Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.306
      1 /*	$NetBSD: pmap.c,v 1.306 2014/10/29 22:11:34 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #ifdef MULTIPROCESSOR
    196 #define _INTR_PRIVATE
    197 #endif
    198 
    199 #include <sys/param.h>
    200 #include <sys/types.h>
    201 #include <sys/kernel.h>
    202 #include <sys/systm.h>
    203 #include <sys/proc.h>
    204 #include <sys/intr.h>
    205 #include <sys/pool.h>
    206 #include <sys/kmem.h>
    207 #include <sys/cdefs.h>
    208 #include <sys/cpu.h>
    209 #include <sys/sysctl.h>
    210 #include <sys/bus.h>
    211 #include <sys/atomic.h>
    212 #include <sys/kernhist.h>
    213 
    214 #include <uvm/uvm.h>
    215 
    216 #include <arm/locore.h>
    217 
    218 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.306 2014/10/29 22:11:34 skrll Exp $");
    219 
    220 //#define PMAP_DEBUG
    221 #ifdef PMAP_DEBUG
    222 
    223 /* XXX need to get rid of all refs to this */
    224 int pmap_debug_level = 0;
    225 
    226 /*
    227  * for switching to potentially finer grained debugging
    228  */
    229 #define	PDB_FOLLOW	0x0001
    230 #define	PDB_INIT	0x0002
    231 #define	PDB_ENTER	0x0004
    232 #define	PDB_REMOVE	0x0008
    233 #define	PDB_CREATE	0x0010
    234 #define	PDB_PTPAGE	0x0020
    235 #define	PDB_GROWKERN	0x0040
    236 #define	PDB_BITS	0x0080
    237 #define	PDB_COLLECT	0x0100
    238 #define	PDB_PROTECT	0x0200
    239 #define	PDB_MAP_L1	0x0400
    240 #define	PDB_BOOTSTRAP	0x1000
    241 #define	PDB_PARANOIA	0x2000
    242 #define	PDB_WIRING	0x4000
    243 #define	PDB_PVDUMP	0x8000
    244 #define	PDB_VAC		0x10000
    245 #define	PDB_KENTER	0x20000
    246 #define	PDB_KREMOVE	0x40000
    247 #define	PDB_EXEC	0x80000
    248 
    249 int debugmap = 1;
    250 int pmapdebug = 0;
    251 #define	NPDEBUG(_lev_,_stat_) \
    252 	if (pmapdebug & (_lev_)) \
    253         	((_stat_))
    254 
    255 #else	/* PMAP_DEBUG */
    256 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    257 #endif	/* PMAP_DEBUG */
    258 
    259 /*
    260  * pmap_kernel() points here
    261  */
    262 static struct pmap	kernel_pmap_store = {
    263 #ifndef ARM_MMU_EXTENDED
    264 	.pm_activated = true,
    265 	.pm_domain = PMAP_DOMAIN_KERNEL,
    266 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    267 #endif
    268 };
    269 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    270 #undef pmap_kernel
    271 #define pmap_kernel()	(&kernel_pmap_store)
    272 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    273 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    274 #endif
    275 
    276 /*
    277  * Pool and cache that pmap structures are allocated from.
    278  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    279  * in pmap_create().
    280  */
    281 static struct pool_cache pmap_cache;
    282 static LIST_HEAD(, pmap) pmap_pmaps;
    283 
    284 /*
    285  * Pool of PV structures
    286  */
    287 static struct pool pmap_pv_pool;
    288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    291 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    292 };
    293 
    294 /*
    295  * Pool and cache of l2_dtable structures.
    296  * We use a cache to avoid clearing the structures when they're
    297  * allocated. (196 bytes)
    298  */
    299 static struct pool_cache pmap_l2dtable_cache;
    300 static vaddr_t pmap_kernel_l2dtable_kva;
    301 
    302 /*
    303  * Pool and cache of L2 page descriptors.
    304  * We use a cache to avoid clearing the descriptor table
    305  * when they're allocated. (1KB)
    306  */
    307 static struct pool_cache pmap_l2ptp_cache;
    308 static vaddr_t pmap_kernel_l2ptp_kva;
    309 static paddr_t pmap_kernel_l2ptp_phys;
    310 
    311 #ifdef PMAPCOUNTERS
    312 #define	PMAP_EVCNT_INITIALIZER(name) \
    313 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    314 
    315 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    316 static struct evcnt pmap_ev_vac_clean_one =
    317    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    318 static struct evcnt pmap_ev_vac_flush_one =
    319    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    320 static struct evcnt pmap_ev_vac_flush_lots =
    321    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    322 static struct evcnt pmap_ev_vac_flush_lots2 =
    323    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    328 
    329 static struct evcnt pmap_ev_vac_color_new =
    330    PMAP_EVCNT_INITIALIZER("new page color");
    331 static struct evcnt pmap_ev_vac_color_reuse =
    332    PMAP_EVCNT_INITIALIZER("ok first page color");
    333 static struct evcnt pmap_ev_vac_color_ok =
    334    PMAP_EVCNT_INITIALIZER("ok page color");
    335 static struct evcnt pmap_ev_vac_color_blind =
    336    PMAP_EVCNT_INITIALIZER("blind page color");
    337 static struct evcnt pmap_ev_vac_color_change =
    338    PMAP_EVCNT_INITIALIZER("change page color");
    339 static struct evcnt pmap_ev_vac_color_erase =
    340    PMAP_EVCNT_INITIALIZER("erase page color");
    341 static struct evcnt pmap_ev_vac_color_none =
    342    PMAP_EVCNT_INITIALIZER("no page color");
    343 static struct evcnt pmap_ev_vac_color_restore =
    344    PMAP_EVCNT_INITIALIZER("restore page color");
    345 
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    354 #endif
    355 
    356 static struct evcnt pmap_ev_mappings =
    357    PMAP_EVCNT_INITIALIZER("pages mapped");
    358 static struct evcnt pmap_ev_unmappings =
    359    PMAP_EVCNT_INITIALIZER("pages unmapped");
    360 static struct evcnt pmap_ev_remappings =
    361    PMAP_EVCNT_INITIALIZER("pages remapped");
    362 
    363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    366 
    367 static struct evcnt pmap_ev_kernel_mappings =
    368    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    369 static struct evcnt pmap_ev_kernel_unmappings =
    370    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    371 static struct evcnt pmap_ev_kernel_remappings =
    372    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    373 
    374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    377 
    378 static struct evcnt pmap_ev_kenter_mappings =
    379    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    380 static struct evcnt pmap_ev_kenter_unmappings =
    381    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    382 static struct evcnt pmap_ev_kenter_remappings =
    383    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    384 static struct evcnt pmap_ev_pt_mappings =
    385    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    386 
    387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    391 
    392 static struct evcnt pmap_ev_fixup_mod =
    393    PMAP_EVCNT_INITIALIZER("page modification emulations");
    394 static struct evcnt pmap_ev_fixup_ref =
    395    PMAP_EVCNT_INITIALIZER("page reference emulations");
    396 static struct evcnt pmap_ev_fixup_exec =
    397    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    398 static struct evcnt pmap_ev_fixup_pdes =
    399    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    400 #ifndef ARM_MMU_EXTENDED
    401 static struct evcnt pmap_ev_fixup_ptesync =
    402    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    403 #endif
    404 
    405 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    409 #ifndef ARM_MMU_EXTENDED
    410 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    411 #endif
    412 
    413 #ifdef PMAP_CACHE_VIPT
    414 static struct evcnt pmap_ev_exec_mappings =
    415    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    416 static struct evcnt pmap_ev_exec_cached =
    417    PMAP_EVCNT_INITIALIZER("exec pages cached");
    418 
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    421 
    422 static struct evcnt pmap_ev_exec_synced =
    423    PMAP_EVCNT_INITIALIZER("exec pages synced");
    424 static struct evcnt pmap_ev_exec_synced_map =
    425    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    426 #ifndef ARM_MMU_EXTENDED
    427 static struct evcnt pmap_ev_exec_synced_unmap =
    428    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    429 static struct evcnt pmap_ev_exec_synced_remap =
    430    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    431 static struct evcnt pmap_ev_exec_synced_clearbit =
    432    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    433 static struct evcnt pmap_ev_exec_synced_kremove =
    434    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    435 #endif
    436 
    437 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    439 #ifndef ARM_MMU_EXTENDED
    440 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    444 #endif
    445 
    446 static struct evcnt pmap_ev_exec_discarded_unmap =
    447    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    448 static struct evcnt pmap_ev_exec_discarded_zero =
    449    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    450 static struct evcnt pmap_ev_exec_discarded_copy =
    451    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    452 static struct evcnt pmap_ev_exec_discarded_page_protect =
    453    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    454 static struct evcnt pmap_ev_exec_discarded_clearbit =
    455    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    456 static struct evcnt pmap_ev_exec_discarded_kremove =
    457    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    458 #ifdef ARM_MMU_EXTENDED
    459 static struct evcnt pmap_ev_exec_discarded_modfixup =
    460    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    461 #endif
    462 
    463 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    469 #ifdef ARM_MMU_EXTENDED
    470 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    471 #endif
    472 #endif /* PMAP_CACHE_VIPT */
    473 
    474 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    475 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    476 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    477 
    478 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    479 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    480 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    481 
    482 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    483 #else
    484 #define	PMAPCOUNT(x)	((void)0)
    485 #endif
    486 
    487 /*
    488  * pmap copy/zero page, and mem(5) hook point
    489  */
    490 static pt_entry_t *csrc_pte, *cdst_pte;
    491 static vaddr_t csrcp, cdstp;
    492 #ifdef MULTIPROCESSOR
    493 static size_t cnptes;
    494 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    495 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    496 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    497 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    498 #else
    499 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    500 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    501 #define	cpu_csrcp(o)	(csrcp + (o))
    502 #define	cpu_cdstp(o)	(cdstp + (o))
    503 #endif
    504 vaddr_t memhook;			/* used by mem.c & others */
    505 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    506 kmutex_t pmap_lock __cacheline_aligned;
    507 extern void *msgbufaddr;
    508 int pmap_kmpages;
    509 /*
    510  * Flag to indicate if pmap_init() has done its thing
    511  */
    512 bool pmap_initialized;
    513 
    514 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    515 /*
    516  * Start of direct-mapped memory
    517  */
    518 vaddr_t pmap_directbase = KERNEL_BASE;
    519 #endif
    520 
    521 /*
    522  * Misc. locking data structures
    523  */
    524 
    525 static inline void
    526 pmap_acquire_pmap_lock(pmap_t pm)
    527 {
    528 	if (pm == pmap_kernel()) {
    529 #ifdef MULTIPROCESSOR
    530 		KERNEL_LOCK(1, NULL);
    531 #endif
    532 	} else {
    533 		mutex_enter(pm->pm_lock);
    534 	}
    535 }
    536 
    537 static inline void
    538 pmap_release_pmap_lock(pmap_t pm)
    539 {
    540 	if (pm == pmap_kernel()) {
    541 #ifdef MULTIPROCESSOR
    542 		KERNEL_UNLOCK_ONE(NULL);
    543 #endif
    544 	} else {
    545 		mutex_exit(pm->pm_lock);
    546 	}
    547 }
    548 
    549 static inline void
    550 pmap_acquire_page_lock(struct vm_page_md *md)
    551 {
    552 	mutex_enter(&pmap_lock);
    553 }
    554 
    555 static inline void
    556 pmap_release_page_lock(struct vm_page_md *md)
    557 {
    558 	mutex_exit(&pmap_lock);
    559 }
    560 
    561 #ifdef DIAGNOSTIC
    562 static inline int
    563 pmap_page_locked_p(struct vm_page_md *md)
    564 {
    565 	return mutex_owned(&pmap_lock);
    566 }
    567 #endif
    568 
    569 
    570 /*
    571  * Metadata for L1 translation tables.
    572  */
    573 #ifndef ARM_MMU_EXTENDED
    574 struct l1_ttable {
    575 	/* Entry on the L1 Table list */
    576 	SLIST_ENTRY(l1_ttable) l1_link;
    577 
    578 	/* Entry on the L1 Least Recently Used list */
    579 	TAILQ_ENTRY(l1_ttable) l1_lru;
    580 
    581 	/* Track how many domains are allocated from this L1 */
    582 	volatile u_int l1_domain_use_count;
    583 
    584 	/*
    585 	 * A free-list of domain numbers for this L1.
    586 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    587 	 * is slow on ARM.
    588 	 */
    589 	uint8_t l1_domain_first;
    590 	uint8_t l1_domain_free[PMAP_DOMAINS];
    591 
    592 	/* Physical address of this L1 page table */
    593 	paddr_t l1_physaddr;
    594 
    595 	/* KVA of this L1 page table */
    596 	pd_entry_t *l1_kva;
    597 };
    598 
    599 /*
    600  * L1 Page Tables are tracked using a Least Recently Used list.
    601  *  - New L1s are allocated from the HEAD.
    602  *  - Freed L1s are added to the TAIl.
    603  *  - Recently accessed L1s (where an 'access' is some change to one of
    604  *    the userland pmaps which owns this L1) are moved to the TAIL.
    605  */
    606 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    607 static kmutex_t l1_lru_lock __cacheline_aligned;
    608 
    609 /*
    610  * A list of all L1 tables
    611  */
    612 static SLIST_HEAD(, l1_ttable) l1_list;
    613 #endif /* ARM_MMU_EXTENDED */
    614 
    615 /*
    616  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    617  *
    618  * This is normally 16MB worth L2 page descriptors for any given pmap.
    619  * Reference counts are maintained for L2 descriptors so they can be
    620  * freed when empty.
    621  */
    622 struct l2_bucket {
    623 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
    624 	paddr_t l2b_pa;			/* Physical address of same */
    625 	u_short l2b_l1slot;		/* This L2 table's L1 index */
    626 	u_short l2b_occupancy;		/* How many active descriptors */
    627 };
    628 
    629 struct l2_dtable {
    630 	/* The number of L2 page descriptors allocated to this l2_dtable */
    631 	u_int l2_occupancy;
    632 
    633 	/* List of L2 page descriptors */
    634 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
    635 };
    636 
    637 /*
    638  * Given an L1 table index, calculate the corresponding l2_dtable index
    639  * and bucket index within the l2_dtable.
    640  */
    641 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    642 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    643 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    644 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    645 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    646 
    647 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    648 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    649 
    650 /*
    651  * Given a virtual address, this macro returns the
    652  * virtual address required to drop into the next L2 bucket.
    653  */
    654 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    655 
    656 /*
    657  * L2 allocation.
    658  */
    659 #define	pmap_alloc_l2_dtable()		\
    660 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    661 #define	pmap_free_l2_dtable(l2)		\
    662 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    663 #define pmap_alloc_l2_ptp(pap)		\
    664 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    665 	    PR_NOWAIT, (pap)))
    666 
    667 /*
    668  * We try to map the page tables write-through, if possible.  However, not
    669  * all CPUs have a write-through cache mode, so on those we have to sync
    670  * the cache when we frob page tables.
    671  *
    672  * We try to evaluate this at compile time, if possible.  However, it's
    673  * not always possible to do that, hence this run-time var.
    674  */
    675 int	pmap_needs_pte_sync;
    676 
    677 /*
    678  * Real definition of pv_entry.
    679  */
    680 struct pv_entry {
    681 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    682 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    683 	vaddr_t		pv_va;          /* virtual address for mapping */
    684 	u_int		pv_flags;       /* flags */
    685 };
    686 
    687 /*
    688  * Macros to determine if a mapping might be resident in the
    689  * instruction/data cache and/or TLB
    690  */
    691 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    692 /*
    693  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    694  * there are no explicit accesses, so there may be always be TLB entries to
    695  * flush.  If we used ASIDs then this would not be a problem.
    696  */
    697 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    698 #define	PV_BEEN_REFD(f)   (true)
    699 #else
    700 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    701 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    702 #endif
    703 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    704 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    705 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    706 
    707 /*
    708  * Local prototypes
    709  */
    710 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    711 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    712 			    pt_entry_t **);
    713 static bool		pmap_is_current(pmap_t) __unused;
    714 static bool		pmap_is_cached(pmap_t);
    715 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    716 			    pmap_t, vaddr_t, u_int);
    717 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    718 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    719 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    720 			    u_int, u_int);
    721 
    722 static void		pmap_pinit(pmap_t);
    723 static int		pmap_pmap_ctor(void *, void *, int);
    724 
    725 static void		pmap_alloc_l1(pmap_t);
    726 static void		pmap_free_l1(pmap_t);
    727 #ifndef ARM_MMU_EXTENDED
    728 static void		pmap_use_l1(pmap_t);
    729 #endif
    730 
    731 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    732 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    733 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    734 static int		pmap_l2ptp_ctor(void *, void *, int);
    735 static int		pmap_l2dtable_ctor(void *, void *, int);
    736 
    737 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    738 #ifdef PMAP_CACHE_VIVT
    739 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    740 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    741 #endif
    742 
    743 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    744 #ifdef PMAP_CACHE_VIVT
    745 static bool		pmap_clean_page(struct vm_page_md *, bool);
    746 #endif
    747 #ifdef PMAP_CACHE_VIPT
    748 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    749 enum pmap_flush_op {
    750 	PMAP_FLUSH_PRIMARY,
    751 	PMAP_FLUSH_SECONDARY,
    752 	PMAP_CLEAN_PRIMARY
    753 };
    754 #ifndef ARM_MMU_EXTENDED
    755 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    756 #endif
    757 #endif
    758 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    759 
    760 #ifndef ARM_MMU_EXTENDED
    761 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    762 #endif
    763 static vaddr_t		kernel_pt_lookup(paddr_t);
    764 
    765 
    766 /*
    767  * Misc variables
    768  */
    769 vaddr_t virtual_avail;
    770 vaddr_t virtual_end;
    771 vaddr_t pmap_curmaxkvaddr;
    772 
    773 paddr_t avail_start;
    774 paddr_t avail_end;
    775 
    776 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    777 pv_addr_t kernelpages;
    778 pv_addr_t kernel_l1pt;
    779 pv_addr_t systempage;
    780 
    781 /* Function to set the debug level of the pmap code */
    782 
    783 #ifdef PMAP_DEBUG
    784 void
    785 pmap_debug(int level)
    786 {
    787 	pmap_debug_level = level;
    788 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    789 }
    790 #endif	/* PMAP_DEBUG */
    791 
    792 #ifdef PMAP_CACHE_VIPT
    793 #define PMAP_VALIDATE_MD_PAGE(md)	\
    794 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    795 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    796 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    797 #endif /* PMAP_CACHE_VIPT */
    798 /*
    799  * A bunch of routines to conditionally flush the caches/TLB depending
    800  * on whether the specified pmap actually needs to be flushed at any
    801  * given time.
    802  */
    803 static inline void
    804 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    805 {
    806 #ifdef ARM_MMU_EXTENDED
    807 	pmap_tlb_invalidate_addr(pm, va);
    808 #else
    809 	if (pm->pm_cstate.cs_tlb_id != 0) {
    810 		if (PV_BEEN_EXECD(flags)) {
    811 			cpu_tlb_flushID_SE(va);
    812 		} else if (PV_BEEN_REFD(flags)) {
    813 			cpu_tlb_flushD_SE(va);
    814 		}
    815 	}
    816 #endif /* ARM_MMU_EXTENDED */
    817 }
    818 
    819 static inline void
    820 pmap_tlb_flushID(pmap_t pm)
    821 {
    822 #ifdef ARM_MMU_EXTENDED
    823 	pmap_tlb_asid_release_all(pm);
    824 #else
    825 	if (pm->pm_cstate.cs_tlb_id) {
    826 		cpu_tlb_flushID();
    827 #if ARM_MMU_V7 == 0
    828 		/*
    829 		 * Speculative loads by Cortex cores can cause TLB entries to
    830 		 * be filled even if there are no explicit accesses, so there
    831 		 * may be always be TLB entries to flush.  If we used ASIDs
    832 		 * then it would not be a problem.
    833 		 * This is not true for other CPUs.
    834 		 */
    835 		pm->pm_cstate.cs_tlb = 0;
    836 #endif /* ARM_MMU_V7 */
    837 	}
    838 #endif /* ARM_MMU_EXTENDED */
    839 }
    840 
    841 static inline void
    842 pmap_tlb_flushD(pmap_t pm)
    843 {
    844 #ifdef ARM_MMU_EXTENDED
    845 	pmap_tlb_asid_release_all(pm);
    846 #else
    847 	if (pm->pm_cstate.cs_tlb_d) {
    848 		cpu_tlb_flushD();
    849 #if ARM_MMU_V7 == 0
    850 		/*
    851 		 * Speculative loads by Cortex cores can cause TLB entries to
    852 		 * be filled even if there are no explicit accesses, so there
    853 		 * may be always be TLB entries to flush.  If we used ASIDs
    854 		 * then it would not be a problem.
    855 		 * This is not true for other CPUs.
    856 		 */
    857 		pm->pm_cstate.cs_tlb_d = 0;
    858 #endif /* ARM_MMU_V7 */
    859 	}
    860 #endif /* ARM_MMU_EXTENDED */
    861 }
    862 
    863 #ifdef PMAP_CACHE_VIVT
    864 static inline void
    865 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    866 {
    867 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    868 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    869 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    870 		if (do_inv) {
    871 			if (flags & PVF_WRITE)
    872 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    873 			else
    874 				cpu_dcache_inv_range(va, PAGE_SIZE);
    875 		} else if (flags & PVF_WRITE) {
    876 			cpu_dcache_wb_range(va, PAGE_SIZE);
    877 		}
    878 	}
    879 }
    880 
    881 static inline void
    882 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    883 {
    884 	if (PV_BEEN_EXECD(flags)) {
    885 		if (pm->pm_cstate.cs_cache_id) {
    886 			cpu_idcache_wbinv_all();
    887 			pm->pm_cstate.cs_cache = 0;
    888 		}
    889 	} else if (pm->pm_cstate.cs_cache_d) {
    890 		cpu_dcache_wbinv_all();
    891 		pm->pm_cstate.cs_cache_d = 0;
    892 	}
    893 }
    894 #endif /* PMAP_CACHE_VIVT */
    895 
    896 static inline uint8_t
    897 pmap_domain(pmap_t pm)
    898 {
    899 #ifdef ARM_MMU_EXTENDED
    900 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    901 #else
    902 	return pm->pm_domain;
    903 #endif
    904 }
    905 
    906 static inline pd_entry_t *
    907 pmap_l1_kva(pmap_t pm)
    908 {
    909 #ifdef ARM_MMU_EXTENDED
    910 	return pm->pm_l1;
    911 #else
    912 	return pm->pm_l1->l1_kva;
    913 #endif
    914 }
    915 
    916 static inline bool
    917 pmap_is_current(pmap_t pm)
    918 {
    919 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    920 		return true;
    921 
    922 	return false;
    923 }
    924 
    925 static inline bool
    926 pmap_is_cached(pmap_t pm)
    927 {
    928 #ifdef ARM_MMU_EXTENDED
    929 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    930 	if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    931 		return true;
    932 #else
    933 	struct cpu_info * const ci = curcpu();
    934 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    935 	    || ci->ci_pmap_lastuser == pm)
    936 		return true;
    937 #endif /* ARM_MMU_EXTENDED */
    938 
    939 	return false;
    940 }
    941 
    942 /*
    943  * PTE_SYNC_CURRENT:
    944  *
    945  *     Make sure the pte is written out to RAM.
    946  *     We need to do this for one of two cases:
    947  *       - We're dealing with the kernel pmap
    948  *       - There is no pmap active in the cache/tlb.
    949  *       - The specified pmap is 'active' in the cache/tlb.
    950  */
    951 #ifdef PMAP_INCLUDE_PTE_SYNC
    952 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    953 do {					\
    954 	if (PMAP_NEEDS_PTE_SYNC && 	\
    955 	    pmap_is_cached(pm))		\
    956 		PTE_SYNC(ptep);		\
    957 } while (/*CONSTCOND*/0)
    958 #else
    959 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    960 #endif
    961 
    962 /*
    963  * main pv_entry manipulation functions:
    964  *   pmap_enter_pv: enter a mapping onto a vm_page list
    965  *   pmap_remove_pv: remove a mapping from a vm_page list
    966  *
    967  * NOTE: pmap_enter_pv expects to lock the pvh itself
    968  *       pmap_remove_pv expects the caller to lock the pvh before calling
    969  */
    970 
    971 /*
    972  * pmap_enter_pv: enter a mapping onto a vm_page lst
    973  *
    974  * => caller should hold the proper lock on pmap_main_lock
    975  * => caller should have pmap locked
    976  * => we will gain the lock on the vm_page and allocate the new pv_entry
    977  * => caller should adjust ptp's wire_count before calling
    978  * => caller should not adjust pmap's wire_count
    979  */
    980 static void
    981 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    982     vaddr_t va, u_int flags)
    983 {
    984 	struct pv_entry **pvp;
    985 
    986 	NPDEBUG(PDB_PVDUMP,
    987 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    988 
    989 	pv->pv_pmap = pm;
    990 	pv->pv_va = va;
    991 	pv->pv_flags = flags;
    992 
    993 	pvp = &SLIST_FIRST(&md->pvh_list);
    994 #ifdef PMAP_CACHE_VIPT
    995 	/*
    996 	 * Insert unmanaged entries, writeable first, at the head of
    997 	 * the pv list.
    998 	 */
    999 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1000 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1001 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1002 	}
   1003 	if (!PV_IS_WRITE_P(flags)) {
   1004 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1005 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1006 	}
   1007 #endif
   1008 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1009 	*pvp = pv;				/* ... locked list */
   1010 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1011 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1012 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1013 		md->pvh_attrs |= PVF_KMOD;
   1014 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1015 		md->pvh_attrs |= PVF_DIRTY;
   1016 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1017 #endif
   1018 	if (pm == pmap_kernel()) {
   1019 		PMAPCOUNT(kernel_mappings);
   1020 		if (flags & PVF_WRITE)
   1021 			md->krw_mappings++;
   1022 		else
   1023 			md->kro_mappings++;
   1024 	} else {
   1025 		if (flags & PVF_WRITE)
   1026 			md->urw_mappings++;
   1027 		else
   1028 			md->uro_mappings++;
   1029 	}
   1030 
   1031 #ifdef PMAP_CACHE_VIPT
   1032 #ifndef ARM_MMU_EXTENDED
   1033 	/*
   1034 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1035 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1036 	 */
   1037 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1038 		md->pvh_attrs |= PVF_WRITE;
   1039 	}
   1040 #endif
   1041 	/*
   1042 	 * If this is an exec mapping and its the first exec mapping
   1043 	 * for this page, make sure to sync the I-cache.
   1044 	 */
   1045 	if (PV_IS_EXEC_P(flags)) {
   1046 #ifndef ARM_MMU_EXTENDED
   1047 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1048 			pmap_syncicache_page(md, pa);
   1049 			PMAPCOUNT(exec_synced_map);
   1050 		}
   1051 #endif
   1052 		PMAPCOUNT(exec_mappings);
   1053 	}
   1054 #endif
   1055 
   1056 	PMAPCOUNT(mappings);
   1057 
   1058 	if (pv->pv_flags & PVF_WIRED)
   1059 		++pm->pm_stats.wired_count;
   1060 }
   1061 
   1062 /*
   1063  *
   1064  * pmap_find_pv: Find a pv entry
   1065  *
   1066  * => caller should hold lock on vm_page
   1067  */
   1068 static inline struct pv_entry *
   1069 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1070 {
   1071 	struct pv_entry *pv;
   1072 
   1073 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1074 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1075 			break;
   1076 	}
   1077 
   1078 	return (pv);
   1079 }
   1080 
   1081 /*
   1082  * pmap_remove_pv: try to remove a mapping from a pv_list
   1083  *
   1084  * => caller should hold proper lock on pmap_main_lock
   1085  * => pmap should be locked
   1086  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1087  * => caller should adjust ptp's wire_count and free PTP if needed
   1088  * => caller should NOT adjust pmap's wire_count
   1089  * => we return the removed pv
   1090  */
   1091 static struct pv_entry *
   1092 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1093 {
   1094 	struct pv_entry *pv, **prevptr;
   1095 
   1096 	NPDEBUG(PDB_PVDUMP,
   1097 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
   1098 
   1099 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1100 	pv = *prevptr;
   1101 
   1102 	while (pv) {
   1103 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1104 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
   1105 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
   1106 			if (pv->pv_flags & PVF_WIRED) {
   1107 				--pm->pm_stats.wired_count;
   1108 			}
   1109 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1110 			if (pm == pmap_kernel()) {
   1111 				PMAPCOUNT(kernel_unmappings);
   1112 				if (pv->pv_flags & PVF_WRITE)
   1113 					md->krw_mappings--;
   1114 				else
   1115 					md->kro_mappings--;
   1116 			} else {
   1117 				if (pv->pv_flags & PVF_WRITE)
   1118 					md->urw_mappings--;
   1119 				else
   1120 					md->uro_mappings--;
   1121 			}
   1122 
   1123 			PMAPCOUNT(unmappings);
   1124 #ifdef PMAP_CACHE_VIPT
   1125 			if (!(pv->pv_flags & PVF_WRITE))
   1126 				break;
   1127 			/*
   1128 			 * If this page has had an exec mapping, then if
   1129 			 * this was the last mapping, discard the contents,
   1130 			 * otherwise sync the i-cache for this page.
   1131 			 */
   1132 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1133 #ifdef ARM_MMU_EXTENDED
   1134 				md->pvh_attrs &= ~PVF_EXEC;
   1135 				PMAPCOUNT(exec_discarded_unmap);
   1136 #else
   1137 				if (SLIST_EMPTY(&md->pvh_list)) {
   1138 					md->pvh_attrs &= ~PVF_EXEC;
   1139 					PMAPCOUNT(exec_discarded_unmap);
   1140 				} else {
   1141 					pmap_syncicache_page(md, pa);
   1142 					PMAPCOUNT(exec_synced_unmap);
   1143 				}
   1144 #endif /* ARM_MMU_EXTENDED */
   1145 			}
   1146 #endif /* PMAP_CACHE_VIPT */
   1147 			break;
   1148 		}
   1149 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1150 		pv = *prevptr;				/* advance */
   1151 	}
   1152 
   1153 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1154 	/*
   1155 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1156 	 * clear the KMOD attribute from the page.
