Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.264
      1 /*	$NetBSD: pmap.c,v 1.264 2013/09/12 14:45:18 kiyohara Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/pool.h>
    201 #include <sys/kmem.h>
    202 #include <sys/cdefs.h>
    203 #include <sys/cpu.h>
    204 #include <sys/sysctl.h>
    205 #include <sys/bus.h>
    206 
    207 #include <uvm/uvm.h>
    208 
    209 #include <arm/locore.h>
    210 #include <arm/arm32/katelib.h>
    211 
    212 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.264 2013/09/12 14:45:18 kiyohara Exp $");
    213 
    214 #ifdef PMAP_DEBUG
    215 
    216 /* XXX need to get rid of all refs to this */
    217 int pmap_debug_level = 0;
    218 
    219 /*
    220  * for switching to potentially finer grained debugging
    221  */
    222 #define	PDB_FOLLOW	0x0001
    223 #define	PDB_INIT	0x0002
    224 #define	PDB_ENTER	0x0004
    225 #define	PDB_REMOVE	0x0008
    226 #define	PDB_CREATE	0x0010
    227 #define	PDB_PTPAGE	0x0020
    228 #define	PDB_GROWKERN	0x0040
    229 #define	PDB_BITS	0x0080
    230 #define	PDB_COLLECT	0x0100
    231 #define	PDB_PROTECT	0x0200
    232 #define	PDB_MAP_L1	0x0400
    233 #define	PDB_BOOTSTRAP	0x1000
    234 #define	PDB_PARANOIA	0x2000
    235 #define	PDB_WIRING	0x4000
    236 #define	PDB_PVDUMP	0x8000
    237 #define	PDB_VAC		0x10000
    238 #define	PDB_KENTER	0x20000
    239 #define	PDB_KREMOVE	0x40000
    240 #define	PDB_EXEC	0x80000
    241 
    242 int debugmap = 1;
    243 int pmapdebug = 0;
    244 #define	NPDEBUG(_lev_,_stat_) \
    245 	if (pmapdebug & (_lev_)) \
    246         	((_stat_))
    247 
    248 #else	/* PMAP_DEBUG */
    249 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    250 #endif	/* PMAP_DEBUG */
    251 
    252 /*
    253  * pmap_kernel() points here
    254  */
    255 static struct pmap	kernel_pmap_store;
    256 struct pmap		*const kernel_pmap_ptr = &kernel_pmap_store;
    257 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    258 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    259 #endif
    260 
    261 /*
    262  * Which pmap is currently 'live' in the cache
    263  *
    264  * XXXSCW: Fix for SMP ...
    265  */
    266 static pmap_t pmap_recent_user;
    267 
    268 /*
    269  * Pointer to last active lwp, or NULL if it exited.
    270  */
    271 struct lwp *pmap_previous_active_lwp;
    272 
    273 /*
    274  * Pool and cache that pmap structures are allocated from.
    275  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    276  * in pmap_create().
    277  */
    278 static struct pool_cache pmap_cache;
    279 static LIST_HEAD(, pmap) pmap_pmaps;
    280 
    281 /*
    282  * Pool of PV structures
    283  */
    284 static struct pool pmap_pv_pool;
    285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    288 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    289 };
    290 
    291 /*
    292  * Pool and cache of l2_dtable structures.
    293  * We use a cache to avoid clearing the structures when they're
    294  * allocated. (196 bytes)
    295  */
    296 static struct pool_cache pmap_l2dtable_cache;
    297 static vaddr_t pmap_kernel_l2dtable_kva;
    298 
    299 /*
    300  * Pool and cache of L2 page descriptors.
    301  * We use a cache to avoid clearing the descriptor table
    302  * when they're allocated. (1KB)
    303  */
    304 static struct pool_cache pmap_l2ptp_cache;
    305 static vaddr_t pmap_kernel_l2ptp_kva;
    306 static paddr_t pmap_kernel_l2ptp_phys;
    307 
    308 #ifdef PMAPCOUNTERS
    309 #define	PMAP_EVCNT_INITIALIZER(name) \
    310 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    311 
    312 #ifdef PMAP_CACHE_VIPT
    313 static struct evcnt pmap_ev_vac_clean_one =
    314    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    315 static struct evcnt pmap_ev_vac_flush_one =
    316    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    317 static struct evcnt pmap_ev_vac_flush_lots =
    318    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    319 static struct evcnt pmap_ev_vac_flush_lots2 =
    320    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    321 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    325 
    326 static struct evcnt pmap_ev_vac_color_new =
    327    PMAP_EVCNT_INITIALIZER("new page color");
    328 static struct evcnt pmap_ev_vac_color_reuse =
    329    PMAP_EVCNT_INITIALIZER("ok first page color");
    330 static struct evcnt pmap_ev_vac_color_ok =
    331    PMAP_EVCNT_INITIALIZER("ok page color");
    332 static struct evcnt pmap_ev_vac_color_blind =
    333    PMAP_EVCNT_INITIALIZER("blind page color");
    334 static struct evcnt pmap_ev_vac_color_change =
    335    PMAP_EVCNT_INITIALIZER("change page color");
    336 static struct evcnt pmap_ev_vac_color_erase =
    337    PMAP_EVCNT_INITIALIZER("erase page color");
    338 static struct evcnt pmap_ev_vac_color_none =
    339    PMAP_EVCNT_INITIALIZER("no page color");
    340 static struct evcnt pmap_ev_vac_color_restore =
    341    PMAP_EVCNT_INITIALIZER("restore page color");
    342 
    343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    351 #endif
    352 
    353 static struct evcnt pmap_ev_mappings =
    354    PMAP_EVCNT_INITIALIZER("pages mapped");
    355 static struct evcnt pmap_ev_unmappings =
    356    PMAP_EVCNT_INITIALIZER("pages unmapped");
    357 static struct evcnt pmap_ev_remappings =
    358    PMAP_EVCNT_INITIALIZER("pages remapped");
    359 
    360 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    361 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    362 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    363 
    364 static struct evcnt pmap_ev_kernel_mappings =
    365    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    366 static struct evcnt pmap_ev_kernel_unmappings =
    367    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    368 static struct evcnt pmap_ev_kernel_remappings =
    369    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    370 
    371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    373 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    374 
    375 static struct evcnt pmap_ev_kenter_mappings =
    376    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    377 static struct evcnt pmap_ev_kenter_unmappings =
    378    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    379 static struct evcnt pmap_ev_kenter_remappings =
    380    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    381 static struct evcnt pmap_ev_pt_mappings =
    382    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    383 
    384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    386 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    387 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    388 
    389 #ifdef PMAP_CACHE_VIPT
    390 static struct evcnt pmap_ev_exec_mappings =
    391    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    392 static struct evcnt pmap_ev_exec_cached =
    393    PMAP_EVCNT_INITIALIZER("exec pages cached");
    394 
    395 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    397 
    398 static struct evcnt pmap_ev_exec_synced =
    399    PMAP_EVCNT_INITIALIZER("exec pages synced");
    400 static struct evcnt pmap_ev_exec_synced_map =
    401    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    402 static struct evcnt pmap_ev_exec_synced_unmap =
    403    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    404 static struct evcnt pmap_ev_exec_synced_remap =
    405    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    406 static struct evcnt pmap_ev_exec_synced_clearbit =
    407    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    408 static struct evcnt pmap_ev_exec_synced_kremove =
    409    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    410 
    411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    417 
    418 static struct evcnt pmap_ev_exec_discarded_unmap =
    419    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    420 static struct evcnt pmap_ev_exec_discarded_zero =
    421    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    422 static struct evcnt pmap_ev_exec_discarded_copy =
    423    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    424 static struct evcnt pmap_ev_exec_discarded_page_protect =
    425    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    426 static struct evcnt pmap_ev_exec_discarded_clearbit =
    427    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    428 static struct evcnt pmap_ev_exec_discarded_kremove =
    429    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    430 
    431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    437 #endif /* PMAP_CACHE_VIPT */
    438 
    439 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    440 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    441 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    442 
    443 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    444 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    445 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    446 
    447 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    448 #else
    449 #define	PMAPCOUNT(x)	((void)0)
    450 #endif
    451 
    452 /*
    453  * pmap copy/zero page, and mem(5) hook point
    454  */
    455 static pt_entry_t *csrc_pte, *cdst_pte;
    456 static vaddr_t csrcp, cdstp;
    457 vaddr_t memhook;			/* used by mem.c */
    458 kmutex_t memlock;			/* used by mem.c */
    459 void *zeropage;				/* used by mem.c */
    460 extern void *msgbufaddr;
    461 int pmap_kmpages;
    462 /*
    463  * Flag to indicate if pmap_init() has done its thing
    464  */
    465 bool pmap_initialized;
    466 
    467 /*
    468  * Misc. locking data structures
    469  */
    470 
    471 #define	pmap_acquire_pmap_lock(pm)			\
    472 	do {						\
    473 		if ((pm) != pmap_kernel())		\
    474 			mutex_enter((pm)->pm_lock);	\
    475 	} while (/*CONSTCOND*/0)
    476 
    477 #define	pmap_release_pmap_lock(pm)			\
    478 	do {						\
    479 		if ((pm) != pmap_kernel())		\
    480 			mutex_exit((pm)->pm_lock);	\
    481 	} while (/*CONSTCOND*/0)
    482 
    483 
    484 /*
    485  * Metadata for L1 translation tables.
    486  */
    487 struct l1_ttable {
    488 	/* Entry on the L1 Table list */
    489 	SLIST_ENTRY(l1_ttable) l1_link;
    490 
    491 	/* Entry on the L1 Least Recently Used list */
    492 	TAILQ_ENTRY(l1_ttable) l1_lru;
    493 
    494 	/* Track how many domains are allocated from this L1 */
    495 	volatile u_int l1_domain_use_count;
    496 
    497 	/*
    498 	 * A free-list of domain numbers for this L1.
    499 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    500 	 * is slow on ARM.
    501 	 */
    502 	uint8_t l1_domain_first;
    503 	uint8_t l1_domain_free[PMAP_DOMAINS];
    504 
    505 	/* Physical address of this L1 page table */
    506 	paddr_t l1_physaddr;
    507 
    508 	/* KVA of this L1 page table */
    509 	pd_entry_t *l1_kva;
    510 };
    511 
    512 /*
    513  * Convert a virtual address into its L1 table index. That is, the
    514  * index used to locate the L2 descriptor table pointer in an L1 table.
    515  * This is basically used to index l1->l1_kva[].
    516  *
    517  * Each L2 descriptor table represents 1MB of VA space.
    518  */
    519 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    520 
    521 /*
    522  * L1 Page Tables are tracked using a Least Recently Used list.
    523  *  - New L1s are allocated from the HEAD.
    524  *  - Freed L1s are added to the TAIl.
    525  *  - Recently accessed L1s (where an 'access' is some change to one of
    526  *    the userland pmaps which owns this L1) are moved to the TAIL.
    527  */
    528 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    529 static kmutex_t l1_lru_lock __cacheline_aligned;
    530 
    531 /*
    532  * A list of all L1 tables
    533  */
    534 static SLIST_HEAD(, l1_ttable) l1_list;
    535 
    536 /*
    537  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    538  *
    539  * This is normally 16MB worth L2 page descriptors for any given pmap.
    540  * Reference counts are maintained for L2 descriptors so they can be
    541  * freed when empty.
    542  */
    543 struct l2_dtable {
    544 	/* The number of L2 page descriptors allocated to this l2_dtable */
    545 	u_int l2_occupancy;
    546 
    547 	/* List of L2 page descriptors */
    548 	struct l2_bucket {
    549 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    550 		paddr_t l2b_phys;	/* Physical address of same */
    551 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    552 		u_short l2b_occupancy;	/* How many active descriptors */
    553 	} l2_bucket[L2_BUCKET_SIZE];
    554 };
    555 
    556 /*
    557  * Given an L1 table index, calculate the corresponding l2_dtable index
    558  * and bucket index within the l2_dtable.
    559  */
    560 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    561 				 (L2_SIZE - 1))
    562 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    563 
    564 /*
    565  * Given a virtual address, this macro returns the
    566  * virtual address required to drop into the next L2 bucket.
    567  */
    568 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    569 
    570 /*
    571  * L2 allocation.
    572  */
    573 #define	pmap_alloc_l2_dtable()		\
    574 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    575 #define	pmap_free_l2_dtable(l2)		\
    576 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    577 #define pmap_alloc_l2_ptp(pap)		\
    578 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    579 	    PR_NOWAIT, (pap)))
    580 
    581 /*
    582  * We try to map the page tables write-through, if possible.  However, not
    583  * all CPUs have a write-through cache mode, so on those we have to sync
    584  * the cache when we frob page tables.
    585  *
    586  * We try to evaluate this at compile time, if possible.  However, it's
    587  * not always possible to do that, hence this run-time var.
    588  */
    589 int	pmap_needs_pte_sync;
    590 
    591 /*
    592  * Real definition of pv_entry.
    593  */
    594 struct pv_entry {
    595 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    596 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    597 	vaddr_t		pv_va;          /* virtual address for mapping */
    598 	u_int		pv_flags;       /* flags */
    599 };
    600 
    601 /*
    602  * Macro to determine if a mapping might be resident in the
    603  * instruction cache and/or TLB
    604  */
    605 #if ARM_MMU_V7 > 0
    606 /*
    607  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    608  * there are no explicit accesses, so there may be always be TLB entries to
    609  * flush.  If we used ASIDs then this would not be a problem.
    610  */
    611 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    612 #else
    613 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    614 #endif
    615 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    616 
    617 /*
    618  * Macro to determine if a mapping might be resident in the
    619  * data cache and/or TLB
    620  */
    621 #if ARM_MMU_V7 > 0
    622 /*
    623  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    624  * there are no explicit accesses, so there may be always be TLB entries to
    625  * flush.  If we used ASIDs then this would not be a problem.
    626  */
    627 #define	PV_BEEN_REFD(f)   (1)
    628 #else
    629 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    630 #endif
    631 
    632 /*
    633  * Local prototypes
    634  */
    635 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    636 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    637 			    pt_entry_t **);
    638 static bool		pmap_is_current(pmap_t);
    639 static bool		pmap_is_cached(pmap_t);
    640 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    641 			    pmap_t, vaddr_t, u_int);
    642 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    643 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    644 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    645 			    u_int, u_int);
    646 
    647 static void		pmap_pinit(pmap_t);
    648 static int		pmap_pmap_ctor(void *, void *, int);
    649 
    650 static void		pmap_alloc_l1(pmap_t);
    651 static void		pmap_free_l1(pmap_t);
    652 static void		pmap_use_l1(pmap_t);
    653 
    654 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    655 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    656 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    657 static int		pmap_l2ptp_ctor(void *, void *, int);
    658 static int		pmap_l2dtable_ctor(void *, void *, int);
    659 
    660 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    661 #ifdef PMAP_CACHE_VIVT
    662 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    663 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    664 #endif
    665 
    666 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    667 #ifdef PMAP_CACHE_VIVT
    668 static int		pmap_clean_page(struct pv_entry *, bool);
    669 #endif
    670 #ifdef PMAP_CACHE_VIPT
    671 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    672 enum pmap_flush_op {
    673 	PMAP_FLUSH_PRIMARY,
    674 	PMAP_FLUSH_SECONDARY,
    675 	PMAP_CLEAN_PRIMARY
    676 };
    677 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    678 #endif
    679 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    680 
    681 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    682 static vaddr_t		kernel_pt_lookup(paddr_t);
    683 
    684 
    685 /*
    686  * Misc variables
    687  */
    688 vaddr_t virtual_avail;
    689 vaddr_t virtual_end;
    690 vaddr_t pmap_curmaxkvaddr;
    691 
    692 paddr_t avail_start;
    693 paddr_t avail_end;
    694 
    695 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    696 pv_addr_t kernelpages;
    697 pv_addr_t kernel_l1pt;
    698 pv_addr_t systempage;
    699 
    700 /* Function to set the debug level of the pmap code */
    701 
    702 #ifdef PMAP_DEBUG
    703 void
    704 pmap_debug(int level)
    705 {
    706 	pmap_debug_level = level;
    707 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    708 }
    709 #endif	/* PMAP_DEBUG */
    710 
    711 #ifdef PMAP_CACHE_VIPT
    712 #define PMAP_VALIDATE_MD_PAGE(md)	\
    713 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    714 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    715 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    716 #endif /* PMAP_CACHE_VIPT */
    717 /*
    718  * A bunch of routines to conditionally flush the caches/TLB depending
    719  * on whether the specified pmap actually needs to be flushed at any
    720  * given time.
    721  */
    722 static inline void
    723 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    724 {
    725 	if (pm->pm_cstate.cs_tlb_id != 0) {
    726 		if (PV_BEEN_EXECD(flags)) {
    727 			cpu_tlb_flushID_SE(va);
    728 		} else if (PV_BEEN_REFD(flags)) {
    729 			cpu_tlb_flushD_SE(va);
    730 		}
    731 	}
    732 }
    733 
    734 static inline void
    735 pmap_tlb_flushID(pmap_t pm)
    736 {
    737 	if (pm->pm_cstate.cs_tlb_id) {
    738 		cpu_tlb_flushID();
    739 #if ARM_MMU_V7 == 0
    740 		/*
    741 		 * Speculative loads by Cortex cores can cause TLB entries to
    742 		 * be filled even if there are no explicit accesses, so there
    743 		 * may be always be TLB entries to flush.  If we used ASIDs
    744 		 * then it would not be a problem.
    745 		 * This is not true for other CPUs.
    746 		 */
    747 		pm->pm_cstate.cs_tlb = 0;
    748 #endif /* ARM_MMU_V7 */
    749 	}
    750 }
    751 
    752 static inline void
    753 pmap_tlb_flushD(pmap_t pm)
    754 {
    755 	if (pm->pm_cstate.cs_tlb_d) {
    756 		cpu_tlb_flushD();
    757 #if ARM_MMU_V7 == 0
    758 		/*
    759 		 * Speculative loads by Cortex cores can cause TLB entries to
    760 		 * be filled even if there are no explicit accesses, so there
    761 		 * may be always be TLB entries to flush.  If we used ASIDs
    762 		 * then it would not be a problem.
    763 		 * This is not true for other CPUs.
    764 		 */
    765 		pm->pm_cstate.cs_tlb_d = 0;
    766 #endif /* ARM_MMU_V7 */
    767 	}
    768 }
    769 
    770 #ifdef PMAP_CACHE_VIVT
    771 static inline void
    772 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    773 {
    774 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    775 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    776 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    777 		if (do_inv) {
    778 			if (flags & PVF_WRITE)
    779 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    780 			else
    781 				cpu_dcache_inv_range(va, PAGE_SIZE);
    782 		} else if (flags & PVF_WRITE) {
    783 			cpu_dcache_wb_range(va, PAGE_SIZE);
    784 		}
    785 	}
    786 }
    787 
    788 static inline void
    789 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    790 {
    791 	if (PV_BEEN_EXECD(flags)) {
    792 		if (pm->pm_cstate.cs_cache_id) {
    793 			cpu_idcache_wbinv_all();
    794 			pm->pm_cstate.cs_cache = 0;
    795 		}
    796 	} else if (pm->pm_cstate.cs_cache_d) {
    797 		cpu_dcache_wbinv_all();
    798 		pm->pm_cstate.cs_cache_d = 0;
    799 	}
    800 }
    801 #endif /* PMAP_CACHE_VIVT */
    802 
    803 static inline uint8_t
    804 pmap_domain(pmap_t pm)
    805 {
    806 	return pm->pm_domain;
    807 }
    808 
    809 static inline pd_entry_t *
    810 pmap_l1_kva(pmap_t pm)
    811 {
    812 	return pm->pm_l1->l1_kva;
    813 }
    814 
    815 static inline bool
    816 pmap_is_current(pmap_t pm)
    817 {
    818 
    819 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    820 		return true;
    821 
    822 	return false;
    823 }
    824 
    825 static inline bool
    826 pmap_is_cached(pmap_t pm)
    827 {
    828 
    829 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    830 	    pmap_recent_user == pm)
    831 		return (true);
    832 
    833 	return false;
    834 }
    835 
    836 /*
    837  * PTE_SYNC_CURRENT:
    838  *
    839  *     Make sure the pte is written out to RAM.
    840  *     We need to do this for one of two cases:
    841  *       - We're dealing with the kernel pmap
    842  *       - There is no pmap active in the cache/tlb.
    843  *       - The specified pmap is 'active' in the cache/tlb.
    844  */
    845 #ifdef PMAP_INCLUDE_PTE_SYNC
    846 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    847 do {					\
    848 	if (PMAP_NEEDS_PTE_SYNC && 	\
    849 	    pmap_is_cached(pm))		\
    850 		PTE_SYNC(ptep);		\
    851 } while (/*CONSTCOND*/0)
    852 #else
    853 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    854 #endif
    855 
    856 /*
    857  * main pv_entry manipulation functions:
    858  *   pmap_enter_pv: enter a mapping onto a vm_page list
    859  *   pmap_remove_pv: remove a mapping from a vm_page list
    860  *
    861  * NOTE: pmap_enter_pv expects to lock the pvh itself
    862  *       pmap_remove_pv expects the caller to lock the pvh before calling
    863  */
    864 
    865 /*
    866  * pmap_enter_pv: enter a mapping onto a vm_page lst
    867  *
    868  * => caller should hold the proper lock on pmap_main_lock
    869  * => caller should have pmap locked
    870  * => we will gain the lock on the vm_page and allocate the new pv_entry
    871  * => caller should adjust ptp's wire_count before calling
    872  * => caller should not adjust pmap's wire_count
    873  */
    874 static void
    875 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    876     vaddr_t va, u_int flags)
    877 {
    878 	struct pv_entry **pvp;
    879 
    880 	NPDEBUG(PDB_PVDUMP,
    881 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    882 
    883 	pv->pv_pmap = pm;
    884 	pv->pv_va = va;
    885 	pv->pv_flags = flags;
    886 
    887 	pvp = &SLIST_FIRST(&md->pvh_list);
    888 #ifdef PMAP_CACHE_VIPT
    889 	/*
    890 	 * Insert unmanaged entries, writeable first, at the head of
    891 	 * the pv list.
    892 	 */
    893 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    894 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    895 			pvp = &SLIST_NEXT(*pvp, pv_link);
    896 	} else if ((flags & PVF_WRITE) == 0) {
    897 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    898 			pvp = &SLIST_NEXT(*pvp, pv_link);
    899 	}
    900 #endif
    901 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
    902 	*pvp = pv;				/* ... locked list */
    903 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    904 #ifdef PMAP_CACHE_VIPT
    905 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    906 		md->pvh_attrs |= PVF_KMOD;
    907 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    908 		md->pvh_attrs |= PVF_DIRTY;
    909 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
    910 #endif
    911 	if (pm == pmap_kernel()) {
    912 		PMAPCOUNT(kernel_mappings);
    913 		if (flags & PVF_WRITE)
    914 			md->krw_mappings++;
    915 		else
    916 			md->kro_mappings++;
    917 	} else {
    918 		if (flags & PVF_WRITE)
    919 			md->urw_mappings++;
    920 		else
    921 			md->uro_mappings++;
    922 	}
    923 
    924 #ifdef PMAP_CACHE_VIPT
    925 	/*
    926 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
    927 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
    928 	 */
    929 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
    930 		md->pvh_attrs |= PVF_WRITE;
    931 	}
    932 	/*
    933 	 * If this is an exec mapping and its the first exec mapping
    934 	 * for this page, make sure to sync the I-cache.
    935 	 */
    936 	if (PV_IS_EXEC_P(flags)) {
    937 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
    938 			pmap_syncicache_page(md, pa);
    939 			PMAPCOUNT(exec_synced_map);
    940 		}
    941 		PMAPCOUNT(exec_mappings);
    942 	}
    943 #endif
    944 
    945 	PMAPCOUNT(mappings);
    946 
    947 	if (pv->pv_flags & PVF_WIRED)
    948 		++pm->pm_stats.wired_count;
    949 }
    950 
    951 /*
    952  *
    953  * pmap_find_pv: Find a pv entry
    954  *
    955  * => caller should hold lock on vm_page
    956  */
    957 static inline struct pv_entry *
    958 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
    959 {
    960 	struct pv_entry *pv;
    961 
    962 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
    963 		if (pm == pv->pv_pmap && va == pv->pv_va)
    964 			break;
    965 	}
    966 
    967 	return (pv);
    968 }
    969 
    970 /*
    971  * pmap_remove_pv: try to remove a mapping from a pv_list
    972  *
    973  * => caller should hold proper lock on pmap_main_lock
    974  * => pmap should be locked
    975  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    976  * => caller should adjust ptp's wire_count and free PTP if needed
    977  * => caller should NOT adjust pmap's wire_count
    978  * => we return the removed pv
    979  */
    980 static struct pv_entry *
    981 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
    982 {
    983 	struct pv_entry *pv, **prevptr;
    984 
    985 	NPDEBUG(PDB_PVDUMP,
    986 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
    987 
    988 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
    989 	pv = *prevptr;
    990 
    991 	while (pv) {
    992 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
    993 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
    994 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
    995 			if (pv->pv_flags & PVF_WIRED) {
    996 				--pm->pm_stats.wired_count;
    997 			}
    998 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
    999 			if (pm == pmap_kernel()) {
   1000 				PMAPCOUNT(kernel_unmappings);
   1001 				if (pv->pv_flags & PVF_WRITE)
   1002 					md->krw_mappings--;
   1003 				else
   1004 					md->kro_mappings--;
   1005 			} else {
   1006 				if (pv->pv_flags & PVF_WRITE)
   1007 					md->urw_mappings--;
   1008 				else
   1009 					md->uro_mappings--;
   1010 			}
   1011 
   1012 			PMAPCOUNT(unmappings);
   1013 #ifdef PMAP_CACHE_VIPT
   1014 			if (!(pv->pv_flags & PVF_WRITE))
   1015 				break;
   1016 			/*
   1017 			 * If this page has had an exec mapping, then if
   1018 			 * this was the last mapping, discard the contents,
   1019 			 * otherwise sync the i-cache for this page.
   1020 			 */
   1021 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1022 				if (SLIST_EMPTY(&md->pvh_list)) {
   1023 					md->pvh_attrs &= ~PVF_EXEC;
   1024 					PMAPCOUNT(exec_discarded_unmap);
   1025 				} else {
   1026 					pmap_syncicache_page(md, pa);
   1027 					PMAPCOUNT(exec_synced_unmap);
   1028 				}
   1029 			}
   1030 #endif /* PMAP_CACHE_VIPT */
   1031 			break;
   1032 		}
   1033 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1034 		pv = *prevptr;				/* advance */
   1035 	}
   1036 
   1037 #ifdef PMAP_CACHE_VIPT
   1038 	/*
   1039 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1040 	 * clear the KMOD attribute from the page.
