Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.261
      1 /*	$NetBSD: pmap.c,v 1.261 2013/07/03 15:30:24 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/pool.h>
    201 #include <sys/kmem.h>
    202 #include <sys/cdefs.h>
    203 #include <sys/cpu.h>
    204 #include <sys/sysctl.h>
    205 
    206 #include <uvm/uvm.h>
    207 
    208 #include <sys/bus.h>
    209 #include <machine/pmap.h>
    210 #include <machine/pcb.h>
    211 #include <machine/param.h>
    212 #include <arm/cpuconf.h>
    213 #include <arm/arm32/katelib.h>
    214 
    215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.261 2013/07/03 15:30:24 matt Exp $");
    216 
    217 #ifdef PMAP_DEBUG
    218 
    219 /* XXX need to get rid of all refs to this */
    220 int pmap_debug_level = 0;
    221 
    222 /*
    223  * for switching to potentially finer grained debugging
    224  */
    225 #define	PDB_FOLLOW	0x0001
    226 #define	PDB_INIT	0x0002
    227 #define	PDB_ENTER	0x0004
    228 #define	PDB_REMOVE	0x0008
    229 #define	PDB_CREATE	0x0010
    230 #define	PDB_PTPAGE	0x0020
    231 #define	PDB_GROWKERN	0x0040
    232 #define	PDB_BITS	0x0080
    233 #define	PDB_COLLECT	0x0100
    234 #define	PDB_PROTECT	0x0200
    235 #define	PDB_MAP_L1	0x0400
    236 #define	PDB_BOOTSTRAP	0x1000
    237 #define	PDB_PARANOIA	0x2000
    238 #define	PDB_WIRING	0x4000
    239 #define	PDB_PVDUMP	0x8000
    240 #define	PDB_VAC		0x10000
    241 #define	PDB_KENTER	0x20000
    242 #define	PDB_KREMOVE	0x40000
    243 #define	PDB_EXEC	0x80000
    244 
    245 int debugmap = 1;
    246 int pmapdebug = 0;
    247 #define	NPDEBUG(_lev_,_stat_) \
    248 	if (pmapdebug & (_lev_)) \
    249         	((_stat_))
    250 
    251 #else	/* PMAP_DEBUG */
    252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    253 #endif	/* PMAP_DEBUG */
    254 
    255 /*
    256  * pmap_kernel() points here
    257  */
    258 static struct pmap	kernel_pmap_store;
    259 struct pmap		*const kernel_pmap_ptr = &kernel_pmap_store;
    260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    261 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    262 #endif
    263 
    264 /*
    265  * Which pmap is currently 'live' in the cache
    266  *
    267  * XXXSCW: Fix for SMP ...
    268  */
    269 static pmap_t pmap_recent_user;
    270 
    271 /*
    272  * Pointer to last active lwp, or NULL if it exited.
    273  */
    274 struct lwp *pmap_previous_active_lwp;
    275 
    276 /*
    277  * Pool and cache that pmap structures are allocated from.
    278  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    279  * in pmap_create().
    280  */
    281 static struct pool_cache pmap_cache;
    282 static LIST_HEAD(, pmap) pmap_pmaps;
    283 
    284 /*
    285  * Pool of PV structures
    286  */
    287 static struct pool pmap_pv_pool;
    288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    291 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    292 };
    293 
    294 /*
    295  * Pool and cache of l2_dtable structures.
    296  * We use a cache to avoid clearing the structures when they're
    297  * allocated. (196 bytes)
    298  */
    299 static struct pool_cache pmap_l2dtable_cache;
    300 static vaddr_t pmap_kernel_l2dtable_kva;
    301 
    302 /*
    303  * Pool and cache of L2 page descriptors.
    304  * We use a cache to avoid clearing the descriptor table
    305  * when they're allocated. (1KB)
    306  */
    307 static struct pool_cache pmap_l2ptp_cache;
    308 static vaddr_t pmap_kernel_l2ptp_kva;
    309 static paddr_t pmap_kernel_l2ptp_phys;
    310 
    311 #ifdef PMAPCOUNTERS
    312 #define	PMAP_EVCNT_INITIALIZER(name) \
    313 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    314 
    315 #ifdef PMAP_CACHE_VIPT
    316 static struct evcnt pmap_ev_vac_clean_one =
    317    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    318 static struct evcnt pmap_ev_vac_flush_one =
    319    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    320 static struct evcnt pmap_ev_vac_flush_lots =
    321    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    322 static struct evcnt pmap_ev_vac_flush_lots2 =
    323    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    328 
    329 static struct evcnt pmap_ev_vac_color_new =
    330    PMAP_EVCNT_INITIALIZER("new page color");
    331 static struct evcnt pmap_ev_vac_color_reuse =
    332    PMAP_EVCNT_INITIALIZER("ok first page color");
    333 static struct evcnt pmap_ev_vac_color_ok =
    334    PMAP_EVCNT_INITIALIZER("ok page color");
    335 static struct evcnt pmap_ev_vac_color_blind =
    336    PMAP_EVCNT_INITIALIZER("blind page color");
    337 static struct evcnt pmap_ev_vac_color_change =
    338    PMAP_EVCNT_INITIALIZER("change page color");
    339 static struct evcnt pmap_ev_vac_color_erase =
    340    PMAP_EVCNT_INITIALIZER("erase page color");
    341 static struct evcnt pmap_ev_vac_color_none =
    342    PMAP_EVCNT_INITIALIZER("no page color");
    343 static struct evcnt pmap_ev_vac_color_restore =
    344    PMAP_EVCNT_INITIALIZER("restore page color");
    345 
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    354 #endif
    355 
    356 static struct evcnt pmap_ev_mappings =
    357    PMAP_EVCNT_INITIALIZER("pages mapped");
    358 static struct evcnt pmap_ev_unmappings =
    359    PMAP_EVCNT_INITIALIZER("pages unmapped");
    360 static struct evcnt pmap_ev_remappings =
    361    PMAP_EVCNT_INITIALIZER("pages remapped");
    362 
    363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    366 
    367 static struct evcnt pmap_ev_kernel_mappings =
    368    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    369 static struct evcnt pmap_ev_kernel_unmappings =
    370    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    371 static struct evcnt pmap_ev_kernel_remappings =
    372    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    373 
    374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    377 
    378 static struct evcnt pmap_ev_kenter_mappings =
    379    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    380 static struct evcnt pmap_ev_kenter_unmappings =
    381    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    382 static struct evcnt pmap_ev_kenter_remappings =
    383    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    384 static struct evcnt pmap_ev_pt_mappings =
    385    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    386 
    387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    391 
    392 #ifdef PMAP_CACHE_VIPT
    393 static struct evcnt pmap_ev_exec_mappings =
    394    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    395 static struct evcnt pmap_ev_exec_cached =
    396    PMAP_EVCNT_INITIALIZER("exec pages cached");
    397 
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    400 
    401 static struct evcnt pmap_ev_exec_synced =
    402    PMAP_EVCNT_INITIALIZER("exec pages synced");
    403 static struct evcnt pmap_ev_exec_synced_map =
    404    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    405 static struct evcnt pmap_ev_exec_synced_unmap =
    406    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    407 static struct evcnt pmap_ev_exec_synced_remap =
    408    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    409 static struct evcnt pmap_ev_exec_synced_clearbit =
    410    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    411 static struct evcnt pmap_ev_exec_synced_kremove =
    412    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    413 
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    420 
    421 static struct evcnt pmap_ev_exec_discarded_unmap =
    422    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    423 static struct evcnt pmap_ev_exec_discarded_zero =
    424    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    425 static struct evcnt pmap_ev_exec_discarded_copy =
    426    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    427 static struct evcnt pmap_ev_exec_discarded_page_protect =
    428    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    429 static struct evcnt pmap_ev_exec_discarded_clearbit =
    430    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    431 static struct evcnt pmap_ev_exec_discarded_kremove =
    432    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    433 
    434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    440 #endif /* PMAP_CACHE_VIPT */
    441 
    442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    445 
    446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    449 
    450 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    451 #else
    452 #define	PMAPCOUNT(x)	((void)0)
    453 #endif
    454 
    455 /*
    456  * pmap copy/zero page, and mem(5) hook point
    457  */
    458 static pt_entry_t *csrc_pte, *cdst_pte;
    459 static vaddr_t csrcp, cdstp;
    460 vaddr_t memhook;			/* used by mem.c */
    461 kmutex_t memlock;			/* used by mem.c */
    462 void *zeropage;				/* used by mem.c */
    463 extern void *msgbufaddr;
    464 int pmap_kmpages;
    465 /*
    466  * Flag to indicate if pmap_init() has done its thing
    467  */
    468 bool pmap_initialized;
    469 
    470 /*
    471  * Misc. locking data structures
    472  */
    473 
    474 #define	pmap_acquire_pmap_lock(pm)			\
    475 	do {						\
    476 		if ((pm) != pmap_kernel())		\
    477 			mutex_enter((pm)->pm_lock);	\
    478 	} while (/*CONSTCOND*/0)
    479 
    480 #define	pmap_release_pmap_lock(pm)			\
    481 	do {						\
    482 		if ((pm) != pmap_kernel())		\
    483 			mutex_exit((pm)->pm_lock);	\
    484 	} while (/*CONSTCOND*/0)
    485 
    486 
    487 /*
    488  * Metadata for L1 translation tables.
    489  */
    490 struct l1_ttable {
    491 	/* Entry on the L1 Table list */
    492 	SLIST_ENTRY(l1_ttable) l1_link;
    493 
    494 	/* Entry on the L1 Least Recently Used list */
    495 	TAILQ_ENTRY(l1_ttable) l1_lru;
    496 
    497 	/* Track how many domains are allocated from this L1 */
    498 	volatile u_int l1_domain_use_count;
    499 
    500 	/*
    501 	 * A free-list of domain numbers for this L1.
    502 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    503 	 * is slow on ARM.
    504 	 */
    505 	uint8_t l1_domain_first;
    506 	uint8_t l1_domain_free[PMAP_DOMAINS];
    507 
    508 	/* Physical address of this L1 page table */
    509 	paddr_t l1_physaddr;
    510 
    511 	/* KVA of this L1 page table */
    512 	pd_entry_t *l1_kva;
    513 };
    514 
    515 /*
    516  * Convert a virtual address into its L1 table index. That is, the
    517  * index used to locate the L2 descriptor table pointer in an L1 table.
    518  * This is basically used to index l1->l1_kva[].
    519  *
    520  * Each L2 descriptor table represents 1MB of VA space.
    521  */
    522 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    523 
    524 /*
    525  * L1 Page Tables are tracked using a Least Recently Used list.
    526  *  - New L1s are allocated from the HEAD.
    527  *  - Freed L1s are added to the TAIl.
    528  *  - Recently accessed L1s (where an 'access' is some change to one of
    529  *    the userland pmaps which owns this L1) are moved to the TAIL.
    530  */
    531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    532 static kmutex_t l1_lru_lock __cacheline_aligned;
    533 
    534 /*
    535  * A list of all L1 tables
    536  */
    537 static SLIST_HEAD(, l1_ttable) l1_list;
    538 
    539 /*
    540  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    541  *
    542  * This is normally 16MB worth L2 page descriptors for any given pmap.
    543  * Reference counts are maintained for L2 descriptors so they can be
    544  * freed when empty.
    545  */
    546 struct l2_dtable {
    547 	/* The number of L2 page descriptors allocated to this l2_dtable */
    548 	u_int l2_occupancy;
    549 
    550 	/* List of L2 page descriptors */
    551 	struct l2_bucket {
    552 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    553 		paddr_t l2b_phys;	/* Physical address of same */
    554 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    555 		u_short l2b_occupancy;	/* How many active descriptors */
    556 	} l2_bucket[L2_BUCKET_SIZE];
    557 };
    558 
    559 /*
    560  * Given an L1 table index, calculate the corresponding l2_dtable index
    561  * and bucket index within the l2_dtable.
    562  */
    563 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    564 				 (L2_SIZE - 1))
    565 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    566 
    567 /*
    568  * Given a virtual address, this macro returns the
    569  * virtual address required to drop into the next L2 bucket.
    570  */
    571 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    572 
    573 /*
    574  * L2 allocation.
    575  */
    576 #define	pmap_alloc_l2_dtable()		\
    577 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    578 #define	pmap_free_l2_dtable(l2)		\
    579 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    580 #define pmap_alloc_l2_ptp(pap)		\
    581 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    582 	    PR_NOWAIT, (pap)))
    583 
    584 /*
    585  * We try to map the page tables write-through, if possible.  However, not
    586  * all CPUs have a write-through cache mode, so on those we have to sync
    587  * the cache when we frob page tables.
    588  *
    589  * We try to evaluate this at compile time, if possible.  However, it's
    590  * not always possible to do that, hence this run-time var.
    591  */
    592 int	pmap_needs_pte_sync;
    593 
    594 /*
    595  * Real definition of pv_entry.
    596  */
    597 struct pv_entry {
    598 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    599 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    600 	vaddr_t		pv_va;          /* virtual address for mapping */
    601 	u_int		pv_flags;       /* flags */
    602 };
    603 
    604 /*
    605  * Macro to determine if a mapping might be resident in the
    606  * instruction cache and/or TLB
    607  */
    608 #if ARM_MMU_V7 > 0
    609 /*
    610  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    611  * there are no explicit accesses, so there may be always be TLB entries to
    612  * flush.  If we used ASIDs then this would not be a problem.
    613  */
    614 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    615 #else
    616 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    617 #endif
    618 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    619 
    620 /*
    621  * Macro to determine if a mapping might be resident in the
    622  * data cache and/or TLB
    623  */
    624 #if ARM_MMU_V7 > 0
    625 /*
    626  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    627  * there are no explicit accesses, so there may be always be TLB entries to
    628  * flush.  If we used ASIDs then this would not be a problem.
    629  */
    630 #define	PV_BEEN_REFD(f)   (1)
    631 #else
    632 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    633 #endif
    634 
    635 /*
    636  * Local prototypes
    637  */
    638 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    639 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    640 			    pt_entry_t **);
    641 static bool		pmap_is_current(pmap_t);
    642 static bool		pmap_is_cached(pmap_t);
    643 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    644 			    pmap_t, vaddr_t, u_int);
    645 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    646 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    647 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    648 			    u_int, u_int);
    649 
    650 static void		pmap_pinit(pmap_t);
    651 static int		pmap_pmap_ctor(void *, void *, int);
    652 
    653 static void		pmap_alloc_l1(pmap_t);
    654 static void		pmap_free_l1(pmap_t);
    655 static void		pmap_use_l1(pmap_t);
    656 
    657 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    658 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    659 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    660 static int		pmap_l2ptp_ctor(void *, void *, int);
    661 static int		pmap_l2dtable_ctor(void *, void *, int);
    662 
    663 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    664 #ifdef PMAP_CACHE_VIVT
    665 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    666 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    667 #endif
    668 
    669 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    670 #ifdef PMAP_CACHE_VIVT
    671 static int		pmap_clean_page(struct pv_entry *, bool);
    672 #endif
    673 #ifdef PMAP_CACHE_VIPT
    674 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    675 enum pmap_flush_op {
    676 	PMAP_FLUSH_PRIMARY,
    677 	PMAP_FLUSH_SECONDARY,
    678 	PMAP_CLEAN_PRIMARY
    679 };
    680 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    681 #endif
    682 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    683 
    684 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    685 static vaddr_t		kernel_pt_lookup(paddr_t);
    686 
    687 
    688 /*
    689  * Misc variables
    690  */
    691 vaddr_t virtual_avail;
    692 vaddr_t virtual_end;
    693 vaddr_t pmap_curmaxkvaddr;
    694 
    695 paddr_t avail_start;
    696 paddr_t avail_end;
    697 
    698 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    699 pv_addr_t kernelpages;
    700 pv_addr_t kernel_l1pt;
    701 pv_addr_t systempage;
    702 
    703 /* Function to set the debug level of the pmap code */
    704 
    705 #ifdef PMAP_DEBUG
    706 void
    707 pmap_debug(int level)
    708 {
    709 	pmap_debug_level = level;
    710 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    711 }
    712 #endif	/* PMAP_DEBUG */
    713 
    714 #ifdef PMAP_CACHE_VIPT
    715 #define PMAP_VALIDATE_MD_PAGE(md)	\
    716 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    717 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    718 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    719 #endif /* PMAP_CACHE_VIPT */
    720 /*
    721  * A bunch of routines to conditionally flush the caches/TLB depending
    722  * on whether the specified pmap actually needs to be flushed at any
    723  * given time.
    724  */
    725 static inline void
    726 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    727 {
    728 	if (pm->pm_cstate.cs_tlb_id != 0) {
    729 		if (PV_BEEN_EXECD(flags)) {
    730 			cpu_tlb_flushID_SE(va);
    731 		} else if (PV_BEEN_REFD(flags)) {
    732 			cpu_tlb_flushD_SE(va);
    733 		}
    734 	}
    735 }
    736 
    737 static inline void
    738 pmap_tlb_flushID(pmap_t pm)
    739 {
    740 	if (pm->pm_cstate.cs_tlb_id) {
    741 		cpu_tlb_flushID();
    742 #if ARM_MMU_V7 == 0
    743 		/*
    744 		 * Speculative loads by Cortex cores can cause TLB entries to
    745 		 * be filled even if there are no explicit accesses, so there
    746 		 * may be always be TLB entries to flush.  If we used ASIDs
    747 		 * then it would not be a problem.
    748 		 * This is not true for other CPUs.
    749 		 */
    750 		pm->pm_cstate.cs_tlb = 0;
    751 #endif /* ARM_MMU_V7 */
    752 	}
    753 }
    754 
    755 static inline void
    756 pmap_tlb_flushD(pmap_t pm)
    757 {
    758 	if (pm->pm_cstate.cs_tlb_d) {
    759 		cpu_tlb_flushD();
    760 #if ARM_MMU_V7 == 0
    761 		/*
    762 		 * Speculative loads by Cortex cores can cause TLB entries to
    763 		 * be filled even if there are no explicit accesses, so there
    764 		 * may be always be TLB entries to flush.  If we used ASIDs
    765 		 * then it would not be a problem.
    766 		 * This is not true for other CPUs.
    767 		 */
    768 		pm->pm_cstate.cs_tlb_d = 0;
    769 #endif /* ARM_MMU_V7 */
    770 	}
    771 }
    772 
    773 #ifdef PMAP_CACHE_VIVT
    774 static inline void
    775 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    776 {
    777 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    778 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    779 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    780 		if (do_inv) {
    781 			if (flags & PVF_WRITE)
    782 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    783 			else
    784 				cpu_dcache_inv_range(va, PAGE_SIZE);
    785 		} else if (flags & PVF_WRITE) {
    786 			cpu_dcache_wb_range(va, PAGE_SIZE);
    787 		}
    788 	}
    789 }
    790 
    791 static inline void
    792 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    793 {
    794 	if (PV_BEEN_EXECD(flags)) {
    795 		if (pm->pm_cstate.cs_cache_id) {
    796 			cpu_idcache_wbinv_all();
    797 			pm->pm_cstate.cs_cache = 0;
    798 		}
    799 	} else if (pm->pm_cstate.cs_cache_d) {
    800 		cpu_dcache_wbinv_all();
    801 		pm->pm_cstate.cs_cache_d = 0;
    802 	}
    803 }
    804 #endif /* PMAP_CACHE_VIVT */
    805 
    806 static inline uint8_t
    807 pmap_domain(pmap_t pm)
    808 {
    809 	return pm->pm_domain;
    810 }
    811 
    812 static inline pd_entry_t *
    813 pmap_l1_kva(pmap_t pm)
    814 {
    815 	return pm->pm_l1->l1_kva;
    816 }
    817 
    818 static inline bool
    819 pmap_is_current(pmap_t pm)
    820 {
    821 
    822 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    823 		return true;
    824 
    825 	return false;
    826 }
    827 
    828 static inline bool
    829 pmap_is_cached(pmap_t pm)
    830 {
    831 
    832 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    833 	    pmap_recent_user == pm)
    834 		return (true);
    835 
    836 	return false;
    837 }
    838 
    839 /*
    840  * PTE_SYNC_CURRENT:
    841  *
    842  *     Make sure the pte is written out to RAM.
    843  *     We need to do this for one of two cases:
    844  *       - We're dealing with the kernel pmap
    845  *       - There is no pmap active in the cache/tlb.
    846  *       - The specified pmap is 'active' in the cache/tlb.
    847  */
    848 #ifdef PMAP_INCLUDE_PTE_SYNC
    849 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    850 do {					\
    851 	if (PMAP_NEEDS_PTE_SYNC && 	\
    852 	    pmap_is_cached(pm))		\
    853 		PTE_SYNC(ptep);		\
    854 } while (/*CONSTCOND*/0)
    855 #else
    856 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    857 #endif
    858 
    859 /*
    860  * main pv_entry manipulation functions:
    861  *   pmap_enter_pv: enter a mapping onto a vm_page list
    862  *   pmap_remove_pv: remove a mapping from a vm_page list
    863  *
    864  * NOTE: pmap_enter_pv expects to lock the pvh itself
    865  *       pmap_remove_pv expects the caller to lock the pvh before calling
    866  */
    867 
    868 /*
    869  * pmap_enter_pv: enter a mapping onto a vm_page lst
    870  *
    871  * => caller should hold the proper lock on pmap_main_lock
    872  * => caller should have pmap locked
    873  * => we will gain the lock on the vm_page and allocate the new pv_entry
    874  * => caller should adjust ptp's wire_count before calling
    875  * => caller should not adjust pmap's wire_count
    876  */
    877 static void
    878 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    879     vaddr_t va, u_int flags)
    880 {
    881 	struct pv_entry **pvp;
    882 
    883 	NPDEBUG(PDB_PVDUMP,
    884 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    885 
    886 	pv->pv_pmap = pm;
    887 	pv->pv_va = va;
    888 	pv->pv_flags = flags;
    889 
    890 	pvp = &SLIST_FIRST(&md->pvh_list);
    891 #ifdef PMAP_CACHE_VIPT
    892 	/*
    893 	 * Insert unmanaged entries, writeable first, at the head of
    894 	 * the pv list.
    895 	 */
    896 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    897 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    898 			pvp = &SLIST_NEXT(*pvp, pv_link);
    899 	} else if ((flags & PVF_WRITE) == 0) {
    900 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    901 			pvp = &SLIST_NEXT(*pvp, pv_link);
    902 	}
    903 #endif
    904 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
    905 	*pvp = pv;				/* ... locked list */
    906 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    907 #ifdef PMAP_CACHE_VIPT
    908 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    909 		md->pvh_attrs |= PVF_KMOD;
    910 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    911 		md->pvh_attrs |= PVF_DIRTY;
    912 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
    913 #endif
    914 	if (pm == pmap_kernel()) {
    915 		PMAPCOUNT(kernel_mappings);
    916 		if (flags & PVF_WRITE)
    917 			md->krw_mappings++;
    918 		else
    919 			md->kro_mappings++;
    920 	} else {
    921 		if (flags & PVF_WRITE)
    922 			md->urw_mappings++;
    923 		else
    924 			md->uro_mappings++;
    925 	}
    926 
    927 #ifdef PMAP_CACHE_VIPT
    928 	/*
    929 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
    930 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
    931 	 */
    932 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
    933 		md->pvh_attrs |= PVF_WRITE;
    934 	}
    935 	/*
    936 	 * If this is an exec mapping and its the first exec mapping
    937 	 * for this page, make sure to sync the I-cache.
    938 	 */
    939 	if (PV_IS_EXEC_P(flags)) {
    940 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
    941 			pmap_syncicache_page(md, pa);
    942 			PMAPCOUNT(exec_synced_map);
    943 		}
    944 		PMAPCOUNT(exec_mappings);
    945 	}
    946 #endif
    947 
    948 	PMAPCOUNT(mappings);
    949 
    950 	if (pv->pv_flags & PVF_WIRED)
    951 		++pm->pm_stats.wired_count;
    952 }
    953 
    954 /*
    955  *
    956  * pmap_find_pv: Find a pv entry
    957  *
    958  * => caller should hold lock on vm_page
    959  */
    960 static inline struct pv_entry *
    961 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
    962 {
    963 	struct pv_entry *pv;
    964 
    965 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
    966 		if (pm == pv->pv_pmap && va == pv->pv_va)
    967 			break;
    968 	}
    969 
    970 	return (pv);
    971 }
    972 
    973 /*
    974  * pmap_remove_pv: try to remove a mapping from a pv_list
    975  *
    976  * => caller should hold proper lock on pmap_main_lock
    977  * => pmap should be locked
    978  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    979  * => caller should adjust ptp's wire_count and free PTP if needed
    980  * => caller should NOT adjust pmap's wire_count
    981  * => we return the removed pv
    982  */
    983 static struct pv_entry *
    984 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
    985 {
    986 	struct pv_entry *pv, **prevptr;
    987 
    988 	NPDEBUG(PDB_PVDUMP,
    989 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
    990 
    991 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
    992 	pv = *prevptr;
    993 
    994 	while (pv) {
    995 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
    996 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
    997 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
    998 			if (pv->pv_flags & PVF_WIRED) {
    999 				--pm->pm_stats.wired_count;
   1000 			}
   1001 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1002 			if (pm == pmap_kernel()) {
   1003 				PMAPCOUNT(kernel_unmappings);
   1004 				if (pv->pv_flags & PVF_WRITE)
   1005 					md->krw_mappings--;
   1006 				else
   1007 					md->kro_mappings--;
   1008 			} else {
   1009 				if (pv->pv_flags & PVF_WRITE)
   1010 					md->urw_mappings--;
   1011 				else
   1012 					md->uro_mappings--;
   1013 			}
   1014 
   1015 			PMAPCOUNT(unmappings);
   1016 #ifdef PMAP_CACHE_VIPT
   1017 			if (!(pv->pv_flags & PVF_WRITE))
   1018 				break;
   1019 			/*
   1020 			 * If this page has had an exec mapping, then if
   1021 			 * this was the last mapping, discard the contents,
   1022 			 * otherwise sync the i-cache for this page.
   1023 			 */
   1024 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1025 				if (SLIST_EMPTY(&md->pvh_list)) {
   1026 					md->pvh_attrs &= ~PVF_EXEC;
   1027 					PMAPCOUNT(exec_discarded_unmap);
   1028 				} else {
   1029 					pmap_syncicache_page(md, pa);
   1030 					PMAPCOUNT(exec_synced_unmap);
   1031 				}
   1032 			}
   1033 #endif /* PMAP_CACHE_VIPT */
   1034 			break;
   1035 		}
   1036 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1037 		pv = *prevptr;				/* advance */
   1038 	}
   1039 
   1040 #ifdef PMAP_CACHE_VIPT
   1041 	/*
   1042 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1043 	 * clear the KMOD attribute from the page.
