pmap.c revision 1.300 1 /* $NetBSD: pmap.c,v 1.300 2014/09/21 15:45:46 christos Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #ifdef MULTIPROCESSOR
196 #define _INTR_PRIVATE
197 #endif
198
199 #include <sys/param.h>
200 #include <sys/types.h>
201 #include <sys/kernel.h>
202 #include <sys/systm.h>
203 #include <sys/proc.h>
204 #include <sys/intr.h>
205 #include <sys/pool.h>
206 #include <sys/kmem.h>
207 #include <sys/cdefs.h>
208 #include <sys/cpu.h>
209 #include <sys/sysctl.h>
210 #include <sys/bus.h>
211 #include <sys/atomic.h>
212 #include <sys/kernhist.h>
213
214 #include <uvm/uvm.h>
215
216 #include <arm/locore.h>
217 //#include <arm/arm32/katelib.h>
218
219 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.300 2014/09/21 15:45:46 christos Exp $");
220
221 //#define PMAP_DEBUG
222 #ifdef PMAP_DEBUG
223
224 /* XXX need to get rid of all refs to this */
225 int pmap_debug_level = 0;
226
227 /*
228 * for switching to potentially finer grained debugging
229 */
230 #define PDB_FOLLOW 0x0001
231 #define PDB_INIT 0x0002
232 #define PDB_ENTER 0x0004
233 #define PDB_REMOVE 0x0008
234 #define PDB_CREATE 0x0010
235 #define PDB_PTPAGE 0x0020
236 #define PDB_GROWKERN 0x0040
237 #define PDB_BITS 0x0080
238 #define PDB_COLLECT 0x0100
239 #define PDB_PROTECT 0x0200
240 #define PDB_MAP_L1 0x0400
241 #define PDB_BOOTSTRAP 0x1000
242 #define PDB_PARANOIA 0x2000
243 #define PDB_WIRING 0x4000
244 #define PDB_PVDUMP 0x8000
245 #define PDB_VAC 0x10000
246 #define PDB_KENTER 0x20000
247 #define PDB_KREMOVE 0x40000
248 #define PDB_EXEC 0x80000
249
250 int debugmap = 1;
251 int pmapdebug = 0;
252 #define NPDEBUG(_lev_,_stat_) \
253 if (pmapdebug & (_lev_)) \
254 ((_stat_))
255
256 #else /* PMAP_DEBUG */
257 #define NPDEBUG(_lev_,_stat_) /* Nothing */
258 #endif /* PMAP_DEBUG */
259
260 /*
261 * pmap_kernel() points here
262 */
263 static struct pmap kernel_pmap_store = {
264 #ifndef ARM_MMU_EXTENDED
265 .pm_activated = true,
266 .pm_domain = PMAP_DOMAIN_KERNEL,
267 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
268 #endif
269 };
270 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
271 #undef pmap_kernel
272 #define pmap_kernel() (&kernel_pmap_store)
273 #ifdef PMAP_NEED_ALLOC_POOLPAGE
274 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
275 #endif
276
277 /*
278 * Pool and cache that pmap structures are allocated from.
279 * We use a cache to avoid clearing the pm_l2[] array (1KB)
280 * in pmap_create().
281 */
282 static struct pool_cache pmap_cache;
283 static LIST_HEAD(, pmap) pmap_pmaps;
284
285 /*
286 * Pool of PV structures
287 */
288 static struct pool pmap_pv_pool;
289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
292 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
293 };
294
295 /*
296 * Pool and cache of l2_dtable structures.
297 * We use a cache to avoid clearing the structures when they're
298 * allocated. (196 bytes)
299 */
300 static struct pool_cache pmap_l2dtable_cache;
301 static vaddr_t pmap_kernel_l2dtable_kva;
302
303 /*
304 * Pool and cache of L2 page descriptors.
305 * We use a cache to avoid clearing the descriptor table
306 * when they're allocated. (1KB)
307 */
308 static struct pool_cache pmap_l2ptp_cache;
309 static vaddr_t pmap_kernel_l2ptp_kva;
310 static paddr_t pmap_kernel_l2ptp_phys;
311
312 #ifdef PMAPCOUNTERS
313 #define PMAP_EVCNT_INITIALIZER(name) \
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
315
316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
317 static struct evcnt pmap_ev_vac_clean_one =
318 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
319 static struct evcnt pmap_ev_vac_flush_one =
320 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
321 static struct evcnt pmap_ev_vac_flush_lots =
322 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
323 static struct evcnt pmap_ev_vac_flush_lots2 =
324 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
329
330 static struct evcnt pmap_ev_vac_color_new =
331 PMAP_EVCNT_INITIALIZER("new page color");
332 static struct evcnt pmap_ev_vac_color_reuse =
333 PMAP_EVCNT_INITIALIZER("ok first page color");
334 static struct evcnt pmap_ev_vac_color_ok =
335 PMAP_EVCNT_INITIALIZER("ok page color");
336 static struct evcnt pmap_ev_vac_color_blind =
337 PMAP_EVCNT_INITIALIZER("blind page color");
338 static struct evcnt pmap_ev_vac_color_change =
339 PMAP_EVCNT_INITIALIZER("change page color");
340 static struct evcnt pmap_ev_vac_color_erase =
341 PMAP_EVCNT_INITIALIZER("erase page color");
342 static struct evcnt pmap_ev_vac_color_none =
343 PMAP_EVCNT_INITIALIZER("no page color");
344 static struct evcnt pmap_ev_vac_color_restore =
345 PMAP_EVCNT_INITIALIZER("restore page color");
346
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
355 #endif
356
357 static struct evcnt pmap_ev_mappings =
358 PMAP_EVCNT_INITIALIZER("pages mapped");
359 static struct evcnt pmap_ev_unmappings =
360 PMAP_EVCNT_INITIALIZER("pages unmapped");
361 static struct evcnt pmap_ev_remappings =
362 PMAP_EVCNT_INITIALIZER("pages remapped");
363
364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
367
368 static struct evcnt pmap_ev_kernel_mappings =
369 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
370 static struct evcnt pmap_ev_kernel_unmappings =
371 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
372 static struct evcnt pmap_ev_kernel_remappings =
373 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
374
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
378
379 static struct evcnt pmap_ev_kenter_mappings =
380 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
381 static struct evcnt pmap_ev_kenter_unmappings =
382 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
383 static struct evcnt pmap_ev_kenter_remappings =
384 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
385 static struct evcnt pmap_ev_pt_mappings =
386 PMAP_EVCNT_INITIALIZER("page table pages mapped");
387
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
392
393 static struct evcnt pmap_ev_fixup_mod =
394 PMAP_EVCNT_INITIALIZER("page modification emulations");
395 static struct evcnt pmap_ev_fixup_ref =
396 PMAP_EVCNT_INITIALIZER("page reference emulations");
397 static struct evcnt pmap_ev_fixup_exec =
398 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
399 static struct evcnt pmap_ev_fixup_pdes =
400 PMAP_EVCNT_INITIALIZER("pdes fixed up");
401 #ifndef ARM_MMU_EXTENDED
402 static struct evcnt pmap_ev_fixup_ptesync =
403 PMAP_EVCNT_INITIALIZER("ptesync fixed");
404 #endif
405
406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
410 #ifndef ARM_MMU_EXTENDED
411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
412 #endif
413
414 #ifdef PMAP_CACHE_VIPT
415 static struct evcnt pmap_ev_exec_mappings =
416 PMAP_EVCNT_INITIALIZER("exec pages mapped");
417 static struct evcnt pmap_ev_exec_cached =
418 PMAP_EVCNT_INITIALIZER("exec pages cached");
419
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
422
423 static struct evcnt pmap_ev_exec_synced =
424 PMAP_EVCNT_INITIALIZER("exec pages synced");
425 static struct evcnt pmap_ev_exec_synced_map =
426 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
427 #ifndef ARM_MMU_EXTENDED
428 static struct evcnt pmap_ev_exec_synced_unmap =
429 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
430 static struct evcnt pmap_ev_exec_synced_remap =
431 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
432 static struct evcnt pmap_ev_exec_synced_clearbit =
433 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
434 static struct evcnt pmap_ev_exec_synced_kremove =
435 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
436 #endif
437
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
440 #ifndef ARM_MMU_EXTENDED
441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
445 #endif
446
447 static struct evcnt pmap_ev_exec_discarded_unmap =
448 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
449 static struct evcnt pmap_ev_exec_discarded_zero =
450 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
451 static struct evcnt pmap_ev_exec_discarded_copy =
452 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
453 static struct evcnt pmap_ev_exec_discarded_page_protect =
454 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
455 static struct evcnt pmap_ev_exec_discarded_clearbit =
456 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
457 static struct evcnt pmap_ev_exec_discarded_kremove =
458 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
459 #ifdef ARM_MMU_EXTENDED
460 static struct evcnt pmap_ev_exec_discarded_modfixup =
461 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
462 #endif
463
464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
470 #ifdef ARM_MMU_EXTENDED
471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
472 #endif
473 #endif /* PMAP_CACHE_VIPT */
474
475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
478
479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
482
483 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
484 #else
485 #define PMAPCOUNT(x) ((void)0)
486 #endif
487
488 /*
489 * pmap copy/zero page, and mem(5) hook point
490 */
491 static pt_entry_t *csrc_pte, *cdst_pte;
492 static vaddr_t csrcp, cdstp;
493 #ifdef MULTIPROCESSOR
494 static size_t cnptes;
495 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
496 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
497 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
498 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
499 #else
500 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
501 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
502 #define cpu_csrcp(o) (csrcp + (o))
503 #define cpu_cdstp(o) (cdstp + (o))
504 #endif
505 vaddr_t memhook; /* used by mem.c & others */
506 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
507 kmutex_t pmap_lock __cacheline_aligned;
508 extern void *msgbufaddr;
509 int pmap_kmpages;
510 /*
511 * Flag to indicate if pmap_init() has done its thing
512 */
513 bool pmap_initialized;
514
515 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
516 /*
517 * Start of direct-mapped memory
518 */
519 vaddr_t pmap_directbase = KERNEL_BASE;
520 #endif
521
522 /*
523 * Misc. locking data structures
524 */
525
526 static inline void
527 pmap_acquire_pmap_lock(pmap_t pm)
528 {
529 if (pm == pmap_kernel()) {
530 #ifdef MULTIPROCESSOR
531 KERNEL_LOCK(1, NULL);
532 #endif
533 } else {
534 mutex_enter(pm->pm_lock);
535 }
536 }
537
538 static inline void
539 pmap_release_pmap_lock(pmap_t pm)
540 {
541 if (pm == pmap_kernel()) {
542 #ifdef MULTIPROCESSOR
543 KERNEL_UNLOCK_ONE(NULL);
544 #endif
545 } else {
546 mutex_exit(pm->pm_lock);
547 }
548 }
549
550 static inline void
551 pmap_acquire_page_lock(struct vm_page_md *md)
552 {
553 mutex_enter(&pmap_lock);
554 }
555
556 static inline void
557 pmap_release_page_lock(struct vm_page_md *md)
558 {
559 mutex_exit(&pmap_lock);
560 }
561
562 #ifdef DIAGNOSTIC
563 static inline int
564 pmap_page_locked_p(struct vm_page_md *md)
565 {
566 return mutex_owned(&pmap_lock);
567 }
568 #endif
569
570
571 /*
572 * Metadata for L1 translation tables.
573 */
574 #ifndef ARM_MMU_EXTENDED
575 struct l1_ttable {
576 /* Entry on the L1 Table list */
577 SLIST_ENTRY(l1_ttable) l1_link;
578
579 /* Entry on the L1 Least Recently Used list */
580 TAILQ_ENTRY(l1_ttable) l1_lru;
581
582 /* Track how many domains are allocated from this L1 */
583 volatile u_int l1_domain_use_count;
584
585 /*
586 * A free-list of domain numbers for this L1.
587 * We avoid using ffs() and a bitmap to track domains since ffs()
588 * is slow on ARM.
589 */
590 uint8_t l1_domain_first;
591 uint8_t l1_domain_free[PMAP_DOMAINS];
592
593 /* Physical address of this L1 page table */
594 paddr_t l1_physaddr;
595
596 /* KVA of this L1 page table */
597 pd_entry_t *l1_kva;
598 };
599
600 /*
601 * L1 Page Tables are tracked using a Least Recently Used list.
602 * - New L1s are allocated from the HEAD.
603 * - Freed L1s are added to the TAIl.
604 * - Recently accessed L1s (where an 'access' is some change to one of
605 * the userland pmaps which owns this L1) are moved to the TAIL.
606 */
607 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
608 static kmutex_t l1_lru_lock __cacheline_aligned;
609
610 /*
611 * A list of all L1 tables
612 */
613 static SLIST_HEAD(, l1_ttable) l1_list;
614 #endif /* ARM_MMU_EXTENDED */
615
616 /*
617 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
618 *
619 * This is normally 16MB worth L2 page descriptors for any given pmap.
620 * Reference counts are maintained for L2 descriptors so they can be
621 * freed when empty.
622 */
623 struct l2_bucket {
624 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
625 paddr_t l2b_pa; /* Physical address of same */
626 u_short l2b_l1slot; /* This L2 table's L1 index */
627 u_short l2b_occupancy; /* How many active descriptors */
628 };
629
630 struct l2_dtable {
631 /* The number of L2 page descriptors allocated to this l2_dtable */
632 u_int l2_occupancy;
633
634 /* List of L2 page descriptors */
635 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
636 };
637
638 /*
639 * Given an L1 table index, calculate the corresponding l2_dtable index
640 * and bucket index within the l2_dtable.
641 */
642 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
643 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
644 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
645 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
646 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
647
648 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
649 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
650
651 /*
652 * Given a virtual address, this macro returns the
653 * virtual address required to drop into the next L2 bucket.
654 */
655 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
656
657 /*
658 * L2 allocation.
659 */
660 #define pmap_alloc_l2_dtable() \
661 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
662 #define pmap_free_l2_dtable(l2) \
663 pool_cache_put(&pmap_l2dtable_cache, (l2))
664 #define pmap_alloc_l2_ptp(pap) \
665 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
666 PR_NOWAIT, (pap)))
667
668 /*
669 * We try to map the page tables write-through, if possible. However, not
670 * all CPUs have a write-through cache mode, so on those we have to sync
671 * the cache when we frob page tables.
672 *
673 * We try to evaluate this at compile time, if possible. However, it's
674 * not always possible to do that, hence this run-time var.
675 */
676 int pmap_needs_pte_sync;
677
678 /*
679 * Real definition of pv_entry.
680 */
681 struct pv_entry {
682 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
683 pmap_t pv_pmap; /* pmap where mapping lies */
684 vaddr_t pv_va; /* virtual address for mapping */
685 u_int pv_flags; /* flags */
686 };
687
688 /*
689 * Macro to determine if a mapping might be resident in the
690 * instruction cache and/or TLB
691 */
692 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
693 /*
694 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
695 * there are no explicit accesses, so there may be always be TLB entries to
696 * flush. If we used ASIDs then this would not be a problem.
697 */
698 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
699 #else
700 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
701 #endif
702 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
703 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
704 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
705
706 /*
707 * Macro to determine if a mapping might be resident in the
708 * data cache and/or TLB
709 */
710 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
711 /*
712 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
713 * there are no explicit accesses, so there may be always be TLB entries to
714 * flush. If we used ASIDs then this would not be a problem.
715 */
716 #define PV_BEEN_REFD(f) (1)
717 #else
718 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
719 #endif
720
721 /*
722 * Local prototypes
723 */
724 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
725 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
726 pt_entry_t **);
727 static bool pmap_is_current(pmap_t) __unused;
728 static bool pmap_is_cached(pmap_t);
729 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
730 pmap_t, vaddr_t, u_int);
731 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
732 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
733 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
734 u_int, u_int);
735
736 static void pmap_pinit(pmap_t);
737 static int pmap_pmap_ctor(void *, void *, int);
738
739 static void pmap_alloc_l1(pmap_t);
740 static void pmap_free_l1(pmap_t);
741 #ifndef ARM_MMU_EXTENDED
742 static void pmap_use_l1(pmap_t);
743 #endif
744
745 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
746 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
747 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
748 static int pmap_l2ptp_ctor(void *, void *, int);
749 static int pmap_l2dtable_ctor(void *, void *, int);
750
751 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
752 #ifdef PMAP_CACHE_VIVT
753 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
754 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
755 #endif
756
757 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
758 #ifdef PMAP_CACHE_VIVT
759 static bool pmap_clean_page(struct vm_page_md *, bool);
760 #endif
761 #ifdef PMAP_CACHE_VIPT
762 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
763 enum pmap_flush_op {
764 PMAP_FLUSH_PRIMARY,
765 PMAP_FLUSH_SECONDARY,
766 PMAP_CLEAN_PRIMARY
767 };
768 #ifndef ARM_MMU_EXTENDED
769 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
770 #endif
771 #endif
772 static void pmap_page_remove(struct vm_page_md *, paddr_t);
773
774 #ifndef ARM_MMU_EXTENDED
775 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
776 #endif
777 static vaddr_t kernel_pt_lookup(paddr_t);
778
779
780 /*
781 * Misc variables
782 */
783 vaddr_t virtual_avail;
784 vaddr_t virtual_end;
785 vaddr_t pmap_curmaxkvaddr;
786
787 paddr_t avail_start;
788 paddr_t avail_end;
789
790 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
791 pv_addr_t kernelpages;
792 pv_addr_t kernel_l1pt;
793 pv_addr_t systempage;
794
795 /* Function to set the debug level of the pmap code */
796
797 #ifdef PMAP_DEBUG
798 void
799 pmap_debug(int level)
800 {
801 pmap_debug_level = level;
802 printf("pmap_debug: level=%d\n", pmap_debug_level);
803 }
804 #endif /* PMAP_DEBUG */
805
806 #ifdef PMAP_CACHE_VIPT
807 #define PMAP_VALIDATE_MD_PAGE(md) \
808 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
809 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
810 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
811 #endif /* PMAP_CACHE_VIPT */
812 /*
813 * A bunch of routines to conditionally flush the caches/TLB depending
814 * on whether the specified pmap actually needs to be flushed at any
815 * given time.
816 */
817 static inline void
818 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
819 {
820 #ifdef ARM_MMU_EXTENDED
821 pmap_tlb_invalidate_addr(pm, va);
822 #else
823 if (pm->pm_cstate.cs_tlb_id != 0) {
824 if (PV_BEEN_EXECD(flags)) {
825 cpu_tlb_flushID_SE(va);
826 } else if (PV_BEEN_REFD(flags)) {
827 cpu_tlb_flushD_SE(va);
828 }
829 }
830 #endif /* ARM_MMU_EXTENDED */
831 }
832
833 static inline void
834 pmap_tlb_flushID(pmap_t pm)
835 {
836 #ifdef ARM_MMU_EXTENDED
837 pmap_tlb_asid_release_all(pm);
838 #else
839 if (pm->pm_cstate.cs_tlb_id) {
840 cpu_tlb_flushID();
841 #if ARM_MMU_V7 == 0
842 /*
843 * Speculative loads by Cortex cores can cause TLB entries to
844 * be filled even if there are no explicit accesses, so there
845 * may be always be TLB entries to flush. If we used ASIDs
846 * then it would not be a problem.
847 * This is not true for other CPUs.
848 */
849 pm->pm_cstate.cs_tlb = 0;
850 #endif /* ARM_MMU_V7 */
851 }
852 #endif /* ARM_MMU_EXTENDED */
853 }
854
855 static inline void
856 pmap_tlb_flushD(pmap_t pm)
857 {
858 #ifdef ARM_MMU_EXTENDED
859 pmap_tlb_asid_release_all(pm);
860 #else
861 if (pm->pm_cstate.cs_tlb_d) {
862 cpu_tlb_flushD();
863 #if ARM_MMU_V7 == 0
864 /*
865 * Speculative loads by Cortex cores can cause TLB entries to
866 * be filled even if there are no explicit accesses, so there
867 * may be always be TLB entries to flush. If we used ASIDs
868 * then it would not be a problem.
869 * This is not true for other CPUs.
870 */
871 pm->pm_cstate.cs_tlb_d = 0;
872 #endif /* ARM_MMU_V7 */
873 }
874 #endif /* ARM_MMU_EXTENDED */
875 }
876
877 #ifdef PMAP_CACHE_VIVT
878 static inline void
879 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
880 {
881 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
882 cpu_idcache_wbinv_range(va, PAGE_SIZE);
883 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
884 if (do_inv) {
885 if (flags & PVF_WRITE)
886 cpu_dcache_wbinv_range(va, PAGE_SIZE);
887 else
888 cpu_dcache_inv_range(va, PAGE_SIZE);
889 } else if (flags & PVF_WRITE) {
890 cpu_dcache_wb_range(va, PAGE_SIZE);
891 }
892 }
893 }
894
895 static inline void
896 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
897 {
898 if (PV_BEEN_EXECD(flags)) {
899 if (pm->pm_cstate.cs_cache_id) {
900 cpu_idcache_wbinv_all();
901 pm->pm_cstate.cs_cache = 0;
902 }
903 } else if (pm->pm_cstate.cs_cache_d) {
904 cpu_dcache_wbinv_all();
905 pm->pm_cstate.cs_cache_d = 0;
906 }
907 }
908 #endif /* PMAP_CACHE_VIVT */
909
910 static inline uint8_t
911 pmap_domain(pmap_t pm)
912 {
913 #ifdef ARM_MMU_EXTENDED
914 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
915 #else
916 return pm->pm_domain;
917 #endif
918 }
919
920 static inline pd_entry_t *
921 pmap_l1_kva(pmap_t pm)
922 {
923 #ifdef ARM_MMU_EXTENDED
924 return pm->pm_l1;
925 #else
926 return pm->pm_l1->l1_kva;
927 #endif
928 }
929
930 static inline bool
931 pmap_is_current(pmap_t pm)
932 {
933 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
934 return true;
935
936 return false;
937 }
938
939 static inline bool
940 pmap_is_cached(pmap_t pm)
941 {
942 #ifdef ARM_MMU_EXTENDED
943 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
944 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
945 return true;
946 #else
947 struct cpu_info * const ci = curcpu();
948 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
949 || ci->ci_pmap_lastuser == pm)
950 return true;
951 #endif /* ARM_MMU_EXTENDED */
952
953 return false;
954 }
955
956 /*
957 * PTE_SYNC_CURRENT:
958 *
959 * Make sure the pte is written out to RAM.
960 * We need to do this for one of two cases:
961 * - We're dealing with the kernel pmap
962 * - There is no pmap active in the cache/tlb.
963 * - The specified pmap is 'active' in the cache/tlb.
964 */
965 #ifdef PMAP_INCLUDE_PTE_SYNC
966 #define PTE_SYNC_CURRENT(pm, ptep) \
967 do { \
968 if (PMAP_NEEDS_PTE_SYNC && \
969 pmap_is_cached(pm)) \
970 PTE_SYNC(ptep); \
971 } while (/*CONSTCOND*/0)
972 #else
973 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
974 #endif
975
976 /*
977 * main pv_entry manipulation functions:
978 * pmap_enter_pv: enter a mapping onto a vm_page list
979 * pmap_remove_pv: remove a mapping from a vm_page list
980 *
981 * NOTE: pmap_enter_pv expects to lock the pvh itself
982 * pmap_remove_pv expects the caller to lock the pvh before calling
983 */
984
985 /*
986 * pmap_enter_pv: enter a mapping onto a vm_page lst
987 *
988 * => caller should hold the proper lock on pmap_main_lock
989 * => caller should have pmap locked
990 * => we will gain the lock on the vm_page and allocate the new pv_entry
991 * => caller should adjust ptp's wire_count before calling
992 * => caller should not adjust pmap's wire_count
993 */
994 static void
995 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
996 vaddr_t va, u_int flags)
997 {
998 struct pv_entry **pvp;
999
1000 NPDEBUG(PDB_PVDUMP,
1001 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
1002
1003 pv->pv_pmap = pm;
1004 pv->pv_va = va;
1005 pv->pv_flags = flags;
1006
1007 pvp = &SLIST_FIRST(&md->pvh_list);
1008 #ifdef PMAP_CACHE_VIPT
1009 /*
1010 * Insert unmanaged entries, writeable first, at the head of
1011 * the pv list.
1012 */
1013 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1014 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1015 pvp = &SLIST_NEXT(*pvp, pv_link);
1016 }
1017 if (!PV_IS_WRITE_P(flags)) {
1018 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1019 pvp = &SLIST_NEXT(*pvp, pv_link);
1020 }
1021 #endif
1022 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1023 *pvp = pv; /* ... locked list */
1024 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1025 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1026 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1027 md->pvh_attrs |= PVF_KMOD;
1028 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1029 md->pvh_attrs |= PVF_DIRTY;
1030 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1031 #endif
1032 if (pm == pmap_kernel()) {
1033 PMAPCOUNT(kernel_mappings);
1034 if (flags & PVF_WRITE)
1035 md->krw_mappings++;
1036 else
1037 md->kro_mappings++;
1038 } else {
1039 if (flags & PVF_WRITE)
1040 md->urw_mappings++;
1041 else
1042 md->uro_mappings++;
1043 }
1044
1045 #ifdef PMAP_CACHE_VIPT
1046 #ifndef ARM_MMU_EXTENDED
1047 /*
1048 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1049 * do it here as well to keep the mappings & KVF_WRITE consistent.
1050 */
1051 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1052 md->pvh_attrs |= PVF_WRITE;
1053 }
1054 #endif
1055 /*
1056 * If this is an exec mapping and its the first exec mapping
1057 * for this page, make sure to sync the I-cache.
1058 */
1059 if (PV_IS_EXEC_P(flags)) {
1060 #ifndef ARM_MMU_EXTENDED
1061 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1062 pmap_syncicache_page(md, pa);
1063 PMAPCOUNT(exec_synced_map);
1064 }
1065 #endif
1066 PMAPCOUNT(exec_mappings);
1067 }
1068 #endif
1069
1070 PMAPCOUNT(mappings);
1071
1072 if (pv->pv_flags & PVF_WIRED)
1073 ++pm->pm_stats.wired_count;
1074 }
1075
1076 /*
1077 *
1078 * pmap_find_pv: Find a pv entry
1079 *
1080 * => caller should hold lock on vm_page
1081 */
1082 static inline struct pv_entry *
1083 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1084 {
1085 struct pv_entry *pv;
1086
1087 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1088 if (pm == pv->pv_pmap && va == pv->pv_va)
1089 break;
1090 }
1091
1092 return (pv);
1093 }
1094
1095 /*
1096 * pmap_remove_pv: try to remove a mapping from a pv_list
1097 *
1098 * => caller should hold proper lock on pmap_main_lock
1099 * => pmap should be locked
1100 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1101 * => caller should adjust ptp's wire_count and free PTP if needed
1102 * => caller should NOT adjust pmap's wire_count
1103 * => we return the removed pv
1104 */
1105 static struct pv_entry *
1106 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1107 {
1108 struct pv_entry *pv, **prevptr;
1109
1110 NPDEBUG(PDB_PVDUMP,
1111 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1112
1113 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1114 pv = *prevptr;
1115
1116 while (pv) {
1117 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1118 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1119 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1120 if (pv->pv_flags & PVF_WIRED) {
1121 --pm->pm_stats.wired_count;
1122 }
1123 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1124 if (pm == pmap_kernel()) {
1125 PMAPCOUNT(kernel_unmappings);
1126 if (pv->pv_flags & PVF_WRITE)
1127 md->krw_mappings--;
1128 else
1129 md->kro_mappings--;
1130 } else {
1131 if (pv->pv_flags & PVF_WRITE)
1132 md->urw_mappings--;
1133 else
1134 md->uro_mappings--;
1135 }
1136
1137 PMAPCOUNT(unmappings);
1138 #ifdef PMAP_CACHE_VIPT
1139 if (!(pv->pv_flags & PVF_WRITE))
1140 break;
1141 /*
1142 * If this page has had an exec mapping, then if
1143 * this was the last mapping, discard the contents,
1144 * otherwise sync the i-cache for this page.