   1041 	 */
   1042 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1043 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1044 		md->pvh_attrs &= ~PVF_KMOD;
   1045 
   1046 	/*
   1047 	 * If this was a writeable page and there are no more writeable
   1048 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1049 	 * the contents to memory.
   1050 	 */
   1051 	if (arm_cache_prefer_mask != 0) {
   1052 		if (md->krw_mappings + md->urw_mappings == 0)
   1053 			md->pvh_attrs &= ~PVF_WRITE;
   1054 		PMAP_VALIDATE_MD_PAGE(md);
   1055 	}
   1056 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1057 #endif /* PMAP_CACHE_VIPT */
   1058 
   1059 	return(pv);				/* return removed pv */
   1060 }
   1061 
   1062 /*
   1063  *
   1064  * pmap_modify_pv: Update pv flags
   1065  *
   1066  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1067  * => caller should NOT adjust pmap's wire_count
   1068  * => caller must call pmap_vac_me_harder() if writable status of a page
   1069  *    may have changed.
   1070  * => we return the old flags
   1071  *
   1072  * Modify a physical-virtual mapping in the pv table
   1073  */
   1074 static u_int
   1075 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1076     u_int clr_mask, u_int set_mask)
   1077 {
   1078 	struct pv_entry *npv;
   1079 	u_int flags, oflags;
   1080 
   1081 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1082 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1083 
   1084 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1085 		return (0);
   1086 
   1087 	NPDEBUG(PDB_PVDUMP,
   1088 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1089 
   1090 	/*
   1091 	 * There is at least one VA mapping this page.
   1092 	 */
   1093 
   1094 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1095 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1096 #ifdef PMAP_CACHE_VIPT
   1097 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1098 			md->pvh_attrs |= PVF_DIRTY;
   1099 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1100 #endif
   1101 	}
   1102 
   1103 	oflags = npv->pv_flags;
   1104 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1105 
   1106 	if ((flags ^ oflags) & PVF_WIRED) {
   1107 		if (flags & PVF_WIRED)
   1108 			++pm->pm_stats.wired_count;
   1109 		else
   1110 			--pm->pm_stats.wired_count;
   1111 	}
   1112 
   1113 	if ((flags ^ oflags) & PVF_WRITE) {
   1114 		if (pm == pmap_kernel()) {
   1115 			if (flags & PVF_WRITE) {
   1116 				md->krw_mappings++;
   1117 				md->kro_mappings--;
   1118 			} else {
   1119 				md->kro_mappings++;
   1120 				md->krw_mappings--;
   1121 			}
   1122 		} else {
   1123 			if (flags & PVF_WRITE) {
   1124 				md->urw_mappings++;
   1125 				md->uro_mappings--;
   1126 			} else {
   1127 				md->uro_mappings++;
   1128 				md->urw_mappings--;
   1129 			}
   1130 		}
   1131 	}
   1132 #ifdef PMAP_CACHE_VIPT
   1133 	if (arm_cache_prefer_mask != 0) {
   1134 		if (md->urw_mappings + md->krw_mappings == 0) {
   1135 			md->pvh_attrs &= ~PVF_WRITE;
   1136 		} else {
   1137 			md->pvh_attrs |= PVF_WRITE;
   1138 		}
   1139 	}
   1140 	/*
   1141 	 * We have two cases here: the first is from enter_pv (new exec
   1142 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1143 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1144 	 * to do what pmap_remove_pv would do.
   1145 	 */
   1146 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1147 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1148 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1149 		pmap_syncicache_page(md, pa);
   1150 		PMAPCOUNT(exec_synced_remap);
   1151 	}
   1152 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1153 #endif
   1154 
   1155 	PMAPCOUNT(remappings);
   1156 
   1157 	return (oflags);
   1158 }
   1159 
   1160 /*
   1161  * Allocate an L1 translation table for the specified pmap.
   1162  * This is called at pmap creation time.
   1163  */
   1164 static void
   1165 pmap_alloc_l1(pmap_t pm)
   1166 {
   1167 	struct l1_ttable *l1;
   1168 	uint8_t domain;
   1169 
   1170 	/*
   1171 	 * Remove the L1 at the head of the LRU list
   1172 	 */
   1173 	mutex_spin_enter(&l1_lru_lock);
   1174 	l1 = TAILQ_FIRST(&l1_lru_list);
   1175 	KDASSERT(l1 != NULL);
   1176 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1177 
   1178 	/*
   1179 	 * Pick the first available domain number, and update
   1180 	 * the link to the next number.
   1181 	 */
   1182 	domain = l1->l1_domain_first;
   1183 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1184 
   1185 	/*
   1186 	 * If there are still free domain numbers in this L1,
   1187 	 * put it back on the TAIL of the LRU list.
   1188 	 */
   1189 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1190 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1191 
   1192 	mutex_spin_exit(&l1_lru_lock);
   1193 
   1194 	/*
   1195 	 * Fix up the relevant bits in the pmap structure
   1196 	 */
   1197 	pm->pm_l1 = l1;
   1198 	pm->pm_domain = domain + 1;
   1199 }
   1200 
   1201 /*
   1202  * Free an L1 translation table.
   1203  * This is called at pmap destruction time.
   1204  */
   1205 static void
   1206 pmap_free_l1(pmap_t pm)
   1207 {
   1208 	struct l1_ttable *l1 = pm->pm_l1;
   1209 
   1210 	mutex_spin_enter(&l1_lru_lock);
   1211 
   1212 	/*
   1213 	 * If this L1 is currently on the LRU list, remove it.
   1214 	 */
   1215 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1216 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1217 
   1218 	/*
   1219 	 * Free up the domain number which was allocated to the pmap
   1220 	 */
   1221 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1222 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1223 	l1->l1_domain_use_count--;
   1224 
   1225 	/*
   1226 	 * The L1 now must have at least 1 free domain, so add
   1227 	 * it back to the LRU list. If the use count is zero,
   1228 	 * put it at the head of the list, otherwise it goes
   1229 	 * to the tail.
   1230 	 */
   1231 	if (l1->l1_domain_use_count == 0)
   1232 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1233 	else
   1234 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1235 
   1236 	mutex_spin_exit(&l1_lru_lock);
   1237 }
   1238 
   1239 static inline void
   1240 pmap_use_l1(pmap_t pm)
   1241 {
   1242 	struct l1_ttable *l1;
   1243 
   1244 	/*
   1245 	 * Do nothing if we're in interrupt context.
   1246 	 * Access to an L1 by the kernel pmap must not affect
   1247 	 * the LRU list.
   1248 	 */
   1249 	if (cpu_intr_p() || pm == pmap_kernel())
   1250 		return;
   1251 
   1252 	l1 = pm->pm_l1;
   1253 
   1254 	/*
   1255 	 * If the L1 is not currently on the LRU list, just return
   1256 	 */
   1257 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1258 		return;
   1259 
   1260 	mutex_spin_enter(&l1_lru_lock);
   1261 
   1262 	/*
   1263 	 * Check the use count again, now that we've acquired the lock
   1264 	 */
   1265 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1266 		mutex_spin_exit(&l1_lru_lock);
   1267 		return;
   1268 	}
   1269 
   1270 	/*
   1271 	 * Move the L1 to the back of the LRU list
   1272 	 */
   1273 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1274 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1275 
   1276 	mutex_spin_exit(&l1_lru_lock);
   1277 }
   1278 
   1279 /*
   1280  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1281  *
   1282  * Free an L2 descriptor table.
   1283  */
   1284 static inline void
   1285 #ifndef PMAP_INCLUDE_PTE_SYNC
   1286 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1287 #else
   1288 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1289 #endif
   1290 {
   1291 #ifdef PMAP_INCLUDE_PTE_SYNC
   1292 #ifdef PMAP_CACHE_VIVT
   1293 	/*
   1294 	 * Note: With a write-back cache, we may need to sync this
   1295 	 * L2 table before re-using it.
   1296 	 * This is because it may have belonged to a non-current
   1297 	 * pmap, in which case the cache syncs would have been
   1298 	 * skipped for the pages that were being unmapped. If the
   1299 	 * L2 table were then to be immediately re-allocated to
   1300 	 * the *current* pmap, it may well contain stale mappings
   1301 	 * which have not yet been cleared by a cache write-back
   1302 	 * and so would still be visible to the mmu.
   1303 	 */
   1304 	if (need_sync)
   1305 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1306 #endif /* PMAP_CACHE_VIVT */
   1307 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1308 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1309 }
   1310 
   1311 /*
   1312  * Returns a pointer to the L2 bucket associated with the specified pmap
   1313  * and VA, or NULL if no L2 bucket exists for the address.
   1314  */
   1315 static inline struct l2_bucket *
   1316 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1317 {
   1318 	struct l2_dtable *l2;
   1319 	struct l2_bucket *l2b;
   1320 	u_short l1idx;
   1321 
   1322 	l1idx = L1_IDX(va);
   1323 
   1324 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1325 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1326 		return (NULL);
   1327 
   1328 	return (l2b);
   1329 }
   1330 
   1331 /*
   1332  * Returns a pointer to the L2 bucket associated with the specified pmap
   1333  * and VA.
   1334  *
   1335  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1336  * bucket/page table in place.
   1337  *
   1338  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1339  * increment the bucket occupancy counter appropriately *before*
   1340  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1341  * the bucket/page in the meantime.
   1342  */
   1343 static struct l2_bucket *
   1344 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1345 {
   1346 	struct l2_dtable *l2;
   1347 	struct l2_bucket *l2b;
   1348 	u_short l1idx;
   1349 
   1350 	l1idx = L1_IDX(va);
   1351 
   1352 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1353 		/*
   1354 		 * No mapping at this address, as there is
   1355 		 * no entry in the L1 table.
   1356 		 * Need to allocate a new l2_dtable.
   1357 		 */
   1358 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1359 			return (NULL);
   1360 
   1361 		/*
   1362 		 * Link it into the parent pmap
   1363 		 */
   1364 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1365 	}
   1366 
   1367 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1368 
   1369 	/*
   1370 	 * Fetch pointer to the L2 page table associated with the address.
   1371 	 */
   1372 	if (l2b->l2b_kva == NULL) {
   1373 		pt_entry_t *ptep;
   1374 
   1375 		/*
   1376 		 * No L2 page table has been allocated. Chances are, this
   1377 		 * is because we just allocated the l2_dtable, above.
   1378 		 */
   1379 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1380 			/*
   1381 			 * Oops, no more L2 page tables available at this
   1382 			 * time. We may need to deallocate the l2_dtable
   1383 			 * if we allocated a new one above.
   1384 			 */
   1385 			if (l2->l2_occupancy == 0) {
   1386 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1387 				pmap_free_l2_dtable(l2);
   1388 			}
   1389 			return (NULL);
   1390 		}
   1391 
   1392 		l2->l2_occupancy++;
   1393 		l2b->l2b_kva = ptep;
   1394 		l2b->l2b_l1idx = l1idx;
   1395 	}
   1396 
   1397 	return (l2b);
   1398 }
   1399 
   1400 /*
   1401  * One or more mappings in the specified L2 descriptor table have just been
   1402  * invalidated.
   1403  *
   1404  * Garbage collect the metadata and descriptor table itself if necessary.
   1405  *
   1406  * The pmap lock must be acquired when this is called (not necessary
   1407  * for the kernel pmap).
   1408  */
   1409 static void
   1410 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1411 {
   1412 	struct l2_dtable *l2;
   1413 	pd_entry_t *pl1pd, l1pd;
   1414 	pt_entry_t *ptep;
   1415 	u_short l1idx;
   1416 
   1417 	KDASSERT(count <= l2b->l2b_occupancy);
   1418 
   1419 	/*
   1420 	 * Update the bucket's reference count according to how many
   1421 	 * PTEs the caller has just invalidated.
   1422 	 */
   1423 	l2b->l2b_occupancy -= count;
   1424 
   1425 	/*
   1426 	 * Note:
   1427 	 *
   1428 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1429 	 * as that would require checking all Level 1 page tables and
   1430 	 * removing any references to the Level 2 page table. See also the
   1431 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1432 	 *
   1433 	 * We make do with just invalidating the mapping in the L2 table.
   1434 	 *
   1435 	 * This isn't really a big deal in practice and, in fact, leads
   1436 	 * to a performance win over time as we don't need to continually
   1437 	 * alloc/free.
   1438 	 */
   1439 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1440 		return;
   1441 
   1442 	/*
   1443 	 * There are no more valid mappings in this level 2 page table.
   1444 	 * Go ahead and NULL-out the pointer in the bucket, then
   1445 	 * free the page table.
   1446 	 */
   1447 	l1idx = l2b->l2b_l1idx;
   1448 	ptep = l2b->l2b_kva;
   1449 	l2b->l2b_kva = NULL;
   1450 
   1451 	pl1pd = pmap_l1_kva(pm) + l1idx;
   1452 
   1453 	/*
   1454 	 * If the L1 slot matches the pmap's domain
   1455 	 * number, then invalidate it.
   1456 	 */
   1457 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1458 	if (l1pd == (L1_C_DOM(pmap_domain(pm)) | L1_TYPE_C)) {
   1459 		*pl1pd = 0;
   1460 		PTE_SYNC(pl1pd);
   1461 	}
   1462 
   1463 	/*
   1464 	 * Release the L2 descriptor table back to the pool cache.
   1465 	 */
   1466 #ifndef PMAP_INCLUDE_PTE_SYNC
   1467 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1468 #else
   1469 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1470 #endif
   1471 
   1472 	/*
   1473 	 * Update the reference count in the associated l2_dtable
   1474 	 */
   1475 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1476 	if (--l2->l2_occupancy > 0)
   1477 		return;
   1478 
   1479 	/*
   1480 	 * There are no more valid mappings in any of the Level 1
   1481 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1482 	 * the pointer in the parent pmap and free the l2_dtable.
   1483 	 */
   1484 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1485 	pmap_free_l2_dtable(l2);
   1486 }
   1487 
   1488 /*
   1489  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1490  * structures.
   1491  */
   1492 static int
   1493 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1494 {
   1495 #ifndef PMAP_INCLUDE_PTE_SYNC
   1496 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1497 
   1498 	/*
   1499 	 * The mappings for these page tables were initially made using
   1500 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1501 	 * mode will not be right for page table mappings. To avoid
   1502 	 * polluting the pmap_kenter_pa() code with a special case for
   1503 	 * page tables, we simply fix up the cache-mode here if it's not
   1504 	 * correct.
   1505 	 */
   1506 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1507 	KDASSERT(l2b != NULL);
   1508 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   1509 	pt_entry_t opte = *ptep;
   1510 
   1511 	if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1512 		/*
   1513 		 * Page tables must have the cache-mode set to Write-Thru.
   1514 		 */
   1515 		const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
   1516 		    | pte_l2_s_cache_mode_pt;
   1517 		l2pte_set(ptep, npte, opte);
   1518 		PTE_SYNC(ptep);
   1519 		cpu_tlb_flushD_SE(va);
   1520 		cpu_cpwait();
   1521 	}
   1522 #endif
   1523 
   1524 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1525 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1526 	return (0);
   1527 }
   1528 
   1529 static int
   1530 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1531 {
   1532 
   1533 	memset(v, 0, sizeof(struct l2_dtable));
   1534 	return (0);
   1535 }
   1536 
   1537 static int
   1538 pmap_pmap_ctor(void *arg, void *v, int flags)
   1539 {
   1540 
   1541 	memset(v, 0, sizeof(struct pmap));
   1542 	return (0);
   1543 }
   1544 
   1545 static void
   1546 pmap_pinit(pmap_t pm)
   1547 {
   1548 #ifndef ARM_HAS_VBAR
   1549 	struct l2_bucket *l2b;
   1550 
   1551 	if (vector_page < KERNEL_BASE) {
   1552 		/*
   1553 		 * Map the vector page.
   1554 		 */
   1555 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1556 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1557 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1558 		pmap_update(pm);
   1559 
   1560 		pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
   1561 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1562 		KDASSERT(l2b != NULL);
   1563 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1564 		    L1_C_DOM(pmap_domain(pm));
   1565 	} else
   1566 		pm->pm_pl1vec = NULL;
   1567 #endif
   1568 }
   1569 
   1570 #ifdef PMAP_CACHE_VIVT
   1571 /*
   1572  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1573  * there is more than one mapping and at least one of them is writable.
   1574  * Since we purge the cache on every context switch, we only need to check for
   1575  * other mappings within the same pmap, or kernel_pmap.
   1576  * This function is also called when a page is unmapped, to possibly reenable
   1577  * caching on any remaining mappings.
   1578  *
   1579  * The code implements the following logic, where:
   1580  *
   1581  * KW = # of kernel read/write pages
   1582  * KR = # of kernel read only pages
   1583  * UW = # of user read/write pages
   1584  * UR = # of user read only pages
   1585  *
   1586  * KC = kernel mapping is cacheable
   1587  * UC = user mapping is cacheable
   1588  *
   1589  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1590  *             +---------------------------------------------
   1591  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1592  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1593  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1594  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1595  */
   1596 
   1597 static const int pmap_vac_flags[4][4] = {
   1598 	{-1,		0,		0,		PVF_KNC},
   1599 	{0,		0,		PVF_NC,		PVF_NC},
   1600 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1601 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1602 };
   1603 
   1604 static inline int
   1605 pmap_get_vac_flags(const struct vm_page_md *md)
   1606 {
   1607 	int kidx, uidx;
   1608 
   1609 	kidx = 0;
   1610 	if (md->kro_mappings || md->krw_mappings > 1)
   1611 		kidx |= 1;
   1612 	if (md->krw_mappings)
   1613 		kidx |= 2;
   1614 
   1615 	uidx = 0;
   1616 	if (md->uro_mappings || md->urw_mappings > 1)
   1617 		uidx |= 1;
   1618 	if (md->urw_mappings)
   1619 		uidx |= 2;
   1620 
   1621 	return (pmap_vac_flags[uidx][kidx]);
   1622 }
   1623 
   1624 static inline void
   1625 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1626 {
   1627 	int nattr;
   1628 
   1629 	nattr = pmap_get_vac_flags(md);
   1630 
   1631 	if (nattr < 0) {
   1632 		md->pvh_attrs &= ~PVF_NC;
   1633 		return;
   1634 	}
   1635 
   1636 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1637 		return;
   1638 
   1639 	if (pm == pmap_kernel())
   1640 		pmap_vac_me_kpmap(md, pa, pm, va);
   1641 	else
   1642 		pmap_vac_me_user(md, pa, pm, va);
   1643 
   1644 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1645 }
   1646 
   1647 static void
   1648 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1649 {
   1650 	u_int u_cacheable, u_entries;
   1651 	struct pv_entry *pv;
   1652 	pmap_t last_pmap = pm;
   1653 
   1654 	/*
   1655 	 * Pass one, see if there are both kernel and user pmaps for
   1656 	 * this page.  Calculate whether there are user-writable or
   1657 	 * kernel-writable pages.
   1658 	 */
   1659 	u_cacheable = 0;
   1660 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1661 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1662 			u_cacheable++;
   1663 	}
   1664 
   1665 	u_entries = md->urw_mappings + md->uro_mappings;
   1666 
   1667 	/*
   1668 	 * We know we have just been updating a kernel entry, so if
   1669 	 * all user pages are already cacheable, then there is nothing
   1670 	 * further to do.
   1671 	 */
   1672 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1673 		return;
   1674 
   1675 	if (u_entries) {
   1676 		/*
   1677 		 * Scan over the list again, for each entry, if it
   1678 		 * might not be set correctly, call pmap_vac_me_user
   1679 		 * to recalculate the settings.
   1680 		 */
   1681 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1682 			/*
   1683 			 * We know kernel mappings will get set
   1684 			 * correctly in other calls.  We also know
   1685 			 * that if the pmap is the same as last_pmap
   1686 			 * then we've just handled this entry.
   1687 			 */
   1688 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1689 				continue;
   1690 
   1691 			/*
   1692 			 * If there are kernel entries and this page
   1693 			 * is writable but non-cacheable, then we can
   1694 			 * skip this entry also.
   1695 			 */
   1696 			if (md->k_mappings &&
   1697 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1698 			    (PVF_NC | PVF_WRITE))
   1699 				continue;
   1700 
   1701 			/*
   1702 			 * Similarly if there are no kernel-writable
   1703 			 * entries and the page is already
   1704 			 * read-only/cacheable.
   1705 			 */
   1706 			if (md->krw_mappings == 0 &&
   1707 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1708 				continue;
   1709 
   1710 			/*
   1711 			 * For some of the remaining cases, we know
   1712 			 * that we must recalculate, but for others we
   1713 			 * can't tell if they are correct or not, so
   1714 			 * we recalculate anyway.
   1715 			 */
   1716 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1717 		}
   1718 
   1719 		if (md->k_mappings == 0)
   1720 			return;
   1721 	}
   1722 
   1723 	pmap_vac_me_user(md, pa, pm, va);
   1724 }
   1725 
   1726 static void
   1727 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1728 {
   1729 	pmap_t kpmap = pmap_kernel();
   1730 	struct pv_entry *pv, *npv = NULL;
   1731 	u_int entries = 0;
   1732 	u_int writable = 0;
   1733 	u_int cacheable_entries = 0;
   1734 	u_int kern_cacheable = 0;
   1735 	u_int other_writable = 0;
   1736 
   1737 	/*
   1738 	 * Count mappings and writable mappings in this pmap.
   1739 	 * Include kernel mappings as part of our own.
   1740 	 * Keep a pointer to the first one.
   1741 	 */
   1742 	npv = NULL;
   1743 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1744 		/* Count mappings in the same pmap */
   1745 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1746 			if (entries++ == 0)
   1747 				npv = pv;
   1748 
   1749 			/* Cacheable mappings */
   1750 			if ((pv->pv_flags & PVF_NC) == 0) {
   1751 				cacheable_entries++;
   1752 				if (kpmap == pv->pv_pmap)
   1753 					kern_cacheable++;
   1754 			}
   1755 
   1756 			/* Writable mappings */
   1757 			if (pv->pv_flags & PVF_WRITE)
   1758 				++writable;
   1759 		} else
   1760 		if (pv->pv_flags & PVF_WRITE)
   1761 			other_writable = 1;
   1762 	}
   1763 
   1764 	/*
   1765 	 * Enable or disable caching as necessary.
   1766 	 * Note: the first entry might be part of the kernel pmap,
   1767 	 * so we can't assume this is indicative of the state of the
   1768 	 * other (maybe non-kpmap) entries.
   1769 	 */
   1770 	if ((entries > 1 && writable) ||
   1771 	    (entries > 0 && pm == kpmap && other_writable)) {
   1772 		if (cacheable_entries == 0)
   1773 			return;
   1774 
   1775 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1776 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1777 			    (pv->pv_flags & PVF_NC))
   1778 				continue;
   1779 
   1780 			pv->pv_flags |= PVF_NC;
   1781 
   1782 			struct l2_bucket * const l2b
   1783 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1784 			KDASSERT(l2b != NULL);
   1785 			pt_entry_t * const ptep
   1786 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1787 			const pt_entry_t opte = *ptep;
   1788 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1789 
   1790 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1791 			    && l2pte_valid(npte)) {
   1792 #ifdef PMAP_CACHE_VIVT
   1793 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1794 				    true, pv->pv_flags);
   1795 #endif
   1796 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1797 				    pv->pv_flags);
   1798 			}
   1799 
   1800 			l2pte_set(ptep, npte, opte);
   1801 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1802 		}
   1803 		cpu_cpwait();
   1804 	} else
   1805 	if (entries > cacheable_entries) {
   1806 		/*
   1807 		 * Turn cacheing back on for some pages.  If it is a kernel
   1808 		 * page, only do so if there are no other writable pages.
   1809 		 */
   1810 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1811 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1812 			    (kpmap != pv->pv_pmap || other_writable)))
   1813 				continue;
   1814 
   1815 			pv->pv_flags &= ~PVF_NC;
   1816 
   1817 			struct l2_bucket * const l2b
   1818 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1819 			KDASSERT(l2b != NULL);
   1820 			pt_entry_t * const ptep
   1821 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1822 			const pt_entry_t opte = *ptep;
   1823 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   1824 			    | pte_l2_s_cache_mode;
   1825 
   1826 			if (l2pte_valid(opte)) {
   1827 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1828 				    pv->pv_flags);
   1829 			}
   1830 
   1831 			l2pte_set(ptep, npte, opte);
   1832 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1833 		}
   1834 	}
   1835 }
   1836 #endif
   1837 
   1838 #ifdef PMAP_CACHE_VIPT
   1839 static void
   1840 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1841 {
   1842 	struct pv_entry *pv;
   1843 	vaddr_t tst_mask;
   1844 	bool bad_alias;
   1845 	const u_int
   1846 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   1847 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   1848 
   1849 	/* do we need to do anything? */
   1850 	if (arm_cache_prefer_mask == 0)
   1851 		return;
   1852 
   1853 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   1854 	    md, pm, va));
   1855 
   1856 	KASSERT(!va || pm);
   1857 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1858 
   1859 	/* Already a conflict? */
   1860 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   1861 		/* just an add, things are already non-cached */
   1862 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   1863 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1864 		bad_alias = false;
   1865 		if (va) {
   1866 			PMAPCOUNT(vac_color_none);
   1867 			bad_alias = true;
   1868 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1869 			goto fixup;
   1870 		}
   1871 		pv = SLIST_FIRST(&md->pvh_list);
   1872 		/* the list can't be empty because it would be cachable */
   1873 		if (md->pvh_attrs & PVF_KMPAGE) {
   1874 			tst_mask = md->pvh_attrs;
   1875 		} else {
   1876 			KASSERT(pv);
   1877 			tst_mask = pv->pv_va;
   1878 			pv = SLIST_NEXT(pv, pv_link);
   1879 		}
   1880 		/*
   1881 		 * Only check for a bad alias if we have writable mappings.
   1882 		 */
   1883 		tst_mask &= arm_cache_prefer_mask;
   1884 		if (rw_mappings > 0) {
   1885 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1886 				/* if there's a bad alias, stop checking. */
   1887 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1888 					bad_alias = true;
   1889 			}
   1890 			md->pvh_attrs |= PVF_WRITE;
   1891 			if (!bad_alias)
   1892 				md->pvh_attrs |= PVF_DIRTY;
   1893 		} else {
   1894 			/*
   1895 			 * We have only read-only mappings.  Let's see if there
   1896 			 * are multiple colors in use or if we mapped a KMPAGE.
   1897 			 * If the latter, we have a bad alias.  If the former,
   1898 			 * we need to remember that.
   1899 			 */
   1900 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1901 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   1902 					if (md->pvh_attrs & PVF_KMPAGE)
   1903 						bad_alias = true;
   1904 					break;
   1905 				}
   1906 			}
   1907 			md->pvh_attrs &= ~PVF_WRITE;
   1908 			/*
   1909 			 * No KMPAGE and we exited early, so we must have
   1910 			 * multiple color mappings.
