pmap.c revision 1.261 1 /* $NetBSD: pmap.c,v 1.261 2013/07/03 15:30:24 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/pool.h>
201 #include <sys/kmem.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205
206 #include <uvm/uvm.h>
207
208 #include <sys/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/cpuconf.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.261 2013/07/03 15:30:24 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
261 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
262 #endif
263
264 /*
265 * Which pmap is currently 'live' in the cache
266 *
267 * XXXSCW: Fix for SMP ...
268 */
269 static pmap_t pmap_recent_user;
270
271 /*
272 * Pointer to last active lwp, or NULL if it exited.
273 */
274 struct lwp *pmap_previous_active_lwp;
275
276 /*
277 * Pool and cache that pmap structures are allocated from.
278 * We use a cache to avoid clearing the pm_l2[] array (1KB)
279 * in pmap_create().
280 */
281 static struct pool_cache pmap_cache;
282 static LIST_HEAD(, pmap) pmap_pmaps;
283
284 /*
285 * Pool of PV structures
286 */
287 static struct pool pmap_pv_pool;
288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
291 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
292 };
293
294 /*
295 * Pool and cache of l2_dtable structures.
296 * We use a cache to avoid clearing the structures when they're
297 * allocated. (196 bytes)
298 */
299 static struct pool_cache pmap_l2dtable_cache;
300 static vaddr_t pmap_kernel_l2dtable_kva;
301
302 /*
303 * Pool and cache of L2 page descriptors.
304 * We use a cache to avoid clearing the descriptor table
305 * when they're allocated. (1KB)
306 */
307 static struct pool_cache pmap_l2ptp_cache;
308 static vaddr_t pmap_kernel_l2ptp_kva;
309 static paddr_t pmap_kernel_l2ptp_phys;
310
311 #ifdef PMAPCOUNTERS
312 #define PMAP_EVCNT_INITIALIZER(name) \
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
314
315 #ifdef PMAP_CACHE_VIPT
316 static struct evcnt pmap_ev_vac_clean_one =
317 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_one =
319 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
320 static struct evcnt pmap_ev_vac_flush_lots =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
322 static struct evcnt pmap_ev_vac_flush_lots2 =
323 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
328
329 static struct evcnt pmap_ev_vac_color_new =
330 PMAP_EVCNT_INITIALIZER("new page color");
331 static struct evcnt pmap_ev_vac_color_reuse =
332 PMAP_EVCNT_INITIALIZER("ok first page color");
333 static struct evcnt pmap_ev_vac_color_ok =
334 PMAP_EVCNT_INITIALIZER("ok page color");
335 static struct evcnt pmap_ev_vac_color_blind =
336 PMAP_EVCNT_INITIALIZER("blind page color");
337 static struct evcnt pmap_ev_vac_color_change =
338 PMAP_EVCNT_INITIALIZER("change page color");
339 static struct evcnt pmap_ev_vac_color_erase =
340 PMAP_EVCNT_INITIALIZER("erase page color");
341 static struct evcnt pmap_ev_vac_color_none =
342 PMAP_EVCNT_INITIALIZER("no page color");
343 static struct evcnt pmap_ev_vac_color_restore =
344 PMAP_EVCNT_INITIALIZER("restore page color");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
354 #endif
355
356 static struct evcnt pmap_ev_mappings =
357 PMAP_EVCNT_INITIALIZER("pages mapped");
358 static struct evcnt pmap_ev_unmappings =
359 PMAP_EVCNT_INITIALIZER("pages unmapped");
360 static struct evcnt pmap_ev_remappings =
361 PMAP_EVCNT_INITIALIZER("pages remapped");
362
363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
366
367 static struct evcnt pmap_ev_kernel_mappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
369 static struct evcnt pmap_ev_kernel_unmappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
371 static struct evcnt pmap_ev_kernel_remappings =
372 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
373
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
377
378 static struct evcnt pmap_ev_kenter_mappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
380 static struct evcnt pmap_ev_kenter_unmappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
382 static struct evcnt pmap_ev_kenter_remappings =
383 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
384 static struct evcnt pmap_ev_pt_mappings =
385 PMAP_EVCNT_INITIALIZER("page table pages mapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
391
392 #ifdef PMAP_CACHE_VIPT
393 static struct evcnt pmap_ev_exec_mappings =
394 PMAP_EVCNT_INITIALIZER("exec pages mapped");
395 static struct evcnt pmap_ev_exec_cached =
396 PMAP_EVCNT_INITIALIZER("exec pages cached");
397
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
400
401 static struct evcnt pmap_ev_exec_synced =
402 PMAP_EVCNT_INITIALIZER("exec pages synced");
403 static struct evcnt pmap_ev_exec_synced_map =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
405 static struct evcnt pmap_ev_exec_synced_unmap =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
407 static struct evcnt pmap_ev_exec_synced_remap =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
409 static struct evcnt pmap_ev_exec_synced_clearbit =
410 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
411 static struct evcnt pmap_ev_exec_synced_kremove =
412 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
413
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
420
421 static struct evcnt pmap_ev_exec_discarded_unmap =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
423 static struct evcnt pmap_ev_exec_discarded_zero =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
425 static struct evcnt pmap_ev_exec_discarded_copy =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
427 static struct evcnt pmap_ev_exec_discarded_page_protect =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
429 static struct evcnt pmap_ev_exec_discarded_clearbit =
430 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
431 static struct evcnt pmap_ev_exec_discarded_kremove =
432 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
433
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 /*
456 * pmap copy/zero page, and mem(5) hook point
457 */
458 static pt_entry_t *csrc_pte, *cdst_pte;
459 static vaddr_t csrcp, cdstp;
460 vaddr_t memhook; /* used by mem.c */
461 kmutex_t memlock; /* used by mem.c */
462 void *zeropage; /* used by mem.c */
463 extern void *msgbufaddr;
464 int pmap_kmpages;
465 /*
466 * Flag to indicate if pmap_init() has done its thing
467 */
468 bool pmap_initialized;
469
470 /*
471 * Misc. locking data structures
472 */
473
474 #define pmap_acquire_pmap_lock(pm) \
475 do { \
476 if ((pm) != pmap_kernel()) \
477 mutex_enter((pm)->pm_lock); \
478 } while (/*CONSTCOND*/0)
479
480 #define pmap_release_pmap_lock(pm) \
481 do { \
482 if ((pm) != pmap_kernel()) \
483 mutex_exit((pm)->pm_lock); \
484 } while (/*CONSTCOND*/0)
485
486
487 /*
488 * Metadata for L1 translation tables.
489 */
490 struct l1_ttable {
491 /* Entry on the L1 Table list */
492 SLIST_ENTRY(l1_ttable) l1_link;
493
494 /* Entry on the L1 Least Recently Used list */
495 TAILQ_ENTRY(l1_ttable) l1_lru;
496
497 /* Track how many domains are allocated from this L1 */
498 volatile u_int l1_domain_use_count;
499
500 /*
501 * A free-list of domain numbers for this L1.
502 * We avoid using ffs() and a bitmap to track domains since ffs()
503 * is slow on ARM.
504 */
505 uint8_t l1_domain_first;
506 uint8_t l1_domain_free[PMAP_DOMAINS];
507
508 /* Physical address of this L1 page table */
509 paddr_t l1_physaddr;
510
511 /* KVA of this L1 page table */
512 pd_entry_t *l1_kva;
513 };
514
515 /*
516 * Convert a virtual address into its L1 table index. That is, the
517 * index used to locate the L2 descriptor table pointer in an L1 table.
518 * This is basically used to index l1->l1_kva[].
519 *
520 * Each L2 descriptor table represents 1MB of VA space.
521 */
522 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
523
524 /*
525 * L1 Page Tables are tracked using a Least Recently Used list.
526 * - New L1s are allocated from the HEAD.
527 * - Freed L1s are added to the TAIl.
528 * - Recently accessed L1s (where an 'access' is some change to one of
529 * the userland pmaps which owns this L1) are moved to the TAIL.
530 */
531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
532 static kmutex_t l1_lru_lock __cacheline_aligned;
533
534 /*
535 * A list of all L1 tables
536 */
537 static SLIST_HEAD(, l1_ttable) l1_list;
538
539 /*
540 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
541 *
542 * This is normally 16MB worth L2 page descriptors for any given pmap.
543 * Reference counts are maintained for L2 descriptors so they can be
544 * freed when empty.
545 */
546 struct l2_dtable {
547 /* The number of L2 page descriptors allocated to this l2_dtable */
548 u_int l2_occupancy;
549
550 /* List of L2 page descriptors */
551 struct l2_bucket {
552 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
553 paddr_t l2b_phys; /* Physical address of same */
554 u_short l2b_l1idx; /* This L2 table's L1 index */
555 u_short l2b_occupancy; /* How many active descriptors */
556 } l2_bucket[L2_BUCKET_SIZE];
557 };
558
559 /*
560 * Given an L1 table index, calculate the corresponding l2_dtable index
561 * and bucket index within the l2_dtable.
562 */
563 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
564 (L2_SIZE - 1))
565 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
566
567 /*
568 * Given a virtual address, this macro returns the
569 * virtual address required to drop into the next L2 bucket.
570 */
571 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
572
573 /*
574 * L2 allocation.
575 */
576 #define pmap_alloc_l2_dtable() \
577 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
578 #define pmap_free_l2_dtable(l2) \
579 pool_cache_put(&pmap_l2dtable_cache, (l2))
580 #define pmap_alloc_l2_ptp(pap) \
581 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
582 PR_NOWAIT, (pap)))
583
584 /*
585 * We try to map the page tables write-through, if possible. However, not
586 * all CPUs have a write-through cache mode, so on those we have to sync
587 * the cache when we frob page tables.
588 *
589 * We try to evaluate this at compile time, if possible. However, it's
590 * not always possible to do that, hence this run-time var.
591 */
592 int pmap_needs_pte_sync;
593
594 /*
595 * Real definition of pv_entry.
596 */
597 struct pv_entry {
598 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
599 pmap_t pv_pmap; /* pmap where mapping lies */
600 vaddr_t pv_va; /* virtual address for mapping */
601 u_int pv_flags; /* flags */
602 };
603
604 /*
605 * Macro to determine if a mapping might be resident in the
606 * instruction cache and/or TLB
607 */
608 #if ARM_MMU_V7 > 0
609 /*
610 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
611 * there are no explicit accesses, so there may be always be TLB entries to
612 * flush. If we used ASIDs then this would not be a problem.
613 */
614 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
615 #else
616 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
617 #endif
618 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
619
620 /*
621 * Macro to determine if a mapping might be resident in the
622 * data cache and/or TLB
623 */
624 #if ARM_MMU_V7 > 0
625 /*
626 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
627 * there are no explicit accesses, so there may be always be TLB entries to
628 * flush. If we used ASIDs then this would not be a problem.
629 */
630 #define PV_BEEN_REFD(f) (1)
631 #else
632 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
633 #endif
634
635 /*
636 * Local prototypes
637 */
638 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
639 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
640 pt_entry_t **);
641 static bool pmap_is_current(pmap_t);
642 static bool pmap_is_cached(pmap_t);
643 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
644 pmap_t, vaddr_t, u_int);
645 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
646 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
647 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
648 u_int, u_int);
649
650 static void pmap_pinit(pmap_t);
651 static int pmap_pmap_ctor(void *, void *, int);
652
653 static void pmap_alloc_l1(pmap_t);
654 static void pmap_free_l1(pmap_t);
655 static void pmap_use_l1(pmap_t);
656
657 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
658 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
659 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
660 static int pmap_l2ptp_ctor(void *, void *, int);
661 static int pmap_l2dtable_ctor(void *, void *, int);
662
663 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
664 #ifdef PMAP_CACHE_VIVT
665 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
666 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
667 #endif
668
669 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
670 #ifdef PMAP_CACHE_VIVT
671 static int pmap_clean_page(struct pv_entry *, bool);
672 #endif
673 #ifdef PMAP_CACHE_VIPT
674 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
675 enum pmap_flush_op {
676 PMAP_FLUSH_PRIMARY,
677 PMAP_FLUSH_SECONDARY,
678 PMAP_CLEAN_PRIMARY
679 };
680 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
681 #endif
682 static void pmap_page_remove(struct vm_page_md *, paddr_t);
683
684 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
685 static vaddr_t kernel_pt_lookup(paddr_t);
686
687
688 /*
689 * Misc variables
690 */
691 vaddr_t virtual_avail;
692 vaddr_t virtual_end;
693 vaddr_t pmap_curmaxkvaddr;
694
695 paddr_t avail_start;
696 paddr_t avail_end;
697
698 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
699 pv_addr_t kernelpages;
700 pv_addr_t kernel_l1pt;
701 pv_addr_t systempage;
702
703 /* Function to set the debug level of the pmap code */
704
705 #ifdef PMAP_DEBUG
706 void
707 pmap_debug(int level)
708 {
709 pmap_debug_level = level;
710 printf("pmap_debug: level=%d\n", pmap_debug_level);
711 }
712 #endif /* PMAP_DEBUG */
713
714 #ifdef PMAP_CACHE_VIPT
715 #define PMAP_VALIDATE_MD_PAGE(md) \
716 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
717 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
718 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
719 #endif /* PMAP_CACHE_VIPT */
720 /*
721 * A bunch of routines to conditionally flush the caches/TLB depending
722 * on whether the specified pmap actually needs to be flushed at any
723 * given time.
724 */
725 static inline void
726 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
727 {
728 if (pm->pm_cstate.cs_tlb_id != 0) {
729 if (PV_BEEN_EXECD(flags)) {
730 cpu_tlb_flushID_SE(va);
731 } else if (PV_BEEN_REFD(flags)) {
732 cpu_tlb_flushD_SE(va);
733 }
734 }
735 }
736
737 static inline void
738 pmap_tlb_flushID(pmap_t pm)
739 {
740 if (pm->pm_cstate.cs_tlb_id) {
741 cpu_tlb_flushID();
742 #if ARM_MMU_V7 == 0
743 /*
744 * Speculative loads by Cortex cores can cause TLB entries to
745 * be filled even if there are no explicit accesses, so there
746 * may be always be TLB entries to flush. If we used ASIDs
747 * then it would not be a problem.
748 * This is not true for other CPUs.
749 */
750 pm->pm_cstate.cs_tlb = 0;
751 #endif /* ARM_MMU_V7 */
752 }
753 }
754
755 static inline void
756 pmap_tlb_flushD(pmap_t pm)
757 {
758 if (pm->pm_cstate.cs_tlb_d) {
759 cpu_tlb_flushD();
760 #if ARM_MMU_V7 == 0
761 /*
762 * Speculative loads by Cortex cores can cause TLB entries to
763 * be filled even if there are no explicit accesses, so there
764 * may be always be TLB entries to flush. If we used ASIDs
765 * then it would not be a problem.
766 * This is not true for other CPUs.
767 */
768 pm->pm_cstate.cs_tlb_d = 0;
769 #endif /* ARM_MMU_V7 */
770 }
771 }
772
773 #ifdef PMAP_CACHE_VIVT
774 static inline void
775 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
776 {
777 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
778 cpu_idcache_wbinv_range(va, PAGE_SIZE);
779 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
780 if (do_inv) {
781 if (flags & PVF_WRITE)
782 cpu_dcache_wbinv_range(va, PAGE_SIZE);
783 else
784 cpu_dcache_inv_range(va, PAGE_SIZE);
785 } else if (flags & PVF_WRITE) {
786 cpu_dcache_wb_range(va, PAGE_SIZE);
787 }
788 }
789 }
790
791 static inline void
792 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
793 {
794 if (PV_BEEN_EXECD(flags)) {
795 if (pm->pm_cstate.cs_cache_id) {
796 cpu_idcache_wbinv_all();
797 pm->pm_cstate.cs_cache = 0;
798 }
799 } else if (pm->pm_cstate.cs_cache_d) {
800 cpu_dcache_wbinv_all();
801 pm->pm_cstate.cs_cache_d = 0;
802 }
803 }
804 #endif /* PMAP_CACHE_VIVT */
805
806 static inline uint8_t
807 pmap_domain(pmap_t pm)
808 {
809 return pm->pm_domain;
810 }
811
812 static inline pd_entry_t *
813 pmap_l1_kva(pmap_t pm)
814 {
815 return pm->pm_l1->l1_kva;
816 }
817
818 static inline bool
819 pmap_is_current(pmap_t pm)
820 {
821
822 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
823 return true;
824
825 return false;
826 }
827
828 static inline bool
829 pmap_is_cached(pmap_t pm)
830 {
831
832 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
833 pmap_recent_user == pm)
834 return (true);
835
836 return false;
837 }
838
839 /*
840 * PTE_SYNC_CURRENT:
841 *
842 * Make sure the pte is written out to RAM.
843 * We need to do this for one of two cases:
844 * - We're dealing with the kernel pmap
845 * - There is no pmap active in the cache/tlb.
846 * - The specified pmap is 'active' in the cache/tlb.
847 */
848 #ifdef PMAP_INCLUDE_PTE_SYNC
849 #define PTE_SYNC_CURRENT(pm, ptep) \
850 do { \
851 if (PMAP_NEEDS_PTE_SYNC && \
852 pmap_is_cached(pm)) \
853 PTE_SYNC(ptep); \
854 } while (/*CONSTCOND*/0)
855 #else
856 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
857 #endif
858
859 /*
860 * main pv_entry manipulation functions:
861 * pmap_enter_pv: enter a mapping onto a vm_page list
862 * pmap_remove_pv: remove a mapping from a vm_page list
863 *
864 * NOTE: pmap_enter_pv expects to lock the pvh itself
865 * pmap_remove_pv expects the caller to lock the pvh before calling
866 */
867
868 /*
869 * pmap_enter_pv: enter a mapping onto a vm_page lst
870 *
871 * => caller should hold the proper lock on pmap_main_lock
872 * => caller should have pmap locked
873 * => we will gain the lock on the vm_page and allocate the new pv_entry
874 * => caller should adjust ptp's wire_count before calling
875 * => caller should not adjust pmap's wire_count
876 */
877 static void
878 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
879 vaddr_t va, u_int flags)
880 {
881 struct pv_entry **pvp;
882
883 NPDEBUG(PDB_PVDUMP,
884 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
885
886 pv->pv_pmap = pm;
887 pv->pv_va = va;
888 pv->pv_flags = flags;
889
890 pvp = &SLIST_FIRST(&md->pvh_list);
891 #ifdef PMAP_CACHE_VIPT
892 /*
893 * Insert unmanaged entries, writeable first, at the head of
894 * the pv list.
895 */
896 if (__predict_true((flags & PVF_KENTRY) == 0)) {
897 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
898 pvp = &SLIST_NEXT(*pvp, pv_link);
899 } else if ((flags & PVF_WRITE) == 0) {
900 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
901 pvp = &SLIST_NEXT(*pvp, pv_link);
902 }
903 #endif
904 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
905 *pvp = pv; /* ... locked list */
906 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
907 #ifdef PMAP_CACHE_VIPT
908 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
909 md->pvh_attrs |= PVF_KMOD;
910 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
911 md->pvh_attrs |= PVF_DIRTY;
912 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
913 #endif
914 if (pm == pmap_kernel()) {
915 PMAPCOUNT(kernel_mappings);
916 if (flags & PVF_WRITE)
917 md->krw_mappings++;
918 else
919 md->kro_mappings++;
920 } else {
921 if (flags & PVF_WRITE)
922 md->urw_mappings++;
923 else
924 md->uro_mappings++;
925 }
926
927 #ifdef PMAP_CACHE_VIPT
928 /*
929 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
930 * do it here as well to keep the mappings & KVF_WRITE consistent.
931 */
932 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
933 md->pvh_attrs |= PVF_WRITE;
934 }
935 /*
936 * If this is an exec mapping and its the first exec mapping
937 * for this page, make sure to sync the I-cache.
938 */
939 if (PV_IS_EXEC_P(flags)) {
940 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
941 pmap_syncicache_page(md, pa);
942 PMAPCOUNT(exec_synced_map);
943 }
944 PMAPCOUNT(exec_mappings);
945 }
946 #endif
947
948 PMAPCOUNT(mappings);
949
950 if (pv->pv_flags & PVF_WIRED)
951 ++pm->pm_stats.wired_count;
952 }
953
954 /*
955 *
956 * pmap_find_pv: Find a pv entry
957 *
958 * => caller should hold lock on vm_page
959 */
960 static inline struct pv_entry *
961 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
962 {
963 struct pv_entry *pv;
964
965 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
966 if (pm == pv->pv_pmap && va == pv->pv_va)
967 break;
968 }
969
970 return (pv);
971 }
972
973 /*
974 * pmap_remove_pv: try to remove a mapping from a pv_list
975 *
976 * => caller should hold proper lock on pmap_main_lock
977 * => pmap should be locked
978 * => caller should hold lock on vm_page [so that attrs can be adjusted]
979 * => caller should adjust ptp's wire_count and free PTP if needed
980 * => caller should NOT adjust pmap's wire_count
981 * => we return the removed pv
982 */
983 static struct pv_entry *
984 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
985 {
986 struct pv_entry *pv, **prevptr;
987
988 NPDEBUG(PDB_PVDUMP,
989 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
990
991 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
992 pv = *prevptr;
993
994 while (pv) {
995 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
996 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
997 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
998 if (pv->pv_flags & PVF_WIRED) {
999 --pm->pm_stats.wired_count;
1000 }
1001 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1002 if (pm == pmap_kernel()) {
1003 PMAPCOUNT(kernel_unmappings);
1004 if (pv->pv_flags & PVF_WRITE)
1005 md->krw_mappings--;
1006 else
1007 md->kro_mappings--;
1008 } else {
1009 if (pv->pv_flags & PVF_WRITE)
1010 md->urw_mappings--;
1011 else
1012 md->uro_mappings--;
1013 }
1014
1015 PMAPCOUNT(unmappings);
1016 #ifdef PMAP_CACHE_VIPT
1017 if (!(pv->pv_flags & PVF_WRITE))
1018 break;
1019 /*
1020 * If this page has had an exec mapping, then if
1021 * this was the last mapping, discard the contents,
1022 * otherwise sync the i-cache for this page.
1023 */
1024 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1025 if (SLIST_EMPTY(&md->pvh_list)) {
1026 md->pvh_attrs &= ~PVF_EXEC;
1027 PMAPCOUNT(exec_discarded_unmap);
1028 } else {
1029 pmap_syncicache_page(md, pa);
1030 PMAPCOUNT(exec_synced_unmap);
1031 }
1032 }
1033 #endif /* PMAP_CACHE_VIPT */
1034 break;
1035 }
1036 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1037 pv = *prevptr; /* advance */
1038 }
1039
1040 #ifdef PMAP_CACHE_VIPT
1041 /*
1042 * If we no longer have a WRITEABLE KENTRY at the head of list,
1043 * clear the KMOD attribute from the page.
1044 */
1045 if (SLIST_FIRST(&md->pvh_list) == NULL
1046 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1047 md->pvh_attrs &= ~PVF_KMOD;
1048
1049 /*
1050 * If this was a writeable page and there are no more writeable
1051 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1052 * the contents to memory.
1053 */
1054 if (arm_cache_prefer_mask != 0) {
1055 if (md->krw_mappings + md->urw_mappings == 0)
1056 md->pvh_attrs &= ~PVF_WRITE;
1057 PMAP_VALIDATE_MD_PAGE(md);
1058 }
1059 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1060 #endif /* PMAP_CACHE_VIPT */
1061
1062 return(pv); /* return removed pv */
1063 }
1064
1065 /*
1066 *
1067 * pmap_modify_pv: Update pv flags
1068 *
1069 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1070 * => caller should NOT adjust pmap's wire_count
1071 * => caller must call pmap_vac_me_harder() if writable status of a page
1072 * may have changed.
1073 * => we return the old flags
1074 *
1075 * Modify a physical-virtual mapping in the pv table
1076 */
1077 static u_int
1078 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1079 u_int clr_mask, u_int set_mask)
1080 {
1081 struct pv_entry *npv;
1082 u_int flags, oflags;
1083
1084 KASSERT((clr_mask & PVF_KENTRY) == 0);
1085 KASSERT((set_mask & PVF_KENTRY) == 0);
1086
1087 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1088 return (0);
1089
1090 NPDEBUG(PDB_PVDUMP,
1091 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1092
1093 /*
1094 * There is at least one VA mapping this page.
