pmap.c revision 1.265 1 /* $NetBSD: pmap.c,v 1.265 2014/02/26 01:41:40 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/pool.h>
201 #include <sys/kmem.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205 #include <sys/bus.h>
206
207 #include <uvm/uvm.h>
208
209 #include <arm/locore.h>
210 #include <arm/arm32/katelib.h>
211
212 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.265 2014/02/26 01:41:40 matt Exp $");
213
214 #ifdef PMAP_DEBUG
215
216 /* XXX need to get rid of all refs to this */
217 int pmap_debug_level = 0;
218
219 /*
220 * for switching to potentially finer grained debugging
221 */
222 #define PDB_FOLLOW 0x0001
223 #define PDB_INIT 0x0002
224 #define PDB_ENTER 0x0004
225 #define PDB_REMOVE 0x0008
226 #define PDB_CREATE 0x0010
227 #define PDB_PTPAGE 0x0020
228 #define PDB_GROWKERN 0x0040
229 #define PDB_BITS 0x0080
230 #define PDB_COLLECT 0x0100
231 #define PDB_PROTECT 0x0200
232 #define PDB_MAP_L1 0x0400
233 #define PDB_BOOTSTRAP 0x1000
234 #define PDB_PARANOIA 0x2000
235 #define PDB_WIRING 0x4000
236 #define PDB_PVDUMP 0x8000
237 #define PDB_VAC 0x10000
238 #define PDB_KENTER 0x20000
239 #define PDB_KREMOVE 0x40000
240 #define PDB_EXEC 0x80000
241
242 int debugmap = 1;
243 int pmapdebug = 0;
244 #define NPDEBUG(_lev_,_stat_) \
245 if (pmapdebug & (_lev_)) \
246 ((_stat_))
247
248 #else /* PMAP_DEBUG */
249 #define NPDEBUG(_lev_,_stat_) /* Nothing */
250 #endif /* PMAP_DEBUG */
251
252 /*
253 * pmap_kernel() points here
254 */
255 static struct pmap kernel_pmap_store;
256 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
257 #ifdef PMAP_NEED_ALLOC_POOLPAGE
258 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
259 #endif
260
261 /*
262 * Which pmap is currently 'live' in the cache
263 *
264 * XXXSCW: Fix for SMP ...
265 */
266 static pmap_t pmap_recent_user;
267
268 /*
269 * Pointer to last active lwp, or NULL if it exited.
270 */
271 struct lwp *pmap_previous_active_lwp;
272
273 /*
274 * Pool and cache that pmap structures are allocated from.
275 * We use a cache to avoid clearing the pm_l2[] array (1KB)
276 * in pmap_create().
277 */
278 static struct pool_cache pmap_cache;
279 static LIST_HEAD(, pmap) pmap_pmaps;
280
281 /*
282 * Pool of PV structures
283 */
284 static struct pool pmap_pv_pool;
285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
288 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
289 };
290
291 /*
292 * Pool and cache of l2_dtable structures.
293 * We use a cache to avoid clearing the structures when they're
294 * allocated. (196 bytes)
295 */
296 static struct pool_cache pmap_l2dtable_cache;
297 static vaddr_t pmap_kernel_l2dtable_kva;
298
299 /*
300 * Pool and cache of L2 page descriptors.
301 * We use a cache to avoid clearing the descriptor table
302 * when they're allocated. (1KB)
303 */
304 static struct pool_cache pmap_l2ptp_cache;
305 static vaddr_t pmap_kernel_l2ptp_kva;
306 static paddr_t pmap_kernel_l2ptp_phys;
307
308 #ifdef PMAPCOUNTERS
309 #define PMAP_EVCNT_INITIALIZER(name) \
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
311
312 #ifdef PMAP_CACHE_VIPT
313 static struct evcnt pmap_ev_vac_clean_one =
314 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
315 static struct evcnt pmap_ev_vac_flush_one =
316 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
317 static struct evcnt pmap_ev_vac_flush_lots =
318 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
319 static struct evcnt pmap_ev_vac_flush_lots2 =
320 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
325
326 static struct evcnt pmap_ev_vac_color_new =
327 PMAP_EVCNT_INITIALIZER("new page color");
328 static struct evcnt pmap_ev_vac_color_reuse =
329 PMAP_EVCNT_INITIALIZER("ok first page color");
330 static struct evcnt pmap_ev_vac_color_ok =
331 PMAP_EVCNT_INITIALIZER("ok page color");
332 static struct evcnt pmap_ev_vac_color_blind =
333 PMAP_EVCNT_INITIALIZER("blind page color");
334 static struct evcnt pmap_ev_vac_color_change =
335 PMAP_EVCNT_INITIALIZER("change page color");
336 static struct evcnt pmap_ev_vac_color_erase =
337 PMAP_EVCNT_INITIALIZER("erase page color");
338 static struct evcnt pmap_ev_vac_color_none =
339 PMAP_EVCNT_INITIALIZER("no page color");
340 static struct evcnt pmap_ev_vac_color_restore =
341 PMAP_EVCNT_INITIALIZER("restore page color");
342
343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
351 #endif
352
353 static struct evcnt pmap_ev_mappings =
354 PMAP_EVCNT_INITIALIZER("pages mapped");
355 static struct evcnt pmap_ev_unmappings =
356 PMAP_EVCNT_INITIALIZER("pages unmapped");
357 static struct evcnt pmap_ev_remappings =
358 PMAP_EVCNT_INITIALIZER("pages remapped");
359
360 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
361 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
362 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
363
364 static struct evcnt pmap_ev_kernel_mappings =
365 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
366 static struct evcnt pmap_ev_kernel_unmappings =
367 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
368 static struct evcnt pmap_ev_kernel_remappings =
369 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
370
371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
373 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
374
375 static struct evcnt pmap_ev_kenter_mappings =
376 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
377 static struct evcnt pmap_ev_kenter_unmappings =
378 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
379 static struct evcnt pmap_ev_kenter_remappings =
380 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
381 static struct evcnt pmap_ev_pt_mappings =
382 PMAP_EVCNT_INITIALIZER("page table pages mapped");
383
384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
386 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
387 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
388
389 #ifdef PMAP_CACHE_VIPT
390 static struct evcnt pmap_ev_exec_mappings =
391 PMAP_EVCNT_INITIALIZER("exec pages mapped");
392 static struct evcnt pmap_ev_exec_cached =
393 PMAP_EVCNT_INITIALIZER("exec pages cached");
394
395 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
396 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
397
398 static struct evcnt pmap_ev_exec_synced =
399 PMAP_EVCNT_INITIALIZER("exec pages synced");
400 static struct evcnt pmap_ev_exec_synced_map =
401 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
402 static struct evcnt pmap_ev_exec_synced_unmap =
403 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
404 static struct evcnt pmap_ev_exec_synced_remap =
405 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
406 static struct evcnt pmap_ev_exec_synced_clearbit =
407 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
408 static struct evcnt pmap_ev_exec_synced_kremove =
409 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
410
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
417
418 static struct evcnt pmap_ev_exec_discarded_unmap =
419 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
420 static struct evcnt pmap_ev_exec_discarded_zero =
421 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
422 static struct evcnt pmap_ev_exec_discarded_copy =
423 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
424 static struct evcnt pmap_ev_exec_discarded_page_protect =
425 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
426 static struct evcnt pmap_ev_exec_discarded_clearbit =
427 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
428 static struct evcnt pmap_ev_exec_discarded_kremove =
429 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
430
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
437 #endif /* PMAP_CACHE_VIPT */
438
439 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
440 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
441 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
442
443 EVCNT_ATTACH_STATIC(pmap_ev_updates);
444 EVCNT_ATTACH_STATIC(pmap_ev_collects);
445 EVCNT_ATTACH_STATIC(pmap_ev_activations);
446
447 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
448 #else
449 #define PMAPCOUNT(x) ((void)0)
450 #endif
451
452 /*
453 * pmap copy/zero page, and mem(5) hook point
454 */
455 static pt_entry_t *csrc_pte, *cdst_pte;
456 static vaddr_t csrcp, cdstp;
457 vaddr_t memhook; /* used by mem.c */
458 kmutex_t memlock; /* used by mem.c */
459 void *zeropage; /* used by mem.c */
460 extern void *msgbufaddr;
461 int pmap_kmpages;
462 /*
463 * Flag to indicate if pmap_init() has done its thing
464 */
465 bool pmap_initialized;
466
467 /*
468 * Misc. locking data structures
469 */
470
471 #define pmap_acquire_pmap_lock(pm) \
472 do { \
473 if ((pm) != pmap_kernel()) \
474 mutex_enter((pm)->pm_lock); \
475 } while (/*CONSTCOND*/0)
476
477 #define pmap_release_pmap_lock(pm) \
478 do { \
479 if ((pm) != pmap_kernel()) \
480 mutex_exit((pm)->pm_lock); \
481 } while (/*CONSTCOND*/0)
482
483
484 /*
485 * Metadata for L1 translation tables.
486 */
487 struct l1_ttable {
488 /* Entry on the L1 Table list */
489 SLIST_ENTRY(l1_ttable) l1_link;
490
491 /* Entry on the L1 Least Recently Used list */
492 TAILQ_ENTRY(l1_ttable) l1_lru;
493
494 /* Track how many domains are allocated from this L1 */
495 volatile u_int l1_domain_use_count;
496
497 /*
498 * A free-list of domain numbers for this L1.
499 * We avoid using ffs() and a bitmap to track domains since ffs()
500 * is slow on ARM.
501 */
502 uint8_t l1_domain_first;
503 uint8_t l1_domain_free[PMAP_DOMAINS];
504
505 /* Physical address of this L1 page table */
506 paddr_t l1_physaddr;
507
508 /* KVA of this L1 page table */
509 pd_entry_t *l1_kva;
510 };
511
512 /*
513 * Convert a virtual address into its L1 table index. That is, the
514 * index used to locate the L2 descriptor table pointer in an L1 table.
515 * This is basically used to index l1->l1_kva[].
516 *
517 * Each L2 descriptor table represents 1MB of VA space.
518 */
519 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
520
521 /*
522 * L1 Page Tables are tracked using a Least Recently Used list.
523 * - New L1s are allocated from the HEAD.
524 * - Freed L1s are added to the TAIl.
525 * - Recently accessed L1s (where an 'access' is some change to one of
526 * the userland pmaps which owns this L1) are moved to the TAIL.
527 */
528 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
529 static kmutex_t l1_lru_lock __cacheline_aligned;
530
531 /*
532 * A list of all L1 tables
533 */
534 static SLIST_HEAD(, l1_ttable) l1_list;
535
536 /*
537 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
538 *
539 * This is normally 16MB worth L2 page descriptors for any given pmap.
540 * Reference counts are maintained for L2 descriptors so they can be
541 * freed when empty.
542 */
543 struct l2_dtable {
544 /* The number of L2 page descriptors allocated to this l2_dtable */
545 u_int l2_occupancy;
546
547 /* List of L2 page descriptors */
548 struct l2_bucket {
549 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
550 paddr_t l2b_phys; /* Physical address of same */
551 u_short l2b_l1idx; /* This L2 table's L1 index */
552 u_short l2b_occupancy; /* How many active descriptors */
553 } l2_bucket[L2_BUCKET_SIZE];
554 };
555
556 /*
557 * Given an L1 table index, calculate the corresponding l2_dtable index
558 * and bucket index within the l2_dtable.
559 */
560 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
561 (L2_SIZE - 1))
562 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
563
564 /*
565 * Given a virtual address, this macro returns the
566 * virtual address required to drop into the next L2 bucket.
567 */
568 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
569
570 /*
571 * L2 allocation.
572 */
573 #define pmap_alloc_l2_dtable() \
574 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
575 #define pmap_free_l2_dtable(l2) \
576 pool_cache_put(&pmap_l2dtable_cache, (l2))
577 #define pmap_alloc_l2_ptp(pap) \
578 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
579 PR_NOWAIT, (pap)))
580
581 /*
582 * We try to map the page tables write-through, if possible. However, not
583 * all CPUs have a write-through cache mode, so on those we have to sync
584 * the cache when we frob page tables.
585 *
586 * We try to evaluate this at compile time, if possible. However, it's
587 * not always possible to do that, hence this run-time var.
588 */
589 int pmap_needs_pte_sync;
590
591 /*
592 * Real definition of pv_entry.
593 */
594 struct pv_entry {
595 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
596 pmap_t pv_pmap; /* pmap where mapping lies */
597 vaddr_t pv_va; /* virtual address for mapping */
598 u_int pv_flags; /* flags */
599 };
600
601 /*
602 * Macro to determine if a mapping might be resident in the
603 * instruction cache and/or TLB
604 */
605 #if ARM_MMU_V7 > 0
606 /*
607 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
608 * there are no explicit accesses, so there may be always be TLB entries to
609 * flush. If we used ASIDs then this would not be a problem.
610 */
611 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
612 #else
613 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
614 #endif
615 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
616
617 /*
618 * Macro to determine if a mapping might be resident in the
619 * data cache and/or TLB
620 */
621 #if ARM_MMU_V7 > 0
622 /*
623 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
624 * there are no explicit accesses, so there may be always be TLB entries to
625 * flush. If we used ASIDs then this would not be a problem.
626 */
627 #define PV_BEEN_REFD(f) (1)
628 #else
629 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
630 #endif
631
632 /*
633 * Local prototypes
634 */
635 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
636 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
637 pt_entry_t **);
638 static bool pmap_is_current(pmap_t);
639 static bool pmap_is_cached(pmap_t);
640 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
641 pmap_t, vaddr_t, u_int);
642 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
643 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
644 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
645 u_int, u_int);
646
647 static void pmap_pinit(pmap_t);
648 static int pmap_pmap_ctor(void *, void *, int);
649
650 static void pmap_alloc_l1(pmap_t);
651 static void pmap_free_l1(pmap_t);
652 static void pmap_use_l1(pmap_t);
653
654 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
655 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
656 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
657 static int pmap_l2ptp_ctor(void *, void *, int);
658 static int pmap_l2dtable_ctor(void *, void *, int);
659
660 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
661 #ifdef PMAP_CACHE_VIVT
662 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
663 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
664 #endif
665
666 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
667 #ifdef PMAP_CACHE_VIVT
668 static int pmap_clean_page(struct pv_entry *, bool);
669 #endif
670 #ifdef PMAP_CACHE_VIPT
671 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
672 enum pmap_flush_op {
673 PMAP_FLUSH_PRIMARY,
674 PMAP_FLUSH_SECONDARY,
675 PMAP_CLEAN_PRIMARY
676 };
677 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
678 #endif
679 static void pmap_page_remove(struct vm_page_md *, paddr_t);
680
681 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
682 static vaddr_t kernel_pt_lookup(paddr_t);
683
684
685 /*
686 * Misc variables
687 */
688 vaddr_t virtual_avail;
689 vaddr_t virtual_end;
690 vaddr_t pmap_curmaxkvaddr;
691
692 paddr_t avail_start;
693 paddr_t avail_end;
694
695 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
696 pv_addr_t kernelpages;
697 pv_addr_t kernel_l1pt;
698 pv_addr_t systempage;
699
700 /* Function to set the debug level of the pmap code */
701
702 #ifdef PMAP_DEBUG
703 void
704 pmap_debug(int level)
705 {
706 pmap_debug_level = level;
707 printf("pmap_debug: level=%d\n", pmap_debug_level);
708 }
709 #endif /* PMAP_DEBUG */
710
711 #ifdef PMAP_CACHE_VIPT
712 #define PMAP_VALIDATE_MD_PAGE(md) \
713 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
714 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
715 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
716 #endif /* PMAP_CACHE_VIPT */
717 /*
718 * A bunch of routines to conditionally flush the caches/TLB depending
719 * on whether the specified pmap actually needs to be flushed at any
720 * given time.
721 */
722 static inline void
723 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
724 {
725 if (pm->pm_cstate.cs_tlb_id != 0) {
726 if (PV_BEEN_EXECD(flags)) {
727 cpu_tlb_flushID_SE(va);
728 } else if (PV_BEEN_REFD(flags)) {
729 cpu_tlb_flushD_SE(va);
730 }
731 }
732 }
733
734 static inline void
735 pmap_tlb_flushID(pmap_t pm)
736 {
737 if (pm->pm_cstate.cs_tlb_id) {
738 cpu_tlb_flushID();
739 #if ARM_MMU_V7 == 0
740 /*
741 * Speculative loads by Cortex cores can cause TLB entries to
742 * be filled even if there are no explicit accesses, so there
743 * may be always be TLB entries to flush. If we used ASIDs
744 * then it would not be a problem.
745 * This is not true for other CPUs.
746 */
747 pm->pm_cstate.cs_tlb = 0;
748 #endif /* ARM_MMU_V7 */
749 }
750 }
751
752 static inline void
753 pmap_tlb_flushD(pmap_t pm)
754 {
755 if (pm->pm_cstate.cs_tlb_d) {
756 cpu_tlb_flushD();
757 #if ARM_MMU_V7 == 0
758 /*
759 * Speculative loads by Cortex cores can cause TLB entries to
760 * be filled even if there are no explicit accesses, so there
761 * may be always be TLB entries to flush. If we used ASIDs
762 * then it would not be a problem.
763 * This is not true for other CPUs.
764 */
765 pm->pm_cstate.cs_tlb_d = 0;
766 #endif /* ARM_MMU_V7 */
767 }
768 }
769
770 #ifdef PMAP_CACHE_VIVT
771 static inline void
772 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
773 {
774 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
775 cpu_idcache_wbinv_range(va, PAGE_SIZE);
776 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
777 if (do_inv) {
778 if (flags & PVF_WRITE)
779 cpu_dcache_wbinv_range(va, PAGE_SIZE);
780 else
781 cpu_dcache_inv_range(va, PAGE_SIZE);
782 } else if (flags & PVF_WRITE) {
783 cpu_dcache_wb_range(va, PAGE_SIZE);
784 }
785 }
786 }
787
788 static inline void
789 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
790 {
791 if (PV_BEEN_EXECD(flags)) {
792 if (pm->pm_cstate.cs_cache_id) {
793 cpu_idcache_wbinv_all();
794 pm->pm_cstate.cs_cache = 0;
795 }
796 } else if (pm->pm_cstate.cs_cache_d) {
797 cpu_dcache_wbinv_all();
798 pm->pm_cstate.cs_cache_d = 0;
799 }
800 }
801 #endif /* PMAP_CACHE_VIVT */
802
803 static inline uint8_t
804 pmap_domain(pmap_t pm)
805 {
806 return pm->pm_domain;
807 }
808
809 static inline pd_entry_t *
810 pmap_l1_kva(pmap_t pm)
811 {
812 return pm->pm_l1->l1_kva;
813 }
814
815 static inline bool
816 pmap_is_current(pmap_t pm)
817 {
818
819 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
820 return true;
821
822 return false;
823 }
824
825 static inline bool
826 pmap_is_cached(pmap_t pm)
827 {
828
829 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
830 pmap_recent_user == pm)
831 return (true);
832
833 return false;
834 }
835
836 /*
837 * PTE_SYNC_CURRENT:
838 *
839 * Make sure the pte is written out to RAM.
840 * We need to do this for one of two cases:
841 * - We're dealing with the kernel pmap
842 * - There is no pmap active in the cache/tlb.
843 * - The specified pmap is 'active' in the cache/tlb.
844 */
845 #ifdef PMAP_INCLUDE_PTE_SYNC
846 #define PTE_SYNC_CURRENT(pm, ptep) \
847 do { \
848 if (PMAP_NEEDS_PTE_SYNC && \
849 pmap_is_cached(pm)) \
850 PTE_SYNC(ptep); \
851 } while (/*CONSTCOND*/0)
852 #else
853 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
854 #endif
855
856 /*
857 * main pv_entry manipulation functions:
858 * pmap_enter_pv: enter a mapping onto a vm_page list
859 * pmap_remove_pv: remove a mapping from a vm_page list
860 *
861 * NOTE: pmap_enter_pv expects to lock the pvh itself
862 * pmap_remove_pv expects the caller to lock the pvh before calling
863 */
864
865 /*
866 * pmap_enter_pv: enter a mapping onto a vm_page lst
867 *
868 * => caller should hold the proper lock on pmap_main_lock
869 * => caller should have pmap locked
870 * => we will gain the lock on the vm_page and allocate the new pv_entry
871 * => caller should adjust ptp's wire_count before calling
872 * => caller should not adjust pmap's wire_count
873 */
874 static void
875 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
876 vaddr_t va, u_int flags)
877 {
878 struct pv_entry **pvp;
879
880 NPDEBUG(PDB_PVDUMP,
881 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
882
883 pv->pv_pmap = pm;
884 pv->pv_va = va;
885 pv->pv_flags = flags;
886
887 pvp = &SLIST_FIRST(&md->pvh_list);
888 #ifdef PMAP_CACHE_VIPT
889 /*
890 * Insert unmanaged entries, writeable first, at the head of
891 * the pv list.
892 */
893 if (__predict_true((flags & PVF_KENTRY) == 0)) {
894 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
895 pvp = &SLIST_NEXT(*pvp, pv_link);
896 } else if ((flags & PVF_WRITE) == 0) {
897 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
898 pvp = &SLIST_NEXT(*pvp, pv_link);
899 }
900 #endif
901 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
902 *pvp = pv; /* ... locked list */
903 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
904 #ifdef PMAP_CACHE_VIPT
905 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
906 md->pvh_attrs |= PVF_KMOD;
907 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
908 md->pvh_attrs |= PVF_DIRTY;
909 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
910 #endif
911 if (pm == pmap_kernel()) {
912 PMAPCOUNT(kernel_mappings);
913 if (flags & PVF_WRITE)
914 md->krw_mappings++;
915 else
916 md->kro_mappings++;
917 } else {
918 if (flags & PVF_WRITE)
919 md->urw_mappings++;
920 else
921 md->uro_mappings++;
922 }
923
924 #ifdef PMAP_CACHE_VIPT
925 /*
926 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
927 * do it here as well to keep the mappings & KVF_WRITE consistent.
928 */
929 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
930 md->pvh_attrs |= PVF_WRITE;
931 }
932 /*
933 * If this is an exec mapping and its the first exec mapping
934 * for this page, make sure to sync the I-cache.
935 */
936 if (PV_IS_EXEC_P(flags)) {
937 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
938 pmap_syncicache_page(md, pa);
939 PMAPCOUNT(exec_synced_map);
940 }
941 PMAPCOUNT(exec_mappings);
942 }
943 #endif
944
945 PMAPCOUNT(mappings);
946
947 if (pv->pv_flags & PVF_WIRED)
948 ++pm->pm_stats.wired_count;
949 }
950
951 /*
952 *
953 * pmap_find_pv: Find a pv entry
954 *
955 * => caller should hold lock on vm_page
956 */
957 static inline struct pv_entry *
958 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
959 {
960 struct pv_entry *pv;
961
962 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
963 if (pm == pv->pv_pmap && va == pv->pv_va)
964 break;
965 }
966
967 return (pv);
968 }
969
970 /*
971 * pmap_remove_pv: try to remove a mapping from a pv_list
972 *
973 * => caller should hold proper lock on pmap_main_lock
974 * => pmap should be locked
975 * => caller should hold lock on vm_page [so that attrs can be adjusted]
976 * => caller should adjust ptp's wire_count and free PTP if needed
977 * => caller should NOT adjust pmap's wire_count
978 * => we return the removed pv
979 */
980 static struct pv_entry *
981 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
982 {
983 struct pv_entry *pv, **prevptr;
984
985 NPDEBUG(PDB_PVDUMP,
986 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
987
988 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
989 pv = *prevptr;
990
991 while (pv) {
992 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
993 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
994 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
995 if (pv->pv_flags & PVF_WIRED) {
996 --pm->pm_stats.wired_count;
997 }
998 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
999 if (pm == pmap_kernel()) {
1000 PMAPCOUNT(kernel_unmappings);
1001 if (pv->pv_flags & PVF_WRITE)
1002 md->krw_mappings--;
1003 else
1004 md->kro_mappings--;
1005 } else {
1006 if (pv->pv_flags & PVF_WRITE)
1007 md->urw_mappings--;
1008 else
1009 md->uro_mappings--;
1010 }
1011
1012 PMAPCOUNT(unmappings);
1013 #ifdef PMAP_CACHE_VIPT
1014 if (!(pv->pv_flags & PVF_WRITE))
1015 break;
1016 /*
1017 * If this page has had an exec mapping, then if
1018 * this was the last mapping, discard the contents,
1019 * otherwise sync the i-cache for this page.