   1911 			 */
   1912 			if (!bad_alias && pv != NULL)
   1913 				md->pvh_attrs |= PVF_MULTCLR;
   1914 		}
   1915 
   1916 		/* If no conflicting colors, set everything back to cached */
   1917 		if (!bad_alias) {
   1918 #ifdef DEBUG
   1919 			if ((md->pvh_attrs & PVF_WRITE)
   1920 			    || ro_mappings < 2) {
   1921 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1922 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1923 			}
   1924 #endif
   1925 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1926 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   1927 			/*
   1928 			 * Restore DIRTY bit if page is modified
   1929 			 */
   1930 			if (md->pvh_attrs & PVF_DMOD)
   1931 				md->pvh_attrs |= PVF_DIRTY;
   1932 			PMAPCOUNT(vac_color_restore);
   1933 		} else {
   1934 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1935 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1936 		}
   1937 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1938 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1939 	} else if (!va) {
   1940 		KASSERT(pmap_is_page_colored_p(md));
   1941 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   1942 		    || (md->pvh_attrs & PVF_DIRTY));
   1943 		if (rw_mappings == 0) {
   1944 			md->pvh_attrs &= ~PVF_WRITE;
   1945 			if (ro_mappings == 1
   1946 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   1947 				/*
   1948 				 * If this is the last readonly mapping
   1949 				 * but it doesn't match the current color
   1950 				 * for the page, change the current color
   1951 				 * to match this last readonly mapping.
   1952 				 */
   1953 				pv = SLIST_FIRST(&md->pvh_list);
   1954 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   1955 				    & arm_cache_prefer_mask;
   1956 				if (tst_mask) {
   1957 					md->pvh_attrs ^= tst_mask;
   1958 					PMAPCOUNT(vac_color_change);
   1959 				}
   1960 			}
   1961 		}
   1962 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1963 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1964 		return;
   1965 	} else if (!pmap_is_page_colored_p(md)) {
   1966 		/* not colored so we just use its color */
   1967 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1968 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1969 		PMAPCOUNT(vac_color_new);
   1970 		md->pvh_attrs &= PAGE_SIZE - 1;
   1971 		md->pvh_attrs |= PVF_COLORED
   1972 		    | (va & arm_cache_prefer_mask)
   1973 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1974 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1975 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1976 		return;
   1977 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1978 		bad_alias = false;
   1979 		if (rw_mappings > 0) {
   1980 			/*
   1981 			 * We now have writeable mappings and if we have
   1982 			 * readonly mappings in more than once color, we have
   1983 			 * an aliasing problem.  Regardless mark the page as
   1984 			 * writeable.
   1985 			 */
   1986 			if (md->pvh_attrs & PVF_MULTCLR) {
   1987 				if (ro_mappings < 2) {
   1988 					/*
   1989 					 * If we only have less than two
   1990 					 * read-only mappings, just flush the
   1991 					 * non-primary colors from the cache.
   1992 					 */
   1993 					pmap_flush_page(md, pa,
   1994 					    PMAP_FLUSH_SECONDARY);
   1995 				} else {
   1996 					bad_alias = true;
   1997 				}
   1998 			}
   1999 			md->pvh_attrs |= PVF_WRITE;
   2000 		}
   2001 		/* If no conflicting colors, set everything back to cached */
   2002 		if (!bad_alias) {
   2003 #ifdef DEBUG
   2004 			if (rw_mappings > 0
   2005 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2006 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2007 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2008 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2009 			}
   2010 #endif
   2011 			if (SLIST_EMPTY(&md->pvh_list))
   2012 				PMAPCOUNT(vac_color_reuse);
   2013 			else
   2014 				PMAPCOUNT(vac_color_ok);
   2015 
   2016 			/* matching color, just return */
   2017 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2018 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2019 			return;
   2020 		}
   2021 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2022 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2023 
   2024 		/* color conflict.  evict from cache. */
   2025 
   2026 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2027 		md->pvh_attrs &= ~PVF_COLORED;
   2028 		md->pvh_attrs |= PVF_NC;
   2029 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2030 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2031 		PMAPCOUNT(vac_color_erase);
   2032 	} else if (rw_mappings == 0
   2033 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2034 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2035 
   2036 		/*
   2037 		 * If the page has dirty cache lines, clean it.
   2038 		 */
   2039 		if (md->pvh_attrs & PVF_DIRTY)
   2040 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2041 
   2042 		/*
   2043 		 * If this is the first remapping (we know that there are no
   2044 		 * writeable mappings), then this is a simple color change.
   2045 		 * Otherwise this is a seconary r/o mapping, which means
   2046 		 * we don't have to do anything.
   2047 		 */
   2048 		if (ro_mappings == 1) {
   2049 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2050 			md->pvh_attrs &= PAGE_SIZE - 1;
   2051 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2052 			PMAPCOUNT(vac_color_change);
   2053 		} else {
   2054 			PMAPCOUNT(vac_color_blind);
   2055 		}
   2056 		md->pvh_attrs |= PVF_MULTCLR;
   2057 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2058 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2059 		return;
   2060 	} else {
   2061 		if (rw_mappings > 0)
   2062 			md->pvh_attrs |= PVF_WRITE;
   2063 
   2064 		/* color conflict.  evict from cache. */
   2065 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2066 
   2067 		/* the list can't be empty because this was a enter/modify */
   2068 		pv = SLIST_FIRST(&md->pvh_list);
   2069 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2070 			KASSERT(pv);
   2071 			/*
   2072 			 * If there's only one mapped page, change color to the
   2073 			 * page's new color and return.  Restore the DIRTY bit
   2074 			 * that was erased by pmap_flush_page.
   2075 			 */
   2076 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2077 				md->pvh_attrs &= PAGE_SIZE - 1;
   2078 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2079 				if (md->pvh_attrs & PVF_DMOD)
   2080 					md->pvh_attrs |= PVF_DIRTY;
   2081 				PMAPCOUNT(vac_color_change);
   2082 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2083 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2084 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2085 				return;
   2086 			}
   2087 		}
   2088 		bad_alias = true;
   2089 		md->pvh_attrs &= ~PVF_COLORED;
   2090 		md->pvh_attrs |= PVF_NC;
   2091 		PMAPCOUNT(vac_color_erase);
   2092 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2093 	}
   2094 
   2095   fixup:
   2096 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2097 
   2098 	/*
   2099 	 * Turn cacheing on/off for all pages.
   2100 	 */
   2101 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2102 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2103 		    pv->pv_va);
   2104 		KDASSERT(l2b != NULL);
   2105 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2106 		const pt_entry_t opte = *ptep;
   2107 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2108 		if (bad_alias) {
   2109 			pv->pv_flags |= PVF_NC;
   2110 		} else {
   2111 			pv->pv_flags &= ~PVF_NC;
   2112 			npte |= pte_l2_s_cache_mode;
   2113 		}
   2114 
   2115 		if (opte == npte)	/* only update is there's a change */
   2116 			continue;
   2117 
   2118 		if (l2pte_valid(npte)) {
   2119 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2120 		}
   2121 
   2122 		l2pte_set(ptep, npte, opte);
   2123 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2124 	}
   2125 }
   2126 #endif	/* PMAP_CACHE_VIPT */
   2127 
   2128 
   2129 /*
   2130  * Modify pte bits for all ptes corresponding to the given physical address.
   2131  * We use `maskbits' rather than `clearbits' because we're always passing
   2132  * constants and the latter would require an extra inversion at run-time.
   2133  */
   2134 static void
   2135 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2136 {
   2137 	struct pv_entry *pv;
   2138 	pmap_t pm;
   2139 	vaddr_t va;
   2140 	u_int oflags;
   2141 #ifdef PMAP_CACHE_VIPT
   2142 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2143 	bool need_vac_me_harder = false;
   2144 	bool need_syncicache = false;
   2145 #endif
   2146 
   2147 	NPDEBUG(PDB_BITS,
   2148 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2149 	    md, maskbits));
   2150 
   2151 #ifdef PMAP_CACHE_VIPT
   2152 	/*
   2153 	 * If we might want to sync the I-cache and we've modified it,
   2154 	 * then we know we definitely need to sync or discard it.
   2155 	 */
   2156 	if (want_syncicache) {
   2157 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2158 	}
   2159 #endif
   2160 	/*
   2161 	 * Clear saved attributes (modify, reference)
   2162 	 */
   2163 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2164 
   2165 	if (SLIST_EMPTY(&md->pvh_list)) {
   2166 #if defined(PMAP_CACHE_VIPT)
   2167 		if (need_syncicache) {
   2168 			/*
   2169 			 * No one has it mapped, so just discard it.  The next
   2170 			 * exec remapping will cause it to be synced.
   2171 			 */
   2172 			md->pvh_attrs &= ~PVF_EXEC;
   2173 			PMAPCOUNT(exec_discarded_clearbit);
   2174 		}
   2175 #endif
   2176 		return;
   2177 	}
   2178 
   2179 	/*
   2180 	 * Loop over all current mappings setting/clearing as appropos
   2181 	 */
   2182 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2183 		va = pv->pv_va;
   2184 		pm = pv->pv_pmap;
   2185 		oflags = pv->pv_flags;
   2186 		/*
   2187 		 * Kernel entries are unmanaged and as such not to be changed.
   2188 		 */
   2189 		if (oflags & PVF_KENTRY)
   2190 			continue;
   2191 		pv->pv_flags &= ~maskbits;
   2192 
   2193 		pmap_acquire_pmap_lock(pm);
   2194 
   2195 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2196 		KDASSERT(l2b != NULL);
   2197 
   2198 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2199 		const pt_entry_t opte = *ptep;
   2200 		pt_entry_t npte = opte;
   2201 
   2202 		NPDEBUG(PDB_BITS,
   2203 		    printf(
   2204 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2205 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2206 
   2207 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2208 #ifdef PMAP_CACHE_VIVT
   2209 			if ((pv->pv_flags & PVF_NC)) {
   2210 				/*
   2211 				 * Entry is not cacheable:
   2212 				 *
   2213 				 * Don't turn caching on again if this is a
   2214 				 * modified emulation. This would be
   2215 				 * inconsitent with the settings created by
   2216 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2217 				 * to re-enable cacheing.
   2218 				 *
   2219 				 * There's no need to call pmap_vac_me_harder()
   2220 				 * here: all pages are losing their write
   2221 				 * permission.
   2222 				 */
   2223 				if (maskbits & PVF_WRITE) {
   2224 					npte |= pte_l2_s_cache_mode;
   2225 					pv->pv_flags &= ~PVF_NC;
   2226 				}
   2227 			} else
   2228 			if (l2pte_writable_p(opte)) {
   2229 				/*
   2230 				 * Entry is writable/cacheable: check if pmap
   2231 				 * is current if it is flush it, otherwise it
   2232 				 * won't be in the cache
   2233 				 */
   2234 				pmap_cache_wbinv_page(pm, pv->pv_va,
   2235 				    (maskbits & PVF_REF) != 0,
   2236 				    oflags|PVF_WRITE);
   2237 			}
   2238 #endif
   2239 
   2240 			/* make the pte read only */
   2241 			npte = l2pte_set_readonly(npte);
   2242 
   2243 			if (maskbits & oflags & PVF_WRITE) {
   2244 				/*
   2245 				 * Keep alias accounting up to date
   2246 				 */
   2247 				if (pv->pv_pmap == pmap_kernel()) {
   2248 					md->krw_mappings--;
   2249 					md->kro_mappings++;
   2250 				} else {
   2251 					md->urw_mappings--;
   2252 					md->uro_mappings++;
   2253 				}
   2254 #ifdef PMAP_CACHE_VIPT
   2255 				if (arm_cache_prefer_mask != 0) {
   2256 					if (md->urw_mappings + md->krw_mappings == 0) {
   2257 						md->pvh_attrs &= ~PVF_WRITE;
   2258 					} else {
   2259 						PMAP_VALIDATE_MD_PAGE(md);
   2260 					}
   2261 				}
   2262 				if (want_syncicache)
   2263 					need_syncicache = true;
   2264 				need_vac_me_harder = true;
   2265 #endif
   2266 			}
   2267 		}
   2268 
   2269 		if (maskbits & PVF_REF) {
   2270 			if ((pv->pv_flags & PVF_NC) == 0
   2271 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2272 			    && l2pte_valid(npte)) {
   2273 #ifdef PMAP_CACHE_VIVT
   2274 				/*
   2275 				 * Check npte here; we may have already
   2276 				 * done the wbinv above, and the validity
   2277 				 * of the PTE is the same for opte and
   2278 				 * npte.
   2279 				 */
   2280 				pmap_cache_wbinv_page(pm, pv->pv_va, true,
   2281 				    oflags);
   2282 #endif
   2283 			}
   2284 
   2285 			/*
   2286 			 * Make the PTE invalid so that we will take a
   2287 			 * page fault the next time the mapping is
   2288 			 * referenced.
   2289 			 */
   2290 			npte &= ~L2_TYPE_MASK;
   2291 			npte |= L2_TYPE_INV;
   2292 		}
   2293 
   2294 		if (npte != opte) {
   2295 			l2pte_set(ptep, npte, opte);
   2296 			PTE_SYNC(ptep);
   2297 
   2298 			/* Flush the TLB entry if a current pmap. */
   2299 			pmap_tlb_flush_SE(pm, pv->pv_va, oflags);
   2300 		}
   2301 
   2302 		pmap_release_pmap_lock(pm);
   2303 
   2304 		NPDEBUG(PDB_BITS,
   2305 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2306 		    pm, va, opte, npte));
   2307 	}
   2308 
   2309 #ifdef PMAP_CACHE_VIPT
   2310 	/*
   2311 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2312 	 */
   2313 	if (need_syncicache) {
   2314 		pmap_syncicache_page(md, pa);
   2315 		PMAPCOUNT(exec_synced_clearbit);
   2316 	}
   2317 
   2318 	/*
   2319 	 * If we are changing this to read-only, we need to call vac_me_harder
   2320 	 * so we can change all the read-only pages to cacheable.  We pretend
   2321 	 * this as a page deletion.
   2322 	 */
   2323 	if (need_vac_me_harder) {
   2324 		if (md->pvh_attrs & PVF_NC)
   2325 			pmap_vac_me_harder(md, pa, NULL, 0);
   2326 	}
   2327 #endif
   2328 }
   2329 
   2330 /*
   2331  * pmap_clean_page()
   2332  *
   2333  * This is a local function used to work out the best strategy to clean
   2334  * a single page referenced by its entry in the PV table. It's used by
   2335  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2336  *
   2337  * Its policy is effectively:
   2338  *  o If there are no mappings, we don't bother doing anything with the cache.
   2339  *  o If there is one mapping, we clean just that page.
   2340  *  o If there are multiple mappings, we clean the entire cache.
   2341  *
   2342  * So that some functions can be further optimised, it returns 0 if it didn't
   2343  * clean the entire cache, or 1 if it did.
   2344  *
   2345  * XXX One bug in this routine is that if the pv_entry has a single page
   2346  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2347  * just the 1 page. Since this should not occur in everyday use and if it does
   2348  * it will just result in not the most efficient clean for the page.
   2349  */
   2350 #ifdef PMAP_CACHE_VIVT
   2351 static int
   2352 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2353 {
   2354 	pmap_t pm_to_clean = NULL;
   2355 	struct pv_entry *npv;
   2356 	u_int cache_needs_cleaning = 0;
   2357 	u_int flags = 0;
   2358 	vaddr_t page_to_clean = 0;
   2359 
   2360 	if (pv == NULL) {
   2361 		/* nothing mapped in so nothing to flush */
   2362 		return (0);
   2363 	}
   2364 
   2365 	/*
   2366 	 * Since we flush the cache each time we change to a different
   2367 	 * user vmspace, we only need to flush the page if it is in the
   2368 	 * current pmap.
   2369 	 */
   2370 
   2371 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2372 		if (pmap_is_current(npv->pv_pmap)) {
   2373 			flags |= npv->pv_flags;
   2374 			/*
   2375 			 * The page is mapped non-cacheable in
   2376 			 * this map.  No need to flush the cache.
   2377 			 */
   2378 			if (npv->pv_flags & PVF_NC) {
   2379 #ifdef DIAGNOSTIC
   2380 				if (cache_needs_cleaning)
   2381 					panic("pmap_clean_page: "
   2382 					    "cache inconsistency");
   2383 #endif
   2384 				break;
   2385 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2386 				continue;
   2387 			if (cache_needs_cleaning) {
   2388 				page_to_clean = 0;
   2389 				break;
   2390 			} else {
   2391 				page_to_clean = npv->pv_va;
   2392 				pm_to_clean = npv->pv_pmap;
   2393 			}
   2394 			cache_needs_cleaning = 1;
   2395 		}
   2396 	}
   2397 
   2398 	if (page_to_clean) {
   2399 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2400 		    !is_src, flags | PVF_REF);
   2401 	} else if (cache_needs_cleaning) {
   2402 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2403 
   2404 		pmap_cache_wbinv_all(pm, flags);
   2405 		return (1);
   2406 	}
   2407 	return (0);
   2408 }
   2409 #endif
   2410 
   2411 #ifdef PMAP_CACHE_VIPT
   2412 /*
   2413  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2414  * right cache alias to make sure we flush the right stuff.
   2415  */
   2416 void
   2417 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2418 {
   2419 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2420 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2421 
   2422 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2423 	    md, md->pvh_attrs));
   2424 	/*
   2425 	 * No need to clean the page if it's non-cached.
   2426 	 */
   2427 	if (md->pvh_attrs & PVF_NC)
   2428 		return;
   2429 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2430 
   2431 	pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
   2432 	/*
   2433 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2434 	 */
   2435 	const pt_entry_t npte = L2_S_PROTO |
   2436 	    pa
   2437 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2438 	    | pte_l2_s_cache_mode;
   2439 	l2pte_set(ptep, npte, 0);
   2440 	PTE_SYNC(ptep);
   2441 
   2442 	/*
   2443 	 * Flush it.
   2444 	 */
   2445 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2446 	/*
   2447 	 * Unmap the page.
   2448 	 */
   2449 	l2pte_reset(ptep);
   2450 	PTE_SYNC(ptep);
   2451 	pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
   2452 
   2453 	md->pvh_attrs |= PVF_EXEC;
   2454 	PMAPCOUNT(exec_synced);
   2455 }
   2456 
   2457 void
   2458 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2459 {
   2460 	vsize_t va_offset, end_va;
   2461 	bool wbinv_p;
   2462 
   2463 	if (arm_cache_prefer_mask == 0)
   2464 		return;
   2465 
   2466 	switch (flush) {
   2467 	case PMAP_FLUSH_PRIMARY:
   2468 		if (md->pvh_attrs & PVF_MULTCLR) {
   2469 			va_offset = 0;
   2470 			end_va = arm_cache_prefer_mask;
   2471 			md->pvh_attrs &= ~PVF_MULTCLR;
   2472 			PMAPCOUNT(vac_flush_lots);
   2473 		} else {
   2474 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2475 			end_va = va_offset;
   2476 			PMAPCOUNT(vac_flush_one);
   2477 		}
   2478 		/*
   2479 		 * Mark that the page is no longer dirty.
   2480 		 */
   2481 		md->pvh_attrs &= ~PVF_DIRTY;
   2482 		wbinv_p = true;
   2483 		break;
   2484 	case PMAP_FLUSH_SECONDARY:
   2485 		va_offset = 0;
   2486 		end_va = arm_cache_prefer_mask;
   2487 		wbinv_p = true;
   2488 		md->pvh_attrs &= ~PVF_MULTCLR;
   2489 		PMAPCOUNT(vac_flush_lots);
   2490 		break;
   2491 	case PMAP_CLEAN_PRIMARY:
   2492 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2493 		end_va = va_offset;
   2494 		wbinv_p = false;
   2495 		/*
   2496 		 * Mark that the page is no longer dirty.
   2497 		 */
   2498 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2499 			md->pvh_attrs &= ~PVF_DIRTY;
   2500 		PMAPCOUNT(vac_clean_one);
   2501 		break;
   2502 	default:
   2503 		return;
   2504 	}
   2505 
   2506 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2507 
   2508 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2509 	    md, md->pvh_attrs));
   2510 
   2511 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2512 
   2513 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2514 		const size_t pte_offset = va_offset >> PGSHIFT;
   2515 		pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2516 		const pt_entry_t opte = *ptep;
   2517 
   2518 		if (flush == PMAP_FLUSH_SECONDARY
   2519 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2520 			continue;
   2521 
   2522 		pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
   2523 		    PVF_REF | PVF_EXEC);
   2524 		/*
   2525 		 * Set up a PTE with the right coloring to flush
   2526 		 * existing cache entries.
   2527 		 */
   2528 		const pt_entry_t npte = L2_S_PROTO
   2529 		    | pa
   2530 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2531 		    | pte_l2_s_cache_mode;
   2532 		l2pte_set(ptep, npte, opte);
   2533 		PTE_SYNC(ptep);
   2534 
   2535 		/*
   2536 		 * Flush it.  Make sure to flush secondary cache too since
   2537 		 * bus_dma will ignore uncached pages.
   2538 		 */
   2539                 vaddr_t va = cdstp + va_offset;
   2540 		if (scache_line_size != 0) {
   2541 			cpu_dcache_wb_range(va, PAGE_SIZE);
   2542 			if (wbinv_p) {
   2543 				cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
   2544 				cpu_dcache_inv_range(va, PAGE_SIZE);
   2545 			} else {
   2546 				cpu_sdcache_wb_range(va, pa, PAGE_SIZE);
   2547 			}
   2548 		} else {
   2549 			if (wbinv_p) {
   2550 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   2551 			} else {
   2552 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2553 			}
   2554 		}
   2555 
   2556 		/*
   2557 		 * Restore the page table entry since we might have interrupted
   2558 		 * pmap_zero_page or pmap_copy_page which was already using
   2559 		 * this pte.
   2560 		 */
   2561 		l2pte_set(ptep, opte, npte);
   2562 		PTE_SYNC(ptep);
   2563 		pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
   2564 		    PVF_REF | PVF_EXEC);
   2565 	}
   2566 }
   2567 #endif /* PMAP_CACHE_VIPT */
   2568 
   2569 /*
   2570  * Routine:	pmap_page_remove
   2571  * Function:
   2572  *		Removes this physical page from
   2573  *		all physical maps in which it resides.
   2574  *		Reflects back modify bits to the pager.
   2575  */
   2576 static void
   2577 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2578 {
   2579 	struct l2_bucket *l2b;
   2580 	struct pv_entry *pv, *npv, **pvp;
   2581 	pmap_t pm;
   2582 	pt_entry_t *ptep;
   2583 	bool flush;
   2584 	u_int flags;
   2585 
   2586 	NPDEBUG(PDB_FOLLOW,
   2587 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2588 	    pa));
   2589 
   2590 	pv = SLIST_FIRST(&md->pvh_list);
   2591 	if (pv == NULL) {
   2592 #ifdef PMAP_CACHE_VIPT
   2593 		/*
   2594 		 * We *know* the page contents are about to be replaced.
   2595 		 * Discard the exec contents
   2596 		 */
   2597 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2598 			PMAPCOUNT(exec_discarded_page_protect);
   2599 		md->pvh_attrs &= ~PVF_EXEC;
   2600 		PMAP_VALIDATE_MD_PAGE(md);
   2601 #endif
   2602 		return;
   2603 	}
   2604 #ifdef PMAP_CACHE_VIPT
   2605 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2606 #endif
   2607 
   2608 	/*
   2609 	 * Clear alias counts
   2610 	 */
   2611 #ifdef PMAP_CACHE_VIVT
   2612 	md->k_mappings = 0;
   2613 #endif
   2614 	md->urw_mappings = md->uro_mappings = 0;
   2615 
   2616 	flush = false;
   2617 	flags = 0;
   2618 
   2619 #ifdef PMAP_CACHE_VIVT
   2620 	pmap_clean_page(pv, false);
   2621 #endif
   2622 
   2623 	pvp = &SLIST_FIRST(&md->pvh_list);
   2624 	while (pv) {
   2625 		pm = pv->pv_pmap;
   2626 		npv = SLIST_NEXT(pv, pv_link);
   2627 		if (flush == false && pmap_is_current(pm))
   2628 			flush = true;
   2629 
   2630 		if (pm == pmap_kernel()) {
   2631 #ifdef PMAP_CACHE_VIPT
   2632 			/*
   2633 			 * If this was unmanaged mapping, it must be preserved.
   2634 			 * Move it back on the list and advance the end-of-list
   2635 			 * pointer.
   2636 			 */
   2637 			if (pv->pv_flags & PVF_KENTRY) {
   2638 				*pvp = pv;
   2639 				pvp = &SLIST_NEXT(pv, pv_link);
   2640 				pv = npv;
   2641 				continue;
   2642 			}
   2643 			if (pv->pv_flags & PVF_WRITE)
   2644 				md->krw_mappings--;
   2645 			else
   2646 				md->kro_mappings--;
   2647 #endif
   2648 			PMAPCOUNT(kernel_unmappings);
   2649 		}
   2650 		PMAPCOUNT(unmappings);
   2651 
   2652 		pmap_acquire_pmap_lock(pm);
   2653 
   2654 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2655 		KDASSERT(l2b != NULL);
   2656 
   2657 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2658 
   2659 		/*
   2660 		 * Update statistics
   2661 		 */
   2662 		--pm->pm_stats.resident_count;
   2663 
   2664 		/* Wired bit */
   2665 		if (pv->pv_flags & PVF_WIRED)
   2666 			--pm->pm_stats.wired_count;
   2667 
   2668 		flags |= pv->pv_flags;
   2669 
   2670 		/*
   2671 		 * Invalidate the PTEs.
   2672 		 */
   2673 		l2pte_reset(ptep);
   2674 		PTE_SYNC_CURRENT(pm, ptep);
   2675 		pmap_free_l2_bucket(pm, l2b, 1);
   2676 
   2677 		pool_put(&pmap_pv_pool, pv);
   2678 		pv = npv;
   2679 		/*
   2680 		 * if we reach the end of the list and there are still
   2681 		 * mappings, they might be able to be cached now.
   2682 		 */
   2683 		if (pv == NULL) {
   2684 			*pvp = NULL;
   2685 			if (!SLIST_EMPTY(&md->pvh_list))
   2686 				pmap_vac_me_harder(md, pa, pm, 0);
   2687 		}
   2688 		pmap_release_pmap_lock(pm);
   2689 	}
   2690 #ifdef PMAP_CACHE_VIPT
   2691 	/*
   2692 	 * Its EXEC cache is now gone.