   1044 	 */
   1045 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1046 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1047 		md->pvh_attrs &= ~PVF_KMOD;
   1048 
   1049 	/*
   1050 	 * If this was a writeable page and there are no more writeable
   1051 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1052 	 * the contents to memory.
   1053 	 */
   1054 	if (arm_cache_prefer_mask != 0) {
   1055 		if (md->krw_mappings + md->urw_mappings == 0)
   1056 			md->pvh_attrs &= ~PVF_WRITE;
   1057 		PMAP_VALIDATE_MD_PAGE(md);
   1058 	}
   1059 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1060 #endif /* PMAP_CACHE_VIPT */
   1061 
   1062 	return(pv);				/* return removed pv */
   1063 }
   1064 
   1065 /*
   1066  *
   1067  * pmap_modify_pv: Update pv flags
   1068  *
   1069  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1070  * => caller should NOT adjust pmap's wire_count
   1071  * => caller must call pmap_vac_me_harder() if writable status of a page
   1072  *    may have changed.
   1073  * => we return the old flags
   1074  *
   1075  * Modify a physical-virtual mapping in the pv table
   1076  */
   1077 static u_int
   1078 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1079     u_int clr_mask, u_int set_mask)
   1080 {
   1081 	struct pv_entry *npv;
   1082 	u_int flags, oflags;
   1083 
   1084 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1085 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1086 
   1087 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1088 		return (0);
   1089 
   1090 	NPDEBUG(PDB_PVDUMP,
   1091 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1092 
   1093 	/*
   1094 	 * There is at least one VA mapping this page.
   1095 	 */
   1096 
   1097 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1098 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1099 #ifdef PMAP_CACHE_VIPT
   1100 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1101 			md->pvh_attrs |= PVF_DIRTY;
   1102 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1103 #endif
   1104 	}
   1105 
   1106 	oflags = npv->pv_flags;
   1107 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1108 
   1109 	if ((flags ^ oflags) & PVF_WIRED) {
   1110 		if (flags & PVF_WIRED)
   1111 			++pm->pm_stats.wired_count;
   1112 		else
   1113 			--pm->pm_stats.wired_count;
   1114 	}
   1115 
   1116 	if ((flags ^ oflags) & PVF_WRITE) {
   1117 		if (pm == pmap_kernel()) {
   1118 			if (flags & PVF_WRITE) {
   1119 				md->krw_mappings++;
   1120 				md->kro_mappings--;
   1121 			} else {
   1122 				md->kro_mappings++;
   1123 				md->krw_mappings--;
   1124 			}
   1125 		} else {
   1126 			if (flags & PVF_WRITE) {
   1127 				md->urw_mappings++;
   1128 				md->uro_mappings--;
   1129 			} else {
   1130 				md->uro_mappings++;
   1131 				md->urw_mappings--;
   1132 			}
   1133 		}
   1134 	}
   1135 #ifdef PMAP_CACHE_VIPT
   1136 	if (arm_cache_prefer_mask != 0) {
   1137 		if (md->urw_mappings + md->krw_mappings == 0) {
   1138 			md->pvh_attrs &= ~PVF_WRITE;
   1139 		} else {
   1140 			md->pvh_attrs |= PVF_WRITE;
   1141 		}
   1142 	}
   1143 	/*
   1144 	 * We have two cases here: the first is from enter_pv (new exec
   1145 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1146 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1147 	 * to do what pmap_remove_pv would do.
   1148 	 */
   1149 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1150 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1151 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1152 		pmap_syncicache_page(md, pa);
   1153 		PMAPCOUNT(exec_synced_remap);
   1154 	}
   1155 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1156 #endif
   1157 
   1158 	PMAPCOUNT(remappings);
   1159 
   1160 	return (oflags);
   1161 }
   1162 
   1163 /*
   1164  * Allocate an L1 translation table for the specified pmap.
   1165  * This is called at pmap creation time.
   1166  */
   1167 static void
   1168 pmap_alloc_l1(pmap_t pm)
   1169 {
   1170 	struct l1_ttable *l1;
   1171 	uint8_t domain;
   1172 
   1173 	/*
   1174 	 * Remove the L1 at the head of the LRU list
   1175 	 */
   1176 	mutex_spin_enter(&l1_lru_lock);
   1177 	l1 = TAILQ_FIRST(&l1_lru_list);
   1178 	KDASSERT(l1 != NULL);
   1179 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1180 
   1181 	/*
   1182 	 * Pick the first available domain number, and update
   1183 	 * the link to the next number.
   1184 	 */
   1185 	domain = l1->l1_domain_first;
   1186 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1187 
   1188 	/*
   1189 	 * If there are still free domain numbers in this L1,
   1190 	 * put it back on the TAIL of the LRU list.
   1191 	 */
   1192 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1193 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1194 
   1195 	mutex_spin_exit(&l1_lru_lock);
   1196 
   1197 	/*
   1198 	 * Fix up the relevant bits in the pmap structure
   1199 	 */
   1200 	pm->pm_l1 = l1;
   1201 	pm->pm_domain = domain + 1;
   1202 }
   1203 
   1204 /*
   1205  * Free an L1 translation table.
   1206  * This is called at pmap destruction time.
   1207  */
   1208 static void
   1209 pmap_free_l1(pmap_t pm)
   1210 {
   1211 	struct l1_ttable *l1 = pm->pm_l1;
   1212 
   1213 	mutex_spin_enter(&l1_lru_lock);
   1214 
   1215 	/*
   1216 	 * If this L1 is currently on the LRU list, remove it.
   1217 	 */
   1218 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1219 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1220 
   1221 	/*
   1222 	 * Free up the domain number which was allocated to the pmap
   1223 	 */
   1224 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1225 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1226 	l1->l1_domain_use_count--;
   1227 
   1228 	/*
   1229 	 * The L1 now must have at least 1 free domain, so add
   1230 	 * it back to the LRU list. If the use count is zero,
   1231 	 * put it at the head of the list, otherwise it goes
   1232 	 * to the tail.
   1233 	 */
   1234 	if (l1->l1_domain_use_count == 0)
   1235 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1236 	else
   1237 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1238 
   1239 	mutex_spin_exit(&l1_lru_lock);
   1240 }
   1241 
   1242 static inline void
   1243 pmap_use_l1(pmap_t pm)
   1244 {
   1245 	struct l1_ttable *l1;
   1246 
   1247 	/*
   1248 	 * Do nothing if we're in interrupt context.
   1249 	 * Access to an L1 by the kernel pmap must not affect
   1250 	 * the LRU list.
   1251 	 */
   1252 	if (cpu_intr_p() || pm == pmap_kernel())
   1253 		return;
   1254 
   1255 	l1 = pm->pm_l1;
   1256 
   1257 	/*
   1258 	 * If the L1 is not currently on the LRU list, just return
   1259 	 */
   1260 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1261 		return;
   1262 
   1263 	mutex_spin_enter(&l1_lru_lock);
   1264 
   1265 	/*
   1266 	 * Check the use count again, now that we've acquired the lock
   1267 	 */
   1268 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1269 		mutex_spin_exit(&l1_lru_lock);
   1270 		return;
   1271 	}
   1272 
   1273 	/*
   1274 	 * Move the L1 to the back of the LRU list
   1275 	 */
   1276 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1277 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1278 
   1279 	mutex_spin_exit(&l1_lru_lock);
   1280 }
   1281 
   1282 /*
   1283  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1284  *
   1285  * Free an L2 descriptor table.
   1286  */
   1287 static inline void
   1288 #ifndef PMAP_INCLUDE_PTE_SYNC
   1289 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1290 #else
   1291 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1292 #endif
   1293 {
   1294 #ifdef PMAP_INCLUDE_PTE_SYNC
   1295 #ifdef PMAP_CACHE_VIVT
   1296 	/*
   1297 	 * Note: With a write-back cache, we may need to sync this
   1298 	 * L2 table before re-using it.
   1299 	 * This is because it may have belonged to a non-current
   1300 	 * pmap, in which case the cache syncs would have been
   1301 	 * skipped for the pages that were being unmapped. If the
   1302 	 * L2 table were then to be immediately re-allocated to
   1303 	 * the *current* pmap, it may well contain stale mappings
   1304 	 * which have not yet been cleared by a cache write-back
   1305 	 * and so would still be visible to the mmu.
   1306 	 */
   1307 	if (need_sync)
   1308 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1309 #endif /* PMAP_CACHE_VIVT */
   1310 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1311 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1312 }
   1313 
   1314 /*
   1315  * Returns a pointer to the L2 bucket associated with the specified pmap
   1316  * and VA, or NULL if no L2 bucket exists for the address.
   1317  */
   1318 static inline struct l2_bucket *
   1319 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1320 {
   1321 	struct l2_dtable *l2;
   1322 	struct l2_bucket *l2b;
   1323 	u_short l1idx;
   1324 
   1325 	l1idx = L1_IDX(va);
   1326 
   1327 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1328 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1329 		return (NULL);
   1330 
   1331 	return (l2b);
   1332 }
   1333 
   1334 /*
   1335  * Returns a pointer to the L2 bucket associated with the specified pmap
   1336  * and VA.
   1337  *
   1338  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1339  * bucket/page table in place.
   1340  *
   1341  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1342  * increment the bucket occupancy counter appropriately *before*
   1343  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1344  * the bucket/page in the meantime.
   1345  */
   1346 static struct l2_bucket *
   1347 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1348 {
   1349 	struct l2_dtable *l2;
   1350 	struct l2_bucket *l2b;
   1351 	u_short l1idx;
   1352 
   1353 	l1idx = L1_IDX(va);
   1354 
   1355 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1356 		/*
   1357 		 * No mapping at this address, as there is
   1358 		 * no entry in the L1 table.
   1359 		 * Need to allocate a new l2_dtable.
   1360 		 */
   1361 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1362 			return (NULL);
   1363 
   1364 		/*
   1365 		 * Link it into the parent pmap
   1366 		 */
   1367 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1368 	}
   1369 
   1370 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1371 
   1372 	/*
   1373 	 * Fetch pointer to the L2 page table associated with the address.
   1374 	 */
   1375 	if (l2b->l2b_kva == NULL) {
   1376 		pt_entry_t *ptep;
   1377 
   1378 		/*
   1379 		 * No L2 page table has been allocated. Chances are, this
   1380 		 * is because we just allocated the l2_dtable, above.
   1381 		 */
   1382 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1383 			/*
   1384 			 * Oops, no more L2 page tables available at this
   1385 			 * time. We may need to deallocate the l2_dtable
   1386 			 * if we allocated a new one above.
   1387 			 */
   1388 			if (l2->l2_occupancy == 0) {
   1389 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1390 				pmap_free_l2_dtable(l2);
   1391 			}
   1392 			return (NULL);
   1393 		}
   1394 
   1395 		l2->l2_occupancy++;
   1396 		l2b->l2b_kva = ptep;
   1397 		l2b->l2b_l1idx = l1idx;
   1398 	}
   1399 
   1400 	return (l2b);
   1401 }
   1402 
   1403 /*
   1404  * One or more mappings in the specified L2 descriptor table have just been
   1405  * invalidated.
   1406  *
   1407  * Garbage collect the metadata and descriptor table itself if necessary.
   1408  *
   1409  * The pmap lock must be acquired when this is called (not necessary
   1410  * for the kernel pmap).
   1411  */
   1412 static void
   1413 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1414 {
   1415 	struct l2_dtable *l2;
   1416 	pd_entry_t *pl1pd, l1pd;
   1417 	pt_entry_t *ptep;
   1418 	u_short l1idx;
   1419 
   1420 	KDASSERT(count <= l2b->l2b_occupancy);
   1421 
   1422 	/*
   1423 	 * Update the bucket's reference count according to how many
   1424 	 * PTEs the caller has just invalidated.
   1425 	 */
   1426 	l2b->l2b_occupancy -= count;
   1427 
   1428 	/*
   1429 	 * Note:
   1430 	 *
   1431 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1432 	 * as that would require checking all Level 1 page tables and
   1433 	 * removing any references to the Level 2 page table. See also the
   1434 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1435 	 *
   1436 	 * We make do with just invalidating the mapping in the L2 table.
   1437 	 *
   1438 	 * This isn't really a big deal in practice and, in fact, leads
   1439 	 * to a performance win over time as we don't need to continually
   1440 	 * alloc/free.
   1441 	 */
   1442 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1443 		return;
   1444 
   1445 	/*
   1446 	 * There are no more valid mappings in this level 2 page table.
   1447 	 * Go ahead and NULL-out the pointer in the bucket, then
   1448 	 * free the page table.
   1449 	 */
   1450 	l1idx = l2b->l2b_l1idx;
   1451 	ptep = l2b->l2b_kva;
   1452 	l2b->l2b_kva = NULL;
   1453 
   1454 	pl1pd = pmap_l1_kva(pm) + l1idx;
   1455 
   1456 	/*
   1457 	 * If the L1 slot matches the pmap's domain
   1458 	 * number, then invalidate it.
   1459 	 */
   1460 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1461 	if (l1pd == (L1_C_DOM(pmap_domain(pm)) | L1_TYPE_C)) {
   1462 		*pl1pd = 0;
   1463 		PTE_SYNC(pl1pd);
   1464 	}
   1465 
   1466 	/*
   1467 	 * Release the L2 descriptor table back to the pool cache.
   1468 	 */
   1469 #ifndef PMAP_INCLUDE_PTE_SYNC
   1470 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1471 #else
   1472 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1473 #endif
   1474 
   1475 	/*
   1476 	 * Update the reference count in the associated l2_dtable
   1477 	 */
   1478 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1479 	if (--l2->l2_occupancy > 0)
   1480 		return;
   1481 
   1482 	/*
   1483 	 * There are no more valid mappings in any of the Level 1
   1484 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1485 	 * the pointer in the parent pmap and free the l2_dtable.
   1486 	 */
   1487 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1488 	pmap_free_l2_dtable(l2);
   1489 }
   1490 
   1491 /*
   1492  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1493  * structures.
   1494  */
   1495 static int
   1496 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1497 {
   1498 #ifndef PMAP_INCLUDE_PTE_SYNC
   1499 	struct l2_bucket *l2b;
   1500 	pt_entry_t *ptep, pte;
   1501 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1502 
   1503 	/*
   1504 	 * The mappings for these page tables were initially made using
   1505 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1506 	 * mode will not be right for page table mappings. To avoid
   1507 	 * polluting the pmap_kenter_pa() code with a special case for
   1508 	 * page tables, we simply fix up the cache-mode here if it's not
   1509 	 * correct.
   1510 	 */
   1511 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1512 	KDASSERT(l2b != NULL);
   1513 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1514 	pte = *ptep;
   1515 
   1516 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1517 		/*
   1518 		 * Page tables must have the cache-mode set to Write-Thru.
   1519 		 */
   1520 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1521 		PTE_SYNC(ptep);
   1522 		cpu_tlb_flushD_SE(va);
   1523 		cpu_cpwait();
   1524 	}
   1525 #endif
   1526 
   1527 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1528 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1529 	return (0);
   1530 }
   1531 
   1532 static int
   1533 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1534 {
   1535 
   1536 	memset(v, 0, sizeof(struct l2_dtable));
   1537 	return (0);
   1538 }
   1539 
   1540 static int
   1541 pmap_pmap_ctor(void *arg, void *v, int flags)
   1542 {
   1543 
   1544 	memset(v, 0, sizeof(struct pmap));
   1545 	return (0);
   1546 }
   1547 
   1548 static void
   1549 pmap_pinit(pmap_t pm)
   1550 {
   1551 #ifndef ARM_HAS_VBAR
   1552 	struct l2_bucket *l2b;
   1553 
   1554 	if (vector_page < KERNEL_BASE) {
   1555 		/*
   1556 		 * Map the vector page.
   1557 		 */
   1558 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1559 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1560 		pmap_update(pm);
   1561 
   1562 		pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
   1563 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1564 		KDASSERT(l2b != NULL);
   1565 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1566 		    L1_C_DOM(pmap_domain(pm));
   1567 	} else
   1568 		pm->pm_pl1vec = NULL;
   1569 #endif
   1570 }
   1571 
   1572 #ifdef PMAP_CACHE_VIVT
   1573 /*
   1574  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1575  * there is more than one mapping and at least one of them is writable.
   1576  * Since we purge the cache on every context switch, we only need to check for
   1577  * other mappings within the same pmap, or kernel_pmap.
   1578  * This function is also called when a page is unmapped, to possibly reenable
   1579  * caching on any remaining mappings.
   1580  *
   1581  * The code implements the following logic, where:
   1582  *
   1583  * KW = # of kernel read/write pages
   1584  * KR = # of kernel read only pages
   1585  * UW = # of user read/write pages
   1586  * UR = # of user read only pages
   1587  *
   1588  * KC = kernel mapping is cacheable
   1589  * UC = user mapping is cacheable
   1590  *
   1591  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1592  *             +---------------------------------------------
   1593  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1594  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1595  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1596  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1597  */
   1598 
   1599 static const int pmap_vac_flags[4][4] = {
   1600 	{-1,		0,		0,		PVF_KNC},
   1601 	{0,		0,		PVF_NC,		PVF_NC},
   1602 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1603 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1604 };
   1605 
   1606 static inline int
   1607 pmap_get_vac_flags(const struct vm_page_md *md)
   1608 {
   1609 	int kidx, uidx;
   1610 
   1611 	kidx = 0;
   1612 	if (md->kro_mappings || md->krw_mappings > 1)
   1613 		kidx |= 1;
   1614 	if (md->krw_mappings)
   1615 		kidx |= 2;
   1616 
   1617 	uidx = 0;
   1618 	if (md->uro_mappings || md->urw_mappings > 1)
   1619 		uidx |= 1;
   1620 	if (md->urw_mappings)
   1621 		uidx |= 2;
   1622 
   1623 	return (pmap_vac_flags[uidx][kidx]);
   1624 }
   1625 
   1626 static inline void
   1627 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1628 {
   1629 	int nattr;
   1630 
   1631 	nattr = pmap_get_vac_flags(md);
   1632 
   1633 	if (nattr < 0) {
   1634 		md->pvh_attrs &= ~PVF_NC;
   1635 		return;
   1636 	}
   1637 
   1638 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1639 		return;
   1640 
   1641 	if (pm == pmap_kernel())
   1642 		pmap_vac_me_kpmap(md, pa, pm, va);
   1643 	else
   1644 		pmap_vac_me_user(md, pa, pm, va);
   1645 
   1646 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1647 }
   1648 
   1649 static void
   1650 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1651 {
   1652 	u_int u_cacheable, u_entries;
   1653 	struct pv_entry *pv;
   1654 	pmap_t last_pmap = pm;
   1655 
   1656 	/*
   1657 	 * Pass one, see if there are both kernel and user pmaps for
   1658 	 * this page.  Calculate whether there are user-writable or
   1659 	 * kernel-writable pages.
   1660 	 */
   1661 	u_cacheable = 0;
   1662 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1663 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1664 			u_cacheable++;
   1665 	}
   1666 
   1667 	u_entries = md->urw_mappings + md->uro_mappings;
   1668 
   1669 	/*
   1670 	 * We know we have just been updating a kernel entry, so if
   1671 	 * all user pages are already cacheable, then there is nothing
   1672 	 * further to do.
   1673 	 */
   1674 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1675 		return;
   1676 
   1677 	if (u_entries) {
   1678 		/*
   1679 		 * Scan over the list again, for each entry, if it
   1680 		 * might not be set correctly, call pmap_vac_me_user
   1681 		 * to recalculate the settings.
   1682 		 */
   1683 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1684 			/*
   1685 			 * We know kernel mappings will get set
   1686 			 * correctly in other calls.  We also know
   1687 			 * that if the pmap is the same as last_pmap
   1688 			 * then we've just handled this entry.
   1689 			 */
   1690 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1691 				continue;
   1692 
   1693 			/*
   1694 			 * If there are kernel entries and this page
   1695 			 * is writable but non-cacheable, then we can
   1696 			 * skip this entry also.
   1697 			 */
   1698 			if (md->k_mappings &&
   1699 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1700 			    (PVF_NC | PVF_WRITE))
   1701 				continue;
   1702 
   1703 			/*
   1704 			 * Similarly if there are no kernel-writable
   1705 			 * entries and the page is already
   1706 			 * read-only/cacheable.
   1707 			 */
   1708 			if (md->krw_mappings == 0 &&
   1709 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1710 				continue;
   1711 
   1712 			/*
   1713 			 * For some of the remaining cases, we know
   1714 			 * that we must recalculate, but for others we
   1715 			 * can't tell if they are correct or not, so
   1716 			 * we recalculate anyway.
   1717 			 */
   1718 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1719 		}
   1720 
   1721 		if (md->k_mappings == 0)
   1722 			return;
   1723 	}
   1724 
   1725 	pmap_vac_me_user(md, pa, pm, va);
   1726 }
   1727 
   1728 static void
   1729 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1730 {
   1731 	pmap_t kpmap = pmap_kernel();
   1732 	struct pv_entry *pv, *npv = NULL;
   1733 	struct l2_bucket *l2b;
   1734 	pt_entry_t *ptep, pte;
   1735 	u_int entries = 0;
   1736 	u_int writable = 0;
   1737 	u_int cacheable_entries = 0;
   1738 	u_int kern_cacheable = 0;
   1739 	u_int other_writable = 0;
   1740 
   1741 	/*
   1742 	 * Count mappings and writable mappings in this pmap.
   1743 	 * Include kernel mappings as part of our own.
   1744 	 * Keep a pointer to the first one.
   1745 	 */
   1746 	npv = NULL;
   1747 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1748 		/* Count mappings in the same pmap */
   1749 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1750 			if (entries++ == 0)
   1751 				npv = pv;
   1752 
   1753 			/* Cacheable mappings */
   1754 			if ((pv->pv_flags & PVF_NC) == 0) {
   1755 				cacheable_entries++;
   1756 				if (kpmap == pv->pv_pmap)
   1757 					kern_cacheable++;
   1758 			}
   1759 
   1760 			/* Writable mappings */
   1761 			if (pv->pv_flags & PVF_WRITE)
   1762 				++writable;
   1763 		} else
   1764 		if (pv->pv_flags & PVF_WRITE)
   1765 			other_writable = 1;
   1766 	}
   1767 
   1768 	/*
   1769 	 * Enable or disable caching as necessary.
   1770 	 * Note: the first entry might be part of the kernel pmap,
   1771 	 * so we can't assume this is indicative of the state of the
   1772 	 * other (maybe non-kpmap) entries.
   1773 	 */
   1774 	if ((entries > 1 && writable) ||
   1775 	    (entries > 0 && pm == kpmap && other_writable)) {
   1776 		if (cacheable_entries == 0)
   1777 			return;
   1778 
   1779 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1780 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1781 			    (pv->pv_flags & PVF_NC))
   1782 				continue;
   1783 
   1784 			pv->pv_flags |= PVF_NC;
   1785 
   1786 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1787 			KDASSERT(l2b != NULL);
   1788 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1789 			pte = *ptep & ~L2_S_CACHE_MASK;
   1790 
   1791 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1792 			    && l2pte_valid(pte)) {
   1793 #ifdef PMAP_CACHE_VIVT
   1794 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1795 				    true, pv->pv_flags);
   1796 #endif
   1797 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1798 				    pv->pv_flags);
   1799 			}
   1800 
   1801 			*ptep = pte;
   1802 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1803 		}
   1804 		cpu_cpwait();
   1805 	} else
   1806 	if (entries > cacheable_entries) {
   1807 		/*
   1808 		 * Turn cacheing back on for some pages.  If it is a kernel
   1809 		 * page, only do so if there are no other writable pages.
   1810 		 */
   1811 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1812 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1813 			    (kpmap != pv->pv_pmap || other_writable)))
   1814 				continue;
   1815 
   1816 			pv->pv_flags &= ~PVF_NC;
   1817 
   1818 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1819 			KDASSERT(l2b != NULL);
   1820 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1821 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1822 
   1823 			if (l2pte_valid(pte)) {
   1824 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1825 				    pv->pv_flags);
   1826 			}
   1827 
   1828 			*ptep = pte;
   1829 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1830 		}
   1831 	}
   1832 }
   1833 #endif
   1834 
   1835 #ifdef PMAP_CACHE_VIPT
   1836 static void
   1837 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1838 {
   1839 	struct pv_entry *pv;
   1840 	vaddr_t tst_mask;
   1841 	bool bad_alias;
   1842 	struct l2_bucket *l2b;
   1843 	pt_entry_t *ptep, pte, opte;
   1844 	const u_int
   1845 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   1846 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   1847 
   1848 	/* do we need to do anything? */
   1849 	if (arm_cache_prefer_mask == 0)
   1850 		return;
   1851 
   1852 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   1853 	    md, pm, va));
   1854 
   1855 	KASSERT(!va || pm);
   1856 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1857 
   1858 	/* Already a conflict? */
   1859 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   1860 		/* just an add, things are already non-cached */
   1861 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   1862 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1863 		bad_alias = false;
   1864 		if (va) {
   1865 			PMAPCOUNT(vac_color_none);
   1866 			bad_alias = true;
   1867 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1868 			goto fixup;
   1869 		}
   1870 		pv = SLIST_FIRST(&md->pvh_list);
   1871 		/* the list can't be empty because it would be cachable */
   1872 		if (md->pvh_attrs & PVF_KMPAGE) {
   1873 			tst_mask = md->pvh_attrs;
   1874 		} else {
   1875 			KASSERT(pv);
   1876 			tst_mask = pv->pv_va;
   1877 			pv = SLIST_NEXT(pv, pv_link);
   1878 		}
   1879 		/*
   1880 		 * Only check for a bad alias if we have writable mappings.
   1881 		 */
   1882 		tst_mask &= arm_cache_prefer_mask;
   1883 		if (rw_mappings > 0) {
   1884 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1885 				/* if there's a bad alias, stop checking. */
   1886 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1887 					bad_alias = true;
   1888 			}
   1889 			md->pvh_attrs |= PVF_WRITE;
   1890 			if (!bad_alias)
   1891 				md->pvh_attrs |= PVF_DIRTY;
   1892 		} else {
   1893 			/*
   1894 			 * We have only read-only mappings.  Let's see if there
   1895 			 * are multiple colors in use or if we mapped a KMPAGE.
   1896 			 * If the latter, we have a bad alias.  If the former,
   1897 			 * we need to remember that.
