pmap.c revision 1.271 1 /* $NetBSD: pmap.c,v 1.271 2014/03/30 15:50:51 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #ifdef MULTIPROCESSOR
196 #define _INTR_PRIVATE
197 #endif
198
199 #include <sys/param.h>
200 #include <sys/types.h>
201 #include <sys/kernel.h>
202 #include <sys/systm.h>
203 #include <sys/proc.h>
204 #include <sys/intr.h>
205 #include <sys/pool.h>
206 #include <sys/kmem.h>
207 #include <sys/cdefs.h>
208 #include <sys/cpu.h>
209 #include <sys/sysctl.h>
210 #include <sys/bus.h>
211 #include <sys/atomic.h>
212 #include <sys/kernhist.h>
213
214 #include <uvm/uvm.h>
215
216 #include <arm/locore.h>
217 //#include <arm/arm32/katelib.h>
218
219 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.271 2014/03/30 15:50:51 matt Exp $");
220
221 //#define PMAP_DEBUG
222 #ifdef PMAP_DEBUG
223
224 /* XXX need to get rid of all refs to this */
225 int pmap_debug_level = 0;
226
227 /*
228 * for switching to potentially finer grained debugging
229 */
230 #define PDB_FOLLOW 0x0001
231 #define PDB_INIT 0x0002
232 #define PDB_ENTER 0x0004
233 #define PDB_REMOVE 0x0008
234 #define PDB_CREATE 0x0010
235 #define PDB_PTPAGE 0x0020
236 #define PDB_GROWKERN 0x0040
237 #define PDB_BITS 0x0080
238 #define PDB_COLLECT 0x0100
239 #define PDB_PROTECT 0x0200
240 #define PDB_MAP_L1 0x0400
241 #define PDB_BOOTSTRAP 0x1000
242 #define PDB_PARANOIA 0x2000
243 #define PDB_WIRING 0x4000
244 #define PDB_PVDUMP 0x8000
245 #define PDB_VAC 0x10000
246 #define PDB_KENTER 0x20000
247 #define PDB_KREMOVE 0x40000
248 #define PDB_EXEC 0x80000
249
250 int debugmap = 1;
251 int pmapdebug = 0;
252 #define NPDEBUG(_lev_,_stat_) \
253 if (pmapdebug & (_lev_)) \
254 ((_stat_))
255
256 #else /* PMAP_DEBUG */
257 #define NPDEBUG(_lev_,_stat_) /* Nothing */
258 #endif /* PMAP_DEBUG */
259
260 /*
261 * pmap_kernel() points here
262 */
263 static struct pmap kernel_pmap_store = {
264 #ifndef ARM_MMU_EXTENDED
265 .pm_activated = true,
266 .pm_domain = PMAP_DOMAIN_KERNEL,
267 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
268 #endif
269 };
270 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
271 #undef pmap_kernel
272 #define pmap_kernel() (&kernel_pmap_store)
273 #ifdef PMAP_NEED_ALLOC_POOLPAGE
274 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
275 #endif
276
277 /*
278 * Pool and cache that pmap structures are allocated from.
279 * We use a cache to avoid clearing the pm_l2[] array (1KB)
280 * in pmap_create().
281 */
282 static struct pool_cache pmap_cache;
283 static LIST_HEAD(, pmap) pmap_pmaps;
284
285 /*
286 * Pool of PV structures
287 */
288 static struct pool pmap_pv_pool;
289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
292 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
293 };
294
295 /*
296 * Pool and cache of l2_dtable structures.
297 * We use a cache to avoid clearing the structures when they're
298 * allocated. (196 bytes)
299 */
300 static struct pool_cache pmap_l2dtable_cache;
301 static vaddr_t pmap_kernel_l2dtable_kva;
302
303 /*
304 * Pool and cache of L2 page descriptors.
305 * We use a cache to avoid clearing the descriptor table
306 * when they're allocated. (1KB)
307 */
308 static struct pool_cache pmap_l2ptp_cache;
309 static vaddr_t pmap_kernel_l2ptp_kva;
310 static paddr_t pmap_kernel_l2ptp_phys;
311
312 #ifdef PMAPCOUNTERS
313 #define PMAP_EVCNT_INITIALIZER(name) \
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
315
316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
317 static struct evcnt pmap_ev_vac_clean_one =
318 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
319 static struct evcnt pmap_ev_vac_flush_one =
320 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
321 static struct evcnt pmap_ev_vac_flush_lots =
322 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
323 static struct evcnt pmap_ev_vac_flush_lots2 =
324 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
329
330 static struct evcnt pmap_ev_vac_color_new =
331 PMAP_EVCNT_INITIALIZER("new page color");
332 static struct evcnt pmap_ev_vac_color_reuse =
333 PMAP_EVCNT_INITIALIZER("ok first page color");
334 static struct evcnt pmap_ev_vac_color_ok =
335 PMAP_EVCNT_INITIALIZER("ok page color");
336 static struct evcnt pmap_ev_vac_color_blind =
337 PMAP_EVCNT_INITIALIZER("blind page color");
338 static struct evcnt pmap_ev_vac_color_change =
339 PMAP_EVCNT_INITIALIZER("change page color");
340 static struct evcnt pmap_ev_vac_color_erase =
341 PMAP_EVCNT_INITIALIZER("erase page color");
342 static struct evcnt pmap_ev_vac_color_none =
343 PMAP_EVCNT_INITIALIZER("no page color");
344 static struct evcnt pmap_ev_vac_color_restore =
345 PMAP_EVCNT_INITIALIZER("restore page color");
346
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
355 #endif
356
357 static struct evcnt pmap_ev_mappings =
358 PMAP_EVCNT_INITIALIZER("pages mapped");
359 static struct evcnt pmap_ev_unmappings =
360 PMAP_EVCNT_INITIALIZER("pages unmapped");
361 static struct evcnt pmap_ev_remappings =
362 PMAP_EVCNT_INITIALIZER("pages remapped");
363
364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
367
368 static struct evcnt pmap_ev_kernel_mappings =
369 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
370 static struct evcnt pmap_ev_kernel_unmappings =
371 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
372 static struct evcnt pmap_ev_kernel_remappings =
373 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
374
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
378
379 static struct evcnt pmap_ev_kenter_mappings =
380 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
381 static struct evcnt pmap_ev_kenter_unmappings =
382 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
383 static struct evcnt pmap_ev_kenter_remappings =
384 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
385 static struct evcnt pmap_ev_pt_mappings =
386 PMAP_EVCNT_INITIALIZER("page table pages mapped");
387
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
392
393 static struct evcnt pmap_ev_fixup_mod =
394 PMAP_EVCNT_INITIALIZER("page modification emulations");
395 static struct evcnt pmap_ev_fixup_ref =
396 PMAP_EVCNT_INITIALIZER("page reference emulations");
397 static struct evcnt pmap_ev_fixup_exec =
398 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
399 static struct evcnt pmap_ev_fixup_pdes =
400 PMAP_EVCNT_INITIALIZER("pdes fixed up");
401 #ifndef ARM_MMU_EXTENDED
402 static struct evcnt pmap_ev_fixup_ptesync =
403 PMAP_EVCNT_INITIALIZER("ptesync fixed");
404 #endif
405
406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
410 #ifndef ARM_MMU_EXTENDED
411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
412 #endif
413
414 #ifdef PMAP_CACHE_VIPT
415 static struct evcnt pmap_ev_exec_mappings =
416 PMAP_EVCNT_INITIALIZER("exec pages mapped");
417 static struct evcnt pmap_ev_exec_cached =
418 PMAP_EVCNT_INITIALIZER("exec pages cached");
419
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
422
423 static struct evcnt pmap_ev_exec_synced =
424 PMAP_EVCNT_INITIALIZER("exec pages synced");
425 #ifndef ARM_MMU_EXTENDED
426 static struct evcnt pmap_ev_exec_synced_map =
427 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
428 static struct evcnt pmap_ev_exec_synced_unmap =
429 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
430 static struct evcnt pmap_ev_exec_synced_remap =
431 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
432 static struct evcnt pmap_ev_exec_synced_clearbit =
433 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
434 static struct evcnt pmap_ev_exec_synced_kremove =
435 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
436 #endif
437
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
439 #ifndef ARM_MMU_EXTENDED
440 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
445 #endif
446
447 static struct evcnt pmap_ev_exec_discarded_unmap =
448 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
449 static struct evcnt pmap_ev_exec_discarded_zero =
450 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
451 static struct evcnt pmap_ev_exec_discarded_copy =
452 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
453 static struct evcnt pmap_ev_exec_discarded_page_protect =
454 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
455 static struct evcnt pmap_ev_exec_discarded_clearbit =
456 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
457 static struct evcnt pmap_ev_exec_discarded_kremove =
458 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
459 #ifdef ARM_MMU_EXTENDED
460 static struct evcnt pmap_ev_exec_discarded_modfixup =
461 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
462 #endif
463
464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
470 #ifdef ARM_MMU_EXTENDED
471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
472 #endif
473 #endif /* PMAP_CACHE_VIPT */
474
475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
478
479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
482
483 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
484 #else
485 #define PMAPCOUNT(x) ((void)0)
486 #endif
487
488 /*
489 * pmap copy/zero page, and mem(5) hook point
490 */
491 static pt_entry_t *csrc_pte, *cdst_pte;
492 static vaddr_t csrcp, cdstp;
493 #ifdef MULTIPROCESSOR
494 static size_t cnptes;
495 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
496 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
497 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
498 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
499 #else
500 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
501 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
502 #define cpu_csrcp(o) (csrcp + (o))
503 #define cpu_cdstp(o) (cdstp + (o))
504 #endif
505 vaddr_t memhook; /* used by mem.c & others */
506 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
507 kmutex_t pmap_lock __cacheline_aligned;
508 extern void *msgbufaddr;
509 int pmap_kmpages;
510 /*
511 * Flag to indicate if pmap_init() has done its thing
512 */
513 bool pmap_initialized;
514
515 /*
516 * Misc. locking data structures
517 */
518
519 static inline void
520 pmap_acquire_pmap_lock(pmap_t pm)
521 {
522 if (pm == pmap_kernel()) {
523 #ifdef MULTIPROCESSOR
524 KERNEL_LOCK(1, NULL);
525 #endif
526 } else {
527 mutex_enter(pm->pm_lock);
528 }
529 }
530
531 static inline void
532 pmap_release_pmap_lock(pmap_t pm)
533 {
534 if (pm == pmap_kernel()) {
535 #ifdef MULTIPROCESSOR
536 KERNEL_UNLOCK_ONE(NULL);
537 #endif
538 } else {
539 mutex_exit(pm->pm_lock);
540 }
541 }
542
543 static inline void
544 pmap_acquire_page_lock(struct vm_page_md *md)
545 {
546 mutex_enter(&pmap_lock);
547 }
548
549 static inline void
550 pmap_release_page_lock(struct vm_page_md *md)
551 {
552 mutex_exit(&pmap_lock);
553 }
554
555 #ifdef DIAGNOSTIC
556 static inline int
557 pmap_page_locked_p(struct vm_page_md *md)
558 {
559 return mutex_owned(&pmap_lock);
560 }
561 #endif
562
563
564 /*
565 * Metadata for L1 translation tables.
566 */
567 #ifndef ARM_MMU_EXTENDED
568 struct l1_ttable {
569 /* Entry on the L1 Table list */
570 SLIST_ENTRY(l1_ttable) l1_link;
571
572 /* Entry on the L1 Least Recently Used list */
573 TAILQ_ENTRY(l1_ttable) l1_lru;
574
575 /* Track how many domains are allocated from this L1 */
576 volatile u_int l1_domain_use_count;
577
578 /*
579 * A free-list of domain numbers for this L1.
580 * We avoid using ffs() and a bitmap to track domains since ffs()
581 * is slow on ARM.
582 */
583 uint8_t l1_domain_first;
584 uint8_t l1_domain_free[PMAP_DOMAINS];
585
586 /* Physical address of this L1 page table */
587 paddr_t l1_physaddr;
588
589 /* KVA of this L1 page table */
590 pd_entry_t *l1_kva;
591 };
592
593 /*
594 * L1 Page Tables are tracked using a Least Recently Used list.
595 * - New L1s are allocated from the HEAD.
596 * - Freed L1s are added to the TAIl.
597 * - Recently accessed L1s (where an 'access' is some change to one of
598 * the userland pmaps which owns this L1) are moved to the TAIL.
599 */
600 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
601 static kmutex_t l1_lru_lock __cacheline_aligned;
602
603 /*
604 * A list of all L1 tables
605 */
606 static SLIST_HEAD(, l1_ttable) l1_list;
607 #endif /* ARM_MMU_EXTENDED */
608
609 /*
610 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
611 *
612 * This is normally 16MB worth L2 page descriptors for any given pmap.
613 * Reference counts are maintained for L2 descriptors so they can be
614 * freed when empty.
615 */
616 struct l2_dtable {
617 /* The number of L2 page descriptors allocated to this l2_dtable */
618 u_int l2_occupancy;
619
620 /* List of L2 page descriptors */
621 struct l2_bucket {
622 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
623 paddr_t l2b_pa; /* Physical address of same */
624 u_short l2b_l1slot; /* This L2 table's L1 index */
625 u_short l2b_occupancy; /* How many active descriptors */
626 } l2_bucket[L2_BUCKET_SIZE];
627 };
628
629 /*
630 * Given an L1 table index, calculate the corresponding l2_dtable index
631 * and bucket index within the l2_dtable.
632 */
633 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
634 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
635 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
636 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
637 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
638
639 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
640 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
641
642 /*
643 * Given a virtual address, this macro returns the
644 * virtual address required to drop into the next L2 bucket.
645 */
646 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
647
648 /*
649 * L2 allocation.
650 */
651 #define pmap_alloc_l2_dtable() \
652 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
653 #define pmap_free_l2_dtable(l2) \
654 pool_cache_put(&pmap_l2dtable_cache, (l2))
655 #define pmap_alloc_l2_ptp(pap) \
656 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
657 PR_NOWAIT, (pap)))
658
659 /*
660 * We try to map the page tables write-through, if possible. However, not
661 * all CPUs have a write-through cache mode, so on those we have to sync
662 * the cache when we frob page tables.
663 *
664 * We try to evaluate this at compile time, if possible. However, it's
665 * not always possible to do that, hence this run-time var.
666 */
667 int pmap_needs_pte_sync;
668
669 /*
670 * Real definition of pv_entry.
671 */
672 struct pv_entry {
673 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
674 pmap_t pv_pmap; /* pmap where mapping lies */
675 vaddr_t pv_va; /* virtual address for mapping */
676 u_int pv_flags; /* flags */
677 };
678
679 /*
680 * Macro to determine if a mapping might be resident in the
681 * instruction cache and/or TLB
682 */
683 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
684 /*
685 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
686 * there are no explicit accesses, so there may be always be TLB entries to
687 * flush. If we used ASIDs then this would not be a problem.
688 */
689 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
690 #else
691 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
692 #endif
693 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
694 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
695 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
696
697 /*
698 * Macro to determine if a mapping might be resident in the
699 * data cache and/or TLB
700 */
701 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
702 /*
703 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
704 * there are no explicit accesses, so there may be always be TLB entries to
705 * flush. If we used ASIDs then this would not be a problem.
706 */
707 #define PV_BEEN_REFD(f) (1)
708 #else
709 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
710 #endif
711
712 /*
713 * Local prototypes
714 */
715 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
716 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
717 pt_entry_t **);
718 static bool pmap_is_current(pmap_t);
719 static bool pmap_is_cached(pmap_t);
720 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
721 pmap_t, vaddr_t, u_int);
722 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
723 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
724 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
725 u_int, u_int);
726
727 static void pmap_pinit(pmap_t);
728 static int pmap_pmap_ctor(void *, void *, int);
729
730 static void pmap_alloc_l1(pmap_t);
731 static void pmap_free_l1(pmap_t);
732 #ifndef ARM_MMU_EXTENDED
733 static void pmap_use_l1(pmap_t);
734 #endif
735
736 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
737 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
738 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
739 static int pmap_l2ptp_ctor(void *, void *, int);
740 static int pmap_l2dtable_ctor(void *, void *, int);
741
742 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
743 #ifdef PMAP_CACHE_VIVT
744 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
745 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
746 #endif
747
748 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
749 #ifdef PMAP_CACHE_VIVT
750 static bool pmap_clean_page(struct vm_page_md *, bool);
751 #endif
752 #ifdef PMAP_CACHE_VIPT
753 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
754 enum pmap_flush_op {
755 PMAP_FLUSH_PRIMARY,
756 PMAP_FLUSH_SECONDARY,
757 PMAP_CLEAN_PRIMARY
758 };
759 #ifndef ARM_MMU_EXTENDED
760 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
761 #endif
762 #endif
763 static void pmap_page_remove(struct vm_page_md *, paddr_t);
764
765 #ifndef ARM_MMU_EXTENDED
766 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
767 #endif
768 static vaddr_t kernel_pt_lookup(paddr_t);
769
770
771 /*
772 * Misc variables
773 */
774 vaddr_t virtual_avail;
775 vaddr_t virtual_end;
776 vaddr_t pmap_curmaxkvaddr;
777
778 paddr_t avail_start;
779 paddr_t avail_end;
780
781 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
782 pv_addr_t kernelpages;
783 pv_addr_t kernel_l1pt;
784 pv_addr_t systempage;
785
786 /* Function to set the debug level of the pmap code */
787
788 #ifdef PMAP_DEBUG
789 void
790 pmap_debug(int level)
791 {
792 pmap_debug_level = level;
793 printf("pmap_debug: level=%d\n", pmap_debug_level);
794 }
795 #endif /* PMAP_DEBUG */
796
797 #ifdef PMAP_CACHE_VIPT
798 #define PMAP_VALIDATE_MD_PAGE(md) \
799 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
800 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
801 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
802 #endif /* PMAP_CACHE_VIPT */
803 /*
804 * A bunch of routines to conditionally flush the caches/TLB depending
805 * on whether the specified pmap actually needs to be flushed at any
806 * given time.
807 */
808 static inline void
809 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
810 {
811 #ifdef ARM_MMU_EXTENDED
812 pmap_tlb_invalidate_addr(pm, va);
813 #else
814 if (pm->pm_cstate.cs_tlb_id != 0) {
815 if (PV_BEEN_EXECD(flags)) {
816 cpu_tlb_flushID_SE(va);
817 } else if (PV_BEEN_REFD(flags)) {
818 cpu_tlb_flushD_SE(va);
819 }
820 }
821 #endif /* ARM_MMU_EXTENDED */
822 }
823
824 static inline void
825 pmap_tlb_flushID(pmap_t pm)
826 {
827 #ifdef ARM_MMU_EXTENDED
828 pmap_tlb_asid_release_all(pm);
829 #else
830 if (pm->pm_cstate.cs_tlb_id) {
831 cpu_tlb_flushID();
832 #if ARM_MMU_V7 == 0
833 /*
834 * Speculative loads by Cortex cores can cause TLB entries to
835 * be filled even if there are no explicit accesses, so there
836 * may be always be TLB entries to flush. If we used ASIDs
837 * then it would not be a problem.
838 * This is not true for other CPUs.
839 */
840 pm->pm_cstate.cs_tlb = 0;
841 #endif /* ARM_MMU_V7 */
842 }
843 #endif /* ARM_MMU_EXTENDED */
844 }
845
846 static inline void
847 pmap_tlb_flushD(pmap_t pm)
848 {
849 #ifdef ARM_MMU_EXTENDED
850 pmap_tlb_asid_release_all(pm);
851 #else
852 if (pm->pm_cstate.cs_tlb_d) {
853 cpu_tlb_flushD();
854 #if ARM_MMU_V7 == 0
855 /*
856 * Speculative loads by Cortex cores can cause TLB entries to
857 * be filled even if there are no explicit accesses, so there
858 * may be always be TLB entries to flush. If we used ASIDs
859 * then it would not be a problem.
860 * This is not true for other CPUs.
861 */
862 pm->pm_cstate.cs_tlb_d = 0;
863 #endif /* ARM_MMU_V7 */
864 }
865 #endif /* ARM_MMU_EXTENDED */
866 }
867
868 #ifdef PMAP_CACHE_VIVT
869 static inline void
870 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
871 {
872 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
873 cpu_idcache_wbinv_range(va, PAGE_SIZE);
874 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
875 if (do_inv) {
876 if (flags & PVF_WRITE)
877 cpu_dcache_wbinv_range(va, PAGE_SIZE);
878 else
879 cpu_dcache_inv_range(va, PAGE_SIZE);
880 } else if (flags & PVF_WRITE) {
881 cpu_dcache_wb_range(va, PAGE_SIZE);
882 }
883 }
884 }
885
886 static inline void
887 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
888 {
889 if (PV_BEEN_EXECD(flags)) {
890 if (pm->pm_cstate.cs_cache_id) {
891 cpu_idcache_wbinv_all();
892 pm->pm_cstate.cs_cache = 0;
893 }
894 } else if (pm->pm_cstate.cs_cache_d) {
895 cpu_dcache_wbinv_all();
896 pm->pm_cstate.cs_cache_d = 0;
897 }
898 }
899 #endif /* PMAP_CACHE_VIVT */
900
901 static inline uint8_t
902 pmap_domain(pmap_t pm)
903 {
904 #ifdef ARM_MMU_EXTENDED
905 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
906 #else
907 return pm->pm_domain;
908 #endif
909 }
910
911 static inline pd_entry_t *
912 pmap_l1_kva(pmap_t pm)
913 {
914 #ifdef ARM_MMU_EXTENDED
915 return pm->pm_l1;
916 #else
917 return pm->pm_l1->l1_kva;
918 #endif
919 }
920
921 static inline bool
922 pmap_is_current(pmap_t pm)
923 {
924 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
925 return true;
926
927 return false;
928 }
929
930 static inline bool
931 pmap_is_cached(pmap_t pm)
932 {
933 #ifdef ARM_MMU_EXTENDED
934 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
935 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
936 return true;
937 #else
938 struct cpu_info * const ci = curcpu();
939 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
940 || ci->ci_pmap_lastuser == pm)
941 return true;
942 #endif /* ARM_MMU_EXTENDED */
943
944 return false;
945 }
946
947 /*
948 * PTE_SYNC_CURRENT:
949 *
950 * Make sure the pte is written out to RAM.
951 * We need to do this for one of two cases:
952 * - We're dealing with the kernel pmap
953 * - There is no pmap active in the cache/tlb.
954 * - The specified pmap is 'active' in the cache/tlb.
955 */
956 #ifdef PMAP_INCLUDE_PTE_SYNC
957 #define PTE_SYNC_CURRENT(pm, ptep) \
958 do { \
959 if (PMAP_NEEDS_PTE_SYNC && \
960 pmap_is_cached(pm)) \
961 PTE_SYNC(ptep); \
962 } while (/*CONSTCOND*/0)
963 #else
964 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
965 #endif
966
967 /*
968 * main pv_entry manipulation functions:
969 * pmap_enter_pv: enter a mapping onto a vm_page list
970 * pmap_remove_pv: remove a mapping from a vm_page list
971 *
972 * NOTE: pmap_enter_pv expects to lock the pvh itself
973 * pmap_remove_pv expects the caller to lock the pvh before calling
974 */
975
976 /*
977 * pmap_enter_pv: enter a mapping onto a vm_page lst
978 *
979 * => caller should hold the proper lock on pmap_main_lock
980 * => caller should have pmap locked
981 * => we will gain the lock on the vm_page and allocate the new pv_entry
982 * => caller should adjust ptp's wire_count before calling
983 * => caller should not adjust pmap's wire_count
984 */
985 static void
986 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
987 vaddr_t va, u_int flags)
988 {
989 struct pv_entry **pvp;
990
991 NPDEBUG(PDB_PVDUMP,
992 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
993
994 pv->pv_pmap = pm;
995 pv->pv_va = va;
996 pv->pv_flags = flags;
997
998 pvp = &SLIST_FIRST(&md->pvh_list);
999 #ifdef PMAP_CACHE_VIPT
1000 /*
1001 * Insert unmanaged entries, writeable first, at the head of
1002 * the pv list.
1003 */
1004 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1005 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1006 pvp = &SLIST_NEXT(*pvp, pv_link);
1007 }
1008 if (!PV_IS_WRITE_P(flags)) {
1009 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1010 pvp = &SLIST_NEXT(*pvp, pv_link);
1011 }
1012 #endif
1013 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1014 *pvp = pv; /* ... locked list */
1015 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1016 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1017 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1018 md->pvh_attrs |= PVF_KMOD;
1019 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1020 md->pvh_attrs |= PVF_DIRTY;
1021 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1022 #endif
1023 if (pm == pmap_kernel()) {
1024 PMAPCOUNT(kernel_mappings);
1025 if (flags & PVF_WRITE)
1026 md->krw_mappings++;
1027 else
1028 md->kro_mappings++;
1029 } else {
1030 if (flags & PVF_WRITE)
1031 md->urw_mappings++;
1032 else
1033 md->uro_mappings++;
1034 }
1035
1036 #ifdef PMAP_CACHE_VIPT
1037 #ifndef ARM_MMU_EXTENDED
1038 /*
1039 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1040 * do it here as well to keep the mappings & KVF_WRITE consistent.
1041 */
1042 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1043 md->pvh_attrs |= PVF_WRITE;
1044 }
1045 #endif
1046 /*
1047 * If this is an exec mapping and its the first exec mapping
1048 * for this page, make sure to sync the I-cache.
1049 */
1050 if (PV_IS_EXEC_P(flags)) {
1051 #ifndef ARM_MMU_EXTENDED
1052 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1053 pmap_syncicache_page(md, pa);
1054 PMAPCOUNT(exec_synced_map);
1055 }
1056 #endif
1057 PMAPCOUNT(exec_mappings);
1058 }
1059 #endif
1060
1061 PMAPCOUNT(mappings);
1062
1063 if (pv->pv_flags & PVF_WIRED)
1064 ++pm->pm_stats.wired_count;
1065 }
1066
1067 /*
1068 *
1069 * pmap_find_pv: Find a pv entry
1070 *
1071 * => caller should hold lock on vm_page
1072 */
1073 static inline struct pv_entry *
1074 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1075 {
1076 struct pv_entry *pv;
1077
1078 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1079 if (pm == pv->pv_pmap && va == pv->pv_va)
1080 break;
1081 }
1082
1083 return (pv);
1084 }
1085
1086 /*
1087 * pmap_remove_pv: try to remove a mapping from a pv_list
1088 *
1089 * => caller should hold proper lock on pmap_main_lock
1090 * => pmap should be locked
1091 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1092 * => caller should adjust ptp's wire_count and free PTP if needed
1093 * => caller should NOT adjust pmap's wire_count
1094 * => we return the removed pv
1095 */
1096 static struct pv_entry *
1097 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1098 {
1099 struct pv_entry *pv, **prevptr;
1100
1101 NPDEBUG(PDB_PVDUMP,
1102 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1103
1104 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1105 pv = *prevptr;
1106
1107 while (pv) {
1108 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1109 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1110 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1111 if (pv->pv_flags & PVF_WIRED) {
1112 --pm->pm_stats.wired_count;
1113 }
1114 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1115 if (pm == pmap_kernel()) {
1116 PMAPCOUNT(kernel_unmappings);
1117 if (pv->pv_flags & PVF_WRITE)
1118 md->krw_mappings--;
1119 else
1120 md->kro_mappings--;
1121 } else {
1122 if (pv->pv_flags & PVF_WRITE)
1123 md->urw_mappings--;
1124 else
1125 md->uro_mappings--;
1126 }
1127
1128 PMAPCOUNT(unmappings);
1129 #ifdef PMAP_CACHE_VIPT
1130 if (!(pv->pv_flags & PVF_WRITE))
1131 break;
1132 /*
1133 * If this page has had an exec mapping, then if
1134 * this was the last mapping, discard the contents,
1135 * otherwise sync the i-cache for this page.