1145 */
1146 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1147 #ifdef ARM_MMU_EXTENDED
1148 md->pvh_attrs &= ~PVF_EXEC;
1149 PMAPCOUNT(exec_discarded_unmap);
1150 #else
1151 if (SLIST_EMPTY(&md->pvh_list)) {
1152 md->pvh_attrs &= ~PVF_EXEC;
1153 PMAPCOUNT(exec_discarded_unmap);
1154 } else {
1155 pmap_syncicache_page(md, pa);
1156 PMAPCOUNT(exec_synced_unmap);
1157 }
1158 #endif /* ARM_MMU_EXTENDED */
1159 }
1160 #endif /* PMAP_CACHE_VIPT */
1161 break;
1162 }
1163 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1164 pv = *prevptr; /* advance */
1165 }
1166
1167 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1168 /*
1169 * If we no longer have a WRITEABLE KENTRY at the head of list,
1170 * clear the KMOD attribute from the page.
1171 */
1172 if (SLIST_FIRST(&md->pvh_list) == NULL
1173 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1174 md->pvh_attrs &= ~PVF_KMOD;
1175
1176 /*
1177 * If this was a writeable page and there are no more writeable
1178 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1179 * the contents to memory.
1180 */
1181 if (arm_cache_prefer_mask != 0) {
1182 if (md->krw_mappings + md->urw_mappings == 0)
1183 md->pvh_attrs &= ~PVF_WRITE;
1184 PMAP_VALIDATE_MD_PAGE(md);
1185 }
1186 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1187 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1188
1189 return(pv); /* return removed pv */
1190 }
1191
1192 /*
1193 *
1194 * pmap_modify_pv: Update pv flags
1195 *
1196 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1197 * => caller should NOT adjust pmap's wire_count
1198 * => caller must call pmap_vac_me_harder() if writable status of a page
1199 * may have changed.
1200 * => we return the old flags
1201 *
1202 * Modify a physical-virtual mapping in the pv table
1203 */
1204 static u_int
1205 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1206 u_int clr_mask, u_int set_mask)
1207 {
1208 struct pv_entry *npv;
1209 u_int flags, oflags;
1210
1211 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1212 KASSERT(!PV_IS_KENTRY_P(set_mask));
1213
1214 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1215 return (0);
1216
1217 NPDEBUG(PDB_PVDUMP,
1218 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1219
1220 /*
1221 * There is at least one VA mapping this page.
1222 */
1223
1224 if (clr_mask & (PVF_REF | PVF_MOD)) {
1225 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1226 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1227 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1228 md->pvh_attrs |= PVF_DIRTY;
1229 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1230 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1231 }
1232
1233 oflags = npv->pv_flags;
1234 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1235
1236 if ((flags ^ oflags) & PVF_WIRED) {
1237 if (flags & PVF_WIRED)
1238 ++pm->pm_stats.wired_count;
1239 else
1240 --pm->pm_stats.wired_count;
1241 }
1242
1243 if ((flags ^ oflags) & PVF_WRITE) {
1244 if (pm == pmap_kernel()) {
1245 if (flags & PVF_WRITE) {
1246 md->krw_mappings++;
1247 md->kro_mappings--;
1248 } else {
1249 md->kro_mappings++;
1250 md->krw_mappings--;
1251 }
1252 } else {
1253 if (flags & PVF_WRITE) {
1254 md->urw_mappings++;
1255 md->uro_mappings--;
1256 } else {
1257 md->uro_mappings++;
1258 md->urw_mappings--;
1259 }
1260 }
1261 }
1262 #ifdef PMAP_CACHE_VIPT
1263 if (arm_cache_prefer_mask != 0) {
1264 if (md->urw_mappings + md->krw_mappings == 0) {
1265 md->pvh_attrs &= ~PVF_WRITE;
1266 } else {
1267 md->pvh_attrs |= PVF_WRITE;
1268 }
1269 }
1270 #ifndef ARM_MMU_EXTENDED
1271 /*
1272 * We have two cases here: the first is from enter_pv (new exec
1273 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1274 * Since in latter, pmap_enter_pv won't do anything, we just have
1275 * to do what pmap_remove_pv would do.
1276 */
1277 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1278 || (PV_IS_EXEC_P(md->pvh_attrs)
1279 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1280 pmap_syncicache_page(md, pa);
1281 PMAPCOUNT(exec_synced_remap);
1282 }
1283 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1284 #endif /* !ARM_MMU_EXTENDED */
1285 #endif /* PMAP_CACHE_VIPT */
1286
1287 PMAPCOUNT(remappings);
1288
1289 return (oflags);
1290 }
1291
1292 /*
1293 * Allocate an L1 translation table for the specified pmap.
1294 * This is called at pmap creation time.
1295 */
1296 static void
1297 pmap_alloc_l1(pmap_t pm)
1298 {
1299 #ifdef ARM_MMU_EXTENDED
1300 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1301 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1302 struct vm_page *pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1303 #else
1304 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1305 #endif
1306 bool ok __diagused;
1307 KASSERT(pg != NULL);
1308 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1309 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1310 KASSERT(ok);
1311 KASSERT(va >= KERNEL_BASE);
1312
1313 #else
1314 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1315 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1316 UVM_KMF_WIRED|UVM_KMF_ZERO);
1317 KASSERT(va);
1318 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1319 #endif
1320 pm->pm_l1 = (pd_entry_t *)va;
1321 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1322 #else
1323 struct l1_ttable *l1;
1324 uint8_t domain;
1325
1326 /*
1327 * Remove the L1 at the head of the LRU list
1328 */
1329 mutex_spin_enter(&l1_lru_lock);
1330 l1 = TAILQ_FIRST(&l1_lru_list);
1331 KDASSERT(l1 != NULL);
1332 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1333
1334 /*
1335 * Pick the first available domain number, and update
1336 * the link to the next number.
1337 */
1338 domain = l1->l1_domain_first;
1339 l1->l1_domain_first = l1->l1_domain_free[domain];
1340
1341 /*
1342 * If there are still free domain numbers in this L1,
1343 * put it back on the TAIL of the LRU list.
1344 */
1345 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1346 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1347
1348 mutex_spin_exit(&l1_lru_lock);
1349
1350 /*
1351 * Fix up the relevant bits in the pmap structure
1352 */
1353 pm->pm_l1 = l1;
1354 pm->pm_domain = domain + 1;
1355 #endif
1356 }
1357
1358 /*
1359 * Free an L1 translation table.
1360 * This is called at pmap destruction time.
1361 */
1362 static void
1363 pmap_free_l1(pmap_t pm)
1364 {
1365 #ifdef ARM_MMU_EXTENDED
1366 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1367 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1368 uvm_pagefree(pg);
1369 #else
1370 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1371 #endif
1372 pm->pm_l1 = NULL;
1373 pm->pm_l1_pa = 0;
1374 #else
1375 struct l1_ttable *l1 = pm->pm_l1;
1376
1377 mutex_spin_enter(&l1_lru_lock);
1378
1379 /*
1380 * If this L1 is currently on the LRU list, remove it.
1381 */
1382 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1383 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1384
1385 /*
1386 * Free up the domain number which was allocated to the pmap
1387 */
1388 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1389 l1->l1_domain_first = pmap_domain(pm) - 1;
1390 l1->l1_domain_use_count--;
1391
1392 /*
1393 * The L1 now must have at least 1 free domain, so add
1394 * it back to the LRU list. If the use count is zero,
1395 * put it at the head of the list, otherwise it goes
1396 * to the tail.
1397 */
1398 if (l1->l1_domain_use_count == 0)
1399 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1400 else
1401 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1402
1403 mutex_spin_exit(&l1_lru_lock);
1404 #endif /* ARM_MMU_EXTENDED */
1405 }
1406
1407 #ifndef ARM_MMU_EXTENDED
1408 static inline void
1409 pmap_use_l1(pmap_t pm)
1410 {
1411 struct l1_ttable *l1;
1412
1413 /*
1414 * Do nothing if we're in interrupt context.
1415 * Access to an L1 by the kernel pmap must not affect
1416 * the LRU list.
1417 */
1418 if (cpu_intr_p() || pm == pmap_kernel())
1419 return;
1420
1421 l1 = pm->pm_l1;
1422
1423 /*
1424 * If the L1 is not currently on the LRU list, just return
1425 */
1426 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1427 return;
1428
1429 mutex_spin_enter(&l1_lru_lock);
1430
1431 /*
1432 * Check the use count again, now that we've acquired the lock
1433 */
1434 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1435 mutex_spin_exit(&l1_lru_lock);
1436 return;
1437 }
1438
1439 /*
1440 * Move the L1 to the back of the LRU list
1441 */
1442 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1443 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1444
1445 mutex_spin_exit(&l1_lru_lock);
1446 }
1447 #endif /* !ARM_MMU_EXTENDED */
1448
1449 /*
1450 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1451 *
1452 * Free an L2 descriptor table.
1453 */
1454 static inline void
1455 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1456 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1457 #else
1458 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1459 #endif
1460 {
1461 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1462 /*
1463 * Note: With a write-back cache, we may need to sync this
1464 * L2 table before re-using it.
1465 * This is because it may have belonged to a non-current
1466 * pmap, in which case the cache syncs would have been
1467 * skipped for the pages that were being unmapped. If the
1468 * L2 table were then to be immediately re-allocated to
1469 * the *current* pmap, it may well contain stale mappings
1470 * which have not yet been cleared by a cache write-back
1471 * and so would still be visible to the mmu.
1472 */
1473 if (need_sync)
1474 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1475 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1476 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1477 }
1478
1479 /*
1480 * Returns a pointer to the L2 bucket associated with the specified pmap
1481 * and VA, or NULL if no L2 bucket exists for the address.
1482 */
1483 static inline struct l2_bucket *
1484 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1485 {
1486 const size_t l1slot = l1pte_index(va);
1487 struct l2_dtable *l2;
1488 struct l2_bucket *l2b;
1489
1490 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1491 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1492 return (NULL);
1493
1494 return (l2b);
1495 }
1496
1497 /*
1498 * Returns a pointer to the L2 bucket associated with the specified pmap
1499 * and VA.
1500 *
1501 * If no L2 bucket exists, perform the necessary allocations to put an L2
1502 * bucket/page table in place.
1503 *
1504 * Note that if a new L2 bucket/page was allocated, the caller *must*
1505 * increment the bucket occupancy counter appropriately *before*
1506 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1507 * the bucket/page in the meantime.
1508 */
1509 static struct l2_bucket *
1510 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1511 {
1512 const size_t l1slot = l1pte_index(va);
1513 struct l2_dtable *l2;
1514
1515 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1516 /*
1517 * No mapping at this address, as there is
1518 * no entry in the L1 table.
1519 * Need to allocate a new l2_dtable.
1520 */
1521 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1522 return (NULL);
1523
1524 /*
1525 * Link it into the parent pmap
1526 */
1527 pm->pm_l2[L2_IDX(l1slot)] = l2;
1528 }
1529
1530 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1531
1532 /*
1533 * Fetch pointer to the L2 page table associated with the address.
1534 */
1535 if (l2b->l2b_kva == NULL) {
1536 pt_entry_t *ptep;
1537
1538 /*
1539 * No L2 page table has been allocated. Chances are, this
1540 * is because we just allocated the l2_dtable, above.
1541 */
1542 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1543 /*
1544 * Oops, no more L2 page tables available at this
1545 * time. We may need to deallocate the l2_dtable
1546 * if we allocated a new one above.
1547 */
1548 if (l2->l2_occupancy == 0) {
1549 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1550 pmap_free_l2_dtable(l2);
1551 }
1552 return (NULL);
1553 }
1554
1555 l2->l2_occupancy++;
1556 l2b->l2b_kva = ptep;
1557 l2b->l2b_l1slot = l1slot;
1558
1559 #ifdef ARM_MMU_EXTENDED
1560 /*
1561 * We know there will be a mapping here, so simply
1562 * enter this PTP into the L1 now.
1563 */
1564 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1565 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1566 | L1_C_DOM(pmap_domain(pm));
1567 KASSERT(*pdep == 0);
1568 l1pte_setone(pdep, npde);
1569 PTE_SYNC(pdep);
1570 #endif
1571 }
1572
1573 return (l2b);
1574 }
1575
1576 /*
1577 * One or more mappings in the specified L2 descriptor table have just been
1578 * invalidated.
1579 *
1580 * Garbage collect the metadata and descriptor table itself if necessary.
1581 *
1582 * The pmap lock must be acquired when this is called (not necessary
1583 * for the kernel pmap).
1584 */
1585 static void
1586 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1587 {
1588 KDASSERT(count <= l2b->l2b_occupancy);
1589
1590 /*
1591 * Update the bucket's reference count according to how many
1592 * PTEs the caller has just invalidated.
1593 */
1594 l2b->l2b_occupancy -= count;
1595
1596 /*
1597 * Note:
1598 *
1599 * Level 2 page tables allocated to the kernel pmap are never freed
1600 * as that would require checking all Level 1 page tables and
1601 * removing any references to the Level 2 page table. See also the
1602 * comment elsewhere about never freeing bootstrap L2 descriptors.
1603 *
1604 * We make do with just invalidating the mapping in the L2 table.
1605 *
1606 * This isn't really a big deal in practice and, in fact, leads
1607 * to a performance win over time as we don't need to continually
1608 * alloc/free.
1609 */
1610 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1611 return;
1612
1613 /*
1614 * There are no more valid mappings in this level 2 page table.
1615 * Go ahead and NULL-out the pointer in the bucket, then
1616 * free the page table.
1617 */
1618 const size_t l1slot = l2b->l2b_l1slot;
1619 pt_entry_t * const ptep = l2b->l2b_kva;
1620 l2b->l2b_kva = NULL;
1621
1622 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1623 pd_entry_t pde __diagused = *pdep;
1624
1625 #ifdef ARM_MMU_EXTENDED
1626 /*
1627 * Invalidate the L1 slot.
1628 */
1629 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1630 #else
1631 /*
1632 * If the L1 slot matches the pmap's domain number, then invalidate it.
1633 */
1634 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1635 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1636 #endif
1637 l1pte_setone(pdep, 0);
1638 PDE_SYNC(pdep);
1639 #ifndef ARM_MMU_EXTENDED
1640 }
1641 #endif
1642
1643 /*
1644 * Release the L2 descriptor table back to the pool cache.
1645 */
1646 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1647 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1648 #else
1649 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1650 #endif
1651
1652 /*
1653 * Update the reference count in the associated l2_dtable
1654 */
1655 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1656 if (--l2->l2_occupancy > 0)
1657 return;
1658
1659 /*
1660 * There are no more valid mappings in any of the Level 1
1661 * slots managed by this l2_dtable. Go ahead and NULL-out
1662 * the pointer in the parent pmap and free the l2_dtable.
1663 */
1664 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1665 pmap_free_l2_dtable(l2);
1666 }
1667
1668 /*
1669 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1670 * structures.
1671 */
1672 static int
1673 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1674 {
1675 #ifndef PMAP_INCLUDE_PTE_SYNC
1676 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1677
1678 /*
1679 * The mappings for these page tables were initially made using
1680 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1681 * mode will not be right for page table mappings. To avoid
1682 * polluting the pmap_kenter_pa() code with a special case for
1683 * page tables, we simply fix up the cache-mode here if it's not
1684 * correct.
1685 */
1686 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1687 const struct l2_bucket * const l2b =
1688 pmap_get_l2_bucket(pmap_kernel(), va);
1689 KASSERTMSG(l2b != NULL, "%#lx", va);
1690 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1691 const pt_entry_t opte = *ptep;
1692
1693 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1694 /*
1695 * Page tables must have the cache-mode set correctly.
1696 */
1697 const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
1698 | pte_l2_s_cache_mode_pt;
1699 l2pte_set(ptep, npte, opte);
1700 PTE_SYNC(ptep);
1701 cpu_tlb_flushD_SE(va);
1702 cpu_cpwait();
1703 }
1704 }
1705 #endif
1706
1707 memset(v, 0, L2_TABLE_SIZE_REAL);
1708 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1709 return (0);
1710 }
1711
1712 static int
1713 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1714 {
1715
1716 memset(v, 0, sizeof(struct l2_dtable));
1717 return (0);
1718 }
1719
1720 static int
1721 pmap_pmap_ctor(void *arg, void *v, int flags)
1722 {
1723
1724 memset(v, 0, sizeof(struct pmap));
1725 return (0);
1726 }
1727
1728 static void
1729 pmap_pinit(pmap_t pm)
1730 {
1731 #ifndef ARM_HAS_VBAR
1732 struct l2_bucket *l2b;
1733
1734 if (vector_page < KERNEL_BASE) {
1735 /*
1736 * Map the vector page.
1737 */
1738 pmap_enter(pm, vector_page, systempage.pv_pa,
1739 VM_PROT_READ | VM_PROT_EXECUTE,
1740 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1741 pmap_update(pm);
1742
1743 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1744 l2b = pmap_get_l2_bucket(pm, vector_page);
1745 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1746 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1747 L1_C_DOM(pmap_domain(pm));
1748 } else
1749 pm->pm_pl1vec = NULL;
1750 #endif
1751 }
1752
1753 #ifdef PMAP_CACHE_VIVT
1754 /*
1755 * Since we have a virtually indexed cache, we may need to inhibit caching if
1756 * there is more than one mapping and at least one of them is writable.
1757 * Since we purge the cache on every context switch, we only need to check for
1758 * other mappings within the same pmap, or kernel_pmap.
1759 * This function is also called when a page is unmapped, to possibly reenable
1760 * caching on any remaining mappings.
1761 *
1762 * The code implements the following logic, where:
1763 *
1764 * KW = # of kernel read/write pages
1765 * KR = # of kernel read only pages
1766 * UW = # of user read/write pages
1767 * UR = # of user read only pages
1768 *
1769 * KC = kernel mapping is cacheable
1770 * UC = user mapping is cacheable
1771 *
1772 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1773 * +---------------------------------------------
1774 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1775 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1776 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1777 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1778 */
1779
1780 static const int pmap_vac_flags[4][4] = {
1781 {-1, 0, 0, PVF_KNC},
1782 {0, 0, PVF_NC, PVF_NC},
1783 {0, PVF_NC, PVF_NC, PVF_NC},
1784 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1785 };
1786
1787 static inline int
1788 pmap_get_vac_flags(const struct vm_page_md *md)
1789 {
1790 int kidx, uidx;
1791
1792 kidx = 0;
1793 if (md->kro_mappings || md->krw_mappings > 1)
1794 kidx |= 1;
1795 if (md->krw_mappings)
1796 kidx |= 2;
1797
1798 uidx = 0;
1799 if (md->uro_mappings || md->urw_mappings > 1)
1800 uidx |= 1;
1801 if (md->urw_mappings)
1802 uidx |= 2;
1803
1804 return (pmap_vac_flags[uidx][kidx]);
1805 }
1806
1807 static inline void
1808 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1809 {
1810 int nattr;
1811
1812 nattr = pmap_get_vac_flags(md);
1813
1814 if (nattr < 0) {
1815 md->pvh_attrs &= ~PVF_NC;
1816 return;
1817 }
1818
1819 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1820 return;
1821
1822 if (pm == pmap_kernel())
1823 pmap_vac_me_kpmap(md, pa, pm, va);
1824 else
1825 pmap_vac_me_user(md, pa, pm, va);
1826
1827 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1828 }
1829
1830 static void
1831 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1832 {
1833 u_int u_cacheable, u_entries;
1834 struct pv_entry *pv;
1835 pmap_t last_pmap = pm;
1836
1837 /*
1838 * Pass one, see if there are both kernel and user pmaps for
1839 * this page. Calculate whether there are user-writable or
1840 * kernel-writable pages.
1841 */
1842 u_cacheable = 0;
1843 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1844 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1845 u_cacheable++;
1846 }
1847
1848 u_entries = md->urw_mappings + md->uro_mappings;
1849
1850 /*
1851 * We know we have just been updating a kernel entry, so if
1852 * all user pages are already cacheable, then there is nothing
1853 * further to do.
1854 */
1855 if (md->k_mappings == 0 && u_cacheable == u_entries)
1856 return;
1857
1858 if (u_entries) {
1859 /*
1860 * Scan over the list again, for each entry, if it
1861 * might not be set correctly, call pmap_vac_me_user
1862 * to recalculate the settings.
1863 */
1864 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1865 /*
1866 * We know kernel mappings will get set
1867 * correctly in other calls. We also know
1868 * that if the pmap is the same as last_pmap
1869 * then we've just handled this entry.
1870 */
1871 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1872 continue;
1873
1874 /*
1875 * If there are kernel entries and this page
1876 * is writable but non-cacheable, then we can
1877 * skip this entry also.
1878 */
1879 if (md->k_mappings &&
1880 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1881 (PVF_NC | PVF_WRITE))
1882 continue;
1883
1884 /*
1885 * Similarly if there are no kernel-writable
1886 * entries and the page is already
1887 * read-only/cacheable.
1888 */
1889 if (md->krw_mappings == 0 &&
1890 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1891 continue;
1892
1893 /*
1894 * For some of the remaining cases, we know
1895 * that we must recalculate, but for others we
1896 * can't tell if they are correct or not, so
1897 * we recalculate anyway.
1898 */
1899 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1900 }
1901
1902 if (md->k_mappings == 0)
1903 return;
1904 }
1905
1906 pmap_vac_me_user(md, pa, pm, va);
1907 }
1908
1909 static void
1910 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1911 {
1912 pmap_t kpmap = pmap_kernel();
1913 struct pv_entry *pv, *npv = NULL;
1914 u_int entries = 0;
1915 u_int writable = 0;
1916 u_int cacheable_entries = 0;
1917 u_int kern_cacheable = 0;
1918 u_int other_writable = 0;
1919
1920 /*
1921 * Count mappings and writable mappings in this pmap.
1922 * Include kernel mappings as part of our own.
1923 * Keep a pointer to the first one.
1924 */
1925 npv = NULL;
1926 KASSERT(pmap_page_locked_p(md));
1927 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1928 /* Count mappings in the same pmap */
1929 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1930 if (entries++ == 0)
1931 npv = pv;
1932
1933 /* Cacheable mappings */
1934 if ((pv->pv_flags & PVF_NC) == 0) {
1935 cacheable_entries++;
1936 if (kpmap == pv->pv_pmap)
1937 kern_cacheable++;
1938 }
1939
1940 /* Writable mappings */
1941 if (pv->pv_flags & PVF_WRITE)
1942 ++writable;
1943 } else
1944 if (pv->pv_flags & PVF_WRITE)
1945 other_writable = 1;
1946 }
1947
1948 /*
1949 * Enable or disable caching as necessary.
1950 * Note: the first entry might be part of the kernel pmap,
1951 * so we can't assume this is indicative of the state of the
1952 * other (maybe non-kpmap) entries.
1953 */
1954 if ((entries > 1 && writable) ||
1955 (entries > 0 && pm == kpmap && other_writable)) {
1956 if (cacheable_entries == 0) {
1957 return;
1958 }
1959
1960 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1961 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1962 (pv->pv_flags & PVF_NC))
1963 continue;
1964
1965 pv->pv_flags |= PVF_NC;
1966
1967 struct l2_bucket * const l2b
1968 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1969 KASSERTMSG(l2b != NULL, "%#lx", va);
1970 pt_entry_t * const ptep
1971 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1972 const pt_entry_t opte = *ptep;
1973 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1974
1975 if ((va != pv->pv_va || pm != pv->pv_pmap)
1976 && l2pte_valid_p(npte)) {
1977 #ifdef PMAP_CACHE_VIVT
1978 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1979 true, pv->pv_flags);
1980 #endif
1981 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1982 pv->pv_flags);
1983 }
1984
1985 l2pte_set(ptep, npte, opte);
1986 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1987 }
1988 cpu_cpwait();
1989 } else
1990 if (entries > cacheable_entries) {
1991 /*
1992 * Turn cacheing back on for some pages. If it is a kernel
1993 * page, only do so if there are no other writable pages.
1994 */
1995 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1996 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1997 (kpmap != pv->pv_pmap || other_writable)))
1998 continue;
1999
2000 pv->pv_flags &= ~PVF_NC;
2001
2002 struct l2_bucket * const l2b
2003 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2004 KASSERTMSG(l2b != NULL, "%#lx", va);
2005 pt_entry_t * const ptep
2006 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2007 const pt_entry_t opte = *ptep;
2008 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2009 | pte_l2_s_cache_mode;
2010
2011 if (l2pte_valid_p(opte)) {
2012 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2013 pv->pv_flags);
2014 }
2015
2016 l2pte_set(ptep, npte, opte);
2017 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2018 }
2019 }
2020 }
2021 #endif
2022
2023 #ifdef PMAP_CACHE_VIPT
2024 static void
2025 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2026 {
2027 #ifndef ARM_MMU_EXTENDED
2028 struct pv_entry *pv;
2029 vaddr_t tst_mask;
2030 bool bad_alias;
2031 const u_int
2032 rw_mappings = md->urw_mappings + md->krw_mappings,
2033 ro_mappings = md->uro_mappings + md->kro_mappings;
2034
2035 /* do we need to do anything? */
2036 if (arm_cache_prefer_mask == 0)
2037 return;
2038
2039 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2040 md, pm, va));
2041
2042 KASSERT(!va || pm);
2043 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2044
2045 /* Already a conflict? */
2046 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2047 /* just an add, things are already non-cached */
2048 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2049 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2050 bad_alias = false;
2051 if (va) {
2052 PMAPCOUNT(vac_color_none);
2053 bad_alias = true;
2054 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2055 goto fixup;
2056 }
2057 pv = SLIST_FIRST(&md->pvh_list);
2058 /* the list can't be empty because it would be cachable */
2059 if (md->pvh_attrs & PVF_KMPAGE) {
2060 tst_mask = md->pvh_attrs;
2061 } else {
2062 KASSERT(pv);
2063 tst_mask = pv->pv_va;
2064 pv = SLIST_NEXT(pv, pv_link);
2065 }
2066 /*
2067 * Only check for a bad alias if we have writable mappings.
2068 */
2069 tst_mask &= arm_cache_prefer_mask;
2070 if (rw_mappings > 0) {
2071 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2072 /* if there's a bad alias, stop checking. */
2073 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2074 bad_alias = true;
2075 }
2076 md->pvh_attrs |= PVF_WRITE;
2077 if (!bad_alias)
2078 md->pvh_attrs |= PVF_DIRTY;
2079 } else {
2080 /*
2081 * We have only read-only mappings. Let's see if there
2082 * are multiple colors in use or if we mapped a KMPAGE.
2083 * If the latter, we have a bad alias. If the former,
2084 * we need to remember that.
2085 */
2086 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2087 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2088 if (md->pvh_attrs & PVF_KMPAGE)
2089 bad_alias = true;
2090 break;
2091 }
2092 }
2093 md->pvh_attrs &= ~PVF_WRITE;
2094 /*
2095 * No KMPAGE and we exited early, so we must have
2096 * multiple color mappings.
2097 */
2098 if (!bad_alias && pv != NULL)
2099 md->pvh_attrs |= PVF_MULTCLR;
2100 }
2101
2102 /* If no conflicting colors, set everything back to cached */
2103 if (!bad_alias) {
2104 #ifdef DEBUG
2105 if ((md->pvh_attrs & PVF_WRITE)
2106 || ro_mappings < 2) {
2107 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2108 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2109 }
2110 #endif
2111 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2112 md->pvh_attrs |= tst_mask | PVF_COLORED;
2113 /*
2114 * Restore DIRTY bit if page is modified
2115 */
2116 if (md->pvh_attrs & PVF_DMOD)
2117 md->pvh_attrs |= PVF_DIRTY;
2118 PMAPCOUNT(vac_color_restore);
2119 } else {
2120 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2121 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2122 }
2123 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2124 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2125 } else if (!va) {
2126 KASSERT(pmap_is_page_colored_p(md));
2127 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2128 || (md->pvh_attrs & PVF_DIRTY));
2129 if (rw_mappings == 0) {
2130 md->pvh_attrs &= ~PVF_WRITE;
2131 if (ro_mappings == 1
2132 && (md->pvh_attrs & PVF_MULTCLR)) {
2133 /*
2134 * If this is the last readonly mapping
2135 * but it doesn't match the current color
2136 * for the page, change the current color
2137 * to match this last readonly mapping.
