pmap.c revision 1.308 1 /* $NetBSD: pmap.c,v 1.308 2014/11/04 23:58:21 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #ifdef MULTIPROCESSOR
196 #define _INTR_PRIVATE
197 #endif
198
199 #include <sys/param.h>
200 #include <sys/types.h>
201 #include <sys/kernel.h>
202 #include <sys/systm.h>
203 #include <sys/proc.h>
204 #include <sys/intr.h>
205 #include <sys/pool.h>
206 #include <sys/kmem.h>
207 #include <sys/cdefs.h>
208 #include <sys/cpu.h>
209 #include <sys/sysctl.h>
210 #include <sys/bus.h>
211 #include <sys/atomic.h>
212 #include <sys/kernhist.h>
213
214 #include <uvm/uvm.h>
215
216 #include <arm/locore.h>
217
218 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.308 2014/11/04 23:58:21 matt Exp $");
219
220 //#define PMAP_DEBUG
221 #ifdef PMAP_DEBUG
222
223 /* XXX need to get rid of all refs to this */
224 int pmap_debug_level = 0;
225
226 /*
227 * for switching to potentially finer grained debugging
228 */
229 #define PDB_FOLLOW 0x0001
230 #define PDB_INIT 0x0002
231 #define PDB_ENTER 0x0004
232 #define PDB_REMOVE 0x0008
233 #define PDB_CREATE 0x0010
234 #define PDB_PTPAGE 0x0020
235 #define PDB_GROWKERN 0x0040
236 #define PDB_BITS 0x0080
237 #define PDB_COLLECT 0x0100
238 #define PDB_PROTECT 0x0200
239 #define PDB_MAP_L1 0x0400
240 #define PDB_BOOTSTRAP 0x1000
241 #define PDB_PARANOIA 0x2000
242 #define PDB_WIRING 0x4000
243 #define PDB_PVDUMP 0x8000
244 #define PDB_VAC 0x10000
245 #define PDB_KENTER 0x20000
246 #define PDB_KREMOVE 0x40000
247 #define PDB_EXEC 0x80000
248
249 int debugmap = 1;
250 int pmapdebug = 0;
251 #define NPDEBUG(_lev_,_stat_) \
252 if (pmapdebug & (_lev_)) \
253 ((_stat_))
254
255 #else /* PMAP_DEBUG */
256 #define NPDEBUG(_lev_,_stat_) /* Nothing */
257 #endif /* PMAP_DEBUG */
258
259 /*
260 * pmap_kernel() points here
261 */
262 static struct pmap kernel_pmap_store = {
263 #ifndef ARM_MMU_EXTENDED
264 .pm_activated = true,
265 .pm_domain = PMAP_DOMAIN_KERNEL,
266 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
267 #endif
268 };
269 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
270 #undef pmap_kernel
271 #define pmap_kernel() (&kernel_pmap_store)
272 #ifdef PMAP_NEED_ALLOC_POOLPAGE
273 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
274 #endif
275
276 /*
277 * Pool and cache that pmap structures are allocated from.
278 * We use a cache to avoid clearing the pm_l2[] array (1KB)
279 * in pmap_create().
280 */
281 static struct pool_cache pmap_cache;
282 static LIST_HEAD(, pmap) pmap_pmaps;
283
284 /*
285 * Pool of PV structures
286 */
287 static struct pool pmap_pv_pool;
288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
291 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
292 };
293
294 /*
295 * Pool and cache of l2_dtable structures.
296 * We use a cache to avoid clearing the structures when they're
297 * allocated. (196 bytes)
298 */
299 static struct pool_cache pmap_l2dtable_cache;
300 static vaddr_t pmap_kernel_l2dtable_kva;
301
302 /*
303 * Pool and cache of L2 page descriptors.
304 * We use a cache to avoid clearing the descriptor table
305 * when they're allocated. (1KB)
306 */
307 static struct pool_cache pmap_l2ptp_cache;
308 static vaddr_t pmap_kernel_l2ptp_kva;
309 static paddr_t pmap_kernel_l2ptp_phys;
310
311 #ifdef PMAPCOUNTERS
312 #define PMAP_EVCNT_INITIALIZER(name) \
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
314
315 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
316 static struct evcnt pmap_ev_vac_clean_one =
317 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_one =
319 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
320 static struct evcnt pmap_ev_vac_flush_lots =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
322 static struct evcnt pmap_ev_vac_flush_lots2 =
323 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
328
329 static struct evcnt pmap_ev_vac_color_new =
330 PMAP_EVCNT_INITIALIZER("new page color");
331 static struct evcnt pmap_ev_vac_color_reuse =
332 PMAP_EVCNT_INITIALIZER("ok first page color");
333 static struct evcnt pmap_ev_vac_color_ok =
334 PMAP_EVCNT_INITIALIZER("ok page color");
335 static struct evcnt pmap_ev_vac_color_blind =
336 PMAP_EVCNT_INITIALIZER("blind page color");
337 static struct evcnt pmap_ev_vac_color_change =
338 PMAP_EVCNT_INITIALIZER("change page color");
339 static struct evcnt pmap_ev_vac_color_erase =
340 PMAP_EVCNT_INITIALIZER("erase page color");
341 static struct evcnt pmap_ev_vac_color_none =
342 PMAP_EVCNT_INITIALIZER("no page color");
343 static struct evcnt pmap_ev_vac_color_restore =
344 PMAP_EVCNT_INITIALIZER("restore page color");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
354 #endif
355
356 static struct evcnt pmap_ev_mappings =
357 PMAP_EVCNT_INITIALIZER("pages mapped");
358 static struct evcnt pmap_ev_unmappings =
359 PMAP_EVCNT_INITIALIZER("pages unmapped");
360 static struct evcnt pmap_ev_remappings =
361 PMAP_EVCNT_INITIALIZER("pages remapped");
362
363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
366
367 static struct evcnt pmap_ev_kernel_mappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
369 static struct evcnt pmap_ev_kernel_unmappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
371 static struct evcnt pmap_ev_kernel_remappings =
372 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
373
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
377
378 static struct evcnt pmap_ev_kenter_mappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
380 static struct evcnt pmap_ev_kenter_unmappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
382 static struct evcnt pmap_ev_kenter_remappings =
383 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
384 static struct evcnt pmap_ev_pt_mappings =
385 PMAP_EVCNT_INITIALIZER("page table pages mapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
391
392 static struct evcnt pmap_ev_fixup_mod =
393 PMAP_EVCNT_INITIALIZER("page modification emulations");
394 static struct evcnt pmap_ev_fixup_ref =
395 PMAP_EVCNT_INITIALIZER("page reference emulations");
396 static struct evcnt pmap_ev_fixup_exec =
397 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
398 static struct evcnt pmap_ev_fixup_pdes =
399 PMAP_EVCNT_INITIALIZER("pdes fixed up");
400 #ifndef ARM_MMU_EXTENDED
401 static struct evcnt pmap_ev_fixup_ptesync =
402 PMAP_EVCNT_INITIALIZER("ptesync fixed");
403 #endif
404
405 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
409 #ifndef ARM_MMU_EXTENDED
410 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
411 #endif
412
413 #ifdef PMAP_CACHE_VIPT
414 static struct evcnt pmap_ev_exec_mappings =
415 PMAP_EVCNT_INITIALIZER("exec pages mapped");
416 static struct evcnt pmap_ev_exec_cached =
417 PMAP_EVCNT_INITIALIZER("exec pages cached");
418
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
421
422 static struct evcnt pmap_ev_exec_synced =
423 PMAP_EVCNT_INITIALIZER("exec pages synced");
424 static struct evcnt pmap_ev_exec_synced_map =
425 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
426 #ifndef ARM_MMU_EXTENDED
427 static struct evcnt pmap_ev_exec_synced_unmap =
428 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
429 static struct evcnt pmap_ev_exec_synced_remap =
430 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
431 static struct evcnt pmap_ev_exec_synced_clearbit =
432 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
433 static struct evcnt pmap_ev_exec_synced_kremove =
434 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
435 #endif
436
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
439 #ifndef ARM_MMU_EXTENDED
440 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
444 #endif
445
446 static struct evcnt pmap_ev_exec_discarded_unmap =
447 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
448 static struct evcnt pmap_ev_exec_discarded_zero =
449 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
450 static struct evcnt pmap_ev_exec_discarded_copy =
451 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
452 static struct evcnt pmap_ev_exec_discarded_page_protect =
453 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
454 static struct evcnt pmap_ev_exec_discarded_clearbit =
455 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
456 static struct evcnt pmap_ev_exec_discarded_kremove =
457 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
458 #ifdef ARM_MMU_EXTENDED
459 static struct evcnt pmap_ev_exec_discarded_modfixup =
460 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
461 #endif
462
463 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
469 #ifdef ARM_MMU_EXTENDED
470 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
471 #endif
472 #endif /* PMAP_CACHE_VIPT */
473
474 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
475 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
476 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
477
478 EVCNT_ATTACH_STATIC(pmap_ev_updates);
479 EVCNT_ATTACH_STATIC(pmap_ev_collects);
480 EVCNT_ATTACH_STATIC(pmap_ev_activations);
481
482 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
483 #else
484 #define PMAPCOUNT(x) ((void)0)
485 #endif
486
487 /*
488 * pmap copy/zero page, and mem(5) hook point
489 */
490 static pt_entry_t *csrc_pte, *cdst_pte;
491 static vaddr_t csrcp, cdstp;
492 #ifdef MULTIPROCESSOR
493 static size_t cnptes;
494 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
495 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
496 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
497 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
498 #else
499 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
500 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
501 #define cpu_csrcp(o) (csrcp + (o))
502 #define cpu_cdstp(o) (cdstp + (o))
503 #endif
504 vaddr_t memhook; /* used by mem.c & others */
505 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
506 kmutex_t pmap_lock __cacheline_aligned;
507 extern void *msgbufaddr;
508 int pmap_kmpages;
509 /*
510 * Flag to indicate if pmap_init() has done its thing
511 */
512 bool pmap_initialized;
513
514 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
515 /*
516 * Start of direct-mapped memory
517 */
518 vaddr_t pmap_directbase = KERNEL_BASE;
519 #endif
520
521 /*
522 * Misc. locking data structures
523 */
524
525 static inline void
526 pmap_acquire_pmap_lock(pmap_t pm)
527 {
528 if (pm == pmap_kernel()) {
529 #ifdef MULTIPROCESSOR
530 KERNEL_LOCK(1, NULL);
531 #endif
532 } else {
533 mutex_enter(pm->pm_lock);
534 }
535 }
536
537 static inline void
538 pmap_release_pmap_lock(pmap_t pm)
539 {
540 if (pm == pmap_kernel()) {
541 #ifdef MULTIPROCESSOR
542 KERNEL_UNLOCK_ONE(NULL);
543 #endif
544 } else {
545 mutex_exit(pm->pm_lock);
546 }
547 }
548
549 static inline void
550 pmap_acquire_page_lock(struct vm_page_md *md)
551 {
552 mutex_enter(&pmap_lock);
553 }
554
555 static inline void
556 pmap_release_page_lock(struct vm_page_md *md)
557 {
558 mutex_exit(&pmap_lock);
559 }
560
561 #ifdef DIAGNOSTIC
562 static inline int
563 pmap_page_locked_p(struct vm_page_md *md)
564 {
565 return mutex_owned(&pmap_lock);
566 }
567 #endif
568
569
570 /*
571 * Metadata for L1 translation tables.
572 */
573 #ifndef ARM_MMU_EXTENDED
574 struct l1_ttable {
575 /* Entry on the L1 Table list */
576 SLIST_ENTRY(l1_ttable) l1_link;
577
578 /* Entry on the L1 Least Recently Used list */
579 TAILQ_ENTRY(l1_ttable) l1_lru;
580
581 /* Track how many domains are allocated from this L1 */
582 volatile u_int l1_domain_use_count;
583
584 /*
585 * A free-list of domain numbers for this L1.
586 * We avoid using ffs() and a bitmap to track domains since ffs()
587 * is slow on ARM.
588 */
589 uint8_t l1_domain_first;
590 uint8_t l1_domain_free[PMAP_DOMAINS];
591
592 /* Physical address of this L1 page table */
593 paddr_t l1_physaddr;
594
595 /* KVA of this L1 page table */
596 pd_entry_t *l1_kva;
597 };
598
599 /*
600 * L1 Page Tables are tracked using a Least Recently Used list.
601 * - New L1s are allocated from the HEAD.
602 * - Freed L1s are added to the TAIl.
603 * - Recently accessed L1s (where an 'access' is some change to one of
604 * the userland pmaps which owns this L1) are moved to the TAIL.
605 */
606 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
607 static kmutex_t l1_lru_lock __cacheline_aligned;
608
609 /*
610 * A list of all L1 tables
611 */
612 static SLIST_HEAD(, l1_ttable) l1_list;
613 #endif /* ARM_MMU_EXTENDED */
614
615 /*
616 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
617 *
618 * This is normally 16MB worth L2 page descriptors for any given pmap.
619 * Reference counts are maintained for L2 descriptors so they can be
620 * freed when empty.
621 */
622 struct l2_bucket {
623 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
624 paddr_t l2b_pa; /* Physical address of same */
625 u_short l2b_l1slot; /* This L2 table's L1 index */
626 u_short l2b_occupancy; /* How many active descriptors */
627 };
628
629 struct l2_dtable {
630 /* The number of L2 page descriptors allocated to this l2_dtable */
631 u_int l2_occupancy;
632
633 /* List of L2 page descriptors */
634 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
635 };
636
637 /*
638 * Given an L1 table index, calculate the corresponding l2_dtable index
639 * and bucket index within the l2_dtable.
640 */
641 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
642 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
643 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
644 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
645 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
646
647 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
648 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
649
650 /*
651 * Given a virtual address, this macro returns the
652 * virtual address required to drop into the next L2 bucket.
653 */
654 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
655
656 /*
657 * L2 allocation.
658 */
659 #define pmap_alloc_l2_dtable() \
660 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
661 #define pmap_free_l2_dtable(l2) \
662 pool_cache_put(&pmap_l2dtable_cache, (l2))
663 #define pmap_alloc_l2_ptp(pap) \
664 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
665 PR_NOWAIT, (pap)))
666
667 /*
668 * We try to map the page tables write-through, if possible. However, not
669 * all CPUs have a write-through cache mode, so on those we have to sync
670 * the cache when we frob page tables.
671 *
672 * We try to evaluate this at compile time, if possible. However, it's
673 * not always possible to do that, hence this run-time var.
674 */
675 int pmap_needs_pte_sync;
676
677 /*
678 * Real definition of pv_entry.
679 */
680 struct pv_entry {
681 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
682 pmap_t pv_pmap; /* pmap where mapping lies */
683 vaddr_t pv_va; /* virtual address for mapping */
684 u_int pv_flags; /* flags */
685 };
686
687 /*
688 * Macros to determine if a mapping might be resident in the
689 * instruction/data cache and/or TLB
690 */
691 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
692 /*
693 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
694 * there are no explicit accesses, so there may be always be TLB entries to
695 * flush. If we used ASIDs then this would not be a problem.
696 */
697 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
698 #define PV_BEEN_REFD(f) (true)
699 #else
700 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
701 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
702 #endif
703 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
704 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
705 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
706
707 /*
708 * Local prototypes
709 */
710 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
711 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
712 pt_entry_t **);
713 static bool pmap_is_current(pmap_t) __unused;
714 static bool pmap_is_cached(pmap_t);
715 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
716 pmap_t, vaddr_t, u_int);
717 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
718 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
719 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
720 u_int, u_int);
721
722 static void pmap_pinit(pmap_t);
723 static int pmap_pmap_ctor(void *, void *, int);
724
725 static void pmap_alloc_l1(pmap_t);
726 static void pmap_free_l1(pmap_t);
727 #ifndef ARM_MMU_EXTENDED
728 static void pmap_use_l1(pmap_t);
729 #endif
730
731 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
732 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
733 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
734 static int pmap_l2ptp_ctor(void *, void *, int);
735 static int pmap_l2dtable_ctor(void *, void *, int);
736
737 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
738 #ifdef PMAP_CACHE_VIVT
739 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
740 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
741 #endif
742
743 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
744 #ifdef PMAP_CACHE_VIVT
745 static bool pmap_clean_page(struct vm_page_md *, bool);
746 #endif
747 #ifdef PMAP_CACHE_VIPT
748 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
749 enum pmap_flush_op {
750 PMAP_FLUSH_PRIMARY,
751 PMAP_FLUSH_SECONDARY,
752 PMAP_CLEAN_PRIMARY
753 };
754 #ifndef ARM_MMU_EXTENDED
755 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
756 #endif
757 #endif
758 static void pmap_page_remove(struct vm_page_md *, paddr_t);
759
760 #ifndef ARM_MMU_EXTENDED
761 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
762 #endif
763 static vaddr_t kernel_pt_lookup(paddr_t);
764
765
766 /*
767 * Misc variables
768 */
769 vaddr_t virtual_avail;
770 vaddr_t virtual_end;
771 vaddr_t pmap_curmaxkvaddr;
772
773 paddr_t avail_start;
774 paddr_t avail_end;
775
776 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
777 pv_addr_t kernelpages;
778 pv_addr_t kernel_l1pt;
779 pv_addr_t systempage;
780
781 /* Function to set the debug level of the pmap code */
782
783 #ifdef PMAP_DEBUG
784 void
785 pmap_debug(int level)
786 {
787 pmap_debug_level = level;
788 printf("pmap_debug: level=%d\n", pmap_debug_level);
789 }
790 #endif /* PMAP_DEBUG */
791
792 #ifdef PMAP_CACHE_VIPT
793 #define PMAP_VALIDATE_MD_PAGE(md) \
794 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
795 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
796 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
797 #endif /* PMAP_CACHE_VIPT */
798 /*
799 * A bunch of routines to conditionally flush the caches/TLB depending
800 * on whether the specified pmap actually needs to be flushed at any
801 * given time.
802 */
803 static inline void
804 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
805 {
806 #ifdef ARM_MMU_EXTENDED
807 pmap_tlb_invalidate_addr(pm, va);
808 #else
809 if (pm->pm_cstate.cs_tlb_id != 0) {
810 if (PV_BEEN_EXECD(flags)) {
811 cpu_tlb_flushID_SE(va);
812 } else if (PV_BEEN_REFD(flags)) {
813 cpu_tlb_flushD_SE(va);
814 }
815 }
816 #endif /* ARM_MMU_EXTENDED */
817 }
818
819 static inline void
820 pmap_tlb_flushID(pmap_t pm)
821 {
822 #ifdef ARM_MMU_EXTENDED
823 pmap_tlb_asid_release_all(pm);
824 #else
825 if (pm->pm_cstate.cs_tlb_id) {
826 cpu_tlb_flushID();
827 #if ARM_MMU_V7 == 0
828 /*
829 * Speculative loads by Cortex cores can cause TLB entries to
830 * be filled even if there are no explicit accesses, so there
831 * may be always be TLB entries to flush. If we used ASIDs
832 * then it would not be a problem.
833 * This is not true for other CPUs.
834 */
835 pm->pm_cstate.cs_tlb = 0;
836 #endif /* ARM_MMU_V7 */
837 }
838 #endif /* ARM_MMU_EXTENDED */
839 }
840
841 #ifndef ARM_MMU_EXTENDED
842 static inline void
843 pmap_tlb_flushD(pmap_t pm)
844 {
845 if (pm->pm_cstate.cs_tlb_d) {
846 cpu_tlb_flushD();
847 #if ARM_MMU_V7 == 0
848 /*
849 * Speculative loads by Cortex cores can cause TLB entries to
850 * be filled even if there are no explicit accesses, so there
851 * may be always be TLB entries to flush. If we used ASIDs
852 * then it would not be a problem.