   2693 	 */
   2694 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2695 		PMAPCOUNT(exec_discarded_page_protect);
   2696 	md->pvh_attrs &= ~PVF_EXEC;
   2697 	KASSERT(md->urw_mappings == 0);
   2698 	KASSERT(md->uro_mappings == 0);
   2699 	if (arm_cache_prefer_mask != 0) {
   2700 		if (md->krw_mappings == 0)
   2701 			md->pvh_attrs &= ~PVF_WRITE;
   2702 		PMAP_VALIDATE_MD_PAGE(md);
   2703 	}
   2704 #endif
   2705 
   2706 	if (flush) {
   2707 		/*
   2708 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2709 		 * would need a subsequent call to pmap_update() to ensure
   2710 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2711 		 * required to do that (see pmap(9)), so we can't modify
   2712 		 * the current pmap's state.
   2713 		 */
   2714 		if (PV_BEEN_EXECD(flags))
   2715 			cpu_tlb_flushID();
   2716 		else
   2717 			cpu_tlb_flushD();
   2718 	}
   2719 	cpu_cpwait();
   2720 }
   2721 
   2722 /*
   2723  * pmap_t pmap_create(void)
   2724  *
   2725  *      Create a new pmap structure from scratch.
   2726  */
   2727 pmap_t
   2728 pmap_create(void)
   2729 {
   2730 	pmap_t pm;
   2731 
   2732 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2733 
   2734 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2735 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2736 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2737 
   2738 	pm->pm_stats.wired_count = 0;
   2739 	pm->pm_stats.resident_count = 1;
   2740 	pm->pm_cstate.cs_all = 0;
   2741 	pmap_alloc_l1(pm);
   2742 
   2743 	/*
   2744 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2745 	 * initialised to zero.
   2746 	 */
   2747 
   2748 	pmap_pinit(pm);
   2749 
   2750 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2751 
   2752 	return (pm);
   2753 }
   2754 
   2755 u_int
   2756 arm32_mmap_flags(paddr_t pa)
   2757 {
   2758 	/*
   2759 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   2760 	 * and we're using the upper bits in page numbers to pass flags around
   2761 	 * so we might as well use the same bits
   2762 	 */
   2763 	return (u_int)pa & PMAP_MD_MASK;
   2764 }
   2765 /*
   2766  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2767  *      u_int flags)
   2768  *
   2769  *      Insert the given physical page (p) at
   2770  *      the specified virtual address (v) in the
   2771  *      target physical map with the protection requested.
   2772  *
   2773  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2774  *      or lose information.  That is, this routine must actually
   2775  *      insert this page into the given map NOW.
   2776  */
   2777 int
   2778 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2779 {
   2780 	struct l2_bucket *l2b;
   2781 	struct vm_page *pg, *opg;
   2782 	struct pv_entry *pv;
   2783 	u_int nflags;
   2784 	u_int oflags;
   2785 #ifdef ARM_HAS_VBAR
   2786 	const bool vector_page_p = false;
   2787 #else
   2788 	const bool vector_page_p = (va == vector_page);
   2789 #endif
   2790 
   2791 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2792 
   2793 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2794 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2795 
   2796 	/*
   2797 	 * Get a pointer to the page.  Later on in this function, we
   2798 	 * test for a managed page by checking pg != NULL.
   2799 	 */
   2800 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2801 
   2802 	nflags = 0;
   2803 	if (prot & VM_PROT_WRITE)
   2804 		nflags |= PVF_WRITE;
   2805 	if (prot & VM_PROT_EXECUTE)
   2806 		nflags |= PVF_EXEC;
   2807 	if (flags & PMAP_WIRED)
   2808 		nflags |= PVF_WIRED;
   2809 
   2810 	pmap_acquire_pmap_lock(pm);
   2811 
   2812 	/*
   2813 	 * Fetch the L2 bucket which maps this page, allocating one if
   2814 	 * necessary for user pmaps.
   2815 	 */
   2816 	if (pm == pmap_kernel())
   2817 		l2b = pmap_get_l2_bucket(pm, va);
   2818 	else
   2819 		l2b = pmap_alloc_l2_bucket(pm, va);
   2820 	if (l2b == NULL) {
   2821 		if (flags & PMAP_CANFAIL) {
   2822 			pmap_release_pmap_lock(pm);
   2823 			return (ENOMEM);
   2824 		}
   2825 		panic("pmap_enter: failed to allocate L2 bucket");
   2826 	}
   2827 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   2828 	const pt_entry_t opte = *ptep;
   2829 	pt_entry_t npte = pa;
   2830 	oflags = 0;
   2831 
   2832 	if (opte) {
   2833 		/*
   2834 		 * There is already a mapping at this address.
   2835 		 * If the physical address is different, lookup the
   2836 		 * vm_page.
   2837 		 */
   2838 		if (l2pte_pa(opte) != pa)
   2839 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2840 		else
   2841 			opg = pg;
   2842 	} else
   2843 		opg = NULL;
   2844 
   2845 	if (pg) {
   2846 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2847 
   2848 		/*
   2849 		 * This is to be a managed mapping.
   2850 		 */
   2851 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   2852 			/*
   2853 			 * - The access type indicates that we don't need
   2854 			 *   to do referenced emulation.
   2855 			 * OR
   2856 			 * - The physical page has already been referenced
   2857 			 *   so no need to re-do referenced emulation here.
   2858 			 */
   2859 			npte |= l2pte_set_readonly(L2_S_PROTO);
   2860 
   2861 			nflags |= PVF_REF;
   2862 
   2863 			if ((prot & VM_PROT_WRITE) != 0 &&
   2864 			    ((flags & VM_PROT_WRITE) != 0 ||
   2865 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   2866 				/*
   2867 				 * This is a writable mapping, and the
   2868 				 * page's mod state indicates it has
   2869 				 * already been modified. Make it
   2870 				 * writable from the outset.
   2871 				 */
   2872 				npte = l2pte_set_writable(npte);
   2873 				nflags |= PVF_MOD;
   2874 			}
   2875 		} else {
   2876 			/*
   2877 			 * Need to do page referenced emulation.
   2878 			 */
   2879 			npte |= L2_TYPE_INV;
   2880 		}
   2881 
   2882 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   2883 			npte |= pte_l2_s_wc_mode;
   2884 		} else
   2885 			npte |= pte_l2_s_cache_mode;
   2886 
   2887 		if (pg == opg) {
   2888 			/*
   2889 			 * We're changing the attrs of an existing mapping.
   2890 			 */
   2891 #ifdef MULTIPROCESSOR
   2892 			KASSERT(uvm_page_locked_p(pg));
   2893 #endif
   2894 			oflags = pmap_modify_pv(md, pa, pm, va,
   2895 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2896 			    PVF_MOD | PVF_REF, nflags);
   2897 
   2898 #ifdef PMAP_CACHE_VIVT
   2899 			/*
   2900 			 * We may need to flush the cache if we're
   2901 			 * doing rw-ro...
   2902 			 */
   2903 			if (pm->pm_cstate.cs_cache_d &&
   2904 			    (oflags & PVF_NC) == 0 &&
   2905 			    l2pte_writable_p(opte) &&
   2906 			    (prot & VM_PROT_WRITE) == 0)
   2907 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2908 #endif
   2909 		} else {
   2910 			/*
   2911 			 * New mapping, or changing the backing page
   2912 			 * of an existing mapping.
   2913 			 */
   2914 			if (opg) {
   2915 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2916 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2917 
   2918 				/*
   2919 				 * Replacing an existing mapping with a new one.
   2920 				 * It is part of our managed memory so we
   2921 				 * must remove it from the PV list
   2922 				 */
   2923 #ifdef MULTIPROCESSOR
   2924 				KASSERT(uvm_page_locked_p(opg));
   2925 #endif
   2926 				pv = pmap_remove_pv(omd, opa, pm, va);
   2927 				pmap_vac_me_harder(omd, opa, pm, 0);
   2928 				oflags = pv->pv_flags;
   2929 
   2930 #ifdef PMAP_CACHE_VIVT
   2931 				/*
   2932 				 * If the old mapping was valid (ref/mod
   2933 				 * emulation creates 'invalid' mappings
   2934 				 * initially) then make sure to frob
   2935 				 * the cache.
   2936 				 */
   2937 				if (!(oflags & PVF_NC) && l2pte_valid(opte)) {
   2938 					pmap_cache_wbinv_page(pm, va, true,
   2939 					    oflags);
   2940 				}
   2941 #endif
   2942 			} else
   2943 			if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2944 				if ((flags & PMAP_CANFAIL) == 0)
   2945 					panic("pmap_enter: no pv entries");
   2946 
   2947 				if (pm != pmap_kernel())
   2948 					pmap_free_l2_bucket(pm, l2b, 0);
   2949 				pmap_release_pmap_lock(pm);
   2950 				NPDEBUG(PDB_ENTER,
   2951 				    printf("pmap_enter: ENOMEM\n"));
   2952 				return (ENOMEM);
   2953 			}
   2954 
   2955 #ifdef MULTIPROCESSOR
   2956 			KASSERT(uvm_page_locked_p(pg));
   2957 #endif
   2958 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   2959 		}
   2960 	} else {
   2961 		/*
   2962 		 * We're mapping an unmanaged page.
   2963 		 * These are always readable, and possibly writable, from
   2964 		 * the get go as we don't need to track ref/mod status.
   2965 		 */
   2966 		npte |= l2pte_set_readonly(L2_S_PROTO);
   2967 		if (prot & VM_PROT_WRITE)
   2968 			npte = l2pte_set_writable(npte);
   2969 
   2970 		/*
   2971 		 * Make sure the vector table is mapped cacheable
   2972 		 */
   2973 		if ((vector_page_p && pm != pmap_kernel())
   2974 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   2975 			npte |= pte_l2_s_cache_mode;
   2976 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   2977 			npte |= pte_l2_s_wc_mode;
   2978 		}
   2979 		if (opg) {
   2980 			/*
   2981 			 * Looks like there's an existing 'managed' mapping
   2982 			 * at this address.
   2983 			 */
   2984 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2985 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2986 
   2987 #ifdef MULTIPROCESSOR
   2988 			KASSERT(uvm_page_locked_p(opg));
   2989 #endif
   2990 			pv = pmap_remove_pv(omd, opa, pm, va);
   2991 			pmap_vac_me_harder(omd, opa, pm, 0);
   2992 			oflags = pv->pv_flags;
   2993 
   2994 #ifdef PMAP_CACHE_VIVT
   2995 			if (!(oflags & PVF_NC) && l2pte_valid(opte)) {
   2996 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2997 			}
   2998 #endif
   2999 			pool_put(&pmap_pv_pool, pv);
   3000 		}
   3001 	}
   3002 
   3003 	/*
   3004 	 * Make sure userland mappings get the right permissions
   3005 	 */
   3006 	if (!vector_page_p && pm != pmap_kernel()) {
   3007 		npte |= L2_S_PROT_U;
   3008 	}
   3009 
   3010 	/*
   3011 	 * Keep the stats up to date
   3012 	 */
   3013 	if (opte == 0) {
   3014 		l2b->l2b_occupancy++;
   3015 		pm->pm_stats.resident_count++;
   3016 	}
   3017 
   3018 	NPDEBUG(PDB_ENTER,
   3019 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   3020 
   3021 	/*
   3022 	 * If this is just a wiring change, the two PTEs will be
   3023 	 * identical, so there's no need to update the page table.
   3024 	 */
   3025 	if (npte != opte) {
   3026 		bool is_cached = pmap_is_cached(pm);
   3027 
   3028 		l2pte_set(ptep, npte, opte);
   3029 		PTE_SYNC(ptep);
   3030 		if (is_cached) {
   3031 			/*
   3032 			 * We only need to frob the cache/tlb if this pmap
   3033 			 * is current
   3034 			 */
   3035 			if (!vector_page_p && l2pte_valid(npte)) {
   3036 				/*
   3037 				 * This mapping is likely to be accessed as
   3038 				 * soon as we return to userland. Fix up the
   3039 				 * L1 entry to avoid taking another
   3040 				 * page/domain fault.
   3041 				 */
   3042 				pd_entry_t *pl1pd, l1pd;
   3043 
   3044 				pl1pd = pmap_l1_kva(pm) + L1_IDX(va);
   3045 				l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) |
   3046 				    L1_C_PROTO;
   3047 				if (*pl1pd != l1pd) {
   3048 					*pl1pd = l1pd;
   3049 					PTE_SYNC(pl1pd);
   3050 				}
   3051 			}
   3052 		}
   3053 
   3054 		pmap_tlb_flush_SE(pm, va, oflags);
   3055 
   3056 		NPDEBUG(PDB_ENTER,
   3057 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   3058 		    is_cached, pm->pm_cstate.cs_all));
   3059 
   3060 		if (pg != NULL) {
   3061 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3062 
   3063 #ifdef MULTIPROCESSOR
   3064 			KASSERT(uvm_page_locked_p(pg));
   3065 #endif
   3066 			pmap_vac_me_harder(md, pa, pm, va);
   3067 		}
   3068 	}
   3069 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3070 	if (pg) {
   3071 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3072 
   3073 #ifdef MULTIPROCESSOR
   3074 		KASSERT(uvm_page_locked_p(pg));
   3075 #endif
   3076 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3077 		PMAP_VALIDATE_MD_PAGE(md);
   3078 	}
   3079 #endif
   3080 
   3081 	pmap_release_pmap_lock(pm);
   3082 
   3083 	return (0);
   3084 }
   3085 
   3086 /*
   3087  * pmap_remove()
   3088  *
   3089  * pmap_remove is responsible for nuking a number of mappings for a range
   3090  * of virtual address space in the current pmap. To do this efficiently
   3091  * is interesting, because in a number of cases a wide virtual address
   3092  * range may be supplied that contains few actual mappings. So, the
   3093  * optimisations are:
   3094  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3095  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3096  *     maybe do just a partial cache clean. This path of execution is
   3097  *     complicated by the fact that the cache must be flushed _before_
   3098  *     the PTE is nuked, being a VAC :-)
   3099  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3100  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3101  *     already flushed the cache.
   3102  *  4. Maybe later fast-case a single page, but I don't think this is
   3103  *     going to make _that_ much difference overall.
   3104  */
   3105 
   3106 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3107 
   3108 void
   3109 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3110 {
   3111 	vaddr_t next_bucket;
   3112 	u_int cleanlist_idx, total, cnt;
   3113 	struct {
   3114 		vaddr_t va;
   3115 		pt_entry_t *ptep;
   3116 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3117 	u_int mappings;
   3118 
   3119 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3120 	    "eva=%08lx\n", pm, sva, eva));
   3121 
   3122 	/*
   3123 	 * we lock in the pmap => pv_head direction
   3124 	 */
   3125 	pmap_acquire_pmap_lock(pm);
   3126 
   3127 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3128 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3129 		if (pm->pm_cstate.cs_tlb == 0)
   3130 			pm->pm_remove_all = true;
   3131 	} else
   3132 		cleanlist_idx = 0;
   3133 
   3134 	total = 0;
   3135 
   3136 	while (sva < eva) {
   3137 		/*
   3138 		 * Do one L2 bucket's worth at a time.
   3139 		 */
   3140 		next_bucket = L2_NEXT_BUCKET(sva);
   3141 		if (next_bucket > eva)
   3142 			next_bucket = eva;
   3143 
   3144 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3145 		if (l2b == NULL) {
   3146 			sva = next_bucket;
   3147 			continue;
   3148 		}
   3149 
   3150 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3151 
   3152 		for (mappings = 0;
   3153 		     sva < next_bucket;
   3154 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3155 			pt_entry_t opte = *ptep;
   3156 
   3157 			if (opte == 0) {
   3158 				/* Nothing here, move along */
   3159 				continue;
   3160 			}
   3161 
   3162 			u_int flags = PVF_REF;
   3163 			paddr_t pa = l2pte_pa(opte);
   3164 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3165 
   3166 			/*
   3167 			 * Update flags. In a number of circumstances,
   3168 			 * we could cluster a lot of these and do a
   3169 			 * number of sequential pages in one go.
   3170 			 */
   3171 			if (pg != NULL) {
   3172 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3173 				struct pv_entry *pv;
   3174 
   3175 #ifdef MULTIPROCESSOR
   3176 				KASSERT(uvm_page_locked_p(pg));
   3177 #endif
   3178 				pv = pmap_remove_pv(md, pa, pm, sva);
   3179 				pmap_vac_me_harder(md, pa, pm, 0);
   3180 				if (pv != NULL) {
   3181 					if (pm->pm_remove_all == false) {
   3182 						flags = pv->pv_flags;
   3183 					}
   3184 					pool_put(&pmap_pv_pool, pv);
   3185 				}
   3186 			}
   3187 			mappings++;
   3188 
   3189 			if (!l2pte_valid(opte)) {
   3190 				/*
   3191 				 * Ref/Mod emulation is still active for this
   3192 				 * mapping, therefore it is has not yet been
   3193 				 * accessed. No need to frob the cache/tlb.
   3194 				 */
   3195 				l2pte_reset(ptep);
   3196 				PTE_SYNC_CURRENT(pm, ptep);
   3197 				continue;
   3198 			}
   3199 
   3200 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3201 				/* Add to the clean list. */
   3202 				cleanlist[cleanlist_idx].ptep = ptep;
   3203 				cleanlist[cleanlist_idx].va =
   3204 				    sva | (flags & PVF_EXEC);
   3205 				cleanlist_idx++;
   3206 			} else
   3207 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3208 				/* Nuke everything if needed. */
   3209 #ifdef PMAP_CACHE_VIVT
   3210 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3211 #endif
   3212 				pmap_tlb_flushID(pm);
   3213 
   3214 				/*
   3215 				 * Roll back the previous PTE list,
   3216 				 * and zero out the current PTE.
   3217 				 */
   3218 				for (cnt = 0;
   3219 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3220 					l2pte_reset(cleanlist[cnt].ptep);
   3221 					PTE_SYNC(cleanlist[cnt].ptep);
   3222 				}
   3223 				l2pte_reset(ptep);
   3224 				PTE_SYNC(ptep);
   3225 				cleanlist_idx++;
   3226 				pm->pm_remove_all = true;
   3227 			} else {
   3228 				l2pte_reset(ptep);
   3229 				PTE_SYNC(ptep);
   3230 				if (pm->pm_remove_all == false) {
   3231 					pmap_tlb_flush_SE(pm, sva, flags);
   3232 				}
   3233 			}
   3234 		}
   3235 
   3236 		/*
   3237 		 * Deal with any left overs
   3238 		 */
   3239 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3240 			total += cleanlist_idx;
   3241 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3242 				vaddr_t va = cleanlist[cnt].va;
   3243 				if (pm->pm_cstate.cs_all != 0) {
   3244 					vaddr_t clva = va & ~PAGE_MASK;
   3245 					u_int flags = va & PVF_EXEC;
   3246 #ifdef PMAP_CACHE_VIVT
   3247 					pmap_cache_wbinv_page(pm, clva, true,
   3248 					    PVF_REF | PVF_WRITE | flags);
   3249 #endif
   3250 					pmap_tlb_flush_SE(pm, clva,
   3251 					    PVF_REF | flags);
   3252 				}
   3253 				l2pte_reset(cleanlist[cnt].ptep);
   3254 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3255 			}
   3256 
   3257 			/*
   3258 			 * If it looks like we're removing a whole bunch
   3259 			 * of mappings, it's faster to just write-back
   3260 			 * the whole cache now and defer TLB flushes until
   3261 			 * pmap_update() is called.
   3262 			 */
   3263 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3264 				cleanlist_idx = 0;
   3265 			else {
   3266 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3267 #ifdef PMAP_CACHE_VIVT
   3268 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3269 #endif
   3270 				pm->pm_remove_all = true;
   3271 			}
   3272 		}
   3273 
   3274 		pmap_free_l2_bucket(pm, l2b, mappings);
   3275 		pm->pm_stats.resident_count -= mappings;
   3276 	}
   3277 
   3278 	pmap_release_pmap_lock(pm);
   3279 }
   3280 
   3281 #ifdef PMAP_CACHE_VIPT
   3282 static struct pv_entry *
   3283 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3284 {
   3285 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3286 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3287 	struct pv_entry *pv;
   3288 
   3289 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3290 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3291 
   3292 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3293 	KASSERT(pv);
   3294 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3295 
   3296 	/*
   3297 	 * If we are removing a writeable mapping to a cached exec page,
   3298 	 * if it's the last mapping then clear it execness other sync
   3299 	 * the page to the icache.
   3300 	 */
   3301 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3302 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3303 		if (SLIST_EMPTY(&md->pvh_list)) {
   3304 			md->pvh_attrs &= ~PVF_EXEC;
   3305 			PMAPCOUNT(exec_discarded_kremove);
   3306 		} else {
   3307 			pmap_syncicache_page(md, pa);
   3308 			PMAPCOUNT(exec_synced_kremove);
   3309 		}
   3310 	}
   3311 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3312 
   3313 	return pv;
   3314 }
   3315 #endif /* PMAP_CACHE_VIPT */
   3316 
   3317 /*
   3318  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3319  *
   3320  * We assume there is already sufficient KVM space available
   3321  * to do this, as we can't allocate L2 descriptor tables/metadata
   3322  * from here.
   3323  */
   3324 void
   3325 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3326 {
   3327 #ifdef PMAP_CACHE_VIVT
   3328 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3329 #endif
   3330 #ifdef PMAP_CACHE_VIPT
   3331 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3332 	struct vm_page *opg;
   3333 	struct pv_entry *pv = NULL;
   3334 #endif
   3335 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3336 
   3337 	NPDEBUG(PDB_KENTER,
   3338 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3339 	    va, pa, prot));
   3340 
   3341 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3342 	KDASSERT(l2b != NULL);
   3343 
   3344 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3345 	const pt_entry_t opte = *ptep;
   3346 
   3347 	if (opte == 0) {
   3348 		PMAPCOUNT(kenter_mappings);
   3349 		l2b->l2b_occupancy++;
   3350 	} else {
   3351 		PMAPCOUNT(kenter_remappings);
   3352 #ifdef PMAP_CACHE_VIPT
   3353 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3354 #ifdef DIAGNOSTIC
   3355 		struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3356 #endif
   3357 		if (opg) {
   3358 			KASSERT(opg != pg);
   3359 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3360 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3361 			pv = pmap_kremove_pg(opg, va);
   3362 		}
   3363 #endif
   3364 		if (l2pte_valid(opte)) {
   3365 #ifdef PMAP_CACHE_VIVT
   3366 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3367 #endif
   3368 			cpu_tlb_flushD_SE(va);
   3369 			cpu_cpwait();
   3370 		}
   3371 	}
   3372 
   3373 	const pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3374 	    | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
   3375 	l2pte_set(ptep, npte, opte);
   3376 	PTE_SYNC(ptep);
   3377 
   3378 	if (pg) {
   3379 #ifdef MULTIPROCESSOR
   3380 		KASSERT(uvm_page_locked_p(pg));
   3381 #endif
   3382 		if (flags & PMAP_KMPAGE) {
   3383 			KASSERT(md->urw_mappings == 0);
   3384 			KASSERT(md->uro_mappings == 0);
   3385 			KASSERT(md->krw_mappings == 0);
   3386 			KASSERT(md->kro_mappings == 0);
   3387 #ifdef PMAP_CACHE_VIPT
   3388 			KASSERT(pv == NULL);
   3389 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3390 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3391 			/* if there is a color conflict, evict from cache. */
   3392 			if (pmap_is_page_colored_p(md)
   3393 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3394 				PMAPCOUNT(vac_color_change);
   3395 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3396 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3397 				/*
   3398 				 * If this page has multiple colors, expunge
   3399 				 * them.
   3400 				 */
   3401 				PMAPCOUNT(vac_flush_lots2);
   3402 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3403 			}
   3404 			md->pvh_attrs &= PAGE_SIZE - 1;
   3405 			md->pvh_attrs |= PVF_KMPAGE
   3406 			    | PVF_COLORED | PVF_DIRTY
   3407 			    | (va & arm_cache_prefer_mask);
   3408 #endif
   3409 #ifdef PMAP_CACHE_VIVT
   3410 			md->pvh_attrs |= PVF_KMPAGE;
   3411 #endif
   3412 			pmap_kmpages++;
   3413 #ifdef PMAP_CACHE_VIPT
   3414 		} else {
   3415 			if (pv == NULL) {
   3416 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3417 				KASSERT(pv != NULL);
   3418 			}
   3419 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3420 			    PVF_WIRED | PVF_KENTRY
   3421 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3422 			if ((prot & VM_PROT_WRITE)
   3423 			    && !(md->pvh_attrs & PVF_NC))
   3424 				md->pvh_attrs |= PVF_DIRTY;
   3425 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3426 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3427 #endif
   3428 		}
   3429 #ifdef PMAP_CACHE_VIPT
   3430 	} else {
   3431 		if (pv != NULL)
   3432 			pool_put(&pmap_pv_pool, pv);
   3433 #endif
   3434 	}
   3435 }
   3436 
   3437 void
   3438 pmap_kremove(vaddr_t va, vsize_t len)
   3439 {
   3440 	vaddr_t next_bucket, eva;
   3441 	u_int mappings;
   3442 
   3443 	PMAPCOUNT(kenter_unmappings);
   3444 
   3445 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3446 	    va, len));
   3447 
   3448 	eva = va + len;
   3449 
   3450 	while (va < eva) {
   3451 		next_bucket = L2_NEXT_BUCKET(va);
   3452 		if (next_bucket > eva)
   3453 			next_bucket = eva;
   3454 
   3455 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3456 		KDASSERT(l2b != NULL);
   3457 
   3458 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3459 		pt_entry_t *ptep = sptep;
   3460 		mappings = 0;
   3461 
   3462 		while (va < next_bucket) {
   3463 			const pt_entry_t opte = *ptep;
   3464 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3465 			if (opg != NULL) {
   3466 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3467 
   3468 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3469 					KASSERT(omd->urw_mappings == 0);
   3470 					KASSERT(omd->uro_mappings == 0);
   3471 					KASSERT(omd->krw_mappings == 0);
   3472 					KASSERT(omd->kro_mappings == 0);
   3473 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3474 #ifdef PMAP_CACHE_VIPT
   3475 					if (arm_cache_prefer_mask != 0) {
   3476 						omd->pvh_attrs &= ~PVF_WRITE;
   3477 					}
   3478 #endif
   3479 					pmap_kmpages--;
   3480 #ifdef PMAP_CACHE_VIPT
   3481 				} else {
   3482 					pool_put(&pmap_pv_pool,
   3483 					    pmap_kremove_pg(opg, va));
   3484 #endif
   3485 				}
   3486 			}
   3487 			if (l2pte_valid(opte)) {
   3488 #ifdef PMAP_CACHE_VIVT
   3489 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3490 #endif
   3491 				cpu_tlb_flushD_SE(va);
   3492 			}
   3493 			if (opte) {
   3494 				l2pte_reset(ptep);
   3495 				mappings++;
   3496 			}
   3497 			va += PAGE_SIZE;
   3498 			ptep += PAGE_SIZE / L2_S_SIZE;
   3499 		}
   3500 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3501 		l2b->l2b_occupancy -= mappings;
   3502 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3503 	}
   3504 	cpu_cpwait();
   3505 }
   3506 
   3507 bool
   3508 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3509 {
   3510 	struct l2_dtable *l2;
   3511 	pd_entry_t *pl1pd, l1pd;
   3512 	pt_entry_t *ptep, pte;
   3513 	paddr_t pa;
   3514 	u_int l1idx;
   3515 
   3516 	pmap_acquire_pmap_lock(pm);
   3517 
   3518 	l1idx = L1_IDX(va);
   3519 	pl1pd = pmap_l1_kva(pm) + l1idx;
   3520 	l1pd = *pl1pd;
   3521 
   3522 	if (l1pte_section_p(l1pd)) {
   3523 		/*
   3524 		 * These should only happen for pmap_kernel()
   3525 		 */
   3526 		KDASSERT(pm == pmap_kernel());
   3527 		pmap_release_pmap_lock(pm);
   3528 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3529 		if (l1pte_supersection_p(l1pd)) {
   3530 			pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3531 		} else
   3532 #endif
   3533 			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3534 	} else {
   3535 		/*
   3536 		 * Note that we can't rely on the validity of the L1
   3537 		 * descriptor as an indication that a mapping exists.
