327 vaddr_t pv_va; /* virtual address for mapping */
328 int pv_flags; /* flags */
329 struct vm_page *pv_ptp; /* vm_page for the ptp */
330 };
331
332 /*
333 * pv_entrys are dynamically allocated in chunks from a single page.
334 * we keep track of how many pv_entrys are in use for each page and
335 * we can free pv_entry pages if needed. there is one lock for the
336 * entire allocation system.
337 */
338
339 struct pv_page_info {
340 TAILQ_ENTRY(pv_page) pvpi_list;
341 struct pv_entry *pvpi_pvfree;
342 int pvpi_nfree;
343 };
344
345 /*
346 * number of pv_entry's in a pv_page
347 * (note: won't work on systems where NPBG isn't a constant)
348 */
349
350 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
351 sizeof(struct pv_entry))
352
353 /*
354 * a pv_page: where pv_entrys are allocated from
355 */
356
357 struct pv_page {
358 struct pv_page_info pvinfo;
359 struct pv_entry pvents[PVE_PER_PVPAGE];
360 };
361
362 #ifdef MYCROFT_HACK
363 int mycroft_hack = 0;
364 #endif
365
366 /* Function to set the debug level of the pmap code */
367
368 #ifdef PMAP_DEBUG
369 void
370 pmap_debug(level)
371 int level;
372 {
373 pmap_debug_level = level;
374 printf("pmap_debug: level=%d\n", pmap_debug_level);
375 }
376 #endif /* PMAP_DEBUG */
377
378 __inline static boolean_t
379 pmap_is_curpmap(struct pmap *pmap)
380 {
381 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
382 || (pmap == pmap_kernel()))
383 return (TRUE);
384 return (FALSE);
385 }
386 #include "isadma.h"
387
388 #if NISADMA > 0
389 /*
390 * Used to protect memory for ISA DMA bounce buffers. If, when loading
391 * pages into the system, memory intersects with any of these ranges,
392 * the intersecting memory will be loaded into a lower-priority free list.
393 */
394 bus_dma_segment_t *pmap_isa_dma_ranges;
395 int pmap_isa_dma_nranges;
396
397 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
398 paddr_t *, psize_t *));
399
400 /*
401 * Check if a memory range intersects with an ISA DMA range, and
402 * return the page-rounded intersection if it does. The intersection
403 * will be placed on a lower-priority free list.
404 */
405 boolean_t
406 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
407 paddr_t pa;
408 psize_t size;
409 paddr_t *pap;
410 psize_t *sizep;
411 {
412 bus_dma_segment_t *ds;
413 int i;
414
415 if (pmap_isa_dma_ranges == NULL)
416 return (FALSE);
417
418 for (i = 0, ds = pmap_isa_dma_ranges;
419 i < pmap_isa_dma_nranges; i++, ds++) {
420 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
421 /*
422 * Beginning of region intersects with this range.
423 */
424 *pap = trunc_page(pa);
425 *sizep = round_page(min(pa + size,
426 ds->ds_addr + ds->ds_len) - pa);
427 return (TRUE);
428 }
429 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
430 /*
431 * End of region intersects with this range.
432 */
433 *pap = trunc_page(ds->ds_addr);
434 *sizep = round_page(min((pa + size) - ds->ds_addr,
435 ds->ds_len));
436 return (TRUE);
437 }
438 }
439
440 /*
441 * No intersection found.
442 */
443 return (FALSE);
444 }
445 #endif /* NISADMA > 0 */
446
447 /*
448 * p v _ e n t r y f u n c t i o n s
449 */
450
451 /*
452 * pv_entry allocation functions:
453 * the main pv_entry allocation functions are:
454 * pmap_alloc_pv: allocate a pv_entry structure
455 * pmap_free_pv: free one pv_entry
456 * pmap_free_pvs: free a list of pv_entrys
457 *
458 * the rest are helper functions
459 */
460
461 /*
462 * pmap_alloc_pv: inline function to allocate a pv_entry structure
463 * => we lock pvalloc_lock
464 * => if we fail, we call out to pmap_alloc_pvpage
465 * => 3 modes:
466 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
467 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
468 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
469 * one now
470 *
471 * "try" is for optional functions like pmap_copy().
472 */
473
474 __inline static struct pv_entry *
475 pmap_alloc_pv(pmap, mode)
476 struct pmap *pmap;
477 int mode;
478 {
479 struct pv_page *pvpage;
480 struct pv_entry *pv;
481
482 simple_lock(&pvalloc_lock);
483
484 if (pv_freepages.tqh_first != NULL) {
485 pvpage = pv_freepages.tqh_first;
486 pvpage->pvinfo.pvpi_nfree--;
487 if (pvpage->pvinfo.pvpi_nfree == 0) {
488 /* nothing left in this one? */
489 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
490 }
491 pv = pvpage->pvinfo.pvpi_pvfree;
492 #ifdef DIAGNOSTIC
493 if (pv == NULL)
494 panic("pmap_alloc_pv: pvpi_nfree off");
495 #endif
496 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
497 pv_nfpvents--; /* took one from pool */
498 } else {
499 pv = NULL; /* need more of them */
500 }
501
502 /*
503 * if below low water mark or we didn't get a pv_entry we try and
504 * create more pv_entrys ...
505 */
506
507 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
508 if (pv == NULL)
509 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
510 mode : ALLOCPV_NEED);
511 else
512 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
513 }
514
515 simple_unlock(&pvalloc_lock);
516 return(pv);
517 }
518
519 /*
520 * pmap_alloc_pvpage: maybe allocate a new pvpage
521 *
522 * if need_entry is false: try and allocate a new pv_page
523 * if need_entry is true: try and allocate a new pv_page and return a
524 * new pv_entry from it. if we are unable to allocate a pv_page
525 * we make a last ditch effort to steal a pv_page from some other
526 * mapping. if that fails, we panic...
527 *
528 * => we assume that the caller holds pvalloc_lock
529 */
530
531 static struct pv_entry *
532 pmap_alloc_pvpage(pmap, mode)
533 struct pmap *pmap;
534 int mode;
535 {
536 struct vm_page *pg;
537 struct pv_page *pvpage;
538 struct pv_entry *pv;
539 int s;
540
541 /*
542 * if we need_entry and we've got unused pv_pages, allocate from there
543 */
544
545 if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
546
547 /* move it to pv_freepages list */
548 pvpage = pv_unusedpgs.tqh_first;
549 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
550 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
551
552 /* allocate a pv_entry */
553 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
554 pv = pvpage->pvinfo.pvpi_pvfree;
555 #ifdef DIAGNOSTIC
556 if (pv == NULL)
557 panic("pmap_alloc_pvpage: pvpi_nfree off");
558 #endif
559 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
560
561 pv_nfpvents--; /* took one from pool */
562 return(pv);
563 }
564
565 /*
566 * see if we've got a cached unmapped VA that we can map a page in.
567 * if not, try to allocate one.
568 */
569
570
571 if (pv_cachedva == 0) {
572 s = splvm();
573 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
574 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
575 splx(s);
576 if (pv_cachedva == 0) {
577 return (NULL);
578 }
579 }
580
581 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
582 UVM_PGA_USERESERVE);
583 if (pg)
584 pg->flags &= ~PG_BUSY; /* never busy */
585
586 if (pg == NULL)
587 return (NULL);
588
589 /*
590 * add a mapping for our new pv_page and free its entrys (save one!)
591 *
592 * NOTE: If we are allocating a PV page for the kernel pmap, the
593 * pmap is already locked! (...but entering the mapping is safe...)
594 */
595
596 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
597 pmap_update(pmap_kernel());
598 pvpage = (struct pv_page *) pv_cachedva;
599 pv_cachedva = 0;
600 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
601 }
602
603 /*
604 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
605 *
606 * => caller must hold pvalloc_lock
607 * => if need_entry is true, we allocate and return one pv_entry
608 */
609
610 static struct pv_entry *
611 pmap_add_pvpage(pvp, need_entry)
612 struct pv_page *pvp;
613 boolean_t need_entry;
614 {
615 int tofree, lcv;
616
617 /* do we need to return one? */
618 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
619
620 pvp->pvinfo.pvpi_pvfree = NULL;
621 pvp->pvinfo.pvpi_nfree = tofree;
622 for (lcv = 0 ; lcv < tofree ; lcv++) {
623 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
624 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
625 }
626 if (need_entry)
627 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
628 else
629 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
630 pv_nfpvents += tofree;
631 return((need_entry) ? &pvp->pvents[lcv] : NULL);
632 }
633
634 /*
635 * pmap_free_pv_doit: actually free a pv_entry
636 *
637 * => do not call this directly! instead use either
638 * 1. pmap_free_pv ==> free a single pv_entry
639 * 2. pmap_free_pvs => free a list of pv_entrys
640 * => we must be holding pvalloc_lock
641 */
642
643 __inline static void
644 pmap_free_pv_doit(pv)
645 struct pv_entry *pv;
646 {
647 struct pv_page *pvp;
648
649 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
650 pv_nfpvents++;
651 pvp->pvinfo.pvpi_nfree++;
652
653 /* nfree == 1 => fully allocated page just became partly allocated */
654 if (pvp->pvinfo.pvpi_nfree == 1) {
655 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
656 }
657
658 /* free it */
659 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
660 pvp->pvinfo.pvpi_pvfree = pv;
661
662 /*
663 * are all pv_page's pv_entry's free? move it to unused queue.
664 */
665
666 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
667 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
668 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
669 }
670 }
671
672 /*
673 * pmap_free_pv: free a single pv_entry
674 *
675 * => we gain the pvalloc_lock
676 */
677
678 __inline static void
679 pmap_free_pv(pmap, pv)
680 struct pmap *pmap;
681 struct pv_entry *pv;
682 {
683 simple_lock(&pvalloc_lock);
684 pmap_free_pv_doit(pv);
685
686 /*
687 * Can't free the PV page if the PV entries were associated with
688 * the kernel pmap; the pmap is already locked.
689 */
690 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
691 pmap != pmap_kernel())
692 pmap_free_pvpage();
693
694 simple_unlock(&pvalloc_lock);
695 }
696
697 /*
698 * pmap_free_pvs: free a list of pv_entrys
699 *
700 * => we gain the pvalloc_lock
701 */
702
703 __inline static void
704 pmap_free_pvs(pmap, pvs)
705 struct pmap *pmap;
706 struct pv_entry *pvs;
707 {
708 struct pv_entry *nextpv;
709
710 simple_lock(&pvalloc_lock);
711
712 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
713 nextpv = pvs->pv_next;
714 pmap_free_pv_doit(pvs);
715 }
716
717 /*
718 * Can't free the PV page if the PV entries were associated with
719 * the kernel pmap; the pmap is already locked.
720 */
721 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
722 pmap != pmap_kernel())
723 pmap_free_pvpage();
724
725 simple_unlock(&pvalloc_lock);
726 }
727
728
729 /*
730 * pmap_free_pvpage: try and free an unused pv_page structure
731 *
732 * => assume caller is holding the pvalloc_lock and that
733 * there is a page on the pv_unusedpgs list
734 * => if we can't get a lock on the kmem_map we try again later
735 * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
736 * that if we can lock the kmem_map then we are not already
737 * holding kmem_object's lock.
738 */
739
740 static void
741 pmap_free_pvpage()
742 {
743 int s;
744 struct vm_map *map;
745 struct vm_map_entry *dead_entries;
746 struct pv_page *pvp;
747
748 s = splvm(); /* protect kmem_map */
749
750 pvp = pv_unusedpgs.tqh_first;
751
752 /*
753 * note: watch out for pv_initpage which is allocated out of
754 * kernel_map rather than kmem_map.
