Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.291
      1 /*	$NetBSD: pmap.c,v 1.291 2014/04/22 14:20:03 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #ifdef MULTIPROCESSOR
    196 #define _INTR_PRIVATE
    197 #endif
    198 
    199 #include <sys/param.h>
    200 #include <sys/types.h>
    201 #include <sys/kernel.h>
    202 #include <sys/systm.h>
    203 #include <sys/proc.h>
    204 #include <sys/intr.h>
    205 #include <sys/pool.h>
    206 #include <sys/kmem.h>
    207 #include <sys/cdefs.h>
    208 #include <sys/cpu.h>
    209 #include <sys/sysctl.h>
    210 #include <sys/bus.h>
    211 #include <sys/atomic.h>
    212 #include <sys/kernhist.h>
    213 
    214 #include <uvm/uvm.h>
    215 
    216 #include <arm/locore.h>
    217 //#include <arm/arm32/katelib.h>
    218 
    219 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.291 2014/04/22 14:20:03 skrll Exp $");
    220 
    221 //#define PMAP_DEBUG
    222 #ifdef PMAP_DEBUG
    223 
    224 /* XXX need to get rid of all refs to this */
    225 int pmap_debug_level = 0;
    226 
    227 /*
    228  * for switching to potentially finer grained debugging
    229  */
    230 #define	PDB_FOLLOW	0x0001
    231 #define	PDB_INIT	0x0002
    232 #define	PDB_ENTER	0x0004
    233 #define	PDB_REMOVE	0x0008
    234 #define	PDB_CREATE	0x0010
    235 #define	PDB_PTPAGE	0x0020
    236 #define	PDB_GROWKERN	0x0040
    237 #define	PDB_BITS	0x0080
    238 #define	PDB_COLLECT	0x0100
    239 #define	PDB_PROTECT	0x0200
    240 #define	PDB_MAP_L1	0x0400
    241 #define	PDB_BOOTSTRAP	0x1000
    242 #define	PDB_PARANOIA	0x2000
    243 #define	PDB_WIRING	0x4000
    244 #define	PDB_PVDUMP	0x8000
    245 #define	PDB_VAC		0x10000
    246 #define	PDB_KENTER	0x20000
    247 #define	PDB_KREMOVE	0x40000
    248 #define	PDB_EXEC	0x80000
    249 
    250 int debugmap = 1;
    251 int pmapdebug = 0;
    252 #define	NPDEBUG(_lev_,_stat_) \
    253 	if (pmapdebug & (_lev_)) \
    254         	((_stat_))
    255 
    256 #else	/* PMAP_DEBUG */
    257 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    258 #endif	/* PMAP_DEBUG */
    259 
    260 /*
    261  * pmap_kernel() points here
    262  */
    263 static struct pmap	kernel_pmap_store = {
    264 #ifndef ARM_MMU_EXTENDED
    265 	.pm_activated = true,
    266 	.pm_domain = PMAP_DOMAIN_KERNEL,
    267 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    268 #endif
    269 };
    270 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    271 #undef pmap_kernel
    272 #define pmap_kernel()	(&kernel_pmap_store)
    273 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    274 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    275 #endif
    276 
    277 /*
    278  * Pool and cache that pmap structures are allocated from.
    279  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    280  * in pmap_create().
    281  */
    282 static struct pool_cache pmap_cache;
    283 static LIST_HEAD(, pmap) pmap_pmaps;
    284 
    285 /*
    286  * Pool of PV structures
    287  */
    288 static struct pool pmap_pv_pool;
    289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    292 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    293 };
    294 
    295 /*
    296  * Pool and cache of l2_dtable structures.
    297  * We use a cache to avoid clearing the structures when they're
    298  * allocated. (196 bytes)
    299  */
    300 static struct pool_cache pmap_l2dtable_cache;
    301 static vaddr_t pmap_kernel_l2dtable_kva;
    302 
    303 /*
    304  * Pool and cache of L2 page descriptors.
    305  * We use a cache to avoid clearing the descriptor table
    306  * when they're allocated. (1KB)
    307  */
    308 static struct pool_cache pmap_l2ptp_cache;
    309 static vaddr_t pmap_kernel_l2ptp_kva;
    310 static paddr_t pmap_kernel_l2ptp_phys;
    311 
    312 #ifdef PMAPCOUNTERS
    313 #define	PMAP_EVCNT_INITIALIZER(name) \
    314 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    315 
    316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    317 static struct evcnt pmap_ev_vac_clean_one =
    318    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    319 static struct evcnt pmap_ev_vac_flush_one =
    320    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    321 static struct evcnt pmap_ev_vac_flush_lots =
    322    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    323 static struct evcnt pmap_ev_vac_flush_lots2 =
    324    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    329 
    330 static struct evcnt pmap_ev_vac_color_new =
    331    PMAP_EVCNT_INITIALIZER("new page color");
    332 static struct evcnt pmap_ev_vac_color_reuse =
    333    PMAP_EVCNT_INITIALIZER("ok first page color");
    334 static struct evcnt pmap_ev_vac_color_ok =
    335    PMAP_EVCNT_INITIALIZER("ok page color");
    336 static struct evcnt pmap_ev_vac_color_blind =
    337    PMAP_EVCNT_INITIALIZER("blind page color");
    338 static struct evcnt pmap_ev_vac_color_change =
    339    PMAP_EVCNT_INITIALIZER("change page color");
    340 static struct evcnt pmap_ev_vac_color_erase =
    341    PMAP_EVCNT_INITIALIZER("erase page color");
    342 static struct evcnt pmap_ev_vac_color_none =
    343    PMAP_EVCNT_INITIALIZER("no page color");
    344 static struct evcnt pmap_ev_vac_color_restore =
    345    PMAP_EVCNT_INITIALIZER("restore page color");
    346 
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    355 #endif
    356 
    357 static struct evcnt pmap_ev_mappings =
    358    PMAP_EVCNT_INITIALIZER("pages mapped");
    359 static struct evcnt pmap_ev_unmappings =
    360    PMAP_EVCNT_INITIALIZER("pages unmapped");
    361 static struct evcnt pmap_ev_remappings =
    362    PMAP_EVCNT_INITIALIZER("pages remapped");
    363 
    364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    367 
    368 static struct evcnt pmap_ev_kernel_mappings =
    369    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    370 static struct evcnt pmap_ev_kernel_unmappings =
    371    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    372 static struct evcnt pmap_ev_kernel_remappings =
    373    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    374 
    375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    378 
    379 static struct evcnt pmap_ev_kenter_mappings =
    380    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    381 static struct evcnt pmap_ev_kenter_unmappings =
    382    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    383 static struct evcnt pmap_ev_kenter_remappings =
    384    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    385 static struct evcnt pmap_ev_pt_mappings =
    386    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    387 
    388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    392 
    393 static struct evcnt pmap_ev_fixup_mod =
    394    PMAP_EVCNT_INITIALIZER("page modification emulations");
    395 static struct evcnt pmap_ev_fixup_ref =
    396    PMAP_EVCNT_INITIALIZER("page reference emulations");
    397 static struct evcnt pmap_ev_fixup_exec =
    398    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    399 static struct evcnt pmap_ev_fixup_pdes =
    400    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    401 #ifndef ARM_MMU_EXTENDED
    402 static struct evcnt pmap_ev_fixup_ptesync =
    403    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    404 #endif
    405 
    406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    410 #ifndef ARM_MMU_EXTENDED
    411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    412 #endif
    413 
    414 #ifdef PMAP_CACHE_VIPT
    415 static struct evcnt pmap_ev_exec_mappings =
    416    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    417 static struct evcnt pmap_ev_exec_cached =
    418    PMAP_EVCNT_INITIALIZER("exec pages cached");
    419 
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    422 
    423 static struct evcnt pmap_ev_exec_synced =
    424    PMAP_EVCNT_INITIALIZER("exec pages synced");
    425 static struct evcnt pmap_ev_exec_synced_map =
    426    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    427 #ifndef ARM_MMU_EXTENDED
    428 static struct evcnt pmap_ev_exec_synced_unmap =
    429    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    430 static struct evcnt pmap_ev_exec_synced_remap =
    431    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    432 static struct evcnt pmap_ev_exec_synced_clearbit =
    433    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    434 static struct evcnt pmap_ev_exec_synced_kremove =
    435    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    436 #endif
    437 
    438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    440 #ifndef ARM_MMU_EXTENDED
    441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    445 #endif
    446 
    447 static struct evcnt pmap_ev_exec_discarded_unmap =
    448    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    449 static struct evcnt pmap_ev_exec_discarded_zero =
    450    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    451 static struct evcnt pmap_ev_exec_discarded_copy =
    452    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    453 static struct evcnt pmap_ev_exec_discarded_page_protect =
    454    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    455 static struct evcnt pmap_ev_exec_discarded_clearbit =
    456    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    457 static struct evcnt pmap_ev_exec_discarded_kremove =
    458    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    459 #ifdef ARM_MMU_EXTENDED
    460 static struct evcnt pmap_ev_exec_discarded_modfixup =
    461    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    462 #endif
    463 
    464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    470 #ifdef ARM_MMU_EXTENDED
    471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    472 #endif
    473 #endif /* PMAP_CACHE_VIPT */
    474 
    475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    478 
    479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    482 
    483 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    484 #else
    485 #define	PMAPCOUNT(x)	((void)0)
    486 #endif
    487 
    488 /*
    489  * pmap copy/zero page, and mem(5) hook point
    490  */
    491 static pt_entry_t *csrc_pte, *cdst_pte;
    492 static vaddr_t csrcp, cdstp;
    493 #ifdef MULTIPROCESSOR
    494 static size_t cnptes;
    495 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    496 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    497 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    498 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    499 #else
    500 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    501 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    502 #define	cpu_csrcp(o)	(csrcp + (o))
    503 #define	cpu_cdstp(o)	(cdstp + (o))
    504 #endif
    505 vaddr_t memhook;			/* used by mem.c & others */
    506 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    507 kmutex_t pmap_lock __cacheline_aligned;
    508 extern void *msgbufaddr;
    509 int pmap_kmpages;
    510 /*
    511  * Flag to indicate if pmap_init() has done its thing
    512  */
    513 bool pmap_initialized;
    514 
    515 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    516 /*
    517  * Start of direct-mapped memory
    518  */
    519 vaddr_t pmap_directbase = KERNEL_BASE;
    520 #endif
    521 
    522 /*
    523  * Misc. locking data structures
    524  */
    525 
    526 static inline void
    527 pmap_acquire_pmap_lock(pmap_t pm)
    528 {
    529 	if (pm == pmap_kernel()) {
    530 #ifdef MULTIPROCESSOR
    531 		KERNEL_LOCK(1, NULL);
    532 #endif
    533 	} else {
    534 		mutex_enter(pm->pm_lock);
    535 	}
    536 }
    537 
    538 static inline void
    539 pmap_release_pmap_lock(pmap_t pm)
    540 {
    541 	if (pm == pmap_kernel()) {
    542 #ifdef MULTIPROCESSOR
    543 		KERNEL_UNLOCK_ONE(NULL);
    544 #endif
    545 	} else {
    546 		mutex_exit(pm->pm_lock);
    547 	}
    548 }
    549 
    550 static inline void
    551 pmap_acquire_page_lock(struct vm_page_md *md)
    552 {
    553 	mutex_enter(&pmap_lock);
    554 }
    555 
    556 static inline void
    557 pmap_release_page_lock(struct vm_page_md *md)
    558 {
    559 	mutex_exit(&pmap_lock);
    560 }
    561 
    562 #ifdef DIAGNOSTIC
    563 static inline int
    564 pmap_page_locked_p(struct vm_page_md *md)
    565 {
    566 	return mutex_owned(&pmap_lock);
    567 }
    568 #endif
    569 
    570 
    571 /*
    572  * Metadata for L1 translation tables.
    573  */
    574 #ifndef ARM_MMU_EXTENDED
    575 struct l1_ttable {
    576 	/* Entry on the L1 Table list */
    577 	SLIST_ENTRY(l1_ttable) l1_link;
    578 
    579 	/* Entry on the L1 Least Recently Used list */
    580 	TAILQ_ENTRY(l1_ttable) l1_lru;
    581 
    582 	/* Track how many domains are allocated from this L1 */
    583 	volatile u_int l1_domain_use_count;
    584 
    585 	/*
    586 	 * A free-list of domain numbers for this L1.
    587 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    588 	 * is slow on ARM.
    589 	 */
    590 	uint8_t l1_domain_first;
    591 	uint8_t l1_domain_free[PMAP_DOMAINS];
    592 
    593 	/* Physical address of this L1 page table */
    594 	paddr_t l1_physaddr;
    595 
    596 	/* KVA of this L1 page table */
    597 	pd_entry_t *l1_kva;
    598 };
    599 
    600 /*
    601  * L1 Page Tables are tracked using a Least Recently Used list.
    602  *  - New L1s are allocated from the HEAD.
    603  *  - Freed L1s are added to the TAIl.
    604  *  - Recently accessed L1s (where an 'access' is some change to one of
    605  *    the userland pmaps which owns this L1) are moved to the TAIL.
    606  */
    607 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    608 static kmutex_t l1_lru_lock __cacheline_aligned;
    609 
    610 /*
    611  * A list of all L1 tables
    612  */
    613 static SLIST_HEAD(, l1_ttable) l1_list;
    614 #endif /* ARM_MMU_EXTENDED */
    615 
    616 /*
    617  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    618  *
    619  * This is normally 16MB worth L2 page descriptors for any given pmap.
    620  * Reference counts are maintained for L2 descriptors so they can be
    621  * freed when empty.
    622  */
    623 struct l2_dtable {
    624 	/* The number of L2 page descriptors allocated to this l2_dtable */
    625 	u_int l2_occupancy;
    626 
    627 	/* List of L2 page descriptors */
    628 	struct l2_bucket {
    629 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    630 		paddr_t l2b_pa;		/* Physical address of same */
    631 		u_short l2b_l1slot;	/* This L2 table's L1 index */
    632 		u_short l2b_occupancy;	/* How many active descriptors */
    633 	} l2_bucket[L2_BUCKET_SIZE];
    634 };
    635 
    636 /*
    637  * Given an L1 table index, calculate the corresponding l2_dtable index
    638  * and bucket index within the l2_dtable.
    639  */
    640 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    641 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    642 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    643 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    644 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    645 
    646 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    647 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    648 
    649 /*
    650  * Given a virtual address, this macro returns the
    651  * virtual address required to drop into the next L2 bucket.
    652  */
    653 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    654 
    655 /*
    656  * L2 allocation.
    657  */
    658 #define	pmap_alloc_l2_dtable()		\
    659 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    660 #define	pmap_free_l2_dtable(l2)		\
    661 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    662 #define pmap_alloc_l2_ptp(pap)		\
    663 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    664 	    PR_NOWAIT, (pap)))
    665 
    666 /*
    667  * We try to map the page tables write-through, if possible.  However, not
    668  * all CPUs have a write-through cache mode, so on those we have to sync
    669  * the cache when we frob page tables.
    670  *
    671  * We try to evaluate this at compile time, if possible.  However, it's
    672  * not always possible to do that, hence this run-time var.
    673  */
    674 int	pmap_needs_pte_sync;
    675 
    676 /*
    677  * Real definition of pv_entry.
    678  */
    679 struct pv_entry {
    680 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    681 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    682 	vaddr_t		pv_va;          /* virtual address for mapping */
    683 	u_int		pv_flags;       /* flags */
    684 };
    685 
    686 /*
    687  * Macro to determine if a mapping might be resident in the
    688  * instruction cache and/or TLB
    689  */
    690 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    691 /*
    692  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    693  * there are no explicit accesses, so there may be always be TLB entries to
    694  * flush.  If we used ASIDs then this would not be a problem.
    695  */
    696 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    697 #else
    698 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    699 #endif
    700 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    701 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    702 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    703 
    704 /*
    705  * Macro to determine if a mapping might be resident in the
    706  * data cache and/or TLB
    707  */
    708 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    709 /*
    710  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    711  * there are no explicit accesses, so there may be always be TLB entries to
    712  * flush.  If we used ASIDs then this would not be a problem.
    713  */
    714 #define	PV_BEEN_REFD(f)   (1)
    715 #else
    716 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    717 #endif
    718 
    719 /*
    720  * Local prototypes
    721  */
    722 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    723 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    724 			    pt_entry_t **);
    725 static bool		pmap_is_current(pmap_t);
    726 static bool		pmap_is_cached(pmap_t);
    727 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    728 			    pmap_t, vaddr_t, u_int);
    729 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    730 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    731 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    732 			    u_int, u_int);
    733 
    734 static void		pmap_pinit(pmap_t);
    735 static int		pmap_pmap_ctor(void *, void *, int);
    736 
    737 static void		pmap_alloc_l1(pmap_t);
    738 static void		pmap_free_l1(pmap_t);
    739 #ifndef ARM_MMU_EXTENDED
    740 static void		pmap_use_l1(pmap_t);
    741 #endif
    742 
    743 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    744 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    745 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    746 static int		pmap_l2ptp_ctor(void *, void *, int);
    747 static int		pmap_l2dtable_ctor(void *, void *, int);
    748 
    749 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    750 #ifdef PMAP_CACHE_VIVT
    751 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    752 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    753 #endif
    754 
    755 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    756 #ifdef PMAP_CACHE_VIVT
    757 static bool		pmap_clean_page(struct vm_page_md *, bool);
    758 #endif
    759 #ifdef PMAP_CACHE_VIPT
    760 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    761 enum pmap_flush_op {
    762 	PMAP_FLUSH_PRIMARY,
    763 	PMAP_FLUSH_SECONDARY,
    764 	PMAP_CLEAN_PRIMARY
    765 };
    766 #ifndef ARM_MMU_EXTENDED
    767 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    768 #endif
    769 #endif
    770 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    771 
    772 #ifndef ARM_MMU_EXTENDED
    773 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    774 #endif
    775 static vaddr_t		kernel_pt_lookup(paddr_t);
    776 
    777 
    778 /*
    779  * Misc variables
    780  */
    781 vaddr_t virtual_avail;
    782 vaddr_t virtual_end;
    783 vaddr_t pmap_curmaxkvaddr;
    784 
    785 paddr_t avail_start;
    786 paddr_t avail_end;
    787 
    788 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    789 pv_addr_t kernelpages;
    790 pv_addr_t kernel_l1pt;
    791 pv_addr_t systempage;
    792 
    793 /* Function to set the debug level of the pmap code */
    794 
    795 #ifdef PMAP_DEBUG
    796 void
    797 pmap_debug(int level)
    798 {
    799 	pmap_debug_level = level;
    800 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    801 }
    802 #endif	/* PMAP_DEBUG */
    803 
    804 #ifdef PMAP_CACHE_VIPT
    805 #define PMAP_VALIDATE_MD_PAGE(md)	\
    806 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    807 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    808 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    809 #endif /* PMAP_CACHE_VIPT */
    810 /*
    811  * A bunch of routines to conditionally flush the caches/TLB depending
    812  * on whether the specified pmap actually needs to be flushed at any
    813  * given time.
    814  */
    815 static inline void
    816 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    817 {
    818 #ifdef ARM_MMU_EXTENDED
    819 	pmap_tlb_invalidate_addr(pm, va);
    820 #else
    821 	if (pm->pm_cstate.cs_tlb_id != 0) {
    822 		if (PV_BEEN_EXECD(flags)) {
    823 			cpu_tlb_flushID_SE(va);
    824 		} else if (PV_BEEN_REFD(flags)) {
    825 			cpu_tlb_flushD_SE(va);
    826 		}
    827 	}
    828 #endif /* ARM_MMU_EXTENDED */
    829 }
    830 
    831 static inline void
    832 pmap_tlb_flushID(pmap_t pm)
    833 {
    834 #ifdef ARM_MMU_EXTENDED
    835 	pmap_tlb_asid_release_all(pm);
    836 #else
    837 	if (pm->pm_cstate.cs_tlb_id) {
    838 		cpu_tlb_flushID();
    839 #if ARM_MMU_V7 == 0
    840 		/*
    841 		 * Speculative loads by Cortex cores can cause TLB entries to
    842 		 * be filled even if there are no explicit accesses, so there
    843 		 * may be always be TLB entries to flush.  If we used ASIDs
    844 		 * then it would not be a problem.
    845 		 * This is not true for other CPUs.
    846 		 */
    847 		pm->pm_cstate.cs_tlb = 0;
    848 #endif /* ARM_MMU_V7 */
    849 	}
    850 #endif /* ARM_MMU_EXTENDED */
    851 }
    852 
    853 static inline void
    854 pmap_tlb_flushD(pmap_t pm)
    855 {
    856 #ifdef ARM_MMU_EXTENDED
    857 	pmap_tlb_asid_release_all(pm);
    858 #else
    859 	if (pm->pm_cstate.cs_tlb_d) {
    860 		cpu_tlb_flushD();
    861 #if ARM_MMU_V7 == 0
    862 		/*
    863 		 * Speculative loads by Cortex cores can cause TLB entries to
    864 		 * be filled even if there are no explicit accesses, so there
    865 		 * may be always be TLB entries to flush.  If we used ASIDs
    866 		 * then it would not be a problem.
    867 		 * This is not true for other CPUs.
    868 		 */
    869 		pm->pm_cstate.cs_tlb_d = 0;
    870 #endif /* ARM_MMU_V7 */
    871 	}
    872 #endif /* ARM_MMU_EXTENDED */
    873 }
    874 
    875 #ifdef PMAP_CACHE_VIVT
    876 static inline void
    877 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    878 {
    879 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    880 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    881 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    882 		if (do_inv) {
    883 			if (flags & PVF_WRITE)
    884 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    885 			else
    886 				cpu_dcache_inv_range(va, PAGE_SIZE);
    887 		} else if (flags & PVF_WRITE) {
    888 			cpu_dcache_wb_range(va, PAGE_SIZE);
    889 		}
    890 	}
    891 }
    892 
    893 static inline void
    894 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    895 {
    896 	if (PV_BEEN_EXECD(flags)) {
    897 		if (pm->pm_cstate.cs_cache_id) {
    898 			cpu_idcache_wbinv_all();
    899 			pm->pm_cstate.cs_cache = 0;
    900 		}
    901 	} else if (pm->pm_cstate.cs_cache_d) {
    902 		cpu_dcache_wbinv_all();
    903 		pm->pm_cstate.cs_cache_d = 0;
    904 	}
    905 }
    906 #endif /* PMAP_CACHE_VIVT */
    907 
    908 static inline uint8_t
    909 pmap_domain(pmap_t pm)
    910 {
    911 #ifdef ARM_MMU_EXTENDED
    912 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    913 #else
    914 	return pm->pm_domain;
    915 #endif
    916 }
    917 
    918 static inline pd_entry_t *
    919 pmap_l1_kva(pmap_t pm)
    920 {
    921 #ifdef ARM_MMU_EXTENDED
    922 	return pm->pm_l1;
    923 #else
    924 	return pm->pm_l1->l1_kva;
    925 #endif
    926 }
    927 
    928 static inline bool
    929 pmap_is_current(pmap_t pm)
    930 {
    931 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    932 		return true;
    933 
    934 	return false;
    935 }
    936 
    937 static inline bool
    938 pmap_is_cached(pmap_t pm)
    939 {
    940 #ifdef ARM_MMU_EXTENDED
    941 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    942 	if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    943 		return true;
    944 #else
    945 	struct cpu_info * const ci = curcpu();
    946 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    947 	    || ci->ci_pmap_lastuser == pm)
    948 		return true;
    949 #endif /* ARM_MMU_EXTENDED */
    950 
    951 	return false;
    952 }
    953 
    954 /*
    955  * PTE_SYNC_CURRENT:
    956  *
    957  *     Make sure the pte is written out to RAM.
    958  *     We need to do this for one of two cases:
    959  *       - We're dealing with the kernel pmap
    960  *       - There is no pmap active in the cache/tlb.
    961  *       - The specified pmap is 'active' in the cache/tlb.
    962  */
    963 #ifdef PMAP_INCLUDE_PTE_SYNC
    964 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    965 do {					\
    966 	if (PMAP_NEEDS_PTE_SYNC && 	\
    967 	    pmap_is_cached(pm))		\
    968 		PTE_SYNC(ptep);		\
    969 } while (/*CONSTCOND*/0)
    970 #else
    971 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    972 #endif
    973 
    974 /*
    975  * main pv_entry manipulation functions:
    976  *   pmap_enter_pv: enter a mapping onto a vm_page list
    977  *   pmap_remove_pv: remove a mapping from a vm_page list
    978  *
    979  * NOTE: pmap_enter_pv expects to lock the pvh itself
    980  *       pmap_remove_pv expects the caller to lock the pvh before calling
    981  */
    982 
    983 /*
    984  * pmap_enter_pv: enter a mapping onto a vm_page lst
    985  *
    986  * => caller should hold the proper lock on pmap_main_lock
    987  * => caller should have pmap locked
    988  * => we will gain the lock on the vm_page and allocate the new pv_entry
    989  * => caller should adjust ptp's wire_count before calling
    990  * => caller should not adjust pmap's wire_count
    991  */
    992 static void
    993 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    994     vaddr_t va, u_int flags)
    995 {
    996 	struct pv_entry **pvp;
    997 
    998 	NPDEBUG(PDB_PVDUMP,
    999 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
   1000 
   1001 	pv->pv_pmap = pm;
   1002 	pv->pv_va = va;
   1003 	pv->pv_flags = flags;
   1004 
   1005 	pvp = &SLIST_FIRST(&md->pvh_list);
   1006 #ifdef PMAP_CACHE_VIPT
   1007 	/*
   1008 	 * Insert unmanaged entries, writeable first, at the head of
   1009 	 * the pv list.
   1010 	 */
   1011 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1012 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1013 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1014 	}
   1015 	if (!PV_IS_WRITE_P(flags)) {
   1016 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1017 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1018 	}
   1019 #endif
   1020 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1021 	*pvp = pv;				/* ... locked list */
   1022 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1023 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1024 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1025 		md->pvh_attrs |= PVF_KMOD;
   1026 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1027 		md->pvh_attrs |= PVF_DIRTY;
   1028 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1029 #endif
   1030 	if (pm == pmap_kernel()) {
   1031 		PMAPCOUNT(kernel_mappings);
   1032 		if (flags & PVF_WRITE)
   1033 			md->krw_mappings++;
   1034 		else
   1035 			md->kro_mappings++;
   1036 	} else {
   1037 		if (flags & PVF_WRITE)
   1038 			md->urw_mappings++;
   1039 		else
   1040 			md->uro_mappings++;
   1041 	}
   1042 
   1043 #ifdef PMAP_CACHE_VIPT
   1044 #ifndef ARM_MMU_EXTENDED
   1045 	/*
   1046 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1047 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1048 	 */
   1049 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1050 		md->pvh_attrs |= PVF_WRITE;
   1051 	}
   1052 #endif
   1053 	/*
   1054 	 * If this is an exec mapping and its the first exec mapping
   1055 	 * for this page, make sure to sync the I-cache.
   1056 	 */
   1057 	if (PV_IS_EXEC_P(flags)) {
   1058 #ifndef ARM_MMU_EXTENDED
   1059 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1060 			pmap_syncicache_page(md, pa);
   1061 			PMAPCOUNT(exec_synced_map);
   1062 		}
   1063 #endif
   1064 		PMAPCOUNT(exec_mappings);
   1065 	}
   1066 #endif
   1067 
   1068 	PMAPCOUNT(mappings);
   1069 
   1070 	if (pv->pv_flags & PVF_WIRED)
   1071 		++pm->pm_stats.wired_count;
   1072 }
   1073 
   1074 /*
   1075  *
   1076  * pmap_find_pv: Find a pv entry
   1077  *
   1078  * => caller should hold lock on vm_page
   1079  */
   1080 static inline struct pv_entry *
   1081 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1082 {
   1083 	struct pv_entry *pv;
   1084 
   1085 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1086 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1087 			break;
   1088 	}
   1089 
   1090 	return (pv);
   1091 }
   1092 
   1093 /*
   1094  * pmap_remove_pv: try to remove a mapping from a pv_list
   1095  *
   1096  * => caller should hold proper lock on pmap_main_lock
   1097  * => pmap should be locked
   1098  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1099  * => caller should adjust ptp's wire_count and free PTP if needed
   1100  * => caller should NOT adjust pmap's wire_count
   1101  * => we return the removed pv
   1102  */
   1103 static struct pv_entry *
   1104 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1105 {
   1106 	struct pv_entry *pv, **prevptr;
   1107 
   1108 	NPDEBUG(PDB_PVDUMP,
   1109 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
   1110 
   1111 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1112 	pv = *prevptr;
   1113 
   1114 	while (pv) {
   1115 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1116 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
   1117 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
   1118 			if (pv->pv_flags & PVF_WIRED) {
   1119 				--pm->pm_stats.wired_count;
   1120 			}
   1121 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1122 			if (pm == pmap_kernel()) {
   1123 				PMAPCOUNT(kernel_unmappings);
   1124 				if (pv->pv_flags & PVF_WRITE)
   1125 					md->krw_mappings--;
   1126 				else
   1127 					md->kro_mappings--;
   1128 			} else {
   1129 				if (pv->pv_flags & PVF_WRITE)
   1130 					md->urw_mappings--;
   1131 				else
   1132 					md->uro_mappings--;
   1133 			}
   1134 
   1135 			PMAPCOUNT(unmappings);
   1136 #ifdef PMAP_CACHE_VIPT
   1137 			if (!(pv->pv_flags & PVF_WRITE))
   1138 				break;
   1139 			/*
   1140 			 * If this page has had an exec mapping, then if
   1141 			 * this was the last mapping, discard the contents,
   1142 			 * otherwise sync the i-cache for this page.
