pmap.c revision 1.307 1 /* $NetBSD: pmap.c,v 1.307 2014/10/29 22:52:21 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #ifdef MULTIPROCESSOR
196 #define _INTR_PRIVATE
197 #endif
198
199 #include <sys/param.h>
200 #include <sys/types.h>
201 #include <sys/kernel.h>
202 #include <sys/systm.h>
203 #include <sys/proc.h>
204 #include <sys/intr.h>
205 #include <sys/pool.h>
206 #include <sys/kmem.h>
207 #include <sys/cdefs.h>
208 #include <sys/cpu.h>
209 #include <sys/sysctl.h>
210 #include <sys/bus.h>
211 #include <sys/atomic.h>
212 #include <sys/kernhist.h>
213
214 #include <uvm/uvm.h>
215
216 #include <arm/locore.h>
217
218 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.307 2014/10/29 22:52:21 skrll Exp $");
219
220 //#define PMAP_DEBUG
221 #ifdef PMAP_DEBUG
222
223 /* XXX need to get rid of all refs to this */
224 int pmap_debug_level = 0;
225
226 /*
227 * for switching to potentially finer grained debugging
228 */
229 #define PDB_FOLLOW 0x0001
230 #define PDB_INIT 0x0002
231 #define PDB_ENTER 0x0004
232 #define PDB_REMOVE 0x0008
233 #define PDB_CREATE 0x0010
234 #define PDB_PTPAGE 0x0020
235 #define PDB_GROWKERN 0x0040
236 #define PDB_BITS 0x0080
237 #define PDB_COLLECT 0x0100
238 #define PDB_PROTECT 0x0200
239 #define PDB_MAP_L1 0x0400
240 #define PDB_BOOTSTRAP 0x1000
241 #define PDB_PARANOIA 0x2000
242 #define PDB_WIRING 0x4000
243 #define PDB_PVDUMP 0x8000
244 #define PDB_VAC 0x10000
245 #define PDB_KENTER 0x20000
246 #define PDB_KREMOVE 0x40000
247 #define PDB_EXEC 0x80000
248
249 int debugmap = 1;
250 int pmapdebug = 0;
251 #define NPDEBUG(_lev_,_stat_) \
252 if (pmapdebug & (_lev_)) \
253 ((_stat_))
254
255 #else /* PMAP_DEBUG */
256 #define NPDEBUG(_lev_,_stat_) /* Nothing */
257 #endif /* PMAP_DEBUG */
258
259 /*
260 * pmap_kernel() points here
261 */
262 static struct pmap kernel_pmap_store = {
263 #ifndef ARM_MMU_EXTENDED
264 .pm_activated = true,
265 .pm_domain = PMAP_DOMAIN_KERNEL,
266 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
267 #endif
268 };
269 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
270 #undef pmap_kernel
271 #define pmap_kernel() (&kernel_pmap_store)
272 #ifdef PMAP_NEED_ALLOC_POOLPAGE
273 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
274 #endif
275
276 /*
277 * Pool and cache that pmap structures are allocated from.
278 * We use a cache to avoid clearing the pm_l2[] array (1KB)
279 * in pmap_create().
280 */
281 static struct pool_cache pmap_cache;
282 static LIST_HEAD(, pmap) pmap_pmaps;
283
284 /*
285 * Pool of PV structures
286 */
287 static struct pool pmap_pv_pool;
288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
291 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
292 };
293
294 /*
295 * Pool and cache of l2_dtable structures.
296 * We use a cache to avoid clearing the structures when they're
297 * allocated. (196 bytes)
298 */
299 static struct pool_cache pmap_l2dtable_cache;
300 static vaddr_t pmap_kernel_l2dtable_kva;
301
302 /*
303 * Pool and cache of L2 page descriptors.
304 * We use a cache to avoid clearing the descriptor table
305 * when they're allocated. (1KB)
306 */
307 static struct pool_cache pmap_l2ptp_cache;
308 static vaddr_t pmap_kernel_l2ptp_kva;
309 static paddr_t pmap_kernel_l2ptp_phys;
310
311 #ifdef PMAPCOUNTERS
312 #define PMAP_EVCNT_INITIALIZER(name) \
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
314
315 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
316 static struct evcnt pmap_ev_vac_clean_one =
317 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_one =
319 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
320 static struct evcnt pmap_ev_vac_flush_lots =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
322 static struct evcnt pmap_ev_vac_flush_lots2 =
323 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
328
329 static struct evcnt pmap_ev_vac_color_new =
330 PMAP_EVCNT_INITIALIZER("new page color");
331 static struct evcnt pmap_ev_vac_color_reuse =
332 PMAP_EVCNT_INITIALIZER("ok first page color");
333 static struct evcnt pmap_ev_vac_color_ok =
334 PMAP_EVCNT_INITIALIZER("ok page color");
335 static struct evcnt pmap_ev_vac_color_blind =
336 PMAP_EVCNT_INITIALIZER("blind page color");
337 static struct evcnt pmap_ev_vac_color_change =
338 PMAP_EVCNT_INITIALIZER("change page color");
339 static struct evcnt pmap_ev_vac_color_erase =
340 PMAP_EVCNT_INITIALIZER("erase page color");
341 static struct evcnt pmap_ev_vac_color_none =
342 PMAP_EVCNT_INITIALIZER("no page color");
343 static struct evcnt pmap_ev_vac_color_restore =
344 PMAP_EVCNT_INITIALIZER("restore page color");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
354 #endif
355
356 static struct evcnt pmap_ev_mappings =
357 PMAP_EVCNT_INITIALIZER("pages mapped");
358 static struct evcnt pmap_ev_unmappings =
359 PMAP_EVCNT_INITIALIZER("pages unmapped");
360 static struct evcnt pmap_ev_remappings =
361 PMAP_EVCNT_INITIALIZER("pages remapped");
362
363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
366
367 static struct evcnt pmap_ev_kernel_mappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
369 static struct evcnt pmap_ev_kernel_unmappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
371 static struct evcnt pmap_ev_kernel_remappings =
372 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
373
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
377
378 static struct evcnt pmap_ev_kenter_mappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
380 static struct evcnt pmap_ev_kenter_unmappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
382 static struct evcnt pmap_ev_kenter_remappings =
383 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
384 static struct evcnt pmap_ev_pt_mappings =
385 PMAP_EVCNT_INITIALIZER("page table pages mapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
391
392 static struct evcnt pmap_ev_fixup_mod =
393 PMAP_EVCNT_INITIALIZER("page modification emulations");
394 static struct evcnt pmap_ev_fixup_ref =
395 PMAP_EVCNT_INITIALIZER("page reference emulations");
396 static struct evcnt pmap_ev_fixup_exec =
397 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
398 static struct evcnt pmap_ev_fixup_pdes =
399 PMAP_EVCNT_INITIALIZER("pdes fixed up");
400 #ifndef ARM_MMU_EXTENDED
401 static struct evcnt pmap_ev_fixup_ptesync =
402 PMAP_EVCNT_INITIALIZER("ptesync fixed");
403 #endif
404
405 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
409 #ifndef ARM_MMU_EXTENDED
410 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
411 #endif
412
413 #ifdef PMAP_CACHE_VIPT
414 static struct evcnt pmap_ev_exec_mappings =
415 PMAP_EVCNT_INITIALIZER("exec pages mapped");
416 static struct evcnt pmap_ev_exec_cached =
417 PMAP_EVCNT_INITIALIZER("exec pages cached");
418
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
421
422 static struct evcnt pmap_ev_exec_synced =
423 PMAP_EVCNT_INITIALIZER("exec pages synced");
424 static struct evcnt pmap_ev_exec_synced_map =
425 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
426 #ifndef ARM_MMU_EXTENDED
427 static struct evcnt pmap_ev_exec_synced_unmap =
428 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
429 static struct evcnt pmap_ev_exec_synced_remap =
430 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
431 static struct evcnt pmap_ev_exec_synced_clearbit =
432 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
433 static struct evcnt pmap_ev_exec_synced_kremove =
434 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
435 #endif
436
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
439 #ifndef ARM_MMU_EXTENDED
440 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
444 #endif
445
446 static struct evcnt pmap_ev_exec_discarded_unmap =
447 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
448 static struct evcnt pmap_ev_exec_discarded_zero =
449 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
450 static struct evcnt pmap_ev_exec_discarded_copy =
451 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
452 static struct evcnt pmap_ev_exec_discarded_page_protect =
453 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
454 static struct evcnt pmap_ev_exec_discarded_clearbit =
455 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
456 static struct evcnt pmap_ev_exec_discarded_kremove =
457 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
458 #ifdef ARM_MMU_EXTENDED
459 static struct evcnt pmap_ev_exec_discarded_modfixup =
460 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
461 #endif
462
463 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
469 #ifdef ARM_MMU_EXTENDED
470 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
471 #endif
472 #endif /* PMAP_CACHE_VIPT */
473
474 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
475 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
476 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
477
478 EVCNT_ATTACH_STATIC(pmap_ev_updates);
479 EVCNT_ATTACH_STATIC(pmap_ev_collects);
480 EVCNT_ATTACH_STATIC(pmap_ev_activations);
481
482 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
483 #else
484 #define PMAPCOUNT(x) ((void)0)
485 #endif
486
487 /*
488 * pmap copy/zero page, and mem(5) hook point
489 */
490 static pt_entry_t *csrc_pte, *cdst_pte;
491 static vaddr_t csrcp, cdstp;
492 #ifdef MULTIPROCESSOR
493 static size_t cnptes;
494 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
495 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
496 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
497 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
498 #else
499 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
500 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
501 #define cpu_csrcp(o) (csrcp + (o))
502 #define cpu_cdstp(o) (cdstp + (o))
503 #endif
504 vaddr_t memhook; /* used by mem.c & others */
505 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
506 kmutex_t pmap_lock __cacheline_aligned;
507 extern void *msgbufaddr;
508 int pmap_kmpages;
509 /*
510 * Flag to indicate if pmap_init() has done its thing
511 */
512 bool pmap_initialized;
513
514 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
515 /*
516 * Start of direct-mapped memory
517 */
518 vaddr_t pmap_directbase = KERNEL_BASE;
519 #endif
520
521 /*
522 * Misc. locking data structures
523 */
524
525 static inline void
526 pmap_acquire_pmap_lock(pmap_t pm)
527 {
528 if (pm == pmap_kernel()) {
529 #ifdef MULTIPROCESSOR
530 KERNEL_LOCK(1, NULL);
531 #endif
532 } else {
533 mutex_enter(pm->pm_lock);
534 }
535 }
536
537 static inline void
538 pmap_release_pmap_lock(pmap_t pm)
539 {
540 if (pm == pmap_kernel()) {
541 #ifdef MULTIPROCESSOR
542 KERNEL_UNLOCK_ONE(NULL);
543 #endif
544 } else {
545 mutex_exit(pm->pm_lock);
546 }
547 }
548
549 static inline void
550 pmap_acquire_page_lock(struct vm_page_md *md)
551 {
552 mutex_enter(&pmap_lock);
553 }
554
555 static inline void
556 pmap_release_page_lock(struct vm_page_md *md)
557 {
558 mutex_exit(&pmap_lock);
559 }
560
561 #ifdef DIAGNOSTIC
562 static inline int
563 pmap_page_locked_p(struct vm_page_md *md)
564 {
565 return mutex_owned(&pmap_lock);
566 }
567 #endif
568
569
570 /*
571 * Metadata for L1 translation tables.
572 */
573 #ifndef ARM_MMU_EXTENDED
574 struct l1_ttable {
575 /* Entry on the L1 Table list */
576 SLIST_ENTRY(l1_ttable) l1_link;
577
578 /* Entry on the L1 Least Recently Used list */
579 TAILQ_ENTRY(l1_ttable) l1_lru;
580
581 /* Track how many domains are allocated from this L1 */
582 volatile u_int l1_domain_use_count;
583
584 /*
585 * A free-list of domain numbers for this L1.
586 * We avoid using ffs() and a bitmap to track domains since ffs()
587 * is slow on ARM.
588 */
589 uint8_t l1_domain_first;
590 uint8_t l1_domain_free[PMAP_DOMAINS];
591
592 /* Physical address of this L1 page table */
593 paddr_t l1_physaddr;
594
595 /* KVA of this L1 page table */
596 pd_entry_t *l1_kva;
597 };
598
599 /*
600 * L1 Page Tables are tracked using a Least Recently Used list.
601 * - New L1s are allocated from the HEAD.
602 * - Freed L1s are added to the TAIl.
603 * - Recently accessed L1s (where an 'access' is some change to one of
604 * the userland pmaps which owns this L1) are moved to the TAIL.
605 */
606 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
607 static kmutex_t l1_lru_lock __cacheline_aligned;
608
609 /*
610 * A list of all L1 tables
611 */
612 static SLIST_HEAD(, l1_ttable) l1_list;
613 #endif /* ARM_MMU_EXTENDED */
614
615 /*
616 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
617 *
618 * This is normally 16MB worth L2 page descriptors for any given pmap.
619 * Reference counts are maintained for L2 descriptors so they can be
620 * freed when empty.
621 */
622 struct l2_bucket {
623 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
624 paddr_t l2b_pa; /* Physical address of same */
625 u_short l2b_l1slot; /* This L2 table's L1 index */
626 u_short l2b_occupancy; /* How many active descriptors */
627 };
628
629 struct l2_dtable {
630 /* The number of L2 page descriptors allocated to this l2_dtable */
631 u_int l2_occupancy;
632
633 /* List of L2 page descriptors */
634 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
635 };
636
637 /*
638 * Given an L1 table index, calculate the corresponding l2_dtable index
639 * and bucket index within the l2_dtable.
640 */
641 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
642 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
643 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
644 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
645 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
646
647 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
648 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
649
650 /*
651 * Given a virtual address, this macro returns the
652 * virtual address required to drop into the next L2 bucket.
653 */
654 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
655
656 /*
657 * L2 allocation.
658 */
659 #define pmap_alloc_l2_dtable() \
660 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
661 #define pmap_free_l2_dtable(l2) \
662 pool_cache_put(&pmap_l2dtable_cache, (l2))
663 #define pmap_alloc_l2_ptp(pap) \
664 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
665 PR_NOWAIT, (pap)))
666
667 /*
668 * We try to map the page tables write-through, if possible. However, not
669 * all CPUs have a write-through cache mode, so on those we have to sync
670 * the cache when we frob page tables.
671 *
672 * We try to evaluate this at compile time, if possible. However, it's
673 * not always possible to do that, hence this run-time var.
674 */
675 int pmap_needs_pte_sync;
676
677 /*
678 * Real definition of pv_entry.
679 */
680 struct pv_entry {
681 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
682 pmap_t pv_pmap; /* pmap where mapping lies */
683 vaddr_t pv_va; /* virtual address for mapping */
684 u_int pv_flags; /* flags */
685 };
686
687 /*
688 * Macros to determine if a mapping might be resident in the
689 * instruction/data cache and/or TLB
690 */
691 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
692 /*
693 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
694 * there are no explicit accesses, so there may be always be TLB entries to
695 * flush. If we used ASIDs then this would not be a problem.
696 */
697 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
698 #define PV_BEEN_REFD(f) (true)
699 #else
700 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
701 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
702 #endif
703 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
704 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
705 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
706
707 /*
708 * Local prototypes
709 */
710 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
711 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
712 pt_entry_t **);
713 static bool pmap_is_current(pmap_t) __unused;
714 static bool pmap_is_cached(pmap_t);
715 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
716 pmap_t, vaddr_t, u_int);
717 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
718 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
719 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
720 u_int, u_int);
721
722 static void pmap_pinit(pmap_t);
723 static int pmap_pmap_ctor(void *, void *, int);
724
725 static void pmap_alloc_l1(pmap_t);
726 static void pmap_free_l1(pmap_t);
727 #ifndef ARM_MMU_EXTENDED
728 static void pmap_use_l1(pmap_t);
729 #endif
730
731 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
732 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
733 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
734 static int pmap_l2ptp_ctor(void *, void *, int);
735 static int pmap_l2dtable_ctor(void *, void *, int);
736
737 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
738 #ifdef PMAP_CACHE_VIVT
739 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
740 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
741 #endif
742
743 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
744 #ifdef PMAP_CACHE_VIVT
745 static bool pmap_clean_page(struct vm_page_md *, bool);
746 #endif
747 #ifdef PMAP_CACHE_VIPT
748 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
749 enum pmap_flush_op {
750 PMAP_FLUSH_PRIMARY,
751 PMAP_FLUSH_SECONDARY,
752 PMAP_CLEAN_PRIMARY
753 };
754 #ifndef ARM_MMU_EXTENDED
755 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
756 #endif
757 #endif
758 static void pmap_page_remove(struct vm_page_md *, paddr_t);
759
760 #ifndef ARM_MMU_EXTENDED
761 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
762 #endif
763 static vaddr_t kernel_pt_lookup(paddr_t);
764
765
766 /*
767 * Misc variables
768 */
769 vaddr_t virtual_avail;
770 vaddr_t virtual_end;
771 vaddr_t pmap_curmaxkvaddr;
772
773 paddr_t avail_start;
774 paddr_t avail_end;
775
776 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
777 pv_addr_t kernelpages;
778 pv_addr_t kernel_l1pt;
779 pv_addr_t systempage;
780
781 /* Function to set the debug level of the pmap code */
782
783 #ifdef PMAP_DEBUG
784 void
785 pmap_debug(int level)
786 {
787 pmap_debug_level = level;
788 printf("pmap_debug: level=%d\n", pmap_debug_level);
789 }
790 #endif /* PMAP_DEBUG */
791
792 #ifdef PMAP_CACHE_VIPT
793 #define PMAP_VALIDATE_MD_PAGE(md) \
794 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
795 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
796 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
797 #endif /* PMAP_CACHE_VIPT */
798 /*
799 * A bunch of routines to conditionally flush the caches/TLB depending
800 * on whether the specified pmap actually needs to be flushed at any
801 * given time.
802 */
803 static inline void
804 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
805 {
806 #ifdef ARM_MMU_EXTENDED
807 pmap_tlb_invalidate_addr(pm, va);
808 #else
809 if (pm->pm_cstate.cs_tlb_id != 0) {
810 if (PV_BEEN_EXECD(flags)) {
811 cpu_tlb_flushID_SE(va);
812 } else if (PV_BEEN_REFD(flags)) {
813 cpu_tlb_flushD_SE(va);
814 }
815 }
816 #endif /* ARM_MMU_EXTENDED */
817 }
818
819 static inline void
820 pmap_tlb_flushID(pmap_t pm)
821 {
822 #ifdef ARM_MMU_EXTENDED
823 pmap_tlb_asid_release_all(pm);
824 #else
825 if (pm->pm_cstate.cs_tlb_id) {
826 cpu_tlb_flushID();
827 #if ARM_MMU_V7 == 0
828 /*
829 * Speculative loads by Cortex cores can cause TLB entries to
830 * be filled even if there are no explicit accesses, so there
831 * may be always be TLB entries to flush. If we used ASIDs
832 * then it would not be a problem.
833 * This is not true for other CPUs.
834 */
835 pm->pm_cstate.cs_tlb = 0;
836 #endif /* ARM_MMU_V7 */
837 }
838 #endif /* ARM_MMU_EXTENDED */
839 }
840
841 static inline void
842 pmap_tlb_flushD(pmap_t pm)
843 {
844 #ifdef ARM_MMU_EXTENDED
845 pmap_tlb_asid_release_all(pm);
846 #else
847 if (pm->pm_cstate.cs_tlb_d) {
848 cpu_tlb_flushD();
849 #if ARM_MMU_V7 == 0
850 /*
851 * Speculative loads by Cortex cores can cause TLB entries to
852 * be filled even if there are no explicit accesses, so there
853 * may be always be TLB entries to flush. If we used ASIDs
854 * then it would not be a problem.
855 * This is not true for other CPUs.
856 */
857 pm->pm_cstate.cs_tlb_d = 0;
858 #endif /* ARM_MMU_V7 */
859 }
860 #endif /* ARM_MMU_EXTENDED */
861 }
862
863 #ifdef PMAP_CACHE_VIVT
864 static inline void
865 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
866 {
867 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
868 cpu_idcache_wbinv_range(va, PAGE_SIZE);
869 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
870 if (do_inv) {
871 if (flags & PVF_WRITE)
872 cpu_dcache_wbinv_range(va, PAGE_SIZE);
873 else
874 cpu_dcache_inv_range(va, PAGE_SIZE);
875 } else if (flags & PVF_WRITE) {
876 cpu_dcache_wb_range(va, PAGE_SIZE);
877 }
878 }
879 }
880
881 static inline void
882 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
883 {
884 if (PV_BEEN_EXECD(flags)) {
885 if (pm->pm_cstate.cs_cache_id) {
886 cpu_idcache_wbinv_all();
887 pm->pm_cstate.cs_cache = 0;
888 }
889 } else if (pm->pm_cstate.cs_cache_d) {
890 cpu_dcache_wbinv_all();
891 pm->pm_cstate.cs_cache_d = 0;
892 }
893 }
894 #endif /* PMAP_CACHE_VIVT */
895
896 static inline uint8_t
897 pmap_domain(pmap_t pm)
898 {
899 #ifdef ARM_MMU_EXTENDED
900 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
901 #else
902 return pm->pm_domain;
903 #endif
904 }
905
906 static inline pd_entry_t *
907 pmap_l1_kva(pmap_t pm)
908 {
909 #ifdef ARM_MMU_EXTENDED
910 return pm->pm_l1;
911 #else
912 return pm->pm_l1->l1_kva;
913 #endif
914 }
915
916 static inline bool
917 pmap_is_current(pmap_t pm)
918 {
919 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
920 return true;
921
922 return false;
923 }
924
925 static inline bool
926 pmap_is_cached(pmap_t pm)
927 {
928 #ifdef ARM_MMU_EXTENDED
929 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
930 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
931 return true;
932 #else
933 struct cpu_info * const ci = curcpu();
934 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
935 || ci->ci_pmap_lastuser == pm)
936 return true;
937 #endif /* ARM_MMU_EXTENDED */
938
939 return false;
940 }
941
942 /*
943 * PTE_SYNC_CURRENT:
944 *
945 * Make sure the pte is written out to RAM.
946 * We need to do this for one of two cases:
947 * - We're dealing with the kernel pmap
948 * - There is no pmap active in the cache/tlb.
949 * - The specified pmap is 'active' in the cache/tlb.
950 */
951 #ifdef PMAP_INCLUDE_PTE_SYNC
952 #define PTE_SYNC_CURRENT(pm, ptep) \
953 do { \
954 if (PMAP_NEEDS_PTE_SYNC && \
955 pmap_is_cached(pm)) \
956 PTE_SYNC(ptep); \
957 } while (/*CONSTCOND*/0)
958 #else
959 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
960 #endif
961
962 /*
963 * main pv_entry manipulation functions:
964 * pmap_enter_pv: enter a mapping onto a vm_page list
965 * pmap_remove_pv: remove a mapping from a vm_page list
966 *
967 * NOTE: pmap_enter_pv expects to lock the pvh itself
968 * pmap_remove_pv expects the caller to lock the pvh before calling
969 */
970
971 /*
972 * pmap_enter_pv: enter a mapping onto a vm_page lst
973 *
974 * => caller should hold the proper lock on pmap_main_lock
975 * => caller should have pmap locked
976 * => we will gain the lock on the vm_page and allocate the new pv_entry
977 * => caller should adjust ptp's wire_count before calling
978 * => caller should not adjust pmap's wire_count
979 */
980 static void
981 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
982 vaddr_t va, u_int flags)
983 {
984 struct pv_entry **pvp;
985
986 NPDEBUG(PDB_PVDUMP,
987 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
988
989 pv->pv_pmap = pm;
990 pv->pv_va = va;
991 pv->pv_flags = flags;
992
993 pvp = &SLIST_FIRST(&md->pvh_list);
994 #ifdef PMAP_CACHE_VIPT
995 /*
996 * Insert unmanaged entries, writeable first, at the head of
997 * the pv list.
998 */
999 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1000 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1001 pvp = &SLIST_NEXT(*pvp, pv_link);
1002 }
1003 if (!PV_IS_WRITE_P(flags)) {
1004 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1005 pvp = &SLIST_NEXT(*pvp, pv_link);
1006 }
1007 #endif
1008 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1009 *pvp = pv; /* ... locked list */
1010 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1011 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1012 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1013 md->pvh_attrs |= PVF_KMOD;
1014 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1015 md->pvh_attrs |= PVF_DIRTY;
1016 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1017 #endif
1018 if (pm == pmap_kernel()) {
1019 PMAPCOUNT(kernel_mappings);
1020 if (flags & PVF_WRITE)
1021 md->krw_mappings++;
1022 else
1023 md->kro_mappings++;
1024 } else {
1025 if (flags & PVF_WRITE)
1026 md->urw_mappings++;
1027 else
1028 md->uro_mappings++;
1029 }
1030
1031 #ifdef PMAP_CACHE_VIPT
1032 #ifndef ARM_MMU_EXTENDED
1033 /*
1034 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1035 * do it here as well to keep the mappings & KVF_WRITE consistent.
1036 */
1037 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1038 md->pvh_attrs |= PVF_WRITE;
1039 }
1040 #endif
1041 /*
1042 * If this is an exec mapping and its the first exec mapping
1043 * for this page, make sure to sync the I-cache.
1044 */
1045 if (PV_IS_EXEC_P(flags)) {
1046 #ifndef ARM_MMU_EXTENDED
1047 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1048 pmap_syncicache_page(md, pa);
1049 PMAPCOUNT(exec_synced_map);
1050 }
1051 #endif
1052 PMAPCOUNT(exec_mappings);
1053 }
1054 #endif
1055
1056 PMAPCOUNT(mappings);
1057
1058 if (pv->pv_flags & PVF_WIRED)
1059 ++pm->pm_stats.wired_count;
1060 }
1061
1062 /*
1063 *
1064 * pmap_find_pv: Find a pv entry
1065 *
1066 * => caller should hold lock on vm_page
1067 */
1068 static inline struct pv_entry *
1069 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1070 {
1071 struct pv_entry *pv;
1072
1073 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1074 if (pm == pv->pv_pmap && va == pv->pv_va)
1075 break;
1076 }
1077
1078 return (pv);
1079 }
1080
1081 /*
1082 * pmap_remove_pv: try to remove a mapping from a pv_list
1083 *
1084 * => caller should hold proper lock on pmap_main_lock
1085 * => pmap should be locked
1086 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1087 * => caller should adjust ptp's wire_count and free PTP if needed
1088 * => caller should NOT adjust pmap's wire_count
1089 * => we return the removed pv
1090 */
1091 static struct pv_entry *
1092 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1093 {
1094 struct pv_entry *pv, **prevptr;
1095
1096 NPDEBUG(PDB_PVDUMP,
1097 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1098
1099 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1100 pv = *prevptr;
1101
1102 while (pv) {
1103 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1104 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1105 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1106 if (pv->pv_flags & PVF_WIRED) {
1107 --pm->pm_stats.wired_count;
1108 }
1109 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1110 if (pm == pmap_kernel()) {
1111 PMAPCOUNT(kernel_unmappings);
1112 if (pv->pv_flags & PVF_WRITE)
1113 md->krw_mappings--;
1114 else
1115 md->kro_mappings--;
1116 } else {
1117 if (pv->pv_flags & PVF_WRITE)
1118 md->urw_mappings--;
1119 else
1120 md->uro_mappings--;
1121 }
1122
1123 PMAPCOUNT(unmappings);
1124 #ifdef PMAP_CACHE_VIPT
1125 if (!(pv->pv_flags & PVF_WRITE))
1126 break;
1127 /*
1128 * If this page has had an exec mapping, then if
1129 * this was the last mapping, discard the contents,
1130 * otherwise sync the i-cache for this page.