   1157 	 */
   1158 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1159 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1160 		md->pvh_attrs &= ~PVF_KMOD;
   1161 
   1162 	/*
   1163 	 * If this was a writeable page and there are no more writeable
   1164 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1165 	 * the contents to memory.
   1166 	 */
   1167 	if (arm_cache_prefer_mask != 0) {
   1168 		if (md->krw_mappings + md->urw_mappings == 0)
   1169 			md->pvh_attrs &= ~PVF_WRITE;
   1170 		PMAP_VALIDATE_MD_PAGE(md);
   1171 	}
   1172 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1173 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1174 
   1175 	return(pv);				/* return removed pv */
   1176 }
   1177 
   1178 /*
   1179  *
   1180  * pmap_modify_pv: Update pv flags
   1181  *
   1182  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1183  * => caller should NOT adjust pmap's wire_count
   1184  * => caller must call pmap_vac_me_harder() if writable status of a page
   1185  *    may have changed.
   1186  * => we return the old flags
   1187  *
   1188  * Modify a physical-virtual mapping in the pv table
   1189  */
   1190 static u_int
   1191 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1192     u_int clr_mask, u_int set_mask)
   1193 {
   1194 	struct pv_entry *npv;
   1195 	u_int flags, oflags;
   1196 
   1197 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1198 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1199 
   1200 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1201 		return (0);
   1202 
   1203 	NPDEBUG(PDB_PVDUMP,
   1204 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1205 
   1206 	/*
   1207 	 * There is at least one VA mapping this page.
   1208 	 */
   1209 
   1210 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1211 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1212 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1213 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1214 			md->pvh_attrs |= PVF_DIRTY;
   1215 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1216 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1217 	}
   1218 
   1219 	oflags = npv->pv_flags;
   1220 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1221 
   1222 	if ((flags ^ oflags) & PVF_WIRED) {
   1223 		if (flags & PVF_WIRED)
   1224 			++pm->pm_stats.wired_count;
   1225 		else
   1226 			--pm->pm_stats.wired_count;
   1227 	}
   1228 
   1229 	if ((flags ^ oflags) & PVF_WRITE) {
   1230 		if (pm == pmap_kernel()) {
   1231 			if (flags & PVF_WRITE) {
   1232 				md->krw_mappings++;
   1233 				md->kro_mappings--;
   1234 			} else {
   1235 				md->kro_mappings++;
   1236 				md->krw_mappings--;
   1237 			}
   1238 		} else {
   1239 			if (flags & PVF_WRITE) {
   1240 				md->urw_mappings++;
   1241 				md->uro_mappings--;
   1242 			} else {
   1243 				md->uro_mappings++;
   1244 				md->urw_mappings--;
   1245 			}
   1246 		}
   1247 	}
   1248 #ifdef PMAP_CACHE_VIPT
   1249 	if (arm_cache_prefer_mask != 0) {
   1250 		if (md->urw_mappings + md->krw_mappings == 0) {
   1251 			md->pvh_attrs &= ~PVF_WRITE;
   1252 		} else {
   1253 			md->pvh_attrs |= PVF_WRITE;
   1254 		}
   1255 	}
   1256 #ifndef ARM_MMU_EXTENDED
   1257 	/*
   1258 	 * We have two cases here: the first is from enter_pv (new exec
   1259 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1260 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1261 	 * to do what pmap_remove_pv would do.
   1262 	 */
   1263 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1264 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1265 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1266 		pmap_syncicache_page(md, pa);
   1267 		PMAPCOUNT(exec_synced_remap);
   1268 	}
   1269 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1270 #endif /* !ARM_MMU_EXTENDED */
   1271 #endif /* PMAP_CACHE_VIPT */
   1272 
   1273 	PMAPCOUNT(remappings);
   1274 
   1275 	return (oflags);
   1276 }
   1277 
   1278 /*
   1279  * Allocate an L1 translation table for the specified pmap.
   1280  * This is called at pmap creation time.
   1281  */
   1282 static void
   1283 pmap_alloc_l1(pmap_t pm)
   1284 {
   1285 #ifdef ARM_MMU_EXTENDED
   1286 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1287 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1288 	struct vm_page *pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
   1289 #else
   1290 	struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1291 #endif
   1292 	bool ok __diagused;
   1293 	KASSERT(pg != NULL);
   1294 	pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
   1295 	vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
   1296 	KASSERT(ok);
   1297 	KASSERT(va >= KERNEL_BASE);
   1298 
   1299 #else
   1300 	KASSERTMSG(kernel_map != NULL, "pm %p", pm);
   1301 	vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1302 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1303 	KASSERT(va);
   1304 	pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
   1305 #endif
   1306 	pm->pm_l1 = (pd_entry_t *)va;
   1307 	PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
   1308 #else
   1309 	struct l1_ttable *l1;
   1310 	uint8_t domain;
   1311 
   1312 	/*
   1313 	 * Remove the L1 at the head of the LRU list
   1314 	 */
   1315 	mutex_spin_enter(&l1_lru_lock);
   1316 	l1 = TAILQ_FIRST(&l1_lru_list);
   1317 	KDASSERT(l1 != NULL);
   1318 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1319 
   1320 	/*
   1321 	 * Pick the first available domain number, and update
   1322 	 * the link to the next number.
   1323 	 */
   1324 	domain = l1->l1_domain_first;
   1325 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1326 
   1327 	/*
   1328 	 * If there are still free domain numbers in this L1,
   1329 	 * put it back on the TAIL of the LRU list.
   1330 	 */
   1331 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1332 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1333 
   1334 	mutex_spin_exit(&l1_lru_lock);
   1335 
   1336 	/*
   1337 	 * Fix up the relevant bits in the pmap structure
   1338 	 */
   1339 	pm->pm_l1 = l1;
   1340 	pm->pm_domain = domain + 1;
   1341 #endif
   1342 }
   1343 
   1344 /*
   1345  * Free an L1 translation table.
   1346  * This is called at pmap destruction time.
   1347  */
   1348 static void
   1349 pmap_free_l1(pmap_t pm)
   1350 {
   1351 #ifdef ARM_MMU_EXTENDED
   1352 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1353 	struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
   1354 	uvm_pagefree(pg);
   1355 #else
   1356 	uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
   1357 #endif
   1358 	pm->pm_l1 = NULL;
   1359 	pm->pm_l1_pa = 0;
   1360 #else
   1361 	struct l1_ttable *l1 = pm->pm_l1;
   1362 
   1363 	mutex_spin_enter(&l1_lru_lock);
   1364 
   1365 	/*
   1366 	 * If this L1 is currently on the LRU list, remove it.
   1367 	 */
   1368 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1369 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1370 
   1371 	/*
   1372 	 * Free up the domain number which was allocated to the pmap
   1373 	 */
   1374 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1375 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1376 	l1->l1_domain_use_count--;
   1377 
   1378 	/*
   1379 	 * The L1 now must have at least 1 free domain, so add
   1380 	 * it back to the LRU list. If the use count is zero,
   1381 	 * put it at the head of the list, otherwise it goes
   1382 	 * to the tail.
   1383 	 */
   1384 	if (l1->l1_domain_use_count == 0)
   1385 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1386 	else
   1387 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1388 
   1389 	mutex_spin_exit(&l1_lru_lock);
   1390 #endif /* ARM_MMU_EXTENDED */
   1391 }
   1392 
   1393 #ifndef ARM_MMU_EXTENDED
   1394 static inline void
   1395 pmap_use_l1(pmap_t pm)
   1396 {
   1397 	struct l1_ttable *l1;
   1398 
   1399 	/*
   1400 	 * Do nothing if we're in interrupt context.
   1401 	 * Access to an L1 by the kernel pmap must not affect
   1402 	 * the LRU list.
   1403 	 */
   1404 	if (cpu_intr_p() || pm == pmap_kernel())
   1405 		return;
   1406 
   1407 	l1 = pm->pm_l1;
   1408 
   1409 	/*
   1410 	 * If the L1 is not currently on the LRU list, just return
   1411 	 */
   1412 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1413 		return;
   1414 
   1415 	mutex_spin_enter(&l1_lru_lock);
   1416 
   1417 	/*
   1418 	 * Check the use count again, now that we've acquired the lock
   1419 	 */
   1420 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1421 		mutex_spin_exit(&l1_lru_lock);
   1422 		return;
   1423 	}
   1424 
   1425 	/*
   1426 	 * Move the L1 to the back of the LRU list
   1427 	 */
   1428 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1429 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1430 
   1431 	mutex_spin_exit(&l1_lru_lock);
   1432 }
   1433 #endif /* !ARM_MMU_EXTENDED */
   1434 
   1435 /*
   1436  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1437  *
   1438  * Free an L2 descriptor table.
   1439  */
   1440 static inline void
   1441 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1442 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1443 #else
   1444 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1445 #endif
   1446 {
   1447 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1448 	/*
   1449 	 * Note: With a write-back cache, we may need to sync this
   1450 	 * L2 table before re-using it.
   1451 	 * This is because it may have belonged to a non-current
   1452 	 * pmap, in which case the cache syncs would have been
   1453 	 * skipped for the pages that were being unmapped. If the
   1454 	 * L2 table were then to be immediately re-allocated to
   1455 	 * the *current* pmap, it may well contain stale mappings
   1456 	 * which have not yet been cleared by a cache write-back
   1457 	 * and so would still be visible to the mmu.
   1458 	 */
   1459 	if (need_sync)
   1460 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1461 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1462 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1463 }
   1464 
   1465 /*
   1466  * Returns a pointer to the L2 bucket associated with the specified pmap
   1467  * and VA, or NULL if no L2 bucket exists for the address.
   1468  */
   1469 static inline struct l2_bucket *
   1470 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1471 {
   1472 	const size_t l1slot = l1pte_index(va);
   1473 	struct l2_dtable *l2;
   1474 	struct l2_bucket *l2b;
   1475 
   1476 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1477 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1478 		return (NULL);
   1479 
   1480 	return (l2b);
   1481 }
   1482 
   1483 /*
   1484  * Returns a pointer to the L2 bucket associated with the specified pmap
   1485  * and VA.
   1486  *
   1487  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1488  * bucket/page table in place.
   1489  *
   1490  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1491  * increment the bucket occupancy counter appropriately *before*
   1492  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1493  * the bucket/page in the meantime.
   1494  */
   1495 static struct l2_bucket *
   1496 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1497 {
   1498 	const size_t l1slot = l1pte_index(va);
   1499 	struct l2_dtable *l2;
   1500 
   1501 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1502 		/*
   1503 		 * No mapping at this address, as there is
   1504 		 * no entry in the L1 table.
   1505 		 * Need to allocate a new l2_dtable.
   1506 		 */
   1507 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1508 			return (NULL);
   1509 
   1510 		/*
   1511 		 * Link it into the parent pmap
   1512 		 */
   1513 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1514 	}
   1515 
   1516 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1517 
   1518 	/*
   1519 	 * Fetch pointer to the L2 page table associated with the address.
   1520 	 */
   1521 	if (l2b->l2b_kva == NULL) {
   1522 		pt_entry_t *ptep;
   1523 
   1524 		/*
   1525 		 * No L2 page table has been allocated. Chances are, this
   1526 		 * is because we just allocated the l2_dtable, above.
   1527 		 */
   1528 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1529 			/*
   1530 			 * Oops, no more L2 page tables available at this
   1531 			 * time. We may need to deallocate the l2_dtable
   1532 			 * if we allocated a new one above.
   1533 			 */
   1534 			if (l2->l2_occupancy == 0) {
   1535 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1536 				pmap_free_l2_dtable(l2);
   1537 			}
   1538 			return (NULL);
   1539 		}
   1540 
   1541 		l2->l2_occupancy++;
   1542 		l2b->l2b_kva = ptep;
   1543 		l2b->l2b_l1slot = l1slot;
   1544 
   1545 #ifdef ARM_MMU_EXTENDED
   1546 		/*
   1547 		 * We know there will be a mapping here, so simply
   1548 		 * enter this PTP into the L1 now.
   1549 		 */
   1550 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1551 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1552 		    | L1_C_DOM(pmap_domain(pm));
   1553 		KASSERT(*pdep == 0);
   1554 		l1pte_setone(pdep, npde);
   1555 		PTE_SYNC(pdep);
   1556 #endif
   1557 	}
   1558 
   1559 	return (l2b);
   1560 }
   1561 
   1562 /*
   1563  * One or more mappings in the specified L2 descriptor table have just been
   1564  * invalidated.
   1565  *
   1566  * Garbage collect the metadata and descriptor table itself if necessary.
   1567  *
   1568  * The pmap lock must be acquired when this is called (not necessary
   1569  * for the kernel pmap).
   1570  */
   1571 static void
   1572 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1573 {
   1574 	KDASSERT(count <= l2b->l2b_occupancy);
   1575 
   1576 	/*
   1577 	 * Update the bucket's reference count according to how many
   1578 	 * PTEs the caller has just invalidated.
   1579 	 */
   1580 	l2b->l2b_occupancy -= count;
   1581 
   1582 	/*
   1583 	 * Note:
   1584 	 *
   1585 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1586 	 * as that would require checking all Level 1 page tables and
   1587 	 * removing any references to the Level 2 page table. See also the
   1588 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1589 	 *
   1590 	 * We make do with just invalidating the mapping in the L2 table.
   1591 	 *
   1592 	 * This isn't really a big deal in practice and, in fact, leads
   1593 	 * to a performance win over time as we don't need to continually
   1594 	 * alloc/free.
   1595 	 */
   1596 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1597 		return;
   1598 
   1599 	/*
   1600 	 * There are no more valid mappings in this level 2 page table.
   1601 	 * Go ahead and NULL-out the pointer in the bucket, then
   1602 	 * free the page table.
   1603 	 */
   1604 	const size_t l1slot = l2b->l2b_l1slot;
   1605 	pt_entry_t * const ptep = l2b->l2b_kva;
   1606 	l2b->l2b_kva = NULL;
   1607 
   1608 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1609 	pd_entry_t pde __diagused = *pdep;
   1610 
   1611 #ifdef ARM_MMU_EXTENDED
   1612 	/*
   1613 	 * Invalidate the L1 slot.
   1614 	 */
   1615 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1616 #else
   1617 	/*
   1618 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1619 	 */
   1620 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1621 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1622 #endif
   1623 		l1pte_setone(pdep, 0);
   1624 		PDE_SYNC(pdep);
   1625 #ifndef ARM_MMU_EXTENDED
   1626 	}
   1627 #endif
   1628 
   1629 	/*
   1630 	 * Release the L2 descriptor table back to the pool cache.
   1631 	 */
   1632 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1633 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1634 #else
   1635 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1636 #endif
   1637 
   1638 	/*
   1639 	 * Update the reference count in the associated l2_dtable
   1640 	 */
   1641 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1642 	if (--l2->l2_occupancy > 0)
   1643 		return;
   1644 
   1645 	/*
   1646 	 * There are no more valid mappings in any of the Level 1
   1647 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1648 	 * the pointer in the parent pmap and free the l2_dtable.
   1649 	 */
   1650 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1651 	pmap_free_l2_dtable(l2);
   1652 }
   1653 
   1654 /*
   1655  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1656  * structures.
   1657  */
   1658 static int
   1659 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1660 {
   1661 #ifndef PMAP_INCLUDE_PTE_SYNC
   1662 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1663 
   1664 	/*
   1665 	 * The mappings for these page tables were initially made using
   1666 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1667 	 * mode will not be right for page table mappings. To avoid
   1668 	 * polluting the pmap_kenter_pa() code with a special case for
   1669 	 * page tables, we simply fix up the cache-mode here if it's not
   1670 	 * correct.
   1671 	 */
   1672 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1673 		const struct l2_bucket * const l2b =
   1674 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1675 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1676 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1677 		const pt_entry_t opte = *ptep;
   1678 
   1679 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1680 			/*
   1681 			 * Page tables must have the cache-mode set correctly.
   1682 			 */
   1683 			const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
   1684 			    | pte_l2_s_cache_mode_pt;
   1685 			l2pte_set(ptep, npte, opte);
   1686 			PTE_SYNC(ptep);
   1687 			cpu_tlb_flushD_SE(va);
   1688 			cpu_cpwait();
   1689 		}
   1690 	}
   1691 #endif
   1692 
   1693 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1694 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1695 	return (0);
   1696 }
   1697 
   1698 static int
   1699 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1700 {
   1701 
   1702 	memset(v, 0, sizeof(struct l2_dtable));
   1703 	return (0);
   1704 }
   1705 
   1706 static int
   1707 pmap_pmap_ctor(void *arg, void *v, int flags)
   1708 {
   1709 
   1710 	memset(v, 0, sizeof(struct pmap));
   1711 	return (0);
   1712 }
   1713 
   1714 static void
   1715 pmap_pinit(pmap_t pm)
   1716 {
   1717 #ifndef ARM_HAS_VBAR
   1718 	struct l2_bucket *l2b;
   1719 
   1720 	if (vector_page < KERNEL_BASE) {
   1721 		/*
   1722 		 * Map the vector page.
   1723 		 */
   1724 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1725 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1726 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1727 		pmap_update(pm);
   1728 
   1729 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1730 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1731 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1732 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1733 		    L1_C_DOM(pmap_domain(pm));
   1734 	} else
   1735 		pm->pm_pl1vec = NULL;
   1736 #endif
   1737 }
   1738 
   1739 #ifdef PMAP_CACHE_VIVT
   1740 /*
   1741  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1742  * there is more than one mapping and at least one of them is writable.
   1743  * Since we purge the cache on every context switch, we only need to check for
   1744  * other mappings within the same pmap, or kernel_pmap.
   1745  * This function is also called when a page is unmapped, to possibly reenable
   1746  * caching on any remaining mappings.
   1747  *
   1748  * The code implements the following logic, where:
   1749  *
   1750  * KW = # of kernel read/write pages
   1751  * KR = # of kernel read only pages
   1752  * UW = # of user read/write pages
   1753  * UR = # of user read only pages
   1754  *
   1755  * KC = kernel mapping is cacheable
   1756  * UC = user mapping is cacheable
   1757  *
   1758  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1759  *             +---------------------------------------------
   1760  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1761  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1762  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1763  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1764  */
   1765 
   1766 static const int pmap_vac_flags[4][4] = {
   1767 	{-1,		0,		0,		PVF_KNC},
   1768 	{0,		0,		PVF_NC,		PVF_NC},
   1769 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1770 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1771 };
   1772 
   1773 static inline int
   1774 pmap_get_vac_flags(const struct vm_page_md *md)
   1775 {
   1776 	int kidx, uidx;
   1777 
   1778 	kidx = 0;
   1779 	if (md->kro_mappings || md->krw_mappings > 1)
   1780 		kidx |= 1;
   1781 	if (md->krw_mappings)
   1782 		kidx |= 2;
   1783 
   1784 	uidx = 0;
   1785 	if (md->uro_mappings || md->urw_mappings > 1)
   1786 		uidx |= 1;
   1787 	if (md->urw_mappings)
   1788 		uidx |= 2;
   1789 
   1790 	return (pmap_vac_flags[uidx][kidx]);
   1791 }
   1792 
   1793 static inline void
   1794 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1795 {
   1796 	int nattr;
   1797 
   1798 	nattr = pmap_get_vac_flags(md);
   1799 
   1800 	if (nattr < 0) {
   1801 		md->pvh_attrs &= ~PVF_NC;
   1802 		return;
   1803 	}
   1804 
   1805 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1806 		return;
   1807 
   1808 	if (pm == pmap_kernel())
   1809 		pmap_vac_me_kpmap(md, pa, pm, va);
   1810 	else
   1811 		pmap_vac_me_user(md, pa, pm, va);
   1812 
   1813 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1814 }
   1815 
   1816 static void
   1817 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1818 {
   1819 	u_int u_cacheable, u_entries;
   1820 	struct pv_entry *pv;
   1821 	pmap_t last_pmap = pm;
   1822 
   1823 	/*
   1824 	 * Pass one, see if there are both kernel and user pmaps for
   1825 	 * this page.  Calculate whether there are user-writable or
   1826 	 * kernel-writable pages.
   1827 	 */
   1828 	u_cacheable = 0;
   1829 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1830 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1831 			u_cacheable++;
   1832 	}
   1833 
   1834 	u_entries = md->urw_mappings + md->uro_mappings;
   1835 
   1836 	/*
   1837 	 * We know we have just been updating a kernel entry, so if
   1838 	 * all user pages are already cacheable, then there is nothing
   1839 	 * further to do.
   1840 	 */
   1841 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1842 		return;
   1843 
   1844 	if (u_entries) {
   1845 		/*
   1846 		 * Scan over the list again, for each entry, if it
   1847 		 * might not be set correctly, call pmap_vac_me_user
   1848 		 * to recalculate the settings.
   1849 		 */
   1850 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1851 			/*
   1852 			 * We know kernel mappings will get set
   1853 			 * correctly in other calls.  We also know
   1854 			 * that if the pmap is the same as last_pmap
   1855 			 * then we've just handled this entry.
   1856 			 */
   1857 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1858 				continue;
   1859 
   1860 			/*
   1861 			 * If there are kernel entries and this page
   1862 			 * is writable but non-cacheable, then we can
   1863 			 * skip this entry also.
   1864 			 */
   1865 			if (md->k_mappings &&
   1866 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1867 			    (PVF_NC | PVF_WRITE))
   1868 				continue;
   1869 
   1870 			/*
   1871 			 * Similarly if there are no kernel-writable
   1872 			 * entries and the page is already
   1873 			 * read-only/cacheable.
   1874 			 */
   1875 			if (md->krw_mappings == 0 &&
   1876 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1877 				continue;
   1878 
   1879 			/*
   1880 			 * For some of the remaining cases, we know
   1881 			 * that we must recalculate, but for others we
   1882 			 * can't tell if they are correct or not, so
   1883 			 * we recalculate anyway.
   1884 			 */
   1885 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1886 		}
   1887 
   1888 		if (md->k_mappings == 0)
   1889 			return;
   1890 	}
   1891 
   1892 	pmap_vac_me_user(md, pa, pm, va);
   1893 }
   1894 
   1895 static void
   1896 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1897 {
   1898 	pmap_t kpmap = pmap_kernel();
   1899 	struct pv_entry *pv, *npv = NULL;
   1900 	u_int entries = 0;
   1901 	u_int writable = 0;
   1902 	u_int cacheable_entries = 0;
   1903 	u_int kern_cacheable = 0;
   1904 	u_int other_writable = 0;
   1905 
   1906 	/*
   1907 	 * Count mappings and writable mappings in this pmap.
   1908 	 * Include kernel mappings as part of our own.
   1909 	 * Keep a pointer to the first one.
   1910 	 */
   1911 	npv = NULL;
   1912 	KASSERT(pmap_page_locked_p(md));
   1913 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1914 		/* Count mappings in the same pmap */
   1915 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1916 			if (entries++ == 0)
   1917 				npv = pv;
   1918 
   1919 			/* Cacheable mappings */
   1920 			if ((pv->pv_flags & PVF_NC) == 0) {
   1921 				cacheable_entries++;
   1922 				if (kpmap == pv->pv_pmap)
   1923 					kern_cacheable++;
   1924 			}
   1925 
   1926 			/* Writable mappings */
   1927 			if (pv->pv_flags & PVF_WRITE)
   1928 				++writable;
   1929 		} else
   1930 		if (pv->pv_flags & PVF_WRITE)
   1931 			other_writable = 1;
   1932 	}
   1933 
   1934 	/*
   1935 	 * Enable or disable caching as necessary.
   1936 	 * Note: the first entry might be part of the kernel pmap,
   1937 	 * so we can't assume this is indicative of the state of the
   1938 	 * other (maybe non-kpmap) entries.
   1939 	 */
   1940 	if ((entries > 1 && writable) ||
   1941 	    (entries > 0 && pm == kpmap && other_writable)) {
   1942 		if (cacheable_entries == 0) {
   1943 			return;
   1944 		}
   1945 
   1946 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1947 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1948 			    (pv->pv_flags & PVF_NC))
   1949 				continue;
   1950 
   1951 			pv->pv_flags |= PVF_NC;
   1952 
   1953 			struct l2_bucket * const l2b
   1954 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1955 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1956 			pt_entry_t * const ptep
   1957 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1958 			const pt_entry_t opte = *ptep;
   1959 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1960 
   1961 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1962 			    && l2pte_valid_p(npte)) {
   1963 #ifdef PMAP_CACHE_VIVT
   1964 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1965 				    true, pv->pv_flags);
   1966 #endif
   1967 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1968 				    pv->pv_flags);
   1969 			}
   1970 
   1971 			l2pte_set(ptep, npte, opte);
   1972 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1973 		}
   1974 		cpu_cpwait();
   1975 	} else
   1976 	if (entries > cacheable_entries) {
   1977 		/*
   1978 		 * Turn cacheing back on for some pages.  If it is a kernel
   1979 		 * page, only do so if there are no other writable pages.
   1980 		 */
   1981 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1982 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1983 			    (kpmap != pv->pv_pmap || other_writable)))
   1984 				continue;
   1985 
   1986 			pv->pv_flags &= ~PVF_NC;
   1987 
   1988 			struct l2_bucket * const l2b
   1989 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1990 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1991 			pt_entry_t * const ptep
   1992 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1993 			const pt_entry_t opte = *ptep;
   1994 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   1995 			    | pte_l2_s_cache_mode;
   1996 
   1997 			if (l2pte_valid_p(opte)) {
   1998 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1999 				    pv->pv_flags);
   2000 			}
   2001 
   2002 			l2pte_set(ptep, npte, opte);
   2003 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2004 		}
   2005 	}
   2006 }
   2007 #endif
   2008 
   2009 #ifdef PMAP_CACHE_VIPT
   2010 static void
   2011 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2012 {
   2013 #ifndef ARM_MMU_EXTENDED
   2014 	struct pv_entry *pv;
   2015 	vaddr_t tst_mask;
   2016 	bool bad_alias;
   2017 	const u_int
   2018 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2019 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2020 
   2021 	/* do we need to do anything? */
   2022 	if (arm_cache_prefer_mask == 0)
   2023 		return;
   2024 
   2025 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   2026 	    md, pm, va));
   2027 
   2028 	KASSERT(!va || pm);
   2029 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2030 
   2031 	/* Already a conflict? */
   2032 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2033 		/* just an add, things are already non-cached */
   2034 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2035 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2036 		bad_alias = false;
   2037 		if (va) {
   2038 			PMAPCOUNT(vac_color_none);
   2039 			bad_alias = true;
   2040 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2041 			goto fixup;
   2042 		}
   2043 		pv = SLIST_FIRST(&md->pvh_list);
   2044 		/* the list can't be empty because it would be cachable */
   2045 		if (md->pvh_attrs & PVF_KMPAGE) {
   2046 			tst_mask = md->pvh_attrs;
   2047 		} else {
   2048 			KASSERT(pv);
   2049 			tst_mask = pv->pv_va;
   2050 			pv = SLIST_NEXT(pv, pv_link);
   2051 		}
   2052 		/*
   2053 		 * Only check for a bad alias if we have writable mappings.
   2054 		 */
   2055 		tst_mask &= arm_cache_prefer_mask;
   2056 		if (rw_mappings > 0) {
   2057 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2058 				/* if there's a bad alias, stop checking. */
   2059 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2060 					bad_alias = true;
   2061 			}
   2062 			md->pvh_attrs |= PVF_WRITE;
   2063 			if (!bad_alias)
   2064 				md->pvh_attrs |= PVF_DIRTY;
   2065 		} else {
   2066 			/*
   2067 			 * We have only read-only mappings.  Let's see if there
   2068 			 * are multiple colors in use or if we mapped a KMPAGE.
   2069 			 * If the latter, we have a bad alias.  If the former,
   2070 			 * we need to remember that.
   2071 			 */
   2072 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2073 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2074 					if (md->pvh_attrs & PVF_KMPAGE)
   2075 						bad_alias = true;
   2076 					break;
   2077 				}
   2078 			}
   2079 			md->pvh_attrs &= ~PVF_WRITE;
   2080 			/*
   2081 			 * No KMPAGE and we exited early, so we must have
   2082 			 * multiple color mappings.
   2083 			 */
   2084 			if (!bad_alias && pv != NULL)
   2085 				md->pvh_attrs |= PVF_MULTCLR;
   2086 		}
   2087 
   2088 		/* If no conflicting colors, set everything back to cached */
   2089 		if (!bad_alias) {
   2090 #ifdef DEBUG
   2091 			if ((md->pvh_attrs & PVF_WRITE)
   2092 			    || ro_mappings < 2) {
   2093 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2094 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2095 			}
   2096 #endif
   2097 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2098 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2099 			/*
   2100 			 * Restore DIRTY bit if page is modified
   2101 			 */
   2102 			if (md->pvh_attrs & PVF_DMOD)
   2103 				md->pvh_attrs |= PVF_DIRTY;
   2104 			PMAPCOUNT(vac_color_restore);
   2105 		} else {
   2106 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2107 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2108 		}
   2109 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2110 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2111 	} else if (!va) {
   2112 		KASSERT(pmap_is_page_colored_p(md));
   2113 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2114 		    || (md->pvh_attrs & PVF_DIRTY));
   2115 		if (rw_mappings == 0) {
   2116 			md->pvh_attrs &= ~PVF_WRITE;
   2117 			if (ro_mappings == 1
   2118 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2119 				/*
   2120 				 * If this is the last readonly mapping
   2121 				 * but it doesn't match the current color
   2122 				 * for the page, change the current color
   2123 				 * to match this last readonly mapping.