   1143 			 */
   1144 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1145 #ifdef ARM_MMU_EXTENDED
   1146 				md->pvh_attrs &= ~PVF_EXEC;
   1147 				PMAPCOUNT(exec_discarded_unmap);
   1148 #else
   1149 				if (SLIST_EMPTY(&md->pvh_list)) {
   1150 					md->pvh_attrs &= ~PVF_EXEC;
   1151 					PMAPCOUNT(exec_discarded_unmap);
   1152 				} else {
   1153 					pmap_syncicache_page(md, pa);
   1154 					PMAPCOUNT(exec_synced_unmap);
   1155 				}
   1156 #endif /* ARM_MMU_EXTENDED */
   1157 			}
   1158 #endif /* PMAP_CACHE_VIPT */
   1159 			break;
   1160 		}
   1161 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1162 		pv = *prevptr;				/* advance */
   1163 	}
   1164 
   1165 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1166 	/*
   1167 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1168 	 * clear the KMOD attribute from the page.
   1169 	 */
   1170 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1171 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1172 		md->pvh_attrs &= ~PVF_KMOD;
   1173 
   1174 	/*
   1175 	 * If this was a writeable page and there are no more writeable
   1176 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1177 	 * the contents to memory.
   1178 	 */
   1179 	if (arm_cache_prefer_mask != 0) {
   1180 		if (md->krw_mappings + md->urw_mappings == 0)
   1181 			md->pvh_attrs &= ~PVF_WRITE;
   1182 		PMAP_VALIDATE_MD_PAGE(md);
   1183 	}
   1184 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1185 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1186 
   1187 	return(pv);				/* return removed pv */
   1188 }
   1189 
   1190 /*
   1191  *
   1192  * pmap_modify_pv: Update pv flags
   1193  *
   1194  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1195  * => caller should NOT adjust pmap's wire_count
   1196  * => caller must call pmap_vac_me_harder() if writable status of a page
   1197  *    may have changed.
   1198  * => we return the old flags
   1199  *
   1200  * Modify a physical-virtual mapping in the pv table
   1201  */
   1202 static u_int
   1203 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1204     u_int clr_mask, u_int set_mask)
   1205 {
   1206 	struct pv_entry *npv;
   1207 	u_int flags, oflags;
   1208 
   1209 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1210 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1211 
   1212 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1213 		return (0);
   1214 
   1215 	NPDEBUG(PDB_PVDUMP,
   1216 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1217 
   1218 	/*
   1219 	 * There is at least one VA mapping this page.
   1220 	 */
   1221 
   1222 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1223 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1224 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1225 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1226 			md->pvh_attrs |= PVF_DIRTY;
   1227 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1228 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1229 	}
   1230 
   1231 	oflags = npv->pv_flags;
   1232 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1233 
   1234 	if ((flags ^ oflags) & PVF_WIRED) {
   1235 		if (flags & PVF_WIRED)
   1236 			++pm->pm_stats.wired_count;
   1237 		else
   1238 			--pm->pm_stats.wired_count;
   1239 	}
   1240 
   1241 	if ((flags ^ oflags) & PVF_WRITE) {
   1242 		if (pm == pmap_kernel()) {
   1243 			if (flags & PVF_WRITE) {
   1244 				md->krw_mappings++;
   1245 				md->kro_mappings--;
   1246 			} else {
   1247 				md->kro_mappings++;
   1248 				md->krw_mappings--;
   1249 			}
   1250 		} else {
   1251 			if (flags & PVF_WRITE) {
   1252 				md->urw_mappings++;
   1253 				md->uro_mappings--;
   1254 			} else {
   1255 				md->uro_mappings++;
   1256 				md->urw_mappings--;
   1257 			}
   1258 		}
   1259 	}
   1260 #ifdef PMAP_CACHE_VIPT
   1261 	if (arm_cache_prefer_mask != 0) {
   1262 		if (md->urw_mappings + md->krw_mappings == 0) {
   1263 			md->pvh_attrs &= ~PVF_WRITE;
   1264 		} else {
   1265 			md->pvh_attrs |= PVF_WRITE;
   1266 		}
   1267 	}
   1268 #ifndef ARM_MMU_EXTENDED
   1269 	/*
   1270 	 * We have two cases here: the first is from enter_pv (new exec
   1271 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1272 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1273 	 * to do what pmap_remove_pv would do.
   1274 	 */
   1275 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1276 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1277 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1278 		pmap_syncicache_page(md, pa);
   1279 		PMAPCOUNT(exec_synced_remap);
   1280 	}
   1281 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1282 #endif /* !ARM_MMU_EXTENDED */
   1283 #endif /* PMAP_CACHE_VIPT */
   1284 
   1285 	PMAPCOUNT(remappings);
   1286 
   1287 	return (oflags);
   1288 }
   1289 
   1290 /*
   1291  * Allocate an L1 translation table for the specified pmap.
   1292  * This is called at pmap creation time.
   1293  */
   1294 static void
   1295 pmap_alloc_l1(pmap_t pm)
   1296 {
   1297 #ifdef ARM_MMU_EXTENDED
   1298 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1299 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1300 	struct vm_page *pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
   1301 #else
   1302 	struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1303 #endif
   1304 	bool ok __diagused;
   1305 	KASSERT(pg != NULL);
   1306 	pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
   1307 	vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0xdeadbeef);
   1308 	KASSERT(ok);
   1309 	KASSERT(va >= KERNEL_BASE);
   1310 
   1311 #else
   1312 	KASSERTMSG(kernel_map != NULL, "pm %p", pm);
   1313 	vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1314 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1315 	KASSERT(!va);
   1316 	pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
   1317 #endif
   1318 	pm->pm_l1 = (pd_entry_t *)va;
   1319 #else
   1320 	struct l1_ttable *l1;
   1321 	uint8_t domain;
   1322 
   1323 	/*
   1324 	 * Remove the L1 at the head of the LRU list
   1325 	 */
   1326 	mutex_spin_enter(&l1_lru_lock);
   1327 	l1 = TAILQ_FIRST(&l1_lru_list);
   1328 	KDASSERT(l1 != NULL);
   1329 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1330 
   1331 	/*
   1332 	 * Pick the first available domain number, and update
   1333 	 * the link to the next number.
   1334 	 */
   1335 	domain = l1->l1_domain_first;
   1336 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1337 
   1338 	/*
   1339 	 * If there are still free domain numbers in this L1,
   1340 	 * put it back on the TAIL of the LRU list.
   1341 	 */
   1342 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1343 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1344 
   1345 	mutex_spin_exit(&l1_lru_lock);
   1346 
   1347 	/*
   1348 	 * Fix up the relevant bits in the pmap structure
   1349 	 */
   1350 	pm->pm_l1 = l1;
   1351 	pm->pm_domain = domain + 1;
   1352 #endif
   1353 }
   1354 
   1355 /*
   1356  * Free an L1 translation table.
   1357  * This is called at pmap destruction time.
   1358  */
   1359 static void
   1360 pmap_free_l1(pmap_t pm)
   1361 {
   1362 #ifdef ARM_MMU_EXTENDED
   1363 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1364 	struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
   1365 	uvm_pagefree(pg);
   1366 #else
   1367 	uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
   1368 #endif
   1369 	pm->pm_l1 = NULL;
   1370 	pm->pm_l1_pa = 0;
   1371 #else
   1372 	struct l1_ttable *l1 = pm->pm_l1;
   1373 
   1374 	mutex_spin_enter(&l1_lru_lock);
   1375 
   1376 	/*
   1377 	 * If this L1 is currently on the LRU list, remove it.
   1378 	 */
   1379 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1380 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1381 
   1382 	/*
   1383 	 * Free up the domain number which was allocated to the pmap
   1384 	 */
   1385 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1386 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1387 	l1->l1_domain_use_count--;
   1388 
   1389 	/*
   1390 	 * The L1 now must have at least 1 free domain, so add
   1391 	 * it back to the LRU list. If the use count is zero,
   1392 	 * put it at the head of the list, otherwise it goes
   1393 	 * to the tail.
   1394 	 */
   1395 	if (l1->l1_domain_use_count == 0)
   1396 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1397 	else
   1398 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1399 
   1400 	mutex_spin_exit(&l1_lru_lock);
   1401 #endif /* ARM_MMU_EXTENDED */
   1402 }
   1403 
   1404 #ifndef ARM_MMU_EXTENDED
   1405 static inline void
   1406 pmap_use_l1(pmap_t pm)
   1407 {
   1408 	struct l1_ttable *l1;
   1409 
   1410 	/*
   1411 	 * Do nothing if we're in interrupt context.
   1412 	 * Access to an L1 by the kernel pmap must not affect
   1413 	 * the LRU list.
   1414 	 */
   1415 	if (cpu_intr_p() || pm == pmap_kernel())
   1416 		return;
   1417 
   1418 	l1 = pm->pm_l1;
   1419 
   1420 	/*
   1421 	 * If the L1 is not currently on the LRU list, just return
   1422 	 */
   1423 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1424 		return;
   1425 
   1426 	mutex_spin_enter(&l1_lru_lock);
   1427 
   1428 	/*
   1429 	 * Check the use count again, now that we've acquired the lock
   1430 	 */
   1431 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1432 		mutex_spin_exit(&l1_lru_lock);
   1433 		return;
   1434 	}
   1435 
   1436 	/*
   1437 	 * Move the L1 to the back of the LRU list
   1438 	 */
   1439 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1440 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1441 
   1442 	mutex_spin_exit(&l1_lru_lock);
   1443 }
   1444 #endif /* !ARM_MMU_EXTENDED */
   1445 
   1446 /*
   1447  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1448  *
   1449  * Free an L2 descriptor table.
   1450  */
   1451 static inline void
   1452 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1453 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1454 #else
   1455 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1456 #endif
   1457 {
   1458 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1459 	/*
   1460 	 * Note: With a write-back cache, we may need to sync this
   1461 	 * L2 table before re-using it.
   1462 	 * This is because it may have belonged to a non-current
   1463 	 * pmap, in which case the cache syncs would have been
   1464 	 * skipped for the pages that were being unmapped. If the
   1465 	 * L2 table were then to be immediately re-allocated to
   1466 	 * the *current* pmap, it may well contain stale mappings
   1467 	 * which have not yet been cleared by a cache write-back
   1468 	 * and so would still be visible to the mmu.
   1469 	 */
   1470 	if (need_sync)
   1471 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1472 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1473 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1474 }
   1475 
   1476 /*
   1477  * Returns a pointer to the L2 bucket associated with the specified pmap
   1478  * and VA, or NULL if no L2 bucket exists for the address.
   1479  */
   1480 static inline struct l2_bucket *
   1481 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1482 {
   1483 	const size_t l1slot = l1pte_index(va);
   1484 	struct l2_dtable *l2;
   1485 	struct l2_bucket *l2b;
   1486 
   1487 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1488 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1489 		return (NULL);
   1490 
   1491 	return (l2b);
   1492 }
   1493 
   1494 /*
   1495  * Returns a pointer to the L2 bucket associated with the specified pmap
   1496  * and VA.
   1497  *
   1498  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1499  * bucket/page table in place.
   1500  *
   1501  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1502  * increment the bucket occupancy counter appropriately *before*
   1503  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1504  * the bucket/page in the meantime.
   1505  */
   1506 static struct l2_bucket *
   1507 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1508 {
   1509 	const size_t l1slot = l1pte_index(va);
   1510 	struct l2_dtable *l2;
   1511 
   1512 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1513 		/*
   1514 		 * No mapping at this address, as there is
   1515 		 * no entry in the L1 table.
   1516 		 * Need to allocate a new l2_dtable.
   1517 		 */
   1518 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1519 			return (NULL);
   1520 
   1521 		/*
   1522 		 * Link it into the parent pmap
   1523 		 */
   1524 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1525 	}
   1526 
   1527 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1528 
   1529 	/*
   1530 	 * Fetch pointer to the L2 page table associated with the address.
   1531 	 */
   1532 	if (l2b->l2b_kva == NULL) {
   1533 		pt_entry_t *ptep;
   1534 
   1535 		/*
   1536 		 * No L2 page table has been allocated. Chances are, this
   1537 		 * is because we just allocated the l2_dtable, above.
   1538 		 */
   1539 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1540 			/*
   1541 			 * Oops, no more L2 page tables available at this
   1542 			 * time. We may need to deallocate the l2_dtable
   1543 			 * if we allocated a new one above.
   1544 			 */
   1545 			if (l2->l2_occupancy == 0) {
   1546 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1547 				pmap_free_l2_dtable(l2);
   1548 			}
   1549 			return (NULL);
   1550 		}
   1551 
   1552 		l2->l2_occupancy++;
   1553 		l2b->l2b_kva = ptep;
   1554 		l2b->l2b_l1slot = l1slot;
   1555 
   1556 #ifdef ARM_MMU_EXTENDED
   1557 		/*
   1558 		 * We know there will be a mapping here, so simply
   1559 		 * enter this PTP into the L1 now.
   1560 		 */
   1561 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1562 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1563 		    | L1_C_DOM(pmap_domain(pm));
   1564 		KASSERT(*pdep == 0);
   1565 		l1pte_setone(pdep, npde);
   1566 		PTE_SYNC(pdep);
   1567 #endif
   1568 	}
   1569 
   1570 	return (l2b);
   1571 }
   1572 
   1573 /*
   1574  * One or more mappings in the specified L2 descriptor table have just been
   1575  * invalidated.
   1576  *
   1577  * Garbage collect the metadata and descriptor table itself if necessary.
   1578  *
   1579  * The pmap lock must be acquired when this is called (not necessary
   1580  * for the kernel pmap).
   1581  */
   1582 static void
   1583 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1584 {
   1585 	KDASSERT(count <= l2b->l2b_occupancy);
   1586 
   1587 	/*
   1588 	 * Update the bucket's reference count according to how many
   1589 	 * PTEs the caller has just invalidated.
   1590 	 */
   1591 	l2b->l2b_occupancy -= count;
   1592 
   1593 	/*
   1594 	 * Note:
   1595 	 *
   1596 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1597 	 * as that would require checking all Level 1 page tables and
   1598 	 * removing any references to the Level 2 page table. See also the
   1599 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1600 	 *
   1601 	 * We make do with just invalidating the mapping in the L2 table.
   1602 	 *
   1603 	 * This isn't really a big deal in practice and, in fact, leads
   1604 	 * to a performance win over time as we don't need to continually
   1605 	 * alloc/free.
   1606 	 */
   1607 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1608 		return;
   1609 
   1610 	/*
   1611 	 * There are no more valid mappings in this level 2 page table.
   1612 	 * Go ahead and NULL-out the pointer in the bucket, then
   1613 	 * free the page table.
   1614 	 */
   1615 	const size_t l1slot = l2b->l2b_l1slot;
   1616 	pt_entry_t * const ptep = l2b->l2b_kva;
   1617 	l2b->l2b_kva = NULL;
   1618 
   1619 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1620 	pd_entry_t pde __diagused = *pdep;
   1621 
   1622 #ifdef ARM_MMU_EXTENDED
   1623 	/*
   1624 	 * Invalidate the L1 slot.
   1625 	 */
   1626 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1627 #else
   1628 	/*
   1629 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1630 	 */
   1631 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1632 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1633 #endif
   1634 		l1pte_setone(pdep, 0);
   1635 		PDE_SYNC(pdep);
   1636 #ifndef ARM_MMU_EXTENDED
   1637 	}
   1638 #endif
   1639 
   1640 	/*
   1641 	 * Release the L2 descriptor table back to the pool cache.
   1642 	 */
   1643 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1644 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1645 #else
   1646 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1647 #endif
   1648 
   1649 	/*
   1650 	 * Update the reference count in the associated l2_dtable
   1651 	 */
   1652 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1653 	if (--l2->l2_occupancy > 0)
   1654 		return;
   1655 
   1656 	/*
   1657 	 * There are no more valid mappings in any of the Level 1
   1658 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1659 	 * the pointer in the parent pmap and free the l2_dtable.
   1660 	 */
   1661 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1662 	pmap_free_l2_dtable(l2);
   1663 }
   1664 
   1665 /*
   1666  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1667  * structures.
   1668  */
   1669 static int
   1670 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1671 {
   1672 #ifndef PMAP_INCLUDE_PTE_SYNC
   1673 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1674 
   1675 	/*
   1676 	 * The mappings for these page tables were initially made using
   1677 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1678 	 * mode will not be right for page table mappings. To avoid
   1679 	 * polluting the pmap_kenter_pa() code with a special case for
   1680 	 * page tables, we simply fix up the cache-mode here if it's not
   1681 	 * correct.
   1682 	 */
   1683 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1684 		const struct l2_bucket * const l2b =
   1685 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1686 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1687 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1688 		const pt_entry_t opte = *ptep;
   1689 
   1690 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1691 			/*
   1692 			 * Page tables must have the cache-mode set correctly.
   1693 			 */
   1694 			const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
   1695 			    | pte_l2_s_cache_mode_pt;
   1696 			l2pte_set(ptep, npte, opte);
   1697 			PTE_SYNC(ptep);
   1698 			cpu_tlb_flushD_SE(va);
   1699 			cpu_cpwait();
   1700 		}
   1701 	}
   1702 #endif
   1703 
   1704 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1705 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1706 	return (0);
   1707 }
   1708 
   1709 static int
   1710 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1711 {
   1712 
   1713 	memset(v, 0, sizeof(struct l2_dtable));
   1714 	return (0);
   1715 }
   1716 
   1717 static int
   1718 pmap_pmap_ctor(void *arg, void *v, int flags)
   1719 {
   1720 
   1721 	memset(v, 0, sizeof(struct pmap));
   1722 	return (0);
   1723 }
   1724 
   1725 static void
   1726 pmap_pinit(pmap_t pm)
   1727 {
   1728 #ifndef ARM_HAS_VBAR
   1729 	struct l2_bucket *l2b;
   1730 
   1731 	if (vector_page < KERNEL_BASE) {
   1732 		/*
   1733 		 * Map the vector page.
   1734 		 */
   1735 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1736 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1737 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1738 		pmap_update(pm);
   1739 
   1740 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1741 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1742 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1743 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1744 		    L1_C_DOM(pmap_domain(pm));
   1745 	} else
   1746 		pm->pm_pl1vec = NULL;
   1747 #endif
   1748 }
   1749 
   1750 #ifdef PMAP_CACHE_VIVT
   1751 /*
   1752  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1753  * there is more than one mapping and at least one of them is writable.
   1754  * Since we purge the cache on every context switch, we only need to check for
   1755  * other mappings within the same pmap, or kernel_pmap.
   1756  * This function is also called when a page is unmapped, to possibly reenable
   1757  * caching on any remaining mappings.
   1758  *
   1759  * The code implements the following logic, where:
   1760  *
   1761  * KW = # of kernel read/write pages
   1762  * KR = # of kernel read only pages
   1763  * UW = # of user read/write pages
   1764  * UR = # of user read only pages
   1765  *
   1766  * KC = kernel mapping is cacheable
   1767  * UC = user mapping is cacheable
   1768  *
   1769  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1770  *             +---------------------------------------------
   1771  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1772  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1773  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1774  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1775  */
   1776 
   1777 static const int pmap_vac_flags[4][4] = {
   1778 	{-1,		0,		0,		PVF_KNC},
   1779 	{0,		0,		PVF_NC,		PVF_NC},
   1780 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1781 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1782 };
   1783 
   1784 static inline int
   1785 pmap_get_vac_flags(const struct vm_page_md *md)
   1786 {
   1787 	int kidx, uidx;
   1788 
   1789 	kidx = 0;
   1790 	if (md->kro_mappings || md->krw_mappings > 1)
   1791 		kidx |= 1;
   1792 	if (md->krw_mappings)
   1793 		kidx |= 2;
   1794 
   1795 	uidx = 0;
   1796 	if (md->uro_mappings || md->urw_mappings > 1)
   1797 		uidx |= 1;
   1798 	if (md->urw_mappings)
   1799 		uidx |= 2;
   1800 
   1801 	return (pmap_vac_flags[uidx][kidx]);
   1802 }
   1803 
   1804 static inline void
   1805 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1806 {
   1807 	int nattr;
   1808 
   1809 	nattr = pmap_get_vac_flags(md);
   1810 
   1811 	if (nattr < 0) {
   1812 		md->pvh_attrs &= ~PVF_NC;
   1813 		return;
   1814 	}
   1815 
   1816 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1817 		return;
   1818 
   1819 	if (pm == pmap_kernel())
   1820 		pmap_vac_me_kpmap(md, pa, pm, va);
   1821 	else
   1822 		pmap_vac_me_user(md, pa, pm, va);
   1823 
   1824 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1825 }
   1826 
   1827 static void
   1828 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1829 {
   1830 	u_int u_cacheable, u_entries;
   1831 	struct pv_entry *pv;
   1832 	pmap_t last_pmap = pm;
   1833 
   1834 	/*
   1835 	 * Pass one, see if there are both kernel and user pmaps for
   1836 	 * this page.  Calculate whether there are user-writable or
   1837 	 * kernel-writable pages.
   1838 	 */
   1839 	u_cacheable = 0;
   1840 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1841 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1842 			u_cacheable++;
   1843 	}
   1844 
   1845 	u_entries = md->urw_mappings + md->uro_mappings;
   1846 
   1847 	/*
   1848 	 * We know we have just been updating a kernel entry, so if
   1849 	 * all user pages are already cacheable, then there is nothing
   1850 	 * further to do.
   1851 	 */
   1852 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1853 		return;
   1854 
   1855 	if (u_entries) {
   1856 		/*
   1857 		 * Scan over the list again, for each entry, if it
   1858 		 * might not be set correctly, call pmap_vac_me_user
   1859 		 * to recalculate the settings.
   1860 		 */
   1861 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1862 			/*
   1863 			 * We know kernel mappings will get set
   1864 			 * correctly in other calls.  We also know
   1865 			 * that if the pmap is the same as last_pmap
   1866 			 * then we've just handled this entry.
   1867 			 */
   1868 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1869 				continue;
   1870 
   1871 			/*
   1872 			 * If there are kernel entries and this page
   1873 			 * is writable but non-cacheable, then we can
   1874 			 * skip this entry also.
   1875 			 */
   1876 			if (md->k_mappings &&
   1877 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1878 			    (PVF_NC | PVF_WRITE))
   1879 				continue;
   1880 
   1881 			/*
   1882 			 * Similarly if there are no kernel-writable
   1883 			 * entries and the page is already
   1884 			 * read-only/cacheable.
   1885 			 */
   1886 			if (md->krw_mappings == 0 &&
   1887 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1888 				continue;
   1889 
   1890 			/*
   1891 			 * For some of the remaining cases, we know
   1892 			 * that we must recalculate, but for others we
   1893 			 * can't tell if they are correct or not, so
   1894 			 * we recalculate anyway.
   1895 			 */
   1896 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1897 		}
   1898 
   1899 		if (md->k_mappings == 0)
   1900 			return;
   1901 	}
   1902 
   1903 	pmap_vac_me_user(md, pa, pm, va);
   1904 }
   1905 
   1906 static void
   1907 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1908 {
   1909 	pmap_t kpmap = pmap_kernel();
   1910 	struct pv_entry *pv, *npv = NULL;
   1911 	u_int entries = 0;
   1912 	u_int writable = 0;
   1913 	u_int cacheable_entries = 0;
   1914 	u_int kern_cacheable = 0;
   1915 	u_int other_writable = 0;
   1916 
   1917 	/*
   1918 	 * Count mappings and writable mappings in this pmap.
   1919 	 * Include kernel mappings as part of our own.
   1920 	 * Keep a pointer to the first one.
   1921 	 */
   1922 	npv = NULL;
   1923 	KASSERT(pmap_page_locked_p(md));
   1924 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1925 		/* Count mappings in the same pmap */
   1926 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1927 			if (entries++ == 0)
   1928 				npv = pv;
   1929 
   1930 			/* Cacheable mappings */
   1931 			if ((pv->pv_flags & PVF_NC) == 0) {
   1932 				cacheable_entries++;
   1933 				if (kpmap == pv->pv_pmap)
   1934 					kern_cacheable++;
   1935 			}
   1936 
   1937 			/* Writable mappings */
   1938 			if (pv->pv_flags & PVF_WRITE)
   1939 				++writable;
   1940 		} else
   1941 		if (pv->pv_flags & PVF_WRITE)
   1942 			other_writable = 1;
   1943 	}
   1944 
   1945 	/*
   1946 	 * Enable or disable caching as necessary.
   1947 	 * Note: the first entry might be part of the kernel pmap,
   1948 	 * so we can't assume this is indicative of the state of the
   1949 	 * other (maybe non-kpmap) entries.
   1950 	 */
   1951 	if ((entries > 1 && writable) ||
   1952 	    (entries > 0 && pm == kpmap && other_writable)) {
   1953 		if (cacheable_entries == 0) {
   1954 			return;
   1955 		}
   1956 
   1957 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1958 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1959 			    (pv->pv_flags & PVF_NC))
   1960 				continue;
   1961 
   1962 			pv->pv_flags |= PVF_NC;
   1963 
   1964 			struct l2_bucket * const l2b
   1965 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1966 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1967 			pt_entry_t * const ptep
   1968 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1969 			const pt_entry_t opte = *ptep;
   1970 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1971 
   1972 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1973 			    && l2pte_valid_p(npte)) {
   1974 #ifdef PMAP_CACHE_VIVT
   1975 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1976 				    true, pv->pv_flags);
   1977 #endif
   1978 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1979 				    pv->pv_flags);
   1980 			}
   1981 
   1982 			l2pte_set(ptep, npte, opte);
   1983 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1984 		}
   1985 		cpu_cpwait();
   1986 	} else
   1987 	if (entries > cacheable_entries) {
   1988 		/*
   1989 		 * Turn cacheing back on for some pages.  If it is a kernel
   1990 		 * page, only do so if there are no other writable pages.
   1991 		 */
   1992 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1993 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1994 			    (kpmap != pv->pv_pmap || other_writable)))
   1995 				continue;
   1996 
   1997 			pv->pv_flags &= ~PVF_NC;
   1998 
   1999 			struct l2_bucket * const l2b
   2000 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2001 			KASSERTMSG(l2b != NULL, "%#lx", va);
   2002 			pt_entry_t * const ptep
   2003 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2004 			const pt_entry_t opte = *ptep;
   2005 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   2006 			    | pte_l2_s_cache_mode;
   2007 
   2008 			if (l2pte_valid_p(opte)) {
   2009 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2010 				    pv->pv_flags);
   2011 			}
   2012 
   2013 			l2pte_set(ptep, npte, opte);
   2014 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2015 		}
   2016 	}
   2017 }
   2018 #endif
   2019 
   2020 #ifdef PMAP_CACHE_VIPT
   2021 static void
   2022 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2023 {
   2024 #ifndef ARM_MMU_EXTENDED
   2025 	struct pv_entry *pv;
   2026 	vaddr_t tst_mask;
   2027 	bool bad_alias;
   2028 	const u_int
   2029 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2030 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2031 
   2032 	/* do we need to do anything? */
   2033 	if (arm_cache_prefer_mask == 0)
   2034 		return;
   2035 
   2036 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   2037 	    md, pm, va));
   2038 
   2039 	KASSERT(!va || pm);
   2040 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2041 
   2042 	/* Already a conflict? */
   2043 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2044 		/* just an add, things are already non-cached */
   2045 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2046 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2047 		bad_alias = false;
   2048 		if (va) {
   2049 			PMAPCOUNT(vac_color_none);
   2050 			bad_alias = true;
   2051 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2052 			goto fixup;
   2053 		}
   2054 		pv = SLIST_FIRST(&md->pvh_list);
   2055 		/* the list can't be empty because it would be cachable */
   2056 		if (md->pvh_attrs & PVF_KMPAGE) {
   2057 			tst_mask = md->pvh_attrs;
   2058 		} else {
   2059 			KASSERT(pv);
   2060 			tst_mask = pv->pv_va;
   2061 			pv = SLIST_NEXT(pv, pv_link);
   2062 		}
   2063 		/*
   2064 		 * Only check for a bad alias if we have writable mappings.
   2065 		 */
   2066 		tst_mask &= arm_cache_prefer_mask;
   2067 		if (rw_mappings > 0) {
   2068 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2069 				/* if there's a bad alias, stop checking. */
   2070 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2071 					bad_alias = true;
   2072 			}
   2073 			md->pvh_attrs |= PVF_WRITE;
   2074 			if (!bad_alias)
   2075 				md->pvh_attrs |= PVF_DIRTY;
   2076 		} else {
   2077 			/*
   2078 			 * We have only read-only mappings.  Let's see if there
   2079 			 * are multiple colors in use or if we mapped a KMPAGE.
   2080 			 * If the latter, we have a bad alias.  If the former,
   2081 			 * we need to remember that.
   2082 			 */
   2083 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2084 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2085 					if (md->pvh_attrs & PVF_KMPAGE)
   2086 						bad_alias = true;
   2087 					break;
   2088 				}
   2089 			}
   2090 			md->pvh_attrs &= ~PVF_WRITE;
   2091 			/*
   2092 			 * No KMPAGE and we exited early, so we must have
   2093 			 * multiple color mappings.
   2094 			 */
   2095 			if (!bad_alias && pv != NULL)
   2096 				md->pvh_attrs |= PVF_MULTCLR;
   2097 		}
   2098 
   2099 		/* If no conflicting colors, set everything back to cached */
   2100 		if (!bad_alias) {
   2101 #ifdef DEBUG
   2102 			if ((md->pvh_attrs & PVF_WRITE)
   2103 			    || ro_mappings < 2) {
   2104 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2105 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2106 			}
   2107 #endif
   2108 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2109 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2110 			/*
   2111 			 * Restore DIRTY bit if page is modified
   2112 			 */
   2113 			if (md->pvh_attrs & PVF_DMOD)
   2114 				md->pvh_attrs |= PVF_DIRTY;
   2115 			PMAPCOUNT(vac_color_restore);
   2116 		} else {
   2117 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2118 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2119 		}
   2120 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2121 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2122 	} else if (!va) {
   2123 		KASSERT(pmap_is_page_colored_p(md));
   2124 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2125 		    || (md->pvh_attrs & PVF_DIRTY));
   2126 		if (rw_mappings == 0) {
   2127 			md->pvh_attrs &= ~PVF_WRITE;
   2128 			if (ro_mappings == 1
   2129 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2130 				/*
   2131 				 * If this is the last readonly mapping
   2132 				 * but it doesn't match the current color
   2133 				 * for the page, change the current color
   2134 				 * to match this last readonly mapping.