1095 */
1096
1097 if (clr_mask & (PVF_REF | PVF_MOD)) {
1098 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1099 #ifdef PMAP_CACHE_VIPT
1100 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1101 md->pvh_attrs |= PVF_DIRTY;
1102 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1103 #endif
1104 }
1105
1106 oflags = npv->pv_flags;
1107 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1108
1109 if ((flags ^ oflags) & PVF_WIRED) {
1110 if (flags & PVF_WIRED)
1111 ++pm->pm_stats.wired_count;
1112 else
1113 --pm->pm_stats.wired_count;
1114 }
1115
1116 if ((flags ^ oflags) & PVF_WRITE) {
1117 if (pm == pmap_kernel()) {
1118 if (flags & PVF_WRITE) {
1119 md->krw_mappings++;
1120 md->kro_mappings--;
1121 } else {
1122 md->kro_mappings++;
1123 md->krw_mappings--;
1124 }
1125 } else {
1126 if (flags & PVF_WRITE) {
1127 md->urw_mappings++;
1128 md->uro_mappings--;
1129 } else {
1130 md->uro_mappings++;
1131 md->urw_mappings--;
1132 }
1133 }
1134 }
1135 #ifdef PMAP_CACHE_VIPT
1136 if (arm_cache_prefer_mask != 0) {
1137 if (md->urw_mappings + md->krw_mappings == 0) {
1138 md->pvh_attrs &= ~PVF_WRITE;
1139 } else {
1140 md->pvh_attrs |= PVF_WRITE;
1141 }
1142 }
1143 /*
1144 * We have two cases here: the first is from enter_pv (new exec
1145 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1146 * Since in latter, pmap_enter_pv won't do anything, we just have
1147 * to do what pmap_remove_pv would do.
1148 */
1149 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1150 || (PV_IS_EXEC_P(md->pvh_attrs)
1151 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1152 pmap_syncicache_page(md, pa);
1153 PMAPCOUNT(exec_synced_remap);
1154 }
1155 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1156 #endif
1157
1158 PMAPCOUNT(remappings);
1159
1160 return (oflags);
1161 }
1162
1163 /*
1164 * Allocate an L1 translation table for the specified pmap.
1165 * This is called at pmap creation time.
1166 */
1167 static void
1168 pmap_alloc_l1(pmap_t pm)
1169 {
1170 struct l1_ttable *l1;
1171 uint8_t domain;
1172
1173 /*
1174 * Remove the L1 at the head of the LRU list
1175 */
1176 mutex_spin_enter(&l1_lru_lock);
1177 l1 = TAILQ_FIRST(&l1_lru_list);
1178 KDASSERT(l1 != NULL);
1179 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1180
1181 /*
1182 * Pick the first available domain number, and update
1183 * the link to the next number.
1184 */
1185 domain = l1->l1_domain_first;
1186 l1->l1_domain_first = l1->l1_domain_free[domain];
1187
1188 /*
1189 * If there are still free domain numbers in this L1,
1190 * put it back on the TAIL of the LRU list.
1191 */
1192 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1193 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1194
1195 mutex_spin_exit(&l1_lru_lock);
1196
1197 /*
1198 * Fix up the relevant bits in the pmap structure
1199 */
1200 pm->pm_l1 = l1;
1201 pm->pm_domain = domain + 1;
1202 }
1203
1204 /*
1205 * Free an L1 translation table.
1206 * This is called at pmap destruction time.
1207 */
1208 static void
1209 pmap_free_l1(pmap_t pm)
1210 {
1211 struct l1_ttable *l1 = pm->pm_l1;
1212
1213 mutex_spin_enter(&l1_lru_lock);
1214
1215 /*
1216 * If this L1 is currently on the LRU list, remove it.
1217 */
1218 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1219 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1220
1221 /*
1222 * Free up the domain number which was allocated to the pmap
1223 */
1224 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1225 l1->l1_domain_first = pmap_domain(pm) - 1;
1226 l1->l1_domain_use_count--;
1227
1228 /*
1229 * The L1 now must have at least 1 free domain, so add
1230 * it back to the LRU list. If the use count is zero,
1231 * put it at the head of the list, otherwise it goes
1232 * to the tail.
1233 */
1234 if (l1->l1_domain_use_count == 0)
1235 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1236 else
1237 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1238
1239 mutex_spin_exit(&l1_lru_lock);
1240 }
1241
1242 static inline void
1243 pmap_use_l1(pmap_t pm)
1244 {
1245 struct l1_ttable *l1;
1246
1247 /*
1248 * Do nothing if we're in interrupt context.
1249 * Access to an L1 by the kernel pmap must not affect
1250 * the LRU list.
1251 */
1252 if (cpu_intr_p() || pm == pmap_kernel())
1253 return;
1254
1255 l1 = pm->pm_l1;
1256
1257 /*
1258 * If the L1 is not currently on the LRU list, just return
1259 */
1260 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1261 return;
1262
1263 mutex_spin_enter(&l1_lru_lock);
1264
1265 /*
1266 * Check the use count again, now that we've acquired the lock
1267 */
1268 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1269 mutex_spin_exit(&l1_lru_lock);
1270 return;
1271 }
1272
1273 /*
1274 * Move the L1 to the back of the LRU list
1275 */
1276 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1277 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1278
1279 mutex_spin_exit(&l1_lru_lock);
1280 }
1281
1282 /*
1283 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1284 *
1285 * Free an L2 descriptor table.
1286 */
1287 static inline void
1288 #ifndef PMAP_INCLUDE_PTE_SYNC
1289 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1290 #else
1291 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1292 #endif
1293 {
1294 #ifdef PMAP_INCLUDE_PTE_SYNC
1295 #ifdef PMAP_CACHE_VIVT
1296 /*
1297 * Note: With a write-back cache, we may need to sync this
1298 * L2 table before re-using it.
1299 * This is because it may have belonged to a non-current
1300 * pmap, in which case the cache syncs would have been
1301 * skipped for the pages that were being unmapped. If the
1302 * L2 table were then to be immediately re-allocated to
1303 * the *current* pmap, it may well contain stale mappings
1304 * which have not yet been cleared by a cache write-back
1305 * and so would still be visible to the mmu.
1306 */
1307 if (need_sync)
1308 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1309 #endif /* PMAP_CACHE_VIVT */
1310 #endif /* PMAP_INCLUDE_PTE_SYNC */
1311 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1312 }
1313
1314 /*
1315 * Returns a pointer to the L2 bucket associated with the specified pmap
1316 * and VA, or NULL if no L2 bucket exists for the address.
1317 */
1318 static inline struct l2_bucket *
1319 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1320 {
1321 struct l2_dtable *l2;
1322 struct l2_bucket *l2b;
1323 u_short l1idx;
1324
1325 l1idx = L1_IDX(va);
1326
1327 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1328 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1329 return (NULL);
1330
1331 return (l2b);
1332 }
1333
1334 /*
1335 * Returns a pointer to the L2 bucket associated with the specified pmap
1336 * and VA.
1337 *
1338 * If no L2 bucket exists, perform the necessary allocations to put an L2
1339 * bucket/page table in place.
1340 *
1341 * Note that if a new L2 bucket/page was allocated, the caller *must*
1342 * increment the bucket occupancy counter appropriately *before*
1343 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1344 * the bucket/page in the meantime.
1345 */
1346 static struct l2_bucket *
1347 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1348 {
1349 struct l2_dtable *l2;
1350 struct l2_bucket *l2b;
1351 u_short l1idx;
1352
1353 l1idx = L1_IDX(va);
1354
1355 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1356 /*
1357 * No mapping at this address, as there is
1358 * no entry in the L1 table.
1359 * Need to allocate a new l2_dtable.
1360 */
1361 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1362 return (NULL);
1363
1364 /*
1365 * Link it into the parent pmap
1366 */
1367 pm->pm_l2[L2_IDX(l1idx)] = l2;
1368 }
1369
1370 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1371
1372 /*
1373 * Fetch pointer to the L2 page table associated with the address.
1374 */
1375 if (l2b->l2b_kva == NULL) {
1376 pt_entry_t *ptep;
1377
1378 /*
1379 * No L2 page table has been allocated. Chances are, this
1380 * is because we just allocated the l2_dtable, above.
1381 */
1382 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1383 /*
1384 * Oops, no more L2 page tables available at this
1385 * time. We may need to deallocate the l2_dtable
1386 * if we allocated a new one above.
1387 */
1388 if (l2->l2_occupancy == 0) {
1389 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1390 pmap_free_l2_dtable(l2);
1391 }
1392 return (NULL);
1393 }
1394
1395 l2->l2_occupancy++;
1396 l2b->l2b_kva = ptep;
1397 l2b->l2b_l1idx = l1idx;
1398 }
1399
1400 return (l2b);
1401 }
1402
1403 /*
1404 * One or more mappings in the specified L2 descriptor table have just been
1405 * invalidated.
1406 *
1407 * Garbage collect the metadata and descriptor table itself if necessary.
1408 *
1409 * The pmap lock must be acquired when this is called (not necessary
1410 * for the kernel pmap).
1411 */
1412 static void
1413 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1414 {
1415 struct l2_dtable *l2;
1416 pd_entry_t *pl1pd, l1pd;
1417 pt_entry_t *ptep;
1418 u_short l1idx;
1419
1420 KDASSERT(count <= l2b->l2b_occupancy);
1421
1422 /*
1423 * Update the bucket's reference count according to how many
1424 * PTEs the caller has just invalidated.
1425 */
1426 l2b->l2b_occupancy -= count;
1427
1428 /*
1429 * Note:
1430 *
1431 * Level 2 page tables allocated to the kernel pmap are never freed
1432 * as that would require checking all Level 1 page tables and
1433 * removing any references to the Level 2 page table. See also the
1434 * comment elsewhere about never freeing bootstrap L2 descriptors.
1435 *
1436 * We make do with just invalidating the mapping in the L2 table.
1437 *
1438 * This isn't really a big deal in practice and, in fact, leads
1439 * to a performance win over time as we don't need to continually
1440 * alloc/free.
1441 */
1442 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1443 return;
1444
1445 /*
1446 * There are no more valid mappings in this level 2 page table.
1447 * Go ahead and NULL-out the pointer in the bucket, then
1448 * free the page table.
1449 */
1450 l1idx = l2b->l2b_l1idx;
1451 ptep = l2b->l2b_kva;
1452 l2b->l2b_kva = NULL;
1453
1454 pl1pd = pmap_l1_kva(pm) + l1idx;
1455
1456 /*
1457 * If the L1 slot matches the pmap's domain
1458 * number, then invalidate it.
1459 */
1460 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1461 if (l1pd == (L1_C_DOM(pmap_domain(pm)) | L1_TYPE_C)) {
1462 *pl1pd = 0;
1463 PTE_SYNC(pl1pd);
1464 }
1465
1466 /*
1467 * Release the L2 descriptor table back to the pool cache.
1468 */
1469 #ifndef PMAP_INCLUDE_PTE_SYNC
1470 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1471 #else
1472 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1473 #endif
1474
1475 /*
1476 * Update the reference count in the associated l2_dtable
1477 */
1478 l2 = pm->pm_l2[L2_IDX(l1idx)];
1479 if (--l2->l2_occupancy > 0)
1480 return;
1481
1482 /*
1483 * There are no more valid mappings in any of the Level 1
1484 * slots managed by this l2_dtable. Go ahead and NULL-out
1485 * the pointer in the parent pmap and free the l2_dtable.
1486 */
1487 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1488 pmap_free_l2_dtable(l2);
1489 }
1490
1491 /*
1492 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1493 * structures.
1494 */
1495 static int
1496 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1497 {
1498 #ifndef PMAP_INCLUDE_PTE_SYNC
1499 struct l2_bucket *l2b;
1500 pt_entry_t *ptep, pte;
1501 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1502
1503 /*
1504 * The mappings for these page tables were initially made using
1505 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1506 * mode will not be right for page table mappings. To avoid
1507 * polluting the pmap_kenter_pa() code with a special case for
1508 * page tables, we simply fix up the cache-mode here if it's not
1509 * correct.
1510 */
1511 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1512 KDASSERT(l2b != NULL);
1513 ptep = &l2b->l2b_kva[l2pte_index(va)];
1514 pte = *ptep;
1515
1516 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1517 /*
1518 * Page tables must have the cache-mode set to Write-Thru.
1519 */
1520 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1521 PTE_SYNC(ptep);
1522 cpu_tlb_flushD_SE(va);
1523 cpu_cpwait();
1524 }
1525 #endif
1526
1527 memset(v, 0, L2_TABLE_SIZE_REAL);
1528 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1529 return (0);
1530 }
1531
1532 static int
1533 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1534 {
1535
1536 memset(v, 0, sizeof(struct l2_dtable));
1537 return (0);
1538 }
1539
1540 static int
1541 pmap_pmap_ctor(void *arg, void *v, int flags)
1542 {
1543
1544 memset(v, 0, sizeof(struct pmap));
1545 return (0);
1546 }
1547
1548 static void
1549 pmap_pinit(pmap_t pm)
1550 {
1551 #ifndef ARM_HAS_VBAR
1552 struct l2_bucket *l2b;
1553
1554 if (vector_page < KERNEL_BASE) {
1555 /*
1556 * Map the vector page.
1557 */
1558 pmap_enter(pm, vector_page, systempage.pv_pa,
1559 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1560 pmap_update(pm);
1561
1562 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
1563 l2b = pmap_get_l2_bucket(pm, vector_page);
1564 KDASSERT(l2b != NULL);
1565 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1566 L1_C_DOM(pmap_domain(pm));
1567 } else
1568 pm->pm_pl1vec = NULL;
1569 #endif
1570 }
1571
1572 #ifdef PMAP_CACHE_VIVT
1573 /*
1574 * Since we have a virtually indexed cache, we may need to inhibit caching if
1575 * there is more than one mapping and at least one of them is writable.
1576 * Since we purge the cache on every context switch, we only need to check for
1577 * other mappings within the same pmap, or kernel_pmap.
1578 * This function is also called when a page is unmapped, to possibly reenable
1579 * caching on any remaining mappings.
1580 *
1581 * The code implements the following logic, where:
1582 *
1583 * KW = # of kernel read/write pages
1584 * KR = # of kernel read only pages
1585 * UW = # of user read/write pages
1586 * UR = # of user read only pages
1587 *
1588 * KC = kernel mapping is cacheable
1589 * UC = user mapping is cacheable
1590 *
1591 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1592 * +---------------------------------------------
1593 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1594 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1595 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1596 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1597 */
1598
1599 static const int pmap_vac_flags[4][4] = {
1600 {-1, 0, 0, PVF_KNC},
1601 {0, 0, PVF_NC, PVF_NC},
1602 {0, PVF_NC, PVF_NC, PVF_NC},
1603 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1604 };
1605
1606 static inline int
1607 pmap_get_vac_flags(const struct vm_page_md *md)
1608 {
1609 int kidx, uidx;
1610
1611 kidx = 0;
1612 if (md->kro_mappings || md->krw_mappings > 1)
1613 kidx |= 1;
1614 if (md->krw_mappings)
1615 kidx |= 2;
1616
1617 uidx = 0;
1618 if (md->uro_mappings || md->urw_mappings > 1)
1619 uidx |= 1;
1620 if (md->urw_mappings)
1621 uidx |= 2;
1622
1623 return (pmap_vac_flags[uidx][kidx]);
1624 }
1625
1626 static inline void
1627 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1628 {
1629 int nattr;
1630
1631 nattr = pmap_get_vac_flags(md);
1632
1633 if (nattr < 0) {
1634 md->pvh_attrs &= ~PVF_NC;
1635 return;
1636 }
1637
1638 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1639 return;
1640
1641 if (pm == pmap_kernel())
1642 pmap_vac_me_kpmap(md, pa, pm, va);
1643 else
1644 pmap_vac_me_user(md, pa, pm, va);
1645
1646 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1647 }
1648
1649 static void
1650 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1651 {
1652 u_int u_cacheable, u_entries;
1653 struct pv_entry *pv;
1654 pmap_t last_pmap = pm;
1655
1656 /*
1657 * Pass one, see if there are both kernel and user pmaps for
1658 * this page. Calculate whether there are user-writable or
1659 * kernel-writable pages.
1660 */
1661 u_cacheable = 0;
1662 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1663 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1664 u_cacheable++;
1665 }
1666
1667 u_entries = md->urw_mappings + md->uro_mappings;
1668
1669 /*
1670 * We know we have just been updating a kernel entry, so if
1671 * all user pages are already cacheable, then there is nothing
1672 * further to do.
1673 */
1674 if (md->k_mappings == 0 && u_cacheable == u_entries)
1675 return;
1676
1677 if (u_entries) {
1678 /*
1679 * Scan over the list again, for each entry, if it
1680 * might not be set correctly, call pmap_vac_me_user
1681 * to recalculate the settings.
1682 */
1683 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1684 /*
1685 * We know kernel mappings will get set
1686 * correctly in other calls. We also know
1687 * that if the pmap is the same as last_pmap
1688 * then we've just handled this entry.
1689 */
1690 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1691 continue;
1692
1693 /*
1694 * If there are kernel entries and this page
1695 * is writable but non-cacheable, then we can
1696 * skip this entry also.
1697 */
1698 if (md->k_mappings &&
1699 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1700 (PVF_NC | PVF_WRITE))
1701 continue;
1702
1703 /*
1704 * Similarly if there are no kernel-writable
1705 * entries and the page is already
1706 * read-only/cacheable.
1707 */
1708 if (md->krw_mappings == 0 &&
1709 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1710 continue;
1711
1712 /*
1713 * For some of the remaining cases, we know
1714 * that we must recalculate, but for others we
1715 * can't tell if they are correct or not, so
1716 * we recalculate anyway.
1717 */
1718 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1719 }
1720
1721 if (md->k_mappings == 0)
1722 return;
1723 }
1724
1725 pmap_vac_me_user(md, pa, pm, va);
1726 }
1727
1728 static void
1729 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1730 {
1731 pmap_t kpmap = pmap_kernel();
1732 struct pv_entry *pv, *npv = NULL;
1733 struct l2_bucket *l2b;
1734 pt_entry_t *ptep, pte;
1735 u_int entries = 0;
1736 u_int writable = 0;
1737 u_int cacheable_entries = 0;
1738 u_int kern_cacheable = 0;
1739 u_int other_writable = 0;
1740
1741 /*
1742 * Count mappings and writable mappings in this pmap.
1743 * Include kernel mappings as part of our own.
1744 * Keep a pointer to the first one.
1745 */
1746 npv = NULL;
1747 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1748 /* Count mappings in the same pmap */
1749 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1750 if (entries++ == 0)
1751 npv = pv;
1752
1753 /* Cacheable mappings */
1754 if ((pv->pv_flags & PVF_NC) == 0) {
1755 cacheable_entries++;
1756 if (kpmap == pv->pv_pmap)
1757 kern_cacheable++;
1758 }
1759
1760 /* Writable mappings */
1761 if (pv->pv_flags & PVF_WRITE)
1762 ++writable;
1763 } else
1764 if (pv->pv_flags & PVF_WRITE)
1765 other_writable = 1;
1766 }
1767
1768 /*
1769 * Enable or disable caching as necessary.
1770 * Note: the first entry might be part of the kernel pmap,
1771 * so we can't assume this is indicative of the state of the
1772 * other (maybe non-kpmap) entries.
1773 */
1774 if ((entries > 1 && writable) ||
1775 (entries > 0 && pm == kpmap && other_writable)) {
1776 if (cacheable_entries == 0)
1777 return;
1778
1779 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1780 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1781 (pv->pv_flags & PVF_NC))
1782 continue;
1783
1784 pv->pv_flags |= PVF_NC;
1785
1786 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1787 KDASSERT(l2b != NULL);
1788 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1789 pte = *ptep & ~L2_S_CACHE_MASK;
1790
1791 if ((va != pv->pv_va || pm != pv->pv_pmap)
1792 && l2pte_valid(pte)) {
1793 #ifdef PMAP_CACHE_VIVT
1794 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1795 true, pv->pv_flags);
1796 #endif
1797 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1798 pv->pv_flags);
1799 }
1800
1801 *ptep = pte;
1802 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1803 }
1804 cpu_cpwait();
1805 } else
1806 if (entries > cacheable_entries) {
1807 /*
1808 * Turn cacheing back on for some pages. If it is a kernel
1809 * page, only do so if there are no other writable pages.
1810 */
1811 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1812 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1813 (kpmap != pv->pv_pmap || other_writable)))
1814 continue;
1815
1816 pv->pv_flags &= ~PVF_NC;
1817
1818 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1819 KDASSERT(l2b != NULL);
1820 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1821 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1822
1823 if (l2pte_valid(pte)) {
1824 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1825 pv->pv_flags);
1826 }
1827
1828 *ptep = pte;
1829 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1830 }
1831 }
1832 }
1833 #endif
1834
1835 #ifdef PMAP_CACHE_VIPT
1836 static void
1837 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1838 {
1839 struct pv_entry *pv;
1840 vaddr_t tst_mask;
1841 bool bad_alias;
1842 struct l2_bucket *l2b;
1843 pt_entry_t *ptep, pte, opte;
1844 const u_int
1845 rw_mappings = md->urw_mappings + md->krw_mappings,
1846 ro_mappings = md->uro_mappings + md->kro_mappings;
1847
1848 /* do we need to do anything? */
1849 if (arm_cache_prefer_mask == 0)
1850 return;
1851
1852 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1853 md, pm, va));
1854
1855 KASSERT(!va || pm);
1856 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1857
1858 /* Already a conflict? */
1859 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1860 /* just an add, things are already non-cached */
1861 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1862 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1863 bad_alias = false;
1864 if (va) {
1865 PMAPCOUNT(vac_color_none);
1866 bad_alias = true;
1867 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1868 goto fixup;
1869 }
1870 pv = SLIST_FIRST(&md->pvh_list);
1871 /* the list can't be empty because it would be cachable */
1872 if (md->pvh_attrs & PVF_KMPAGE) {
1873 tst_mask = md->pvh_attrs;
1874 } else {
1875 KASSERT(pv);
1876 tst_mask = pv->pv_va;
1877 pv = SLIST_NEXT(pv, pv_link);
1878 }
1879 /*
1880 * Only check for a bad alias if we have writable mappings.
1881 */
1882 tst_mask &= arm_cache_prefer_mask;
1883 if (rw_mappings > 0) {
1884 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1885 /* if there's a bad alias, stop checking. */
1886 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1887 bad_alias = true;
1888 }
1889 md->pvh_attrs |= PVF_WRITE;
1890 if (!bad_alias)
1891 md->pvh_attrs |= PVF_DIRTY;
1892 } else {
1893 /*
1894 * We have only read-only mappings. Let's see if there
1895 * are multiple colors in use or if we mapped a KMPAGE.
1896 * If the latter, we have a bad alias. If the former,
1897 * we need to remember that.
1898 */
1899 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1900 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1901 if (md->pvh_attrs & PVF_KMPAGE)
1902 bad_alias = true;
1903 break;
1904 }
1905 }
1906 md->pvh_attrs &= ~PVF_WRITE;
1907 /*
1908 * No KMPAGE and we exited early, so we must have
1909 * multiple color mappings.
1910 */
1911 if (!bad_alias && pv != NULL)
1912 md->pvh_attrs |= PVF_MULTCLR;
1913 }
1914
1915 /* If no conflicting colors, set everything back to cached */
1916 if (!bad_alias) {
1917 #ifdef DEBUG
1918 if ((md->pvh_attrs & PVF_WRITE)
1919 || ro_mappings < 2) {
1920 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1921 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1922 }
1923 #endif
1924 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1925 md->pvh_attrs |= tst_mask | PVF_COLORED;
1926 /*
1927 * Restore DIRTY bit if page is modified
1928 */
1929 if (md->pvh_attrs & PVF_DMOD)
1930 md->pvh_attrs |= PVF_DIRTY;
1931 PMAPCOUNT(vac_color_restore);
1932 } else {
1933 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1934 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1935 }
1936 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1937 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1938 } else if (!va) {
1939 KASSERT(pmap_is_page_colored_p(md));
1940 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1941 || (md->pvh_attrs & PVF_DIRTY));
1942 if (rw_mappings == 0) {
1943 md->pvh_attrs &= ~PVF_WRITE;
1944 if (ro_mappings == 1
1945 && (md->pvh_attrs & PVF_MULTCLR)) {
1946 /*
1947 * If this is the last readonly mapping
1948 * but it doesn't match the current color
1949 * for the page, change the current color
1950 * to match this last readonly mapping.