   1898 			 */
   1899 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1900 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   1901 					if (md->pvh_attrs & PVF_KMPAGE)
   1902 						bad_alias = true;
   1903 					break;
   1904 				}
   1905 			}
   1906 			md->pvh_attrs &= ~PVF_WRITE;
   1907 			/*
   1908 			 * No KMPAGE and we exited early, so we must have
   1909 			 * multiple color mappings.
   1910 			 */
   1911 			if (!bad_alias && pv != NULL)
   1912 				md->pvh_attrs |= PVF_MULTCLR;
   1913 		}
   1914 
   1915 		/* If no conflicting colors, set everything back to cached */
   1916 		if (!bad_alias) {
   1917 #ifdef DEBUG
   1918 			if ((md->pvh_attrs & PVF_WRITE)
   1919 			    || ro_mappings < 2) {
   1920 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1921 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1922 			}
   1923 #endif
   1924 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1925 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   1926 			/*
   1927 			 * Restore DIRTY bit if page is modified
   1928 			 */
   1929 			if (md->pvh_attrs & PVF_DMOD)
   1930 				md->pvh_attrs |= PVF_DIRTY;
   1931 			PMAPCOUNT(vac_color_restore);
   1932 		} else {
   1933 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1934 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1935 		}
   1936 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1937 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1938 	} else if (!va) {
   1939 		KASSERT(pmap_is_page_colored_p(md));
   1940 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   1941 		    || (md->pvh_attrs & PVF_DIRTY));
   1942 		if (rw_mappings == 0) {
   1943 			md->pvh_attrs &= ~PVF_WRITE;
   1944 			if (ro_mappings == 1
   1945 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   1946 				/*
   1947 				 * If this is the last readonly mapping
   1948 				 * but it doesn't match the current color
   1949 				 * for the page, change the current color
   1950 				 * to match this last readonly mapping.
   1951 				 */
   1952 				pv = SLIST_FIRST(&md->pvh_list);
   1953 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   1954 				    & arm_cache_prefer_mask;
   1955 				if (tst_mask) {
   1956 					md->pvh_attrs ^= tst_mask;
   1957 					PMAPCOUNT(vac_color_change);
   1958 				}
   1959 			}
   1960 		}
   1961 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1962 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1963 		return;
   1964 	} else if (!pmap_is_page_colored_p(md)) {
   1965 		/* not colored so we just use its color */
   1966 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1967 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1968 		PMAPCOUNT(vac_color_new);
   1969 		md->pvh_attrs &= PAGE_SIZE - 1;
   1970 		md->pvh_attrs |= PVF_COLORED
   1971 		    | (va & arm_cache_prefer_mask)
   1972 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1973 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1974 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1975 		return;
   1976 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1977 		bad_alias = false;
   1978 		if (rw_mappings > 0) {
   1979 			/*
   1980 			 * We now have writeable mappings and if we have
   1981 			 * readonly mappings in more than once color, we have
   1982 			 * an aliasing problem.  Regardless mark the page as
   1983 			 * writeable.
   1984 			 */
   1985 			if (md->pvh_attrs & PVF_MULTCLR) {
   1986 				if (ro_mappings < 2) {
   1987 					/*
   1988 					 * If we only have less than two
   1989 					 * read-only mappings, just flush the
   1990 					 * non-primary colors from the cache.
   1991 					 */
   1992 					pmap_flush_page(md, pa,
   1993 					    PMAP_FLUSH_SECONDARY);
   1994 				} else {
   1995 					bad_alias = true;
   1996 				}
   1997 			}
   1998 			md->pvh_attrs |= PVF_WRITE;
   1999 		}
   2000 		/* If no conflicting colors, set everything back to cached */
   2001 		if (!bad_alias) {
   2002 #ifdef DEBUG
   2003 			if (rw_mappings > 0
   2004 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2005 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2006 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2007 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2008 			}
   2009 #endif
   2010 			if (SLIST_EMPTY(&md->pvh_list))
   2011 				PMAPCOUNT(vac_color_reuse);
   2012 			else
   2013 				PMAPCOUNT(vac_color_ok);
   2014 
   2015 			/* matching color, just return */
   2016 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2017 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2018 			return;
   2019 		}
   2020 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2021 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2022 
   2023 		/* color conflict.  evict from cache. */
   2024 
   2025 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2026 		md->pvh_attrs &= ~PVF_COLORED;
   2027 		md->pvh_attrs |= PVF_NC;
   2028 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2029 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2030 		PMAPCOUNT(vac_color_erase);
   2031 	} else if (rw_mappings == 0
   2032 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2033 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2034 
   2035 		/*
   2036 		 * If the page has dirty cache lines, clean it.
   2037 		 */
   2038 		if (md->pvh_attrs & PVF_DIRTY)
   2039 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2040 
   2041 		/*
   2042 		 * If this is the first remapping (we know that there are no
   2043 		 * writeable mappings), then this is a simple color change.
   2044 		 * Otherwise this is a seconary r/o mapping, which means
   2045 		 * we don't have to do anything.
   2046 		 */
   2047 		if (ro_mappings == 1) {
   2048 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2049 			md->pvh_attrs &= PAGE_SIZE - 1;
   2050 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2051 			PMAPCOUNT(vac_color_change);
   2052 		} else {
   2053 			PMAPCOUNT(vac_color_blind);
   2054 		}
   2055 		md->pvh_attrs |= PVF_MULTCLR;
   2056 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2057 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2058 		return;
   2059 	} else {
   2060 		if (rw_mappings > 0)
   2061 			md->pvh_attrs |= PVF_WRITE;
   2062 
   2063 		/* color conflict.  evict from cache. */
   2064 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2065 
   2066 		/* the list can't be empty because this was a enter/modify */
   2067 		pv = SLIST_FIRST(&md->pvh_list);
   2068 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2069 			KASSERT(pv);
   2070 			/*
   2071 			 * If there's only one mapped page, change color to the
   2072 			 * page's new color and return.  Restore the DIRTY bit
   2073 			 * that was erased by pmap_flush_page.
   2074 			 */
   2075 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2076 				md->pvh_attrs &= PAGE_SIZE - 1;
   2077 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2078 				if (md->pvh_attrs & PVF_DMOD)
   2079 					md->pvh_attrs |= PVF_DIRTY;
   2080 				PMAPCOUNT(vac_color_change);
   2081 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2082 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2083 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2084 				return;
   2085 			}
   2086 		}
   2087 		bad_alias = true;
   2088 		md->pvh_attrs &= ~PVF_COLORED;
   2089 		md->pvh_attrs |= PVF_NC;
   2090 		PMAPCOUNT(vac_color_erase);
   2091 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2092 	}
   2093 
   2094   fixup:
   2095 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2096 
   2097 	/*
   2098 	 * Turn cacheing on/off for all pages.
   2099 	 */
   2100 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2101 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2102 		KDASSERT(l2b != NULL);
   2103 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2104 		opte = *ptep;
   2105 		pte = opte & ~L2_S_CACHE_MASK;
   2106 		if (bad_alias) {
   2107 			pv->pv_flags |= PVF_NC;
   2108 		} else {
   2109 			pv->pv_flags &= ~PVF_NC;
   2110 			pte |= pte_l2_s_cache_mode;
   2111 		}
   2112 
   2113 		if (opte == pte)	/* only update is there's a change */
   2114 			continue;
   2115 
   2116 		if (l2pte_valid(pte)) {
   2117 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2118 			    pv->pv_flags);
   2119 		}
   2120 
   2121 		*ptep = pte;
   2122 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2123 	}
   2124 }
   2125 #endif	/* PMAP_CACHE_VIPT */
   2126 
   2127 
   2128 /*
   2129  * Modify pte bits for all ptes corresponding to the given physical address.
   2130  * We use `maskbits' rather than `clearbits' because we're always passing
   2131  * constants and the latter would require an extra inversion at run-time.
   2132  */
   2133 static void
   2134 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2135 {
   2136 	struct l2_bucket *l2b;
   2137 	struct pv_entry *pv;
   2138 	pt_entry_t *ptep, npte, opte;
   2139 	pmap_t pm;
   2140 	vaddr_t va;
   2141 	u_int oflags;
   2142 #ifdef PMAP_CACHE_VIPT
   2143 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2144 	bool need_syncicache = false;
   2145 	bool did_syncicache = false;
   2146 	bool need_vac_me_harder = false;
   2147 #endif
   2148 
   2149 	NPDEBUG(PDB_BITS,
   2150 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2151 	    md, maskbits));
   2152 
   2153 #ifdef PMAP_CACHE_VIPT
   2154 	/*
   2155 	 * If we might want to sync the I-cache and we've modified it,
   2156 	 * then we know we definitely need to sync or discard it.
   2157 	 */
   2158 	if (want_syncicache)
   2159 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2160 #endif
   2161 	/*
   2162 	 * Clear saved attributes (modify, reference)
   2163 	 */
   2164 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2165 
   2166 	if (SLIST_EMPTY(&md->pvh_list)) {
   2167 #ifdef PMAP_CACHE_VIPT
   2168 		if (need_syncicache) {
   2169 			/*
   2170 			 * No one has it mapped, so just discard it.  The next
   2171 			 * exec remapping will cause it to be synced.
   2172 			 */
   2173 			md->pvh_attrs &= ~PVF_EXEC;
   2174 			PMAPCOUNT(exec_discarded_clearbit);
   2175 		}
   2176 #endif
   2177 		return;
   2178 	}
   2179 
   2180 	/*
   2181 	 * Loop over all current mappings setting/clearing as appropos
   2182 	 */
   2183 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2184 		va = pv->pv_va;
   2185 		pm = pv->pv_pmap;
   2186 		oflags = pv->pv_flags;
   2187 		/*
   2188 		 * Kernel entries are unmanaged and as such not to be changed.
   2189 		 */
   2190 		if (oflags & PVF_KENTRY)
   2191 			continue;
   2192 		pv->pv_flags &= ~maskbits;
   2193 
   2194 		pmap_acquire_pmap_lock(pm);
   2195 
   2196 		l2b = pmap_get_l2_bucket(pm, va);
   2197 		KDASSERT(l2b != NULL);
   2198 
   2199 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2200 		npte = opte = *ptep;
   2201 
   2202 		NPDEBUG(PDB_BITS,
   2203 		    printf(
   2204 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2205 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2206 
   2207 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2208 #ifdef PMAP_CACHE_VIVT
   2209 			if ((pv->pv_flags & PVF_NC)) {
   2210 				/*
   2211 				 * Entry is not cacheable:
   2212 				 *
   2213 				 * Don't turn caching on again if this is a
   2214 				 * modified emulation. This would be
   2215 				 * inconsitent with the settings created by
   2216 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2217 				 * to re-enable cacheing.
   2218 				 *
   2219 				 * There's no need to call pmap_vac_me_harder()
   2220 				 * here: all pages are losing their write
   2221 				 * permission.
   2222 				 */
   2223 				if (maskbits & PVF_WRITE) {
   2224 					npte |= pte_l2_s_cache_mode;
   2225 					pv->pv_flags &= ~PVF_NC;
   2226 				}
   2227 			} else
   2228 			if (l2pte_writable_p(opte)) {
   2229 				/*
   2230 				 * Entry is writable/cacheable: check if pmap
   2231 				 * is current if it is flush it, otherwise it
   2232 				 * won't be in the cache
   2233 				 */
   2234 				pmap_cache_wbinv_page(pm, pv->pv_va,
   2235 				    (maskbits & PVF_REF) != 0,
   2236 				    oflags|PVF_WRITE);
   2237 			}
   2238 #endif
   2239 
   2240 			/* make the pte read only */
   2241 			npte = l2pte_set_readonly(npte);
   2242 
   2243 			if (maskbits & oflags & PVF_WRITE) {
   2244 				/*
   2245 				 * Keep alias accounting up to date
   2246 				 */
   2247 				if (pv->pv_pmap == pmap_kernel()) {
   2248 					md->krw_mappings--;
   2249 					md->kro_mappings++;
   2250 				} else {
   2251 					md->urw_mappings--;
   2252 					md->uro_mappings++;
   2253 				}
   2254 #ifdef PMAP_CACHE_VIPT
   2255 				if (arm_cache_prefer_mask != 0) {
   2256 					if (md->urw_mappings + md->krw_mappings == 0) {
   2257 						md->pvh_attrs &= ~PVF_WRITE;
   2258 					} else {
   2259 						PMAP_VALIDATE_MD_PAGE(md);
   2260 					}
   2261 				}
   2262 				if (want_syncicache)
   2263 					need_syncicache = true;
   2264 				need_vac_me_harder = true;
   2265 #endif
   2266 			}
   2267 		}
   2268 
   2269 		if (maskbits & PVF_REF) {
   2270 			if ((pv->pv_flags & PVF_NC) == 0
   2271 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2272 			    && l2pte_valid(npte)) {
   2273 #ifdef PMAP_CACHE_VIVT
   2274 				/*
   2275 				 * Check npte here; we may have already
   2276 				 * done the wbinv above, and the validity
   2277 				 * of the PTE is the same for opte and
   2278 				 * npte.
   2279 				 */
   2280 				pmap_cache_wbinv_page(pm, pv->pv_va, true,
   2281 				    oflags);
   2282 #endif
   2283 			}
   2284 
   2285 			/*
   2286 			 * Make the PTE invalid so that we will take a
   2287 			 * page fault the next time the mapping is
   2288 			 * referenced.
   2289 			 */
   2290 			npte &= ~L2_TYPE_MASK;
   2291 			npte |= L2_TYPE_INV;
   2292 		}
   2293 
   2294 		if (npte != opte) {
   2295 			*ptep = npte;
   2296 			PTE_SYNC(ptep);
   2297 			/* Flush the TLB entry if a current pmap. */
   2298 			pmap_tlb_flush_SE(pm, pv->pv_va, oflags);
   2299 		}
   2300 
   2301 		pmap_release_pmap_lock(pm);
   2302 
   2303 		NPDEBUG(PDB_BITS,
   2304 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2305 		    pm, va, opte, npte));
   2306 	}
   2307 
   2308 #ifdef PMAP_CACHE_VIPT
   2309 	/*
   2310 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2311 	 */
   2312 	if (need_syncicache && !did_syncicache) {
   2313 		pmap_syncicache_page(md, pa);
   2314 		PMAPCOUNT(exec_synced_clearbit);
   2315 	}
   2316 	/*
   2317 	 * If we are changing this to read-only, we need to call vac_me_harder
   2318 	 * so we can change all the read-only pages to cacheable.  We pretend
   2319 	 * this as a page deletion.
   2320 	 */
   2321 	if (need_vac_me_harder) {
   2322 		if (md->pvh_attrs & PVF_NC)
   2323 			pmap_vac_me_harder(md, pa, NULL, 0);
   2324 	}
   2325 #endif
   2326 }
   2327 
   2328 /*
   2329  * pmap_clean_page()
   2330  *
   2331  * This is a local function used to work out the best strategy to clean
   2332  * a single page referenced by its entry in the PV table. It's used by
   2333  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2334  *
   2335  * Its policy is effectively:
   2336  *  o If there are no mappings, we don't bother doing anything with the cache.
   2337  *  o If there is one mapping, we clean just that page.
   2338  *  o If there are multiple mappings, we clean the entire cache.
   2339  *
   2340  * So that some functions can be further optimised, it returns 0 if it didn't
   2341  * clean the entire cache, or 1 if it did.
   2342  *
   2343  * XXX One bug in this routine is that if the pv_entry has a single page
   2344  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2345  * just the 1 page. Since this should not occur in everyday use and if it does
   2346  * it will just result in not the most efficient clean for the page.
   2347  */
   2348 #ifdef PMAP_CACHE_VIVT
   2349 static int
   2350 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2351 {
   2352 	pmap_t pm_to_clean = NULL;
   2353 	struct pv_entry *npv;
   2354 	u_int cache_needs_cleaning = 0;
   2355 	u_int flags = 0;
   2356 	vaddr_t page_to_clean = 0;
   2357 
   2358 	if (pv == NULL) {
   2359 		/* nothing mapped in so nothing to flush */
   2360 		return (0);
   2361 	}
   2362 
   2363 	/*
   2364 	 * Since we flush the cache each time we change to a different
   2365 	 * user vmspace, we only need to flush the page if it is in the
   2366 	 * current pmap.
   2367 	 */
   2368 
   2369 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2370 		if (pmap_is_current(npv->pv_pmap)) {
   2371 			flags |= npv->pv_flags;
   2372 			/*
   2373 			 * The page is mapped non-cacheable in
   2374 			 * this map.  No need to flush the cache.
   2375 			 */
   2376 			if (npv->pv_flags & PVF_NC) {
   2377 #ifdef DIAGNOSTIC
   2378 				if (cache_needs_cleaning)
   2379 					panic("pmap_clean_page: "
   2380 					    "cache inconsistency");
   2381 #endif
   2382 				break;
   2383 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2384 				continue;
   2385 			if (cache_needs_cleaning) {
   2386 				page_to_clean = 0;
   2387 				break;
   2388 			} else {
   2389 				page_to_clean = npv->pv_va;
   2390 				pm_to_clean = npv->pv_pmap;
   2391 			}
   2392 			cache_needs_cleaning = 1;
   2393 		}
   2394 	}
   2395 
   2396 	if (page_to_clean) {
   2397 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2398 		    !is_src, flags | PVF_REF);
   2399 	} else if (cache_needs_cleaning) {
   2400 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2401 
   2402 		pmap_cache_wbinv_all(pm, flags);
   2403 		return (1);
   2404 	}
   2405 	return (0);
   2406 }
   2407 #endif
   2408 
   2409 #ifdef PMAP_CACHE_VIPT
   2410 /*
   2411  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2412  * right cache alias to make sure we flush the right stuff.
   2413  */
   2414 void
   2415 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2416 {
   2417 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2418 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2419 
   2420 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2421 	    md, md->pvh_attrs));
   2422 	/*
   2423 	 * No need to clean the page if it's non-cached.
   2424 	 */
   2425 	if (md->pvh_attrs & PVF_NC)
   2426 		return;
   2427 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2428 
   2429 	pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
   2430 	/*
   2431 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2432 	 */
   2433 	*ptep = L2_S_PROTO |
   2434 	    pa
   2435 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2436 	    | pte_l2_s_cache_mode;
   2437 	PTE_SYNC(ptep);
   2438 
   2439 	/*
   2440 	 * Flush it.
   2441 	 */
   2442 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2443 	/*
   2444 	 * Unmap the page.
   2445 	 */
   2446 	*ptep = 0;
   2447 	PTE_SYNC(ptep);
   2448 	pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
   2449 
   2450 	md->pvh_attrs |= PVF_EXEC;
   2451 	PMAPCOUNT(exec_synced);
   2452 }
   2453 
   2454 void
   2455 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2456 {
   2457 	vsize_t va_offset, end_va;
   2458 	bool wbinv_p;
   2459 
   2460 	if (arm_cache_prefer_mask == 0)
   2461 		return;
   2462 
   2463 	switch (flush) {
   2464 	case PMAP_FLUSH_PRIMARY:
   2465 		if (md->pvh_attrs & PVF_MULTCLR) {
   2466 			va_offset = 0;
   2467 			end_va = arm_cache_prefer_mask;
   2468 			md->pvh_attrs &= ~PVF_MULTCLR;
   2469 			PMAPCOUNT(vac_flush_lots);
   2470 		} else {
   2471 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2472 			end_va = va_offset;
   2473 			PMAPCOUNT(vac_flush_one);
   2474 		}
   2475 		/*
   2476 		 * Mark that the page is no longer dirty.
   2477 		 */
   2478 		md->pvh_attrs &= ~PVF_DIRTY;
   2479 		wbinv_p = true;
   2480 		break;
   2481 	case PMAP_FLUSH_SECONDARY:
   2482 		va_offset = 0;
   2483 		end_va = arm_cache_prefer_mask;
   2484 		wbinv_p = true;
   2485 		md->pvh_attrs &= ~PVF_MULTCLR;
   2486 		PMAPCOUNT(vac_flush_lots);
   2487 		break;
   2488 	case PMAP_CLEAN_PRIMARY:
   2489 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2490 		end_va = va_offset;
   2491 		wbinv_p = false;
   2492 		/*
   2493 		 * Mark that the page is no longer dirty.
   2494 		 */
   2495 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2496 			md->pvh_attrs &= ~PVF_DIRTY;
   2497 		PMAPCOUNT(vac_clean_one);
   2498 		break;
   2499 	default:
   2500 		return;
   2501 	}
   2502 
   2503 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2504 
   2505 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2506 	    md, md->pvh_attrs));
   2507 
   2508 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2509 
   2510 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2511 		const size_t pte_offset = va_offset >> PGSHIFT;
   2512 		pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2513 		const pt_entry_t oldpte = *ptep;
   2514 
   2515 		if (flush == PMAP_FLUSH_SECONDARY
   2516 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2517 			continue;
   2518 
   2519 		pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
   2520 		    PVF_REF | PVF_EXEC);
   2521 		/*
   2522 		 * Set up a PTE with the right coloring to flush
   2523 		 * existing cache entries.
   2524 		 */
   2525 		*ptep = L2_S_PROTO
   2526 		    | pa
   2527 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2528 		    | pte_l2_s_cache_mode;
   2529 		PTE_SYNC(ptep);
   2530 
   2531 		/*
   2532 		 * Flush it.
   2533 		 */
   2534                 vaddr_t va = cdstp + va_offset;
   2535 		if (scache_line_size != 0) {
   2536 			cpu_dcache_wb_range(va, PAGE_SIZE);
   2537 			if (wbinv_p) {
   2538 				cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
   2539 				cpu_dcache_inv_range(va, PAGE_SIZE);
   2540 			} else {
   2541 				cpu_sdcache_wb_range(va, pa, PAGE_SIZE);
   2542 			}
   2543 		} else {
   2544 			if (wbinv_p) {
   2545 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   2546 			} else {
   2547 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2548 			}
   2549 		}
   2550 
   2551 		/*
   2552 		 * Restore the page table entry since we might have interrupted
   2553 		 * pmap_zero_page or pmap_copy_page which was already using
   2554 		 * this pte.
   2555 		 */
   2556 		*ptep = oldpte;
   2557 		PTE_SYNC(ptep);
   2558 		pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
   2559 		    PVF_REF | PVF_EXEC);
   2560 	}
   2561 }
   2562 #endif /* PMAP_CACHE_VIPT */
   2563 
   2564 /*
   2565  * Routine:	pmap_page_remove
   2566  * Function:
   2567  *		Removes this physical page from
   2568  *		all physical maps in which it resides.
   2569  *		Reflects back modify bits to the pager.
   2570  */
   2571 static void
   2572 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2573 {
   2574 	struct l2_bucket *l2b;
   2575 	struct pv_entry *pv, *npv, **pvp;
   2576 	pmap_t pm;
   2577 	pt_entry_t *ptep;
   2578 	bool flush;
   2579 	u_int flags;
   2580 
   2581 	NPDEBUG(PDB_FOLLOW,
   2582 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2583 	    pa));
   2584 
   2585 	pv = SLIST_FIRST(&md->pvh_list);
   2586 	if (pv == NULL) {
   2587 #ifdef PMAP_CACHE_VIPT
   2588 		/*
   2589 		 * We *know* the page contents are about to be replaced.
   2590 		 * Discard the exec contents
   2591 		 */
   2592 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2593 			PMAPCOUNT(exec_discarded_page_protect);
   2594 		md->pvh_attrs &= ~PVF_EXEC;
   2595 		PMAP_VALIDATE_MD_PAGE(md);
   2596 #endif
   2597 		return;
   2598 	}
   2599 #ifdef PMAP_CACHE_VIPT
   2600 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2601 #endif
   2602 
   2603 	/*
   2604 	 * Clear alias counts
   2605 	 */
   2606 #ifdef PMAP_CACHE_VIVT
   2607 	md->k_mappings = 0;
   2608 #endif
   2609 	md->urw_mappings = md->uro_mappings = 0;
   2610 
   2611 	flush = false;
   2612 	flags = 0;
   2613 
   2614 #ifdef PMAP_CACHE_VIVT
   2615 	pmap_clean_page(pv, false);
   2616 #endif
   2617 
   2618 	pvp = &SLIST_FIRST(&md->pvh_list);
   2619 	while (pv) {
   2620 		pm = pv->pv_pmap;
   2621 		npv = SLIST_NEXT(pv, pv_link);
   2622 		if (flush == false && pmap_is_current(pm))
   2623 			flush = true;
   2624 
   2625 		if (pm == pmap_kernel()) {
   2626 #ifdef PMAP_CACHE_VIPT
   2627 			/*
   2628 			 * If this was unmanaged mapping, it must be preserved.
   2629 			 * Move it back on the list and advance the end-of-list
   2630 			 * pointer.
   2631 			 */
   2632 			if (pv->pv_flags & PVF_KENTRY) {
   2633 				*pvp = pv;
   2634 				pvp = &SLIST_NEXT(pv, pv_link);
   2635 				pv = npv;
   2636 				continue;
   2637 			}
   2638 			if (pv->pv_flags & PVF_WRITE)
   2639 				md->krw_mappings--;
   2640 			else
   2641 				md->kro_mappings--;
   2642 #endif
   2643 			PMAPCOUNT(kernel_unmappings);
   2644 		}
   2645 		PMAPCOUNT(unmappings);
   2646 
   2647 		pmap_acquire_pmap_lock(pm);
   2648 
   2649 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2650 		KDASSERT(l2b != NULL);
   2651 
   2652 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2653 
   2654 		/*
   2655 		 * Update statistics
   2656 		 */
   2657 		--pm->pm_stats.resident_count;
   2658 
   2659 		/* Wired bit */
   2660 		if (pv->pv_flags & PVF_WIRED)
   2661 			--pm->pm_stats.wired_count;
   2662 
   2663 		flags |= pv->pv_flags;
   2664 
   2665 		/*
   2666 		 * Invalidate the PTEs.
   2667 		 */
   2668 		*ptep = 0;
   2669 		PTE_SYNC_CURRENT(pm, ptep);
   2670 		pmap_free_l2_bucket(pm, l2b, 1);
   2671 
   2672 		pool_put(&pmap_pv_pool, pv);
   2673 		pv = npv;
   2674 		/*
   2675 		 * if we reach the end of the list and there are still
   2676 		 * mappings, they might be able to be cached now.
   2677 		 */
   2678 		if (pv == NULL) {
   2679 			*pvp = NULL;
   2680 			if (!SLIST_EMPTY(&md->pvh_list))
   2681 				pmap_vac_me_harder(md, pa, pm, 0);
   2682 		}
   2683 		pmap_release_pmap_lock(pm);
   2684 	}
   2685 #ifdef PMAP_CACHE_VIPT
   2686 	/*
   2687 	 * Its EXEC cache is now gone.