1136 */
1137 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1138 #ifdef ARM_MMU_EXTENDED
1139 md->pvh_attrs &= ~PVF_EXEC;
1140 PMAPCOUNT(exec_discarded_unmap);
1141 #else
1142 if (SLIST_EMPTY(&md->pvh_list)) {
1143 md->pvh_attrs &= ~PVF_EXEC;
1144 PMAPCOUNT(exec_discarded_unmap);
1145 } else {
1146 pmap_syncicache_page(md, pa);
1147 PMAPCOUNT(exec_synced_unmap);
1148 }
1149 #endif /* ARM_MMU_EXTENDED */
1150 }
1151 #endif /* PMAP_CACHE_VIPT */
1152 break;
1153 }
1154 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1155 pv = *prevptr; /* advance */
1156 }
1157
1158 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1159 /*
1160 * If we no longer have a WRITEABLE KENTRY at the head of list,
1161 * clear the KMOD attribute from the page.
1162 */
1163 if (SLIST_FIRST(&md->pvh_list) == NULL
1164 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1165 md->pvh_attrs &= ~PVF_KMOD;
1166
1167 /*
1168 * If this was a writeable page and there are no more writeable
1169 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1170 * the contents to memory.
1171 */
1172 if (arm_cache_prefer_mask != 0) {
1173 if (md->krw_mappings + md->urw_mappings == 0)
1174 md->pvh_attrs &= ~PVF_WRITE;
1175 PMAP_VALIDATE_MD_PAGE(md);
1176 }
1177 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1178 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1179
1180 return(pv); /* return removed pv */
1181 }
1182
1183 /*
1184 *
1185 * pmap_modify_pv: Update pv flags
1186 *
1187 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1188 * => caller should NOT adjust pmap's wire_count
1189 * => caller must call pmap_vac_me_harder() if writable status of a page
1190 * may have changed.
1191 * => we return the old flags
1192 *
1193 * Modify a physical-virtual mapping in the pv table
1194 */
1195 static u_int
1196 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1197 u_int clr_mask, u_int set_mask)
1198 {
1199 struct pv_entry *npv;
1200 u_int flags, oflags;
1201
1202 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1203 KASSERT(!PV_IS_KENTRY_P(set_mask));
1204
1205 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1206 return (0);
1207
1208 NPDEBUG(PDB_PVDUMP,
1209 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1210
1211 /*
1212 * There is at least one VA mapping this page.
1213 */
1214
1215 if (clr_mask & (PVF_REF | PVF_MOD)) {
1216 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1217 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1218 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1219 md->pvh_attrs |= PVF_DIRTY;
1220 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1221 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1222 }
1223
1224 oflags = npv->pv_flags;
1225 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1226
1227 if ((flags ^ oflags) & PVF_WIRED) {
1228 if (flags & PVF_WIRED)
1229 ++pm->pm_stats.wired_count;
1230 else
1231 --pm->pm_stats.wired_count;
1232 }
1233
1234 if ((flags ^ oflags) & PVF_WRITE) {
1235 if (pm == pmap_kernel()) {
1236 if (flags & PVF_WRITE) {
1237 md->krw_mappings++;
1238 md->kro_mappings--;
1239 } else {
1240 md->kro_mappings++;
1241 md->krw_mappings--;
1242 }
1243 } else {
1244 if (flags & PVF_WRITE) {
1245 md->urw_mappings++;
1246 md->uro_mappings--;
1247 } else {
1248 md->uro_mappings++;
1249 md->urw_mappings--;
1250 }
1251 }
1252 }
1253 #ifdef PMAP_CACHE_VIPT
1254 if (arm_cache_prefer_mask != 0) {
1255 if (md->urw_mappings + md->krw_mappings == 0) {
1256 md->pvh_attrs &= ~PVF_WRITE;
1257 } else {
1258 md->pvh_attrs |= PVF_WRITE;
1259 }
1260 }
1261 #ifndef ARM_MMU_EXTENDED
1262 /*
1263 * We have two cases here: the first is from enter_pv (new exec
1264 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1265 * Since in latter, pmap_enter_pv won't do anything, we just have
1266 * to do what pmap_remove_pv would do.
1267 */
1268 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1269 || (PV_IS_EXEC_P(md->pvh_attrs)
1270 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1271 pmap_syncicache_page(md, pa);
1272 PMAPCOUNT(exec_synced_remap);
1273 }
1274 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1275 #endif /* !ARM_MMU_EXTENDED */
1276 #endif /* PMAP_CACHE_VIPT */
1277
1278 PMAPCOUNT(remappings);
1279
1280 return (oflags);
1281 }
1282
1283 /*
1284 * Allocate an L1 translation table for the specified pmap.
1285 * This is called at pmap creation time.
1286 */
1287 static void
1288 pmap_alloc_l1(pmap_t pm)
1289 {
1290 #ifdef ARM_MMU_EXTENDED
1291 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1292 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1293 struct vm_page *pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1294 #else
1295 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1296 #endif
1297 KASSERT(pg != NULL);
1298 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1299 vaddr_t va = KERNEL_BASE + (pm->pm_l1_pa - physical_start);
1300
1301 #else
1302 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1303 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1304 UVM_KMF_WIRED|UVM_KMF_ZERO);
1305 KASSERT(!va);
1306 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1307 #endif
1308 pm->pm_l1 = (pd_entry_t *)va;
1309 #else
1310 struct l1_ttable *l1;
1311 uint8_t domain;
1312
1313 /*
1314 * Remove the L1 at the head of the LRU list
1315 */
1316 mutex_spin_enter(&l1_lru_lock);
1317 l1 = TAILQ_FIRST(&l1_lru_list);
1318 KDASSERT(l1 != NULL);
1319 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1320
1321 /*
1322 * Pick the first available domain number, and update
1323 * the link to the next number.
1324 */
1325 domain = l1->l1_domain_first;
1326 l1->l1_domain_first = l1->l1_domain_free[domain];
1327
1328 /*
1329 * If there are still free domain numbers in this L1,
1330 * put it back on the TAIL of the LRU list.
1331 */
1332 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1333 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1334
1335 mutex_spin_exit(&l1_lru_lock);
1336
1337 /*
1338 * Fix up the relevant bits in the pmap structure
1339 */
1340 pm->pm_l1 = l1;
1341 pm->pm_domain = domain + 1;
1342 #endif
1343 }
1344
1345 /*
1346 * Free an L1 translation table.
1347 * This is called at pmap destruction time.
1348 */
1349 static void
1350 pmap_free_l1(pmap_t pm)
1351 {
1352 #ifdef ARM_MMU_EXTENDED
1353 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1354 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1355 uvm_pagefree(pg);
1356 #else
1357 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1358 #endif
1359 pm->pm_l1 = NULL;
1360 pm->pm_l1_pa = 0;
1361 #else
1362 struct l1_ttable *l1 = pm->pm_l1;
1363
1364 mutex_spin_enter(&l1_lru_lock);
1365
1366 /*
1367 * If this L1 is currently on the LRU list, remove it.
1368 */
1369 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1370 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1371
1372 /*
1373 * Free up the domain number which was allocated to the pmap
1374 */
1375 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1376 l1->l1_domain_first = pmap_domain(pm) - 1;
1377 l1->l1_domain_use_count--;
1378
1379 /*
1380 * The L1 now must have at least 1 free domain, so add
1381 * it back to the LRU list. If the use count is zero,
1382 * put it at the head of the list, otherwise it goes
1383 * to the tail.
1384 */
1385 if (l1->l1_domain_use_count == 0)
1386 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1387 else
1388 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1389
1390 mutex_spin_exit(&l1_lru_lock);
1391 #endif /* ARM_MMU_EXTENDED */
1392 }
1393
1394 #ifndef ARM_MMU_EXTENDED
1395 static inline void
1396 pmap_use_l1(pmap_t pm)
1397 {
1398 struct l1_ttable *l1;
1399
1400 /*
1401 * Do nothing if we're in interrupt context.
1402 * Access to an L1 by the kernel pmap must not affect
1403 * the LRU list.
1404 */
1405 if (cpu_intr_p() || pm == pmap_kernel())
1406 return;
1407
1408 l1 = pm->pm_l1;
1409
1410 /*
1411 * If the L1 is not currently on the LRU list, just return
1412 */
1413 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1414 return;
1415
1416 mutex_spin_enter(&l1_lru_lock);
1417
1418 /*
1419 * Check the use count again, now that we've acquired the lock
1420 */
1421 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1422 mutex_spin_exit(&l1_lru_lock);
1423 return;
1424 }
1425
1426 /*
1427 * Move the L1 to the back of the LRU list
1428 */
1429 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1430 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1431
1432 mutex_spin_exit(&l1_lru_lock);
1433 }
1434 #endif /* !ARM_MMU_EXTENDED */
1435
1436 /*
1437 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1438 *
1439 * Free an L2 descriptor table.
1440 */
1441 static inline void
1442 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1443 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1444 #else
1445 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1446 #endif
1447 {
1448 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1449 /*
1450 * Note: With a write-back cache, we may need to sync this
1451 * L2 table before re-using it.
1452 * This is because it may have belonged to a non-current
1453 * pmap, in which case the cache syncs would have been
1454 * skipped for the pages that were being unmapped. If the
1455 * L2 table were then to be immediately re-allocated to
1456 * the *current* pmap, it may well contain stale mappings
1457 * which have not yet been cleared by a cache write-back
1458 * and so would still be visible to the mmu.
1459 */
1460 if (need_sync)
1461 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1462 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1463 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1464 }
1465
1466 /*
1467 * Returns a pointer to the L2 bucket associated with the specified pmap
1468 * and VA, or NULL if no L2 bucket exists for the address.
1469 */
1470 static inline struct l2_bucket *
1471 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1472 {
1473 const size_t l1slot = l1pte_index(va);
1474 struct l2_dtable *l2;
1475 struct l2_bucket *l2b;
1476
1477 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1478 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1479 return (NULL);
1480
1481 return (l2b);
1482 }
1483
1484 /*
1485 * Returns a pointer to the L2 bucket associated with the specified pmap
1486 * and VA.
1487 *
1488 * If no L2 bucket exists, perform the necessary allocations to put an L2
1489 * bucket/page table in place.
1490 *
1491 * Note that if a new L2 bucket/page was allocated, the caller *must*
1492 * increment the bucket occupancy counter appropriately *before*
1493 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1494 * the bucket/page in the meantime.
1495 */
1496 static struct l2_bucket *
1497 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1498 {
1499 const size_t l1slot = l1pte_index(va);
1500 struct l2_dtable *l2;
1501
1502 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1503 /*
1504 * No mapping at this address, as there is
1505 * no entry in the L1 table.
1506 * Need to allocate a new l2_dtable.
1507 */
1508 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1509 return (NULL);
1510
1511 /*
1512 * Link it into the parent pmap
1513 */
1514 pm->pm_l2[L2_IDX(l1slot)] = l2;
1515 }
1516
1517 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1518
1519 /*
1520 * Fetch pointer to the L2 page table associated with the address.
1521 */
1522 if (l2b->l2b_kva == NULL) {
1523 pt_entry_t *ptep;
1524
1525 /*
1526 * No L2 page table has been allocated. Chances are, this
1527 * is because we just allocated the l2_dtable, above.
1528 */
1529 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1530 /*
1531 * Oops, no more L2 page tables available at this
1532 * time. We may need to deallocate the l2_dtable
1533 * if we allocated a new one above.
1534 */
1535 if (l2->l2_occupancy == 0) {
1536 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1537 pmap_free_l2_dtable(l2);
1538 }
1539 return (NULL);
1540 }
1541
1542 l2->l2_occupancy++;
1543 l2b->l2b_kva = ptep;
1544 l2b->l2b_l1slot = l1slot;
1545
1546 #ifdef ARM_MMU_EXTENDED
1547 /*
1548 * We know there will be a mapping here, so simply
1549 * enter this PTP into the L1 now.
1550 */
1551 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1552 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1553 | L1_C_DOM(pmap_domain(pm));
1554 KASSERT(*pdep == 0);
1555 l1pte_setone(pdep, npde);
1556 PTE_SYNC(pdep);
1557 #endif
1558 }
1559
1560 return (l2b);
1561 }
1562
1563 /*
1564 * One or more mappings in the specified L2 descriptor table have just been
1565 * invalidated.
1566 *
1567 * Garbage collect the metadata and descriptor table itself if necessary.
1568 *
1569 * The pmap lock must be acquired when this is called (not necessary
1570 * for the kernel pmap).
1571 */
1572 static void
1573 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1574 {
1575 KDASSERT(count <= l2b->l2b_occupancy);
1576
1577 /*
1578 * Update the bucket's reference count according to how many
1579 * PTEs the caller has just invalidated.
1580 */
1581 l2b->l2b_occupancy -= count;
1582
1583 /*
1584 * Note:
1585 *
1586 * Level 2 page tables allocated to the kernel pmap are never freed
1587 * as that would require checking all Level 1 page tables and
1588 * removing any references to the Level 2 page table. See also the
1589 * comment elsewhere about never freeing bootstrap L2 descriptors.
1590 *
1591 * We make do with just invalidating the mapping in the L2 table.
1592 *
1593 * This isn't really a big deal in practice and, in fact, leads
1594 * to a performance win over time as we don't need to continually
1595 * alloc/free.
1596 */
1597 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1598 return;
1599
1600 /*
1601 * There are no more valid mappings in this level 2 page table.
1602 * Go ahead and NULL-out the pointer in the bucket, then
1603 * free the page table.
1604 */
1605 const size_t l1slot = l2b->l2b_l1slot;
1606 pt_entry_t * const ptep = l2b->l2b_kva;
1607 l2b->l2b_kva = NULL;
1608
1609 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1610 pd_entry_t pde = *pdep;
1611
1612 #ifdef ARM_MMU_EXTENDED
1613 /*
1614 * Invalidate the L1 slot.
1615 */
1616 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1617 #else
1618 /*
1619 * If the L1 slot matches the pmap's domain number, then invalidate it.
1620 */
1621 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1622 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1623 #endif
1624 l1pte_setone(pdep, 0);
1625 PDE_SYNC(pdep);
1626 #ifndef ARM_MMU_EXTENDED
1627 }
1628 #endif
1629
1630 /*
1631 * Release the L2 descriptor table back to the pool cache.
1632 */
1633 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1634 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1635 #else
1636 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1637 #endif
1638
1639 /*
1640 * Update the reference count in the associated l2_dtable
1641 */
1642 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1643 if (--l2->l2_occupancy > 0)
1644 return;
1645
1646 /*
1647 * There are no more valid mappings in any of the Level 1
1648 * slots managed by this l2_dtable. Go ahead and NULL-out
1649 * the pointer in the parent pmap and free the l2_dtable.
1650 */
1651 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1652 pmap_free_l2_dtable(l2);
1653 }
1654
1655 /*
1656 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1657 * structures.
1658 */
1659 static int
1660 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1661 {
1662 #ifndef PMAP_INCLUDE_PTE_SYNC
1663 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1664
1665 /*
1666 * The mappings for these page tables were initially made using
1667 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1668 * mode will not be right for page table mappings. To avoid
1669 * polluting the pmap_kenter_pa() code with a special case for
1670 * page tables, we simply fix up the cache-mode here if it's not
1671 * correct.
1672 */
1673 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1674 const struct l2_bucket * const l2b =
1675 pmap_get_l2_bucket(pmap_kernel(), va);
1676 KASSERTMSG(l2b != NULL, "%#lx", va);
1677 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1678 const pt_entry_t opte = *ptep;
1679
1680 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1681 /*
1682 * Page tables must have the cache-mode set correctly.
1683 */
1684 const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
1685 | pte_l2_s_cache_mode_pt;
1686 l2pte_set(ptep, npte, opte);
1687 PTE_SYNC(ptep);
1688 cpu_tlb_flushD_SE(va);
1689 cpu_cpwait();
1690 }
1691 }
1692 #endif
1693
1694 memset(v, 0, L2_TABLE_SIZE_REAL);
1695 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1696 return (0);
1697 }
1698
1699 static int
1700 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1701 {
1702
1703 memset(v, 0, sizeof(struct l2_dtable));
1704 return (0);
1705 }
1706
1707 static int
1708 pmap_pmap_ctor(void *arg, void *v, int flags)
1709 {
1710
1711 memset(v, 0, sizeof(struct pmap));
1712 return (0);
1713 }
1714
1715 static void
1716 pmap_pinit(pmap_t pm)
1717 {
1718 #ifndef ARM_HAS_VBAR
1719 struct l2_bucket *l2b;
1720
1721 if (vector_page < KERNEL_BASE) {
1722 /*
1723 * Map the vector page.
1724 */
1725 pmap_enter(pm, vector_page, systempage.pv_pa,
1726 VM_PROT_READ | VM_PROT_EXECUTE,
1727 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1728 pmap_update(pm);
1729
1730 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1731 l2b = pmap_get_l2_bucket(pm, vector_page);
1732 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1733 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1734 L1_C_DOM(pmap_domain(pm));
1735 } else
1736 pm->pm_pl1vec = NULL;
1737 #endif
1738 }
1739
1740 #ifdef PMAP_CACHE_VIVT
1741 /*
1742 * Since we have a virtually indexed cache, we may need to inhibit caching if
1743 * there is more than one mapping and at least one of them is writable.
1744 * Since we purge the cache on every context switch, we only need to check for
1745 * other mappings within the same pmap, or kernel_pmap.
1746 * This function is also called when a page is unmapped, to possibly reenable
1747 * caching on any remaining mappings.
1748 *
1749 * The code implements the following logic, where:
1750 *
1751 * KW = # of kernel read/write pages
1752 * KR = # of kernel read only pages
1753 * UW = # of user read/write pages
1754 * UR = # of user read only pages
1755 *
1756 * KC = kernel mapping is cacheable
1757 * UC = user mapping is cacheable
1758 *
1759 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1760 * +---------------------------------------------
1761 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1762 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1763 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1764 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1765 */
1766
1767 static const int pmap_vac_flags[4][4] = {
1768 {-1, 0, 0, PVF_KNC},
1769 {0, 0, PVF_NC, PVF_NC},
1770 {0, PVF_NC, PVF_NC, PVF_NC},
1771 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1772 };
1773
1774 static inline int
1775 pmap_get_vac_flags(const struct vm_page_md *md)
1776 {
1777 int kidx, uidx;
1778
1779 kidx = 0;
1780 if (md->kro_mappings || md->krw_mappings > 1)
1781 kidx |= 1;
1782 if (md->krw_mappings)
1783 kidx |= 2;
1784
1785 uidx = 0;
1786 if (md->uro_mappings || md->urw_mappings > 1)
1787 uidx |= 1;
1788 if (md->urw_mappings)
1789 uidx |= 2;
1790
1791 return (pmap_vac_flags[uidx][kidx]);
1792 }
1793
1794 static inline void
1795 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1796 {
1797 int nattr;
1798
1799 nattr = pmap_get_vac_flags(md);
1800
1801 if (nattr < 0) {
1802 md->pvh_attrs &= ~PVF_NC;
1803 return;
1804 }
1805
1806 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1807 return;
1808
1809 if (pm == pmap_kernel())
1810 pmap_vac_me_kpmap(md, pa, pm, va);
1811 else
1812 pmap_vac_me_user(md, pa, pm, va);
1813
1814 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1815 }
1816
1817 static void
1818 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1819 {
1820 u_int u_cacheable, u_entries;
1821 struct pv_entry *pv;
1822 pmap_t last_pmap = pm;
1823
1824 /*
1825 * Pass one, see if there are both kernel and user pmaps for
1826 * this page. Calculate whether there are user-writable or
1827 * kernel-writable pages.
1828 */
1829 u_cacheable = 0;
1830 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1831 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1832 u_cacheable++;
1833 }
1834
1835 u_entries = md->urw_mappings + md->uro_mappings;
1836
1837 /*
1838 * We know we have just been updating a kernel entry, so if
1839 * all user pages are already cacheable, then there is nothing
1840 * further to do.
1841 */
1842 if (md->k_mappings == 0 && u_cacheable == u_entries)
1843 return;
1844
1845 if (u_entries) {
1846 /*
1847 * Scan over the list again, for each entry, if it
1848 * might not be set correctly, call pmap_vac_me_user
1849 * to recalculate the settings.
1850 */
1851 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1852 /*
1853 * We know kernel mappings will get set
1854 * correctly in other calls. We also know
1855 * that if the pmap is the same as last_pmap
1856 * then we've just handled this entry.
1857 */
1858 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1859 continue;
1860
1861 /*
1862 * If there are kernel entries and this page
1863 * is writable but non-cacheable, then we can
1864 * skip this entry also.
1865 */
1866 if (md->k_mappings &&
1867 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1868 (PVF_NC | PVF_WRITE))
1869 continue;
1870
1871 /*
1872 * Similarly if there are no kernel-writable
1873 * entries and the page is already
1874 * read-only/cacheable.
1875 */
1876 if (md->krw_mappings == 0 &&
1877 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1878 continue;
1879
1880 /*
1881 * For some of the remaining cases, we know
1882 * that we must recalculate, but for others we
1883 * can't tell if they are correct or not, so
1884 * we recalculate anyway.
1885 */
1886 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1887 }
1888
1889 if (md->k_mappings == 0)
1890 return;
1891 }
1892
1893 pmap_vac_me_user(md, pa, pm, va);
1894 }
1895
1896 static void
1897 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1898 {
1899 pmap_t kpmap = pmap_kernel();
1900 struct pv_entry *pv, *npv = NULL;
1901 u_int entries = 0;
1902 u_int writable = 0;
1903 u_int cacheable_entries = 0;
1904 u_int kern_cacheable = 0;
1905 u_int other_writable = 0;
1906
1907 /*
1908 * Count mappings and writable mappings in this pmap.
1909 * Include kernel mappings as part of our own.
1910 * Keep a pointer to the first one.
1911 */
1912 npv = NULL;
1913 KASSERT(pmap_page_locked_p(md));
1914 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1915 /* Count mappings in the same pmap */
1916 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1917 if (entries++ == 0)
1918 npv = pv;
1919
1920 /* Cacheable mappings */
1921 if ((pv->pv_flags & PVF_NC) == 0) {
1922 cacheable_entries++;
1923 if (kpmap == pv->pv_pmap)
1924 kern_cacheable++;
1925 }
1926
1927 /* Writable mappings */
1928 if (pv->pv_flags & PVF_WRITE)
1929 ++writable;
1930 } else
1931 if (pv->pv_flags & PVF_WRITE)
1932 other_writable = 1;
1933 }
1934
1935 /*
1936 * Enable or disable caching as necessary.
1937 * Note: the first entry might be part of the kernel pmap,
1938 * so we can't assume this is indicative of the state of the
1939 * other (maybe non-kpmap) entries.
1940 */
1941 if ((entries > 1 && writable) ||
1942 (entries > 0 && pm == kpmap && other_writable)) {
1943 if (cacheable_entries == 0) {
1944 return;
1945 }
1946
1947 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1948 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1949 (pv->pv_flags & PVF_NC))
1950 continue;
1951
1952 pv->pv_flags |= PVF_NC;
1953
1954 struct l2_bucket * const l2b
1955 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1956 KASSERTMSG(l2b != NULL, "%#lx", va);
1957 pt_entry_t * const ptep
1958 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1959 const pt_entry_t opte = *ptep;
1960 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1961
1962 if ((va != pv->pv_va || pm != pv->pv_pmap)
1963 && l2pte_valid_p(npte)) {
1964 #ifdef PMAP_CACHE_VIVT
1965 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1966 true, pv->pv_flags);
1967 #endif
1968 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1969 pv->pv_flags);
1970 }
1971
1972 l2pte_set(ptep, npte, opte);
1973 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1974 }
1975 cpu_cpwait();
1976 } else
1977 if (entries > cacheable_entries) {
1978 /*
1979 * Turn cacheing back on for some pages. If it is a kernel
1980 * page, only do so if there are no other writable pages.
1981 */
1982 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1983 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1984 (kpmap != pv->pv_pmap || other_writable)))
1985 continue;
1986
1987 pv->pv_flags &= ~PVF_NC;
1988
1989 struct l2_bucket * const l2b
1990 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1991 KASSERTMSG(l2b != NULL, "%#lx", va);
1992 pt_entry_t * const ptep
1993 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1994 const pt_entry_t opte = *ptep;
1995 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1996 | pte_l2_s_cache_mode;
1997
1998 if (l2pte_valid_p(opte)) {
1999 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2000 pv->pv_flags);
2001 }
2002
2003 l2pte_set(ptep, npte, opte);
2004 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2005 }
2006 }
2007 }
2008 #endif
2009
2010 #ifdef PMAP_CACHE_VIPT
2011 static void
2012 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2013 {
2014 #ifndef ARM_MMU_EXTENDED
2015 struct pv_entry *pv;
2016 vaddr_t tst_mask;
2017 bool bad_alias;
2018 const u_int
2019 rw_mappings = md->urw_mappings + md->krw_mappings,
2020 ro_mappings = md->uro_mappings + md->kro_mappings;
2021
2022 /* do we need to do anything? */
2023 if (arm_cache_prefer_mask == 0)
2024 return;
2025
2026 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2027 md, pm, va));
2028
2029 KASSERT(!va || pm);
2030 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2031
2032 /* Already a conflict? */
2033 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2034 /* just an add, things are already non-cached */
2035 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2036 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2037 bad_alias = false;
2038 if (va) {
2039 PMAPCOUNT(vac_color_none);
2040 bad_alias = true;
2041 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2042 goto fixup;
2043 }
2044 pv = SLIST_FIRST(&md->pvh_list);
2045 /* the list can't be empty because it would be cachable */
2046 if (md->pvh_attrs & PVF_KMPAGE) {
2047 tst_mask = md->pvh_attrs;
2048 } else {
2049 KASSERT(pv);
2050 tst_mask = pv->pv_va;
2051 pv = SLIST_NEXT(pv, pv_link);
2052 }
2053 /*
2054 * Only check for a bad alias if we have writable mappings.
2055 */
2056 tst_mask &= arm_cache_prefer_mask;
2057 if (rw_mappings > 0) {
2058 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2059 /* if there's a bad alias, stop checking. */
2060 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2061 bad_alias = true;
2062 }
2063 md->pvh_attrs |= PVF_WRITE;
2064 if (!bad_alias)
2065 md->pvh_attrs |= PVF_DIRTY;
2066 } else {
2067 /*
2068 * We have only read-only mappings. Let's see if there
2069 * are multiple colors in use or if we mapped a KMPAGE.
2070 * If the latter, we have a bad alias. If the former,
2071 * we need to remember that.
2072 */
2073 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2074 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2075 if (md->pvh_attrs & PVF_KMPAGE)
2076 bad_alias = true;
2077 break;
2078 }
2079 }
2080 md->pvh_attrs &= ~PVF_WRITE;
2081 /*
2082 * No KMPAGE and we exited early, so we must have
2083 * multiple color mappings.