   3538 		 * We have to look it up in the L2 dtable.
   3539 		 */
   3540 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3541 
   3542 		if (l2 == NULL ||
   3543 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3544 			pmap_release_pmap_lock(pm);
   3545 			return false;
   3546 		}
   3547 
   3548 		ptep = &ptep[l2pte_index(va)];
   3549 		pte = *ptep;
   3550 		pmap_release_pmap_lock(pm);
   3551 
   3552 		if (pte == 0)
   3553 			return false;
   3554 
   3555 		switch (pte & L2_TYPE_MASK) {
   3556 		case L2_TYPE_L:
   3557 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3558 			break;
   3559 
   3560 		default:
   3561 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3562 			break;
   3563 		}
   3564 	}
   3565 
   3566 	if (pap != NULL)
   3567 		*pap = pa;
   3568 
   3569 	return true;
   3570 }
   3571 
   3572 void
   3573 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3574 {
   3575 	struct l2_bucket *l2b;
   3576 	pt_entry_t *ptep, pte;
   3577 	vaddr_t next_bucket;
   3578 
   3579 	NPDEBUG(PDB_PROTECT,
   3580 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3581 	    pm, sva, eva, prot));
   3582 
   3583 	if ((prot & VM_PROT_READ) == 0) {
   3584 		pmap_remove(pm, sva, eva);
   3585 		return;
   3586 	}
   3587 
   3588 	if (prot & VM_PROT_WRITE) {
   3589 		/*
   3590 		 * If this is a read->write transition, just ignore it and let
   3591 		 * uvm_fault() take care of it later.
   3592 		 */
   3593 		return;
   3594 	}
   3595 
   3596 	pmap_acquire_pmap_lock(pm);
   3597 
   3598 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   3599 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3600 	u_int flags = 0;
   3601 
   3602 	while (sva < eva) {
   3603 		next_bucket = L2_NEXT_BUCKET(sva);
   3604 		if (next_bucket > eva)
   3605 			next_bucket = eva;
   3606 
   3607 		l2b = pmap_get_l2_bucket(pm, sva);
   3608 		if (l2b == NULL) {
   3609 			sva = next_bucket;
   3610 			continue;
   3611 		}
   3612 
   3613 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3614 
   3615 		while (sva < next_bucket) {
   3616 			pte = *ptep;
   3617 			if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
   3618 				struct vm_page *pg;
   3619 				u_int f;
   3620 
   3621 #ifdef PMAP_CACHE_VIVT
   3622 				/*
   3623 				 * OK, at this point, we know we're doing
   3624 				 * write-protect operation.  If the pmap is
   3625 				 * active, write-back the page.
   3626 				 */
   3627 				pmap_cache_wbinv_page(pm, sva, false,
   3628 				    PVF_REF | PVF_WRITE);
   3629 #endif
   3630 
   3631 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3632 				pte = l2pte_set_readonly(pte);
   3633 				*ptep = pte;
   3634 				PTE_SYNC(ptep);
   3635 
   3636 				if (pg != NULL) {
   3637 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3638 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3639 
   3640 #ifdef MULTIPROCESSOR
   3641 					KASSERT(uvm_page_locked_p(pg));
   3642 #endif
   3643 					f = pmap_modify_pv(md, pa, pm, sva,
   3644 					    clr_mask, 0);
   3645 					pmap_vac_me_harder(md, pa, pm, sva);
   3646 				} else {
   3647 					f = PVF_REF | PVF_EXEC;
   3648 				}
   3649 
   3650 				if (flush) {
   3651 					flags |= f;
   3652 				} else {
   3653 					pmap_tlb_flush_SE(pm, sva, f);
   3654 				}
   3655 			}
   3656 
   3657 			sva += PAGE_SIZE;
   3658 			ptep++;
   3659 		}
   3660 	}
   3661 
   3662 	if (flush) {
   3663 		if (PV_BEEN_EXECD(flags)) {
   3664 			pmap_tlb_flushID(pm);
   3665 		} else if (PV_BEEN_REFD(flags)) {
   3666 			pmap_tlb_flushD(pm);
   3667 		}
   3668 	}
   3669 
   3670 	pmap_release_pmap_lock(pm);
   3671 }
   3672 
   3673 void
   3674 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3675 {
   3676 	struct l2_bucket *l2b;
   3677 	pt_entry_t *ptep;
   3678 	vaddr_t next_bucket;
   3679 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3680 
   3681 	NPDEBUG(PDB_EXEC,
   3682 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3683 	    pm, sva, eva));
   3684 
   3685 	pmap_acquire_pmap_lock(pm);
   3686 
   3687 	while (sva < eva) {
   3688 		next_bucket = L2_NEXT_BUCKET(sva);
   3689 		if (next_bucket > eva)
   3690 			next_bucket = eva;
   3691 
   3692 		l2b = pmap_get_l2_bucket(pm, sva);
   3693 		if (l2b == NULL) {
   3694 			sva = next_bucket;
   3695 			continue;
   3696 		}
   3697 
   3698 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3699 		     sva < next_bucket;
   3700 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3701 			if (l2pte_valid(*ptep)) {
   3702 				cpu_icache_sync_range(sva,
   3703 				    min(page_size, eva - sva));
   3704 			}
   3705 		}
   3706 	}
   3707 
   3708 	pmap_release_pmap_lock(pm);
   3709 }
   3710 
   3711 void
   3712 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3713 {
   3714 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3715 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3716 
   3717 	NPDEBUG(PDB_PROTECT,
   3718 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   3719 	    md, pa, prot));
   3720 
   3721 #ifdef MULTIPROCESSOR
   3722 	KASSERT(uvm_page_locked_p(pg));
   3723 #endif
   3724 
   3725 	switch(prot) {
   3726 	case VM_PROT_READ|VM_PROT_WRITE:
   3727 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3728 		pmap_clearbit(md, pa, PVF_EXEC);
   3729 		break;
   3730 #endif
   3731 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3732 		break;
   3733 
   3734 	case VM_PROT_READ:
   3735 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3736 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   3737 		break;
   3738 #endif
   3739 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3740 		pmap_clearbit(md, pa, PVF_WRITE);
   3741 		break;
   3742 
   3743 	default:
   3744 		pmap_page_remove(md, pa);
   3745 		break;
   3746 	}
   3747 }
   3748 
   3749 /*
   3750  * pmap_clear_modify:
   3751  *
   3752  *	Clear the "modified" attribute for a page.
   3753  */
   3754 bool
   3755 pmap_clear_modify(struct vm_page *pg)
   3756 {
   3757 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3758 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3759 	bool rv;
   3760 
   3761 #ifdef MULTIPROCESSOR
   3762 	KASSERT(uvm_page_locked_p(pg));
   3763 #endif
   3764 
   3765 	if (md->pvh_attrs & PVF_MOD) {
   3766 		rv = true;
   3767 #ifdef PMAP_CACHE_VIPT
   3768 		/*
   3769 		 * If we are going to clear the modified bit and there are
   3770 		 * no other modified bits set, flush the page to memory and
   3771 		 * mark it clean.
   3772 		 */
   3773 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   3774 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   3775 #endif
   3776 		pmap_clearbit(md, pa, PVF_MOD);
   3777 	} else
   3778 		rv = false;
   3779 
   3780 	return (rv);
   3781 }
   3782 
   3783 /*
   3784  * pmap_clear_reference:
   3785  *
   3786  *	Clear the "referenced" attribute for a page.
   3787  */
   3788 bool
   3789 pmap_clear_reference(struct vm_page *pg)
   3790 {
   3791 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3792 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3793 	bool rv;
   3794 
   3795 #ifdef MULTIPROCESSOR
   3796 	KASSERT(uvm_page_locked_p(pg));
   3797 #endif
   3798 
   3799 	if (md->pvh_attrs & PVF_REF) {
   3800 		rv = true;
   3801 		pmap_clearbit(md, pa, PVF_REF);
   3802 	} else
   3803 		rv = false;
   3804 
   3805 	return (rv);
   3806 }
   3807 
   3808 /*
   3809  * pmap_is_modified:
   3810  *
   3811  *	Test if a page has the "modified" attribute.
   3812  */
   3813 /* See <arm/arm32/pmap.h> */
   3814 
   3815 /*
   3816  * pmap_is_referenced:
   3817  *
   3818  *	Test if a page has the "referenced" attribute.
   3819  */
   3820 /* See <arm/arm32/pmap.h> */
   3821 
   3822 int
   3823 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3824 {
   3825 	struct l2_dtable *l2;
   3826 	struct l2_bucket *l2b;
   3827 	pd_entry_t *pl1pd, l1pd;
   3828 	pt_entry_t *ptep, pte;
   3829 	paddr_t pa;
   3830 	u_int l1idx;
   3831 	int rv = 0;
   3832 
   3833 	pmap_acquire_pmap_lock(pm);
   3834 
   3835 	l1idx = L1_IDX(va);
   3836 
   3837 	/*
   3838 	 * If there is no l2_dtable for this address, then the process
   3839 	 * has no business accessing it.
   3840 	 *
   3841 	 * Note: This will catch userland processes trying to access
   3842 	 * kernel addresses.
   3843 	 */
   3844 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3845 	if (l2 == NULL)
   3846 		goto out;
   3847 
   3848 	/*
   3849 	 * Likewise if there is no L2 descriptor table
   3850 	 */
   3851 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3852 	if (l2b->l2b_kva == NULL)
   3853 		goto out;
   3854 
   3855 	/*
   3856 	 * Check the PTE itself.
   3857 	 */
   3858 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3859 	pte = *ptep;
   3860 	if (pte == 0)
   3861 		goto out;
   3862 
   3863 	/*
   3864 	 * Catch a userland access to the vector page mapped at 0x0
   3865 	 */
   3866 	if (user && (pte & L2_S_PROT_U) == 0)
   3867 		goto out;
   3868 
   3869 	pa = l2pte_pa(pte);
   3870 
   3871 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
   3872 		/*
   3873 		 * This looks like a good candidate for "page modified"
   3874 		 * emulation...
   3875 		 */
   3876 		struct pv_entry *pv;
   3877 		struct vm_page *pg;
   3878 
   3879 		/* Extract the physical address of the page */
   3880 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3881 			goto out;
   3882 
   3883 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3884 
   3885 		/* Get the current flags for this page. */
   3886 #ifdef MULTIPROCESSOR
   3887 		KASSERT(uvm_page_locked_p(pg));
   3888 #endif
   3889 
   3890 		pv = pmap_find_pv(md, pm, va);
   3891 		if (pv == NULL) {
   3892 			goto out;
   3893 		}
   3894 
   3895 		/*
   3896 		 * Do the flags say this page is writable? If not then it
   3897 		 * is a genuine write fault. If yes then the write fault is
   3898 		 * our fault as we did not reflect the write access in the
   3899 		 * PTE. Now we know a write has occurred we can correct this
   3900 		 * and also set the modified bit
   3901 		 */
   3902 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3903 			goto out;
   3904 		}
   3905 
   3906 		NPDEBUG(PDB_FOLLOW,
   3907 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3908 		    pm, va, pa));
   3909 
   3910 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   3911 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3912 #ifdef PMAP_CACHE_VIPT
   3913 		/*
   3914 		 * If there are cacheable mappings for this page, mark it dirty.
   3915 		 */
   3916 		if ((md->pvh_attrs & PVF_NC) == 0)
   3917 			md->pvh_attrs |= PVF_DIRTY;
   3918 #endif
   3919 
   3920 		/*
   3921 		 * Re-enable write permissions for the page.  No need to call
   3922 		 * pmap_vac_me_harder(), since this is just a
   3923 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3924 		 * changing. We've already set the cacheable bits based on
   3925 		 * the assumption that we can write to this page.
   3926 		 */
   3927 		*ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3928 		PTE_SYNC(ptep);
   3929 		rv = 1;
   3930 	} else
   3931 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3932 		/*
   3933 		 * This looks like a good candidate for "page referenced"
   3934 		 * emulation.
   3935 		 */
   3936 		struct pv_entry *pv;
   3937 		struct vm_page *pg;
   3938 
   3939 		/* Extract the physical address of the page */
   3940 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3941 			goto out;
   3942 
   3943 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3944 
   3945 		/* Get the current flags for this page. */
   3946 #ifdef MULTIPROCESSOR
   3947 		KASSERT(uvm_page_locked_p(pg));
   3948 #endif
   3949 
   3950 		pv = pmap_find_pv(md, pm, va);
   3951 		if (pv == NULL) {
   3952 			goto out;
   3953 		}
   3954 
   3955 		md->pvh_attrs |= PVF_REF;
   3956 		pv->pv_flags |= PVF_REF;
   3957 
   3958 		NPDEBUG(PDB_FOLLOW,
   3959 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3960 		    pm, va, pa));
   3961 
   3962 		*ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3963 		PTE_SYNC(ptep);
   3964 		rv = 1;
   3965 	}
   3966 
   3967 	/*
   3968 	 * We know there is a valid mapping here, so simply
   3969 	 * fix up the L1 if necessary.
   3970 	 */
   3971 	pl1pd = pmap_l1_kva(pm) + l1idx;
   3972 	l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) | L1_C_PROTO;
   3973 	if (*pl1pd != l1pd) {
   3974 		*pl1pd = l1pd;
   3975 		PTE_SYNC(pl1pd);
   3976 		rv = 1;
   3977 	}
   3978 
   3979 #ifdef CPU_SA110
   3980 	/*
   3981 	 * There are bugs in the rev K SA110.  This is a check for one
   3982 	 * of them.
   3983 	 */
   3984 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3985 	    curcpu()->ci_arm_cpurev < 3) {
   3986 		/* Always current pmap */
   3987 		if (l2pte_valid(pte)) {
   3988 			extern int kernel_debug;
   3989 			if (kernel_debug & 1) {
   3990 				struct proc *p = curlwp->l_proc;
   3991 				printf("prefetch_abort: page is already "
   3992 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3993 				printf("prefetch_abort: pc=%08lx proc=%p "
   3994 				    "process=%s\n", va, p, p->p_comm);
   3995 				printf("prefetch_abort: far=%08x fs=%x\n",
   3996 				    cpu_faultaddress(), cpu_faultstatus());
   3997 			}
   3998 #ifdef DDB
   3999 			if (kernel_debug & 2)
   4000 				Debugger();
   4001 #endif
   4002 			rv = 1;
   4003 		}
   4004 	}
   4005 #endif /* CPU_SA110 */
   4006 
   4007 	/*
   4008 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4009 	 * stale TLB entry for the faulting address.  That might be due to a
   4010 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4011 	 */
   4012 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
   4013 	    && pmap_needs_pte_sync == 0) {
   4014 		pmap_needs_pte_sync = 1;
   4015 		PTE_SYNC(ptep);
   4016 		rv = 1;
   4017 	}
   4018 
   4019 #ifdef DEBUG
   4020 	/*
   4021 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4022 	 * stale TLB entry for the faulting address. This happens when two or
   4023 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4024 	 * a context switch between such processes, we can take domain faults
   4025 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4026 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4027 	 * example.
   4028 	 *
   4029 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4030 	 * entry for a recently entered mapping. In this case, the TLB is
   4031 	 * flushed for the new mapping, but there may still be TLB entries for
   4032 	 * other mappings belonging to other processes in the 1MB range
   4033 	 * covered by the L1 entry.
   4034 	 *
   4035 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4036 	 * value, so the fault must be due to a stale TLB entry.
   4037 	 *
   4038 	 * Since we always need to flush the TLB anyway in the case where we
   4039 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4040 	 * stale TLB entries dynamically.
   4041 	 *
   4042 	 * However, the above condition can ONLY happen if the current L1 is
   4043 	 * being shared. If it happens when the L1 is unshared, it indicates
   4044 	 * that other parts of the pmap are not doing their job WRT managing
   4045 	 * the TLB.
   4046 	 */
   4047 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   4048 		extern int last_fault_code;
   4049 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4050 		    pm, va, ftype);
   4051 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   4052 		    l2, l2b, ptep, pl1pd);
   4053 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   4054 		    pte, l1pd, last_fault_code);
   4055 #ifdef DDB
   4056 		extern int kernel_debug;
   4057 
   4058 		if (kernel_debug & 2)
   4059 			Debugger();
   4060 #endif
   4061 	}
   4062 #endif
   4063 
   4064 	cpu_tlb_flushID_SE(va);
   4065 	cpu_cpwait();
   4066 
   4067 	rv = 1;
   4068 
   4069 out:
   4070 	pmap_release_pmap_lock(pm);
   4071 
   4072 	return (rv);
   4073 }
   4074 
   4075 /*
   4076  * Routine:	pmap_procwr
   4077  *
   4078  * Function:
   4079  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4080  *
   4081  */
   4082 void
   4083 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4084 {
   4085 	/* We only need to do anything if it is the current process. */
   4086 	if (p == curproc)
   4087 		cpu_icache_sync_range(va, len);
   4088 }
   4089 
   4090 /*
   4091  * Routine:	pmap_unwire
   4092  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4093  *
   4094  * In/out conditions:
   4095  *		The mapping must already exist in the pmap.
   4096  */
   4097 void
   4098 pmap_unwire(pmap_t pm, vaddr_t va)
   4099 {
   4100 	struct l2_bucket *l2b;
   4101 	pt_entry_t *ptep, pte;
   4102 	struct vm_page *pg;
   4103 	paddr_t pa;
   4104 
   4105 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4106 
   4107 	pmap_acquire_pmap_lock(pm);
   4108 
   4109 	l2b = pmap_get_l2_bucket(pm, va);
   4110 	KDASSERT(l2b != NULL);
   4111 
   4112 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4113 	pte = *ptep;
   4114 
   4115 	/* Extract the physical address of the page */
   4116 	pa = l2pte_pa(pte);
   4117 
   4118 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4119 		/* Update the wired bit in the pv entry for this page. */
   4120 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4121 
   4122 #ifdef MULTIPROCESSOR
   4123 		KASSERT(uvm_page_locked_p(pg));
   4124 #endif
   4125 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4126 	}
   4127 
   4128 	pmap_release_pmap_lock(pm);
   4129 }
   4130 
   4131 void
   4132 pmap_activate(struct lwp *l)
   4133 {
   4134 	extern int block_userspace_access;
   4135 	pmap_t opm, npm, rpm;
   4136 	uint32_t odacr, ndacr;
   4137 	int oldirqstate;
   4138 
   4139 	/*
   4140 	 * If activating a non-current lwp or the current lwp is
   4141 	 * already active, just return.
   4142 	 */
   4143 	if (l != curlwp ||
   4144 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4145 		return;
   4146 
   4147 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4148 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4149 	    (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4150 
   4151 	/*
   4152 	 * If TTB and DACR are unchanged, short-circuit all the
   4153 	 * TLB/cache management stuff.
   4154 	 */
   4155 	if (pmap_previous_active_lwp != NULL) {
   4156 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4157 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4158 		    (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4159 
   4160 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4161 			goto all_done;
   4162 	} else
   4163 		opm = NULL;
   4164 
   4165 	PMAPCOUNT(activations);
   4166 	block_userspace_access = 1;
   4167 
   4168 	/*
   4169 	 * If switching to a user vmspace which is different to the
   4170 	 * most recent one, and the most recent one is potentially
   4171 	 * live in the cache, we must write-back and invalidate the
   4172 	 * entire cache.
   4173 	 */
   4174 	rpm = pmap_recent_user;
   4175 
   4176 /*
   4177  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4178  * reported in kern/41058. They're probably left over during tear-down and
   4179  * switching away from an exiting process. Until the root cause is identified
   4180  * and fixed, zap the cache when switching pmaps. This will result in a few
   4181  * unnecessary cache flushes, but that's better than silently corrupting data.
   4182  */
   4183 #if 0
   4184 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4185 	    rpm->pm_cstate.cs_cache) {
   4186 		rpm->pm_cstate.cs_cache = 0;
   4187 #ifdef PMAP_CACHE_VIVT
   4188 		cpu_idcache_wbinv_all();
   4189 #endif
   4190 	}
   4191 #else
   4192 	if (rpm) {
   4193 		rpm->pm_cstate.cs_cache = 0;
   4194 		if (npm == pmap_kernel())
   4195 			pmap_recent_user = NULL;
   4196 #ifdef PMAP_CACHE_VIVT
   4197 		cpu_idcache_wbinv_all();
   4198 #endif
   4199 	}
   4200 #endif
   4201 
   4202 	/* No interrupts while we frob the TTB/DACR */
   4203 	oldirqstate = disable_interrupts(IF32_bits);
   4204 
   4205 #ifndef ARM_HAS_VBAR
   4206 	/*
   4207 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4208 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4209 	 * before switching to it otherwise subsequent interrupts/exceptions
   4210 	 * (including domain faults!) will jump into hyperspace.
   4211 	 */
   4212 	if (npm->pm_pl1vec != NULL) {
   4213 		cpu_tlb_flushID_SE((u_int)vector_page);
   4214 		cpu_cpwait();
   4215 		*npm->pm_pl1vec = npm->pm_l1vec;
   4216 		PTE_SYNC(npm->pm_pl1vec);
   4217 	}
   4218 #endif
   4219 
   4220 	cpu_domains(ndacr);
   4221 
   4222 	if (npm == pmap_kernel() || npm == rpm) {
   4223 		/*
   4224 		 * Switching to a kernel thread, or back to the
   4225 		 * same user vmspace as before... Simply update
   4226 		 * the TTB (no TLB flush required)
   4227 		 */
   4228 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4229 		cpu_cpwait();
   4230 	} else {
   4231 		/*
   4232 		 * Otherwise, update TTB and flush TLB
   4233 		 */
   4234 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4235 		if (rpm != NULL)
   4236 			rpm->pm_cstate.cs_tlb = 0;
   4237 	}
   4238 
   4239 	restore_interrupts(oldirqstate);
   4240 
   4241 	block_userspace_access = 0;
   4242 
   4243  all_done:
   4244 	/*
   4245 	 * The new pmap is resident. Make sure it's marked
   4246 	 * as resident in the cache/TLB.
   4247 	 */
   4248 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4249 	if (npm != pmap_kernel())
   4250 		pmap_recent_user = npm;
   4251 
   4252 	/* The old pmap is not longer active */
   4253 	if (opm != NULL)
   4254 		opm->pm_activated = false;
   4255 
   4256 	/* But the new one is */
   4257 	npm->pm_activated = true;
   4258 }
   4259 
   4260 void
   4261 pmap_deactivate(struct lwp *l)
   4262 {
   4263 
   4264 	/*
   4265 	 * If the process is exiting, make sure pmap_activate() does
   4266 	 * a full MMU context-switch and cache flush, which we might
   4267 	 * otherwise skip. See PR port-arm/38950.
   4268 	 */
   4269 	if (l->l_proc->p_sflag & PS_WEXIT)
   4270 		pmap_previous_active_lwp = NULL;
   4271 
   4272 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4273 }
   4274 
   4275 void
   4276 pmap_update(pmap_t pm)
   4277 {
   4278 
   4279 	if (pm->pm_remove_all) {
   4280 		/*
   4281 		 * Finish up the pmap_remove_all() optimisation by flushing
   4282 		 * the TLB.
   4283 		 */
   4284 		pmap_tlb_flushID(pm);
   4285 		pm->pm_remove_all = false;
   4286 	}
   4287 
   4288 	if (pmap_is_current(pm)) {
   4289 		/*
   4290 		 * If we're dealing with a current userland pmap, move its L1
   4291 		 * to the end of the LRU.
   4292 		 */
   4293 		if (pm != pmap_kernel())
   4294 			pmap_use_l1(pm);
   4295 
   4296 		/*
   4297 		 * We can assume we're done with frobbing the cache/tlb for
   4298 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4299 		 * flushes.
   4300 		 */
   4301 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4302 	}
   4303 
   4304 	PMAPCOUNT(updates);
   4305 
   4306 	/*
   4307 	 * make sure TLB/cache operations have completed.
   4308 	 */
   4309 	cpu_cpwait();
   4310 }
   4311 
   4312 void
   4313 pmap_remove_all(pmap_t pm)
   4314 {
   4315 
   4316 	/*
   4317 	 * The vmspace described by this pmap is about to be torn down.
   4318 	 * Until pmap_update() is called, UVM will only make calls
   4319 	 * to pmap_remove(). We can make life much simpler by flushing
   4320 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4321 	 */
   4322 #ifdef PMAP_CACHE_VIVT
   4323 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   4324 #endif
   4325 	pm->pm_remove_all = true;
   4326 }
   4327 
   4328 /*
   4329  * Retire the given physical map from service.
   4330  * Should only be called if the map contains no valid mappings.
   4331  */
   4332 void
   4333 pmap_destroy(pmap_t pm)
   4334 {
   4335 	u_int count;
   4336 
   4337 	if (pm == NULL)
   4338 		return;
   4339 
   4340 	if (pm->pm_remove_all) {
   4341 		pmap_tlb_flushID(pm);
   4342 		pm->pm_remove_all = false;
   4343 	}
   4344 
   4345 	/*
   4346 	 * Drop reference count
   4347 	 */
   4348 	mutex_enter(pm->pm_lock);
   4349 	count = --pm->pm_obj.uo_refs;
   4350 	mutex_exit(pm->pm_lock);
   4351 	if (count > 0) {
   4352 		if (pmap_is_current(pm)) {
   4353 			if (pm != pmap_kernel())
   4354 				pmap_use_l1(pm);
   4355 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4356 		}
   4357 		return;
   4358 	}
   4359 
   4360 	/*
   4361 	 * reference count is zero, free pmap resources and then free pmap.