853 * This is not true for other CPUs.
854 */
855 pm->pm_cstate.cs_tlb_d = 0;
856 #endif /* ARM_MMU_V7 */
857 }
858 }
859 #endif /* ARM_MMU_EXTENDED */
860
861 #ifdef PMAP_CACHE_VIVT
862 static inline void
863 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
864 {
865 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
866 cpu_idcache_wbinv_range(va, PAGE_SIZE);
867 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
868 if (do_inv) {
869 if (flags & PVF_WRITE)
870 cpu_dcache_wbinv_range(va, PAGE_SIZE);
871 else
872 cpu_dcache_inv_range(va, PAGE_SIZE);
873 } else if (flags & PVF_WRITE) {
874 cpu_dcache_wb_range(va, PAGE_SIZE);
875 }
876 }
877 }
878
879 static inline void
880 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
881 {
882 if (PV_BEEN_EXECD(flags)) {
883 if (pm->pm_cstate.cs_cache_id) {
884 cpu_idcache_wbinv_all();
885 pm->pm_cstate.cs_cache = 0;
886 }
887 } else if (pm->pm_cstate.cs_cache_d) {
888 cpu_dcache_wbinv_all();
889 pm->pm_cstate.cs_cache_d = 0;
890 }
891 }
892 #endif /* PMAP_CACHE_VIVT */
893
894 static inline uint8_t
895 pmap_domain(pmap_t pm)
896 {
897 #ifdef ARM_MMU_EXTENDED
898 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
899 #else
900 return pm->pm_domain;
901 #endif
902 }
903
904 static inline pd_entry_t *
905 pmap_l1_kva(pmap_t pm)
906 {
907 #ifdef ARM_MMU_EXTENDED
908 return pm->pm_l1;
909 #else
910 return pm->pm_l1->l1_kva;
911 #endif
912 }
913
914 static inline bool
915 pmap_is_current(pmap_t pm)
916 {
917 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
918 return true;
919
920 return false;
921 }
922
923 static inline bool
924 pmap_is_cached(pmap_t pm)
925 {
926 #ifdef ARM_MMU_EXTENDED
927 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
928 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
929 return true;
930 #else
931 struct cpu_info * const ci = curcpu();
932 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
933 || ci->ci_pmap_lastuser == pm)
934 return true;
935 #endif /* ARM_MMU_EXTENDED */
936
937 return false;
938 }
939
940 /*
941 * PTE_SYNC_CURRENT:
942 *
943 * Make sure the pte is written out to RAM.
944 * We need to do this for one of two cases:
945 * - We're dealing with the kernel pmap
946 * - There is no pmap active in the cache/tlb.
947 * - The specified pmap is 'active' in the cache/tlb.
948 */
949 #ifdef PMAP_INCLUDE_PTE_SYNC
950 #define PTE_SYNC_CURRENT(pm, ptep) \
951 do { \
952 if (PMAP_NEEDS_PTE_SYNC && \
953 pmap_is_cached(pm)) \
954 PTE_SYNC(ptep); \
955 } while (/*CONSTCOND*/0)
956 #else
957 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
958 #endif
959
960 /*
961 * main pv_entry manipulation functions:
962 * pmap_enter_pv: enter a mapping onto a vm_page list
963 * pmap_remove_pv: remove a mapping from a vm_page list
964 *
965 * NOTE: pmap_enter_pv expects to lock the pvh itself
966 * pmap_remove_pv expects the caller to lock the pvh before calling
967 */
968
969 /*
970 * pmap_enter_pv: enter a mapping onto a vm_page lst
971 *
972 * => caller should hold the proper lock on pmap_main_lock
973 * => caller should have pmap locked
974 * => we will gain the lock on the vm_page and allocate the new pv_entry
975 * => caller should adjust ptp's wire_count before calling
976 * => caller should not adjust pmap's wire_count
977 */
978 static void
979 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
980 vaddr_t va, u_int flags)
981 {
982 struct pv_entry **pvp;
983
984 NPDEBUG(PDB_PVDUMP,
985 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
986
987 pv->pv_pmap = pm;
988 pv->pv_va = va;
989 pv->pv_flags = flags;
990
991 pvp = &SLIST_FIRST(&md->pvh_list);
992 #ifdef PMAP_CACHE_VIPT
993 /*
994 * Insert unmanaged entries, writeable first, at the head of
995 * the pv list.
996 */
997 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
998 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
999 pvp = &SLIST_NEXT(*pvp, pv_link);
1000 }
1001 if (!PV_IS_WRITE_P(flags)) {
1002 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1003 pvp = &SLIST_NEXT(*pvp, pv_link);
1004 }
1005 #endif
1006 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1007 *pvp = pv; /* ... locked list */
1008 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1009 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1010 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1011 md->pvh_attrs |= PVF_KMOD;
1012 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1013 md->pvh_attrs |= PVF_DIRTY;
1014 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1015 #endif
1016 if (pm == pmap_kernel()) {
1017 PMAPCOUNT(kernel_mappings);
1018 if (flags & PVF_WRITE)
1019 md->krw_mappings++;
1020 else
1021 md->kro_mappings++;
1022 } else {
1023 if (flags & PVF_WRITE)
1024 md->urw_mappings++;
1025 else
1026 md->uro_mappings++;
1027 }
1028
1029 #ifdef PMAP_CACHE_VIPT
1030 #ifndef ARM_MMU_EXTENDED
1031 /*
1032 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1033 * do it here as well to keep the mappings & KVF_WRITE consistent.
1034 */
1035 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1036 md->pvh_attrs |= PVF_WRITE;
1037 }
1038 #endif
1039 /*
1040 * If this is an exec mapping and its the first exec mapping
1041 * for this page, make sure to sync the I-cache.
1042 */
1043 if (PV_IS_EXEC_P(flags)) {
1044 #ifndef ARM_MMU_EXTENDED
1045 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1046 pmap_syncicache_page(md, pa);
1047 PMAPCOUNT(exec_synced_map);
1048 }
1049 #endif
1050 PMAPCOUNT(exec_mappings);
1051 }
1052 #endif
1053
1054 PMAPCOUNT(mappings);
1055
1056 if (pv->pv_flags & PVF_WIRED)
1057 ++pm->pm_stats.wired_count;
1058 }
1059
1060 /*
1061 *
1062 * pmap_find_pv: Find a pv entry
1063 *
1064 * => caller should hold lock on vm_page
1065 */
1066 static inline struct pv_entry *
1067 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1068 {
1069 struct pv_entry *pv;
1070
1071 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1072 if (pm == pv->pv_pmap && va == pv->pv_va)
1073 break;
1074 }
1075
1076 return (pv);
1077 }
1078
1079 /*
1080 * pmap_remove_pv: try to remove a mapping from a pv_list
1081 *
1082 * => caller should hold proper lock on pmap_main_lock
1083 * => pmap should be locked
1084 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1085 * => caller should adjust ptp's wire_count and free PTP if needed
1086 * => caller should NOT adjust pmap's wire_count
1087 * => we return the removed pv
1088 */
1089 static struct pv_entry *
1090 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1091 {
1092 struct pv_entry *pv, **prevptr;
1093
1094 NPDEBUG(PDB_PVDUMP,
1095 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1096
1097 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1098 pv = *prevptr;
1099
1100 while (pv) {
1101 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1102 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1103 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1104 if (pv->pv_flags & PVF_WIRED) {
1105 --pm->pm_stats.wired_count;
1106 }
1107 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1108 if (pm == pmap_kernel()) {
1109 PMAPCOUNT(kernel_unmappings);
1110 if (pv->pv_flags & PVF_WRITE)
1111 md->krw_mappings--;
1112 else
1113 md->kro_mappings--;
1114 } else {
1115 if (pv->pv_flags & PVF_WRITE)
1116 md->urw_mappings--;
1117 else
1118 md->uro_mappings--;
1119 }
1120
1121 PMAPCOUNT(unmappings);
1122 #ifdef PMAP_CACHE_VIPT
1123 if (!(pv->pv_flags & PVF_WRITE))
1124 break;
1125 /*
1126 * If this page has had an exec mapping, then if
1127 * this was the last mapping, discard the contents,
1128 * otherwise sync the i-cache for this page.
1129 */
1130 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1131 #ifdef ARM_MMU_EXTENDED
1132 md->pvh_attrs &= ~PVF_EXEC;
1133 PMAPCOUNT(exec_discarded_unmap);
1134 #else
1135 if (SLIST_EMPTY(&md->pvh_list)) {
1136 md->pvh_attrs &= ~PVF_EXEC;
1137 PMAPCOUNT(exec_discarded_unmap);
1138 } else {
1139 pmap_syncicache_page(md, pa);
1140 PMAPCOUNT(exec_synced_unmap);
1141 }
1142 #endif /* ARM_MMU_EXTENDED */
1143 }
1144 #endif /* PMAP_CACHE_VIPT */
1145 break;
1146 }
1147 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1148 pv = *prevptr; /* advance */
1149 }
1150
1151 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1152 /*
1153 * If we no longer have a WRITEABLE KENTRY at the head of list,
1154 * clear the KMOD attribute from the page.
1155 */
1156 if (SLIST_FIRST(&md->pvh_list) == NULL
1157 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1158 md->pvh_attrs &= ~PVF_KMOD;
1159
1160 /*
1161 * If this was a writeable page and there are no more writeable
1162 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1163 * the contents to memory.
1164 */
1165 if (arm_cache_prefer_mask != 0) {
1166 if (md->krw_mappings + md->urw_mappings == 0)
1167 md->pvh_attrs &= ~PVF_WRITE;
1168 PMAP_VALIDATE_MD_PAGE(md);
1169 }
1170 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1171 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1172
1173 return(pv); /* return removed pv */
1174 }
1175
1176 /*
1177 *
1178 * pmap_modify_pv: Update pv flags
1179 *
1180 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1181 * => caller should NOT adjust pmap's wire_count
1182 * => caller must call pmap_vac_me_harder() if writable status of a page
1183 * may have changed.
1184 * => we return the old flags
1185 *
1186 * Modify a physical-virtual mapping in the pv table
1187 */
1188 static u_int
1189 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1190 u_int clr_mask, u_int set_mask)
1191 {
1192 struct pv_entry *npv;
1193 u_int flags, oflags;
1194
1195 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1196 KASSERT(!PV_IS_KENTRY_P(set_mask));
1197
1198 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1199 return (0);
1200
1201 NPDEBUG(PDB_PVDUMP,
1202 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1203
1204 /*
1205 * There is at least one VA mapping this page.
1206 */
1207
1208 if (clr_mask & (PVF_REF | PVF_MOD)) {
1209 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1210 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1211 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1212 md->pvh_attrs |= PVF_DIRTY;
1213 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1214 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1215 }
1216
1217 oflags = npv->pv_flags;
1218 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1219
1220 if ((flags ^ oflags) & PVF_WIRED) {
1221 if (flags & PVF_WIRED)
1222 ++pm->pm_stats.wired_count;
1223 else
1224 --pm->pm_stats.wired_count;
1225 }
1226
1227 if ((flags ^ oflags) & PVF_WRITE) {
1228 if (pm == pmap_kernel()) {
1229 if (flags & PVF_WRITE) {
1230 md->krw_mappings++;
1231 md->kro_mappings--;
1232 } else {
1233 md->kro_mappings++;
1234 md->krw_mappings--;
1235 }
1236 } else {
1237 if (flags & PVF_WRITE) {
1238 md->urw_mappings++;
1239 md->uro_mappings--;
1240 } else {
1241 md->uro_mappings++;
1242 md->urw_mappings--;
1243 }
1244 }
1245 }
1246 #ifdef PMAP_CACHE_VIPT
1247 if (arm_cache_prefer_mask != 0) {
1248 if (md->urw_mappings + md->krw_mappings == 0) {
1249 md->pvh_attrs &= ~PVF_WRITE;
1250 } else {
1251 md->pvh_attrs |= PVF_WRITE;
1252 }
1253 }
1254 #ifndef ARM_MMU_EXTENDED
1255 /*
1256 * We have two cases here: the first is from enter_pv (new exec
1257 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1258 * Since in latter, pmap_enter_pv won't do anything, we just have
1259 * to do what pmap_remove_pv would do.
1260 */
1261 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1262 || (PV_IS_EXEC_P(md->pvh_attrs)
1263 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1264 pmap_syncicache_page(md, pa);
1265 PMAPCOUNT(exec_synced_remap);
1266 }
1267 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1268 #endif /* !ARM_MMU_EXTENDED */
1269 #endif /* PMAP_CACHE_VIPT */
1270
1271 PMAPCOUNT(remappings);
1272
1273 return (oflags);
1274 }
1275
1276 /*
1277 * Allocate an L1 translation table for the specified pmap.
1278 * This is called at pmap creation time.
1279 */
1280 static void
1281 pmap_alloc_l1(pmap_t pm)
1282 {
1283 #ifdef ARM_MMU_EXTENDED
1284 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1285 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1286 struct vm_page *pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1287 #else
1288 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1289 #endif
1290 bool ok __diagused;
1291 KASSERT(pg != NULL);
1292 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1293 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1294 KASSERT(ok);
1295 KASSERT(va >= KERNEL_BASE);
1296
1297 #else
1298 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1299 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1300 UVM_KMF_WIRED|UVM_KMF_ZERO);
1301 KASSERT(va);
1302 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1303 #endif
1304 pm->pm_l1 = (pd_entry_t *)va;
1305 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1306 #else
1307 struct l1_ttable *l1;
1308 uint8_t domain;
1309
1310 /*
1311 * Remove the L1 at the head of the LRU list
1312 */
1313 mutex_spin_enter(&l1_lru_lock);
1314 l1 = TAILQ_FIRST(&l1_lru_list);
1315 KDASSERT(l1 != NULL);
1316 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1317
1318 /*
1319 * Pick the first available domain number, and update
1320 * the link to the next number.
1321 */
1322 domain = l1->l1_domain_first;
1323 l1->l1_domain_first = l1->l1_domain_free[domain];
1324
1325 /*
1326 * If there are still free domain numbers in this L1,
1327 * put it back on the TAIL of the LRU list.
1328 */
1329 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1330 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1331
1332 mutex_spin_exit(&l1_lru_lock);
1333
1334 /*
1335 * Fix up the relevant bits in the pmap structure
1336 */
1337 pm->pm_l1 = l1;
1338 pm->pm_domain = domain + 1;
1339 #endif
1340 }
1341
1342 /*
1343 * Free an L1 translation table.
1344 * This is called at pmap destruction time.
1345 */
1346 static void
1347 pmap_free_l1(pmap_t pm)
1348 {
1349 #ifdef ARM_MMU_EXTENDED
1350 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1351 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1352 uvm_pagefree(pg);
1353 #else
1354 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1355 #endif
1356 pm->pm_l1 = NULL;
1357 pm->pm_l1_pa = 0;
1358 #else
1359 struct l1_ttable *l1 = pm->pm_l1;
1360
1361 mutex_spin_enter(&l1_lru_lock);
1362
1363 /*
1364 * If this L1 is currently on the LRU list, remove it.
1365 */
1366 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1367 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1368
1369 /*
1370 * Free up the domain number which was allocated to the pmap
1371 */
1372 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1373 l1->l1_domain_first = pmap_domain(pm) - 1;
1374 l1->l1_domain_use_count--;
1375
1376 /*
1377 * The L1 now must have at least 1 free domain, so add
1378 * it back to the LRU list. If the use count is zero,
1379 * put it at the head of the list, otherwise it goes
1380 * to the tail.
1381 */
1382 if (l1->l1_domain_use_count == 0)
1383 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1384 else
1385 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1386
1387 mutex_spin_exit(&l1_lru_lock);
1388 #endif /* ARM_MMU_EXTENDED */
1389 }
1390
1391 #ifndef ARM_MMU_EXTENDED
1392 static inline void
1393 pmap_use_l1(pmap_t pm)
1394 {
1395 struct l1_ttable *l1;
1396
1397 /*
1398 * Do nothing if we're in interrupt context.
1399 * Access to an L1 by the kernel pmap must not affect
1400 * the LRU list.
1401 */
1402 if (cpu_intr_p() || pm == pmap_kernel())
1403 return;
1404
1405 l1 = pm->pm_l1;
1406
1407 /*
1408 * If the L1 is not currently on the LRU list, just return
1409 */
1410 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1411 return;
1412
1413 mutex_spin_enter(&l1_lru_lock);
1414
1415 /*
1416 * Check the use count again, now that we've acquired the lock
1417 */
1418 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1419 mutex_spin_exit(&l1_lru_lock);
1420 return;
1421 }
1422
1423 /*
1424 * Move the L1 to the back of the LRU list
1425 */
1426 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1427 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1428
1429 mutex_spin_exit(&l1_lru_lock);
1430 }
1431 #endif /* !ARM_MMU_EXTENDED */
1432
1433 /*
1434 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1435 *
1436 * Free an L2 descriptor table.
1437 */
1438 static inline void
1439 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1440 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1441 #else
1442 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1443 #endif
1444 {
1445 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1446 /*
1447 * Note: With a write-back cache, we may need to sync this
1448 * L2 table before re-using it.
1449 * This is because it may have belonged to a non-current
1450 * pmap, in which case the cache syncs would have been
1451 * skipped for the pages that were being unmapped. If the
1452 * L2 table were then to be immediately re-allocated to
1453 * the *current* pmap, it may well contain stale mappings
1454 * which have not yet been cleared by a cache write-back
1455 * and so would still be visible to the mmu.
1456 */
1457 if (need_sync)
1458 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1459 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1460 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1461 }
1462
1463 /*
1464 * Returns a pointer to the L2 bucket associated with the specified pmap
1465 * and VA, or NULL if no L2 bucket exists for the address.
1466 */
1467 static inline struct l2_bucket *
1468 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1469 {
1470 const size_t l1slot = l1pte_index(va);
1471 struct l2_dtable *l2;
1472 struct l2_bucket *l2b;
1473
1474 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1475 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1476 return (NULL);
1477
1478 return (l2b);
1479 }
1480
1481 /*
1482 * Returns a pointer to the L2 bucket associated with the specified pmap
1483 * and VA.
1484 *
1485 * If no L2 bucket exists, perform the necessary allocations to put an L2
1486 * bucket/page table in place.
1487 *
1488 * Note that if a new L2 bucket/page was allocated, the caller *must*
1489 * increment the bucket occupancy counter appropriately *before*
1490 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1491 * the bucket/page in the meantime.
1492 */
1493 static struct l2_bucket *
1494 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1495 {
1496 const size_t l1slot = l1pte_index(va);
1497 struct l2_dtable *l2;
1498
1499 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1500 /*
1501 * No mapping at this address, as there is
1502 * no entry in the L1 table.
1503 * Need to allocate a new l2_dtable.
1504 */
1505 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1506 return (NULL);
1507
1508 /*
1509 * Link it into the parent pmap
1510 */
1511 pm->pm_l2[L2_IDX(l1slot)] = l2;
1512 }
1513
1514 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1515
1516 /*
1517 * Fetch pointer to the L2 page table associated with the address.
1518 */
1519 if (l2b->l2b_kva == NULL) {
1520 pt_entry_t *ptep;
1521
1522 /*
1523 * No L2 page table has been allocated. Chances are, this
1524 * is because we just allocated the l2_dtable, above.
1525 */
1526 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1527 /*
1528 * Oops, no more L2 page tables available at this
1529 * time. We may need to deallocate the l2_dtable
1530 * if we allocated a new one above.
1531 */
1532 if (l2->l2_occupancy == 0) {
1533 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1534 pmap_free_l2_dtable(l2);
1535 }
1536 return (NULL);
1537 }
1538
1539 l2->l2_occupancy++;
1540 l2b->l2b_kva = ptep;
1541 l2b->l2b_l1slot = l1slot;
1542
1543 #ifdef ARM_MMU_EXTENDED
1544 /*
1545 * We know there will be a mapping here, so simply
1546 * enter this PTP into the L1 now.