2084 */
2085 if (!bad_alias && pv != NULL)
2086 md->pvh_attrs |= PVF_MULTCLR;
2087 }
2088
2089 /* If no conflicting colors, set everything back to cached */
2090 if (!bad_alias) {
2091 #ifdef DEBUG
2092 if ((md->pvh_attrs & PVF_WRITE)
2093 || ro_mappings < 2) {
2094 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2095 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2096 }
2097 #endif
2098 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2099 md->pvh_attrs |= tst_mask | PVF_COLORED;
2100 /*
2101 * Restore DIRTY bit if page is modified
2102 */
2103 if (md->pvh_attrs & PVF_DMOD)
2104 md->pvh_attrs |= PVF_DIRTY;
2105 PMAPCOUNT(vac_color_restore);
2106 } else {
2107 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2108 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2109 }
2110 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2111 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2112 } else if (!va) {
2113 KASSERT(pmap_is_page_colored_p(md));
2114 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2115 || (md->pvh_attrs & PVF_DIRTY));
2116 if (rw_mappings == 0) {
2117 md->pvh_attrs &= ~PVF_WRITE;
2118 if (ro_mappings == 1
2119 && (md->pvh_attrs & PVF_MULTCLR)) {
2120 /*
2121 * If this is the last readonly mapping
2122 * but it doesn't match the current color
2123 * for the page, change the current color
2124 * to match this last readonly mapping.
2125 */
2126 pv = SLIST_FIRST(&md->pvh_list);
2127 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2128 & arm_cache_prefer_mask;
2129 if (tst_mask) {
2130 md->pvh_attrs ^= tst_mask;
2131 PMAPCOUNT(vac_color_change);
2132 }
2133 }
2134 }
2135 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2136 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2137 return;
2138 } else if (!pmap_is_page_colored_p(md)) {
2139 /* not colored so we just use its color */
2140 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2141 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2142 PMAPCOUNT(vac_color_new);
2143 md->pvh_attrs &= PAGE_SIZE - 1;
2144 md->pvh_attrs |= PVF_COLORED
2145 | (va & arm_cache_prefer_mask)
2146 | (rw_mappings > 0 ? PVF_WRITE : 0);
2147 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2148 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2149 return;
2150 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2151 bad_alias = false;
2152 if (rw_mappings > 0) {
2153 /*
2154 * We now have writeable mappings and if we have
2155 * readonly mappings in more than once color, we have
2156 * an aliasing problem. Regardless mark the page as
2157 * writeable.
2158 */
2159 if (md->pvh_attrs & PVF_MULTCLR) {
2160 if (ro_mappings < 2) {
2161 /*
2162 * If we only have less than two
2163 * read-only mappings, just flush the
2164 * non-primary colors from the cache.
2165 */
2166 pmap_flush_page(md, pa,
2167 PMAP_FLUSH_SECONDARY);
2168 } else {
2169 bad_alias = true;
2170 }
2171 }
2172 md->pvh_attrs |= PVF_WRITE;
2173 }
2174 /* If no conflicting colors, set everything back to cached */
2175 if (!bad_alias) {
2176 #ifdef DEBUG
2177 if (rw_mappings > 0
2178 || (md->pvh_attrs & PMAP_KMPAGE)) {
2179 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2180 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2181 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2182 }
2183 #endif
2184 if (SLIST_EMPTY(&md->pvh_list))
2185 PMAPCOUNT(vac_color_reuse);
2186 else
2187 PMAPCOUNT(vac_color_ok);
2188
2189 /* matching color, just return */
2190 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2191 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2192 return;
2193 }
2194 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2195 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2196
2197 /* color conflict. evict from cache. */
2198
2199 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2200 md->pvh_attrs &= ~PVF_COLORED;
2201 md->pvh_attrs |= PVF_NC;
2202 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2203 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2204 PMAPCOUNT(vac_color_erase);
2205 } else if (rw_mappings == 0
2206 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2207 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2208
2209 /*
2210 * If the page has dirty cache lines, clean it.
2211 */
2212 if (md->pvh_attrs & PVF_DIRTY)
2213 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2214
2215 /*
2216 * If this is the first remapping (we know that there are no
2217 * writeable mappings), then this is a simple color change.
2218 * Otherwise this is a seconary r/o mapping, which means
2219 * we don't have to do anything.
2220 */
2221 if (ro_mappings == 1) {
2222 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2223 md->pvh_attrs &= PAGE_SIZE - 1;
2224 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2225 PMAPCOUNT(vac_color_change);
2226 } else {
2227 PMAPCOUNT(vac_color_blind);
2228 }
2229 md->pvh_attrs |= PVF_MULTCLR;
2230 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2231 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2232 return;
2233 } else {
2234 if (rw_mappings > 0)
2235 md->pvh_attrs |= PVF_WRITE;
2236
2237 /* color conflict. evict from cache. */
2238 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2239
2240 /* the list can't be empty because this was a enter/modify */
2241 pv = SLIST_FIRST(&md->pvh_list);
2242 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2243 KASSERT(pv);
2244 /*
2245 * If there's only one mapped page, change color to the
2246 * page's new color and return. Restore the DIRTY bit
2247 * that was erased by pmap_flush_page.
2248 */
2249 if (SLIST_NEXT(pv, pv_link) == NULL) {
2250 md->pvh_attrs &= PAGE_SIZE - 1;
2251 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2252 if (md->pvh_attrs & PVF_DMOD)
2253 md->pvh_attrs |= PVF_DIRTY;
2254 PMAPCOUNT(vac_color_change);
2255 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2256 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2257 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2258 return;
2259 }
2260 }
2261 bad_alias = true;
2262 md->pvh_attrs &= ~PVF_COLORED;
2263 md->pvh_attrs |= PVF_NC;
2264 PMAPCOUNT(vac_color_erase);
2265 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2266 }
2267
2268 fixup:
2269 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2270
2271 /*
2272 * Turn cacheing on/off for all pages.
2273 */
2274 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2275 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2276 pv->pv_va);
2277 KASSERTMSG(l2b != NULL, "%#lx", va);
2278 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2279 const pt_entry_t opte = *ptep;
2280 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2281 if (bad_alias) {
2282 pv->pv_flags |= PVF_NC;
2283 } else {
2284 pv->pv_flags &= ~PVF_NC;
2285 npte |= pte_l2_s_cache_mode;
2286 }
2287
2288 if (opte == npte) /* only update is there's a change */
2289 continue;
2290
2291 if (l2pte_valid_p(npte)) {
2292 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2293 }
2294
2295 l2pte_set(ptep, npte, opte);
2296 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2297 }
2298 #endif /* !ARM_MMU_EXTENDED */
2299 }
2300 #endif /* PMAP_CACHE_VIPT */
2301
2302
2303 /*
2304 * Modify pte bits for all ptes corresponding to the given physical address.
2305 * We use `maskbits' rather than `clearbits' because we're always passing
2306 * constants and the latter would require an extra inversion at run-time.
2307 */
2308 static void
2309 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2310 {
2311 struct pv_entry *pv;
2312 #ifdef PMAP_CACHE_VIPT
2313 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2314 #ifdef ARM_MMU_EXTENDED
2315 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2316 #else
2317 const u_int execbits = 0;
2318 bool need_vac_me_harder = false;
2319 bool need_syncicache = false;
2320 #endif
2321 #else
2322 const u_int execbits = 0;
2323 #endif
2324
2325 NPDEBUG(PDB_BITS,
2326 printf("pmap_clearbit: md %p mask 0x%x\n",
2327 md, maskbits));
2328
2329 #ifdef PMAP_CACHE_VIPT
2330 /*
2331 * If we might want to sync the I-cache and we've modified it,
2332 * then we know we definitely need to sync or discard it.
2333 */
2334 if (want_syncicache) {
2335 #ifdef ARM_MMU_EXTENDED
2336 if (md->pvh_attrs & PVF_MOD)
2337 md->pvh_attrs &= ~PVF_EXEC;
2338 #else
2339 need_syncicache = md->pvh_attrs & PVF_MOD;
2340 #endif
2341 }
2342 #endif
2343 KASSERT(pmap_page_locked_p(md));
2344
2345 /*
2346 * Clear saved attributes (modify, reference)
2347 */
2348 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2349
2350 if (SLIST_EMPTY(&md->pvh_list)) {
2351 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2352 if (need_syncicache) {
2353 /*
2354 * No one has it mapped, so just discard it. The next
2355 * exec remapping will cause it to be synced.
2356 */
2357 md->pvh_attrs &= ~PVF_EXEC;
2358 PMAPCOUNT(exec_discarded_clearbit);
2359 }
2360 #endif
2361 return;
2362 }
2363
2364 /*
2365 * Loop over all current mappings setting/clearing as appropos
2366 */
2367 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2368 pmap_t pm = pv->pv_pmap;
2369 const vaddr_t va = pv->pv_va;
2370 const u_int oflags = pv->pv_flags;
2371 #ifndef ARM_MMU_EXTENDED
2372 /*
2373 * Kernel entries are unmanaged and as such not to be changed.
2374 */
2375 if (PV_IS_KENTRY_P(oflags))
2376 continue;
2377 #endif
2378 pv->pv_flags &= ~maskbits;
2379
2380 pmap_release_page_lock(md);
2381 pmap_acquire_pmap_lock(pm);
2382
2383 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2384 if (l2b == NULL) {
2385 pmap_release_pmap_lock(pm);
2386 pmap_acquire_page_lock(md);
2387 continue;
2388 }
2389 KASSERTMSG(l2b != NULL, "%#lx", va);
2390
2391 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2392 const pt_entry_t opte = *ptep;
2393 pt_entry_t npte = opte | execbits;
2394
2395 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2396
2397 NPDEBUG(PDB_BITS,
2398 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2399 __func__, pv, pm, va, oflags));
2400
2401 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2402 #ifdef PMAP_CACHE_VIVT
2403 if ((oflags & PVF_NC)) {
2404 /*
2405 * Entry is not cacheable:
2406 *
2407 * Don't turn caching on again if this is a
2408 * modified emulation. This would be
2409 * inconsitent with the settings created by
2410 * pmap_vac_me_harder(). Otherwise, it's safe
2411 * to re-enable cacheing.
2412 *
2413 * There's no need to call pmap_vac_me_harder()
2414 * here: all pages are losing their write
2415 * permission.
2416 */
2417 if (maskbits & PVF_WRITE) {
2418 npte |= pte_l2_s_cache_mode;
2419 pv->pv_flags &= ~PVF_NC;
2420 }
2421 } else
2422 if (l2pte_writable_p(opte)) {
2423 /*
2424 * Entry is writable/cacheable: check if pmap
2425 * is current if it is flush it, otherwise it
2426 * won't be in the cache
2427 */
2428 pmap_cache_wbinv_page(pm, va,
2429 (maskbits & PVF_REF) != 0,
2430 oflags|PVF_WRITE);
2431 }
2432 #endif
2433
2434 /* make the pte read only */
2435 npte = l2pte_set_readonly(npte);
2436
2437 pmap_acquire_page_lock(md);
2438 #ifdef MULTIPROCESSOR
2439 pv = pmap_find_pv(md, pm, va);
2440 #endif
2441 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2442 /*
2443 * Keep alias accounting up to date
2444 */
2445 if (pm == pmap_kernel()) {
2446 md->krw_mappings--;
2447 md->kro_mappings++;
2448 } else {
2449 md->urw_mappings--;
2450 md->uro_mappings++;
2451 }
2452 #ifdef PMAP_CACHE_VIPT
2453 if (arm_cache_prefer_mask != 0) {
2454 if (md->urw_mappings + md->krw_mappings == 0) {
2455 md->pvh_attrs &= ~PVF_WRITE;
2456 } else {
2457 PMAP_VALIDATE_MD_PAGE(md);
2458 }
2459 }
2460 #ifndef ARM_MMU_EXTENDED
2461 if (want_syncicache)
2462 need_syncicache = true;
2463 need_vac_me_harder = true;
2464 #endif
2465 #endif /* PMAP_CACHE_VIPT */
2466 }
2467 pmap_release_page_lock(md);
2468 }
2469
2470 if (maskbits & PVF_REF) {
2471 if (true
2472 #ifndef ARM_MMU_EXTENDED
2473 && (oflags & PVF_NC) == 0
2474 #endif
2475 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2476 && l2pte_valid_p(npte)) {
2477 #ifdef PMAP_CACHE_VIVT
2478 /*
2479 * Check npte here; we may have already
2480 * done the wbinv above, and the validity
2481 * of the PTE is the same for opte and
2482 * npte.
2483 */
2484 pmap_cache_wbinv_page(pm, va, true, oflags);
2485 #endif
2486 }
2487
2488 /*
2489 * Make the PTE invalid so that we will take a
2490 * page fault the next time the mapping is
2491 * referenced.
2492 */
2493 npte &= ~L2_TYPE_MASK;
2494 npte |= L2_TYPE_INV;
2495 }
2496
2497 if (npte != opte) {
2498 l2pte_set(ptep, npte, opte);
2499 PTE_SYNC(ptep);
2500
2501 /* Flush the TLB entry if a current pmap. */
2502 pmap_tlb_flush_SE(pm, va, oflags);
2503 }
2504
2505 pmap_release_pmap_lock(pm);
2506 pmap_acquire_page_lock(md);
2507
2508 NPDEBUG(PDB_BITS,
2509 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2510 pm, va, opte, npte));
2511 }
2512
2513 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2514 /*
2515 * If we need to sync the I-cache and we haven't done it yet, do it.
2516 */
2517 if (need_syncicache) {
2518 pmap_release_page_lock(md);
2519 pmap_syncicache_page(md, pa);
2520 pmap_acquire_page_lock(md);
2521 PMAPCOUNT(exec_synced_clearbit);
2522 }
2523
2524 /*
2525 * If we are changing this to read-only, we need to call vac_me_harder
2526 * so we can change all the read-only pages to cacheable. We pretend
2527 * this as a page deletion.
2528 */
2529 if (need_vac_me_harder) {
2530 if (md->pvh_attrs & PVF_NC)
2531 pmap_vac_me_harder(md, pa, NULL, 0);
2532 }
2533 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
2534 }
2535
2536 /*
2537 * pmap_clean_page()
2538 *
2539 * This is a local function used to work out the best strategy to clean
2540 * a single page referenced by its entry in the PV table. It's used by
2541 * pmap_copy_page, pmap_zero page and maybe some others later on.
2542 *
2543 * Its policy is effectively:
2544 * o If there are no mappings, we don't bother doing anything with the cache.
2545 * o If there is one mapping, we clean just that page.
2546 * o If there are multiple mappings, we clean the entire cache.
2547 *
2548 * So that some functions can be further optimised, it returns 0 if it didn't
2549 * clean the entire cache, or 1 if it did.
2550 *
2551 * XXX One bug in this routine is that if the pv_entry has a single page
2552 * mapped at 0x00000000 a whole cache clean will be performed rather than
2553 * just the 1 page. Since this should not occur in everyday use and if it does
2554 * it will just result in not the most efficient clean for the page.
2555 */
2556 #ifdef PMAP_CACHE_VIVT
2557 static bool
2558 pmap_clean_page(struct vm_page_md *md, bool is_src)
2559 {
2560 struct pv_entry *pv;
2561 pmap_t pm_to_clean = NULL;
2562 bool cache_needs_cleaning = false;
2563 vaddr_t page_to_clean = 0;
2564 u_int flags = 0;
2565
2566 /*
2567 * Since we flush the cache each time we change to a different
2568 * user vmspace, we only need to flush the page if it is in the
2569 * current pmap.
2570 */
2571 KASSERT(pmap_page_locked_p(md));
2572 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2573 if (pmap_is_current(pv->pv_pmap)) {
2574 flags |= pv->pv_flags;
2575 /*
2576 * The page is mapped non-cacheable in
2577 * this map. No need to flush the cache.
2578 */
2579 if (pv->pv_flags & PVF_NC) {
2580 #ifdef DIAGNOSTIC
2581 KASSERT(!cache_needs_cleaning);
2582 #endif
2583 break;
2584 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2585 continue;
2586 if (cache_needs_cleaning) {
2587 page_to_clean = 0;
2588 break;
2589 } else {
2590 page_to_clean = pv->pv_va;
2591 pm_to_clean = pv->pv_pmap;
2592 }
2593 cache_needs_cleaning = true;
2594 }
2595 }
2596
2597 if (page_to_clean) {
2598 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2599 !is_src, flags | PVF_REF);
2600 } else if (cache_needs_cleaning) {
2601 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2602
2603 pmap_cache_wbinv_all(pm, flags);
2604 return true;
2605 }
2606 return false;
2607 }
2608 #endif
2609
2610 #ifdef PMAP_CACHE_VIPT
2611 /*
2612 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2613 * right cache alias to make sure we flush the right stuff.
2614 */
2615 void
2616 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2617 {
2618 pmap_t kpm = pmap_kernel();
2619 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2620 ? PAGE_SIZE
2621 : arm_pcache.icache_way_size;
2622
2623 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2624 md, md->pvh_attrs));
2625 /*
2626 * No need to clean the page if it's non-cached.
2627 */
2628 #ifndef ARM_MMU_EXTENDED
2629 if (md->pvh_attrs & PVF_NC)
2630 return;
2631 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2632 #endif
2633
2634 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2635 if (way_size == PAGE_SIZE) {
2636 vaddr_t vdstp = KERNEL_BASE + (pa - physical_start);
2637 cpu_icache_sync_range(vdstp, way_size);
2638 return;
2639 }
2640 #endif
2641
2642 /*
2643 * We don't worry about the color of the exec page, we map the
2644 * same page to pages in the way and then do the icache_sync on
2645 * the entire way making sure we are cleaned.
2646 */
2647 pt_entry_t * const ptep = cpu_cdst_pte(0);
2648 const vaddr_t dstp = cpu_cdstp(0);
2649 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2650 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2651
2652 for (size_t i = 0, j = 0; i < way_size;
2653 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2654 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2655 /*
2656 * Set up a PTE with to flush these cache lines.
2657 */
2658 l2pte_set(ptep + j, npte, 0);
2659 }
2660 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2661
2662 /*
2663 * Flush it.
2664 */
2665 cpu_icache_sync_range(dstp, way_size);
2666
2667 for (size_t i = 0, j = 0; i < way_size;
2668 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2669 /*
2670 * Unmap the page(s).
2671 */
2672 l2pte_reset(ptep + j);
2673 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2674 }
2675 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2676
2677 md->pvh_attrs |= PVF_EXEC;
2678 PMAPCOUNT(exec_synced);
2679 }
2680
2681 #ifndef ARM_MMU_EXTENDED
2682 void
2683 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2684 {
2685 vsize_t va_offset, end_va;
2686 bool wbinv_p;
2687
2688 if (arm_cache_prefer_mask == 0)
2689 return;
2690
2691 switch (flush) {
2692 case PMAP_FLUSH_PRIMARY:
2693 if (md->pvh_attrs & PVF_MULTCLR) {
2694 va_offset = 0;
2695 end_va = arm_cache_prefer_mask;
2696 md->pvh_attrs &= ~PVF_MULTCLR;
2697 PMAPCOUNT(vac_flush_lots);
2698 } else {
2699 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2700 end_va = va_offset;
2701 PMAPCOUNT(vac_flush_one);
2702 }
2703 /*
2704 * Mark that the page is no longer dirty.
2705 */
2706 md->pvh_attrs &= ~PVF_DIRTY;
2707 wbinv_p = true;
2708 break;
2709 case PMAP_FLUSH_SECONDARY:
2710 va_offset = 0;
2711 end_va = arm_cache_prefer_mask;
2712 wbinv_p = true;
2713 md->pvh_attrs &= ~PVF_MULTCLR;
2714 PMAPCOUNT(vac_flush_lots);
2715 break;
2716 case PMAP_CLEAN_PRIMARY:
2717 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2718 end_va = va_offset;
2719 wbinv_p = false;
2720 /*
2721 * Mark that the page is no longer dirty.
2722 */
2723 if ((md->pvh_attrs & PVF_DMOD) == 0)
2724 md->pvh_attrs &= ~PVF_DIRTY;
2725 PMAPCOUNT(vac_clean_one);
2726 break;
2727 default:
2728 return;
2729 }
2730
2731 KASSERT(!(md->pvh_attrs & PVF_NC));
2732
2733 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2734 md, md->pvh_attrs));
2735
2736 const size_t scache_line_size = arm_scache.dcache_line_size;
2737
2738 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2739 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2740 const vaddr_t dstp = cpu_cdstp(va_offset);
2741 const pt_entry_t opte = *ptep;
2742
2743 if (flush == PMAP_FLUSH_SECONDARY
2744 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2745 continue;
2746
2747 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2748 /*
2749 * Set up a PTE with the right coloring to flush
2750 * existing cache entries.
2751 */
2752 const pt_entry_t npte = L2_S_PROTO
2753 | pa
2754 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2755 | pte_l2_s_cache_mode;
2756 l2pte_set(ptep, npte, opte);
2757 PTE_SYNC(ptep);
2758
2759 /*
2760 * Flush it. Make sure to flush secondary cache too since
2761 * bus_dma will ignore uncached pages.
2762 */
2763 if (scache_line_size != 0) {
2764 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2765 if (wbinv_p) {
2766 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2767 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2768 } else {
2769 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2770 }
2771 } else {
2772 if (wbinv_p) {
2773 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2774 } else {
2775 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2776 }
2777 }
2778
2779 /*
2780 * Restore the page table entry since we might have interrupted
2781 * pmap_zero_page or pmap_copy_page which was already using
2782 * this pte.
2783 */
2784 if (opte) {
2785 l2pte_set(ptep, opte, npte);
2786 } else {
2787 l2pte_reset(ptep);
2788 }
2789 PTE_SYNC(ptep);
2790 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2791 }
2792 }
2793 #endif /* ARM_MMU_EXTENDED */
2794 #endif /* PMAP_CACHE_VIPT */
2795
2796 /*
2797 * Routine: pmap_page_remove
2798 * Function:
2799 * Removes this physical page from
2800 * all physical maps in which it resides.
2801 * Reflects back modify bits to the pager.
2802 */
2803 static void
2804 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2805 {
2806 struct l2_bucket *l2b;
2807 struct pv_entry *pv;
2808 pt_entry_t *ptep;
2809 #ifndef ARM_MMU_EXTENDED
2810 bool flush = false;
2811 #endif
2812 u_int flags = 0;
2813
2814 NPDEBUG(PDB_FOLLOW,
2815 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2816 pa));
2817
2818 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2819 pmap_acquire_page_lock(md);
2820 if (*pvp == NULL) {
2821 #ifdef PMAP_CACHE_VIPT
2822 /*
2823 * We *know* the page contents are about to be replaced.
2824 * Discard the exec contents
2825 */
2826 if (PV_IS_EXEC_P(md->pvh_attrs))
2827 PMAPCOUNT(exec_discarded_page_protect);
2828 md->pvh_attrs &= ~PVF_EXEC;
2829 PMAP_VALIDATE_MD_PAGE(md);
2830 #endif
2831 pmap_release_page_lock(md);
2832 return;
2833 }
2834 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2835 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2836 #endif
2837
2838 /*
2839 * Clear alias counts
2840 */
2841 #ifdef PMAP_CACHE_VIVT
2842 md->k_mappings = 0;
2843 #endif
2844 md->urw_mappings = md->uro_mappings = 0;
2845
2846 #ifdef PMAP_CACHE_VIVT
2847 pmap_clean_page(md, false);
2848 #endif
2849
2850 while ((pv = *pvp) != NULL) {
2851 pmap_t pm = pv->pv_pmap;
2852 #ifndef ARM_MMU_EXTENDED
2853 if (flush == false && pmap_is_current(pm))
2854 flush = true;
2855 #endif
2856
2857 if (pm == pmap_kernel()) {
2858 #ifdef PMAP_CACHE_VIPT
2859 /*
2860 * If this was unmanaged mapping, it must be preserved.
2861 * Move it back on the list and advance the end-of-list
2862 * pointer.
2863 */
2864 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2865 *pvp = pv;
2866 pvp = &SLIST_NEXT(pv, pv_link);
2867 continue;
2868 }
2869 if (pv->pv_flags & PVF_WRITE)
2870 md->krw_mappings--;
2871 else
2872 md->kro_mappings--;
2873 #endif
2874 PMAPCOUNT(kernel_unmappings);
2875 }
2876 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2877 PMAPCOUNT(unmappings);
2878
2879 pmap_release_page_lock(md);
2880 pmap_acquire_pmap_lock(pm);
2881
2882 #ifdef ARM_MMU_EXTENDED
2883 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2884 #endif
2885
2886 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2887 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2888
2889 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2890
2891 /*
2892 * Update statistics
2893 */
2894 --pm->pm_stats.resident_count;
2895
2896 /* Wired bit */
2897 if (pv->pv_flags & PVF_WIRED)
2898 --pm->pm_stats.wired_count;
2899
2900 flags |= pv->pv_flags;
2901
2902 /*
2903 * Invalidate the PTEs.
2904 */
2905 l2pte_reset(ptep);
2906 PTE_SYNC_CURRENT(pm, ptep);
2907 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2908 pmap_release_pmap_lock(pm);
2909
2910 pool_put(&pmap_pv_pool, pv);
2911 pmap_acquire_page_lock(md);
2912 #ifdef MULTIPROCESSOR
2913 /*
2914 * Restart of the beginning of the list.
2915 */
2916 pvp = &SLIST_FIRST(&md->pvh_list);
2917 #endif
2918 }
2919 /*
2920 * if we reach the end of the list and there are still mappings, they
2921 * might be able to be cached now. And they must be kernel mappings.
2922 */
2923 if (!SLIST_EMPTY(&md->pvh_list)) {
2924 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2925 }
2926
2927 #ifdef PMAP_CACHE_VIPT
2928 /*
2929 * Its EXEC cache is now gone.
2930 */
2931 if (PV_IS_EXEC_P(md->pvh_attrs))
2932 PMAPCOUNT(exec_discarded_page_protect);
2933 md->pvh_attrs &= ~PVF_EXEC;
2934 KASSERT(md->urw_mappings == 0);
2935 KASSERT(md->uro_mappings == 0);
2936 #ifndef ARM_MMU_EXTENDED
2937 if (arm_cache_prefer_mask != 0) {
2938 if (md->krw_mappings == 0)
2939 md->pvh_attrs &= ~PVF_WRITE;
2940 PMAP_VALIDATE_MD_PAGE(md);
2941 }
2942 #endif /* ARM_MMU_EXTENDED */
2943 #endif /* PMAP_CACHE_VIPT */
2944 pmap_release_page_lock(md);
2945
2946 #ifndef ARM_MMU_EXTENDED
2947 if (flush) {
2948 /*
2949 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2950 * would need a subsequent call to pmap_update() to ensure
2951 * curpm->pm_cstate.cs_all is reset. Our callers are not
2952 * required to do that (see pmap(9)), so we can't modify
2953 * the current pmap's state.
2954 */
2955 if (PV_BEEN_EXECD(flags))
2956 cpu_tlb_flushID();
2957 else
2958 cpu_tlb_flushD();
2959 }
2960 cpu_cpwait();
2961 #endif /* ARM_MMU_EXTENDED */
2962 }
2963
2964 /*
2965 * pmap_t pmap_create(void)
2966 *
2967 * Create a new pmap structure from scratch.
