pmap.c revision 1.269 1 /* $NetBSD: pmap.c,v 1.269 2014/02/26 19:59:49 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/pool.h>
201 #include <sys/kmem.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205 #include <sys/bus.h>
206
207 #include <uvm/uvm.h>
208
209 #include <arm/locore.h>
210 #include <arm/arm32/katelib.h>
211
212 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.269 2014/02/26 19:59:49 matt Exp $");
213
214 #ifdef PMAP_DEBUG
215
216 /* XXX need to get rid of all refs to this */
217 int pmap_debug_level = 0;
218
219 /*
220 * for switching to potentially finer grained debugging
221 */
222 #define PDB_FOLLOW 0x0001
223 #define PDB_INIT 0x0002
224 #define PDB_ENTER 0x0004
225 #define PDB_REMOVE 0x0008
226 #define PDB_CREATE 0x0010
227 #define PDB_PTPAGE 0x0020
228 #define PDB_GROWKERN 0x0040
229 #define PDB_BITS 0x0080
230 #define PDB_COLLECT 0x0100
231 #define PDB_PROTECT 0x0200
232 #define PDB_MAP_L1 0x0400
233 #define PDB_BOOTSTRAP 0x1000
234 #define PDB_PARANOIA 0x2000
235 #define PDB_WIRING 0x4000
236 #define PDB_PVDUMP 0x8000
237 #define PDB_VAC 0x10000
238 #define PDB_KENTER 0x20000
239 #define PDB_KREMOVE 0x40000
240 #define PDB_EXEC 0x80000
241
242 int debugmap = 1;
243 int pmapdebug = 0;
244 #define NPDEBUG(_lev_,_stat_) \
245 if (pmapdebug & (_lev_)) \
246 ((_stat_))
247
248 #else /* PMAP_DEBUG */
249 #define NPDEBUG(_lev_,_stat_) /* Nothing */
250 #endif /* PMAP_DEBUG */
251
252 /*
253 * pmap_kernel() points here
254 */
255 static struct pmap kernel_pmap_store;
256 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
257 #ifdef PMAP_NEED_ALLOC_POOLPAGE
258 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
259 #endif
260
261 /*
262 * Pool and cache that pmap structures are allocated from.
263 * We use a cache to avoid clearing the pm_l2[] array (1KB)
264 * in pmap_create().
265 */
266 static struct pool_cache pmap_cache;
267 static LIST_HEAD(, pmap) pmap_pmaps;
268
269 /*
270 * Pool of PV structures
271 */
272 static struct pool pmap_pv_pool;
273 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
274 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
275 static struct pool_allocator pmap_bootstrap_pv_allocator = {
276 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
277 };
278
279 /*
280 * Pool and cache of l2_dtable structures.
281 * We use a cache to avoid clearing the structures when they're
282 * allocated. (196 bytes)
283 */
284 static struct pool_cache pmap_l2dtable_cache;
285 static vaddr_t pmap_kernel_l2dtable_kva;
286
287 /*
288 * Pool and cache of L2 page descriptors.
289 * We use a cache to avoid clearing the descriptor table
290 * when they're allocated. (1KB)
291 */
292 static struct pool_cache pmap_l2ptp_cache;
293 static vaddr_t pmap_kernel_l2ptp_kva;
294 static paddr_t pmap_kernel_l2ptp_phys;
295
296 #ifdef PMAPCOUNTERS
297 #define PMAP_EVCNT_INITIALIZER(name) \
298 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
299
300 #ifdef PMAP_CACHE_VIPT
301 static struct evcnt pmap_ev_vac_clean_one =
302 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
303 static struct evcnt pmap_ev_vac_flush_one =
304 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
305 static struct evcnt pmap_ev_vac_flush_lots =
306 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
307 static struct evcnt pmap_ev_vac_flush_lots2 =
308 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
309 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
310 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
311 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
312 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
313
314 static struct evcnt pmap_ev_vac_color_new =
315 PMAP_EVCNT_INITIALIZER("new page color");
316 static struct evcnt pmap_ev_vac_color_reuse =
317 PMAP_EVCNT_INITIALIZER("ok first page color");
318 static struct evcnt pmap_ev_vac_color_ok =
319 PMAP_EVCNT_INITIALIZER("ok page color");
320 static struct evcnt pmap_ev_vac_color_blind =
321 PMAP_EVCNT_INITIALIZER("blind page color");
322 static struct evcnt pmap_ev_vac_color_change =
323 PMAP_EVCNT_INITIALIZER("change page color");
324 static struct evcnt pmap_ev_vac_color_erase =
325 PMAP_EVCNT_INITIALIZER("erase page color");
326 static struct evcnt pmap_ev_vac_color_none =
327 PMAP_EVCNT_INITIALIZER("no page color");
328 static struct evcnt pmap_ev_vac_color_restore =
329 PMAP_EVCNT_INITIALIZER("restore page color");
330
331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
336 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
337 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
338 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
339 #endif
340
341 static struct evcnt pmap_ev_mappings =
342 PMAP_EVCNT_INITIALIZER("pages mapped");
343 static struct evcnt pmap_ev_unmappings =
344 PMAP_EVCNT_INITIALIZER("pages unmapped");
345 static struct evcnt pmap_ev_remappings =
346 PMAP_EVCNT_INITIALIZER("pages remapped");
347
348 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
349 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
350 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
351
352 static struct evcnt pmap_ev_kernel_mappings =
353 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
354 static struct evcnt pmap_ev_kernel_unmappings =
355 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
356 static struct evcnt pmap_ev_kernel_remappings =
357 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
358
359 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
360 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
361 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
362
363 static struct evcnt pmap_ev_kenter_mappings =
364 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
365 static struct evcnt pmap_ev_kenter_unmappings =
366 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
367 static struct evcnt pmap_ev_kenter_remappings =
368 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
369 static struct evcnt pmap_ev_pt_mappings =
370 PMAP_EVCNT_INITIALIZER("page table pages mapped");
371
372 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
373 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
374 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
376
377 #ifdef PMAP_CACHE_VIPT
378 static struct evcnt pmap_ev_exec_mappings =
379 PMAP_EVCNT_INITIALIZER("exec pages mapped");
380 static struct evcnt pmap_ev_exec_cached =
381 PMAP_EVCNT_INITIALIZER("exec pages cached");
382
383 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
384 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
385
386 static struct evcnt pmap_ev_exec_synced =
387 PMAP_EVCNT_INITIALIZER("exec pages synced");
388 static struct evcnt pmap_ev_exec_synced_map =
389 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
390 static struct evcnt pmap_ev_exec_synced_unmap =
391 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
392 static struct evcnt pmap_ev_exec_synced_remap =
393 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
394 static struct evcnt pmap_ev_exec_synced_clearbit =
395 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
396 static struct evcnt pmap_ev_exec_synced_kremove =
397 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
398
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
401 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
402 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
403 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
404 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
405
406 static struct evcnt pmap_ev_exec_discarded_unmap =
407 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
408 static struct evcnt pmap_ev_exec_discarded_zero =
409 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
410 static struct evcnt pmap_ev_exec_discarded_copy =
411 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
412 static struct evcnt pmap_ev_exec_discarded_page_protect =
413 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
414 static struct evcnt pmap_ev_exec_discarded_clearbit =
415 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
416 static struct evcnt pmap_ev_exec_discarded_kremove =
417 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
418
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
422 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
423 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
424 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
425 #endif /* PMAP_CACHE_VIPT */
426
427 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
428 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
429 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
430
431 EVCNT_ATTACH_STATIC(pmap_ev_updates);
432 EVCNT_ATTACH_STATIC(pmap_ev_collects);
433 EVCNT_ATTACH_STATIC(pmap_ev_activations);
434
435 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
436 #else
437 #define PMAPCOUNT(x) ((void)0)
438 #endif
439
440 /*
441 * pmap copy/zero page, and mem(5) hook point
442 */
443 static pt_entry_t *csrc_pte, *cdst_pte;
444 static vaddr_t csrcp, cdstp;
445 vaddr_t memhook; /* used by mem.c */
446 kmutex_t memlock; /* used by mem.c */
447 void *zeropage; /* used by mem.c */
448 extern void *msgbufaddr;
449 int pmap_kmpages;
450 /*
451 * Flag to indicate if pmap_init() has done its thing
452 */
453 bool pmap_initialized;
454
455 /*
456 * Misc. locking data structures
457 */
458
459 #define pmap_acquire_pmap_lock(pm) \
460 do { \
461 if ((pm) != pmap_kernel()) \
462 mutex_enter((pm)->pm_lock); \
463 } while (/*CONSTCOND*/0)
464
465 #define pmap_release_pmap_lock(pm) \
466 do { \
467 if ((pm) != pmap_kernel()) \
468 mutex_exit((pm)->pm_lock); \
469 } while (/*CONSTCOND*/0)
470
471
472 /*
473 * Metadata for L1 translation tables.
474 */
475 struct l1_ttable {
476 /* Entry on the L1 Table list */
477 SLIST_ENTRY(l1_ttable) l1_link;
478
479 /* Entry on the L1 Least Recently Used list */
480 TAILQ_ENTRY(l1_ttable) l1_lru;
481
482 /* Track how many domains are allocated from this L1 */
483 volatile u_int l1_domain_use_count;
484
485 /*
486 * A free-list of domain numbers for this L1.
487 * We avoid using ffs() and a bitmap to track domains since ffs()
488 * is slow on ARM.
489 */
490 uint8_t l1_domain_first;
491 uint8_t l1_domain_free[PMAP_DOMAINS];
492
493 /* Physical address of this L1 page table */
494 paddr_t l1_physaddr;
495
496 /* KVA of this L1 page table */
497 pd_entry_t *l1_kva;
498 };
499
500 /*
501 * Convert a virtual address into its L1 table index. That is, the
502 * index used to locate the L2 descriptor table pointer in an L1 table.
503 * This is basically used to index l1->l1_kva[].
504 *
505 * Each L2 descriptor table represents 1MB of VA space.
506 */
507 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
508
509 /*
510 * L1 Page Tables are tracked using a Least Recently Used list.
511 * - New L1s are allocated from the HEAD.
512 * - Freed L1s are added to the TAIl.
513 * - Recently accessed L1s (where an 'access' is some change to one of
514 * the userland pmaps which owns this L1) are moved to the TAIL.
515 */
516 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
517 static kmutex_t l1_lru_lock __cacheline_aligned;
518
519 /*
520 * A list of all L1 tables
521 */
522 static SLIST_HEAD(, l1_ttable) l1_list;
523
524 /*
525 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
526 *
527 * This is normally 16MB worth L2 page descriptors for any given pmap.
528 * Reference counts are maintained for L2 descriptors so they can be
529 * freed when empty.
530 */
531 struct l2_dtable {
532 /* The number of L2 page descriptors allocated to this l2_dtable */
533 u_int l2_occupancy;
534
535 /* List of L2 page descriptors */
536 struct l2_bucket {
537 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
538 paddr_t l2b_phys; /* Physical address of same */
539 u_short l2b_l1idx; /* This L2 table's L1 index */
540 u_short l2b_occupancy; /* How many active descriptors */
541 } l2_bucket[L2_BUCKET_SIZE];
542 };
543
544 /*
545 * Given an L1 table index, calculate the corresponding l2_dtable index
546 * and bucket index within the l2_dtable.
547 */
548 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
549 (L2_SIZE - 1))
550 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
551
552 /*
553 * Given a virtual address, this macro returns the
554 * virtual address required to drop into the next L2 bucket.
555 */
556 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
557
558 /*
559 * L2 allocation.
560 */
561 #define pmap_alloc_l2_dtable() \
562 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
563 #define pmap_free_l2_dtable(l2) \
564 pool_cache_put(&pmap_l2dtable_cache, (l2))
565 #define pmap_alloc_l2_ptp(pap) \
566 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
567 PR_NOWAIT, (pap)))
568
569 /*
570 * We try to map the page tables write-through, if possible. However, not
571 * all CPUs have a write-through cache mode, so on those we have to sync
572 * the cache when we frob page tables.
573 *
574 * We try to evaluate this at compile time, if possible. However, it's
575 * not always possible to do that, hence this run-time var.
576 */
577 int pmap_needs_pte_sync;
578
579 /*
580 * Real definition of pv_entry.
581 */
582 struct pv_entry {
583 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
584 pmap_t pv_pmap; /* pmap where mapping lies */
585 vaddr_t pv_va; /* virtual address for mapping */
586 u_int pv_flags; /* flags */
587 };
588
589 /*
590 * Macro to determine if a mapping might be resident in the
591 * instruction cache and/or TLB
592 */
593 #if ARM_MMU_V7 > 0
594 /*
595 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
596 * there are no explicit accesses, so there may be always be TLB entries to
597 * flush. If we used ASIDs then this would not be a problem.
598 */
599 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
600 #else
601 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
602 #endif
603 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
604 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
605 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
606
607 /*
608 * Macro to determine if a mapping might be resident in the
609 * data cache and/or TLB
610 */
611 #if ARM_MMU_V7 > 0
612 /*
613 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
614 * there are no explicit accesses, so there may be always be TLB entries to
615 * flush. If we used ASIDs then this would not be a problem.
616 */
617 #define PV_BEEN_REFD(f) (1)
618 #else
619 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
620 #endif
621
622 /*
623 * Local prototypes
624 */
625 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
626 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
627 pt_entry_t **);
628 static bool pmap_is_current(pmap_t);
629 static bool pmap_is_cached(pmap_t);
630 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
631 pmap_t, vaddr_t, u_int);
632 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
633 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
634 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
635 u_int, u_int);
636
637 static void pmap_pinit(pmap_t);
638 static int pmap_pmap_ctor(void *, void *, int);
639
640 static void pmap_alloc_l1(pmap_t);
641 static void pmap_free_l1(pmap_t);
642 static void pmap_use_l1(pmap_t);
643
644 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
645 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
646 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
647 static int pmap_l2ptp_ctor(void *, void *, int);
648 static int pmap_l2dtable_ctor(void *, void *, int);
649
650 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
651 #ifdef PMAP_CACHE_VIVT
652 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
653 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
654 #endif
655
656 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
657 #ifdef PMAP_CACHE_VIVT
658 static int pmap_clean_page(struct pv_entry *, bool);
659 #endif
660 #ifdef PMAP_CACHE_VIPT
661 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
662 enum pmap_flush_op {
663 PMAP_FLUSH_PRIMARY,
664 PMAP_FLUSH_SECONDARY,
665 PMAP_CLEAN_PRIMARY
666 };
667 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
668 #endif
669 static void pmap_page_remove(struct vm_page_md *, paddr_t);
670
671 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
672 static vaddr_t kernel_pt_lookup(paddr_t);
673
674
675 /*
676 * Misc variables
677 */
678 vaddr_t virtual_avail;
679 vaddr_t virtual_end;
680 vaddr_t pmap_curmaxkvaddr;
681
682 paddr_t avail_start;
683 paddr_t avail_end;
684
685 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
686 pv_addr_t kernelpages;
687 pv_addr_t kernel_l1pt;
688 pv_addr_t systempage;
689
690 /* Function to set the debug level of the pmap code */
691
692 #ifdef PMAP_DEBUG
693 void
694 pmap_debug(int level)
695 {
696 pmap_debug_level = level;
697 printf("pmap_debug: level=%d\n", pmap_debug_level);
698 }
699 #endif /* PMAP_DEBUG */
700
701 #ifdef PMAP_CACHE_VIPT
702 #define PMAP_VALIDATE_MD_PAGE(md) \
703 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
704 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
705 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
706 #endif /* PMAP_CACHE_VIPT */
707 /*
708 * A bunch of routines to conditionally flush the caches/TLB depending
709 * on whether the specified pmap actually needs to be flushed at any
710 * given time.
711 */
712 static inline void
713 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
714 {
715 if (pm->pm_cstate.cs_tlb_id != 0) {
716 if (PV_BEEN_EXECD(flags)) {
717 cpu_tlb_flushID_SE(va);
718 } else if (PV_BEEN_REFD(flags)) {
719 cpu_tlb_flushD_SE(va);
720 }
721 }
722 }
723
724 static inline void
725 pmap_tlb_flushID(pmap_t pm)
726 {
727 if (pm->pm_cstate.cs_tlb_id) {
728 cpu_tlb_flushID();
729 #if ARM_MMU_V7 == 0
730 /*
731 * Speculative loads by Cortex cores can cause TLB entries to
732 * be filled even if there are no explicit accesses, so there
733 * may be always be TLB entries to flush. If we used ASIDs
734 * then it would not be a problem.
735 * This is not true for other CPUs.
736 */
737 pm->pm_cstate.cs_tlb = 0;
738 #endif /* ARM_MMU_V7 */
739 }
740 }
741
742 static inline void
743 pmap_tlb_flushD(pmap_t pm)
744 {
745 if (pm->pm_cstate.cs_tlb_d) {
746 cpu_tlb_flushD();
747 #if ARM_MMU_V7 == 0
748 /*
749 * Speculative loads by Cortex cores can cause TLB entries to
750 * be filled even if there are no explicit accesses, so there
751 * may be always be TLB entries to flush. If we used ASIDs
752 * then it would not be a problem.
753 * This is not true for other CPUs.
754 */
755 pm->pm_cstate.cs_tlb_d = 0;
756 #endif /* ARM_MMU_V7 */
757 }
758 }
759
760 #ifdef PMAP_CACHE_VIVT
761 static inline void
762 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
763 {
764 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
765 cpu_idcache_wbinv_range(va, PAGE_SIZE);
766 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
767 if (do_inv) {
768 if (flags & PVF_WRITE)
769 cpu_dcache_wbinv_range(va, PAGE_SIZE);
770 else
771 cpu_dcache_inv_range(va, PAGE_SIZE);
772 } else if (flags & PVF_WRITE) {
773 cpu_dcache_wb_range(va, PAGE_SIZE);
774 }
775 }
776 }
777
778 static inline void
779 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
780 {
781 if (PV_BEEN_EXECD(flags)) {
782 if (pm->pm_cstate.cs_cache_id) {
783 cpu_idcache_wbinv_all();
784 pm->pm_cstate.cs_cache = 0;
785 }
786 } else if (pm->pm_cstate.cs_cache_d) {
787 cpu_dcache_wbinv_all();
788 pm->pm_cstate.cs_cache_d = 0;
789 }
790 }
791 #endif /* PMAP_CACHE_VIVT */
792
793 static inline uint8_t
794 pmap_domain(pmap_t pm)
795 {
796 return pm->pm_domain;
797 }
798
799 static inline pd_entry_t *
800 pmap_l1_kva(pmap_t pm)
801 {
802 return pm->pm_l1->l1_kva;
803 }
804
805 static inline bool
806 pmap_is_current(pmap_t pm)
807 {
808
809 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
810 return true;
811
812 return false;
813 }
814
815 static inline bool
816 pmap_is_cached(pmap_t pm)
817 {
818
819 struct cpu_info * const ci = curcpu();
820 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL ||
821 ci->ci_pmap_lastuser == pm)
822 return (true);
823
824 return false;
825 }
826
827 /*
828 * PTE_SYNC_CURRENT:
829 *
830 * Make sure the pte is written out to RAM.
831 * We need to do this for one of two cases:
832 * - We're dealing with the kernel pmap
833 * - There is no pmap active in the cache/tlb.
834 * - The specified pmap is 'active' in the cache/tlb.
835 */
836 #ifdef PMAP_INCLUDE_PTE_SYNC
837 #define PTE_SYNC_CURRENT(pm, ptep) \
838 do { \
839 if (PMAP_NEEDS_PTE_SYNC && \
840 pmap_is_cached(pm)) \
841 PTE_SYNC(ptep); \
842 } while (/*CONSTCOND*/0)
843 #else
844 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
845 #endif
846
847 /*
848 * main pv_entry manipulation functions:
849 * pmap_enter_pv: enter a mapping onto a vm_page list
850 * pmap_remove_pv: remove a mapping from a vm_page list
851 *
852 * NOTE: pmap_enter_pv expects to lock the pvh itself
853 * pmap_remove_pv expects the caller to lock the pvh before calling
854 */
855
856 /*
857 * pmap_enter_pv: enter a mapping onto a vm_page lst
858 *
859 * => caller should hold the proper lock on pmap_main_lock
860 * => caller should have pmap locked
861 * => we will gain the lock on the vm_page and allocate the new pv_entry
862 * => caller should adjust ptp's wire_count before calling
863 * => caller should not adjust pmap's wire_count
864 */
865 static void
866 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
867 vaddr_t va, u_int flags)
868 {
869 struct pv_entry **pvp;
870
871 NPDEBUG(PDB_PVDUMP,
872 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
873
874 pv->pv_pmap = pm;
875 pv->pv_va = va;
876 pv->pv_flags = flags;
877
878 pvp = &SLIST_FIRST(&md->pvh_list);
879 #ifdef PMAP_CACHE_VIPT
880 /*
881 * Insert unmanaged entries, writeable first, at the head of
882 * the pv list.
883 */
884 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
885 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
886 pvp = &SLIST_NEXT(*pvp, pv_link);
887 }
888 if (!PV_IS_WRITE_P(flags)) {
889 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
890 pvp = &SLIST_NEXT(*pvp, pv_link);
891 }
892 #endif
893 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
894 *pvp = pv; /* ... locked list */
895 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
896 #ifdef PMAP_CACHE_VIPT
897 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
898 md->pvh_attrs |= PVF_KMOD;
899 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
900 md->pvh_attrs |= PVF_DIRTY;
901 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
902 #endif
903 if (pm == pmap_kernel()) {
904 PMAPCOUNT(kernel_mappings);
905 if (flags & PVF_WRITE)
906 md->krw_mappings++;
907 else
908 md->kro_mappings++;
909 } else {
910 if (flags & PVF_WRITE)
911 md->urw_mappings++;
912 else
913 md->uro_mappings++;
914 }
915
916 #ifdef PMAP_CACHE_VIPT
917 /*
918 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
919 * do it here as well to keep the mappings & KVF_WRITE consistent.
920 */
921 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
922 md->pvh_attrs |= PVF_WRITE;
923 }
924 /*
925 * If this is an exec mapping and its the first exec mapping
926 * for this page, make sure to sync the I-cache.
927 */
928 if (PV_IS_EXEC_P(flags)) {
929 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
930 pmap_syncicache_page(md, pa);
931 PMAPCOUNT(exec_synced_map);
932 }
933 PMAPCOUNT(exec_mappings);
934 }
935 #endif
936
937 PMAPCOUNT(mappings);
938
939 if (pv->pv_flags & PVF_WIRED)
940 ++pm->pm_stats.wired_count;
941 }
942
943 /*
944 *
945 * pmap_find_pv: Find a pv entry
946 *
947 * => caller should hold lock on vm_page
948 */
949 static inline struct pv_entry *
950 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
951 {
952 struct pv_entry *pv;
953
954 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
955 if (pm == pv->pv_pmap && va == pv->pv_va)
956 break;
957 }
958
959 return (pv);
960 }
961
962 /*
963 * pmap_remove_pv: try to remove a mapping from a pv_list
964 *
965 * => caller should hold proper lock on pmap_main_lock
966 * => pmap should be locked
967 * => caller should hold lock on vm_page [so that attrs can be adjusted]
968 * => caller should adjust ptp's wire_count and free PTP if needed
969 * => caller should NOT adjust pmap's wire_count
970 * => we return the removed pv
971 */
972 static struct pv_entry *
973 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
974 {
975 struct pv_entry *pv, **prevptr;
976
977 NPDEBUG(PDB_PVDUMP,
978 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
979
980 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
981 pv = *prevptr;
982
983 while (pv) {
984 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
985 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
986 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
987 if (pv->pv_flags & PVF_WIRED) {
988 --pm->pm_stats.wired_count;
989 }
990 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
991 if (pm == pmap_kernel()) {
992 PMAPCOUNT(kernel_unmappings);
993 if (pv->pv_flags & PVF_WRITE)
994 md->krw_mappings--;
995 else
996 md->kro_mappings--;
997 } else {
998 if (pv->pv_flags & PVF_WRITE)
999 md->urw_mappings--;
1000 else
1001 md->uro_mappings--;
1002 }
1003
1004 PMAPCOUNT(unmappings);
1005 #ifdef PMAP_CACHE_VIPT
1006 if (!(pv->pv_flags & PVF_WRITE))
1007 break;
1008 /*
1009 * If this page has had an exec mapping, then if
1010 * this was the last mapping, discard the contents,
1011 * otherwise sync the i-cache for this page.
1012 */
1013 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1014 if (SLIST_EMPTY(&md->pvh_list)) {
1015 md->pvh_attrs &= ~PVF_EXEC;
1016 PMAPCOUNT(exec_discarded_unmap);
1017 } else {
1018 pmap_syncicache_page(md, pa);
1019 PMAPCOUNT(exec_synced_unmap);
1020 }
1021 }
1022 #endif /* PMAP_CACHE_VIPT */
1023 break;
1024 }
1025 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1026 pv = *prevptr; /* advance */
1027 }
1028
1029 #ifdef PMAP_CACHE_VIPT
1030 /*
1031 * If we no longer have a WRITEABLE KENTRY at the head of list,
1032 * clear the KMOD attribute from the page.