   2124 				 */
   2125 				pv = SLIST_FIRST(&md->pvh_list);
   2126 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2127 				    & arm_cache_prefer_mask;
   2128 				if (tst_mask) {
   2129 					md->pvh_attrs ^= tst_mask;
   2130 					PMAPCOUNT(vac_color_change);
   2131 				}
   2132 			}
   2133 		}
   2134 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2135 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2136 		return;
   2137 	} else if (!pmap_is_page_colored_p(md)) {
   2138 		/* not colored so we just use its color */
   2139 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2140 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2141 		PMAPCOUNT(vac_color_new);
   2142 		md->pvh_attrs &= PAGE_SIZE - 1;
   2143 		md->pvh_attrs |= PVF_COLORED
   2144 		    | (va & arm_cache_prefer_mask)
   2145 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2146 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2147 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2148 		return;
   2149 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2150 		bad_alias = false;
   2151 		if (rw_mappings > 0) {
   2152 			/*
   2153 			 * We now have writeable mappings and if we have
   2154 			 * readonly mappings in more than once color, we have
   2155 			 * an aliasing problem.  Regardless mark the page as
   2156 			 * writeable.
   2157 			 */
   2158 			if (md->pvh_attrs & PVF_MULTCLR) {
   2159 				if (ro_mappings < 2) {
   2160 					/*
   2161 					 * If we only have less than two
   2162 					 * read-only mappings, just flush the
   2163 					 * non-primary colors from the cache.
   2164 					 */
   2165 					pmap_flush_page(md, pa,
   2166 					    PMAP_FLUSH_SECONDARY);
   2167 				} else {
   2168 					bad_alias = true;
   2169 				}
   2170 			}
   2171 			md->pvh_attrs |= PVF_WRITE;
   2172 		}
   2173 		/* If no conflicting colors, set everything back to cached */
   2174 		if (!bad_alias) {
   2175 #ifdef DEBUG
   2176 			if (rw_mappings > 0
   2177 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2178 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2179 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2180 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2181 			}
   2182 #endif
   2183 			if (SLIST_EMPTY(&md->pvh_list))
   2184 				PMAPCOUNT(vac_color_reuse);
   2185 			else
   2186 				PMAPCOUNT(vac_color_ok);
   2187 
   2188 			/* matching color, just return */
   2189 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2190 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2191 			return;
   2192 		}
   2193 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2194 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2195 
   2196 		/* color conflict.  evict from cache. */
   2197 
   2198 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2199 		md->pvh_attrs &= ~PVF_COLORED;
   2200 		md->pvh_attrs |= PVF_NC;
   2201 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2202 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2203 		PMAPCOUNT(vac_color_erase);
   2204 	} else if (rw_mappings == 0
   2205 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2206 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2207 
   2208 		/*
   2209 		 * If the page has dirty cache lines, clean it.
   2210 		 */
   2211 		if (md->pvh_attrs & PVF_DIRTY)
   2212 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2213 
   2214 		/*
   2215 		 * If this is the first remapping (we know that there are no
   2216 		 * writeable mappings), then this is a simple color change.
   2217 		 * Otherwise this is a seconary r/o mapping, which means
   2218 		 * we don't have to do anything.
   2219 		 */
   2220 		if (ro_mappings == 1) {
   2221 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2222 			md->pvh_attrs &= PAGE_SIZE - 1;
   2223 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2224 			PMAPCOUNT(vac_color_change);
   2225 		} else {
   2226 			PMAPCOUNT(vac_color_blind);
   2227 		}
   2228 		md->pvh_attrs |= PVF_MULTCLR;
   2229 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2230 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2231 		return;
   2232 	} else {
   2233 		if (rw_mappings > 0)
   2234 			md->pvh_attrs |= PVF_WRITE;
   2235 
   2236 		/* color conflict.  evict from cache. */
   2237 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2238 
   2239 		/* the list can't be empty because this was a enter/modify */
   2240 		pv = SLIST_FIRST(&md->pvh_list);
   2241 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2242 			KASSERT(pv);
   2243 			/*
   2244 			 * If there's only one mapped page, change color to the
   2245 			 * page's new color and return.  Restore the DIRTY bit
   2246 			 * that was erased by pmap_flush_page.
   2247 			 */
   2248 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2249 				md->pvh_attrs &= PAGE_SIZE - 1;
   2250 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2251 				if (md->pvh_attrs & PVF_DMOD)
   2252 					md->pvh_attrs |= PVF_DIRTY;
   2253 				PMAPCOUNT(vac_color_change);
   2254 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2255 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2256 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2257 				return;
   2258 			}
   2259 		}
   2260 		bad_alias = true;
   2261 		md->pvh_attrs &= ~PVF_COLORED;
   2262 		md->pvh_attrs |= PVF_NC;
   2263 		PMAPCOUNT(vac_color_erase);
   2264 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2265 	}
   2266 
   2267   fixup:
   2268 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2269 
   2270 	/*
   2271 	 * Turn cacheing on/off for all pages.
   2272 	 */
   2273 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2274 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2275 		    pv->pv_va);
   2276 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2277 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2278 		const pt_entry_t opte = *ptep;
   2279 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2280 		if (bad_alias) {
   2281 			pv->pv_flags |= PVF_NC;
   2282 		} else {
   2283 			pv->pv_flags &= ~PVF_NC;
   2284 			npte |= pte_l2_s_cache_mode;
   2285 		}
   2286 
   2287 		if (opte == npte)	/* only update is there's a change */
   2288 			continue;
   2289 
   2290 		if (l2pte_valid_p(npte)) {
   2291 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2292 		}
   2293 
   2294 		l2pte_set(ptep, npte, opte);
   2295 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2296 	}
   2297 #endif /* !ARM_MMU_EXTENDED */
   2298 }
   2299 #endif	/* PMAP_CACHE_VIPT */
   2300 
   2301 
   2302 /*
   2303  * Modify pte bits for all ptes corresponding to the given physical address.
   2304  * We use `maskbits' rather than `clearbits' because we're always passing
   2305  * constants and the latter would require an extra inversion at run-time.
   2306  */
   2307 static void
   2308 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2309 {
   2310 	struct pv_entry *pv;
   2311 #ifdef PMAP_CACHE_VIPT
   2312 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2313 #ifdef ARM_MMU_EXTENDED
   2314 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
   2315 #else
   2316 	const u_int execbits = 0;
   2317 	bool need_vac_me_harder = false;
   2318 	bool need_syncicache = false;
   2319 #endif
   2320 #else
   2321 	const u_int execbits = 0;
   2322 #endif
   2323 
   2324 	NPDEBUG(PDB_BITS,
   2325 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2326 	    md, maskbits));
   2327 
   2328 #ifdef PMAP_CACHE_VIPT
   2329 	/*
   2330 	 * If we might want to sync the I-cache and we've modified it,
   2331 	 * then we know we definitely need to sync or discard it.
   2332 	 */
   2333 	if (want_syncicache) {
   2334 #ifdef ARM_MMU_EXTENDED
   2335 		if (md->pvh_attrs & PVF_MOD)
   2336 			md->pvh_attrs &= ~PVF_EXEC;
   2337 #else
   2338 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2339 #endif
   2340 	}
   2341 #endif
   2342 	KASSERT(pmap_page_locked_p(md));
   2343 
   2344 	/*
   2345 	 * Clear saved attributes (modify, reference)
   2346 	 */
   2347 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2348 
   2349 	if (SLIST_EMPTY(&md->pvh_list)) {
   2350 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2351 		if (need_syncicache) {
   2352 			/*
   2353 			 * No one has it mapped, so just discard it.  The next
   2354 			 * exec remapping will cause it to be synced.
   2355 			 */
   2356 			md->pvh_attrs &= ~PVF_EXEC;
   2357 			PMAPCOUNT(exec_discarded_clearbit);
   2358 		}
   2359 #endif
   2360 		return;
   2361 	}
   2362 
   2363 	/*
   2364 	 * Loop over all current mappings setting/clearing as appropos
   2365 	 */
   2366 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2367 		pmap_t pm = pv->pv_pmap;
   2368 		const vaddr_t va = pv->pv_va;
   2369 		const u_int oflags = pv->pv_flags;
   2370 #ifndef ARM_MMU_EXTENDED
   2371 		/*
   2372 		 * Kernel entries are unmanaged and as such not to be changed.
   2373 		 */
   2374 		if (PV_IS_KENTRY_P(oflags))
   2375 			continue;
   2376 #endif
   2377 		pv->pv_flags &= ~maskbits;
   2378 
   2379 		pmap_release_page_lock(md);
   2380 		pmap_acquire_pmap_lock(pm);
   2381 
   2382 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2383 		if (l2b == NULL) {
   2384 			pmap_release_pmap_lock(pm);
   2385 			pmap_acquire_page_lock(md);
   2386 			continue;
   2387 		}
   2388 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2389 
   2390 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2391 		const pt_entry_t opte = *ptep;
   2392 		pt_entry_t npte = opte | execbits;
   2393 
   2394 #ifdef ARM_MMU_EXTENDED
   2395 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2396 #endif
   2397 
   2398 		NPDEBUG(PDB_BITS,
   2399 		    printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2400 			__func__, pv, pm, va, oflags));
   2401 
   2402 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2403 #ifdef PMAP_CACHE_VIVT
   2404 			if ((oflags & PVF_NC)) {
   2405 				/*
   2406 				 * Entry is not cacheable:
   2407 				 *
   2408 				 * Don't turn caching on again if this is a
   2409 				 * modified emulation. This would be
   2410 				 * inconsitent with the settings created by
   2411 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2412 				 * to re-enable cacheing.
   2413 				 *
   2414 				 * There's no need to call pmap_vac_me_harder()
   2415 				 * here: all pages are losing their write
   2416 				 * permission.
   2417 				 */
   2418 				if (maskbits & PVF_WRITE) {
   2419 					npte |= pte_l2_s_cache_mode;
   2420 					pv->pv_flags &= ~PVF_NC;
   2421 				}
   2422 			} else
   2423 			if (l2pte_writable_p(opte)) {
   2424 				/*
   2425 				 * Entry is writable/cacheable: check if pmap
   2426 				 * is current if it is flush it, otherwise it
   2427 				 * won't be in the cache
   2428 				 */
   2429 				pmap_cache_wbinv_page(pm, va,
   2430 				    (maskbits & PVF_REF) != 0,
   2431 				    oflags|PVF_WRITE);
   2432 			}
   2433 #endif
   2434 
   2435 			/* make the pte read only */
   2436 			npte = l2pte_set_readonly(npte);
   2437 
   2438 			pmap_acquire_page_lock(md);
   2439 #ifdef MULTIPROCESSOR
   2440 			pv = pmap_find_pv(md, pm, va);
   2441 #endif
   2442 			if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
   2443 				/*
   2444 				 * Keep alias accounting up to date
   2445 				 */
   2446 				if (pm == pmap_kernel()) {
   2447 					md->krw_mappings--;
   2448 					md->kro_mappings++;
   2449 				} else {
   2450 					md->urw_mappings--;
   2451 					md->uro_mappings++;
   2452 				}
   2453 #ifdef PMAP_CACHE_VIPT
   2454 				if (arm_cache_prefer_mask != 0) {
   2455 					if (md->urw_mappings + md->krw_mappings == 0) {
   2456 						md->pvh_attrs &= ~PVF_WRITE;
   2457 					} else {
   2458 						PMAP_VALIDATE_MD_PAGE(md);
   2459 					}
   2460 				}
   2461 #ifndef ARM_MMU_EXTENDED
   2462 				if (want_syncicache)
   2463 					need_syncicache = true;
   2464 				need_vac_me_harder = true;
   2465 #endif
   2466 #endif /* PMAP_CACHE_VIPT */
   2467 			}
   2468 			pmap_release_page_lock(md);
   2469 		}
   2470 
   2471 		if (maskbits & PVF_REF) {
   2472 			if (true
   2473 #ifndef ARM_MMU_EXTENDED
   2474 			    && (oflags & PVF_NC) == 0
   2475 #endif
   2476 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2477 			    && l2pte_valid_p(npte)) {
   2478 #ifdef PMAP_CACHE_VIVT
   2479 				/*
   2480 				 * Check npte here; we may have already
   2481 				 * done the wbinv above, and the validity
   2482 				 * of the PTE is the same for opte and
   2483 				 * npte.
   2484 				 */
   2485 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2486 #endif
   2487 			}
   2488 
   2489 			/*
   2490 			 * Make the PTE invalid so that we will take a
   2491 			 * page fault the next time the mapping is
   2492 			 * referenced.
   2493 			 */
   2494 			npte &= ~L2_TYPE_MASK;
   2495 			npte |= L2_TYPE_INV;
   2496 		}
   2497 
   2498 		if (npte != opte) {
   2499 			l2pte_set(ptep, npte, opte);
   2500 			PTE_SYNC(ptep);
   2501 
   2502 			/* Flush the TLB entry if a current pmap. */
   2503 			pmap_tlb_flush_SE(pm, va, oflags);
   2504 		}
   2505 
   2506 		pmap_release_pmap_lock(pm);
   2507 		pmap_acquire_page_lock(md);
   2508 
   2509 		NPDEBUG(PDB_BITS,
   2510 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2511 		    pm, va, opte, npte));
   2512 	}
   2513 
   2514 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2515 	/*
   2516 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2517 	 */
   2518 	if (need_syncicache) {
   2519 		pmap_release_page_lock(md);
   2520 		pmap_syncicache_page(md, pa);
   2521 		pmap_acquire_page_lock(md);
   2522 		PMAPCOUNT(exec_synced_clearbit);
   2523 	}
   2524 
   2525 	/*
   2526 	 * If we are changing this to read-only, we need to call vac_me_harder
   2527 	 * so we can change all the read-only pages to cacheable.  We pretend
   2528 	 * this as a page deletion.
   2529 	 */
   2530 	if (need_vac_me_harder) {
   2531 		if (md->pvh_attrs & PVF_NC)
   2532 			pmap_vac_me_harder(md, pa, NULL, 0);
   2533 	}
   2534 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   2535 }
   2536 
   2537 /*
   2538  * pmap_clean_page()
   2539  *
   2540  * This is a local function used to work out the best strategy to clean
   2541  * a single page referenced by its entry in the PV table. It's used by
   2542  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2543  *
   2544  * Its policy is effectively:
   2545  *  o If there are no mappings, we don't bother doing anything with the cache.
   2546  *  o If there is one mapping, we clean just that page.
   2547  *  o If there are multiple mappings, we clean the entire cache.
   2548  *
   2549  * So that some functions can be further optimised, it returns 0 if it didn't
   2550  * clean the entire cache, or 1 if it did.
   2551  *
   2552  * XXX One bug in this routine is that if the pv_entry has a single page
   2553  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2554  * just the 1 page. Since this should not occur in everyday use and if it does
   2555  * it will just result in not the most efficient clean for the page.
   2556  */
   2557 #ifdef PMAP_CACHE_VIVT
   2558 static bool
   2559 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2560 {
   2561 	struct pv_entry *pv;
   2562 	pmap_t pm_to_clean = NULL;
   2563 	bool cache_needs_cleaning = false;
   2564 	vaddr_t page_to_clean = 0;
   2565 	u_int flags = 0;
   2566 
   2567 	/*
   2568 	 * Since we flush the cache each time we change to a different
   2569 	 * user vmspace, we only need to flush the page if it is in the
   2570 	 * current pmap.
   2571 	 */
   2572 	KASSERT(pmap_page_locked_p(md));
   2573 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2574 		if (pmap_is_current(pv->pv_pmap)) {
   2575 			flags |= pv->pv_flags;
   2576 			/*
   2577 			 * The page is mapped non-cacheable in
   2578 			 * this map.  No need to flush the cache.
   2579 			 */
   2580 			if (pv->pv_flags & PVF_NC) {
   2581 #ifdef DIAGNOSTIC
   2582 				KASSERT(!cache_needs_cleaning);
   2583 #endif
   2584 				break;
   2585 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2586 				continue;
   2587 			if (cache_needs_cleaning) {
   2588 				page_to_clean = 0;
   2589 				break;
   2590 			} else {
   2591 				page_to_clean = pv->pv_va;
   2592 				pm_to_clean = pv->pv_pmap;
   2593 			}
   2594 			cache_needs_cleaning = true;
   2595 		}
   2596 	}
   2597 
   2598 	if (page_to_clean) {
   2599 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2600 		    !is_src, flags | PVF_REF);
   2601 	} else if (cache_needs_cleaning) {
   2602 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2603 
   2604 		pmap_cache_wbinv_all(pm, flags);
   2605 		return true;
   2606 	}
   2607 	return false;
   2608 }
   2609 #endif
   2610 
   2611 #ifdef PMAP_CACHE_VIPT
   2612 /*
   2613  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2614  * right cache alias to make sure we flush the right stuff.
   2615  */
   2616 void
   2617 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2618 {
   2619 	pmap_t kpm = pmap_kernel();
   2620 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2621 	    ? PAGE_SIZE
   2622 	    : arm_pcache.icache_way_size;
   2623 
   2624 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2625 	    md, md->pvh_attrs));
   2626 	/*
   2627 	 * No need to clean the page if it's non-cached.
   2628 	 */
   2629 #ifndef ARM_MMU_EXTENDED
   2630 	if (md->pvh_attrs & PVF_NC)
   2631 		return;
   2632 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2633 #endif
   2634 
   2635 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2636 	const vaddr_t dstp = cpu_cdstp(0);
   2637 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2638 	if (way_size <= PAGE_SIZE) {
   2639 		bool ok = false;
   2640 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2641 		if (ok) {
   2642 			cpu_icache_sync_range(vdstp, way_size);
   2643 			return;
   2644 		}
   2645 	}
   2646 #endif
   2647 
   2648 	/*
   2649 	 * We don't worry about the color of the exec page, we map the
   2650 	 * same page to pages in the way and then do the icache_sync on
   2651 	 * the entire way making sure we are cleaned.
   2652 	 */
   2653 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2654 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2655 
   2656 	for (size_t i = 0, j = 0; i < way_size;
   2657 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2658 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2659 		/*
   2660 		 * Set up a PTE with to flush these cache lines.
   2661 		 */
   2662 		l2pte_set(ptep + j, npte, 0);
   2663 	}
   2664 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2665 
   2666 	/*
   2667 	 * Flush it.
   2668 	 */
   2669 	cpu_icache_sync_range(dstp, way_size);
   2670 
   2671 	for (size_t i = 0, j = 0; i < way_size;
   2672 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2673 		/*
   2674 		 * Unmap the page(s).
   2675 		 */
   2676 		l2pte_reset(ptep + j);
   2677 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2678 	}
   2679 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2680 
   2681 	md->pvh_attrs |= PVF_EXEC;
   2682 	PMAPCOUNT(exec_synced);
   2683 }
   2684 
   2685 #ifndef ARM_MMU_EXTENDED
   2686 void
   2687 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2688 {
   2689 	vsize_t va_offset, end_va;
   2690 	bool wbinv_p;
   2691 
   2692 	if (arm_cache_prefer_mask == 0)
   2693 		return;
   2694 
   2695 	switch (flush) {
   2696 	case PMAP_FLUSH_PRIMARY:
   2697 		if (md->pvh_attrs & PVF_MULTCLR) {
   2698 			va_offset = 0;
   2699 			end_va = arm_cache_prefer_mask;
   2700 			md->pvh_attrs &= ~PVF_MULTCLR;
   2701 			PMAPCOUNT(vac_flush_lots);
   2702 		} else {
   2703 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2704 			end_va = va_offset;
   2705 			PMAPCOUNT(vac_flush_one);
   2706 		}
   2707 		/*
   2708 		 * Mark that the page is no longer dirty.
   2709 		 */
   2710 		md->pvh_attrs &= ~PVF_DIRTY;
   2711 		wbinv_p = true;
   2712 		break;
   2713 	case PMAP_FLUSH_SECONDARY:
   2714 		va_offset = 0;
   2715 		end_va = arm_cache_prefer_mask;
   2716 		wbinv_p = true;
   2717 		md->pvh_attrs &= ~PVF_MULTCLR;
   2718 		PMAPCOUNT(vac_flush_lots);
   2719 		break;
   2720 	case PMAP_CLEAN_PRIMARY:
   2721 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2722 		end_va = va_offset;
   2723 		wbinv_p = false;
   2724 		/*
   2725 		 * Mark that the page is no longer dirty.
   2726 		 */
   2727 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2728 			md->pvh_attrs &= ~PVF_DIRTY;
   2729 		PMAPCOUNT(vac_clean_one);
   2730 		break;
   2731 	default:
   2732 		return;
   2733 	}
   2734 
   2735 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2736 
   2737 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2738 	    md, md->pvh_attrs));
   2739 
   2740 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2741 
   2742 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2743 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2744 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2745 		const pt_entry_t opte = *ptep;
   2746 
   2747 		if (flush == PMAP_FLUSH_SECONDARY
   2748 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2749 			continue;
   2750 
   2751 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2752 		/*
   2753 		 * Set up a PTE with the right coloring to flush
   2754 		 * existing cache entries.
   2755 		 */
   2756 		const pt_entry_t npte = L2_S_PROTO
   2757 		    | pa
   2758 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2759 		    | pte_l2_s_cache_mode;
   2760 		l2pte_set(ptep, npte, opte);
   2761 		PTE_SYNC(ptep);
   2762 
   2763 		/*
   2764 		 * Flush it.  Make sure to flush secondary cache too since
   2765 		 * bus_dma will ignore uncached pages.
   2766 		 */
   2767 		if (scache_line_size != 0) {
   2768 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2769 			if (wbinv_p) {
   2770 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2771 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2772 			} else {
   2773 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2774 			}
   2775 		} else {
   2776 			if (wbinv_p) {
   2777 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2778 			} else {
   2779 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2780 			}
   2781 		}
   2782 
   2783 		/*
   2784 		 * Restore the page table entry since we might have interrupted
   2785 		 * pmap_zero_page or pmap_copy_page which was already using
   2786 		 * this pte.
   2787 		 */
   2788 		if (opte) {
   2789 			l2pte_set(ptep, opte, npte);
   2790 		} else {
   2791 			l2pte_reset(ptep);
   2792 		}
   2793 		PTE_SYNC(ptep);
   2794 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2795 	}
   2796 }
   2797 #endif /* ARM_MMU_EXTENDED */
   2798 #endif /* PMAP_CACHE_VIPT */
   2799 
   2800 /*
   2801  * Routine:	pmap_page_remove
   2802  * Function:
   2803  *		Removes this physical page from
   2804  *		all physical maps in which it resides.
   2805  *		Reflects back modify bits to the pager.
   2806  */
   2807 static void
   2808 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2809 {
   2810 	struct l2_bucket *l2b;
   2811 	struct pv_entry *pv;
   2812 	pt_entry_t *ptep;
   2813 #ifndef ARM_MMU_EXTENDED
   2814 	bool flush = false;
   2815 #endif
   2816 	u_int flags = 0;
   2817 
   2818 	NPDEBUG(PDB_FOLLOW,
   2819 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2820 	    pa));
   2821 
   2822 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2823 	pmap_acquire_page_lock(md);
   2824 	if (*pvp == NULL) {
   2825 #ifdef PMAP_CACHE_VIPT
   2826 		/*
   2827 		 * We *know* the page contents are about to be replaced.
   2828 		 * Discard the exec contents
   2829 		 */
   2830 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2831 			PMAPCOUNT(exec_discarded_page_protect);
   2832 		md->pvh_attrs &= ~PVF_EXEC;
   2833 		PMAP_VALIDATE_MD_PAGE(md);
   2834 #endif
   2835 		pmap_release_page_lock(md);
   2836 		return;
   2837 	}
   2838 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2839 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2840 #endif
   2841 
   2842 	/*
   2843 	 * Clear alias counts
   2844 	 */
   2845 #ifdef PMAP_CACHE_VIVT
   2846 	md->k_mappings = 0;
   2847 #endif
   2848 	md->urw_mappings = md->uro_mappings = 0;
   2849 
   2850 #ifdef PMAP_CACHE_VIVT
   2851 	pmap_clean_page(md, false);
   2852 #endif
   2853 
   2854 	while ((pv = *pvp) != NULL) {
   2855 		pmap_t pm = pv->pv_pmap;
   2856 #ifndef ARM_MMU_EXTENDED
   2857 		if (flush == false && pmap_is_current(pm))
   2858 			flush = true;
   2859 #endif
   2860 
   2861 		if (pm == pmap_kernel()) {
   2862 #ifdef PMAP_CACHE_VIPT
   2863 			/*
   2864 			 * If this was unmanaged mapping, it must be preserved.
   2865 			 * Move it back on the list and advance the end-of-list
   2866 			 * pointer.
   2867 			 */
   2868 			if (PV_IS_KENTRY_P(pv->pv_flags)) {
   2869 				*pvp = pv;
   2870 				pvp = &SLIST_NEXT(pv, pv_link);
   2871 				continue;
   2872 			}
   2873 			if (pv->pv_flags & PVF_WRITE)
   2874 				md->krw_mappings--;
   2875 			else
   2876 				md->kro_mappings--;
   2877 #endif
   2878 			PMAPCOUNT(kernel_unmappings);
   2879 		}
   2880 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2881 		PMAPCOUNT(unmappings);
   2882 
   2883 		pmap_release_page_lock(md);
   2884 		pmap_acquire_pmap_lock(pm);
   2885 
   2886 #ifdef ARM_MMU_EXTENDED
   2887 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2888 #endif
   2889 
   2890 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2891 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2892 
   2893 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2894 
   2895 		/*
   2896 		 * Update statistics
   2897 		 */
   2898 		--pm->pm_stats.resident_count;
   2899 
   2900 		/* Wired bit */
   2901 		if (pv->pv_flags & PVF_WIRED)
   2902 			--pm->pm_stats.wired_count;
   2903 
   2904 		flags |= pv->pv_flags;
   2905 
   2906 		/*
   2907 		 * Invalidate the PTEs.
   2908 		 */
   2909 		l2pte_reset(ptep);
   2910 		PTE_SYNC_CURRENT(pm, ptep);
   2911 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2912 		pmap_release_pmap_lock(pm);
   2913 
   2914 		pool_put(&pmap_pv_pool, pv);
   2915 		pmap_acquire_page_lock(md);
   2916 #ifdef MULTIPROCESSOR
   2917 		/*
   2918 		 * Restart of the beginning of the list.
   2919 		 */
   2920 		pvp = &SLIST_FIRST(&md->pvh_list);
   2921 #endif
   2922 	}
   2923 	/*
   2924 	 * if we reach the end of the list and there are still mappings, they
   2925 	 * might be able to be cached now.  And they must be kernel mappings.
   2926 	 */
   2927 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2928 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2929 	}
   2930 
   2931 #ifdef PMAP_CACHE_VIPT
   2932 	/*
   2933 	 * Its EXEC cache is now gone.
   2934 	 */
   2935 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2936 		PMAPCOUNT(exec_discarded_page_protect);
   2937 	md->pvh_attrs &= ~PVF_EXEC;
   2938 	KASSERT(md->urw_mappings == 0);
   2939 	KASSERT(md->uro_mappings == 0);
   2940 #ifndef ARM_MMU_EXTENDED
   2941 	if (arm_cache_prefer_mask != 0) {
   2942 		if (md->krw_mappings == 0)
   2943 			md->pvh_attrs &= ~PVF_WRITE;
   2944 		PMAP_VALIDATE_MD_PAGE(md);
   2945 	}
   2946 #endif /* ARM_MMU_EXTENDED */
   2947 #endif /* PMAP_CACHE_VIPT */
   2948 	pmap_release_page_lock(md);
   2949 
   2950 #ifndef ARM_MMU_EXTENDED
   2951 	if (flush) {
   2952 		/*
   2953 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2954 		 * would need a subsequent call to pmap_update() to ensure
   2955 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2956 		 * required to do that (see pmap(9)), so we can't modify
   2957 		 * the current pmap's state.
   2958 		 */
   2959 		if (PV_BEEN_EXECD(flags))
   2960 			cpu_tlb_flushID();
   2961 		else
   2962 			cpu_tlb_flushD();
   2963 	}
   2964 	cpu_cpwait();
   2965 #endif /* ARM_MMU_EXTENDED */
   2966 }
   2967 
   2968 /*
   2969  * pmap_t pmap_create(void)
   2970  *
   2971  *      Create a new pmap structure from scratch.
   2972  */
   2973 pmap_t
   2974 pmap_create(void)
   2975 {
   2976 	pmap_t pm;
   2977 
   2978 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2979 
   2980 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2981 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2982 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2983 
   2984 	pm->pm_stats.wired_count = 0;
   2985 	pm->pm_stats.resident_count = 1;
   2986 #ifdef ARM_MMU_EXTENDED
   2987 #ifdef MULTIPROCESSOR
   2988 	kcpuset_create(&pm->pm_active, true);
   2989 	kcpuset_create(&pm->pm_onproc, true);
   2990 #endif
   2991 #else
   2992 	pm->pm_cstate.cs_all = 0;
   2993 #endif
   2994 	pmap_alloc_l1(pm);
   2995 
   2996 	/*
   2997 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2998 	 * initialised to zero.
   2999 	 */
   3000 
   3001 	pmap_pinit(pm);
   3002 
   3003 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   3004 
   3005 	return (pm);
   3006 }
   3007 
   3008 u_int
   3009 arm32_mmap_flags(paddr_t pa)
   3010 {
   3011 	/*
   3012 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3013 	 * and we're using the upper bits in page numbers to pass flags around
   3014 	 * so we might as well use the same bits
   3015 	 */
   3016 	return (u_int)pa & PMAP_MD_MASK;
   3017 }
   3018 /*
   3019  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3020  *      u_int flags)
   3021  *
   3022  *      Insert the given physical page (p) at
   3023  *      the specified virtual address (v) in the
   3024  *      target physical map with the protection requested.
   3025  *
   3026  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3027  *      or lose information.  That is, this routine must actually
   3028  *      insert this page into the given map NOW.
   3029  */
   3030 int
   3031 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3032 {
   3033 	struct l2_bucket *l2b;
   3034 	struct vm_page *pg, *opg;
   3035 	u_int nflags;
   3036 	u_int oflags;
   3037 	const bool kpm_p = (pm == pmap_kernel());
   3038 #ifdef ARM_HAS_VBAR
   3039 	const bool vector_page_p = false;
   3040 #else
   3041 	const bool vector_page_p = (va == vector_page);
   3042 #endif
   3043 
   3044 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3045 
   3046 	UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
   3047 	    pm, va, pa, prot);
   3048 	UVMHIST_LOG(maphist, "  flag %#x", flags, 0, 0, 0);
   3049 
   3050 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3051 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3052 
   3053 	/*
   3054 	 * Get a pointer to the page.  Later on in this function, we
   3055 	 * test for a managed page by checking pg != NULL.