   4362 	 */
   4363 
   4364 #ifndef ARM_HAS_VBAR
   4365 	if (vector_page < KERNEL_BASE) {
   4366 		KDASSERT(!pmap_is_current(pm));
   4367 
   4368 		/* Remove the vector page mapping */
   4369 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4370 		pmap_update(pm);
   4371 	}
   4372 #endif
   4373 
   4374 	LIST_REMOVE(pm, pm_list);
   4375 
   4376 	pmap_free_l1(pm);
   4377 
   4378 	if (pmap_recent_user == pm)
   4379 		pmap_recent_user = NULL;
   4380 
   4381 	uvm_obj_destroy(&pm->pm_obj, false);
   4382 	mutex_destroy(&pm->pm_obj_lock);
   4383 	pool_cache_put(&pmap_cache, pm);
   4384 }
   4385 
   4386 
   4387 /*
   4388  * void pmap_reference(pmap_t pm)
   4389  *
   4390  * Add a reference to the specified pmap.
   4391  */
   4392 void
   4393 pmap_reference(pmap_t pm)
   4394 {
   4395 
   4396 	if (pm == NULL)
   4397 		return;
   4398 
   4399 	pmap_use_l1(pm);
   4400 
   4401 	mutex_enter(pm->pm_lock);
   4402 	pm->pm_obj.uo_refs++;
   4403 	mutex_exit(pm->pm_lock);
   4404 }
   4405 
   4406 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   4407 
   4408 static struct evcnt pmap_prefer_nochange_ev =
   4409     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4410 static struct evcnt pmap_prefer_change_ev =
   4411     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4412 
   4413 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4414 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4415 
   4416 void
   4417 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4418 {
   4419 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4420 	vaddr_t va = *vap;
   4421 	vaddr_t diff = (hint - va) & mask;
   4422 	if (diff == 0) {
   4423 		pmap_prefer_nochange_ev.ev_count++;
   4424 	} else {
   4425 		pmap_prefer_change_ev.ev_count++;
   4426 		if (__predict_false(td))
   4427 			va -= mask + 1;
   4428 		*vap = va + diff;
   4429 	}
   4430 }
   4431 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   4432 
   4433 /*
   4434  * pmap_zero_page()
   4435  *
   4436  * Zero a given physical page by mapping it at a page hook point.
   4437  * In doing the zero page op, the page we zero is mapped cachable, as with
   4438  * StrongARM accesses to non-cached pages are non-burst making writing
   4439  * _any_ bulk data very slow.
   4440  */
   4441 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4442 void
   4443 pmap_zero_page_generic(paddr_t phys)
   4444 {
   4445 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4446 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4447 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4448 #endif
   4449 #if defined(PMAP_CACHE_VIPT)
   4450 	/* Choose the last page color it had, if any */
   4451 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4452 #else
   4453 	const vsize_t va_offset = 0;
   4454 #endif
   4455 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   4456 	/*
   4457 	 * Is this page mapped at its natural color?
   4458 	 * If we have all of memory mapped, then just convert PA to VA.
   4459 	 */
   4460 	const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
   4461 	const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
   4462 #else
   4463 	const bool okcolor = false;
   4464 	const vaddr_t vdstp = cdstp + va_offset;
   4465 #endif
   4466 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4467 
   4468 
   4469 #ifdef DEBUG
   4470 	if (!SLIST_EMPTY(&md->pvh_list))
   4471 		panic("pmap_zero_page: page has mappings");
   4472 #endif
   4473 
   4474 	KDASSERT((phys & PGOFSET) == 0);
   4475 
   4476 	if (!okcolor) {
   4477 		/*
   4478 		 * Hook in the page, zero it, and purge the cache for that
   4479 		 * zeroed page. Invalidate the TLB as needed.
   4480 		 */
   4481 		*ptep = L2_S_PROTO | phys |
   4482 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4483 		PTE_SYNC(ptep);
   4484 		cpu_tlb_flushD_SE(cdstp + va_offset);
   4485 		cpu_cpwait();
   4486 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   4487 		/*
   4488 		 * If we are direct-mapped and our color isn't ok, then before
   4489 		 * we bzero the page invalidate its contents from the cache and
   4490 		 * reset the color to its natural color.
   4491 		 */
   4492 		cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
   4493 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   4494 		md->pvh_attrs |= (phys & arm_cache_prefer_mask);
   4495 #endif
   4496 	}
   4497 	bzero_page(vdstp);
   4498 	if (!okcolor) {
   4499 		/*
   4500 		 * Unmap the page.
   4501 		 */
   4502 		*ptep = 0;
   4503 		PTE_SYNC(ptep);
   4504 		cpu_tlb_flushD_SE(cdstp + va_offset);
   4505 #ifdef PMAP_CACHE_VIVT
   4506 		cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4507 #endif
   4508 	}
   4509 #ifdef PMAP_CACHE_VIPT
   4510 	/*
   4511 	 * This page is now cache resident so it now has a page color.
   4512 	 * Any contents have been obliterated so clear the EXEC flag.
   4513 	 */
   4514 	if (!pmap_is_page_colored_p(md)) {
   4515 		PMAPCOUNT(vac_color_new);
   4516 		md->pvh_attrs |= PVF_COLORED;
   4517 	}
   4518 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4519 		md->pvh_attrs &= ~PVF_EXEC;
   4520 		PMAPCOUNT(exec_discarded_zero);
   4521 	}
   4522 	md->pvh_attrs |= PVF_DIRTY;
   4523 #endif
   4524 }
   4525 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4526 
   4527 #if ARM_MMU_XSCALE == 1
   4528 void
   4529 pmap_zero_page_xscale(paddr_t phys)
   4530 {
   4531 #ifdef DEBUG
   4532 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4533 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4534 
   4535 	if (!SLIST_EMPTY(&md->pvh_list))
   4536 		panic("pmap_zero_page: page has mappings");
   4537 #endif
   4538 
   4539 	KDASSERT((phys & PGOFSET) == 0);
   4540 
   4541 	/*
   4542 	 * Hook in the page, zero it, and purge the cache for that
   4543 	 * zeroed page. Invalidate the TLB as needed.
   4544 	 */
   4545 	*cdst_pte = L2_S_PROTO | phys |
   4546 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4547 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4548 	PTE_SYNC(cdst_pte);
   4549 	cpu_tlb_flushD_SE(cdstp);
   4550 	cpu_cpwait();
   4551 	bzero_page(cdstp);
   4552 	xscale_cache_clean_minidata();
   4553 }
   4554 #endif /* ARM_MMU_XSCALE == 1 */
   4555 
   4556 /* pmap_pageidlezero()
   4557  *
   4558  * The same as above, except that we assume that the page is not
   4559  * mapped.  This means we never have to flush the cache first.  Called
   4560  * from the idle loop.
   4561  */
   4562 bool
   4563 pmap_pageidlezero(paddr_t phys)
   4564 {
   4565 	unsigned int i;
   4566 	int *ptr;
   4567 	bool rv = true;
   4568 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4569 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4570 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4571 #endif
   4572 #ifdef PMAP_CACHE_VIPT
   4573 	/* Choose the last page color it had, if any */
   4574 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4575 #else
   4576 	const vsize_t va_offset = 0;
   4577 #endif
   4578 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4579 
   4580 
   4581 #ifdef DEBUG
   4582 	if (!SLIST_EMPTY(&md->pvh_list))
   4583 		panic("pmap_pageidlezero: page has mappings");
   4584 #endif
   4585 
   4586 	KDASSERT((phys & PGOFSET) == 0);
   4587 
   4588 	/*
   4589 	 * Hook in the page, zero it, and purge the cache for that
   4590 	 * zeroed page. Invalidate the TLB as needed.
   4591 	 */
   4592 	*ptep = L2_S_PROTO | phys |
   4593 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4594 	PTE_SYNC(ptep);
   4595 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4596 	cpu_cpwait();
   4597 
   4598 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4599 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4600 		if (sched_curcpu_runnable_p() != 0) {
   4601 			/*
   4602 			 * A process has become ready.  Abort now,
   4603 			 * so we don't keep it waiting while we
   4604 			 * do slow memory access to finish this
   4605 			 * page.
   4606 			 */
   4607 			rv = false;
   4608 			break;
   4609 		}
   4610 		*ptr++ = 0;
   4611 	}
   4612 
   4613 #ifdef PMAP_CACHE_VIVT
   4614 	if (rv)
   4615 		/*
   4616 		 * if we aborted we'll rezero this page again later so don't
   4617 		 * purge it unless we finished it
   4618 		 */
   4619 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4620 #elif defined(PMAP_CACHE_VIPT)
   4621 	/*
   4622 	 * This page is now cache resident so it now has a page color.
   4623 	 * Any contents have been obliterated so clear the EXEC flag.
   4624 	 */
   4625 	if (!pmap_is_page_colored_p(md)) {
   4626 		PMAPCOUNT(vac_color_new);
   4627 		md->pvh_attrs |= PVF_COLORED;
   4628 	}
   4629 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4630 		md->pvh_attrs &= ~PVF_EXEC;
   4631 		PMAPCOUNT(exec_discarded_zero);
   4632 	}
   4633 #endif
   4634 	/*
   4635 	 * Unmap the page.
   4636 	 */
   4637 	*ptep = 0;
   4638 	PTE_SYNC(ptep);
   4639 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4640 
   4641 	return (rv);
   4642 }
   4643 
   4644 /*
   4645  * pmap_copy_page()
   4646  *
   4647  * Copy one physical page into another, by mapping the pages into
   4648  * hook points. The same comment regarding cachability as in
   4649  * pmap_zero_page also applies here.
   4650  */
   4651 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4652 void
   4653 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4654 {
   4655 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4656 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4657 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4658 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4659 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   4660 #endif
   4661 #ifdef PMAP_CACHE_VIPT
   4662 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   4663 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   4664 #else
   4665 	const vsize_t src_va_offset = 0;
   4666 	const vsize_t dst_va_offset = 0;
   4667 #endif
   4668 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   4669 	/*
   4670 	 * Is this page mapped at its natural color?
   4671 	 * If we have all of memory mapped, then just convert PA to VA.
   4672 	 */
   4673 	const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
   4674 	const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
   4675 	const vaddr_t vsrcp = src_okcolor
   4676 	    ? KERNEL_BASE + (src - physical_start)
   4677 	    : csrcp + src_va_offset;
   4678 	const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
   4679 #else
   4680 	const bool src_okcolor = false;
   4681 	const bool dst_okcolor = false;
   4682 	const vaddr_t vsrcp = csrcp + src_va_offset;
   4683 	const vaddr_t vdstp = cdstp + dst_va_offset;
   4684 #endif
   4685 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4686 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4687 
   4688 #ifdef DEBUG
   4689 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4690 		panic("pmap_copy_page: dst page has mappings");
   4691 #endif
   4692 
   4693 #ifdef PMAP_CACHE_VIPT
   4694 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   4695 #endif
   4696 	KDASSERT((src & PGOFSET) == 0);
   4697 	KDASSERT((dst & PGOFSET) == 0);
   4698 
   4699 	/*
   4700 	 * Clean the source page.  Hold the source page's lock for
   4701 	 * the duration of the copy so that no other mappings can
   4702 	 * be created while we have a potentially aliased mapping.
   4703 	 */
   4704 #ifdef MULTIPROCESSOR
   4705 	KASSERT(uvm_page_locked_p(src_pg));
   4706 #endif
   4707 #ifdef PMAP_CACHE_VIVT
   4708 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4709 #endif
   4710 
   4711 	/*
   4712 	 * Map the pages into the page hook points, copy them, and purge
   4713 	 * the cache for the appropriate page. Invalidate the TLB
   4714 	 * as required.
   4715 	 */
   4716 	if (!src_okcolor) {
   4717 		*src_ptep = L2_S_PROTO
   4718 		    | src
   4719 #ifdef PMAP_CACHE_VIPT
   4720 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4721 #endif
   4722 #ifdef PMAP_CACHE_VIVT
   4723 		    | pte_l2_s_cache_mode
   4724 #endif
   4725 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4726 		PTE_SYNC(src_ptep);
   4727 		cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4728 		cpu_cpwait();
   4729 	}
   4730 	if (!dst_okcolor) {
   4731 		*dst_ptep = L2_S_PROTO | dst |
   4732 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4733 		PTE_SYNC(dst_ptep);
   4734 		cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4735 		cpu_cpwait();
   4736 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   4737 		/*
   4738 		 * If we are direct-mapped and our color isn't ok, then before
   4739 		 * we bcopy to the new page invalidate its contents from the
   4740 		 * cache and reset its color to its natural color.
   4741 		 */
   4742 		cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4743 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   4744 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   4745 #endif
   4746 	}
   4747 	bcopy_page(vsrcp, vdstp);
   4748 #ifdef PMAP_CACHE_VIVT
   4749 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   4750 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   4751 #endif
   4752 	/*
   4753 	 * Unmap the pages.
   4754 	 */
   4755 	if (!src_okcolor) {
   4756 		*src_ptep = 0;
   4757 		PTE_SYNC(src_ptep);
   4758 		cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4759 		cpu_cpwait();
   4760 	}
   4761 	if (!dst_okcolor) {
   4762 		*dst_ptep = 0;
   4763 		PTE_SYNC(dst_ptep);
   4764 		cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4765 		cpu_cpwait();
   4766 	}
   4767 #ifdef PMAP_CACHE_VIPT
   4768 	/*
   4769 	 * Now that the destination page is in the cache, mark it as colored.
   4770 	 * If this was an exec page, discard it.
   4771 	 */
   4772 	if (!pmap_is_page_colored_p(dst_md)) {
   4773 		PMAPCOUNT(vac_color_new);
   4774 		dst_md->pvh_attrs |= PVF_COLORED;
   4775 	}
   4776 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   4777 		dst_md->pvh_attrs &= ~PVF_EXEC;
   4778 		PMAPCOUNT(exec_discarded_copy);
   4779 	}
   4780 	dst_md->pvh_attrs |= PVF_DIRTY;
   4781 #endif
   4782 }
   4783 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4784 
   4785 #if ARM_MMU_XSCALE == 1
   4786 void
   4787 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4788 {
   4789 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4790 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4791 #ifdef DEBUG
   4792 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   4793 
   4794 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4795 		panic("pmap_copy_page: dst page has mappings");
   4796 #endif
   4797 
   4798 	KDASSERT((src & PGOFSET) == 0);
   4799 	KDASSERT((dst & PGOFSET) == 0);
   4800 
   4801 	/*
   4802 	 * Clean the source page.  Hold the source page's lock for
   4803 	 * the duration of the copy so that no other mappings can
   4804 	 * be created while we have a potentially aliased mapping.
   4805 	 */
   4806 #ifdef MULTIPROCESSOR
   4807 	KASSERT(uvm_page_locked_p(src_pg));
   4808 #endif
   4809 #ifdef PMAP_CACHE_VIVT
   4810 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4811 #endif
   4812 
   4813 	/*
   4814 	 * Map the pages into the page hook points, copy them, and purge
   4815 	 * the cache for the appropriate page. Invalidate the TLB
   4816 	 * as required.
   4817 	 */
   4818 	*csrc_pte = L2_S_PROTO | src |
   4819 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4820 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4821 	PTE_SYNC(csrc_pte);
   4822 	*cdst_pte = L2_S_PROTO | dst |
   4823 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4824 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4825 	PTE_SYNC(cdst_pte);
   4826 	cpu_tlb_flushD_SE(csrcp);
   4827 	cpu_tlb_flushD_SE(cdstp);
   4828 	cpu_cpwait();
   4829 	bcopy_page(csrcp, cdstp);
   4830 	xscale_cache_clean_minidata();
   4831 }
   4832 #endif /* ARM_MMU_XSCALE == 1 */
   4833 
   4834 /*
   4835  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4836  *
   4837  * Return the start and end addresses of the kernel's virtual space.
   4838  * These values are setup in pmap_bootstrap and are updated as pages
   4839  * are allocated.
   4840  */
   4841 void
   4842 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4843 {
   4844 	*start = virtual_avail;
   4845 	*end = virtual_end;
   4846 }
   4847 
   4848 /*
   4849  * Helper function for pmap_grow_l2_bucket()
   4850  */
   4851 static inline int
   4852 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4853 {
   4854 	struct l2_bucket *l2b;
   4855 	pt_entry_t *ptep;
   4856 	paddr_t pa;
   4857 
   4858 	if (uvm.page_init_done == false) {
   4859 #ifdef PMAP_STEAL_MEMORY
   4860 		pv_addr_t pv;
   4861 		pmap_boot_pagealloc(PAGE_SIZE,
   4862 #ifdef PMAP_CACHE_VIPT
   4863 		    arm_cache_prefer_mask,
   4864 		    va & arm_cache_prefer_mask,
   4865 #else
   4866 		    0, 0,
   4867 #endif
   4868 		    &pv);
   4869 		pa = pv.pv_pa;
   4870 #else
   4871 		if (uvm_page_physget(&pa) == false)
   4872 			return (1);
   4873 #endif	/* PMAP_STEAL_MEMORY */
   4874 	} else {
   4875 		struct vm_page *pg;
   4876 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4877 		if (pg == NULL)
   4878 			return (1);
   4879 		pa = VM_PAGE_TO_PHYS(pg);
   4880 #ifdef PMAP_CACHE_VIPT
   4881 #ifdef DIAGNOSTIC
   4882 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4883 #endif
   4884 		/*
   4885 		 * This new page must not have any mappings.  Enter it via
   4886 		 * pmap_kenter_pa and let that routine do the hard work.
   4887 		 */
   4888 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   4889 		pmap_kenter_pa(va, pa,
   4890 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   4891 #endif
   4892 	}
   4893 
   4894 	if (pap)
   4895 		*pap = pa;
   4896 
   4897 	PMAPCOUNT(pt_mappings);
   4898 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4899 	KDASSERT(l2b != NULL);
   4900 
   4901 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4902 	*ptep = L2_S_PROTO | pa | cache_mode |
   4903 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4904 	PTE_SYNC(ptep);
   4905 	memset((void *)va, 0, PAGE_SIZE);
   4906 	return (0);
   4907 }
   4908 
   4909 /*
   4910  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4911  * used by pmap_growkernel().
   4912  */
   4913 static inline struct l2_bucket *
   4914 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4915 {
   4916 	struct l2_dtable *l2;
   4917 	struct l2_bucket *l2b;
   4918 	u_short l1idx;
   4919 	vaddr_t nva;
   4920 
   4921 	l1idx = L1_IDX(va);
   4922 
   4923 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4924 		/*
   4925 		 * No mapping at this address, as there is
   4926 		 * no entry in the L1 table.
   4927 		 * Need to allocate a new l2_dtable.
   4928 		 */
   4929 		nva = pmap_kernel_l2dtable_kva;
   4930 		if ((nva & PGOFSET) == 0) {
   4931 			/*
   4932 			 * Need to allocate a backing page
   4933 			 */
   4934 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4935 				return (NULL);
   4936 		}
   4937 
   4938 		l2 = (struct l2_dtable *)nva;
   4939 		nva += sizeof(struct l2_dtable);
   4940 
   4941 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4942 			/*
   4943 			 * The new l2_dtable straddles a page boundary.
   4944 			 * Map in another page to cover it.
   4945 			 */
   4946 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4947 				return (NULL);
   4948 		}
   4949 
   4950 		pmap_kernel_l2dtable_kva = nva;
   4951 
   4952 		/*
   4953 		 * Link it into the parent pmap
   4954 		 */
   4955 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4956 	}
   4957 
   4958 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4959 
   4960 	/*
   4961 	 * Fetch pointer to the L2 page table associated with the address.
   4962 	 */
   4963 	if (l2b->l2b_kva == NULL) {
   4964 		pt_entry_t *ptep;
   4965 
   4966 		/*
   4967 		 * No L2 page table has been allocated. Chances are, this
   4968 		 * is because we just allocated the l2_dtable, above.
   4969 		 */
   4970 		nva = pmap_kernel_l2ptp_kva;
   4971 		ptep = (pt_entry_t *)nva;
   4972 		if ((nva & PGOFSET) == 0) {
   4973 			/*
   4974 			 * Need to allocate a backing page
   4975 			 */
   4976 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4977 			    &pmap_kernel_l2ptp_phys))
   4978 				return (NULL);
   4979 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4980 		}
   4981 
   4982 		l2->l2_occupancy++;
   4983 		l2b->l2b_kva = ptep;
   4984 		l2b->l2b_l1idx = l1idx;
   4985 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4986 
   4987 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4988 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4989 	}
   4990 
   4991 	return (l2b);
   4992 }
   4993 
   4994 vaddr_t
   4995 pmap_growkernel(vaddr_t maxkvaddr)
   4996 {
   4997 	pmap_t kpm = pmap_kernel();
   4998 	struct l1_ttable *l1;
   4999 	struct l2_bucket *l2b;
   5000 	pd_entry_t *pl1pd;
   5001 	int s;
   5002 
   5003 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5004 		goto out;		/* we are OK */
   5005 
   5006 	NPDEBUG(PDB_GROWKERN,
   5007 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5008 	    pmap_curmaxkvaddr, maxkvaddr));
   5009 
   5010 	KDASSERT(maxkvaddr <= virtual_end);
   5011 
   5012 	/*
   5013 	 * whoops!   we need to add kernel PTPs
   5014 	 */
   5015 
   5016 	s = splhigh();	/* to be safe */
   5017 	mutex_enter(kpm->pm_lock);
   5018 
   5019 	/* Map 1MB at a time */
   5020 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   5021 
   5022 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5023 		KDASSERT(l2b != NULL);
   5024 
   5025 		/* Distribute new L1 entry to all other L1s */
   5026 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5027 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   5028 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   5029 			    L1_C_PROTO;
   5030 			PTE_SYNC(pl1pd);
   5031 		}
   5032 	}
   5033 
   5034 	/*
   5035 	 * flush out the cache, expensive but growkernel will happen so
   5036 	 * rarely
   5037 	 */
   5038 	cpu_dcache_wbinv_all();
   5039 	cpu_tlb_flushD();
   5040 	cpu_cpwait();
   5041 
   5042 	mutex_exit(kpm->pm_lock);
   5043 	splx(s);
   5044 
   5045 out:
   5046 	return (pmap_curmaxkvaddr);
   5047 }
   5048 
   5049 /************************ Utility routines ****************************/
   5050 
   5051 #ifndef ARM_HAS_VBAR
   5052 /*
   5053  * vector_page_setprot:
   5054  *
   5055  *	Manipulate the protection of the vector page.
   5056  */
   5057 void
   5058 vector_page_setprot(int prot)
   5059 {
   5060 	struct l2_bucket *l2b;
   5061 	pt_entry_t *ptep;
   5062 
   5063 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5064 	/*
   5065 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5066 	 * already mapped in the kernel text so no need to anything here.
   5067 	 */
   5068 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5069 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5070 		return;
   5071 	}
   5072 #endif
   5073 
   5074 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5075 	KDASSERT(l2b != NULL);
   5076 
   5077 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5078 
   5079 	*ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   5080 	PTE_SYNC(ptep);
   5081 	cpu_tlb_flushD_SE(vector_page);
   5082 	cpu_cpwait();
   5083 }
   5084 #endif
   5085 
   5086 /*
   5087  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5088  * Returns true if the mapping exists, else false.
   5089  *
   5090  * NOTE: This function is only used by a couple of arm-specific modules.
   5091  * It is not safe to take any pmap locks here, since we could be right
   5092  * in the middle of debugging the pmap anyway...
   5093  *
   5094  * It is possible for this routine to return false even though a valid
   5095  * mapping does exist. This is because we don't lock, so the metadata
   5096  * state may be inconsistent.
   5097  *
   5098  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5099  * a "section" mapping.
   5100  */
   5101 bool
   5102 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5103 {
   5104 	struct l2_dtable *l2;
   5105 	pd_entry_t *pl1pd, l1pd;
   5106 	pt_entry_t *ptep;
   5107 	u_short l1idx;
   5108 
   5109 	if (pm->pm_l1 == NULL)
   5110 		return false;
   5111 
   5112 	l1idx = L1_IDX(va);
   5113 	*pdp = pl1pd = pmap_l1_kva(pm) + l1idx;
   5114 	l1pd = *pl1pd;
   5115 
   5116 	if (l1pte_section_p(l1pd)) {
   5117 		*ptp = NULL;
   5118 		return true;
   5119 	}
   5120 
   5121 	if (pm->pm_l2 == NULL)
   5122 		return false;
   5123 
   5124 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   5125 
   5126 	if (l2 == NULL ||
   5127 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   5128 		return false;
   5129 	}
   5130 
   5131 	*ptp = &ptep[l2pte_index(va)];
   5132 	return true;
   5133 }
   5134 
   5135 bool
   5136 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5137 {
   5138 
   5139 	if (pm->pm_l1 == NULL)
   5140 		return false;
   5141 
   5142 	*pdp = pmap_l1_kva(pm) + L1_IDX(va);
   5143 
   5144 	return true;
   5145 }
   5146 
   5147 /************************ Bootstrapping routines ****************************/
   5148 
   5149 static void
   5150 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5151 {
   5152 	int i;
   5153 
   5154 	l1->l1_kva = l1pt;
   5155 	l1->l1_domain_use_count = 0;
   5156 	l1->l1_domain_first = 0;
   5157 
   5158 	for (i = 0; i < PMAP_DOMAINS; i++)
   5159 		l1->l1_domain_free[i] = i + 1;
   5160 
   5161 	/*
   5162 	 * Copy the kernel's L1 entries to each new L1.
   5163 	 */
   5164 	if (pmap_initialized)
   5165 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   5166 
   5167 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5168 	    &l1->l1_physaddr) == false)
   5169 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5170 
   5171 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5172 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5173 }
   5174 
   5175 /*
   5176  * pmap_bootstrap() is called from the board-specific initarm() routine
   5177  * once the kernel L1/L2 descriptors tables have been set up.
   5178  *
   5179  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5180  * spread over a number of disparate files/functions.
   5181  *
   5182  * We are passed the following parameters
   5183  *  - kernel_l1pt
   5184  *    This is a pointer to the base of the kernel's L1 translation table.
   5185  *  - vstart
   5186  *    1MB-aligned start of managed kernel virtual memory.
   5187  *  - vend
   5188  *    1MB-aligned end of managed kernel virtual memory.
   5189  *
   5190  * We use the first parameter to build the metadata (struct l1_ttable and
   5191  * struct l2_dtable) necessary to track kernel mappings.