1547 */
1548 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1549 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1550 | L1_C_DOM(pmap_domain(pm));
1551 KASSERT(*pdep == 0);
1552 l1pte_setone(pdep, npde);
1553 PTE_SYNC(pdep);
1554 #endif
1555 }
1556
1557 return (l2b);
1558 }
1559
1560 /*
1561 * One or more mappings in the specified L2 descriptor table have just been
1562 * invalidated.
1563 *
1564 * Garbage collect the metadata and descriptor table itself if necessary.
1565 *
1566 * The pmap lock must be acquired when this is called (not necessary
1567 * for the kernel pmap).
1568 */
1569 static void
1570 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1571 {
1572 KDASSERT(count <= l2b->l2b_occupancy);
1573
1574 /*
1575 * Update the bucket's reference count according to how many
1576 * PTEs the caller has just invalidated.
1577 */
1578 l2b->l2b_occupancy -= count;
1579
1580 /*
1581 * Note:
1582 *
1583 * Level 2 page tables allocated to the kernel pmap are never freed
1584 * as that would require checking all Level 1 page tables and
1585 * removing any references to the Level 2 page table. See also the
1586 * comment elsewhere about never freeing bootstrap L2 descriptors.
1587 *
1588 * We make do with just invalidating the mapping in the L2 table.
1589 *
1590 * This isn't really a big deal in practice and, in fact, leads
1591 * to a performance win over time as we don't need to continually
1592 * alloc/free.
1593 */
1594 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1595 return;
1596
1597 /*
1598 * There are no more valid mappings in this level 2 page table.
1599 * Go ahead and NULL-out the pointer in the bucket, then
1600 * free the page table.
1601 */
1602 const size_t l1slot = l2b->l2b_l1slot;
1603 pt_entry_t * const ptep = l2b->l2b_kva;
1604 l2b->l2b_kva = NULL;
1605
1606 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1607 pd_entry_t pde __diagused = *pdep;
1608
1609 #ifdef ARM_MMU_EXTENDED
1610 /*
1611 * Invalidate the L1 slot.
1612 */
1613 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1614 #else
1615 /*
1616 * If the L1 slot matches the pmap's domain number, then invalidate it.
1617 */
1618 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1619 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1620 #endif
1621 l1pte_setone(pdep, 0);
1622 PDE_SYNC(pdep);
1623 #ifndef ARM_MMU_EXTENDED
1624 }
1625 #endif
1626
1627 /*
1628 * Release the L2 descriptor table back to the pool cache.
1629 */
1630 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1631 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1632 #else
1633 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1634 #endif
1635
1636 /*
1637 * Update the reference count in the associated l2_dtable
1638 */
1639 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1640 if (--l2->l2_occupancy > 0)
1641 return;
1642
1643 /*
1644 * There are no more valid mappings in any of the Level 1
1645 * slots managed by this l2_dtable. Go ahead and NULL-out
1646 * the pointer in the parent pmap and free the l2_dtable.
1647 */
1648 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1649 pmap_free_l2_dtable(l2);
1650 }
1651
1652 /*
1653 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1654 * structures.
1655 */
1656 static int
1657 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1658 {
1659 #ifndef PMAP_INCLUDE_PTE_SYNC
1660 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1661
1662 /*
1663 * The mappings for these page tables were initially made using
1664 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1665 * mode will not be right for page table mappings. To avoid
1666 * polluting the pmap_kenter_pa() code with a special case for
1667 * page tables, we simply fix up the cache-mode here if it's not
1668 * correct.
1669 */
1670 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1671 const struct l2_bucket * const l2b =
1672 pmap_get_l2_bucket(pmap_kernel(), va);
1673 KASSERTMSG(l2b != NULL, "%#lx", va);
1674 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1675 const pt_entry_t opte = *ptep;
1676
1677 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1678 /*
1679 * Page tables must have the cache-mode set correctly.
1680 */
1681 const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
1682 | pte_l2_s_cache_mode_pt;
1683 l2pte_set(ptep, npte, opte);
1684 PTE_SYNC(ptep);
1685 cpu_tlb_flushD_SE(va);
1686 cpu_cpwait();
1687 }
1688 }
1689 #endif
1690
1691 memset(v, 0, L2_TABLE_SIZE_REAL);
1692 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1693 return (0);
1694 }
1695
1696 static int
1697 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1698 {
1699
1700 memset(v, 0, sizeof(struct l2_dtable));
1701 return (0);
1702 }
1703
1704 static int
1705 pmap_pmap_ctor(void *arg, void *v, int flags)
1706 {
1707
1708 memset(v, 0, sizeof(struct pmap));
1709 return (0);
1710 }
1711
1712 static void
1713 pmap_pinit(pmap_t pm)
1714 {
1715 #ifndef ARM_HAS_VBAR
1716 struct l2_bucket *l2b;
1717
1718 if (vector_page < KERNEL_BASE) {
1719 /*
1720 * Map the vector page.
1721 */
1722 pmap_enter(pm, vector_page, systempage.pv_pa,
1723 VM_PROT_READ | VM_PROT_EXECUTE,
1724 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1725 pmap_update(pm);
1726
1727 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1728 l2b = pmap_get_l2_bucket(pm, vector_page);
1729 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1730 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1731 L1_C_DOM(pmap_domain(pm));
1732 } else
1733 pm->pm_pl1vec = NULL;
1734 #endif
1735 }
1736
1737 #ifdef PMAP_CACHE_VIVT
1738 /*
1739 * Since we have a virtually indexed cache, we may need to inhibit caching if
1740 * there is more than one mapping and at least one of them is writable.
1741 * Since we purge the cache on every context switch, we only need to check for
1742 * other mappings within the same pmap, or kernel_pmap.
1743 * This function is also called when a page is unmapped, to possibly reenable
1744 * caching on any remaining mappings.
1745 *
1746 * The code implements the following logic, where:
1747 *
1748 * KW = # of kernel read/write pages
1749 * KR = # of kernel read only pages
1750 * UW = # of user read/write pages
1751 * UR = # of user read only pages
1752 *
1753 * KC = kernel mapping is cacheable
1754 * UC = user mapping is cacheable
1755 *
1756 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1757 * +---------------------------------------------
1758 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1759 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1760 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1761 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1762 */
1763
1764 static const int pmap_vac_flags[4][4] = {
1765 {-1, 0, 0, PVF_KNC},
1766 {0, 0, PVF_NC, PVF_NC},
1767 {0, PVF_NC, PVF_NC, PVF_NC},
1768 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1769 };
1770
1771 static inline int
1772 pmap_get_vac_flags(const struct vm_page_md *md)
1773 {
1774 int kidx, uidx;
1775
1776 kidx = 0;
1777 if (md->kro_mappings || md->krw_mappings > 1)
1778 kidx |= 1;
1779 if (md->krw_mappings)
1780 kidx |= 2;
1781
1782 uidx = 0;
1783 if (md->uro_mappings || md->urw_mappings > 1)
1784 uidx |= 1;
1785 if (md->urw_mappings)
1786 uidx |= 2;
1787
1788 return (pmap_vac_flags[uidx][kidx]);
1789 }
1790
1791 static inline void
1792 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1793 {
1794 int nattr;
1795
1796 nattr = pmap_get_vac_flags(md);
1797
1798 if (nattr < 0) {
1799 md->pvh_attrs &= ~PVF_NC;
1800 return;
1801 }
1802
1803 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1804 return;
1805
1806 if (pm == pmap_kernel())
1807 pmap_vac_me_kpmap(md, pa, pm, va);
1808 else
1809 pmap_vac_me_user(md, pa, pm, va);
1810
1811 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1812 }
1813
1814 static void
1815 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1816 {
1817 u_int u_cacheable, u_entries;
1818 struct pv_entry *pv;
1819 pmap_t last_pmap = pm;
1820
1821 /*
1822 * Pass one, see if there are both kernel and user pmaps for
1823 * this page. Calculate whether there are user-writable or
1824 * kernel-writable pages.
1825 */
1826 u_cacheable = 0;
1827 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1828 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1829 u_cacheable++;
1830 }
1831
1832 u_entries = md->urw_mappings + md->uro_mappings;
1833
1834 /*
1835 * We know we have just been updating a kernel entry, so if
1836 * all user pages are already cacheable, then there is nothing
1837 * further to do.
1838 */
1839 if (md->k_mappings == 0 && u_cacheable == u_entries)
1840 return;
1841
1842 if (u_entries) {
1843 /*
1844 * Scan over the list again, for each entry, if it
1845 * might not be set correctly, call pmap_vac_me_user
1846 * to recalculate the settings.
1847 */
1848 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1849 /*
1850 * We know kernel mappings will get set
1851 * correctly in other calls. We also know
1852 * that if the pmap is the same as last_pmap
1853 * then we've just handled this entry.
1854 */
1855 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1856 continue;
1857
1858 /*
1859 * If there are kernel entries and this page
1860 * is writable but non-cacheable, then we can
1861 * skip this entry also.
1862 */
1863 if (md->k_mappings &&
1864 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1865 (PVF_NC | PVF_WRITE))
1866 continue;
1867
1868 /*
1869 * Similarly if there are no kernel-writable
1870 * entries and the page is already
1871 * read-only/cacheable.
1872 */
1873 if (md->krw_mappings == 0 &&
1874 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1875 continue;
1876
1877 /*
1878 * For some of the remaining cases, we know
1879 * that we must recalculate, but for others we
1880 * can't tell if they are correct or not, so
1881 * we recalculate anyway.
1882 */
1883 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1884 }
1885
1886 if (md->k_mappings == 0)
1887 return;
1888 }
1889
1890 pmap_vac_me_user(md, pa, pm, va);
1891 }
1892
1893 static void
1894 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1895 {
1896 pmap_t kpmap = pmap_kernel();
1897 struct pv_entry *pv, *npv = NULL;
1898 u_int entries = 0;
1899 u_int writable = 0;
1900 u_int cacheable_entries = 0;
1901 u_int kern_cacheable = 0;
1902 u_int other_writable = 0;
1903
1904 /*
1905 * Count mappings and writable mappings in this pmap.
1906 * Include kernel mappings as part of our own.
1907 * Keep a pointer to the first one.
1908 */
1909 npv = NULL;
1910 KASSERT(pmap_page_locked_p(md));
1911 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1912 /* Count mappings in the same pmap */
1913 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1914 if (entries++ == 0)
1915 npv = pv;
1916
1917 /* Cacheable mappings */
1918 if ((pv->pv_flags & PVF_NC) == 0) {
1919 cacheable_entries++;
1920 if (kpmap == pv->pv_pmap)
1921 kern_cacheable++;
1922 }
1923
1924 /* Writable mappings */
1925 if (pv->pv_flags & PVF_WRITE)
1926 ++writable;
1927 } else
1928 if (pv->pv_flags & PVF_WRITE)
1929 other_writable = 1;
1930 }
1931
1932 /*
1933 * Enable or disable caching as necessary.
1934 * Note: the first entry might be part of the kernel pmap,
1935 * so we can't assume this is indicative of the state of the
1936 * other (maybe non-kpmap) entries.
1937 */
1938 if ((entries > 1 && writable) ||
1939 (entries > 0 && pm == kpmap && other_writable)) {
1940 if (cacheable_entries == 0) {
1941 return;
1942 }
1943
1944 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1945 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1946 (pv->pv_flags & PVF_NC))
1947 continue;
1948
1949 pv->pv_flags |= PVF_NC;
1950
1951 struct l2_bucket * const l2b
1952 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1953 KASSERTMSG(l2b != NULL, "%#lx", va);
1954 pt_entry_t * const ptep
1955 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1956 const pt_entry_t opte = *ptep;
1957 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1958
1959 if ((va != pv->pv_va || pm != pv->pv_pmap)
1960 && l2pte_valid_p(npte)) {
1961 #ifdef PMAP_CACHE_VIVT
1962 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1963 true, pv->pv_flags);
1964 #endif
1965 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1966 pv->pv_flags);
1967 }
1968
1969 l2pte_set(ptep, npte, opte);
1970 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1971 }
1972 cpu_cpwait();
1973 } else
1974 if (entries > cacheable_entries) {
1975 /*
1976 * Turn cacheing back on for some pages. If it is a kernel
1977 * page, only do so if there are no other writable pages.
1978 */
1979 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1980 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1981 (kpmap != pv->pv_pmap || other_writable)))
1982 continue;
1983
1984 pv->pv_flags &= ~PVF_NC;
1985
1986 struct l2_bucket * const l2b
1987 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1988 KASSERTMSG(l2b != NULL, "%#lx", va);
1989 pt_entry_t * const ptep
1990 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1991 const pt_entry_t opte = *ptep;
1992 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1993 | pte_l2_s_cache_mode;
1994
1995 if (l2pte_valid_p(opte)) {
1996 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1997 pv->pv_flags);
1998 }
1999
2000 l2pte_set(ptep, npte, opte);
2001 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2002 }
2003 }
2004 }
2005 #endif
2006
2007 #ifdef PMAP_CACHE_VIPT
2008 static void
2009 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2010 {
2011 #ifndef ARM_MMU_EXTENDED
2012 struct pv_entry *pv;
2013 vaddr_t tst_mask;
2014 bool bad_alias;
2015 const u_int
2016 rw_mappings = md->urw_mappings + md->krw_mappings,
2017 ro_mappings = md->uro_mappings + md->kro_mappings;
2018
2019 /* do we need to do anything? */
2020 if (arm_cache_prefer_mask == 0)
2021 return;
2022
2023 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2024 md, pm, va));
2025
2026 KASSERT(!va || pm);
2027 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2028
2029 /* Already a conflict? */
2030 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2031 /* just an add, things are already non-cached */
2032 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2033 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2034 bad_alias = false;
2035 if (va) {
2036 PMAPCOUNT(vac_color_none);
2037 bad_alias = true;
2038 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2039 goto fixup;
2040 }
2041 pv = SLIST_FIRST(&md->pvh_list);
2042 /* the list can't be empty because it would be cachable */
2043 if (md->pvh_attrs & PVF_KMPAGE) {
2044 tst_mask = md->pvh_attrs;
2045 } else {
2046 KASSERT(pv);
2047 tst_mask = pv->pv_va;
2048 pv = SLIST_NEXT(pv, pv_link);
2049 }
2050 /*
2051 * Only check for a bad alias if we have writable mappings.
2052 */
2053 tst_mask &= arm_cache_prefer_mask;
2054 if (rw_mappings > 0) {
2055 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2056 /* if there's a bad alias, stop checking. */
2057 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2058 bad_alias = true;
2059 }
2060 md->pvh_attrs |= PVF_WRITE;
2061 if (!bad_alias)
2062 md->pvh_attrs |= PVF_DIRTY;
2063 } else {
2064 /*
2065 * We have only read-only mappings. Let's see if there
2066 * are multiple colors in use or if we mapped a KMPAGE.
2067 * If the latter, we have a bad alias. If the former,
2068 * we need to remember that.
2069 */
2070 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2071 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2072 if (md->pvh_attrs & PVF_KMPAGE)
2073 bad_alias = true;
2074 break;
2075 }
2076 }
2077 md->pvh_attrs &= ~PVF_WRITE;
2078 /*
2079 * No KMPAGE and we exited early, so we must have
2080 * multiple color mappings.
2081 */
2082 if (!bad_alias && pv != NULL)
2083 md->pvh_attrs |= PVF_MULTCLR;
2084 }
2085
2086 /* If no conflicting colors, set everything back to cached */
2087 if (!bad_alias) {
2088 #ifdef DEBUG
2089 if ((md->pvh_attrs & PVF_WRITE)
2090 || ro_mappings < 2) {
2091 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2092 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2093 }
2094 #endif
2095 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2096 md->pvh_attrs |= tst_mask | PVF_COLORED;
2097 /*
2098 * Restore DIRTY bit if page is modified
2099 */
2100 if (md->pvh_attrs & PVF_DMOD)
2101 md->pvh_attrs |= PVF_DIRTY;
2102 PMAPCOUNT(vac_color_restore);
2103 } else {
2104 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2105 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2106 }
2107 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2108 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2109 } else if (!va) {
2110 KASSERT(pmap_is_page_colored_p(md));
2111 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2112 || (md->pvh_attrs & PVF_DIRTY));
2113 if (rw_mappings == 0) {
2114 md->pvh_attrs &= ~PVF_WRITE;
2115 if (ro_mappings == 1
2116 && (md->pvh_attrs & PVF_MULTCLR)) {
2117 /*
2118 * If this is the last readonly mapping
2119 * but it doesn't match the current color
2120 * for the page, change the current color
2121 * to match this last readonly mapping.
2122 */
2123 pv = SLIST_FIRST(&md->pvh_list);
2124 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2125 & arm_cache_prefer_mask;
2126 if (tst_mask) {
2127 md->pvh_attrs ^= tst_mask;
2128 PMAPCOUNT(vac_color_change);
2129 }
2130 }
2131 }
2132 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2133 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2134 return;
2135 } else if (!pmap_is_page_colored_p(md)) {
2136 /* not colored so we just use its color */
2137 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2138 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2139 PMAPCOUNT(vac_color_new);
2140 md->pvh_attrs &= PAGE_SIZE - 1;
2141 md->pvh_attrs |= PVF_COLORED
2142 | (va & arm_cache_prefer_mask)
2143 | (rw_mappings > 0 ? PVF_WRITE : 0);
2144 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2145 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2146 return;
2147 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2148 bad_alias = false;
2149 if (rw_mappings > 0) {
2150 /*
2151 * We now have writeable mappings and if we have
2152 * readonly mappings in more than once color, we have
2153 * an aliasing problem. Regardless mark the page as
2154 * writeable.
2155 */
2156 if (md->pvh_attrs & PVF_MULTCLR) {
2157 if (ro_mappings < 2) {
2158 /*
2159 * If we only have less than two
2160 * read-only mappings, just flush the
2161 * non-primary colors from the cache.
2162 */
2163 pmap_flush_page(md, pa,
2164 PMAP_FLUSH_SECONDARY);
2165 } else {
2166 bad_alias = true;
2167 }
2168 }
2169 md->pvh_attrs |= PVF_WRITE;
2170 }
2171 /* If no conflicting colors, set everything back to cached */
2172 if (!bad_alias) {
2173 #ifdef DEBUG
2174 if (rw_mappings > 0
2175 || (md->pvh_attrs & PMAP_KMPAGE)) {
2176 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2177 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2178 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2179 }
2180 #endif
2181 if (SLIST_EMPTY(&md->pvh_list))
2182 PMAPCOUNT(vac_color_reuse);
2183 else
2184 PMAPCOUNT(vac_color_ok);
2185
2186 /* matching color, just return */
2187 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2188 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2189 return;
2190 }
2191 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2192 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2193
2194 /* color conflict. evict from cache. */
2195
2196 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2197 md->pvh_attrs &= ~PVF_COLORED;
2198 md->pvh_attrs |= PVF_NC;
2199 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2200 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2201 PMAPCOUNT(vac_color_erase);
2202 } else if (rw_mappings == 0
2203 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2204 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2205
2206 /*
2207 * If the page has dirty cache lines, clean it.
2208 */
2209 if (md->pvh_attrs & PVF_DIRTY)
2210 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2211
2212 /*
2213 * If this is the first remapping (we know that there are no
2214 * writeable mappings), then this is a simple color change.
2215 * Otherwise this is a seconary r/o mapping, which means
2216 * we don't have to do anything.