1951 */
1952 pv = SLIST_FIRST(&md->pvh_list);
1953 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1954 & arm_cache_prefer_mask;
1955 if (tst_mask) {
1956 md->pvh_attrs ^= tst_mask;
1957 PMAPCOUNT(vac_color_change);
1958 }
1959 }
1960 }
1961 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1962 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1963 return;
1964 } else if (!pmap_is_page_colored_p(md)) {
1965 /* not colored so we just use its color */
1966 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1967 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1968 PMAPCOUNT(vac_color_new);
1969 md->pvh_attrs &= PAGE_SIZE - 1;
1970 md->pvh_attrs |= PVF_COLORED
1971 | (va & arm_cache_prefer_mask)
1972 | (rw_mappings > 0 ? PVF_WRITE : 0);
1973 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1974 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1975 return;
1976 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1977 bad_alias = false;
1978 if (rw_mappings > 0) {
1979 /*
1980 * We now have writeable mappings and if we have
1981 * readonly mappings in more than once color, we have
1982 * an aliasing problem. Regardless mark the page as
1983 * writeable.
1984 */
1985 if (md->pvh_attrs & PVF_MULTCLR) {
1986 if (ro_mappings < 2) {
1987 /*
1988 * If we only have less than two
1989 * read-only mappings, just flush the
1990 * non-primary colors from the cache.
1991 */
1992 pmap_flush_page(md, pa,
1993 PMAP_FLUSH_SECONDARY);
1994 } else {
1995 bad_alias = true;
1996 }
1997 }
1998 md->pvh_attrs |= PVF_WRITE;
1999 }
2000 /* If no conflicting colors, set everything back to cached */
2001 if (!bad_alias) {
2002 #ifdef DEBUG
2003 if (rw_mappings > 0
2004 || (md->pvh_attrs & PMAP_KMPAGE)) {
2005 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2006 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2007 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2008 }
2009 #endif
2010 if (SLIST_EMPTY(&md->pvh_list))
2011 PMAPCOUNT(vac_color_reuse);
2012 else
2013 PMAPCOUNT(vac_color_ok);
2014
2015 /* matching color, just return */
2016 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2017 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2018 return;
2019 }
2020 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2021 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2022
2023 /* color conflict. evict from cache. */
2024
2025 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2026 md->pvh_attrs &= ~PVF_COLORED;
2027 md->pvh_attrs |= PVF_NC;
2028 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2029 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2030 PMAPCOUNT(vac_color_erase);
2031 } else if (rw_mappings == 0
2032 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2033 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2034
2035 /*
2036 * If the page has dirty cache lines, clean it.
2037 */
2038 if (md->pvh_attrs & PVF_DIRTY)
2039 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2040
2041 /*
2042 * If this is the first remapping (we know that there are no
2043 * writeable mappings), then this is a simple color change.
2044 * Otherwise this is a seconary r/o mapping, which means
2045 * we don't have to do anything.
2046 */
2047 if (ro_mappings == 1) {
2048 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2049 md->pvh_attrs &= PAGE_SIZE - 1;
2050 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2051 PMAPCOUNT(vac_color_change);
2052 } else {
2053 PMAPCOUNT(vac_color_blind);
2054 }
2055 md->pvh_attrs |= PVF_MULTCLR;
2056 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2057 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2058 return;
2059 } else {
2060 if (rw_mappings > 0)
2061 md->pvh_attrs |= PVF_WRITE;
2062
2063 /* color conflict. evict from cache. */
2064 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2065
2066 /* the list can't be empty because this was a enter/modify */
2067 pv = SLIST_FIRST(&md->pvh_list);
2068 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2069 KASSERT(pv);
2070 /*
2071 * If there's only one mapped page, change color to the
2072 * page's new color and return. Restore the DIRTY bit
2073 * that was erased by pmap_flush_page.
2074 */
2075 if (SLIST_NEXT(pv, pv_link) == NULL) {
2076 md->pvh_attrs &= PAGE_SIZE - 1;
2077 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2078 if (md->pvh_attrs & PVF_DMOD)
2079 md->pvh_attrs |= PVF_DIRTY;
2080 PMAPCOUNT(vac_color_change);
2081 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2082 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2083 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2084 return;
2085 }
2086 }
2087 bad_alias = true;
2088 md->pvh_attrs &= ~PVF_COLORED;
2089 md->pvh_attrs |= PVF_NC;
2090 PMAPCOUNT(vac_color_erase);
2091 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2092 }
2093
2094 fixup:
2095 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2096
2097 /*
2098 * Turn cacheing on/off for all pages.
2099 */
2100 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2101 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2102 KDASSERT(l2b != NULL);
2103 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2104 opte = *ptep;
2105 pte = opte & ~L2_S_CACHE_MASK;
2106 if (bad_alias) {
2107 pv->pv_flags |= PVF_NC;
2108 } else {
2109 pv->pv_flags &= ~PVF_NC;
2110 pte |= pte_l2_s_cache_mode;
2111 }
2112
2113 if (opte == pte) /* only update is there's a change */
2114 continue;
2115
2116 if (l2pte_valid(pte)) {
2117 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2118 pv->pv_flags);
2119 }
2120
2121 *ptep = pte;
2122 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2123 }
2124 }
2125 #endif /* PMAP_CACHE_VIPT */
2126
2127
2128 /*
2129 * Modify pte bits for all ptes corresponding to the given physical address.
2130 * We use `maskbits' rather than `clearbits' because we're always passing
2131 * constants and the latter would require an extra inversion at run-time.
2132 */
2133 static void
2134 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2135 {
2136 struct l2_bucket *l2b;
2137 struct pv_entry *pv;
2138 pt_entry_t *ptep, npte, opte;
2139 pmap_t pm;
2140 vaddr_t va;
2141 u_int oflags;
2142 #ifdef PMAP_CACHE_VIPT
2143 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2144 bool need_syncicache = false;
2145 bool did_syncicache = false;
2146 bool need_vac_me_harder = false;
2147 #endif
2148
2149 NPDEBUG(PDB_BITS,
2150 printf("pmap_clearbit: md %p mask 0x%x\n",
2151 md, maskbits));
2152
2153 #ifdef PMAP_CACHE_VIPT
2154 /*
2155 * If we might want to sync the I-cache and we've modified it,
2156 * then we know we definitely need to sync or discard it.
2157 */
2158 if (want_syncicache)
2159 need_syncicache = md->pvh_attrs & PVF_MOD;
2160 #endif
2161 /*
2162 * Clear saved attributes (modify, reference)
2163 */
2164 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2165
2166 if (SLIST_EMPTY(&md->pvh_list)) {
2167 #ifdef PMAP_CACHE_VIPT
2168 if (need_syncicache) {
2169 /*
2170 * No one has it mapped, so just discard it. The next
2171 * exec remapping will cause it to be synced.
2172 */
2173 md->pvh_attrs &= ~PVF_EXEC;
2174 PMAPCOUNT(exec_discarded_clearbit);
2175 }
2176 #endif
2177 return;
2178 }
2179
2180 /*
2181 * Loop over all current mappings setting/clearing as appropos
2182 */
2183 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2184 va = pv->pv_va;
2185 pm = pv->pv_pmap;
2186 oflags = pv->pv_flags;
2187 /*
2188 * Kernel entries are unmanaged and as such not to be changed.
2189 */
2190 if (oflags & PVF_KENTRY)
2191 continue;
2192 pv->pv_flags &= ~maskbits;
2193
2194 pmap_acquire_pmap_lock(pm);
2195
2196 l2b = pmap_get_l2_bucket(pm, va);
2197 KDASSERT(l2b != NULL);
2198
2199 ptep = &l2b->l2b_kva[l2pte_index(va)];
2200 npte = opte = *ptep;
2201
2202 NPDEBUG(PDB_BITS,
2203 printf(
2204 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2205 pv, pv->pv_pmap, pv->pv_va, oflags));
2206
2207 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2208 #ifdef PMAP_CACHE_VIVT
2209 if ((pv->pv_flags & PVF_NC)) {
2210 /*
2211 * Entry is not cacheable:
2212 *
2213 * Don't turn caching on again if this is a
2214 * modified emulation. This would be
2215 * inconsitent with the settings created by
2216 * pmap_vac_me_harder(). Otherwise, it's safe
2217 * to re-enable cacheing.
2218 *
2219 * There's no need to call pmap_vac_me_harder()
2220 * here: all pages are losing their write
2221 * permission.
2222 */
2223 if (maskbits & PVF_WRITE) {
2224 npte |= pte_l2_s_cache_mode;
2225 pv->pv_flags &= ~PVF_NC;
2226 }
2227 } else
2228 if (l2pte_writable_p(opte)) {
2229 /*
2230 * Entry is writable/cacheable: check if pmap
2231 * is current if it is flush it, otherwise it
2232 * won't be in the cache
2233 */
2234 pmap_cache_wbinv_page(pm, pv->pv_va,
2235 (maskbits & PVF_REF) != 0,
2236 oflags|PVF_WRITE);
2237 }
2238 #endif
2239
2240 /* make the pte read only */
2241 npte = l2pte_set_readonly(npte);
2242
2243 if (maskbits & oflags & PVF_WRITE) {
2244 /*
2245 * Keep alias accounting up to date
2246 */
2247 if (pv->pv_pmap == pmap_kernel()) {
2248 md->krw_mappings--;
2249 md->kro_mappings++;
2250 } else {
2251 md->urw_mappings--;
2252 md->uro_mappings++;
2253 }
2254 #ifdef PMAP_CACHE_VIPT
2255 if (arm_cache_prefer_mask != 0) {
2256 if (md->urw_mappings + md->krw_mappings == 0) {
2257 md->pvh_attrs &= ~PVF_WRITE;
2258 } else {
2259 PMAP_VALIDATE_MD_PAGE(md);
2260 }
2261 }
2262 if (want_syncicache)
2263 need_syncicache = true;
2264 need_vac_me_harder = true;
2265 #endif
2266 }
2267 }
2268
2269 if (maskbits & PVF_REF) {
2270 if ((pv->pv_flags & PVF_NC) == 0
2271 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2272 && l2pte_valid(npte)) {
2273 #ifdef PMAP_CACHE_VIVT
2274 /*
2275 * Check npte here; we may have already
2276 * done the wbinv above, and the validity
2277 * of the PTE is the same for opte and
2278 * npte.
2279 */
2280 pmap_cache_wbinv_page(pm, pv->pv_va, true,
2281 oflags);
2282 #endif
2283 }
2284
2285 /*
2286 * Make the PTE invalid so that we will take a
2287 * page fault the next time the mapping is
2288 * referenced.
2289 */
2290 npte &= ~L2_TYPE_MASK;
2291 npte |= L2_TYPE_INV;
2292 }
2293
2294 if (npte != opte) {
2295 *ptep = npte;
2296 PTE_SYNC(ptep);
2297 /* Flush the TLB entry if a current pmap. */
2298 pmap_tlb_flush_SE(pm, pv->pv_va, oflags);
2299 }
2300
2301 pmap_release_pmap_lock(pm);
2302
2303 NPDEBUG(PDB_BITS,
2304 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2305 pm, va, opte, npte));
2306 }
2307
2308 #ifdef PMAP_CACHE_VIPT
2309 /*
2310 * If we need to sync the I-cache and we haven't done it yet, do it.
2311 */
2312 if (need_syncicache && !did_syncicache) {
2313 pmap_syncicache_page(md, pa);
2314 PMAPCOUNT(exec_synced_clearbit);
2315 }
2316 /*
2317 * If we are changing this to read-only, we need to call vac_me_harder
2318 * so we can change all the read-only pages to cacheable. We pretend
2319 * this as a page deletion.
2320 */
2321 if (need_vac_me_harder) {
2322 if (md->pvh_attrs & PVF_NC)
2323 pmap_vac_me_harder(md, pa, NULL, 0);
2324 }
2325 #endif
2326 }
2327
2328 /*
2329 * pmap_clean_page()
2330 *
2331 * This is a local function used to work out the best strategy to clean
2332 * a single page referenced by its entry in the PV table. It's used by
2333 * pmap_copy_page, pmap_zero page and maybe some others later on.
2334 *
2335 * Its policy is effectively:
2336 * o If there are no mappings, we don't bother doing anything with the cache.
2337 * o If there is one mapping, we clean just that page.
2338 * o If there are multiple mappings, we clean the entire cache.
2339 *
2340 * So that some functions can be further optimised, it returns 0 if it didn't
2341 * clean the entire cache, or 1 if it did.
2342 *
2343 * XXX One bug in this routine is that if the pv_entry has a single page
2344 * mapped at 0x00000000 a whole cache clean will be performed rather than
2345 * just the 1 page. Since this should not occur in everyday use and if it does
2346 * it will just result in not the most efficient clean for the page.
2347 */
2348 #ifdef PMAP_CACHE_VIVT
2349 static int
2350 pmap_clean_page(struct pv_entry *pv, bool is_src)
2351 {
2352 pmap_t pm_to_clean = NULL;
2353 struct pv_entry *npv;
2354 u_int cache_needs_cleaning = 0;
2355 u_int flags = 0;
2356 vaddr_t page_to_clean = 0;
2357
2358 if (pv == NULL) {
2359 /* nothing mapped in so nothing to flush */
2360 return (0);
2361 }
2362
2363 /*
2364 * Since we flush the cache each time we change to a different
2365 * user vmspace, we only need to flush the page if it is in the
2366 * current pmap.
2367 */
2368
2369 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2370 if (pmap_is_current(npv->pv_pmap)) {
2371 flags |= npv->pv_flags;
2372 /*
2373 * The page is mapped non-cacheable in
2374 * this map. No need to flush the cache.
2375 */
2376 if (npv->pv_flags & PVF_NC) {
2377 #ifdef DIAGNOSTIC
2378 if (cache_needs_cleaning)
2379 panic("pmap_clean_page: "
2380 "cache inconsistency");
2381 #endif
2382 break;
2383 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2384 continue;
2385 if (cache_needs_cleaning) {
2386 page_to_clean = 0;
2387 break;
2388 } else {
2389 page_to_clean = npv->pv_va;
2390 pm_to_clean = npv->pv_pmap;
2391 }
2392 cache_needs_cleaning = 1;
2393 }
2394 }
2395
2396 if (page_to_clean) {
2397 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2398 !is_src, flags | PVF_REF);
2399 } else if (cache_needs_cleaning) {
2400 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2401
2402 pmap_cache_wbinv_all(pm, flags);
2403 return (1);
2404 }
2405 return (0);
2406 }
2407 #endif
2408
2409 #ifdef PMAP_CACHE_VIPT
2410 /*
2411 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2412 * right cache alias to make sure we flush the right stuff.
2413 */
2414 void
2415 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2416 {
2417 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2418 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2419
2420 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2421 md, md->pvh_attrs));
2422 /*
2423 * No need to clean the page if it's non-cached.
2424 */
2425 if (md->pvh_attrs & PVF_NC)
2426 return;
2427 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2428
2429 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
2430 /*
2431 * Set up a PTE with the right coloring to flush existing cache lines.
2432 */
2433 *ptep = L2_S_PROTO |
2434 pa
2435 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2436 | pte_l2_s_cache_mode;
2437 PTE_SYNC(ptep);
2438
2439 /*
2440 * Flush it.
2441 */
2442 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2443 /*
2444 * Unmap the page.
2445 */
2446 *ptep = 0;
2447 PTE_SYNC(ptep);
2448 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
2449
2450 md->pvh_attrs |= PVF_EXEC;
2451 PMAPCOUNT(exec_synced);
2452 }
2453
2454 void
2455 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2456 {
2457 vsize_t va_offset, end_va;
2458 bool wbinv_p;
2459
2460 if (arm_cache_prefer_mask == 0)
2461 return;
2462
2463 switch (flush) {
2464 case PMAP_FLUSH_PRIMARY:
2465 if (md->pvh_attrs & PVF_MULTCLR) {
2466 va_offset = 0;
2467 end_va = arm_cache_prefer_mask;
2468 md->pvh_attrs &= ~PVF_MULTCLR;
2469 PMAPCOUNT(vac_flush_lots);
2470 } else {
2471 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2472 end_va = va_offset;
2473 PMAPCOUNT(vac_flush_one);
2474 }
2475 /*
2476 * Mark that the page is no longer dirty.
2477 */
2478 md->pvh_attrs &= ~PVF_DIRTY;
2479 wbinv_p = true;
2480 break;
2481 case PMAP_FLUSH_SECONDARY:
2482 va_offset = 0;
2483 end_va = arm_cache_prefer_mask;
2484 wbinv_p = true;
2485 md->pvh_attrs &= ~PVF_MULTCLR;
2486 PMAPCOUNT(vac_flush_lots);
2487 break;
2488 case PMAP_CLEAN_PRIMARY:
2489 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2490 end_va = va_offset;
2491 wbinv_p = false;
2492 /*
2493 * Mark that the page is no longer dirty.
2494 */
2495 if ((md->pvh_attrs & PVF_DMOD) == 0)
2496 md->pvh_attrs &= ~PVF_DIRTY;
2497 PMAPCOUNT(vac_clean_one);
2498 break;
2499 default:
2500 return;
2501 }
2502
2503 KASSERT(!(md->pvh_attrs & PVF_NC));
2504
2505 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2506 md, md->pvh_attrs));
2507
2508 const size_t scache_line_size = arm_scache.dcache_line_size;
2509
2510 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2511 const size_t pte_offset = va_offset >> PGSHIFT;
2512 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2513 const pt_entry_t oldpte = *ptep;
2514
2515 if (flush == PMAP_FLUSH_SECONDARY
2516 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2517 continue;
2518
2519 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
2520 PVF_REF | PVF_EXEC);
2521 /*
2522 * Set up a PTE with the right coloring to flush
2523 * existing cache entries.
2524 */
2525 *ptep = L2_S_PROTO
2526 | pa
2527 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2528 | pte_l2_s_cache_mode;
2529 PTE_SYNC(ptep);
2530
2531 /*
2532 * Flush it.
2533 */
2534 vaddr_t va = cdstp + va_offset;
2535 if (scache_line_size != 0) {
2536 cpu_dcache_wb_range(va, PAGE_SIZE);
2537 if (wbinv_p) {
2538 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
2539 cpu_dcache_inv_range(va, PAGE_SIZE);
2540 } else {
2541 cpu_sdcache_wb_range(va, pa, PAGE_SIZE);
2542 }
2543 } else {
2544 if (wbinv_p) {
2545 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2546 } else {
2547 cpu_dcache_wb_range(va, PAGE_SIZE);
2548 }
2549 }
2550
2551 /*
2552 * Restore the page table entry since we might have interrupted
2553 * pmap_zero_page or pmap_copy_page which was already using
2554 * this pte.
2555 */
2556 *ptep = oldpte;
2557 PTE_SYNC(ptep);
2558 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
2559 PVF_REF | PVF_EXEC);
2560 }
2561 }
2562 #endif /* PMAP_CACHE_VIPT */
2563
2564 /*
2565 * Routine: pmap_page_remove
2566 * Function:
2567 * Removes this physical page from
2568 * all physical maps in which it resides.
2569 * Reflects back modify bits to the pager.
2570 */
2571 static void
2572 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2573 {
2574 struct l2_bucket *l2b;
2575 struct pv_entry *pv, *npv, **pvp;
2576 pmap_t pm;
2577 pt_entry_t *ptep;
2578 bool flush;
2579 u_int flags;
2580
2581 NPDEBUG(PDB_FOLLOW,
2582 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2583 pa));
2584
2585 pv = SLIST_FIRST(&md->pvh_list);
2586 if (pv == NULL) {
2587 #ifdef PMAP_CACHE_VIPT
2588 /*
2589 * We *know* the page contents are about to be replaced.
2590 * Discard the exec contents
2591 */
2592 if (PV_IS_EXEC_P(md->pvh_attrs))
2593 PMAPCOUNT(exec_discarded_page_protect);
2594 md->pvh_attrs &= ~PVF_EXEC;
2595 PMAP_VALIDATE_MD_PAGE(md);
2596 #endif
2597 return;
2598 }
2599 #ifdef PMAP_CACHE_VIPT
2600 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2601 #endif
2602
2603 /*
2604 * Clear alias counts
2605 */
2606 #ifdef PMAP_CACHE_VIVT
2607 md->k_mappings = 0;
2608 #endif
2609 md->urw_mappings = md->uro_mappings = 0;
2610
2611 flush = false;
2612 flags = 0;
2613
2614 #ifdef PMAP_CACHE_VIVT
2615 pmap_clean_page(pv, false);
2616 #endif
2617
2618 pvp = &SLIST_FIRST(&md->pvh_list);
2619 while (pv) {
2620 pm = pv->pv_pmap;
2621 npv = SLIST_NEXT(pv, pv_link);
2622 if (flush == false && pmap_is_current(pm))
2623 flush = true;
2624
2625 if (pm == pmap_kernel()) {
2626 #ifdef PMAP_CACHE_VIPT
2627 /*
2628 * If this was unmanaged mapping, it must be preserved.
2629 * Move it back on the list and advance the end-of-list
2630 * pointer.
2631 */
2632 if (pv->pv_flags & PVF_KENTRY) {
2633 *pvp = pv;
2634 pvp = &SLIST_NEXT(pv, pv_link);
2635 pv = npv;
2636 continue;
2637 }
2638 if (pv->pv_flags & PVF_WRITE)
2639 md->krw_mappings--;
2640 else
2641 md->kro_mappings--;
2642 #endif
2643 PMAPCOUNT(kernel_unmappings);
2644 }
2645 PMAPCOUNT(unmappings);
2646
2647 pmap_acquire_pmap_lock(pm);
2648
2649 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2650 KDASSERT(l2b != NULL);
2651
2652 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2653
2654 /*
2655 * Update statistics
2656 */
2657 --pm->pm_stats.resident_count;
2658
2659 /* Wired bit */
2660 if (pv->pv_flags & PVF_WIRED)
2661 --pm->pm_stats.wired_count;
2662
2663 flags |= pv->pv_flags;
2664
2665 /*
2666 * Invalidate the PTEs.
2667 */
2668 *ptep = 0;
2669 PTE_SYNC_CURRENT(pm, ptep);
2670 pmap_free_l2_bucket(pm, l2b, 1);
2671
2672 pool_put(&pmap_pv_pool, pv);
2673 pv = npv;
2674 /*
2675 * if we reach the end of the list and there are still
2676 * mappings, they might be able to be cached now.
2677 */
2678 if (pv == NULL) {
2679 *pvp = NULL;
2680 if (!SLIST_EMPTY(&md->pvh_list))
2681 pmap_vac_me_harder(md, pa, pm, 0);
2682 }
2683 pmap_release_pmap_lock(pm);
2684 }
2685 #ifdef PMAP_CACHE_VIPT
2686 /*
2687 * Its EXEC cache is now gone.
2688 */
2689 if (PV_IS_EXEC_P(md->pvh_attrs))
2690 PMAPCOUNT(exec_discarded_page_protect);
2691 md->pvh_attrs &= ~PVF_EXEC;
2692 KASSERT(md->urw_mappings == 0);
2693 KASSERT(md->uro_mappings == 0);
2694 if (arm_cache_prefer_mask != 0) {
2695 if (md->krw_mappings == 0)
2696 md->pvh_attrs &= ~PVF_WRITE;
2697 PMAP_VALIDATE_MD_PAGE(md);
2698 }
2699 #endif
2700
2701 if (flush) {
2702 /*
2703 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2704 * would need a subsequent call to pmap_update() to ensure
2705 * curpm->pm_cstate.cs_all is reset. Our callers are not
2706 * required to do that (see pmap(9)), so we can't modify
2707 * the current pmap's state.
2708 */
2709 if (PV_BEEN_EXECD(flags))
2710 cpu_tlb_flushID();
2711 else
2712 cpu_tlb_flushD();
2713 }
2714 cpu_cpwait();
2715 }
2716
2717 /*
2718 * pmap_t pmap_create(void)
2719 *
2720 * Create a new pmap structure from scratch.