1020 */
1021 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1022 if (SLIST_EMPTY(&md->pvh_list)) {
1023 md->pvh_attrs &= ~PVF_EXEC;
1024 PMAPCOUNT(exec_discarded_unmap);
1025 } else {
1026 pmap_syncicache_page(md, pa);
1027 PMAPCOUNT(exec_synced_unmap);
1028 }
1029 }
1030 #endif /* PMAP_CACHE_VIPT */
1031 break;
1032 }
1033 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1034 pv = *prevptr; /* advance */
1035 }
1036
1037 #ifdef PMAP_CACHE_VIPT
1038 /*
1039 * If we no longer have a WRITEABLE KENTRY at the head of list,
1040 * clear the KMOD attribute from the page.
1041 */
1042 if (SLIST_FIRST(&md->pvh_list) == NULL
1043 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1044 md->pvh_attrs &= ~PVF_KMOD;
1045
1046 /*
1047 * If this was a writeable page and there are no more writeable
1048 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1049 * the contents to memory.
1050 */
1051 if (arm_cache_prefer_mask != 0) {
1052 if (md->krw_mappings + md->urw_mappings == 0)
1053 md->pvh_attrs &= ~PVF_WRITE;
1054 PMAP_VALIDATE_MD_PAGE(md);
1055 }
1056 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1057 #endif /* PMAP_CACHE_VIPT */
1058
1059 return(pv); /* return removed pv */
1060 }
1061
1062 /*
1063 *
1064 * pmap_modify_pv: Update pv flags
1065 *
1066 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1067 * => caller should NOT adjust pmap's wire_count
1068 * => caller must call pmap_vac_me_harder() if writable status of a page
1069 * may have changed.
1070 * => we return the old flags
1071 *
1072 * Modify a physical-virtual mapping in the pv table
1073 */
1074 static u_int
1075 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1076 u_int clr_mask, u_int set_mask)
1077 {
1078 struct pv_entry *npv;
1079 u_int flags, oflags;
1080
1081 KASSERT((clr_mask & PVF_KENTRY) == 0);
1082 KASSERT((set_mask & PVF_KENTRY) == 0);
1083
1084 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1085 return (0);
1086
1087 NPDEBUG(PDB_PVDUMP,
1088 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1089
1090 /*
1091 * There is at least one VA mapping this page.
1092 */
1093
1094 if (clr_mask & (PVF_REF | PVF_MOD)) {
1095 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1096 #ifdef PMAP_CACHE_VIPT
1097 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1098 md->pvh_attrs |= PVF_DIRTY;
1099 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1100 #endif
1101 }
1102
1103 oflags = npv->pv_flags;
1104 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1105
1106 if ((flags ^ oflags) & PVF_WIRED) {
1107 if (flags & PVF_WIRED)
1108 ++pm->pm_stats.wired_count;
1109 else
1110 --pm->pm_stats.wired_count;
1111 }
1112
1113 if ((flags ^ oflags) & PVF_WRITE) {
1114 if (pm == pmap_kernel()) {
1115 if (flags & PVF_WRITE) {
1116 md->krw_mappings++;
1117 md->kro_mappings--;
1118 } else {
1119 md->kro_mappings++;
1120 md->krw_mappings--;
1121 }
1122 } else {
1123 if (flags & PVF_WRITE) {
1124 md->urw_mappings++;
1125 md->uro_mappings--;
1126 } else {
1127 md->uro_mappings++;
1128 md->urw_mappings--;
1129 }
1130 }
1131 }
1132 #ifdef PMAP_CACHE_VIPT
1133 if (arm_cache_prefer_mask != 0) {
1134 if (md->urw_mappings + md->krw_mappings == 0) {
1135 md->pvh_attrs &= ~PVF_WRITE;
1136 } else {
1137 md->pvh_attrs |= PVF_WRITE;
1138 }
1139 }
1140 /*
1141 * We have two cases here: the first is from enter_pv (new exec
1142 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1143 * Since in latter, pmap_enter_pv won't do anything, we just have
1144 * to do what pmap_remove_pv would do.
1145 */
1146 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1147 || (PV_IS_EXEC_P(md->pvh_attrs)
1148 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1149 pmap_syncicache_page(md, pa);
1150 PMAPCOUNT(exec_synced_remap);
1151 }
1152 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1153 #endif
1154
1155 PMAPCOUNT(remappings);
1156
1157 return (oflags);
1158 }
1159
1160 /*
1161 * Allocate an L1 translation table for the specified pmap.
1162 * This is called at pmap creation time.
1163 */
1164 static void
1165 pmap_alloc_l1(pmap_t pm)
1166 {
1167 struct l1_ttable *l1;
1168 uint8_t domain;
1169
1170 /*
1171 * Remove the L1 at the head of the LRU list
1172 */
1173 mutex_spin_enter(&l1_lru_lock);
1174 l1 = TAILQ_FIRST(&l1_lru_list);
1175 KDASSERT(l1 != NULL);
1176 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1177
1178 /*
1179 * Pick the first available domain number, and update
1180 * the link to the next number.
1181 */
1182 domain = l1->l1_domain_first;
1183 l1->l1_domain_first = l1->l1_domain_free[domain];
1184
1185 /*
1186 * If there are still free domain numbers in this L1,
1187 * put it back on the TAIL of the LRU list.
1188 */
1189 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1190 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1191
1192 mutex_spin_exit(&l1_lru_lock);
1193
1194 /*
1195 * Fix up the relevant bits in the pmap structure
1196 */
1197 pm->pm_l1 = l1;
1198 pm->pm_domain = domain + 1;
1199 }
1200
1201 /*
1202 * Free an L1 translation table.
1203 * This is called at pmap destruction time.
1204 */
1205 static void
1206 pmap_free_l1(pmap_t pm)
1207 {
1208 struct l1_ttable *l1 = pm->pm_l1;
1209
1210 mutex_spin_enter(&l1_lru_lock);
1211
1212 /*
1213 * If this L1 is currently on the LRU list, remove it.
1214 */
1215 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1216 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1217
1218 /*
1219 * Free up the domain number which was allocated to the pmap
1220 */
1221 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1222 l1->l1_domain_first = pmap_domain(pm) - 1;
1223 l1->l1_domain_use_count--;
1224
1225 /*
1226 * The L1 now must have at least 1 free domain, so add
1227 * it back to the LRU list. If the use count is zero,
1228 * put it at the head of the list, otherwise it goes
1229 * to the tail.
1230 */
1231 if (l1->l1_domain_use_count == 0)
1232 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1233 else
1234 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1235
1236 mutex_spin_exit(&l1_lru_lock);
1237 }
1238
1239 static inline void
1240 pmap_use_l1(pmap_t pm)
1241 {
1242 struct l1_ttable *l1;
1243
1244 /*
1245 * Do nothing if we're in interrupt context.
1246 * Access to an L1 by the kernel pmap must not affect
1247 * the LRU list.
1248 */
1249 if (cpu_intr_p() || pm == pmap_kernel())
1250 return;
1251
1252 l1 = pm->pm_l1;
1253
1254 /*
1255 * If the L1 is not currently on the LRU list, just return
1256 */
1257 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1258 return;
1259
1260 mutex_spin_enter(&l1_lru_lock);
1261
1262 /*
1263 * Check the use count again, now that we've acquired the lock
1264 */
1265 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1266 mutex_spin_exit(&l1_lru_lock);
1267 return;
1268 }
1269
1270 /*
1271 * Move the L1 to the back of the LRU list
1272 */
1273 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1274 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1275
1276 mutex_spin_exit(&l1_lru_lock);
1277 }
1278
1279 /*
1280 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1281 *
1282 * Free an L2 descriptor table.
1283 */
1284 static inline void
1285 #ifndef PMAP_INCLUDE_PTE_SYNC
1286 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1287 #else
1288 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1289 #endif
1290 {
1291 #ifdef PMAP_INCLUDE_PTE_SYNC
1292 #ifdef PMAP_CACHE_VIVT
1293 /*
1294 * Note: With a write-back cache, we may need to sync this
1295 * L2 table before re-using it.
1296 * This is because it may have belonged to a non-current
1297 * pmap, in which case the cache syncs would have been
1298 * skipped for the pages that were being unmapped. If the
1299 * L2 table were then to be immediately re-allocated to
1300 * the *current* pmap, it may well contain stale mappings
1301 * which have not yet been cleared by a cache write-back
1302 * and so would still be visible to the mmu.
1303 */
1304 if (need_sync)
1305 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1306 #endif /* PMAP_CACHE_VIVT */
1307 #endif /* PMAP_INCLUDE_PTE_SYNC */
1308 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1309 }
1310
1311 /*
1312 * Returns a pointer to the L2 bucket associated with the specified pmap
1313 * and VA, or NULL if no L2 bucket exists for the address.
1314 */
1315 static inline struct l2_bucket *
1316 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1317 {
1318 struct l2_dtable *l2;
1319 struct l2_bucket *l2b;
1320 u_short l1idx;
1321
1322 l1idx = L1_IDX(va);
1323
1324 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1325 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1326 return (NULL);
1327
1328 return (l2b);
1329 }
1330
1331 /*
1332 * Returns a pointer to the L2 bucket associated with the specified pmap
1333 * and VA.
1334 *
1335 * If no L2 bucket exists, perform the necessary allocations to put an L2
1336 * bucket/page table in place.
1337 *
1338 * Note that if a new L2 bucket/page was allocated, the caller *must*
1339 * increment the bucket occupancy counter appropriately *before*
1340 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1341 * the bucket/page in the meantime.
1342 */
1343 static struct l2_bucket *
1344 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1345 {
1346 struct l2_dtable *l2;
1347 struct l2_bucket *l2b;
1348 u_short l1idx;
1349
1350 l1idx = L1_IDX(va);
1351
1352 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1353 /*
1354 * No mapping at this address, as there is
1355 * no entry in the L1 table.
1356 * Need to allocate a new l2_dtable.
1357 */
1358 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1359 return (NULL);
1360
1361 /*
1362 * Link it into the parent pmap
1363 */
1364 pm->pm_l2[L2_IDX(l1idx)] = l2;
1365 }
1366
1367 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1368
1369 /*
1370 * Fetch pointer to the L2 page table associated with the address.
1371 */
1372 if (l2b->l2b_kva == NULL) {
1373 pt_entry_t *ptep;
1374
1375 /*
1376 * No L2 page table has been allocated. Chances are, this
1377 * is because we just allocated the l2_dtable, above.
1378 */
1379 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1380 /*
1381 * Oops, no more L2 page tables available at this
1382 * time. We may need to deallocate the l2_dtable
1383 * if we allocated a new one above.
1384 */
1385 if (l2->l2_occupancy == 0) {
1386 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1387 pmap_free_l2_dtable(l2);
1388 }
1389 return (NULL);
1390 }
1391
1392 l2->l2_occupancy++;
1393 l2b->l2b_kva = ptep;
1394 l2b->l2b_l1idx = l1idx;
1395 }
1396
1397 return (l2b);
1398 }
1399
1400 /*
1401 * One or more mappings in the specified L2 descriptor table have just been
1402 * invalidated.
1403 *
1404 * Garbage collect the metadata and descriptor table itself if necessary.
1405 *
1406 * The pmap lock must be acquired when this is called (not necessary
1407 * for the kernel pmap).
1408 */
1409 static void
1410 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1411 {
1412 struct l2_dtable *l2;
1413 pd_entry_t *pl1pd, l1pd;
1414 pt_entry_t *ptep;
1415 u_short l1idx;
1416
1417 KDASSERT(count <= l2b->l2b_occupancy);
1418
1419 /*
1420 * Update the bucket's reference count according to how many
1421 * PTEs the caller has just invalidated.
1422 */
1423 l2b->l2b_occupancy -= count;
1424
1425 /*
1426 * Note:
1427 *
1428 * Level 2 page tables allocated to the kernel pmap are never freed
1429 * as that would require checking all Level 1 page tables and
1430 * removing any references to the Level 2 page table. See also the
1431 * comment elsewhere about never freeing bootstrap L2 descriptors.
1432 *
1433 * We make do with just invalidating the mapping in the L2 table.
1434 *
1435 * This isn't really a big deal in practice and, in fact, leads
1436 * to a performance win over time as we don't need to continually
1437 * alloc/free.
1438 */
1439 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1440 return;
1441
1442 /*
1443 * There are no more valid mappings in this level 2 page table.
1444 * Go ahead and NULL-out the pointer in the bucket, then
1445 * free the page table.
1446 */
1447 l1idx = l2b->l2b_l1idx;
1448 ptep = l2b->l2b_kva;
1449 l2b->l2b_kva = NULL;
1450
1451 pl1pd = pmap_l1_kva(pm) + l1idx;
1452
1453 /*
1454 * If the L1 slot matches the pmap's domain
1455 * number, then invalidate it.
1456 */
1457 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1458 if (l1pd == (L1_C_DOM(pmap_domain(pm)) | L1_TYPE_C)) {
1459 *pl1pd = 0;
1460 PTE_SYNC(pl1pd);
1461 }
1462
1463 /*
1464 * Release the L2 descriptor table back to the pool cache.
1465 */
1466 #ifndef PMAP_INCLUDE_PTE_SYNC
1467 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1468 #else
1469 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1470 #endif
1471
1472 /*
1473 * Update the reference count in the associated l2_dtable
1474 */
1475 l2 = pm->pm_l2[L2_IDX(l1idx)];
1476 if (--l2->l2_occupancy > 0)
1477 return;
1478
1479 /*
1480 * There are no more valid mappings in any of the Level 1
1481 * slots managed by this l2_dtable. Go ahead and NULL-out
1482 * the pointer in the parent pmap and free the l2_dtable.
1483 */
1484 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1485 pmap_free_l2_dtable(l2);
1486 }
1487
1488 /*
1489 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1490 * structures.
1491 */
1492 static int
1493 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1494 {
1495 #ifndef PMAP_INCLUDE_PTE_SYNC
1496 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1497
1498 /*
1499 * The mappings for these page tables were initially made using
1500 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1501 * mode will not be right for page table mappings. To avoid
1502 * polluting the pmap_kenter_pa() code with a special case for
1503 * page tables, we simply fix up the cache-mode here if it's not
1504 * correct.
1505 */
1506 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1507 KDASSERT(l2b != NULL);
1508 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
1509 pt_entry_t opte = *ptep;
1510
1511 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1512 /*
1513 * Page tables must have the cache-mode set to Write-Thru.
1514 */
1515 const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
1516 | pte_l2_s_cache_mode_pt;
1517 l2pte_set(ptep, npte, opte);
1518 PTE_SYNC(ptep);
1519 cpu_tlb_flushD_SE(va);
1520 cpu_cpwait();
1521 }
1522 #endif
1523
1524 memset(v, 0, L2_TABLE_SIZE_REAL);
1525 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1526 return (0);
1527 }
1528
1529 static int
1530 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1531 {
1532
1533 memset(v, 0, sizeof(struct l2_dtable));
1534 return (0);
1535 }
1536
1537 static int
1538 pmap_pmap_ctor(void *arg, void *v, int flags)
1539 {
1540
1541 memset(v, 0, sizeof(struct pmap));
1542 return (0);
1543 }
1544
1545 static void
1546 pmap_pinit(pmap_t pm)
1547 {
1548 #ifndef ARM_HAS_VBAR
1549 struct l2_bucket *l2b;
1550
1551 if (vector_page < KERNEL_BASE) {
1552 /*
1553 * Map the vector page.
1554 */
1555 pmap_enter(pm, vector_page, systempage.pv_pa,
1556 VM_PROT_READ | VM_PROT_EXECUTE,
1557 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1558 pmap_update(pm);
1559
1560 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
1561 l2b = pmap_get_l2_bucket(pm, vector_page);
1562 KDASSERT(l2b != NULL);
1563 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1564 L1_C_DOM(pmap_domain(pm));
1565 } else
1566 pm->pm_pl1vec = NULL;
1567 #endif
1568 }
1569
1570 #ifdef PMAP_CACHE_VIVT
1571 /*
1572 * Since we have a virtually indexed cache, we may need to inhibit caching if
1573 * there is more than one mapping and at least one of them is writable.
1574 * Since we purge the cache on every context switch, we only need to check for
1575 * other mappings within the same pmap, or kernel_pmap.
1576 * This function is also called when a page is unmapped, to possibly reenable
1577 * caching on any remaining mappings.
1578 *
1579 * The code implements the following logic, where:
1580 *
1581 * KW = # of kernel read/write pages
1582 * KR = # of kernel read only pages
1583 * UW = # of user read/write pages
1584 * UR = # of user read only pages
1585 *
1586 * KC = kernel mapping is cacheable
1587 * UC = user mapping is cacheable
1588 *
1589 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1590 * +---------------------------------------------
1591 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1592 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1593 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1594 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1595 */
1596
1597 static const int pmap_vac_flags[4][4] = {
1598 {-1, 0, 0, PVF_KNC},
1599 {0, 0, PVF_NC, PVF_NC},
1600 {0, PVF_NC, PVF_NC, PVF_NC},
1601 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1602 };
1603
1604 static inline int
1605 pmap_get_vac_flags(const struct vm_page_md *md)
1606 {
1607 int kidx, uidx;
1608
1609 kidx = 0;
1610 if (md->kro_mappings || md->krw_mappings > 1)
1611 kidx |= 1;
1612 if (md->krw_mappings)
1613 kidx |= 2;
1614
1615 uidx = 0;
1616 if (md->uro_mappings || md->urw_mappings > 1)
1617 uidx |= 1;
1618 if (md->urw_mappings)
1619 uidx |= 2;
1620
1621 return (pmap_vac_flags[uidx][kidx]);
1622 }
1623
1624 static inline void
1625 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1626 {
1627 int nattr;
1628
1629 nattr = pmap_get_vac_flags(md);
1630
1631 if (nattr < 0) {
1632 md->pvh_attrs &= ~PVF_NC;
1633 return;
1634 }
1635
1636 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1637 return;
1638
1639 if (pm == pmap_kernel())
1640 pmap_vac_me_kpmap(md, pa, pm, va);
1641 else
1642 pmap_vac_me_user(md, pa, pm, va);
1643
1644 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1645 }
1646
1647 static void
1648 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1649 {
1650 u_int u_cacheable, u_entries;
1651 struct pv_entry *pv;
1652 pmap_t last_pmap = pm;
1653
1654 /*
1655 * Pass one, see if there are both kernel and user pmaps for
1656 * this page. Calculate whether there are user-writable or
1657 * kernel-writable pages.
1658 */
1659 u_cacheable = 0;
1660 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1661 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1662 u_cacheable++;
1663 }
1664
1665 u_entries = md->urw_mappings + md->uro_mappings;
1666
1667 /*
1668 * We know we have just been updating a kernel entry, so if
1669 * all user pages are already cacheable, then there is nothing
1670 * further to do.
1671 */
1672 if (md->k_mappings == 0 && u_cacheable == u_entries)
1673 return;
1674
1675 if (u_entries) {
1676 /*
1677 * Scan over the list again, for each entry, if it
1678 * might not be set correctly, call pmap_vac_me_user
1679 * to recalculate the settings.
1680 */
1681 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1682 /*
1683 * We know kernel mappings will get set
1684 * correctly in other calls. We also know
1685 * that if the pmap is the same as last_pmap
1686 * then we've just handled this entry.
1687 */
1688 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1689 continue;
1690
1691 /*
1692 * If there are kernel entries and this page
1693 * is writable but non-cacheable, then we can
1694 * skip this entry also.
1695 */
1696 if (md->k_mappings &&
1697 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1698 (PVF_NC | PVF_WRITE))
1699 continue;
1700
1701 /*
1702 * Similarly if there are no kernel-writable
1703 * entries and the page is already
1704 * read-only/cacheable.
1705 */
1706 if (md->krw_mappings == 0 &&
1707 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1708 continue;
1709
1710 /*
1711 * For some of the remaining cases, we know
1712 * that we must recalculate, but for others we
1713 * can't tell if they are correct or not, so
1714 * we recalculate anyway.
1715 */
1716 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1717 }
1718
1719 if (md->k_mappings == 0)
1720 return;
1721 }
1722
1723 pmap_vac_me_user(md, pa, pm, va);
1724 }
1725
1726 static void
1727 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1728 {
1729 pmap_t kpmap = pmap_kernel();
1730 struct pv_entry *pv, *npv = NULL;
1731 u_int entries = 0;
1732 u_int writable = 0;
1733 u_int cacheable_entries = 0;
1734 u_int kern_cacheable = 0;
1735 u_int other_writable = 0;
1736
1737 /*
1738 * Count mappings and writable mappings in this pmap.
1739 * Include kernel mappings as part of our own.
1740 * Keep a pointer to the first one.
1741 */
1742 npv = NULL;
1743 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1744 /* Count mappings in the same pmap */
1745 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1746 if (entries++ == 0)
1747 npv = pv;
1748
1749 /* Cacheable mappings */
1750 if ((pv->pv_flags & PVF_NC) == 0) {
1751 cacheable_entries++;
1752 if (kpmap == pv->pv_pmap)
1753 kern_cacheable++;
1754 }
1755
1756 /* Writable mappings */
1757 if (pv->pv_flags & PVF_WRITE)
1758 ++writable;
1759 } else
1760 if (pv->pv_flags & PVF_WRITE)
1761 other_writable = 1;
1762 }
1763
1764 /*
1765 * Enable or disable caching as necessary.
1766 * Note: the first entry might be part of the kernel pmap,
1767 * so we can't assume this is indicative of the state of the
1768 * other (maybe non-kpmap) entries.
1769 */
1770 if ((entries > 1 && writable) ||
1771 (entries > 0 && pm == kpmap && other_writable)) {
1772 if (cacheable_entries == 0)
1773 return;
1774
1775 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1776 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1777 (pv->pv_flags & PVF_NC))
1778 continue;
1779
1780 pv->pv_flags |= PVF_NC;
1781
1782 struct l2_bucket * const l2b
1783 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1784 KDASSERT(l2b != NULL);
1785 pt_entry_t * const ptep
1786 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1787 const pt_entry_t opte = *ptep;
1788 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1789
1790 if ((va != pv->pv_va || pm != pv->pv_pmap)
1791 && l2pte_valid(npte)) {
1792 #ifdef PMAP_CACHE_VIVT
1793 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1794 true, pv->pv_flags);
1795 #endif
1796 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1797 pv->pv_flags);
1798 }
1799
1800 l2pte_set(ptep, npte, opte);
1801 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1802 }
1803 cpu_cpwait();
1804 } else
1805 if (entries > cacheable_entries) {
1806 /*
1807 * Turn cacheing back on for some pages. If it is a kernel
1808 * page, only do so if there are no other writable pages.
1809 */
1810 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1811 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1812 (kpmap != pv->pv_pmap || other_writable)))
1813 continue;
1814
1815 pv->pv_flags &= ~PVF_NC;
1816
1817 struct l2_bucket * const l2b
1818 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1819 KDASSERT(l2b != NULL);
1820 pt_entry_t * const ptep
1821 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1822 const pt_entry_t opte = *ptep;
1823 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1824 | pte_l2_s_cache_mode;
1825
1826 if (l2pte_valid(opte)) {
1827 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1828 pv->pv_flags);
1829 }
1830
1831 l2pte_set(ptep, npte, opte);
1832 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1833 }
1834 }
1835 }
1836 #endif
1837
1838 #ifdef PMAP_CACHE_VIPT
1839 static void
1840 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1841 {
1842 struct pv_entry *pv;
1843 vaddr_t tst_mask;
1844 bool bad_alias;
1845 const u_int
1846 rw_mappings = md->urw_mappings + md->krw_mappings,
1847 ro_mappings = md->uro_mappings + md->kro_mappings;
1848
1849 /* do we need to do anything? */
1850 if (arm_cache_prefer_mask == 0)
1851 return;
1852
1853 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1854 md, pm, va));
1855
1856 KASSERT(!va || pm);
1857 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1858
1859 /* Already a conflict? */
1860 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1861 /* just an add, things are already non-cached */
1862 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1863 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1864 bad_alias = false;
1865 if (va) {
1866 PMAPCOUNT(vac_color_none);
1867 bad_alias = true;
1868 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1869 goto fixup;
1870 }
1871 pv = SLIST_FIRST(&md->pvh_list);
1872 /* the list can't be empty because it would be cachable */
1873 if (md->pvh_attrs & PVF_KMPAGE) {
1874 tst_mask = md->pvh_attrs;
1875 } else {
1876 KASSERT(pv);
1877 tst_mask = pv->pv_va;
1878 pv = SLIST_NEXT(pv, pv_link);
1879 }
1880 /*
1881 * Only check for a bad alias if we have writable mappings.
1882 */
1883 tst_mask &= arm_cache_prefer_mask;
1884 if (rw_mappings > 0) {
1885 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1886 /* if there's a bad alias, stop checking. */
1887 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1888 bad_alias = true;
1889 }
1890 md->pvh_attrs |= PVF_WRITE;
1891 if (!bad_alias)
1892 md->pvh_attrs |= PVF_DIRTY;
1893 } else {
1894 /*
1895 * We have only read-only mappings. Let's see if there
1896 * are multiple colors in use or if we mapped a KMPAGE.