2138 */
2139 pv = SLIST_FIRST(&md->pvh_list);
2140 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2141 & arm_cache_prefer_mask;
2142 if (tst_mask) {
2143 md->pvh_attrs ^= tst_mask;
2144 PMAPCOUNT(vac_color_change);
2145 }
2146 }
2147 }
2148 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2149 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2150 return;
2151 } else if (!pmap_is_page_colored_p(md)) {
2152 /* not colored so we just use its color */
2153 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2154 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2155 PMAPCOUNT(vac_color_new);
2156 md->pvh_attrs &= PAGE_SIZE - 1;
2157 md->pvh_attrs |= PVF_COLORED
2158 | (va & arm_cache_prefer_mask)
2159 | (rw_mappings > 0 ? PVF_WRITE : 0);
2160 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2161 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2162 return;
2163 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2164 bad_alias = false;
2165 if (rw_mappings > 0) {
2166 /*
2167 * We now have writeable mappings and if we have
2168 * readonly mappings in more than once color, we have
2169 * an aliasing problem. Regardless mark the page as
2170 * writeable.
2171 */
2172 if (md->pvh_attrs & PVF_MULTCLR) {
2173 if (ro_mappings < 2) {
2174 /*
2175 * If we only have less than two
2176 * read-only mappings, just flush the
2177 * non-primary colors from the cache.
2178 */
2179 pmap_flush_page(md, pa,
2180 PMAP_FLUSH_SECONDARY);
2181 } else {
2182 bad_alias = true;
2183 }
2184 }
2185 md->pvh_attrs |= PVF_WRITE;
2186 }
2187 /* If no conflicting colors, set everything back to cached */
2188 if (!bad_alias) {
2189 #ifdef DEBUG
2190 if (rw_mappings > 0
2191 || (md->pvh_attrs & PMAP_KMPAGE)) {
2192 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2193 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2194 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2195 }
2196 #endif
2197 if (SLIST_EMPTY(&md->pvh_list))
2198 PMAPCOUNT(vac_color_reuse);
2199 else
2200 PMAPCOUNT(vac_color_ok);
2201
2202 /* matching color, just return */
2203 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2204 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2205 return;
2206 }
2207 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2208 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2209
2210 /* color conflict. evict from cache. */
2211
2212 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2213 md->pvh_attrs &= ~PVF_COLORED;
2214 md->pvh_attrs |= PVF_NC;
2215 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2216 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2217 PMAPCOUNT(vac_color_erase);
2218 } else if (rw_mappings == 0
2219 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2220 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2221
2222 /*
2223 * If the page has dirty cache lines, clean it.
2224 */
2225 if (md->pvh_attrs & PVF_DIRTY)
2226 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2227
2228 /*
2229 * If this is the first remapping (we know that there are no
2230 * writeable mappings), then this is a simple color change.
2231 * Otherwise this is a seconary r/o mapping, which means
2232 * we don't have to do anything.
2233 */
2234 if (ro_mappings == 1) {
2235 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2236 md->pvh_attrs &= PAGE_SIZE - 1;
2237 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2238 PMAPCOUNT(vac_color_change);
2239 } else {
2240 PMAPCOUNT(vac_color_blind);
2241 }
2242 md->pvh_attrs |= PVF_MULTCLR;
2243 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2244 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2245 return;
2246 } else {
2247 if (rw_mappings > 0)
2248 md->pvh_attrs |= PVF_WRITE;
2249
2250 /* color conflict. evict from cache. */
2251 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2252
2253 /* the list can't be empty because this was a enter/modify */
2254 pv = SLIST_FIRST(&md->pvh_list);
2255 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2256 KASSERT(pv);
2257 /*
2258 * If there's only one mapped page, change color to the
2259 * page's new color and return. Restore the DIRTY bit
2260 * that was erased by pmap_flush_page.
2261 */
2262 if (SLIST_NEXT(pv, pv_link) == NULL) {
2263 md->pvh_attrs &= PAGE_SIZE - 1;
2264 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2265 if (md->pvh_attrs & PVF_DMOD)
2266 md->pvh_attrs |= PVF_DIRTY;
2267 PMAPCOUNT(vac_color_change);
2268 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2269 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2270 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2271 return;
2272 }
2273 }
2274 bad_alias = true;
2275 md->pvh_attrs &= ~PVF_COLORED;
2276 md->pvh_attrs |= PVF_NC;
2277 PMAPCOUNT(vac_color_erase);
2278 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2279 }
2280
2281 fixup:
2282 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2283
2284 /*
2285 * Turn cacheing on/off for all pages.
2286 */
2287 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2288 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2289 pv->pv_va);
2290 KASSERTMSG(l2b != NULL, "%#lx", va);
2291 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2292 const pt_entry_t opte = *ptep;
2293 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2294 if (bad_alias) {
2295 pv->pv_flags |= PVF_NC;
2296 } else {
2297 pv->pv_flags &= ~PVF_NC;
2298 npte |= pte_l2_s_cache_mode;
2299 }
2300
2301 if (opte == npte) /* only update is there's a change */
2302 continue;
2303
2304 if (l2pte_valid_p(npte)) {
2305 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2306 }
2307
2308 l2pte_set(ptep, npte, opte);
2309 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2310 }
2311 #endif /* !ARM_MMU_EXTENDED */
2312 }
2313 #endif /* PMAP_CACHE_VIPT */
2314
2315
2316 /*
2317 * Modify pte bits for all ptes corresponding to the given physical address.
2318 * We use `maskbits' rather than `clearbits' because we're always passing
2319 * constants and the latter would require an extra inversion at run-time.
2320 */
2321 static void
2322 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2323 {
2324 struct pv_entry *pv;
2325 #ifdef PMAP_CACHE_VIPT
2326 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2327 #ifdef ARM_MMU_EXTENDED
2328 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2329 #else
2330 const u_int execbits = 0;
2331 bool need_vac_me_harder = false;
2332 bool need_syncicache = false;
2333 #endif
2334 #else
2335 const u_int execbits = 0;
2336 #endif
2337
2338 NPDEBUG(PDB_BITS,
2339 printf("pmap_clearbit: md %p mask 0x%x\n",
2340 md, maskbits));
2341
2342 #ifdef PMAP_CACHE_VIPT
2343 /*
2344 * If we might want to sync the I-cache and we've modified it,
2345 * then we know we definitely need to sync or discard it.
2346 */
2347 if (want_syncicache) {
2348 #ifdef ARM_MMU_EXTENDED
2349 if (md->pvh_attrs & PVF_MOD)
2350 md->pvh_attrs &= ~PVF_EXEC;
2351 #else
2352 need_syncicache = md->pvh_attrs & PVF_MOD;
2353 #endif
2354 }
2355 #endif
2356 KASSERT(pmap_page_locked_p(md));
2357
2358 /*
2359 * Clear saved attributes (modify, reference)
2360 */
2361 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2362
2363 if (SLIST_EMPTY(&md->pvh_list)) {
2364 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2365 if (need_syncicache) {
2366 /*
2367 * No one has it mapped, so just discard it. The next
2368 * exec remapping will cause it to be synced.
2369 */
2370 md->pvh_attrs &= ~PVF_EXEC;
2371 PMAPCOUNT(exec_discarded_clearbit);
2372 }
2373 #endif
2374 return;
2375 }
2376
2377 /*
2378 * Loop over all current mappings setting/clearing as appropos
2379 */
2380 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2381 pmap_t pm = pv->pv_pmap;
2382 const vaddr_t va = pv->pv_va;
2383 const u_int oflags = pv->pv_flags;
2384 #ifndef ARM_MMU_EXTENDED
2385 /*
2386 * Kernel entries are unmanaged and as such not to be changed.
2387 */
2388 if (PV_IS_KENTRY_P(oflags))
2389 continue;
2390 #endif
2391 pv->pv_flags &= ~maskbits;
2392
2393 pmap_release_page_lock(md);
2394 pmap_acquire_pmap_lock(pm);
2395
2396 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2397 if (l2b == NULL) {
2398 pmap_release_pmap_lock(pm);
2399 pmap_acquire_page_lock(md);
2400 continue;
2401 }
2402 KASSERTMSG(l2b != NULL, "%#lx", va);
2403
2404 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2405 const pt_entry_t opte = *ptep;
2406 pt_entry_t npte = opte | execbits;
2407
2408 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2409
2410 NPDEBUG(PDB_BITS,
2411 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2412 __func__, pv, pm, va, oflags));
2413
2414 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2415 #ifdef PMAP_CACHE_VIVT
2416 if ((oflags & PVF_NC)) {
2417 /*
2418 * Entry is not cacheable:
2419 *
2420 * Don't turn caching on again if this is a
2421 * modified emulation. This would be
2422 * inconsitent with the settings created by
2423 * pmap_vac_me_harder(). Otherwise, it's safe
2424 * to re-enable cacheing.
2425 *
2426 * There's no need to call pmap_vac_me_harder()
2427 * here: all pages are losing their write
2428 * permission.
2429 */
2430 if (maskbits & PVF_WRITE) {
2431 npte |= pte_l2_s_cache_mode;
2432 pv->pv_flags &= ~PVF_NC;
2433 }
2434 } else
2435 if (l2pte_writable_p(opte)) {
2436 /*
2437 * Entry is writable/cacheable: check if pmap
2438 * is current if it is flush it, otherwise it
2439 * won't be in the cache
2440 */
2441 pmap_cache_wbinv_page(pm, va,
2442 (maskbits & PVF_REF) != 0,
2443 oflags|PVF_WRITE);
2444 }
2445 #endif
2446
2447 /* make the pte read only */
2448 npte = l2pte_set_readonly(npte);
2449
2450 pmap_acquire_page_lock(md);
2451 #ifdef MULTIPROCESSOR
2452 pv = pmap_find_pv(md, pm, va);
2453 #endif
2454 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2455 /*
2456 * Keep alias accounting up to date
2457 */
2458 if (pm == pmap_kernel()) {
2459 md->krw_mappings--;
2460 md->kro_mappings++;
2461 } else {
2462 md->urw_mappings--;
2463 md->uro_mappings++;
2464 }
2465 #ifdef PMAP_CACHE_VIPT
2466 if (arm_cache_prefer_mask != 0) {
2467 if (md->urw_mappings + md->krw_mappings == 0) {
2468 md->pvh_attrs &= ~PVF_WRITE;
2469 } else {
2470 PMAP_VALIDATE_MD_PAGE(md);
2471 }
2472 }
2473 #ifndef ARM_MMU_EXTENDED
2474 if (want_syncicache)
2475 need_syncicache = true;
2476 need_vac_me_harder = true;
2477 #endif
2478 #endif /* PMAP_CACHE_VIPT */
2479 }
2480 pmap_release_page_lock(md);
2481 }
2482
2483 if (maskbits & PVF_REF) {
2484 if (true
2485 #ifndef ARM_MMU_EXTENDED
2486 && (oflags & PVF_NC) == 0
2487 #endif
2488 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2489 && l2pte_valid_p(npte)) {
2490 #ifdef PMAP_CACHE_VIVT
2491 /*
2492 * Check npte here; we may have already
2493 * done the wbinv above, and the validity
2494 * of the PTE is the same for opte and
2495 * npte.
2496 */
2497 pmap_cache_wbinv_page(pm, va, true, oflags);
2498 #endif
2499 }
2500
2501 /*
2502 * Make the PTE invalid so that we will take a
2503 * page fault the next time the mapping is
2504 * referenced.
2505 */
2506 npte &= ~L2_TYPE_MASK;
2507 npte |= L2_TYPE_INV;
2508 }
2509
2510 if (npte != opte) {
2511 l2pte_set(ptep, npte, opte);
2512 PTE_SYNC(ptep);
2513
2514 /* Flush the TLB entry if a current pmap. */
2515 pmap_tlb_flush_SE(pm, va, oflags);
2516 }
2517
2518 pmap_release_pmap_lock(pm);
2519 pmap_acquire_page_lock(md);
2520
2521 NPDEBUG(PDB_BITS,
2522 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2523 pm, va, opte, npte));
2524 }
2525
2526 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2527 /*
2528 * If we need to sync the I-cache and we haven't done it yet, do it.
2529 */
2530 if (need_syncicache) {
2531 pmap_release_page_lock(md);
2532 pmap_syncicache_page(md, pa);
2533 pmap_acquire_page_lock(md);
2534 PMAPCOUNT(exec_synced_clearbit);
2535 }
2536
2537 /*
2538 * If we are changing this to read-only, we need to call vac_me_harder
2539 * so we can change all the read-only pages to cacheable. We pretend
2540 * this as a page deletion.
2541 */
2542 if (need_vac_me_harder) {
2543 if (md->pvh_attrs & PVF_NC)
2544 pmap_vac_me_harder(md, pa, NULL, 0);
2545 }
2546 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
2547 }
2548
2549 /*
2550 * pmap_clean_page()
2551 *
2552 * This is a local function used to work out the best strategy to clean
2553 * a single page referenced by its entry in the PV table. It's used by
2554 * pmap_copy_page, pmap_zero page and maybe some others later on.
2555 *
2556 * Its policy is effectively:
2557 * o If there are no mappings, we don't bother doing anything with the cache.
2558 * o If there is one mapping, we clean just that page.
2559 * o If there are multiple mappings, we clean the entire cache.
2560 *
2561 * So that some functions can be further optimised, it returns 0 if it didn't
2562 * clean the entire cache, or 1 if it did.
2563 *
2564 * XXX One bug in this routine is that if the pv_entry has a single page
2565 * mapped at 0x00000000 a whole cache clean will be performed rather than
2566 * just the 1 page. Since this should not occur in everyday use and if it does
2567 * it will just result in not the most efficient clean for the page.
2568 */
2569 #ifdef PMAP_CACHE_VIVT
2570 static bool
2571 pmap_clean_page(struct vm_page_md *md, bool is_src)
2572 {
2573 struct pv_entry *pv;
2574 pmap_t pm_to_clean = NULL;
2575 bool cache_needs_cleaning = false;
2576 vaddr_t page_to_clean = 0;
2577 u_int flags = 0;
2578
2579 /*
2580 * Since we flush the cache each time we change to a different
2581 * user vmspace, we only need to flush the page if it is in the
2582 * current pmap.
2583 */
2584 KASSERT(pmap_page_locked_p(md));
2585 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2586 if (pmap_is_current(pv->pv_pmap)) {
2587 flags |= pv->pv_flags;
2588 /*
2589 * The page is mapped non-cacheable in
2590 * this map. No need to flush the cache.
2591 */
2592 if (pv->pv_flags & PVF_NC) {
2593 #ifdef DIAGNOSTIC
2594 KASSERT(!cache_needs_cleaning);
2595 #endif
2596 break;
2597 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2598 continue;
2599 if (cache_needs_cleaning) {
2600 page_to_clean = 0;
2601 break;
2602 } else {
2603 page_to_clean = pv->pv_va;
2604 pm_to_clean = pv->pv_pmap;
2605 }
2606 cache_needs_cleaning = true;
2607 }
2608 }
2609
2610 if (page_to_clean) {
2611 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2612 !is_src, flags | PVF_REF);
2613 } else if (cache_needs_cleaning) {
2614 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2615
2616 pmap_cache_wbinv_all(pm, flags);
2617 return true;
2618 }
2619 return false;
2620 }
2621 #endif
2622
2623 #ifdef PMAP_CACHE_VIPT
2624 /*
2625 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2626 * right cache alias to make sure we flush the right stuff.
2627 */
2628 void
2629 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2630 {
2631 pmap_t kpm = pmap_kernel();
2632 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2633 ? PAGE_SIZE
2634 : arm_pcache.icache_way_size;
2635
2636 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2637 md, md->pvh_attrs));
2638 /*
2639 * No need to clean the page if it's non-cached.
2640 */
2641 #ifndef ARM_MMU_EXTENDED
2642 if (md->pvh_attrs & PVF_NC)
2643 return;
2644 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2645 #endif
2646
2647 pt_entry_t * const ptep = cpu_cdst_pte(0);
2648 const vaddr_t dstp = cpu_cdstp(0);
2649 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2650 if (way_size <= PAGE_SIZE) {
2651 bool ok = false;
2652 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2653 if (ok) {
2654 cpu_icache_sync_range(vdstp, way_size);
2655 return;
2656 }
2657 }
2658 #endif
2659
2660 /*
2661 * We don't worry about the color of the exec page, we map the
2662 * same page to pages in the way and then do the icache_sync on
2663 * the entire way making sure we are cleaned.
2664 */
2665 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2666 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2667
2668 for (size_t i = 0, j = 0; i < way_size;
2669 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2670 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2671 /*
2672 * Set up a PTE with to flush these cache lines.
2673 */
2674 l2pte_set(ptep + j, npte, 0);
2675 }
2676 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2677
2678 /*
2679 * Flush it.
2680 */
2681 cpu_icache_sync_range(dstp, way_size);
2682
2683 for (size_t i = 0, j = 0; i < way_size;
2684 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2685 /*
2686 * Unmap the page(s).
2687 */
2688 l2pte_reset(ptep + j);
2689 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2690 }
2691 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2692
2693 md->pvh_attrs |= PVF_EXEC;
2694 PMAPCOUNT(exec_synced);
2695 }
2696
2697 #ifndef ARM_MMU_EXTENDED
2698 void
2699 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2700 {
2701 vsize_t va_offset, end_va;
2702 bool wbinv_p;
2703
2704 if (arm_cache_prefer_mask == 0)
2705 return;
2706
2707 switch (flush) {
2708 case PMAP_FLUSH_PRIMARY:
2709 if (md->pvh_attrs & PVF_MULTCLR) {
2710 va_offset = 0;
2711 end_va = arm_cache_prefer_mask;
2712 md->pvh_attrs &= ~PVF_MULTCLR;
2713 PMAPCOUNT(vac_flush_lots);
2714 } else {
2715 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2716 end_va = va_offset;
2717 PMAPCOUNT(vac_flush_one);
2718 }
2719 /*
2720 * Mark that the page is no longer dirty.
2721 */
2722 md->pvh_attrs &= ~PVF_DIRTY;
2723 wbinv_p = true;
2724 break;
2725 case PMAP_FLUSH_SECONDARY:
2726 va_offset = 0;
2727 end_va = arm_cache_prefer_mask;
2728 wbinv_p = true;
2729 md->pvh_attrs &= ~PVF_MULTCLR;
2730 PMAPCOUNT(vac_flush_lots);
2731 break;
2732 case PMAP_CLEAN_PRIMARY:
2733 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2734 end_va = va_offset;
2735 wbinv_p = false;
2736 /*
2737 * Mark that the page is no longer dirty.
2738 */
2739 if ((md->pvh_attrs & PVF_DMOD) == 0)
2740 md->pvh_attrs &= ~PVF_DIRTY;
2741 PMAPCOUNT(vac_clean_one);
2742 break;
2743 default:
2744 return;
2745 }
2746
2747 KASSERT(!(md->pvh_attrs & PVF_NC));
2748
2749 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2750 md, md->pvh_attrs));
2751
2752 const size_t scache_line_size = arm_scache.dcache_line_size;
2753
2754 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2755 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2756 const vaddr_t dstp = cpu_cdstp(va_offset);
2757 const pt_entry_t opte = *ptep;
2758
2759 if (flush == PMAP_FLUSH_SECONDARY
2760 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2761 continue;
2762
2763 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2764 /*
2765 * Set up a PTE with the right coloring to flush
2766 * existing cache entries.
2767 */
2768 const pt_entry_t npte = L2_S_PROTO
2769 | pa
2770 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2771 | pte_l2_s_cache_mode;
2772 l2pte_set(ptep, npte, opte);
2773 PTE_SYNC(ptep);
2774
2775 /*
2776 * Flush it. Make sure to flush secondary cache too since
2777 * bus_dma will ignore uncached pages.
2778 */
2779 if (scache_line_size != 0) {
2780 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2781 if (wbinv_p) {
2782 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2783 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2784 } else {
2785 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2786 }
2787 } else {
2788 if (wbinv_p) {
2789 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2790 } else {
2791 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2792 }
2793 }
2794
2795 /*
2796 * Restore the page table entry since we might have interrupted
2797 * pmap_zero_page or pmap_copy_page which was already using
2798 * this pte.
2799 */
2800 if (opte) {
2801 l2pte_set(ptep, opte, npte);
2802 } else {
2803 l2pte_reset(ptep);
2804 }
2805 PTE_SYNC(ptep);
2806 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2807 }
2808 }
2809 #endif /* ARM_MMU_EXTENDED */
2810 #endif /* PMAP_CACHE_VIPT */
2811
2812 /*
2813 * Routine: pmap_page_remove
2814 * Function:
2815 * Removes this physical page from
2816 * all physical maps in which it resides.
2817 * Reflects back modify bits to the pager.
2818 */
2819 static void
2820 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2821 {
2822 struct l2_bucket *l2b;
2823 struct pv_entry *pv;
2824 pt_entry_t *ptep;
2825 #ifndef ARM_MMU_EXTENDED
2826 bool flush = false;
2827 #endif
2828 u_int flags = 0;
2829
2830 NPDEBUG(PDB_FOLLOW,
2831 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2832 pa));
2833
2834 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2835 pmap_acquire_page_lock(md);
2836 if (*pvp == NULL) {
2837 #ifdef PMAP_CACHE_VIPT
2838 /*
2839 * We *know* the page contents are about to be replaced.
2840 * Discard the exec contents
2841 */
2842 if (PV_IS_EXEC_P(md->pvh_attrs))
2843 PMAPCOUNT(exec_discarded_page_protect);
2844 md->pvh_attrs &= ~PVF_EXEC;
2845 PMAP_VALIDATE_MD_PAGE(md);
2846 #endif
2847 pmap_release_page_lock(md);
2848 return;
2849 }
2850 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2851 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2852 #endif
2853
2854 /*
2855 * Clear alias counts
2856 */
2857 #ifdef PMAP_CACHE_VIVT
2858 md->k_mappings = 0;
2859 #endif
2860 md->urw_mappings = md->uro_mappings = 0;
2861
2862 #ifdef PMAP_CACHE_VIVT
2863 pmap_clean_page(md, false);
2864 #endif
2865
2866 while ((pv = *pvp) != NULL) {
2867 pmap_t pm = pv->pv_pmap;
2868 #ifndef ARM_MMU_EXTENDED
2869 if (flush == false && pmap_is_current(pm))
2870 flush = true;
2871 #endif
2872
2873 if (pm == pmap_kernel()) {
2874 #ifdef PMAP_CACHE_VIPT
2875 /*
2876 * If this was unmanaged mapping, it must be preserved.
2877 * Move it back on the list and advance the end-of-list
2878 * pointer.
2879 */
2880 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2881 *pvp = pv;
2882 pvp = &SLIST_NEXT(pv, pv_link);
2883 continue;
2884 }
2885 if (pv->pv_flags & PVF_WRITE)
2886 md->krw_mappings--;
2887 else
2888 md->kro_mappings--;
2889 #endif
2890 PMAPCOUNT(kernel_unmappings);
2891 }
2892 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2893 PMAPCOUNT(unmappings);
2894
2895 pmap_release_page_lock(md);
2896 pmap_acquire_pmap_lock(pm);
2897
2898 #ifdef ARM_MMU_EXTENDED
2899 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2900 #endif
2901
2902 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2903 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2904
2905 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2906
2907 /*
2908 * Update statistics
2909 */
2910 --pm->pm_stats.resident_count;
2911
2912 /* Wired bit */
2913 if (pv->pv_flags & PVF_WIRED)
2914 --pm->pm_stats.wired_count;
2915
2916 flags |= pv->pv_flags;
2917
2918 /*
2919 * Invalidate the PTEs.
2920 */
2921 l2pte_reset(ptep);
2922 PTE_SYNC_CURRENT(pm, ptep);
2923 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2924 pmap_release_pmap_lock(pm);
2925
2926 pool_put(&pmap_pv_pool, pv);
2927 pmap_acquire_page_lock(md);
2928 #ifdef MULTIPROCESSOR
2929 /*
2930 * Restart of the beginning of the list.
2931 */
2932 pvp = &SLIST_FIRST(&md->pvh_list);
2933 #endif
2934 }
2935 /*
2936 * if we reach the end of the list and there are still mappings, they
2937 * might be able to be cached now. And they must be kernel mappings.
2938 */
2939 if (!SLIST_EMPTY(&md->pvh_list)) {
2940 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2941 }
2942
2943 #ifdef PMAP_CACHE_VIPT
2944 /*
2945 * Its EXEC cache is now gone.
2946 */
2947 if (PV_IS_EXEC_P(md->pvh_attrs))
2948 PMAPCOUNT(exec_discarded_page_protect);
2949 md->pvh_attrs &= ~PVF_EXEC;
2950 KASSERT(md->urw_mappings == 0);
2951 KASSERT(md->uro_mappings == 0);
2952 #ifndef ARM_MMU_EXTENDED
2953 if (arm_cache_prefer_mask != 0) {
2954 if (md->krw_mappings == 0)
2955 md->pvh_attrs &= ~PVF_WRITE;
2956 PMAP_VALIDATE_MD_PAGE(md);
2957 }
2958 #endif /* ARM_MMU_EXTENDED */
2959 #endif /* PMAP_CACHE_VIPT */
2960 pmap_release_page_lock(md);
2961
2962 #ifndef ARM_MMU_EXTENDED
2963 if (flush) {
2964 /*
2965 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2966 * would need a subsequent call to pmap_update() to ensure
2967 * curpm->pm_cstate.cs_all is reset. Our callers are not
2968 * required to do that (see pmap(9)), so we can't modify
2969 * the current pmap's state.
2970 */
2971 if (PV_BEEN_EXECD(flags))
2972 cpu_tlb_flushID();
2973 else
2974 cpu_tlb_flushD();
2975 }
2976 cpu_cpwait();
2977 #endif /* ARM_MMU_EXTENDED */
2978 }
2979
2980 /*
2981 * pmap_t pmap_create(void)
2982 *
2983 * Create a new pmap structure from scratch.
2984 */
2985 pmap_t
2986 pmap_create(void)
2987 {
2988 pmap_t pm;
2989
2990 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2991
2992 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2993 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2994 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2995
2996 pm->pm_stats.wired_count = 0;
2997 pm->pm_stats.resident_count = 1;
2998 #ifdef ARM_MMU_EXTENDED
2999 #ifdef MULTIPROCESSOR
3000 kcpuset_create(&pm->pm_active, true);
3001 kcpuset_create(&pm->pm_onproc, true);
3002 #endif
3003 #else
3004 pm->pm_cstate.cs_all = 0;
3005 #endif
3006 pmap_alloc_l1(pm);
3007
3008 /*
3009 * Note: The pool cache ensures that the pm_l2[] array is already
3010 * initialised to zero.
3011 */
3012
3013 pmap_pinit(pm);
3014
3015 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
3016
3017 return (pm);
3018 }
3019
3020 u_int
3021 arm32_mmap_flags(paddr_t pa)
3022 {
3023 /*
3024 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3025 * and we're using the upper bits in page numbers to pass flags around
3026 * so we might as well use the same bits
3027 */
3028 return (u_int)pa & PMAP_MD_MASK;
3029 }
3030 /*
3031 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3032 * u_int flags)
3033 *
3034 * Insert the given physical page (p) at
3035 * the specified virtual address (v) in the
3036 * target physical map with the protection requested.
3037 *
3038 * NB: This is the only routine which MAY NOT lazy-evaluate
3039 * or lose information. That is, this routine must actually
3040 * insert this page into the given map NOW.