2721 */
2722 pmap_t
2723 pmap_create(void)
2724 {
2725 pmap_t pm;
2726
2727 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2728
2729 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2730 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2731 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2732
2733 pm->pm_stats.wired_count = 0;
2734 pm->pm_stats.resident_count = 1;
2735 pm->pm_cstate.cs_all = 0;
2736 pmap_alloc_l1(pm);
2737
2738 /*
2739 * Note: The pool cache ensures that the pm_l2[] array is already
2740 * initialised to zero.
2741 */
2742
2743 pmap_pinit(pm);
2744
2745 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2746
2747 return (pm);
2748 }
2749
2750 u_int
2751 arm32_mmap_flags(paddr_t pa)
2752 {
2753 /*
2754 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2755 * and we're using the upper bits in page numbers to pass flags around
2756 * so we might as well use the same bits
2757 */
2758 return (u_int)pa & PMAP_MD_MASK;
2759 }
2760 /*
2761 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2762 * u_int flags)
2763 *
2764 * Insert the given physical page (p) at
2765 * the specified virtual address (v) in the
2766 * target physical map with the protection requested.
2767 *
2768 * NB: This is the only routine which MAY NOT lazy-evaluate
2769 * or lose information. That is, this routine must actually
2770 * insert this page into the given map NOW.
2771 */
2772 int
2773 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2774 {
2775 struct l2_bucket *l2b;
2776 struct vm_page *pg, *opg;
2777 struct pv_entry *pv;
2778 pt_entry_t *ptep, npte, opte;
2779 u_int nflags;
2780 u_int oflags;
2781 #ifdef ARM_HAS_VBAR
2782 const bool vector_page_p = false;
2783 #else
2784 const bool vector_page_p = (va == vector_page);
2785 #endif
2786
2787 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2788
2789 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2790 KDASSERT(((va | pa) & PGOFSET) == 0);
2791
2792 /*
2793 * Get a pointer to the page. Later on in this function, we
2794 * test for a managed page by checking pg != NULL.
2795 */
2796 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2797
2798 nflags = 0;
2799 if (prot & VM_PROT_WRITE)
2800 nflags |= PVF_WRITE;
2801 if (prot & VM_PROT_EXECUTE)
2802 nflags |= PVF_EXEC;
2803 if (flags & PMAP_WIRED)
2804 nflags |= PVF_WIRED;
2805
2806 pmap_acquire_pmap_lock(pm);
2807
2808 /*
2809 * Fetch the L2 bucket which maps this page, allocating one if
2810 * necessary for user pmaps.
2811 */
2812 if (pm == pmap_kernel())
2813 l2b = pmap_get_l2_bucket(pm, va);
2814 else
2815 l2b = pmap_alloc_l2_bucket(pm, va);
2816 if (l2b == NULL) {
2817 if (flags & PMAP_CANFAIL) {
2818 pmap_release_pmap_lock(pm);
2819 return (ENOMEM);
2820 }
2821 panic("pmap_enter: failed to allocate L2 bucket");
2822 }
2823 ptep = &l2b->l2b_kva[l2pte_index(va)];
2824 opte = *ptep;
2825 npte = pa;
2826 oflags = 0;
2827
2828 if (opte) {
2829 /*
2830 * There is already a mapping at this address.
2831 * If the physical address is different, lookup the
2832 * vm_page.
2833 */
2834 if (l2pte_pa(opte) != pa)
2835 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2836 else
2837 opg = pg;
2838 } else
2839 opg = NULL;
2840
2841 if (pg) {
2842 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2843
2844 /*
2845 * This is to be a managed mapping.
2846 */
2847 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
2848 /*
2849 * - The access type indicates that we don't need
2850 * to do referenced emulation.
2851 * OR
2852 * - The physical page has already been referenced
2853 * so no need to re-do referenced emulation here.
2854 */
2855 npte |= l2pte_set_readonly(L2_S_PROTO);
2856
2857 nflags |= PVF_REF;
2858
2859 if ((prot & VM_PROT_WRITE) != 0 &&
2860 ((flags & VM_PROT_WRITE) != 0 ||
2861 (md->pvh_attrs & PVF_MOD) != 0)) {
2862 /*
2863 * This is a writable mapping, and the
2864 * page's mod state indicates it has
2865 * already been modified. Make it
2866 * writable from the outset.
2867 */
2868 npte = l2pte_set_writable(npte);
2869 nflags |= PVF_MOD;
2870 }
2871 } else {
2872 /*
2873 * Need to do page referenced emulation.
2874 */
2875 npte |= L2_TYPE_INV;
2876 }
2877
2878 if (flags & ARM32_MMAP_WRITECOMBINE) {
2879 npte |= pte_l2_s_wc_mode;
2880 } else
2881 npte |= pte_l2_s_cache_mode;
2882
2883 if (pg == opg) {
2884 /*
2885 * We're changing the attrs of an existing mapping.
2886 */
2887 #ifdef MULTIPROCESSOR
2888 KASSERT(uvm_page_locked_p(pg));
2889 #endif
2890 oflags = pmap_modify_pv(md, pa, pm, va,
2891 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2892 PVF_MOD | PVF_REF, nflags);
2893
2894 #ifdef PMAP_CACHE_VIVT
2895 /*
2896 * We may need to flush the cache if we're
2897 * doing rw-ro...
2898 */
2899 if (pm->pm_cstate.cs_cache_d &&
2900 (oflags & PVF_NC) == 0 &&
2901 l2pte_writable_p(opte) &&
2902 (prot & VM_PROT_WRITE) == 0)
2903 cpu_dcache_wb_range(va, PAGE_SIZE);
2904 #endif
2905 } else {
2906 /*
2907 * New mapping, or changing the backing page
2908 * of an existing mapping.
2909 */
2910 if (opg) {
2911 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2912 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2913
2914 /*
2915 * Replacing an existing mapping with a new one.
2916 * It is part of our managed memory so we
2917 * must remove it from the PV list
2918 */
2919 #ifdef MULTIPROCESSOR
2920 KASSERT(uvm_page_locked_p(opg));
2921 #endif
2922 pv = pmap_remove_pv(omd, opa, pm, va);
2923 pmap_vac_me_harder(omd, opa, pm, 0);
2924 oflags = pv->pv_flags;
2925
2926 #ifdef PMAP_CACHE_VIVT
2927 /*
2928 * If the old mapping was valid (ref/mod
2929 * emulation creates 'invalid' mappings
2930 * initially) then make sure to frob
2931 * the cache.
2932 */
2933 if (!(oflags & PVF_NC) && l2pte_valid(opte)) {
2934 pmap_cache_wbinv_page(pm, va, true,
2935 oflags);
2936 }
2937 #endif
2938 } else
2939 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2940 if ((flags & PMAP_CANFAIL) == 0)
2941 panic("pmap_enter: no pv entries");
2942
2943 if (pm != pmap_kernel())
2944 pmap_free_l2_bucket(pm, l2b, 0);
2945 pmap_release_pmap_lock(pm);
2946 NPDEBUG(PDB_ENTER,
2947 printf("pmap_enter: ENOMEM\n"));
2948 return (ENOMEM);
2949 }
2950
2951 #ifdef MULTIPROCESSOR
2952 KASSERT(uvm_page_locked_p(pg));
2953 #endif
2954 pmap_enter_pv(md, pa, pv, pm, va, nflags);
2955 }
2956 } else {
2957 /*
2958 * We're mapping an unmanaged page.
2959 * These are always readable, and possibly writable, from
2960 * the get go as we don't need to track ref/mod status.
2961 */
2962 npte |= l2pte_set_readonly(L2_S_PROTO);
2963 if (prot & VM_PROT_WRITE)
2964 npte = l2pte_set_writable(npte);
2965
2966 /*
2967 * Make sure the vector table is mapped cacheable
2968 */
2969 if ((vector_page_p && pm != pmap_kernel())
2970 || (flags & ARM32_MMAP_CACHEABLE)) {
2971 npte |= pte_l2_s_cache_mode;
2972 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
2973 npte |= pte_l2_s_wc_mode;
2974 }
2975 if (opg) {
2976 /*
2977 * Looks like there's an existing 'managed' mapping
2978 * at this address.
2979 */
2980 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2981 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2982
2983 #ifdef MULTIPROCESSOR
2984 KASSERT(uvm_page_locked_p(opg));
2985 #endif
2986 pv = pmap_remove_pv(omd, opa, pm, va);
2987 pmap_vac_me_harder(omd, opa, pm, 0);
2988 oflags = pv->pv_flags;
2989
2990 #ifdef PMAP_CACHE_VIVT
2991 if (!(oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2992 pmap_cache_wbinv_page(pm, va, true, oflags);
2993 }
2994 #endif
2995 pool_put(&pmap_pv_pool, pv);
2996 }
2997 }
2998
2999 /*
3000 * Make sure userland mappings get the right permissions
3001 */
3002 if (!vector_page_p && pm != pmap_kernel()) {
3003 npte |= L2_S_PROT_U;
3004 }
3005
3006 /*
3007 * Keep the stats up to date
3008 */
3009 if (opte == 0) {
3010 l2b->l2b_occupancy++;
3011 pm->pm_stats.resident_count++;
3012 }
3013
3014 NPDEBUG(PDB_ENTER,
3015 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3016
3017 /*
3018 * If this is just a wiring change, the two PTEs will be
3019 * identical, so there's no need to update the page table.
3020 */
3021 if (npte != opte) {
3022 bool is_cached = pmap_is_cached(pm);
3023
3024 *ptep = npte;
3025 PTE_SYNC(ptep);
3026 if (is_cached) {
3027 /*
3028 * We only need to frob the cache/tlb if this pmap
3029 * is current
3030 */
3031 if (!vector_page_p && l2pte_valid(npte)) {
3032 /*
3033 * This mapping is likely to be accessed as
3034 * soon as we return to userland. Fix up the
3035 * L1 entry to avoid taking another
3036 * page/domain fault.
3037 */
3038 pd_entry_t *pl1pd, l1pd;
3039
3040 pl1pd = pmap_l1_kva(pm) + L1_IDX(va);
3041 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) |
3042 L1_C_PROTO;
3043 if (*pl1pd != l1pd) {
3044 *pl1pd = l1pd;
3045 PTE_SYNC(pl1pd);
3046 }
3047 }
3048 }
3049
3050 pmap_tlb_flush_SE(pm, va, oflags);
3051
3052 NPDEBUG(PDB_ENTER,
3053 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3054 is_cached, pm->pm_cstate.cs_all));
3055
3056 if (pg != NULL) {
3057 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3058
3059 #ifdef MULTIPROCESSOR
3060 KASSERT(uvm_page_locked_p(pg));
3061 #endif
3062 pmap_vac_me_harder(md, pa, pm, va);
3063 }
3064 }
3065 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3066 if (pg) {
3067 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3068
3069 #ifdef MULTIPROCESSOR
3070 KASSERT(uvm_page_locked_p(pg));
3071 #endif
3072 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3073 PMAP_VALIDATE_MD_PAGE(md);
3074 }
3075 #endif
3076
3077 pmap_release_pmap_lock(pm);
3078
3079 return (0);
3080 }
3081
3082 /*
3083 * pmap_remove()
3084 *
3085 * pmap_remove is responsible for nuking a number of mappings for a range
3086 * of virtual address space in the current pmap. To do this efficiently
3087 * is interesting, because in a number of cases a wide virtual address
3088 * range may be supplied that contains few actual mappings. So, the
3089 * optimisations are:
3090 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3091 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3092 * maybe do just a partial cache clean. This path of execution is
3093 * complicated by the fact that the cache must be flushed _before_
3094 * the PTE is nuked, being a VAC :-)
3095 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3096 * all invalidations until pmap_update(), since pmap_remove_all() has
3097 * already flushed the cache.
3098 * 4. Maybe later fast-case a single page, but I don't think this is
3099 * going to make _that_ much difference overall.
3100 */
3101
3102 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3103
3104 void
3105 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3106 {
3107 struct l2_bucket *l2b;
3108 vaddr_t next_bucket;
3109 pt_entry_t *ptep;
3110 u_int cleanlist_idx, total, cnt;
3111 struct {
3112 vaddr_t va;
3113 pt_entry_t *ptep;
3114 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3115 u_int mappings;
3116
3117 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3118 "eva=%08lx\n", pm, sva, eva));
3119
3120 /*
3121 * we lock in the pmap => pv_head direction
3122 */
3123 pmap_acquire_pmap_lock(pm);
3124
3125 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3126 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3127 if (pm->pm_cstate.cs_tlb == 0)
3128 pm->pm_remove_all = true;
3129 } else
3130 cleanlist_idx = 0;
3131
3132 total = 0;
3133
3134 while (sva < eva) {
3135 /*
3136 * Do one L2 bucket's worth at a time.
3137 */
3138 next_bucket = L2_NEXT_BUCKET(sva);
3139 if (next_bucket > eva)
3140 next_bucket = eva;
3141
3142 l2b = pmap_get_l2_bucket(pm, sva);
3143 if (l2b == NULL) {
3144 sva = next_bucket;
3145 continue;
3146 }
3147
3148 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3149
3150 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3151 struct vm_page *pg;
3152 pt_entry_t pte;
3153 paddr_t pa;
3154
3155 pte = *ptep;
3156
3157 if (pte == 0) {
3158 /* Nothing here, move along */
3159 continue;
3160 }
3161
3162 pa = l2pte_pa(pte);
3163 u_int flags = PVF_REF;
3164
3165 /*
3166 * Update flags. In a number of circumstances,
3167 * we could cluster a lot of these and do a
3168 * number of sequential pages in one go.
3169 */
3170 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3171 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3172 struct pv_entry *pv;
3173
3174 #ifdef MULTIPROCESSOR
3175 KASSERT(uvm_page_locked_p(pg));
3176 #endif
3177 pv = pmap_remove_pv(md, pa, pm, sva);
3178 pmap_vac_me_harder(md, pa, pm, 0);
3179 if (pv != NULL) {
3180 if (pm->pm_remove_all == false) {
3181 flags = pv->pv_flags;
3182 }
3183 pool_put(&pmap_pv_pool, pv);
3184 }
3185 }
3186 mappings++;
3187
3188 if (!l2pte_valid(pte)) {
3189 /*
3190 * Ref/Mod emulation is still active for this
3191 * mapping, therefore it is has not yet been
3192 * accessed. No need to frob the cache/tlb.
3193 */
3194 *ptep = 0;
3195 PTE_SYNC_CURRENT(pm, ptep);
3196 continue;
3197 }
3198
3199 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3200 /* Add to the clean list. */
3201 cleanlist[cleanlist_idx].ptep = ptep;
3202 cleanlist[cleanlist_idx].va =
3203 sva | (flags & PVF_EXEC);
3204 cleanlist_idx++;
3205 } else
3206 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3207 /* Nuke everything if needed. */
3208 #ifdef PMAP_CACHE_VIVT
3209 pmap_cache_wbinv_all(pm, PVF_EXEC);
3210 #endif
3211 pmap_tlb_flushID(pm);
3212
3213 /*
3214 * Roll back the previous PTE list,
3215 * and zero out the current PTE.
3216 */
3217 for (cnt = 0;
3218 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3219 *cleanlist[cnt].ptep = 0;
3220 PTE_SYNC(cleanlist[cnt].ptep);
3221 }
3222 *ptep = 0;
3223 PTE_SYNC(ptep);
3224 cleanlist_idx++;
3225 pm->pm_remove_all = true;
3226 } else {
3227 *ptep = 0;
3228 PTE_SYNC(ptep);
3229 if (pm->pm_remove_all == false) {
3230 pmap_tlb_flush_SE(pm, sva, flags);
3231 }
3232 }
3233 }
3234
3235 /*
3236 * Deal with any left overs
3237 */
3238 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3239 total += cleanlist_idx;
3240 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3241 vaddr_t va = cleanlist[cnt].va;
3242 if (pm->pm_cstate.cs_all != 0) {
3243 vaddr_t clva = va & ~PAGE_MASK;
3244 u_int flags = va & PVF_EXEC;
3245 #ifdef PMAP_CACHE_VIVT
3246 pmap_cache_wbinv_page(pm, clva, true,
3247 PVF_REF | PVF_WRITE | flags);
3248 #endif
3249 pmap_tlb_flush_SE(pm, clva,
3250 PVF_REF | flags);
3251 }
3252 *cleanlist[cnt].ptep = 0;
3253 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3254 }
3255
3256 /*
3257 * If it looks like we're removing a whole bunch
3258 * of mappings, it's faster to just write-back
3259 * the whole cache now and defer TLB flushes until
3260 * pmap_update() is called.
3261 */
3262 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3263 cleanlist_idx = 0;
3264 else {
3265 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3266 #ifdef PMAP_CACHE_VIVT
3267 pmap_cache_wbinv_all(pm, PVF_EXEC);
3268 #endif
3269 pm->pm_remove_all = true;
3270 }
3271 }
3272
3273 pmap_free_l2_bucket(pm, l2b, mappings);
3274 pm->pm_stats.resident_count -= mappings;
3275 }
3276
3277 pmap_release_pmap_lock(pm);
3278 }
3279
3280 #ifdef PMAP_CACHE_VIPT
3281 static struct pv_entry *
3282 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3283 {
3284 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3285 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3286 struct pv_entry *pv;
3287
3288 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3289 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3290
3291 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3292 KASSERT(pv);
3293 KASSERT(pv->pv_flags & PVF_KENTRY);
3294
3295 /*
3296 * If we are removing a writeable mapping to a cached exec page,
3297 * if it's the last mapping then clear it execness other sync
3298 * the page to the icache.
3299 */
3300 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3301 && (pv->pv_flags & PVF_WRITE) != 0) {
3302 if (SLIST_EMPTY(&md->pvh_list)) {
3303 md->pvh_attrs &= ~PVF_EXEC;
3304 PMAPCOUNT(exec_discarded_kremove);
3305 } else {
3306 pmap_syncicache_page(md, pa);
3307 PMAPCOUNT(exec_synced_kremove);
3308 }
3309 }
3310 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3311
3312 return pv;
3313 }
3314 #endif /* PMAP_CACHE_VIPT */
3315
3316 /*
3317 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3318 *
3319 * We assume there is already sufficient KVM space available
3320 * to do this, as we can't allocate L2 descriptor tables/metadata
3321 * from here.
3322 */
3323 void
3324 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3325 {
3326 struct l2_bucket *l2b;
3327 pt_entry_t *ptep, opte;
3328 #ifdef PMAP_CACHE_VIVT
3329 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3330 #endif
3331 #ifdef PMAP_CACHE_VIPT
3332 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3333 struct vm_page *opg;
3334 struct pv_entry *pv = NULL;
3335 #endif
3336 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3337
3338 NPDEBUG(PDB_KENTER,
3339 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3340 va, pa, prot));
3341
3342 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3343 KDASSERT(l2b != NULL);
3344
3345 ptep = &l2b->l2b_kva[l2pte_index(va)];
3346 opte = *ptep;
3347
3348 if (opte == 0) {
3349 PMAPCOUNT(kenter_mappings);
3350 l2b->l2b_occupancy++;
3351 } else {
3352 PMAPCOUNT(kenter_remappings);
3353 #ifdef PMAP_CACHE_VIPT
3354 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3355 #ifdef DIAGNOSTIC
3356 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3357 #endif
3358 if (opg) {
3359 KASSERT(opg != pg);
3360 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3361 KASSERT((flags & PMAP_KMPAGE) == 0);
3362 pv = pmap_kremove_pg(opg, va);
3363 }
3364 #endif
3365 if (l2pte_valid(opte)) {
3366 #ifdef PMAP_CACHE_VIVT
3367 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3368 #endif
3369 cpu_tlb_flushD_SE(va);
3370 cpu_cpwait();
3371 }
3372 }
3373
3374 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3375 | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
3376 PTE_SYNC(ptep);
3377
3378 if (pg) {
3379 #ifdef MULTIPROCESSOR
3380 KASSERT(uvm_page_locked_p(pg));
3381 #endif
3382 if (flags & PMAP_KMPAGE) {
3383 KASSERT(md->urw_mappings == 0);
3384 KASSERT(md->uro_mappings == 0);
3385 KASSERT(md->krw_mappings == 0);
3386 KASSERT(md->kro_mappings == 0);
3387 #ifdef PMAP_CACHE_VIPT
3388 KASSERT(pv == NULL);
3389 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3390 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3391 /* if there is a color conflict, evict from cache. */
3392 if (pmap_is_page_colored_p(md)
3393 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3394 PMAPCOUNT(vac_color_change);
3395 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3396 } else if (md->pvh_attrs & PVF_MULTCLR) {
3397 /*
3398 * If this page has multiple colors, expunge
3399 * them.
3400 */
3401 PMAPCOUNT(vac_flush_lots2);
3402 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3403 }
3404 md->pvh_attrs &= PAGE_SIZE - 1;
3405 md->pvh_attrs |= PVF_KMPAGE
3406 | PVF_COLORED | PVF_DIRTY
3407 | (va & arm_cache_prefer_mask);
3408 #endif
3409 #ifdef PMAP_CACHE_VIVT
3410 md->pvh_attrs |= PVF_KMPAGE;
3411 #endif
3412 pmap_kmpages++;
3413 #ifdef PMAP_CACHE_VIPT
3414 } else {
3415 if (pv == NULL) {
3416 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3417 KASSERT(pv != NULL);
3418 }
3419 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3420 PVF_WIRED | PVF_KENTRY
3421 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3422 if ((prot & VM_PROT_WRITE)
3423 && !(md->pvh_attrs & PVF_NC))
3424 md->pvh_attrs |= PVF_DIRTY;
3425 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3426 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3427 #endif
3428 }
3429 #ifdef PMAP_CACHE_VIPT
3430 } else {
3431 if (pv != NULL)
3432 pool_put(&pmap_pv_pool, pv);
3433 #endif
3434 }
3435 }
3436
3437 void
3438 pmap_kremove(vaddr_t va, vsize_t len)
3439 {
3440 struct l2_bucket *l2b;
3441 pt_entry_t *ptep, *sptep, opte;
3442 vaddr_t next_bucket, eva;
3443 u_int mappings;
3444 struct vm_page *opg;
3445
3446 PMAPCOUNT(kenter_unmappings);
3447
3448 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3449 va, len));
3450
3451 eva = va + len;
3452
3453 while (va < eva) {
3454 next_bucket = L2_NEXT_BUCKET(va);
3455 if (next_bucket > eva)
3456 next_bucket = eva;
3457
3458 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3459 KDASSERT(l2b != NULL);
3460
3461 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3462 mappings = 0;
3463
3464 while (va < next_bucket) {
3465 opte = *ptep;
3466 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3467 if (opg) {
3468 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3469
3470 if (omd->pvh_attrs & PVF_KMPAGE) {
3471 KASSERT(omd->urw_mappings == 0);
3472 KASSERT(omd->uro_mappings == 0);
3473 KASSERT(omd->krw_mappings == 0);
3474 KASSERT(omd->kro_mappings == 0);
3475 omd->pvh_attrs &= ~PVF_KMPAGE;
3476 #ifdef PMAP_CACHE_VIPT
3477 if (arm_cache_prefer_mask != 0) {
3478 omd->pvh_attrs &= ~PVF_WRITE;
3479 }
3480 #endif
3481 pmap_kmpages--;
3482 #ifdef PMAP_CACHE_VIPT
3483 } else {
3484 pool_put(&pmap_pv_pool,
3485 pmap_kremove_pg(opg, va));
3486 #endif
3487 }
3488 }
3489 if (l2pte_valid(opte)) {
3490 #ifdef PMAP_CACHE_VIVT
3491 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3492 #endif
3493 cpu_tlb_flushD_SE(va);
3494 }
3495 if (opte) {
3496 *ptep = 0;
3497 mappings++;
3498 }
3499 va += PAGE_SIZE;
3500 ptep++;
3501 }
3502 KDASSERT(mappings <= l2b->l2b_occupancy);
3503 l2b->l2b_occupancy -= mappings;
3504 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3505 }
3506 cpu_cpwait();
3507 }
3508
3509 bool
3510 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3511 {
3512 struct l2_dtable *l2;
3513 pd_entry_t *pl1pd, l1pd;
3514 pt_entry_t *ptep, pte;
3515 paddr_t pa;
3516 u_int l1idx;
3517
3518 pmap_acquire_pmap_lock(pm);
3519
3520 l1idx = L1_IDX(va);
3521 pl1pd = pmap_l1_kva(pm) + l1idx;
3522 l1pd = *pl1pd;
3523
3524 if (l1pte_section_p(l1pd)) {
3525 /*
3526 * These should only happen for pmap_kernel()
3527 */
3528 KDASSERT(pm == pmap_kernel());
3529 pmap_release_pmap_lock(pm);
3530 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3531 if (l1pte_supersection_p(l1pd)) {
3532 pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3533 } else
3534 #endif
3535 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3536 } else {
3537 /*
3538 * Note that we can't rely on the validity of the L1
3539 * descriptor as an indication that a mapping exists.