1897 * If the latter, we have a bad alias. If the former,
1898 * we need to remember that.
1899 */
1900 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1901 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1902 if (md->pvh_attrs & PVF_KMPAGE)
1903 bad_alias = true;
1904 break;
1905 }
1906 }
1907 md->pvh_attrs &= ~PVF_WRITE;
1908 /*
1909 * No KMPAGE and we exited early, so we must have
1910 * multiple color mappings.
1911 */
1912 if (!bad_alias && pv != NULL)
1913 md->pvh_attrs |= PVF_MULTCLR;
1914 }
1915
1916 /* If no conflicting colors, set everything back to cached */
1917 if (!bad_alias) {
1918 #ifdef DEBUG
1919 if ((md->pvh_attrs & PVF_WRITE)
1920 || ro_mappings < 2) {
1921 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1922 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1923 }
1924 #endif
1925 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1926 md->pvh_attrs |= tst_mask | PVF_COLORED;
1927 /*
1928 * Restore DIRTY bit if page is modified
1929 */
1930 if (md->pvh_attrs & PVF_DMOD)
1931 md->pvh_attrs |= PVF_DIRTY;
1932 PMAPCOUNT(vac_color_restore);
1933 } else {
1934 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1935 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1936 }
1937 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1938 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1939 } else if (!va) {
1940 KASSERT(pmap_is_page_colored_p(md));
1941 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1942 || (md->pvh_attrs & PVF_DIRTY));
1943 if (rw_mappings == 0) {
1944 md->pvh_attrs &= ~PVF_WRITE;
1945 if (ro_mappings == 1
1946 && (md->pvh_attrs & PVF_MULTCLR)) {
1947 /*
1948 * If this is the last readonly mapping
1949 * but it doesn't match the current color
1950 * for the page, change the current color
1951 * to match this last readonly mapping.
1952 */
1953 pv = SLIST_FIRST(&md->pvh_list);
1954 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1955 & arm_cache_prefer_mask;
1956 if (tst_mask) {
1957 md->pvh_attrs ^= tst_mask;
1958 PMAPCOUNT(vac_color_change);
1959 }
1960 }
1961 }
1962 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1963 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1964 return;
1965 } else if (!pmap_is_page_colored_p(md)) {
1966 /* not colored so we just use its color */
1967 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1968 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1969 PMAPCOUNT(vac_color_new);
1970 md->pvh_attrs &= PAGE_SIZE - 1;
1971 md->pvh_attrs |= PVF_COLORED
1972 | (va & arm_cache_prefer_mask)
1973 | (rw_mappings > 0 ? PVF_WRITE : 0);
1974 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1975 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1976 return;
1977 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1978 bad_alias = false;
1979 if (rw_mappings > 0) {
1980 /*
1981 * We now have writeable mappings and if we have
1982 * readonly mappings in more than once color, we have
1983 * an aliasing problem. Regardless mark the page as
1984 * writeable.
1985 */
1986 if (md->pvh_attrs & PVF_MULTCLR) {
1987 if (ro_mappings < 2) {
1988 /*
1989 * If we only have less than two
1990 * read-only mappings, just flush the
1991 * non-primary colors from the cache.
1992 */
1993 pmap_flush_page(md, pa,
1994 PMAP_FLUSH_SECONDARY);
1995 } else {
1996 bad_alias = true;
1997 }
1998 }
1999 md->pvh_attrs |= PVF_WRITE;
2000 }
2001 /* If no conflicting colors, set everything back to cached */
2002 if (!bad_alias) {
2003 #ifdef DEBUG
2004 if (rw_mappings > 0
2005 || (md->pvh_attrs & PMAP_KMPAGE)) {
2006 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2007 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2008 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2009 }
2010 #endif
2011 if (SLIST_EMPTY(&md->pvh_list))
2012 PMAPCOUNT(vac_color_reuse);
2013 else
2014 PMAPCOUNT(vac_color_ok);
2015
2016 /* matching color, just return */
2017 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2018 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2019 return;
2020 }
2021 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2022 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2023
2024 /* color conflict. evict from cache. */
2025
2026 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2027 md->pvh_attrs &= ~PVF_COLORED;
2028 md->pvh_attrs |= PVF_NC;
2029 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2030 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2031 PMAPCOUNT(vac_color_erase);
2032 } else if (rw_mappings == 0
2033 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2034 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2035
2036 /*
2037 * If the page has dirty cache lines, clean it.
2038 */
2039 if (md->pvh_attrs & PVF_DIRTY)
2040 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2041
2042 /*
2043 * If this is the first remapping (we know that there are no
2044 * writeable mappings), then this is a simple color change.
2045 * Otherwise this is a seconary r/o mapping, which means
2046 * we don't have to do anything.
2047 */
2048 if (ro_mappings == 1) {
2049 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2050 md->pvh_attrs &= PAGE_SIZE - 1;
2051 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2052 PMAPCOUNT(vac_color_change);
2053 } else {
2054 PMAPCOUNT(vac_color_blind);
2055 }
2056 md->pvh_attrs |= PVF_MULTCLR;
2057 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2058 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2059 return;
2060 } else {
2061 if (rw_mappings > 0)
2062 md->pvh_attrs |= PVF_WRITE;
2063
2064 /* color conflict. evict from cache. */
2065 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2066
2067 /* the list can't be empty because this was a enter/modify */
2068 pv = SLIST_FIRST(&md->pvh_list);
2069 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2070 KASSERT(pv);
2071 /*
2072 * If there's only one mapped page, change color to the
2073 * page's new color and return. Restore the DIRTY bit
2074 * that was erased by pmap_flush_page.
2075 */
2076 if (SLIST_NEXT(pv, pv_link) == NULL) {
2077 md->pvh_attrs &= PAGE_SIZE - 1;
2078 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2079 if (md->pvh_attrs & PVF_DMOD)
2080 md->pvh_attrs |= PVF_DIRTY;
2081 PMAPCOUNT(vac_color_change);
2082 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2083 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2084 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2085 return;
2086 }
2087 }
2088 bad_alias = true;
2089 md->pvh_attrs &= ~PVF_COLORED;
2090 md->pvh_attrs |= PVF_NC;
2091 PMAPCOUNT(vac_color_erase);
2092 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2093 }
2094
2095 fixup:
2096 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2097
2098 /*
2099 * Turn cacheing on/off for all pages.
2100 */
2101 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2102 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2103 pv->pv_va);
2104 KDASSERT(l2b != NULL);
2105 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2106 const pt_entry_t opte = *ptep;
2107 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2108 if (bad_alias) {
2109 pv->pv_flags |= PVF_NC;
2110 } else {
2111 pv->pv_flags &= ~PVF_NC;
2112 npte |= pte_l2_s_cache_mode;
2113 }
2114
2115 if (opte == npte) /* only update is there's a change */
2116 continue;
2117
2118 if (l2pte_valid(npte)) {
2119 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2120 }
2121
2122 l2pte_set(ptep, npte, opte);
2123 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2124 }
2125 }
2126 #endif /* PMAP_CACHE_VIPT */
2127
2128
2129 /*
2130 * Modify pte bits for all ptes corresponding to the given physical address.
2131 * We use `maskbits' rather than `clearbits' because we're always passing
2132 * constants and the latter would require an extra inversion at run-time.
2133 */
2134 static void
2135 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2136 {
2137 struct pv_entry *pv;
2138 pmap_t pm;
2139 vaddr_t va;
2140 u_int oflags;
2141 #ifdef PMAP_CACHE_VIPT
2142 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2143 bool need_vac_me_harder = false;
2144 bool need_syncicache = false;
2145 #endif
2146
2147 NPDEBUG(PDB_BITS,
2148 printf("pmap_clearbit: md %p mask 0x%x\n",
2149 md, maskbits));
2150
2151 #ifdef PMAP_CACHE_VIPT
2152 /*
2153 * If we might want to sync the I-cache and we've modified it,
2154 * then we know we definitely need to sync or discard it.
2155 */
2156 if (want_syncicache) {
2157 need_syncicache = md->pvh_attrs & PVF_MOD;
2158 }
2159 #endif
2160 /*
2161 * Clear saved attributes (modify, reference)
2162 */
2163 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2164
2165 if (SLIST_EMPTY(&md->pvh_list)) {
2166 #if defined(PMAP_CACHE_VIPT)
2167 if (need_syncicache) {
2168 /*
2169 * No one has it mapped, so just discard it. The next
2170 * exec remapping will cause it to be synced.
2171 */
2172 md->pvh_attrs &= ~PVF_EXEC;
2173 PMAPCOUNT(exec_discarded_clearbit);
2174 }
2175 #endif
2176 return;
2177 }
2178
2179 /*
2180 * Loop over all current mappings setting/clearing as appropos
2181 */
2182 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2183 va = pv->pv_va;
2184 pm = pv->pv_pmap;
2185 oflags = pv->pv_flags;
2186 /*
2187 * Kernel entries are unmanaged and as such not to be changed.
2188 */
2189 if (oflags & PVF_KENTRY)
2190 continue;
2191 pv->pv_flags &= ~maskbits;
2192
2193 pmap_acquire_pmap_lock(pm);
2194
2195 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2196 KDASSERT(l2b != NULL);
2197
2198 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2199 const pt_entry_t opte = *ptep;
2200 pt_entry_t npte = opte;
2201
2202 NPDEBUG(PDB_BITS,
2203 printf(
2204 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2205 pv, pv->pv_pmap, pv->pv_va, oflags));
2206
2207 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2208 #ifdef PMAP_CACHE_VIVT
2209 if ((pv->pv_flags & PVF_NC)) {
2210 /*
2211 * Entry is not cacheable:
2212 *
2213 * Don't turn caching on again if this is a
2214 * modified emulation. This would be
2215 * inconsitent with the settings created by
2216 * pmap_vac_me_harder(). Otherwise, it's safe
2217 * to re-enable cacheing.
2218 *
2219 * There's no need to call pmap_vac_me_harder()
2220 * here: all pages are losing their write
2221 * permission.
2222 */
2223 if (maskbits & PVF_WRITE) {
2224 npte |= pte_l2_s_cache_mode;
2225 pv->pv_flags &= ~PVF_NC;
2226 }
2227 } else
2228 if (l2pte_writable_p(opte)) {
2229 /*
2230 * Entry is writable/cacheable: check if pmap
2231 * is current if it is flush it, otherwise it
2232 * won't be in the cache
2233 */
2234 pmap_cache_wbinv_page(pm, pv->pv_va,
2235 (maskbits & PVF_REF) != 0,
2236 oflags|PVF_WRITE);
2237 }
2238 #endif
2239
2240 /* make the pte read only */
2241 npte = l2pte_set_readonly(npte);
2242
2243 if (maskbits & oflags & PVF_WRITE) {
2244 /*
2245 * Keep alias accounting up to date
2246 */
2247 if (pv->pv_pmap == pmap_kernel()) {
2248 md->krw_mappings--;
2249 md->kro_mappings++;
2250 } else {
2251 md->urw_mappings--;
2252 md->uro_mappings++;
2253 }
2254 #ifdef PMAP_CACHE_VIPT
2255 if (arm_cache_prefer_mask != 0) {
2256 if (md->urw_mappings + md->krw_mappings == 0) {
2257 md->pvh_attrs &= ~PVF_WRITE;
2258 } else {
2259 PMAP_VALIDATE_MD_PAGE(md);
2260 }
2261 }
2262 if (want_syncicache)
2263 need_syncicache = true;
2264 need_vac_me_harder = true;
2265 #endif
2266 }
2267 }
2268
2269 if (maskbits & PVF_REF) {
2270 if ((pv->pv_flags & PVF_NC) == 0
2271 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2272 && l2pte_valid(npte)) {
2273 #ifdef PMAP_CACHE_VIVT
2274 /*
2275 * Check npte here; we may have already
2276 * done the wbinv above, and the validity
2277 * of the PTE is the same for opte and
2278 * npte.
2279 */
2280 pmap_cache_wbinv_page(pm, pv->pv_va, true,
2281 oflags);
2282 #endif
2283 }
2284
2285 /*
2286 * Make the PTE invalid so that we will take a
2287 * page fault the next time the mapping is
2288 * referenced.
2289 */
2290 npte &= ~L2_TYPE_MASK;
2291 npte |= L2_TYPE_INV;
2292 }
2293
2294 if (npte != opte) {
2295 l2pte_set(ptep, npte, opte);
2296 PTE_SYNC(ptep);
2297
2298 /* Flush the TLB entry if a current pmap. */
2299 pmap_tlb_flush_SE(pm, pv->pv_va, oflags);
2300 }
2301
2302 pmap_release_pmap_lock(pm);
2303
2304 NPDEBUG(PDB_BITS,
2305 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2306 pm, va, opte, npte));
2307 }
2308
2309 #ifdef PMAP_CACHE_VIPT
2310 /*
2311 * If we need to sync the I-cache and we haven't done it yet, do it.
2312 */
2313 if (need_syncicache) {
2314 pmap_syncicache_page(md, pa);
2315 PMAPCOUNT(exec_synced_clearbit);
2316 }
2317
2318 /*
2319 * If we are changing this to read-only, we need to call vac_me_harder
2320 * so we can change all the read-only pages to cacheable. We pretend
2321 * this as a page deletion.
2322 */
2323 if (need_vac_me_harder) {
2324 if (md->pvh_attrs & PVF_NC)
2325 pmap_vac_me_harder(md, pa, NULL, 0);
2326 }
2327 #endif
2328 }
2329
2330 /*
2331 * pmap_clean_page()
2332 *
2333 * This is a local function used to work out the best strategy to clean
2334 * a single page referenced by its entry in the PV table. It's used by
2335 * pmap_copy_page, pmap_zero page and maybe some others later on.
2336 *
2337 * Its policy is effectively:
2338 * o If there are no mappings, we don't bother doing anything with the cache.
2339 * o If there is one mapping, we clean just that page.
2340 * o If there are multiple mappings, we clean the entire cache.
2341 *
2342 * So that some functions can be further optimised, it returns 0 if it didn't
2343 * clean the entire cache, or 1 if it did.
2344 *
2345 * XXX One bug in this routine is that if the pv_entry has a single page
2346 * mapped at 0x00000000 a whole cache clean will be performed rather than
2347 * just the 1 page. Since this should not occur in everyday use and if it does
2348 * it will just result in not the most efficient clean for the page.
2349 */
2350 #ifdef PMAP_CACHE_VIVT
2351 static int
2352 pmap_clean_page(struct pv_entry *pv, bool is_src)
2353 {
2354 pmap_t pm_to_clean = NULL;
2355 struct pv_entry *npv;
2356 u_int cache_needs_cleaning = 0;
2357 u_int flags = 0;
2358 vaddr_t page_to_clean = 0;
2359
2360 if (pv == NULL) {
2361 /* nothing mapped in so nothing to flush */
2362 return (0);
2363 }
2364
2365 /*
2366 * Since we flush the cache each time we change to a different
2367 * user vmspace, we only need to flush the page if it is in the
2368 * current pmap.
2369 */
2370
2371 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2372 if (pmap_is_current(npv->pv_pmap)) {
2373 flags |= npv->pv_flags;
2374 /*
2375 * The page is mapped non-cacheable in
2376 * this map. No need to flush the cache.
2377 */
2378 if (npv->pv_flags & PVF_NC) {
2379 #ifdef DIAGNOSTIC
2380 if (cache_needs_cleaning)
2381 panic("pmap_clean_page: "
2382 "cache inconsistency");
2383 #endif
2384 break;
2385 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2386 continue;
2387 if (cache_needs_cleaning) {
2388 page_to_clean = 0;
2389 break;
2390 } else {
2391 page_to_clean = npv->pv_va;
2392 pm_to_clean = npv->pv_pmap;
2393 }
2394 cache_needs_cleaning = 1;
2395 }
2396 }
2397
2398 if (page_to_clean) {
2399 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2400 !is_src, flags | PVF_REF);
2401 } else if (cache_needs_cleaning) {
2402 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2403
2404 pmap_cache_wbinv_all(pm, flags);
2405 return (1);
2406 }
2407 return (0);
2408 }
2409 #endif
2410
2411 #ifdef PMAP_CACHE_VIPT
2412 /*
2413 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2414 * right cache alias to make sure we flush the right stuff.
2415 */
2416 void
2417 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2418 {
2419 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2420 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2421
2422 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2423 md, md->pvh_attrs));
2424 /*
2425 * No need to clean the page if it's non-cached.
2426 */
2427 if (md->pvh_attrs & PVF_NC)
2428 return;
2429 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2430
2431 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
2432 /*
2433 * Set up a PTE with the right coloring to flush existing cache lines.
2434 */
2435 const pt_entry_t npte = L2_S_PROTO |
2436 pa
2437 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2438 | pte_l2_s_cache_mode;
2439 l2pte_set(ptep, npte, 0);
2440 PTE_SYNC(ptep);
2441
2442 /*
2443 * Flush it.
2444 */
2445 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2446 /*
2447 * Unmap the page.
2448 */
2449 l2pte_reset(ptep);
2450 PTE_SYNC(ptep);
2451 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
2452
2453 md->pvh_attrs |= PVF_EXEC;
2454 PMAPCOUNT(exec_synced);
2455 }
2456
2457 void
2458 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2459 {
2460 vsize_t va_offset, end_va;
2461 bool wbinv_p;
2462
2463 if (arm_cache_prefer_mask == 0)
2464 return;
2465
2466 switch (flush) {
2467 case PMAP_FLUSH_PRIMARY:
2468 if (md->pvh_attrs & PVF_MULTCLR) {
2469 va_offset = 0;
2470 end_va = arm_cache_prefer_mask;
2471 md->pvh_attrs &= ~PVF_MULTCLR;
2472 PMAPCOUNT(vac_flush_lots);
2473 } else {
2474 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2475 end_va = va_offset;
2476 PMAPCOUNT(vac_flush_one);
2477 }
2478 /*
2479 * Mark that the page is no longer dirty.
2480 */
2481 md->pvh_attrs &= ~PVF_DIRTY;
2482 wbinv_p = true;
2483 break;
2484 case PMAP_FLUSH_SECONDARY:
2485 va_offset = 0;
2486 end_va = arm_cache_prefer_mask;
2487 wbinv_p = true;
2488 md->pvh_attrs &= ~PVF_MULTCLR;
2489 PMAPCOUNT(vac_flush_lots);
2490 break;
2491 case PMAP_CLEAN_PRIMARY:
2492 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2493 end_va = va_offset;
2494 wbinv_p = false;
2495 /*
2496 * Mark that the page is no longer dirty.
2497 */
2498 if ((md->pvh_attrs & PVF_DMOD) == 0)
2499 md->pvh_attrs &= ~PVF_DIRTY;
2500 PMAPCOUNT(vac_clean_one);
2501 break;
2502 default:
2503 return;
2504 }
2505
2506 KASSERT(!(md->pvh_attrs & PVF_NC));
2507
2508 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2509 md, md->pvh_attrs));
2510
2511 const size_t scache_line_size = arm_scache.dcache_line_size;
2512
2513 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2514 const size_t pte_offset = va_offset >> PGSHIFT;
2515 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2516 const pt_entry_t opte = *ptep;
2517
2518 if (flush == PMAP_FLUSH_SECONDARY
2519 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2520 continue;
2521
2522 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
2523 PVF_REF | PVF_EXEC);
2524 /*
2525 * Set up a PTE with the right coloring to flush
2526 * existing cache entries.
2527 */
2528 const pt_entry_t npte = L2_S_PROTO
2529 | pa
2530 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2531 | pte_l2_s_cache_mode;
2532 l2pte_set(ptep, npte, opte);
2533 PTE_SYNC(ptep);
2534
2535 /*
2536 * Flush it. Make sure to flush secondary cache too since
2537 * bus_dma will ignore uncached pages.
2538 */
2539 vaddr_t va = cdstp + va_offset;
2540 if (scache_line_size != 0) {
2541 cpu_dcache_wb_range(va, PAGE_SIZE);
2542 if (wbinv_p) {
2543 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
2544 cpu_dcache_inv_range(va, PAGE_SIZE);
2545 } else {
2546 cpu_sdcache_wb_range(va, pa, PAGE_SIZE);
2547 }
2548 } else {
2549 if (wbinv_p) {
2550 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2551 } else {
2552 cpu_dcache_wb_range(va, PAGE_SIZE);
2553 }
2554 }
2555
2556 /*
2557 * Restore the page table entry since we might have interrupted
2558 * pmap_zero_page or pmap_copy_page which was already using
2559 * this pte.
2560 */
2561 l2pte_set(ptep, opte, npte);
2562 PTE_SYNC(ptep);
2563 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
2564 PVF_REF | PVF_EXEC);
2565 }
2566 }
2567 #endif /* PMAP_CACHE_VIPT */
2568
2569 /*
2570 * Routine: pmap_page_remove
2571 * Function:
2572 * Removes this physical page from
2573 * all physical maps in which it resides.
2574 * Reflects back modify bits to the pager.
2575 */
2576 static void
2577 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2578 {
2579 struct l2_bucket *l2b;
2580 struct pv_entry *pv, *npv, **pvp;
2581 pmap_t pm;
2582 pt_entry_t *ptep;
2583 bool flush;
2584 u_int flags;
2585
2586 NPDEBUG(PDB_FOLLOW,
2587 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2588 pa));
2589
2590 pv = SLIST_FIRST(&md->pvh_list);
2591 if (pv == NULL) {
2592 #ifdef PMAP_CACHE_VIPT
2593 /*
2594 * We *know* the page contents are about to be replaced.
2595 * Discard the exec contents
2596 */
2597 if (PV_IS_EXEC_P(md->pvh_attrs))
2598 PMAPCOUNT(exec_discarded_page_protect);
2599 md->pvh_attrs &= ~PVF_EXEC;
2600 PMAP_VALIDATE_MD_PAGE(md);
2601 #endif
2602 return;
2603 }
2604 #ifdef PMAP_CACHE_VIPT
2605 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2606 #endif
2607
2608 /*
2609 * Clear alias counts
2610 */
2611 #ifdef PMAP_CACHE_VIVT
2612 md->k_mappings = 0;
2613 #endif
2614 md->urw_mappings = md->uro_mappings = 0;
2615
2616 flush = false;
2617 flags = 0;
2618
2619 #ifdef PMAP_CACHE_VIVT
2620 pmap_clean_page(pv, false);
2621 #endif
2622
2623 pvp = &SLIST_FIRST(&md->pvh_list);
2624 while (pv) {
2625 pm = pv->pv_pmap;
2626 npv = SLIST_NEXT(pv, pv_link);
2627 if (flush == false && pmap_is_current(pm))
2628 flush = true;
2629
2630 if (pm == pmap_kernel()) {
2631 #ifdef PMAP_CACHE_VIPT
2632 /*
2633 * If this was unmanaged mapping, it must be preserved.
2634 * Move it back on the list and advance the end-of-list
2635 * pointer.
2636 */
2637 if (pv->pv_flags & PVF_KENTRY) {
2638 *pvp = pv;
2639 pvp = &SLIST_NEXT(pv, pv_link);
2640 pv = npv;
2641 continue;
2642 }
2643 if (pv->pv_flags & PVF_WRITE)
2644 md->krw_mappings--;
2645 else
2646 md->kro_mappings--;
2647 #endif
2648 PMAPCOUNT(kernel_unmappings);
2649 }
2650 PMAPCOUNT(unmappings);
2651
2652 pmap_acquire_pmap_lock(pm);
2653
2654 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2655 KDASSERT(l2b != NULL);
2656
2657 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2658
2659 /*
2660 * Update statistics
2661 */
2662 --pm->pm_stats.resident_count;
2663
2664 /* Wired bit */
2665 if (pv->pv_flags & PVF_WIRED)
2666 --pm->pm_stats.wired_count;
2667
2668 flags |= pv->pv_flags;
2669
2670 /*
2671 * Invalidate the PTEs.
2672 */
2673 l2pte_reset(ptep);
2674 PTE_SYNC_CURRENT(pm, ptep);
2675 pmap_free_l2_bucket(pm, l2b, 1);
2676
2677 pool_put(&pmap_pv_pool, pv);
2678 pv = npv;
2679 /*
2680 * if we reach the end of the list and there are still
2681 * mappings, they might be able to be cached now.
2682 */
2683 if (pv == NULL) {
2684 *pvp = NULL;
2685 if (!SLIST_EMPTY(&md->pvh_list))
2686 pmap_vac_me_harder(md, pa, pm, 0);
2687 }
2688 pmap_release_pmap_lock(pm);
2689 }
2690 #ifdef PMAP_CACHE_VIPT
2691 /*
2692 * Its EXEC cache is now gone.