3041 */
3042 int
3043 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3044 {
3045 struct l2_bucket *l2b;
3046 struct vm_page *pg, *opg;
3047 u_int nflags;
3048 u_int oflags;
3049 const bool kpm_p = (pm == pmap_kernel());
3050 #ifdef ARM_HAS_VBAR
3051 const bool vector_page_p = false;
3052 #else
3053 const bool vector_page_p = (va == vector_page);
3054 #endif
3055
3056 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3057
3058 UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
3059 pm, va, pa, prot);
3060 UVMHIST_LOG(maphist, " flag %#x", flags, 0, 0, 0);
3061
3062 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3063 KDASSERT(((va | pa) & PGOFSET) == 0);
3064
3065 /*
3066 * Get a pointer to the page. Later on in this function, we
3067 * test for a managed page by checking pg != NULL.
3068 */
3069 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3070
3071 nflags = 0;
3072 if (prot & VM_PROT_WRITE)
3073 nflags |= PVF_WRITE;
3074 if (prot & VM_PROT_EXECUTE)
3075 nflags |= PVF_EXEC;
3076 if (flags & PMAP_WIRED)
3077 nflags |= PVF_WIRED;
3078
3079 pmap_acquire_pmap_lock(pm);
3080
3081 /*
3082 * Fetch the L2 bucket which maps this page, allocating one if
3083 * necessary for user pmaps.
3084 */
3085 if (kpm_p) {
3086 l2b = pmap_get_l2_bucket(pm, va);
3087 } else {
3088 l2b = pmap_alloc_l2_bucket(pm, va);
3089 }
3090 if (l2b == NULL) {
3091 if (flags & PMAP_CANFAIL) {
3092 pmap_release_pmap_lock(pm);
3093 return (ENOMEM);
3094 }
3095 panic("pmap_enter: failed to allocate L2 bucket");
3096 }
3097 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3098 const pt_entry_t opte = *ptep;
3099 pt_entry_t npte = pa;
3100 oflags = 0;
3101
3102 if (opte) {
3103 /*
3104 * There is already a mapping at this address.
3105 * If the physical address is different, lookup the
3106 * vm_page.
3107 */
3108 if (l2pte_pa(opte) != pa)
3109 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3110 else
3111 opg = pg;
3112 } else
3113 opg = NULL;
3114
3115 if (pg) {
3116 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3117
3118 /*
3119 * This is to be a managed mapping.
3120 */
3121 pmap_acquire_page_lock(md);
3122 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3123 /*
3124 * - The access type indicates that we don't need
3125 * to do referenced emulation.
3126 * OR
3127 * - The physical page has already been referenced
3128 * so no need to re-do referenced emulation here.
3129 */
3130 npte |= l2pte_set_readonly(L2_S_PROTO);
3131
3132 nflags |= PVF_REF;
3133
3134 if ((prot & VM_PROT_WRITE) != 0 &&
3135 ((flags & VM_PROT_WRITE) != 0 ||
3136 (md->pvh_attrs & PVF_MOD) != 0)) {
3137 /*
3138 * This is a writable mapping, and the
3139 * page's mod state indicates it has
3140 * already been modified. Make it
3141 * writable from the outset.
3142 */
3143 npte = l2pte_set_writable(npte);
3144 nflags |= PVF_MOD;
3145 }
3146
3147 #ifdef ARM_MMU_EXTENDED
3148 /*
3149 * If the page has been cleaned, then the pvh_attrs
3150 * will have PVF_EXEC set, so mark it execute so we
3151 * don't get an access fault when trying to execute
3152 * from it.
3153 */
3154 if (md->pvh_attrs & nflags & PVF_EXEC) {
3155 npte &= ~L2_XS_XN;
3156 }
3157 #endif
3158 } else {
3159 /*
3160 * Need to do page referenced emulation.
3161 */
3162 npte |= L2_TYPE_INV;
3163 }
3164
3165 if (flags & ARM32_MMAP_WRITECOMBINE) {
3166 npte |= pte_l2_s_wc_mode;
3167 } else
3168 npte |= pte_l2_s_cache_mode;
3169
3170 if (pg == opg) {
3171 /*
3172 * We're changing the attrs of an existing mapping.
3173 */
3174 oflags = pmap_modify_pv(md, pa, pm, va,
3175 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3176 PVF_MOD | PVF_REF, nflags);
3177
3178 #ifdef PMAP_CACHE_VIVT
3179 /*
3180 * We may need to flush the cache if we're
3181 * doing rw-ro...
3182 */
3183 if (pm->pm_cstate.cs_cache_d &&
3184 (oflags & PVF_NC) == 0 &&
3185 l2pte_writable_p(opte) &&
3186 (prot & VM_PROT_WRITE) == 0)
3187 cpu_dcache_wb_range(va, PAGE_SIZE);
3188 #endif
3189 } else {
3190 struct pv_entry *pv;
3191 /*
3192 * New mapping, or changing the backing page
3193 * of an existing mapping.
3194 */
3195 if (opg) {
3196 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3197 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3198
3199 /*
3200 * Replacing an existing mapping with a new one.
3201 * It is part of our managed memory so we
3202 * must remove it from the PV list
3203 */
3204 pv = pmap_remove_pv(omd, opa, pm, va);
3205 pmap_vac_me_harder(omd, opa, pm, 0);
3206 oflags = pv->pv_flags;
3207
3208 #ifdef PMAP_CACHE_VIVT
3209 /*
3210 * If the old mapping was valid (ref/mod
3211 * emulation creates 'invalid' mappings
3212 * initially) then make sure to frob
3213 * the cache.
3214 */
3215 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3216 pmap_cache_wbinv_page(pm, va, true,
3217 oflags);
3218 }
3219 #endif
3220 } else {
3221 pmap_release_page_lock(md);
3222 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3223 if (pv == NULL) {
3224 pmap_release_pmap_lock(pm);
3225 if ((flags & PMAP_CANFAIL) == 0)
3226 panic("pmap_enter: "
3227 "no pv entries");
3228
3229 pmap_free_l2_bucket(pm, l2b, 0);
3230 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3231 0, 0, 0, 0);
3232 return (ENOMEM);
3233 }
3234 pmap_acquire_page_lock(md);
3235 }
3236
3237 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3238 }
3239 pmap_release_page_lock(md);
3240 } else {
3241 /*
3242 * We're mapping an unmanaged page.
3243 * These are always readable, and possibly writable, from
3244 * the get go as we don't need to track ref/mod status.
3245 */
3246 npte |= l2pte_set_readonly(L2_S_PROTO);
3247 if (prot & VM_PROT_WRITE)
3248 npte = l2pte_set_writable(npte);
3249
3250 /*
3251 * Make sure the vector table is mapped cacheable
3252 */
3253 if ((vector_page_p && !kpm_p)
3254 || (flags & ARM32_MMAP_CACHEABLE)) {
3255 npte |= pte_l2_s_cache_mode;
3256 #ifdef ARM_MMU_EXTENDED
3257 npte &= ~L2_XS_XN; /* and executable */
3258 #endif
3259 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3260 npte |= pte_l2_s_wc_mode;
3261 }
3262 if (opg) {
3263 /*
3264 * Looks like there's an existing 'managed' mapping
3265 * at this address.
3266 */
3267 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3268 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3269
3270 pmap_acquire_page_lock(omd);
3271 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3272 pmap_vac_me_harder(omd, opa, pm, 0);
3273 oflags = pv->pv_flags;
3274 pmap_release_page_lock(omd);
3275
3276 #ifdef PMAP_CACHE_VIVT
3277 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3278 pmap_cache_wbinv_page(pm, va, true, oflags);
3279 }
3280 #endif
3281 pool_put(&pmap_pv_pool, pv);
3282 }
3283 }
3284
3285 /*
3286 * Make sure userland mappings get the right permissions
3287 */
3288 if (!vector_page_p && !kpm_p) {
3289 npte |= L2_S_PROT_U;
3290 #ifdef ARM_MMU_EXTENDED
3291 npte |= L2_XS_nG; /* user pages are not global */
3292 #endif
3293 }
3294
3295 /*
3296 * Keep the stats up to date
3297 */
3298 if (opte == 0) {
3299 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3300 pm->pm_stats.resident_count++;
3301 }
3302
3303 UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
3304
3305 #if defined(ARM_MMU_EXTENDED)
3306 /*
3307 * If exec protection was requested but the page hasn't been synced,
3308 * sync it now and allow execution from it.
3309 */
3310 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3311 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3312 npte &= ~L2_XS_XN;
3313 pmap_syncicache_page(md, pa);
3314 PMAPCOUNT(exec_synced_map);
3315 }
3316 #endif
3317 /*
3318 * If this is just a wiring change, the two PTEs will be
3319 * identical, so there's no need to update the page table.
3320 */
3321 if (npte != opte) {
3322
3323 l2pte_set(ptep, npte, opte);
3324 PTE_SYNC(ptep);
3325 #ifndef ARM_MMU_EXTENDED
3326 bool is_cached = pmap_is_cached(pm);
3327 if (is_cached) {
3328 /*
3329 * We only need to frob the cache/tlb if this pmap
3330 * is current
3331 */
3332 if (!vector_page_p && l2pte_valid_p(npte)) {
3333 /*
3334 * This mapping is likely to be accessed as
3335 * soon as we return to userland. Fix up the
3336 * L1 entry to avoid taking another
3337 * page/domain fault.
3338 */
3339 pd_entry_t *pdep = pmap_l1_kva(pm)
3340 + l1pte_index(va);
3341 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3342 | L1_C_DOM(pmap_domain(pm));
3343 if (*pdep != pde) {
3344 l1pte_setone(pdep, pde);
3345 PTE_SYNC(pdep);
3346 }
3347 }
3348 }
3349 #endif /* !ARMM_MMU_EXTENDED */
3350
3351 pmap_tlb_flush_SE(pm, va, oflags);
3352
3353 #ifndef ARM_MMU_EXTENDED
3354 UVMHIST_LOG(maphist, " is_cached %d cs 0x%08x\n",
3355 is_cached, pm->pm_cstate.cs_all, 0, 0);
3356
3357 if (pg != NULL) {
3358 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3359
3360 pmap_acquire_page_lock(md);
3361 pmap_vac_me_harder(md, pa, pm, va);
3362 pmap_release_page_lock(md);
3363 }
3364 #endif
3365 }
3366 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3367 if (pg) {
3368 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3369
3370 pmap_acquire_page_lock(md);
3371 #ifndef ARM_MMU_EXTENDED
3372 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3373 #endif
3374 PMAP_VALIDATE_MD_PAGE(md);
3375 pmap_release_page_lock(md);
3376 }
3377 #endif
3378
3379 pmap_release_pmap_lock(pm);
3380
3381 return (0);
3382 }
3383
3384 /*
3385 * pmap_remove()
3386 *
3387 * pmap_remove is responsible for nuking a number of mappings for a range
3388 * of virtual address space in the current pmap. To do this efficiently
3389 * is interesting, because in a number of cases a wide virtual address
3390 * range may be supplied that contains few actual mappings. So, the
3391 * optimisations are:
3392 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3393 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3394 * maybe do just a partial cache clean. This path of execution is
3395 * complicated by the fact that the cache must be flushed _before_
3396 * the PTE is nuked, being a VAC :-)
3397 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3398 * all invalidations until pmap_update(), since pmap_remove_all() has
3399 * already flushed the cache.
3400 * 4. Maybe later fast-case a single page, but I don't think this is
3401 * going to make _that_ much difference overall.
3402 */
3403
3404 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3405
3406 void
3407 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3408 {
3409 vaddr_t next_bucket;
3410 u_int cleanlist_idx, total, cnt;
3411 struct {
3412 vaddr_t va;
3413 pt_entry_t *ptep;
3414 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3415 u_int mappings;
3416
3417 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3418 UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
3419
3420 /*
3421 * we lock in the pmap => pv_head direction
3422 */
3423 pmap_acquire_pmap_lock(pm);
3424
3425 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3426 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3427 #ifndef ARM_MMU_EXTENDED
3428 if (pm->pm_cstate.cs_tlb == 0)
3429 pm->pm_remove_all = true;
3430 #endif
3431 } else
3432 cleanlist_idx = 0;
3433
3434 total = 0;
3435
3436 while (sva < eva) {
3437 /*
3438 * Do one L2 bucket's worth at a time.
3439 */
3440 next_bucket = L2_NEXT_BUCKET_VA(sva);
3441 if (next_bucket > eva)
3442 next_bucket = eva;
3443
3444 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3445 if (l2b == NULL) {
3446 sva = next_bucket;
3447 continue;
3448 }
3449
3450 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3451
3452 for (mappings = 0;
3453 sva < next_bucket;
3454 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3455 pt_entry_t opte = *ptep;
3456
3457 if (opte == 0) {
3458 /* Nothing here, move along */
3459 continue;
3460 }
3461
3462 u_int flags = PVF_REF;
3463 paddr_t pa = l2pte_pa(opte);
3464 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3465
3466 /*
3467 * Update flags. In a number of circumstances,
3468 * we could cluster a lot of these and do a
3469 * number of sequential pages in one go.
3470 */
3471 if (pg != NULL) {
3472 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3473 struct pv_entry *pv;
3474
3475 pmap_acquire_page_lock(md);
3476 pv = pmap_remove_pv(md, pa, pm, sva);
3477 pmap_vac_me_harder(md, pa, pm, 0);
3478 pmap_release_page_lock(md);
3479 if (pv != NULL) {
3480 if (pm->pm_remove_all == false) {
3481 flags = pv->pv_flags;
3482 }
3483 pool_put(&pmap_pv_pool, pv);
3484 }
3485 }
3486 mappings += PAGE_SIZE / L2_S_SIZE;
3487
3488 if (!l2pte_valid_p(opte)) {
3489 /*
3490 * Ref/Mod emulation is still active for this
3491 * mapping, therefore it is has not yet been
3492 * accessed. No need to frob the cache/tlb.
3493 */
3494 l2pte_reset(ptep);
3495 PTE_SYNC_CURRENT(pm, ptep);
3496 continue;
3497 }
3498
3499 #ifdef ARM_MMU_EXTENDED
3500 if (pm == pmap_kernel()) {
3501 l2pte_reset(ptep);
3502 PTE_SYNC(ptep);
3503 pmap_tlb_flush_SE(pm, sva, flags);
3504 continue;
3505 }
3506 #endif
3507 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3508 /* Add to the clean list. */
3509 cleanlist[cleanlist_idx].ptep = ptep;
3510 cleanlist[cleanlist_idx].va =
3511 sva | (flags & PVF_EXEC);
3512 cleanlist_idx++;
3513 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3514 /* Nuke everything if needed. */
3515 #ifdef PMAP_CACHE_VIVT
3516 pmap_cache_wbinv_all(pm, PVF_EXEC);
3517 #endif
3518 /*
3519 * Roll back the previous PTE list,
3520 * and zero out the current PTE.
3521 */
3522 for (cnt = 0;
3523 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3524 l2pte_reset(cleanlist[cnt].ptep);
3525 PTE_SYNC(cleanlist[cnt].ptep);
3526 }
3527 l2pte_reset(ptep);
3528 PTE_SYNC(ptep);
3529 cleanlist_idx++;
3530 pm->pm_remove_all = true;
3531 } else {
3532 l2pte_reset(ptep);
3533 PTE_SYNC(ptep);
3534 if (pm->pm_remove_all == false) {
3535 pmap_tlb_flush_SE(pm, sva, flags);
3536 }
3537 }
3538 }
3539
3540 /*
3541 * Deal with any left overs
3542 */
3543 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3544 total += cleanlist_idx;
3545 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3546 #ifdef ARM_MMU_EXTENDED
3547 vaddr_t clva = cleanlist[cnt].va;
3548 pmap_tlb_flush_SE(pm, clva, PVF_REF);
3549 #else
3550 vaddr_t va = cleanlist[cnt].va;
3551 if (pm->pm_cstate.cs_all != 0) {
3552 vaddr_t clva = va & ~PAGE_MASK;
3553 u_int flags = va & PVF_EXEC;
3554 #ifdef PMAP_CACHE_VIVT
3555 pmap_cache_wbinv_page(pm, clva, true,
3556 PVF_REF | PVF_WRITE | flags);
3557 #endif
3558 pmap_tlb_flush_SE(pm, clva,
3559 PVF_REF | flags);
3560 }
3561 #endif /* ARM_MMU_EXTENDED */
3562 l2pte_reset(cleanlist[cnt].ptep);
3563 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3564 }
3565
3566 /*
3567 * If it looks like we're removing a whole bunch
3568 * of mappings, it's faster to just write-back
3569 * the whole cache now and defer TLB flushes until
3570 * pmap_update() is called.
3571 */
3572 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3573 cleanlist_idx = 0;
3574 else {
3575 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3576 #ifdef PMAP_CACHE_VIVT
3577 pmap_cache_wbinv_all(pm, PVF_EXEC);
3578 #endif
3579 pm->pm_remove_all = true;
3580 }
3581 }
3582
3583
3584 pmap_free_l2_bucket(pm, l2b, mappings);
3585 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3586 }
3587
3588 pmap_release_pmap_lock(pm);
3589 }
3590
3591 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3592 static struct pv_entry *
3593 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3594 {
3595 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3596 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3597 struct pv_entry *pv;
3598
3599 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3600 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3601 KASSERT(pmap_page_locked_p(md));
3602
3603 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3604 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3605 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3606
3607 /*
3608 * If we are removing a writeable mapping to a cached exec page,
3609 * if it's the last mapping then clear it execness other sync
3610 * the page to the icache.
3611 */
3612 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3613 && (pv->pv_flags & PVF_WRITE) != 0) {
3614 if (SLIST_EMPTY(&md->pvh_list)) {
3615 md->pvh_attrs &= ~PVF_EXEC;
3616 PMAPCOUNT(exec_discarded_kremove);
3617 } else {
3618 pmap_syncicache_page(md, pa);
3619 PMAPCOUNT(exec_synced_kremove);
3620 }
3621 }
3622 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3623
3624 return pv;
3625 }
3626 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3627
3628 /*
3629 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3630 *
3631 * We assume there is already sufficient KVM space available
3632 * to do this, as we can't allocate L2 descriptor tables/metadata
3633 * from here.
3634 */
3635 void
3636 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3637 {
3638 #ifdef PMAP_CACHE_VIVT
3639 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3640 #endif
3641 #ifdef PMAP_CACHE_VIPT
3642 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3643 struct vm_page *opg;
3644 #ifndef ARM_MMU_EXTENDED
3645 struct pv_entry *pv = NULL;
3646 #endif
3647 #endif
3648 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3649
3650 UVMHIST_FUNC(__func__);
3651
3652 if (pmap_initialized) {
3653 UVMHIST_CALLED(maphist);
3654 UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
3655 va, pa, prot, flags);
3656 }
3657
3658 pmap_t kpm = pmap_kernel();
3659 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3660 const size_t l1slot __diagused = l1pte_index(va);
3661 KASSERTMSG(l2b != NULL,
3662 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3663 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3664 kpm->pm_l2[L2_IDX(l1slot)]
3665 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3666 : NULL,
3667 kpm->pm_l2[L2_IDX(l1slot)]
3668 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3669 : NULL);
3670 KASSERT(l2b->l2b_kva != NULL);
3671
3672 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3673 const pt_entry_t opte = *ptep;
3674
3675 if (opte == 0) {
3676 PMAPCOUNT(kenter_mappings);
3677 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3678 } else {
3679 PMAPCOUNT(kenter_remappings);
3680 #ifdef PMAP_CACHE_VIPT
3681 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3682 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3683 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3684 #endif
3685 if (opg && arm_cache_prefer_mask != 0) {
3686 KASSERT(opg != pg);
3687 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3688 KASSERT((flags & PMAP_KMPAGE) == 0);
3689 #ifndef ARM_MMU_EXTENDED
3690 pmap_acquire_page_lock(omd);
3691 pv = pmap_kremove_pg(opg, va);
3692 pmap_release_page_lock(omd);
3693 #endif
3694 }
3695 #endif
3696 if (l2pte_valid_p(opte)) {
3697 #ifdef PMAP_CACHE_VIVT
3698 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3699 #endif
3700 cpu_tlb_flushD_SE(va);
3701 cpu_cpwait();
3702 }
3703 }
3704
3705 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3706 | ((flags & PMAP_NOCACHE)
3707 ? 0
3708 : ((flags & PMAP_PTE)
3709 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3710 #ifdef ARM_MMU_EXTENDED
3711 if (prot & VM_PROT_EXECUTE)
3712 npte &= ~L2_XS_XN;
3713 #endif
3714 l2pte_set(ptep, npte, opte);
3715 PTE_SYNC(ptep);
3716
3717 if (pg) {
3718 if (flags & PMAP_KMPAGE) {
3719 KASSERT(md->urw_mappings == 0);
3720 KASSERT(md->uro_mappings == 0);
3721 KASSERT(md->krw_mappings == 0);
3722 KASSERT(md->kro_mappings == 0);
3723 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3724 KASSERT(pv == NULL);
3725 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3726 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3727 /* if there is a color conflict, evict from cache. */
3728 if (pmap_is_page_colored_p(md)
3729 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3730 PMAPCOUNT(vac_color_change);
3731 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3732 } else if (md->pvh_attrs & PVF_MULTCLR) {
3733 /*
3734 * If this page has multiple colors, expunge
3735 * them.
3736 */
3737 PMAPCOUNT(vac_flush_lots2);
3738 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3739 }
3740 /*
3741 * Since this is a KMPAGE, there can be no contention
3742 * for this page so don't lock it.
3743 */
3744 md->pvh_attrs &= PAGE_SIZE - 1;
3745 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3746 | (va & arm_cache_prefer_mask);
3747 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3748 md->pvh_attrs |= PVF_KMPAGE;
3749 #endif
3750 atomic_inc_32(&pmap_kmpages);
3751 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3752 } else if (arm_cache_prefer_mask != 0) {
3753 if (pv == NULL) {
3754 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3755 KASSERT(pv != NULL);
3756 }
3757 pmap_acquire_page_lock(md);
3758 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3759 PVF_WIRED | PVF_KENTRY
3760 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3761 if ((prot & VM_PROT_WRITE)
3762 && !(md->pvh_attrs & PVF_NC))
3763 md->pvh_attrs |= PVF_DIRTY;
3764 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3765 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3766 pmap_release_page_lock(md);
3767 #endif
3768 }
3769 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3770 } else {
3771 if (pv != NULL)
3772 pool_put(&pmap_pv_pool, pv);
3773 #endif
3774 }
3775 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3776 KASSERT(md == NULL || !pmap_page_locked_p(md));
3777 #endif
3778 if (pmap_initialized) {
3779 UVMHIST_LOG(maphist, " <-- done (ptep %p: %#x -> %#x)",
3780 ptep, opte, npte, 0);
3781 }
3782
3783 }
3784
3785 void
3786 pmap_kremove(vaddr_t va, vsize_t len)
3787 {
3788 #ifdef UVMHIST
3789 u_int total_mappings = 0;
3790 #endif
3791
3792 PMAPCOUNT(kenter_unmappings);
3793
3794 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3795
3796 UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
3797
3798 const vaddr_t eva = va + len;
3799
3800 while (va < eva) {
3801 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3802 if (next_bucket > eva)
3803 next_bucket = eva;
3804
3805 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3806 KDASSERT(l2b != NULL);
3807
3808 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3809 pt_entry_t *ptep = sptep;
3810 u_int mappings = 0;
3811
3812 while (va < next_bucket) {
3813 const pt_entry_t opte = *ptep;
3814 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3815 if (opg != NULL) {
3816 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3817
3818 if (omd->pvh_attrs & PVF_KMPAGE) {
3819 KASSERT(omd->urw_mappings == 0);
3820 KASSERT(omd->uro_mappings == 0);
3821 KASSERT(omd->krw_mappings == 0);
3822 KASSERT(omd->kro_mappings == 0);
3823 omd->pvh_attrs &= ~PVF_KMPAGE;
3824 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3825 if (arm_cache_prefer_mask != 0) {
3826 omd->pvh_attrs &= ~PVF_WRITE;
3827 }
3828 #endif
3829 atomic_dec_32(&pmap_kmpages);
3830 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3831 } else if (arm_cache_prefer_mask != 0) {
3832 pmap_acquire_page_lock(omd);
3833 pool_put(&pmap_pv_pool,
3834 pmap_kremove_pg(opg, va));
3835 pmap_release_page_lock(omd);
3836 #endif
3837 }
3838 }
3839 if (l2pte_valid_p(opte)) {
3840 #ifdef PMAP_CACHE_VIVT
3841 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3842 #endif
3843 cpu_tlb_flushD_SE(va);
3844 }
3845 if (opte) {
3846 l2pte_reset(ptep);
3847 mappings += PAGE_SIZE / L2_S_SIZE;
3848 }
3849 va += PAGE_SIZE;
3850 ptep += PAGE_SIZE / L2_S_SIZE;
3851 }
3852 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3853 mappings, l2b->l2b_occupancy);
3854 l2b->l2b_occupancy -= mappings;
3855 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3856 #ifdef UVMHIST
3857 total_mappings += mappings;
3858 #endif
3859 }
3860 cpu_cpwait();
3861 UVMHIST_LOG(maphist, " <--- done (%u mappings removed)",
3862 total_mappings, 0, 0, 0);
3863 }
3864
3865 bool
3866 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3867 {
3868 struct l2_dtable *l2;
3869 pd_entry_t *pdep, pde;
3870 pt_entry_t *ptep, pte;
3871 paddr_t pa;
3872 u_int l1slot;
3873
3874 pmap_acquire_pmap_lock(pm);
3875
3876 l1slot = l1pte_index(va);
3877 pdep = pmap_l1_kva(pm) + l1slot;
3878 pde = *pdep;
3879
3880 if (l1pte_section_p(pde)) {
3881 /*
3882 * These should only happen for pmap_kernel()
3883 */
3884 KDASSERT(pm == pmap_kernel());
3885 pmap_release_pmap_lock(pm);
3886 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3887 if (l1pte_supersection_p(pde)) {
3888 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3889 } else
3890 #endif
3891 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3892 } else {
3893 /*
3894 * Note that we can't rely on the validity of the L1
3895 * descriptor as an indication that a mapping exists.
3896 * We have to look it up in the L2 dtable.
3897 */
3898 l2 = pm->pm_l2[L2_IDX(l1slot)];
3899
3900 if (l2 == NULL ||
3901 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3902 pmap_release_pmap_lock(pm);
3903 return false;
3904 }
3905
3906 pte = ptep[l2pte_index(va)];
3907 pmap_release_pmap_lock(pm);
3908
3909 if (pte == 0)
3910 return false;
3911
3912 switch (pte & L2_TYPE_MASK) {
3913 case L2_TYPE_L:
3914 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3915 break;
3916
3917 default:
3918 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3919 break;
3920 }
3921 }
3922
3923 if (pap != NULL)
3924 *pap = pa;
3925
3926 return true;
3927 }
3928
3929 void
3930 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3931 {
3932 struct l2_bucket *l2b;
3933 vaddr_t next_bucket;
3934
3935 NPDEBUG(PDB_PROTECT,
3936 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3937 pm, sva, eva, prot));
3938
3939 if ((prot & VM_PROT_READ) == 0) {
3940 pmap_remove(pm, sva, eva);
3941 return;
3942 }
3943
3944 if (prot & VM_PROT_WRITE) {
3945 /*
3946 * If this is a read->write transition, just ignore it and let
3947 * uvm_fault() take care of it later.
