Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.265
      1 /*	$NetBSD: pmap.c,v 1.265 2014/02/26 01:41:40 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/pool.h>
    201 #include <sys/kmem.h>
    202 #include <sys/cdefs.h>
    203 #include <sys/cpu.h>
    204 #include <sys/sysctl.h>
    205 #include <sys/bus.h>
    206 
    207 #include <uvm/uvm.h>
    208 
    209 #include <arm/locore.h>
    210 #include <arm/arm32/katelib.h>
    211 
    212 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.265 2014/02/26 01:41:40 matt Exp $");
    213 
    214 #ifdef PMAP_DEBUG
    215 
    216 /* XXX need to get rid of all refs to this */
    217 int pmap_debug_level = 0;
    218 
    219 /*
    220  * for switching to potentially finer grained debugging
    221  */
    222 #define	PDB_FOLLOW	0x0001
    223 #define	PDB_INIT	0x0002
    224 #define	PDB_ENTER	0x0004
    225 #define	PDB_REMOVE	0x0008
    226 #define	PDB_CREATE	0x0010
    227 #define	PDB_PTPAGE	0x0020
    228 #define	PDB_GROWKERN	0x0040
    229 #define	PDB_BITS	0x0080
    230 #define	PDB_COLLECT	0x0100
    231 #define	PDB_PROTECT	0x0200
    232 #define	PDB_MAP_L1	0x0400
    233 #define	PDB_BOOTSTRAP	0x1000
    234 #define	PDB_PARANOIA	0x2000
    235 #define	PDB_WIRING	0x4000
    236 #define	PDB_PVDUMP	0x8000
    237 #define	PDB_VAC		0x10000
    238 #define	PDB_KENTER	0x20000
    239 #define	PDB_KREMOVE	0x40000
    240 #define	PDB_EXEC	0x80000
    241 
    242 int debugmap = 1;
    243 int pmapdebug = 0;
    244 #define	NPDEBUG(_lev_,_stat_) \
    245 	if (pmapdebug & (_lev_)) \
    246         	((_stat_))
    247 
    248 #else	/* PMAP_DEBUG */
    249 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    250 #endif	/* PMAP_DEBUG */
    251 
    252 /*
    253  * pmap_kernel() points here
    254  */
    255 static struct pmap	kernel_pmap_store;
    256 struct pmap		*const kernel_pmap_ptr = &kernel_pmap_store;
    257 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    258 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    259 #endif
    260 
    261 /*
    262  * Which pmap is currently 'live' in the cache
    263  *
    264  * XXXSCW: Fix for SMP ...
    265  */
    266 static pmap_t pmap_recent_user;
    267 
    268 /*
    269  * Pointer to last active lwp, or NULL if it exited.
    270  */
    271 struct lwp *pmap_previous_active_lwp;
    272 
    273 /*
    274  * Pool and cache that pmap structures are allocated from.
    275  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    276  * in pmap_create().
    277  */
    278 static struct pool_cache pmap_cache;
    279 static LIST_HEAD(, pmap) pmap_pmaps;
    280 
    281 /*
    282  * Pool of PV structures
    283  */
    284 static struct pool pmap_pv_pool;
    285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    288 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    289 };
    290 
    291 /*
    292  * Pool and cache of l2_dtable structures.
    293  * We use a cache to avoid clearing the structures when they're
    294  * allocated. (196 bytes)
    295  */
    296 static struct pool_cache pmap_l2dtable_cache;
    297 static vaddr_t pmap_kernel_l2dtable_kva;
    298 
    299 /*
    300  * Pool and cache of L2 page descriptors.
    301  * We use a cache to avoid clearing the descriptor table
    302  * when they're allocated. (1KB)
    303  */
    304 static struct pool_cache pmap_l2ptp_cache;
    305 static vaddr_t pmap_kernel_l2ptp_kva;
    306 static paddr_t pmap_kernel_l2ptp_phys;
    307 
    308 #ifdef PMAPCOUNTERS
    309 #define	PMAP_EVCNT_INITIALIZER(name) \
    310 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    311 
    312 #ifdef PMAP_CACHE_VIPT
    313 static struct evcnt pmap_ev_vac_clean_one =
    314    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    315 static struct evcnt pmap_ev_vac_flush_one =
    316    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    317 static struct evcnt pmap_ev_vac_flush_lots =
    318    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    319 static struct evcnt pmap_ev_vac_flush_lots2 =
    320    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    321 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    325 
    326 static struct evcnt pmap_ev_vac_color_new =
    327    PMAP_EVCNT_INITIALIZER("new page color");
    328 static struct evcnt pmap_ev_vac_color_reuse =
    329    PMAP_EVCNT_INITIALIZER("ok first page color");
    330 static struct evcnt pmap_ev_vac_color_ok =
    331    PMAP_EVCNT_INITIALIZER("ok page color");
    332 static struct evcnt pmap_ev_vac_color_blind =
    333    PMAP_EVCNT_INITIALIZER("blind page color");
    334 static struct evcnt pmap_ev_vac_color_change =
    335    PMAP_EVCNT_INITIALIZER("change page color");
    336 static struct evcnt pmap_ev_vac_color_erase =
    337    PMAP_EVCNT_INITIALIZER("erase page color");
    338 static struct evcnt pmap_ev_vac_color_none =
    339    PMAP_EVCNT_INITIALIZER("no page color");
    340 static struct evcnt pmap_ev_vac_color_restore =
    341    PMAP_EVCNT_INITIALIZER("restore page color");
    342 
    343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    351 #endif
    352 
    353 static struct evcnt pmap_ev_mappings =
    354    PMAP_EVCNT_INITIALIZER("pages mapped");
    355 static struct evcnt pmap_ev_unmappings =
    356    PMAP_EVCNT_INITIALIZER("pages unmapped");
    357 static struct evcnt pmap_ev_remappings =
    358    PMAP_EVCNT_INITIALIZER("pages remapped");
    359 
    360 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    361 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    362 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    363 
    364 static struct evcnt pmap_ev_kernel_mappings =
    365    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    366 static struct evcnt pmap_ev_kernel_unmappings =
    367    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    368 static struct evcnt pmap_ev_kernel_remappings =
    369    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    370 
    371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    373 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    374 
    375 static struct evcnt pmap_ev_kenter_mappings =
    376    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    377 static struct evcnt pmap_ev_kenter_unmappings =
    378    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    379 static struct evcnt pmap_ev_kenter_remappings =
    380    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    381 static struct evcnt pmap_ev_pt_mappings =
    382    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    383 
    384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    386 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    387 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    388 
    389 #ifdef PMAP_CACHE_VIPT
    390 static struct evcnt pmap_ev_exec_mappings =
    391    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    392 static struct evcnt pmap_ev_exec_cached =
    393    PMAP_EVCNT_INITIALIZER("exec pages cached");
    394 
    395 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    397 
    398 static struct evcnt pmap_ev_exec_synced =
    399    PMAP_EVCNT_INITIALIZER("exec pages synced");
    400 static struct evcnt pmap_ev_exec_synced_map =
    401    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    402 static struct evcnt pmap_ev_exec_synced_unmap =
    403    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    404 static struct evcnt pmap_ev_exec_synced_remap =
    405    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    406 static struct evcnt pmap_ev_exec_synced_clearbit =
    407    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    408 static struct evcnt pmap_ev_exec_synced_kremove =
    409    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    410 
    411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    417 
    418 static struct evcnt pmap_ev_exec_discarded_unmap =
    419    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    420 static struct evcnt pmap_ev_exec_discarded_zero =
    421    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    422 static struct evcnt pmap_ev_exec_discarded_copy =
    423    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    424 static struct evcnt pmap_ev_exec_discarded_page_protect =
    425    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    426 static struct evcnt pmap_ev_exec_discarded_clearbit =
    427    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    428 static struct evcnt pmap_ev_exec_discarded_kremove =
    429    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    430 
    431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    437 #endif /* PMAP_CACHE_VIPT */
    438 
    439 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    440 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    441 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    442 
    443 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    444 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    445 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    446 
    447 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    448 #else
    449 #define	PMAPCOUNT(x)	((void)0)
    450 #endif
    451 
    452 /*
    453  * pmap copy/zero page, and mem(5) hook point
    454  */
    455 static pt_entry_t *csrc_pte, *cdst_pte;
    456 static vaddr_t csrcp, cdstp;
    457 vaddr_t memhook;			/* used by mem.c */
    458 kmutex_t memlock;			/* used by mem.c */
    459 void *zeropage;				/* used by mem.c */
    460 extern void *msgbufaddr;
    461 int pmap_kmpages;
    462 /*
    463  * Flag to indicate if pmap_init() has done its thing
    464  */
    465 bool pmap_initialized;
    466 
    467 /*
    468  * Misc. locking data structures
    469  */
    470 
    471 #define	pmap_acquire_pmap_lock(pm)			\
    472 	do {						\
    473 		if ((pm) != pmap_kernel())		\
    474 			mutex_enter((pm)->pm_lock);	\
    475 	} while (/*CONSTCOND*/0)
    476 
    477 #define	pmap_release_pmap_lock(pm)			\
    478 	do {						\
    479 		if ((pm) != pmap_kernel())		\
    480 			mutex_exit((pm)->pm_lock);	\
    481 	} while (/*CONSTCOND*/0)
    482 
    483 
    484 /*
    485  * Metadata for L1 translation tables.
    486  */
    487 struct l1_ttable {
    488 	/* Entry on the L1 Table list */
    489 	SLIST_ENTRY(l1_ttable) l1_link;
    490 
    491 	/* Entry on the L1 Least Recently Used list */
    492 	TAILQ_ENTRY(l1_ttable) l1_lru;
    493 
    494 	/* Track how many domains are allocated from this L1 */
    495 	volatile u_int l1_domain_use_count;
    496 
    497 	/*
    498 	 * A free-list of domain numbers for this L1.
    499 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    500 	 * is slow on ARM.
    501 	 */
    502 	uint8_t l1_domain_first;
    503 	uint8_t l1_domain_free[PMAP_DOMAINS];
    504 
    505 	/* Physical address of this L1 page table */
    506 	paddr_t l1_physaddr;
    507 
    508 	/* KVA of this L1 page table */
    509 	pd_entry_t *l1_kva;
    510 };
    511 
    512 /*
    513  * Convert a virtual address into its L1 table index. That is, the
    514  * index used to locate the L2 descriptor table pointer in an L1 table.
    515  * This is basically used to index l1->l1_kva[].
    516  *
    517  * Each L2 descriptor table represents 1MB of VA space.
    518  */
    519 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    520 
    521 /*
    522  * L1 Page Tables are tracked using a Least Recently Used list.
    523  *  - New L1s are allocated from the HEAD.
    524  *  - Freed L1s are added to the TAIl.
    525  *  - Recently accessed L1s (where an 'access' is some change to one of
    526  *    the userland pmaps which owns this L1) are moved to the TAIL.
    527  */
    528 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    529 static kmutex_t l1_lru_lock __cacheline_aligned;
    530 
    531 /*
    532  * A list of all L1 tables
    533  */
    534 static SLIST_HEAD(, l1_ttable) l1_list;
    535 
    536 /*
    537  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    538  *
    539  * This is normally 16MB worth L2 page descriptors for any given pmap.
    540  * Reference counts are maintained for L2 descriptors so they can be
    541  * freed when empty.
    542  */
    543 struct l2_dtable {
    544 	/* The number of L2 page descriptors allocated to this l2_dtable */
    545 	u_int l2_occupancy;
    546 
    547 	/* List of L2 page descriptors */
    548 	struct l2_bucket {
    549 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    550 		paddr_t l2b_phys;	/* Physical address of same */
    551 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    552 		u_short l2b_occupancy;	/* How many active descriptors */
    553 	} l2_bucket[L2_BUCKET_SIZE];
    554 };
    555 
    556 /*
    557  * Given an L1 table index, calculate the corresponding l2_dtable index
    558  * and bucket index within the l2_dtable.
    559  */
    560 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    561 				 (L2_SIZE - 1))
    562 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    563 
    564 /*
    565  * Given a virtual address, this macro returns the
    566  * virtual address required to drop into the next L2 bucket.
    567  */
    568 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    569 
    570 /*
    571  * L2 allocation.
    572  */
    573 #define	pmap_alloc_l2_dtable()		\
    574 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    575 #define	pmap_free_l2_dtable(l2)		\
    576 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    577 #define pmap_alloc_l2_ptp(pap)		\
    578 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    579 	    PR_NOWAIT, (pap)))
    580 
    581 /*
    582  * We try to map the page tables write-through, if possible.  However, not
    583  * all CPUs have a write-through cache mode, so on those we have to sync
    584  * the cache when we frob page tables.
    585  *
    586  * We try to evaluate this at compile time, if possible.  However, it's
    587  * not always possible to do that, hence this run-time var.
    588  */
    589 int	pmap_needs_pte_sync;
    590 
    591 /*
    592  * Real definition of pv_entry.
    593  */
    594 struct pv_entry {
    595 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    596 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    597 	vaddr_t		pv_va;          /* virtual address for mapping */
    598 	u_int		pv_flags;       /* flags */
    599 };
    600 
    601 /*
    602  * Macro to determine if a mapping might be resident in the
    603  * instruction cache and/or TLB
    604  */
    605 #if ARM_MMU_V7 > 0
    606 /*
    607  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    608  * there are no explicit accesses, so there may be always be TLB entries to
    609  * flush.  If we used ASIDs then this would not be a problem.
    610  */
    611 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    612 #else
    613 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    614 #endif
    615 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    616 
    617 /*
    618  * Macro to determine if a mapping might be resident in the
    619  * data cache and/or TLB
    620  */
    621 #if ARM_MMU_V7 > 0
    622 /*
    623  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    624  * there are no explicit accesses, so there may be always be TLB entries to
    625  * flush.  If we used ASIDs then this would not be a problem.
    626  */
    627 #define	PV_BEEN_REFD(f)   (1)
    628 #else
    629 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    630 #endif
    631 
    632 /*
    633  * Local prototypes
    634  */
    635 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    636 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    637 			    pt_entry_t **);
    638 static bool		pmap_is_current(pmap_t);
    639 static bool		pmap_is_cached(pmap_t);
    640 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    641 			    pmap_t, vaddr_t, u_int);
    642 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    643 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    644 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    645 			    u_int, u_int);
    646 
    647 static void		pmap_pinit(pmap_t);
    648 static int		pmap_pmap_ctor(void *, void *, int);
    649 
    650 static void		pmap_alloc_l1(pmap_t);
    651 static void		pmap_free_l1(pmap_t);
    652 static void		pmap_use_l1(pmap_t);
    653 
    654 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    655 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    656 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    657 static int		pmap_l2ptp_ctor(void *, void *, int);
    658 static int		pmap_l2dtable_ctor(void *, void *, int);
    659 
    660 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    661 #ifdef PMAP_CACHE_VIVT
    662 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    663 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    664 #endif
    665 
    666 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    667 #ifdef PMAP_CACHE_VIVT
    668 static int		pmap_clean_page(struct pv_entry *, bool);
    669 #endif
    670 #ifdef PMAP_CACHE_VIPT
    671 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    672 enum pmap_flush_op {
    673 	PMAP_FLUSH_PRIMARY,
    674 	PMAP_FLUSH_SECONDARY,
    675 	PMAP_CLEAN_PRIMARY
    676 };
    677 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    678 #endif
    679 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    680 
    681 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    682 static vaddr_t		kernel_pt_lookup(paddr_t);
    683 
    684 
    685 /*
    686  * Misc variables
    687  */
    688 vaddr_t virtual_avail;
    689 vaddr_t virtual_end;
    690 vaddr_t pmap_curmaxkvaddr;
    691 
    692 paddr_t avail_start;
    693 paddr_t avail_end;
    694 
    695 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    696 pv_addr_t kernelpages;
    697 pv_addr_t kernel_l1pt;
    698 pv_addr_t systempage;
    699 
    700 /* Function to set the debug level of the pmap code */
    701 
    702 #ifdef PMAP_DEBUG
    703 void
    704 pmap_debug(int level)
    705 {
    706 	pmap_debug_level = level;
    707 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    708 }
    709 #endif	/* PMAP_DEBUG */
    710 
    711 #ifdef PMAP_CACHE_VIPT
    712 #define PMAP_VALIDATE_MD_PAGE(md)	\
    713 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    714 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    715 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    716 #endif /* PMAP_CACHE_VIPT */
    717 /*
    718  * A bunch of routines to conditionally flush the caches/TLB depending
    719  * on whether the specified pmap actually needs to be flushed at any
    720  * given time.
    721  */
    722 static inline void
    723 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    724 {
    725 	if (pm->pm_cstate.cs_tlb_id != 0) {
    726 		if (PV_BEEN_EXECD(flags)) {
    727 			cpu_tlb_flushID_SE(va);
    728 		} else if (PV_BEEN_REFD(flags)) {
    729 			cpu_tlb_flushD_SE(va);
    730 		}
    731 	}
    732 }
    733 
    734 static inline void
    735 pmap_tlb_flushID(pmap_t pm)
    736 {
    737 	if (pm->pm_cstate.cs_tlb_id) {
    738 		cpu_tlb_flushID();
    739 #if ARM_MMU_V7 == 0
    740 		/*
    741 		 * Speculative loads by Cortex cores can cause TLB entries to
    742 		 * be filled even if there are no explicit accesses, so there
    743 		 * may be always be TLB entries to flush.  If we used ASIDs
    744 		 * then it would not be a problem.
    745 		 * This is not true for other CPUs.
    746 		 */
    747 		pm->pm_cstate.cs_tlb = 0;
    748 #endif /* ARM_MMU_V7 */
    749 	}
    750 }
    751 
    752 static inline void
    753 pmap_tlb_flushD(pmap_t pm)
    754 {
    755 	if (pm->pm_cstate.cs_tlb_d) {
    756 		cpu_tlb_flushD();
    757 #if ARM_MMU_V7 == 0
    758 		/*
    759 		 * Speculative loads by Cortex cores can cause TLB entries to
    760 		 * be filled even if there are no explicit accesses, so there
    761 		 * may be always be TLB entries to flush.  If we used ASIDs
    762 		 * then it would not be a problem.
    763 		 * This is not true for other CPUs.
    764 		 */
    765 		pm->pm_cstate.cs_tlb_d = 0;
    766 #endif /* ARM_MMU_V7 */
    767 	}
    768 }
    769 
    770 #ifdef PMAP_CACHE_VIVT
    771 static inline void
    772 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    773 {
    774 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    775 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    776 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    777 		if (do_inv) {
    778 			if (flags & PVF_WRITE)
    779 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    780 			else
    781 				cpu_dcache_inv_range(va, PAGE_SIZE);
    782 		} else if (flags & PVF_WRITE) {
    783 			cpu_dcache_wb_range(va, PAGE_SIZE);
    784 		}
    785 	}
    786 }
    787 
    788 static inline void
    789 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    790 {
    791 	if (PV_BEEN_EXECD(flags)) {
    792 		if (pm->pm_cstate.cs_cache_id) {
    793 			cpu_idcache_wbinv_all();
    794 			pm->pm_cstate.cs_cache = 0;
    795 		}
    796 	} else if (pm->pm_cstate.cs_cache_d) {
    797 		cpu_dcache_wbinv_all();
    798 		pm->pm_cstate.cs_cache_d = 0;
    799 	}
    800 }
    801 #endif /* PMAP_CACHE_VIVT */
    802 
    803 static inline uint8_t
    804 pmap_domain(pmap_t pm)
    805 {
    806 	return pm->pm_domain;
    807 }
    808 
    809 static inline pd_entry_t *
    810 pmap_l1_kva(pmap_t pm)
    811 {
    812 	return pm->pm_l1->l1_kva;
    813 }
    814 
    815 static inline bool
    816 pmap_is_current(pmap_t pm)
    817 {
    818 
    819 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    820 		return true;
    821 
    822 	return false;
    823 }
    824 
    825 static inline bool
    826 pmap_is_cached(pmap_t pm)
    827 {
    828 
    829 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    830 	    pmap_recent_user == pm)
    831 		return (true);
    832 
    833 	return false;
    834 }
    835 
    836 /*
    837  * PTE_SYNC_CURRENT:
    838  *
    839  *     Make sure the pte is written out to RAM.
    840  *     We need to do this for one of two cases:
    841  *       - We're dealing with the kernel pmap
    842  *       - There is no pmap active in the cache/tlb.
    843  *       - The specified pmap is 'active' in the cache/tlb.
    844  */
    845 #ifdef PMAP_INCLUDE_PTE_SYNC
    846 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    847 do {					\
    848 	if (PMAP_NEEDS_PTE_SYNC && 	\
    849 	    pmap_is_cached(pm))		\
    850 		PTE_SYNC(ptep);		\
    851 } while (/*CONSTCOND*/0)
    852 #else
    853 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    854 #endif
    855 
    856 /*
    857  * main pv_entry manipulation functions:
    858  *   pmap_enter_pv: enter a mapping onto a vm_page list
    859  *   pmap_remove_pv: remove a mapping from a vm_page list
    860  *
    861  * NOTE: pmap_enter_pv expects to lock the pvh itself
    862  *       pmap_remove_pv expects the caller to lock the pvh before calling
    863  */
    864 
    865 /*
    866  * pmap_enter_pv: enter a mapping onto a vm_page lst
    867  *
    868  * => caller should hold the proper lock on pmap_main_lock
    869  * => caller should have pmap locked
    870  * => we will gain the lock on the vm_page and allocate the new pv_entry
    871  * => caller should adjust ptp's wire_count before calling
    872  * => caller should not adjust pmap's wire_count
    873  */
    874 static void
    875 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    876     vaddr_t va, u_int flags)
    877 {
    878 	struct pv_entry **pvp;
    879 
    880 	NPDEBUG(PDB_PVDUMP,
    881 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    882 
    883 	pv->pv_pmap = pm;
    884 	pv->pv_va = va;
    885 	pv->pv_flags = flags;
    886 
    887 	pvp = &SLIST_FIRST(&md->pvh_list);
    888 #ifdef PMAP_CACHE_VIPT
    889 	/*
    890 	 * Insert unmanaged entries, writeable first, at the head of
    891 	 * the pv list.
    892 	 */
    893 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    894 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    895 			pvp = &SLIST_NEXT(*pvp, pv_link);
    896 	} else if ((flags & PVF_WRITE) == 0) {
    897 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    898 			pvp = &SLIST_NEXT(*pvp, pv_link);
    899 	}
    900 #endif
    901 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
    902 	*pvp = pv;				/* ... locked list */
    903 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    904 #ifdef PMAP_CACHE_VIPT
    905 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    906 		md->pvh_attrs |= PVF_KMOD;
    907 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    908 		md->pvh_attrs |= PVF_DIRTY;
    909 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
    910 #endif
    911 	if (pm == pmap_kernel()) {
    912 		PMAPCOUNT(kernel_mappings);
    913 		if (flags & PVF_WRITE)
    914 			md->krw_mappings++;
    915 		else
    916 			md->kro_mappings++;
    917 	} else {
    918 		if (flags & PVF_WRITE)
    919 			md->urw_mappings++;
    920 		else
    921 			md->uro_mappings++;
    922 	}
    923 
    924 #ifdef PMAP_CACHE_VIPT
    925 	/*
    926 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
    927 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
    928 	 */
    929 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
    930 		md->pvh_attrs |= PVF_WRITE;
    931 	}
    932 	/*
    933 	 * If this is an exec mapping and its the first exec mapping
    934 	 * for this page, make sure to sync the I-cache.
    935 	 */
    936 	if (PV_IS_EXEC_P(flags)) {
    937 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
    938 			pmap_syncicache_page(md, pa);
    939 			PMAPCOUNT(exec_synced_map);
    940 		}
    941 		PMAPCOUNT(exec_mappings);
    942 	}
    943 #endif
    944 
    945 	PMAPCOUNT(mappings);
    946 
    947 	if (pv->pv_flags & PVF_WIRED)
    948 		++pm->pm_stats.wired_count;
    949 }
    950 
    951 /*
    952  *
    953  * pmap_find_pv: Find a pv entry
    954  *
    955  * => caller should hold lock on vm_page
    956  */
    957 static inline struct pv_entry *
    958 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
    959 {
    960 	struct pv_entry *pv;
    961 
    962 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
    963 		if (pm == pv->pv_pmap && va == pv->pv_va)
    964 			break;
    965 	}
    966 
    967 	return (pv);
    968 }
    969 
    970 /*
    971  * pmap_remove_pv: try to remove a mapping from a pv_list
    972  *
    973  * => caller should hold proper lock on pmap_main_lock
    974  * => pmap should be locked
    975  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    976  * => caller should adjust ptp's wire_count and free PTP if needed
    977  * => caller should NOT adjust pmap's wire_count
    978  * => we return the removed pv
    979  */
    980 static struct pv_entry *
    981 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
    982 {
    983 	struct pv_entry *pv, **prevptr;
    984 
    985 	NPDEBUG(PDB_PVDUMP,
    986 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
    987 
    988 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
    989 	pv = *prevptr;
    990 
    991 	while (pv) {
    992 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
    993 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
    994 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
    995 			if (pv->pv_flags & PVF_WIRED) {
    996 				--pm->pm_stats.wired_count;
    997 			}
    998 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
    999 			if (pm == pmap_kernel()) {
   1000 				PMAPCOUNT(kernel_unmappings);
   1001 				if (pv->pv_flags & PVF_WRITE)
   1002 					md->krw_mappings--;
   1003 				else
   1004 					md->kro_mappings--;
   1005 			} else {
   1006 				if (pv->pv_flags & PVF_WRITE)
   1007 					md->urw_mappings--;
   1008 				else
   1009 					md->uro_mappings--;
   1010 			}
   1011 
   1012 			PMAPCOUNT(unmappings);
   1013 #ifdef PMAP_CACHE_VIPT
   1014 			if (!(pv->pv_flags & PVF_WRITE))
   1015 				break;
   1016 			/*
   1017 			 * If this page has had an exec mapping, then if
   1018 			 * this was the last mapping, discard the contents,
   1019 			 * otherwise sync the i-cache for this page.
   1020 			 */
   1021 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1022 				if (SLIST_EMPTY(&md->pvh_list)) {
   1023 					md->pvh_attrs &= ~PVF_EXEC;
   1024 					PMAPCOUNT(exec_discarded_unmap);
   1025 				} else {
   1026 					pmap_syncicache_page(md, pa);
   1027 					PMAPCOUNT(exec_synced_unmap);
   1028 				}
   1029 			}
   1030 #endif /* PMAP_CACHE_VIPT */
   1031 			break;
   1032 		}
   1033 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1034 		pv = *prevptr;				/* advance */
   1035 	}
   1036 
   1037 #ifdef PMAP_CACHE_VIPT
   1038 	/*
   1039 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1040 	 * clear the KMOD attribute from the page.