2693 */
2694 if (PV_IS_EXEC_P(md->pvh_attrs))
2695 PMAPCOUNT(exec_discarded_page_protect);
2696 md->pvh_attrs &= ~PVF_EXEC;
2697 KASSERT(md->urw_mappings == 0);
2698 KASSERT(md->uro_mappings == 0);
2699 if (arm_cache_prefer_mask != 0) {
2700 if (md->krw_mappings == 0)
2701 md->pvh_attrs &= ~PVF_WRITE;
2702 PMAP_VALIDATE_MD_PAGE(md);
2703 }
2704 #endif
2705
2706 if (flush) {
2707 /*
2708 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2709 * would need a subsequent call to pmap_update() to ensure
2710 * curpm->pm_cstate.cs_all is reset. Our callers are not
2711 * required to do that (see pmap(9)), so we can't modify
2712 * the current pmap's state.
2713 */
2714 if (PV_BEEN_EXECD(flags))
2715 cpu_tlb_flushID();
2716 else
2717 cpu_tlb_flushD();
2718 }
2719 cpu_cpwait();
2720 }
2721
2722 /*
2723 * pmap_t pmap_create(void)
2724 *
2725 * Create a new pmap structure from scratch.
2726 */
2727 pmap_t
2728 pmap_create(void)
2729 {
2730 pmap_t pm;
2731
2732 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2733
2734 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2735 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2736 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2737
2738 pm->pm_stats.wired_count = 0;
2739 pm->pm_stats.resident_count = 1;
2740 pm->pm_cstate.cs_all = 0;
2741 pmap_alloc_l1(pm);
2742
2743 /*
2744 * Note: The pool cache ensures that the pm_l2[] array is already
2745 * initialised to zero.
2746 */
2747
2748 pmap_pinit(pm);
2749
2750 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2751
2752 return (pm);
2753 }
2754
2755 u_int
2756 arm32_mmap_flags(paddr_t pa)
2757 {
2758 /*
2759 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2760 * and we're using the upper bits in page numbers to pass flags around
2761 * so we might as well use the same bits
2762 */
2763 return (u_int)pa & PMAP_MD_MASK;
2764 }
2765 /*
2766 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2767 * u_int flags)
2768 *
2769 * Insert the given physical page (p) at
2770 * the specified virtual address (v) in the
2771 * target physical map with the protection requested.
2772 *
2773 * NB: This is the only routine which MAY NOT lazy-evaluate
2774 * or lose information. That is, this routine must actually
2775 * insert this page into the given map NOW.
2776 */
2777 int
2778 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2779 {
2780 struct l2_bucket *l2b;
2781 struct vm_page *pg, *opg;
2782 struct pv_entry *pv;
2783 u_int nflags;
2784 u_int oflags;
2785 #ifdef ARM_HAS_VBAR
2786 const bool vector_page_p = false;
2787 #else
2788 const bool vector_page_p = (va == vector_page);
2789 #endif
2790
2791 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2792
2793 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2794 KDASSERT(((va | pa) & PGOFSET) == 0);
2795
2796 /*
2797 * Get a pointer to the page. Later on in this function, we
2798 * test for a managed page by checking pg != NULL.
2799 */
2800 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2801
2802 nflags = 0;
2803 if (prot & VM_PROT_WRITE)
2804 nflags |= PVF_WRITE;
2805 if (prot & VM_PROT_EXECUTE)
2806 nflags |= PVF_EXEC;
2807 if (flags & PMAP_WIRED)
2808 nflags |= PVF_WIRED;
2809
2810 pmap_acquire_pmap_lock(pm);
2811
2812 /*
2813 * Fetch the L2 bucket which maps this page, allocating one if
2814 * necessary for user pmaps.
2815 */
2816 if (pm == pmap_kernel())
2817 l2b = pmap_get_l2_bucket(pm, va);
2818 else
2819 l2b = pmap_alloc_l2_bucket(pm, va);
2820 if (l2b == NULL) {
2821 if (flags & PMAP_CANFAIL) {
2822 pmap_release_pmap_lock(pm);
2823 return (ENOMEM);
2824 }
2825 panic("pmap_enter: failed to allocate L2 bucket");
2826 }
2827 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
2828 const pt_entry_t opte = *ptep;
2829 pt_entry_t npte = pa;
2830 oflags = 0;
2831
2832 if (opte) {
2833 /*
2834 * There is already a mapping at this address.
2835 * If the physical address is different, lookup the
2836 * vm_page.
2837 */
2838 if (l2pte_pa(opte) != pa)
2839 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2840 else
2841 opg = pg;
2842 } else
2843 opg = NULL;
2844
2845 if (pg) {
2846 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2847
2848 /*
2849 * This is to be a managed mapping.
2850 */
2851 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
2852 /*
2853 * - The access type indicates that we don't need
2854 * to do referenced emulation.
2855 * OR
2856 * - The physical page has already been referenced
2857 * so no need to re-do referenced emulation here.
2858 */
2859 npte |= l2pte_set_readonly(L2_S_PROTO);
2860
2861 nflags |= PVF_REF;
2862
2863 if ((prot & VM_PROT_WRITE) != 0 &&
2864 ((flags & VM_PROT_WRITE) != 0 ||
2865 (md->pvh_attrs & PVF_MOD) != 0)) {
2866 /*
2867 * This is a writable mapping, and the
2868 * page's mod state indicates it has
2869 * already been modified. Make it
2870 * writable from the outset.
2871 */
2872 npte = l2pte_set_writable(npte);
2873 nflags |= PVF_MOD;
2874 }
2875 } else {
2876 /*
2877 * Need to do page referenced emulation.
2878 */
2879 npte |= L2_TYPE_INV;
2880 }
2881
2882 if (flags & ARM32_MMAP_WRITECOMBINE) {
2883 npte |= pte_l2_s_wc_mode;
2884 } else
2885 npte |= pte_l2_s_cache_mode;
2886
2887 if (pg == opg) {
2888 /*
2889 * We're changing the attrs of an existing mapping.
2890 */
2891 #ifdef MULTIPROCESSOR
2892 KASSERT(uvm_page_locked_p(pg));
2893 #endif
2894 oflags = pmap_modify_pv(md, pa, pm, va,
2895 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2896 PVF_MOD | PVF_REF, nflags);
2897
2898 #ifdef PMAP_CACHE_VIVT
2899 /*
2900 * We may need to flush the cache if we're
2901 * doing rw-ro...
2902 */
2903 if (pm->pm_cstate.cs_cache_d &&
2904 (oflags & PVF_NC) == 0 &&
2905 l2pte_writable_p(opte) &&
2906 (prot & VM_PROT_WRITE) == 0)
2907 cpu_dcache_wb_range(va, PAGE_SIZE);
2908 #endif
2909 } else {
2910 /*
2911 * New mapping, or changing the backing page
2912 * of an existing mapping.
2913 */
2914 if (opg) {
2915 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2916 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2917
2918 /*
2919 * Replacing an existing mapping with a new one.
2920 * It is part of our managed memory so we
2921 * must remove it from the PV list
2922 */
2923 #ifdef MULTIPROCESSOR
2924 KASSERT(uvm_page_locked_p(opg));
2925 #endif
2926 pv = pmap_remove_pv(omd, opa, pm, va);
2927 pmap_vac_me_harder(omd, opa, pm, 0);
2928 oflags = pv->pv_flags;
2929
2930 #ifdef PMAP_CACHE_VIVT
2931 /*
2932 * If the old mapping was valid (ref/mod
2933 * emulation creates 'invalid' mappings
2934 * initially) then make sure to frob
2935 * the cache.
2936 */
2937 if (!(oflags & PVF_NC) && l2pte_valid(opte)) {
2938 pmap_cache_wbinv_page(pm, va, true,
2939 oflags);
2940 }
2941 #endif
2942 } else
2943 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2944 if ((flags & PMAP_CANFAIL) == 0)
2945 panic("pmap_enter: no pv entries");
2946
2947 if (pm != pmap_kernel())
2948 pmap_free_l2_bucket(pm, l2b, 0);
2949 pmap_release_pmap_lock(pm);
2950 NPDEBUG(PDB_ENTER,
2951 printf("pmap_enter: ENOMEM\n"));
2952 return (ENOMEM);
2953 }
2954
2955 #ifdef MULTIPROCESSOR
2956 KASSERT(uvm_page_locked_p(pg));
2957 #endif
2958 pmap_enter_pv(md, pa, pv, pm, va, nflags);
2959 }
2960 } else {
2961 /*
2962 * We're mapping an unmanaged page.
2963 * These are always readable, and possibly writable, from
2964 * the get go as we don't need to track ref/mod status.
2965 */
2966 npte |= l2pte_set_readonly(L2_S_PROTO);
2967 if (prot & VM_PROT_WRITE)
2968 npte = l2pte_set_writable(npte);
2969
2970 /*
2971 * Make sure the vector table is mapped cacheable
2972 */
2973 if ((vector_page_p && pm != pmap_kernel())
2974 || (flags & ARM32_MMAP_CACHEABLE)) {
2975 npte |= pte_l2_s_cache_mode;
2976 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
2977 npte |= pte_l2_s_wc_mode;
2978 }
2979 if (opg) {
2980 /*
2981 * Looks like there's an existing 'managed' mapping
2982 * at this address.
2983 */
2984 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2985 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2986
2987 #ifdef MULTIPROCESSOR
2988 KASSERT(uvm_page_locked_p(opg));
2989 #endif
2990 pv = pmap_remove_pv(omd, opa, pm, va);
2991 pmap_vac_me_harder(omd, opa, pm, 0);
2992 oflags = pv->pv_flags;
2993
2994 #ifdef PMAP_CACHE_VIVT
2995 if (!(oflags & PVF_NC) && l2pte_valid(opte)) {
2996 pmap_cache_wbinv_page(pm, va, true, oflags);
2997 }
2998 #endif
2999 pool_put(&pmap_pv_pool, pv);
3000 }
3001 }
3002
3003 /*
3004 * Make sure userland mappings get the right permissions
3005 */
3006 if (!vector_page_p && pm != pmap_kernel()) {
3007 npte |= L2_S_PROT_U;
3008 }
3009
3010 /*
3011 * Keep the stats up to date
3012 */
3013 if (opte == 0) {
3014 l2b->l2b_occupancy++;
3015 pm->pm_stats.resident_count++;
3016 }
3017
3018 NPDEBUG(PDB_ENTER,
3019 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3020
3021 /*
3022 * If this is just a wiring change, the two PTEs will be
3023 * identical, so there's no need to update the page table.
3024 */
3025 if (npte != opte) {
3026 bool is_cached = pmap_is_cached(pm);
3027
3028 l2pte_set(ptep, npte, opte);
3029 PTE_SYNC(ptep);
3030 if (is_cached) {
3031 /*
3032 * We only need to frob the cache/tlb if this pmap
3033 * is current
3034 */
3035 if (!vector_page_p && l2pte_valid(npte)) {
3036 /*
3037 * This mapping is likely to be accessed as
3038 * soon as we return to userland. Fix up the
3039 * L1 entry to avoid taking another
3040 * page/domain fault.
3041 */
3042 pd_entry_t *pl1pd, l1pd;
3043
3044 pl1pd = pmap_l1_kva(pm) + L1_IDX(va);
3045 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) |
3046 L1_C_PROTO;
3047 if (*pl1pd != l1pd) {
3048 *pl1pd = l1pd;
3049 PTE_SYNC(pl1pd);
3050 }
3051 }
3052 }
3053
3054 pmap_tlb_flush_SE(pm, va, oflags);
3055
3056 NPDEBUG(PDB_ENTER,
3057 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3058 is_cached, pm->pm_cstate.cs_all));
3059
3060 if (pg != NULL) {
3061 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3062
3063 #ifdef MULTIPROCESSOR
3064 KASSERT(uvm_page_locked_p(pg));
3065 #endif
3066 pmap_vac_me_harder(md, pa, pm, va);
3067 }
3068 }
3069 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3070 if (pg) {
3071 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3072
3073 #ifdef MULTIPROCESSOR
3074 KASSERT(uvm_page_locked_p(pg));
3075 #endif
3076 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3077 PMAP_VALIDATE_MD_PAGE(md);
3078 }
3079 #endif
3080
3081 pmap_release_pmap_lock(pm);
3082
3083 return (0);
3084 }
3085
3086 /*
3087 * pmap_remove()
3088 *
3089 * pmap_remove is responsible for nuking a number of mappings for a range
3090 * of virtual address space in the current pmap. To do this efficiently
3091 * is interesting, because in a number of cases a wide virtual address
3092 * range may be supplied that contains few actual mappings. So, the
3093 * optimisations are:
3094 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3095 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3096 * maybe do just a partial cache clean. This path of execution is
3097 * complicated by the fact that the cache must be flushed _before_
3098 * the PTE is nuked, being a VAC :-)
3099 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3100 * all invalidations until pmap_update(), since pmap_remove_all() has
3101 * already flushed the cache.
3102 * 4. Maybe later fast-case a single page, but I don't think this is
3103 * going to make _that_ much difference overall.
3104 */
3105
3106 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3107
3108 void
3109 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3110 {
3111 vaddr_t next_bucket;
3112 u_int cleanlist_idx, total, cnt;
3113 struct {
3114 vaddr_t va;
3115 pt_entry_t *ptep;
3116 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3117 u_int mappings;
3118
3119 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3120 "eva=%08lx\n", pm, sva, eva));
3121
3122 /*
3123 * we lock in the pmap => pv_head direction
3124 */
3125 pmap_acquire_pmap_lock(pm);
3126
3127 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3128 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3129 if (pm->pm_cstate.cs_tlb == 0)
3130 pm->pm_remove_all = true;
3131 } else
3132 cleanlist_idx = 0;
3133
3134 total = 0;
3135
3136 while (sva < eva) {
3137 /*
3138 * Do one L2 bucket's worth at a time.
3139 */
3140 next_bucket = L2_NEXT_BUCKET(sva);
3141 if (next_bucket > eva)
3142 next_bucket = eva;
3143
3144 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3145 if (l2b == NULL) {
3146 sva = next_bucket;
3147 continue;
3148 }
3149
3150 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3151
3152 for (mappings = 0;
3153 sva < next_bucket;
3154 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3155 pt_entry_t opte = *ptep;
3156
3157 if (opte == 0) {
3158 /* Nothing here, move along */
3159 continue;
3160 }
3161
3162 u_int flags = PVF_REF;
3163 paddr_t pa = l2pte_pa(opte);
3164 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3165
3166 /*
3167 * Update flags. In a number of circumstances,
3168 * we could cluster a lot of these and do a
3169 * number of sequential pages in one go.
3170 */
3171 if (pg != NULL) {
3172 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3173 struct pv_entry *pv;
3174
3175 #ifdef MULTIPROCESSOR
3176 KASSERT(uvm_page_locked_p(pg));
3177 #endif
3178 pv = pmap_remove_pv(md, pa, pm, sva);
3179 pmap_vac_me_harder(md, pa, pm, 0);
3180 if (pv != NULL) {
3181 if (pm->pm_remove_all == false) {
3182 flags = pv->pv_flags;
3183 }
3184 pool_put(&pmap_pv_pool, pv);
3185 }
3186 }
3187 mappings++;
3188
3189 if (!l2pte_valid(opte)) {
3190 /*
3191 * Ref/Mod emulation is still active for this
3192 * mapping, therefore it is has not yet been
3193 * accessed. No need to frob the cache/tlb.
3194 */
3195 l2pte_reset(ptep);
3196 PTE_SYNC_CURRENT(pm, ptep);
3197 continue;
3198 }
3199
3200 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3201 /* Add to the clean list. */
3202 cleanlist[cleanlist_idx].ptep = ptep;
3203 cleanlist[cleanlist_idx].va =
3204 sva | (flags & PVF_EXEC);
3205 cleanlist_idx++;
3206 } else
3207 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3208 /* Nuke everything if needed. */
3209 #ifdef PMAP_CACHE_VIVT
3210 pmap_cache_wbinv_all(pm, PVF_EXEC);
3211 #endif
3212 pmap_tlb_flushID(pm);
3213
3214 /*
3215 * Roll back the previous PTE list,
3216 * and zero out the current PTE.
3217 */
3218 for (cnt = 0;
3219 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3220 l2pte_reset(cleanlist[cnt].ptep);
3221 PTE_SYNC(cleanlist[cnt].ptep);
3222 }
3223 l2pte_reset(ptep);
3224 PTE_SYNC(ptep);
3225 cleanlist_idx++;
3226 pm->pm_remove_all = true;
3227 } else {
3228 l2pte_reset(ptep);
3229 PTE_SYNC(ptep);
3230 if (pm->pm_remove_all == false) {
3231 pmap_tlb_flush_SE(pm, sva, flags);
3232 }
3233 }
3234 }
3235
3236 /*
3237 * Deal with any left overs
3238 */
3239 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3240 total += cleanlist_idx;
3241 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3242 vaddr_t va = cleanlist[cnt].va;
3243 if (pm->pm_cstate.cs_all != 0) {
3244 vaddr_t clva = va & ~PAGE_MASK;
3245 u_int flags = va & PVF_EXEC;
3246 #ifdef PMAP_CACHE_VIVT
3247 pmap_cache_wbinv_page(pm, clva, true,
3248 PVF_REF | PVF_WRITE | flags);
3249 #endif
3250 pmap_tlb_flush_SE(pm, clva,
3251 PVF_REF | flags);
3252 }
3253 l2pte_reset(cleanlist[cnt].ptep);
3254 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3255 }
3256
3257 /*
3258 * If it looks like we're removing a whole bunch
3259 * of mappings, it's faster to just write-back
3260 * the whole cache now and defer TLB flushes until
3261 * pmap_update() is called.
3262 */
3263 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3264 cleanlist_idx = 0;
3265 else {
3266 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3267 #ifdef PMAP_CACHE_VIVT
3268 pmap_cache_wbinv_all(pm, PVF_EXEC);
3269 #endif
3270 pm->pm_remove_all = true;
3271 }
3272 }
3273
3274 pmap_free_l2_bucket(pm, l2b, mappings);
3275 pm->pm_stats.resident_count -= mappings;
3276 }
3277
3278 pmap_release_pmap_lock(pm);
3279 }
3280
3281 #ifdef PMAP_CACHE_VIPT
3282 static struct pv_entry *
3283 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3284 {
3285 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3286 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3287 struct pv_entry *pv;
3288
3289 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3290 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3291
3292 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3293 KASSERT(pv);
3294 KASSERT(pv->pv_flags & PVF_KENTRY);
3295
3296 /*
3297 * If we are removing a writeable mapping to a cached exec page,
3298 * if it's the last mapping then clear it execness other sync
3299 * the page to the icache.
3300 */
3301 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3302 && (pv->pv_flags & PVF_WRITE) != 0) {
3303 if (SLIST_EMPTY(&md->pvh_list)) {
3304 md->pvh_attrs &= ~PVF_EXEC;
3305 PMAPCOUNT(exec_discarded_kremove);
3306 } else {
3307 pmap_syncicache_page(md, pa);
3308 PMAPCOUNT(exec_synced_kremove);
3309 }
3310 }
3311 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3312
3313 return pv;
3314 }
3315 #endif /* PMAP_CACHE_VIPT */
3316
3317 /*
3318 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3319 *
3320 * We assume there is already sufficient KVM space available
3321 * to do this, as we can't allocate L2 descriptor tables/metadata
3322 * from here.
3323 */
3324 void
3325 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3326 {
3327 #ifdef PMAP_CACHE_VIVT
3328 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3329 #endif
3330 #ifdef PMAP_CACHE_VIPT
3331 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3332 struct vm_page *opg;
3333 struct pv_entry *pv = NULL;
3334 #endif
3335 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3336
3337 NPDEBUG(PDB_KENTER,
3338 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3339 va, pa, prot));
3340
3341 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3342 KDASSERT(l2b != NULL);
3343
3344 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3345 const pt_entry_t opte = *ptep;
3346
3347 if (opte == 0) {
3348 PMAPCOUNT(kenter_mappings);
3349 l2b->l2b_occupancy++;
3350 } else {
3351 PMAPCOUNT(kenter_remappings);
3352 #ifdef PMAP_CACHE_VIPT
3353 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3354 #ifdef DIAGNOSTIC
3355 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3356 #endif
3357 if (opg) {
3358 KASSERT(opg != pg);
3359 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3360 KASSERT((flags & PMAP_KMPAGE) == 0);
3361 pv = pmap_kremove_pg(opg, va);
3362 }
3363 #endif
3364 if (l2pte_valid(opte)) {
3365 #ifdef PMAP_CACHE_VIVT
3366 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3367 #endif
3368 cpu_tlb_flushD_SE(va);
3369 cpu_cpwait();
3370 }
3371 }
3372
3373 const pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3374 | ((flags & PMAP_NOCACHE)
3375 ? 0
3376 : ((flags & PMAP_PTE)
3377 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3378 l2pte_set(ptep, npte, opte);
3379 PTE_SYNC(ptep);
3380
3381 if (pg) {
3382 #ifdef MULTIPROCESSOR
3383 KASSERT(uvm_page_locked_p(pg));
3384 #endif
3385 if (flags & PMAP_KMPAGE) {
3386 KASSERT(md->urw_mappings == 0);
3387 KASSERT(md->uro_mappings == 0);
3388 KASSERT(md->krw_mappings == 0);
3389 KASSERT(md->kro_mappings == 0);
3390 #ifdef PMAP_CACHE_VIPT
3391 KASSERT(pv == NULL);
3392 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3393 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3394 /* if there is a color conflict, evict from cache. */
3395 if (pmap_is_page_colored_p(md)
3396 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3397 PMAPCOUNT(vac_color_change);
3398 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3399 } else if (md->pvh_attrs & PVF_MULTCLR) {
3400 /*
3401 * If this page has multiple colors, expunge
3402 * them.
3403 */
3404 PMAPCOUNT(vac_flush_lots2);
3405 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3406 }
3407 md->pvh_attrs &= PAGE_SIZE - 1;
3408 md->pvh_attrs |= PVF_KMPAGE
3409 | PVF_COLORED | PVF_DIRTY
3410 | (va & arm_cache_prefer_mask);
3411 #endif
3412 #ifdef PMAP_CACHE_VIVT
3413 md->pvh_attrs |= PVF_KMPAGE;
3414 #endif
3415 pmap_kmpages++;
3416 #ifdef PMAP_CACHE_VIPT
3417 } else {
3418 if (pv == NULL) {
3419 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3420 KASSERT(pv != NULL);
3421 }
3422 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3423 PVF_WIRED | PVF_KENTRY
3424 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3425 if ((prot & VM_PROT_WRITE)
3426 && !(md->pvh_attrs & PVF_NC))
3427 md->pvh_attrs |= PVF_DIRTY;
3428 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3429 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3430 #endif
3431 }
3432 #ifdef PMAP_CACHE_VIPT
3433 } else {
3434 if (pv != NULL)
3435 pool_put(&pmap_pv_pool, pv);
3436 #endif
3437 }
3438 }
3439
3440 void
3441 pmap_kremove(vaddr_t va, vsize_t len)
3442 {
3443 vaddr_t next_bucket, eva;
3444 u_int mappings;
3445
3446 PMAPCOUNT(kenter_unmappings);
3447
3448 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3449 va, len));
3450
3451 eva = va + len;
3452
3453 while (va < eva) {
3454 next_bucket = L2_NEXT_BUCKET(va);
3455 if (next_bucket > eva)
3456 next_bucket = eva;
3457
3458 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3459 KDASSERT(l2b != NULL);
3460
3461 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3462 pt_entry_t *ptep = sptep;
3463 mappings = 0;
3464
3465 while (va < next_bucket) {
3466 const pt_entry_t opte = *ptep;
3467 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3468 if (opg != NULL) {
3469 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3470
3471 if (omd->pvh_attrs & PVF_KMPAGE) {
3472 KASSERT(omd->urw_mappings == 0);
3473 KASSERT(omd->uro_mappings == 0);
3474 KASSERT(omd->krw_mappings == 0);
3475 KASSERT(omd->kro_mappings == 0);
3476 omd->pvh_attrs &= ~PVF_KMPAGE;
3477 #ifdef PMAP_CACHE_VIPT
3478 if (arm_cache_prefer_mask != 0) {
3479 omd->pvh_attrs &= ~PVF_WRITE;
3480 }
3481 #endif
3482 pmap_kmpages--;
3483 #ifdef PMAP_CACHE_VIPT
3484 } else {
3485 pool_put(&pmap_pv_pool,
3486 pmap_kremove_pg(opg, va));
3487 #endif
3488 }
3489 }
3490 if (l2pte_valid(opte)) {
3491 #ifdef PMAP_CACHE_VIVT
3492 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3493 #endif
3494 cpu_tlb_flushD_SE(va);
3495 }
3496 if (opte) {
3497 l2pte_reset(ptep);
3498 mappings++;
3499 }
3500 va += PAGE_SIZE;
3501 ptep += PAGE_SIZE / L2_S_SIZE;
3502 }
3503 KDASSERT(mappings <= l2b->l2b_occupancy);
3504 l2b->l2b_occupancy -= mappings;
3505 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3506 }
3507 cpu_cpwait();
3508 }
3509
3510 bool
3511 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3512 {
3513 struct l2_dtable *l2;
3514 pd_entry_t *pl1pd, l1pd;
3515 pt_entry_t *ptep, pte;
3516 paddr_t pa;
3517 u_int l1idx;
3518
3519 pmap_acquire_pmap_lock(pm);
3520
3521 l1idx = L1_IDX(va);
3522 pl1pd = pmap_l1_kva(pm) + l1idx;
3523 l1pd = *pl1pd;
3524
3525 if (l1pte_section_p(l1pd)) {
3526 /*
3527 * These should only happen for pmap_kernel()
3528 */
3529 KDASSERT(pm == pmap_kernel());
3530 pmap_release_pmap_lock(pm);
3531 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3532 if (l1pte_supersection_p(l1pd)) {
3533 pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3534 } else
3535 #endif
3536 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3537 } else {
3538 /*
3539 * Note that we can't rely on the validity of the L1
3540 * descriptor as an indication that a mapping exists.
