Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.304
      1 /*	$NetBSD: pmap.c,v 1.304 2014/10/20 07:13:27 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #ifdef MULTIPROCESSOR
    196 #define _INTR_PRIVATE
    197 #endif
    198 
    199 #include <sys/param.h>
    200 #include <sys/types.h>
    201 #include <sys/kernel.h>
    202 #include <sys/systm.h>
    203 #include <sys/proc.h>
    204 #include <sys/intr.h>
    205 #include <sys/pool.h>
    206 #include <sys/kmem.h>
    207 #include <sys/cdefs.h>
    208 #include <sys/cpu.h>
    209 #include <sys/sysctl.h>
    210 #include <sys/bus.h>
    211 #include <sys/atomic.h>
    212 #include <sys/kernhist.h>
    213 
    214 #include <uvm/uvm.h>
    215 
    216 #include <arm/locore.h>
    217 //#include <arm/arm32/katelib.h>
    218 
    219 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.304 2014/10/20 07:13:27 skrll Exp $");
    220 
    221 //#define PMAP_DEBUG
    222 #ifdef PMAP_DEBUG
    223 
    224 /* XXX need to get rid of all refs to this */
    225 int pmap_debug_level = 0;
    226 
    227 /*
    228  * for switching to potentially finer grained debugging
    229  */
    230 #define	PDB_FOLLOW	0x0001
    231 #define	PDB_INIT	0x0002
    232 #define	PDB_ENTER	0x0004
    233 #define	PDB_REMOVE	0x0008
    234 #define	PDB_CREATE	0x0010
    235 #define	PDB_PTPAGE	0x0020
    236 #define	PDB_GROWKERN	0x0040
    237 #define	PDB_BITS	0x0080
    238 #define	PDB_COLLECT	0x0100
    239 #define	PDB_PROTECT	0x0200
    240 #define	PDB_MAP_L1	0x0400
    241 #define	PDB_BOOTSTRAP	0x1000
    242 #define	PDB_PARANOIA	0x2000
    243 #define	PDB_WIRING	0x4000
    244 #define	PDB_PVDUMP	0x8000
    245 #define	PDB_VAC		0x10000
    246 #define	PDB_KENTER	0x20000
    247 #define	PDB_KREMOVE	0x40000
    248 #define	PDB_EXEC	0x80000
    249 
    250 int debugmap = 1;
    251 int pmapdebug = 0;
    252 #define	NPDEBUG(_lev_,_stat_) \
    253 	if (pmapdebug & (_lev_)) \
    254         	((_stat_))
    255 
    256 #else	/* PMAP_DEBUG */
    257 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    258 #endif	/* PMAP_DEBUG */
    259 
    260 /*
    261  * pmap_kernel() points here
    262  */
    263 static struct pmap	kernel_pmap_store = {
    264 #ifndef ARM_MMU_EXTENDED
    265 	.pm_activated = true,
    266 	.pm_domain = PMAP_DOMAIN_KERNEL,
    267 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    268 #endif
    269 };
    270 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    271 #undef pmap_kernel
    272 #define pmap_kernel()	(&kernel_pmap_store)
    273 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    274 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    275 #endif
    276 
    277 /*
    278  * Pool and cache that pmap structures are allocated from.
    279  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    280  * in pmap_create().
    281  */
    282 static struct pool_cache pmap_cache;
    283 static LIST_HEAD(, pmap) pmap_pmaps;
    284 
    285 /*
    286  * Pool of PV structures
    287  */
    288 static struct pool pmap_pv_pool;
    289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    292 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    293 };
    294 
    295 /*
    296  * Pool and cache of l2_dtable structures.
    297  * We use a cache to avoid clearing the structures when they're
    298  * allocated. (196 bytes)
    299  */
    300 static struct pool_cache pmap_l2dtable_cache;
    301 static vaddr_t pmap_kernel_l2dtable_kva;
    302 
    303 /*
    304  * Pool and cache of L2 page descriptors.
    305  * We use a cache to avoid clearing the descriptor table
    306  * when they're allocated. (1KB)
    307  */
    308 static struct pool_cache pmap_l2ptp_cache;
    309 static vaddr_t pmap_kernel_l2ptp_kva;
    310 static paddr_t pmap_kernel_l2ptp_phys;
    311 
    312 #ifdef PMAPCOUNTERS
    313 #define	PMAP_EVCNT_INITIALIZER(name) \
    314 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    315 
    316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    317 static struct evcnt pmap_ev_vac_clean_one =
    318    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    319 static struct evcnt pmap_ev_vac_flush_one =
    320    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    321 static struct evcnt pmap_ev_vac_flush_lots =
    322    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    323 static struct evcnt pmap_ev_vac_flush_lots2 =
    324    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    329 
    330 static struct evcnt pmap_ev_vac_color_new =
    331    PMAP_EVCNT_INITIALIZER("new page color");
    332 static struct evcnt pmap_ev_vac_color_reuse =
    333    PMAP_EVCNT_INITIALIZER("ok first page color");
    334 static struct evcnt pmap_ev_vac_color_ok =
    335    PMAP_EVCNT_INITIALIZER("ok page color");
    336 static struct evcnt pmap_ev_vac_color_blind =
    337    PMAP_EVCNT_INITIALIZER("blind page color");
    338 static struct evcnt pmap_ev_vac_color_change =
    339    PMAP_EVCNT_INITIALIZER("change page color");
    340 static struct evcnt pmap_ev_vac_color_erase =
    341    PMAP_EVCNT_INITIALIZER("erase page color");
    342 static struct evcnt pmap_ev_vac_color_none =
    343    PMAP_EVCNT_INITIALIZER("no page color");
    344 static struct evcnt pmap_ev_vac_color_restore =
    345    PMAP_EVCNT_INITIALIZER("restore page color");
    346 
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    355 #endif
    356 
    357 static struct evcnt pmap_ev_mappings =
    358    PMAP_EVCNT_INITIALIZER("pages mapped");
    359 static struct evcnt pmap_ev_unmappings =
    360    PMAP_EVCNT_INITIALIZER("pages unmapped");
    361 static struct evcnt pmap_ev_remappings =
    362    PMAP_EVCNT_INITIALIZER("pages remapped");
    363 
    364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    367 
    368 static struct evcnt pmap_ev_kernel_mappings =
    369    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    370 static struct evcnt pmap_ev_kernel_unmappings =
    371    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    372 static struct evcnt pmap_ev_kernel_remappings =
    373    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    374 
    375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    378 
    379 static struct evcnt pmap_ev_kenter_mappings =
    380    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    381 static struct evcnt pmap_ev_kenter_unmappings =
    382    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    383 static struct evcnt pmap_ev_kenter_remappings =
    384    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    385 static struct evcnt pmap_ev_pt_mappings =
    386    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    387 
    388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    392 
    393 static struct evcnt pmap_ev_fixup_mod =
    394    PMAP_EVCNT_INITIALIZER("page modification emulations");
    395 static struct evcnt pmap_ev_fixup_ref =
    396    PMAP_EVCNT_INITIALIZER("page reference emulations");
    397 static struct evcnt pmap_ev_fixup_exec =
    398    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    399 static struct evcnt pmap_ev_fixup_pdes =
    400    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    401 #ifndef ARM_MMU_EXTENDED
    402 static struct evcnt pmap_ev_fixup_ptesync =
    403    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    404 #endif
    405 
    406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    410 #ifndef ARM_MMU_EXTENDED
    411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    412 #endif
    413 
    414 #ifdef PMAP_CACHE_VIPT
    415 static struct evcnt pmap_ev_exec_mappings =
    416    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    417 static struct evcnt pmap_ev_exec_cached =
    418    PMAP_EVCNT_INITIALIZER("exec pages cached");
    419 
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    422 
    423 static struct evcnt pmap_ev_exec_synced =
    424    PMAP_EVCNT_INITIALIZER("exec pages synced");
    425 static struct evcnt pmap_ev_exec_synced_map =
    426    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    427 #ifndef ARM_MMU_EXTENDED
    428 static struct evcnt pmap_ev_exec_synced_unmap =
    429    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    430 static struct evcnt pmap_ev_exec_synced_remap =
    431    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    432 static struct evcnt pmap_ev_exec_synced_clearbit =
    433    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    434 static struct evcnt pmap_ev_exec_synced_kremove =
    435    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    436 #endif
    437 
    438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    440 #ifndef ARM_MMU_EXTENDED
    441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    445 #endif
    446 
    447 static struct evcnt pmap_ev_exec_discarded_unmap =
    448    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    449 static struct evcnt pmap_ev_exec_discarded_zero =
    450    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    451 static struct evcnt pmap_ev_exec_discarded_copy =
    452    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    453 static struct evcnt pmap_ev_exec_discarded_page_protect =
    454    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    455 static struct evcnt pmap_ev_exec_discarded_clearbit =
    456    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    457 static struct evcnt pmap_ev_exec_discarded_kremove =
    458    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    459 #ifdef ARM_MMU_EXTENDED
    460 static struct evcnt pmap_ev_exec_discarded_modfixup =
    461    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    462 #endif
    463 
    464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    470 #ifdef ARM_MMU_EXTENDED
    471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    472 #endif
    473 #endif /* PMAP_CACHE_VIPT */
    474 
    475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    478 
    479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    482 
    483 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    484 #else
    485 #define	PMAPCOUNT(x)	((void)0)
    486 #endif
    487 
    488 /*
    489  * pmap copy/zero page, and mem(5) hook point
    490  */
    491 static pt_entry_t *csrc_pte, *cdst_pte;
    492 static vaddr_t csrcp, cdstp;
    493 #ifdef MULTIPROCESSOR
    494 static size_t cnptes;
    495 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    496 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    497 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    498 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    499 #else
    500 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    501 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    502 #define	cpu_csrcp(o)	(csrcp + (o))
    503 #define	cpu_cdstp(o)	(cdstp + (o))
    504 #endif
    505 vaddr_t memhook;			/* used by mem.c & others */
    506 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    507 kmutex_t pmap_lock __cacheline_aligned;
    508 extern void *msgbufaddr;
    509 int pmap_kmpages;
    510 /*
    511  * Flag to indicate if pmap_init() has done its thing
    512  */
    513 bool pmap_initialized;
    514 
    515 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    516 /*
    517  * Start of direct-mapped memory
    518  */
    519 vaddr_t pmap_directbase = KERNEL_BASE;
    520 #endif
    521 
    522 /*
    523  * Misc. locking data structures
    524  */
    525 
    526 static inline void
    527 pmap_acquire_pmap_lock(pmap_t pm)
    528 {
    529 	if (pm == pmap_kernel()) {
    530 #ifdef MULTIPROCESSOR
    531 		KERNEL_LOCK(1, NULL);
    532 #endif
    533 	} else {
    534 		mutex_enter(pm->pm_lock);
    535 	}
    536 }
    537 
    538 static inline void
    539 pmap_release_pmap_lock(pmap_t pm)
    540 {
    541 	if (pm == pmap_kernel()) {
    542 #ifdef MULTIPROCESSOR
    543 		KERNEL_UNLOCK_ONE(NULL);
    544 #endif
    545 	} else {
    546 		mutex_exit(pm->pm_lock);
    547 	}
    548 }
    549 
    550 static inline void
    551 pmap_acquire_page_lock(struct vm_page_md *md)
    552 {
    553 	mutex_enter(&pmap_lock);
    554 }
    555 
    556 static inline void
    557 pmap_release_page_lock(struct vm_page_md *md)
    558 {
    559 	mutex_exit(&pmap_lock);
    560 }
    561 
    562 #ifdef DIAGNOSTIC
    563 static inline int
    564 pmap_page_locked_p(struct vm_page_md *md)
    565 {
    566 	return mutex_owned(&pmap_lock);
    567 }
    568 #endif
    569 
    570 
    571 /*
    572  * Metadata for L1 translation tables.
    573  */
    574 #ifndef ARM_MMU_EXTENDED
    575 struct l1_ttable {
    576 	/* Entry on the L1 Table list */
    577 	SLIST_ENTRY(l1_ttable) l1_link;
    578 
    579 	/* Entry on the L1 Least Recently Used list */
    580 	TAILQ_ENTRY(l1_ttable) l1_lru;
    581 
    582 	/* Track how many domains are allocated from this L1 */
    583 	volatile u_int l1_domain_use_count;
    584 
    585 	/*
    586 	 * A free-list of domain numbers for this L1.
    587 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    588 	 * is slow on ARM.
    589 	 */
    590 	uint8_t l1_domain_first;
    591 	uint8_t l1_domain_free[PMAP_DOMAINS];
    592 
    593 	/* Physical address of this L1 page table */
    594 	paddr_t l1_physaddr;
    595 
    596 	/* KVA of this L1 page table */
    597 	pd_entry_t *l1_kva;
    598 };
    599 
    600 /*
    601  * L1 Page Tables are tracked using a Least Recently Used list.
    602  *  - New L1s are allocated from the HEAD.
    603  *  - Freed L1s are added to the TAIl.
    604  *  - Recently accessed L1s (where an 'access' is some change to one of
    605  *    the userland pmaps which owns this L1) are moved to the TAIL.
    606  */
    607 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    608 static kmutex_t l1_lru_lock __cacheline_aligned;
    609 
    610 /*
    611  * A list of all L1 tables
    612  */
    613 static SLIST_HEAD(, l1_ttable) l1_list;
    614 #endif /* ARM_MMU_EXTENDED */
    615 
    616 /*
    617  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    618  *
    619  * This is normally 16MB worth L2 page descriptors for any given pmap.
    620  * Reference counts are maintained for L2 descriptors so they can be
    621  * freed when empty.
    622  */
    623 struct l2_bucket {
    624 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
    625 	paddr_t l2b_pa;			/* Physical address of same */
    626 	u_short l2b_l1slot;		/* This L2 table's L1 index */
    627 	u_short l2b_occupancy;		/* How many active descriptors */
    628 };
    629 
    630 struct l2_dtable {
    631 	/* The number of L2 page descriptors allocated to this l2_dtable */
    632 	u_int l2_occupancy;
    633 
    634 	/* List of L2 page descriptors */
    635 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
    636 };
    637 
    638 /*
    639  * Given an L1 table index, calculate the corresponding l2_dtable index
    640  * and bucket index within the l2_dtable.
    641  */
    642 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    643 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    644 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    645 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    646 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    647 
    648 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    649 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    650 
    651 /*
    652  * Given a virtual address, this macro returns the
    653  * virtual address required to drop into the next L2 bucket.
    654  */
    655 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    656 
    657 /*
    658  * L2 allocation.
    659  */
    660 #define	pmap_alloc_l2_dtable()		\
    661 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    662 #define	pmap_free_l2_dtable(l2)		\
    663 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    664 #define pmap_alloc_l2_ptp(pap)		\
    665 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    666 	    PR_NOWAIT, (pap)))
    667 
    668 /*
    669  * We try to map the page tables write-through, if possible.  However, not
    670  * all CPUs have a write-through cache mode, so on those we have to sync
    671  * the cache when we frob page tables.
    672  *
    673  * We try to evaluate this at compile time, if possible.  However, it's
    674  * not always possible to do that, hence this run-time var.
    675  */
    676 int	pmap_needs_pte_sync;
    677 
    678 /*
    679  * Real definition of pv_entry.
    680  */
    681 struct pv_entry {
    682 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    683 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    684 	vaddr_t		pv_va;          /* virtual address for mapping */
    685 	u_int		pv_flags;       /* flags */
    686 };
    687 
    688 /*
    689  * Macros to determine if a mapping might be resident in the
    690  * instruction/data cache and/or TLB
    691  */
    692 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    693 /*
    694  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    695  * there are no explicit accesses, so there may be always be TLB entries to
    696  * flush.  If we used ASIDs then this would not be a problem.
    697  */
    698 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    699 #define	PV_BEEN_REFD(f)   (true)
    700 #else
    701 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    702 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    703 #endif
    704 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    705 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    706 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    707 
    708 /*
    709  * Local prototypes
    710  */
    711 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    712 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    713 			    pt_entry_t **);
    714 static bool		pmap_is_current(pmap_t) __unused;
    715 static bool		pmap_is_cached(pmap_t);
    716 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    717 			    pmap_t, vaddr_t, u_int);
    718 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    719 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    720 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    721 			    u_int, u_int);
    722 
    723 static void		pmap_pinit(pmap_t);
    724 static int		pmap_pmap_ctor(void *, void *, int);
    725 
    726 static void		pmap_alloc_l1(pmap_t);
    727 static void		pmap_free_l1(pmap_t);
    728 #ifndef ARM_MMU_EXTENDED
    729 static void		pmap_use_l1(pmap_t);
    730 #endif
    731 
    732 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    733 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    734 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    735 static int		pmap_l2ptp_ctor(void *, void *, int);
    736 static int		pmap_l2dtable_ctor(void *, void *, int);
    737 
    738 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    739 #ifdef PMAP_CACHE_VIVT
    740 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    741 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    742 #endif
    743 
    744 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    745 #ifdef PMAP_CACHE_VIVT
    746 static bool		pmap_clean_page(struct vm_page_md *, bool);
    747 #endif
    748 #ifdef PMAP_CACHE_VIPT
    749 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    750 enum pmap_flush_op {
    751 	PMAP_FLUSH_PRIMARY,
    752 	PMAP_FLUSH_SECONDARY,
    753 	PMAP_CLEAN_PRIMARY
    754 };
    755 #ifndef ARM_MMU_EXTENDED
    756 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    757 #endif
    758 #endif
    759 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    760 
    761 #ifndef ARM_MMU_EXTENDED
    762 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    763 #endif
    764 static vaddr_t		kernel_pt_lookup(paddr_t);
    765 
    766 
    767 /*
    768  * Misc variables
    769  */
    770 vaddr_t virtual_avail;
    771 vaddr_t virtual_end;
    772 vaddr_t pmap_curmaxkvaddr;
    773 
    774 paddr_t avail_start;
    775 paddr_t avail_end;
    776 
    777 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    778 pv_addr_t kernelpages;
    779 pv_addr_t kernel_l1pt;
    780 pv_addr_t systempage;
    781 
    782 /* Function to set the debug level of the pmap code */
    783 
    784 #ifdef PMAP_DEBUG
    785 void
    786 pmap_debug(int level)
    787 {
    788 	pmap_debug_level = level;
    789 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    790 }
    791 #endif	/* PMAP_DEBUG */
    792 
    793 #ifdef PMAP_CACHE_VIPT
    794 #define PMAP_VALIDATE_MD_PAGE(md)	\
    795 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    796 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    797 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    798 #endif /* PMAP_CACHE_VIPT */
    799 /*
    800  * A bunch of routines to conditionally flush the caches/TLB depending
    801  * on whether the specified pmap actually needs to be flushed at any
    802  * given time.
    803  */
    804 static inline void
    805 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    806 {
    807 #ifdef ARM_MMU_EXTENDED
    808 	pmap_tlb_invalidate_addr(pm, va);
    809 #else
    810 	if (pm->pm_cstate.cs_tlb_id != 0) {
    811 		if (PV_BEEN_EXECD(flags)) {
    812 			cpu_tlb_flushID_SE(va);
    813 		} else if (PV_BEEN_REFD(flags)) {
    814 			cpu_tlb_flushD_SE(va);
    815 		}
    816 	}
    817 #endif /* ARM_MMU_EXTENDED */
    818 }
    819 
    820 static inline void
    821 pmap_tlb_flushID(pmap_t pm)
    822 {
    823 #ifdef ARM_MMU_EXTENDED
    824 	pmap_tlb_asid_release_all(pm);
    825 #else
    826 	if (pm->pm_cstate.cs_tlb_id) {
    827 		cpu_tlb_flushID();
    828 #if ARM_MMU_V7 == 0
    829 		/*
    830 		 * Speculative loads by Cortex cores can cause TLB entries to
    831 		 * be filled even if there are no explicit accesses, so there
    832 		 * may be always be TLB entries to flush.  If we used ASIDs
    833 		 * then it would not be a problem.
    834 		 * This is not true for other CPUs.
    835 		 */
    836 		pm->pm_cstate.cs_tlb = 0;
    837 #endif /* ARM_MMU_V7 */
    838 	}
    839 #endif /* ARM_MMU_EXTENDED */
    840 }
    841 
    842 static inline void
    843 pmap_tlb_flushD(pmap_t pm)
    844 {
    845 #ifdef ARM_MMU_EXTENDED
    846 	pmap_tlb_asid_release_all(pm);
    847 #else
    848 	if (pm->pm_cstate.cs_tlb_d) {
    849 		cpu_tlb_flushD();
    850 #if ARM_MMU_V7 == 0
    851 		/*
    852 		 * Speculative loads by Cortex cores can cause TLB entries to
    853 		 * be filled even if there are no explicit accesses, so there
    854 		 * may be always be TLB entries to flush.  If we used ASIDs
    855 		 * then it would not be a problem.
    856 		 * This is not true for other CPUs.
    857 		 */
    858 		pm->pm_cstate.cs_tlb_d = 0;
    859 #endif /* ARM_MMU_V7 */
    860 	}
    861 #endif /* ARM_MMU_EXTENDED */
    862 }
    863 
    864 #ifdef PMAP_CACHE_VIVT
    865 static inline void
    866 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    867 {
    868 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    869 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    870 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    871 		if (do_inv) {
    872 			if (flags & PVF_WRITE)
    873 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    874 			else
    875 				cpu_dcache_inv_range(va, PAGE_SIZE);
    876 		} else if (flags & PVF_WRITE) {
    877 			cpu_dcache_wb_range(va, PAGE_SIZE);
    878 		}
    879 	}
    880 }
    881 
    882 static inline void
    883 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    884 {
    885 	if (PV_BEEN_EXECD(flags)) {
    886 		if (pm->pm_cstate.cs_cache_id) {
    887 			cpu_idcache_wbinv_all();
    888 			pm->pm_cstate.cs_cache = 0;
    889 		}
    890 	} else if (pm->pm_cstate.cs_cache_d) {
    891 		cpu_dcache_wbinv_all();
    892 		pm->pm_cstate.cs_cache_d = 0;
    893 	}
    894 }
    895 #endif /* PMAP_CACHE_VIVT */
    896 
    897 static inline uint8_t
    898 pmap_domain(pmap_t pm)
    899 {
    900 #ifdef ARM_MMU_EXTENDED
    901 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    902 #else
    903 	return pm->pm_domain;
    904 #endif
    905 }
    906 
    907 static inline pd_entry_t *
    908 pmap_l1_kva(pmap_t pm)
    909 {
    910 #ifdef ARM_MMU_EXTENDED
    911 	return pm->pm_l1;
    912 #else
    913 	return pm->pm_l1->l1_kva;
    914 #endif
    915 }
    916 
    917 static inline bool
    918 pmap_is_current(pmap_t pm)
    919 {
    920 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    921 		return true;
    922 
    923 	return false;
    924 }
    925 
    926 static inline bool
    927 pmap_is_cached(pmap_t pm)
    928 {
    929 #ifdef ARM_MMU_EXTENDED
    930 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    931 	if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    932 		return true;
    933 #else
    934 	struct cpu_info * const ci = curcpu();
    935 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    936 	    || ci->ci_pmap_lastuser == pm)
    937 		return true;
    938 #endif /* ARM_MMU_EXTENDED */
    939 
    940 	return false;
    941 }
    942 
    943 /*
    944  * PTE_SYNC_CURRENT:
    945  *
    946  *     Make sure the pte is written out to RAM.
    947  *     We need to do this for one of two cases:
    948  *       - We're dealing with the kernel pmap
    949  *       - There is no pmap active in the cache/tlb.
    950  *       - The specified pmap is 'active' in the cache/tlb.
    951  */
    952 #ifdef PMAP_INCLUDE_PTE_SYNC
    953 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    954 do {					\
    955 	if (PMAP_NEEDS_PTE_SYNC && 	\
    956 	    pmap_is_cached(pm))		\
    957 		PTE_SYNC(ptep);		\
    958 } while (/*CONSTCOND*/0)
    959 #else
    960 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    961 #endif
    962 
    963 /*
    964  * main pv_entry manipulation functions:
    965  *   pmap_enter_pv: enter a mapping onto a vm_page list
    966  *   pmap_remove_pv: remove a mapping from a vm_page list
    967  *
    968  * NOTE: pmap_enter_pv expects to lock the pvh itself
    969  *       pmap_remove_pv expects the caller to lock the pvh before calling
    970  */
    971 
    972 /*
    973  * pmap_enter_pv: enter a mapping onto a vm_page lst
    974  *
    975  * => caller should hold the proper lock on pmap_main_lock
    976  * => caller should have pmap locked
    977  * => we will gain the lock on the vm_page and allocate the new pv_entry
    978  * => caller should adjust ptp's wire_count before calling
    979  * => caller should not adjust pmap's wire_count
    980  */
    981 static void
    982 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    983     vaddr_t va, u_int flags)
    984 {
    985 	struct pv_entry **pvp;
    986 
    987 	NPDEBUG(PDB_PVDUMP,
    988 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    989 
    990 	pv->pv_pmap = pm;
    991 	pv->pv_va = va;
    992 	pv->pv_flags = flags;
    993 
    994 	pvp = &SLIST_FIRST(&md->pvh_list);
    995 #ifdef PMAP_CACHE_VIPT
    996 	/*
    997 	 * Insert unmanaged entries, writeable first, at the head of
    998 	 * the pv list.
    999 	 */
   1000 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1001 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1002 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1003 	}
   1004 	if (!PV_IS_WRITE_P(flags)) {
   1005 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1006 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1007 	}
   1008 #endif
   1009 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1010 	*pvp = pv;				/* ... locked list */
   1011 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1012 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1013 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1014 		md->pvh_attrs |= PVF_KMOD;
   1015 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1016 		md->pvh_attrs |= PVF_DIRTY;
   1017 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1018 #endif
   1019 	if (pm == pmap_kernel()) {
   1020 		PMAPCOUNT(kernel_mappings);
   1021 		if (flags & PVF_WRITE)
   1022 			md->krw_mappings++;
   1023 		else
   1024 			md->kro_mappings++;
   1025 	} else {
   1026 		if (flags & PVF_WRITE)
   1027 			md->urw_mappings++;
   1028 		else
   1029 			md->uro_mappings++;
   1030 	}
   1031 
   1032 #ifdef PMAP_CACHE_VIPT
   1033 #ifndef ARM_MMU_EXTENDED
   1034 	/*
   1035 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1036 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1037 	 */
   1038 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1039 		md->pvh_attrs |= PVF_WRITE;
   1040 	}
   1041 #endif
   1042 	/*
   1043 	 * If this is an exec mapping and its the first exec mapping
   1044 	 * for this page, make sure to sync the I-cache.
   1045 	 */
   1046 	if (PV_IS_EXEC_P(flags)) {
   1047 #ifndef ARM_MMU_EXTENDED
   1048 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1049 			pmap_syncicache_page(md, pa);
   1050 			PMAPCOUNT(exec_synced_map);
   1051 		}
   1052 #endif
   1053 		PMAPCOUNT(exec_mappings);
   1054 	}
   1055 #endif
   1056 
   1057 	PMAPCOUNT(mappings);
   1058 
   1059 	if (pv->pv_flags & PVF_WIRED)
   1060 		++pm->pm_stats.wired_count;
   1061 }
   1062 
   1063 /*
   1064  *
   1065  * pmap_find_pv: Find a pv entry
   1066  *
   1067  * => caller should hold lock on vm_page
   1068  */
   1069 static inline struct pv_entry *
   1070 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1071 {
   1072 	struct pv_entry *pv;
   1073 
   1074 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1075 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1076 			break;
   1077 	}
   1078 
   1079 	return (pv);
   1080 }
   1081 
   1082 /*
   1083  * pmap_remove_pv: try to remove a mapping from a pv_list
   1084  *
   1085  * => caller should hold proper lock on pmap_main_lock
   1086  * => pmap should be locked
   1087  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1088  * => caller should adjust ptp's wire_count and free PTP if needed
   1089  * => caller should NOT adjust pmap's wire_count
   1090  * => we return the removed pv
   1091  */
   1092 static struct pv_entry *
   1093 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1094 {
   1095 	struct pv_entry *pv, **prevptr;
   1096 
   1097 	NPDEBUG(PDB_PVDUMP,
   1098 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
   1099 
   1100 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1101 	pv = *prevptr;
   1102 
   1103 	while (pv) {
   1104 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1105 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
   1106 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
   1107 			if (pv->pv_flags & PVF_WIRED) {
   1108 				--pm->pm_stats.wired_count;
   1109 			}
   1110 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1111 			if (pm == pmap_kernel()) {
   1112 				PMAPCOUNT(kernel_unmappings);
   1113 				if (pv->pv_flags & PVF_WRITE)
   1114 					md->krw_mappings--;
   1115 				else
   1116 					md->kro_mappings--;
   1117 			} else {
   1118 				if (pv->pv_flags & PVF_WRITE)
   1119 					md->urw_mappings--;
   1120 				else
   1121 					md->uro_mappings--;
   1122 			}
   1123 
   1124 			PMAPCOUNT(unmappings);
   1125 #ifdef PMAP_CACHE_VIPT
   1126 			if (!(pv->pv_flags & PVF_WRITE))
   1127 				break;
   1128 			/*
   1129 			 * If this page has had an exec mapping, then if
   1130 			 * this was the last mapping, discard the contents,
   1131 			 * otherwise sync the i-cache for this page.
   1132 			 */
   1133 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1134 #ifdef ARM_MMU_EXTENDED
   1135 				md->pvh_attrs &= ~PVF_EXEC;
   1136 				PMAPCOUNT(exec_discarded_unmap);
   1137 #else
   1138 				if (SLIST_EMPTY(&md->pvh_list)) {
   1139 					md->pvh_attrs &= ~PVF_EXEC;
   1140 					PMAPCOUNT(exec_discarded_unmap);
   1141 				} else {
   1142 					pmap_syncicache_page(md, pa);
   1143 					PMAPCOUNT(exec_synced_unmap);
   1144 				}
   1145 #endif /* ARM_MMU_EXTENDED */
   1146 			}
   1147 #endif /* PMAP_CACHE_VIPT */
   1148 			break;
   1149 		}
   1150 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1151 		pv = *prevptr;				/* advance */
   1152 	}
   1153 
   1154 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1155 	/*
   1156 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1157 	 * clear the KMOD attribute from the page.