3540 * We have to look it up in the L2 dtable.
3541 */
3542 l2 = pm->pm_l2[L2_IDX(l1idx)];
3543
3544 if (l2 == NULL ||
3545 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3546 pmap_release_pmap_lock(pm);
3547 return false;
3548 }
3549
3550 ptep = &ptep[l2pte_index(va)];
3551 pte = *ptep;
3552 pmap_release_pmap_lock(pm);
3553
3554 if (pte == 0)
3555 return false;
3556
3557 switch (pte & L2_TYPE_MASK) {
3558 case L2_TYPE_L:
3559 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3560 break;
3561
3562 default:
3563 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3564 break;
3565 }
3566 }
3567
3568 if (pap != NULL)
3569 *pap = pa;
3570
3571 return true;
3572 }
3573
3574 void
3575 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3576 {
3577 struct l2_bucket *l2b;
3578 pt_entry_t *ptep, pte;
3579 vaddr_t next_bucket;
3580 u_int flags;
3581 u_int clr_mask;
3582 int flush;
3583
3584 NPDEBUG(PDB_PROTECT,
3585 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3586 pm, sva, eva, prot));
3587
3588 if ((prot & VM_PROT_READ) == 0) {
3589 pmap_remove(pm, sva, eva);
3590 return;
3591 }
3592
3593 if (prot & VM_PROT_WRITE) {
3594 /*
3595 * If this is a read->write transition, just ignore it and let
3596 * uvm_fault() take care of it later.
3597 */
3598 return;
3599 }
3600
3601 pmap_acquire_pmap_lock(pm);
3602
3603 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3604 flags = 0;
3605 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3606
3607 while (sva < eva) {
3608 next_bucket = L2_NEXT_BUCKET(sva);
3609 if (next_bucket > eva)
3610 next_bucket = eva;
3611
3612 l2b = pmap_get_l2_bucket(pm, sva);
3613 if (l2b == NULL) {
3614 sva = next_bucket;
3615 continue;
3616 }
3617
3618 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3619
3620 while (sva < next_bucket) {
3621 pte = *ptep;
3622 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3623 struct vm_page *pg;
3624 u_int f;
3625
3626 #ifdef PMAP_CACHE_VIVT
3627 /*
3628 * OK, at this point, we know we're doing
3629 * write-protect operation. If the pmap is
3630 * active, write-back the page.
3631 */
3632 pmap_cache_wbinv_page(pm, sva, false, PVF_REF);
3633 #endif
3634
3635 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3636 pte = l2pte_set_readonly(pte);
3637 *ptep = pte;
3638 PTE_SYNC(ptep);
3639
3640 if (pg != NULL) {
3641 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3642 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3643
3644 #ifdef MULTIPROCESSOR
3645 KASSERT(uvm_page_locked_p(pg));
3646 #endif
3647 f = pmap_modify_pv(md, pa, pm, sva,
3648 clr_mask, 0);
3649 pmap_vac_me_harder(md, pa, pm, sva);
3650 } else {
3651 f = PVF_REF | PVF_EXEC;
3652 }
3653
3654 if (flush >= 0) {
3655 flush++;
3656 flags |= f;
3657 } else {
3658 pmap_tlb_flush_SE(pm, sva, f);
3659 }
3660 }
3661
3662 sva += PAGE_SIZE;
3663 ptep++;
3664 }
3665 }
3666
3667 pmap_release_pmap_lock(pm);
3668
3669 if (flush) {
3670 if (PV_BEEN_EXECD(flags))
3671 pmap_tlb_flushID(pm);
3672 else
3673 if (PV_BEEN_REFD(flags))
3674 pmap_tlb_flushD(pm);
3675 }
3676 }
3677
3678 void
3679 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3680 {
3681 struct l2_bucket *l2b;
3682 pt_entry_t *ptep;
3683 vaddr_t next_bucket;
3684 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3685
3686 NPDEBUG(PDB_EXEC,
3687 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3688 pm, sva, eva));
3689
3690 pmap_acquire_pmap_lock(pm);
3691
3692 while (sva < eva) {
3693 next_bucket = L2_NEXT_BUCKET(sva);
3694 if (next_bucket > eva)
3695 next_bucket = eva;
3696
3697 l2b = pmap_get_l2_bucket(pm, sva);
3698 if (l2b == NULL) {
3699 sva = next_bucket;
3700 continue;
3701 }
3702
3703 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3704 sva < next_bucket;
3705 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3706 if (l2pte_valid(*ptep)) {
3707 cpu_icache_sync_range(sva,
3708 min(page_size, eva - sva));
3709 }
3710 }
3711 }
3712
3713 pmap_release_pmap_lock(pm);
3714 }
3715
3716 void
3717 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3718 {
3719 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3720 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3721
3722 NPDEBUG(PDB_PROTECT,
3723 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3724 md, pa, prot));
3725
3726 #ifdef MULTIPROCESSOR
3727 KASSERT(uvm_page_locked_p(pg));
3728 #endif
3729
3730 switch(prot) {
3731 case VM_PROT_READ|VM_PROT_WRITE:
3732 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3733 pmap_clearbit(md, pa, PVF_EXEC);
3734 break;
3735 #endif
3736 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3737 break;
3738
3739 case VM_PROT_READ:
3740 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3741 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3742 break;
3743 #endif
3744 case VM_PROT_READ|VM_PROT_EXECUTE:
3745 pmap_clearbit(md, pa, PVF_WRITE);
3746 break;
3747
3748 default:
3749 pmap_page_remove(md, pa);
3750 break;
3751 }
3752 }
3753
3754 /*
3755 * pmap_clear_modify:
3756 *
3757 * Clear the "modified" attribute for a page.
3758 */
3759 bool
3760 pmap_clear_modify(struct vm_page *pg)
3761 {
3762 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3763 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3764 bool rv;
3765
3766 #ifdef MULTIPROCESSOR
3767 KASSERT(uvm_page_locked_p(pg));
3768 #endif
3769
3770 if (md->pvh_attrs & PVF_MOD) {
3771 rv = true;
3772 #ifdef PMAP_CACHE_VIPT
3773 /*
3774 * If we are going to clear the modified bit and there are
3775 * no other modified bits set, flush the page to memory and
3776 * mark it clean.
3777 */
3778 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3779 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3780 #endif
3781 pmap_clearbit(md, pa, PVF_MOD);
3782 } else
3783 rv = false;
3784
3785 return (rv);
3786 }
3787
3788 /*
3789 * pmap_clear_reference:
3790 *
3791 * Clear the "referenced" attribute for a page.
3792 */
3793 bool
3794 pmap_clear_reference(struct vm_page *pg)
3795 {
3796 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3797 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3798 bool rv;
3799
3800 #ifdef MULTIPROCESSOR
3801 KASSERT(uvm_page_locked_p(pg));
3802 #endif
3803
3804 if (md->pvh_attrs & PVF_REF) {
3805 rv = true;
3806 pmap_clearbit(md, pa, PVF_REF);
3807 } else
3808 rv = false;
3809
3810 return (rv);
3811 }
3812
3813 /*
3814 * pmap_is_modified:
3815 *
3816 * Test if a page has the "modified" attribute.
3817 */
3818 /* See <arm/arm32/pmap.h> */
3819
3820 /*
3821 * pmap_is_referenced:
3822 *
3823 * Test if a page has the "referenced" attribute.
3824 */
3825 /* See <arm/arm32/pmap.h> */
3826
3827 int
3828 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3829 {
3830 struct l2_dtable *l2;
3831 struct l2_bucket *l2b;
3832 pd_entry_t *pl1pd, l1pd;
3833 pt_entry_t *ptep, pte;
3834 paddr_t pa;
3835 u_int l1idx;
3836 int rv = 0;
3837
3838 pmap_acquire_pmap_lock(pm);
3839
3840 l1idx = L1_IDX(va);
3841
3842 /*
3843 * If there is no l2_dtable for this address, then the process
3844 * has no business accessing it.
3845 *
3846 * Note: This will catch userland processes trying to access
3847 * kernel addresses.
3848 */
3849 l2 = pm->pm_l2[L2_IDX(l1idx)];
3850 if (l2 == NULL)
3851 goto out;
3852
3853 /*
3854 * Likewise if there is no L2 descriptor table
3855 */
3856 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3857 if (l2b->l2b_kva == NULL)
3858 goto out;
3859
3860 /*
3861 * Check the PTE itself.
3862 */
3863 ptep = &l2b->l2b_kva[l2pte_index(va)];
3864 pte = *ptep;
3865 if (pte == 0)
3866 goto out;
3867
3868 /*
3869 * Catch a userland access to the vector page mapped at 0x0
3870 */
3871 if (user && (pte & L2_S_PROT_U) == 0)
3872 goto out;
3873
3874 pa = l2pte_pa(pte);
3875
3876 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3877 /*
3878 * This looks like a good candidate for "page modified"
3879 * emulation...
3880 */
3881 struct pv_entry *pv;
3882 struct vm_page *pg;
3883
3884 /* Extract the physical address of the page */
3885 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3886 goto out;
3887
3888 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3889
3890 /* Get the current flags for this page. */
3891 #ifdef MULTIPROCESSOR
3892 KASSERT(uvm_page_locked_p(pg));
3893 #endif
3894
3895 pv = pmap_find_pv(md, pm, va);
3896 if (pv == NULL) {
3897 goto out;
3898 }
3899
3900 /*
3901 * Do the flags say this page is writable? If not then it
3902 * is a genuine write fault. If yes then the write fault is
3903 * our fault as we did not reflect the write access in the
3904 * PTE. Now we know a write has occurred we can correct this
3905 * and also set the modified bit
3906 */
3907 if ((pv->pv_flags & PVF_WRITE) == 0) {
3908 goto out;
3909 }
3910
3911 NPDEBUG(PDB_FOLLOW,
3912 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3913 pm, va, pa));
3914
3915 md->pvh_attrs |= PVF_REF | PVF_MOD;
3916 pv->pv_flags |= PVF_REF | PVF_MOD;
3917 #ifdef PMAP_CACHE_VIPT
3918 /*
3919 * If there are cacheable mappings for this page, mark it dirty.
3920 */
3921 if ((md->pvh_attrs & PVF_NC) == 0)
3922 md->pvh_attrs |= PVF_DIRTY;
3923 #endif
3924
3925 /*
3926 * Re-enable write permissions for the page. No need to call
3927 * pmap_vac_me_harder(), since this is just a
3928 * modified-emulation fault, and the PVF_WRITE bit isn't
3929 * changing. We've already set the cacheable bits based on
3930 * the assumption that we can write to this page.
3931 */
3932 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3933 PTE_SYNC(ptep);
3934 rv = 1;
3935 } else
3936 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3937 /*
3938 * This looks like a good candidate for "page referenced"
3939 * emulation.
3940 */
3941 struct pv_entry *pv;
3942 struct vm_page *pg;
3943
3944 /* Extract the physical address of the page */
3945 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3946 goto out;
3947
3948 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3949
3950 /* Get the current flags for this page. */
3951 #ifdef MULTIPROCESSOR
3952 KASSERT(uvm_page_locked_p(pg));
3953 #endif
3954
3955 pv = pmap_find_pv(md, pm, va);
3956 if (pv == NULL) {
3957 goto out;
3958 }
3959
3960 md->pvh_attrs |= PVF_REF;
3961 pv->pv_flags |= PVF_REF;
3962
3963 NPDEBUG(PDB_FOLLOW,
3964 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3965 pm, va, pa));
3966
3967 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3968 PTE_SYNC(ptep);
3969 rv = 1;
3970 }
3971
3972 /*
3973 * We know there is a valid mapping here, so simply
3974 * fix up the L1 if necessary.
3975 */
3976 pl1pd = pmap_l1_kva(pm) + l1idx;
3977 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) | L1_C_PROTO;
3978 if (*pl1pd != l1pd) {
3979 *pl1pd = l1pd;
3980 PTE_SYNC(pl1pd);
3981 rv = 1;
3982 }
3983
3984 #ifdef CPU_SA110
3985 /*
3986 * There are bugs in the rev K SA110. This is a check for one
3987 * of them.
3988 */
3989 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3990 curcpu()->ci_arm_cpurev < 3) {
3991 /* Always current pmap */
3992 if (l2pte_valid(pte)) {
3993 extern int kernel_debug;
3994 if (kernel_debug & 1) {
3995 struct proc *p = curlwp->l_proc;
3996 printf("prefetch_abort: page is already "
3997 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3998 printf("prefetch_abort: pc=%08lx proc=%p "
3999 "process=%s\n", va, p, p->p_comm);
4000 printf("prefetch_abort: far=%08x fs=%x\n",
4001 cpu_faultaddress(), cpu_faultstatus());
4002 }
4003 #ifdef DDB
4004 if (kernel_debug & 2)
4005 Debugger();
4006 #endif
4007 rv = 1;
4008 }
4009 }
4010 #endif /* CPU_SA110 */
4011
4012 /*
4013 * If 'rv == 0' at this point, it generally indicates that there is a
4014 * stale TLB entry for the faulting address. That might be due to a
4015 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4016 */
4017 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
4018 && pmap_needs_pte_sync == 0) {
4019 pmap_needs_pte_sync = 1;
4020 PTE_SYNC(ptep);
4021 rv = 1;
4022 }
4023
4024 #ifdef DEBUG
4025 /*
4026 * If 'rv == 0' at this point, it generally indicates that there is a
4027 * stale TLB entry for the faulting address. This happens when two or
4028 * more processes are sharing an L1. Since we don't flush the TLB on
4029 * a context switch between such processes, we can take domain faults
4030 * for mappings which exist at the same VA in both processes. EVEN IF
4031 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4032 * example.
4033 *
4034 * This is extremely likely to happen if pmap_enter() updated the L1
4035 * entry for a recently entered mapping. In this case, the TLB is
4036 * flushed for the new mapping, but there may still be TLB entries for
4037 * other mappings belonging to other processes in the 1MB range
4038 * covered by the L1 entry.
4039 *
4040 * Since 'rv == 0', we know that the L1 already contains the correct
4041 * value, so the fault must be due to a stale TLB entry.
4042 *
4043 * Since we always need to flush the TLB anyway in the case where we
4044 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4045 * stale TLB entries dynamically.
4046 *
4047 * However, the above condition can ONLY happen if the current L1 is
4048 * being shared. If it happens when the L1 is unshared, it indicates
4049 * that other parts of the pmap are not doing their job WRT managing
4050 * the TLB.
4051 */
4052 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4053 extern int last_fault_code;
4054 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4055 pm, va, ftype);
4056 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4057 l2, l2b, ptep, pl1pd);
4058 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4059 pte, l1pd, last_fault_code);
4060 #ifdef DDB
4061 extern int kernel_debug;
4062
4063 if (kernel_debug & 2)
4064 Debugger();
4065 #endif
4066 }
4067 #endif
4068
4069 cpu_tlb_flushID_SE(va);
4070 cpu_cpwait();
4071
4072 rv = 1;
4073
4074 out:
4075 pmap_release_pmap_lock(pm);
4076
4077 return (rv);
4078 }
4079
4080 /*
4081 * Routine: pmap_procwr
4082 *
4083 * Function:
4084 * Synchronize caches corresponding to [addr, addr+len) in p.
4085 *
4086 */
4087 void
4088 pmap_procwr(struct proc *p, vaddr_t va, int len)
4089 {
4090 /* We only need to do anything if it is the current process. */
4091 if (p == curproc)
4092 cpu_icache_sync_range(va, len);
4093 }
4094
4095 /*
4096 * Routine: pmap_unwire
4097 * Function: Clear the wired attribute for a map/virtual-address pair.
4098 *
4099 * In/out conditions:
4100 * The mapping must already exist in the pmap.
4101 */
4102 void
4103 pmap_unwire(pmap_t pm, vaddr_t va)
4104 {
4105 struct l2_bucket *l2b;
4106 pt_entry_t *ptep, pte;
4107 struct vm_page *pg;
4108 paddr_t pa;
4109
4110 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4111
4112 pmap_acquire_pmap_lock(pm);
4113
4114 l2b = pmap_get_l2_bucket(pm, va);
4115 KDASSERT(l2b != NULL);
4116
4117 ptep = &l2b->l2b_kva[l2pte_index(va)];
4118 pte = *ptep;
4119
4120 /* Extract the physical address of the page */
4121 pa = l2pte_pa(pte);
4122
4123 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4124 /* Update the wired bit in the pv entry for this page. */
4125 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4126
4127 #ifdef MULTIPROCESSOR
4128 KASSERT(uvm_page_locked_p(pg));
4129 #endif
4130 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4131 }
4132
4133 pmap_release_pmap_lock(pm);
4134 }
4135
4136 void
4137 pmap_activate(struct lwp *l)
4138 {
4139 extern int block_userspace_access;
4140 pmap_t opm, npm, rpm;
4141 uint32_t odacr, ndacr;
4142 int oldirqstate;
4143
4144 /*
4145 * If activating a non-current lwp or the current lwp is
4146 * already active, just return.
4147 */
4148 if (l != curlwp ||
4149 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4150 return;
4151
4152 npm = l->l_proc->p_vmspace->vm_map.pmap;
4153 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4154 (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4155
4156 /*
4157 * If TTB and DACR are unchanged, short-circuit all the
4158 * TLB/cache management stuff.
4159 */
4160 if (pmap_previous_active_lwp != NULL) {
4161 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4162 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4163 (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4164
4165 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4166 goto all_done;
4167 } else
4168 opm = NULL;
4169
4170 PMAPCOUNT(activations);
4171 block_userspace_access = 1;
4172
4173 /*
4174 * If switching to a user vmspace which is different to the
4175 * most recent one, and the most recent one is potentially
4176 * live in the cache, we must write-back and invalidate the
4177 * entire cache.
4178 */
4179 rpm = pmap_recent_user;
4180
4181 /*
4182 * XXXSCW: There's a corner case here which can leave turds in the cache as
4183 * reported in kern/41058. They're probably left over during tear-down and
4184 * switching away from an exiting process. Until the root cause is identified
4185 * and fixed, zap the cache when switching pmaps. This will result in a few
4186 * unnecessary cache flushes, but that's better than silently corrupting data.
4187 */
4188 #if 0
4189 if (npm != pmap_kernel() && rpm && npm != rpm &&
4190 rpm->pm_cstate.cs_cache) {
4191 rpm->pm_cstate.cs_cache = 0;
4192 #ifdef PMAP_CACHE_VIVT
4193 cpu_idcache_wbinv_all();
4194 #endif
4195 }
4196 #else
4197 if (rpm) {
4198 rpm->pm_cstate.cs_cache = 0;
4199 if (npm == pmap_kernel())
4200 pmap_recent_user = NULL;
4201 #ifdef PMAP_CACHE_VIVT
4202 cpu_idcache_wbinv_all();
4203 #endif
4204 }
4205 #endif
4206
4207 /* No interrupts while we frob the TTB/DACR */
4208 oldirqstate = disable_interrupts(IF32_bits);
4209
4210 #ifndef ARM_HAS_VBAR
4211 /*
4212 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4213 * entry corresponding to 'vector_page' in the incoming L1 table
4214 * before switching to it otherwise subsequent interrupts/exceptions
4215 * (including domain faults!) will jump into hyperspace.
4216 */
4217 if (npm->pm_pl1vec != NULL) {
4218 cpu_tlb_flushID_SE((u_int)vector_page);
4219 cpu_cpwait();
4220 *npm->pm_pl1vec = npm->pm_l1vec;
4221 PTE_SYNC(npm->pm_pl1vec);
4222 }
4223 #endif
4224
4225 cpu_domains(ndacr);
4226
4227 if (npm == pmap_kernel() || npm == rpm) {
4228 /*
4229 * Switching to a kernel thread, or back to the
4230 * same user vmspace as before... Simply update
4231 * the TTB (no TLB flush required)
4232 */
4233 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4234 cpu_cpwait();
4235 } else {
4236 /*
4237 * Otherwise, update TTB and flush TLB
4238 */
4239 cpu_context_switch(npm->pm_l1->l1_physaddr);
4240 if (rpm != NULL)
4241 rpm->pm_cstate.cs_tlb = 0;
4242 }
4243
4244 restore_interrupts(oldirqstate);
4245
4246 block_userspace_access = 0;
4247
4248 all_done:
4249 /*
4250 * The new pmap is resident. Make sure it's marked
4251 * as resident in the cache/TLB.
4252 */
4253 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4254 if (npm != pmap_kernel())
4255 pmap_recent_user = npm;
4256
4257 /* The old pmap is not longer active */
4258 if (opm != NULL)
4259 opm->pm_activated = false;
4260
4261 /* But the new one is */
4262 npm->pm_activated = true;
4263 }
4264
4265 void
4266 pmap_deactivate(struct lwp *l)
4267 {
4268
4269 /*
4270 * If the process is exiting, make sure pmap_activate() does
4271 * a full MMU context-switch and cache flush, which we might
4272 * otherwise skip. See PR port-arm/38950.
4273 */
4274 if (l->l_proc->p_sflag & PS_WEXIT)
4275 pmap_previous_active_lwp = NULL;
4276
4277 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4278 }
4279
4280 void
4281 pmap_update(pmap_t pm)
4282 {
4283
4284 if (pm->pm_remove_all) {
4285 /*
4286 * Finish up the pmap_remove_all() optimisation by flushing
4287 * the TLB.
4288 */
4289 pmap_tlb_flushID(pm);
4290 pm->pm_remove_all = false;
4291 }
4292
4293 if (pmap_is_current(pm)) {
4294 /*
4295 * If we're dealing with a current userland pmap, move its L1
4296 * to the end of the LRU.
4297 */
4298 if (pm != pmap_kernel())
4299 pmap_use_l1(pm);
4300
4301 /*
4302 * We can assume we're done with frobbing the cache/tlb for
4303 * now. Make sure any future pmap ops don't skip cache/tlb
4304 * flushes.
4305 */
4306 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4307 }
4308
4309 PMAPCOUNT(updates);
4310
4311 /*
4312 * make sure TLB/cache operations have completed.
4313 */
4314 cpu_cpwait();
4315 }
4316
4317 void
4318 pmap_remove_all(pmap_t pm)
4319 {
4320
4321 /*
4322 * The vmspace described by this pmap is about to be torn down.
4323 * Until pmap_update() is called, UVM will only make calls
4324 * to pmap_remove(). We can make life much simpler by flushing
4325 * the cache now, and deferring TLB invalidation to pmap_update().
4326 */
4327 #ifdef PMAP_CACHE_VIVT
4328 pmap_cache_wbinv_all(pm, PVF_EXEC);
4329 #endif
4330 pm->pm_remove_all = true;
4331 }
4332
4333 /*
4334 * Retire the given physical map from service.
4335 * Should only be called if the map contains no valid mappings.
4336 */
4337 void
4338 pmap_destroy(pmap_t pm)
4339 {
4340 u_int count;
4341
4342 if (pm == NULL)
4343 return;
4344
4345 if (pm->pm_remove_all) {
4346 pmap_tlb_flushID(pm);
4347 pm->pm_remove_all = false;
4348 }
4349
4350 /*
4351 * Drop reference count
4352 */
4353 mutex_enter(pm->pm_lock);
4354 count = --pm->pm_obj.uo_refs;
4355 mutex_exit(pm->pm_lock);
4356 if (count > 0) {
4357 if (pmap_is_current(pm)) {
4358 if (pm != pmap_kernel())
4359 pmap_use_l1(pm);
4360 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4361 }
4362 return;
4363 }
4364
4365 /*
4366 * reference count is zero, free pmap resources and then free pmap.
4367 */
4368
4369 #ifndef ARM_HAS_VBAR
4370 if (vector_page < KERNEL_BASE) {
4371 KDASSERT(!pmap_is_current(pm));
4372
4373 /* Remove the vector page mapping */
4374 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4375 pmap_update(pm);
4376 }
4377 #endif
4378
4379 LIST_REMOVE(pm, pm_list);
4380
4381 pmap_free_l1(pm);
4382
4383 if (pmap_recent_user == pm)
4384 pmap_recent_user = NULL;
4385
4386 uvm_obj_destroy(&pm->pm_obj, false);
4387 mutex_destroy(&pm->pm_obj_lock);
4388 pool_cache_put(&pmap_cache, pm);
4389 }
4390
4391
4392 /*
4393 * void pmap_reference(pmap_t pm)
4394 *
4395 * Add a reference to the specified pmap.