   1041 	 */
   1042 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1043 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1044 		md->pvh_attrs &= ~PVF_KMOD;
   1045 
   1046 	/*
   1047 	 * If this was a writeable page and there are no more writeable
   1048 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1049 	 * the contents to memory.
   1050 	 */
   1051 	if (arm_cache_prefer_mask != 0) {
   1052 		if (md->krw_mappings + md->urw_mappings == 0)
   1053 			md->pvh_attrs &= ~PVF_WRITE;
   1054 		PMAP_VALIDATE_MD_PAGE(md);
   1055 	}
   1056 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1057 #endif /* PMAP_CACHE_VIPT */
   1058 
   1059 	return(pv);				/* return removed pv */
   1060 }
   1061 
   1062 /*
   1063  *
   1064  * pmap_modify_pv: Update pv flags
   1065  *
   1066  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1067  * => caller should NOT adjust pmap's wire_count
   1068  * => caller must call pmap_vac_me_harder() if writable status of a page
   1069  *    may have changed.
   1070  * => we return the old flags
   1071  *
   1072  * Modify a physical-virtual mapping in the pv table
   1073  */
   1074 static u_int
   1075 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1076     u_int clr_mask, u_int set_mask)
   1077 {
   1078 	struct pv_entry *npv;
   1079 	u_int flags, oflags;
   1080 
   1081 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1082 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1083 
   1084 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1085 		return (0);
   1086 
   1087 	NPDEBUG(PDB_PVDUMP,
   1088 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1089 
   1090 	/*
   1091 	 * There is at least one VA mapping this page.
   1092 	 */
   1093 
   1094 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1095 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1096 #ifdef PMAP_CACHE_VIPT
   1097 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1098 			md->pvh_attrs |= PVF_DIRTY;
   1099 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1100 #endif
   1101 	}
   1102 
   1103 	oflags = npv->pv_flags;
   1104 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1105 
   1106 	if ((flags ^ oflags) & PVF_WIRED) {
   1107 		if (flags & PVF_WIRED)
   1108 			++pm->pm_stats.wired_count;
   1109 		else
   1110 			--pm->pm_stats.wired_count;
   1111 	}
   1112 
   1113 	if ((flags ^ oflags) & PVF_WRITE) {
   1114 		if (pm == pmap_kernel()) {
   1115 			if (flags & PVF_WRITE) {
   1116 				md->krw_mappings++;
   1117 				md->kro_mappings--;
   1118 			} else {
   1119 				md->kro_mappings++;
   1120 				md->krw_mappings--;
   1121 			}
   1122 		} else {
   1123 			if (flags & PVF_WRITE) {
   1124 				md->urw_mappings++;
   1125 				md->uro_mappings--;
   1126 			} else {
   1127 				md->uro_mappings++;
   1128 				md->urw_mappings--;
   1129 			}
   1130 		}
   1131 	}
   1132 #ifdef PMAP_CACHE_VIPT
   1133 	if (arm_cache_prefer_mask != 0) {
   1134 		if (md->urw_mappings + md->krw_mappings == 0) {
   1135 			md->pvh_attrs &= ~PVF_WRITE;
   1136 		} else {
   1137 			md->pvh_attrs |= PVF_WRITE;
   1138 		}
   1139 	}
   1140 	/*
   1141 	 * We have two cases here: the first is from enter_pv (new exec
   1142 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1143 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1144 	 * to do what pmap_remove_pv would do.
   1145 	 */
   1146 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1147 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1148 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1149 		pmap_syncicache_page(md, pa);
   1150 		PMAPCOUNT(exec_synced_remap);
   1151 	}
   1152 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1153 #endif
   1154 
   1155 	PMAPCOUNT(remappings);
   1156 
   1157 	return (oflags);
   1158 }
   1159 
   1160 /*
   1161  * Allocate an L1 translation table for the specified pmap.
   1162  * This is called at pmap creation time.
   1163  */
   1164 static void
   1165 pmap_alloc_l1(pmap_t pm)
   1166 {
   1167 	struct l1_ttable *l1;
   1168 	uint8_t domain;
   1169 
   1170 	/*
   1171 	 * Remove the L1 at the head of the LRU list
   1172 	 */
   1173 	mutex_spin_enter(&l1_lru_lock);
   1174 	l1 = TAILQ_FIRST(&l1_lru_list);
   1175 	KDASSERT(l1 != NULL);
   1176 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1177 
   1178 	/*
   1179 	 * Pick the first available domain number, and update
   1180 	 * the link to the next number.
   1181 	 */
   1182 	domain = l1->l1_domain_first;
   1183 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1184 
   1185 	/*
   1186 	 * If there are still free domain numbers in this L1,
   1187 	 * put it back on the TAIL of the LRU list.
   1188 	 */
   1189 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1190 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1191 
   1192 	mutex_spin_exit(&l1_lru_lock);
   1193 
   1194 	/*
   1195 	 * Fix up the relevant bits in the pmap structure
   1196 	 */
   1197 	pm->pm_l1 = l1;
   1198 	pm->pm_domain = domain + 1;
   1199 }
   1200 
   1201 /*
   1202  * Free an L1 translation table.
   1203  * This is called at pmap destruction time.
   1204  */
   1205 static void
   1206 pmap_free_l1(pmap_t pm)
   1207 {
   1208 	struct l1_ttable *l1 = pm->pm_l1;
   1209 
   1210 	mutex_spin_enter(&l1_lru_lock);
   1211 
   1212 	/*
   1213 	 * If this L1 is currently on the LRU list, remove it.
   1214 	 */
   1215 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1216 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1217 
   1218 	/*
   1219 	 * Free up the domain number which was allocated to the pmap
   1220 	 */
   1221 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1222 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1223 	l1->l1_domain_use_count--;
   1224 
   1225 	/*
   1226 	 * The L1 now must have at least 1 free domain, so add
   1227 	 * it back to the LRU list. If the use count is zero,
   1228 	 * put it at the head of the list, otherwise it goes
   1229 	 * to the tail.
   1230 	 */
   1231 	if (l1->l1_domain_use_count == 0)
   1232 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1233 	else
   1234 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1235 
   1236 	mutex_spin_exit(&l1_lru_lock);
   1237 }
   1238 
   1239 static inline void
   1240 pmap_use_l1(pmap_t pm)
   1241 {
   1242 	struct l1_ttable *l1;
   1243 
   1244 	/*
   1245 	 * Do nothing if we're in interrupt context.
   1246 	 * Access to an L1 by the kernel pmap must not affect
   1247 	 * the LRU list.
   1248 	 */
   1249 	if (cpu_intr_p() || pm == pmap_kernel())
   1250 		return;
   1251 
   1252 	l1 = pm->pm_l1;
   1253 
   1254 	/*
   1255 	 * If the L1 is not currently on the LRU list, just return
   1256 	 */
   1257 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1258 		return;
   1259 
   1260 	mutex_spin_enter(&l1_lru_lock);
   1261 
   1262 	/*
   1263 	 * Check the use count again, now that we've acquired the lock
   1264 	 */
   1265 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1266 		mutex_spin_exit(&l1_lru_lock);
   1267 		return;
   1268 	}
   1269 
   1270 	/*
   1271 	 * Move the L1 to the back of the LRU list
   1272 	 */
   1273 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1274 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1275 
   1276 	mutex_spin_exit(&l1_lru_lock);
   1277 }
   1278 
   1279 /*
   1280  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1281  *
   1282  * Free an L2 descriptor table.
   1283  */
   1284 static inline void
   1285 #ifndef PMAP_INCLUDE_PTE_SYNC
   1286 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1287 #else
   1288 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1289 #endif
   1290 {
   1291 #ifdef PMAP_INCLUDE_PTE_SYNC
   1292 #ifdef PMAP_CACHE_VIVT
   1293 	/*
   1294 	 * Note: With a write-back cache, we may need to sync this
   1295 	 * L2 table before re-using it.
   1296 	 * This is because it may have belonged to a non-current
   1297 	 * pmap, in which case the cache syncs would have been
   1298 	 * skipped for the pages that were being unmapped. If the
   1299 	 * L2 table were then to be immediately re-allocated to
   1300 	 * the *current* pmap, it may well contain stale mappings
   1301 	 * which have not yet been cleared by a cache write-back
   1302 	 * and so would still be visible to the mmu.
   1303 	 */
   1304 	if (need_sync)
   1305 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1306 #endif /* PMAP_CACHE_VIVT */
   1307 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1308 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1309 }
   1310 
   1311 /*
   1312  * Returns a pointer to the L2 bucket associated with the specified pmap
   1313  * and VA, or NULL if no L2 bucket exists for the address.
   1314  */
   1315 static inline struct l2_bucket *
   1316 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1317 {
   1318 	struct l2_dtable *l2;
   1319 	struct l2_bucket *l2b;
   1320 	u_short l1idx;
   1321 
   1322 	l1idx = L1_IDX(va);
   1323 
   1324 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1325 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1326 		return (NULL);
   1327 
   1328 	return (l2b);
   1329 }
   1330 
   1331 /*
   1332  * Returns a pointer to the L2 bucket associated with the specified pmap
   1333  * and VA.
   1334  *
   1335  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1336  * bucket/page table in place.
   1337  *
   1338  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1339  * increment the bucket occupancy counter appropriately *before*
   1340  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1341  * the bucket/page in the meantime.
   1342  */
   1343 static struct l2_bucket *
   1344 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1345 {
   1346 	struct l2_dtable *l2;
   1347 	struct l2_bucket *l2b;
   1348 	u_short l1idx;
   1349 
   1350 	l1idx = L1_IDX(va);
   1351 
   1352 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1353 		/*
   1354 		 * No mapping at this address, as there is
   1355 		 * no entry in the L1 table.
   1356 		 * Need to allocate a new l2_dtable.
   1357 		 */
   1358 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1359 			return (NULL);
   1360 
   1361 		/*
   1362 		 * Link it into the parent pmap
   1363 		 */
   1364 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1365 	}
   1366 
   1367 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1368 
   1369 	/*
   1370 	 * Fetch pointer to the L2 page table associated with the address.
   1371 	 */
   1372 	if (l2b->l2b_kva == NULL) {
   1373 		pt_entry_t *ptep;
   1374 
   1375 		/*
   1376 		 * No L2 page table has been allocated. Chances are, this
   1377 		 * is because we just allocated the l2_dtable, above.
   1378 		 */
   1379 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1380 			/*
   1381 			 * Oops, no more L2 page tables available at this
   1382 			 * time. We may need to deallocate the l2_dtable
   1383 			 * if we allocated a new one above.
   1384 			 */
   1385 			if (l2->l2_occupancy == 0) {
   1386 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1387 				pmap_free_l2_dtable(l2);
   1388 			}
   1389 			return (NULL);
   1390 		}
   1391 
   1392 		l2->l2_occupancy++;
   1393 		l2b->l2b_kva = ptep;
   1394 		l2b->l2b_l1idx = l1idx;
   1395 	}
   1396 
   1397 	return (l2b);
   1398 }
   1399 
   1400 /*
   1401  * One or more mappings in the specified L2 descriptor table have just been
   1402  * invalidated.
   1403  *
   1404  * Garbage collect the metadata and descriptor table itself if necessary.
   1405  *
   1406  * The pmap lock must be acquired when this is called (not necessary
   1407  * for the kernel pmap).
   1408  */
   1409 static void
   1410 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1411 {
   1412 	struct l2_dtable *l2;
   1413 	pd_entry_t *pl1pd, l1pd;
   1414 	pt_entry_t *ptep;
   1415 	u_short l1idx;
   1416 
   1417 	KDASSERT(count <= l2b->l2b_occupancy);
   1418 
   1419 	/*
   1420 	 * Update the bucket's reference count according to how many
   1421 	 * PTEs the caller has just invalidated.
   1422 	 */
   1423 	l2b->l2b_occupancy -= count;
   1424 
   1425 	/*
   1426 	 * Note:
   1427 	 *
   1428 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1429 	 * as that would require checking all Level 1 page tables and
   1430 	 * removing any references to the Level 2 page table. See also the
   1431 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1432 	 *
   1433 	 * We make do with just invalidating the mapping in the L2 table.
   1434 	 *
   1435 	 * This isn't really a big deal in practice and, in fact, leads
   1436 	 * to a performance win over time as we don't need to continually
   1437 	 * alloc/free.
   1438 	 */
   1439 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1440 		return;
   1441 
   1442 	/*
   1443 	 * There are no more valid mappings in this level 2 page table.
   1444 	 * Go ahead and NULL-out the pointer in the bucket, then
   1445 	 * free the page table.
   1446 	 */
   1447 	l1idx = l2b->l2b_l1idx;
   1448 	ptep = l2b->l2b_kva;
   1449 	l2b->l2b_kva = NULL;
   1450 
   1451 	pl1pd = pmap_l1_kva(pm) + l1idx;
   1452 
   1453 	/*
   1454 	 * If the L1 slot matches the pmap's domain
   1455 	 * number, then invalidate it.
   1456 	 */
   1457 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1458 	if (l1pd == (L1_C_DOM(pmap_domain(pm)) | L1_TYPE_C)) {
   1459 		*pl1pd = 0;
   1460 		PTE_SYNC(pl1pd);
   1461 	}
   1462 
   1463 	/*
   1464 	 * Release the L2 descriptor table back to the pool cache.
   1465 	 */
   1466 #ifndef PMAP_INCLUDE_PTE_SYNC
   1467 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1468 #else
   1469 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1470 #endif
   1471 
   1472 	/*
   1473 	 * Update the reference count in the associated l2_dtable
   1474 	 */
   1475 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1476 	if (--l2->l2_occupancy > 0)
   1477 		return;
   1478 
   1479 	/*
   1480 	 * There are no more valid mappings in any of the Level 1
   1481 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1482 	 * the pointer in the parent pmap and free the l2_dtable.
   1483 	 */
   1484 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1485 	pmap_free_l2_dtable(l2);
   1486 }
   1487 
   1488 /*
   1489  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1490  * structures.
   1491  */
   1492 static int
   1493 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1494 {
   1495 #ifndef PMAP_INCLUDE_PTE_SYNC
   1496 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1497 
   1498 	/*
   1499 	 * The mappings for these page tables were initially made using
   1500 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1501 	 * mode will not be right for page table mappings. To avoid
   1502 	 * polluting the pmap_kenter_pa() code with a special case for
   1503 	 * page tables, we simply fix up the cache-mode here if it's not
   1504 	 * correct.
   1505 	 */
   1506 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1507 	KDASSERT(l2b != NULL);
   1508 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   1509 	pt_entry_t opte = *ptep;
   1510 
   1511 	if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1512 		/*
   1513 		 * Page tables must have the cache-mode set to Write-Thru.
   1514 		 */
   1515 		const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
   1516 		    | pte_l2_s_cache_mode_pt;
   1517 		l2pte_set(ptep, npte, opte);
   1518 		PTE_SYNC(ptep);
   1519 		cpu_tlb_flushD_SE(va);
   1520 		cpu_cpwait();
   1521 	}
   1522 #endif
   1523 
   1524 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1525 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1526 	return (0);
   1527 }
   1528 
   1529 static int
   1530 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1531 {
   1532 
   1533 	memset(v, 0, sizeof(struct l2_dtable));
   1534 	return (0);
   1535 }
   1536 
   1537 static int
   1538 pmap_pmap_ctor(void *arg, void *v, int flags)
   1539 {
   1540 
   1541 	memset(v, 0, sizeof(struct pmap));
   1542 	return (0);
   1543 }
   1544 
   1545 static void
   1546 pmap_pinit(pmap_t pm)
   1547 {
   1548 #ifndef ARM_HAS_VBAR
   1549 	struct l2_bucket *l2b;
   1550 
   1551 	if (vector_page < KERNEL_BASE) {
   1552 		/*
   1553 		 * Map the vector page.
   1554 		 */
   1555 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1556 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1557 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1558 		pmap_update(pm);
   1559 
   1560 		pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
   1561 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1562 		KDASSERT(l2b != NULL);
   1563 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1564 		    L1_C_DOM(pmap_domain(pm));
   1565 	} else
   1566 		pm->pm_pl1vec = NULL;
   1567 #endif
   1568 }
   1569 
   1570 #ifdef PMAP_CACHE_VIVT
   1571 /*
   1572  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1573  * there is more than one mapping and at least one of them is writable.
   1574  * Since we purge the cache on every context switch, we only need to check for
   1575  * other mappings within the same pmap, or kernel_pmap.
   1576  * This function is also called when a page is unmapped, to possibly reenable
   1577  * caching on any remaining mappings.
   1578  *
   1579  * The code implements the following logic, where:
   1580  *
   1581  * KW = # of kernel read/write pages
   1582  * KR = # of kernel read only pages
   1583  * UW = # of user read/write pages
   1584  * UR = # of user read only pages
   1585  *
   1586  * KC = kernel mapping is cacheable
   1587  * UC = user mapping is cacheable
   1588  *
   1589  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1590  *             +---------------------------------------------
   1591  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1592  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1593  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1594  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1595  */
   1596 
   1597 static const int pmap_vac_flags[4][4] = {
   1598 	{-1,		0,		0,		PVF_KNC},
   1599 	{0,		0,		PVF_NC,		PVF_NC},
   1600 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1601 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1602 };
   1603 
   1604 static inline int
   1605 pmap_get_vac_flags(const struct vm_page_md *md)
   1606 {
   1607 	int kidx, uidx;
   1608 
   1609 	kidx = 0;
   1610 	if (md->kro_mappings || md->krw_mappings > 1)
   1611 		kidx |= 1;
   1612 	if (md->krw_mappings)
   1613 		kidx |= 2;
   1614 
   1615 	uidx = 0;
   1616 	if (md->uro_mappings || md->urw_mappings > 1)
   1617 		uidx |= 1;
   1618 	if (md->urw_mappings)
   1619 		uidx |= 2;
   1620 
   1621 	return (pmap_vac_flags[uidx][kidx]);
   1622 }
   1623 
   1624 static inline void
   1625 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1626 {
   1627 	int nattr;
   1628 
   1629 	nattr = pmap_get_vac_flags(md);
   1630 
   1631 	if (nattr < 0) {
   1632 		md->pvh_attrs &= ~PVF_NC;
   1633 		return;
   1634 	}
   1635 
   1636 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1637 		return;
   1638 
   1639 	if (pm == pmap_kernel())
   1640 		pmap_vac_me_kpmap(md, pa, pm, va);
   1641 	else
   1642 		pmap_vac_me_user(md, pa, pm, va);
   1643 
   1644 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1645 }
   1646 
   1647 static void
   1648 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1649 {
   1650 	u_int u_cacheable, u_entries;
   1651 	struct pv_entry *pv;
   1652 	pmap_t last_pmap = pm;
   1653 
   1654 	/*
   1655 	 * Pass one, see if there are both kernel and user pmaps for
   1656 	 * this page.  Calculate whether there are user-writable or
   1657 	 * kernel-writable pages.
   1658 	 */
   1659 	u_cacheable = 0;
   1660 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1661 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1662 			u_cacheable++;
   1663 	}
   1664 
   1665 	u_entries = md->urw_mappings + md->uro_mappings;
   1666 
   1667 	/*
   1668 	 * We know we have just been updating a kernel entry, so if
   1669 	 * all user pages are already cacheable, then there is nothing
   1670 	 * further to do.
   1671 	 */
   1672 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1673 		return;
   1674 
   1675 	if (u_entries) {
   1676 		/*
   1677 		 * Scan over the list again, for each entry, if it
   1678 		 * might not be set correctly, call pmap_vac_me_user
   1679 		 * to recalculate the settings.
   1680 		 */
   1681 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1682 			/*
   1683 			 * We know kernel mappings will get set
   1684 			 * correctly in other calls.  We also know
   1685 			 * that if the pmap is the same as last_pmap
   1686 			 * then we've just handled this entry.
   1687 			 */
   1688 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1689 				continue;
   1690 
   1691 			/*
   1692 			 * If there are kernel entries and this page
   1693 			 * is writable but non-cacheable, then we can
   1694 			 * skip this entry also.
   1695 			 */
   1696 			if (md->k_mappings &&
   1697 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1698 			    (PVF_NC | PVF_WRITE))
   1699 				continue;
   1700 
   1701 			/*
   1702 			 * Similarly if there are no kernel-writable
   1703 			 * entries and the page is already
   1704 			 * read-only/cacheable.
   1705 			 */
   1706 			if (md->krw_mappings == 0 &&
   1707 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1708 				continue;
   1709 
   1710 			/*
   1711 			 * For some of the remaining cases, we know
   1712 			 * that we must recalculate, but for others we
   1713 			 * can't tell if they are correct or not, so
   1714 			 * we recalculate anyway.
   1715 			 */
   1716 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1717 		}
   1718 
   1719 		if (md->k_mappings == 0)
   1720 			return;
   1721 	}
   1722 
   1723 	pmap_vac_me_user(md, pa, pm, va);
   1724 }
   1725 
   1726 static void
   1727 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1728 {
   1729 	pmap_t kpmap = pmap_kernel();
   1730 	struct pv_entry *pv, *npv = NULL;
   1731 	u_int entries = 0;
   1732 	u_int writable = 0;
   1733 	u_int cacheable_entries = 0;
   1734 	u_int kern_cacheable = 0;
   1735 	u_int other_writable = 0;
   1736 
   1737 	/*
   1738 	 * Count mappings and writable mappings in this pmap.
   1739 	 * Include kernel mappings as part of our own.
   1740 	 * Keep a pointer to the first one.
   1741 	 */
   1742 	npv = NULL;
   1743 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1744 		/* Count mappings in the same pmap */
   1745 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1746 			if (entries++ == 0)
   1747 				npv = pv;
   1748 
   1749 			/* Cacheable mappings */
   1750 			if ((pv->pv_flags & PVF_NC) == 0) {
   1751 				cacheable_entries++;
   1752 				if (kpmap == pv->pv_pmap)
   1753 					kern_cacheable++;
   1754 			}
   1755 
   1756 			/* Writable mappings */
   1757 			if (pv->pv_flags & PVF_WRITE)
   1758 				++writable;
   1759 		} else
   1760 		if (pv->pv_flags & PVF_WRITE)
   1761 			other_writable = 1;
   1762 	}
   1763 
   1764 	/*
   1765 	 * Enable or disable caching as necessary.
   1766 	 * Note: the first entry might be part of the kernel pmap,
   1767 	 * so we can't assume this is indicative of the state of the
   1768 	 * other (maybe non-kpmap) entries.
   1769 	 */
   1770 	if ((entries > 1 && writable) ||
   1771 	    (entries > 0 && pm == kpmap && other_writable)) {
   1772 		if (cacheable_entries == 0)
   1773 			return;
   1774 
   1775 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1776 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1777 			    (pv->pv_flags & PVF_NC))
   1778 				continue;
   1779 
   1780 			pv->pv_flags |= PVF_NC;
   1781 
   1782 			struct l2_bucket * const l2b
   1783 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1784 			KDASSERT(l2b != NULL);
   1785 			pt_entry_t * const ptep
   1786 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1787 			const pt_entry_t opte = *ptep;
   1788 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1789 
   1790 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1791 			    && l2pte_valid(npte)) {
   1792 #ifdef PMAP_CACHE_VIVT
   1793 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1794 				    true, pv->pv_flags);
   1795 #endif
   1796 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1797 				    pv->pv_flags);
   1798 			}
   1799 
   1800 			l2pte_set(ptep, npte, opte);
   1801 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1802 		}
   1803 		cpu_cpwait();
   1804 	} else
   1805 	if (entries > cacheable_entries) {
   1806 		/*
   1807 		 * Turn cacheing back on for some pages.  If it is a kernel
   1808 		 * page, only do so if there are no other writable pages.
   1809 		 */
   1810 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1811 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1812 			    (kpmap != pv->pv_pmap || other_writable)))
   1813 				continue;
   1814 
   1815 			pv->pv_flags &= ~PVF_NC;
   1816 
   1817 			struct l2_bucket * const l2b
   1818 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1819 			KDASSERT(l2b != NULL);
   1820 			pt_entry_t * const ptep
   1821 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1822 			const pt_entry_t opte = *ptep;
   1823 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   1824 			    | pte_l2_s_cache_mode;
   1825 
   1826 			if (l2pte_valid(opte)) {
   1827 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1828 				    pv->pv_flags);
   1829 			}
   1830 
   1831 			l2pte_set(ptep, npte, opte);
   1832 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1833 		}
   1834 	}
   1835 }
   1836 #endif
   1837 
   1838 #ifdef PMAP_CACHE_VIPT
   1839 static void
   1840 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1841 {
   1842 	struct pv_entry *pv;
   1843 	vaddr_t tst_mask;
   1844 	bool bad_alias;
   1845 	const u_int
   1846 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   1847 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   1848 
   1849 	/* do we need to do anything? */
   1850 	if (arm_cache_prefer_mask == 0)
   1851 		return;
   1852 
   1853 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   1854 	    md, pm, va));
   1855 
   1856 	KASSERT(!va || pm);
   1857 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1858 
   1859 	/* Already a conflict? */
   1860 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   1861 		/* just an add, things are already non-cached */
   1862 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   1863 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1864 		bad_alias = false;
   1865 		if (va) {
   1866 			PMAPCOUNT(vac_color_none);
   1867 			bad_alias = true;
   1868 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1869 			goto fixup;
   1870 		}
   1871 		pv = SLIST_FIRST(&md->pvh_list);
   1872 		/* the list can't be empty because it would be cachable */
   1873 		if (md->pvh_attrs & PVF_KMPAGE) {
   1874 			tst_mask = md->pvh_attrs;
   1875 		} else {
   1876 			KASSERT(pv);
   1877 			tst_mask = pv->pv_va;
   1878 			pv = SLIST_NEXT(pv, pv_link);
   1879 		}
   1880 		/*
   1881 		 * Only check for a bad alias if we have writable mappings.
   1882 		 */
   1883 		tst_mask &= arm_cache_prefer_mask;
   1884 		if (rw_mappings > 0) {
   1885 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1886 				/* if there's a bad alias, stop checking. */
   1887 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1888 					bad_alias = true;
   1889 			}
   1890 			md->pvh_attrs |= PVF_WRITE;
   1891 			if (!bad_alias)
   1892 				md->pvh_attrs |= PVF_DIRTY;
   1893 		} else {
   1894 			/*
   1895 			 * We have only read-only mappings.  Let's see if there
   1896 			 * are multiple colors in use or if we mapped a KMPAGE.
   1897 			 * If the latter, we have a bad alias.  If the former,
   1898 			 * we need to remember that.
   1899 			 */
   1900 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1901 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   1902 					if (md->pvh_attrs & PVF_KMPAGE)
   1903 						bad_alias = true;
   1904 					break;
   1905 				}
   1906 			}
   1907 			md->pvh_attrs &= ~PVF_WRITE;
   1908 			/*
   1909 			 * No KMPAGE and we exited early, so we must have
   1910 			 * multiple color mappings.