   1158 	 */
   1159 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1160 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1161 		md->pvh_attrs &= ~PVF_KMOD;
   1162 
   1163 	/*
   1164 	 * If this was a writeable page and there are no more writeable
   1165 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1166 	 * the contents to memory.
   1167 	 */
   1168 	if (arm_cache_prefer_mask != 0) {
   1169 		if (md->krw_mappings + md->urw_mappings == 0)
   1170 			md->pvh_attrs &= ~PVF_WRITE;
   1171 		PMAP_VALIDATE_MD_PAGE(md);
   1172 	}
   1173 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1174 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1175 
   1176 	return(pv);				/* return removed pv */
   1177 }
   1178 
   1179 /*
   1180  *
   1181  * pmap_modify_pv: Update pv flags
   1182  *
   1183  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1184  * => caller should NOT adjust pmap's wire_count
   1185  * => caller must call pmap_vac_me_harder() if writable status of a page
   1186  *    may have changed.
   1187  * => we return the old flags
   1188  *
   1189  * Modify a physical-virtual mapping in the pv table
   1190  */
   1191 static u_int
   1192 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1193     u_int clr_mask, u_int set_mask)
   1194 {
   1195 	struct pv_entry *npv;
   1196 	u_int flags, oflags;
   1197 
   1198 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1199 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1200 
   1201 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1202 		return (0);
   1203 
   1204 	NPDEBUG(PDB_PVDUMP,
   1205 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1206 
   1207 	/*
   1208 	 * There is at least one VA mapping this page.
   1209 	 */
   1210 
   1211 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1212 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1213 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1214 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1215 			md->pvh_attrs |= PVF_DIRTY;
   1216 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1217 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1218 	}
   1219 
   1220 	oflags = npv->pv_flags;
   1221 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1222 
   1223 	if ((flags ^ oflags) & PVF_WIRED) {
   1224 		if (flags & PVF_WIRED)
   1225 			++pm->pm_stats.wired_count;
   1226 		else
   1227 			--pm->pm_stats.wired_count;
   1228 	}
   1229 
   1230 	if ((flags ^ oflags) & PVF_WRITE) {
   1231 		if (pm == pmap_kernel()) {
   1232 			if (flags & PVF_WRITE) {
   1233 				md->krw_mappings++;
   1234 				md->kro_mappings--;
   1235 			} else {
   1236 				md->kro_mappings++;
   1237 				md->krw_mappings--;
   1238 			}
   1239 		} else {
   1240 			if (flags & PVF_WRITE) {
   1241 				md->urw_mappings++;
   1242 				md->uro_mappings--;
   1243 			} else {
   1244 				md->uro_mappings++;
   1245 				md->urw_mappings--;
   1246 			}
   1247 		}
   1248 	}
   1249 #ifdef PMAP_CACHE_VIPT
   1250 	if (arm_cache_prefer_mask != 0) {
   1251 		if (md->urw_mappings + md->krw_mappings == 0) {
   1252 			md->pvh_attrs &= ~PVF_WRITE;
   1253 		} else {
   1254 			md->pvh_attrs |= PVF_WRITE;
   1255 		}
   1256 	}
   1257 #ifndef ARM_MMU_EXTENDED
   1258 	/*
   1259 	 * We have two cases here: the first is from enter_pv (new exec
   1260 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1261 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1262 	 * to do what pmap_remove_pv would do.
   1263 	 */
   1264 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1265 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1266 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1267 		pmap_syncicache_page(md, pa);
   1268 		PMAPCOUNT(exec_synced_remap);
   1269 	}
   1270 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1271 #endif /* !ARM_MMU_EXTENDED */
   1272 #endif /* PMAP_CACHE_VIPT */
   1273 
   1274 	PMAPCOUNT(remappings);
   1275 
   1276 	return (oflags);
   1277 }
   1278 
   1279 /*
   1280  * Allocate an L1 translation table for the specified pmap.
   1281  * This is called at pmap creation time.
   1282  */
   1283 static void
   1284 pmap_alloc_l1(pmap_t pm)
   1285 {
   1286 #ifdef ARM_MMU_EXTENDED
   1287 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1288 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1289 	struct vm_page *pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
   1290 #else
   1291 	struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1292 #endif
   1293 	bool ok __diagused;
   1294 	KASSERT(pg != NULL);
   1295 	pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
   1296 	vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
   1297 	KASSERT(ok);
   1298 	KASSERT(va >= KERNEL_BASE);
   1299 
   1300 #else
   1301 	KASSERTMSG(kernel_map != NULL, "pm %p", pm);
   1302 	vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1303 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1304 	KASSERT(va);
   1305 	pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
   1306 #endif
   1307 	pm->pm_l1 = (pd_entry_t *)va;
   1308 	PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
   1309 #else
   1310 	struct l1_ttable *l1;
   1311 	uint8_t domain;
   1312 
   1313 	/*
   1314 	 * Remove the L1 at the head of the LRU list
   1315 	 */
   1316 	mutex_spin_enter(&l1_lru_lock);
   1317 	l1 = TAILQ_FIRST(&l1_lru_list);
   1318 	KDASSERT(l1 != NULL);
   1319 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1320 
   1321 	/*
   1322 	 * Pick the first available domain number, and update
   1323 	 * the link to the next number.
   1324 	 */
   1325 	domain = l1->l1_domain_first;
   1326 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1327 
   1328 	/*
   1329 	 * If there are still free domain numbers in this L1,
   1330 	 * put it back on the TAIL of the LRU list.
   1331 	 */
   1332 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1333 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1334 
   1335 	mutex_spin_exit(&l1_lru_lock);
   1336 
   1337 	/*
   1338 	 * Fix up the relevant bits in the pmap structure
   1339 	 */
   1340 	pm->pm_l1 = l1;
   1341 	pm->pm_domain = domain + 1;
   1342 #endif
   1343 }
   1344 
   1345 /*
   1346  * Free an L1 translation table.
   1347  * This is called at pmap destruction time.
   1348  */
   1349 static void
   1350 pmap_free_l1(pmap_t pm)
   1351 {
   1352 #ifdef ARM_MMU_EXTENDED
   1353 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1354 	struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
   1355 	uvm_pagefree(pg);
   1356 #else
   1357 	uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
   1358 #endif
   1359 	pm->pm_l1 = NULL;
   1360 	pm->pm_l1_pa = 0;
   1361 #else
   1362 	struct l1_ttable *l1 = pm->pm_l1;
   1363 
   1364 	mutex_spin_enter(&l1_lru_lock);
   1365 
   1366 	/*
   1367 	 * If this L1 is currently on the LRU list, remove it.
   1368 	 */
   1369 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1370 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1371 
   1372 	/*
   1373 	 * Free up the domain number which was allocated to the pmap
   1374 	 */
   1375 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1376 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1377 	l1->l1_domain_use_count--;
   1378 
   1379 	/*
   1380 	 * The L1 now must have at least 1 free domain, so add
   1381 	 * it back to the LRU list. If the use count is zero,
   1382 	 * put it at the head of the list, otherwise it goes
   1383 	 * to the tail.
   1384 	 */
   1385 	if (l1->l1_domain_use_count == 0)
   1386 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1387 	else
   1388 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1389 
   1390 	mutex_spin_exit(&l1_lru_lock);
   1391 #endif /* ARM_MMU_EXTENDED */
   1392 }
   1393 
   1394 #ifndef ARM_MMU_EXTENDED
   1395 static inline void
   1396 pmap_use_l1(pmap_t pm)
   1397 {
   1398 	struct l1_ttable *l1;
   1399 
   1400 	/*
   1401 	 * Do nothing if we're in interrupt context.
   1402 	 * Access to an L1 by the kernel pmap must not affect
   1403 	 * the LRU list.
   1404 	 */
   1405 	if (cpu_intr_p() || pm == pmap_kernel())
   1406 		return;
   1407 
   1408 	l1 = pm->pm_l1;
   1409 
   1410 	/*
   1411 	 * If the L1 is not currently on the LRU list, just return
   1412 	 */
   1413 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1414 		return;
   1415 
   1416 	mutex_spin_enter(&l1_lru_lock);
   1417 
   1418 	/*
   1419 	 * Check the use count again, now that we've acquired the lock
   1420 	 */
   1421 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1422 		mutex_spin_exit(&l1_lru_lock);
   1423 		return;
   1424 	}
   1425 
   1426 	/*
   1427 	 * Move the L1 to the back of the LRU list
   1428 	 */
   1429 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1430 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1431 
   1432 	mutex_spin_exit(&l1_lru_lock);
   1433 }
   1434 #endif /* !ARM_MMU_EXTENDED */
   1435 
   1436 /*
   1437  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1438  *
   1439  * Free an L2 descriptor table.
   1440  */
   1441 static inline void
   1442 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1443 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1444 #else
   1445 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1446 #endif
   1447 {
   1448 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1449 	/*
   1450 	 * Note: With a write-back cache, we may need to sync this
   1451 	 * L2 table before re-using it.
   1452 	 * This is because it may have belonged to a non-current
   1453 	 * pmap, in which case the cache syncs would have been
   1454 	 * skipped for the pages that were being unmapped. If the
   1455 	 * L2 table were then to be immediately re-allocated to
   1456 	 * the *current* pmap, it may well contain stale mappings
   1457 	 * which have not yet been cleared by a cache write-back
   1458 	 * and so would still be visible to the mmu.
   1459 	 */
   1460 	if (need_sync)
   1461 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1462 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1463 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1464 }
   1465 
   1466 /*
   1467  * Returns a pointer to the L2 bucket associated with the specified pmap
   1468  * and VA, or NULL if no L2 bucket exists for the address.
   1469  */
   1470 static inline struct l2_bucket *
   1471 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1472 {
   1473 	const size_t l1slot = l1pte_index(va);
   1474 	struct l2_dtable *l2;
   1475 	struct l2_bucket *l2b;
   1476 
   1477 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1478 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1479 		return (NULL);
   1480 
   1481 	return (l2b);
   1482 }
   1483 
   1484 /*
   1485  * Returns a pointer to the L2 bucket associated with the specified pmap
   1486  * and VA.
   1487  *
   1488  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1489  * bucket/page table in place.
   1490  *
   1491  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1492  * increment the bucket occupancy counter appropriately *before*
   1493  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1494  * the bucket/page in the meantime.
   1495  */
   1496 static struct l2_bucket *
   1497 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1498 {
   1499 	const size_t l1slot = l1pte_index(va);
   1500 	struct l2_dtable *l2;
   1501 
   1502 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1503 		/*
   1504 		 * No mapping at this address, as there is
   1505 		 * no entry in the L1 table.
   1506 		 * Need to allocate a new l2_dtable.
   1507 		 */
   1508 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1509 			return (NULL);
   1510 
   1511 		/*
   1512 		 * Link it into the parent pmap
   1513 		 */
   1514 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1515 	}
   1516 
   1517 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1518 
   1519 	/*
   1520 	 * Fetch pointer to the L2 page table associated with the address.
   1521 	 */
   1522 	if (l2b->l2b_kva == NULL) {
   1523 		pt_entry_t *ptep;
   1524 
   1525 		/*
   1526 		 * No L2 page table has been allocated. Chances are, this
   1527 		 * is because we just allocated the l2_dtable, above.
   1528 		 */
   1529 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1530 			/*
   1531 			 * Oops, no more L2 page tables available at this
   1532 			 * time. We may need to deallocate the l2_dtable
   1533 			 * if we allocated a new one above.
   1534 			 */
   1535 			if (l2->l2_occupancy == 0) {
   1536 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1537 				pmap_free_l2_dtable(l2);
   1538 			}
   1539 			return (NULL);
   1540 		}
   1541 
   1542 		l2->l2_occupancy++;
   1543 		l2b->l2b_kva = ptep;
   1544 		l2b->l2b_l1slot = l1slot;
   1545 
   1546 #ifdef ARM_MMU_EXTENDED
   1547 		/*
   1548 		 * We know there will be a mapping here, so simply
   1549 		 * enter this PTP into the L1 now.
   1550 		 */
   1551 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1552 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1553 		    | L1_C_DOM(pmap_domain(pm));
   1554 		KASSERT(*pdep == 0);
   1555 		l1pte_setone(pdep, npde);
   1556 		PTE_SYNC(pdep);
   1557 #endif
   1558 	}
   1559 
   1560 	return (l2b);
   1561 }
   1562 
   1563 /*
   1564  * One or more mappings in the specified L2 descriptor table have just been
   1565  * invalidated.
   1566  *
   1567  * Garbage collect the metadata and descriptor table itself if necessary.
   1568  *
   1569  * The pmap lock must be acquired when this is called (not necessary
   1570  * for the kernel pmap).
   1571  */
   1572 static void
   1573 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1574 {
   1575 	KDASSERT(count <= l2b->l2b_occupancy);
   1576 
   1577 	/*
   1578 	 * Update the bucket's reference count according to how many
   1579 	 * PTEs the caller has just invalidated.
   1580 	 */
   1581 	l2b->l2b_occupancy -= count;
   1582 
   1583 	/*
   1584 	 * Note:
   1585 	 *
   1586 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1587 	 * as that would require checking all Level 1 page tables and
   1588 	 * removing any references to the Level 2 page table. See also the
   1589 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1590 	 *
   1591 	 * We make do with just invalidating the mapping in the L2 table.
   1592 	 *
   1593 	 * This isn't really a big deal in practice and, in fact, leads
   1594 	 * to a performance win over time as we don't need to continually
   1595 	 * alloc/free.
   1596 	 */
   1597 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1598 		return;
   1599 
   1600 	/*
   1601 	 * There are no more valid mappings in this level 2 page table.
   1602 	 * Go ahead and NULL-out the pointer in the bucket, then
   1603 	 * free the page table.
   1604 	 */
   1605 	const size_t l1slot = l2b->l2b_l1slot;
   1606 	pt_entry_t * const ptep = l2b->l2b_kva;
   1607 	l2b->l2b_kva = NULL;
   1608 
   1609 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1610 	pd_entry_t pde __diagused = *pdep;
   1611 
   1612 #ifdef ARM_MMU_EXTENDED
   1613 	/*
   1614 	 * Invalidate the L1 slot.
   1615 	 */
   1616 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1617 #else
   1618 	/*
   1619 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1620 	 */
   1621 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1622 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1623 #endif
   1624 		l1pte_setone(pdep, 0);
   1625 		PDE_SYNC(pdep);
   1626 #ifndef ARM_MMU_EXTENDED
   1627 	}
   1628 #endif
   1629 
   1630 	/*
   1631 	 * Release the L2 descriptor table back to the pool cache.
   1632 	 */
   1633 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1634 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1635 #else
   1636 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1637 #endif
   1638 
   1639 	/*
   1640 	 * Update the reference count in the associated l2_dtable
   1641 	 */
   1642 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1643 	if (--l2->l2_occupancy > 0)
   1644 		return;
   1645 
   1646 	/*
   1647 	 * There are no more valid mappings in any of the Level 1
   1648 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1649 	 * the pointer in the parent pmap and free the l2_dtable.
   1650 	 */
   1651 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1652 	pmap_free_l2_dtable(l2);
   1653 }
   1654 
   1655 /*
   1656  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1657  * structures.
   1658  */
   1659 static int
   1660 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1661 {
   1662 #ifndef PMAP_INCLUDE_PTE_SYNC
   1663 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1664 
   1665 	/*
   1666 	 * The mappings for these page tables were initially made using
   1667 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1668 	 * mode will not be right for page table mappings. To avoid
   1669 	 * polluting the pmap_kenter_pa() code with a special case for
   1670 	 * page tables, we simply fix up the cache-mode here if it's not
   1671 	 * correct.
   1672 	 */
   1673 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1674 		const struct l2_bucket * const l2b =
   1675 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1676 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1677 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1678 		const pt_entry_t opte = *ptep;
   1679 
   1680 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1681 			/*
   1682 			 * Page tables must have the cache-mode set correctly.
   1683 			 */
   1684 			const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
   1685 			    | pte_l2_s_cache_mode_pt;
   1686 			l2pte_set(ptep, npte, opte);
   1687 			PTE_SYNC(ptep);
   1688 			cpu_tlb_flushD_SE(va);
   1689 			cpu_cpwait();
   1690 		}
   1691 	}
   1692 #endif
   1693 
   1694 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1695 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1696 	return (0);
   1697 }
   1698 
   1699 static int
   1700 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1701 {
   1702 
   1703 	memset(v, 0, sizeof(struct l2_dtable));
   1704 	return (0);
   1705 }
   1706 
   1707 static int
   1708 pmap_pmap_ctor(void *arg, void *v, int flags)
   1709 {
   1710 
   1711 	memset(v, 0, sizeof(struct pmap));
   1712 	return (0);
   1713 }
   1714 
   1715 static void
   1716 pmap_pinit(pmap_t pm)
   1717 {
   1718 #ifndef ARM_HAS_VBAR
   1719 	struct l2_bucket *l2b;
   1720 
   1721 	if (vector_page < KERNEL_BASE) {
   1722 		/*
   1723 		 * Map the vector page.
   1724 		 */
   1725 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1726 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1727 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1728 		pmap_update(pm);
   1729 
   1730 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1731 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1732 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1733 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1734 		    L1_C_DOM(pmap_domain(pm));
   1735 	} else
   1736 		pm->pm_pl1vec = NULL;
   1737 #endif
   1738 }
   1739 
   1740 #ifdef PMAP_CACHE_VIVT
   1741 /*
   1742  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1743  * there is more than one mapping and at least one of them is writable.
   1744  * Since we purge the cache on every context switch, we only need to check for
   1745  * other mappings within the same pmap, or kernel_pmap.
   1746  * This function is also called when a page is unmapped, to possibly reenable
   1747  * caching on any remaining mappings.
   1748  *
   1749  * The code implements the following logic, where:
   1750  *
   1751  * KW = # of kernel read/write pages
   1752  * KR = # of kernel read only pages
   1753  * UW = # of user read/write pages
   1754  * UR = # of user read only pages
   1755  *
   1756  * KC = kernel mapping is cacheable
   1757  * UC = user mapping is cacheable
   1758  *
   1759  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1760  *             +---------------------------------------------
   1761  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1762  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1763  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1764  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1765  */
   1766 
   1767 static const int pmap_vac_flags[4][4] = {
   1768 	{-1,		0,		0,		PVF_KNC},
   1769 	{0,		0,		PVF_NC,		PVF_NC},
   1770 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1771 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1772 };
   1773 
   1774 static inline int
   1775 pmap_get_vac_flags(const struct vm_page_md *md)
   1776 {
   1777 	int kidx, uidx;
   1778 
   1779 	kidx = 0;
   1780 	if (md->kro_mappings || md->krw_mappings > 1)
   1781 		kidx |= 1;
   1782 	if (md->krw_mappings)
   1783 		kidx |= 2;
   1784 
   1785 	uidx = 0;
   1786 	if (md->uro_mappings || md->urw_mappings > 1)
   1787 		uidx |= 1;
   1788 	if (md->urw_mappings)
   1789 		uidx |= 2;
   1790 
   1791 	return (pmap_vac_flags[uidx][kidx]);
   1792 }
   1793 
   1794 static inline void
   1795 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1796 {
   1797 	int nattr;
   1798 
   1799 	nattr = pmap_get_vac_flags(md);
   1800 
   1801 	if (nattr < 0) {
   1802 		md->pvh_attrs &= ~PVF_NC;
   1803 		return;
   1804 	}
   1805 
   1806 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1807 		return;
   1808 
   1809 	if (pm == pmap_kernel())
   1810 		pmap_vac_me_kpmap(md, pa, pm, va);
   1811 	else
   1812 		pmap_vac_me_user(md, pa, pm, va);
   1813 
   1814 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1815 }
   1816 
   1817 static void
   1818 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1819 {
   1820 	u_int u_cacheable, u_entries;
   1821 	struct pv_entry *pv;
   1822 	pmap_t last_pmap = pm;
   1823 
   1824 	/*
   1825 	 * Pass one, see if there are both kernel and user pmaps for
   1826 	 * this page.  Calculate whether there are user-writable or
   1827 	 * kernel-writable pages.
   1828 	 */
   1829 	u_cacheable = 0;
   1830 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1831 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1832 			u_cacheable++;
   1833 	}
   1834 
   1835 	u_entries = md->urw_mappings + md->uro_mappings;
   1836 
   1837 	/*
   1838 	 * We know we have just been updating a kernel entry, so if
   1839 	 * all user pages are already cacheable, then there is nothing
   1840 	 * further to do.
   1841 	 */
   1842 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1843 		return;
   1844 
   1845 	if (u_entries) {
   1846 		/*
   1847 		 * Scan over the list again, for each entry, if it
   1848 		 * might not be set correctly, call pmap_vac_me_user
   1849 		 * to recalculate the settings.
   1850 		 */
   1851 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1852 			/*
   1853 			 * We know kernel mappings will get set
   1854 			 * correctly in other calls.  We also know
   1855 			 * that if the pmap is the same as last_pmap
   1856 			 * then we've just handled this entry.
   1857 			 */
   1858 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1859 				continue;
   1860 
   1861 			/*
   1862 			 * If there are kernel entries and this page
   1863 			 * is writable but non-cacheable, then we can
   1864 			 * skip this entry also.
   1865 			 */
   1866 			if (md->k_mappings &&
   1867 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1868 			    (PVF_NC | PVF_WRITE))
   1869 				continue;
   1870 
   1871 			/*
   1872 			 * Similarly if there are no kernel-writable
   1873 			 * entries and the page is already
   1874 			 * read-only/cacheable.
   1875 			 */
   1876 			if (md->krw_mappings == 0 &&
   1877 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1878 				continue;
   1879 
   1880 			/*
   1881 			 * For some of the remaining cases, we know
   1882 			 * that we must recalculate, but for others we
   1883 			 * can't tell if they are correct or not, so
   1884 			 * we recalculate anyway.
   1885 			 */
   1886 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1887 		}
   1888 
   1889 		if (md->k_mappings == 0)
   1890 			return;
   1891 	}
   1892 
   1893 	pmap_vac_me_user(md, pa, pm, va);
   1894 }
   1895 
   1896 static void
   1897 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1898 {
   1899 	pmap_t kpmap = pmap_kernel();
   1900 	struct pv_entry *pv, *npv = NULL;
   1901 	u_int entries = 0;
   1902 	u_int writable = 0;
   1903 	u_int cacheable_entries = 0;
   1904 	u_int kern_cacheable = 0;
   1905 	u_int other_writable = 0;
   1906 
   1907 	/*
   1908 	 * Count mappings and writable mappings in this pmap.
   1909 	 * Include kernel mappings as part of our own.
   1910 	 * Keep a pointer to the first one.
   1911 	 */
   1912 	npv = NULL;
   1913 	KASSERT(pmap_page_locked_p(md));
   1914 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1915 		/* Count mappings in the same pmap */
   1916 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1917 			if (entries++ == 0)
   1918 				npv = pv;
   1919 
   1920 			/* Cacheable mappings */
   1921 			if ((pv->pv_flags & PVF_NC) == 0) {
   1922 				cacheable_entries++;
   1923 				if (kpmap == pv->pv_pmap)
   1924 					kern_cacheable++;
   1925 			}
   1926 
   1927 			/* Writable mappings */
   1928 			if (pv->pv_flags & PVF_WRITE)
   1929 				++writable;
   1930 		} else
   1931 		if (pv->pv_flags & PVF_WRITE)
   1932 			other_writable = 1;
   1933 	}
   1934 
   1935 	/*
   1936 	 * Enable or disable caching as necessary.
   1937 	 * Note: the first entry might be part of the kernel pmap,
   1938 	 * so we can't assume this is indicative of the state of the
   1939 	 * other (maybe non-kpmap) entries.
   1940 	 */
   1941 	if ((entries > 1 && writable) ||
   1942 	    (entries > 0 && pm == kpmap && other_writable)) {
   1943 		if (cacheable_entries == 0) {
   1944 			return;
   1945 		}
   1946 
   1947 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1948 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1949 			    (pv->pv_flags & PVF_NC))
   1950 				continue;
   1951 
   1952 			pv->pv_flags |= PVF_NC;
   1953 
   1954 			struct l2_bucket * const l2b
   1955 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1956 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1957 			pt_entry_t * const ptep
   1958 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1959 			const pt_entry_t opte = *ptep;
   1960 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1961 
   1962 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1963 			    && l2pte_valid_p(npte)) {
   1964 #ifdef PMAP_CACHE_VIVT
   1965 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1966 				    true, pv->pv_flags);
   1967 #endif
   1968 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1969 				    pv->pv_flags);
   1970 			}
   1971 
   1972 			l2pte_set(ptep, npte, opte);
   1973 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1974 		}
   1975 		cpu_cpwait();
   1976 	} else
   1977 	if (entries > cacheable_entries) {
   1978 		/*
   1979 		 * Turn cacheing back on for some pages.  If it is a kernel
   1980 		 * page, only do so if there are no other writable pages.
   1981 		 */
   1982 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1983 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1984 			    (kpmap != pv->pv_pmap || other_writable)))
   1985 				continue;
   1986 
   1987 			pv->pv_flags &= ~PVF_NC;
   1988 
   1989 			struct l2_bucket * const l2b
   1990 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1991 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1992 			pt_entry_t * const ptep
   1993 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1994 			const pt_entry_t opte = *ptep;
   1995 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   1996 			    | pte_l2_s_cache_mode;
   1997 
   1998 			if (l2pte_valid_p(opte)) {
   1999 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2000 				    pv->pv_flags);
   2001 			}
   2002 
   2003 			l2pte_set(ptep, npte, opte);
   2004 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2005 		}
   2006 	}
   2007 }
   2008 #endif
   2009 
   2010 #ifdef PMAP_CACHE_VIPT
   2011 static void
   2012 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2013 {
   2014 #ifndef ARM_MMU_EXTENDED
   2015 	struct pv_entry *pv;
   2016 	vaddr_t tst_mask;
   2017 	bool bad_alias;
   2018 	const u_int
   2019 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2020 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2021 
   2022 	/* do we need to do anything? */
   2023 	if (arm_cache_prefer_mask == 0)
   2024 		return;
   2025 
   2026 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   2027 	    md, pm, va));
   2028 
   2029 	KASSERT(!va || pm);
   2030 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2031 
   2032 	/* Already a conflict? */
   2033 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2034 		/* just an add, things are already non-cached */
   2035 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2036 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2037 		bad_alias = false;
   2038 		if (va) {
   2039 			PMAPCOUNT(vac_color_none);
   2040 			bad_alias = true;
   2041 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2042 			goto fixup;
   2043 		}
   2044 		pv = SLIST_FIRST(&md->pvh_list);
   2045 		/* the list can't be empty because it would be cachable */
   2046 		if (md->pvh_attrs & PVF_KMPAGE) {
   2047 			tst_mask = md->pvh_attrs;
   2048 		} else {
   2049 			KASSERT(pv);
   2050 			tst_mask = pv->pv_va;
   2051 			pv = SLIST_NEXT(pv, pv_link);
   2052 		}
   2053 		/*
   2054 		 * Only check for a bad alias if we have writable mappings.
   2055 		 */
   2056 		tst_mask &= arm_cache_prefer_mask;
   2057 		if (rw_mappings > 0) {
   2058 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2059 				/* if there's a bad alias, stop checking. */
   2060 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2061 					bad_alias = true;
   2062 			}
   2063 			md->pvh_attrs |= PVF_WRITE;
   2064 			if (!bad_alias)
   2065 				md->pvh_attrs |= PVF_DIRTY;
   2066 		} else {
   2067 			/*
   2068 			 * We have only read-only mappings.  Let's see if there
   2069 			 * are multiple colors in use or if we mapped a KMPAGE.
   2070 			 * If the latter, we have a bad alias.  If the former,
   2071 			 * we need to remember that.
   2072 			 */
   2073 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2074 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2075 					if (md->pvh_attrs & PVF_KMPAGE)
   2076 						bad_alias = true;
   2077 					break;
   2078 				}
   2079 			}
   2080 			md->pvh_attrs &= ~PVF_WRITE;
   2081 			/*
   2082 			 * No KMPAGE and we exited early, so we must have
   2083 			 * multiple color mappings.
   2084 			 */
   2085 			if (!bad_alias && pv != NULL)
   2086 				md->pvh_attrs |= PVF_MULTCLR;
   2087 		}
   2088 
   2089 		/* If no conflicting colors, set everything back to cached */
   2090 		if (!bad_alias) {
   2091 #ifdef DEBUG
   2092 			if ((md->pvh_attrs & PVF_WRITE)
   2093 			    || ro_mappings < 2) {
   2094 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2095 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2096 			}
   2097 #endif
   2098 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2099 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2100 			/*
   2101 			 * Restore DIRTY bit if page is modified
   2102 			 */
   2103 			if (md->pvh_attrs & PVF_DMOD)
   2104 				md->pvh_attrs |= PVF_DIRTY;
   2105 			PMAPCOUNT(vac_color_restore);
   2106 		} else {
   2107 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2108 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2109 		}
   2110 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2111 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2112 	} else if (!va) {
   2113 		KASSERT(pmap_is_page_colored_p(md));
   2114 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2115 		    || (md->pvh_attrs & PVF_DIRTY));
   2116 		if (rw_mappings == 0) {
   2117 			md->pvh_attrs &= ~PVF_WRITE;
   2118 			if (ro_mappings == 1
   2119 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2120 				/*
   2121 				 * If this is the last readonly mapping
   2122 				 * but it doesn't match the current color
   2123 				 * for the page, change the current color
   2124 				 * to match this last readonly mapping.