4396 */
4397 void
4398 pmap_reference(pmap_t pm)
4399 {
4400
4401 if (pm == NULL)
4402 return;
4403
4404 pmap_use_l1(pm);
4405
4406 mutex_enter(pm->pm_lock);
4407 pm->pm_obj.uo_refs++;
4408 mutex_exit(pm->pm_lock);
4409 }
4410
4411 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4412
4413 static struct evcnt pmap_prefer_nochange_ev =
4414 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4415 static struct evcnt pmap_prefer_change_ev =
4416 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4417
4418 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4419 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4420
4421 void
4422 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4423 {
4424 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4425 vaddr_t va = *vap;
4426 vaddr_t diff = (hint - va) & mask;
4427 if (diff == 0) {
4428 pmap_prefer_nochange_ev.ev_count++;
4429 } else {
4430 pmap_prefer_change_ev.ev_count++;
4431 if (__predict_false(td))
4432 va -= mask + 1;
4433 *vap = va + diff;
4434 }
4435 }
4436 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4437
4438 /*
4439 * pmap_zero_page()
4440 *
4441 * Zero a given physical page by mapping it at a page hook point.
4442 * In doing the zero page op, the page we zero is mapped cachable, as with
4443 * StrongARM accesses to non-cached pages are non-burst making writing
4444 * _any_ bulk data very slow.
4445 */
4446 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4447 void
4448 pmap_zero_page_generic(paddr_t phys)
4449 {
4450 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4451 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4452 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4453 #endif
4454 #if defined(PMAP_CACHE_VIPT)
4455 /* Choose the last page color it had, if any */
4456 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4457 #else
4458 const vsize_t va_offset = 0;
4459 #endif
4460 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4461 /*
4462 * Is this page mapped at its natural color?
4463 * If we have all of memory mapped, then just convert PA to VA.
4464 */
4465 const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
4466 const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
4467 #else
4468 const bool okcolor = false;
4469 const vaddr_t vdstp = cdstp + va_offset;
4470 #endif
4471 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4472
4473
4474 #ifdef DEBUG
4475 if (!SLIST_EMPTY(&md->pvh_list))
4476 panic("pmap_zero_page: page has mappings");
4477 #endif
4478
4479 KDASSERT((phys & PGOFSET) == 0);
4480
4481 if (!okcolor) {
4482 /*
4483 * Hook in the page, zero it, and purge the cache for that
4484 * zeroed page. Invalidate the TLB as needed.
4485 */
4486 *ptep = L2_S_PROTO | phys |
4487 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4488 PTE_SYNC(ptep);
4489 cpu_tlb_flushD_SE(cdstp + va_offset);
4490 cpu_cpwait();
4491 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4492 /*
4493 * If we are direct-mapped and our color isn't ok, then before
4494 * we bzero the page invalidate its contents from the cache and
4495 * reset the color to its natural color.
4496 */
4497 cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
4498 md->pvh_attrs &= ~arm_cache_prefer_mask;
4499 md->pvh_attrs |= (phys & arm_cache_prefer_mask);
4500 #endif
4501 }
4502 bzero_page(vdstp);
4503 if (!okcolor) {
4504 /*
4505 * Unmap the page.
4506 */
4507 *ptep = 0;
4508 PTE_SYNC(ptep);
4509 cpu_tlb_flushD_SE(cdstp + va_offset);
4510 #ifdef PMAP_CACHE_VIVT
4511 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4512 #endif
4513 }
4514 #ifdef PMAP_CACHE_VIPT
4515 /*
4516 * This page is now cache resident so it now has a page color.
4517 * Any contents have been obliterated so clear the EXEC flag.
4518 */
4519 if (!pmap_is_page_colored_p(md)) {
4520 PMAPCOUNT(vac_color_new);
4521 md->pvh_attrs |= PVF_COLORED;
4522 }
4523 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4524 md->pvh_attrs &= ~PVF_EXEC;
4525 PMAPCOUNT(exec_discarded_zero);
4526 }
4527 md->pvh_attrs |= PVF_DIRTY;
4528 #endif
4529 }
4530 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4531
4532 #if ARM_MMU_XSCALE == 1
4533 void
4534 pmap_zero_page_xscale(paddr_t phys)
4535 {
4536 #ifdef DEBUG
4537 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4538 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4539
4540 if (!SLIST_EMPTY(&md->pvh_list))
4541 panic("pmap_zero_page: page has mappings");
4542 #endif
4543
4544 KDASSERT((phys & PGOFSET) == 0);
4545
4546 /*
4547 * Hook in the page, zero it, and purge the cache for that
4548 * zeroed page. Invalidate the TLB as needed.
4549 */
4550 *cdst_pte = L2_S_PROTO | phys |
4551 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4552 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4553 PTE_SYNC(cdst_pte);
4554 cpu_tlb_flushD_SE(cdstp);
4555 cpu_cpwait();
4556 bzero_page(cdstp);
4557 xscale_cache_clean_minidata();
4558 }
4559 #endif /* ARM_MMU_XSCALE == 1 */
4560
4561 /* pmap_pageidlezero()
4562 *
4563 * The same as above, except that we assume that the page is not
4564 * mapped. This means we never have to flush the cache first. Called
4565 * from the idle loop.
4566 */
4567 bool
4568 pmap_pageidlezero(paddr_t phys)
4569 {
4570 unsigned int i;
4571 int *ptr;
4572 bool rv = true;
4573 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4574 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4575 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4576 #endif
4577 #ifdef PMAP_CACHE_VIPT
4578 /* Choose the last page color it had, if any */
4579 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4580 #else
4581 const vsize_t va_offset = 0;
4582 #endif
4583 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4584
4585
4586 #ifdef DEBUG
4587 if (!SLIST_EMPTY(&md->pvh_list))
4588 panic("pmap_pageidlezero: page has mappings");
4589 #endif
4590
4591 KDASSERT((phys & PGOFSET) == 0);
4592
4593 /*
4594 * Hook in the page, zero it, and purge the cache for that
4595 * zeroed page. Invalidate the TLB as needed.
4596 */
4597 *ptep = L2_S_PROTO | phys |
4598 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4599 PTE_SYNC(ptep);
4600 cpu_tlb_flushD_SE(cdstp + va_offset);
4601 cpu_cpwait();
4602
4603 for (i = 0, ptr = (int *)(cdstp + va_offset);
4604 i < (PAGE_SIZE / sizeof(int)); i++) {
4605 if (sched_curcpu_runnable_p() != 0) {
4606 /*
4607 * A process has become ready. Abort now,
4608 * so we don't keep it waiting while we
4609 * do slow memory access to finish this
4610 * page.
4611 */
4612 rv = false;
4613 break;
4614 }
4615 *ptr++ = 0;
4616 }
4617
4618 #ifdef PMAP_CACHE_VIVT
4619 if (rv)
4620 /*
4621 * if we aborted we'll rezero this page again later so don't
4622 * purge it unless we finished it
4623 */
4624 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4625 #elif defined(PMAP_CACHE_VIPT)
4626 /*
4627 * This page is now cache resident so it now has a page color.
4628 * Any contents have been obliterated so clear the EXEC flag.
4629 */
4630 if (!pmap_is_page_colored_p(md)) {
4631 PMAPCOUNT(vac_color_new);
4632 md->pvh_attrs |= PVF_COLORED;
4633 }
4634 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4635 md->pvh_attrs &= ~PVF_EXEC;
4636 PMAPCOUNT(exec_discarded_zero);
4637 }
4638 #endif
4639 /*
4640 * Unmap the page.
4641 */
4642 *ptep = 0;
4643 PTE_SYNC(ptep);
4644 cpu_tlb_flushD_SE(cdstp + va_offset);
4645
4646 return (rv);
4647 }
4648
4649 /*
4650 * pmap_copy_page()
4651 *
4652 * Copy one physical page into another, by mapping the pages into
4653 * hook points. The same comment regarding cachability as in
4654 * pmap_zero_page also applies here.
4655 */
4656 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4657 void
4658 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4659 {
4660 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4661 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4662 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4663 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4664 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4665 #endif
4666 #ifdef PMAP_CACHE_VIPT
4667 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4668 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4669 #else
4670 const vsize_t src_va_offset = 0;
4671 const vsize_t dst_va_offset = 0;
4672 #endif
4673 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4674 /*
4675 * Is this page mapped at its natural color?
4676 * If we have all of memory mapped, then just convert PA to VA.
4677 */
4678 const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
4679 const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
4680 const vaddr_t vsrcp = src_okcolor
4681 ? KERNEL_BASE + (src - physical_start)
4682 : csrcp + src_va_offset;
4683 const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
4684 #else
4685 const bool src_okcolor = false;
4686 const bool dst_okcolor = false;
4687 const vaddr_t vsrcp = csrcp + src_va_offset;
4688 const vaddr_t vdstp = cdstp + dst_va_offset;
4689 #endif
4690 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4691 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4692
4693 #ifdef DEBUG
4694 if (!SLIST_EMPTY(&dst_md->pvh_list))
4695 panic("pmap_copy_page: dst page has mappings");
4696 #endif
4697
4698 #ifdef PMAP_CACHE_VIPT
4699 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4700 #endif
4701 KDASSERT((src & PGOFSET) == 0);
4702 KDASSERT((dst & PGOFSET) == 0);
4703
4704 /*
4705 * Clean the source page. Hold the source page's lock for
4706 * the duration of the copy so that no other mappings can
4707 * be created while we have a potentially aliased mapping.
4708 */
4709 #ifdef MULTIPROCESSOR
4710 KASSERT(uvm_page_locked_p(src_pg));
4711 #endif
4712 #ifdef PMAP_CACHE_VIVT
4713 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4714 #endif
4715
4716 /*
4717 * Map the pages into the page hook points, copy them, and purge
4718 * the cache for the appropriate page. Invalidate the TLB
4719 * as required.
4720 */
4721 if (!src_okcolor) {
4722 *src_ptep = L2_S_PROTO
4723 | src
4724 #ifdef PMAP_CACHE_VIPT
4725 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4726 #endif
4727 #ifdef PMAP_CACHE_VIVT
4728 | pte_l2_s_cache_mode
4729 #endif
4730 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4731 PTE_SYNC(src_ptep);
4732 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4733 cpu_cpwait();
4734 }
4735 if (!dst_okcolor) {
4736 *dst_ptep = L2_S_PROTO | dst |
4737 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4738 PTE_SYNC(dst_ptep);
4739 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4740 cpu_cpwait();
4741 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4742 /*
4743 * If we are direct-mapped and our color isn't ok, then before
4744 * we bcopy to the new page invalidate its contents from the
4745 * cache and reset its color to its natural color.
4746 */
4747 cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
4748 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
4749 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
4750 #endif
4751 }
4752 bcopy_page(vsrcp, vdstp);
4753 #ifdef PMAP_CACHE_VIVT
4754 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
4755 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
4756 #endif
4757 /*
4758 * Unmap the pages.
4759 */
4760 if (!src_okcolor) {
4761 *src_ptep = 0;
4762 PTE_SYNC(src_ptep);
4763 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4764 cpu_cpwait();
4765 }
4766 if (!dst_okcolor) {
4767 *dst_ptep = 0;
4768 PTE_SYNC(dst_ptep);
4769 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4770 cpu_cpwait();
4771 }
4772 #ifdef PMAP_CACHE_VIPT
4773 /*
4774 * Now that the destination page is in the cache, mark it as colored.
4775 * If this was an exec page, discard it.
4776 */
4777 if (!pmap_is_page_colored_p(dst_md)) {
4778 PMAPCOUNT(vac_color_new);
4779 dst_md->pvh_attrs |= PVF_COLORED;
4780 }
4781 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4782 dst_md->pvh_attrs &= ~PVF_EXEC;
4783 PMAPCOUNT(exec_discarded_copy);
4784 }
4785 dst_md->pvh_attrs |= PVF_DIRTY;
4786 #endif
4787 }
4788 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4789
4790 #if ARM_MMU_XSCALE == 1
4791 void
4792 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4793 {
4794 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4795 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4796 #ifdef DEBUG
4797 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4798
4799 if (!SLIST_EMPTY(&dst_md->pvh_list))
4800 panic("pmap_copy_page: dst page has mappings");
4801 #endif
4802
4803 KDASSERT((src & PGOFSET) == 0);
4804 KDASSERT((dst & PGOFSET) == 0);
4805
4806 /*
4807 * Clean the source page. Hold the source page's lock for
4808 * the duration of the copy so that no other mappings can
4809 * be created while we have a potentially aliased mapping.
4810 */
4811 #ifdef MULTIPROCESSOR
4812 KASSERT(uvm_page_locked_p(src_pg));
4813 #endif
4814 #ifdef PMAP_CACHE_VIVT
4815 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4816 #endif
4817
4818 /*
4819 * Map the pages into the page hook points, copy them, and purge
4820 * the cache for the appropriate page. Invalidate the TLB
4821 * as required.
4822 */
4823 *csrc_pte = L2_S_PROTO | src |
4824 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4825 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4826 PTE_SYNC(csrc_pte);
4827 *cdst_pte = L2_S_PROTO | dst |
4828 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4829 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4830 PTE_SYNC(cdst_pte);
4831 cpu_tlb_flushD_SE(csrcp);
4832 cpu_tlb_flushD_SE(cdstp);
4833 cpu_cpwait();
4834 bcopy_page(csrcp, cdstp);
4835 xscale_cache_clean_minidata();
4836 }
4837 #endif /* ARM_MMU_XSCALE == 1 */
4838
4839 /*
4840 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4841 *
4842 * Return the start and end addresses of the kernel's virtual space.
4843 * These values are setup in pmap_bootstrap and are updated as pages
4844 * are allocated.
4845 */
4846 void
4847 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4848 {
4849 *start = virtual_avail;
4850 *end = virtual_end;
4851 }
4852
4853 /*
4854 * Helper function for pmap_grow_l2_bucket()
4855 */
4856 static inline int
4857 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4858 {
4859 struct l2_bucket *l2b;
4860 pt_entry_t *ptep;
4861 paddr_t pa;
4862
4863 if (uvm.page_init_done == false) {
4864 #ifdef PMAP_STEAL_MEMORY
4865 pv_addr_t pv;
4866 pmap_boot_pagealloc(PAGE_SIZE,
4867 #ifdef PMAP_CACHE_VIPT
4868 arm_cache_prefer_mask,
4869 va & arm_cache_prefer_mask,
4870 #else
4871 0, 0,
4872 #endif
4873 &pv);
4874 pa = pv.pv_pa;
4875 #else
4876 if (uvm_page_physget(&pa) == false)
4877 return (1);
4878 #endif /* PMAP_STEAL_MEMORY */
4879 } else {
4880 struct vm_page *pg;
4881 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4882 if (pg == NULL)
4883 return (1);
4884 pa = VM_PAGE_TO_PHYS(pg);
4885 #ifdef PMAP_CACHE_VIPT
4886 #ifdef DIAGNOSTIC
4887 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4888 #endif
4889 /*
4890 * This new page must not have any mappings. Enter it via
4891 * pmap_kenter_pa and let that routine do the hard work.
4892 */
4893 KASSERT(SLIST_EMPTY(&md->pvh_list));
4894 pmap_kenter_pa(va, pa,
4895 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
4896 #endif
4897 }
4898
4899 if (pap)
4900 *pap = pa;
4901
4902 PMAPCOUNT(pt_mappings);
4903 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4904 KDASSERT(l2b != NULL);
4905
4906 ptep = &l2b->l2b_kva[l2pte_index(va)];
4907 *ptep = L2_S_PROTO | pa | cache_mode |
4908 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4909 PTE_SYNC(ptep);
4910 memset((void *)va, 0, PAGE_SIZE);
4911 return (0);
4912 }
4913
4914 /*
4915 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4916 * used by pmap_growkernel().
4917 */
4918 static inline struct l2_bucket *
4919 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4920 {
4921 struct l2_dtable *l2;
4922 struct l2_bucket *l2b;
4923 u_short l1idx;
4924 vaddr_t nva;
4925
4926 l1idx = L1_IDX(va);
4927
4928 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4929 /*
4930 * No mapping at this address, as there is
4931 * no entry in the L1 table.
4932 * Need to allocate a new l2_dtable.
4933 */
4934 nva = pmap_kernel_l2dtable_kva;
4935 if ((nva & PGOFSET) == 0) {
4936 /*
4937 * Need to allocate a backing page
4938 */
4939 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4940 return (NULL);
4941 }
4942
4943 l2 = (struct l2_dtable *)nva;
4944 nva += sizeof(struct l2_dtable);
4945
4946 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4947 /*
4948 * The new l2_dtable straddles a page boundary.
4949 * Map in another page to cover it.
4950 */
4951 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4952 return (NULL);
4953 }
4954
4955 pmap_kernel_l2dtable_kva = nva;
4956
4957 /*
4958 * Link it into the parent pmap
4959 */
4960 pm->pm_l2[L2_IDX(l1idx)] = l2;
4961 }
4962
4963 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4964
4965 /*
4966 * Fetch pointer to the L2 page table associated with the address.
4967 */
4968 if (l2b->l2b_kva == NULL) {
4969 pt_entry_t *ptep;
4970
4971 /*
4972 * No L2 page table has been allocated. Chances are, this
4973 * is because we just allocated the l2_dtable, above.
4974 */
4975 nva = pmap_kernel_l2ptp_kva;
4976 ptep = (pt_entry_t *)nva;
4977 if ((nva & PGOFSET) == 0) {
4978 /*
4979 * Need to allocate a backing page
4980 */
4981 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4982 &pmap_kernel_l2ptp_phys))
4983 return (NULL);
4984 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4985 }
4986
4987 l2->l2_occupancy++;
4988 l2b->l2b_kva = ptep;
4989 l2b->l2b_l1idx = l1idx;
4990 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4991
4992 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4993 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4994 }
4995
4996 return (l2b);
4997 }
4998
4999 vaddr_t
5000 pmap_growkernel(vaddr_t maxkvaddr)
5001 {
5002 pmap_t kpm = pmap_kernel();
5003 struct l1_ttable *l1;
5004 struct l2_bucket *l2b;
5005 pd_entry_t *pl1pd;
5006 int s;
5007
5008 if (maxkvaddr <= pmap_curmaxkvaddr)
5009 goto out; /* we are OK */
5010
5011 NPDEBUG(PDB_GROWKERN,
5012 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5013 pmap_curmaxkvaddr, maxkvaddr));
5014
5015 KDASSERT(maxkvaddr <= virtual_end);
5016
5017 /*
5018 * whoops! we need to add kernel PTPs
5019 */
5020
5021 s = splhigh(); /* to be safe */
5022 mutex_enter(kpm->pm_lock);
5023
5024 /* Map 1MB at a time */
5025 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
5026
5027 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5028 KDASSERT(l2b != NULL);
5029
5030 /* Distribute new L1 entry to all other L1s */
5031 SLIST_FOREACH(l1, &l1_list, l1_link) {
5032 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
5033 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
5034 L1_C_PROTO;
5035 PTE_SYNC(pl1pd);
5036 }
5037 }
5038
5039 /*
5040 * flush out the cache, expensive but growkernel will happen so
5041 * rarely
5042 */
5043 cpu_dcache_wbinv_all();
5044 cpu_tlb_flushD();
5045 cpu_cpwait();
5046
5047 mutex_exit(kpm->pm_lock);
5048 splx(s);
5049
5050 out:
5051 return (pmap_curmaxkvaddr);
5052 }
5053
5054 /************************ Utility routines ****************************/
5055
5056 #ifndef ARM_HAS_VBAR
5057 /*
5058 * vector_page_setprot:
5059 *
5060 * Manipulate the protection of the vector page.
5061 */
5062 void
5063 vector_page_setprot(int prot)
5064 {
5065 struct l2_bucket *l2b;
5066 pt_entry_t *ptep;
5067
5068 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5069 /*
5070 * If we are using VBAR to use the vectors in the kernel, then it's
5071 * already mapped in the kernel text so no need to anything here.
5072 */
5073 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5074 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5075 return;
5076 }
5077 #endif
5078
5079 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5080 KDASSERT(l2b != NULL);
5081
5082 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5083
5084 *ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5085 PTE_SYNC(ptep);
5086 cpu_tlb_flushD_SE(vector_page);
5087 cpu_cpwait();
5088 }
5089 #endif
5090
5091 /*
5092 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5093 * Returns true if the mapping exists, else false.
5094 *
5095 * NOTE: This function is only used by a couple of arm-specific modules.
5096 * It is not safe to take any pmap locks here, since we could be right
5097 * in the middle of debugging the pmap anyway...
5098 *
5099 * It is possible for this routine to return false even though a valid
5100 * mapping does exist. This is because we don't lock, so the metadata
5101 * state may be inconsistent.
5102 *
5103 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5104 * a "section" mapping.
5105 */
5106 bool
5107 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5108 {
5109 struct l2_dtable *l2;
5110 pd_entry_t *pl1pd, l1pd;
5111 pt_entry_t *ptep;
5112 u_short l1idx;
5113
5114 if (pm->pm_l1 == NULL)
5115 return false;
5116
5117 l1idx = L1_IDX(va);
5118 *pdp = pl1pd = pmap_l1_kva(pm) + l1idx;
5119 l1pd = *pl1pd;
5120
5121 if (l1pte_section_p(l1pd)) {
5122 *ptp = NULL;
5123 return true;
5124 }
5125
5126 if (pm->pm_l2 == NULL)
5127 return false;
5128
5129 l2 = pm->pm_l2[L2_IDX(l1idx)];
5130
5131 if (l2 == NULL ||
5132 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5133 return false;
5134 }
5135
5136 *ptp = &ptep[l2pte_index(va)];
5137 return true;
5138 }
5139
5140 bool
5141 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5142 {
5143
5144 if (pm->pm_l1 == NULL)
5145 return false;
5146
5147 *pdp = pmap_l1_kva(pm) + L1_IDX(va);
5148
5149 return true;
5150 }
5151
5152 /************************ Bootstrapping routines ****************************/
5153
5154 static void
5155 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5156 {
5157 int i;
5158
5159 l1->l1_kva = l1pt;
5160 l1->l1_domain_use_count = 0;
5161 l1->l1_domain_first = 0;
5162
5163 for (i = 0; i < PMAP_DOMAINS; i++)
5164 l1->l1_domain_free[i] = i + 1;
5165
5166 /*
5167 * Copy the kernel's L1 entries to each new L1.
5168 */
5169 if (pmap_initialized)
5170 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5171
5172 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5173 &l1->l1_physaddr) == false)
5174 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5175
5176 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5177 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5178 }
5179
5180 /*
5181 * pmap_bootstrap() is called from the board-specific initarm() routine
5182 * once the kernel L1/L2 descriptors tables have been set up.
5183 *
5184 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5185 * spread over a number of disparate files/functions.
5186 *
5187 * We are passed the following parameters
5188 * - kernel_l1pt
5189 * This is a pointer to the base of the kernel's L1 translation table.
5190 * - vstart
5191 * 1MB-aligned start of managed kernel virtual memory.
5192 * - vend
5193 * 1MB-aligned end of managed kernel virtual memory.
5194 *
5195 * We use the first parameter to build the metadata (struct l1_ttable and
5196 * struct l2_dtable) necessary to track kernel mappings.
5197 */
5198 #define PMAP_STATIC_L2_SIZE 16
5199 void
5200 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5201 {
5202 static struct l1_ttable static_l1;
5203 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5204 struct l1_ttable *l1 = &static_l1;
5205 struct l2_dtable *l2;
5206 struct l2_bucket *l2b;
5207 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5208 pmap_t pm = pmap_kernel();
5209 pd_entry_t pde;
5210 pt_entry_t *ptep;
5211 paddr_t pa;
5212 vaddr_t va;
5213 vsize_t size;
5214 int nptes, l1idx, l2idx, l2next = 0;
5215
5216 /*
5217 * Initialise the kernel pmap object
5218 */
5219 pm->pm_l1 = l1;
5220 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5221 pm->pm_activated = true;
5222 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5223
5224 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5225 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5226 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5227
5228 /*
5229 * Scan the L1 translation table created by initarm() and create
5230 * the required metadata for all valid mappings found in it.