1131 */
1132 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1133 #ifdef ARM_MMU_EXTENDED
1134 md->pvh_attrs &= ~PVF_EXEC;
1135 PMAPCOUNT(exec_discarded_unmap);
1136 #else
1137 if (SLIST_EMPTY(&md->pvh_list)) {
1138 md->pvh_attrs &= ~PVF_EXEC;
1139 PMAPCOUNT(exec_discarded_unmap);
1140 } else {
1141 pmap_syncicache_page(md, pa);
1142 PMAPCOUNT(exec_synced_unmap);
1143 }
1144 #endif /* ARM_MMU_EXTENDED */
1145 }
1146 #endif /* PMAP_CACHE_VIPT */
1147 break;
1148 }
1149 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1150 pv = *prevptr; /* advance */
1151 }
1152
1153 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1154 /*
1155 * If we no longer have a WRITEABLE KENTRY at the head of list,
1156 * clear the KMOD attribute from the page.
1157 */
1158 if (SLIST_FIRST(&md->pvh_list) == NULL
1159 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1160 md->pvh_attrs &= ~PVF_KMOD;
1161
1162 /*
1163 * If this was a writeable page and there are no more writeable
1164 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1165 * the contents to memory.
1166 */
1167 if (arm_cache_prefer_mask != 0) {
1168 if (md->krw_mappings + md->urw_mappings == 0)
1169 md->pvh_attrs &= ~PVF_WRITE;
1170 PMAP_VALIDATE_MD_PAGE(md);
1171 }
1172 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1173 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1174
1175 return(pv); /* return removed pv */
1176 }
1177
1178 /*
1179 *
1180 * pmap_modify_pv: Update pv flags
1181 *
1182 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1183 * => caller should NOT adjust pmap's wire_count
1184 * => caller must call pmap_vac_me_harder() if writable status of a page
1185 * may have changed.
1186 * => we return the old flags
1187 *
1188 * Modify a physical-virtual mapping in the pv table
1189 */
1190 static u_int
1191 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1192 u_int clr_mask, u_int set_mask)
1193 {
1194 struct pv_entry *npv;
1195 u_int flags, oflags;
1196
1197 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1198 KASSERT(!PV_IS_KENTRY_P(set_mask));
1199
1200 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1201 return (0);
1202
1203 NPDEBUG(PDB_PVDUMP,
1204 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1205
1206 /*
1207 * There is at least one VA mapping this page.
1208 */
1209
1210 if (clr_mask & (PVF_REF | PVF_MOD)) {
1211 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1212 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1213 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1214 md->pvh_attrs |= PVF_DIRTY;
1215 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1216 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1217 }
1218
1219 oflags = npv->pv_flags;
1220 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1221
1222 if ((flags ^ oflags) & PVF_WIRED) {
1223 if (flags & PVF_WIRED)
1224 ++pm->pm_stats.wired_count;
1225 else
1226 --pm->pm_stats.wired_count;
1227 }
1228
1229 if ((flags ^ oflags) & PVF_WRITE) {
1230 if (pm == pmap_kernel()) {
1231 if (flags & PVF_WRITE) {
1232 md->krw_mappings++;
1233 md->kro_mappings--;
1234 } else {
1235 md->kro_mappings++;
1236 md->krw_mappings--;
1237 }
1238 } else {
1239 if (flags & PVF_WRITE) {
1240 md->urw_mappings++;
1241 md->uro_mappings--;
1242 } else {
1243 md->uro_mappings++;
1244 md->urw_mappings--;
1245 }
1246 }
1247 }
1248 #ifdef PMAP_CACHE_VIPT
1249 if (arm_cache_prefer_mask != 0) {
1250 if (md->urw_mappings + md->krw_mappings == 0) {
1251 md->pvh_attrs &= ~PVF_WRITE;
1252 } else {
1253 md->pvh_attrs |= PVF_WRITE;
1254 }
1255 }
1256 #ifndef ARM_MMU_EXTENDED
1257 /*
1258 * We have two cases here: the first is from enter_pv (new exec
1259 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1260 * Since in latter, pmap_enter_pv won't do anything, we just have
1261 * to do what pmap_remove_pv would do.
1262 */
1263 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1264 || (PV_IS_EXEC_P(md->pvh_attrs)
1265 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1266 pmap_syncicache_page(md, pa);
1267 PMAPCOUNT(exec_synced_remap);
1268 }
1269 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1270 #endif /* !ARM_MMU_EXTENDED */
1271 #endif /* PMAP_CACHE_VIPT */
1272
1273 PMAPCOUNT(remappings);
1274
1275 return (oflags);
1276 }
1277
1278 /*
1279 * Allocate an L1 translation table for the specified pmap.
1280 * This is called at pmap creation time.
1281 */
1282 static void
1283 pmap_alloc_l1(pmap_t pm)
1284 {
1285 #ifdef ARM_MMU_EXTENDED
1286 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1287 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1288 struct vm_page *pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1289 #else
1290 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1291 #endif
1292 bool ok __diagused;
1293 KASSERT(pg != NULL);
1294 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1295 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1296 KASSERT(ok);
1297 KASSERT(va >= KERNEL_BASE);
1298
1299 #else
1300 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1301 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1302 UVM_KMF_WIRED|UVM_KMF_ZERO);
1303 KASSERT(va);
1304 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1305 #endif
1306 pm->pm_l1 = (pd_entry_t *)va;
1307 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1308 #else
1309 struct l1_ttable *l1;
1310 uint8_t domain;
1311
1312 /*
1313 * Remove the L1 at the head of the LRU list
1314 */
1315 mutex_spin_enter(&l1_lru_lock);
1316 l1 = TAILQ_FIRST(&l1_lru_list);
1317 KDASSERT(l1 != NULL);
1318 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1319
1320 /*
1321 * Pick the first available domain number, and update
1322 * the link to the next number.
1323 */
1324 domain = l1->l1_domain_first;
1325 l1->l1_domain_first = l1->l1_domain_free[domain];
1326
1327 /*
1328 * If there are still free domain numbers in this L1,
1329 * put it back on the TAIL of the LRU list.
1330 */
1331 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1332 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1333
1334 mutex_spin_exit(&l1_lru_lock);
1335
1336 /*
1337 * Fix up the relevant bits in the pmap structure
1338 */
1339 pm->pm_l1 = l1;
1340 pm->pm_domain = domain + 1;
1341 #endif
1342 }
1343
1344 /*
1345 * Free an L1 translation table.
1346 * This is called at pmap destruction time.
1347 */
1348 static void
1349 pmap_free_l1(pmap_t pm)
1350 {
1351 #ifdef ARM_MMU_EXTENDED
1352 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1353 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1354 uvm_pagefree(pg);
1355 #else
1356 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1357 #endif
1358 pm->pm_l1 = NULL;
1359 pm->pm_l1_pa = 0;
1360 #else
1361 struct l1_ttable *l1 = pm->pm_l1;
1362
1363 mutex_spin_enter(&l1_lru_lock);
1364
1365 /*
1366 * If this L1 is currently on the LRU list, remove it.
1367 */
1368 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1369 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1370
1371 /*
1372 * Free up the domain number which was allocated to the pmap
1373 */
1374 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1375 l1->l1_domain_first = pmap_domain(pm) - 1;
1376 l1->l1_domain_use_count--;
1377
1378 /*
1379 * The L1 now must have at least 1 free domain, so add
1380 * it back to the LRU list. If the use count is zero,
1381 * put it at the head of the list, otherwise it goes
1382 * to the tail.
1383 */
1384 if (l1->l1_domain_use_count == 0)
1385 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1386 else
1387 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1388
1389 mutex_spin_exit(&l1_lru_lock);
1390 #endif /* ARM_MMU_EXTENDED */
1391 }
1392
1393 #ifndef ARM_MMU_EXTENDED
1394 static inline void
1395 pmap_use_l1(pmap_t pm)
1396 {
1397 struct l1_ttable *l1;
1398
1399 /*
1400 * Do nothing if we're in interrupt context.
1401 * Access to an L1 by the kernel pmap must not affect
1402 * the LRU list.
1403 */
1404 if (cpu_intr_p() || pm == pmap_kernel())
1405 return;
1406
1407 l1 = pm->pm_l1;
1408
1409 /*
1410 * If the L1 is not currently on the LRU list, just return
1411 */
1412 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1413 return;
1414
1415 mutex_spin_enter(&l1_lru_lock);
1416
1417 /*
1418 * Check the use count again, now that we've acquired the lock
1419 */
1420 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1421 mutex_spin_exit(&l1_lru_lock);
1422 return;
1423 }
1424
1425 /*
1426 * Move the L1 to the back of the LRU list
1427 */
1428 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1429 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1430
1431 mutex_spin_exit(&l1_lru_lock);
1432 }
1433 #endif /* !ARM_MMU_EXTENDED */
1434
1435 /*
1436 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1437 *
1438 * Free an L2 descriptor table.
1439 */
1440 static inline void
1441 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1442 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1443 #else
1444 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1445 #endif
1446 {
1447 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1448 /*
1449 * Note: With a write-back cache, we may need to sync this
1450 * L2 table before re-using it.
1451 * This is because it may have belonged to a non-current
1452 * pmap, in which case the cache syncs would have been
1453 * skipped for the pages that were being unmapped. If the
1454 * L2 table were then to be immediately re-allocated to
1455 * the *current* pmap, it may well contain stale mappings
1456 * which have not yet been cleared by a cache write-back
1457 * and so would still be visible to the mmu.
1458 */
1459 if (need_sync)
1460 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1461 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1462 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1463 }
1464
1465 /*
1466 * Returns a pointer to the L2 bucket associated with the specified pmap
1467 * and VA, or NULL if no L2 bucket exists for the address.
1468 */
1469 static inline struct l2_bucket *
1470 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1471 {
1472 const size_t l1slot = l1pte_index(va);
1473 struct l2_dtable *l2;
1474 struct l2_bucket *l2b;
1475
1476 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1477 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1478 return (NULL);
1479
1480 return (l2b);
1481 }
1482
1483 /*
1484 * Returns a pointer to the L2 bucket associated with the specified pmap
1485 * and VA.
1486 *
1487 * If no L2 bucket exists, perform the necessary allocations to put an L2
1488 * bucket/page table in place.
1489 *
1490 * Note that if a new L2 bucket/page was allocated, the caller *must*
1491 * increment the bucket occupancy counter appropriately *before*
1492 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1493 * the bucket/page in the meantime.
1494 */
1495 static struct l2_bucket *
1496 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1497 {
1498 const size_t l1slot = l1pte_index(va);
1499 struct l2_dtable *l2;
1500
1501 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1502 /*
1503 * No mapping at this address, as there is
1504 * no entry in the L1 table.
1505 * Need to allocate a new l2_dtable.
1506 */
1507 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1508 return (NULL);
1509
1510 /*
1511 * Link it into the parent pmap
1512 */
1513 pm->pm_l2[L2_IDX(l1slot)] = l2;
1514 }
1515
1516 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1517
1518 /*
1519 * Fetch pointer to the L2 page table associated with the address.
1520 */
1521 if (l2b->l2b_kva == NULL) {
1522 pt_entry_t *ptep;
1523
1524 /*
1525 * No L2 page table has been allocated. Chances are, this
1526 * is because we just allocated the l2_dtable, above.
1527 */
1528 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1529 /*
1530 * Oops, no more L2 page tables available at this
1531 * time. We may need to deallocate the l2_dtable
1532 * if we allocated a new one above.
1533 */
1534 if (l2->l2_occupancy == 0) {
1535 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1536 pmap_free_l2_dtable(l2);
1537 }
1538 return (NULL);
1539 }
1540
1541 l2->l2_occupancy++;
1542 l2b->l2b_kva = ptep;
1543 l2b->l2b_l1slot = l1slot;
1544
1545 #ifdef ARM_MMU_EXTENDED
1546 /*
1547 * We know there will be a mapping here, so simply
1548 * enter this PTP into the L1 now.
1549 */
1550 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1551 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1552 | L1_C_DOM(pmap_domain(pm));
1553 KASSERT(*pdep == 0);
1554 l1pte_setone(pdep, npde);
1555 PTE_SYNC(pdep);
1556 #endif
1557 }
1558
1559 return (l2b);
1560 }
1561
1562 /*
1563 * One or more mappings in the specified L2 descriptor table have just been
1564 * invalidated.
1565 *
1566 * Garbage collect the metadata and descriptor table itself if necessary.
1567 *
1568 * The pmap lock must be acquired when this is called (not necessary
1569 * for the kernel pmap).
1570 */
1571 static void
1572 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1573 {
1574 KDASSERT(count <= l2b->l2b_occupancy);
1575
1576 /*
1577 * Update the bucket's reference count according to how many
1578 * PTEs the caller has just invalidated.
1579 */
1580 l2b->l2b_occupancy -= count;
1581
1582 /*
1583 * Note:
1584 *
1585 * Level 2 page tables allocated to the kernel pmap are never freed
1586 * as that would require checking all Level 1 page tables and
1587 * removing any references to the Level 2 page table. See also the
1588 * comment elsewhere about never freeing bootstrap L2 descriptors.
1589 *
1590 * We make do with just invalidating the mapping in the L2 table.
1591 *
1592 * This isn't really a big deal in practice and, in fact, leads
1593 * to a performance win over time as we don't need to continually
1594 * alloc/free.
1595 */
1596 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1597 return;
1598
1599 /*
1600 * There are no more valid mappings in this level 2 page table.
1601 * Go ahead and NULL-out the pointer in the bucket, then
1602 * free the page table.
1603 */
1604 const size_t l1slot = l2b->l2b_l1slot;
1605 pt_entry_t * const ptep = l2b->l2b_kva;
1606 l2b->l2b_kva = NULL;
1607
1608 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1609 pd_entry_t pde __diagused = *pdep;
1610
1611 #ifdef ARM_MMU_EXTENDED
1612 /*
1613 * Invalidate the L1 slot.
1614 */
1615 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1616 #else
1617 /*
1618 * If the L1 slot matches the pmap's domain number, then invalidate it.
1619 */
1620 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1621 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1622 #endif
1623 l1pte_setone(pdep, 0);
1624 PDE_SYNC(pdep);
1625 #ifndef ARM_MMU_EXTENDED
1626 }
1627 #endif
1628
1629 /*
1630 * Release the L2 descriptor table back to the pool cache.
1631 */
1632 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1633 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1634 #else
1635 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1636 #endif
1637
1638 /*
1639 * Update the reference count in the associated l2_dtable
1640 */
1641 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1642 if (--l2->l2_occupancy > 0)
1643 return;
1644
1645 /*
1646 * There are no more valid mappings in any of the Level 1
1647 * slots managed by this l2_dtable. Go ahead and NULL-out
1648 * the pointer in the parent pmap and free the l2_dtable.
1649 */
1650 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1651 pmap_free_l2_dtable(l2);
1652 }
1653
1654 /*
1655 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1656 * structures.
1657 */
1658 static int
1659 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1660 {
1661 #ifndef PMAP_INCLUDE_PTE_SYNC
1662 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1663
1664 /*
1665 * The mappings for these page tables were initially made using
1666 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1667 * mode will not be right for page table mappings. To avoid
1668 * polluting the pmap_kenter_pa() code with a special case for
1669 * page tables, we simply fix up the cache-mode here if it's not
1670 * correct.
1671 */
1672 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1673 const struct l2_bucket * const l2b =
1674 pmap_get_l2_bucket(pmap_kernel(), va);
1675 KASSERTMSG(l2b != NULL, "%#lx", va);
1676 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1677 const pt_entry_t opte = *ptep;
1678
1679 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1680 /*
1681 * Page tables must have the cache-mode set correctly.
1682 */
1683 const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
1684 | pte_l2_s_cache_mode_pt;
1685 l2pte_set(ptep, npte, opte);
1686 PTE_SYNC(ptep);
1687 cpu_tlb_flushD_SE(va);
1688 cpu_cpwait();
1689 }
1690 }
1691 #endif
1692
1693 memset(v, 0, L2_TABLE_SIZE_REAL);
1694 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1695 return (0);
1696 }
1697
1698 static int
1699 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1700 {
1701
1702 memset(v, 0, sizeof(struct l2_dtable));
1703 return (0);
1704 }
1705
1706 static int
1707 pmap_pmap_ctor(void *arg, void *v, int flags)
1708 {
1709
1710 memset(v, 0, sizeof(struct pmap));
1711 return (0);
1712 }
1713
1714 static void
1715 pmap_pinit(pmap_t pm)
1716 {
1717 #ifndef ARM_HAS_VBAR
1718 struct l2_bucket *l2b;
1719
1720 if (vector_page < KERNEL_BASE) {
1721 /*
1722 * Map the vector page.
1723 */
1724 pmap_enter(pm, vector_page, systempage.pv_pa,
1725 VM_PROT_READ | VM_PROT_EXECUTE,
1726 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1727 pmap_update(pm);
1728
1729 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1730 l2b = pmap_get_l2_bucket(pm, vector_page);
1731 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1732 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1733 L1_C_DOM(pmap_domain(pm));
1734 } else
1735 pm->pm_pl1vec = NULL;
1736 #endif
1737 }
1738
1739 #ifdef PMAP_CACHE_VIVT
1740 /*
1741 * Since we have a virtually indexed cache, we may need to inhibit caching if
1742 * there is more than one mapping and at least one of them is writable.
1743 * Since we purge the cache on every context switch, we only need to check for
1744 * other mappings within the same pmap, or kernel_pmap.
1745 * This function is also called when a page is unmapped, to possibly reenable
1746 * caching on any remaining mappings.
1747 *
1748 * The code implements the following logic, where:
1749 *
1750 * KW = # of kernel read/write pages
1751 * KR = # of kernel read only pages
1752 * UW = # of user read/write pages
1753 * UR = # of user read only pages
1754 *
1755 * KC = kernel mapping is cacheable
1756 * UC = user mapping is cacheable
1757 *
1758 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1759 * +---------------------------------------------
1760 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1761 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1762 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1763 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1764 */
1765
1766 static const int pmap_vac_flags[4][4] = {
1767 {-1, 0, 0, PVF_KNC},
1768 {0, 0, PVF_NC, PVF_NC},
1769 {0, PVF_NC, PVF_NC, PVF_NC},
1770 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1771 };
1772
1773 static inline int
1774 pmap_get_vac_flags(const struct vm_page_md *md)
1775 {
1776 int kidx, uidx;
1777
1778 kidx = 0;
1779 if (md->kro_mappings || md->krw_mappings > 1)
1780 kidx |= 1;
1781 if (md->krw_mappings)
1782 kidx |= 2;
1783
1784 uidx = 0;
1785 if (md->uro_mappings || md->urw_mappings > 1)
1786 uidx |= 1;
1787 if (md->urw_mappings)
1788 uidx |= 2;
1789
1790 return (pmap_vac_flags[uidx][kidx]);
1791 }
1792
1793 static inline void
1794 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1795 {
1796 int nattr;
1797
1798 nattr = pmap_get_vac_flags(md);
1799
1800 if (nattr < 0) {
1801 md->pvh_attrs &= ~PVF_NC;
1802 return;
1803 }
1804
1805 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1806 return;
1807
1808 if (pm == pmap_kernel())
1809 pmap_vac_me_kpmap(md, pa, pm, va);
1810 else
1811 pmap_vac_me_user(md, pa, pm, va);
1812
1813 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1814 }
1815
1816 static void
1817 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1818 {
1819 u_int u_cacheable, u_entries;
1820 struct pv_entry *pv;
1821 pmap_t last_pmap = pm;
1822
1823 /*
1824 * Pass one, see if there are both kernel and user pmaps for
1825 * this page. Calculate whether there are user-writable or
1826 * kernel-writable pages.
1827 */
1828 u_cacheable = 0;
1829 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1830 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1831 u_cacheable++;
1832 }
1833
1834 u_entries = md->urw_mappings + md->uro_mappings;
1835
1836 /*
1837 * We know we have just been updating a kernel entry, so if
1838 * all user pages are already cacheable, then there is nothing
1839 * further to do.
1840 */
1841 if (md->k_mappings == 0 && u_cacheable == u_entries)
1842 return;
1843
1844 if (u_entries) {
1845 /*
1846 * Scan over the list again, for each entry, if it
1847 * might not be set correctly, call pmap_vac_me_user
1848 * to recalculate the settings.
1849 */
1850 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1851 /*
1852 * We know kernel mappings will get set
1853 * correctly in other calls. We also know
1854 * that if the pmap is the same as last_pmap
1855 * then we've just handled this entry.
1856 */
1857 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1858 continue;
1859
1860 /*
1861 * If there are kernel entries and this page
1862 * is writable but non-cacheable, then we can
1863 * skip this entry also.
1864 */
1865 if (md->k_mappings &&
1866 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1867 (PVF_NC | PVF_WRITE))
1868 continue;
1869
1870 /*
1871 * Similarly if there are no kernel-writable
1872 * entries and the page is already
1873 * read-only/cacheable.
1874 */
1875 if (md->krw_mappings == 0 &&
1876 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1877 continue;
1878
1879 /*
1880 * For some of the remaining cases, we know
1881 * that we must recalculate, but for others we
1882 * can't tell if they are correct or not, so
1883 * we recalculate anyway.
1884 */
1885 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1886 }
1887
1888 if (md->k_mappings == 0)
1889 return;
1890 }
1891
1892 pmap_vac_me_user(md, pa, pm, va);
1893 }
1894
1895 static void
1896 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1897 {
1898 pmap_t kpmap = pmap_kernel();
1899 struct pv_entry *pv, *npv = NULL;
1900 u_int entries = 0;
1901 u_int writable = 0;
1902 u_int cacheable_entries = 0;
1903 u_int kern_cacheable = 0;
1904 u_int other_writable = 0;
1905
1906 /*
1907 * Count mappings and writable mappings in this pmap.
1908 * Include kernel mappings as part of our own.
1909 * Keep a pointer to the first one.
1910 */
1911 npv = NULL;
1912 KASSERT(pmap_page_locked_p(md));
1913 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1914 /* Count mappings in the same pmap */
1915 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1916 if (entries++ == 0)
1917 npv = pv;
1918
1919 /* Cacheable mappings */
1920 if ((pv->pv_flags & PVF_NC) == 0) {
1921 cacheable_entries++;
1922 if (kpmap == pv->pv_pmap)
1923 kern_cacheable++;
1924 }
1925
1926 /* Writable mappings */
1927 if (pv->pv_flags & PVF_WRITE)
1928 ++writable;
1929 } else
1930 if (pv->pv_flags & PVF_WRITE)
1931 other_writable = 1;
1932 }
1933
1934 /*
1935 * Enable or disable caching as necessary.
1936 * Note: the first entry might be part of the kernel pmap,
1937 * so we can't assume this is indicative of the state of the
1938 * other (maybe non-kpmap) entries.
1939 */
1940 if ((entries > 1 && writable) ||
1941 (entries > 0 && pm == kpmap && other_writable)) {
1942 if (cacheable_entries == 0) {
1943 return;
1944 }
1945
1946 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1947 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1948 (pv->pv_flags & PVF_NC))
1949 continue;
1950
1951 pv->pv_flags |= PVF_NC;
1952
1953 struct l2_bucket * const l2b
1954 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1955 KASSERTMSG(l2b != NULL, "%#lx", va);
1956 pt_entry_t * const ptep
1957 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1958 const pt_entry_t opte = *ptep;
1959 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1960
1961 if ((va != pv->pv_va || pm != pv->pv_pmap)
1962 && l2pte_valid_p(npte)) {
1963 #ifdef PMAP_CACHE_VIVT
1964 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1965 true, pv->pv_flags);
1966 #endif
1967 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1968 pv->pv_flags);
1969 }
1970
1971 l2pte_set(ptep, npte, opte);
1972 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1973 }
1974 cpu_cpwait();
1975 } else
1976 if (entries > cacheable_entries) {
1977 /*
1978 * Turn cacheing back on for some pages. If it is a kernel
1979 * page, only do so if there are no other writable pages.
1980 */
1981 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1982 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1983 (kpmap != pv->pv_pmap || other_writable)))
1984 continue;
1985
1986 pv->pv_flags &= ~PVF_NC;
1987
1988 struct l2_bucket * const l2b
1989 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1990 KASSERTMSG(l2b != NULL, "%#lx", va);
1991 pt_entry_t * const ptep
1992 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1993 const pt_entry_t opte = *ptep;
1994 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1995 | pte_l2_s_cache_mode;
1996
1997 if (l2pte_valid_p(opte)) {
1998 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1999 pv->pv_flags);
2000 }
2001
2002 l2pte_set(ptep, npte, opte);
2003 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2004 }
2005 }
2006 }
2007 #endif
2008
2009 #ifdef PMAP_CACHE_VIPT
2010 static void
2011 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2012 {
2013 #ifndef ARM_MMU_EXTENDED
2014 struct pv_entry *pv;
2015 vaddr_t tst_mask;
2016 bool bad_alias;
2017 const u_int
2018 rw_mappings = md->urw_mappings + md->krw_mappings,
2019 ro_mappings = md->uro_mappings + md->kro_mappings;
2020
2021 /* do we need to do anything? */
2022 if (arm_cache_prefer_mask == 0)
2023 return;
2024
2025 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2026 md, pm, va));
2027
2028 KASSERT(!va || pm);
2029 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2030
2031 /* Already a conflict? */
2032 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2033 /* just an add, things are already non-cached */
2034 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2035 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2036 bad_alias = false;
2037 if (va) {
2038 PMAPCOUNT(vac_color_none);
2039 bad_alias = true;
2040 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2041 goto fixup;
2042 }
2043 pv = SLIST_FIRST(&md->pvh_list);
2044 /* the list can't be empty because it would be cachable */
2045 if (md->pvh_attrs & PVF_KMPAGE) {
2046 tst_mask = md->pvh_attrs;
2047 } else {
2048 KASSERT(pv);
2049 tst_mask = pv->pv_va;
2050 pv = SLIST_NEXT(pv, pv_link);
2051 }
2052 /*
2053 * Only check for a bad alias if we have writable mappings.
2054 */
2055 tst_mask &= arm_cache_prefer_mask;
2056 if (rw_mappings > 0) {
2057 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2058 /* if there's a bad alias, stop checking. */
2059 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2060 bad_alias = true;
2061 }
2062 md->pvh_attrs |= PVF_WRITE;
2063 if (!bad_alias)
2064 md->pvh_attrs |= PVF_DIRTY;
2065 } else {
2066 /*
2067 * We have only read-only mappings. Let's see if there
2068 * are multiple colors in use or if we mapped a KMPAGE.
2069 * If the latter, we have a bad alias. If the former,
2070 * we need to remember that.
2071 */
2072 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2073 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2074 if (md->pvh_attrs & PVF_KMPAGE)
2075 bad_alias = true;
2076 break;
2077 }
2078 }
2079 md->pvh_attrs &= ~PVF_WRITE;
2080 /*
2081 * No KMPAGE and we exited early, so we must have
2082 * multiple color mappings.
2083 */
2084 if (!bad_alias && pv != NULL)
2085 md->pvh_attrs |= PVF_MULTCLR;
2086 }
2087
2088 /* If no conflicting colors, set everything back to cached */
2089 if (!bad_alias) {
2090 #ifdef DEBUG
2091 if ((md->pvh_attrs & PVF_WRITE)
2092 || ro_mappings < 2) {
2093 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2094 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2095 }
2096 #endif
2097 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2098 md->pvh_attrs |= tst_mask | PVF_COLORED;
2099 /*
2100 * Restore DIRTY bit if page is modified
2101 */
2102 if (md->pvh_attrs & PVF_DMOD)
2103 md->pvh_attrs |= PVF_DIRTY;
2104 PMAPCOUNT(vac_color_restore);
2105 } else {
2106 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2107 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2108 }
2109 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2110 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2111 } else if (!va) {
2112 KASSERT(pmap_is_page_colored_p(md));
2113 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2114 || (md->pvh_attrs & PVF_DIRTY));
2115 if (rw_mappings == 0) {
2116 md->pvh_attrs &= ~PVF_WRITE;
2117 if (ro_mappings == 1
2118 && (md->pvh_attrs & PVF_MULTCLR)) {
2119 /*
2120 * If this is the last readonly mapping
2121 * but it doesn't match the current color
2122 * for the page, change the current color
2123 * to match this last readonly mapping.