   5192  */
   5193 #define	PMAP_STATIC_L2_SIZE 16
   5194 void
   5195 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5196 {
   5197 	static struct l1_ttable static_l1;
   5198 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5199 	struct l1_ttable *l1 = &static_l1;
   5200 	struct l2_dtable *l2;
   5201 	struct l2_bucket *l2b;
   5202 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5203 	pmap_t pm = pmap_kernel();
   5204 	pd_entry_t pde;
   5205 	pt_entry_t *ptep;
   5206 	paddr_t pa;
   5207 	vaddr_t va;
   5208 	vsize_t size;
   5209 	int nptes, l1idx, l2idx, l2next = 0;
   5210 
   5211 	/*
   5212 	 * Initialise the kernel pmap object
   5213 	 */
   5214 	pm->pm_l1 = l1;
   5215 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5216 	pm->pm_activated = true;
   5217 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5218 
   5219 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   5220 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   5221 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   5222 
   5223 	/*
   5224 	 * Scan the L1 translation table created by initarm() and create
   5225 	 * the required metadata for all valid mappings found in it.
   5226 	 */
   5227 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5228 		pde = l1pt[l1idx];
   5229 
   5230 		/*
   5231 		 * We're only interested in Coarse mappings.
   5232 		 * pmap_extract() can deal with section mappings without
   5233 		 * recourse to checking L2 metadata.
   5234 		 */
   5235 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5236 			continue;
   5237 
   5238 		/*
   5239 		 * Lookup the KVA of this L2 descriptor table
   5240 		 */
   5241 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5242 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5243 		if (ptep == NULL) {
   5244 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5245 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5246 		}
   5247 
   5248 		/*
   5249 		 * Fetch the associated L2 metadata structure.
   5250 		 * Allocate a new one if necessary.
   5251 		 */
   5252 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5253 			if (l2next == PMAP_STATIC_L2_SIZE)
   5254 				panic("pmap_bootstrap: out of static L2s");
   5255 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5256 		}
   5257 
   5258 		/*
   5259 		 * One more L1 slot tracked...
   5260 		 */
   5261 		l2->l2_occupancy++;
   5262 
   5263 		/*
   5264 		 * Fill in the details of the L2 descriptor in the
   5265 		 * appropriate bucket.
   5266 		 */
   5267 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5268 		l2b->l2b_kva = ptep;
   5269 		l2b->l2b_phys = pa;
   5270 		l2b->l2b_l1idx = l1idx;
   5271 
   5272 		/*
   5273 		 * Establish an initial occupancy count for this descriptor
   5274 		 */
   5275 		for (l2idx = 0;
   5276 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5277 		    l2idx++) {
   5278 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5279 				l2b->l2b_occupancy++;
   5280 			}
   5281 		}
   5282 
   5283 		/*
   5284 		 * Make sure the descriptor itself has the correct cache mode.
   5285 		 * If not, fix it, but whine about the problem. Port-meisters
   5286 		 * should consider this a clue to fix up their initarm()
   5287 		 * function. :)
   5288 		 */
   5289 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5290 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5291 			    "L2 pte @ %p\n", ptep);
   5292 		}
   5293 	}
   5294 
   5295 	/*
   5296 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5297 	 * a page table. Bitch if it is not correctly set.
   5298 	 */
   5299 	for (va = (vaddr_t)l1pt;
   5300 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5301 		if (pmap_set_pt_cache_mode(l1pt, va))
   5302 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5303 			    "primary L1 @ 0x%lx\n", va);
   5304 	}
   5305 
   5306 	cpu_dcache_wbinv_all();
   5307 	cpu_tlb_flushID();
   5308 	cpu_cpwait();
   5309 
   5310 	/*
   5311 	 * now we allocate the "special" VAs which are used for tmp mappings
   5312 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5313 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5314 	 *
   5315 	 * Managed KVM space start from wherever initarm() tells us.
   5316 	 */
   5317 	virtual_avail = vstart;
   5318 	virtual_end = vend;
   5319 
   5320 #ifdef PMAP_CACHE_VIPT
   5321 	/*
   5322 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5323 	 * page so we won't violate cache aliasing rules.
   5324 	 */
   5325 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5326 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5327 #else
   5328 	nptes = 1;
   5329 #endif
   5330 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5331 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5332 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5333 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5334 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5335 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5336 	    (void *)&msgbufaddr, NULL);
   5337 
   5338 	/*
   5339 	 * Allocate a range of kernel virtual address space to be used
   5340 	 * for L2 descriptor tables and metadata allocation in
   5341 	 * pmap_growkernel().
   5342 	 */
   5343 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5344 	pmap_alloc_specials(&virtual_avail,
   5345 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5346 	    &pmap_kernel_l2ptp_kva, NULL);
   5347 
   5348 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5349 	pmap_alloc_specials(&virtual_avail,
   5350 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5351 	    &pmap_kernel_l2dtable_kva, NULL);
   5352 
   5353 	/*
   5354 	 * init the static-global locks and global pmap list.
   5355 	 */
   5356 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   5357 
   5358 	/*
   5359 	 * We can now initialise the first L1's metadata.
   5360 	 */
   5361 	SLIST_INIT(&l1_list);
   5362 	TAILQ_INIT(&l1_lru_list);
   5363 	pmap_init_l1(l1, l1pt);
   5364 
   5365 #ifndef ARM_HAS_VBAR
   5366 	/* Set up vector page L1 details, if necessary */
   5367 	if (vector_page < KERNEL_BASE) {
   5368 		pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
   5369 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5370 		KDASSERT(l2b != NULL);
   5371 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5372 		    L1_C_DOM(pmap_domain(pm));
   5373 	} else
   5374 		pm->pm_pl1vec = NULL;
   5375 #endif
   5376 
   5377 	/*
   5378 	 * Initialize the pmap cache
   5379 	 */
   5380 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5381 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5382 	LIST_INIT(&pmap_pmaps);
   5383 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5384 
   5385 	/*
   5386 	 * Initialize the pv pool.
   5387 	 */
   5388 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5389 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5390 
   5391 	/*
   5392 	 * Initialize the L2 dtable pool and cache.
   5393 	 */
   5394 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5395 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5396 
   5397 	/*
   5398 	 * Initialise the L2 descriptor table pool and cache
   5399 	 */
   5400 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5401 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5402 	    pmap_l2ptp_ctor, NULL, NULL);
   5403 
   5404 	cpu_dcache_wbinv_all();
   5405 }
   5406 
   5407 static int
   5408 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5409 {
   5410 	pd_entry_t *pdep, pde;
   5411 	pt_entry_t *ptep, pte;
   5412 	vaddr_t pa;
   5413 	int rv = 0;
   5414 
   5415 	/*
   5416 	 * Make sure the descriptor itself has the correct cache mode
   5417 	 */
   5418 	pdep = &kl1[L1_IDX(va)];
   5419 	pde = *pdep;
   5420 
   5421 	if (l1pte_section_p(pde)) {
   5422 		__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   5423 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5424 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5425 			    pte_l1_s_cache_mode_pt;
   5426 			PTE_SYNC(pdep);
   5427 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5428 			rv = 1;
   5429 		}
   5430 	} else {
   5431 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5432 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5433 		if (ptep == NULL)
   5434 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5435 
   5436 		ptep = &ptep[l2pte_index(va)];
   5437 		pte = *ptep;
   5438 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5439 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5440 			    pte_l2_s_cache_mode_pt;
   5441 			PTE_SYNC(ptep);
   5442 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5443 			rv = 1;
   5444 		}
   5445 	}
   5446 
   5447 	return (rv);
   5448 }
   5449 
   5450 static void
   5451 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5452 {
   5453 	vaddr_t va = *availp;
   5454 	struct l2_bucket *l2b;
   5455 
   5456 	if (ptep) {
   5457 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5458 		if (l2b == NULL)
   5459 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5460 
   5461 		if (ptep)
   5462 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5463 	}
   5464 
   5465 	*vap = va;
   5466 	*availp = va + (PAGE_SIZE * pages);
   5467 }
   5468 
   5469 void
   5470 pmap_init(void)
   5471 {
   5472 
   5473 	/*
   5474 	 * Set the available memory vars - These do not map to real memory
   5475 	 * addresses and cannot as the physical memory is fragmented.
   5476 	 * They are used by ps for %mem calculations.
   5477 	 * One could argue whether this should be the entire memory or just
   5478 	 * the memory that is useable in a user process.
   5479 	 */
   5480 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   5481 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   5482 
   5483 	/*
   5484 	 * Now we need to free enough pv_entry structures to allow us to get
   5485 	 * the kmem_map/kmem_object allocated and inited (done after this
   5486 	 * function is finished).  to do this we allocate one bootstrap page out
   5487 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5488 	 * structures.   we never free this page.
   5489 	 */
   5490 	pool_setlowat(&pmap_pv_pool,
   5491 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5492 
   5493 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5494 	zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5495 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   5496 
   5497 	pmap_initialized = true;
   5498 }
   5499 
   5500 static vaddr_t last_bootstrap_page = 0;
   5501 static void *free_bootstrap_pages = NULL;
   5502 
   5503 static void *
   5504 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5505 {
   5506 	extern void *pool_page_alloc(struct pool *, int);
   5507 	vaddr_t new_page;
   5508 	void *rv;
   5509 
   5510 	if (pmap_initialized)
   5511 		return (pool_page_alloc(pp, flags));
   5512 
   5513 	if (free_bootstrap_pages) {
   5514 		rv = free_bootstrap_pages;
   5515 		free_bootstrap_pages = *((void **)rv);
   5516 		return (rv);
   5517 	}
   5518 
   5519 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5520 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5521 
   5522 	KASSERT(new_page > last_bootstrap_page);
   5523 	last_bootstrap_page = new_page;
   5524 	return ((void *)new_page);
   5525 }
   5526 
   5527 static void
   5528 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5529 {
   5530 	extern void pool_page_free(struct pool *, void *);
   5531 
   5532 	if ((vaddr_t)v <= last_bootstrap_page) {
   5533 		*((void **)v) = free_bootstrap_pages;
   5534 		free_bootstrap_pages = v;
   5535 		return;
   5536 	}
   5537 
   5538 	if (pmap_initialized) {
   5539 		pool_page_free(pp, v);
   5540 		return;
   5541 	}
   5542 }
   5543 
   5544 /*
   5545  * pmap_postinit()
   5546  *
   5547  * This routine is called after the vm and kmem subsystems have been
   5548  * initialised. This allows the pmap code to perform any initialisation
   5549  * that can only be done one the memory allocation is in place.
   5550  */
   5551 void
   5552 pmap_postinit(void)
   5553 {
   5554 	extern paddr_t physical_start, physical_end;
   5555 	struct l2_bucket *l2b;
   5556 	struct l1_ttable *l1;
   5557 	struct pglist plist;
   5558 	struct vm_page *m;
   5559 	pd_entry_t *pl1pt;
   5560 	pt_entry_t *ptep, pte;
   5561 	vaddr_t va, eva;
   5562 	u_int loop, needed;
   5563 	int error;
   5564 
   5565 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5566 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5567 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5568 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5569 
   5570 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5571 	needed -= 1;
   5572 
   5573 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   5574 
   5575 	for (loop = 0; loop < needed; loop++, l1++) {
   5576 		/* Allocate a L1 page table */
   5577 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5578 		if (va == 0)
   5579 			panic("Cannot allocate L1 KVM");
   5580 
   5581 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5582 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   5583 		if (error)
   5584 			panic("Cannot allocate L1 physical pages");
   5585 
   5586 		m = TAILQ_FIRST(&plist);
   5587 		eva = va + L1_TABLE_SIZE;
   5588 		pl1pt = (pd_entry_t *)va;
   5589 
   5590 		while (m && va < eva) {
   5591 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5592 
   5593 			pmap_kenter_pa(va, pa,
   5594 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   5595 
   5596 			/*
   5597 			 * Make sure the L1 descriptor table is mapped
   5598 			 * with the cache-mode set to write-through.
   5599 			 */
   5600 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5601 			KDASSERT(l2b != NULL);
   5602 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5603 			pte = *ptep;
   5604 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5605 			*ptep = pte;
   5606 			PTE_SYNC(ptep);
   5607 			cpu_tlb_flushD_SE(va);
   5608 
   5609 			va += PAGE_SIZE;
   5610 			m = TAILQ_NEXT(m, pageq.queue);
   5611 		}
   5612 
   5613 #ifdef DIAGNOSTIC
   5614 		if (m)
   5615 			panic("pmap_alloc_l1pt: pglist not empty");
   5616 #endif	/* DIAGNOSTIC */
   5617 
   5618 		pmap_init_l1(l1, pl1pt);
   5619 	}
   5620 
   5621 #ifdef DEBUG
   5622 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5623 	    needed);
   5624 #endif
   5625 }
   5626 
   5627 /*
   5628  * Note that the following routines are used by board-specific initialisation
   5629  * code to configure the initial kernel page tables.
   5630  *
   5631  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5632  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5633  * behaviour of the old pmap, and provides an easy migration path for
   5634  * initial bring-up of the new pmap on existing ports. Fortunately,
   5635  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5636  * will be deprecated.
   5637  *
   5638  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5639  * tables.
   5640  */
   5641 
   5642 /*
   5643  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5644  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5645  * find them as necessary.
   5646  *
   5647  * Note that the data on this list MUST remain valid after initarm() returns,
   5648  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5649  */
   5650 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5651 
   5652 static vaddr_t
   5653 kernel_pt_lookup(paddr_t pa)
   5654 {
   5655 	pv_addr_t *pv;
   5656 
   5657 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5658 #ifndef ARM32_NEW_VM_LAYOUT
   5659 		if (pv->pv_pa == (pa & ~PGOFSET))
   5660 			return (pv->pv_va | (pa & PGOFSET));
   5661 #else
   5662 		if (pv->pv_pa == pa)
   5663 			return (pv->pv_va);
   5664 #endif
   5665 	}
   5666 	return (0);
   5667 }
   5668 
   5669 /*
   5670  * pmap_map_section:
   5671  *
   5672  *	Create a single section mapping.
   5673  */
   5674 void
   5675 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5676 {
   5677 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5678 	pd_entry_t fl;
   5679 
   5680 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5681 
   5682 	switch (cache) {
   5683 	case PTE_NOCACHE:
   5684 	default:
   5685 		fl = 0;
   5686 		break;
   5687 
   5688 	case PTE_CACHE:
   5689 		fl = pte_l1_s_cache_mode;
   5690 		break;
   5691 
   5692 	case PTE_PAGETABLE:
   5693 		fl = pte_l1_s_cache_mode_pt;
   5694 		break;
   5695 	}
   5696 
   5697 	pde[L1_IDX(va)] = L1_S_PROTO | pa |
   5698 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5699 	PTE_SYNC(&pde[L1_IDX(va)]);
   5700 }
   5701 
   5702 /*
   5703  * pmap_map_entry:
   5704  *
   5705  *	Create a single page mapping.
   5706  */
   5707 void
   5708 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5709 {
   5710 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5711 	pt_entry_t npte;
   5712 	pt_entry_t *ptep;
   5713 
   5714 	KASSERT(((va | pa) & PGOFSET) == 0);
   5715 
   5716 	switch (cache) {
   5717 	case PTE_NOCACHE:
   5718 	default:
   5719 		npte = 0;
   5720 		break;
   5721 
   5722 	case PTE_CACHE:
   5723 		npte = pte_l2_s_cache_mode;
   5724 		break;
   5725 
   5726 	case PTE_PAGETABLE:
   5727 		npte = pte_l2_s_cache_mode_pt;
   5728 		break;
   5729 	}
   5730 
   5731 	if ((pde[L1_IDX(va)] & L1_TYPE_MASK) != L1_TYPE_C)
   5732 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5733 
   5734 #ifndef ARM32_NEW_VM_LAYOUT
   5735 	ptep = (pt_entry_t *)
   5736 	    kernel_pt_lookup(pde[L1_IDX(va)] & L2_S_FRAME);
   5737 #else
   5738 	ptep = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5739 #endif
   5740 	if (ptep == NULL)
   5741 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5742 
   5743 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5744 #ifndef ARM32_NEW_VM_LAYOUT
   5745 	ptep += (va >> PGSHIFT) & 0x3ff;
   5746 #else
   5747 	ptep += l2pte_index(va);
   5748 #endif
   5749 	l2pte_set(ptep, npte, 0);
   5750 	PTE_SYNC(ptep);
   5751 }
   5752 
   5753 /*
   5754  * pmap_link_l2pt:
   5755  *
   5756  *	Link the L2 page table specified by "l2pv" into the L1
   5757  *	page table at the slot for "va".
   5758  */
   5759 void
   5760 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5761 {
   5762 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5763 	u_int slot = L1_IDX(va);
   5764 
   5765 #ifndef ARM32_NEW_VM_LAYOUT
   5766 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5767 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5768 #endif
   5769 
   5770 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5771 
   5772 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5773 #ifdef ARM32_NEW_VM_LAYOUT
   5774 	PTE_SYNC(&pde[slot]);
   5775 #else
   5776 	for (u_int off = 0, i = 0; off < PAGE_SIZE; off += L2_T_SIZE, i++) {
   5777 		pde[slot + i] = proto | (l2pv->pv_pa + off);
   5778 	}
   5779 	PTE_SYNC_RANGE(&pde[slot + 0], PAGE_SIZE / L2_T_SIZE);
   5780 #endif
   5781 
   5782 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5783 }
   5784 
   5785 /*
   5786  * pmap_map_chunk:
   5787  *
   5788  *	Map a chunk of memory using the most efficient mappings
   5789  *	possible (section, large page, small page) into the
   5790  *	provided L1 and L2 tables at the specified virtual address.
   5791  */
   5792 vsize_t
   5793 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5794     int prot, int cache)
   5795 {
   5796 	pd_entry_t *pdep = (pd_entry_t *) l1pt;
   5797 	pt_entry_t *pte, f1, f2s, f2l;
   5798 	vsize_t resid;
   5799 	int i;
   5800 
   5801 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5802 
   5803 	if (l1pt == 0)
   5804 		panic("pmap_map_chunk: no L1 table provided");
   5805 
   5806 #ifdef VERBOSE_INIT_ARM
   5807 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5808 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5809 #endif
   5810 
   5811 	switch (cache) {
   5812 	case PTE_NOCACHE:
   5813 	default:
   5814 		f1 = 0;
   5815 		f2l = 0;
   5816 		f2s = 0;
   5817 		break;
   5818 
   5819 	case PTE_CACHE:
   5820 		f1 = pte_l1_s_cache_mode;
   5821 		f2l = pte_l2_l_cache_mode;
   5822 		f2s = pte_l2_s_cache_mode;
   5823 		break;
   5824 
   5825 	case PTE_PAGETABLE:
   5826 		f1 = pte_l1_s_cache_mode_pt;
   5827 		f2l = pte_l2_l_cache_mode_pt;
   5828 		f2s = pte_l2_s_cache_mode_pt;
   5829 		break;
   5830 	}
   5831 
   5832 	size = resid;
   5833 
   5834 	while (resid > 0) {
   5835 		size_t l1idx = L1_IDX(va);
   5836 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5837 		/* See if we can use a supersection mapping. */
   5838 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   5839 			/* Supersection are always domain 0 */
   5840 			pd_entry_t pde = L1_SS_PROTO | pa |
   5841 			    L1_S_PROT(PTE_KERNEL, prot) | f1;
   5842 #ifdef VERBOSE_INIT_ARM
   5843 			printf("sS");
   5844 #endif
   5845 			for (size_t s = l1idx,
   5846 			     e = s + L1_SS_SIZE / L1_S_SIZE;
   5847 			     s < e;
   5848 			     s++) {
   5849 				pdep[s] = pde;
   5850 				PTE_SYNC(&pdep[s]);
   5851 			}
   5852 			va += L1_SS_SIZE;
   5853 			pa += L1_SS_SIZE;
   5854 			resid -= L1_SS_SIZE;
   5855 			continue;
   5856 		}
   5857 #endif
   5858 		/* See if we can use a section mapping. */
   5859 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5860 #ifdef VERBOSE_INIT_ARM
   5861 			printf("S");
   5862 #endif
   5863 			pdep[l1idx] = L1_S_PROTO | pa |
   5864 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5865 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5866 			PTE_SYNC(&pdep[l1idx]);
   5867 			va += L1_S_SIZE;
   5868 			pa += L1_S_SIZE;
   5869 			resid -= L1_S_SIZE;
   5870 			continue;
   5871 		}
   5872 
   5873 		/*
   5874 		 * Ok, we're going to use an L2 table.  Make sure
   5875 		 * one is actually in the corresponding L1 slot
   5876 		 * for the current VA.
   5877 		 */
   5878 		if ((pdep[l1idx] & L1_TYPE_MASK) != L1_TYPE_C)
   5879 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5880 
   5881 #ifndef ARM32_NEW_VM_LAYOUT
   5882 		pte = (pt_entry_t *)
   5883 		    kernel_pt_lookup(pdep[l1idx] & L2_S_FRAME);
   5884 #else
   5885 		pte = (pt_entry_t *) kernel_pt_lookup(
   5886 		    pdep[l1idx] & L1_C_ADDR_MASK);
   5887 #endif
   5888 		if (pte == NULL)
   5889 			panic("pmap_map_chunk: can't find L2 table for VA"
   5890 			    "0x%08lx", va);
   5891 
   5892 		/* See if we can use a L2 large page mapping. */
   5893 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5894 #ifdef VERBOSE_INIT_ARM
   5895 			printf("L");
   5896 #endif
   5897 			for (i = 0; i < 16; i++) {
   5898 #ifndef ARM32_NEW_VM_LAYOUT
   5899 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5900 				    L2_L_PROTO | pa |
   5901 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5902 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5903 #else
   5904 				pte[l2pte_index(va) + i] =
   5905 				    L2_L_PROTO | pa |
   5906 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5907 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5908 #endif
   5909 			}
   5910 			va += L2_L_SIZE;
   5911 			pa += L2_L_SIZE;
   5912 			resid -= L2_L_SIZE;
   5913 			continue;
   5914 		}
   5915 
   5916 		/* Use a small page mapping. */
   5917 #ifdef VERBOSE_INIT_ARM
   5918 		printf("P");
   5919 #endif
   5920 		pt_entry_t npte =
   5921 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5922 #ifndef ARM32_NEW_VM_LAYOUT
   5923 		pt_entry_t *ptep = &pte[(va >> PGSHIFT) & 0x3ff];
   5924 #else
   5925 		pt_entry_t *ptep = &pte[l2pte_index(va)];
   5926 #endif
   5927 		l2pte_set(ptep, npte, 0);
   5928 		PTE_SYNC(ptep);
   5929 		va += PAGE_SIZE;
   5930 		pa += PAGE_SIZE;
   5931 		resid -= PAGE_SIZE;
   5932 	}
   5933 #ifdef VERBOSE_INIT_ARM
   5934 	printf("\n");
   5935 #endif
   5936 	return (size);
   5937 }
   5938 
   5939 /********************** Static device map routines ***************************/
   5940 
   5941 static const struct pmap_devmap *pmap_devmap_table;
   5942 
   5943 /*
   5944  * Register the devmap table.  This is provided in case early console
   5945  * initialization needs to register mappings created by bootstrap code
   5946  * before pmap_devmap_bootstrap() is called.
   5947  */
   5948 void
   5949 pmap_devmap_register(const struct pmap_devmap *table)
   5950 {
   5951 
   5952 	pmap_devmap_table = table;
   5953 }
   5954 
   5955 /*
   5956  * Map all of the static regions in the devmap table, and remember
   5957  * the devmap table so other parts of the kernel can look up entries
   5958  * later.
   5959  */
   5960 void
   5961 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5962 {
   5963 	int i;
   5964 
   5965 	pmap_devmap_table = table;
   5966 
   5967 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5968 #ifdef VERBOSE_INIT_ARM
   5969 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5970 		    pmap_devmap_table[i].pd_pa,
   5971 		    pmap_devmap_table[i].pd_pa +
   5972 			pmap_devmap_table[i].pd_size - 1,
   5973 		    pmap_devmap_table[i].pd_va);
   5974 #endif
   5975 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5976 		    pmap_devmap_table[i].pd_pa,
   5977 		    pmap_devmap_table[i].pd_size,
   5978 		    pmap_devmap_table[i].pd_prot,
   5979 		    pmap_devmap_table[i].pd_cache);
   5980 	}
   5981 }
   5982 
   5983 const struct pmap_devmap *
   5984 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5985 {
   5986 	uint64_t endpa;
   5987 	int i;
   5988 
   5989 	if (pmap_devmap_table == NULL)
   5990 		return (NULL);
   5991 
   5992 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5993 
   5994 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5995 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5996 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5997 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5998 			return (&pmap_devmap_table[i]);
   5999 	}
   6000 
   6001 	return (NULL);
   6002 }
   6003 
   6004 const struct pmap_devmap *
   6005 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6006 {
   6007 	int i;
   6008 
   6009 	if (pmap_devmap_table == NULL)
   6010 		return (NULL);
   6011 
   6012 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6013 		if (va >= pmap_devmap_table[i].pd_va &&
   6014 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6015 				     pmap_devmap_table[i].pd_size - 1)
   6016 			return (&pmap_devmap_table[i]);
   6017 	}
   6018 
   6019 	return (NULL);
   6020 }
   6021 
   6022 /********************** PTE initialization routines **************************/
   6023 
   6024 /*
   6025  * These routines are called when the CPU type is identified to set up
   6026  * the PTE prototypes, cache modes, etc.
   6027  *
   6028  * The variables are always here, just in case modules need to reference
   6029  * them (though, they shouldn't).
   6030  */
   6031 
   6032 pt_entry_t	pte_l1_s_cache_mode;
   6033 pt_entry_t	pte_l1_s_wc_mode;
   6034 pt_entry_t	pte_l1_s_cache_mode_pt;
   6035 pt_entry_t	pte_l1_s_cache_mask;
   6036 
   6037 pt_entry_t	pte_l2_l_cache_mode;
   6038 pt_entry_t	pte_l2_l_wc_mode;
   6039 pt_entry_t	pte_l2_l_cache_mode_pt;
   6040 pt_entry_t	pte_l2_l_cache_mask;
   6041 
   6042 pt_entry_t	pte_l2_s_cache_mode;
   6043 pt_entry_t	pte_l2_s_wc_mode;
   6044 pt_entry_t	pte_l2_s_cache_mode_pt;
   6045 pt_entry_t	pte_l2_s_cache_mask;
   6046 
   6047 pt_entry_t	pte_l1_s_prot_u;
   6048 pt_entry_t	pte_l1_s_prot_w;
   6049 pt_entry_t	pte_l1_s_prot_ro;
   6050 pt_entry_t	pte_l1_s_prot_mask;
   6051 
   6052 pt_entry_t	pte_l2_s_prot_u;
   6053 pt_entry_t	pte_l2_s_prot_w;
   6054 pt_entry_t	pte_l2_s_prot_ro;
   6055 pt_entry_t	pte_l2_s_prot_mask;
   6056 
   6057 pt_entry_t	pte_l2_l_prot_u;
   6058 pt_entry_t	pte_l2_l_prot_w;
   6059 pt_entry_t	pte_l2_l_prot_ro;
   6060 pt_entry_t	pte_l2_l_prot_mask;
   6061 
   6062 pt_entry_t	pte_l1_ss_proto;
   6063 pt_entry_t	pte_l1_s_proto;
   6064 pt_entry_t	pte_l1_c_proto;
   6065 pt_entry_t	pte_l2_s_proto;
   6066 
   6067 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6068 void		(*pmap_zero_page_func)(paddr_t);
   6069 
   6070 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6071 void
   6072 pmap_pte_init_generic(void)
   6073 {
   6074 
   6075 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6076 	pte_l1_s_wc_mode = L1_S_B;
   6077 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6078 
   6079 	pte_l2_l_cache_mode = L2_B|L2_C;
   6080 	pte_l2_l_wc_mode = L2_B;
   6081 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6082 
   6083 	pte_l2_s_cache_mode = L2_B|L2_C;
   6084 	pte_l2_s_wc_mode = L2_B;
   6085 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6086 
   6087 	/*
   6088 	 * If we have a write-through cache, set B and C.  If
   6089 	 * we have a write-back cache, then we assume setting
   6090 	 * only C will make those pages write-through (except for those
   6091 	 * Cortex CPUs which can read the L1 caches).