3948 */
3949 return;
3950 }
3951
3952 pmap_acquire_pmap_lock(pm);
3953
3954 const bool flush = eva - sva >= PAGE_SIZE * 4;
3955 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3956 u_int flags = 0;
3957
3958 while (sva < eva) {
3959 next_bucket = L2_NEXT_BUCKET_VA(sva);
3960 if (next_bucket > eva)
3961 next_bucket = eva;
3962
3963 l2b = pmap_get_l2_bucket(pm, sva);
3964 if (l2b == NULL) {
3965 sva = next_bucket;
3966 continue;
3967 }
3968
3969 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3970
3971 while (sva < next_bucket) {
3972 const pt_entry_t opte = *ptep;
3973 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
3974 struct vm_page *pg;
3975 u_int f;
3976
3977 #ifdef PMAP_CACHE_VIVT
3978 /*
3979 * OK, at this point, we know we're doing
3980 * write-protect operation. If the pmap is
3981 * active, write-back the page.
3982 */
3983 pmap_cache_wbinv_page(pm, sva, false,
3984 PVF_REF | PVF_WRITE);
3985 #endif
3986
3987 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3988 pt_entry_t npte = l2pte_set_readonly(opte);
3989 l2pte_set(ptep, npte, opte);
3990 PTE_SYNC(ptep);
3991
3992 if (pg != NULL) {
3993 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3994 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3995
3996 pmap_acquire_page_lock(md);
3997 f = pmap_modify_pv(md, pa, pm, sva,
3998 clr_mask, 0);
3999 pmap_vac_me_harder(md, pa, pm, sva);
4000 pmap_release_page_lock(md);
4001 } else {
4002 f = PVF_REF | PVF_EXEC;
4003 }
4004
4005 if (flush) {
4006 flags |= f;
4007 } else {
4008 pmap_tlb_flush_SE(pm, sva, f);
4009 }
4010 }
4011
4012 sva += PAGE_SIZE;
4013 ptep += PAGE_SIZE / L2_S_SIZE;
4014 }
4015 }
4016
4017 if (flush) {
4018 if (PV_BEEN_EXECD(flags)) {
4019 pmap_tlb_flushID(pm);
4020 } else if (PV_BEEN_REFD(flags)) {
4021 pmap_tlb_flushD(pm);
4022 }
4023 }
4024
4025 pmap_release_pmap_lock(pm);
4026 }
4027
4028 void
4029 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4030 {
4031 struct l2_bucket *l2b;
4032 pt_entry_t *ptep;
4033 vaddr_t next_bucket;
4034 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4035
4036 NPDEBUG(PDB_EXEC,
4037 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4038 pm, sva, eva));
4039
4040 pmap_acquire_pmap_lock(pm);
4041
4042 while (sva < eva) {
4043 next_bucket = L2_NEXT_BUCKET_VA(sva);
4044 if (next_bucket > eva)
4045 next_bucket = eva;
4046
4047 l2b = pmap_get_l2_bucket(pm, sva);
4048 if (l2b == NULL) {
4049 sva = next_bucket;
4050 continue;
4051 }
4052
4053 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4054 sva < next_bucket;
4055 sva += page_size,
4056 ptep += PAGE_SIZE / L2_S_SIZE,
4057 page_size = PAGE_SIZE) {
4058 if (l2pte_valid_p(*ptep)) {
4059 cpu_icache_sync_range(sva,
4060 min(page_size, eva - sva));
4061 }
4062 }
4063 }
4064
4065 pmap_release_pmap_lock(pm);
4066 }
4067
4068 void
4069 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4070 {
4071 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4072 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4073
4074 NPDEBUG(PDB_PROTECT,
4075 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4076 md, pa, prot));
4077
4078 switch(prot) {
4079 case VM_PROT_READ|VM_PROT_WRITE:
4080 #if defined(ARM_MMU_EXTENDED)
4081 pmap_acquire_page_lock(md);
4082 pmap_clearbit(md, pa, PVF_EXEC);
4083 pmap_release_page_lock(md);
4084 break;
4085 #endif
4086 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4087 break;
4088
4089 case VM_PROT_READ:
4090 #if defined(ARM_MMU_EXTENDED)
4091 pmap_acquire_page_lock(md);
4092 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4093 pmap_release_page_lock(md);
4094 break;
4095 #endif
4096 case VM_PROT_READ|VM_PROT_EXECUTE:
4097 pmap_acquire_page_lock(md);
4098 pmap_clearbit(md, pa, PVF_WRITE);
4099 pmap_release_page_lock(md);
4100 break;
4101
4102 default:
4103 pmap_page_remove(md, pa);
4104 break;
4105 }
4106 }
4107
4108 /*
4109 * pmap_clear_modify:
4110 *
4111 * Clear the "modified" attribute for a page.
4112 */
4113 bool
4114 pmap_clear_modify(struct vm_page *pg)
4115 {
4116 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4117 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4118 bool rv;
4119
4120 pmap_acquire_page_lock(md);
4121
4122 if (md->pvh_attrs & PVF_MOD) {
4123 rv = true;
4124 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4125 /*
4126 * If we are going to clear the modified bit and there are
4127 * no other modified bits set, flush the page to memory and
4128 * mark it clean.
4129 */
4130 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4131 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4132 #endif
4133 pmap_clearbit(md, pa, PVF_MOD);
4134 } else {
4135 rv = false;
4136 }
4137 pmap_release_page_lock(md);
4138
4139 return rv;
4140 }
4141
4142 /*
4143 * pmap_clear_reference:
4144 *
4145 * Clear the "referenced" attribute for a page.
4146 */
4147 bool
4148 pmap_clear_reference(struct vm_page *pg)
4149 {
4150 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4151 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4152 bool rv;
4153
4154 pmap_acquire_page_lock(md);
4155
4156 if (md->pvh_attrs & PVF_REF) {
4157 rv = true;
4158 pmap_clearbit(md, pa, PVF_REF);
4159 } else {
4160 rv = false;
4161 }
4162 pmap_release_page_lock(md);
4163
4164 return rv;
4165 }
4166
4167 /*
4168 * pmap_is_modified:
4169 *
4170 * Test if a page has the "modified" attribute.
4171 */
4172 /* See <arm/arm32/pmap.h> */
4173
4174 /*
4175 * pmap_is_referenced:
4176 *
4177 * Test if a page has the "referenced" attribute.
4178 */
4179 /* See <arm/arm32/pmap.h> */
4180
4181 #if defined(ARM_MMU_EXTENDED) && 0
4182 int
4183 pmap_prefetchabt_fixup(void *v)
4184 {
4185 struct trapframe * const tf = v;
4186 vaddr_t va = trunc_page(tf->tf_pc);
4187 int rv = ABORT_FIXUP_FAILED;
4188
4189 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4190 return rv;
4191
4192 kpreempt_disable();
4193 pmap_t pm = curcpu()->ci_pmap_cur;
4194 const size_t l1slot = l1pte_index(va);
4195 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4196 if (l2 == NULL)
4197 goto out;
4198
4199 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4200 if (l2b->l2b_kva == NULL)
4201 goto out;
4202
4203 /*
4204 * Check the PTE itself.
4205 */
4206 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4207 const pt_entry_t opte = *ptep;
4208 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4209 goto out;
4210
4211 paddr_t pa = l2pte_pa(pte);
4212 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4213 KASSERT(pg != NULL);
4214
4215 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4216
4217 pmap_acquire_page_lock(md);
4218 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4219 KASSERT(pv != NULL);
4220
4221 if (PV_IS_EXEC_P(pv->pv_flags)) {
4222 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4223 pmap_syncicache_page(md, pa);
4224 }
4225 rv = ABORT_FIXUP_RETURN;
4226 l2pte_set(ptep, opte & ~L2_XS_XN, opte);
4227 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4228 }
4229 pmap_release_page_lock(md);
4230
4231 out:
4232 kpreempt_enable();
4233 return rv;
4234 }
4235 #endif
4236
4237 int
4238 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4239 {
4240 struct l2_dtable *l2;
4241 struct l2_bucket *l2b;
4242 paddr_t pa;
4243 const size_t l1slot = l1pte_index(va);
4244 int rv = 0;
4245
4246 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4247
4248 va = trunc_page(va);
4249
4250 KASSERT(!user || (pm != pmap_kernel()));
4251
4252 UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
4253 pm, va, ftype, user);
4254 #ifdef ARM_MMU_EXTENDED
4255 UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
4256 cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4257 PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4258 #endif
4259
4260 pmap_acquire_pmap_lock(pm);
4261
4262 /*
4263 * If there is no l2_dtable for this address, then the process
4264 * has no business accessing it.
4265 *
4266 * Note: This will catch userland processes trying to access
4267 * kernel addresses.
4268 */
4269 l2 = pm->pm_l2[L2_IDX(l1slot)];
4270 if (l2 == NULL) {
4271 UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
4272 goto out;
4273 }
4274
4275 /*
4276 * Likewise if there is no L2 descriptor table
4277 */
4278 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4279 if (l2b->l2b_kva == NULL) {
4280 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
4281 goto out;
4282 }
4283
4284 /*
4285 * Check the PTE itself.
4286 */
4287 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4288 pt_entry_t const opte = *ptep;
4289 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4290 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
4291 goto out;
4292 }
4293
4294 #ifndef ARM_HAS_VBAR
4295 /*
4296 * Catch a userland access to the vector page mapped at 0x0
4297 */
4298 if (user && (opte & L2_S_PROT_U) == 0) {
4299 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4300 goto out;
4301 }
4302 #endif
4303
4304 pa = l2pte_pa(opte);
4305
4306 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4307 /*
4308 * This looks like a good candidate for "page modified"
4309 * emulation...
4310 */
4311 struct pv_entry *pv;
4312 struct vm_page *pg;
4313
4314 /* Extract the physical address of the page */
4315 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4316 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4317 goto out;
4318 }
4319
4320 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4321
4322 /* Get the current flags for this page. */
4323 pmap_acquire_page_lock(md);
4324 pv = pmap_find_pv(md, pm, va);
4325 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4326 pmap_release_page_lock(md);
4327 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4328 goto out;
4329 }
4330
4331 /*
4332 * Do the flags say this page is writable? If not then it
4333 * is a genuine write fault. If yes then the write fault is
4334 * our fault as we did not reflect the write access in the
4335 * PTE. Now we know a write has occurred we can correct this
4336 * and also set the modified bit
4337 */
4338 if ((pv->pv_flags & PVF_WRITE) == 0) {
4339 pmap_release_page_lock(md);
4340 goto out;
4341 }
4342
4343 md->pvh_attrs |= PVF_REF | PVF_MOD;
4344 pv->pv_flags |= PVF_REF | PVF_MOD;
4345 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4346 /*
4347 * If there are cacheable mappings for this page, mark it dirty.
4348 */
4349 if ((md->pvh_attrs & PVF_NC) == 0)
4350 md->pvh_attrs |= PVF_DIRTY;
4351 #endif
4352 #ifdef ARM_MMU_EXTENDED
4353 if (md->pvh_attrs & PVF_EXEC) {
4354 md->pvh_attrs &= ~PVF_EXEC;
4355 PMAPCOUNT(exec_discarded_modfixup);
4356 }
4357 #endif
4358 pmap_release_page_lock(md);
4359
4360 /*
4361 * Re-enable write permissions for the page. No need to call
4362 * pmap_vac_me_harder(), since this is just a
4363 * modified-emulation fault, and the PVF_WRITE bit isn't
4364 * changing. We've already set the cacheable bits based on
4365 * the assumption that we can write to this page.
4366 */
4367 const pt_entry_t npte =
4368 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4369 #ifdef ARM_MMU_EXTENDED
4370 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4371 #endif
4372 | 0;
4373 l2pte_set(ptep, npte, opte);
4374 PTE_SYNC(ptep);
4375 PMAPCOUNT(fixup_mod);
4376 rv = 1;
4377 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
4378 opte, npte, 0, 0);
4379 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4380 /*
4381 * This looks like a good candidate for "page referenced"
4382 * emulation.
4383 */
4384 struct vm_page *pg;
4385
4386 /* Extract the physical address of the page */
4387 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4388 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4389 goto out;
4390 }
4391
4392 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4393
4394 /* Get the current flags for this page. */
4395 pmap_acquire_page_lock(md);
4396 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4397 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4398 pmap_release_page_lock(md);
4399 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4400 goto out;
4401 }
4402
4403 md->pvh_attrs |= PVF_REF;
4404 pv->pv_flags |= PVF_REF;
4405
4406 pt_entry_t npte =
4407 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4408 #ifdef ARM_MMU_EXTENDED
4409 if (pm != pmap_kernel()) {
4410 npte |= L2_XS_nG;
4411 }
4412 /*
4413 * If we got called from prefetch abort, then ftype will have
4414 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4415 * the PTE.
4416 */
4417 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4418 /*
4419 * Is this a mapping of an executable page?
4420 */
4421 if ((pv->pv_flags & PVF_EXEC) == 0) {
4422 pmap_release_page_lock(md);
4423 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4424 0, 0, 0, 0);
4425 goto out;
4426 }
4427 /*
4428 * If we haven't synced the page, do so now.
4429 */
4430 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4431 UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
4432 pa, 0, 0, 0);
4433 pmap_syncicache_page(md, pa);
4434 PMAPCOUNT(fixup_exec);
4435 }
4436 npte &= ~L2_XS_XN;
4437 }
4438 #endif /* ARM_MMU_EXTENDED */
4439 pmap_release_page_lock(md);
4440 l2pte_set(ptep, npte, opte);
4441 PTE_SYNC(ptep);
4442 PMAPCOUNT(fixup_ref);
4443 rv = 1;
4444 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
4445 opte, npte, 0, 0);
4446 #ifdef ARM_MMU_EXTENDED
4447 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4448 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4449 if (pg == NULL) {
4450 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4451 goto out;
4452 }
4453
4454 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4455
4456 /* Get the current flags for this page. */
4457 pmap_acquire_page_lock(md);
4458 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4459 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4460 pmap_release_page_lock(md);
4461 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4462 goto out;
4463 }
4464
4465 /*
4466 * If we haven't synced the page, do so now.
4467 */
4468 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4469 UVMHIST_LOG(maphist, "syncicache page #%#x",
4470 pa, 0, 0, 0);
4471 pmap_syncicache_page(md, pa);
4472 }
4473 pmap_release_page_lock(md);
4474 /*
4475 * Turn off no-execute.
4476 */
4477 KASSERT(opte & L2_XS_nG);
4478 l2pte_set(ptep, opte & ~L2_XS_XN, opte);
4479 PTE_SYNC(ptep);
4480 rv = 1;
4481 PMAPCOUNT(fixup_exec);
4482 UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
4483 opte, opte & ~L2_XS_XN, 0, 0);
4484 #endif
4485 }
4486
4487 #ifndef ARM_MMU_EXTENDED
4488 /*
4489 * We know there is a valid mapping here, so simply
4490 * fix up the L1 if necessary.
4491 */
4492 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4493 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4494 if (*pdep != pde) {
4495 l1pte_setone(pdep, pde);
4496 PTE_SYNC(pdep);
4497 rv = 1;
4498 PMAPCOUNT(fixup_pdes);
4499 }
4500 #endif
4501
4502 #ifdef CPU_SA110
4503 /*
4504 * There are bugs in the rev K SA110. This is a check for one
4505 * of them.
4506 */
4507 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4508 curcpu()->ci_arm_cpurev < 3) {
4509 /* Always current pmap */
4510 if (l2pte_valid_p(opte)) {
4511 extern int kernel_debug;
4512 if (kernel_debug & 1) {
4513 struct proc *p = curlwp->l_proc;
4514 printf("prefetch_abort: page is already "
4515 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4516 printf("prefetch_abort: pc=%08lx proc=%p "
4517 "process=%s\n", va, p, p->p_comm);
4518 printf("prefetch_abort: far=%08x fs=%x\n",
4519 cpu_faultaddress(), cpu_faultstatus());
4520 }
4521 #ifdef DDB
4522 if (kernel_debug & 2)
4523 Debugger();
4524 #endif
4525 rv = 1;
4526 }
4527 }
4528 #endif /* CPU_SA110 */
4529
4530 #ifndef ARM_MMU_EXTENDED
4531 /*
4532 * If 'rv == 0' at this point, it generally indicates that there is a
4533 * stale TLB entry for the faulting address. That might be due to a
4534 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4535 */
4536 if (rv == 0
4537 && pm->pm_l1->l1_domain_use_count == 1
4538 && pmap_needs_pte_sync == 0) {
4539 pmap_needs_pte_sync = 1;
4540 PTE_SYNC(ptep);
4541 PMAPCOUNT(fixup_ptesync);
4542 rv = 1;
4543 }
4544 #endif
4545
4546 #if defined(DEBUG) || 1
4547 /*
4548 * If 'rv == 0' at this point, it generally indicates that there is a
4549 * stale TLB entry for the faulting address. This happens when two or
4550 * more processes are sharing an L1. Since we don't flush the TLB on
4551 * a context switch between such processes, we can take domain faults
4552 * for mappings which exist at the same VA in both processes. EVEN IF
4553 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4554 * example.
4555 *
4556 * This is extremely likely to happen if pmap_enter() updated the L1
4557 * entry for a recently entered mapping. In this case, the TLB is
4558 * flushed for the new mapping, but there may still be TLB entries for
4559 * other mappings belonging to other processes in the 1MB range
4560 * covered by the L1 entry.
4561 *
4562 * Since 'rv == 0', we know that the L1 already contains the correct
4563 * value, so the fault must be due to a stale TLB entry.
4564 *
4565 * Since we always need to flush the TLB anyway in the case where we
4566 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4567 * stale TLB entries dynamically.
4568 *
4569 * However, the above condition can ONLY happen if the current L1 is
4570 * being shared. If it happens when the L1 is unshared, it indicates
4571 * that other parts of the pmap are not doing their job WRT managing
4572 * the TLB.
4573 */
4574 if (rv == 0
4575 #ifndef ARM_MMU_EXTENDED
4576 && pm->pm_l1->l1_domain_use_count == 1
4577 #endif
4578 && true) {
4579 #ifdef DEBUG
4580 extern int last_fault_code;
4581 #else
4582 int last_fault_code = ftype & VM_PROT_EXECUTE
4583 ? armreg_ifsr_read()
4584 : armreg_dfsr_read();
4585 #endif
4586 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4587 pm, va, ftype);
4588 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4589 l2, l2b, ptep, opte);
4590
4591 #ifndef ARM_MMU_EXTENDED
4592 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4593 pdep, pde, last_fault_code);
4594 #else
4595 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4596 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4597 armreg_ttbcr_read());
4598 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4599 last_fault_code, curcpu()->ci_pmap_cur,
4600 curcpu()->ci_pmap_asid_cur,
4601 armreg_contextidr_read(), armreg_dacr_read());
4602 #ifdef _ARM_ARCH_7
4603 if (ftype & VM_PROT_WRITE)
4604 armreg_ats1cuw_write(va);
4605 else
4606 armreg_ats1cur_write(va);
4607 arm_isb();
4608 printf("fixup: par %#x\n", armreg_par_read());
4609 #endif
4610 #endif
4611 #ifdef DDB
4612 extern int kernel_debug;
4613
4614 if (kernel_debug & 2) {
4615 pmap_release_pmap_lock(pm);
4616 #ifdef UVMHIST
4617 KERNHIST_DUMP(maphist);
4618 #endif
4619 cpu_Debugger();
4620 pmap_acquire_pmap_lock(pm);
4621 }
4622 #endif
4623 }
4624 #endif
4625
4626 pmap_tlb_flush_SE(pm, va,
4627 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4628
4629 rv = 1;
4630
4631 out:
4632 pmap_release_pmap_lock(pm);
4633
4634 return (rv);
4635 }
4636
4637 /*
4638 * Routine: pmap_procwr
4639 *
4640 * Function:
4641 * Synchronize caches corresponding to [addr, addr+len) in p.
4642 *
4643 */
4644 void
4645 pmap_procwr(struct proc *p, vaddr_t va, int len)
4646 {
4647 /* We only need to do anything if it is the current process. */
4648 if (p == curproc)
4649 cpu_icache_sync_range(va, len);
4650 }
4651
4652 /*
4653 * Routine: pmap_unwire
4654 * Function: Clear the wired attribute for a map/virtual-address pair.
4655 *
4656 * In/out conditions:
4657 * The mapping must already exist in the pmap.
4658 */
4659 void
4660 pmap_unwire(pmap_t pm, vaddr_t va)
4661 {
4662 struct l2_bucket *l2b;
4663 pt_entry_t *ptep, pte;
4664 struct vm_page *pg;
4665 paddr_t pa;
4666
4667 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4668
4669 pmap_acquire_pmap_lock(pm);
4670
4671 l2b = pmap_get_l2_bucket(pm, va);
4672 KDASSERT(l2b != NULL);
4673
4674 ptep = &l2b->l2b_kva[l2pte_index(va)];
4675 pte = *ptep;
4676
4677 /* Extract the physical address of the page */
4678 pa = l2pte_pa(pte);
4679
4680 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4681 /* Update the wired bit in the pv entry for this page. */
4682 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4683
4684 pmap_acquire_page_lock(md);
4685 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4686 pmap_release_page_lock(md);
4687 }
4688
4689 pmap_release_pmap_lock(pm);
4690 }
4691
4692 void
4693 pmap_activate(struct lwp *l)
4694 {
4695 struct cpu_info * const ci = curcpu();
4696 extern int block_userspace_access;
4697 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4698 #ifdef ARM_MMU_EXTENDED
4699 struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
4700 #endif
4701
4702 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4703
4704 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
4705
4706 /*
4707 * If activating a non-current lwp or the current lwp is
4708 * already active, just return.
4709 */
4710 if (false
4711 || l != curlwp
4712 #ifdef ARM_MMU_EXTENDED
4713 || (ci->ci_pmap_cur == npm &&
4714 (npm == pmap_kernel()
4715 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4716 #else
4717 || npm->pm_activated == true
4718 #endif
4719 || false) {
4720 UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
4721 return;
4722 }
4723
4724 #ifndef ARM_MMU_EXTENDED
4725 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4726 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4727
4728 /*
4729 * If TTB and DACR are unchanged, short-circuit all the
4730 * TLB/cache management stuff.
4731 */
4732 pmap_t opm = ci->ci_lastlwp
4733 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4734 : NULL;
4735 if (opm != NULL) {
4736 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4737 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4738
4739 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4740 goto all_done;
4741 }
4742 #endif /* !ARM_MMU_EXTENDED */
4743
4744 PMAPCOUNT(activations);
4745 block_userspace_access = 1;
4746
4747 #ifndef ARM_MMU_EXTENDED
4748 /*
4749 * If switching to a user vmspace which is different to the
4750 * most recent one, and the most recent one is potentially
4751 * live in the cache, we must write-back and invalidate the
4752 * entire cache.
4753 */
4754 pmap_t rpm = ci->ci_pmap_lastuser;
4755 #endif
4756
4757 /*
4758 * XXXSCW: There's a corner case here which can leave turds in the cache as
4759 * reported in kern/41058. They're probably left over during tear-down and
4760 * switching away from an exiting process. Until the root cause is identified
4761 * and fixed, zap the cache when switching pmaps. This will result in a few
4762 * unnecessary cache flushes, but that's better than silently corrupting data.
4763 */
4764 #ifndef ARM_MMU_EXTENDED
4765 #if 0
4766 if (npm != pmap_kernel() && rpm && npm != rpm &&
4767 rpm->pm_cstate.cs_cache) {
4768 rpm->pm_cstate.cs_cache = 0;
4769 #ifdef PMAP_CACHE_VIVT
4770 cpu_idcache_wbinv_all();
4771 #endif
4772 }
4773 #else
4774 if (rpm) {
4775 rpm->pm_cstate.cs_cache = 0;
4776 if (npm == pmap_kernel())
4777 ci->ci_pmap_lastuser = NULL;
4778 #ifdef PMAP_CACHE_VIVT
4779 cpu_idcache_wbinv_all();
4780 #endif
4781 }
4782 #endif
4783
4784 /* No interrupts while we frob the TTB/DACR */
4785 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4786 #endif /* !ARM_MMU_EXTENDED */
4787
4788 #ifndef ARM_HAS_VBAR
4789 /*
4790 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4791 * entry corresponding to 'vector_page' in the incoming L1 table
4792 * before switching to it otherwise subsequent interrupts/exceptions
4793 * (including domain faults!) will jump into hyperspace.
4794 */
4795 if (npm->pm_pl1vec != NULL) {
4796 cpu_tlb_flushID_SE((u_int)vector_page);
4797 cpu_cpwait();
4798 *npm->pm_pl1vec = npm->pm_l1vec;
4799 PTE_SYNC(npm->pm_pl1vec);
4800 }
4801 #endif
4802
4803 #ifdef ARM_MMU_EXTENDED
4804 /*
4805 * Assume that TTBR1 has only global mappings and TTBR0 only has
4806 * non-global mappings. To prevent speculation from doing evil things
4807 * we disable translation table walks using TTBR0 before setting the
4808 * CONTEXTIDR (ASID) or new TTBR0 value. Once both are set, table
4809 * walks are reenabled.
4810 */
4811 UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
4812 const uint32_t old_ttbcr = armreg_ttbcr_read();
4813 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4814 arm_isb();
4815 pmap_tlb_asid_acquire(npm, l);
4816 UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
4817 cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
4818 /*
4819 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
4820 * been updated.
4821 */
4822 arm_isb();
4823 if (npm != pmap_kernel()) {
4824 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4825 }
4826 cpu_cpwait();
4827 ci->ci_pmap_asid_cur = pai->pai_asid;
4828 #else
4829 cpu_domains(ndacr);
4830 if (npm == pmap_kernel() || npm == rpm) {
4831 /*
4832 * Switching to a kernel thread, or back to the
4833 * same user vmspace as before... Simply update
4834 * the TTB (no TLB flush required)
4835 */
4836 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4837 cpu_cpwait();
4838 } else {
4839 /*
4840 * Otherwise, update TTB and flush TLB
4841 */
4842 cpu_context_switch(npm->pm_l1->l1_physaddr);
4843 if (rpm != NULL)
4844 rpm->pm_cstate.cs_tlb = 0;
4845 }
4846
4847 restore_interrupts(oldirqstate);
4848 #endif /* ARM_MMU_EXTENDED */
4849
4850 block_userspace_access = 0;
4851
4852 #ifndef ARM_MMU_EXTENDED
4853 all_done:
4854 /*
4855 * The new pmap is resident. Make sure it's marked
4856 * as resident in the cache/TLB.
4857 */
4858 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4859 if (npm != pmap_kernel())
4860 ci->ci_pmap_lastuser = npm;
4861
4862 /* The old pmap is not longer active */
4863 if (opm != npm) {
4864 if (opm != NULL)
4865 opm->pm_activated = false;
4866
4867 /* But the new one is */
4868 npm->pm_activated = true;
4869 }
4870 #endif
4871 ci->ci_pmap_cur = npm;
4872 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4873 }
4874
4875 void
4876 pmap_deactivate(struct lwp *l)
4877 {
4878 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
4879
4880 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4881
4882 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
4883
4884 #ifdef ARM_MMU_EXTENDED
4885 kpreempt_disable();
4886 struct cpu_info * const ci = curcpu();
4887 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4888 /*
4889 * Disable translation table walks from TTBR0 while no pmap has been
4890 * activated.
4891 */
4892 const uint32_t old_ttbcr = armreg_ttbcr_read();
4893 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4894 arm_isb();
4895 pmap_tlb_asid_deactivate(pm);
4896 cpu_setttb(pmap_kernel()->pm_l1_pa, pai->pai_asid);
4897 ci->ci_pmap_cur = pmap_kernel();
4898 kpreempt_enable();
4899 #else
4900 /*
4901 * If the process is exiting, make sure pmap_activate() does
4902 * a full MMU context-switch and cache flush, which we might
4903 * otherwise skip. See PR port-arm/38950.
4904 */
4905 if (l->l_proc->p_sflag & PS_WEXIT)
4906 curcpu()->ci_lastlwp = NULL;
4907
4908 pm->pm_activated = false;
4909 #endif
4910 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4911 }
4912
4913 void
4914 pmap_update(pmap_t pm)
4915 {
4916
4917 if (pm->pm_remove_all) {
4918 #ifdef ARM_MMU_EXTENDED
4919 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
4920 /*
4921 * Finish up the pmap_remove_all() optimisation by flushing
4922 * all our ASIDs.