1033 */
1034 if (SLIST_FIRST(&md->pvh_list) == NULL
1035 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1036 md->pvh_attrs &= ~PVF_KMOD;
1037
1038 /*
1039 * If this was a writeable page and there are no more writeable
1040 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1041 * the contents to memory.
1042 */
1043 if (arm_cache_prefer_mask != 0) {
1044 if (md->krw_mappings + md->urw_mappings == 0)
1045 md->pvh_attrs &= ~PVF_WRITE;
1046 PMAP_VALIDATE_MD_PAGE(md);
1047 }
1048 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1049 #endif /* PMAP_CACHE_VIPT */
1050
1051 return(pv); /* return removed pv */
1052 }
1053
1054 /*
1055 *
1056 * pmap_modify_pv: Update pv flags
1057 *
1058 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1059 * => caller should NOT adjust pmap's wire_count
1060 * => caller must call pmap_vac_me_harder() if writable status of a page
1061 * may have changed.
1062 * => we return the old flags
1063 *
1064 * Modify a physical-virtual mapping in the pv table
1065 */
1066 static u_int
1067 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1068 u_int clr_mask, u_int set_mask)
1069 {
1070 struct pv_entry *npv;
1071 u_int flags, oflags;
1072
1073 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1074 KASSERT(!PV_IS_KENTRY_P(set_mask));
1075
1076 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1077 return (0);
1078
1079 NPDEBUG(PDB_PVDUMP,
1080 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1081
1082 /*
1083 * There is at least one VA mapping this page.
1084 */
1085
1086 if (clr_mask & (PVF_REF | PVF_MOD)) {
1087 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1088 #ifdef PMAP_CACHE_VIPT
1089 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1090 md->pvh_attrs |= PVF_DIRTY;
1091 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1092 #endif
1093 }
1094
1095 oflags = npv->pv_flags;
1096 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1097
1098 if ((flags ^ oflags) & PVF_WIRED) {
1099 if (flags & PVF_WIRED)
1100 ++pm->pm_stats.wired_count;
1101 else
1102 --pm->pm_stats.wired_count;
1103 }
1104
1105 if ((flags ^ oflags) & PVF_WRITE) {
1106 if (pm == pmap_kernel()) {
1107 if (flags & PVF_WRITE) {
1108 md->krw_mappings++;
1109 md->kro_mappings--;
1110 } else {
1111 md->kro_mappings++;
1112 md->krw_mappings--;
1113 }
1114 } else {
1115 if (flags & PVF_WRITE) {
1116 md->urw_mappings++;
1117 md->uro_mappings--;
1118 } else {
1119 md->uro_mappings++;
1120 md->urw_mappings--;
1121 }
1122 }
1123 }
1124 #ifdef PMAP_CACHE_VIPT
1125 if (arm_cache_prefer_mask != 0) {
1126 if (md->urw_mappings + md->krw_mappings == 0) {
1127 md->pvh_attrs &= ~PVF_WRITE;
1128 } else {
1129 md->pvh_attrs |= PVF_WRITE;
1130 }
1131 }
1132 /*
1133 * We have two cases here: the first is from enter_pv (new exec
1134 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1135 * Since in latter, pmap_enter_pv won't do anything, we just have
1136 * to do what pmap_remove_pv would do.
1137 */
1138 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1139 || (PV_IS_EXEC_P(md->pvh_attrs)
1140 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1141 pmap_syncicache_page(md, pa);
1142 PMAPCOUNT(exec_synced_remap);
1143 }
1144 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1145 #endif
1146
1147 PMAPCOUNT(remappings);
1148
1149 return (oflags);
1150 }
1151
1152 /*
1153 * Allocate an L1 translation table for the specified pmap.
1154 * This is called at pmap creation time.
1155 */
1156 static void
1157 pmap_alloc_l1(pmap_t pm)
1158 {
1159 struct l1_ttable *l1;
1160 uint8_t domain;
1161
1162 /*
1163 * Remove the L1 at the head of the LRU list
1164 */
1165 mutex_spin_enter(&l1_lru_lock);
1166 l1 = TAILQ_FIRST(&l1_lru_list);
1167 KDASSERT(l1 != NULL);
1168 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1169
1170 /*
1171 * Pick the first available domain number, and update
1172 * the link to the next number.
1173 */
1174 domain = l1->l1_domain_first;
1175 l1->l1_domain_first = l1->l1_domain_free[domain];
1176
1177 /*
1178 * If there are still free domain numbers in this L1,
1179 * put it back on the TAIL of the LRU list.
1180 */
1181 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1182 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1183
1184 mutex_spin_exit(&l1_lru_lock);
1185
1186 /*
1187 * Fix up the relevant bits in the pmap structure
1188 */
1189 pm->pm_l1 = l1;
1190 pm->pm_domain = domain + 1;
1191 }
1192
1193 /*
1194 * Free an L1 translation table.
1195 * This is called at pmap destruction time.
1196 */
1197 static void
1198 pmap_free_l1(pmap_t pm)
1199 {
1200 struct l1_ttable *l1 = pm->pm_l1;
1201
1202 mutex_spin_enter(&l1_lru_lock);
1203
1204 /*
1205 * If this L1 is currently on the LRU list, remove it.
1206 */
1207 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1208 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1209
1210 /*
1211 * Free up the domain number which was allocated to the pmap
1212 */
1213 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1214 l1->l1_domain_first = pmap_domain(pm) - 1;
1215 l1->l1_domain_use_count--;
1216
1217 /*
1218 * The L1 now must have at least 1 free domain, so add
1219 * it back to the LRU list. If the use count is zero,
1220 * put it at the head of the list, otherwise it goes
1221 * to the tail.
1222 */
1223 if (l1->l1_domain_use_count == 0)
1224 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1225 else
1226 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1227
1228 mutex_spin_exit(&l1_lru_lock);
1229 }
1230
1231 static inline void
1232 pmap_use_l1(pmap_t pm)
1233 {
1234 struct l1_ttable *l1;
1235
1236 /*
1237 * Do nothing if we're in interrupt context.
1238 * Access to an L1 by the kernel pmap must not affect
1239 * the LRU list.
1240 */
1241 if (cpu_intr_p() || pm == pmap_kernel())
1242 return;
1243
1244 l1 = pm->pm_l1;
1245
1246 /*
1247 * If the L1 is not currently on the LRU list, just return
1248 */
1249 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1250 return;
1251
1252 mutex_spin_enter(&l1_lru_lock);
1253
1254 /*
1255 * Check the use count again, now that we've acquired the lock
1256 */
1257 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1258 mutex_spin_exit(&l1_lru_lock);
1259 return;
1260 }
1261
1262 /*
1263 * Move the L1 to the back of the LRU list
1264 */
1265 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1266 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1267
1268 mutex_spin_exit(&l1_lru_lock);
1269 }
1270
1271 /*
1272 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1273 *
1274 * Free an L2 descriptor table.
1275 */
1276 static inline void
1277 #ifndef PMAP_INCLUDE_PTE_SYNC
1278 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1279 #else
1280 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1281 #endif
1282 {
1283 #ifdef PMAP_INCLUDE_PTE_SYNC
1284 #ifdef PMAP_CACHE_VIVT
1285 /*
1286 * Note: With a write-back cache, we may need to sync this
1287 * L2 table before re-using it.
1288 * This is because it may have belonged to a non-current
1289 * pmap, in which case the cache syncs would have been
1290 * skipped for the pages that were being unmapped. If the
1291 * L2 table were then to be immediately re-allocated to
1292 * the *current* pmap, it may well contain stale mappings
1293 * which have not yet been cleared by a cache write-back
1294 * and so would still be visible to the mmu.
1295 */
1296 if (need_sync)
1297 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1298 #endif /* PMAP_CACHE_VIVT */
1299 #endif /* PMAP_INCLUDE_PTE_SYNC */
1300 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1301 }
1302
1303 /*
1304 * Returns a pointer to the L2 bucket associated with the specified pmap
1305 * and VA, or NULL if no L2 bucket exists for the address.
1306 */
1307 static inline struct l2_bucket *
1308 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1309 {
1310 struct l2_dtable *l2;
1311 struct l2_bucket *l2b;
1312 u_short l1idx;
1313
1314 l1idx = L1_IDX(va);
1315
1316 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1317 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1318 return (NULL);
1319
1320 return (l2b);
1321 }
1322
1323 /*
1324 * Returns a pointer to the L2 bucket associated with the specified pmap
1325 * and VA.
1326 *
1327 * If no L2 bucket exists, perform the necessary allocations to put an L2
1328 * bucket/page table in place.
1329 *
1330 * Note that if a new L2 bucket/page was allocated, the caller *must*
1331 * increment the bucket occupancy counter appropriately *before*
1332 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1333 * the bucket/page in the meantime.
1334 */
1335 static struct l2_bucket *
1336 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1337 {
1338 struct l2_dtable *l2;
1339 struct l2_bucket *l2b;
1340 u_short l1idx;
1341
1342 l1idx = L1_IDX(va);
1343
1344 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1345 /*
1346 * No mapping at this address, as there is
1347 * no entry in the L1 table.
1348 * Need to allocate a new l2_dtable.
1349 */
1350 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1351 return (NULL);
1352
1353 /*
1354 * Link it into the parent pmap
1355 */
1356 pm->pm_l2[L2_IDX(l1idx)] = l2;
1357 }
1358
1359 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1360
1361 /*
1362 * Fetch pointer to the L2 page table associated with the address.
1363 */
1364 if (l2b->l2b_kva == NULL) {
1365 pt_entry_t *ptep;
1366
1367 /*
1368 * No L2 page table has been allocated. Chances are, this
1369 * is because we just allocated the l2_dtable, above.
1370 */
1371 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1372 /*
1373 * Oops, no more L2 page tables available at this
1374 * time. We may need to deallocate the l2_dtable
1375 * if we allocated a new one above.
1376 */
1377 if (l2->l2_occupancy == 0) {
1378 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1379 pmap_free_l2_dtable(l2);
1380 }
1381 return (NULL);
1382 }
1383
1384 l2->l2_occupancy++;
1385 l2b->l2b_kva = ptep;
1386 l2b->l2b_l1idx = l1idx;
1387 }
1388
1389 return (l2b);
1390 }
1391
1392 /*
1393 * One or more mappings in the specified L2 descriptor table have just been
1394 * invalidated.
1395 *
1396 * Garbage collect the metadata and descriptor table itself if necessary.
1397 *
1398 * The pmap lock must be acquired when this is called (not necessary
1399 * for the kernel pmap).
1400 */
1401 static void
1402 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1403 {
1404 struct l2_dtable *l2;
1405 pd_entry_t *pl1pd, l1pd;
1406 pt_entry_t *ptep;
1407 u_short l1idx;
1408
1409 KDASSERT(count <= l2b->l2b_occupancy);
1410
1411 /*
1412 * Update the bucket's reference count according to how many
1413 * PTEs the caller has just invalidated.
1414 */
1415 l2b->l2b_occupancy -= count;
1416
1417 /*
1418 * Note:
1419 *
1420 * Level 2 page tables allocated to the kernel pmap are never freed
1421 * as that would require checking all Level 1 page tables and
1422 * removing any references to the Level 2 page table. See also the
1423 * comment elsewhere about never freeing bootstrap L2 descriptors.
1424 *
1425 * We make do with just invalidating the mapping in the L2 table.
1426 *
1427 * This isn't really a big deal in practice and, in fact, leads
1428 * to a performance win over time as we don't need to continually
1429 * alloc/free.
1430 */
1431 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1432 return;
1433
1434 /*
1435 * There are no more valid mappings in this level 2 page table.
1436 * Go ahead and NULL-out the pointer in the bucket, then
1437 * free the page table.
1438 */
1439 l1idx = l2b->l2b_l1idx;
1440 ptep = l2b->l2b_kva;
1441 l2b->l2b_kva = NULL;
1442
1443 pl1pd = pmap_l1_kva(pm) + l1idx;
1444
1445 /*
1446 * If the L1 slot matches the pmap's domain
1447 * number, then invalidate it.
1448 */
1449 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1450 if (l1pd == (L1_C_DOM(pmap_domain(pm)) | L1_TYPE_C)) {
1451 *pl1pd = 0;
1452 PTE_SYNC(pl1pd);
1453 }
1454
1455 /*
1456 * Release the L2 descriptor table back to the pool cache.
1457 */
1458 #ifndef PMAP_INCLUDE_PTE_SYNC
1459 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1460 #else
1461 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1462 #endif
1463
1464 /*
1465 * Update the reference count in the associated l2_dtable
1466 */
1467 l2 = pm->pm_l2[L2_IDX(l1idx)];
1468 if (--l2->l2_occupancy > 0)
1469 return;
1470
1471 /*
1472 * There are no more valid mappings in any of the Level 1
1473 * slots managed by this l2_dtable. Go ahead and NULL-out
1474 * the pointer in the parent pmap and free the l2_dtable.
1475 */
1476 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1477 pmap_free_l2_dtable(l2);
1478 }
1479
1480 /*
1481 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1482 * structures.
1483 */
1484 static int
1485 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1486 {
1487 #ifndef PMAP_INCLUDE_PTE_SYNC
1488 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1489
1490 /*
1491 * The mappings for these page tables were initially made using
1492 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1493 * mode will not be right for page table mappings. To avoid
1494 * polluting the pmap_kenter_pa() code with a special case for
1495 * page tables, we simply fix up the cache-mode here if it's not
1496 * correct.
1497 */
1498 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1499 KDASSERT(l2b != NULL);
1500 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
1501 pt_entry_t opte = *ptep;
1502
1503 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1504 /*
1505 * Page tables must have the cache-mode set to Write-Thru.
1506 */
1507 const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
1508 | pte_l2_s_cache_mode_pt;
1509 l2pte_set(ptep, npte, opte);
1510 PTE_SYNC(ptep);
1511 cpu_tlb_flushD_SE(va);
1512 cpu_cpwait();
1513 }
1514 #endif
1515
1516 memset(v, 0, L2_TABLE_SIZE_REAL);
1517 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1518 return (0);
1519 }
1520
1521 static int
1522 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1523 {
1524
1525 memset(v, 0, sizeof(struct l2_dtable));
1526 return (0);
1527 }
1528
1529 static int
1530 pmap_pmap_ctor(void *arg, void *v, int flags)
1531 {
1532
1533 memset(v, 0, sizeof(struct pmap));
1534 return (0);
1535 }
1536
1537 static void
1538 pmap_pinit(pmap_t pm)
1539 {
1540 #ifndef ARM_HAS_VBAR
1541 struct l2_bucket *l2b;
1542
1543 if (vector_page < KERNEL_BASE) {
1544 /*
1545 * Map the vector page.
1546 */
1547 pmap_enter(pm, vector_page, systempage.pv_pa,
1548 VM_PROT_READ | VM_PROT_EXECUTE,
1549 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1550 pmap_update(pm);
1551
1552 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
1553 l2b = pmap_get_l2_bucket(pm, vector_page);
1554 KDASSERT(l2b != NULL);
1555 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1556 L1_C_DOM(pmap_domain(pm));
1557 } else
1558 pm->pm_pl1vec = NULL;
1559 #endif
1560 }
1561
1562 #ifdef PMAP_CACHE_VIVT
1563 /*
1564 * Since we have a virtually indexed cache, we may need to inhibit caching if
1565 * there is more than one mapping and at least one of them is writable.
1566 * Since we purge the cache on every context switch, we only need to check for
1567 * other mappings within the same pmap, or kernel_pmap.
1568 * This function is also called when a page is unmapped, to possibly reenable
1569 * caching on any remaining mappings.
1570 *
1571 * The code implements the following logic, where:
1572 *
1573 * KW = # of kernel read/write pages
1574 * KR = # of kernel read only pages
1575 * UW = # of user read/write pages
1576 * UR = # of user read only pages
1577 *
1578 * KC = kernel mapping is cacheable
1579 * UC = user mapping is cacheable
1580 *
1581 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1582 * +---------------------------------------------
1583 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1584 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1585 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1586 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1587 */
1588
1589 static const int pmap_vac_flags[4][4] = {
1590 {-1, 0, 0, PVF_KNC},
1591 {0, 0, PVF_NC, PVF_NC},
1592 {0, PVF_NC, PVF_NC, PVF_NC},
1593 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1594 };
1595
1596 static inline int
1597 pmap_get_vac_flags(const struct vm_page_md *md)
1598 {
1599 int kidx, uidx;
1600
1601 kidx = 0;
1602 if (md->kro_mappings || md->krw_mappings > 1)
1603 kidx |= 1;
1604 if (md->krw_mappings)
1605 kidx |= 2;
1606
1607 uidx = 0;
1608 if (md->uro_mappings || md->urw_mappings > 1)
1609 uidx |= 1;
1610 if (md->urw_mappings)
1611 uidx |= 2;
1612
1613 return (pmap_vac_flags[uidx][kidx]);
1614 }
1615
1616 static inline void
1617 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1618 {
1619 int nattr;
1620
1621 nattr = pmap_get_vac_flags(md);
1622
1623 if (nattr < 0) {
1624 md->pvh_attrs &= ~PVF_NC;
1625 return;
1626 }
1627
1628 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1629 return;
1630
1631 if (pm == pmap_kernel())
1632 pmap_vac_me_kpmap(md, pa, pm, va);
1633 else
1634 pmap_vac_me_user(md, pa, pm, va);
1635
1636 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1637 }
1638
1639 static void
1640 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1641 {
1642 u_int u_cacheable, u_entries;
1643 struct pv_entry *pv;
1644 pmap_t last_pmap = pm;
1645
1646 /*
1647 * Pass one, see if there are both kernel and user pmaps for
1648 * this page. Calculate whether there are user-writable or
1649 * kernel-writable pages.
1650 */
1651 u_cacheable = 0;
1652 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1653 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1654 u_cacheable++;
1655 }
1656
1657 u_entries = md->urw_mappings + md->uro_mappings;
1658
1659 /*
1660 * We know we have just been updating a kernel entry, so if
1661 * all user pages are already cacheable, then there is nothing
1662 * further to do.
1663 */
1664 if (md->k_mappings == 0 && u_cacheable == u_entries)
1665 return;
1666
1667 if (u_entries) {
1668 /*
1669 * Scan over the list again, for each entry, if it
1670 * might not be set correctly, call pmap_vac_me_user
1671 * to recalculate the settings.
1672 */
1673 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1674 /*
1675 * We know kernel mappings will get set
1676 * correctly in other calls. We also know
1677 * that if the pmap is the same as last_pmap
1678 * then we've just handled this entry.
1679 */
1680 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1681 continue;
1682
1683 /*
1684 * If there are kernel entries and this page
1685 * is writable but non-cacheable, then we can
1686 * skip this entry also.
1687 */
1688 if (md->k_mappings &&
1689 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1690 (PVF_NC | PVF_WRITE))
1691 continue;
1692
1693 /*
1694 * Similarly if there are no kernel-writable
1695 * entries and the page is already
1696 * read-only/cacheable.
1697 */
1698 if (md->krw_mappings == 0 &&
1699 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1700 continue;
1701
1702 /*
1703 * For some of the remaining cases, we know
1704 * that we must recalculate, but for others we
1705 * can't tell if they are correct or not, so
1706 * we recalculate anyway.
1707 */
1708 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1709 }
1710
1711 if (md->k_mappings == 0)
1712 return;
1713 }
1714
1715 pmap_vac_me_user(md, pa, pm, va);
1716 }
1717
1718 static void
1719 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1720 {
1721 pmap_t kpmap = pmap_kernel();
1722 struct pv_entry *pv, *npv = NULL;
1723 u_int entries = 0;
1724 u_int writable = 0;
1725 u_int cacheable_entries = 0;
1726 u_int kern_cacheable = 0;
1727 u_int other_writable = 0;
1728
1729 /*
1730 * Count mappings and writable mappings in this pmap.
1731 * Include kernel mappings as part of our own.
1732 * Keep a pointer to the first one.
1733 */
1734 npv = NULL;
1735 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1736 /* Count mappings in the same pmap */
1737 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1738 if (entries++ == 0)
1739 npv = pv;
1740
1741 /* Cacheable mappings */
1742 if ((pv->pv_flags & PVF_NC) == 0) {
1743 cacheable_entries++;
1744 if (kpmap == pv->pv_pmap)
1745 kern_cacheable++;
1746 }
1747
1748 /* Writable mappings */
1749 if (pv->pv_flags & PVF_WRITE)
1750 ++writable;
1751 } else
1752 if (pv->pv_flags & PVF_WRITE)
1753 other_writable = 1;
1754 }
1755
1756 /*
1757 * Enable or disable caching as necessary.
1758 * Note: the first entry might be part of the kernel pmap,
1759 * so we can't assume this is indicative of the state of the
1760 * other (maybe non-kpmap) entries.
1761 */
1762 if ((entries > 1 && writable) ||
1763 (entries > 0 && pm == kpmap && other_writable)) {
1764 if (cacheable_entries == 0)
1765 return;
1766
1767 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1768 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1769 (pv->pv_flags & PVF_NC))
1770 continue;
1771
1772 pv->pv_flags |= PVF_NC;
1773
1774 struct l2_bucket * const l2b
1775 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1776 KDASSERT(l2b != NULL);
1777 pt_entry_t * const ptep
1778 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1779 const pt_entry_t opte = *ptep;
1780 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1781
1782 if ((va != pv->pv_va || pm != pv->pv_pmap)
1783 && l2pte_valid_p(npte)) {
1784 #ifdef PMAP_CACHE_VIVT
1785 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1786 true, pv->pv_flags);
1787 #endif
1788 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1789 pv->pv_flags);
1790 }
1791
1792 l2pte_set(ptep, npte, opte);
1793 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1794 }
1795 cpu_cpwait();
1796 } else
1797 if (entries > cacheable_entries) {
1798 /*
1799 * Turn cacheing back on for some pages. If it is a kernel
1800 * page, only do so if there are no other writable pages.
1801 */
1802 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1803 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1804 (kpmap != pv->pv_pmap || other_writable)))
1805 continue;
1806
1807 pv->pv_flags &= ~PVF_NC;
1808
1809 struct l2_bucket * const l2b
1810 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1811 KDASSERT(l2b != NULL);
1812 pt_entry_t * const ptep
1813 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1814 const pt_entry_t opte = *ptep;
1815 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1816 | pte_l2_s_cache_mode;
1817
1818 if (l2pte_valid_p(opte)) {
1819 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1820 pv->pv_flags);
1821 }
1822
1823 l2pte_set(ptep, npte, opte);
1824 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1825 }
1826 }
1827 }
1828 #endif
1829
1830 #ifdef PMAP_CACHE_VIPT
1831 static void
1832 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1833 {
1834 struct pv_entry *pv;
1835 vaddr_t tst_mask;
1836 bool bad_alias;
1837 const u_int
1838 rw_mappings = md->urw_mappings + md->krw_mappings,
1839 ro_mappings = md->uro_mappings + md->kro_mappings;
1840
1841 /* do we need to do anything? */
1842 if (arm_cache_prefer_mask == 0)
1843 return;
1844
1845 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1846 md, pm, va));
1847
1848 KASSERT(!va || pm);
1849 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1850
1851 /* Already a conflict? */
1852 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1853 /* just an add, things are already non-cached */
1854 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1855 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1856 bad_alias = false;
1857 if (va) {
1858 PMAPCOUNT(vac_color_none);
1859 bad_alias = true;
1860 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1861 goto fixup;
1862 }
1863 pv = SLIST_FIRST(&md->pvh_list);
1864 /* the list can't be empty because it would be cachable */
1865 if (md->pvh_attrs & PVF_KMPAGE) {
1866 tst_mask = md->pvh_attrs;
1867 } else {
1868 KASSERT(pv);
1869 tst_mask = pv->pv_va;
1870 pv = SLIST_NEXT(pv, pv_link);
1871 }
1872 /*
1873 * Only check for a bad alias if we have writable mappings.
1874 */
1875 tst_mask &= arm_cache_prefer_mask;
1876 if (rw_mappings > 0) {
1877 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1878 /* if there's a bad alias, stop checking. */
1879 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1880 bad_alias = true;
1881 }
1882 md->pvh_attrs |= PVF_WRITE;
1883 if (!bad_alias)
1884 md->pvh_attrs |= PVF_DIRTY;
1885 } else {
1886 /*
1887 * We have only read-only mappings. Let's see if there
1888 * are multiple colors in use or if we mapped a KMPAGE.
1889 * If the latter, we have a bad alias. If the former,
1890 * we need to remember that.