3541 * We have to look it up in the L2 dtable.
3542 */
3543 l2 = pm->pm_l2[L2_IDX(l1idx)];
3544
3545 if (l2 == NULL ||
3546 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3547 pmap_release_pmap_lock(pm);
3548 return false;
3549 }
3550
3551 ptep = &ptep[l2pte_index(va)];
3552 pte = *ptep;
3553 pmap_release_pmap_lock(pm);
3554
3555 if (pte == 0)
3556 return false;
3557
3558 switch (pte & L2_TYPE_MASK) {
3559 case L2_TYPE_L:
3560 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3561 break;
3562
3563 default:
3564 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3565 break;
3566 }
3567 }
3568
3569 if (pap != NULL)
3570 *pap = pa;
3571
3572 return true;
3573 }
3574
3575 void
3576 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3577 {
3578 struct l2_bucket *l2b;
3579 pt_entry_t *ptep, pte;
3580 vaddr_t next_bucket;
3581
3582 NPDEBUG(PDB_PROTECT,
3583 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3584 pm, sva, eva, prot));
3585
3586 if ((prot & VM_PROT_READ) == 0) {
3587 pmap_remove(pm, sva, eva);
3588 return;
3589 }
3590
3591 if (prot & VM_PROT_WRITE) {
3592 /*
3593 * If this is a read->write transition, just ignore it and let
3594 * uvm_fault() take care of it later.
3595 */
3596 return;
3597 }
3598
3599 pmap_acquire_pmap_lock(pm);
3600
3601 const bool flush = eva - sva >= PAGE_SIZE * 4;
3602 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3603 u_int flags = 0;
3604
3605 while (sva < eva) {
3606 next_bucket = L2_NEXT_BUCKET(sva);
3607 if (next_bucket > eva)
3608 next_bucket = eva;
3609
3610 l2b = pmap_get_l2_bucket(pm, sva);
3611 if (l2b == NULL) {
3612 sva = next_bucket;
3613 continue;
3614 }
3615
3616 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3617
3618 while (sva < next_bucket) {
3619 pte = *ptep;
3620 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3621 struct vm_page *pg;
3622 u_int f;
3623
3624 #ifdef PMAP_CACHE_VIVT
3625 /*
3626 * OK, at this point, we know we're doing
3627 * write-protect operation. If the pmap is
3628 * active, write-back the page.
3629 */
3630 pmap_cache_wbinv_page(pm, sva, false,
3631 PVF_REF | PVF_WRITE);
3632 #endif
3633
3634 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3635 pte = l2pte_set_readonly(pte);
3636 *ptep = pte;
3637 PTE_SYNC(ptep);
3638
3639 if (pg != NULL) {
3640 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3641 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3642
3643 #ifdef MULTIPROCESSOR
3644 KASSERT(uvm_page_locked_p(pg));
3645 #endif
3646 f = pmap_modify_pv(md, pa, pm, sva,
3647 clr_mask, 0);
3648 pmap_vac_me_harder(md, pa, pm, sva);
3649 } else {
3650 f = PVF_REF | PVF_EXEC;
3651 }
3652
3653 if (flush) {
3654 flags |= f;
3655 } else {
3656 pmap_tlb_flush_SE(pm, sva, f);
3657 }
3658 }
3659
3660 sva += PAGE_SIZE;
3661 ptep++;
3662 }
3663 }
3664
3665 if (flush) {
3666 if (PV_BEEN_EXECD(flags)) {
3667 pmap_tlb_flushID(pm);
3668 } else if (PV_BEEN_REFD(flags)) {
3669 pmap_tlb_flushD(pm);
3670 }
3671 }
3672
3673 pmap_release_pmap_lock(pm);
3674 }
3675
3676 void
3677 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3678 {
3679 struct l2_bucket *l2b;
3680 pt_entry_t *ptep;
3681 vaddr_t next_bucket;
3682 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3683
3684 NPDEBUG(PDB_EXEC,
3685 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3686 pm, sva, eva));
3687
3688 pmap_acquire_pmap_lock(pm);
3689
3690 while (sva < eva) {
3691 next_bucket = L2_NEXT_BUCKET(sva);
3692 if (next_bucket > eva)
3693 next_bucket = eva;
3694
3695 l2b = pmap_get_l2_bucket(pm, sva);
3696 if (l2b == NULL) {
3697 sva = next_bucket;
3698 continue;
3699 }
3700
3701 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3702 sva < next_bucket;
3703 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3704 if (l2pte_valid(*ptep)) {
3705 cpu_icache_sync_range(sva,
3706 min(page_size, eva - sva));
3707 }
3708 }
3709 }
3710
3711 pmap_release_pmap_lock(pm);
3712 }
3713
3714 void
3715 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3716 {
3717 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3718 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3719
3720 NPDEBUG(PDB_PROTECT,
3721 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3722 md, pa, prot));
3723
3724 #ifdef MULTIPROCESSOR
3725 KASSERT(uvm_page_locked_p(pg));
3726 #endif
3727
3728 switch(prot) {
3729 case VM_PROT_READ|VM_PROT_WRITE:
3730 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3731 pmap_clearbit(md, pa, PVF_EXEC);
3732 break;
3733 #endif
3734 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3735 break;
3736
3737 case VM_PROT_READ:
3738 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3739 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3740 break;
3741 #endif
3742 case VM_PROT_READ|VM_PROT_EXECUTE:
3743 pmap_clearbit(md, pa, PVF_WRITE);
3744 break;
3745
3746 default:
3747 pmap_page_remove(md, pa);
3748 break;
3749 }
3750 }
3751
3752 /*
3753 * pmap_clear_modify:
3754 *
3755 * Clear the "modified" attribute for a page.
3756 */
3757 bool
3758 pmap_clear_modify(struct vm_page *pg)
3759 {
3760 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3761 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3762 bool rv;
3763
3764 #ifdef MULTIPROCESSOR
3765 KASSERT(uvm_page_locked_p(pg));
3766 #endif
3767
3768 if (md->pvh_attrs & PVF_MOD) {
3769 rv = true;
3770 #ifdef PMAP_CACHE_VIPT
3771 /*
3772 * If we are going to clear the modified bit and there are
3773 * no other modified bits set, flush the page to memory and
3774 * mark it clean.
3775 */
3776 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3777 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3778 #endif
3779 pmap_clearbit(md, pa, PVF_MOD);
3780 } else
3781 rv = false;
3782
3783 return (rv);
3784 }
3785
3786 /*
3787 * pmap_clear_reference:
3788 *
3789 * Clear the "referenced" attribute for a page.
3790 */
3791 bool
3792 pmap_clear_reference(struct vm_page *pg)
3793 {
3794 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3795 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3796 bool rv;
3797
3798 #ifdef MULTIPROCESSOR
3799 KASSERT(uvm_page_locked_p(pg));
3800 #endif
3801
3802 if (md->pvh_attrs & PVF_REF) {
3803 rv = true;
3804 pmap_clearbit(md, pa, PVF_REF);
3805 } else
3806 rv = false;
3807
3808 return (rv);
3809 }
3810
3811 /*
3812 * pmap_is_modified:
3813 *
3814 * Test if a page has the "modified" attribute.
3815 */
3816 /* See <arm/arm32/pmap.h> */
3817
3818 /*
3819 * pmap_is_referenced:
3820 *
3821 * Test if a page has the "referenced" attribute.
3822 */
3823 /* See <arm/arm32/pmap.h> */
3824
3825 int
3826 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3827 {
3828 struct l2_dtable *l2;
3829 struct l2_bucket *l2b;
3830 pd_entry_t *pl1pd, l1pd;
3831 pt_entry_t *ptep, pte;
3832 paddr_t pa;
3833 u_int l1idx;
3834 int rv = 0;
3835
3836 pmap_acquire_pmap_lock(pm);
3837
3838 l1idx = L1_IDX(va);
3839
3840 /*
3841 * If there is no l2_dtable for this address, then the process
3842 * has no business accessing it.
3843 *
3844 * Note: This will catch userland processes trying to access
3845 * kernel addresses.
3846 */
3847 l2 = pm->pm_l2[L2_IDX(l1idx)];
3848 if (l2 == NULL)
3849 goto out;
3850
3851 /*
3852 * Likewise if there is no L2 descriptor table
3853 */
3854 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3855 if (l2b->l2b_kva == NULL)
3856 goto out;
3857
3858 /*
3859 * Check the PTE itself.
3860 */
3861 ptep = &l2b->l2b_kva[l2pte_index(va)];
3862 pte = *ptep;
3863 if (pte == 0)
3864 goto out;
3865
3866 /*
3867 * Catch a userland access to the vector page mapped at 0x0
3868 */
3869 if (user && (pte & L2_S_PROT_U) == 0)
3870 goto out;
3871
3872 pa = l2pte_pa(pte);
3873
3874 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3875 /*
3876 * This looks like a good candidate for "page modified"
3877 * emulation...
3878 */
3879 struct pv_entry *pv;
3880 struct vm_page *pg;
3881
3882 /* Extract the physical address of the page */
3883 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3884 goto out;
3885
3886 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3887
3888 /* Get the current flags for this page. */
3889 #ifdef MULTIPROCESSOR
3890 KASSERT(uvm_page_locked_p(pg));
3891 #endif
3892
3893 pv = pmap_find_pv(md, pm, va);
3894 if (pv == NULL) {
3895 goto out;
3896 }
3897
3898 /*
3899 * Do the flags say this page is writable? If not then it
3900 * is a genuine write fault. If yes then the write fault is
3901 * our fault as we did not reflect the write access in the
3902 * PTE. Now we know a write has occurred we can correct this
3903 * and also set the modified bit
3904 */
3905 if ((pv->pv_flags & PVF_WRITE) == 0) {
3906 goto out;
3907 }
3908
3909 NPDEBUG(PDB_FOLLOW,
3910 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3911 pm, va, pa));
3912
3913 md->pvh_attrs |= PVF_REF | PVF_MOD;
3914 pv->pv_flags |= PVF_REF | PVF_MOD;
3915 #ifdef PMAP_CACHE_VIPT
3916 /*
3917 * If there are cacheable mappings for this page, mark it dirty.
3918 */
3919 if ((md->pvh_attrs & PVF_NC) == 0)
3920 md->pvh_attrs |= PVF_DIRTY;
3921 #endif
3922
3923 /*
3924 * Re-enable write permissions for the page. No need to call
3925 * pmap_vac_me_harder(), since this is just a
3926 * modified-emulation fault, and the PVF_WRITE bit isn't
3927 * changing. We've already set the cacheable bits based on
3928 * the assumption that we can write to this page.
3929 */
3930 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3931 PTE_SYNC(ptep);
3932 rv = 1;
3933 } else
3934 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3935 /*
3936 * This looks like a good candidate for "page referenced"
3937 * emulation.
3938 */
3939 struct pv_entry *pv;
3940 struct vm_page *pg;
3941
3942 /* Extract the physical address of the page */
3943 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3944 goto out;
3945
3946 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3947
3948 /* Get the current flags for this page. */
3949 #ifdef MULTIPROCESSOR
3950 KASSERT(uvm_page_locked_p(pg));
3951 #endif
3952
3953 pv = pmap_find_pv(md, pm, va);
3954 if (pv == NULL) {
3955 goto out;
3956 }
3957
3958 md->pvh_attrs |= PVF_REF;
3959 pv->pv_flags |= PVF_REF;
3960
3961 NPDEBUG(PDB_FOLLOW,
3962 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3963 pm, va, pa));
3964
3965 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3966 PTE_SYNC(ptep);
3967 rv = 1;
3968 }
3969
3970 /*
3971 * We know there is a valid mapping here, so simply
3972 * fix up the L1 if necessary.
3973 */
3974 pl1pd = pmap_l1_kva(pm) + l1idx;
3975 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) | L1_C_PROTO;
3976 if (*pl1pd != l1pd) {
3977 *pl1pd = l1pd;
3978 PTE_SYNC(pl1pd);
3979 rv = 1;
3980 }
3981
3982 #ifdef CPU_SA110
3983 /*
3984 * There are bugs in the rev K SA110. This is a check for one
3985 * of them.
3986 */
3987 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3988 curcpu()->ci_arm_cpurev < 3) {
3989 /* Always current pmap */
3990 if (l2pte_valid(pte)) {
3991 extern int kernel_debug;
3992 if (kernel_debug & 1) {
3993 struct proc *p = curlwp->l_proc;
3994 printf("prefetch_abort: page is already "
3995 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3996 printf("prefetch_abort: pc=%08lx proc=%p "
3997 "process=%s\n", va, p, p->p_comm);
3998 printf("prefetch_abort: far=%08x fs=%x\n",
3999 cpu_faultaddress(), cpu_faultstatus());
4000 }
4001 #ifdef DDB
4002 if (kernel_debug & 2)
4003 Debugger();
4004 #endif
4005 rv = 1;
4006 }
4007 }
4008 #endif /* CPU_SA110 */
4009
4010 /*
4011 * If 'rv == 0' at this point, it generally indicates that there is a
4012 * stale TLB entry for the faulting address. That might be due to a
4013 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4014 */
4015 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
4016 && pmap_needs_pte_sync == 0) {
4017 pmap_needs_pte_sync = 1;
4018 PTE_SYNC(ptep);
4019 rv = 1;
4020 }
4021
4022 #ifdef DEBUG
4023 /*
4024 * If 'rv == 0' at this point, it generally indicates that there is a
4025 * stale TLB entry for the faulting address. This happens when two or
4026 * more processes are sharing an L1. Since we don't flush the TLB on
4027 * a context switch between such processes, we can take domain faults
4028 * for mappings which exist at the same VA in both processes. EVEN IF
4029 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4030 * example.
4031 *
4032 * This is extremely likely to happen if pmap_enter() updated the L1
4033 * entry for a recently entered mapping. In this case, the TLB is
4034 * flushed for the new mapping, but there may still be TLB entries for
4035 * other mappings belonging to other processes in the 1MB range
4036 * covered by the L1 entry.
4037 *
4038 * Since 'rv == 0', we know that the L1 already contains the correct
4039 * value, so the fault must be due to a stale TLB entry.
4040 *
4041 * Since we always need to flush the TLB anyway in the case where we
4042 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4043 * stale TLB entries dynamically.
4044 *
4045 * However, the above condition can ONLY happen if the current L1 is
4046 * being shared. If it happens when the L1 is unshared, it indicates
4047 * that other parts of the pmap are not doing their job WRT managing
4048 * the TLB.
4049 */
4050 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4051 extern int last_fault_code;
4052 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4053 pm, va, ftype);
4054 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4055 l2, l2b, ptep, pl1pd);
4056 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4057 pte, l1pd, last_fault_code);
4058 #ifdef DDB
4059 extern int kernel_debug;
4060
4061 if (kernel_debug & 2)
4062 Debugger();
4063 #endif
4064 }
4065 #endif
4066
4067 cpu_tlb_flushID_SE(va);
4068 cpu_cpwait();
4069
4070 rv = 1;
4071
4072 out:
4073 pmap_release_pmap_lock(pm);
4074
4075 return (rv);
4076 }
4077
4078 /*
4079 * Routine: pmap_procwr
4080 *
4081 * Function:
4082 * Synchronize caches corresponding to [addr, addr+len) in p.
4083 *
4084 */
4085 void
4086 pmap_procwr(struct proc *p, vaddr_t va, int len)
4087 {
4088 /* We only need to do anything if it is the current process. */
4089 if (p == curproc)
4090 cpu_icache_sync_range(va, len);
4091 }
4092
4093 /*
4094 * Routine: pmap_unwire
4095 * Function: Clear the wired attribute for a map/virtual-address pair.
4096 *
4097 * In/out conditions:
4098 * The mapping must already exist in the pmap.
4099 */
4100 void
4101 pmap_unwire(pmap_t pm, vaddr_t va)
4102 {
4103 struct l2_bucket *l2b;
4104 pt_entry_t *ptep, pte;
4105 struct vm_page *pg;
4106 paddr_t pa;
4107
4108 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4109
4110 pmap_acquire_pmap_lock(pm);
4111
4112 l2b = pmap_get_l2_bucket(pm, va);
4113 KDASSERT(l2b != NULL);
4114
4115 ptep = &l2b->l2b_kva[l2pte_index(va)];
4116 pte = *ptep;
4117
4118 /* Extract the physical address of the page */
4119 pa = l2pte_pa(pte);
4120
4121 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4122 /* Update the wired bit in the pv entry for this page. */
4123 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4124
4125 #ifdef MULTIPROCESSOR
4126 KASSERT(uvm_page_locked_p(pg));
4127 #endif
4128 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4129 }
4130
4131 pmap_release_pmap_lock(pm);
4132 }
4133
4134 void
4135 pmap_activate(struct lwp *l)
4136 {
4137 extern int block_userspace_access;
4138 pmap_t opm, npm, rpm;
4139 uint32_t odacr, ndacr;
4140 int oldirqstate;
4141
4142 /*
4143 * If activating a non-current lwp or the current lwp is
4144 * already active, just return.
4145 */
4146 if (l != curlwp ||
4147 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4148 return;
4149
4150 npm = l->l_proc->p_vmspace->vm_map.pmap;
4151 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4152 (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4153
4154 /*
4155 * If TTB and DACR are unchanged, short-circuit all the
4156 * TLB/cache management stuff.
4157 */
4158 if (pmap_previous_active_lwp != NULL) {
4159 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4160 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4161 (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4162
4163 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4164 goto all_done;
4165 } else
4166 opm = NULL;
4167
4168 PMAPCOUNT(activations);
4169 block_userspace_access = 1;
4170
4171 /*
4172 * If switching to a user vmspace which is different to the
4173 * most recent one, and the most recent one is potentially
4174 * live in the cache, we must write-back and invalidate the
4175 * entire cache.
4176 */
4177 rpm = pmap_recent_user;
4178
4179 /*
4180 * XXXSCW: There's a corner case here which can leave turds in the cache as
4181 * reported in kern/41058. They're probably left over during tear-down and
4182 * switching away from an exiting process. Until the root cause is identified
4183 * and fixed, zap the cache when switching pmaps. This will result in a few
4184 * unnecessary cache flushes, but that's better than silently corrupting data.
4185 */
4186 #if 0
4187 if (npm != pmap_kernel() && rpm && npm != rpm &&
4188 rpm->pm_cstate.cs_cache) {
4189 rpm->pm_cstate.cs_cache = 0;
4190 #ifdef PMAP_CACHE_VIVT
4191 cpu_idcache_wbinv_all();
4192 #endif
4193 }
4194 #else
4195 if (rpm) {
4196 rpm->pm_cstate.cs_cache = 0;
4197 if (npm == pmap_kernel())
4198 pmap_recent_user = NULL;
4199 #ifdef PMAP_CACHE_VIVT
4200 cpu_idcache_wbinv_all();
4201 #endif
4202 }
4203 #endif
4204
4205 /* No interrupts while we frob the TTB/DACR */
4206 oldirqstate = disable_interrupts(IF32_bits);
4207
4208 #ifndef ARM_HAS_VBAR
4209 /*
4210 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4211 * entry corresponding to 'vector_page' in the incoming L1 table
4212 * before switching to it otherwise subsequent interrupts/exceptions
4213 * (including domain faults!) will jump into hyperspace.
4214 */
4215 if (npm->pm_pl1vec != NULL) {
4216 cpu_tlb_flushID_SE((u_int)vector_page);
4217 cpu_cpwait();
4218 *npm->pm_pl1vec = npm->pm_l1vec;
4219 PTE_SYNC(npm->pm_pl1vec);
4220 }
4221 #endif
4222
4223 cpu_domains(ndacr);
4224
4225 if (npm == pmap_kernel() || npm == rpm) {
4226 /*
4227 * Switching to a kernel thread, or back to the
4228 * same user vmspace as before... Simply update
4229 * the TTB (no TLB flush required)
4230 */
4231 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4232 cpu_cpwait();
4233 } else {
4234 /*
4235 * Otherwise, update TTB and flush TLB
4236 */
4237 cpu_context_switch(npm->pm_l1->l1_physaddr);
4238 if (rpm != NULL)
4239 rpm->pm_cstate.cs_tlb = 0;
4240 }
4241
4242 restore_interrupts(oldirqstate);
4243
4244 block_userspace_access = 0;
4245
4246 all_done:
4247 /*
4248 * The new pmap is resident. Make sure it's marked
4249 * as resident in the cache/TLB.
4250 */
4251 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4252 if (npm != pmap_kernel())
4253 pmap_recent_user = npm;
4254
4255 /* The old pmap is not longer active */
4256 if (opm != NULL)
4257 opm->pm_activated = false;
4258
4259 /* But the new one is */
4260 npm->pm_activated = true;
4261 }
4262
4263 void
4264 pmap_deactivate(struct lwp *l)
4265 {
4266
4267 /*
4268 * If the process is exiting, make sure pmap_activate() does
4269 * a full MMU context-switch and cache flush, which we might
4270 * otherwise skip. See PR port-arm/38950.
4271 */
4272 if (l->l_proc->p_sflag & PS_WEXIT)
4273 pmap_previous_active_lwp = NULL;
4274
4275 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4276 }
4277
4278 void
4279 pmap_update(pmap_t pm)
4280 {
4281
4282 if (pm->pm_remove_all) {
4283 /*
4284 * Finish up the pmap_remove_all() optimisation by flushing
4285 * the TLB.
4286 */
4287 pmap_tlb_flushID(pm);
4288 pm->pm_remove_all = false;
4289 }
4290
4291 if (pmap_is_current(pm)) {
4292 /*
4293 * If we're dealing with a current userland pmap, move its L1
4294 * to the end of the LRU.
4295 */
4296 if (pm != pmap_kernel())
4297 pmap_use_l1(pm);
4298
4299 /*
4300 * We can assume we're done with frobbing the cache/tlb for
4301 * now. Make sure any future pmap ops don't skip cache/tlb
4302 * flushes.
4303 */
4304 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4305 }
4306
4307 PMAPCOUNT(updates);
4308
4309 /*
4310 * make sure TLB/cache operations have completed.
4311 */
4312 cpu_cpwait();
4313 }
4314
4315 void
4316 pmap_remove_all(pmap_t pm)
4317 {
4318
4319 /*
4320 * The vmspace described by this pmap is about to be torn down.
4321 * Until pmap_update() is called, UVM will only make calls
4322 * to pmap_remove(). We can make life much simpler by flushing
4323 * the cache now, and deferring TLB invalidation to pmap_update().
4324 */
4325 #ifdef PMAP_CACHE_VIVT
4326 pmap_cache_wbinv_all(pm, PVF_EXEC);
4327 #endif
4328 pm->pm_remove_all = true;
4329 }
4330
4331 /*
4332 * Retire the given physical map from service.
4333 * Should only be called if the map contains no valid mappings.
4334 */
4335 void
4336 pmap_destroy(pmap_t pm)
4337 {
4338 u_int count;
4339
4340 if (pm == NULL)
4341 return;
4342
4343 if (pm->pm_remove_all) {
4344 pmap_tlb_flushID(pm);
4345 pm->pm_remove_all = false;
4346 }
4347
4348 /*
4349 * Drop reference count
4350 */
4351 mutex_enter(pm->pm_lock);
4352 count = --pm->pm_obj.uo_refs;
4353 mutex_exit(pm->pm_lock);
4354 if (count > 0) {
4355 if (pmap_is_current(pm)) {
4356 if (pm != pmap_kernel())
4357 pmap_use_l1(pm);
4358 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4359 }
4360 return;
4361 }
4362
4363 /*
4364 * reference count is zero, free pmap resources and then free pmap.