   3056 	 */
   3057 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3058 
   3059 	nflags = 0;
   3060 	if (prot & VM_PROT_WRITE)
   3061 		nflags |= PVF_WRITE;
   3062 	if (prot & VM_PROT_EXECUTE)
   3063 		nflags |= PVF_EXEC;
   3064 	if (flags & PMAP_WIRED)
   3065 		nflags |= PVF_WIRED;
   3066 
   3067 	pmap_acquire_pmap_lock(pm);
   3068 
   3069 	/*
   3070 	 * Fetch the L2 bucket which maps this page, allocating one if
   3071 	 * necessary for user pmaps.
   3072 	 */
   3073 	if (kpm_p) {
   3074 		l2b = pmap_get_l2_bucket(pm, va);
   3075 	} else {
   3076 		l2b = pmap_alloc_l2_bucket(pm, va);
   3077 	}
   3078 	if (l2b == NULL) {
   3079 		if (flags & PMAP_CANFAIL) {
   3080 			pmap_release_pmap_lock(pm);
   3081 			return (ENOMEM);
   3082 		}
   3083 		panic("pmap_enter: failed to allocate L2 bucket");
   3084 	}
   3085 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3086 	const pt_entry_t opte = *ptep;
   3087 	pt_entry_t npte = pa;
   3088 	oflags = 0;
   3089 
   3090 	if (opte) {
   3091 		/*
   3092 		 * There is already a mapping at this address.
   3093 		 * If the physical address is different, lookup the
   3094 		 * vm_page.
   3095 		 */
   3096 		if (l2pte_pa(opte) != pa)
   3097 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3098 		else
   3099 			opg = pg;
   3100 	} else
   3101 		opg = NULL;
   3102 
   3103 	if (pg) {
   3104 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3105 
   3106 		/*
   3107 		 * This is to be a managed mapping.
   3108 		 */
   3109 		pmap_acquire_page_lock(md);
   3110 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3111 			/*
   3112 			 * - The access type indicates that we don't need
   3113 			 *   to do referenced emulation.
   3114 			 * OR
   3115 			 * - The physical page has already been referenced
   3116 			 *   so no need to re-do referenced emulation here.
   3117 			 */
   3118 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3119 
   3120 			nflags |= PVF_REF;
   3121 
   3122 			if ((prot & VM_PROT_WRITE) != 0 &&
   3123 			    ((flags & VM_PROT_WRITE) != 0 ||
   3124 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3125 				/*
   3126 				 * This is a writable mapping, and the
   3127 				 * page's mod state indicates it has
   3128 				 * already been modified. Make it
   3129 				 * writable from the outset.
   3130 				 */
   3131 				npte = l2pte_set_writable(npte);
   3132 				nflags |= PVF_MOD;
   3133 			}
   3134 
   3135 #ifdef ARM_MMU_EXTENDED
   3136 			/*
   3137 			 * If the page has been cleaned, then the pvh_attrs
   3138 			 * will have PVF_EXEC set, so mark it execute so we
   3139 			 * don't get an access fault when trying to execute
   3140 			 * from it.
   3141 			 */
   3142 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3143 				npte &= ~L2_XS_XN;
   3144 			}
   3145 #endif
   3146 		} else {
   3147 			/*
   3148 			 * Need to do page referenced emulation.
   3149 			 */
   3150 			npte |= L2_TYPE_INV;
   3151 		}
   3152 
   3153 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3154 			npte |= pte_l2_s_wc_mode;
   3155 		} else
   3156 			npte |= pte_l2_s_cache_mode;
   3157 
   3158 		if (pg == opg) {
   3159 			/*
   3160 			 * We're changing the attrs of an existing mapping.
   3161 			 */
   3162 			oflags = pmap_modify_pv(md, pa, pm, va,
   3163 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3164 			    PVF_MOD | PVF_REF, nflags);
   3165 
   3166 #ifdef PMAP_CACHE_VIVT
   3167 			/*
   3168 			 * We may need to flush the cache if we're
   3169 			 * doing rw-ro...
   3170 			 */
   3171 			if (pm->pm_cstate.cs_cache_d &&
   3172 			    (oflags & PVF_NC) == 0 &&
   3173 			    l2pte_writable_p(opte) &&
   3174 			    (prot & VM_PROT_WRITE) == 0)
   3175 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3176 #endif
   3177 		} else {
   3178 			struct pv_entry *pv;
   3179 			/*
   3180 			 * New mapping, or changing the backing page
   3181 			 * of an existing mapping.
   3182 			 */
   3183 			if (opg) {
   3184 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3185 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3186 
   3187 				/*
   3188 				 * Replacing an existing mapping with a new one.
   3189 				 * It is part of our managed memory so we
   3190 				 * must remove it from the PV list
   3191 				 */
   3192 				pv = pmap_remove_pv(omd, opa, pm, va);
   3193 				pmap_vac_me_harder(omd, opa, pm, 0);
   3194 				oflags = pv->pv_flags;
   3195 
   3196 #ifdef PMAP_CACHE_VIVT
   3197 				/*
   3198 				 * If the old mapping was valid (ref/mod
   3199 				 * emulation creates 'invalid' mappings
   3200 				 * initially) then make sure to frob
   3201 				 * the cache.
   3202 				 */
   3203 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3204 					pmap_cache_wbinv_page(pm, va, true,
   3205 					    oflags);
   3206 				}
   3207 #endif
   3208 			} else {
   3209 				pmap_release_page_lock(md);
   3210 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3211 				if (pv == NULL) {
   3212 					pmap_release_pmap_lock(pm);
   3213 					if ((flags & PMAP_CANFAIL) == 0)
   3214 						panic("pmap_enter: "
   3215 						    "no pv entries");
   3216 
   3217 					pmap_free_l2_bucket(pm, l2b, 0);
   3218 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3219 					    0, 0, 0, 0);
   3220 					return (ENOMEM);
   3221 				}
   3222 				pmap_acquire_page_lock(md);
   3223 			}
   3224 
   3225 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3226 		}
   3227 		pmap_release_page_lock(md);
   3228 	} else {
   3229 		/*
   3230 		 * We're mapping an unmanaged page.
   3231 		 * These are always readable, and possibly writable, from
   3232 		 * the get go as we don't need to track ref/mod status.
   3233 		 */
   3234 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3235 		if (prot & VM_PROT_WRITE)
   3236 			npte = l2pte_set_writable(npte);
   3237 
   3238 		/*
   3239 		 * Make sure the vector table is mapped cacheable
   3240 		 */
   3241 		if ((vector_page_p && !kpm_p)
   3242 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3243 			npte |= pte_l2_s_cache_mode;
   3244 #ifdef ARM_MMU_EXTENDED
   3245 			npte &= ~L2_XS_XN;	/* and executable */
   3246 #endif
   3247 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3248 			npte |= pte_l2_s_wc_mode;
   3249 		}
   3250 		if (opg) {
   3251 			/*
   3252 			 * Looks like there's an existing 'managed' mapping
   3253 			 * at this address.
   3254 			 */
   3255 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3256 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3257 
   3258 			pmap_acquire_page_lock(omd);
   3259 			struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
   3260 			pmap_vac_me_harder(omd, opa, pm, 0);
   3261 			oflags = pv->pv_flags;
   3262 			pmap_release_page_lock(omd);
   3263 
   3264 #ifdef PMAP_CACHE_VIVT
   3265 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3266 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3267 			}
   3268 #endif
   3269 			pool_put(&pmap_pv_pool, pv);
   3270 		}
   3271 	}
   3272 
   3273 	/*
   3274 	 * Make sure userland mappings get the right permissions
   3275 	 */
   3276 	if (!vector_page_p && !kpm_p) {
   3277 		npte |= L2_S_PROT_U;
   3278 #ifdef ARM_MMU_EXTENDED
   3279 		npte |= L2_XS_nG;	/* user pages are not global */
   3280 #endif
   3281 	}
   3282 
   3283 	/*
   3284 	 * Keep the stats up to date
   3285 	 */
   3286 	if (opte == 0) {
   3287 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3288 		pm->pm_stats.resident_count++;
   3289 	}
   3290 
   3291 	UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
   3292 
   3293 #if defined(ARM_MMU_EXTENDED)
   3294 	/*
   3295 	 * If exec protection was requested but the page hasn't been synced,
   3296 	 * sync it now and allow execution from it.
   3297 	 */
   3298 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3299 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3300 		npte &= ~L2_XS_XN;
   3301 		pmap_syncicache_page(md, pa);
   3302 		PMAPCOUNT(exec_synced_map);
   3303 	}
   3304 #endif
   3305 	/*
   3306 	 * If this is just a wiring change, the two PTEs will be
   3307 	 * identical, so there's no need to update the page table.
   3308 	 */
   3309 	if (npte != opte) {
   3310 
   3311 		l2pte_set(ptep, npte, opte);
   3312 		PTE_SYNC(ptep);
   3313 #ifndef ARM_MMU_EXTENDED
   3314 		bool is_cached = pmap_is_cached(pm);
   3315 		if (is_cached) {
   3316 			/*
   3317 			 * We only need to frob the cache/tlb if this pmap
   3318 			 * is current
   3319 			 */
   3320 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3321 				/*
   3322 				 * This mapping is likely to be accessed as
   3323 				 * soon as we return to userland. Fix up the
   3324 				 * L1 entry to avoid taking another
   3325 				 * page/domain fault.
   3326 				 */
   3327 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3328 				     + l1pte_index(va);
   3329 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3330 				    | L1_C_DOM(pmap_domain(pm));
   3331 				if (*pdep != pde) {
   3332 					l1pte_setone(pdep, pde);
   3333 					PTE_SYNC(pdep);
   3334 				}
   3335 			}
   3336 		}
   3337 #endif /* !ARM_MMU_EXTENDED */
   3338 
   3339 		pmap_tlb_flush_SE(pm, va, oflags);
   3340 
   3341 #ifndef ARM_MMU_EXTENDED
   3342 		UVMHIST_LOG(maphist, "  is_cached %d cs 0x%08x\n",
   3343 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3344 
   3345 		if (pg != NULL) {
   3346 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3347 
   3348 			pmap_acquire_page_lock(md);
   3349 			pmap_vac_me_harder(md, pa, pm, va);
   3350 			pmap_release_page_lock(md);
   3351 		}
   3352 #endif
   3353 	}
   3354 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3355 	if (pg) {
   3356 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3357 
   3358 		pmap_acquire_page_lock(md);
   3359 #ifndef ARM_MMU_EXTENDED
   3360 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3361 #endif
   3362 		PMAP_VALIDATE_MD_PAGE(md);
   3363 		pmap_release_page_lock(md);
   3364 	}
   3365 #endif
   3366 
   3367 	pmap_release_pmap_lock(pm);
   3368 
   3369 	return (0);
   3370 }
   3371 
   3372 /*
   3373  * pmap_remove()
   3374  *
   3375  * pmap_remove is responsible for nuking a number of mappings for a range
   3376  * of virtual address space in the current pmap. To do this efficiently
   3377  * is interesting, because in a number of cases a wide virtual address
   3378  * range may be supplied that contains few actual mappings. So, the
   3379  * optimisations are:
   3380  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3381  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3382  *     maybe do just a partial cache clean. This path of execution is
   3383  *     complicated by the fact that the cache must be flushed _before_
   3384  *     the PTE is nuked, being a VAC :-)
   3385  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3386  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3387  *     already flushed the cache.
   3388  *  4. Maybe later fast-case a single page, but I don't think this is
   3389  *     going to make _that_ much difference overall.
   3390  */
   3391 
   3392 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3393 
   3394 void
   3395 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3396 {
   3397 	vaddr_t next_bucket;
   3398 	u_int cleanlist_idx, total, cnt;
   3399 	struct {
   3400 		vaddr_t va;
   3401 		pt_entry_t *ptep;
   3402 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3403 	u_int mappings;
   3404 
   3405 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3406 	UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
   3407 
   3408 	/*
   3409 	 * we lock in the pmap => pv_head direction
   3410 	 */
   3411 	pmap_acquire_pmap_lock(pm);
   3412 
   3413 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3414 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3415 #ifndef ARM_MMU_EXTENDED
   3416 		if (pm->pm_cstate.cs_tlb == 0)
   3417 			pm->pm_remove_all = true;
   3418 #endif
   3419 	} else
   3420 		cleanlist_idx = 0;
   3421 
   3422 	total = 0;
   3423 
   3424 	while (sva < eva) {
   3425 		/*
   3426 		 * Do one L2 bucket's worth at a time.
   3427 		 */
   3428 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3429 		if (next_bucket > eva)
   3430 			next_bucket = eva;
   3431 
   3432 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3433 		if (l2b == NULL) {
   3434 			sva = next_bucket;
   3435 			continue;
   3436 		}
   3437 
   3438 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3439 
   3440 		for (mappings = 0;
   3441 		     sva < next_bucket;
   3442 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3443 			pt_entry_t opte = *ptep;
   3444 
   3445 			if (opte == 0) {
   3446 				/* Nothing here, move along */
   3447 				continue;
   3448 			}
   3449 
   3450 			u_int flags = PVF_REF;
   3451 			paddr_t pa = l2pte_pa(opte);
   3452 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3453 
   3454 			/*
   3455 			 * Update flags. In a number of circumstances,
   3456 			 * we could cluster a lot of these and do a
   3457 			 * number of sequential pages in one go.
   3458 			 */
   3459 			if (pg != NULL) {
   3460 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3461 				struct pv_entry *pv;
   3462 
   3463 				pmap_acquire_page_lock(md);
   3464 				pv = pmap_remove_pv(md, pa, pm, sva);
   3465 				pmap_vac_me_harder(md, pa, pm, 0);
   3466 				pmap_release_page_lock(md);
   3467 				if (pv != NULL) {
   3468 					if (pm->pm_remove_all == false) {
   3469 						flags = pv->pv_flags;
   3470 					}
   3471 					pool_put(&pmap_pv_pool, pv);
   3472 				}
   3473 			}
   3474 			mappings += PAGE_SIZE / L2_S_SIZE;
   3475 
   3476 			if (!l2pte_valid_p(opte)) {
   3477 				/*
   3478 				 * Ref/Mod emulation is still active for this
   3479 				 * mapping, therefore it is has not yet been
   3480 				 * accessed. No need to frob the cache/tlb.
   3481 				 */
   3482 				l2pte_reset(ptep);
   3483 				PTE_SYNC_CURRENT(pm, ptep);
   3484 				continue;
   3485 			}
   3486 
   3487 #ifdef ARM_MMU_EXTENDED
   3488 			if (pm == pmap_kernel()) {
   3489 				l2pte_reset(ptep);
   3490 				PTE_SYNC(ptep);
   3491 				pmap_tlb_flush_SE(pm, sva, flags);
   3492 				continue;
   3493 			}
   3494 #endif
   3495 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3496 				/* Add to the clean list. */
   3497 				cleanlist[cleanlist_idx].ptep = ptep;
   3498 				cleanlist[cleanlist_idx].va =
   3499 				    sva | (flags & PVF_EXEC);
   3500 				cleanlist_idx++;
   3501 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3502 				/* Nuke everything if needed. */
   3503 #ifdef PMAP_CACHE_VIVT
   3504 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3505 #endif
   3506 				/*
   3507 				 * Roll back the previous PTE list,
   3508 				 * and zero out the current PTE.
   3509 				 */
   3510 				for (cnt = 0;
   3511 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3512 					l2pte_reset(cleanlist[cnt].ptep);
   3513 					PTE_SYNC(cleanlist[cnt].ptep);
   3514 				}
   3515 				l2pte_reset(ptep);
   3516 				PTE_SYNC(ptep);
   3517 				cleanlist_idx++;
   3518 				pm->pm_remove_all = true;
   3519 			} else {
   3520 				l2pte_reset(ptep);
   3521 				PTE_SYNC(ptep);
   3522 				if (pm->pm_remove_all == false) {
   3523 					pmap_tlb_flush_SE(pm, sva, flags);
   3524 				}
   3525 			}
   3526 		}
   3527 
   3528 		/*
   3529 		 * Deal with any left overs
   3530 		 */
   3531 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3532 			total += cleanlist_idx;
   3533 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3534 #ifdef ARM_MMU_EXTENDED
   3535 				vaddr_t clva = cleanlist[cnt].va;
   3536 				pmap_tlb_flush_SE(pm, clva, PVF_REF);
   3537 #else
   3538 				vaddr_t va = cleanlist[cnt].va;
   3539 				if (pm->pm_cstate.cs_all != 0) {
   3540 					vaddr_t clva = va & ~PAGE_MASK;
   3541 					u_int flags = va & PVF_EXEC;
   3542 #ifdef PMAP_CACHE_VIVT
   3543 					pmap_cache_wbinv_page(pm, clva, true,
   3544 					    PVF_REF | PVF_WRITE | flags);
   3545 #endif
   3546 					pmap_tlb_flush_SE(pm, clva,
   3547 					    PVF_REF | flags);
   3548 				}
   3549 #endif /* ARM_MMU_EXTENDED */
   3550 				l2pte_reset(cleanlist[cnt].ptep);
   3551 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3552 			}
   3553 
   3554 			/*
   3555 			 * If it looks like we're removing a whole bunch
   3556 			 * of mappings, it's faster to just write-back
   3557 			 * the whole cache now and defer TLB flushes until
   3558 			 * pmap_update() is called.
   3559 			 */
   3560 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3561 				cleanlist_idx = 0;
   3562 			else {
   3563 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3564 #ifdef PMAP_CACHE_VIVT
   3565 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3566 #endif
   3567 				pm->pm_remove_all = true;
   3568 			}
   3569 		}
   3570 
   3571 
   3572 		pmap_free_l2_bucket(pm, l2b, mappings);
   3573 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3574 	}
   3575 
   3576 	pmap_release_pmap_lock(pm);
   3577 }
   3578 
   3579 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3580 static struct pv_entry *
   3581 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3582 {
   3583 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3584 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3585 	struct pv_entry *pv;
   3586 
   3587 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3588 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3589 	KASSERT(pmap_page_locked_p(md));
   3590 
   3591 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3592 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3593 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3594 
   3595 	/*
   3596 	 * If we are removing a writeable mapping to a cached exec page,
   3597 	 * if it's the last mapping then clear it execness other sync
   3598 	 * the page to the icache.
   3599 	 */
   3600 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3601 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3602 		if (SLIST_EMPTY(&md->pvh_list)) {
   3603 			md->pvh_attrs &= ~PVF_EXEC;
   3604 			PMAPCOUNT(exec_discarded_kremove);
   3605 		} else {
   3606 			pmap_syncicache_page(md, pa);
   3607 			PMAPCOUNT(exec_synced_kremove);
   3608 		}
   3609 	}
   3610 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3611 
   3612 	return pv;
   3613 }
   3614 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3615 
   3616 /*
   3617  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3618  *
   3619  * We assume there is already sufficient KVM space available
   3620  * to do this, as we can't allocate L2 descriptor tables/metadata
   3621  * from here.
   3622  */
   3623 void
   3624 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3625 {
   3626 #ifdef PMAP_CACHE_VIVT
   3627 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3628 #endif
   3629 #ifdef PMAP_CACHE_VIPT
   3630 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3631 	struct vm_page *opg;
   3632 #ifndef ARM_MMU_EXTENDED
   3633 	struct pv_entry *pv = NULL;
   3634 #endif
   3635 #endif
   3636 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3637 
   3638 	UVMHIST_FUNC(__func__);
   3639 
   3640 	if (pmap_initialized) {
   3641 		UVMHIST_CALLED(maphist);
   3642 		UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
   3643 		    va, pa, prot, flags);
   3644 	}
   3645 
   3646 	pmap_t kpm = pmap_kernel();
   3647 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3648 	const size_t l1slot __diagused = l1pte_index(va);
   3649 	KASSERTMSG(l2b != NULL,
   3650 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3651 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3652 	    kpm->pm_l2[L2_IDX(l1slot)]
   3653 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3654 		: NULL,
   3655 	    kpm->pm_l2[L2_IDX(l1slot)]
   3656 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3657 		: NULL);
   3658 	KASSERT(l2b->l2b_kva != NULL);
   3659 
   3660 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3661 	const pt_entry_t opte = *ptep;
   3662 
   3663 	if (opte == 0) {
   3664 		PMAPCOUNT(kenter_mappings);
   3665 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3666 	} else {
   3667 		PMAPCOUNT(kenter_remappings);
   3668 #ifdef PMAP_CACHE_VIPT
   3669 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3670 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
   3671 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
   3672 #endif
   3673 		if (opg && arm_cache_prefer_mask != 0) {
   3674 			KASSERT(opg != pg);
   3675 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3676 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3677 #ifndef ARM_MMU_EXTENDED
   3678 			pmap_acquire_page_lock(omd);
   3679 			pv = pmap_kremove_pg(opg, va);
   3680 			pmap_release_page_lock(omd);
   3681 #endif
   3682 		}
   3683 #endif
   3684 		if (l2pte_valid_p(opte)) {
   3685 #ifdef PMAP_CACHE_VIVT
   3686 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3687 #endif
   3688 			cpu_tlb_flushD_SE(va);
   3689 			cpu_cpwait();
   3690 		}
   3691 	}
   3692 
   3693 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3694 	    | ((flags & PMAP_NOCACHE)
   3695 		? 0
   3696 		: ((flags & PMAP_PTE)
   3697 		    ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
   3698 #ifdef ARM_MMU_EXTENDED
   3699 	if (prot & VM_PROT_EXECUTE)
   3700 		npte &= ~L2_XS_XN;
   3701 #endif
   3702 	l2pte_set(ptep, npte, opte);
   3703 	PTE_SYNC(ptep);
   3704 
   3705 	if (pg) {
   3706 		if (flags & PMAP_KMPAGE) {
   3707 			KASSERT(md->urw_mappings == 0);
   3708 			KASSERT(md->uro_mappings == 0);
   3709 			KASSERT(md->krw_mappings == 0);
   3710 			KASSERT(md->kro_mappings == 0);
   3711 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3712 			KASSERT(pv == NULL);
   3713 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3714 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3715 			/* if there is a color conflict, evict from cache. */
   3716 			if (pmap_is_page_colored_p(md)
   3717 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3718 				PMAPCOUNT(vac_color_change);
   3719 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3720 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3721 				/*
   3722 				 * If this page has multiple colors, expunge
   3723 				 * them.
   3724 				 */
   3725 				PMAPCOUNT(vac_flush_lots2);
   3726 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3727 			}
   3728 			/*
   3729 			 * Since this is a KMPAGE, there can be no contention
   3730 			 * for this page so don't lock it.
   3731 			 */
   3732 			md->pvh_attrs &= PAGE_SIZE - 1;
   3733 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3734 			    | (va & arm_cache_prefer_mask);
   3735 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3736 			md->pvh_attrs |= PVF_KMPAGE;
   3737 #endif
   3738 			atomic_inc_32(&pmap_kmpages);
   3739 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3740 		} else if (arm_cache_prefer_mask != 0) {
   3741 			if (pv == NULL) {
   3742 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3743 				KASSERT(pv != NULL);
   3744 			}
   3745 			pmap_acquire_page_lock(md);
   3746 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3747 			    PVF_WIRED | PVF_KENTRY
   3748 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3749 			if ((prot & VM_PROT_WRITE)
   3750 			    && !(md->pvh_attrs & PVF_NC))
   3751 				md->pvh_attrs |= PVF_DIRTY;
   3752 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3753 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3754 			pmap_release_page_lock(md);
   3755 #endif
   3756 		}
   3757 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3758 	} else {
   3759 		if (pv != NULL)
   3760 			pool_put(&pmap_pv_pool, pv);
   3761 #endif
   3762 	}
   3763 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3764 	KASSERT(md == NULL || !pmap_page_locked_p(md));
   3765 #endif
   3766 	if (pmap_initialized) {
   3767 		UVMHIST_LOG(maphist, "  <-- done (ptep %p: %#x -> %#x)",
   3768 		    ptep, opte, npte, 0);
   3769 	}
   3770 
   3771 }
   3772 
   3773 void
   3774 pmap_kremove(vaddr_t va, vsize_t len)
   3775 {
   3776 #ifdef UVMHIST
   3777 	u_int total_mappings = 0;
   3778 #endif
   3779 
   3780 	PMAPCOUNT(kenter_unmappings);
   3781 
   3782 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3783 
   3784 	UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
   3785 
   3786 	const vaddr_t eva = va + len;
   3787 
   3788 	while (va < eva) {
   3789 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3790 		if (next_bucket > eva)
   3791 			next_bucket = eva;
   3792 
   3793 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3794 		KDASSERT(l2b != NULL);
   3795 
   3796 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3797 		pt_entry_t *ptep = sptep;
   3798 		u_int mappings = 0;
   3799 
   3800 		while (va < next_bucket) {
   3801 			const pt_entry_t opte = *ptep;
   3802 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3803 			if (opg != NULL) {
   3804 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3805 
   3806 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3807 					KASSERT(omd->urw_mappings == 0);
   3808 					KASSERT(omd->uro_mappings == 0);
   3809 					KASSERT(omd->krw_mappings == 0);
   3810 					KASSERT(omd->kro_mappings == 0);
   3811 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3812 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3813 					if (arm_cache_prefer_mask != 0) {
   3814 						omd->pvh_attrs &= ~PVF_WRITE;
   3815 					}
   3816 #endif
   3817 					atomic_dec_32(&pmap_kmpages);
   3818 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3819 				} else if (arm_cache_prefer_mask != 0) {
   3820 					pmap_acquire_page_lock(omd);
   3821 					pool_put(&pmap_pv_pool,
   3822 					    pmap_kremove_pg(opg, va));
   3823 					pmap_release_page_lock(omd);
   3824 #endif
   3825 				}
   3826 			}
   3827 			if (l2pte_valid_p(opte)) {
   3828 #ifdef PMAP_CACHE_VIVT
   3829 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3830 #endif
   3831 				cpu_tlb_flushD_SE(va);
   3832 			}
   3833 			if (opte) {
   3834 				l2pte_reset(ptep);
   3835 				mappings += PAGE_SIZE / L2_S_SIZE;
   3836 			}
   3837 			va += PAGE_SIZE;
   3838 			ptep += PAGE_SIZE / L2_S_SIZE;
   3839 		}
   3840 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3841 		    mappings, l2b->l2b_occupancy);
   3842 		l2b->l2b_occupancy -= mappings;
   3843 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3844 #ifdef UVMHIST
   3845 		total_mappings += mappings;
   3846 #endif
   3847 	}
   3848 	cpu_cpwait();
   3849 	UVMHIST_LOG(maphist, "  <--- done (%u mappings removed)",
   3850 	    total_mappings, 0, 0, 0);
   3851 }
   3852 
   3853 bool
   3854 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3855 {
   3856 	struct l2_dtable *l2;
   3857 	pd_entry_t *pdep, pde;
   3858 	pt_entry_t *ptep, pte;
   3859 	paddr_t pa;
   3860 	u_int l1slot;
   3861 
   3862 	pmap_acquire_pmap_lock(pm);
   3863 
   3864 	l1slot = l1pte_index(va);
   3865 	pdep = pmap_l1_kva(pm) + l1slot;
   3866 	pde = *pdep;
   3867 
   3868 	if (l1pte_section_p(pde)) {
   3869 		/*
   3870 		 * These should only happen for pmap_kernel()
   3871 		 */
   3872 		KDASSERT(pm == pmap_kernel());
   3873 		pmap_release_pmap_lock(pm);
   3874 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3875 		if (l1pte_supersection_p(pde)) {
   3876 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3877 		} else
   3878 #endif
   3879 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3880 	} else {
   3881 		/*
   3882 		 * Note that we can't rely on the validity of the L1
   3883 		 * descriptor as an indication that a mapping exists.
   3884 		 * We have to look it up in the L2 dtable.
   3885 		 */
   3886 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   3887 
   3888 		if (l2 == NULL ||
   3889 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   3890 			pmap_release_pmap_lock(pm);
   3891 			return false;
   3892 		}
   3893 
   3894 		pte = ptep[l2pte_index(va)];
   3895 		pmap_release_pmap_lock(pm);
   3896 
   3897 		if (pte == 0)
   3898 			return false;
   3899 
   3900 		switch (pte & L2_TYPE_MASK) {
   3901 		case L2_TYPE_L:
   3902 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3903 			break;
   3904 
   3905 		default:
   3906 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   3907 			break;
   3908 		}
   3909 	}
   3910 
   3911 	if (pap != NULL)
   3912 		*pap = pa;
   3913 
   3914 	return true;
   3915 }
   3916 
   3917 void
   3918 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3919 {
   3920 	struct l2_bucket *l2b;
   3921 	vaddr_t next_bucket;
   3922 
   3923 	NPDEBUG(PDB_PROTECT,
   3924 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3925 	    pm, sva, eva, prot));
   3926 
   3927 	if ((prot & VM_PROT_READ) == 0) {
   3928 		pmap_remove(pm, sva, eva);
   3929 		return;
   3930 	}
   3931 
   3932 	if (prot & VM_PROT_WRITE) {
   3933 		/*
   3934 		 * If this is a read->write transition, just ignore it and let
   3935 		 * uvm_fault() take care of it later.
   3936 		 */
   3937 		return;
   3938 	}
   3939 
   3940 	pmap_acquire_pmap_lock(pm);
   3941 
   3942 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   3943 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3944 	u_int flags = 0;
   3945 
   3946 	while (sva < eva) {
   3947 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3948 		if (next_bucket > eva)
   3949 			next_bucket = eva;
   3950 
   3951 		l2b = pmap_get_l2_bucket(pm, sva);
   3952 		if (l2b == NULL) {
   3953 			sva = next_bucket;
   3954 			continue;
   3955 		}
   3956 
   3957 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3958 
   3959 		while (sva < next_bucket) {
   3960 			const pt_entry_t opte = *ptep;
   3961 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   3962 				struct vm_page *pg;
   3963 				u_int f;
   3964 
   3965 #ifdef PMAP_CACHE_VIVT
   3966 				/*
   3967 				 * OK, at this point, we know we're doing
   3968 				 * write-protect operation.  If the pmap is
   3969 				 * active, write-back the page.