755 */
756 if (pvp == pv_initpage)
757 map = kernel_map;
758 else
759 map = kmem_map;
760
761 if (vm_map_lock_try(map)) {
762
763 /* remove pvp from pv_unusedpgs */
764 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
765
766 /* unmap the page */
767 dead_entries = NULL;
768 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
769 &dead_entries);
770 vm_map_unlock(map);
771
772 if (dead_entries != NULL)
773 uvm_unmap_detach(dead_entries, 0);
774
775 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
776 }
777
778 if (pvp == pv_initpage)
779 /* no more initpage, we've freed it */
780 pv_initpage = NULL;
781
782 splx(s);
783 }
784
785 /*
786 * main pv_entry manipulation functions:
787 * pmap_enter_pv: enter a mapping onto a pv_head list
788 * pmap_remove_pv: remove a mappiing from a pv_head list
789 *
790 * NOTE: pmap_enter_pv expects to lock the pvh itself
791 * pmap_remove_pv expects te caller to lock the pvh before calling
792 */
793
794 /*
795 * pmap_enter_pv: enter a mapping onto a pv_head lst
796 *
797 * => caller should hold the proper lock on pmap_main_lock
798 * => caller should have pmap locked
799 * => we will gain the lock on the pv_head and allocate the new pv_entry
800 * => caller should adjust ptp's wire_count before calling
801 * => caller should not adjust pmap's wire_count
802 */
803
804 __inline static void
805 pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
806 struct pv_head *pvh;
807 struct pv_entry *pve; /* preallocated pve for us to use */
808 struct pmap *pmap;
809 vaddr_t va;
810 struct vm_page *ptp; /* PTP in pmap that maps this VA */
811 int flags;
812 {
813 pve->pv_pmap = pmap;
814 pve->pv_va = va;
815 pve->pv_ptp = ptp; /* NULL for kernel pmap */
816 pve->pv_flags = flags;
817 simple_lock(&pvh->pvh_lock); /* lock pv_head */
818 pve->pv_next = pvh->pvh_list; /* add to ... */
819 pvh->pvh_list = pve; /* ... locked list */
820 simple_unlock(&pvh->pvh_lock); /* unlock, done! */
821 if (pve->pv_flags & PT_W)
822 ++pmap->pm_stats.wired_count;
823 }
824
825 /*
826 * pmap_remove_pv: try to remove a mapping from a pv_list
827 *
828 * => caller should hold proper lock on pmap_main_lock
829 * => pmap should be locked
830 * => caller should hold lock on pv_head [so that attrs can be adjusted]
831 * => caller should adjust ptp's wire_count and free PTP if needed
832 * => caller should NOT adjust pmap's wire_count
833 * => we return the removed pve
834 */
835
836 __inline static struct pv_entry *
837 pmap_remove_pv(pvh, pmap, va)
838 struct pv_head *pvh;
839 struct pmap *pmap;
840 vaddr_t va;
841 {
842 struct pv_entry *pve, **prevptr;
843
844 prevptr = &pvh->pvh_list; /* previous pv_entry pointer */
845 pve = *prevptr;
846 while (pve) {
847 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
848 *prevptr = pve->pv_next; /* remove it! */
849 if (pve->pv_flags & PT_W)
850 --pmap->pm_stats.wired_count;
851 break;
852 }
853 prevptr = &pve->pv_next; /* previous pointer */
854 pve = pve->pv_next; /* advance */
855 }
856 return(pve); /* return removed pve */
857 }
858
859 /*
860 *
861 * pmap_modify_pv: Update pv flags
862 *
863 * => caller should hold lock on pv_head [so that attrs can be adjusted]
864 * => caller should NOT adjust pmap's wire_count
865 * => we return the old flags
866 *
867 * Modify a physical-virtual mapping in the pv table
868 */
869
870 /*__inline */ u_int
871 pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
872 struct pmap *pmap;
873 vaddr_t va;
874 struct pv_head *pvh;
875 u_int bic_mask;
876 u_int eor_mask;
877 {
878 struct pv_entry *npv;
879 u_int flags, oflags;
880
881 /*
882 * There is at least one VA mapping this page.
883 */
884
885 for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
886 if (pmap == npv->pv_pmap && va == npv->pv_va) {
887 oflags = npv->pv_flags;
888 npv->pv_flags = flags =
889 ((oflags & ~bic_mask) ^ eor_mask);
890 if ((flags ^ oflags) & PT_W) {
891 if (flags & PT_W)
892 ++pmap->pm_stats.wired_count;
893 else
894 --pmap->pm_stats.wired_count;
895 }
896 return (oflags);
897 }
898 }
899 return (0);
900 }
901
902 /*
903 * Map the specified level 2 pagetable into the level 1 page table for
904 * the given pmap to cover a chunk of virtual address space starting from the
905 * address specified.
906 */
907 static /*__inline*/ void
908 pmap_map_in_l1(pmap, va, l2pa, selfref)
909 struct pmap *pmap;
910 vaddr_t va, l2pa;
911 boolean_t selfref;
912 {
913 vaddr_t ptva;
914
915 /* Calculate the index into the L1 page table. */
916 ptva = (va >> PDSHIFT) & ~3;
917
918 PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
919 pmap->pm_pdir, L1_PTE(l2pa), ptva));
920
921 /* Map page table into the L1. */
922 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
923 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
924 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
925 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
926
927 PDEBUG(0, printf("pt self reference %lx in %lx\n",
928 L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
929
930 /* Map the page table into the page table area. */
931 if (selfref) {
932 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
933 L2_PTE_NC_NB(l2pa, AP_KRW);
934 }
935 /* XXX should be a purge */
936 /* cpu_tlb_flushD();*/
937 }
938
939 #if 0
940 static /*__inline*/ void
941 pmap_unmap_in_l1(pmap, va)
942 struct pmap *pmap;
943 vaddr_t va;
944 {
945 vaddr_t ptva;
946
947 /* Calculate the index into the L1 page table. */
948 ptva = (va >> PDSHIFT) & ~3;
949
950 /* Unmap page table from the L1. */
951 pmap->pm_pdir[ptva + 0] = 0;
952 pmap->pm_pdir[ptva + 1] = 0;
953 pmap->pm_pdir[ptva + 2] = 0;
954 pmap->pm_pdir[ptva + 3] = 0;
955
956 /* Unmap the page table from the page table area. */
957 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
958
959 /* XXX should be a purge */
960 /* cpu_tlb_flushD();*/
961 }
962 #endif
963
964 /*
965 * Used to map a range of physical addresses into kernel
966 * virtual address space.
967 *
968 * For now, VM is already on, we only need to map the
969 * specified memory.
970 */
971 vaddr_t
972 pmap_map(va, spa, epa, prot)
973 vaddr_t va, spa, epa;
974 int prot;
975 {
976 while (spa < epa) {
977 pmap_kenter_pa(va, spa, prot);
978 va += NBPG;
979 spa += NBPG;
980 }
981 pmap_update(pmap_kernel());
982 return(va);
983 }
984
985
986 /*
987 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
988 *
989 * bootstrap the pmap system. This is called from initarm and allows
990 * the pmap system to initailise any structures it requires.
991 *
992 * Currently this sets up the kernel_pmap that is statically allocated
993 * and also allocated virtual addresses for certain page hooks.
994 * Currently the only one page hook is allocated that is used
995 * to zero physical pages of memory.
996 * It also initialises the start and end address of the kernel data space.
997 */
998 extern paddr_t physical_freestart;
999 extern paddr_t physical_freeend;
1000
1001 char *boot_head;
1002
1003 void
1004 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
1005 pd_entry_t *kernel_l1pt;
1006 pv_addr_t kernel_ptpt;
1007 {
1008 int loop;
1009 paddr_t start, end;
1010 #if NISADMA > 0
1011 paddr_t istart;
1012 psize_t isize;
1013 #endif
1014
1015 pmap_kernel()->pm_pdir = kernel_l1pt;
1016 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1017 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1018 simple_lock_init(&pmap_kernel()->pm_lock);
1019 pmap_kernel()->pm_obj.pgops = NULL;
1020 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1021 pmap_kernel()->pm_obj.uo_npages = 0;
1022 pmap_kernel()->pm_obj.uo_refs = 1;
1023
1024 /*
1025 * Initialize PAGE_SIZE-dependent variables.
1026 */
1027 uvm_setpagesize();
1028
1029 npages = 0;
1030 loop = 0;
1031 while (loop < bootconfig.dramblocks) {
1032 start = (paddr_t)bootconfig.dram[loop].address;
1033 end = start + (bootconfig.dram[loop].pages * NBPG);
1034 if (start < physical_freestart)
1035 start = physical_freestart;
1036 if (end > physical_freeend)
1037 end = physical_freeend;
1038 #if 0
1039 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1040 #endif
1041 #if NISADMA > 0
1042 if (pmap_isa_dma_range_intersect(start, end - start,
1043 &istart, &isize)) {
1044 /*
1045 * Place the pages that intersect with the
1046 * ISA DMA range onto the ISA DMA free list.
1047 */
1048 #if 0
1049 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1050 istart + isize - 1);
1051 #endif
1052 uvm_page_physload(atop(istart),
1053 atop(istart + isize), atop(istart),
1054 atop(istart + isize), VM_FREELIST_ISADMA);
1055 npages += atop(istart + isize) - atop(istart);
1056
1057 /*
1058 * Load the pieces that come before
1059 * the intersection into the default
1060 * free list.
1061 */
1062 if (start < istart) {
1063 #if 0
1064 printf(" BEFORE 0x%lx -> 0x%lx\n",
1065 start, istart - 1);
1066 #endif
1067 uvm_page_physload(atop(start),
1068 atop(istart), atop(start),
1069 atop(istart), VM_FREELIST_DEFAULT);
1070 npages += atop(istart) - atop(start);
1071 }
1072
1073 /*
1074 * Load the pieces that come after
1075 * the intersection into the default
1076 * free list.
1077 */
1078 if ((istart + isize) < end) {
1079 #if 0
1080 printf(" AFTER 0x%lx -> 0x%lx\n",
1081 (istart + isize), end - 1);
1082 #endif
1083 uvm_page_physload(atop(istart + isize),
1084 atop(end), atop(istart + isize),
1085 atop(end), VM_FREELIST_DEFAULT);
1086 npages += atop(end) - atop(istart + isize);
1087 }
1088 } else {
1089 uvm_page_physload(atop(start), atop(end),
1090 atop(start), atop(end), VM_FREELIST_DEFAULT);
1091 npages += atop(end) - atop(start);
1092 }
1093 #else /* NISADMA > 0 */
1094 uvm_page_physload(atop(start), atop(end),
1095 atop(start), atop(end), VM_FREELIST_DEFAULT);
1096 npages += atop(end) - atop(start);
1097 #endif /* NISADMA > 0 */
1098 ++loop;
1099 }
1100
1101 #ifdef MYCROFT_HACK
1102 printf("npages = %ld\n", npages);
1103 #endif
1104
1105 virtual_start = KERNEL_VM_BASE;
1106 virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
1107
1108 ALLOC_PAGE_HOOK(page_hook0, NBPG);
1109 ALLOC_PAGE_HOOK(page_hook1, NBPG);
1110
1111 /*
1112 * The mem special device needs a virtual hook but we don't
1113 * need a pte
1114 */
1115 memhook = (char *)virtual_start;
1116 virtual_start += NBPG;
1117
1118 msgbufaddr = (caddr_t)virtual_start;
1119 msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
1120 virtual_start += round_page(MSGBUFSIZE);
1121
1122 /*
1123 * init the static-global locks and global lists.
1124 */
1125 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1126 simple_lock_init(&pvalloc_lock);
1127 TAILQ_INIT(&pv_freepages);
1128 TAILQ_INIT(&pv_unusedpgs);
1129
1130 /*
1131 * compute the number of pages we have and then allocate RAM
1132 * for each pages' pv_head and saved attributes.
1133 */
1134 {
1135 int npages, lcv;
1136 vsize_t s;
1137
1138 npages = 0;
1139 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
1140 npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
1141 s = (vsize_t) (sizeof(struct pv_head) * npages +
1142 sizeof(char) * npages);
1143 s = round_page(s); /* round up */
1144 boot_head = (char *)uvm_pageboot_alloc(s);
1145 bzero((char *)boot_head, s);
1146 if (boot_head == 0)
1147 panic("pmap_init: unable to allocate pv_heads");
1148 }
1149
1150 /*
1151 * initialize the pmap pool.
1152 */
1153
1154 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1155 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
1156
1157 cpu_cache_cleanD();
1158 }
1159
1160 /*
1161 * void pmap_init(void)
1162 *
1163 * Initialize the pmap module.
1164 * Called by vm_init() in vm/vm_init.c in order to initialise
1165 * any structures that the pmap system needs to map virtual memory.
1166 */
1167
1168 extern int physmem;
1169
1170 void
1171 pmap_init()
1172 {
1173 int lcv, i;
1174
1175 #ifdef MYCROFT_HACK
1176 printf("physmem = %d\n", physmem);
1177 #endif
1178
1179 /*
1180 * Set the available memory vars - These do not map to real memory
1181 * addresses and cannot as the physical memory is fragmented.
1182 * They are used by ps for %mem calculations.