   2688 	 */
   2689 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2690 		PMAPCOUNT(exec_discarded_page_protect);
   2691 	md->pvh_attrs &= ~PVF_EXEC;
   2692 	KASSERT(md->urw_mappings == 0);
   2693 	KASSERT(md->uro_mappings == 0);
   2694 	if (arm_cache_prefer_mask != 0) {
   2695 		if (md->krw_mappings == 0)
   2696 			md->pvh_attrs &= ~PVF_WRITE;
   2697 		PMAP_VALIDATE_MD_PAGE(md);
   2698 	}
   2699 #endif
   2700 
   2701 	if (flush) {
   2702 		/*
   2703 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2704 		 * would need a subsequent call to pmap_update() to ensure
   2705 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2706 		 * required to do that (see pmap(9)), so we can't modify
   2707 		 * the current pmap's state.
   2708 		 */
   2709 		if (PV_BEEN_EXECD(flags))
   2710 			cpu_tlb_flushID();
   2711 		else
   2712 			cpu_tlb_flushD();
   2713 	}
   2714 	cpu_cpwait();
   2715 }
   2716 
   2717 /*
   2718  * pmap_t pmap_create(void)
   2719  *
   2720  *      Create a new pmap structure from scratch.
   2721  */
   2722 pmap_t
   2723 pmap_create(void)
   2724 {
   2725 	pmap_t pm;
   2726 
   2727 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2728 
   2729 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2730 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2731 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2732 
   2733 	pm->pm_stats.wired_count = 0;
   2734 	pm->pm_stats.resident_count = 1;
   2735 	pm->pm_cstate.cs_all = 0;
   2736 	pmap_alloc_l1(pm);
   2737 
   2738 	/*
   2739 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2740 	 * initialised to zero.
   2741 	 */
   2742 
   2743 	pmap_pinit(pm);
   2744 
   2745 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2746 
   2747 	return (pm);
   2748 }
   2749 
   2750 u_int
   2751 arm32_mmap_flags(paddr_t pa)
   2752 {
   2753 	/*
   2754 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   2755 	 * and we're using the upper bits in page numbers to pass flags around
   2756 	 * so we might as well use the same bits
   2757 	 */
   2758 	return (u_int)pa & PMAP_MD_MASK;
   2759 }
   2760 /*
   2761  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2762  *      u_int flags)
   2763  *
   2764  *      Insert the given physical page (p) at
   2765  *      the specified virtual address (v) in the
   2766  *      target physical map with the protection requested.
   2767  *
   2768  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2769  *      or lose information.  That is, this routine must actually
   2770  *      insert this page into the given map NOW.
   2771  */
   2772 int
   2773 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2774 {
   2775 	struct l2_bucket *l2b;
   2776 	struct vm_page *pg, *opg;
   2777 	struct pv_entry *pv;
   2778 	pt_entry_t *ptep, npte, opte;
   2779 	u_int nflags;
   2780 	u_int oflags;
   2781 #ifdef ARM_HAS_VBAR
   2782 	const bool vector_page_p = false;
   2783 #else
   2784 	const bool vector_page_p = (va == vector_page);
   2785 #endif
   2786 
   2787 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2788 
   2789 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2790 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2791 
   2792 	/*
   2793 	 * Get a pointer to the page.  Later on in this function, we
   2794 	 * test for a managed page by checking pg != NULL.
   2795 	 */
   2796 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2797 
   2798 	nflags = 0;
   2799 	if (prot & VM_PROT_WRITE)
   2800 		nflags |= PVF_WRITE;
   2801 	if (prot & VM_PROT_EXECUTE)
   2802 		nflags |= PVF_EXEC;
   2803 	if (flags & PMAP_WIRED)
   2804 		nflags |= PVF_WIRED;
   2805 
   2806 	pmap_acquire_pmap_lock(pm);
   2807 
   2808 	/*
   2809 	 * Fetch the L2 bucket which maps this page, allocating one if
   2810 	 * necessary for user pmaps.
   2811 	 */
   2812 	if (pm == pmap_kernel())
   2813 		l2b = pmap_get_l2_bucket(pm, va);
   2814 	else
   2815 		l2b = pmap_alloc_l2_bucket(pm, va);
   2816 	if (l2b == NULL) {
   2817 		if (flags & PMAP_CANFAIL) {
   2818 			pmap_release_pmap_lock(pm);
   2819 			return (ENOMEM);
   2820 		}
   2821 		panic("pmap_enter: failed to allocate L2 bucket");
   2822 	}
   2823 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2824 	opte = *ptep;
   2825 	npte = pa;
   2826 	oflags = 0;
   2827 
   2828 	if (opte) {
   2829 		/*
   2830 		 * There is already a mapping at this address.
   2831 		 * If the physical address is different, lookup the
   2832 		 * vm_page.
   2833 		 */
   2834 		if (l2pte_pa(opte) != pa)
   2835 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2836 		else
   2837 			opg = pg;
   2838 	} else
   2839 		opg = NULL;
   2840 
   2841 	if (pg) {
   2842 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2843 
   2844 		/*
   2845 		 * This is to be a managed mapping.
   2846 		 */
   2847 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   2848 			/*
   2849 			 * - The access type indicates that we don't need
   2850 			 *   to do referenced emulation.
   2851 			 * OR
   2852 			 * - The physical page has already been referenced
   2853 			 *   so no need to re-do referenced emulation here.
   2854 			 */
   2855 			npte |= l2pte_set_readonly(L2_S_PROTO);
   2856 
   2857 			nflags |= PVF_REF;
   2858 
   2859 			if ((prot & VM_PROT_WRITE) != 0 &&
   2860 			    ((flags & VM_PROT_WRITE) != 0 ||
   2861 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   2862 				/*
   2863 				 * This is a writable mapping, and the
   2864 				 * page's mod state indicates it has
   2865 				 * already been modified. Make it
   2866 				 * writable from the outset.
   2867 				 */
   2868 				npte = l2pte_set_writable(npte);
   2869 				nflags |= PVF_MOD;
   2870 			}
   2871 		} else {
   2872 			/*
   2873 			 * Need to do page referenced emulation.
   2874 			 */
   2875 			npte |= L2_TYPE_INV;
   2876 		}
   2877 
   2878 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   2879 			npte |= pte_l2_s_wc_mode;
   2880 		} else
   2881 			npte |= pte_l2_s_cache_mode;
   2882 
   2883 		if (pg == opg) {
   2884 			/*
   2885 			 * We're changing the attrs of an existing mapping.
   2886 			 */
   2887 #ifdef MULTIPROCESSOR
   2888 			KASSERT(uvm_page_locked_p(pg));
   2889 #endif
   2890 			oflags = pmap_modify_pv(md, pa, pm, va,
   2891 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2892 			    PVF_MOD | PVF_REF, nflags);
   2893 
   2894 #ifdef PMAP_CACHE_VIVT
   2895 			/*
   2896 			 * We may need to flush the cache if we're
   2897 			 * doing rw-ro...
   2898 			 */
   2899 			if (pm->pm_cstate.cs_cache_d &&
   2900 			    (oflags & PVF_NC) == 0 &&
   2901 			    l2pte_writable_p(opte) &&
   2902 			    (prot & VM_PROT_WRITE) == 0)
   2903 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2904 #endif
   2905 		} else {
   2906 			/*
   2907 			 * New mapping, or changing the backing page
   2908 			 * of an existing mapping.
   2909 			 */
   2910 			if (opg) {
   2911 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2912 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2913 
   2914 				/*
   2915 				 * Replacing an existing mapping with a new one.
   2916 				 * It is part of our managed memory so we
   2917 				 * must remove it from the PV list
   2918 				 */
   2919 #ifdef MULTIPROCESSOR
   2920 				KASSERT(uvm_page_locked_p(opg));
   2921 #endif
   2922 				pv = pmap_remove_pv(omd, opa, pm, va);
   2923 				pmap_vac_me_harder(omd, opa, pm, 0);
   2924 				oflags = pv->pv_flags;
   2925 
   2926 #ifdef PMAP_CACHE_VIVT
   2927 				/*
   2928 				 * If the old mapping was valid (ref/mod
   2929 				 * emulation creates 'invalid' mappings
   2930 				 * initially) then make sure to frob
   2931 				 * the cache.
   2932 				 */
   2933 				if (!(oflags & PVF_NC) && l2pte_valid(opte)) {
   2934 					pmap_cache_wbinv_page(pm, va, true,
   2935 					    oflags);
   2936 				}
   2937 #endif
   2938 			} else
   2939 			if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2940 				if ((flags & PMAP_CANFAIL) == 0)
   2941 					panic("pmap_enter: no pv entries");
   2942 
   2943 				if (pm != pmap_kernel())
   2944 					pmap_free_l2_bucket(pm, l2b, 0);
   2945 				pmap_release_pmap_lock(pm);
   2946 				NPDEBUG(PDB_ENTER,
   2947 				    printf("pmap_enter: ENOMEM\n"));
   2948 				return (ENOMEM);
   2949 			}
   2950 
   2951 #ifdef MULTIPROCESSOR
   2952 			KASSERT(uvm_page_locked_p(pg));
   2953 #endif
   2954 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   2955 		}
   2956 	} else {
   2957 		/*
   2958 		 * We're mapping an unmanaged page.
   2959 		 * These are always readable, and possibly writable, from
   2960 		 * the get go as we don't need to track ref/mod status.
   2961 		 */
   2962 		npte |= l2pte_set_readonly(L2_S_PROTO);
   2963 		if (prot & VM_PROT_WRITE)
   2964 			npte = l2pte_set_writable(npte);
   2965 
   2966 		/*
   2967 		 * Make sure the vector table is mapped cacheable
   2968 		 */
   2969 		if ((vector_page_p && pm != pmap_kernel())
   2970 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   2971 			npte |= pte_l2_s_cache_mode;
   2972 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   2973 			npte |= pte_l2_s_wc_mode;
   2974 		}
   2975 		if (opg) {
   2976 			/*
   2977 			 * Looks like there's an existing 'managed' mapping
   2978 			 * at this address.
   2979 			 */
   2980 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2981 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2982 
   2983 #ifdef MULTIPROCESSOR
   2984 			KASSERT(uvm_page_locked_p(opg));
   2985 #endif
   2986 			pv = pmap_remove_pv(omd, opa, pm, va);
   2987 			pmap_vac_me_harder(omd, opa, pm, 0);
   2988 			oflags = pv->pv_flags;
   2989 
   2990 #ifdef PMAP_CACHE_VIVT
   2991 			if (!(oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2992 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2993 			}
   2994 #endif
   2995 			pool_put(&pmap_pv_pool, pv);
   2996 		}
   2997 	}
   2998 
   2999 	/*
   3000 	 * Make sure userland mappings get the right permissions
   3001 	 */
   3002 	if (!vector_page_p && pm != pmap_kernel()) {
   3003 		npte |= L2_S_PROT_U;
   3004 	}
   3005 
   3006 	/*
   3007 	 * Keep the stats up to date
   3008 	 */
   3009 	if (opte == 0) {
   3010 		l2b->l2b_occupancy++;
   3011 		pm->pm_stats.resident_count++;
   3012 	}
   3013 
   3014 	NPDEBUG(PDB_ENTER,
   3015 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   3016 
   3017 	/*
   3018 	 * If this is just a wiring change, the two PTEs will be
   3019 	 * identical, so there's no need to update the page table.
   3020 	 */
   3021 	if (npte != opte) {
   3022 		bool is_cached = pmap_is_cached(pm);
   3023 
   3024 		*ptep = npte;
   3025 		PTE_SYNC(ptep);
   3026 		if (is_cached) {
   3027 			/*
   3028 			 * We only need to frob the cache/tlb if this pmap
   3029 			 * is current
   3030 			 */
   3031 			if (!vector_page_p && l2pte_valid(npte)) {
   3032 				/*
   3033 				 * This mapping is likely to be accessed as
   3034 				 * soon as we return to userland. Fix up the
   3035 				 * L1 entry to avoid taking another
   3036 				 * page/domain fault.
   3037 				 */
   3038 				pd_entry_t *pl1pd, l1pd;
   3039 
   3040 				pl1pd = pmap_l1_kva(pm) + L1_IDX(va);
   3041 				l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) |
   3042 				    L1_C_PROTO;
   3043 				if (*pl1pd != l1pd) {
   3044 					*pl1pd = l1pd;
   3045 					PTE_SYNC(pl1pd);
   3046 				}
   3047 			}
   3048 		}
   3049 
   3050 		pmap_tlb_flush_SE(pm, va, oflags);
   3051 
   3052 		NPDEBUG(PDB_ENTER,
   3053 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   3054 		    is_cached, pm->pm_cstate.cs_all));
   3055 
   3056 		if (pg != NULL) {
   3057 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3058 
   3059 #ifdef MULTIPROCESSOR
   3060 			KASSERT(uvm_page_locked_p(pg));
   3061 #endif
   3062 			pmap_vac_me_harder(md, pa, pm, va);
   3063 		}
   3064 	}
   3065 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3066 	if (pg) {
   3067 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3068 
   3069 #ifdef MULTIPROCESSOR
   3070 		KASSERT(uvm_page_locked_p(pg));
   3071 #endif
   3072 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3073 		PMAP_VALIDATE_MD_PAGE(md);
   3074 	}
   3075 #endif
   3076 
   3077 	pmap_release_pmap_lock(pm);
   3078 
   3079 	return (0);
   3080 }
   3081 
   3082 /*
   3083  * pmap_remove()
   3084  *
   3085  * pmap_remove is responsible for nuking a number of mappings for a range
   3086  * of virtual address space in the current pmap. To do this efficiently
   3087  * is interesting, because in a number of cases a wide virtual address
   3088  * range may be supplied that contains few actual mappings. So, the
   3089  * optimisations are:
   3090  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3091  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3092  *     maybe do just a partial cache clean. This path of execution is
   3093  *     complicated by the fact that the cache must be flushed _before_
   3094  *     the PTE is nuked, being a VAC :-)
   3095  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3096  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3097  *     already flushed the cache.
   3098  *  4. Maybe later fast-case a single page, but I don't think this is
   3099  *     going to make _that_ much difference overall.
   3100  */
   3101 
   3102 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3103 
   3104 void
   3105 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3106 {
   3107 	struct l2_bucket *l2b;
   3108 	vaddr_t next_bucket;
   3109 	pt_entry_t *ptep;
   3110 	u_int cleanlist_idx, total, cnt;
   3111 	struct {
   3112 		vaddr_t va;
   3113 		pt_entry_t *ptep;
   3114 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3115 	u_int mappings;
   3116 
   3117 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3118 	    "eva=%08lx\n", pm, sva, eva));
   3119 
   3120 	/*
   3121 	 * we lock in the pmap => pv_head direction
   3122 	 */
   3123 	pmap_acquire_pmap_lock(pm);
   3124 
   3125 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3126 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3127 		if (pm->pm_cstate.cs_tlb == 0)
   3128 			pm->pm_remove_all = true;
   3129 	} else
   3130 		cleanlist_idx = 0;
   3131 
   3132 	total = 0;
   3133 
   3134 	while (sva < eva) {
   3135 		/*
   3136 		 * Do one L2 bucket's worth at a time.
   3137 		 */
   3138 		next_bucket = L2_NEXT_BUCKET(sva);
   3139 		if (next_bucket > eva)
   3140 			next_bucket = eva;
   3141 
   3142 		l2b = pmap_get_l2_bucket(pm, sva);
   3143 		if (l2b == NULL) {
   3144 			sva = next_bucket;
   3145 			continue;
   3146 		}
   3147 
   3148 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3149 
   3150 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3151 			struct vm_page *pg;
   3152 			pt_entry_t pte;
   3153 			paddr_t pa;
   3154 
   3155 			pte = *ptep;
   3156 
   3157 			if (pte == 0) {
   3158 				/* Nothing here, move along */
   3159 				continue;
   3160 			}
   3161 
   3162 			pa = l2pte_pa(pte);
   3163 			u_int flags = PVF_REF;
   3164 
   3165 			/*
   3166 			 * Update flags. In a number of circumstances,
   3167 			 * we could cluster a lot of these and do a
   3168 			 * number of sequential pages in one go.
   3169 			 */
   3170 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3171 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3172 				struct pv_entry *pv;
   3173 
   3174 #ifdef MULTIPROCESSOR
   3175 				KASSERT(uvm_page_locked_p(pg));
   3176 #endif
   3177 				pv = pmap_remove_pv(md, pa, pm, sva);
   3178 				pmap_vac_me_harder(md, pa, pm, 0);
   3179 				if (pv != NULL) {
   3180 					if (pm->pm_remove_all == false) {
   3181 						flags = pv->pv_flags;
   3182 					}
   3183 					pool_put(&pmap_pv_pool, pv);
   3184 				}
   3185 			}
   3186 			mappings++;
   3187 
   3188 			if (!l2pte_valid(pte)) {
   3189 				/*
   3190 				 * Ref/Mod emulation is still active for this
   3191 				 * mapping, therefore it is has not yet been
   3192 				 * accessed. No need to frob the cache/tlb.
   3193 				 */
   3194 				*ptep = 0;
   3195 				PTE_SYNC_CURRENT(pm, ptep);
   3196 				continue;
   3197 			}
   3198 
   3199 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3200 				/* Add to the clean list. */
   3201 				cleanlist[cleanlist_idx].ptep = ptep;
   3202 				cleanlist[cleanlist_idx].va =
   3203 				    sva | (flags & PVF_EXEC);
   3204 				cleanlist_idx++;
   3205 			} else
   3206 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3207 				/* Nuke everything if needed. */
   3208 #ifdef PMAP_CACHE_VIVT
   3209 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3210 #endif
   3211 				pmap_tlb_flushID(pm);
   3212 
   3213 				/*
   3214 				 * Roll back the previous PTE list,
   3215 				 * and zero out the current PTE.
   3216 				 */
   3217 				for (cnt = 0;
   3218 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3219 					*cleanlist[cnt].ptep = 0;
   3220 					PTE_SYNC(cleanlist[cnt].ptep);
   3221 				}
   3222 				*ptep = 0;
   3223 				PTE_SYNC(ptep);
   3224 				cleanlist_idx++;
   3225 				pm->pm_remove_all = true;
   3226 			} else {
   3227 				*ptep = 0;
   3228 				PTE_SYNC(ptep);
   3229 				if (pm->pm_remove_all == false) {
   3230 					pmap_tlb_flush_SE(pm, sva, flags);
   3231 				}
   3232 			}
   3233 		}
   3234 
   3235 		/*
   3236 		 * Deal with any left overs
   3237 		 */
   3238 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3239 			total += cleanlist_idx;
   3240 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3241 				vaddr_t va = cleanlist[cnt].va;
   3242 				if (pm->pm_cstate.cs_all != 0) {
   3243 					vaddr_t clva = va & ~PAGE_MASK;
   3244 					u_int flags = va & PVF_EXEC;
   3245 #ifdef PMAP_CACHE_VIVT
   3246 					pmap_cache_wbinv_page(pm, clva, true,
   3247 					    PVF_REF | PVF_WRITE | flags);
   3248 #endif
   3249 					pmap_tlb_flush_SE(pm, clva,
   3250 					    PVF_REF | flags);
   3251 				}
   3252 				*cleanlist[cnt].ptep = 0;
   3253 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3254 			}
   3255 
   3256 			/*
   3257 			 * If it looks like we're removing a whole bunch
   3258 			 * of mappings, it's faster to just write-back
   3259 			 * the whole cache now and defer TLB flushes until
   3260 			 * pmap_update() is called.
   3261 			 */
   3262 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3263 				cleanlist_idx = 0;
   3264 			else {
   3265 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3266 #ifdef PMAP_CACHE_VIVT
   3267 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3268 #endif
   3269 				pm->pm_remove_all = true;
   3270 			}
   3271 		}
   3272 
   3273 		pmap_free_l2_bucket(pm, l2b, mappings);
   3274 		pm->pm_stats.resident_count -= mappings;
   3275 	}
   3276 
   3277 	pmap_release_pmap_lock(pm);
   3278 }
   3279 
   3280 #ifdef PMAP_CACHE_VIPT
   3281 static struct pv_entry *
   3282 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3283 {
   3284 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3285 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3286 	struct pv_entry *pv;
   3287 
   3288 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3289 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3290 
   3291 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3292 	KASSERT(pv);
   3293 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3294 
   3295 	/*
   3296 	 * If we are removing a writeable mapping to a cached exec page,
   3297 	 * if it's the last mapping then clear it execness other sync
   3298 	 * the page to the icache.
   3299 	 */
   3300 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3301 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3302 		if (SLIST_EMPTY(&md->pvh_list)) {
   3303 			md->pvh_attrs &= ~PVF_EXEC;
   3304 			PMAPCOUNT(exec_discarded_kremove);
   3305 		} else {
   3306 			pmap_syncicache_page(md, pa);
   3307 			PMAPCOUNT(exec_synced_kremove);
   3308 		}
   3309 	}
   3310 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3311 
   3312 	return pv;
   3313 }
   3314 #endif /* PMAP_CACHE_VIPT */
   3315 
   3316 /*
   3317  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3318  *
   3319  * We assume there is already sufficient KVM space available
   3320  * to do this, as we can't allocate L2 descriptor tables/metadata
   3321  * from here.
   3322  */
   3323 void
   3324 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3325 {
   3326 	struct l2_bucket *l2b;
   3327 	pt_entry_t *ptep, opte;
   3328 #ifdef PMAP_CACHE_VIVT
   3329 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3330 #endif
   3331 #ifdef PMAP_CACHE_VIPT
   3332 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3333 	struct vm_page *opg;
   3334 	struct pv_entry *pv = NULL;
   3335 #endif
   3336 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3337 
   3338 	NPDEBUG(PDB_KENTER,
   3339 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3340 	    va, pa, prot));
   3341 
   3342 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3343 	KDASSERT(l2b != NULL);
   3344 
   3345 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3346 	opte = *ptep;
   3347 
   3348 	if (opte == 0) {
   3349 		PMAPCOUNT(kenter_mappings);
   3350 		l2b->l2b_occupancy++;
   3351 	} else {
   3352 		PMAPCOUNT(kenter_remappings);
   3353 #ifdef PMAP_CACHE_VIPT
   3354 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3355 #ifdef DIAGNOSTIC
   3356 		struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3357 #endif
   3358 		if (opg) {
   3359 			KASSERT(opg != pg);
   3360 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3361 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3362 			pv = pmap_kremove_pg(opg, va);
   3363 		}
   3364 #endif
   3365 		if (l2pte_valid(opte)) {
   3366 #ifdef PMAP_CACHE_VIVT
   3367 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3368 #endif
   3369 			cpu_tlb_flushD_SE(va);
   3370 			cpu_cpwait();
   3371 		}
   3372 	}
   3373 
   3374 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3375 	    | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
   3376 	PTE_SYNC(ptep);
   3377 
   3378 	if (pg) {
   3379 #ifdef MULTIPROCESSOR
   3380 		KASSERT(uvm_page_locked_p(pg));
   3381 #endif
   3382 		if (flags & PMAP_KMPAGE) {
   3383 			KASSERT(md->urw_mappings == 0);
   3384 			KASSERT(md->uro_mappings == 0);
   3385 			KASSERT(md->krw_mappings == 0);
   3386 			KASSERT(md->kro_mappings == 0);
   3387 #ifdef PMAP_CACHE_VIPT
   3388 			KASSERT(pv == NULL);
   3389 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3390 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3391 			/* if there is a color conflict, evict from cache. */
   3392 			if (pmap_is_page_colored_p(md)
   3393 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3394 				PMAPCOUNT(vac_color_change);
   3395 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3396 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3397 				/*
   3398 				 * If this page has multiple colors, expunge
   3399 				 * them.
   3400 				 */
   3401 				PMAPCOUNT(vac_flush_lots2);
   3402 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3403 			}
   3404 			md->pvh_attrs &= PAGE_SIZE - 1;
   3405 			md->pvh_attrs |= PVF_KMPAGE
   3406 			    | PVF_COLORED | PVF_DIRTY
   3407 			    | (va & arm_cache_prefer_mask);
   3408 #endif
   3409 #ifdef PMAP_CACHE_VIVT
   3410 			md->pvh_attrs |= PVF_KMPAGE;
   3411 #endif
   3412 			pmap_kmpages++;
   3413 #ifdef PMAP_CACHE_VIPT
   3414 		} else {
   3415 			if (pv == NULL) {
   3416 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3417 				KASSERT(pv != NULL);
   3418 			}
   3419 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3420 			    PVF_WIRED | PVF_KENTRY
   3421 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3422 			if ((prot & VM_PROT_WRITE)
   3423 			    && !(md->pvh_attrs & PVF_NC))
   3424 				md->pvh_attrs |= PVF_DIRTY;
   3425 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3426 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3427 #endif
   3428 		}
   3429 #ifdef PMAP_CACHE_VIPT
   3430 	} else {
   3431 		if (pv != NULL)
   3432 			pool_put(&pmap_pv_pool, pv);
   3433 #endif
   3434 	}
   3435 }
   3436 
   3437 void
   3438 pmap_kremove(vaddr_t va, vsize_t len)
   3439 {
   3440 	struct l2_bucket *l2b;
   3441 	pt_entry_t *ptep, *sptep, opte;
   3442 	vaddr_t next_bucket, eva;
   3443 	u_int mappings;
   3444 	struct vm_page *opg;
   3445 
   3446 	PMAPCOUNT(kenter_unmappings);
   3447 
   3448 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3449 	    va, len));
   3450 
   3451 	eva = va + len;
   3452 
   3453 	while (va < eva) {
   3454 		next_bucket = L2_NEXT_BUCKET(va);
   3455 		if (next_bucket > eva)
   3456 			next_bucket = eva;
   3457 
   3458 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3459 		KDASSERT(l2b != NULL);
   3460 
   3461 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3462 		mappings = 0;
   3463 
   3464 		while (va < next_bucket) {
   3465 			opte = *ptep;
   3466 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3467 			if (opg) {
   3468 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3469 
   3470 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3471 					KASSERT(omd->urw_mappings == 0);
   3472 					KASSERT(omd->uro_mappings == 0);
   3473 					KASSERT(omd->krw_mappings == 0);
   3474 					KASSERT(omd->kro_mappings == 0);
   3475 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3476 #ifdef PMAP_CACHE_VIPT
   3477 					if (arm_cache_prefer_mask != 0) {
   3478 						omd->pvh_attrs &= ~PVF_WRITE;
   3479 					}
   3480 #endif
   3481 					pmap_kmpages--;
   3482 #ifdef PMAP_CACHE_VIPT
   3483 				} else {
   3484 					pool_put(&pmap_pv_pool,
   3485 					    pmap_kremove_pg(opg, va));
   3486 #endif
   3487 				}
   3488 			}
   3489 			if (l2pte_valid(opte)) {
   3490 #ifdef PMAP_CACHE_VIVT
   3491 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3492 #endif
   3493 				cpu_tlb_flushD_SE(va);
   3494 			}
   3495 			if (opte) {
   3496 				*ptep = 0;
   3497 				mappings++;
   3498 			}
   3499 			va += PAGE_SIZE;
   3500 			ptep++;
   3501 		}
   3502 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3503 		l2b->l2b_occupancy -= mappings;
   3504 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3505 	}
   3506 	cpu_cpwait();
   3507 }
   3508 
   3509 bool
   3510 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3511 {
   3512 	struct l2_dtable *l2;
   3513 	pd_entry_t *pl1pd, l1pd;
   3514 	pt_entry_t *ptep, pte;
   3515 	paddr_t pa;
   3516 	u_int l1idx;
   3517 
   3518 	pmap_acquire_pmap_lock(pm);
   3519 
   3520 	l1idx = L1_IDX(va);
   3521 	pl1pd = pmap_l1_kva(pm) + l1idx;
   3522 	l1pd = *pl1pd;
   3523 
   3524 	if (l1pte_section_p(l1pd)) {
   3525 		/*
   3526 		 * These should only happen for pmap_kernel()
   3527 		 */
   3528 		KDASSERT(pm == pmap_kernel());
   3529 		pmap_release_pmap_lock(pm);
   3530 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3531 		if (l1pte_supersection_p(l1pd)) {
   3532 			pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3533 		} else
   3534 #endif
   3535 			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3536 	} else {
   3537 		/*
   3538 		 * Note that we can't rely on the validity of the L1
   3539 		 * descriptor as an indication that a mapping exists.