1891 */
1892 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1893 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1894 if (md->pvh_attrs & PVF_KMPAGE)
1895 bad_alias = true;
1896 break;
1897 }
1898 }
1899 md->pvh_attrs &= ~PVF_WRITE;
1900 /*
1901 * No KMPAGE and we exited early, so we must have
1902 * multiple color mappings.
1903 */
1904 if (!bad_alias && pv != NULL)
1905 md->pvh_attrs |= PVF_MULTCLR;
1906 }
1907
1908 /* If no conflicting colors, set everything back to cached */
1909 if (!bad_alias) {
1910 #ifdef DEBUG
1911 if ((md->pvh_attrs & PVF_WRITE)
1912 || ro_mappings < 2) {
1913 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1914 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1915 }
1916 #endif
1917 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1918 md->pvh_attrs |= tst_mask | PVF_COLORED;
1919 /*
1920 * Restore DIRTY bit if page is modified
1921 */
1922 if (md->pvh_attrs & PVF_DMOD)
1923 md->pvh_attrs |= PVF_DIRTY;
1924 PMAPCOUNT(vac_color_restore);
1925 } else {
1926 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1927 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1928 }
1929 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1930 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1931 } else if (!va) {
1932 KASSERT(pmap_is_page_colored_p(md));
1933 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1934 || (md->pvh_attrs & PVF_DIRTY));
1935 if (rw_mappings == 0) {
1936 md->pvh_attrs &= ~PVF_WRITE;
1937 if (ro_mappings == 1
1938 && (md->pvh_attrs & PVF_MULTCLR)) {
1939 /*
1940 * If this is the last readonly mapping
1941 * but it doesn't match the current color
1942 * for the page, change the current color
1943 * to match this last readonly mapping.
1944 */
1945 pv = SLIST_FIRST(&md->pvh_list);
1946 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1947 & arm_cache_prefer_mask;
1948 if (tst_mask) {
1949 md->pvh_attrs ^= tst_mask;
1950 PMAPCOUNT(vac_color_change);
1951 }
1952 }
1953 }
1954 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1955 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1956 return;
1957 } else if (!pmap_is_page_colored_p(md)) {
1958 /* not colored so we just use its color */
1959 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1960 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1961 PMAPCOUNT(vac_color_new);
1962 md->pvh_attrs &= PAGE_SIZE - 1;
1963 md->pvh_attrs |= PVF_COLORED
1964 | (va & arm_cache_prefer_mask)
1965 | (rw_mappings > 0 ? PVF_WRITE : 0);
1966 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1967 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1968 return;
1969 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1970 bad_alias = false;
1971 if (rw_mappings > 0) {
1972 /*
1973 * We now have writeable mappings and if we have
1974 * readonly mappings in more than once color, we have
1975 * an aliasing problem. Regardless mark the page as
1976 * writeable.
1977 */
1978 if (md->pvh_attrs & PVF_MULTCLR) {
1979 if (ro_mappings < 2) {
1980 /*
1981 * If we only have less than two
1982 * read-only mappings, just flush the
1983 * non-primary colors from the cache.
1984 */
1985 pmap_flush_page(md, pa,
1986 PMAP_FLUSH_SECONDARY);
1987 } else {
1988 bad_alias = true;
1989 }
1990 }
1991 md->pvh_attrs |= PVF_WRITE;
1992 }
1993 /* If no conflicting colors, set everything back to cached */
1994 if (!bad_alias) {
1995 #ifdef DEBUG
1996 if (rw_mappings > 0
1997 || (md->pvh_attrs & PMAP_KMPAGE)) {
1998 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
1999 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2000 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2001 }
2002 #endif
2003 if (SLIST_EMPTY(&md->pvh_list))
2004 PMAPCOUNT(vac_color_reuse);
2005 else
2006 PMAPCOUNT(vac_color_ok);
2007
2008 /* matching color, just return */
2009 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2010 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2011 return;
2012 }
2013 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2014 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2015
2016 /* color conflict. evict from cache. */
2017
2018 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2019 md->pvh_attrs &= ~PVF_COLORED;
2020 md->pvh_attrs |= PVF_NC;
2021 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2022 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2023 PMAPCOUNT(vac_color_erase);
2024 } else if (rw_mappings == 0
2025 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2026 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2027
2028 /*
2029 * If the page has dirty cache lines, clean it.
2030 */
2031 if (md->pvh_attrs & PVF_DIRTY)
2032 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2033
2034 /*
2035 * If this is the first remapping (we know that there are no
2036 * writeable mappings), then this is a simple color change.
2037 * Otherwise this is a seconary r/o mapping, which means
2038 * we don't have to do anything.
2039 */
2040 if (ro_mappings == 1) {
2041 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2042 md->pvh_attrs &= PAGE_SIZE - 1;
2043 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2044 PMAPCOUNT(vac_color_change);
2045 } else {
2046 PMAPCOUNT(vac_color_blind);
2047 }
2048 md->pvh_attrs |= PVF_MULTCLR;
2049 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2050 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2051 return;
2052 } else {
2053 if (rw_mappings > 0)
2054 md->pvh_attrs |= PVF_WRITE;
2055
2056 /* color conflict. evict from cache. */
2057 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2058
2059 /* the list can't be empty because this was a enter/modify */
2060 pv = SLIST_FIRST(&md->pvh_list);
2061 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2062 KASSERT(pv);
2063 /*
2064 * If there's only one mapped page, change color to the
2065 * page's new color and return. Restore the DIRTY bit
2066 * that was erased by pmap_flush_page.
2067 */
2068 if (SLIST_NEXT(pv, pv_link) == NULL) {
2069 md->pvh_attrs &= PAGE_SIZE - 1;
2070 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2071 if (md->pvh_attrs & PVF_DMOD)
2072 md->pvh_attrs |= PVF_DIRTY;
2073 PMAPCOUNT(vac_color_change);
2074 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2075 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2076 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2077 return;
2078 }
2079 }
2080 bad_alias = true;
2081 md->pvh_attrs &= ~PVF_COLORED;
2082 md->pvh_attrs |= PVF_NC;
2083 PMAPCOUNT(vac_color_erase);
2084 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2085 }
2086
2087 fixup:
2088 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2089
2090 /*
2091 * Turn cacheing on/off for all pages.
2092 */
2093 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2094 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2095 pv->pv_va);
2096 KDASSERT(l2b != NULL);
2097 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2098 const pt_entry_t opte = *ptep;
2099 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2100 if (bad_alias) {
2101 pv->pv_flags |= PVF_NC;
2102 } else {
2103 pv->pv_flags &= ~PVF_NC;
2104 npte |= pte_l2_s_cache_mode;
2105 }
2106
2107 if (opte == npte) /* only update is there's a change */
2108 continue;
2109
2110 if (l2pte_valid_p(npte)) {
2111 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2112 }
2113
2114 l2pte_set(ptep, npte, opte);
2115 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2116 }
2117 }
2118 #endif /* PMAP_CACHE_VIPT */
2119
2120
2121 /*
2122 * Modify pte bits for all ptes corresponding to the given physical address.
2123 * We use `maskbits' rather than `clearbits' because we're always passing
2124 * constants and the latter would require an extra inversion at run-time.
2125 */
2126 static void
2127 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2128 {
2129 struct pv_entry *pv;
2130 pmap_t pm;
2131 vaddr_t va;
2132 u_int oflags;
2133 #ifdef PMAP_CACHE_VIPT
2134 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2135 bool need_vac_me_harder = false;
2136 bool need_syncicache = false;
2137 #endif
2138
2139 NPDEBUG(PDB_BITS,
2140 printf("pmap_clearbit: md %p mask 0x%x\n",
2141 md, maskbits));
2142
2143 #ifdef PMAP_CACHE_VIPT
2144 /*
2145 * If we might want to sync the I-cache and we've modified it,
2146 * then we know we definitely need to sync or discard it.
2147 */
2148 if (want_syncicache) {
2149 need_syncicache = md->pvh_attrs & PVF_MOD;
2150 }
2151 #endif
2152 /*
2153 * Clear saved attributes (modify, reference)
2154 */
2155 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2156
2157 if (SLIST_EMPTY(&md->pvh_list)) {
2158 #if defined(PMAP_CACHE_VIPT)
2159 if (need_syncicache) {
2160 /*
2161 * No one has it mapped, so just discard it. The next
2162 * exec remapping will cause it to be synced.
2163 */
2164 md->pvh_attrs &= ~PVF_EXEC;
2165 PMAPCOUNT(exec_discarded_clearbit);
2166 }
2167 #endif
2168 return;
2169 }
2170
2171 /*
2172 * Loop over all current mappings setting/clearing as appropos
2173 */
2174 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2175 va = pv->pv_va;
2176 pm = pv->pv_pmap;
2177 oflags = pv->pv_flags;
2178 /*
2179 * Kernel entries are unmanaged and as such not to be changed.
2180 */
2181 if (PV_IS_KENTRY_P(oflags))
2182 continue;
2183 pv->pv_flags &= ~maskbits;
2184
2185 pmap_acquire_pmap_lock(pm);
2186
2187 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2188 KDASSERT(l2b != NULL);
2189
2190 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2191 const pt_entry_t opte = *ptep;
2192 pt_entry_t npte = opte;
2193
2194 NPDEBUG(PDB_BITS,
2195 printf(
2196 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2197 pv, pv->pv_pmap, pv->pv_va, oflags));
2198
2199 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2200 #ifdef PMAP_CACHE_VIVT
2201 if ((pv->pv_flags & PVF_NC)) {
2202 /*
2203 * Entry is not cacheable:
2204 *
2205 * Don't turn caching on again if this is a
2206 * modified emulation. This would be
2207 * inconsitent with the settings created by
2208 * pmap_vac_me_harder(). Otherwise, it's safe
2209 * to re-enable cacheing.
2210 *
2211 * There's no need to call pmap_vac_me_harder()
2212 * here: all pages are losing their write
2213 * permission.
2214 */
2215 if (maskbits & PVF_WRITE) {
2216 npte |= pte_l2_s_cache_mode;
2217 pv->pv_flags &= ~PVF_NC;
2218 }
2219 } else
2220 if (l2pte_writable_p(opte)) {
2221 /*
2222 * Entry is writable/cacheable: check if pmap
2223 * is current if it is flush it, otherwise it
2224 * won't be in the cache
2225 */
2226 pmap_cache_wbinv_page(pm, pv->pv_va,
2227 (maskbits & PVF_REF) != 0,
2228 oflags|PVF_WRITE);
2229 }
2230 #endif
2231
2232 /* make the pte read only */
2233 npte = l2pte_set_readonly(npte);
2234
2235 if (maskbits & oflags & PVF_WRITE) {
2236 /*
2237 * Keep alias accounting up to date
2238 */
2239 if (pv->pv_pmap == pmap_kernel()) {
2240 md->krw_mappings--;
2241 md->kro_mappings++;
2242 } else {
2243 md->urw_mappings--;
2244 md->uro_mappings++;
2245 }
2246 #ifdef PMAP_CACHE_VIPT
2247 if (arm_cache_prefer_mask != 0) {
2248 if (md->urw_mappings + md->krw_mappings == 0) {
2249 md->pvh_attrs &= ~PVF_WRITE;
2250 } else {
2251 PMAP_VALIDATE_MD_PAGE(md);
2252 }
2253 }
2254 if (want_syncicache)
2255 need_syncicache = true;
2256 need_vac_me_harder = true;
2257 #endif
2258 }
2259 }
2260
2261 if (maskbits & PVF_REF) {
2262 if ((pv->pv_flags & PVF_NC) == 0
2263 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2264 && l2pte_valid_p(npte)) {
2265 #ifdef PMAP_CACHE_VIVT
2266 /*
2267 * Check npte here; we may have already
2268 * done the wbinv above, and the validity
2269 * of the PTE is the same for opte and
2270 * npte.
2271 */
2272 pmap_cache_wbinv_page(pm, pv->pv_va, true,
2273 oflags);
2274 #endif
2275 }
2276
2277 /*
2278 * Make the PTE invalid so that we will take a
2279 * page fault the next time the mapping is
2280 * referenced.
2281 */
2282 npte &= ~L2_TYPE_MASK;
2283 npte |= L2_TYPE_INV;
2284 }
2285
2286 if (npte != opte) {
2287 l2pte_set(ptep, npte, opte);
2288 PTE_SYNC(ptep);
2289
2290 /* Flush the TLB entry if a current pmap. */
2291 pmap_tlb_flush_SE(pm, pv->pv_va, oflags);
2292 }
2293
2294 pmap_release_pmap_lock(pm);
2295
2296 NPDEBUG(PDB_BITS,
2297 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2298 pm, va, opte, npte));
2299 }
2300
2301 #ifdef PMAP_CACHE_VIPT
2302 /*
2303 * If we need to sync the I-cache and we haven't done it yet, do it.
2304 */
2305 if (need_syncicache) {
2306 pmap_syncicache_page(md, pa);
2307 PMAPCOUNT(exec_synced_clearbit);
2308 }
2309
2310 /*
2311 * If we are changing this to read-only, we need to call vac_me_harder
2312 * so we can change all the read-only pages to cacheable. We pretend
2313 * this as a page deletion.
2314 */
2315 if (need_vac_me_harder) {
2316 if (md->pvh_attrs & PVF_NC)
2317 pmap_vac_me_harder(md, pa, NULL, 0);
2318 }
2319 #endif
2320 }
2321
2322 /*
2323 * pmap_clean_page()
2324 *
2325 * This is a local function used to work out the best strategy to clean
2326 * a single page referenced by its entry in the PV table. It's used by
2327 * pmap_copy_page, pmap_zero page and maybe some others later on.
2328 *
2329 * Its policy is effectively:
2330 * o If there are no mappings, we don't bother doing anything with the cache.
2331 * o If there is one mapping, we clean just that page.
2332 * o If there are multiple mappings, we clean the entire cache.
2333 *
2334 * So that some functions can be further optimised, it returns 0 if it didn't
2335 * clean the entire cache, or 1 if it did.
2336 *
2337 * XXX One bug in this routine is that if the pv_entry has a single page
2338 * mapped at 0x00000000 a whole cache clean will be performed rather than
2339 * just the 1 page. Since this should not occur in everyday use and if it does
2340 * it will just result in not the most efficient clean for the page.
2341 */
2342 #ifdef PMAP_CACHE_VIVT
2343 static int
2344 pmap_clean_page(struct pv_entry *pv, bool is_src)
2345 {
2346 pmap_t pm_to_clean = NULL;
2347 struct pv_entry *npv;
2348 u_int cache_needs_cleaning = 0;
2349 u_int flags = 0;
2350 vaddr_t page_to_clean = 0;
2351
2352 if (pv == NULL) {
2353 /* nothing mapped in so nothing to flush */
2354 return (0);
2355 }
2356
2357 /*
2358 * Since we flush the cache each time we change to a different
2359 * user vmspace, we only need to flush the page if it is in the
2360 * current pmap.
2361 */
2362
2363 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2364 if (pmap_is_current(npv->pv_pmap)) {
2365 flags |= npv->pv_flags;
2366 /*
2367 * The page is mapped non-cacheable in
2368 * this map. No need to flush the cache.
2369 */
2370 if (npv->pv_flags & PVF_NC) {
2371 #ifdef DIAGNOSTIC
2372 if (cache_needs_cleaning)
2373 panic("pmap_clean_page: "
2374 "cache inconsistency");
2375 #endif
2376 break;
2377 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2378 continue;
2379 if (cache_needs_cleaning) {
2380 page_to_clean = 0;
2381 break;
2382 } else {
2383 page_to_clean = npv->pv_va;
2384 pm_to_clean = npv->pv_pmap;
2385 }
2386 cache_needs_cleaning = 1;
2387 }
2388 }
2389
2390 if (page_to_clean) {
2391 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2392 !is_src, flags | PVF_REF);
2393 } else if (cache_needs_cleaning) {
2394 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2395
2396 pmap_cache_wbinv_all(pm, flags);
2397 return (1);
2398 }
2399 return (0);
2400 }
2401 #endif
2402
2403 #ifdef PMAP_CACHE_VIPT
2404 /*
2405 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2406 * right cache alias to make sure we flush the right stuff.
2407 */
2408 void
2409 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2410 {
2411 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2412 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2413
2414 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2415 md, md->pvh_attrs));
2416 /*
2417 * No need to clean the page if it's non-cached.
2418 */
2419 if (md->pvh_attrs & PVF_NC)
2420 return;
2421 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2422
2423 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
2424 /*
2425 * Set up a PTE with the right coloring to flush existing cache lines.
2426 */
2427 const pt_entry_t npte = L2_S_PROTO |
2428 pa
2429 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2430 | pte_l2_s_cache_mode;
2431 l2pte_set(ptep, npte, 0);
2432 PTE_SYNC(ptep);
2433
2434 /*
2435 * Flush it.
2436 */
2437 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2438 /*
2439 * Unmap the page.
2440 */
2441 l2pte_reset(ptep);
2442 PTE_SYNC(ptep);
2443 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset, PVF_REF | PVF_EXEC);
2444
2445 md->pvh_attrs |= PVF_EXEC;
2446 PMAPCOUNT(exec_synced);
2447 }
2448
2449 void
2450 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2451 {
2452 vsize_t va_offset, end_va;
2453 bool wbinv_p;
2454
2455 if (arm_cache_prefer_mask == 0)
2456 return;
2457
2458 switch (flush) {
2459 case PMAP_FLUSH_PRIMARY:
2460 if (md->pvh_attrs & PVF_MULTCLR) {
2461 va_offset = 0;
2462 end_va = arm_cache_prefer_mask;
2463 md->pvh_attrs &= ~PVF_MULTCLR;
2464 PMAPCOUNT(vac_flush_lots);
2465 } else {
2466 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2467 end_va = va_offset;
2468 PMAPCOUNT(vac_flush_one);
2469 }
2470 /*
2471 * Mark that the page is no longer dirty.
2472 */
2473 md->pvh_attrs &= ~PVF_DIRTY;
2474 wbinv_p = true;
2475 break;
2476 case PMAP_FLUSH_SECONDARY:
2477 va_offset = 0;
2478 end_va = arm_cache_prefer_mask;
2479 wbinv_p = true;
2480 md->pvh_attrs &= ~PVF_MULTCLR;
2481 PMAPCOUNT(vac_flush_lots);
2482 break;
2483 case PMAP_CLEAN_PRIMARY:
2484 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2485 end_va = va_offset;
2486 wbinv_p = false;
2487 /*
2488 * Mark that the page is no longer dirty.
2489 */
2490 if ((md->pvh_attrs & PVF_DMOD) == 0)
2491 md->pvh_attrs &= ~PVF_DIRTY;
2492 PMAPCOUNT(vac_clean_one);
2493 break;
2494 default:
2495 return;
2496 }
2497
2498 KASSERT(!(md->pvh_attrs & PVF_NC));
2499
2500 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2501 md, md->pvh_attrs));
2502
2503 const size_t scache_line_size = arm_scache.dcache_line_size;
2504
2505 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2506 const size_t pte_offset = va_offset >> PGSHIFT;
2507 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2508 const pt_entry_t opte = *ptep;
2509
2510 if (flush == PMAP_FLUSH_SECONDARY
2511 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2512 continue;
2513
2514 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
2515 PVF_REF | PVF_EXEC);
2516 /*
2517 * Set up a PTE with the right coloring to flush
2518 * existing cache entries.
2519 */
2520 const pt_entry_t npte = L2_S_PROTO
2521 | pa
2522 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2523 | pte_l2_s_cache_mode;
2524 l2pte_set(ptep, npte, opte);
2525 PTE_SYNC(ptep);
2526
2527 /*
2528 * Flush it. Make sure to flush secondary cache too since
2529 * bus_dma will ignore uncached pages.
2530 */
2531 vaddr_t va = cdstp + va_offset;
2532 if (scache_line_size != 0) {
2533 cpu_dcache_wb_range(va, PAGE_SIZE);
2534 if (wbinv_p) {
2535 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
2536 cpu_dcache_inv_range(va, PAGE_SIZE);
2537 } else {
2538 cpu_sdcache_wb_range(va, pa, PAGE_SIZE);
2539 }
2540 } else {
2541 if (wbinv_p) {
2542 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2543 } else {
2544 cpu_dcache_wb_range(va, PAGE_SIZE);
2545 }
2546 }
2547
2548 /*
2549 * Restore the page table entry since we might have interrupted
2550 * pmap_zero_page or pmap_copy_page which was already using
2551 * this pte.
2552 */
2553 l2pte_set(ptep, opte, npte);
2554 PTE_SYNC(ptep);
2555 pmap_tlb_flush_SE(pmap_kernel(), cdstp + va_offset,
2556 PVF_REF | PVF_EXEC);
2557 }
2558 }
2559 #endif /* PMAP_CACHE_VIPT */
2560
2561 /*
2562 * Routine: pmap_page_remove
2563 * Function:
2564 * Removes this physical page from
2565 * all physical maps in which it resides.
2566 * Reflects back modify bits to the pager.
2567 */
2568 static void
2569 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2570 {
2571 struct l2_bucket *l2b;
2572 struct pv_entry *pv, *npv, **pvp;
2573 pmap_t pm;
2574 pt_entry_t *ptep;
2575 bool flush;
2576 u_int flags;
2577
2578 NPDEBUG(PDB_FOLLOW,
2579 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2580 pa));
2581
2582 pv = SLIST_FIRST(&md->pvh_list);
2583 if (pv == NULL) {
2584 #ifdef PMAP_CACHE_VIPT
2585 /*
2586 * We *know* the page contents are about to be replaced.
2587 * Discard the exec contents
2588 */
2589 if (PV_IS_EXEC_P(md->pvh_attrs))
2590 PMAPCOUNT(exec_discarded_page_protect);
2591 md->pvh_attrs &= ~PVF_EXEC;
2592 PMAP_VALIDATE_MD_PAGE(md);
2593 #endif
2594 return;
2595 }
2596 #ifdef PMAP_CACHE_VIPT
2597 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2598 #endif
2599
2600 /*
2601 * Clear alias counts
2602 */
2603 #ifdef PMAP_CACHE_VIVT
2604 md->k_mappings = 0;
2605 #endif
2606 md->urw_mappings = md->uro_mappings = 0;
2607
2608 flush = false;
2609 flags = 0;
2610
2611 #ifdef PMAP_CACHE_VIVT
2612 pmap_clean_page(pv, false);
2613 #endif
2614
2615 pvp = &SLIST_FIRST(&md->pvh_list);
2616 while (pv) {
2617 pm = pv->pv_pmap;
2618 npv = SLIST_NEXT(pv, pv_link);
2619 if (flush == false && pmap_is_current(pm))
2620 flush = true;
2621
2622 if (pm == pmap_kernel()) {
2623 #ifdef PMAP_CACHE_VIPT
2624 /*
2625 * If this was unmanaged mapping, it must be preserved.
2626 * Move it back on the list and advance the end-of-list
2627 * pointer.
2628 */
2629 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2630 *pvp = pv;
2631 pvp = &SLIST_NEXT(pv, pv_link);
2632 pv = npv;
2633 continue;
2634 }
2635 if (pv->pv_flags & PVF_WRITE)
2636 md->krw_mappings--;
2637 else
2638 md->kro_mappings--;
2639 #endif
2640 PMAPCOUNT(kernel_unmappings);
2641 }
2642 PMAPCOUNT(unmappings);
2643
2644 pmap_acquire_pmap_lock(pm);
2645
2646 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2647 KDASSERT(l2b != NULL);
2648
2649 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2650
2651 /*
2652 * Update statistics
2653 */
2654 --pm->pm_stats.resident_count;
2655
2656 /* Wired bit */
2657 if (pv->pv_flags & PVF_WIRED)
2658 --pm->pm_stats.wired_count;
2659
2660 flags |= pv->pv_flags;
2661
2662 /*
2663 * Invalidate the PTEs.
2664 */
2665 l2pte_reset(ptep);
2666 PTE_SYNC_CURRENT(pm, ptep);
2667 pmap_free_l2_bucket(pm, l2b, 1);
2668
2669 pool_put(&pmap_pv_pool, pv);
2670 pv = npv;
2671 /*
2672 * if we reach the end of the list and there are still
2673 * mappings, they might be able to be cached now.
2674 */
2675 if (pv == NULL) {
2676 *pvp = NULL;
2677 if (!SLIST_EMPTY(&md->pvh_list))
2678 pmap_vac_me_harder(md, pa, pm, 0);
2679 }
2680 pmap_release_pmap_lock(pm);
2681 }
2682 #ifdef PMAP_CACHE_VIPT
2683 /*
2684 * Its EXEC cache is now gone.