   6092 	 */
   6093 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6094 #if ARM_MMU_V7 > 0
   6095 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6096 #endif
   6097 #if ARM_MMU_V6 > 0
   6098 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6099 #endif
   6100 	    || false) {
   6101 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6102 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6103 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6104 	} else {
   6105 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6106 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6107 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6108 	}
   6109 
   6110 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6111 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6112 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6113 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6114 
   6115 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6116 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6117 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6118 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6119 
   6120 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6121 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6122 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6123 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6124 
   6125 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6126 	pte_l1_s_proto = L1_S_PROTO_generic;
   6127 	pte_l1_c_proto = L1_C_PROTO_generic;
   6128 	pte_l2_s_proto = L2_S_PROTO_generic;
   6129 
   6130 	pmap_copy_page_func = pmap_copy_page_generic;
   6131 	pmap_zero_page_func = pmap_zero_page_generic;
   6132 }
   6133 
   6134 #if defined(CPU_ARM8)
   6135 void
   6136 pmap_pte_init_arm8(void)
   6137 {
   6138 
   6139 	/*
   6140 	 * ARM8 is compatible with generic, but we need to use
   6141 	 * the page tables uncached.
   6142 	 */
   6143 	pmap_pte_init_generic();
   6144 
   6145 	pte_l1_s_cache_mode_pt = 0;
   6146 	pte_l2_l_cache_mode_pt = 0;
   6147 	pte_l2_s_cache_mode_pt = 0;
   6148 }
   6149 #endif /* CPU_ARM8 */
   6150 
   6151 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6152 void
   6153 pmap_pte_init_arm9(void)
   6154 {
   6155 
   6156 	/*
   6157 	 * ARM9 is compatible with generic, but we want to use
   6158 	 * write-through caching for now.
   6159 	 */
   6160 	pmap_pte_init_generic();
   6161 
   6162 	pte_l1_s_cache_mode = L1_S_C;
   6163 	pte_l2_l_cache_mode = L2_C;
   6164 	pte_l2_s_cache_mode = L2_C;
   6165 
   6166 	pte_l1_s_wc_mode = L1_S_B;
   6167 	pte_l2_l_wc_mode = L2_B;
   6168 	pte_l2_s_wc_mode = L2_B;
   6169 
   6170 	pte_l1_s_cache_mode_pt = L1_S_C;
   6171 	pte_l2_l_cache_mode_pt = L2_C;
   6172 	pte_l2_s_cache_mode_pt = L2_C;
   6173 }
   6174 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6175 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6176 
   6177 #if defined(CPU_ARM10)
   6178 void
   6179 pmap_pte_init_arm10(void)
   6180 {
   6181 
   6182 	/*
   6183 	 * ARM10 is compatible with generic, but we want to use
   6184 	 * write-through caching for now.
   6185 	 */
   6186 	pmap_pte_init_generic();
   6187 
   6188 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6189 	pte_l2_l_cache_mode = L2_B | L2_C;
   6190 	pte_l2_s_cache_mode = L2_B | L2_C;
   6191 
   6192 	pte_l1_s_cache_mode = L1_S_B;
   6193 	pte_l2_l_cache_mode = L2_B;
   6194 	pte_l2_s_cache_mode = L2_B;
   6195 
   6196 	pte_l1_s_cache_mode_pt = L1_S_C;
   6197 	pte_l2_l_cache_mode_pt = L2_C;
   6198 	pte_l2_s_cache_mode_pt = L2_C;
   6199 
   6200 }
   6201 #endif /* CPU_ARM10 */
   6202 
   6203 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6204 void
   6205 pmap_pte_init_arm11(void)
   6206 {
   6207 
   6208 	/*
   6209 	 * ARM11 is compatible with generic, but we want to use
   6210 	 * write-through caching for now.
   6211 	 */
   6212 	pmap_pte_init_generic();
   6213 
   6214 	pte_l1_s_cache_mode = L1_S_C;
   6215 	pte_l2_l_cache_mode = L2_C;
   6216 	pte_l2_s_cache_mode = L2_C;
   6217 
   6218 	pte_l1_s_wc_mode = L1_S_B;
   6219 	pte_l2_l_wc_mode = L2_B;
   6220 	pte_l2_s_wc_mode = L2_B;
   6221 
   6222 	pte_l1_s_cache_mode_pt = L1_S_C;
   6223 	pte_l2_l_cache_mode_pt = L2_C;
   6224 	pte_l2_s_cache_mode_pt = L2_C;
   6225 }
   6226 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   6227 
   6228 #if ARM_MMU_SA1 == 1
   6229 void
   6230 pmap_pte_init_sa1(void)
   6231 {
   6232 
   6233 	/*
   6234 	 * The StrongARM SA-1 cache does not have a write-through
   6235 	 * mode.  So, do the generic initialization, then reset
   6236 	 * the page table cache mode to B=1,C=1, and note that
   6237 	 * the PTEs need to be sync'd.
   6238 	 */
   6239 	pmap_pte_init_generic();
   6240 
   6241 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6242 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6243 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6244 
   6245 	pmap_needs_pte_sync = 1;
   6246 }
   6247 #endif /* ARM_MMU_SA1 == 1*/
   6248 
   6249 #if ARM_MMU_XSCALE == 1
   6250 #if (ARM_NMMUS > 1)
   6251 static u_int xscale_use_minidata;
   6252 #endif
   6253 
   6254 void
   6255 pmap_pte_init_xscale(void)
   6256 {
   6257 	uint32_t auxctl;
   6258 	int write_through = 0;
   6259 
   6260 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6261 	pte_l1_s_wc_mode = L1_S_B;
   6262 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   6263 
   6264 	pte_l2_l_cache_mode = L2_B|L2_C;
   6265 	pte_l2_l_wc_mode = L2_B;
   6266 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   6267 
   6268 	pte_l2_s_cache_mode = L2_B|L2_C;
   6269 	pte_l2_s_wc_mode = L2_B;
   6270 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   6271 
   6272 	pte_l1_s_cache_mode_pt = L1_S_C;
   6273 	pte_l2_l_cache_mode_pt = L2_C;
   6274 	pte_l2_s_cache_mode_pt = L2_C;
   6275 
   6276 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   6277 	/*
   6278 	 * The XScale core has an enhanced mode where writes that
   6279 	 * miss the cache cause a cache line to be allocated.  This
   6280 	 * is significantly faster than the traditional, write-through
   6281 	 * behavior of this case.
   6282 	 */
   6283 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   6284 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   6285 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   6286 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   6287 
   6288 #ifdef XSCALE_CACHE_WRITE_THROUGH
   6289 	/*
   6290 	 * Some versions of the XScale core have various bugs in
   6291 	 * their cache units, the work-around for which is to run
   6292 	 * the cache in write-through mode.  Unfortunately, this
   6293 	 * has a major (negative) impact on performance.  So, we
   6294 	 * go ahead and run fast-and-loose, in the hopes that we
   6295 	 * don't line up the planets in a way that will trip the
   6296 	 * bugs.
   6297 	 *
   6298 	 * However, we give you the option to be slow-but-correct.
   6299 	 */
   6300 	write_through = 1;
   6301 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6302 	/* force write back cache mode */
   6303 	write_through = 0;
   6304 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6305 	/*
   6306 	 * Intel PXA2[15]0 processors are known to have a bug in
   6307 	 * write-back cache on revision 4 and earlier (stepping
   6308 	 * A[01] and B[012]).  Fixed for C0 and later.
   6309 	 */
   6310 	{
   6311 		uint32_t id, type;
   6312 
   6313 		id = cpufunc_id();
   6314 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6315 
   6316 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6317 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6318 				/* write through for stepping A0-1 and B0-2 */
   6319 				write_through = 1;
   6320 			}
   6321 		}
   6322 	}
   6323 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6324 
   6325 	if (write_through) {
   6326 		pte_l1_s_cache_mode = L1_S_C;
   6327 		pte_l2_l_cache_mode = L2_C;
   6328 		pte_l2_s_cache_mode = L2_C;
   6329 	}
   6330 
   6331 #if (ARM_NMMUS > 1)
   6332 	xscale_use_minidata = 1;
   6333 #endif
   6334 
   6335 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   6336 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   6337 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   6338 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   6339 
   6340 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6341 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6342 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   6343 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6344 
   6345 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   6346 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   6347 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   6348 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   6349 
   6350 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   6351 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6352 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6353 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6354 
   6355 	pmap_copy_page_func = pmap_copy_page_xscale;
   6356 	pmap_zero_page_func = pmap_zero_page_xscale;
   6357 
   6358 	/*
   6359 	 * Disable ECC protection of page table access, for now.
   6360 	 */
   6361 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6362 	auxctl &= ~XSCALE_AUXCTL_P;
   6363 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6364 }
   6365 
   6366 /*
   6367  * xscale_setup_minidata:
   6368  *
   6369  *	Set up the mini-data cache clean area.  We require the
   6370  *	caller to allocate the right amount of physically and
   6371  *	virtually contiguous space.
   6372  */
   6373 void
   6374 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6375 {
   6376 	extern vaddr_t xscale_minidata_clean_addr;
   6377 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6378 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6379 	vsize_t size;
   6380 	uint32_t auxctl;
   6381 
   6382 	xscale_minidata_clean_addr = va;
   6383 
   6384 	/* Round it to page size. */
   6385 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6386 
   6387 	for (; size != 0;
   6388 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6389 		const size_t l1idx = L1_IDX(va);
   6390 #ifndef ARM32_NEW_VM_LAYOUT
   6391 		pt_entry_t *ptep = (pt_entry_t *)
   6392 		    kernel_pt_lookup(pde[l1idx] & L2_S_FRAME);
   6393 #else
   6394 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(
   6395 		    pde[l1idx] & L1_C_ADDR_MASK);
   6396 #endif
   6397 		if (ptep == NULL)
   6398 			panic("xscale_setup_minidata: can't find L2 table for "
   6399 			    "VA 0x%08lx", va);
   6400 
   6401 #ifndef ARM32_NEW_VM_LAYOUT
   6402 		ptep += (va >> PGSHIFT) & 0x3ff;
   6403 #else
   6404 		ptep += l2pte_index(va);
   6405 #endif
   6406 		pt_entry_t opte = *ptep;
   6407 		l2pte_set(ptep,
   6408 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   6409 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   6410 	}
   6411 
   6412 	/*
   6413 	 * Configure the mini-data cache for write-back with
   6414 	 * read/write-allocate.
   6415 	 *
   6416 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6417 	 * make sure it contains no valid data!  In order to do that,
   6418 	 * we must issue a global data cache invalidate command!
   6419 	 *
   6420 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6421 	 * THIS IS VERY IMPORTANT!
   6422 	 */
   6423 
   6424 	/* Invalidate data and mini-data. */
   6425 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6426 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6427 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6428 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6429 }
   6430 
   6431 /*
   6432  * Change the PTEs for the specified kernel mappings such that they
   6433  * will use the mini data cache instead of the main data cache.
   6434  */
   6435 void
   6436 pmap_uarea(vaddr_t va)
   6437 {
   6438 	vaddr_t next_bucket, eva;
   6439 
   6440 #if (ARM_NMMUS > 1)
   6441 	if (xscale_use_minidata == 0)
   6442 		return;
   6443 #endif
   6444 
   6445 	eva = va + USPACE;
   6446 
   6447 	while (va < eva) {
   6448 		next_bucket = L2_NEXT_BUCKET(va);
   6449 		if (next_bucket > eva)
   6450 			next_bucket = eva;
   6451 
   6452 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6453 		KDASSERT(l2b != NULL);
   6454 
   6455 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   6456 		pt_entry_t *ptep = sptep;
   6457 
   6458 		while (va < next_bucket) {
   6459 			const pt_entry_t opte = *ptep;
   6460 			if (!l2pte_minidata(opte)) {
   6461 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6462 				cpu_tlb_flushD_SE(va);
   6463 				l2pte_set(ptep, opte & ~L2_B, opte);
   6464 			}
   6465 			ptep += PAGE_SIZE / L2_S_SIZE;
   6466 			va += PAGE_SIZE;
   6467 		}
   6468 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6469 	}
   6470 	cpu_cpwait();
   6471 }
   6472 #endif /* ARM_MMU_XSCALE == 1 */
   6473 
   6474 
   6475 #if defined(CPU_ARM11MPCORE)
   6476 
   6477 void
   6478 pmap_pte_init_arm11mpcore(void)
   6479 {
   6480 
   6481 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   6482 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   6483 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   6484 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6485 	/* use extended small page (without APn, with TEX) */
   6486 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   6487 #else
   6488 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   6489 #endif
   6490 
   6491 	/* write-back, write-allocate */
   6492 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6493 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6494 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6495 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6496 #else
   6497 	/* no TEX. read-allocate */
   6498 	pte_l2_s_cache_mode = L2_C | L2_B;
   6499 #endif
   6500 	/*
   6501 	 * write-back, write-allocate for page tables.
   6502 	 */
   6503 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6504 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6505 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6506 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6507 #else
   6508 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   6509 #endif
   6510 
   6511 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   6512 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   6513 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   6514 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   6515 
   6516 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6517 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   6518 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   6519 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   6520 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   6521 
   6522 #else
   6523 	/* with AP[0..3] */
   6524 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6525 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6526 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6527 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6528 #endif
   6529 
   6530 #ifdef	ARM11MPCORE_COMPAT_MMU
   6531 	/* with AP[0..3] */
   6532 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6533 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6534 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6535 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6536 
   6537 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6538 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6539 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6540 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   6541 #else
   6542 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   6543 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   6544 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   6545 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   6546 
   6547 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6548 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6549 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6550 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   6551 #endif
   6552 
   6553 	pmap_copy_page_func = pmap_copy_page_generic;
   6554 	pmap_zero_page_func = pmap_zero_page_generic;
   6555 	pmap_needs_pte_sync = 1;
   6556 }
   6557 #endif	/* CPU_ARM11MPCORE */
   6558 
   6559 
   6560 #if ARM_MMU_V7 == 1
   6561 void
   6562 pmap_pte_init_armv7(void)
   6563 {
   6564 	/*
   6565 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   6566 	 * AP field is zero, that now means "no access" rather than
   6567 	 * read-only. The prototypes are a little different because of
   6568 	 * the XN bit.
   6569 	 */
   6570 	pmap_pte_init_generic();
   6571 
   6572 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   6573 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   6574 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   6575 
   6576 	if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
   6577 		/*
   6578 		 * write-back, no write-allocate, shareable for normal pages.
   6579 		 */
   6580 		pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
   6581 		pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
   6582 		pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
   6583 
   6584 		/*
   6585 		 * write-back, no write-allocate, shareable for page tables.
   6586 		 */
   6587 		pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
   6588 		pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6589 		pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6590 	}
   6591 
   6592 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   6593 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   6594 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   6595 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   6596 
   6597 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   6598 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   6599 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   6600 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   6601 
   6602 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   6603 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   6604 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   6605 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   6606 
   6607 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   6608 	pte_l1_s_proto = L1_S_PROTO_armv7;
   6609 	pte_l1_c_proto = L1_C_PROTO_armv7;
   6610 	pte_l2_s_proto = L2_S_PROTO_armv7;
   6611 
   6612 	pmap_needs_pte_sync = 1;
   6613 }
   6614 #endif /* ARM_MMU_V7 */
   6615 
   6616 /*
   6617  * return the PA of the current L1 table, for use when handling a crash dump
   6618  */
   6619 uint32_t pmap_kernel_L1_addr(void)
   6620 {
   6621 	return pmap_kernel()->pm_l1->l1_physaddr;
   6622 }
   6623 
   6624 #if defined(DDB)
   6625 /*
   6626  * A couple of ddb-callable functions for dumping pmaps
   6627  */
   6628 void pmap_dump_all(void);
   6629 void pmap_dump(pmap_t);
   6630 
   6631 void
   6632 pmap_dump_all(void)
   6633 {
   6634 	pmap_t pm;
   6635 
   6636 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6637 		if (pm == pmap_kernel())
   6638 			continue;
   6639 		pmap_dump(pm);
   6640 		printf("\n");
   6641 	}
   6642 }
   6643 
   6644 static pt_entry_t ncptes[64];
   6645 static void pmap_dump_ncpg(pmap_t);
   6646 
   6647 void
   6648 pmap_dump(pmap_t pm)
   6649 {
   6650 	struct l2_dtable *l2;
   6651 	struct l2_bucket *l2b;
   6652 	pt_entry_t *ptep, pte;
   6653 	vaddr_t l2_va, l2b_va, va;
   6654 	int i, j, k, occ, rows = 0;
   6655 
   6656 	if (pm == pmap_kernel())
   6657 		printf("pmap_kernel (%p): ", pm);
   6658 	else
   6659 		printf("user pmap (%p): ", pm);
   6660 
   6661 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   6662 
   6663 	l2_va = 0;
   6664 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6665 		l2 = pm->pm_l2[i];
   6666 
   6667 		if (l2 == NULL || l2->l2_occupancy == 0)
   6668 			continue;
   6669 
   6670 		l2b_va = l2_va;
   6671 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6672 			l2b = &l2->l2_bucket[j];
   6673 
   6674 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6675 				continue;
   6676 
   6677 			ptep = l2b->l2b_kva;
   6678 
   6679 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6680 				;
   6681 
   6682 			k &= ~63;
   6683 			occ = l2b->l2b_occupancy;
   6684 			va = l2b_va + (k * 4096);
   6685 			for (; k < 256; k++, va += 0x1000) {
   6686 				char ch = ' ';
   6687 				if ((k % 64) == 0) {
   6688 					if ((rows % 8) == 0) {
   6689 						printf(
   6690 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6691 					}
   6692 					printf("%08lx: ", va);
   6693 				}
   6694 
   6695 				ncptes[k & 63] = 0;
   6696 				pte = ptep[k];
   6697 				if (pte == 0) {
   6698 					ch = '.';
   6699 				} else {
   6700 					occ--;
   6701 					switch (pte & 0x0c) {
   6702 					case 0x00:
   6703 						ch = 'D'; /* No cache No buff */
   6704 						break;
   6705 					case 0x04:
   6706 						ch = 'B'; /* No cache buff */
   6707 						break;
   6708 					case 0x08:
   6709 						if (pte & 0x40)
   6710 							ch = 'm';
   6711 						else
   6712 						   ch = 'C'; /* Cache No buff */
   6713 						break;
   6714 					case 0x0c:
   6715 						ch = 'F'; /* Cache Buff */
   6716 						break;
   6717 					}
   6718 
   6719 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6720 						ch += 0x20;
   6721 
   6722 					if ((pte & 0xc) == 0)
   6723 						ncptes[k & 63] = pte;
   6724 				}
   6725 
   6726 				if ((k % 64) == 63) {
   6727 					rows++;
   6728 					printf("%c\n", ch);
   6729 					pmap_dump_ncpg(pm);
   6730 					if (occ == 0)
   6731 						break;
   6732 				} else
   6733 					printf("%c", ch);
   6734 			}
   6735 		}
   6736 	}
   6737 }
   6738 
   6739 static void
   6740 pmap_dump_ncpg(pmap_t pm)
   6741 {
   6742 	struct vm_page *pg;
   6743 	struct vm_page_md *md;
   6744 	struct pv_entry *pv;
   6745 	int i;
   6746 
   6747 	for (i = 0; i < 63; i++) {
   6748 		if (ncptes[i] == 0)
   6749 			continue;
   6750 
   6751 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6752 		if (pg == NULL)
   6753 			continue;
   6754 		md = VM_PAGE_TO_MD(pg);
   6755 
   6756 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6757 		    VM_PAGE_TO_PHYS(pg),
   6758 		    md->krw_mappings, md->kro_mappings,
   6759 		    md->urw_mappings, md->uro_mappings);
   6760 
   6761 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   6762 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6763 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6764 			    pv->pv_va, pv->pv_flags);
   6765 		}
   6766 	}
   6767 }
   6768 #endif
   6769 
   6770 #ifdef PMAP_STEAL_MEMORY
   6771 void
   6772 pmap_boot_pageadd(pv_addr_t *newpv)
   6773 {
   6774 	pv_addr_t *pv, *npv;
   6775 
   6776 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6777 		if (newpv->pv_pa < pv->pv_va) {
   6778 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6779 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6780 				newpv->pv_size += pv->pv_size;
   6781 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6782 			}
   6783 			pv = NULL;
   6784 		} else {
   6785 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6786 			     pv = npv) {
   6787 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6788 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6789 				if (newpv->pv_pa > npv->pv_pa)
   6790 					continue;
   6791 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6792 					pv->pv_size += newpv->pv_size;
   6793 					return;
   6794 				}
   6795 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6796 					break;
   6797 				newpv->pv_size += npv->pv_size;
   6798 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6799 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6800 				return;
   6801 			}
   6802 		}
   6803 	}
   6804 
   6805 	if (pv) {
   6806 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6807 	} else {
   6808 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6809 	}
   6810 }
   6811 
   6812 void
   6813 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6814 	pv_addr_t *rpv)
   6815 {
   6816 	pv_addr_t *pv, **pvp;
   6817 	struct vm_physseg *ps;
   6818 	size_t i;
   6819 
   6820 	KASSERT(amount & PGOFSET);
   6821 	KASSERT((mask & PGOFSET) == 0);
   6822 	KASSERT((match & PGOFSET) == 0);
   6823 	KASSERT(amount != 0);
   6824 
   6825 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6826 	     (pv = *pvp) != NULL;
   6827 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6828 		pv_addr_t *newpv;
   6829 		psize_t off;
   6830 		/*
   6831 		 * If this entry is too small to satify the request...
   6832 		 */
   6833 		KASSERT(pv->pv_size > 0);
   6834 		if (pv->pv_size < amount)
   6835 			continue;
   6836 
   6837 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6838 			if (((pv->pv_pa + off) & mask) == match
   6839 			    && off + amount <= pv->pv_size)
   6840 				break;
   6841 		}
   6842 		if (off > mask)
   6843 			continue;
   6844 
   6845 		rpv->pv_va = pv->pv_va + off;
   6846 		rpv->pv_pa = pv->pv_pa + off;
   6847 		rpv->pv_size = amount;
   6848 		pv->pv_size -= amount;
   6849 		if (pv->pv_size == 0) {
   6850 			KASSERT(off == 0);
   6851 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6852 			*pvp = SLIST_NEXT(pv, pv_list);
   6853 		} else if (off == 0) {
   6854 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6855 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6856 			*newpv = *pv;
   6857 			newpv->pv_pa += amount;
   6858 			newpv->pv_va += amount;
   6859 			*pvp = newpv;
   6860 		} else if (off < pv->pv_size) {
   6861 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6862 			*newpv = *pv;
   6863 			newpv->pv_size -= off;
   6864 			newpv->pv_pa += off + amount;
   6865 			newpv->pv_va += off + amount;
   6866 
   6867 			SLIST_NEXT(pv, pv_list) = newpv;
   6868 			pv->pv_size = off;
   6869 		} else {
   6870 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6871 		}
   6872 		memset((void *)rpv->pv_va, 0, amount);
   6873 		return;
   6874 	}
   6875 
   6876 	if (vm_nphysseg == 0)
   6877 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6878 
   6879 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6880 	     (pv = *pvp) != NULL;
   6881 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6882 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6883 			break;
   6884 	}
   6885 	KASSERT(mask == 0);
   6886 	for (i = 0; i < vm_nphysseg; i++) {
   6887 		ps = VM_PHYSMEM_PTR(i);
   6888 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6889 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6890 			rpv->pv_va = pv->pv_va;
   6891 			rpv->pv_pa = pv->pv_pa;
   6892 			rpv->pv_size = amount;
   6893 			*pvp = NULL;
   6894 			pmap_map_chunk(kernel_l1pt.pv_va,
   6895 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6896 			     ptoa(ps->avail_start),
   6897 			     amount - pv->pv_size,
   6898 			     VM_PROT_READ|VM_PROT_WRITE,
   6899 			     PTE_CACHE);
   6900 			ps->avail_start += atop(amount - pv->pv_size);
   6901 			/*
   6902 			 * If we consumed the entire physseg, remove it.
   6903 			 */
   6904 			if (ps->avail_start == ps->avail_end) {
   6905 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   6906 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   6907 			}
   6908 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6909 			return;
   6910 		}
   6911 	}
   6912 
   6913 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6914 }
   6915 
   6916 vaddr_t
   6917 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6918 {
   6919 	pv_addr_t pv;
   6920 
   6921 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6922 
   6923 	return pv.pv_va;
   6924 }
   6925 #endif /* PMAP_STEAL_MEMORY */
   6926 
   6927 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6928 {
   6929 	sysctl_createv(clog, 0, NULL, NULL,
   6930 			CTLFLAG_PERMANENT,
   6931 			CTLTYPE_NODE, "machdep", NULL,
   6932 			NULL, 0, NULL, 0,
   6933 			CTL_MACHDEP, CTL_EOL);
   6934 
   6935 	sysctl_createv(clog, 0, NULL, NULL,
   6936 			CTLFLAG_PERMANENT,
   6937 			CTLTYPE_INT, "kmpages",
   6938 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6939 			NULL, 0, &pmap_kmpages, 0,
   6940 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6941 }
   6942 
   6943 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   6944 struct vm_page *
   6945 arm_pmap_alloc_poolpage(int flags)
   6946 {
   6947 	/*
   6948 	 * On some systems, only some pages may be "coherent" for dma and we
   6949 	 * want to prefer those for pool pages (think mbufs) but fallback to
   6950 	 * any page if none is available.
   6951 	 */
   6952 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   6953 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   6954 		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
   6955 	}
   6956 
   6957 	return uvm_pagealloc(NULL, 0, NULL, flags);
   6958 }
   6959 #endif
   6960