2124 */
2125 pv = SLIST_FIRST(&md->pvh_list);
2126 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2127 & arm_cache_prefer_mask;
2128 if (tst_mask) {
2129 md->pvh_attrs ^= tst_mask;
2130 PMAPCOUNT(vac_color_change);
2131 }
2132 }
2133 }
2134 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2135 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2136 return;
2137 } else if (!pmap_is_page_colored_p(md)) {
2138 /* not colored so we just use its color */
2139 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2140 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2141 PMAPCOUNT(vac_color_new);
2142 md->pvh_attrs &= PAGE_SIZE - 1;
2143 md->pvh_attrs |= PVF_COLORED
2144 | (va & arm_cache_prefer_mask)
2145 | (rw_mappings > 0 ? PVF_WRITE : 0);
2146 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2147 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2148 return;
2149 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2150 bad_alias = false;
2151 if (rw_mappings > 0) {
2152 /*
2153 * We now have writeable mappings and if we have
2154 * readonly mappings in more than once color, we have
2155 * an aliasing problem. Regardless mark the page as
2156 * writeable.
2157 */
2158 if (md->pvh_attrs & PVF_MULTCLR) {
2159 if (ro_mappings < 2) {
2160 /*
2161 * If we only have less than two
2162 * read-only mappings, just flush the
2163 * non-primary colors from the cache.
2164 */
2165 pmap_flush_page(md, pa,
2166 PMAP_FLUSH_SECONDARY);
2167 } else {
2168 bad_alias = true;
2169 }
2170 }
2171 md->pvh_attrs |= PVF_WRITE;
2172 }
2173 /* If no conflicting colors, set everything back to cached */
2174 if (!bad_alias) {
2175 #ifdef DEBUG
2176 if (rw_mappings > 0
2177 || (md->pvh_attrs & PMAP_KMPAGE)) {
2178 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2179 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2180 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2181 }
2182 #endif
2183 if (SLIST_EMPTY(&md->pvh_list))
2184 PMAPCOUNT(vac_color_reuse);
2185 else
2186 PMAPCOUNT(vac_color_ok);
2187
2188 /* matching color, just return */
2189 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2190 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2191 return;
2192 }
2193 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2194 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2195
2196 /* color conflict. evict from cache. */
2197
2198 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2199 md->pvh_attrs &= ~PVF_COLORED;
2200 md->pvh_attrs |= PVF_NC;
2201 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2202 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2203 PMAPCOUNT(vac_color_erase);
2204 } else if (rw_mappings == 0
2205 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2206 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2207
2208 /*
2209 * If the page has dirty cache lines, clean it.
2210 */
2211 if (md->pvh_attrs & PVF_DIRTY)
2212 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2213
2214 /*
2215 * If this is the first remapping (we know that there are no
2216 * writeable mappings), then this is a simple color change.
2217 * Otherwise this is a seconary r/o mapping, which means
2218 * we don't have to do anything.
2219 */
2220 if (ro_mappings == 1) {
2221 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2222 md->pvh_attrs &= PAGE_SIZE - 1;
2223 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2224 PMAPCOUNT(vac_color_change);
2225 } else {
2226 PMAPCOUNT(vac_color_blind);
2227 }
2228 md->pvh_attrs |= PVF_MULTCLR;
2229 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2230 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2231 return;
2232 } else {
2233 if (rw_mappings > 0)
2234 md->pvh_attrs |= PVF_WRITE;
2235
2236 /* color conflict. evict from cache. */
2237 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2238
2239 /* the list can't be empty because this was a enter/modify */
2240 pv = SLIST_FIRST(&md->pvh_list);
2241 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2242 KASSERT(pv);
2243 /*
2244 * If there's only one mapped page, change color to the
2245 * page's new color and return. Restore the DIRTY bit
2246 * that was erased by pmap_flush_page.
2247 */
2248 if (SLIST_NEXT(pv, pv_link) == NULL) {
2249 md->pvh_attrs &= PAGE_SIZE - 1;
2250 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2251 if (md->pvh_attrs & PVF_DMOD)
2252 md->pvh_attrs |= PVF_DIRTY;
2253 PMAPCOUNT(vac_color_change);
2254 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2255 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2256 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2257 return;
2258 }
2259 }
2260 bad_alias = true;
2261 md->pvh_attrs &= ~PVF_COLORED;
2262 md->pvh_attrs |= PVF_NC;
2263 PMAPCOUNT(vac_color_erase);
2264 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2265 }
2266
2267 fixup:
2268 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2269
2270 /*
2271 * Turn cacheing on/off for all pages.
2272 */
2273 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2274 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2275 pv->pv_va);
2276 KASSERTMSG(l2b != NULL, "%#lx", va);
2277 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2278 const pt_entry_t opte = *ptep;
2279 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2280 if (bad_alias) {
2281 pv->pv_flags |= PVF_NC;
2282 } else {
2283 pv->pv_flags &= ~PVF_NC;
2284 npte |= pte_l2_s_cache_mode;
2285 }
2286
2287 if (opte == npte) /* only update is there's a change */
2288 continue;
2289
2290 if (l2pte_valid_p(npte)) {
2291 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2292 }
2293
2294 l2pte_set(ptep, npte, opte);
2295 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2296 }
2297 #endif /* !ARM_MMU_EXTENDED */
2298 }
2299 #endif /* PMAP_CACHE_VIPT */
2300
2301
2302 /*
2303 * Modify pte bits for all ptes corresponding to the given physical address.
2304 * We use `maskbits' rather than `clearbits' because we're always passing
2305 * constants and the latter would require an extra inversion at run-time.
2306 */
2307 static void
2308 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2309 {
2310 struct pv_entry *pv;
2311 #ifdef PMAP_CACHE_VIPT
2312 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2313 #ifdef ARM_MMU_EXTENDED
2314 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2315 #else
2316 const u_int execbits = 0;
2317 bool need_vac_me_harder = false;
2318 bool need_syncicache = false;
2319 #endif
2320 #else
2321 const u_int execbits = 0;
2322 #endif
2323
2324 NPDEBUG(PDB_BITS,
2325 printf("pmap_clearbit: md %p mask 0x%x\n",
2326 md, maskbits));
2327
2328 #ifdef PMAP_CACHE_VIPT
2329 /*
2330 * If we might want to sync the I-cache and we've modified it,
2331 * then we know we definitely need to sync or discard it.
2332 */
2333 if (want_syncicache) {
2334 #ifdef ARM_MMU_EXTENDED
2335 if (md->pvh_attrs & PVF_MOD)
2336 md->pvh_attrs &= ~PVF_EXEC;
2337 #else
2338 need_syncicache = md->pvh_attrs & PVF_MOD;
2339 #endif
2340 }
2341 #endif
2342 KASSERT(pmap_page_locked_p(md));
2343
2344 /*
2345 * Clear saved attributes (modify, reference)
2346 */
2347 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2348
2349 if (SLIST_EMPTY(&md->pvh_list)) {
2350 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2351 if (need_syncicache) {
2352 /*
2353 * No one has it mapped, so just discard it. The next
2354 * exec remapping will cause it to be synced.
2355 */
2356 md->pvh_attrs &= ~PVF_EXEC;
2357 PMAPCOUNT(exec_discarded_clearbit);
2358 }
2359 #endif
2360 return;
2361 }
2362
2363 /*
2364 * Loop over all current mappings setting/clearing as appropos
2365 */
2366 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2367 pmap_t pm = pv->pv_pmap;
2368 const vaddr_t va = pv->pv_va;
2369 const u_int oflags = pv->pv_flags;
2370 #ifndef ARM_MMU_EXTENDED
2371 /*
2372 * Kernel entries are unmanaged and as such not to be changed.
2373 */
2374 if (PV_IS_KENTRY_P(oflags))
2375 continue;
2376 #endif
2377 pv->pv_flags &= ~maskbits;
2378
2379 pmap_release_page_lock(md);
2380 pmap_acquire_pmap_lock(pm);
2381
2382 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2383 if (l2b == NULL) {
2384 pmap_release_pmap_lock(pm);
2385 pmap_acquire_page_lock(md);
2386 continue;
2387 }
2388 KASSERTMSG(l2b != NULL, "%#lx", va);
2389
2390 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2391 const pt_entry_t opte = *ptep;
2392 pt_entry_t npte = opte | execbits;
2393
2394 #ifdef ARM_MMU_EXTENDED
2395 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2396 #endif
2397
2398 NPDEBUG(PDB_BITS,
2399 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2400 __func__, pv, pm, va, oflags));
2401
2402 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2403 #ifdef PMAP_CACHE_VIVT
2404 if ((oflags & PVF_NC)) {
2405 /*
2406 * Entry is not cacheable:
2407 *
2408 * Don't turn caching on again if this is a
2409 * modified emulation. This would be
2410 * inconsitent with the settings created by
2411 * pmap_vac_me_harder(). Otherwise, it's safe
2412 * to re-enable cacheing.
2413 *
2414 * There's no need to call pmap_vac_me_harder()
2415 * here: all pages are losing their write
2416 * permission.
2417 */
2418 if (maskbits & PVF_WRITE) {
2419 npte |= pte_l2_s_cache_mode;
2420 pv->pv_flags &= ~PVF_NC;
2421 }
2422 } else
2423 if (l2pte_writable_p(opte)) {
2424 /*
2425 * Entry is writable/cacheable: check if pmap
2426 * is current if it is flush it, otherwise it
2427 * won't be in the cache
2428 */
2429 pmap_cache_wbinv_page(pm, va,
2430 (maskbits & PVF_REF) != 0,
2431 oflags|PVF_WRITE);
2432 }
2433 #endif
2434
2435 /* make the pte read only */
2436 npte = l2pte_set_readonly(npte);
2437
2438 pmap_acquire_page_lock(md);
2439 #ifdef MULTIPROCESSOR
2440 pv = pmap_find_pv(md, pm, va);
2441 #endif
2442 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2443 /*
2444 * Keep alias accounting up to date
2445 */
2446 if (pm == pmap_kernel()) {
2447 md->krw_mappings--;
2448 md->kro_mappings++;
2449 } else {
2450 md->urw_mappings--;
2451 md->uro_mappings++;
2452 }
2453 #ifdef PMAP_CACHE_VIPT
2454 if (arm_cache_prefer_mask != 0) {
2455 if (md->urw_mappings + md->krw_mappings == 0) {
2456 md->pvh_attrs &= ~PVF_WRITE;
2457 } else {
2458 PMAP_VALIDATE_MD_PAGE(md);
2459 }
2460 }
2461 #ifndef ARM_MMU_EXTENDED
2462 if (want_syncicache)
2463 need_syncicache = true;
2464 need_vac_me_harder = true;
2465 #endif
2466 #endif /* PMAP_CACHE_VIPT */
2467 }
2468 pmap_release_page_lock(md);
2469 }
2470
2471 if (maskbits & PVF_REF) {
2472 if (true
2473 #ifndef ARM_MMU_EXTENDED
2474 && (oflags & PVF_NC) == 0
2475 #endif
2476 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2477 && l2pte_valid_p(npte)) {
2478 #ifdef PMAP_CACHE_VIVT
2479 /*
2480 * Check npte here; we may have already
2481 * done the wbinv above, and the validity
2482 * of the PTE is the same for opte and
2483 * npte.
2484 */
2485 pmap_cache_wbinv_page(pm, va, true, oflags);
2486 #endif
2487 }
2488
2489 /*
2490 * Make the PTE invalid so that we will take a
2491 * page fault the next time the mapping is
2492 * referenced.
2493 */
2494 npte &= ~L2_TYPE_MASK;
2495 npte |= L2_TYPE_INV;
2496 }
2497
2498 if (npte != opte) {
2499 l2pte_reset(ptep);
2500 PTE_SYNC(ptep);
2501
2502 /* Flush the TLB entry if a current pmap. */
2503 pmap_tlb_flush_SE(pm, va, oflags);
2504
2505 l2pte_set(ptep, npte, 0);
2506 PTE_SYNC(ptep);
2507 }
2508
2509 pmap_release_pmap_lock(pm);
2510 pmap_acquire_page_lock(md);
2511
2512 NPDEBUG(PDB_BITS,
2513 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2514 pm, va, opte, npte));
2515 }
2516
2517 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2518 /*
2519 * If we need to sync the I-cache and we haven't done it yet, do it.
2520 */
2521 if (need_syncicache) {
2522 pmap_release_page_lock(md);
2523 pmap_syncicache_page(md, pa);
2524 pmap_acquire_page_lock(md);
2525 PMAPCOUNT(exec_synced_clearbit);
2526 }
2527
2528 /*
2529 * If we are changing this to read-only, we need to call vac_me_harder
2530 * so we can change all the read-only pages to cacheable. We pretend
2531 * this as a page deletion.
2532 */
2533 if (need_vac_me_harder) {
2534 if (md->pvh_attrs & PVF_NC)
2535 pmap_vac_me_harder(md, pa, NULL, 0);
2536 }
2537 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
2538 }
2539
2540 /*
2541 * pmap_clean_page()
2542 *
2543 * This is a local function used to work out the best strategy to clean
2544 * a single page referenced by its entry in the PV table. It's used by
2545 * pmap_copy_page, pmap_zero page and maybe some others later on.
2546 *
2547 * Its policy is effectively:
2548 * o If there are no mappings, we don't bother doing anything with the cache.
2549 * o If there is one mapping, we clean just that page.
2550 * o If there are multiple mappings, we clean the entire cache.
2551 *
2552 * So that some functions can be further optimised, it returns 0 if it didn't
2553 * clean the entire cache, or 1 if it did.
2554 *
2555 * XXX One bug in this routine is that if the pv_entry has a single page
2556 * mapped at 0x00000000 a whole cache clean will be performed rather than
2557 * just the 1 page. Since this should not occur in everyday use and if it does
2558 * it will just result in not the most efficient clean for the page.
2559 */
2560 #ifdef PMAP_CACHE_VIVT
2561 static bool
2562 pmap_clean_page(struct vm_page_md *md, bool is_src)
2563 {
2564 struct pv_entry *pv;
2565 pmap_t pm_to_clean = NULL;
2566 bool cache_needs_cleaning = false;
2567 vaddr_t page_to_clean = 0;
2568 u_int flags = 0;
2569
2570 /*
2571 * Since we flush the cache each time we change to a different
2572 * user vmspace, we only need to flush the page if it is in the
2573 * current pmap.
2574 */
2575 KASSERT(pmap_page_locked_p(md));
2576 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2577 if (pmap_is_current(pv->pv_pmap)) {
2578 flags |= pv->pv_flags;
2579 /*
2580 * The page is mapped non-cacheable in
2581 * this map. No need to flush the cache.
2582 */
2583 if (pv->pv_flags & PVF_NC) {
2584 #ifdef DIAGNOSTIC
2585 KASSERT(!cache_needs_cleaning);
2586 #endif
2587 break;
2588 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2589 continue;
2590 if (cache_needs_cleaning) {
2591 page_to_clean = 0;
2592 break;
2593 } else {
2594 page_to_clean = pv->pv_va;
2595 pm_to_clean = pv->pv_pmap;
2596 }
2597 cache_needs_cleaning = true;
2598 }
2599 }
2600
2601 if (page_to_clean) {
2602 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2603 !is_src, flags | PVF_REF);
2604 } else if (cache_needs_cleaning) {
2605 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2606
2607 pmap_cache_wbinv_all(pm, flags);
2608 return true;
2609 }
2610 return false;
2611 }
2612 #endif
2613
2614 #ifdef PMAP_CACHE_VIPT
2615 /*
2616 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2617 * right cache alias to make sure we flush the right stuff.
2618 */
2619 void
2620 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2621 {
2622 pmap_t kpm = pmap_kernel();
2623 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2624 ? PAGE_SIZE
2625 : arm_pcache.icache_way_size;
2626
2627 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2628 md, md->pvh_attrs));
2629 /*
2630 * No need to clean the page if it's non-cached.
2631 */
2632 #ifndef ARM_MMU_EXTENDED
2633 if (md->pvh_attrs & PVF_NC)
2634 return;
2635 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2636 #endif
2637
2638 pt_entry_t * const ptep = cpu_cdst_pte(0);
2639 const vaddr_t dstp = cpu_cdstp(0);
2640 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2641 if (way_size <= PAGE_SIZE) {
2642 bool ok = false;
2643 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2644 if (ok) {
2645 cpu_icache_sync_range(vdstp, way_size);
2646 return;
2647 }
2648 }
2649 #endif
2650
2651 /*
2652 * We don't worry about the color of the exec page, we map the
2653 * same page to pages in the way and then do the icache_sync on
2654 * the entire way making sure we are cleaned.
2655 */
2656 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2657 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2658
2659 for (size_t i = 0, j = 0; i < way_size;
2660 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2661 l2pte_reset(ptep + j);
2662 PTE_SYNC(ptep + j);
2663
2664 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2665 /*
2666 * Set up a PTE with to flush these cache lines.
2667 */
2668 l2pte_set(ptep + j, npte, 0);
2669 }
2670 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2671
2672 /*
2673 * Flush it.
2674 */
2675 cpu_icache_sync_range(dstp, way_size);
2676
2677 for (size_t i = 0, j = 0; i < way_size;
2678 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2679 /*
2680 * Unmap the page(s).
2681 */
2682 l2pte_reset(ptep + j);
2683 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2684 }
2685 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2686
2687 md->pvh_attrs |= PVF_EXEC;
2688 PMAPCOUNT(exec_synced);
2689 }
2690
2691 #ifndef ARM_MMU_EXTENDED
2692 void
2693 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2694 {
2695 vsize_t va_offset, end_va;
2696 bool wbinv_p;
2697
2698 if (arm_cache_prefer_mask == 0)
2699 return;
2700
2701 switch (flush) {
2702 case PMAP_FLUSH_PRIMARY:
2703 if (md->pvh_attrs & PVF_MULTCLR) {
2704 va_offset = 0;
2705 end_va = arm_cache_prefer_mask;
2706 md->pvh_attrs &= ~PVF_MULTCLR;
2707 PMAPCOUNT(vac_flush_lots);
2708 } else {
2709 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2710 end_va = va_offset;
2711 PMAPCOUNT(vac_flush_one);
2712 }
2713 /*
2714 * Mark that the page is no longer dirty.
2715 */
2716 md->pvh_attrs &= ~PVF_DIRTY;
2717 wbinv_p = true;
2718 break;
2719 case PMAP_FLUSH_SECONDARY:
2720 va_offset = 0;
2721 end_va = arm_cache_prefer_mask;
2722 wbinv_p = true;
2723 md->pvh_attrs &= ~PVF_MULTCLR;
2724 PMAPCOUNT(vac_flush_lots);
2725 break;
2726 case PMAP_CLEAN_PRIMARY:
2727 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2728 end_va = va_offset;
2729 wbinv_p = false;
2730 /*
2731 * Mark that the page is no longer dirty.
2732 */
2733 if ((md->pvh_attrs & PVF_DMOD) == 0)
2734 md->pvh_attrs &= ~PVF_DIRTY;
2735 PMAPCOUNT(vac_clean_one);
2736 break;
2737 default:
2738 return;
2739 }
2740
2741 KASSERT(!(md->pvh_attrs & PVF_NC));
2742
2743 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2744 md, md->pvh_attrs));
2745
2746 const size_t scache_line_size = arm_scache.dcache_line_size;
2747
2748 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2749 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2750 const vaddr_t dstp = cpu_cdstp(va_offset);
2751 const pt_entry_t opte = *ptep;
2752
2753 if (flush == PMAP_FLUSH_SECONDARY
2754 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2755 continue;
2756
2757 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2758 /*
2759 * Set up a PTE with the right coloring to flush
2760 * existing cache entries.
2761 */
2762 const pt_entry_t npte = L2_S_PROTO
2763 | pa
2764 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2765 | pte_l2_s_cache_mode;
2766 l2pte_set(ptep, npte, opte);
2767 PTE_SYNC(ptep);
2768
2769 /*
2770 * Flush it. Make sure to flush secondary cache too since
2771 * bus_dma will ignore uncached pages.
2772 */
2773 if (scache_line_size != 0) {
2774 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2775 if (wbinv_p) {
2776 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2777 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2778 } else {
2779 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2780 }
2781 } else {
2782 if (wbinv_p) {
2783 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2784 } else {
2785 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2786 }
2787 }
2788
2789 /*
2790 * Restore the page table entry since we might have interrupted
2791 * pmap_zero_page or pmap_copy_page which was already using
2792 * this pte.
2793 */
2794 if (opte) {
2795 l2pte_set(ptep, opte, npte);
2796 } else {
2797 l2pte_reset(ptep);
2798 }
2799 PTE_SYNC(ptep);
2800 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2801 }
2802 }
2803 #endif /* ARM_MMU_EXTENDED */
2804 #endif /* PMAP_CACHE_VIPT */
2805
2806 /*
2807 * Routine: pmap_page_remove
2808 * Function:
2809 * Removes this physical page from
2810 * all physical maps in which it resides.
2811 * Reflects back modify bits to the pager.
2812 */
2813 static void
2814 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2815 {
2816 struct l2_bucket *l2b;
2817 struct pv_entry *pv;
2818 pt_entry_t *ptep;
2819 #ifndef ARM_MMU_EXTENDED
2820 bool flush = false;
2821 #endif
2822 u_int flags = 0;
2823
2824 NPDEBUG(PDB_FOLLOW,
2825 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2826 pa));
2827
2828 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2829 pmap_acquire_page_lock(md);
2830 if (*pvp == NULL) {
2831 #ifdef PMAP_CACHE_VIPT
2832 /*
2833 * We *know* the page contents are about to be replaced.
2834 * Discard the exec contents
2835 */
2836 if (PV_IS_EXEC_P(md->pvh_attrs))
2837 PMAPCOUNT(exec_discarded_page_protect);
2838 md->pvh_attrs &= ~PVF_EXEC;
2839 PMAP_VALIDATE_MD_PAGE(md);
2840 #endif
2841 pmap_release_page_lock(md);
2842 return;
2843 }
2844 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2845 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2846 #endif
2847
2848 /*
2849 * Clear alias counts
2850 */
2851 #ifdef PMAP_CACHE_VIVT
2852 md->k_mappings = 0;
2853 #endif
2854 md->urw_mappings = md->uro_mappings = 0;
2855
2856 #ifdef PMAP_CACHE_VIVT
2857 pmap_clean_page(md, false);
2858 #endif
2859
2860 while ((pv = *pvp) != NULL) {
2861 pmap_t pm = pv->pv_pmap;
2862 #ifndef ARM_MMU_EXTENDED
2863 if (flush == false && pmap_is_current(pm))
2864 flush = true;
2865 #endif
2866
2867 if (pm == pmap_kernel()) {
2868 #ifdef PMAP_CACHE_VIPT
2869 /*
2870 * If this was unmanaged mapping, it must be preserved.
2871 * Move it back on the list and advance the end-of-list
2872 * pointer.
2873 */
2874 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2875 *pvp = pv;
2876 pvp = &SLIST_NEXT(pv, pv_link);
2877 continue;
2878 }
2879 if (pv->pv_flags & PVF_WRITE)
2880 md->krw_mappings--;
2881 else
2882 md->kro_mappings--;
2883 #endif
2884 PMAPCOUNT(kernel_unmappings);
2885 }
2886 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2887 PMAPCOUNT(unmappings);
2888
2889 pmap_release_page_lock(md);
2890 pmap_acquire_pmap_lock(pm);
2891
2892 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2893 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2894
2895 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2896
2897 /*
2898 * Update statistics
2899 */
2900 --pm->pm_stats.resident_count;
2901
2902 /* Wired bit */
2903 if (pv->pv_flags & PVF_WIRED)
2904 --pm->pm_stats.wired_count;
2905
2906 flags |= pv->pv_flags;
2907
2908 /*
2909 * Invalidate the PTEs.
2910 */
2911 l2pte_reset(ptep);
2912 PTE_SYNC_CURRENT(pm, ptep);
2913
2914 #ifdef ARM_MMU_EXTENDED
2915 /* XXXNH pmap_tlb_flush_SE()? */
2916 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2917 #endif
2918
2919 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2920
2921 pmap_release_pmap_lock(pm);
2922
2923 pool_put(&pmap_pv_pool, pv);
2924 pmap_acquire_page_lock(md);
2925 #ifdef MULTIPROCESSOR
2926 /*
2927 * Restart of the beginning of the list.
2928 */
2929 pvp = &SLIST_FIRST(&md->pvh_list);
2930 #endif
2931 }
2932 /*
2933 * if we reach the end of the list and there are still mappings, they
2934 * might be able to be cached now. And they must be kernel mappings.
2935 */
2936 if (!SLIST_EMPTY(&md->pvh_list)) {
2937 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2938 }
2939
2940 #ifdef PMAP_CACHE_VIPT
2941 /*
2942 * Its EXEC cache is now gone.
2943 */
2944 if (PV_IS_EXEC_P(md->pvh_attrs))
2945 PMAPCOUNT(exec_discarded_page_protect);
2946 md->pvh_attrs &= ~PVF_EXEC;
2947 KASSERT(md->urw_mappings == 0);
2948 KASSERT(md->uro_mappings == 0);
2949 #ifndef ARM_MMU_EXTENDED
2950 if (arm_cache_prefer_mask != 0) {
2951 if (md->krw_mappings == 0)
2952 md->pvh_attrs &= ~PVF_WRITE;
2953 PMAP_VALIDATE_MD_PAGE(md);
2954 }
2955 #endif /* ARM_MMU_EXTENDED */
2956 #endif /* PMAP_CACHE_VIPT */
2957 pmap_release_page_lock(md);
2958
2959 #ifndef ARM_MMU_EXTENDED
2960 if (flush) {
2961 /*
2962 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2963 * would need a subsequent call to pmap_update() to ensure
2964 * curpm->pm_cstate.cs_all is reset. Our callers are not
2965 * required to do that (see pmap(9)), so we can't modify
2966 * the current pmap's state.
2967 */
2968 if (PV_BEEN_EXECD(flags))
2969 cpu_tlb_flushID();
2970 else
2971 cpu_tlb_flushD();
2972 }
2973 cpu_cpwait();
2974 #endif /* ARM_MMU_EXTENDED */
2975 }
2976
2977 /*
2978 * pmap_t pmap_create(void)
2979 *
2980 * Create a new pmap structure from scratch.
2981 */
2982 pmap_t
2983 pmap_create(void)
2984 {
2985 pmap_t pm;
2986
2987 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2988
2989 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2990 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2991 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2992
2993 pm->pm_stats.wired_count = 0;
2994 pm->pm_stats.resident_count = 1;
2995 #ifdef ARM_MMU_EXTENDED
2996 #ifdef MULTIPROCESSOR
2997 kcpuset_create(&pm->pm_active, true);
2998 kcpuset_create(&pm->pm_onproc, true);
2999 #endif
3000 #else
3001 pm->pm_cstate.cs_all = 0;
3002 #endif
3003 pmap_alloc_l1(pm);
3004
3005 /*
3006 * Note: The pool cache ensures that the pm_l2[] array is already
3007 * initialised to zero.
3008 */
3009
3010 pmap_pinit(pm);
3011
3012 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
3013
3014 return (pm);
3015 }
3016
3017 u_int
3018 arm32_mmap_flags(paddr_t pa)
3019 {
3020 /*
3021 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3022 * and we're using the upper bits in page numbers to pass flags around
3023 * so we might as well use the same bits
3024 */
3025 return (u_int)pa & PMAP_MD_MASK;
3026 }
3027 /*
3028 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3029 * u_int flags)
3030 *
3031 * Insert the given physical page (p) at
3032 * the specified virtual address (v) in the
3033 * target physical map with the protection requested.
3034 *
3035 * NB: This is the only routine which MAY NOT lazy-evaluate
3036 * or lose information. That is, this routine must actually
3037 * insert this page into the given map NOW.