   2135 				 */
   2136 				pv = SLIST_FIRST(&md->pvh_list);
   2137 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2138 				    & arm_cache_prefer_mask;
   2139 				if (tst_mask) {
   2140 					md->pvh_attrs ^= tst_mask;
   2141 					PMAPCOUNT(vac_color_change);
   2142 				}
   2143 			}
   2144 		}
   2145 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2146 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2147 		return;
   2148 	} else if (!pmap_is_page_colored_p(md)) {
   2149 		/* not colored so we just use its color */
   2150 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2151 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2152 		PMAPCOUNT(vac_color_new);
   2153 		md->pvh_attrs &= PAGE_SIZE - 1;
   2154 		md->pvh_attrs |= PVF_COLORED
   2155 		    | (va & arm_cache_prefer_mask)
   2156 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2157 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2158 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2159 		return;
   2160 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2161 		bad_alias = false;
   2162 		if (rw_mappings > 0) {
   2163 			/*
   2164 			 * We now have writeable mappings and if we have
   2165 			 * readonly mappings in more than once color, we have
   2166 			 * an aliasing problem.  Regardless mark the page as
   2167 			 * writeable.
   2168 			 */
   2169 			if (md->pvh_attrs & PVF_MULTCLR) {
   2170 				if (ro_mappings < 2) {
   2171 					/*
   2172 					 * If we only have less than two
   2173 					 * read-only mappings, just flush the
   2174 					 * non-primary colors from the cache.
   2175 					 */
   2176 					pmap_flush_page(md, pa,
   2177 					    PMAP_FLUSH_SECONDARY);
   2178 				} else {
   2179 					bad_alias = true;
   2180 				}
   2181 			}
   2182 			md->pvh_attrs |= PVF_WRITE;
   2183 		}
   2184 		/* If no conflicting colors, set everything back to cached */
   2185 		if (!bad_alias) {
   2186 #ifdef DEBUG
   2187 			if (rw_mappings > 0
   2188 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2189 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2190 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2191 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2192 			}
   2193 #endif
   2194 			if (SLIST_EMPTY(&md->pvh_list))
   2195 				PMAPCOUNT(vac_color_reuse);
   2196 			else
   2197 				PMAPCOUNT(vac_color_ok);
   2198 
   2199 			/* matching color, just return */
   2200 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2201 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2202 			return;
   2203 		}
   2204 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2205 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2206 
   2207 		/* color conflict.  evict from cache. */
   2208 
   2209 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2210 		md->pvh_attrs &= ~PVF_COLORED;
   2211 		md->pvh_attrs |= PVF_NC;
   2212 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2213 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2214 		PMAPCOUNT(vac_color_erase);
   2215 	} else if (rw_mappings == 0
   2216 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2217 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2218 
   2219 		/*
   2220 		 * If the page has dirty cache lines, clean it.
   2221 		 */
   2222 		if (md->pvh_attrs & PVF_DIRTY)
   2223 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2224 
   2225 		/*
   2226 		 * If this is the first remapping (we know that there are no
   2227 		 * writeable mappings), then this is a simple color change.
   2228 		 * Otherwise this is a seconary r/o mapping, which means
   2229 		 * we don't have to do anything.
   2230 		 */
   2231 		if (ro_mappings == 1) {
   2232 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2233 			md->pvh_attrs &= PAGE_SIZE - 1;
   2234 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2235 			PMAPCOUNT(vac_color_change);
   2236 		} else {
   2237 			PMAPCOUNT(vac_color_blind);
   2238 		}
   2239 		md->pvh_attrs |= PVF_MULTCLR;
   2240 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2241 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2242 		return;
   2243 	} else {
   2244 		if (rw_mappings > 0)
   2245 			md->pvh_attrs |= PVF_WRITE;
   2246 
   2247 		/* color conflict.  evict from cache. */
   2248 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2249 
   2250 		/* the list can't be empty because this was a enter/modify */
   2251 		pv = SLIST_FIRST(&md->pvh_list);
   2252 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2253 			KASSERT(pv);
   2254 			/*
   2255 			 * If there's only one mapped page, change color to the
   2256 			 * page's new color and return.  Restore the DIRTY bit
   2257 			 * that was erased by pmap_flush_page.
   2258 			 */
   2259 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2260 				md->pvh_attrs &= PAGE_SIZE - 1;
   2261 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2262 				if (md->pvh_attrs & PVF_DMOD)
   2263 					md->pvh_attrs |= PVF_DIRTY;
   2264 				PMAPCOUNT(vac_color_change);
   2265 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2266 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2267 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2268 				return;
   2269 			}
   2270 		}
   2271 		bad_alias = true;
   2272 		md->pvh_attrs &= ~PVF_COLORED;
   2273 		md->pvh_attrs |= PVF_NC;
   2274 		PMAPCOUNT(vac_color_erase);
   2275 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2276 	}
   2277 
   2278   fixup:
   2279 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2280 
   2281 	/*
   2282 	 * Turn cacheing on/off for all pages.
   2283 	 */
   2284 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2285 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2286 		    pv->pv_va);
   2287 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2288 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2289 		const pt_entry_t opte = *ptep;
   2290 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2291 		if (bad_alias) {
   2292 			pv->pv_flags |= PVF_NC;
   2293 		} else {
   2294 			pv->pv_flags &= ~PVF_NC;
   2295 			npte |= pte_l2_s_cache_mode;
   2296 		}
   2297 
   2298 		if (opte == npte)	/* only update is there's a change */
   2299 			continue;
   2300 
   2301 		if (l2pte_valid_p(npte)) {
   2302 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2303 		}
   2304 
   2305 		l2pte_set(ptep, npte, opte);
   2306 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2307 	}
   2308 #endif /* !ARM_MMU_EXTENDED */
   2309 }
   2310 #endif	/* PMAP_CACHE_VIPT */
   2311 
   2312 
   2313 /*
   2314  * Modify pte bits for all ptes corresponding to the given physical address.
   2315  * We use `maskbits' rather than `clearbits' because we're always passing
   2316  * constants and the latter would require an extra inversion at run-time.
   2317  */
   2318 static void
   2319 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2320 {
   2321 	struct pv_entry *pv;
   2322 #ifdef PMAP_CACHE_VIPT
   2323 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2324 #ifdef ARM_MMU_EXTENDED
   2325 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
   2326 #else
   2327 	const u_int execbits = 0;
   2328 	bool need_vac_me_harder = false;
   2329 	bool need_syncicache = false;
   2330 #endif
   2331 #else
   2332 	const u_int execbits = 0;
   2333 #endif
   2334 
   2335 	NPDEBUG(PDB_BITS,
   2336 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2337 	    md, maskbits));
   2338 
   2339 #ifdef PMAP_CACHE_VIPT
   2340 	/*
   2341 	 * If we might want to sync the I-cache and we've modified it,
   2342 	 * then we know we definitely need to sync or discard it.
   2343 	 */
   2344 	if (want_syncicache) {
   2345 #ifdef ARM_MMU_EXTENDED
   2346 		if (md->pvh_attrs & PVF_MOD)
   2347 			md->pvh_attrs &= ~PVF_EXEC;
   2348 #else
   2349 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2350 #endif
   2351 	}
   2352 #endif
   2353 	KASSERT(pmap_page_locked_p(md));
   2354 
   2355 	/*
   2356 	 * Clear saved attributes (modify, reference)
   2357 	 */
   2358 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2359 
   2360 	if (SLIST_EMPTY(&md->pvh_list)) {
   2361 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2362 		if (need_syncicache) {
   2363 			/*
   2364 			 * No one has it mapped, so just discard it.  The next
   2365 			 * exec remapping will cause it to be synced.
   2366 			 */
   2367 			md->pvh_attrs &= ~PVF_EXEC;
   2368 			PMAPCOUNT(exec_discarded_clearbit);
   2369 		}
   2370 #endif
   2371 		return;
   2372 	}
   2373 
   2374 	/*
   2375 	 * Loop over all current mappings setting/clearing as appropos
   2376 	 */
   2377 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2378 		pmap_t pm = pv->pv_pmap;
   2379 		const vaddr_t va = pv->pv_va;
   2380 		const u_int oflags = pv->pv_flags;
   2381 #ifndef ARM_MMU_EXTENDED
   2382 		/*
   2383 		 * Kernel entries are unmanaged and as such not to be changed.
   2384 		 */
   2385 		if (PV_IS_KENTRY_P(oflags))
   2386 			continue;
   2387 #endif
   2388 		pv->pv_flags &= ~maskbits;
   2389 
   2390 		pmap_release_page_lock(md);
   2391 		pmap_acquire_pmap_lock(pm);
   2392 
   2393 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2394 		if (l2b == NULL) {
   2395 			pmap_release_pmap_lock(pm);
   2396 			pmap_acquire_page_lock(md);
   2397 			continue;
   2398 		}
   2399 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2400 
   2401 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2402 		const pt_entry_t opte = *ptep;
   2403 		pt_entry_t npte = opte | execbits;
   2404 
   2405 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2406 
   2407 		NPDEBUG(PDB_BITS,
   2408 		    printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2409 			__func__, pv, pm, va, oflags));
   2410 
   2411 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2412 #ifdef PMAP_CACHE_VIVT
   2413 			if ((oflags & PVF_NC)) {
   2414 				/*
   2415 				 * Entry is not cacheable:
   2416 				 *
   2417 				 * Don't turn caching on again if this is a
   2418 				 * modified emulation. This would be
   2419 				 * inconsitent with the settings created by
   2420 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2421 				 * to re-enable cacheing.
   2422 				 *
   2423 				 * There's no need to call pmap_vac_me_harder()
   2424 				 * here: all pages are losing their write
   2425 				 * permission.
   2426 				 */
   2427 				if (maskbits & PVF_WRITE) {
   2428 					npte |= pte_l2_s_cache_mode;
   2429 					pv->pv_flags &= ~PVF_NC;
   2430 				}
   2431 			} else
   2432 			if (l2pte_writable_p(opte)) {
   2433 				/*
   2434 				 * Entry is writable/cacheable: check if pmap
   2435 				 * is current if it is flush it, otherwise it
   2436 				 * won't be in the cache
   2437 				 */
   2438 				pmap_cache_wbinv_page(pm, va,
   2439 				    (maskbits & PVF_REF) != 0,
   2440 				    oflags|PVF_WRITE);
   2441 			}
   2442 #endif
   2443 
   2444 			/* make the pte read only */
   2445 			npte = l2pte_set_readonly(npte);
   2446 
   2447 			pmap_acquire_page_lock(md);
   2448 #ifdef MULTIPROCESSOR
   2449 			pv = pmap_find_pv(md, pm, va);
   2450 #endif
   2451 			if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
   2452 				/*
   2453 				 * Keep alias accounting up to date
   2454 				 */
   2455 				if (pm == pmap_kernel()) {
   2456 					md->krw_mappings--;
   2457 					md->kro_mappings++;
   2458 				} else {
   2459 					md->urw_mappings--;
   2460 					md->uro_mappings++;
   2461 				}
   2462 #ifdef PMAP_CACHE_VIPT
   2463 				if (arm_cache_prefer_mask != 0) {
   2464 					if (md->urw_mappings + md->krw_mappings == 0) {
   2465 						md->pvh_attrs &= ~PVF_WRITE;
   2466 					} else {
   2467 						PMAP_VALIDATE_MD_PAGE(md);
   2468 					}
   2469 				}
   2470 #ifndef ARM_MMU_EXTENDED
   2471 				if (want_syncicache)
   2472 					need_syncicache = true;
   2473 				need_vac_me_harder = true;
   2474 #endif
   2475 #endif /* PMAP_CACHE_VIPT */
   2476 			}
   2477 			pmap_release_page_lock(md);
   2478 		}
   2479 
   2480 		if (maskbits & PVF_REF) {
   2481 			if (true
   2482 #ifndef ARM_MMU_EXTENDED
   2483 			    && (oflags & PVF_NC) == 0
   2484 #endif
   2485 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2486 			    && l2pte_valid_p(npte)) {
   2487 #ifdef PMAP_CACHE_VIVT
   2488 				/*
   2489 				 * Check npte here; we may have already
   2490 				 * done the wbinv above, and the validity
   2491 				 * of the PTE is the same for opte and
   2492 				 * npte.
   2493 				 */
   2494 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2495 #endif
   2496 			}
   2497 
   2498 			/*
   2499 			 * Make the PTE invalid so that we will take a
   2500 			 * page fault the next time the mapping is
   2501 			 * referenced.
   2502 			 */
   2503 			npte &= ~L2_TYPE_MASK;
   2504 			npte |= L2_TYPE_INV;
   2505 		}
   2506 
   2507 		if (npte != opte) {
   2508 			l2pte_set(ptep, npte, opte);
   2509 			PTE_SYNC(ptep);
   2510 
   2511 			/* Flush the TLB entry if a current pmap. */
   2512 			pmap_tlb_flush_SE(pm, va, oflags);
   2513 		}
   2514 
   2515 		pmap_release_pmap_lock(pm);
   2516 		pmap_acquire_page_lock(md);
   2517 
   2518 		NPDEBUG(PDB_BITS,
   2519 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2520 		    pm, va, opte, npte));
   2521 	}
   2522 
   2523 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2524 	/*
   2525 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2526 	 */
   2527 	if (need_syncicache) {
   2528 		pmap_release_page_lock(md);
   2529 		pmap_syncicache_page(md, pa);
   2530 		pmap_acquire_page_lock(md);
   2531 		PMAPCOUNT(exec_synced_clearbit);
   2532 	}
   2533 
   2534 	/*
   2535 	 * If we are changing this to read-only, we need to call vac_me_harder
   2536 	 * so we can change all the read-only pages to cacheable.  We pretend
   2537 	 * this as a page deletion.
   2538 	 */
   2539 	if (need_vac_me_harder) {
   2540 		if (md->pvh_attrs & PVF_NC)
   2541 			pmap_vac_me_harder(md, pa, NULL, 0);
   2542 	}
   2543 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   2544 }
   2545 
   2546 /*
   2547  * pmap_clean_page()
   2548  *
   2549  * This is a local function used to work out the best strategy to clean
   2550  * a single page referenced by its entry in the PV table. It's used by
   2551  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2552  *
   2553  * Its policy is effectively:
   2554  *  o If there are no mappings, we don't bother doing anything with the cache.
   2555  *  o If there is one mapping, we clean just that page.
   2556  *  o If there are multiple mappings, we clean the entire cache.
   2557  *
   2558  * So that some functions can be further optimised, it returns 0 if it didn't
   2559  * clean the entire cache, or 1 if it did.
   2560  *
   2561  * XXX One bug in this routine is that if the pv_entry has a single page
   2562  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2563  * just the 1 page. Since this should not occur in everyday use and if it does
   2564  * it will just result in not the most efficient clean for the page.
   2565  */
   2566 #ifdef PMAP_CACHE_VIVT
   2567 static bool
   2568 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2569 {
   2570 	struct pv_entry *pv;
   2571 	pmap_t pm_to_clean = NULL;
   2572 	bool cache_needs_cleaning = false;
   2573 	vaddr_t page_to_clean = 0;
   2574 	u_int flags = 0;
   2575 
   2576 	/*
   2577 	 * Since we flush the cache each time we change to a different
   2578 	 * user vmspace, we only need to flush the page if it is in the
   2579 	 * current pmap.
   2580 	 */
   2581 	KASSERT(pmap_page_locked_p(md));
   2582 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2583 		if (pmap_is_current(pv->pv_pmap)) {
   2584 			flags |= pv->pv_flags;
   2585 			/*
   2586 			 * The page is mapped non-cacheable in
   2587 			 * this map.  No need to flush the cache.
   2588 			 */
   2589 			if (pv->pv_flags & PVF_NC) {
   2590 #ifdef DIAGNOSTIC
   2591 				KASSERT(!cache_needs_cleaning);
   2592 #endif
   2593 				break;
   2594 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2595 				continue;
   2596 			if (cache_needs_cleaning) {
   2597 				page_to_clean = 0;
   2598 				break;
   2599 			} else {
   2600 				page_to_clean = pv->pv_va;
   2601 				pm_to_clean = pv->pv_pmap;
   2602 			}
   2603 			cache_needs_cleaning = true;
   2604 		}
   2605 	}
   2606 
   2607 	if (page_to_clean) {
   2608 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2609 		    !is_src, flags | PVF_REF);
   2610 	} else if (cache_needs_cleaning) {
   2611 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2612 
   2613 		pmap_cache_wbinv_all(pm, flags);
   2614 		return true;
   2615 	}
   2616 	return false;
   2617 }
   2618 #endif
   2619 
   2620 #ifdef PMAP_CACHE_VIPT
   2621 /*
   2622  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2623  * right cache alias to make sure we flush the right stuff.
   2624  */
   2625 void
   2626 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2627 {
   2628 	pmap_t kpm = pmap_kernel();
   2629 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2630 	    ? PAGE_SIZE
   2631 	    : arm_pcache.icache_way_size;
   2632 
   2633 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2634 	    md, md->pvh_attrs));
   2635 	/*
   2636 	 * No need to clean the page if it's non-cached.
   2637 	 */
   2638 #ifndef ARM_MMU_EXTENDED
   2639 	if (md->pvh_attrs & PVF_NC)
   2640 		return;
   2641 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2642 #endif
   2643 
   2644 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2645 	const vaddr_t dstp = cpu_cdstp(0);
   2646 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2647 	if (way_size <= PAGE_SIZE) {
   2648 		bool ok = false;
   2649 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2650 		if (ok) {
   2651 			cpu_icache_sync_range(vdstp, way_size);
   2652 			return;
   2653 		}
   2654 	}
   2655 #endif
   2656 
   2657 	/*
   2658 	 * We don't worry about the color of the exec page, we map the
   2659 	 * same page to pages in the way and then do the icache_sync on
   2660 	 * the entire way making sure we are cleaned.
   2661 	 */
   2662 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2663 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2664 
   2665 	for (size_t i = 0, j = 0; i < way_size;
   2666 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2667 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2668 		/*
   2669 		 * Set up a PTE with to flush these cache lines.
   2670 		 */
   2671 		l2pte_set(ptep + j, npte, 0);
   2672 	}
   2673 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2674 
   2675 	/*
   2676 	 * Flush it.
   2677 	 */
   2678 	cpu_icache_sync_range(dstp, way_size);
   2679 
   2680 	for (size_t i = 0, j = 0; i < way_size;
   2681 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2682 		/*
   2683 		 * Unmap the page(s).
   2684 		 */
   2685 		l2pte_reset(ptep + j);
   2686 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2687 	}
   2688 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2689 
   2690 	md->pvh_attrs |= PVF_EXEC;
   2691 	PMAPCOUNT(exec_synced);
   2692 }
   2693 
   2694 #ifndef ARM_MMU_EXTENDED
   2695 void
   2696 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2697 {
   2698 	vsize_t va_offset, end_va;
   2699 	bool wbinv_p;
   2700 
   2701 	if (arm_cache_prefer_mask == 0)
   2702 		return;
   2703 
   2704 	switch (flush) {
   2705 	case PMAP_FLUSH_PRIMARY:
   2706 		if (md->pvh_attrs & PVF_MULTCLR) {
   2707 			va_offset = 0;
   2708 			end_va = arm_cache_prefer_mask;
   2709 			md->pvh_attrs &= ~PVF_MULTCLR;
   2710 			PMAPCOUNT(vac_flush_lots);
   2711 		} else {
   2712 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2713 			end_va = va_offset;
   2714 			PMAPCOUNT(vac_flush_one);
   2715 		}
   2716 		/*
   2717 		 * Mark that the page is no longer dirty.
   2718 		 */
   2719 		md->pvh_attrs &= ~PVF_DIRTY;
   2720 		wbinv_p = true;
   2721 		break;
   2722 	case PMAP_FLUSH_SECONDARY:
   2723 		va_offset = 0;
   2724 		end_va = arm_cache_prefer_mask;
   2725 		wbinv_p = true;
   2726 		md->pvh_attrs &= ~PVF_MULTCLR;
   2727 		PMAPCOUNT(vac_flush_lots);
   2728 		break;
   2729 	case PMAP_CLEAN_PRIMARY:
   2730 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2731 		end_va = va_offset;
   2732 		wbinv_p = false;
   2733 		/*
   2734 		 * Mark that the page is no longer dirty.
   2735 		 */
   2736 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2737 			md->pvh_attrs &= ~PVF_DIRTY;
   2738 		PMAPCOUNT(vac_clean_one);
   2739 		break;
   2740 	default:
   2741 		return;
   2742 	}
   2743 
   2744 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2745 
   2746 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2747 	    md, md->pvh_attrs));
   2748 
   2749 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2750 
   2751 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2752 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2753 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2754 		const pt_entry_t opte = *ptep;
   2755 
   2756 		if (flush == PMAP_FLUSH_SECONDARY
   2757 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2758 			continue;
   2759 
   2760 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2761 		/*
   2762 		 * Set up a PTE with the right coloring to flush
   2763 		 * existing cache entries.
   2764 		 */
   2765 		const pt_entry_t npte = L2_S_PROTO
   2766 		    | pa
   2767 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2768 		    | pte_l2_s_cache_mode;
   2769 		l2pte_set(ptep, npte, opte);
   2770 		PTE_SYNC(ptep);
   2771 
   2772 		/*
   2773 		 * Flush it.  Make sure to flush secondary cache too since
   2774 		 * bus_dma will ignore uncached pages.
   2775 		 */
   2776 		if (scache_line_size != 0) {
   2777 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2778 			if (wbinv_p) {
   2779 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2780 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2781 			} else {
   2782 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2783 			}
   2784 		} else {
   2785 			if (wbinv_p) {
   2786 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2787 			} else {
   2788 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2789 			}
   2790 		}
   2791 
   2792 		/*
   2793 		 * Restore the page table entry since we might have interrupted
   2794 		 * pmap_zero_page or pmap_copy_page which was already using
   2795 		 * this pte.
   2796 		 */
   2797 		if (opte) {
   2798 			l2pte_set(ptep, opte, npte);
   2799 		} else {
   2800 			l2pte_reset(ptep);
   2801 		}
   2802 		PTE_SYNC(ptep);
   2803 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2804 	}
   2805 }
   2806 #endif /* ARM_MMU_EXTENDED */
   2807 #endif /* PMAP_CACHE_VIPT */
   2808 
   2809 /*
   2810  * Routine:	pmap_page_remove
   2811  * Function:
   2812  *		Removes this physical page from
   2813  *		all physical maps in which it resides.
   2814  *		Reflects back modify bits to the pager.
   2815  */
   2816 static void
   2817 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2818 {
   2819 	struct l2_bucket *l2b;
   2820 	struct pv_entry *pv;
   2821 	pt_entry_t *ptep;
   2822 #ifndef ARM_MMU_EXTENDED
   2823 	bool flush = false;
   2824 #endif
   2825 	u_int flags = 0;
   2826 
   2827 	NPDEBUG(PDB_FOLLOW,
   2828 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2829 	    pa));
   2830 
   2831 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2832 	pmap_acquire_page_lock(md);
   2833 	if (*pvp == NULL) {
   2834 #ifdef PMAP_CACHE_VIPT
   2835 		/*
   2836 		 * We *know* the page contents are about to be replaced.
   2837 		 * Discard the exec contents
   2838 		 */
   2839 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2840 			PMAPCOUNT(exec_discarded_page_protect);
   2841 		md->pvh_attrs &= ~PVF_EXEC;
   2842 		PMAP_VALIDATE_MD_PAGE(md);
   2843 #endif
   2844 		pmap_release_page_lock(md);
   2845 		return;
   2846 	}
   2847 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2848 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2849 #endif
   2850 
   2851 	/*
   2852 	 * Clear alias counts
   2853 	 */
   2854 #ifdef PMAP_CACHE_VIVT
   2855 	md->k_mappings = 0;
   2856 #endif
   2857 	md->urw_mappings = md->uro_mappings = 0;
   2858 
   2859 #ifdef PMAP_CACHE_VIVT
   2860 	pmap_clean_page(md, false);
   2861 #endif
   2862 
   2863 	while ((pv = *pvp) != NULL) {
   2864 		pmap_t pm = pv->pv_pmap;
   2865 #ifndef ARM_MMU_EXTENDED
   2866 		if (flush == false && pmap_is_current(pm))
   2867 			flush = true;
   2868 #endif
   2869 
   2870 		if (pm == pmap_kernel()) {
   2871 #ifdef PMAP_CACHE_VIPT
   2872 			/*
   2873 			 * If this was unmanaged mapping, it must be preserved.
   2874 			 * Move it back on the list and advance the end-of-list
   2875 			 * pointer.
   2876 			 */
   2877 			if (PV_IS_KENTRY_P(pv->pv_flags)) {
   2878 				*pvp = pv;
   2879 				pvp = &SLIST_NEXT(pv, pv_link);
   2880 				continue;
   2881 			}
   2882 			if (pv->pv_flags & PVF_WRITE)
   2883 				md->krw_mappings--;
   2884 			else
   2885 				md->kro_mappings--;
   2886 #endif
   2887 			PMAPCOUNT(kernel_unmappings);
   2888 		}
   2889 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2890 		PMAPCOUNT(unmappings);
   2891 
   2892 		pmap_release_page_lock(md);
   2893 		pmap_acquire_pmap_lock(pm);
   2894 
   2895 #ifdef ARM_MMU_EXTENDED
   2896 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2897 #endif
   2898 
   2899 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2900 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2901 
   2902 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2903 
   2904 		/*
   2905 		 * Update statistics
   2906 		 */
   2907 		--pm->pm_stats.resident_count;
   2908 
   2909 		/* Wired bit */
   2910 		if (pv->pv_flags & PVF_WIRED)
   2911 			--pm->pm_stats.wired_count;
   2912 
   2913 		flags |= pv->pv_flags;
   2914 
   2915 		/*
   2916 		 * Invalidate the PTEs.
   2917 		 */
   2918 		l2pte_reset(ptep);
   2919 		PTE_SYNC_CURRENT(pm, ptep);
   2920 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2921 		pmap_release_pmap_lock(pm);
   2922 
   2923 		pool_put(&pmap_pv_pool, pv);
   2924 		pmap_acquire_page_lock(md);
   2925 #ifdef MULTIPROCESSOR
   2926 		/*
   2927 		 * Restart of the beginning of the list.
   2928 		 */
   2929 		pvp = &SLIST_FIRST(&md->pvh_list);
   2930 #endif
   2931 	}
   2932 	/*
   2933 	 * if we reach the end of the list and there are still mappings, they
   2934 	 * might be able to be cached now.  And they must be kernel mappings.
   2935 	 */
   2936 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2937 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2938 	}
   2939 
   2940 #ifdef PMAP_CACHE_VIPT
   2941 	/*
   2942 	 * Its EXEC cache is now gone.
   2943 	 */
   2944 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2945 		PMAPCOUNT(exec_discarded_page_protect);
   2946 	md->pvh_attrs &= ~PVF_EXEC;
   2947 	KASSERT(md->urw_mappings == 0);
   2948 	KASSERT(md->uro_mappings == 0);
   2949 #ifndef ARM_MMU_EXTENDED
   2950 	if (arm_cache_prefer_mask != 0) {
   2951 		if (md->krw_mappings == 0)
   2952 			md->pvh_attrs &= ~PVF_WRITE;
   2953 		PMAP_VALIDATE_MD_PAGE(md);
   2954 	}
   2955 #endif /* ARM_MMU_EXTENDED */
   2956 #endif /* PMAP_CACHE_VIPT */
   2957 	pmap_release_page_lock(md);
   2958 
   2959 #ifndef ARM_MMU_EXTENDED
   2960 	if (flush) {
   2961 		/*
   2962 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2963 		 * would need a subsequent call to pmap_update() to ensure
   2964 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2965 		 * required to do that (see pmap(9)), so we can't modify
   2966 		 * the current pmap's state.
   2967 		 */
   2968 		if (PV_BEEN_EXECD(flags))
   2969 			cpu_tlb_flushID();
   2970 		else
   2971 			cpu_tlb_flushD();
   2972 	}
   2973 	cpu_cpwait();
   2974 #endif /* ARM_MMU_EXTENDED */
   2975 }
   2976 
   2977 /*
   2978  * pmap_t pmap_create(void)
   2979  *
   2980  *      Create a new pmap structure from scratch.
   2981  */
   2982 pmap_t
   2983 pmap_create(void)
   2984 {
   2985 	pmap_t pm;
   2986 
   2987 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2988 
   2989 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2990 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2991 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2992 
   2993 	pm->pm_stats.wired_count = 0;
   2994 	pm->pm_stats.resident_count = 1;
   2995 #ifdef ARM_MMU_EXTENDED
   2996 #ifdef MULTIPROCESSOR
   2997 	kcpuset_create(&pm->pm_active, true);
   2998 	kcpuset_create(&pm->pm_onproc, true);
   2999 #endif
   3000 #else
   3001 	pm->pm_cstate.cs_all = 0;
   3002 #endif
   3003 	pmap_alloc_l1(pm);
   3004 
   3005 	/*
   3006 	 * Note: The pool cache ensures that the pm_l2[] array is already
   3007 	 * initialised to zero.
   3008 	 */
   3009 
   3010 	pmap_pinit(pm);
   3011 
   3012 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   3013 
   3014 	return (pm);
   3015 }
   3016 
   3017 u_int
   3018 arm32_mmap_flags(paddr_t pa)
   3019 {
   3020 	/*
   3021 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3022 	 * and we're using the upper bits in page numbers to pass flags around
   3023 	 * so we might as well use the same bits
   3024 	 */
   3025 	return (u_int)pa & PMAP_MD_MASK;
   3026 }
   3027 /*
   3028  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3029  *      u_int flags)
   3030  *
   3031  *      Insert the given physical page (p) at
   3032  *      the specified virtual address (v) in the
   3033  *      target physical map with the protection requested.
   3034  *
   3035  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3036  *      or lose information.  That is, this routine must actually
   3037  *      insert this page into the given map NOW.