2217 */
2218 if (ro_mappings == 1) {
2219 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2220 md->pvh_attrs &= PAGE_SIZE - 1;
2221 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2222 PMAPCOUNT(vac_color_change);
2223 } else {
2224 PMAPCOUNT(vac_color_blind);
2225 }
2226 md->pvh_attrs |= PVF_MULTCLR;
2227 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2228 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2229 return;
2230 } else {
2231 if (rw_mappings > 0)
2232 md->pvh_attrs |= PVF_WRITE;
2233
2234 /* color conflict. evict from cache. */
2235 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2236
2237 /* the list can't be empty because this was a enter/modify */
2238 pv = SLIST_FIRST(&md->pvh_list);
2239 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2240 KASSERT(pv);
2241 /*
2242 * If there's only one mapped page, change color to the
2243 * page's new color and return. Restore the DIRTY bit
2244 * that was erased by pmap_flush_page.
2245 */
2246 if (SLIST_NEXT(pv, pv_link) == NULL) {
2247 md->pvh_attrs &= PAGE_SIZE - 1;
2248 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2249 if (md->pvh_attrs & PVF_DMOD)
2250 md->pvh_attrs |= PVF_DIRTY;
2251 PMAPCOUNT(vac_color_change);
2252 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2253 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2254 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2255 return;
2256 }
2257 }
2258 bad_alias = true;
2259 md->pvh_attrs &= ~PVF_COLORED;
2260 md->pvh_attrs |= PVF_NC;
2261 PMAPCOUNT(vac_color_erase);
2262 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2263 }
2264
2265 fixup:
2266 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2267
2268 /*
2269 * Turn cacheing on/off for all pages.
2270 */
2271 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2272 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2273 pv->pv_va);
2274 KASSERTMSG(l2b != NULL, "%#lx", va);
2275 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2276 const pt_entry_t opte = *ptep;
2277 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2278 if (bad_alias) {
2279 pv->pv_flags |= PVF_NC;
2280 } else {
2281 pv->pv_flags &= ~PVF_NC;
2282 npte |= pte_l2_s_cache_mode;
2283 }
2284
2285 if (opte == npte) /* only update is there's a change */
2286 continue;
2287
2288 if (l2pte_valid_p(npte)) {
2289 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2290 }
2291
2292 l2pte_set(ptep, npte, opte);
2293 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2294 }
2295 #endif /* !ARM_MMU_EXTENDED */
2296 }
2297 #endif /* PMAP_CACHE_VIPT */
2298
2299
2300 /*
2301 * Modify pte bits for all ptes corresponding to the given physical address.
2302 * We use `maskbits' rather than `clearbits' because we're always passing
2303 * constants and the latter would require an extra inversion at run-time.
2304 */
2305 static void
2306 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2307 {
2308 struct pv_entry *pv;
2309 #ifdef PMAP_CACHE_VIPT
2310 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2311 #ifdef ARM_MMU_EXTENDED
2312 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2313 #else
2314 const u_int execbits = 0;
2315 bool need_vac_me_harder = false;
2316 bool need_syncicache = false;
2317 #endif
2318 #else
2319 const u_int execbits = 0;
2320 #endif
2321
2322 NPDEBUG(PDB_BITS,
2323 printf("pmap_clearbit: md %p mask 0x%x\n",
2324 md, maskbits));
2325
2326 #ifdef PMAP_CACHE_VIPT
2327 /*
2328 * If we might want to sync the I-cache and we've modified it,
2329 * then we know we definitely need to sync or discard it.
2330 */
2331 if (want_syncicache) {
2332 #ifdef ARM_MMU_EXTENDED
2333 if (md->pvh_attrs & PVF_MOD)
2334 md->pvh_attrs &= ~PVF_EXEC;
2335 #else
2336 need_syncicache = md->pvh_attrs & PVF_MOD;
2337 #endif
2338 }
2339 #endif
2340 KASSERT(pmap_page_locked_p(md));
2341
2342 /*
2343 * Clear saved attributes (modify, reference)
2344 */
2345 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2346
2347 if (SLIST_EMPTY(&md->pvh_list)) {
2348 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2349 if (need_syncicache) {
2350 /*
2351 * No one has it mapped, so just discard it. The next
2352 * exec remapping will cause it to be synced.
2353 */
2354 md->pvh_attrs &= ~PVF_EXEC;
2355 PMAPCOUNT(exec_discarded_clearbit);
2356 }
2357 #endif
2358 return;
2359 }
2360
2361 /*
2362 * Loop over all current mappings setting/clearing as appropos
2363 */
2364 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2365 pmap_t pm = pv->pv_pmap;
2366 const vaddr_t va = pv->pv_va;
2367 const u_int oflags = pv->pv_flags;
2368 #ifndef ARM_MMU_EXTENDED
2369 /*
2370 * Kernel entries are unmanaged and as such not to be changed.
2371 */
2372 if (PV_IS_KENTRY_P(oflags))
2373 continue;
2374 #endif
2375 pv->pv_flags &= ~maskbits;
2376
2377 pmap_release_page_lock(md);
2378 pmap_acquire_pmap_lock(pm);
2379
2380 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2381 if (l2b == NULL) {
2382 pmap_release_pmap_lock(pm);
2383 pmap_acquire_page_lock(md);
2384 continue;
2385 }
2386 KASSERTMSG(l2b != NULL, "%#lx", va);
2387
2388 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2389 const pt_entry_t opte = *ptep;
2390 pt_entry_t npte = opte | execbits;
2391
2392 #ifdef ARM_MMU_EXTENDED
2393 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2394 #endif
2395
2396 NPDEBUG(PDB_BITS,
2397 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2398 __func__, pv, pm, va, oflags));
2399
2400 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2401 #ifdef PMAP_CACHE_VIVT
2402 if ((oflags & PVF_NC)) {
2403 /*
2404 * Entry is not cacheable:
2405 *
2406 * Don't turn caching on again if this is a
2407 * modified emulation. This would be
2408 * inconsitent with the settings created by
2409 * pmap_vac_me_harder(). Otherwise, it's safe
2410 * to re-enable cacheing.
2411 *
2412 * There's no need to call pmap_vac_me_harder()
2413 * here: all pages are losing their write
2414 * permission.
2415 */
2416 if (maskbits & PVF_WRITE) {
2417 npte |= pte_l2_s_cache_mode;
2418 pv->pv_flags &= ~PVF_NC;
2419 }
2420 } else
2421 if (l2pte_writable_p(opte)) {
2422 /*
2423 * Entry is writable/cacheable: check if pmap
2424 * is current if it is flush it, otherwise it
2425 * won't be in the cache
2426 */
2427 pmap_cache_wbinv_page(pm, va,
2428 (maskbits & PVF_REF) != 0,
2429 oflags|PVF_WRITE);
2430 }
2431 #endif
2432
2433 /* make the pte read only */
2434 npte = l2pte_set_readonly(npte);
2435
2436 pmap_acquire_page_lock(md);
2437 #ifdef MULTIPROCESSOR
2438 pv = pmap_find_pv(md, pm, va);
2439 #endif
2440 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2441 /*
2442 * Keep alias accounting up to date
2443 */
2444 if (pm == pmap_kernel()) {
2445 md->krw_mappings--;
2446 md->kro_mappings++;
2447 } else {
2448 md->urw_mappings--;
2449 md->uro_mappings++;
2450 }
2451 #ifdef PMAP_CACHE_VIPT
2452 if (arm_cache_prefer_mask != 0) {
2453 if (md->urw_mappings + md->krw_mappings == 0) {
2454 md->pvh_attrs &= ~PVF_WRITE;
2455 } else {
2456 PMAP_VALIDATE_MD_PAGE(md);
2457 }
2458 }
2459 #ifndef ARM_MMU_EXTENDED
2460 if (want_syncicache)
2461 need_syncicache = true;
2462 need_vac_me_harder = true;
2463 #endif
2464 #endif /* PMAP_CACHE_VIPT */
2465 }
2466 pmap_release_page_lock(md);
2467 }
2468
2469 if (maskbits & PVF_REF) {
2470 if (true
2471 #ifndef ARM_MMU_EXTENDED
2472 && (oflags & PVF_NC) == 0
2473 #endif
2474 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2475 && l2pte_valid_p(npte)) {
2476 #ifdef PMAP_CACHE_VIVT
2477 /*
2478 * Check npte here; we may have already
2479 * done the wbinv above, and the validity
2480 * of the PTE is the same for opte and
2481 * npte.
2482 */
2483 pmap_cache_wbinv_page(pm, va, true, oflags);
2484 #endif
2485 }
2486
2487 /*
2488 * Make the PTE invalid so that we will take a
2489 * page fault the next time the mapping is
2490 * referenced.
2491 */
2492 npte &= ~L2_TYPE_MASK;
2493 npte |= L2_TYPE_INV;
2494 }
2495
2496 if (npte != opte) {
2497 l2pte_reset(ptep);
2498 PTE_SYNC(ptep);
2499
2500 /* Flush the TLB entry if a current pmap. */
2501 pmap_tlb_flush_SE(pm, va, oflags);
2502
2503 l2pte_set(ptep, npte, 0);
2504 PTE_SYNC(ptep);
2505 }
2506
2507 pmap_release_pmap_lock(pm);
2508 pmap_acquire_page_lock(md);
2509
2510 NPDEBUG(PDB_BITS,
2511 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2512 pm, va, opte, npte));
2513 }
2514
2515 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2516 /*
2517 * If we need to sync the I-cache and we haven't done it yet, do it.
2518 */
2519 if (need_syncicache) {
2520 pmap_release_page_lock(md);
2521 pmap_syncicache_page(md, pa);
2522 pmap_acquire_page_lock(md);
2523 PMAPCOUNT(exec_synced_clearbit);
2524 }
2525
2526 /*
2527 * If we are changing this to read-only, we need to call vac_me_harder
2528 * so we can change all the read-only pages to cacheable. We pretend
2529 * this as a page deletion.
2530 */
2531 if (need_vac_me_harder) {
2532 if (md->pvh_attrs & PVF_NC)
2533 pmap_vac_me_harder(md, pa, NULL, 0);
2534 }
2535 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
2536 }
2537
2538 /*
2539 * pmap_clean_page()
2540 *
2541 * This is a local function used to work out the best strategy to clean
2542 * a single page referenced by its entry in the PV table. It's used by
2543 * pmap_copy_page, pmap_zero page and maybe some others later on.
2544 *
2545 * Its policy is effectively:
2546 * o If there are no mappings, we don't bother doing anything with the cache.
2547 * o If there is one mapping, we clean just that page.
2548 * o If there are multiple mappings, we clean the entire cache.
2549 *
2550 * So that some functions can be further optimised, it returns 0 if it didn't
2551 * clean the entire cache, or 1 if it did.
2552 *
2553 * XXX One bug in this routine is that if the pv_entry has a single page
2554 * mapped at 0x00000000 a whole cache clean will be performed rather than
2555 * just the 1 page. Since this should not occur in everyday use and if it does
2556 * it will just result in not the most efficient clean for the page.
2557 */
2558 #ifdef PMAP_CACHE_VIVT
2559 static bool
2560 pmap_clean_page(struct vm_page_md *md, bool is_src)
2561 {
2562 struct pv_entry *pv;
2563 pmap_t pm_to_clean = NULL;
2564 bool cache_needs_cleaning = false;
2565 vaddr_t page_to_clean = 0;
2566 u_int flags = 0;
2567
2568 /*
2569 * Since we flush the cache each time we change to a different
2570 * user vmspace, we only need to flush the page if it is in the
2571 * current pmap.
2572 */
2573 KASSERT(pmap_page_locked_p(md));
2574 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2575 if (pmap_is_current(pv->pv_pmap)) {
2576 flags |= pv->pv_flags;
2577 /*
2578 * The page is mapped non-cacheable in
2579 * this map. No need to flush the cache.
2580 */
2581 if (pv->pv_flags & PVF_NC) {
2582 #ifdef DIAGNOSTIC
2583 KASSERT(!cache_needs_cleaning);
2584 #endif
2585 break;
2586 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2587 continue;
2588 if (cache_needs_cleaning) {
2589 page_to_clean = 0;
2590 break;
2591 } else {
2592 page_to_clean = pv->pv_va;
2593 pm_to_clean = pv->pv_pmap;
2594 }
2595 cache_needs_cleaning = true;
2596 }
2597 }
2598
2599 if (page_to_clean) {
2600 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2601 !is_src, flags | PVF_REF);
2602 } else if (cache_needs_cleaning) {
2603 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2604
2605 pmap_cache_wbinv_all(pm, flags);
2606 return true;
2607 }
2608 return false;
2609 }
2610 #endif
2611
2612 #ifdef PMAP_CACHE_VIPT
2613 /*
2614 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2615 * right cache alias to make sure we flush the right stuff.
2616 */
2617 void
2618 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2619 {
2620 pmap_t kpm = pmap_kernel();
2621 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2622 ? PAGE_SIZE
2623 : arm_pcache.icache_way_size;
2624
2625 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2626 md, md->pvh_attrs));
2627 /*
2628 * No need to clean the page if it's non-cached.
2629 */
2630 #ifndef ARM_MMU_EXTENDED
2631 if (md->pvh_attrs & PVF_NC)
2632 return;
2633 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2634 #endif
2635
2636 pt_entry_t * const ptep = cpu_cdst_pte(0);
2637 const vaddr_t dstp = cpu_cdstp(0);
2638 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2639 if (way_size <= PAGE_SIZE) {
2640 bool ok = false;
2641 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2642 if (ok) {
2643 cpu_icache_sync_range(vdstp, way_size);
2644 return;
2645 }
2646 }
2647 #endif
2648
2649 /*
2650 * We don't worry about the color of the exec page, we map the
2651 * same page to pages in the way and then do the icache_sync on
2652 * the entire way making sure we are cleaned.
2653 */
2654 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2655 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2656
2657 for (size_t i = 0, j = 0; i < way_size;
2658 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2659 l2pte_reset(ptep + j);
2660 PTE_SYNC(ptep + j);
2661
2662 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2663 /*
2664 * Set up a PTE with to flush these cache lines.
2665 */
2666 l2pte_set(ptep + j, npte, 0);
2667 }
2668 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2669
2670 /*
2671 * Flush it.
2672 */
2673 cpu_icache_sync_range(dstp, way_size);
2674
2675 for (size_t i = 0, j = 0; i < way_size;
2676 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2677 /*
2678 * Unmap the page(s).
2679 */
2680 l2pte_reset(ptep + j);
2681 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2682 }
2683 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2684
2685 md->pvh_attrs |= PVF_EXEC;
2686 PMAPCOUNT(exec_synced);
2687 }
2688
2689 #ifndef ARM_MMU_EXTENDED
2690 void
2691 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2692 {
2693 vsize_t va_offset, end_va;
2694 bool wbinv_p;
2695
2696 if (arm_cache_prefer_mask == 0)
2697 return;
2698
2699 switch (flush) {
2700 case PMAP_FLUSH_PRIMARY:
2701 if (md->pvh_attrs & PVF_MULTCLR) {
2702 va_offset = 0;
2703 end_va = arm_cache_prefer_mask;
2704 md->pvh_attrs &= ~PVF_MULTCLR;
2705 PMAPCOUNT(vac_flush_lots);
2706 } else {
2707 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2708 end_va = va_offset;
2709 PMAPCOUNT(vac_flush_one);
2710 }
2711 /*
2712 * Mark that the page is no longer dirty.
2713 */
2714 md->pvh_attrs &= ~PVF_DIRTY;
2715 wbinv_p = true;
2716 break;
2717 case PMAP_FLUSH_SECONDARY:
2718 va_offset = 0;
2719 end_va = arm_cache_prefer_mask;
2720 wbinv_p = true;
2721 md->pvh_attrs &= ~PVF_MULTCLR;
2722 PMAPCOUNT(vac_flush_lots);
2723 break;
2724 case PMAP_CLEAN_PRIMARY:
2725 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2726 end_va = va_offset;
2727 wbinv_p = false;
2728 /*
2729 * Mark that the page is no longer dirty.
2730 */
2731 if ((md->pvh_attrs & PVF_DMOD) == 0)
2732 md->pvh_attrs &= ~PVF_DIRTY;
2733 PMAPCOUNT(vac_clean_one);
2734 break;
2735 default:
2736 return;
2737 }
2738
2739 KASSERT(!(md->pvh_attrs & PVF_NC));
2740
2741 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2742 md, md->pvh_attrs));
2743
2744 const size_t scache_line_size = arm_scache.dcache_line_size;
2745
2746 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2747 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2748 const vaddr_t dstp = cpu_cdstp(va_offset);
2749 const pt_entry_t opte = *ptep;
2750
2751 if (flush == PMAP_FLUSH_SECONDARY
2752 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2753 continue;
2754
2755 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2756 /*
2757 * Set up a PTE with the right coloring to flush
2758 * existing cache entries.
2759 */
2760 const pt_entry_t npte = L2_S_PROTO
2761 | pa
2762 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2763 | pte_l2_s_cache_mode;
2764 l2pte_set(ptep, npte, opte);
2765 PTE_SYNC(ptep);
2766
2767 /*
2768 * Flush it. Make sure to flush secondary cache too since
2769 * bus_dma will ignore uncached pages.
2770 */
2771 if (scache_line_size != 0) {
2772 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2773 if (wbinv_p) {
2774 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2775 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2776 } else {
2777 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2778 }
2779 } else {
2780 if (wbinv_p) {
2781 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2782 } else {
2783 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2784 }
2785 }
2786
2787 /*
2788 * Restore the page table entry since we might have interrupted
2789 * pmap_zero_page or pmap_copy_page which was already using
2790 * this pte.
2791 */
2792 if (opte) {
2793 l2pte_set(ptep, opte, npte);
2794 } else {
2795 l2pte_reset(ptep);
2796 }
2797 PTE_SYNC(ptep);
2798 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2799 }
2800 }
2801 #endif /* ARM_MMU_EXTENDED */
2802 #endif /* PMAP_CACHE_VIPT */
2803
2804 /*
2805 * Routine: pmap_page_remove
2806 * Function:
2807 * Removes this physical page from
2808 * all physical maps in which it resides.
2809 * Reflects back modify bits to the pager.
2810 */
2811 static void
2812 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2813 {
2814 struct l2_bucket *l2b;
2815 struct pv_entry *pv;
2816 pt_entry_t *ptep;
2817 #ifndef ARM_MMU_EXTENDED
2818 bool flush = false;
2819 #endif
2820 u_int flags = 0;
2821
2822 NPDEBUG(PDB_FOLLOW,
2823 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2824 pa));
2825
2826 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2827 pmap_acquire_page_lock(md);
2828 if (*pvp == NULL) {
2829 #ifdef PMAP_CACHE_VIPT
2830 /*
2831 * We *know* the page contents are about to be replaced.
2832 * Discard the exec contents
2833 */
2834 if (PV_IS_EXEC_P(md->pvh_attrs))
2835 PMAPCOUNT(exec_discarded_page_protect);
2836 md->pvh_attrs &= ~PVF_EXEC;
2837 PMAP_VALIDATE_MD_PAGE(md);
2838 #endif
2839 pmap_release_page_lock(md);
2840 return;
2841 }
2842 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2843 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2844 #endif
2845
2846 /*
2847 * Clear alias counts
2848 */
2849 #ifdef PMAP_CACHE_VIVT
2850 md->k_mappings = 0;
2851 #endif
2852 md->urw_mappings = md->uro_mappings = 0;
2853
2854 #ifdef PMAP_CACHE_VIVT
2855 pmap_clean_page(md, false);
2856 #endif
2857
2858 while ((pv = *pvp) != NULL) {
2859 pmap_t pm = pv->pv_pmap;
2860 #ifndef ARM_MMU_EXTENDED
2861 if (flush == false && pmap_is_current(pm))
2862 flush = true;
2863 #endif
2864
2865 if (pm == pmap_kernel()) {
2866 #ifdef PMAP_CACHE_VIPT
2867 /*
2868 * If this was unmanaged mapping, it must be preserved.