   3970 				 */
   3971 				pmap_cache_wbinv_page(pm, sva, false,
   3972 				    PVF_REF | PVF_WRITE);
   3973 #endif
   3974 
   3975 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3976 				pt_entry_t npte = l2pte_set_readonly(opte);
   3977 				l2pte_set(ptep, npte, opte);
   3978 				PTE_SYNC(ptep);
   3979 
   3980 				if (pg != NULL) {
   3981 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3982 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3983 
   3984 					pmap_acquire_page_lock(md);
   3985 					f = pmap_modify_pv(md, pa, pm, sva,
   3986 					    clr_mask, 0);
   3987 					pmap_vac_me_harder(md, pa, pm, sva);
   3988 					pmap_release_page_lock(md);
   3989 				} else {
   3990 					f = PVF_REF | PVF_EXEC;
   3991 				}
   3992 
   3993 				if (flush) {
   3994 					flags |= f;
   3995 				} else {
   3996 					pmap_tlb_flush_SE(pm, sva, f);
   3997 				}
   3998 			}
   3999 
   4000 			sva += PAGE_SIZE;
   4001 			ptep += PAGE_SIZE / L2_S_SIZE;
   4002 		}
   4003 	}
   4004 
   4005 	if (flush) {
   4006 		if (PV_BEEN_EXECD(flags)) {
   4007 			pmap_tlb_flushID(pm);
   4008 		} else if (PV_BEEN_REFD(flags)) {
   4009 			pmap_tlb_flushD(pm);
   4010 		}
   4011 	}
   4012 
   4013 	pmap_release_pmap_lock(pm);
   4014 }
   4015 
   4016 void
   4017 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4018 {
   4019 	struct l2_bucket *l2b;
   4020 	pt_entry_t *ptep;
   4021 	vaddr_t next_bucket;
   4022 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4023 
   4024 	NPDEBUG(PDB_EXEC,
   4025 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   4026 	    pm, sva, eva));
   4027 
   4028 	pmap_acquire_pmap_lock(pm);
   4029 
   4030 	while (sva < eva) {
   4031 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4032 		if (next_bucket > eva)
   4033 			next_bucket = eva;
   4034 
   4035 		l2b = pmap_get_l2_bucket(pm, sva);
   4036 		if (l2b == NULL) {
   4037 			sva = next_bucket;
   4038 			continue;
   4039 		}
   4040 
   4041 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4042 		     sva < next_bucket;
   4043 		     sva += page_size,
   4044 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4045 		     page_size = PAGE_SIZE) {
   4046 			if (l2pte_valid_p(*ptep)) {
   4047 				cpu_icache_sync_range(sva,
   4048 				    min(page_size, eva - sva));
   4049 			}
   4050 		}
   4051 	}
   4052 
   4053 	pmap_release_pmap_lock(pm);
   4054 }
   4055 
   4056 void
   4057 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4058 {
   4059 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4060 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4061 
   4062 	NPDEBUG(PDB_PROTECT,
   4063 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   4064 	    md, pa, prot));
   4065 
   4066 	switch(prot) {
   4067 	case VM_PROT_READ|VM_PROT_WRITE:
   4068 #if defined(ARM_MMU_EXTENDED)
   4069 		pmap_acquire_page_lock(md);
   4070 		pmap_clearbit(md, pa, PVF_EXEC);
   4071 		pmap_release_page_lock(md);
   4072 		break;
   4073 #endif
   4074 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4075 		break;
   4076 
   4077 	case VM_PROT_READ:
   4078 #if defined(ARM_MMU_EXTENDED)
   4079 		pmap_acquire_page_lock(md);
   4080 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4081 		pmap_release_page_lock(md);
   4082 		break;
   4083 #endif
   4084 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4085 		pmap_acquire_page_lock(md);
   4086 		pmap_clearbit(md, pa, PVF_WRITE);
   4087 		pmap_release_page_lock(md);
   4088 		break;
   4089 
   4090 	default:
   4091 		pmap_page_remove(md, pa);
   4092 		break;
   4093 	}
   4094 }
   4095 
   4096 /*
   4097  * pmap_clear_modify:
   4098  *
   4099  *	Clear the "modified" attribute for a page.
   4100  */
   4101 bool
   4102 pmap_clear_modify(struct vm_page *pg)
   4103 {
   4104 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4105 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4106 	bool rv;
   4107 
   4108 	pmap_acquire_page_lock(md);
   4109 
   4110 	if (md->pvh_attrs & PVF_MOD) {
   4111 		rv = true;
   4112 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4113 		/*
   4114 		 * If we are going to clear the modified bit and there are
   4115 		 * no other modified bits set, flush the page to memory and
   4116 		 * mark it clean.
   4117 		 */
   4118 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4119 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4120 #endif
   4121 		pmap_clearbit(md, pa, PVF_MOD);
   4122 	} else {
   4123 		rv = false;
   4124 	}
   4125 	pmap_release_page_lock(md);
   4126 
   4127 	return rv;
   4128 }
   4129 
   4130 /*
   4131  * pmap_clear_reference:
   4132  *
   4133  *	Clear the "referenced" attribute for a page.
   4134  */
   4135 bool
   4136 pmap_clear_reference(struct vm_page *pg)
   4137 {
   4138 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4139 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4140 	bool rv;
   4141 
   4142 	pmap_acquire_page_lock(md);
   4143 
   4144 	if (md->pvh_attrs & PVF_REF) {
   4145 		rv = true;
   4146 		pmap_clearbit(md, pa, PVF_REF);
   4147 	} else {
   4148 		rv = false;
   4149 	}
   4150 	pmap_release_page_lock(md);
   4151 
   4152 	return rv;
   4153 }
   4154 
   4155 /*
   4156  * pmap_is_modified:
   4157  *
   4158  *	Test if a page has the "modified" attribute.
   4159  */
   4160 /* See <arm/arm32/pmap.h> */
   4161 
   4162 /*
   4163  * pmap_is_referenced:
   4164  *
   4165  *	Test if a page has the "referenced" attribute.
   4166  */
   4167 /* See <arm/arm32/pmap.h> */
   4168 
   4169 #if defined(ARM_MMU_EXTENDED) && 0
   4170 int
   4171 pmap_prefetchabt_fixup(void *v)
   4172 {
   4173 	struct trapframe * const tf = v;
   4174 	vaddr_t va = trunc_page(tf->tf_pc);
   4175 	int rv = ABORT_FIXUP_FAILED;
   4176 
   4177 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4178 		return rv;
   4179 
   4180 	kpreempt_disable();
   4181 	pmap_t pm = curcpu()->ci_pmap_cur;
   4182 	const size_t l1slot = l1pte_index(va);
   4183 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4184 	if (l2 == NULL)
   4185 		goto out;
   4186 
   4187 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4188 	if (l2b->l2b_kva == NULL)
   4189 		goto out;
   4190 
   4191 	/*
   4192 	 * Check the PTE itself.
   4193 	 */
   4194 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4195 	const pt_entry_t opte = *ptep;
   4196 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4197 		goto out;
   4198 
   4199 	paddr_t pa = l2pte_pa(pte);
   4200 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4201 	KASSERT(pg != NULL);
   4202 
   4203 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4204 
   4205 	pmap_acquire_page_lock(md);
   4206 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4207 	KASSERT(pv != NULL);
   4208 
   4209 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4210 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4211 			pmap_syncicache_page(md, pa);
   4212 		}
   4213 		rv = ABORT_FIXUP_RETURN;
   4214 		l2pte_set(ptep, opte & ~L2_XS_XN, opte);
   4215 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4216 	}
   4217 	pmap_release_page_lock(md);
   4218 
   4219   out:
   4220 	kpreempt_enable();
   4221 	return rv;
   4222 }
   4223 #endif
   4224 
   4225 int
   4226 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4227 {
   4228 	struct l2_dtable *l2;
   4229 	struct l2_bucket *l2b;
   4230 	paddr_t pa;
   4231 	const size_t l1slot = l1pte_index(va);
   4232 	int rv = 0;
   4233 
   4234 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4235 
   4236 	va = trunc_page(va);
   4237 
   4238 	KASSERT(!user || (pm != pmap_kernel()));
   4239 
   4240 	UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
   4241 	    pm, va, ftype, user);
   4242 #ifdef ARM_MMU_EXTENDED
   4243 	UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
   4244 	    cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4245 	    PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4246 #endif
   4247 
   4248 	pmap_acquire_pmap_lock(pm);
   4249 
   4250 	/*
   4251 	 * If there is no l2_dtable for this address, then the process
   4252 	 * has no business accessing it.
   4253 	 *
   4254 	 * Note: This will catch userland processes trying to access
   4255 	 * kernel addresses.
   4256 	 */
   4257 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4258 	if (l2 == NULL) {
   4259 		UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
   4260 		goto out;
   4261 	}
   4262 
   4263 	/*
   4264 	 * Likewise if there is no L2 descriptor table
   4265 	 */
   4266 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4267 	if (l2b->l2b_kva == NULL) {
   4268 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
   4269 		goto out;
   4270 	}
   4271 
   4272 	/*
   4273 	 * Check the PTE itself.
   4274 	 */
   4275 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4276 	pt_entry_t const opte = *ptep;
   4277 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4278 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
   4279 		goto out;
   4280 	}
   4281 
   4282 #ifndef ARM_HAS_VBAR
   4283 	/*
   4284 	 * Catch a userland access to the vector page mapped at 0x0
   4285 	 */
   4286 	if (user && (opte & L2_S_PROT_U) == 0) {
   4287 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4288 		goto out;
   4289 	}
   4290 #endif
   4291 
   4292 	pa = l2pte_pa(opte);
   4293 
   4294 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4295 		/*
   4296 		 * This looks like a good candidate for "page modified"
   4297 		 * emulation...
   4298 		 */
   4299 		struct pv_entry *pv;
   4300 		struct vm_page *pg;
   4301 
   4302 		/* Extract the physical address of the page */
   4303 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4304 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4305 			goto out;
   4306 		}
   4307 
   4308 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4309 
   4310 		/* Get the current flags for this page. */
   4311 		pmap_acquire_page_lock(md);
   4312 		pv = pmap_find_pv(md, pm, va);
   4313 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4314 			pmap_release_page_lock(md);
   4315 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4316 			goto out;
   4317 		}
   4318 
   4319 		/*
   4320 		 * Do the flags say this page is writable? If not then it
   4321 		 * is a genuine write fault. If yes then the write fault is
   4322 		 * our fault as we did not reflect the write access in the
   4323 		 * PTE. Now we know a write has occurred we can correct this
   4324 		 * and also set the modified bit
   4325 		 */
   4326 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4327 			pmap_release_page_lock(md);
   4328 			goto out;
   4329 		}
   4330 
   4331 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4332 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4333 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4334 		/*
   4335 		 * If there are cacheable mappings for this page, mark it dirty.
   4336 		 */
   4337 		if ((md->pvh_attrs & PVF_NC) == 0)
   4338 			md->pvh_attrs |= PVF_DIRTY;
   4339 #endif
   4340 #ifdef ARM_MMU_EXTENDED
   4341 		if (md->pvh_attrs & PVF_EXEC) {
   4342 			md->pvh_attrs &= ~PVF_EXEC;
   4343 			PMAPCOUNT(exec_discarded_modfixup);
   4344 		}
   4345 #endif
   4346 		pmap_release_page_lock(md);
   4347 
   4348 		/*
   4349 		 * Re-enable write permissions for the page.  No need to call
   4350 		 * pmap_vac_me_harder(), since this is just a
   4351 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4352 		 * changing. We've already set the cacheable bits based on
   4353 		 * the assumption that we can write to this page.
   4354 		 */
   4355 		const pt_entry_t npte =
   4356 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4357 #ifdef ARM_MMU_EXTENDED
   4358 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4359 #endif
   4360 		    | 0;
   4361 		l2pte_set(ptep, npte, opte);
   4362 		PTE_SYNC(ptep);
   4363 		PMAPCOUNT(fixup_mod);
   4364 		rv = 1;
   4365 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
   4366 		    opte, npte, 0, 0);
   4367 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4368 		/*
   4369 		 * This looks like a good candidate for "page referenced"
   4370 		 * emulation.
   4371 		 */
   4372 		struct vm_page *pg;
   4373 
   4374 		/* Extract the physical address of the page */
   4375 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4376 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4377 			goto out;
   4378 		}
   4379 
   4380 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4381 
   4382 		/* Get the current flags for this page. */
   4383 		pmap_acquire_page_lock(md);
   4384 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4385 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4386 			pmap_release_page_lock(md);
   4387 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4388 			goto out;
   4389 		}
   4390 
   4391 		md->pvh_attrs |= PVF_REF;
   4392 		pv->pv_flags |= PVF_REF;
   4393 
   4394 		pt_entry_t npte =
   4395 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4396 #ifdef ARM_MMU_EXTENDED
   4397 		if (pm != pmap_kernel()) {
   4398 			npte |= L2_XS_nG;
   4399 		}
   4400 		/*
   4401 		 * If we got called from prefetch abort, then ftype will have
   4402 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4403 		 * the PTE.
   4404 		 */
   4405 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4406 			/*
   4407 			 * Is this a mapping of an executable page?
   4408 			 */
   4409 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4410 				pmap_release_page_lock(md);
   4411 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4412 				    0, 0, 0, 0);
   4413 				goto out;
   4414 			}
   4415 			/*
   4416 			 * If we haven't synced the page, do so now.
   4417 			 */
   4418 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4419 				UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
   4420 				    pa, 0, 0, 0);
   4421 				pmap_syncicache_page(md, pa);
   4422 				PMAPCOUNT(fixup_exec);
   4423 			}
   4424 			npte &= ~L2_XS_XN;
   4425 		}
   4426 #endif /* ARM_MMU_EXTENDED */
   4427 		pmap_release_page_lock(md);
   4428 		l2pte_set(ptep, npte, opte);
   4429 		PTE_SYNC(ptep);
   4430 		PMAPCOUNT(fixup_ref);
   4431 		rv = 1;
   4432 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
   4433 		    opte, npte, 0, 0);
   4434 #ifdef ARM_MMU_EXTENDED
   4435 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4436 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4437 		if (pg == NULL) {
   4438 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4439 			goto out;
   4440 		}
   4441 
   4442 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4443 
   4444 		/* Get the current flags for this page. */
   4445 		pmap_acquire_page_lock(md);
   4446 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4447 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4448 			pmap_release_page_lock(md);
   4449 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4450 			goto out;
   4451 		}
   4452 
   4453 		/*
   4454 		 * If we haven't synced the page, do so now.
   4455 		 */
   4456 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4457 			UVMHIST_LOG(maphist, "syncicache page #%#x",
   4458 			    pa, 0, 0, 0);
   4459 			pmap_syncicache_page(md, pa);
   4460 		}
   4461 		pmap_release_page_lock(md);
   4462 		/*
   4463 		 * Turn off no-execute.
   4464 		 */
   4465 		KASSERT(opte & L2_XS_nG);
   4466 		l2pte_set(ptep, opte & ~L2_XS_XN, opte);
   4467 		PTE_SYNC(ptep);
   4468 		rv = 1;
   4469 		PMAPCOUNT(fixup_exec);
   4470 		UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
   4471 		    opte, opte & ~L2_XS_XN, 0, 0);
   4472 #endif
   4473 	}
   4474 
   4475 #ifndef ARM_MMU_EXTENDED
   4476 	/*
   4477 	 * We know there is a valid mapping here, so simply
   4478 	 * fix up the L1 if necessary.
   4479 	 */
   4480 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4481 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4482 	if (*pdep != pde) {
   4483 		l1pte_setone(pdep, pde);
   4484 		PTE_SYNC(pdep);
   4485 		rv = 1;
   4486 		PMAPCOUNT(fixup_pdes);
   4487 	}
   4488 #endif
   4489 
   4490 #ifdef CPU_SA110
   4491 	/*
   4492 	 * There are bugs in the rev K SA110.  This is a check for one
   4493 	 * of them.
   4494 	 */
   4495 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4496 	    curcpu()->ci_arm_cpurev < 3) {
   4497 		/* Always current pmap */
   4498 		if (l2pte_valid_p(opte)) {
   4499 			extern int kernel_debug;
   4500 			if (kernel_debug & 1) {
   4501 				struct proc *p = curlwp->l_proc;
   4502 				printf("prefetch_abort: page is already "
   4503 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4504 				printf("prefetch_abort: pc=%08lx proc=%p "
   4505 				    "process=%s\n", va, p, p->p_comm);
   4506 				printf("prefetch_abort: far=%08x fs=%x\n",
   4507 				    cpu_faultaddress(), cpu_faultstatus());
   4508 			}
   4509 #ifdef DDB
   4510 			if (kernel_debug & 2)
   4511 				Debugger();
   4512 #endif
   4513 			rv = 1;
   4514 		}
   4515 	}
   4516 #endif /* CPU_SA110 */
   4517 
   4518 #ifndef ARM_MMU_EXTENDED
   4519 	/*
   4520 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4521 	 * stale TLB entry for the faulting address.  That might be due to a
   4522 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4523 	 */
   4524 	if (rv == 0
   4525 	    && pm->pm_l1->l1_domain_use_count == 1
   4526 	    && pmap_needs_pte_sync == 0) {
   4527 		pmap_needs_pte_sync = 1;
   4528 		PTE_SYNC(ptep);
   4529 		PMAPCOUNT(fixup_ptesync);
   4530 		rv = 1;
   4531 	}
   4532 #endif
   4533 
   4534 #if defined(DEBUG) || 1
   4535 	/*
   4536 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4537 	 * stale TLB entry for the faulting address. This happens when two or
   4538 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4539 	 * a context switch between such processes, we can take domain faults
   4540 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4541 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4542 	 * example.
   4543 	 *
   4544 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4545 	 * entry for a recently entered mapping. In this case, the TLB is
   4546 	 * flushed for the new mapping, but there may still be TLB entries for
   4547 	 * other mappings belonging to other processes in the 1MB range
   4548 	 * covered by the L1 entry.
   4549 	 *
   4550 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4551 	 * value, so the fault must be due to a stale TLB entry.
   4552 	 *
   4553 	 * Since we always need to flush the TLB anyway in the case where we
   4554 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4555 	 * stale TLB entries dynamically.
   4556 	 *
   4557 	 * However, the above condition can ONLY happen if the current L1 is
   4558 	 * being shared. If it happens when the L1 is unshared, it indicates
   4559 	 * that other parts of the pmap are not doing their job WRT managing
   4560 	 * the TLB.
   4561 	 */
   4562 	if (rv == 0
   4563 #ifndef ARM_MMU_EXTENDED
   4564 	    && pm->pm_l1->l1_domain_use_count == 1
   4565 #endif
   4566 	    && true) {
   4567 #ifdef DEBUG
   4568 		extern int last_fault_code;
   4569 #else
   4570 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4571 		    ? armreg_ifsr_read()
   4572 		    : armreg_dfsr_read();
   4573 #endif
   4574 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4575 		    pm, va, ftype);
   4576 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4577 		    l2, l2b, ptep, opte);
   4578 
   4579 #ifndef ARM_MMU_EXTENDED
   4580 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4581 		    pdep, pde, last_fault_code);
   4582 #else
   4583 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4584 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4585 		   armreg_ttbcr_read());
   4586 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4587 		    last_fault_code, curcpu()->ci_pmap_cur,
   4588 		    curcpu()->ci_pmap_asid_cur,
   4589 		    armreg_contextidr_read(), armreg_dacr_read());
   4590 #ifdef _ARM_ARCH_7
   4591 		if (ftype & VM_PROT_WRITE)
   4592 			armreg_ats1cuw_write(va);
   4593 		else
   4594 			armreg_ats1cur_write(va);
   4595 		arm_isb();
   4596 		printf("fixup: par %#x\n", armreg_par_read());
   4597 #endif
   4598 #endif
   4599 #ifdef DDB
   4600 		extern int kernel_debug;
   4601 
   4602 		if (kernel_debug & 2) {
   4603 			pmap_release_pmap_lock(pm);
   4604 #ifdef UVMHIST
   4605 			KERNHIST_DUMP(maphist);
   4606 #endif
   4607 			cpu_Debugger();
   4608 			pmap_acquire_pmap_lock(pm);
   4609 		}
   4610 #endif
   4611 	}
   4612 #endif
   4613 
   4614 	pmap_tlb_flush_SE(pm, va,
   4615 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4616 
   4617 	rv = 1;
   4618 
   4619 out:
   4620 	pmap_release_pmap_lock(pm);
   4621 
   4622 	return (rv);
   4623 }
   4624 
   4625 /*
   4626  * Routine:	pmap_procwr
   4627  *
   4628  * Function:
   4629  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4630  *
   4631  */
   4632 void
   4633 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4634 {
   4635 	/* We only need to do anything if it is the current process. */
   4636 	if (p == curproc)
   4637 		cpu_icache_sync_range(va, len);
   4638 }
   4639 
   4640 /*
   4641  * Routine:	pmap_unwire
   4642  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4643  *
   4644  * In/out conditions:
   4645  *		The mapping must already exist in the pmap.
   4646  */
   4647 void
   4648 pmap_unwire(pmap_t pm, vaddr_t va)
   4649 {
   4650 	struct l2_bucket *l2b;
   4651 	pt_entry_t *ptep, pte;
   4652 	struct vm_page *pg;
   4653 	paddr_t pa;
   4654 
   4655 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4656 
   4657 	pmap_acquire_pmap_lock(pm);
   4658 
   4659 	l2b = pmap_get_l2_bucket(pm, va);
   4660 	KDASSERT(l2b != NULL);
   4661 
   4662 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4663 	pte = *ptep;
   4664 
   4665 	/* Extract the physical address of the page */
   4666 	pa = l2pte_pa(pte);
   4667 
   4668 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4669 		/* Update the wired bit in the pv entry for this page. */
   4670 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4671 
   4672 		pmap_acquire_page_lock(md);
   4673 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4674 		pmap_release_page_lock(md);
   4675 	}
   4676 
   4677 	pmap_release_pmap_lock(pm);
   4678 }
   4679 
   4680 void
   4681 pmap_activate(struct lwp *l)
   4682 {
   4683 	struct cpu_info * const ci = curcpu();
   4684 	extern int block_userspace_access;
   4685 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   4686 #ifdef ARM_MMU_EXTENDED
   4687 	struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
   4688 #endif
   4689 
   4690 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4691 
   4692 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
   4693 
   4694 	/*
   4695 	 * If activating a non-current lwp or the current lwp is
   4696 	 * already active, just return.
   4697 	 */
   4698 	if (false
   4699 	    || l != curlwp
   4700 #ifdef ARM_MMU_EXTENDED
   4701 	    || (ci->ci_pmap_cur == npm &&
   4702 		(npm == pmap_kernel()
   4703 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   4704 #else
   4705 	    || npm->pm_activated == true
   4706 #endif
   4707 	    || false) {
   4708 		UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
   4709 		return;
   4710 	}
   4711 
   4712 #ifndef ARM_MMU_EXTENDED
   4713 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4714 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4715 
   4716 	/*
   4717 	 * If TTB and DACR are unchanged, short-circuit all the
   4718 	 * TLB/cache management stuff.
   4719 	 */
   4720 	pmap_t opm = ci->ci_lastlwp
   4721 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   4722 	    : NULL;
   4723 	if (opm != NULL) {
   4724 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4725 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4726 
   4727 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4728 			goto all_done;
   4729 	}
   4730 #endif /* !ARM_MMU_EXTENDED */
   4731 
   4732 	PMAPCOUNT(activations);
   4733 	block_userspace_access = 1;
   4734 
   4735 #ifndef ARM_MMU_EXTENDED
   4736 	/*
   4737 	 * If switching to a user vmspace which is different to the
   4738 	 * most recent one, and the most recent one is potentially
   4739 	 * live in the cache, we must write-back and invalidate the
   4740 	 * entire cache.
   4741 	 */
   4742 	pmap_t rpm = ci->ci_pmap_lastuser;
   4743 #endif
   4744 
   4745 /*
   4746  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4747  * reported in kern/41058. They're probably left over during tear-down and
   4748  * switching away from an exiting process. Until the root cause is identified
   4749  * and fixed, zap the cache when switching pmaps. This will result in a few
   4750  * unnecessary cache flushes, but that's better than silently corrupting data.
   4751  */
   4752 #ifndef ARM_MMU_EXTENDED
   4753 #if 0
   4754 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4755 	    rpm->pm_cstate.cs_cache) {
   4756 		rpm->pm_cstate.cs_cache = 0;
   4757 #ifdef PMAP_CACHE_VIVT
   4758 		cpu_idcache_wbinv_all();
   4759 #endif
   4760 	}
   4761 #else
   4762 	if (rpm) {
   4763 		rpm->pm_cstate.cs_cache = 0;
   4764 		if (npm == pmap_kernel())
   4765 			ci->ci_pmap_lastuser = NULL;
   4766 #ifdef PMAP_CACHE_VIVT
   4767 		cpu_idcache_wbinv_all();
   4768 #endif
   4769 	}
   4770 #endif
   4771 
   4772 	/* No interrupts while we frob the TTB/DACR */
   4773 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   4774 #endif /* !ARM_MMU_EXTENDED */
   4775 
   4776 #ifndef ARM_HAS_VBAR
   4777 	/*
   4778 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4779 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4780 	 * before switching to it otherwise subsequent interrupts/exceptions
   4781 	 * (including domain faults!) will jump into hyperspace.
   4782 	 */
   4783 	if (npm->pm_pl1vec != NULL) {
   4784 		cpu_tlb_flushID_SE((u_int)vector_page);
   4785 		cpu_cpwait();
   4786 		*npm->pm_pl1vec = npm->pm_l1vec;
   4787 		PTE_SYNC(npm->pm_pl1vec);
   4788 	}
   4789 #endif
   4790 
   4791 #ifdef ARM_MMU_EXTENDED
   4792 	/*
   4793 	 * Assume that TTBR1 has only global mappings and TTBR0 only has
   4794 	 * non-global mappings.  To prevent speculation from doing evil things
   4795 	 * we disable translation table walks using TTBR0 before setting the
   4796 	 * CONTEXTIDR (ASID) or new TTBR0 value.  Once both are set, table
   4797 	 * walks are reenabled.
   4798 	 */
   4799 	UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
   4800 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4801 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4802 	arm_isb();
   4803 	pmap_tlb_asid_acquire(npm, l);
   4804 	UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
   4805 	cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
   4806 	/*
   4807 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
   4808 	 * been updated.
   4809 	 */
   4810 	arm_isb();
   4811 	if (npm != pmap_kernel()) {
   4812 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4813 	}
   4814 	cpu_cpwait();
   4815 	ci->ci_pmap_asid_cur = pai->pai_asid;
   4816 #else
   4817 	cpu_domains(ndacr);
   4818 	if (npm == pmap_kernel() || npm == rpm) {
   4819 		/*
   4820 		 * Switching to a kernel thread, or back to the
   4821 		 * same user vmspace as before... Simply update
   4822 		 * the TTB (no TLB flush required)
   4823 		 */
   4824 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4825 		cpu_cpwait();
   4826 	} else {
   4827 		/*
   4828 		 * Otherwise, update TTB and flush TLB
   4829 		 */
   4830 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4831 		if (rpm != NULL)
   4832 			rpm->pm_cstate.cs_tlb = 0;
   4833 	}
   4834 
   4835 	restore_interrupts(oldirqstate);
   4836 #endif /* ARM_MMU_EXTENDED */
   4837 
   4838 	block_userspace_access = 0;
   4839 
   4840 #ifndef ARM_MMU_EXTENDED
   4841  all_done:
   4842 	/*
   4843 	 * The new pmap is resident. Make sure it's marked
   4844 	 * as resident in the cache/TLB.
   4845 	 */
   4846 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4847 	if (npm != pmap_kernel())
   4848 		ci->ci_pmap_lastuser = npm;
   4849 
   4850 	/* The old pmap is not longer active */
   4851 	if (opm != npm) {
   4852 		if (opm != NULL)
   4853 			opm->pm_activated = false;
   4854 
   4855 		/* But the new one is */
   4856 		npm->pm_activated = true;
   4857 	}
   4858 #endif
   4859 	ci->ci_pmap_cur = npm;
   4860 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   4861 }
   4862 
   4863 void
   4864 pmap_deactivate(struct lwp *l)
   4865 {
   4866 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   4867 
   4868 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4869 
   4870 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
   4871 
   4872 #ifdef ARM_MMU_EXTENDED
   4873 	kpreempt_disable();
   4874 	struct cpu_info * const ci = curcpu();
   4875 	/*
   4876 	 * Disable translation table walks from TTBR0 while no pmap has been
   4877 	 * activated.
   4878 	 */
   4879 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4880 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4881 	arm_isb();
   4882 	pmap_tlb_asid_deactivate(pm);
   4883 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
   4884 	ci->ci_pmap_cur = pmap_kernel();
   4885 	kpreempt_enable();
   4886 #else
   4887 	/*
   4888 	 * If the process is exiting, make sure pmap_activate() does
   4889 	 * a full MMU context-switch and cache flush, which we might
   4890 	 * otherwise skip. See PR port-arm/38950.
   4891 	 */
   4892 	if (l->l_proc->p_sflag & PS_WEXIT)
   4893 		curcpu()->ci_lastlwp = NULL;
   4894 
   4895 	pm->pm_activated = false;
   4896 #endif
   4897 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   4898 }
   4899 
   4900 void
   4901 pmap_update(pmap_t pm)
   4902 {
   4903 
   4904 	if (pm->pm_remove_all) {
   4905 #ifdef ARM_MMU_EXTENDED
   4906 		KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   4907 		/*
   4908 		 * Finish up the pmap_remove_all() optimisation by flushing
   4909 		 * all our ASIDs.