5231 */
5232 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5233 pde = l1pt[l1idx];
5234
5235 /*
5236 * We're only interested in Coarse mappings.
5237 * pmap_extract() can deal with section mappings without
5238 * recourse to checking L2 metadata.
5239 */
5240 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5241 continue;
5242
5243 /*
5244 * Lookup the KVA of this L2 descriptor table
5245 */
5246 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5247 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5248 if (ptep == NULL) {
5249 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5250 (u_int)l1idx << L1_S_SHIFT, pa);
5251 }
5252
5253 /*
5254 * Fetch the associated L2 metadata structure.
5255 * Allocate a new one if necessary.
5256 */
5257 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5258 if (l2next == PMAP_STATIC_L2_SIZE)
5259 panic("pmap_bootstrap: out of static L2s");
5260 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5261 }
5262
5263 /*
5264 * One more L1 slot tracked...
5265 */
5266 l2->l2_occupancy++;
5267
5268 /*
5269 * Fill in the details of the L2 descriptor in the
5270 * appropriate bucket.
5271 */
5272 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5273 l2b->l2b_kva = ptep;
5274 l2b->l2b_phys = pa;
5275 l2b->l2b_l1idx = l1idx;
5276
5277 /*
5278 * Establish an initial occupancy count for this descriptor
5279 */
5280 for (l2idx = 0;
5281 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5282 l2idx++) {
5283 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5284 l2b->l2b_occupancy++;
5285 }
5286 }
5287
5288 /*
5289 * Make sure the descriptor itself has the correct cache mode.
5290 * If not, fix it, but whine about the problem. Port-meisters
5291 * should consider this a clue to fix up their initarm()
5292 * function. :)
5293 */
5294 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5295 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5296 "L2 pte @ %p\n", ptep);
5297 }
5298 }
5299
5300 /*
5301 * Ensure the primary (kernel) L1 has the correct cache mode for
5302 * a page table. Bitch if it is not correctly set.
5303 */
5304 for (va = (vaddr_t)l1pt;
5305 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5306 if (pmap_set_pt_cache_mode(l1pt, va))
5307 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5308 "primary L1 @ 0x%lx\n", va);
5309 }
5310
5311 cpu_dcache_wbinv_all();
5312 cpu_tlb_flushID();
5313 cpu_cpwait();
5314
5315 /*
5316 * now we allocate the "special" VAs which are used for tmp mappings
5317 * by the pmap (and other modules). we allocate the VAs by advancing
5318 * virtual_avail (note that there are no pages mapped at these VAs).
5319 *
5320 * Managed KVM space start from wherever initarm() tells us.
5321 */
5322 virtual_avail = vstart;
5323 virtual_end = vend;
5324
5325 #ifdef PMAP_CACHE_VIPT
5326 /*
5327 * If we have a VIPT cache, we need one page/pte per possible alias
5328 * page so we won't violate cache aliasing rules.
5329 */
5330 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5331 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5332 #else
5333 nptes = 1;
5334 #endif
5335 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5336 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5337 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5338 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5339 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5340 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5341 (void *)&msgbufaddr, NULL);
5342
5343 /*
5344 * Allocate a range of kernel virtual address space to be used
5345 * for L2 descriptor tables and metadata allocation in
5346 * pmap_growkernel().
5347 */
5348 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5349 pmap_alloc_specials(&virtual_avail,
5350 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5351 &pmap_kernel_l2ptp_kva, NULL);
5352
5353 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5354 pmap_alloc_specials(&virtual_avail,
5355 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5356 &pmap_kernel_l2dtable_kva, NULL);
5357
5358 /*
5359 * init the static-global locks and global pmap list.
5360 */
5361 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
5362
5363 /*
5364 * We can now initialise the first L1's metadata.
5365 */
5366 SLIST_INIT(&l1_list);
5367 TAILQ_INIT(&l1_lru_list);
5368 pmap_init_l1(l1, l1pt);
5369
5370 #ifndef ARM_HAS_VBAR
5371 /* Set up vector page L1 details, if necessary */
5372 if (vector_page < KERNEL_BASE) {
5373 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
5374 l2b = pmap_get_l2_bucket(pm, vector_page);
5375 KDASSERT(l2b != NULL);
5376 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5377 L1_C_DOM(pmap_domain(pm));
5378 } else
5379 pm->pm_pl1vec = NULL;
5380 #endif
5381
5382 /*
5383 * Initialize the pmap cache
5384 */
5385 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5386 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5387 LIST_INIT(&pmap_pmaps);
5388 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5389
5390 /*
5391 * Initialize the pv pool.
5392 */
5393 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5394 &pmap_bootstrap_pv_allocator, IPL_NONE);
5395
5396 /*
5397 * Initialize the L2 dtable pool and cache.
5398 */
5399 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5400 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5401
5402 /*
5403 * Initialise the L2 descriptor table pool and cache
5404 */
5405 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5406 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5407 pmap_l2ptp_ctor, NULL, NULL);
5408
5409 cpu_dcache_wbinv_all();
5410 }
5411
5412 static int
5413 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5414 {
5415 pd_entry_t *pdep, pde;
5416 pt_entry_t *ptep, pte;
5417 vaddr_t pa;
5418 int rv = 0;
5419
5420 /*
5421 * Make sure the descriptor itself has the correct cache mode
5422 */
5423 pdep = &kl1[L1_IDX(va)];
5424 pde = *pdep;
5425
5426 if (l1pte_section_p(pde)) {
5427 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
5428 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5429 *pdep = (pde & ~L1_S_CACHE_MASK) |
5430 pte_l1_s_cache_mode_pt;
5431 PTE_SYNC(pdep);
5432 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5433 rv = 1;
5434 }
5435 } else {
5436 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5437 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5438 if (ptep == NULL)
5439 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5440
5441 ptep = &ptep[l2pte_index(va)];
5442 pte = *ptep;
5443 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5444 *ptep = (pte & ~L2_S_CACHE_MASK) |
5445 pte_l2_s_cache_mode_pt;
5446 PTE_SYNC(ptep);
5447 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5448 rv = 1;
5449 }
5450 }
5451
5452 return (rv);
5453 }
5454
5455 static void
5456 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5457 {
5458 vaddr_t va = *availp;
5459 struct l2_bucket *l2b;
5460
5461 if (ptep) {
5462 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5463 if (l2b == NULL)
5464 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5465
5466 if (ptep)
5467 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5468 }
5469
5470 *vap = va;
5471 *availp = va + (PAGE_SIZE * pages);
5472 }
5473
5474 void
5475 pmap_init(void)
5476 {
5477
5478 /*
5479 * Set the available memory vars - These do not map to real memory
5480 * addresses and cannot as the physical memory is fragmented.
5481 * They are used by ps for %mem calculations.
5482 * One could argue whether this should be the entire memory or just
5483 * the memory that is useable in a user process.
5484 */
5485 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5486 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5487
5488 /*
5489 * Now we need to free enough pv_entry structures to allow us to get
5490 * the kmem_map/kmem_object allocated and inited (done after this
5491 * function is finished). to do this we allocate one bootstrap page out
5492 * of kernel_map and use it to provide an initial pool of pv_entry
5493 * structures. we never free this page.
5494 */
5495 pool_setlowat(&pmap_pv_pool,
5496 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5497
5498 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5499 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5500 UVM_KMF_WIRED|UVM_KMF_ZERO);
5501
5502 pmap_initialized = true;
5503 }
5504
5505 static vaddr_t last_bootstrap_page = 0;
5506 static void *free_bootstrap_pages = NULL;
5507
5508 static void *
5509 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5510 {
5511 extern void *pool_page_alloc(struct pool *, int);
5512 vaddr_t new_page;
5513 void *rv;
5514
5515 if (pmap_initialized)
5516 return (pool_page_alloc(pp, flags));
5517
5518 if (free_bootstrap_pages) {
5519 rv = free_bootstrap_pages;
5520 free_bootstrap_pages = *((void **)rv);
5521 return (rv);
5522 }
5523
5524 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5525 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5526
5527 KASSERT(new_page > last_bootstrap_page);
5528 last_bootstrap_page = new_page;
5529 return ((void *)new_page);
5530 }
5531
5532 static void
5533 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5534 {
5535 extern void pool_page_free(struct pool *, void *);
5536
5537 if ((vaddr_t)v <= last_bootstrap_page) {
5538 *((void **)v) = free_bootstrap_pages;
5539 free_bootstrap_pages = v;
5540 return;
5541 }
5542
5543 if (pmap_initialized) {
5544 pool_page_free(pp, v);
5545 return;
5546 }
5547 }
5548
5549 /*
5550 * pmap_postinit()
5551 *
5552 * This routine is called after the vm and kmem subsystems have been
5553 * initialised. This allows the pmap code to perform any initialisation
5554 * that can only be done one the memory allocation is in place.
5555 */
5556 void
5557 pmap_postinit(void)
5558 {
5559 extern paddr_t physical_start, physical_end;
5560 struct l2_bucket *l2b;
5561 struct l1_ttable *l1;
5562 struct pglist plist;
5563 struct vm_page *m;
5564 pd_entry_t *pl1pt;
5565 pt_entry_t *ptep, pte;
5566 vaddr_t va, eva;
5567 u_int loop, needed;
5568 int error;
5569
5570 pool_cache_setlowat(&pmap_l2ptp_cache,
5571 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5572 pool_cache_setlowat(&pmap_l2dtable_cache,
5573 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5574
5575 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5576 needed -= 1;
5577
5578 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
5579
5580 for (loop = 0; loop < needed; loop++, l1++) {
5581 /* Allocate a L1 page table */
5582 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5583 if (va == 0)
5584 panic("Cannot allocate L1 KVM");
5585
5586 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5587 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
5588 if (error)
5589 panic("Cannot allocate L1 physical pages");
5590
5591 m = TAILQ_FIRST(&plist);
5592 eva = va + L1_TABLE_SIZE;
5593 pl1pt = (pd_entry_t *)va;
5594
5595 while (m && va < eva) {
5596 paddr_t pa = VM_PAGE_TO_PHYS(m);
5597
5598 pmap_kenter_pa(va, pa,
5599 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
5600
5601 /*
5602 * Make sure the L1 descriptor table is mapped
5603 * with the cache-mode set to write-through.
5604 */
5605 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5606 KDASSERT(l2b != NULL);
5607 ptep = &l2b->l2b_kva[l2pte_index(va)];
5608 pte = *ptep;
5609 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5610 *ptep = pte;
5611 PTE_SYNC(ptep);
5612 cpu_tlb_flushD_SE(va);
5613
5614 va += PAGE_SIZE;
5615 m = TAILQ_NEXT(m, pageq.queue);
5616 }
5617
5618 #ifdef DIAGNOSTIC
5619 if (m)
5620 panic("pmap_alloc_l1pt: pglist not empty");
5621 #endif /* DIAGNOSTIC */
5622
5623 pmap_init_l1(l1, pl1pt);
5624 }
5625
5626 #ifdef DEBUG
5627 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5628 needed);
5629 #endif
5630 }
5631
5632 /*
5633 * Note that the following routines are used by board-specific initialisation
5634 * code to configure the initial kernel page tables.
5635 *
5636 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5637 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5638 * behaviour of the old pmap, and provides an easy migration path for
5639 * initial bring-up of the new pmap on existing ports. Fortunately,
5640 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5641 * will be deprecated.
5642 *
5643 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5644 * tables.
5645 */
5646
5647 /*
5648 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5649 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5650 * find them as necessary.
5651 *
5652 * Note that the data on this list MUST remain valid after initarm() returns,
5653 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5654 */
5655 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5656
5657 static vaddr_t
5658 kernel_pt_lookup(paddr_t pa)
5659 {
5660 pv_addr_t *pv;
5661
5662 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5663 #ifndef ARM32_NEW_VM_LAYOUT
5664 if (pv->pv_pa == (pa & ~PGOFSET))
5665 return (pv->pv_va | (pa & PGOFSET));
5666 #else
5667 if (pv->pv_pa == pa)
5668 return (pv->pv_va);
5669 #endif
5670 }
5671 return (0);
5672 }
5673
5674 /*
5675 * pmap_map_section:
5676 *
5677 * Create a single section mapping.
5678 */
5679 void
5680 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5681 {
5682 pd_entry_t *pde = (pd_entry_t *) l1pt;
5683 pd_entry_t fl;
5684
5685 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5686
5687 switch (cache) {
5688 case PTE_NOCACHE:
5689 default:
5690 fl = 0;
5691 break;
5692
5693 case PTE_CACHE:
5694 fl = pte_l1_s_cache_mode;
5695 break;
5696
5697 case PTE_PAGETABLE:
5698 fl = pte_l1_s_cache_mode_pt;
5699 break;
5700 }
5701
5702 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5703 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5704 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5705 }
5706
5707 /*
5708 * pmap_map_entry:
5709 *
5710 * Create a single page mapping.
5711 */
5712 void
5713 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5714 {
5715 pd_entry_t *pde = (pd_entry_t *) l1pt;
5716 pt_entry_t fl;
5717 pt_entry_t *pte;
5718
5719 KASSERT(((va | pa) & PGOFSET) == 0);
5720
5721 switch (cache) {
5722 case PTE_NOCACHE:
5723 default:
5724 fl = 0;
5725 break;
5726
5727 case PTE_CACHE:
5728 fl = pte_l2_s_cache_mode;
5729 break;
5730
5731 case PTE_PAGETABLE:
5732 fl = pte_l2_s_cache_mode_pt;
5733 break;
5734 }
5735
5736 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5737 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5738
5739 #ifndef ARM32_NEW_VM_LAYOUT
5740 pte = (pt_entry_t *)
5741 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5742 #else
5743 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5744 #endif
5745 if (pte == NULL)
5746 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5747
5748 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5749 #ifndef ARM32_NEW_VM_LAYOUT
5750 pte += (va >> PGSHIFT) & 0x3ff;
5751 #else
5752 pte += l2pte_index(va);
5753 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5754 #endif
5755 *pte = fl;
5756 PTE_SYNC(pte);
5757 }
5758
5759 /*
5760 * pmap_link_l2pt:
5761 *
5762 * Link the L2 page table specified by "l2pv" into the L1
5763 * page table at the slot for "va".
5764 */
5765 void
5766 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5767 {
5768 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5769 u_int slot = va >> L1_S_SHIFT;
5770
5771 #ifndef ARM32_NEW_VM_LAYOUT
5772 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5773 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5774 #endif
5775
5776 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5777
5778 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5779 #ifdef ARM32_NEW_VM_LAYOUT
5780 PTE_SYNC(&pde[slot]);
5781 #else
5782 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5783 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5784 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5785 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5786 #endif
5787
5788 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5789 }
5790
5791 /*
5792 * pmap_map_chunk:
5793 *
5794 * Map a chunk of memory using the most efficient mappings
5795 * possible (section, large page, small page) into the
5796 * provided L1 and L2 tables at the specified virtual address.
5797 */
5798 vsize_t
5799 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5800 int prot, int cache)
5801 {
5802 pd_entry_t *pdep = (pd_entry_t *) l1pt;
5803 pt_entry_t *pte, f1, f2s, f2l;
5804 vsize_t resid;
5805 int i;
5806
5807 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5808
5809 if (l1pt == 0)
5810 panic("pmap_map_chunk: no L1 table provided");
5811
5812 #ifdef VERBOSE_INIT_ARM
5813 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5814 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5815 #endif
5816
5817 switch (cache) {
5818 case PTE_NOCACHE:
5819 default:
5820 f1 = 0;
5821 f2l = 0;
5822 f2s = 0;
5823 break;
5824
5825 case PTE_CACHE:
5826 f1 = pte_l1_s_cache_mode;
5827 f2l = pte_l2_l_cache_mode;
5828 f2s = pte_l2_s_cache_mode;
5829 break;
5830
5831 case PTE_PAGETABLE:
5832 f1 = pte_l1_s_cache_mode_pt;
5833 f2l = pte_l2_l_cache_mode_pt;
5834 f2s = pte_l2_s_cache_mode_pt;
5835 break;
5836 }
5837
5838 size = resid;
5839
5840 while (resid > 0) {
5841 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5842 /* See if we can use a supersection mapping. */
5843 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
5844 /* Supersection are always domain 0 */
5845 pd_entry_t pde = L1_SS_PROTO | pa |
5846 L1_S_PROT(PTE_KERNEL, prot) | f1;
5847 #ifdef VERBOSE_INIT_ARM
5848 printf("sS");
5849 #endif
5850 for (size_t s = va >> L1_S_SHIFT,
5851 e = s + L1_SS_SIZE / L1_S_SIZE;
5852 s < e;
5853 s++) {
5854 pdep[s] = pde;
5855 PTE_SYNC(&pdep[s]);
5856 }
5857 va += L1_SS_SIZE;
5858 pa += L1_SS_SIZE;
5859 resid -= L1_SS_SIZE;
5860 continue;
5861 }
5862 #endif
5863 /* See if we can use a section mapping. */
5864 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5865 #ifdef VERBOSE_INIT_ARM
5866 printf("S");
5867 #endif
5868 pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5869 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5870 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5871 PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
5872 va += L1_S_SIZE;
5873 pa += L1_S_SIZE;
5874 resid -= L1_S_SIZE;
5875 continue;
5876 }
5877
5878 /*
5879 * Ok, we're going to use an L2 table. Make sure
5880 * one is actually in the corresponding L1 slot
5881 * for the current VA.
5882 */
5883 if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5884 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5885
5886 #ifndef ARM32_NEW_VM_LAYOUT
5887 pte = (pt_entry_t *)
5888 kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
5889 #else
5890 pte = (pt_entry_t *) kernel_pt_lookup(
5891 pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
5892 #endif
5893 if (pte == NULL)
5894 panic("pmap_map_chunk: can't find L2 table for VA"
5895 "0x%08lx", va);
5896
5897 /* See if we can use a L2 large page mapping. */
5898 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5899 #ifdef VERBOSE_INIT_ARM
5900 printf("L");
5901 #endif
5902 for (i = 0; i < 16; i++) {
5903 #ifndef ARM32_NEW_VM_LAYOUT
5904 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5905 L2_L_PROTO | pa |
5906 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5907 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5908 #else
5909 pte[l2pte_index(va) + i] =
5910 L2_L_PROTO | pa |
5911 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5912 PTE_SYNC(&pte[l2pte_index(va) + i]);
5913 #endif
5914 }
5915 va += L2_L_SIZE;
5916 pa += L2_L_SIZE;
5917 resid -= L2_L_SIZE;
5918 continue;
5919 }
5920
5921 /* Use a small page mapping. */
5922 #ifdef VERBOSE_INIT_ARM
5923 printf("P");
5924 #endif
5925 #ifndef ARM32_NEW_VM_LAYOUT
5926 pte[(va >> PGSHIFT) & 0x3ff] =
5927 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5928 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5929 #else
5930 pte[l2pte_index(va)] =
5931 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5932 PTE_SYNC(&pte[l2pte_index(va)]);
5933 #endif
5934 va += PAGE_SIZE;
5935 pa += PAGE_SIZE;
5936 resid -= PAGE_SIZE;
5937 }
5938 #ifdef VERBOSE_INIT_ARM
5939 printf("\n");
5940 #endif
5941 return (size);
5942 }
5943
5944 /********************** Static device map routines ***************************/
5945
5946 static const struct pmap_devmap *pmap_devmap_table;
5947
5948 /*
5949 * Register the devmap table. This is provided in case early console
5950 * initialization needs to register mappings created by bootstrap code
5951 * before pmap_devmap_bootstrap() is called.
5952 */
5953 void
5954 pmap_devmap_register(const struct pmap_devmap *table)
5955 {
5956
5957 pmap_devmap_table = table;
5958 }
5959
5960 /*
5961 * Map all of the static regions in the devmap table, and remember
5962 * the devmap table so other parts of the kernel can look up entries
5963 * later.
5964 */
5965 void
5966 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5967 {
5968 int i;
5969
5970 pmap_devmap_table = table;
5971
5972 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5973 #ifdef VERBOSE_INIT_ARM
5974 printf("devmap: %08lx -> %08lx @ %08lx\n",
5975 pmap_devmap_table[i].pd_pa,
5976 pmap_devmap_table[i].pd_pa +
5977 pmap_devmap_table[i].pd_size - 1,
5978 pmap_devmap_table[i].pd_va);
5979 #endif
5980 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5981 pmap_devmap_table[i].pd_pa,
5982 pmap_devmap_table[i].pd_size,
5983 pmap_devmap_table[i].pd_prot,
5984 pmap_devmap_table[i].pd_cache);
5985 }
5986 }
5987
5988 const struct pmap_devmap *
5989 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5990 {
5991 uint64_t endpa;
5992 int i;
5993
5994 if (pmap_devmap_table == NULL)
5995 return (NULL);
5996
5997 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5998
5999 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6000 if (pa >= pmap_devmap_table[i].pd_pa &&
6001 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6002 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6003 return (&pmap_devmap_table[i]);
6004 }
6005
6006 return (NULL);
6007 }
6008
6009 const struct pmap_devmap *
6010 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6011 {
6012 int i;
6013
6014 if (pmap_devmap_table == NULL)
6015 return (NULL);
6016
6017 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6018 if (va >= pmap_devmap_table[i].pd_va &&
6019 va + size - 1 <= pmap_devmap_table[i].pd_va +
6020 pmap_devmap_table[i].pd_size - 1)
6021 return (&pmap_devmap_table[i]);
6022 }
6023
6024 return (NULL);
6025 }
6026
6027 /********************** PTE initialization routines **************************/
6028
6029 /*
6030 * These routines are called when the CPU type is identified to set up
6031 * the PTE prototypes, cache modes, etc.
6032 *
6033 * The variables are always here, just in case modules need to reference
6034 * them (though, they shouldn't).
6035 */
6036
6037 pt_entry_t pte_l1_s_cache_mode;
6038 pt_entry_t pte_l1_s_wc_mode;
6039 pt_entry_t pte_l1_s_cache_mode_pt;
6040 pt_entry_t pte_l1_s_cache_mask;
6041
6042 pt_entry_t pte_l2_l_cache_mode;
6043 pt_entry_t pte_l2_l_wc_mode;
6044 pt_entry_t pte_l2_l_cache_mode_pt;
6045 pt_entry_t pte_l2_l_cache_mask;
6046
6047 pt_entry_t pte_l2_s_cache_mode;
6048 pt_entry_t pte_l2_s_wc_mode;
6049 pt_entry_t pte_l2_s_cache_mode_pt;
6050 pt_entry_t pte_l2_s_cache_mask;
6051
6052 pt_entry_t pte_l1_s_prot_u;
6053 pt_entry_t pte_l1_s_prot_w;
6054 pt_entry_t pte_l1_s_prot_ro;
6055 pt_entry_t pte_l1_s_prot_mask;
6056
6057 pt_entry_t pte_l2_s_prot_u;
6058 pt_entry_t pte_l2_s_prot_w;
6059 pt_entry_t pte_l2_s_prot_ro;
6060 pt_entry_t pte_l2_s_prot_mask;
6061
6062 pt_entry_t pte_l2_l_prot_u;
6063 pt_entry_t pte_l2_l_prot_w;
6064 pt_entry_t pte_l2_l_prot_ro;
6065 pt_entry_t pte_l2_l_prot_mask;
6066
6067 pt_entry_t pte_l1_ss_proto;
6068 pt_entry_t pte_l1_s_proto;
6069 pt_entry_t pte_l1_c_proto;
6070 pt_entry_t pte_l2_s_proto;
6071
6072 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6073 void (*pmap_zero_page_func)(paddr_t);
6074
6075 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6076 void
6077 pmap_pte_init_generic(void)
6078 {
6079
6080 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6081 pte_l1_s_wc_mode = L1_S_B;
6082 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6083
6084 pte_l2_l_cache_mode = L2_B|L2_C;
6085 pte_l2_l_wc_mode = L2_B;
6086 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6087
6088 pte_l2_s_cache_mode = L2_B|L2_C;
6089 pte_l2_s_wc_mode = L2_B;
6090 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6091
6092 /*
6093 * If we have a write-through cache, set B and C. If
6094 * we have a write-back cache, then we assume setting
6095 * only C will make those pages write-through (except for those
6096 * Cortex CPUs which can read the L1 caches).