   1911 			 */
   1912 			if (!bad_alias && pv != NULL)
   1913 				md->pvh_attrs |= PVF_MULTCLR;
   1914 		}
   1915 
   1916 		/* If no conflicting colors, set everything back to cached */
   1917 		if (!bad_alias) {
   1918 #ifdef DEBUG
   1919 			if ((md->pvh_attrs & PVF_WRITE)
   1920 			    || ro_mappings < 2) {
   1921 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1922 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1923 			}
   1924 #endif
   1925 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1926 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   1927 			/*
   1928 			 * Restore DIRTY bit if page is modified
   1929 			 */
   1930 			if (md->pvh_attrs & PVF_DMOD)
   1931 				md->pvh_attrs |= PVF_DIRTY;
   1932 			PMAPCOUNT(vac_color_restore);
   1933 		} else {
   1934 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1935 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1936 		}
   1937 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1938 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1939 	} else if (!va) {
   1940 		KASSERT(pmap_is_page_colored_p(md));
   1941 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   1942 		    || (md->pvh_attrs & PVF_DIRTY));
   1943 		if (rw_mappings == 0) {
   1944 			md->pvh_attrs &= ~PVF_WRITE;
   1945 			if (ro_mappings == 1
   1946 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   1947 				/*
   1948 				 * If this is the last readonly mapping
   1949 				 * but it doesn't match the current color
   1950 				 * for the page, change the current color
   1951 				 * to match this last readonly mapping.
   1952 				 */
   1953 				pv = SLIST_FIRST(&md->pvh_list);
   1954 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   1955 				    & arm_cache_prefer_mask;
   1956 				if (tst_mask) {
   1957 					md->pvh_attrs ^= tst_mask;
   1958 					PMAPCOUNT(vac_color_change);
   1959 				}
   1960 			}
   1961 		}
   1962 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1963 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1964 		return;
   1965 	} else if (!pmap_is_page_colored_p(md)) {
   1966 		/* not colored so we just use its color */
   1967 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1968 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1969 		PMAPCOUNT(vac_color_new);
   1970 		md->pvh_attrs &= PAGE_SIZE - 1;
   1971 		md->pvh_attrs |= PVF_COLORED
   1972 		    | (va & arm_cache_prefer_mask)
   1973 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1974 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1975 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1976 		return;
   1977 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1978 		bad_alias = false;
   1979 		if (rw_mappings > 0) {
   1980 			/*
   1981 			 * We now have writeable mappings and if we have
   1982 			 * readonly mappings in more than once color, we have
   1983 			 * an aliasing problem.  Regardless mark the page as
   1984 			 * writeable.
   1985 			 */
   1986 			if (md->pvh_attrs & PVF_MULTCLR) {
   1987 				if (ro_mappings < 2) {
   1988 					/*
   1989 					 * If we only have less than two
   1990 					 * read-only mappings, just flush the
   1991 					 * non-primary colors from the cache.
   1992 					 */
   1993 					pmap_flush_page(md, pa,
   1994 					    PMAP_FLUSH_SECONDARY);
   1995 				} else {
   1996 					bad_alias = true;
   1997 				}
   1998 			}
   1999 			md->pvh_attrs |= PVF_WRITE;
   2000 		}
   2001 		/* If no conflicting colors, set everything back to cached */
   2002 		if (!bad_alias) {
   2003 #ifdef DEBUG
   2004 			if (rw_mappings > 0
   2005 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2006 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2007 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2008 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2009 			}
   2010 #endif
   2011 			if (SLIST_EMPTY(&md->pvh_list))
   2012 				PMAPCOUNT(vac_color_reuse);
   2013 			else
   2014 				PMAPCOUNT(vac_color_ok);
   2015 
   2016 			/* matching color, just return */
   2017 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2018 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2019 			return;
   2020 		}
   2021 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2022 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2023 
   2024 		/* color conflict.  evict from cache. */
   2025 
   2026 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2027 		md->pvh_attrs &= ~PVF_COLORED;
   2028 		md->pvh_attrs |= PVF_NC;
   2029 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2030 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2031 		PMAPCOUNT(vac_color_erase);
   2032 	} else if (rw_mappings == 0
   2033 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2034 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2035 
   2036 		/*
   2037 		 * If the page has dirty cache lines, clean it.
   2038 		 */
   2039 		if (md->pvh_attrs & PVF_DIRTY)
   2040 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2041 
   2042 		/*
   2043 		 * If this is the first remapping (we know that there are no
   2044 		 * writeable mappings), then this is a simple color change.
   2045 		 * Otherwise this is a seconary r/o mapping, which means
   2046 		 * we don't have to do anything.
   2047 		 */
   2048 		if (ro_mappings == 1) {
   2049 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2050 			md->pvh_attrs &= PAGE_SIZE - 1;
   2051 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2052 			PMAPCOUNT(vac_color_change);
   2053 		} else {
   2054 			PMAPCOUNT(vac_color_blind);
   2055 		}
   2056 		md->pvh_attrs |= PVF_MULTCLR;
   2057 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2058 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2059 		return;
   2060 	} else {
   2061 		if (rw_mappings > 0)
   2062 			md->pvh_attrs |= PVF_WRITE;
   2063 
   2064 		/* color conflict.  evict from cache. */
   2065 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2066 
   2067 		/* the list can't be empty because this was a enter/modify */
   2068 		pv = SLIST_FIRST(&md->pvh_list);
   2069 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2070 			KASSERT(pv);
   2071 			/*
   2072 			 * If there's only one mapped page, change color to the
   2073 			 * page's new color and return.  Restore the DIRTY bit
   2074 			 * that was erased by pmap_flush_page.
   2075 			 */
   2076 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2077 				md->pvh_attrs &= PAGE_SIZE - 1;
   2078 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2079 				if (md->pvh_attrs & PVF_DMOD)
   2080 					md->pvh_attrs |= PVF_DIRTY;
   2081 				PMAPCOUNT(vac_color_change);
   2082 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2083 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2084 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2085 				return;
   2086 			}
   2087 		}
   2088 		bad_alias = true;
   2089 		md->pvh_attrs &= ~PVF_COLORED;
   2090 		md->pvh_attrs |= PVF_NC;
   2091 		PMAPCOUNT(vac_color_erase);
   2092 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2093 	}
   2094 
   2095   fixup:
   2096 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2097 
   2098 	/*
   2099 	 * Turn cacheing on/off for all pages.
   2100 	 */
   2101 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2102 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2103 		    pv->pv_va);
   2104 		KDASSERT(l2b != NULL);
   2105 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2106 		const pt_entry_t opte = *ptep;
   2107 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2108 		if (bad_alias) {
   2109 			pv->pv_flags |= PVF_NC;
   2110 		} else {
   2111 			pv->pv_flags &= ~PVF_NC;
   2112 			npte |= pte_l2_s_cache_mode;
   2113 		}
   2114 
   2115 		if (opte == npte)	/* only update is there's a change */
   2116 			continue;
   2117 
   2118 		if (l2pte_valid(npte)) {
   2119 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2120 		}
   2121 
   2122 		l2pte_set(ptep, npte, opte);
   2123 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2124 	}
   2125 }
   2126 #endif	/* PMAP_CACHE_VIPT */
   2127 
   2128 
   2129 /*
   2130  * Modify pte bits for all ptes corresponding to the given physical address.
   2131  * We use `maskbits' rather than `clearbits' because we're always passing
   2132  * constants and the latter would require an extra inversion at run-time.
   2133  */
   2134 static void
   2135 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2136 {
   2137 	struct pv_entry *pv;
   2138 	pmap_t pm;
   2139 	vaddr_t va;
   2140 	u_int oflags;
   2141 #ifdef PMAP_CACHE_VIPT
   2142 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2143 	bool need_vac_me_harder = false;
   2144 	bool need_syncicache = false;
   2145 #endif
   2146 
   2147 	NPDEBUG(PDB_BITS,
   2148 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2149 	    md, maskbits));
   2150 
   2151 #ifdef PMAP_CACHE_VIPT
   2152 	/*
   2153 	 * If we might want to sync the I-cache and we've modified it,
   2154 	 * then we know we definitely need to sync or discard it.
   2155 	 */
   2156 	if (want_syncicache) {
   2157 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2158 	}
   2159 #endif
   2160 	/*
   2161 	 * Clear saved attributes (modify, reference)
   2162 	 */
   2163 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2164 
   2165 	if (SLIST_EMPTY(&md->pvh_list)) {
   2166 #if defined(PMAP_CACHE_VIPT)
   2167 		if (need_syncicache) {
   2168 			/*
   2169 			 * No one has it mapped, so just discard it.  The next
   2170 			 * exec remapping will cause it to be synced.
   2171 			 */
   2172 			md->pvh_attrs &= ~PVF_EXEC;
   2173 			PMAPCOUNT(exec_discarded_clearbit);
   2174 		}
   2175 #endif
   2176 		return;
   2177 	}
   2178 
   2179 	/*
   2180 	 * Loop over all current mappings setting/clearing as appropos
   2181 	 */
   2182 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2183 		va = pv->pv_va;
   2184 		pm = pv->pv_pmap;
   2185 		oflags = pv->pv_flags;
   2186 		/*
   2187 		 * Kernel entries are unmanaged and as such not to be changed.
   2188 		 */
   2189 		if (oflags & PVF_KENTRY)
   2190 			continue;
   2191 		pv->pv_flags &= ~maskbits;
   2192 
   2193 		pmap_acquire_pmap_lock(pm);
   2194 
   2195 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2196 		KDASSERT(l2b != NULL);
   2197 
   2198 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2199 		const pt_entry_t opte = *ptep;
   2200 		pt_entry_t npte = opte;
   2201 
   2202 		NPDEBUG(PDB_BITS,
   2203 		    printf(
   2204 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2205 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2206 
   2207 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2208 #ifdef PMAP_CACHE_VIVT
   2209 			if ((pv->pv_flags & PVF_NC)) {
   2210 				/*
   2211 				 * Entry is not cacheable:
   2212 				 *
   2213 				 * Don't turn caching on again if this is a
   2214 				 * modified emulation. This would be
   2215 				 * inconsitent with the settings created by
   2216 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2217 				 * to re-enable cacheing.
   2218 				 *
   2219 				 * There's no need to call pmap_vac_me_harder()
   2220 				 * here: all pages are losing their write
   2221 				 * permission.
   2222 				 */
   2223 				if (maskbits & PVF_WRITE) {
   2224 					npte |= pte_l2_s_cache_mode;
   2225 					pv->pv_flags &= ~PVF_NC;
   2226 				}
   2227 			} else
   2228 			if (l2pte_writable_p(opte)) {
   2229 				/*
   2230 				 * Entry is writable/cacheable: check if pmap
   2231 				 * is current if it is flush it, otherwise it
   2232 				 * won't be in the cache
   2233 				 */
   2234 				pmap_cache_wbinv_page(pm, pv->pv_va,
   2235 				    (maskbits & PVF_REF) != 0,
   2236 				    oflags|PVF_WRITE);
   2237 			}
   2238 #endif
   2239 
   2240 			/* make the pte read only */
   2241 			npte = l2pte_set_readonly(npte);
   2242 
   2243 			if (maskbits & oflags & PVF_WRITE) {
   2244 				/*
   2245 				 * Keep alias accounting up to date
   2246 				 */
   2247 				if (pv->pv_pmap == pmap_kernel()) {
   2248 					md->krw_mappings--;
   2249 					md->kro_mappings++;
   2250 				} else {
   2251 					md->urw_mappings--;
   2252 					md->uro_mappings++;
   2253 				}
   2254 #ifdef PMAP_CACHE_VIPT
   2255 				if (arm_cache_prefer_mask != 0) {
   2256 					if (md->urw_mappings + md->krw_mappings == 0) {
   2257 						md->pvh_attrs &= ~PVF_WRITE;
   2258 					} else {
   2259 						PMAP_VALIDATE_MD_PAGE(md);
   2260 					}
   2261 				}
   2262 				if (want_syncicache)
   2263 					need_syncicache = true;
   2264 				need_vac_me_harder = true;
   2265 #endif
   2266 			}
   2267 		}
   2268 
   2269 		if (maskbits & PVF_REF) {
   2270 			if ((pv->pv_flags & PVF_NC) == 0
   2271 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2272 			    && l2pte_valid(npte)) {
   2273 #ifdef PMAP_CACHE_VIVT
   2274 				/*
   2275 				 * Check npte here; we may have already
   2276 				 * done the wbinv above, and the validity
   2277 				 * of the PTE is the same for opte and
   2278 				 * npte.
   2279 				 */
   2280 				pmap_cache_wbinv_page(pm, pv->pv_va, true,
   2281 				    oflags);
   2282 #endif
   2283 			}
   2284 
   2285 			/*
   2286 			 * Make the PTE invalid so that we will take a
   2287 			 * page fault the next time the mapping is
   2288 			 * referenced.
   2289 			 */
   2290 			npte &= ~L2_TYPE_MASK;
   2291 			npte |= L2_TYPE_INV;
   2292 		}
   2293 
   2294 		if (npte != opte) {
   2295 			l2pte_set(ptep, npte, opte);
   2296 			PTE_SYNC(ptep);
   2297 
   2298 			/* Flush the TLB entry if a current pmap. */
   2299 			pmap_tlb_flush_SE(pm, pv->pv_va, oflags);
   2300 		}
   2301 
   2302 		pmap_release_pmap_lock(pm);
   2303 
   2304 		NPDEBUG(PDB_BITS,
   2305 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2306 		    pm, va, opte, npte));
   2307 	}
   2308 
   2309 #ifdef PMAP_CACHE_VIPT
   2310 	/*
   2311 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2312 	 */
   2313 	if (need_syncicache) {
   2314 		pmap_syncicache_page(md, pa);
   2315 		PMAPCOUNT(exec_synced_clearbit);
   2316 	}
   2317 
   2318 	/*
   2319 	 * If we are changing this to read-only, we need to call vac_me_harder
   2320 	 * so we can change all the read-only pages to cacheable.  We pretend
   2321 	 * this as a page deletion.
   2322 	 */
   2323 	if (need_vac_me_harder) {
   2324 		if (md->pvh_attrs & PVF_NC)
   2325 			pmap_vac_me_harder(md, pa, NULL, 0);
   2326 	}
   2327 #endif
   2328 }
   2329 
   2330 /*
   2331  * pmap_clean_page()
   2332  *
   2333  * This is a local function used to work out the best strategy to clean
   2334  * a single page referenced by its entry in the PV table. It's used by
   2335  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2336  *
   2337  * Its policy is effectively:
   2338  *  o If there are no mappings, we don't bother doing anything with the cache.
   2339  *  o If there is one mapping, we clean just that page.
   2340  *  o If there are multiple mappings, we clean the entire cache.
   2341  *
   2342  * So that some functions can be further optimised, it returns 0 if it didn't
   2343  * clean the entire cache, or 1 if it did.
   2344  *
   2345  * XXX One bug in this routine is that if the pv_entry has a single page
   2346  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2347  * just the 1 page. Since this should not occur in everyday use and if it does
   2348  * it will just result in not the most efficient clean for the page.
   2349  */
   2350 #ifdef PMAP_CACHE_VIVT
   2351 static int
   2352 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2353 {
   2354 	pmap_t pm_to_clean = NULL;
   2355 	struct pv_entry *npv;
   2356 	u_int cache_needs_cleaning = 0;
   2357 	u_int flags = 0;
   2358 	vaddr_t page_to_clean = 0;
   2359 
   2360 	if (pv == NULL) {
   2361 		/* nothing mapped in so nothing to flush */
   2362 		return (0);
   2363 	}
   2364 
   2365 	/*
   2366 	 * Since we flush the cache each time we change to a different
   2367 	 * user vmspace, we only need to flush the page if it is in the
   2368 	 * current pmap.
   2369 	 */
   2370 
   2371 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2372 		if (pmap_is_current(npv->pv_pmap)) {
   2373 			flags |= npv->pv_flags;
   2374 			/*
   2375 			 * The page is mapped non-cacheable in
   2376 			 * this map.  No need to flush the cache.
   2377 			 */
   2378 			if (npv->pv_flags & PVF_NC) {
   2379 #ifdef DIAGNOSTIC
   2380 				if (cache_needs_cleaning)
   2381 					panic("pmap_clean_page: "
   2382 					    "cache inconsistency");
   2383 #endif
   2384 				break;
   2385 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2386 				continue;
   2387 			if (cache_needs_cleaning) {
   2388 				page_to_clean = 0;
   2389 				break;
   2390 			} else {
   2391 				page_to_clean = npv->pv_va;
   2392 				pm_to_clean = npv->pv_pmap;
   2393 			}
   2394 			cache_needs_cleaning = 1;
   2395 		}
   2396 	}
   2397 
   2398 	if (page_to_clean) {
   2399 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2400 		    !is_src, flags | PVF_REF);
   2401 	} else if (cache_needs_cleaning) {
   2402 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2403 
   2404 		pmap_cache_wbinv_all(pm, flags);
   2405 		return (1);
   2406 	}
   2407 	return (0);
   2408 }
   2409 #endif
   2410 
   2411 #ifdef PMAP_CACHE_VIPT
   2412 /*
   2413  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2414  * right cache alias to make sure we flush the right stuff.
   2415  */
   2416 void
   2417 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2418 {
   2419 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2420 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2421 
   2422 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2423 	    md, md->pvh_attrs));
   2424 	/*
   2425 	 * No need to clean the page if it's non-cached.
   2426 	 */
   2427 	if (md->pvh_attrs & PVF_NC)
   2428 		return;
   2429 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2430 
   2431 	pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
   2432 	/*
   2433 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2434 	 */
   2435 	const pt_entry_t npte = L2_S_PROTO |
   2436 	    pa
   2437 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2438 	    | pte_l2_s_cache_mode;
   2439 	l2pte_set(ptep, npte, 0);
   2440 	PTE_SYNC(ptep);
   2441 
   2442 	/*
   2443 	 * Flush it.
   2444 	 */
   2445 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2446 	/*
   2447 	 * Unmap the page.
   2448 	 */
   2449 	l2pte_reset(ptep);
   2450 	PTE_SYNC(ptep);
   2451 	pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
   2452 
   2453 	md->pvh_attrs |= PVF_EXEC;
   2454 	PMAPCOUNT(exec_synced);
   2455 }
   2456 
   2457 void
   2458 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2459 {
   2460 	vsize_t va_offset, end_va;
   2461 	bool wbinv_p;
   2462 
   2463 	if (arm_cache_prefer_mask == 0)
   2464 		return;
   2465 
   2466 	switch (flush) {
   2467 	case PMAP_FLUSH_PRIMARY:
   2468 		if (md->pvh_attrs & PVF_MULTCLR) {
   2469 			va_offset = 0;
   2470 			end_va = arm_cache_prefer_mask;
   2471 			md->pvh_attrs &= ~PVF_MULTCLR;
   2472 			PMAPCOUNT(vac_flush_lots);
   2473 		} else {
   2474 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2475 			end_va = va_offset;
   2476 			PMAPCOUNT(vac_flush_one);
   2477 		}
   2478 		/*
   2479 		 * Mark that the page is no longer dirty.
   2480 		 */
   2481 		md->pvh_attrs &= ~PVF_DIRTY;
   2482 		wbinv_p = true;
   2483 		break;
   2484 	case PMAP_FLUSH_SECONDARY:
   2485 		va_offset = 0;
   2486 		end_va = arm_cache_prefer_mask;
   2487 		wbinv_p = true;
   2488 		md->pvh_attrs &= ~PVF_MULTCLR;
   2489 		PMAPCOUNT(vac_flush_lots);
   2490 		break;
   2491 	case PMAP_CLEAN_PRIMARY:
   2492 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2493 		end_va = va_offset;
   2494 		wbinv_p = false;
   2495 		/*
   2496 		 * Mark that the page is no longer dirty.
   2497 		 */
   2498 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2499 			md->pvh_attrs &= ~PVF_DIRTY;
   2500 		PMAPCOUNT(vac_clean_one);
   2501 		break;
   2502 	default:
   2503 		return;
   2504 	}
   2505 
   2506 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2507 
   2508 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2509 	    md, md->pvh_attrs));
   2510 
   2511 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2512 
   2513 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2514 		const size_t pte_offset = va_offset >> PGSHIFT;
   2515 		pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2516 		const pt_entry_t opte = *ptep;
   2517 
   2518 		if (flush == PMAP_FLUSH_SECONDARY
   2519 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2520 			continue;
   2521 
   2522 		pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
   2523 		    PVF_REF | PVF_EXEC);
   2524 		/*
   2525 		 * Set up a PTE with the right coloring to flush
   2526 		 * existing cache entries.
   2527 		 */
   2528 		const pt_entry_t npte = L2_S_PROTO
   2529 		    | pa
   2530 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2531 		    | pte_l2_s_cache_mode;
   2532 		l2pte_set(ptep, npte, opte);
   2533 		PTE_SYNC(ptep);
   2534 
   2535 		/*
   2536 		 * Flush it.  Make sure to flush secondary cache too since
   2537 		 * bus_dma will ignore uncached pages.
   2538 		 */
   2539                 vaddr_t va = cdstp + va_offset;
   2540 		if (scache_line_size != 0) {
   2541 			cpu_dcache_wb_range(va, PAGE_SIZE);
   2542 			if (wbinv_p) {
   2543 				cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
   2544 				cpu_dcache_inv_range(va, PAGE_SIZE);
   2545 			} else {
   2546 				cpu_sdcache_wb_range(va, pa, PAGE_SIZE);
   2547 			}
   2548 		} else {
   2549 			if (wbinv_p) {
   2550 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   2551 			} else {
   2552 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2553 			}
   2554 		}
   2555 
   2556 		/*
   2557 		 * Restore the page table entry since we might have interrupted
   2558 		 * pmap_zero_page or pmap_copy_page which was already using
   2559 		 * this pte.
   2560 		 */
   2561 		l2pte_set(ptep, opte, npte);
   2562 		PTE_SYNC(ptep);
   2563 		pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
   2564 		    PVF_REF | PVF_EXEC);
   2565 	}
   2566 }
   2567 #endif /* PMAP_CACHE_VIPT */
   2568 
   2569 /*
   2570  * Routine:	pmap_page_remove
   2571  * Function:
   2572  *		Removes this physical page from
   2573  *		all physical maps in which it resides.
   2574  *		Reflects back modify bits to the pager.
   2575  */
   2576 static void
   2577 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2578 {
   2579 	struct l2_bucket *l2b;
   2580 	struct pv_entry *pv, *npv, **pvp;
   2581 	pmap_t pm;
   2582 	pt_entry_t *ptep;
   2583 	bool flush;
   2584 	u_int flags;
   2585 
   2586 	NPDEBUG(PDB_FOLLOW,
   2587 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2588 	    pa));
   2589 
   2590 	pv = SLIST_FIRST(&md->pvh_list);
   2591 	if (pv == NULL) {
   2592 #ifdef PMAP_CACHE_VIPT
   2593 		/*
   2594 		 * We *know* the page contents are about to be replaced.
   2595 		 * Discard the exec contents
   2596 		 */
   2597 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2598 			PMAPCOUNT(exec_discarded_page_protect);
   2599 		md->pvh_attrs &= ~PVF_EXEC;
   2600 		PMAP_VALIDATE_MD_PAGE(md);
   2601 #endif
   2602 		return;
   2603 	}
   2604 #ifdef PMAP_CACHE_VIPT
   2605 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2606 #endif
   2607 
   2608 	/*
   2609 	 * Clear alias counts
   2610 	 */
   2611 #ifdef PMAP_CACHE_VIVT
   2612 	md->k_mappings = 0;
   2613 #endif
   2614 	md->urw_mappings = md->uro_mappings = 0;
   2615 
   2616 	flush = false;
   2617 	flags = 0;
   2618 
   2619 #ifdef PMAP_CACHE_VIVT
   2620 	pmap_clean_page(pv, false);
   2621 #endif
   2622 
   2623 	pvp = &SLIST_FIRST(&md->pvh_list);
   2624 	while (pv) {
   2625 		pm = pv->pv_pmap;
   2626 		npv = SLIST_NEXT(pv, pv_link);
   2627 		if (flush == false && pmap_is_current(pm))
   2628 			flush = true;
   2629 
   2630 		if (pm == pmap_kernel()) {
   2631 #ifdef PMAP_CACHE_VIPT
   2632 			/*
   2633 			 * If this was unmanaged mapping, it must be preserved.
   2634 			 * Move it back on the list and advance the end-of-list
   2635 			 * pointer.
   2636 			 */
   2637 			if (pv->pv_flags & PVF_KENTRY) {
   2638 				*pvp = pv;
   2639 				pvp = &SLIST_NEXT(pv, pv_link);
   2640 				pv = npv;
   2641 				continue;
   2642 			}
   2643 			if (pv->pv_flags & PVF_WRITE)
   2644 				md->krw_mappings--;
   2645 			else
   2646 				md->kro_mappings--;
   2647 #endif
   2648 			PMAPCOUNT(kernel_unmappings);
   2649 		}
   2650 		PMAPCOUNT(unmappings);
   2651 
   2652 		pmap_acquire_pmap_lock(pm);
   2653 
   2654 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2655 		KDASSERT(l2b != NULL);
   2656 
   2657 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2658 
   2659 		/*
   2660 		 * Update statistics
   2661 		 */
   2662 		--pm->pm_stats.resident_count;
   2663 
   2664 		/* Wired bit */
   2665 		if (pv->pv_flags & PVF_WIRED)
   2666 			--pm->pm_stats.wired_count;
   2667 
   2668 		flags |= pv->pv_flags;
   2669 
   2670 		/*
   2671 		 * Invalidate the PTEs.
   2672 		 */
   2673 		l2pte_reset(ptep);
   2674 		PTE_SYNC_CURRENT(pm, ptep);
   2675 		pmap_free_l2_bucket(pm, l2b, 1);
   2676 
   2677 		pool_put(&pmap_pv_pool, pv);
   2678 		pv = npv;
   2679 		/*
   2680 		 * if we reach the end of the list and there are still
   2681 		 * mappings, they might be able to be cached now.
   2682 		 */
   2683 		if (pv == NULL) {
   2684 			*pvp = NULL;
   2685 			if (!SLIST_EMPTY(&md->pvh_list))
   2686 				pmap_vac_me_harder(md, pa, pm, 0);
   2687 		}
   2688 		pmap_release_pmap_lock(pm);
   2689 	}
   2690 #ifdef PMAP_CACHE_VIPT
   2691 	/*
   2692 	 * Its EXEC cache is now gone.