4365 */
4366
4367 #ifndef ARM_HAS_VBAR
4368 if (vector_page < KERNEL_BASE) {
4369 KDASSERT(!pmap_is_current(pm));
4370
4371 /* Remove the vector page mapping */
4372 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4373 pmap_update(pm);
4374 }
4375 #endif
4376
4377 LIST_REMOVE(pm, pm_list);
4378
4379 pmap_free_l1(pm);
4380
4381 if (pmap_recent_user == pm)
4382 pmap_recent_user = NULL;
4383
4384 uvm_obj_destroy(&pm->pm_obj, false);
4385 mutex_destroy(&pm->pm_obj_lock);
4386 pool_cache_put(&pmap_cache, pm);
4387 }
4388
4389
4390 /*
4391 * void pmap_reference(pmap_t pm)
4392 *
4393 * Add a reference to the specified pmap.
4394 */
4395 void
4396 pmap_reference(pmap_t pm)
4397 {
4398
4399 if (pm == NULL)
4400 return;
4401
4402 pmap_use_l1(pm);
4403
4404 mutex_enter(pm->pm_lock);
4405 pm->pm_obj.uo_refs++;
4406 mutex_exit(pm->pm_lock);
4407 }
4408
4409 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4410
4411 static struct evcnt pmap_prefer_nochange_ev =
4412 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4413 static struct evcnt pmap_prefer_change_ev =
4414 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4415
4416 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4417 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4418
4419 void
4420 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4421 {
4422 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4423 vaddr_t va = *vap;
4424 vaddr_t diff = (hint - va) & mask;
4425 if (diff == 0) {
4426 pmap_prefer_nochange_ev.ev_count++;
4427 } else {
4428 pmap_prefer_change_ev.ev_count++;
4429 if (__predict_false(td))
4430 va -= mask + 1;
4431 *vap = va + diff;
4432 }
4433 }
4434 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4435
4436 /*
4437 * pmap_zero_page()
4438 *
4439 * Zero a given physical page by mapping it at a page hook point.
4440 * In doing the zero page op, the page we zero is mapped cachable, as with
4441 * StrongARM accesses to non-cached pages are non-burst making writing
4442 * _any_ bulk data very slow.
4443 */
4444 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4445 void
4446 pmap_zero_page_generic(paddr_t phys)
4447 {
4448 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4449 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4450 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4451 #endif
4452 #if defined(PMAP_CACHE_VIPT)
4453 /* Choose the last page color it had, if any */
4454 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4455 #else
4456 const vsize_t va_offset = 0;
4457 #endif
4458 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4459 /*
4460 * Is this page mapped at its natural color?
4461 * If we have all of memory mapped, then just convert PA to VA.
4462 */
4463 const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
4464 const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
4465 #else
4466 const bool okcolor = false;
4467 const vaddr_t vdstp = cdstp + va_offset;
4468 #endif
4469 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4470
4471
4472 #ifdef DEBUG
4473 if (!SLIST_EMPTY(&md->pvh_list))
4474 panic("pmap_zero_page: page has mappings");
4475 #endif
4476
4477 KDASSERT((phys & PGOFSET) == 0);
4478
4479 if (!okcolor) {
4480 /*
4481 * Hook in the page, zero it, and purge the cache for that
4482 * zeroed page. Invalidate the TLB as needed.
4483 */
4484 *ptep = L2_S_PROTO | phys |
4485 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4486 PTE_SYNC(ptep);
4487 cpu_tlb_flushD_SE(cdstp + va_offset);
4488 cpu_cpwait();
4489 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4490 /*
4491 * If we are direct-mapped and our color isn't ok, then before
4492 * we bzero the page invalidate its contents from the cache and
4493 * reset the color to its natural color.
4494 */
4495 cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
4496 md->pvh_attrs &= ~arm_cache_prefer_mask;
4497 md->pvh_attrs |= (phys & arm_cache_prefer_mask);
4498 #endif
4499 }
4500 bzero_page(vdstp);
4501 if (!okcolor) {
4502 /*
4503 * Unmap the page.
4504 */
4505 *ptep = 0;
4506 PTE_SYNC(ptep);
4507 cpu_tlb_flushD_SE(cdstp + va_offset);
4508 #ifdef PMAP_CACHE_VIVT
4509 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4510 #endif
4511 }
4512 #ifdef PMAP_CACHE_VIPT
4513 /*
4514 * This page is now cache resident so it now has a page color.
4515 * Any contents have been obliterated so clear the EXEC flag.
4516 */
4517 if (!pmap_is_page_colored_p(md)) {
4518 PMAPCOUNT(vac_color_new);
4519 md->pvh_attrs |= PVF_COLORED;
4520 }
4521 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4522 md->pvh_attrs &= ~PVF_EXEC;
4523 PMAPCOUNT(exec_discarded_zero);
4524 }
4525 md->pvh_attrs |= PVF_DIRTY;
4526 #endif
4527 }
4528 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4529
4530 #if ARM_MMU_XSCALE == 1
4531 void
4532 pmap_zero_page_xscale(paddr_t phys)
4533 {
4534 #ifdef DEBUG
4535 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4536 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4537
4538 if (!SLIST_EMPTY(&md->pvh_list))
4539 panic("pmap_zero_page: page has mappings");
4540 #endif
4541
4542 KDASSERT((phys & PGOFSET) == 0);
4543
4544 /*
4545 * Hook in the page, zero it, and purge the cache for that
4546 * zeroed page. Invalidate the TLB as needed.
4547 */
4548 *cdst_pte = L2_S_PROTO | phys |
4549 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4550 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4551 PTE_SYNC(cdst_pte);
4552 cpu_tlb_flushD_SE(cdstp);
4553 cpu_cpwait();
4554 bzero_page(cdstp);
4555 xscale_cache_clean_minidata();
4556 }
4557 #endif /* ARM_MMU_XSCALE == 1 */
4558
4559 /* pmap_pageidlezero()
4560 *
4561 * The same as above, except that we assume that the page is not
4562 * mapped. This means we never have to flush the cache first. Called
4563 * from the idle loop.
4564 */
4565 bool
4566 pmap_pageidlezero(paddr_t phys)
4567 {
4568 unsigned int i;
4569 int *ptr;
4570 bool rv = true;
4571 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4572 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4573 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4574 #endif
4575 #ifdef PMAP_CACHE_VIPT
4576 /* Choose the last page color it had, if any */
4577 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4578 #else
4579 const vsize_t va_offset = 0;
4580 #endif
4581 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4582
4583
4584 #ifdef DEBUG
4585 if (!SLIST_EMPTY(&md->pvh_list))
4586 panic("pmap_pageidlezero: page has mappings");
4587 #endif
4588
4589 KDASSERT((phys & PGOFSET) == 0);
4590
4591 /*
4592 * Hook in the page, zero it, and purge the cache for that
4593 * zeroed page. Invalidate the TLB as needed.
4594 */
4595 *ptep = L2_S_PROTO | phys |
4596 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4597 PTE_SYNC(ptep);
4598 cpu_tlb_flushD_SE(cdstp + va_offset);
4599 cpu_cpwait();
4600
4601 for (i = 0, ptr = (int *)(cdstp + va_offset);
4602 i < (PAGE_SIZE / sizeof(int)); i++) {
4603 if (sched_curcpu_runnable_p() != 0) {
4604 /*
4605 * A process has become ready. Abort now,
4606 * so we don't keep it waiting while we
4607 * do slow memory access to finish this
4608 * page.
4609 */
4610 rv = false;
4611 break;
4612 }
4613 *ptr++ = 0;
4614 }
4615
4616 #ifdef PMAP_CACHE_VIVT
4617 if (rv)
4618 /*
4619 * if we aborted we'll rezero this page again later so don't
4620 * purge it unless we finished it
4621 */
4622 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4623 #elif defined(PMAP_CACHE_VIPT)
4624 /*
4625 * This page is now cache resident so it now has a page color.
4626 * Any contents have been obliterated so clear the EXEC flag.
4627 */
4628 if (!pmap_is_page_colored_p(md)) {
4629 PMAPCOUNT(vac_color_new);
4630 md->pvh_attrs |= PVF_COLORED;
4631 }
4632 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4633 md->pvh_attrs &= ~PVF_EXEC;
4634 PMAPCOUNT(exec_discarded_zero);
4635 }
4636 #endif
4637 /*
4638 * Unmap the page.
4639 */
4640 *ptep = 0;
4641 PTE_SYNC(ptep);
4642 cpu_tlb_flushD_SE(cdstp + va_offset);
4643
4644 return (rv);
4645 }
4646
4647 /*
4648 * pmap_copy_page()
4649 *
4650 * Copy one physical page into another, by mapping the pages into
4651 * hook points. The same comment regarding cachability as in
4652 * pmap_zero_page also applies here.
4653 */
4654 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4655 void
4656 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4657 {
4658 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4659 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4660 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4661 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4662 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4663 #endif
4664 #ifdef PMAP_CACHE_VIPT
4665 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4666 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4667 #else
4668 const vsize_t src_va_offset = 0;
4669 const vsize_t dst_va_offset = 0;
4670 #endif
4671 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4672 /*
4673 * Is this page mapped at its natural color?
4674 * If we have all of memory mapped, then just convert PA to VA.
4675 */
4676 const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
4677 const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
4678 const vaddr_t vsrcp = src_okcolor
4679 ? KERNEL_BASE + (src - physical_start)
4680 : csrcp + src_va_offset;
4681 const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
4682 #else
4683 const bool src_okcolor = false;
4684 const bool dst_okcolor = false;
4685 const vaddr_t vsrcp = csrcp + src_va_offset;
4686 const vaddr_t vdstp = cdstp + dst_va_offset;
4687 #endif
4688 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4689 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4690
4691 #ifdef DEBUG
4692 if (!SLIST_EMPTY(&dst_md->pvh_list))
4693 panic("pmap_copy_page: dst page has mappings");
4694 #endif
4695
4696 #ifdef PMAP_CACHE_VIPT
4697 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4698 #endif
4699 KDASSERT((src & PGOFSET) == 0);
4700 KDASSERT((dst & PGOFSET) == 0);
4701
4702 /*
4703 * Clean the source page. Hold the source page's lock for
4704 * the duration of the copy so that no other mappings can
4705 * be created while we have a potentially aliased mapping.
4706 */
4707 #ifdef MULTIPROCESSOR
4708 KASSERT(uvm_page_locked_p(src_pg));
4709 #endif
4710 #ifdef PMAP_CACHE_VIVT
4711 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4712 #endif
4713
4714 /*
4715 * Map the pages into the page hook points, copy them, and purge
4716 * the cache for the appropriate page. Invalidate the TLB
4717 * as required.
4718 */
4719 if (!src_okcolor) {
4720 *src_ptep = L2_S_PROTO
4721 | src
4722 #ifdef PMAP_CACHE_VIPT
4723 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4724 #endif
4725 #ifdef PMAP_CACHE_VIVT
4726 | pte_l2_s_cache_mode
4727 #endif
4728 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4729 PTE_SYNC(src_ptep);
4730 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4731 cpu_cpwait();
4732 }
4733 if (!dst_okcolor) {
4734 *dst_ptep = L2_S_PROTO | dst |
4735 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4736 PTE_SYNC(dst_ptep);
4737 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4738 cpu_cpwait();
4739 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4740 /*
4741 * If we are direct-mapped and our color isn't ok, then before
4742 * we bcopy to the new page invalidate its contents from the
4743 * cache and reset its color to its natural color.
4744 */
4745 cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
4746 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
4747 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
4748 #endif
4749 }
4750 bcopy_page(vsrcp, vdstp);
4751 #ifdef PMAP_CACHE_VIVT
4752 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
4753 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
4754 #endif
4755 /*
4756 * Unmap the pages.
4757 */
4758 if (!src_okcolor) {
4759 *src_ptep = 0;
4760 PTE_SYNC(src_ptep);
4761 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4762 cpu_cpwait();
4763 }
4764 if (!dst_okcolor) {
4765 *dst_ptep = 0;
4766 PTE_SYNC(dst_ptep);
4767 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4768 cpu_cpwait();
4769 }
4770 #ifdef PMAP_CACHE_VIPT
4771 /*
4772 * Now that the destination page is in the cache, mark it as colored.
4773 * If this was an exec page, discard it.
4774 */
4775 if (!pmap_is_page_colored_p(dst_md)) {
4776 PMAPCOUNT(vac_color_new);
4777 dst_md->pvh_attrs |= PVF_COLORED;
4778 }
4779 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4780 dst_md->pvh_attrs &= ~PVF_EXEC;
4781 PMAPCOUNT(exec_discarded_copy);
4782 }
4783 dst_md->pvh_attrs |= PVF_DIRTY;
4784 #endif
4785 }
4786 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4787
4788 #if ARM_MMU_XSCALE == 1
4789 void
4790 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4791 {
4792 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4793 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4794 #ifdef DEBUG
4795 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4796
4797 if (!SLIST_EMPTY(&dst_md->pvh_list))
4798 panic("pmap_copy_page: dst page has mappings");
4799 #endif
4800
4801 KDASSERT((src & PGOFSET) == 0);
4802 KDASSERT((dst & PGOFSET) == 0);
4803
4804 /*
4805 * Clean the source page. Hold the source page's lock for
4806 * the duration of the copy so that no other mappings can
4807 * be created while we have a potentially aliased mapping.
4808 */
4809 #ifdef MULTIPROCESSOR
4810 KASSERT(uvm_page_locked_p(src_pg));
4811 #endif
4812 #ifdef PMAP_CACHE_VIVT
4813 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4814 #endif
4815
4816 /*
4817 * Map the pages into the page hook points, copy them, and purge
4818 * the cache for the appropriate page. Invalidate the TLB
4819 * as required.
4820 */
4821 *csrc_pte = L2_S_PROTO | src |
4822 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4823 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4824 PTE_SYNC(csrc_pte);
4825 *cdst_pte = L2_S_PROTO | dst |
4826 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4827 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4828 PTE_SYNC(cdst_pte);
4829 cpu_tlb_flushD_SE(csrcp);
4830 cpu_tlb_flushD_SE(cdstp);
4831 cpu_cpwait();
4832 bcopy_page(csrcp, cdstp);
4833 xscale_cache_clean_minidata();
4834 }
4835 #endif /* ARM_MMU_XSCALE == 1 */
4836
4837 /*
4838 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4839 *
4840 * Return the start and end addresses of the kernel's virtual space.
4841 * These values are setup in pmap_bootstrap and are updated as pages
4842 * are allocated.
4843 */
4844 void
4845 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4846 {
4847 *start = virtual_avail;
4848 *end = virtual_end;
4849 }
4850
4851 /*
4852 * Helper function for pmap_grow_l2_bucket()
4853 */
4854 static inline int
4855 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4856 {
4857 struct l2_bucket *l2b;
4858 pt_entry_t *ptep;
4859 paddr_t pa;
4860
4861 if (uvm.page_init_done == false) {
4862 #ifdef PMAP_STEAL_MEMORY
4863 pv_addr_t pv;
4864 pmap_boot_pagealloc(PAGE_SIZE,
4865 #ifdef PMAP_CACHE_VIPT
4866 arm_cache_prefer_mask,
4867 va & arm_cache_prefer_mask,
4868 #else
4869 0, 0,
4870 #endif
4871 &pv);
4872 pa = pv.pv_pa;
4873 #else
4874 if (uvm_page_physget(&pa) == false)
4875 return (1);
4876 #endif /* PMAP_STEAL_MEMORY */
4877 } else {
4878 struct vm_page *pg;
4879 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4880 if (pg == NULL)
4881 return (1);
4882 pa = VM_PAGE_TO_PHYS(pg);
4883 #ifdef PMAP_CACHE_VIPT
4884 #ifdef DIAGNOSTIC
4885 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4886 #endif
4887 /*
4888 * This new page must not have any mappings. Enter it via
4889 * pmap_kenter_pa and let that routine do the hard work.
4890 */
4891 KASSERT(SLIST_EMPTY(&md->pvh_list));
4892 pmap_kenter_pa(va, pa,
4893 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
4894 #endif
4895 }
4896
4897 if (pap)
4898 *pap = pa;
4899
4900 PMAPCOUNT(pt_mappings);
4901 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4902 KDASSERT(l2b != NULL);
4903
4904 ptep = &l2b->l2b_kva[l2pte_index(va)];
4905 *ptep = L2_S_PROTO | pa | cache_mode |
4906 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4907 PTE_SYNC(ptep);
4908 memset((void *)va, 0, PAGE_SIZE);
4909 return (0);
4910 }
4911
4912 /*
4913 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4914 * used by pmap_growkernel().
4915 */
4916 static inline struct l2_bucket *
4917 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4918 {
4919 struct l2_dtable *l2;
4920 struct l2_bucket *l2b;
4921 u_short l1idx;
4922 vaddr_t nva;
4923
4924 l1idx = L1_IDX(va);
4925
4926 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4927 /*
4928 * No mapping at this address, as there is
4929 * no entry in the L1 table.
4930 * Need to allocate a new l2_dtable.
4931 */
4932 nva = pmap_kernel_l2dtable_kva;
4933 if ((nva & PGOFSET) == 0) {
4934 /*
4935 * Need to allocate a backing page
4936 */
4937 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4938 return (NULL);
4939 }
4940
4941 l2 = (struct l2_dtable *)nva;
4942 nva += sizeof(struct l2_dtable);
4943
4944 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4945 /*
4946 * The new l2_dtable straddles a page boundary.
4947 * Map in another page to cover it.
4948 */
4949 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4950 return (NULL);
4951 }
4952
4953 pmap_kernel_l2dtable_kva = nva;
4954
4955 /*
4956 * Link it into the parent pmap
4957 */
4958 pm->pm_l2[L2_IDX(l1idx)] = l2;
4959 }
4960
4961 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4962
4963 /*
4964 * Fetch pointer to the L2 page table associated with the address.
4965 */
4966 if (l2b->l2b_kva == NULL) {
4967 pt_entry_t *ptep;
4968
4969 /*
4970 * No L2 page table has been allocated. Chances are, this
4971 * is because we just allocated the l2_dtable, above.
4972 */
4973 nva = pmap_kernel_l2ptp_kva;
4974 ptep = (pt_entry_t *)nva;
4975 if ((nva & PGOFSET) == 0) {
4976 /*
4977 * Need to allocate a backing page
4978 */
4979 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4980 &pmap_kernel_l2ptp_phys))
4981 return (NULL);
4982 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4983 }
4984
4985 l2->l2_occupancy++;
4986 l2b->l2b_kva = ptep;
4987 l2b->l2b_l1idx = l1idx;
4988 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4989
4990 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4991 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4992 }
4993
4994 return (l2b);
4995 }
4996
4997 vaddr_t
4998 pmap_growkernel(vaddr_t maxkvaddr)
4999 {
5000 pmap_t kpm = pmap_kernel();
5001 struct l1_ttable *l1;
5002 struct l2_bucket *l2b;
5003 pd_entry_t *pl1pd;
5004 int s;
5005
5006 if (maxkvaddr <= pmap_curmaxkvaddr)
5007 goto out; /* we are OK */
5008
5009 NPDEBUG(PDB_GROWKERN,
5010 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5011 pmap_curmaxkvaddr, maxkvaddr));
5012
5013 KDASSERT(maxkvaddr <= virtual_end);
5014
5015 /*
5016 * whoops! we need to add kernel PTPs
5017 */
5018
5019 s = splhigh(); /* to be safe */
5020 mutex_enter(kpm->pm_lock);
5021
5022 /* Map 1MB at a time */
5023 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
5024
5025 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5026 KDASSERT(l2b != NULL);
5027
5028 /* Distribute new L1 entry to all other L1s */
5029 SLIST_FOREACH(l1, &l1_list, l1_link) {
5030 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
5031 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
5032 L1_C_PROTO;
5033 PTE_SYNC(pl1pd);
5034 }
5035 }
5036
5037 /*
5038 * flush out the cache, expensive but growkernel will happen so
5039 * rarely
5040 */
5041 cpu_dcache_wbinv_all();
5042 cpu_tlb_flushD();
5043 cpu_cpwait();
5044
5045 mutex_exit(kpm->pm_lock);
5046 splx(s);
5047
5048 out:
5049 return (pmap_curmaxkvaddr);
5050 }
5051
5052 /************************ Utility routines ****************************/
5053
5054 #ifndef ARM_HAS_VBAR
5055 /*
5056 * vector_page_setprot:
5057 *
5058 * Manipulate the protection of the vector page.
5059 */
5060 void
5061 vector_page_setprot(int prot)
5062 {
5063 struct l2_bucket *l2b;
5064 pt_entry_t *ptep;
5065
5066 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5067 /*
5068 * If we are using VBAR to use the vectors in the kernel, then it's
5069 * already mapped in the kernel text so no need to anything here.
5070 */
5071 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5072 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5073 return;
5074 }
5075 #endif
5076
5077 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5078 KDASSERT(l2b != NULL);
5079
5080 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5081
5082 *ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5083 PTE_SYNC(ptep);
5084 cpu_tlb_flushD_SE(vector_page);
5085 cpu_cpwait();
5086 }
5087 #endif
5088
5089 /*
5090 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5091 * Returns true if the mapping exists, else false.
5092 *
5093 * NOTE: This function is only used by a couple of arm-specific modules.
5094 * It is not safe to take any pmap locks here, since we could be right
5095 * in the middle of debugging the pmap anyway...
5096 *
5097 * It is possible for this routine to return false even though a valid
5098 * mapping does exist. This is because we don't lock, so the metadata
5099 * state may be inconsistent.
5100 *
5101 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5102 * a "section" mapping.
5103 */
5104 bool
5105 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5106 {
5107 struct l2_dtable *l2;
5108 pd_entry_t *pl1pd, l1pd;
5109 pt_entry_t *ptep;
5110 u_short l1idx;
5111
5112 if (pm->pm_l1 == NULL)
5113 return false;
5114
5115 l1idx = L1_IDX(va);
5116 *pdp = pl1pd = pmap_l1_kva(pm) + l1idx;
5117 l1pd = *pl1pd;
5118
5119 if (l1pte_section_p(l1pd)) {
5120 *ptp = NULL;
5121 return true;
5122 }
5123
5124 if (pm->pm_l2 == NULL)
5125 return false;
5126
5127 l2 = pm->pm_l2[L2_IDX(l1idx)];
5128
5129 if (l2 == NULL ||
5130 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5131 return false;
5132 }
5133
5134 *ptp = &ptep[l2pte_index(va)];
5135 return true;
5136 }
5137
5138 bool
5139 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5140 {
5141
5142 if (pm->pm_l1 == NULL)
5143 return false;
5144
5145 *pdp = pmap_l1_kva(pm) + L1_IDX(va);
5146
5147 return true;
5148 }
5149
5150 /************************ Bootstrapping routines ****************************/
5151
5152 static void
5153 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5154 {
5155 int i;
5156
5157 l1->l1_kva = l1pt;
5158 l1->l1_domain_use_count = 0;
5159 l1->l1_domain_first = 0;
5160
5161 for (i = 0; i < PMAP_DOMAINS; i++)
5162 l1->l1_domain_free[i] = i + 1;
5163
5164 /*
5165 * Copy the kernel's L1 entries to each new L1.
5166 */
5167 if (pmap_initialized)
5168 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5169
5170 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5171 &l1->l1_physaddr) == false)
5172 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5173
5174 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5175 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5176 }
5177
5178 /*
5179 * pmap_bootstrap() is called from the board-specific initarm() routine
5180 * once the kernel L1/L2 descriptors tables have been set up.
5181 *
5182 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5183 * spread over a number of disparate files/functions.
5184 *
5185 * We are passed the following parameters
5186 * - kernel_l1pt
5187 * This is a pointer to the base of the kernel's L1 translation table.
5188 * - vstart
5189 * 1MB-aligned start of managed kernel virtual memory.
5190 * - vend
5191 * 1MB-aligned end of managed kernel virtual memory.
5192 *
5193 * We use the first parameter to build the metadata (struct l1_ttable and
5194 * struct l2_dtable) necessary to track kernel mappings.
5195 */
5196 #define PMAP_STATIC_L2_SIZE 16
5197 void
5198 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5199 {
5200 static struct l1_ttable static_l1;
5201 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5202 struct l1_ttable *l1 = &static_l1;
5203 struct l2_dtable *l2;
5204 struct l2_bucket *l2b;
5205 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5206 pmap_t pm = pmap_kernel();
5207 pd_entry_t pde;
5208 pt_entry_t *ptep;
5209 paddr_t pa;
5210 vaddr_t va;
5211 vsize_t size;
5212 int nptes, l1idx, l2idx, l2next = 0;
5213
5214 /*
5215 * Initialise the kernel pmap object
5216 */
5217 pm->pm_l1 = l1;
5218 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5219 pm->pm_activated = true;
5220 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5221
5222 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5223 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5224 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5225
5226 /*
5227 * Scan the L1 translation table created by initarm() and create
5228 * the required metadata for all valid mappings found in it.