2968 */
2969 pmap_t
2970 pmap_create(void)
2971 {
2972 pmap_t pm;
2973
2974 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2975
2976 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2977 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2978 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2979
2980 pm->pm_stats.wired_count = 0;
2981 pm->pm_stats.resident_count = 1;
2982 #ifdef ARM_MMU_EXTENDED
2983 #ifdef MULTIPROCESSOR
2984 kcpuset_create(&pm->pm_active, true);
2985 kcpuset_create(&pm->pm_onproc, true);
2986 #endif
2987 #else
2988 pm->pm_cstate.cs_all = 0;
2989 #endif
2990 pmap_alloc_l1(pm);
2991
2992 /*
2993 * Note: The pool cache ensures that the pm_l2[] array is already
2994 * initialised to zero.
2995 */
2996
2997 pmap_pinit(pm);
2998
2999 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
3000
3001 return (pm);
3002 }
3003
3004 u_int
3005 arm32_mmap_flags(paddr_t pa)
3006 {
3007 /*
3008 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3009 * and we're using the upper bits in page numbers to pass flags around
3010 * so we might as well use the same bits
3011 */
3012 return (u_int)pa & PMAP_MD_MASK;
3013 }
3014 /*
3015 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3016 * u_int flags)
3017 *
3018 * Insert the given physical page (p) at
3019 * the specified virtual address (v) in the
3020 * target physical map with the protection requested.
3021 *
3022 * NB: This is the only routine which MAY NOT lazy-evaluate
3023 * or lose information. That is, this routine must actually
3024 * insert this page into the given map NOW.
3025 */
3026 int
3027 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3028 {
3029 struct l2_bucket *l2b;
3030 struct vm_page *pg, *opg;
3031 u_int nflags;
3032 u_int oflags;
3033 const bool kpm_p = (pm == pmap_kernel());
3034 #ifdef ARM_HAS_VBAR
3035 const bool vector_page_p = false;
3036 #else
3037 const bool vector_page_p = (va == vector_page);
3038 #endif
3039
3040 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3041
3042 UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot #x",
3043 pm, va, pa, prot);
3044 UVMHIST_LOG(maphist, " flag %#x", flags, 0, 0, 0);
3045
3046 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3047 KDASSERT(((va | pa) & PGOFSET) == 0);
3048
3049 /*
3050 * Get a pointer to the page. Later on in this function, we
3051 * test for a managed page by checking pg != NULL.
3052 */
3053 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3054
3055 nflags = 0;
3056 if (prot & VM_PROT_WRITE)
3057 nflags |= PVF_WRITE;
3058 if (prot & VM_PROT_EXECUTE)
3059 nflags |= PVF_EXEC;
3060 if (flags & PMAP_WIRED)
3061 nflags |= PVF_WIRED;
3062
3063 pmap_acquire_pmap_lock(pm);
3064
3065 /*
3066 * Fetch the L2 bucket which maps this page, allocating one if
3067 * necessary for user pmaps.
3068 */
3069 if (kpm_p) {
3070 l2b = pmap_get_l2_bucket(pm, va);
3071 } else {
3072 l2b = pmap_alloc_l2_bucket(pm, va);
3073 }
3074 if (l2b == NULL) {
3075 if (flags & PMAP_CANFAIL) {
3076 pmap_release_pmap_lock(pm);
3077 return (ENOMEM);
3078 }
3079 panic("pmap_enter: failed to allocate L2 bucket");
3080 }
3081 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3082 const pt_entry_t opte = *ptep;
3083 pt_entry_t npte = pa;
3084 oflags = 0;
3085
3086 if (opte) {
3087 /*
3088 * There is already a mapping at this address.
3089 * If the physical address is different, lookup the
3090 * vm_page.
3091 */
3092 if (l2pte_pa(opte) != pa)
3093 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3094 else
3095 opg = pg;
3096 } else
3097 opg = NULL;
3098
3099 if (pg) {
3100 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3101
3102 /*
3103 * This is to be a managed mapping.
3104 */
3105 pmap_acquire_page_lock(md);
3106 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3107 /*
3108 * - The access type indicates that we don't need
3109 * to do referenced emulation.
3110 * OR
3111 * - The physical page has already been referenced
3112 * so no need to re-do referenced emulation here.
3113 */
3114 npte |= l2pte_set_readonly(L2_S_PROTO);
3115
3116 nflags |= PVF_REF;
3117
3118 if ((prot & VM_PROT_WRITE) != 0 &&
3119 ((flags & VM_PROT_WRITE) != 0 ||
3120 (md->pvh_attrs & PVF_MOD) != 0)) {
3121 /*
3122 * This is a writable mapping, and the
3123 * page's mod state indicates it has
3124 * already been modified. Make it
3125 * writable from the outset.
3126 */
3127 npte = l2pte_set_writable(npte);
3128 nflags |= PVF_MOD;
3129 }
3130
3131 #ifdef ARM_MMU_EXTENDED
3132 /*
3133 * If the page has been cleaned, then the pvh_attrs
3134 * will have PVF_EXEC set, so mark it execute so we
3135 * don't get an access fault when trying to execute
3136 * from it.
3137 */
3138 if (md->pvh_attrs & nflags & PVF_EXEC) {
3139 npte &= ~L2_XS_XN;
3140 }
3141 #endif
3142 } else {
3143 /*
3144 * Need to do page referenced emulation.
3145 */
3146 npte |= L2_TYPE_INV;
3147 }
3148
3149 if (flags & ARM32_MMAP_WRITECOMBINE) {
3150 npte |= pte_l2_s_wc_mode;
3151 } else
3152 npte |= pte_l2_s_cache_mode;
3153
3154 if (pg == opg) {
3155 /*
3156 * We're changing the attrs of an existing mapping.
3157 */
3158 oflags = pmap_modify_pv(md, pa, pm, va,
3159 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3160 PVF_MOD | PVF_REF, nflags);
3161
3162 #ifdef PMAP_CACHE_VIVT
3163 /*
3164 * We may need to flush the cache if we're
3165 * doing rw-ro...
3166 */
3167 if (pm->pm_cstate.cs_cache_d &&
3168 (oflags & PVF_NC) == 0 &&
3169 l2pte_writable_p(opte) &&
3170 (prot & VM_PROT_WRITE) == 0)
3171 cpu_dcache_wb_range(va, PAGE_SIZE);
3172 #endif
3173 } else {
3174 struct pv_entry *pv;
3175 /*
3176 * New mapping, or changing the backing page
3177 * of an existing mapping.
3178 */
3179 if (opg) {
3180 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3181 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3182
3183 /*
3184 * Replacing an existing mapping with a new one.
3185 * It is part of our managed memory so we
3186 * must remove it from the PV list
3187 */
3188 pv = pmap_remove_pv(omd, opa, pm, va);
3189 pmap_vac_me_harder(omd, opa, pm, 0);
3190 oflags = pv->pv_flags;
3191
3192 #ifdef PMAP_CACHE_VIVT
3193 /*
3194 * If the old mapping was valid (ref/mod
3195 * emulation creates 'invalid' mappings
3196 * initially) then make sure to frob
3197 * the cache.
3198 */
3199 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3200 pmap_cache_wbinv_page(pm, va, true,
3201 oflags);
3202 }
3203 #endif
3204 } else
3205 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
3206 pmap_release_page_lock(md);
3207 if ((flags & PMAP_CANFAIL) == 0)
3208 panic("pmap_enter: no pv entries");
3209
3210 if (pm != pmap_kernel())
3211 pmap_free_l2_bucket(pm, l2b, 0);
3212 pmap_release_pmap_lock(pm);
3213 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3214 0, 0, 0, 0);
3215 return (ENOMEM);
3216 }
3217
3218 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3219 }
3220 pmap_release_page_lock(md);
3221 } else {
3222 /*
3223 * We're mapping an unmanaged page.
3224 * These are always readable, and possibly writable, from
3225 * the get go as we don't need to track ref/mod status.
3226 */
3227 npte |= l2pte_set_readonly(L2_S_PROTO);
3228 if (prot & VM_PROT_WRITE)
3229 npte = l2pte_set_writable(npte);
3230
3231 /*
3232 * Make sure the vector table is mapped cacheable
3233 */
3234 if ((vector_page_p && !kpm_p)
3235 || (flags & ARM32_MMAP_CACHEABLE)) {
3236 npte |= pte_l2_s_cache_mode;
3237 #ifdef ARM_MMU_EXTENDED
3238 npte &= ~L2_XS_XN; /* and executable */
3239 #endif
3240 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3241 npte |= pte_l2_s_wc_mode;
3242 }
3243 if (opg) {
3244 /*
3245 * Looks like there's an existing 'managed' mapping
3246 * at this address.
3247 */
3248 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3249 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3250
3251 pmap_acquire_page_lock(omd);
3252 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3253 pmap_vac_me_harder(omd, opa, pm, 0);
3254 oflags = pv->pv_flags;
3255 pmap_release_page_lock(omd);
3256
3257 #ifdef PMAP_CACHE_VIVT
3258 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3259 pmap_cache_wbinv_page(pm, va, true, oflags);
3260 }
3261 #endif
3262 pool_put(&pmap_pv_pool, pv);
3263 }
3264 }
3265
3266 /*
3267 * Make sure userland mappings get the right permissions
3268 */
3269 if (!vector_page_p && !kpm_p) {
3270 npte |= L2_S_PROT_U;
3271 #ifdef ARM_MMU_EXTENDED
3272 npte |= L2_XS_nG; /* user pages are not global */
3273 #endif
3274 }
3275
3276 /*
3277 * Keep the stats up to date
3278 */
3279 if (opte == 0) {
3280 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3281 pm->pm_stats.resident_count++;
3282 }
3283
3284 UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
3285
3286 /*
3287 * If this is just a wiring change, the two PTEs will be
3288 * identical, so there's no need to update the page table.
3289 */
3290 if (npte != opte) {
3291
3292 l2pte_set(ptep, npte, opte);
3293 PTE_SYNC(ptep);
3294 #ifndef ARM_MMU_EXTENDED
3295 bool is_cached = pmap_is_cached(pm);
3296 if (is_cached) {
3297 /*
3298 * We only need to frob the cache/tlb if this pmap
3299 * is current
3300 */
3301 if (!vector_page_p && l2pte_valid_p(npte)) {
3302 /*
3303 * This mapping is likely to be accessed as
3304 * soon as we return to userland. Fix up the
3305 * L1 entry to avoid taking another
3306 * page/domain fault.
3307 */
3308 pd_entry_t *pdep = pmap_l1_kva(pm)
3309 + l1pte_index(va);
3310 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3311 | L1_C_DOM(pmap_domain(pm));
3312 if (*pdep != pde) {
3313 l1pte_setone(pdep, pde);
3314 PTE_SYNC(pdep);
3315 }
3316 }
3317 }
3318 #endif /* !ARMM_MMU_EXTENDED */
3319
3320 pmap_tlb_flush_SE(pm, va, oflags);
3321
3322 #ifndef ARM_MMU_EXTENDED
3323 UVMHIST_LOG(maphist, " is_cached %d cs 0x%08x\n",
3324 is_cached, pm->pm_cstate.cs_all, 0, 0);
3325 #endif
3326
3327 if (pg != NULL) {
3328 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3329
3330 pmap_acquire_page_lock(md);
3331 pmap_vac_me_harder(md, pa, pm, va);
3332 pmap_release_page_lock(md);
3333 }
3334 }
3335 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3336 if (pg) {
3337 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3338
3339 pmap_acquire_page_lock(md);
3340 #ifndef ARM_MMU_EXTENDED
3341 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3342 #endif
3343 PMAP_VALIDATE_MD_PAGE(md);
3344 pmap_release_page_lock(md);
3345 }
3346 #endif
3347
3348 pmap_release_pmap_lock(pm);
3349
3350 return (0);
3351 }
3352
3353 /*
3354 * pmap_remove()
3355 *
3356 * pmap_remove is responsible for nuking a number of mappings for a range
3357 * of virtual address space in the current pmap. To do this efficiently
3358 * is interesting, because in a number of cases a wide virtual address
3359 * range may be supplied that contains few actual mappings. So, the
3360 * optimisations are:
3361 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3362 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3363 * maybe do just a partial cache clean. This path of execution is
3364 * complicated by the fact that the cache must be flushed _before_
3365 * the PTE is nuked, being a VAC :-)
3366 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3367 * all invalidations until pmap_update(), since pmap_remove_all() has
3368 * already flushed the cache.
3369 * 4. Maybe later fast-case a single page, but I don't think this is
3370 * going to make _that_ much difference overall.
3371 */
3372
3373 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3374
3375 void
3376 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3377 {
3378 vaddr_t next_bucket;
3379 u_int cleanlist_idx, total, cnt;
3380 struct {
3381 vaddr_t va;
3382 pt_entry_t *ptep;
3383 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3384 u_int mappings;
3385
3386 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3387 UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
3388
3389 /*
3390 * we lock in the pmap => pv_head direction
3391 */
3392 pmap_acquire_pmap_lock(pm);
3393
3394 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3395 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3396 #ifndef ARM_MMU_EXTENDED
3397 if (pm->pm_cstate.cs_tlb == 0)
3398 pm->pm_remove_all = true;
3399 #endif
3400 } else
3401 cleanlist_idx = 0;
3402
3403 total = 0;
3404
3405 while (sva < eva) {
3406 /*
3407 * Do one L2 bucket's worth at a time.
3408 */
3409 next_bucket = L2_NEXT_BUCKET_VA(sva);
3410 if (next_bucket > eva)
3411 next_bucket = eva;
3412
3413 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3414 if (l2b == NULL) {
3415 sva = next_bucket;
3416 continue;
3417 }
3418
3419 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3420
3421 for (mappings = 0;
3422 sva < next_bucket;
3423 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3424 pt_entry_t opte = *ptep;
3425
3426 if (opte == 0) {
3427 /* Nothing here, move along */
3428 continue;
3429 }
3430
3431 u_int flags = PVF_REF;
3432 paddr_t pa = l2pte_pa(opte);
3433 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3434
3435 /*
3436 * Update flags. In a number of circumstances,
3437 * we could cluster a lot of these and do a
3438 * number of sequential pages in one go.
3439 */
3440 if (pg != NULL) {
3441 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3442 struct pv_entry *pv;
3443
3444 pmap_acquire_page_lock(md);
3445 pv = pmap_remove_pv(md, pa, pm, sva);
3446 pmap_vac_me_harder(md, pa, pm, 0);
3447 pmap_release_page_lock(md);
3448 if (pv != NULL) {
3449 if (pm->pm_remove_all == false) {
3450 flags = pv->pv_flags;
3451 }
3452 pool_put(&pmap_pv_pool, pv);
3453 }
3454 }
3455 mappings += PAGE_SIZE / L2_S_SIZE;
3456
3457 if (!l2pte_valid_p(opte)) {
3458 /*
3459 * Ref/Mod emulation is still active for this
3460 * mapping, therefore it is has not yet been
3461 * accessed. No need to frob the cache/tlb.
3462 */
3463 l2pte_reset(ptep);
3464 PTE_SYNC_CURRENT(pm, ptep);
3465 continue;
3466 }
3467
3468 #ifdef ARM_MMU_EXTENDED
3469 if (pm == pmap_kernel()) {
3470 l2pte_reset(ptep);
3471 PTE_SYNC(ptep);
3472 pmap_tlb_flush_SE(pm, sva, flags);
3473 continue;
3474 }
3475 #endif
3476 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3477 /* Add to the clean list. */
3478 cleanlist[cleanlist_idx].ptep = ptep;
3479 cleanlist[cleanlist_idx].va =
3480 sva | (flags & PVF_EXEC);
3481 cleanlist_idx++;
3482 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3483 /* Nuke everything if needed. */
3484 #ifdef PMAP_CACHE_VIVT
3485 pmap_cache_wbinv_all(pm, PVF_EXEC);
3486 #endif
3487 /*
3488 * Roll back the previous PTE list,
3489 * and zero out the current PTE.
3490 */
3491 for (cnt = 0;
3492 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3493 l2pte_reset(cleanlist[cnt].ptep);
3494 PTE_SYNC(cleanlist[cnt].ptep);
3495 }
3496 l2pte_reset(ptep);
3497 PTE_SYNC(ptep);
3498 cleanlist_idx++;
3499 pm->pm_remove_all = true;
3500 } else {
3501 l2pte_reset(ptep);
3502 PTE_SYNC(ptep);
3503 if (pm->pm_remove_all == false) {
3504 pmap_tlb_flush_SE(pm, sva, flags);
3505 }
3506 }
3507 }
3508
3509 /*
3510 * Deal with any left overs
3511 */
3512 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3513 total += cleanlist_idx;
3514 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3515 #ifdef ARM_MMU_EXTENDED
3516 vaddr_t clva = cleanlist[cnt].va;
3517 pmap_tlb_flush_SE(pm, clva, PVF_REF);
3518 #else
3519 vaddr_t va = cleanlist[cnt].va;
3520 if (pm->pm_cstate.cs_all != 0) {
3521 vaddr_t clva = va & ~PAGE_MASK;
3522 u_int flags = va & PVF_EXEC;
3523 #ifdef PMAP_CACHE_VIVT
3524 pmap_cache_wbinv_page(pm, clva, true,
3525 PVF_REF | PVF_WRITE | flags);
3526 #endif
3527 pmap_tlb_flush_SE(pm, clva,
3528 PVF_REF | flags);
3529 }
3530 #endif /* ARM_MMU_EXTENDED */
3531 l2pte_reset(cleanlist[cnt].ptep);
3532 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3533 }
3534
3535 /*
3536 * If it looks like we're removing a whole bunch
3537 * of mappings, it's faster to just write-back
3538 * the whole cache now and defer TLB flushes until
3539 * pmap_update() is called.
3540 */
3541 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3542 cleanlist_idx = 0;
3543 else {
3544 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3545 #ifdef PMAP_CACHE_VIVT
3546 pmap_cache_wbinv_all(pm, PVF_EXEC);
3547 #endif
3548 pm->pm_remove_all = true;
3549 }
3550 }
3551
3552 pmap_free_l2_bucket(pm, l2b, mappings);
3553 pm->pm_stats.resident_count -= mappings;
3554 }
3555
3556 pmap_release_pmap_lock(pm);
3557 }
3558
3559 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3560 static struct pv_entry *
3561 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3562 {
3563 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3564 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3565 struct pv_entry *pv;
3566
3567 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3568 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3569 KASSERT(pmap_page_locked_p(md));
3570
3571 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3572 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3573 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3574
3575 /*
3576 * If we are removing a writeable mapping to a cached exec page,
3577 * if it's the last mapping then clear it execness other sync
3578 * the page to the icache.
3579 */
3580 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3581 && (pv->pv_flags & PVF_WRITE) != 0) {
3582 if (SLIST_EMPTY(&md->pvh_list)) {
3583 md->pvh_attrs &= ~PVF_EXEC;
3584 PMAPCOUNT(exec_discarded_kremove);
3585 } else {
3586 pmap_syncicache_page(md, pa);
3587 PMAPCOUNT(exec_synced_kremove);
3588 }
3589 }
3590 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3591
3592 return pv;
3593 }
3594 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3595
3596 /*
3597 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3598 *
3599 * We assume there is already sufficient KVM space available
3600 * to do this, as we can't allocate L2 descriptor tables/metadata
3601 * from here.
3602 */
3603 void
3604 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3605 {
3606 #ifdef PMAP_CACHE_VIVT
3607 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3608 #endif
3609 #ifdef PMAP_CACHE_VIPT
3610 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3611 struct vm_page *opg;
3612 #ifndef ARM_MMU_EXTENDED
3613 struct pv_entry *pv = NULL;
3614 #endif
3615 #endif
3616 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3617
3618 UVMHIST_FUNC(__func__);
3619
3620 if (pmap_initialized) {
3621 UVMHIST_CALLED(maphist);
3622 UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
3623 va, pa, prot, flags);
3624 }
3625
3626 pmap_t kpm = pmap_kernel();
3627 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3628 const size_t l1slot __diagused = l1pte_index(va);
3629 KASSERTMSG(l2b != NULL,
3630 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3631 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3632 kpm->pm_l2[L2_IDX(l1slot)]
3633 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3634 : NULL,
3635 kpm->pm_l2[L2_IDX(l1slot)]
3636 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3637 : NULL);
3638 KASSERT(l2b->l2b_kva != NULL);
3639
3640 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3641 const pt_entry_t opte = *ptep;
3642
3643 if (opte == 0) {
3644 PMAPCOUNT(kenter_mappings);
3645 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3646 } else {
3647 PMAPCOUNT(kenter_remappings);
3648 #ifdef PMAP_CACHE_VIPT
3649 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3650 #ifdef DIAGNOSTIC
3651 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3652 #endif
3653 if (opg && arm_cache_prefer_mask != 0) {
3654 KASSERT(opg != pg);
3655 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3656 KASSERT((flags & PMAP_KMPAGE) == 0);
3657 #ifndef ARM_MMU_EXTENDED
3658 pmap_acquire_page_lock(md);
3659 pv = pmap_kremove_pg(opg, va);
3660 pmap_release_page_lock(md);
3661 #endif
3662 }
3663 #endif
3664 if (l2pte_valid_p(opte)) {
3665 #ifdef PMAP_CACHE_VIVT
3666 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3667 #endif
3668 cpu_tlb_flushD_SE(va);
3669 cpu_cpwait();
3670 }
3671 }
3672
3673 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3674 | ((flags & PMAP_NOCACHE)
3675 ? 0
3676 : ((flags & PMAP_PTE)
3677 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3678 #ifdef ARM_MMU_EXTENDED
3679 if (prot & VM_PROT_EXECUTE)
3680 npte &= ~L2_XS_XN;
3681 #endif
3682 l2pte_set(ptep, npte, opte);
3683 PTE_SYNC(ptep);
3684
3685 if (pg) {
3686 if (flags & PMAP_KMPAGE) {
3687 KASSERT(md->urw_mappings == 0);
3688 KASSERT(md->uro_mappings == 0);
3689 KASSERT(md->krw_mappings == 0);
3690 KASSERT(md->kro_mappings == 0);
3691 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3692 KASSERT(pv == NULL);
3693 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3694 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3695 /* if there is a color conflict, evict from cache. */
3696 if (pmap_is_page_colored_p(md)
3697 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3698 PMAPCOUNT(vac_color_change);
3699 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3700 } else if (md->pvh_attrs & PVF_MULTCLR) {
3701 /*
3702 * If this page has multiple colors, expunge
3703 * them.
3704 */
3705 PMAPCOUNT(vac_flush_lots2);
3706 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3707 }
3708 pmap_acquire_page_lock(md);
3709 md->pvh_attrs &= PAGE_SIZE - 1;
3710 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3711 | (va & arm_cache_prefer_mask);
3712 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3713 pmap_acquire_page_lock(md);
3714 md->pvh_attrs |= PVF_KMPAGE;
3715 #endif
3716 pmap_kmpages++;
3717 pmap_release_page_lock(md);
3718 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3719 } else if (arm_cache_prefer_mask != 0) {
3720 if (pv == NULL) {
3721 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3722 KASSERT(pv != NULL);
3723 }
3724 pmap_acquire_page_lock(md);
3725 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3726 PVF_WIRED | PVF_KENTRY
3727 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3728 if ((prot & VM_PROT_WRITE)
3729 && !(md->pvh_attrs & PVF_NC))
3730 md->pvh_attrs |= PVF_DIRTY;
3731 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3732 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3733 pmap_release_page_lock(md);
3734 #endif
3735 }
3736 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3737 } else {
3738 if (pv != NULL)
3739 pool_put(&pmap_pv_pool, pv);
3740 #endif
3741 }
3742
3743 if (pmap_initialized) {
3744 UVMHIST_LOG(maphist, " <-- done (ptep %p: %#x -> %#x)",
3745 ptep, opte, npte, 0);
3746 }
3747 }
3748
3749 void
3750 pmap_kremove(vaddr_t va, vsize_t len)
3751 {
3752 #ifdef UVMHIST
3753 u_int total_mappings = 0;
3754 #endif
3755
3756 PMAPCOUNT(kenter_unmappings);
3757
3758 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3759
3760 UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
3761
3762 const vaddr_t eva = va + len;
3763
3764 while (va < eva) {
3765 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3766 if (next_bucket > eva)
3767 next_bucket = eva;
3768
3769 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3770 KDASSERT(l2b != NULL);
3771
3772 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3773 pt_entry_t *ptep = sptep;
3774 u_int mappings = 0;
3775
3776 while (va < next_bucket) {
3777 const pt_entry_t opte = *ptep;
3778 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3779 if (opg != NULL) {
3780 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3781
3782 pmap_acquire_page_lock(omd);
3783 if (omd->pvh_attrs & PVF_KMPAGE) {
3784 KASSERT(omd->urw_mappings == 0);
3785 KASSERT(omd->uro_mappings == 0);
3786 KASSERT(omd->krw_mappings == 0);
3787 KASSERT(omd->kro_mappings == 0);
3788 omd->pvh_attrs &= ~PVF_KMPAGE;
3789 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3790 if (arm_cache_prefer_mask != 0) {
3791 omd->pvh_attrs &= ~PVF_WRITE;
3792 }
3793 #endif
3794 pmap_kmpages--;
3795 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3796 } else if (arm_cache_prefer_mask != 0) {
3797 pool_put(&pmap_pv_pool,
3798 pmap_kremove_pg(opg, va));
3799 #endif
3800 }
3801 pmap_release_page_lock(omd);
3802 }
3803 if (l2pte_valid_p(opte)) {
3804 #ifdef PMAP_CACHE_VIVT
3805 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3806 #endif
3807 cpu_tlb_flushD_SE(va);
3808 }
3809 if (opte) {
3810 l2pte_reset(ptep);
3811 mappings += PAGE_SIZE / L2_S_SIZE;
3812 }
3813 va += PAGE_SIZE;
3814 ptep += PAGE_SIZE / L2_S_SIZE;
3815 }
3816 KDASSERT(mappings <= l2b->l2b_occupancy);
3817 l2b->l2b_occupancy -= mappings;
3818 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3819 #ifdef UVMHIST
3820 total_mappings += mappings;
3821 #endif
3822 }
3823 cpu_cpwait();
3824 UVMHIST_LOG(maphist, " <--- done (%u mappings removed)",
3825 total_mappings, 0, 0, 0);
3826 }
3827
3828 bool
3829 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3830 {
3831 struct l2_dtable *l2;
3832 pd_entry_t *pdep, pde;
3833 pt_entry_t *ptep, pte;
3834 paddr_t pa;
3835 u_int l1slot;
3836
3837 pmap_acquire_pmap_lock(pm);
3838
3839 l1slot = l1pte_index(va);
3840 pdep = pmap_l1_kva(pm) + l1slot;
3841 pde = *pdep;
3842
3843 if (l1pte_section_p(pde)) {
3844 /*
3845 * These should only happen for pmap_kernel()
3846 */
3847 KDASSERT(pm == pmap_kernel());
3848 pmap_release_pmap_lock(pm);
3849 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3850 if (l1pte_supersection_p(pde)) {
3851 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3852 } else
3853 #endif
3854 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3855 } else {
3856 /*
3857 * Note that we can't rely on the validity of the L1
3858 * descriptor as an indication that a mapping exists.
3859 * We have to look it up in the L2 dtable.