   2693 	 */
   2694 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2695 		PMAPCOUNT(exec_discarded_page_protect);
   2696 	md->pvh_attrs &= ~PVF_EXEC;
   2697 	KASSERT(md->urw_mappings == 0);
   2698 	KASSERT(md->uro_mappings == 0);
   2699 	if (arm_cache_prefer_mask != 0) {
   2700 		if (md->krw_mappings == 0)
   2701 			md->pvh_attrs &= ~PVF_WRITE;
   2702 		PMAP_VALIDATE_MD_PAGE(md);
   2703 	}
   2704 #endif
   2705 
   2706 	if (flush) {
   2707 		/*
   2708 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2709 		 * would need a subsequent call to pmap_update() to ensure
   2710 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2711 		 * required to do that (see pmap(9)), so we can't modify
   2712 		 * the current pmap's state.
   2713 		 */
   2714 		if (PV_BEEN_EXECD(flags))
   2715 			cpu_tlb_flushID();
   2716 		else
   2717 			cpu_tlb_flushD();
   2718 	}
   2719 	cpu_cpwait();
   2720 }
   2721 
   2722 /*
   2723  * pmap_t pmap_create(void)
   2724  *
   2725  *      Create a new pmap structure from scratch.
   2726  */
   2727 pmap_t
   2728 pmap_create(void)
   2729 {
   2730 	pmap_t pm;
   2731 
   2732 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2733 
   2734 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2735 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2736 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2737 
   2738 	pm->pm_stats.wired_count = 0;
   2739 	pm->pm_stats.resident_count = 1;
   2740 	pm->pm_cstate.cs_all = 0;
   2741 	pmap_alloc_l1(pm);
   2742 
   2743 	/*
   2744 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2745 	 * initialised to zero.
   2746 	 */
   2747 
   2748 	pmap_pinit(pm);
   2749 
   2750 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2751 
   2752 	return (pm);
   2753 }
   2754 
   2755 u_int
   2756 arm32_mmap_flags(paddr_t pa)
   2757 {
   2758 	/*
   2759 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   2760 	 * and we're using the upper bits in page numbers to pass flags around
   2761 	 * so we might as well use the same bits
   2762 	 */
   2763 	return (u_int)pa & PMAP_MD_MASK;
   2764 }
   2765 /*
   2766  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2767  *      u_int flags)
   2768  *
   2769  *      Insert the given physical page (p) at
   2770  *      the specified virtual address (v) in the
   2771  *      target physical map with the protection requested.
   2772  *
   2773  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2774  *      or lose information.  That is, this routine must actually
   2775  *      insert this page into the given map NOW.
   2776  */
   2777 int
   2778 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2779 {
   2780 	struct l2_bucket *l2b;
   2781 	struct vm_page *pg, *opg;
   2782 	struct pv_entry *pv;
   2783 	u_int nflags;
   2784 	u_int oflags;
   2785 #ifdef ARM_HAS_VBAR
   2786 	const bool vector_page_p = false;
   2787 #else
   2788 	const bool vector_page_p = (va == vector_page);
   2789 #endif
   2790 
   2791 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2792 
   2793 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2794 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2795 
   2796 	/*
   2797 	 * Get a pointer to the page.  Later on in this function, we
   2798 	 * test for a managed page by checking pg != NULL.
   2799 	 */
   2800 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2801 
   2802 	nflags = 0;
   2803 	if (prot & VM_PROT_WRITE)
   2804 		nflags |= PVF_WRITE;
   2805 	if (prot & VM_PROT_EXECUTE)
   2806 		nflags |= PVF_EXEC;
   2807 	if (flags & PMAP_WIRED)
   2808 		nflags |= PVF_WIRED;
   2809 
   2810 	pmap_acquire_pmap_lock(pm);
   2811 
   2812 	/*
   2813 	 * Fetch the L2 bucket which maps this page, allocating one if
   2814 	 * necessary for user pmaps.
   2815 	 */
   2816 	if (pm == pmap_kernel())
   2817 		l2b = pmap_get_l2_bucket(pm, va);
   2818 	else
   2819 		l2b = pmap_alloc_l2_bucket(pm, va);
   2820 	if (l2b == NULL) {
   2821 		if (flags & PMAP_CANFAIL) {
   2822 			pmap_release_pmap_lock(pm);
   2823 			return (ENOMEM);
   2824 		}
   2825 		panic("pmap_enter: failed to allocate L2 bucket");
   2826 	}
   2827 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   2828 	const pt_entry_t opte = *ptep;
   2829 	pt_entry_t npte = pa;
   2830 	oflags = 0;
   2831 
   2832 	if (opte) {
   2833 		/*
   2834 		 * There is already a mapping at this address.
   2835 		 * If the physical address is different, lookup the
   2836 		 * vm_page.
   2837 		 */
   2838 		if (l2pte_pa(opte) != pa)
   2839 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2840 		else
   2841 			opg = pg;
   2842 	} else
   2843 		opg = NULL;
   2844 
   2845 	if (pg) {
   2846 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2847 
   2848 		/*
   2849 		 * This is to be a managed mapping.
   2850 		 */
   2851 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   2852 			/*
   2853 			 * - The access type indicates that we don't need
   2854 			 *   to do referenced emulation.
   2855 			 * OR
   2856 			 * - The physical page has already been referenced
   2857 			 *   so no need to re-do referenced emulation here.
   2858 			 */
   2859 			npte |= l2pte_set_readonly(L2_S_PROTO);
   2860 
   2861 			nflags |= PVF_REF;
   2862 
   2863 			if ((prot & VM_PROT_WRITE) != 0 &&
   2864 			    ((flags & VM_PROT_WRITE) != 0 ||
   2865 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   2866 				/*
   2867 				 * This is a writable mapping, and the
   2868 				 * page's mod state indicates it has
   2869 				 * already been modified. Make it
   2870 				 * writable from the outset.
   2871 				 */
   2872 				npte = l2pte_set_writable(npte);
   2873 				nflags |= PVF_MOD;
   2874 			}
   2875 		} else {
   2876 			/*
   2877 			 * Need to do page referenced emulation.
   2878 			 */
   2879 			npte |= L2_TYPE_INV;
   2880 		}
   2881 
   2882 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   2883 			npte |= pte_l2_s_wc_mode;
   2884 		} else
   2885 			npte |= pte_l2_s_cache_mode;
   2886 
   2887 		if (pg == opg) {
   2888 			/*
   2889 			 * We're changing the attrs of an existing mapping.
   2890 			 */
   2891 #ifdef MULTIPROCESSOR
   2892 			KASSERT(uvm_page_locked_p(pg));
   2893 #endif
   2894 			oflags = pmap_modify_pv(md, pa, pm, va,
   2895 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2896 			    PVF_MOD | PVF_REF, nflags);
   2897 
   2898 #ifdef PMAP_CACHE_VIVT
   2899 			/*
   2900 			 * We may need to flush the cache if we're
   2901 			 * doing rw-ro...
   2902 			 */
   2903 			if (pm->pm_cstate.cs_cache_d &&
   2904 			    (oflags & PVF_NC) == 0 &&
   2905 			    l2pte_writable_p(opte) &&
   2906 			    (prot & VM_PROT_WRITE) == 0)
   2907 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2908 #endif
   2909 		} else {
   2910 			/*
   2911 			 * New mapping, or changing the backing page
   2912 			 * of an existing mapping.
   2913 			 */
   2914 			if (opg) {
   2915 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2916 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2917 
   2918 				/*
   2919 				 * Replacing an existing mapping with a new one.
   2920 				 * It is part of our managed memory so we
   2921 				 * must remove it from the PV list
   2922 				 */
   2923 #ifdef MULTIPROCESSOR
   2924 				KASSERT(uvm_page_locked_p(opg));
   2925 #endif
   2926 				pv = pmap_remove_pv(omd, opa, pm, va);
   2927 				pmap_vac_me_harder(omd, opa, pm, 0);
   2928 				oflags = pv->pv_flags;
   2929 
   2930 #ifdef PMAP_CACHE_VIVT
   2931 				/*
   2932 				 * If the old mapping was valid (ref/mod
   2933 				 * emulation creates 'invalid' mappings
   2934 				 * initially) then make sure to frob
   2935 				 * the cache.
   2936 				 */
   2937 				if (!(oflags & PVF_NC) && l2pte_valid(opte)) {
   2938 					pmap_cache_wbinv_page(pm, va, true,
   2939 					    oflags);
   2940 				}
   2941 #endif
   2942 			} else
   2943 			if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2944 				if ((flags & PMAP_CANFAIL) == 0)
   2945 					panic("pmap_enter: no pv entries");
   2946 
   2947 				if (pm != pmap_kernel())
   2948 					pmap_free_l2_bucket(pm, l2b, 0);
   2949 				pmap_release_pmap_lock(pm);
   2950 				NPDEBUG(PDB_ENTER,
   2951 				    printf("pmap_enter: ENOMEM\n"));
   2952 				return (ENOMEM);
   2953 			}
   2954 
   2955 #ifdef MULTIPROCESSOR
   2956 			KASSERT(uvm_page_locked_p(pg));
   2957 #endif
   2958 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   2959 		}
   2960 	} else {
   2961 		/*
   2962 		 * We're mapping an unmanaged page.
   2963 		 * These are always readable, and possibly writable, from
   2964 		 * the get go as we don't need to track ref/mod status.
   2965 		 */
   2966 		npte |= l2pte_set_readonly(L2_S_PROTO);
   2967 		if (prot & VM_PROT_WRITE)
   2968 			npte = l2pte_set_writable(npte);
   2969 
   2970 		/*
   2971 		 * Make sure the vector table is mapped cacheable
   2972 		 */
   2973 		if ((vector_page_p && pm != pmap_kernel())
   2974 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   2975 			npte |= pte_l2_s_cache_mode;
   2976 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   2977 			npte |= pte_l2_s_wc_mode;
   2978 		}
   2979 		if (opg) {
   2980 			/*
   2981 			 * Looks like there's an existing 'managed' mapping
   2982 			 * at this address.
   2983 			 */
   2984 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2985 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2986 
   2987 #ifdef MULTIPROCESSOR
   2988 			KASSERT(uvm_page_locked_p(opg));
   2989 #endif
   2990 			pv = pmap_remove_pv(omd, opa, pm, va);
   2991 			pmap_vac_me_harder(omd, opa, pm, 0);
   2992 			oflags = pv->pv_flags;
   2993 
   2994 #ifdef PMAP_CACHE_VIVT
   2995 			if (!(oflags & PVF_NC) && l2pte_valid(opte)) {
   2996 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2997 			}
   2998 #endif
   2999 			pool_put(&pmap_pv_pool, pv);
   3000 		}
   3001 	}
   3002 
   3003 	/*
   3004 	 * Make sure userland mappings get the right permissions
   3005 	 */
   3006 	if (!vector_page_p && pm != pmap_kernel()) {
   3007 		npte |= L2_S_PROT_U;
   3008 	}
   3009 
   3010 	/*
   3011 	 * Keep the stats up to date
   3012 	 */
   3013 	if (opte == 0) {
   3014 		l2b->l2b_occupancy++;
   3015 		pm->pm_stats.resident_count++;
   3016 	}
   3017 
   3018 	NPDEBUG(PDB_ENTER,
   3019 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   3020 
   3021 	/*
   3022 	 * If this is just a wiring change, the two PTEs will be
   3023 	 * identical, so there's no need to update the page table.
   3024 	 */
   3025 	if (npte != opte) {
   3026 		bool is_cached = pmap_is_cached(pm);
   3027 
   3028 		l2pte_set(ptep, npte, opte);
   3029 		PTE_SYNC(ptep);
   3030 		if (is_cached) {
   3031 			/*
   3032 			 * We only need to frob the cache/tlb if this pmap
   3033 			 * is current
   3034 			 */
   3035 			if (!vector_page_p && l2pte_valid(npte)) {
   3036 				/*
   3037 				 * This mapping is likely to be accessed as
   3038 				 * soon as we return to userland. Fix up the
   3039 				 * L1 entry to avoid taking another
   3040 				 * page/domain fault.
   3041 				 */
   3042 				pd_entry_t *pl1pd, l1pd;
   3043 
   3044 				pl1pd = pmap_l1_kva(pm) + L1_IDX(va);
   3045 				l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) |
   3046 				    L1_C_PROTO;
   3047 				if (*pl1pd != l1pd) {
   3048 					*pl1pd = l1pd;
   3049 					PTE_SYNC(pl1pd);
   3050 				}
   3051 			}
   3052 		}
   3053 
   3054 		pmap_tlb_flush_SE(pm, va, oflags);
   3055 
   3056 		NPDEBUG(PDB_ENTER,
   3057 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   3058 		    is_cached, pm->pm_cstate.cs_all));
   3059 
   3060 		if (pg != NULL) {
   3061 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3062 
   3063 #ifdef MULTIPROCESSOR
   3064 			KASSERT(uvm_page_locked_p(pg));
   3065 #endif
   3066 			pmap_vac_me_harder(md, pa, pm, va);
   3067 		}
   3068 	}
   3069 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3070 	if (pg) {
   3071 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3072 
   3073 #ifdef MULTIPROCESSOR
   3074 		KASSERT(uvm_page_locked_p(pg));
   3075 #endif
   3076 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3077 		PMAP_VALIDATE_MD_PAGE(md);
   3078 	}
   3079 #endif
   3080 
   3081 	pmap_release_pmap_lock(pm);
   3082 
   3083 	return (0);
   3084 }
   3085 
   3086 /*
   3087  * pmap_remove()
   3088  *
   3089  * pmap_remove is responsible for nuking a number of mappings for a range
   3090  * of virtual address space in the current pmap. To do this efficiently
   3091  * is interesting, because in a number of cases a wide virtual address
   3092  * range may be supplied that contains few actual mappings. So, the
   3093  * optimisations are:
   3094  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3095  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3096  *     maybe do just a partial cache clean. This path of execution is
   3097  *     complicated by the fact that the cache must be flushed _before_
   3098  *     the PTE is nuked, being a VAC :-)
   3099  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3100  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3101  *     already flushed the cache.
   3102  *  4. Maybe later fast-case a single page, but I don't think this is
   3103  *     going to make _that_ much difference overall.
   3104  */
   3105 
   3106 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3107 
   3108 void
   3109 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3110 {
   3111 	vaddr_t next_bucket;
   3112 	u_int cleanlist_idx, total, cnt;
   3113 	struct {
   3114 		vaddr_t va;
   3115 		pt_entry_t *ptep;
   3116 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3117 	u_int mappings;
   3118 
   3119 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3120 	    "eva=%08lx\n", pm, sva, eva));
   3121 
   3122 	/*
   3123 	 * we lock in the pmap => pv_head direction
   3124 	 */
   3125 	pmap_acquire_pmap_lock(pm);
   3126 
   3127 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3128 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3129 		if (pm->pm_cstate.cs_tlb == 0)
   3130 			pm->pm_remove_all = true;
   3131 	} else
   3132 		cleanlist_idx = 0;
   3133 
   3134 	total = 0;
   3135 
   3136 	while (sva < eva) {
   3137 		/*
   3138 		 * Do one L2 bucket's worth at a time.
   3139 		 */
   3140 		next_bucket = L2_NEXT_BUCKET(sva);
   3141 		if (next_bucket > eva)
   3142 			next_bucket = eva;
   3143 
   3144 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3145 		if (l2b == NULL) {
   3146 			sva = next_bucket;
   3147 			continue;
   3148 		}
   3149 
   3150 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3151 
   3152 		for (mappings = 0;
   3153 		     sva < next_bucket;
   3154 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3155 			pt_entry_t opte = *ptep;
   3156 
   3157 			if (opte == 0) {
   3158 				/* Nothing here, move along */
   3159 				continue;
   3160 			}
   3161 
   3162 			u_int flags = PVF_REF;
   3163 			paddr_t pa = l2pte_pa(opte);
   3164 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3165 
   3166 			/*
   3167 			 * Update flags. In a number of circumstances,
   3168 			 * we could cluster a lot of these and do a
   3169 			 * number of sequential pages in one go.
   3170 			 */
   3171 			if (pg != NULL) {
   3172 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3173 				struct pv_entry *pv;
   3174 
   3175 #ifdef MULTIPROCESSOR
   3176 				KASSERT(uvm_page_locked_p(pg));
   3177 #endif
   3178 				pv = pmap_remove_pv(md, pa, pm, sva);
   3179 				pmap_vac_me_harder(md, pa, pm, 0);
   3180 				if (pv != NULL) {
   3181 					if (pm->pm_remove_all == false) {
   3182 						flags = pv->pv_flags;
   3183 					}
   3184 					pool_put(&pmap_pv_pool, pv);
   3185 				}
   3186 			}
   3187 			mappings++;
   3188 
   3189 			if (!l2pte_valid(opte)) {
   3190 				/*
   3191 				 * Ref/Mod emulation is still active for this
   3192 				 * mapping, therefore it is has not yet been
   3193 				 * accessed. No need to frob the cache/tlb.
   3194 				 */
   3195 				l2pte_reset(ptep);
   3196 				PTE_SYNC_CURRENT(pm, ptep);
   3197 				continue;
   3198 			}
   3199 
   3200 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3201 				/* Add to the clean list. */
   3202 				cleanlist[cleanlist_idx].ptep = ptep;
   3203 				cleanlist[cleanlist_idx].va =
   3204 				    sva | (flags & PVF_EXEC);
   3205 				cleanlist_idx++;
   3206 			} else
   3207 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3208 				/* Nuke everything if needed. */
   3209 #ifdef PMAP_CACHE_VIVT
   3210 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3211 #endif
   3212 				pmap_tlb_flushID(pm);
   3213 
   3214 				/*
   3215 				 * Roll back the previous PTE list,
   3216 				 * and zero out the current PTE.
   3217 				 */
   3218 				for (cnt = 0;
   3219 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3220 					l2pte_reset(cleanlist[cnt].ptep);
   3221 					PTE_SYNC(cleanlist[cnt].ptep);
   3222 				}
   3223 				l2pte_reset(ptep);
   3224 				PTE_SYNC(ptep);
   3225 				cleanlist_idx++;
   3226 				pm->pm_remove_all = true;
   3227 			} else {
   3228 				l2pte_reset(ptep);
   3229 				PTE_SYNC(ptep);
   3230 				if (pm->pm_remove_all == false) {
   3231 					pmap_tlb_flush_SE(pm, sva, flags);
   3232 				}
   3233 			}
   3234 		}
   3235 
   3236 		/*
   3237 		 * Deal with any left overs
   3238 		 */
   3239 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3240 			total += cleanlist_idx;
   3241 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3242 				vaddr_t va = cleanlist[cnt].va;
   3243 				if (pm->pm_cstate.cs_all != 0) {
   3244 					vaddr_t clva = va & ~PAGE_MASK;
   3245 					u_int flags = va & PVF_EXEC;
   3246 #ifdef PMAP_CACHE_VIVT
   3247 					pmap_cache_wbinv_page(pm, clva, true,
   3248 					    PVF_REF | PVF_WRITE | flags);
   3249 #endif
   3250 					pmap_tlb_flush_SE(pm, clva,
   3251 					    PVF_REF | flags);
   3252 				}
   3253 				l2pte_reset(cleanlist[cnt].ptep);
   3254 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3255 			}
   3256 
   3257 			/*
   3258 			 * If it looks like we're removing a whole bunch
   3259 			 * of mappings, it's faster to just write-back
   3260 			 * the whole cache now and defer TLB flushes until
   3261 			 * pmap_update() is called.
   3262 			 */
   3263 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3264 				cleanlist_idx = 0;
   3265 			else {
   3266 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3267 #ifdef PMAP_CACHE_VIVT
   3268 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3269 #endif
   3270 				pm->pm_remove_all = true;
   3271 			}
   3272 		}
   3273 
   3274 		pmap_free_l2_bucket(pm, l2b, mappings);
   3275 		pm->pm_stats.resident_count -= mappings;
   3276 	}
   3277 
   3278 	pmap_release_pmap_lock(pm);
   3279 }
   3280 
   3281 #ifdef PMAP_CACHE_VIPT
   3282 static struct pv_entry *
   3283 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3284 {
   3285 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3286 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3287 	struct pv_entry *pv;
   3288 
   3289 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3290 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3291 
   3292 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3293 	KASSERT(pv);
   3294 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3295 
   3296 	/*
   3297 	 * If we are removing a writeable mapping to a cached exec page,
   3298 	 * if it's the last mapping then clear it execness other sync
   3299 	 * the page to the icache.
   3300 	 */
   3301 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3302 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3303 		if (SLIST_EMPTY(&md->pvh_list)) {
   3304 			md->pvh_attrs &= ~PVF_EXEC;
   3305 			PMAPCOUNT(exec_discarded_kremove);
   3306 		} else {
   3307 			pmap_syncicache_page(md, pa);
   3308 			PMAPCOUNT(exec_synced_kremove);
   3309 		}
   3310 	}
   3311 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3312 
   3313 	return pv;
   3314 }
   3315 #endif /* PMAP_CACHE_VIPT */
   3316 
   3317 /*
   3318  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3319  *
   3320  * We assume there is already sufficient KVM space available
   3321  * to do this, as we can't allocate L2 descriptor tables/metadata
   3322  * from here.
   3323  */
   3324 void
   3325 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3326 {
   3327 #ifdef PMAP_CACHE_VIVT
   3328 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3329 #endif
   3330 #ifdef PMAP_CACHE_VIPT
   3331 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3332 	struct vm_page *opg;
   3333 	struct pv_entry *pv = NULL;
   3334 #endif
   3335 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3336 
   3337 	NPDEBUG(PDB_KENTER,
   3338 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3339 	    va, pa, prot));
   3340 
   3341 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3342 	KDASSERT(l2b != NULL);
   3343 
   3344 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3345 	const pt_entry_t opte = *ptep;
   3346 
   3347 	if (opte == 0) {
   3348 		PMAPCOUNT(kenter_mappings);
   3349 		l2b->l2b_occupancy++;
   3350 	} else {
   3351 		PMAPCOUNT(kenter_remappings);
   3352 #ifdef PMAP_CACHE_VIPT
   3353 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3354 #ifdef DIAGNOSTIC
   3355 		struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3356 #endif
   3357 		if (opg) {
   3358 			KASSERT(opg != pg);
   3359 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3360 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3361 			pv = pmap_kremove_pg(opg, va);
   3362 		}
   3363 #endif
   3364 		if (l2pte_valid(opte)) {
   3365 #ifdef PMAP_CACHE_VIVT
   3366 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3367 #endif
   3368 			cpu_tlb_flushD_SE(va);
   3369 			cpu_cpwait();
   3370 		}
   3371 	}
   3372 
   3373 	const pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3374 	    | ((flags & PMAP_NOCACHE)
   3375 		? 0
   3376 		: ((flags & PMAP_PTE)
   3377 		    ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
   3378 	l2pte_set(ptep, npte, opte);
   3379 	PTE_SYNC(ptep);
   3380 
   3381 	if (pg) {
   3382 #ifdef MULTIPROCESSOR
   3383 		KASSERT(uvm_page_locked_p(pg));
   3384 #endif
   3385 		if (flags & PMAP_KMPAGE) {
   3386 			KASSERT(md->urw_mappings == 0);
   3387 			KASSERT(md->uro_mappings == 0);
   3388 			KASSERT(md->krw_mappings == 0);
   3389 			KASSERT(md->kro_mappings == 0);
   3390 #ifdef PMAP_CACHE_VIPT
   3391 			KASSERT(pv == NULL);
   3392 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3393 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3394 			/* if there is a color conflict, evict from cache. */
   3395 			if (pmap_is_page_colored_p(md)
   3396 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3397 				PMAPCOUNT(vac_color_change);
   3398 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3399 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3400 				/*
   3401 				 * If this page has multiple colors, expunge
   3402 				 * them.
   3403 				 */
   3404 				PMAPCOUNT(vac_flush_lots2);
   3405 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3406 			}
   3407 			md->pvh_attrs &= PAGE_SIZE - 1;
   3408 			md->pvh_attrs |= PVF_KMPAGE
   3409 			    | PVF_COLORED | PVF_DIRTY
   3410 			    | (va & arm_cache_prefer_mask);
   3411 #endif
   3412 #ifdef PMAP_CACHE_VIVT
   3413 			md->pvh_attrs |= PVF_KMPAGE;
   3414 #endif
   3415 			pmap_kmpages++;
   3416 #ifdef PMAP_CACHE_VIPT
   3417 		} else {
   3418 			if (pv == NULL) {
   3419 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3420 				KASSERT(pv != NULL);
   3421 			}
   3422 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3423 			    PVF_WIRED | PVF_KENTRY
   3424 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3425 			if ((prot & VM_PROT_WRITE)
   3426 			    && !(md->pvh_attrs & PVF_NC))
   3427 				md->pvh_attrs |= PVF_DIRTY;
   3428 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3429 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3430 #endif
   3431 		}
   3432 #ifdef PMAP_CACHE_VIPT
   3433 	} else {
   3434 		if (pv != NULL)
   3435 			pool_put(&pmap_pv_pool, pv);
   3436 #endif
   3437 	}
   3438 }
   3439 
   3440 void
   3441 pmap_kremove(vaddr_t va, vsize_t len)
   3442 {
   3443 	vaddr_t next_bucket, eva;
   3444 	u_int mappings;
   3445 
   3446 	PMAPCOUNT(kenter_unmappings);
   3447 
   3448 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3449 	    va, len));
   3450 
   3451 	eva = va + len;
   3452 
   3453 	while (va < eva) {
   3454 		next_bucket = L2_NEXT_BUCKET(va);
   3455 		if (next_bucket > eva)
   3456 			next_bucket = eva;
   3457 
   3458 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3459 		KDASSERT(l2b != NULL);
   3460 
   3461 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3462 		pt_entry_t *ptep = sptep;
   3463 		mappings = 0;
   3464 
   3465 		while (va < next_bucket) {
   3466 			const pt_entry_t opte = *ptep;
   3467 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3468 			if (opg != NULL) {
   3469 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3470 
   3471 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3472 					KASSERT(omd->urw_mappings == 0);
   3473 					KASSERT(omd->uro_mappings == 0);
   3474 					KASSERT(omd->krw_mappings == 0);
   3475 					KASSERT(omd->kro_mappings == 0);
   3476 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3477 #ifdef PMAP_CACHE_VIPT
   3478 					if (arm_cache_prefer_mask != 0) {
   3479 						omd->pvh_attrs &= ~PVF_WRITE;
   3480 					}
   3481 #endif
   3482 					pmap_kmpages--;
   3483 #ifdef PMAP_CACHE_VIPT
   3484 				} else {
   3485 					pool_put(&pmap_pv_pool,
   3486 					    pmap_kremove_pg(opg, va));
   3487 #endif
   3488 				}
   3489 			}
   3490 			if (l2pte_valid(opte)) {
   3491 #ifdef PMAP_CACHE_VIVT
   3492 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3493 #endif
   3494 				cpu_tlb_flushD_SE(va);
   3495 			}
   3496 			if (opte) {
   3497 				l2pte_reset(ptep);
   3498 				mappings++;
   3499 			}
   3500 			va += PAGE_SIZE;
   3501 			ptep += PAGE_SIZE / L2_S_SIZE;
   3502 		}
   3503 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3504 		l2b->l2b_occupancy -= mappings;
   3505 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3506 	}
   3507 	cpu_cpwait();
   3508 }
   3509 
   3510 bool
   3511 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3512 {
   3513 	struct l2_dtable *l2;
   3514 	pd_entry_t *pl1pd, l1pd;
   3515 	pt_entry_t *ptep, pte;
   3516 	paddr_t pa;
   3517 	u_int l1idx;
   3518 
   3519 	pmap_acquire_pmap_lock(pm);
   3520 
   3521 	l1idx = L1_IDX(va);
   3522 	pl1pd = pmap_l1_kva(pm) + l1idx;
   3523 	l1pd = *pl1pd;
   3524 
   3525 	if (l1pte_section_p(l1pd)) {
   3526 		/*
   3527 		 * These should only happen for pmap_kernel()
   3528 		 */
   3529 		KDASSERT(pm == pmap_kernel());
   3530 		pmap_release_pmap_lock(pm);
   3531 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3532 		if (l1pte_supersection_p(l1pd)) {
   3533 			pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3534 		} else
   3535 #endif
   3536 			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3537 	} else {
   3538 		/*
   3539 		 * Note that we can't rely on the validity of the L1
   3540 		 * descriptor as an indication that a mapping exists.