   3038  */
   3039 int
   3040 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3041 {
   3042 	struct l2_bucket *l2b;
   3043 	struct vm_page *pg, *opg;
   3044 	u_int nflags;
   3045 	u_int oflags;
   3046 	const bool kpm_p = (pm == pmap_kernel());
   3047 #ifdef ARM_HAS_VBAR
   3048 	const bool vector_page_p = false;
   3049 #else
   3050 	const bool vector_page_p = (va == vector_page);
   3051 #endif
   3052 
   3053 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3054 
   3055 	UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
   3056 	    pm, va, pa, prot);
   3057 	UVMHIST_LOG(maphist, "  flag %#x", flags, 0, 0, 0);
   3058 
   3059 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3060 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3061 
   3062 	/*
   3063 	 * Get a pointer to the page.  Later on in this function, we
   3064 	 * test for a managed page by checking pg != NULL.
   3065 	 */
   3066 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3067 
   3068 	nflags = 0;
   3069 	if (prot & VM_PROT_WRITE)
   3070 		nflags |= PVF_WRITE;
   3071 	if (prot & VM_PROT_EXECUTE)
   3072 		nflags |= PVF_EXEC;
   3073 	if (flags & PMAP_WIRED)
   3074 		nflags |= PVF_WIRED;
   3075 
   3076 	pmap_acquire_pmap_lock(pm);
   3077 
   3078 	/*
   3079 	 * Fetch the L2 bucket which maps this page, allocating one if
   3080 	 * necessary for user pmaps.
   3081 	 */
   3082 	if (kpm_p) {
   3083 		l2b = pmap_get_l2_bucket(pm, va);
   3084 	} else {
   3085 		l2b = pmap_alloc_l2_bucket(pm, va);
   3086 	}
   3087 	if (l2b == NULL) {
   3088 		if (flags & PMAP_CANFAIL) {
   3089 			pmap_release_pmap_lock(pm);
   3090 			return (ENOMEM);
   3091 		}
   3092 		panic("pmap_enter: failed to allocate L2 bucket");
   3093 	}
   3094 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3095 	const pt_entry_t opte = *ptep;
   3096 	pt_entry_t npte = pa;
   3097 	oflags = 0;
   3098 
   3099 	if (opte) {
   3100 		/*
   3101 		 * There is already a mapping at this address.
   3102 		 * If the physical address is different, lookup the
   3103 		 * vm_page.
   3104 		 */
   3105 		if (l2pte_pa(opte) != pa)
   3106 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3107 		else
   3108 			opg = pg;
   3109 	} else
   3110 		opg = NULL;
   3111 
   3112 	if (pg) {
   3113 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3114 
   3115 		/*
   3116 		 * This is to be a managed mapping.
   3117 		 */
   3118 		pmap_acquire_page_lock(md);
   3119 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3120 			/*
   3121 			 * - The access type indicates that we don't need
   3122 			 *   to do referenced emulation.
   3123 			 * OR
   3124 			 * - The physical page has already been referenced
   3125 			 *   so no need to re-do referenced emulation here.
   3126 			 */
   3127 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3128 
   3129 			nflags |= PVF_REF;
   3130 
   3131 			if ((prot & VM_PROT_WRITE) != 0 &&
   3132 			    ((flags & VM_PROT_WRITE) != 0 ||
   3133 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3134 				/*
   3135 				 * This is a writable mapping, and the
   3136 				 * page's mod state indicates it has
   3137 				 * already been modified. Make it
   3138 				 * writable from the outset.
   3139 				 */
   3140 				npte = l2pte_set_writable(npte);
   3141 				nflags |= PVF_MOD;
   3142 			}
   3143 
   3144 #ifdef ARM_MMU_EXTENDED
   3145 			/*
   3146 			 * If the page has been cleaned, then the pvh_attrs
   3147 			 * will have PVF_EXEC set, so mark it execute so we
   3148 			 * don't get an access fault when trying to execute
   3149 			 * from it.
   3150 			 */
   3151 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3152 				npte &= ~L2_XS_XN;
   3153 			}
   3154 #endif
   3155 		} else {
   3156 			/*
   3157 			 * Need to do page referenced emulation.
   3158 			 */
   3159 			npte |= L2_TYPE_INV;
   3160 		}
   3161 
   3162 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3163 			npte |= pte_l2_s_wc_mode;
   3164 		} else
   3165 			npte |= pte_l2_s_cache_mode;
   3166 
   3167 		if (pg == opg) {
   3168 			/*
   3169 			 * We're changing the attrs of an existing mapping.
   3170 			 */
   3171 			oflags = pmap_modify_pv(md, pa, pm, va,
   3172 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3173 			    PVF_MOD | PVF_REF, nflags);
   3174 
   3175 #ifdef PMAP_CACHE_VIVT
   3176 			/*
   3177 			 * We may need to flush the cache if we're
   3178 			 * doing rw-ro...
   3179 			 */
   3180 			if (pm->pm_cstate.cs_cache_d &&
   3181 			    (oflags & PVF_NC) == 0 &&
   3182 			    l2pte_writable_p(opte) &&
   3183 			    (prot & VM_PROT_WRITE) == 0)
   3184 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3185 #endif
   3186 		} else {
   3187 			struct pv_entry *pv;
   3188 			/*
   3189 			 * New mapping, or changing the backing page
   3190 			 * of an existing mapping.
   3191 			 */
   3192 			if (opg) {
   3193 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3194 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3195 
   3196 				/*
   3197 				 * Replacing an existing mapping with a new one.
   3198 				 * It is part of our managed memory so we
   3199 				 * must remove it from the PV list
   3200 				 */
   3201 				pv = pmap_remove_pv(omd, opa, pm, va);
   3202 				pmap_vac_me_harder(omd, opa, pm, 0);
   3203 				oflags = pv->pv_flags;
   3204 
   3205 #ifdef PMAP_CACHE_VIVT
   3206 				/*
   3207 				 * If the old mapping was valid (ref/mod
   3208 				 * emulation creates 'invalid' mappings
   3209 				 * initially) then make sure to frob
   3210 				 * the cache.
   3211 				 */
   3212 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3213 					pmap_cache_wbinv_page(pm, va, true,
   3214 					    oflags);
   3215 				}
   3216 #endif
   3217 			} else {
   3218 				pmap_release_page_lock(md);
   3219 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3220 				if (pv == NULL) {
   3221 					pmap_release_pmap_lock(pm);
   3222 					if ((flags & PMAP_CANFAIL) == 0)
   3223 						panic("pmap_enter: "
   3224 						    "no pv entries");
   3225 
   3226 					pmap_free_l2_bucket(pm, l2b, 0);
   3227 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3228 					    0, 0, 0, 0);
   3229 					return (ENOMEM);
   3230 				}
   3231 				pmap_acquire_page_lock(md);
   3232 			}
   3233 
   3234 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3235 		}
   3236 		pmap_release_page_lock(md);
   3237 	} else {
   3238 		/*
   3239 		 * We're mapping an unmanaged page.
   3240 		 * These are always readable, and possibly writable, from
   3241 		 * the get go as we don't need to track ref/mod status.
   3242 		 */
   3243 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3244 		if (prot & VM_PROT_WRITE)
   3245 			npte = l2pte_set_writable(npte);
   3246 
   3247 		/*
   3248 		 * Make sure the vector table is mapped cacheable
   3249 		 */
   3250 		if ((vector_page_p && !kpm_p)
   3251 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3252 			npte |= pte_l2_s_cache_mode;
   3253 #ifdef ARM_MMU_EXTENDED
   3254 			npte &= ~L2_XS_XN;	/* and executable */
   3255 #endif
   3256 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3257 			npte |= pte_l2_s_wc_mode;
   3258 		}
   3259 		if (opg) {
   3260 			/*
   3261 			 * Looks like there's an existing 'managed' mapping
   3262 			 * at this address.
   3263 			 */
   3264 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3265 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3266 
   3267 			pmap_acquire_page_lock(omd);
   3268 			struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
   3269 			pmap_vac_me_harder(omd, opa, pm, 0);
   3270 			oflags = pv->pv_flags;
   3271 			pmap_release_page_lock(omd);
   3272 
   3273 #ifdef PMAP_CACHE_VIVT
   3274 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3275 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3276 			}
   3277 #endif
   3278 			pool_put(&pmap_pv_pool, pv);
   3279 		}
   3280 	}
   3281 
   3282 	/*
   3283 	 * Make sure userland mappings get the right permissions
   3284 	 */
   3285 	if (!vector_page_p && !kpm_p) {
   3286 		npte |= L2_S_PROT_U;
   3287 #ifdef ARM_MMU_EXTENDED
   3288 		npte |= L2_XS_nG;	/* user pages are not global */
   3289 #endif
   3290 	}
   3291 
   3292 	/*
   3293 	 * Keep the stats up to date
   3294 	 */
   3295 	if (opte == 0) {
   3296 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3297 		pm->pm_stats.resident_count++;
   3298 	}
   3299 
   3300 	UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
   3301 
   3302 #if defined(ARM_MMU_EXTENDED)
   3303 	/*
   3304 	 * If exec protection was requested but the page hasn't been synced,
   3305 	 * sync it now and allow execution from it.
   3306 	 */
   3307 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3308 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3309 		npte &= ~L2_XS_XN;
   3310 		pmap_syncicache_page(md, pa);
   3311 		PMAPCOUNT(exec_synced_map);
   3312 	}
   3313 #endif
   3314 	/*
   3315 	 * If this is just a wiring change, the two PTEs will be
   3316 	 * identical, so there's no need to update the page table.
   3317 	 */
   3318 	if (npte != opte) {
   3319 
   3320 		l2pte_set(ptep, npte, opte);
   3321 		PTE_SYNC(ptep);
   3322 #ifndef ARM_MMU_EXTENDED
   3323 		bool is_cached = pmap_is_cached(pm);
   3324 		if (is_cached) {
   3325 			/*
   3326 			 * We only need to frob the cache/tlb if this pmap
   3327 			 * is current
   3328 			 */
   3329 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3330 				/*
   3331 				 * This mapping is likely to be accessed as
   3332 				 * soon as we return to userland. Fix up the
   3333 				 * L1 entry to avoid taking another
   3334 				 * page/domain fault.
   3335 				 */
   3336 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3337 				     + l1pte_index(va);
   3338 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3339 				    | L1_C_DOM(pmap_domain(pm));
   3340 				if (*pdep != pde) {
   3341 					l1pte_setone(pdep, pde);
   3342 					PTE_SYNC(pdep);
   3343 				}
   3344 			}
   3345 		}
   3346 #endif /* !ARMM_MMU_EXTENDED */
   3347 
   3348 		pmap_tlb_flush_SE(pm, va, oflags);
   3349 
   3350 #ifndef ARM_MMU_EXTENDED
   3351 		UVMHIST_LOG(maphist, "  is_cached %d cs 0x%08x\n",
   3352 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3353 
   3354 		if (pg != NULL) {
   3355 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3356 
   3357 			pmap_acquire_page_lock(md);
   3358 			pmap_vac_me_harder(md, pa, pm, va);
   3359 			pmap_release_page_lock(md);
   3360 		}
   3361 #endif
   3362 	}
   3363 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3364 	if (pg) {
   3365 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3366 
   3367 		pmap_acquire_page_lock(md);
   3368 #ifndef ARM_MMU_EXTENDED
   3369 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3370 #endif
   3371 		PMAP_VALIDATE_MD_PAGE(md);
   3372 		pmap_release_page_lock(md);
   3373 	}
   3374 #endif
   3375 
   3376 	pmap_release_pmap_lock(pm);
   3377 
   3378 	return (0);
   3379 }
   3380 
   3381 /*
   3382  * pmap_remove()
   3383  *
   3384  * pmap_remove is responsible for nuking a number of mappings for a range
   3385  * of virtual address space in the current pmap. To do this efficiently
   3386  * is interesting, because in a number of cases a wide virtual address
   3387  * range may be supplied that contains few actual mappings. So, the
   3388  * optimisations are:
   3389  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3390  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3391  *     maybe do just a partial cache clean. This path of execution is
   3392  *     complicated by the fact that the cache must be flushed _before_
   3393  *     the PTE is nuked, being a VAC :-)
   3394  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3395  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3396  *     already flushed the cache.
   3397  *  4. Maybe later fast-case a single page, but I don't think this is
   3398  *     going to make _that_ much difference overall.
   3399  */
   3400 
   3401 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3402 
   3403 void
   3404 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3405 {
   3406 	vaddr_t next_bucket;
   3407 	u_int cleanlist_idx, total, cnt;
   3408 	struct {
   3409 		vaddr_t va;
   3410 		pt_entry_t *ptep;
   3411 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3412 	u_int mappings;
   3413 
   3414 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3415 	UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
   3416 
   3417 	/*
   3418 	 * we lock in the pmap => pv_head direction
   3419 	 */
   3420 	pmap_acquire_pmap_lock(pm);
   3421 
   3422 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3423 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3424 #ifndef ARM_MMU_EXTENDED
   3425 		if (pm->pm_cstate.cs_tlb == 0)
   3426 			pm->pm_remove_all = true;
   3427 #endif
   3428 	} else
   3429 		cleanlist_idx = 0;
   3430 
   3431 	total = 0;
   3432 
   3433 	while (sva < eva) {
   3434 		/*
   3435 		 * Do one L2 bucket's worth at a time.
   3436 		 */
   3437 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3438 		if (next_bucket > eva)
   3439 			next_bucket = eva;
   3440 
   3441 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3442 		if (l2b == NULL) {
   3443 			sva = next_bucket;
   3444 			continue;
   3445 		}
   3446 
   3447 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3448 
   3449 		for (mappings = 0;
   3450 		     sva < next_bucket;
   3451 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3452 			pt_entry_t opte = *ptep;
   3453 
   3454 			if (opte == 0) {
   3455 				/* Nothing here, move along */
   3456 				continue;
   3457 			}
   3458 
   3459 			u_int flags = PVF_REF;
   3460 			paddr_t pa = l2pte_pa(opte);
   3461 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3462 
   3463 			/*
   3464 			 * Update flags. In a number of circumstances,
   3465 			 * we could cluster a lot of these and do a
   3466 			 * number of sequential pages in one go.
   3467 			 */
   3468 			if (pg != NULL) {
   3469 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3470 				struct pv_entry *pv;
   3471 
   3472 				pmap_acquire_page_lock(md);
   3473 				pv = pmap_remove_pv(md, pa, pm, sva);
   3474 				pmap_vac_me_harder(md, pa, pm, 0);
   3475 				pmap_release_page_lock(md);
   3476 				if (pv != NULL) {
   3477 					if (pm->pm_remove_all == false) {
   3478 						flags = pv->pv_flags;
   3479 					}
   3480 					pool_put(&pmap_pv_pool, pv);
   3481 				}
   3482 			}
   3483 			mappings += PAGE_SIZE / L2_S_SIZE;
   3484 
   3485 			if (!l2pte_valid_p(opte)) {
   3486 				/*
   3487 				 * Ref/Mod emulation is still active for this
   3488 				 * mapping, therefore it is has not yet been
   3489 				 * accessed. No need to frob the cache/tlb.
   3490 				 */
   3491 				l2pte_reset(ptep);
   3492 				PTE_SYNC_CURRENT(pm, ptep);
   3493 				continue;
   3494 			}
   3495 
   3496 #ifdef ARM_MMU_EXTENDED
   3497 			if (pm == pmap_kernel()) {
   3498 				l2pte_reset(ptep);
   3499 				PTE_SYNC(ptep);
   3500 				pmap_tlb_flush_SE(pm, sva, flags);
   3501 				continue;
   3502 			}
   3503 #endif
   3504 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3505 				/* Add to the clean list. */
   3506 				cleanlist[cleanlist_idx].ptep = ptep;
   3507 				cleanlist[cleanlist_idx].va =
   3508 				    sva | (flags & PVF_EXEC);
   3509 				cleanlist_idx++;
   3510 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3511 				/* Nuke everything if needed. */
   3512 #ifdef PMAP_CACHE_VIVT
   3513 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3514 #endif
   3515 				/*
   3516 				 * Roll back the previous PTE list,
   3517 				 * and zero out the current PTE.
   3518 				 */
   3519 				for (cnt = 0;
   3520 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3521 					l2pte_reset(cleanlist[cnt].ptep);
   3522 					PTE_SYNC(cleanlist[cnt].ptep);
   3523 				}
   3524 				l2pte_reset(ptep);
   3525 				PTE_SYNC(ptep);
   3526 				cleanlist_idx++;
   3527 				pm->pm_remove_all = true;
   3528 			} else {
   3529 				l2pte_reset(ptep);
   3530 				PTE_SYNC(ptep);
   3531 				if (pm->pm_remove_all == false) {
   3532 					pmap_tlb_flush_SE(pm, sva, flags);
   3533 				}
   3534 			}
   3535 		}
   3536 
   3537 		/*
   3538 		 * Deal with any left overs
   3539 		 */
   3540 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3541 			total += cleanlist_idx;
   3542 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3543 #ifdef ARM_MMU_EXTENDED
   3544 				vaddr_t clva = cleanlist[cnt].va;
   3545 				pmap_tlb_flush_SE(pm, clva, PVF_REF);
   3546 #else
   3547 				vaddr_t va = cleanlist[cnt].va;
   3548 				if (pm->pm_cstate.cs_all != 0) {
   3549 					vaddr_t clva = va & ~PAGE_MASK;
   3550 					u_int flags = va & PVF_EXEC;
   3551 #ifdef PMAP_CACHE_VIVT
   3552 					pmap_cache_wbinv_page(pm, clva, true,
   3553 					    PVF_REF | PVF_WRITE | flags);
   3554 #endif
   3555 					pmap_tlb_flush_SE(pm, clva,
   3556 					    PVF_REF | flags);
   3557 				}
   3558 #endif /* ARM_MMU_EXTENDED */
   3559 				l2pte_reset(cleanlist[cnt].ptep);
   3560 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3561 			}
   3562 
   3563 			/*
   3564 			 * If it looks like we're removing a whole bunch
   3565 			 * of mappings, it's faster to just write-back
   3566 			 * the whole cache now and defer TLB flushes until
   3567 			 * pmap_update() is called.
   3568 			 */
   3569 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3570 				cleanlist_idx = 0;
   3571 			else {
   3572 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3573 #ifdef PMAP_CACHE_VIVT
   3574 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3575 #endif
   3576 				pm->pm_remove_all = true;
   3577 			}
   3578 		}
   3579 
   3580 
   3581 		pmap_free_l2_bucket(pm, l2b, mappings);
   3582 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3583 	}
   3584 
   3585 	pmap_release_pmap_lock(pm);
   3586 }
   3587 
   3588 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3589 static struct pv_entry *
   3590 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3591 {
   3592 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3593 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3594 	struct pv_entry *pv;
   3595 
   3596 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3597 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3598 	KASSERT(pmap_page_locked_p(md));
   3599 
   3600 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3601 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3602 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3603 
   3604 	/*
   3605 	 * If we are removing a writeable mapping to a cached exec page,
   3606 	 * if it's the last mapping then clear it execness other sync
   3607 	 * the page to the icache.
   3608 	 */
   3609 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3610 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3611 		if (SLIST_EMPTY(&md->pvh_list)) {
   3612 			md->pvh_attrs &= ~PVF_EXEC;
   3613 			PMAPCOUNT(exec_discarded_kremove);
   3614 		} else {
   3615 			pmap_syncicache_page(md, pa);
   3616 			PMAPCOUNT(exec_synced_kremove);
   3617 		}
   3618 	}
   3619 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3620 
   3621 	return pv;
   3622 }
   3623 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3624 
   3625 /*
   3626  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3627  *
   3628  * We assume there is already sufficient KVM space available
   3629  * to do this, as we can't allocate L2 descriptor tables/metadata
   3630  * from here.
   3631  */
   3632 void
   3633 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3634 {
   3635 #ifdef PMAP_CACHE_VIVT
   3636 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3637 #endif
   3638 #ifdef PMAP_CACHE_VIPT
   3639 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3640 	struct vm_page *opg;
   3641 #ifndef ARM_MMU_EXTENDED
   3642 	struct pv_entry *pv = NULL;
   3643 #endif
   3644 #endif
   3645 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3646 
   3647 	UVMHIST_FUNC(__func__);
   3648 
   3649 	if (pmap_initialized) {
   3650 		UVMHIST_CALLED(maphist);
   3651 		UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
   3652 		    va, pa, prot, flags);
   3653 	}
   3654 
   3655 	pmap_t kpm = pmap_kernel();
   3656 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3657 	const size_t l1slot __diagused = l1pte_index(va);
   3658 	KASSERTMSG(l2b != NULL,
   3659 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3660 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3661 	    kpm->pm_l2[L2_IDX(l1slot)]
   3662 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3663 		: NULL,
   3664 	    kpm->pm_l2[L2_IDX(l1slot)]
   3665 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3666 		: NULL);
   3667 	KASSERT(l2b->l2b_kva != NULL);
   3668 
   3669 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3670 	const pt_entry_t opte = *ptep;
   3671 
   3672 	if (opte == 0) {
   3673 		PMAPCOUNT(kenter_mappings);
   3674 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3675 	} else {
   3676 		PMAPCOUNT(kenter_remappings);
   3677 #ifdef PMAP_CACHE_VIPT
   3678 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3679 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
   3680 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
   3681 #endif
   3682 		if (opg && arm_cache_prefer_mask != 0) {
   3683 			KASSERT(opg != pg);
   3684 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3685 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3686 #ifndef ARM_MMU_EXTENDED
   3687 			pmap_acquire_page_lock(omd);
   3688 			pv = pmap_kremove_pg(opg, va);
   3689 			pmap_release_page_lock(omd);
   3690 #endif
   3691 		}
   3692 #endif
   3693 		if (l2pte_valid_p(opte)) {
   3694 #ifdef PMAP_CACHE_VIVT
   3695 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3696 #endif
   3697 			cpu_tlb_flushD_SE(va);
   3698 			cpu_cpwait();
   3699 		}
   3700 	}
   3701 
   3702 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3703 	    | ((flags & PMAP_NOCACHE)
   3704 		? 0
   3705 		: ((flags & PMAP_PTE)
   3706 		    ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
   3707 #ifdef ARM_MMU_EXTENDED
   3708 	if (prot & VM_PROT_EXECUTE)
   3709 		npte &= ~L2_XS_XN;
   3710 #endif
   3711 	l2pte_set(ptep, npte, opte);
   3712 	PTE_SYNC(ptep);
   3713 
   3714 	if (pg) {
   3715 		if (flags & PMAP_KMPAGE) {
   3716 			KASSERT(md->urw_mappings == 0);
   3717 			KASSERT(md->uro_mappings == 0);
   3718 			KASSERT(md->krw_mappings == 0);
   3719 			KASSERT(md->kro_mappings == 0);
   3720 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3721 			KASSERT(pv == NULL);
   3722 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3723 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3724 			/* if there is a color conflict, evict from cache. */
   3725 			if (pmap_is_page_colored_p(md)
   3726 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3727 				PMAPCOUNT(vac_color_change);
   3728 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3729 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3730 				/*
   3731 				 * If this page has multiple colors, expunge
   3732 				 * them.
   3733 				 */
   3734 				PMAPCOUNT(vac_flush_lots2);
   3735 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3736 			}
   3737 			/*
   3738 			 * Since this is a KMPAGE, there can be no contention
   3739 			 * for this page so don't lock it.
   3740 			 */
   3741 			md->pvh_attrs &= PAGE_SIZE - 1;
   3742 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3743 			    | (va & arm_cache_prefer_mask);
   3744 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3745 			md->pvh_attrs |= PVF_KMPAGE;
   3746 #endif
   3747 			atomic_inc_32(&pmap_kmpages);
   3748 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3749 		} else if (arm_cache_prefer_mask != 0) {
   3750 			if (pv == NULL) {
   3751 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3752 				KASSERT(pv != NULL);
   3753 			}
   3754 			pmap_acquire_page_lock(md);
   3755 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3756 			    PVF_WIRED | PVF_KENTRY
   3757 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3758 			if ((prot & VM_PROT_WRITE)
   3759 			    && !(md->pvh_attrs & PVF_NC))
   3760 				md->pvh_attrs |= PVF_DIRTY;
   3761 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3762 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3763 			pmap_release_page_lock(md);
   3764 #endif
   3765 		}
   3766 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3767 	} else {
   3768 		if (pv != NULL)
   3769 			pool_put(&pmap_pv_pool, pv);
   3770 #endif
   3771 	}
   3772 	KASSERT(md == NULL || !pmap_page_locked_p(md));
   3773 	if (pmap_initialized) {
   3774 		UVMHIST_LOG(maphist, "  <-- done (ptep %p: %#x -> %#x)",
   3775 		    ptep, opte, npte, 0);
   3776 	}
   3777 
   3778 }
   3779 
   3780 void
   3781 pmap_kremove(vaddr_t va, vsize_t len)
   3782 {
   3783 #ifdef UVMHIST
   3784 	u_int total_mappings = 0;
   3785 #endif
   3786 
   3787 	PMAPCOUNT(kenter_unmappings);
   3788 
   3789 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3790 
   3791 	UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
   3792 
   3793 	const vaddr_t eva = va + len;
   3794 
   3795 	while (va < eva) {
   3796 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3797 		if (next_bucket > eva)
   3798 			next_bucket = eva;
   3799 
   3800 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3801 		KDASSERT(l2b != NULL);
   3802 
   3803 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3804 		pt_entry_t *ptep = sptep;
   3805 		u_int mappings = 0;
   3806 
   3807 		while (va < next_bucket) {
   3808 			const pt_entry_t opte = *ptep;
   3809 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3810 			if (opg != NULL) {
   3811 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3812 
   3813 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3814 					KASSERT(omd->urw_mappings == 0);
   3815 					KASSERT(omd->uro_mappings == 0);
   3816 					KASSERT(omd->krw_mappings == 0);
   3817 					KASSERT(omd->kro_mappings == 0);
   3818 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3819 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3820 					if (arm_cache_prefer_mask != 0) {
   3821 						omd->pvh_attrs &= ~PVF_WRITE;
   3822 					}
   3823 #endif
   3824 					atomic_dec_32(&pmap_kmpages);
   3825 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3826 				} else if (arm_cache_prefer_mask != 0) {
   3827 					pmap_acquire_page_lock(omd);
   3828 					pool_put(&pmap_pv_pool,
   3829 					    pmap_kremove_pg(opg, va));
   3830 					pmap_release_page_lock(omd);
   3831 #endif
   3832 				}
   3833 			}
   3834 			if (l2pte_valid_p(opte)) {
   3835 #ifdef PMAP_CACHE_VIVT
   3836 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3837 #endif
   3838 				cpu_tlb_flushD_SE(va);
   3839 			}
   3840 			if (opte) {
   3841 				l2pte_reset(ptep);
   3842 				mappings += PAGE_SIZE / L2_S_SIZE;
   3843 			}
   3844 			va += PAGE_SIZE;
   3845 			ptep += PAGE_SIZE / L2_S_SIZE;
   3846 		}
   3847 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3848 		    mappings, l2b->l2b_occupancy);
   3849 		l2b->l2b_occupancy -= mappings;
   3850 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3851 #ifdef UVMHIST
   3852 		total_mappings += mappings;
   3853 #endif
   3854 	}
   3855 	cpu_cpwait();
   3856 	UVMHIST_LOG(maphist, "  <--- done (%u mappings removed)",
   3857 	    total_mappings, 0, 0, 0);
   3858 }
   3859 
   3860 bool
   3861 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3862 {
   3863 	struct l2_dtable *l2;
   3864 	pd_entry_t *pdep, pde;
   3865 	pt_entry_t *ptep, pte;
   3866 	paddr_t pa;
   3867 	u_int l1slot;
   3868 
   3869 	pmap_acquire_pmap_lock(pm);
   3870 
   3871 	l1slot = l1pte_index(va);
   3872 	pdep = pmap_l1_kva(pm) + l1slot;
   3873 	pde = *pdep;
   3874 
   3875 	if (l1pte_section_p(pde)) {
   3876 		/*
   3877 		 * These should only happen for pmap_kernel()
   3878 		 */
   3879 		KDASSERT(pm == pmap_kernel());
   3880 		pmap_release_pmap_lock(pm);
   3881 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3882 		if (l1pte_supersection_p(pde)) {
   3883 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3884 		} else
   3885 #endif
   3886 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3887 	} else {
   3888 		/*
   3889 		 * Note that we can't rely on the validity of the L1
   3890 		 * descriptor as an indication that a mapping exists.
   3891 		 * We have to look it up in the L2 dtable.
   3892 		 */
   3893 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   3894 
   3895 		if (l2 == NULL ||
   3896 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   3897 			pmap_release_pmap_lock(pm);
   3898 			return false;
   3899 		}
   3900 
   3901 		pte = ptep[l2pte_index(va)];
   3902 		pmap_release_pmap_lock(pm);
   3903 
   3904 		if (pte == 0)
   3905 			return false;
   3906 
   3907 		switch (pte & L2_TYPE_MASK) {
   3908 		case L2_TYPE_L:
   3909 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3910 			break;
   3911 
   3912 		default:
   3913 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   3914 			break;
   3915 		}
   3916 	}
   3917 
   3918 	if (pap != NULL)
   3919 		*pap = pa;
   3920 
   3921 	return true;
   3922 }
   3923 
   3924 void
   3925 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3926 {
   3927 	struct l2_bucket *l2b;
   3928 	vaddr_t next_bucket;
   3929 
   3930 	NPDEBUG(PDB_PROTECT,
   3931 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3932 	    pm, sva, eva, prot));
   3933 
   3934 	if ((prot & VM_PROT_READ) == 0) {
   3935 		pmap_remove(pm, sva, eva);
   3936 		return;
   3937 	}
   3938 
   3939 	if (prot & VM_PROT_WRITE) {
   3940 		/*
   3941 		 * If this is a read->write transition, just ignore it and let
   3942 		 * uvm_fault() take care of it later.