3038 */
3039 int
3040 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3041 {
3042 struct l2_bucket *l2b;
3043 struct vm_page *pg, *opg;
3044 u_int nflags;
3045 u_int oflags;
3046 const bool kpm_p = (pm == pmap_kernel());
3047 #ifdef ARM_HAS_VBAR
3048 const bool vector_page_p = false;
3049 #else
3050 const bool vector_page_p = (va == vector_page);
3051 #endif
3052
3053 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3054
3055 UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
3056 pm, va, pa, prot);
3057 UVMHIST_LOG(maphist, " flag %#x", flags, 0, 0, 0);
3058
3059 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3060 KDASSERT(((va | pa) & PGOFSET) == 0);
3061
3062 /*
3063 * Get a pointer to the page. Later on in this function, we
3064 * test for a managed page by checking pg != NULL.
3065 */
3066 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3067
3068 nflags = 0;
3069 if (prot & VM_PROT_WRITE)
3070 nflags |= PVF_WRITE;
3071 if (prot & VM_PROT_EXECUTE)
3072 nflags |= PVF_EXEC;
3073 if (flags & PMAP_WIRED)
3074 nflags |= PVF_WIRED;
3075
3076 pmap_acquire_pmap_lock(pm);
3077
3078 /*
3079 * Fetch the L2 bucket which maps this page, allocating one if
3080 * necessary for user pmaps.
3081 */
3082 if (kpm_p) {
3083 l2b = pmap_get_l2_bucket(pm, va);
3084 } else {
3085 l2b = pmap_alloc_l2_bucket(pm, va);
3086 }
3087 if (l2b == NULL) {
3088 if (flags & PMAP_CANFAIL) {
3089 pmap_release_pmap_lock(pm);
3090 return (ENOMEM);
3091 }
3092 panic("pmap_enter: failed to allocate L2 bucket");
3093 }
3094 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3095 const pt_entry_t opte = *ptep;
3096 pt_entry_t npte = pa;
3097 oflags = 0;
3098
3099 if (opte) {
3100 /*
3101 * There is already a mapping at this address.
3102 * If the physical address is different, lookup the
3103 * vm_page.
3104 */
3105 if (l2pte_pa(opte) != pa)
3106 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3107 else
3108 opg = pg;
3109 } else
3110 opg = NULL;
3111
3112 if (pg) {
3113 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3114
3115 /*
3116 * This is to be a managed mapping.
3117 */
3118 pmap_acquire_page_lock(md);
3119 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3120 /*
3121 * - The access type indicates that we don't need
3122 * to do referenced emulation.
3123 * OR
3124 * - The physical page has already been referenced
3125 * so no need to re-do referenced emulation here.
3126 */
3127 npte |= l2pte_set_readonly(L2_S_PROTO);
3128
3129 nflags |= PVF_REF;
3130
3131 if ((prot & VM_PROT_WRITE) != 0 &&
3132 ((flags & VM_PROT_WRITE) != 0 ||
3133 (md->pvh_attrs & PVF_MOD) != 0)) {
3134 /*
3135 * This is a writable mapping, and the
3136 * page's mod state indicates it has
3137 * already been modified. Make it
3138 * writable from the outset.
3139 */
3140 npte = l2pte_set_writable(npte);
3141 nflags |= PVF_MOD;
3142 }
3143
3144 #ifdef ARM_MMU_EXTENDED
3145 /*
3146 * If the page has been cleaned, then the pvh_attrs
3147 * will have PVF_EXEC set, so mark it execute so we
3148 * don't get an access fault when trying to execute
3149 * from it.
3150 */
3151 if (md->pvh_attrs & nflags & PVF_EXEC) {
3152 npte &= ~L2_XS_XN;
3153 }
3154 #endif
3155 } else {
3156 /*
3157 * Need to do page referenced emulation.
3158 */
3159 npte |= L2_TYPE_INV;
3160 }
3161
3162 if (flags & ARM32_MMAP_WRITECOMBINE) {
3163 npte |= pte_l2_s_wc_mode;
3164 } else
3165 npte |= pte_l2_s_cache_mode;
3166
3167 if (pg == opg) {
3168 /*
3169 * We're changing the attrs of an existing mapping.
3170 */
3171 oflags = pmap_modify_pv(md, pa, pm, va,
3172 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3173 PVF_MOD | PVF_REF, nflags);
3174
3175 #ifdef PMAP_CACHE_VIVT
3176 /*
3177 * We may need to flush the cache if we're
3178 * doing rw-ro...
3179 */
3180 if (pm->pm_cstate.cs_cache_d &&
3181 (oflags & PVF_NC) == 0 &&
3182 l2pte_writable_p(opte) &&
3183 (prot & VM_PROT_WRITE) == 0)
3184 cpu_dcache_wb_range(va, PAGE_SIZE);
3185 #endif
3186 } else {
3187 struct pv_entry *pv;
3188 /*
3189 * New mapping, or changing the backing page
3190 * of an existing mapping.
3191 */
3192 if (opg) {
3193 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3194 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3195
3196 /*
3197 * Replacing an existing mapping with a new one.
3198 * It is part of our managed memory so we
3199 * must remove it from the PV list
3200 */
3201 pv = pmap_remove_pv(omd, opa, pm, va);
3202 pmap_vac_me_harder(omd, opa, pm, 0);
3203 oflags = pv->pv_flags;
3204
3205 #ifdef PMAP_CACHE_VIVT
3206 /*
3207 * If the old mapping was valid (ref/mod
3208 * emulation creates 'invalid' mappings
3209 * initially) then make sure to frob
3210 * the cache.
3211 */
3212 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3213 pmap_cache_wbinv_page(pm, va, true,
3214 oflags);
3215 }
3216 #endif
3217 } else {
3218 pmap_release_page_lock(md);
3219 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3220 if (pv == NULL) {
3221 pmap_release_pmap_lock(pm);
3222 if ((flags & PMAP_CANFAIL) == 0)
3223 panic("pmap_enter: "
3224 "no pv entries");
3225
3226 pmap_free_l2_bucket(pm, l2b, 0);
3227 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3228 0, 0, 0, 0);
3229 return (ENOMEM);
3230 }
3231 pmap_acquire_page_lock(md);
3232 }
3233
3234 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3235 }
3236 pmap_release_page_lock(md);
3237 } else {
3238 /*
3239 * We're mapping an unmanaged page.
3240 * These are always readable, and possibly writable, from
3241 * the get go as we don't need to track ref/mod status.
3242 */
3243 npte |= l2pte_set_readonly(L2_S_PROTO);
3244 if (prot & VM_PROT_WRITE)
3245 npte = l2pte_set_writable(npte);
3246
3247 /*
3248 * Make sure the vector table is mapped cacheable
3249 */
3250 if ((vector_page_p && !kpm_p)
3251 || (flags & ARM32_MMAP_CACHEABLE)) {
3252 npte |= pte_l2_s_cache_mode;
3253 #ifdef ARM_MMU_EXTENDED
3254 npte &= ~L2_XS_XN; /* and executable */
3255 #endif
3256 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3257 npte |= pte_l2_s_wc_mode;
3258 }
3259 if (opg) {
3260 /*
3261 * Looks like there's an existing 'managed' mapping
3262 * at this address.
3263 */
3264 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3265 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3266
3267 pmap_acquire_page_lock(omd);
3268 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3269 pmap_vac_me_harder(omd, opa, pm, 0);
3270 oflags = pv->pv_flags;
3271 pmap_release_page_lock(omd);
3272
3273 #ifdef PMAP_CACHE_VIVT
3274 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3275 pmap_cache_wbinv_page(pm, va, true, oflags);
3276 }
3277 #endif
3278 pool_put(&pmap_pv_pool, pv);
3279 }
3280 }
3281
3282 /*
3283 * Make sure userland mappings get the right permissions
3284 */
3285 if (!vector_page_p && !kpm_p) {
3286 npte |= L2_S_PROT_U;
3287 #ifdef ARM_MMU_EXTENDED
3288 npte |= L2_XS_nG; /* user pages are not global */
3289 #endif
3290 }
3291
3292 /*
3293 * Keep the stats up to date
3294 */
3295 if (opte == 0) {
3296 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3297 pm->pm_stats.resident_count++;
3298 }
3299
3300 UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
3301
3302 #if defined(ARM_MMU_EXTENDED)
3303 /*
3304 * If exec protection was requested but the page hasn't been synced,
3305 * sync it now and allow execution from it.
3306 */
3307 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3308 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3309 npte &= ~L2_XS_XN;
3310 pmap_syncicache_page(md, pa);
3311 PMAPCOUNT(exec_synced_map);
3312 }
3313 #endif
3314 /*
3315 * If this is just a wiring change, the two PTEs will be
3316 * identical, so there's no need to update the page table.
3317 */
3318 if (npte != opte) {
3319 l2pte_reset(ptep);
3320 PTE_SYNC(ptep);
3321 pmap_tlb_flush_SE(pm, va, oflags);
3322
3323 l2pte_set(ptep, npte, 0);
3324 PTE_SYNC(ptep);
3325 #ifndef ARM_MMU_EXTENDED
3326 bool is_cached = pmap_is_cached(pm);
3327 if (is_cached) {
3328 /*
3329 * We only need to frob the cache/tlb if this pmap
3330 * is current
3331 */
3332 if (!vector_page_p && l2pte_valid_p(npte)) {
3333 /*
3334 * This mapping is likely to be accessed as
3335 * soon as we return to userland. Fix up the
3336 * L1 entry to avoid taking another
3337 * page/domain fault.
3338 */
3339 pd_entry_t *pdep = pmap_l1_kva(pm)
3340 + l1pte_index(va);
3341 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3342 | L1_C_DOM(pmap_domain(pm));
3343 if (*pdep != pde) {
3344 l1pte_setone(pdep, pde);
3345 PTE_SYNC(pdep);
3346 }
3347 }
3348 }
3349 #endif /* !ARM_MMU_EXTENDED */
3350
3351 #ifndef ARM_MMU_EXTENDED
3352 UVMHIST_LOG(maphist, " is_cached %d cs 0x%08x\n",
3353 is_cached, pm->pm_cstate.cs_all, 0, 0);
3354
3355 if (pg != NULL) {
3356 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3357
3358 pmap_acquire_page_lock(md);
3359 pmap_vac_me_harder(md, pa, pm, va);
3360 pmap_release_page_lock(md);
3361 }
3362 #endif
3363 }
3364 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3365 if (pg) {
3366 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3367
3368 pmap_acquire_page_lock(md);
3369 #ifndef ARM_MMU_EXTENDED
3370 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3371 #endif
3372 PMAP_VALIDATE_MD_PAGE(md);
3373 pmap_release_page_lock(md);
3374 }
3375 #endif
3376
3377 pmap_release_pmap_lock(pm);
3378
3379 return (0);
3380 }
3381
3382 /*
3383 * pmap_remove()
3384 *
3385 * pmap_remove is responsible for nuking a number of mappings for a range
3386 * of virtual address space in the current pmap. To do this efficiently
3387 * is interesting, because in a number of cases a wide virtual address
3388 * range may be supplied that contains few actual mappings. So, the
3389 * optimisations are:
3390 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3391 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3392 * maybe do just a partial cache clean. This path of execution is
3393 * complicated by the fact that the cache must be flushed _before_
3394 * the PTE is nuked, being a VAC :-)
3395 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3396 * all invalidations until pmap_update(), since pmap_remove_all() has
3397 * already flushed the cache.
3398 * 4. Maybe later fast-case a single page, but I don't think this is
3399 * going to make _that_ much difference overall.
3400 */
3401
3402 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3403
3404 void
3405 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3406 {
3407 vaddr_t next_bucket;
3408 u_int cleanlist_idx, total, cnt;
3409 struct {
3410 vaddr_t va;
3411 pt_entry_t *ptep;
3412 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3413 u_int mappings;
3414
3415 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3416 UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
3417
3418 /*
3419 * we lock in the pmap => pv_head direction
3420 */
3421 pmap_acquire_pmap_lock(pm);
3422
3423 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3424 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3425 #ifndef ARM_MMU_EXTENDED
3426 if (pm->pm_cstate.cs_tlb == 0)
3427 pm->pm_remove_all = true;
3428 #endif
3429 } else
3430 cleanlist_idx = 0;
3431
3432 total = 0;
3433
3434 while (sva < eva) {
3435 /*
3436 * Do one L2 bucket's worth at a time.
3437 */
3438 next_bucket = L2_NEXT_BUCKET_VA(sva);
3439 if (next_bucket > eva)
3440 next_bucket = eva;
3441
3442 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3443 if (l2b == NULL) {
3444 sva = next_bucket;
3445 continue;
3446 }
3447
3448 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3449
3450 for (mappings = 0;
3451 sva < next_bucket;
3452 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3453 pt_entry_t opte = *ptep;
3454
3455 if (opte == 0) {
3456 /* Nothing here, move along */
3457 continue;
3458 }
3459
3460 u_int flags = PVF_REF;
3461 paddr_t pa = l2pte_pa(opte);
3462 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3463
3464 /*
3465 * Update flags. In a number of circumstances,
3466 * we could cluster a lot of these and do a
3467 * number of sequential pages in one go.
3468 */
3469 if (pg != NULL) {
3470 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3471 struct pv_entry *pv;
3472
3473 pmap_acquire_page_lock(md);
3474 pv = pmap_remove_pv(md, pa, pm, sva);
3475 pmap_vac_me_harder(md, pa, pm, 0);
3476 pmap_release_page_lock(md);
3477 if (pv != NULL) {
3478 if (pm->pm_remove_all == false) {
3479 flags = pv->pv_flags;
3480 }
3481 pool_put(&pmap_pv_pool, pv);
3482 }
3483 }
3484 mappings += PAGE_SIZE / L2_S_SIZE;
3485
3486 if (!l2pte_valid_p(opte)) {
3487 /*
3488 * Ref/Mod emulation is still active for this
3489 * mapping, therefore it is has not yet been
3490 * accessed. No need to frob the cache/tlb.
3491 */
3492 l2pte_reset(ptep);
3493 PTE_SYNC_CURRENT(pm, ptep);
3494 pmap_tlb_flush_SE(pm, sva, flags);
3495 continue;
3496 }
3497
3498 #ifdef ARM_MMU_EXTENDED
3499 if (pm == pmap_kernel()) {
3500 l2pte_reset(ptep);
3501 PTE_SYNC(ptep);
3502 pmap_tlb_flush_SE(pm, sva, flags);
3503 continue;
3504 }
3505 #endif
3506 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3507 /* Add to the clean list. */
3508 cleanlist[cleanlist_idx].ptep = ptep;
3509 cleanlist[cleanlist_idx].va =
3510 sva | (flags & PVF_EXEC);
3511 cleanlist_idx++;
3512 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3513 /* Nuke everything if needed. */
3514 #ifdef PMAP_CACHE_VIVT
3515 pmap_cache_wbinv_all(pm, PVF_EXEC);
3516 #endif
3517 /*
3518 * Roll back the previous PTE list,
3519 * and zero out the current PTE.
3520 */
3521 for (cnt = 0;
3522 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3523 l2pte_reset(cleanlist[cnt].ptep);
3524 PTE_SYNC(cleanlist[cnt].ptep);
3525 }
3526 l2pte_reset(ptep);
3527 PTE_SYNC(ptep);
3528 cleanlist_idx++;
3529 pm->pm_remove_all = true;
3530 } else {
3531 l2pte_reset(ptep);
3532 PTE_SYNC(ptep);
3533 if (pm->pm_remove_all == false) {
3534 pmap_tlb_flush_SE(pm, sva, flags);
3535 }
3536 }
3537 }
3538
3539 /*
3540 * Deal with any left overs
3541 */
3542 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3543 total += cleanlist_idx;
3544 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3545 l2pte_reset(cleanlist[cnt].ptep);
3546 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3547 #ifdef ARM_MMU_EXTENDED
3548 vaddr_t clva = cleanlist[cnt].va;
3549 pmap_tlb_flush_SE(pm, clva, PVF_REF);
3550 #else
3551 vaddr_t va = cleanlist[cnt].va;
3552 if (pm->pm_cstate.cs_all != 0) {
3553 vaddr_t clva = va & ~PAGE_MASK;
3554 u_int flags = va & PVF_EXEC;
3555 #ifdef PMAP_CACHE_VIVT
3556 pmap_cache_wbinv_page(pm, clva, true,
3557 PVF_REF | PVF_WRITE | flags);
3558 #endif
3559 pmap_tlb_flush_SE(pm, clva,
3560 PVF_REF | flags);
3561 }
3562 #endif /* ARM_MMU_EXTENDED */
3563 }
3564
3565 /*
3566 * If it looks like we're removing a whole bunch
3567 * of mappings, it's faster to just write-back
3568 * the whole cache now and defer TLB flushes until
3569 * pmap_update() is called.
3570 */
3571 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3572 cleanlist_idx = 0;
3573 else {
3574 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3575 #ifdef PMAP_CACHE_VIVT
3576 pmap_cache_wbinv_all(pm, PVF_EXEC);
3577 #endif
3578 pm->pm_remove_all = true;
3579 }
3580 }
3581
3582
3583 pmap_free_l2_bucket(pm, l2b, mappings);
3584 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3585 }
3586
3587 pmap_release_pmap_lock(pm);
3588 }
3589
3590 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3591 static struct pv_entry *
3592 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3593 {
3594 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3595 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3596 struct pv_entry *pv;
3597
3598 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3599 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3600 KASSERT(pmap_page_locked_p(md));
3601
3602 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3603 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3604 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3605
3606 /*
3607 * If we are removing a writeable mapping to a cached exec page,
3608 * if it's the last mapping then clear it execness other sync
3609 * the page to the icache.
3610 */
3611 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3612 && (pv->pv_flags & PVF_WRITE) != 0) {
3613 if (SLIST_EMPTY(&md->pvh_list)) {
3614 md->pvh_attrs &= ~PVF_EXEC;
3615 PMAPCOUNT(exec_discarded_kremove);
3616 } else {
3617 pmap_syncicache_page(md, pa);
3618 PMAPCOUNT(exec_synced_kremove);
3619 }
3620 }
3621 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3622
3623 return pv;
3624 }
3625 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3626
3627 /*
3628 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3629 *
3630 * We assume there is already sufficient KVM space available
3631 * to do this, as we can't allocate L2 descriptor tables/metadata
3632 * from here.
3633 */
3634 void
3635 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3636 {
3637 #ifdef PMAP_CACHE_VIVT
3638 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3639 #endif
3640 #ifdef PMAP_CACHE_VIPT
3641 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3642 struct vm_page *opg;
3643 #ifndef ARM_MMU_EXTENDED
3644 struct pv_entry *pv = NULL;
3645 #endif
3646 #endif
3647 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3648
3649 UVMHIST_FUNC(__func__);
3650
3651 if (pmap_initialized) {
3652 UVMHIST_CALLED(maphist);
3653 UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
3654 va, pa, prot, flags);
3655 }
3656
3657 pmap_t kpm = pmap_kernel();
3658 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3659 const size_t l1slot __diagused = l1pte_index(va);
3660 KASSERTMSG(l2b != NULL,
3661 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3662 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3663 kpm->pm_l2[L2_IDX(l1slot)]
3664 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3665 : NULL,
3666 kpm->pm_l2[L2_IDX(l1slot)]
3667 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3668 : NULL);
3669 KASSERT(l2b->l2b_kva != NULL);
3670
3671 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3672 const pt_entry_t opte = *ptep;
3673
3674 if (opte == 0) {
3675 PMAPCOUNT(kenter_mappings);
3676 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3677 } else {
3678 PMAPCOUNT(kenter_remappings);
3679 #ifdef PMAP_CACHE_VIPT
3680 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3681 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3682 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3683 #endif
3684 if (opg && arm_cache_prefer_mask != 0) {
3685 KASSERT(opg != pg);
3686 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3687 KASSERT((flags & PMAP_KMPAGE) == 0);
3688 #ifndef ARM_MMU_EXTENDED
3689 pmap_acquire_page_lock(omd);
3690 pv = pmap_kremove_pg(opg, va);
3691 pmap_release_page_lock(omd);
3692 #endif
3693 }
3694 #endif
3695 if (l2pte_valid_p(opte)) {
3696 l2pte_reset(ptep);
3697 PTE_SYNC(ptep);
3698 #ifdef PMAP_CACHE_VIVT
3699 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3700 #endif
3701 cpu_tlb_flushD_SE(va);
3702 cpu_cpwait();
3703 }
3704 }
3705
3706 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3707 | ((flags & PMAP_NOCACHE)
3708 ? 0
3709 : ((flags & PMAP_PTE)
3710 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3711 #ifdef ARM_MMU_EXTENDED
3712 if (prot & VM_PROT_EXECUTE)
3713 npte &= ~L2_XS_XN;
3714 #endif
3715 l2pte_set(ptep, npte, 0);
3716 PTE_SYNC(ptep);
3717
3718 if (pg) {
3719 if (flags & PMAP_KMPAGE) {
3720 KASSERT(md->urw_mappings == 0);
3721 KASSERT(md->uro_mappings == 0);
3722 KASSERT(md->krw_mappings == 0);
3723 KASSERT(md->kro_mappings == 0);
3724 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3725 KASSERT(pv == NULL);
3726 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3727 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3728 /* if there is a color conflict, evict from cache. */
3729 if (pmap_is_page_colored_p(md)
3730 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3731 PMAPCOUNT(vac_color_change);
3732 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3733 } else if (md->pvh_attrs & PVF_MULTCLR) {
3734 /*
3735 * If this page has multiple colors, expunge
3736 * them.
3737 */
3738 PMAPCOUNT(vac_flush_lots2);
3739 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3740 }
3741 /*
3742 * Since this is a KMPAGE, there can be no contention
3743 * for this page so don't lock it.
3744 */
3745 md->pvh_attrs &= PAGE_SIZE - 1;
3746 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3747 | (va & arm_cache_prefer_mask);
3748 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3749 md->pvh_attrs |= PVF_KMPAGE;
3750 #endif
3751 atomic_inc_32(&pmap_kmpages);
3752 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3753 } else if (arm_cache_prefer_mask != 0) {
3754 if (pv == NULL) {
3755 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3756 KASSERT(pv != NULL);
3757 }
3758 pmap_acquire_page_lock(md);
3759 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3760 PVF_WIRED | PVF_KENTRY
3761 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3762 if ((prot & VM_PROT_WRITE)
3763 && !(md->pvh_attrs & PVF_NC))
3764 md->pvh_attrs |= PVF_DIRTY;
3765 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3766 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3767 pmap_release_page_lock(md);
3768 #endif
3769 }
3770 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3771 } else {
3772 if (pv != NULL)
3773 pool_put(&pmap_pv_pool, pv);
3774 #endif
3775 }
3776 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3777 KASSERT(md == NULL || !pmap_page_locked_p(md));
3778 #endif
3779 if (pmap_initialized) {
3780 UVMHIST_LOG(maphist, " <-- done (ptep %p: %#x -> %#x)",
3781 ptep, opte, npte, 0);
3782 }
3783
3784 }
3785
3786 void
3787 pmap_kremove(vaddr_t va, vsize_t len)
3788 {
3789 #ifdef UVMHIST
3790 u_int total_mappings = 0;
3791 #endif
3792
3793 PMAPCOUNT(kenter_unmappings);
3794
3795 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3796
3797 UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
3798
3799 const vaddr_t eva = va + len;
3800
3801 while (va < eva) {
3802 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3803 if (next_bucket > eva)
3804 next_bucket = eva;
3805
3806 pmap_t kpm = pmap_kernel();
3807 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3808 KDASSERT(l2b != NULL);
3809
3810 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3811 pt_entry_t *ptep = sptep;
3812 u_int mappings = 0;
3813
3814 while (va < next_bucket) {
3815 const pt_entry_t opte = *ptep;
3816 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3817 if (opg != NULL) {
3818 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3819
3820 if (omd->pvh_attrs & PVF_KMPAGE) {
3821 KASSERT(omd->urw_mappings == 0);
3822 KASSERT(omd->uro_mappings == 0);
3823 KASSERT(omd->krw_mappings == 0);
3824 KASSERT(omd->kro_mappings == 0);
3825 omd->pvh_attrs &= ~PVF_KMPAGE;
3826 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3827 if (arm_cache_prefer_mask != 0) {
3828 omd->pvh_attrs &= ~PVF_WRITE;
3829 }
3830 #endif
3831 atomic_dec_32(&pmap_kmpages);
3832 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3833 } else if (arm_cache_prefer_mask != 0) {
3834 pmap_acquire_page_lock(omd);
3835 pool_put(&pmap_pv_pool,
3836 pmap_kremove_pg(opg, va));
3837 pmap_release_page_lock(omd);
3838 #endif
3839 }
3840 }
3841 if (l2pte_valid_p(opte)) {
3842 l2pte_reset(ptep);
3843 PTE_SYNC(ptep);
3844 #ifdef PMAP_CACHE_VIVT
3845 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3846 #endif
3847 cpu_tlb_flushD_SE(va);
3848
3849 mappings += PAGE_SIZE / L2_S_SIZE;
3850 }
3851 va += PAGE_SIZE;
3852 ptep += PAGE_SIZE / L2_S_SIZE;
3853 }
3854 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3855 mappings, l2b->l2b_occupancy);
3856 l2b->l2b_occupancy -= mappings;
3857 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3858 #ifdef UVMHIST
3859 total_mappings += mappings;
3860 #endif
3861 }
3862 cpu_cpwait();
3863 UVMHIST_LOG(maphist, " <--- done (%u mappings removed)",
3864 total_mappings, 0, 0, 0);
3865 }
3866
3867 bool
3868 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3869 {
3870 struct l2_dtable *l2;
3871 pd_entry_t *pdep, pde;
3872 pt_entry_t *ptep, pte;
3873 paddr_t pa;
3874 u_int l1slot;
3875
3876 pmap_acquire_pmap_lock(pm);
3877
3878 l1slot = l1pte_index(va);
3879 pdep = pmap_l1_kva(pm) + l1slot;
3880 pde = *pdep;
3881
3882 if (l1pte_section_p(pde)) {
3883 /*
3884 * These should only happen for pmap_kernel()
3885 */
3886 KDASSERT(pm == pmap_kernel());
3887 pmap_release_pmap_lock(pm);
3888 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3889 if (l1pte_supersection_p(pde)) {
3890 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3891 } else
3892 #endif
3893 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3894 } else {
3895 /*
3896 * Note that we can't rely on the validity of the L1
3897 * descriptor as an indication that a mapping exists.
3898 * We have to look it up in the L2 dtable.
3899 */
3900 l2 = pm->pm_l2[L2_IDX(l1slot)];
3901
3902 if (l2 == NULL ||
3903 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3904 pmap_release_pmap_lock(pm);
3905 return false;
3906 }
3907
3908 pte = ptep[l2pte_index(va)];
3909 pmap_release_pmap_lock(pm);
3910
3911 if (pte == 0)
3912 return false;
3913
3914 switch (pte & L2_TYPE_MASK) {
3915 case L2_TYPE_L:
3916 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3917 break;
3918
3919 default:
3920 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3921 break;
3922 }
3923 }
3924
3925 if (pap != NULL)
3926 *pap = pa;
3927
3928 return true;
3929 }
3930
3931 void
3932 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3933 {
3934 struct l2_bucket *l2b;
3935 vaddr_t next_bucket;
3936
3937 NPDEBUG(PDB_PROTECT,
3938 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3939 pm, sva, eva, prot));
3940
3941 if ((prot & VM_PROT_READ) == 0) {
3942 pmap_remove(pm, sva, eva);
3943 return;
3944 }
3945
3946 if (prot & VM_PROT_WRITE) {
3947 /*
3948 * If this is a read->write transition, just ignore it and let
3949 * uvm_fault() take care of it later.
3950 */
3951 return;
3952 }
3953
3954 pmap_acquire_pmap_lock(pm);
3955
3956 #ifndef ARM_MMU_EXTENDED
3957 const bool flush = eva - sva >= PAGE_SIZE * 4;
3958 u_int flags = 0;
3959 #endif
3960 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3961
3962 while (sva < eva) {
3963 next_bucket = L2_NEXT_BUCKET_VA(sva);
3964 if (next_bucket > eva)
3965 next_bucket = eva;
3966
3967 l2b = pmap_get_l2_bucket(pm, sva);
3968 if (l2b == NULL) {
3969 sva = next_bucket;
3970 continue;
3971 }
3972
3973 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3974
3975 while (sva < next_bucket) {
3976 const pt_entry_t opte = *ptep;
3977 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
3978 struct vm_page *pg;
3979 #ifndef ARM_MMU_EXTENDED
3980 u_int f;
3981 #endif
3982
3983 #ifdef PMAP_CACHE_VIVT
3984 /*
3985 * OK, at this point, we know we're doing
3986 * write-protect operation. If the pmap is
3987 * active, write-back the page.