1183 * One could argue whether this should be the entire memory or just
1184 * the memory that is useable in a user process.
1185 */
1186 avail_start = 0;
1187 avail_end = physmem * NBPG;
1188
1189 /* allocate pv_head stuff first */
1190 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1191 vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
1192 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
1193 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1194 for (i = 0;
1195 i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
1196 simple_lock_init(
1197 &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
1198 }
1199 }
1200
1201 /* now allocate attrs */
1202 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1203 vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
1204 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
1205 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1206 }
1207
1208 /*
1209 * now we need to free enough pv_entry structures to allow us to get
1210 * the kmem_map/kmem_object allocated and inited (done after this
1211 * function is finished). to do this we allocate one bootstrap page out
1212 * of kernel_map and use it to provide an initial pool of pv_entry
1213 * structures. we never free this page.
1214 */
1215
1216 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1217 if (pv_initpage == NULL)
1218 panic("pmap_init: pv_initpage");
1219 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1220 pv_nfpvents = 0;
1221 (void) pmap_add_pvpage(pv_initpage, FALSE);
1222
1223 #ifdef MYCROFT_HACK
1224 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1225 printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
1226 lcv,
1227 vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
1228 vm_physmem[lcv].start, vm_physmem[lcv].end);
1229 }
1230 #endif
1231 pmap_initialized = TRUE;
1232
1233 /* Initialise our L1 page table queues and counters */
1234 SIMPLEQ_INIT(&l1pt_static_queue);
1235 l1pt_static_queue_count = 0;
1236 l1pt_static_create_count = 0;
1237 SIMPLEQ_INIT(&l1pt_queue);
1238 l1pt_queue_count = 0;
1239 l1pt_create_count = 0;
1240 l1pt_reuse_count = 0;
1241 }
1242
1243 /*
1244 * pmap_postinit()
1245 *
1246 * This routine is called after the vm and kmem subsystems have been
1247 * initialised. This allows the pmap code to perform any initialisation
1248 * that can only be done one the memory allocation is in place.
1249 */
1250
1251 void
1252 pmap_postinit()
1253 {
1254 int loop;
1255 struct l1pt *pt;
1256
1257 #ifdef PMAP_STATIC_L1S
1258 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1259 #else /* PMAP_STATIC_L1S */
1260 for (loop = 0; loop < max_processes; ++loop) {
1261 #endif /* PMAP_STATIC_L1S */
1262 /* Allocate a L1 page table */
1263 pt = pmap_alloc_l1pt();
1264 if (!pt)
1265 panic("Cannot allocate static L1 page tables\n");
1266
1267 /* Clean it */
1268 bzero((void *)pt->pt_va, PD_SIZE);
1269 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1270 /* Add the page table to the queue */
1271 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1272 ++l1pt_static_queue_count;
1273 ++l1pt_static_create_count;
1274 }
1275 }
1276
1277
1278 /*
1279 * Create and return a physical map.
1280 *
1281 * If the size specified for the map is zero, the map is an actual physical
1282 * map, and may be referenced by the hardware.
1283 *
1284 * If the size specified is non-zero, the map will be used in software only,
1285 * and is bounded by that size.
1286 */
1287
1288 pmap_t
1289 pmap_create()
1290 {
1291 struct pmap *pmap;
1292
1293 /*
1294 * Fetch pmap entry from the pool
1295 */
1296
1297 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1298 /* XXX is this really needed! */
1299 memset(pmap, 0, sizeof(*pmap));
1300
1301 simple_lock_init(&pmap->pm_obj.vmobjlock);
1302 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1303 TAILQ_INIT(&pmap->pm_obj.memq);
1304 pmap->pm_obj.uo_npages = 0;
1305 pmap->pm_obj.uo_refs = 1;
1306 pmap->pm_stats.wired_count = 0;
1307 pmap->pm_stats.resident_count = 1;
1308
1309 /* Now init the machine part of the pmap */
1310 pmap_pinit(pmap);
1311 return(pmap);
1312 }
1313
1314 /*
1315 * pmap_alloc_l1pt()
1316 *
1317 * This routine allocates physical and virtual memory for a L1 page table
1318 * and wires it.
1319 * A l1pt structure is returned to describe the allocated page table.
1320 *
1321 * This routine is allowed to fail if the required memory cannot be allocated.
1322 * In this case NULL is returned.
1323 */
1324
1325 struct l1pt *
1326 pmap_alloc_l1pt(void)
1327 {
1328 paddr_t pa;
1329 vaddr_t va;
1330 struct l1pt *pt;
1331 int error;
1332 struct vm_page *m;
1333 pt_entry_t *ptes;
1334
1335 /* Allocate virtual address space for the L1 page table */
1336 va = uvm_km_valloc(kernel_map, PD_SIZE);
1337 if (va == 0) {
1338 #ifdef DIAGNOSTIC
1339 PDEBUG(0,
1340 printf("pmap: Cannot allocate pageable memory for L1\n"));
1341 #endif /* DIAGNOSTIC */
1342 return(NULL);
1343 }
1344
1345 /* Allocate memory for the l1pt structure */
1346 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1347
1348 /*
1349 * Allocate pages from the VM system.
1350 */
1351 TAILQ_INIT(&pt->pt_plist);
1352 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1353 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1354 if (error) {
1355 #ifdef DIAGNOSTIC
1356 PDEBUG(0,
1357 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1358 error));
1359 #endif /* DIAGNOSTIC */
1360 /* Release the resources we already have claimed */
1361 free(pt, M_VMPMAP);
1362 uvm_km_free(kernel_map, va, PD_SIZE);
1363 return(NULL);
1364 }
1365
1366 /* Map our physical pages into our virtual space */
1367 pt->pt_va = va;
1368 m = pt->pt_plist.tqh_first;
1369 ptes = pmap_map_ptes(pmap_kernel());
1370 while (m && va < (pt->pt_va + PD_SIZE)) {
1371 pa = VM_PAGE_TO_PHYS(m);
1372
1373 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1374
1375 /* Revoke cacheability and bufferability */
1376 /* XXX should be done better than this */
1377 ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
1378
1379 va += NBPG;
1380 m = m->pageq.tqe_next;
1381 }
1382 pmap_unmap_ptes(pmap_kernel());
1383 pmap_update(pmap_kernel());
1384
1385 #ifdef DIAGNOSTIC
1386 if (m)
1387 panic("pmap_alloc_l1pt: pglist not empty\n");
1388 #endif /* DIAGNOSTIC */
1389
1390 pt->pt_flags = 0;
1391 return(pt);
1392 }
1393
1394 /*
1395 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1396 */
1397 void
1398 pmap_free_l1pt(pt)
1399 struct l1pt *pt;
1400 {
1401 /* Separate the physical memory for the virtual space */
1402 pmap_kremove(pt->pt_va, PD_SIZE);
1403 pmap_update(pmap_kernel());
1404
1405 /* Return the physical memory */
1406 uvm_pglistfree(&pt->pt_plist);
1407
1408 /* Free the virtual space */
1409 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1410
1411 /* Free the l1pt structure */
1412 free(pt, M_VMPMAP);
1413 }
1414
1415 /*
1416 * Allocate a page directory.
1417 * This routine will either allocate a new page directory from the pool
1418 * of L1 page tables currently held by the kernel or it will allocate
1419 * a new one via pmap_alloc_l1pt().
1420 * It will then initialise the l1 page table for use.
1421 */
1422 int
1423 pmap_allocpagedir(pmap)
1424 struct pmap *pmap;
1425 {
1426 paddr_t pa;
1427 struct l1pt *pt;
1428 pt_entry_t *pte;
1429
1430 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1431
1432 /* Do we have any spare L1's lying around ? */
1433 if (l1pt_static_queue_count) {
1434 --l1pt_static_queue_count;
1435 pt = l1pt_static_queue.sqh_first;
1436 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1437 } else if (l1pt_queue_count) {
1438 --l1pt_queue_count;
1439 pt = l1pt_queue.sqh_first;
1440 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1441 ++l1pt_reuse_count;
1442 } else {
1443 pt = pmap_alloc_l1pt();
1444 if (!pt)
1445 return(ENOMEM);
1446 ++l1pt_create_count;
1447 }
1448
1449 /* Store the pointer to the l1 descriptor in the pmap. */
1450 pmap->pm_l1pt = pt;
1451
1452 /* Get the physical address of the start of the l1 */
1453 pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
1454
1455 /* Store the virtual address of the l1 in the pmap. */
1456 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1457
1458 /* Clean the L1 if it is dirty */
1459 if (!(pt->pt_flags & PTFLAG_CLEAN))
1460 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1461
1462 /* Do we already have the kernel mappings ? */
1463 if (!(pt->pt_flags & PTFLAG_KPT)) {
1464 /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1465
1466 bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1467 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1468 KERNEL_PD_SIZE);
1469 pt->pt_flags |= PTFLAG_KPT;
1470 }
1471
1472 /* Allocate a page table to map all the page tables for this pmap */
1473
1474 #ifdef DIAGNOSTIC
1475 if (pmap->pm_vptpt) {
1476 /* XXX What if we have one already ? */
1477 panic("pmap_allocpagedir: have pt already\n");
1478 }
1479 #endif /* DIAGNOSTIC */
1480 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1481 if (pmap->pm_vptpt == 0) {
1482 pmap_freepagedir(pmap);
1483 return(ENOMEM);
1484 }
1485
1486 (void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
1487 pmap->pm_pptpt &= PG_FRAME;
1488 /* Revoke cacheability and bufferability */
1489 /* XXX should be done better than this */
1490 pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
1491 *pte = *pte & ~(PT_C | PT_B);
1492
1493 /* Wire in this page table */
1494 pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
1495
1496 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1497
1498 /*
1499 * Map the kernel page tables for 0xf0000000 +
1500 * into the page table used to map the
1501 * pmap's page tables
1502 */
1503 bcopy((char *)(PROCESS_PAGE_TBLS_BASE
1504 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
1505 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1506 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1507 (KERNEL_PD_SIZE >> 2));
1508
1509 return(0);
1510 }
1511
1512
1513 /*
1514 * Initialize a preallocated and zeroed pmap structure,
1515 * such as one in a vmspace structure.
1516 */
1517
1518 void
1519 pmap_pinit(pmap)
1520 struct pmap *pmap;
1521 {
1522 int backoff = 6;
1523 int retry = 10;
1524
1525 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1526
1527 /* Keep looping until we succeed in allocating a page directory */
1528 while (pmap_allocpagedir(pmap) != 0) {
1529 /*
1530 * Ok we failed to allocate a suitable block of memory for an
1531 * L1 page table. This means that either:
1532 * 1. 16KB of virtual address space could not be allocated
1533 * 2. 16KB of physically contiguous memory on a 16KB boundary
1534 * could not be allocated.
1535 *
1536 * Since we cannot fail we will sleep for a while and try
1537 * again.
1538 *
1539 * Searching for a suitable L1 PT is expensive:
1540 * to avoid hogging the system when memory is really
1541 * scarce, use an exponential back-off so that
1542 * eventually we won't retry more than once every 8
1543 * seconds. This should allow other processes to run
1544 * to completion and free up resources.
1545 */
1546 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1547 NULL);
1548 if (--retry == 0) {
1549 retry = 10;
1550 if (backoff)
1551 --backoff;
1552 }
1553 }
1554
1555 /* Map zero page for the pmap. This will also map the L2 for it */
1556 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1557 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1558 pmap_update(pmap);
1559 }
1560
1561
1562 void
1563 pmap_freepagedir(pmap)
1564 struct pmap *pmap;
1565 {
1566 /* Free the memory used for the page table mapping */
1567 if (pmap->pm_vptpt != 0)
1568 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1569
1570 /* junk the L1 page table */
1571 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1572 /* Add the page table to the queue */
1573 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1574 ++l1pt_static_queue_count;
1575 } else if (l1pt_queue_count < 8) {
1576 /* Add the page table to the queue */
1577 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1578 ++l1pt_queue_count;
1579 } else
1580 pmap_free_l1pt(pmap->pm_l1pt);
1581 }
1582
1583
1584 /*
1585 * Retire the given physical map from service.
1586 * Should only be called if the map contains no valid mappings.