2869 * Move it back on the list and advance the end-of-list
2870 * pointer.
2871 */
2872 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2873 *pvp = pv;
2874 pvp = &SLIST_NEXT(pv, pv_link);
2875 continue;
2876 }
2877 if (pv->pv_flags & PVF_WRITE)
2878 md->krw_mappings--;
2879 else
2880 md->kro_mappings--;
2881 #endif
2882 PMAPCOUNT(kernel_unmappings);
2883 }
2884 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2885 PMAPCOUNT(unmappings);
2886
2887 pmap_release_page_lock(md);
2888 pmap_acquire_pmap_lock(pm);
2889
2890 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2891 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2892
2893 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2894
2895 /*
2896 * Update statistics
2897 */
2898 --pm->pm_stats.resident_count;
2899
2900 /* Wired bit */
2901 if (pv->pv_flags & PVF_WIRED)
2902 --pm->pm_stats.wired_count;
2903
2904 flags |= pv->pv_flags;
2905
2906 /*
2907 * Invalidate the PTEs.
2908 */
2909 l2pte_reset(ptep);
2910 PTE_SYNC_CURRENT(pm, ptep);
2911
2912 #ifdef ARM_MMU_EXTENDED
2913 /* XXXNH pmap_tlb_flush_SE()? */
2914 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2915 #endif
2916
2917 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2918
2919 pmap_release_pmap_lock(pm);
2920
2921 pool_put(&pmap_pv_pool, pv);
2922 pmap_acquire_page_lock(md);
2923 #ifdef MULTIPROCESSOR
2924 /*
2925 * Restart of the beginning of the list.
2926 */
2927 pvp = &SLIST_FIRST(&md->pvh_list);
2928 #endif
2929 }
2930 /*
2931 * if we reach the end of the list and there are still mappings, they
2932 * might be able to be cached now. And they must be kernel mappings.
2933 */
2934 if (!SLIST_EMPTY(&md->pvh_list)) {
2935 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2936 }
2937
2938 #ifdef PMAP_CACHE_VIPT
2939 /*
2940 * Its EXEC cache is now gone.
2941 */
2942 if (PV_IS_EXEC_P(md->pvh_attrs))
2943 PMAPCOUNT(exec_discarded_page_protect);
2944 md->pvh_attrs &= ~PVF_EXEC;
2945 KASSERT(md->urw_mappings == 0);
2946 KASSERT(md->uro_mappings == 0);
2947 #ifndef ARM_MMU_EXTENDED
2948 if (arm_cache_prefer_mask != 0) {
2949 if (md->krw_mappings == 0)
2950 md->pvh_attrs &= ~PVF_WRITE;
2951 PMAP_VALIDATE_MD_PAGE(md);
2952 }
2953 #endif /* ARM_MMU_EXTENDED */
2954 #endif /* PMAP_CACHE_VIPT */
2955 pmap_release_page_lock(md);
2956
2957 #ifndef ARM_MMU_EXTENDED
2958 if (flush) {
2959 /*
2960 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2961 * would need a subsequent call to pmap_update() to ensure
2962 * curpm->pm_cstate.cs_all is reset. Our callers are not
2963 * required to do that (see pmap(9)), so we can't modify
2964 * the current pmap's state.
2965 */
2966 if (PV_BEEN_EXECD(flags))
2967 cpu_tlb_flushID();
2968 else
2969 cpu_tlb_flushD();
2970 }
2971 cpu_cpwait();
2972 #endif /* ARM_MMU_EXTENDED */
2973 }
2974
2975 /*
2976 * pmap_t pmap_create(void)
2977 *
2978 * Create a new pmap structure from scratch.
2979 */
2980 pmap_t
2981 pmap_create(void)
2982 {
2983 pmap_t pm;
2984
2985 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2986
2987 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2988 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2989 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2990
2991 pm->pm_stats.wired_count = 0;
2992 pm->pm_stats.resident_count = 1;
2993 #ifdef ARM_MMU_EXTENDED
2994 #ifdef MULTIPROCESSOR
2995 kcpuset_create(&pm->pm_active, true);
2996 kcpuset_create(&pm->pm_onproc, true);
2997 #endif
2998 #else
2999 pm->pm_cstate.cs_all = 0;
3000 #endif
3001 pmap_alloc_l1(pm);
3002
3003 /*
3004 * Note: The pool cache ensures that the pm_l2[] array is already
3005 * initialised to zero.
3006 */
3007
3008 pmap_pinit(pm);
3009
3010 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
3011
3012 return (pm);
3013 }
3014
3015 u_int
3016 arm32_mmap_flags(paddr_t pa)
3017 {
3018 /*
3019 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3020 * and we're using the upper bits in page numbers to pass flags around
3021 * so we might as well use the same bits
3022 */
3023 return (u_int)pa & PMAP_MD_MASK;
3024 }
3025 /*
3026 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3027 * u_int flags)
3028 *
3029 * Insert the given physical page (p) at
3030 * the specified virtual address (v) in the
3031 * target physical map with the protection requested.
3032 *
3033 * NB: This is the only routine which MAY NOT lazy-evaluate
3034 * or lose information. That is, this routine must actually
3035 * insert this page into the given map NOW.
3036 */
3037 int
3038 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3039 {
3040 struct l2_bucket *l2b;
3041 struct vm_page *pg, *opg;
3042 u_int nflags;
3043 u_int oflags;
3044 const bool kpm_p = (pm == pmap_kernel());
3045 #ifdef ARM_HAS_VBAR
3046 const bool vector_page_p = false;
3047 #else
3048 const bool vector_page_p = (va == vector_page);
3049 #endif
3050
3051 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3052
3053 UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
3054 pm, va, pa, prot);
3055 UVMHIST_LOG(maphist, " flag %#x", flags, 0, 0, 0);
3056
3057 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3058 KDASSERT(((va | pa) & PGOFSET) == 0);
3059
3060 /*
3061 * Get a pointer to the page. Later on in this function, we
3062 * test for a managed page by checking pg != NULL.
3063 */
3064 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3065
3066 nflags = 0;
3067 if (prot & VM_PROT_WRITE)
3068 nflags |= PVF_WRITE;
3069 if (prot & VM_PROT_EXECUTE)
3070 nflags |= PVF_EXEC;
3071 if (flags & PMAP_WIRED)
3072 nflags |= PVF_WIRED;
3073
3074 pmap_acquire_pmap_lock(pm);
3075
3076 /*
3077 * Fetch the L2 bucket which maps this page, allocating one if
3078 * necessary for user pmaps.
3079 */
3080 if (kpm_p) {
3081 l2b = pmap_get_l2_bucket(pm, va);
3082 } else {
3083 l2b = pmap_alloc_l2_bucket(pm, va);
3084 }
3085 if (l2b == NULL) {
3086 if (flags & PMAP_CANFAIL) {
3087 pmap_release_pmap_lock(pm);
3088 return (ENOMEM);
3089 }
3090 panic("pmap_enter: failed to allocate L2 bucket");
3091 }
3092 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3093 const pt_entry_t opte = *ptep;
3094 pt_entry_t npte = pa;
3095 oflags = 0;
3096
3097 if (opte) {
3098 /*
3099 * There is already a mapping at this address.
3100 * If the physical address is different, lookup the
3101 * vm_page.
3102 */
3103 if (l2pte_pa(opte) != pa)
3104 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3105 else
3106 opg = pg;
3107 } else
3108 opg = NULL;
3109
3110 if (pg) {
3111 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3112
3113 /*
3114 * This is to be a managed mapping.
3115 */
3116 pmap_acquire_page_lock(md);
3117 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3118 /*
3119 * - The access type indicates that we don't need
3120 * to do referenced emulation.
3121 * OR
3122 * - The physical page has already been referenced
3123 * so no need to re-do referenced emulation here.
3124 */
3125 npte |= l2pte_set_readonly(L2_S_PROTO);
3126
3127 nflags |= PVF_REF;
3128
3129 if ((prot & VM_PROT_WRITE) != 0 &&
3130 ((flags & VM_PROT_WRITE) != 0 ||
3131 (md->pvh_attrs & PVF_MOD) != 0)) {
3132 /*
3133 * This is a writable mapping, and the
3134 * page's mod state indicates it has
3135 * already been modified. Make it
3136 * writable from the outset.
3137 */
3138 npte = l2pte_set_writable(npte);
3139 nflags |= PVF_MOD;
3140 }
3141
3142 #ifdef ARM_MMU_EXTENDED
3143 /*
3144 * If the page has been cleaned, then the pvh_attrs
3145 * will have PVF_EXEC set, so mark it execute so we
3146 * don't get an access fault when trying to execute
3147 * from it.
3148 */
3149 if (md->pvh_attrs & nflags & PVF_EXEC) {
3150 npte &= ~L2_XS_XN;
3151 }
3152 #endif
3153 } else {
3154 /*
3155 * Need to do page referenced emulation.
3156 */
3157 npte |= L2_TYPE_INV;
3158 }
3159
3160 if (flags & ARM32_MMAP_WRITECOMBINE) {
3161 npte |= pte_l2_s_wc_mode;
3162 } else
3163 npte |= pte_l2_s_cache_mode;
3164
3165 if (pg == opg) {
3166 /*
3167 * We're changing the attrs of an existing mapping.
3168 */
3169 oflags = pmap_modify_pv(md, pa, pm, va,
3170 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3171 PVF_MOD | PVF_REF, nflags);
3172
3173 #ifdef PMAP_CACHE_VIVT
3174 /*
3175 * We may need to flush the cache if we're
3176 * doing rw-ro...
3177 */
3178 if (pm->pm_cstate.cs_cache_d &&
3179 (oflags & PVF_NC) == 0 &&
3180 l2pte_writable_p(opte) &&
3181 (prot & VM_PROT_WRITE) == 0)
3182 cpu_dcache_wb_range(va, PAGE_SIZE);
3183 #endif
3184 } else {
3185 struct pv_entry *pv;
3186 /*
3187 * New mapping, or changing the backing page
3188 * of an existing mapping.
3189 */
3190 if (opg) {
3191 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3192 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3193
3194 /*
3195 * Replacing an existing mapping with a new one.
3196 * It is part of our managed memory so we
3197 * must remove it from the PV list
3198 */
3199 pv = pmap_remove_pv(omd, opa, pm, va);
3200 pmap_vac_me_harder(omd, opa, pm, 0);
3201 oflags = pv->pv_flags;
3202
3203 #ifdef PMAP_CACHE_VIVT
3204 /*
3205 * If the old mapping was valid (ref/mod
3206 * emulation creates 'invalid' mappings
3207 * initially) then make sure to frob
3208 * the cache.
3209 */
3210 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3211 pmap_cache_wbinv_page(pm, va, true,
3212 oflags);
3213 }
3214 #endif
3215 } else {
3216 pmap_release_page_lock(md);
3217 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3218 if (pv == NULL) {
3219 pmap_release_pmap_lock(pm);
3220 if ((flags & PMAP_CANFAIL) == 0)
3221 panic("pmap_enter: "
3222 "no pv entries");
3223
3224 pmap_free_l2_bucket(pm, l2b, 0);
3225 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3226 0, 0, 0, 0);
3227 return (ENOMEM);
3228 }
3229 pmap_acquire_page_lock(md);
3230 }
3231
3232 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3233 }
3234 pmap_release_page_lock(md);
3235 } else {
3236 /*
3237 * We're mapping an unmanaged page.
3238 * These are always readable, and possibly writable, from
3239 * the get go as we don't need to track ref/mod status.
3240 */
3241 npte |= l2pte_set_readonly(L2_S_PROTO);
3242 if (prot & VM_PROT_WRITE)
3243 npte = l2pte_set_writable(npte);
3244
3245 /*
3246 * Make sure the vector table is mapped cacheable
3247 */
3248 if ((vector_page_p && !kpm_p)
3249 || (flags & ARM32_MMAP_CACHEABLE)) {
3250 npte |= pte_l2_s_cache_mode;
3251 #ifdef ARM_MMU_EXTENDED
3252 npte &= ~L2_XS_XN; /* and executable */
3253 #endif
3254 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3255 npte |= pte_l2_s_wc_mode;
3256 }
3257 if (opg) {
3258 /*
3259 * Looks like there's an existing 'managed' mapping
3260 * at this address.
3261 */
3262 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3263 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3264
3265 pmap_acquire_page_lock(omd);
3266 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3267 pmap_vac_me_harder(omd, opa, pm, 0);
3268 oflags = pv->pv_flags;
3269 pmap_release_page_lock(omd);
3270
3271 #ifdef PMAP_CACHE_VIVT
3272 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3273 pmap_cache_wbinv_page(pm, va, true, oflags);
3274 }
3275 #endif
3276 pool_put(&pmap_pv_pool, pv);
3277 }
3278 }
3279
3280 /*
3281 * Make sure userland mappings get the right permissions
3282 */
3283 if (!vector_page_p && !kpm_p) {
3284 npte |= L2_S_PROT_U;
3285 #ifdef ARM_MMU_EXTENDED
3286 npte |= L2_XS_nG; /* user pages are not global */
3287 #endif
3288 }
3289
3290 /*
3291 * Keep the stats up to date
3292 */
3293 if (opte == 0) {
3294 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3295 pm->pm_stats.resident_count++;
3296 }
3297
3298 UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
3299
3300 #if defined(ARM_MMU_EXTENDED)
3301 /*
3302 * If exec protection was requested but the page hasn't been synced,
3303 * sync it now and allow execution from it.
3304 */
3305 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3306 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3307 npte &= ~L2_XS_XN;
3308 pmap_syncicache_page(md, pa);
3309 PMAPCOUNT(exec_synced_map);
3310 }
3311 #endif
3312 /*
3313 * If this is just a wiring change, the two PTEs will be
3314 * identical, so there's no need to update the page table.
3315 */
3316 if (npte != opte) {
3317 l2pte_reset(ptep);
3318 PTE_SYNC(ptep);
3319 pmap_tlb_flush_SE(pm, va, oflags);
3320
3321 l2pte_set(ptep, npte, 0);
3322 PTE_SYNC(ptep);
3323 #ifndef ARM_MMU_EXTENDED
3324 bool is_cached = pmap_is_cached(pm);
3325 if (is_cached) {
3326 /*
3327 * We only need to frob the cache/tlb if this pmap
3328 * is current
3329 */
3330 if (!vector_page_p && l2pte_valid_p(npte)) {
3331 /*
3332 * This mapping is likely to be accessed as
3333 * soon as we return to userland. Fix up the
3334 * L1 entry to avoid taking another
3335 * page/domain fault.
3336 */
3337 pd_entry_t *pdep = pmap_l1_kva(pm)
3338 + l1pte_index(va);
3339 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3340 | L1_C_DOM(pmap_domain(pm));
3341 if (*pdep != pde) {
3342 l1pte_setone(pdep, pde);
3343 PTE_SYNC(pdep);
3344 }
3345 }
3346 }
3347 #endif /* !ARM_MMU_EXTENDED */
3348
3349 #ifndef ARM_MMU_EXTENDED
3350 UVMHIST_LOG(maphist, " is_cached %d cs 0x%08x\n",
3351 is_cached, pm->pm_cstate.cs_all, 0, 0);
3352
3353 if (pg != NULL) {
3354 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3355
3356 pmap_acquire_page_lock(md);
3357 pmap_vac_me_harder(md, pa, pm, va);
3358 pmap_release_page_lock(md);
3359 }
3360 #endif
3361 }
3362 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3363 if (pg) {
3364 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3365
3366 pmap_acquire_page_lock(md);
3367 #ifndef ARM_MMU_EXTENDED
3368 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3369 #endif
3370 PMAP_VALIDATE_MD_PAGE(md);
3371 pmap_release_page_lock(md);
3372 }
3373 #endif
3374
3375 pmap_release_pmap_lock(pm);
3376
3377 return (0);
3378 }
3379
3380 /*
3381 * pmap_remove()
3382 *
3383 * pmap_remove is responsible for nuking a number of mappings for a range
3384 * of virtual address space in the current pmap. To do this efficiently
3385 * is interesting, because in a number of cases a wide virtual address
3386 * range may be supplied that contains few actual mappings. So, the
3387 * optimisations are:
3388 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3389 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3390 * maybe do just a partial cache clean. This path of execution is
3391 * complicated by the fact that the cache must be flushed _before_
3392 * the PTE is nuked, being a VAC :-)
3393 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3394 * all invalidations until pmap_update(), since pmap_remove_all() has
3395 * already flushed the cache.
3396 * 4. Maybe later fast-case a single page, but I don't think this is
3397 * going to make _that_ much difference overall.
3398 */
3399
3400 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3401
3402 void
3403 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3404 {
3405 vaddr_t next_bucket;
3406 u_int cleanlist_idx, total, cnt;
3407 struct {
3408 vaddr_t va;
3409 pt_entry_t *ptep;
3410 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3411 u_int mappings;
3412
3413 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3414 UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
3415
3416 /*
3417 * we lock in the pmap => pv_head direction
3418 */
3419 pmap_acquire_pmap_lock(pm);
3420
3421 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3422 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3423 #ifndef ARM_MMU_EXTENDED
3424 if (pm->pm_cstate.cs_tlb == 0)
3425 pm->pm_remove_all = true;
3426 #endif
3427 } else
3428 cleanlist_idx = 0;
3429
3430 total = 0;
3431
3432 while (sva < eva) {
3433 /*
3434 * Do one L2 bucket's worth at a time.
3435 */
3436 next_bucket = L2_NEXT_BUCKET_VA(sva);
3437 if (next_bucket > eva)
3438 next_bucket = eva;
3439
3440 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3441 if (l2b == NULL) {
3442 sva = next_bucket;
3443 continue;
3444 }
3445
3446 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3447
3448 for (mappings = 0;
3449 sva < next_bucket;
3450 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3451 pt_entry_t opte = *ptep;
3452
3453 if (opte == 0) {
3454 /* Nothing here, move along */
3455 continue;
3456 }
3457
3458 u_int flags = PVF_REF;
3459 paddr_t pa = l2pte_pa(opte);
3460 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3461
3462 /*
3463 * Update flags. In a number of circumstances,
3464 * we could cluster a lot of these and do a
3465 * number of sequential pages in one go.
3466 */
3467 if (pg != NULL) {
3468 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3469 struct pv_entry *pv;
3470
3471 pmap_acquire_page_lock(md);
3472 pv = pmap_remove_pv(md, pa, pm, sva);
3473 pmap_vac_me_harder(md, pa, pm, 0);
3474 pmap_release_page_lock(md);
3475 if (pv != NULL) {
3476 if (pm->pm_remove_all == false) {
3477 flags = pv->pv_flags;
3478 }
3479 pool_put(&pmap_pv_pool, pv);
3480 }
3481 }
3482 mappings += PAGE_SIZE / L2_S_SIZE;
3483
3484 if (!l2pte_valid_p(opte)) {
3485 /*
3486 * Ref/Mod emulation is still active for this
3487 * mapping, therefore it is has not yet been
3488 * accessed. No need to frob the cache/tlb.
3489 */
3490 l2pte_reset(ptep);
3491 PTE_SYNC_CURRENT(pm, ptep);
3492 pmap_tlb_flush_SE(pm, sva, flags);
3493 continue;
3494 }
3495
3496 #ifdef ARM_MMU_EXTENDED
3497 if (pm == pmap_kernel()) {
3498 l2pte_reset(ptep);
3499 PTE_SYNC(ptep);
3500 pmap_tlb_flush_SE(pm, sva, flags);
3501 continue;
3502 }
3503 #endif
3504 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3505 /* Add to the clean list. */
3506 cleanlist[cleanlist_idx].ptep = ptep;
3507 cleanlist[cleanlist_idx].va =
3508 sva | (flags & PVF_EXEC);
3509 cleanlist_idx++;
3510 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3511 /* Nuke everything if needed. */
3512 #ifdef PMAP_CACHE_VIVT
3513 pmap_cache_wbinv_all(pm, PVF_EXEC);
3514 #endif
3515 /*
3516 * Roll back the previous PTE list,
3517 * and zero out the current PTE.