   3943 		 */
   3944 		return;
   3945 	}
   3946 
   3947 	pmap_acquire_pmap_lock(pm);
   3948 
   3949 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   3950 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3951 	u_int flags = 0;
   3952 
   3953 	while (sva < eva) {
   3954 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3955 		if (next_bucket > eva)
   3956 			next_bucket = eva;
   3957 
   3958 		l2b = pmap_get_l2_bucket(pm, sva);
   3959 		if (l2b == NULL) {
   3960 			sva = next_bucket;
   3961 			continue;
   3962 		}
   3963 
   3964 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3965 
   3966 		while (sva < next_bucket) {
   3967 			const pt_entry_t opte = *ptep;
   3968 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   3969 				struct vm_page *pg;
   3970 				u_int f;
   3971 
   3972 #ifdef PMAP_CACHE_VIVT
   3973 				/*
   3974 				 * OK, at this point, we know we're doing
   3975 				 * write-protect operation.  If the pmap is
   3976 				 * active, write-back the page.
   3977 				 */
   3978 				pmap_cache_wbinv_page(pm, sva, false,
   3979 				    PVF_REF | PVF_WRITE);
   3980 #endif
   3981 
   3982 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3983 				pt_entry_t npte = l2pte_set_readonly(opte);
   3984 				l2pte_set(ptep, npte, opte);
   3985 				PTE_SYNC(ptep);
   3986 
   3987 				if (pg != NULL) {
   3988 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3989 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3990 
   3991 					pmap_acquire_page_lock(md);
   3992 					f = pmap_modify_pv(md, pa, pm, sva,
   3993 					    clr_mask, 0);
   3994 					pmap_vac_me_harder(md, pa, pm, sva);
   3995 					pmap_release_page_lock(md);
   3996 				} else {
   3997 					f = PVF_REF | PVF_EXEC;
   3998 				}
   3999 
   4000 				if (flush) {
   4001 					flags |= f;
   4002 				} else {
   4003 					pmap_tlb_flush_SE(pm, sva, f);
   4004 				}
   4005 			}
   4006 
   4007 			sva += PAGE_SIZE;
   4008 			ptep += PAGE_SIZE / L2_S_SIZE;
   4009 		}
   4010 	}
   4011 
   4012 	if (flush) {
   4013 		if (PV_BEEN_EXECD(flags)) {
   4014 			pmap_tlb_flushID(pm);
   4015 		} else if (PV_BEEN_REFD(flags)) {
   4016 			pmap_tlb_flushD(pm);
   4017 		}
   4018 	}
   4019 
   4020 	pmap_release_pmap_lock(pm);
   4021 }
   4022 
   4023 void
   4024 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4025 {
   4026 	struct l2_bucket *l2b;
   4027 	pt_entry_t *ptep;
   4028 	vaddr_t next_bucket;
   4029 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4030 
   4031 	NPDEBUG(PDB_EXEC,
   4032 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   4033 	    pm, sva, eva));
   4034 
   4035 	pmap_acquire_pmap_lock(pm);
   4036 
   4037 	while (sva < eva) {
   4038 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4039 		if (next_bucket > eva)
   4040 			next_bucket = eva;
   4041 
   4042 		l2b = pmap_get_l2_bucket(pm, sva);
   4043 		if (l2b == NULL) {
   4044 			sva = next_bucket;
   4045 			continue;
   4046 		}
   4047 
   4048 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4049 		     sva < next_bucket;
   4050 		     sva += page_size,
   4051 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4052 		     page_size = PAGE_SIZE) {
   4053 			if (l2pte_valid_p(*ptep)) {
   4054 				cpu_icache_sync_range(sva,
   4055 				    min(page_size, eva - sva));
   4056 			}
   4057 		}
   4058 	}
   4059 
   4060 	pmap_release_pmap_lock(pm);
   4061 }
   4062 
   4063 void
   4064 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4065 {
   4066 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4067 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4068 
   4069 	NPDEBUG(PDB_PROTECT,
   4070 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   4071 	    md, pa, prot));
   4072 
   4073 	switch(prot) {
   4074 	case VM_PROT_READ|VM_PROT_WRITE:
   4075 #if defined(ARM_MMU_EXTENDED)
   4076 		pmap_acquire_page_lock(md);
   4077 		pmap_clearbit(md, pa, PVF_EXEC);
   4078 		pmap_release_page_lock(md);
   4079 		break;
   4080 #endif
   4081 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4082 		break;
   4083 
   4084 	case VM_PROT_READ:
   4085 #if defined(ARM_MMU_EXTENDED)
   4086 		pmap_acquire_page_lock(md);
   4087 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4088 		pmap_release_page_lock(md);
   4089 		break;
   4090 #endif
   4091 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4092 		pmap_acquire_page_lock(md);
   4093 		pmap_clearbit(md, pa, PVF_WRITE);
   4094 		pmap_release_page_lock(md);
   4095 		break;
   4096 
   4097 	default:
   4098 		pmap_page_remove(md, pa);
   4099 		break;
   4100 	}
   4101 }
   4102 
   4103 /*
   4104  * pmap_clear_modify:
   4105  *
   4106  *	Clear the "modified" attribute for a page.
   4107  */
   4108 bool
   4109 pmap_clear_modify(struct vm_page *pg)
   4110 {
   4111 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4112 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4113 	bool rv;
   4114 
   4115 	pmap_acquire_page_lock(md);
   4116 
   4117 	if (md->pvh_attrs & PVF_MOD) {
   4118 		rv = true;
   4119 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4120 		/*
   4121 		 * If we are going to clear the modified bit and there are
   4122 		 * no other modified bits set, flush the page to memory and
   4123 		 * mark it clean.
   4124 		 */
   4125 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4126 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4127 #endif
   4128 		pmap_clearbit(md, pa, PVF_MOD);
   4129 	} else {
   4130 		rv = false;
   4131 	}
   4132 	pmap_release_page_lock(md);
   4133 
   4134 	return rv;
   4135 }
   4136 
   4137 /*
   4138  * pmap_clear_reference:
   4139  *
   4140  *	Clear the "referenced" attribute for a page.
   4141  */
   4142 bool
   4143 pmap_clear_reference(struct vm_page *pg)
   4144 {
   4145 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4146 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4147 	bool rv;
   4148 
   4149 	pmap_acquire_page_lock(md);
   4150 
   4151 	if (md->pvh_attrs & PVF_REF) {
   4152 		rv = true;
   4153 		pmap_clearbit(md, pa, PVF_REF);
   4154 	} else {
   4155 		rv = false;
   4156 	}
   4157 	pmap_release_page_lock(md);
   4158 
   4159 	return rv;
   4160 }
   4161 
   4162 /*
   4163  * pmap_is_modified:
   4164  *
   4165  *	Test if a page has the "modified" attribute.
   4166  */
   4167 /* See <arm/arm32/pmap.h> */
   4168 
   4169 /*
   4170  * pmap_is_referenced:
   4171  *
   4172  *	Test if a page has the "referenced" attribute.
   4173  */
   4174 /* See <arm/arm32/pmap.h> */
   4175 
   4176 #if defined(ARM_MMU_EXTENDED) && 0
   4177 int
   4178 pmap_prefetchabt_fixup(void *v)
   4179 {
   4180 	struct trapframe * const tf = v;
   4181 	vaddr_t va = trunc_page(tf->tf_pc);
   4182 	int rv = ABORT_FIXUP_FAILED;
   4183 
   4184 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4185 		return rv;
   4186 
   4187 	kpreempt_disable();
   4188 	pmap_t pm = curcpu()->ci_pmap_cur;
   4189 	const size_t l1slot = l1pte_index(va);
   4190 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4191 	if (l2 == NULL)
   4192 		goto out;
   4193 
   4194 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4195 	if (l2b->l2b_kva == NULL)
   4196 		goto out;
   4197 
   4198 	/*
   4199 	 * Check the PTE itself.
   4200 	 */
   4201 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4202 	const pt_entry_t opte = *ptep;
   4203 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4204 		goto out;
   4205 
   4206 	paddr_t pa = l2pte_pa(pte);
   4207 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4208 	KASSERT(pg != NULL);
   4209 
   4210 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4211 
   4212 	pmap_acquire_page_lock(md);
   4213 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4214 	KASSERT(pv != NULL);
   4215 
   4216 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4217 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4218 			pmap_syncicache_page(md, pa);
   4219 		}
   4220 		rv = ABORT_FIXUP_RETURN;
   4221 		l2pte_set(ptep, opte & ~L2_XS_XN, opte);
   4222 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4223 	}
   4224 	pmap_release_page_lock(md);
   4225 
   4226   out:
   4227 	kpreempt_enable();
   4228 	return rv;
   4229 }
   4230 #endif
   4231 
   4232 int
   4233 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4234 {
   4235 	struct l2_dtable *l2;
   4236 	struct l2_bucket *l2b;
   4237 	paddr_t pa;
   4238 	const size_t l1slot = l1pte_index(va);
   4239 	int rv = 0;
   4240 
   4241 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4242 
   4243 	va = trunc_page(va);
   4244 
   4245 	KASSERT(!user || (pm != pmap_kernel()));
   4246 
   4247 	UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
   4248 	    pm, va, ftype, user);
   4249 #ifdef ARM_MMU_EXTENDED
   4250 	UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
   4251 	    cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4252 	    PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4253 #endif
   4254 
   4255 	pmap_acquire_pmap_lock(pm);
   4256 
   4257 	/*
   4258 	 * If there is no l2_dtable for this address, then the process
   4259 	 * has no business accessing it.
   4260 	 *
   4261 	 * Note: This will catch userland processes trying to access
   4262 	 * kernel addresses.
   4263 	 */
   4264 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4265 	if (l2 == NULL) {
   4266 		UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
   4267 		goto out;
   4268 	}
   4269 
   4270 	/*
   4271 	 * Likewise if there is no L2 descriptor table
   4272 	 */
   4273 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4274 	if (l2b->l2b_kva == NULL) {
   4275 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
   4276 		goto out;
   4277 	}
   4278 
   4279 	/*
   4280 	 * Check the PTE itself.
   4281 	 */
   4282 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4283 	pt_entry_t const opte = *ptep;
   4284 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4285 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
   4286 		goto out;
   4287 	}
   4288 
   4289 #ifndef ARM_HAS_VBAR
   4290 	/*
   4291 	 * Catch a userland access to the vector page mapped at 0x0
   4292 	 */
   4293 	if (user && (opte & L2_S_PROT_U) == 0) {
   4294 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4295 		goto out;
   4296 	}
   4297 #endif
   4298 
   4299 	pa = l2pte_pa(opte);
   4300 
   4301 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4302 		/*
   4303 		 * This looks like a good candidate for "page modified"
   4304 		 * emulation...
   4305 		 */
   4306 		struct pv_entry *pv;
   4307 		struct vm_page *pg;
   4308 
   4309 		/* Extract the physical address of the page */
   4310 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4311 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4312 			goto out;
   4313 		}
   4314 
   4315 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4316 
   4317 		/* Get the current flags for this page. */
   4318 		pmap_acquire_page_lock(md);
   4319 		pv = pmap_find_pv(md, pm, va);
   4320 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4321 			pmap_release_page_lock(md);
   4322 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4323 			goto out;
   4324 		}
   4325 
   4326 		/*
   4327 		 * Do the flags say this page is writable? If not then it
   4328 		 * is a genuine write fault. If yes then the write fault is
   4329 		 * our fault as we did not reflect the write access in the
   4330 		 * PTE. Now we know a write has occurred we can correct this
   4331 		 * and also set the modified bit
   4332 		 */
   4333 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4334 			pmap_release_page_lock(md);
   4335 			goto out;
   4336 		}
   4337 
   4338 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4339 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4340 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4341 		/*
   4342 		 * If there are cacheable mappings for this page, mark it dirty.
   4343 		 */
   4344 		if ((md->pvh_attrs & PVF_NC) == 0)
   4345 			md->pvh_attrs |= PVF_DIRTY;
   4346 #endif
   4347 #ifdef ARM_MMU_EXTENDED
   4348 		if (md->pvh_attrs & PVF_EXEC) {
   4349 			md->pvh_attrs &= ~PVF_EXEC;
   4350 			PMAPCOUNT(exec_discarded_modfixup);
   4351 		}
   4352 #endif
   4353 		pmap_release_page_lock(md);
   4354 
   4355 		/*
   4356 		 * Re-enable write permissions for the page.  No need to call
   4357 		 * pmap_vac_me_harder(), since this is just a
   4358 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4359 		 * changing. We've already set the cacheable bits based on
   4360 		 * the assumption that we can write to this page.
   4361 		 */
   4362 		const pt_entry_t npte =
   4363 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4364 #ifdef ARM_MMU_EXTENDED
   4365 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4366 #endif
   4367 		    | 0;
   4368 		l2pte_set(ptep, npte, opte);
   4369 		PTE_SYNC(ptep);
   4370 		PMAPCOUNT(fixup_mod);
   4371 		rv = 1;
   4372 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
   4373 		    opte, npte, 0, 0);
   4374 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4375 		/*
   4376 		 * This looks like a good candidate for "page referenced"
   4377 		 * emulation.
   4378 		 */
   4379 		struct vm_page *pg;
   4380 
   4381 		/* Extract the physical address of the page */
   4382 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4383 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4384 			goto out;
   4385 		}
   4386 
   4387 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4388 
   4389 		/* Get the current flags for this page. */
   4390 		pmap_acquire_page_lock(md);
   4391 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4392 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4393 			pmap_release_page_lock(md);
   4394 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4395 			goto out;
   4396 		}
   4397 
   4398 		md->pvh_attrs |= PVF_REF;
   4399 		pv->pv_flags |= PVF_REF;
   4400 
   4401 		pt_entry_t npte =
   4402 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4403 #ifdef ARM_MMU_EXTENDED
   4404 		if (pm != pmap_kernel()) {
   4405 			npte |= L2_XS_nG;
   4406 		}
   4407 		/*
   4408 		 * If we got called from prefetch abort, then ftype will have
   4409 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4410 		 * the PTE.
   4411 		 */
   4412 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4413 			/*
   4414 			 * Is this a mapping of an executable page?
   4415 			 */
   4416 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4417 				pmap_release_page_lock(md);
   4418 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4419 				    0, 0, 0, 0);
   4420 				goto out;
   4421 			}
   4422 			/*
   4423 			 * If we haven't synced the page, do so now.
   4424 			 */
   4425 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4426 				UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
   4427 				    pa, 0, 0, 0);
   4428 				pmap_syncicache_page(md, pa);
   4429 				PMAPCOUNT(fixup_exec);
   4430 			}
   4431 			npte &= ~L2_XS_XN;
   4432 		}
   4433 #endif /* ARM_MMU_EXTENDED */
   4434 		pmap_release_page_lock(md);
   4435 		l2pte_set(ptep, npte, opte);
   4436 		PTE_SYNC(ptep);
   4437 		PMAPCOUNT(fixup_ref);
   4438 		rv = 1;
   4439 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
   4440 		    opte, npte, 0, 0);
   4441 #ifdef ARM_MMU_EXTENDED
   4442 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4443 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4444 		if (pg == NULL) {
   4445 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4446 			goto out;
   4447 		}
   4448 
   4449 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4450 
   4451 		/* Get the current flags for this page. */
   4452 		pmap_acquire_page_lock(md);
   4453 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4454 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4455 			pmap_release_page_lock(md);
   4456 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4457 			goto out;
   4458 		}
   4459 
   4460 		/*
   4461 		 * If we haven't synced the page, do so now.
   4462 		 */
   4463 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4464 			UVMHIST_LOG(maphist, "syncicache page #%#x",
   4465 			    pa, 0, 0, 0);
   4466 			pmap_syncicache_page(md, pa);
   4467 		}
   4468 		pmap_release_page_lock(md);
   4469 		/*
   4470 		 * Turn off no-execute.
   4471 		 */
   4472 		KASSERT(opte & L2_XS_nG);
   4473 		l2pte_set(ptep, opte & ~L2_XS_XN, opte);
   4474 		PTE_SYNC(ptep);
   4475 		rv = 1;
   4476 		PMAPCOUNT(fixup_exec);
   4477 		UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
   4478 		    opte, opte & ~L2_XS_XN, 0, 0);
   4479 #endif
   4480 	}
   4481 
   4482 #ifndef ARM_MMU_EXTENDED
   4483 	/*
   4484 	 * We know there is a valid mapping here, so simply
   4485 	 * fix up the L1 if necessary.
   4486 	 */
   4487 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4488 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4489 	if (*pdep != pde) {
   4490 		l1pte_setone(pdep, pde);
   4491 		PTE_SYNC(pdep);
   4492 		rv = 1;
   4493 		PMAPCOUNT(fixup_pdes);
   4494 	}
   4495 #endif
   4496 
   4497 #ifdef CPU_SA110
   4498 	/*
   4499 	 * There are bugs in the rev K SA110.  This is a check for one
   4500 	 * of them.
   4501 	 */
   4502 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4503 	    curcpu()->ci_arm_cpurev < 3) {
   4504 		/* Always current pmap */
   4505 		if (l2pte_valid_p(opte)) {
   4506 			extern int kernel_debug;
   4507 			if (kernel_debug & 1) {
   4508 				struct proc *p = curlwp->l_proc;
   4509 				printf("prefetch_abort: page is already "
   4510 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4511 				printf("prefetch_abort: pc=%08lx proc=%p "
   4512 				    "process=%s\n", va, p, p->p_comm);
   4513 				printf("prefetch_abort: far=%08x fs=%x\n",
   4514 				    cpu_faultaddress(), cpu_faultstatus());
   4515 			}
   4516 #ifdef DDB
   4517 			if (kernel_debug & 2)
   4518 				Debugger();
   4519 #endif
   4520 			rv = 1;
   4521 		}
   4522 	}
   4523 #endif /* CPU_SA110 */
   4524 
   4525 #ifndef ARM_MMU_EXTENDED
   4526 	/*
   4527 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4528 	 * stale TLB entry for the faulting address.  That might be due to a
   4529 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4530 	 */
   4531 	if (rv == 0
   4532 	    && pm->pm_l1->l1_domain_use_count == 1
   4533 	    && pmap_needs_pte_sync == 0) {
   4534 		pmap_needs_pte_sync = 1;
   4535 		PTE_SYNC(ptep);
   4536 		PMAPCOUNT(fixup_ptesync);
   4537 		rv = 1;
   4538 	}
   4539 #endif
   4540 
   4541 #if defined(DEBUG) || 1
   4542 	/*
   4543 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4544 	 * stale TLB entry for the faulting address. This happens when two or
   4545 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4546 	 * a context switch between such processes, we can take domain faults
   4547 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4548 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4549 	 * example.
   4550 	 *
   4551 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4552 	 * entry for a recently entered mapping. In this case, the TLB is
   4553 	 * flushed for the new mapping, but there may still be TLB entries for
   4554 	 * other mappings belonging to other processes in the 1MB range
   4555 	 * covered by the L1 entry.
   4556 	 *
   4557 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4558 	 * value, so the fault must be due to a stale TLB entry.
   4559 	 *
   4560 	 * Since we always need to flush the TLB anyway in the case where we
   4561 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4562 	 * stale TLB entries dynamically.
   4563 	 *
   4564 	 * However, the above condition can ONLY happen if the current L1 is
   4565 	 * being shared. If it happens when the L1 is unshared, it indicates
   4566 	 * that other parts of the pmap are not doing their job WRT managing
   4567 	 * the TLB.
   4568 	 */
   4569 	if (rv == 0
   4570 #ifndef ARM_MMU_EXTENDED
   4571 	    && pm->pm_l1->l1_domain_use_count == 1
   4572 #endif
   4573 	    && true) {
   4574 #ifdef DEBUG
   4575 		extern int last_fault_code;
   4576 #else
   4577 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4578 		    ? armreg_ifsr_read()
   4579 		    : armreg_dfsr_read();
   4580 #endif
   4581 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4582 		    pm, va, ftype);
   4583 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4584 		    l2, l2b, ptep, opte);
   4585 
   4586 #ifndef ARM_MMU_EXTENDED
   4587 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4588 		    pdep, pde, last_fault_code);
   4589 #else
   4590 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4591 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4592 		   armreg_ttbcr_read());
   4593 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4594 		    last_fault_code, curcpu()->ci_pmap_cur,
   4595 		    curcpu()->ci_pmap_asid_cur,
   4596 		    armreg_contextidr_read(), armreg_dacr_read());
   4597 #ifdef _ARM_ARCH_7
   4598 		if (ftype & VM_PROT_WRITE)
   4599 			armreg_ats1cuw_write(va);
   4600 		else
   4601 			armreg_ats1cur_write(va);
   4602 		arm_isb();
   4603 		printf("fixup: par %#x\n", armreg_par_read());
   4604 #endif
   4605 #endif
   4606 #ifdef DDB
   4607 		extern int kernel_debug;
   4608 
   4609 		if (kernel_debug & 2) {
   4610 			pmap_release_pmap_lock(pm);
   4611 #ifdef UVMHIST
   4612 			KERNHIST_DUMP(maphist);
   4613 #endif
   4614 			cpu_Debugger();
   4615 			pmap_acquire_pmap_lock(pm);
   4616 		}
   4617 #endif
   4618 	}
   4619 #endif
   4620 
   4621 	pmap_tlb_flush_SE(pm, va,
   4622 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4623 
   4624 	rv = 1;
   4625 
   4626 out:
   4627 	pmap_release_pmap_lock(pm);
   4628 
   4629 	return (rv);
   4630 }
   4631 
   4632 /*
   4633  * Routine:	pmap_procwr
   4634  *
   4635  * Function:
   4636  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4637  *
   4638  */
   4639 void
   4640 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4641 {
   4642 	/* We only need to do anything if it is the current process. */
   4643 	if (p == curproc)
   4644 		cpu_icache_sync_range(va, len);
   4645 }
   4646 
   4647 /*
   4648  * Routine:	pmap_unwire
   4649  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4650  *
   4651  * In/out conditions:
   4652  *		The mapping must already exist in the pmap.
   4653  */
   4654 void
   4655 pmap_unwire(pmap_t pm, vaddr_t va)
   4656 {
   4657 	struct l2_bucket *l2b;
   4658 	pt_entry_t *ptep, pte;
   4659 	struct vm_page *pg;
   4660 	paddr_t pa;
   4661 
   4662 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4663 
   4664 	pmap_acquire_pmap_lock(pm);
   4665 
   4666 	l2b = pmap_get_l2_bucket(pm, va);
   4667 	KDASSERT(l2b != NULL);
   4668 
   4669 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4670 	pte = *ptep;
   4671 
   4672 	/* Extract the physical address of the page */
   4673 	pa = l2pte_pa(pte);
   4674 
   4675 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4676 		/* Update the wired bit in the pv entry for this page. */
   4677 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4678 
   4679 		pmap_acquire_page_lock(md);
   4680 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4681 		pmap_release_page_lock(md);
   4682 	}
   4683 
   4684 	pmap_release_pmap_lock(pm);
   4685 }
   4686 
   4687 void
   4688 pmap_activate(struct lwp *l)
   4689 {
   4690 	struct cpu_info * const ci = curcpu();
   4691 	extern int block_userspace_access;
   4692 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   4693 #ifdef ARM_MMU_EXTENDED
   4694 	struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
   4695 #endif
   4696 
   4697 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4698 
   4699 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
   4700 
   4701 	/*
   4702 	 * If activating a non-current lwp or the current lwp is
   4703 	 * already active, just return.
   4704 	 */
   4705 	if (false
   4706 	    || l != curlwp
   4707 #ifdef ARM_MMU_EXTENDED
   4708 	    || (ci->ci_pmap_cur == npm &&
   4709 		(npm == pmap_kernel()
   4710 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   4711 #else
   4712 	    || npm->pm_activated == true
   4713 #endif
   4714 	    || false) {
   4715 		UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
   4716 		return;
   4717 	}
   4718 
   4719 #ifndef ARM_MMU_EXTENDED
   4720 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4721 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4722 
   4723 	/*
   4724 	 * If TTB and DACR are unchanged, short-circuit all the
   4725 	 * TLB/cache management stuff.
   4726 	 */
   4727 	pmap_t opm = ci->ci_lastlwp
   4728 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   4729 	    : NULL;
   4730 	if (opm != NULL) {
   4731 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4732 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4733 
   4734 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4735 			goto all_done;
   4736 	}
   4737 #endif /* !ARM_MMU_EXTENDED */
   4738 
   4739 	PMAPCOUNT(activations);
   4740 	block_userspace_access = 1;
   4741 
   4742 #ifndef ARM_MMU_EXTENDED
   4743 	/*
   4744 	 * If switching to a user vmspace which is different to the
   4745 	 * most recent one, and the most recent one is potentially
   4746 	 * live in the cache, we must write-back and invalidate the
   4747 	 * entire cache.
   4748 	 */
   4749 	pmap_t rpm = ci->ci_pmap_lastuser;
   4750 #endif
   4751 
   4752 /*
   4753  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4754  * reported in kern/41058. They're probably left over during tear-down and
   4755  * switching away from an exiting process. Until the root cause is identified
   4756  * and fixed, zap the cache when switching pmaps. This will result in a few
   4757  * unnecessary cache flushes, but that's better than silently corrupting data.
   4758  */
   4759 #ifndef ARM_MMU_EXTENDED
   4760 #if 0
   4761 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4762 	    rpm->pm_cstate.cs_cache) {
   4763 		rpm->pm_cstate.cs_cache = 0;
   4764 #ifdef PMAP_CACHE_VIVT
   4765 		cpu_idcache_wbinv_all();
   4766 #endif
   4767 	}
   4768 #else
   4769 	if (rpm) {
   4770 		rpm->pm_cstate.cs_cache = 0;
   4771 		if (npm == pmap_kernel())
   4772 			ci->ci_pmap_lastuser = NULL;
   4773 #ifdef PMAP_CACHE_VIVT
   4774 		cpu_idcache_wbinv_all();
   4775 #endif
   4776 	}
   4777 #endif
   4778 
   4779 	/* No interrupts while we frob the TTB/DACR */
   4780 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   4781 #endif /* !ARM_MMU_EXTENDED */
   4782 
   4783 #ifndef ARM_HAS_VBAR
   4784 	/*
   4785 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4786 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4787 	 * before switching to it otherwise subsequent interrupts/exceptions
   4788 	 * (including domain faults!) will jump into hyperspace.
   4789 	 */
   4790 	if (npm->pm_pl1vec != NULL) {
   4791 		cpu_tlb_flushID_SE((u_int)vector_page);
   4792 		cpu_cpwait();
   4793 		*npm->pm_pl1vec = npm->pm_l1vec;
   4794 		PTE_SYNC(npm->pm_pl1vec);
   4795 	}
   4796 #endif
   4797 
   4798 #ifdef ARM_MMU_EXTENDED
   4799 	/*
   4800 	 * Assume that TTBR1 has only global mappings and TTBR0 only has
   4801 	 * non-global mappings.  To prevent speculation from doing evil things
   4802 	 * we disable translation table walks using TTBR0 before setting the
   4803 	 * CONTEXTIDR (ASID) or new TTBR0 value.  Once both are set, table
   4804 	 * walks are reenabled.
   4805 	 */
   4806 	UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
   4807 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4808 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4809 	arm_isb();
   4810 	pmap_tlb_asid_acquire(npm, l);
   4811 	UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
   4812 	cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
   4813 	/*
   4814 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
   4815 	 * been updated.
   4816 	 */
   4817 	arm_isb();
   4818 	if (npm != pmap_kernel()) {
   4819 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4820 	}
   4821 	cpu_cpwait();
   4822 	ci->ci_pmap_asid_cur = pai->pai_asid;
   4823 #else
   4824 	cpu_domains(ndacr);
   4825 	if (npm == pmap_kernel() || npm == rpm) {
   4826 		/*
   4827 		 * Switching to a kernel thread, or back to the
   4828 		 * same user vmspace as before... Simply update
   4829 		 * the TTB (no TLB flush required)
   4830 		 */
   4831 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4832 		cpu_cpwait();
   4833 	} else {
   4834 		/*
   4835 		 * Otherwise, update TTB and flush TLB
   4836 		 */
   4837 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4838 		if (rpm != NULL)
   4839 			rpm->pm_cstate.cs_tlb = 0;
   4840 	}
   4841 
   4842 	restore_interrupts(oldirqstate);
   4843 #endif /* ARM_MMU_EXTENDED */
   4844 
   4845 	block_userspace_access = 0;
   4846 
   4847 #ifndef ARM_MMU_EXTENDED
   4848  all_done:
   4849 	/*
   4850 	 * The new pmap is resident. Make sure it's marked
   4851 	 * as resident in the cache/TLB.
   4852 	 */
   4853 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4854 	if (npm != pmap_kernel())
   4855 		ci->ci_pmap_lastuser = npm;
   4856 
   4857 	/* The old pmap is not longer active */
   4858 	if (opm != npm) {
   4859 		if (opm != NULL)
   4860 			opm->pm_activated = false;
   4861 
   4862 		/* But the new one is */
   4863 		npm->pm_activated = true;
   4864 	}
   4865 #endif
   4866 	ci->ci_pmap_cur = npm;
   4867 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   4868 }
   4869 
   4870 void
   4871 pmap_deactivate(struct lwp *l)
   4872 {
   4873 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   4874 
   4875 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4876 
   4877 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
   4878 
   4879 #ifdef ARM_MMU_EXTENDED
   4880 	kpreempt_disable();
   4881 	struct cpu_info * const ci = curcpu();
   4882 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
   4883 	/*
   4884 	 * Disable translation table walks from TTBR0 while no pmap has been
   4885 	 * activated.
   4886 	 */
   4887 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4888 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4889 	arm_isb();
   4890 	pmap_tlb_asid_deactivate(pm);
   4891 	cpu_setttb(pmap_kernel()->pm_l1_pa, pai->pai_asid);
   4892 	ci->ci_pmap_cur = pmap_kernel();
   4893 	kpreempt_enable();
   4894 #else
   4895 	/*
   4896 	 * If the process is exiting, make sure pmap_activate() does
   4897 	 * a full MMU context-switch and cache flush, which we might
   4898 	 * otherwise skip. See PR port-arm/38950.