1587 */
1588
1589 void
1590 pmap_destroy(pmap)
1591 struct pmap *pmap;
1592 {
1593 struct vm_page *page;
1594 int count;
1595
1596 if (pmap == NULL)
1597 return;
1598
1599 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1600
1601 /*
1602 * Drop reference count
1603 */
1604 simple_lock(&pmap->pm_obj.vmobjlock);
1605 count = --pmap->pm_obj.uo_refs;
1606 simple_unlock(&pmap->pm_obj.vmobjlock);
1607 if (count > 0) {
1608 return;
1609 }
1610
1611 /*
1612 * reference count is zero, free pmap resources and then free pmap.
1613 */
1614
1615 /* Remove the zero page mapping */
1616 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1617 pmap_update(pmap);
1618
1619 /*
1620 * Free any page tables still mapped
1621 * This is only temporay until pmap_enter can count the number
1622 * of mappings made in a page table. Then pmap_remove() can
1623 * reduce the count and free the pagetable when the count
1624 * reaches zero. Note that entries in this list should match the
1625 * contents of the ptpt, however this is faster than walking a 1024
1626 * entries looking for pt's
1627 * taken from i386 pmap.c
1628 */
1629 while (pmap->pm_obj.memq.tqh_first != NULL) {
1630 page = pmap->pm_obj.memq.tqh_first;
1631 #ifdef DIAGNOSTIC
1632 if (page->flags & PG_BUSY)
1633 panic("pmap_release: busy page table page");
1634 #endif
1635 /* pmap_page_protect? currently no need for it. */
1636
1637 page->wire_count = 0;
1638 uvm_pagefree(page);
1639 }
1640
1641 /* Free the page dir */
1642 pmap_freepagedir(pmap);
1643
1644 /* return the pmap to the pool */
1645 pool_put(&pmap_pmap_pool, pmap);
1646 }
1647
1648
1649 /*
1650 * void pmap_reference(struct pmap *pmap)
1651 *
1652 * Add a reference to the specified pmap.
1653 */
1654
1655 void
1656 pmap_reference(pmap)
1657 struct pmap *pmap;
1658 {
1659 if (pmap == NULL)
1660 return;
1661
1662 simple_lock(&pmap->pm_lock);
1663 pmap->pm_obj.uo_refs++;
1664 simple_unlock(&pmap->pm_lock);
1665 }
1666
1667 /*
1668 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1669 *
1670 * Return the start and end addresses of the kernel's virtual space.
1671 * These values are setup in pmap_bootstrap and are updated as pages
1672 * are allocated.
1673 */
1674
1675 void
1676 pmap_virtual_space(start, end)
1677 vaddr_t *start;
1678 vaddr_t *end;
1679 {
1680 *start = virtual_start;
1681 *end = virtual_end;
1682 }
1683
1684
1685 /*
1686 * Activate the address space for the specified process. If the process
1687 * is the current process, load the new MMU context.
1688 */
1689 void
1690 pmap_activate(p)
1691 struct proc *p;
1692 {
1693 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1694 struct pcb *pcb = &p->p_addr->u_pcb;
1695
1696 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1697 (paddr_t *)&pcb->pcb_pagedir);
1698
1699 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1700 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1701
1702 if (p == curproc) {
1703 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1704 setttb((u_int)pcb->pcb_pagedir);
1705 }
1706 #if 0
1707 pmap->pm_pdchanged = FALSE;
1708 #endif
1709 }
1710
1711
1712 /*
1713 * Deactivate the address space of the specified process.
1714 */
1715 void
1716 pmap_deactivate(p)
1717 struct proc *p;
1718 {
1719 }
1720
1721
1722 /*
1723 * pmap_clean_page()
1724 *
1725 * This is a local function used to work out the best strategy to clean
1726 * a single page referenced by its entry in the PV table. It's used by
1727 * pmap_copy_page, pmap_zero page and maybe some others later on.
1728 *
1729 * Its policy is effectively:
1730 * o If there are no mappings, we don't bother doing anything with the cache.
1731 * o If there is one mapping, we clean just that page.
1732 * o If there are multiple mappings, we clean the entire cache.
1733 *
1734 * So that some functions can be further optimised, it returns 0 if it didn't
1735 * clean the entire cache, or 1 if it did.
1736 *
1737 * XXX One bug in this routine is that if the pv_entry has a single page
1738 * mapped at 0x00000000 a whole cache clean will be performed rather than
1739 * just the 1 page. Since this should not occur in everyday use and if it does
1740 * it will just result in not the most efficient clean for the page.
1741 */
1742 static int
1743 pmap_clean_page(pv, is_src)
1744 struct pv_entry *pv;
1745 boolean_t is_src;
1746 {
1747 struct pmap *pmap;
1748 struct pv_entry *npv;
1749 int cache_needs_cleaning = 0;
1750 vaddr_t page_to_clean = 0;
1751
1752 if (pv == NULL)
1753 /* nothing mapped in so nothing to flush */
1754 return (0);
1755
1756 /* Since we flush the cache each time we change curproc, we
1757 * only need to flush the page if it is in the current pmap.
1758 */
1759 if (curproc)
1760 pmap = curproc->p_vmspace->vm_map.pmap;
1761 else
1762 pmap = pmap_kernel();
1763
1764 for (npv = pv; npv; npv = npv->pv_next) {
1765 if (npv->pv_pmap == pmap) {
1766 /* The page is mapped non-cacheable in
1767 * this map. No need to flush the cache.
1768 */
1769 if (npv->pv_flags & PT_NC) {
1770 #ifdef DIAGNOSTIC
1771 if (cache_needs_cleaning)
1772 panic("pmap_clean_page: "
1773 "cache inconsistency");
1774 #endif
1775 break;
1776 }
1777 #if 0
1778 /* This doesn't work, because pmap_protect
1779 doesn't flush changes on pages that it
1780 has write-protected. */
1781
1782 /* If the page is not writable and this
1783 is the source, then there is no need
1784 to flush it from the cache. */
1785 else if (is_src && ! (npv->pv_flags & PT_Wr))
1786 continue;
1787 #endif
1788 if (cache_needs_cleaning){
1789 page_to_clean = 0;
1790 break;
1791 }
1792 else
1793 page_to_clean = npv->pv_va;
1794 cache_needs_cleaning = 1;
1795 }
1796 }
1797
1798 if (page_to_clean)
1799 cpu_cache_purgeID_rng(page_to_clean, NBPG);
1800 else if (cache_needs_cleaning) {
1801 cpu_cache_purgeID();
1802 return (1);
1803 }
1804 return (0);
1805 }
1806
1807 /*
1808 * pmap_find_pv()
1809 *
1810 * This is a local function that finds a PV head for a given physical page.
1811 * This is a common op, and this function removes loads of ifdefs in the code.
1812 */
1813 static __inline struct pv_head *
1814 pmap_find_pvh(phys)
1815 paddr_t phys;
1816 {
1817 int bank, off;
1818 struct pv_head *pvh;
1819
1820 if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
1821 panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
1822 pvh = &vm_physmem[bank].pmseg.pvhead[off];
1823 return (pvh);
1824 }
1825
1826 /*
1827 * pmap_zero_page()
1828 *
1829 * Zero a given physical page by mapping it at a page hook point.
1830 * In doing the zero page op, the page we zero is mapped cachable, as with
1831 * StrongARM accesses to non-cached pages are non-burst making writing
1832 * _any_ bulk data very slow.
1833 */
1834 void
1835 pmap_zero_page(phys)
1836 paddr_t phys;
1837 {
1838 struct pv_head *pvh;
1839
1840 /* Get an entry for this page, and clean it it. */
1841 pvh = pmap_find_pvh(phys);
1842 simple_lock(&pvh->pvh_lock);
1843 pmap_clean_page(pvh->pvh_list, FALSE);
1844 simple_unlock(&pvh->pvh_lock);
1845
1846 /*
1847 * Hook in the page, zero it, and purge the cache for that
1848 * zeroed page. Invalidate the TLB as needed.
1849 */
1850 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1851 cpu_tlb_flushD_SE(page_hook0.va);
1852 bzero_page(page_hook0.va);
1853 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1854 }
1855
1856 /* pmap_pageidlezero()
1857 *
1858 * The same as above, except that we assume that the page is not
1859 * mapped. This means we never have to flush the cache first. Called
1860 * from the idle loop.
1861 */
1862 boolean_t
1863 pmap_pageidlezero(phys)
1864 paddr_t phys;
1865 {
1866 int i, *ptr;
1867 boolean_t rv = TRUE;
1868
1869 #ifdef DIAGNOSTIC
1870 struct pv_head *pvh;
1871
1872 pvh = pmap_find_pvh(phys);
1873 if (pvh->pvh_list != NULL)
1874 panic("pmap_pageidlezero: zeroing mapped page\n");
1875 #endif
1876
1877 /*
1878 * Hook in the page, zero it, and purge the cache for that
1879 * zeroed page. Invalidate the TLB as needed.
1880 */
1881 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1882 cpu_tlb_flushD_SE(page_hook0.va);
1883
1884 for (i = 0, ptr = (int *)page_hook0.va;
1885 i < (NBPG / sizeof(int)); i++) {
1886 if (sched_whichqs != 0) {
1887 /*
1888 * A process has become ready. Abort now,
1889 * so we don't keep it waiting while we
1890 * do slow memory access to finish this
1891 * page.
1892 */
1893 rv = FALSE;
1894 break;
1895 }
1896 *ptr++ = 0;
1897 }
1898
1899 if (rv)
1900 /*
1901 * if we aborted we'll rezero this page again later so don't
1902 * purge it unless we finished it
1903 */
1904 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1905 return (rv);
1906 }
1907
1908 /*
1909 * pmap_copy_page()
1910 *
1911 * Copy one physical page into another, by mapping the pages into
1912 * hook points. The same comment regarding cachability as in
1913 * pmap_zero_page also applies here.
1914 */
1915 void
1916 pmap_copy_page(src, dest)
1917 paddr_t src;
1918 paddr_t dest;
1919 {
1920 struct pv_head *src_pvh, *dest_pvh;
1921 boolean_t cleanedcache;
1922
1923 /* Get PV entries for the pages, and clean them if needed. */
1924 src_pvh = pmap_find_pvh(src);
1925
1926 simple_lock(&src_pvh->pvh_lock);
1927 cleanedcache = pmap_clean_page(src_pvh->pvh_list, TRUE);
1928 simple_unlock(&src_pvh->pvh_lock);
1929
1930 if (cleanedcache == 0) {
1931 dest_pvh = pmap_find_pvh(dest);
1932 simple_lock(&dest_pvh->pvh_lock);
1933 pmap_clean_page(dest_pvh->pvh_list, FALSE);
1934 simple_unlock(&dest_pvh->pvh_lock);
1935 }
1936 /*
1937 * Map the pages into the page hook points, copy them, and purge
1938 * the cache for the appropriate page. Invalidate the TLB
1939 * as required.
1940 */
1941 *page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
1942 *page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1943 cpu_tlb_flushD_SE(page_hook0.va);
1944 cpu_tlb_flushD_SE(page_hook1.va);
1945 bcopy_page(page_hook0.va, page_hook1.va);
1946 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1947 cpu_cache_purgeD_rng(page_hook1.va, NBPG);
1948 }
1949
1950 /*
1951 * int pmap_next_phys_page(paddr_t *addr)
1952 *
1953 * Allocate another physical page returning true or false depending
1954 * on whether a page could be allocated.