3860 */
3861 l2 = pm->pm_l2[L2_IDX(l1slot)];
3862
3863 if (l2 == NULL ||
3864 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3865 pmap_release_pmap_lock(pm);
3866 return false;
3867 }
3868
3869 ptep = &ptep[l2pte_index(va)];
3870 pte = *ptep;
3871 pmap_release_pmap_lock(pm);
3872
3873 if (pte == 0)
3874 return false;
3875
3876 switch (pte & L2_TYPE_MASK) {
3877 case L2_TYPE_L:
3878 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3879 break;
3880
3881 default:
3882 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3883 break;
3884 }
3885 }
3886
3887 if (pap != NULL)
3888 *pap = pa;
3889
3890 return true;
3891 }
3892
3893 void
3894 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3895 {
3896 struct l2_bucket *l2b;
3897 vaddr_t next_bucket;
3898
3899 NPDEBUG(PDB_PROTECT,
3900 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3901 pm, sva, eva, prot));
3902
3903 if ((prot & VM_PROT_READ) == 0) {
3904 pmap_remove(pm, sva, eva);
3905 return;
3906 }
3907
3908 if (prot & VM_PROT_WRITE) {
3909 /*
3910 * If this is a read->write transition, just ignore it and let
3911 * uvm_fault() take care of it later.
3912 */
3913 return;
3914 }
3915
3916 pmap_acquire_pmap_lock(pm);
3917
3918 const bool flush = eva - sva >= PAGE_SIZE * 4;
3919 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3920 u_int flags = 0;
3921
3922 while (sva < eva) {
3923 next_bucket = L2_NEXT_BUCKET_VA(sva);
3924 if (next_bucket > eva)
3925 next_bucket = eva;
3926
3927 l2b = pmap_get_l2_bucket(pm, sva);
3928 if (l2b == NULL) {
3929 sva = next_bucket;
3930 continue;
3931 }
3932
3933 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3934
3935 while (sva < next_bucket) {
3936 const pt_entry_t opte = *ptep;
3937 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
3938 struct vm_page *pg;
3939 u_int f;
3940
3941 #ifdef PMAP_CACHE_VIVT
3942 /*
3943 * OK, at this point, we know we're doing
3944 * write-protect operation. If the pmap is
3945 * active, write-back the page.
3946 */
3947 pmap_cache_wbinv_page(pm, sva, false,
3948 PVF_REF | PVF_WRITE);
3949 #endif
3950
3951 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3952 pt_entry_t npte = l2pte_set_readonly(opte);
3953 l2pte_set(ptep, npte, opte);
3954 PTE_SYNC(ptep);
3955
3956 if (pg != NULL) {
3957 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3958 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3959
3960 pmap_acquire_page_lock(md);
3961 f = pmap_modify_pv(md, pa, pm, sva,
3962 clr_mask, 0);
3963 pmap_vac_me_harder(md, pa, pm, sva);
3964 pmap_release_page_lock(md);
3965 } else {
3966 f = PVF_REF | PVF_EXEC;
3967 }
3968
3969 if (flush) {
3970 flags |= f;
3971 } else {
3972 pmap_tlb_flush_SE(pm, sva, f);
3973 }
3974 }
3975
3976 sva += PAGE_SIZE;
3977 ptep += PAGE_SIZE / L2_S_SIZE;
3978 }
3979 }
3980
3981 if (flush) {
3982 if (PV_BEEN_EXECD(flags)) {
3983 pmap_tlb_flushID(pm);
3984 } else if (PV_BEEN_REFD(flags)) {
3985 pmap_tlb_flushD(pm);
3986 }
3987 }
3988
3989 pmap_release_pmap_lock(pm);
3990 }
3991
3992 void
3993 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3994 {
3995 struct l2_bucket *l2b;
3996 pt_entry_t *ptep;
3997 vaddr_t next_bucket;
3998 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3999
4000 NPDEBUG(PDB_EXEC,
4001 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4002 pm, sva, eva));
4003
4004 pmap_acquire_pmap_lock(pm);
4005
4006 while (sva < eva) {
4007 next_bucket = L2_NEXT_BUCKET_VA(sva);
4008 if (next_bucket > eva)
4009 next_bucket = eva;
4010
4011 l2b = pmap_get_l2_bucket(pm, sva);
4012 if (l2b == NULL) {
4013 sva = next_bucket;
4014 continue;
4015 }
4016
4017 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4018 sva < next_bucket;
4019 sva += page_size,
4020 ptep += PAGE_SIZE / L2_S_SIZE,
4021 page_size = PAGE_SIZE) {
4022 if (l2pte_valid_p(*ptep)) {
4023 cpu_icache_sync_range(sva,
4024 min(page_size, eva - sva));
4025 }
4026 }
4027 }
4028
4029 pmap_release_pmap_lock(pm);
4030 }
4031
4032 void
4033 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4034 {
4035 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4036 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4037
4038 NPDEBUG(PDB_PROTECT,
4039 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4040 md, pa, prot));
4041
4042 switch(prot) {
4043 case VM_PROT_READ|VM_PROT_WRITE:
4044 #if defined(ARM_MMU_EXTENDED)
4045 pmap_acquire_page_lock(md);
4046 pmap_clearbit(md, pa, PVF_EXEC);
4047 pmap_release_page_lock(md);
4048 break;
4049 #endif
4050 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4051 break;
4052
4053 case VM_PROT_READ:
4054 #if defined(ARM_MMU_EXTENDED)
4055 pmap_acquire_page_lock(md);
4056 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4057 pmap_release_page_lock(md);
4058 break;
4059 #endif
4060 case VM_PROT_READ|VM_PROT_EXECUTE:
4061 pmap_acquire_page_lock(md);
4062 pmap_clearbit(md, pa, PVF_WRITE);
4063 pmap_release_page_lock(md);
4064 break;
4065
4066 default:
4067 pmap_page_remove(md, pa);
4068 break;
4069 }
4070 }
4071
4072 /*
4073 * pmap_clear_modify:
4074 *
4075 * Clear the "modified" attribute for a page.
4076 */
4077 bool
4078 pmap_clear_modify(struct vm_page *pg)
4079 {
4080 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4081 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4082 bool rv;
4083
4084 pmap_acquire_page_lock(md);
4085
4086 if (md->pvh_attrs & PVF_MOD) {
4087 rv = true;
4088 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4089 /*
4090 * If we are going to clear the modified bit and there are
4091 * no other modified bits set, flush the page to memory and
4092 * mark it clean.
4093 */
4094 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4095 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4096 #endif
4097 pmap_clearbit(md, pa, PVF_MOD);
4098 } else {
4099 rv = false;
4100 }
4101 pmap_release_page_lock(md);
4102
4103 return rv;
4104 }
4105
4106 /*
4107 * pmap_clear_reference:
4108 *
4109 * Clear the "referenced" attribute for a page.
4110 */
4111 bool
4112 pmap_clear_reference(struct vm_page *pg)
4113 {
4114 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4115 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4116 bool rv;
4117
4118 pmap_acquire_page_lock(md);
4119
4120 if (md->pvh_attrs & PVF_REF) {
4121 rv = true;
4122 pmap_clearbit(md, pa, PVF_REF);
4123 } else {
4124 rv = false;
4125 }
4126 pmap_release_page_lock(md);
4127
4128 return rv;
4129 }
4130
4131 /*
4132 * pmap_is_modified:
4133 *
4134 * Test if a page has the "modified" attribute.
4135 */
4136 /* See <arm/arm32/pmap.h> */
4137
4138 /*
4139 * pmap_is_referenced:
4140 *
4141 * Test if a page has the "referenced" attribute.
4142 */
4143 /* See <arm/arm32/pmap.h> */
4144
4145 #if defined(ARM_MMU_EXTENDED) && 0
4146 int
4147 pmap_prefetchabt_fixup(void *v)
4148 {
4149 struct trapframe * const tf = v;
4150 vaddr_t va = trunc_page(tf->tf_pc);
4151 int rv = ABORT_FIXUP_FAILED;
4152
4153 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4154 return rv;
4155
4156 kpreempt_disable();
4157 pmap_t pm = curcpu()->ci_pmap_cur;
4158 const size_t l1slot = l1pte_index(va);
4159 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4160 if (l2 == NULL)
4161 goto out;
4162
4163 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4164 if (l2b->l2b_kva == NULL)
4165 goto out;
4166
4167 /*
4168 * Check the PTE itself.
4169 */
4170 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4171 const pt_entry_t opte = *ptep;
4172 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4173 goto out;
4174
4175 paddr_t pa = l2pte_pa(pte);
4176 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4177 KASSERT(pg != NULL);
4178
4179 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4180
4181 pmap_acquire_page_lock(md);
4182 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4183 KASSERT(pv != NULL);
4184
4185 if (PV_IS_EXEC_P(pv->pv_flags)) {
4186 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4187 pmap_syncicache_page(md, pa);
4188 }
4189 rv = ABORT_FIXUP_RETURN;
4190 l2pte_set(ptep, opte & ~L2_XS_XN, opte);
4191 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4192 }
4193 pmap_release_page_lock(md);
4194
4195 out:
4196 kpreempt_enable();
4197 return rv;
4198 }
4199 #endif
4200
4201 int
4202 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4203 {
4204 struct l2_dtable *l2;
4205 struct l2_bucket *l2b;
4206 paddr_t pa;
4207 const size_t l1slot = l1pte_index(va);
4208 int rv = 0;
4209
4210 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4211
4212 va = trunc_page(va);
4213
4214 KASSERT(!user || (pm != pmap_kernel()));
4215
4216 UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
4217 pm, va, ftype, user);
4218 #ifdef ARM_MMU_EXTENDED
4219 UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
4220 cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4221 PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4222 #endif
4223
4224 pmap_acquire_pmap_lock(pm);
4225
4226 /*
4227 * If there is no l2_dtable for this address, then the process
4228 * has no business accessing it.
4229 *
4230 * Note: This will catch userland processes trying to access
4231 * kernel addresses.
4232 */
4233 l2 = pm->pm_l2[L2_IDX(l1slot)];
4234 if (l2 == NULL) {
4235 UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
4236 goto out;
4237 }
4238
4239 /*
4240 * Likewise if there is no L2 descriptor table
4241 */
4242 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4243 if (l2b->l2b_kva == NULL) {
4244 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
4245 goto out;
4246 }
4247
4248 /*
4249 * Check the PTE itself.
4250 */
4251 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4252 pt_entry_t const opte = *ptep;
4253 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4254 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
4255 goto out;
4256 }
4257
4258 #ifndef ARM_HAS_VBAR
4259 /*
4260 * Catch a userland access to the vector page mapped at 0x0
4261 */
4262 if (user && (opte & L2_S_PROT_U) == 0) {
4263 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4264 goto out;
4265 }
4266 #endif
4267
4268 pa = l2pte_pa(opte);
4269
4270 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4271 /*
4272 * This looks like a good candidate for "page modified"
4273 * emulation...
4274 */
4275 struct pv_entry *pv;
4276 struct vm_page *pg;
4277
4278 /* Extract the physical address of the page */
4279 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4280 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4281 goto out;
4282 }
4283
4284 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4285
4286 /* Get the current flags for this page. */
4287 pmap_acquire_page_lock(md);
4288 pv = pmap_find_pv(md, pm, va);
4289 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4290 pmap_release_page_lock(md);
4291 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4292 goto out;
4293 }
4294
4295 /*
4296 * Do the flags say this page is writable? If not then it
4297 * is a genuine write fault. If yes then the write fault is
4298 * our fault as we did not reflect the write access in the
4299 * PTE. Now we know a write has occurred we can correct this
4300 * and also set the modified bit
4301 */
4302 if ((pv->pv_flags & PVF_WRITE) == 0) {
4303 pmap_release_page_lock(md);
4304 goto out;
4305 }
4306
4307 md->pvh_attrs |= PVF_REF | PVF_MOD;
4308 pv->pv_flags |= PVF_REF | PVF_MOD;
4309 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4310 /*
4311 * If there are cacheable mappings for this page, mark it dirty.
4312 */
4313 if ((md->pvh_attrs & PVF_NC) == 0)
4314 md->pvh_attrs |= PVF_DIRTY;
4315 #endif
4316 #ifdef ARM_MMU_EXTENDED
4317 if (md->pvh_attrs & PVF_EXEC) {
4318 md->pvh_attrs &= ~PVF_EXEC;
4319 PMAPCOUNT(exec_discarded_modfixup);
4320 }
4321 #endif
4322 pmap_release_page_lock(md);
4323
4324 /*
4325 * Re-enable write permissions for the page. No need to call
4326 * pmap_vac_me_harder(), since this is just a
4327 * modified-emulation fault, and the PVF_WRITE bit isn't
4328 * changing. We've already set the cacheable bits based on
4329 * the assumption that we can write to this page.
4330 */
4331 const pt_entry_t npte =
4332 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4333 #ifdef ARM_MMU_EXTENDED
4334 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4335 #endif
4336 | 0;
4337 l2pte_set(ptep, npte, opte);
4338 PTE_SYNC(ptep);
4339 PMAPCOUNT(fixup_mod);
4340 rv = 1;
4341 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
4342 opte, npte, 0, 0);
4343 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4344 /*
4345 * This looks like a good candidate for "page referenced"
4346 * emulation.
4347 */
4348 struct vm_page *pg;
4349
4350 /* Extract the physical address of the page */
4351 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4352 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4353 goto out;
4354 }
4355
4356 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4357
4358 /* Get the current flags for this page. */
4359 pmap_acquire_page_lock(md);
4360 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4361 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4362 pmap_release_page_lock(md);
4363 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4364 goto out;
4365 }
4366
4367 md->pvh_attrs |= PVF_REF;
4368 pv->pv_flags |= PVF_REF;
4369
4370 pt_entry_t npte =
4371 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4372 #ifdef ARM_MMU_EXTENDED
4373 if (pm != pmap_kernel()) {
4374 npte |= L2_XS_nG;
4375 }
4376 /*
4377 * If we got called from prefetch abort, then ftype will have
4378 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4379 * the PTE.
4380 */
4381 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4382 /*
4383 * Is this a mapping of an executable page?
4384 */
4385 if ((pv->pv_flags & PVF_EXEC) == 0) {
4386 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4387 0, 0, 0, 0);
4388 goto out;
4389 }
4390 /*
4391 * If we haven't synced the page, do so now.
4392 */
4393 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4394 UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
4395 pa, 0, 0, 0);
4396 pmap_syncicache_page(md, pa);
4397 PMAPCOUNT(fixup_exec);
4398 }
4399 npte &= ~L2_XS_XN;
4400 }
4401 #endif /* ARM_MMU_EXTENDED */
4402 pmap_release_page_lock(md);
4403 l2pte_set(ptep, npte, opte);
4404 PTE_SYNC(ptep);
4405 PMAPCOUNT(fixup_ref);
4406 rv = 1;
4407 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
4408 opte, npte, 0, 0);
4409 #ifdef ARM_MMU_EXTENDED
4410 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4411 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4412 if (pg == NULL) {
4413 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4414 goto out;
4415 }
4416
4417 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4418
4419 /* Get the current flags for this page. */
4420 pmap_acquire_page_lock(md);
4421 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4422 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4423 pmap_release_page_lock(md);
4424 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4425 goto out;
4426 }
4427
4428 /*
4429 * If we haven't synced the page, do so now.
4430 */
4431 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4432 UVMHIST_LOG(maphist, "syncicache page #%#x",
4433 pa, 0, 0, 0);
4434 pmap_syncicache_page(md, pa);
4435 }
4436 pmap_release_page_lock(md);
4437 /*
4438 * Turn off no-execute.
4439 */
4440 KASSERT(opte & L2_XS_nG);
4441 l2pte_set(ptep, opte & ~L2_XS_XN, opte);
4442 PTE_SYNC(ptep);
4443 rv = 1;
4444 PMAPCOUNT(fixup_exec);
4445 UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
4446 opte, opte & ~L2_XS_XN, 0, 0);
4447 #endif
4448 }
4449
4450 #ifndef ARM_MMU_EXTENDED
4451 /*
4452 * We know there is a valid mapping here, so simply
4453 * fix up the L1 if necessary.
4454 */
4455 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4456 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4457 if (*pdep != pde) {
4458 l1pte_setone(pdep, pde);
4459 PTE_SYNC(pdep);
4460 rv = 1;
4461 PMAPCOUNT(fixup_pdes);
4462 }
4463 #endif
4464
4465 #ifdef CPU_SA110
4466 /*
4467 * There are bugs in the rev K SA110. This is a check for one
4468 * of them.
4469 */
4470 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4471 curcpu()->ci_arm_cpurev < 3) {
4472 /* Always current pmap */
4473 if (l2pte_valid_p(opte)) {
4474 extern int kernel_debug;
4475 if (kernel_debug & 1) {
4476 struct proc *p = curlwp->l_proc;
4477 printf("prefetch_abort: page is already "
4478 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4479 printf("prefetch_abort: pc=%08lx proc=%p "
4480 "process=%s\n", va, p, p->p_comm);
4481 printf("prefetch_abort: far=%08x fs=%x\n",
4482 cpu_faultaddress(), cpu_faultstatus());
4483 }
4484 #ifdef DDB
4485 if (kernel_debug & 2)
4486 Debugger();
4487 #endif
4488 rv = 1;
4489 }
4490 }
4491 #endif /* CPU_SA110 */
4492
4493 #ifndef ARM_MMU_EXTENDED
4494 /*
4495 * If 'rv == 0' at this point, it generally indicates that there is a
4496 * stale TLB entry for the faulting address. That might be due to a
4497 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4498 */
4499 if (rv == 0
4500 && pm->pm_l1->l1_domain_use_count == 1
4501 && pmap_needs_pte_sync == 0) {
4502 pmap_needs_pte_sync = 1;
4503 PTE_SYNC(ptep);
4504 PMAPCOUNT(fixup_ptesync);
4505 rv = 1;
4506 }
4507 #endif
4508
4509 #if defined(DEBUG) || 1
4510 /*
4511 * If 'rv == 0' at this point, it generally indicates that there is a
4512 * stale TLB entry for the faulting address. This happens when two or
4513 * more processes are sharing an L1. Since we don't flush the TLB on
4514 * a context switch between such processes, we can take domain faults
4515 * for mappings which exist at the same VA in both processes. EVEN IF
4516 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4517 * example.
4518 *
4519 * This is extremely likely to happen if pmap_enter() updated the L1
4520 * entry for a recently entered mapping. In this case, the TLB is
4521 * flushed for the new mapping, but there may still be TLB entries for
4522 * other mappings belonging to other processes in the 1MB range
4523 * covered by the L1 entry.
4524 *
4525 * Since 'rv == 0', we know that the L1 already contains the correct
4526 * value, so the fault must be due to a stale TLB entry.
4527 *
4528 * Since we always need to flush the TLB anyway in the case where we
4529 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4530 * stale TLB entries dynamically.
4531 *
4532 * However, the above condition can ONLY happen if the current L1 is
4533 * being shared. If it happens when the L1 is unshared, it indicates
4534 * that other parts of the pmap are not doing their job WRT managing
4535 * the TLB.
4536 */
4537 if (rv == 0
4538 #ifndef ARM_MMU_EXTENDED
4539 && pm->pm_l1->l1_domain_use_count == 1
4540 #endif
4541 && true) {
4542 #ifdef DEBUG
4543 extern int last_fault_code;
4544 #else
4545 int last_fault_code = ftype & VM_PROT_EXECUTE
4546 ? armreg_ifsr_read()
4547 : armreg_dfsr_read();
4548 #endif
4549 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4550 pm, va, ftype);
4551 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4552 l2, l2b, ptep, opte);
4553
4554 #ifndef ARM_MMU_EXTENDED
4555 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4556 pdep, pde, last_fault_code);
4557 #else
4558 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4559 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4560 armreg_ttbcr_read());
4561 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4562 last_fault_code, curcpu()->ci_pmap_cur,
4563 curcpu()->ci_pmap_asid_cur,
4564 armreg_contextidr_read(), armreg_dacr_read());
4565 #ifdef _ARM_ARCH_7
4566 if (ftype & VM_PROT_WRITE)
4567 armreg_ats1cuw_write(va);
4568 else
4569 armreg_ats1cur_write(va);
4570 arm_isb();
4571 printf("fixup: par %#x\n", armreg_par_read());
4572 #endif
4573 #endif
4574 #ifdef DDB
4575 //extern int kernel_debug;
4576
4577 //if (kernel_debug & 2)
4578 pmap_release_pmap_lock(pm);
4579 KERNHIST_DUMP(maphist);
4580 cpu_Debugger();
4581 pmap_acquire_pmap_lock(pm);
4582 #endif
4583 }
4584 #endif
4585
4586 pmap_tlb_flush_SE(pm, va,
4587 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4588
4589 rv = 1;
4590
4591 out:
4592 pmap_release_pmap_lock(pm);
4593
4594 return (rv);
4595 }
4596
4597 /*
4598 * Routine: pmap_procwr
4599 *
4600 * Function:
4601 * Synchronize caches corresponding to [addr, addr+len) in p.
4602 *
4603 */
4604 void
4605 pmap_procwr(struct proc *p, vaddr_t va, int len)
4606 {
4607 /* We only need to do anything if it is the current process. */
4608 if (p == curproc)
4609 cpu_icache_sync_range(va, len);
4610 }
4611
4612 /*
4613 * Routine: pmap_unwire
4614 * Function: Clear the wired attribute for a map/virtual-address pair.
4615 *
4616 * In/out conditions:
4617 * The mapping must already exist in the pmap.
4618 */
4619 void
4620 pmap_unwire(pmap_t pm, vaddr_t va)
4621 {
4622 struct l2_bucket *l2b;
4623 pt_entry_t *ptep, pte;
4624 struct vm_page *pg;
4625 paddr_t pa;
4626
4627 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4628
4629 pmap_acquire_pmap_lock(pm);
4630
4631 l2b = pmap_get_l2_bucket(pm, va);
4632 KDASSERT(l2b != NULL);
4633
4634 ptep = &l2b->l2b_kva[l2pte_index(va)];
4635 pte = *ptep;
4636
4637 /* Extract the physical address of the page */
4638 pa = l2pte_pa(pte);
4639
4640 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4641 /* Update the wired bit in the pv entry for this page. */
4642 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4643
4644 pmap_acquire_page_lock(md);
4645 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4646 pmap_release_page_lock(md);
4647 }
4648
4649 pmap_release_pmap_lock(pm);
4650 }
4651
4652 void
4653 pmap_activate(struct lwp *l)
4654 {
4655 struct cpu_info * const ci = curcpu();
4656 extern int block_userspace_access;
4657 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4658 #ifdef ARM_MMU_EXTENDED
4659 struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
4660 #endif
4661
4662 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4663
4664 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
4665
4666 /*
4667 * If activating a non-current lwp or the current lwp is
4668 * already active, just return.
4669 */
4670 if (false
4671 || l != curlwp
4672 #ifdef ARM_MMU_EXTENDED
4673 || (ci->ci_pmap_cur == npm &&
4674 (npm == pmap_kernel()
4675 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4676 #else
4677 || npm->pm_activated == true
4678 #endif
4679 || false) {
4680 UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
4681 return;
4682 }
4683
4684 #ifndef ARM_MMU_EXTENDED
4685 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4686 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4687
4688 /*
4689 * If TTB and DACR are unchanged, short-circuit all the
4690 * TLB/cache management stuff.
4691 */
4692 pmap_t opm = ci->ci_lastlwp
4693 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4694 : NULL;
4695 if (opm != NULL) {
4696 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4697 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4698
4699 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4700 goto all_done;
4701 }
4702 #endif /* !ARM_MMU_EXTENDED */
4703
4704 PMAPCOUNT(activations);
4705 block_userspace_access = 1;
4706
4707 #ifndef ARM_MMU_EXTENDED
4708 /*
4709 * If switching to a user vmspace which is different to the
4710 * most recent one, and the most recent one is potentially
4711 * live in the cache, we must write-back and invalidate the
4712 * entire cache.
4713 */
4714 pmap_t rpm = ci->ci_pmap_lastuser;
4715 #endif
4716
4717 /*
4718 * XXXSCW: There's a corner case here which can leave turds in the cache as
4719 * reported in kern/41058. They're probably left over during tear-down and
4720 * switching away from an exiting process. Until the root cause is identified
4721 * and fixed, zap the cache when switching pmaps. This will result in a few
4722 * unnecessary cache flushes, but that's better than silently corrupting data.
4723 */
4724 #ifndef ARM_MMU_EXTENDED
4725 #if 0
4726 if (npm != pmap_kernel() && rpm && npm != rpm &&
4727 rpm->pm_cstate.cs_cache) {
4728 rpm->pm_cstate.cs_cache = 0;
4729 #ifdef PMAP_CACHE_VIVT
4730 cpu_idcache_wbinv_all();
4731 #endif
4732 }
4733 #else
4734 if (rpm) {
4735 rpm->pm_cstate.cs_cache = 0;
4736 if (npm == pmap_kernel())
4737 ci->ci_pmap_lastuser = NULL;
4738 #ifdef PMAP_CACHE_VIVT
4739 cpu_idcache_wbinv_all();
4740 #endif
4741 }
4742 #endif
4743
4744 /* No interrupts while we frob the TTB/DACR */
4745 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4746 #endif /* !ARM_MMU_EXTENDED */
4747
4748 #ifndef ARM_HAS_VBAR
4749 /*
4750 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4751 * entry corresponding to 'vector_page' in the incoming L1 table
4752 * before switching to it otherwise subsequent interrupts/exceptions
4753 * (including domain faults!) will jump into hyperspace.
4754 */
4755 if (npm->pm_pl1vec != NULL) {
4756 cpu_tlb_flushID_SE((u_int)vector_page);
4757 cpu_cpwait();
4758 *npm->pm_pl1vec = npm->pm_l1vec;
4759 PTE_SYNC(npm->pm_pl1vec);
4760 }
4761 #endif
4762
4763 #ifdef ARM_MMU_EXTENDED
4764 /*
4765 * Assume that TTBR1 has only global mappings and TTBR0 only has
4766 * non-global mappings. To prevent speculation from doing evil things
4767 * we disable translation table walks using TTBR0 before setting the
4768 * CONTEXTIDR (ASID) or new TTBR0 value. Once both are set, table
4769 * walks are reenabled.
4770 */
4771 UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
4772 const uint32_t old_ttbcr = armreg_ttbcr_read();
4773 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4774 arm_isb();
4775 pmap_tlb_asid_acquire(npm, l);
4776 UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
4777 cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
4778 /*
4779 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
4780 * been updated.
4781 */
4782 arm_isb();
4783 if (npm != pmap_kernel()) {
4784 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4785 }
4786 cpu_cpwait();
4787 ci->ci_pmap_asid_cur = pai->pai_asid;
4788 #else
4789 cpu_domains(ndacr);
4790 if (npm == pmap_kernel() || npm == rpm) {
4791 /*
4792 * Switching to a kernel thread, or back to the
4793 * same user vmspace as before... Simply update
4794 * the TTB (no TLB flush required)
4795 */
4796 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4797 cpu_cpwait();
4798 } else {
4799 /*
4800 * Otherwise, update TTB and flush TLB
4801 */
4802 cpu_context_switch(npm->pm_l1->l1_physaddr);
4803 if (rpm != NULL)
4804 rpm->pm_cstate.cs_tlb = 0;
4805 }
4806
4807 restore_interrupts(oldirqstate);
4808 #endif /* ARM_MMU_EXTENDED */
4809
4810 block_userspace_access = 0;
4811
4812 #ifndef ARM_MMU_EXTENDED
4813 all_done:
4814 /*
4815 * The new pmap is resident. Make sure it's marked
4816 * as resident in the cache/TLB.