   2125 				 */
   2126 				pv = SLIST_FIRST(&md->pvh_list);
   2127 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2128 				    & arm_cache_prefer_mask;
   2129 				if (tst_mask) {
   2130 					md->pvh_attrs ^= tst_mask;
   2131 					PMAPCOUNT(vac_color_change);
   2132 				}
   2133 			}
   2134 		}
   2135 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2136 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2137 		return;
   2138 	} else if (!pmap_is_page_colored_p(md)) {
   2139 		/* not colored so we just use its color */
   2140 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2141 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2142 		PMAPCOUNT(vac_color_new);
   2143 		md->pvh_attrs &= PAGE_SIZE - 1;
   2144 		md->pvh_attrs |= PVF_COLORED
   2145 		    | (va & arm_cache_prefer_mask)
   2146 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2147 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2148 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2149 		return;
   2150 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2151 		bad_alias = false;
   2152 		if (rw_mappings > 0) {
   2153 			/*
   2154 			 * We now have writeable mappings and if we have
   2155 			 * readonly mappings in more than once color, we have
   2156 			 * an aliasing problem.  Regardless mark the page as
   2157 			 * writeable.
   2158 			 */
   2159 			if (md->pvh_attrs & PVF_MULTCLR) {
   2160 				if (ro_mappings < 2) {
   2161 					/*
   2162 					 * If we only have less than two
   2163 					 * read-only mappings, just flush the
   2164 					 * non-primary colors from the cache.
   2165 					 */
   2166 					pmap_flush_page(md, pa,
   2167 					    PMAP_FLUSH_SECONDARY);
   2168 				} else {
   2169 					bad_alias = true;
   2170 				}
   2171 			}
   2172 			md->pvh_attrs |= PVF_WRITE;
   2173 		}
   2174 		/* If no conflicting colors, set everything back to cached */
   2175 		if (!bad_alias) {
   2176 #ifdef DEBUG
   2177 			if (rw_mappings > 0
   2178 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2179 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2180 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2181 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2182 			}
   2183 #endif
   2184 			if (SLIST_EMPTY(&md->pvh_list))
   2185 				PMAPCOUNT(vac_color_reuse);
   2186 			else
   2187 				PMAPCOUNT(vac_color_ok);
   2188 
   2189 			/* matching color, just return */
   2190 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2191 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2192 			return;
   2193 		}
   2194 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2195 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2196 
   2197 		/* color conflict.  evict from cache. */
   2198 
   2199 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2200 		md->pvh_attrs &= ~PVF_COLORED;
   2201 		md->pvh_attrs |= PVF_NC;
   2202 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2203 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2204 		PMAPCOUNT(vac_color_erase);
   2205 	} else if (rw_mappings == 0
   2206 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2207 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2208 
   2209 		/*
   2210 		 * If the page has dirty cache lines, clean it.
   2211 		 */
   2212 		if (md->pvh_attrs & PVF_DIRTY)
   2213 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2214 
   2215 		/*
   2216 		 * If this is the first remapping (we know that there are no
   2217 		 * writeable mappings), then this is a simple color change.
   2218 		 * Otherwise this is a seconary r/o mapping, which means
   2219 		 * we don't have to do anything.
   2220 		 */
   2221 		if (ro_mappings == 1) {
   2222 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2223 			md->pvh_attrs &= PAGE_SIZE - 1;
   2224 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2225 			PMAPCOUNT(vac_color_change);
   2226 		} else {
   2227 			PMAPCOUNT(vac_color_blind);
   2228 		}
   2229 		md->pvh_attrs |= PVF_MULTCLR;
   2230 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2231 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2232 		return;
   2233 	} else {
   2234 		if (rw_mappings > 0)
   2235 			md->pvh_attrs |= PVF_WRITE;
   2236 
   2237 		/* color conflict.  evict from cache. */
   2238 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2239 
   2240 		/* the list can't be empty because this was a enter/modify */
   2241 		pv = SLIST_FIRST(&md->pvh_list);
   2242 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2243 			KASSERT(pv);
   2244 			/*
   2245 			 * If there's only one mapped page, change color to the
   2246 			 * page's new color and return.  Restore the DIRTY bit
   2247 			 * that was erased by pmap_flush_page.
   2248 			 */
   2249 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2250 				md->pvh_attrs &= PAGE_SIZE - 1;
   2251 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2252 				if (md->pvh_attrs & PVF_DMOD)
   2253 					md->pvh_attrs |= PVF_DIRTY;
   2254 				PMAPCOUNT(vac_color_change);
   2255 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2256 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2257 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2258 				return;
   2259 			}
   2260 		}
   2261 		bad_alias = true;
   2262 		md->pvh_attrs &= ~PVF_COLORED;
   2263 		md->pvh_attrs |= PVF_NC;
   2264 		PMAPCOUNT(vac_color_erase);
   2265 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2266 	}
   2267 
   2268   fixup:
   2269 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2270 
   2271 	/*
   2272 	 * Turn cacheing on/off for all pages.
   2273 	 */
   2274 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2275 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2276 		    pv->pv_va);
   2277 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2278 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2279 		const pt_entry_t opte = *ptep;
   2280 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2281 		if (bad_alias) {
   2282 			pv->pv_flags |= PVF_NC;
   2283 		} else {
   2284 			pv->pv_flags &= ~PVF_NC;
   2285 			npte |= pte_l2_s_cache_mode;
   2286 		}
   2287 
   2288 		if (opte == npte)	/* only update is there's a change */
   2289 			continue;
   2290 
   2291 		if (l2pte_valid_p(npte)) {
   2292 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2293 		}
   2294 
   2295 		l2pte_set(ptep, npte, opte);
   2296 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2297 	}
   2298 #endif /* !ARM_MMU_EXTENDED */
   2299 }
   2300 #endif	/* PMAP_CACHE_VIPT */
   2301 
   2302 
   2303 /*
   2304  * Modify pte bits for all ptes corresponding to the given physical address.
   2305  * We use `maskbits' rather than `clearbits' because we're always passing
   2306  * constants and the latter would require an extra inversion at run-time.
   2307  */
   2308 static void
   2309 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2310 {
   2311 	struct pv_entry *pv;
   2312 #ifdef PMAP_CACHE_VIPT
   2313 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2314 #ifdef ARM_MMU_EXTENDED
   2315 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
   2316 #else
   2317 	const u_int execbits = 0;
   2318 	bool need_vac_me_harder = false;
   2319 	bool need_syncicache = false;
   2320 #endif
   2321 #else
   2322 	const u_int execbits = 0;
   2323 #endif
   2324 
   2325 	NPDEBUG(PDB_BITS,
   2326 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2327 	    md, maskbits));
   2328 
   2329 #ifdef PMAP_CACHE_VIPT
   2330 	/*
   2331 	 * If we might want to sync the I-cache and we've modified it,
   2332 	 * then we know we definitely need to sync or discard it.
   2333 	 */
   2334 	if (want_syncicache) {
   2335 #ifdef ARM_MMU_EXTENDED
   2336 		if (md->pvh_attrs & PVF_MOD)
   2337 			md->pvh_attrs &= ~PVF_EXEC;
   2338 #else
   2339 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2340 #endif
   2341 	}
   2342 #endif
   2343 	KASSERT(pmap_page_locked_p(md));
   2344 
   2345 	/*
   2346 	 * Clear saved attributes (modify, reference)
   2347 	 */
   2348 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2349 
   2350 	if (SLIST_EMPTY(&md->pvh_list)) {
   2351 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2352 		if (need_syncicache) {
   2353 			/*
   2354 			 * No one has it mapped, so just discard it.  The next
   2355 			 * exec remapping will cause it to be synced.
   2356 			 */
   2357 			md->pvh_attrs &= ~PVF_EXEC;
   2358 			PMAPCOUNT(exec_discarded_clearbit);
   2359 		}
   2360 #endif
   2361 		return;
   2362 	}
   2363 
   2364 	/*
   2365 	 * Loop over all current mappings setting/clearing as appropos
   2366 	 */
   2367 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2368 		pmap_t pm = pv->pv_pmap;
   2369 		const vaddr_t va = pv->pv_va;
   2370 		const u_int oflags = pv->pv_flags;
   2371 #ifndef ARM_MMU_EXTENDED
   2372 		/*
   2373 		 * Kernel entries are unmanaged and as such not to be changed.
   2374 		 */
   2375 		if (PV_IS_KENTRY_P(oflags))
   2376 			continue;
   2377 #endif
   2378 		pv->pv_flags &= ~maskbits;
   2379 
   2380 		pmap_release_page_lock(md);
   2381 		pmap_acquire_pmap_lock(pm);
   2382 
   2383 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2384 		if (l2b == NULL) {
   2385 			pmap_release_pmap_lock(pm);
   2386 			pmap_acquire_page_lock(md);
   2387 			continue;
   2388 		}
   2389 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2390 
   2391 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2392 		const pt_entry_t opte = *ptep;
   2393 		pt_entry_t npte = opte | execbits;
   2394 
   2395 #ifdef ARM_MMU_EXTENDED
   2396 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2397 #endif
   2398 
   2399 		NPDEBUG(PDB_BITS,
   2400 		    printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2401 			__func__, pv, pm, va, oflags));
   2402 
   2403 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2404 #ifdef PMAP_CACHE_VIVT
   2405 			if ((oflags & PVF_NC)) {
   2406 				/*
   2407 				 * Entry is not cacheable:
   2408 				 *
   2409 				 * Don't turn caching on again if this is a
   2410 				 * modified emulation. This would be
   2411 				 * inconsitent with the settings created by
   2412 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2413 				 * to re-enable cacheing.
   2414 				 *
   2415 				 * There's no need to call pmap_vac_me_harder()
   2416 				 * here: all pages are losing their write
   2417 				 * permission.
   2418 				 */
   2419 				if (maskbits & PVF_WRITE) {
   2420 					npte |= pte_l2_s_cache_mode;
   2421 					pv->pv_flags &= ~PVF_NC;
   2422 				}
   2423 			} else
   2424 			if (l2pte_writable_p(opte)) {
   2425 				/*
   2426 				 * Entry is writable/cacheable: check if pmap
   2427 				 * is current if it is flush it, otherwise it
   2428 				 * won't be in the cache
   2429 				 */
   2430 				pmap_cache_wbinv_page(pm, va,
   2431 				    (maskbits & PVF_REF) != 0,
   2432 				    oflags|PVF_WRITE);
   2433 			}
   2434 #endif
   2435 
   2436 			/* make the pte read only */
   2437 			npte = l2pte_set_readonly(npte);
   2438 
   2439 			pmap_acquire_page_lock(md);
   2440 #ifdef MULTIPROCESSOR
   2441 			pv = pmap_find_pv(md, pm, va);
   2442 #endif
   2443 			if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
   2444 				/*
   2445 				 * Keep alias accounting up to date
   2446 				 */
   2447 				if (pm == pmap_kernel()) {
   2448 					md->krw_mappings--;
   2449 					md->kro_mappings++;
   2450 				} else {
   2451 					md->urw_mappings--;
   2452 					md->uro_mappings++;
   2453 				}
   2454 #ifdef PMAP_CACHE_VIPT
   2455 				if (arm_cache_prefer_mask != 0) {
   2456 					if (md->urw_mappings + md->krw_mappings == 0) {
   2457 						md->pvh_attrs &= ~PVF_WRITE;
   2458 					} else {
   2459 						PMAP_VALIDATE_MD_PAGE(md);
   2460 					}
   2461 				}
   2462 #ifndef ARM_MMU_EXTENDED
   2463 				if (want_syncicache)
   2464 					need_syncicache = true;
   2465 				need_vac_me_harder = true;
   2466 #endif
   2467 #endif /* PMAP_CACHE_VIPT */
   2468 			}
   2469 			pmap_release_page_lock(md);
   2470 		}
   2471 
   2472 		if (maskbits & PVF_REF) {
   2473 			if (true
   2474 #ifndef ARM_MMU_EXTENDED
   2475 			    && (oflags & PVF_NC) == 0
   2476 #endif
   2477 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2478 			    && l2pte_valid_p(npte)) {
   2479 #ifdef PMAP_CACHE_VIVT
   2480 				/*
   2481 				 * Check npte here; we may have already
   2482 				 * done the wbinv above, and the validity
   2483 				 * of the PTE is the same for opte and
   2484 				 * npte.
   2485 				 */
   2486 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2487 #endif
   2488 			}
   2489 
   2490 			/*
   2491 			 * Make the PTE invalid so that we will take a
   2492 			 * page fault the next time the mapping is
   2493 			 * referenced.
   2494 			 */
   2495 			npte &= ~L2_TYPE_MASK;
   2496 			npte |= L2_TYPE_INV;
   2497 		}
   2498 
   2499 		if (npte != opte) {
   2500 			l2pte_set(ptep, npte, opte);
   2501 			PTE_SYNC(ptep);
   2502 
   2503 			/* Flush the TLB entry if a current pmap. */
   2504 			pmap_tlb_flush_SE(pm, va, oflags);
   2505 		}
   2506 
   2507 		pmap_release_pmap_lock(pm);
   2508 		pmap_acquire_page_lock(md);
   2509 
   2510 		NPDEBUG(PDB_BITS,
   2511 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2512 		    pm, va, opte, npte));
   2513 	}
   2514 
   2515 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2516 	/*
   2517 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2518 	 */
   2519 	if (need_syncicache) {
   2520 		pmap_release_page_lock(md);
   2521 		pmap_syncicache_page(md, pa);
   2522 		pmap_acquire_page_lock(md);
   2523 		PMAPCOUNT(exec_synced_clearbit);
   2524 	}
   2525 
   2526 	/*
   2527 	 * If we are changing this to read-only, we need to call vac_me_harder
   2528 	 * so we can change all the read-only pages to cacheable.  We pretend
   2529 	 * this as a page deletion.
   2530 	 */
   2531 	if (need_vac_me_harder) {
   2532 		if (md->pvh_attrs & PVF_NC)
   2533 			pmap_vac_me_harder(md, pa, NULL, 0);
   2534 	}
   2535 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   2536 }
   2537 
   2538 /*
   2539  * pmap_clean_page()
   2540  *
   2541  * This is a local function used to work out the best strategy to clean
   2542  * a single page referenced by its entry in the PV table. It's used by
   2543  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2544  *
   2545  * Its policy is effectively:
   2546  *  o If there are no mappings, we don't bother doing anything with the cache.
   2547  *  o If there is one mapping, we clean just that page.
   2548  *  o If there are multiple mappings, we clean the entire cache.
   2549  *
   2550  * So that some functions can be further optimised, it returns 0 if it didn't
   2551  * clean the entire cache, or 1 if it did.
   2552  *
   2553  * XXX One bug in this routine is that if the pv_entry has a single page
   2554  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2555  * just the 1 page. Since this should not occur in everyday use and if it does
   2556  * it will just result in not the most efficient clean for the page.
   2557  */
   2558 #ifdef PMAP_CACHE_VIVT
   2559 static bool
   2560 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2561 {
   2562 	struct pv_entry *pv;
   2563 	pmap_t pm_to_clean = NULL;
   2564 	bool cache_needs_cleaning = false;
   2565 	vaddr_t page_to_clean = 0;
   2566 	u_int flags = 0;
   2567 
   2568 	/*
   2569 	 * Since we flush the cache each time we change to a different
   2570 	 * user vmspace, we only need to flush the page if it is in the
   2571 	 * current pmap.
   2572 	 */
   2573 	KASSERT(pmap_page_locked_p(md));
   2574 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2575 		if (pmap_is_current(pv->pv_pmap)) {
   2576 			flags |= pv->pv_flags;
   2577 			/*
   2578 			 * The page is mapped non-cacheable in
   2579 			 * this map.  No need to flush the cache.
   2580 			 */
   2581 			if (pv->pv_flags & PVF_NC) {
   2582 #ifdef DIAGNOSTIC
   2583 				KASSERT(!cache_needs_cleaning);
   2584 #endif
   2585 				break;
   2586 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2587 				continue;
   2588 			if (cache_needs_cleaning) {
   2589 				page_to_clean = 0;
   2590 				break;
   2591 			} else {
   2592 				page_to_clean = pv->pv_va;
   2593 				pm_to_clean = pv->pv_pmap;
   2594 			}
   2595 			cache_needs_cleaning = true;
   2596 		}
   2597 	}
   2598 
   2599 	if (page_to_clean) {
   2600 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2601 		    !is_src, flags | PVF_REF);
   2602 	} else if (cache_needs_cleaning) {
   2603 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2604 
   2605 		pmap_cache_wbinv_all(pm, flags);
   2606 		return true;
   2607 	}
   2608 	return false;
   2609 }
   2610 #endif
   2611 
   2612 #ifdef PMAP_CACHE_VIPT
   2613 /*
   2614  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2615  * right cache alias to make sure we flush the right stuff.
   2616  */
   2617 void
   2618 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2619 {
   2620 	pmap_t kpm = pmap_kernel();
   2621 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2622 	    ? PAGE_SIZE
   2623 	    : arm_pcache.icache_way_size;
   2624 
   2625 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2626 	    md, md->pvh_attrs));
   2627 	/*
   2628 	 * No need to clean the page if it's non-cached.
   2629 	 */
   2630 #ifndef ARM_MMU_EXTENDED
   2631 	if (md->pvh_attrs & PVF_NC)
   2632 		return;
   2633 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2634 #endif
   2635 
   2636 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2637 	const vaddr_t dstp = cpu_cdstp(0);
   2638 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2639 	if (way_size <= PAGE_SIZE) {
   2640 		bool ok = false;
   2641 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2642 		if (ok) {
   2643 			cpu_icache_sync_range(vdstp, way_size);
   2644 			return;
   2645 		}
   2646 	}
   2647 #endif
   2648 
   2649 	/*
   2650 	 * We don't worry about the color of the exec page, we map the
   2651 	 * same page to pages in the way and then do the icache_sync on
   2652 	 * the entire way making sure we are cleaned.
   2653 	 */
   2654 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2655 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2656 
   2657 	for (size_t i = 0, j = 0; i < way_size;
   2658 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2659 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2660 		/*
   2661 		 * Set up a PTE with to flush these cache lines.
   2662 		 */
   2663 		l2pte_set(ptep + j, npte, 0);
   2664 	}
   2665 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2666 
   2667 	/*
   2668 	 * Flush it.
   2669 	 */
   2670 	cpu_icache_sync_range(dstp, way_size);
   2671 
   2672 	for (size_t i = 0, j = 0; i < way_size;
   2673 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2674 		/*
   2675 		 * Unmap the page(s).
   2676 		 */
   2677 		l2pte_reset(ptep + j);
   2678 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2679 	}
   2680 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2681 
   2682 	md->pvh_attrs |= PVF_EXEC;
   2683 	PMAPCOUNT(exec_synced);
   2684 }
   2685 
   2686 #ifndef ARM_MMU_EXTENDED
   2687 void
   2688 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2689 {
   2690 	vsize_t va_offset, end_va;
   2691 	bool wbinv_p;
   2692 
   2693 	if (arm_cache_prefer_mask == 0)
   2694 		return;
   2695 
   2696 	switch (flush) {
   2697 	case PMAP_FLUSH_PRIMARY:
   2698 		if (md->pvh_attrs & PVF_MULTCLR) {
   2699 			va_offset = 0;
   2700 			end_va = arm_cache_prefer_mask;
   2701 			md->pvh_attrs &= ~PVF_MULTCLR;
   2702 			PMAPCOUNT(vac_flush_lots);
   2703 		} else {
   2704 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2705 			end_va = va_offset;
   2706 			PMAPCOUNT(vac_flush_one);
   2707 		}
   2708 		/*
   2709 		 * Mark that the page is no longer dirty.
   2710 		 */
   2711 		md->pvh_attrs &= ~PVF_DIRTY;
   2712 		wbinv_p = true;
   2713 		break;
   2714 	case PMAP_FLUSH_SECONDARY:
   2715 		va_offset = 0;
   2716 		end_va = arm_cache_prefer_mask;
   2717 		wbinv_p = true;
   2718 		md->pvh_attrs &= ~PVF_MULTCLR;
   2719 		PMAPCOUNT(vac_flush_lots);
   2720 		break;
   2721 	case PMAP_CLEAN_PRIMARY:
   2722 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2723 		end_va = va_offset;
   2724 		wbinv_p = false;
   2725 		/*
   2726 		 * Mark that the page is no longer dirty.
   2727 		 */
   2728 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2729 			md->pvh_attrs &= ~PVF_DIRTY;
   2730 		PMAPCOUNT(vac_clean_one);
   2731 		break;
   2732 	default:
   2733 		return;
   2734 	}
   2735 
   2736 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2737 
   2738 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2739 	    md, md->pvh_attrs));
   2740 
   2741 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2742 
   2743 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2744 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2745 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2746 		const pt_entry_t opte = *ptep;
   2747 
   2748 		if (flush == PMAP_FLUSH_SECONDARY
   2749 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2750 			continue;
   2751 
   2752 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2753 		/*
   2754 		 * Set up a PTE with the right coloring to flush
   2755 		 * existing cache entries.
   2756 		 */
   2757 		const pt_entry_t npte = L2_S_PROTO
   2758 		    | pa
   2759 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2760 		    | pte_l2_s_cache_mode;
   2761 		l2pte_set(ptep, npte, opte);
   2762 		PTE_SYNC(ptep);
   2763 
   2764 		/*
   2765 		 * Flush it.  Make sure to flush secondary cache too since
   2766 		 * bus_dma will ignore uncached pages.
   2767 		 */
   2768 		if (scache_line_size != 0) {
   2769 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2770 			if (wbinv_p) {
   2771 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2772 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2773 			} else {
   2774 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2775 			}
   2776 		} else {
   2777 			if (wbinv_p) {
   2778 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2779 			} else {
   2780 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2781 			}
   2782 		}
   2783 
   2784 		/*
   2785 		 * Restore the page table entry since we might have interrupted
   2786 		 * pmap_zero_page or pmap_copy_page which was already using
   2787 		 * this pte.
   2788 		 */
   2789 		if (opte) {
   2790 			l2pte_set(ptep, opte, npte);
   2791 		} else {
   2792 			l2pte_reset(ptep);
   2793 		}
   2794 		PTE_SYNC(ptep);
   2795 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2796 	}
   2797 }
   2798 #endif /* ARM_MMU_EXTENDED */
   2799 #endif /* PMAP_CACHE_VIPT */
   2800 
   2801 /*
   2802  * Routine:	pmap_page_remove
   2803  * Function:
   2804  *		Removes this physical page from
   2805  *		all physical maps in which it resides.
   2806  *		Reflects back modify bits to the pager.
   2807  */
   2808 static void
   2809 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2810 {
   2811 	struct l2_bucket *l2b;
   2812 	struct pv_entry *pv;
   2813 	pt_entry_t *ptep;
   2814 #ifndef ARM_MMU_EXTENDED
   2815 	bool flush = false;
   2816 #endif
   2817 	u_int flags = 0;
   2818 
   2819 	NPDEBUG(PDB_FOLLOW,
   2820 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2821 	    pa));
   2822 
   2823 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2824 	pmap_acquire_page_lock(md);
   2825 	if (*pvp == NULL) {
   2826 #ifdef PMAP_CACHE_VIPT
   2827 		/*
   2828 		 * We *know* the page contents are about to be replaced.
   2829 		 * Discard the exec contents
   2830 		 */
   2831 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2832 			PMAPCOUNT(exec_discarded_page_protect);
   2833 		md->pvh_attrs &= ~PVF_EXEC;
   2834 		PMAP_VALIDATE_MD_PAGE(md);
   2835 #endif
   2836 		pmap_release_page_lock(md);
   2837 		return;
   2838 	}
   2839 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2840 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2841 #endif
   2842 
   2843 	/*
   2844 	 * Clear alias counts
   2845 	 */
   2846 #ifdef PMAP_CACHE_VIVT
   2847 	md->k_mappings = 0;
   2848 #endif
   2849 	md->urw_mappings = md->uro_mappings = 0;
   2850 
   2851 #ifdef PMAP_CACHE_VIVT
   2852 	pmap_clean_page(md, false);
   2853 #endif
   2854 
   2855 	while ((pv = *pvp) != NULL) {
   2856 		pmap_t pm = pv->pv_pmap;
   2857 #ifndef ARM_MMU_EXTENDED
   2858 		if (flush == false && pmap_is_current(pm))
   2859 			flush = true;
   2860 #endif
   2861 
   2862 		if (pm == pmap_kernel()) {
   2863 #ifdef PMAP_CACHE_VIPT
   2864 			/*
   2865 			 * If this was unmanaged mapping, it must be preserved.
   2866 			 * Move it back on the list and advance the end-of-list
   2867 			 * pointer.
   2868 			 */
   2869 			if (PV_IS_KENTRY_P(pv->pv_flags)) {
   2870 				*pvp = pv;
   2871 				pvp = &SLIST_NEXT(pv, pv_link);
   2872 				continue;
   2873 			}
   2874 			if (pv->pv_flags & PVF_WRITE)
   2875 				md->krw_mappings--;
   2876 			else
   2877 				md->kro_mappings--;
   2878 #endif
   2879 			PMAPCOUNT(kernel_unmappings);
   2880 		}
   2881 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2882 		PMAPCOUNT(unmappings);
   2883 
   2884 		pmap_release_page_lock(md);
   2885 		pmap_acquire_pmap_lock(pm);
   2886 
   2887 #ifdef ARM_MMU_EXTENDED
   2888 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2889 #endif
   2890 
   2891 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2892 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2893 
   2894 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2895 
   2896 		/*
   2897 		 * Update statistics
   2898 		 */
   2899 		--pm->pm_stats.resident_count;
   2900 
   2901 		/* Wired bit */
   2902 		if (pv->pv_flags & PVF_WIRED)
   2903 			--pm->pm_stats.wired_count;
   2904 
   2905 		flags |= pv->pv_flags;
   2906 
   2907 		/*
   2908 		 * Invalidate the PTEs.
   2909 		 */
   2910 		l2pte_reset(ptep);
   2911 		PTE_SYNC_CURRENT(pm, ptep);
   2912 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2913 		pmap_release_pmap_lock(pm);
   2914 
   2915 		pool_put(&pmap_pv_pool, pv);
   2916 		pmap_acquire_page_lock(md);
   2917 #ifdef MULTIPROCESSOR
   2918 		/*
   2919 		 * Restart of the beginning of the list.
   2920 		 */
   2921 		pvp = &SLIST_FIRST(&md->pvh_list);
   2922 #endif
   2923 	}
   2924 	/*
   2925 	 * if we reach the end of the list and there are still mappings, they
   2926 	 * might be able to be cached now.  And they must be kernel mappings.
   2927 	 */
   2928 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2929 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2930 	}
   2931 
   2932 #ifdef PMAP_CACHE_VIPT
   2933 	/*
   2934 	 * Its EXEC cache is now gone.
   2935 	 */
   2936 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2937 		PMAPCOUNT(exec_discarded_page_protect);
   2938 	md->pvh_attrs &= ~PVF_EXEC;
   2939 	KASSERT(md->urw_mappings == 0);
   2940 	KASSERT(md->uro_mappings == 0);
   2941 #ifndef ARM_MMU_EXTENDED
   2942 	if (arm_cache_prefer_mask != 0) {
   2943 		if (md->krw_mappings == 0)
   2944 			md->pvh_attrs &= ~PVF_WRITE;
   2945 		PMAP_VALIDATE_MD_PAGE(md);
   2946 	}
   2947 #endif /* ARM_MMU_EXTENDED */
   2948 #endif /* PMAP_CACHE_VIPT */
   2949 	pmap_release_page_lock(md);
   2950 
   2951 #ifndef ARM_MMU_EXTENDED
   2952 	if (flush) {
   2953 		/*
   2954 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2955 		 * would need a subsequent call to pmap_update() to ensure
   2956 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2957 		 * required to do that (see pmap(9)), so we can't modify
   2958 		 * the current pmap's state.
   2959 		 */
   2960 		if (PV_BEEN_EXECD(flags))
   2961 			cpu_tlb_flushID();
   2962 		else
   2963 			cpu_tlb_flushD();
   2964 	}
   2965 	cpu_cpwait();
   2966 #endif /* ARM_MMU_EXTENDED */
   2967 }
   2968 
   2969 /*
   2970  * pmap_t pmap_create(void)
   2971  *
   2972  *      Create a new pmap structure from scratch.
   2973  */
   2974 pmap_t
   2975 pmap_create(void)
   2976 {
   2977 	pmap_t pm;
   2978 
   2979 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2980 
   2981 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2982 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2983 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2984 
   2985 	pm->pm_stats.wired_count = 0;
   2986 	pm->pm_stats.resident_count = 1;
   2987 #ifdef ARM_MMU_EXTENDED
   2988 #ifdef MULTIPROCESSOR
   2989 	kcpuset_create(&pm->pm_active, true);
   2990 	kcpuset_create(&pm->pm_onproc, true);
   2991 #endif
   2992 #else
   2993 	pm->pm_cstate.cs_all = 0;
   2994 #endif
   2995 	pmap_alloc_l1(pm);
   2996 
   2997 	/*
   2998 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2999 	 * initialised to zero.
   3000 	 */
   3001 
   3002 	pmap_pinit(pm);
   3003 
   3004 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   3005 
   3006 	return (pm);
   3007 }
   3008 
   3009 u_int
   3010 arm32_mmap_flags(paddr_t pa)
   3011 {
   3012 	/*
   3013 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3014 	 * and we're using the upper bits in page numbers to pass flags around
   3015 	 * so we might as well use the same bits
   3016 	 */
   3017 	return (u_int)pa & PMAP_MD_MASK;
   3018 }
   3019 /*
   3020  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3021  *      u_int flags)
   3022  *
   3023  *      Insert the given physical page (p) at
   3024  *      the specified virtual address (v) in the
   3025  *      target physical map with the protection requested.
   3026  *
   3027  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3028  *      or lose information.  That is, this routine must actually
   3029  *      insert this page into the given map NOW.
   3030  */
   3031 int
   3032 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3033 {
   3034 	struct l2_bucket *l2b;
   3035 	struct vm_page *pg, *opg;
   3036 	u_int nflags;
   3037 	u_int oflags;
   3038 	const bool kpm_p = (pm == pmap_kernel());
   3039 #ifdef ARM_HAS_VBAR
   3040 	const bool vector_page_p = false;
   3041 #else
   3042 	const bool vector_page_p = (va == vector_page);
   3043 #endif
   3044 
   3045 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3046 
   3047 	UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
   3048 	    pm, va, pa, prot);
   3049 	UVMHIST_LOG(maphist, "  flag %#x", flags, 0, 0, 0);
   3050 
   3051 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3052 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3053 
   3054 	/*
   3055 	 * Get a pointer to the page.  Later on in this function, we
   3056 	 * test for a managed page by checking pg != NULL.