2685 */
2686 if (PV_IS_EXEC_P(md->pvh_attrs))
2687 PMAPCOUNT(exec_discarded_page_protect);
2688 md->pvh_attrs &= ~PVF_EXEC;
2689 KASSERT(md->urw_mappings == 0);
2690 KASSERT(md->uro_mappings == 0);
2691 if (arm_cache_prefer_mask != 0) {
2692 if (md->krw_mappings == 0)
2693 md->pvh_attrs &= ~PVF_WRITE;
2694 PMAP_VALIDATE_MD_PAGE(md);
2695 }
2696 #endif
2697
2698 if (flush) {
2699 /*
2700 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2701 * would need a subsequent call to pmap_update() to ensure
2702 * curpm->pm_cstate.cs_all is reset. Our callers are not
2703 * required to do that (see pmap(9)), so we can't modify
2704 * the current pmap's state.
2705 */
2706 if (PV_BEEN_EXECD(flags))
2707 cpu_tlb_flushID();
2708 else
2709 cpu_tlb_flushD();
2710 }
2711 cpu_cpwait();
2712 }
2713
2714 /*
2715 * pmap_t pmap_create(void)
2716 *
2717 * Create a new pmap structure from scratch.
2718 */
2719 pmap_t
2720 pmap_create(void)
2721 {
2722 pmap_t pm;
2723
2724 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2725
2726 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2727 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2728 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2729
2730 pm->pm_stats.wired_count = 0;
2731 pm->pm_stats.resident_count = 1;
2732 pm->pm_cstate.cs_all = 0;
2733 pmap_alloc_l1(pm);
2734
2735 /*
2736 * Note: The pool cache ensures that the pm_l2[] array is already
2737 * initialised to zero.
2738 */
2739
2740 pmap_pinit(pm);
2741
2742 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2743
2744 return (pm);
2745 }
2746
2747 u_int
2748 arm32_mmap_flags(paddr_t pa)
2749 {
2750 /*
2751 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2752 * and we're using the upper bits in page numbers to pass flags around
2753 * so we might as well use the same bits
2754 */
2755 return (u_int)pa & PMAP_MD_MASK;
2756 }
2757 /*
2758 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2759 * u_int flags)
2760 *
2761 * Insert the given physical page (p) at
2762 * the specified virtual address (v) in the
2763 * target physical map with the protection requested.
2764 *
2765 * NB: This is the only routine which MAY NOT lazy-evaluate
2766 * or lose information. That is, this routine must actually
2767 * insert this page into the given map NOW.
2768 */
2769 int
2770 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2771 {
2772 struct l2_bucket *l2b;
2773 struct vm_page *pg, *opg;
2774 struct pv_entry *pv;
2775 u_int nflags;
2776 u_int oflags;
2777 #ifdef ARM_HAS_VBAR
2778 const bool vector_page_p = false;
2779 #else
2780 const bool vector_page_p = (va == vector_page);
2781 #endif
2782
2783 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2784
2785 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2786 KDASSERT(((va | pa) & PGOFSET) == 0);
2787
2788 /*
2789 * Get a pointer to the page. Later on in this function, we
2790 * test for a managed page by checking pg != NULL.
2791 */
2792 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2793
2794 nflags = 0;
2795 if (prot & VM_PROT_WRITE)
2796 nflags |= PVF_WRITE;
2797 if (prot & VM_PROT_EXECUTE)
2798 nflags |= PVF_EXEC;
2799 if (flags & PMAP_WIRED)
2800 nflags |= PVF_WIRED;
2801
2802 pmap_acquire_pmap_lock(pm);
2803
2804 /*
2805 * Fetch the L2 bucket which maps this page, allocating one if
2806 * necessary for user pmaps.
2807 */
2808 if (pm == pmap_kernel())
2809 l2b = pmap_get_l2_bucket(pm, va);
2810 else
2811 l2b = pmap_alloc_l2_bucket(pm, va);
2812 if (l2b == NULL) {
2813 if (flags & PMAP_CANFAIL) {
2814 pmap_release_pmap_lock(pm);
2815 return (ENOMEM);
2816 }
2817 panic("pmap_enter: failed to allocate L2 bucket");
2818 }
2819 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
2820 const pt_entry_t opte = *ptep;
2821 pt_entry_t npte = pa;
2822 oflags = 0;
2823
2824 if (opte) {
2825 /*
2826 * There is already a mapping at this address.
2827 * If the physical address is different, lookup the
2828 * vm_page.
2829 */
2830 if (l2pte_pa(opte) != pa)
2831 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2832 else
2833 opg = pg;
2834 } else
2835 opg = NULL;
2836
2837 if (pg) {
2838 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2839
2840 /*
2841 * This is to be a managed mapping.
2842 */
2843 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
2844 /*
2845 * - The access type indicates that we don't need
2846 * to do referenced emulation.
2847 * OR
2848 * - The physical page has already been referenced
2849 * so no need to re-do referenced emulation here.
2850 */
2851 npte |= l2pte_set_readonly(L2_S_PROTO);
2852
2853 nflags |= PVF_REF;
2854
2855 if ((prot & VM_PROT_WRITE) != 0 &&
2856 ((flags & VM_PROT_WRITE) != 0 ||
2857 (md->pvh_attrs & PVF_MOD) != 0)) {
2858 /*
2859 * This is a writable mapping, and the
2860 * page's mod state indicates it has
2861 * already been modified. Make it
2862 * writable from the outset.
2863 */
2864 npte = l2pte_set_writable(npte);
2865 nflags |= PVF_MOD;
2866 }
2867 } else {
2868 /*
2869 * Need to do page referenced emulation.
2870 */
2871 npte |= L2_TYPE_INV;
2872 }
2873
2874 if (flags & ARM32_MMAP_WRITECOMBINE) {
2875 npte |= pte_l2_s_wc_mode;
2876 } else
2877 npte |= pte_l2_s_cache_mode;
2878
2879 if (pg == opg) {
2880 /*
2881 * We're changing the attrs of an existing mapping.
2882 */
2883 #ifdef MULTIPROCESSOR
2884 KASSERT(uvm_page_locked_p(pg));
2885 #endif
2886 oflags = pmap_modify_pv(md, pa, pm, va,
2887 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2888 PVF_MOD | PVF_REF, nflags);
2889
2890 #ifdef PMAP_CACHE_VIVT
2891 /*
2892 * We may need to flush the cache if we're
2893 * doing rw-ro...
2894 */
2895 if (pm->pm_cstate.cs_cache_d &&
2896 (oflags & PVF_NC) == 0 &&
2897 l2pte_writable_p(opte) &&
2898 (prot & VM_PROT_WRITE) == 0)
2899 cpu_dcache_wb_range(va, PAGE_SIZE);
2900 #endif
2901 } else {
2902 /*
2903 * New mapping, or changing the backing page
2904 * of an existing mapping.
2905 */
2906 if (opg) {
2907 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2908 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2909
2910 /*
2911 * Replacing an existing mapping with a new one.
2912 * It is part of our managed memory so we
2913 * must remove it from the PV list
2914 */
2915 #ifdef MULTIPROCESSOR
2916 KASSERT(uvm_page_locked_p(opg));
2917 #endif
2918 pv = pmap_remove_pv(omd, opa, pm, va);
2919 pmap_vac_me_harder(omd, opa, pm, 0);
2920 oflags = pv->pv_flags;
2921
2922 #ifdef PMAP_CACHE_VIVT
2923 /*
2924 * If the old mapping was valid (ref/mod
2925 * emulation creates 'invalid' mappings
2926 * initially) then make sure to frob
2927 * the cache.
2928 */
2929 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
2930 pmap_cache_wbinv_page(pm, va, true,
2931 oflags);
2932 }
2933 #endif
2934 } else
2935 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2936 if ((flags & PMAP_CANFAIL) == 0)
2937 panic("pmap_enter: no pv entries");
2938
2939 if (pm != pmap_kernel())
2940 pmap_free_l2_bucket(pm, l2b, 0);
2941 pmap_release_pmap_lock(pm);
2942 NPDEBUG(PDB_ENTER,
2943 printf("pmap_enter: ENOMEM\n"));
2944 return (ENOMEM);
2945 }
2946
2947 #ifdef MULTIPROCESSOR
2948 KASSERT(uvm_page_locked_p(pg));
2949 #endif
2950 pmap_enter_pv(md, pa, pv, pm, va, nflags);
2951 }
2952 } else {
2953 /*
2954 * We're mapping an unmanaged page.
2955 * These are always readable, and possibly writable, from
2956 * the get go as we don't need to track ref/mod status.
2957 */
2958 npte |= l2pte_set_readonly(L2_S_PROTO);
2959 if (prot & VM_PROT_WRITE)
2960 npte = l2pte_set_writable(npte);
2961
2962 /*
2963 * Make sure the vector table is mapped cacheable
2964 */
2965 if ((vector_page_p && pm != pmap_kernel())
2966 || (flags & ARM32_MMAP_CACHEABLE)) {
2967 npte |= pte_l2_s_cache_mode;
2968 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
2969 npte |= pte_l2_s_wc_mode;
2970 }
2971 if (opg) {
2972 /*
2973 * Looks like there's an existing 'managed' mapping
2974 * at this address.
2975 */
2976 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2977 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2978
2979 #ifdef MULTIPROCESSOR
2980 KASSERT(uvm_page_locked_p(opg));
2981 #endif
2982 pv = pmap_remove_pv(omd, opa, pm, va);
2983 pmap_vac_me_harder(omd, opa, pm, 0);
2984 oflags = pv->pv_flags;
2985
2986 #ifdef PMAP_CACHE_VIVT
2987 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
2988 pmap_cache_wbinv_page(pm, va, true, oflags);
2989 }
2990 #endif
2991 pool_put(&pmap_pv_pool, pv);
2992 }
2993 }
2994
2995 /*
2996 * Make sure userland mappings get the right permissions
2997 */
2998 if (!vector_page_p && pm != pmap_kernel()) {
2999 npte |= L2_S_PROT_U;
3000 }
3001
3002 /*
3003 * Keep the stats up to date
3004 */
3005 if (opte == 0) {
3006 l2b->l2b_occupancy++;
3007 pm->pm_stats.resident_count++;
3008 }
3009
3010 NPDEBUG(PDB_ENTER,
3011 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3012
3013 /*
3014 * If this is just a wiring change, the two PTEs will be
3015 * identical, so there's no need to update the page table.
3016 */
3017 if (npte != opte) {
3018 bool is_cached = pmap_is_cached(pm);
3019
3020 l2pte_set(ptep, npte, opte);
3021 PTE_SYNC(ptep);
3022 if (is_cached) {
3023 /*
3024 * We only need to frob the cache/tlb if this pmap
3025 * is current
3026 */
3027 if (!vector_page_p && l2pte_valid_p(npte)) {
3028 /*
3029 * This mapping is likely to be accessed as
3030 * soon as we return to userland. Fix up the
3031 * L1 entry to avoid taking another
3032 * page/domain fault.
3033 */
3034 pd_entry_t *pl1pd, l1pd;
3035
3036 pl1pd = pmap_l1_kva(pm) + L1_IDX(va);
3037 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) |
3038 L1_C_PROTO;
3039 if (*pl1pd != l1pd) {
3040 *pl1pd = l1pd;
3041 PTE_SYNC(pl1pd);
3042 }
3043 }
3044 }
3045
3046 pmap_tlb_flush_SE(pm, va, oflags);
3047
3048 NPDEBUG(PDB_ENTER,
3049 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3050 is_cached, pm->pm_cstate.cs_all));
3051
3052 if (pg != NULL) {
3053 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3054
3055 #ifdef MULTIPROCESSOR
3056 KASSERT(uvm_page_locked_p(pg));
3057 #endif
3058 pmap_vac_me_harder(md, pa, pm, va);
3059 }
3060 }
3061 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3062 if (pg) {
3063 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3064
3065 #ifdef MULTIPROCESSOR
3066 KASSERT(uvm_page_locked_p(pg));
3067 #endif
3068 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3069 PMAP_VALIDATE_MD_PAGE(md);
3070 }
3071 #endif
3072
3073 pmap_release_pmap_lock(pm);
3074
3075 return (0);
3076 }
3077
3078 /*
3079 * pmap_remove()
3080 *
3081 * pmap_remove is responsible for nuking a number of mappings for a range
3082 * of virtual address space in the current pmap. To do this efficiently
3083 * is interesting, because in a number of cases a wide virtual address
3084 * range may be supplied that contains few actual mappings. So, the
3085 * optimisations are:
3086 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3087 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3088 * maybe do just a partial cache clean. This path of execution is
3089 * complicated by the fact that the cache must be flushed _before_
3090 * the PTE is nuked, being a VAC :-)
3091 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3092 * all invalidations until pmap_update(), since pmap_remove_all() has
3093 * already flushed the cache.
3094 * 4. Maybe later fast-case a single page, but I don't think this is
3095 * going to make _that_ much difference overall.
3096 */
3097
3098 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3099
3100 void
3101 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3102 {
3103 vaddr_t next_bucket;
3104 u_int cleanlist_idx, total, cnt;
3105 struct {
3106 vaddr_t va;
3107 pt_entry_t *ptep;
3108 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3109 u_int mappings;
3110
3111 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3112 "eva=%08lx\n", pm, sva, eva));
3113
3114 /*
3115 * we lock in the pmap => pv_head direction
3116 */
3117 pmap_acquire_pmap_lock(pm);
3118
3119 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3120 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3121 if (pm->pm_cstate.cs_tlb == 0)
3122 pm->pm_remove_all = true;
3123 } else
3124 cleanlist_idx = 0;
3125
3126 total = 0;
3127
3128 while (sva < eva) {
3129 /*
3130 * Do one L2 bucket's worth at a time.
3131 */
3132 next_bucket = L2_NEXT_BUCKET(sva);
3133 if (next_bucket > eva)
3134 next_bucket = eva;
3135
3136 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3137 if (l2b == NULL) {
3138 sva = next_bucket;
3139 continue;
3140 }
3141
3142 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3143
3144 for (mappings = 0;
3145 sva < next_bucket;
3146 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3147 pt_entry_t opte = *ptep;
3148
3149 if (opte == 0) {
3150 /* Nothing here, move along */
3151 continue;
3152 }
3153
3154 u_int flags = PVF_REF;
3155 paddr_t pa = l2pte_pa(opte);
3156 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3157
3158 /*
3159 * Update flags. In a number of circumstances,
3160 * we could cluster a lot of these and do a
3161 * number of sequential pages in one go.
3162 */
3163 if (pg != NULL) {
3164 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3165 struct pv_entry *pv;
3166
3167 #ifdef MULTIPROCESSOR
3168 KASSERT(uvm_page_locked_p(pg));
3169 #endif
3170 pv = pmap_remove_pv(md, pa, pm, sva);
3171 pmap_vac_me_harder(md, pa, pm, 0);
3172 if (pv != NULL) {
3173 if (pm->pm_remove_all == false) {
3174 flags = pv->pv_flags;
3175 }
3176 pool_put(&pmap_pv_pool, pv);
3177 }
3178 }
3179 mappings++;
3180
3181 if (!l2pte_valid_p(opte)) {
3182 /*
3183 * Ref/Mod emulation is still active for this
3184 * mapping, therefore it is has not yet been
3185 * accessed. No need to frob the cache/tlb.
3186 */
3187 l2pte_reset(ptep);
3188 PTE_SYNC_CURRENT(pm, ptep);
3189 continue;
3190 }
3191
3192 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3193 /* Add to the clean list. */
3194 cleanlist[cleanlist_idx].ptep = ptep;
3195 cleanlist[cleanlist_idx].va =
3196 sva | (flags & PVF_EXEC);
3197 cleanlist_idx++;
3198 } else
3199 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3200 /* Nuke everything if needed. */
3201 #ifdef PMAP_CACHE_VIVT
3202 pmap_cache_wbinv_all(pm, PVF_EXEC);
3203 #endif
3204 pmap_tlb_flushID(pm);
3205
3206 /*
3207 * Roll back the previous PTE list,
3208 * and zero out the current PTE.
3209 */
3210 for (cnt = 0;
3211 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3212 l2pte_reset(cleanlist[cnt].ptep);
3213 PTE_SYNC(cleanlist[cnt].ptep);
3214 }
3215 l2pte_reset(ptep);
3216 PTE_SYNC(ptep);
3217 cleanlist_idx++;
3218 pm->pm_remove_all = true;
3219 } else {
3220 l2pte_reset(ptep);
3221 PTE_SYNC(ptep);
3222 if (pm->pm_remove_all == false) {
3223 pmap_tlb_flush_SE(pm, sva, flags);
3224 }
3225 }
3226 }
3227
3228 /*
3229 * Deal with any left overs
3230 */
3231 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3232 total += cleanlist_idx;
3233 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3234 vaddr_t va = cleanlist[cnt].va;
3235 if (pm->pm_cstate.cs_all != 0) {
3236 vaddr_t clva = va & ~PAGE_MASK;
3237 u_int flags = va & PVF_EXEC;
3238 #ifdef PMAP_CACHE_VIVT
3239 pmap_cache_wbinv_page(pm, clva, true,
3240 PVF_REF | PVF_WRITE | flags);
3241 #endif
3242 pmap_tlb_flush_SE(pm, clva,
3243 PVF_REF | flags);
3244 }
3245 l2pte_reset(cleanlist[cnt].ptep);
3246 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3247 }
3248
3249 /*
3250 * If it looks like we're removing a whole bunch
3251 * of mappings, it's faster to just write-back
3252 * the whole cache now and defer TLB flushes until
3253 * pmap_update() is called.
3254 */
3255 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3256 cleanlist_idx = 0;
3257 else {
3258 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3259 #ifdef PMAP_CACHE_VIVT
3260 pmap_cache_wbinv_all(pm, PVF_EXEC);
3261 #endif
3262 pm->pm_remove_all = true;
3263 }
3264 }
3265
3266 pmap_free_l2_bucket(pm, l2b, mappings);
3267 pm->pm_stats.resident_count -= mappings;
3268 }
3269
3270 pmap_release_pmap_lock(pm);
3271 }
3272
3273 #ifdef PMAP_CACHE_VIPT
3274 static struct pv_entry *
3275 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3276 {
3277 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3278 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3279 struct pv_entry *pv;
3280
3281 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3282 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3283
3284 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3285 KASSERT(pv);
3286 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3287
3288 /*
3289 * If we are removing a writeable mapping to a cached exec page,
3290 * if it's the last mapping then clear it execness other sync
3291 * the page to the icache.
3292 */
3293 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3294 && (pv->pv_flags & PVF_WRITE) != 0) {
3295 if (SLIST_EMPTY(&md->pvh_list)) {
3296 md->pvh_attrs &= ~PVF_EXEC;
3297 PMAPCOUNT(exec_discarded_kremove);
3298 } else {
3299 pmap_syncicache_page(md, pa);
3300 PMAPCOUNT(exec_synced_kremove);
3301 }
3302 }
3303 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3304
3305 return pv;
3306 }
3307 #endif /* PMAP_CACHE_VIPT */
3308
3309 /*
3310 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3311 *
3312 * We assume there is already sufficient KVM space available
3313 * to do this, as we can't allocate L2 descriptor tables/metadata
3314 * from here.
3315 */
3316 void
3317 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3318 {
3319 #ifdef PMAP_CACHE_VIVT
3320 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3321 #endif
3322 #ifdef PMAP_CACHE_VIPT
3323 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3324 struct vm_page *opg;
3325 struct pv_entry *pv = NULL;
3326 #endif
3327 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3328
3329 NPDEBUG(PDB_KENTER,
3330 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3331 va, pa, prot));
3332
3333 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3334 KDASSERT(l2b != NULL);
3335
3336 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3337 const pt_entry_t opte = *ptep;
3338
3339 if (opte == 0) {
3340 PMAPCOUNT(kenter_mappings);
3341 l2b->l2b_occupancy++;
3342 } else {
3343 PMAPCOUNT(kenter_remappings);
3344 #ifdef PMAP_CACHE_VIPT
3345 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3346 #ifdef DIAGNOSTIC
3347 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3348 #endif
3349 if (opg && arm_cache_prefer_mask != 0) {
3350 KASSERT(opg != pg);
3351 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3352 KASSERT((flags & PMAP_KMPAGE) == 0);
3353 pv = pmap_kremove_pg(opg, va);
3354 }
3355 #endif
3356 if (l2pte_valid_p(opte)) {
3357 #ifdef PMAP_CACHE_VIVT
3358 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3359 #endif
3360 cpu_tlb_flushD_SE(va);
3361 cpu_cpwait();
3362 }
3363 }
3364
3365 const pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3366 | ((flags & PMAP_NOCACHE)
3367 ? 0
3368 : ((flags & PMAP_PTE)
3369 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3370 l2pte_set(ptep, npte, opte);
3371 PTE_SYNC(ptep);
3372
3373 if (pg) {
3374 #ifdef MULTIPROCESSOR
3375 KASSERT(uvm_page_locked_p(pg));
3376 #endif
3377 if (flags & PMAP_KMPAGE) {
3378 KASSERT(md->urw_mappings == 0);
3379 KASSERT(md->uro_mappings == 0);
3380 KASSERT(md->krw_mappings == 0);
3381 KASSERT(md->kro_mappings == 0);
3382 #ifdef PMAP_CACHE_VIPT
3383 KASSERT(pv == NULL);
3384 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3385 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3386 /* if there is a color conflict, evict from cache. */
3387 if (pmap_is_page_colored_p(md)
3388 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3389 PMAPCOUNT(vac_color_change);
3390 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3391 } else if (md->pvh_attrs & PVF_MULTCLR) {
3392 /*
3393 * If this page has multiple colors, expunge
3394 * them.
3395 */
3396 PMAPCOUNT(vac_flush_lots2);
3397 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3398 }
3399 md->pvh_attrs &= PAGE_SIZE - 1;
3400 md->pvh_attrs |= PVF_KMPAGE
3401 | PVF_COLORED | PVF_DIRTY
3402 | (va & arm_cache_prefer_mask);
3403 #endif
3404 #ifdef PMAP_CACHE_VIVT
3405 md->pvh_attrs |= PVF_KMPAGE;
3406 #endif
3407 pmap_kmpages++;
3408 #ifdef PMAP_CACHE_VIPT
3409 } else if (arm_cache_prefer_mask != 0) {
3410 if (pv == NULL) {
3411 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3412 KASSERT(pv != NULL);
3413 }
3414 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3415 PVF_WIRED | PVF_KENTRY
3416 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3417 if ((prot & VM_PROT_WRITE)
3418 && !(md->pvh_attrs & PVF_NC))
3419 md->pvh_attrs |= PVF_DIRTY;
3420 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3421 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3422 #endif
3423 }
3424 #ifdef PMAP_CACHE_VIPT
3425 } else {
3426 if (pv != NULL)
3427 pool_put(&pmap_pv_pool, pv);
3428 #endif
3429 }
3430 }
3431
3432 void
3433 pmap_kremove(vaddr_t va, vsize_t len)
3434 {
3435 vaddr_t next_bucket, eva;
3436 u_int mappings;
3437
3438 PMAPCOUNT(kenter_unmappings);
3439
3440 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3441 va, len));
3442
3443 eva = va + len;
3444
3445 while (va < eva) {
3446 next_bucket = L2_NEXT_BUCKET(va);
3447 if (next_bucket > eva)
3448 next_bucket = eva;
3449
3450 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3451 KDASSERT(l2b != NULL);
3452
3453 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3454 pt_entry_t *ptep = sptep;
3455 mappings = 0;
3456
3457 while (va < next_bucket) {
3458 const pt_entry_t opte = *ptep;
3459 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3460 if (opg != NULL) {
3461 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3462
3463 if (omd->pvh_attrs & PVF_KMPAGE) {
3464 KASSERT(omd->urw_mappings == 0);
3465 KASSERT(omd->uro_mappings == 0);
3466 KASSERT(omd->krw_mappings == 0);
3467 KASSERT(omd->kro_mappings == 0);
3468 omd->pvh_attrs &= ~PVF_KMPAGE;
3469 #ifdef PMAP_CACHE_VIPT
3470 if (arm_cache_prefer_mask != 0) {
3471 omd->pvh_attrs &= ~PVF_WRITE;
3472 }
3473 #endif
3474 pmap_kmpages--;
3475 #ifdef PMAP_CACHE_VIPT
3476 } else if (arm_cache_prefer_mask != 0) {
3477 pool_put(&pmap_pv_pool,
3478 pmap_kremove_pg(opg, va));
3479 #endif
3480 }
3481 }
3482 if (l2pte_valid_p(opte)) {
3483 #ifdef PMAP_CACHE_VIVT
3484 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3485 #endif
3486 cpu_tlb_flushD_SE(va);
3487 }
3488 if (opte) {
3489 l2pte_reset(ptep);
3490 mappings++;
3491 }
3492 va += PAGE_SIZE;
3493 ptep += PAGE_SIZE / L2_S_SIZE;
3494 }
3495 KDASSERT(mappings <= l2b->l2b_occupancy);
3496 l2b->l2b_occupancy -= mappings;
3497 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3498 }
3499 cpu_cpwait();
3500 }
3501
3502 bool
3503 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3504 {
3505 struct l2_dtable *l2;
3506 pd_entry_t *pl1pd, l1pd;
3507 pt_entry_t *ptep, pte;
3508 paddr_t pa;
3509 u_int l1idx;
3510
3511 pmap_acquire_pmap_lock(pm);
3512
3513 l1idx = L1_IDX(va);
3514 pl1pd = pmap_l1_kva(pm) + l1idx;
3515 l1pd = *pl1pd;
3516
3517 if (l1pte_section_p(l1pd)) {
3518 /*
3519 * These should only happen for pmap_kernel()
3520 */
3521 KDASSERT(pm == pmap_kernel());
3522 pmap_release_pmap_lock(pm);
3523 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3524 if (l1pte_supersection_p(l1pd)) {
3525 pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3526 } else
3527 #endif
3528 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3529 } else {
3530 /*
3531 * Note that we can't rely on the validity of the L1
3532 * descriptor as an indication that a mapping exists.