   4899 	 */
   4900 	if (l->l_proc->p_sflag & PS_WEXIT)
   4901 		curcpu()->ci_lastlwp = NULL;
   4902 
   4903 	pm->pm_activated = false;
   4904 #endif
   4905 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   4906 }
   4907 
   4908 void
   4909 pmap_update(pmap_t pm)
   4910 {
   4911 
   4912 	if (pm->pm_remove_all) {
   4913 #ifdef ARM_MMU_EXTENDED
   4914 		KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   4915 		/*
   4916 		 * Finish up the pmap_remove_all() optimisation by flushing
   4917 		 * all our ASIDs.
   4918 		 */
   4919 		pmap_tlb_asid_release_all(pm);
   4920 #else
   4921 		/*
   4922 		 * Finish up the pmap_remove_all() optimisation by flushing
   4923 		 * the TLB.
   4924 		 */
   4925 		pmap_tlb_flushID(pm);
   4926 #endif
   4927 		pm->pm_remove_all = false;
   4928 	}
   4929 
   4930 #ifdef ARM_MMU_EXTENDED
   4931 
   4932 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
   4933 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   4934 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   4935 		PMAP_COUNT(shootdown_ipis);
   4936 	}
   4937 #endif
   4938 	KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   4939 #else
   4940 	if (pmap_is_current(pm)) {
   4941 		/*
   4942 		 * If we're dealing with a current userland pmap, move its L1
   4943 		 * to the end of the LRU.
   4944 		 */
   4945 		if (pm != pmap_kernel())
   4946 			pmap_use_l1(pm);
   4947 
   4948 		/*
   4949 		 * We can assume we're done with frobbing the cache/tlb for
   4950 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4951 		 * flushes.
   4952 		 */
   4953 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4954 	}
   4955 #endif
   4956 
   4957 	PMAPCOUNT(updates);
   4958 
   4959 	/*
   4960 	 * make sure TLB/cache operations have completed.
   4961 	 */
   4962 	cpu_cpwait();
   4963 }
   4964 
   4965 void
   4966 pmap_remove_all(pmap_t pm)
   4967 {
   4968 
   4969 	/*
   4970 	 * The vmspace described by this pmap is about to be torn down.
   4971 	 * Until pmap_update() is called, UVM will only make calls
   4972 	 * to pmap_remove(). We can make life much simpler by flushing
   4973 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4974 	 */
   4975 #ifdef PMAP_CACHE_VIVT
   4976 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   4977 #endif
   4978 	pm->pm_remove_all = true;
   4979 }
   4980 
   4981 /*
   4982  * Retire the given physical map from service.
   4983  * Should only be called if the map contains no valid mappings.
   4984  */
   4985 void
   4986 pmap_destroy(pmap_t pm)
   4987 {
   4988 	u_int count;
   4989 
   4990 	if (pm == NULL)
   4991 		return;
   4992 
   4993 	if (pm->pm_remove_all) {
   4994 		pmap_tlb_flushID(pm);
   4995 		pm->pm_remove_all = false;
   4996 	}
   4997 
   4998 	/*
   4999 	 * Drop reference count
   5000 	 */
   5001 	mutex_enter(pm->pm_lock);
   5002 	count = --pm->pm_obj.uo_refs;
   5003 	mutex_exit(pm->pm_lock);
   5004 	if (count > 0) {
   5005 #ifndef ARM_MMU_EXTENDED
   5006 		if (pmap_is_current(pm)) {
   5007 			if (pm != pmap_kernel())
   5008 				pmap_use_l1(pm);
   5009 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5010 		}
   5011 #endif
   5012 		return;
   5013 	}
   5014 
   5015 	/*
   5016 	 * reference count is zero, free pmap resources and then free pmap.
   5017 	 */
   5018 
   5019 #ifndef ARM_HAS_VBAR
   5020 	if (vector_page < KERNEL_BASE) {
   5021 		KDASSERT(!pmap_is_current(pm));
   5022 
   5023 		/* Remove the vector page mapping */
   5024 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5025 		pmap_update(pm);
   5026 	}
   5027 #endif
   5028 
   5029 	LIST_REMOVE(pm, pm_list);
   5030 
   5031 	pmap_free_l1(pm);
   5032 
   5033 #ifdef ARM_MMU_EXTENDED
   5034 #ifdef MULTIPROCESSOR
   5035 	kcpuset_destroy(pm->pm_active);
   5036 	kcpuset_destroy(pm->pm_onproc);
   5037 #endif
   5038 #else
   5039 	struct cpu_info * const ci = curcpu();
   5040 	if (ci->ci_pmap_lastuser == pm)
   5041 		ci->ci_pmap_lastuser = NULL;
   5042 #endif
   5043 
   5044 	uvm_obj_destroy(&pm->pm_obj, false);
   5045 	mutex_destroy(&pm->pm_obj_lock);
   5046 	pool_cache_put(&pmap_cache, pm);
   5047 }
   5048 
   5049 
   5050 /*
   5051  * void pmap_reference(pmap_t pm)
   5052  *
   5053  * Add a reference to the specified pmap.
   5054  */
   5055 void
   5056 pmap_reference(pmap_t pm)
   5057 {
   5058 
   5059 	if (pm == NULL)
   5060 		return;
   5061 
   5062 #ifndef ARM_MMU_EXTENDED
   5063 	pmap_use_l1(pm);
   5064 #endif
   5065 
   5066 	mutex_enter(pm->pm_lock);
   5067 	pm->pm_obj.uo_refs++;
   5068 	mutex_exit(pm->pm_lock);
   5069 }
   5070 
   5071 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5072 
   5073 static struct evcnt pmap_prefer_nochange_ev =
   5074     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5075 static struct evcnt pmap_prefer_change_ev =
   5076     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5077 
   5078 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5079 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5080 
   5081 void
   5082 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5083 {
   5084 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5085 	vaddr_t va = *vap;
   5086 	vaddr_t diff = (hint - va) & mask;
   5087 	if (diff == 0) {
   5088 		pmap_prefer_nochange_ev.ev_count++;
   5089 	} else {
   5090 		pmap_prefer_change_ev.ev_count++;
   5091 		if (__predict_false(td))
   5092 			va -= mask + 1;
   5093 		*vap = va + diff;
   5094 	}
   5095 }
   5096 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5097 
   5098 /*
   5099  * pmap_zero_page()
   5100  *
   5101  * Zero a given physical page by mapping it at a page hook point.
   5102  * In doing the zero page op, the page we zero is mapped cachable, as with
   5103  * StrongARM accesses to non-cached pages are non-burst making writing
   5104  * _any_ bulk data very slow.
   5105  */
   5106 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5107 void
   5108 pmap_zero_page_generic(paddr_t pa)
   5109 {
   5110 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5111 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5112 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5113 #endif
   5114 #if defined(PMAP_CACHE_VIPT)
   5115 	/* Choose the last page color it had, if any */
   5116 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5117 #else
   5118 	const vsize_t va_offset = 0;
   5119 #endif
   5120 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5121 	/*
   5122 	 * Is this page mapped at its natural color?
   5123 	 * If we have all of memory mapped, then just convert PA to VA.
   5124 	 */
   5125 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5126 	   || va_offset == (pa & arm_cache_prefer_mask);
   5127 	const vaddr_t vdstp = okcolor
   5128 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5129 	    : cpu_cdstp(va_offset);
   5130 #else
   5131 	const bool okcolor = false;
   5132 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5133 #endif
   5134 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5135 
   5136 
   5137 #ifdef DEBUG
   5138 	if (!SLIST_EMPTY(&md->pvh_list))
   5139 		panic("pmap_zero_page: page has mappings");
   5140 #endif
   5141 
   5142 	KDASSERT((pa & PGOFSET) == 0);
   5143 
   5144 	if (!okcolor) {
   5145 		/*
   5146 		 * Hook in the page, zero it, and purge the cache for that
   5147 		 * zeroed page. Invalidate the TLB as needed.
   5148 		 */
   5149 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5150 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5151 		l2pte_set(ptep, npte, 0);
   5152 		PTE_SYNC(ptep);
   5153 		cpu_tlb_flushD_SE(vdstp);
   5154 		cpu_cpwait();
   5155 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5156     && !defined(ARM_MMU_EXTENDED)
   5157 		/*
   5158 		 * If we are direct-mapped and our color isn't ok, then before
   5159 		 * we bzero the page invalidate its contents from the cache and
   5160 		 * reset the color to its natural color.
   5161 		 */
   5162 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5163 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5164 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5165 #endif
   5166 	}
   5167 	bzero_page(vdstp);
   5168 	if (!okcolor) {
   5169 		/*
   5170 		 * Unmap the page.
   5171 		 */
   5172 		l2pte_reset(ptep);
   5173 		PTE_SYNC(ptep);
   5174 		cpu_tlb_flushD_SE(vdstp);
   5175 #ifdef PMAP_CACHE_VIVT
   5176 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5177 #endif
   5178 	}
   5179 #ifdef PMAP_CACHE_VIPT
   5180 	/*
   5181 	 * This page is now cache resident so it now has a page color.
   5182 	 * Any contents have been obliterated so clear the EXEC flag.
   5183 	 */
   5184 #ifndef ARM_MMU_EXTENDED
   5185 	if (!pmap_is_page_colored_p(md)) {
   5186 		PMAPCOUNT(vac_color_new);
   5187 		md->pvh_attrs |= PVF_COLORED;
   5188 	}
   5189 	md->pvh_attrs |= PVF_DIRTY;
   5190 #endif
   5191 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5192 		md->pvh_attrs &= ~PVF_EXEC;
   5193 		PMAPCOUNT(exec_discarded_zero);
   5194 	}
   5195 #endif
   5196 }
   5197 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5198 
   5199 #if ARM_MMU_XSCALE == 1
   5200 void
   5201 pmap_zero_page_xscale(paddr_t pa)
   5202 {
   5203 #ifdef DEBUG
   5204 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5205 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5206 
   5207 	if (!SLIST_EMPTY(&md->pvh_list))
   5208 		panic("pmap_zero_page: page has mappings");
   5209 #endif
   5210 
   5211 	KDASSERT((pa & PGOFSET) == 0);
   5212 
   5213 	/*
   5214 	 * Hook in the page, zero it, and purge the cache for that
   5215 	 * zeroed page. Invalidate the TLB as needed.
   5216 	 */
   5217 
   5218 	pt_entry_t npte = L2_S_PROTO | pa |
   5219 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5220 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5221 	l2pte_set(cdst_pte, npte, 0);
   5222 	PTE_SYNC(cdst_pte);
   5223 	cpu_tlb_flushD_SE(cdstp);
   5224 	cpu_cpwait();
   5225 	bzero_page(cdstp);
   5226 	xscale_cache_clean_minidata();
   5227 	l2pte_reset(cdst_pte);
   5228 	PTE_SYNC(cdst_pte);
   5229 }
   5230 #endif /* ARM_MMU_XSCALE == 1 */
   5231 
   5232 /* pmap_pageidlezero()
   5233  *
   5234  * The same as above, except that we assume that the page is not
   5235  * mapped.  This means we never have to flush the cache first.  Called
   5236  * from the idle loop.
   5237  */
   5238 bool
   5239 pmap_pageidlezero(paddr_t pa)
   5240 {
   5241 	bool rv = true;
   5242 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5243 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5244 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5245 #endif
   5246 #ifdef PMAP_CACHE_VIPT
   5247 	/* Choose the last page color it had, if any */
   5248 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5249 #else
   5250 	const vsize_t va_offset = 0;
   5251 #endif
   5252 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5253 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5254 	   || va_offset == (pa & arm_cache_prefer_mask);
   5255 	const vaddr_t vdstp = okcolor
   5256 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5257 	    : cpu_cdstp(va_offset);
   5258 #else
   5259 	const bool okcolor = false;
   5260 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5261 #endif
   5262 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5263 
   5264 
   5265 #ifdef DEBUG
   5266 	if (!SLIST_EMPTY(&md->pvh_list))
   5267 		panic("pmap_pageidlezero: page has mappings");
   5268 #endif
   5269 
   5270 	KDASSERT((pa & PGOFSET) == 0);
   5271 
   5272 	if (!okcolor) {
   5273 		/*
   5274 		 * Hook in the page, zero it, and purge the cache for that
   5275 		 * zeroed page. Invalidate the TLB as needed.
   5276 		 */
   5277 		const pt_entry_t npte = L2_S_PROTO | pa |
   5278 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5279 		l2pte_set(ptep, npte, 0);
   5280 		PTE_SYNC(ptep);
   5281 		cpu_tlb_flushD_SE(vdstp);
   5282 		cpu_cpwait();
   5283 	}
   5284 
   5285 	uint64_t *ptr = (uint64_t *)vdstp;
   5286 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5287 		if (sched_curcpu_runnable_p() != 0) {
   5288 			/*
   5289 			 * A process has become ready.  Abort now,
   5290 			 * so we don't keep it waiting while we
   5291 			 * do slow memory access to finish this
   5292 			 * page.
   5293 			 */
   5294 			rv = false;
   5295 			break;
   5296 		}
   5297 		*ptr++ = 0;
   5298 	}
   5299 
   5300 #ifdef PMAP_CACHE_VIVT
   5301 	if (rv)
   5302 		/*
   5303 		 * if we aborted we'll rezero this page again later so don't
   5304 		 * purge it unless we finished it
   5305 		 */
   5306 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5307 #elif defined(PMAP_CACHE_VIPT)
   5308 	/*
   5309 	 * This page is now cache resident so it now has a page color.
   5310 	 * Any contents have been obliterated so clear the EXEC flag.
   5311 	 */
   5312 #ifndef ARM_MMU_EXTENDED
   5313 	if (!pmap_is_page_colored_p(md)) {
   5314 		PMAPCOUNT(vac_color_new);
   5315 		md->pvh_attrs |= PVF_COLORED;
   5316 	}
   5317 #endif
   5318 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5319 		md->pvh_attrs &= ~PVF_EXEC;
   5320 		PMAPCOUNT(exec_discarded_zero);
   5321 	}
   5322 #endif
   5323 	/*
   5324 	 * Unmap the page.
   5325 	 */
   5326 	if (!okcolor) {
   5327 		l2pte_reset(ptep);
   5328 		PTE_SYNC(ptep);
   5329 		cpu_tlb_flushD_SE(vdstp);
   5330 	}
   5331 
   5332 	return rv;
   5333 }
   5334 
   5335 /*
   5336  * pmap_copy_page()
   5337  *
   5338  * Copy one physical page into another, by mapping the pages into
   5339  * hook points. The same comment regarding cachability as in
   5340  * pmap_zero_page also applies here.
   5341  */
   5342 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5343 void
   5344 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5345 {
   5346 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5347 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5348 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5349 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5350 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5351 #endif
   5352 #ifdef PMAP_CACHE_VIPT
   5353 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5354 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5355 #else
   5356 	const vsize_t src_va_offset = 0;
   5357 	const vsize_t dst_va_offset = 0;
   5358 #endif
   5359 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5360 	/*
   5361 	 * Is this page mapped at its natural color?
   5362 	 * If we have all of memory mapped, then just convert PA to VA.
   5363 	 */
   5364 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5365 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5366 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5367 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5368 	const vaddr_t vsrcp = src_okcolor
   5369 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5370 		cpu_csrcp(src_va_offset))
   5371 	    : cpu_csrcp(src_va_offset);
   5372 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5373 	    cpu_cdstp(dst_va_offset));
   5374 #else
   5375 	const bool src_okcolor = false;
   5376 	const bool dst_okcolor = false;
   5377 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5378 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5379 #endif
   5380 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5381 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5382 
   5383 #ifdef DEBUG
   5384 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5385 		panic("pmap_copy_page: dst page has mappings");
   5386 #endif
   5387 
   5388 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5389 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5390 #endif
   5391 	KDASSERT((src & PGOFSET) == 0);
   5392 	KDASSERT((dst & PGOFSET) == 0);
   5393 
   5394 	/*
   5395 	 * Clean the source page.  Hold the source page's lock for
   5396 	 * the duration of the copy so that no other mappings can
   5397 	 * be created while we have a potentially aliased mapping.
   5398 	 */
   5399 #ifdef PMAP_CACHE_VIVT
   5400 	pmap_acquire_page_lock(src_md);
   5401 	(void) pmap_clean_page(src_md, true);
   5402 	pmap_release_page_lock(src_md);
   5403 #endif
   5404 
   5405 	/*
   5406 	 * Map the pages into the page hook points, copy them, and purge
   5407 	 * the cache for the appropriate page. Invalidate the TLB
   5408 	 * as required.
   5409 	 */
   5410 	if (!src_okcolor) {
   5411 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5412 		    | src
   5413 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5414 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5415 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5416 		    | pte_l2_s_cache_mode
   5417 #endif
   5418 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5419 		l2pte_set(src_ptep, nsrc_pte, 0);
   5420 		PTE_SYNC(src_ptep);
   5421 		cpu_tlb_flushD_SE(vsrcp);
   5422 		cpu_cpwait();
   5423 	}
   5424 	if (!dst_okcolor) {
   5425 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5426 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5427 		l2pte_set(dst_ptep, ndst_pte, 0);
   5428 		PTE_SYNC(dst_ptep);
   5429 		cpu_tlb_flushD_SE(vdstp);
   5430 		cpu_cpwait();
   5431 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5432 		/*
   5433 		 * If we are direct-mapped and our color isn't ok, then before
   5434 		 * we bcopy to the new page invalidate its contents from the
   5435 		 * cache and reset its color to its natural color.
   5436 		 */
   5437 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5438 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5439 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5440 #endif
   5441 	}
   5442 	bcopy_page(vsrcp, vdstp);
   5443 #ifdef PMAP_CACHE_VIVT
   5444 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5445 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5446 #endif
   5447 	/*
   5448 	 * Unmap the pages.
   5449 	 */
   5450 	if (!src_okcolor) {
   5451 		l2pte_reset(src_ptep);
   5452 		PTE_SYNC(src_ptep);
   5453 		cpu_tlb_flushD_SE(vsrcp);
   5454 		cpu_cpwait();
   5455 	}
   5456 	if (!dst_okcolor) {
   5457 		l2pte_reset(dst_ptep);
   5458 		PTE_SYNC(dst_ptep);
   5459 		cpu_tlb_flushD_SE(vdstp);
   5460 		cpu_cpwait();
   5461 	}
   5462 #ifdef PMAP_CACHE_VIPT
   5463 	/*
   5464 	 * Now that the destination page is in the cache, mark it as colored.
   5465 	 * If this was an exec page, discard it.
   5466 	 */
   5467 	pmap_acquire_page_lock(dst_md);
   5468 #ifndef ARM_MMU_EXTENDED
   5469 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5470 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5471 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5472 	}
   5473 	if (!pmap_is_page_colored_p(dst_md)) {
   5474 		PMAPCOUNT(vac_color_new);
   5475 		dst_md->pvh_attrs |= PVF_COLORED;
   5476 	}
   5477 	dst_md->pvh_attrs |= PVF_DIRTY;
   5478 #endif
   5479 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5480 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5481 		PMAPCOUNT(exec_discarded_copy);
   5482 	}
   5483 	pmap_release_page_lock(dst_md);
   5484 #endif
   5485 }
   5486 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5487 
   5488 #if ARM_MMU_XSCALE == 1
   5489 void
   5490 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5491 {
   5492 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5493 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5494 #ifdef DEBUG
   5495 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5496 
   5497 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5498 		panic("pmap_copy_page: dst page has mappings");
   5499 #endif
   5500 
   5501 	KDASSERT((src & PGOFSET) == 0);
   5502 	KDASSERT((dst & PGOFSET) == 0);
   5503 
   5504 	/*
   5505 	 * Clean the source page.  Hold the source page's lock for
   5506 	 * the duration of the copy so that no other mappings can
   5507 	 * be created while we have a potentially aliased mapping.
   5508 	 */
   5509 #ifdef PMAP_CACHE_VIVT
   5510 	pmap_acquire_page_lock(src_md);
   5511 	(void) pmap_clean_page(src_md, true);
   5512 	pmap_release_page_lock(src_md);
   5513 #endif
   5514 
   5515 	/*
   5516 	 * Map the pages into the page hook points, copy them, and purge
   5517 	 * the cache for the appropriate page. Invalidate the TLB
   5518 	 * as required.
   5519 	 */
   5520 	*csrc_pte = L2_S_PROTO | src |
   5521 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   5522 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5523 	PTE_SYNC(csrc_pte);
   5524 	*cdst_pte = L2_S_PROTO | dst |
   5525 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5526 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5527 	PTE_SYNC(cdst_pte);
   5528 	cpu_tlb_flushD_SE(csrcp);
   5529 	cpu_tlb_flushD_SE(cdstp);
   5530 	cpu_cpwait();
   5531 	bcopy_page(csrcp, cdstp);
   5532 	xscale_cache_clean_minidata();
   5533 }
   5534 #endif /* ARM_MMU_XSCALE == 1 */
   5535 
   5536 /*
   5537  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5538  *
   5539  * Return the start and end addresses of the kernel's virtual space.
   5540  * These values are setup in pmap_bootstrap and are updated as pages
   5541  * are allocated.
   5542  */
   5543 void
   5544 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5545 {
   5546 	*start = virtual_avail;
   5547 	*end = virtual_end;
   5548 }
   5549 
   5550 /*
   5551  * Helper function for pmap_grow_l2_bucket()
   5552  */
   5553 static inline int
   5554 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5555 {
   5556 	paddr_t pa;
   5557 
   5558 	if (uvm.page_init_done == false) {
   5559 #ifdef PMAP_STEAL_MEMORY
   5560 		pv_addr_t pv;
   5561 		pmap_boot_pagealloc(PAGE_SIZE,
   5562 #ifdef PMAP_CACHE_VIPT
   5563 		    arm_cache_prefer_mask,
   5564 		    va & arm_cache_prefer_mask,
   5565 #else
   5566 		    0, 0,
   5567 #endif
   5568 		    &pv);
   5569 		pa = pv.pv_pa;
   5570 #else
   5571 		if (uvm_page_physget(&pa) == false)
   5572 			return (1);
   5573 #endif	/* PMAP_STEAL_MEMORY */
   5574 	} else {
   5575 		struct vm_page *pg;
   5576 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5577 		if (pg == NULL)
   5578 			return (1);
   5579 		pa = VM_PAGE_TO_PHYS(pg);
   5580 		/*
   5581 		 * This new page must not have any mappings.  Enter it via
   5582 		 * pmap_kenter_pa and let that routine do the hard work.
   5583 		 */
   5584 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5585 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5586 		pmap_kenter_pa(va, pa,
   5587 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5588 	}
   5589 
   5590 	if (pap)
   5591 		*pap = pa;
   5592 
   5593 	PMAPCOUNT(pt_mappings);
   5594 #ifdef DEBUG
   5595 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5596 	KDASSERT(l2b != NULL);
   5597 
   5598 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   5599 	const pt_entry_t opte = *ptep;
   5600 	KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   5601 #endif
   5602 	memset((void *)va, 0, PAGE_SIZE);
   5603 	return (0);
   5604 }
   5605 
   5606 /*
   5607  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   5608  * used by pmap_growkernel().
   5609  */
   5610 static inline struct l2_bucket *
   5611 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   5612 {
   5613 	struct l2_dtable *l2;
   5614 	struct l2_bucket *l2b;
   5615 	u_short l1slot;
   5616 	vaddr_t nva;
   5617 
   5618 	l1slot = l1pte_index(va);
   5619 
   5620 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   5621 		/*
   5622 		 * No mapping at this address, as there is
   5623 		 * no entry in the L1 table.
   5624 		 * Need to allocate a new l2_dtable.
   5625 		 */
   5626 		nva = pmap_kernel_l2dtable_kva;
   5627 		if ((nva & PGOFSET) == 0) {
   5628 			/*
   5629 			 * Need to allocate a backing page
   5630 			 */
   5631 			if (pmap_grow_map(nva, NULL))
   5632 				return (NULL);
   5633 		}
   5634 
   5635 		l2 = (struct l2_dtable *)nva;
   5636 		nva += sizeof(struct l2_dtable);
   5637 
   5638 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   5639 			/*
   5640 			 * The new l2_dtable straddles a page boundary.
   5641 			 * Map in another page to cover it.
   5642 			 */
   5643 			if (pmap_grow_map(nva, NULL))
   5644 				return (NULL);
   5645 		}
   5646 
   5647 		pmap_kernel_l2dtable_kva = nva;
   5648 
   5649 		/*
   5650 		 * Link it into the parent pmap
   5651 		 */
   5652 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   5653 	}
   5654 
   5655 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   5656 
   5657 	/*
   5658 	 * Fetch pointer to the L2 page table associated with the address.
   5659 	 */
   5660 	if (l2b->l2b_kva == NULL) {
   5661 		pt_entry_t *ptep;
   5662 
   5663 		/*
   5664 		 * No L2 page table has been allocated. Chances are, this
   5665 		 * is because we just allocated the l2_dtable, above.
   5666 		 */
   5667 		nva = pmap_kernel_l2ptp_kva;
   5668 		ptep = (pt_entry_t *)nva;
   5669 		if ((nva & PGOFSET) == 0) {
   5670 			/*
   5671 			 * Need to allocate a backing page
   5672 			 */
   5673 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   5674 				return (NULL);
   5675 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   5676 		}
   5677 
   5678 		l2->l2_occupancy++;
   5679 		l2b->l2b_kva = ptep;
   5680 		l2b->l2b_l1slot = l1slot;
   5681 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   5682 
   5683 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   5684 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   5685 	}
   5686 
   5687 	return (l2b);
   5688 }
   5689 
   5690 vaddr_t
   5691 pmap_growkernel(vaddr_t maxkvaddr)
   5692 {
   5693 	pmap_t kpm = pmap_kernel();
   5694 #ifndef ARM_MMU_EXTENDED
   5695 	struct l1_ttable *l1;
   5696 #endif
   5697 	int s;
   5698 
   5699 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5700 		goto out;		/* we are OK */
   5701 
   5702 	NPDEBUG(PDB_GROWKERN,
   5703 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5704 	    pmap_curmaxkvaddr, maxkvaddr));
   5705 
   5706 	KDASSERT(maxkvaddr <= virtual_end);
   5707 
   5708 	/*
   5709 	 * whoops!   we need to add kernel PTPs
   5710 	 */
   5711 
   5712 	s = splhigh();	/* to be safe */
   5713 	mutex_enter(kpm->pm_lock);
   5714 
   5715 	/* Map 1MB at a time */
   5716 	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
   5717 #ifdef ARM_MMU_EXTENDED
   5718 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   5719 	pd_entry_t *pdep = spdep;
   5720 #endif
   5721 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   5722 #ifdef ARM_MMU_EXTENDED
   5723 	     pdep++,
   5724 #endif
   5725 	     l1slot++) {
   5726 		struct l2_bucket *l2b =
   5727 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5728 		KASSERT(l2b != NULL);
   5729 
   5730 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   5731 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   5732 #ifdef ARM_MMU_EXTENDED
   5733 		l1pte_setone(pdep, npde);
   5734 #else
   5735 		/* Distribute new L1 entry to all other L1s */
   5736 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5737 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   5738 			l1pte_setone(pdep, npde);
   5739 			PDE_SYNC(pdep);
   5740 		}
   5741 #endif
   5742 	}
   5743 #ifdef ARM_MMU_EXTENDED
   5744 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   5745 #endif
   5746 
   5747 #ifdef PMAP_CACHE_VIVT
   5748 	/*
   5749 	 * flush out the cache, expensive but growkernel will happen so
   5750 	 * rarely
   5751 	 */
   5752 	cpu_dcache_wbinv_all();
   5753 	cpu_tlb_flushD();
   5754 	cpu_cpwait();
   5755 #endif
   5756 
   5757 	mutex_exit(kpm->pm_lock);
   5758 	splx(s);
   5759 
   5760 out:
   5761 	return (pmap_curmaxkvaddr);
   5762 }
   5763 
   5764 /************************ Utility routines ****************************/
   5765 
   5766 #ifndef ARM_HAS_VBAR
   5767 /*
   5768  * vector_page_setprot:
   5769  *
   5770  *	Manipulate the protection of the vector page.
   5771  */
   5772 void
   5773 vector_page_setprot(int prot)
   5774 {
   5775 	struct l2_bucket *l2b;
   5776 	pt_entry_t *ptep;
   5777 
   5778 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5779 	/*
   5780 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5781 	 * already mapped in the kernel text so no need to anything here.
   5782 	 */
   5783 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5784 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5785 		return;
   5786 	}
   5787 #endif
   5788 
   5789 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5790 	KASSERT(l2b != NULL);
   5791 
   5792 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5793 
   5794 	const pt_entry_t opte = *ptep;
   5795 #ifdef ARM_MMU_EXTENDED
   5796 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   5797 	    | L2_S_PROT(PTE_KERNEL, prot);
   5798 #else
   5799 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   5800 	    | L2_S_PROT(PTE_KERNEL, prot);
   5801 #endif
   5802 	l2pte_set(ptep, npte, opte);
   5803 	PTE_SYNC(ptep);
   5804 	cpu_tlb_flushD_SE(vector_page);
   5805 	cpu_cpwait();
   5806 }
   5807 #endif
   5808 
   5809 /*
   5810  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5811  * Returns true if the mapping exists, else false.
   5812  *
   5813  * NOTE: This function is only used by a couple of arm-specific modules.
   5814  * It is not safe to take any pmap locks here, since we could be right
   5815  * in the middle of debugging the pmap anyway...
   5816  *
   5817  * It is possible for this routine to return false even though a valid
   5818  * mapping does exist. This is because we don't lock, so the metadata
   5819  * state may be inconsistent.
   5820  *
   5821  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5822  * a "section" mapping.