   3057 	 */
   3058 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3059 
   3060 	nflags = 0;
   3061 	if (prot & VM_PROT_WRITE)
   3062 		nflags |= PVF_WRITE;
   3063 	if (prot & VM_PROT_EXECUTE)
   3064 		nflags |= PVF_EXEC;
   3065 	if (flags & PMAP_WIRED)
   3066 		nflags |= PVF_WIRED;
   3067 
   3068 	pmap_acquire_pmap_lock(pm);
   3069 
   3070 	/*
   3071 	 * Fetch the L2 bucket which maps this page, allocating one if
   3072 	 * necessary for user pmaps.
   3073 	 */
   3074 	if (kpm_p) {
   3075 		l2b = pmap_get_l2_bucket(pm, va);
   3076 	} else {
   3077 		l2b = pmap_alloc_l2_bucket(pm, va);
   3078 	}
   3079 	if (l2b == NULL) {
   3080 		if (flags & PMAP_CANFAIL) {
   3081 			pmap_release_pmap_lock(pm);
   3082 			return (ENOMEM);
   3083 		}
   3084 		panic("pmap_enter: failed to allocate L2 bucket");
   3085 	}
   3086 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3087 	const pt_entry_t opte = *ptep;
   3088 	pt_entry_t npte = pa;
   3089 	oflags = 0;
   3090 
   3091 	if (opte) {
   3092 		/*
   3093 		 * There is already a mapping at this address.
   3094 		 * If the physical address is different, lookup the
   3095 		 * vm_page.
   3096 		 */
   3097 		if (l2pte_pa(opte) != pa)
   3098 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3099 		else
   3100 			opg = pg;
   3101 	} else
   3102 		opg = NULL;
   3103 
   3104 	if (pg) {
   3105 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3106 
   3107 		/*
   3108 		 * This is to be a managed mapping.
   3109 		 */
   3110 		pmap_acquire_page_lock(md);
   3111 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3112 			/*
   3113 			 * - The access type indicates that we don't need
   3114 			 *   to do referenced emulation.
   3115 			 * OR
   3116 			 * - The physical page has already been referenced
   3117 			 *   so no need to re-do referenced emulation here.
   3118 			 */
   3119 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3120 
   3121 			nflags |= PVF_REF;
   3122 
   3123 			if ((prot & VM_PROT_WRITE) != 0 &&
   3124 			    ((flags & VM_PROT_WRITE) != 0 ||
   3125 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3126 				/*
   3127 				 * This is a writable mapping, and the
   3128 				 * page's mod state indicates it has
   3129 				 * already been modified. Make it
   3130 				 * writable from the outset.
   3131 				 */
   3132 				npte = l2pte_set_writable(npte);
   3133 				nflags |= PVF_MOD;
   3134 			}
   3135 
   3136 #ifdef ARM_MMU_EXTENDED
   3137 			/*
   3138 			 * If the page has been cleaned, then the pvh_attrs
   3139 			 * will have PVF_EXEC set, so mark it execute so we
   3140 			 * don't get an access fault when trying to execute
   3141 			 * from it.
   3142 			 */
   3143 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3144 				npte &= ~L2_XS_XN;
   3145 			}
   3146 #endif
   3147 		} else {
   3148 			/*
   3149 			 * Need to do page referenced emulation.
   3150 			 */
   3151 			npte |= L2_TYPE_INV;
   3152 		}
   3153 
   3154 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3155 			npte |= pte_l2_s_wc_mode;
   3156 		} else
   3157 			npte |= pte_l2_s_cache_mode;
   3158 
   3159 		if (pg == opg) {
   3160 			/*
   3161 			 * We're changing the attrs of an existing mapping.
   3162 			 */
   3163 			oflags = pmap_modify_pv(md, pa, pm, va,
   3164 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3165 			    PVF_MOD | PVF_REF, nflags);
   3166 
   3167 #ifdef PMAP_CACHE_VIVT
   3168 			/*
   3169 			 * We may need to flush the cache if we're
   3170 			 * doing rw-ro...
   3171 			 */
   3172 			if (pm->pm_cstate.cs_cache_d &&
   3173 			    (oflags & PVF_NC) == 0 &&
   3174 			    l2pte_writable_p(opte) &&
   3175 			    (prot & VM_PROT_WRITE) == 0)
   3176 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3177 #endif
   3178 		} else {
   3179 			struct pv_entry *pv;
   3180 			/*
   3181 			 * New mapping, or changing the backing page
   3182 			 * of an existing mapping.
   3183 			 */
   3184 			if (opg) {
   3185 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3186 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3187 
   3188 				/*
   3189 				 * Replacing an existing mapping with a new one.
   3190 				 * It is part of our managed memory so we
   3191 				 * must remove it from the PV list
   3192 				 */
   3193 				pv = pmap_remove_pv(omd, opa, pm, va);
   3194 				pmap_vac_me_harder(omd, opa, pm, 0);
   3195 				oflags = pv->pv_flags;
   3196 
   3197 #ifdef PMAP_CACHE_VIVT
   3198 				/*
   3199 				 * If the old mapping was valid (ref/mod
   3200 				 * emulation creates 'invalid' mappings
   3201 				 * initially) then make sure to frob
   3202 				 * the cache.
   3203 				 */
   3204 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3205 					pmap_cache_wbinv_page(pm, va, true,
   3206 					    oflags);
   3207 				}
   3208 #endif
   3209 			} else {
   3210 				pmap_release_page_lock(md);
   3211 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3212 				if (pv == NULL) {
   3213 					pmap_release_pmap_lock(pm);
   3214 					if ((flags & PMAP_CANFAIL) == 0)
   3215 						panic("pmap_enter: "
   3216 						    "no pv entries");
   3217 
   3218 					pmap_free_l2_bucket(pm, l2b, 0);
   3219 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3220 					    0, 0, 0, 0);
   3221 					return (ENOMEM);
   3222 				}
   3223 				pmap_acquire_page_lock(md);
   3224 			}
   3225 
   3226 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3227 		}
   3228 		pmap_release_page_lock(md);
   3229 	} else {
   3230 		/*
   3231 		 * We're mapping an unmanaged page.
   3232 		 * These are always readable, and possibly writable, from
   3233 		 * the get go as we don't need to track ref/mod status.
   3234 		 */
   3235 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3236 		if (prot & VM_PROT_WRITE)
   3237 			npte = l2pte_set_writable(npte);
   3238 
   3239 		/*
   3240 		 * Make sure the vector table is mapped cacheable
   3241 		 */
   3242 		if ((vector_page_p && !kpm_p)
   3243 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3244 			npte |= pte_l2_s_cache_mode;
   3245 #ifdef ARM_MMU_EXTENDED
   3246 			npte &= ~L2_XS_XN;	/* and executable */
   3247 #endif
   3248 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3249 			npte |= pte_l2_s_wc_mode;
   3250 		}
   3251 		if (opg) {
   3252 			/*
   3253 			 * Looks like there's an existing 'managed' mapping
   3254 			 * at this address.
   3255 			 */
   3256 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3257 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3258 
   3259 			pmap_acquire_page_lock(omd);
   3260 			struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
   3261 			pmap_vac_me_harder(omd, opa, pm, 0);
   3262 			oflags = pv->pv_flags;
   3263 			pmap_release_page_lock(omd);
   3264 
   3265 #ifdef PMAP_CACHE_VIVT
   3266 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3267 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3268 			}
   3269 #endif
   3270 			pool_put(&pmap_pv_pool, pv);
   3271 		}
   3272 	}
   3273 
   3274 	/*
   3275 	 * Make sure userland mappings get the right permissions
   3276 	 */
   3277 	if (!vector_page_p && !kpm_p) {
   3278 		npte |= L2_S_PROT_U;
   3279 #ifdef ARM_MMU_EXTENDED
   3280 		npte |= L2_XS_nG;	/* user pages are not global */
   3281 #endif
   3282 	}
   3283 
   3284 	/*
   3285 	 * Keep the stats up to date
   3286 	 */
   3287 	if (opte == 0) {
   3288 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3289 		pm->pm_stats.resident_count++;
   3290 	}
   3291 
   3292 	UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
   3293 
   3294 #if defined(ARM_MMU_EXTENDED)
   3295 	/*
   3296 	 * If exec protection was requested but the page hasn't been synced,
   3297 	 * sync it now and allow execution from it.
   3298 	 */
   3299 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3300 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3301 		npte &= ~L2_XS_XN;
   3302 		pmap_syncicache_page(md, pa);
   3303 		PMAPCOUNT(exec_synced_map);
   3304 	}
   3305 #endif
   3306 	/*
   3307 	 * If this is just a wiring change, the two PTEs will be
   3308 	 * identical, so there's no need to update the page table.
   3309 	 */
   3310 	if (npte != opte) {
   3311 
   3312 		l2pte_set(ptep, npte, opte);
   3313 		PTE_SYNC(ptep);
   3314 #ifndef ARM_MMU_EXTENDED
   3315 		bool is_cached = pmap_is_cached(pm);
   3316 		if (is_cached) {
   3317 			/*
   3318 			 * We only need to frob the cache/tlb if this pmap
   3319 			 * is current
   3320 			 */
   3321 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3322 				/*
   3323 				 * This mapping is likely to be accessed as
   3324 				 * soon as we return to userland. Fix up the
   3325 				 * L1 entry to avoid taking another
   3326 				 * page/domain fault.
   3327 				 */
   3328 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3329 				     + l1pte_index(va);
   3330 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3331 				    | L1_C_DOM(pmap_domain(pm));
   3332 				if (*pdep != pde) {
   3333 					l1pte_setone(pdep, pde);
   3334 					PTE_SYNC(pdep);
   3335 				}
   3336 			}
   3337 		}
   3338 #endif /* !ARM_MMU_EXTENDED */
   3339 
   3340 		pmap_tlb_flush_SE(pm, va, oflags);
   3341 
   3342 #ifndef ARM_MMU_EXTENDED
   3343 		UVMHIST_LOG(maphist, "  is_cached %d cs 0x%08x\n",
   3344 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3345 
   3346 		if (pg != NULL) {
   3347 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3348 
   3349 			pmap_acquire_page_lock(md);
   3350 			pmap_vac_me_harder(md, pa, pm, va);
   3351 			pmap_release_page_lock(md);
   3352 		}
   3353 #endif
   3354 	}
   3355 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3356 	if (pg) {
   3357 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3358 
   3359 		pmap_acquire_page_lock(md);
   3360 #ifndef ARM_MMU_EXTENDED
   3361 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3362 #endif
   3363 		PMAP_VALIDATE_MD_PAGE(md);
   3364 		pmap_release_page_lock(md);
   3365 	}
   3366 #endif
   3367 
   3368 	pmap_release_pmap_lock(pm);
   3369 
   3370 	return (0);
   3371 }
   3372 
   3373 /*
   3374  * pmap_remove()
   3375  *
   3376  * pmap_remove is responsible for nuking a number of mappings for a range
   3377  * of virtual address space in the current pmap. To do this efficiently
   3378  * is interesting, because in a number of cases a wide virtual address
   3379  * range may be supplied that contains few actual mappings. So, the
   3380  * optimisations are:
   3381  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3382  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3383  *     maybe do just a partial cache clean. This path of execution is
   3384  *     complicated by the fact that the cache must be flushed _before_
   3385  *     the PTE is nuked, being a VAC :-)
   3386  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3387  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3388  *     already flushed the cache.
   3389  *  4. Maybe later fast-case a single page, but I don't think this is
   3390  *     going to make _that_ much difference overall.
   3391  */
   3392 
   3393 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3394 
   3395 void
   3396 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3397 {
   3398 	vaddr_t next_bucket;
   3399 	u_int cleanlist_idx, total, cnt;
   3400 	struct {
   3401 		vaddr_t va;
   3402 		pt_entry_t *ptep;
   3403 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3404 	u_int mappings;
   3405 
   3406 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3407 	UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
   3408 
   3409 	/*
   3410 	 * we lock in the pmap => pv_head direction
   3411 	 */
   3412 	pmap_acquire_pmap_lock(pm);
   3413 
   3414 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3415 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3416 #ifndef ARM_MMU_EXTENDED
   3417 		if (pm->pm_cstate.cs_tlb == 0)
   3418 			pm->pm_remove_all = true;
   3419 #endif
   3420 	} else
   3421 		cleanlist_idx = 0;
   3422 
   3423 	total = 0;
   3424 
   3425 	while (sva < eva) {
   3426 		/*
   3427 		 * Do one L2 bucket's worth at a time.
   3428 		 */
   3429 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3430 		if (next_bucket > eva)
   3431 			next_bucket = eva;
   3432 
   3433 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3434 		if (l2b == NULL) {
   3435 			sva = next_bucket;
   3436 			continue;
   3437 		}
   3438 
   3439 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3440 
   3441 		for (mappings = 0;
   3442 		     sva < next_bucket;
   3443 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3444 			pt_entry_t opte = *ptep;
   3445 
   3446 			if (opte == 0) {
   3447 				/* Nothing here, move along */
   3448 				continue;
   3449 			}
   3450 
   3451 			u_int flags = PVF_REF;
   3452 			paddr_t pa = l2pte_pa(opte);
   3453 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3454 
   3455 			/*
   3456 			 * Update flags. In a number of circumstances,
   3457 			 * we could cluster a lot of these and do a
   3458 			 * number of sequential pages in one go.
   3459 			 */
   3460 			if (pg != NULL) {
   3461 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3462 				struct pv_entry *pv;
   3463 
   3464 				pmap_acquire_page_lock(md);
   3465 				pv = pmap_remove_pv(md, pa, pm, sva);
   3466 				pmap_vac_me_harder(md, pa, pm, 0);
   3467 				pmap_release_page_lock(md);
   3468 				if (pv != NULL) {
   3469 					if (pm->pm_remove_all == false) {
   3470 						flags = pv->pv_flags;
   3471 					}
   3472 					pool_put(&pmap_pv_pool, pv);
   3473 				}
   3474 			}
   3475 			mappings += PAGE_SIZE / L2_S_SIZE;
   3476 
   3477 			if (!l2pte_valid_p(opte)) {
   3478 				/*
   3479 				 * Ref/Mod emulation is still active for this
   3480 				 * mapping, therefore it is has not yet been
   3481 				 * accessed. No need to frob the cache/tlb.
   3482 				 */
   3483 				l2pte_reset(ptep);
   3484 				PTE_SYNC_CURRENT(pm, ptep);
   3485 				continue;
   3486 			}
   3487 
   3488 #ifdef ARM_MMU_EXTENDED
   3489 			if (pm == pmap_kernel()) {
   3490 				l2pte_reset(ptep);
   3491 				PTE_SYNC(ptep);
   3492 				pmap_tlb_flush_SE(pm, sva, flags);
   3493 				continue;
   3494 			}
   3495 #endif
   3496 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3497 				/* Add to the clean list. */
   3498 				cleanlist[cleanlist_idx].ptep = ptep;
   3499 				cleanlist[cleanlist_idx].va =
   3500 				    sva | (flags & PVF_EXEC);
   3501 				cleanlist_idx++;
   3502 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3503 				/* Nuke everything if needed. */
   3504 #ifdef PMAP_CACHE_VIVT
   3505 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3506 #endif
   3507 				/*
   3508 				 * Roll back the previous PTE list,
   3509 				 * and zero out the current PTE.
   3510 				 */
   3511 				for (cnt = 0;
   3512 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3513 					l2pte_reset(cleanlist[cnt].ptep);
   3514 					PTE_SYNC(cleanlist[cnt].ptep);
   3515 				}
   3516 				l2pte_reset(ptep);
   3517 				PTE_SYNC(ptep);
   3518 				cleanlist_idx++;
   3519 				pm->pm_remove_all = true;
   3520 			} else {
   3521 				l2pte_reset(ptep);
   3522 				PTE_SYNC(ptep);
   3523 				if (pm->pm_remove_all == false) {
   3524 					pmap_tlb_flush_SE(pm, sva, flags);
   3525 				}
   3526 			}
   3527 		}
   3528 
   3529 		/*
   3530 		 * Deal with any left overs
   3531 		 */
   3532 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3533 			total += cleanlist_idx;
   3534 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3535 #ifdef ARM_MMU_EXTENDED
   3536 				vaddr_t clva = cleanlist[cnt].va;
   3537 				pmap_tlb_flush_SE(pm, clva, PVF_REF);
   3538 #else
   3539 				vaddr_t va = cleanlist[cnt].va;
   3540 				if (pm->pm_cstate.cs_all != 0) {
   3541 					vaddr_t clva = va & ~PAGE_MASK;
   3542 					u_int flags = va & PVF_EXEC;
   3543 #ifdef PMAP_CACHE_VIVT
   3544 					pmap_cache_wbinv_page(pm, clva, true,
   3545 					    PVF_REF | PVF_WRITE | flags);
   3546 #endif
   3547 					pmap_tlb_flush_SE(pm, clva,
   3548 					    PVF_REF | flags);
   3549 				}
   3550 #endif /* ARM_MMU_EXTENDED */
   3551 				l2pte_reset(cleanlist[cnt].ptep);
   3552 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3553 			}
   3554 
   3555 			/*
   3556 			 * If it looks like we're removing a whole bunch
   3557 			 * of mappings, it's faster to just write-back
   3558 			 * the whole cache now and defer TLB flushes until
   3559 			 * pmap_update() is called.
   3560 			 */
   3561 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3562 				cleanlist_idx = 0;
   3563 			else {
   3564 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3565 #ifdef PMAP_CACHE_VIVT
   3566 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3567 #endif
   3568 				pm->pm_remove_all = true;
   3569 			}
   3570 		}
   3571 
   3572 
   3573 		pmap_free_l2_bucket(pm, l2b, mappings);
   3574 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3575 	}
   3576 
   3577 	pmap_release_pmap_lock(pm);
   3578 }
   3579 
   3580 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3581 static struct pv_entry *
   3582 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3583 {
   3584 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3585 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3586 	struct pv_entry *pv;
   3587 
   3588 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3589 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3590 	KASSERT(pmap_page_locked_p(md));
   3591 
   3592 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3593 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3594 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3595 
   3596 	/*
   3597 	 * If we are removing a writeable mapping to a cached exec page,
   3598 	 * if it's the last mapping then clear it execness other sync
   3599 	 * the page to the icache.
   3600 	 */
   3601 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3602 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3603 		if (SLIST_EMPTY(&md->pvh_list)) {
   3604 			md->pvh_attrs &= ~PVF_EXEC;
   3605 			PMAPCOUNT(exec_discarded_kremove);
   3606 		} else {
   3607 			pmap_syncicache_page(md, pa);
   3608 			PMAPCOUNT(exec_synced_kremove);
   3609 		}
   3610 	}
   3611 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3612 
   3613 	return pv;
   3614 }
   3615 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3616 
   3617 /*
   3618  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3619  *
   3620  * We assume there is already sufficient KVM space available
   3621  * to do this, as we can't allocate L2 descriptor tables/metadata
   3622  * from here.
   3623  */
   3624 void
   3625 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3626 {
   3627 #ifdef PMAP_CACHE_VIVT
   3628 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3629 #endif
   3630 #ifdef PMAP_CACHE_VIPT
   3631 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3632 	struct vm_page *opg;
   3633 #ifndef ARM_MMU_EXTENDED
   3634 	struct pv_entry *pv = NULL;
   3635 #endif
   3636 #endif
   3637 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3638 
   3639 	UVMHIST_FUNC(__func__);
   3640 
   3641 	if (pmap_initialized) {
   3642 		UVMHIST_CALLED(maphist);
   3643 		UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
   3644 		    va, pa, prot, flags);
   3645 	}
   3646 
   3647 	pmap_t kpm = pmap_kernel();
   3648 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3649 	const size_t l1slot __diagused = l1pte_index(va);
   3650 	KASSERTMSG(l2b != NULL,
   3651 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3652 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3653 	    kpm->pm_l2[L2_IDX(l1slot)]
   3654 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3655 		: NULL,
   3656 	    kpm->pm_l2[L2_IDX(l1slot)]
   3657 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3658 		: NULL);
   3659 	KASSERT(l2b->l2b_kva != NULL);
   3660 
   3661 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3662 	const pt_entry_t opte = *ptep;
   3663 
   3664 	if (opte == 0) {
   3665 		PMAPCOUNT(kenter_mappings);
   3666 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3667 	} else {
   3668 		PMAPCOUNT(kenter_remappings);
   3669 #ifdef PMAP_CACHE_VIPT
   3670 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3671 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
   3672 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
   3673 #endif
   3674 		if (opg && arm_cache_prefer_mask != 0) {
   3675 			KASSERT(opg != pg);
   3676 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3677 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3678 #ifndef ARM_MMU_EXTENDED
   3679 			pmap_acquire_page_lock(omd);
   3680 			pv = pmap_kremove_pg(opg, va);
   3681 			pmap_release_page_lock(omd);
   3682 #endif
   3683 		}
   3684 #endif
   3685 		if (l2pte_valid_p(opte)) {
   3686 #ifdef PMAP_CACHE_VIVT
   3687 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3688 #endif
   3689 			cpu_tlb_flushD_SE(va);
   3690 			cpu_cpwait();
   3691 		}
   3692 	}
   3693 
   3694 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3695 	    | ((flags & PMAP_NOCACHE)
   3696 		? 0
   3697 		: ((flags & PMAP_PTE)
   3698 		    ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
   3699 #ifdef ARM_MMU_EXTENDED
   3700 	if (prot & VM_PROT_EXECUTE)
   3701 		npte &= ~L2_XS_XN;
   3702 #endif
   3703 	l2pte_set(ptep, npte, opte);
   3704 	PTE_SYNC(ptep);
   3705 
   3706 	if (pg) {
   3707 		if (flags & PMAP_KMPAGE) {
   3708 			KASSERT(md->urw_mappings == 0);
   3709 			KASSERT(md->uro_mappings == 0);
   3710 			KASSERT(md->krw_mappings == 0);
   3711 			KASSERT(md->kro_mappings == 0);
   3712 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3713 			KASSERT(pv == NULL);
   3714 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3715 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3716 			/* if there is a color conflict, evict from cache. */
   3717 			if (pmap_is_page_colored_p(md)
   3718 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3719 				PMAPCOUNT(vac_color_change);
   3720 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3721 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3722 				/*
   3723 				 * If this page has multiple colors, expunge
   3724 				 * them.
   3725 				 */
   3726 				PMAPCOUNT(vac_flush_lots2);
   3727 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3728 			}
   3729 			/*
   3730 			 * Since this is a KMPAGE, there can be no contention
   3731 			 * for this page so don't lock it.
   3732 			 */
   3733 			md->pvh_attrs &= PAGE_SIZE - 1;
   3734 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3735 			    | (va & arm_cache_prefer_mask);
   3736 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3737 			md->pvh_attrs |= PVF_KMPAGE;
   3738 #endif
   3739 			atomic_inc_32(&pmap_kmpages);
   3740 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3741 		} else if (arm_cache_prefer_mask != 0) {
   3742 			if (pv == NULL) {
   3743 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3744 				KASSERT(pv != NULL);
   3745 			}
   3746 			pmap_acquire_page_lock(md);
   3747 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3748 			    PVF_WIRED | PVF_KENTRY
   3749 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3750 			if ((prot & VM_PROT_WRITE)
   3751 			    && !(md->pvh_attrs & PVF_NC))
   3752 				md->pvh_attrs |= PVF_DIRTY;
   3753 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3754 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3755 			pmap_release_page_lock(md);
   3756 #endif
   3757 		}
   3758 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3759 	} else {
   3760 		if (pv != NULL)
   3761 			pool_put(&pmap_pv_pool, pv);
   3762 #endif
   3763 	}
   3764 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3765 	KASSERT(md == NULL || !pmap_page_locked_p(md));
   3766 #endif
   3767 	if (pmap_initialized) {
   3768 		UVMHIST_LOG(maphist, "  <-- done (ptep %p: %#x -> %#x)",
   3769 		    ptep, opte, npte, 0);
   3770 	}
   3771 
   3772 }
   3773 
   3774 void
   3775 pmap_kremove(vaddr_t va, vsize_t len)
   3776 {
   3777 #ifdef UVMHIST
   3778 	u_int total_mappings = 0;
   3779 #endif
   3780 
   3781 	PMAPCOUNT(kenter_unmappings);
   3782 
   3783 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3784 
   3785 	UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
   3786 
   3787 	const vaddr_t eva = va + len;
   3788 
   3789 	while (va < eva) {
   3790 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3791 		if (next_bucket > eva)
   3792 			next_bucket = eva;
   3793 
   3794 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3795 		KDASSERT(l2b != NULL);
   3796 
   3797 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3798 		pt_entry_t *ptep = sptep;
   3799 		u_int mappings = 0;
   3800 
   3801 		while (va < next_bucket) {
   3802 			const pt_entry_t opte = *ptep;
   3803 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3804 			if (opg != NULL) {
   3805 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3806 
   3807 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3808 					KASSERT(omd->urw_mappings == 0);
   3809 					KASSERT(omd->uro_mappings == 0);
   3810 					KASSERT(omd->krw_mappings == 0);
   3811 					KASSERT(omd->kro_mappings == 0);
   3812 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3813 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3814 					if (arm_cache_prefer_mask != 0) {
   3815 						omd->pvh_attrs &= ~PVF_WRITE;
   3816 					}
   3817 #endif
   3818 					atomic_dec_32(&pmap_kmpages);
   3819 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3820 				} else if (arm_cache_prefer_mask != 0) {
   3821 					pmap_acquire_page_lock(omd);
   3822 					pool_put(&pmap_pv_pool,
   3823 					    pmap_kremove_pg(opg, va));
   3824 					pmap_release_page_lock(omd);
   3825 #endif
   3826 				}
   3827 			}
   3828 			if (l2pte_valid_p(opte)) {
   3829 #ifdef PMAP_CACHE_VIVT
   3830 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3831 #endif
   3832 				cpu_tlb_flushD_SE(va);
   3833 			}
   3834 			if (opte) {
   3835 				l2pte_reset(ptep);
   3836 				mappings += PAGE_SIZE / L2_S_SIZE;
   3837 			}
   3838 			va += PAGE_SIZE;
   3839 			ptep += PAGE_SIZE / L2_S_SIZE;
   3840 		}
   3841 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3842 		    mappings, l2b->l2b_occupancy);
   3843 		l2b->l2b_occupancy -= mappings;
   3844 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3845 #ifdef UVMHIST
   3846 		total_mappings += mappings;
   3847 #endif
   3848 	}
   3849 	cpu_cpwait();
   3850 	UVMHIST_LOG(maphist, "  <--- done (%u mappings removed)",
   3851 	    total_mappings, 0, 0, 0);
   3852 }
   3853 
   3854 bool
   3855 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3856 {
   3857 	struct l2_dtable *l2;
   3858 	pd_entry_t *pdep, pde;
   3859 	pt_entry_t *ptep, pte;
   3860 	paddr_t pa;
   3861 	u_int l1slot;
   3862 
   3863 	pmap_acquire_pmap_lock(pm);
   3864 
   3865 	l1slot = l1pte_index(va);
   3866 	pdep = pmap_l1_kva(pm) + l1slot;
   3867 	pde = *pdep;
   3868 
   3869 	if (l1pte_section_p(pde)) {
   3870 		/*
   3871 		 * These should only happen for pmap_kernel()
   3872 		 */
   3873 		KDASSERT(pm == pmap_kernel());
   3874 		pmap_release_pmap_lock(pm);
   3875 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3876 		if (l1pte_supersection_p(pde)) {
   3877 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3878 		} else
   3879 #endif
   3880 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3881 	} else {
   3882 		/*
   3883 		 * Note that we can't rely on the validity of the L1
   3884 		 * descriptor as an indication that a mapping exists.
   3885 		 * We have to look it up in the L2 dtable.
   3886 		 */
   3887 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   3888 
   3889 		if (l2 == NULL ||
   3890 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   3891 			pmap_release_pmap_lock(pm);
   3892 			return false;
   3893 		}
   3894 
   3895 		pte = ptep[l2pte_index(va)];
   3896 		pmap_release_pmap_lock(pm);
   3897 
   3898 		if (pte == 0)
   3899 			return false;
   3900 
   3901 		switch (pte & L2_TYPE_MASK) {
   3902 		case L2_TYPE_L:
   3903 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3904 			break;
   3905 
   3906 		default:
   3907 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   3908 			break;
   3909 		}
   3910 	}
   3911 
   3912 	if (pap != NULL)
   3913 		*pap = pa;
   3914 
   3915 	return true;
   3916 }
   3917 
   3918 void
   3919 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3920 {
   3921 	struct l2_bucket *l2b;
   3922 	vaddr_t next_bucket;
   3923 
   3924 	NPDEBUG(PDB_PROTECT,
   3925 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3926 	    pm, sva, eva, prot));
   3927 
   3928 	if ((prot & VM_PROT_READ) == 0) {
   3929 		pmap_remove(pm, sva, eva);
   3930 		return;
   3931 	}
   3932 
   3933 	if (prot & VM_PROT_WRITE) {
   3934 		/*
   3935 		 * If this is a read->write transition, just ignore it and let
   3936 		 * uvm_fault() take care of it later.
   3937 		 */
   3938 		return;
   3939 	}
   3940 
   3941 	pmap_acquire_pmap_lock(pm);
   3942 
   3943 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   3944 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3945 	u_int flags = 0;
   3946 
   3947 	while (sva < eva) {
   3948 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3949 		if (next_bucket > eva)
   3950 			next_bucket = eva;
   3951 
   3952 		l2b = pmap_get_l2_bucket(pm, sva);
   3953 		if (l2b == NULL) {
   3954 			sva = next_bucket;
   3955 			continue;
   3956 		}
   3957 
   3958 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3959 
   3960 		while (sva < next_bucket) {
   3961 			const pt_entry_t opte = *ptep;
   3962 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   3963 				struct vm_page *pg;
   3964 				u_int f;
   3965 
   3966 #ifdef PMAP_CACHE_VIVT
   3967 				/*
   3968 				 * OK, at this point, we know we're doing
   3969 				 * write-protect operation.  If the pmap is
   3970 				 * active, write-back the page.