3518 */
3519 for (cnt = 0;
3520 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3521 l2pte_reset(cleanlist[cnt].ptep);
3522 PTE_SYNC(cleanlist[cnt].ptep);
3523 }
3524 l2pte_reset(ptep);
3525 PTE_SYNC(ptep);
3526 cleanlist_idx++;
3527 pm->pm_remove_all = true;
3528 } else {
3529 l2pte_reset(ptep);
3530 PTE_SYNC(ptep);
3531 if (pm->pm_remove_all == false) {
3532 pmap_tlb_flush_SE(pm, sva, flags);
3533 }
3534 }
3535 }
3536
3537 /*
3538 * Deal with any left overs
3539 */
3540 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3541 total += cleanlist_idx;
3542 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3543 l2pte_reset(cleanlist[cnt].ptep);
3544 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3545 #ifdef ARM_MMU_EXTENDED
3546 vaddr_t clva = cleanlist[cnt].va;
3547 pmap_tlb_flush_SE(pm, clva, PVF_REF);
3548 #else
3549 vaddr_t va = cleanlist[cnt].va;
3550 if (pm->pm_cstate.cs_all != 0) {
3551 vaddr_t clva = va & ~PAGE_MASK;
3552 u_int flags = va & PVF_EXEC;
3553 #ifdef PMAP_CACHE_VIVT
3554 pmap_cache_wbinv_page(pm, clva, true,
3555 PVF_REF | PVF_WRITE | flags);
3556 #endif
3557 pmap_tlb_flush_SE(pm, clva,
3558 PVF_REF | flags);
3559 }
3560 #endif /* ARM_MMU_EXTENDED */
3561 }
3562
3563 /*
3564 * If it looks like we're removing a whole bunch
3565 * of mappings, it's faster to just write-back
3566 * the whole cache now and defer TLB flushes until
3567 * pmap_update() is called.
3568 */
3569 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3570 cleanlist_idx = 0;
3571 else {
3572 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3573 #ifdef PMAP_CACHE_VIVT
3574 pmap_cache_wbinv_all(pm, PVF_EXEC);
3575 #endif
3576 pm->pm_remove_all = true;
3577 }
3578 }
3579
3580
3581 pmap_free_l2_bucket(pm, l2b, mappings);
3582 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3583 }
3584
3585 pmap_release_pmap_lock(pm);
3586 }
3587
3588 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3589 static struct pv_entry *
3590 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3591 {
3592 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3593 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3594 struct pv_entry *pv;
3595
3596 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3597 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3598 KASSERT(pmap_page_locked_p(md));
3599
3600 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3601 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3602 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3603
3604 /*
3605 * If we are removing a writeable mapping to a cached exec page,
3606 * if it's the last mapping then clear it execness other sync
3607 * the page to the icache.
3608 */
3609 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3610 && (pv->pv_flags & PVF_WRITE) != 0) {
3611 if (SLIST_EMPTY(&md->pvh_list)) {
3612 md->pvh_attrs &= ~PVF_EXEC;
3613 PMAPCOUNT(exec_discarded_kremove);
3614 } else {
3615 pmap_syncicache_page(md, pa);
3616 PMAPCOUNT(exec_synced_kremove);
3617 }
3618 }
3619 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3620
3621 return pv;
3622 }
3623 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3624
3625 /*
3626 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3627 *
3628 * We assume there is already sufficient KVM space available
3629 * to do this, as we can't allocate L2 descriptor tables/metadata
3630 * from here.
3631 */
3632 void
3633 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3634 {
3635 #ifdef PMAP_CACHE_VIVT
3636 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3637 #endif
3638 #ifdef PMAP_CACHE_VIPT
3639 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3640 struct vm_page *opg;
3641 #ifndef ARM_MMU_EXTENDED
3642 struct pv_entry *pv = NULL;
3643 #endif
3644 #endif
3645 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3646
3647 UVMHIST_FUNC(__func__);
3648
3649 if (pmap_initialized) {
3650 UVMHIST_CALLED(maphist);
3651 UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
3652 va, pa, prot, flags);
3653 }
3654
3655 pmap_t kpm = pmap_kernel();
3656 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3657 const size_t l1slot __diagused = l1pte_index(va);
3658 KASSERTMSG(l2b != NULL,
3659 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3660 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3661 kpm->pm_l2[L2_IDX(l1slot)]
3662 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3663 : NULL,
3664 kpm->pm_l2[L2_IDX(l1slot)]
3665 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3666 : NULL);
3667 KASSERT(l2b->l2b_kva != NULL);
3668
3669 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3670 const pt_entry_t opte = *ptep;
3671
3672 if (opte == 0) {
3673 PMAPCOUNT(kenter_mappings);
3674 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3675 } else {
3676 PMAPCOUNT(kenter_remappings);
3677 #ifdef PMAP_CACHE_VIPT
3678 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3679 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3680 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3681 #endif
3682 if (opg && arm_cache_prefer_mask != 0) {
3683 KASSERT(opg != pg);
3684 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3685 KASSERT((flags & PMAP_KMPAGE) == 0);
3686 #ifndef ARM_MMU_EXTENDED
3687 pmap_acquire_page_lock(omd);
3688 pv = pmap_kremove_pg(opg, va);
3689 pmap_release_page_lock(omd);
3690 #endif
3691 }
3692 #endif
3693 if (l2pte_valid_p(opte)) {
3694 l2pte_reset(ptep);
3695 PTE_SYNC(ptep);
3696 #ifdef PMAP_CACHE_VIVT
3697 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3698 #endif
3699 cpu_tlb_flushD_SE(va);
3700 cpu_cpwait();
3701 }
3702 }
3703
3704 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3705 | ((flags & PMAP_NOCACHE)
3706 ? 0
3707 : ((flags & PMAP_PTE)
3708 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3709 #ifdef ARM_MMU_EXTENDED
3710 if (prot & VM_PROT_EXECUTE)
3711 npte &= ~L2_XS_XN;
3712 #endif
3713 l2pte_set(ptep, npte, 0);
3714 PTE_SYNC(ptep);
3715
3716 if (pg) {
3717 if (flags & PMAP_KMPAGE) {
3718 KASSERT(md->urw_mappings == 0);
3719 KASSERT(md->uro_mappings == 0);
3720 KASSERT(md->krw_mappings == 0);
3721 KASSERT(md->kro_mappings == 0);
3722 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3723 KASSERT(pv == NULL);
3724 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3725 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3726 /* if there is a color conflict, evict from cache. */
3727 if (pmap_is_page_colored_p(md)
3728 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3729 PMAPCOUNT(vac_color_change);
3730 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3731 } else if (md->pvh_attrs & PVF_MULTCLR) {
3732 /*
3733 * If this page has multiple colors, expunge
3734 * them.
3735 */
3736 PMAPCOUNT(vac_flush_lots2);
3737 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3738 }
3739 /*
3740 * Since this is a KMPAGE, there can be no contention
3741 * for this page so don't lock it.
3742 */
3743 md->pvh_attrs &= PAGE_SIZE - 1;
3744 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3745 | (va & arm_cache_prefer_mask);
3746 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3747 md->pvh_attrs |= PVF_KMPAGE;
3748 #endif
3749 atomic_inc_32(&pmap_kmpages);
3750 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3751 } else if (arm_cache_prefer_mask != 0) {
3752 if (pv == NULL) {
3753 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3754 KASSERT(pv != NULL);
3755 }
3756 pmap_acquire_page_lock(md);
3757 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3758 PVF_WIRED | PVF_KENTRY
3759 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3760 if ((prot & VM_PROT_WRITE)
3761 && !(md->pvh_attrs & PVF_NC))
3762 md->pvh_attrs |= PVF_DIRTY;
3763 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3764 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3765 pmap_release_page_lock(md);
3766 #endif
3767 }
3768 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3769 } else {
3770 if (pv != NULL)
3771 pool_put(&pmap_pv_pool, pv);
3772 #endif
3773 }
3774 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3775 KASSERT(md == NULL || !pmap_page_locked_p(md));
3776 #endif
3777 if (pmap_initialized) {
3778 UVMHIST_LOG(maphist, " <-- done (ptep %p: %#x -> %#x)",
3779 ptep, opte, npte, 0);
3780 }
3781
3782 }
3783
3784 void
3785 pmap_kremove(vaddr_t va, vsize_t len)
3786 {
3787 #ifdef UVMHIST
3788 u_int total_mappings = 0;
3789 #endif
3790
3791 PMAPCOUNT(kenter_unmappings);
3792
3793 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3794
3795 UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
3796
3797 const vaddr_t eva = va + len;
3798
3799 while (va < eva) {
3800 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3801 if (next_bucket > eva)
3802 next_bucket = eva;
3803
3804 pmap_t kpm = pmap_kernel();
3805 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3806 KDASSERT(l2b != NULL);
3807
3808 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3809 pt_entry_t *ptep = sptep;
3810 u_int mappings = 0;
3811
3812 while (va < next_bucket) {
3813 const pt_entry_t opte = *ptep;
3814 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3815 if (opg != NULL) {
3816 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3817
3818 if (omd->pvh_attrs & PVF_KMPAGE) {
3819 KASSERT(omd->urw_mappings == 0);
3820 KASSERT(omd->uro_mappings == 0);
3821 KASSERT(omd->krw_mappings == 0);
3822 KASSERT(omd->kro_mappings == 0);
3823 omd->pvh_attrs &= ~PVF_KMPAGE;
3824 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3825 if (arm_cache_prefer_mask != 0) {
3826 omd->pvh_attrs &= ~PVF_WRITE;
3827 }
3828 #endif
3829 atomic_dec_32(&pmap_kmpages);
3830 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3831 } else if (arm_cache_prefer_mask != 0) {
3832 pmap_acquire_page_lock(omd);
3833 pool_put(&pmap_pv_pool,
3834 pmap_kremove_pg(opg, va));
3835 pmap_release_page_lock(omd);
3836 #endif
3837 }
3838 }
3839 if (l2pte_valid_p(opte)) {
3840 l2pte_reset(ptep);
3841 PTE_SYNC(ptep);
3842 #ifdef PMAP_CACHE_VIVT
3843 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3844 #endif
3845 cpu_tlb_flushD_SE(va);
3846
3847 mappings += PAGE_SIZE / L2_S_SIZE;
3848 }
3849 va += PAGE_SIZE;
3850 ptep += PAGE_SIZE / L2_S_SIZE;
3851 }
3852 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3853 mappings, l2b->l2b_occupancy);
3854 l2b->l2b_occupancy -= mappings;
3855 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3856 #ifdef UVMHIST
3857 total_mappings += mappings;
3858 #endif
3859 }
3860 cpu_cpwait();
3861 UVMHIST_LOG(maphist, " <--- done (%u mappings removed)",
3862 total_mappings, 0, 0, 0);
3863 }
3864
3865 bool
3866 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3867 {
3868 struct l2_dtable *l2;
3869 pd_entry_t *pdep, pde;
3870 pt_entry_t *ptep, pte;
3871 paddr_t pa;
3872 u_int l1slot;
3873
3874 pmap_acquire_pmap_lock(pm);
3875
3876 l1slot = l1pte_index(va);
3877 pdep = pmap_l1_kva(pm) + l1slot;
3878 pde = *pdep;
3879
3880 if (l1pte_section_p(pde)) {
3881 /*
3882 * These should only happen for pmap_kernel()
3883 */
3884 KDASSERT(pm == pmap_kernel());
3885 pmap_release_pmap_lock(pm);
3886 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3887 if (l1pte_supersection_p(pde)) {
3888 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3889 } else
3890 #endif
3891 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3892 } else {
3893 /*
3894 * Note that we can't rely on the validity of the L1
3895 * descriptor as an indication that a mapping exists.
3896 * We have to look it up in the L2 dtable.
3897 */
3898 l2 = pm->pm_l2[L2_IDX(l1slot)];
3899
3900 if (l2 == NULL ||
3901 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3902 pmap_release_pmap_lock(pm);
3903 return false;
3904 }
3905
3906 pte = ptep[l2pte_index(va)];
3907 pmap_release_pmap_lock(pm);
3908
3909 if (pte == 0)
3910 return false;
3911
3912 switch (pte & L2_TYPE_MASK) {
3913 case L2_TYPE_L:
3914 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3915 break;
3916
3917 default:
3918 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3919 break;
3920 }
3921 }
3922
3923 if (pap != NULL)
3924 *pap = pa;
3925
3926 return true;
3927 }
3928
3929 void
3930 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3931 {
3932 struct l2_bucket *l2b;
3933 vaddr_t next_bucket;
3934
3935 NPDEBUG(PDB_PROTECT,
3936 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3937 pm, sva, eva, prot));
3938
3939 if ((prot & VM_PROT_READ) == 0) {
3940 pmap_remove(pm, sva, eva);
3941 return;
3942 }
3943
3944 if (prot & VM_PROT_WRITE) {
3945 /*
3946 * If this is a read->write transition, just ignore it and let
3947 * uvm_fault() take care of it later.
3948 */
3949 return;
3950 }
3951
3952 pmap_acquire_pmap_lock(pm);
3953
3954 #ifndef ARM_MMU_EXTENDED
3955 const bool flush = eva - sva >= PAGE_SIZE * 4;
3956 u_int flags = 0;
3957 #endif
3958 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3959
3960 while (sva < eva) {
3961 next_bucket = L2_NEXT_BUCKET_VA(sva);
3962 if (next_bucket > eva)
3963 next_bucket = eva;
3964
3965 l2b = pmap_get_l2_bucket(pm, sva);
3966 if (l2b == NULL) {
3967 sva = next_bucket;
3968 continue;
3969 }
3970
3971 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3972
3973 while (sva < next_bucket) {
3974 const pt_entry_t opte = *ptep;
3975 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
3976 struct vm_page *pg;
3977 #ifndef ARM_MMU_EXTENDED
3978 u_int f;
3979 #endif
3980
3981 #ifdef PMAP_CACHE_VIVT
3982 /*
3983 * OK, at this point, we know we're doing
3984 * write-protect operation. If the pmap is
3985 * active, write-back the page.
3986 */
3987 pmap_cache_wbinv_page(pm, sva, false,
3988 PVF_REF | PVF_WRITE);
3989 #endif
3990
3991 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3992 pt_entry_t npte = l2pte_set_readonly(opte);
3993 l2pte_reset(ptep);
3994 PTE_SYNC(ptep);
3995 #ifdef ARM_MMU_EXTENDED
3996 pmap_tlb_flush_SE(pm, sva, PVF_REF);
3997 #endif
3998 l2pte_set(ptep, npte, 0);
3999 PTE_SYNC(ptep);
4000
4001 if (pg != NULL) {
4002 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4003 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4004
4005 pmap_acquire_page_lock(md);
4006 #ifndef ARM_MMU_EXTENDED
4007 f =
4008 #endif
4009 pmap_modify_pv(md, pa, pm, sva,
4010 clr_mask, 0);
4011 pmap_vac_me_harder(md, pa, pm, sva);
4012 pmap_release_page_lock(md);
4013 #ifndef ARM_MMU_EXTENDED
4014 } else {
4015 f = PVF_REF | PVF_EXEC;
4016 }
4017
4018 if (flush) {
4019 flags |= f;
4020 } else {
4021 pmap_tlb_flush_SE(pm, sva, f);
4022 #endif
4023 }
4024 }
4025
4026 sva += PAGE_SIZE;
4027 ptep += PAGE_SIZE / L2_S_SIZE;
4028 }
4029 }
4030
4031 #ifndef ARM_MMU_EXTENDED
4032 if (flush) {
4033 if (PV_BEEN_EXECD(flags)) {
4034 pmap_tlb_flushID(pm);
4035 } else if (PV_BEEN_REFD(flags)) {
4036 pmap_tlb_flushD(pm);
4037 }
4038 }
4039 #endif
4040
4041 pmap_release_pmap_lock(pm);
4042 }
4043
4044 void
4045 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4046 {
4047 struct l2_bucket *l2b;
4048 pt_entry_t *ptep;
4049 vaddr_t next_bucket;
4050 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4051
4052 NPDEBUG(PDB_EXEC,
4053 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4054 pm, sva, eva));
4055
4056 pmap_acquire_pmap_lock(pm);
4057
4058 while (sva < eva) {
4059 next_bucket = L2_NEXT_BUCKET_VA(sva);
4060 if (next_bucket > eva)
4061 next_bucket = eva;
4062
4063 l2b = pmap_get_l2_bucket(pm, sva);
4064 if (l2b == NULL) {
4065 sva = next_bucket;
4066 continue;
4067 }
4068
4069 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4070 sva < next_bucket;
4071 sva += page_size,
4072 ptep += PAGE_SIZE / L2_S_SIZE,
4073 page_size = PAGE_SIZE) {
4074 if (l2pte_valid_p(*ptep)) {
4075 cpu_icache_sync_range(sva,
4076 min(page_size, eva - sva));
4077 }
4078 }
4079 }
4080
4081 pmap_release_pmap_lock(pm);
4082 }
4083
4084 void
4085 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4086 {
4087 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4088 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4089
4090 NPDEBUG(PDB_PROTECT,
4091 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4092 md, pa, prot));
4093
4094 switch(prot) {
4095 case VM_PROT_READ|VM_PROT_WRITE:
4096 #if defined(ARM_MMU_EXTENDED)
4097 pmap_acquire_page_lock(md);
4098 pmap_clearbit(md, pa, PVF_EXEC);
4099 pmap_release_page_lock(md);
4100 break;
4101 #endif
4102 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4103 break;
4104
4105 case VM_PROT_READ:
4106 #if defined(ARM_MMU_EXTENDED)
4107 pmap_acquire_page_lock(md);
4108 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4109 pmap_release_page_lock(md);
4110 break;
4111 #endif
4112 case VM_PROT_READ|VM_PROT_EXECUTE:
4113 pmap_acquire_page_lock(md);
4114 pmap_clearbit(md, pa, PVF_WRITE);
4115 pmap_release_page_lock(md);
4116 break;
4117
4118 default:
4119 pmap_page_remove(md, pa);
4120 break;
4121 }
4122 }
4123
4124 /*
4125 * pmap_clear_modify:
4126 *
4127 * Clear the "modified" attribute for a page.
4128 */
4129 bool
4130 pmap_clear_modify(struct vm_page *pg)
4131 {
4132 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4133 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4134 bool rv;
4135
4136 pmap_acquire_page_lock(md);
4137
4138 if (md->pvh_attrs & PVF_MOD) {
4139 rv = true;
4140 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4141 /*
4142 * If we are going to clear the modified bit and there are
4143 * no other modified bits set, flush the page to memory and
4144 * mark it clean.
4145 */
4146 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4147 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4148 #endif
4149 pmap_clearbit(md, pa, PVF_MOD);
4150 } else {
4151 rv = false;
4152 }
4153 pmap_release_page_lock(md);
4154
4155 return rv;
4156 }
4157
4158 /*
4159 * pmap_clear_reference:
4160 *
4161 * Clear the "referenced" attribute for a page.
4162 */
4163 bool
4164 pmap_clear_reference(struct vm_page *pg)
4165 {
4166 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4167 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4168 bool rv;
4169
4170 pmap_acquire_page_lock(md);
4171
4172 if (md->pvh_attrs & PVF_REF) {
4173 rv = true;
4174 pmap_clearbit(md, pa, PVF_REF);
4175 } else {
4176 rv = false;
4177 }
4178 pmap_release_page_lock(md);
4179
4180 return rv;
4181 }
4182
4183 /*
4184 * pmap_is_modified:
4185 *
4186 * Test if a page has the "modified" attribute.