3533 * We have to look it up in the L2 dtable.
3534 */
3535 l2 = pm->pm_l2[L2_IDX(l1idx)];
3536
3537 if (l2 == NULL ||
3538 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3539 pmap_release_pmap_lock(pm);
3540 return false;
3541 }
3542
3543 ptep = &ptep[l2pte_index(va)];
3544 pte = *ptep;
3545 pmap_release_pmap_lock(pm);
3546
3547 if (pte == 0)
3548 return false;
3549
3550 switch (pte & L2_TYPE_MASK) {
3551 case L2_TYPE_L:
3552 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3553 break;
3554
3555 default:
3556 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3557 break;
3558 }
3559 }
3560
3561 if (pap != NULL)
3562 *pap = pa;
3563
3564 return true;
3565 }
3566
3567 void
3568 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3569 {
3570 struct l2_bucket *l2b;
3571 pt_entry_t *ptep, pte;
3572 vaddr_t next_bucket;
3573
3574 NPDEBUG(PDB_PROTECT,
3575 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3576 pm, sva, eva, prot));
3577
3578 if ((prot & VM_PROT_READ) == 0) {
3579 pmap_remove(pm, sva, eva);
3580 return;
3581 }
3582
3583 if (prot & VM_PROT_WRITE) {
3584 /*
3585 * If this is a read->write transition, just ignore it and let
3586 * uvm_fault() take care of it later.
3587 */
3588 return;
3589 }
3590
3591 pmap_acquire_pmap_lock(pm);
3592
3593 const bool flush = eva - sva >= PAGE_SIZE * 4;
3594 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3595 u_int flags = 0;
3596
3597 while (sva < eva) {
3598 next_bucket = L2_NEXT_BUCKET(sva);
3599 if (next_bucket > eva)
3600 next_bucket = eva;
3601
3602 l2b = pmap_get_l2_bucket(pm, sva);
3603 if (l2b == NULL) {
3604 sva = next_bucket;
3605 continue;
3606 }
3607
3608 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3609
3610 while (sva < next_bucket) {
3611 pte = *ptep;
3612 if (l2pte_valid_p(pte) != 0 && l2pte_writable_p(pte)) {
3613 struct vm_page *pg;
3614 u_int f;
3615
3616 #ifdef PMAP_CACHE_VIVT
3617 /*
3618 * OK, at this point, we know we're doing
3619 * write-protect operation. If the pmap is
3620 * active, write-back the page.
3621 */
3622 pmap_cache_wbinv_page(pm, sva, false,
3623 PVF_REF | PVF_WRITE);
3624 #endif
3625
3626 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3627 pte = l2pte_set_readonly(pte);
3628 *ptep = pte;
3629 PTE_SYNC(ptep);
3630
3631 if (pg != NULL) {
3632 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3633 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3634
3635 #ifdef MULTIPROCESSOR
3636 KASSERT(uvm_page_locked_p(pg));
3637 #endif
3638 f = pmap_modify_pv(md, pa, pm, sva,
3639 clr_mask, 0);
3640 pmap_vac_me_harder(md, pa, pm, sva);
3641 } else {
3642 f = PVF_REF | PVF_EXEC;
3643 }
3644
3645 if (flush) {
3646 flags |= f;
3647 } else {
3648 pmap_tlb_flush_SE(pm, sva, f);
3649 }
3650 }
3651
3652 sva += PAGE_SIZE;
3653 ptep++;
3654 }
3655 }
3656
3657 if (flush) {
3658 if (PV_BEEN_EXECD(flags)) {
3659 pmap_tlb_flushID(pm);
3660 } else if (PV_BEEN_REFD(flags)) {
3661 pmap_tlb_flushD(pm);
3662 }
3663 }
3664
3665 pmap_release_pmap_lock(pm);
3666 }
3667
3668 void
3669 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3670 {
3671 struct l2_bucket *l2b;
3672 pt_entry_t *ptep;
3673 vaddr_t next_bucket;
3674 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3675
3676 NPDEBUG(PDB_EXEC,
3677 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3678 pm, sva, eva));
3679
3680 pmap_acquire_pmap_lock(pm);
3681
3682 while (sva < eva) {
3683 next_bucket = L2_NEXT_BUCKET(sva);
3684 if (next_bucket > eva)
3685 next_bucket = eva;
3686
3687 l2b = pmap_get_l2_bucket(pm, sva);
3688 if (l2b == NULL) {
3689 sva = next_bucket;
3690 continue;
3691 }
3692
3693 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3694 sva < next_bucket;
3695 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3696 if (l2pte_valid_p(*ptep)) {
3697 cpu_icache_sync_range(sva,
3698 min(page_size, eva - sva));
3699 }
3700 }
3701 }
3702
3703 pmap_release_pmap_lock(pm);
3704 }
3705
3706 void
3707 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3708 {
3709 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3710 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3711
3712 NPDEBUG(PDB_PROTECT,
3713 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3714 md, pa, prot));
3715
3716 #ifdef MULTIPROCESSOR
3717 KASSERT(uvm_page_locked_p(pg));
3718 #endif
3719
3720 switch(prot) {
3721 case VM_PROT_READ|VM_PROT_WRITE:
3722 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3723 pmap_clearbit(md, pa, PVF_EXEC);
3724 break;
3725 #endif
3726 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3727 break;
3728
3729 case VM_PROT_READ:
3730 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3731 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3732 break;
3733 #endif
3734 case VM_PROT_READ|VM_PROT_EXECUTE:
3735 pmap_clearbit(md, pa, PVF_WRITE);
3736 break;
3737
3738 default:
3739 pmap_page_remove(md, pa);
3740 break;
3741 }
3742 }
3743
3744 /*
3745 * pmap_clear_modify:
3746 *
3747 * Clear the "modified" attribute for a page.
3748 */
3749 bool
3750 pmap_clear_modify(struct vm_page *pg)
3751 {
3752 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3753 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3754 bool rv;
3755
3756 #ifdef MULTIPROCESSOR
3757 KASSERT(uvm_page_locked_p(pg));
3758 #endif
3759
3760 if (md->pvh_attrs & PVF_MOD) {
3761 rv = true;
3762 #ifdef PMAP_CACHE_VIPT
3763 /*
3764 * If we are going to clear the modified bit and there are
3765 * no other modified bits set, flush the page to memory and
3766 * mark it clean.
3767 */
3768 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3769 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3770 #endif
3771 pmap_clearbit(md, pa, PVF_MOD);
3772 } else
3773 rv = false;
3774
3775 return (rv);
3776 }
3777
3778 /*
3779 * pmap_clear_reference:
3780 *
3781 * Clear the "referenced" attribute for a page.
3782 */
3783 bool
3784 pmap_clear_reference(struct vm_page *pg)
3785 {
3786 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3787 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3788 bool rv;
3789
3790 #ifdef MULTIPROCESSOR
3791 KASSERT(uvm_page_locked_p(pg));
3792 #endif
3793
3794 if (md->pvh_attrs & PVF_REF) {
3795 rv = true;
3796 pmap_clearbit(md, pa, PVF_REF);
3797 } else
3798 rv = false;
3799
3800 return (rv);
3801 }
3802
3803 /*
3804 * pmap_is_modified:
3805 *
3806 * Test if a page has the "modified" attribute.
3807 */
3808 /* See <arm/arm32/pmap.h> */
3809
3810 /*
3811 * pmap_is_referenced:
3812 *
3813 * Test if a page has the "referenced" attribute.
3814 */
3815 /* See <arm/arm32/pmap.h> */
3816
3817 int
3818 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3819 {
3820 struct l2_dtable *l2;
3821 struct l2_bucket *l2b;
3822 pd_entry_t *pl1pd, l1pd;
3823 pt_entry_t *ptep, pte;
3824 paddr_t pa;
3825 u_int l1idx;
3826 int rv = 0;
3827
3828 pmap_acquire_pmap_lock(pm);
3829
3830 l1idx = L1_IDX(va);
3831
3832 /*
3833 * If there is no l2_dtable for this address, then the process
3834 * has no business accessing it.
3835 *
3836 * Note: This will catch userland processes trying to access
3837 * kernel addresses.
3838 */
3839 l2 = pm->pm_l2[L2_IDX(l1idx)];
3840 if (l2 == NULL)
3841 goto out;
3842
3843 /*
3844 * Likewise if there is no L2 descriptor table
3845 */
3846 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3847 if (l2b->l2b_kva == NULL)
3848 goto out;
3849
3850 /*
3851 * Check the PTE itself.
3852 */
3853 ptep = &l2b->l2b_kva[l2pte_index(va)];
3854 pte = *ptep;
3855 if (pte == 0)
3856 goto out;
3857
3858 /*
3859 * Catch a userland access to the vector page mapped at 0x0
3860 */
3861 if (user && (pte & L2_S_PROT_U) == 0)
3862 goto out;
3863
3864 pa = l2pte_pa(pte);
3865
3866 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3867 /*
3868 * This looks like a good candidate for "page modified"
3869 * emulation...
3870 */
3871 struct pv_entry *pv;
3872 struct vm_page *pg;
3873
3874 /* Extract the physical address of the page */
3875 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3876 goto out;
3877
3878 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3879
3880 /* Get the current flags for this page. */
3881 #ifdef MULTIPROCESSOR
3882 KASSERT(uvm_page_locked_p(pg));
3883 #endif
3884
3885 pv = pmap_find_pv(md, pm, va);
3886 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
3887 goto out;
3888 }
3889
3890 /*
3891 * Do the flags say this page is writable? If not then it
3892 * is a genuine write fault. If yes then the write fault is
3893 * our fault as we did not reflect the write access in the
3894 * PTE. Now we know a write has occurred we can correct this
3895 * and also set the modified bit
3896 */
3897 if ((pv->pv_flags & PVF_WRITE) == 0) {
3898 goto out;
3899 }
3900
3901 NPDEBUG(PDB_FOLLOW,
3902 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3903 pm, va, pa));
3904
3905 md->pvh_attrs |= PVF_REF | PVF_MOD;
3906 pv->pv_flags |= PVF_REF | PVF_MOD;
3907 #ifdef PMAP_CACHE_VIPT
3908 /*
3909 * If there are cacheable mappings for this page, mark it dirty.
3910 */
3911 if ((md->pvh_attrs & PVF_NC) == 0)
3912 md->pvh_attrs |= PVF_DIRTY;
3913 #endif
3914
3915 /*
3916 * Re-enable write permissions for the page. No need to call
3917 * pmap_vac_me_harder(), since this is just a
3918 * modified-emulation fault, and the PVF_WRITE bit isn't
3919 * changing. We've already set the cacheable bits based on
3920 * the assumption that we can write to this page.
3921 */
3922 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3923 PTE_SYNC(ptep);
3924 rv = 1;
3925 } else
3926 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3927 /*
3928 * This looks like a good candidate for "page referenced"
3929 * emulation.
3930 */
3931 struct pv_entry *pv;
3932 struct vm_page *pg;
3933
3934 /* Extract the physical address of the page */
3935 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3936 goto out;
3937
3938 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3939
3940 /* Get the current flags for this page. */
3941 #ifdef MULTIPROCESSOR
3942 KASSERT(uvm_page_locked_p(pg));
3943 #endif
3944
3945 pv = pmap_find_pv(md, pm, va);
3946 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
3947 goto out;
3948 }
3949
3950 md->pvh_attrs |= PVF_REF;
3951 pv->pv_flags |= PVF_REF;
3952
3953 NPDEBUG(PDB_FOLLOW,
3954 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3955 pm, va, pa));
3956
3957 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3958 PTE_SYNC(ptep);
3959 rv = 1;
3960 }
3961
3962 /*
3963 * We know there is a valid mapping here, so simply
3964 * fix up the L1 if necessary.
3965 */
3966 pl1pd = pmap_l1_kva(pm) + l1idx;
3967 l1pd = l2b->l2b_phys | L1_C_DOM(pmap_domain(pm)) | L1_C_PROTO;
3968 if (*pl1pd != l1pd) {
3969 *pl1pd = l1pd;
3970 PTE_SYNC(pl1pd);
3971 rv = 1;
3972 }
3973
3974 #ifdef CPU_SA110
3975 /*
3976 * There are bugs in the rev K SA110. This is a check for one
3977 * of them.
3978 */
3979 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3980 curcpu()->ci_arm_cpurev < 3) {
3981 /* Always current pmap */
3982 if (l2pte_valid_p(pte)) {
3983 extern int kernel_debug;
3984 if (kernel_debug & 1) {
3985 struct proc *p = curlwp->l_proc;
3986 printf("prefetch_abort: page is already "
3987 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3988 printf("prefetch_abort: pc=%08lx proc=%p "
3989 "process=%s\n", va, p, p->p_comm);
3990 printf("prefetch_abort: far=%08x fs=%x\n",
3991 cpu_faultaddress(), cpu_faultstatus());
3992 }
3993 #ifdef DDB
3994 if (kernel_debug & 2)
3995 Debugger();
3996 #endif
3997 rv = 1;
3998 }
3999 }
4000 #endif /* CPU_SA110 */
4001
4002 /*
4003 * If 'rv == 0' at this point, it generally indicates that there is a
4004 * stale TLB entry for the faulting address. That might be due to a
4005 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4006 */
4007 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
4008 && pmap_needs_pte_sync == 0) {
4009 pmap_needs_pte_sync = 1;
4010 PTE_SYNC(ptep);
4011 rv = 1;
4012 }
4013
4014 #ifdef DEBUG
4015 /*
4016 * If 'rv == 0' at this point, it generally indicates that there is a
4017 * stale TLB entry for the faulting address. This happens when two or
4018 * more processes are sharing an L1. Since we don't flush the TLB on
4019 * a context switch between such processes, we can take domain faults
4020 * for mappings which exist at the same VA in both processes. EVEN IF
4021 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4022 * example.
4023 *
4024 * This is extremely likely to happen if pmap_enter() updated the L1
4025 * entry for a recently entered mapping. In this case, the TLB is
4026 * flushed for the new mapping, but there may still be TLB entries for
4027 * other mappings belonging to other processes in the 1MB range
4028 * covered by the L1 entry.
4029 *
4030 * Since 'rv == 0', we know that the L1 already contains the correct
4031 * value, so the fault must be due to a stale TLB entry.
4032 *
4033 * Since we always need to flush the TLB anyway in the case where we
4034 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4035 * stale TLB entries dynamically.
4036 *
4037 * However, the above condition can ONLY happen if the current L1 is
4038 * being shared. If it happens when the L1 is unshared, it indicates
4039 * that other parts of the pmap are not doing their job WRT managing
4040 * the TLB.
4041 */
4042 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4043 extern int last_fault_code;
4044 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4045 pm, va, ftype);
4046 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4047 l2, l2b, ptep, pl1pd);
4048 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4049 pte, l1pd, last_fault_code);
4050 #ifdef DDB
4051 extern int kernel_debug;
4052
4053 if (kernel_debug & 2)
4054 Debugger();
4055 #endif
4056 }
4057 #endif
4058
4059 cpu_tlb_flushID_SE(va);
4060 cpu_cpwait();
4061
4062 rv = 1;
4063
4064 out:
4065 pmap_release_pmap_lock(pm);
4066
4067 return (rv);
4068 }
4069
4070 /*
4071 * Routine: pmap_procwr
4072 *
4073 * Function:
4074 * Synchronize caches corresponding to [addr, addr+len) in p.
4075 *
4076 */
4077 void
4078 pmap_procwr(struct proc *p, vaddr_t va, int len)
4079 {
4080 /* We only need to do anything if it is the current process. */
4081 if (p == curproc)
4082 cpu_icache_sync_range(va, len);
4083 }
4084
4085 /*
4086 * Routine: pmap_unwire
4087 * Function: Clear the wired attribute for a map/virtual-address pair.
4088 *
4089 * In/out conditions:
4090 * The mapping must already exist in the pmap.
4091 */
4092 void
4093 pmap_unwire(pmap_t pm, vaddr_t va)
4094 {
4095 struct l2_bucket *l2b;
4096 pt_entry_t *ptep, pte;
4097 struct vm_page *pg;
4098 paddr_t pa;
4099
4100 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4101
4102 pmap_acquire_pmap_lock(pm);
4103
4104 l2b = pmap_get_l2_bucket(pm, va);
4105 KDASSERT(l2b != NULL);
4106
4107 ptep = &l2b->l2b_kva[l2pte_index(va)];
4108 pte = *ptep;
4109
4110 /* Extract the physical address of the page */
4111 pa = l2pte_pa(pte);
4112
4113 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4114 /* Update the wired bit in the pv entry for this page. */
4115 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4116
4117 #ifdef MULTIPROCESSOR
4118 KASSERT(uvm_page_locked_p(pg));
4119 #endif
4120 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4121 }
4122
4123 pmap_release_pmap_lock(pm);
4124 }
4125
4126 void
4127 pmap_activate(struct lwp *l)
4128 {
4129 struct cpu_info * const ci = curcpu();
4130 extern int block_userspace_access;
4131 pmap_t opm, npm, rpm;
4132 uint32_t odacr, ndacr;
4133 int oldirqstate;
4134
4135 /*
4136 * If activating a non-current lwp or the current lwp is
4137 * already active, just return.
4138 */
4139 if (l != curlwp ||
4140 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4141 return;
4142
4143 npm = l->l_proc->p_vmspace->vm_map.pmap;
4144 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4145 (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4146
4147 /*
4148 * If TTB and DACR are unchanged, short-circuit all the
4149 * TLB/cache management stuff.
4150 */
4151 if (ci->ci_lastlwp != NULL) {
4152 opm = ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap;
4153 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4154 (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4155
4156 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4157 goto all_done;
4158 } else
4159 opm = NULL;
4160
4161 PMAPCOUNT(activations);
4162 block_userspace_access = 1;
4163
4164 /*
4165 * If switching to a user vmspace which is different to the
4166 * most recent one, and the most recent one is potentially
4167 * live in the cache, we must write-back and invalidate the
4168 * entire cache.
4169 */
4170 rpm = ci->ci_pmap_lastuser;
4171
4172 /*
4173 * XXXSCW: There's a corner case here which can leave turds in the cache as
4174 * reported in kern/41058. They're probably left over during tear-down and
4175 * switching away from an exiting process. Until the root cause is identified
4176 * and fixed, zap the cache when switching pmaps. This will result in a few
4177 * unnecessary cache flushes, but that's better than silently corrupting data.
4178 */
4179 #if 0
4180 if (npm != pmap_kernel() && rpm && npm != rpm &&
4181 rpm->pm_cstate.cs_cache) {
4182 rpm->pm_cstate.cs_cache = 0;
4183 #ifdef PMAP_CACHE_VIVT
4184 cpu_idcache_wbinv_all();
4185 #endif
4186 }
4187 #else
4188 if (rpm) {
4189 rpm->pm_cstate.cs_cache = 0;
4190 if (npm == pmap_kernel())
4191 ci->ci_pmap_lastuser = NULL;
4192 #ifdef PMAP_CACHE_VIVT
4193 cpu_idcache_wbinv_all();
4194 #endif
4195 }
4196 #endif
4197
4198 /* No interrupts while we frob the TTB/DACR */
4199 oldirqstate = disable_interrupts(IF32_bits);
4200
4201 #ifndef ARM_HAS_VBAR
4202 /*
4203 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4204 * entry corresponding to 'vector_page' in the incoming L1 table
4205 * before switching to it otherwise subsequent interrupts/exceptions
4206 * (including domain faults!) will jump into hyperspace.
4207 */
4208 if (npm->pm_pl1vec != NULL) {
4209 cpu_tlb_flushID_SE((u_int)vector_page);
4210 cpu_cpwait();
4211 *npm->pm_pl1vec = npm->pm_l1vec;
4212 PTE_SYNC(npm->pm_pl1vec);
4213 }
4214 #endif
4215
4216 cpu_domains(ndacr);
4217
4218 if (npm == pmap_kernel() || npm == rpm) {
4219 /*
4220 * Switching to a kernel thread, or back to the
4221 * same user vmspace as before... Simply update
4222 * the TTB (no TLB flush required)
4223 */
4224 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4225 cpu_cpwait();
4226 } else {
4227 /*
4228 * Otherwise, update TTB and flush TLB
4229 */
4230 cpu_context_switch(npm->pm_l1->l1_physaddr);
4231 if (rpm != NULL)
4232 rpm->pm_cstate.cs_tlb = 0;
4233 }
4234
4235 restore_interrupts(oldirqstate);
4236
4237 block_userspace_access = 0;
4238
4239 all_done:
4240 /*
4241 * The new pmap is resident. Make sure it's marked
4242 * as resident in the cache/TLB.
4243 */
4244 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4245 if (npm != pmap_kernel())
4246 ci->ci_pmap_lastuser = npm;
4247
4248 /* The old pmap is not longer active */
4249 if (opm != NULL)
4250 opm->pm_activated = false;
4251
4252 /* But the new one is */
4253 npm->pm_activated = true;
4254 }
4255
4256 void
4257 pmap_deactivate(struct lwp *l)
4258 {
4259
4260 /*
4261 * If the process is exiting, make sure pmap_activate() does
4262 * a full MMU context-switch and cache flush, which we might
4263 * otherwise skip. See PR port-arm/38950.
4264 */
4265 if (l->l_proc->p_sflag & PS_WEXIT)
4266 curcpu()->ci_lastlwp = NULL;
4267
4268 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4269 }
4270
4271 void
4272 pmap_update(pmap_t pm)
4273 {
4274
4275 if (pm->pm_remove_all) {
4276 /*
4277 * Finish up the pmap_remove_all() optimisation by flushing
4278 * the TLB.
4279 */
4280 pmap_tlb_flushID(pm);
4281 pm->pm_remove_all = false;
4282 }
4283
4284 if (pmap_is_current(pm)) {
4285 /*
4286 * If we're dealing with a current userland pmap, move its L1
4287 * to the end of the LRU.
4288 */
4289 if (pm != pmap_kernel())
4290 pmap_use_l1(pm);
4291
4292 /*
4293 * We can assume we're done with frobbing the cache/tlb for
4294 * now. Make sure any future pmap ops don't skip cache/tlb
4295 * flushes.
4296 */
4297 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4298 }
4299
4300 PMAPCOUNT(updates);
4301
4302 /*
4303 * make sure TLB/cache operations have completed.
4304 */
4305 cpu_cpwait();
4306 }
4307
4308 void
4309 pmap_remove_all(pmap_t pm)
4310 {
4311
4312 /*
4313 * The vmspace described by this pmap is about to be torn down.
4314 * Until pmap_update() is called, UVM will only make calls
4315 * to pmap_remove(). We can make life much simpler by flushing
4316 * the cache now, and deferring TLB invalidation to pmap_update().
4317 */
4318 #ifdef PMAP_CACHE_VIVT
4319 pmap_cache_wbinv_all(pm, PVF_EXEC);
4320 #endif
4321 pm->pm_remove_all = true;
4322 }
4323
4324 /*
4325 * Retire the given physical map from service.
4326 * Should only be called if the map contains no valid mappings.
4327 */
4328 void
4329 pmap_destroy(pmap_t pm)
4330 {
4331 u_int count;
4332
4333 if (pm == NULL)
4334 return;
4335
4336 if (pm->pm_remove_all) {
4337 pmap_tlb_flushID(pm);
4338 pm->pm_remove_all = false;
4339 }
4340
4341 /*
4342 * Drop reference count
4343 */
4344 mutex_enter(pm->pm_lock);
4345 count = --pm->pm_obj.uo_refs;
4346 mutex_exit(pm->pm_lock);
4347 if (count > 0) {
4348 if (pmap_is_current(pm)) {
4349 if (pm != pmap_kernel())
4350 pmap_use_l1(pm);
4351 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4352 }
4353 return;
4354 }
4355
4356 /*
4357 * reference count is zero, free pmap resources and then free pmap.