1955 */
1956
1957 paddr_t
1958 pmap_next_phys_page(addr)
1959 paddr_t addr;
1960
1961 {
1962 int loop;
1963
1964 if (addr < bootconfig.dram[0].address)
1965 return(bootconfig.dram[0].address);
1966
1967 loop = 0;
1968
1969 while (bootconfig.dram[loop].address != 0
1970 && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
1971 ++loop;
1972
1973 if (bootconfig.dram[loop].address == 0)
1974 return(0);
1975
1976 addr += NBPG;
1977
1978 if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
1979 if (bootconfig.dram[loop + 1].address == 0)
1980 return(0);
1981 addr = bootconfig.dram[loop + 1].address;
1982 }
1983
1984 return(addr);
1985 }
1986
1987 #if 0
1988 void
1989 pmap_pte_addref(pmap, va)
1990 struct pmap *pmap;
1991 vaddr_t va;
1992 {
1993 pd_entry_t *pde;
1994 paddr_t pa;
1995 struct vm_page *m;
1996
1997 if (pmap == pmap_kernel())
1998 return;
1999
2000 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
2001 pa = pmap_pte_pa(pde);
2002 m = PHYS_TO_VM_PAGE(pa);
2003 ++m->wire_count;
2004 #ifdef MYCROFT_HACK
2005 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2006 pmap, va, pde, pa, m, m->wire_count);
2007 #endif
2008 }
2009
2010 void
2011 pmap_pte_delref(pmap, va)
2012 struct pmap *pmap;
2013 vaddr_t va;
2014 {
2015 pd_entry_t *pde;
2016 paddr_t pa;
2017 struct vm_page *m;
2018
2019 if (pmap == pmap_kernel())
2020 return;
2021
2022 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
2023 pa = pmap_pte_pa(pde);
2024 m = PHYS_TO_VM_PAGE(pa);
2025 --m->wire_count;
2026 #ifdef MYCROFT_HACK
2027 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2028 pmap, va, pde, pa, m, m->wire_count);
2029 #endif
2030 if (m->wire_count == 0) {
2031 #ifdef MYCROFT_HACK
2032 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2033 pmap, va, pde, pa, m);
2034 #endif
2035 pmap_unmap_in_l1(pmap, va);
2036 uvm_pagefree(m);
2037 --pmap->pm_stats.resident_count;
2038 }
2039 }
2040 #else
2041 #define pmap_pte_addref(pmap, va)
2042 #define pmap_pte_delref(pmap, va)
2043 #endif
2044
2045 /*
2046 * Since we have a virtually indexed cache, we may need to inhibit caching if
2047 * there is more than one mapping and at least one of them is writable.
2048 * Since we purge the cache on every context switch, we only need to check for
2049 * other mappings within the same pmap, or kernel_pmap.
2050 * This function is also called when a page is unmapped, to possibly reenable
2051 * caching on any remaining mappings.
2052 *
2053 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2054 */
2055 __inline static void
2056 pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2057 boolean_t clear_cache)
2058 {
2059 if (pmap == pmap_kernel())
2060 pmap_vac_me_kpmap(pmap, pvh, ptes, clear_cache);
2061 else
2062 pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2063 }
2064
2065 static void
2066 pmap_vac_me_kpmap(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2067 boolean_t clear_cache)
2068 {
2069 int user_entries = 0;
2070 int user_writable = 0;
2071 int user_cacheable = 0;
2072 int kernel_entries = 0;
2073 int kernel_writable = 0;
2074 int kernel_cacheable = 0;
2075 struct pv_entry *pv;
2076 struct pmap *last_pmap = pmap;
2077
2078 #ifdef DIAGNOSTIC
2079 if (pmap != pmap_kernel())
2080 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2081 #endif
2082
2083 /*
2084 * Pass one, see if there are both kernel and user pmaps for
2085 * this page. Calculate whether there are user-writable or
2086 * kernel-writable pages.
2087 */
2088 for (pv = pvh->pvh_list; pv != NULL; pv = pv->pv_next) {
2089 if (pv->pv_pmap != pmap) {
2090 user_entries++;
2091 if (pv->pv_flags & PT_Wr)
2092 user_writable++;
2093 if ((pv->pv_flags & PT_NC) == 0)
2094 user_cacheable++;
2095 } else {
2096 kernel_entries++;
2097 if (pv->pv_flags & PT_Wr)
2098 kernel_writable++;
2099 if ((pv->pv_flags & PT_NC) == 0)
2100 kernel_cacheable++;
2101 }
2102 }
2103
2104 /*
2105 * We know we have just been updating a kernel entry, so if
2106 * all user pages are already cacheable, then there is nothing
2107 * further to do.
2108 */
2109 if (kernel_entries == 0 &&
2110 user_cacheable == user_entries)
2111 return;
2112
2113 if (user_entries) {
2114 /*
2115 * Scan over the list again, for each entry, if it
2116 * might not be set correctly, call pmap_vac_me_user
2117 * to recalculate the settings.
2118 */
2119 for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
2120 /*
2121 * We know kernel mappings will get set
2122 * correctly in other calls. We also know
2123 * that if the pmap is the same as last_pmap
2124 * then we've just handled this entry.
2125 */
2126 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2127 continue;
2128 /*
2129 * If there are kernel entries and this page
2130 * is writable but non-cacheable, then we can
2131 * skip this entry also.
2132 */
2133 if (kernel_entries > 0 &&
2134 (pv->pv_flags & (PT_NC | PT_Wr)) ==
2135 (PT_NC | PT_Wr))
2136 continue;
2137 /*
2138 * Similarly if there are no kernel-writable
2139 * entries and the page is already
2140 * read-only/cacheable.
2141 */
2142 if (kernel_writable == 0 &&
2143 (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
2144 continue;
2145 /*
2146 * For some of the remaining cases, we know
2147 * that we must recalculate, but for others we
2148 * can't tell if they are correct or not, so
2149 * we recalculate anyway.
2150 */
2151 pmap_unmap_ptes(last_pmap);
2152 last_pmap = pv->pv_pmap;
2153 ptes = pmap_map_ptes(last_pmap);
2154 pmap_vac_me_user(last_pmap, pvh, ptes,
2155 pmap_is_curpmap(last_pmap));
2156 }
2157 /* Restore the pte mapping that was passed to us. */
2158 if (last_pmap != pmap) {
2159 pmap_unmap_ptes(last_pmap);
2160 ptes = pmap_map_ptes(pmap);
2161 }
2162 if (kernel_entries == 0)
2163 return;
2164 }
2165
2166 pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2167 return;
2168 }
2169
2170 static void
2171 pmap_vac_me_user(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2172 boolean_t clear_cache)
2173 {
2174 struct pmap *kpmap = pmap_kernel();
2175 struct pv_entry *pv, *npv;
2176 int entries = 0;
2177 int writable = 0;
2178 int cacheable_entries = 0;
2179 int kern_cacheable = 0;
2180 int other_writable = 0;
2181
2182 pv = pvh->pvh_list;
2183 KASSERT(ptes != NULL);
2184
2185 /*
2186 * Count mappings and writable mappings in this pmap.
2187 * Include kernel mappings as part of our own.
2188 * Keep a pointer to the first one.
2189 */
2190 for (npv = pv; npv; npv = npv->pv_next) {
2191 /* Count mappings in the same pmap */
2192 if (pmap == npv->pv_pmap ||
2193 kpmap == npv->pv_pmap) {
2194 if (entries++ == 0)
2195 pv = npv;
2196 /* Cacheable mappings */
2197 if ((npv->pv_flags & PT_NC) == 0) {
2198 cacheable_entries++;
2199 if (kpmap == npv->pv_pmap)
2200 kern_cacheable++;
2201 }
2202 /* Writable mappings */
2203 if (npv->pv_flags & PT_Wr)
2204 ++writable;
2205 } else if (npv->pv_flags & PT_Wr)
2206 other_writable = 1;
2207 }
2208
2209 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2210 "writable %d cacheable %d %s\n", pmap, entries, writable,
2211 cacheable_entries, clear_cache ? "clean" : "no clean"));
2212
2213 /*
2214 * Enable or disable caching as necessary.
2215 * Note: the first entry might be part of the kernel pmap,
2216 * so we can't assume this is indicative of the state of the
2217 * other (maybe non-kpmap) entries.
2218 */
2219 if ((entries > 1 && writable) ||
2220 (entries > 0 && pmap == kpmap && other_writable)) {
2221 if (cacheable_entries == 0)
2222 return;
2223 for (npv = pv; npv; npv = npv->pv_next) {
2224 if ((pmap == npv->pv_pmap
2225 || kpmap == npv->pv_pmap) &&
2226 (npv->pv_flags & PT_NC) == 0) {
2227 ptes[arm_byte_to_page(npv->pv_va)] &=
2228 ~(PT_C | PT_B);
2229 npv->pv_flags |= PT_NC;
2230 /*
2231 * If this page needs flushing from the
2232 * cache, and we aren't going to do it
2233 * below, do it now.
2234 */
2235 if ((cacheable_entries < 4 &&
2236 (clear_cache || npv->pv_pmap == kpmap)) ||
2237 (npv->pv_pmap == kpmap &&
2238 !clear_cache && kern_cacheable < 4)) {
2239 cpu_cache_purgeID_rng(npv->pv_va,
2240 NBPG);
2241 cpu_tlb_flushID_SE(npv->pv_va);
2242 }
2243 }
2244 }
2245 if ((clear_cache && cacheable_entries >= 4) ||
2246 kern_cacheable >= 4) {
2247 cpu_cache_purgeID();
2248 cpu_tlb_flushID();
2249 }
2250 } else if (entries > 0) {
2251 /*
2252 * Turn cacheing back on for some pages. If it is a kernel
2253 * page, only do so if there are no other writable pages.
2254 */
2255 for (npv = pv; npv; npv = npv->pv_next) {
2256 if ((pmap == npv->pv_pmap ||
2257 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2258 (npv->pv_flags & PT_NC)) {
2259 ptes[arm_byte_to_page(npv->pv_va)] |=
2260 (PT_C | PT_B);
2261 npv->pv_flags &= ~PT_NC;
2262 }
2263 }
2264 }
2265 }
2266
2267 /*
2268 * pmap_remove()
2269 *
2270 * pmap_remove is responsible for nuking a number of mappings for a range
2271 * of virtual address space in the current pmap. To do this efficiently
2272 * is interesting, because in a number of cases a wide virtual address
2273 * range may be supplied that contains few actual mappings. So, the
2274 * optimisations are:
2275 * 1. Try and skip over hunks of address space for which an L1 entry
2276 * does not exist.
2277 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2278 * maybe do just a partial cache clean. This path of execution is
2279 * complicated by the fact that the cache must be flushed _before_
2280 * the PTE is nuked, being a VAC :-)
2281 * 3. Maybe later fast-case a single page, but I don't think this is
2282 * going to make _that_ much difference overall.
2283 */
2284
2285 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2286
2287 void
2288 pmap_remove(pmap, sva, eva)
2289 struct pmap *pmap;
2290 vaddr_t sva;
2291 vaddr_t eva;
2292 {
2293 int cleanlist_idx = 0;
2294 struct pagelist {
2295 vaddr_t va;
2296 pt_entry_t *pte;
2297 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2298 pt_entry_t *pte = 0, *ptes;
2299 paddr_t pa;
2300 int pmap_active;
2301 struct pv_head *pvh;
2302
2303 /* Exit quick if there is no pmap */
2304 if (!pmap)
2305 return;
2306
2307 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2308
2309 sva &= PG_FRAME;
2310 eva &= PG_FRAME;
2311
2312 /*
2313 * we lock in the pmap => pv_head direction
2314 */
2315 PMAP_MAP_TO_HEAD_LOCK();
2316
2317 ptes = pmap_map_ptes(pmap);
2318 /* Get a page table pointer */
2319 while (sva < eva) {
2320 if (pmap_pde_v(pmap_pde(pmap, sva)))
2321 break;
2322 sva = (sva & PD_MASK) + NBPD;
2323 }
2324
2325 pte = &ptes[arm_byte_to_page(sva)];
2326 /* Note if the pmap is active thus require cache and tlb cleans */
2327 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2328 || (pmap == pmap_kernel()))
2329 pmap_active = 1;
2330 else
2331 pmap_active = 0;
2332
2333 /* Now loop along */
2334 while (sva < eva) {
2335 /* Check if we can move to the next PDE (l1 chunk) */
2336 if (!(sva & PT_MASK))
2337 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
2338 sva += NBPD;
2339 pte += arm_byte_to_page(NBPD);
2340 continue;
2341 }
2342
2343 /* We've found a valid PTE, so this page of PTEs has to go. */
2344 if (pmap_pte_v(pte)) {
2345 int bank, off;
2346
2347 /* Update statistics */
2348 --pmap->pm_stats.resident_count;
2349
2350 /*
2351 * Add this page to our cache remove list, if we can.
2352 * If, however the cache remove list is totally full,
2353 * then do a complete cache invalidation taking note
2354 * to backtrack the PTE table beforehand, and ignore
2355 * the lists in future because there's no longer any
2356 * point in bothering with them (we've paid the
2357 * penalty, so will carry on unhindered). Otherwise,
2358 * when we fall out, we just clean the list.
2359 */
2360 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2361 pa = pmap_pte_pa(pte);
2362
2363 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2364 /* Add to the clean list. */
2365 cleanlist[cleanlist_idx].pte = pte;
2366 cleanlist[cleanlist_idx].va = sva;
2367 cleanlist_idx++;
2368 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2369 int cnt;
2370
2371 /* Nuke everything if needed. */
2372 if (pmap_active) {
2373 cpu_cache_purgeID();
2374 cpu_tlb_flushID();
2375 }
2376
2377 /*
2378 * Roll back the previous PTE list,
2379 * and zero out the current PTE.