4187 */
4188 /* See <arm/arm32/pmap.h> */
4189
4190 /*
4191 * pmap_is_referenced:
4192 *
4193 * Test if a page has the "referenced" attribute.
4194 */
4195 /* See <arm/arm32/pmap.h> */
4196
4197 #if defined(ARM_MMU_EXTENDED) && 0
4198 int
4199 pmap_prefetchabt_fixup(void *v)
4200 {
4201 struct trapframe * const tf = v;
4202 vaddr_t va = trunc_page(tf->tf_pc);
4203 int rv = ABORT_FIXUP_FAILED;
4204
4205 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4206 return rv;
4207
4208 kpreempt_disable();
4209 pmap_t pm = curcpu()->ci_pmap_cur;
4210 const size_t l1slot = l1pte_index(va);
4211 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4212 if (l2 == NULL)
4213 goto out;
4214
4215 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4216 if (l2b->l2b_kva == NULL)
4217 goto out;
4218
4219 /*
4220 * Check the PTE itself.
4221 */
4222 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4223 const pt_entry_t opte = *ptep;
4224 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4225 goto out;
4226
4227 paddr_t pa = l2pte_pa(pte);
4228 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4229 KASSERT(pg != NULL);
4230
4231 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4232
4233 pmap_acquire_page_lock(md);
4234 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4235 KASSERT(pv != NULL);
4236
4237 if (PV_IS_EXEC_P(pv->pv_flags)) {
4238 l2pte_reset(ptep);
4239 PTE_SYNC(ptep);
4240 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4241 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4242 pmap_syncicache_page(md, pa);
4243 }
4244 rv = ABORT_FIXUP_RETURN;
4245 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4246 PTE_SYNC(ptep);
4247 }
4248 pmap_release_page_lock(md);
4249
4250 out:
4251 kpreempt_enable();
4252 return rv;
4253 }
4254 #endif
4255
4256 int
4257 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4258 {
4259 struct l2_dtable *l2;
4260 struct l2_bucket *l2b;
4261 paddr_t pa;
4262 const size_t l1slot = l1pte_index(va);
4263 int rv = 0;
4264
4265 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4266
4267 va = trunc_page(va);
4268
4269 KASSERT(!user || (pm != pmap_kernel()));
4270
4271 UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
4272 pm, va, ftype, user);
4273 #ifdef ARM_MMU_EXTENDED
4274 UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
4275 cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4276 PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4277 #endif
4278
4279 pmap_acquire_pmap_lock(pm);
4280
4281 /*
4282 * If there is no l2_dtable for this address, then the process
4283 * has no business accessing it.
4284 *
4285 * Note: This will catch userland processes trying to access
4286 * kernel addresses.
4287 */
4288 l2 = pm->pm_l2[L2_IDX(l1slot)];
4289 if (l2 == NULL) {
4290 UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
4291 goto out;
4292 }
4293
4294 /*
4295 * Likewise if there is no L2 descriptor table
4296 */
4297 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4298 if (l2b->l2b_kva == NULL) {
4299 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
4300 goto out;
4301 }
4302
4303 /*
4304 * Check the PTE itself.
4305 */
4306 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4307 pt_entry_t const opte = *ptep;
4308 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4309 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
4310 goto out;
4311 }
4312
4313 #ifndef ARM_HAS_VBAR
4314 /*
4315 * Catch a userland access to the vector page mapped at 0x0
4316 */
4317 if (user && (opte & L2_S_PROT_U) == 0) {
4318 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4319 goto out;
4320 }
4321 #endif
4322
4323 pa = l2pte_pa(opte);
4324
4325 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4326 /*
4327 * This looks like a good candidate for "page modified"
4328 * emulation...
4329 */
4330 struct pv_entry *pv;
4331 struct vm_page *pg;
4332
4333 /* Extract the physical address of the page */
4334 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4335 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4336 goto out;
4337 }
4338
4339 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4340
4341 /* Get the current flags for this page. */
4342 pmap_acquire_page_lock(md);
4343 pv = pmap_find_pv(md, pm, va);
4344 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4345 pmap_release_page_lock(md);
4346 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4347 goto out;
4348 }
4349
4350 /*
4351 * Do the flags say this page is writable? If not then it
4352 * is a genuine write fault. If yes then the write fault is
4353 * our fault as we did not reflect the write access in the
4354 * PTE. Now we know a write has occurred we can correct this
4355 * and also set the modified bit
4356 */
4357 if ((pv->pv_flags & PVF_WRITE) == 0) {
4358 pmap_release_page_lock(md);
4359 goto out;
4360 }
4361
4362 md->pvh_attrs |= PVF_REF | PVF_MOD;
4363 pv->pv_flags |= PVF_REF | PVF_MOD;
4364 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4365 /*
4366 * If there are cacheable mappings for this page, mark it dirty.
4367 */
4368 if ((md->pvh_attrs & PVF_NC) == 0)
4369 md->pvh_attrs |= PVF_DIRTY;
4370 #endif
4371 #ifdef ARM_MMU_EXTENDED
4372 if (md->pvh_attrs & PVF_EXEC) {
4373 md->pvh_attrs &= ~PVF_EXEC;
4374 PMAPCOUNT(exec_discarded_modfixup);
4375 }
4376 #endif
4377 pmap_release_page_lock(md);
4378
4379 /*
4380 * Re-enable write permissions for the page. No need to call
4381 * pmap_vac_me_harder(), since this is just a
4382 * modified-emulation fault, and the PVF_WRITE bit isn't
4383 * changing. We've already set the cacheable bits based on
4384 * the assumption that we can write to this page.
4385 */
4386 const pt_entry_t npte =
4387 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4388 #ifdef ARM_MMU_EXTENDED
4389 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4390 #endif
4391 | 0;
4392 l2pte_reset(ptep);
4393 PTE_SYNC(ptep);
4394 pmap_tlb_flush_SE(pm, va,
4395 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4396 l2pte_set(ptep, npte, 0);
4397 PTE_SYNC(ptep);
4398 PMAPCOUNT(fixup_mod);
4399 rv = 1;
4400 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
4401 opte, npte, 0, 0);
4402 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4403 /*
4404 * This looks like a good candidate for "page referenced"
4405 * emulation.
4406 */
4407 struct vm_page *pg;
4408
4409 /* Extract the physical address of the page */
4410 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4411 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4412 goto out;
4413 }
4414
4415 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4416
4417 /* Get the current flags for this page. */
4418 pmap_acquire_page_lock(md);
4419 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4420 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4421 pmap_release_page_lock(md);
4422 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4423 goto out;
4424 }
4425
4426 md->pvh_attrs |= PVF_REF;
4427 pv->pv_flags |= PVF_REF;
4428
4429 pt_entry_t npte =
4430 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4431 #ifdef ARM_MMU_EXTENDED
4432 if (pm != pmap_kernel()) {
4433 npte |= L2_XS_nG;
4434 }
4435 /*
4436 * If we got called from prefetch abort, then ftype will have
4437 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4438 * the PTE.
4439 */
4440 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4441 /*
4442 * Is this a mapping of an executable page?
4443 */
4444 if ((pv->pv_flags & PVF_EXEC) == 0) {
4445 pmap_release_page_lock(md);
4446 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4447 0, 0, 0, 0);
4448 goto out;
4449 }
4450 /*
4451 * If we haven't synced the page, do so now.
4452 */
4453 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4454 UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
4455 pa, 0, 0, 0);
4456 pmap_syncicache_page(md, pa);
4457 PMAPCOUNT(fixup_exec);
4458 }
4459 npte &= ~L2_XS_XN;
4460 }
4461 #endif /* ARM_MMU_EXTENDED */
4462 pmap_release_page_lock(md);
4463 l2pte_reset(ptep);
4464 PTE_SYNC(ptep);
4465 pmap_tlb_flush_SE(pm, va,
4466 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4467 l2pte_set(ptep, npte, 0);
4468 PTE_SYNC(ptep);
4469 PMAPCOUNT(fixup_ref);
4470 rv = 1;
4471 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
4472 opte, npte, 0, 0);
4473 #ifdef ARM_MMU_EXTENDED
4474 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4475 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4476 if (pg == NULL) {
4477 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4478 goto out;
4479 }
4480
4481 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4482
4483 /* Get the current flags for this page. */
4484 pmap_acquire_page_lock(md);
4485 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4486 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4487 pmap_release_page_lock(md);
4488 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4489 goto out;
4490 }
4491
4492 /*
4493 * If we haven't synced the page, do so now.
4494 */
4495 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4496 UVMHIST_LOG(maphist, "syncicache page #%#x",
4497 pa, 0, 0, 0);
4498 pmap_syncicache_page(md, pa);
4499 }
4500 pmap_release_page_lock(md);
4501 /*
4502 * Turn off no-execute.
4503 */
4504 KASSERT(opte & L2_XS_nG);
4505 l2pte_reset(ptep);
4506 PTE_SYNC(ptep);
4507 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4508 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4509 PTE_SYNC(ptep);
4510 rv = 1;
4511 PMAPCOUNT(fixup_exec);
4512 UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
4513 opte, opte & ~L2_XS_XN, 0, 0);
4514 #endif
4515 }
4516
4517 #ifndef ARM_MMU_EXTENDED
4518 /*
4519 * We know there is a valid mapping here, so simply
4520 * fix up the L1 if necessary.
4521 */
4522 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4523 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4524 if (*pdep != pde) {
4525 l1pte_setone(pdep, pde);
4526 PTE_SYNC(pdep);
4527 rv = 1;
4528 PMAPCOUNT(fixup_pdes);
4529 }
4530 #endif
4531
4532 #ifdef CPU_SA110
4533 /*
4534 * There are bugs in the rev K SA110. This is a check for one
4535 * of them.
4536 */
4537 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4538 curcpu()->ci_arm_cpurev < 3) {
4539 /* Always current pmap */
4540 if (l2pte_valid_p(opte)) {
4541 extern int kernel_debug;
4542 if (kernel_debug & 1) {
4543 struct proc *p = curlwp->l_proc;
4544 printf("prefetch_abort: page is already "
4545 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4546 printf("prefetch_abort: pc=%08lx proc=%p "
4547 "process=%s\n", va, p, p->p_comm);
4548 printf("prefetch_abort: far=%08x fs=%x\n",
4549 cpu_faultaddress(), cpu_faultstatus());
4550 }
4551 #ifdef DDB
4552 if (kernel_debug & 2)
4553 Debugger();
4554 #endif
4555 rv = 1;
4556 }
4557 }
4558 #endif /* CPU_SA110 */
4559
4560 #ifndef ARM_MMU_EXTENDED
4561 /*
4562 * If 'rv == 0' at this point, it generally indicates that there is a
4563 * stale TLB entry for the faulting address. That might be due to a
4564 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4565 */
4566 if (rv == 0
4567 && pm->pm_l1->l1_domain_use_count == 1
4568 && pmap_needs_pte_sync == 0) {
4569 pmap_needs_pte_sync = 1;
4570 PTE_SYNC(ptep);
4571 PMAPCOUNT(fixup_ptesync);
4572 rv = 1;
4573 }
4574 #endif
4575
4576 #if defined(DEBUG) || 1
4577 /*
4578 * If 'rv == 0' at this point, it generally indicates that there is a
4579 * stale TLB entry for the faulting address. This happens when two or
4580 * more processes are sharing an L1. Since we don't flush the TLB on
4581 * a context switch between such processes, we can take domain faults
4582 * for mappings which exist at the same VA in both processes. EVEN IF
4583 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4584 * example.
4585 *
4586 * This is extremely likely to happen if pmap_enter() updated the L1
4587 * entry for a recently entered mapping. In this case, the TLB is
4588 * flushed for the new mapping, but there may still be TLB entries for
4589 * other mappings belonging to other processes in the 1MB range
4590 * covered by the L1 entry.
4591 *
4592 * Since 'rv == 0', we know that the L1 already contains the correct
4593 * value, so the fault must be due to a stale TLB entry.
4594 *
4595 * Since we always need to flush the TLB anyway in the case where we
4596 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4597 * stale TLB entries dynamically.
4598 *
4599 * However, the above condition can ONLY happen if the current L1 is
4600 * being shared. If it happens when the L1 is unshared, it indicates
4601 * that other parts of the pmap are not doing their job WRT managing
4602 * the TLB.
4603 */
4604 if (rv == 0
4605 #ifndef ARM_MMU_EXTENDED
4606 && pm->pm_l1->l1_domain_use_count == 1
4607 #endif
4608 && true) {
4609 #ifdef DEBUG
4610 extern int last_fault_code;
4611 #else
4612 int last_fault_code = ftype & VM_PROT_EXECUTE
4613 ? armreg_ifsr_read()
4614 : armreg_dfsr_read();
4615 #endif
4616 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4617 pm, va, ftype);
4618 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4619 l2, l2b, ptep, opte);
4620
4621 #ifndef ARM_MMU_EXTENDED
4622 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4623 pdep, pde, last_fault_code);
4624 #else
4625 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4626 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4627 armreg_ttbcr_read());
4628 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4629 last_fault_code, curcpu()->ci_pmap_cur,
4630 curcpu()->ci_pmap_asid_cur,
4631 armreg_contextidr_read(), armreg_dacr_read());
4632 #ifdef _ARM_ARCH_7
4633 if (ftype & VM_PROT_WRITE)
4634 armreg_ats1cuw_write(va);
4635 else
4636 armreg_ats1cur_write(va);
4637 arm_isb();
4638 printf("fixup: par %#x\n", armreg_par_read());
4639 #endif
4640 #endif
4641 #ifdef DDB
4642 extern int kernel_debug;
4643
4644 if (kernel_debug & 2) {
4645 pmap_release_pmap_lock(pm);
4646 #ifdef UVMHIST
4647 KERNHIST_DUMP(maphist);
4648 #endif
4649 cpu_Debugger();
4650 pmap_acquire_pmap_lock(pm);
4651 }
4652 #endif
4653 }
4654 #endif
4655
4656 rv = 1;
4657
4658 out:
4659 pmap_release_pmap_lock(pm);
4660
4661 return (rv);
4662 }
4663
4664 /*
4665 * Routine: pmap_procwr
4666 *
4667 * Function:
4668 * Synchronize caches corresponding to [addr, addr+len) in p.
4669 *
4670 */
4671 void
4672 pmap_procwr(struct proc *p, vaddr_t va, int len)
4673 {
4674 /* We only need to do anything if it is the current process. */
4675 if (p == curproc)
4676 cpu_icache_sync_range(va, len);
4677 }
4678
4679 /*
4680 * Routine: pmap_unwire
4681 * Function: Clear the wired attribute for a map/virtual-address pair.
4682 *
4683 * In/out conditions:
4684 * The mapping must already exist in the pmap.
4685 */
4686 void
4687 pmap_unwire(pmap_t pm, vaddr_t va)
4688 {
4689 struct l2_bucket *l2b;
4690 pt_entry_t *ptep, pte;
4691 struct vm_page *pg;
4692 paddr_t pa;
4693
4694 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4695
4696 pmap_acquire_pmap_lock(pm);
4697
4698 l2b = pmap_get_l2_bucket(pm, va);
4699 KDASSERT(l2b != NULL);
4700
4701 ptep = &l2b->l2b_kva[l2pte_index(va)];
4702 pte = *ptep;
4703
4704 /* Extract the physical address of the page */
4705 pa = l2pte_pa(pte);
4706
4707 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4708 /* Update the wired bit in the pv entry for this page. */
4709 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4710
4711 pmap_acquire_page_lock(md);
4712 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4713 pmap_release_page_lock(md);
4714 }
4715
4716 pmap_release_pmap_lock(pm);
4717 }
4718
4719 void
4720 pmap_activate(struct lwp *l)
4721 {
4722 struct cpu_info * const ci = curcpu();
4723 extern int block_userspace_access;
4724 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4725 #ifdef ARM_MMU_EXTENDED
4726 struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
4727 #endif
4728
4729 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4730
4731 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
4732
4733 /*
4734 * If activating a non-current lwp or the current lwp is
4735 * already active, just return.
4736 */
4737 if (false
4738 || l != curlwp
4739 #ifdef ARM_MMU_EXTENDED
4740 || (ci->ci_pmap_cur == npm &&
4741 (npm == pmap_kernel()
4742 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4743 #else
4744 || npm->pm_activated == true
4745 #endif
4746 || false) {
4747 UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
4748 return;
4749 }
4750
4751 #ifndef ARM_MMU_EXTENDED
4752 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4753 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4754
4755 /*
4756 * If TTB and DACR are unchanged, short-circuit all the
4757 * TLB/cache management stuff.
4758 */
4759 pmap_t opm = ci->ci_lastlwp
4760 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4761 : NULL;
4762 if (opm != NULL) {
4763 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4764 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4765
4766 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4767 goto all_done;
4768 }
4769 #endif /* !ARM_MMU_EXTENDED */
4770
4771 PMAPCOUNT(activations);
4772 block_userspace_access = 1;
4773
4774 #ifndef ARM_MMU_EXTENDED
4775 /*
4776 * If switching to a user vmspace which is different to the
4777 * most recent one, and the most recent one is potentially
4778 * live in the cache, we must write-back and invalidate the
4779 * entire cache.
4780 */
4781 pmap_t rpm = ci->ci_pmap_lastuser;
4782 #endif
4783
4784 /*
4785 * XXXSCW: There's a corner case here which can leave turds in the cache as
4786 * reported in kern/41058. They're probably left over during tear-down and
4787 * switching away from an exiting process. Until the root cause is identified
4788 * and fixed, zap the cache when switching pmaps. This will result in a few
4789 * unnecessary cache flushes, but that's better than silently corrupting data.
4790 */
4791 #ifndef ARM_MMU_EXTENDED
4792 #if 0
4793 if (npm != pmap_kernel() && rpm && npm != rpm &&
4794 rpm->pm_cstate.cs_cache) {
4795 rpm->pm_cstate.cs_cache = 0;
4796 #ifdef PMAP_CACHE_VIVT
4797 cpu_idcache_wbinv_all();
4798 #endif
4799 }
4800 #else
4801 if (rpm) {
4802 rpm->pm_cstate.cs_cache = 0;
4803 if (npm == pmap_kernel())
4804 ci->ci_pmap_lastuser = NULL;
4805 #ifdef PMAP_CACHE_VIVT
4806 cpu_idcache_wbinv_all();
4807 #endif
4808 }
4809 #endif
4810
4811 /* No interrupts while we frob the TTB/DACR */
4812 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4813 #endif /* !ARM_MMU_EXTENDED */
4814
4815 #ifndef ARM_HAS_VBAR
4816 /*
4817 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4818 * entry corresponding to 'vector_page' in the incoming L1 table
4819 * before switching to it otherwise subsequent interrupts/exceptions
4820 * (including domain faults!) will jump into hyperspace.
4821 */
4822 if (npm->pm_pl1vec != NULL) {
4823 cpu_tlb_flushID_SE((u_int)vector_page);
4824 cpu_cpwait();
4825 *npm->pm_pl1vec = npm->pm_l1vec;
4826 PTE_SYNC(npm->pm_pl1vec);
4827 }
4828 #endif
4829
4830 #ifdef ARM_MMU_EXTENDED
4831 /*
4832 * Assume that TTBR1 has only global mappings and TTBR0 only has
4833 * non-global mappings. To prevent speculation from doing evil things
4834 * we disable translation table walks using TTBR0 before setting the
4835 * CONTEXTIDR (ASID) or new TTBR0 value. Once both are set, table
4836 * walks are reenabled.
4837 */
4838 UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
4839 const uint32_t old_ttbcr = armreg_ttbcr_read();
4840 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4841 arm_isb();
4842 pmap_tlb_asid_acquire(npm, l);
4843 UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
4844 cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
4845 /*
4846 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
4847 * been updated.