4358 */
4359
4360 #ifndef ARM_HAS_VBAR
4361 if (vector_page < KERNEL_BASE) {
4362 KDASSERT(!pmap_is_current(pm));
4363
4364 /* Remove the vector page mapping */
4365 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4366 pmap_update(pm);
4367 }
4368 #endif
4369
4370 LIST_REMOVE(pm, pm_list);
4371
4372 pmap_free_l1(pm);
4373
4374 struct cpu_info * const ci = curcpu();
4375 if (ci->ci_pmap_lastuser == pm)
4376 ci->ci_pmap_lastuser = NULL;
4377
4378 uvm_obj_destroy(&pm->pm_obj, false);
4379 mutex_destroy(&pm->pm_obj_lock);
4380 pool_cache_put(&pmap_cache, pm);
4381 }
4382
4383
4384 /*
4385 * void pmap_reference(pmap_t pm)
4386 *
4387 * Add a reference to the specified pmap.
4388 */
4389 void
4390 pmap_reference(pmap_t pm)
4391 {
4392
4393 if (pm == NULL)
4394 return;
4395
4396 pmap_use_l1(pm);
4397
4398 mutex_enter(pm->pm_lock);
4399 pm->pm_obj.uo_refs++;
4400 mutex_exit(pm->pm_lock);
4401 }
4402
4403 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4404
4405 static struct evcnt pmap_prefer_nochange_ev =
4406 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4407 static struct evcnt pmap_prefer_change_ev =
4408 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4409
4410 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4411 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4412
4413 void
4414 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4415 {
4416 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4417 vaddr_t va = *vap;
4418 vaddr_t diff = (hint - va) & mask;
4419 if (diff == 0) {
4420 pmap_prefer_nochange_ev.ev_count++;
4421 } else {
4422 pmap_prefer_change_ev.ev_count++;
4423 if (__predict_false(td))
4424 va -= mask + 1;
4425 *vap = va + diff;
4426 }
4427 }
4428 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4429
4430 /*
4431 * pmap_zero_page()
4432 *
4433 * Zero a given physical page by mapping it at a page hook point.
4434 * In doing the zero page op, the page we zero is mapped cachable, as with
4435 * StrongARM accesses to non-cached pages are non-burst making writing
4436 * _any_ bulk data very slow.
4437 */
4438 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4439 void
4440 pmap_zero_page_generic(paddr_t phys)
4441 {
4442 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4443 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4444 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4445 #endif
4446 #if defined(PMAP_CACHE_VIPT)
4447 /* Choose the last page color it had, if any */
4448 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4449 #else
4450 const vsize_t va_offset = 0;
4451 #endif
4452 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4453 /*
4454 * Is this page mapped at its natural color?
4455 * If we have all of memory mapped, then just convert PA to VA.
4456 */
4457 const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
4458 const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
4459 #else
4460 const bool okcolor = false;
4461 const vaddr_t vdstp = cdstp + va_offset;
4462 #endif
4463 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4464
4465
4466 #ifdef DEBUG
4467 if (!SLIST_EMPTY(&md->pvh_list))
4468 panic("pmap_zero_page: page has mappings");
4469 #endif
4470
4471 KDASSERT((phys & PGOFSET) == 0);
4472
4473 if (!okcolor) {
4474 /*
4475 * Hook in the page, zero it, and purge the cache for that
4476 * zeroed page. Invalidate the TLB as needed.
4477 */
4478 *ptep = L2_S_PROTO | phys |
4479 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4480 PTE_SYNC(ptep);
4481 cpu_tlb_flushD_SE(cdstp + va_offset);
4482 cpu_cpwait();
4483 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4484 /*
4485 * If we are direct-mapped and our color isn't ok, then before
4486 * we bzero the page invalidate its contents from the cache and
4487 * reset the color to its natural color.
4488 */
4489 cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
4490 md->pvh_attrs &= ~arm_cache_prefer_mask;
4491 md->pvh_attrs |= (phys & arm_cache_prefer_mask);
4492 #endif
4493 }
4494 bzero_page(vdstp);
4495 if (!okcolor) {
4496 /*
4497 * Unmap the page.
4498 */
4499 *ptep = 0;
4500 PTE_SYNC(ptep);
4501 cpu_tlb_flushD_SE(cdstp + va_offset);
4502 #ifdef PMAP_CACHE_VIVT
4503 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4504 #endif
4505 }
4506 #ifdef PMAP_CACHE_VIPT
4507 /*
4508 * This page is now cache resident so it now has a page color.
4509 * Any contents have been obliterated so clear the EXEC flag.
4510 */
4511 if (!pmap_is_page_colored_p(md)) {
4512 PMAPCOUNT(vac_color_new);
4513 md->pvh_attrs |= PVF_COLORED;
4514 }
4515 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4516 md->pvh_attrs &= ~PVF_EXEC;
4517 PMAPCOUNT(exec_discarded_zero);
4518 }
4519 md->pvh_attrs |= PVF_DIRTY;
4520 #endif
4521 }
4522 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4523
4524 #if ARM_MMU_XSCALE == 1
4525 void
4526 pmap_zero_page_xscale(paddr_t phys)
4527 {
4528 #ifdef DEBUG
4529 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4530 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4531
4532 if (!SLIST_EMPTY(&md->pvh_list))
4533 panic("pmap_zero_page: page has mappings");
4534 #endif
4535
4536 KDASSERT((phys & PGOFSET) == 0);
4537
4538 /*
4539 * Hook in the page, zero it, and purge the cache for that
4540 * zeroed page. Invalidate the TLB as needed.
4541 */
4542 *cdst_pte = L2_S_PROTO | phys |
4543 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4544 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4545 PTE_SYNC(cdst_pte);
4546 cpu_tlb_flushD_SE(cdstp);
4547 cpu_cpwait();
4548 bzero_page(cdstp);
4549 xscale_cache_clean_minidata();
4550 }
4551 #endif /* ARM_MMU_XSCALE == 1 */
4552
4553 /* pmap_pageidlezero()
4554 *
4555 * The same as above, except that we assume that the page is not
4556 * mapped. This means we never have to flush the cache first. Called
4557 * from the idle loop.
4558 */
4559 bool
4560 pmap_pageidlezero(paddr_t phys)
4561 {
4562 unsigned int i;
4563 int *ptr;
4564 bool rv = true;
4565 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4566 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4567 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4568 #endif
4569 #ifdef PMAP_CACHE_VIPT
4570 /* Choose the last page color it had, if any */
4571 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4572 #else
4573 const vsize_t va_offset = 0;
4574 #endif
4575 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4576
4577
4578 #ifdef DEBUG
4579 if (!SLIST_EMPTY(&md->pvh_list))
4580 panic("pmap_pageidlezero: page has mappings");
4581 #endif
4582
4583 KDASSERT((phys & PGOFSET) == 0);
4584
4585 /*
4586 * Hook in the page, zero it, and purge the cache for that
4587 * zeroed page. Invalidate the TLB as needed.
4588 */
4589 *ptep = L2_S_PROTO | phys |
4590 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4591 PTE_SYNC(ptep);
4592 cpu_tlb_flushD_SE(cdstp + va_offset);
4593 cpu_cpwait();
4594
4595 for (i = 0, ptr = (int *)(cdstp + va_offset);
4596 i < (PAGE_SIZE / sizeof(int)); i++) {
4597 if (sched_curcpu_runnable_p() != 0) {
4598 /*
4599 * A process has become ready. Abort now,
4600 * so we don't keep it waiting while we
4601 * do slow memory access to finish this
4602 * page.
4603 */
4604 rv = false;
4605 break;
4606 }
4607 *ptr++ = 0;
4608 }
4609
4610 #ifdef PMAP_CACHE_VIVT
4611 if (rv)
4612 /*
4613 * if we aborted we'll rezero this page again later so don't
4614 * purge it unless we finished it
4615 */
4616 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4617 #elif defined(PMAP_CACHE_VIPT)
4618 /*
4619 * This page is now cache resident so it now has a page color.
4620 * Any contents have been obliterated so clear the EXEC flag.
4621 */
4622 if (!pmap_is_page_colored_p(md)) {
4623 PMAPCOUNT(vac_color_new);
4624 md->pvh_attrs |= PVF_COLORED;
4625 }
4626 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4627 md->pvh_attrs &= ~PVF_EXEC;
4628 PMAPCOUNT(exec_discarded_zero);
4629 }
4630 #endif
4631 /*
4632 * Unmap the page.
4633 */
4634 *ptep = 0;
4635 PTE_SYNC(ptep);
4636 cpu_tlb_flushD_SE(cdstp + va_offset);
4637
4638 return (rv);
4639 }
4640
4641 /*
4642 * pmap_copy_page()
4643 *
4644 * Copy one physical page into another, by mapping the pages into
4645 * hook points. The same comment regarding cachability as in
4646 * pmap_zero_page also applies here.
4647 */
4648 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4649 void
4650 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4651 {
4652 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4653 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4654 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4655 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4656 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4657 #endif
4658 #ifdef PMAP_CACHE_VIPT
4659 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4660 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4661 #else
4662 const vsize_t src_va_offset = 0;
4663 const vsize_t dst_va_offset = 0;
4664 #endif
4665 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4666 /*
4667 * Is this page mapped at its natural color?
4668 * If we have all of memory mapped, then just convert PA to VA.
4669 */
4670 const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
4671 const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
4672 const vaddr_t vsrcp = src_okcolor
4673 ? KERNEL_BASE + (src - physical_start)
4674 : csrcp + src_va_offset;
4675 const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
4676 #else
4677 const bool src_okcolor = false;
4678 const bool dst_okcolor = false;
4679 const vaddr_t vsrcp = csrcp + src_va_offset;
4680 const vaddr_t vdstp = cdstp + dst_va_offset;
4681 #endif
4682 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4683 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4684
4685 #ifdef DEBUG
4686 if (!SLIST_EMPTY(&dst_md->pvh_list))
4687 panic("pmap_copy_page: dst page has mappings");
4688 #endif
4689
4690 #ifdef PMAP_CACHE_VIPT
4691 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4692 #endif
4693 KDASSERT((src & PGOFSET) == 0);
4694 KDASSERT((dst & PGOFSET) == 0);
4695
4696 /*
4697 * Clean the source page. Hold the source page's lock for
4698 * the duration of the copy so that no other mappings can
4699 * be created while we have a potentially aliased mapping.
4700 */
4701 #ifdef MULTIPROCESSOR
4702 KASSERT(uvm_page_locked_p(src_pg));
4703 #endif
4704 #ifdef PMAP_CACHE_VIVT
4705 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4706 #endif
4707
4708 /*
4709 * Map the pages into the page hook points, copy them, and purge
4710 * the cache for the appropriate page. Invalidate the TLB
4711 * as required.
4712 */
4713 if (!src_okcolor) {
4714 *src_ptep = L2_S_PROTO
4715 | src
4716 #ifdef PMAP_CACHE_VIPT
4717 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4718 #endif
4719 #ifdef PMAP_CACHE_VIVT
4720 | pte_l2_s_cache_mode
4721 #endif
4722 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4723 PTE_SYNC(src_ptep);
4724 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4725 cpu_cpwait();
4726 }
4727 if (!dst_okcolor) {
4728 *dst_ptep = L2_S_PROTO | dst |
4729 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4730 PTE_SYNC(dst_ptep);
4731 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4732 cpu_cpwait();
4733 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4734 /*
4735 * If we are direct-mapped and our color isn't ok, then before
4736 * we bcopy to the new page invalidate its contents from the
4737 * cache and reset its color to its natural color.
4738 */
4739 cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
4740 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
4741 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
4742 #endif
4743 }
4744 bcopy_page(vsrcp, vdstp);
4745 #ifdef PMAP_CACHE_VIVT
4746 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
4747 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
4748 #endif
4749 /*
4750 * Unmap the pages.
4751 */
4752 if (!src_okcolor) {
4753 *src_ptep = 0;
4754 PTE_SYNC(src_ptep);
4755 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4756 cpu_cpwait();
4757 }
4758 if (!dst_okcolor) {
4759 *dst_ptep = 0;
4760 PTE_SYNC(dst_ptep);
4761 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4762 cpu_cpwait();
4763 }
4764 #ifdef PMAP_CACHE_VIPT
4765 /*
4766 * Now that the destination page is in the cache, mark it as colored.
4767 * If this was an exec page, discard it.
4768 */
4769 if (!pmap_is_page_colored_p(dst_md)) {
4770 PMAPCOUNT(vac_color_new);
4771 dst_md->pvh_attrs |= PVF_COLORED;
4772 }
4773 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4774 dst_md->pvh_attrs &= ~PVF_EXEC;
4775 PMAPCOUNT(exec_discarded_copy);
4776 }
4777 dst_md->pvh_attrs |= PVF_DIRTY;
4778 #endif
4779 }
4780 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4781
4782 #if ARM_MMU_XSCALE == 1
4783 void
4784 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4785 {
4786 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4787 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4788 #ifdef DEBUG
4789 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4790
4791 if (!SLIST_EMPTY(&dst_md->pvh_list))
4792 panic("pmap_copy_page: dst page has mappings");
4793 #endif
4794
4795 KDASSERT((src & PGOFSET) == 0);
4796 KDASSERT((dst & PGOFSET) == 0);
4797
4798 /*
4799 * Clean the source page. Hold the source page's lock for
4800 * the duration of the copy so that no other mappings can
4801 * be created while we have a potentially aliased mapping.
4802 */
4803 #ifdef MULTIPROCESSOR
4804 KASSERT(uvm_page_locked_p(src_pg));
4805 #endif
4806 #ifdef PMAP_CACHE_VIVT
4807 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4808 #endif
4809
4810 /*
4811 * Map the pages into the page hook points, copy them, and purge
4812 * the cache for the appropriate page. Invalidate the TLB
4813 * as required.
4814 */
4815 *csrc_pte = L2_S_PROTO | src |
4816 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4817 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4818 PTE_SYNC(csrc_pte);
4819 *cdst_pte = L2_S_PROTO | dst |
4820 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4821 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4822 PTE_SYNC(cdst_pte);
4823 cpu_tlb_flushD_SE(csrcp);
4824 cpu_tlb_flushD_SE(cdstp);
4825 cpu_cpwait();
4826 bcopy_page(csrcp, cdstp);
4827 xscale_cache_clean_minidata();
4828 }
4829 #endif /* ARM_MMU_XSCALE == 1 */
4830
4831 /*
4832 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4833 *
4834 * Return the start and end addresses of the kernel's virtual space.
4835 * These values are setup in pmap_bootstrap and are updated as pages
4836 * are allocated.
4837 */
4838 void
4839 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4840 {
4841 *start = virtual_avail;
4842 *end = virtual_end;
4843 }
4844
4845 /*
4846 * Helper function for pmap_grow_l2_bucket()
4847 */
4848 static inline int
4849 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4850 {
4851 struct l2_bucket *l2b;
4852 pt_entry_t *ptep;
4853 paddr_t pa;
4854
4855 if (uvm.page_init_done == false) {
4856 #ifdef PMAP_STEAL_MEMORY
4857 pv_addr_t pv;
4858 pmap_boot_pagealloc(PAGE_SIZE,
4859 #ifdef PMAP_CACHE_VIPT
4860 arm_cache_prefer_mask,
4861 va & arm_cache_prefer_mask,
4862 #else
4863 0, 0,
4864 #endif
4865 &pv);
4866 pa = pv.pv_pa;
4867 #else
4868 if (uvm_page_physget(&pa) == false)
4869 return (1);
4870 #endif /* PMAP_STEAL_MEMORY */
4871 } else {
4872 struct vm_page *pg;
4873 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4874 if (pg == NULL)
4875 return (1);
4876 pa = VM_PAGE_TO_PHYS(pg);
4877 #ifdef PMAP_CACHE_VIPT
4878 #ifdef DIAGNOSTIC
4879 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4880 #endif
4881 /*
4882 * This new page must not have any mappings. Enter it via
4883 * pmap_kenter_pa and let that routine do the hard work.
4884 */
4885 KASSERT(SLIST_EMPTY(&md->pvh_list));
4886 pmap_kenter_pa(va, pa,
4887 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
4888 #endif
4889 }
4890
4891 if (pap)
4892 *pap = pa;
4893
4894 PMAPCOUNT(pt_mappings);
4895 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4896 KDASSERT(l2b != NULL);
4897
4898 ptep = &l2b->l2b_kva[l2pte_index(va)];
4899 *ptep = L2_S_PROTO | pa | cache_mode |
4900 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4901 PTE_SYNC(ptep);
4902 memset((void *)va, 0, PAGE_SIZE);
4903 return (0);
4904 }
4905
4906 /*
4907 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4908 * used by pmap_growkernel().
4909 */
4910 static inline struct l2_bucket *
4911 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4912 {
4913 struct l2_dtable *l2;
4914 struct l2_bucket *l2b;
4915 u_short l1idx;
4916 vaddr_t nva;
4917
4918 l1idx = L1_IDX(va);
4919
4920 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4921 /*
4922 * No mapping at this address, as there is
4923 * no entry in the L1 table.
4924 * Need to allocate a new l2_dtable.
4925 */
4926 nva = pmap_kernel_l2dtable_kva;
4927 if ((nva & PGOFSET) == 0) {
4928 /*
4929 * Need to allocate a backing page
4930 */
4931 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4932 return (NULL);
4933 }
4934
4935 l2 = (struct l2_dtable *)nva;
4936 nva += sizeof(struct l2_dtable);
4937
4938 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4939 /*
4940 * The new l2_dtable straddles a page boundary.
4941 * Map in another page to cover it.
4942 */
4943 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4944 return (NULL);
4945 }
4946
4947 pmap_kernel_l2dtable_kva = nva;
4948
4949 /*
4950 * Link it into the parent pmap
4951 */
4952 pm->pm_l2[L2_IDX(l1idx)] = l2;
4953 }
4954
4955 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4956
4957 /*
4958 * Fetch pointer to the L2 page table associated with the address.
4959 */
4960 if (l2b->l2b_kva == NULL) {
4961 pt_entry_t *ptep;
4962
4963 /*
4964 * No L2 page table has been allocated. Chances are, this
4965 * is because we just allocated the l2_dtable, above.
4966 */
4967 nva = pmap_kernel_l2ptp_kva;
4968 ptep = (pt_entry_t *)nva;
4969 if ((nva & PGOFSET) == 0) {
4970 /*
4971 * Need to allocate a backing page
4972 */
4973 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4974 &pmap_kernel_l2ptp_phys))
4975 return (NULL);
4976 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4977 }
4978
4979 l2->l2_occupancy++;
4980 l2b->l2b_kva = ptep;
4981 l2b->l2b_l1idx = l1idx;
4982 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4983
4984 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4985 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4986 }
4987
4988 return (l2b);
4989 }
4990
4991 vaddr_t
4992 pmap_growkernel(vaddr_t maxkvaddr)
4993 {
4994 pmap_t kpm = pmap_kernel();
4995 struct l1_ttable *l1;
4996 struct l2_bucket *l2b;
4997 pd_entry_t *pl1pd;
4998 int s;
4999
5000 if (maxkvaddr <= pmap_curmaxkvaddr)
5001 goto out; /* we are OK */
5002
5003 NPDEBUG(PDB_GROWKERN,
5004 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5005 pmap_curmaxkvaddr, maxkvaddr));
5006
5007 KDASSERT(maxkvaddr <= virtual_end);
5008
5009 /*
5010 * whoops! we need to add kernel PTPs
5011 */
5012
5013 s = splhigh(); /* to be safe */
5014 mutex_enter(kpm->pm_lock);
5015
5016 /* Map 1MB at a time */
5017 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
5018
5019 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5020 KDASSERT(l2b != NULL);
5021
5022 /* Distribute new L1 entry to all other L1s */
5023 SLIST_FOREACH(l1, &l1_list, l1_link) {
5024 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
5025 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
5026 L1_C_PROTO;
5027 PTE_SYNC(pl1pd);
5028 }
5029 }
5030
5031 /*
5032 * flush out the cache, expensive but growkernel will happen so
5033 * rarely
5034 */
5035 cpu_dcache_wbinv_all();
5036 cpu_tlb_flushD();
5037 cpu_cpwait();
5038
5039 mutex_exit(kpm->pm_lock);
5040 splx(s);
5041
5042 out:
5043 return (pmap_curmaxkvaddr);
5044 }
5045
5046 /************************ Utility routines ****************************/
5047
5048 #ifndef ARM_HAS_VBAR
5049 /*
5050 * vector_page_setprot:
5051 *
5052 * Manipulate the protection of the vector page.
5053 */
5054 void
5055 vector_page_setprot(int prot)
5056 {
5057 struct l2_bucket *l2b;
5058 pt_entry_t *ptep;
5059
5060 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5061 /*
5062 * If we are using VBAR to use the vectors in the kernel, then it's
5063 * already mapped in the kernel text so no need to anything here.
5064 */
5065 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5066 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5067 return;
5068 }
5069 #endif
5070
5071 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5072 KDASSERT(l2b != NULL);
5073
5074 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5075
5076 *ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5077 PTE_SYNC(ptep);
5078 cpu_tlb_flushD_SE(vector_page);
5079 cpu_cpwait();
5080 }
5081 #endif
5082
5083 /*
5084 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5085 * Returns true if the mapping exists, else false.
5086 *
5087 * NOTE: This function is only used by a couple of arm-specific modules.
5088 * It is not safe to take any pmap locks here, since we could be right
5089 * in the middle of debugging the pmap anyway...
5090 *
5091 * It is possible for this routine to return false even though a valid
5092 * mapping does exist. This is because we don't lock, so the metadata
5093 * state may be inconsistent.
5094 *
5095 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5096 * a "section" mapping.
5097 */
5098 bool
5099 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5100 {
5101 struct l2_dtable *l2;
5102 pd_entry_t *pl1pd, l1pd;
5103 pt_entry_t *ptep;
5104 u_short l1idx;
5105
5106 if (pm->pm_l1 == NULL)
5107 return false;
5108
5109 l1idx = L1_IDX(va);
5110 *pdp = pl1pd = pmap_l1_kva(pm) + l1idx;
5111 l1pd = *pl1pd;
5112
5113 if (l1pte_section_p(l1pd)) {
5114 *ptp = NULL;
5115 return true;
5116 }
5117
5118 if (pm->pm_l2 == NULL)
5119 return false;
5120
5121 l2 = pm->pm_l2[L2_IDX(l1idx)];
5122
5123 if (l2 == NULL ||
5124 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5125 return false;
5126 }
5127
5128 *ptp = &ptep[l2pte_index(va)];
5129 return true;
5130 }
5131
5132 bool
5133 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5134 {
5135
5136 if (pm->pm_l1 == NULL)
5137 return false;
5138
5139 *pdp = pmap_l1_kva(pm) + L1_IDX(va);
5140
5141 return true;
5142 }
5143
5144 /************************ Bootstrapping routines ****************************/
5145
5146 static void
5147 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5148 {
5149 int i;
5150
5151 l1->l1_kva = l1pt;
5152 l1->l1_domain_use_count = 0;
5153 l1->l1_domain_first = 0;
5154
5155 for (i = 0; i < PMAP_DOMAINS; i++)
5156 l1->l1_domain_free[i] = i + 1;
5157
5158 /*
5159 * Copy the kernel's L1 entries to each new L1.
5160 */
5161 if (pmap_initialized)
5162 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5163
5164 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5165 &l1->l1_physaddr) == false)
5166 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5167
5168 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5169 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5170 }
5171
5172 /*
5173 * pmap_bootstrap() is called from the board-specific initarm() routine
5174 * once the kernel L1/L2 descriptors tables have been set up.
5175 *
5176 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5177 * spread over a number of disparate files/functions.
5178 *
5179 * We are passed the following parameters
5180 * - kernel_l1pt
5181 * This is a pointer to the base of the kernel's L1 translation table.
5182 * - vstart
5183 * 1MB-aligned start of managed kernel virtual memory.
5184 * - vend
5185 * 1MB-aligned end of managed kernel virtual memory.
5186 *
5187 * We use the first parameter to build the metadata (struct l1_ttable and
5188 * struct l2_dtable) necessary to track kernel mappings.
5189 */
5190 #define PMAP_STATIC_L2_SIZE 16
5191 void
5192 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5193 {
5194 static struct l1_ttable static_l1;
5195 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5196 struct l1_ttable *l1 = &static_l1;
5197 struct l2_dtable *l2;
5198 struct l2_bucket *l2b;
5199 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5200 pmap_t pm = pmap_kernel();
5201 pd_entry_t pde;
5202 pt_entry_t *ptep;
5203 paddr_t pa;
5204 vaddr_t va;
5205 vsize_t size;
5206 int nptes, l1idx, l2idx, l2next = 0;
5207
5208 /*
5209 * Initialise the kernel pmap object
5210 */
5211 pm->pm_l1 = l1;
5212 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5213 pm->pm_activated = true;
5214 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5215
5216 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5217 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5218 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5219
5220 /*
5221 * Scan the L1 translation table created by initarm() and create
5222 * the required metadata for all valid mappings found in it.