2380 */
2381 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2382 *cleanlist[cnt].pte = 0;
2383 pmap_pte_delref(pmap, cleanlist[cnt].va);
2384 }
2385 *pte = 0;
2386 pmap_pte_delref(pmap, sva);
2387 cleanlist_idx++;
2388 } else {
2389 /*
2390 * We've already nuked the cache and
2391 * TLB, so just carry on regardless,
2392 * and we won't need to do it again
2393 */
2394 *pte = 0;
2395 pmap_pte_delref(pmap, sva);
2396 }
2397
2398 /*
2399 * Update flags. In a number of circumstances,
2400 * we could cluster a lot of these and do a
2401 * number of sequential pages in one go.
2402 */
2403 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2404 struct pv_entry *pve;
2405 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2406 simple_lock(&pvh->pvh_lock);
2407 pve = pmap_remove_pv(pvh, pmap, sva);
2408 pmap_free_pv(pmap, pve);
2409 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2410 simple_unlock(&pvh->pvh_lock);
2411 }
2412 }
2413 sva += NBPG;
2414 pte++;
2415 }
2416
2417 pmap_unmap_ptes(pmap);
2418 /*
2419 * Now, if we've fallen through down to here, chances are that there
2420 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2421 */
2422 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2423 u_int cnt;
2424
2425 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2426 if (pmap_active) {
2427 cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
2428 *cleanlist[cnt].pte = 0;
2429 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2430 } else
2431 *cleanlist[cnt].pte = 0;
2432 pmap_pte_delref(pmap, cleanlist[cnt].va);
2433 }
2434 }
2435 PMAP_MAP_TO_HEAD_UNLOCK();
2436 }
2437
2438 /*
2439 * Routine: pmap_remove_all
2440 * Function:
2441 * Removes this physical page from
2442 * all physical maps in which it resides.
2443 * Reflects back modify bits to the pager.
2444 */
2445
2446 void
2447 pmap_remove_all(pa)
2448 paddr_t pa;
2449 {
2450 struct pv_entry *pv, *npv;
2451 struct pv_head *pvh;
2452 struct pmap *pmap;
2453 pt_entry_t *pte, *ptes;
2454
2455 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
2456
2457 /* set pv_head => pmap locking */
2458 PMAP_HEAD_TO_MAP_LOCK();
2459
2460 pvh = pmap_find_pvh(pa);
2461 simple_lock(&pvh->pvh_lock);
2462
2463 pv = pvh->pvh_list;
2464 if (pv == NULL)
2465 {
2466 PDEBUG(0, printf("free page\n"));
2467 simple_unlock(&pvh->pvh_lock);
2468 PMAP_HEAD_TO_MAP_UNLOCK();
2469 return;
2470 }
2471 pmap_clean_page(pv, FALSE);
2472
2473 while (pv) {
2474 pmap = pv->pv_pmap;
2475 ptes = pmap_map_ptes(pmap);
2476 pte = &ptes[arm_byte_to_page(pv->pv_va)];
2477
2478 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2479 pv->pv_va, pv->pv_flags));
2480 #ifdef DEBUG
2481 if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)
2482 || pmap_pte_pa(pte) != pa)
2483 panic("pmap_remove_all: bad mapping");
2484 #endif /* DEBUG */
2485
2486 /*
2487 * Update statistics
2488 */
2489 --pmap->pm_stats.resident_count;
2490
2491 /* Wired bit */
2492 if (pv->pv_flags & PT_W)
2493 --pmap->pm_stats.wired_count;
2494
2495 /*
2496 * Invalidate the PTEs.
2497 * XXX: should cluster them up and invalidate as many
2498 * as possible at once.
2499 */
2500
2501 #ifdef needednotdone
2502 reduce wiring count on page table pages as references drop
2503 #endif
2504
2505 *pte = 0;
2506 pmap_pte_delref(pmap, pv->pv_va);
2507
2508 npv = pv->pv_next;
2509 pmap_free_pv(pmap, pv);
2510 pv = npv;
2511 pmap_unmap_ptes(pmap);
2512 }
2513 pvh->pvh_list = NULL;
2514 simple_unlock(&pvh->pvh_lock);
2515 PMAP_HEAD_TO_MAP_UNLOCK();
2516
2517 PDEBUG(0, printf("done\n"));
2518 cpu_tlb_flushID();
2519 }
2520
2521
2522 /*
2523 * Set the physical protection on the specified range of this map as requested.
2524 */
2525
2526 void
2527 pmap_protect(pmap, sva, eva, prot)
2528 struct pmap *pmap;
2529 vaddr_t sva;
2530 vaddr_t eva;
2531 vm_prot_t prot;
2532 {
2533 pt_entry_t *pte = NULL, *ptes;
2534 int armprot;
2535 int flush = 0;
2536 paddr_t pa;
2537 int bank, off;
2538 struct pv_head *pvh;
2539
2540 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2541 pmap, sva, eva, prot));
2542
2543 if (~prot & VM_PROT_READ) {
2544 /* Just remove the mappings. */
2545 pmap_remove(pmap, sva, eva);
2546 return;
2547 }
2548 if (prot & VM_PROT_WRITE) {
2549 /*
2550 * If this is a read->write transition, just ignore it and let
2551 * uvm_fault() take care of it later.
2552 */
2553 return;
2554 }
2555
2556 sva &= PG_FRAME;
2557 eva &= PG_FRAME;
2558
2559 /* Need to lock map->head */
2560 PMAP_MAP_TO_HEAD_LOCK();
2561
2562 ptes = pmap_map_ptes(pmap);
2563 /*
2564 * We need to acquire a pointer to a page table page before entering
2565 * the following loop.
2566 */
2567 while (sva < eva) {
2568 if (pmap_pde_v(pmap_pde(pmap, sva)))
2569 break;
2570 sva = (sva & PD_MASK) + NBPD;
2571 }
2572
2573 pte = &ptes[arm_byte_to_page(sva)];
2574
2575 while (sva < eva) {
2576 /* only check once in a while */
2577 if ((sva & PT_MASK) == 0) {
2578 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
2579 /* We can race ahead here, to the next pde. */
2580 sva += NBPD;
2581 pte += arm_byte_to_page(NBPD);
2582 continue;
2583 }
2584 }
2585
2586 if (!pmap_pte_v(pte))
2587 goto next;
2588
2589 flush = 1;
2590
2591 armprot = 0;
2592 if (sva < VM_MAXUSER_ADDRESS)
2593 armprot |= PT_AP(AP_U);
2594 else if (sva < VM_MAX_ADDRESS)
2595 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2596 *pte = (*pte & 0xfffff00f) | armprot;
2597
2598 pa = pmap_pte_pa(pte);
2599
2600 /* Get the physical page index */
2601
2602 /* Clear write flag */
2603 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2604 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2605 simple_lock(&pvh->pvh_lock);
2606 (void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
2607 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2608 simple_unlock(&pvh->pvh_lock);
2609 }
2610
2611 next:
2612 sva += NBPG;
2613 pte++;
2614 }
2615 pmap_unmap_ptes(pmap);
2616 PMAP_MAP_TO_HEAD_UNLOCK();
2617 if (flush)
2618 cpu_tlb_flushID();
2619 }
2620
2621 /*
2622 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2623 * int flags)
2624 *
2625 * Insert the given physical page (p) at
2626 * the specified virtual address (v) in the
2627 * target physical map with the protection requested.
2628 *
2629 * If specified, the page will be wired down, meaning
2630 * that the related pte can not be reclaimed.
2631 *
2632 * NB: This is the only routine which MAY NOT lazy-evaluate
2633 * or lose information. That is, this routine must actually
2634 * insert this page into the given map NOW.
2635 */
2636
2637 int
2638 pmap_enter(pmap, va, pa, prot, flags)
2639 struct pmap *pmap;
2640 vaddr_t va;
2641 paddr_t pa;
2642 vm_prot_t prot;
2643 int flags;
2644 {
2645 pt_entry_t *pte, *ptes;
2646 u_int npte;
2647 int bank, off;
2648 paddr_t opa;
2649 int nflags;
2650 boolean_t wired = (flags & PMAP_WIRED) != 0;
2651 struct pv_entry *pve;
2652 struct pv_head *pvh;
2653 int error;
2654
2655 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2656 va, pa, pmap, prot, wired));
2657
2658 #ifdef DIAGNOSTIC
2659 /* Valid address ? */
2660 if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
2661 panic("pmap_enter: too big");
2662 if (pmap != pmap_kernel() && va != 0) {
2663 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2664 panic("pmap_enter: kernel page in user map");
2665 } else {
2666 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2667 panic("pmap_enter: user page in kernel map");
2668 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2669 panic("pmap_enter: entering PT page");
2670 }
2671 #endif
2672 /* get lock */
2673 PMAP_MAP_TO_HEAD_LOCK();
2674 /*
2675 * Get a pointer to the pte for this virtual address. If the
2676 * pte pointer is NULL then we are missing the L2 page table
2677 * so we need to create one.
2678 */
2679 /* XXX horrible hack to get us working with lockdebug */
2680 simple_lock(&pmap->pm_obj.vmobjlock);
2681 pte = pmap_pte(pmap, va);
2682 if (!pte) {
2683 struct vm_page *ptp;
2684
2685 /* if failure is allowed then don't try too hard */
2686 ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
2687 if (ptp == NULL) {
2688 if (flags & PMAP_CANFAIL) {
2689 error = ENOMEM;
2690 goto out;
2691 }
2692 panic("pmap_enter: get ptp failed");
2693 }
2694
2695 pte = pmap_pte(pmap, va);
2696 #ifdef DIAGNOSTIC
2697 if (!pte)
2698 panic("pmap_enter: no pte");
2699 #endif
2700 }
2701
2702 nflags = 0;
2703 if (prot & VM_PROT_WRITE)
2704 nflags |= PT_Wr;
2705 if (wired)
2706 nflags |= PT_W;
2707
2708 /* More debugging info */
2709 PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2710 *pte));
2711
2712 /* Is the pte valid ? If so then this page is already mapped */
2713 if (pmap_pte_v(pte)) {
2714 /* Get the physical address of the current page mapped */
2715 opa = pmap_pte_pa(pte);
2716
2717 #ifdef MYCROFT_HACK
2718 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2719 #endif
2720
2721 /* Are we mapping the same page ? */
2722 if (opa == pa) {
2723 /* All we must be doing is changing the protection */
2724 PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2725 va, pa));
2726
2727 /* Has the wiring changed ? */
2728 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2729 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2730 simple_lock(&pvh->pvh_lock);
2731 (void) pmap_modify_pv(pmap, va, pvh,
2732 PT_Wr | PT_W, nflags);
2733 simple_unlock(&pvh->pvh_lock);
2734 } else {
2735 pvh = NULL;
2736 }
2737 } else {
2738 /* We are replacing the page with a new one. */
2739 cpu_cache_purgeID_rng(va, NBPG);
2740
2741 PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2742 va, pa, opa));
2743
2744 /*
2745 * If it is part of our managed memory then we
2746 * must remove it from the PV list
2747 */
2748 if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
2749 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2750 simple_lock(&pvh->pvh_lock);
2751 pve = pmap_remove_pv(pvh, pmap, va);
2752 simple_unlock(&pvh->pvh_lock);
2753 } else {
2754 pve = NULL;
2755 }
2756
2757 goto enter;
2758 }
2759 } else {
2760 opa = 0;
2761 pve = NULL;
2762 pmap_pte_addref(pmap, va);
2763
2764 /* pte is not valid so we must be hooking in a new page */
2765 ++pmap->pm_stats.resident_count;
2766
2767 enter:
2768 /*
2769 * Enter on the PV list if part of our managed memory
2770 */
2771 bank = vm_physseg_find(atop(pa), &off);
2772
2773 if (pmap_initialized && (bank != -1)) {
2774 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2775 if (pve == NULL) {
2776 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2777 if (pve == NULL) {
2778 if (flags & PMAP_CANFAIL) {
2779 error = ENOMEM;
2780 goto out;
2781 }
2782 panic("pmap_enter: no pv entries available");
2783 }
2784 }
2785 /* enter_pv locks pvh when adding */
2786 pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
2787 } else {
2788 pvh = NULL;
2789 if (pve != NULL)
2790 pmap_free_pv(pmap, pve);
2791 }
2792 }
2793
2794 #ifdef MYCROFT_HACK
2795 if (mycroft_hack)
2796 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2797 #endif
2798
2799 /* Construct the pte, giving the correct access. */
2800 npte = (pa & PG_FRAME);
2801
2802 /* VA 0 is magic. */
2803 if (pmap != pmap_kernel() && va != 0)
2804 npte |= PT_AP(AP_U);
2805
2806 if (pmap_initialized && bank != -1) {
2807 #ifdef DIAGNOSTIC
2808 if ((flags & VM_PROT_ALL) & ~prot)
2809 panic("pmap_enter: access_type exceeds prot");
2810 #endif
2811 npte |= PT_C | PT_B;
2812 if (flags & VM_PROT_WRITE) {
2813 npte |= L2_SPAGE | PT_AP(AP_W);
2814 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2815 } else if (flags & VM_PROT_ALL) {
2816 npte |= L2_SPAGE;
2817 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2818 } else
2819 npte |= L2_INVAL;
2820 } else {
2821 if (prot & VM_PROT_WRITE)
2822 npte |= L2_SPAGE | PT_AP(AP_W);
2823 else if (prot & VM_PROT_ALL)
2824 npte |= L2_SPAGE;
2825 else
2826 npte |= L2_INVAL;
2827 }
2828
2829 #ifdef MYCROFT_HACK
2830 if (mycroft_hack)
2831 printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2832 #endif
2833
2834 *pte = npte;
2835
2836 if (pmap_initialized && bank != -1)
2837 {
2838 boolean_t pmap_active = FALSE;
2839 /* XXX this will change once the whole of pmap_enter uses
2840 * map_ptes
2841 */
2842 ptes = pmap_map_ptes(pmap);
2843 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2844 || (pmap == pmap_kernel()))
2845 pmap_active = TRUE;
2846 simple_lock(&pvh->pvh_lock);
2847 pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
2848 simple_unlock(&pvh->pvh_lock);
2849 pmap_unmap_ptes(pmap);
2850 }
2851
2852 /* Better flush the TLB ... */
2853 cpu_tlb_flushID_SE(va);
2854 error = 0;
2855 out:
2856 simple_unlock(&pmap->pm_obj.vmobjlock);
2857 PMAP_MAP_TO_HEAD_UNLOCK();
2858 PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2859
2860 return error;
2861 }
2862
2863 void
2864 pmap_kenter_pa(va, pa, prot)
2865 vaddr_t va;
2866 paddr_t pa;
2867 vm_prot_t prot;
2868 {
2869 struct pmap *pmap = pmap_kernel();
2870 pt_entry_t *pte;
2871 struct vm_page *pg;
2872
2873 if (!pmap_pde_v(pmap_pde(pmap, va))) {
2874
2875 /*
2876 * For the kernel pmaps it would be better to ensure
2877 * that they are always present, and to grow the
2878 * kernel as required.