5229 */
5230 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5231 pde = l1pt[l1idx];
5232
5233 /*
5234 * We're only interested in Coarse mappings.
5235 * pmap_extract() can deal with section mappings without
5236 * recourse to checking L2 metadata.
5237 */
5238 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5239 continue;
5240
5241 /*
5242 * Lookup the KVA of this L2 descriptor table
5243 */
5244 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5245 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5246 if (ptep == NULL) {
5247 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5248 (u_int)l1idx << L1_S_SHIFT, pa);
5249 }
5250
5251 /*
5252 * Fetch the associated L2 metadata structure.
5253 * Allocate a new one if necessary.
5254 */
5255 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5256 if (l2next == PMAP_STATIC_L2_SIZE)
5257 panic("pmap_bootstrap: out of static L2s");
5258 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5259 }
5260
5261 /*
5262 * One more L1 slot tracked...
5263 */
5264 l2->l2_occupancy++;
5265
5266 /*
5267 * Fill in the details of the L2 descriptor in the
5268 * appropriate bucket.
5269 */
5270 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5271 l2b->l2b_kva = ptep;
5272 l2b->l2b_phys = pa;
5273 l2b->l2b_l1idx = l1idx;
5274
5275 /*
5276 * Establish an initial occupancy count for this descriptor
5277 */
5278 for (l2idx = 0;
5279 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5280 l2idx++) {
5281 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5282 l2b->l2b_occupancy++;
5283 }
5284 }
5285
5286 /*
5287 * Make sure the descriptor itself has the correct cache mode.
5288 * If not, fix it, but whine about the problem. Port-meisters
5289 * should consider this a clue to fix up their initarm()
5290 * function. :)
5291 */
5292 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5293 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5294 "L2 pte @ %p\n", ptep);
5295 }
5296 }
5297
5298 /*
5299 * Ensure the primary (kernel) L1 has the correct cache mode for
5300 * a page table. Bitch if it is not correctly set.
5301 */
5302 for (va = (vaddr_t)l1pt;
5303 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5304 if (pmap_set_pt_cache_mode(l1pt, va))
5305 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5306 "primary L1 @ 0x%lx\n", va);
5307 }
5308
5309 cpu_dcache_wbinv_all();
5310 cpu_tlb_flushID();
5311 cpu_cpwait();
5312
5313 /*
5314 * now we allocate the "special" VAs which are used for tmp mappings
5315 * by the pmap (and other modules). we allocate the VAs by advancing
5316 * virtual_avail (note that there are no pages mapped at these VAs).
5317 *
5318 * Managed KVM space start from wherever initarm() tells us.
5319 */
5320 virtual_avail = vstart;
5321 virtual_end = vend;
5322
5323 #ifdef PMAP_CACHE_VIPT
5324 /*
5325 * If we have a VIPT cache, we need one page/pte per possible alias
5326 * page so we won't violate cache aliasing rules.
5327 */
5328 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5329 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5330 #else
5331 nptes = 1;
5332 #endif
5333 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5334 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5335 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5336 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5337 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5338 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5339 (void *)&msgbufaddr, NULL);
5340
5341 /*
5342 * Allocate a range of kernel virtual address space to be used
5343 * for L2 descriptor tables and metadata allocation in
5344 * pmap_growkernel().
5345 */
5346 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5347 pmap_alloc_specials(&virtual_avail,
5348 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5349 &pmap_kernel_l2ptp_kva, NULL);
5350
5351 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5352 pmap_alloc_specials(&virtual_avail,
5353 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5354 &pmap_kernel_l2dtable_kva, NULL);
5355
5356 /*
5357 * init the static-global locks and global pmap list.
5358 */
5359 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
5360
5361 /*
5362 * We can now initialise the first L1's metadata.
5363 */
5364 SLIST_INIT(&l1_list);
5365 TAILQ_INIT(&l1_lru_list);
5366 pmap_init_l1(l1, l1pt);
5367
5368 #ifndef ARM_HAS_VBAR
5369 /* Set up vector page L1 details, if necessary */
5370 if (vector_page < KERNEL_BASE) {
5371 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
5372 l2b = pmap_get_l2_bucket(pm, vector_page);
5373 KDASSERT(l2b != NULL);
5374 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5375 L1_C_DOM(pmap_domain(pm));
5376 } else
5377 pm->pm_pl1vec = NULL;
5378 #endif
5379
5380 /*
5381 * Initialize the pmap cache
5382 */
5383 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5384 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5385 LIST_INIT(&pmap_pmaps);
5386 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5387
5388 /*
5389 * Initialize the pv pool.
5390 */
5391 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5392 &pmap_bootstrap_pv_allocator, IPL_NONE);
5393
5394 /*
5395 * Initialize the L2 dtable pool and cache.
5396 */
5397 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5398 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5399
5400 /*
5401 * Initialise the L2 descriptor table pool and cache
5402 */
5403 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5404 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5405 pmap_l2ptp_ctor, NULL, NULL);
5406
5407 cpu_dcache_wbinv_all();
5408 }
5409
5410 static int
5411 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5412 {
5413 pd_entry_t *pdep, pde;
5414 pt_entry_t *ptep, pte;
5415 vaddr_t pa;
5416 int rv = 0;
5417
5418 /*
5419 * Make sure the descriptor itself has the correct cache mode
5420 */
5421 pdep = &kl1[L1_IDX(va)];
5422 pde = *pdep;
5423
5424 if (l1pte_section_p(pde)) {
5425 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
5426 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5427 *pdep = (pde & ~L1_S_CACHE_MASK) |
5428 pte_l1_s_cache_mode_pt;
5429 PTE_SYNC(pdep);
5430 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5431 rv = 1;
5432 }
5433 } else {
5434 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5435 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5436 if (ptep == NULL)
5437 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5438
5439 ptep = &ptep[l2pte_index(va)];
5440 pte = *ptep;
5441 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5442 *ptep = (pte & ~L2_S_CACHE_MASK) |
5443 pte_l2_s_cache_mode_pt;
5444 PTE_SYNC(ptep);
5445 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5446 rv = 1;
5447 }
5448 }
5449
5450 return (rv);
5451 }
5452
5453 static void
5454 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5455 {
5456 vaddr_t va = *availp;
5457 struct l2_bucket *l2b;
5458
5459 if (ptep) {
5460 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5461 if (l2b == NULL)
5462 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5463
5464 if (ptep)
5465 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5466 }
5467
5468 *vap = va;
5469 *availp = va + (PAGE_SIZE * pages);
5470 }
5471
5472 void
5473 pmap_init(void)
5474 {
5475
5476 /*
5477 * Set the available memory vars - These do not map to real memory
5478 * addresses and cannot as the physical memory is fragmented.
5479 * They are used by ps for %mem calculations.
5480 * One could argue whether this should be the entire memory or just
5481 * the memory that is useable in a user process.
5482 */
5483 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5484 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5485
5486 /*
5487 * Now we need to free enough pv_entry structures to allow us to get
5488 * the kmem_map/kmem_object allocated and inited (done after this
5489 * function is finished). to do this we allocate one bootstrap page out
5490 * of kernel_map and use it to provide an initial pool of pv_entry
5491 * structures. we never free this page.
5492 */
5493 pool_setlowat(&pmap_pv_pool,
5494 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5495
5496 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5497 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5498 UVM_KMF_WIRED|UVM_KMF_ZERO);
5499
5500 pmap_initialized = true;
5501 }
5502
5503 static vaddr_t last_bootstrap_page = 0;
5504 static void *free_bootstrap_pages = NULL;
5505
5506 static void *
5507 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5508 {
5509 extern void *pool_page_alloc(struct pool *, int);
5510 vaddr_t new_page;
5511 void *rv;
5512
5513 if (pmap_initialized)
5514 return (pool_page_alloc(pp, flags));
5515
5516 if (free_bootstrap_pages) {
5517 rv = free_bootstrap_pages;
5518 free_bootstrap_pages = *((void **)rv);
5519 return (rv);
5520 }
5521
5522 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5523 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5524
5525 KASSERT(new_page > last_bootstrap_page);
5526 last_bootstrap_page = new_page;
5527 return ((void *)new_page);
5528 }
5529
5530 static void
5531 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5532 {
5533 extern void pool_page_free(struct pool *, void *);
5534
5535 if ((vaddr_t)v <= last_bootstrap_page) {
5536 *((void **)v) = free_bootstrap_pages;
5537 free_bootstrap_pages = v;
5538 return;
5539 }
5540
5541 if (pmap_initialized) {
5542 pool_page_free(pp, v);
5543 return;
5544 }
5545 }
5546
5547 /*
5548 * pmap_postinit()
5549 *
5550 * This routine is called after the vm and kmem subsystems have been
5551 * initialised. This allows the pmap code to perform any initialisation
5552 * that can only be done one the memory allocation is in place.
5553 */
5554 void
5555 pmap_postinit(void)
5556 {
5557 extern paddr_t physical_start, physical_end;
5558 struct l1_ttable *l1;
5559 struct pglist plist;
5560 struct vm_page *m;
5561 pd_entry_t *pl1pt;
5562 vaddr_t va, eva;
5563 u_int loop, needed;
5564 int error;
5565
5566 pool_cache_setlowat(&pmap_l2ptp_cache,
5567 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5568 pool_cache_setlowat(&pmap_l2dtable_cache,
5569 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5570
5571 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5572 needed -= 1;
5573
5574 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
5575
5576 for (loop = 0; loop < needed; loop++, l1++) {
5577 /* Allocate a L1 page table */
5578 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5579 if (va == 0)
5580 panic("Cannot allocate L1 KVM");
5581
5582 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5583 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
5584 if (error)
5585 panic("Cannot allocate L1 physical pages");
5586
5587 m = TAILQ_FIRST(&plist);
5588 eva = va + L1_TABLE_SIZE;
5589 pl1pt = (pd_entry_t *)va;
5590
5591 while (m && va < eva) {
5592 paddr_t pa = VM_PAGE_TO_PHYS(m);
5593
5594 pmap_kenter_pa(va, pa,
5595 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5596
5597 va += PAGE_SIZE;
5598 m = TAILQ_NEXT(m, pageq.queue);
5599 }
5600
5601 #ifdef DIAGNOSTIC
5602 if (m)
5603 panic("pmap_alloc_l1pt: pglist not empty");
5604 #endif /* DIAGNOSTIC */
5605
5606 pmap_init_l1(l1, pl1pt);
5607 }
5608
5609 #ifdef DEBUG
5610 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5611 needed);
5612 #endif
5613 }
5614
5615 /*
5616 * Note that the following routines are used by board-specific initialisation
5617 * code to configure the initial kernel page tables.
5618 *
5619 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5620 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5621 * behaviour of the old pmap, and provides an easy migration path for
5622 * initial bring-up of the new pmap on existing ports. Fortunately,
5623 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5624 * will be deprecated.
5625 *
5626 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5627 * tables.
5628 */
5629
5630 /*
5631 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5632 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5633 * find them as necessary.
5634 *
5635 * Note that the data on this list MUST remain valid after initarm() returns,
5636 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5637 */
5638 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5639
5640 static vaddr_t
5641 kernel_pt_lookup(paddr_t pa)
5642 {
5643 pv_addr_t *pv;
5644
5645 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5646 #ifndef ARM32_NEW_VM_LAYOUT
5647 if (pv->pv_pa == (pa & ~PGOFSET))
5648 return (pv->pv_va | (pa & PGOFSET));
5649 #else
5650 if (pv->pv_pa == pa)
5651 return (pv->pv_va);
5652 #endif
5653 }
5654 return (0);
5655 }
5656
5657 /*
5658 * pmap_map_section:
5659 *
5660 * Create a single section mapping.
5661 */
5662 void
5663 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5664 {
5665 pd_entry_t *pde = (pd_entry_t *) l1pt;
5666 pd_entry_t fl;
5667
5668 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5669
5670 switch (cache) {
5671 case PTE_NOCACHE:
5672 default:
5673 fl = 0;
5674 break;
5675
5676 case PTE_CACHE:
5677 fl = pte_l1_s_cache_mode;
5678 break;
5679
5680 case PTE_PAGETABLE:
5681 fl = pte_l1_s_cache_mode_pt;
5682 break;
5683 }
5684
5685 pde[L1_IDX(va)] = L1_S_PROTO | pa |
5686 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5687 PTE_SYNC(&pde[L1_IDX(va)]);
5688 }
5689
5690 /*
5691 * pmap_map_entry:
5692 *
5693 * Create a single page mapping.
5694 */
5695 void
5696 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5697 {
5698 pd_entry_t *pde = (pd_entry_t *) l1pt;
5699 pt_entry_t npte;
5700 pt_entry_t *ptep;
5701
5702 KASSERT(((va | pa) & PGOFSET) == 0);
5703
5704 switch (cache) {
5705 case PTE_NOCACHE:
5706 default:
5707 npte = 0;
5708 break;
5709
5710 case PTE_CACHE:
5711 npte = pte_l2_s_cache_mode;
5712 break;
5713
5714 case PTE_PAGETABLE:
5715 npte = pte_l2_s_cache_mode_pt;
5716 break;
5717 }
5718
5719 if ((pde[L1_IDX(va)] & L1_TYPE_MASK) != L1_TYPE_C)
5720 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5721
5722 #ifndef ARM32_NEW_VM_LAYOUT
5723 ptep = (pt_entry_t *)
5724 kernel_pt_lookup(pde[L1_IDX(va)] & L2_S_FRAME);
5725 #else
5726 ptep = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5727 #endif
5728 if (ptep == NULL)
5729 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5730
5731 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5732 #ifndef ARM32_NEW_VM_LAYOUT
5733 ptep += (va >> PGSHIFT) & 0x3ff;
5734 #else
5735 ptep += l2pte_index(va);
5736 #endif
5737 l2pte_set(ptep, npte, 0);
5738 PTE_SYNC(ptep);
5739 }
5740
5741 /*
5742 * pmap_link_l2pt:
5743 *
5744 * Link the L2 page table specified by "l2pv" into the L1
5745 * page table at the slot for "va".
5746 */
5747 void
5748 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5749 {
5750 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5751 u_int slot = L1_IDX(va);
5752
5753 #ifndef ARM32_NEW_VM_LAYOUT
5754 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5755 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5756 #endif
5757
5758 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5759
5760 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5761 #ifdef ARM32_NEW_VM_LAYOUT
5762 PTE_SYNC(&pde[slot]);
5763 #else
5764 for (u_int off = 0, i = 0; off < PAGE_SIZE; off += L2_T_SIZE, i++) {
5765 pde[slot + i] = proto | (l2pv->pv_pa + off);
5766 }
5767 PTE_SYNC_RANGE(&pde[slot + 0], PAGE_SIZE / L2_T_SIZE);
5768 #endif
5769
5770 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5771 }
5772
5773 /*
5774 * pmap_map_chunk:
5775 *
5776 * Map a chunk of memory using the most efficient mappings
5777 * possible (section, large page, small page) into the
5778 * provided L1 and L2 tables at the specified virtual address.
5779 */
5780 vsize_t
5781 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5782 int prot, int cache)
5783 {
5784 pd_entry_t *pdep = (pd_entry_t *) l1pt;
5785 pt_entry_t *pte, f1, f2s, f2l;
5786 vsize_t resid;
5787 int i;
5788
5789 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5790
5791 if (l1pt == 0)
5792 panic("pmap_map_chunk: no L1 table provided");
5793
5794 #ifdef VERBOSE_INIT_ARM
5795 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5796 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5797 #endif
5798
5799 switch (cache) {
5800 case PTE_NOCACHE:
5801 default:
5802 f1 = 0;
5803 f2l = 0;
5804 f2s = 0;
5805 break;
5806
5807 case PTE_CACHE:
5808 f1 = pte_l1_s_cache_mode;
5809 f2l = pte_l2_l_cache_mode;
5810 f2s = pte_l2_s_cache_mode;
5811 break;
5812
5813 case PTE_PAGETABLE:
5814 f1 = pte_l1_s_cache_mode_pt;
5815 f2l = pte_l2_l_cache_mode_pt;
5816 f2s = pte_l2_s_cache_mode_pt;
5817 break;
5818 }
5819
5820 size = resid;
5821
5822 while (resid > 0) {
5823 size_t l1idx = L1_IDX(va);
5824 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5825 /* See if we can use a supersection mapping. */
5826 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
5827 /* Supersection are always domain 0 */
5828 pd_entry_t pde = L1_SS_PROTO | pa |
5829 L1_S_PROT(PTE_KERNEL, prot) | f1;
5830 #ifdef VERBOSE_INIT_ARM
5831 printf("sS");
5832 #endif
5833 for (size_t s = l1idx,
5834 e = s + L1_SS_SIZE / L1_S_SIZE;
5835 s < e;
5836 s++) {
5837 pdep[s] = pde;
5838 PTE_SYNC(&pdep[s]);
5839 }
5840 va += L1_SS_SIZE;
5841 pa += L1_SS_SIZE;
5842 resid -= L1_SS_SIZE;
5843 continue;
5844 }
5845 #endif
5846 /* See if we can use a section mapping. */
5847 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5848 #ifdef VERBOSE_INIT_ARM
5849 printf("S");
5850 #endif
5851 pdep[l1idx] = L1_S_PROTO | pa |
5852 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5853 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5854 PTE_SYNC(&pdep[l1idx]);
5855 va += L1_S_SIZE;
5856 pa += L1_S_SIZE;
5857 resid -= L1_S_SIZE;
5858 continue;
5859 }
5860
5861 /*
5862 * Ok, we're going to use an L2 table. Make sure
5863 * one is actually in the corresponding L1 slot
5864 * for the current VA.
5865 */
5866 if ((pdep[l1idx] & L1_TYPE_MASK) != L1_TYPE_C)
5867 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5868
5869 #ifndef ARM32_NEW_VM_LAYOUT
5870 pte = (pt_entry_t *)
5871 kernel_pt_lookup(pdep[l1idx] & L2_S_FRAME);
5872 #else
5873 pte = (pt_entry_t *) kernel_pt_lookup(
5874 pdep[l1idx] & L1_C_ADDR_MASK);
5875 #endif
5876 if (pte == NULL)
5877 panic("pmap_map_chunk: can't find L2 table for VA"
5878 "0x%08lx", va);
5879
5880 /* See if we can use a L2 large page mapping. */
5881 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5882 #ifdef VERBOSE_INIT_ARM
5883 printf("L");
5884 #endif
5885 for (i = 0; i < 16; i++) {
5886 #ifndef ARM32_NEW_VM_LAYOUT
5887 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5888 L2_L_PROTO | pa |
5889 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5890 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5891 #else
5892 pte[l2pte_index(va) + i] =
5893 L2_L_PROTO | pa |
5894 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5895 PTE_SYNC(&pte[l2pte_index(va) + i]);
5896 #endif
5897 }
5898 va += L2_L_SIZE;
5899 pa += L2_L_SIZE;
5900 resid -= L2_L_SIZE;
5901 continue;
5902 }
5903
5904 /* Use a small page mapping. */
5905 #ifdef VERBOSE_INIT_ARM
5906 printf("P");
5907 #endif
5908 pt_entry_t npte =
5909 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5910 #ifndef ARM32_NEW_VM_LAYOUT
5911 pt_entry_t *ptep = &pte[(va >> PGSHIFT) & 0x3ff];
5912 #else
5913 pt_entry_t *ptep = &pte[l2pte_index(va)];
5914 #endif
5915 l2pte_set(ptep, npte, 0);
5916 PTE_SYNC(ptep);
5917 va += PAGE_SIZE;
5918 pa += PAGE_SIZE;
5919 resid -= PAGE_SIZE;
5920 }
5921 #ifdef VERBOSE_INIT_ARM
5922 printf("\n");
5923 #endif
5924 return (size);
5925 }
5926
5927 /********************** Static device map routines ***************************/
5928
5929 static const struct pmap_devmap *pmap_devmap_table;
5930
5931 /*
5932 * Register the devmap table. This is provided in case early console
5933 * initialization needs to register mappings created by bootstrap code
5934 * before pmap_devmap_bootstrap() is called.
5935 */
5936 void
5937 pmap_devmap_register(const struct pmap_devmap *table)
5938 {
5939
5940 pmap_devmap_table = table;
5941 }
5942
5943 /*
5944 * Map all of the static regions in the devmap table, and remember
5945 * the devmap table so other parts of the kernel can look up entries
5946 * later.
5947 */
5948 void
5949 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5950 {
5951 int i;
5952
5953 pmap_devmap_table = table;
5954
5955 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5956 #ifdef VERBOSE_INIT_ARM
5957 printf("devmap: %08lx -> %08lx @ %08lx\n",
5958 pmap_devmap_table[i].pd_pa,
5959 pmap_devmap_table[i].pd_pa +
5960 pmap_devmap_table[i].pd_size - 1,
5961 pmap_devmap_table[i].pd_va);
5962 #endif
5963 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5964 pmap_devmap_table[i].pd_pa,
5965 pmap_devmap_table[i].pd_size,
5966 pmap_devmap_table[i].pd_prot,
5967 pmap_devmap_table[i].pd_cache);
5968 }
5969 }
5970
5971 const struct pmap_devmap *
5972 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5973 {
5974 uint64_t endpa;
5975 int i;
5976
5977 if (pmap_devmap_table == NULL)
5978 return (NULL);
5979
5980 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5981
5982 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5983 if (pa >= pmap_devmap_table[i].pd_pa &&
5984 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5985 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5986 return (&pmap_devmap_table[i]);
5987 }
5988
5989 return (NULL);
5990 }
5991
5992 const struct pmap_devmap *
5993 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5994 {
5995 int i;
5996
5997 if (pmap_devmap_table == NULL)
5998 return (NULL);
5999
6000 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6001 if (va >= pmap_devmap_table[i].pd_va &&
6002 va + size - 1 <= pmap_devmap_table[i].pd_va +
6003 pmap_devmap_table[i].pd_size - 1)
6004 return (&pmap_devmap_table[i]);
6005 }
6006
6007 return (NULL);
6008 }
6009
6010 /********************** PTE initialization routines **************************/
6011
6012 /*
6013 * These routines are called when the CPU type is identified to set up
6014 * the PTE prototypes, cache modes, etc.
6015 *
6016 * The variables are always here, just in case modules need to reference
6017 * them (though, they shouldn't).
6018 */
6019
6020 pt_entry_t pte_l1_s_cache_mode;
6021 pt_entry_t pte_l1_s_wc_mode;
6022 pt_entry_t pte_l1_s_cache_mode_pt;
6023 pt_entry_t pte_l1_s_cache_mask;
6024
6025 pt_entry_t pte_l2_l_cache_mode;
6026 pt_entry_t pte_l2_l_wc_mode;
6027 pt_entry_t pte_l2_l_cache_mode_pt;
6028 pt_entry_t pte_l2_l_cache_mask;
6029
6030 pt_entry_t pte_l2_s_cache_mode;
6031 pt_entry_t pte_l2_s_wc_mode;
6032 pt_entry_t pte_l2_s_cache_mode_pt;
6033 pt_entry_t pte_l2_s_cache_mask;
6034
6035 pt_entry_t pte_l1_s_prot_u;
6036 pt_entry_t pte_l1_s_prot_w;
6037 pt_entry_t pte_l1_s_prot_ro;
6038 pt_entry_t pte_l1_s_prot_mask;
6039
6040 pt_entry_t pte_l2_s_prot_u;
6041 pt_entry_t pte_l2_s_prot_w;
6042 pt_entry_t pte_l2_s_prot_ro;
6043 pt_entry_t pte_l2_s_prot_mask;
6044
6045 pt_entry_t pte_l2_l_prot_u;
6046 pt_entry_t pte_l2_l_prot_w;
6047 pt_entry_t pte_l2_l_prot_ro;
6048 pt_entry_t pte_l2_l_prot_mask;
6049
6050 pt_entry_t pte_l1_ss_proto;
6051 pt_entry_t pte_l1_s_proto;
6052 pt_entry_t pte_l1_c_proto;
6053 pt_entry_t pte_l2_s_proto;
6054
6055 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6056 void (*pmap_zero_page_func)(paddr_t);
6057
6058 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6059 void
6060 pmap_pte_init_generic(void)
6061 {
6062
6063 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6064 pte_l1_s_wc_mode = L1_S_B;
6065 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6066
6067 pte_l2_l_cache_mode = L2_B|L2_C;
6068 pte_l2_l_wc_mode = L2_B;
6069 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6070
6071 pte_l2_s_cache_mode = L2_B|L2_C;
6072 pte_l2_s_wc_mode = L2_B;
6073 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6074
6075 /*
6076 * If we have a write-through cache, set B and C. If
6077 * we have a write-back cache, then we assume setting
6078 * only C will make those pages write-through (except for those
6079 * Cortex CPUs which can read the L1 caches).