   5823  */
   5824 bool
   5825 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5826 {
   5827 	struct l2_dtable *l2;
   5828 	pd_entry_t *pdep, pde;
   5829 	pt_entry_t *ptep;
   5830 	u_short l1slot;
   5831 
   5832 	if (pm->pm_l1 == NULL)
   5833 		return false;
   5834 
   5835 	l1slot = l1pte_index(va);
   5836 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   5837 	pde = *pdep;
   5838 
   5839 	if (l1pte_section_p(pde)) {
   5840 		*ptp = NULL;
   5841 		return true;
   5842 	}
   5843 
   5844 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   5845 	if (l2 == NULL ||
   5846 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   5847 		return false;
   5848 	}
   5849 
   5850 	*ptp = &ptep[l2pte_index(va)];
   5851 	return true;
   5852 }
   5853 
   5854 bool
   5855 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5856 {
   5857 
   5858 	if (pm->pm_l1 == NULL)
   5859 		return false;
   5860 
   5861 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   5862 
   5863 	return true;
   5864 }
   5865 
   5866 /************************ Bootstrapping routines ****************************/
   5867 
   5868 #ifndef ARM_MMU_EXTENDED
   5869 static void
   5870 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5871 {
   5872 	int i;
   5873 
   5874 	l1->l1_kva = l1pt;
   5875 	l1->l1_domain_use_count = 0;
   5876 	l1->l1_domain_first = 0;
   5877 
   5878 	for (i = 0; i < PMAP_DOMAINS; i++)
   5879 		l1->l1_domain_free[i] = i + 1;
   5880 
   5881 	/*
   5882 	 * Copy the kernel's L1 entries to each new L1.
   5883 	 */
   5884 	if (pmap_initialized)
   5885 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   5886 
   5887 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5888 	    &l1->l1_physaddr) == false)
   5889 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5890 
   5891 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5892 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5893 }
   5894 #endif /* !ARM_MMU_EXTENDED */
   5895 
   5896 /*
   5897  * pmap_bootstrap() is called from the board-specific initarm() routine
   5898  * once the kernel L1/L2 descriptors tables have been set up.
   5899  *
   5900  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5901  * spread over a number of disparate files/functions.
   5902  *
   5903  * We are passed the following parameters
   5904  *  - kernel_l1pt
   5905  *    This is a pointer to the base of the kernel's L1 translation table.
   5906  *  - vstart
   5907  *    1MB-aligned start of managed kernel virtual memory.
   5908  *  - vend
   5909  *    1MB-aligned end of managed kernel virtual memory.
   5910  *
   5911  * We use the first parameter to build the metadata (struct l1_ttable and
   5912  * struct l2_dtable) necessary to track kernel mappings.
   5913  */
   5914 #define	PMAP_STATIC_L2_SIZE 16
   5915 void
   5916 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5917 {
   5918 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5919 #ifndef ARM_MMU_EXTENDED
   5920 	static struct l1_ttable static_l1;
   5921 	struct l1_ttable *l1 = &static_l1;
   5922 #endif
   5923 	struct l2_dtable *l2;
   5924 	struct l2_bucket *l2b;
   5925 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5926 	pmap_t pm = pmap_kernel();
   5927 	pt_entry_t *ptep;
   5928 	paddr_t pa;
   5929 	vsize_t size;
   5930 	int nptes, l2idx, l2next = 0;
   5931 
   5932 #ifdef ARM_MMU_EXTENDED
   5933 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   5934 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   5935 #endif
   5936 
   5937 #ifdef VERBOSE_INIT_ARM
   5938 	printf("kpm ");
   5939 #endif
   5940 	/*
   5941 	 * Initialise the kernel pmap object
   5942 	 */
   5943 	curcpu()->ci_pmap_cur = pm;
   5944 #ifdef ARM_MMU_EXTENDED
   5945 	pm->pm_l1 = l1pt;
   5946 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   5947 #ifdef VERBOSE_INIT_ARM
   5948 	printf("tlb0 ");
   5949 #endif
   5950 	pmap_tlb_info_init(&pmap_tlb0_info);
   5951 #ifdef MULTIPROCESSOR
   5952 #ifdef VERBOSE_INIT_ARM
   5953 	printf("kcpusets ");
   5954 #endif
   5955 	pm->pm_onproc = kcpuset_running;
   5956 	pm->pm_active = kcpuset_running;
   5957 #endif
   5958 #else
   5959 	pm->pm_l1 = l1;
   5960 #endif
   5961 
   5962 #ifdef VERBOSE_INIT_ARM
   5963 	printf("locks ");
   5964 #endif
   5965 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5966 	if (arm_cache_prefer_mask != 0) {
   5967 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   5968 	} else {
   5969 #endif
   5970 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
   5971 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5972 	}
   5973 #endif
   5974 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   5975 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   5976 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   5977 
   5978 #ifdef VERBOSE_INIT_ARM
   5979 	printf("l1pt ");
   5980 #endif
   5981 	/*
   5982 	 * Scan the L1 translation table created by initarm() and create
   5983 	 * the required metadata for all valid mappings found in it.
   5984 	 */
   5985 	for (size_t l1slot = 0;
   5986 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   5987 	     l1slot++) {
   5988 		pd_entry_t pde = l1pt[l1slot];
   5989 
   5990 		/*
   5991 		 * We're only interested in Coarse mappings.
   5992 		 * pmap_extract() can deal with section mappings without
   5993 		 * recourse to checking L2 metadata.
   5994 		 */
   5995 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5996 			continue;
   5997 
   5998 		/*
   5999 		 * Lookup the KVA of this L2 descriptor table
   6000 		 */
   6001 		pa = l1pte_pa(pde);
   6002 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6003 		if (ptep == NULL) {
   6004 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6005 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6006 		}
   6007 
   6008 		/*
   6009 		 * Fetch the associated L2 metadata structure.
   6010 		 * Allocate a new one if necessary.
   6011 		 */
   6012 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6013 			if (l2next == PMAP_STATIC_L2_SIZE)
   6014 				panic("pmap_bootstrap: out of static L2s");
   6015 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6016 		}
   6017 
   6018 		/*
   6019 		 * One more L1 slot tracked...
   6020 		 */
   6021 		l2->l2_occupancy++;
   6022 
   6023 		/*
   6024 		 * Fill in the details of the L2 descriptor in the
   6025 		 * appropriate bucket.
   6026 		 */
   6027 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6028 		l2b->l2b_kva = ptep;
   6029 		l2b->l2b_pa = pa;
   6030 		l2b->l2b_l1slot = l1slot;
   6031 
   6032 		/*
   6033 		 * Establish an initial occupancy count for this descriptor
   6034 		 */
   6035 		for (l2idx = 0;
   6036 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6037 		    l2idx++) {
   6038 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6039 				l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   6040 			}
   6041 		}
   6042 
   6043 		/*
   6044 		 * Make sure the descriptor itself has the correct cache mode.
   6045 		 * If not, fix it, but whine about the problem. Port-meisters
   6046 		 * should consider this a clue to fix up their initarm()
   6047 		 * function. :)
   6048 		 */
   6049 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6050 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6051 			    "L2 pte @ %p\n", ptep);
   6052 		}
   6053 	}
   6054 
   6055 #ifdef VERBOSE_INIT_ARM
   6056 	printf("cache(l1pt) ");
   6057 #endif
   6058 	/*
   6059 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6060 	 * a page table. Bitch if it is not correctly set.
   6061 	 */
   6062 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6063 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6064 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6065 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6066 	}
   6067 
   6068 #ifdef PMAP_CACHE_VIVT
   6069 	cpu_dcache_wbinv_all();
   6070 	cpu_tlb_flushID();
   6071 	cpu_cpwait();
   6072 #endif
   6073 
   6074 	/*
   6075 	 * now we allocate the "special" VAs which are used for tmp mappings
   6076 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6077 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6078 	 *
   6079 	 * Managed KVM space start from wherever initarm() tells us.
   6080 	 */
   6081 	virtual_avail = vstart;
   6082 	virtual_end = vend;
   6083 
   6084 #ifdef VERBOSE_INIT_ARM
   6085 	printf("specials ");
   6086 #endif
   6087 #ifdef PMAP_CACHE_VIPT
   6088 	/*
   6089 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6090 	 * page so we won't violate cache aliasing rules.
   6091 	 */
   6092 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6093 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6094 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6095 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6096 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6097 	}
   6098 #else
   6099 	nptes = PAGE_SIZE / L2_S_SIZE;
   6100 #endif
   6101 #ifdef MULTIPROCESSOR
   6102 	cnptes = nptes;
   6103 	nptes *= arm_cpu_max;
   6104 #endif
   6105 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6106 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6107 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6108 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6109 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   6110 	if (msgbufaddr == NULL) {
   6111 		pmap_alloc_specials(&virtual_avail,
   6112 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6113 		    (void *)&msgbufaddr, NULL);
   6114 	}
   6115 
   6116 	/*
   6117 	 * Allocate a range of kernel virtual address space to be used
   6118 	 * for L2 descriptor tables and metadata allocation in
   6119 	 * pmap_growkernel().
   6120 	 */
   6121 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   6122 	pmap_alloc_specials(&virtual_avail,
   6123 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6124 	    &pmap_kernel_l2ptp_kva, NULL);
   6125 
   6126 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   6127 	pmap_alloc_specials(&virtual_avail,
   6128 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6129 	    &pmap_kernel_l2dtable_kva, NULL);
   6130 
   6131 #ifndef ARM_MMU_EXTENDED
   6132 	/*
   6133 	 * init the static-global locks and global pmap list.
   6134 	 */
   6135 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6136 
   6137 	/*
   6138 	 * We can now initialise the first L1's metadata.
   6139 	 */
   6140 	SLIST_INIT(&l1_list);
   6141 	TAILQ_INIT(&l1_lru_list);
   6142 	pmap_init_l1(l1, l1pt);
   6143 #endif /* ARM_MMU_EXTENDED */
   6144 
   6145 #ifndef ARM_HAS_VBAR
   6146 	/* Set up vector page L1 details, if necessary */
   6147 	if (vector_page < KERNEL_BASE) {
   6148 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6149 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6150 		KDASSERT(l2b != NULL);
   6151 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6152 		    L1_C_DOM(pmap_domain(pm));
   6153 	} else
   6154 		pm->pm_pl1vec = NULL;
   6155 #endif
   6156 
   6157 #ifdef VERBOSE_INIT_ARM
   6158 	printf("pools ");
   6159 #endif
   6160 	/*
   6161 	 * Initialize the pmap cache
   6162 	 */
   6163 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6164 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6165 	LIST_INIT(&pmap_pmaps);
   6166 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   6167 
   6168 	/*
   6169 	 * Initialize the pv pool.
   6170 	 */
   6171 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6172 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6173 
   6174 	/*
   6175 	 * Initialize the L2 dtable pool and cache.
   6176 	 */
   6177 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6178 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6179 
   6180 	/*
   6181 	 * Initialise the L2 descriptor table pool and cache
   6182 	 */
   6183 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   6184 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   6185 	    pmap_l2ptp_ctor, NULL, NULL);
   6186 
   6187 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6188 
   6189 	cpu_dcache_wbinv_all();
   6190 }
   6191 
   6192 static bool
   6193 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6194 {
   6195 #ifdef ARM_MMU_EXTENDED
   6196 	return false;
   6197 #else
   6198 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6199 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6200 		return false;
   6201 
   6202 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6203 	int rv = 0;
   6204 
   6205 	while (va < eva) {
   6206 		/*
   6207 		 * Make sure the descriptor itself has the correct cache mode
   6208 		 */
   6209 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6210 		pd_entry_t pde = *pdep;
   6211 
   6212 		if (l1pte_section_p(pde)) {
   6213 			__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6214 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6215 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6216 				    pte_l1_s_cache_mode_pt;
   6217 				PDE_SYNC(pdep);
   6218 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6219 				    sizeof(*pdep));
   6220 				rv = 1;
   6221 			}
   6222 			return rv;
   6223 			if (pde & L1_S_V6_SUPER) {
   6224 				va = (va & -L1_SS_SIZE) + L1_SS_SIZE;
   6225 			} else {
   6226 				va = (va & -L1_S_SIZE) + L1_S_SIZE;
   6227 			}
   6228 			continue;
   6229 		}
   6230 		vaddr_t pa = l1pte_pa(pde);
   6231 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6232 		if (ptep == NULL)
   6233 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6234 
   6235 		ptep += l2pte_index(va);
   6236 		const pt_entry_t opte = *ptep;
   6237 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6238 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6239 			    | pte_l2_s_cache_mode_pt;
   6240 			l2pte_set(ptep, npte, opte);
   6241 			PTE_SYNC(ptep);
   6242 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6243 			rv = 1;
   6244 		}
   6245 		va += PAGE_SIZE;
   6246 	}
   6247 
   6248 	return (rv);
   6249 #endif
   6250 }
   6251 
   6252 static void
   6253 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6254 {
   6255 	vaddr_t va = *availp;
   6256 	struct l2_bucket *l2b;
   6257 
   6258 	if (ptep) {
   6259 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6260 		if (l2b == NULL)
   6261 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6262 
   6263 		if (ptep)
   6264 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6265 	}
   6266 
   6267 	*vap = va;
   6268 	*availp = va + (PAGE_SIZE * pages);
   6269 }
   6270 
   6271 void
   6272 pmap_init(void)
   6273 {
   6274 
   6275 	/*
   6276 	 * Set the available memory vars - These do not map to real memory
   6277 	 * addresses and cannot as the physical memory is fragmented.
   6278 	 * They are used by ps for %mem calculations.
   6279 	 * One could argue whether this should be the entire memory or just
   6280 	 * the memory that is useable in a user process.
   6281 	 */
   6282 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   6283 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   6284 
   6285 	/*
   6286 	 * Now we need to free enough pv_entry structures to allow us to get
   6287 	 * the kmem_map/kmem_object allocated and inited (done after this
   6288 	 * function is finished).  to do this we allocate one bootstrap page out
   6289 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6290 	 * structures.   we never free this page.
   6291 	 */
   6292 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6293 
   6294 #ifdef ARM_MMU_EXTENDED
   6295 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6296 #endif
   6297 
   6298 	pmap_initialized = true;
   6299 }
   6300 
   6301 static vaddr_t last_bootstrap_page = 0;
   6302 static void *free_bootstrap_pages = NULL;
   6303 
   6304 static void *
   6305 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6306 {
   6307 	extern void *pool_page_alloc(struct pool *, int);
   6308 	vaddr_t new_page;
   6309 	void *rv;
   6310 
   6311 	if (pmap_initialized)
   6312 		return (pool_page_alloc(pp, flags));
   6313 
   6314 	if (free_bootstrap_pages) {
   6315 		rv = free_bootstrap_pages;
   6316 		free_bootstrap_pages = *((void **)rv);
   6317 		return (rv);
   6318 	}
   6319 
   6320 	KASSERT(kernel_map != NULL);
   6321 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6322 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6323 
   6324 	KASSERT(new_page > last_bootstrap_page);
   6325 	last_bootstrap_page = new_page;
   6326 	return ((void *)new_page);
   6327 }
   6328 
   6329 static void
   6330 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6331 {
   6332 	extern void pool_page_free(struct pool *, void *);
   6333 
   6334 	if ((vaddr_t)v <= last_bootstrap_page) {
   6335 		*((void **)v) = free_bootstrap_pages;
   6336 		free_bootstrap_pages = v;
   6337 		return;
   6338 	}
   6339 
   6340 	if (pmap_initialized) {
   6341 		pool_page_free(pp, v);
   6342 		return;
   6343 	}
   6344 }
   6345 
   6346 /*
   6347  * pmap_postinit()
   6348  *
   6349  * This routine is called after the vm and kmem subsystems have been
   6350  * initialised. This allows the pmap code to perform any initialisation
   6351  * that can only be done one the memory allocation is in place.
   6352  */
   6353 void
   6354 pmap_postinit(void)
   6355 {
   6356 #ifndef ARM_MMU_EXTENDED
   6357 	extern paddr_t physical_start, physical_end;
   6358 	struct l1_ttable *l1;
   6359 	struct pglist plist;
   6360 	struct vm_page *m;
   6361 	pd_entry_t *pdep;
   6362 	vaddr_t va, eva;
   6363 	u_int loop, needed;
   6364 	int error;
   6365 #endif
   6366 
   6367 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6368 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6369 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6370 
   6371 #ifndef ARM_MMU_EXTENDED
   6372 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6373 	needed -= 1;
   6374 
   6375 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6376 
   6377 	for (loop = 0; loop < needed; loop++, l1++) {
   6378 		/* Allocate a L1 page table */
   6379 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6380 		if (va == 0)
   6381 			panic("Cannot allocate L1 KVM");
   6382 
   6383 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6384 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6385 		if (error)
   6386 			panic("Cannot allocate L1 physical pages");
   6387 
   6388 		m = TAILQ_FIRST(&plist);
   6389 		eva = va + L1_TABLE_SIZE;
   6390 		pdep = (pd_entry_t *)va;
   6391 
   6392 		while (m && va < eva) {
   6393 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6394 
   6395 			pmap_kenter_pa(va, pa,
   6396 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6397 
   6398 			va += PAGE_SIZE;
   6399 			m = TAILQ_NEXT(m, pageq.queue);
   6400 		}
   6401 
   6402 #ifdef DIAGNOSTIC
   6403 		if (m)
   6404 			panic("pmap_alloc_l1pt: pglist not empty");
   6405 #endif	/* DIAGNOSTIC */
   6406 
   6407 		pmap_init_l1(l1, pdep);
   6408 	}
   6409 
   6410 #ifdef DEBUG
   6411 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6412 	    needed);
   6413 #endif
   6414 #endif /* !ARM_MMU_EXTENDED */
   6415 }
   6416 
   6417 /*
   6418  * Note that the following routines are used by board-specific initialisation
   6419  * code to configure the initial kernel page tables.
   6420  *
   6421  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   6422  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   6423  * behaviour of the old pmap, and provides an easy migration path for
   6424  * initial bring-up of the new pmap on existing ports. Fortunately,
   6425  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   6426  * will be deprecated.
   6427  *
   6428  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   6429  * tables.
   6430  */
   6431 
   6432 /*
   6433  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6434  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6435  * find them as necessary.
   6436  *
   6437  * Note that the data on this list MUST remain valid after initarm() returns,
   6438  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   6439  */
   6440 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6441 
   6442 static vaddr_t
   6443 kernel_pt_lookup(paddr_t pa)
   6444 {
   6445 	pv_addr_t *pv;
   6446 
   6447 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6448 		if (pv->pv_pa == (pa & ~PGOFSET))
   6449 			return (pv->pv_va | (pa & PGOFSET));
   6450 	}
   6451 	return (0);
   6452 }
   6453 
   6454 /*
   6455  * pmap_map_section:
   6456  *
   6457  *	Create a single section mapping.
   6458  */
   6459 void
   6460 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6461 {
   6462 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6463 	const size_t l1slot = l1pte_index(va);
   6464 	pd_entry_t fl;
   6465 
   6466 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6467 
   6468 	switch (cache) {
   6469 	case PTE_NOCACHE:
   6470 	default:
   6471 		fl = 0;
   6472 		break;
   6473 
   6474 	case PTE_CACHE:
   6475 		fl = pte_l1_s_cache_mode;
   6476 		break;
   6477 
   6478 	case PTE_PAGETABLE:
   6479 		fl = pte_l1_s_cache_mode_pt;
   6480 		break;
   6481 	}
   6482 
   6483 	const pd_entry_t npde = L1_S_PROTO | pa |
   6484 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6485 	l1pte_setone(pdep + l1slot, npde);
   6486 	PDE_SYNC(pdep + l1slot);
   6487 }
   6488 
   6489 /*
   6490  * pmap_map_entry:
   6491  *
   6492  *	Create a single page mapping.
   6493  */
   6494 void
   6495 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6496 {
   6497 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6498 	const size_t l1slot = l1pte_index(va);
   6499 	pt_entry_t npte;
   6500 	pt_entry_t *ptep;
   6501 
   6502 	KASSERT(((va | pa) & PGOFSET) == 0);
   6503 
   6504 	switch (cache) {
   6505 	case PTE_NOCACHE:
   6506 	default:
   6507 		npte = 0;
   6508 		break;
   6509 
   6510 	case PTE_CACHE:
   6511 		npte = pte_l2_s_cache_mode;
   6512 		break;
   6513 
   6514 	case PTE_PAGETABLE:
   6515 		npte = pte_l2_s_cache_mode_pt;
   6516 		break;
   6517 	}
   6518 
   6519 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6520 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   6521 
   6522 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6523 	if (ptep == NULL)
   6524 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   6525 
   6526 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   6527 #ifdef ARM_MMU_EXTENDED
   6528 	if (prot & VM_PROT_EXECUTE) {
   6529 		npte &= ~L2_XS_XN;
   6530 	}
   6531 #endif
   6532 	ptep += l2pte_index(va);
   6533 	l2pte_set(ptep, npte, 0);
   6534 	PTE_SYNC(ptep);
   6535 }
   6536 
   6537 /*
   6538  * pmap_link_l2pt:
   6539  *
   6540  *	Link the L2 page table specified by "l2pv" into the L1
   6541  *	page table at the slot for "va".
   6542  */
   6543 void
   6544 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   6545 {
   6546 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   6547 
   6548 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   6549 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   6550 
   6551 	const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   6552 	    | l2pv->pv_pa;
   6553 
   6554 	l1pte_set(pdep, npde);
   6555 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   6556 
   6557 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   6558 }
   6559 
   6560 /*
   6561  * pmap_map_chunk:
   6562  *
   6563  *	Map a chunk of memory using the most efficient mappings
   6564  *	possible (section, large page, small page) into the
   6565  *	provided L1 and L2 tables at the specified virtual address.
   6566  */
   6567 vsize_t
   6568 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   6569     int prot, int cache)
   6570 {
   6571 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6572 	pt_entry_t f1, f2s, f2l;
   6573 	vsize_t resid;
   6574 
   6575 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   6576 
   6577 	if (l1pt == 0)
   6578 		panic("pmap_map_chunk: no L1 table provided");
   6579 
   6580 #ifdef VERBOSE_INIT_ARM
   6581 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   6582 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   6583 #endif
   6584 
   6585 	switch (cache) {
   6586 	case PTE_NOCACHE:
   6587 	default:
   6588 		f1 = 0;
   6589 		f2l = 0;
   6590 		f2s = 0;
   6591 		break;
   6592 
   6593 	case PTE_CACHE:
   6594 		f1 = pte_l1_s_cache_mode;
   6595 		f2l = pte_l2_l_cache_mode;
   6596 		f2s = pte_l2_s_cache_mode;
   6597 		break;
   6598 
   6599 	case PTE_PAGETABLE:
   6600 		f1 = pte_l1_s_cache_mode_pt;
   6601 		f2l = pte_l2_l_cache_mode_pt;
   6602 		f2s = pte_l2_s_cache_mode_pt;
   6603 		break;
   6604 	}
   6605 
   6606 	size = resid;
   6607 
   6608 	while (resid > 0) {
   6609 		const size_t l1slot = l1pte_index(va);
   6610 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   6611 		/* See if we can use a supersection mapping. */
   6612 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   6613 			/* Supersection are always domain 0 */
   6614 			const pd_entry_t npde = L1_SS_PROTO | pa
   6615 #ifdef ARM_MMU_EXTENDED_XXX
   6616 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6617 #endif
   6618 #ifdef ARM_MMU_EXTENDED
   6619 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6620 #endif
   6621 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   6622 #ifdef VERBOSE_INIT_ARM
   6623 			printf("sS");
   6624 #endif
   6625 			l1pte_set(&pdep[l1slot], npde);
   6626 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   6627 			va += L1_SS_SIZE;
   6628 			pa += L1_SS_SIZE;
   6629 			resid -= L1_SS_SIZE;
   6630 			continue;
   6631 		}
   6632 #endif
   6633 		/* See if we can use a section mapping. */
   6634 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   6635 			const pd_entry_t npde = L1_S_PROTO | pa
   6636 #ifdef ARM_MMU_EXTENDED_XXX
   6637 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6638 #endif
   6639 #ifdef ARM_MMU_EXTENDED
   6640 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6641 #endif
   6642 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   6643 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6644 #ifdef VERBOSE_INIT_ARM
   6645 			printf("S");
   6646 #endif
   6647 			l1pte_set(&pdep[l1slot], npde);
   6648 			PDE_SYNC(&pdep[l1slot]);
   6649 			va += L1_S_SIZE;
   6650 			pa += L1_S_SIZE;
   6651 			resid -= L1_S_SIZE;
   6652 			continue;
   6653 		}
   6654 
   6655 		/*
   6656 		 * Ok, we're going to use an L2 table.  Make sure
   6657 		 * one is actually in the corresponding L1 slot
   6658 		 * for the current VA.
   6659 		 */
   6660 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6661 			panic("%s: no L2 table for VA %#lx", __func__, va);
   6662 
   6663 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6664 		if (ptep == NULL)
   6665 			panic("%s: can't find L2 table for VA %#lx", __func__,
   6666 			    va);
   6667 
   6668 		ptep += l2pte_index(va);
   6669 
   6670 		/* See if we can use a L2 large page mapping. */
   6671 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   6672 			const pt_entry_t npte = L2_L_PROTO | pa
   6673 #ifdef ARM_MMU_EXTENDED_XXX
   6674 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   6675 #endif
   6676 #ifdef ARM_MMU_EXTENDED
   6677 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6678 #endif
   6679 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   6680 #ifdef VERBOSE_INIT_ARM
   6681 			printf("L");
   6682 #endif
   6683 			l2pte_set(ptep, npte, 0);
   6684 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   6685 			va += L2_L_SIZE;
   6686 			pa += L2_L_SIZE;
   6687 			resid -= L2_L_SIZE;
   6688 			continue;
   6689 		}
   6690 
   6691 		/* Use a small page mapping. */
   6692 #ifdef VERBOSE_INIT_ARM
   6693 		printf("P");
   6694 #endif
   6695 		const pt_entry_t npte = L2_S_PROTO | pa
   6696 #ifdef ARM_MMU_EXTENDED_XXX
   6697 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   6698 #endif
   6699 #ifdef ARM_MMU_EXTENDED
   6700 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6701 #endif
   6702 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   6703 		l2pte_set(ptep, npte, 0);
   6704 		PTE_SYNC(ptep);
   6705 		va += PAGE_SIZE;
   6706 		pa += PAGE_SIZE;
   6707 		resid -= PAGE_SIZE;
   6708 	}
   6709 #ifdef VERBOSE_INIT_ARM
   6710 	printf("\n");
   6711 #endif
   6712 	return (size);
   6713 }
   6714 
   6715 /********************** Static device map routines ***************************/
   6716 
   6717 static const struct pmap_devmap *pmap_devmap_table;
   6718 
   6719 /*
   6720  * Register the devmap table.  This is provided in case early console
   6721  * initialization needs to register mappings created by bootstrap code
   6722  * before pmap_devmap_bootstrap() is called.
   6723  */
   6724 void
   6725 pmap_devmap_register(const struct pmap_devmap *table)
   6726 {
   6727 
   6728 	pmap_devmap_table = table;
   6729 }
   6730 
   6731 /*
   6732  * Map all of the static regions in the devmap table, and remember
   6733  * the devmap table so other parts of the kernel can look up entries
   6734  * later.
   6735  */
   6736 void
   6737 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   6738 {
   6739 	int i;
   6740 
   6741 	pmap_devmap_table = table;
   6742 
   6743 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6744 #ifdef VERBOSE_INIT_ARM
   6745 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   6746 		    pmap_devmap_table[i].pd_pa,
   6747 		    pmap_devmap_table[i].pd_pa +
   6748 			pmap_devmap_table[i].pd_size - 1,
   6749 		    pmap_devmap_table[i].pd_va);
   6750 #endif
   6751 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   6752 		    pmap_devmap_table[i].pd_pa,
   6753 		    pmap_devmap_table[i].pd_size,
   6754 		    pmap_devmap_table[i].pd_prot,
   6755 		    pmap_devmap_table[i].pd_cache);
   6756 	}
   6757 }
   6758 
   6759 const struct pmap_devmap *
   6760 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   6761 {
   6762 	uint64_t endpa;
   6763 	int i;
   6764 
   6765 	if (pmap_devmap_table == NULL)
   6766 		return (NULL);
   6767 
   6768 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   6769 
   6770 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6771 		if (pa >= pmap_devmap_table[i].pd_pa &&
   6772 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   6773 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   6774 			return (&pmap_devmap_table[i]);
   6775 	}
   6776 
   6777 	return (NULL);
   6778 }
   6779 
   6780 const struct pmap_devmap *
   6781 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6782 {
   6783 	int i;
   6784 
   6785 	if (pmap_devmap_table == NULL)
   6786 		return (NULL);
   6787 
   6788 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6789 		if (va >= pmap_devmap_table[i].pd_va &&
   6790 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6791 				     pmap_devmap_table[i].pd_size - 1)
   6792 			return (&pmap_devmap_table[i]);
   6793 	}
   6794 
   6795 	return (NULL);
   6796 }
   6797 
   6798 /********************** PTE initialization routines **************************/
   6799 
   6800 /*
   6801  * These routines are called when the CPU type is identified to set up
   6802  * the PTE prototypes, cache modes, etc.
   6803  *
   6804  * The variables are always here, just in case modules need to reference
   6805  * them (though, they shouldn't).
   6806  */
   6807 
   6808 pt_entry_t	pte_l1_s_cache_mode;
   6809 pt_entry_t	pte_l1_s_wc_mode;
   6810 pt_entry_t	pte_l1_s_cache_mode_pt;
   6811 pt_entry_t	pte_l1_s_cache_mask;
   6812 
   6813 pt_entry_t	pte_l2_l_cache_mode;
   6814 pt_entry_t	pte_l2_l_wc_mode;
   6815 pt_entry_t	pte_l2_l_cache_mode_pt;
   6816 pt_entry_t	pte_l2_l_cache_mask;
   6817 
   6818 pt_entry_t	pte_l2_s_cache_mode;
   6819 pt_entry_t	pte_l2_s_wc_mode;
   6820 pt_entry_t	pte_l2_s_cache_mode_pt;
   6821 pt_entry_t	pte_l2_s_cache_mask;
   6822 
   6823 pt_entry_t	pte_l1_s_prot_u;
   6824 pt_entry_t	pte_l1_s_prot_w;
   6825 pt_entry_t	pte_l1_s_prot_ro;
   6826 pt_entry_t	pte_l1_s_prot_mask;
   6827 
   6828 pt_entry_t	pte_l2_s_prot_u;
   6829 pt_entry_t	pte_l2_s_prot_w;
   6830 pt_entry_t	pte_l2_s_prot_ro;
   6831 pt_entry_t	pte_l2_s_prot_mask;
   6832 
   6833 pt_entry_t	pte_l2_l_prot_u;
   6834 pt_entry_t	pte_l2_l_prot_w;
   6835 pt_entry_t	pte_l2_l_prot_ro;
   6836 pt_entry_t	pte_l2_l_prot_mask;
   6837 
   6838 pt_entry_t	pte_l1_ss_proto;
   6839 pt_entry_t	pte_l1_s_proto;
   6840 pt_entry_t	pte_l1_c_proto;
   6841 pt_entry_t	pte_l2_s_proto;
   6842 
   6843 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6844 void		(*pmap_zero_page_func)(paddr_t);
   6845 
   6846 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6847 void
   6848 pmap_pte_init_generic(void)
   6849 {
   6850 
   6851 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6852 	pte_l1_s_wc_mode = L1_S_B;
   6853 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6854 
   6855 	pte_l2_l_cache_mode = L2_B|L2_C;
   6856 	pte_l2_l_wc_mode = L2_B;
   6857 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6858 
   6859 	pte_l2_s_cache_mode = L2_B|L2_C;
   6860 	pte_l2_s_wc_mode = L2_B;
   6861 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6862 
   6863 	/*
   6864 	 * If we have a write-through cache, set B and C.  If
   6865 	 * we have a write-back cache, then we assume setting
   6866 	 * only C will make those pages write-through (except for those
   6867 	 * Cortex CPUs which can read the L1 caches).