2879 */
2880
2881 /* must lock the pmap */
2882 simple_lock(&(pmap_kernel()->pm_obj.vmobjlock));
2883 /* Allocate a page table */
2884 pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
2885 UVM_PGA_USERESERVE | UVM_PGA_ZERO);
2886 if (pg == NULL) {
2887 panic("pmap_kenter_pa: no free pages");
2888 }
2889 pg->flags &= ~PG_BUSY; /* never busy */
2890
2891 /* Wire this page table into the L1. */
2892 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
2893 simple_unlock(&(pmap_kernel()->pm_obj.vmobjlock));
2894 }
2895 pte = vtopte(va);
2896 KASSERT(!pmap_pte_v(pte));
2897 *pte = L2_PTE(pa, AP_KRW);
2898 }
2899
2900 void
2901 pmap_kremove(va, len)
2902 vaddr_t va;
2903 vsize_t len;
2904 {
2905 pt_entry_t *pte;
2906
2907 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2908
2909 /*
2910 * We assume that we will only be called with small
2911 * regions of memory.
2912 */
2913
2914 KASSERT(pmap_pde_v(pmap_pde(pmap_kernel(), va)));
2915 pte = vtopte(va);
2916 cpu_cache_purgeID_rng(va, PAGE_SIZE);
2917 *pte = 0;
2918 cpu_tlb_flushID_SE(va);
2919 }
2920 }
2921
2922 /*
2923 * pmap_page_protect:
2924 *
2925 * Lower the permission for all mappings to a given page.
2926 */
2927
2928 void
2929 pmap_page_protect(pg, prot)
2930 struct vm_page *pg;
2931 vm_prot_t prot;
2932 {
2933 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2934
2935 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
2936
2937 switch(prot) {
2938 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2939 case VM_PROT_READ|VM_PROT_WRITE:
2940 return;
2941
2942 case VM_PROT_READ:
2943 case VM_PROT_READ|VM_PROT_EXECUTE:
2944 pmap_copy_on_write(pa);
2945 break;
2946
2947 default:
2948 pmap_remove_all(pa);
2949 break;
2950 }
2951 }
2952
2953
2954 /*
2955 * Routine: pmap_unwire
2956 * Function: Clear the wired attribute for a map/virtual-address
2957 * pair.
2958 * In/out conditions:
2959 * The mapping must already exist in the pmap.
2960 */
2961
2962 void
2963 pmap_unwire(pmap, va)
2964 struct pmap *pmap;
2965 vaddr_t va;
2966 {
2967 pt_entry_t *pte;
2968 paddr_t pa;
2969 int bank, off;
2970 struct pv_head *pvh;
2971
2972 /*
2973 * Make sure pmap is valid. -dct
2974 */
2975 if (pmap == NULL)
2976 return;
2977
2978 /* Get the pte */
2979 pte = pmap_pte(pmap, va);
2980 if (!pte)
2981 return;
2982
2983 /* Extract the physical address of the page */
2984 pa = pmap_pte_pa(pte);
2985
2986 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2987 return;
2988 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2989 simple_lock(&pvh->pvh_lock);
2990 /* Update the wired bit in the pv entry for this page. */
2991 (void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
2992 simple_unlock(&pvh->pvh_lock);
2993 }
2994
2995 /*
2996 * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
2997 *
2998 * Return the pointer to a page table entry corresponding to the supplied
2999 * virtual address.
3000 *
3001 * The page directory is first checked to make sure that a page table
3002 * for the address in question exists and if it does a pointer to the
3003 * entry is returned.
3004 *
3005 * The way this works is that that the kernel page tables are mapped
3006 * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
3007 * This allows page tables to be located quickly.
3008 */
3009 pt_entry_t *
3010 pmap_pte(pmap, va)
3011 struct pmap *pmap;
3012 vaddr_t va;
3013 {
3014 pt_entry_t *ptp;
3015 pt_entry_t *result;
3016
3017 /* The pmap must be valid */
3018 if (!pmap)
3019 return(NULL);
3020
3021 /* Return the address of the pte */
3022 PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
3023 pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
3024
3025 /* Do we have a valid pde ? If not we don't have a page table */
3026 if (!pmap_pde_v(pmap_pde(pmap, va))) {
3027 PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
3028 pmap_pde(pmap, va)));
3029 return(NULL);
3030 }
3031
3032 PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
3033 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3034 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3035 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
3036
3037 /*
3038 * If the pmap is the kernel pmap or the pmap is the active one
3039 * then we can just return a pointer to entry relative to
3040 * PROCESS_PAGE_TBLS_BASE.
3041 * Otherwise we need to map the page tables to an alternative
3042 * address and reference them there.
3043 */
3044 if (pmap == pmap_kernel() || pmap->pm_pptpt
3045 == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3046 + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
3047 ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3048 ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3049 } else {
3050 struct proc *p = curproc;
3051
3052 /* If we don't have a valid curproc use proc0 */
3053 /* Perhaps we should just use kernel_pmap instead */
3054 if (p == NULL)
3055 p = &proc0;
3056 #ifdef DIAGNOSTIC
3057 /*
3058 * The pmap should always be valid for the process so
3059 * panic if it is not.
3060 */
3061 if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
3062 printf("pmap_pte: va=%08lx p=%p vm=%p\n",
3063 va, p, p->p_vmspace);
3064 console_debugger();
3065 }
3066 /*
3067 * The pmap for the current process should be mapped. If it
3068 * is not then we have a problem.
3069 */
3070 if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
3071 (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3072 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3073 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3074 printf("pmap pagetable = P%08lx current = P%08x ",
3075 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3076 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3077 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
3078 PG_FRAME));
3079 printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
3080 panic("pmap_pte: current and pmap mismatch\n");
3081 }
3082 #endif
3083
3084 ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3085 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3086 pmap->pm_pptpt, FALSE);
3087 cpu_tlb_flushD();
3088 }
3089 PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
3090 ((va >> (PGSHIFT-2)) & ~3)));
3091 result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
3092 return(result);
3093 }
3094
3095 /*
3096 * Routine: pmap_extract
3097 * Function:
3098 * Extract the physical page address associated
3099 * with the given map/virtual_address pair.
3100 */
3101 boolean_t
3102 pmap_extract(pmap, va, pap)
3103 struct pmap *pmap;
3104 vaddr_t va;
3105 paddr_t *pap;
3106 {
3107 pt_entry_t *pte, *ptes;
3108 paddr_t pa;
3109
3110 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
3111
3112 /*
3113 * Get the pte for this virtual address.
3114 */
3115 ptes = pmap_map_ptes(pmap);
3116 pte = &ptes[arm_byte_to_page(va)];
3117
3118 /*
3119 * If there is no pte then there is no page table etc.
3120 * Is the pte valid ? If not then no paged is actually mapped here
3121 */
3122 if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
3123 pmap_unmap_ptes(pmap);
3124 return (FALSE);
3125 }
3126
3127 /* Return the physical address depending on the PTE type */
3128 /* XXX What about L1 section mappings ? */
3129 if ((*(pte) & L2_MASK) == L2_LPAGE) {
3130 /* Extract the physical address from the pte */
3131 pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
3132
3133 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
3134 (pa | (va & (L2_LPAGE_SIZE - 1)))));
3135
3136 if (pap != NULL)
3137 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
3138 } else {
3139 /* Extract the physical address from the pte */
3140 pa = pmap_pte_pa(pte);
3141
3142 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
3143 (pa | (va & ~PG_FRAME))));
3144
3145 if (pap != NULL)
3146 *pap = pa | (va & ~PG_FRAME);
3147 }
3148 pmap_unmap_ptes(pmap);
3149 return (TRUE);
3150 }
3151
3152
3153 /*
3154 * Copy the range specified by src_addr/len from the source map to the
3155 * range dst_addr/len in the destination map.
3156 *
3157 * This routine is only advisory and need not do anything.
3158 */
3159
3160 void
3161 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
3162 struct pmap *dst_pmap;
3163 struct pmap *src_pmap;
3164 vaddr_t dst_addr;
3165 vsize_t len;
3166 vaddr_t src_addr;
3167 {
3168 PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
3169 dst_pmap, src_pmap, dst_addr, len, src_addr));
3170 }
3171
3172 #if defined(PMAP_DEBUG)
3173 void
3174 pmap_dump_pvlist(phys, m)
3175 vaddr_t phys;
3176 char *m;
3177 {
3178 struct pv_head *pvh;
3179 struct pv_entry *pv;
3180 int bank, off;
3181
3182 if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
3183 printf("INVALID PA\n");
3184 return;
3185 }
3186 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3187 simple_lock(&pvh->pvh_lock);
3188 printf("%s %08lx:", m, phys);
3189 if (pvh->pvh_list == NULL) {
3190 printf(" no mappings\n");
3191 return;
3192 }
3193
3194 for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
3195 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3196 pv->pv_va, pv->pv_flags);
3197
3198 printf("\n");
3199 simple_unlock(&pvh->pvh_lock);
3200 }
3201
3202 #endif /* PMAP_DEBUG */
3203
3204 __inline static boolean_t
3205 pmap_testbit(pa, setbits)
3206 paddr_t pa;
3207 unsigned int setbits;
3208 {
3209 int bank, off;
3210
3211 PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
3212
3213 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3214 return(FALSE);
3215
3216 /*
3217 * Check saved info only
3218 */
3219 if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
3220 PDEBUG(0, printf("pmap_attributes = %02x\n",
3221 vm_physmem[bank].pmseg.attrs[off]));
3222 return(TRUE);
3223 }
3224
3225 return(FALSE);
3226 }
3227
3228 static pt_entry_t *
3229 pmap_map_ptes(struct pmap *pmap)
3230 {
3231 struct proc *p;
3232
3233 /* the kernel's pmap is always accessible */
3234 if (pmap == pmap_kernel()) {
3235 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
3236 }
3237
3238 if (pmap_is_curpmap(pmap)) {
3239 simple_lock(&pmap->pm_obj.vmobjlock);
3240 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3241 }
3242
3243 p = curproc;
3244
3245 if (p == NULL)
3246 p = &proc0;
3247
3248 /* need to lock both curpmap and pmap: use ordered locking */
3249 if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
3250 simple_lock(&pmap->pm_obj.vmobjlock);
3251 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3252 } else {
3253 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3254 simple_lock(&pmap->pm_obj.vmobjlock);
3255 }
3256
3257 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3258 pmap->pm_pptpt, FALSE);
3259 cpu_tlb_flushD();
3260 return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3261 }
3262
3263 /*
3264 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3265 */
3266
3267 static void
3268 pmap_unmap_ptes(pmap)
3269 struct pmap *pmap;
3270 {
3271 if (pmap == pmap_kernel()) {
3272 return;
3273 }
3274 if (pmap_is_curpmap(pmap)) {
3275 simple_unlock(&pmap->pm_obj.vmobjlock);
3276 } else {
3277 simple_unlock(&pmap->pm_obj.vmobjlock);
3278 simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3279 }
3280 }
3281
3282 /*
3283 * Modify pte bits for all ptes corresponding to the given physical address.