3988 */
3989 pmap_cache_wbinv_page(pm, sva, false,
3990 PVF_REF | PVF_WRITE);
3991 #endif
3992
3993 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3994 pt_entry_t npte = l2pte_set_readonly(opte);
3995 l2pte_reset(ptep);
3996 PTE_SYNC(ptep);
3997 #ifdef ARM_MMU_EXTENDED
3998 pmap_tlb_flush_SE(pm, sva, PVF_REF);
3999 #endif
4000 l2pte_set(ptep, npte, 0);
4001 PTE_SYNC(ptep);
4002
4003 if (pg != NULL) {
4004 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4005 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4006
4007 pmap_acquire_page_lock(md);
4008 #ifndef ARM_MMU_EXTENDED
4009 f =
4010 #endif
4011 pmap_modify_pv(md, pa, pm, sva,
4012 clr_mask, 0);
4013 pmap_vac_me_harder(md, pa, pm, sva);
4014 pmap_release_page_lock(md);
4015 #ifndef ARM_MMU_EXTENDED
4016 } else {
4017 f = PVF_REF | PVF_EXEC;
4018 }
4019
4020 if (flush) {
4021 flags |= f;
4022 } else {
4023 pmap_tlb_flush_SE(pm, sva, f);
4024 #endif
4025 }
4026 }
4027
4028 sva += PAGE_SIZE;
4029 ptep += PAGE_SIZE / L2_S_SIZE;
4030 }
4031 }
4032
4033 #ifndef ARM_MMU_EXTENDED
4034 if (flush) {
4035 if (PV_BEEN_EXECD(flags)) {
4036 pmap_tlb_flushID(pm);
4037 } else if (PV_BEEN_REFD(flags)) {
4038 pmap_tlb_flushD(pm);
4039 }
4040 }
4041 #endif
4042
4043 pmap_release_pmap_lock(pm);
4044 }
4045
4046 void
4047 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4048 {
4049 struct l2_bucket *l2b;
4050 pt_entry_t *ptep;
4051 vaddr_t next_bucket;
4052 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4053
4054 NPDEBUG(PDB_EXEC,
4055 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4056 pm, sva, eva));
4057
4058 pmap_acquire_pmap_lock(pm);
4059
4060 while (sva < eva) {
4061 next_bucket = L2_NEXT_BUCKET_VA(sva);
4062 if (next_bucket > eva)
4063 next_bucket = eva;
4064
4065 l2b = pmap_get_l2_bucket(pm, sva);
4066 if (l2b == NULL) {
4067 sva = next_bucket;
4068 continue;
4069 }
4070
4071 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4072 sva < next_bucket;
4073 sva += page_size,
4074 ptep += PAGE_SIZE / L2_S_SIZE,
4075 page_size = PAGE_SIZE) {
4076 if (l2pte_valid_p(*ptep)) {
4077 cpu_icache_sync_range(sva,
4078 min(page_size, eva - sva));
4079 }
4080 }
4081 }
4082
4083 pmap_release_pmap_lock(pm);
4084 }
4085
4086 void
4087 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4088 {
4089 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4090 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4091
4092 NPDEBUG(PDB_PROTECT,
4093 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4094 md, pa, prot));
4095
4096 switch(prot) {
4097 case VM_PROT_READ|VM_PROT_WRITE:
4098 #if defined(ARM_MMU_EXTENDED)
4099 pmap_acquire_page_lock(md);
4100 pmap_clearbit(md, pa, PVF_EXEC);
4101 pmap_release_page_lock(md);
4102 break;
4103 #endif
4104 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4105 break;
4106
4107 case VM_PROT_READ:
4108 #if defined(ARM_MMU_EXTENDED)
4109 pmap_acquire_page_lock(md);
4110 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4111 pmap_release_page_lock(md);
4112 break;
4113 #endif
4114 case VM_PROT_READ|VM_PROT_EXECUTE:
4115 pmap_acquire_page_lock(md);
4116 pmap_clearbit(md, pa, PVF_WRITE);
4117 pmap_release_page_lock(md);
4118 break;
4119
4120 default:
4121 pmap_page_remove(md, pa);
4122 break;
4123 }
4124 }
4125
4126 /*
4127 * pmap_clear_modify:
4128 *
4129 * Clear the "modified" attribute for a page.
4130 */
4131 bool
4132 pmap_clear_modify(struct vm_page *pg)
4133 {
4134 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4135 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4136 bool rv;
4137
4138 pmap_acquire_page_lock(md);
4139
4140 if (md->pvh_attrs & PVF_MOD) {
4141 rv = true;
4142 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4143 /*
4144 * If we are going to clear the modified bit and there are
4145 * no other modified bits set, flush the page to memory and
4146 * mark it clean.
4147 */
4148 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4149 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4150 #endif
4151 pmap_clearbit(md, pa, PVF_MOD);
4152 } else {
4153 rv = false;
4154 }
4155 pmap_release_page_lock(md);
4156
4157 return rv;
4158 }
4159
4160 /*
4161 * pmap_clear_reference:
4162 *
4163 * Clear the "referenced" attribute for a page.
4164 */
4165 bool
4166 pmap_clear_reference(struct vm_page *pg)
4167 {
4168 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4169 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4170 bool rv;
4171
4172 pmap_acquire_page_lock(md);
4173
4174 if (md->pvh_attrs & PVF_REF) {
4175 rv = true;
4176 pmap_clearbit(md, pa, PVF_REF);
4177 } else {
4178 rv = false;
4179 }
4180 pmap_release_page_lock(md);
4181
4182 return rv;
4183 }
4184
4185 /*
4186 * pmap_is_modified:
4187 *
4188 * Test if a page has the "modified" attribute.
4189 */
4190 /* See <arm/arm32/pmap.h> */
4191
4192 /*
4193 * pmap_is_referenced:
4194 *
4195 * Test if a page has the "referenced" attribute.
4196 */
4197 /* See <arm/arm32/pmap.h> */
4198
4199 #if defined(ARM_MMU_EXTENDED) && 0
4200 int
4201 pmap_prefetchabt_fixup(void *v)
4202 {
4203 struct trapframe * const tf = v;
4204 vaddr_t va = trunc_page(tf->tf_pc);
4205 int rv = ABORT_FIXUP_FAILED;
4206
4207 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4208 return rv;
4209
4210 kpreempt_disable();
4211 pmap_t pm = curcpu()->ci_pmap_cur;
4212 const size_t l1slot = l1pte_index(va);
4213 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4214 if (l2 == NULL)
4215 goto out;
4216
4217 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4218 if (l2b->l2b_kva == NULL)
4219 goto out;
4220
4221 /*
4222 * Check the PTE itself.
4223 */
4224 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4225 const pt_entry_t opte = *ptep;
4226 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4227 goto out;
4228
4229 paddr_t pa = l2pte_pa(pte);
4230 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4231 KASSERT(pg != NULL);
4232
4233 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4234
4235 pmap_acquire_page_lock(md);
4236 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4237 KASSERT(pv != NULL);
4238
4239 if (PV_IS_EXEC_P(pv->pv_flags)) {
4240 l2pte_reset(ptep);
4241 PTE_SYNC(ptep);
4242 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4243 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4244 pmap_syncicache_page(md, pa);
4245 }
4246 rv = ABORT_FIXUP_RETURN;
4247 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4248 PTE_SYNC(ptep);
4249 }
4250 pmap_release_page_lock(md);
4251
4252 out:
4253 kpreempt_enable();
4254 return rv;
4255 }
4256 #endif
4257
4258 int
4259 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4260 {
4261 struct l2_dtable *l2;
4262 struct l2_bucket *l2b;
4263 paddr_t pa;
4264 const size_t l1slot = l1pte_index(va);
4265 int rv = 0;
4266
4267 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4268
4269 va = trunc_page(va);
4270
4271 KASSERT(!user || (pm != pmap_kernel()));
4272
4273 UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
4274 pm, va, ftype, user);
4275 #ifdef ARM_MMU_EXTENDED
4276 UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
4277 cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4278 PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4279 #endif
4280
4281 pmap_acquire_pmap_lock(pm);
4282
4283 /*
4284 * If there is no l2_dtable for this address, then the process
4285 * has no business accessing it.
4286 *
4287 * Note: This will catch userland processes trying to access
4288 * kernel addresses.
4289 */
4290 l2 = pm->pm_l2[L2_IDX(l1slot)];
4291 if (l2 == NULL) {
4292 UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
4293 goto out;
4294 }
4295
4296 /*
4297 * Likewise if there is no L2 descriptor table
4298 */
4299 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4300 if (l2b->l2b_kva == NULL) {
4301 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
4302 goto out;
4303 }
4304
4305 /*
4306 * Check the PTE itself.
4307 */
4308 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4309 pt_entry_t const opte = *ptep;
4310 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4311 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
4312 goto out;
4313 }
4314
4315 #ifndef ARM_HAS_VBAR
4316 /*
4317 * Catch a userland access to the vector page mapped at 0x0
4318 */
4319 if (user && (opte & L2_S_PROT_U) == 0) {
4320 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4321 goto out;
4322 }
4323 #endif
4324
4325 pa = l2pte_pa(opte);
4326
4327 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4328 /*
4329 * This looks like a good candidate for "page modified"
4330 * emulation...
4331 */
4332 struct pv_entry *pv;
4333 struct vm_page *pg;
4334
4335 /* Extract the physical address of the page */
4336 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4337 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4338 goto out;
4339 }
4340
4341 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4342
4343 /* Get the current flags for this page. */
4344 pmap_acquire_page_lock(md);
4345 pv = pmap_find_pv(md, pm, va);
4346 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4347 pmap_release_page_lock(md);
4348 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4349 goto out;
4350 }
4351
4352 /*
4353 * Do the flags say this page is writable? If not then it
4354 * is a genuine write fault. If yes then the write fault is
4355 * our fault as we did not reflect the write access in the
4356 * PTE. Now we know a write has occurred we can correct this
4357 * and also set the modified bit
4358 */
4359 if ((pv->pv_flags & PVF_WRITE) == 0) {
4360 pmap_release_page_lock(md);
4361 goto out;
4362 }
4363
4364 md->pvh_attrs |= PVF_REF | PVF_MOD;
4365 pv->pv_flags |= PVF_REF | PVF_MOD;
4366 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4367 /*
4368 * If there are cacheable mappings for this page, mark it dirty.
4369 */
4370 if ((md->pvh_attrs & PVF_NC) == 0)
4371 md->pvh_attrs |= PVF_DIRTY;
4372 #endif
4373 #ifdef ARM_MMU_EXTENDED
4374 if (md->pvh_attrs & PVF_EXEC) {
4375 md->pvh_attrs &= ~PVF_EXEC;
4376 PMAPCOUNT(exec_discarded_modfixup);
4377 }
4378 #endif
4379 pmap_release_page_lock(md);
4380
4381 /*
4382 * Re-enable write permissions for the page. No need to call
4383 * pmap_vac_me_harder(), since this is just a
4384 * modified-emulation fault, and the PVF_WRITE bit isn't
4385 * changing. We've already set the cacheable bits based on
4386 * the assumption that we can write to this page.
4387 */
4388 const pt_entry_t npte =
4389 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4390 #ifdef ARM_MMU_EXTENDED
4391 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4392 #endif
4393 | 0;
4394 l2pte_reset(ptep);
4395 PTE_SYNC(ptep);
4396 pmap_tlb_flush_SE(pm, va,
4397 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4398 l2pte_set(ptep, npte, 0);
4399 PTE_SYNC(ptep);
4400 PMAPCOUNT(fixup_mod);
4401 rv = 1;
4402 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
4403 opte, npte, 0, 0);
4404 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4405 /*
4406 * This looks like a good candidate for "page referenced"
4407 * emulation.
4408 */
4409 struct vm_page *pg;
4410
4411 /* Extract the physical address of the page */
4412 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4413 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4414 goto out;
4415 }
4416
4417 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4418
4419 /* Get the current flags for this page. */
4420 pmap_acquire_page_lock(md);
4421 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4422 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4423 pmap_release_page_lock(md);
4424 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4425 goto out;
4426 }
4427
4428 md->pvh_attrs |= PVF_REF;
4429 pv->pv_flags |= PVF_REF;
4430
4431 pt_entry_t npte =
4432 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4433 #ifdef ARM_MMU_EXTENDED
4434 if (pm != pmap_kernel()) {
4435 npte |= L2_XS_nG;
4436 }
4437 /*
4438 * If we got called from prefetch abort, then ftype will have
4439 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4440 * the PTE.
4441 */
4442 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4443 /*
4444 * Is this a mapping of an executable page?
4445 */
4446 if ((pv->pv_flags & PVF_EXEC) == 0) {
4447 pmap_release_page_lock(md);
4448 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4449 0, 0, 0, 0);
4450 goto out;
4451 }
4452 /*
4453 * If we haven't synced the page, do so now.
4454 */
4455 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4456 UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
4457 pa, 0, 0, 0);
4458 pmap_syncicache_page(md, pa);
4459 PMAPCOUNT(fixup_exec);
4460 }
4461 npte &= ~L2_XS_XN;
4462 }
4463 #endif /* ARM_MMU_EXTENDED */
4464 pmap_release_page_lock(md);
4465 l2pte_reset(ptep);
4466 PTE_SYNC(ptep);
4467 pmap_tlb_flush_SE(pm, va,
4468 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4469 l2pte_set(ptep, npte, 0);
4470 PTE_SYNC(ptep);
4471 PMAPCOUNT(fixup_ref);
4472 rv = 1;
4473 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
4474 opte, npte, 0, 0);
4475 #ifdef ARM_MMU_EXTENDED
4476 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4477 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4478 if (pg == NULL) {
4479 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4480 goto out;
4481 }
4482
4483 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4484
4485 /* Get the current flags for this page. */
4486 pmap_acquire_page_lock(md);
4487 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4488 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4489 pmap_release_page_lock(md);
4490 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4491 goto out;
4492 }
4493
4494 /*
4495 * If we haven't synced the page, do so now.
4496 */
4497 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4498 UVMHIST_LOG(maphist, "syncicache page #%#x",
4499 pa, 0, 0, 0);
4500 pmap_syncicache_page(md, pa);
4501 }
4502 pmap_release_page_lock(md);
4503 /*
4504 * Turn off no-execute.
4505 */
4506 KASSERT(opte & L2_XS_nG);
4507 l2pte_reset(ptep);
4508 PTE_SYNC(ptep);
4509 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4510 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4511 PTE_SYNC(ptep);
4512 rv = 1;
4513 PMAPCOUNT(fixup_exec);
4514 UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
4515 opte, opte & ~L2_XS_XN, 0, 0);
4516 #endif
4517 }
4518
4519 #ifndef ARM_MMU_EXTENDED
4520 /*
4521 * We know there is a valid mapping here, so simply
4522 * fix up the L1 if necessary.
4523 */
4524 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4525 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4526 if (*pdep != pde) {
4527 l1pte_setone(pdep, pde);
4528 PTE_SYNC(pdep);
4529 rv = 1;
4530 PMAPCOUNT(fixup_pdes);
4531 }
4532 #endif
4533
4534 #ifdef CPU_SA110
4535 /*
4536 * There are bugs in the rev K SA110. This is a check for one
4537 * of them.
4538 */
4539 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4540 curcpu()->ci_arm_cpurev < 3) {
4541 /* Always current pmap */
4542 if (l2pte_valid_p(opte)) {
4543 extern int kernel_debug;
4544 if (kernel_debug & 1) {
4545 struct proc *p = curlwp->l_proc;
4546 printf("prefetch_abort: page is already "
4547 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4548 printf("prefetch_abort: pc=%08lx proc=%p "
4549 "process=%s\n", va, p, p->p_comm);
4550 printf("prefetch_abort: far=%08x fs=%x\n",
4551 cpu_faultaddress(), cpu_faultstatus());
4552 }
4553 #ifdef DDB
4554 if (kernel_debug & 2)
4555 Debugger();
4556 #endif
4557 rv = 1;
4558 }
4559 }
4560 #endif /* CPU_SA110 */
4561
4562 #ifndef ARM_MMU_EXTENDED
4563 /*
4564 * If 'rv == 0' at this point, it generally indicates that there is a
4565 * stale TLB entry for the faulting address. That might be due to a
4566 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4567 */
4568 if (rv == 0
4569 && pm->pm_l1->l1_domain_use_count == 1
4570 && pmap_needs_pte_sync == 0) {
4571 pmap_needs_pte_sync = 1;
4572 PTE_SYNC(ptep);
4573 PMAPCOUNT(fixup_ptesync);
4574 rv = 1;
4575 }
4576 #endif
4577
4578 #if defined(DEBUG) || 1
4579 /*
4580 * If 'rv == 0' at this point, it generally indicates that there is a
4581 * stale TLB entry for the faulting address. This happens when two or
4582 * more processes are sharing an L1. Since we don't flush the TLB on
4583 * a context switch between such processes, we can take domain faults
4584 * for mappings which exist at the same VA in both processes. EVEN IF
4585 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4586 * example.
4587 *
4588 * This is extremely likely to happen if pmap_enter() updated the L1
4589 * entry for a recently entered mapping. In this case, the TLB is
4590 * flushed for the new mapping, but there may still be TLB entries for
4591 * other mappings belonging to other processes in the 1MB range
4592 * covered by the L1 entry.
4593 *
4594 * Since 'rv == 0', we know that the L1 already contains the correct
4595 * value, so the fault must be due to a stale TLB entry.
4596 *
4597 * Since we always need to flush the TLB anyway in the case where we
4598 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4599 * stale TLB entries dynamically.
4600 *
4601 * However, the above condition can ONLY happen if the current L1 is
4602 * being shared. If it happens when the L1 is unshared, it indicates
4603 * that other parts of the pmap are not doing their job WRT managing
4604 * the TLB.
4605 */
4606 if (rv == 0
4607 #ifndef ARM_MMU_EXTENDED
4608 && pm->pm_l1->l1_domain_use_count == 1
4609 #endif
4610 && true) {
4611 #ifdef DEBUG
4612 extern int last_fault_code;
4613 #else
4614 int last_fault_code = ftype & VM_PROT_EXECUTE
4615 ? armreg_ifsr_read()
4616 : armreg_dfsr_read();
4617 #endif
4618 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4619 pm, va, ftype);
4620 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4621 l2, l2b, ptep, opte);
4622
4623 #ifndef ARM_MMU_EXTENDED
4624 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4625 pdep, pde, last_fault_code);
4626 #else
4627 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4628 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4629 armreg_ttbcr_read());
4630 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4631 last_fault_code, curcpu()->ci_pmap_cur,
4632 curcpu()->ci_pmap_asid_cur,
4633 armreg_contextidr_read(), armreg_dacr_read());
4634 #ifdef _ARM_ARCH_7
4635 if (ftype & VM_PROT_WRITE)
4636 armreg_ats1cuw_write(va);
4637 else
4638 armreg_ats1cur_write(va);
4639 arm_isb();
4640 printf("fixup: par %#x\n", armreg_par_read());
4641 #endif
4642 #endif
4643 #ifdef DDB
4644 extern int kernel_debug;
4645
4646 if (kernel_debug & 2) {
4647 pmap_release_pmap_lock(pm);
4648 #ifdef UVMHIST
4649 KERNHIST_DUMP(maphist);
4650 #endif
4651 cpu_Debugger();
4652 pmap_acquire_pmap_lock(pm);
4653 }
4654 #endif
4655 }
4656 #endif
4657
4658 rv = 1;
4659
4660 out:
4661 pmap_release_pmap_lock(pm);
4662
4663 return (rv);
4664 }
4665
4666 /*
4667 * Routine: pmap_procwr
4668 *
4669 * Function:
4670 * Synchronize caches corresponding to [addr, addr+len) in p.
4671 *
4672 */
4673 void
4674 pmap_procwr(struct proc *p, vaddr_t va, int len)
4675 {
4676 /* We only need to do anything if it is the current process. */
4677 if (p == curproc)
4678 cpu_icache_sync_range(va, len);
4679 }
4680
4681 /*
4682 * Routine: pmap_unwire
4683 * Function: Clear the wired attribute for a map/virtual-address pair.
4684 *
4685 * In/out conditions:
4686 * The mapping must already exist in the pmap.
4687 */
4688 void
4689 pmap_unwire(pmap_t pm, vaddr_t va)
4690 {
4691 struct l2_bucket *l2b;
4692 pt_entry_t *ptep, pte;
4693 struct vm_page *pg;
4694 paddr_t pa;
4695
4696 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4697
4698 pmap_acquire_pmap_lock(pm);
4699
4700 l2b = pmap_get_l2_bucket(pm, va);
4701 KDASSERT(l2b != NULL);
4702
4703 ptep = &l2b->l2b_kva[l2pte_index(va)];
4704 pte = *ptep;
4705
4706 /* Extract the physical address of the page */
4707 pa = l2pte_pa(pte);
4708
4709 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4710 /* Update the wired bit in the pv entry for this page. */
4711 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4712
4713 pmap_acquire_page_lock(md);
4714 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4715 pmap_release_page_lock(md);
4716 }
4717
4718 pmap_release_pmap_lock(pm);
4719 }
4720
4721 void
4722 pmap_activate(struct lwp *l)
4723 {
4724 struct cpu_info * const ci = curcpu();
4725 extern int block_userspace_access;
4726 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4727 #ifdef ARM_MMU_EXTENDED
4728 struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
4729 #endif
4730
4731 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4732
4733 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
4734
4735 /*
4736 * If activating a non-current lwp or the current lwp is
4737 * already active, just return.
4738 */
4739 if (false
4740 || l != curlwp
4741 #ifdef ARM_MMU_EXTENDED
4742 || (ci->ci_pmap_cur == npm &&
4743 (npm == pmap_kernel()
4744 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4745 #else
4746 || npm->pm_activated == true
4747 #endif
4748 || false) {
4749 UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
4750 return;
4751 }
4752
4753 #ifndef ARM_MMU_EXTENDED
4754 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4755 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4756
4757 /*
4758 * If TTB and DACR are unchanged, short-circuit all the
4759 * TLB/cache management stuff.
4760 */
4761 pmap_t opm = ci->ci_lastlwp
4762 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4763 : NULL;
4764 if (opm != NULL) {
4765 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4766 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4767
4768 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4769 goto all_done;
4770 }
4771 #endif /* !ARM_MMU_EXTENDED */
4772
4773 PMAPCOUNT(activations);
4774 block_userspace_access = 1;
4775
4776 #ifndef ARM_MMU_EXTENDED
4777 /*
4778 * If switching to a user vmspace which is different to the
4779 * most recent one, and the most recent one is potentially
4780 * live in the cache, we must write-back and invalidate the
4781 * entire cache.
4782 */
4783 pmap_t rpm = ci->ci_pmap_lastuser;
4784 #endif
4785
4786 /*
4787 * XXXSCW: There's a corner case here which can leave turds in the cache as
4788 * reported in kern/41058. They're probably left over during tear-down and
4789 * switching away from an exiting process. Until the root cause is identified
4790 * and fixed, zap the cache when switching pmaps. This will result in a few
4791 * unnecessary cache flushes, but that's better than silently corrupting data.
4792 */
4793 #ifndef ARM_MMU_EXTENDED
4794 #if 0
4795 if (npm != pmap_kernel() && rpm && npm != rpm &&
4796 rpm->pm_cstate.cs_cache) {
4797 rpm->pm_cstate.cs_cache = 0;
4798 #ifdef PMAP_CACHE_VIVT
4799 cpu_idcache_wbinv_all();
4800 #endif
4801 }
4802 #else
4803 if (rpm) {
4804 rpm->pm_cstate.cs_cache = 0;
4805 if (npm == pmap_kernel())
4806 ci->ci_pmap_lastuser = NULL;
4807 #ifdef PMAP_CACHE_VIVT
4808 cpu_idcache_wbinv_all();
4809 #endif
4810 }
4811 #endif
4812
4813 /* No interrupts while we frob the TTB/DACR */
4814 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4815 #endif /* !ARM_MMU_EXTENDED */
4816
4817 #ifndef ARM_HAS_VBAR
4818 /*
4819 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4820 * entry corresponding to 'vector_page' in the incoming L1 table
4821 * before switching to it otherwise subsequent interrupts/exceptions
4822 * (including domain faults!) will jump into hyperspace.
4823 */
4824 if (npm->pm_pl1vec != NULL) {
4825 cpu_tlb_flushID_SE((u_int)vector_page);
4826 cpu_cpwait();
4827 *npm->pm_pl1vec = npm->pm_l1vec;
4828 PTE_SYNC(npm->pm_pl1vec);
4829 }
4830 #endif
4831
4832 #ifdef ARM_MMU_EXTENDED
4833 /*
4834 * Assume that TTBR1 has only global mappings and TTBR0 only has
4835 * non-global mappings. To prevent speculation from doing evil things
4836 * we disable translation table walks using TTBR0 before setting the
4837 * CONTEXTIDR (ASID) or new TTBR0 value. Once both are set, table
4838 * walks are reenabled.
4839 */
4840 UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
4841 const uint32_t old_ttbcr = armreg_ttbcr_read();
4842 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4843 arm_isb();
4844 pmap_tlb_asid_acquire(npm, l);
4845 UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
4846 cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
4847 /*
4848 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
4849 * been updated.
4850 */
4851 arm_isb();
4852 if (npm != pmap_kernel()) {
4853 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4854 }
4855 cpu_cpwait();
4856 ci->ci_pmap_asid_cur = pai->pai_asid;
4857 #else
4858 cpu_domains(ndacr);
4859 if (npm == pmap_kernel() || npm == rpm) {
4860 /*
4861 * Switching to a kernel thread, or back to the
4862 * same user vmspace as before... Simply update
4863 * the TTB (no TLB flush required)
4864 */
4865 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4866 cpu_cpwait();
4867 } else {
4868 /*
4869 * Otherwise, update TTB and flush TLB
4870 */
4871 cpu_context_switch(npm->pm_l1->l1_physaddr);
4872 if (rpm != NULL)
4873 rpm->pm_cstate.cs_tlb = 0;
4874 }
4875
4876 restore_interrupts(oldirqstate);
4877 #endif /* ARM_MMU_EXTENDED */
4878
4879 block_userspace_access = 0;
4880
4881 #ifndef ARM_MMU_EXTENDED
4882 all_done:
4883 /*
4884 * The new pmap is resident. Make sure it's marked
4885 * as resident in the cache/TLB.
4886 */
4887 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4888 if (npm != pmap_kernel())
4889 ci->ci_pmap_lastuser = npm;
4890
4891 /* The old pmap is not longer active */
4892 if (opm != npm) {
4893 if (opm != NULL)
4894 opm->pm_activated = false;
4895
4896 /* But the new one is */
4897 npm->pm_activated = true;
4898 }
4899 #endif
4900 ci->ci_pmap_cur = npm;
4901 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4902 }
4903
4904 void
4905 pmap_deactivate(struct lwp *l)
4906 {
4907 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
4908
4909 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4910
4911 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
4912
4913 #ifdef ARM_MMU_EXTENDED
4914 kpreempt_disable();
4915 struct cpu_info * const ci = curcpu();
4916 /*
4917 * Disable translation table walks from TTBR0 while no pmap has been
4918 * activated.
4919 */
4920 const uint32_t old_ttbcr = armreg_ttbcr_read();
4921 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4922 arm_isb();
4923 pmap_tlb_asid_deactivate(pm);
4924 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4925 ci->ci_pmap_cur = pmap_kernel();
4926 kpreempt_enable();
4927 #else
4928 /*
4929 * If the process is exiting, make sure pmap_activate() does
4930 * a full MMU context-switch and cache flush, which we might
4931 * otherwise skip. See PR port-arm/38950.