   3541 		 * We have to look it up in the L2 dtable.
   3542 		 */
   3543 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3544 
   3545 		if (l2 == NULL ||
   3546 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3547 			pmap_release_pmap_lock(pm);
   3548 			return false;
   3549 		}
   3550 
   3551 		ptep = &ptep[l2pte_index(va)];
   3552 		pte = *ptep;
   3553 		pmap_release_pmap_lock(pm);
   3554 
   3555 		if (pte == 0)
   3556 			return false;
   3557 
   3558 		switch (pte & L2_TYPE_MASK) {
   3559 		case L2_TYPE_L:
   3560 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3561 			break;
   3562 
   3563 		default:
   3564 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3565 			break;
   3566 		}
   3567 	}
   3568 
   3569 	if (pap != NULL)
   3570 		*pap = pa;
   3571 
   3572 	return true;
   3573 }
   3574 
   3575 void
   3576 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3577 {
   3578 	struct l2_bucket *l2b;
   3579 	pt_entry_t *ptep, pte;
   3580 	vaddr_t next_bucket;
   3581 
   3582 	NPDEBUG(PDB_PROTECT,
   3583 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3584 	    pm, sva, eva, prot));
   3585 
   3586 	if ((prot & VM_PROT_READ) == 0) {
   3587 		pmap_remove(pm, sva, eva);
   3588 		return;
   3589 	}
   3590 
   3591 	if (prot & VM_PROT_WRITE) {
   3592 		/*
   3593 		 * If this is a read->write transition, just ignore it and let
   3594 		 * uvm_fault() take care of it later.
   3595 		 */
   3596 		return;
   3597 	}
   3598 
   3599 	pmap_acquire_pmap_lock(pm);
   3600 
   3601 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   3602 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3603 	u_int flags = 0;
   3604 
   3605 	while (sva < eva) {
   3606 		next_bucket = L2_NEXT_BUCKET(sva);
   3607 		if (next_bucket > eva)
   3608 			next_bucket = eva;
   3609 
   3610 		l2b = pmap_get_l2_bucket(pm, sva);
   3611 		if (l2b == NULL) {
   3612 			sva = next_bucket;
   3613 			continue;
   3614 		}
   3615 
   3616 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3617 
   3618 		while (sva < next_bucket) {
   3619 			pte = *ptep;
   3620 			if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
   3621 				struct vm_page *pg;
   3622 				u_int f;
   3623 
   3624 #ifdef PMAP_CACHE_VIVT
   3625 				/*
   3626 				 * OK, at this point, we know we're doing
   3627 				 * write-protect operation.  If the pmap is
   3628 				 * active, write-back the page.
   3629 				 */
   3630 				pmap_cache_wbinv_page(pm, sva, false,
   3631 				    PVF_REF | PVF_WRITE);
   3632 #endif
   3633 
   3634 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3635 				pte = l2pte_set_readonly(pte);
   3636 				*ptep = pte;
   3637 				PTE_SYNC(ptep);
   3638 
   3639 				if (pg != NULL) {
   3640 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3641 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3642 
   3643 #ifdef MULTIPROCESSOR
   3644 					KASSERT(uvm_page_locked_p(pg));
   3645 #endif
   3646 					f = pmap_modify_pv(md, pa, pm, sva,
   3647 					    clr_mask, 0);
   3648 					pmap_vac_me_harder(md, pa, pm, sva);
   3649 				} else {
   3650 					f = PVF_REF | PVF_EXEC;
   3651 				}
   3652 
   3653 				if (flush) {
   3654 					flags |= f;
   3655 				} else {
   3656 					pmap_tlb_flush_SE(pm, sva, f);
   3657 				}
   3658 			}
   3659 
   3660 			sva += PAGE_SIZE;
   3661 			ptep++;
   3662 		}
   3663 	}
   3664 
   3665 	if (flush) {
   3666 		if (PV_BEEN_EXECD(flags)) {
   3667 			pmap_tlb_flushID(pm);
   3668 		} else if (PV_BEEN_REFD(flags)) {
   3669 			pmap_tlb_flushD(pm);
   3670 		}
   3671 	}
   3672 
   3673 	pmap_release_pmap_lock(pm);
   3674 }
   3675 
   3676 void
   3677 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3678 {
   3679 	struct l2_bucket *l2b;
   3680 	pt_entry_t *ptep;
   3681 	vaddr_t next_bucket;
   3682 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3683 
   3684 	NPDEBUG(PDB_EXEC,
   3685 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3686 	    pm, sva, eva));
   3687 
   3688 	pmap_acquire_pmap_lock(pm);
   3689 
   3690 	while (sva < eva) {
   3691 		next_bucket = L2_NEXT_BUCKET(sva);
   3692 		if (next_bucket > eva)
   3693 			next_bucket = eva;
   3694 
   3695 		l2b = pmap_get_l2_bucket(pm, sva);
   3696 		if (l2b == NULL) {
   3697 			sva = next_bucket;
   3698 			continue;
   3699 		}
   3700 
   3701 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3702 		     sva < next_bucket;
   3703 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3704 			if (l2pte_valid(*ptep)) {
   3705 				cpu_icache_sync_range(sva,
   3706 				    min(page_size, eva - sva));
   3707 			}
   3708 		}
   3709 	}
   3710 
   3711 	pmap_release_pmap_lock(pm);
   3712 }
   3713 
   3714 void
   3715 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3716 {
   3717 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3718 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3719 
   3720 	NPDEBUG(PDB_PROTECT,
   3721 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   3722 	    md, pa, prot));
   3723 
   3724 #ifdef MULTIPROCESSOR
   3725 	KASSERT(uvm_page_locked_p(pg));
   3726 #endif
   3727 
   3728 	switch(prot) {
   3729 	case VM_PROT_READ|VM_PROT_WRITE:
   3730 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3731 		pmap_clearbit(md, pa, PVF_EXEC);
   3732 		break;
   3733 #endif
   3734 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3735 		break;
   3736 
   3737 	case VM_PROT_READ:
   3738 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3739 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   3740 		break;
   3741 #endif
   3742 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3743 		pmap_clearbit(md, pa, PVF_WRITE);
   3744 		break;
   3745 
   3746 	default:
   3747 		pmap_page_remove(md, pa);
   3748 		break;
   3749 	}
   3750 }
   3751 
   3752 /*
   3753  * pmap_clear_modify:
   3754  *
   3755  *	Clear the "modified" attribute for a page.
   3756  */
   3757 bool
   3758 pmap_clear_modify(struct vm_page *pg)
   3759 {
   3760 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3761 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3762 	bool rv;
   3763 
   3764 #ifdef MULTIPROCESSOR
   3765 	KASSERT(uvm_page_locked_p(pg));
   3766 #endif
   3767 
   3768 	if (md->pvh_attrs & PVF_MOD) {
   3769 		rv = true;
   3770 #ifdef PMAP_CACHE_VIPT
   3771 		/*
   3772 		 * If we are going to clear the modified bit and there are
   3773 		 * no other modified bits set, flush the page to memory and
   3774 		 * mark it clean.
   3775 		 */
   3776 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   3777 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   3778 #endif
   3779 		pmap_clearbit(md, pa, PVF_MOD);
   3780 	} else
   3781 		rv = false;
   3782 
   3783 	return (rv);
   3784 }
   3785 
   3786 /*
   3787  * pmap_clear_reference:
   3788  *
   3789  *	Clear the "referenced" attribute for a page.
   3790  */
   3791 bool
   3792 pmap_clear_reference(struct vm_page *pg)
   3793 {
   3794 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3795 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3796 	bool rv;
   3797 
   3798 #ifdef MULTIPROCESSOR
   3799 	KASSERT(uvm_page_locked_p(pg));
   3800 #endif
   3801 
   3802 	if (md->pvh_attrs & PVF_REF) {
   3803 		rv = true;
   3804 		pmap_clearbit(md, pa, PVF_REF);
   3805 	} else
   3806 		rv = false;
   3807 
   3808 	return (rv);
   3809 }
   3810 
   3811 /*
   3812  * pmap_is_modified:
   3813  *
   3814  *	Test if a page has the "modified" attribute.
   3815  */
   3816 /* See <arm/arm32/pmap.h> */
   3817 
   3818 /*
   3819  * pmap_is_referenced:
   3820  *
   3821  *	Test if a page has the "referenced" attribute.
   3822  */
   3823 /* See <arm/arm32/pmap.h> */
   3824 
   3825 int
   3826 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3827 {
   3828 	struct l2_dtable *l2;
   3829 	struct l2_bucket *l2b;
   3830 	pd_entry_t *pl1pd, l1pd;
   3831 	pt_entry_t *ptep, pte;
   3832 	paddr_t pa;
   3833 	u_int l1idx;
   3834 	int rv = 0;
   3835 
   3836 	pmap_acquire_pmap_lock(pm);
   3837 
   3838 	l1idx = L1_IDX(va);
   3839 
   3840 	/*
   3841 	 * If there is no l2_dtable for this address, then the process
   3842 	 * has no business accessing it.
   3843 	 *
   3844 	 * Note: This will catch userland processes trying to access
   3845 	 * kernel addresses.
   3846 	 */
   3847 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3848 	if (l2 == NULL)
   3849 		goto out;
   3850 
   3851 	/*
   3852 	 * Likewise if there is no L2 descriptor table
   3853 	 */
   3854 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3855 	if (l2b->l2b_kva == NULL)
   3856 		goto out;
   3857 
   3858 	/*
   3859 	 * Check the PTE itself.
   3860 	 */
   3861 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3862 	pte = *ptep;
   3863 	if (pte == 0)
   3864 		goto out;
   3865 
   3866 	/*
   3867 	 * Catch a userland access to the vector page mapped at 0x0
   3868 	 */
   3869 	if (user && (pte & L2_S_PROT_U) == 0)
   3870 		goto out;
   3871 
   3872 	pa = l2pte_pa(pte);
   3873 
   3874 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
   3875 		/*
   3876 		 * This looks like a good candidate for "page modified"
   3877 		 * emulation...
   3878 		 */
   3879 		struct pv_entry *pv;
   3880 		struct vm_page *pg;
   3881 
   3882 		/* Extract the physical address of the page */
   3883 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3884 			goto out;
   3885 
   3886 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3887 
   3888 		/* Get the current flags for this page. */
   3889 #ifdef MULTIPROCESSOR
   3890 		KASSERT(uvm_page_locked_p(pg));
   3891 #endif
   3892 
   3893 		pv = pmap_find_pv(md, pm, va);
   3894 		if (pv == NULL) {
   3895 			goto out;
   3896 		}
   3897 
   3898 		/*
   3899 		 * Do the flags say this page is writable? If not then it
   3900 		 * is a genuine write fault. If yes then the write fault is
   3901 		 * our fault as we did not reflect the write access in the
   3902 		 * PTE. Now we know a write has occurred we can correct this
   3903 		 * and also set the modified bit
   3904 		 */
   3905 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3906 			goto out;
   3907 		}
   3908 
   3909 		NPDEBUG(PDB_FOLLOW,
   3910 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3911 		    pm, va, pa));
   3912 
   3913 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   3914 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3915 #ifdef PMAP_CACHE_VIPT
   3916 		/*
   3917 		 * If there are cacheable mappings for this page, mark it dirty.
   3918 		 */
   3919 		if ((md->pvh_attrs & PVF_NC) == 0)
   3920 			md->pvh_attrs |= PVF_DIRTY;
   3921 #endif
   3922 
   3923 		/*
   3924 		 * Re-enable write permissions for the page.  No need to call
   3925 		 * pmap_vac_me_harder(), since this is just a
   3926 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3927 		 * changing. We've already set the cacheable bits based on
   3928 		 * the assumption that we can write to this page.
   3929 		 */
   3930 		*ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3931 		PTE_SYNC(ptep);
   3932 		rv = 1;
   3933 	} else
   3934 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3935 		/*
   3936 		 * This looks like a good candidate for "page referenced"
   3937 		 * emulation.
   3938 		 */
   3939 		struct pv_entry *pv;
   3940 		struct vm_page *pg;
   3941 
   3942 		/* Extract the physical address of the page */
   3943 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3944 			goto out;
   3945 
   3946 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3947 
   3948 		/* Get the current flags for this page. */
   3949 #ifdef MULTIPROCESSOR
   3950 		KASSERT(uvm_page_locked_p(pg));
   3951 #endif
   3952 
   3953 		pv = pmap_find_pv(md, pm, va);
   3954 		if (pv == NULL) {
   3955 			goto out;
   3956 		}
   3957 
   3958 		md->pvh_attrs |= PVF_REF;
   3959 		pv->pv_flags |= PVF_REF;
   3960 
   3961 		NPDEBUG(PDB_FOLLOW,
   3962 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3963 		    pm, va, pa));
   3964 
   3965 		*ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3966 		PTE_SYNC(ptep);
   3967 		rv = 1;
   3968 	}
   3969 
   3970 	/*
   3971 	 * We know there is a valid mapping here, so simply
   3972 	 * fix up the L1 if necessary.
   3973 	 */
   3974 	pl1pd = pmap_l1_kva(pm) + l1idx;
   3975 	l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) | L1_C_PROTO;
   3976 	if (*pl1pd != l1pd) {
   3977 		*pl1pd = l1pd;
   3978 		PTE_SYNC(pl1pd);
   3979 		rv = 1;
   3980 	}
   3981 
   3982 #ifdef CPU_SA110
   3983 	/*
   3984 	 * There are bugs in the rev K SA110.  This is a check for one
   3985 	 * of them.
   3986 	 */
   3987 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3988 	    curcpu()->ci_arm_cpurev < 3) {
   3989 		/* Always current pmap */
   3990 		if (l2pte_valid(pte)) {
   3991 			extern int kernel_debug;
   3992 			if (kernel_debug & 1) {
   3993 				struct proc *p = curlwp->l_proc;
   3994 				printf("prefetch_abort: page is already "
   3995 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3996 				printf("prefetch_abort: pc=%08lx proc=%p "
   3997 				    "process=%s\n", va, p, p->p_comm);
   3998 				printf("prefetch_abort: far=%08x fs=%x\n",
   3999 				    cpu_faultaddress(), cpu_faultstatus());
   4000 			}
   4001 #ifdef DDB
   4002 			if (kernel_debug & 2)
   4003 				Debugger();
   4004 #endif
   4005 			rv = 1;
   4006 		}
   4007 	}
   4008 #endif /* CPU_SA110 */
   4009 
   4010 	/*
   4011 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4012 	 * stale TLB entry for the faulting address.  That might be due to a
   4013 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4014 	 */
   4015 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
   4016 	    && pmap_needs_pte_sync == 0) {
   4017 		pmap_needs_pte_sync = 1;
   4018 		PTE_SYNC(ptep);
   4019 		rv = 1;
   4020 	}
   4021 
   4022 #ifdef DEBUG
   4023 	/*
   4024 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4025 	 * stale TLB entry for the faulting address. This happens when two or
   4026 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4027 	 * a context switch between such processes, we can take domain faults
   4028 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4029 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4030 	 * example.
   4031 	 *
   4032 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4033 	 * entry for a recently entered mapping. In this case, the TLB is
   4034 	 * flushed for the new mapping, but there may still be TLB entries for
   4035 	 * other mappings belonging to other processes in the 1MB range
   4036 	 * covered by the L1 entry.
   4037 	 *
   4038 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4039 	 * value, so the fault must be due to a stale TLB entry.
   4040 	 *
   4041 	 * Since we always need to flush the TLB anyway in the case where we
   4042 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4043 	 * stale TLB entries dynamically.
   4044 	 *
   4045 	 * However, the above condition can ONLY happen if the current L1 is
   4046 	 * being shared. If it happens when the L1 is unshared, it indicates
   4047 	 * that other parts of the pmap are not doing their job WRT managing
   4048 	 * the TLB.
   4049 	 */
   4050 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   4051 		extern int last_fault_code;
   4052 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4053 		    pm, va, ftype);
   4054 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   4055 		    l2, l2b, ptep, pl1pd);
   4056 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   4057 		    pte, l1pd, last_fault_code);
   4058 #ifdef DDB
   4059 		extern int kernel_debug;
   4060 
   4061 		if (kernel_debug & 2)
   4062 			Debugger();
   4063 #endif
   4064 	}
   4065 #endif
   4066 
   4067 	cpu_tlb_flushID_SE(va);
   4068 	cpu_cpwait();
   4069 
   4070 	rv = 1;
   4071 
   4072 out:
   4073 	pmap_release_pmap_lock(pm);
   4074 
   4075 	return (rv);
   4076 }
   4077 
   4078 /*
   4079  * Routine:	pmap_procwr
   4080  *
   4081  * Function:
   4082  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4083  *
   4084  */
   4085 void
   4086 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4087 {
   4088 	/* We only need to do anything if it is the current process. */
   4089 	if (p == curproc)
   4090 		cpu_icache_sync_range(va, len);
   4091 }
   4092 
   4093 /*
   4094  * Routine:	pmap_unwire
   4095  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4096  *
   4097  * In/out conditions:
   4098  *		The mapping must already exist in the pmap.
   4099  */
   4100 void
   4101 pmap_unwire(pmap_t pm, vaddr_t va)
   4102 {
   4103 	struct l2_bucket *l2b;
   4104 	pt_entry_t *ptep, pte;
   4105 	struct vm_page *pg;
   4106 	paddr_t pa;
   4107 
   4108 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4109 
   4110 	pmap_acquire_pmap_lock(pm);
   4111 
   4112 	l2b = pmap_get_l2_bucket(pm, va);
   4113 	KDASSERT(l2b != NULL);
   4114 
   4115 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4116 	pte = *ptep;
   4117 
   4118 	/* Extract the physical address of the page */
   4119 	pa = l2pte_pa(pte);
   4120 
   4121 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4122 		/* Update the wired bit in the pv entry for this page. */
   4123 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4124 
   4125 #ifdef MULTIPROCESSOR
   4126 		KASSERT(uvm_page_locked_p(pg));
   4127 #endif
   4128 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4129 	}
   4130 
   4131 	pmap_release_pmap_lock(pm);
   4132 }
   4133 
   4134 void
   4135 pmap_activate(struct lwp *l)
   4136 {
   4137 	extern int block_userspace_access;
   4138 	pmap_t opm, npm, rpm;
   4139 	uint32_t odacr, ndacr;
   4140 	int oldirqstate;
   4141 
   4142 	/*
   4143 	 * If activating a non-current lwp or the current lwp is
   4144 	 * already active, just return.
   4145 	 */
   4146 	if (l != curlwp ||
   4147 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4148 		return;
   4149 
   4150 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4151 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4152 	    (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4153 
   4154 	/*
   4155 	 * If TTB and DACR are unchanged, short-circuit all the
   4156 	 * TLB/cache management stuff.
   4157 	 */
   4158 	if (pmap_previous_active_lwp != NULL) {
   4159 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4160 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4161 		    (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4162 
   4163 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4164 			goto all_done;
   4165 	} else
   4166 		opm = NULL;
   4167 
   4168 	PMAPCOUNT(activations);
   4169 	block_userspace_access = 1;
   4170 
   4171 	/*
   4172 	 * If switching to a user vmspace which is different to the
   4173 	 * most recent one, and the most recent one is potentially
   4174 	 * live in the cache, we must write-back and invalidate the
   4175 	 * entire cache.
   4176 	 */
   4177 	rpm = pmap_recent_user;
   4178 
   4179 /*
   4180  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4181  * reported in kern/41058. They're probably left over during tear-down and
   4182  * switching away from an exiting process. Until the root cause is identified
   4183  * and fixed, zap the cache when switching pmaps. This will result in a few
   4184  * unnecessary cache flushes, but that's better than silently corrupting data.
   4185  */
   4186 #if 0
   4187 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4188 	    rpm->pm_cstate.cs_cache) {
   4189 		rpm->pm_cstate.cs_cache = 0;
   4190 #ifdef PMAP_CACHE_VIVT
   4191 		cpu_idcache_wbinv_all();
   4192 #endif
   4193 	}
   4194 #else
   4195 	if (rpm) {
   4196 		rpm->pm_cstate.cs_cache = 0;
   4197 		if (npm == pmap_kernel())
   4198 			pmap_recent_user = NULL;
   4199 #ifdef PMAP_CACHE_VIVT
   4200 		cpu_idcache_wbinv_all();
   4201 #endif
   4202 	}
   4203 #endif
   4204 
   4205 	/* No interrupts while we frob the TTB/DACR */
   4206 	oldirqstate = disable_interrupts(IF32_bits);
   4207 
   4208 #ifndef ARM_HAS_VBAR
   4209 	/*
   4210 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4211 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4212 	 * before switching to it otherwise subsequent interrupts/exceptions
   4213 	 * (including domain faults!) will jump into hyperspace.
   4214 	 */
   4215 	if (npm->pm_pl1vec != NULL) {
   4216 		cpu_tlb_flushID_SE((u_int)vector_page);
   4217 		cpu_cpwait();
   4218 		*npm->pm_pl1vec = npm->pm_l1vec;
   4219 		PTE_SYNC(npm->pm_pl1vec);
   4220 	}
   4221 #endif
   4222 
   4223 	cpu_domains(ndacr);
   4224 
   4225 	if (npm == pmap_kernel() || npm == rpm) {
   4226 		/*
   4227 		 * Switching to a kernel thread, or back to the
   4228 		 * same user vmspace as before... Simply update
   4229 		 * the TTB (no TLB flush required)
   4230 		 */
   4231 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4232 		cpu_cpwait();
   4233 	} else {
   4234 		/*
   4235 		 * Otherwise, update TTB and flush TLB
   4236 		 */
   4237 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4238 		if (rpm != NULL)
   4239 			rpm->pm_cstate.cs_tlb = 0;
   4240 	}
   4241 
   4242 	restore_interrupts(oldirqstate);
   4243 
   4244 	block_userspace_access = 0;
   4245 
   4246  all_done:
   4247 	/*
   4248 	 * The new pmap is resident. Make sure it's marked
   4249 	 * as resident in the cache/TLB.
   4250 	 */
   4251 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4252 	if (npm != pmap_kernel())
   4253 		pmap_recent_user = npm;
   4254 
   4255 	/* The old pmap is not longer active */
   4256 	if (opm != NULL)
   4257 		opm->pm_activated = false;
   4258 
   4259 	/* But the new one is */
   4260 	npm->pm_activated = true;
   4261 }
   4262 
   4263 void
   4264 pmap_deactivate(struct lwp *l)
   4265 {
   4266 
   4267 	/*
   4268 	 * If the process is exiting, make sure pmap_activate() does
   4269 	 * a full MMU context-switch and cache flush, which we might
   4270 	 * otherwise skip. See PR port-arm/38950.
   4271 	 */
   4272 	if (l->l_proc->p_sflag & PS_WEXIT)
   4273 		pmap_previous_active_lwp = NULL;
   4274 
   4275 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4276 }
   4277 
   4278 void
   4279 pmap_update(pmap_t pm)
   4280 {
   4281 
   4282 	if (pm->pm_remove_all) {
   4283 		/*
   4284 		 * Finish up the pmap_remove_all() optimisation by flushing
   4285 		 * the TLB.
   4286 		 */
   4287 		pmap_tlb_flushID(pm);
   4288 		pm->pm_remove_all = false;
   4289 	}
   4290 
   4291 	if (pmap_is_current(pm)) {
   4292 		/*
   4293 		 * If we're dealing with a current userland pmap, move its L1
   4294 		 * to the end of the LRU.
   4295 		 */
   4296 		if (pm != pmap_kernel())
   4297 			pmap_use_l1(pm);
   4298 
   4299 		/*
   4300 		 * We can assume we're done with frobbing the cache/tlb for
   4301 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4302 		 * flushes.
   4303 		 */
   4304 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4305 	}
   4306 
   4307 	PMAPCOUNT(updates);
   4308 
   4309 	/*
   4310 	 * make sure TLB/cache operations have completed.
   4311 	 */
   4312 	cpu_cpwait();
   4313 }
   4314 
   4315 void
   4316 pmap_remove_all(pmap_t pm)
   4317 {
   4318 
   4319 	/*
   4320 	 * The vmspace described by this pmap is about to be torn down.
   4321 	 * Until pmap_update() is called, UVM will only make calls
   4322 	 * to pmap_remove(). We can make life much simpler by flushing
   4323 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4324 	 */
   4325 #ifdef PMAP_CACHE_VIVT
   4326 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   4327 #endif
   4328 	pm->pm_remove_all = true;
   4329 }
   4330 
   4331 /*
   4332  * Retire the given physical map from service.
   4333  * Should only be called if the map contains no valid mappings.
   4334  */
   4335 void
   4336 pmap_destroy(pmap_t pm)
   4337 {
   4338 	u_int count;
   4339 
   4340 	if (pm == NULL)
   4341 		return;
   4342 
   4343 	if (pm->pm_remove_all) {
   4344 		pmap_tlb_flushID(pm);
   4345 		pm->pm_remove_all = false;
   4346 	}
   4347 
   4348 	/*
   4349 	 * Drop reference count
   4350 	 */
   4351 	mutex_enter(pm->pm_lock);
   4352 	count = --pm->pm_obj.uo_refs;
   4353 	mutex_exit(pm->pm_lock);
   4354 	if (count > 0) {
   4355 		if (pmap_is_current(pm)) {
   4356 			if (pm != pmap_kernel())
   4357 				pmap_use_l1(pm);
   4358 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4359 		}
   4360 		return;
   4361 	}
   4362 
   4363 	/*
   4364 	 * reference count is zero, free pmap resources and then free pmap.