   3540 		 * We have to look it up in the L2 dtable.
   3541 		 */
   3542 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3543 
   3544 		if (l2 == NULL ||
   3545 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3546 			pmap_release_pmap_lock(pm);
   3547 			return false;
   3548 		}
   3549 
   3550 		ptep = &ptep[l2pte_index(va)];
   3551 		pte = *ptep;
   3552 		pmap_release_pmap_lock(pm);
   3553 
   3554 		if (pte == 0)
   3555 			return false;
   3556 
   3557 		switch (pte & L2_TYPE_MASK) {
   3558 		case L2_TYPE_L:
   3559 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3560 			break;
   3561 
   3562 		default:
   3563 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3564 			break;
   3565 		}
   3566 	}
   3567 
   3568 	if (pap != NULL)
   3569 		*pap = pa;
   3570 
   3571 	return true;
   3572 }
   3573 
   3574 void
   3575 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3576 {
   3577 	struct l2_bucket *l2b;
   3578 	pt_entry_t *ptep, pte;
   3579 	vaddr_t next_bucket;
   3580 	u_int flags;
   3581 	u_int clr_mask;
   3582 	int flush;
   3583 
   3584 	NPDEBUG(PDB_PROTECT,
   3585 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3586 	    pm, sva, eva, prot));
   3587 
   3588 	if ((prot & VM_PROT_READ) == 0) {
   3589 		pmap_remove(pm, sva, eva);
   3590 		return;
   3591 	}
   3592 
   3593 	if (prot & VM_PROT_WRITE) {
   3594 		/*
   3595 		 * If this is a read->write transition, just ignore it and let
   3596 		 * uvm_fault() take care of it later.
   3597 		 */
   3598 		return;
   3599 	}
   3600 
   3601 	pmap_acquire_pmap_lock(pm);
   3602 
   3603 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3604 	flags = 0;
   3605 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3606 
   3607 	while (sva < eva) {
   3608 		next_bucket = L2_NEXT_BUCKET(sva);
   3609 		if (next_bucket > eva)
   3610 			next_bucket = eva;
   3611 
   3612 		l2b = pmap_get_l2_bucket(pm, sva);
   3613 		if (l2b == NULL) {
   3614 			sva = next_bucket;
   3615 			continue;
   3616 		}
   3617 
   3618 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3619 
   3620 		while (sva < next_bucket) {
   3621 			pte = *ptep;
   3622 			if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
   3623 				struct vm_page *pg;
   3624 				u_int f;
   3625 
   3626 #ifdef PMAP_CACHE_VIVT
   3627 				/*
   3628 				 * OK, at this point, we know we're doing
   3629 				 * write-protect operation.  If the pmap is
   3630 				 * active, write-back the page.
   3631 				 */
   3632 				pmap_cache_wbinv_page(pm, sva, false, PVF_REF);
   3633 #endif
   3634 
   3635 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3636 				pte = l2pte_set_readonly(pte);
   3637 				*ptep = pte;
   3638 				PTE_SYNC(ptep);
   3639 
   3640 				if (pg != NULL) {
   3641 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3642 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3643 
   3644 #ifdef MULTIPROCESSOR
   3645 					KASSERT(uvm_page_locked_p(pg));
   3646 #endif
   3647 					f = pmap_modify_pv(md, pa, pm, sva,
   3648 					    clr_mask, 0);
   3649 					pmap_vac_me_harder(md, pa, pm, sva);
   3650 				} else {
   3651 					f = PVF_REF | PVF_EXEC;
   3652 				}
   3653 
   3654 				if (flush >= 0) {
   3655 					flush++;
   3656 					flags |= f;
   3657 				} else {
   3658 					pmap_tlb_flush_SE(pm, sva, f);
   3659 				}
   3660 			}
   3661 
   3662 			sva += PAGE_SIZE;
   3663 			ptep++;
   3664 		}
   3665 	}
   3666 
   3667 	pmap_release_pmap_lock(pm);
   3668 
   3669 	if (flush) {
   3670 		if (PV_BEEN_EXECD(flags))
   3671 			pmap_tlb_flushID(pm);
   3672 		else
   3673 		if (PV_BEEN_REFD(flags))
   3674 			pmap_tlb_flushD(pm);
   3675 	}
   3676 }
   3677 
   3678 void
   3679 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3680 {
   3681 	struct l2_bucket *l2b;
   3682 	pt_entry_t *ptep;
   3683 	vaddr_t next_bucket;
   3684 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3685 
   3686 	NPDEBUG(PDB_EXEC,
   3687 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3688 	    pm, sva, eva));
   3689 
   3690 	pmap_acquire_pmap_lock(pm);
   3691 
   3692 	while (sva < eva) {
   3693 		next_bucket = L2_NEXT_BUCKET(sva);
   3694 		if (next_bucket > eva)
   3695 			next_bucket = eva;
   3696 
   3697 		l2b = pmap_get_l2_bucket(pm, sva);
   3698 		if (l2b == NULL) {
   3699 			sva = next_bucket;
   3700 			continue;
   3701 		}
   3702 
   3703 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3704 		     sva < next_bucket;
   3705 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3706 			if (l2pte_valid(*ptep)) {
   3707 				cpu_icache_sync_range(sva,
   3708 				    min(page_size, eva - sva));
   3709 			}
   3710 		}
   3711 	}
   3712 
   3713 	pmap_release_pmap_lock(pm);
   3714 }
   3715 
   3716 void
   3717 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3718 {
   3719 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3720 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3721 
   3722 	NPDEBUG(PDB_PROTECT,
   3723 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   3724 	    md, pa, prot));
   3725 
   3726 #ifdef MULTIPROCESSOR
   3727 	KASSERT(uvm_page_locked_p(pg));
   3728 #endif
   3729 
   3730 	switch(prot) {
   3731 	case VM_PROT_READ|VM_PROT_WRITE:
   3732 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3733 		pmap_clearbit(md, pa, PVF_EXEC);
   3734 		break;
   3735 #endif
   3736 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3737 		break;
   3738 
   3739 	case VM_PROT_READ:
   3740 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3741 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   3742 		break;
   3743 #endif
   3744 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3745 		pmap_clearbit(md, pa, PVF_WRITE);
   3746 		break;
   3747 
   3748 	default:
   3749 		pmap_page_remove(md, pa);
   3750 		break;
   3751 	}
   3752 }
   3753 
   3754 /*
   3755  * pmap_clear_modify:
   3756  *
   3757  *	Clear the "modified" attribute for a page.
   3758  */
   3759 bool
   3760 pmap_clear_modify(struct vm_page *pg)
   3761 {
   3762 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3763 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3764 	bool rv;
   3765 
   3766 #ifdef MULTIPROCESSOR
   3767 	KASSERT(uvm_page_locked_p(pg));
   3768 #endif
   3769 
   3770 	if (md->pvh_attrs & PVF_MOD) {
   3771 		rv = true;
   3772 #ifdef PMAP_CACHE_VIPT
   3773 		/*
   3774 		 * If we are going to clear the modified bit and there are
   3775 		 * no other modified bits set, flush the page to memory and
   3776 		 * mark it clean.
   3777 		 */
   3778 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   3779 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   3780 #endif
   3781 		pmap_clearbit(md, pa, PVF_MOD);
   3782 	} else
   3783 		rv = false;
   3784 
   3785 	return (rv);
   3786 }
   3787 
   3788 /*
   3789  * pmap_clear_reference:
   3790  *
   3791  *	Clear the "referenced" attribute for a page.
   3792  */
   3793 bool
   3794 pmap_clear_reference(struct vm_page *pg)
   3795 {
   3796 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3797 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3798 	bool rv;
   3799 
   3800 #ifdef MULTIPROCESSOR
   3801 	KASSERT(uvm_page_locked_p(pg));
   3802 #endif
   3803 
   3804 	if (md->pvh_attrs & PVF_REF) {
   3805 		rv = true;
   3806 		pmap_clearbit(md, pa, PVF_REF);
   3807 	} else
   3808 		rv = false;
   3809 
   3810 	return (rv);
   3811 }
   3812 
   3813 /*
   3814  * pmap_is_modified:
   3815  *
   3816  *	Test if a page has the "modified" attribute.
   3817  */
   3818 /* See <arm/arm32/pmap.h> */
   3819 
   3820 /*
   3821  * pmap_is_referenced:
   3822  *
   3823  *	Test if a page has the "referenced" attribute.
   3824  */
   3825 /* See <arm/arm32/pmap.h> */
   3826 
   3827 int
   3828 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3829 {
   3830 	struct l2_dtable *l2;
   3831 	struct l2_bucket *l2b;
   3832 	pd_entry_t *pl1pd, l1pd;
   3833 	pt_entry_t *ptep, pte;
   3834 	paddr_t pa;
   3835 	u_int l1idx;
   3836 	int rv = 0;
   3837 
   3838 	pmap_acquire_pmap_lock(pm);
   3839 
   3840 	l1idx = L1_IDX(va);
   3841 
   3842 	/*
   3843 	 * If there is no l2_dtable for this address, then the process
   3844 	 * has no business accessing it.
   3845 	 *
   3846 	 * Note: This will catch userland processes trying to access
   3847 	 * kernel addresses.
   3848 	 */
   3849 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3850 	if (l2 == NULL)
   3851 		goto out;
   3852 
   3853 	/*
   3854 	 * Likewise if there is no L2 descriptor table
   3855 	 */
   3856 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3857 	if (l2b->l2b_kva == NULL)
   3858 		goto out;
   3859 
   3860 	/*
   3861 	 * Check the PTE itself.
   3862 	 */
   3863 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3864 	pte = *ptep;
   3865 	if (pte == 0)
   3866 		goto out;
   3867 
   3868 	/*
   3869 	 * Catch a userland access to the vector page mapped at 0x0
   3870 	 */
   3871 	if (user && (pte & L2_S_PROT_U) == 0)
   3872 		goto out;
   3873 
   3874 	pa = l2pte_pa(pte);
   3875 
   3876 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
   3877 		/*
   3878 		 * This looks like a good candidate for "page modified"
   3879 		 * emulation...
   3880 		 */
   3881 		struct pv_entry *pv;
   3882 		struct vm_page *pg;
   3883 
   3884 		/* Extract the physical address of the page */
   3885 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3886 			goto out;
   3887 
   3888 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3889 
   3890 		/* Get the current flags for this page. */
   3891 #ifdef MULTIPROCESSOR
   3892 		KASSERT(uvm_page_locked_p(pg));
   3893 #endif
   3894 
   3895 		pv = pmap_find_pv(md, pm, va);
   3896 		if (pv == NULL) {
   3897 			goto out;
   3898 		}
   3899 
   3900 		/*
   3901 		 * Do the flags say this page is writable? If not then it
   3902 		 * is a genuine write fault. If yes then the write fault is
   3903 		 * our fault as we did not reflect the write access in the
   3904 		 * PTE. Now we know a write has occurred we can correct this
   3905 		 * and also set the modified bit
   3906 		 */
   3907 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3908 			goto out;
   3909 		}
   3910 
   3911 		NPDEBUG(PDB_FOLLOW,
   3912 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3913 		    pm, va, pa));
   3914 
   3915 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   3916 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3917 #ifdef PMAP_CACHE_VIPT
   3918 		/*
   3919 		 * If there are cacheable mappings for this page, mark it dirty.
   3920 		 */
   3921 		if ((md->pvh_attrs & PVF_NC) == 0)
   3922 			md->pvh_attrs |= PVF_DIRTY;
   3923 #endif
   3924 
   3925 		/*
   3926 		 * Re-enable write permissions for the page.  No need to call
   3927 		 * pmap_vac_me_harder(), since this is just a
   3928 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3929 		 * changing. We've already set the cacheable bits based on
   3930 		 * the assumption that we can write to this page.
   3931 		 */
   3932 		*ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3933 		PTE_SYNC(ptep);
   3934 		rv = 1;
   3935 	} else
   3936 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3937 		/*
   3938 		 * This looks like a good candidate for "page referenced"
   3939 		 * emulation.
   3940 		 */
   3941 		struct pv_entry *pv;
   3942 		struct vm_page *pg;
   3943 
   3944 		/* Extract the physical address of the page */
   3945 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3946 			goto out;
   3947 
   3948 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3949 
   3950 		/* Get the current flags for this page. */
   3951 #ifdef MULTIPROCESSOR
   3952 		KASSERT(uvm_page_locked_p(pg));
   3953 #endif
   3954 
   3955 		pv = pmap_find_pv(md, pm, va);
   3956 		if (pv == NULL) {
   3957 			goto out;
   3958 		}
   3959 
   3960 		md->pvh_attrs |= PVF_REF;
   3961 		pv->pv_flags |= PVF_REF;
   3962 
   3963 		NPDEBUG(PDB_FOLLOW,
   3964 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3965 		    pm, va, pa));
   3966 
   3967 		*ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3968 		PTE_SYNC(ptep);
   3969 		rv = 1;
   3970 	}
   3971 
   3972 	/*
   3973 	 * We know there is a valid mapping here, so simply
   3974 	 * fix up the L1 if necessary.
   3975 	 */
   3976 	pl1pd = pmap_l1_kva(pm) + l1idx;
   3977 	l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) | L1_C_PROTO;
   3978 	if (*pl1pd != l1pd) {
   3979 		*pl1pd = l1pd;
   3980 		PTE_SYNC(pl1pd);
   3981 		rv = 1;
   3982 	}
   3983 
   3984 #ifdef CPU_SA110
   3985 	/*
   3986 	 * There are bugs in the rev K SA110.  This is a check for one
   3987 	 * of them.
   3988 	 */
   3989 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3990 	    curcpu()->ci_arm_cpurev < 3) {
   3991 		/* Always current pmap */
   3992 		if (l2pte_valid(pte)) {
   3993 			extern int kernel_debug;
   3994 			if (kernel_debug & 1) {
   3995 				struct proc *p = curlwp->l_proc;
   3996 				printf("prefetch_abort: page is already "
   3997 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3998 				printf("prefetch_abort: pc=%08lx proc=%p "
   3999 				    "process=%s\n", va, p, p->p_comm);
   4000 				printf("prefetch_abort: far=%08x fs=%x\n",
   4001 				    cpu_faultaddress(), cpu_faultstatus());
   4002 			}
   4003 #ifdef DDB
   4004 			if (kernel_debug & 2)
   4005 				Debugger();
   4006 #endif
   4007 			rv = 1;
   4008 		}
   4009 	}
   4010 #endif /* CPU_SA110 */
   4011 
   4012 	/*
   4013 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4014 	 * stale TLB entry for the faulting address.  That might be due to a
   4015 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4016 	 */
   4017 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
   4018 	    && pmap_needs_pte_sync == 0) {
   4019 		pmap_needs_pte_sync = 1;
   4020 		PTE_SYNC(ptep);
   4021 		rv = 1;
   4022 	}
   4023 
   4024 #ifdef DEBUG
   4025 	/*
   4026 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4027 	 * stale TLB entry for the faulting address. This happens when two or
   4028 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4029 	 * a context switch between such processes, we can take domain faults
   4030 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4031 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4032 	 * example.
   4033 	 *
   4034 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4035 	 * entry for a recently entered mapping. In this case, the TLB is
   4036 	 * flushed for the new mapping, but there may still be TLB entries for
   4037 	 * other mappings belonging to other processes in the 1MB range
   4038 	 * covered by the L1 entry.
   4039 	 *
   4040 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4041 	 * value, so the fault must be due to a stale TLB entry.
   4042 	 *
   4043 	 * Since we always need to flush the TLB anyway in the case where we
   4044 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4045 	 * stale TLB entries dynamically.
   4046 	 *
   4047 	 * However, the above condition can ONLY happen if the current L1 is
   4048 	 * being shared. If it happens when the L1 is unshared, it indicates
   4049 	 * that other parts of the pmap are not doing their job WRT managing
   4050 	 * the TLB.
   4051 	 */
   4052 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   4053 		extern int last_fault_code;
   4054 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4055 		    pm, va, ftype);
   4056 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   4057 		    l2, l2b, ptep, pl1pd);
   4058 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   4059 		    pte, l1pd, last_fault_code);
   4060 #ifdef DDB
   4061 		extern int kernel_debug;
   4062 
   4063 		if (kernel_debug & 2)
   4064 			Debugger();
   4065 #endif
   4066 	}
   4067 #endif
   4068 
   4069 	cpu_tlb_flushID_SE(va);
   4070 	cpu_cpwait();
   4071 
   4072 	rv = 1;
   4073 
   4074 out:
   4075 	pmap_release_pmap_lock(pm);
   4076 
   4077 	return (rv);
   4078 }
   4079 
   4080 /*
   4081  * Routine:	pmap_procwr
   4082  *
   4083  * Function:
   4084  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4085  *
   4086  */
   4087 void
   4088 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4089 {
   4090 	/* We only need to do anything if it is the current process. */
   4091 	if (p == curproc)
   4092 		cpu_icache_sync_range(va, len);
   4093 }
   4094 
   4095 /*
   4096  * Routine:	pmap_unwire
   4097  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4098  *
   4099  * In/out conditions:
   4100  *		The mapping must already exist in the pmap.
   4101  */
   4102 void
   4103 pmap_unwire(pmap_t pm, vaddr_t va)
   4104 {
   4105 	struct l2_bucket *l2b;
   4106 	pt_entry_t *ptep, pte;
   4107 	struct vm_page *pg;
   4108 	paddr_t pa;
   4109 
   4110 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4111 
   4112 	pmap_acquire_pmap_lock(pm);
   4113 
   4114 	l2b = pmap_get_l2_bucket(pm, va);
   4115 	KDASSERT(l2b != NULL);
   4116 
   4117 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4118 	pte = *ptep;
   4119 
   4120 	/* Extract the physical address of the page */
   4121 	pa = l2pte_pa(pte);
   4122 
   4123 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4124 		/* Update the wired bit in the pv entry for this page. */
   4125 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4126 
   4127 #ifdef MULTIPROCESSOR
   4128 		KASSERT(uvm_page_locked_p(pg));
   4129 #endif
   4130 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4131 	}
   4132 
   4133 	pmap_release_pmap_lock(pm);
   4134 }
   4135 
   4136 void
   4137 pmap_activate(struct lwp *l)
   4138 {
   4139 	extern int block_userspace_access;
   4140 	pmap_t opm, npm, rpm;
   4141 	uint32_t odacr, ndacr;
   4142 	int oldirqstate;
   4143 
   4144 	/*
   4145 	 * If activating a non-current lwp or the current lwp is
   4146 	 * already active, just return.
   4147 	 */
   4148 	if (l != curlwp ||
   4149 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4150 		return;
   4151 
   4152 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4153 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4154 	    (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4155 
   4156 	/*
   4157 	 * If TTB and DACR are unchanged, short-circuit all the
   4158 	 * TLB/cache management stuff.
   4159 	 */
   4160 	if (pmap_previous_active_lwp != NULL) {
   4161 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4162 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4163 		    (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4164 
   4165 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4166 			goto all_done;
   4167 	} else
   4168 		opm = NULL;
   4169 
   4170 	PMAPCOUNT(activations);
   4171 	block_userspace_access = 1;
   4172 
   4173 	/*
   4174 	 * If switching to a user vmspace which is different to the
   4175 	 * most recent one, and the most recent one is potentially
   4176 	 * live in the cache, we must write-back and invalidate the
   4177 	 * entire cache.
   4178 	 */
   4179 	rpm = pmap_recent_user;
   4180 
   4181 /*
   4182  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4183  * reported in kern/41058. They're probably left over during tear-down and
   4184  * switching away from an exiting process. Until the root cause is identified
   4185  * and fixed, zap the cache when switching pmaps. This will result in a few
   4186  * unnecessary cache flushes, but that's better than silently corrupting data.
   4187  */
   4188 #if 0
   4189 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4190 	    rpm->pm_cstate.cs_cache) {
   4191 		rpm->pm_cstate.cs_cache = 0;
   4192 #ifdef PMAP_CACHE_VIVT
   4193 		cpu_idcache_wbinv_all();
   4194 #endif
   4195 	}
   4196 #else
   4197 	if (rpm) {
   4198 		rpm->pm_cstate.cs_cache = 0;
   4199 		if (npm == pmap_kernel())
   4200 			pmap_recent_user = NULL;
   4201 #ifdef PMAP_CACHE_VIVT
   4202 		cpu_idcache_wbinv_all();
   4203 #endif
   4204 	}
   4205 #endif
   4206 
   4207 	/* No interrupts while we frob the TTB/DACR */
   4208 	oldirqstate = disable_interrupts(IF32_bits);
   4209 
   4210 #ifndef ARM_HAS_VBAR
   4211 	/*
   4212 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4213 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4214 	 * before switching to it otherwise subsequent interrupts/exceptions
   4215 	 * (including domain faults!) will jump into hyperspace.
   4216 	 */
   4217 	if (npm->pm_pl1vec != NULL) {
   4218 		cpu_tlb_flushID_SE((u_int)vector_page);
   4219 		cpu_cpwait();
   4220 		*npm->pm_pl1vec = npm->pm_l1vec;
   4221 		PTE_SYNC(npm->pm_pl1vec);
   4222 	}
   4223 #endif
   4224 
   4225 	cpu_domains(ndacr);
   4226 
   4227 	if (npm == pmap_kernel() || npm == rpm) {
   4228 		/*
   4229 		 * Switching to a kernel thread, or back to the
   4230 		 * same user vmspace as before... Simply update
   4231 		 * the TTB (no TLB flush required)
   4232 		 */
   4233 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4234 		cpu_cpwait();
   4235 	} else {
   4236 		/*
   4237 		 * Otherwise, update TTB and flush TLB
   4238 		 */
   4239 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4240 		if (rpm != NULL)
   4241 			rpm->pm_cstate.cs_tlb = 0;
   4242 	}
   4243 
   4244 	restore_interrupts(oldirqstate);
   4245 
   4246 	block_userspace_access = 0;
   4247 
   4248  all_done:
   4249 	/*
   4250 	 * The new pmap is resident. Make sure it's marked
   4251 	 * as resident in the cache/TLB.
   4252 	 */
   4253 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4254 	if (npm != pmap_kernel())
   4255 		pmap_recent_user = npm;
   4256 
   4257 	/* The old pmap is not longer active */
   4258 	if (opm != NULL)
   4259 		opm->pm_activated = false;
   4260 
   4261 	/* But the new one is */
   4262 	npm->pm_activated = true;
   4263 }
   4264 
   4265 void
   4266 pmap_deactivate(struct lwp *l)
   4267 {
   4268 
   4269 	/*
   4270 	 * If the process is exiting, make sure pmap_activate() does
   4271 	 * a full MMU context-switch and cache flush, which we might
   4272 	 * otherwise skip. See PR port-arm/38950.
   4273 	 */
   4274 	if (l->l_proc->p_sflag & PS_WEXIT)
   4275 		pmap_previous_active_lwp = NULL;
   4276 
   4277 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4278 }
   4279 
   4280 void
   4281 pmap_update(pmap_t pm)
   4282 {
   4283 
   4284 	if (pm->pm_remove_all) {
   4285 		/*
   4286 		 * Finish up the pmap_remove_all() optimisation by flushing
   4287 		 * the TLB.
   4288 		 */
   4289 		pmap_tlb_flushID(pm);
   4290 		pm->pm_remove_all = false;
   4291 	}
   4292 
   4293 	if (pmap_is_current(pm)) {
   4294 		/*
   4295 		 * If we're dealing with a current userland pmap, move its L1
   4296 		 * to the end of the LRU.
   4297 		 */
   4298 		if (pm != pmap_kernel())
   4299 			pmap_use_l1(pm);
   4300 
   4301 		/*
   4302 		 * We can assume we're done with frobbing the cache/tlb for
   4303 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4304 		 * flushes.
   4305 		 */
   4306 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4307 	}
   4308 
   4309 	PMAPCOUNT(updates);
   4310 
   4311 	/*
   4312 	 * make sure TLB/cache operations have completed.
   4313 	 */
   4314 	cpu_cpwait();
   4315 }
   4316 
   4317 void
   4318 pmap_remove_all(pmap_t pm)
   4319 {
   4320 
   4321 	/*
   4322 	 * The vmspace described by this pmap is about to be torn down.
   4323 	 * Until pmap_update() is called, UVM will only make calls
   4324 	 * to pmap_remove(). We can make life much simpler by flushing
   4325 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4326 	 */
   4327 #ifdef PMAP_CACHE_VIVT
   4328 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   4329 #endif
   4330 	pm->pm_remove_all = true;
   4331 }
   4332 
   4333 /*
   4334  * Retire the given physical map from service.
   4335  * Should only be called if the map contains no valid mappings.