   3971 				 */
   3972 				pmap_cache_wbinv_page(pm, sva, false,
   3973 				    PVF_REF | PVF_WRITE);
   3974 #endif
   3975 
   3976 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3977 				pt_entry_t npte = l2pte_set_readonly(opte);
   3978 				l2pte_set(ptep, npte, opte);
   3979 				PTE_SYNC(ptep);
   3980 
   3981 				if (pg != NULL) {
   3982 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3983 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3984 
   3985 					pmap_acquire_page_lock(md);
   3986 					f = pmap_modify_pv(md, pa, pm, sva,
   3987 					    clr_mask, 0);
   3988 					pmap_vac_me_harder(md, pa, pm, sva);
   3989 					pmap_release_page_lock(md);
   3990 				} else {
   3991 					f = PVF_REF | PVF_EXEC;
   3992 				}
   3993 
   3994 				if (flush) {
   3995 					flags |= f;
   3996 				} else {
   3997 					pmap_tlb_flush_SE(pm, sva, f);
   3998 				}
   3999 			}
   4000 
   4001 			sva += PAGE_SIZE;
   4002 			ptep += PAGE_SIZE / L2_S_SIZE;
   4003 		}
   4004 	}
   4005 
   4006 	if (flush) {
   4007 		if (PV_BEEN_EXECD(flags)) {
   4008 			pmap_tlb_flushID(pm);
   4009 		} else if (PV_BEEN_REFD(flags)) {
   4010 			pmap_tlb_flushD(pm);
   4011 		}
   4012 	}
   4013 
   4014 	pmap_release_pmap_lock(pm);
   4015 }
   4016 
   4017 void
   4018 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4019 {
   4020 	struct l2_bucket *l2b;
   4021 	pt_entry_t *ptep;
   4022 	vaddr_t next_bucket;
   4023 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4024 
   4025 	NPDEBUG(PDB_EXEC,
   4026 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   4027 	    pm, sva, eva));
   4028 
   4029 	pmap_acquire_pmap_lock(pm);
   4030 
   4031 	while (sva < eva) {
   4032 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4033 		if (next_bucket > eva)
   4034 			next_bucket = eva;
   4035 
   4036 		l2b = pmap_get_l2_bucket(pm, sva);
   4037 		if (l2b == NULL) {
   4038 			sva = next_bucket;
   4039 			continue;
   4040 		}
   4041 
   4042 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4043 		     sva < next_bucket;
   4044 		     sva += page_size,
   4045 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4046 		     page_size = PAGE_SIZE) {
   4047 			if (l2pte_valid_p(*ptep)) {
   4048 				cpu_icache_sync_range(sva,
   4049 				    min(page_size, eva - sva));
   4050 			}
   4051 		}
   4052 	}
   4053 
   4054 	pmap_release_pmap_lock(pm);
   4055 }
   4056 
   4057 void
   4058 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4059 {
   4060 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4061 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4062 
   4063 	NPDEBUG(PDB_PROTECT,
   4064 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   4065 	    md, pa, prot));
   4066 
   4067 	switch(prot) {
   4068 	case VM_PROT_READ|VM_PROT_WRITE:
   4069 #if defined(ARM_MMU_EXTENDED)
   4070 		pmap_acquire_page_lock(md);
   4071 		pmap_clearbit(md, pa, PVF_EXEC);
   4072 		pmap_release_page_lock(md);
   4073 		break;
   4074 #endif
   4075 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4076 		break;
   4077 
   4078 	case VM_PROT_READ:
   4079 #if defined(ARM_MMU_EXTENDED)
   4080 		pmap_acquire_page_lock(md);
   4081 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4082 		pmap_release_page_lock(md);
   4083 		break;
   4084 #endif
   4085 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4086 		pmap_acquire_page_lock(md);
   4087 		pmap_clearbit(md, pa, PVF_WRITE);
   4088 		pmap_release_page_lock(md);
   4089 		break;
   4090 
   4091 	default:
   4092 		pmap_page_remove(md, pa);
   4093 		break;
   4094 	}
   4095 }
   4096 
   4097 /*
   4098  * pmap_clear_modify:
   4099  *
   4100  *	Clear the "modified" attribute for a page.
   4101  */
   4102 bool
   4103 pmap_clear_modify(struct vm_page *pg)
   4104 {
   4105 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4106 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4107 	bool rv;
   4108 
   4109 	pmap_acquire_page_lock(md);
   4110 
   4111 	if (md->pvh_attrs & PVF_MOD) {
   4112 		rv = true;
   4113 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4114 		/*
   4115 		 * If we are going to clear the modified bit and there are
   4116 		 * no other modified bits set, flush the page to memory and
   4117 		 * mark it clean.
   4118 		 */
   4119 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4120 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4121 #endif
   4122 		pmap_clearbit(md, pa, PVF_MOD);
   4123 	} else {
   4124 		rv = false;
   4125 	}
   4126 	pmap_release_page_lock(md);
   4127 
   4128 	return rv;
   4129 }
   4130 
   4131 /*
   4132  * pmap_clear_reference:
   4133  *
   4134  *	Clear the "referenced" attribute for a page.
   4135  */
   4136 bool
   4137 pmap_clear_reference(struct vm_page *pg)
   4138 {
   4139 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4140 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4141 	bool rv;
   4142 
   4143 	pmap_acquire_page_lock(md);
   4144 
   4145 	if (md->pvh_attrs & PVF_REF) {
   4146 		rv = true;
   4147 		pmap_clearbit(md, pa, PVF_REF);
   4148 	} else {
   4149 		rv = false;
   4150 	}
   4151 	pmap_release_page_lock(md);
   4152 
   4153 	return rv;
   4154 }
   4155 
   4156 /*
   4157  * pmap_is_modified:
   4158  *
   4159  *	Test if a page has the "modified" attribute.
   4160  */
   4161 /* See <arm/arm32/pmap.h> */
   4162 
   4163 /*
   4164  * pmap_is_referenced:
   4165  *
   4166  *	Test if a page has the "referenced" attribute.
   4167  */
   4168 /* See <arm/arm32/pmap.h> */
   4169 
   4170 #if defined(ARM_MMU_EXTENDED) && 0
   4171 int
   4172 pmap_prefetchabt_fixup(void *v)
   4173 {
   4174 	struct trapframe * const tf = v;
   4175 	vaddr_t va = trunc_page(tf->tf_pc);
   4176 	int rv = ABORT_FIXUP_FAILED;
   4177 
   4178 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4179 		return rv;
   4180 
   4181 	kpreempt_disable();
   4182 	pmap_t pm = curcpu()->ci_pmap_cur;
   4183 	const size_t l1slot = l1pte_index(va);
   4184 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4185 	if (l2 == NULL)
   4186 		goto out;
   4187 
   4188 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4189 	if (l2b->l2b_kva == NULL)
   4190 		goto out;
   4191 
   4192 	/*
   4193 	 * Check the PTE itself.
   4194 	 */
   4195 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4196 	const pt_entry_t opte = *ptep;
   4197 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4198 		goto out;
   4199 
   4200 	paddr_t pa = l2pte_pa(pte);
   4201 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4202 	KASSERT(pg != NULL);
   4203 
   4204 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4205 
   4206 	pmap_acquire_page_lock(md);
   4207 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4208 	KASSERT(pv != NULL);
   4209 
   4210 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4211 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4212 			pmap_syncicache_page(md, pa);
   4213 		}
   4214 		rv = ABORT_FIXUP_RETURN;
   4215 		l2pte_set(ptep, opte & ~L2_XS_XN, opte);
   4216 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4217 	}
   4218 	pmap_release_page_lock(md);
   4219 
   4220   out:
   4221 	kpreempt_enable();
   4222 	return rv;
   4223 }
   4224 #endif
   4225 
   4226 int
   4227 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4228 {
   4229 	struct l2_dtable *l2;
   4230 	struct l2_bucket *l2b;
   4231 	paddr_t pa;
   4232 	const size_t l1slot = l1pte_index(va);
   4233 	int rv = 0;
   4234 
   4235 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4236 
   4237 	va = trunc_page(va);
   4238 
   4239 	KASSERT(!user || (pm != pmap_kernel()));
   4240 
   4241 	UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
   4242 	    pm, va, ftype, user);
   4243 #ifdef ARM_MMU_EXTENDED
   4244 	UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
   4245 	    cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4246 	    PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4247 #endif
   4248 
   4249 	pmap_acquire_pmap_lock(pm);
   4250 
   4251 	/*
   4252 	 * If there is no l2_dtable for this address, then the process
   4253 	 * has no business accessing it.
   4254 	 *
   4255 	 * Note: This will catch userland processes trying to access
   4256 	 * kernel addresses.
   4257 	 */
   4258 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4259 	if (l2 == NULL) {
   4260 		UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
   4261 		goto out;
   4262 	}
   4263 
   4264 	/*
   4265 	 * Likewise if there is no L2 descriptor table
   4266 	 */
   4267 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4268 	if (l2b->l2b_kva == NULL) {
   4269 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
   4270 		goto out;
   4271 	}
   4272 
   4273 	/*
   4274 	 * Check the PTE itself.
   4275 	 */
   4276 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4277 	pt_entry_t const opte = *ptep;
   4278 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4279 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
   4280 		goto out;
   4281 	}
   4282 
   4283 #ifndef ARM_HAS_VBAR
   4284 	/*
   4285 	 * Catch a userland access to the vector page mapped at 0x0
   4286 	 */
   4287 	if (user && (opte & L2_S_PROT_U) == 0) {
   4288 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4289 		goto out;
   4290 	}
   4291 #endif
   4292 
   4293 	pa = l2pte_pa(opte);
   4294 
   4295 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4296 		/*
   4297 		 * This looks like a good candidate for "page modified"
   4298 		 * emulation...
   4299 		 */
   4300 		struct pv_entry *pv;
   4301 		struct vm_page *pg;
   4302 
   4303 		/* Extract the physical address of the page */
   4304 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4305 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4306 			goto out;
   4307 		}
   4308 
   4309 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4310 
   4311 		/* Get the current flags for this page. */
   4312 		pmap_acquire_page_lock(md);
   4313 		pv = pmap_find_pv(md, pm, va);
   4314 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4315 			pmap_release_page_lock(md);
   4316 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4317 			goto out;
   4318 		}
   4319 
   4320 		/*
   4321 		 * Do the flags say this page is writable? If not then it
   4322 		 * is a genuine write fault. If yes then the write fault is
   4323 		 * our fault as we did not reflect the write access in the
   4324 		 * PTE. Now we know a write has occurred we can correct this
   4325 		 * and also set the modified bit
   4326 		 */
   4327 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4328 			pmap_release_page_lock(md);
   4329 			goto out;
   4330 		}
   4331 
   4332 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4333 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4334 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4335 		/*
   4336 		 * If there are cacheable mappings for this page, mark it dirty.
   4337 		 */
   4338 		if ((md->pvh_attrs & PVF_NC) == 0)
   4339 			md->pvh_attrs |= PVF_DIRTY;
   4340 #endif
   4341 #ifdef ARM_MMU_EXTENDED
   4342 		if (md->pvh_attrs & PVF_EXEC) {
   4343 			md->pvh_attrs &= ~PVF_EXEC;
   4344 			PMAPCOUNT(exec_discarded_modfixup);
   4345 		}
   4346 #endif
   4347 		pmap_release_page_lock(md);
   4348 
   4349 		/*
   4350 		 * Re-enable write permissions for the page.  No need to call
   4351 		 * pmap_vac_me_harder(), since this is just a
   4352 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4353 		 * changing. We've already set the cacheable bits based on
   4354 		 * the assumption that we can write to this page.
   4355 		 */
   4356 		const pt_entry_t npte =
   4357 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4358 #ifdef ARM_MMU_EXTENDED
   4359 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4360 #endif
   4361 		    | 0;
   4362 		l2pte_set(ptep, npte, opte);
   4363 		PTE_SYNC(ptep);
   4364 		PMAPCOUNT(fixup_mod);
   4365 		rv = 1;
   4366 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
   4367 		    opte, npte, 0, 0);
   4368 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4369 		/*
   4370 		 * This looks like a good candidate for "page referenced"
   4371 		 * emulation.
   4372 		 */
   4373 		struct vm_page *pg;
   4374 
   4375 		/* Extract the physical address of the page */
   4376 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4377 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4378 			goto out;
   4379 		}
   4380 
   4381 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4382 
   4383 		/* Get the current flags for this page. */
   4384 		pmap_acquire_page_lock(md);
   4385 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4386 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4387 			pmap_release_page_lock(md);
   4388 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4389 			goto out;
   4390 		}
   4391 
   4392 		md->pvh_attrs |= PVF_REF;
   4393 		pv->pv_flags |= PVF_REF;
   4394 
   4395 		pt_entry_t npte =
   4396 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4397 #ifdef ARM_MMU_EXTENDED
   4398 		if (pm != pmap_kernel()) {
   4399 			npte |= L2_XS_nG;
   4400 		}
   4401 		/*
   4402 		 * If we got called from prefetch abort, then ftype will have
   4403 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4404 		 * the PTE.
   4405 		 */
   4406 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4407 			/*
   4408 			 * Is this a mapping of an executable page?
   4409 			 */
   4410 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4411 				pmap_release_page_lock(md);
   4412 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4413 				    0, 0, 0, 0);
   4414 				goto out;
   4415 			}
   4416 			/*
   4417 			 * If we haven't synced the page, do so now.
   4418 			 */
   4419 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4420 				UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
   4421 				    pa, 0, 0, 0);
   4422 				pmap_syncicache_page(md, pa);
   4423 				PMAPCOUNT(fixup_exec);
   4424 			}
   4425 			npte &= ~L2_XS_XN;
   4426 		}
   4427 #endif /* ARM_MMU_EXTENDED */
   4428 		pmap_release_page_lock(md);
   4429 		l2pte_set(ptep, npte, opte);
   4430 		PTE_SYNC(ptep);
   4431 		PMAPCOUNT(fixup_ref);
   4432 		rv = 1;
   4433 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
   4434 		    opte, npte, 0, 0);
   4435 #ifdef ARM_MMU_EXTENDED
   4436 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4437 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4438 		if (pg == NULL) {
   4439 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4440 			goto out;
   4441 		}
   4442 
   4443 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4444 
   4445 		/* Get the current flags for this page. */
   4446 		pmap_acquire_page_lock(md);
   4447 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4448 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4449 			pmap_release_page_lock(md);
   4450 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4451 			goto out;
   4452 		}
   4453 
   4454 		/*
   4455 		 * If we haven't synced the page, do so now.
   4456 		 */
   4457 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4458 			UVMHIST_LOG(maphist, "syncicache page #%#x",
   4459 			    pa, 0, 0, 0);
   4460 			pmap_syncicache_page(md, pa);
   4461 		}
   4462 		pmap_release_page_lock(md);
   4463 		/*
   4464 		 * Turn off no-execute.
   4465 		 */
   4466 		KASSERT(opte & L2_XS_nG);
   4467 		l2pte_set(ptep, opte & ~L2_XS_XN, opte);
   4468 		PTE_SYNC(ptep);
   4469 		rv = 1;
   4470 		PMAPCOUNT(fixup_exec);
   4471 		UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
   4472 		    opte, opte & ~L2_XS_XN, 0, 0);
   4473 #endif
   4474 	}
   4475 
   4476 #ifndef ARM_MMU_EXTENDED
   4477 	/*
   4478 	 * We know there is a valid mapping here, so simply
   4479 	 * fix up the L1 if necessary.
   4480 	 */
   4481 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4482 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4483 	if (*pdep != pde) {
   4484 		l1pte_setone(pdep, pde);
   4485 		PTE_SYNC(pdep);
   4486 		rv = 1;
   4487 		PMAPCOUNT(fixup_pdes);
   4488 	}
   4489 #endif
   4490 
   4491 #ifdef CPU_SA110
   4492 	/*
   4493 	 * There are bugs in the rev K SA110.  This is a check for one
   4494 	 * of them.
   4495 	 */
   4496 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4497 	    curcpu()->ci_arm_cpurev < 3) {
   4498 		/* Always current pmap */
   4499 		if (l2pte_valid_p(opte)) {
   4500 			extern int kernel_debug;
   4501 			if (kernel_debug & 1) {
   4502 				struct proc *p = curlwp->l_proc;
   4503 				printf("prefetch_abort: page is already "
   4504 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4505 				printf("prefetch_abort: pc=%08lx proc=%p "
   4506 				    "process=%s\n", va, p, p->p_comm);
   4507 				printf("prefetch_abort: far=%08x fs=%x\n",
   4508 				    cpu_faultaddress(), cpu_faultstatus());
   4509 			}
   4510 #ifdef DDB
   4511 			if (kernel_debug & 2)
   4512 				Debugger();
   4513 #endif
   4514 			rv = 1;
   4515 		}
   4516 	}
   4517 #endif /* CPU_SA110 */
   4518 
   4519 #ifndef ARM_MMU_EXTENDED
   4520 	/*
   4521 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4522 	 * stale TLB entry for the faulting address.  That might be due to a
   4523 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4524 	 */
   4525 	if (rv == 0
   4526 	    && pm->pm_l1->l1_domain_use_count == 1
   4527 	    && pmap_needs_pte_sync == 0) {
   4528 		pmap_needs_pte_sync = 1;
   4529 		PTE_SYNC(ptep);
   4530 		PMAPCOUNT(fixup_ptesync);
   4531 		rv = 1;
   4532 	}
   4533 #endif
   4534 
   4535 #if defined(DEBUG) || 1
   4536 	/*
   4537 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4538 	 * stale TLB entry for the faulting address. This happens when two or
   4539 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4540 	 * a context switch between such processes, we can take domain faults
   4541 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4542 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4543 	 * example.
   4544 	 *
   4545 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4546 	 * entry for a recently entered mapping. In this case, the TLB is
   4547 	 * flushed for the new mapping, but there may still be TLB entries for
   4548 	 * other mappings belonging to other processes in the 1MB range
   4549 	 * covered by the L1 entry.
   4550 	 *
   4551 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4552 	 * value, so the fault must be due to a stale TLB entry.
   4553 	 *
   4554 	 * Since we always need to flush the TLB anyway in the case where we
   4555 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4556 	 * stale TLB entries dynamically.
   4557 	 *
   4558 	 * However, the above condition can ONLY happen if the current L1 is
   4559 	 * being shared. If it happens when the L1 is unshared, it indicates
   4560 	 * that other parts of the pmap are not doing their job WRT managing
   4561 	 * the TLB.
   4562 	 */
   4563 	if (rv == 0
   4564 #ifndef ARM_MMU_EXTENDED
   4565 	    && pm->pm_l1->l1_domain_use_count == 1
   4566 #endif
   4567 	    && true) {
   4568 #ifdef DEBUG
   4569 		extern int last_fault_code;
   4570 #else
   4571 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4572 		    ? armreg_ifsr_read()
   4573 		    : armreg_dfsr_read();
   4574 #endif
   4575 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4576 		    pm, va, ftype);
   4577 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4578 		    l2, l2b, ptep, opte);
   4579 
   4580 #ifndef ARM_MMU_EXTENDED
   4581 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4582 		    pdep, pde, last_fault_code);
   4583 #else
   4584 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4585 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4586 		   armreg_ttbcr_read());
   4587 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4588 		    last_fault_code, curcpu()->ci_pmap_cur,
   4589 		    curcpu()->ci_pmap_asid_cur,
   4590 		    armreg_contextidr_read(), armreg_dacr_read());
   4591 #ifdef _ARM_ARCH_7
   4592 		if (ftype & VM_PROT_WRITE)
   4593 			armreg_ats1cuw_write(va);
   4594 		else
   4595 			armreg_ats1cur_write(va);
   4596 		arm_isb();
   4597 		printf("fixup: par %#x\n", armreg_par_read());
   4598 #endif
   4599 #endif
   4600 #ifdef DDB
   4601 		extern int kernel_debug;
   4602 
   4603 		if (kernel_debug & 2) {
   4604 			pmap_release_pmap_lock(pm);
   4605 #ifdef UVMHIST
   4606 			KERNHIST_DUMP(maphist);
   4607 #endif
   4608 			cpu_Debugger();
   4609 			pmap_acquire_pmap_lock(pm);
   4610 		}
   4611 #endif
   4612 	}
   4613 #endif
   4614 
   4615 	pmap_tlb_flush_SE(pm, va,
   4616 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4617 
   4618 	rv = 1;
   4619 
   4620 out:
   4621 	pmap_release_pmap_lock(pm);
   4622 
   4623 	return (rv);
   4624 }
   4625 
   4626 /*
   4627  * Routine:	pmap_procwr
   4628  *
   4629  * Function:
   4630  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4631  *
   4632  */
   4633 void
   4634 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4635 {
   4636 	/* We only need to do anything if it is the current process. */
   4637 	if (p == curproc)
   4638 		cpu_icache_sync_range(va, len);
   4639 }
   4640 
   4641 /*
   4642  * Routine:	pmap_unwire
   4643  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4644  *
   4645  * In/out conditions:
   4646  *		The mapping must already exist in the pmap.
   4647  */
   4648 void
   4649 pmap_unwire(pmap_t pm, vaddr_t va)
   4650 {
   4651 	struct l2_bucket *l2b;
   4652 	pt_entry_t *ptep, pte;
   4653 	struct vm_page *pg;
   4654 	paddr_t pa;
   4655 
   4656 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4657 
   4658 	pmap_acquire_pmap_lock(pm);
   4659 
   4660 	l2b = pmap_get_l2_bucket(pm, va);
   4661 	KDASSERT(l2b != NULL);
   4662 
   4663 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4664 	pte = *ptep;
   4665 
   4666 	/* Extract the physical address of the page */
   4667 	pa = l2pte_pa(pte);
   4668 
   4669 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4670 		/* Update the wired bit in the pv entry for this page. */
   4671 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4672 
   4673 		pmap_acquire_page_lock(md);
   4674 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4675 		pmap_release_page_lock(md);
   4676 	}
   4677 
   4678 	pmap_release_pmap_lock(pm);
   4679 }
   4680 
   4681 void
   4682 pmap_activate(struct lwp *l)
   4683 {
   4684 	struct cpu_info * const ci = curcpu();
   4685 	extern int block_userspace_access;
   4686 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   4687 #ifdef ARM_MMU_EXTENDED
   4688 	struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
   4689 #endif
   4690 
   4691 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4692 
   4693 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
   4694 
   4695 	/*
   4696 	 * If activating a non-current lwp or the current lwp is
   4697 	 * already active, just return.
   4698 	 */
   4699 	if (false
   4700 	    || l != curlwp
   4701 #ifdef ARM_MMU_EXTENDED
   4702 	    || (ci->ci_pmap_cur == npm &&
   4703 		(npm == pmap_kernel()
   4704 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   4705 #else
   4706 	    || npm->pm_activated == true
   4707 #endif
   4708 	    || false) {
   4709 		UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
   4710 		return;
   4711 	}
   4712 
   4713 #ifndef ARM_MMU_EXTENDED
   4714 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4715 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4716 
   4717 	/*
   4718 	 * If TTB and DACR are unchanged, short-circuit all the
   4719 	 * TLB/cache management stuff.
   4720 	 */
   4721 	pmap_t opm = ci->ci_lastlwp
   4722 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   4723 	    : NULL;
   4724 	if (opm != NULL) {
   4725 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4726 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4727 
   4728 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4729 			goto all_done;
   4730 	}
   4731 #endif /* !ARM_MMU_EXTENDED */
   4732 
   4733 	PMAPCOUNT(activations);
   4734 	block_userspace_access = 1;
   4735 
   4736 #ifndef ARM_MMU_EXTENDED
   4737 	/*
   4738 	 * If switching to a user vmspace which is different to the
   4739 	 * most recent one, and the most recent one is potentially
   4740 	 * live in the cache, we must write-back and invalidate the
   4741 	 * entire cache.
   4742 	 */
   4743 	pmap_t rpm = ci->ci_pmap_lastuser;
   4744 #endif
   4745 
   4746 /*
   4747  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4748  * reported in kern/41058. They're probably left over during tear-down and
   4749  * switching away from an exiting process. Until the root cause is identified
   4750  * and fixed, zap the cache when switching pmaps. This will result in a few
   4751  * unnecessary cache flushes, but that's better than silently corrupting data.
   4752  */
   4753 #ifndef ARM_MMU_EXTENDED
   4754 #if 0
   4755 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4756 	    rpm->pm_cstate.cs_cache) {
   4757 		rpm->pm_cstate.cs_cache = 0;
   4758 #ifdef PMAP_CACHE_VIVT
   4759 		cpu_idcache_wbinv_all();
   4760 #endif
   4761 	}
   4762 #else
   4763 	if (rpm) {
   4764 		rpm->pm_cstate.cs_cache = 0;
   4765 		if (npm == pmap_kernel())
   4766 			ci->ci_pmap_lastuser = NULL;
   4767 #ifdef PMAP_CACHE_VIVT
   4768 		cpu_idcache_wbinv_all();
   4769 #endif
   4770 	}
   4771 #endif
   4772 
   4773 	/* No interrupts while we frob the TTB/DACR */
   4774 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   4775 #endif /* !ARM_MMU_EXTENDED */
   4776 
   4777 #ifndef ARM_HAS_VBAR
   4778 	/*
   4779 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4780 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4781 	 * before switching to it otherwise subsequent interrupts/exceptions
   4782 	 * (including domain faults!) will jump into hyperspace.
   4783 	 */
   4784 	if (npm->pm_pl1vec != NULL) {
   4785 		cpu_tlb_flushID_SE((u_int)vector_page);
   4786 		cpu_cpwait();
   4787 		*npm->pm_pl1vec = npm->pm_l1vec;
   4788 		PTE_SYNC(npm->pm_pl1vec);
   4789 	}
   4790 #endif
   4791 
   4792 #ifdef ARM_MMU_EXTENDED
   4793 	/*
   4794 	 * Assume that TTBR1 has only global mappings and TTBR0 only has
   4795 	 * non-global mappings.  To prevent speculation from doing evil things
   4796 	 * we disable translation table walks using TTBR0 before setting the
   4797 	 * CONTEXTIDR (ASID) or new TTBR0 value.  Once both are set, table
   4798 	 * walks are reenabled.
   4799 	 */
   4800 	UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
   4801 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4802 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4803 	arm_isb();
   4804 	pmap_tlb_asid_acquire(npm, l);
   4805 	UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
   4806 	cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
   4807 	/*
   4808 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
   4809 	 * been updated.
   4810 	 */
   4811 	arm_isb();
   4812 	if (npm != pmap_kernel()) {
   4813 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4814 	}
   4815 	cpu_cpwait();
   4816 	ci->ci_pmap_asid_cur = pai->pai_asid;
   4817 #else
   4818 	cpu_domains(ndacr);
   4819 	if (npm == pmap_kernel() || npm == rpm) {
   4820 		/*
   4821 		 * Switching to a kernel thread, or back to the
   4822 		 * same user vmspace as before... Simply update
   4823 		 * the TTB (no TLB flush required)
   4824 		 */
   4825 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4826 		cpu_cpwait();
   4827 	} else {
   4828 		/*
   4829 		 * Otherwise, update TTB and flush TLB
   4830 		 */
   4831 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4832 		if (rpm != NULL)
   4833 			rpm->pm_cstate.cs_tlb = 0;
   4834 	}
   4835 
   4836 	restore_interrupts(oldirqstate);
   4837 #endif /* ARM_MMU_EXTENDED */
   4838 
   4839 	block_userspace_access = 0;
   4840 
   4841 #ifndef ARM_MMU_EXTENDED
   4842  all_done:
   4843 	/*
   4844 	 * The new pmap is resident. Make sure it's marked
   4845 	 * as resident in the cache/TLB.
   4846 	 */
   4847 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4848 	if (npm != pmap_kernel())
   4849 		ci->ci_pmap_lastuser = npm;
   4850 
   4851 	/* The old pmap is not longer active */
   4852 	if (opm != npm) {
   4853 		if (opm != NULL)
   4854 			opm->pm_activated = false;
   4855 
   4856 		/* But the new one is */
   4857 		npm->pm_activated = true;
   4858 	}
   4859 #endif
   4860 	ci->ci_pmap_cur = npm;
   4861 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   4862 }
   4863 
   4864 void
   4865 pmap_deactivate(struct lwp *l)
   4866 {
   4867 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   4868 
   4869 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4870 
   4871 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
   4872 
   4873 #ifdef ARM_MMU_EXTENDED
   4874 	kpreempt_disable();
   4875 	struct cpu_info * const ci = curcpu();
   4876 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
   4877 	/*
   4878 	 * Disable translation table walks from TTBR0 while no pmap has been
   4879 	 * activated.
   4880 	 */
   4881 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4882 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4883 	arm_isb();
   4884 	pmap_tlb_asid_deactivate(pm);
   4885 	cpu_setttb(pmap_kernel()->pm_l1_pa, pai->pai_asid);
   4886 	ci->ci_pmap_cur = pmap_kernel();
   4887 	kpreempt_enable();
   4888 #else
   4889 	/*
   4890 	 * If the process is exiting, make sure pmap_activate() does
   4891 	 * a full MMU context-switch and cache flush, which we might
   4892 	 * otherwise skip. See PR port-arm/38950.
   4893 	 */
   4894 	if (l->l_proc->p_sflag & PS_WEXIT)
   4895 		curcpu()->ci_lastlwp = NULL;
   4896 
   4897 	pm->pm_activated = false;
   4898 #endif
   4899 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   4900 }
   4901 
   4902 void
   4903 pmap_update(pmap_t pm)
   4904 {
   4905 
   4906 	if (pm->pm_remove_all) {
   4907 #ifdef ARM_MMU_EXTENDED
   4908 		KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   4909 		/*
   4910 		 * Finish up the pmap_remove_all() optimisation by flushing
   4911 		 * all our ASIDs.