   4365 	 */
   4366 
   4367 #ifndef ARM_HAS_VBAR
   4368 	if (vector_page < KERNEL_BASE) {
   4369 		KDASSERT(!pmap_is_current(pm));
   4370 
   4371 		/* Remove the vector page mapping */
   4372 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4373 		pmap_update(pm);
   4374 	}
   4375 #endif
   4376 
   4377 	LIST_REMOVE(pm, pm_list);
   4378 
   4379 	pmap_free_l1(pm);
   4380 
   4381 	if (pmap_recent_user == pm)
   4382 		pmap_recent_user = NULL;
   4383 
   4384 	uvm_obj_destroy(&pm->pm_obj, false);
   4385 	mutex_destroy(&pm->pm_obj_lock);
   4386 	pool_cache_put(&pmap_cache, pm);
   4387 }
   4388 
   4389 
   4390 /*
   4391  * void pmap_reference(pmap_t pm)
   4392  *
   4393  * Add a reference to the specified pmap.
   4394  */
   4395 void
   4396 pmap_reference(pmap_t pm)
   4397 {
   4398 
   4399 	if (pm == NULL)
   4400 		return;
   4401 
   4402 	pmap_use_l1(pm);
   4403 
   4404 	mutex_enter(pm->pm_lock);
   4405 	pm->pm_obj.uo_refs++;
   4406 	mutex_exit(pm->pm_lock);
   4407 }
   4408 
   4409 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   4410 
   4411 static struct evcnt pmap_prefer_nochange_ev =
   4412     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4413 static struct evcnt pmap_prefer_change_ev =
   4414     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4415 
   4416 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4417 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4418 
   4419 void
   4420 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4421 {
   4422 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4423 	vaddr_t va = *vap;
   4424 	vaddr_t diff = (hint - va) & mask;
   4425 	if (diff == 0) {
   4426 		pmap_prefer_nochange_ev.ev_count++;
   4427 	} else {
   4428 		pmap_prefer_change_ev.ev_count++;
   4429 		if (__predict_false(td))
   4430 			va -= mask + 1;
   4431 		*vap = va + diff;
   4432 	}
   4433 }
   4434 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   4435 
   4436 /*
   4437  * pmap_zero_page()
   4438  *
   4439  * Zero a given physical page by mapping it at a page hook point.
   4440  * In doing the zero page op, the page we zero is mapped cachable, as with
   4441  * StrongARM accesses to non-cached pages are non-burst making writing
   4442  * _any_ bulk data very slow.
   4443  */
   4444 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4445 void
   4446 pmap_zero_page_generic(paddr_t phys)
   4447 {
   4448 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4449 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4450 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4451 #endif
   4452 #if defined(PMAP_CACHE_VIPT)
   4453 	/* Choose the last page color it had, if any */
   4454 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4455 #else
   4456 	const vsize_t va_offset = 0;
   4457 #endif
   4458 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   4459 	/*
   4460 	 * Is this page mapped at its natural color?
   4461 	 * If we have all of memory mapped, then just convert PA to VA.
   4462 	 */
   4463 	const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
   4464 	const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
   4465 #else
   4466 	const bool okcolor = false;
   4467 	const vaddr_t vdstp = cdstp + va_offset;
   4468 #endif
   4469 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4470 
   4471 
   4472 #ifdef DEBUG
   4473 	if (!SLIST_EMPTY(&md->pvh_list))
   4474 		panic("pmap_zero_page: page has mappings");
   4475 #endif
   4476 
   4477 	KDASSERT((phys & PGOFSET) == 0);
   4478 
   4479 	if (!okcolor) {
   4480 		/*
   4481 		 * Hook in the page, zero it, and purge the cache for that
   4482 		 * zeroed page. Invalidate the TLB as needed.
   4483 		 */
   4484 		*ptep = L2_S_PROTO | phys |
   4485 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4486 		PTE_SYNC(ptep);
   4487 		cpu_tlb_flushD_SE(cdstp + va_offset);
   4488 		cpu_cpwait();
   4489 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   4490 		/*
   4491 		 * If we are direct-mapped and our color isn't ok, then before
   4492 		 * we bzero the page invalidate its contents from the cache and
   4493 		 * reset the color to its natural color.
   4494 		 */
   4495 		cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
   4496 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   4497 		md->pvh_attrs |= (phys & arm_cache_prefer_mask);
   4498 #endif
   4499 	}
   4500 	bzero_page(vdstp);
   4501 	if (!okcolor) {
   4502 		/*
   4503 		 * Unmap the page.
   4504 		 */
   4505 		*ptep = 0;
   4506 		PTE_SYNC(ptep);
   4507 		cpu_tlb_flushD_SE(cdstp + va_offset);
   4508 #ifdef PMAP_CACHE_VIVT
   4509 		cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4510 #endif
   4511 	}
   4512 #ifdef PMAP_CACHE_VIPT
   4513 	/*
   4514 	 * This page is now cache resident so it now has a page color.
   4515 	 * Any contents have been obliterated so clear the EXEC flag.
   4516 	 */
   4517 	if (!pmap_is_page_colored_p(md)) {
   4518 		PMAPCOUNT(vac_color_new);
   4519 		md->pvh_attrs |= PVF_COLORED;
   4520 	}
   4521 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4522 		md->pvh_attrs &= ~PVF_EXEC;
   4523 		PMAPCOUNT(exec_discarded_zero);
   4524 	}
   4525 	md->pvh_attrs |= PVF_DIRTY;
   4526 #endif
   4527 }
   4528 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4529 
   4530 #if ARM_MMU_XSCALE == 1
   4531 void
   4532 pmap_zero_page_xscale(paddr_t phys)
   4533 {
   4534 #ifdef DEBUG
   4535 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4536 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4537 
   4538 	if (!SLIST_EMPTY(&md->pvh_list))
   4539 		panic("pmap_zero_page: page has mappings");
   4540 #endif
   4541 
   4542 	KDASSERT((phys & PGOFSET) == 0);
   4543 
   4544 	/*
   4545 	 * Hook in the page, zero it, and purge the cache for that
   4546 	 * zeroed page. Invalidate the TLB as needed.
   4547 	 */
   4548 	*cdst_pte = L2_S_PROTO | phys |
   4549 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4550 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4551 	PTE_SYNC(cdst_pte);
   4552 	cpu_tlb_flushD_SE(cdstp);
   4553 	cpu_cpwait();
   4554 	bzero_page(cdstp);
   4555 	xscale_cache_clean_minidata();
   4556 }
   4557 #endif /* ARM_MMU_XSCALE == 1 */
   4558 
   4559 /* pmap_pageidlezero()
   4560  *
   4561  * The same as above, except that we assume that the page is not
   4562  * mapped.  This means we never have to flush the cache first.  Called
   4563  * from the idle loop.
   4564  */
   4565 bool
   4566 pmap_pageidlezero(paddr_t phys)
   4567 {
   4568 	unsigned int i;
   4569 	int *ptr;
   4570 	bool rv = true;
   4571 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4572 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4573 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4574 #endif
   4575 #ifdef PMAP_CACHE_VIPT
   4576 	/* Choose the last page color it had, if any */
   4577 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4578 #else
   4579 	const vsize_t va_offset = 0;
   4580 #endif
   4581 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4582 
   4583 
   4584 #ifdef DEBUG
   4585 	if (!SLIST_EMPTY(&md->pvh_list))
   4586 		panic("pmap_pageidlezero: page has mappings");
   4587 #endif
   4588 
   4589 	KDASSERT((phys & PGOFSET) == 0);
   4590 
   4591 	/*
   4592 	 * Hook in the page, zero it, and purge the cache for that
   4593 	 * zeroed page. Invalidate the TLB as needed.
   4594 	 */
   4595 	*ptep = L2_S_PROTO | phys |
   4596 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4597 	PTE_SYNC(ptep);
   4598 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4599 	cpu_cpwait();
   4600 
   4601 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4602 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4603 		if (sched_curcpu_runnable_p() != 0) {
   4604 			/*
   4605 			 * A process has become ready.  Abort now,
   4606 			 * so we don't keep it waiting while we
   4607 			 * do slow memory access to finish this
   4608 			 * page.
   4609 			 */
   4610 			rv = false;
   4611 			break;
   4612 		}
   4613 		*ptr++ = 0;
   4614 	}
   4615 
   4616 #ifdef PMAP_CACHE_VIVT
   4617 	if (rv)
   4618 		/*
   4619 		 * if we aborted we'll rezero this page again later so don't
   4620 		 * purge it unless we finished it
   4621 		 */
   4622 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4623 #elif defined(PMAP_CACHE_VIPT)
   4624 	/*
   4625 	 * This page is now cache resident so it now has a page color.
   4626 	 * Any contents have been obliterated so clear the EXEC flag.
   4627 	 */
   4628 	if (!pmap_is_page_colored_p(md)) {
   4629 		PMAPCOUNT(vac_color_new);
   4630 		md->pvh_attrs |= PVF_COLORED;
   4631 	}
   4632 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4633 		md->pvh_attrs &= ~PVF_EXEC;
   4634 		PMAPCOUNT(exec_discarded_zero);
   4635 	}
   4636 #endif
   4637 	/*
   4638 	 * Unmap the page.
   4639 	 */
   4640 	*ptep = 0;
   4641 	PTE_SYNC(ptep);
   4642 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4643 
   4644 	return (rv);
   4645 }
   4646 
   4647 /*
   4648  * pmap_copy_page()
   4649  *
   4650  * Copy one physical page into another, by mapping the pages into
   4651  * hook points. The same comment regarding cachability as in
   4652  * pmap_zero_page also applies here.
   4653  */
   4654 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4655 void
   4656 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4657 {
   4658 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4659 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4660 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4661 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4662 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   4663 #endif
   4664 #ifdef PMAP_CACHE_VIPT
   4665 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   4666 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   4667 #else
   4668 	const vsize_t src_va_offset = 0;
   4669 	const vsize_t dst_va_offset = 0;
   4670 #endif
   4671 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   4672 	/*
   4673 	 * Is this page mapped at its natural color?
   4674 	 * If we have all of memory mapped, then just convert PA to VA.
   4675 	 */
   4676 	const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
   4677 	const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
   4678 	const vaddr_t vsrcp = src_okcolor
   4679 	    ? KERNEL_BASE + (src - physical_start)
   4680 	    : csrcp + src_va_offset;
   4681 	const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
   4682 #else
   4683 	const bool src_okcolor = false;
   4684 	const bool dst_okcolor = false;
   4685 	const vaddr_t vsrcp = csrcp + src_va_offset;
   4686 	const vaddr_t vdstp = cdstp + dst_va_offset;
   4687 #endif
   4688 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4689 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4690 
   4691 #ifdef DEBUG
   4692 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4693 		panic("pmap_copy_page: dst page has mappings");
   4694 #endif
   4695 
   4696 #ifdef PMAP_CACHE_VIPT
   4697 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   4698 #endif
   4699 	KDASSERT((src & PGOFSET) == 0);
   4700 	KDASSERT((dst & PGOFSET) == 0);
   4701 
   4702 	/*
   4703 	 * Clean the source page.  Hold the source page's lock for
   4704 	 * the duration of the copy so that no other mappings can
   4705 	 * be created while we have a potentially aliased mapping.
   4706 	 */
   4707 #ifdef MULTIPROCESSOR
   4708 	KASSERT(uvm_page_locked_p(src_pg));
   4709 #endif
   4710 #ifdef PMAP_CACHE_VIVT
   4711 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4712 #endif
   4713 
   4714 	/*
   4715 	 * Map the pages into the page hook points, copy them, and purge
   4716 	 * the cache for the appropriate page. Invalidate the TLB
   4717 	 * as required.
   4718 	 */
   4719 	if (!src_okcolor) {
   4720 		*src_ptep = L2_S_PROTO
   4721 		    | src
   4722 #ifdef PMAP_CACHE_VIPT
   4723 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4724 #endif
   4725 #ifdef PMAP_CACHE_VIVT
   4726 		    | pte_l2_s_cache_mode
   4727 #endif
   4728 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4729 		PTE_SYNC(src_ptep);
   4730 		cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4731 		cpu_cpwait();
   4732 	}
   4733 	if (!dst_okcolor) {
   4734 		*dst_ptep = L2_S_PROTO | dst |
   4735 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4736 		PTE_SYNC(dst_ptep);
   4737 		cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4738 		cpu_cpwait();
   4739 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   4740 		/*
   4741 		 * If we are direct-mapped and our color isn't ok, then before
   4742 		 * we bcopy to the new page invalidate its contents from the
   4743 		 * cache and reset its color to its natural color.
   4744 		 */
   4745 		cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4746 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   4747 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   4748 #endif
   4749 	}
   4750 	bcopy_page(vsrcp, vdstp);
   4751 #ifdef PMAP_CACHE_VIVT
   4752 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   4753 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   4754 #endif
   4755 	/*
   4756 	 * Unmap the pages.
   4757 	 */
   4758 	if (!src_okcolor) {
   4759 		*src_ptep = 0;
   4760 		PTE_SYNC(src_ptep);
   4761 		cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4762 		cpu_cpwait();
   4763 	}
   4764 	if (!dst_okcolor) {
   4765 		*dst_ptep = 0;
   4766 		PTE_SYNC(dst_ptep);
   4767 		cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4768 		cpu_cpwait();
   4769 	}
   4770 #ifdef PMAP_CACHE_VIPT
   4771 	/*
   4772 	 * Now that the destination page is in the cache, mark it as colored.
   4773 	 * If this was an exec page, discard it.
   4774 	 */
   4775 	if (!pmap_is_page_colored_p(dst_md)) {
   4776 		PMAPCOUNT(vac_color_new);
   4777 		dst_md->pvh_attrs |= PVF_COLORED;
   4778 	}
   4779 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   4780 		dst_md->pvh_attrs &= ~PVF_EXEC;
   4781 		PMAPCOUNT(exec_discarded_copy);
   4782 	}
   4783 	dst_md->pvh_attrs |= PVF_DIRTY;
   4784 #endif
   4785 }
   4786 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4787 
   4788 #if ARM_MMU_XSCALE == 1
   4789 void
   4790 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4791 {
   4792 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4793 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4794 #ifdef DEBUG
   4795 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   4796 
   4797 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4798 		panic("pmap_copy_page: dst page has mappings");
   4799 #endif
   4800 
   4801 	KDASSERT((src & PGOFSET) == 0);
   4802 	KDASSERT((dst & PGOFSET) == 0);
   4803 
   4804 	/*
   4805 	 * Clean the source page.  Hold the source page's lock for
   4806 	 * the duration of the copy so that no other mappings can
   4807 	 * be created while we have a potentially aliased mapping.
   4808 	 */
   4809 #ifdef MULTIPROCESSOR
   4810 	KASSERT(uvm_page_locked_p(src_pg));
   4811 #endif
   4812 #ifdef PMAP_CACHE_VIVT
   4813 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4814 #endif
   4815 
   4816 	/*
   4817 	 * Map the pages into the page hook points, copy them, and purge
   4818 	 * the cache for the appropriate page. Invalidate the TLB
   4819 	 * as required.
   4820 	 */
   4821 	*csrc_pte = L2_S_PROTO | src |
   4822 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4823 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4824 	PTE_SYNC(csrc_pte);
   4825 	*cdst_pte = L2_S_PROTO | dst |
   4826 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4827 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4828 	PTE_SYNC(cdst_pte);
   4829 	cpu_tlb_flushD_SE(csrcp);
   4830 	cpu_tlb_flushD_SE(cdstp);
   4831 	cpu_cpwait();
   4832 	bcopy_page(csrcp, cdstp);
   4833 	xscale_cache_clean_minidata();
   4834 }
   4835 #endif /* ARM_MMU_XSCALE == 1 */
   4836 
   4837 /*
   4838  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4839  *
   4840  * Return the start and end addresses of the kernel's virtual space.
   4841  * These values are setup in pmap_bootstrap and are updated as pages
   4842  * are allocated.
   4843  */
   4844 void
   4845 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4846 {
   4847 	*start = virtual_avail;
   4848 	*end = virtual_end;
   4849 }
   4850 
   4851 /*
   4852  * Helper function for pmap_grow_l2_bucket()
   4853  */
   4854 static inline int
   4855 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4856 {
   4857 	struct l2_bucket *l2b;
   4858 	pt_entry_t *ptep;
   4859 	paddr_t pa;
   4860 
   4861 	if (uvm.page_init_done == false) {
   4862 #ifdef PMAP_STEAL_MEMORY
   4863 		pv_addr_t pv;
   4864 		pmap_boot_pagealloc(PAGE_SIZE,
   4865 #ifdef PMAP_CACHE_VIPT
   4866 		    arm_cache_prefer_mask,
   4867 		    va & arm_cache_prefer_mask,
   4868 #else
   4869 		    0, 0,
   4870 #endif
   4871 		    &pv);
   4872 		pa = pv.pv_pa;
   4873 #else
   4874 		if (uvm_page_physget(&pa) == false)
   4875 			return (1);
   4876 #endif	/* PMAP_STEAL_MEMORY */
   4877 	} else {
   4878 		struct vm_page *pg;
   4879 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4880 		if (pg == NULL)
   4881 			return (1);
   4882 		pa = VM_PAGE_TO_PHYS(pg);
   4883 #ifdef PMAP_CACHE_VIPT
   4884 #ifdef DIAGNOSTIC
   4885 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4886 #endif
   4887 		/*
   4888 		 * This new page must not have any mappings.  Enter it via
   4889 		 * pmap_kenter_pa and let that routine do the hard work.
   4890 		 */
   4891 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   4892 		pmap_kenter_pa(va, pa,
   4893 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   4894 #endif
   4895 	}
   4896 
   4897 	if (pap)
   4898 		*pap = pa;
   4899 
   4900 	PMAPCOUNT(pt_mappings);
   4901 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4902 	KDASSERT(l2b != NULL);
   4903 
   4904 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4905 	*ptep = L2_S_PROTO | pa | cache_mode |
   4906 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4907 	PTE_SYNC(ptep);
   4908 	memset((void *)va, 0, PAGE_SIZE);
   4909 	return (0);
   4910 }
   4911 
   4912 /*
   4913  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4914  * used by pmap_growkernel().
   4915  */
   4916 static inline struct l2_bucket *
   4917 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4918 {
   4919 	struct l2_dtable *l2;
   4920 	struct l2_bucket *l2b;
   4921 	u_short l1idx;
   4922 	vaddr_t nva;
   4923 
   4924 	l1idx = L1_IDX(va);
   4925 
   4926 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4927 		/*
   4928 		 * No mapping at this address, as there is
   4929 		 * no entry in the L1 table.
   4930 		 * Need to allocate a new l2_dtable.
   4931 		 */
   4932 		nva = pmap_kernel_l2dtable_kva;
   4933 		if ((nva & PGOFSET) == 0) {
   4934 			/*
   4935 			 * Need to allocate a backing page
   4936 			 */
   4937 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4938 				return (NULL);
   4939 		}
   4940 
   4941 		l2 = (struct l2_dtable *)nva;
   4942 		nva += sizeof(struct l2_dtable);
   4943 
   4944 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4945 			/*
   4946 			 * The new l2_dtable straddles a page boundary.
   4947 			 * Map in another page to cover it.
   4948 			 */
   4949 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4950 				return (NULL);
   4951 		}
   4952 
   4953 		pmap_kernel_l2dtable_kva = nva;
   4954 
   4955 		/*
   4956 		 * Link it into the parent pmap
   4957 		 */
   4958 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4959 	}
   4960 
   4961 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4962 
   4963 	/*
   4964 	 * Fetch pointer to the L2 page table associated with the address.
   4965 	 */
   4966 	if (l2b->l2b_kva == NULL) {
   4967 		pt_entry_t *ptep;
   4968 
   4969 		/*
   4970 		 * No L2 page table has been allocated. Chances are, this
   4971 		 * is because we just allocated the l2_dtable, above.
   4972 		 */
   4973 		nva = pmap_kernel_l2ptp_kva;
   4974 		ptep = (pt_entry_t *)nva;
   4975 		if ((nva & PGOFSET) == 0) {
   4976 			/*
   4977 			 * Need to allocate a backing page
   4978 			 */
   4979 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4980 			    &pmap_kernel_l2ptp_phys))
   4981 				return (NULL);
   4982 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4983 		}
   4984 
   4985 		l2->l2_occupancy++;
   4986 		l2b->l2b_kva = ptep;
   4987 		l2b->l2b_l1idx = l1idx;
   4988 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4989 
   4990 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4991 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4992 	}
   4993 
   4994 	return (l2b);
   4995 }
   4996 
   4997 vaddr_t
   4998 pmap_growkernel(vaddr_t maxkvaddr)
   4999 {
   5000 	pmap_t kpm = pmap_kernel();
   5001 	struct l1_ttable *l1;
   5002 	struct l2_bucket *l2b;
   5003 	pd_entry_t *pl1pd;
   5004 	int s;
   5005 
   5006 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5007 		goto out;		/* we are OK */
   5008 
   5009 	NPDEBUG(PDB_GROWKERN,
   5010 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5011 	    pmap_curmaxkvaddr, maxkvaddr));
   5012 
   5013 	KDASSERT(maxkvaddr <= virtual_end);
   5014 
   5015 	/*
   5016 	 * whoops!   we need to add kernel PTPs
   5017 	 */
   5018 
   5019 	s = splhigh();	/* to be safe */
   5020 	mutex_enter(kpm->pm_lock);
   5021 
   5022 	/* Map 1MB at a time */
   5023 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   5024 
   5025 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5026 		KDASSERT(l2b != NULL);
   5027 
   5028 		/* Distribute new L1 entry to all other L1s */
   5029 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5030 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   5031 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   5032 			    L1_C_PROTO;
   5033 			PTE_SYNC(pl1pd);
   5034 		}
   5035 	}
   5036 
   5037 	/*
   5038 	 * flush out the cache, expensive but growkernel will happen so
   5039 	 * rarely
   5040 	 */
   5041 	cpu_dcache_wbinv_all();
   5042 	cpu_tlb_flushD();
   5043 	cpu_cpwait();
   5044 
   5045 	mutex_exit(kpm->pm_lock);
   5046 	splx(s);
   5047 
   5048 out:
   5049 	return (pmap_curmaxkvaddr);
   5050 }
   5051 
   5052 /************************ Utility routines ****************************/
   5053 
   5054 #ifndef ARM_HAS_VBAR
   5055 /*
   5056  * vector_page_setprot:
   5057  *
   5058  *	Manipulate the protection of the vector page.
   5059  */
   5060 void
   5061 vector_page_setprot(int prot)
   5062 {
   5063 	struct l2_bucket *l2b;
   5064 	pt_entry_t *ptep;
   5065 
   5066 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5067 	/*
   5068 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5069 	 * already mapped in the kernel text so no need to anything here.
   5070 	 */
   5071 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5072 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5073 		return;
   5074 	}
   5075 #endif
   5076 
   5077 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5078 	KDASSERT(l2b != NULL);
   5079 
   5080 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5081 
   5082 	*ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   5083 	PTE_SYNC(ptep);
   5084 	cpu_tlb_flushD_SE(vector_page);
   5085 	cpu_cpwait();
   5086 }
   5087 #endif
   5088 
   5089 /*
   5090  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5091  * Returns true if the mapping exists, else false.
   5092  *
   5093  * NOTE: This function is only used by a couple of arm-specific modules.
   5094  * It is not safe to take any pmap locks here, since we could be right
   5095  * in the middle of debugging the pmap anyway...
   5096  *
   5097  * It is possible for this routine to return false even though a valid
   5098  * mapping does exist. This is because we don't lock, so the metadata
   5099  * state may be inconsistent.
   5100  *
   5101  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5102  * a "section" mapping.
   5103  */
   5104 bool
   5105 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5106 {
   5107 	struct l2_dtable *l2;
   5108 	pd_entry_t *pl1pd, l1pd;
   5109 	pt_entry_t *ptep;
   5110 	u_short l1idx;
   5111 
   5112 	if (pm->pm_l1 == NULL)
   5113 		return false;
   5114 
   5115 	l1idx = L1_IDX(va);
   5116 	*pdp = pl1pd = pmap_l1_kva(pm) + l1idx;
   5117 	l1pd = *pl1pd;
   5118 
   5119 	if (l1pte_section_p(l1pd)) {
   5120 		*ptp = NULL;
   5121 		return true;
   5122 	}
   5123 
   5124 	if (pm->pm_l2 == NULL)
   5125 		return false;
   5126 
   5127 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   5128 
   5129 	if (l2 == NULL ||
   5130 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   5131 		return false;
   5132 	}
   5133 
   5134 	*ptp = &ptep[l2pte_index(va)];
   5135 	return true;
   5136 }
   5137 
   5138 bool
   5139 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5140 {
   5141 
   5142 	if (pm->pm_l1 == NULL)
   5143 		return false;
   5144 
   5145 	*pdp = pmap_l1_kva(pm) + L1_IDX(va);
   5146 
   5147 	return true;
   5148 }
   5149 
   5150 /************************ Bootstrapping routines ****************************/
   5151 
   5152 static void
   5153 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5154 {
   5155 	int i;
   5156 
   5157 	l1->l1_kva = l1pt;
   5158 	l1->l1_domain_use_count = 0;
   5159 	l1->l1_domain_first = 0;
   5160 
   5161 	for (i = 0; i < PMAP_DOMAINS; i++)
   5162 		l1->l1_domain_free[i] = i + 1;
   5163 
   5164 	/*
   5165 	 * Copy the kernel's L1 entries to each new L1.
   5166 	 */
   5167 	if (pmap_initialized)
   5168 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   5169 
   5170 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5171 	    &l1->l1_physaddr) == false)
   5172 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5173 
   5174 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5175 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5176 }
   5177 
   5178 /*
   5179  * pmap_bootstrap() is called from the board-specific initarm() routine
   5180  * once the kernel L1/L2 descriptors tables have been set up.
   5181  *
   5182  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5183  * spread over a number of disparate files/functions.
   5184  *
   5185  * We are passed the following parameters
   5186  *  - kernel_l1pt
   5187  *    This is a pointer to the base of the kernel's L1 translation table.
   5188  *  - vstart
   5189  *    1MB-aligned start of managed kernel virtual memory.
   5190  *  - vend
   5191  *    1MB-aligned end of managed kernel virtual memory.
   5192  *
   5193  * We use the first parameter to build the metadata (struct l1_ttable and
   5194  * struct l2_dtable) necessary to track kernel mappings.