4817 */
4818 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4819 if (npm != pmap_kernel())
4820 ci->ci_pmap_lastuser = npm;
4821
4822 /* The old pmap is not longer active */
4823 if (opm != npm) {
4824 if (opm != NULL)
4825 opm->pm_activated = false;
4826
4827 /* But the new one is */
4828 npm->pm_activated = true;
4829 }
4830 #endif
4831 ci->ci_pmap_cur = npm;
4832 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4833 }
4834
4835 void
4836 pmap_deactivate(struct lwp *l)
4837 {
4838 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
4839
4840 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4841
4842 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
4843
4844 #ifdef ARM_MMU_EXTENDED
4845 kpreempt_disable();
4846 struct cpu_info * const ci = curcpu();
4847 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4848 /*
4849 * Disable translation table walks from TTBR0 while no pmap has been
4850 * activated.
4851 */
4852 const uint32_t old_ttbcr = armreg_ttbcr_read();
4853 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4854 arm_isb();
4855 pmap_tlb_asid_deactivate(pm);
4856 cpu_setttb(pmap_kernel()->pm_l1_pa, pai->pai_asid);
4857 ci->ci_pmap_cur = pmap_kernel();
4858 kpreempt_enable();
4859 #else
4860 /*
4861 * If the process is exiting, make sure pmap_activate() does
4862 * a full MMU context-switch and cache flush, which we might
4863 * otherwise skip. See PR port-arm/38950.
4864 */
4865 if (l->l_proc->p_sflag & PS_WEXIT)
4866 curcpu()->ci_lastlwp = NULL;
4867
4868 pm->pm_activated = false;
4869 #endif
4870 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4871 }
4872
4873 void
4874 pmap_update(pmap_t pm)
4875 {
4876
4877 if (pm->pm_remove_all) {
4878 #ifdef ARM_MMU_EXTENDED
4879 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
4880 /*
4881 * Finish up the pmap_remove_all() optimisation by flushing
4882 * all our ASIDs.
4883 */
4884 pmap_tlb_asid_release_all(pm);
4885 #else
4886 /*
4887 * Finish up the pmap_remove_all() optimisation by flushing
4888 * the TLB.
4889 */
4890 pmap_tlb_flushID(pm);
4891 #endif
4892 pm->pm_remove_all = false;
4893 }
4894
4895 #ifdef ARM_MMU_EXTENDED
4896
4897 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
4898 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
4899 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
4900 PMAP_COUNT(shootdown_ipis);
4901 }
4902 #endif
4903 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
4904 #else
4905 if (pmap_is_current(pm)) {
4906 /*
4907 * If we're dealing with a current userland pmap, move its L1
4908 * to the end of the LRU.
4909 */
4910 if (pm != pmap_kernel())
4911 pmap_use_l1(pm);
4912
4913 /*
4914 * We can assume we're done with frobbing the cache/tlb for
4915 * now. Make sure any future pmap ops don't skip cache/tlb
4916 * flushes.
4917 */
4918 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4919 }
4920 #endif
4921
4922 PMAPCOUNT(updates);
4923
4924 /*
4925 * make sure TLB/cache operations have completed.
4926 */
4927 cpu_cpwait();
4928 }
4929
4930 void
4931 pmap_remove_all(pmap_t pm)
4932 {
4933
4934 /*
4935 * The vmspace described by this pmap is about to be torn down.
4936 * Until pmap_update() is called, UVM will only make calls
4937 * to pmap_remove(). We can make life much simpler by flushing
4938 * the cache now, and deferring TLB invalidation to pmap_update().
4939 */
4940 #ifdef PMAP_CACHE_VIVT
4941 pmap_cache_wbinv_all(pm, PVF_EXEC);
4942 #endif
4943 pm->pm_remove_all = true;
4944 }
4945
4946 /*
4947 * Retire the given physical map from service.
4948 * Should only be called if the map contains no valid mappings.
4949 */
4950 void
4951 pmap_destroy(pmap_t pm)
4952 {
4953 u_int count;
4954
4955 if (pm == NULL)
4956 return;
4957
4958 if (pm->pm_remove_all) {
4959 pmap_tlb_flushID(pm);
4960 pm->pm_remove_all = false;
4961 }
4962
4963 /*
4964 * Drop reference count
4965 */
4966 mutex_enter(pm->pm_lock);
4967 count = --pm->pm_obj.uo_refs;
4968 mutex_exit(pm->pm_lock);
4969 if (count > 0) {
4970 #ifndef ARM_MMU_EXTENDED
4971 if (pmap_is_current(pm)) {
4972 if (pm != pmap_kernel())
4973 pmap_use_l1(pm);
4974 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4975 }
4976 #endif
4977 return;
4978 }
4979
4980 /*
4981 * reference count is zero, free pmap resources and then free pmap.
4982 */
4983
4984 #ifndef ARM_HAS_VBAR
4985 if (vector_page < KERNEL_BASE) {
4986 KDASSERT(!pmap_is_current(pm));
4987
4988 /* Remove the vector page mapping */
4989 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4990 pmap_update(pm);
4991 }
4992 #endif
4993
4994 LIST_REMOVE(pm, pm_list);
4995
4996 pmap_free_l1(pm);
4997
4998 #ifdef ARM_MMU_EXTENDED
4999 #ifdef MULTIPROCESSOR
5000 kcpuset_destroy(pm->pm_active);
5001 kcpuset_destroy(pm->pm_onproc);
5002 #endif
5003 #else
5004 struct cpu_info * const ci = curcpu();
5005 if (ci->ci_pmap_lastuser == pm)
5006 ci->ci_pmap_lastuser = NULL;
5007 #endif
5008
5009 uvm_obj_destroy(&pm->pm_obj, false);
5010 mutex_destroy(&pm->pm_obj_lock);
5011 pool_cache_put(&pmap_cache, pm);
5012 }
5013
5014
5015 /*
5016 * void pmap_reference(pmap_t pm)
5017 *
5018 * Add a reference to the specified pmap.
5019 */
5020 void
5021 pmap_reference(pmap_t pm)
5022 {
5023
5024 if (pm == NULL)
5025 return;
5026
5027 #ifndef ARM_MMU_EXTENDED
5028 pmap_use_l1(pm);
5029 #endif
5030
5031 mutex_enter(pm->pm_lock);
5032 pm->pm_obj.uo_refs++;
5033 mutex_exit(pm->pm_lock);
5034 }
5035
5036 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5037
5038 static struct evcnt pmap_prefer_nochange_ev =
5039 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5040 static struct evcnt pmap_prefer_change_ev =
5041 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5042
5043 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5044 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5045
5046 void
5047 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5048 {
5049 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5050 vaddr_t va = *vap;
5051 vaddr_t diff = (hint - va) & mask;
5052 if (diff == 0) {
5053 pmap_prefer_nochange_ev.ev_count++;
5054 } else {
5055 pmap_prefer_change_ev.ev_count++;
5056 if (__predict_false(td))
5057 va -= mask + 1;
5058 *vap = va + diff;
5059 }
5060 }
5061 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5062
5063 /*
5064 * pmap_zero_page()
5065 *
5066 * Zero a given physical page by mapping it at a page hook point.
5067 * In doing the zero page op, the page we zero is mapped cachable, as with
5068 * StrongARM accesses to non-cached pages are non-burst making writing
5069 * _any_ bulk data very slow.
5070 */
5071 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5072 void
5073 pmap_zero_page_generic(paddr_t pa)
5074 {
5075 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5076 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5077 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5078 #endif
5079 #if defined(PMAP_CACHE_VIPT)
5080 /* Choose the last page color it had, if any */
5081 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5082 #else
5083 const vsize_t va_offset = 0;
5084 #endif
5085 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5086 /*
5087 * Is this page mapped at its natural color?
5088 * If we have all of memory mapped, then just convert PA to VA.
5089 */
5090 const bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5091 || va_offset == (pa & arm_cache_prefer_mask);
5092 const vaddr_t vdstp = okcolor
5093 ? KERNEL_BASE + (pa - physical_start)
5094 : cpu_cdstp(va_offset);
5095 #else
5096 const bool okcolor = false;
5097 const vaddr_t vdstp = cpu_cdstp(va_offset);
5098 #endif
5099 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5100
5101
5102 #ifdef DEBUG
5103 if (!SLIST_EMPTY(&md->pvh_list))
5104 panic("pmap_zero_page: page has mappings");
5105 #endif
5106
5107 KDASSERT((pa & PGOFSET) == 0);
5108
5109 if (!okcolor) {
5110 /*
5111 * Hook in the page, zero it, and purge the cache for that
5112 * zeroed page. Invalidate the TLB as needed.
5113 */
5114 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5115 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5116 l2pte_set(ptep, npte, 0);
5117 PTE_SYNC(ptep);
5118 cpu_tlb_flushD_SE(vdstp);
5119 cpu_cpwait();
5120 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5121 /*
5122 * If we are direct-mapped and our color isn't ok, then before
5123 * we bzero the page invalidate its contents from the cache and
5124 * reset the color to its natural color.
5125 */
5126 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5127 md->pvh_attrs &= ~arm_cache_prefer_mask;
5128 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5129 #endif
5130 }
5131 bzero_page(vdstp);
5132 if (!okcolor) {
5133 /*
5134 * Unmap the page.
5135 */
5136 l2pte_reset(ptep);
5137 PTE_SYNC(ptep);
5138 cpu_tlb_flushD_SE(vdstp);
5139 #ifdef PMAP_CACHE_VIVT
5140 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5141 #endif
5142 }
5143 #ifdef PMAP_CACHE_VIPT
5144 /*
5145 * This page is now cache resident so it now has a page color.
5146 * Any contents have been obliterated so clear the EXEC flag.
5147 */
5148 #ifndef ARM_MMU_EXTENDED
5149 if (!pmap_is_page_colored_p(md)) {
5150 PMAPCOUNT(vac_color_new);
5151 md->pvh_attrs |= PVF_COLORED;
5152 }
5153 md->pvh_attrs |= PVF_DIRTY;
5154 #endif
5155 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5156 md->pvh_attrs &= ~PVF_EXEC;
5157 PMAPCOUNT(exec_discarded_zero);
5158 }
5159 #endif
5160 }
5161 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5162
5163 #if ARM_MMU_XSCALE == 1
5164 void
5165 pmap_zero_page_xscale(paddr_t pa)
5166 {
5167 #ifdef DEBUG
5168 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5169 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5170
5171 if (!SLIST_EMPTY(&md->pvh_list))
5172 panic("pmap_zero_page: page has mappings");
5173 #endif
5174
5175 KDASSERT((pa & PGOFSET) == 0);
5176
5177 /*
5178 * Hook in the page, zero it, and purge the cache for that
5179 * zeroed page. Invalidate the TLB as needed.
5180 */
5181
5182 pt_entry_t npte = L2_S_PROTO | pa |
5183 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5184 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5185 l2pte_set(cdst_pte, npte, 0);
5186 PTE_SYNC(cdst_pte);
5187 cpu_tlb_flushD_SE(cdstp);
5188 cpu_cpwait();
5189 bzero_page(cdstp);
5190 xscale_cache_clean_minidata();
5191 l2pte_reset(cdst_pte);
5192 PTE_SYNC(cdst_pte);
5193 }
5194 #endif /* ARM_MMU_XSCALE == 1 */
5195
5196 /* pmap_pageidlezero()
5197 *
5198 * The same as above, except that we assume that the page is not
5199 * mapped. This means we never have to flush the cache first. Called
5200 * from the idle loop.
5201 */
5202 bool
5203 pmap_pageidlezero(paddr_t pa)
5204 {
5205 bool rv = true;
5206 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5207 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5208 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5209 #endif
5210 #ifdef PMAP_CACHE_VIPT
5211 /* Choose the last page color it had, if any */
5212 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5213 #else
5214 const vsize_t va_offset = 0;
5215 #endif
5216 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5217 const bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5218 || va_offset == (pa & arm_cache_prefer_mask);
5219 const vaddr_t vdstp = okcolor
5220 ? KERNEL_BASE + (pa - physical_start)
5221 : cpu_cdstp(va_offset);
5222 #else
5223 const bool okcolor = false;
5224 const vaddr_t vdstp = cpu_cdstp(va_offset);
5225 #endif
5226 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5227
5228
5229 #ifdef DEBUG
5230 if (!SLIST_EMPTY(&md->pvh_list))
5231 panic("pmap_pageidlezero: page has mappings");
5232 #endif
5233
5234 KDASSERT((pa & PGOFSET) == 0);
5235
5236 if (!okcolor) {
5237 /*
5238 * Hook in the page, zero it, and purge the cache for that
5239 * zeroed page. Invalidate the TLB as needed.
5240 */
5241 const pt_entry_t npte = L2_S_PROTO | pa |
5242 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5243 l2pte_set(ptep, npte, 0);
5244 PTE_SYNC(ptep);
5245 cpu_tlb_flushD_SE(vdstp);
5246 cpu_cpwait();
5247 }
5248
5249 uint64_t *ptr = (uint64_t *)vdstp;
5250 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5251 if (sched_curcpu_runnable_p() != 0) {
5252 /*
5253 * A process has become ready. Abort now,
5254 * so we don't keep it waiting while we
5255 * do slow memory access to finish this
5256 * page.
5257 */
5258 rv = false;
5259 break;
5260 }
5261 *ptr++ = 0;
5262 }
5263
5264 #ifdef PMAP_CACHE_VIVT
5265 if (rv)
5266 /*
5267 * if we aborted we'll rezero this page again later so don't
5268 * purge it unless we finished it
5269 */
5270 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5271 #elif defined(PMAP_CACHE_VIPT)
5272 /*
5273 * This page is now cache resident so it now has a page color.
5274 * Any contents have been obliterated so clear the EXEC flag.
5275 */
5276 #ifndef ARM_MMU_EXTENDED
5277 if (!pmap_is_page_colored_p(md)) {
5278 PMAPCOUNT(vac_color_new);
5279 md->pvh_attrs |= PVF_COLORED;
5280 }
5281 #endif
5282 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5283 md->pvh_attrs &= ~PVF_EXEC;
5284 PMAPCOUNT(exec_discarded_zero);
5285 }
5286 #endif
5287 /*
5288 * Unmap the page.
5289 */
5290 if (!okcolor) {
5291 l2pte_reset(ptep);
5292 PTE_SYNC(ptep);
5293 cpu_tlb_flushD_SE(vdstp);
5294 }
5295
5296 return rv;
5297 }
5298
5299 /*
5300 * pmap_copy_page()
5301 *
5302 * Copy one physical page into another, by mapping the pages into
5303 * hook points. The same comment regarding cachability as in
5304 * pmap_zero_page also applies here.
5305 */
5306 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5307 void
5308 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5309 {
5310 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5311 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5312 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5313 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5314 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5315 #endif
5316 #ifdef PMAP_CACHE_VIPT
5317 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5318 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5319 #else
5320 const vsize_t src_va_offset = 0;
5321 const vsize_t dst_va_offset = 0;
5322 #endif
5323 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5324 /*
5325 * Is this page mapped at its natural color?
5326 * If we have all of memory mapped, then just convert PA to VA.
5327 */
5328 const bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5329 || src_va_offset == (src & arm_cache_prefer_mask);
5330 const bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5331 || dst_va_offset == (dst & arm_cache_prefer_mask);
5332 const vaddr_t vsrcp = src_okcolor
5333 ? KERNEL_BASE + (src - physical_start)
5334 : cpu_csrcp(src_va_offset);
5335 const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
5336 #else
5337 const bool src_okcolor = false;
5338 const bool dst_okcolor = false;
5339 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5340 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5341 #endif
5342 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5343 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5344
5345 #ifdef DEBUG
5346 if (!SLIST_EMPTY(&dst_md->pvh_list))
5347 panic("pmap_copy_page: dst page has mappings");
5348 #endif
5349
5350 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5351 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5352 #endif
5353 KDASSERT((src & PGOFSET) == 0);
5354 KDASSERT((dst & PGOFSET) == 0);
5355
5356 /*
5357 * Clean the source page. Hold the source page's lock for
5358 * the duration of the copy so that no other mappings can
5359 * be created while we have a potentially aliased mapping.
5360 */
5361 #ifdef PMAP_CACHE_VIVT
5362 pmap_acquire_page_lock(src_md);
5363 (void) pmap_clean_page(src_md, true);
5364 pmap_release_page_lock(src_md);
5365 #endif
5366
5367 /*
5368 * Map the pages into the page hook points, copy them, and purge
5369 * the cache for the appropriate page. Invalidate the TLB
5370 * as required.
5371 */
5372 if (!src_okcolor) {
5373 const pt_entry_t nsrc_pte = L2_S_PROTO
5374 | src
5375 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5376 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5377 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5378 | pte_l2_s_cache_mode
5379 #endif
5380 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5381 l2pte_set(src_ptep, nsrc_pte, 0);
5382 PTE_SYNC(src_ptep);
5383 cpu_tlb_flushD_SE(vsrcp);
5384 cpu_cpwait();
5385 }
5386 if (!dst_okcolor) {
5387 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5388 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5389 l2pte_set(dst_ptep, ndst_pte, 0);
5390 PTE_SYNC(dst_ptep);
5391 cpu_tlb_flushD_SE(vdstp);
5392 cpu_cpwait();
5393 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5394 /*
5395 * If we are direct-mapped and our color isn't ok, then before
5396 * we bcopy to the new page invalidate its contents from the
5397 * cache and reset its color to its natural color.
5398 */
5399 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5400 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5401 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5402 #endif
5403 }
5404 bcopy_page(vsrcp, vdstp);
5405 #ifdef PMAP_CACHE_VIVT
5406 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5407 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5408 #endif
5409 /*
5410 * Unmap the pages.
5411 */
5412 if (!src_okcolor) {
5413 l2pte_reset(src_ptep);
5414 PTE_SYNC(src_ptep);
5415 cpu_tlb_flushD_SE(vsrcp);
5416 cpu_cpwait();
5417 }
5418 if (!dst_okcolor) {
5419 l2pte_reset(dst_ptep);
5420 PTE_SYNC(dst_ptep);
5421 cpu_tlb_flushD_SE(vdstp);
5422 cpu_cpwait();
5423 }
5424 #ifdef PMAP_CACHE_VIPT
5425 /*
5426 * Now that the destination page is in the cache, mark it as colored.
5427 * If this was an exec page, discard it.
5428 */
5429 pmap_acquire_page_lock(dst_md);
5430 #ifndef ARM_MMU_EXTENDED
5431 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5432 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5433 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5434 }
5435 if (!pmap_is_page_colored_p(dst_md)) {
5436 PMAPCOUNT(vac_color_new);
5437 dst_md->pvh_attrs |= PVF_COLORED;
5438 }
5439 dst_md->pvh_attrs |= PVF_DIRTY;
5440 #endif
5441 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5442 dst_md->pvh_attrs &= ~PVF_EXEC;
5443 PMAPCOUNT(exec_discarded_copy);
5444 }
5445 pmap_release_page_lock(dst_md);
5446 #endif
5447 }
5448 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5449
5450 #if ARM_MMU_XSCALE == 1
5451 void
5452 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5453 {
5454 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5455 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5456 #ifdef DEBUG
5457 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5458
5459 if (!SLIST_EMPTY(&dst_md->pvh_list))
5460 panic("pmap_copy_page: dst page has mappings");
5461 #endif
5462
5463 KDASSERT((src & PGOFSET) == 0);
5464 KDASSERT((dst & PGOFSET) == 0);
5465
5466 /*
5467 * Clean the source page. Hold the source page's lock for
5468 * the duration of the copy so that no other mappings can
5469 * be created while we have a potentially aliased mapping.
5470 */
5471 #ifdef PMAP_CACHE_VIVT
5472 pmap_acquire_page_lock(src_md);
5473 (void) pmap_clean_page(src_md, true);
5474 pmap_release_page_lock(src_md);
5475 #endif
5476
5477 /*
5478 * Map the pages into the page hook points, copy them, and purge
5479 * the cache for the appropriate page. Invalidate the TLB
5480 * as required.
5481 */
5482 *csrc_pte = L2_S_PROTO | src |
5483 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
5484 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5485 PTE_SYNC(csrc_pte);
5486 *cdst_pte = L2_S_PROTO | dst |
5487 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5488 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5489 PTE_SYNC(cdst_pte);
5490 cpu_tlb_flushD_SE(csrcp);
5491 cpu_tlb_flushD_SE(cdstp);
5492 cpu_cpwait();
5493 bcopy_page(csrcp, cdstp);
5494 xscale_cache_clean_minidata();
5495 }
5496 #endif /* ARM_MMU_XSCALE == 1 */
5497
5498 /*
5499 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5500 *
5501 * Return the start and end addresses of the kernel's virtual space.
5502 * These values are setup in pmap_bootstrap and are updated as pages
5503 * are allocated.
5504 */
5505 void
5506 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5507 {
5508 *start = virtual_avail;
5509 *end = virtual_end;
5510 }
5511
5512 /*
5513 * Helper function for pmap_grow_l2_bucket()
5514 */
5515 static inline int
5516 pmap_grow_map(vaddr_t va, paddr_t *pap)
5517 {
5518 paddr_t pa;
5519
5520 if (uvm.page_init_done == false) {
5521 #ifdef PMAP_STEAL_MEMORY
5522 pv_addr_t pv;
5523 pmap_boot_pagealloc(PAGE_SIZE,
5524 #ifdef PMAP_CACHE_VIPT
5525 arm_cache_prefer_mask,
5526 va & arm_cache_prefer_mask,
5527 #else
5528 0, 0,
5529 #endif
5530 &pv);
5531 pa = pv.pv_pa;
5532 #else
5533 if (uvm_page_physget(&pa) == false)
5534 return (1);
5535 #endif /* PMAP_STEAL_MEMORY */
5536 } else {
5537 struct vm_page *pg;
5538 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5539 if (pg == NULL)
5540 return (1);
5541 pa = VM_PAGE_TO_PHYS(pg);
5542 #ifdef PMAP_CACHE_VIPT
5543 #ifdef DIAGNOSTIC
5544 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5545 #endif
5546 /*
5547 * This new page must not have any mappings. Enter it via
5548 * pmap_kenter_pa and let that routine do the hard work.
5549 */
5550 KASSERT(SLIST_EMPTY(&md->pvh_list));
5551 pmap_kenter_pa(va, pa,
5552 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5553 #endif
5554 }
5555
5556 if (pap)
5557 *pap = pa;
5558
5559 PMAPCOUNT(pt_mappings);
5560 #ifdef DEBUG
5561 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5562 KDASSERT(l2b != NULL);
5563
5564 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5565 const pt_entry_t opte = *ptep;
5566 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5567 #endif
5568 memset((void *)va, 0, PAGE_SIZE);
5569 return (0);
5570 }
5571
5572 /*
5573 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5574 * used by pmap_growkernel().
5575 */
5576 static inline struct l2_bucket *
5577 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5578 {
5579 struct l2_dtable *l2;
5580 struct l2_bucket *l2b;
5581 u_short l1slot;
5582 vaddr_t nva;
5583
5584 l1slot = l1pte_index(va);
5585
5586 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5587 /*
5588 * No mapping at this address, as there is
5589 * no entry in the L1 table.
5590 * Need to allocate a new l2_dtable.
5591 */
5592 nva = pmap_kernel_l2dtable_kva;
5593 if ((nva & PGOFSET) == 0) {
5594 /*
5595 * Need to allocate a backing page
5596 */
5597 if (pmap_grow_map(nva, NULL))
5598 return (NULL);
5599 }
5600
5601 l2 = (struct l2_dtable *)nva;
5602 nva += sizeof(struct l2_dtable);
5603
5604 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5605 /*
5606 * The new l2_dtable straddles a page boundary.
5607 * Map in another page to cover it.
5608 */
5609 if (pmap_grow_map(nva, NULL))
5610 return (NULL);
5611 }
5612
5613 pmap_kernel_l2dtable_kva = nva;
5614
5615 /*
5616 * Link it into the parent pmap
5617 */
5618 pm->pm_l2[L2_IDX(l1slot)] = l2;
5619 }
5620
5621 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5622
5623 /*
5624 * Fetch pointer to the L2 page table associated with the address.
5625 */
5626 if (l2b->l2b_kva == NULL) {
5627 pt_entry_t *ptep;
5628
5629 /*
5630 * No L2 page table has been allocated. Chances are, this
5631 * is because we just allocated the l2_dtable, above.
5632 */
5633 nva = pmap_kernel_l2ptp_kva;
5634 ptep = (pt_entry_t *)nva;
5635 if ((nva & PGOFSET) == 0) {
5636 /*
5637 * Need to allocate a backing page
5638 */
5639 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5640 return (NULL);
5641 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5642 }
5643
5644 l2->l2_occupancy++;
5645 l2b->l2b_kva = ptep;
5646 l2b->l2b_l1slot = l1slot;
5647 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5648
5649 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5650 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5651 }
5652
5653 return (l2b);
5654 }
5655
5656 vaddr_t
5657 pmap_growkernel(vaddr_t maxkvaddr)
5658 {
5659 pmap_t kpm = pmap_kernel();
5660 #ifndef ARM_MMU_EXTENDED
5661 struct l1_ttable *l1;
5662 #endif
5663 int s;
5664
5665 if (maxkvaddr <= pmap_curmaxkvaddr)
5666 goto out; /* we are OK */
5667
5668 NPDEBUG(PDB_GROWKERN,
5669 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5670 pmap_curmaxkvaddr, maxkvaddr));
5671
5672 KDASSERT(maxkvaddr <= virtual_end);
5673
5674 /*
5675 * whoops! we need to add kernel PTPs
5676 */
5677
5678 s = splhigh(); /* to be safe */
5679 mutex_enter(kpm->pm_lock);
5680
5681 /* Map 1MB at a time */
5682 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5683 #ifdef ARM_MMU_EXTENDED
5684 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5685 pd_entry_t *pdep = spdep;
5686 #endif
5687 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5688 #ifdef ARM_MMU_EXTENDED
5689 pdep++,
5690 #endif
5691 l1slot++) {
5692 struct l2_bucket *l2b =
5693 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5694 KASSERT(l2b != NULL);
5695
5696 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5697 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5698 #ifdef ARM_MMU_EXTENDED
5699 l1pte_setone(pdep, npde);
5700 #else
5701 /* Distribute new L1 entry to all other L1s */
5702 SLIST_FOREACH(l1, &l1_list, l1_link) {
5703 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5704 l1pte_setone(pdep, npde);
5705 PDE_SYNC(pdep);
5706 }
5707 #endif
5708 }
5709 #ifdef ARM_MMU_EXTENDED
5710 PDE_SYNC_RANGE(spdep, pdep - spdep);
5711 #endif
5712
5713 #ifdef PMAP_CACHE_VIVT
5714 /*
5715 * flush out the cache, expensive but growkernel will happen so
5716 * rarely
5717 */
5718 cpu_dcache_wbinv_all();
5719 cpu_tlb_flushD();
5720 cpu_cpwait();
5721 #endif
5722
5723 mutex_exit(kpm->pm_lock);
5724 splx(s);
5725
5726 out:
5727 return (pmap_curmaxkvaddr);
5728 }
5729
5730 /************************ Utility routines ****************************/
5731
5732 #ifndef ARM_HAS_VBAR
5733 /*
5734 * vector_page_setprot:
5735 *
5736 * Manipulate the protection of the vector page.
5737 */
5738 void
5739 vector_page_setprot(int prot)
5740 {
5741 struct l2_bucket *l2b;
5742 pt_entry_t *ptep;
5743
5744 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5745 /*
5746 * If we are using VBAR to use the vectors in the kernel, then it's
5747 * already mapped in the kernel text so no need to anything here.