4932 */
4933 if (l->l_proc->p_sflag & PS_WEXIT)
4934 curcpu()->ci_lastlwp = NULL;
4935
4936 pm->pm_activated = false;
4937 #endif
4938 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4939 }
4940
4941 void
4942 pmap_update(pmap_t pm)
4943 {
4944
4945 if (pm->pm_remove_all) {
4946 #ifdef ARM_MMU_EXTENDED
4947 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
4948 /*
4949 * Finish up the pmap_remove_all() optimisation by flushing
4950 * all our ASIDs.
4951 */
4952 pmap_tlb_asid_release_all(pm);
4953 #else
4954 /*
4955 * Finish up the pmap_remove_all() optimisation by flushing
4956 * the TLB.
4957 */
4958 pmap_tlb_flushID(pm);
4959 #endif
4960 pm->pm_remove_all = false;
4961 }
4962
4963 #ifdef ARM_MMU_EXTENDED
4964 #if defined(MULTIPROCESSOR)
4965 armreg_bpiallis_write(0);
4966 #else
4967 armreg_bpiall_write(0);
4968 #endif
4969
4970 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
4971 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
4972 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
4973 PMAP_COUNT(shootdown_ipis);
4974 }
4975 #endif
4976 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
4977 #else
4978 if (pmap_is_current(pm)) {
4979 /*
4980 * If we're dealing with a current userland pmap, move its L1
4981 * to the end of the LRU.
4982 */
4983 if (pm != pmap_kernel())
4984 pmap_use_l1(pm);
4985
4986 /*
4987 * We can assume we're done with frobbing the cache/tlb for
4988 * now. Make sure any future pmap ops don't skip cache/tlb
4989 * flushes.
4990 */
4991 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4992 }
4993 #endif
4994
4995 PMAPCOUNT(updates);
4996
4997 /*
4998 * make sure TLB/cache operations have completed.
4999 */
5000 cpu_cpwait();
5001 }
5002
5003 void
5004 pmap_remove_all(pmap_t pm)
5005 {
5006
5007 /*
5008 * The vmspace described by this pmap is about to be torn down.
5009 * Until pmap_update() is called, UVM will only make calls
5010 * to pmap_remove(). We can make life much simpler by flushing
5011 * the cache now, and deferring TLB invalidation to pmap_update().
5012 */
5013 #ifdef PMAP_CACHE_VIVT
5014 pmap_cache_wbinv_all(pm, PVF_EXEC);
5015 #endif
5016 pm->pm_remove_all = true;
5017 }
5018
5019 /*
5020 * Retire the given physical map from service.
5021 * Should only be called if the map contains no valid mappings.
5022 */
5023 void
5024 pmap_destroy(pmap_t pm)
5025 {
5026 u_int count;
5027
5028 if (pm == NULL)
5029 return;
5030
5031 if (pm->pm_remove_all) {
5032 pmap_tlb_flushID(pm);
5033 pm->pm_remove_all = false;
5034 }
5035
5036 /*
5037 * Drop reference count
5038 */
5039 mutex_enter(pm->pm_lock);
5040 count = --pm->pm_obj.uo_refs;
5041 mutex_exit(pm->pm_lock);
5042 if (count > 0) {
5043 #ifndef ARM_MMU_EXTENDED
5044 if (pmap_is_current(pm)) {
5045 if (pm != pmap_kernel())
5046 pmap_use_l1(pm);
5047 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5048 }
5049 #endif
5050 return;
5051 }
5052
5053 /*
5054 * reference count is zero, free pmap resources and then free pmap.
5055 */
5056
5057 #ifndef ARM_HAS_VBAR
5058 if (vector_page < KERNEL_BASE) {
5059 KDASSERT(!pmap_is_current(pm));
5060
5061 /* Remove the vector page mapping */
5062 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5063 pmap_update(pm);
5064 }
5065 #endif
5066
5067 LIST_REMOVE(pm, pm_list);
5068
5069 pmap_free_l1(pm);
5070
5071 #ifdef ARM_MMU_EXTENDED
5072 #ifdef MULTIPROCESSOR
5073 kcpuset_destroy(pm->pm_active);
5074 kcpuset_destroy(pm->pm_onproc);
5075 #endif
5076 #else
5077 struct cpu_info * const ci = curcpu();
5078 if (ci->ci_pmap_lastuser == pm)
5079 ci->ci_pmap_lastuser = NULL;
5080 #endif
5081
5082 uvm_obj_destroy(&pm->pm_obj, false);
5083 mutex_destroy(&pm->pm_obj_lock);
5084 pool_cache_put(&pmap_cache, pm);
5085 }
5086
5087
5088 /*
5089 * void pmap_reference(pmap_t pm)
5090 *
5091 * Add a reference to the specified pmap.
5092 */
5093 void
5094 pmap_reference(pmap_t pm)
5095 {
5096
5097 if (pm == NULL)
5098 return;
5099
5100 #ifndef ARM_MMU_EXTENDED
5101 pmap_use_l1(pm);
5102 #endif
5103
5104 mutex_enter(pm->pm_lock);
5105 pm->pm_obj.uo_refs++;
5106 mutex_exit(pm->pm_lock);
5107 }
5108
5109 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5110
5111 static struct evcnt pmap_prefer_nochange_ev =
5112 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5113 static struct evcnt pmap_prefer_change_ev =
5114 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5115
5116 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5117 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5118
5119 void
5120 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5121 {
5122 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5123 vaddr_t va = *vap;
5124 vaddr_t diff = (hint - va) & mask;
5125 if (diff == 0) {
5126 pmap_prefer_nochange_ev.ev_count++;
5127 } else {
5128 pmap_prefer_change_ev.ev_count++;
5129 if (__predict_false(td))
5130 va -= mask + 1;
5131 *vap = va + diff;
5132 }
5133 }
5134 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5135
5136 /*
5137 * pmap_zero_page()
5138 *
5139 * Zero a given physical page by mapping it at a page hook point.
5140 * In doing the zero page op, the page we zero is mapped cachable, as with
5141 * StrongARM accesses to non-cached pages are non-burst making writing
5142 * _any_ bulk data very slow.
5143 */
5144 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5145 void
5146 pmap_zero_page_generic(paddr_t pa)
5147 {
5148 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5149 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5150 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5151 #endif
5152 #if defined(PMAP_CACHE_VIPT)
5153 /* Choose the last page color it had, if any */
5154 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5155 #else
5156 const vsize_t va_offset = 0;
5157 #endif
5158 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5159 /*
5160 * Is this page mapped at its natural color?
5161 * If we have all of memory mapped, then just convert PA to VA.
5162 */
5163 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5164 || va_offset == (pa & arm_cache_prefer_mask);
5165 const vaddr_t vdstp = okcolor
5166 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5167 : cpu_cdstp(va_offset);
5168 #else
5169 const bool okcolor = false;
5170 const vaddr_t vdstp = cpu_cdstp(va_offset);
5171 #endif
5172 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5173
5174
5175 #ifdef DEBUG
5176 if (!SLIST_EMPTY(&md->pvh_list))
5177 panic("pmap_zero_page: page has mappings");
5178 #endif
5179
5180 KDASSERT((pa & PGOFSET) == 0);
5181
5182 if (!okcolor) {
5183 /*
5184 * Hook in the page, zero it, and purge the cache for that
5185 * zeroed page. Invalidate the TLB as needed.
5186 */
5187 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5188 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5189 l2pte_set(ptep, npte, 0);
5190 PTE_SYNC(ptep);
5191 cpu_tlb_flushD_SE(vdstp);
5192 cpu_cpwait();
5193 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5194 && !defined(ARM_MMU_EXTENDED)
5195 /*
5196 * If we are direct-mapped and our color isn't ok, then before
5197 * we bzero the page invalidate its contents from the cache and
5198 * reset the color to its natural color.
5199 */
5200 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5201 md->pvh_attrs &= ~arm_cache_prefer_mask;
5202 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5203 #endif
5204 }
5205 bzero_page(vdstp);
5206 if (!okcolor) {
5207 /*
5208 * Unmap the page.
5209 */
5210 l2pte_reset(ptep);
5211 PTE_SYNC(ptep);
5212 cpu_tlb_flushD_SE(vdstp);
5213 #ifdef PMAP_CACHE_VIVT
5214 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5215 #endif
5216 }
5217 #ifdef PMAP_CACHE_VIPT
5218 /*
5219 * This page is now cache resident so it now has a page color.
5220 * Any contents have been obliterated so clear the EXEC flag.
5221 */
5222 #ifndef ARM_MMU_EXTENDED
5223 if (!pmap_is_page_colored_p(md)) {
5224 PMAPCOUNT(vac_color_new);
5225 md->pvh_attrs |= PVF_COLORED;
5226 }
5227 md->pvh_attrs |= PVF_DIRTY;
5228 #endif
5229 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5230 md->pvh_attrs &= ~PVF_EXEC;
5231 PMAPCOUNT(exec_discarded_zero);
5232 }
5233 #endif
5234 }
5235 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5236
5237 #if ARM_MMU_XSCALE == 1
5238 void
5239 pmap_zero_page_xscale(paddr_t pa)
5240 {
5241 #ifdef DEBUG
5242 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5243 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5244
5245 if (!SLIST_EMPTY(&md->pvh_list))
5246 panic("pmap_zero_page: page has mappings");
5247 #endif
5248
5249 KDASSERT((pa & PGOFSET) == 0);
5250
5251 /*
5252 * Hook in the page, zero it, and purge the cache for that
5253 * zeroed page. Invalidate the TLB as needed.
5254 */
5255
5256 pt_entry_t npte = L2_S_PROTO | pa |
5257 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5258 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5259 l2pte_set(cdst_pte, npte, 0);
5260 PTE_SYNC(cdst_pte);
5261 cpu_tlb_flushD_SE(cdstp);
5262 cpu_cpwait();
5263 bzero_page(cdstp);
5264 xscale_cache_clean_minidata();
5265 l2pte_reset(cdst_pte);
5266 PTE_SYNC(cdst_pte);
5267 }
5268 #endif /* ARM_MMU_XSCALE == 1 */
5269
5270 /* pmap_pageidlezero()
5271 *
5272 * The same as above, except that we assume that the page is not
5273 * mapped. This means we never have to flush the cache first. Called
5274 * from the idle loop.
5275 */
5276 bool
5277 pmap_pageidlezero(paddr_t pa)
5278 {
5279 bool rv = true;
5280 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5281 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5282 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5283 #endif
5284 #ifdef PMAP_CACHE_VIPT
5285 /* Choose the last page color it had, if any */
5286 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5287 #else
5288 const vsize_t va_offset = 0;
5289 #endif
5290 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5291 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5292 || va_offset == (pa & arm_cache_prefer_mask);
5293 const vaddr_t vdstp = okcolor
5294 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5295 : cpu_cdstp(va_offset);
5296 #else
5297 const bool okcolor = false;
5298 const vaddr_t vdstp = cpu_cdstp(va_offset);
5299 #endif
5300 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5301
5302
5303 #ifdef DEBUG
5304 if (!SLIST_EMPTY(&md->pvh_list))
5305 panic("pmap_pageidlezero: page has mappings");
5306 #endif
5307
5308 KDASSERT((pa & PGOFSET) == 0);
5309
5310 if (!okcolor) {
5311 /*
5312 * Hook in the page, zero it, and purge the cache for that
5313 * zeroed page. Invalidate the TLB as needed.
5314 */
5315 const pt_entry_t npte = L2_S_PROTO | pa |
5316 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5317 l2pte_set(ptep, npte, 0);
5318 PTE_SYNC(ptep);
5319 cpu_tlb_flushD_SE(vdstp);
5320 cpu_cpwait();
5321 }
5322
5323 uint64_t *ptr = (uint64_t *)vdstp;
5324 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5325 if (sched_curcpu_runnable_p() != 0) {
5326 /*
5327 * A process has become ready. Abort now,
5328 * so we don't keep it waiting while we
5329 * do slow memory access to finish this
5330 * page.
5331 */
5332 rv = false;
5333 break;
5334 }
5335 *ptr++ = 0;
5336 }
5337
5338 #ifdef PMAP_CACHE_VIVT
5339 if (rv)
5340 /*
5341 * if we aborted we'll rezero this page again later so don't
5342 * purge it unless we finished it
5343 */
5344 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5345 #elif defined(PMAP_CACHE_VIPT)
5346 /*
5347 * This page is now cache resident so it now has a page color.
5348 * Any contents have been obliterated so clear the EXEC flag.
5349 */
5350 #ifndef ARM_MMU_EXTENDED
5351 if (!pmap_is_page_colored_p(md)) {
5352 PMAPCOUNT(vac_color_new);
5353 md->pvh_attrs |= PVF_COLORED;
5354 }
5355 #endif
5356 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5357 md->pvh_attrs &= ~PVF_EXEC;
5358 PMAPCOUNT(exec_discarded_zero);
5359 }
5360 #endif
5361 /*
5362 * Unmap the page.
5363 */
5364 if (!okcolor) {
5365 l2pte_reset(ptep);
5366 PTE_SYNC(ptep);
5367 cpu_tlb_flushD_SE(vdstp);
5368 }
5369
5370 return rv;
5371 }
5372
5373 /*
5374 * pmap_copy_page()
5375 *
5376 * Copy one physical page into another, by mapping the pages into
5377 * hook points. The same comment regarding cachability as in
5378 * pmap_zero_page also applies here.
5379 */
5380 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5381 void
5382 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5383 {
5384 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5385 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5386 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5387 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5388 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5389 #endif
5390 #ifdef PMAP_CACHE_VIPT
5391 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5392 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5393 #else
5394 const vsize_t src_va_offset = 0;
5395 const vsize_t dst_va_offset = 0;
5396 #endif
5397 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5398 /*
5399 * Is this page mapped at its natural color?
5400 * If we have all of memory mapped, then just convert PA to VA.
5401 */
5402 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5403 || src_va_offset == (src & arm_cache_prefer_mask);
5404 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5405 || dst_va_offset == (dst & arm_cache_prefer_mask);
5406 const vaddr_t vsrcp = src_okcolor
5407 ? pmap_direct_mapped_phys(src, &src_okcolor,
5408 cpu_csrcp(src_va_offset))
5409 : cpu_csrcp(src_va_offset);
5410 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5411 cpu_cdstp(dst_va_offset));
5412 #else
5413 const bool src_okcolor = false;
5414 const bool dst_okcolor = false;
5415 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5416 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5417 #endif
5418 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5419 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5420
5421 #ifdef DEBUG
5422 if (!SLIST_EMPTY(&dst_md->pvh_list))
5423 panic("pmap_copy_page: dst page has mappings");
5424 #endif
5425
5426 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5427 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5428 #endif
5429 KDASSERT((src & PGOFSET) == 0);
5430 KDASSERT((dst & PGOFSET) == 0);
5431
5432 /*
5433 * Clean the source page. Hold the source page's lock for
5434 * the duration of the copy so that no other mappings can
5435 * be created while we have a potentially aliased mapping.
5436 */
5437 #ifdef PMAP_CACHE_VIVT
5438 pmap_acquire_page_lock(src_md);
5439 (void) pmap_clean_page(src_md, true);
5440 pmap_release_page_lock(src_md);
5441 #endif
5442
5443 /*
5444 * Map the pages into the page hook points, copy them, and purge
5445 * the cache for the appropriate page. Invalidate the TLB
5446 * as required.
5447 */
5448 if (!src_okcolor) {
5449 const pt_entry_t nsrc_pte = L2_S_PROTO
5450 | src
5451 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5452 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5453 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5454 | pte_l2_s_cache_mode
5455 #endif
5456 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5457 l2pte_set(src_ptep, nsrc_pte, 0);
5458 PTE_SYNC(src_ptep);
5459 cpu_tlb_flushD_SE(vsrcp);
5460 cpu_cpwait();
5461 }
5462 if (!dst_okcolor) {
5463 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5464 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5465 l2pte_set(dst_ptep, ndst_pte, 0);
5466 PTE_SYNC(dst_ptep);
5467 cpu_tlb_flushD_SE(vdstp);
5468 cpu_cpwait();
5469 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5470 /*
5471 * If we are direct-mapped and our color isn't ok, then before
5472 * we bcopy to the new page invalidate its contents from the
5473 * cache and reset its color to its natural color.
5474 */
5475 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5476 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5477 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5478 #endif
5479 }
5480 bcopy_page(vsrcp, vdstp);
5481 #ifdef PMAP_CACHE_VIVT
5482 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5483 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5484 #endif
5485 /*
5486 * Unmap the pages.
5487 */
5488 if (!src_okcolor) {
5489 l2pte_reset(src_ptep);
5490 PTE_SYNC(src_ptep);
5491 cpu_tlb_flushD_SE(vsrcp);
5492 cpu_cpwait();
5493 }
5494 if (!dst_okcolor) {
5495 l2pte_reset(dst_ptep);
5496 PTE_SYNC(dst_ptep);
5497 cpu_tlb_flushD_SE(vdstp);
5498 cpu_cpwait();
5499 }
5500 #ifdef PMAP_CACHE_VIPT
5501 /*
5502 * Now that the destination page is in the cache, mark it as colored.
5503 * If this was an exec page, discard it.
5504 */
5505 pmap_acquire_page_lock(dst_md);
5506 #ifndef ARM_MMU_EXTENDED
5507 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5508 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5509 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5510 }
5511 if (!pmap_is_page_colored_p(dst_md)) {
5512 PMAPCOUNT(vac_color_new);
5513 dst_md->pvh_attrs |= PVF_COLORED;
5514 }
5515 dst_md->pvh_attrs |= PVF_DIRTY;
5516 #endif
5517 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5518 dst_md->pvh_attrs &= ~PVF_EXEC;
5519 PMAPCOUNT(exec_discarded_copy);
5520 }
5521 pmap_release_page_lock(dst_md);
5522 #endif
5523 }
5524 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5525
5526 #if ARM_MMU_XSCALE == 1
5527 void
5528 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5529 {
5530 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5531 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5532 #ifdef DEBUG
5533 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5534
5535 if (!SLIST_EMPTY(&dst_md->pvh_list))
5536 panic("pmap_copy_page: dst page has mappings");
5537 #endif
5538
5539 KDASSERT((src & PGOFSET) == 0);
5540 KDASSERT((dst & PGOFSET) == 0);
5541
5542 /*
5543 * Clean the source page. Hold the source page's lock for
5544 * the duration of the copy so that no other mappings can
5545 * be created while we have a potentially aliased mapping.
5546 */
5547 #ifdef PMAP_CACHE_VIVT
5548 pmap_acquire_page_lock(src_md);
5549 (void) pmap_clean_page(src_md, true);
5550 pmap_release_page_lock(src_md);
5551 #endif
5552
5553 /*
5554 * Map the pages into the page hook points, copy them, and purge
5555 * the cache for the appropriate page. Invalidate the TLB
5556 * as required.
5557 */
5558 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5559 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5560 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5561 l2pte_set(csrc_pte, nsrc_pte, 0);
5562 PTE_SYNC(csrc_pte);
5563
5564 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5565 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5566 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5567 l2pte_set(cdst_pte, ndst_pte, 0);
5568 PTE_SYNC(cdst_pte);
5569
5570 cpu_tlb_flushD_SE(csrcp);
5571 cpu_tlb_flushD_SE(cdstp);
5572 cpu_cpwait();
5573 bcopy_page(csrcp, cdstp);
5574 xscale_cache_clean_minidata();
5575 l2pte_reset(csrc_pte);
5576 l2pte_reset(cdst_pte);
5577 PTE_SYNC(csrc_pte);
5578 PTE_SYNC(cdst_pte);
5579 }
5580 #endif /* ARM_MMU_XSCALE == 1 */
5581
5582 /*
5583 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5584 *
5585 * Return the start and end addresses of the kernel's virtual space.
5586 * These values are setup in pmap_bootstrap and are updated as pages
5587 * are allocated.
5588 */
5589 void
5590 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5591 {
5592 *start = virtual_avail;
5593 *end = virtual_end;
5594 }
5595
5596 /*
5597 * Helper function for pmap_grow_l2_bucket()
5598 */
5599 static inline int
5600 pmap_grow_map(vaddr_t va, paddr_t *pap)
5601 {
5602 paddr_t pa;
5603
5604 if (uvm.page_init_done == false) {
5605 #ifdef PMAP_STEAL_MEMORY
5606 pv_addr_t pv;
5607 pmap_boot_pagealloc(PAGE_SIZE,
5608 #ifdef PMAP_CACHE_VIPT
5609 arm_cache_prefer_mask,
5610 va & arm_cache_prefer_mask,
5611 #else
5612 0, 0,
5613 #endif
5614 &pv);
5615 pa = pv.pv_pa;
5616 #else
5617 if (uvm_page_physget(&pa) == false)
5618 return (1);
5619 #endif /* PMAP_STEAL_MEMORY */
5620 } else {
5621 struct vm_page *pg;
5622 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5623 if (pg == NULL)
5624 return (1);
5625 pa = VM_PAGE_TO_PHYS(pg);
5626 /*
5627 * This new page must not have any mappings. Enter it via
5628 * pmap_kenter_pa and let that routine do the hard work.
5629 */
5630 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5631 KASSERT(SLIST_EMPTY(&md->pvh_list));
5632 pmap_kenter_pa(va, pa,
5633 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5634 }
5635
5636 if (pap)
5637 *pap = pa;
5638
5639 PMAPCOUNT(pt_mappings);
5640 #ifdef DEBUG
5641 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5642 KDASSERT(l2b != NULL);
5643
5644 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5645 const pt_entry_t opte = *ptep;
5646 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5647 #endif
5648 memset((void *)va, 0, PAGE_SIZE);
5649 return (0);
5650 }
5651
5652 /*
5653 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5654 * used by pmap_growkernel().
5655 */
5656 static inline struct l2_bucket *
5657 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5658 {
5659 struct l2_dtable *l2;
5660 struct l2_bucket *l2b;
5661 u_short l1slot;
5662 vaddr_t nva;
5663
5664 l1slot = l1pte_index(va);
5665
5666 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5667 /*
5668 * No mapping at this address, as there is
5669 * no entry in the L1 table.
5670 * Need to allocate a new l2_dtable.
5671 */
5672 nva = pmap_kernel_l2dtable_kva;
5673 if ((nva & PGOFSET) == 0) {
5674 /*
5675 * Need to allocate a backing page
5676 */
5677 if (pmap_grow_map(nva, NULL))
5678 return (NULL);
5679 }
5680
5681 l2 = (struct l2_dtable *)nva;
5682 nva += sizeof(struct l2_dtable);
5683
5684 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5685 /*
5686 * The new l2_dtable straddles a page boundary.
5687 * Map in another page to cover it.
5688 */
5689 if (pmap_grow_map(nva, NULL))
5690 return (NULL);
5691 }
5692
5693 pmap_kernel_l2dtable_kva = nva;
5694
5695 /*
5696 * Link it into the parent pmap
5697 */
5698 pm->pm_l2[L2_IDX(l1slot)] = l2;
5699 }
5700
5701 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5702
5703 /*
5704 * Fetch pointer to the L2 page table associated with the address.
5705 */
5706 if (l2b->l2b_kva == NULL) {
5707 pt_entry_t *ptep;
5708
5709 /*
5710 * No L2 page table has been allocated. Chances are, this
5711 * is because we just allocated the l2_dtable, above.
5712 */
5713 nva = pmap_kernel_l2ptp_kva;
5714 ptep = (pt_entry_t *)nva;
5715 if ((nva & PGOFSET) == 0) {
5716 /*
5717 * Need to allocate a backing page
5718 */
5719 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5720 return (NULL);
5721 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5722 }
5723
5724 l2->l2_occupancy++;
5725 l2b->l2b_kva = ptep;
5726 l2b->l2b_l1slot = l1slot;
5727 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5728
5729 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5730 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5731 }
5732
5733 return (l2b);
5734 }
5735
5736 vaddr_t
5737 pmap_growkernel(vaddr_t maxkvaddr)
5738 {
5739 pmap_t kpm = pmap_kernel();
5740 #ifndef ARM_MMU_EXTENDED
5741 struct l1_ttable *l1;
5742 #endif
5743 int s;
5744
5745 if (maxkvaddr <= pmap_curmaxkvaddr)
5746 goto out; /* we are OK */
5747
5748 NPDEBUG(PDB_GROWKERN,
5749 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5750 pmap_curmaxkvaddr, maxkvaddr));
5751
5752 KDASSERT(maxkvaddr <= virtual_end);
5753
5754 /*
5755 * whoops! we need to add kernel PTPs
5756 */
5757
5758 s = splhigh(); /* to be safe */
5759 mutex_enter(kpm->pm_lock);
5760
5761 /* Map 1MB at a time */
5762 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5763 #ifdef ARM_MMU_EXTENDED
5764 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5765 pd_entry_t *pdep = spdep;
5766 #endif
5767 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5768 #ifdef ARM_MMU_EXTENDED
5769 pdep++,
5770 #endif
5771 l1slot++) {
5772 struct l2_bucket *l2b =
5773 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5774 KASSERT(l2b != NULL);
5775
5776 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5777 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5778 #ifdef ARM_MMU_EXTENDED
5779 l1pte_setone(pdep, npde);
5780 #else
5781 /* Distribute new L1 entry to all other L1s */
5782 SLIST_FOREACH(l1, &l1_list, l1_link) {
5783 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5784 l1pte_setone(pdep, npde);
5785 PDE_SYNC(pdep);
5786 }
5787 #endif
5788 }
5789 #ifdef ARM_MMU_EXTENDED
5790 PDE_SYNC_RANGE(spdep, pdep - spdep);
5791 #endif
5792
5793 #ifdef PMAP_CACHE_VIVT
5794 /*
5795 * flush out the cache, expensive but growkernel will happen so
5796 * rarely
5797 */
5798 cpu_dcache_wbinv_all();
5799 cpu_tlb_flushD();
5800 cpu_cpwait();
5801 #endif
5802
5803 mutex_exit(kpm->pm_lock);
5804 splx(s);
5805
5806 out:
5807 return (pmap_curmaxkvaddr);
5808 }
5809
5810 /************************ Utility routines ****************************/
5811
5812 #ifndef ARM_HAS_VBAR
5813 /*
5814 * vector_page_setprot:
5815 *
5816 * Manipulate the protection of the vector page.
5817 */
5818 void
5819 vector_page_setprot(int prot)
5820 {
5821 struct l2_bucket *l2b;
5822 pt_entry_t *ptep;
5823
5824 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5825 /*
5826 * If we are using VBAR to use the vectors in the kernel, then it's
5827 * already mapped in the kernel text so no need to anything here.
5828 */
5829 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5830 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5831 return;
5832 }
5833 #endif
5834
5835 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5836 KASSERT(l2b != NULL);
5837
5838 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5839
5840 const pt_entry_t opte = *ptep;
5841 #ifdef ARM_MMU_EXTENDED
5842 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5843 | L2_S_PROT(PTE_KERNEL, prot);
5844 #else
5845 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5846 | L2_S_PROT(PTE_KERNEL, prot);
5847 #endif
5848 l2pte_set(ptep, npte, opte);
5849 PTE_SYNC(ptep);
5850 cpu_tlb_flushD_SE(vector_page);
5851 cpu_cpwait();
5852 }
5853 #endif
5854
5855 /*
5856 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5857 * Returns true if the mapping exists, else false.
5858 *
5859 * NOTE: This function is only used by a couple of arm-specific modules.
5860 * It is not safe to take any pmap locks here, since we could be right
5861 * in the middle of debugging the pmap anyway...
5862 *
5863 * It is possible for this routine to return false even though a valid
5864 * mapping does exist. This is because we don't lock, so the metadata
5865 * state may be inconsistent.
5866 *
5867 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5868 * a "section" mapping.