   4912 		 */
   4913 		pmap_tlb_asid_release_all(pm);
   4914 #else
   4915 		/*
   4916 		 * Finish up the pmap_remove_all() optimisation by flushing
   4917 		 * the TLB.
   4918 		 */
   4919 		pmap_tlb_flushID(pm);
   4920 #endif
   4921 		pm->pm_remove_all = false;
   4922 	}
   4923 
   4924 #ifdef ARM_MMU_EXTENDED
   4925 
   4926 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
   4927 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   4928 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   4929 		PMAP_COUNT(shootdown_ipis);
   4930 	}
   4931 #endif
   4932 	KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   4933 #else
   4934 	if (pmap_is_current(pm)) {
   4935 		/*
   4936 		 * If we're dealing with a current userland pmap, move its L1
   4937 		 * to the end of the LRU.
   4938 		 */
   4939 		if (pm != pmap_kernel())
   4940 			pmap_use_l1(pm);
   4941 
   4942 		/*
   4943 		 * We can assume we're done with frobbing the cache/tlb for
   4944 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4945 		 * flushes.
   4946 		 */
   4947 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4948 	}
   4949 #endif
   4950 
   4951 	PMAPCOUNT(updates);
   4952 
   4953 	/*
   4954 	 * make sure TLB/cache operations have completed.
   4955 	 */
   4956 	cpu_cpwait();
   4957 }
   4958 
   4959 void
   4960 pmap_remove_all(pmap_t pm)
   4961 {
   4962 
   4963 	/*
   4964 	 * The vmspace described by this pmap is about to be torn down.
   4965 	 * Until pmap_update() is called, UVM will only make calls
   4966 	 * to pmap_remove(). We can make life much simpler by flushing
   4967 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4968 	 */
   4969 #ifdef PMAP_CACHE_VIVT
   4970 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   4971 #endif
   4972 	pm->pm_remove_all = true;
   4973 }
   4974 
   4975 /*
   4976  * Retire the given physical map from service.
   4977  * Should only be called if the map contains no valid mappings.
   4978  */
   4979 void
   4980 pmap_destroy(pmap_t pm)
   4981 {
   4982 	u_int count;
   4983 
   4984 	if (pm == NULL)
   4985 		return;
   4986 
   4987 	if (pm->pm_remove_all) {
   4988 		pmap_tlb_flushID(pm);
   4989 		pm->pm_remove_all = false;
   4990 	}
   4991 
   4992 	/*
   4993 	 * Drop reference count
   4994 	 */
   4995 	mutex_enter(pm->pm_lock);
   4996 	count = --pm->pm_obj.uo_refs;
   4997 	mutex_exit(pm->pm_lock);
   4998 	if (count > 0) {
   4999 #ifndef ARM_MMU_EXTENDED
   5000 		if (pmap_is_current(pm)) {
   5001 			if (pm != pmap_kernel())
   5002 				pmap_use_l1(pm);
   5003 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5004 		}
   5005 #endif
   5006 		return;
   5007 	}
   5008 
   5009 	/*
   5010 	 * reference count is zero, free pmap resources and then free pmap.
   5011 	 */
   5012 
   5013 #ifndef ARM_HAS_VBAR
   5014 	if (vector_page < KERNEL_BASE) {
   5015 		KDASSERT(!pmap_is_current(pm));
   5016 
   5017 		/* Remove the vector page mapping */
   5018 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5019 		pmap_update(pm);
   5020 	}
   5021 #endif
   5022 
   5023 	LIST_REMOVE(pm, pm_list);
   5024 
   5025 	pmap_free_l1(pm);
   5026 
   5027 #ifdef ARM_MMU_EXTENDED
   5028 #ifdef MULTIPROCESSOR
   5029 	kcpuset_destroy(pm->pm_active);
   5030 	kcpuset_destroy(pm->pm_onproc);
   5031 #endif
   5032 #else
   5033 	struct cpu_info * const ci = curcpu();
   5034 	if (ci->ci_pmap_lastuser == pm)
   5035 		ci->ci_pmap_lastuser = NULL;
   5036 #endif
   5037 
   5038 	uvm_obj_destroy(&pm->pm_obj, false);
   5039 	mutex_destroy(&pm->pm_obj_lock);
   5040 	pool_cache_put(&pmap_cache, pm);
   5041 }
   5042 
   5043 
   5044 /*
   5045  * void pmap_reference(pmap_t pm)
   5046  *
   5047  * Add a reference to the specified pmap.
   5048  */
   5049 void
   5050 pmap_reference(pmap_t pm)
   5051 {
   5052 
   5053 	if (pm == NULL)
   5054 		return;
   5055 
   5056 #ifndef ARM_MMU_EXTENDED
   5057 	pmap_use_l1(pm);
   5058 #endif
   5059 
   5060 	mutex_enter(pm->pm_lock);
   5061 	pm->pm_obj.uo_refs++;
   5062 	mutex_exit(pm->pm_lock);
   5063 }
   5064 
   5065 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5066 
   5067 static struct evcnt pmap_prefer_nochange_ev =
   5068     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5069 static struct evcnt pmap_prefer_change_ev =
   5070     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5071 
   5072 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5073 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5074 
   5075 void
   5076 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5077 {
   5078 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5079 	vaddr_t va = *vap;
   5080 	vaddr_t diff = (hint - va) & mask;
   5081 	if (diff == 0) {
   5082 		pmap_prefer_nochange_ev.ev_count++;
   5083 	} else {
   5084 		pmap_prefer_change_ev.ev_count++;
   5085 		if (__predict_false(td))
   5086 			va -= mask + 1;
   5087 		*vap = va + diff;
   5088 	}
   5089 }
   5090 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5091 
   5092 /*
   5093  * pmap_zero_page()
   5094  *
   5095  * Zero a given physical page by mapping it at a page hook point.
   5096  * In doing the zero page op, the page we zero is mapped cachable, as with
   5097  * StrongARM accesses to non-cached pages are non-burst making writing
   5098  * _any_ bulk data very slow.
   5099  */
   5100 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5101 void
   5102 pmap_zero_page_generic(paddr_t pa)
   5103 {
   5104 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5105 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5106 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5107 #endif
   5108 #if defined(PMAP_CACHE_VIPT)
   5109 	/* Choose the last page color it had, if any */
   5110 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5111 #else
   5112 	const vsize_t va_offset = 0;
   5113 #endif
   5114 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5115 	/*
   5116 	 * Is this page mapped at its natural color?
   5117 	 * If we have all of memory mapped, then just convert PA to VA.
   5118 	 */
   5119 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5120 	   || va_offset == (pa & arm_cache_prefer_mask);
   5121 	const vaddr_t vdstp = okcolor
   5122 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5123 	    : cpu_cdstp(va_offset);
   5124 #else
   5125 	const bool okcolor = false;
   5126 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5127 #endif
   5128 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5129 
   5130 
   5131 #ifdef DEBUG
   5132 	if (!SLIST_EMPTY(&md->pvh_list))
   5133 		panic("pmap_zero_page: page has mappings");
   5134 #endif
   5135 
   5136 	KDASSERT((pa & PGOFSET) == 0);
   5137 
   5138 	if (!okcolor) {
   5139 		/*
   5140 		 * Hook in the page, zero it, and purge the cache for that
   5141 		 * zeroed page. Invalidate the TLB as needed.
   5142 		 */
   5143 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5144 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5145 		l2pte_set(ptep, npte, 0);
   5146 		PTE_SYNC(ptep);
   5147 		cpu_tlb_flushD_SE(vdstp);
   5148 		cpu_cpwait();
   5149 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5150     && !defined(ARM_MMU_EXTENDED)
   5151 		/*
   5152 		 * If we are direct-mapped and our color isn't ok, then before
   5153 		 * we bzero the page invalidate its contents from the cache and
   5154 		 * reset the color to its natural color.
   5155 		 */
   5156 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5157 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5158 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5159 #endif
   5160 	}
   5161 	bzero_page(vdstp);
   5162 	if (!okcolor) {
   5163 		/*
   5164 		 * Unmap the page.
   5165 		 */
   5166 		l2pte_reset(ptep);
   5167 		PTE_SYNC(ptep);
   5168 		cpu_tlb_flushD_SE(vdstp);
   5169 #ifdef PMAP_CACHE_VIVT
   5170 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5171 #endif
   5172 	}
   5173 #ifdef PMAP_CACHE_VIPT
   5174 	/*
   5175 	 * This page is now cache resident so it now has a page color.
   5176 	 * Any contents have been obliterated so clear the EXEC flag.
   5177 	 */
   5178 #ifndef ARM_MMU_EXTENDED
   5179 	if (!pmap_is_page_colored_p(md)) {
   5180 		PMAPCOUNT(vac_color_new);
   5181 		md->pvh_attrs |= PVF_COLORED;
   5182 	}
   5183 	md->pvh_attrs |= PVF_DIRTY;
   5184 #endif
   5185 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5186 		md->pvh_attrs &= ~PVF_EXEC;
   5187 		PMAPCOUNT(exec_discarded_zero);
   5188 	}
   5189 #endif
   5190 }
   5191 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5192 
   5193 #if ARM_MMU_XSCALE == 1
   5194 void
   5195 pmap_zero_page_xscale(paddr_t pa)
   5196 {
   5197 #ifdef DEBUG
   5198 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5199 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5200 
   5201 	if (!SLIST_EMPTY(&md->pvh_list))
   5202 		panic("pmap_zero_page: page has mappings");
   5203 #endif
   5204 
   5205 	KDASSERT((pa & PGOFSET) == 0);
   5206 
   5207 	/*
   5208 	 * Hook in the page, zero it, and purge the cache for that
   5209 	 * zeroed page. Invalidate the TLB as needed.
   5210 	 */
   5211 
   5212 	pt_entry_t npte = L2_S_PROTO | pa |
   5213 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5214 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5215 	l2pte_set(cdst_pte, npte, 0);
   5216 	PTE_SYNC(cdst_pte);
   5217 	cpu_tlb_flushD_SE(cdstp);
   5218 	cpu_cpwait();
   5219 	bzero_page(cdstp);
   5220 	xscale_cache_clean_minidata();
   5221 	l2pte_reset(cdst_pte);
   5222 	PTE_SYNC(cdst_pte);
   5223 }
   5224 #endif /* ARM_MMU_XSCALE == 1 */
   5225 
   5226 /* pmap_pageidlezero()
   5227  *
   5228  * The same as above, except that we assume that the page is not
   5229  * mapped.  This means we never have to flush the cache first.  Called
   5230  * from the idle loop.
   5231  */
   5232 bool
   5233 pmap_pageidlezero(paddr_t pa)
   5234 {
   5235 	bool rv = true;
   5236 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5237 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5238 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5239 #endif
   5240 #ifdef PMAP_CACHE_VIPT
   5241 	/* Choose the last page color it had, if any */
   5242 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5243 #else
   5244 	const vsize_t va_offset = 0;
   5245 #endif
   5246 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5247 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5248 	   || va_offset == (pa & arm_cache_prefer_mask);
   5249 	const vaddr_t vdstp = okcolor
   5250 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5251 	    : cpu_cdstp(va_offset);
   5252 #else
   5253 	const bool okcolor = false;
   5254 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5255 #endif
   5256 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5257 
   5258 
   5259 #ifdef DEBUG
   5260 	if (!SLIST_EMPTY(&md->pvh_list))
   5261 		panic("pmap_pageidlezero: page has mappings");
   5262 #endif
   5263 
   5264 	KDASSERT((pa & PGOFSET) == 0);
   5265 
   5266 	if (!okcolor) {
   5267 		/*
   5268 		 * Hook in the page, zero it, and purge the cache for that
   5269 		 * zeroed page. Invalidate the TLB as needed.
   5270 		 */
   5271 		const pt_entry_t npte = L2_S_PROTO | pa |
   5272 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5273 		l2pte_set(ptep, npte, 0);
   5274 		PTE_SYNC(ptep);
   5275 		cpu_tlb_flushD_SE(vdstp);
   5276 		cpu_cpwait();
   5277 	}
   5278 
   5279 	uint64_t *ptr = (uint64_t *)vdstp;
   5280 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5281 		if (sched_curcpu_runnable_p() != 0) {
   5282 			/*
   5283 			 * A process has become ready.  Abort now,
   5284 			 * so we don't keep it waiting while we
   5285 			 * do slow memory access to finish this
   5286 			 * page.
   5287 			 */
   5288 			rv = false;
   5289 			break;
   5290 		}
   5291 		*ptr++ = 0;
   5292 	}
   5293 
   5294 #ifdef PMAP_CACHE_VIVT
   5295 	if (rv)
   5296 		/*
   5297 		 * if we aborted we'll rezero this page again later so don't
   5298 		 * purge it unless we finished it
   5299 		 */
   5300 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5301 #elif defined(PMAP_CACHE_VIPT)
   5302 	/*
   5303 	 * This page is now cache resident so it now has a page color.
   5304 	 * Any contents have been obliterated so clear the EXEC flag.
   5305 	 */
   5306 #ifndef ARM_MMU_EXTENDED
   5307 	if (!pmap_is_page_colored_p(md)) {
   5308 		PMAPCOUNT(vac_color_new);
   5309 		md->pvh_attrs |= PVF_COLORED;
   5310 	}
   5311 #endif
   5312 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5313 		md->pvh_attrs &= ~PVF_EXEC;
   5314 		PMAPCOUNT(exec_discarded_zero);
   5315 	}
   5316 #endif
   5317 	/*
   5318 	 * Unmap the page.
   5319 	 */
   5320 	if (!okcolor) {
   5321 		l2pte_reset(ptep);
   5322 		PTE_SYNC(ptep);
   5323 		cpu_tlb_flushD_SE(vdstp);
   5324 	}
   5325 
   5326 	return rv;
   5327 }
   5328 
   5329 /*
   5330  * pmap_copy_page()
   5331  *
   5332  * Copy one physical page into another, by mapping the pages into
   5333  * hook points. The same comment regarding cachability as in
   5334  * pmap_zero_page also applies here.
   5335  */
   5336 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5337 void
   5338 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5339 {
   5340 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5341 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5342 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5343 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5344 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5345 #endif
   5346 #ifdef PMAP_CACHE_VIPT
   5347 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5348 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5349 #else
   5350 	const vsize_t src_va_offset = 0;
   5351 	const vsize_t dst_va_offset = 0;
   5352 #endif
   5353 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5354 	/*
   5355 	 * Is this page mapped at its natural color?
   5356 	 * If we have all of memory mapped, then just convert PA to VA.
   5357 	 */
   5358 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5359 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5360 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5361 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5362 	const vaddr_t vsrcp = src_okcolor
   5363 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5364 		cpu_csrcp(src_va_offset))
   5365 	    : cpu_csrcp(src_va_offset);
   5366 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5367 	    cpu_cdstp(dst_va_offset));
   5368 #else
   5369 	const bool src_okcolor = false;
   5370 	const bool dst_okcolor = false;
   5371 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5372 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5373 #endif
   5374 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5375 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5376 
   5377 #ifdef DEBUG
   5378 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5379 		panic("pmap_copy_page: dst page has mappings");
   5380 #endif
   5381 
   5382 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5383 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5384 #endif
   5385 	KDASSERT((src & PGOFSET) == 0);
   5386 	KDASSERT((dst & PGOFSET) == 0);
   5387 
   5388 	/*
   5389 	 * Clean the source page.  Hold the source page's lock for
   5390 	 * the duration of the copy so that no other mappings can
   5391 	 * be created while we have a potentially aliased mapping.
   5392 	 */
   5393 #ifdef PMAP_CACHE_VIVT
   5394 	pmap_acquire_page_lock(src_md);
   5395 	(void) pmap_clean_page(src_md, true);
   5396 	pmap_release_page_lock(src_md);
   5397 #endif
   5398 
   5399 	/*
   5400 	 * Map the pages into the page hook points, copy them, and purge
   5401 	 * the cache for the appropriate page. Invalidate the TLB
   5402 	 * as required.
   5403 	 */
   5404 	if (!src_okcolor) {
   5405 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5406 		    | src
   5407 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5408 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5409 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5410 		    | pte_l2_s_cache_mode
   5411 #endif
   5412 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5413 		l2pte_set(src_ptep, nsrc_pte, 0);
   5414 		PTE_SYNC(src_ptep);
   5415 		cpu_tlb_flushD_SE(vsrcp);
   5416 		cpu_cpwait();
   5417 	}
   5418 	if (!dst_okcolor) {
   5419 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5420 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5421 		l2pte_set(dst_ptep, ndst_pte, 0);
   5422 		PTE_SYNC(dst_ptep);
   5423 		cpu_tlb_flushD_SE(vdstp);
   5424 		cpu_cpwait();
   5425 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5426 		/*
   5427 		 * If we are direct-mapped and our color isn't ok, then before
   5428 		 * we bcopy to the new page invalidate its contents from the
   5429 		 * cache and reset its color to its natural color.
   5430 		 */
   5431 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5432 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5433 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5434 #endif
   5435 	}
   5436 	bcopy_page(vsrcp, vdstp);
   5437 #ifdef PMAP_CACHE_VIVT
   5438 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5439 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5440 #endif
   5441 	/*
   5442 	 * Unmap the pages.
   5443 	 */
   5444 	if (!src_okcolor) {
   5445 		l2pte_reset(src_ptep);
   5446 		PTE_SYNC(src_ptep);
   5447 		cpu_tlb_flushD_SE(vsrcp);
   5448 		cpu_cpwait();
   5449 	}
   5450 	if (!dst_okcolor) {
   5451 		l2pte_reset(dst_ptep);
   5452 		PTE_SYNC(dst_ptep);
   5453 		cpu_tlb_flushD_SE(vdstp);
   5454 		cpu_cpwait();
   5455 	}
   5456 #ifdef PMAP_CACHE_VIPT
   5457 	/*
   5458 	 * Now that the destination page is in the cache, mark it as colored.
   5459 	 * If this was an exec page, discard it.
   5460 	 */
   5461 	pmap_acquire_page_lock(dst_md);
   5462 #ifndef ARM_MMU_EXTENDED
   5463 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5464 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5465 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5466 	}
   5467 	if (!pmap_is_page_colored_p(dst_md)) {
   5468 		PMAPCOUNT(vac_color_new);
   5469 		dst_md->pvh_attrs |= PVF_COLORED;
   5470 	}
   5471 	dst_md->pvh_attrs |= PVF_DIRTY;
   5472 #endif
   5473 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5474 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5475 		PMAPCOUNT(exec_discarded_copy);
   5476 	}
   5477 	pmap_release_page_lock(dst_md);
   5478 #endif
   5479 }
   5480 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5481 
   5482 #if ARM_MMU_XSCALE == 1
   5483 void
   5484 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5485 {
   5486 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5487 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5488 #ifdef DEBUG
   5489 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5490 
   5491 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5492 		panic("pmap_copy_page: dst page has mappings");
   5493 #endif
   5494 
   5495 	KDASSERT((src & PGOFSET) == 0);
   5496 	KDASSERT((dst & PGOFSET) == 0);
   5497 
   5498 	/*
   5499 	 * Clean the source page.  Hold the source page's lock for
   5500 	 * the duration of the copy so that no other mappings can
   5501 	 * be created while we have a potentially aliased mapping.
   5502 	 */
   5503 #ifdef PMAP_CACHE_VIVT
   5504 	pmap_acquire_page_lock(src_md);
   5505 	(void) pmap_clean_page(src_md, true);
   5506 	pmap_release_page_lock(src_md);
   5507 #endif
   5508 
   5509 	/*
   5510 	 * Map the pages into the page hook points, copy them, and purge
   5511 	 * the cache for the appropriate page. Invalidate the TLB
   5512 	 * as required.
   5513 	 */
   5514 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
   5515 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   5516 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5517 	l2pte_set(csrc_pte, nsrc_pte, 0);
   5518 	PTE_SYNC(csrc_pte);
   5519 
   5520 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
   5521 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
   5522 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5523 	l2pte_set(cdst_pte, ndst_pte, 0);
   5524 	PTE_SYNC(cdst_pte);
   5525 
   5526 	cpu_tlb_flushD_SE(csrcp);
   5527 	cpu_tlb_flushD_SE(cdstp);
   5528 	cpu_cpwait();
   5529 	bcopy_page(csrcp, cdstp);
   5530 	xscale_cache_clean_minidata();
   5531 	l2pte_reset(csrc_pte);
   5532 	l2pte_reset(cdst_pte);
   5533 	PTE_SYNC(csrc_pte);
   5534 	PTE_SYNC(cdst_pte);
   5535 }
   5536 #endif /* ARM_MMU_XSCALE == 1 */
   5537 
   5538 /*
   5539  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5540  *
   5541  * Return the start and end addresses of the kernel's virtual space.
   5542  * These values are setup in pmap_bootstrap and are updated as pages
   5543  * are allocated.
   5544  */
   5545 void
   5546 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5547 {
   5548 	*start = virtual_avail;
   5549 	*end = virtual_end;
   5550 }
   5551 
   5552 /*
   5553  * Helper function for pmap_grow_l2_bucket()
   5554  */
   5555 static inline int
   5556 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5557 {
   5558 	paddr_t pa;
   5559 
   5560 	if (uvm.page_init_done == false) {
   5561 #ifdef PMAP_STEAL_MEMORY
   5562 		pv_addr_t pv;
   5563 		pmap_boot_pagealloc(PAGE_SIZE,
   5564 #ifdef PMAP_CACHE_VIPT
   5565 		    arm_cache_prefer_mask,
   5566 		    va & arm_cache_prefer_mask,
   5567 #else
   5568 		    0, 0,
   5569 #endif
   5570 		    &pv);
   5571 		pa = pv.pv_pa;
   5572 #else
   5573 		if (uvm_page_physget(&pa) == false)
   5574 			return (1);
   5575 #endif	/* PMAP_STEAL_MEMORY */
   5576 	} else {
   5577 		struct vm_page *pg;
   5578 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5579 		if (pg == NULL)
   5580 			return (1);
   5581 		pa = VM_PAGE_TO_PHYS(pg);
   5582 		/*
   5583 		 * This new page must not have any mappings.  Enter it via
   5584 		 * pmap_kenter_pa and let that routine do the hard work.
   5585 		 */
   5586 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5587 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5588 		pmap_kenter_pa(va, pa,
   5589 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5590 	}
   5591 
   5592 	if (pap)
   5593 		*pap = pa;
   5594 
   5595 	PMAPCOUNT(pt_mappings);
   5596 #ifdef DEBUG
   5597 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5598 	KDASSERT(l2b != NULL);
   5599 
   5600 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   5601 	const pt_entry_t opte = *ptep;
   5602 	KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   5603 #endif
   5604 	memset((void *)va, 0, PAGE_SIZE);
   5605 	return (0);
   5606 }
   5607 
   5608 /*
   5609  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   5610  * used by pmap_growkernel().
   5611  */
   5612 static inline struct l2_bucket *
   5613 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   5614 {
   5615 	struct l2_dtable *l2;
   5616 	struct l2_bucket *l2b;
   5617 	u_short l1slot;
   5618 	vaddr_t nva;
   5619 
   5620 	l1slot = l1pte_index(va);
   5621 
   5622 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   5623 		/*
   5624 		 * No mapping at this address, as there is
   5625 		 * no entry in the L1 table.
   5626 		 * Need to allocate a new l2_dtable.
   5627 		 */
   5628 		nva = pmap_kernel_l2dtable_kva;
   5629 		if ((nva & PGOFSET) == 0) {
   5630 			/*
   5631 			 * Need to allocate a backing page
   5632 			 */
   5633 			if (pmap_grow_map(nva, NULL))
   5634 				return (NULL);
   5635 		}
   5636 
   5637 		l2 = (struct l2_dtable *)nva;
   5638 		nva += sizeof(struct l2_dtable);
   5639 
   5640 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   5641 			/*
   5642 			 * The new l2_dtable straddles a page boundary.
   5643 			 * Map in another page to cover it.
   5644 			 */
   5645 			if (pmap_grow_map(nva, NULL))
   5646 				return (NULL);
   5647 		}
   5648 
   5649 		pmap_kernel_l2dtable_kva = nva;
   5650 
   5651 		/*
   5652 		 * Link it into the parent pmap
   5653 		 */
   5654 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   5655 	}
   5656 
   5657 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   5658 
   5659 	/*
   5660 	 * Fetch pointer to the L2 page table associated with the address.
   5661 	 */
   5662 	if (l2b->l2b_kva == NULL) {
   5663 		pt_entry_t *ptep;
   5664 
   5665 		/*
   5666 		 * No L2 page table has been allocated. Chances are, this
   5667 		 * is because we just allocated the l2_dtable, above.
   5668 		 */
   5669 		nva = pmap_kernel_l2ptp_kva;
   5670 		ptep = (pt_entry_t *)nva;
   5671 		if ((nva & PGOFSET) == 0) {
   5672 			/*
   5673 			 * Need to allocate a backing page
   5674 			 */
   5675 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   5676 				return (NULL);
   5677 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   5678 		}
   5679 
   5680 		l2->l2_occupancy++;
   5681 		l2b->l2b_kva = ptep;
   5682 		l2b->l2b_l1slot = l1slot;
   5683 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   5684 
   5685 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   5686 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   5687 	}
   5688 
   5689 	return (l2b);
   5690 }
   5691 
   5692 vaddr_t
   5693 pmap_growkernel(vaddr_t maxkvaddr)
   5694 {
   5695 	pmap_t kpm = pmap_kernel();
   5696 #ifndef ARM_MMU_EXTENDED
   5697 	struct l1_ttable *l1;
   5698 #endif
   5699 	int s;
   5700 
   5701 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5702 		goto out;		/* we are OK */
   5703 
   5704 	NPDEBUG(PDB_GROWKERN,
   5705 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5706 	    pmap_curmaxkvaddr, maxkvaddr));
   5707 
   5708 	KDASSERT(maxkvaddr <= virtual_end);
   5709 
   5710 	/*
   5711 	 * whoops!   we need to add kernel PTPs
   5712 	 */
   5713 
   5714 	s = splhigh();	/* to be safe */
   5715 	mutex_enter(kpm->pm_lock);
   5716 
   5717 	/* Map 1MB at a time */
   5718 	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
   5719 #ifdef ARM_MMU_EXTENDED
   5720 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   5721 	pd_entry_t *pdep = spdep;
   5722 #endif
   5723 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   5724 #ifdef ARM_MMU_EXTENDED
   5725 	     pdep++,
   5726 #endif
   5727 	     l1slot++) {
   5728 		struct l2_bucket *l2b =
   5729 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5730 		KASSERT(l2b != NULL);
   5731 
   5732 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   5733 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   5734 #ifdef ARM_MMU_EXTENDED
   5735 		l1pte_setone(pdep, npde);
   5736 #else
   5737 		/* Distribute new L1 entry to all other L1s */
   5738 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5739 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   5740 			l1pte_setone(pdep, npde);
   5741 			PDE_SYNC(pdep);
   5742 		}
   5743 #endif
   5744 	}
   5745 #ifdef ARM_MMU_EXTENDED
   5746 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   5747 #endif
   5748 
   5749 #ifdef PMAP_CACHE_VIVT
   5750 	/*
   5751 	 * flush out the cache, expensive but growkernel will happen so
   5752 	 * rarely
   5753 	 */
   5754 	cpu_dcache_wbinv_all();
   5755 	cpu_tlb_flushD();
   5756 	cpu_cpwait();
   5757 #endif
   5758 
   5759 	mutex_exit(kpm->pm_lock);
   5760 	splx(s);
   5761 
   5762 out:
   5763 	return (pmap_curmaxkvaddr);
   5764 }
   5765 
   5766 /************************ Utility routines ****************************/
   5767 
   5768 #ifndef ARM_HAS_VBAR
   5769 /*
   5770  * vector_page_setprot:
   5771  *
   5772  *	Manipulate the protection of the vector page.
   5773  */
   5774 void
   5775 vector_page_setprot(int prot)
   5776 {
   5777 	struct l2_bucket *l2b;
   5778 	pt_entry_t *ptep;
   5779 
   5780 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5781 	/*
   5782 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5783 	 * already mapped in the kernel text so no need to anything here.
   5784 	 */
   5785 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5786 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5787 		return;
   5788 	}
   5789 #endif
   5790 
   5791 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5792 	KASSERT(l2b != NULL);
   5793 
   5794 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5795 
   5796 	const pt_entry_t opte = *ptep;
   5797 #ifdef ARM_MMU_EXTENDED
   5798 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   5799 	    | L2_S_PROT(PTE_KERNEL, prot);
   5800 #else
   5801 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   5802 	    | L2_S_PROT(PTE_KERNEL, prot);
   5803 #endif
   5804 	l2pte_set(ptep, npte, opte);
   5805 	PTE_SYNC(ptep);
   5806 	cpu_tlb_flushD_SE(vector_page);
   5807 	cpu_cpwait();
   5808 }
   5809 #endif
   5810 
   5811 /*
   5812  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5813  * Returns true if the mapping exists, else false.
   5814  *
   5815  * NOTE: This function is only used by a couple of arm-specific modules.
   5816  * It is not safe to take any pmap locks here, since we could be right
   5817  * in the middle of debugging the pmap anyway...
   5818  *
   5819  * It is possible for this routine to return false even though a valid
   5820  * mapping does exist. This is because we don't lock, so the metadata
   5821  * state may be inconsistent.
   5822  *
   5823  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5824  * a "section" mapping.