5748 */
5749 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5750 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5751 return;
5752 }
5753 #endif
5754
5755 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5756 KASSERT(l2b != NULL);
5757
5758 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5759
5760 const pt_entry_t opte = *ptep;
5761 #ifdef ARM_MMU_EXTENDED
5762 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5763 | L2_S_PROT(PTE_KERNEL, prot);
5764 #else
5765 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5766 | L2_S_PROT(PTE_KERNEL, prot);
5767 #endif
5768 l2pte_set(ptep, npte, opte);
5769 PTE_SYNC(ptep);
5770 cpu_tlb_flushD_SE(vector_page);
5771 cpu_cpwait();
5772 }
5773 #endif
5774
5775 /*
5776 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5777 * Returns true if the mapping exists, else false.
5778 *
5779 * NOTE: This function is only used by a couple of arm-specific modules.
5780 * It is not safe to take any pmap locks here, since we could be right
5781 * in the middle of debugging the pmap anyway...
5782 *
5783 * It is possible for this routine to return false even though a valid
5784 * mapping does exist. This is because we don't lock, so the metadata
5785 * state may be inconsistent.
5786 *
5787 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5788 * a "section" mapping.
5789 */
5790 bool
5791 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5792 {
5793 struct l2_dtable *l2;
5794 pd_entry_t *pdep, pde;
5795 pt_entry_t *ptep;
5796 u_short l1slot;
5797
5798 if (pm->pm_l1 == NULL)
5799 return false;
5800
5801 l1slot = l1pte_index(va);
5802 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
5803 pde = *pdep;
5804
5805 if (l1pte_section_p(pde)) {
5806 *ptp = NULL;
5807 return true;
5808 }
5809
5810 l2 = pm->pm_l2[L2_IDX(l1slot)];
5811 if (l2 == NULL ||
5812 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
5813 return false;
5814 }
5815
5816 *ptp = &ptep[l2pte_index(va)];
5817 return true;
5818 }
5819
5820 bool
5821 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5822 {
5823
5824 if (pm->pm_l1 == NULL)
5825 return false;
5826
5827 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
5828
5829 return true;
5830 }
5831
5832 /************************ Bootstrapping routines ****************************/
5833
5834 #ifndef ARM_MMU_EXTENDED
5835 static void
5836 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5837 {
5838 int i;
5839
5840 l1->l1_kva = l1pt;
5841 l1->l1_domain_use_count = 0;
5842 l1->l1_domain_first = 0;
5843
5844 for (i = 0; i < PMAP_DOMAINS; i++)
5845 l1->l1_domain_free[i] = i + 1;
5846
5847 /*
5848 * Copy the kernel's L1 entries to each new L1.
5849 */
5850 if (pmap_initialized)
5851 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5852
5853 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5854 &l1->l1_physaddr) == false)
5855 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5856
5857 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5858 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5859 }
5860 #endif /* !ARM_MMU_EXTENDED */
5861
5862 /*
5863 * pmap_bootstrap() is called from the board-specific initarm() routine
5864 * once the kernel L1/L2 descriptors tables have been set up.
5865 *
5866 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5867 * spread over a number of disparate files/functions.
5868 *
5869 * We are passed the following parameters
5870 * - kernel_l1pt
5871 * This is a pointer to the base of the kernel's L1 translation table.
5872 * - vstart
5873 * 1MB-aligned start of managed kernel virtual memory.
5874 * - vend
5875 * 1MB-aligned end of managed kernel virtual memory.
5876 *
5877 * We use the first parameter to build the metadata (struct l1_ttable and
5878 * struct l2_dtable) necessary to track kernel mappings.
5879 */
5880 #define PMAP_STATIC_L2_SIZE 16
5881 void
5882 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5883 {
5884 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5885 #ifndef ARM_MMU_EXTENDED
5886 static struct l1_ttable static_l1;
5887 struct l1_ttable *l1 = &static_l1;
5888 #endif
5889 struct l2_dtable *l2;
5890 struct l2_bucket *l2b;
5891 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5892 pmap_t pm = pmap_kernel();
5893 pt_entry_t *ptep;
5894 paddr_t pa;
5895 vsize_t size;
5896 int nptes, l2idx, l2next = 0;
5897
5898 #ifdef ARM_MMU_EXTENDED
5899 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
5900 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
5901 #endif
5902
5903 #ifdef VERBOSE_INIT_ARM
5904 printf("kpm ");
5905 #endif
5906 /*
5907 * Initialise the kernel pmap object
5908 */
5909 curcpu()->ci_pmap_cur = pm;
5910 #ifdef ARM_MMU_EXTENDED
5911 pm->pm_l1 = l1pt;
5912 pm->pm_l1_pa = kernel_l1pt.pv_pa;
5913 #ifdef VERBOSE_INIT_ARM
5914 printf("tlb0 ");
5915 #endif
5916 pmap_tlb_info_init(&pmap_tlb0_info);
5917 #ifdef MULTIPROCESSOR
5918 #ifdef VERBOSE_INIT_ARM
5919 printf("kcpusets ");
5920 #endif
5921 pm->pm_onproc = kcpuset_running;
5922 pm->pm_active = kcpuset_running;
5923 #endif
5924 #else
5925 pm->pm_l1 = l1;
5926 #endif
5927
5928 #ifdef VERBOSE_INIT_ARM
5929 printf("locks ");
5930 #endif
5931 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
5932 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5933 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5934 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5935
5936 #ifdef VERBOSE_INIT_ARM
5937 printf("l1pt ");
5938 #endif
5939 /*
5940 * Scan the L1 translation table created by initarm() and create
5941 * the required metadata for all valid mappings found in it.
5942 */
5943 for (size_t l1slot = 0; l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
5944 l1slot++) {
5945 pd_entry_t pde = l1pt[l1slot];
5946
5947 /*
5948 * We're only interested in Coarse mappings.
5949 * pmap_extract() can deal with section mappings without
5950 * recourse to checking L2 metadata.
5951 */
5952 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5953 continue;
5954
5955 /*
5956 * Lookup the KVA of this L2 descriptor table
5957 */
5958 pa = l1pte_pa(pde);
5959 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5960 if (ptep == NULL) {
5961 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5962 (u_int)l1slot << L1_S_SHIFT, pa);
5963 }
5964
5965 /*
5966 * Fetch the associated L2 metadata structure.
5967 * Allocate a new one if necessary.
5968 */
5969 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5970 if (l2next == PMAP_STATIC_L2_SIZE)
5971 panic("pmap_bootstrap: out of static L2s");
5972 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
5973 }
5974
5975 /*
5976 * One more L1 slot tracked...
5977 */
5978 l2->l2_occupancy++;
5979
5980 /*
5981 * Fill in the details of the L2 descriptor in the
5982 * appropriate bucket.
5983 */
5984 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5985 l2b->l2b_kva = ptep;
5986 l2b->l2b_pa = pa;
5987 l2b->l2b_l1slot = l1slot;
5988
5989 /*
5990 * Establish an initial occupancy count for this descriptor
5991 */
5992 for (l2idx = 0;
5993 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5994 l2idx++) {
5995 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5996 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
5997 }
5998 }
5999
6000 /*
6001 * Make sure the descriptor itself has the correct cache mode.
6002 * If not, fix it, but whine about the problem. Port-meisters
6003 * should consider this a clue to fix up their initarm()
6004 * function. :)
6005 */
6006 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6007 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6008 "L2 pte @ %p\n", ptep);
6009 }
6010 }
6011
6012 #ifdef VERBOSE_INIT_ARM
6013 printf("cache(l1pt) ");
6014 #endif
6015 /*
6016 * Ensure the primary (kernel) L1 has the correct cache mode for
6017 * a page table. Bitch if it is not correctly set.
6018 */
6019 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6020 L1_TABLE_SIZE / L2_S_SIZE)) {
6021 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6022 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6023 }
6024
6025 #ifdef PMAP_CACHE_VIVT
6026 cpu_dcache_wbinv_all();
6027 cpu_tlb_flushID();
6028 cpu_cpwait();
6029 #endif
6030
6031 /*
6032 * now we allocate the "special" VAs which are used for tmp mappings
6033 * by the pmap (and other modules). we allocate the VAs by advancing
6034 * virtual_avail (note that there are no pages mapped at these VAs).
6035 *
6036 * Managed KVM space start from wherever initarm() tells us.
6037 */
6038 virtual_avail = vstart;
6039 virtual_end = vend;
6040
6041 #ifdef VERBOSE_INIT_ARM
6042 printf("specials ");
6043 #endif
6044 #ifdef PMAP_CACHE_VIPT
6045 /*
6046 * If we have a VIPT cache, we need one page/pte per possible alias
6047 * page so we won't violate cache aliasing rules.
6048 */
6049 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6050 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6051 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6052 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6053 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6054 }
6055 #else
6056 nptes = PAGE_SIZE / L2_S_SIZE;
6057 #endif
6058 #ifdef MULTIPROCESSOR
6059 cnptes = nptes;
6060 nptes *= arm_cpu_max;
6061 #endif
6062 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6063 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6064 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6065 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6066 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6067 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
6068 (void *)&msgbufaddr, NULL);
6069
6070 /*
6071 * Allocate a range of kernel virtual address space to be used
6072 * for L2 descriptor tables and metadata allocation in
6073 * pmap_growkernel().
6074 */
6075 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6076 pmap_alloc_specials(&virtual_avail,
6077 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6078 &pmap_kernel_l2ptp_kva, NULL);
6079
6080 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6081 pmap_alloc_specials(&virtual_avail,
6082 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6083 &pmap_kernel_l2dtable_kva, NULL);
6084
6085 #ifndef ARM_MMU_EXTENDED
6086 /*
6087 * init the static-global locks and global pmap list.
6088 */
6089 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6090
6091 /*
6092 * We can now initialise the first L1's metadata.
6093 */
6094 SLIST_INIT(&l1_list);
6095 TAILQ_INIT(&l1_lru_list);
6096 pmap_init_l1(l1, l1pt);
6097 #endif /* ARM_MMU_EXTENDED */
6098
6099 #ifndef ARM_HAS_VBAR
6100 /* Set up vector page L1 details, if necessary */
6101 if (vector_page < KERNEL_BASE) {
6102 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6103 l2b = pmap_get_l2_bucket(pm, vector_page);
6104 KDASSERT(l2b != NULL);
6105 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6106 L1_C_DOM(pmap_domain(pm));
6107 } else
6108 pm->pm_pl1vec = NULL;
6109 #endif
6110
6111 #ifdef VERBOSE_INIT_ARM
6112 printf("pools ");
6113 #endif
6114 /*
6115 * Initialize the pmap cache
6116 */
6117 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6118 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6119 LIST_INIT(&pmap_pmaps);
6120 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
6121
6122 /*
6123 * Initialize the pv pool.
6124 */
6125 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6126 &pmap_bootstrap_pv_allocator, IPL_NONE);
6127
6128 /*
6129 * Initialize the L2 dtable pool and cache.
6130 */
6131 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6132 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6133
6134 /*
6135 * Initialise the L2 descriptor table pool and cache
6136 */
6137 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6138 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6139 pmap_l2ptp_ctor, NULL, NULL);
6140
6141 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6142
6143 cpu_dcache_wbinv_all();
6144 }
6145
6146 static bool
6147 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6148 {
6149 #ifdef ARM_MMU_EXTENDED
6150 return false;
6151 #else
6152 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6153 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6154 return false;
6155
6156 const vaddr_t eva = va + nptes * PAGE_SIZE;
6157 int rv = 0;
6158
6159 while (va < eva) {
6160 /*
6161 * Make sure the descriptor itself has the correct cache mode
6162 */
6163 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6164 pd_entry_t pde = *pdep;
6165
6166 if (l1pte_section_p(pde)) {
6167 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6168 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6169 *pdep = (pde & ~L1_S_CACHE_MASK) |
6170 pte_l1_s_cache_mode_pt;
6171 PDE_SYNC(pdep);
6172 cpu_dcache_wbinv_range((vaddr_t)pdep,
6173 sizeof(*pdep));
6174 rv = 1;
6175 }
6176 return rv;
6177 if (pde & L1_S_V6_SUPER) {
6178 va = (va & -L1_SS_SIZE) + L1_SS_SIZE;
6179 } else {
6180 va = (va & -L1_S_SIZE) + L1_S_SIZE;
6181 }
6182 continue;
6183 }
6184 vaddr_t pa = l1pte_pa(pde);
6185 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6186 if (ptep == NULL)
6187 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6188
6189 ptep += l2pte_index(va);
6190 const pt_entry_t opte = *ptep;
6191 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6192 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6193 | pte_l2_s_cache_mode_pt;
6194 l2pte_set(ptep, npte, opte);
6195 PTE_SYNC(ptep);
6196 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6197 rv = 1;
6198 }
6199 va += PAGE_SIZE;
6200 }
6201
6202 return (rv);
6203 #endif
6204 }
6205
6206 static void
6207 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6208 {
6209 vaddr_t va = *availp;
6210 struct l2_bucket *l2b;
6211
6212 if (ptep) {
6213 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6214 if (l2b == NULL)
6215 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6216
6217 if (ptep)
6218 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6219 }
6220
6221 *vap = va;
6222 *availp = va + (PAGE_SIZE * pages);
6223 }
6224
6225 void
6226 pmap_init(void)
6227 {
6228
6229 /*
6230 * Set the available memory vars - These do not map to real memory
6231 * addresses and cannot as the physical memory is fragmented.
6232 * They are used by ps for %mem calculations.
6233 * One could argue whether this should be the entire memory or just
6234 * the memory that is useable in a user process.
6235 */
6236 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
6237 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
6238
6239 /*
6240 * Now we need to free enough pv_entry structures to allow us to get
6241 * the kmem_map/kmem_object allocated and inited (done after this
6242 * function is finished). to do this we allocate one bootstrap page out
6243 * of kernel_map and use it to provide an initial pool of pv_entry
6244 * structures. we never free this page.
6245 */
6246 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6247
6248 #ifdef ARM_MMU_EXTENDED
6249 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6250 #endif
6251
6252 pmap_initialized = true;
6253 }
6254
6255 static vaddr_t last_bootstrap_page = 0;
6256 static void *free_bootstrap_pages = NULL;
6257
6258 static void *
6259 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6260 {
6261 extern void *pool_page_alloc(struct pool *, int);
6262 vaddr_t new_page;
6263 void *rv;
6264
6265 if (pmap_initialized)
6266 return (pool_page_alloc(pp, flags));
6267
6268 if (free_bootstrap_pages) {
6269 rv = free_bootstrap_pages;
6270 free_bootstrap_pages = *((void **)rv);
6271 return (rv);
6272 }
6273
6274 KASSERT(kernel_map != NULL);
6275 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6276 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6277
6278 KASSERT(new_page > last_bootstrap_page);
6279 last_bootstrap_page = new_page;
6280 return ((void *)new_page);
6281 }
6282
6283 static void
6284 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6285 {
6286 extern void pool_page_free(struct pool *, void *);
6287
6288 if ((vaddr_t)v <= last_bootstrap_page) {
6289 *((void **)v) = free_bootstrap_pages;
6290 free_bootstrap_pages = v;
6291 return;
6292 }
6293
6294 if (pmap_initialized) {
6295 pool_page_free(pp, v);
6296 return;
6297 }
6298 }
6299
6300 /*
6301 * pmap_postinit()
6302 *
6303 * This routine is called after the vm and kmem subsystems have been
6304 * initialised. This allows the pmap code to perform any initialisation
6305 * that can only be done one the memory allocation is in place.
6306 */
6307 void
6308 pmap_postinit(void)
6309 {
6310 #ifndef ARM_MMU_EXTENDED
6311 extern paddr_t physical_start, physical_end;
6312 struct l1_ttable *l1;
6313 struct pglist plist;
6314 struct vm_page *m;
6315 pd_entry_t *pdep;
6316 vaddr_t va, eva;
6317 u_int loop, needed;
6318 int error;
6319 #endif
6320
6321 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6322 pool_cache_setlowat(&pmap_l2dtable_cache,
6323 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6324
6325 #ifndef ARM_MMU_EXTENDED
6326 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6327 needed -= 1;
6328
6329 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6330
6331 for (loop = 0; loop < needed; loop++, l1++) {
6332 /* Allocate a L1 page table */
6333 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6334 if (va == 0)
6335 panic("Cannot allocate L1 KVM");
6336
6337 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6338 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6339 if (error)
6340 panic("Cannot allocate L1 physical pages");
6341
6342 m = TAILQ_FIRST(&plist);
6343 eva = va + L1_TABLE_SIZE;
6344 pdep = (pd_entry_t *)va;
6345
6346 while (m && va < eva) {
6347 paddr_t pa = VM_PAGE_TO_PHYS(m);
6348
6349 pmap_kenter_pa(va, pa,
6350 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6351
6352 va += PAGE_SIZE;
6353 m = TAILQ_NEXT(m, pageq.queue);
6354 }
6355
6356 #ifdef DIAGNOSTIC
6357 if (m)
6358 panic("pmap_alloc_l1pt: pglist not empty");
6359 #endif /* DIAGNOSTIC */
6360
6361 pmap_init_l1(l1, pdep);
6362 }
6363
6364 #ifdef DEBUG
6365 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6366 needed);
6367 #endif
6368 #endif /* !ARM_MMU_EXTENDED */
6369 }
6370
6371 /*
6372 * Note that the following routines are used by board-specific initialisation
6373 * code to configure the initial kernel page tables.
6374 *
6375 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
6376 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
6377 * behaviour of the old pmap, and provides an easy migration path for
6378 * initial bring-up of the new pmap on existing ports. Fortunately,
6379 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
6380 * will be deprecated.
6381 *
6382 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
6383 * tables.
6384 */
6385
6386 /*
6387 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6388 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6389 * find them as necessary.
6390 *
6391 * Note that the data on this list MUST remain valid after initarm() returns,
6392 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6393 */
6394 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6395
6396 static vaddr_t
6397 kernel_pt_lookup(paddr_t pa)
6398 {
6399 pv_addr_t *pv;
6400
6401 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6402 if (pv->pv_pa == (pa & ~PGOFSET))
6403 return (pv->pv_va | (pa & PGOFSET));
6404 }
6405 return (0);
6406 }
6407
6408 /*
6409 * pmap_map_section:
6410 *
6411 * Create a single section mapping.
6412 */
6413 void
6414 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6415 {
6416 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6417 const size_t l1slot = l1pte_index(va);
6418 pd_entry_t fl;
6419
6420 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6421
6422 switch (cache) {
6423 case PTE_NOCACHE:
6424 default:
6425 fl = 0;
6426 break;
6427
6428 case PTE_CACHE:
6429 fl = pte_l1_s_cache_mode;
6430 break;
6431
6432 case PTE_PAGETABLE:
6433 fl = pte_l1_s_cache_mode_pt;
6434 break;
6435 }
6436
6437 const pd_entry_t npde = L1_S_PROTO | pa |
6438 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6439 l1pte_setone(pdep + l1slot, npde);
6440 PDE_SYNC(pdep + l1slot);
6441 }
6442
6443 /*
6444 * pmap_map_entry:
6445 *
6446 * Create a single page mapping.
6447 */
6448 void
6449 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6450 {
6451 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6452 const size_t l1slot = l1pte_index(va);
6453 pt_entry_t npte;
6454 pt_entry_t *ptep;
6455
6456 KASSERT(((va | pa) & PGOFSET) == 0);
6457
6458 switch (cache) {
6459 case PTE_NOCACHE:
6460 default:
6461 npte = 0;
6462 break;
6463
6464 case PTE_CACHE:
6465 npte = pte_l2_s_cache_mode;
6466 break;
6467
6468 case PTE_PAGETABLE:
6469 npte = pte_l2_s_cache_mode_pt;
6470 break;
6471 }
6472
6473 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6474 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6475
6476 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1pte_index(va)]));
6477 if (ptep == NULL)
6478 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6479
6480 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6481 #ifdef ARM_MMU_EXTENDED
6482 if (prot & VM_PROT_EXECUTE) {
6483 npte &= ~L2_XS_XN;
6484 }
6485 #endif
6486 ptep += l2pte_index(va);
6487 l2pte_set(ptep, npte, 0);
6488 PTE_SYNC(ptep);
6489 }
6490
6491 /*
6492 * pmap_link_l2pt:
6493 *
6494 * Link the L2 page table specified by "l2pv" into the L1
6495 * page table at the slot for "va".
6496 */
6497 void
6498 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6499 {
6500 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6501
6502 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6503 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6504
6505 const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6506 | l2pv->pv_pa;
6507
6508 l1pte_set(pdep, npde);
6509 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6510
6511 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6512 }
6513
6514 /*
6515 * pmap_map_chunk:
6516 *
6517 * Map a chunk of memory using the most efficient mappings
6518 * possible (section, large page, small page) into the
6519 * provided L1 and L2 tables at the specified virtual address.
6520 */
6521 vsize_t
6522 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6523 int prot, int cache)
6524 {
6525 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6526 pt_entry_t f1, f2s, f2l;
6527 vsize_t resid;
6528
6529 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6530
6531 if (l1pt == 0)
6532 panic("pmap_map_chunk: no L1 table provided");
6533
6534 #ifdef VERBOSE_INIT_ARM
6535 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6536 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6537 #endif
6538
6539 switch (cache) {
6540 case PTE_NOCACHE:
6541 default:
6542 f1 = 0;
6543 f2l = 0;
6544 f2s = 0;
6545 break;
6546
6547 case PTE_CACHE:
6548 f1 = pte_l1_s_cache_mode;
6549 f2l = pte_l2_l_cache_mode;
6550 f2s = pte_l2_s_cache_mode;
6551 break;
6552
6553 case PTE_PAGETABLE:
6554 f1 = pte_l1_s_cache_mode_pt;
6555 f2l = pte_l2_l_cache_mode_pt;
6556 f2s = pte_l2_s_cache_mode_pt;
6557 break;
6558 }
6559
6560 size = resid;
6561
6562 while (resid > 0) {
6563 const size_t l1slot = l1pte_index(va);
6564 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6565 /* See if we can use a supersection mapping. */
6566 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6567 /* Supersection are always domain 0 */
6568 const pd_entry_t npde = L1_SS_PROTO | pa
6569 #ifdef ARM_MMU_EXTENDED_XXX
6570 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6571 #endif
6572 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6573 #ifdef VERBOSE_INIT_ARM
6574 printf("sS");
6575 #endif
6576 l1pte_set(&pdep[l1slot], npde);
6577 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6578 va += L1_SS_SIZE;
6579 pa += L1_SS_SIZE;
6580 resid -= L1_SS_SIZE;
6581 continue;
6582 }
6583 #endif
6584 /* See if we can use a section mapping. */
6585 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6586 const pd_entry_t npde = L1_S_PROTO | pa
6587 #ifdef ARM_MMU_EXTENDED_XXX
6588 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6589 #endif
6590 | L1_S_PROT(PTE_KERNEL, prot) | f1
6591 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6592 #ifdef VERBOSE_INIT_ARM
6593 printf("S");
6594 #endif
6595 l1pte_set(&pdep[l1slot], npde);
6596 PDE_SYNC(&pdep[l1slot]);
6597 va += L1_S_SIZE;
6598 pa += L1_S_SIZE;
6599 resid -= L1_S_SIZE;
6600 continue;
6601 }
6602
6603 /*
6604 * Ok, we're going to use an L2 table. Make sure
6605 * one is actually in the corresponding L1 slot
6606 * for the current VA.
6607 */
6608 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6609 panic("%s: no L2 table for VA %#lx", __func__, va);
6610
6611 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6612 if (ptep == NULL)
6613 panic("%s: can't find L2 table for VA %#lx", __func__,
6614 va);
6615
6616 ptep += l2pte_index(va);
6617
6618 /* See if we can use a L2 large page mapping. */
6619 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6620 const pt_entry_t npte = L2_L_PROTO | pa
6621 #ifdef ARM_MMU_EXTENDED_XXX
6622 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6623 #endif
6624 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6625 #ifdef VERBOSE_INIT_ARM
6626 printf("L");
6627 #endif
6628 l2pte_set(ptep, npte, 0);
6629 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6630 va += L2_L_SIZE;
6631 pa += L2_L_SIZE;
6632 resid -= L2_L_SIZE;
6633 continue;
6634 }
6635
6636 /* Use a small page mapping. */
6637 #ifdef VERBOSE_INIT_ARM
6638 printf("P");
6639 #endif
6640 const pt_entry_t npte = L2_S_PROTO | pa
6641 #ifdef ARM_MMU_EXTENDED_XXX
6642 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6643 #endif
6644 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6645 l2pte_set(ptep, npte, 0);
6646 PTE_SYNC(ptep);
6647 va += PAGE_SIZE;
6648 pa += PAGE_SIZE;
6649 resid -= PAGE_SIZE;
6650 }
6651 #ifdef VERBOSE_INIT_ARM
6652 printf("\n");
6653 #endif
6654 return (size);
6655 }
6656
6657 /********************** Static device map routines ***************************/
6658
6659 static const struct pmap_devmap *pmap_devmap_table;
6660
6661 /*
6662 * Register the devmap table. This is provided in case early console
6663 * initialization needs to register mappings created by bootstrap code
6664 * before pmap_devmap_bootstrap() is called.
6665 */
6666 void
6667 pmap_devmap_register(const struct pmap_devmap *table)
6668 {
6669
6670 pmap_devmap_table = table;
6671 }
6672
6673 /*
6674 * Map all of the static regions in the devmap table, and remember
6675 * the devmap table so other parts of the kernel can look up entries
6676 * later.
6677 */
6678 void
6679 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6680 {
6681 int i;
6682
6683 pmap_devmap_table = table;
6684
6685 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6686 #ifdef VERBOSE_INIT_ARM
6687 printf("devmap: %08lx -> %08lx @ %08lx\n",
6688 pmap_devmap_table[i].pd_pa,
6689 pmap_devmap_table[i].pd_pa +
6690 pmap_devmap_table[i].pd_size - 1,
6691 pmap_devmap_table[i].pd_va);
6692 #endif
6693 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6694 pmap_devmap_table[i].pd_pa,
6695 pmap_devmap_table[i].pd_size,
6696 pmap_devmap_table[i].pd_prot,
6697 pmap_devmap_table[i].pd_cache);
6698 }
6699 }
6700
6701 const struct pmap_devmap *
6702 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6703 {
6704 uint64_t endpa;
6705 int i;
6706
6707 if (pmap_devmap_table == NULL)
6708 return (NULL);
6709
6710 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6711
6712 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6713 if (pa >= pmap_devmap_table[i].pd_pa &&
6714 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6715 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6716 return (&pmap_devmap_table[i]);
6717 }
6718
6719 return (NULL);
6720 }
6721
6722 const struct pmap_devmap *
6723 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6724 {
6725 int i;
6726
6727 if (pmap_devmap_table == NULL)
6728 return (NULL);
6729
6730 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6731 if (va >= pmap_devmap_table[i].pd_va &&
6732 va + size - 1 <= pmap_devmap_table[i].pd_va +
6733 pmap_devmap_table[i].pd_size - 1)
6734 return (&pmap_devmap_table[i]);
6735 }
6736
6737 return (NULL);
6738 }
6739
6740 /********************** PTE initialization routines **************************/
6741
6742 /*
6743 * These routines are called when the CPU type is identified to set up
6744 * the PTE prototypes, cache modes, etc.
6745 *
6746 * The variables are always here, just in case modules need to reference
6747 * them (though, they shouldn't).