5869 */
5870 bool
5871 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5872 {
5873 struct l2_dtable *l2;
5874 pd_entry_t *pdep, pde;
5875 pt_entry_t *ptep;
5876 u_short l1slot;
5877
5878 if (pm->pm_l1 == NULL)
5879 return false;
5880
5881 l1slot = l1pte_index(va);
5882 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
5883 pde = *pdep;
5884
5885 if (l1pte_section_p(pde)) {
5886 *ptp = NULL;
5887 return true;
5888 }
5889
5890 l2 = pm->pm_l2[L2_IDX(l1slot)];
5891 if (l2 == NULL ||
5892 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
5893 return false;
5894 }
5895
5896 *ptp = &ptep[l2pte_index(va)];
5897 return true;
5898 }
5899
5900 bool
5901 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5902 {
5903
5904 if (pm->pm_l1 == NULL)
5905 return false;
5906
5907 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
5908
5909 return true;
5910 }
5911
5912 /************************ Bootstrapping routines ****************************/
5913
5914 #ifndef ARM_MMU_EXTENDED
5915 static void
5916 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5917 {
5918 int i;
5919
5920 l1->l1_kva = l1pt;
5921 l1->l1_domain_use_count = 0;
5922 l1->l1_domain_first = 0;
5923
5924 for (i = 0; i < PMAP_DOMAINS; i++)
5925 l1->l1_domain_free[i] = i + 1;
5926
5927 /*
5928 * Copy the kernel's L1 entries to each new L1.
5929 */
5930 if (pmap_initialized)
5931 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5932
5933 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5934 &l1->l1_physaddr) == false)
5935 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5936
5937 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5938 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5939 }
5940 #endif /* !ARM_MMU_EXTENDED */
5941
5942 /*
5943 * pmap_bootstrap() is called from the board-specific initarm() routine
5944 * once the kernel L1/L2 descriptors tables have been set up.
5945 *
5946 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5947 * spread over a number of disparate files/functions.
5948 *
5949 * We are passed the following parameters
5950 * - kernel_l1pt
5951 * This is a pointer to the base of the kernel's L1 translation table.
5952 * - vstart
5953 * 1MB-aligned start of managed kernel virtual memory.
5954 * - vend
5955 * 1MB-aligned end of managed kernel virtual memory.
5956 *
5957 * We use the first parameter to build the metadata (struct l1_ttable and
5958 * struct l2_dtable) necessary to track kernel mappings.
5959 */
5960 #define PMAP_STATIC_L2_SIZE 16
5961 void
5962 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5963 {
5964 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5965 #ifndef ARM_MMU_EXTENDED
5966 static struct l1_ttable static_l1;
5967 struct l1_ttable *l1 = &static_l1;
5968 #endif
5969 struct l2_dtable *l2;
5970 struct l2_bucket *l2b;
5971 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5972 pmap_t pm = pmap_kernel();
5973 pt_entry_t *ptep;
5974 paddr_t pa;
5975 vsize_t size;
5976 int nptes, l2idx, l2next = 0;
5977
5978 #ifdef ARM_MMU_EXTENDED
5979 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
5980 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
5981 #endif
5982
5983 #ifdef VERBOSE_INIT_ARM
5984 printf("kpm ");
5985 #endif
5986 /*
5987 * Initialise the kernel pmap object
5988 */
5989 curcpu()->ci_pmap_cur = pm;
5990 #ifdef ARM_MMU_EXTENDED
5991 pm->pm_l1 = l1pt;
5992 pm->pm_l1_pa = kernel_l1pt.pv_pa;
5993 #ifdef VERBOSE_INIT_ARM
5994 printf("tlb0 ");
5995 #endif
5996 pmap_tlb_info_init(&pmap_tlb0_info);
5997 #ifdef MULTIPROCESSOR
5998 #ifdef VERBOSE_INIT_ARM
5999 printf("kcpusets ");
6000 #endif
6001 pm->pm_onproc = kcpuset_running;
6002 pm->pm_active = kcpuset_running;
6003 #endif
6004 #else
6005 pm->pm_l1 = l1;
6006 #endif
6007
6008 #ifdef VERBOSE_INIT_ARM
6009 printf("locks ");
6010 #endif
6011 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6012 if (arm_cache_prefer_mask != 0) {
6013 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6014 } else {
6015 #endif
6016 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
6017 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6018 }
6019 #endif
6020 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
6021 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
6022 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
6023
6024 #ifdef VERBOSE_INIT_ARM
6025 printf("l1pt ");
6026 #endif
6027 /*
6028 * Scan the L1 translation table created by initarm() and create
6029 * the required metadata for all valid mappings found in it.
6030 */
6031 for (size_t l1slot = 0;
6032 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6033 l1slot++) {
6034 pd_entry_t pde = l1pt[l1slot];
6035
6036 /*
6037 * We're only interested in Coarse mappings.
6038 * pmap_extract() can deal with section mappings without
6039 * recourse to checking L2 metadata.
6040 */
6041 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6042 continue;
6043
6044 /*
6045 * Lookup the KVA of this L2 descriptor table
6046 */
6047 pa = l1pte_pa(pde);
6048 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6049 if (ptep == NULL) {
6050 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6051 (u_int)l1slot << L1_S_SHIFT, pa);
6052 }
6053
6054 /*
6055 * Fetch the associated L2 metadata structure.
6056 * Allocate a new one if necessary.
6057 */
6058 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6059 if (l2next == PMAP_STATIC_L2_SIZE)
6060 panic("pmap_bootstrap: out of static L2s");
6061 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6062 }
6063
6064 /*
6065 * One more L1 slot tracked...
6066 */
6067 l2->l2_occupancy++;
6068
6069 /*
6070 * Fill in the details of the L2 descriptor in the
6071 * appropriate bucket.
6072 */
6073 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6074 l2b->l2b_kva = ptep;
6075 l2b->l2b_pa = pa;
6076 l2b->l2b_l1slot = l1slot;
6077
6078 /*
6079 * Establish an initial occupancy count for this descriptor
6080 */
6081 for (l2idx = 0;
6082 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6083 l2idx++) {
6084 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6085 l2b->l2b_occupancy++;
6086 }
6087 }
6088
6089 /*
6090 * Make sure the descriptor itself has the correct cache mode.
6091 * If not, fix it, but whine about the problem. Port-meisters
6092 * should consider this a clue to fix up their initarm()
6093 * function. :)
6094 */
6095 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6096 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6097 "L2 pte @ %p\n", ptep);
6098 }
6099 }
6100
6101 #ifdef VERBOSE_INIT_ARM
6102 printf("cache(l1pt) ");
6103 #endif
6104 /*
6105 * Ensure the primary (kernel) L1 has the correct cache mode for
6106 * a page table. Bitch if it is not correctly set.
6107 */
6108 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6109 L1_TABLE_SIZE / L2_S_SIZE)) {
6110 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6111 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6112 }
6113
6114 #ifdef PMAP_CACHE_VIVT
6115 cpu_dcache_wbinv_all();
6116 cpu_tlb_flushID();
6117 cpu_cpwait();
6118 #endif
6119
6120 /*
6121 * now we allocate the "special" VAs which are used for tmp mappings
6122 * by the pmap (and other modules). we allocate the VAs by advancing
6123 * virtual_avail (note that there are no pages mapped at these VAs).
6124 *
6125 * Managed KVM space start from wherever initarm() tells us.
6126 */
6127 virtual_avail = vstart;
6128 virtual_end = vend;
6129
6130 #ifdef VERBOSE_INIT_ARM
6131 printf("specials ");
6132 #endif
6133 #ifdef PMAP_CACHE_VIPT
6134 /*
6135 * If we have a VIPT cache, we need one page/pte per possible alias
6136 * page so we won't violate cache aliasing rules.
6137 */
6138 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6139 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6140 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6141 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6142 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6143 }
6144 #else
6145 nptes = PAGE_SIZE / L2_S_SIZE;
6146 #endif
6147 #ifdef MULTIPROCESSOR
6148 cnptes = nptes;
6149 nptes *= arm_cpu_max;
6150 #endif
6151 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6152 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6153 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6154 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6155 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6156 if (msgbufaddr == NULL) {
6157 pmap_alloc_specials(&virtual_avail,
6158 round_page(MSGBUFSIZE) / PAGE_SIZE,
6159 (void *)&msgbufaddr, NULL);
6160 }
6161
6162 /*
6163 * Allocate a range of kernel virtual address space to be used
6164 * for L2 descriptor tables and metadata allocation in
6165 * pmap_growkernel().
6166 */
6167 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6168 pmap_alloc_specials(&virtual_avail,
6169 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6170 &pmap_kernel_l2ptp_kva, NULL);
6171
6172 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6173 pmap_alloc_specials(&virtual_avail,
6174 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6175 &pmap_kernel_l2dtable_kva, NULL);
6176
6177 #ifndef ARM_MMU_EXTENDED
6178 /*
6179 * init the static-global locks and global pmap list.
6180 */
6181 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6182
6183 /*
6184 * We can now initialise the first L1's metadata.
6185 */
6186 SLIST_INIT(&l1_list);
6187 TAILQ_INIT(&l1_lru_list);
6188 pmap_init_l1(l1, l1pt);
6189 #endif /* ARM_MMU_EXTENDED */
6190
6191 #ifndef ARM_HAS_VBAR
6192 /* Set up vector page L1 details, if necessary */
6193 if (vector_page < KERNEL_BASE) {
6194 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6195 l2b = pmap_get_l2_bucket(pm, vector_page);
6196 KDASSERT(l2b != NULL);
6197 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6198 L1_C_DOM(pmap_domain(pm));
6199 } else
6200 pm->pm_pl1vec = NULL;
6201 #endif
6202
6203 #ifdef VERBOSE_INIT_ARM
6204 printf("pools ");
6205 #endif
6206 /*
6207 * Initialize the pmap cache
6208 */
6209 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6210 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6211 LIST_INIT(&pmap_pmaps);
6212 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
6213
6214 /*
6215 * Initialize the pv pool.
6216 */
6217 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6218 &pmap_bootstrap_pv_allocator, IPL_NONE);
6219
6220 /*
6221 * Initialize the L2 dtable pool and cache.
6222 */
6223 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6224 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6225
6226 /*
6227 * Initialise the L2 descriptor table pool and cache
6228 */
6229 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6230 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6231 pmap_l2ptp_ctor, NULL, NULL);
6232
6233 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6234
6235 cpu_dcache_wbinv_all();
6236 }
6237
6238 static bool
6239 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6240 {
6241 #ifdef ARM_MMU_EXTENDED
6242 return false;
6243 #else
6244 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6245 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6246 return false;
6247
6248 const vaddr_t eva = va + nptes * PAGE_SIZE;
6249 int rv = 0;
6250
6251 while (va < eva) {
6252 /*
6253 * Make sure the descriptor itself has the correct cache mode
6254 */
6255 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6256 pd_entry_t pde = *pdep;
6257
6258 if (l1pte_section_p(pde)) {
6259 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6260 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6261 *pdep = (pde & ~L1_S_CACHE_MASK) |
6262 pte_l1_s_cache_mode_pt;
6263 PDE_SYNC(pdep);
6264 cpu_dcache_wbinv_range((vaddr_t)pdep,
6265 sizeof(*pdep));
6266 rv = 1;
6267 }
6268 return rv;
6269 }
6270 vaddr_t pa = l1pte_pa(pde);
6271 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6272 if (ptep == NULL)
6273 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6274
6275 ptep += l2pte_index(va);
6276 const pt_entry_t opte = *ptep;
6277 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6278 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6279 | pte_l2_s_cache_mode_pt;
6280 l2pte_set(ptep, npte, opte);
6281 PTE_SYNC(ptep);
6282 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6283 rv = 1;
6284 }
6285 va += PAGE_SIZE;
6286 }
6287
6288 return (rv);
6289 #endif
6290 }
6291
6292 static void
6293 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6294 {
6295 vaddr_t va = *availp;
6296 struct l2_bucket *l2b;
6297
6298 if (ptep) {
6299 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6300 if (l2b == NULL)
6301 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6302
6303 if (ptep)
6304 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6305 }
6306
6307 *vap = va;
6308 *availp = va + (PAGE_SIZE * pages);
6309 }
6310
6311 void
6312 pmap_init(void)
6313 {
6314
6315 /*
6316 * Set the available memory vars - These do not map to real memory
6317 * addresses and cannot as the physical memory is fragmented.
6318 * They are used by ps for %mem calculations.
6319 * One could argue whether this should be the entire memory or just
6320 * the memory that is useable in a user process.
6321 */
6322 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
6323 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
6324
6325 /*
6326 * Now we need to free enough pv_entry structures to allow us to get
6327 * the kmem_map/kmem_object allocated and inited (done after this
6328 * function is finished). to do this we allocate one bootstrap page out
6329 * of kernel_map and use it to provide an initial pool of pv_entry
6330 * structures. we never free this page.
6331 */
6332 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6333
6334 #ifdef ARM_MMU_EXTENDED
6335 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6336 #endif
6337
6338 pmap_initialized = true;
6339 }
6340
6341 static vaddr_t last_bootstrap_page = 0;
6342 static void *free_bootstrap_pages = NULL;
6343
6344 static void *
6345 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6346 {
6347 extern void *pool_page_alloc(struct pool *, int);
6348 vaddr_t new_page;
6349 void *rv;
6350
6351 if (pmap_initialized)
6352 return (pool_page_alloc(pp, flags));
6353
6354 if (free_bootstrap_pages) {
6355 rv = free_bootstrap_pages;
6356 free_bootstrap_pages = *((void **)rv);
6357 return (rv);
6358 }
6359
6360 KASSERT(kernel_map != NULL);
6361 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6362 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6363
6364 KASSERT(new_page > last_bootstrap_page);
6365 last_bootstrap_page = new_page;
6366 return ((void *)new_page);
6367 }
6368
6369 static void
6370 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6371 {
6372 extern void pool_page_free(struct pool *, void *);
6373
6374 if ((vaddr_t)v <= last_bootstrap_page) {
6375 *((void **)v) = free_bootstrap_pages;
6376 free_bootstrap_pages = v;
6377 return;
6378 }
6379
6380 if (pmap_initialized) {
6381 pool_page_free(pp, v);
6382 return;
6383 }
6384 }
6385
6386 /*
6387 * pmap_postinit()
6388 *
6389 * This routine is called after the vm and kmem subsystems have been
6390 * initialised. This allows the pmap code to perform any initialisation
6391 * that can only be done one the memory allocation is in place.
6392 */
6393 void
6394 pmap_postinit(void)
6395 {
6396 #ifndef ARM_MMU_EXTENDED
6397 extern paddr_t physical_start, physical_end;
6398 struct l1_ttable *l1;
6399 struct pglist plist;
6400 struct vm_page *m;
6401 pd_entry_t *pdep;
6402 vaddr_t va, eva;
6403 u_int loop, needed;
6404 int error;
6405 #endif
6406
6407 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6408 pool_cache_setlowat(&pmap_l2dtable_cache,
6409 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6410
6411 #ifndef ARM_MMU_EXTENDED
6412 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6413 needed -= 1;
6414
6415 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6416
6417 for (loop = 0; loop < needed; loop++, l1++) {
6418 /* Allocate a L1 page table */
6419 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6420 if (va == 0)
6421 panic("Cannot allocate L1 KVM");
6422
6423 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6424 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6425 if (error)
6426 panic("Cannot allocate L1 physical pages");
6427
6428 m = TAILQ_FIRST(&plist);
6429 eva = va + L1_TABLE_SIZE;
6430 pdep = (pd_entry_t *)va;
6431
6432 while (m && va < eva) {
6433 paddr_t pa = VM_PAGE_TO_PHYS(m);
6434
6435 pmap_kenter_pa(va, pa,
6436 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6437
6438 va += PAGE_SIZE;
6439 m = TAILQ_NEXT(m, pageq.queue);
6440 }
6441
6442 #ifdef DIAGNOSTIC
6443 if (m)
6444 panic("pmap_alloc_l1pt: pglist not empty");
6445 #endif /* DIAGNOSTIC */
6446
6447 pmap_init_l1(l1, pdep);
6448 }
6449
6450 #ifdef DEBUG
6451 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6452 needed);
6453 #endif
6454 #endif /* !ARM_MMU_EXTENDED */
6455 }
6456
6457 /*
6458 * Note that the following routines are used by board-specific initialisation
6459 * code to configure the initial kernel page tables.
6460 *
6461 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
6462 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
6463 * behaviour of the old pmap, and provides an easy migration path for
6464 * initial bring-up of the new pmap on existing ports. Fortunately,
6465 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
6466 * will be deprecated.
6467 *
6468 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
6469 * tables.
6470 */
6471
6472 /*
6473 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6474 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6475 * find them as necessary.
6476 *
6477 * Note that the data on this list MUST remain valid after initarm() returns,
6478 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6479 */
6480 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6481
6482 static vaddr_t
6483 kernel_pt_lookup(paddr_t pa)
6484 {
6485 pv_addr_t *pv;
6486
6487 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6488 if (pv->pv_pa == (pa & ~PGOFSET))
6489 return (pv->pv_va | (pa & PGOFSET));
6490 }
6491 return (0);
6492 }
6493
6494 /*
6495 * pmap_map_section:
6496 *
6497 * Create a single section mapping.
6498 */
6499 void
6500 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6501 {
6502 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6503 const size_t l1slot = l1pte_index(va);
6504 pd_entry_t fl;
6505
6506 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6507
6508 switch (cache) {
6509 case PTE_NOCACHE:
6510 default:
6511 fl = 0;
6512 break;
6513
6514 case PTE_CACHE:
6515 fl = pte_l1_s_cache_mode;
6516 break;
6517
6518 case PTE_PAGETABLE:
6519 fl = pte_l1_s_cache_mode_pt;
6520 break;
6521 }
6522
6523 const pd_entry_t npde = L1_S_PROTO | pa |
6524 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6525 l1pte_setone(pdep + l1slot, npde);
6526 PDE_SYNC(pdep + l1slot);
6527 }
6528
6529 /*
6530 * pmap_map_entry:
6531 *
6532 * Create a single page mapping.
6533 */
6534 void
6535 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6536 {
6537 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6538 const size_t l1slot = l1pte_index(va);
6539 pt_entry_t npte;
6540 pt_entry_t *ptep;
6541
6542 KASSERT(((va | pa) & PGOFSET) == 0);
6543
6544 switch (cache) {
6545 case PTE_NOCACHE:
6546 default:
6547 npte = 0;
6548 break;
6549
6550 case PTE_CACHE:
6551 npte = pte_l2_s_cache_mode;
6552 break;
6553
6554 case PTE_PAGETABLE:
6555 npte = pte_l2_s_cache_mode_pt;
6556 break;
6557 }
6558
6559 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6560 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6561
6562 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6563 if (ptep == NULL)
6564 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6565
6566 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6567 #ifdef ARM_MMU_EXTENDED
6568 if (prot & VM_PROT_EXECUTE) {
6569 npte &= ~L2_XS_XN;
6570 }
6571 #endif
6572 ptep += l2pte_index(va);
6573 l2pte_set(ptep, npte, 0);
6574 PTE_SYNC(ptep);
6575 }
6576
6577 /*
6578 * pmap_link_l2pt:
6579 *
6580 * Link the L2 page table specified by "l2pv" into the L1
6581 * page table at the slot for "va".
6582 */
6583 void
6584 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6585 {
6586 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6587
6588 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6589 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6590
6591 const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6592 | l2pv->pv_pa;
6593
6594 l1pte_set(pdep, npde);
6595 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6596
6597 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6598 }
6599
6600 /*
6601 * pmap_map_chunk:
6602 *
6603 * Map a chunk of memory using the most efficient mappings
6604 * possible (section, large page, small page) into the
6605 * provided L1 and L2 tables at the specified virtual address.
6606 */
6607 vsize_t
6608 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6609 int prot, int cache)
6610 {
6611 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6612 pt_entry_t f1, f2s, f2l;
6613 vsize_t resid;
6614
6615 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6616
6617 if (l1pt == 0)
6618 panic("pmap_map_chunk: no L1 table provided");
6619
6620 #ifdef VERBOSE_INIT_ARM
6621 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6622 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6623 #endif
6624
6625 switch (cache) {
6626 case PTE_NOCACHE:
6627 default:
6628 f1 = 0;
6629 f2l = 0;
6630 f2s = 0;
6631 break;
6632
6633 case PTE_CACHE:
6634 f1 = pte_l1_s_cache_mode;
6635 f2l = pte_l2_l_cache_mode;
6636 f2s = pte_l2_s_cache_mode;
6637 break;
6638
6639 case PTE_PAGETABLE:
6640 f1 = pte_l1_s_cache_mode_pt;
6641 f2l = pte_l2_l_cache_mode_pt;
6642 f2s = pte_l2_s_cache_mode_pt;
6643 break;
6644 }
6645
6646 size = resid;
6647
6648 while (resid > 0) {
6649 const size_t l1slot = l1pte_index(va);
6650 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6651 /* See if we can use a supersection mapping. */
6652 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6653 /* Supersection are always domain 0 */
6654 const pd_entry_t npde = L1_SS_PROTO | pa
6655 #ifdef ARM_MMU_EXTENDED_XXX
6656 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6657 #endif
6658 #ifdef ARM_MMU_EXTENDED
6659 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6660 #endif
6661 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6662 #ifdef VERBOSE_INIT_ARM
6663 printf("sS");
6664 #endif
6665 l1pte_set(&pdep[l1slot], npde);
6666 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6667 va += L1_SS_SIZE;
6668 pa += L1_SS_SIZE;
6669 resid -= L1_SS_SIZE;
6670 continue;
6671 }
6672 #endif
6673 /* See if we can use a section mapping. */
6674 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6675 const pd_entry_t npde = L1_S_PROTO | pa
6676 #ifdef ARM_MMU_EXTENDED_XXX
6677 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6678 #endif
6679 #ifdef ARM_MMU_EXTENDED
6680 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6681 #endif
6682 | L1_S_PROT(PTE_KERNEL, prot) | f1
6683 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6684 #ifdef VERBOSE_INIT_ARM
6685 printf("S");
6686 #endif
6687 l1pte_set(&pdep[l1slot], npde);
6688 PDE_SYNC(&pdep[l1slot]);
6689 va += L1_S_SIZE;
6690 pa += L1_S_SIZE;
6691 resid -= L1_S_SIZE;
6692 continue;
6693 }
6694
6695 /*
6696 * Ok, we're going to use an L2 table. Make sure
6697 * one is actually in the corresponding L1 slot
6698 * for the current VA.
6699 */
6700 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6701 panic("%s: no L2 table for VA %#lx", __func__, va);
6702
6703 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6704 if (ptep == NULL)
6705 panic("%s: can't find L2 table for VA %#lx", __func__,
6706 va);
6707
6708 ptep += l2pte_index(va);
6709
6710 /* See if we can use a L2 large page mapping. */
6711 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6712 const pt_entry_t npte = L2_L_PROTO | pa
6713 #ifdef ARM_MMU_EXTENDED_XXX
6714 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6715 #endif
6716 #ifdef ARM_MMU_EXTENDED
6717 | (va & 0x80000000 ? 0 : L2_XS_nG)
6718 #endif
6719 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6720 #ifdef VERBOSE_INIT_ARM
6721 printf("L");
6722 #endif
6723 l2pte_set(ptep, npte, 0);
6724 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6725 va += L2_L_SIZE;
6726 pa += L2_L_SIZE;
6727 resid -= L2_L_SIZE;
6728 continue;
6729 }
6730
6731 /* Use a small page mapping. */
6732 #ifdef VERBOSE_INIT_ARM
6733 printf("P");
6734 #endif
6735 const pt_entry_t npte = L2_S_PROTO | pa
6736 #ifdef ARM_MMU_EXTENDED_XXX
6737 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6738 #endif
6739 #ifdef ARM_MMU_EXTENDED
6740 | (va & 0x80000000 ? 0 : L2_XS_nG)
6741 #endif
6742 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6743 l2pte_set(ptep, npte, 0);
6744 PTE_SYNC(ptep);
6745 va += PAGE_SIZE;
6746 pa += PAGE_SIZE;
6747 resid -= PAGE_SIZE;
6748 }
6749 #ifdef VERBOSE_INIT_ARM
6750 printf("\n");
6751 #endif
6752 return (size);
6753 }
6754
6755 /********************** Static device map routines ***************************/
6756
6757 static const struct pmap_devmap *pmap_devmap_table;
6758
6759 /*
6760 * Register the devmap table. This is provided in case early console
6761 * initialization needs to register mappings created by bootstrap code
6762 * before pmap_devmap_bootstrap() is called.
6763 */
6764 void
6765 pmap_devmap_register(const struct pmap_devmap *table)
6766 {
6767
6768 pmap_devmap_table = table;
6769 }
6770
6771 /*
6772 * Map all of the static regions in the devmap table, and remember
6773 * the devmap table so other parts of the kernel can look up entries
6774 * later.
6775 */
6776 void
6777 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6778 {
6779 int i;
6780
6781 pmap_devmap_table = table;
6782
6783 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6784 #ifdef VERBOSE_INIT_ARM
6785 printf("devmap: %08lx -> %08lx @ %08lx\n",
6786 pmap_devmap_table[i].pd_pa,
6787 pmap_devmap_table[i].pd_pa +
6788 pmap_devmap_table[i].pd_size - 1,
6789 pmap_devmap_table[i].pd_va);
6790 #endif
6791 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6792 pmap_devmap_table[i].pd_pa,
6793 pmap_devmap_table[i].pd_size,
6794 pmap_devmap_table[i].pd_prot,
6795 pmap_devmap_table[i].pd_cache);
6796 }
6797 }
6798
6799 const struct pmap_devmap *
6800 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6801 {
6802 uint64_t endpa;
6803 int i;
6804
6805 if (pmap_devmap_table == NULL)
6806 return (NULL);
6807
6808 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6809
6810 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6811 if (pa >= pmap_devmap_table[i].pd_pa &&
6812 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6813 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6814 return (&pmap_devmap_table[i]);
6815 }
6816
6817 return (NULL);
6818 }
6819
6820 const struct pmap_devmap *
6821 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6822 {
6823 int i;
6824
6825 if (pmap_devmap_table == NULL)
6826 return (NULL);
6827
6828 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6829 if (va >= pmap_devmap_table[i].pd_va &&
6830 va + size - 1 <= pmap_devmap_table[i].pd_va +
6831 pmap_devmap_table[i].pd_size - 1)
6832 return (&pmap_devmap_table[i]);
6833 }
6834
6835 return (NULL);
6836 }
6837
6838 /********************** PTE initialization routines **************************/
6839
6840 /*
6841 * These routines are called when the CPU type is identified to set up
6842 * the PTE prototypes, cache modes, etc.
6843 *
6844 * The variables are always here, just in case modules need to reference
6845 * them (though, they shouldn't).
6846 */
6847
6848 pt_entry_t pte_l1_s_cache_mode;
6849 pt_entry_t pte_l1_s_wc_mode;
6850 pt_entry_t pte_l1_s_cache_mode_pt;
6851 pt_entry_t pte_l1_s_cache_mask;
6852
6853 pt_entry_t pte_l2_l_cache_mode;
6854 pt_entry_t pte_l2_l_wc_mode;
6855 pt_entry_t pte_l2_l_cache_mode_pt;
6856 pt_entry_t pte_l2_l_cache_mask;
6857
6858 pt_entry_t pte_l2_s_cache_mode;
6859 pt_entry_t pte_l2_s_wc_mode;
6860 pt_entry_t pte_l2_s_cache_mode_pt;
6861 pt_entry_t pte_l2_s_cache_mask;
6862
6863 pt_entry_t pte_l1_s_prot_u;
6864 pt_entry_t pte_l1_s_prot_w;
6865 pt_entry_t pte_l1_s_prot_ro;
6866 pt_entry_t pte_l1_s_prot_mask;
6867
6868 pt_entry_t pte_l2_s_prot_u;
6869 pt_entry_t pte_l2_s_prot_w;
6870 pt_entry_t pte_l2_s_prot_ro;
6871 pt_entry_t pte_l2_s_prot_mask;
6872
6873 pt_entry_t pte_l2_l_prot_u;
6874 pt_entry_t pte_l2_l_prot_w;
6875 pt_entry_t pte_l2_l_prot_ro;
6876 pt_entry_t pte_l2_l_prot_mask;
6877
6878 pt_entry_t pte_l1_ss_proto;
6879 pt_entry_t pte_l1_s_proto;
6880 pt_entry_t pte_l1_c_proto;
6881 pt_entry_t pte_l2_s_proto;
6882
6883 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6884 void (*pmap_zero_page_func)(paddr_t);
6885
6886 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6887 void
6888 pmap_pte_init_generic(void)
6889 {
6890
6891 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6892 pte_l1_s_wc_mode = L1_S_B;
6893 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6894
6895 pte_l2_l_cache_mode = L2_B|L2_C;
6896 pte_l2_l_wc_mode = L2_B;
6897 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6898
6899 pte_l2_s_cache_mode = L2_B|L2_C;
6900 pte_l2_s_wc_mode = L2_B;
6901 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6902
6903 /*
6904 * If we have a write-through cache, set B and C. If
6905 * we have a write-back cache, then we assume setting
6906 * only C will make those pages write-through (except for those
6907 * Cortex CPUs which can read the L1 caches).