6080 */
6081 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6082 #if ARM_MMU_V7 > 0
6083 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6084 #endif
6085 #if ARM_MMU_V6 > 0
6086 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6087 #endif
6088 || false) {
6089 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6090 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6091 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6092 } else {
6093 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6094 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6095 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6096 }
6097
6098 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6099 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6100 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6101 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6102
6103 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6104 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6105 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6106 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6107
6108 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6109 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6110 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6111 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6112
6113 pte_l1_ss_proto = L1_SS_PROTO_generic;
6114 pte_l1_s_proto = L1_S_PROTO_generic;
6115 pte_l1_c_proto = L1_C_PROTO_generic;
6116 pte_l2_s_proto = L2_S_PROTO_generic;
6117
6118 pmap_copy_page_func = pmap_copy_page_generic;
6119 pmap_zero_page_func = pmap_zero_page_generic;
6120 }
6121
6122 #if defined(CPU_ARM8)
6123 void
6124 pmap_pte_init_arm8(void)
6125 {
6126
6127 /*
6128 * ARM8 is compatible with generic, but we need to use
6129 * the page tables uncached.
6130 */
6131 pmap_pte_init_generic();
6132
6133 pte_l1_s_cache_mode_pt = 0;
6134 pte_l2_l_cache_mode_pt = 0;
6135 pte_l2_s_cache_mode_pt = 0;
6136 }
6137 #endif /* CPU_ARM8 */
6138
6139 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6140 void
6141 pmap_pte_init_arm9(void)
6142 {
6143
6144 /*
6145 * ARM9 is compatible with generic, but we want to use
6146 * write-through caching for now.
6147 */
6148 pmap_pte_init_generic();
6149
6150 pte_l1_s_cache_mode = L1_S_C;
6151 pte_l2_l_cache_mode = L2_C;
6152 pte_l2_s_cache_mode = L2_C;
6153
6154 pte_l1_s_wc_mode = L1_S_B;
6155 pte_l2_l_wc_mode = L2_B;
6156 pte_l2_s_wc_mode = L2_B;
6157
6158 pte_l1_s_cache_mode_pt = L1_S_C;
6159 pte_l2_l_cache_mode_pt = L2_C;
6160 pte_l2_s_cache_mode_pt = L2_C;
6161 }
6162 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6163 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6164
6165 #if defined(CPU_ARM10)
6166 void
6167 pmap_pte_init_arm10(void)
6168 {
6169
6170 /*
6171 * ARM10 is compatible with generic, but we want to use
6172 * write-through caching for now.
6173 */
6174 pmap_pte_init_generic();
6175
6176 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6177 pte_l2_l_cache_mode = L2_B | L2_C;
6178 pte_l2_s_cache_mode = L2_B | L2_C;
6179
6180 pte_l1_s_cache_mode = L1_S_B;
6181 pte_l2_l_cache_mode = L2_B;
6182 pte_l2_s_cache_mode = L2_B;
6183
6184 pte_l1_s_cache_mode_pt = L1_S_C;
6185 pte_l2_l_cache_mode_pt = L2_C;
6186 pte_l2_s_cache_mode_pt = L2_C;
6187
6188 }
6189 #endif /* CPU_ARM10 */
6190
6191 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6192 void
6193 pmap_pte_init_arm11(void)
6194 {
6195
6196 /*
6197 * ARM11 is compatible with generic, but we want to use
6198 * write-through caching for now.
6199 */
6200 pmap_pte_init_generic();
6201
6202 pte_l1_s_cache_mode = L1_S_C;
6203 pte_l2_l_cache_mode = L2_C;
6204 pte_l2_s_cache_mode = L2_C;
6205
6206 pte_l1_s_wc_mode = L1_S_B;
6207 pte_l2_l_wc_mode = L2_B;
6208 pte_l2_s_wc_mode = L2_B;
6209
6210 pte_l1_s_cache_mode_pt = L1_S_C;
6211 pte_l2_l_cache_mode_pt = L2_C;
6212 pte_l2_s_cache_mode_pt = L2_C;
6213 }
6214 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6215
6216 #if ARM_MMU_SA1 == 1
6217 void
6218 pmap_pte_init_sa1(void)
6219 {
6220
6221 /*
6222 * The StrongARM SA-1 cache does not have a write-through
6223 * mode. So, do the generic initialization, then reset
6224 * the page table cache mode to B=1,C=1, and note that
6225 * the PTEs need to be sync'd.
6226 */
6227 pmap_pte_init_generic();
6228
6229 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6230 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6231 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6232
6233 pmap_needs_pte_sync = 1;
6234 }
6235 #endif /* ARM_MMU_SA1 == 1*/
6236
6237 #if ARM_MMU_XSCALE == 1
6238 #if (ARM_NMMUS > 1)
6239 static u_int xscale_use_minidata;
6240 #endif
6241
6242 void
6243 pmap_pte_init_xscale(void)
6244 {
6245 uint32_t auxctl;
6246 int write_through = 0;
6247
6248 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6249 pte_l1_s_wc_mode = L1_S_B;
6250 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6251
6252 pte_l2_l_cache_mode = L2_B|L2_C;
6253 pte_l2_l_wc_mode = L2_B;
6254 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6255
6256 pte_l2_s_cache_mode = L2_B|L2_C;
6257 pte_l2_s_wc_mode = L2_B;
6258 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6259
6260 pte_l1_s_cache_mode_pt = L1_S_C;
6261 pte_l2_l_cache_mode_pt = L2_C;
6262 pte_l2_s_cache_mode_pt = L2_C;
6263
6264 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6265 /*
6266 * The XScale core has an enhanced mode where writes that
6267 * miss the cache cause a cache line to be allocated. This
6268 * is significantly faster than the traditional, write-through
6269 * behavior of this case.
6270 */
6271 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6272 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6273 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6274 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6275
6276 #ifdef XSCALE_CACHE_WRITE_THROUGH
6277 /*
6278 * Some versions of the XScale core have various bugs in
6279 * their cache units, the work-around for which is to run
6280 * the cache in write-through mode. Unfortunately, this
6281 * has a major (negative) impact on performance. So, we
6282 * go ahead and run fast-and-loose, in the hopes that we
6283 * don't line up the planets in a way that will trip the
6284 * bugs.
6285 *
6286 * However, we give you the option to be slow-but-correct.
6287 */
6288 write_through = 1;
6289 #elif defined(XSCALE_CACHE_WRITE_BACK)
6290 /* force write back cache mode */
6291 write_through = 0;
6292 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6293 /*
6294 * Intel PXA2[15]0 processors are known to have a bug in
6295 * write-back cache on revision 4 and earlier (stepping
6296 * A[01] and B[012]). Fixed for C0 and later.
6297 */
6298 {
6299 uint32_t id, type;
6300
6301 id = cpufunc_id();
6302 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6303
6304 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6305 if ((id & CPU_ID_REVISION_MASK) < 5) {
6306 /* write through for stepping A0-1 and B0-2 */
6307 write_through = 1;
6308 }
6309 }
6310 }
6311 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6312
6313 if (write_through) {
6314 pte_l1_s_cache_mode = L1_S_C;
6315 pte_l2_l_cache_mode = L2_C;
6316 pte_l2_s_cache_mode = L2_C;
6317 }
6318
6319 #if (ARM_NMMUS > 1)
6320 xscale_use_minidata = 1;
6321 #endif
6322
6323 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6324 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6325 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6326 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6327
6328 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6329 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6330 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6331 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6332
6333 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6334 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6335 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6336 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6337
6338 pte_l1_ss_proto = L1_SS_PROTO_xscale;
6339 pte_l1_s_proto = L1_S_PROTO_xscale;
6340 pte_l1_c_proto = L1_C_PROTO_xscale;
6341 pte_l2_s_proto = L2_S_PROTO_xscale;
6342
6343 pmap_copy_page_func = pmap_copy_page_xscale;
6344 pmap_zero_page_func = pmap_zero_page_xscale;
6345
6346 /*
6347 * Disable ECC protection of page table access, for now.
6348 */
6349 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6350 auxctl &= ~XSCALE_AUXCTL_P;
6351 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6352 }
6353
6354 /*
6355 * xscale_setup_minidata:
6356 *
6357 * Set up the mini-data cache clean area. We require the
6358 * caller to allocate the right amount of physically and
6359 * virtually contiguous space.
6360 */
6361 void
6362 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6363 {
6364 extern vaddr_t xscale_minidata_clean_addr;
6365 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6366 pd_entry_t *pde = (pd_entry_t *) l1pt;
6367 vsize_t size;
6368 uint32_t auxctl;
6369
6370 xscale_minidata_clean_addr = va;
6371
6372 /* Round it to page size. */
6373 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6374
6375 for (; size != 0;
6376 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6377 const size_t l1idx = L1_IDX(va);
6378 #ifndef ARM32_NEW_VM_LAYOUT
6379 pt_entry_t *ptep = (pt_entry_t *)
6380 kernel_pt_lookup(pde[l1idx] & L2_S_FRAME);
6381 #else
6382 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(
6383 pde[l1idx] & L1_C_ADDR_MASK);
6384 #endif
6385 if (ptep == NULL)
6386 panic("xscale_setup_minidata: can't find L2 table for "
6387 "VA 0x%08lx", va);
6388
6389 #ifndef ARM32_NEW_VM_LAYOUT
6390 ptep += (va >> PGSHIFT) & 0x3ff;
6391 #else
6392 ptep += l2pte_index(va);
6393 #endif
6394 pt_entry_t opte = *ptep;
6395 l2pte_set(ptep,
6396 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
6397 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
6398 }
6399
6400 /*
6401 * Configure the mini-data cache for write-back with
6402 * read/write-allocate.
6403 *
6404 * NOTE: In order to reconfigure the mini-data cache, we must
6405 * make sure it contains no valid data! In order to do that,
6406 * we must issue a global data cache invalidate command!
6407 *
6408 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6409 * THIS IS VERY IMPORTANT!
6410 */
6411
6412 /* Invalidate data and mini-data. */
6413 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6414 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6415 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6416 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6417 }
6418
6419 /*
6420 * Change the PTEs for the specified kernel mappings such that they
6421 * will use the mini data cache instead of the main data cache.
6422 */
6423 void
6424 pmap_uarea(vaddr_t va)
6425 {
6426 vaddr_t next_bucket, eva;
6427
6428 #if (ARM_NMMUS > 1)
6429 if (xscale_use_minidata == 0)
6430 return;
6431 #endif
6432
6433 eva = va + USPACE;
6434
6435 while (va < eva) {
6436 next_bucket = L2_NEXT_BUCKET(va);
6437 if (next_bucket > eva)
6438 next_bucket = eva;
6439
6440 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6441 KDASSERT(l2b != NULL);
6442
6443 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
6444 pt_entry_t *ptep = sptep;
6445
6446 while (va < next_bucket) {
6447 const pt_entry_t opte = *ptep;
6448 if (!l2pte_minidata(opte)) {
6449 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6450 cpu_tlb_flushD_SE(va);
6451 l2pte_set(ptep, opte & ~L2_B, opte);
6452 }
6453 ptep += PAGE_SIZE / L2_S_SIZE;
6454 va += PAGE_SIZE;
6455 }
6456 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6457 }
6458 cpu_cpwait();
6459 }
6460 #endif /* ARM_MMU_XSCALE == 1 */
6461
6462
6463 #if defined(CPU_ARM11MPCORE)
6464
6465 void
6466 pmap_pte_init_arm11mpcore(void)
6467 {
6468
6469 /* cache mode is controlled by 5 bits (B, C, TEX) */
6470 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6471 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6472 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6473 /* use extended small page (without APn, with TEX) */
6474 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6475 #else
6476 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6477 #endif
6478
6479 /* write-back, write-allocate */
6480 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6481 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6482 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6483 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6484 #else
6485 /* no TEX. read-allocate */
6486 pte_l2_s_cache_mode = L2_C | L2_B;
6487 #endif
6488 /*
6489 * write-back, write-allocate for page tables.
6490 */
6491 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6492 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6493 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6494 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6495 #else
6496 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6497 #endif
6498
6499 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6500 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6501 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6502 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6503
6504 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6505 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6506 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6507 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6508 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6509
6510 #else
6511 /* with AP[0..3] */
6512 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6513 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6514 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6515 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6516 #endif
6517
6518 #ifdef ARM11MPCORE_COMPAT_MMU
6519 /* with AP[0..3] */
6520 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6521 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6522 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6523 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6524
6525 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6526 pte_l1_s_proto = L1_S_PROTO_armv6;
6527 pte_l1_c_proto = L1_C_PROTO_armv6;
6528 pte_l2_s_proto = L2_S_PROTO_armv6c;
6529 #else
6530 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6531 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6532 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6533 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6534
6535 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6536 pte_l1_s_proto = L1_S_PROTO_armv6;
6537 pte_l1_c_proto = L1_C_PROTO_armv6;
6538 pte_l2_s_proto = L2_S_PROTO_armv6n;
6539 #endif
6540
6541 pmap_copy_page_func = pmap_copy_page_generic;
6542 pmap_zero_page_func = pmap_zero_page_generic;
6543 pmap_needs_pte_sync = 1;
6544 }
6545 #endif /* CPU_ARM11MPCORE */
6546
6547
6548 #if ARM_MMU_V7 == 1
6549 void
6550 pmap_pte_init_armv7(void)
6551 {
6552 /*
6553 * The ARMv7-A MMU is mostly compatible with generic. If the
6554 * AP field is zero, that now means "no access" rather than
6555 * read-only. The prototypes are a little different because of
6556 * the XN bit.
6557 */
6558 pmap_pte_init_generic();
6559
6560 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6561 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6562 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6563
6564 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
6565 /*
6566 * write-back, no write-allocate, shareable for normal pages.
6567 */
6568 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
6569 pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
6570 pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
6571
6572 /*
6573 * write-back, no write-allocate, shareable for page tables.
6574 */
6575 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
6576 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6577 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6578 }
6579
6580 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6581 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6582 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6583 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6584
6585 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6586 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6587 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6588 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6589
6590 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6591 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6592 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6593 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6594
6595 pte_l1_ss_proto = L1_SS_PROTO_armv7;
6596 pte_l1_s_proto = L1_S_PROTO_armv7;
6597 pte_l1_c_proto = L1_C_PROTO_armv7;
6598 pte_l2_s_proto = L2_S_PROTO_armv7;
6599
6600 pmap_needs_pte_sync = 1;
6601 }
6602 #endif /* ARM_MMU_V7 */
6603
6604 /*
6605 * return the PA of the current L1 table, for use when handling a crash dump
6606 */
6607 uint32_t pmap_kernel_L1_addr(void)
6608 {
6609 return pmap_kernel()->pm_l1->l1_physaddr;
6610 }
6611
6612 #if defined(DDB)
6613 /*
6614 * A couple of ddb-callable functions for dumping pmaps
6615 */
6616 void pmap_dump_all(void);
6617 void pmap_dump(pmap_t);
6618
6619 void
6620 pmap_dump_all(void)
6621 {
6622 pmap_t pm;
6623
6624 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6625 if (pm == pmap_kernel())
6626 continue;
6627 pmap_dump(pm);
6628 printf("\n");
6629 }
6630 }
6631
6632 static pt_entry_t ncptes[64];
6633 static void pmap_dump_ncpg(pmap_t);
6634
6635 void
6636 pmap_dump(pmap_t pm)
6637 {
6638 struct l2_dtable *l2;
6639 struct l2_bucket *l2b;
6640 pt_entry_t *ptep, pte;
6641 vaddr_t l2_va, l2b_va, va;
6642 int i, j, k, occ, rows = 0;
6643
6644 if (pm == pmap_kernel())
6645 printf("pmap_kernel (%p): ", pm);
6646 else
6647 printf("user pmap (%p): ", pm);
6648
6649 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
6650
6651 l2_va = 0;
6652 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6653 l2 = pm->pm_l2[i];
6654
6655 if (l2 == NULL || l2->l2_occupancy == 0)
6656 continue;
6657
6658 l2b_va = l2_va;
6659 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6660 l2b = &l2->l2_bucket[j];
6661
6662 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6663 continue;
6664
6665 ptep = l2b->l2b_kva;
6666
6667 for (k = 0; k < 256 && ptep[k] == 0; k++)
6668 ;
6669
6670 k &= ~63;
6671 occ = l2b->l2b_occupancy;
6672 va = l2b_va + (k * 4096);
6673 for (; k < 256; k++, va += 0x1000) {
6674 char ch = ' ';
6675 if ((k % 64) == 0) {
6676 if ((rows % 8) == 0) {
6677 printf(
6678 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6679 }
6680 printf("%08lx: ", va);
6681 }
6682
6683 ncptes[k & 63] = 0;
6684 pte = ptep[k];
6685 if (pte == 0) {
6686 ch = '.';
6687 } else {
6688 occ--;
6689 switch (pte & 0x0c) {
6690 case 0x00:
6691 ch = 'D'; /* No cache No buff */
6692 break;
6693 case 0x04:
6694 ch = 'B'; /* No cache buff */
6695 break;
6696 case 0x08:
6697 if (pte & 0x40)
6698 ch = 'm';
6699 else
6700 ch = 'C'; /* Cache No buff */
6701 break;
6702 case 0x0c:
6703 ch = 'F'; /* Cache Buff */
6704 break;
6705 }
6706
6707 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6708 ch += 0x20;
6709
6710 if ((pte & 0xc) == 0)
6711 ncptes[k & 63] = pte;
6712 }
6713
6714 if ((k % 64) == 63) {
6715 rows++;
6716 printf("%c\n", ch);
6717 pmap_dump_ncpg(pm);
6718 if (occ == 0)
6719 break;
6720 } else
6721 printf("%c", ch);
6722 }
6723 }
6724 }
6725 }
6726
6727 static void
6728 pmap_dump_ncpg(pmap_t pm)
6729 {
6730 struct vm_page *pg;
6731 struct vm_page_md *md;
6732 struct pv_entry *pv;
6733 int i;
6734
6735 for (i = 0; i < 63; i++) {
6736 if (ncptes[i] == 0)
6737 continue;
6738
6739 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6740 if (pg == NULL)
6741 continue;
6742 md = VM_PAGE_TO_MD(pg);
6743
6744 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6745 VM_PAGE_TO_PHYS(pg),
6746 md->krw_mappings, md->kro_mappings,
6747 md->urw_mappings, md->uro_mappings);
6748
6749 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6750 printf(" %c va 0x%08lx, flags 0x%x\n",
6751 (pm == pv->pv_pmap) ? '*' : ' ',
6752 pv->pv_va, pv->pv_flags);
6753 }
6754 }
6755 }
6756 #endif
6757
6758 #ifdef PMAP_STEAL_MEMORY
6759 void
6760 pmap_boot_pageadd(pv_addr_t *newpv)
6761 {
6762 pv_addr_t *pv, *npv;
6763
6764 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6765 if (newpv->pv_pa < pv->pv_va) {
6766 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6767 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6768 newpv->pv_size += pv->pv_size;
6769 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6770 }
6771 pv = NULL;
6772 } else {
6773 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6774 pv = npv) {
6775 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6776 KASSERT(pv->pv_pa < newpv->pv_pa);
6777 if (newpv->pv_pa > npv->pv_pa)
6778 continue;
6779 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6780 pv->pv_size += newpv->pv_size;
6781 return;
6782 }
6783 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6784 break;
6785 newpv->pv_size += npv->pv_size;
6786 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6787 SLIST_REMOVE_AFTER(newpv, pv_list);
6788 return;
6789 }
6790 }
6791 }
6792
6793 if (pv) {
6794 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6795 } else {
6796 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6797 }
6798 }
6799
6800 void
6801 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6802 pv_addr_t *rpv)
6803 {
6804 pv_addr_t *pv, **pvp;
6805 struct vm_physseg *ps;
6806 size_t i;
6807
6808 KASSERT(amount & PGOFSET);
6809 KASSERT((mask & PGOFSET) == 0);
6810 KASSERT((match & PGOFSET) == 0);
6811 KASSERT(amount != 0);
6812
6813 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6814 (pv = *pvp) != NULL;
6815 pvp = &SLIST_NEXT(pv, pv_list)) {
6816 pv_addr_t *newpv;
6817 psize_t off;
6818 /*
6819 * If this entry is too small to satify the request...
6820 */
6821 KASSERT(pv->pv_size > 0);
6822 if (pv->pv_size < amount)
6823 continue;
6824
6825 for (off = 0; off <= mask; off += PAGE_SIZE) {
6826 if (((pv->pv_pa + off) & mask) == match
6827 && off + amount <= pv->pv_size)
6828 break;
6829 }
6830 if (off > mask)
6831 continue;
6832
6833 rpv->pv_va = pv->pv_va + off;
6834 rpv->pv_pa = pv->pv_pa + off;
6835 rpv->pv_size = amount;
6836 pv->pv_size -= amount;
6837 if (pv->pv_size == 0) {
6838 KASSERT(off == 0);
6839 KASSERT((vaddr_t) pv == rpv->pv_va);
6840 *pvp = SLIST_NEXT(pv, pv_list);
6841 } else if (off == 0) {
6842 KASSERT((vaddr_t) pv == rpv->pv_va);
6843 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6844 *newpv = *pv;
6845 newpv->pv_pa += amount;
6846 newpv->pv_va += amount;
6847 *pvp = newpv;
6848 } else if (off < pv->pv_size) {
6849 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6850 *newpv = *pv;
6851 newpv->pv_size -= off;
6852 newpv->pv_pa += off + amount;
6853 newpv->pv_va += off + amount;
6854
6855 SLIST_NEXT(pv, pv_list) = newpv;
6856 pv->pv_size = off;
6857 } else {
6858 KASSERT((vaddr_t) pv != rpv->pv_va);
6859 }
6860 memset((void *)rpv->pv_va, 0, amount);
6861 return;
6862 }
6863
6864 if (vm_nphysseg == 0)
6865 panic("pmap_boot_pagealloc: couldn't allocate memory");
6866
6867 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6868 (pv = *pvp) != NULL;
6869 pvp = &SLIST_NEXT(pv, pv_list)) {
6870 if (SLIST_NEXT(pv, pv_list) == NULL)
6871 break;
6872 }
6873 KASSERT(mask == 0);
6874 for (i = 0; i < vm_nphysseg; i++) {
6875 ps = VM_PHYSMEM_PTR(i);
6876 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6877 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6878 rpv->pv_va = pv->pv_va;
6879 rpv->pv_pa = pv->pv_pa;
6880 rpv->pv_size = amount;
6881 *pvp = NULL;
6882 pmap_map_chunk(kernel_l1pt.pv_va,
6883 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6884 ptoa(ps->avail_start),
6885 amount - pv->pv_size,
6886 VM_PROT_READ|VM_PROT_WRITE,
6887 PTE_CACHE);
6888 ps->avail_start += atop(amount - pv->pv_size);
6889 /*
6890 * If we consumed the entire physseg, remove it.
6891 */
6892 if (ps->avail_start == ps->avail_end) {
6893 for (--vm_nphysseg; i < vm_nphysseg; i++)
6894 VM_PHYSMEM_PTR_SWAP(i, i + 1);
6895 }
6896 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6897 return;
6898 }
6899 }
6900
6901 panic("pmap_boot_pagealloc: couldn't allocate memory");
6902 }
6903
6904 vaddr_t
6905 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6906 {
6907 pv_addr_t pv;
6908
6909 pmap_boot_pagealloc(size, 0, 0, &pv);
6910
6911 return pv.pv_va;
6912 }
6913 #endif /* PMAP_STEAL_MEMORY */
6914
6915 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6916 {
6917 sysctl_createv(clog, 0, NULL, NULL,
6918 CTLFLAG_PERMANENT,
6919 CTLTYPE_NODE, "machdep", NULL,
6920 NULL, 0, NULL, 0,
6921 CTL_MACHDEP, CTL_EOL);
6922
6923 sysctl_createv(clog, 0, NULL, NULL,
6924 CTLFLAG_PERMANENT,
6925 CTLTYPE_INT, "kmpages",
6926 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6927 NULL, 0, &pmap_kmpages, 0,
6928 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6929 }
6930
6931 #ifdef PMAP_NEED_ALLOC_POOLPAGE
6932 struct vm_page *
6933 arm_pmap_alloc_poolpage(int flags)
6934 {
6935 /*
6936 * On some systems, only some pages may be "coherent" for dma and we
6937 * want to prefer those for pool pages (think mbufs) but fallback to
6938 * any page if none is available.
6939 */
6940 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
6941 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
6942 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
6943 }
6944
6945 return uvm_pagealloc(NULL, 0, NULL, flags);
6946 }
6947 #endif
6948