   4336  */
   4337 void
   4338 pmap_destroy(pmap_t pm)
   4339 {
   4340 	u_int count;
   4341 
   4342 	if (pm == NULL)
   4343 		return;
   4344 
   4345 	if (pm->pm_remove_all) {
   4346 		pmap_tlb_flushID(pm);
   4347 		pm->pm_remove_all = false;
   4348 	}
   4349 
   4350 	/*
   4351 	 * Drop reference count
   4352 	 */
   4353 	mutex_enter(pm->pm_lock);
   4354 	count = --pm->pm_obj.uo_refs;
   4355 	mutex_exit(pm->pm_lock);
   4356 	if (count > 0) {
   4357 		if (pmap_is_current(pm)) {
   4358 			if (pm != pmap_kernel())
   4359 				pmap_use_l1(pm);
   4360 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4361 		}
   4362 		return;
   4363 	}
   4364 
   4365 	/*
   4366 	 * reference count is zero, free pmap resources and then free pmap.
   4367 	 */
   4368 
   4369 #ifndef ARM_HAS_VBAR
   4370 	if (vector_page < KERNEL_BASE) {
   4371 		KDASSERT(!pmap_is_current(pm));
   4372 
   4373 		/* Remove the vector page mapping */
   4374 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4375 		pmap_update(pm);
   4376 	}
   4377 #endif
   4378 
   4379 	LIST_REMOVE(pm, pm_list);
   4380 
   4381 	pmap_free_l1(pm);
   4382 
   4383 	if (pmap_recent_user == pm)
   4384 		pmap_recent_user = NULL;
   4385 
   4386 	uvm_obj_destroy(&pm->pm_obj, false);
   4387 	mutex_destroy(&pm->pm_obj_lock);
   4388 	pool_cache_put(&pmap_cache, pm);
   4389 }
   4390 
   4391 
   4392 /*
   4393  * void pmap_reference(pmap_t pm)
   4394  *
   4395  * Add a reference to the specified pmap.
   4396  */
   4397 void
   4398 pmap_reference(pmap_t pm)
   4399 {
   4400 
   4401 	if (pm == NULL)
   4402 		return;
   4403 
   4404 	pmap_use_l1(pm);
   4405 
   4406 	mutex_enter(pm->pm_lock);
   4407 	pm->pm_obj.uo_refs++;
   4408 	mutex_exit(pm->pm_lock);
   4409 }
   4410 
   4411 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   4412 
   4413 static struct evcnt pmap_prefer_nochange_ev =
   4414     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4415 static struct evcnt pmap_prefer_change_ev =
   4416     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4417 
   4418 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4419 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4420 
   4421 void
   4422 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4423 {
   4424 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4425 	vaddr_t va = *vap;
   4426 	vaddr_t diff = (hint - va) & mask;
   4427 	if (diff == 0) {
   4428 		pmap_prefer_nochange_ev.ev_count++;
   4429 	} else {
   4430 		pmap_prefer_change_ev.ev_count++;
   4431 		if (__predict_false(td))
   4432 			va -= mask + 1;
   4433 		*vap = va + diff;
   4434 	}
   4435 }
   4436 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   4437 
   4438 /*
   4439  * pmap_zero_page()
   4440  *
   4441  * Zero a given physical page by mapping it at a page hook point.
   4442  * In doing the zero page op, the page we zero is mapped cachable, as with
   4443  * StrongARM accesses to non-cached pages are non-burst making writing
   4444  * _any_ bulk data very slow.
   4445  */
   4446 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4447 void
   4448 pmap_zero_page_generic(paddr_t phys)
   4449 {
   4450 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4451 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4452 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4453 #endif
   4454 #if defined(PMAP_CACHE_VIPT)
   4455 	/* Choose the last page color it had, if any */
   4456 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4457 #else
   4458 	const vsize_t va_offset = 0;
   4459 #endif
   4460 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   4461 	/*
   4462 	 * Is this page mapped at its natural color?
   4463 	 * If we have all of memory mapped, then just convert PA to VA.
   4464 	 */
   4465 	const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
   4466 	const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
   4467 #else
   4468 	const bool okcolor = false;
   4469 	const vaddr_t vdstp = cdstp + va_offset;
   4470 #endif
   4471 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4472 
   4473 
   4474 #ifdef DEBUG
   4475 	if (!SLIST_EMPTY(&md->pvh_list))
   4476 		panic("pmap_zero_page: page has mappings");
   4477 #endif
   4478 
   4479 	KDASSERT((phys & PGOFSET) == 0);
   4480 
   4481 	if (!okcolor) {
   4482 		/*
   4483 		 * Hook in the page, zero it, and purge the cache for that
   4484 		 * zeroed page. Invalidate the TLB as needed.
   4485 		 */
   4486 		*ptep = L2_S_PROTO | phys |
   4487 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4488 		PTE_SYNC(ptep);
   4489 		cpu_tlb_flushD_SE(cdstp + va_offset);
   4490 		cpu_cpwait();
   4491 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   4492 		/*
   4493 		 * If we are direct-mapped and our color isn't ok, then before
   4494 		 * we bzero the page invalidate its contents from the cache and
   4495 		 * reset the color to its natural color.
   4496 		 */
   4497 		cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
   4498 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   4499 		md->pvh_attrs |= (phys & arm_cache_prefer_mask);
   4500 #endif
   4501 	}
   4502 	bzero_page(vdstp);
   4503 	if (!okcolor) {
   4504 		/*
   4505 		 * Unmap the page.
   4506 		 */
   4507 		*ptep = 0;
   4508 		PTE_SYNC(ptep);
   4509 		cpu_tlb_flushD_SE(cdstp + va_offset);
   4510 #ifdef PMAP_CACHE_VIVT
   4511 		cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4512 #endif
   4513 	}
   4514 #ifdef PMAP_CACHE_VIPT
   4515 	/*
   4516 	 * This page is now cache resident so it now has a page color.
   4517 	 * Any contents have been obliterated so clear the EXEC flag.
   4518 	 */
   4519 	if (!pmap_is_page_colored_p(md)) {
   4520 		PMAPCOUNT(vac_color_new);
   4521 		md->pvh_attrs |= PVF_COLORED;
   4522 	}
   4523 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4524 		md->pvh_attrs &= ~PVF_EXEC;
   4525 		PMAPCOUNT(exec_discarded_zero);
   4526 	}
   4527 	md->pvh_attrs |= PVF_DIRTY;
   4528 #endif
   4529 }
   4530 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4531 
   4532 #if ARM_MMU_XSCALE == 1
   4533 void
   4534 pmap_zero_page_xscale(paddr_t phys)
   4535 {
   4536 #ifdef DEBUG
   4537 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4538 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4539 
   4540 	if (!SLIST_EMPTY(&md->pvh_list))
   4541 		panic("pmap_zero_page: page has mappings");
   4542 #endif
   4543 
   4544 	KDASSERT((phys & PGOFSET) == 0);
   4545 
   4546 	/*
   4547 	 * Hook in the page, zero it, and purge the cache for that
   4548 	 * zeroed page. Invalidate the TLB as needed.
   4549 	 */
   4550 	*cdst_pte = L2_S_PROTO | phys |
   4551 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4552 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4553 	PTE_SYNC(cdst_pte);
   4554 	cpu_tlb_flushD_SE(cdstp);
   4555 	cpu_cpwait();
   4556 	bzero_page(cdstp);
   4557 	xscale_cache_clean_minidata();
   4558 }
   4559 #endif /* ARM_MMU_XSCALE == 1 */
   4560 
   4561 /* pmap_pageidlezero()
   4562  *
   4563  * The same as above, except that we assume that the page is not
   4564  * mapped.  This means we never have to flush the cache first.  Called
   4565  * from the idle loop.
   4566  */
   4567 bool
   4568 pmap_pageidlezero(paddr_t phys)
   4569 {
   4570 	unsigned int i;
   4571 	int *ptr;
   4572 	bool rv = true;
   4573 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4574 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4575 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4576 #endif
   4577 #ifdef PMAP_CACHE_VIPT
   4578 	/* Choose the last page color it had, if any */
   4579 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4580 #else
   4581 	const vsize_t va_offset = 0;
   4582 #endif
   4583 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4584 
   4585 
   4586 #ifdef DEBUG
   4587 	if (!SLIST_EMPTY(&md->pvh_list))
   4588 		panic("pmap_pageidlezero: page has mappings");
   4589 #endif
   4590 
   4591 	KDASSERT((phys & PGOFSET) == 0);
   4592 
   4593 	/*
   4594 	 * Hook in the page, zero it, and purge the cache for that
   4595 	 * zeroed page. Invalidate the TLB as needed.
   4596 	 */
   4597 	*ptep = L2_S_PROTO | phys |
   4598 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4599 	PTE_SYNC(ptep);
   4600 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4601 	cpu_cpwait();
   4602 
   4603 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4604 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4605 		if (sched_curcpu_runnable_p() != 0) {
   4606 			/*
   4607 			 * A process has become ready.  Abort now,
   4608 			 * so we don't keep it waiting while we
   4609 			 * do slow memory access to finish this
   4610 			 * page.
   4611 			 */
   4612 			rv = false;
   4613 			break;
   4614 		}
   4615 		*ptr++ = 0;
   4616 	}
   4617 
   4618 #ifdef PMAP_CACHE_VIVT
   4619 	if (rv)
   4620 		/*
   4621 		 * if we aborted we'll rezero this page again later so don't
   4622 		 * purge it unless we finished it
   4623 		 */
   4624 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4625 #elif defined(PMAP_CACHE_VIPT)
   4626 	/*
   4627 	 * This page is now cache resident so it now has a page color.
   4628 	 * Any contents have been obliterated so clear the EXEC flag.
   4629 	 */
   4630 	if (!pmap_is_page_colored_p(md)) {
   4631 		PMAPCOUNT(vac_color_new);
   4632 		md->pvh_attrs |= PVF_COLORED;
   4633 	}
   4634 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4635 		md->pvh_attrs &= ~PVF_EXEC;
   4636 		PMAPCOUNT(exec_discarded_zero);
   4637 	}
   4638 #endif
   4639 	/*
   4640 	 * Unmap the page.
   4641 	 */
   4642 	*ptep = 0;
   4643 	PTE_SYNC(ptep);
   4644 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4645 
   4646 	return (rv);
   4647 }
   4648 
   4649 /*
   4650  * pmap_copy_page()
   4651  *
   4652  * Copy one physical page into another, by mapping the pages into
   4653  * hook points. The same comment regarding cachability as in
   4654  * pmap_zero_page also applies here.
   4655  */
   4656 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4657 void
   4658 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4659 {
   4660 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4661 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4662 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4663 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4664 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   4665 #endif
   4666 #ifdef PMAP_CACHE_VIPT
   4667 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   4668 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   4669 #else
   4670 	const vsize_t src_va_offset = 0;
   4671 	const vsize_t dst_va_offset = 0;
   4672 #endif
   4673 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   4674 	/*
   4675 	 * Is this page mapped at its natural color?
   4676 	 * If we have all of memory mapped, then just convert PA to VA.
   4677 	 */
   4678 	const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
   4679 	const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
   4680 	const vaddr_t vsrcp = src_okcolor
   4681 	    ? KERNEL_BASE + (src - physical_start)
   4682 	    : csrcp + src_va_offset;
   4683 	const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
   4684 #else
   4685 	const bool src_okcolor = false;
   4686 	const bool dst_okcolor = false;
   4687 	const vaddr_t vsrcp = csrcp + src_va_offset;
   4688 	const vaddr_t vdstp = cdstp + dst_va_offset;
   4689 #endif
   4690 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4691 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4692 
   4693 #ifdef DEBUG
   4694 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4695 		panic("pmap_copy_page: dst page has mappings");
   4696 #endif
   4697 
   4698 #ifdef PMAP_CACHE_VIPT
   4699 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   4700 #endif
   4701 	KDASSERT((src & PGOFSET) == 0);
   4702 	KDASSERT((dst & PGOFSET) == 0);
   4703 
   4704 	/*
   4705 	 * Clean the source page.  Hold the source page's lock for
   4706 	 * the duration of the copy so that no other mappings can
   4707 	 * be created while we have a potentially aliased mapping.
   4708 	 */
   4709 #ifdef MULTIPROCESSOR
   4710 	KASSERT(uvm_page_locked_p(src_pg));
   4711 #endif
   4712 #ifdef PMAP_CACHE_VIVT
   4713 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4714 #endif
   4715 
   4716 	/*
   4717 	 * Map the pages into the page hook points, copy them, and purge
   4718 	 * the cache for the appropriate page. Invalidate the TLB
   4719 	 * as required.
   4720 	 */
   4721 	if (!src_okcolor) {
   4722 		*src_ptep = L2_S_PROTO
   4723 		    | src
   4724 #ifdef PMAP_CACHE_VIPT
   4725 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4726 #endif
   4727 #ifdef PMAP_CACHE_VIVT
   4728 		    | pte_l2_s_cache_mode
   4729 #endif
   4730 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4731 		PTE_SYNC(src_ptep);
   4732 		cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4733 		cpu_cpwait();
   4734 	}
   4735 	if (!dst_okcolor) {
   4736 		*dst_ptep = L2_S_PROTO | dst |
   4737 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4738 		PTE_SYNC(dst_ptep);
   4739 		cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4740 		cpu_cpwait();
   4741 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   4742 		/*
   4743 		 * If we are direct-mapped and our color isn't ok, then before
   4744 		 * we bcopy to the new page invalidate its contents from the
   4745 		 * cache and reset its color to its natural color.
   4746 		 */
   4747 		cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4748 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   4749 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   4750 #endif
   4751 	}
   4752 	bcopy_page(vsrcp, vdstp);
   4753 #ifdef PMAP_CACHE_VIVT
   4754 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   4755 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   4756 #endif
   4757 	/*
   4758 	 * Unmap the pages.
   4759 	 */
   4760 	if (!src_okcolor) {
   4761 		*src_ptep = 0;
   4762 		PTE_SYNC(src_ptep);
   4763 		cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4764 		cpu_cpwait();
   4765 	}
   4766 	if (!dst_okcolor) {
   4767 		*dst_ptep = 0;
   4768 		PTE_SYNC(dst_ptep);
   4769 		cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4770 		cpu_cpwait();
   4771 	}
   4772 #ifdef PMAP_CACHE_VIPT
   4773 	/*
   4774 	 * Now that the destination page is in the cache, mark it as colored.
   4775 	 * If this was an exec page, discard it.
   4776 	 */
   4777 	if (!pmap_is_page_colored_p(dst_md)) {
   4778 		PMAPCOUNT(vac_color_new);
   4779 		dst_md->pvh_attrs |= PVF_COLORED;
   4780 	}
   4781 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   4782 		dst_md->pvh_attrs &= ~PVF_EXEC;
   4783 		PMAPCOUNT(exec_discarded_copy);
   4784 	}
   4785 	dst_md->pvh_attrs |= PVF_DIRTY;
   4786 #endif
   4787 }
   4788 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4789 
   4790 #if ARM_MMU_XSCALE == 1
   4791 void
   4792 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4793 {
   4794 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4795 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4796 #ifdef DEBUG
   4797 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   4798 
   4799 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4800 		panic("pmap_copy_page: dst page has mappings");
   4801 #endif
   4802 
   4803 	KDASSERT((src & PGOFSET) == 0);
   4804 	KDASSERT((dst & PGOFSET) == 0);
   4805 
   4806 	/*
   4807 	 * Clean the source page.  Hold the source page's lock for
   4808 	 * the duration of the copy so that no other mappings can
   4809 	 * be created while we have a potentially aliased mapping.
   4810 	 */
   4811 #ifdef MULTIPROCESSOR
   4812 	KASSERT(uvm_page_locked_p(src_pg));
   4813 #endif
   4814 #ifdef PMAP_CACHE_VIVT
   4815 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4816 #endif
   4817 
   4818 	/*
   4819 	 * Map the pages into the page hook points, copy them, and purge
   4820 	 * the cache for the appropriate page. Invalidate the TLB
   4821 	 * as required.
   4822 	 */
   4823 	*csrc_pte = L2_S_PROTO | src |
   4824 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4825 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4826 	PTE_SYNC(csrc_pte);
   4827 	*cdst_pte = L2_S_PROTO | dst |
   4828 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4829 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4830 	PTE_SYNC(cdst_pte);
   4831 	cpu_tlb_flushD_SE(csrcp);
   4832 	cpu_tlb_flushD_SE(cdstp);
   4833 	cpu_cpwait();
   4834 	bcopy_page(csrcp, cdstp);
   4835 	xscale_cache_clean_minidata();
   4836 }
   4837 #endif /* ARM_MMU_XSCALE == 1 */
   4838 
   4839 /*
   4840  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4841  *
   4842  * Return the start and end addresses of the kernel's virtual space.
   4843  * These values are setup in pmap_bootstrap and are updated as pages
   4844  * are allocated.
   4845  */
   4846 void
   4847 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4848 {
   4849 	*start = virtual_avail;
   4850 	*end = virtual_end;
   4851 }
   4852 
   4853 /*
   4854  * Helper function for pmap_grow_l2_bucket()
   4855  */
   4856 static inline int
   4857 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4858 {
   4859 	struct l2_bucket *l2b;
   4860 	pt_entry_t *ptep;
   4861 	paddr_t pa;
   4862 
   4863 	if (uvm.page_init_done == false) {
   4864 #ifdef PMAP_STEAL_MEMORY
   4865 		pv_addr_t pv;
   4866 		pmap_boot_pagealloc(PAGE_SIZE,
   4867 #ifdef PMAP_CACHE_VIPT
   4868 		    arm_cache_prefer_mask,
   4869 		    va & arm_cache_prefer_mask,
   4870 #else
   4871 		    0, 0,
   4872 #endif
   4873 		    &pv);
   4874 		pa = pv.pv_pa;
   4875 #else
   4876 		if (uvm_page_physget(&pa) == false)
   4877 			return (1);
   4878 #endif	/* PMAP_STEAL_MEMORY */
   4879 	} else {
   4880 		struct vm_page *pg;
   4881 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4882 		if (pg == NULL)
   4883 			return (1);
   4884 		pa = VM_PAGE_TO_PHYS(pg);
   4885 #ifdef PMAP_CACHE_VIPT
   4886 #ifdef DIAGNOSTIC
   4887 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4888 #endif
   4889 		/*
   4890 		 * This new page must not have any mappings.  Enter it via
   4891 		 * pmap_kenter_pa and let that routine do the hard work.
   4892 		 */
   4893 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   4894 		pmap_kenter_pa(va, pa,
   4895 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   4896 #endif
   4897 	}
   4898 
   4899 	if (pap)
   4900 		*pap = pa;
   4901 
   4902 	PMAPCOUNT(pt_mappings);
   4903 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4904 	KDASSERT(l2b != NULL);
   4905 
   4906 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4907 	*ptep = L2_S_PROTO | pa | cache_mode |
   4908 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4909 	PTE_SYNC(ptep);
   4910 	memset((void *)va, 0, PAGE_SIZE);
   4911 	return (0);
   4912 }
   4913 
   4914 /*
   4915  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4916  * used by pmap_growkernel().
   4917  */
   4918 static inline struct l2_bucket *
   4919 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4920 {
   4921 	struct l2_dtable *l2;
   4922 	struct l2_bucket *l2b;
   4923 	u_short l1idx;
   4924 	vaddr_t nva;
   4925 
   4926 	l1idx = L1_IDX(va);
   4927 
   4928 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4929 		/*
   4930 		 * No mapping at this address, as there is
   4931 		 * no entry in the L1 table.
   4932 		 * Need to allocate a new l2_dtable.
   4933 		 */
   4934 		nva = pmap_kernel_l2dtable_kva;
   4935 		if ((nva & PGOFSET) == 0) {
   4936 			/*
   4937 			 * Need to allocate a backing page
   4938 			 */
   4939 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4940 				return (NULL);
   4941 		}
   4942 
   4943 		l2 = (struct l2_dtable *)nva;
   4944 		nva += sizeof(struct l2_dtable);
   4945 
   4946 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4947 			/*
   4948 			 * The new l2_dtable straddles a page boundary.
   4949 			 * Map in another page to cover it.
   4950 			 */
   4951 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4952 				return (NULL);
   4953 		}
   4954 
   4955 		pmap_kernel_l2dtable_kva = nva;
   4956 
   4957 		/*
   4958 		 * Link it into the parent pmap
   4959 		 */
   4960 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4961 	}
   4962 
   4963 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4964 
   4965 	/*
   4966 	 * Fetch pointer to the L2 page table associated with the address.
   4967 	 */
   4968 	if (l2b->l2b_kva == NULL) {
   4969 		pt_entry_t *ptep;
   4970 
   4971 		/*
   4972 		 * No L2 page table has been allocated. Chances are, this
   4973 		 * is because we just allocated the l2_dtable, above.
   4974 		 */
   4975 		nva = pmap_kernel_l2ptp_kva;
   4976 		ptep = (pt_entry_t *)nva;
   4977 		if ((nva & PGOFSET) == 0) {
   4978 			/*
   4979 			 * Need to allocate a backing page
   4980 			 */
   4981 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4982 			    &pmap_kernel_l2ptp_phys))
   4983 				return (NULL);
   4984 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4985 		}
   4986 
   4987 		l2->l2_occupancy++;
   4988 		l2b->l2b_kva = ptep;
   4989 		l2b->l2b_l1idx = l1idx;
   4990 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4991 
   4992 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4993 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4994 	}
   4995 
   4996 	return (l2b);
   4997 }
   4998 
   4999 vaddr_t
   5000 pmap_growkernel(vaddr_t maxkvaddr)
   5001 {
   5002 	pmap_t kpm = pmap_kernel();
   5003 	struct l1_ttable *l1;
   5004 	struct l2_bucket *l2b;
   5005 	pd_entry_t *pl1pd;
   5006 	int s;
   5007 
   5008 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5009 		goto out;		/* we are OK */
   5010 
   5011 	NPDEBUG(PDB_GROWKERN,
   5012 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5013 	    pmap_curmaxkvaddr, maxkvaddr));
   5014 
   5015 	KDASSERT(maxkvaddr <= virtual_end);
   5016 
   5017 	/*
   5018 	 * whoops!   we need to add kernel PTPs
   5019 	 */
   5020 
   5021 	s = splhigh();	/* to be safe */
   5022 	mutex_enter(kpm->pm_lock);
   5023 
   5024 	/* Map 1MB at a time */
   5025 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   5026 
   5027 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5028 		KDASSERT(l2b != NULL);
   5029 
   5030 		/* Distribute new L1 entry to all other L1s */
   5031 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5032 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   5033 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   5034 			    L1_C_PROTO;
   5035 			PTE_SYNC(pl1pd);
   5036 		}
   5037 	}
   5038 
   5039 	/*
   5040 	 * flush out the cache, expensive but growkernel will happen so
   5041 	 * rarely
   5042 	 */
   5043 	cpu_dcache_wbinv_all();
   5044 	cpu_tlb_flushD();
   5045 	cpu_cpwait();
   5046 
   5047 	mutex_exit(kpm->pm_lock);
   5048 	splx(s);
   5049 
   5050 out:
   5051 	return (pmap_curmaxkvaddr);
   5052 }
   5053 
   5054 /************************ Utility routines ****************************/
   5055 
   5056 #ifndef ARM_HAS_VBAR
   5057 /*
   5058  * vector_page_setprot:
   5059  *
   5060  *	Manipulate the protection of the vector page.
   5061  */
   5062 void
   5063 vector_page_setprot(int prot)
   5064 {
   5065 	struct l2_bucket *l2b;
   5066 	pt_entry_t *ptep;
   5067 
   5068 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5069 	/*
   5070 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5071 	 * already mapped in the kernel text so no need to anything here.
   5072 	 */
   5073 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5074 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5075 		return;
   5076 	}
   5077 #endif
   5078 
   5079 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5080 	KDASSERT(l2b != NULL);
   5081 
   5082 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5083 
   5084 	*ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   5085 	PTE_SYNC(ptep);
   5086 	cpu_tlb_flushD_SE(vector_page);
   5087 	cpu_cpwait();
   5088 }
   5089 #endif
   5090 
   5091 /*
   5092  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5093  * Returns true if the mapping exists, else false.
   5094  *
   5095  * NOTE: This function is only used by a couple of arm-specific modules.
   5096  * It is not safe to take any pmap locks here, since we could be right
   5097  * in the middle of debugging the pmap anyway...
   5098  *
   5099  * It is possible for this routine to return false even though a valid
   5100  * mapping does exist. This is because we don't lock, so the metadata
   5101  * state may be inconsistent.
   5102  *
   5103  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5104  * a "section" mapping.
   5105  */
   5106 bool
   5107 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5108 {
   5109 	struct l2_dtable *l2;
   5110 	pd_entry_t *pl1pd, l1pd;
   5111 	pt_entry_t *ptep;
   5112 	u_short l1idx;
   5113 
   5114 	if (pm->pm_l1 == NULL)
   5115 		return false;
   5116 
   5117 	l1idx = L1_IDX(va);
   5118 	*pdp = pl1pd = pmap_l1_kva(pm) + l1idx;
   5119 	l1pd = *pl1pd;
   5120 
   5121 	if (l1pte_section_p(l1pd)) {
   5122 		*ptp = NULL;
   5123 		return true;
   5124 	}
   5125 
   5126 	if (pm->pm_l2 == NULL)
   5127 		return false;
   5128 
   5129 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   5130 
   5131 	if (l2 == NULL ||
   5132 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   5133 		return false;
   5134 	}
   5135 
   5136 	*ptp = &ptep[l2pte_index(va)];
   5137 	return true;
   5138 }
   5139 
   5140 bool
   5141 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5142 {
   5143 
   5144 	if (pm->pm_l1 == NULL)
   5145 		return false;
   5146 
   5147 	*pdp = pmap_l1_kva(pm) + L1_IDX(va);
   5148 
   5149 	return true;
   5150 }
   5151 
   5152 /************************ Bootstrapping routines ****************************/
   5153 
   5154 static void
   5155 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5156 {
   5157 	int i;
   5158 
   5159 	l1->l1_kva = l1pt;
   5160 	l1->l1_domain_use_count = 0;
   5161 	l1->l1_domain_first = 0;
   5162 
   5163 	for (i = 0; i < PMAP_DOMAINS; i++)
   5164 		l1->l1_domain_free[i] = i + 1;
   5165 
   5166 	/*
   5167 	 * Copy the kernel's L1 entries to each new L1.
   5168 	 */
   5169 	if (pmap_initialized)
   5170 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   5171 
   5172 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5173 	    &l1->l1_physaddr) == false)
   5174 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5175 
   5176 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5177 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5178 }
   5179 
   5180 /*
   5181  * pmap_bootstrap() is called from the board-specific initarm() routine
   5182  * once the kernel L1/L2 descriptors tables have been set up.
   5183  *
   5184  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5185  * spread over a number of disparate files/functions.