   5825  */
   5826 bool
   5827 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5828 {
   5829 	struct l2_dtable *l2;
   5830 	pd_entry_t *pdep, pde;
   5831 	pt_entry_t *ptep;
   5832 	u_short l1slot;
   5833 
   5834 	if (pm->pm_l1 == NULL)
   5835 		return false;
   5836 
   5837 	l1slot = l1pte_index(va);
   5838 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   5839 	pde = *pdep;
   5840 
   5841 	if (l1pte_section_p(pde)) {
   5842 		*ptp = NULL;
   5843 		return true;
   5844 	}
   5845 
   5846 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   5847 	if (l2 == NULL ||
   5848 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   5849 		return false;
   5850 	}
   5851 
   5852 	*ptp = &ptep[l2pte_index(va)];
   5853 	return true;
   5854 }
   5855 
   5856 bool
   5857 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5858 {
   5859 
   5860 	if (pm->pm_l1 == NULL)
   5861 		return false;
   5862 
   5863 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   5864 
   5865 	return true;
   5866 }
   5867 
   5868 /************************ Bootstrapping routines ****************************/
   5869 
   5870 #ifndef ARM_MMU_EXTENDED
   5871 static void
   5872 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5873 {
   5874 	int i;
   5875 
   5876 	l1->l1_kva = l1pt;
   5877 	l1->l1_domain_use_count = 0;
   5878 	l1->l1_domain_first = 0;
   5879 
   5880 	for (i = 0; i < PMAP_DOMAINS; i++)
   5881 		l1->l1_domain_free[i] = i + 1;
   5882 
   5883 	/*
   5884 	 * Copy the kernel's L1 entries to each new L1.
   5885 	 */
   5886 	if (pmap_initialized)
   5887 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   5888 
   5889 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5890 	    &l1->l1_physaddr) == false)
   5891 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5892 
   5893 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5894 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5895 }
   5896 #endif /* !ARM_MMU_EXTENDED */
   5897 
   5898 /*
   5899  * pmap_bootstrap() is called from the board-specific initarm() routine
   5900  * once the kernel L1/L2 descriptors tables have been set up.
   5901  *
   5902  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5903  * spread over a number of disparate files/functions.
   5904  *
   5905  * We are passed the following parameters
   5906  *  - kernel_l1pt
   5907  *    This is a pointer to the base of the kernel's L1 translation table.
   5908  *  - vstart
   5909  *    1MB-aligned start of managed kernel virtual memory.
   5910  *  - vend
   5911  *    1MB-aligned end of managed kernel virtual memory.
   5912  *
   5913  * We use the first parameter to build the metadata (struct l1_ttable and
   5914  * struct l2_dtable) necessary to track kernel mappings.
   5915  */
   5916 #define	PMAP_STATIC_L2_SIZE 16
   5917 void
   5918 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5919 {
   5920 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5921 #ifndef ARM_MMU_EXTENDED
   5922 	static struct l1_ttable static_l1;
   5923 	struct l1_ttable *l1 = &static_l1;
   5924 #endif
   5925 	struct l2_dtable *l2;
   5926 	struct l2_bucket *l2b;
   5927 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5928 	pmap_t pm = pmap_kernel();
   5929 	pt_entry_t *ptep;
   5930 	paddr_t pa;
   5931 	vsize_t size;
   5932 	int nptes, l2idx, l2next = 0;
   5933 
   5934 #ifdef ARM_MMU_EXTENDED
   5935 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   5936 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   5937 #endif
   5938 
   5939 #ifdef VERBOSE_INIT_ARM
   5940 	printf("kpm ");
   5941 #endif
   5942 	/*
   5943 	 * Initialise the kernel pmap object
   5944 	 */
   5945 	curcpu()->ci_pmap_cur = pm;
   5946 #ifdef ARM_MMU_EXTENDED
   5947 	pm->pm_l1 = l1pt;
   5948 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   5949 #ifdef VERBOSE_INIT_ARM
   5950 	printf("tlb0 ");
   5951 #endif
   5952 	pmap_tlb_info_init(&pmap_tlb0_info);
   5953 #ifdef MULTIPROCESSOR
   5954 #ifdef VERBOSE_INIT_ARM
   5955 	printf("kcpusets ");
   5956 #endif
   5957 	pm->pm_onproc = kcpuset_running;
   5958 	pm->pm_active = kcpuset_running;
   5959 #endif
   5960 #else
   5961 	pm->pm_l1 = l1;
   5962 #endif
   5963 
   5964 #ifdef VERBOSE_INIT_ARM
   5965 	printf("locks ");
   5966 #endif
   5967 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5968 	if (arm_cache_prefer_mask != 0) {
   5969 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   5970 	} else {
   5971 #endif
   5972 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
   5973 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5974 	}
   5975 #endif
   5976 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   5977 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   5978 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   5979 
   5980 #ifdef VERBOSE_INIT_ARM
   5981 	printf("l1pt ");
   5982 #endif
   5983 	/*
   5984 	 * Scan the L1 translation table created by initarm() and create
   5985 	 * the required metadata for all valid mappings found in it.
   5986 	 */
   5987 	for (size_t l1slot = 0;
   5988 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   5989 	     l1slot++) {
   5990 		pd_entry_t pde = l1pt[l1slot];
   5991 
   5992 		/*
   5993 		 * We're only interested in Coarse mappings.
   5994 		 * pmap_extract() can deal with section mappings without
   5995 		 * recourse to checking L2 metadata.
   5996 		 */
   5997 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5998 			continue;
   5999 
   6000 		/*
   6001 		 * Lookup the KVA of this L2 descriptor table
   6002 		 */
   6003 		pa = l1pte_pa(pde);
   6004 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6005 		if (ptep == NULL) {
   6006 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6007 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6008 		}
   6009 
   6010 		/*
   6011 		 * Fetch the associated L2 metadata structure.
   6012 		 * Allocate a new one if necessary.
   6013 		 */
   6014 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6015 			if (l2next == PMAP_STATIC_L2_SIZE)
   6016 				panic("pmap_bootstrap: out of static L2s");
   6017 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6018 		}
   6019 
   6020 		/*
   6021 		 * One more L1 slot tracked...
   6022 		 */
   6023 		l2->l2_occupancy++;
   6024 
   6025 		/*
   6026 		 * Fill in the details of the L2 descriptor in the
   6027 		 * appropriate bucket.
   6028 		 */
   6029 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6030 		l2b->l2b_kva = ptep;
   6031 		l2b->l2b_pa = pa;
   6032 		l2b->l2b_l1slot = l1slot;
   6033 
   6034 		/*
   6035 		 * Establish an initial occupancy count for this descriptor
   6036 		 */
   6037 		for (l2idx = 0;
   6038 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6039 		    l2idx++) {
   6040 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6041 				l2b->l2b_occupancy++;
   6042 			}
   6043 		}
   6044 
   6045 		/*
   6046 		 * Make sure the descriptor itself has the correct cache mode.
   6047 		 * If not, fix it, but whine about the problem. Port-meisters
   6048 		 * should consider this a clue to fix up their initarm()
   6049 		 * function. :)
   6050 		 */
   6051 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6052 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6053 			    "L2 pte @ %p\n", ptep);
   6054 		}
   6055 	}
   6056 
   6057 #ifdef VERBOSE_INIT_ARM
   6058 	printf("cache(l1pt) ");
   6059 #endif
   6060 	/*
   6061 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6062 	 * a page table. Bitch if it is not correctly set.
   6063 	 */
   6064 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6065 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6066 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6067 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6068 	}
   6069 
   6070 #ifdef PMAP_CACHE_VIVT
   6071 	cpu_dcache_wbinv_all();
   6072 	cpu_tlb_flushID();
   6073 	cpu_cpwait();
   6074 #endif
   6075 
   6076 	/*
   6077 	 * now we allocate the "special" VAs which are used for tmp mappings
   6078 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6079 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6080 	 *
   6081 	 * Managed KVM space start from wherever initarm() tells us.
   6082 	 */
   6083 	virtual_avail = vstart;
   6084 	virtual_end = vend;
   6085 
   6086 #ifdef VERBOSE_INIT_ARM
   6087 	printf("specials ");
   6088 #endif
   6089 #ifdef PMAP_CACHE_VIPT
   6090 	/*
   6091 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6092 	 * page so we won't violate cache aliasing rules.
   6093 	 */
   6094 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6095 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6096 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6097 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6098 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6099 	}
   6100 #else
   6101 	nptes = PAGE_SIZE / L2_S_SIZE;
   6102 #endif
   6103 #ifdef MULTIPROCESSOR
   6104 	cnptes = nptes;
   6105 	nptes *= arm_cpu_max;
   6106 #endif
   6107 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6108 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6109 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6110 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6111 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   6112 	if (msgbufaddr == NULL) {
   6113 		pmap_alloc_specials(&virtual_avail,
   6114 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6115 		    (void *)&msgbufaddr, NULL);
   6116 	}
   6117 
   6118 	/*
   6119 	 * Allocate a range of kernel virtual address space to be used
   6120 	 * for L2 descriptor tables and metadata allocation in
   6121 	 * pmap_growkernel().
   6122 	 */
   6123 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   6124 	pmap_alloc_specials(&virtual_avail,
   6125 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6126 	    &pmap_kernel_l2ptp_kva, NULL);
   6127 
   6128 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   6129 	pmap_alloc_specials(&virtual_avail,
   6130 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6131 	    &pmap_kernel_l2dtable_kva, NULL);
   6132 
   6133 #ifndef ARM_MMU_EXTENDED
   6134 	/*
   6135 	 * init the static-global locks and global pmap list.
   6136 	 */
   6137 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6138 
   6139 	/*
   6140 	 * We can now initialise the first L1's metadata.
   6141 	 */
   6142 	SLIST_INIT(&l1_list);
   6143 	TAILQ_INIT(&l1_lru_list);
   6144 	pmap_init_l1(l1, l1pt);
   6145 #endif /* ARM_MMU_EXTENDED */
   6146 
   6147 #ifndef ARM_HAS_VBAR
   6148 	/* Set up vector page L1 details, if necessary */
   6149 	if (vector_page < KERNEL_BASE) {
   6150 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6151 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6152 		KDASSERT(l2b != NULL);
   6153 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6154 		    L1_C_DOM(pmap_domain(pm));
   6155 	} else
   6156 		pm->pm_pl1vec = NULL;
   6157 #endif
   6158 
   6159 #ifdef VERBOSE_INIT_ARM
   6160 	printf("pools ");
   6161 #endif
   6162 	/*
   6163 	 * Initialize the pmap cache
   6164 	 */
   6165 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6166 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6167 	LIST_INIT(&pmap_pmaps);
   6168 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   6169 
   6170 	/*
   6171 	 * Initialize the pv pool.
   6172 	 */
   6173 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6174 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6175 
   6176 	/*
   6177 	 * Initialize the L2 dtable pool and cache.
   6178 	 */
   6179 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6180 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6181 
   6182 	/*
   6183 	 * Initialise the L2 descriptor table pool and cache
   6184 	 */
   6185 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   6186 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   6187 	    pmap_l2ptp_ctor, NULL, NULL);
   6188 
   6189 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6190 
   6191 	cpu_dcache_wbinv_all();
   6192 }
   6193 
   6194 static bool
   6195 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6196 {
   6197 #ifdef ARM_MMU_EXTENDED
   6198 	return false;
   6199 #else
   6200 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6201 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6202 		return false;
   6203 
   6204 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6205 	int rv = 0;
   6206 
   6207 	while (va < eva) {
   6208 		/*
   6209 		 * Make sure the descriptor itself has the correct cache mode
   6210 		 */
   6211 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6212 		pd_entry_t pde = *pdep;
   6213 
   6214 		if (l1pte_section_p(pde)) {
   6215 			__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6216 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6217 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6218 				    pte_l1_s_cache_mode_pt;
   6219 				PDE_SYNC(pdep);
   6220 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6221 				    sizeof(*pdep));
   6222 				rv = 1;
   6223 			}
   6224 			return rv;
   6225 		}
   6226 		vaddr_t pa = l1pte_pa(pde);
   6227 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6228 		if (ptep == NULL)
   6229 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6230 
   6231 		ptep += l2pte_index(va);
   6232 		const pt_entry_t opte = *ptep;
   6233 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6234 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6235 			    | pte_l2_s_cache_mode_pt;
   6236 			l2pte_set(ptep, npte, opte);
   6237 			PTE_SYNC(ptep);
   6238 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6239 			rv = 1;
   6240 		}
   6241 		va += PAGE_SIZE;
   6242 	}
   6243 
   6244 	return (rv);
   6245 #endif
   6246 }
   6247 
   6248 static void
   6249 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6250 {
   6251 	vaddr_t va = *availp;
   6252 	struct l2_bucket *l2b;
   6253 
   6254 	if (ptep) {
   6255 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6256 		if (l2b == NULL)
   6257 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6258 
   6259 		if (ptep)
   6260 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6261 	}
   6262 
   6263 	*vap = va;
   6264 	*availp = va + (PAGE_SIZE * pages);
   6265 }
   6266 
   6267 void
   6268 pmap_init(void)
   6269 {
   6270 
   6271 	/*
   6272 	 * Set the available memory vars - These do not map to real memory
   6273 	 * addresses and cannot as the physical memory is fragmented.
   6274 	 * They are used by ps for %mem calculations.
   6275 	 * One could argue whether this should be the entire memory or just
   6276 	 * the memory that is useable in a user process.
   6277 	 */
   6278 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   6279 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   6280 
   6281 	/*
   6282 	 * Now we need to free enough pv_entry structures to allow us to get
   6283 	 * the kmem_map/kmem_object allocated and inited (done after this
   6284 	 * function is finished).  to do this we allocate one bootstrap page out
   6285 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6286 	 * structures.   we never free this page.
   6287 	 */
   6288 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6289 
   6290 #ifdef ARM_MMU_EXTENDED
   6291 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6292 #endif
   6293 
   6294 	pmap_initialized = true;
   6295 }
   6296 
   6297 static vaddr_t last_bootstrap_page = 0;
   6298 static void *free_bootstrap_pages = NULL;
   6299 
   6300 static void *
   6301 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6302 {
   6303 	extern void *pool_page_alloc(struct pool *, int);
   6304 	vaddr_t new_page;
   6305 	void *rv;
   6306 
   6307 	if (pmap_initialized)
   6308 		return (pool_page_alloc(pp, flags));
   6309 
   6310 	if (free_bootstrap_pages) {
   6311 		rv = free_bootstrap_pages;
   6312 		free_bootstrap_pages = *((void **)rv);
   6313 		return (rv);
   6314 	}
   6315 
   6316 	KASSERT(kernel_map != NULL);
   6317 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6318 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6319 
   6320 	KASSERT(new_page > last_bootstrap_page);
   6321 	last_bootstrap_page = new_page;
   6322 	return ((void *)new_page);
   6323 }
   6324 
   6325 static void
   6326 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6327 {
   6328 	extern void pool_page_free(struct pool *, void *);
   6329 
   6330 	if ((vaddr_t)v <= last_bootstrap_page) {
   6331 		*((void **)v) = free_bootstrap_pages;
   6332 		free_bootstrap_pages = v;
   6333 		return;
   6334 	}
   6335 
   6336 	if (pmap_initialized) {
   6337 		pool_page_free(pp, v);
   6338 		return;
   6339 	}
   6340 }
   6341 
   6342 /*
   6343  * pmap_postinit()
   6344  *
   6345  * This routine is called after the vm and kmem subsystems have been
   6346  * initialised. This allows the pmap code to perform any initialisation
   6347  * that can only be done one the memory allocation is in place.
   6348  */
   6349 void
   6350 pmap_postinit(void)
   6351 {
   6352 #ifndef ARM_MMU_EXTENDED
   6353 	extern paddr_t physical_start, physical_end;
   6354 	struct l1_ttable *l1;
   6355 	struct pglist plist;
   6356 	struct vm_page *m;
   6357 	pd_entry_t *pdep;
   6358 	vaddr_t va, eva;
   6359 	u_int loop, needed;
   6360 	int error;
   6361 #endif
   6362 
   6363 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6364 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6365 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6366 
   6367 #ifndef ARM_MMU_EXTENDED
   6368 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6369 	needed -= 1;
   6370 
   6371 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6372 
   6373 	for (loop = 0; loop < needed; loop++, l1++) {
   6374 		/* Allocate a L1 page table */
   6375 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6376 		if (va == 0)
   6377 			panic("Cannot allocate L1 KVM");
   6378 
   6379 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6380 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6381 		if (error)
   6382 			panic("Cannot allocate L1 physical pages");
   6383 
   6384 		m = TAILQ_FIRST(&plist);
   6385 		eva = va + L1_TABLE_SIZE;
   6386 		pdep = (pd_entry_t *)va;
   6387 
   6388 		while (m && va < eva) {
   6389 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6390 
   6391 			pmap_kenter_pa(va, pa,
   6392 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6393 
   6394 			va += PAGE_SIZE;
   6395 			m = TAILQ_NEXT(m, pageq.queue);
   6396 		}
   6397 
   6398 #ifdef DIAGNOSTIC
   6399 		if (m)
   6400 			panic("pmap_alloc_l1pt: pglist not empty");
   6401 #endif	/* DIAGNOSTIC */
   6402 
   6403 		pmap_init_l1(l1, pdep);
   6404 	}
   6405 
   6406 #ifdef DEBUG
   6407 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6408 	    needed);
   6409 #endif
   6410 #endif /* !ARM_MMU_EXTENDED */
   6411 }
   6412 
   6413 /*
   6414  * Note that the following routines are used by board-specific initialisation
   6415  * code to configure the initial kernel page tables.
   6416  *
   6417  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   6418  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   6419  * behaviour of the old pmap, and provides an easy migration path for
   6420  * initial bring-up of the new pmap on existing ports. Fortunately,
   6421  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   6422  * will be deprecated.
   6423  *
   6424  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   6425  * tables.
   6426  */
   6427 
   6428 /*
   6429  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6430  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6431  * find them as necessary.
   6432  *
   6433  * Note that the data on this list MUST remain valid after initarm() returns,
   6434  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   6435  */
   6436 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6437 
   6438 static vaddr_t
   6439 kernel_pt_lookup(paddr_t pa)
   6440 {
   6441 	pv_addr_t *pv;
   6442 
   6443 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6444 		if (pv->pv_pa == (pa & ~PGOFSET))
   6445 			return (pv->pv_va | (pa & PGOFSET));
   6446 	}
   6447 	return (0);
   6448 }
   6449 
   6450 /*
   6451  * pmap_map_section:
   6452  *
   6453  *	Create a single section mapping.
   6454  */
   6455 void
   6456 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6457 {
   6458 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6459 	const size_t l1slot = l1pte_index(va);
   6460 	pd_entry_t fl;
   6461 
   6462 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6463 
   6464 	switch (cache) {
   6465 	case PTE_NOCACHE:
   6466 	default:
   6467 		fl = 0;
   6468 		break;
   6469 
   6470 	case PTE_CACHE:
   6471 		fl = pte_l1_s_cache_mode;
   6472 		break;
   6473 
   6474 	case PTE_PAGETABLE:
   6475 		fl = pte_l1_s_cache_mode_pt;
   6476 		break;
   6477 	}
   6478 
   6479 	const pd_entry_t npde = L1_S_PROTO | pa |
   6480 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6481 	l1pte_setone(pdep + l1slot, npde);
   6482 	PDE_SYNC(pdep + l1slot);
   6483 }
   6484 
   6485 /*
   6486  * pmap_map_entry:
   6487  *
   6488  *	Create a single page mapping.
   6489  */
   6490 void
   6491 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6492 {
   6493 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6494 	const size_t l1slot = l1pte_index(va);
   6495 	pt_entry_t npte;
   6496 	pt_entry_t *ptep;
   6497 
   6498 	KASSERT(((va | pa) & PGOFSET) == 0);
   6499 
   6500 	switch (cache) {
   6501 	case PTE_NOCACHE:
   6502 	default:
   6503 		npte = 0;
   6504 		break;
   6505 
   6506 	case PTE_CACHE:
   6507 		npte = pte_l2_s_cache_mode;
   6508 		break;
   6509 
   6510 	case PTE_PAGETABLE:
   6511 		npte = pte_l2_s_cache_mode_pt;
   6512 		break;
   6513 	}
   6514 
   6515 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6516 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   6517 
   6518 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6519 	if (ptep == NULL)
   6520 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   6521 
   6522 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   6523 #ifdef ARM_MMU_EXTENDED
   6524 	if (prot & VM_PROT_EXECUTE) {
   6525 		npte &= ~L2_XS_XN;
   6526 	}
   6527 #endif
   6528 	ptep += l2pte_index(va);
   6529 	l2pte_set(ptep, npte, 0);
   6530 	PTE_SYNC(ptep);
   6531 }
   6532 
   6533 /*
   6534  * pmap_link_l2pt:
   6535  *
   6536  *	Link the L2 page table specified by "l2pv" into the L1
   6537  *	page table at the slot for "va".
   6538  */
   6539 void
   6540 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   6541 {
   6542 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   6543 
   6544 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   6545 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   6546 
   6547 	const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   6548 	    | l2pv->pv_pa;
   6549 
   6550 	l1pte_set(pdep, npde);
   6551 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   6552 
   6553 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   6554 }
   6555 
   6556 /*
   6557  * pmap_map_chunk:
   6558  *
   6559  *	Map a chunk of memory using the most efficient mappings
   6560  *	possible (section, large page, small page) into the
   6561  *	provided L1 and L2 tables at the specified virtual address.
   6562  */
   6563 vsize_t
   6564 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   6565     int prot, int cache)
   6566 {
   6567 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6568 	pt_entry_t f1, f2s, f2l;
   6569 	vsize_t resid;
   6570 
   6571 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   6572 
   6573 	if (l1pt == 0)
   6574 		panic("pmap_map_chunk: no L1 table provided");
   6575 
   6576 #ifdef VERBOSE_INIT_ARM
   6577 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   6578 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   6579 #endif
   6580 
   6581 	switch (cache) {
   6582 	case PTE_NOCACHE:
   6583 	default:
   6584 		f1 = 0;
   6585 		f2l = 0;
   6586 		f2s = 0;
   6587 		break;
   6588 
   6589 	case PTE_CACHE:
   6590 		f1 = pte_l1_s_cache_mode;
   6591 		f2l = pte_l2_l_cache_mode;
   6592 		f2s = pte_l2_s_cache_mode;
   6593 		break;
   6594 
   6595 	case PTE_PAGETABLE:
   6596 		f1 = pte_l1_s_cache_mode_pt;
   6597 		f2l = pte_l2_l_cache_mode_pt;
   6598 		f2s = pte_l2_s_cache_mode_pt;
   6599 		break;
   6600 	}
   6601 
   6602 	size = resid;
   6603 
   6604 	while (resid > 0) {
   6605 		const size_t l1slot = l1pte_index(va);
   6606 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   6607 		/* See if we can use a supersection mapping. */
   6608 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   6609 			/* Supersection are always domain 0 */
   6610 			const pd_entry_t npde = L1_SS_PROTO | pa
   6611 #ifdef ARM_MMU_EXTENDED_XXX
   6612 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6613 #endif
   6614 #ifdef ARM_MMU_EXTENDED
   6615 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6616 #endif
   6617 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   6618 #ifdef VERBOSE_INIT_ARM
   6619 			printf("sS");
   6620 #endif
   6621 			l1pte_set(&pdep[l1slot], npde);
   6622 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   6623 			va += L1_SS_SIZE;
   6624 			pa += L1_SS_SIZE;
   6625 			resid -= L1_SS_SIZE;
   6626 			continue;
   6627 		}
   6628 #endif
   6629 		/* See if we can use a section mapping. */
   6630 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   6631 			const pd_entry_t npde = L1_S_PROTO | pa
   6632 #ifdef ARM_MMU_EXTENDED_XXX
   6633 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6634 #endif
   6635 #ifdef ARM_MMU_EXTENDED
   6636 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6637 #endif
   6638 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   6639 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6640 #ifdef VERBOSE_INIT_ARM
   6641 			printf("S");
   6642 #endif
   6643 			l1pte_set(&pdep[l1slot], npde);
   6644 			PDE_SYNC(&pdep[l1slot]);
   6645 			va += L1_S_SIZE;
   6646 			pa += L1_S_SIZE;
   6647 			resid -= L1_S_SIZE;
   6648 			continue;
   6649 		}
   6650 
   6651 		/*
   6652 		 * Ok, we're going to use an L2 table.  Make sure
   6653 		 * one is actually in the corresponding L1 slot
   6654 		 * for the current VA.
   6655 		 */
   6656 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6657 			panic("%s: no L2 table for VA %#lx", __func__, va);
   6658 
   6659 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6660 		if (ptep == NULL)
   6661 			panic("%s: can't find L2 table for VA %#lx", __func__,
   6662 			    va);
   6663 
   6664 		ptep += l2pte_index(va);
   6665 
   6666 		/* See if we can use a L2 large page mapping. */
   6667 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   6668 			const pt_entry_t npte = L2_L_PROTO | pa
   6669 #ifdef ARM_MMU_EXTENDED_XXX
   6670 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   6671 #endif
   6672 #ifdef ARM_MMU_EXTENDED
   6673 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6674 #endif
   6675 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   6676 #ifdef VERBOSE_INIT_ARM
   6677 			printf("L");
   6678 #endif
   6679 			l2pte_set(ptep, npte, 0);
   6680 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   6681 			va += L2_L_SIZE;
   6682 			pa += L2_L_SIZE;
   6683 			resid -= L2_L_SIZE;
   6684 			continue;
   6685 		}
   6686 
   6687 		/* Use a small page mapping. */
   6688 #ifdef VERBOSE_INIT_ARM
   6689 		printf("P");
   6690 #endif
   6691 		const pt_entry_t npte = L2_S_PROTO | pa
   6692 #ifdef ARM_MMU_EXTENDED_XXX
   6693 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   6694 #endif
   6695 #ifdef ARM_MMU_EXTENDED
   6696 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6697 #endif
   6698 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   6699 		l2pte_set(ptep, npte, 0);
   6700 		PTE_SYNC(ptep);
   6701 		va += PAGE_SIZE;
   6702 		pa += PAGE_SIZE;
   6703 		resid -= PAGE_SIZE;
   6704 	}
   6705 #ifdef VERBOSE_INIT_ARM
   6706 	printf("\n");
   6707 #endif
   6708 	return (size);
   6709 }
   6710 
   6711 /********************** Static device map routines ***************************/
   6712 
   6713 static const struct pmap_devmap *pmap_devmap_table;
   6714 
   6715 /*
   6716  * Register the devmap table.  This is provided in case early console
   6717  * initialization needs to register mappings created by bootstrap code
   6718  * before pmap_devmap_bootstrap() is called.
   6719  */
   6720 void
   6721 pmap_devmap_register(const struct pmap_devmap *table)
   6722 {
   6723 
   6724 	pmap_devmap_table = table;
   6725 }
   6726 
   6727 /*
   6728  * Map all of the static regions in the devmap table, and remember
   6729  * the devmap table so other parts of the kernel can look up entries
   6730  * later.
   6731  */
   6732 void
   6733 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   6734 {
   6735 	int i;
   6736 
   6737 	pmap_devmap_table = table;
   6738 
   6739 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6740 #ifdef VERBOSE_INIT_ARM
   6741 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   6742 		    pmap_devmap_table[i].pd_pa,
   6743 		    pmap_devmap_table[i].pd_pa +
   6744 			pmap_devmap_table[i].pd_size - 1,
   6745 		    pmap_devmap_table[i].pd_va);
   6746 #endif
   6747 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   6748 		    pmap_devmap_table[i].pd_pa,
   6749 		    pmap_devmap_table[i].pd_size,
   6750 		    pmap_devmap_table[i].pd_prot,
   6751 		    pmap_devmap_table[i].pd_cache);
   6752 	}
   6753 }
   6754 
   6755 const struct pmap_devmap *
   6756 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   6757 {
   6758 	uint64_t endpa;
   6759 	int i;
   6760 
   6761 	if (pmap_devmap_table == NULL)
   6762 		return (NULL);
   6763 
   6764 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   6765 
   6766 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6767 		if (pa >= pmap_devmap_table[i].pd_pa &&
   6768 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   6769 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   6770 			return (&pmap_devmap_table[i]);
   6771 	}
   6772 
   6773 	return (NULL);
   6774 }
   6775 
   6776 const struct pmap_devmap *
   6777 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6778 {
   6779 	int i;
   6780 
   6781 	if (pmap_devmap_table == NULL)
   6782 		return (NULL);
   6783 
   6784 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6785 		if (va >= pmap_devmap_table[i].pd_va &&
   6786 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6787 				     pmap_devmap_table[i].pd_size - 1)
   6788 			return (&pmap_devmap_table[i]);
   6789 	}
   6790 
   6791 	return (NULL);
   6792 }
   6793 
   6794 /********************** PTE initialization routines **************************/
   6795 
   6796 /*
   6797  * These routines are called when the CPU type is identified to set up
   6798  * the PTE prototypes, cache modes, etc.
   6799  *
   6800  * The variables are always here, just in case modules need to reference
   6801  * them (though, they shouldn't).
   6802  */
   6803 
   6804 pt_entry_t	pte_l1_s_cache_mode;
   6805 pt_entry_t	pte_l1_s_wc_mode;
   6806 pt_entry_t	pte_l1_s_cache_mode_pt;
   6807 pt_entry_t	pte_l1_s_cache_mask;
   6808 
   6809 pt_entry_t	pte_l2_l_cache_mode;
   6810 pt_entry_t	pte_l2_l_wc_mode;
   6811 pt_entry_t	pte_l2_l_cache_mode_pt;
   6812 pt_entry_t	pte_l2_l_cache_mask;
   6813 
   6814 pt_entry_t	pte_l2_s_cache_mode;
   6815 pt_entry_t	pte_l2_s_wc_mode;
   6816 pt_entry_t	pte_l2_s_cache_mode_pt;
   6817 pt_entry_t	pte_l2_s_cache_mask;
   6818 
   6819 pt_entry_t	pte_l1_s_prot_u;
   6820 pt_entry_t	pte_l1_s_prot_w;
   6821 pt_entry_t	pte_l1_s_prot_ro;
   6822 pt_entry_t	pte_l1_s_prot_mask;
   6823 
   6824 pt_entry_t	pte_l2_s_prot_u;
   6825 pt_entry_t	pte_l2_s_prot_w;
   6826 pt_entry_t	pte_l2_s_prot_ro;
   6827 pt_entry_t	pte_l2_s_prot_mask;
   6828 
   6829 pt_entry_t	pte_l2_l_prot_u;
   6830 pt_entry_t	pte_l2_l_prot_w;
   6831 pt_entry_t	pte_l2_l_prot_ro;
   6832 pt_entry_t	pte_l2_l_prot_mask;
   6833 
   6834 pt_entry_t	pte_l1_ss_proto;
   6835 pt_entry_t	pte_l1_s_proto;
   6836 pt_entry_t	pte_l1_c_proto;
   6837 pt_entry_t	pte_l2_s_proto;
   6838 
   6839 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6840 void		(*pmap_zero_page_func)(paddr_t);
   6841 
   6842 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6843 void
   6844 pmap_pte_init_generic(void)
   6845 {
   6846 
   6847 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6848 	pte_l1_s_wc_mode = L1_S_B;
   6849 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6850 
   6851 	pte_l2_l_cache_mode = L2_B|L2_C;
   6852 	pte_l2_l_wc_mode = L2_B;
   6853 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6854 
   6855 	pte_l2_s_cache_mode = L2_B|L2_C;
   6856 	pte_l2_s_wc_mode = L2_B;
   6857 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6858 
   6859 	/*
   6860 	 * If we have a write-through cache, set B and C.  If
   6861 	 * we have a write-back cache, then we assume setting
   6862 	 * only C will make those pages write-through (except for those
   6863 	 * Cortex CPUs which can read the L1 caches).