5223 */
5224 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5225 pde = l1pt[l1idx];
5226
5227 /*
5228 * We're only interested in Coarse mappings.
5229 * pmap_extract() can deal with section mappings without
5230 * recourse to checking L2 metadata.
5231 */
5232 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5233 continue;
5234
5235 /*
5236 * Lookup the KVA of this L2 descriptor table
5237 */
5238 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5239 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5240 if (ptep == NULL) {
5241 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5242 (u_int)l1idx << L1_S_SHIFT, pa);
5243 }
5244
5245 /*
5246 * Fetch the associated L2 metadata structure.
5247 * Allocate a new one if necessary.
5248 */
5249 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5250 if (l2next == PMAP_STATIC_L2_SIZE)
5251 panic("pmap_bootstrap: out of static L2s");
5252 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5253 }
5254
5255 /*
5256 * One more L1 slot tracked...
5257 */
5258 l2->l2_occupancy++;
5259
5260 /*
5261 * Fill in the details of the L2 descriptor in the
5262 * appropriate bucket.
5263 */
5264 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5265 l2b->l2b_kva = ptep;
5266 l2b->l2b_phys = pa;
5267 l2b->l2b_l1idx = l1idx;
5268
5269 /*
5270 * Establish an initial occupancy count for this descriptor
5271 */
5272 for (l2idx = 0;
5273 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5274 l2idx++) {
5275 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5276 l2b->l2b_occupancy++;
5277 }
5278 }
5279
5280 /*
5281 * Make sure the descriptor itself has the correct cache mode.
5282 * If not, fix it, but whine about the problem. Port-meisters
5283 * should consider this a clue to fix up their initarm()
5284 * function. :)
5285 */
5286 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5287 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5288 "L2 pte @ %p\n", ptep);
5289 }
5290 }
5291
5292 /*
5293 * Ensure the primary (kernel) L1 has the correct cache mode for
5294 * a page table. Bitch if it is not correctly set.
5295 */
5296 for (va = (vaddr_t)l1pt;
5297 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5298 if (pmap_set_pt_cache_mode(l1pt, va))
5299 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5300 "primary L1 @ 0x%lx\n", va);
5301 }
5302
5303 cpu_dcache_wbinv_all();
5304 cpu_tlb_flushID();
5305 cpu_cpwait();
5306
5307 /*
5308 * now we allocate the "special" VAs which are used for tmp mappings
5309 * by the pmap (and other modules). we allocate the VAs by advancing
5310 * virtual_avail (note that there are no pages mapped at these VAs).
5311 *
5312 * Managed KVM space start from wherever initarm() tells us.
5313 */
5314 virtual_avail = vstart;
5315 virtual_end = vend;
5316
5317 #ifdef PMAP_CACHE_VIPT
5318 /*
5319 * If we have a VIPT cache, we need one page/pte per possible alias
5320 * page so we won't violate cache aliasing rules.
5321 */
5322 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5323 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5324 #else
5325 nptes = 1;
5326 #endif
5327 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5328 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5329 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5330 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5331 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5332 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5333 (void *)&msgbufaddr, NULL);
5334
5335 /*
5336 * Allocate a range of kernel virtual address space to be used
5337 * for L2 descriptor tables and metadata allocation in
5338 * pmap_growkernel().
5339 */
5340 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5341 pmap_alloc_specials(&virtual_avail,
5342 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5343 &pmap_kernel_l2ptp_kva, NULL);
5344
5345 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5346 pmap_alloc_specials(&virtual_avail,
5347 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5348 &pmap_kernel_l2dtable_kva, NULL);
5349
5350 /*
5351 * init the static-global locks and global pmap list.
5352 */
5353 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
5354
5355 /*
5356 * We can now initialise the first L1's metadata.
5357 */
5358 SLIST_INIT(&l1_list);
5359 TAILQ_INIT(&l1_lru_list);
5360 pmap_init_l1(l1, l1pt);
5361
5362 #ifndef ARM_HAS_VBAR
5363 /* Set up vector page L1 details, if necessary */
5364 if (vector_page < KERNEL_BASE) {
5365 pm->pm_pl1vec = pmap_l1_kva(pm) + L1_IDX(vector_page);
5366 l2b = pmap_get_l2_bucket(pm, vector_page);
5367 KDASSERT(l2b != NULL);
5368 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5369 L1_C_DOM(pmap_domain(pm));
5370 } else
5371 pm->pm_pl1vec = NULL;
5372 #endif
5373
5374 /*
5375 * Initialize the pmap cache
5376 */
5377 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5378 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5379 LIST_INIT(&pmap_pmaps);
5380 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5381
5382 /*
5383 * Initialize the pv pool.
5384 */
5385 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5386 &pmap_bootstrap_pv_allocator, IPL_NONE);
5387
5388 /*
5389 * Initialize the L2 dtable pool and cache.
5390 */
5391 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5392 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5393
5394 /*
5395 * Initialise the L2 descriptor table pool and cache
5396 */
5397 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5398 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5399 pmap_l2ptp_ctor, NULL, NULL);
5400
5401 cpu_dcache_wbinv_all();
5402 }
5403
5404 static int
5405 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5406 {
5407 pd_entry_t *pdep, pde;
5408 pt_entry_t *ptep, pte;
5409 vaddr_t pa;
5410 int rv = 0;
5411
5412 /*
5413 * Make sure the descriptor itself has the correct cache mode
5414 */
5415 pdep = &kl1[L1_IDX(va)];
5416 pde = *pdep;
5417
5418 if (l1pte_section_p(pde)) {
5419 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
5420 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5421 *pdep = (pde & ~L1_S_CACHE_MASK) |
5422 pte_l1_s_cache_mode_pt;
5423 PTE_SYNC(pdep);
5424 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5425 rv = 1;
5426 }
5427 } else {
5428 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5429 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5430 if (ptep == NULL)
5431 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5432
5433 ptep = &ptep[l2pte_index(va)];
5434 pte = *ptep;
5435 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5436 *ptep = (pte & ~L2_S_CACHE_MASK) |
5437 pte_l2_s_cache_mode_pt;
5438 PTE_SYNC(ptep);
5439 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5440 rv = 1;
5441 }
5442 }
5443
5444 return (rv);
5445 }
5446
5447 static void
5448 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5449 {
5450 vaddr_t va = *availp;
5451 struct l2_bucket *l2b;
5452
5453 if (ptep) {
5454 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5455 if (l2b == NULL)
5456 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5457
5458 if (ptep)
5459 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5460 }
5461
5462 *vap = va;
5463 *availp = va + (PAGE_SIZE * pages);
5464 }
5465
5466 void
5467 pmap_init(void)
5468 {
5469
5470 /*
5471 * Set the available memory vars - These do not map to real memory
5472 * addresses and cannot as the physical memory is fragmented.
5473 * They are used by ps for %mem calculations.
5474 * One could argue whether this should be the entire memory or just
5475 * the memory that is useable in a user process.
5476 */
5477 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5478 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5479
5480 /*
5481 * Now we need to free enough pv_entry structures to allow us to get
5482 * the kmem_map/kmem_object allocated and inited (done after this
5483 * function is finished). to do this we allocate one bootstrap page out
5484 * of kernel_map and use it to provide an initial pool of pv_entry
5485 * structures. we never free this page.
5486 */
5487 pool_setlowat(&pmap_pv_pool,
5488 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5489
5490 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5491 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5492 UVM_KMF_WIRED|UVM_KMF_ZERO);
5493
5494 pmap_initialized = true;
5495 }
5496
5497 static vaddr_t last_bootstrap_page = 0;
5498 static void *free_bootstrap_pages = NULL;
5499
5500 static void *
5501 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5502 {
5503 extern void *pool_page_alloc(struct pool *, int);
5504 vaddr_t new_page;
5505 void *rv;
5506
5507 if (pmap_initialized)
5508 return (pool_page_alloc(pp, flags));
5509
5510 if (free_bootstrap_pages) {
5511 rv = free_bootstrap_pages;
5512 free_bootstrap_pages = *((void **)rv);
5513 return (rv);
5514 }
5515
5516 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5517 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5518
5519 KASSERT(new_page > last_bootstrap_page);
5520 last_bootstrap_page = new_page;
5521 return ((void *)new_page);
5522 }
5523
5524 static void
5525 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5526 {
5527 extern void pool_page_free(struct pool *, void *);
5528
5529 if ((vaddr_t)v <= last_bootstrap_page) {
5530 *((void **)v) = free_bootstrap_pages;
5531 free_bootstrap_pages = v;
5532 return;
5533 }
5534
5535 if (pmap_initialized) {
5536 pool_page_free(pp, v);
5537 return;
5538 }
5539 }
5540
5541 /*
5542 * pmap_postinit()
5543 *
5544 * This routine is called after the vm and kmem subsystems have been
5545 * initialised. This allows the pmap code to perform any initialisation
5546 * that can only be done one the memory allocation is in place.
5547 */
5548 void
5549 pmap_postinit(void)
5550 {
5551 extern paddr_t physical_start, physical_end;
5552 struct l1_ttable *l1;
5553 struct pglist plist;
5554 struct vm_page *m;
5555 pd_entry_t *pl1pt;
5556 vaddr_t va, eva;
5557 u_int loop, needed;
5558 int error;
5559
5560 pool_cache_setlowat(&pmap_l2ptp_cache,
5561 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5562 pool_cache_setlowat(&pmap_l2dtable_cache,
5563 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5564
5565 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5566 needed -= 1;
5567
5568 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
5569
5570 for (loop = 0; loop < needed; loop++, l1++) {
5571 /* Allocate a L1 page table */
5572 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5573 if (va == 0)
5574 panic("Cannot allocate L1 KVM");
5575
5576 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5577 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
5578 if (error)
5579 panic("Cannot allocate L1 physical pages");
5580
5581 m = TAILQ_FIRST(&plist);
5582 eva = va + L1_TABLE_SIZE;
5583 pl1pt = (pd_entry_t *)va;
5584
5585 while (m && va < eva) {
5586 paddr_t pa = VM_PAGE_TO_PHYS(m);
5587
5588 pmap_kenter_pa(va, pa,
5589 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5590
5591 va += PAGE_SIZE;
5592 m = TAILQ_NEXT(m, pageq.queue);
5593 }
5594
5595 #ifdef DIAGNOSTIC
5596 if (m)
5597 panic("pmap_alloc_l1pt: pglist not empty");
5598 #endif /* DIAGNOSTIC */
5599
5600 pmap_init_l1(l1, pl1pt);
5601 }
5602
5603 #ifdef DEBUG
5604 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5605 needed);
5606 #endif
5607 }
5608
5609 /*
5610 * Note that the following routines are used by board-specific initialisation
5611 * code to configure the initial kernel page tables.
5612 *
5613 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5614 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5615 * behaviour of the old pmap, and provides an easy migration path for
5616 * initial bring-up of the new pmap on existing ports. Fortunately,
5617 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5618 * will be deprecated.
5619 *
5620 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5621 * tables.
5622 */
5623
5624 /*
5625 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5626 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5627 * find them as necessary.
5628 *
5629 * Note that the data on this list MUST remain valid after initarm() returns,
5630 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5631 */
5632 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5633
5634 static vaddr_t
5635 kernel_pt_lookup(paddr_t pa)
5636 {
5637 pv_addr_t *pv;
5638
5639 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5640 #ifndef ARM32_NEW_VM_LAYOUT
5641 if (pv->pv_pa == (pa & ~PGOFSET))
5642 return (pv->pv_va | (pa & PGOFSET));
5643 #else
5644 if (pv->pv_pa == pa)
5645 return (pv->pv_va);
5646 #endif
5647 }
5648 return (0);
5649 }
5650
5651 /*
5652 * pmap_map_section:
5653 *
5654 * Create a single section mapping.
5655 */
5656 void
5657 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5658 {
5659 pd_entry_t *pde = (pd_entry_t *) l1pt;
5660 pd_entry_t fl;
5661
5662 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5663
5664 switch (cache) {
5665 case PTE_NOCACHE:
5666 default:
5667 fl = 0;
5668 break;
5669
5670 case PTE_CACHE:
5671 fl = pte_l1_s_cache_mode;
5672 break;
5673
5674 case PTE_PAGETABLE:
5675 fl = pte_l1_s_cache_mode_pt;
5676 break;
5677 }
5678
5679 pde[L1_IDX(va)] = L1_S_PROTO | pa |
5680 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5681 PTE_SYNC(&pde[L1_IDX(va)]);
5682 }
5683
5684 /*
5685 * pmap_map_entry:
5686 *
5687 * Create a single page mapping.
5688 */
5689 void
5690 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5691 {
5692 pd_entry_t *pde = (pd_entry_t *) l1pt;
5693 pt_entry_t npte;
5694 pt_entry_t *ptep;
5695
5696 KASSERT(((va | pa) & PGOFSET) == 0);
5697
5698 switch (cache) {
5699 case PTE_NOCACHE:
5700 default:
5701 npte = 0;
5702 break;
5703
5704 case PTE_CACHE:
5705 npte = pte_l2_s_cache_mode;
5706 break;
5707
5708 case PTE_PAGETABLE:
5709 npte = pte_l2_s_cache_mode_pt;
5710 break;
5711 }
5712
5713 if ((pde[L1_IDX(va)] & L1_TYPE_MASK) != L1_TYPE_C)
5714 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5715
5716 #ifndef ARM32_NEW_VM_LAYOUT
5717 ptep = (pt_entry_t *)
5718 kernel_pt_lookup(pde[L1_IDX(va)] & L2_S_FRAME);
5719 #else
5720 ptep = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5721 #endif
5722 if (ptep == NULL)
5723 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5724
5725 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5726 #ifndef ARM32_NEW_VM_LAYOUT
5727 ptep += (va >> PGSHIFT) & 0x3ff;
5728 #else
5729 ptep += l2pte_index(va);
5730 #endif
5731 l2pte_set(ptep, npte, 0);
5732 PTE_SYNC(ptep);
5733 }
5734
5735 /*
5736 * pmap_link_l2pt:
5737 *
5738 * Link the L2 page table specified by "l2pv" into the L1
5739 * page table at the slot for "va".
5740 */
5741 void
5742 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5743 {
5744 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5745 u_int slot = L1_IDX(va);
5746
5747 #ifndef ARM32_NEW_VM_LAYOUT
5748 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5749 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5750 #endif
5751
5752 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5753
5754 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5755 #ifdef ARM32_NEW_VM_LAYOUT
5756 PTE_SYNC(&pde[slot]);
5757 #else
5758 for (u_int off = 0, i = 0; off < PAGE_SIZE; off += L2_T_SIZE, i++) {
5759 pde[slot + i] = proto | (l2pv->pv_pa + off);
5760 }
5761 PTE_SYNC_RANGE(&pde[slot + 0], PAGE_SIZE / L2_T_SIZE);
5762 #endif
5763
5764 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5765 }
5766
5767 /*
5768 * pmap_map_chunk:
5769 *
5770 * Map a chunk of memory using the most efficient mappings
5771 * possible (section, large page, small page) into the
5772 * provided L1 and L2 tables at the specified virtual address.
5773 */
5774 vsize_t
5775 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5776 int prot, int cache)
5777 {
5778 pd_entry_t *pdep = (pd_entry_t *) l1pt;
5779 pt_entry_t *pte, f1, f2s, f2l;
5780 vsize_t resid;
5781 int i;
5782
5783 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5784
5785 if (l1pt == 0)
5786 panic("pmap_map_chunk: no L1 table provided");
5787
5788 #ifdef VERBOSE_INIT_ARM
5789 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5790 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5791 #endif
5792
5793 switch (cache) {
5794 case PTE_NOCACHE:
5795 default:
5796 f1 = 0;
5797 f2l = 0;
5798 f2s = 0;
5799 break;
5800
5801 case PTE_CACHE:
5802 f1 = pte_l1_s_cache_mode;
5803 f2l = pte_l2_l_cache_mode;
5804 f2s = pte_l2_s_cache_mode;
5805 break;
5806
5807 case PTE_PAGETABLE:
5808 f1 = pte_l1_s_cache_mode_pt;
5809 f2l = pte_l2_l_cache_mode_pt;
5810 f2s = pte_l2_s_cache_mode_pt;
5811 break;
5812 }
5813
5814 size = resid;
5815
5816 while (resid > 0) {
5817 size_t l1idx = L1_IDX(va);
5818 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5819 /* See if we can use a supersection mapping. */
5820 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
5821 /* Supersection are always domain 0 */
5822 pd_entry_t pde = L1_SS_PROTO | pa |
5823 L1_S_PROT(PTE_KERNEL, prot) | f1;
5824 #ifdef VERBOSE_INIT_ARM
5825 printf("sS");
5826 #endif
5827 for (size_t s = l1idx,
5828 e = s + L1_SS_SIZE / L1_S_SIZE;
5829 s < e;
5830 s++) {
5831 pdep[s] = pde;
5832 PTE_SYNC(&pdep[s]);
5833 }
5834 va += L1_SS_SIZE;
5835 pa += L1_SS_SIZE;
5836 resid -= L1_SS_SIZE;
5837 continue;
5838 }
5839 #endif
5840 /* See if we can use a section mapping. */
5841 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5842 #ifdef VERBOSE_INIT_ARM
5843 printf("S");
5844 #endif
5845 pdep[l1idx] = L1_S_PROTO | pa |
5846 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5847 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5848 PTE_SYNC(&pdep[l1idx]);
5849 va += L1_S_SIZE;
5850 pa += L1_S_SIZE;
5851 resid -= L1_S_SIZE;
5852 continue;
5853 }
5854
5855 /*
5856 * Ok, we're going to use an L2 table. Make sure
5857 * one is actually in the corresponding L1 slot
5858 * for the current VA.
5859 */
5860 if ((pdep[l1idx] & L1_TYPE_MASK) != L1_TYPE_C)
5861 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5862
5863 #ifndef ARM32_NEW_VM_LAYOUT
5864 pte = (pt_entry_t *)
5865 kernel_pt_lookup(pdep[l1idx] & L2_S_FRAME);
5866 #else
5867 pte = (pt_entry_t *) kernel_pt_lookup(
5868 pdep[l1idx] & L1_C_ADDR_MASK);
5869 #endif
5870 if (pte == NULL)
5871 panic("pmap_map_chunk: can't find L2 table for VA"
5872 "0x%08lx", va);
5873
5874 /* See if we can use a L2 large page mapping. */
5875 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5876 #ifdef VERBOSE_INIT_ARM
5877 printf("L");
5878 #endif
5879 for (i = 0; i < 16; i++) {
5880 #ifndef ARM32_NEW_VM_LAYOUT
5881 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5882 L2_L_PROTO | pa |
5883 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5884 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5885 #else
5886 pte[l2pte_index(va) + i] =
5887 L2_L_PROTO | pa |
5888 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5889 PTE_SYNC(&pte[l2pte_index(va) + i]);
5890 #endif
5891 }
5892 va += L2_L_SIZE;
5893 pa += L2_L_SIZE;
5894 resid -= L2_L_SIZE;
5895 continue;
5896 }
5897
5898 /* Use a small page mapping. */
5899 #ifdef VERBOSE_INIT_ARM
5900 printf("P");
5901 #endif
5902 pt_entry_t npte =
5903 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5904 #ifndef ARM32_NEW_VM_LAYOUT
5905 pt_entry_t *ptep = &pte[(va >> PGSHIFT) & 0x3ff];
5906 #else
5907 pt_entry_t *ptep = &pte[l2pte_index(va)];
5908 #endif
5909 l2pte_set(ptep, npte, 0);
5910 PTE_SYNC(ptep);
5911 va += PAGE_SIZE;
5912 pa += PAGE_SIZE;
5913 resid -= PAGE_SIZE;
5914 }
5915 #ifdef VERBOSE_INIT_ARM
5916 printf("\n");
5917 #endif
5918 return (size);
5919 }
5920
5921 /********************** Static device map routines ***************************/
5922
5923 static const struct pmap_devmap *pmap_devmap_table;
5924
5925 /*
5926 * Register the devmap table. This is provided in case early console
5927 * initialization needs to register mappings created by bootstrap code
5928 * before pmap_devmap_bootstrap() is called.
5929 */
5930 void
5931 pmap_devmap_register(const struct pmap_devmap *table)
5932 {
5933
5934 pmap_devmap_table = table;
5935 }
5936
5937 /*
5938 * Map all of the static regions in the devmap table, and remember
5939 * the devmap table so other parts of the kernel can look up entries
5940 * later.
5941 */
5942 void
5943 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5944 {
5945 int i;
5946
5947 pmap_devmap_table = table;
5948
5949 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5950 #ifdef VERBOSE_INIT_ARM
5951 printf("devmap: %08lx -> %08lx @ %08lx\n",
5952 pmap_devmap_table[i].pd_pa,
5953 pmap_devmap_table[i].pd_pa +
5954 pmap_devmap_table[i].pd_size - 1,
5955 pmap_devmap_table[i].pd_va);
5956 #endif
5957 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5958 pmap_devmap_table[i].pd_pa,
5959 pmap_devmap_table[i].pd_size,
5960 pmap_devmap_table[i].pd_prot,
5961 pmap_devmap_table[i].pd_cache);
5962 }
5963 }
5964
5965 const struct pmap_devmap *
5966 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5967 {
5968 uint64_t endpa;
5969 int i;
5970
5971 if (pmap_devmap_table == NULL)
5972 return (NULL);
5973
5974 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5975
5976 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5977 if (pa >= pmap_devmap_table[i].pd_pa &&
5978 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5979 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5980 return (&pmap_devmap_table[i]);
5981 }
5982
5983 return (NULL);
5984 }
5985
5986 const struct pmap_devmap *
5987 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5988 {
5989 int i;
5990
5991 if (pmap_devmap_table == NULL)
5992 return (NULL);
5993
5994 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5995 if (va >= pmap_devmap_table[i].pd_va &&
5996 va + size - 1 <= pmap_devmap_table[i].pd_va +
5997 pmap_devmap_table[i].pd_size - 1)
5998 return (&pmap_devmap_table[i]);
5999 }
6000
6001 return (NULL);
6002 }
6003
6004 /********************** PTE initialization routines **************************/
6005
6006 /*
6007 * These routines are called when the CPU type is identified to set up
6008 * the PTE prototypes, cache modes, etc.
6009 *
6010 * The variables are always here, just in case modules need to reference
6011 * them (though, they shouldn't).
6012 */
6013
6014 pt_entry_t pte_l1_s_cache_mode;
6015 pt_entry_t pte_l1_s_wc_mode;
6016 pt_entry_t pte_l1_s_cache_mode_pt;
6017 pt_entry_t pte_l1_s_cache_mask;
6018
6019 pt_entry_t pte_l2_l_cache_mode;
6020 pt_entry_t pte_l2_l_wc_mode;
6021 pt_entry_t pte_l2_l_cache_mode_pt;
6022 pt_entry_t pte_l2_l_cache_mask;
6023
6024 pt_entry_t pte_l2_s_cache_mode;
6025 pt_entry_t pte_l2_s_wc_mode;
6026 pt_entry_t pte_l2_s_cache_mode_pt;
6027 pt_entry_t pte_l2_s_cache_mask;
6028
6029 pt_entry_t pte_l1_s_prot_u;
6030 pt_entry_t pte_l1_s_prot_w;
6031 pt_entry_t pte_l1_s_prot_ro;
6032 pt_entry_t pte_l1_s_prot_mask;
6033
6034 pt_entry_t pte_l2_s_prot_u;
6035 pt_entry_t pte_l2_s_prot_w;
6036 pt_entry_t pte_l2_s_prot_ro;
6037 pt_entry_t pte_l2_s_prot_mask;
6038
6039 pt_entry_t pte_l2_l_prot_u;
6040 pt_entry_t pte_l2_l_prot_w;
6041 pt_entry_t pte_l2_l_prot_ro;
6042 pt_entry_t pte_l2_l_prot_mask;
6043
6044 pt_entry_t pte_l1_ss_proto;
6045 pt_entry_t pte_l1_s_proto;
6046 pt_entry_t pte_l1_c_proto;
6047 pt_entry_t pte_l2_s_proto;
6048
6049 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6050 void (*pmap_zero_page_func)(paddr_t);
6051
6052 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6053 void
6054 pmap_pte_init_generic(void)
6055 {
6056
6057 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6058 pte_l1_s_wc_mode = L1_S_B;
6059 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6060
6061 pte_l2_l_cache_mode = L2_B|L2_C;
6062 pte_l2_l_wc_mode = L2_B;
6063 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6064
6065 pte_l2_s_cache_mode = L2_B|L2_C;
6066 pte_l2_s_wc_mode = L2_B;
6067 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6068
6069 /*
6070 * If we have a write-through cache, set B and C. If
6071 * we have a write-back cache, then we assume setting
6072 * only C will make those pages write-through (except for those
6073 * Cortex CPUs which can read the L1 caches).