   5186  *
   5187  * We are passed the following parameters
   5188  *  - kernel_l1pt
   5189  *    This is a pointer to the base of the kernel's L1 translation table.
   5190  *  - vstart
   5191  *    1MB-aligned start of managed kernel virtual memory.
   5192  *  - vend
   5193  *    1MB-aligned end of managed kernel virtual memory.
   5194  *
   5195  * We use the first parameter to build the metadata (struct l1_ttable and
   5196  * struct l2_dtable) necessary to track kernel mappings.
   5197  */
   5198 #define	PMAP_STATIC_L2_SIZE 16
   5199 void
   5200 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5201 {
   5202 	static struct l1_ttable static_l1;
   5203 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5204 	struct l1_ttable *l1 = &static_l1;
   5205 	struct l2_dtable *l2;
   5206 	struct l2_bucket *l2b;
   5207 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5208 	pmap_t pm = pmap_kernel();
   5209 	pd_entry_t pde;
   5210 	pt_entry_t *ptep;
   5211 	paddr_t pa;
   5212 	vaddr_t va;
   5213 	vsize_t size;
   5214 	int nptes, l1idx, l2idx, l2next = 0;
   5215 
   5216 	/*
   5217 	 * Initialise the kernel pmap object
   5218 	 */
   5219 	pm->pm_l1 = l1;
   5220 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5221 	pm->pm_activated = true;
   5222 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5223 
   5224 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   5225 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   5226 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   5227 
   5228 	/*
   5229 	 * Scan the L1 translation table created by initarm() and create
   5230 	 * the required metadata for all valid mappings found in it.
   5231 	 */
   5232 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5233 		pde = l1pt[l1idx];
   5234 
   5235 		/*
   5236 		 * We're only interested in Coarse mappings.
   5237 		 * pmap_extract() can deal with section mappings without
   5238 		 * recourse to checking L2 metadata.
   5239 		 */
   5240 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5241 			continue;
   5242 
   5243 		/*
   5244 		 * Lookup the KVA of this L2 descriptor table
   5245 		 */
   5246 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5247 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5248 		if (ptep == NULL) {
   5249 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5250 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5251 		}
   5252 
   5253 		/*
   5254 		 * Fetch the associated L2 metadata structure.
   5255 		 * Allocate a new one if necessary.
   5256 		 */
   5257 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5258 			if (l2next == PMAP_STATIC_L2_SIZE)
   5259 				panic("pmap_bootstrap: out of static L2s");
   5260 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5261 		}
   5262 
   5263 		/*
   5264 		 * One more L1 slot tracked...
   5265 		 */
   5266 		l2->l2_occupancy++;
   5267 
   5268 		/*
   5269 		 * Fill in the details of the L2 descriptor in the
   5270 		 * appropriate bucket.
   5271 		 */
   5272 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5273 		l2b->l2b_kva = ptep;
   5274 		l2b->l2b_phys = pa;
   5275 		l2b->l2b_l1idx = l1idx;
   5276 
   5277 		/*
   5278 		 * Establish an initial occupancy count for this descriptor
   5279 		 */
   5280 		for (l2idx = 0;
   5281 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5282 		    l2idx++) {
   5283 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5284 				l2b->l2b_occupancy++;
   5285 			}
   5286 		}
   5287 
   5288 		/*
   5289 		 * Make sure the descriptor itself has the correct cache mode.
   5290 		 * If not, fix it, but whine about the problem. Port-meisters
   5291 		 * should consider this a clue to fix up their initarm()
   5292 		 * function. :)
   5293 		 */
   5294 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5295 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5296 			    "L2 pte @ %p\n", ptep);
   5297 		}
   5298 	}
   5299 
   5300 	/*
   5301 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5302 	 * a page table. Bitch if it is not correctly set.
   5303 	 */
   5304 	for (va = (vaddr_t)l1pt;
   5305 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5306 		if (pmap_set_pt_cache_mode(l1pt, va))
   5307 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5308 			    "primary L1 @ 0x%lx\n", va);
   5309 	}
   5310 
   5311 	cpu_dcache_wbinv_all();
   5312 	cpu_tlb_flushID();
   5313 	cpu_cpwait();
   5314 
   5315 	/*
   5316 	 * now we allocate the "special" VAs which are used for tmp mappings
   5317 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5318 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5319 	 *
   5320 	 * Managed KVM space start from wherever initarm() tells us.
   5321 	 */
   5322 	virtual_avail = vstart;
   5323 	virtual_end = vend;
   5324 
   5325 #ifdef PMAP_CACHE_VIPT
   5326 	/*
   5327 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5328 	 * page so we won't violate cache aliasing rules.
   5329 	 */
   5330 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5331 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5332 #else
   5333 	nptes = 1;
   5334 #endif
   5335 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5336 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5337 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5338 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5339 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5340 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5341 	    (void *)&msgbufaddr, NULL);
   5342 
   5343 	/*
   5344 	 * Allocate a range of kernel virtual address space to be used
   5345 	 * for L2 descriptor tables and metadata allocation in
   5346 	 * pmap_growkernel().
   5347 	 */
   5348 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5349 	pmap_alloc_specials(&virtual_avail,
   5350 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5351 	    &pmap_kernel_l2ptp_kva, NULL);
   5352 
   5353 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5354 	pmap_alloc_specials(&virtual_avail,
   5355 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5356 	    &pmap_kernel_l2dtable_kva, NULL);
   5357 
   5358 	/*
   5359 	 * init the static-global locks and global pmap list.
   5360 	 */
   5361 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   5362 
   5363 	/*
   5364 	 * We can now initialise the first L1's metadata.
   5365 	 */
   5366 	SLIST_INIT(&l1_list);
   5367 	TAILQ_INIT(&l1_lru_list);
   5368 	pmap_init_l1(l1, l1pt);
   5369 
   5370 #ifndef ARM_HAS_VBAR
   5371 	/* Set up vector page L1 details, if necessary */
   5372 	if (vector_page < KERNEL_BASE) {
   5373 		pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
   5374 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5375 		KDASSERT(l2b != NULL);
   5376 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5377 		    L1_C_DOM(pmap_domain(pm));
   5378 	} else
   5379 		pm->pm_pl1vec = NULL;
   5380 #endif
   5381 
   5382 	/*
   5383 	 * Initialize the pmap cache
   5384 	 */
   5385 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5386 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5387 	LIST_INIT(&pmap_pmaps);
   5388 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5389 
   5390 	/*
   5391 	 * Initialize the pv pool.
   5392 	 */
   5393 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5394 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5395 
   5396 	/*
   5397 	 * Initialize the L2 dtable pool and cache.
   5398 	 */
   5399 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5400 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5401 
   5402 	/*
   5403 	 * Initialise the L2 descriptor table pool and cache
   5404 	 */
   5405 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5406 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5407 	    pmap_l2ptp_ctor, NULL, NULL);
   5408 
   5409 	cpu_dcache_wbinv_all();
   5410 }
   5411 
   5412 static int
   5413 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5414 {
   5415 	pd_entry_t *pdep, pde;
   5416 	pt_entry_t *ptep, pte;
   5417 	vaddr_t pa;
   5418 	int rv = 0;
   5419 
   5420 	/*
   5421 	 * Make sure the descriptor itself has the correct cache mode
   5422 	 */
   5423 	pdep = &kl1[L1_IDX(va)];
   5424 	pde = *pdep;
   5425 
   5426 	if (l1pte_section_p(pde)) {
   5427 		__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   5428 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5429 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5430 			    pte_l1_s_cache_mode_pt;
   5431 			PTE_SYNC(pdep);
   5432 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5433 			rv = 1;
   5434 		}
   5435 	} else {
   5436 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5437 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5438 		if (ptep == NULL)
   5439 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5440 
   5441 		ptep = &ptep[l2pte_index(va)];
   5442 		pte = *ptep;
   5443 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5444 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5445 			    pte_l2_s_cache_mode_pt;
   5446 			PTE_SYNC(ptep);
   5447 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5448 			rv = 1;
   5449 		}
   5450 	}
   5451 
   5452 	return (rv);
   5453 }
   5454 
   5455 static void
   5456 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5457 {
   5458 	vaddr_t va = *availp;
   5459 	struct l2_bucket *l2b;
   5460 
   5461 	if (ptep) {
   5462 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5463 		if (l2b == NULL)
   5464 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5465 
   5466 		if (ptep)
   5467 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5468 	}
   5469 
   5470 	*vap = va;
   5471 	*availp = va + (PAGE_SIZE * pages);
   5472 }
   5473 
   5474 void
   5475 pmap_init(void)
   5476 {
   5477 
   5478 	/*
   5479 	 * Set the available memory vars - These do not map to real memory
   5480 	 * addresses and cannot as the physical memory is fragmented.
   5481 	 * They are used by ps for %mem calculations.
   5482 	 * One could argue whether this should be the entire memory or just
   5483 	 * the memory that is useable in a user process.
   5484 	 */
   5485 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   5486 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   5487 
   5488 	/*
   5489 	 * Now we need to free enough pv_entry structures to allow us to get
   5490 	 * the kmem_map/kmem_object allocated and inited (done after this
   5491 	 * function is finished).  to do this we allocate one bootstrap page out
   5492 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5493 	 * structures.   we never free this page.
   5494 	 */
   5495 	pool_setlowat(&pmap_pv_pool,
   5496 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5497 
   5498 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5499 	zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5500 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   5501 
   5502 	pmap_initialized = true;
   5503 }
   5504 
   5505 static vaddr_t last_bootstrap_page = 0;
   5506 static void *free_bootstrap_pages = NULL;
   5507 
   5508 static void *
   5509 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5510 {
   5511 	extern void *pool_page_alloc(struct pool *, int);
   5512 	vaddr_t new_page;
   5513 	void *rv;
   5514 
   5515 	if (pmap_initialized)
   5516 		return (pool_page_alloc(pp, flags));
   5517 
   5518 	if (free_bootstrap_pages) {
   5519 		rv = free_bootstrap_pages;
   5520 		free_bootstrap_pages = *((void **)rv);
   5521 		return (rv);
   5522 	}
   5523 
   5524 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5525 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5526 
   5527 	KASSERT(new_page > last_bootstrap_page);
   5528 	last_bootstrap_page = new_page;
   5529 	return ((void *)new_page);
   5530 }
   5531 
   5532 static void
   5533 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5534 {
   5535 	extern void pool_page_free(struct pool *, void *);
   5536 
   5537 	if ((vaddr_t)v <= last_bootstrap_page) {
   5538 		*((void **)v) = free_bootstrap_pages;
   5539 		free_bootstrap_pages = v;
   5540 		return;
   5541 	}
   5542 
   5543 	if (pmap_initialized) {
   5544 		pool_page_free(pp, v);
   5545 		return;
   5546 	}
   5547 }
   5548 
   5549 /*
   5550  * pmap_postinit()
   5551  *
   5552  * This routine is called after the vm and kmem subsystems have been
   5553  * initialised. This allows the pmap code to perform any initialisation
   5554  * that can only be done one the memory allocation is in place.
   5555  */
   5556 void
   5557 pmap_postinit(void)
   5558 {
   5559 	extern paddr_t physical_start, physical_end;
   5560 	struct l2_bucket *l2b;
   5561 	struct l1_ttable *l1;
   5562 	struct pglist plist;
   5563 	struct vm_page *m;
   5564 	pd_entry_t *pl1pt;
   5565 	pt_entry_t *ptep, pte;
   5566 	vaddr_t va, eva;
   5567 	u_int loop, needed;
   5568 	int error;
   5569 
   5570 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5571 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5572 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5573 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5574 
   5575 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5576 	needed -= 1;
   5577 
   5578 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   5579 
   5580 	for (loop = 0; loop < needed; loop++, l1++) {
   5581 		/* Allocate a L1 page table */
   5582 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5583 		if (va == 0)
   5584 			panic("Cannot allocate L1 KVM");
   5585 
   5586 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5587 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   5588 		if (error)
   5589 			panic("Cannot allocate L1 physical pages");
   5590 
   5591 		m = TAILQ_FIRST(&plist);
   5592 		eva = va + L1_TABLE_SIZE;
   5593 		pl1pt = (pd_entry_t *)va;
   5594 
   5595 		while (m && va < eva) {
   5596 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5597 
   5598 			pmap_kenter_pa(va, pa,
   5599 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   5600 
   5601 			/*
   5602 			 * Make sure the L1 descriptor table is mapped
   5603 			 * with the cache-mode set to write-through.
   5604 			 */
   5605 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5606 			KDASSERT(l2b != NULL);
   5607 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5608 			pte = *ptep;
   5609 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5610 			*ptep = pte;
   5611 			PTE_SYNC(ptep);
   5612 			cpu_tlb_flushD_SE(va);
   5613 
   5614 			va += PAGE_SIZE;
   5615 			m = TAILQ_NEXT(m, pageq.queue);
   5616 		}
   5617 
   5618 #ifdef DIAGNOSTIC
   5619 		if (m)
   5620 			panic("pmap_alloc_l1pt: pglist not empty");
   5621 #endif	/* DIAGNOSTIC */
   5622 
   5623 		pmap_init_l1(l1, pl1pt);
   5624 	}
   5625 
   5626 #ifdef DEBUG
   5627 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5628 	    needed);
   5629 #endif
   5630 }
   5631 
   5632 /*
   5633  * Note that the following routines are used by board-specific initialisation
   5634  * code to configure the initial kernel page tables.
   5635  *
   5636  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5637  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5638  * behaviour of the old pmap, and provides an easy migration path for
   5639  * initial bring-up of the new pmap on existing ports. Fortunately,
   5640  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5641  * will be deprecated.
   5642  *
   5643  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5644  * tables.
   5645  */
   5646 
   5647 /*
   5648  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5649  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5650  * find them as necessary.
   5651  *
   5652  * Note that the data on this list MUST remain valid after initarm() returns,
   5653  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5654  */
   5655 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5656 
   5657 static vaddr_t
   5658 kernel_pt_lookup(paddr_t pa)
   5659 {
   5660 	pv_addr_t *pv;
   5661 
   5662 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5663 #ifndef ARM32_NEW_VM_LAYOUT
   5664 		if (pv->pv_pa == (pa & ~PGOFSET))
   5665 			return (pv->pv_va | (pa & PGOFSET));
   5666 #else
   5667 		if (pv->pv_pa == pa)
   5668 			return (pv->pv_va);
   5669 #endif
   5670 	}
   5671 	return (0);
   5672 }
   5673 
   5674 /*
   5675  * pmap_map_section:
   5676  *
   5677  *	Create a single section mapping.
   5678  */
   5679 void
   5680 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5681 {
   5682 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5683 	pd_entry_t fl;
   5684 
   5685 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5686 
   5687 	switch (cache) {
   5688 	case PTE_NOCACHE:
   5689 	default:
   5690 		fl = 0;
   5691 		break;
   5692 
   5693 	case PTE_CACHE:
   5694 		fl = pte_l1_s_cache_mode;
   5695 		break;
   5696 
   5697 	case PTE_PAGETABLE:
   5698 		fl = pte_l1_s_cache_mode_pt;
   5699 		break;
   5700 	}
   5701 
   5702 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5703 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5704 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5705 }
   5706 
   5707 /*
   5708  * pmap_map_entry:
   5709  *
   5710  *	Create a single page mapping.
   5711  */
   5712 void
   5713 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5714 {
   5715 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5716 	pt_entry_t fl;
   5717 	pt_entry_t *pte;
   5718 
   5719 	KASSERT(((va | pa) & PGOFSET) == 0);
   5720 
   5721 	switch (cache) {
   5722 	case PTE_NOCACHE:
   5723 	default:
   5724 		fl = 0;
   5725 		break;
   5726 
   5727 	case PTE_CACHE:
   5728 		fl = pte_l2_s_cache_mode;
   5729 		break;
   5730 
   5731 	case PTE_PAGETABLE:
   5732 		fl = pte_l2_s_cache_mode_pt;
   5733 		break;
   5734 	}
   5735 
   5736 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5737 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5738 
   5739 #ifndef ARM32_NEW_VM_LAYOUT
   5740 	pte = (pt_entry_t *)
   5741 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5742 #else
   5743 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5744 #endif
   5745 	if (pte == NULL)
   5746 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5747 
   5748 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5749 #ifndef ARM32_NEW_VM_LAYOUT
   5750 	pte += (va >> PGSHIFT) & 0x3ff;
   5751 #else
   5752 	pte += l2pte_index(va);
   5753 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5754 #endif
   5755 	*pte = fl;
   5756 	PTE_SYNC(pte);
   5757 }
   5758 
   5759 /*
   5760  * pmap_link_l2pt:
   5761  *
   5762  *	Link the L2 page table specified by "l2pv" into the L1
   5763  *	page table at the slot for "va".
   5764  */
   5765 void
   5766 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5767 {
   5768 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5769 	u_int slot = va >> L1_S_SHIFT;
   5770 
   5771 #ifndef ARM32_NEW_VM_LAYOUT
   5772 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5773 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5774 #endif
   5775 
   5776 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5777 
   5778 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5779 #ifdef ARM32_NEW_VM_LAYOUT
   5780 	PTE_SYNC(&pde[slot]);
   5781 #else
   5782 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5783 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5784 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5785 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5786 #endif
   5787 
   5788 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5789 }
   5790 
   5791 /*
   5792  * pmap_map_chunk:
   5793  *
   5794  *	Map a chunk of memory using the most efficient mappings
   5795  *	possible (section, large page, small page) into the
   5796  *	provided L1 and L2 tables at the specified virtual address.
   5797  */
   5798 vsize_t
   5799 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5800     int prot, int cache)
   5801 {
   5802 	pd_entry_t *pdep = (pd_entry_t *) l1pt;
   5803 	pt_entry_t *pte, f1, f2s, f2l;
   5804 	vsize_t resid;
   5805 	int i;
   5806 
   5807 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5808 
   5809 	if (l1pt == 0)
   5810 		panic("pmap_map_chunk: no L1 table provided");
   5811 
   5812 #ifdef VERBOSE_INIT_ARM
   5813 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5814 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5815 #endif
   5816 
   5817 	switch (cache) {
   5818 	case PTE_NOCACHE:
   5819 	default:
   5820 		f1 = 0;
   5821 		f2l = 0;
   5822 		f2s = 0;
   5823 		break;
   5824 
   5825 	case PTE_CACHE:
   5826 		f1 = pte_l1_s_cache_mode;
   5827 		f2l = pte_l2_l_cache_mode;
   5828 		f2s = pte_l2_s_cache_mode;
   5829 		break;
   5830 
   5831 	case PTE_PAGETABLE:
   5832 		f1 = pte_l1_s_cache_mode_pt;
   5833 		f2l = pte_l2_l_cache_mode_pt;
   5834 		f2s = pte_l2_s_cache_mode_pt;
   5835 		break;
   5836 	}
   5837 
   5838 	size = resid;
   5839 
   5840 	while (resid > 0) {
   5841 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5842 		/* See if we can use a supersection mapping. */
   5843 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   5844 			/* Supersection are always domain 0 */
   5845 			pd_entry_t pde = L1_SS_PROTO | pa |
   5846 			    L1_S_PROT(PTE_KERNEL, prot) | f1;
   5847 #ifdef VERBOSE_INIT_ARM
   5848 			printf("sS");
   5849 #endif
   5850 			for (size_t s = va >> L1_S_SHIFT,
   5851 			     e = s + L1_SS_SIZE / L1_S_SIZE;
   5852 			     s < e;
   5853 			     s++) {
   5854 				pdep[s] = pde;
   5855 				PTE_SYNC(&pdep[s]);
   5856 			}
   5857 			va += L1_SS_SIZE;
   5858 			pa += L1_SS_SIZE;
   5859 			resid -= L1_SS_SIZE;
   5860 			continue;
   5861 		}
   5862 #endif
   5863 		/* See if we can use a section mapping. */
   5864 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5865 #ifdef VERBOSE_INIT_ARM
   5866 			printf("S");
   5867 #endif
   5868 			pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5869 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5870 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5871 			PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
   5872 			va += L1_S_SIZE;
   5873 			pa += L1_S_SIZE;
   5874 			resid -= L1_S_SIZE;
   5875 			continue;
   5876 		}
   5877 
   5878 		/*
   5879 		 * Ok, we're going to use an L2 table.  Make sure
   5880 		 * one is actually in the corresponding L1 slot
   5881 		 * for the current VA.
   5882 		 */
   5883 		if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5884 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5885 
   5886 #ifndef ARM32_NEW_VM_LAYOUT
   5887 		pte = (pt_entry_t *)
   5888 		    kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
   5889 #else
   5890 		pte = (pt_entry_t *) kernel_pt_lookup(
   5891 		    pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
   5892 #endif
   5893 		if (pte == NULL)
   5894 			panic("pmap_map_chunk: can't find L2 table for VA"
   5895 			    "0x%08lx", va);
   5896 
   5897 		/* See if we can use a L2 large page mapping. */
   5898 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5899 #ifdef VERBOSE_INIT_ARM
   5900 			printf("L");
   5901 #endif
   5902 			for (i = 0; i < 16; i++) {
   5903 #ifndef ARM32_NEW_VM_LAYOUT
   5904 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5905 				    L2_L_PROTO | pa |
   5906 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5907 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5908 #else
   5909 				pte[l2pte_index(va) + i] =
   5910 				    L2_L_PROTO | pa |
   5911 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5912 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5913 #endif
   5914 			}
   5915 			va += L2_L_SIZE;
   5916 			pa += L2_L_SIZE;
   5917 			resid -= L2_L_SIZE;
   5918 			continue;
   5919 		}
   5920 
   5921 		/* Use a small page mapping. */
   5922 #ifdef VERBOSE_INIT_ARM
   5923 		printf("P");
   5924 #endif
   5925 #ifndef ARM32_NEW_VM_LAYOUT
   5926 		pte[(va >> PGSHIFT) & 0x3ff] =
   5927 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5928 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5929 #else
   5930 		pte[l2pte_index(va)] =
   5931 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5932 		PTE_SYNC(&pte[l2pte_index(va)]);
   5933 #endif
   5934 		va += PAGE_SIZE;
   5935 		pa += PAGE_SIZE;
   5936 		resid -= PAGE_SIZE;
   5937 	}
   5938 #ifdef VERBOSE_INIT_ARM
   5939 	printf("\n");
   5940 #endif
   5941 	return (size);
   5942 }
   5943 
   5944 /********************** Static device map routines ***************************/
   5945 
   5946 static const struct pmap_devmap *pmap_devmap_table;
   5947 
   5948 /*
   5949  * Register the devmap table.  This is provided in case early console
   5950  * initialization needs to register mappings created by bootstrap code
   5951  * before pmap_devmap_bootstrap() is called.
   5952  */
   5953 void
   5954 pmap_devmap_register(const struct pmap_devmap *table)
   5955 {
   5956 
   5957 	pmap_devmap_table = table;
   5958 }
   5959 
   5960 /*
   5961  * Map all of the static regions in the devmap table, and remember
   5962  * the devmap table so other parts of the kernel can look up entries
   5963  * later.
   5964  */
   5965 void
   5966 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5967 {
   5968 	int i;
   5969 
   5970 	pmap_devmap_table = table;
   5971 
   5972 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5973 #ifdef VERBOSE_INIT_ARM
   5974 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5975 		    pmap_devmap_table[i].pd_pa,
   5976 		    pmap_devmap_table[i].pd_pa +
   5977 			pmap_devmap_table[i].pd_size - 1,
   5978 		    pmap_devmap_table[i].pd_va);
   5979 #endif
   5980 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5981 		    pmap_devmap_table[i].pd_pa,
   5982 		    pmap_devmap_table[i].pd_size,
   5983 		    pmap_devmap_table[i].pd_prot,
   5984 		    pmap_devmap_table[i].pd_cache);
   5985 	}
   5986 }
   5987 
   5988 const struct pmap_devmap *
   5989 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5990 {
   5991 	uint64_t endpa;
   5992 	int i;
   5993 
   5994 	if (pmap_devmap_table == NULL)
   5995 		return (NULL);
   5996 
   5997 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5998 
   5999 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6000 		if (pa >= pmap_devmap_table[i].pd_pa &&
   6001 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   6002 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   6003 			return (&pmap_devmap_table[i]);
   6004 	}
   6005 
   6006 	return (NULL);
   6007 }
   6008 
   6009 const struct pmap_devmap *
   6010 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6011 {
   6012 	int i;
   6013 
   6014 	if (pmap_devmap_table == NULL)
   6015 		return (NULL);
   6016 
   6017 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6018 		if (va >= pmap_devmap_table[i].pd_va &&
   6019 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6020 				     pmap_devmap_table[i].pd_size - 1)
   6021 			return (&pmap_devmap_table[i]);
   6022 	}
   6023 
   6024 	return (NULL);
   6025 }
   6026 
   6027 /********************** PTE initialization routines **************************/
   6028 
   6029 /*
   6030  * These routines are called when the CPU type is identified to set up
   6031  * the PTE prototypes, cache modes, etc.
   6032  *
   6033  * The variables are always here, just in case modules need to reference
   6034  * them (though, they shouldn't).
   6035  */
   6036 
   6037 pt_entry_t	pte_l1_s_cache_mode;
   6038 pt_entry_t	pte_l1_s_wc_mode;
   6039 pt_entry_t	pte_l1_s_cache_mode_pt;
   6040 pt_entry_t	pte_l1_s_cache_mask;
   6041 
   6042 pt_entry_t	pte_l2_l_cache_mode;
   6043 pt_entry_t	pte_l2_l_wc_mode;
   6044 pt_entry_t	pte_l2_l_cache_mode_pt;
   6045 pt_entry_t	pte_l2_l_cache_mask;
   6046 
   6047 pt_entry_t	pte_l2_s_cache_mode;
   6048 pt_entry_t	pte_l2_s_wc_mode;
   6049 pt_entry_t	pte_l2_s_cache_mode_pt;
   6050 pt_entry_t	pte_l2_s_cache_mask;
   6051 
   6052 pt_entry_t	pte_l1_s_prot_u;
   6053 pt_entry_t	pte_l1_s_prot_w;
   6054 pt_entry_t	pte_l1_s_prot_ro;
   6055 pt_entry_t	pte_l1_s_prot_mask;
   6056 
   6057 pt_entry_t	pte_l2_s_prot_u;
   6058 pt_entry_t	pte_l2_s_prot_w;
   6059 pt_entry_t	pte_l2_s_prot_ro;
   6060 pt_entry_t	pte_l2_s_prot_mask;
   6061 
   6062 pt_entry_t	pte_l2_l_prot_u;
   6063 pt_entry_t	pte_l2_l_prot_w;
   6064 pt_entry_t	pte_l2_l_prot_ro;
   6065 pt_entry_t	pte_l2_l_prot_mask;
   6066 
   6067 pt_entry_t	pte_l1_ss_proto;
   6068 pt_entry_t	pte_l1_s_proto;
   6069 pt_entry_t	pte_l1_c_proto;
   6070 pt_entry_t	pte_l2_s_proto;
   6071 
   6072 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6073 void		(*pmap_zero_page_func)(paddr_t);
   6074 
   6075 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6076 void
   6077 pmap_pte_init_generic(void)
   6078 {
   6079 
   6080 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6081 	pte_l1_s_wc_mode = L1_S_B;
   6082 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6083 
   6084 	pte_l2_l_cache_mode = L2_B|L2_C;
   6085 	pte_l2_l_wc_mode = L2_B;
   6086 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6087 
   6088 	pte_l2_s_cache_mode = L2_B|L2_C;
   6089 	pte_l2_s_wc_mode = L2_B;
   6090 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6091 
   6092 	/*
   6093 	 * If we have a write-through cache, set B and C.  If
   6094 	 * we have a write-back cache, then we assume setting
   6095 	 * only C will make those pages write-through (except for those
   6096 	 * Cortex CPUs which can read the L1 caches).