4923 */
4924 pmap_tlb_asid_release_all(pm);
4925 #else
4926 /*
4927 * Finish up the pmap_remove_all() optimisation by flushing
4928 * the TLB.
4929 */
4930 pmap_tlb_flushID(pm);
4931 #endif
4932 pm->pm_remove_all = false;
4933 }
4934
4935 #ifdef ARM_MMU_EXTENDED
4936
4937 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
4938 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
4939 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
4940 PMAP_COUNT(shootdown_ipis);
4941 }
4942 #endif
4943 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
4944 #else
4945 if (pmap_is_current(pm)) {
4946 /*
4947 * If we're dealing with a current userland pmap, move its L1
4948 * to the end of the LRU.
4949 */
4950 if (pm != pmap_kernel())
4951 pmap_use_l1(pm);
4952
4953 /*
4954 * We can assume we're done with frobbing the cache/tlb for
4955 * now. Make sure any future pmap ops don't skip cache/tlb
4956 * flushes.
4957 */
4958 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4959 }
4960 #endif
4961
4962 PMAPCOUNT(updates);
4963
4964 /*
4965 * make sure TLB/cache operations have completed.
4966 */
4967 cpu_cpwait();
4968 }
4969
4970 void
4971 pmap_remove_all(pmap_t pm)
4972 {
4973
4974 /*
4975 * The vmspace described by this pmap is about to be torn down.
4976 * Until pmap_update() is called, UVM will only make calls
4977 * to pmap_remove(). We can make life much simpler by flushing
4978 * the cache now, and deferring TLB invalidation to pmap_update().
4979 */
4980 #ifdef PMAP_CACHE_VIVT
4981 pmap_cache_wbinv_all(pm, PVF_EXEC);
4982 #endif
4983 pm->pm_remove_all = true;
4984 }
4985
4986 /*
4987 * Retire the given physical map from service.
4988 * Should only be called if the map contains no valid mappings.
4989 */
4990 void
4991 pmap_destroy(pmap_t pm)
4992 {
4993 u_int count;
4994
4995 if (pm == NULL)
4996 return;
4997
4998 if (pm->pm_remove_all) {
4999 pmap_tlb_flushID(pm);
5000 pm->pm_remove_all = false;
5001 }
5002
5003 /*
5004 * Drop reference count
5005 */
5006 mutex_enter(pm->pm_lock);
5007 count = --pm->pm_obj.uo_refs;
5008 mutex_exit(pm->pm_lock);
5009 if (count > 0) {
5010 #ifndef ARM_MMU_EXTENDED
5011 if (pmap_is_current(pm)) {
5012 if (pm != pmap_kernel())
5013 pmap_use_l1(pm);
5014 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5015 }
5016 #endif
5017 return;
5018 }
5019
5020 /*
5021 * reference count is zero, free pmap resources and then free pmap.
5022 */
5023
5024 #ifndef ARM_HAS_VBAR
5025 if (vector_page < KERNEL_BASE) {
5026 KDASSERT(!pmap_is_current(pm));
5027
5028 /* Remove the vector page mapping */
5029 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5030 pmap_update(pm);
5031 }
5032 #endif
5033
5034 LIST_REMOVE(pm, pm_list);
5035
5036 pmap_free_l1(pm);
5037
5038 #ifdef ARM_MMU_EXTENDED
5039 #ifdef MULTIPROCESSOR
5040 kcpuset_destroy(pm->pm_active);
5041 kcpuset_destroy(pm->pm_onproc);
5042 #endif
5043 #else
5044 struct cpu_info * const ci = curcpu();
5045 if (ci->ci_pmap_lastuser == pm)
5046 ci->ci_pmap_lastuser = NULL;
5047 #endif
5048
5049 uvm_obj_destroy(&pm->pm_obj, false);
5050 mutex_destroy(&pm->pm_obj_lock);
5051 pool_cache_put(&pmap_cache, pm);
5052 }
5053
5054
5055 /*
5056 * void pmap_reference(pmap_t pm)
5057 *
5058 * Add a reference to the specified pmap.
5059 */
5060 void
5061 pmap_reference(pmap_t pm)
5062 {
5063
5064 if (pm == NULL)
5065 return;
5066
5067 #ifndef ARM_MMU_EXTENDED
5068 pmap_use_l1(pm);
5069 #endif
5070
5071 mutex_enter(pm->pm_lock);
5072 pm->pm_obj.uo_refs++;
5073 mutex_exit(pm->pm_lock);
5074 }
5075
5076 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5077
5078 static struct evcnt pmap_prefer_nochange_ev =
5079 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5080 static struct evcnt pmap_prefer_change_ev =
5081 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5082
5083 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5084 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5085
5086 void
5087 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5088 {
5089 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5090 vaddr_t va = *vap;
5091 vaddr_t diff = (hint - va) & mask;
5092 if (diff == 0) {
5093 pmap_prefer_nochange_ev.ev_count++;
5094 } else {
5095 pmap_prefer_change_ev.ev_count++;
5096 if (__predict_false(td))
5097 va -= mask + 1;
5098 *vap = va + diff;
5099 }
5100 }
5101 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5102
5103 /*
5104 * pmap_zero_page()
5105 *
5106 * Zero a given physical page by mapping it at a page hook point.
5107 * In doing the zero page op, the page we zero is mapped cachable, as with
5108 * StrongARM accesses to non-cached pages are non-burst making writing
5109 * _any_ bulk data very slow.
5110 */
5111 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5112 void
5113 pmap_zero_page_generic(paddr_t pa)
5114 {
5115 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5116 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5117 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5118 #endif
5119 #if defined(PMAP_CACHE_VIPT)
5120 /* Choose the last page color it had, if any */
5121 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5122 #else
5123 const vsize_t va_offset = 0;
5124 #endif
5125 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5126 /*
5127 * Is this page mapped at its natural color?
5128 * If we have all of memory mapped, then just convert PA to VA.
5129 */
5130 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5131 || va_offset == (pa & arm_cache_prefer_mask);
5132 const vaddr_t vdstp = okcolor
5133 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5134 : cpu_cdstp(va_offset);
5135 #else
5136 const bool okcolor = false;
5137 const vaddr_t vdstp = cpu_cdstp(va_offset);
5138 #endif
5139 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5140
5141
5142 #ifdef DEBUG
5143 if (!SLIST_EMPTY(&md->pvh_list))
5144 panic("pmap_zero_page: page has mappings");
5145 #endif
5146
5147 KDASSERT((pa & PGOFSET) == 0);
5148
5149 if (!okcolor) {
5150 /*
5151 * Hook in the page, zero it, and purge the cache for that
5152 * zeroed page. Invalidate the TLB as needed.
5153 */
5154 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5155 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5156 l2pte_set(ptep, npte, 0);
5157 PTE_SYNC(ptep);
5158 cpu_tlb_flushD_SE(vdstp);
5159 cpu_cpwait();
5160 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5161 && !defined(ARM_MMU_EXTENDED)
5162 /*
5163 * If we are direct-mapped and our color isn't ok, then before
5164 * we bzero the page invalidate its contents from the cache and
5165 * reset the color to its natural color.
5166 */
5167 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5168 md->pvh_attrs &= ~arm_cache_prefer_mask;
5169 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5170 #endif
5171 }
5172 bzero_page(vdstp);
5173 if (!okcolor) {
5174 /*
5175 * Unmap the page.
5176 */
5177 l2pte_reset(ptep);
5178 PTE_SYNC(ptep);
5179 cpu_tlb_flushD_SE(vdstp);
5180 #ifdef PMAP_CACHE_VIVT
5181 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5182 #endif
5183 }
5184 #ifdef PMAP_CACHE_VIPT
5185 /*
5186 * This page is now cache resident so it now has a page color.
5187 * Any contents have been obliterated so clear the EXEC flag.
5188 */
5189 #ifndef ARM_MMU_EXTENDED
5190 if (!pmap_is_page_colored_p(md)) {
5191 PMAPCOUNT(vac_color_new);
5192 md->pvh_attrs |= PVF_COLORED;
5193 }
5194 md->pvh_attrs |= PVF_DIRTY;
5195 #endif
5196 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5197 md->pvh_attrs &= ~PVF_EXEC;
5198 PMAPCOUNT(exec_discarded_zero);
5199 }
5200 #endif
5201 }
5202 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5203
5204 #if ARM_MMU_XSCALE == 1
5205 void
5206 pmap_zero_page_xscale(paddr_t pa)
5207 {
5208 #ifdef DEBUG
5209 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5210 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5211
5212 if (!SLIST_EMPTY(&md->pvh_list))
5213 panic("pmap_zero_page: page has mappings");
5214 #endif
5215
5216 KDASSERT((pa & PGOFSET) == 0);
5217
5218 /*
5219 * Hook in the page, zero it, and purge the cache for that
5220 * zeroed page. Invalidate the TLB as needed.
5221 */
5222
5223 pt_entry_t npte = L2_S_PROTO | pa |
5224 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5225 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5226 l2pte_set(cdst_pte, npte, 0);
5227 PTE_SYNC(cdst_pte);
5228 cpu_tlb_flushD_SE(cdstp);
5229 cpu_cpwait();
5230 bzero_page(cdstp);
5231 xscale_cache_clean_minidata();
5232 l2pte_reset(cdst_pte);
5233 PTE_SYNC(cdst_pte);
5234 }
5235 #endif /* ARM_MMU_XSCALE == 1 */
5236
5237 /* pmap_pageidlezero()
5238 *
5239 * The same as above, except that we assume that the page is not
5240 * mapped. This means we never have to flush the cache first. Called
5241 * from the idle loop.
5242 */
5243 bool
5244 pmap_pageidlezero(paddr_t pa)
5245 {
5246 bool rv = true;
5247 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5248 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5249 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5250 #endif
5251 #ifdef PMAP_CACHE_VIPT
5252 /* Choose the last page color it had, if any */
5253 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5254 #else
5255 const vsize_t va_offset = 0;
5256 #endif
5257 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5258 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5259 || va_offset == (pa & arm_cache_prefer_mask);
5260 const vaddr_t vdstp = okcolor
5261 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5262 : cpu_cdstp(va_offset);
5263 #else
5264 const bool okcolor = false;
5265 const vaddr_t vdstp = cpu_cdstp(va_offset);
5266 #endif
5267 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5268
5269
5270 #ifdef DEBUG
5271 if (!SLIST_EMPTY(&md->pvh_list))
5272 panic("pmap_pageidlezero: page has mappings");
5273 #endif
5274
5275 KDASSERT((pa & PGOFSET) == 0);
5276
5277 if (!okcolor) {
5278 /*
5279 * Hook in the page, zero it, and purge the cache for that
5280 * zeroed page. Invalidate the TLB as needed.
5281 */
5282 const pt_entry_t npte = L2_S_PROTO | pa |
5283 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5284 l2pte_set(ptep, npte, 0);
5285 PTE_SYNC(ptep);
5286 cpu_tlb_flushD_SE(vdstp);
5287 cpu_cpwait();
5288 }
5289
5290 uint64_t *ptr = (uint64_t *)vdstp;
5291 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5292 if (sched_curcpu_runnable_p() != 0) {
5293 /*
5294 * A process has become ready. Abort now,
5295 * so we don't keep it waiting while we
5296 * do slow memory access to finish this
5297 * page.
5298 */
5299 rv = false;
5300 break;
5301 }
5302 *ptr++ = 0;
5303 }
5304
5305 #ifdef PMAP_CACHE_VIVT
5306 if (rv)
5307 /*
5308 * if we aborted we'll rezero this page again later so don't
5309 * purge it unless we finished it
5310 */
5311 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5312 #elif defined(PMAP_CACHE_VIPT)
5313 /*
5314 * This page is now cache resident so it now has a page color.
5315 * Any contents have been obliterated so clear the EXEC flag.
5316 */
5317 #ifndef ARM_MMU_EXTENDED
5318 if (!pmap_is_page_colored_p(md)) {
5319 PMAPCOUNT(vac_color_new);
5320 md->pvh_attrs |= PVF_COLORED;
5321 }
5322 #endif
5323 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5324 md->pvh_attrs &= ~PVF_EXEC;
5325 PMAPCOUNT(exec_discarded_zero);
5326 }
5327 #endif
5328 /*
5329 * Unmap the page.
5330 */
5331 if (!okcolor) {
5332 l2pte_reset(ptep);
5333 PTE_SYNC(ptep);
5334 cpu_tlb_flushD_SE(vdstp);
5335 }
5336
5337 return rv;
5338 }
5339
5340 /*
5341 * pmap_copy_page()
5342 *
5343 * Copy one physical page into another, by mapping the pages into
5344 * hook points. The same comment regarding cachability as in
5345 * pmap_zero_page also applies here.
5346 */
5347 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5348 void
5349 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5350 {
5351 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5352 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5353 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5354 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5355 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5356 #endif
5357 #ifdef PMAP_CACHE_VIPT
5358 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5359 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5360 #else
5361 const vsize_t src_va_offset = 0;
5362 const vsize_t dst_va_offset = 0;
5363 #endif
5364 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5365 /*
5366 * Is this page mapped at its natural color?
5367 * If we have all of memory mapped, then just convert PA to VA.
5368 */
5369 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5370 || src_va_offset == (src & arm_cache_prefer_mask);
5371 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5372 || dst_va_offset == (dst & arm_cache_prefer_mask);
5373 const vaddr_t vsrcp = src_okcolor
5374 ? pmap_direct_mapped_phys(src, &src_okcolor,
5375 cpu_csrcp(src_va_offset))
5376 : cpu_csrcp(src_va_offset);
5377 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5378 cpu_cdstp(dst_va_offset));
5379 #else
5380 const bool src_okcolor = false;
5381 const bool dst_okcolor = false;
5382 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5383 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5384 #endif
5385 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5386 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5387
5388 #ifdef DEBUG
5389 if (!SLIST_EMPTY(&dst_md->pvh_list))
5390 panic("pmap_copy_page: dst page has mappings");
5391 #endif
5392
5393 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5394 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5395 #endif
5396 KDASSERT((src & PGOFSET) == 0);
5397 KDASSERT((dst & PGOFSET) == 0);
5398
5399 /*
5400 * Clean the source page. Hold the source page's lock for
5401 * the duration of the copy so that no other mappings can
5402 * be created while we have a potentially aliased mapping.
5403 */
5404 #ifdef PMAP_CACHE_VIVT
5405 pmap_acquire_page_lock(src_md);
5406 (void) pmap_clean_page(src_md, true);
5407 pmap_release_page_lock(src_md);
5408 #endif
5409
5410 /*
5411 * Map the pages into the page hook points, copy them, and purge
5412 * the cache for the appropriate page. Invalidate the TLB
5413 * as required.
5414 */
5415 if (!src_okcolor) {
5416 const pt_entry_t nsrc_pte = L2_S_PROTO
5417 | src
5418 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5419 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5420 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5421 | pte_l2_s_cache_mode
5422 #endif
5423 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5424 l2pte_set(src_ptep, nsrc_pte, 0);
5425 PTE_SYNC(src_ptep);
5426 cpu_tlb_flushD_SE(vsrcp);
5427 cpu_cpwait();
5428 }
5429 if (!dst_okcolor) {
5430 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5431 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5432 l2pte_set(dst_ptep, ndst_pte, 0);
5433 PTE_SYNC(dst_ptep);
5434 cpu_tlb_flushD_SE(vdstp);
5435 cpu_cpwait();
5436 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5437 /*
5438 * If we are direct-mapped and our color isn't ok, then before
5439 * we bcopy to the new page invalidate its contents from the
5440 * cache and reset its color to its natural color.
5441 */
5442 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5443 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5444 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5445 #endif
5446 }
5447 bcopy_page(vsrcp, vdstp);
5448 #ifdef PMAP_CACHE_VIVT
5449 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5450 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5451 #endif
5452 /*
5453 * Unmap the pages.
5454 */
5455 if (!src_okcolor) {
5456 l2pte_reset(src_ptep);
5457 PTE_SYNC(src_ptep);
5458 cpu_tlb_flushD_SE(vsrcp);
5459 cpu_cpwait();
5460 }
5461 if (!dst_okcolor) {
5462 l2pte_reset(dst_ptep);
5463 PTE_SYNC(dst_ptep);
5464 cpu_tlb_flushD_SE(vdstp);
5465 cpu_cpwait();
5466 }
5467 #ifdef PMAP_CACHE_VIPT
5468 /*
5469 * Now that the destination page is in the cache, mark it as colored.
5470 * If this was an exec page, discard it.
5471 */
5472 pmap_acquire_page_lock(dst_md);
5473 #ifndef ARM_MMU_EXTENDED
5474 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5475 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5476 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5477 }
5478 if (!pmap_is_page_colored_p(dst_md)) {
5479 PMAPCOUNT(vac_color_new);
5480 dst_md->pvh_attrs |= PVF_COLORED;
5481 }
5482 dst_md->pvh_attrs |= PVF_DIRTY;
5483 #endif
5484 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5485 dst_md->pvh_attrs &= ~PVF_EXEC;
5486 PMAPCOUNT(exec_discarded_copy);
5487 }
5488 pmap_release_page_lock(dst_md);
5489 #endif
5490 }
5491 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5492
5493 #if ARM_MMU_XSCALE == 1
5494 void
5495 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5496 {
5497 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5498 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5499 #ifdef DEBUG
5500 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5501
5502 if (!SLIST_EMPTY(&dst_md->pvh_list))
5503 panic("pmap_copy_page: dst page has mappings");
5504 #endif
5505
5506 KDASSERT((src & PGOFSET) == 0);
5507 KDASSERT((dst & PGOFSET) == 0);
5508
5509 /*
5510 * Clean the source page. Hold the source page's lock for
5511 * the duration of the copy so that no other mappings can
5512 * be created while we have a potentially aliased mapping.
5513 */
5514 #ifdef PMAP_CACHE_VIVT
5515 pmap_acquire_page_lock(src_md);
5516 (void) pmap_clean_page(src_md, true);
5517 pmap_release_page_lock(src_md);
5518 #endif
5519
5520 /*
5521 * Map the pages into the page hook points, copy them, and purge
5522 * the cache for the appropriate page. Invalidate the TLB
5523 * as required.
5524 */
5525 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5526 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5527 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5528 l2pte_set(csrc_pte, nsrc_pte, 0);
5529 PTE_SYNC(csrc_pte);
5530
5531 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5532 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5533 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5534 l2pte_set(cdst_pte, ndst_pte, 0);
5535 PTE_SYNC(cdst_pte);
5536
5537 cpu_tlb_flushD_SE(csrcp);
5538 cpu_tlb_flushD_SE(cdstp);
5539 cpu_cpwait();
5540 bcopy_page(csrcp, cdstp);
5541 xscale_cache_clean_minidata();
5542 l2pte_reset(csrc_pte);
5543 l2pte_reset(cdst_pte);
5544 PTE_SYNC(csrc_pte);
5545 PTE_SYNC(cdst_pte);
5546 }
5547 #endif /* ARM_MMU_XSCALE == 1 */
5548
5549 /*
5550 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5551 *
5552 * Return the start and end addresses of the kernel's virtual space.
5553 * These values are setup in pmap_bootstrap and are updated as pages
5554 * are allocated.
5555 */
5556 void
5557 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5558 {
5559 *start = virtual_avail;
5560 *end = virtual_end;
5561 }
5562
5563 /*
5564 * Helper function for pmap_grow_l2_bucket()
5565 */
5566 static inline int
5567 pmap_grow_map(vaddr_t va, paddr_t *pap)
5568 {
5569 paddr_t pa;
5570
5571 if (uvm.page_init_done == false) {
5572 #ifdef PMAP_STEAL_MEMORY
5573 pv_addr_t pv;
5574 pmap_boot_pagealloc(PAGE_SIZE,
5575 #ifdef PMAP_CACHE_VIPT
5576 arm_cache_prefer_mask,
5577 va & arm_cache_prefer_mask,
5578 #else
5579 0, 0,
5580 #endif
5581 &pv);
5582 pa = pv.pv_pa;
5583 #else
5584 if (uvm_page_physget(&pa) == false)
5585 return (1);
5586 #endif /* PMAP_STEAL_MEMORY */
5587 } else {
5588 struct vm_page *pg;
5589 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5590 if (pg == NULL)
5591 return (1);
5592 pa = VM_PAGE_TO_PHYS(pg);
5593 /*
5594 * This new page must not have any mappings. Enter it via
5595 * pmap_kenter_pa and let that routine do the hard work.
5596 */
5597 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5598 KASSERT(SLIST_EMPTY(&md->pvh_list));
5599 pmap_kenter_pa(va, pa,
5600 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5601 }
5602
5603 if (pap)
5604 *pap = pa;
5605
5606 PMAPCOUNT(pt_mappings);
5607 #ifdef DEBUG
5608 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5609 KDASSERT(l2b != NULL);
5610
5611 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5612 const pt_entry_t opte = *ptep;
5613 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5614 #endif
5615 memset((void *)va, 0, PAGE_SIZE);
5616 return (0);
5617 }
5618
5619 /*
5620 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5621 * used by pmap_growkernel().
5622 */
5623 static inline struct l2_bucket *
5624 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5625 {
5626 struct l2_dtable *l2;
5627 struct l2_bucket *l2b;
5628 u_short l1slot;
5629 vaddr_t nva;
5630
5631 l1slot = l1pte_index(va);
5632
5633 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5634 /*
5635 * No mapping at this address, as there is
5636 * no entry in the L1 table.
5637 * Need to allocate a new l2_dtable.
5638 */
5639 nva = pmap_kernel_l2dtable_kva;
5640 if ((nva & PGOFSET) == 0) {
5641 /*
5642 * Need to allocate a backing page
5643 */
5644 if (pmap_grow_map(nva, NULL))
5645 return (NULL);
5646 }
5647
5648 l2 = (struct l2_dtable *)nva;
5649 nva += sizeof(struct l2_dtable);
5650
5651 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5652 /*
5653 * The new l2_dtable straddles a page boundary.
5654 * Map in another page to cover it.
5655 */
5656 if (pmap_grow_map(nva, NULL))
5657 return (NULL);
5658 }
5659
5660 pmap_kernel_l2dtable_kva = nva;
5661
5662 /*
5663 * Link it into the parent pmap
5664 */
5665 pm->pm_l2[L2_IDX(l1slot)] = l2;
5666 }
5667
5668 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5669
5670 /*
5671 * Fetch pointer to the L2 page table associated with the address.
5672 */
5673 if (l2b->l2b_kva == NULL) {
5674 pt_entry_t *ptep;
5675
5676 /*
5677 * No L2 page table has been allocated. Chances are, this
5678 * is because we just allocated the l2_dtable, above.
5679 */
5680 nva = pmap_kernel_l2ptp_kva;
5681 ptep = (pt_entry_t *)nva;
5682 if ((nva & PGOFSET) == 0) {
5683 /*
5684 * Need to allocate a backing page
5685 */
5686 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5687 return (NULL);
5688 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5689 }
5690
5691 l2->l2_occupancy++;
5692 l2b->l2b_kva = ptep;
5693 l2b->l2b_l1slot = l1slot;
5694 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5695
5696 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5697 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5698 }
5699
5700 return (l2b);
5701 }
5702
5703 vaddr_t
5704 pmap_growkernel(vaddr_t maxkvaddr)
5705 {
5706 pmap_t kpm = pmap_kernel();
5707 #ifndef ARM_MMU_EXTENDED
5708 struct l1_ttable *l1;
5709 #endif
5710 int s;
5711
5712 if (maxkvaddr <= pmap_curmaxkvaddr)
5713 goto out; /* we are OK */
5714
5715 NPDEBUG(PDB_GROWKERN,
5716 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5717 pmap_curmaxkvaddr, maxkvaddr));
5718
5719 KDASSERT(maxkvaddr <= virtual_end);
5720
5721 /*
5722 * whoops! we need to add kernel PTPs
5723 */
5724
5725 s = splhigh(); /* to be safe */
5726 mutex_enter(kpm->pm_lock);
5727
5728 /* Map 1MB at a time */
5729 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5730 #ifdef ARM_MMU_EXTENDED
5731 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5732 pd_entry_t *pdep = spdep;
5733 #endif
5734 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5735 #ifdef ARM_MMU_EXTENDED
5736 pdep++,
5737 #endif
5738 l1slot++) {
5739 struct l2_bucket *l2b =
5740 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5741 KASSERT(l2b != NULL);
5742
5743 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5744 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5745 #ifdef ARM_MMU_EXTENDED
5746 l1pte_setone(pdep, npde);
5747 #else
5748 /* Distribute new L1 entry to all other L1s */
5749 SLIST_FOREACH(l1, &l1_list, l1_link) {
5750 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5751 l1pte_setone(pdep, npde);
5752 PDE_SYNC(pdep);
5753 }
5754 #endif
5755 }
5756 #ifdef ARM_MMU_EXTENDED
5757 PDE_SYNC_RANGE(spdep, pdep - spdep);
5758 #endif
5759
5760 #ifdef PMAP_CACHE_VIVT
5761 /*
5762 * flush out the cache, expensive but growkernel will happen so
5763 * rarely
5764 */
5765 cpu_dcache_wbinv_all();
5766 cpu_tlb_flushD();
5767 cpu_cpwait();
5768 #endif
5769
5770 mutex_exit(kpm->pm_lock);
5771 splx(s);
5772
5773 out:
5774 return (pmap_curmaxkvaddr);
5775 }
5776
5777 /************************ Utility routines ****************************/
5778
5779 #ifndef ARM_HAS_VBAR
5780 /*
5781 * vector_page_setprot:
5782 *
5783 * Manipulate the protection of the vector page.
5784 */
5785 void
5786 vector_page_setprot(int prot)
5787 {
5788 struct l2_bucket *l2b;
5789 pt_entry_t *ptep;
5790
5791 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5792 /*
5793 * If we are using VBAR to use the vectors in the kernel, then it's
5794 * already mapped in the kernel text so no need to anything here.
5795 */
5796 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5797 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5798 return;
5799 }
5800 #endif
5801
5802 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5803 KASSERT(l2b != NULL);
5804
5805 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5806
5807 const pt_entry_t opte = *ptep;
5808 #ifdef ARM_MMU_EXTENDED
5809 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5810 | L2_S_PROT(PTE_KERNEL, prot);
5811 #else
5812 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5813 | L2_S_PROT(PTE_KERNEL, prot);
5814 #endif
5815 l2pte_set(ptep, npte, opte);
5816 PTE_SYNC(ptep);
5817 cpu_tlb_flushD_SE(vector_page);
5818 cpu_cpwait();
5819 }
5820 #endif
5821
5822 /*
5823 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5824 * Returns true if the mapping exists, else false.
5825 *
5826 * NOTE: This function is only used by a couple of arm-specific modules.
5827 * It is not safe to take any pmap locks here, since we could be right
5828 * in the middle of debugging the pmap anyway...
5829 *
5830 * It is possible for this routine to return false even though a valid
5831 * mapping does exist. This is because we don't lock, so the metadata
5832 * state may be inconsistent.
5833 *
5834 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5835 * a "section" mapping.
5836 */
5837 bool
5838 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5839 {
5840 struct l2_dtable *l2;
5841 pd_entry_t *pdep, pde;
5842 pt_entry_t *ptep;
5843 u_short l1slot;
5844
5845 if (pm->pm_l1 == NULL)
5846 return false;
5847
5848 l1slot = l1pte_index(va);
5849 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
5850 pde = *pdep;
5851
5852 if (l1pte_section_p(pde)) {
5853 *ptp = NULL;
5854 return true;
5855 }
5856
5857 l2 = pm->pm_l2[L2_IDX(l1slot)];
5858 if (l2 == NULL ||
5859 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
5860 return false;
5861 }
5862
5863 *ptp = &ptep[l2pte_index(va)];
5864 return true;
5865 }
5866
5867 bool
5868 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5869 {
5870
5871 if (pm->pm_l1 == NULL)
5872 return false;
5873
5874 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
5875
5876 return true;
5877 }
5878
5879 /************************ Bootstrapping routines ****************************/
5880
5881 #ifndef ARM_MMU_EXTENDED
5882 static void
5883 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5884 {
5885 int i;
5886
5887 l1->l1_kva = l1pt;
5888 l1->l1_domain_use_count = 0;
5889 l1->l1_domain_first = 0;
5890
5891 for (i = 0; i < PMAP_DOMAINS; i++)
5892 l1->l1_domain_free[i] = i + 1;
5893
5894 /*
5895 * Copy the kernel's L1 entries to each new L1.