   5195  */
   5196 #define	PMAP_STATIC_L2_SIZE 16
   5197 void
   5198 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5199 {
   5200 	static struct l1_ttable static_l1;
   5201 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5202 	struct l1_ttable *l1 = &static_l1;
   5203 	struct l2_dtable *l2;
   5204 	struct l2_bucket *l2b;
   5205 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5206 	pmap_t pm = pmap_kernel();
   5207 	pd_entry_t pde;
   5208 	pt_entry_t *ptep;
   5209 	paddr_t pa;
   5210 	vaddr_t va;
   5211 	vsize_t size;
   5212 	int nptes, l1idx, l2idx, l2next = 0;
   5213 
   5214 	/*
   5215 	 * Initialise the kernel pmap object
   5216 	 */
   5217 	pm->pm_l1 = l1;
   5218 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5219 	pm->pm_activated = true;
   5220 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5221 
   5222 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   5223 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   5224 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   5225 
   5226 	/*
   5227 	 * Scan the L1 translation table created by initarm() and create
   5228 	 * the required metadata for all valid mappings found in it.
   5229 	 */
   5230 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5231 		pde = l1pt[l1idx];
   5232 
   5233 		/*
   5234 		 * We're only interested in Coarse mappings.
   5235 		 * pmap_extract() can deal with section mappings without
   5236 		 * recourse to checking L2 metadata.
   5237 		 */
   5238 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5239 			continue;
   5240 
   5241 		/*
   5242 		 * Lookup the KVA of this L2 descriptor table
   5243 		 */
   5244 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5245 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5246 		if (ptep == NULL) {
   5247 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5248 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5249 		}
   5250 
   5251 		/*
   5252 		 * Fetch the associated L2 metadata structure.
   5253 		 * Allocate a new one if necessary.
   5254 		 */
   5255 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5256 			if (l2next == PMAP_STATIC_L2_SIZE)
   5257 				panic("pmap_bootstrap: out of static L2s");
   5258 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5259 		}
   5260 
   5261 		/*
   5262 		 * One more L1 slot tracked...
   5263 		 */
   5264 		l2->l2_occupancy++;
   5265 
   5266 		/*
   5267 		 * Fill in the details of the L2 descriptor in the
   5268 		 * appropriate bucket.
   5269 		 */
   5270 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5271 		l2b->l2b_kva = ptep;
   5272 		l2b->l2b_phys = pa;
   5273 		l2b->l2b_l1idx = l1idx;
   5274 
   5275 		/*
   5276 		 * Establish an initial occupancy count for this descriptor
   5277 		 */
   5278 		for (l2idx = 0;
   5279 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5280 		    l2idx++) {
   5281 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5282 				l2b->l2b_occupancy++;
   5283 			}
   5284 		}
   5285 
   5286 		/*
   5287 		 * Make sure the descriptor itself has the correct cache mode.
   5288 		 * If not, fix it, but whine about the problem. Port-meisters
   5289 		 * should consider this a clue to fix up their initarm()
   5290 		 * function. :)
   5291 		 */
   5292 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5293 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5294 			    "L2 pte @ %p\n", ptep);
   5295 		}
   5296 	}
   5297 
   5298 	/*
   5299 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5300 	 * a page table. Bitch if it is not correctly set.
   5301 	 */
   5302 	for (va = (vaddr_t)l1pt;
   5303 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5304 		if (pmap_set_pt_cache_mode(l1pt, va))
   5305 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5306 			    "primary L1 @ 0x%lx\n", va);
   5307 	}
   5308 
   5309 	cpu_dcache_wbinv_all();
   5310 	cpu_tlb_flushID();
   5311 	cpu_cpwait();
   5312 
   5313 	/*
   5314 	 * now we allocate the "special" VAs which are used for tmp mappings
   5315 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5316 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5317 	 *
   5318 	 * Managed KVM space start from wherever initarm() tells us.
   5319 	 */
   5320 	virtual_avail = vstart;
   5321 	virtual_end = vend;
   5322 
   5323 #ifdef PMAP_CACHE_VIPT
   5324 	/*
   5325 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5326 	 * page so we won't violate cache aliasing rules.
   5327 	 */
   5328 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5329 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5330 #else
   5331 	nptes = 1;
   5332 #endif
   5333 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5334 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5335 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5336 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5337 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5338 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5339 	    (void *)&msgbufaddr, NULL);
   5340 
   5341 	/*
   5342 	 * Allocate a range of kernel virtual address space to be used
   5343 	 * for L2 descriptor tables and metadata allocation in
   5344 	 * pmap_growkernel().
   5345 	 */
   5346 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5347 	pmap_alloc_specials(&virtual_avail,
   5348 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5349 	    &pmap_kernel_l2ptp_kva, NULL);
   5350 
   5351 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5352 	pmap_alloc_specials(&virtual_avail,
   5353 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5354 	    &pmap_kernel_l2dtable_kva, NULL);
   5355 
   5356 	/*
   5357 	 * init the static-global locks and global pmap list.
   5358 	 */
   5359 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   5360 
   5361 	/*
   5362 	 * We can now initialise the first L1's metadata.
   5363 	 */
   5364 	SLIST_INIT(&l1_list);
   5365 	TAILQ_INIT(&l1_lru_list);
   5366 	pmap_init_l1(l1, l1pt);
   5367 
   5368 #ifndef ARM_HAS_VBAR
   5369 	/* Set up vector page L1 details, if necessary */
   5370 	if (vector_page < KERNEL_BASE) {
   5371 		pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
   5372 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5373 		KDASSERT(l2b != NULL);
   5374 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5375 		    L1_C_DOM(pmap_domain(pm));
   5376 	} else
   5377 		pm->pm_pl1vec = NULL;
   5378 #endif
   5379 
   5380 	/*
   5381 	 * Initialize the pmap cache
   5382 	 */
   5383 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5384 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5385 	LIST_INIT(&pmap_pmaps);
   5386 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5387 
   5388 	/*
   5389 	 * Initialize the pv pool.
   5390 	 */
   5391 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5392 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5393 
   5394 	/*
   5395 	 * Initialize the L2 dtable pool and cache.
   5396 	 */
   5397 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5398 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5399 
   5400 	/*
   5401 	 * Initialise the L2 descriptor table pool and cache
   5402 	 */
   5403 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5404 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5405 	    pmap_l2ptp_ctor, NULL, NULL);
   5406 
   5407 	cpu_dcache_wbinv_all();
   5408 }
   5409 
   5410 static int
   5411 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5412 {
   5413 	pd_entry_t *pdep, pde;
   5414 	pt_entry_t *ptep, pte;
   5415 	vaddr_t pa;
   5416 	int rv = 0;
   5417 
   5418 	/*
   5419 	 * Make sure the descriptor itself has the correct cache mode
   5420 	 */
   5421 	pdep = &kl1[L1_IDX(va)];
   5422 	pde = *pdep;
   5423 
   5424 	if (l1pte_section_p(pde)) {
   5425 		__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   5426 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5427 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5428 			    pte_l1_s_cache_mode_pt;
   5429 			PTE_SYNC(pdep);
   5430 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5431 			rv = 1;
   5432 		}
   5433 	} else {
   5434 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5435 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5436 		if (ptep == NULL)
   5437 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5438 
   5439 		ptep = &ptep[l2pte_index(va)];
   5440 		pte = *ptep;
   5441 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5442 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5443 			    pte_l2_s_cache_mode_pt;
   5444 			PTE_SYNC(ptep);
   5445 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5446 			rv = 1;
   5447 		}
   5448 	}
   5449 
   5450 	return (rv);
   5451 }
   5452 
   5453 static void
   5454 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5455 {
   5456 	vaddr_t va = *availp;
   5457 	struct l2_bucket *l2b;
   5458 
   5459 	if (ptep) {
   5460 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5461 		if (l2b == NULL)
   5462 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5463 
   5464 		if (ptep)
   5465 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5466 	}
   5467 
   5468 	*vap = va;
   5469 	*availp = va + (PAGE_SIZE * pages);
   5470 }
   5471 
   5472 void
   5473 pmap_init(void)
   5474 {
   5475 
   5476 	/*
   5477 	 * Set the available memory vars - These do not map to real memory
   5478 	 * addresses and cannot as the physical memory is fragmented.
   5479 	 * They are used by ps for %mem calculations.
   5480 	 * One could argue whether this should be the entire memory or just
   5481 	 * the memory that is useable in a user process.
   5482 	 */
   5483 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   5484 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   5485 
   5486 	/*
   5487 	 * Now we need to free enough pv_entry structures to allow us to get
   5488 	 * the kmem_map/kmem_object allocated and inited (done after this
   5489 	 * function is finished).  to do this we allocate one bootstrap page out
   5490 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5491 	 * structures.   we never free this page.
   5492 	 */
   5493 	pool_setlowat(&pmap_pv_pool,
   5494 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5495 
   5496 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5497 	zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5498 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   5499 
   5500 	pmap_initialized = true;
   5501 }
   5502 
   5503 static vaddr_t last_bootstrap_page = 0;
   5504 static void *free_bootstrap_pages = NULL;
   5505 
   5506 static void *
   5507 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5508 {
   5509 	extern void *pool_page_alloc(struct pool *, int);
   5510 	vaddr_t new_page;
   5511 	void *rv;
   5512 
   5513 	if (pmap_initialized)
   5514 		return (pool_page_alloc(pp, flags));
   5515 
   5516 	if (free_bootstrap_pages) {
   5517 		rv = free_bootstrap_pages;
   5518 		free_bootstrap_pages = *((void **)rv);
   5519 		return (rv);
   5520 	}
   5521 
   5522 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5523 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5524 
   5525 	KASSERT(new_page > last_bootstrap_page);
   5526 	last_bootstrap_page = new_page;
   5527 	return ((void *)new_page);
   5528 }
   5529 
   5530 static void
   5531 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5532 {
   5533 	extern void pool_page_free(struct pool *, void *);
   5534 
   5535 	if ((vaddr_t)v <= last_bootstrap_page) {
   5536 		*((void **)v) = free_bootstrap_pages;
   5537 		free_bootstrap_pages = v;
   5538 		return;
   5539 	}
   5540 
   5541 	if (pmap_initialized) {
   5542 		pool_page_free(pp, v);
   5543 		return;
   5544 	}
   5545 }
   5546 
   5547 /*
   5548  * pmap_postinit()
   5549  *
   5550  * This routine is called after the vm and kmem subsystems have been
   5551  * initialised. This allows the pmap code to perform any initialisation
   5552  * that can only be done one the memory allocation is in place.
   5553  */
   5554 void
   5555 pmap_postinit(void)
   5556 {
   5557 	extern paddr_t physical_start, physical_end;
   5558 	struct l1_ttable *l1;
   5559 	struct pglist plist;
   5560 	struct vm_page *m;
   5561 	pd_entry_t *pl1pt;
   5562 	vaddr_t va, eva;
   5563 	u_int loop, needed;
   5564 	int error;
   5565 
   5566 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5567 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5568 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5569 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5570 
   5571 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5572 	needed -= 1;
   5573 
   5574 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   5575 
   5576 	for (loop = 0; loop < needed; loop++, l1++) {
   5577 		/* Allocate a L1 page table */
   5578 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5579 		if (va == 0)
   5580 			panic("Cannot allocate L1 KVM");
   5581 
   5582 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5583 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   5584 		if (error)
   5585 			panic("Cannot allocate L1 physical pages");
   5586 
   5587 		m = TAILQ_FIRST(&plist);
   5588 		eva = va + L1_TABLE_SIZE;
   5589 		pl1pt = (pd_entry_t *)va;
   5590 
   5591 		while (m && va < eva) {
   5592 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5593 
   5594 			pmap_kenter_pa(va, pa,
   5595 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5596 
   5597 			va += PAGE_SIZE;
   5598 			m = TAILQ_NEXT(m, pageq.queue);
   5599 		}
   5600 
   5601 #ifdef DIAGNOSTIC
   5602 		if (m)
   5603 			panic("pmap_alloc_l1pt: pglist not empty");
   5604 #endif	/* DIAGNOSTIC */
   5605 
   5606 		pmap_init_l1(l1, pl1pt);
   5607 	}
   5608 
   5609 #ifdef DEBUG
   5610 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5611 	    needed);
   5612 #endif
   5613 }
   5614 
   5615 /*
   5616  * Note that the following routines are used by board-specific initialisation
   5617  * code to configure the initial kernel page tables.
   5618  *
   5619  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5620  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5621  * behaviour of the old pmap, and provides an easy migration path for
   5622  * initial bring-up of the new pmap on existing ports. Fortunately,
   5623  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5624  * will be deprecated.
   5625  *
   5626  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5627  * tables.
   5628  */
   5629 
   5630 /*
   5631  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5632  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5633  * find them as necessary.
   5634  *
   5635  * Note that the data on this list MUST remain valid after initarm() returns,
   5636  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5637  */
   5638 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5639 
   5640 static vaddr_t
   5641 kernel_pt_lookup(paddr_t pa)
   5642 {
   5643 	pv_addr_t *pv;
   5644 
   5645 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5646 #ifndef ARM32_NEW_VM_LAYOUT
   5647 		if (pv->pv_pa == (pa & ~PGOFSET))
   5648 			return (pv->pv_va | (pa & PGOFSET));
   5649 #else
   5650 		if (pv->pv_pa == pa)
   5651 			return (pv->pv_va);
   5652 #endif
   5653 	}
   5654 	return (0);
   5655 }
   5656 
   5657 /*
   5658  * pmap_map_section:
   5659  *
   5660  *	Create a single section mapping.
   5661  */
   5662 void
   5663 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5664 {
   5665 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5666 	pd_entry_t fl;
   5667 
   5668 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5669 
   5670 	switch (cache) {
   5671 	case PTE_NOCACHE:
   5672 	default:
   5673 		fl = 0;
   5674 		break;
   5675 
   5676 	case PTE_CACHE:
   5677 		fl = pte_l1_s_cache_mode;
   5678 		break;
   5679 
   5680 	case PTE_PAGETABLE:
   5681 		fl = pte_l1_s_cache_mode_pt;
   5682 		break;
   5683 	}
   5684 
   5685 	pde[L1_IDX(va)] = L1_S_PROTO | pa |
   5686 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5687 	PTE_SYNC(&pde[L1_IDX(va)]);
   5688 }
   5689 
   5690 /*
   5691  * pmap_map_entry:
   5692  *
   5693  *	Create a single page mapping.
   5694  */
   5695 void
   5696 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5697 {
   5698 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5699 	pt_entry_t npte;
   5700 	pt_entry_t *ptep;
   5701 
   5702 	KASSERT(((va | pa) & PGOFSET) == 0);
   5703 
   5704 	switch (cache) {
   5705 	case PTE_NOCACHE:
   5706 	default:
   5707 		npte = 0;
   5708 		break;
   5709 
   5710 	case PTE_CACHE:
   5711 		npte = pte_l2_s_cache_mode;
   5712 		break;
   5713 
   5714 	case PTE_PAGETABLE:
   5715 		npte = pte_l2_s_cache_mode_pt;
   5716 		break;
   5717 	}
   5718 
   5719 	if ((pde[L1_IDX(va)] & L1_TYPE_MASK) != L1_TYPE_C)
   5720 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5721 
   5722 #ifndef ARM32_NEW_VM_LAYOUT
   5723 	ptep = (pt_entry_t *)
   5724 	    kernel_pt_lookup(pde[L1_IDX(va)] & L2_S_FRAME);
   5725 #else
   5726 	ptep = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5727 #endif
   5728 	if (ptep == NULL)
   5729 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5730 
   5731 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5732 #ifndef ARM32_NEW_VM_LAYOUT
   5733 	ptep += (va >> PGSHIFT) & 0x3ff;
   5734 #else
   5735 	ptep += l2pte_index(va);
   5736 #endif
   5737 	l2pte_set(ptep, npte, 0);
   5738 	PTE_SYNC(ptep);
   5739 }
   5740 
   5741 /*
   5742  * pmap_link_l2pt:
   5743  *
   5744  *	Link the L2 page table specified by "l2pv" into the L1
   5745  *	page table at the slot for "va".
   5746  */
   5747 void
   5748 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5749 {
   5750 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5751 	u_int slot = L1_IDX(va);
   5752 
   5753 #ifndef ARM32_NEW_VM_LAYOUT
   5754 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5755 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5756 #endif
   5757 
   5758 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5759 
   5760 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5761 #ifdef ARM32_NEW_VM_LAYOUT
   5762 	PTE_SYNC(&pde[slot]);
   5763 #else
   5764 	for (u_int off = 0, i = 0; off < PAGE_SIZE; off += L2_T_SIZE, i++) {
   5765 		pde[slot + i] = proto | (l2pv->pv_pa + off);
   5766 	}
   5767 	PTE_SYNC_RANGE(&pde[slot + 0], PAGE_SIZE / L2_T_SIZE);
   5768 #endif
   5769 
   5770 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5771 }
   5772 
   5773 /*
   5774  * pmap_map_chunk:
   5775  *
   5776  *	Map a chunk of memory using the most efficient mappings
   5777  *	possible (section, large page, small page) into the
   5778  *	provided L1 and L2 tables at the specified virtual address.
   5779  */
   5780 vsize_t
   5781 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5782     int prot, int cache)
   5783 {
   5784 	pd_entry_t *pdep = (pd_entry_t *) l1pt;
   5785 	pt_entry_t *pte, f1, f2s, f2l;
   5786 	vsize_t resid;
   5787 	int i;
   5788 
   5789 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5790 
   5791 	if (l1pt == 0)
   5792 		panic("pmap_map_chunk: no L1 table provided");
   5793 
   5794 #ifdef VERBOSE_INIT_ARM
   5795 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5796 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5797 #endif
   5798 
   5799 	switch (cache) {
   5800 	case PTE_NOCACHE:
   5801 	default:
   5802 		f1 = 0;
   5803 		f2l = 0;
   5804 		f2s = 0;
   5805 		break;
   5806 
   5807 	case PTE_CACHE:
   5808 		f1 = pte_l1_s_cache_mode;
   5809 		f2l = pte_l2_l_cache_mode;
   5810 		f2s = pte_l2_s_cache_mode;
   5811 		break;
   5812 
   5813 	case PTE_PAGETABLE:
   5814 		f1 = pte_l1_s_cache_mode_pt;
   5815 		f2l = pte_l2_l_cache_mode_pt;
   5816 		f2s = pte_l2_s_cache_mode_pt;
   5817 		break;
   5818 	}
   5819 
   5820 	size = resid;
   5821 
   5822 	while (resid > 0) {
   5823 		size_t l1idx = L1_IDX(va);
   5824 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5825 		/* See if we can use a supersection mapping. */
   5826 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   5827 			/* Supersection are always domain 0 */
   5828 			pd_entry_t pde = L1_SS_PROTO | pa |
   5829 			    L1_S_PROT(PTE_KERNEL, prot) | f1;
   5830 #ifdef VERBOSE_INIT_ARM
   5831 			printf("sS");
   5832 #endif
   5833 			for (size_t s = l1idx,
   5834 			     e = s + L1_SS_SIZE / L1_S_SIZE;
   5835 			     s < e;
   5836 			     s++) {
   5837 				pdep[s] = pde;
   5838 				PTE_SYNC(&pdep[s]);
   5839 			}
   5840 			va += L1_SS_SIZE;
   5841 			pa += L1_SS_SIZE;
   5842 			resid -= L1_SS_SIZE;
   5843 			continue;
   5844 		}
   5845 #endif
   5846 		/* See if we can use a section mapping. */
   5847 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5848 #ifdef VERBOSE_INIT_ARM
   5849 			printf("S");
   5850 #endif
   5851 			pdep[l1idx] = L1_S_PROTO | pa |
   5852 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5853 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5854 			PTE_SYNC(&pdep[l1idx]);
   5855 			va += L1_S_SIZE;
   5856 			pa += L1_S_SIZE;
   5857 			resid -= L1_S_SIZE;
   5858 			continue;
   5859 		}
   5860 
   5861 		/*
   5862 		 * Ok, we're going to use an L2 table.  Make sure
   5863 		 * one is actually in the corresponding L1 slot
   5864 		 * for the current VA.
   5865 		 */
   5866 		if ((pdep[l1idx] & L1_TYPE_MASK) != L1_TYPE_C)
   5867 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5868 
   5869 #ifndef ARM32_NEW_VM_LAYOUT
   5870 		pte = (pt_entry_t *)
   5871 		    kernel_pt_lookup(pdep[l1idx] & L2_S_FRAME);
   5872 #else
   5873 		pte = (pt_entry_t *) kernel_pt_lookup(
   5874 		    pdep[l1idx] & L1_C_ADDR_MASK);
   5875 #endif
   5876 		if (pte == NULL)
   5877 			panic("pmap_map_chunk: can't find L2 table for VA"
   5878 			    "0x%08lx", va);
   5879 
   5880 		/* See if we can use a L2 large page mapping. */
   5881 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5882 #ifdef VERBOSE_INIT_ARM
   5883 			printf("L");
   5884 #endif
   5885 			for (i = 0; i < 16; i++) {
   5886 #ifndef ARM32_NEW_VM_LAYOUT
   5887 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5888 				    L2_L_PROTO | pa |
   5889 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5890 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5891 #else
   5892 				pte[l2pte_index(va) + i] =
   5893 				    L2_L_PROTO | pa |
   5894 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5895 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5896 #endif
   5897 			}
   5898 			va += L2_L_SIZE;
   5899 			pa += L2_L_SIZE;
   5900 			resid -= L2_L_SIZE;
   5901 			continue;
   5902 		}
   5903 
   5904 		/* Use a small page mapping. */
   5905 #ifdef VERBOSE_INIT_ARM
   5906 		printf("P");
   5907 #endif
   5908 		pt_entry_t npte =
   5909 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5910 #ifndef ARM32_NEW_VM_LAYOUT
   5911 		pt_entry_t *ptep = &pte[(va >> PGSHIFT) & 0x3ff];
   5912 #else
   5913 		pt_entry_t *ptep = &pte[l2pte_index(va)];
   5914 #endif
   5915 		l2pte_set(ptep, npte, 0);
   5916 		PTE_SYNC(ptep);
   5917 		va += PAGE_SIZE;
   5918 		pa += PAGE_SIZE;
   5919 		resid -= PAGE_SIZE;
   5920 	}
   5921 #ifdef VERBOSE_INIT_ARM
   5922 	printf("\n");
   5923 #endif
   5924 	return (size);
   5925 }
   5926 
   5927 /********************** Static device map routines ***************************/
   5928 
   5929 static const struct pmap_devmap *pmap_devmap_table;
   5930 
   5931 /*
   5932  * Register the devmap table.  This is provided in case early console
   5933  * initialization needs to register mappings created by bootstrap code
   5934  * before pmap_devmap_bootstrap() is called.
   5935  */
   5936 void
   5937 pmap_devmap_register(const struct pmap_devmap *table)
   5938 {
   5939 
   5940 	pmap_devmap_table = table;
   5941 }
   5942 
   5943 /*
   5944  * Map all of the static regions in the devmap table, and remember
   5945  * the devmap table so other parts of the kernel can look up entries
   5946  * later.
   5947  */
   5948 void
   5949 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5950 {
   5951 	int i;
   5952 
   5953 	pmap_devmap_table = table;
   5954 
   5955 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5956 #ifdef VERBOSE_INIT_ARM
   5957 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5958 		    pmap_devmap_table[i].pd_pa,
   5959 		    pmap_devmap_table[i].pd_pa +
   5960 			pmap_devmap_table[i].pd_size - 1,
   5961 		    pmap_devmap_table[i].pd_va);
   5962 #endif
   5963 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5964 		    pmap_devmap_table[i].pd_pa,
   5965 		    pmap_devmap_table[i].pd_size,
   5966 		    pmap_devmap_table[i].pd_prot,
   5967 		    pmap_devmap_table[i].pd_cache);
   5968 	}
   5969 }
   5970 
   5971 const struct pmap_devmap *
   5972 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5973 {
   5974 	uint64_t endpa;
   5975 	int i;
   5976 
   5977 	if (pmap_devmap_table == NULL)
   5978 		return (NULL);
   5979 
   5980 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5981 
   5982 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5983 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5984 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5985 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5986 			return (&pmap_devmap_table[i]);
   5987 	}
   5988 
   5989 	return (NULL);
   5990 }
   5991 
   5992 const struct pmap_devmap *
   5993 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5994 {
   5995 	int i;
   5996 
   5997 	if (pmap_devmap_table == NULL)
   5998 		return (NULL);
   5999 
   6000 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6001 		if (va >= pmap_devmap_table[i].pd_va &&
   6002 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6003 				     pmap_devmap_table[i].pd_size - 1)
   6004 			return (&pmap_devmap_table[i]);
   6005 	}
   6006 
   6007 	return (NULL);
   6008 }
   6009 
   6010 /********************** PTE initialization routines **************************/
   6011 
   6012 /*
   6013  * These routines are called when the CPU type is identified to set up
   6014  * the PTE prototypes, cache modes, etc.
   6015  *
   6016  * The variables are always here, just in case modules need to reference
   6017  * them (though, they shouldn't).
   6018  */
   6019 
   6020 pt_entry_t	pte_l1_s_cache_mode;
   6021 pt_entry_t	pte_l1_s_wc_mode;
   6022 pt_entry_t	pte_l1_s_cache_mode_pt;
   6023 pt_entry_t	pte_l1_s_cache_mask;
   6024 
   6025 pt_entry_t	pte_l2_l_cache_mode;
   6026 pt_entry_t	pte_l2_l_wc_mode;
   6027 pt_entry_t	pte_l2_l_cache_mode_pt;
   6028 pt_entry_t	pte_l2_l_cache_mask;
   6029 
   6030 pt_entry_t	pte_l2_s_cache_mode;
   6031 pt_entry_t	pte_l2_s_wc_mode;
   6032 pt_entry_t	pte_l2_s_cache_mode_pt;
   6033 pt_entry_t	pte_l2_s_cache_mask;
   6034 
   6035 pt_entry_t	pte_l1_s_prot_u;
   6036 pt_entry_t	pte_l1_s_prot_w;
   6037 pt_entry_t	pte_l1_s_prot_ro;
   6038 pt_entry_t	pte_l1_s_prot_mask;
   6039 
   6040 pt_entry_t	pte_l2_s_prot_u;
   6041 pt_entry_t	pte_l2_s_prot_w;
   6042 pt_entry_t	pte_l2_s_prot_ro;
   6043 pt_entry_t	pte_l2_s_prot_mask;
   6044 
   6045 pt_entry_t	pte_l2_l_prot_u;
   6046 pt_entry_t	pte_l2_l_prot_w;
   6047 pt_entry_t	pte_l2_l_prot_ro;
   6048 pt_entry_t	pte_l2_l_prot_mask;
   6049 
   6050 pt_entry_t	pte_l1_ss_proto;
   6051 pt_entry_t	pte_l1_s_proto;
   6052 pt_entry_t	pte_l1_c_proto;
   6053 pt_entry_t	pte_l2_s_proto;
   6054 
   6055 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6056 void		(*pmap_zero_page_func)(paddr_t);
   6057 
   6058 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6059 void
   6060 pmap_pte_init_generic(void)
   6061 {
   6062 
   6063 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6064 	pte_l1_s_wc_mode = L1_S_B;
   6065 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6066 
   6067 	pte_l2_l_cache_mode = L2_B|L2_C;
   6068 	pte_l2_l_wc_mode = L2_B;
   6069 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6070 
   6071 	pte_l2_s_cache_mode = L2_B|L2_C;
   6072 	pte_l2_s_wc_mode = L2_B;
   6073 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6074 
   6075 	/*
   6076 	 * If we have a write-through cache, set B and C.  If
   6077 	 * we have a write-back cache, then we assume setting
   6078 	 * only C will make those pages write-through (except for those
   6079 	 * Cortex CPUs which can read the L1 caches).