   4910 		 */
   4911 		pmap_tlb_asid_release_all(pm);
   4912 #else
   4913 		/*
   4914 		 * Finish up the pmap_remove_all() optimisation by flushing
   4915 		 * the TLB.
   4916 		 */
   4917 		pmap_tlb_flushID(pm);
   4918 #endif
   4919 		pm->pm_remove_all = false;
   4920 	}
   4921 
   4922 #ifdef ARM_MMU_EXTENDED
   4923 
   4924 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
   4925 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   4926 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   4927 		PMAP_COUNT(shootdown_ipis);
   4928 	}
   4929 #endif
   4930 	KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   4931 #else
   4932 	if (pmap_is_current(pm)) {
   4933 		/*
   4934 		 * If we're dealing with a current userland pmap, move its L1
   4935 		 * to the end of the LRU.
   4936 		 */
   4937 		if (pm != pmap_kernel())
   4938 			pmap_use_l1(pm);
   4939 
   4940 		/*
   4941 		 * We can assume we're done with frobbing the cache/tlb for
   4942 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4943 		 * flushes.
   4944 		 */
   4945 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4946 	}
   4947 #endif
   4948 
   4949 	PMAPCOUNT(updates);
   4950 
   4951 	/*
   4952 	 * make sure TLB/cache operations have completed.
   4953 	 */
   4954 	cpu_cpwait();
   4955 }
   4956 
   4957 void
   4958 pmap_remove_all(pmap_t pm)
   4959 {
   4960 
   4961 	/*
   4962 	 * The vmspace described by this pmap is about to be torn down.
   4963 	 * Until pmap_update() is called, UVM will only make calls
   4964 	 * to pmap_remove(). We can make life much simpler by flushing
   4965 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4966 	 */
   4967 #ifdef PMAP_CACHE_VIVT
   4968 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   4969 #endif
   4970 	pm->pm_remove_all = true;
   4971 }
   4972 
   4973 /*
   4974  * Retire the given physical map from service.
   4975  * Should only be called if the map contains no valid mappings.
   4976  */
   4977 void
   4978 pmap_destroy(pmap_t pm)
   4979 {
   4980 	u_int count;
   4981 
   4982 	if (pm == NULL)
   4983 		return;
   4984 
   4985 	if (pm->pm_remove_all) {
   4986 		pmap_tlb_flushID(pm);
   4987 		pm->pm_remove_all = false;
   4988 	}
   4989 
   4990 	/*
   4991 	 * Drop reference count
   4992 	 */
   4993 	mutex_enter(pm->pm_lock);
   4994 	count = --pm->pm_obj.uo_refs;
   4995 	mutex_exit(pm->pm_lock);
   4996 	if (count > 0) {
   4997 #ifndef ARM_MMU_EXTENDED
   4998 		if (pmap_is_current(pm)) {
   4999 			if (pm != pmap_kernel())
   5000 				pmap_use_l1(pm);
   5001 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5002 		}
   5003 #endif
   5004 		return;
   5005 	}
   5006 
   5007 	/*
   5008 	 * reference count is zero, free pmap resources and then free pmap.
   5009 	 */
   5010 
   5011 #ifndef ARM_HAS_VBAR
   5012 	if (vector_page < KERNEL_BASE) {
   5013 		KDASSERT(!pmap_is_current(pm));
   5014 
   5015 		/* Remove the vector page mapping */
   5016 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5017 		pmap_update(pm);
   5018 	}
   5019 #endif
   5020 
   5021 	LIST_REMOVE(pm, pm_list);
   5022 
   5023 	pmap_free_l1(pm);
   5024 
   5025 #ifdef ARM_MMU_EXTENDED
   5026 #ifdef MULTIPROCESSOR
   5027 	kcpuset_destroy(pm->pm_active);
   5028 	kcpuset_destroy(pm->pm_onproc);
   5029 #endif
   5030 #else
   5031 	struct cpu_info * const ci = curcpu();
   5032 	if (ci->ci_pmap_lastuser == pm)
   5033 		ci->ci_pmap_lastuser = NULL;
   5034 #endif
   5035 
   5036 	uvm_obj_destroy(&pm->pm_obj, false);
   5037 	mutex_destroy(&pm->pm_obj_lock);
   5038 	pool_cache_put(&pmap_cache, pm);
   5039 }
   5040 
   5041 
   5042 /*
   5043  * void pmap_reference(pmap_t pm)
   5044  *
   5045  * Add a reference to the specified pmap.
   5046  */
   5047 void
   5048 pmap_reference(pmap_t pm)
   5049 {
   5050 
   5051 	if (pm == NULL)
   5052 		return;
   5053 
   5054 #ifndef ARM_MMU_EXTENDED
   5055 	pmap_use_l1(pm);
   5056 #endif
   5057 
   5058 	mutex_enter(pm->pm_lock);
   5059 	pm->pm_obj.uo_refs++;
   5060 	mutex_exit(pm->pm_lock);
   5061 }
   5062 
   5063 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5064 
   5065 static struct evcnt pmap_prefer_nochange_ev =
   5066     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5067 static struct evcnt pmap_prefer_change_ev =
   5068     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5069 
   5070 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5071 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5072 
   5073 void
   5074 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5075 {
   5076 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5077 	vaddr_t va = *vap;
   5078 	vaddr_t diff = (hint - va) & mask;
   5079 	if (diff == 0) {
   5080 		pmap_prefer_nochange_ev.ev_count++;
   5081 	} else {
   5082 		pmap_prefer_change_ev.ev_count++;
   5083 		if (__predict_false(td))
   5084 			va -= mask + 1;
   5085 		*vap = va + diff;
   5086 	}
   5087 }
   5088 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5089 
   5090 /*
   5091  * pmap_zero_page()
   5092  *
   5093  * Zero a given physical page by mapping it at a page hook point.
   5094  * In doing the zero page op, the page we zero is mapped cachable, as with
   5095  * StrongARM accesses to non-cached pages are non-burst making writing
   5096  * _any_ bulk data very slow.
   5097  */
   5098 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5099 void
   5100 pmap_zero_page_generic(paddr_t pa)
   5101 {
   5102 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5103 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5104 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5105 #endif
   5106 #if defined(PMAP_CACHE_VIPT)
   5107 	/* Choose the last page color it had, if any */
   5108 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5109 #else
   5110 	const vsize_t va_offset = 0;
   5111 #endif
   5112 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5113 	/*
   5114 	 * Is this page mapped at its natural color?
   5115 	 * If we have all of memory mapped, then just convert PA to VA.
   5116 	 */
   5117 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5118 	   || va_offset == (pa & arm_cache_prefer_mask);
   5119 	const vaddr_t vdstp = okcolor
   5120 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5121 	    : cpu_cdstp(va_offset);
   5122 #else
   5123 	const bool okcolor = false;
   5124 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5125 #endif
   5126 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5127 
   5128 
   5129 #ifdef DEBUG
   5130 	if (!SLIST_EMPTY(&md->pvh_list))
   5131 		panic("pmap_zero_page: page has mappings");
   5132 #endif
   5133 
   5134 	KDASSERT((pa & PGOFSET) == 0);
   5135 
   5136 	if (!okcolor) {
   5137 		/*
   5138 		 * Hook in the page, zero it, and purge the cache for that
   5139 		 * zeroed page. Invalidate the TLB as needed.
   5140 		 */
   5141 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5142 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5143 		l2pte_set(ptep, npte, 0);
   5144 		PTE_SYNC(ptep);
   5145 		cpu_tlb_flushD_SE(vdstp);
   5146 		cpu_cpwait();
   5147 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5148     && !defined(ARM_MMU_EXTENDED)
   5149 		/*
   5150 		 * If we are direct-mapped and our color isn't ok, then before
   5151 		 * we bzero the page invalidate its contents from the cache and
   5152 		 * reset the color to its natural color.
   5153 		 */
   5154 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5155 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5156 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5157 #endif
   5158 	}
   5159 	bzero_page(vdstp);
   5160 	if (!okcolor) {
   5161 		/*
   5162 		 * Unmap the page.
   5163 		 */
   5164 		l2pte_reset(ptep);
   5165 		PTE_SYNC(ptep);
   5166 		cpu_tlb_flushD_SE(vdstp);
   5167 #ifdef PMAP_CACHE_VIVT
   5168 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5169 #endif
   5170 	}
   5171 #ifdef PMAP_CACHE_VIPT
   5172 	/*
   5173 	 * This page is now cache resident so it now has a page color.
   5174 	 * Any contents have been obliterated so clear the EXEC flag.
   5175 	 */
   5176 #ifndef ARM_MMU_EXTENDED
   5177 	if (!pmap_is_page_colored_p(md)) {
   5178 		PMAPCOUNT(vac_color_new);
   5179 		md->pvh_attrs |= PVF_COLORED;
   5180 	}
   5181 	md->pvh_attrs |= PVF_DIRTY;
   5182 #endif
   5183 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5184 		md->pvh_attrs &= ~PVF_EXEC;
   5185 		PMAPCOUNT(exec_discarded_zero);
   5186 	}
   5187 #endif
   5188 }
   5189 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5190 
   5191 #if ARM_MMU_XSCALE == 1
   5192 void
   5193 pmap_zero_page_xscale(paddr_t pa)
   5194 {
   5195 #ifdef DEBUG
   5196 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5197 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5198 
   5199 	if (!SLIST_EMPTY(&md->pvh_list))
   5200 		panic("pmap_zero_page: page has mappings");
   5201 #endif
   5202 
   5203 	KDASSERT((pa & PGOFSET) == 0);
   5204 
   5205 	/*
   5206 	 * Hook in the page, zero it, and purge the cache for that
   5207 	 * zeroed page. Invalidate the TLB as needed.
   5208 	 */
   5209 
   5210 	pt_entry_t npte = L2_S_PROTO | pa |
   5211 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5212 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5213 	l2pte_set(cdst_pte, npte, 0);
   5214 	PTE_SYNC(cdst_pte);
   5215 	cpu_tlb_flushD_SE(cdstp);
   5216 	cpu_cpwait();
   5217 	bzero_page(cdstp);
   5218 	xscale_cache_clean_minidata();
   5219 	l2pte_reset(cdst_pte);
   5220 	PTE_SYNC(cdst_pte);
   5221 }
   5222 #endif /* ARM_MMU_XSCALE == 1 */
   5223 
   5224 /* pmap_pageidlezero()
   5225  *
   5226  * The same as above, except that we assume that the page is not
   5227  * mapped.  This means we never have to flush the cache first.  Called
   5228  * from the idle loop.
   5229  */
   5230 bool
   5231 pmap_pageidlezero(paddr_t pa)
   5232 {
   5233 	bool rv = true;
   5234 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5235 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5236 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5237 #endif
   5238 #ifdef PMAP_CACHE_VIPT
   5239 	/* Choose the last page color it had, if any */
   5240 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5241 #else
   5242 	const vsize_t va_offset = 0;
   5243 #endif
   5244 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5245 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5246 	   || va_offset == (pa & arm_cache_prefer_mask);
   5247 	const vaddr_t vdstp = okcolor
   5248 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5249 	    : cpu_cdstp(va_offset);
   5250 #else
   5251 	const bool okcolor = false;
   5252 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5253 #endif
   5254 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5255 
   5256 
   5257 #ifdef DEBUG
   5258 	if (!SLIST_EMPTY(&md->pvh_list))
   5259 		panic("pmap_pageidlezero: page has mappings");
   5260 #endif
   5261 
   5262 	KDASSERT((pa & PGOFSET) == 0);
   5263 
   5264 	if (!okcolor) {
   5265 		/*
   5266 		 * Hook in the page, zero it, and purge the cache for that
   5267 		 * zeroed page. Invalidate the TLB as needed.
   5268 		 */
   5269 		const pt_entry_t npte = L2_S_PROTO | pa |
   5270 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5271 		l2pte_set(ptep, npte, 0);
   5272 		PTE_SYNC(ptep);
   5273 		cpu_tlb_flushD_SE(vdstp);
   5274 		cpu_cpwait();
   5275 	}
   5276 
   5277 	uint64_t *ptr = (uint64_t *)vdstp;
   5278 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5279 		if (sched_curcpu_runnable_p() != 0) {
   5280 			/*
   5281 			 * A process has become ready.  Abort now,
   5282 			 * so we don't keep it waiting while we
   5283 			 * do slow memory access to finish this
   5284 			 * page.
   5285 			 */
   5286 			rv = false;
   5287 			break;
   5288 		}
   5289 		*ptr++ = 0;
   5290 	}
   5291 
   5292 #ifdef PMAP_CACHE_VIVT
   5293 	if (rv)
   5294 		/*
   5295 		 * if we aborted we'll rezero this page again later so don't
   5296 		 * purge it unless we finished it
   5297 		 */
   5298 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5299 #elif defined(PMAP_CACHE_VIPT)
   5300 	/*
   5301 	 * This page is now cache resident so it now has a page color.
   5302 	 * Any contents have been obliterated so clear the EXEC flag.
   5303 	 */
   5304 #ifndef ARM_MMU_EXTENDED
   5305 	if (!pmap_is_page_colored_p(md)) {
   5306 		PMAPCOUNT(vac_color_new);
   5307 		md->pvh_attrs |= PVF_COLORED;
   5308 	}
   5309 #endif
   5310 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5311 		md->pvh_attrs &= ~PVF_EXEC;
   5312 		PMAPCOUNT(exec_discarded_zero);
   5313 	}
   5314 #endif
   5315 	/*
   5316 	 * Unmap the page.
   5317 	 */
   5318 	if (!okcolor) {
   5319 		l2pte_reset(ptep);
   5320 		PTE_SYNC(ptep);
   5321 		cpu_tlb_flushD_SE(vdstp);
   5322 	}
   5323 
   5324 	return rv;
   5325 }
   5326 
   5327 /*
   5328  * pmap_copy_page()
   5329  *
   5330  * Copy one physical page into another, by mapping the pages into
   5331  * hook points. The same comment regarding cachability as in
   5332  * pmap_zero_page also applies here.
   5333  */
   5334 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5335 void
   5336 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5337 {
   5338 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5339 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5340 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5341 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5342 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5343 #endif
   5344 #ifdef PMAP_CACHE_VIPT
   5345 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5346 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5347 #else
   5348 	const vsize_t src_va_offset = 0;
   5349 	const vsize_t dst_va_offset = 0;
   5350 #endif
   5351 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5352 	/*
   5353 	 * Is this page mapped at its natural color?
   5354 	 * If we have all of memory mapped, then just convert PA to VA.
   5355 	 */
   5356 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5357 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5358 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5359 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5360 	const vaddr_t vsrcp = src_okcolor
   5361 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5362 		cpu_csrcp(src_va_offset))
   5363 	    : cpu_csrcp(src_va_offset);
   5364 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5365 	    cpu_cdstp(dst_va_offset));
   5366 #else
   5367 	const bool src_okcolor = false;
   5368 	const bool dst_okcolor = false;
   5369 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5370 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5371 #endif
   5372 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5373 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5374 
   5375 #ifdef DEBUG
   5376 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5377 		panic("pmap_copy_page: dst page has mappings");
   5378 #endif
   5379 
   5380 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5381 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5382 #endif
   5383 	KDASSERT((src & PGOFSET) == 0);
   5384 	KDASSERT((dst & PGOFSET) == 0);
   5385 
   5386 	/*
   5387 	 * Clean the source page.  Hold the source page's lock for
   5388 	 * the duration of the copy so that no other mappings can
   5389 	 * be created while we have a potentially aliased mapping.
   5390 	 */
   5391 #ifdef PMAP_CACHE_VIVT
   5392 	pmap_acquire_page_lock(src_md);
   5393 	(void) pmap_clean_page(src_md, true);
   5394 	pmap_release_page_lock(src_md);
   5395 #endif
   5396 
   5397 	/*
   5398 	 * Map the pages into the page hook points, copy them, and purge
   5399 	 * the cache for the appropriate page. Invalidate the TLB
   5400 	 * as required.
   5401 	 */
   5402 	if (!src_okcolor) {
   5403 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5404 		    | src
   5405 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5406 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5407 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5408 		    | pte_l2_s_cache_mode
   5409 #endif
   5410 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5411 		l2pte_set(src_ptep, nsrc_pte, 0);
   5412 		PTE_SYNC(src_ptep);
   5413 		cpu_tlb_flushD_SE(vsrcp);
   5414 		cpu_cpwait();
   5415 	}
   5416 	if (!dst_okcolor) {
   5417 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5418 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5419 		l2pte_set(dst_ptep, ndst_pte, 0);
   5420 		PTE_SYNC(dst_ptep);
   5421 		cpu_tlb_flushD_SE(vdstp);
   5422 		cpu_cpwait();
   5423 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5424 		/*
   5425 		 * If we are direct-mapped and our color isn't ok, then before
   5426 		 * we bcopy to the new page invalidate its contents from the
   5427 		 * cache and reset its color to its natural color.
   5428 		 */
   5429 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5430 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5431 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5432 #endif
   5433 	}
   5434 	bcopy_page(vsrcp, vdstp);
   5435 #ifdef PMAP_CACHE_VIVT
   5436 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5437 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5438 #endif
   5439 	/*
   5440 	 * Unmap the pages.
   5441 	 */
   5442 	if (!src_okcolor) {
   5443 		l2pte_reset(src_ptep);
   5444 		PTE_SYNC(src_ptep);
   5445 		cpu_tlb_flushD_SE(vsrcp);
   5446 		cpu_cpwait();
   5447 	}
   5448 	if (!dst_okcolor) {
   5449 		l2pte_reset(dst_ptep);
   5450 		PTE_SYNC(dst_ptep);
   5451 		cpu_tlb_flushD_SE(vdstp);
   5452 		cpu_cpwait();
   5453 	}
   5454 #ifdef PMAP_CACHE_VIPT
   5455 	/*
   5456 	 * Now that the destination page is in the cache, mark it as colored.
   5457 	 * If this was an exec page, discard it.
   5458 	 */
   5459 	pmap_acquire_page_lock(dst_md);
   5460 #ifndef ARM_MMU_EXTENDED
   5461 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5462 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5463 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5464 	}
   5465 	if (!pmap_is_page_colored_p(dst_md)) {
   5466 		PMAPCOUNT(vac_color_new);
   5467 		dst_md->pvh_attrs |= PVF_COLORED;
   5468 	}
   5469 	dst_md->pvh_attrs |= PVF_DIRTY;
   5470 #endif
   5471 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5472 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5473 		PMAPCOUNT(exec_discarded_copy);
   5474 	}
   5475 	pmap_release_page_lock(dst_md);
   5476 #endif
   5477 }
   5478 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5479 
   5480 #if ARM_MMU_XSCALE == 1
   5481 void
   5482 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5483 {
   5484 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5485 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5486 #ifdef DEBUG
   5487 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5488 
   5489 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5490 		panic("pmap_copy_page: dst page has mappings");
   5491 #endif
   5492 
   5493 	KDASSERT((src & PGOFSET) == 0);
   5494 	KDASSERT((dst & PGOFSET) == 0);
   5495 
   5496 	/*
   5497 	 * Clean the source page.  Hold the source page's lock for
   5498 	 * the duration of the copy so that no other mappings can
   5499 	 * be created while we have a potentially aliased mapping.
   5500 	 */
   5501 #ifdef PMAP_CACHE_VIVT
   5502 	pmap_acquire_page_lock(src_md);
   5503 	(void) pmap_clean_page(src_md, true);
   5504 	pmap_release_page_lock(src_md);
   5505 #endif
   5506 
   5507 	/*
   5508 	 * Map the pages into the page hook points, copy them, and purge
   5509 	 * the cache for the appropriate page. Invalidate the TLB
   5510 	 * as required.
   5511 	 */
   5512 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
   5513 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   5514 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5515 	l2pte_set(csrc_pte, nsrc_pte, 0);
   5516 	PTE_SYNC(csrc_pte);
   5517 
   5518 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
   5519 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
   5520 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5521 	l2pte_set(cdst_pte, ndst_pte, 0);
   5522 	PTE_SYNC(cdst_pte);
   5523 
   5524 	cpu_tlb_flushD_SE(csrcp);
   5525 	cpu_tlb_flushD_SE(cdstp);
   5526 	cpu_cpwait();
   5527 	bcopy_page(csrcp, cdstp);
   5528 	xscale_cache_clean_minidata();
   5529 	l2pte_reset(csrc_pte);
   5530 	l2pte_reset(cdst_pte);
   5531 	PTE_SYNC(csrc_pte);
   5532 	PTE_SYNC(cdst_pte);
   5533 }
   5534 #endif /* ARM_MMU_XSCALE == 1 */
   5535 
   5536 /*
   5537  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5538  *
   5539  * Return the start and end addresses of the kernel's virtual space.
   5540  * These values are setup in pmap_bootstrap and are updated as pages
   5541  * are allocated.
   5542  */
   5543 void
   5544 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5545 {
   5546 	*start = virtual_avail;
   5547 	*end = virtual_end;
   5548 }
   5549 
   5550 /*
   5551  * Helper function for pmap_grow_l2_bucket()
   5552  */
   5553 static inline int
   5554 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5555 {
   5556 	paddr_t pa;
   5557 
   5558 	if (uvm.page_init_done == false) {
   5559 #ifdef PMAP_STEAL_MEMORY
   5560 		pv_addr_t pv;
   5561 		pmap_boot_pagealloc(PAGE_SIZE,
   5562 #ifdef PMAP_CACHE_VIPT
   5563 		    arm_cache_prefer_mask,
   5564 		    va & arm_cache_prefer_mask,
   5565 #else
   5566 		    0, 0,
   5567 #endif
   5568 		    &pv);
   5569 		pa = pv.pv_pa;
   5570 #else
   5571 		if (uvm_page_physget(&pa) == false)
   5572 			return (1);
   5573 #endif	/* PMAP_STEAL_MEMORY */
   5574 	} else {
   5575 		struct vm_page *pg;
   5576 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5577 		if (pg == NULL)
   5578 			return (1);
   5579 		pa = VM_PAGE_TO_PHYS(pg);
   5580 		/*
   5581 		 * This new page must not have any mappings.  Enter it via
   5582 		 * pmap_kenter_pa and let that routine do the hard work.
   5583 		 */
   5584 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5585 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5586 		pmap_kenter_pa(va, pa,
   5587 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5588 	}
   5589 
   5590 	if (pap)
   5591 		*pap = pa;
   5592 
   5593 	PMAPCOUNT(pt_mappings);
   5594 #ifdef DEBUG
   5595 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5596 	KDASSERT(l2b != NULL);
   5597 
   5598 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   5599 	const pt_entry_t opte = *ptep;
   5600 	KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   5601 #endif
   5602 	memset((void *)va, 0, PAGE_SIZE);
   5603 	return (0);
   5604 }
   5605 
   5606 /*
   5607  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   5608  * used by pmap_growkernel().
   5609  */
   5610 static inline struct l2_bucket *
   5611 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   5612 {
   5613 	struct l2_dtable *l2;
   5614 	struct l2_bucket *l2b;
   5615 	u_short l1slot;
   5616 	vaddr_t nva;
   5617 
   5618 	l1slot = l1pte_index(va);
   5619 
   5620 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   5621 		/*
   5622 		 * No mapping at this address, as there is
   5623 		 * no entry in the L1 table.
   5624 		 * Need to allocate a new l2_dtable.
   5625 		 */
   5626 		nva = pmap_kernel_l2dtable_kva;
   5627 		if ((nva & PGOFSET) == 0) {
   5628 			/*
   5629 			 * Need to allocate a backing page
   5630 			 */
   5631 			if (pmap_grow_map(nva, NULL))
   5632 				return (NULL);
   5633 		}
   5634 
   5635 		l2 = (struct l2_dtable *)nva;
   5636 		nva += sizeof(struct l2_dtable);
   5637 
   5638 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   5639 			/*
   5640 			 * The new l2_dtable straddles a page boundary.
   5641 			 * Map in another page to cover it.
   5642 			 */
   5643 			if (pmap_grow_map(nva, NULL))
   5644 				return (NULL);
   5645 		}
   5646 
   5647 		pmap_kernel_l2dtable_kva = nva;
   5648 
   5649 		/*
   5650 		 * Link it into the parent pmap
   5651 		 */
   5652 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   5653 	}
   5654 
   5655 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   5656 
   5657 	/*
   5658 	 * Fetch pointer to the L2 page table associated with the address.
   5659 	 */
   5660 	if (l2b->l2b_kva == NULL) {
   5661 		pt_entry_t *ptep;
   5662 
   5663 		/*
   5664 		 * No L2 page table has been allocated. Chances are, this
   5665 		 * is because we just allocated the l2_dtable, above.
   5666 		 */
   5667 		nva = pmap_kernel_l2ptp_kva;
   5668 		ptep = (pt_entry_t *)nva;
   5669 		if ((nva & PGOFSET) == 0) {
   5670 			/*
   5671 			 * Need to allocate a backing page
   5672 			 */
   5673 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   5674 				return (NULL);
   5675 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   5676 		}
   5677 
   5678 		l2->l2_occupancy++;
   5679 		l2b->l2b_kva = ptep;
   5680 		l2b->l2b_l1slot = l1slot;
   5681 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   5682 
   5683 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   5684 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   5685 	}
   5686 
   5687 	return (l2b);
   5688 }
   5689 
   5690 vaddr_t
   5691 pmap_growkernel(vaddr_t maxkvaddr)
   5692 {
   5693 	pmap_t kpm = pmap_kernel();
   5694 #ifndef ARM_MMU_EXTENDED
   5695 	struct l1_ttable *l1;
   5696 #endif
   5697 	int s;
   5698 
   5699 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5700 		goto out;		/* we are OK */
   5701 
   5702 	NPDEBUG(PDB_GROWKERN,
   5703 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5704 	    pmap_curmaxkvaddr, maxkvaddr));
   5705 
   5706 	KDASSERT(maxkvaddr <= virtual_end);
   5707 
   5708 	/*
   5709 	 * whoops!   we need to add kernel PTPs
   5710 	 */
   5711 
   5712 	s = splhigh();	/* to be safe */
   5713 	mutex_enter(kpm->pm_lock);
   5714 
   5715 	/* Map 1MB at a time */
   5716 	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
   5717 #ifdef ARM_MMU_EXTENDED
   5718 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   5719 	pd_entry_t *pdep = spdep;
   5720 #endif
   5721 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   5722 #ifdef ARM_MMU_EXTENDED
   5723 	     pdep++,
   5724 #endif
   5725 	     l1slot++) {
   5726 		struct l2_bucket *l2b =
   5727 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5728 		KASSERT(l2b != NULL);
   5729 
   5730 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   5731 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   5732 #ifdef ARM_MMU_EXTENDED
   5733 		l1pte_setone(pdep, npde);
   5734 #else
   5735 		/* Distribute new L1 entry to all other L1s */
   5736 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5737 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   5738 			l1pte_setone(pdep, npde);
   5739 			PDE_SYNC(pdep);
   5740 		}
   5741 #endif
   5742 	}
   5743 #ifdef ARM_MMU_EXTENDED
   5744 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   5745 #endif
   5746 
   5747 #ifdef PMAP_CACHE_VIVT
   5748 	/*
   5749 	 * flush out the cache, expensive but growkernel will happen so
   5750 	 * rarely
   5751 	 */
   5752 	cpu_dcache_wbinv_all();
   5753 	cpu_tlb_flushD();
   5754 	cpu_cpwait();
   5755 #endif
   5756 
   5757 	mutex_exit(kpm->pm_lock);
   5758 	splx(s);
   5759 
   5760 out:
   5761 	return (pmap_curmaxkvaddr);
   5762 }
   5763 
   5764 /************************ Utility routines ****************************/
   5765 
   5766 #ifndef ARM_HAS_VBAR
   5767 /*
   5768  * vector_page_setprot:
   5769  *
   5770  *	Manipulate the protection of the vector page.
   5771  */
   5772 void
   5773 vector_page_setprot(int prot)
   5774 {
   5775 	struct l2_bucket *l2b;
   5776 	pt_entry_t *ptep;
   5777 
   5778 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5779 	/*
   5780 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5781 	 * already mapped in the kernel text so no need to anything here.
   5782 	 */
   5783 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5784 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5785 		return;
   5786 	}
   5787 #endif
   5788 
   5789 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5790 	KASSERT(l2b != NULL);
   5791 
   5792 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5793 
   5794 	const pt_entry_t opte = *ptep;
   5795 #ifdef ARM_MMU_EXTENDED
   5796 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   5797 	    | L2_S_PROT(PTE_KERNEL, prot);
   5798 #else
   5799 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   5800 	    | L2_S_PROT(PTE_KERNEL, prot);
   5801 #endif
   5802 	l2pte_set(ptep, npte, opte);
   5803 	PTE_SYNC(ptep);
   5804 	cpu_tlb_flushD_SE(vector_page);
   5805 	cpu_cpwait();
   5806 }
   5807 #endif
   5808 
   5809 /*
   5810  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5811  * Returns true if the mapping exists, else false.
   5812  *
   5813  * NOTE: This function is only used by a couple of arm-specific modules.
   5814  * It is not safe to take any pmap locks here, since we could be right
   5815  * in the middle of debugging the pmap anyway...
   5816  *
   5817  * It is possible for this routine to return false even though a valid
   5818  * mapping does exist. This is because we don't lock, so the metadata
   5819  * state may be inconsistent.
   5820  *
   5821  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5822  * a "section" mapping.