   6097 	 */
   6098 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6099 #if ARM_MMU_V7 > 0
   6100 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6101 #endif
   6102 #if ARM_MMU_V6 > 0
   6103 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6104 #endif
   6105 	    || false) {
   6106 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6107 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6108 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6109 	} else {
   6110 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6111 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6112 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6113 	}
   6114 
   6115 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6116 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6117 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6118 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6119 
   6120 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6121 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6122 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6123 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6124 
   6125 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6126 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6127 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6128 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6129 
   6130 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6131 	pte_l1_s_proto = L1_S_PROTO_generic;
   6132 	pte_l1_c_proto = L1_C_PROTO_generic;
   6133 	pte_l2_s_proto = L2_S_PROTO_generic;
   6134 
   6135 	pmap_copy_page_func = pmap_copy_page_generic;
   6136 	pmap_zero_page_func = pmap_zero_page_generic;
   6137 }
   6138 
   6139 #if defined(CPU_ARM8)
   6140 void
   6141 pmap_pte_init_arm8(void)
   6142 {
   6143 
   6144 	/*
   6145 	 * ARM8 is compatible with generic, but we need to use
   6146 	 * the page tables uncached.
   6147 	 */
   6148 	pmap_pte_init_generic();
   6149 
   6150 	pte_l1_s_cache_mode_pt = 0;
   6151 	pte_l2_l_cache_mode_pt = 0;
   6152 	pte_l2_s_cache_mode_pt = 0;
   6153 }
   6154 #endif /* CPU_ARM8 */
   6155 
   6156 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6157 void
   6158 pmap_pte_init_arm9(void)
   6159 {
   6160 
   6161 	/*
   6162 	 * ARM9 is compatible with generic, but we want to use
   6163 	 * write-through caching for now.
   6164 	 */
   6165 	pmap_pte_init_generic();
   6166 
   6167 	pte_l1_s_cache_mode = L1_S_C;
   6168 	pte_l2_l_cache_mode = L2_C;
   6169 	pte_l2_s_cache_mode = L2_C;
   6170 
   6171 	pte_l1_s_wc_mode = L1_S_B;
   6172 	pte_l2_l_wc_mode = L2_B;
   6173 	pte_l2_s_wc_mode = L2_B;
   6174 
   6175 	pte_l1_s_cache_mode_pt = L1_S_C;
   6176 	pte_l2_l_cache_mode_pt = L2_C;
   6177 	pte_l2_s_cache_mode_pt = L2_C;
   6178 }
   6179 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6180 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6181 
   6182 #if defined(CPU_ARM10)
   6183 void
   6184 pmap_pte_init_arm10(void)
   6185 {
   6186 
   6187 	/*
   6188 	 * ARM10 is compatible with generic, but we want to use
   6189 	 * write-through caching for now.
   6190 	 */
   6191 	pmap_pte_init_generic();
   6192 
   6193 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6194 	pte_l2_l_cache_mode = L2_B | L2_C;
   6195 	pte_l2_s_cache_mode = L2_B | L2_C;
   6196 
   6197 	pte_l1_s_cache_mode = L1_S_B;
   6198 	pte_l2_l_cache_mode = L2_B;
   6199 	pte_l2_s_cache_mode = L2_B;
   6200 
   6201 	pte_l1_s_cache_mode_pt = L1_S_C;
   6202 	pte_l2_l_cache_mode_pt = L2_C;
   6203 	pte_l2_s_cache_mode_pt = L2_C;
   6204 
   6205 }
   6206 #endif /* CPU_ARM10 */
   6207 
   6208 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6209 void
   6210 pmap_pte_init_arm11(void)
   6211 {
   6212 
   6213 	/*
   6214 	 * ARM11 is compatible with generic, but we want to use
   6215 	 * write-through caching for now.
   6216 	 */
   6217 	pmap_pte_init_generic();
   6218 
   6219 	pte_l1_s_cache_mode = L1_S_C;
   6220 	pte_l2_l_cache_mode = L2_C;
   6221 	pte_l2_s_cache_mode = L2_C;
   6222 
   6223 	pte_l1_s_wc_mode = L1_S_B;
   6224 	pte_l2_l_wc_mode = L2_B;
   6225 	pte_l2_s_wc_mode = L2_B;
   6226 
   6227 	pte_l1_s_cache_mode_pt = L1_S_C;
   6228 	pte_l2_l_cache_mode_pt = L2_C;
   6229 	pte_l2_s_cache_mode_pt = L2_C;
   6230 }
   6231 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   6232 
   6233 #if ARM_MMU_SA1 == 1
   6234 void
   6235 pmap_pte_init_sa1(void)
   6236 {
   6237 
   6238 	/*
   6239 	 * The StrongARM SA-1 cache does not have a write-through
   6240 	 * mode.  So, do the generic initialization, then reset
   6241 	 * the page table cache mode to B=1,C=1, and note that
   6242 	 * the PTEs need to be sync'd.
   6243 	 */
   6244 	pmap_pte_init_generic();
   6245 
   6246 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6247 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6248 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6249 
   6250 	pmap_needs_pte_sync = 1;
   6251 }
   6252 #endif /* ARM_MMU_SA1 == 1*/
   6253 
   6254 #if ARM_MMU_XSCALE == 1
   6255 #if (ARM_NMMUS > 1)
   6256 static u_int xscale_use_minidata;
   6257 #endif
   6258 
   6259 void
   6260 pmap_pte_init_xscale(void)
   6261 {
   6262 	uint32_t auxctl;
   6263 	int write_through = 0;
   6264 
   6265 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6266 	pte_l1_s_wc_mode = L1_S_B;
   6267 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   6268 
   6269 	pte_l2_l_cache_mode = L2_B|L2_C;
   6270 	pte_l2_l_wc_mode = L2_B;
   6271 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   6272 
   6273 	pte_l2_s_cache_mode = L2_B|L2_C;
   6274 	pte_l2_s_wc_mode = L2_B;
   6275 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   6276 
   6277 	pte_l1_s_cache_mode_pt = L1_S_C;
   6278 	pte_l2_l_cache_mode_pt = L2_C;
   6279 	pte_l2_s_cache_mode_pt = L2_C;
   6280 
   6281 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   6282 	/*
   6283 	 * The XScale core has an enhanced mode where writes that
   6284 	 * miss the cache cause a cache line to be allocated.  This
   6285 	 * is significantly faster than the traditional, write-through
   6286 	 * behavior of this case.
   6287 	 */
   6288 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   6289 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   6290 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   6291 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   6292 
   6293 #ifdef XSCALE_CACHE_WRITE_THROUGH
   6294 	/*
   6295 	 * Some versions of the XScale core have various bugs in
   6296 	 * their cache units, the work-around for which is to run
   6297 	 * the cache in write-through mode.  Unfortunately, this
   6298 	 * has a major (negative) impact on performance.  So, we
   6299 	 * go ahead and run fast-and-loose, in the hopes that we
   6300 	 * don't line up the planets in a way that will trip the
   6301 	 * bugs.
   6302 	 *
   6303 	 * However, we give you the option to be slow-but-correct.
   6304 	 */
   6305 	write_through = 1;
   6306 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6307 	/* force write back cache mode */
   6308 	write_through = 0;
   6309 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6310 	/*
   6311 	 * Intel PXA2[15]0 processors are known to have a bug in
   6312 	 * write-back cache on revision 4 and earlier (stepping
   6313 	 * A[01] and B[012]).  Fixed for C0 and later.
   6314 	 */
   6315 	{
   6316 		uint32_t id, type;
   6317 
   6318 		id = cpufunc_id();
   6319 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6320 
   6321 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6322 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6323 				/* write through for stepping A0-1 and B0-2 */
   6324 				write_through = 1;
   6325 			}
   6326 		}
   6327 	}
   6328 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6329 
   6330 	if (write_through) {
   6331 		pte_l1_s_cache_mode = L1_S_C;
   6332 		pte_l2_l_cache_mode = L2_C;
   6333 		pte_l2_s_cache_mode = L2_C;
   6334 	}
   6335 
   6336 #if (ARM_NMMUS > 1)
   6337 	xscale_use_minidata = 1;
   6338 #endif
   6339 
   6340 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   6341 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   6342 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   6343 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   6344 
   6345 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6346 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6347 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   6348 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6349 
   6350 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   6351 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   6352 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   6353 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   6354 
   6355 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   6356 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6357 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6358 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6359 
   6360 	pmap_copy_page_func = pmap_copy_page_xscale;
   6361 	pmap_zero_page_func = pmap_zero_page_xscale;
   6362 
   6363 	/*
   6364 	 * Disable ECC protection of page table access, for now.
   6365 	 */
   6366 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6367 	auxctl &= ~XSCALE_AUXCTL_P;
   6368 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6369 }
   6370 
   6371 /*
   6372  * xscale_setup_minidata:
   6373  *
   6374  *	Set up the mini-data cache clean area.  We require the
   6375  *	caller to allocate the right amount of physically and
   6376  *	virtually contiguous space.
   6377  */
   6378 void
   6379 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6380 {
   6381 	extern vaddr_t xscale_minidata_clean_addr;
   6382 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6383 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6384 	pt_entry_t *pte;
   6385 	vsize_t size;
   6386 	uint32_t auxctl;
   6387 
   6388 	xscale_minidata_clean_addr = va;
   6389 
   6390 	/* Round it to page size. */
   6391 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6392 
   6393 	for (; size != 0;
   6394 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6395 #ifndef ARM32_NEW_VM_LAYOUT
   6396 		pte = (pt_entry_t *)
   6397 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6398 #else
   6399 		pte = (pt_entry_t *) kernel_pt_lookup(
   6400 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6401 #endif
   6402 		if (pte == NULL)
   6403 			panic("xscale_setup_minidata: can't find L2 table for "
   6404 			    "VA 0x%08lx", va);
   6405 #ifndef ARM32_NEW_VM_LAYOUT
   6406 		pte[(va >> PGSHIFT) & 0x3ff] =
   6407 #else
   6408 		pte[l2pte_index(va)] =
   6409 #endif
   6410 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6411 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6412 	}
   6413 
   6414 	/*
   6415 	 * Configure the mini-data cache for write-back with
   6416 	 * read/write-allocate.
   6417 	 *
   6418 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6419 	 * make sure it contains no valid data!  In order to do that,
   6420 	 * we must issue a global data cache invalidate command!
   6421 	 *
   6422 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6423 	 * THIS IS VERY IMPORTANT!
   6424 	 */
   6425 
   6426 	/* Invalidate data and mini-data. */
   6427 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6428 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6429 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6430 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6431 }
   6432 
   6433 /*
   6434  * Change the PTEs for the specified kernel mappings such that they
   6435  * will use the mini data cache instead of the main data cache.
   6436  */
   6437 void
   6438 pmap_uarea(vaddr_t va)
   6439 {
   6440 	struct l2_bucket *l2b;
   6441 	pt_entry_t *ptep, *sptep, pte;
   6442 	vaddr_t next_bucket, eva;
   6443 
   6444 #if (ARM_NMMUS > 1)
   6445 	if (xscale_use_minidata == 0)
   6446 		return;
   6447 #endif
   6448 
   6449 	eva = va + USPACE;
   6450 
   6451 	while (va < eva) {
   6452 		next_bucket = L2_NEXT_BUCKET(va);
   6453 		if (next_bucket > eva)
   6454 			next_bucket = eva;
   6455 
   6456 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6457 		KDASSERT(l2b != NULL);
   6458 
   6459 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6460 
   6461 		while (va < next_bucket) {
   6462 			pte = *ptep;
   6463 			if (!l2pte_minidata(pte)) {
   6464 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6465 				cpu_tlb_flushD_SE(va);
   6466 				*ptep = pte & ~L2_B;
   6467 			}
   6468 			ptep++;
   6469 			va += PAGE_SIZE;
   6470 		}
   6471 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6472 	}
   6473 	cpu_cpwait();
   6474 }
   6475 #endif /* ARM_MMU_XSCALE == 1 */
   6476 
   6477 
   6478 #if defined(CPU_ARM11MPCORE)
   6479 
   6480 void
   6481 pmap_pte_init_arm11mpcore(void)
   6482 {
   6483 
   6484 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   6485 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   6486 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   6487 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6488 	/* use extended small page (without APn, with TEX) */
   6489 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   6490 #else
   6491 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   6492 #endif
   6493 
   6494 	/* write-back, write-allocate */
   6495 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6496 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6497 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6498 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6499 #else
   6500 	/* no TEX. read-allocate */
   6501 	pte_l2_s_cache_mode = L2_C | L2_B;
   6502 #endif
   6503 	/*
   6504 	 * write-back, write-allocate for page tables.
   6505 	 */
   6506 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6507 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6508 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6509 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6510 #else
   6511 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   6512 #endif
   6513 
   6514 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   6515 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   6516 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   6517 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   6518 
   6519 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6520 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   6521 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   6522 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   6523 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   6524 
   6525 #else
   6526 	/* with AP[0..3] */
   6527 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6528 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6529 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6530 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6531 #endif
   6532 
   6533 #ifdef	ARM11MPCORE_COMPAT_MMU
   6534 	/* with AP[0..3] */
   6535 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6536 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6537 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6538 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6539 
   6540 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6541 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6542 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6543 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   6544 #else
   6545 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   6546 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   6547 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   6548 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   6549 
   6550 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6551 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6552 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6553 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   6554 #endif
   6555 
   6556 	pmap_copy_page_func = pmap_copy_page_generic;
   6557 	pmap_zero_page_func = pmap_zero_page_generic;
   6558 	pmap_needs_pte_sync = 1;
   6559 }
   6560 #endif	/* CPU_ARM11MPCORE */
   6561 
   6562 
   6563 #if ARM_MMU_V7 == 1
   6564 void
   6565 pmap_pte_init_armv7(void)
   6566 {
   6567 	/*
   6568 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   6569 	 * AP field is zero, that now means "no access" rather than
   6570 	 * read-only. The prototypes are a little different because of
   6571 	 * the XN bit.
   6572 	 */
   6573 	pmap_pte_init_generic();
   6574 
   6575 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   6576 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   6577 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   6578 
   6579 	if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
   6580 		/*
   6581 		 * write-back, no write-allocate, shareable for normal pages.
   6582 		 */
   6583 		pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
   6584 		pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
   6585 		pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
   6586 
   6587 		/*
   6588 		 * write-back, no write-allocate, shareable for page tables.
   6589 		 */
   6590 		pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
   6591 		pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6592 		pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6593 	}
   6594 
   6595 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   6596 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   6597 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   6598 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   6599 
   6600 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   6601 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   6602 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   6603 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   6604 
   6605 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   6606 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   6607 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   6608 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   6609 
   6610 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   6611 	pte_l1_s_proto = L1_S_PROTO_armv7;
   6612 	pte_l1_c_proto = L1_C_PROTO_armv7;
   6613 	pte_l2_s_proto = L2_S_PROTO_armv7;
   6614 
   6615 	pmap_needs_pte_sync = 1;
   6616 }
   6617 #endif /* ARM_MMU_V7 */
   6618 
   6619 /*
   6620  * return the PA of the current L1 table, for use when handling a crash dump
   6621  */
   6622 uint32_t pmap_kernel_L1_addr(void)
   6623 {
   6624 	return pmap_kernel()->pm_l1->l1_physaddr;
   6625 }
   6626 
   6627 #if defined(DDB)
   6628 /*
   6629  * A couple of ddb-callable functions for dumping pmaps
   6630  */
   6631 void pmap_dump_all(void);
   6632 void pmap_dump(pmap_t);
   6633 
   6634 void
   6635 pmap_dump_all(void)
   6636 {
   6637 	pmap_t pm;
   6638 
   6639 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6640 		if (pm == pmap_kernel())
   6641 			continue;
   6642 		pmap_dump(pm);
   6643 		printf("\n");
   6644 	}
   6645 }
   6646 
   6647 static pt_entry_t ncptes[64];
   6648 static void pmap_dump_ncpg(pmap_t);
   6649 
   6650 void
   6651 pmap_dump(pmap_t pm)
   6652 {
   6653 	struct l2_dtable *l2;
   6654 	struct l2_bucket *l2b;
   6655 	pt_entry_t *ptep, pte;
   6656 	vaddr_t l2_va, l2b_va, va;
   6657 	int i, j, k, occ, rows = 0;
   6658 
   6659 	if (pm == pmap_kernel())
   6660 		printf("pmap_kernel (%p): ", pm);
   6661 	else
   6662 		printf("user pmap (%p): ", pm);
   6663 
   6664 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   6665 
   6666 	l2_va = 0;
   6667 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6668 		l2 = pm->pm_l2[i];
   6669 
   6670 		if (l2 == NULL || l2->l2_occupancy == 0)
   6671 			continue;
   6672 
   6673 		l2b_va = l2_va;
   6674 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6675 			l2b = &l2->l2_bucket[j];
   6676 
   6677 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6678 				continue;
   6679 
   6680 			ptep = l2b->l2b_kva;
   6681 
   6682 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6683 				;
   6684 
   6685 			k &= ~63;
   6686 			occ = l2b->l2b_occupancy;
   6687 			va = l2b_va + (k * 4096);
   6688 			for (; k < 256; k++, va += 0x1000) {
   6689 				char ch = ' ';
   6690 				if ((k % 64) == 0) {
   6691 					if ((rows % 8) == 0) {
   6692 						printf(
   6693 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6694 					}
   6695 					printf("%08lx: ", va);
   6696 				}
   6697 
   6698 				ncptes[k & 63] = 0;
   6699 				pte = ptep[k];
   6700 				if (pte == 0) {
   6701 					ch = '.';
   6702 				} else {
   6703 					occ--;
   6704 					switch (pte & 0x0c) {
   6705 					case 0x00:
   6706 						ch = 'D'; /* No cache No buff */
   6707 						break;
   6708 					case 0x04:
   6709 						ch = 'B'; /* No cache buff */
   6710 						break;
   6711 					case 0x08:
   6712 						if (pte & 0x40)
   6713 							ch = 'm';
   6714 						else
   6715 						   ch = 'C'; /* Cache No buff */
   6716 						break;
   6717 					case 0x0c:
   6718 						ch = 'F'; /* Cache Buff */
   6719 						break;
   6720 					}
   6721 
   6722 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6723 						ch += 0x20;
   6724 
   6725 					if ((pte & 0xc) == 0)
   6726 						ncptes[k & 63] = pte;
   6727 				}
   6728 
   6729 				if ((k % 64) == 63) {
   6730 					rows++;
   6731 					printf("%c\n", ch);
   6732 					pmap_dump_ncpg(pm);
   6733 					if (occ == 0)
   6734 						break;
   6735 				} else
   6736 					printf("%c", ch);
   6737 			}
   6738 		}
   6739 	}
   6740 }
   6741 
   6742 static void
   6743 pmap_dump_ncpg(pmap_t pm)
   6744 {
   6745 	struct vm_page *pg;
   6746 	struct vm_page_md *md;
   6747 	struct pv_entry *pv;
   6748 	int i;
   6749 
   6750 	for (i = 0; i < 63; i++) {
   6751 		if (ncptes[i] == 0)
   6752 			continue;
   6753 
   6754 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6755 		if (pg == NULL)
   6756 			continue;
   6757 		md = VM_PAGE_TO_MD(pg);
   6758 
   6759 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6760 		    VM_PAGE_TO_PHYS(pg),
   6761 		    md->krw_mappings, md->kro_mappings,
   6762 		    md->urw_mappings, md->uro_mappings);
   6763 
   6764 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   6765 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6766 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6767 			    pv->pv_va, pv->pv_flags);
   6768 		}
   6769 	}
   6770 }
   6771 #endif
   6772 
   6773 #ifdef PMAP_STEAL_MEMORY
   6774 void
   6775 pmap_boot_pageadd(pv_addr_t *newpv)
   6776 {
   6777 	pv_addr_t *pv, *npv;
   6778 
   6779 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6780 		if (newpv->pv_pa < pv->pv_va) {
   6781 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6782 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6783 				newpv->pv_size += pv->pv_size;
   6784 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6785 			}
   6786 			pv = NULL;
   6787 		} else {
   6788 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6789 			     pv = npv) {
   6790 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6791 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6792 				if (newpv->pv_pa > npv->pv_pa)
   6793 					continue;
   6794 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6795 					pv->pv_size += newpv->pv_size;
   6796 					return;
   6797 				}
   6798 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6799 					break;
   6800 				newpv->pv_size += npv->pv_size;
   6801 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6802 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6803 				return;
   6804 			}
   6805 		}
   6806 	}
   6807 
   6808 	if (pv) {
   6809 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6810 	} else {
   6811 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6812 	}
   6813 }
   6814 
   6815 void
   6816 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6817 	pv_addr_t *rpv)
   6818 {
   6819 	pv_addr_t *pv, **pvp;
   6820 	struct vm_physseg *ps;
   6821 	size_t i;
   6822 
   6823 	KASSERT(amount & PGOFSET);
   6824 	KASSERT((mask & PGOFSET) == 0);
   6825 	KASSERT((match & PGOFSET) == 0);
   6826 	KASSERT(amount != 0);
   6827 
   6828 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6829 	     (pv = *pvp) != NULL;
   6830 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6831 		pv_addr_t *newpv;
   6832 		psize_t off;
   6833 		/*
   6834 		 * If this entry is too small to satify the request...
   6835 		 */
   6836 		KASSERT(pv->pv_size > 0);
   6837 		if (pv->pv_size < amount)
   6838 			continue;
   6839 
   6840 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6841 			if (((pv->pv_pa + off) & mask) == match
   6842 			    && off + amount <= pv->pv_size)
   6843 				break;
   6844 		}
   6845 		if (off > mask)
   6846 			continue;
   6847 
   6848 		rpv->pv_va = pv->pv_va + off;
   6849 		rpv->pv_pa = pv->pv_pa + off;
   6850 		rpv->pv_size = amount;
   6851 		pv->pv_size -= amount;
   6852 		if (pv->pv_size == 0) {
   6853 			KASSERT(off == 0);
   6854 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6855 			*pvp = SLIST_NEXT(pv, pv_list);
   6856 		} else if (off == 0) {
   6857 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6858 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6859 			*newpv = *pv;
   6860 			newpv->pv_pa += amount;
   6861 			newpv->pv_va += amount;
   6862 			*pvp = newpv;
   6863 		} else if (off < pv->pv_size) {
   6864 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6865 			*newpv = *pv;
   6866 			newpv->pv_size -= off;
   6867 			newpv->pv_pa += off + amount;
   6868 			newpv->pv_va += off + amount;
   6869 
   6870 			SLIST_NEXT(pv, pv_list) = newpv;
   6871 			pv->pv_size = off;
   6872 		} else {
   6873 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6874 		}
   6875 		memset((void *)rpv->pv_va, 0, amount);
   6876 		return;
   6877 	}
   6878 
   6879 	if (vm_nphysseg == 0)
   6880 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6881 
   6882 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6883 	     (pv = *pvp) != NULL;
   6884 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6885 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6886 			break;
   6887 	}
   6888 	KASSERT(mask == 0);
   6889 	for (i = 0; i < vm_nphysseg; i++) {
   6890 		ps = VM_PHYSMEM_PTR(i);
   6891 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6892 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6893 			rpv->pv_va = pv->pv_va;
   6894 			rpv->pv_pa = pv->pv_pa;
   6895 			rpv->pv_size = amount;
   6896 			*pvp = NULL;
   6897 			pmap_map_chunk(kernel_l1pt.pv_va,
   6898 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6899 			     ptoa(ps->avail_start),
   6900 			     amount - pv->pv_size,
   6901 			     VM_PROT_READ|VM_PROT_WRITE,
   6902 			     PTE_CACHE);
   6903 			ps->avail_start += atop(amount - pv->pv_size);
   6904 			/*
   6905 			 * If we consumed the entire physseg, remove it.
   6906 			 */
   6907 			if (ps->avail_start == ps->avail_end) {
   6908 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   6909 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   6910 			}
   6911 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6912 			return;
   6913 		}
   6914 	}
   6915 
   6916 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6917 }
   6918 
   6919 vaddr_t
   6920 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6921 {
   6922 	pv_addr_t pv;
   6923 
   6924 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6925 
   6926 	return pv.pv_va;
   6927 }
   6928 #endif /* PMAP_STEAL_MEMORY */
   6929 
   6930 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6931 {
   6932 	sysctl_createv(clog, 0, NULL, NULL,
   6933 			CTLFLAG_PERMANENT,
   6934 			CTLTYPE_NODE, "machdep", NULL,
   6935 			NULL, 0, NULL, 0,
   6936 			CTL_MACHDEP, CTL_EOL);
   6937 
   6938 	sysctl_createv(clog, 0, NULL, NULL,
   6939 			CTLFLAG_PERMANENT,
   6940 			CTLTYPE_INT, "kmpages",
   6941 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6942 			NULL, 0, &pmap_kmpages, 0,
   6943 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6944 }
   6945 
   6946 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   6947 struct vm_page *
   6948 arm_pmap_alloc_poolpage(int flags)
   6949 {
   6950 	/*
   6951 	 * On some systems, only some pages may be "coherent" for dma and we
   6952 	 * want to prefer those for pool pages (think mbufs) but fallback to
   6953 	 * any page if none is available.
   6954 	 */
   6955 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   6956 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   6957 		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
   6958 	}
   6959 
   6960 	return uvm_pagealloc(NULL, 0, NULL, flags);
   6961 }
   6962 #endif
   6963