6074 */
6075 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6076 #if ARM_MMU_V7 > 0
6077 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6078 #endif
6079 #if ARM_MMU_V6 > 0
6080 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6081 #endif
6082 || false) {
6083 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6084 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6085 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6086 } else {
6087 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6088 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6089 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6090 }
6091
6092 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6093 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6094 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6095 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6096
6097 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6098 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6099 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6100 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6101
6102 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6103 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6104 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6105 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6106
6107 pte_l1_ss_proto = L1_SS_PROTO_generic;
6108 pte_l1_s_proto = L1_S_PROTO_generic;
6109 pte_l1_c_proto = L1_C_PROTO_generic;
6110 pte_l2_s_proto = L2_S_PROTO_generic;
6111
6112 pmap_copy_page_func = pmap_copy_page_generic;
6113 pmap_zero_page_func = pmap_zero_page_generic;
6114 }
6115
6116 #if defined(CPU_ARM8)
6117 void
6118 pmap_pte_init_arm8(void)
6119 {
6120
6121 /*
6122 * ARM8 is compatible with generic, but we need to use
6123 * the page tables uncached.
6124 */
6125 pmap_pte_init_generic();
6126
6127 pte_l1_s_cache_mode_pt = 0;
6128 pte_l2_l_cache_mode_pt = 0;
6129 pte_l2_s_cache_mode_pt = 0;
6130 }
6131 #endif /* CPU_ARM8 */
6132
6133 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6134 void
6135 pmap_pte_init_arm9(void)
6136 {
6137
6138 /*
6139 * ARM9 is compatible with generic, but we want to use
6140 * write-through caching for now.
6141 */
6142 pmap_pte_init_generic();
6143
6144 pte_l1_s_cache_mode = L1_S_C;
6145 pte_l2_l_cache_mode = L2_C;
6146 pte_l2_s_cache_mode = L2_C;
6147
6148 pte_l1_s_wc_mode = L1_S_B;
6149 pte_l2_l_wc_mode = L2_B;
6150 pte_l2_s_wc_mode = L2_B;
6151
6152 pte_l1_s_cache_mode_pt = L1_S_C;
6153 pte_l2_l_cache_mode_pt = L2_C;
6154 pte_l2_s_cache_mode_pt = L2_C;
6155 }
6156 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6157 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6158
6159 #if defined(CPU_ARM10)
6160 void
6161 pmap_pte_init_arm10(void)
6162 {
6163
6164 /*
6165 * ARM10 is compatible with generic, but we want to use
6166 * write-through caching for now.
6167 */
6168 pmap_pte_init_generic();
6169
6170 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6171 pte_l2_l_cache_mode = L2_B | L2_C;
6172 pte_l2_s_cache_mode = L2_B | L2_C;
6173
6174 pte_l1_s_cache_mode = L1_S_B;
6175 pte_l2_l_cache_mode = L2_B;
6176 pte_l2_s_cache_mode = L2_B;
6177
6178 pte_l1_s_cache_mode_pt = L1_S_C;
6179 pte_l2_l_cache_mode_pt = L2_C;
6180 pte_l2_s_cache_mode_pt = L2_C;
6181
6182 }
6183 #endif /* CPU_ARM10 */
6184
6185 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6186 void
6187 pmap_pte_init_arm11(void)
6188 {
6189
6190 /*
6191 * ARM11 is compatible with generic, but we want to use
6192 * write-through caching for now.
6193 */
6194 pmap_pte_init_generic();
6195
6196 pte_l1_s_cache_mode = L1_S_C;
6197 pte_l2_l_cache_mode = L2_C;
6198 pte_l2_s_cache_mode = L2_C;
6199
6200 pte_l1_s_wc_mode = L1_S_B;
6201 pte_l2_l_wc_mode = L2_B;
6202 pte_l2_s_wc_mode = L2_B;
6203
6204 pte_l1_s_cache_mode_pt = L1_S_C;
6205 pte_l2_l_cache_mode_pt = L2_C;
6206 pte_l2_s_cache_mode_pt = L2_C;
6207 }
6208 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6209
6210 #if ARM_MMU_SA1 == 1
6211 void
6212 pmap_pte_init_sa1(void)
6213 {
6214
6215 /*
6216 * The StrongARM SA-1 cache does not have a write-through
6217 * mode. So, do the generic initialization, then reset
6218 * the page table cache mode to B=1,C=1, and note that
6219 * the PTEs need to be sync'd.
6220 */
6221 pmap_pte_init_generic();
6222
6223 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6224 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6225 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6226
6227 pmap_needs_pte_sync = 1;
6228 }
6229 #endif /* ARM_MMU_SA1 == 1*/
6230
6231 #if ARM_MMU_XSCALE == 1
6232 #if (ARM_NMMUS > 1)
6233 static u_int xscale_use_minidata;
6234 #endif
6235
6236 void
6237 pmap_pte_init_xscale(void)
6238 {
6239 uint32_t auxctl;
6240 int write_through = 0;
6241
6242 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6243 pte_l1_s_wc_mode = L1_S_B;
6244 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6245
6246 pte_l2_l_cache_mode = L2_B|L2_C;
6247 pte_l2_l_wc_mode = L2_B;
6248 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6249
6250 pte_l2_s_cache_mode = L2_B|L2_C;
6251 pte_l2_s_wc_mode = L2_B;
6252 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6253
6254 pte_l1_s_cache_mode_pt = L1_S_C;
6255 pte_l2_l_cache_mode_pt = L2_C;
6256 pte_l2_s_cache_mode_pt = L2_C;
6257
6258 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6259 /*
6260 * The XScale core has an enhanced mode where writes that
6261 * miss the cache cause a cache line to be allocated. This
6262 * is significantly faster than the traditional, write-through
6263 * behavior of this case.
6264 */
6265 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6266 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6267 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6268 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6269
6270 #ifdef XSCALE_CACHE_WRITE_THROUGH
6271 /*
6272 * Some versions of the XScale core have various bugs in
6273 * their cache units, the work-around for which is to run
6274 * the cache in write-through mode. Unfortunately, this
6275 * has a major (negative) impact on performance. So, we
6276 * go ahead and run fast-and-loose, in the hopes that we
6277 * don't line up the planets in a way that will trip the
6278 * bugs.
6279 *
6280 * However, we give you the option to be slow-but-correct.
6281 */
6282 write_through = 1;
6283 #elif defined(XSCALE_CACHE_WRITE_BACK)
6284 /* force write back cache mode */
6285 write_through = 0;
6286 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6287 /*
6288 * Intel PXA2[15]0 processors are known to have a bug in
6289 * write-back cache on revision 4 and earlier (stepping
6290 * A[01] and B[012]). Fixed for C0 and later.
6291 */
6292 {
6293 uint32_t id, type;
6294
6295 id = cpufunc_id();
6296 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6297
6298 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6299 if ((id & CPU_ID_REVISION_MASK) < 5) {
6300 /* write through for stepping A0-1 and B0-2 */
6301 write_through = 1;
6302 }
6303 }
6304 }
6305 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6306
6307 if (write_through) {
6308 pte_l1_s_cache_mode = L1_S_C;
6309 pte_l2_l_cache_mode = L2_C;
6310 pte_l2_s_cache_mode = L2_C;
6311 }
6312
6313 #if (ARM_NMMUS > 1)
6314 xscale_use_minidata = 1;
6315 #endif
6316
6317 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6318 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6319 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6320 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6321
6322 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6323 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6324 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6325 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6326
6327 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6328 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6329 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6330 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6331
6332 pte_l1_ss_proto = L1_SS_PROTO_xscale;
6333 pte_l1_s_proto = L1_S_PROTO_xscale;
6334 pte_l1_c_proto = L1_C_PROTO_xscale;
6335 pte_l2_s_proto = L2_S_PROTO_xscale;
6336
6337 pmap_copy_page_func = pmap_copy_page_xscale;
6338 pmap_zero_page_func = pmap_zero_page_xscale;
6339
6340 /*
6341 * Disable ECC protection of page table access, for now.
6342 */
6343 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6344 auxctl &= ~XSCALE_AUXCTL_P;
6345 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6346 }
6347
6348 /*
6349 * xscale_setup_minidata:
6350 *
6351 * Set up the mini-data cache clean area. We require the
6352 * caller to allocate the right amount of physically and
6353 * virtually contiguous space.
6354 */
6355 void
6356 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6357 {
6358 extern vaddr_t xscale_minidata_clean_addr;
6359 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6360 pd_entry_t *pde = (pd_entry_t *) l1pt;
6361 vsize_t size;
6362 uint32_t auxctl;
6363
6364 xscale_minidata_clean_addr = va;
6365
6366 /* Round it to page size. */
6367 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6368
6369 for (; size != 0;
6370 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6371 const size_t l1idx = L1_IDX(va);
6372 #ifndef ARM32_NEW_VM_LAYOUT
6373 pt_entry_t *ptep = (pt_entry_t *)
6374 kernel_pt_lookup(pde[l1idx] & L2_S_FRAME);
6375 #else
6376 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(
6377 pde[l1idx] & L1_C_ADDR_MASK);
6378 #endif
6379 if (ptep == NULL)
6380 panic("xscale_setup_minidata: can't find L2 table for "
6381 "VA 0x%08lx", va);
6382
6383 #ifndef ARM32_NEW_VM_LAYOUT
6384 ptep += (va >> PGSHIFT) & 0x3ff;
6385 #else
6386 ptep += l2pte_index(va);
6387 #endif
6388 pt_entry_t opte = *ptep;
6389 l2pte_set(ptep,
6390 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
6391 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
6392 }
6393
6394 /*
6395 * Configure the mini-data cache for write-back with
6396 * read/write-allocate.
6397 *
6398 * NOTE: In order to reconfigure the mini-data cache, we must
6399 * make sure it contains no valid data! In order to do that,
6400 * we must issue a global data cache invalidate command!
6401 *
6402 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6403 * THIS IS VERY IMPORTANT!
6404 */
6405
6406 /* Invalidate data and mini-data. */
6407 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6408 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6409 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6410 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6411 }
6412
6413 /*
6414 * Change the PTEs for the specified kernel mappings such that they
6415 * will use the mini data cache instead of the main data cache.
6416 */
6417 void
6418 pmap_uarea(vaddr_t va)
6419 {
6420 vaddr_t next_bucket, eva;
6421
6422 #if (ARM_NMMUS > 1)
6423 if (xscale_use_minidata == 0)
6424 return;
6425 #endif
6426
6427 eva = va + USPACE;
6428
6429 while (va < eva) {
6430 next_bucket = L2_NEXT_BUCKET(va);
6431 if (next_bucket > eva)
6432 next_bucket = eva;
6433
6434 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6435 KDASSERT(l2b != NULL);
6436
6437 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
6438 pt_entry_t *ptep = sptep;
6439
6440 while (va < next_bucket) {
6441 const pt_entry_t opte = *ptep;
6442 if (!l2pte_minidata_p(opte)) {
6443 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6444 cpu_tlb_flushD_SE(va);
6445 l2pte_set(ptep, opte & ~L2_B, opte);
6446 }
6447 ptep += PAGE_SIZE / L2_S_SIZE;
6448 va += PAGE_SIZE;
6449 }
6450 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6451 }
6452 cpu_cpwait();
6453 }
6454 #endif /* ARM_MMU_XSCALE == 1 */
6455
6456
6457 #if defined(CPU_ARM11MPCORE)
6458
6459 void
6460 pmap_pte_init_arm11mpcore(void)
6461 {
6462
6463 /* cache mode is controlled by 5 bits (B, C, TEX) */
6464 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6465 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6466 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6467 /* use extended small page (without APn, with TEX) */
6468 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6469 #else
6470 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6471 #endif
6472
6473 /* write-back, write-allocate */
6474 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6475 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6476 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6477 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6478 #else
6479 /* no TEX. read-allocate */
6480 pte_l2_s_cache_mode = L2_C | L2_B;
6481 #endif
6482 /*
6483 * write-back, write-allocate for page tables.
6484 */
6485 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6486 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6487 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6488 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6489 #else
6490 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6491 #endif
6492
6493 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6494 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6495 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6496 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6497
6498 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6499 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6500 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6501 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6502 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6503
6504 #else
6505 /* with AP[0..3] */
6506 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6507 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6508 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6509 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6510 #endif
6511
6512 #ifdef ARM11MPCORE_COMPAT_MMU
6513 /* with AP[0..3] */
6514 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6515 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6516 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6517 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6518
6519 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6520 pte_l1_s_proto = L1_S_PROTO_armv6;
6521 pte_l1_c_proto = L1_C_PROTO_armv6;
6522 pte_l2_s_proto = L2_S_PROTO_armv6c;
6523 #else
6524 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6525 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6526 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6527 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6528
6529 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6530 pte_l1_s_proto = L1_S_PROTO_armv6;
6531 pte_l1_c_proto = L1_C_PROTO_armv6;
6532 pte_l2_s_proto = L2_S_PROTO_armv6n;
6533 #endif
6534
6535 pmap_copy_page_func = pmap_copy_page_generic;
6536 pmap_zero_page_func = pmap_zero_page_generic;
6537 pmap_needs_pte_sync = 1;
6538 }
6539 #endif /* CPU_ARM11MPCORE */
6540
6541
6542 #if ARM_MMU_V7 == 1
6543 void
6544 pmap_pte_init_armv7(void)
6545 {
6546 /*
6547 * The ARMv7-A MMU is mostly compatible with generic. If the
6548 * AP field is zero, that now means "no access" rather than
6549 * read-only. The prototypes are a little different because of
6550 * the XN bit.
6551 */
6552 pmap_pte_init_generic();
6553
6554 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6555 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6556 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6557
6558 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
6559 /*
6560 * write-back, no write-allocate, shareable for normal pages.
6561 */
6562 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
6563 pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
6564 pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
6565
6566 /*
6567 * write-back, no write-allocate, shareable for page tables.
6568 */
6569 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
6570 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6571 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6572 }
6573
6574 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6575 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6576 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6577 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6578
6579 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6580 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6581 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6582 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6583
6584 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6585 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6586 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6587 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6588
6589 pte_l1_ss_proto = L1_SS_PROTO_armv7;
6590 pte_l1_s_proto = L1_S_PROTO_armv7;
6591 pte_l1_c_proto = L1_C_PROTO_armv7;
6592 pte_l2_s_proto = L2_S_PROTO_armv7;
6593
6594 pmap_needs_pte_sync = 1;
6595 }
6596 #endif /* ARM_MMU_V7 */
6597
6598 /*
6599 * return the PA of the current L1 table, for use when handling a crash dump
6600 */
6601 uint32_t pmap_kernel_L1_addr(void)
6602 {
6603 return pmap_kernel()->pm_l1->l1_physaddr;
6604 }
6605
6606 #if defined(DDB)
6607 /*
6608 * A couple of ddb-callable functions for dumping pmaps
6609 */
6610 void pmap_dump_all(void);
6611 void pmap_dump(pmap_t);
6612
6613 void
6614 pmap_dump_all(void)
6615 {
6616 pmap_t pm;
6617
6618 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6619 if (pm == pmap_kernel())
6620 continue;
6621 pmap_dump(pm);
6622 printf("\n");
6623 }
6624 }
6625
6626 static pt_entry_t ncptes[64];
6627 static void pmap_dump_ncpg(pmap_t);
6628
6629 void
6630 pmap_dump(pmap_t pm)
6631 {
6632 struct l2_dtable *l2;
6633 struct l2_bucket *l2b;
6634 pt_entry_t *ptep, pte;
6635 vaddr_t l2_va, l2b_va, va;
6636 int i, j, k, occ, rows = 0;
6637
6638 if (pm == pmap_kernel())
6639 printf("pmap_kernel (%p): ", pm);
6640 else
6641 printf("user pmap (%p): ", pm);
6642
6643 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
6644
6645 l2_va = 0;
6646 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6647 l2 = pm->pm_l2[i];
6648
6649 if (l2 == NULL || l2->l2_occupancy == 0)
6650 continue;
6651
6652 l2b_va = l2_va;
6653 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6654 l2b = &l2->l2_bucket[j];
6655
6656 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6657 continue;
6658
6659 ptep = l2b->l2b_kva;
6660
6661 for (k = 0; k < 256 && ptep[k] == 0; k++)
6662 ;
6663
6664 k &= ~63;
6665 occ = l2b->l2b_occupancy;
6666 va = l2b_va + (k * 4096);
6667 for (; k < 256; k++, va += 0x1000) {
6668 char ch = ' ';
6669 if ((k % 64) == 0) {
6670 if ((rows % 8) == 0) {
6671 printf(
6672 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6673 }
6674 printf("%08lx: ", va);
6675 }
6676
6677 ncptes[k & 63] = 0;
6678 pte = ptep[k];
6679 if (pte == 0) {
6680 ch = '.';
6681 } else {
6682 occ--;
6683 switch (pte & 0x0c) {
6684 case 0x00:
6685 ch = 'D'; /* No cache No buff */
6686 break;
6687 case 0x04:
6688 ch = 'B'; /* No cache buff */
6689 break;
6690 case 0x08:
6691 if (pte & 0x40)
6692 ch = 'm';
6693 else
6694 ch = 'C'; /* Cache No buff */
6695 break;
6696 case 0x0c:
6697 ch = 'F'; /* Cache Buff */
6698 break;
6699 }
6700
6701 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6702 ch += 0x20;
6703
6704 if ((pte & 0xc) == 0)
6705 ncptes[k & 63] = pte;
6706 }
6707
6708 if ((k % 64) == 63) {
6709 rows++;
6710 printf("%c\n", ch);
6711 pmap_dump_ncpg(pm);
6712 if (occ == 0)
6713 break;
6714 } else
6715 printf("%c", ch);
6716 }
6717 }
6718 }
6719 }
6720
6721 static void
6722 pmap_dump_ncpg(pmap_t pm)
6723 {
6724 struct vm_page *pg;
6725 struct vm_page_md *md;
6726 struct pv_entry *pv;
6727 int i;
6728
6729 for (i = 0; i < 63; i++) {
6730 if (ncptes[i] == 0)
6731 continue;
6732
6733 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6734 if (pg == NULL)
6735 continue;
6736 md = VM_PAGE_TO_MD(pg);
6737
6738 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6739 VM_PAGE_TO_PHYS(pg),
6740 md->krw_mappings, md->kro_mappings,
6741 md->urw_mappings, md->uro_mappings);
6742
6743 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6744 printf(" %c va 0x%08lx, flags 0x%x\n",
6745 (pm == pv->pv_pmap) ? '*' : ' ',
6746 pv->pv_va, pv->pv_flags);
6747 }
6748 }
6749 }
6750 #endif
6751
6752 #ifdef PMAP_STEAL_MEMORY
6753 void
6754 pmap_boot_pageadd(pv_addr_t *newpv)
6755 {
6756 pv_addr_t *pv, *npv;
6757
6758 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6759 if (newpv->pv_pa < pv->pv_va) {
6760 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6761 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6762 newpv->pv_size += pv->pv_size;
6763 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6764 }
6765 pv = NULL;
6766 } else {
6767 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6768 pv = npv) {
6769 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6770 KASSERT(pv->pv_pa < newpv->pv_pa);
6771 if (newpv->pv_pa > npv->pv_pa)
6772 continue;
6773 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6774 pv->pv_size += newpv->pv_size;
6775 return;
6776 }
6777 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6778 break;
6779 newpv->pv_size += npv->pv_size;
6780 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6781 SLIST_REMOVE_AFTER(newpv, pv_list);
6782 return;
6783 }
6784 }
6785 }
6786
6787 if (pv) {
6788 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6789 } else {
6790 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6791 }
6792 }
6793
6794 void
6795 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6796 pv_addr_t *rpv)
6797 {
6798 pv_addr_t *pv, **pvp;
6799 struct vm_physseg *ps;
6800 size_t i;
6801
6802 KASSERT(amount & PGOFSET);
6803 KASSERT((mask & PGOFSET) == 0);
6804 KASSERT((match & PGOFSET) == 0);
6805 KASSERT(amount != 0);
6806
6807 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6808 (pv = *pvp) != NULL;
6809 pvp = &SLIST_NEXT(pv, pv_list)) {
6810 pv_addr_t *newpv;
6811 psize_t off;
6812 /*
6813 * If this entry is too small to satify the request...
6814 */
6815 KASSERT(pv->pv_size > 0);
6816 if (pv->pv_size < amount)
6817 continue;
6818
6819 for (off = 0; off <= mask; off += PAGE_SIZE) {
6820 if (((pv->pv_pa + off) & mask) == match
6821 && off + amount <= pv->pv_size)
6822 break;
6823 }
6824 if (off > mask)
6825 continue;
6826
6827 rpv->pv_va = pv->pv_va + off;
6828 rpv->pv_pa = pv->pv_pa + off;
6829 rpv->pv_size = amount;
6830 pv->pv_size -= amount;
6831 if (pv->pv_size == 0) {
6832 KASSERT(off == 0);
6833 KASSERT((vaddr_t) pv == rpv->pv_va);
6834 *pvp = SLIST_NEXT(pv, pv_list);
6835 } else if (off == 0) {
6836 KASSERT((vaddr_t) pv == rpv->pv_va);
6837 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6838 *newpv = *pv;
6839 newpv->pv_pa += amount;
6840 newpv->pv_va += amount;
6841 *pvp = newpv;
6842 } else if (off < pv->pv_size) {
6843 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6844 *newpv = *pv;
6845 newpv->pv_size -= off;
6846 newpv->pv_pa += off + amount;
6847 newpv->pv_va += off + amount;
6848
6849 SLIST_NEXT(pv, pv_list) = newpv;
6850 pv->pv_size = off;
6851 } else {
6852 KASSERT((vaddr_t) pv != rpv->pv_va);
6853 }
6854 memset((void *)rpv->pv_va, 0, amount);
6855 return;
6856 }
6857
6858 if (vm_nphysseg == 0)
6859 panic("pmap_boot_pagealloc: couldn't allocate memory");
6860
6861 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6862 (pv = *pvp) != NULL;
6863 pvp = &SLIST_NEXT(pv, pv_list)) {
6864 if (SLIST_NEXT(pv, pv_list) == NULL)
6865 break;
6866 }
6867 KASSERT(mask == 0);
6868 for (i = 0; i < vm_nphysseg; i++) {
6869 ps = VM_PHYSMEM_PTR(i);
6870 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6871 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6872 rpv->pv_va = pv->pv_va;
6873 rpv->pv_pa = pv->pv_pa;
6874 rpv->pv_size = amount;
6875 *pvp = NULL;
6876 pmap_map_chunk(kernel_l1pt.pv_va,
6877 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6878 ptoa(ps->avail_start),
6879 amount - pv->pv_size,
6880 VM_PROT_READ|VM_PROT_WRITE,
6881 PTE_CACHE);
6882 ps->avail_start += atop(amount - pv->pv_size);
6883 /*
6884 * If we consumed the entire physseg, remove it.
6885 */
6886 if (ps->avail_start == ps->avail_end) {
6887 for (--vm_nphysseg; i < vm_nphysseg; i++)
6888 VM_PHYSMEM_PTR_SWAP(i, i + 1);
6889 }
6890 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6891 return;
6892 }
6893 }
6894
6895 panic("pmap_boot_pagealloc: couldn't allocate memory");
6896 }
6897
6898 vaddr_t
6899 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6900 {
6901 pv_addr_t pv;
6902
6903 pmap_boot_pagealloc(size, 0, 0, &pv);
6904
6905 return pv.pv_va;
6906 }
6907 #endif /* PMAP_STEAL_MEMORY */
6908
6909 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6910 {
6911 sysctl_createv(clog, 0, NULL, NULL,
6912 CTLFLAG_PERMANENT,
6913 CTLTYPE_NODE, "machdep", NULL,
6914 NULL, 0, NULL, 0,
6915 CTL_MACHDEP, CTL_EOL);
6916
6917 sysctl_createv(clog, 0, NULL, NULL,
6918 CTLFLAG_PERMANENT,
6919 CTLTYPE_INT, "kmpages",
6920 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6921 NULL, 0, &pmap_kmpages, 0,
6922 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6923 }
6924
6925 #ifdef PMAP_NEED_ALLOC_POOLPAGE
6926 struct vm_page *
6927 arm_pmap_alloc_poolpage(int flags)
6928 {
6929 /*
6930 * On some systems, only some pages may be "coherent" for dma and we
6931 * want to prefer those for pool pages (think mbufs) but fallback to
6932 * any page if none is available.
6933 */
6934 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
6935 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
6936 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
6937 }
6938
6939 return uvm_pagealloc(NULL, 0, NULL, flags);
6940 }
6941 #endif
6942