   5823  */
   5824 bool
   5825 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5826 {
   5827 	struct l2_dtable *l2;
   5828 	pd_entry_t *pdep, pde;
   5829 	pt_entry_t *ptep;
   5830 	u_short l1slot;
   5831 
   5832 	if (pm->pm_l1 == NULL)
   5833 		return false;
   5834 
   5835 	l1slot = l1pte_index(va);
   5836 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   5837 	pde = *pdep;
   5838 
   5839 	if (l1pte_section_p(pde)) {
   5840 		*ptp = NULL;
   5841 		return true;
   5842 	}
   5843 
   5844 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   5845 	if (l2 == NULL ||
   5846 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   5847 		return false;
   5848 	}
   5849 
   5850 	*ptp = &ptep[l2pte_index(va)];
   5851 	return true;
   5852 }
   5853 
   5854 bool
   5855 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5856 {
   5857 
   5858 	if (pm->pm_l1 == NULL)
   5859 		return false;
   5860 
   5861 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   5862 
   5863 	return true;
   5864 }
   5865 
   5866 /************************ Bootstrapping routines ****************************/
   5867 
   5868 #ifndef ARM_MMU_EXTENDED
   5869 static void
   5870 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5871 {
   5872 	int i;
   5873 
   5874 	l1->l1_kva = l1pt;
   5875 	l1->l1_domain_use_count = 0;
   5876 	l1->l1_domain_first = 0;
   5877 
   5878 	for (i = 0; i < PMAP_DOMAINS; i++)
   5879 		l1->l1_domain_free[i] = i + 1;
   5880 
   5881 	/*
   5882 	 * Copy the kernel's L1 entries to each new L1.
   5883 	 */
   5884 	if (pmap_initialized)
   5885 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   5886 
   5887 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5888 	    &l1->l1_physaddr) == false)
   5889 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5890 
   5891 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5892 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5893 }
   5894 #endif /* !ARM_MMU_EXTENDED */
   5895 
   5896 /*
   5897  * pmap_bootstrap() is called from the board-specific initarm() routine
   5898  * once the kernel L1/L2 descriptors tables have been set up.
   5899  *
   5900  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5901  * spread over a number of disparate files/functions.
   5902  *
   5903  * We are passed the following parameters
   5904  *  - kernel_l1pt
   5905  *    This is a pointer to the base of the kernel's L1 translation table.
   5906  *  - vstart
   5907  *    1MB-aligned start of managed kernel virtual memory.
   5908  *  - vend
   5909  *    1MB-aligned end of managed kernel virtual memory.
   5910  *
   5911  * We use the first parameter to build the metadata (struct l1_ttable and
   5912  * struct l2_dtable) necessary to track kernel mappings.
   5913  */
   5914 #define	PMAP_STATIC_L2_SIZE 16
   5915 void
   5916 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5917 {
   5918 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5919 #ifndef ARM_MMU_EXTENDED
   5920 	static struct l1_ttable static_l1;
   5921 	struct l1_ttable *l1 = &static_l1;
   5922 #endif
   5923 	struct l2_dtable *l2;
   5924 	struct l2_bucket *l2b;
   5925 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5926 	pmap_t pm = pmap_kernel();
   5927 	pt_entry_t *ptep;
   5928 	paddr_t pa;
   5929 	vsize_t size;
   5930 	int nptes, l2idx, l2next = 0;
   5931 
   5932 #ifdef ARM_MMU_EXTENDED
   5933 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   5934 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   5935 #endif
   5936 
   5937 #ifdef VERBOSE_INIT_ARM
   5938 	printf("kpm ");
   5939 #endif
   5940 	/*
   5941 	 * Initialise the kernel pmap object
   5942 	 */
   5943 	curcpu()->ci_pmap_cur = pm;
   5944 #ifdef ARM_MMU_EXTENDED
   5945 	pm->pm_l1 = l1pt;
   5946 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   5947 #ifdef VERBOSE_INIT_ARM
   5948 	printf("tlb0 ");
   5949 #endif
   5950 	pmap_tlb_info_init(&pmap_tlb0_info);
   5951 #ifdef MULTIPROCESSOR
   5952 #ifdef VERBOSE_INIT_ARM
   5953 	printf("kcpusets ");
   5954 #endif
   5955 	pm->pm_onproc = kcpuset_running;
   5956 	pm->pm_active = kcpuset_running;
   5957 #endif
   5958 #else
   5959 	pm->pm_l1 = l1;
   5960 #endif
   5961 
   5962 #ifdef VERBOSE_INIT_ARM
   5963 	printf("locks ");
   5964 #endif
   5965 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5966 	if (arm_cache_prefer_mask != 0) {
   5967 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   5968 	} else {
   5969 #endif
   5970 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
   5971 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5972 	}
   5973 #endif
   5974 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   5975 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   5976 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   5977 
   5978 #ifdef VERBOSE_INIT_ARM
   5979 	printf("l1pt ");
   5980 #endif
   5981 	/*
   5982 	 * Scan the L1 translation table created by initarm() and create
   5983 	 * the required metadata for all valid mappings found in it.
   5984 	 */
   5985 	for (size_t l1slot = 0;
   5986 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   5987 	     l1slot++) {
   5988 		pd_entry_t pde = l1pt[l1slot];
   5989 
   5990 		/*
   5991 		 * We're only interested in Coarse mappings.
   5992 		 * pmap_extract() can deal with section mappings without
   5993 		 * recourse to checking L2 metadata.
   5994 		 */
   5995 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5996 			continue;
   5997 
   5998 		/*
   5999 		 * Lookup the KVA of this L2 descriptor table
   6000 		 */
   6001 		pa = l1pte_pa(pde);
   6002 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6003 		if (ptep == NULL) {
   6004 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6005 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6006 		}
   6007 
   6008 		/*
   6009 		 * Fetch the associated L2 metadata structure.
   6010 		 * Allocate a new one if necessary.
   6011 		 */
   6012 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6013 			if (l2next == PMAP_STATIC_L2_SIZE)
   6014 				panic("pmap_bootstrap: out of static L2s");
   6015 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6016 		}
   6017 
   6018 		/*
   6019 		 * One more L1 slot tracked...
   6020 		 */
   6021 		l2->l2_occupancy++;
   6022 
   6023 		/*
   6024 		 * Fill in the details of the L2 descriptor in the
   6025 		 * appropriate bucket.
   6026 		 */
   6027 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6028 		l2b->l2b_kva = ptep;
   6029 		l2b->l2b_pa = pa;
   6030 		l2b->l2b_l1slot = l1slot;
   6031 
   6032 		/*
   6033 		 * Establish an initial occupancy count for this descriptor
   6034 		 */
   6035 		for (l2idx = 0;
   6036 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6037 		    l2idx++) {
   6038 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6039 				l2b->l2b_occupancy++;
   6040 			}
   6041 		}
   6042 
   6043 		/*
   6044 		 * Make sure the descriptor itself has the correct cache mode.
   6045 		 * If not, fix it, but whine about the problem. Port-meisters
   6046 		 * should consider this a clue to fix up their initarm()
   6047 		 * function. :)
   6048 		 */
   6049 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6050 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6051 			    "L2 pte @ %p\n", ptep);
   6052 		}
   6053 	}
   6054 
   6055 #ifdef VERBOSE_INIT_ARM
   6056 	printf("cache(l1pt) ");
   6057 #endif
   6058 	/*
   6059 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6060 	 * a page table. Bitch if it is not correctly set.
   6061 	 */
   6062 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6063 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6064 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6065 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6066 	}
   6067 
   6068 #ifdef PMAP_CACHE_VIVT
   6069 	cpu_dcache_wbinv_all();
   6070 	cpu_tlb_flushID();
   6071 	cpu_cpwait();
   6072 #endif
   6073 
   6074 	/*
   6075 	 * now we allocate the "special" VAs which are used for tmp mappings
   6076 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6077 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6078 	 *
   6079 	 * Managed KVM space start from wherever initarm() tells us.
   6080 	 */
   6081 	virtual_avail = vstart;
   6082 	virtual_end = vend;
   6083 
   6084 #ifdef VERBOSE_INIT_ARM
   6085 	printf("specials ");
   6086 #endif
   6087 #ifdef PMAP_CACHE_VIPT
   6088 	/*
   6089 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6090 	 * page so we won't violate cache aliasing rules.
   6091 	 */
   6092 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6093 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6094 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6095 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6096 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6097 	}
   6098 #else
   6099 	nptes = PAGE_SIZE / L2_S_SIZE;
   6100 #endif
   6101 #ifdef MULTIPROCESSOR
   6102 	cnptes = nptes;
   6103 	nptes *= arm_cpu_max;
   6104 #endif
   6105 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6106 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6107 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6108 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6109 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   6110 	if (msgbufaddr == NULL) {
   6111 		pmap_alloc_specials(&virtual_avail,
   6112 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6113 		    (void *)&msgbufaddr, NULL);
   6114 	}
   6115 
   6116 	/*
   6117 	 * Allocate a range of kernel virtual address space to be used
   6118 	 * for L2 descriptor tables and metadata allocation in
   6119 	 * pmap_growkernel().
   6120 	 */
   6121 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   6122 	pmap_alloc_specials(&virtual_avail,
   6123 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6124 	    &pmap_kernel_l2ptp_kva, NULL);
   6125 
   6126 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   6127 	pmap_alloc_specials(&virtual_avail,
   6128 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6129 	    &pmap_kernel_l2dtable_kva, NULL);
   6130 
   6131 #ifndef ARM_MMU_EXTENDED
   6132 	/*
   6133 	 * init the static-global locks and global pmap list.
   6134 	 */
   6135 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6136 
   6137 	/*
   6138 	 * We can now initialise the first L1's metadata.
   6139 	 */
   6140 	SLIST_INIT(&l1_list);
   6141 	TAILQ_INIT(&l1_lru_list);
   6142 	pmap_init_l1(l1, l1pt);
   6143 #endif /* ARM_MMU_EXTENDED */
   6144 
   6145 #ifndef ARM_HAS_VBAR
   6146 	/* Set up vector page L1 details, if necessary */
   6147 	if (vector_page < KERNEL_BASE) {
   6148 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6149 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6150 		KDASSERT(l2b != NULL);
   6151 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6152 		    L1_C_DOM(pmap_domain(pm));
   6153 	} else
   6154 		pm->pm_pl1vec = NULL;
   6155 #endif
   6156 
   6157 #ifdef VERBOSE_INIT_ARM
   6158 	printf("pools ");
   6159 #endif
   6160 	/*
   6161 	 * Initialize the pmap cache
   6162 	 */
   6163 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6164 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6165 	LIST_INIT(&pmap_pmaps);
   6166 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   6167 
   6168 	/*
   6169 	 * Initialize the pv pool.
   6170 	 */
   6171 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6172 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6173 
   6174 	/*
   6175 	 * Initialize the L2 dtable pool and cache.
   6176 	 */
   6177 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6178 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6179 
   6180 	/*
   6181 	 * Initialise the L2 descriptor table pool and cache
   6182 	 */
   6183 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   6184 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   6185 	    pmap_l2ptp_ctor, NULL, NULL);
   6186 
   6187 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6188 
   6189 	cpu_dcache_wbinv_all();
   6190 }
   6191 
   6192 static bool
   6193 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6194 {
   6195 #ifdef ARM_MMU_EXTENDED
   6196 	return false;
   6197 #else
   6198 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6199 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6200 		return false;
   6201 
   6202 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6203 	int rv = 0;
   6204 
   6205 	while (va < eva) {
   6206 		/*
   6207 		 * Make sure the descriptor itself has the correct cache mode
   6208 		 */
   6209 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6210 		pd_entry_t pde = *pdep;
   6211 
   6212 		if (l1pte_section_p(pde)) {
   6213 			__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6214 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6215 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6216 				    pte_l1_s_cache_mode_pt;
   6217 				PDE_SYNC(pdep);
   6218 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6219 				    sizeof(*pdep));
   6220 				rv = 1;
   6221 			}
   6222 			return rv;
   6223 		}
   6224 		vaddr_t pa = l1pte_pa(pde);
   6225 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6226 		if (ptep == NULL)
   6227 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6228 
   6229 		ptep += l2pte_index(va);
   6230 		const pt_entry_t opte = *ptep;
   6231 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6232 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6233 			    | pte_l2_s_cache_mode_pt;
   6234 			l2pte_set(ptep, npte, opte);
   6235 			PTE_SYNC(ptep);
   6236 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6237 			rv = 1;
   6238 		}
   6239 		va += PAGE_SIZE;
   6240 	}
   6241 
   6242 	return (rv);
   6243 #endif
   6244 }
   6245 
   6246 static void
   6247 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6248 {
   6249 	vaddr_t va = *availp;
   6250 	struct l2_bucket *l2b;
   6251 
   6252 	if (ptep) {
   6253 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6254 		if (l2b == NULL)
   6255 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6256 
   6257 		if (ptep)
   6258 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6259 	}
   6260 
   6261 	*vap = va;
   6262 	*availp = va + (PAGE_SIZE * pages);
   6263 }
   6264 
   6265 void
   6266 pmap_init(void)
   6267 {
   6268 
   6269 	/*
   6270 	 * Set the available memory vars - These do not map to real memory
   6271 	 * addresses and cannot as the physical memory is fragmented.
   6272 	 * They are used by ps for %mem calculations.
   6273 	 * One could argue whether this should be the entire memory or just
   6274 	 * the memory that is useable in a user process.
   6275 	 */
   6276 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   6277 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   6278 
   6279 	/*
   6280 	 * Now we need to free enough pv_entry structures to allow us to get
   6281 	 * the kmem_map/kmem_object allocated and inited (done after this
   6282 	 * function is finished).  to do this we allocate one bootstrap page out
   6283 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6284 	 * structures.   we never free this page.
   6285 	 */
   6286 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6287 
   6288 #ifdef ARM_MMU_EXTENDED
   6289 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6290 #endif
   6291 
   6292 	pmap_initialized = true;
   6293 }
   6294 
   6295 static vaddr_t last_bootstrap_page = 0;
   6296 static void *free_bootstrap_pages = NULL;
   6297 
   6298 static void *
   6299 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6300 {
   6301 	extern void *pool_page_alloc(struct pool *, int);
   6302 	vaddr_t new_page;
   6303 	void *rv;
   6304 
   6305 	if (pmap_initialized)
   6306 		return (pool_page_alloc(pp, flags));
   6307 
   6308 	if (free_bootstrap_pages) {
   6309 		rv = free_bootstrap_pages;
   6310 		free_bootstrap_pages = *((void **)rv);
   6311 		return (rv);
   6312 	}
   6313 
   6314 	KASSERT(kernel_map != NULL);
   6315 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6316 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6317 
   6318 	KASSERT(new_page > last_bootstrap_page);
   6319 	last_bootstrap_page = new_page;
   6320 	return ((void *)new_page);
   6321 }
   6322 
   6323 static void
   6324 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6325 {
   6326 	extern void pool_page_free(struct pool *, void *);
   6327 
   6328 	if ((vaddr_t)v <= last_bootstrap_page) {
   6329 		*((void **)v) = free_bootstrap_pages;
   6330 		free_bootstrap_pages = v;
   6331 		return;
   6332 	}
   6333 
   6334 	if (pmap_initialized) {
   6335 		pool_page_free(pp, v);
   6336 		return;
   6337 	}
   6338 }
   6339 
   6340 /*
   6341  * pmap_postinit()
   6342  *
   6343  * This routine is called after the vm and kmem subsystems have been
   6344  * initialised. This allows the pmap code to perform any initialisation
   6345  * that can only be done one the memory allocation is in place.
   6346  */
   6347 void
   6348 pmap_postinit(void)
   6349 {
   6350 #ifndef ARM_MMU_EXTENDED
   6351 	extern paddr_t physical_start, physical_end;
   6352 	struct l1_ttable *l1;
   6353 	struct pglist plist;
   6354 	struct vm_page *m;
   6355 	pd_entry_t *pdep;
   6356 	vaddr_t va, eva;
   6357 	u_int loop, needed;
   6358 	int error;
   6359 #endif
   6360 
   6361 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6362 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6363 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6364 
   6365 #ifndef ARM_MMU_EXTENDED
   6366 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6367 	needed -= 1;
   6368 
   6369 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6370 
   6371 	for (loop = 0; loop < needed; loop++, l1++) {
   6372 		/* Allocate a L1 page table */
   6373 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6374 		if (va == 0)
   6375 			panic("Cannot allocate L1 KVM");
   6376 
   6377 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6378 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6379 		if (error)
   6380 			panic("Cannot allocate L1 physical pages");
   6381 
   6382 		m = TAILQ_FIRST(&plist);
   6383 		eva = va + L1_TABLE_SIZE;
   6384 		pdep = (pd_entry_t *)va;
   6385 
   6386 		while (m && va < eva) {
   6387 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6388 
   6389 			pmap_kenter_pa(va, pa,
   6390 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6391 
   6392 			va += PAGE_SIZE;
   6393 			m = TAILQ_NEXT(m, pageq.queue);
   6394 		}
   6395 
   6396 #ifdef DIAGNOSTIC
   6397 		if (m)
   6398 			panic("pmap_alloc_l1pt: pglist not empty");
   6399 #endif	/* DIAGNOSTIC */
   6400 
   6401 		pmap_init_l1(l1, pdep);
   6402 	}
   6403 
   6404 #ifdef DEBUG
   6405 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6406 	    needed);
   6407 #endif
   6408 #endif /* !ARM_MMU_EXTENDED */
   6409 }
   6410 
   6411 /*
   6412  * Note that the following routines are used by board-specific initialisation
   6413  * code to configure the initial kernel page tables.
   6414  *
   6415  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   6416  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   6417  * behaviour of the old pmap, and provides an easy migration path for
   6418  * initial bring-up of the new pmap on existing ports. Fortunately,
   6419  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   6420  * will be deprecated.
   6421  *
   6422  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   6423  * tables.
   6424  */
   6425 
   6426 /*
   6427  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6428  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6429  * find them as necessary.
   6430  *
   6431  * Note that the data on this list MUST remain valid after initarm() returns,
   6432  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   6433  */
   6434 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6435 
   6436 static vaddr_t
   6437 kernel_pt_lookup(paddr_t pa)
   6438 {
   6439 	pv_addr_t *pv;
   6440 
   6441 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6442 		if (pv->pv_pa == (pa & ~PGOFSET))
   6443 			return (pv->pv_va | (pa & PGOFSET));
   6444 	}
   6445 	return (0);
   6446 }
   6447 
   6448 /*
   6449  * pmap_map_section:
   6450  *
   6451  *	Create a single section mapping.
   6452  */
   6453 void
   6454 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6455 {
   6456 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6457 	const size_t l1slot = l1pte_index(va);
   6458 	pd_entry_t fl;
   6459 
   6460 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6461 
   6462 	switch (cache) {
   6463 	case PTE_NOCACHE:
   6464 	default:
   6465 		fl = 0;
   6466 		break;
   6467 
   6468 	case PTE_CACHE:
   6469 		fl = pte_l1_s_cache_mode;
   6470 		break;
   6471 
   6472 	case PTE_PAGETABLE:
   6473 		fl = pte_l1_s_cache_mode_pt;
   6474 		break;
   6475 	}
   6476 
   6477 	const pd_entry_t npde = L1_S_PROTO | pa |
   6478 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6479 	l1pte_setone(pdep + l1slot, npde);
   6480 	PDE_SYNC(pdep + l1slot);
   6481 }
   6482 
   6483 /*
   6484  * pmap_map_entry:
   6485  *
   6486  *	Create a single page mapping.
   6487  */
   6488 void
   6489 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6490 {
   6491 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6492 	const size_t l1slot = l1pte_index(va);
   6493 	pt_entry_t npte;
   6494 	pt_entry_t *ptep;
   6495 
   6496 	KASSERT(((va | pa) & PGOFSET) == 0);
   6497 
   6498 	switch (cache) {
   6499 	case PTE_NOCACHE:
   6500 	default:
   6501 		npte = 0;
   6502 		break;
   6503 
   6504 	case PTE_CACHE:
   6505 		npte = pte_l2_s_cache_mode;
   6506 		break;
   6507 
   6508 	case PTE_PAGETABLE:
   6509 		npte = pte_l2_s_cache_mode_pt;
   6510 		break;
   6511 	}
   6512 
   6513 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6514 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   6515 
   6516 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6517 	if (ptep == NULL)
   6518 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   6519 
   6520 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   6521 #ifdef ARM_MMU_EXTENDED
   6522 	if (prot & VM_PROT_EXECUTE) {
   6523 		npte &= ~L2_XS_XN;
   6524 	}
   6525 #endif
   6526 	ptep += l2pte_index(va);
   6527 	l2pte_set(ptep, npte, 0);
   6528 	PTE_SYNC(ptep);
   6529 }
   6530 
   6531 /*
   6532  * pmap_link_l2pt:
   6533  *
   6534  *	Link the L2 page table specified by "l2pv" into the L1
   6535  *	page table at the slot for "va".
   6536  */
   6537 void
   6538 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   6539 {
   6540 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   6541 
   6542 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   6543 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   6544 
   6545 	const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   6546 	    | l2pv->pv_pa;
   6547 
   6548 	l1pte_set(pdep, npde);
   6549 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   6550 
   6551 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   6552 }
   6553 
   6554 /*
   6555  * pmap_map_chunk:
   6556  *
   6557  *	Map a chunk of memory using the most efficient mappings
   6558  *	possible (section, large page, small page) into the
   6559  *	provided L1 and L2 tables at the specified virtual address.
   6560  */
   6561 vsize_t
   6562 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   6563     int prot, int cache)
   6564 {
   6565 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6566 	pt_entry_t f1, f2s, f2l;
   6567 	vsize_t resid;
   6568 
   6569 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   6570 
   6571 	if (l1pt == 0)
   6572 		panic("pmap_map_chunk: no L1 table provided");
   6573 
   6574 #ifdef VERBOSE_INIT_ARM
   6575 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   6576 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   6577 #endif
   6578 
   6579 	switch (cache) {
   6580 	case PTE_NOCACHE:
   6581 	default:
   6582 		f1 = 0;
   6583 		f2l = 0;
   6584 		f2s = 0;
   6585 		break;
   6586 
   6587 	case PTE_CACHE:
   6588 		f1 = pte_l1_s_cache_mode;
   6589 		f2l = pte_l2_l_cache_mode;
   6590 		f2s = pte_l2_s_cache_mode;
   6591 		break;
   6592 
   6593 	case PTE_PAGETABLE:
   6594 		f1 = pte_l1_s_cache_mode_pt;
   6595 		f2l = pte_l2_l_cache_mode_pt;
   6596 		f2s = pte_l2_s_cache_mode_pt;
   6597 		break;
   6598 	}
   6599 
   6600 	size = resid;
   6601 
   6602 	while (resid > 0) {
   6603 		const size_t l1slot = l1pte_index(va);
   6604 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   6605 		/* See if we can use a supersection mapping. */
   6606 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   6607 			/* Supersection are always domain 0 */
   6608 			const pd_entry_t npde = L1_SS_PROTO | pa
   6609 #ifdef ARM_MMU_EXTENDED_XXX
   6610 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6611 #endif
   6612 #ifdef ARM_MMU_EXTENDED
   6613 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6614 #endif
   6615 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   6616 #ifdef VERBOSE_INIT_ARM
   6617 			printf("sS");
   6618 #endif
   6619 			l1pte_set(&pdep[l1slot], npde);
   6620 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   6621 			va += L1_SS_SIZE;
   6622 			pa += L1_SS_SIZE;
   6623 			resid -= L1_SS_SIZE;
   6624 			continue;
   6625 		}
   6626 #endif
   6627 		/* See if we can use a section mapping. */
   6628 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   6629 			const pd_entry_t npde = L1_S_PROTO | pa
   6630 #ifdef ARM_MMU_EXTENDED_XXX
   6631 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6632 #endif
   6633 #ifdef ARM_MMU_EXTENDED
   6634 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6635 #endif
   6636 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   6637 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6638 #ifdef VERBOSE_INIT_ARM
   6639 			printf("S");
   6640 #endif
   6641 			l1pte_set(&pdep[l1slot], npde);
   6642 			PDE_SYNC(&pdep[l1slot]);
   6643 			va += L1_S_SIZE;
   6644 			pa += L1_S_SIZE;
   6645 			resid -= L1_S_SIZE;
   6646 			continue;
   6647 		}
   6648 
   6649 		/*
   6650 		 * Ok, we're going to use an L2 table.  Make sure
   6651 		 * one is actually in the corresponding L1 slot
   6652 		 * for the current VA.
   6653 		 */
   6654 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6655 			panic("%s: no L2 table for VA %#lx", __func__, va);
   6656 
   6657 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6658 		if (ptep == NULL)
   6659 			panic("%s: can't find L2 table for VA %#lx", __func__,
   6660 			    va);
   6661 
   6662 		ptep += l2pte_index(va);
   6663 
   6664 		/* See if we can use a L2 large page mapping. */
   6665 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   6666 			const pt_entry_t npte = L2_L_PROTO | pa
   6667 #ifdef ARM_MMU_EXTENDED_XXX
   6668 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   6669 #endif
   6670 #ifdef ARM_MMU_EXTENDED
   6671 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6672 #endif
   6673 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   6674 #ifdef VERBOSE_INIT_ARM
   6675 			printf("L");
   6676 #endif
   6677 			l2pte_set(ptep, npte, 0);
   6678 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   6679 			va += L2_L_SIZE;
   6680 			pa += L2_L_SIZE;
   6681 			resid -= L2_L_SIZE;
   6682 			continue;
   6683 		}
   6684 
   6685 		/* Use a small page mapping. */
   6686 #ifdef VERBOSE_INIT_ARM
   6687 		printf("P");
   6688 #endif
   6689 		const pt_entry_t npte = L2_S_PROTO | pa
   6690 #ifdef ARM_MMU_EXTENDED_XXX
   6691 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   6692 #endif
   6693 #ifdef ARM_MMU_EXTENDED
   6694 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6695 #endif
   6696 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   6697 		l2pte_set(ptep, npte, 0);
   6698 		PTE_SYNC(ptep);
   6699 		va += PAGE_SIZE;
   6700 		pa += PAGE_SIZE;
   6701 		resid -= PAGE_SIZE;
   6702 	}
   6703 #ifdef VERBOSE_INIT_ARM
   6704 	printf("\n");
   6705 #endif
   6706 	return (size);
   6707 }
   6708 
   6709 /********************** Static device map routines ***************************/
   6710 
   6711 static const struct pmap_devmap *pmap_devmap_table;
   6712 
   6713 /*
   6714  * Register the devmap table.  This is provided in case early console
   6715  * initialization needs to register mappings created by bootstrap code
   6716  * before pmap_devmap_bootstrap() is called.
   6717  */
   6718 void
   6719 pmap_devmap_register(const struct pmap_devmap *table)
   6720 {
   6721 
   6722 	pmap_devmap_table = table;
   6723 }
   6724 
   6725 /*
   6726  * Map all of the static regions in the devmap table, and remember
   6727  * the devmap table so other parts of the kernel can look up entries
   6728  * later.
   6729  */
   6730 void
   6731 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   6732 {
   6733 	int i;
   6734 
   6735 	pmap_devmap_table = table;
   6736 
   6737 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6738 #ifdef VERBOSE_INIT_ARM
   6739 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   6740 		    pmap_devmap_table[i].pd_pa,
   6741 		    pmap_devmap_table[i].pd_pa +
   6742 			pmap_devmap_table[i].pd_size - 1,
   6743 		    pmap_devmap_table[i].pd_va);
   6744 #endif
   6745 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   6746 		    pmap_devmap_table[i].pd_pa,
   6747 		    pmap_devmap_table[i].pd_size,
   6748 		    pmap_devmap_table[i].pd_prot,
   6749 		    pmap_devmap_table[i].pd_cache);
   6750 	}
   6751 }
   6752 
   6753 const struct pmap_devmap *
   6754 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   6755 {
   6756 	uint64_t endpa;
   6757 	int i;
   6758 
   6759 	if (pmap_devmap_table == NULL)
   6760 		return (NULL);
   6761 
   6762 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   6763 
   6764 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6765 		if (pa >= pmap_devmap_table[i].pd_pa &&
   6766 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   6767 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   6768 			return (&pmap_devmap_table[i]);
   6769 	}
   6770 
   6771 	return (NULL);
   6772 }
   6773 
   6774 const struct pmap_devmap *
   6775 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6776 {
   6777 	int i;
   6778 
   6779 	if (pmap_devmap_table == NULL)
   6780 		return (NULL);
   6781 
   6782 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6783 		if (va >= pmap_devmap_table[i].pd_va &&
   6784 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6785 				     pmap_devmap_table[i].pd_size - 1)
   6786 			return (&pmap_devmap_table[i]);
   6787 	}
   6788 
   6789 	return (NULL);
   6790 }
   6791 
   6792 /********************** PTE initialization routines **************************/
   6793 
   6794 /*
   6795  * These routines are called when the CPU type is identified to set up
   6796  * the PTE prototypes, cache modes, etc.
   6797  *
   6798  * The variables are always here, just in case modules need to reference
   6799  * them (though, they shouldn't).
   6800  */
   6801 
   6802 pt_entry_t	pte_l1_s_cache_mode;
   6803 pt_entry_t	pte_l1_s_wc_mode;
   6804 pt_entry_t	pte_l1_s_cache_mode_pt;
   6805 pt_entry_t	pte_l1_s_cache_mask;
   6806 
   6807 pt_entry_t	pte_l2_l_cache_mode;
   6808 pt_entry_t	pte_l2_l_wc_mode;
   6809 pt_entry_t	pte_l2_l_cache_mode_pt;
   6810 pt_entry_t	pte_l2_l_cache_mask;
   6811 
   6812 pt_entry_t	pte_l2_s_cache_mode;
   6813 pt_entry_t	pte_l2_s_wc_mode;
   6814 pt_entry_t	pte_l2_s_cache_mode_pt;
   6815 pt_entry_t	pte_l2_s_cache_mask;
   6816 
   6817 pt_entry_t	pte_l1_s_prot_u;
   6818 pt_entry_t	pte_l1_s_prot_w;
   6819 pt_entry_t	pte_l1_s_prot_ro;
   6820 pt_entry_t	pte_l1_s_prot_mask;
   6821 
   6822 pt_entry_t	pte_l2_s_prot_u;
   6823 pt_entry_t	pte_l2_s_prot_w;
   6824 pt_entry_t	pte_l2_s_prot_ro;
   6825 pt_entry_t	pte_l2_s_prot_mask;
   6826 
   6827 pt_entry_t	pte_l2_l_prot_u;
   6828 pt_entry_t	pte_l2_l_prot_w;
   6829 pt_entry_t	pte_l2_l_prot_ro;
   6830 pt_entry_t	pte_l2_l_prot_mask;
   6831 
   6832 pt_entry_t	pte_l1_ss_proto;
   6833 pt_entry_t	pte_l1_s_proto;
   6834 pt_entry_t	pte_l1_c_proto;
   6835 pt_entry_t	pte_l2_s_proto;
   6836 
   6837 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6838 void		(*pmap_zero_page_func)(paddr_t);
   6839 
   6840 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6841 void
   6842 pmap_pte_init_generic(void)
   6843 {
   6844 
   6845 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6846 	pte_l1_s_wc_mode = L1_S_B;
   6847 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6848 
   6849 	pte_l2_l_cache_mode = L2_B|L2_C;
   6850 	pte_l2_l_wc_mode = L2_B;
   6851 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6852 
   6853 	pte_l2_s_cache_mode = L2_B|L2_C;
   6854 	pte_l2_s_wc_mode = L2_B;
   6855 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6856 
   6857 	/*
   6858 	 * If we have a write-through cache, set B and C.  If
   6859 	 * we have a write-back cache, then we assume setting
   6860 	 * only C will make those pages write-through (except for those
   6861 	 * Cortex CPUs which can read the L1 caches).