   6080 	 */
   6081 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6082 #if ARM_MMU_V7 > 0
   6083 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6084 #endif
   6085 #if ARM_MMU_V6 > 0
   6086 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6087 #endif
   6088 	    || false) {
   6089 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6090 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6091 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6092 	} else {
   6093 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6094 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6095 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6096 	}
   6097 
   6098 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6099 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6100 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6101 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6102 
   6103 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6104 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6105 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6106 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6107 
   6108 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6109 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6110 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6111 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6112 
   6113 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6114 	pte_l1_s_proto = L1_S_PROTO_generic;
   6115 	pte_l1_c_proto = L1_C_PROTO_generic;
   6116 	pte_l2_s_proto = L2_S_PROTO_generic;
   6117 
   6118 	pmap_copy_page_func = pmap_copy_page_generic;
   6119 	pmap_zero_page_func = pmap_zero_page_generic;
   6120 }
   6121 
   6122 #if defined(CPU_ARM8)
   6123 void
   6124 pmap_pte_init_arm8(void)
   6125 {
   6126 
   6127 	/*
   6128 	 * ARM8 is compatible with generic, but we need to use
   6129 	 * the page tables uncached.
   6130 	 */
   6131 	pmap_pte_init_generic();
   6132 
   6133 	pte_l1_s_cache_mode_pt = 0;
   6134 	pte_l2_l_cache_mode_pt = 0;
   6135 	pte_l2_s_cache_mode_pt = 0;
   6136 }
   6137 #endif /* CPU_ARM8 */
   6138 
   6139 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6140 void
   6141 pmap_pte_init_arm9(void)
   6142 {
   6143 
   6144 	/*
   6145 	 * ARM9 is compatible with generic, but we want to use
   6146 	 * write-through caching for now.
   6147 	 */
   6148 	pmap_pte_init_generic();
   6149 
   6150 	pte_l1_s_cache_mode = L1_S_C;
   6151 	pte_l2_l_cache_mode = L2_C;
   6152 	pte_l2_s_cache_mode = L2_C;
   6153 
   6154 	pte_l1_s_wc_mode = L1_S_B;
   6155 	pte_l2_l_wc_mode = L2_B;
   6156 	pte_l2_s_wc_mode = L2_B;
   6157 
   6158 	pte_l1_s_cache_mode_pt = L1_S_C;
   6159 	pte_l2_l_cache_mode_pt = L2_C;
   6160 	pte_l2_s_cache_mode_pt = L2_C;
   6161 }
   6162 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6163 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6164 
   6165 #if defined(CPU_ARM10)
   6166 void
   6167 pmap_pte_init_arm10(void)
   6168 {
   6169 
   6170 	/*
   6171 	 * ARM10 is compatible with generic, but we want to use
   6172 	 * write-through caching for now.
   6173 	 */
   6174 	pmap_pte_init_generic();
   6175 
   6176 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6177 	pte_l2_l_cache_mode = L2_B | L2_C;
   6178 	pte_l2_s_cache_mode = L2_B | L2_C;
   6179 
   6180 	pte_l1_s_cache_mode = L1_S_B;
   6181 	pte_l2_l_cache_mode = L2_B;
   6182 	pte_l2_s_cache_mode = L2_B;
   6183 
   6184 	pte_l1_s_cache_mode_pt = L1_S_C;
   6185 	pte_l2_l_cache_mode_pt = L2_C;
   6186 	pte_l2_s_cache_mode_pt = L2_C;
   6187 
   6188 }
   6189 #endif /* CPU_ARM10 */
   6190 
   6191 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6192 void
   6193 pmap_pte_init_arm11(void)
   6194 {
   6195 
   6196 	/*
   6197 	 * ARM11 is compatible with generic, but we want to use
   6198 	 * write-through caching for now.
   6199 	 */
   6200 	pmap_pte_init_generic();
   6201 
   6202 	pte_l1_s_cache_mode = L1_S_C;
   6203 	pte_l2_l_cache_mode = L2_C;
   6204 	pte_l2_s_cache_mode = L2_C;
   6205 
   6206 	pte_l1_s_wc_mode = L1_S_B;
   6207 	pte_l2_l_wc_mode = L2_B;
   6208 	pte_l2_s_wc_mode = L2_B;
   6209 
   6210 	pte_l1_s_cache_mode_pt = L1_S_C;
   6211 	pte_l2_l_cache_mode_pt = L2_C;
   6212 	pte_l2_s_cache_mode_pt = L2_C;
   6213 }
   6214 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   6215 
   6216 #if ARM_MMU_SA1 == 1
   6217 void
   6218 pmap_pte_init_sa1(void)
   6219 {
   6220 
   6221 	/*
   6222 	 * The StrongARM SA-1 cache does not have a write-through
   6223 	 * mode.  So, do the generic initialization, then reset
   6224 	 * the page table cache mode to B=1,C=1, and note that
   6225 	 * the PTEs need to be sync'd.
   6226 	 */
   6227 	pmap_pte_init_generic();
   6228 
   6229 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6230 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6231 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6232 
   6233 	pmap_needs_pte_sync = 1;
   6234 }
   6235 #endif /* ARM_MMU_SA1 == 1*/
   6236 
   6237 #if ARM_MMU_XSCALE == 1
   6238 #if (ARM_NMMUS > 1)
   6239 static u_int xscale_use_minidata;
   6240 #endif
   6241 
   6242 void
   6243 pmap_pte_init_xscale(void)
   6244 {
   6245 	uint32_t auxctl;
   6246 	int write_through = 0;
   6247 
   6248 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6249 	pte_l1_s_wc_mode = L1_S_B;
   6250 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   6251 
   6252 	pte_l2_l_cache_mode = L2_B|L2_C;
   6253 	pte_l2_l_wc_mode = L2_B;
   6254 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   6255 
   6256 	pte_l2_s_cache_mode = L2_B|L2_C;
   6257 	pte_l2_s_wc_mode = L2_B;
   6258 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   6259 
   6260 	pte_l1_s_cache_mode_pt = L1_S_C;
   6261 	pte_l2_l_cache_mode_pt = L2_C;
   6262 	pte_l2_s_cache_mode_pt = L2_C;
   6263 
   6264 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   6265 	/*
   6266 	 * The XScale core has an enhanced mode where writes that
   6267 	 * miss the cache cause a cache line to be allocated.  This
   6268 	 * is significantly faster than the traditional, write-through
   6269 	 * behavior of this case.
   6270 	 */
   6271 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   6272 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   6273 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   6274 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   6275 
   6276 #ifdef XSCALE_CACHE_WRITE_THROUGH
   6277 	/*
   6278 	 * Some versions of the XScale core have various bugs in
   6279 	 * their cache units, the work-around for which is to run
   6280 	 * the cache in write-through mode.  Unfortunately, this
   6281 	 * has a major (negative) impact on performance.  So, we
   6282 	 * go ahead and run fast-and-loose, in the hopes that we
   6283 	 * don't line up the planets in a way that will trip the
   6284 	 * bugs.
   6285 	 *
   6286 	 * However, we give you the option to be slow-but-correct.
   6287 	 */
   6288 	write_through = 1;
   6289 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6290 	/* force write back cache mode */
   6291 	write_through = 0;
   6292 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6293 	/*
   6294 	 * Intel PXA2[15]0 processors are known to have a bug in
   6295 	 * write-back cache on revision 4 and earlier (stepping
   6296 	 * A[01] and B[012]).  Fixed for C0 and later.
   6297 	 */
   6298 	{
   6299 		uint32_t id, type;
   6300 
   6301 		id = cpufunc_id();
   6302 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6303 
   6304 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6305 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6306 				/* write through for stepping A0-1 and B0-2 */
   6307 				write_through = 1;
   6308 			}
   6309 		}
   6310 	}
   6311 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6312 
   6313 	if (write_through) {
   6314 		pte_l1_s_cache_mode = L1_S_C;
   6315 		pte_l2_l_cache_mode = L2_C;
   6316 		pte_l2_s_cache_mode = L2_C;
   6317 	}
   6318 
   6319 #if (ARM_NMMUS > 1)
   6320 	xscale_use_minidata = 1;
   6321 #endif
   6322 
   6323 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   6324 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   6325 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   6326 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   6327 
   6328 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6329 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6330 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   6331 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6332 
   6333 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   6334 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   6335 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   6336 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   6337 
   6338 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   6339 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6340 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6341 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6342 
   6343 	pmap_copy_page_func = pmap_copy_page_xscale;
   6344 	pmap_zero_page_func = pmap_zero_page_xscale;
   6345 
   6346 	/*
   6347 	 * Disable ECC protection of page table access, for now.
   6348 	 */
   6349 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6350 	auxctl &= ~XSCALE_AUXCTL_P;
   6351 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6352 }
   6353 
   6354 /*
   6355  * xscale_setup_minidata:
   6356  *
   6357  *	Set up the mini-data cache clean area.  We require the
   6358  *	caller to allocate the right amount of physically and
   6359  *	virtually contiguous space.
   6360  */
   6361 void
   6362 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6363 {
   6364 	extern vaddr_t xscale_minidata_clean_addr;
   6365 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6366 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6367 	vsize_t size;
   6368 	uint32_t auxctl;
   6369 
   6370 	xscale_minidata_clean_addr = va;
   6371 
   6372 	/* Round it to page size. */
   6373 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6374 
   6375 	for (; size != 0;
   6376 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6377 		const size_t l1idx = L1_IDX(va);
   6378 #ifndef ARM32_NEW_VM_LAYOUT
   6379 		pt_entry_t *ptep = (pt_entry_t *)
   6380 		    kernel_pt_lookup(pde[l1idx] & L2_S_FRAME);
   6381 #else
   6382 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(
   6383 		    pde[l1idx] & L1_C_ADDR_MASK);
   6384 #endif
   6385 		if (ptep == NULL)
   6386 			panic("xscale_setup_minidata: can't find L2 table for "
   6387 			    "VA 0x%08lx", va);
   6388 
   6389 #ifndef ARM32_NEW_VM_LAYOUT
   6390 		ptep += (va >> PGSHIFT) & 0x3ff;
   6391 #else
   6392 		ptep += l2pte_index(va);
   6393 #endif
   6394 		pt_entry_t opte = *ptep;
   6395 		l2pte_set(ptep,
   6396 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   6397 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   6398 	}
   6399 
   6400 	/*
   6401 	 * Configure the mini-data cache for write-back with
   6402 	 * read/write-allocate.
   6403 	 *
   6404 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6405 	 * make sure it contains no valid data!  In order to do that,
   6406 	 * we must issue a global data cache invalidate command!
   6407 	 *
   6408 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6409 	 * THIS IS VERY IMPORTANT!
   6410 	 */
   6411 
   6412 	/* Invalidate data and mini-data. */
   6413 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6414 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6415 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6416 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6417 }
   6418 
   6419 /*
   6420  * Change the PTEs for the specified kernel mappings such that they
   6421  * will use the mini data cache instead of the main data cache.
   6422  */
   6423 void
   6424 pmap_uarea(vaddr_t va)
   6425 {
   6426 	vaddr_t next_bucket, eva;
   6427 
   6428 #if (ARM_NMMUS > 1)
   6429 	if (xscale_use_minidata == 0)
   6430 		return;
   6431 #endif
   6432 
   6433 	eva = va + USPACE;
   6434 
   6435 	while (va < eva) {
   6436 		next_bucket = L2_NEXT_BUCKET(va);
   6437 		if (next_bucket > eva)
   6438 			next_bucket = eva;
   6439 
   6440 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6441 		KDASSERT(l2b != NULL);
   6442 
   6443 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   6444 		pt_entry_t *ptep = sptep;
   6445 
   6446 		while (va < next_bucket) {
   6447 			const pt_entry_t opte = *ptep;
   6448 			if (!l2pte_minidata(opte)) {
   6449 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6450 				cpu_tlb_flushD_SE(va);
   6451 				l2pte_set(ptep, opte & ~L2_B, opte);
   6452 			}
   6453 			ptep += PAGE_SIZE / L2_S_SIZE;
   6454 			va += PAGE_SIZE;
   6455 		}
   6456 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6457 	}
   6458 	cpu_cpwait();
   6459 }
   6460 #endif /* ARM_MMU_XSCALE == 1 */
   6461 
   6462 
   6463 #if defined(CPU_ARM11MPCORE)
   6464 
   6465 void
   6466 pmap_pte_init_arm11mpcore(void)
   6467 {
   6468 
   6469 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   6470 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   6471 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   6472 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6473 	/* use extended small page (without APn, with TEX) */
   6474 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   6475 #else
   6476 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   6477 #endif
   6478 
   6479 	/* write-back, write-allocate */
   6480 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6481 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6482 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6483 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6484 #else
   6485 	/* no TEX. read-allocate */
   6486 	pte_l2_s_cache_mode = L2_C | L2_B;
   6487 #endif
   6488 	/*
   6489 	 * write-back, write-allocate for page tables.
   6490 	 */
   6491 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6492 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6493 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6494 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6495 #else
   6496 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   6497 #endif
   6498 
   6499 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   6500 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   6501 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   6502 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   6503 
   6504 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6505 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   6506 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   6507 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   6508 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   6509 
   6510 #else
   6511 	/* with AP[0..3] */
   6512 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6513 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6514 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6515 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6516 #endif
   6517 
   6518 #ifdef	ARM11MPCORE_COMPAT_MMU
   6519 	/* with AP[0..3] */
   6520 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6521 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6522 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6523 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6524 
   6525 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6526 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6527 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6528 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   6529 #else
   6530 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   6531 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   6532 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   6533 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   6534 
   6535 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6536 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6537 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6538 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   6539 #endif
   6540 
   6541 	pmap_copy_page_func = pmap_copy_page_generic;
   6542 	pmap_zero_page_func = pmap_zero_page_generic;
   6543 	pmap_needs_pte_sync = 1;
   6544 }
   6545 #endif	/* CPU_ARM11MPCORE */
   6546 
   6547 
   6548 #if ARM_MMU_V7 == 1
   6549 void
   6550 pmap_pte_init_armv7(void)
   6551 {
   6552 	/*
   6553 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   6554 	 * AP field is zero, that now means "no access" rather than
   6555 	 * read-only. The prototypes are a little different because of
   6556 	 * the XN bit.
   6557 	 */
   6558 	pmap_pte_init_generic();
   6559 
   6560 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   6561 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   6562 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   6563 
   6564 	if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
   6565 		/*
   6566 		 * write-back, no write-allocate, shareable for normal pages.
   6567 		 */
   6568 		pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
   6569 		pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
   6570 		pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
   6571 
   6572 		/*
   6573 		 * write-back, no write-allocate, shareable for page tables.
   6574 		 */
   6575 		pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
   6576 		pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6577 		pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6578 	}
   6579 
   6580 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   6581 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   6582 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   6583 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   6584 
   6585 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   6586 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   6587 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   6588 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   6589 
   6590 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   6591 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   6592 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   6593 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   6594 
   6595 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   6596 	pte_l1_s_proto = L1_S_PROTO_armv7;
   6597 	pte_l1_c_proto = L1_C_PROTO_armv7;
   6598 	pte_l2_s_proto = L2_S_PROTO_armv7;
   6599 
   6600 	pmap_needs_pte_sync = 1;
   6601 }
   6602 #endif /* ARM_MMU_V7 */
   6603 
   6604 /*
   6605  * return the PA of the current L1 table, for use when handling a crash dump
   6606  */
   6607 uint32_t pmap_kernel_L1_addr(void)
   6608 {
   6609 	return pmap_kernel()->pm_l1->l1_physaddr;
   6610 }
   6611 
   6612 #if defined(DDB)
   6613 /*
   6614  * A couple of ddb-callable functions for dumping pmaps
   6615  */
   6616 void pmap_dump_all(void);
   6617 void pmap_dump(pmap_t);
   6618 
   6619 void
   6620 pmap_dump_all(void)
   6621 {
   6622 	pmap_t pm;
   6623 
   6624 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6625 		if (pm == pmap_kernel())
   6626 			continue;
   6627 		pmap_dump(pm);
   6628 		printf("\n");
   6629 	}
   6630 }
   6631 
   6632 static pt_entry_t ncptes[64];
   6633 static void pmap_dump_ncpg(pmap_t);
   6634 
   6635 void
   6636 pmap_dump(pmap_t pm)
   6637 {
   6638 	struct l2_dtable *l2;
   6639 	struct l2_bucket *l2b;
   6640 	pt_entry_t *ptep, pte;
   6641 	vaddr_t l2_va, l2b_va, va;
   6642 	int i, j, k, occ, rows = 0;
   6643 
   6644 	if (pm == pmap_kernel())
   6645 		printf("pmap_kernel (%p): ", pm);
   6646 	else
   6647 		printf("user pmap (%p): ", pm);
   6648 
   6649 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   6650 
   6651 	l2_va = 0;
   6652 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6653 		l2 = pm->pm_l2[i];
   6654 
   6655 		if (l2 == NULL || l2->l2_occupancy == 0)
   6656 			continue;
   6657 
   6658 		l2b_va = l2_va;
   6659 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6660 			l2b = &l2->l2_bucket[j];
   6661 
   6662 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6663 				continue;
   6664 
   6665 			ptep = l2b->l2b_kva;
   6666 
   6667 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6668 				;
   6669 
   6670 			k &= ~63;
   6671 			occ = l2b->l2b_occupancy;
   6672 			va = l2b_va + (k * 4096);
   6673 			for (; k < 256; k++, va += 0x1000) {
   6674 				char ch = ' ';
   6675 				if ((k % 64) == 0) {
   6676 					if ((rows % 8) == 0) {
   6677 						printf(
   6678 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6679 					}
   6680 					printf("%08lx: ", va);
   6681 				}
   6682 
   6683 				ncptes[k & 63] = 0;
   6684 				pte = ptep[k];
   6685 				if (pte == 0) {
   6686 					ch = '.';
   6687 				} else {
   6688 					occ--;
   6689 					switch (pte & 0x0c) {
   6690 					case 0x00:
   6691 						ch = 'D'; /* No cache No buff */
   6692 						break;
   6693 					case 0x04:
   6694 						ch = 'B'; /* No cache buff */
   6695 						break;
   6696 					case 0x08:
   6697 						if (pte & 0x40)
   6698 							ch = 'm';
   6699 						else
   6700 						   ch = 'C'; /* Cache No buff */
   6701 						break;
   6702 					case 0x0c:
   6703 						ch = 'F'; /* Cache Buff */
   6704 						break;
   6705 					}
   6706 
   6707 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6708 						ch += 0x20;
   6709 
   6710 					if ((pte & 0xc) == 0)
   6711 						ncptes[k & 63] = pte;
   6712 				}
   6713 
   6714 				if ((k % 64) == 63) {
   6715 					rows++;
   6716 					printf("%c\n", ch);
   6717 					pmap_dump_ncpg(pm);
   6718 					if (occ == 0)
   6719 						break;
   6720 				} else
   6721 					printf("%c", ch);
   6722 			}
   6723 		}
   6724 	}
   6725 }
   6726 
   6727 static void
   6728 pmap_dump_ncpg(pmap_t pm)
   6729 {
   6730 	struct vm_page *pg;
   6731 	struct vm_page_md *md;
   6732 	struct pv_entry *pv;
   6733 	int i;
   6734 
   6735 	for (i = 0; i < 63; i++) {
   6736 		if (ncptes[i] == 0)
   6737 			continue;
   6738 
   6739 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6740 		if (pg == NULL)
   6741 			continue;
   6742 		md = VM_PAGE_TO_MD(pg);
   6743 
   6744 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6745 		    VM_PAGE_TO_PHYS(pg),
   6746 		    md->krw_mappings, md->kro_mappings,
   6747 		    md->urw_mappings, md->uro_mappings);
   6748 
   6749 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   6750 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6751 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6752 			    pv->pv_va, pv->pv_flags);
   6753 		}
   6754 	}
   6755 }
   6756 #endif
   6757 
   6758 #ifdef PMAP_STEAL_MEMORY
   6759 void
   6760 pmap_boot_pageadd(pv_addr_t *newpv)
   6761 {
   6762 	pv_addr_t *pv, *npv;
   6763 
   6764 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6765 		if (newpv->pv_pa < pv->pv_va) {
   6766 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6767 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6768 				newpv->pv_size += pv->pv_size;
   6769 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6770 			}
   6771 			pv = NULL;
   6772 		} else {
   6773 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6774 			     pv = npv) {
   6775 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6776 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6777 				if (newpv->pv_pa > npv->pv_pa)
   6778 					continue;
   6779 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6780 					pv->pv_size += newpv->pv_size;
   6781 					return;
   6782 				}
   6783 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6784 					break;
   6785 				newpv->pv_size += npv->pv_size;
   6786 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6787 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6788 				return;
   6789 			}
   6790 		}
   6791 	}
   6792 
   6793 	if (pv) {
   6794 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6795 	} else {
   6796 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6797 	}
   6798 }
   6799 
   6800 void
   6801 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6802 	pv_addr_t *rpv)
   6803 {
   6804 	pv_addr_t *pv, **pvp;
   6805 	struct vm_physseg *ps;
   6806 	size_t i;
   6807 
   6808 	KASSERT(amount & PGOFSET);
   6809 	KASSERT((mask & PGOFSET) == 0);
   6810 	KASSERT((match & PGOFSET) == 0);
   6811 	KASSERT(amount != 0);
   6812 
   6813 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6814 	     (pv = *pvp) != NULL;
   6815 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6816 		pv_addr_t *newpv;
   6817 		psize_t off;
   6818 		/*
   6819 		 * If this entry is too small to satify the request...
   6820 		 */
   6821 		KASSERT(pv->pv_size > 0);
   6822 		if (pv->pv_size < amount)
   6823 			continue;
   6824 
   6825 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6826 			if (((pv->pv_pa + off) & mask) == match
   6827 			    && off + amount <= pv->pv_size)
   6828 				break;
   6829 		}
   6830 		if (off > mask)
   6831 			continue;
   6832 
   6833 		rpv->pv_va = pv->pv_va + off;
   6834 		rpv->pv_pa = pv->pv_pa + off;
   6835 		rpv->pv_size = amount;
   6836 		pv->pv_size -= amount;
   6837 		if (pv->pv_size == 0) {
   6838 			KASSERT(off == 0);
   6839 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6840 			*pvp = SLIST_NEXT(pv, pv_list);
   6841 		} else if (off == 0) {
   6842 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6843 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6844 			*newpv = *pv;
   6845 			newpv->pv_pa += amount;
   6846 			newpv->pv_va += amount;
   6847 			*pvp = newpv;
   6848 		} else if (off < pv->pv_size) {
   6849 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6850 			*newpv = *pv;
   6851 			newpv->pv_size -= off;
   6852 			newpv->pv_pa += off + amount;
   6853 			newpv->pv_va += off + amount;
   6854 
   6855 			SLIST_NEXT(pv, pv_list) = newpv;
   6856 			pv->pv_size = off;
   6857 		} else {
   6858 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6859 		}
   6860 		memset((void *)rpv->pv_va, 0, amount);
   6861 		return;
   6862 	}
   6863 
   6864 	if (vm_nphysseg == 0)
   6865 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6866 
   6867 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6868 	     (pv = *pvp) != NULL;
   6869 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6870 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6871 			break;
   6872 	}
   6873 	KASSERT(mask == 0);
   6874 	for (i = 0; i < vm_nphysseg; i++) {
   6875 		ps = VM_PHYSMEM_PTR(i);
   6876 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6877 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6878 			rpv->pv_va = pv->pv_va;
   6879 			rpv->pv_pa = pv->pv_pa;
   6880 			rpv->pv_size = amount;
   6881 			*pvp = NULL;
   6882 			pmap_map_chunk(kernel_l1pt.pv_va,
   6883 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6884 			     ptoa(ps->avail_start),
   6885 			     amount - pv->pv_size,
   6886 			     VM_PROT_READ|VM_PROT_WRITE,
   6887 			     PTE_CACHE);
   6888 			ps->avail_start += atop(amount - pv->pv_size);
   6889 			/*
   6890 			 * If we consumed the entire physseg, remove it.
   6891 			 */
   6892 			if (ps->avail_start == ps->avail_end) {
   6893 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   6894 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   6895 			}
   6896 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6897 			return;
   6898 		}
   6899 	}
   6900 
   6901 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6902 }
   6903 
   6904 vaddr_t
   6905 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6906 {
   6907 	pv_addr_t pv;
   6908 
   6909 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6910 
   6911 	return pv.pv_va;
   6912 }
   6913 #endif /* PMAP_STEAL_MEMORY */
   6914 
   6915 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6916 {
   6917 	sysctl_createv(clog, 0, NULL, NULL,
   6918 			CTLFLAG_PERMANENT,
   6919 			CTLTYPE_NODE, "machdep", NULL,
   6920 			NULL, 0, NULL, 0,
   6921 			CTL_MACHDEP, CTL_EOL);
   6922 
   6923 	sysctl_createv(clog, 0, NULL, NULL,
   6924 			CTLFLAG_PERMANENT,
   6925 			CTLTYPE_INT, "kmpages",
   6926 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6927 			NULL, 0, &pmap_kmpages, 0,
   6928 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6929 }
   6930 
   6931 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   6932 struct vm_page *
   6933 arm_pmap_alloc_poolpage(int flags)
   6934 {
   6935 	/*
   6936 	 * On some systems, only some pages may be "coherent" for dma and we
   6937 	 * want to prefer those for pool pages (think mbufs) but fallback to
   6938 	 * any page if none is available.
   6939 	 */
   6940 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   6941 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   6942 		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
   6943 	}
   6944 
   6945 	return uvm_pagealloc(NULL, 0, NULL, flags);
   6946 }
   6947 #endif
   6948