   6868 	 */
   6869 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6870 #if ARM_MMU_V7 > 0
   6871 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6872 #endif
   6873 #if ARM_MMU_V6 > 0
   6874 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6875 #endif
   6876 	    || false) {
   6877 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6878 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6879 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6880 	} else {
   6881 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6882 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6883 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6884 	}
   6885 
   6886 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6887 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6888 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6889 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6890 
   6891 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6892 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6893 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6894 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6895 
   6896 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6897 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6898 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6899 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6900 
   6901 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6902 	pte_l1_s_proto = L1_S_PROTO_generic;
   6903 	pte_l1_c_proto = L1_C_PROTO_generic;
   6904 	pte_l2_s_proto = L2_S_PROTO_generic;
   6905 
   6906 	pmap_copy_page_func = pmap_copy_page_generic;
   6907 	pmap_zero_page_func = pmap_zero_page_generic;
   6908 }
   6909 
   6910 #if defined(CPU_ARM8)
   6911 void
   6912 pmap_pte_init_arm8(void)
   6913 {
   6914 
   6915 	/*
   6916 	 * ARM8 is compatible with generic, but we need to use
   6917 	 * the page tables uncached.
   6918 	 */
   6919 	pmap_pte_init_generic();
   6920 
   6921 	pte_l1_s_cache_mode_pt = 0;
   6922 	pte_l2_l_cache_mode_pt = 0;
   6923 	pte_l2_s_cache_mode_pt = 0;
   6924 }
   6925 #endif /* CPU_ARM8 */
   6926 
   6927 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6928 void
   6929 pmap_pte_init_arm9(void)
   6930 {
   6931 
   6932 	/*
   6933 	 * ARM9 is compatible with generic, but we want to use
   6934 	 * write-through caching for now.
   6935 	 */
   6936 	pmap_pte_init_generic();
   6937 
   6938 	pte_l1_s_cache_mode = L1_S_C;
   6939 	pte_l2_l_cache_mode = L2_C;
   6940 	pte_l2_s_cache_mode = L2_C;
   6941 
   6942 	pte_l1_s_wc_mode = L1_S_B;
   6943 	pte_l2_l_wc_mode = L2_B;
   6944 	pte_l2_s_wc_mode = L2_B;
   6945 
   6946 	pte_l1_s_cache_mode_pt = L1_S_C;
   6947 	pte_l2_l_cache_mode_pt = L2_C;
   6948 	pte_l2_s_cache_mode_pt = L2_C;
   6949 }
   6950 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6951 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6952 
   6953 #if defined(CPU_ARM10)
   6954 void
   6955 pmap_pte_init_arm10(void)
   6956 {
   6957 
   6958 	/*
   6959 	 * ARM10 is compatible with generic, but we want to use
   6960 	 * write-through caching for now.
   6961 	 */
   6962 	pmap_pte_init_generic();
   6963 
   6964 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6965 	pte_l2_l_cache_mode = L2_B | L2_C;
   6966 	pte_l2_s_cache_mode = L2_B | L2_C;
   6967 
   6968 	pte_l1_s_cache_mode = L1_S_B;
   6969 	pte_l2_l_cache_mode = L2_B;
   6970 	pte_l2_s_cache_mode = L2_B;
   6971 
   6972 	pte_l1_s_cache_mode_pt = L1_S_C;
   6973 	pte_l2_l_cache_mode_pt = L2_C;
   6974 	pte_l2_s_cache_mode_pt = L2_C;
   6975 
   6976 }
   6977 #endif /* CPU_ARM10 */
   6978 
   6979 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6980 void
   6981 pmap_pte_init_arm11(void)
   6982 {
   6983 
   6984 	/*
   6985 	 * ARM11 is compatible with generic, but we want to use
   6986 	 * write-through caching for now.
   6987 	 */
   6988 	pmap_pte_init_generic();
   6989 
   6990 	pte_l1_s_cache_mode = L1_S_C;
   6991 	pte_l2_l_cache_mode = L2_C;
   6992 	pte_l2_s_cache_mode = L2_C;
   6993 
   6994 	pte_l1_s_wc_mode = L1_S_B;
   6995 	pte_l2_l_wc_mode = L2_B;
   6996 	pte_l2_s_wc_mode = L2_B;
   6997 
   6998 	pte_l1_s_cache_mode_pt = L1_S_C;
   6999 	pte_l2_l_cache_mode_pt = L2_C;
   7000 	pte_l2_s_cache_mode_pt = L2_C;
   7001 }
   7002 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   7003 
   7004 #if ARM_MMU_SA1 == 1
   7005 void
   7006 pmap_pte_init_sa1(void)
   7007 {
   7008 
   7009 	/*
   7010 	 * The StrongARM SA-1 cache does not have a write-through
   7011 	 * mode.  So, do the generic initialization, then reset
   7012 	 * the page table cache mode to B=1,C=1, and note that
   7013 	 * the PTEs need to be sync'd.
   7014 	 */
   7015 	pmap_pte_init_generic();
   7016 
   7017 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7018 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7019 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7020 
   7021 	pmap_needs_pte_sync = 1;
   7022 }
   7023 #endif /* ARM_MMU_SA1 == 1*/
   7024 
   7025 #if ARM_MMU_XSCALE == 1
   7026 #if (ARM_NMMUS > 1)
   7027 static u_int xscale_use_minidata;
   7028 #endif
   7029 
   7030 void
   7031 pmap_pte_init_xscale(void)
   7032 {
   7033 	uint32_t auxctl;
   7034 	int write_through = 0;
   7035 
   7036 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7037 	pte_l1_s_wc_mode = L1_S_B;
   7038 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7039 
   7040 	pte_l2_l_cache_mode = L2_B|L2_C;
   7041 	pte_l2_l_wc_mode = L2_B;
   7042 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7043 
   7044 	pte_l2_s_cache_mode = L2_B|L2_C;
   7045 	pte_l2_s_wc_mode = L2_B;
   7046 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7047 
   7048 	pte_l1_s_cache_mode_pt = L1_S_C;
   7049 	pte_l2_l_cache_mode_pt = L2_C;
   7050 	pte_l2_s_cache_mode_pt = L2_C;
   7051 
   7052 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7053 	/*
   7054 	 * The XScale core has an enhanced mode where writes that
   7055 	 * miss the cache cause a cache line to be allocated.  This
   7056 	 * is significantly faster than the traditional, write-through
   7057 	 * behavior of this case.
   7058 	 */
   7059 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7060 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7061 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7062 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7063 
   7064 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7065 	/*
   7066 	 * Some versions of the XScale core have various bugs in
   7067 	 * their cache units, the work-around for which is to run
   7068 	 * the cache in write-through mode.  Unfortunately, this
   7069 	 * has a major (negative) impact on performance.  So, we
   7070 	 * go ahead and run fast-and-loose, in the hopes that we
   7071 	 * don't line up the planets in a way that will trip the
   7072 	 * bugs.
   7073 	 *
   7074 	 * However, we give you the option to be slow-but-correct.
   7075 	 */
   7076 	write_through = 1;
   7077 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7078 	/* force write back cache mode */
   7079 	write_through = 0;
   7080 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7081 	/*
   7082 	 * Intel PXA2[15]0 processors are known to have a bug in
   7083 	 * write-back cache on revision 4 and earlier (stepping
   7084 	 * A[01] and B[012]).  Fixed for C0 and later.
   7085 	 */
   7086 	{
   7087 		uint32_t id, type;
   7088 
   7089 		id = cpufunc_id();
   7090 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7091 
   7092 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7093 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7094 				/* write through for stepping A0-1 and B0-2 */
   7095 				write_through = 1;
   7096 			}
   7097 		}
   7098 	}
   7099 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7100 
   7101 	if (write_through) {
   7102 		pte_l1_s_cache_mode = L1_S_C;
   7103 		pte_l2_l_cache_mode = L2_C;
   7104 		pte_l2_s_cache_mode = L2_C;
   7105 	}
   7106 
   7107 #if (ARM_NMMUS > 1)
   7108 	xscale_use_minidata = 1;
   7109 #endif
   7110 
   7111 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7112 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7113 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7114 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7115 
   7116 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7117 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7118 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7119 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7120 
   7121 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7122 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7123 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7124 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7125 
   7126 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7127 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7128 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7129 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7130 
   7131 	pmap_copy_page_func = pmap_copy_page_xscale;
   7132 	pmap_zero_page_func = pmap_zero_page_xscale;
   7133 
   7134 	/*
   7135 	 * Disable ECC protection of page table access, for now.
   7136 	 */
   7137 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   7138 	auxctl &= ~XSCALE_AUXCTL_P;
   7139 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   7140 }
   7141 
   7142 /*
   7143  * xscale_setup_minidata:
   7144  *
   7145  *	Set up the mini-data cache clean area.  We require the
   7146  *	caller to allocate the right amount of physically and
   7147  *	virtually contiguous space.
   7148  */
   7149 void
   7150 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7151 {
   7152 	extern vaddr_t xscale_minidata_clean_addr;
   7153 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   7154 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7155 	vsize_t size;
   7156 	uint32_t auxctl;
   7157 
   7158 	xscale_minidata_clean_addr = va;
   7159 
   7160 	/* Round it to page size. */
   7161 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7162 
   7163 	for (; size != 0;
   7164 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7165 		const size_t l1slot = l1pte_index(va);
   7166 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7167 		if (ptep == NULL)
   7168 			panic("xscale_setup_minidata: can't find L2 table for "
   7169 			    "VA 0x%08lx", va);
   7170 
   7171 		ptep += l2pte_index(va);
   7172 		pt_entry_t opte = *ptep;
   7173 		l2pte_set(ptep,
   7174 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7175 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7176 	}
   7177 
   7178 	/*
   7179 	 * Configure the mini-data cache for write-back with
   7180 	 * read/write-allocate.
   7181 	 *
   7182 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7183 	 * make sure it contains no valid data!  In order to do that,
   7184 	 * we must issue a global data cache invalidate command!
   7185 	 *
   7186 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7187 	 * THIS IS VERY IMPORTANT!
   7188 	 */
   7189 
   7190 	/* Invalidate data and mini-data. */
   7191 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7192 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   7193 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7194 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   7195 }
   7196 
   7197 /*
   7198  * Change the PTEs for the specified kernel mappings such that they
   7199  * will use the mini data cache instead of the main data cache.
   7200  */
   7201 void
   7202 pmap_uarea(vaddr_t va)
   7203 {
   7204 	vaddr_t next_bucket, eva;
   7205 
   7206 #if (ARM_NMMUS > 1)
   7207 	if (xscale_use_minidata == 0)
   7208 		return;
   7209 #endif
   7210 
   7211 	eva = va + USPACE;
   7212 
   7213 	while (va < eva) {
   7214 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7215 		if (next_bucket > eva)
   7216 			next_bucket = eva;
   7217 
   7218 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7219 		KDASSERT(l2b != NULL);
   7220 
   7221 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7222 		pt_entry_t *ptep = sptep;
   7223 
   7224 		while (va < next_bucket) {
   7225 			const pt_entry_t opte = *ptep;
   7226 			if (!l2pte_minidata_p(opte)) {
   7227 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7228 				cpu_tlb_flushD_SE(va);
   7229 				l2pte_set(ptep, opte & ~L2_B, opte);
   7230 			}
   7231 			ptep += PAGE_SIZE / L2_S_SIZE;
   7232 			va += PAGE_SIZE;
   7233 		}
   7234 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7235 	}
   7236 	cpu_cpwait();
   7237 }
   7238 #endif /* ARM_MMU_XSCALE == 1 */
   7239 
   7240 
   7241 #if defined(CPU_ARM11MPCORE)
   7242 
   7243 void
   7244 pmap_pte_init_arm11mpcore(void)
   7245 {
   7246 
   7247 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   7248 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7249 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7250 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7251 	/* use extended small page (without APn, with TEX) */
   7252 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7253 #else
   7254 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7255 #endif
   7256 
   7257 	/* write-back, write-allocate */
   7258 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7259 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7260 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7261 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7262 #else
   7263 	/* no TEX. read-allocate */
   7264 	pte_l2_s_cache_mode = L2_C | L2_B;
   7265 #endif
   7266 	/*
   7267 	 * write-back, write-allocate for page tables.
   7268 	 */
   7269 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7270 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7271 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7272 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7273 #else
   7274 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7275 #endif
   7276 
   7277 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7278 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7279 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7280 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7281 
   7282 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7283 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7284 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7285 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7286 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7287 
   7288 #else
   7289 	/* with AP[0..3] */
   7290 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7291 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7292 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7293 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7294 #endif
   7295 
   7296 #ifdef	ARM11MPCORE_COMPAT_MMU
   7297 	/* with AP[0..3] */
   7298 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7299 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7300 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7301 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7302 
   7303 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7304 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7305 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7306 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7307 #else
   7308 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7309 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7310 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7311 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7312 
   7313 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7314 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7315 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7316 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7317 #endif
   7318 
   7319 	pmap_copy_page_func = pmap_copy_page_generic;
   7320 	pmap_zero_page_func = pmap_zero_page_generic;
   7321 	pmap_needs_pte_sync = 1;
   7322 }
   7323 #endif	/* CPU_ARM11MPCORE */
   7324 
   7325 
   7326 #if ARM_MMU_V7 == 1
   7327 void
   7328 pmap_pte_init_armv7(void)
   7329 {
   7330 	/*
   7331 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7332 	 * AP field is zero, that now means "no access" rather than
   7333 	 * read-only. The prototypes are a little different because of
   7334 	 * the XN bit.
   7335 	 */
   7336 	pmap_pte_init_generic();
   7337 
   7338 	pmap_needs_pte_sync = 1;
   7339 
   7340 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7341 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7342 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7343 
   7344 	/*
   7345 	 * If the core support coherent walk then updates to translation tables
   7346 	 * do not require a clean to the point of unification to ensure
   7347 	 * visibility by subsequent translation table walks.  That means we can
   7348 	 * map everything shareable and cached and the right thing will happen.
   7349 	 */
   7350         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7351 		pmap_needs_pte_sync = 0;
   7352 
   7353 		/*
   7354 		 * write-back, no write-allocate, shareable for normal pages.
   7355 		 */
   7356 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7357 		pte_l2_l_cache_mode |= L2_XS_S;
   7358 		pte_l2_s_cache_mode |= L2_XS_S;
   7359 	}
   7360 
   7361 	/*
   7362 	 * Page tables are just all other memory.  We can use write-back since
   7363 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7364 	 */
   7365 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7366 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7367 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7368 
   7369 	/*
   7370 	 * Check the Memory Model Features to see if this CPU supports
   7371 	 * the TLBIASID coproc op.
   7372 	 */
   7373 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7374 		arm_has_tlbiasid_p = true;
   7375 	}
   7376 
   7377 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7378 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7379 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7380 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7381 
   7382 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7383 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7384 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7385 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7386 
   7387 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7388 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7389 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7390 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7391 
   7392 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7393 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7394 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7395 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7396 
   7397 }
   7398 #endif /* ARM_MMU_V7 */
   7399 
   7400 /*
   7401  * return the PA of the current L1 table, for use when handling a crash dump
   7402  */
   7403 uint32_t
   7404 pmap_kernel_L1_addr(void)
   7405 {
   7406 #ifdef ARM_MMU_EXTENDED
   7407 	return pmap_kernel()->pm_l1_pa;
   7408 #else
   7409 	return pmap_kernel()->pm_l1->l1_physaddr;
   7410 #endif
   7411 }
   7412 
   7413 #if defined(DDB)
   7414 /*
   7415  * A couple of ddb-callable functions for dumping pmaps
   7416  */
   7417 void pmap_dump_all(void);
   7418 void pmap_dump(pmap_t);
   7419 
   7420 void
   7421 pmap_dump_all(void)
   7422 {
   7423 	pmap_t pm;
   7424 
   7425 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   7426 		if (pm == pmap_kernel())
   7427 			continue;
   7428 		pmap_dump(pm);
   7429 		printf("\n");
   7430 	}
   7431 }
   7432 
   7433 static pt_entry_t ncptes[64];
   7434 static void pmap_dump_ncpg(pmap_t);
   7435 
   7436 void
   7437 pmap_dump(pmap_t pm)
   7438 {
   7439 	struct l2_dtable *l2;
   7440 	struct l2_bucket *l2b;
   7441 	pt_entry_t *ptep, pte;
   7442 	vaddr_t l2_va, l2b_va, va;
   7443 	int i, j, k, occ, rows = 0;
   7444 
   7445 	if (pm == pmap_kernel())
   7446 		printf("pmap_kernel (%p): ", pm);
   7447 	else
   7448 		printf("user pmap (%p): ", pm);
   7449 
   7450 #ifdef ARM_MMU_EXTENDED
   7451 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7452 #else
   7453 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7454 #endif
   7455 
   7456 	l2_va = 0;
   7457 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7458 		l2 = pm->pm_l2[i];
   7459 
   7460 		if (l2 == NULL || l2->l2_occupancy == 0)
   7461 			continue;
   7462 
   7463 		l2b_va = l2_va;
   7464 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7465 			l2b = &l2->l2_bucket[j];
   7466 
   7467 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7468 				continue;
   7469 
   7470 			ptep = l2b->l2b_kva;
   7471 
   7472 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7473 				;
   7474 
   7475 			k &= ~63;
   7476 			occ = l2b->l2b_occupancy;
   7477 			va = l2b_va + (k * 4096);
   7478 			for (; k < 256; k++, va += 0x1000) {
   7479 				char ch = ' ';
   7480 				if ((k % 64) == 0) {
   7481 					if ((rows % 8) == 0) {
   7482 						printf(
   7483 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7484 					}
   7485 					printf("%08lx: ", va);
   7486 				}
   7487 
   7488 				ncptes[k & 63] = 0;
   7489 				pte = ptep[k];
   7490 				if (pte == 0) {
   7491 					ch = '.';
   7492 				} else {
   7493 					occ--;
   7494 					switch (pte & 0x0c) {
   7495 					case 0x00:
   7496 						ch = 'D'; /* No cache No buff */
   7497 						break;
   7498 					case 0x04:
   7499 						ch = 'B'; /* No cache buff */
   7500 						break;
   7501 					case 0x08:
   7502 						if (pte & 0x40)
   7503 							ch = 'm';
   7504 						else
   7505 						   ch = 'C'; /* Cache No buff */
   7506 						break;
   7507 					case 0x0c:
   7508 						ch = 'F'; /* Cache Buff */
   7509 						break;
   7510 					}
   7511 
   7512 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   7513 						ch += 0x20;
   7514 
   7515 					if ((pte & 0xc) == 0)
   7516 						ncptes[k & 63] = pte;
   7517 				}
   7518 
   7519 				if ((k % 64) == 63) {
   7520 					rows++;
   7521 					printf("%c\n", ch);
   7522 					pmap_dump_ncpg(pm);
   7523 					if (occ == 0)
   7524 						break;
   7525 				} else
   7526 					printf("%c", ch);
   7527 			}
   7528 		}
   7529 	}
   7530 }
   7531 
   7532 static void
   7533 pmap_dump_ncpg(pmap_t pm)
   7534 {
   7535 	struct vm_page *pg;
   7536 	struct vm_page_md *md;
   7537 	struct pv_entry *pv;
   7538 	int i;
   7539 
   7540 	for (i = 0; i < 63; i++) {
   7541 		if (ncptes[i] == 0)
   7542 			continue;
   7543 
   7544 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   7545 		if (pg == NULL)
   7546 			continue;
   7547 		md = VM_PAGE_TO_MD(pg);
   7548 
   7549 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   7550 		    VM_PAGE_TO_PHYS(pg),
   7551 		    md->krw_mappings, md->kro_mappings,
   7552 		    md->urw_mappings, md->uro_mappings);
   7553 
   7554 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   7555 			printf("   %c va 0x%08lx, flags 0x%x\n",
   7556 			    (pm == pv->pv_pmap) ? '*' : ' ',
   7557 			    pv->pv_va, pv->pv_flags);
   7558 		}
   7559 	}
   7560 }
   7561 #endif
   7562 
   7563 #ifdef PMAP_STEAL_MEMORY
   7564 void
   7565 pmap_boot_pageadd(pv_addr_t *newpv)
   7566 {
   7567 	pv_addr_t *pv, *npv;
   7568 
   7569 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   7570 		if (newpv->pv_pa < pv->pv_va) {
   7571 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   7572 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   7573 				newpv->pv_size += pv->pv_size;
   7574 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   7575 			}
   7576 			pv = NULL;
   7577 		} else {
   7578 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   7579 			     pv = npv) {
   7580 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   7581 				KASSERT(pv->pv_pa < newpv->pv_pa);
   7582 				if (newpv->pv_pa > npv->pv_pa)
   7583 					continue;
   7584 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   7585 					pv->pv_size += newpv->pv_size;
   7586 					return;
   7587 				}
   7588 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   7589 					break;
   7590 				newpv->pv_size += npv->pv_size;
   7591 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7592 				SLIST_REMOVE_AFTER(newpv, pv_list);
   7593 				return;
   7594 			}
   7595 		}
   7596 	}
   7597 
   7598 	if (pv) {
   7599 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7600 	} else {
   7601 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   7602 	}
   7603 }
   7604 
   7605 void
   7606 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   7607 	pv_addr_t *rpv)
   7608 {
   7609 	pv_addr_t *pv, **pvp;
   7610 	struct vm_physseg *ps;
   7611 	size_t i;
   7612 
   7613 	KASSERT(amount & PGOFSET);
   7614 	KASSERT((mask & PGOFSET) == 0);
   7615 	KASSERT((match & PGOFSET) == 0);
   7616 	KASSERT(amount != 0);
   7617 
   7618 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7619 	     (pv = *pvp) != NULL;
   7620 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7621 		pv_addr_t *newpv;
   7622 		psize_t off;
   7623 		/*
   7624 		 * If this entry is too small to satify the request...
   7625 		 */
   7626 		KASSERT(pv->pv_size > 0);
   7627 		if (pv->pv_size < amount)
   7628 			continue;
   7629 
   7630 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   7631 			if (((pv->pv_pa + off) & mask) == match
   7632 			    && off + amount <= pv->pv_size)
   7633 				break;
   7634 		}
   7635 		if (off > mask)
   7636 			continue;
   7637 
   7638 		rpv->pv_va = pv->pv_va + off;
   7639 		rpv->pv_pa = pv->pv_pa + off;
   7640 		rpv->pv_size = amount;
   7641 		pv->pv_size -= amount;
   7642 		if (pv->pv_size == 0) {
   7643 			KASSERT(off == 0);
   7644 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7645 			*pvp = SLIST_NEXT(pv, pv_list);
   7646 		} else if (off == 0) {
   7647 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7648 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7649 			*newpv = *pv;
   7650 			newpv->pv_pa += amount;
   7651 			newpv->pv_va += amount;
   7652 			*pvp = newpv;
   7653 		} else if (off < pv->pv_size) {
   7654 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7655 			*newpv = *pv;
   7656 			newpv->pv_size -= off;
   7657 			newpv->pv_pa += off + amount;
   7658 			newpv->pv_va += off + amount;
   7659 
   7660 			SLIST_NEXT(pv, pv_list) = newpv;
   7661 			pv->pv_size = off;
   7662 		} else {
   7663 			KASSERT((vaddr_t) pv != rpv->pv_va);
   7664 		}
   7665 		memset((void *)rpv->pv_va, 0, amount);
   7666 		return;
   7667 	}
   7668 
   7669 	if (vm_nphysseg == 0)
   7670 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   7671 
   7672 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7673 	     (pv = *pvp) != NULL;
   7674 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7675 		if (SLIST_NEXT(pv, pv_list) == NULL)
   7676 			break;
   7677 	}
   7678 	KASSERT(mask == 0);
   7679 	for (i = 0; i < vm_nphysseg; i++) {
   7680 		ps = VM_PHYSMEM_PTR(i);
   7681 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   7682 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   7683 			rpv->pv_va = pv->pv_va;
   7684 			rpv->pv_pa = pv->pv_pa;
   7685 			rpv->pv_size = amount;
   7686 			*pvp = NULL;
   7687 			pmap_map_chunk(kernel_l1pt.pv_va,
   7688 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   7689 			     ptoa(ps->avail_start),
   7690 			     amount - pv->pv_size,
   7691 			     VM_PROT_READ|VM_PROT_WRITE,
   7692 			     PTE_CACHE);
   7693 			ps->avail_start += atop(amount - pv->pv_size);
   7694 			/*
   7695 			 * If we consumed the entire physseg, remove it.
   7696 			 */
   7697 			if (ps->avail_start == ps->avail_end) {
   7698 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   7699 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   7700 			}
   7701 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   7702 			return;
   7703 		}
   7704 	}
   7705 
   7706 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   7707 }
   7708 
   7709 vaddr_t
   7710 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   7711 {
   7712 	pv_addr_t pv;
   7713 
   7714 	pmap_boot_pagealloc(size, 0, 0, &pv);
   7715 
   7716 	return pv.pv_va;
   7717 }
   7718 #endif /* PMAP_STEAL_MEMORY */
   7719 
   7720 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   7721 {
   7722 	sysctl_createv(clog, 0, NULL, NULL,
   7723 			CTLFLAG_PERMANENT,
   7724 			CTLTYPE_NODE, "machdep", NULL,
   7725 			NULL, 0, NULL, 0,
   7726 			CTL_MACHDEP, CTL_EOL);
   7727 
   7728 	sysctl_createv(clog, 0, NULL, NULL,
   7729 			CTLFLAG_PERMANENT,
   7730 			CTLTYPE_INT, "kmpages",
   7731 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   7732 			NULL, 0, &pmap_kmpages, 0,
   7733 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   7734 }
   7735 
   7736 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   7737 struct vm_page *
   7738 arm_pmap_alloc_poolpage(int flags)
   7739 {
   7740 	/*
   7741 	 * On some systems, only some pages may be "coherent" for dma and we
   7742 	 * want to prefer those for pool pages (think mbufs) but fallback to
   7743 	 * any page if none is available.  But we can only fallback if we
   7744 	 * aren't direct mapping memory or all of memory can be direct-mapped.
   7745 	 * If that isn't true, pool changes can only come from direct-mapped
   7746 	 * memory.
   7747 	 */
   7748 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   7749 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   7750 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(ARM_MMU_EXTENDED)
   7751 		    (pmap_directbase < KERNEL_BASE
   7752 			? UVM_PGA_STRAT_ONLY
   7753 			: UVM_PGA_STRAT_FALLBACK),
   7754 #else
   7755 		    UVM_PGA_STRAT_FALLBACK,
   7756 #endif
   7757 		    arm_poolpage_vmfreelist);
   7758 	}
   7759 
   7760 	return uvm_pagealloc(NULL, 0, NULL, flags);
   7761 }
   7762 #endif
   7763 
   7764 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   7765 void
   7766 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   7767 {
   7768         /* nothing */
   7769 }
   7770 
   7771 int
   7772 pic_ipi_shootdown(void *arg)
   7773 {
   7774 #if PMAP_NEED_TLB_SHOOTDOWN
   7775 	pmap_tlb_shootdown_process()
   7776 #endif
   7777 	return 1;
   7778 }
   7779 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   7780 
   7781 
   7782 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   7783 vaddr_t
   7784 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   7785 {
   7786 	bool ok = false;
   7787 	if (physical_start <= pa && pa < physical_end) {
   7788 #ifdef ARM_MMU_EXTENDED
   7789 		const vaddr_t newva = pmap_directbase + pa - physical_start;
   7790 		if (newva >= KERNEL_BASE) {
   7791 			va = newva;
   7792 			ok = true;
   7793 		}
   7794 #else
   7795 		va = KERNEL_BASE + pa - physical_start;
   7796 		ok = true;
   7797 #endif
   7798 	}
   7799 	KASSERT(ok_p);
   7800 	*ok_p = ok;
   7801 	return va;
   7802 }
   7803 
   7804 vaddr_t
   7805 pmap_map_poolpage(paddr_t pa)
   7806 {
   7807 	bool ok __diagused;
   7808 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   7809 	KASSERT(ok);
   7810 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   7811 	if (arm_cache_prefer_mask != 0) {
   7812 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   7813 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   7814 		pmap_acquire_page_lock(md);
   7815 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   7816 		pmap_release_page_lock(md);
   7817 	}
   7818 #endif
   7819 	return va;
   7820 }
   7821 
   7822 paddr_t
   7823 pmap_unmap_poolpage(vaddr_t va)
   7824 {
   7825 	KASSERT(va >= KERNEL_BASE);
   7826 #if defined(ARM_MMU_EXTENDED)
   7827 	return va - pmap_directbase + physical_start;
   7828 #else
   7829 #ifdef PMAP_CACHE_VIVT
   7830 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   7831 #endif
   7832         return va - KERNEL_BASE + physical_start;
   7833 #endif
   7834 }
   7835 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   7836