5896 */
5897 if (pmap_initialized)
5898 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5899
5900 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5901 &l1->l1_physaddr) == false)
5902 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5903
5904 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5905 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5906 }
5907 #endif /* !ARM_MMU_EXTENDED */
5908
5909 /*
5910 * pmap_bootstrap() is called from the board-specific initarm() routine
5911 * once the kernel L1/L2 descriptors tables have been set up.
5912 *
5913 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5914 * spread over a number of disparate files/functions.
5915 *
5916 * We are passed the following parameters
5917 * - kernel_l1pt
5918 * This is a pointer to the base of the kernel's L1 translation table.
5919 * - vstart
5920 * 1MB-aligned start of managed kernel virtual memory.
5921 * - vend
5922 * 1MB-aligned end of managed kernel virtual memory.
5923 *
5924 * We use the first parameter to build the metadata (struct l1_ttable and
5925 * struct l2_dtable) necessary to track kernel mappings.
5926 */
5927 #define PMAP_STATIC_L2_SIZE 16
5928 void
5929 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5930 {
5931 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5932 #ifndef ARM_MMU_EXTENDED
5933 static struct l1_ttable static_l1;
5934 struct l1_ttable *l1 = &static_l1;
5935 #endif
5936 struct l2_dtable *l2;
5937 struct l2_bucket *l2b;
5938 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5939 pmap_t pm = pmap_kernel();
5940 pt_entry_t *ptep;
5941 paddr_t pa;
5942 vsize_t size;
5943 int nptes, l2idx, l2next = 0;
5944
5945 #ifdef ARM_MMU_EXTENDED
5946 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
5947 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
5948 #endif
5949
5950 #ifdef VERBOSE_INIT_ARM
5951 printf("kpm ");
5952 #endif
5953 /*
5954 * Initialise the kernel pmap object
5955 */
5956 curcpu()->ci_pmap_cur = pm;
5957 #ifdef ARM_MMU_EXTENDED
5958 pm->pm_l1 = l1pt;
5959 pm->pm_l1_pa = kernel_l1pt.pv_pa;
5960 #ifdef VERBOSE_INIT_ARM
5961 printf("tlb0 ");
5962 #endif
5963 pmap_tlb_info_init(&pmap_tlb0_info);
5964 #ifdef MULTIPROCESSOR
5965 #ifdef VERBOSE_INIT_ARM
5966 printf("kcpusets ");
5967 #endif
5968 pm->pm_onproc = kcpuset_running;
5969 pm->pm_active = kcpuset_running;
5970 #endif
5971 #else
5972 pm->pm_l1 = l1;
5973 #endif
5974
5975 #ifdef VERBOSE_INIT_ARM
5976 printf("locks ");
5977 #endif
5978 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5979 if (arm_cache_prefer_mask != 0) {
5980 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
5981 } else {
5982 #endif
5983 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
5984 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5985 }
5986 #endif
5987 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5988 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5989 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5990
5991 #ifdef VERBOSE_INIT_ARM
5992 printf("l1pt ");
5993 #endif
5994 /*
5995 * Scan the L1 translation table created by initarm() and create
5996 * the required metadata for all valid mappings found in it.
5997 */
5998 for (size_t l1slot = 0;
5999 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6000 l1slot++) {
6001 pd_entry_t pde = l1pt[l1slot];
6002
6003 /*
6004 * We're only interested in Coarse mappings.
6005 * pmap_extract() can deal with section mappings without
6006 * recourse to checking L2 metadata.
6007 */
6008 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6009 continue;
6010
6011 /*
6012 * Lookup the KVA of this L2 descriptor table
6013 */
6014 pa = l1pte_pa(pde);
6015 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6016 if (ptep == NULL) {
6017 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6018 (u_int)l1slot << L1_S_SHIFT, pa);
6019 }
6020
6021 /*
6022 * Fetch the associated L2 metadata structure.
6023 * Allocate a new one if necessary.
6024 */
6025 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6026 if (l2next == PMAP_STATIC_L2_SIZE)
6027 panic("pmap_bootstrap: out of static L2s");
6028 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6029 }
6030
6031 /*
6032 * One more L1 slot tracked...
6033 */
6034 l2->l2_occupancy++;
6035
6036 /*
6037 * Fill in the details of the L2 descriptor in the
6038 * appropriate bucket.
6039 */
6040 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6041 l2b->l2b_kva = ptep;
6042 l2b->l2b_pa = pa;
6043 l2b->l2b_l1slot = l1slot;
6044
6045 /*
6046 * Establish an initial occupancy count for this descriptor
6047 */
6048 for (l2idx = 0;
6049 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6050 l2idx++) {
6051 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6052 l2b->l2b_occupancy++;
6053 }
6054 }
6055
6056 /*
6057 * Make sure the descriptor itself has the correct cache mode.
6058 * If not, fix it, but whine about the problem. Port-meisters
6059 * should consider this a clue to fix up their initarm()
6060 * function. :)
6061 */
6062 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6063 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6064 "L2 pte @ %p\n", ptep);
6065 }
6066 }
6067
6068 #ifdef VERBOSE_INIT_ARM
6069 printf("cache(l1pt) ");
6070 #endif
6071 /*
6072 * Ensure the primary (kernel) L1 has the correct cache mode for
6073 * a page table. Bitch if it is not correctly set.
6074 */
6075 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6076 L1_TABLE_SIZE / L2_S_SIZE)) {
6077 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6078 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6079 }
6080
6081 #ifdef PMAP_CACHE_VIVT
6082 cpu_dcache_wbinv_all();
6083 cpu_tlb_flushID();
6084 cpu_cpwait();
6085 #endif
6086
6087 /*
6088 * now we allocate the "special" VAs which are used for tmp mappings
6089 * by the pmap (and other modules). we allocate the VAs by advancing
6090 * virtual_avail (note that there are no pages mapped at these VAs).
6091 *
6092 * Managed KVM space start from wherever initarm() tells us.
6093 */
6094 virtual_avail = vstart;
6095 virtual_end = vend;
6096
6097 #ifdef VERBOSE_INIT_ARM
6098 printf("specials ");
6099 #endif
6100 #ifdef PMAP_CACHE_VIPT
6101 /*
6102 * If we have a VIPT cache, we need one page/pte per possible alias
6103 * page so we won't violate cache aliasing rules.
6104 */
6105 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6106 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6107 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6108 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6109 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6110 }
6111 #else
6112 nptes = PAGE_SIZE / L2_S_SIZE;
6113 #endif
6114 #ifdef MULTIPROCESSOR
6115 cnptes = nptes;
6116 nptes *= arm_cpu_max;
6117 #endif
6118 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6119 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6120 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6121 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6122 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6123 if (msgbufaddr == NULL) {
6124 pmap_alloc_specials(&virtual_avail,
6125 round_page(MSGBUFSIZE) / PAGE_SIZE,
6126 (void *)&msgbufaddr, NULL);
6127 }
6128
6129 /*
6130 * Allocate a range of kernel virtual address space to be used
6131 * for L2 descriptor tables and metadata allocation in
6132 * pmap_growkernel().
6133 */
6134 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6135 pmap_alloc_specials(&virtual_avail,
6136 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6137 &pmap_kernel_l2ptp_kva, NULL);
6138
6139 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6140 pmap_alloc_specials(&virtual_avail,
6141 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6142 &pmap_kernel_l2dtable_kva, NULL);
6143
6144 #ifndef ARM_MMU_EXTENDED
6145 /*
6146 * init the static-global locks and global pmap list.
6147 */
6148 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6149
6150 /*
6151 * We can now initialise the first L1's metadata.
6152 */
6153 SLIST_INIT(&l1_list);
6154 TAILQ_INIT(&l1_lru_list);
6155 pmap_init_l1(l1, l1pt);
6156 #endif /* ARM_MMU_EXTENDED */
6157
6158 #ifndef ARM_HAS_VBAR
6159 /* Set up vector page L1 details, if necessary */
6160 if (vector_page < KERNEL_BASE) {
6161 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6162 l2b = pmap_get_l2_bucket(pm, vector_page);
6163 KDASSERT(l2b != NULL);
6164 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6165 L1_C_DOM(pmap_domain(pm));
6166 } else
6167 pm->pm_pl1vec = NULL;
6168 #endif
6169
6170 #ifdef VERBOSE_INIT_ARM
6171 printf("pools ");
6172 #endif
6173 /*
6174 * Initialize the pmap cache
6175 */
6176 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6177 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6178 LIST_INIT(&pmap_pmaps);
6179 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
6180
6181 /*
6182 * Initialize the pv pool.
6183 */
6184 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6185 &pmap_bootstrap_pv_allocator, IPL_NONE);
6186
6187 /*
6188 * Initialize the L2 dtable pool and cache.
6189 */
6190 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6191 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6192
6193 /*
6194 * Initialise the L2 descriptor table pool and cache
6195 */
6196 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6197 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6198 pmap_l2ptp_ctor, NULL, NULL);
6199
6200 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6201
6202 cpu_dcache_wbinv_all();
6203 }
6204
6205 static bool
6206 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6207 {
6208 #ifdef ARM_MMU_EXTENDED
6209 return false;
6210 #else
6211 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6212 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6213 return false;
6214
6215 const vaddr_t eva = va + nptes * PAGE_SIZE;
6216 int rv = 0;
6217
6218 while (va < eva) {
6219 /*
6220 * Make sure the descriptor itself has the correct cache mode
6221 */
6222 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6223 pd_entry_t pde = *pdep;
6224
6225 if (l1pte_section_p(pde)) {
6226 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6227 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6228 *pdep = (pde & ~L1_S_CACHE_MASK) |
6229 pte_l1_s_cache_mode_pt;
6230 PDE_SYNC(pdep);
6231 cpu_dcache_wbinv_range((vaddr_t)pdep,
6232 sizeof(*pdep));
6233 rv = 1;
6234 }
6235 return rv;
6236 }
6237 vaddr_t pa = l1pte_pa(pde);
6238 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6239 if (ptep == NULL)
6240 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6241
6242 ptep += l2pte_index(va);
6243 const pt_entry_t opte = *ptep;
6244 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6245 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6246 | pte_l2_s_cache_mode_pt;
6247 l2pte_set(ptep, npte, opte);
6248 PTE_SYNC(ptep);
6249 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6250 rv = 1;
6251 }
6252 va += PAGE_SIZE;
6253 }
6254
6255 return (rv);
6256 #endif
6257 }
6258
6259 static void
6260 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6261 {
6262 vaddr_t va = *availp;
6263 struct l2_bucket *l2b;
6264
6265 if (ptep) {
6266 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6267 if (l2b == NULL)
6268 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6269
6270 if (ptep)
6271 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6272 }
6273
6274 *vap = va;
6275 *availp = va + (PAGE_SIZE * pages);
6276 }
6277
6278 void
6279 pmap_init(void)
6280 {
6281
6282 /*
6283 * Set the available memory vars - These do not map to real memory
6284 * addresses and cannot as the physical memory is fragmented.
6285 * They are used by ps for %mem calculations.
6286 * One could argue whether this should be the entire memory or just
6287 * the memory that is useable in a user process.
6288 */
6289 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
6290 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
6291
6292 /*
6293 * Now we need to free enough pv_entry structures to allow us to get
6294 * the kmem_map/kmem_object allocated and inited (done after this
6295 * function is finished). to do this we allocate one bootstrap page out
6296 * of kernel_map and use it to provide an initial pool of pv_entry
6297 * structures. we never free this page.
6298 */
6299 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6300
6301 #ifdef ARM_MMU_EXTENDED
6302 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6303 #endif
6304
6305 pmap_initialized = true;
6306 }
6307
6308 static vaddr_t last_bootstrap_page = 0;
6309 static void *free_bootstrap_pages = NULL;
6310
6311 static void *
6312 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6313 {
6314 extern void *pool_page_alloc(struct pool *, int);
6315 vaddr_t new_page;
6316 void *rv;
6317
6318 if (pmap_initialized)
6319 return (pool_page_alloc(pp, flags));
6320
6321 if (free_bootstrap_pages) {
6322 rv = free_bootstrap_pages;
6323 free_bootstrap_pages = *((void **)rv);
6324 return (rv);
6325 }
6326
6327 KASSERT(kernel_map != NULL);
6328 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6329 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6330
6331 KASSERT(new_page > last_bootstrap_page);
6332 last_bootstrap_page = new_page;
6333 return ((void *)new_page);
6334 }
6335
6336 static void
6337 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6338 {
6339 extern void pool_page_free(struct pool *, void *);
6340
6341 if ((vaddr_t)v <= last_bootstrap_page) {
6342 *((void **)v) = free_bootstrap_pages;
6343 free_bootstrap_pages = v;
6344 return;
6345 }
6346
6347 if (pmap_initialized) {
6348 pool_page_free(pp, v);
6349 return;
6350 }
6351 }
6352
6353 /*
6354 * pmap_postinit()
6355 *
6356 * This routine is called after the vm and kmem subsystems have been
6357 * initialised. This allows the pmap code to perform any initialisation
6358 * that can only be done one the memory allocation is in place.
6359 */
6360 void
6361 pmap_postinit(void)
6362 {
6363 #ifndef ARM_MMU_EXTENDED
6364 extern paddr_t physical_start, physical_end;
6365 struct l1_ttable *l1;
6366 struct pglist plist;
6367 struct vm_page *m;
6368 pd_entry_t *pdep;
6369 vaddr_t va, eva;
6370 u_int loop, needed;
6371 int error;
6372 #endif
6373
6374 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6375 pool_cache_setlowat(&pmap_l2dtable_cache,
6376 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6377
6378 #ifndef ARM_MMU_EXTENDED
6379 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6380 needed -= 1;
6381
6382 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6383
6384 for (loop = 0; loop < needed; loop++, l1++) {
6385 /* Allocate a L1 page table */
6386 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6387 if (va == 0)
6388 panic("Cannot allocate L1 KVM");
6389
6390 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6391 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6392 if (error)
6393 panic("Cannot allocate L1 physical pages");
6394
6395 m = TAILQ_FIRST(&plist);
6396 eva = va + L1_TABLE_SIZE;
6397 pdep = (pd_entry_t *)va;
6398
6399 while (m && va < eva) {
6400 paddr_t pa = VM_PAGE_TO_PHYS(m);
6401
6402 pmap_kenter_pa(va, pa,
6403 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6404
6405 va += PAGE_SIZE;
6406 m = TAILQ_NEXT(m, pageq.queue);
6407 }
6408
6409 #ifdef DIAGNOSTIC
6410 if (m)
6411 panic("pmap_alloc_l1pt: pglist not empty");
6412 #endif /* DIAGNOSTIC */
6413
6414 pmap_init_l1(l1, pdep);
6415 }
6416
6417 #ifdef DEBUG
6418 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6419 needed);
6420 #endif
6421 #endif /* !ARM_MMU_EXTENDED */
6422 }
6423
6424 /*
6425 * Note that the following routines are used by board-specific initialisation
6426 * code to configure the initial kernel page tables.
6427 *
6428 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
6429 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
6430 * behaviour of the old pmap, and provides an easy migration path for
6431 * initial bring-up of the new pmap on existing ports. Fortunately,
6432 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
6433 * will be deprecated.
6434 *
6435 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
6436 * tables.
6437 */
6438
6439 /*
6440 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6441 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6442 * find them as necessary.
6443 *
6444 * Note that the data on this list MUST remain valid after initarm() returns,
6445 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6446 */
6447 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6448
6449 static vaddr_t
6450 kernel_pt_lookup(paddr_t pa)
6451 {
6452 pv_addr_t *pv;
6453
6454 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6455 if (pv->pv_pa == (pa & ~PGOFSET))
6456 return (pv->pv_va | (pa & PGOFSET));
6457 }
6458 return (0);
6459 }
6460
6461 /*
6462 * pmap_map_section:
6463 *
6464 * Create a single section mapping.
6465 */
6466 void
6467 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6468 {
6469 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6470 const size_t l1slot = l1pte_index(va);
6471 pd_entry_t fl;
6472
6473 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6474
6475 switch (cache) {
6476 case PTE_NOCACHE:
6477 default:
6478 fl = 0;
6479 break;
6480
6481 case PTE_CACHE:
6482 fl = pte_l1_s_cache_mode;
6483 break;
6484
6485 case PTE_PAGETABLE:
6486 fl = pte_l1_s_cache_mode_pt;
6487 break;
6488 }
6489
6490 const pd_entry_t npde = L1_S_PROTO | pa |
6491 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6492 l1pte_setone(pdep + l1slot, npde);
6493 PDE_SYNC(pdep + l1slot);
6494 }
6495
6496 /*
6497 * pmap_map_entry:
6498 *
6499 * Create a single page mapping.
6500 */
6501 void
6502 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6503 {
6504 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6505 const size_t l1slot = l1pte_index(va);
6506 pt_entry_t npte;
6507 pt_entry_t *ptep;
6508
6509 KASSERT(((va | pa) & PGOFSET) == 0);
6510
6511 switch (cache) {
6512 case PTE_NOCACHE:
6513 default:
6514 npte = 0;
6515 break;
6516
6517 case PTE_CACHE:
6518 npte = pte_l2_s_cache_mode;
6519 break;
6520
6521 case PTE_PAGETABLE:
6522 npte = pte_l2_s_cache_mode_pt;
6523 break;
6524 }
6525
6526 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6527 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6528
6529 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6530 if (ptep == NULL)
6531 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6532
6533 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6534 #ifdef ARM_MMU_EXTENDED
6535 if (prot & VM_PROT_EXECUTE) {
6536 npte &= ~L2_XS_XN;
6537 }
6538 #endif
6539 ptep += l2pte_index(va);
6540 l2pte_set(ptep, npte, 0);
6541 PTE_SYNC(ptep);
6542 }
6543
6544 /*
6545 * pmap_link_l2pt:
6546 *
6547 * Link the L2 page table specified by "l2pv" into the L1
6548 * page table at the slot for "va".
6549 */
6550 void
6551 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6552 {
6553 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6554
6555 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6556 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6557
6558 const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6559 | l2pv->pv_pa;
6560
6561 l1pte_set(pdep, npde);
6562 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6563
6564 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6565 }
6566
6567 /*
6568 * pmap_map_chunk:
6569 *
6570 * Map a chunk of memory using the most efficient mappings
6571 * possible (section, large page, small page) into the
6572 * provided L1 and L2 tables at the specified virtual address.
6573 */
6574 vsize_t
6575 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6576 int prot, int cache)
6577 {
6578 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6579 pt_entry_t f1, f2s, f2l;
6580 vsize_t resid;
6581
6582 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6583
6584 if (l1pt == 0)
6585 panic("pmap_map_chunk: no L1 table provided");
6586
6587 #ifdef VERBOSE_INIT_ARM
6588 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6589 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6590 #endif
6591
6592 switch (cache) {
6593 case PTE_NOCACHE:
6594 default:
6595 f1 = 0;
6596 f2l = 0;
6597 f2s = 0;
6598 break;
6599
6600 case PTE_CACHE:
6601 f1 = pte_l1_s_cache_mode;
6602 f2l = pte_l2_l_cache_mode;
6603 f2s = pte_l2_s_cache_mode;
6604 break;
6605
6606 case PTE_PAGETABLE:
6607 f1 = pte_l1_s_cache_mode_pt;
6608 f2l = pte_l2_l_cache_mode_pt;
6609 f2s = pte_l2_s_cache_mode_pt;
6610 break;
6611 }
6612
6613 size = resid;
6614
6615 while (resid > 0) {
6616 const size_t l1slot = l1pte_index(va);
6617 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6618 /* See if we can use a supersection mapping. */
6619 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6620 /* Supersection are always domain 0 */
6621 const pd_entry_t npde = L1_SS_PROTO | pa
6622 #ifdef ARM_MMU_EXTENDED_XXX
6623 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6624 #endif
6625 #ifdef ARM_MMU_EXTENDED
6626 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6627 #endif
6628 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6629 #ifdef VERBOSE_INIT_ARM
6630 printf("sS");
6631 #endif
6632 l1pte_set(&pdep[l1slot], npde);
6633 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6634 va += L1_SS_SIZE;
6635 pa += L1_SS_SIZE;
6636 resid -= L1_SS_SIZE;
6637 continue;
6638 }
6639 #endif
6640 /* See if we can use a section mapping. */
6641 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6642 const pd_entry_t npde = L1_S_PROTO | pa
6643 #ifdef ARM_MMU_EXTENDED_XXX
6644 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6645 #endif
6646 #ifdef ARM_MMU_EXTENDED
6647 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6648 #endif
6649 | L1_S_PROT(PTE_KERNEL, prot) | f1
6650 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6651 #ifdef VERBOSE_INIT_ARM
6652 printf("S");
6653 #endif
6654 l1pte_set(&pdep[l1slot], npde);
6655 PDE_SYNC(&pdep[l1slot]);
6656 va += L1_S_SIZE;
6657 pa += L1_S_SIZE;
6658 resid -= L1_S_SIZE;
6659 continue;
6660 }
6661
6662 /*
6663 * Ok, we're going to use an L2 table. Make sure
6664 * one is actually in the corresponding L1 slot
6665 * for the current VA.
6666 */
6667 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6668 panic("%s: no L2 table for VA %#lx", __func__, va);
6669
6670 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6671 if (ptep == NULL)
6672 panic("%s: can't find L2 table for VA %#lx", __func__,
6673 va);
6674
6675 ptep += l2pte_index(va);
6676
6677 /* See if we can use a L2 large page mapping. */
6678 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6679 const pt_entry_t npte = L2_L_PROTO | pa
6680 #ifdef ARM_MMU_EXTENDED_XXX
6681 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6682 #endif
6683 #ifdef ARM_MMU_EXTENDED
6684 | (va & 0x80000000 ? 0 : L2_XS_nG)
6685 #endif
6686 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6687 #ifdef VERBOSE_INIT_ARM
6688 printf("L");
6689 #endif
6690 l2pte_set(ptep, npte, 0);
6691 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6692 va += L2_L_SIZE;
6693 pa += L2_L_SIZE;
6694 resid -= L2_L_SIZE;
6695 continue;
6696 }
6697
6698 /* Use a small page mapping. */
6699 #ifdef VERBOSE_INIT_ARM
6700 printf("P");
6701 #endif
6702 const pt_entry_t npte = L2_S_PROTO | pa
6703 #ifdef ARM_MMU_EXTENDED_XXX
6704 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6705 #endif
6706 #ifdef ARM_MMU_EXTENDED
6707 | (va & 0x80000000 ? 0 : L2_XS_nG)
6708 #endif
6709 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6710 l2pte_set(ptep, npte, 0);
6711 PTE_SYNC(ptep);
6712 va += PAGE_SIZE;
6713 pa += PAGE_SIZE;
6714 resid -= PAGE_SIZE;
6715 }
6716 #ifdef VERBOSE_INIT_ARM
6717 printf("\n");
6718 #endif
6719 return (size);
6720 }
6721
6722 /********************** Static device map routines ***************************/
6723
6724 static const struct pmap_devmap *pmap_devmap_table;
6725
6726 /*
6727 * Register the devmap table. This is provided in case early console
6728 * initialization needs to register mappings created by bootstrap code
6729 * before pmap_devmap_bootstrap() is called.
6730 */
6731 void
6732 pmap_devmap_register(const struct pmap_devmap *table)
6733 {
6734
6735 pmap_devmap_table = table;
6736 }
6737
6738 /*
6739 * Map all of the static regions in the devmap table, and remember
6740 * the devmap table so other parts of the kernel can look up entries
6741 * later.
6742 */
6743 void
6744 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6745 {
6746 int i;
6747
6748 pmap_devmap_table = table;
6749
6750 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6751 #ifdef VERBOSE_INIT_ARM
6752 printf("devmap: %08lx -> %08lx @ %08lx\n",
6753 pmap_devmap_table[i].pd_pa,
6754 pmap_devmap_table[i].pd_pa +
6755 pmap_devmap_table[i].pd_size - 1,
6756 pmap_devmap_table[i].pd_va);
6757 #endif
6758 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6759 pmap_devmap_table[i].pd_pa,
6760 pmap_devmap_table[i].pd_size,
6761 pmap_devmap_table[i].pd_prot,
6762 pmap_devmap_table[i].pd_cache);
6763 }
6764 }
6765
6766 const struct pmap_devmap *
6767 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6768 {
6769 uint64_t endpa;
6770 int i;
6771
6772 if (pmap_devmap_table == NULL)
6773 return (NULL);
6774
6775 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6776
6777 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6778 if (pa >= pmap_devmap_table[i].pd_pa &&
6779 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6780 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6781 return (&pmap_devmap_table[i]);
6782 }
6783
6784 return (NULL);
6785 }
6786
6787 const struct pmap_devmap *
6788 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6789 {
6790 int i;
6791
6792 if (pmap_devmap_table == NULL)
6793 return (NULL);
6794
6795 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6796 if (va >= pmap_devmap_table[i].pd_va &&
6797 va + size - 1 <= pmap_devmap_table[i].pd_va +
6798 pmap_devmap_table[i].pd_size - 1)
6799 return (&pmap_devmap_table[i]);
6800 }
6801
6802 return (NULL);
6803 }
6804
6805 /********************** PTE initialization routines **************************/
6806
6807 /*
6808 * These routines are called when the CPU type is identified to set up
6809 * the PTE prototypes, cache modes, etc.
6810 *
6811 * The variables are always here, just in case modules need to reference
6812 * them (though, they shouldn't).
6813 */
6814
6815 pt_entry_t pte_l1_s_cache_mode;
6816 pt_entry_t pte_l1_s_wc_mode;
6817 pt_entry_t pte_l1_s_cache_mode_pt;
6818 pt_entry_t pte_l1_s_cache_mask;
6819
6820 pt_entry_t pte_l2_l_cache_mode;
6821 pt_entry_t pte_l2_l_wc_mode;
6822 pt_entry_t pte_l2_l_cache_mode_pt;
6823 pt_entry_t pte_l2_l_cache_mask;
6824
6825 pt_entry_t pte_l2_s_cache_mode;
6826 pt_entry_t pte_l2_s_wc_mode;
6827 pt_entry_t pte_l2_s_cache_mode_pt;
6828 pt_entry_t pte_l2_s_cache_mask;
6829
6830 pt_entry_t pte_l1_s_prot_u;
6831 pt_entry_t pte_l1_s_prot_w;
6832 pt_entry_t pte_l1_s_prot_ro;
6833 pt_entry_t pte_l1_s_prot_mask;
6834
6835 pt_entry_t pte_l2_s_prot_u;
6836 pt_entry_t pte_l2_s_prot_w;
6837 pt_entry_t pte_l2_s_prot_ro;
6838 pt_entry_t pte_l2_s_prot_mask;
6839
6840 pt_entry_t pte_l2_l_prot_u;
6841 pt_entry_t pte_l2_l_prot_w;
6842 pt_entry_t pte_l2_l_prot_ro;
6843 pt_entry_t pte_l2_l_prot_mask;
6844
6845 pt_entry_t pte_l1_ss_proto;
6846 pt_entry_t pte_l1_s_proto;
6847 pt_entry_t pte_l1_c_proto;
6848 pt_entry_t pte_l2_s_proto;
6849
6850 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6851 void (*pmap_zero_page_func)(paddr_t);
6852
6853 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6854 void
6855 pmap_pte_init_generic(void)
6856 {
6857
6858 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6859 pte_l1_s_wc_mode = L1_S_B;
6860 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6861
6862 pte_l2_l_cache_mode = L2_B|L2_C;
6863 pte_l2_l_wc_mode = L2_B;
6864 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6865
6866 pte_l2_s_cache_mode = L2_B|L2_C;
6867 pte_l2_s_wc_mode = L2_B;
6868 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6869
6870 /*
6871 * If we have a write-through cache, set B and C. If
6872 * we have a write-back cache, then we assume setting
6873 * only C will make those pages write-through (except for those
6874 * Cortex CPUs which can read the L1 caches).