3284 * We use `maskbits' rather than `clearbits' because we're always passing
3285 * constants and the latter would require an extra inversion at run-time.
3286 */
3287
3288 static void
3289 pmap_clearbit(pa, maskbits)
3290 paddr_t pa;
3291 unsigned int maskbits;
3292 {
3293 struct pv_entry *pv;
3294 struct pv_head *pvh;
3295 pt_entry_t *pte;
3296 vaddr_t va;
3297 int bank, off, tlbentry;
3298
3299 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3300 pa, maskbits));
3301
3302 tlbentry = 0;
3303
3304 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3305 return;
3306 PMAP_HEAD_TO_MAP_LOCK();
3307 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3308 simple_lock(&pvh->pvh_lock);
3309
3310 /*
3311 * Clear saved attributes (modify, reference)
3312 */
3313 vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
3314
3315 if (pvh->pvh_list == NULL) {
3316 simple_unlock(&pvh->pvh_lock);
3317 PMAP_HEAD_TO_MAP_UNLOCK();
3318 return;
3319 }
3320
3321 /*
3322 * Loop over all current mappings setting/clearing as appropos
3323 */
3324 for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
3325 va = pv->pv_va;
3326 pv->pv_flags &= ~maskbits;
3327 pte = pmap_pte(pv->pv_pmap, va);
3328 KASSERT(pte != NULL);
3329 if (maskbits & (PT_Wr|PT_M))
3330 {
3331 if ((pv->pv_flags & PT_NC))
3332 {
3333 /*
3334 * entry is not cacheable, so reenable the cache,
3335 * nothing to flush
3336 */
3337 *pte |= (PT_C | PT_B);
3338 pv->pv_flags &= ~PT_NC;
3339 } else {
3340 /*
3341 * entry is cacheable check if pmap is current if it
3342 * is flush it, otherwise it won't be in the cache
3343 */
3344 if (pmap_is_curpmap(pv->pv_pmap))
3345 {
3346 /* entry is in current pmap purge it */
3347 cpu_cache_purgeID_rng(pv->pv_va, NBPG);
3348 }
3349 }
3350
3351 /* make the pte read only */
3352 *pte &= ~PT_AP(AP_W);
3353
3354 if (pmap_is_curpmap(pv->pv_pmap))
3355 /*
3356 * if we had cacheable pte's we'd clean the pte out to
3357 * memory here
3358 */
3359 /*
3360 * flush tlb entry as it's in the current pmap
3361 */
3362 cpu_tlb_flushID_SE(pv->pv_va);
3363
3364 }
3365 if (maskbits & PT_H)
3366 *pte = (*pte & ~L2_MASK) | L2_INVAL;
3367 }
3368 simple_unlock(&pvh->pvh_lock);
3369 PMAP_HEAD_TO_MAP_UNLOCK();
3370 }
3371
3372
3373 boolean_t
3374 pmap_clear_modify(pg)
3375 struct vm_page *pg;
3376 {
3377 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3378 boolean_t rv;
3379
3380 PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
3381 rv = pmap_testbit(pa, PT_M);
3382 pmap_clearbit(pa, PT_M);
3383 return rv;
3384 }
3385
3386
3387 boolean_t
3388 pmap_clear_reference(pg)
3389 struct vm_page *pg;
3390 {
3391 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3392 boolean_t rv;
3393
3394 PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
3395 rv = pmap_testbit(pa, PT_H);
3396 pmap_clearbit(pa, PT_H);
3397 return rv;
3398 }
3399
3400
3401 void
3402 pmap_copy_on_write(pa)
3403 paddr_t pa;
3404 {
3405 PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
3406 pmap_clearbit(pa, PT_Wr);
3407 }
3408
3409
3410 boolean_t
3411 pmap_is_modified(pg)
3412 struct vm_page *pg;
3413 {
3414 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3415 boolean_t result;
3416
3417 result = pmap_testbit(pa, PT_M);
3418 PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
3419 return (result);
3420 }
3421
3422
3423 boolean_t
3424 pmap_is_referenced(pg)
3425 struct vm_page *pg;
3426 {
3427 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3428 boolean_t result;
3429
3430 result = pmap_testbit(pa, PT_H);
3431 PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
3432 return (result);
3433 }
3434
3435
3436 int
3437 pmap_modified_emulation(pmap, va)
3438 struct pmap *pmap;
3439 vaddr_t va;
3440 {
3441 pt_entry_t *pte;
3442 paddr_t pa;
3443 int bank, off;
3444 struct pv_head *pvh;
3445 u_int flags;
3446
3447 PDEBUG(2, printf("pmap_modified_emulation\n"));
3448
3449 /* Get the pte */
3450 pte = pmap_pte(pmap, va);
3451 if (!pte) {
3452 PDEBUG(2, printf("no pte\n"));
3453 return(0);
3454 }
3455
3456 PDEBUG(1, printf("*pte=%08x\n", *pte));
3457
3458 /* Check for a zero pte */
3459 if (*pte == 0)
3460 return(0);
3461
3462 /* This can happen if user code tries to access kernel memory. */
3463 if ((*pte & PT_AP(AP_W)) != 0)
3464 return (0);
3465
3466 /* Extract the physical address of the page */
3467 pa = pmap_pte_pa(pte);
3468 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3469 return(0);
3470
3471 PMAP_HEAD_TO_MAP_LOCK();
3472 /* Get the current flags for this page. */
3473 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3474 /* XXX: needed if we hold head->map lock? */
3475 simple_lock(&pvh->pvh_lock);
3476
3477 flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
3478 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3479
3480 /*
3481 * Do the flags say this page is writable ? If not then it is a
3482 * genuine write fault. If yes then the write fault is our fault
3483 * as we did not reflect the write access in the PTE. Now we know
3484 * a write has occurred we can correct this and also set the
3485 * modified bit
3486 */
3487 if (~flags & PT_Wr) {
3488 simple_unlock(&pvh->pvh_lock);
3489 PMAP_HEAD_TO_MAP_UNLOCK();
3490 return(0);
3491 }
3492
3493 PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
3494 va, pte, *pte));
3495 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
3496 *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3497 PDEBUG(0, printf("->(%08x)\n", *pte));
3498
3499 simple_unlock(&pvh->pvh_lock);
3500 PMAP_HEAD_TO_MAP_UNLOCK();
3501 /* Return, indicating the problem has been dealt with */
3502 cpu_tlb_flushID_SE(va);
3503 return(1);
3504 }
3505
3506
3507 int
3508 pmap_handled_emulation(pmap, va)
3509 struct pmap *pmap;
3510 vaddr_t va;
3511 {
3512 pt_entry_t *pte;
3513 paddr_t pa;
3514 int bank, off;
3515
3516 PDEBUG(2, printf("pmap_handled_emulation\n"));
3517
3518 /* Get the pte */
3519 pte = pmap_pte(pmap, va);
3520 if (!pte) {
3521 PDEBUG(2, printf("no pte\n"));
3522 return(0);
3523 }
3524
3525 PDEBUG(1, printf("*pte=%08x\n", *pte));
3526
3527 /* Check for a zero pte */
3528 if (*pte == 0)
3529 return(0);
3530
3531 /* This can happen if user code tries to access kernel memory. */
3532 if ((*pte & L2_MASK) != L2_INVAL)
3533 return (0);
3534
3535 /* Extract the physical address of the page */
3536 pa = pmap_pte_pa(pte);
3537 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3538 return(0);
3539
3540 /*
3541 * Ok we just enable the pte and mark the attibs as handled
3542 */
3543 PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
3544 va, pte, *pte));
3545 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
3546 *pte = (*pte & ~L2_MASK) | L2_SPAGE;
3547 PDEBUG(0, printf("->(%08x)\n", *pte));
3548
3549 /* Return, indicating the problem has been dealt with */
3550 cpu_tlb_flushID_SE(va);
3551 return(1);
3552 }
3553
3554
3555
3556
3557 /*
3558 * pmap_collect: free resources held by a pmap
3559 *
3560 * => optional function.
3561 * => called when a process is swapped out to free memory.
3562 */
3563
3564 void
3565 pmap_collect(pmap)
3566 struct pmap *pmap;
3567 {
3568 }
3569
3570 /*
3571 * Routine: pmap_procwr
3572 *
3573 * Function:
3574 * Synchronize caches corresponding to [addr, addr+len) in p.
3575 *
3576 */
3577 void
3578 pmap_procwr(p, va, len)
3579 struct proc *p;
3580 vaddr_t va;
3581 int len;
3582 {
3583 /* We only need to do anything if it is the current process. */
3584 if (p == curproc)
3585 cpu_cache_syncI_rng(va, len);
3586 }
3587 /*
3588 * PTP functions
3589 */
3590
3591 /*
3592 * pmap_steal_ptp: Steal a PTP from somewhere else.
3593 *
3594 * This is just a placeholder, for now we never steal.
3595 */
3596
3597 static struct vm_page *
3598 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
3599 {
3600 return (NULL);
3601 }
3602
3603 /*
3604 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3605 *
3606 * => pmap should NOT be pmap_kernel()
3607 * => pmap should be locked
3608 */
3609
3610 static struct vm_page *
3611 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3612 {
3613 struct vm_page *ptp;
3614
3615 if (pmap_pde_v(pmap_pde(pmap, va))) {
3616
3617 /* valid... check hint (saves us a PA->PG lookup) */
3618 #if 0
3619 if (pmap->pm_ptphint &&
3620 ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
3621 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3622 return (pmap->pm_ptphint);
3623 #endif
3624 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3625 #ifdef DIAGNOSTIC
3626 if (ptp == NULL)
3627 panic("pmap_get_ptp: unmanaged user PTP");
3628 #endif
3629 // pmap->pm_ptphint = ptp;
3630 return(ptp);
3631 }
3632
3633 /* allocate a new PTP (updates ptphint) */
3634 return(pmap_alloc_ptp(pmap, va, just_try));
3635 }
3636
3637 /*
3638 * pmap_alloc_ptp: allocate a PTP for a PMAP
3639 *
3640 * => pmap should already be locked by caller
3641 * => we use the ptp's wire_count to count the number of active mappings
3642 * in the PTP (we start it at one to prevent any chance this PTP
3643 * will ever leak onto the active/inactive queues)
3644 */
3645
3646 /*__inline */ static struct vm_page *
3647 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3648 {
3649 struct vm_page *ptp;
3650
3651 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3652 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3653 if (ptp == NULL) {
3654 if (just_try)
3655 return (NULL);
3656
3657 ptp = pmap_steal_ptp(pmap, va);
3658
3659 if (ptp == NULL)
3660 return (NULL);
3661 /* Stole a page, zero it. */
3662 pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
3663 }
3664
3665 /* got one! */
3666 ptp->flags &= ~PG_BUSY; /* never busy */
3667 ptp->wire_count = 1; /* no mappings yet */
3668 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3669 pmap->pm_stats.resident_count++; /* count PTP as resident */
3670 // pmap->pm_ptphint = ptp;
3671 return (ptp);
3672 }
3673
3674 /* End of pmap.c */
3675