   6864 	 */
   6865 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6866 #if ARM_MMU_V7 > 0
   6867 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6868 #endif
   6869 #if ARM_MMU_V6 > 0
   6870 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6871 #endif
   6872 	    || false) {
   6873 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6874 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6875 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6876 	} else {
   6877 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6878 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6879 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6880 	}
   6881 
   6882 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6883 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6884 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6885 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6886 
   6887 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6888 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6889 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6890 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6891 
   6892 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6893 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6894 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6895 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6896 
   6897 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6898 	pte_l1_s_proto = L1_S_PROTO_generic;
   6899 	pte_l1_c_proto = L1_C_PROTO_generic;
   6900 	pte_l2_s_proto = L2_S_PROTO_generic;
   6901 
   6902 	pmap_copy_page_func = pmap_copy_page_generic;
   6903 	pmap_zero_page_func = pmap_zero_page_generic;
   6904 }
   6905 
   6906 #if defined(CPU_ARM8)
   6907 void
   6908 pmap_pte_init_arm8(void)
   6909 {
   6910 
   6911 	/*
   6912 	 * ARM8 is compatible with generic, but we need to use
   6913 	 * the page tables uncached.
   6914 	 */
   6915 	pmap_pte_init_generic();
   6916 
   6917 	pte_l1_s_cache_mode_pt = 0;
   6918 	pte_l2_l_cache_mode_pt = 0;
   6919 	pte_l2_s_cache_mode_pt = 0;
   6920 }
   6921 #endif /* CPU_ARM8 */
   6922 
   6923 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6924 void
   6925 pmap_pte_init_arm9(void)
   6926 {
   6927 
   6928 	/*
   6929 	 * ARM9 is compatible with generic, but we want to use
   6930 	 * write-through caching for now.
   6931 	 */
   6932 	pmap_pte_init_generic();
   6933 
   6934 	pte_l1_s_cache_mode = L1_S_C;
   6935 	pte_l2_l_cache_mode = L2_C;
   6936 	pte_l2_s_cache_mode = L2_C;
   6937 
   6938 	pte_l1_s_wc_mode = L1_S_B;
   6939 	pte_l2_l_wc_mode = L2_B;
   6940 	pte_l2_s_wc_mode = L2_B;
   6941 
   6942 	pte_l1_s_cache_mode_pt = L1_S_C;
   6943 	pte_l2_l_cache_mode_pt = L2_C;
   6944 	pte_l2_s_cache_mode_pt = L2_C;
   6945 }
   6946 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6947 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6948 
   6949 #if defined(CPU_ARM10)
   6950 void
   6951 pmap_pte_init_arm10(void)
   6952 {
   6953 
   6954 	/*
   6955 	 * ARM10 is compatible with generic, but we want to use
   6956 	 * write-through caching for now.
   6957 	 */
   6958 	pmap_pte_init_generic();
   6959 
   6960 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6961 	pte_l2_l_cache_mode = L2_B | L2_C;
   6962 	pte_l2_s_cache_mode = L2_B | L2_C;
   6963 
   6964 	pte_l1_s_cache_mode = L1_S_B;
   6965 	pte_l2_l_cache_mode = L2_B;
   6966 	pte_l2_s_cache_mode = L2_B;
   6967 
   6968 	pte_l1_s_cache_mode_pt = L1_S_C;
   6969 	pte_l2_l_cache_mode_pt = L2_C;
   6970 	pte_l2_s_cache_mode_pt = L2_C;
   6971 
   6972 }
   6973 #endif /* CPU_ARM10 */
   6974 
   6975 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6976 void
   6977 pmap_pte_init_arm11(void)
   6978 {
   6979 
   6980 	/*
   6981 	 * ARM11 is compatible with generic, but we want to use
   6982 	 * write-through caching for now.
   6983 	 */
   6984 	pmap_pte_init_generic();
   6985 
   6986 	pte_l1_s_cache_mode = L1_S_C;
   6987 	pte_l2_l_cache_mode = L2_C;
   6988 	pte_l2_s_cache_mode = L2_C;
   6989 
   6990 	pte_l1_s_wc_mode = L1_S_B;
   6991 	pte_l2_l_wc_mode = L2_B;
   6992 	pte_l2_s_wc_mode = L2_B;
   6993 
   6994 	pte_l1_s_cache_mode_pt = L1_S_C;
   6995 	pte_l2_l_cache_mode_pt = L2_C;
   6996 	pte_l2_s_cache_mode_pt = L2_C;
   6997 }
   6998 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   6999 
   7000 #if ARM_MMU_SA1 == 1
   7001 void
   7002 pmap_pte_init_sa1(void)
   7003 {
   7004 
   7005 	/*
   7006 	 * The StrongARM SA-1 cache does not have a write-through
   7007 	 * mode.  So, do the generic initialization, then reset
   7008 	 * the page table cache mode to B=1,C=1, and note that
   7009 	 * the PTEs need to be sync'd.
   7010 	 */
   7011 	pmap_pte_init_generic();
   7012 
   7013 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7014 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7015 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7016 
   7017 	pmap_needs_pte_sync = 1;
   7018 }
   7019 #endif /* ARM_MMU_SA1 == 1*/
   7020 
   7021 #if ARM_MMU_XSCALE == 1
   7022 #if (ARM_NMMUS > 1)
   7023 static u_int xscale_use_minidata;
   7024 #endif
   7025 
   7026 void
   7027 pmap_pte_init_xscale(void)
   7028 {
   7029 	uint32_t auxctl;
   7030 	int write_through = 0;
   7031 
   7032 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7033 	pte_l1_s_wc_mode = L1_S_B;
   7034 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7035 
   7036 	pte_l2_l_cache_mode = L2_B|L2_C;
   7037 	pte_l2_l_wc_mode = L2_B;
   7038 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7039 
   7040 	pte_l2_s_cache_mode = L2_B|L2_C;
   7041 	pte_l2_s_wc_mode = L2_B;
   7042 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7043 
   7044 	pte_l1_s_cache_mode_pt = L1_S_C;
   7045 	pte_l2_l_cache_mode_pt = L2_C;
   7046 	pte_l2_s_cache_mode_pt = L2_C;
   7047 
   7048 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7049 	/*
   7050 	 * The XScale core has an enhanced mode where writes that
   7051 	 * miss the cache cause a cache line to be allocated.  This
   7052 	 * is significantly faster than the traditional, write-through
   7053 	 * behavior of this case.
   7054 	 */
   7055 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7056 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7057 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7058 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7059 
   7060 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7061 	/*
   7062 	 * Some versions of the XScale core have various bugs in
   7063 	 * their cache units, the work-around for which is to run
   7064 	 * the cache in write-through mode.  Unfortunately, this
   7065 	 * has a major (negative) impact on performance.  So, we
   7066 	 * go ahead and run fast-and-loose, in the hopes that we
   7067 	 * don't line up the planets in a way that will trip the
   7068 	 * bugs.
   7069 	 *
   7070 	 * However, we give you the option to be slow-but-correct.
   7071 	 */
   7072 	write_through = 1;
   7073 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7074 	/* force write back cache mode */
   7075 	write_through = 0;
   7076 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7077 	/*
   7078 	 * Intel PXA2[15]0 processors are known to have a bug in
   7079 	 * write-back cache on revision 4 and earlier (stepping
   7080 	 * A[01] and B[012]).  Fixed for C0 and later.
   7081 	 */
   7082 	{
   7083 		uint32_t id, type;
   7084 
   7085 		id = cpufunc_id();
   7086 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7087 
   7088 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7089 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7090 				/* write through for stepping A0-1 and B0-2 */
   7091 				write_through = 1;
   7092 			}
   7093 		}
   7094 	}
   7095 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7096 
   7097 	if (write_through) {
   7098 		pte_l1_s_cache_mode = L1_S_C;
   7099 		pte_l2_l_cache_mode = L2_C;
   7100 		pte_l2_s_cache_mode = L2_C;
   7101 	}
   7102 
   7103 #if (ARM_NMMUS > 1)
   7104 	xscale_use_minidata = 1;
   7105 #endif
   7106 
   7107 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7108 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7109 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7110 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7111 
   7112 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7113 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7114 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7115 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7116 
   7117 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7118 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7119 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7120 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7121 
   7122 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7123 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7124 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7125 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7126 
   7127 	pmap_copy_page_func = pmap_copy_page_xscale;
   7128 	pmap_zero_page_func = pmap_zero_page_xscale;
   7129 
   7130 	/*
   7131 	 * Disable ECC protection of page table access, for now.
   7132 	 */
   7133 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   7134 	auxctl &= ~XSCALE_AUXCTL_P;
   7135 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   7136 }
   7137 
   7138 /*
   7139  * xscale_setup_minidata:
   7140  *
   7141  *	Set up the mini-data cache clean area.  We require the
   7142  *	caller to allocate the right amount of physically and
   7143  *	virtually contiguous space.
   7144  */
   7145 void
   7146 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7147 {
   7148 	extern vaddr_t xscale_minidata_clean_addr;
   7149 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   7150 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7151 	vsize_t size;
   7152 	uint32_t auxctl;
   7153 
   7154 	xscale_minidata_clean_addr = va;
   7155 
   7156 	/* Round it to page size. */
   7157 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7158 
   7159 	for (; size != 0;
   7160 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7161 		const size_t l1slot = l1pte_index(va);
   7162 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7163 		if (ptep == NULL)
   7164 			panic("xscale_setup_minidata: can't find L2 table for "
   7165 			    "VA 0x%08lx", va);
   7166 
   7167 		ptep += l2pte_index(va);
   7168 		pt_entry_t opte = *ptep;
   7169 		l2pte_set(ptep,
   7170 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7171 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7172 	}
   7173 
   7174 	/*
   7175 	 * Configure the mini-data cache for write-back with
   7176 	 * read/write-allocate.
   7177 	 *
   7178 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7179 	 * make sure it contains no valid data!  In order to do that,
   7180 	 * we must issue a global data cache invalidate command!
   7181 	 *
   7182 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7183 	 * THIS IS VERY IMPORTANT!
   7184 	 */
   7185 
   7186 	/* Invalidate data and mini-data. */
   7187 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7188 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   7189 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7190 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   7191 }
   7192 
   7193 /*
   7194  * Change the PTEs for the specified kernel mappings such that they
   7195  * will use the mini data cache instead of the main data cache.
   7196  */
   7197 void
   7198 pmap_uarea(vaddr_t va)
   7199 {
   7200 	vaddr_t next_bucket, eva;
   7201 
   7202 #if (ARM_NMMUS > 1)
   7203 	if (xscale_use_minidata == 0)
   7204 		return;
   7205 #endif
   7206 
   7207 	eva = va + USPACE;
   7208 
   7209 	while (va < eva) {
   7210 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7211 		if (next_bucket > eva)
   7212 			next_bucket = eva;
   7213 
   7214 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7215 		KDASSERT(l2b != NULL);
   7216 
   7217 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7218 		pt_entry_t *ptep = sptep;
   7219 
   7220 		while (va < next_bucket) {
   7221 			const pt_entry_t opte = *ptep;
   7222 			if (!l2pte_minidata_p(opte)) {
   7223 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7224 				cpu_tlb_flushD_SE(va);
   7225 				l2pte_set(ptep, opte & ~L2_B, opte);
   7226 			}
   7227 			ptep += PAGE_SIZE / L2_S_SIZE;
   7228 			va += PAGE_SIZE;
   7229 		}
   7230 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7231 	}
   7232 	cpu_cpwait();
   7233 }
   7234 #endif /* ARM_MMU_XSCALE == 1 */
   7235 
   7236 
   7237 #if defined(CPU_ARM11MPCORE)
   7238 
   7239 void
   7240 pmap_pte_init_arm11mpcore(void)
   7241 {
   7242 
   7243 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   7244 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7245 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7246 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7247 	/* use extended small page (without APn, with TEX) */
   7248 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7249 #else
   7250 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7251 #endif
   7252 
   7253 	/* write-back, write-allocate */
   7254 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7255 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7256 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7257 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7258 #else
   7259 	/* no TEX. read-allocate */
   7260 	pte_l2_s_cache_mode = L2_C | L2_B;
   7261 #endif
   7262 	/*
   7263 	 * write-back, write-allocate for page tables.
   7264 	 */
   7265 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7266 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7267 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7268 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7269 #else
   7270 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7271 #endif
   7272 
   7273 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7274 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7275 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7276 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7277 
   7278 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7279 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7280 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7281 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7282 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7283 
   7284 #else
   7285 	/* with AP[0..3] */
   7286 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7287 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7288 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7289 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7290 #endif
   7291 
   7292 #ifdef	ARM11MPCORE_COMPAT_MMU
   7293 	/* with AP[0..3] */
   7294 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7295 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7296 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7297 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7298 
   7299 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7300 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7301 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7302 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7303 #else
   7304 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7305 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7306 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7307 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7308 
   7309 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7310 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7311 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7312 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7313 #endif
   7314 
   7315 	pmap_copy_page_func = pmap_copy_page_generic;
   7316 	pmap_zero_page_func = pmap_zero_page_generic;
   7317 	pmap_needs_pte_sync = 1;
   7318 }
   7319 #endif	/* CPU_ARM11MPCORE */
   7320 
   7321 
   7322 #if ARM_MMU_V7 == 1
   7323 void
   7324 pmap_pte_init_armv7(void)
   7325 {
   7326 	/*
   7327 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7328 	 * AP field is zero, that now means "no access" rather than
   7329 	 * read-only. The prototypes are a little different because of
   7330 	 * the XN bit.
   7331 	 */
   7332 	pmap_pte_init_generic();
   7333 
   7334 	pmap_needs_pte_sync = 1;
   7335 
   7336 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7337 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7338 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7339 
   7340 	/*
   7341 	 * If the core support coherent walk then updates to translation tables
   7342 	 * do not require a clean to the point of unification to ensure
   7343 	 * visibility by subsequent translation table walks.  That means we can
   7344 	 * map everything shareable and cached and the right thing will happen.
   7345 	 */
   7346         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7347 		pmap_needs_pte_sync = 0;
   7348 
   7349 		/*
   7350 		 * write-back, no write-allocate, shareable for normal pages.
   7351 		 */
   7352 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7353 		pte_l2_l_cache_mode |= L2_XS_S;
   7354 		pte_l2_s_cache_mode |= L2_XS_S;
   7355 	}
   7356 
   7357 	/*
   7358 	 * Page tables are just all other memory.  We can use write-back since
   7359 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7360 	 */
   7361 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7362 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7363 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7364 
   7365 	/*
   7366 	 * Check the Memory Model Features to see if this CPU supports
   7367 	 * the TLBIASID coproc op.
   7368 	 */
   7369 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7370 		arm_has_tlbiasid_p = true;
   7371 	}
   7372 
   7373 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7374 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7375 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7376 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7377 
   7378 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7379 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7380 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7381 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7382 
   7383 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7384 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7385 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7386 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7387 
   7388 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7389 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7390 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7391 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7392 
   7393 }
   7394 #endif /* ARM_MMU_V7 */
   7395 
   7396 /*
   7397  * return the PA of the current L1 table, for use when handling a crash dump
   7398  */
   7399 uint32_t
   7400 pmap_kernel_L1_addr(void)
   7401 {
   7402 #ifdef ARM_MMU_EXTENDED
   7403 	return pmap_kernel()->pm_l1_pa;
   7404 #else
   7405 	return pmap_kernel()->pm_l1->l1_physaddr;
   7406 #endif
   7407 }
   7408 
   7409 #if defined(DDB)
   7410 /*
   7411  * A couple of ddb-callable functions for dumping pmaps
   7412  */
   7413 void pmap_dump_all(void);
   7414 void pmap_dump(pmap_t);
   7415 
   7416 void
   7417 pmap_dump_all(void)
   7418 {
   7419 	pmap_t pm;
   7420 
   7421 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   7422 		if (pm == pmap_kernel())
   7423 			continue;
   7424 		pmap_dump(pm);
   7425 		printf("\n");
   7426 	}
   7427 }
   7428 
   7429 static pt_entry_t ncptes[64];
   7430 static void pmap_dump_ncpg(pmap_t);
   7431 
   7432 void
   7433 pmap_dump(pmap_t pm)
   7434 {
   7435 	struct l2_dtable *l2;
   7436 	struct l2_bucket *l2b;
   7437 	pt_entry_t *ptep, pte;
   7438 	vaddr_t l2_va, l2b_va, va;
   7439 	int i, j, k, occ, rows = 0;
   7440 
   7441 	if (pm == pmap_kernel())
   7442 		printf("pmap_kernel (%p): ", pm);
   7443 	else
   7444 		printf("user pmap (%p): ", pm);
   7445 
   7446 #ifdef ARM_MMU_EXTENDED
   7447 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7448 #else
   7449 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7450 #endif
   7451 
   7452 	l2_va = 0;
   7453 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7454 		l2 = pm->pm_l2[i];
   7455 
   7456 		if (l2 == NULL || l2->l2_occupancy == 0)
   7457 			continue;
   7458 
   7459 		l2b_va = l2_va;
   7460 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7461 			l2b = &l2->l2_bucket[j];
   7462 
   7463 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7464 				continue;
   7465 
   7466 			ptep = l2b->l2b_kva;
   7467 
   7468 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7469 				;
   7470 
   7471 			k &= ~63;
   7472 			occ = l2b->l2b_occupancy;
   7473 			va = l2b_va + (k * 4096);
   7474 			for (; k < 256; k++, va += 0x1000) {
   7475 				char ch = ' ';
   7476 				if ((k % 64) == 0) {
   7477 					if ((rows % 8) == 0) {
   7478 						printf(
   7479 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7480 					}
   7481 					printf("%08lx: ", va);
   7482 				}
   7483 
   7484 				ncptes[k & 63] = 0;
   7485 				pte = ptep[k];
   7486 				if (pte == 0) {
   7487 					ch = '.';
   7488 				} else {
   7489 					occ--;
   7490 					switch (pte & 0x0c) {
   7491 					case 0x00:
   7492 						ch = 'D'; /* No cache No buff */
   7493 						break;
   7494 					case 0x04:
   7495 						ch = 'B'; /* No cache buff */
   7496 						break;
   7497 					case 0x08:
   7498 						if (pte & 0x40)
   7499 							ch = 'm';
   7500 						else
   7501 						   ch = 'C'; /* Cache No buff */
   7502 						break;
   7503 					case 0x0c:
   7504 						ch = 'F'; /* Cache Buff */
   7505 						break;
   7506 					}
   7507 
   7508 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   7509 						ch += 0x20;
   7510 
   7511 					if ((pte & 0xc) == 0)
   7512 						ncptes[k & 63] = pte;
   7513 				}
   7514 
   7515 				if ((k % 64) == 63) {
   7516 					rows++;
   7517 					printf("%c\n", ch);
   7518 					pmap_dump_ncpg(pm);
   7519 					if (occ == 0)
   7520 						break;
   7521 				} else
   7522 					printf("%c", ch);
   7523 			}
   7524 		}
   7525 	}
   7526 }
   7527 
   7528 static void
   7529 pmap_dump_ncpg(pmap_t pm)
   7530 {
   7531 	struct vm_page *pg;
   7532 	struct vm_page_md *md;
   7533 	struct pv_entry *pv;
   7534 	int i;
   7535 
   7536 	for (i = 0; i < 63; i++) {
   7537 		if (ncptes[i] == 0)
   7538 			continue;
   7539 
   7540 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   7541 		if (pg == NULL)
   7542 			continue;
   7543 		md = VM_PAGE_TO_MD(pg);
   7544 
   7545 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   7546 		    VM_PAGE_TO_PHYS(pg),
   7547 		    md->krw_mappings, md->kro_mappings,
   7548 		    md->urw_mappings, md->uro_mappings);
   7549 
   7550 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   7551 			printf("   %c va 0x%08lx, flags 0x%x\n",
   7552 			    (pm == pv->pv_pmap) ? '*' : ' ',
   7553 			    pv->pv_va, pv->pv_flags);
   7554 		}
   7555 	}
   7556 }
   7557 #endif
   7558 
   7559 #ifdef PMAP_STEAL_MEMORY
   7560 void
   7561 pmap_boot_pageadd(pv_addr_t *newpv)
   7562 {
   7563 	pv_addr_t *pv, *npv;
   7564 
   7565 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   7566 		if (newpv->pv_pa < pv->pv_va) {
   7567 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   7568 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   7569 				newpv->pv_size += pv->pv_size;
   7570 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   7571 			}
   7572 			pv = NULL;
   7573 		} else {
   7574 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   7575 			     pv = npv) {
   7576 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   7577 				KASSERT(pv->pv_pa < newpv->pv_pa);
   7578 				if (newpv->pv_pa > npv->pv_pa)
   7579 					continue;
   7580 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   7581 					pv->pv_size += newpv->pv_size;
   7582 					return;
   7583 				}
   7584 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   7585 					break;
   7586 				newpv->pv_size += npv->pv_size;
   7587 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7588 				SLIST_REMOVE_AFTER(newpv, pv_list);
   7589 				return;
   7590 			}
   7591 		}
   7592 	}
   7593 
   7594 	if (pv) {
   7595 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7596 	} else {
   7597 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   7598 	}
   7599 }
   7600 
   7601 void
   7602 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   7603 	pv_addr_t *rpv)
   7604 {
   7605 	pv_addr_t *pv, **pvp;
   7606 	struct vm_physseg *ps;
   7607 	size_t i;
   7608 
   7609 	KASSERT(amount & PGOFSET);
   7610 	KASSERT((mask & PGOFSET) == 0);
   7611 	KASSERT((match & PGOFSET) == 0);
   7612 	KASSERT(amount != 0);
   7613 
   7614 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7615 	     (pv = *pvp) != NULL;
   7616 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7617 		pv_addr_t *newpv;
   7618 		psize_t off;
   7619 		/*
   7620 		 * If this entry is too small to satify the request...
   7621 		 */
   7622 		KASSERT(pv->pv_size > 0);
   7623 		if (pv->pv_size < amount)
   7624 			continue;
   7625 
   7626 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   7627 			if (((pv->pv_pa + off) & mask) == match
   7628 			    && off + amount <= pv->pv_size)
   7629 				break;
   7630 		}
   7631 		if (off > mask)
   7632 			continue;
   7633 
   7634 		rpv->pv_va = pv->pv_va + off;
   7635 		rpv->pv_pa = pv->pv_pa + off;
   7636 		rpv->pv_size = amount;
   7637 		pv->pv_size -= amount;
   7638 		if (pv->pv_size == 0) {
   7639 			KASSERT(off == 0);
   7640 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7641 			*pvp = SLIST_NEXT(pv, pv_list);
   7642 		} else if (off == 0) {
   7643 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7644 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7645 			*newpv = *pv;
   7646 			newpv->pv_pa += amount;
   7647 			newpv->pv_va += amount;
   7648 			*pvp = newpv;
   7649 		} else if (off < pv->pv_size) {
   7650 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7651 			*newpv = *pv;
   7652 			newpv->pv_size -= off;
   7653 			newpv->pv_pa += off + amount;
   7654 			newpv->pv_va += off + amount;
   7655 
   7656 			SLIST_NEXT(pv, pv_list) = newpv;
   7657 			pv->pv_size = off;
   7658 		} else {
   7659 			KASSERT((vaddr_t) pv != rpv->pv_va);
   7660 		}
   7661 		memset((void *)rpv->pv_va, 0, amount);
   7662 		return;
   7663 	}
   7664 
   7665 	if (vm_nphysseg == 0)
   7666 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   7667 
   7668 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7669 	     (pv = *pvp) != NULL;
   7670 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7671 		if (SLIST_NEXT(pv, pv_list) == NULL)
   7672 			break;
   7673 	}
   7674 	KASSERT(mask == 0);
   7675 	for (i = 0; i < vm_nphysseg; i++) {
   7676 		ps = VM_PHYSMEM_PTR(i);
   7677 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   7678 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   7679 			rpv->pv_va = pv->pv_va;
   7680 			rpv->pv_pa = pv->pv_pa;
   7681 			rpv->pv_size = amount;
   7682 			*pvp = NULL;
   7683 			pmap_map_chunk(kernel_l1pt.pv_va,
   7684 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   7685 			     ptoa(ps->avail_start),
   7686 			     amount - pv->pv_size,
   7687 			     VM_PROT_READ|VM_PROT_WRITE,
   7688 			     PTE_CACHE);
   7689 			ps->avail_start += atop(amount - pv->pv_size);
   7690 			/*
   7691 			 * If we consumed the entire physseg, remove it.
   7692 			 */
   7693 			if (ps->avail_start == ps->avail_end) {
   7694 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   7695 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   7696 			}
   7697 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   7698 			return;
   7699 		}
   7700 	}
   7701 
   7702 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   7703 }
   7704 
   7705 vaddr_t
   7706 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   7707 {
   7708 	pv_addr_t pv;
   7709 
   7710 	pmap_boot_pagealloc(size, 0, 0, &pv);
   7711 
   7712 	return pv.pv_va;
   7713 }
   7714 #endif /* PMAP_STEAL_MEMORY */
   7715 
   7716 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   7717 {
   7718 	sysctl_createv(clog, 0, NULL, NULL,
   7719 			CTLFLAG_PERMANENT,
   7720 			CTLTYPE_NODE, "machdep", NULL,
   7721 			NULL, 0, NULL, 0,
   7722 			CTL_MACHDEP, CTL_EOL);
   7723 
   7724 	sysctl_createv(clog, 0, NULL, NULL,
   7725 			CTLFLAG_PERMANENT,
   7726 			CTLTYPE_INT, "kmpages",
   7727 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   7728 			NULL, 0, &pmap_kmpages, 0,
   7729 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   7730 }
   7731 
   7732 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   7733 struct vm_page *
   7734 arm_pmap_alloc_poolpage(int flags)
   7735 {
   7736 	/*
   7737 	 * On some systems, only some pages may be "coherent" for dma and we
   7738 	 * want to prefer those for pool pages (think mbufs) but fallback to
   7739 	 * any page if none is available.  But we can only fallback if we
   7740 	 * aren't direct mapping memory or all of memory can be direct-mapped.
   7741 	 * If that isn't true, pool changes can only come from direct-mapped
   7742 	 * memory.
   7743 	 */
   7744 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   7745 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   7746 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(ARM_MMU_EXTENDED)
   7747 		    (pmap_directbase < KERNEL_BASE
   7748 			? UVM_PGA_STRAT_ONLY
   7749 			: UVM_PGA_STRAT_FALLBACK),
   7750 #else
   7751 		    UVM_PGA_STRAT_FALLBACK,
   7752 #endif
   7753 		    arm_poolpage_vmfreelist);
   7754 	}
   7755 
   7756 	return uvm_pagealloc(NULL, 0, NULL, flags);
   7757 }
   7758 #endif
   7759 
   7760 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   7761 void
   7762 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   7763 {
   7764         /* nothing */
   7765 }
   7766 
   7767 int
   7768 pic_ipi_shootdown(void *arg)
   7769 {
   7770 #if PMAP_NEED_TLB_SHOOTDOWN
   7771 	pmap_tlb_shootdown_process();
   7772 #endif
   7773 	return 1;
   7774 }
   7775 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   7776 
   7777 
   7778 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   7779 vaddr_t
   7780 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   7781 {
   7782 	bool ok = false;
   7783 	if (physical_start <= pa && pa < physical_end) {
   7784 #ifdef ARM_MMU_EXTENDED
   7785 		const vaddr_t newva = pmap_directbase + pa - physical_start;
   7786 		if (newva >= KERNEL_BASE) {
   7787 			va = newva;
   7788 			ok = true;
   7789 		}
   7790 #else
   7791 		va = KERNEL_BASE + pa - physical_start;
   7792 		ok = true;
   7793 #endif
   7794 	}
   7795 	KASSERT(ok_p);
   7796 	*ok_p = ok;
   7797 	return va;
   7798 }
   7799 
   7800 vaddr_t
   7801 pmap_map_poolpage(paddr_t pa)
   7802 {
   7803 	bool ok __diagused;
   7804 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   7805 	KASSERT(ok);
   7806 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   7807 	if (arm_cache_prefer_mask != 0) {
   7808 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   7809 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   7810 		pmap_acquire_page_lock(md);
   7811 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   7812 		pmap_release_page_lock(md);
   7813 	}
   7814 #endif
   7815 	return va;
   7816 }
   7817 
   7818 paddr_t
   7819 pmap_unmap_poolpage(vaddr_t va)
   7820 {
   7821 	KASSERT(va >= KERNEL_BASE);
   7822 #if defined(ARM_MMU_EXTENDED)
   7823 	return va - pmap_directbase + physical_start;
   7824 #else
   7825 #ifdef PMAP_CACHE_VIVT
   7826 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   7827 #endif
   7828         return va - KERNEL_BASE + physical_start;
   7829 #endif
   7830 }
   7831 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   7832