6875 */
6876 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6877 #if ARM_MMU_V7 > 0
6878 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6879 #endif
6880 #if ARM_MMU_V6 > 0
6881 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6882 #endif
6883 || false) {
6884 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6885 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6886 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6887 } else {
6888 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6889 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6890 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6891 }
6892
6893 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6894 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6895 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6896 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6897
6898 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6899 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6900 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6901 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6902
6903 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6904 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6905 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6906 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6907
6908 pte_l1_ss_proto = L1_SS_PROTO_generic;
6909 pte_l1_s_proto = L1_S_PROTO_generic;
6910 pte_l1_c_proto = L1_C_PROTO_generic;
6911 pte_l2_s_proto = L2_S_PROTO_generic;
6912
6913 pmap_copy_page_func = pmap_copy_page_generic;
6914 pmap_zero_page_func = pmap_zero_page_generic;
6915 }
6916
6917 #if defined(CPU_ARM8)
6918 void
6919 pmap_pte_init_arm8(void)
6920 {
6921
6922 /*
6923 * ARM8 is compatible with generic, but we need to use
6924 * the page tables uncached.
6925 */
6926 pmap_pte_init_generic();
6927
6928 pte_l1_s_cache_mode_pt = 0;
6929 pte_l2_l_cache_mode_pt = 0;
6930 pte_l2_s_cache_mode_pt = 0;
6931 }
6932 #endif /* CPU_ARM8 */
6933
6934 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6935 void
6936 pmap_pte_init_arm9(void)
6937 {
6938
6939 /*
6940 * ARM9 is compatible with generic, but we want to use
6941 * write-through caching for now.
6942 */
6943 pmap_pte_init_generic();
6944
6945 pte_l1_s_cache_mode = L1_S_C;
6946 pte_l2_l_cache_mode = L2_C;
6947 pte_l2_s_cache_mode = L2_C;
6948
6949 pte_l1_s_wc_mode = L1_S_B;
6950 pte_l2_l_wc_mode = L2_B;
6951 pte_l2_s_wc_mode = L2_B;
6952
6953 pte_l1_s_cache_mode_pt = L1_S_C;
6954 pte_l2_l_cache_mode_pt = L2_C;
6955 pte_l2_s_cache_mode_pt = L2_C;
6956 }
6957 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6958 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6959
6960 #if defined(CPU_ARM10)
6961 void
6962 pmap_pte_init_arm10(void)
6963 {
6964
6965 /*
6966 * ARM10 is compatible with generic, but we want to use
6967 * write-through caching for now.
6968 */
6969 pmap_pte_init_generic();
6970
6971 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6972 pte_l2_l_cache_mode = L2_B | L2_C;
6973 pte_l2_s_cache_mode = L2_B | L2_C;
6974
6975 pte_l1_s_cache_mode = L1_S_B;
6976 pte_l2_l_cache_mode = L2_B;
6977 pte_l2_s_cache_mode = L2_B;
6978
6979 pte_l1_s_cache_mode_pt = L1_S_C;
6980 pte_l2_l_cache_mode_pt = L2_C;
6981 pte_l2_s_cache_mode_pt = L2_C;
6982
6983 }
6984 #endif /* CPU_ARM10 */
6985
6986 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6987 void
6988 pmap_pte_init_arm11(void)
6989 {
6990
6991 /*
6992 * ARM11 is compatible with generic, but we want to use
6993 * write-through caching for now.
6994 */
6995 pmap_pte_init_generic();
6996
6997 pte_l1_s_cache_mode = L1_S_C;
6998 pte_l2_l_cache_mode = L2_C;
6999 pte_l2_s_cache_mode = L2_C;
7000
7001 pte_l1_s_wc_mode = L1_S_B;
7002 pte_l2_l_wc_mode = L2_B;
7003 pte_l2_s_wc_mode = L2_B;
7004
7005 pte_l1_s_cache_mode_pt = L1_S_C;
7006 pte_l2_l_cache_mode_pt = L2_C;
7007 pte_l2_s_cache_mode_pt = L2_C;
7008 }
7009 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7010
7011 #if ARM_MMU_SA1 == 1
7012 void
7013 pmap_pte_init_sa1(void)
7014 {
7015
7016 /*
7017 * The StrongARM SA-1 cache does not have a write-through
7018 * mode. So, do the generic initialization, then reset
7019 * the page table cache mode to B=1,C=1, and note that
7020 * the PTEs need to be sync'd.
7021 */
7022 pmap_pte_init_generic();
7023
7024 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7025 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7026 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7027
7028 pmap_needs_pte_sync = 1;
7029 }
7030 #endif /* ARM_MMU_SA1 == 1*/
7031
7032 #if ARM_MMU_XSCALE == 1
7033 #if (ARM_NMMUS > 1)
7034 static u_int xscale_use_minidata;
7035 #endif
7036
7037 void
7038 pmap_pte_init_xscale(void)
7039 {
7040 uint32_t auxctl;
7041 int write_through = 0;
7042
7043 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7044 pte_l1_s_wc_mode = L1_S_B;
7045 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7046
7047 pte_l2_l_cache_mode = L2_B|L2_C;
7048 pte_l2_l_wc_mode = L2_B;
7049 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7050
7051 pte_l2_s_cache_mode = L2_B|L2_C;
7052 pte_l2_s_wc_mode = L2_B;
7053 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7054
7055 pte_l1_s_cache_mode_pt = L1_S_C;
7056 pte_l2_l_cache_mode_pt = L2_C;
7057 pte_l2_s_cache_mode_pt = L2_C;
7058
7059 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7060 /*
7061 * The XScale core has an enhanced mode where writes that
7062 * miss the cache cause a cache line to be allocated. This
7063 * is significantly faster than the traditional, write-through
7064 * behavior of this case.
7065 */
7066 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7067 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7068 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7069 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7070
7071 #ifdef XSCALE_CACHE_WRITE_THROUGH
7072 /*
7073 * Some versions of the XScale core have various bugs in
7074 * their cache units, the work-around for which is to run
7075 * the cache in write-through mode. Unfortunately, this
7076 * has a major (negative) impact on performance. So, we
7077 * go ahead and run fast-and-loose, in the hopes that we
7078 * don't line up the planets in a way that will trip the
7079 * bugs.
7080 *
7081 * However, we give you the option to be slow-but-correct.
7082 */
7083 write_through = 1;
7084 #elif defined(XSCALE_CACHE_WRITE_BACK)
7085 /* force write back cache mode */
7086 write_through = 0;
7087 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7088 /*
7089 * Intel PXA2[15]0 processors are known to have a bug in
7090 * write-back cache on revision 4 and earlier (stepping
7091 * A[01] and B[012]). Fixed for C0 and later.
7092 */
7093 {
7094 uint32_t id, type;
7095
7096 id = cpufunc_id();
7097 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7098
7099 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7100 if ((id & CPU_ID_REVISION_MASK) < 5) {
7101 /* write through for stepping A0-1 and B0-2 */
7102 write_through = 1;
7103 }
7104 }
7105 }
7106 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7107
7108 if (write_through) {
7109 pte_l1_s_cache_mode = L1_S_C;
7110 pte_l2_l_cache_mode = L2_C;
7111 pte_l2_s_cache_mode = L2_C;
7112 }
7113
7114 #if (ARM_NMMUS > 1)
7115 xscale_use_minidata = 1;
7116 #endif
7117
7118 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7119 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7120 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7121 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7122
7123 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7124 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7125 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7126 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7127
7128 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7129 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7130 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7131 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7132
7133 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7134 pte_l1_s_proto = L1_S_PROTO_xscale;
7135 pte_l1_c_proto = L1_C_PROTO_xscale;
7136 pte_l2_s_proto = L2_S_PROTO_xscale;
7137
7138 pmap_copy_page_func = pmap_copy_page_xscale;
7139 pmap_zero_page_func = pmap_zero_page_xscale;
7140
7141 /*
7142 * Disable ECC protection of page table access, for now.
7143 */
7144 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
7145 auxctl &= ~XSCALE_AUXCTL_P;
7146 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
7147 }
7148
7149 /*
7150 * xscale_setup_minidata:
7151 *
7152 * Set up the mini-data cache clean area. We require the
7153 * caller to allocate the right amount of physically and
7154 * virtually contiguous space.
7155 */
7156 void
7157 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7158 {
7159 extern vaddr_t xscale_minidata_clean_addr;
7160 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7161 pd_entry_t *pde = (pd_entry_t *) l1pt;
7162 vsize_t size;
7163 uint32_t auxctl;
7164
7165 xscale_minidata_clean_addr = va;
7166
7167 /* Round it to page size. */
7168 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7169
7170 for (; size != 0;
7171 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7172 const size_t l1slot = l1pte_index(va);
7173 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7174 if (ptep == NULL)
7175 panic("xscale_setup_minidata: can't find L2 table for "
7176 "VA 0x%08lx", va);
7177
7178 ptep += l2pte_index(va);
7179 pt_entry_t opte = *ptep;
7180 l2pte_set(ptep,
7181 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7182 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7183 }
7184
7185 /*
7186 * Configure the mini-data cache for write-back with
7187 * read/write-allocate.
7188 *
7189 * NOTE: In order to reconfigure the mini-data cache, we must
7190 * make sure it contains no valid data! In order to do that,
7191 * we must issue a global data cache invalidate command!
7192 *
7193 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7194 * THIS IS VERY IMPORTANT!
7195 */
7196
7197 /* Invalidate data and mini-data. */
7198 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7199 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
7200 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7201 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
7202 }
7203
7204 /*
7205 * Change the PTEs for the specified kernel mappings such that they
7206 * will use the mini data cache instead of the main data cache.
7207 */
7208 void
7209 pmap_uarea(vaddr_t va)
7210 {
7211 vaddr_t next_bucket, eva;
7212
7213 #if (ARM_NMMUS > 1)
7214 if (xscale_use_minidata == 0)
7215 return;
7216 #endif
7217
7218 eva = va + USPACE;
7219
7220 while (va < eva) {
7221 next_bucket = L2_NEXT_BUCKET_VA(va);
7222 if (next_bucket > eva)
7223 next_bucket = eva;
7224
7225 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7226 KDASSERT(l2b != NULL);
7227
7228 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7229 pt_entry_t *ptep = sptep;
7230
7231 while (va < next_bucket) {
7232 const pt_entry_t opte = *ptep;
7233 if (!l2pte_minidata_p(opte)) {
7234 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7235 cpu_tlb_flushD_SE(va);
7236 l2pte_set(ptep, opte & ~L2_B, opte);
7237 }
7238 ptep += PAGE_SIZE / L2_S_SIZE;
7239 va += PAGE_SIZE;
7240 }
7241 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7242 }
7243 cpu_cpwait();
7244 }
7245 #endif /* ARM_MMU_XSCALE == 1 */
7246
7247
7248 #if defined(CPU_ARM11MPCORE)
7249
7250 void
7251 pmap_pte_init_arm11mpcore(void)
7252 {
7253
7254 /* cache mode is controlled by 5 bits (B, C, TEX) */
7255 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7256 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7257 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7258 /* use extended small page (without APn, with TEX) */
7259 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7260 #else
7261 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7262 #endif
7263
7264 /* write-back, write-allocate */
7265 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7266 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7267 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7268 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7269 #else
7270 /* no TEX. read-allocate */
7271 pte_l2_s_cache_mode = L2_C | L2_B;
7272 #endif
7273 /*
7274 * write-back, write-allocate for page tables.
7275 */
7276 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7277 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7278 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7279 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7280 #else
7281 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7282 #endif
7283
7284 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7285 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7286 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7287 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7288
7289 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7290 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7291 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7292 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7293 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7294
7295 #else
7296 /* with AP[0..3] */
7297 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7298 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7299 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7300 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7301 #endif
7302
7303 #ifdef ARM11MPCORE_COMPAT_MMU
7304 /* with AP[0..3] */
7305 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7306 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7307 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7308 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7309
7310 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7311 pte_l1_s_proto = L1_S_PROTO_armv6;
7312 pte_l1_c_proto = L1_C_PROTO_armv6;
7313 pte_l2_s_proto = L2_S_PROTO_armv6c;
7314 #else
7315 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7316 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7317 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7318 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7319
7320 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7321 pte_l1_s_proto = L1_S_PROTO_armv6;
7322 pte_l1_c_proto = L1_C_PROTO_armv6;
7323 pte_l2_s_proto = L2_S_PROTO_armv6n;
7324 #endif
7325
7326 pmap_copy_page_func = pmap_copy_page_generic;
7327 pmap_zero_page_func = pmap_zero_page_generic;
7328 pmap_needs_pte_sync = 1;
7329 }
7330 #endif /* CPU_ARM11MPCORE */
7331
7332
7333 #if ARM_MMU_V7 == 1
7334 void
7335 pmap_pte_init_armv7(void)
7336 {
7337 /*
7338 * The ARMv7-A MMU is mostly compatible with generic. If the
7339 * AP field is zero, that now means "no access" rather than
7340 * read-only. The prototypes are a little different because of
7341 * the XN bit.
7342 */
7343 pmap_pte_init_generic();
7344
7345 pmap_needs_pte_sync = 1;
7346
7347 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7348 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7349 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7350
7351 /*
7352 * If the core support coherent walk then updates to translation tables
7353 * do not require a clean to the point of unification to ensure
7354 * visibility by subsequent translation table walks. That means we can
7355 * map everything shareable and cached and the right thing will happen.
7356 */
7357 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7358 pmap_needs_pte_sync = 0;
7359
7360 /*
7361 * write-back, no write-allocate, shareable for normal pages.
7362 */
7363 pte_l1_s_cache_mode |= L1_S_V6_S;
7364 pte_l2_l_cache_mode |= L2_XS_S;
7365 pte_l2_s_cache_mode |= L2_XS_S;
7366 }
7367
7368 /*
7369 * Page tables are just all other memory. We can use write-back since
7370 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7371 */
7372 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7373 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7374 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7375
7376 /*
7377 * Check the Memory Model Features to see if this CPU supports
7378 * the TLBIASID coproc op.
7379 */
7380 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7381 arm_has_tlbiasid_p = true;
7382 }
7383
7384 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7385 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7386 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7387 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7388
7389 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7390 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7391 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7392 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7393
7394 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7395 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7396 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7397 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7398
7399 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7400 pte_l1_s_proto = L1_S_PROTO_armv7;
7401 pte_l1_c_proto = L1_C_PROTO_armv7;
7402 pte_l2_s_proto = L2_S_PROTO_armv7;
7403
7404 }
7405 #endif /* ARM_MMU_V7 */
7406
7407 /*
7408 * return the PA of the current L1 table, for use when handling a crash dump
7409 */
7410 uint32_t
7411 pmap_kernel_L1_addr(void)
7412 {
7413 #ifdef ARM_MMU_EXTENDED
7414 return pmap_kernel()->pm_l1_pa;
7415 #else
7416 return pmap_kernel()->pm_l1->l1_physaddr;
7417 #endif
7418 }
7419
7420 #if defined(DDB)
7421 /*
7422 * A couple of ddb-callable functions for dumping pmaps
7423 */
7424 void pmap_dump_all(void);
7425 void pmap_dump(pmap_t);
7426
7427 void
7428 pmap_dump_all(void)
7429 {
7430 pmap_t pm;
7431
7432 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
7433 if (pm == pmap_kernel())
7434 continue;
7435 pmap_dump(pm);
7436 printf("\n");
7437 }
7438 }
7439
7440 static pt_entry_t ncptes[64];
7441 static void pmap_dump_ncpg(pmap_t);
7442
7443 void
7444 pmap_dump(pmap_t pm)
7445 {
7446 struct l2_dtable *l2;
7447 struct l2_bucket *l2b;
7448 pt_entry_t *ptep, pte;
7449 vaddr_t l2_va, l2b_va, va;
7450 int i, j, k, occ, rows = 0;
7451
7452 if (pm == pmap_kernel())
7453 printf("pmap_kernel (%p): ", pm);
7454 else
7455 printf("user pmap (%p): ", pm);
7456
7457 #ifdef ARM_MMU_EXTENDED
7458 printf("l1 at %p\n", pmap_l1_kva(pm));
7459 #else
7460 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7461 #endif
7462
7463 l2_va = 0;
7464 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7465 l2 = pm->pm_l2[i];
7466
7467 if (l2 == NULL || l2->l2_occupancy == 0)
7468 continue;
7469
7470 l2b_va = l2_va;
7471 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7472 l2b = &l2->l2_bucket[j];
7473
7474 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7475 continue;
7476
7477 ptep = l2b->l2b_kva;
7478
7479 for (k = 0; k < 256 && ptep[k] == 0; k++)
7480 ;
7481
7482 k &= ~63;
7483 occ = l2b->l2b_occupancy;
7484 va = l2b_va + (k * 4096);
7485 for (; k < 256; k++, va += 0x1000) {
7486 char ch = ' ';
7487 if ((k % 64) == 0) {
7488 if ((rows % 8) == 0) {
7489 printf(
7490 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7491 }
7492 printf("%08lx: ", va);
7493 }
7494
7495 ncptes[k & 63] = 0;
7496 pte = ptep[k];
7497 if (pte == 0) {
7498 ch = '.';
7499 } else {
7500 occ--;
7501 switch (pte & 0x0c) {
7502 case 0x00:
7503 ch = 'D'; /* No cache No buff */
7504 break;
7505 case 0x04:
7506 ch = 'B'; /* No cache buff */
7507 break;
7508 case 0x08:
7509 if (pte & 0x40)
7510 ch = 'm';
7511 else
7512 ch = 'C'; /* Cache No buff */
7513 break;
7514 case 0x0c:
7515 ch = 'F'; /* Cache Buff */
7516 break;
7517 }
7518
7519 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7520 ch += 0x20;
7521
7522 if ((pte & 0xc) == 0)
7523 ncptes[k & 63] = pte;
7524 }
7525
7526 if ((k % 64) == 63) {
7527 rows++;
7528 printf("%c\n", ch);
7529 pmap_dump_ncpg(pm);
7530 if (occ == 0)
7531 break;
7532 } else
7533 printf("%c", ch);
7534 }
7535 }
7536 }
7537 }
7538
7539 static void
7540 pmap_dump_ncpg(pmap_t pm)
7541 {
7542 struct vm_page *pg;
7543 struct vm_page_md *md;
7544 struct pv_entry *pv;
7545 int i;
7546
7547 for (i = 0; i < 63; i++) {
7548 if (ncptes[i] == 0)
7549 continue;
7550
7551 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7552 if (pg == NULL)
7553 continue;
7554 md = VM_PAGE_TO_MD(pg);
7555
7556 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7557 VM_PAGE_TO_PHYS(pg),
7558 md->krw_mappings, md->kro_mappings,
7559 md->urw_mappings, md->uro_mappings);
7560
7561 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7562 printf(" %c va 0x%08lx, flags 0x%x\n",
7563 (pm == pv->pv_pmap) ? '*' : ' ',
7564 pv->pv_va, pv->pv_flags);
7565 }
7566 }
7567 }
7568 #endif
7569
7570 #ifdef PMAP_STEAL_MEMORY
7571 void
7572 pmap_boot_pageadd(pv_addr_t *newpv)
7573 {
7574 pv_addr_t *pv, *npv;
7575
7576 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7577 if (newpv->pv_pa < pv->pv_va) {
7578 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7579 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7580 newpv->pv_size += pv->pv_size;
7581 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7582 }
7583 pv = NULL;
7584 } else {
7585 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7586 pv = npv) {
7587 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7588 KASSERT(pv->pv_pa < newpv->pv_pa);
7589 if (newpv->pv_pa > npv->pv_pa)
7590 continue;
7591 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7592 pv->pv_size += newpv->pv_size;
7593 return;
7594 }
7595 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7596 break;
7597 newpv->pv_size += npv->pv_size;
7598 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7599 SLIST_REMOVE_AFTER(newpv, pv_list);
7600 return;
7601 }
7602 }
7603 }
7604
7605 if (pv) {
7606 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7607 } else {
7608 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7609 }
7610 }
7611
7612 void
7613 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7614 pv_addr_t *rpv)
7615 {
7616 pv_addr_t *pv, **pvp;
7617 struct vm_physseg *ps;
7618 size_t i;
7619
7620 KASSERT(amount & PGOFSET);
7621 KASSERT((mask & PGOFSET) == 0);
7622 KASSERT((match & PGOFSET) == 0);
7623 KASSERT(amount != 0);
7624
7625 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7626 (pv = *pvp) != NULL;
7627 pvp = &SLIST_NEXT(pv, pv_list)) {
7628 pv_addr_t *newpv;
7629 psize_t off;
7630 /*
7631 * If this entry is too small to satify the request...
7632 */
7633 KASSERT(pv->pv_size > 0);
7634 if (pv->pv_size < amount)
7635 continue;
7636
7637 for (off = 0; off <= mask; off += PAGE_SIZE) {
7638 if (((pv->pv_pa + off) & mask) == match
7639 && off + amount <= pv->pv_size)
7640 break;
7641 }
7642 if (off > mask)
7643 continue;
7644
7645 rpv->pv_va = pv->pv_va + off;
7646 rpv->pv_pa = pv->pv_pa + off;
7647 rpv->pv_size = amount;
7648 pv->pv_size -= amount;
7649 if (pv->pv_size == 0) {
7650 KASSERT(off == 0);
7651 KASSERT((vaddr_t) pv == rpv->pv_va);
7652 *pvp = SLIST_NEXT(pv, pv_list);
7653 } else if (off == 0) {
7654 KASSERT((vaddr_t) pv == rpv->pv_va);
7655 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7656 *newpv = *pv;
7657 newpv->pv_pa += amount;
7658 newpv->pv_va += amount;
7659 *pvp = newpv;
7660 } else if (off < pv->pv_size) {
7661 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7662 *newpv = *pv;
7663 newpv->pv_size -= off;
7664 newpv->pv_pa += off + amount;
7665 newpv->pv_va += off + amount;
7666
7667 SLIST_NEXT(pv, pv_list) = newpv;
7668 pv->pv_size = off;
7669 } else {
7670 KASSERT((vaddr_t) pv != rpv->pv_va);
7671 }
7672 memset((void *)rpv->pv_va, 0, amount);
7673 return;
7674 }
7675
7676 if (vm_nphysseg == 0)
7677 panic("pmap_boot_pagealloc: couldn't allocate memory");
7678
7679 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7680 (pv = *pvp) != NULL;
7681 pvp = &SLIST_NEXT(pv, pv_list)) {
7682 if (SLIST_NEXT(pv, pv_list) == NULL)
7683 break;
7684 }
7685 KASSERT(mask == 0);
7686 for (i = 0; i < vm_nphysseg; i++) {
7687 ps = VM_PHYSMEM_PTR(i);
7688 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7689 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7690 rpv->pv_va = pv->pv_va;
7691 rpv->pv_pa = pv->pv_pa;
7692 rpv->pv_size = amount;
7693 *pvp = NULL;
7694 pmap_map_chunk(kernel_l1pt.pv_va,
7695 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7696 ptoa(ps->avail_start),
7697 amount - pv->pv_size,
7698 VM_PROT_READ|VM_PROT_WRITE,
7699 PTE_CACHE);
7700 ps->avail_start += atop(amount - pv->pv_size);
7701 /*
7702 * If we consumed the entire physseg, remove it.
7703 */
7704 if (ps->avail_start == ps->avail_end) {
7705 for (--vm_nphysseg; i < vm_nphysseg; i++)
7706 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7707 }
7708 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7709 return;
7710 }
7711 }
7712
7713 panic("pmap_boot_pagealloc: couldn't allocate memory");
7714 }
7715
7716 vaddr_t
7717 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7718 {
7719 pv_addr_t pv;
7720
7721 pmap_boot_pagealloc(size, 0, 0, &pv);
7722
7723 return pv.pv_va;
7724 }
7725 #endif /* PMAP_STEAL_MEMORY */
7726
7727 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7728 {
7729 sysctl_createv(clog, 0, NULL, NULL,
7730 CTLFLAG_PERMANENT,
7731 CTLTYPE_NODE, "machdep", NULL,
7732 NULL, 0, NULL, 0,
7733 CTL_MACHDEP, CTL_EOL);
7734
7735 sysctl_createv(clog, 0, NULL, NULL,
7736 CTLFLAG_PERMANENT,
7737 CTLTYPE_INT, "kmpages",
7738 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7739 NULL, 0, &pmap_kmpages, 0,
7740 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7741 }
7742
7743 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7744 struct vm_page *
7745 arm_pmap_alloc_poolpage(int flags)
7746 {
7747 /*
7748 * On some systems, only some pages may be "coherent" for dma and we
7749 * want to prefer those for pool pages (think mbufs) but fallback to
7750 * any page if none is available. But we can only fallback if we
7751 * aren't direct mapping memory or all of memory can be direct-mapped.
7752 * If that isn't true, pool changes can only come from direct-mapped
7753 * memory.
7754 */
7755 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7756 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7757 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(ARM_MMU_EXTENDED)
7758 (pmap_directbase < KERNEL_BASE
7759 ? UVM_PGA_STRAT_ONLY
7760 : UVM_PGA_STRAT_FALLBACK),
7761 #else
7762 UVM_PGA_STRAT_FALLBACK,
7763 #endif
7764 arm_poolpage_vmfreelist);
7765 }
7766
7767 return uvm_pagealloc(NULL, 0, NULL, flags);
7768 }
7769 #endif
7770
7771 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7772 void
7773 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7774 {
7775 /* nothing */
7776 }
7777
7778 int
7779 pic_ipi_shootdown(void *arg)
7780 {
7781 #if PMAP_NEED_TLB_SHOOTDOWN
7782 pmap_tlb_shootdown_process();
7783 #endif
7784 return 1;
7785 }
7786 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7787
7788
7789 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7790 vaddr_t
7791 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7792 {
7793 bool ok = false;
7794 if (physical_start <= pa && pa < physical_end) {
7795 #ifdef ARM_MMU_EXTENDED
7796 const vaddr_t newva = pmap_directbase + pa - physical_start;
7797 if (newva >= KERNEL_BASE) {
7798 va = newva;
7799 ok = true;
7800 }
7801 #else
7802 va = KERNEL_BASE + pa - physical_start;
7803 ok = true;
7804 #endif
7805 }
7806 KASSERT(ok_p);
7807 *ok_p = ok;
7808 return va;
7809 }
7810
7811 vaddr_t
7812 pmap_map_poolpage(paddr_t pa)
7813 {
7814 bool ok __diagused;
7815 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7816 KASSERT(ok);
7817 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7818 if (arm_cache_prefer_mask != 0) {
7819 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7820 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7821 pmap_acquire_page_lock(md);
7822 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7823 pmap_release_page_lock(md);
7824 }
7825 #endif
7826 return va;
7827 }
7828
7829 paddr_t
7830 pmap_unmap_poolpage(vaddr_t va)
7831 {
7832 KASSERT(va >= KERNEL_BASE);
7833 #if defined(ARM_MMU_EXTENDED)
7834 return va - pmap_directbase + physical_start;
7835 #else
7836 #ifdef PMAP_CACHE_VIVT
7837 cpu_idcache_wbinv_range(va, PAGE_SIZE);
7838 #endif
7839 return va - KERNEL_BASE + physical_start;
7840 #endif
7841 }
7842 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
7843