6908 */
6909 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6910 #if ARM_MMU_V7 > 0
6911 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6912 #endif
6913 #if ARM_MMU_V6 > 0
6914 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6915 #endif
6916 || false) {
6917 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6918 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6919 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6920 } else {
6921 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6922 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6923 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6924 }
6925
6926 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6927 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6928 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6929 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6930
6931 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6932 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6933 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6934 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6935
6936 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6937 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6938 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6939 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6940
6941 pte_l1_ss_proto = L1_SS_PROTO_generic;
6942 pte_l1_s_proto = L1_S_PROTO_generic;
6943 pte_l1_c_proto = L1_C_PROTO_generic;
6944 pte_l2_s_proto = L2_S_PROTO_generic;
6945
6946 pmap_copy_page_func = pmap_copy_page_generic;
6947 pmap_zero_page_func = pmap_zero_page_generic;
6948 }
6949
6950 #if defined(CPU_ARM8)
6951 void
6952 pmap_pte_init_arm8(void)
6953 {
6954
6955 /*
6956 * ARM8 is compatible with generic, but we need to use
6957 * the page tables uncached.
6958 */
6959 pmap_pte_init_generic();
6960
6961 pte_l1_s_cache_mode_pt = 0;
6962 pte_l2_l_cache_mode_pt = 0;
6963 pte_l2_s_cache_mode_pt = 0;
6964 }
6965 #endif /* CPU_ARM8 */
6966
6967 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6968 void
6969 pmap_pte_init_arm9(void)
6970 {
6971
6972 /*
6973 * ARM9 is compatible with generic, but we want to use
6974 * write-through caching for now.
6975 */
6976 pmap_pte_init_generic();
6977
6978 pte_l1_s_cache_mode = L1_S_C;
6979 pte_l2_l_cache_mode = L2_C;
6980 pte_l2_s_cache_mode = L2_C;
6981
6982 pte_l1_s_wc_mode = L1_S_B;
6983 pte_l2_l_wc_mode = L2_B;
6984 pte_l2_s_wc_mode = L2_B;
6985
6986 pte_l1_s_cache_mode_pt = L1_S_C;
6987 pte_l2_l_cache_mode_pt = L2_C;
6988 pte_l2_s_cache_mode_pt = L2_C;
6989 }
6990 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6991 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6992
6993 #if defined(CPU_ARM10)
6994 void
6995 pmap_pte_init_arm10(void)
6996 {
6997
6998 /*
6999 * ARM10 is compatible with generic, but we want to use
7000 * write-through caching for now.
7001 */
7002 pmap_pte_init_generic();
7003
7004 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7005 pte_l2_l_cache_mode = L2_B | L2_C;
7006 pte_l2_s_cache_mode = L2_B | L2_C;
7007
7008 pte_l1_s_cache_mode = L1_S_B;
7009 pte_l2_l_cache_mode = L2_B;
7010 pte_l2_s_cache_mode = L2_B;
7011
7012 pte_l1_s_cache_mode_pt = L1_S_C;
7013 pte_l2_l_cache_mode_pt = L2_C;
7014 pte_l2_s_cache_mode_pt = L2_C;
7015
7016 }
7017 #endif /* CPU_ARM10 */
7018
7019 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7020 void
7021 pmap_pte_init_arm11(void)
7022 {
7023
7024 /*
7025 * ARM11 is compatible with generic, but we want to use
7026 * write-through caching for now.
7027 */
7028 pmap_pte_init_generic();
7029
7030 pte_l1_s_cache_mode = L1_S_C;
7031 pte_l2_l_cache_mode = L2_C;
7032 pte_l2_s_cache_mode = L2_C;
7033
7034 pte_l1_s_wc_mode = L1_S_B;
7035 pte_l2_l_wc_mode = L2_B;
7036 pte_l2_s_wc_mode = L2_B;
7037
7038 pte_l1_s_cache_mode_pt = L1_S_C;
7039 pte_l2_l_cache_mode_pt = L2_C;
7040 pte_l2_s_cache_mode_pt = L2_C;
7041 }
7042 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7043
7044 #if ARM_MMU_SA1 == 1
7045 void
7046 pmap_pte_init_sa1(void)
7047 {
7048
7049 /*
7050 * The StrongARM SA-1 cache does not have a write-through
7051 * mode. So, do the generic initialization, then reset
7052 * the page table cache mode to B=1,C=1, and note that
7053 * the PTEs need to be sync'd.
7054 */
7055 pmap_pte_init_generic();
7056
7057 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7058 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7059 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7060
7061 pmap_needs_pte_sync = 1;
7062 }
7063 #endif /* ARM_MMU_SA1 == 1*/
7064
7065 #if ARM_MMU_XSCALE == 1
7066 #if (ARM_NMMUS > 1)
7067 static u_int xscale_use_minidata;
7068 #endif
7069
7070 void
7071 pmap_pte_init_xscale(void)
7072 {
7073 uint32_t auxctl;
7074 int write_through = 0;
7075
7076 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7077 pte_l1_s_wc_mode = L1_S_B;
7078 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7079
7080 pte_l2_l_cache_mode = L2_B|L2_C;
7081 pte_l2_l_wc_mode = L2_B;
7082 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7083
7084 pte_l2_s_cache_mode = L2_B|L2_C;
7085 pte_l2_s_wc_mode = L2_B;
7086 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7087
7088 pte_l1_s_cache_mode_pt = L1_S_C;
7089 pte_l2_l_cache_mode_pt = L2_C;
7090 pte_l2_s_cache_mode_pt = L2_C;
7091
7092 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7093 /*
7094 * The XScale core has an enhanced mode where writes that
7095 * miss the cache cause a cache line to be allocated. This
7096 * is significantly faster than the traditional, write-through
7097 * behavior of this case.
7098 */
7099 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7100 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7101 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7102 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7103
7104 #ifdef XSCALE_CACHE_WRITE_THROUGH
7105 /*
7106 * Some versions of the XScale core have various bugs in
7107 * their cache units, the work-around for which is to run
7108 * the cache in write-through mode. Unfortunately, this
7109 * has a major (negative) impact on performance. So, we
7110 * go ahead and run fast-and-loose, in the hopes that we
7111 * don't line up the planets in a way that will trip the
7112 * bugs.
7113 *
7114 * However, we give you the option to be slow-but-correct.
7115 */
7116 write_through = 1;
7117 #elif defined(XSCALE_CACHE_WRITE_BACK)
7118 /* force write back cache mode */
7119 write_through = 0;
7120 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7121 /*
7122 * Intel PXA2[15]0 processors are known to have a bug in
7123 * write-back cache on revision 4 and earlier (stepping
7124 * A[01] and B[012]). Fixed for C0 and later.
7125 */
7126 {
7127 uint32_t id, type;
7128
7129 id = cpufunc_id();
7130 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7131
7132 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7133 if ((id & CPU_ID_REVISION_MASK) < 5) {
7134 /* write through for stepping A0-1 and B0-2 */
7135 write_through = 1;
7136 }
7137 }
7138 }
7139 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7140
7141 if (write_through) {
7142 pte_l1_s_cache_mode = L1_S_C;
7143 pte_l2_l_cache_mode = L2_C;
7144 pte_l2_s_cache_mode = L2_C;
7145 }
7146
7147 #if (ARM_NMMUS > 1)
7148 xscale_use_minidata = 1;
7149 #endif
7150
7151 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7152 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7153 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7154 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7155
7156 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7157 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7158 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7159 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7160
7161 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7162 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7163 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7164 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7165
7166 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7167 pte_l1_s_proto = L1_S_PROTO_xscale;
7168 pte_l1_c_proto = L1_C_PROTO_xscale;
7169 pte_l2_s_proto = L2_S_PROTO_xscale;
7170
7171 pmap_copy_page_func = pmap_copy_page_xscale;
7172 pmap_zero_page_func = pmap_zero_page_xscale;
7173
7174 /*
7175 * Disable ECC protection of page table access, for now.
7176 */
7177 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
7178 auxctl &= ~XSCALE_AUXCTL_P;
7179 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
7180 }
7181
7182 /*
7183 * xscale_setup_minidata:
7184 *
7185 * Set up the mini-data cache clean area. We require the
7186 * caller to allocate the right amount of physically and
7187 * virtually contiguous space.
7188 */
7189 void
7190 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7191 {
7192 extern vaddr_t xscale_minidata_clean_addr;
7193 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7194 pd_entry_t *pde = (pd_entry_t *) l1pt;
7195 vsize_t size;
7196 uint32_t auxctl;
7197
7198 xscale_minidata_clean_addr = va;
7199
7200 /* Round it to page size. */
7201 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7202
7203 for (; size != 0;
7204 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7205 const size_t l1slot = l1pte_index(va);
7206 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7207 if (ptep == NULL)
7208 panic("xscale_setup_minidata: can't find L2 table for "
7209 "VA 0x%08lx", va);
7210
7211 ptep += l2pte_index(va);
7212 pt_entry_t opte = *ptep;
7213 l2pte_set(ptep,
7214 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7215 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7216 }
7217
7218 /*
7219 * Configure the mini-data cache for write-back with
7220 * read/write-allocate.
7221 *
7222 * NOTE: In order to reconfigure the mini-data cache, we must
7223 * make sure it contains no valid data! In order to do that,
7224 * we must issue a global data cache invalidate command!
7225 *
7226 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7227 * THIS IS VERY IMPORTANT!
7228 */
7229
7230 /* Invalidate data and mini-data. */
7231 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7232 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
7233 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7234 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
7235 }
7236
7237 /*
7238 * Change the PTEs for the specified kernel mappings such that they
7239 * will use the mini data cache instead of the main data cache.
7240 */
7241 void
7242 pmap_uarea(vaddr_t va)
7243 {
7244 vaddr_t next_bucket, eva;
7245
7246 #if (ARM_NMMUS > 1)
7247 if (xscale_use_minidata == 0)
7248 return;
7249 #endif
7250
7251 eva = va + USPACE;
7252
7253 while (va < eva) {
7254 next_bucket = L2_NEXT_BUCKET_VA(va);
7255 if (next_bucket > eva)
7256 next_bucket = eva;
7257
7258 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7259 KDASSERT(l2b != NULL);
7260
7261 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7262 pt_entry_t *ptep = sptep;
7263
7264 while (va < next_bucket) {
7265 const pt_entry_t opte = *ptep;
7266 if (!l2pte_minidata_p(opte)) {
7267 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7268 cpu_tlb_flushD_SE(va);
7269 l2pte_set(ptep, opte & ~L2_B, opte);
7270 }
7271 ptep += PAGE_SIZE / L2_S_SIZE;
7272 va += PAGE_SIZE;
7273 }
7274 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7275 }
7276 cpu_cpwait();
7277 }
7278 #endif /* ARM_MMU_XSCALE == 1 */
7279
7280
7281 #if defined(CPU_ARM11MPCORE)
7282
7283 void
7284 pmap_pte_init_arm11mpcore(void)
7285 {
7286
7287 /* cache mode is controlled by 5 bits (B, C, TEX) */
7288 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7289 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7290 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7291 /* use extended small page (without APn, with TEX) */
7292 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7293 #else
7294 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7295 #endif
7296
7297 /* write-back, write-allocate */
7298 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7299 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7300 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7301 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7302 #else
7303 /* no TEX. read-allocate */
7304 pte_l2_s_cache_mode = L2_C | L2_B;
7305 #endif
7306 /*
7307 * write-back, write-allocate for page tables.
7308 */
7309 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7310 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7311 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7312 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7313 #else
7314 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7315 #endif
7316
7317 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7318 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7319 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7320 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7321
7322 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7323 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7324 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7325 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7326 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7327
7328 #else
7329 /* with AP[0..3] */
7330 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7331 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7332 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7333 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7334 #endif
7335
7336 #ifdef ARM11MPCORE_COMPAT_MMU
7337 /* with AP[0..3] */
7338 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7339 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7340 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7341 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7342
7343 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7344 pte_l1_s_proto = L1_S_PROTO_armv6;
7345 pte_l1_c_proto = L1_C_PROTO_armv6;
7346 pte_l2_s_proto = L2_S_PROTO_armv6c;
7347 #else
7348 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7349 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7350 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7351 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7352
7353 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7354 pte_l1_s_proto = L1_S_PROTO_armv6;
7355 pte_l1_c_proto = L1_C_PROTO_armv6;
7356 pte_l2_s_proto = L2_S_PROTO_armv6n;
7357 #endif
7358
7359 pmap_copy_page_func = pmap_copy_page_generic;
7360 pmap_zero_page_func = pmap_zero_page_generic;
7361 pmap_needs_pte_sync = 1;
7362 }
7363 #endif /* CPU_ARM11MPCORE */
7364
7365
7366 #if ARM_MMU_V7 == 1
7367 void
7368 pmap_pte_init_armv7(void)
7369 {
7370 /*
7371 * The ARMv7-A MMU is mostly compatible with generic. If the
7372 * AP field is zero, that now means "no access" rather than
7373 * read-only. The prototypes are a little different because of
7374 * the XN bit.
7375 */
7376 pmap_pte_init_generic();
7377
7378 pmap_needs_pte_sync = 1;
7379
7380 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7381 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7382 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7383
7384 /*
7385 * If the core support coherent walk then updates to translation tables
7386 * do not require a clean to the point of unification to ensure
7387 * visibility by subsequent translation table walks. That means we can
7388 * map everything shareable and cached and the right thing will happen.
7389 */
7390 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7391 pmap_needs_pte_sync = 0;
7392
7393 /*
7394 * write-back, no write-allocate, shareable for normal pages.
7395 */
7396 pte_l1_s_cache_mode |= L1_S_V6_S;
7397 pte_l2_l_cache_mode |= L2_XS_S;
7398 pte_l2_s_cache_mode |= L2_XS_S;
7399 }
7400
7401 /*
7402 * Page tables are just all other memory. We can use write-back since
7403 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7404 */
7405 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7406 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7407 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7408
7409 /*
7410 * Check the Memory Model Features to see if this CPU supports
7411 * the TLBIASID coproc op.
7412 */
7413 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7414 arm_has_tlbiasid_p = true;
7415 }
7416
7417 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7418 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7419 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7420 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7421
7422 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7423 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7424 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7425 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7426
7427 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7428 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7429 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7430 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7431
7432 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7433 pte_l1_s_proto = L1_S_PROTO_armv7;
7434 pte_l1_c_proto = L1_C_PROTO_armv7;
7435 pte_l2_s_proto = L2_S_PROTO_armv7;
7436
7437 }
7438 #endif /* ARM_MMU_V7 */
7439
7440 /*
7441 * return the PA of the current L1 table, for use when handling a crash dump
7442 */
7443 uint32_t
7444 pmap_kernel_L1_addr(void)
7445 {
7446 #ifdef ARM_MMU_EXTENDED
7447 return pmap_kernel()->pm_l1_pa;
7448 #else
7449 return pmap_kernel()->pm_l1->l1_physaddr;
7450 #endif
7451 }
7452
7453 #if defined(DDB)
7454 /*
7455 * A couple of ddb-callable functions for dumping pmaps
7456 */
7457 void pmap_dump_all(void);
7458 void pmap_dump(pmap_t);
7459
7460 void
7461 pmap_dump_all(void)
7462 {
7463 pmap_t pm;
7464
7465 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
7466 if (pm == pmap_kernel())
7467 continue;
7468 pmap_dump(pm);
7469 printf("\n");
7470 }
7471 }
7472
7473 static pt_entry_t ncptes[64];
7474 static void pmap_dump_ncpg(pmap_t);
7475
7476 void
7477 pmap_dump(pmap_t pm)
7478 {
7479 struct l2_dtable *l2;
7480 struct l2_bucket *l2b;
7481 pt_entry_t *ptep, pte;
7482 vaddr_t l2_va, l2b_va, va;
7483 int i, j, k, occ, rows = 0;
7484
7485 if (pm == pmap_kernel())
7486 printf("pmap_kernel (%p): ", pm);
7487 else
7488 printf("user pmap (%p): ", pm);
7489
7490 #ifdef ARM_MMU_EXTENDED
7491 printf("l1 at %p\n", pmap_l1_kva(pm));
7492 #else
7493 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7494 #endif
7495
7496 l2_va = 0;
7497 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7498 l2 = pm->pm_l2[i];
7499
7500 if (l2 == NULL || l2->l2_occupancy == 0)
7501 continue;
7502
7503 l2b_va = l2_va;
7504 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7505 l2b = &l2->l2_bucket[j];
7506
7507 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7508 continue;
7509
7510 ptep = l2b->l2b_kva;
7511
7512 for (k = 0; k < 256 && ptep[k] == 0; k++)
7513 ;
7514
7515 k &= ~63;
7516 occ = l2b->l2b_occupancy;
7517 va = l2b_va + (k * 4096);
7518 for (; k < 256; k++, va += 0x1000) {
7519 char ch = ' ';
7520 if ((k % 64) == 0) {
7521 if ((rows % 8) == 0) {
7522 printf(
7523 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7524 }
7525 printf("%08lx: ", va);
7526 }
7527
7528 ncptes[k & 63] = 0;
7529 pte = ptep[k];
7530 if (pte == 0) {
7531 ch = '.';
7532 } else {
7533 occ--;
7534 switch (pte & 0x0c) {
7535 case 0x00:
7536 ch = 'D'; /* No cache No buff */
7537 break;
7538 case 0x04:
7539 ch = 'B'; /* No cache buff */
7540 break;
7541 case 0x08:
7542 if (pte & 0x40)
7543 ch = 'm';
7544 else
7545 ch = 'C'; /* Cache No buff */
7546 break;
7547 case 0x0c:
7548 ch = 'F'; /* Cache Buff */
7549 break;
7550 }
7551
7552 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7553 ch += 0x20;
7554
7555 if ((pte & 0xc) == 0)
7556 ncptes[k & 63] = pte;
7557 }
7558
7559 if ((k % 64) == 63) {
7560 rows++;
7561 printf("%c\n", ch);
7562 pmap_dump_ncpg(pm);
7563 if (occ == 0)
7564 break;
7565 } else
7566 printf("%c", ch);
7567 }
7568 }
7569 }
7570 }
7571
7572 static void
7573 pmap_dump_ncpg(pmap_t pm)
7574 {
7575 struct vm_page *pg;
7576 struct vm_page_md *md;
7577 struct pv_entry *pv;
7578 int i;
7579
7580 for (i = 0; i < 63; i++) {
7581 if (ncptes[i] == 0)
7582 continue;
7583
7584 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7585 if (pg == NULL)
7586 continue;
7587 md = VM_PAGE_TO_MD(pg);
7588
7589 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7590 VM_PAGE_TO_PHYS(pg),
7591 md->krw_mappings, md->kro_mappings,
7592 md->urw_mappings, md->uro_mappings);
7593
7594 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7595 printf(" %c va 0x%08lx, flags 0x%x\n",
7596 (pm == pv->pv_pmap) ? '*' : ' ',
7597 pv->pv_va, pv->pv_flags);
7598 }
7599 }
7600 }
7601 #endif
7602
7603 #ifdef PMAP_STEAL_MEMORY
7604 void
7605 pmap_boot_pageadd(pv_addr_t *newpv)
7606 {
7607 pv_addr_t *pv, *npv;
7608
7609 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7610 if (newpv->pv_pa < pv->pv_va) {
7611 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7612 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7613 newpv->pv_size += pv->pv_size;
7614 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7615 }
7616 pv = NULL;
7617 } else {
7618 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7619 pv = npv) {
7620 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7621 KASSERT(pv->pv_pa < newpv->pv_pa);
7622 if (newpv->pv_pa > npv->pv_pa)
7623 continue;
7624 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7625 pv->pv_size += newpv->pv_size;
7626 return;
7627 }
7628 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7629 break;
7630 newpv->pv_size += npv->pv_size;
7631 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7632 SLIST_REMOVE_AFTER(newpv, pv_list);
7633 return;
7634 }
7635 }
7636 }
7637
7638 if (pv) {
7639 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7640 } else {
7641 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7642 }
7643 }
7644
7645 void
7646 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7647 pv_addr_t *rpv)
7648 {
7649 pv_addr_t *pv, **pvp;
7650 struct vm_physseg *ps;
7651 size_t i;
7652
7653 KASSERT(amount & PGOFSET);
7654 KASSERT((mask & PGOFSET) == 0);
7655 KASSERT((match & PGOFSET) == 0);
7656 KASSERT(amount != 0);
7657
7658 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7659 (pv = *pvp) != NULL;
7660 pvp = &SLIST_NEXT(pv, pv_list)) {
7661 pv_addr_t *newpv;
7662 psize_t off;
7663 /*
7664 * If this entry is too small to satify the request...
7665 */
7666 KASSERT(pv->pv_size > 0);
7667 if (pv->pv_size < amount)
7668 continue;
7669
7670 for (off = 0; off <= mask; off += PAGE_SIZE) {
7671 if (((pv->pv_pa + off) & mask) == match
7672 && off + amount <= pv->pv_size)
7673 break;
7674 }
7675 if (off > mask)
7676 continue;
7677
7678 rpv->pv_va = pv->pv_va + off;
7679 rpv->pv_pa = pv->pv_pa + off;
7680 rpv->pv_size = amount;
7681 pv->pv_size -= amount;
7682 if (pv->pv_size == 0) {
7683 KASSERT(off == 0);
7684 KASSERT((vaddr_t) pv == rpv->pv_va);
7685 *pvp = SLIST_NEXT(pv, pv_list);
7686 } else if (off == 0) {
7687 KASSERT((vaddr_t) pv == rpv->pv_va);
7688 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7689 *newpv = *pv;
7690 newpv->pv_pa += amount;
7691 newpv->pv_va += amount;
7692 *pvp = newpv;
7693 } else if (off < pv->pv_size) {
7694 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7695 *newpv = *pv;
7696 newpv->pv_size -= off;
7697 newpv->pv_pa += off + amount;
7698 newpv->pv_va += off + amount;
7699
7700 SLIST_NEXT(pv, pv_list) = newpv;
7701 pv->pv_size = off;
7702 } else {
7703 KASSERT((vaddr_t) pv != rpv->pv_va);
7704 }
7705 memset((void *)rpv->pv_va, 0, amount);
7706 return;
7707 }
7708
7709 if (vm_nphysseg == 0)
7710 panic("pmap_boot_pagealloc: couldn't allocate memory");
7711
7712 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7713 (pv = *pvp) != NULL;
7714 pvp = &SLIST_NEXT(pv, pv_list)) {
7715 if (SLIST_NEXT(pv, pv_list) == NULL)
7716 break;
7717 }
7718 KASSERT(mask == 0);
7719 for (i = 0; i < vm_nphysseg; i++) {
7720 ps = VM_PHYSMEM_PTR(i);
7721 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7722 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7723 rpv->pv_va = pv->pv_va;
7724 rpv->pv_pa = pv->pv_pa;
7725 rpv->pv_size = amount;
7726 *pvp = NULL;
7727 pmap_map_chunk(kernel_l1pt.pv_va,
7728 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7729 ptoa(ps->avail_start),
7730 amount - pv->pv_size,
7731 VM_PROT_READ|VM_PROT_WRITE,
7732 PTE_CACHE);
7733 ps->avail_start += atop(amount - pv->pv_size);
7734 /*
7735 * If we consumed the entire physseg, remove it.
7736 */
7737 if (ps->avail_start == ps->avail_end) {
7738 for (--vm_nphysseg; i < vm_nphysseg; i++)
7739 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7740 }
7741 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7742 return;
7743 }
7744 }
7745
7746 panic("pmap_boot_pagealloc: couldn't allocate memory");
7747 }
7748
7749 vaddr_t
7750 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7751 {
7752 pv_addr_t pv;
7753
7754 pmap_boot_pagealloc(size, 0, 0, &pv);
7755
7756 return pv.pv_va;
7757 }
7758 #endif /* PMAP_STEAL_MEMORY */
7759
7760 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7761 {
7762 sysctl_createv(clog, 0, NULL, NULL,
7763 CTLFLAG_PERMANENT,
7764 CTLTYPE_NODE, "machdep", NULL,
7765 NULL, 0, NULL, 0,
7766 CTL_MACHDEP, CTL_EOL);
7767
7768 sysctl_createv(clog, 0, NULL, NULL,
7769 CTLFLAG_PERMANENT,
7770 CTLTYPE_INT, "kmpages",
7771 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7772 NULL, 0, &pmap_kmpages, 0,
7773 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7774 }
7775
7776 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7777 struct vm_page *
7778 arm_pmap_alloc_poolpage(int flags)
7779 {
7780 /*
7781 * On some systems, only some pages may be "coherent" for dma and we
7782 * want to prefer those for pool pages (think mbufs) but fallback to
7783 * any page if none is available. But we can only fallback if we
7784 * aren't direct mapping memory or all of memory can be direct-mapped.
7785 * If that isn't true, pool changes can only come from direct-mapped
7786 * memory.
7787 */
7788 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7789 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7790 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(ARM_MMU_EXTENDED)
7791 (pmap_directbase < KERNEL_BASE
7792 ? UVM_PGA_STRAT_ONLY
7793 : UVM_PGA_STRAT_FALLBACK),
7794 #else
7795 UVM_PGA_STRAT_FALLBACK,
7796 #endif
7797 arm_poolpage_vmfreelist);
7798 }
7799
7800 return uvm_pagealloc(NULL, 0, NULL, flags);
7801 }
7802 #endif
7803
7804 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7805 void
7806 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7807 {
7808 /* nothing */
7809 }
7810
7811 int
7812 pic_ipi_shootdown(void *arg)
7813 {
7814 #if PMAP_NEED_TLB_SHOOTDOWN
7815 pmap_tlb_shootdown_process();
7816 #endif
7817 return 1;
7818 }
7819 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7820
7821
7822 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7823 vaddr_t
7824 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7825 {
7826 bool ok = false;
7827 if (physical_start <= pa && pa < physical_end) {
7828 #ifdef ARM_MMU_EXTENDED
7829 const vaddr_t newva = pmap_directbase + pa - physical_start;
7830 if (newva >= KERNEL_BASE) {
7831 va = newva;
7832 ok = true;
7833 }
7834 #else
7835 va = KERNEL_BASE + pa - physical_start;
7836 ok = true;
7837 #endif
7838 }
7839 KASSERT(ok_p);
7840 *ok_p = ok;
7841 return va;
7842 }
7843
7844 vaddr_t
7845 pmap_map_poolpage(paddr_t pa)
7846 {
7847 bool ok __diagused;
7848 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7849 KASSERT(ok);
7850 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7851 if (arm_cache_prefer_mask != 0) {
7852 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7853 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7854 pmap_acquire_page_lock(md);
7855 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7856 pmap_release_page_lock(md);
7857 }
7858 #endif
7859 return va;
7860 }
7861
7862 paddr_t
7863 pmap_unmap_poolpage(vaddr_t va)
7864 {
7865 KASSERT(va >= KERNEL_BASE);
7866 #if defined(ARM_MMU_EXTENDED)
7867 return va - pmap_directbase + physical_start;
7868 #else
7869 #ifdef PMAP_CACHE_VIVT
7870 cpu_idcache_wbinv_range(va, PAGE_SIZE);
7871 #endif
7872 return va - KERNEL_BASE + physical_start;
7873 #endif
7874 }
7875 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
7876