6748 */
6749
6750 pt_entry_t pte_l1_s_cache_mode;
6751 pt_entry_t pte_l1_s_wc_mode;
6752 pt_entry_t pte_l1_s_cache_mode_pt;
6753 pt_entry_t pte_l1_s_cache_mask;
6754
6755 pt_entry_t pte_l2_l_cache_mode;
6756 pt_entry_t pte_l2_l_wc_mode;
6757 pt_entry_t pte_l2_l_cache_mode_pt;
6758 pt_entry_t pte_l2_l_cache_mask;
6759
6760 pt_entry_t pte_l2_s_cache_mode;
6761 pt_entry_t pte_l2_s_wc_mode;
6762 pt_entry_t pte_l2_s_cache_mode_pt;
6763 pt_entry_t pte_l2_s_cache_mask;
6764
6765 pt_entry_t pte_l1_s_prot_u;
6766 pt_entry_t pte_l1_s_prot_w;
6767 pt_entry_t pte_l1_s_prot_ro;
6768 pt_entry_t pte_l1_s_prot_mask;
6769
6770 pt_entry_t pte_l2_s_prot_u;
6771 pt_entry_t pte_l2_s_prot_w;
6772 pt_entry_t pte_l2_s_prot_ro;
6773 pt_entry_t pte_l2_s_prot_mask;
6774
6775 pt_entry_t pte_l2_l_prot_u;
6776 pt_entry_t pte_l2_l_prot_w;
6777 pt_entry_t pte_l2_l_prot_ro;
6778 pt_entry_t pte_l2_l_prot_mask;
6779
6780 pt_entry_t pte_l1_ss_proto;
6781 pt_entry_t pte_l1_s_proto;
6782 pt_entry_t pte_l1_c_proto;
6783 pt_entry_t pte_l2_s_proto;
6784
6785 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6786 void (*pmap_zero_page_func)(paddr_t);
6787
6788 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6789 void
6790 pmap_pte_init_generic(void)
6791 {
6792
6793 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6794 pte_l1_s_wc_mode = L1_S_B;
6795 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6796
6797 pte_l2_l_cache_mode = L2_B|L2_C;
6798 pte_l2_l_wc_mode = L2_B;
6799 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6800
6801 pte_l2_s_cache_mode = L2_B|L2_C;
6802 pte_l2_s_wc_mode = L2_B;
6803 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6804
6805 /*
6806 * If we have a write-through cache, set B and C. If
6807 * we have a write-back cache, then we assume setting
6808 * only C will make those pages write-through (except for those
6809 * Cortex CPUs which can read the L1 caches).
6810 */
6811 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6812 #if ARM_MMU_V7 > 0
6813 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6814 #endif
6815 #if ARM_MMU_V6 > 0
6816 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6817 #endif
6818 || false) {
6819 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6820 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6821 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6822 } else {
6823 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6824 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6825 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6826 }
6827
6828 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6829 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6830 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6831 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6832
6833 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6834 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6835 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6836 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6837
6838 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6839 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6840 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6841 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6842
6843 pte_l1_ss_proto = L1_SS_PROTO_generic;
6844 pte_l1_s_proto = L1_S_PROTO_generic;
6845 pte_l1_c_proto = L1_C_PROTO_generic;
6846 pte_l2_s_proto = L2_S_PROTO_generic;
6847
6848 pmap_copy_page_func = pmap_copy_page_generic;
6849 pmap_zero_page_func = pmap_zero_page_generic;
6850 }
6851
6852 #if defined(CPU_ARM8)
6853 void
6854 pmap_pte_init_arm8(void)
6855 {
6856
6857 /*
6858 * ARM8 is compatible with generic, but we need to use
6859 * the page tables uncached.
6860 */
6861 pmap_pte_init_generic();
6862
6863 pte_l1_s_cache_mode_pt = 0;
6864 pte_l2_l_cache_mode_pt = 0;
6865 pte_l2_s_cache_mode_pt = 0;
6866 }
6867 #endif /* CPU_ARM8 */
6868
6869 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6870 void
6871 pmap_pte_init_arm9(void)
6872 {
6873
6874 /*
6875 * ARM9 is compatible with generic, but we want to use
6876 * write-through caching for now.
6877 */
6878 pmap_pte_init_generic();
6879
6880 pte_l1_s_cache_mode = L1_S_C;
6881 pte_l2_l_cache_mode = L2_C;
6882 pte_l2_s_cache_mode = L2_C;
6883
6884 pte_l1_s_wc_mode = L1_S_B;
6885 pte_l2_l_wc_mode = L2_B;
6886 pte_l2_s_wc_mode = L2_B;
6887
6888 pte_l1_s_cache_mode_pt = L1_S_C;
6889 pte_l2_l_cache_mode_pt = L2_C;
6890 pte_l2_s_cache_mode_pt = L2_C;
6891 }
6892 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6893 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6894
6895 #if defined(CPU_ARM10)
6896 void
6897 pmap_pte_init_arm10(void)
6898 {
6899
6900 /*
6901 * ARM10 is compatible with generic, but we want to use
6902 * write-through caching for now.
6903 */
6904 pmap_pte_init_generic();
6905
6906 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6907 pte_l2_l_cache_mode = L2_B | L2_C;
6908 pte_l2_s_cache_mode = L2_B | L2_C;
6909
6910 pte_l1_s_cache_mode = L1_S_B;
6911 pte_l2_l_cache_mode = L2_B;
6912 pte_l2_s_cache_mode = L2_B;
6913
6914 pte_l1_s_cache_mode_pt = L1_S_C;
6915 pte_l2_l_cache_mode_pt = L2_C;
6916 pte_l2_s_cache_mode_pt = L2_C;
6917
6918 }
6919 #endif /* CPU_ARM10 */
6920
6921 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6922 void
6923 pmap_pte_init_arm11(void)
6924 {
6925
6926 /*
6927 * ARM11 is compatible with generic, but we want to use
6928 * write-through caching for now.
6929 */
6930 pmap_pte_init_generic();
6931
6932 pte_l1_s_cache_mode = L1_S_C;
6933 pte_l2_l_cache_mode = L2_C;
6934 pte_l2_s_cache_mode = L2_C;
6935
6936 pte_l1_s_wc_mode = L1_S_B;
6937 pte_l2_l_wc_mode = L2_B;
6938 pte_l2_s_wc_mode = L2_B;
6939
6940 pte_l1_s_cache_mode_pt = L1_S_C;
6941 pte_l2_l_cache_mode_pt = L2_C;
6942 pte_l2_s_cache_mode_pt = L2_C;
6943 }
6944 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6945
6946 #if ARM_MMU_SA1 == 1
6947 void
6948 pmap_pte_init_sa1(void)
6949 {
6950
6951 /*
6952 * The StrongARM SA-1 cache does not have a write-through
6953 * mode. So, do the generic initialization, then reset
6954 * the page table cache mode to B=1,C=1, and note that
6955 * the PTEs need to be sync'd.
6956 */
6957 pmap_pte_init_generic();
6958
6959 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6960 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6961 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6962
6963 pmap_needs_pte_sync = 1;
6964 }
6965 #endif /* ARM_MMU_SA1 == 1*/
6966
6967 #if ARM_MMU_XSCALE == 1
6968 #if (ARM_NMMUS > 1)
6969 static u_int xscale_use_minidata;
6970 #endif
6971
6972 void
6973 pmap_pte_init_xscale(void)
6974 {
6975 uint32_t auxctl;
6976 int write_through = 0;
6977
6978 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6979 pte_l1_s_wc_mode = L1_S_B;
6980 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6981
6982 pte_l2_l_cache_mode = L2_B|L2_C;
6983 pte_l2_l_wc_mode = L2_B;
6984 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6985
6986 pte_l2_s_cache_mode = L2_B|L2_C;
6987 pte_l2_s_wc_mode = L2_B;
6988 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6989
6990 pte_l1_s_cache_mode_pt = L1_S_C;
6991 pte_l2_l_cache_mode_pt = L2_C;
6992 pte_l2_s_cache_mode_pt = L2_C;
6993
6994 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6995 /*
6996 * The XScale core has an enhanced mode where writes that
6997 * miss the cache cause a cache line to be allocated. This
6998 * is significantly faster than the traditional, write-through
6999 * behavior of this case.
7000 */
7001 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7002 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7003 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7004 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7005
7006 #ifdef XSCALE_CACHE_WRITE_THROUGH
7007 /*
7008 * Some versions of the XScale core have various bugs in
7009 * their cache units, the work-around for which is to run
7010 * the cache in write-through mode. Unfortunately, this
7011 * has a major (negative) impact on performance. So, we
7012 * go ahead and run fast-and-loose, in the hopes that we
7013 * don't line up the planets in a way that will trip the
7014 * bugs.
7015 *
7016 * However, we give you the option to be slow-but-correct.
7017 */
7018 write_through = 1;
7019 #elif defined(XSCALE_CACHE_WRITE_BACK)
7020 /* force write back cache mode */
7021 write_through = 0;
7022 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7023 /*
7024 * Intel PXA2[15]0 processors are known to have a bug in
7025 * write-back cache on revision 4 and earlier (stepping
7026 * A[01] and B[012]). Fixed for C0 and later.
7027 */
7028 {
7029 uint32_t id, type;
7030
7031 id = cpufunc_id();
7032 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7033
7034 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7035 if ((id & CPU_ID_REVISION_MASK) < 5) {
7036 /* write through for stepping A0-1 and B0-2 */
7037 write_through = 1;
7038 }
7039 }
7040 }
7041 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7042
7043 if (write_through) {
7044 pte_l1_s_cache_mode = L1_S_C;
7045 pte_l2_l_cache_mode = L2_C;
7046 pte_l2_s_cache_mode = L2_C;
7047 }
7048
7049 #if (ARM_NMMUS > 1)
7050 xscale_use_minidata = 1;
7051 #endif
7052
7053 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7054 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7055 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7056 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7057
7058 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7059 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7060 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7061 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7062
7063 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7064 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7065 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7066 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7067
7068 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7069 pte_l1_s_proto = L1_S_PROTO_xscale;
7070 pte_l1_c_proto = L1_C_PROTO_xscale;
7071 pte_l2_s_proto = L2_S_PROTO_xscale;
7072
7073 pmap_copy_page_func = pmap_copy_page_xscale;
7074 pmap_zero_page_func = pmap_zero_page_xscale;
7075
7076 /*
7077 * Disable ECC protection of page table access, for now.
7078 */
7079 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
7080 auxctl &= ~XSCALE_AUXCTL_P;
7081 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
7082 }
7083
7084 /*
7085 * xscale_setup_minidata:
7086 *
7087 * Set up the mini-data cache clean area. We require the
7088 * caller to allocate the right amount of physically and
7089 * virtually contiguous space.
7090 */
7091 void
7092 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7093 {
7094 extern vaddr_t xscale_minidata_clean_addr;
7095 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7096 pd_entry_t *pde = (pd_entry_t *) l1pt;
7097 vsize_t size;
7098 uint32_t auxctl;
7099
7100 xscale_minidata_clean_addr = va;
7101
7102 /* Round it to page size. */
7103 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7104
7105 for (; size != 0;
7106 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7107 const size_t l1slot = l1pte_index(va);
7108 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7109 if (ptep == NULL)
7110 panic("xscale_setup_minidata: can't find L2 table for "
7111 "VA 0x%08lx", va);
7112
7113 ptep += l2pte_index(va);
7114 pt_entry_t opte = *ptep;
7115 l2pte_set(ptep,
7116 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7117 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7118 }
7119
7120 /*
7121 * Configure the mini-data cache for write-back with
7122 * read/write-allocate.
7123 *
7124 * NOTE: In order to reconfigure the mini-data cache, we must
7125 * make sure it contains no valid data! In order to do that,
7126 * we must issue a global data cache invalidate command!
7127 *
7128 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7129 * THIS IS VERY IMPORTANT!
7130 */
7131
7132 /* Invalidate data and mini-data. */
7133 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7134 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
7135 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7136 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
7137 }
7138
7139 /*
7140 * Change the PTEs for the specified kernel mappings such that they
7141 * will use the mini data cache instead of the main data cache.
7142 */
7143 void
7144 pmap_uarea(vaddr_t va)
7145 {
7146 vaddr_t next_bucket, eva;
7147
7148 #if (ARM_NMMUS > 1)
7149 if (xscale_use_minidata == 0)
7150 return;
7151 #endif
7152
7153 eva = va + USPACE;
7154
7155 while (va < eva) {
7156 next_bucket = L2_NEXT_BUCKET_VA(va);
7157 if (next_bucket > eva)
7158 next_bucket = eva;
7159
7160 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7161 KDASSERT(l2b != NULL);
7162
7163 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7164 pt_entry_t *ptep = sptep;
7165
7166 while (va < next_bucket) {
7167 const pt_entry_t opte = *ptep;
7168 if (!l2pte_minidata_p(opte)) {
7169 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7170 cpu_tlb_flushD_SE(va);
7171 l2pte_set(ptep, opte & ~L2_B, opte);
7172 }
7173 ptep += PAGE_SIZE / L2_S_SIZE;
7174 va += PAGE_SIZE;
7175 }
7176 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7177 }
7178 cpu_cpwait();
7179 }
7180 #endif /* ARM_MMU_XSCALE == 1 */
7181
7182
7183 #if defined(CPU_ARM11MPCORE)
7184
7185 void
7186 pmap_pte_init_arm11mpcore(void)
7187 {
7188
7189 /* cache mode is controlled by 5 bits (B, C, TEX) */
7190 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7191 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7192 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7193 /* use extended small page (without APn, with TEX) */
7194 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7195 #else
7196 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7197 #endif
7198
7199 /* write-back, write-allocate */
7200 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7201 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7202 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7203 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7204 #else
7205 /* no TEX. read-allocate */
7206 pte_l2_s_cache_mode = L2_C | L2_B;
7207 #endif
7208 /*
7209 * write-back, write-allocate for page tables.
7210 */
7211 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7212 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7213 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7214 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7215 #else
7216 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7217 #endif
7218
7219 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7220 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7221 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7222 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7223
7224 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7225 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7226 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7227 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7228 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7229
7230 #else
7231 /* with AP[0..3] */
7232 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7233 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7234 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7235 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7236 #endif
7237
7238 #ifdef ARM11MPCORE_COMPAT_MMU
7239 /* with AP[0..3] */
7240 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7241 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7242 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7243 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7244
7245 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7246 pte_l1_s_proto = L1_S_PROTO_armv6;
7247 pte_l1_c_proto = L1_C_PROTO_armv6;
7248 pte_l2_s_proto = L2_S_PROTO_armv6c;
7249 #else
7250 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7251 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7252 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7253 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7254
7255 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7256 pte_l1_s_proto = L1_S_PROTO_armv6;
7257 pte_l1_c_proto = L1_C_PROTO_armv6;
7258 pte_l2_s_proto = L2_S_PROTO_armv6n;
7259 #endif
7260
7261 pmap_copy_page_func = pmap_copy_page_generic;
7262 pmap_zero_page_func = pmap_zero_page_generic;
7263 pmap_needs_pte_sync = 1;
7264 }
7265 #endif /* CPU_ARM11MPCORE */
7266
7267
7268 #if ARM_MMU_V7 == 1
7269 void
7270 pmap_pte_init_armv7(void)
7271 {
7272 /*
7273 * The ARMv7-A MMU is mostly compatible with generic. If the
7274 * AP field is zero, that now means "no access" rather than
7275 * read-only. The prototypes are a little different because of
7276 * the XN bit.
7277 */
7278 pmap_pte_init_generic();
7279
7280 pmap_needs_pte_sync = 1;
7281
7282 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7283 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7284 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7285
7286 /*
7287 * If the core support coherent walk then updates to translation tables
7288 * do not require a clean to the point of unification to ensure
7289 * visibility by subsequent translation table walks. That means we can
7290 * map everything shareable and cached and the right thing will happen.
7291 */
7292 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7293 pmap_needs_pte_sync = 0;
7294
7295 /*
7296 * write-back, no write-allocate, shareable for normal pages.
7297 */
7298 pte_l1_s_cache_mode |= L1_S_V6_S;
7299 pte_l2_l_cache_mode |= L2_XS_S;
7300 pte_l2_s_cache_mode |= L2_XS_S;
7301
7302 /*
7303 * write-back, no write-allocate, shareable for page tables.
7304 */
7305 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7306 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7307 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7308 }
7309
7310 /*
7311 * Check the Memory Model Features to see if this CPU supports
7312 * the TLBIASID coproc op.
7313 */
7314 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7315 arm_has_tlbiasid_p = true;
7316 }
7317
7318 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7319 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7320 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7321 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7322
7323 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7324 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7325 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7326 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7327
7328 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7329 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7330 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7331 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7332
7333 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7334 pte_l1_s_proto = L1_S_PROTO_armv7;
7335 pte_l1_c_proto = L1_C_PROTO_armv7;
7336 pte_l2_s_proto = L2_S_PROTO_armv7;
7337
7338 }
7339 #endif /* ARM_MMU_V7 */
7340
7341 /*
7342 * return the PA of the current L1 table, for use when handling a crash dump
7343 */
7344 uint32_t
7345 pmap_kernel_L1_addr(void)
7346 {
7347 #ifdef ARM_MMU_EXTENDED
7348 return pmap_kernel()->pm_l1_pa;
7349 #else
7350 return pmap_kernel()->pm_l1->l1_physaddr;
7351 #endif
7352 }
7353
7354 #if defined(DDB)
7355 /*
7356 * A couple of ddb-callable functions for dumping pmaps
7357 */
7358 void pmap_dump_all(void);
7359 void pmap_dump(pmap_t);
7360
7361 void
7362 pmap_dump_all(void)
7363 {
7364 pmap_t pm;
7365
7366 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
7367 if (pm == pmap_kernel())
7368 continue;
7369 pmap_dump(pm);
7370 printf("\n");
7371 }
7372 }
7373
7374 static pt_entry_t ncptes[64];
7375 static void pmap_dump_ncpg(pmap_t);
7376
7377 void
7378 pmap_dump(pmap_t pm)
7379 {
7380 struct l2_dtable *l2;
7381 struct l2_bucket *l2b;
7382 pt_entry_t *ptep, pte;
7383 vaddr_t l2_va, l2b_va, va;
7384 int i, j, k, occ, rows = 0;
7385
7386 if (pm == pmap_kernel())
7387 printf("pmap_kernel (%p): ", pm);
7388 else
7389 printf("user pmap (%p): ", pm);
7390
7391 #ifdef ARM_MMU_EXTENDED
7392 printf("l1 at %p\n", pmap_l1_kva(pm));
7393 #else
7394 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7395 #endif
7396
7397 l2_va = 0;
7398 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7399 l2 = pm->pm_l2[i];
7400
7401 if (l2 == NULL || l2->l2_occupancy == 0)
7402 continue;
7403
7404 l2b_va = l2_va;
7405 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7406 l2b = &l2->l2_bucket[j];
7407
7408 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7409 continue;
7410
7411 ptep = l2b->l2b_kva;
7412
7413 for (k = 0; k < 256 && ptep[k] == 0; k++)
7414 ;
7415
7416 k &= ~63;
7417 occ = l2b->l2b_occupancy;
7418 va = l2b_va + (k * 4096);
7419 for (; k < 256; k++, va += 0x1000) {
7420 char ch = ' ';
7421 if ((k % 64) == 0) {
7422 if ((rows % 8) == 0) {
7423 printf(
7424 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7425 }
7426 printf("%08lx: ", va);
7427 }
7428
7429 ncptes[k & 63] = 0;
7430 pte = ptep[k];
7431 if (pte == 0) {
7432 ch = '.';
7433 } else {
7434 occ--;
7435 switch (pte & 0x0c) {
7436 case 0x00:
7437 ch = 'D'; /* No cache No buff */
7438 break;
7439 case 0x04:
7440 ch = 'B'; /* No cache buff */
7441 break;
7442 case 0x08:
7443 if (pte & 0x40)
7444 ch = 'm';
7445 else
7446 ch = 'C'; /* Cache No buff */
7447 break;
7448 case 0x0c:
7449 ch = 'F'; /* Cache Buff */
7450 break;
7451 }
7452
7453 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7454 ch += 0x20;
7455
7456 if ((pte & 0xc) == 0)
7457 ncptes[k & 63] = pte;
7458 }
7459
7460 if ((k % 64) == 63) {
7461 rows++;
7462 printf("%c\n", ch);
7463 pmap_dump_ncpg(pm);
7464 if (occ == 0)
7465 break;
7466 } else
7467 printf("%c", ch);
7468 }
7469 }
7470 }
7471 }
7472
7473 static void
7474 pmap_dump_ncpg(pmap_t pm)
7475 {
7476 struct vm_page *pg;
7477 struct vm_page_md *md;
7478 struct pv_entry *pv;
7479 int i;
7480
7481 for (i = 0; i < 63; i++) {
7482 if (ncptes[i] == 0)
7483 continue;
7484
7485 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7486 if (pg == NULL)
7487 continue;
7488 md = VM_PAGE_TO_MD(pg);
7489
7490 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7491 VM_PAGE_TO_PHYS(pg),
7492 md->krw_mappings, md->kro_mappings,
7493 md->urw_mappings, md->uro_mappings);
7494
7495 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7496 printf(" %c va 0x%08lx, flags 0x%x\n",
7497 (pm == pv->pv_pmap) ? '*' : ' ',
7498 pv->pv_va, pv->pv_flags);
7499 }
7500 }
7501 }
7502 #endif
7503
7504 #ifdef PMAP_STEAL_MEMORY
7505 void
7506 pmap_boot_pageadd(pv_addr_t *newpv)
7507 {
7508 pv_addr_t *pv, *npv;
7509
7510 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7511 if (newpv->pv_pa < pv->pv_va) {
7512 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7513 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7514 newpv->pv_size += pv->pv_size;
7515 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7516 }
7517 pv = NULL;
7518 } else {
7519 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7520 pv = npv) {
7521 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7522 KASSERT(pv->pv_pa < newpv->pv_pa);
7523 if (newpv->pv_pa > npv->pv_pa)
7524 continue;
7525 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7526 pv->pv_size += newpv->pv_size;
7527 return;
7528 }
7529 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7530 break;
7531 newpv->pv_size += npv->pv_size;
7532 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7533 SLIST_REMOVE_AFTER(newpv, pv_list);
7534 return;
7535 }
7536 }
7537 }
7538
7539 if (pv) {
7540 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7541 } else {
7542 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7543 }
7544 }
7545
7546 void
7547 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7548 pv_addr_t *rpv)
7549 {
7550 pv_addr_t *pv, **pvp;
7551 struct vm_physseg *ps;
7552 size_t i;
7553
7554 KASSERT(amount & PGOFSET);
7555 KASSERT((mask & PGOFSET) == 0);
7556 KASSERT((match & PGOFSET) == 0);
7557 KASSERT(amount != 0);
7558
7559 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7560 (pv = *pvp) != NULL;
7561 pvp = &SLIST_NEXT(pv, pv_list)) {
7562 pv_addr_t *newpv;
7563 psize_t off;
7564 /*
7565 * If this entry is too small to satify the request...
7566 */
7567 KASSERT(pv->pv_size > 0);
7568 if (pv->pv_size < amount)
7569 continue;
7570
7571 for (off = 0; off <= mask; off += PAGE_SIZE) {
7572 if (((pv->pv_pa + off) & mask) == match
7573 && off + amount <= pv->pv_size)
7574 break;
7575 }
7576 if (off > mask)
7577 continue;
7578
7579 rpv->pv_va = pv->pv_va + off;
7580 rpv->pv_pa = pv->pv_pa + off;
7581 rpv->pv_size = amount;
7582 pv->pv_size -= amount;
7583 if (pv->pv_size == 0) {
7584 KASSERT(off == 0);
7585 KASSERT((vaddr_t) pv == rpv->pv_va);
7586 *pvp = SLIST_NEXT(pv, pv_list);
7587 } else if (off == 0) {
7588 KASSERT((vaddr_t) pv == rpv->pv_va);
7589 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7590 *newpv = *pv;
7591 newpv->pv_pa += amount;
7592 newpv->pv_va += amount;
7593 *pvp = newpv;
7594 } else if (off < pv->pv_size) {
7595 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7596 *newpv = *pv;
7597 newpv->pv_size -= off;
7598 newpv->pv_pa += off + amount;
7599 newpv->pv_va += off + amount;
7600
7601 SLIST_NEXT(pv, pv_list) = newpv;
7602 pv->pv_size = off;
7603 } else {
7604 KASSERT((vaddr_t) pv != rpv->pv_va);
7605 }
7606 memset((void *)rpv->pv_va, 0, amount);
7607 return;
7608 }
7609
7610 if (vm_nphysseg == 0)
7611 panic("pmap_boot_pagealloc: couldn't allocate memory");
7612
7613 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7614 (pv = *pvp) != NULL;
7615 pvp = &SLIST_NEXT(pv, pv_list)) {
7616 if (SLIST_NEXT(pv, pv_list) == NULL)
7617 break;
7618 }
7619 KASSERT(mask == 0);
7620 for (i = 0; i < vm_nphysseg; i++) {
7621 ps = VM_PHYSMEM_PTR(i);
7622 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7623 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7624 rpv->pv_va = pv->pv_va;
7625 rpv->pv_pa = pv->pv_pa;
7626 rpv->pv_size = amount;
7627 *pvp = NULL;
7628 pmap_map_chunk(kernel_l1pt.pv_va,
7629 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7630 ptoa(ps->avail_start),
7631 amount - pv->pv_size,
7632 VM_PROT_READ|VM_PROT_WRITE,
7633 PTE_CACHE);
7634 ps->avail_start += atop(amount - pv->pv_size);
7635 /*
7636 * If we consumed the entire physseg, remove it.
7637 */
7638 if (ps->avail_start == ps->avail_end) {
7639 for (--vm_nphysseg; i < vm_nphysseg; i++)
7640 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7641 }
7642 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7643 return;
7644 }
7645 }
7646
7647 panic("pmap_boot_pagealloc: couldn't allocate memory");
7648 }
7649
7650 vaddr_t
7651 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7652 {
7653 pv_addr_t pv;
7654
7655 pmap_boot_pagealloc(size, 0, 0, &pv);
7656
7657 return pv.pv_va;
7658 }
7659 #endif /* PMAP_STEAL_MEMORY */
7660
7661 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7662 {
7663 sysctl_createv(clog, 0, NULL, NULL,
7664 CTLFLAG_PERMANENT,
7665 CTLTYPE_NODE, "machdep", NULL,
7666 NULL, 0, NULL, 0,
7667 CTL_MACHDEP, CTL_EOL);
7668
7669 sysctl_createv(clog, 0, NULL, NULL,
7670 CTLFLAG_PERMANENT,
7671 CTLTYPE_INT, "kmpages",
7672 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7673 NULL, 0, &pmap_kmpages, 0,
7674 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7675 }
7676
7677 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7678 struct vm_page *
7679 arm_pmap_alloc_poolpage(int flags)
7680 {
7681 /*
7682 * On some systems, only some pages may be "coherent" for dma and we
7683 * want to prefer those for pool pages (think mbufs) but fallback to
7684 * any page if none is available.
7685 */
7686 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7687 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7688 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
7689 }
7690
7691 return uvm_pagealloc(NULL, 0, NULL, flags);
7692 }
7693 #endif
7694
7695 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7696 void
7697 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7698 {
7699 /* nothing */
7700 }
7701
7702 int
7703 pic_ipi_shootdown(void *arg)
7704 {
7705 #if PMAP_NEED_TLB_SHOOTDOWN
7706 pmap_tlb_shootdown_process()
7707 #endif
7708 return 1;
7709 }
7710 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7711