6097 */
6098 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6099 #if ARM_MMU_V7 > 0
6100 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6101 #endif
6102 #if ARM_MMU_V6 > 0
6103 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6104 #endif
6105 || false) {
6106 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6107 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6108 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6109 } else {
6110 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6111 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6112 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6113 }
6114
6115 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6116 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6117 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6118 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6119
6120 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6121 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6122 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6123 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6124
6125 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6126 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6127 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6128 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6129
6130 pte_l1_ss_proto = L1_SS_PROTO_generic;
6131 pte_l1_s_proto = L1_S_PROTO_generic;
6132 pte_l1_c_proto = L1_C_PROTO_generic;
6133 pte_l2_s_proto = L2_S_PROTO_generic;
6134
6135 pmap_copy_page_func = pmap_copy_page_generic;
6136 pmap_zero_page_func = pmap_zero_page_generic;
6137 }
6138
6139 #if defined(CPU_ARM8)
6140 void
6141 pmap_pte_init_arm8(void)
6142 {
6143
6144 /*
6145 * ARM8 is compatible with generic, but we need to use
6146 * the page tables uncached.
6147 */
6148 pmap_pte_init_generic();
6149
6150 pte_l1_s_cache_mode_pt = 0;
6151 pte_l2_l_cache_mode_pt = 0;
6152 pte_l2_s_cache_mode_pt = 0;
6153 }
6154 #endif /* CPU_ARM8 */
6155
6156 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6157 void
6158 pmap_pte_init_arm9(void)
6159 {
6160
6161 /*
6162 * ARM9 is compatible with generic, but we want to use
6163 * write-through caching for now.
6164 */
6165 pmap_pte_init_generic();
6166
6167 pte_l1_s_cache_mode = L1_S_C;
6168 pte_l2_l_cache_mode = L2_C;
6169 pte_l2_s_cache_mode = L2_C;
6170
6171 pte_l1_s_wc_mode = L1_S_B;
6172 pte_l2_l_wc_mode = L2_B;
6173 pte_l2_s_wc_mode = L2_B;
6174
6175 pte_l1_s_cache_mode_pt = L1_S_C;
6176 pte_l2_l_cache_mode_pt = L2_C;
6177 pte_l2_s_cache_mode_pt = L2_C;
6178 }
6179 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6180 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6181
6182 #if defined(CPU_ARM10)
6183 void
6184 pmap_pte_init_arm10(void)
6185 {
6186
6187 /*
6188 * ARM10 is compatible with generic, but we want to use
6189 * write-through caching for now.
6190 */
6191 pmap_pte_init_generic();
6192
6193 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6194 pte_l2_l_cache_mode = L2_B | L2_C;
6195 pte_l2_s_cache_mode = L2_B | L2_C;
6196
6197 pte_l1_s_cache_mode = L1_S_B;
6198 pte_l2_l_cache_mode = L2_B;
6199 pte_l2_s_cache_mode = L2_B;
6200
6201 pte_l1_s_cache_mode_pt = L1_S_C;
6202 pte_l2_l_cache_mode_pt = L2_C;
6203 pte_l2_s_cache_mode_pt = L2_C;
6204
6205 }
6206 #endif /* CPU_ARM10 */
6207
6208 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6209 void
6210 pmap_pte_init_arm11(void)
6211 {
6212
6213 /*
6214 * ARM11 is compatible with generic, but we want to use
6215 * write-through caching for now.
6216 */
6217 pmap_pte_init_generic();
6218
6219 pte_l1_s_cache_mode = L1_S_C;
6220 pte_l2_l_cache_mode = L2_C;
6221 pte_l2_s_cache_mode = L2_C;
6222
6223 pte_l1_s_wc_mode = L1_S_B;
6224 pte_l2_l_wc_mode = L2_B;
6225 pte_l2_s_wc_mode = L2_B;
6226
6227 pte_l1_s_cache_mode_pt = L1_S_C;
6228 pte_l2_l_cache_mode_pt = L2_C;
6229 pte_l2_s_cache_mode_pt = L2_C;
6230 }
6231 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6232
6233 #if ARM_MMU_SA1 == 1
6234 void
6235 pmap_pte_init_sa1(void)
6236 {
6237
6238 /*
6239 * The StrongARM SA-1 cache does not have a write-through
6240 * mode. So, do the generic initialization, then reset
6241 * the page table cache mode to B=1,C=1, and note that
6242 * the PTEs need to be sync'd.
6243 */
6244 pmap_pte_init_generic();
6245
6246 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6247 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6248 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6249
6250 pmap_needs_pte_sync = 1;
6251 }
6252 #endif /* ARM_MMU_SA1 == 1*/
6253
6254 #if ARM_MMU_XSCALE == 1
6255 #if (ARM_NMMUS > 1)
6256 static u_int xscale_use_minidata;
6257 #endif
6258
6259 void
6260 pmap_pte_init_xscale(void)
6261 {
6262 uint32_t auxctl;
6263 int write_through = 0;
6264
6265 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6266 pte_l1_s_wc_mode = L1_S_B;
6267 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6268
6269 pte_l2_l_cache_mode = L2_B|L2_C;
6270 pte_l2_l_wc_mode = L2_B;
6271 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6272
6273 pte_l2_s_cache_mode = L2_B|L2_C;
6274 pte_l2_s_wc_mode = L2_B;
6275 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6276
6277 pte_l1_s_cache_mode_pt = L1_S_C;
6278 pte_l2_l_cache_mode_pt = L2_C;
6279 pte_l2_s_cache_mode_pt = L2_C;
6280
6281 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6282 /*
6283 * The XScale core has an enhanced mode where writes that
6284 * miss the cache cause a cache line to be allocated. This
6285 * is significantly faster than the traditional, write-through
6286 * behavior of this case.
6287 */
6288 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6289 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6290 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6291 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6292
6293 #ifdef XSCALE_CACHE_WRITE_THROUGH
6294 /*
6295 * Some versions of the XScale core have various bugs in
6296 * their cache units, the work-around for which is to run
6297 * the cache in write-through mode. Unfortunately, this
6298 * has a major (negative) impact on performance. So, we
6299 * go ahead and run fast-and-loose, in the hopes that we
6300 * don't line up the planets in a way that will trip the
6301 * bugs.
6302 *
6303 * However, we give you the option to be slow-but-correct.
6304 */
6305 write_through = 1;
6306 #elif defined(XSCALE_CACHE_WRITE_BACK)
6307 /* force write back cache mode */
6308 write_through = 0;
6309 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6310 /*
6311 * Intel PXA2[15]0 processors are known to have a bug in
6312 * write-back cache on revision 4 and earlier (stepping
6313 * A[01] and B[012]). Fixed for C0 and later.
6314 */
6315 {
6316 uint32_t id, type;
6317
6318 id = cpufunc_id();
6319 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6320
6321 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6322 if ((id & CPU_ID_REVISION_MASK) < 5) {
6323 /* write through for stepping A0-1 and B0-2 */
6324 write_through = 1;
6325 }
6326 }
6327 }
6328 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6329
6330 if (write_through) {
6331 pte_l1_s_cache_mode = L1_S_C;
6332 pte_l2_l_cache_mode = L2_C;
6333 pte_l2_s_cache_mode = L2_C;
6334 }
6335
6336 #if (ARM_NMMUS > 1)
6337 xscale_use_minidata = 1;
6338 #endif
6339
6340 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6341 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6342 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6343 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6344
6345 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6346 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6347 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6348 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6349
6350 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6351 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6352 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6353 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6354
6355 pte_l1_ss_proto = L1_SS_PROTO_xscale;
6356 pte_l1_s_proto = L1_S_PROTO_xscale;
6357 pte_l1_c_proto = L1_C_PROTO_xscale;
6358 pte_l2_s_proto = L2_S_PROTO_xscale;
6359
6360 pmap_copy_page_func = pmap_copy_page_xscale;
6361 pmap_zero_page_func = pmap_zero_page_xscale;
6362
6363 /*
6364 * Disable ECC protection of page table access, for now.
6365 */
6366 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6367 auxctl &= ~XSCALE_AUXCTL_P;
6368 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6369 }
6370
6371 /*
6372 * xscale_setup_minidata:
6373 *
6374 * Set up the mini-data cache clean area. We require the
6375 * caller to allocate the right amount of physically and
6376 * virtually contiguous space.
6377 */
6378 void
6379 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6380 {
6381 extern vaddr_t xscale_minidata_clean_addr;
6382 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6383 pd_entry_t *pde = (pd_entry_t *) l1pt;
6384 pt_entry_t *pte;
6385 vsize_t size;
6386 uint32_t auxctl;
6387
6388 xscale_minidata_clean_addr = va;
6389
6390 /* Round it to page size. */
6391 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6392
6393 for (; size != 0;
6394 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6395 #ifndef ARM32_NEW_VM_LAYOUT
6396 pte = (pt_entry_t *)
6397 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6398 #else
6399 pte = (pt_entry_t *) kernel_pt_lookup(
6400 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6401 #endif
6402 if (pte == NULL)
6403 panic("xscale_setup_minidata: can't find L2 table for "
6404 "VA 0x%08lx", va);
6405 #ifndef ARM32_NEW_VM_LAYOUT
6406 pte[(va >> PGSHIFT) & 0x3ff] =
6407 #else
6408 pte[l2pte_index(va)] =
6409 #endif
6410 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6411 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6412 }
6413
6414 /*
6415 * Configure the mini-data cache for write-back with
6416 * read/write-allocate.
6417 *
6418 * NOTE: In order to reconfigure the mini-data cache, we must
6419 * make sure it contains no valid data! In order to do that,
6420 * we must issue a global data cache invalidate command!
6421 *
6422 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6423 * THIS IS VERY IMPORTANT!
6424 */
6425
6426 /* Invalidate data and mini-data. */
6427 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6428 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6429 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6430 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6431 }
6432
6433 /*
6434 * Change the PTEs for the specified kernel mappings such that they
6435 * will use the mini data cache instead of the main data cache.
6436 */
6437 void
6438 pmap_uarea(vaddr_t va)
6439 {
6440 struct l2_bucket *l2b;
6441 pt_entry_t *ptep, *sptep, pte;
6442 vaddr_t next_bucket, eva;
6443
6444 #if (ARM_NMMUS > 1)
6445 if (xscale_use_minidata == 0)
6446 return;
6447 #endif
6448
6449 eva = va + USPACE;
6450
6451 while (va < eva) {
6452 next_bucket = L2_NEXT_BUCKET(va);
6453 if (next_bucket > eva)
6454 next_bucket = eva;
6455
6456 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6457 KDASSERT(l2b != NULL);
6458
6459 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6460
6461 while (va < next_bucket) {
6462 pte = *ptep;
6463 if (!l2pte_minidata(pte)) {
6464 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6465 cpu_tlb_flushD_SE(va);
6466 *ptep = pte & ~L2_B;
6467 }
6468 ptep++;
6469 va += PAGE_SIZE;
6470 }
6471 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6472 }
6473 cpu_cpwait();
6474 }
6475 #endif /* ARM_MMU_XSCALE == 1 */
6476
6477
6478 #if defined(CPU_ARM11MPCORE)
6479
6480 void
6481 pmap_pte_init_arm11mpcore(void)
6482 {
6483
6484 /* cache mode is controlled by 5 bits (B, C, TEX) */
6485 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6486 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6487 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6488 /* use extended small page (without APn, with TEX) */
6489 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6490 #else
6491 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6492 #endif
6493
6494 /* write-back, write-allocate */
6495 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6496 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6497 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6498 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6499 #else
6500 /* no TEX. read-allocate */
6501 pte_l2_s_cache_mode = L2_C | L2_B;
6502 #endif
6503 /*
6504 * write-back, write-allocate for page tables.
6505 */
6506 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6507 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6508 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6509 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6510 #else
6511 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6512 #endif
6513
6514 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6515 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6516 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6517 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6518
6519 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6520 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6521 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6522 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6523 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6524
6525 #else
6526 /* with AP[0..3] */
6527 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6528 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6529 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6530 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6531 #endif
6532
6533 #ifdef ARM11MPCORE_COMPAT_MMU
6534 /* with AP[0..3] */
6535 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6536 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6537 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6538 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6539
6540 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6541 pte_l1_s_proto = L1_S_PROTO_armv6;
6542 pte_l1_c_proto = L1_C_PROTO_armv6;
6543 pte_l2_s_proto = L2_S_PROTO_armv6c;
6544 #else
6545 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6546 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6547 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6548 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6549
6550 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6551 pte_l1_s_proto = L1_S_PROTO_armv6;
6552 pte_l1_c_proto = L1_C_PROTO_armv6;
6553 pte_l2_s_proto = L2_S_PROTO_armv6n;
6554 #endif
6555
6556 pmap_copy_page_func = pmap_copy_page_generic;
6557 pmap_zero_page_func = pmap_zero_page_generic;
6558 pmap_needs_pte_sync = 1;
6559 }
6560 #endif /* CPU_ARM11MPCORE */
6561
6562
6563 #if ARM_MMU_V7 == 1
6564 void
6565 pmap_pte_init_armv7(void)
6566 {
6567 /*
6568 * The ARMv7-A MMU is mostly compatible with generic. If the
6569 * AP field is zero, that now means "no access" rather than
6570 * read-only. The prototypes are a little different because of
6571 * the XN bit.
6572 */
6573 pmap_pte_init_generic();
6574
6575 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6576 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6577 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6578
6579 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
6580 /*
6581 * write-back, no write-allocate, shareable for normal pages.
6582 */
6583 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
6584 pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
6585 pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
6586
6587 /*
6588 * write-back, no write-allocate, shareable for page tables.
6589 */
6590 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
6591 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6592 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6593 }
6594
6595 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6596 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6597 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6598 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6599
6600 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6601 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6602 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6603 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6604
6605 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6606 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6607 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6608 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6609
6610 pte_l1_ss_proto = L1_SS_PROTO_armv7;
6611 pte_l1_s_proto = L1_S_PROTO_armv7;
6612 pte_l1_c_proto = L1_C_PROTO_armv7;
6613 pte_l2_s_proto = L2_S_PROTO_armv7;
6614
6615 pmap_needs_pte_sync = 1;
6616 }
6617 #endif /* ARM_MMU_V7 */
6618
6619 /*
6620 * return the PA of the current L1 table, for use when handling a crash dump
6621 */
6622 uint32_t pmap_kernel_L1_addr(void)
6623 {
6624 return pmap_kernel()->pm_l1->l1_physaddr;
6625 }
6626
6627 #if defined(DDB)
6628 /*
6629 * A couple of ddb-callable functions for dumping pmaps
6630 */
6631 void pmap_dump_all(void);
6632 void pmap_dump(pmap_t);
6633
6634 void
6635 pmap_dump_all(void)
6636 {
6637 pmap_t pm;
6638
6639 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6640 if (pm == pmap_kernel())
6641 continue;
6642 pmap_dump(pm);
6643 printf("\n");
6644 }
6645 }
6646
6647 static pt_entry_t ncptes[64];
6648 static void pmap_dump_ncpg(pmap_t);
6649
6650 void
6651 pmap_dump(pmap_t pm)
6652 {
6653 struct l2_dtable *l2;
6654 struct l2_bucket *l2b;
6655 pt_entry_t *ptep, pte;
6656 vaddr_t l2_va, l2b_va, va;
6657 int i, j, k, occ, rows = 0;
6658
6659 if (pm == pmap_kernel())
6660 printf("pmap_kernel (%p): ", pm);
6661 else
6662 printf("user pmap (%p): ", pm);
6663
6664 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
6665
6666 l2_va = 0;
6667 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6668 l2 = pm->pm_l2[i];
6669
6670 if (l2 == NULL || l2->l2_occupancy == 0)
6671 continue;
6672
6673 l2b_va = l2_va;
6674 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6675 l2b = &l2->l2_bucket[j];
6676
6677 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6678 continue;
6679
6680 ptep = l2b->l2b_kva;
6681
6682 for (k = 0; k < 256 && ptep[k] == 0; k++)
6683 ;
6684
6685 k &= ~63;
6686 occ = l2b->l2b_occupancy;
6687 va = l2b_va + (k * 4096);
6688 for (; k < 256; k++, va += 0x1000) {
6689 char ch = ' ';
6690 if ((k % 64) == 0) {
6691 if ((rows % 8) == 0) {
6692 printf(
6693 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6694 }
6695 printf("%08lx: ", va);
6696 }
6697
6698 ncptes[k & 63] = 0;
6699 pte = ptep[k];
6700 if (pte == 0) {
6701 ch = '.';
6702 } else {
6703 occ--;
6704 switch (pte & 0x0c) {
6705 case 0x00:
6706 ch = 'D'; /* No cache No buff */
6707 break;
6708 case 0x04:
6709 ch = 'B'; /* No cache buff */
6710 break;
6711 case 0x08:
6712 if (pte & 0x40)
6713 ch = 'm';
6714 else
6715 ch = 'C'; /* Cache No buff */
6716 break;
6717 case 0x0c:
6718 ch = 'F'; /* Cache Buff */
6719 break;
6720 }
6721
6722 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6723 ch += 0x20;
6724
6725 if ((pte & 0xc) == 0)
6726 ncptes[k & 63] = pte;
6727 }
6728
6729 if ((k % 64) == 63) {
6730 rows++;
6731 printf("%c\n", ch);
6732 pmap_dump_ncpg(pm);
6733 if (occ == 0)
6734 break;
6735 } else
6736 printf("%c", ch);
6737 }
6738 }
6739 }
6740 }
6741
6742 static void
6743 pmap_dump_ncpg(pmap_t pm)
6744 {
6745 struct vm_page *pg;
6746 struct vm_page_md *md;
6747 struct pv_entry *pv;
6748 int i;
6749
6750 for (i = 0; i < 63; i++) {
6751 if (ncptes[i] == 0)
6752 continue;
6753
6754 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6755 if (pg == NULL)
6756 continue;
6757 md = VM_PAGE_TO_MD(pg);
6758
6759 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6760 VM_PAGE_TO_PHYS(pg),
6761 md->krw_mappings, md->kro_mappings,
6762 md->urw_mappings, md->uro_mappings);
6763
6764 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6765 printf(" %c va 0x%08lx, flags 0x%x\n",
6766 (pm == pv->pv_pmap) ? '*' : ' ',
6767 pv->pv_va, pv->pv_flags);
6768 }
6769 }
6770 }
6771 #endif
6772
6773 #ifdef PMAP_STEAL_MEMORY
6774 void
6775 pmap_boot_pageadd(pv_addr_t *newpv)
6776 {
6777 pv_addr_t *pv, *npv;
6778
6779 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6780 if (newpv->pv_pa < pv->pv_va) {
6781 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6782 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6783 newpv->pv_size += pv->pv_size;
6784 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6785 }
6786 pv = NULL;
6787 } else {
6788 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6789 pv = npv) {
6790 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6791 KASSERT(pv->pv_pa < newpv->pv_pa);
6792 if (newpv->pv_pa > npv->pv_pa)
6793 continue;
6794 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6795 pv->pv_size += newpv->pv_size;
6796 return;
6797 }
6798 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6799 break;
6800 newpv->pv_size += npv->pv_size;
6801 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6802 SLIST_REMOVE_AFTER(newpv, pv_list);
6803 return;
6804 }
6805 }
6806 }
6807
6808 if (pv) {
6809 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6810 } else {
6811 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6812 }
6813 }
6814
6815 void
6816 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6817 pv_addr_t *rpv)
6818 {
6819 pv_addr_t *pv, **pvp;
6820 struct vm_physseg *ps;
6821 size_t i;
6822
6823 KASSERT(amount & PGOFSET);
6824 KASSERT((mask & PGOFSET) == 0);
6825 KASSERT((match & PGOFSET) == 0);
6826 KASSERT(amount != 0);
6827
6828 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6829 (pv = *pvp) != NULL;
6830 pvp = &SLIST_NEXT(pv, pv_list)) {
6831 pv_addr_t *newpv;
6832 psize_t off;
6833 /*
6834 * If this entry is too small to satify the request...
6835 */
6836 KASSERT(pv->pv_size > 0);
6837 if (pv->pv_size < amount)
6838 continue;
6839
6840 for (off = 0; off <= mask; off += PAGE_SIZE) {
6841 if (((pv->pv_pa + off) & mask) == match
6842 && off + amount <= pv->pv_size)
6843 break;
6844 }
6845 if (off > mask)
6846 continue;
6847
6848 rpv->pv_va = pv->pv_va + off;
6849 rpv->pv_pa = pv->pv_pa + off;
6850 rpv->pv_size = amount;
6851 pv->pv_size -= amount;
6852 if (pv->pv_size == 0) {
6853 KASSERT(off == 0);
6854 KASSERT((vaddr_t) pv == rpv->pv_va);
6855 *pvp = SLIST_NEXT(pv, pv_list);
6856 } else if (off == 0) {
6857 KASSERT((vaddr_t) pv == rpv->pv_va);
6858 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6859 *newpv = *pv;
6860 newpv->pv_pa += amount;
6861 newpv->pv_va += amount;
6862 *pvp = newpv;
6863 } else if (off < pv->pv_size) {
6864 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6865 *newpv = *pv;
6866 newpv->pv_size -= off;
6867 newpv->pv_pa += off + amount;
6868 newpv->pv_va += off + amount;
6869
6870 SLIST_NEXT(pv, pv_list) = newpv;
6871 pv->pv_size = off;
6872 } else {
6873 KASSERT((vaddr_t) pv != rpv->pv_va);
6874 }
6875 memset((void *)rpv->pv_va, 0, amount);
6876 return;
6877 }
6878
6879 if (vm_nphysseg == 0)
6880 panic("pmap_boot_pagealloc: couldn't allocate memory");
6881
6882 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6883 (pv = *pvp) != NULL;
6884 pvp = &SLIST_NEXT(pv, pv_list)) {
6885 if (SLIST_NEXT(pv, pv_list) == NULL)
6886 break;
6887 }
6888 KASSERT(mask == 0);
6889 for (i = 0; i < vm_nphysseg; i++) {
6890 ps = VM_PHYSMEM_PTR(i);
6891 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6892 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6893 rpv->pv_va = pv->pv_va;
6894 rpv->pv_pa = pv->pv_pa;
6895 rpv->pv_size = amount;
6896 *pvp = NULL;
6897 pmap_map_chunk(kernel_l1pt.pv_va,
6898 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6899 ptoa(ps->avail_start),
6900 amount - pv->pv_size,
6901 VM_PROT_READ|VM_PROT_WRITE,
6902 PTE_CACHE);
6903 ps->avail_start += atop(amount - pv->pv_size);
6904 /*
6905 * If we consumed the entire physseg, remove it.
6906 */
6907 if (ps->avail_start == ps->avail_end) {
6908 for (--vm_nphysseg; i < vm_nphysseg; i++)
6909 VM_PHYSMEM_PTR_SWAP(i, i + 1);
6910 }
6911 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6912 return;
6913 }
6914 }
6915
6916 panic("pmap_boot_pagealloc: couldn't allocate memory");
6917 }
6918
6919 vaddr_t
6920 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6921 {
6922 pv_addr_t pv;
6923
6924 pmap_boot_pagealloc(size, 0, 0, &pv);
6925
6926 return pv.pv_va;
6927 }
6928 #endif /* PMAP_STEAL_MEMORY */
6929
6930 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6931 {
6932 sysctl_createv(clog, 0, NULL, NULL,
6933 CTLFLAG_PERMANENT,
6934 CTLTYPE_NODE, "machdep", NULL,
6935 NULL, 0, NULL, 0,
6936 CTL_MACHDEP, CTL_EOL);
6937
6938 sysctl_createv(clog, 0, NULL, NULL,
6939 CTLFLAG_PERMANENT,
6940 CTLTYPE_INT, "kmpages",
6941 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6942 NULL, 0, &pmap_kmpages, 0,
6943 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6944 }
6945
6946 #ifdef PMAP_NEED_ALLOC_POOLPAGE
6947 struct vm_page *
6948 arm_pmap_alloc_poolpage(int flags)
6949 {
6950 /*
6951 * On some systems, only some pages may be "coherent" for dma and we
6952 * want to prefer those for pool pages (think mbufs) but fallback to
6953 * any page if none is available.
6954 */
6955 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
6956 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
6957 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
6958 }
6959
6960 return uvm_pagealloc(NULL, 0, NULL, flags);
6961 }
6962 #endif
6963