   6862 	 */
   6863 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6864 #if ARM_MMU_V7 > 0
   6865 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6866 #endif
   6867 #if ARM_MMU_V6 > 0
   6868 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6869 #endif
   6870 	    || false) {
   6871 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6872 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6873 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6874 	} else {
   6875 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6876 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6877 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6878 	}
   6879 
   6880 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6881 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6882 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6883 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6884 
   6885 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6886 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6887 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6888 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6889 
   6890 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6891 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6892 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6893 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6894 
   6895 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6896 	pte_l1_s_proto = L1_S_PROTO_generic;
   6897 	pte_l1_c_proto = L1_C_PROTO_generic;
   6898 	pte_l2_s_proto = L2_S_PROTO_generic;
   6899 
   6900 	pmap_copy_page_func = pmap_copy_page_generic;
   6901 	pmap_zero_page_func = pmap_zero_page_generic;
   6902 }
   6903 
   6904 #if defined(CPU_ARM8)
   6905 void
   6906 pmap_pte_init_arm8(void)
   6907 {
   6908 
   6909 	/*
   6910 	 * ARM8 is compatible with generic, but we need to use
   6911 	 * the page tables uncached.
   6912 	 */
   6913 	pmap_pte_init_generic();
   6914 
   6915 	pte_l1_s_cache_mode_pt = 0;
   6916 	pte_l2_l_cache_mode_pt = 0;
   6917 	pte_l2_s_cache_mode_pt = 0;
   6918 }
   6919 #endif /* CPU_ARM8 */
   6920 
   6921 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6922 void
   6923 pmap_pte_init_arm9(void)
   6924 {
   6925 
   6926 	/*
   6927 	 * ARM9 is compatible with generic, but we want to use
   6928 	 * write-through caching for now.
   6929 	 */
   6930 	pmap_pte_init_generic();
   6931 
   6932 	pte_l1_s_cache_mode = L1_S_C;
   6933 	pte_l2_l_cache_mode = L2_C;
   6934 	pte_l2_s_cache_mode = L2_C;
   6935 
   6936 	pte_l1_s_wc_mode = L1_S_B;
   6937 	pte_l2_l_wc_mode = L2_B;
   6938 	pte_l2_s_wc_mode = L2_B;
   6939 
   6940 	pte_l1_s_cache_mode_pt = L1_S_C;
   6941 	pte_l2_l_cache_mode_pt = L2_C;
   6942 	pte_l2_s_cache_mode_pt = L2_C;
   6943 }
   6944 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6945 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6946 
   6947 #if defined(CPU_ARM10)
   6948 void
   6949 pmap_pte_init_arm10(void)
   6950 {
   6951 
   6952 	/*
   6953 	 * ARM10 is compatible with generic, but we want to use
   6954 	 * write-through caching for now.
   6955 	 */
   6956 	pmap_pte_init_generic();
   6957 
   6958 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6959 	pte_l2_l_cache_mode = L2_B | L2_C;
   6960 	pte_l2_s_cache_mode = L2_B | L2_C;
   6961 
   6962 	pte_l1_s_cache_mode = L1_S_B;
   6963 	pte_l2_l_cache_mode = L2_B;
   6964 	pte_l2_s_cache_mode = L2_B;
   6965 
   6966 	pte_l1_s_cache_mode_pt = L1_S_C;
   6967 	pte_l2_l_cache_mode_pt = L2_C;
   6968 	pte_l2_s_cache_mode_pt = L2_C;
   6969 
   6970 }
   6971 #endif /* CPU_ARM10 */
   6972 
   6973 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6974 void
   6975 pmap_pte_init_arm11(void)
   6976 {
   6977 
   6978 	/*
   6979 	 * ARM11 is compatible with generic, but we want to use
   6980 	 * write-through caching for now.
   6981 	 */
   6982 	pmap_pte_init_generic();
   6983 
   6984 	pte_l1_s_cache_mode = L1_S_C;
   6985 	pte_l2_l_cache_mode = L2_C;
   6986 	pte_l2_s_cache_mode = L2_C;
   6987 
   6988 	pte_l1_s_wc_mode = L1_S_B;
   6989 	pte_l2_l_wc_mode = L2_B;
   6990 	pte_l2_s_wc_mode = L2_B;
   6991 
   6992 	pte_l1_s_cache_mode_pt = L1_S_C;
   6993 	pte_l2_l_cache_mode_pt = L2_C;
   6994 	pte_l2_s_cache_mode_pt = L2_C;
   6995 }
   6996 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   6997 
   6998 #if ARM_MMU_SA1 == 1
   6999 void
   7000 pmap_pte_init_sa1(void)
   7001 {
   7002 
   7003 	/*
   7004 	 * The StrongARM SA-1 cache does not have a write-through
   7005 	 * mode.  So, do the generic initialization, then reset
   7006 	 * the page table cache mode to B=1,C=1, and note that
   7007 	 * the PTEs need to be sync'd.
   7008 	 */
   7009 	pmap_pte_init_generic();
   7010 
   7011 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7012 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7013 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7014 
   7015 	pmap_needs_pte_sync = 1;
   7016 }
   7017 #endif /* ARM_MMU_SA1 == 1*/
   7018 
   7019 #if ARM_MMU_XSCALE == 1
   7020 #if (ARM_NMMUS > 1)
   7021 static u_int xscale_use_minidata;
   7022 #endif
   7023 
   7024 void
   7025 pmap_pte_init_xscale(void)
   7026 {
   7027 	uint32_t auxctl;
   7028 	int write_through = 0;
   7029 
   7030 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7031 	pte_l1_s_wc_mode = L1_S_B;
   7032 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7033 
   7034 	pte_l2_l_cache_mode = L2_B|L2_C;
   7035 	pte_l2_l_wc_mode = L2_B;
   7036 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7037 
   7038 	pte_l2_s_cache_mode = L2_B|L2_C;
   7039 	pte_l2_s_wc_mode = L2_B;
   7040 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7041 
   7042 	pte_l1_s_cache_mode_pt = L1_S_C;
   7043 	pte_l2_l_cache_mode_pt = L2_C;
   7044 	pte_l2_s_cache_mode_pt = L2_C;
   7045 
   7046 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7047 	/*
   7048 	 * The XScale core has an enhanced mode where writes that
   7049 	 * miss the cache cause a cache line to be allocated.  This
   7050 	 * is significantly faster than the traditional, write-through
   7051 	 * behavior of this case.
   7052 	 */
   7053 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7054 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7055 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7056 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7057 
   7058 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7059 	/*
   7060 	 * Some versions of the XScale core have various bugs in
   7061 	 * their cache units, the work-around for which is to run
   7062 	 * the cache in write-through mode.  Unfortunately, this
   7063 	 * has a major (negative) impact on performance.  So, we
   7064 	 * go ahead and run fast-and-loose, in the hopes that we
   7065 	 * don't line up the planets in a way that will trip the
   7066 	 * bugs.
   7067 	 *
   7068 	 * However, we give you the option to be slow-but-correct.
   7069 	 */
   7070 	write_through = 1;
   7071 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7072 	/* force write back cache mode */
   7073 	write_through = 0;
   7074 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7075 	/*
   7076 	 * Intel PXA2[15]0 processors are known to have a bug in
   7077 	 * write-back cache on revision 4 and earlier (stepping
   7078 	 * A[01] and B[012]).  Fixed for C0 and later.
   7079 	 */
   7080 	{
   7081 		uint32_t id, type;
   7082 
   7083 		id = cpufunc_id();
   7084 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7085 
   7086 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7087 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7088 				/* write through for stepping A0-1 and B0-2 */
   7089 				write_through = 1;
   7090 			}
   7091 		}
   7092 	}
   7093 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7094 
   7095 	if (write_through) {
   7096 		pte_l1_s_cache_mode = L1_S_C;
   7097 		pte_l2_l_cache_mode = L2_C;
   7098 		pte_l2_s_cache_mode = L2_C;
   7099 	}
   7100 
   7101 #if (ARM_NMMUS > 1)
   7102 	xscale_use_minidata = 1;
   7103 #endif
   7104 
   7105 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7106 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7107 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7108 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7109 
   7110 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7111 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7112 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7113 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7114 
   7115 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7116 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7117 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7118 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7119 
   7120 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7121 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7122 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7123 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7124 
   7125 	pmap_copy_page_func = pmap_copy_page_xscale;
   7126 	pmap_zero_page_func = pmap_zero_page_xscale;
   7127 
   7128 	/*
   7129 	 * Disable ECC protection of page table access, for now.
   7130 	 */
   7131 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   7132 	auxctl &= ~XSCALE_AUXCTL_P;
   7133 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   7134 }
   7135 
   7136 /*
   7137  * xscale_setup_minidata:
   7138  *
   7139  *	Set up the mini-data cache clean area.  We require the
   7140  *	caller to allocate the right amount of physically and
   7141  *	virtually contiguous space.
   7142  */
   7143 void
   7144 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7145 {
   7146 	extern vaddr_t xscale_minidata_clean_addr;
   7147 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   7148 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7149 	vsize_t size;
   7150 	uint32_t auxctl;
   7151 
   7152 	xscale_minidata_clean_addr = va;
   7153 
   7154 	/* Round it to page size. */
   7155 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7156 
   7157 	for (; size != 0;
   7158 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7159 		const size_t l1slot = l1pte_index(va);
   7160 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7161 		if (ptep == NULL)
   7162 			panic("xscale_setup_minidata: can't find L2 table for "
   7163 			    "VA 0x%08lx", va);
   7164 
   7165 		ptep += l2pte_index(va);
   7166 		pt_entry_t opte = *ptep;
   7167 		l2pte_set(ptep,
   7168 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7169 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7170 	}
   7171 
   7172 	/*
   7173 	 * Configure the mini-data cache for write-back with
   7174 	 * read/write-allocate.
   7175 	 *
   7176 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7177 	 * make sure it contains no valid data!  In order to do that,
   7178 	 * we must issue a global data cache invalidate command!
   7179 	 *
   7180 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7181 	 * THIS IS VERY IMPORTANT!
   7182 	 */
   7183 
   7184 	/* Invalidate data and mini-data. */
   7185 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7186 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   7187 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7188 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   7189 }
   7190 
   7191 /*
   7192  * Change the PTEs for the specified kernel mappings such that they
   7193  * will use the mini data cache instead of the main data cache.
   7194  */
   7195 void
   7196 pmap_uarea(vaddr_t va)
   7197 {
   7198 	vaddr_t next_bucket, eva;
   7199 
   7200 #if (ARM_NMMUS > 1)
   7201 	if (xscale_use_minidata == 0)
   7202 		return;
   7203 #endif
   7204 
   7205 	eva = va + USPACE;
   7206 
   7207 	while (va < eva) {
   7208 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7209 		if (next_bucket > eva)
   7210 			next_bucket = eva;
   7211 
   7212 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7213 		KDASSERT(l2b != NULL);
   7214 
   7215 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7216 		pt_entry_t *ptep = sptep;
   7217 
   7218 		while (va < next_bucket) {
   7219 			const pt_entry_t opte = *ptep;
   7220 			if (!l2pte_minidata_p(opte)) {
   7221 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7222 				cpu_tlb_flushD_SE(va);
   7223 				l2pte_set(ptep, opte & ~L2_B, opte);
   7224 			}
   7225 			ptep += PAGE_SIZE / L2_S_SIZE;
   7226 			va += PAGE_SIZE;
   7227 		}
   7228 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7229 	}
   7230 	cpu_cpwait();
   7231 }
   7232 #endif /* ARM_MMU_XSCALE == 1 */
   7233 
   7234 
   7235 #if defined(CPU_ARM11MPCORE)
   7236 
   7237 void
   7238 pmap_pte_init_arm11mpcore(void)
   7239 {
   7240 
   7241 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   7242 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7243 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7244 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7245 	/* use extended small page (without APn, with TEX) */
   7246 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7247 #else
   7248 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7249 #endif
   7250 
   7251 	/* write-back, write-allocate */
   7252 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7253 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7254 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7255 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7256 #else
   7257 	/* no TEX. read-allocate */
   7258 	pte_l2_s_cache_mode = L2_C | L2_B;
   7259 #endif
   7260 	/*
   7261 	 * write-back, write-allocate for page tables.
   7262 	 */
   7263 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7264 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7265 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7266 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7267 #else
   7268 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7269 #endif
   7270 
   7271 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7272 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7273 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7274 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7275 
   7276 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7277 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7278 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7279 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7280 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7281 
   7282 #else
   7283 	/* with AP[0..3] */
   7284 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7285 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7286 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7287 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7288 #endif
   7289 
   7290 #ifdef	ARM11MPCORE_COMPAT_MMU
   7291 	/* with AP[0..3] */
   7292 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7293 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7294 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7295 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7296 
   7297 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7298 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7299 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7300 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7301 #else
   7302 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7303 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7304 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7305 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7306 
   7307 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7308 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7309 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7310 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7311 #endif
   7312 
   7313 	pmap_copy_page_func = pmap_copy_page_generic;
   7314 	pmap_zero_page_func = pmap_zero_page_generic;
   7315 	pmap_needs_pte_sync = 1;
   7316 }
   7317 #endif	/* CPU_ARM11MPCORE */
   7318 
   7319 
   7320 #if ARM_MMU_V7 == 1
   7321 void
   7322 pmap_pte_init_armv7(void)
   7323 {
   7324 	/*
   7325 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7326 	 * AP field is zero, that now means "no access" rather than
   7327 	 * read-only. The prototypes are a little different because of
   7328 	 * the XN bit.
   7329 	 */
   7330 	pmap_pte_init_generic();
   7331 
   7332 	pmap_needs_pte_sync = 1;
   7333 
   7334 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7335 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7336 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7337 
   7338 	/*
   7339 	 * If the core support coherent walk then updates to translation tables
   7340 	 * do not require a clean to the point of unification to ensure
   7341 	 * visibility by subsequent translation table walks.  That means we can
   7342 	 * map everything shareable and cached and the right thing will happen.
   7343 	 */
   7344         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7345 		pmap_needs_pte_sync = 0;
   7346 
   7347 		/*
   7348 		 * write-back, no write-allocate, shareable for normal pages.
   7349 		 */
   7350 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7351 		pte_l2_l_cache_mode |= L2_XS_S;
   7352 		pte_l2_s_cache_mode |= L2_XS_S;
   7353 	}
   7354 
   7355 	/*
   7356 	 * Page tables are just all other memory.  We can use write-back since
   7357 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7358 	 */
   7359 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7360 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7361 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7362 
   7363 	/*
   7364 	 * Check the Memory Model Features to see if this CPU supports
   7365 	 * the TLBIASID coproc op.
   7366 	 */
   7367 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7368 		arm_has_tlbiasid_p = true;
   7369 	}
   7370 
   7371 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7372 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7373 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7374 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7375 
   7376 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7377 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7378 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7379 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7380 
   7381 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7382 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7383 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7384 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7385 
   7386 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7387 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7388 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7389 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7390 
   7391 }
   7392 #endif /* ARM_MMU_V7 */
   7393 
   7394 /*
   7395  * return the PA of the current L1 table, for use when handling a crash dump
   7396  */
   7397 uint32_t
   7398 pmap_kernel_L1_addr(void)
   7399 {
   7400 #ifdef ARM_MMU_EXTENDED
   7401 	return pmap_kernel()->pm_l1_pa;
   7402 #else
   7403 	return pmap_kernel()->pm_l1->l1_physaddr;
   7404 #endif
   7405 }
   7406 
   7407 #if defined(DDB)
   7408 /*
   7409  * A couple of ddb-callable functions for dumping pmaps
   7410  */
   7411 void pmap_dump_all(void);
   7412 void pmap_dump(pmap_t);
   7413 
   7414 void
   7415 pmap_dump_all(void)
   7416 {
   7417 	pmap_t pm;
   7418 
   7419 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   7420 		if (pm == pmap_kernel())
   7421 			continue;
   7422 		pmap_dump(pm);
   7423 		printf("\n");
   7424 	}
   7425 }
   7426 
   7427 static pt_entry_t ncptes[64];
   7428 static void pmap_dump_ncpg(pmap_t);
   7429 
   7430 void
   7431 pmap_dump(pmap_t pm)
   7432 {
   7433 	struct l2_dtable *l2;
   7434 	struct l2_bucket *l2b;
   7435 	pt_entry_t *ptep, pte;
   7436 	vaddr_t l2_va, l2b_va, va;
   7437 	int i, j, k, occ, rows = 0;
   7438 
   7439 	if (pm == pmap_kernel())
   7440 		printf("pmap_kernel (%p): ", pm);
   7441 	else
   7442 		printf("user pmap (%p): ", pm);
   7443 
   7444 #ifdef ARM_MMU_EXTENDED
   7445 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7446 #else
   7447 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7448 #endif
   7449 
   7450 	l2_va = 0;
   7451 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7452 		l2 = pm->pm_l2[i];
   7453 
   7454 		if (l2 == NULL || l2->l2_occupancy == 0)
   7455 			continue;
   7456 
   7457 		l2b_va = l2_va;
   7458 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7459 			l2b = &l2->l2_bucket[j];
   7460 
   7461 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7462 				continue;
   7463 
   7464 			ptep = l2b->l2b_kva;
   7465 
   7466 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7467 				;
   7468 
   7469 			k &= ~63;
   7470 			occ = l2b->l2b_occupancy;
   7471 			va = l2b_va + (k * 4096);
   7472 			for (; k < 256; k++, va += 0x1000) {
   7473 				char ch = ' ';
   7474 				if ((k % 64) == 0) {
   7475 					if ((rows % 8) == 0) {
   7476 						printf(
   7477 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7478 					}
   7479 					printf("%08lx: ", va);
   7480 				}
   7481 
   7482 				ncptes[k & 63] = 0;
   7483 				pte = ptep[k];
   7484 				if (pte == 0) {
   7485 					ch = '.';
   7486 				} else {
   7487 					occ--;
   7488 					switch (pte & 0x0c) {
   7489 					case 0x00:
   7490 						ch = 'D'; /* No cache No buff */
   7491 						break;
   7492 					case 0x04:
   7493 						ch = 'B'; /* No cache buff */
   7494 						break;
   7495 					case 0x08:
   7496 						if (pte & 0x40)
   7497 							ch = 'm';
   7498 						else
   7499 						   ch = 'C'; /* Cache No buff */
   7500 						break;
   7501 					case 0x0c:
   7502 						ch = 'F'; /* Cache Buff */
   7503 						break;
   7504 					}
   7505 
   7506 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   7507 						ch += 0x20;
   7508 
   7509 					if ((pte & 0xc) == 0)
   7510 						ncptes[k & 63] = pte;
   7511 				}
   7512 
   7513 				if ((k % 64) == 63) {
   7514 					rows++;
   7515 					printf("%c\n", ch);
   7516 					pmap_dump_ncpg(pm);
   7517 					if (occ == 0)
   7518 						break;
   7519 				} else
   7520 					printf("%c", ch);
   7521 			}
   7522 		}
   7523 	}
   7524 }
   7525 
   7526 static void
   7527 pmap_dump_ncpg(pmap_t pm)
   7528 {
   7529 	struct vm_page *pg;
   7530 	struct vm_page_md *md;
   7531 	struct pv_entry *pv;
   7532 	int i;
   7533 
   7534 	for (i = 0; i < 63; i++) {
   7535 		if (ncptes[i] == 0)
   7536 			continue;
   7537 
   7538 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   7539 		if (pg == NULL)
   7540 			continue;
   7541 		md = VM_PAGE_TO_MD(pg);
   7542 
   7543 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   7544 		    VM_PAGE_TO_PHYS(pg),
   7545 		    md->krw_mappings, md->kro_mappings,
   7546 		    md->urw_mappings, md->uro_mappings);
   7547 
   7548 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   7549 			printf("   %c va 0x%08lx, flags 0x%x\n",
   7550 			    (pm == pv->pv_pmap) ? '*' : ' ',
   7551 			    pv->pv_va, pv->pv_flags);
   7552 		}
   7553 	}
   7554 }
   7555 #endif
   7556 
   7557 #ifdef PMAP_STEAL_MEMORY
   7558 void
   7559 pmap_boot_pageadd(pv_addr_t *newpv)
   7560 {
   7561 	pv_addr_t *pv, *npv;
   7562 
   7563 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   7564 		if (newpv->pv_pa < pv->pv_va) {
   7565 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   7566 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   7567 				newpv->pv_size += pv->pv_size;
   7568 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   7569 			}
   7570 			pv = NULL;
   7571 		} else {
   7572 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   7573 			     pv = npv) {
   7574 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   7575 				KASSERT(pv->pv_pa < newpv->pv_pa);
   7576 				if (newpv->pv_pa > npv->pv_pa)
   7577 					continue;
   7578 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   7579 					pv->pv_size += newpv->pv_size;
   7580 					return;
   7581 				}
   7582 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   7583 					break;
   7584 				newpv->pv_size += npv->pv_size;
   7585 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7586 				SLIST_REMOVE_AFTER(newpv, pv_list);
   7587 				return;
   7588 			}
   7589 		}
   7590 	}
   7591 
   7592 	if (pv) {
   7593 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7594 	} else {
   7595 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   7596 	}
   7597 }
   7598 
   7599 void
   7600 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   7601 	pv_addr_t *rpv)
   7602 {
   7603 	pv_addr_t *pv, **pvp;
   7604 	struct vm_physseg *ps;
   7605 	size_t i;
   7606 
   7607 	KASSERT(amount & PGOFSET);
   7608 	KASSERT((mask & PGOFSET) == 0);
   7609 	KASSERT((match & PGOFSET) == 0);
   7610 	KASSERT(amount != 0);
   7611 
   7612 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7613 	     (pv = *pvp) != NULL;
   7614 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7615 		pv_addr_t *newpv;
   7616 		psize_t off;
   7617 		/*
   7618 		 * If this entry is too small to satify the request...
   7619 		 */
   7620 		KASSERT(pv->pv_size > 0);
   7621 		if (pv->pv_size < amount)
   7622 			continue;
   7623 
   7624 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   7625 			if (((pv->pv_pa + off) & mask) == match
   7626 			    && off + amount <= pv->pv_size)
   7627 				break;
   7628 		}
   7629 		if (off > mask)
   7630 			continue;
   7631 
   7632 		rpv->pv_va = pv->pv_va + off;
   7633 		rpv->pv_pa = pv->pv_pa + off;
   7634 		rpv->pv_size = amount;
   7635 		pv->pv_size -= amount;
   7636 		if (pv->pv_size == 0) {
   7637 			KASSERT(off == 0);
   7638 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7639 			*pvp = SLIST_NEXT(pv, pv_list);
   7640 		} else if (off == 0) {
   7641 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7642 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7643 			*newpv = *pv;
   7644 			newpv->pv_pa += amount;
   7645 			newpv->pv_va += amount;
   7646 			*pvp = newpv;
   7647 		} else if (off < pv->pv_size) {
   7648 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7649 			*newpv = *pv;
   7650 			newpv->pv_size -= off;
   7651 			newpv->pv_pa += off + amount;
   7652 			newpv->pv_va += off + amount;
   7653 
   7654 			SLIST_NEXT(pv, pv_list) = newpv;
   7655 			pv->pv_size = off;
   7656 		} else {
   7657 			KASSERT((vaddr_t) pv != rpv->pv_va);
   7658 		}
   7659 		memset((void *)rpv->pv_va, 0, amount);
   7660 		return;
   7661 	}
   7662 
   7663 	if (vm_nphysseg == 0)
   7664 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   7665 
   7666 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7667 	     (pv = *pvp) != NULL;
   7668 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7669 		if (SLIST_NEXT(pv, pv_list) == NULL)
   7670 			break;
   7671 	}
   7672 	KASSERT(mask == 0);
   7673 	for (i = 0; i < vm_nphysseg; i++) {
   7674 		ps = VM_PHYSMEM_PTR(i);
   7675 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   7676 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   7677 			rpv->pv_va = pv->pv_va;
   7678 			rpv->pv_pa = pv->pv_pa;
   7679 			rpv->pv_size = amount;
   7680 			*pvp = NULL;
   7681 			pmap_map_chunk(kernel_l1pt.pv_va,
   7682 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   7683 			     ptoa(ps->avail_start),
   7684 			     amount - pv->pv_size,
   7685 			     VM_PROT_READ|VM_PROT_WRITE,
   7686 			     PTE_CACHE);
   7687 			ps->avail_start += atop(amount - pv->pv_size);
   7688 			/*
   7689 			 * If we consumed the entire physseg, remove it.
   7690 			 */
   7691 			if (ps->avail_start == ps->avail_end) {
   7692 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   7693 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   7694 			}
   7695 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   7696 			return;
   7697 		}
   7698 	}
   7699 
   7700 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   7701 }
   7702 
   7703 vaddr_t
   7704 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   7705 {
   7706 	pv_addr_t pv;
   7707 
   7708 	pmap_boot_pagealloc(size, 0, 0, &pv);
   7709 
   7710 	return pv.pv_va;
   7711 }
   7712 #endif /* PMAP_STEAL_MEMORY */
   7713 
   7714 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   7715 {
   7716 	sysctl_createv(clog, 0, NULL, NULL,
   7717 			CTLFLAG_PERMANENT,
   7718 			CTLTYPE_NODE, "machdep", NULL,
   7719 			NULL, 0, NULL, 0,
   7720 			CTL_MACHDEP, CTL_EOL);
   7721 
   7722 	sysctl_createv(clog, 0, NULL, NULL,
   7723 			CTLFLAG_PERMANENT,
   7724 			CTLTYPE_INT, "kmpages",
   7725 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   7726 			NULL, 0, &pmap_kmpages, 0,
   7727 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   7728 }
   7729 
   7730 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   7731 struct vm_page *
   7732 arm_pmap_alloc_poolpage(int flags)
   7733 {
   7734 	/*
   7735 	 * On some systems, only some pages may be "coherent" for dma and we
   7736 	 * want to prefer those for pool pages (think mbufs) but fallback to
   7737 	 * any page if none is available.  But we can only fallback if we
   7738 	 * aren't direct mapping memory or all of memory can be direct-mapped.
   7739 	 * If that isn't true, pool changes can only come from direct-mapped
   7740 	 * memory.
   7741 	 */
   7742 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   7743 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   7744 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(ARM_MMU_EXTENDED)
   7745 		    (pmap_directbase < KERNEL_BASE
   7746 			? UVM_PGA_STRAT_ONLY
   7747 			: UVM_PGA_STRAT_FALLBACK),
   7748 #else
   7749 		    UVM_PGA_STRAT_FALLBACK,
   7750 #endif
   7751 		    arm_poolpage_vmfreelist);
   7752 	}
   7753 
   7754 	return uvm_pagealloc(NULL, 0, NULL, flags);
   7755 }
   7756 #endif
   7757 
   7758 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   7759 void
   7760 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   7761 {
   7762         /* nothing */
   7763 }
   7764 
   7765 int
   7766 pic_ipi_shootdown(void *arg)
   7767 {
   7768 #if PMAP_NEED_TLB_SHOOTDOWN
   7769 	pmap_tlb_shootdown_process();
   7770 #endif
   7771 	return 1;
   7772 }
   7773 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   7774 
   7775 
   7776 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   7777 vaddr_t
   7778 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   7779 {
   7780 	bool ok = false;
   7781 	if (physical_start <= pa && pa < physical_end) {
   7782 #ifdef ARM_MMU_EXTENDED
   7783 		const vaddr_t newva = pmap_directbase + pa - physical_start;
   7784 		if (newva >= KERNEL_BASE) {
   7785 			va = newva;
   7786 			ok = true;
   7787 		}
   7788 #else
   7789 		va = KERNEL_BASE + pa - physical_start;
   7790 		ok = true;
   7791 #endif
   7792 	}
   7793 	KASSERT(ok_p);
   7794 	*ok_p = ok;
   7795 	return va;
   7796 }
   7797 
   7798 vaddr_t
   7799 pmap_map_poolpage(paddr_t pa)
   7800 {
   7801 	bool ok __diagused;
   7802 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   7803 	KASSERT(ok);
   7804 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   7805 	if (arm_cache_prefer_mask != 0) {
   7806 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   7807 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   7808 		pmap_acquire_page_lock(md);
   7809 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   7810 		pmap_release_page_lock(md);
   7811 	}
   7812 #endif
   7813 	return va;
   7814 }
   7815 
   7816 paddr_t
   7817 pmap_unmap_poolpage(vaddr_t va)
   7818 {
   7819 	KASSERT(va >= KERNEL_BASE);
   7820 #if defined(ARM_MMU_EXTENDED)
   7821 	return va - pmap_directbase + physical_start;
   7822 #else
   7823 #ifdef PMAP_CACHE_VIVT
   7824 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   7825 #endif
   7826         return va - KERNEL_BASE + physical_start;
   7827 #endif
   7828 }
   7829 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   7830