4848 */
4849 arm_isb();
4850 if (npm != pmap_kernel()) {
4851 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4852 }
4853 cpu_cpwait();
4854 ci->ci_pmap_asid_cur = pai->pai_asid;
4855 #else
4856 cpu_domains(ndacr);
4857 if (npm == pmap_kernel() || npm == rpm) {
4858 /*
4859 * Switching to a kernel thread, or back to the
4860 * same user vmspace as before... Simply update
4861 * the TTB (no TLB flush required)
4862 */
4863 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4864 cpu_cpwait();
4865 } else {
4866 /*
4867 * Otherwise, update TTB and flush TLB
4868 */
4869 cpu_context_switch(npm->pm_l1->l1_physaddr);
4870 if (rpm != NULL)
4871 rpm->pm_cstate.cs_tlb = 0;
4872 }
4873
4874 restore_interrupts(oldirqstate);
4875 #endif /* ARM_MMU_EXTENDED */
4876
4877 block_userspace_access = 0;
4878
4879 #ifndef ARM_MMU_EXTENDED
4880 all_done:
4881 /*
4882 * The new pmap is resident. Make sure it's marked
4883 * as resident in the cache/TLB.
4884 */
4885 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4886 if (npm != pmap_kernel())
4887 ci->ci_pmap_lastuser = npm;
4888
4889 /* The old pmap is not longer active */
4890 if (opm != npm) {
4891 if (opm != NULL)
4892 opm->pm_activated = false;
4893
4894 /* But the new one is */
4895 npm->pm_activated = true;
4896 }
4897 #endif
4898 ci->ci_pmap_cur = npm;
4899 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4900 }
4901
4902 void
4903 pmap_deactivate(struct lwp *l)
4904 {
4905 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
4906
4907 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4908
4909 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
4910
4911 #ifdef ARM_MMU_EXTENDED
4912 kpreempt_disable();
4913 struct cpu_info * const ci = curcpu();
4914 /*
4915 * Disable translation table walks from TTBR0 while no pmap has been
4916 * activated.
4917 */
4918 const uint32_t old_ttbcr = armreg_ttbcr_read();
4919 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4920 arm_isb();
4921 pmap_tlb_asid_deactivate(pm);
4922 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4923 ci->ci_pmap_cur = pmap_kernel();
4924 kpreempt_enable();
4925 #else
4926 /*
4927 * If the process is exiting, make sure pmap_activate() does
4928 * a full MMU context-switch and cache flush, which we might
4929 * otherwise skip. See PR port-arm/38950.
4930 */
4931 if (l->l_proc->p_sflag & PS_WEXIT)
4932 curcpu()->ci_lastlwp = NULL;
4933
4934 pm->pm_activated = false;
4935 #endif
4936 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4937 }
4938
4939 void
4940 pmap_update(pmap_t pm)
4941 {
4942
4943 if (pm->pm_remove_all) {
4944 #ifdef ARM_MMU_EXTENDED
4945 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
4946 /*
4947 * Finish up the pmap_remove_all() optimisation by flushing
4948 * all our ASIDs.
4949 */
4950 pmap_tlb_asid_release_all(pm);
4951 #else
4952 /*
4953 * Finish up the pmap_remove_all() optimisation by flushing
4954 * the TLB.
4955 */
4956 pmap_tlb_flushID(pm);
4957 #endif
4958 pm->pm_remove_all = false;
4959 }
4960
4961 #ifdef ARM_MMU_EXTENDED
4962 #if defined(MULTIPROCESSOR)
4963 armreg_bpiallis_write(0);
4964 #else
4965 armreg_bpiall_write(0);
4966 #endif
4967
4968 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
4969 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
4970 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
4971 PMAP_COUNT(shootdown_ipis);
4972 }
4973 #endif
4974 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
4975 #else
4976 if (pmap_is_current(pm)) {
4977 /*
4978 * If we're dealing with a current userland pmap, move its L1
4979 * to the end of the LRU.
4980 */
4981 if (pm != pmap_kernel())
4982 pmap_use_l1(pm);
4983
4984 /*
4985 * We can assume we're done with frobbing the cache/tlb for
4986 * now. Make sure any future pmap ops don't skip cache/tlb
4987 * flushes.
4988 */
4989 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4990 }
4991 #endif
4992
4993 PMAPCOUNT(updates);
4994
4995 /*
4996 * make sure TLB/cache operations have completed.
4997 */
4998 cpu_cpwait();
4999 }
5000
5001 void
5002 pmap_remove_all(pmap_t pm)
5003 {
5004
5005 /*
5006 * The vmspace described by this pmap is about to be torn down.
5007 * Until pmap_update() is called, UVM will only make calls
5008 * to pmap_remove(). We can make life much simpler by flushing
5009 * the cache now, and deferring TLB invalidation to pmap_update().
5010 */
5011 #ifdef PMAP_CACHE_VIVT
5012 pmap_cache_wbinv_all(pm, PVF_EXEC);
5013 #endif
5014 pm->pm_remove_all = true;
5015 }
5016
5017 /*
5018 * Retire the given physical map from service.
5019 * Should only be called if the map contains no valid mappings.
5020 */
5021 void
5022 pmap_destroy(pmap_t pm)
5023 {
5024 u_int count;
5025
5026 if (pm == NULL)
5027 return;
5028
5029 if (pm->pm_remove_all) {
5030 pmap_tlb_flushID(pm);
5031 pm->pm_remove_all = false;
5032 }
5033
5034 /*
5035 * Drop reference count
5036 */
5037 mutex_enter(pm->pm_lock);
5038 count = --pm->pm_obj.uo_refs;
5039 mutex_exit(pm->pm_lock);
5040 if (count > 0) {
5041 #ifndef ARM_MMU_EXTENDED
5042 if (pmap_is_current(pm)) {
5043 if (pm != pmap_kernel())
5044 pmap_use_l1(pm);
5045 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5046 }
5047 #endif
5048 return;
5049 }
5050
5051 /*
5052 * reference count is zero, free pmap resources and then free pmap.
5053 */
5054
5055 #ifndef ARM_HAS_VBAR
5056 if (vector_page < KERNEL_BASE) {
5057 KDASSERT(!pmap_is_current(pm));
5058
5059 /* Remove the vector page mapping */
5060 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5061 pmap_update(pm);
5062 }
5063 #endif
5064
5065 LIST_REMOVE(pm, pm_list);
5066
5067 pmap_free_l1(pm);
5068
5069 #ifdef ARM_MMU_EXTENDED
5070 #ifdef MULTIPROCESSOR
5071 kcpuset_destroy(pm->pm_active);
5072 kcpuset_destroy(pm->pm_onproc);
5073 #endif
5074 #else
5075 struct cpu_info * const ci = curcpu();
5076 if (ci->ci_pmap_lastuser == pm)
5077 ci->ci_pmap_lastuser = NULL;
5078 #endif
5079
5080 uvm_obj_destroy(&pm->pm_obj, false);
5081 mutex_destroy(&pm->pm_obj_lock);
5082 pool_cache_put(&pmap_cache, pm);
5083 }
5084
5085
5086 /*
5087 * void pmap_reference(pmap_t pm)
5088 *
5089 * Add a reference to the specified pmap.
5090 */
5091 void
5092 pmap_reference(pmap_t pm)
5093 {
5094
5095 if (pm == NULL)
5096 return;
5097
5098 #ifndef ARM_MMU_EXTENDED
5099 pmap_use_l1(pm);
5100 #endif
5101
5102 mutex_enter(pm->pm_lock);
5103 pm->pm_obj.uo_refs++;
5104 mutex_exit(pm->pm_lock);
5105 }
5106
5107 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5108
5109 static struct evcnt pmap_prefer_nochange_ev =
5110 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5111 static struct evcnt pmap_prefer_change_ev =
5112 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5113
5114 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5115 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5116
5117 void
5118 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5119 {
5120 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5121 vaddr_t va = *vap;
5122 vaddr_t diff = (hint - va) & mask;
5123 if (diff == 0) {
5124 pmap_prefer_nochange_ev.ev_count++;
5125 } else {
5126 pmap_prefer_change_ev.ev_count++;
5127 if (__predict_false(td))
5128 va -= mask + 1;
5129 *vap = va + diff;
5130 }
5131 }
5132 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5133
5134 /*
5135 * pmap_zero_page()
5136 *
5137 * Zero a given physical page by mapping it at a page hook point.
5138 * In doing the zero page op, the page we zero is mapped cachable, as with
5139 * StrongARM accesses to non-cached pages are non-burst making writing
5140 * _any_ bulk data very slow.
5141 */
5142 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5143 void
5144 pmap_zero_page_generic(paddr_t pa)
5145 {
5146 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5147 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5148 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5149 #endif
5150 #if defined(PMAP_CACHE_VIPT)
5151 /* Choose the last page color it had, if any */
5152 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5153 #else
5154 const vsize_t va_offset = 0;
5155 #endif
5156 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5157 /*
5158 * Is this page mapped at its natural color?
5159 * If we have all of memory mapped, then just convert PA to VA.
5160 */
5161 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5162 || va_offset == (pa & arm_cache_prefer_mask);
5163 const vaddr_t vdstp = okcolor
5164 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5165 : cpu_cdstp(va_offset);
5166 #else
5167 const bool okcolor = false;
5168 const vaddr_t vdstp = cpu_cdstp(va_offset);
5169 #endif
5170 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5171
5172
5173 #ifdef DEBUG
5174 if (!SLIST_EMPTY(&md->pvh_list))
5175 panic("pmap_zero_page: page has mappings");
5176 #endif
5177
5178 KDASSERT((pa & PGOFSET) == 0);
5179
5180 if (!okcolor) {
5181 /*
5182 * Hook in the page, zero it, and purge the cache for that
5183 * zeroed page. Invalidate the TLB as needed.
5184 */
5185 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5186 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5187 l2pte_set(ptep, npte, 0);
5188 PTE_SYNC(ptep);
5189 cpu_tlb_flushD_SE(vdstp);
5190 cpu_cpwait();
5191 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5192 && !defined(ARM_MMU_EXTENDED)
5193 /*
5194 * If we are direct-mapped and our color isn't ok, then before
5195 * we bzero the page invalidate its contents from the cache and
5196 * reset the color to its natural color.
5197 */
5198 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5199 md->pvh_attrs &= ~arm_cache_prefer_mask;
5200 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5201 #endif
5202 }
5203 bzero_page(vdstp);
5204 if (!okcolor) {
5205 /*
5206 * Unmap the page.
5207 */
5208 l2pte_reset(ptep);
5209 PTE_SYNC(ptep);
5210 cpu_tlb_flushD_SE(vdstp);
5211 #ifdef PMAP_CACHE_VIVT
5212 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5213 #endif
5214 }
5215 #ifdef PMAP_CACHE_VIPT
5216 /*
5217 * This page is now cache resident so it now has a page color.
5218 * Any contents have been obliterated so clear the EXEC flag.
5219 */
5220 #ifndef ARM_MMU_EXTENDED
5221 if (!pmap_is_page_colored_p(md)) {
5222 PMAPCOUNT(vac_color_new);
5223 md->pvh_attrs |= PVF_COLORED;
5224 }
5225 md->pvh_attrs |= PVF_DIRTY;
5226 #endif
5227 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5228 md->pvh_attrs &= ~PVF_EXEC;
5229 PMAPCOUNT(exec_discarded_zero);
5230 }
5231 #endif
5232 }
5233 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5234
5235 #if ARM_MMU_XSCALE == 1
5236 void
5237 pmap_zero_page_xscale(paddr_t pa)
5238 {
5239 #ifdef DEBUG
5240 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5241 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5242
5243 if (!SLIST_EMPTY(&md->pvh_list))
5244 panic("pmap_zero_page: page has mappings");
5245 #endif
5246
5247 KDASSERT((pa & PGOFSET) == 0);
5248
5249 /*
5250 * Hook in the page, zero it, and purge the cache for that
5251 * zeroed page. Invalidate the TLB as needed.
5252 */
5253
5254 pt_entry_t npte = L2_S_PROTO | pa |
5255 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5256 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5257 l2pte_set(cdst_pte, npte, 0);
5258 PTE_SYNC(cdst_pte);
5259 cpu_tlb_flushD_SE(cdstp);
5260 cpu_cpwait();
5261 bzero_page(cdstp);
5262 xscale_cache_clean_minidata();
5263 l2pte_reset(cdst_pte);
5264 PTE_SYNC(cdst_pte);
5265 }
5266 #endif /* ARM_MMU_XSCALE == 1 */
5267
5268 /* pmap_pageidlezero()
5269 *
5270 * The same as above, except that we assume that the page is not
5271 * mapped. This means we never have to flush the cache first. Called
5272 * from the idle loop.
5273 */
5274 bool
5275 pmap_pageidlezero(paddr_t pa)
5276 {
5277 bool rv = true;
5278 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5279 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5280 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5281 #endif
5282 #ifdef PMAP_CACHE_VIPT
5283 /* Choose the last page color it had, if any */
5284 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5285 #else
5286 const vsize_t va_offset = 0;
5287 #endif
5288 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5289 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5290 || va_offset == (pa & arm_cache_prefer_mask);
5291 const vaddr_t vdstp = okcolor
5292 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5293 : cpu_cdstp(va_offset);
5294 #else
5295 const bool okcolor = false;
5296 const vaddr_t vdstp = cpu_cdstp(va_offset);
5297 #endif
5298 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5299
5300
5301 #ifdef DEBUG
5302 if (!SLIST_EMPTY(&md->pvh_list))
5303 panic("pmap_pageidlezero: page has mappings");
5304 #endif
5305
5306 KDASSERT((pa & PGOFSET) == 0);
5307
5308 if (!okcolor) {
5309 /*
5310 * Hook in the page, zero it, and purge the cache for that
5311 * zeroed page. Invalidate the TLB as needed.
5312 */
5313 const pt_entry_t npte = L2_S_PROTO | pa |
5314 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5315 l2pte_set(ptep, npte, 0);
5316 PTE_SYNC(ptep);
5317 cpu_tlb_flushD_SE(vdstp);
5318 cpu_cpwait();
5319 }
5320
5321 uint64_t *ptr = (uint64_t *)vdstp;
5322 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5323 if (sched_curcpu_runnable_p() != 0) {
5324 /*
5325 * A process has become ready. Abort now,
5326 * so we don't keep it waiting while we
5327 * do slow memory access to finish this
5328 * page.
5329 */
5330 rv = false;
5331 break;
5332 }
5333 *ptr++ = 0;
5334 }
5335
5336 #ifdef PMAP_CACHE_VIVT
5337 if (rv)
5338 /*
5339 * if we aborted we'll rezero this page again later so don't
5340 * purge it unless we finished it
5341 */
5342 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5343 #elif defined(PMAP_CACHE_VIPT)
5344 /*
5345 * This page is now cache resident so it now has a page color.
5346 * Any contents have been obliterated so clear the EXEC flag.
5347 */
5348 #ifndef ARM_MMU_EXTENDED
5349 if (!pmap_is_page_colored_p(md)) {
5350 PMAPCOUNT(vac_color_new);
5351 md->pvh_attrs |= PVF_COLORED;
5352 }
5353 #endif
5354 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5355 md->pvh_attrs &= ~PVF_EXEC;
5356 PMAPCOUNT(exec_discarded_zero);
5357 }
5358 #endif
5359 /*
5360 * Unmap the page.
5361 */
5362 if (!okcolor) {
5363 l2pte_reset(ptep);
5364 PTE_SYNC(ptep);
5365 cpu_tlb_flushD_SE(vdstp);
5366 }
5367
5368 return rv;
5369 }
5370
5371 /*
5372 * pmap_copy_page()
5373 *
5374 * Copy one physical page into another, by mapping the pages into
5375 * hook points. The same comment regarding cachability as in
5376 * pmap_zero_page also applies here.
5377 */
5378 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5379 void
5380 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5381 {
5382 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5383 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5384 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5385 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5386 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5387 #endif
5388 #ifdef PMAP_CACHE_VIPT
5389 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5390 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5391 #else
5392 const vsize_t src_va_offset = 0;
5393 const vsize_t dst_va_offset = 0;
5394 #endif
5395 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5396 /*
5397 * Is this page mapped at its natural color?
5398 * If we have all of memory mapped, then just convert PA to VA.
5399 */
5400 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5401 || src_va_offset == (src & arm_cache_prefer_mask);
5402 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5403 || dst_va_offset == (dst & arm_cache_prefer_mask);
5404 const vaddr_t vsrcp = src_okcolor
5405 ? pmap_direct_mapped_phys(src, &src_okcolor,
5406 cpu_csrcp(src_va_offset))
5407 : cpu_csrcp(src_va_offset);
5408 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5409 cpu_cdstp(dst_va_offset));
5410 #else
5411 const bool src_okcolor = false;
5412 const bool dst_okcolor = false;
5413 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5414 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5415 #endif
5416 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5417 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5418
5419 #ifdef DEBUG
5420 if (!SLIST_EMPTY(&dst_md->pvh_list))
5421 panic("pmap_copy_page: dst page has mappings");
5422 #endif
5423
5424 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5425 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5426 #endif
5427 KDASSERT((src & PGOFSET) == 0);
5428 KDASSERT((dst & PGOFSET) == 0);
5429
5430 /*
5431 * Clean the source page. Hold the source page's lock for
5432 * the duration of the copy so that no other mappings can
5433 * be created while we have a potentially aliased mapping.
5434 */
5435 #ifdef PMAP_CACHE_VIVT
5436 pmap_acquire_page_lock(src_md);
5437 (void) pmap_clean_page(src_md, true);
5438 pmap_release_page_lock(src_md);
5439 #endif
5440
5441 /*
5442 * Map the pages into the page hook points, copy them, and purge
5443 * the cache for the appropriate page. Invalidate the TLB
5444 * as required.
5445 */
5446 if (!src_okcolor) {
5447 const pt_entry_t nsrc_pte = L2_S_PROTO
5448 | src
5449 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5450 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5451 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5452 | pte_l2_s_cache_mode
5453 #endif
5454 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5455 l2pte_set(src_ptep, nsrc_pte, 0);
5456 PTE_SYNC(src_ptep);
5457 cpu_tlb_flushD_SE(vsrcp);
5458 cpu_cpwait();
5459 }
5460 if (!dst_okcolor) {
5461 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5462 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5463 l2pte_set(dst_ptep, ndst_pte, 0);
5464 PTE_SYNC(dst_ptep);
5465 cpu_tlb_flushD_SE(vdstp);
5466 cpu_cpwait();
5467 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5468 /*
5469 * If we are direct-mapped and our color isn't ok, then before
5470 * we bcopy to the new page invalidate its contents from the
5471 * cache and reset its color to its natural color.
5472 */
5473 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5474 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5475 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5476 #endif
5477 }
5478 bcopy_page(vsrcp, vdstp);
5479 #ifdef PMAP_CACHE_VIVT
5480 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5481 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5482 #endif
5483 /*
5484 * Unmap the pages.
5485 */
5486 if (!src_okcolor) {
5487 l2pte_reset(src_ptep);
5488 PTE_SYNC(src_ptep);
5489 cpu_tlb_flushD_SE(vsrcp);
5490 cpu_cpwait();
5491 }
5492 if (!dst_okcolor) {
5493 l2pte_reset(dst_ptep);
5494 PTE_SYNC(dst_ptep);
5495 cpu_tlb_flushD_SE(vdstp);
5496 cpu_cpwait();
5497 }
5498 #ifdef PMAP_CACHE_VIPT
5499 /*
5500 * Now that the destination page is in the cache, mark it as colored.
5501 * If this was an exec page, discard it.
5502 */
5503 pmap_acquire_page_lock(dst_md);
5504 #ifndef ARM_MMU_EXTENDED
5505 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5506 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5507 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5508 }
5509 if (!pmap_is_page_colored_p(dst_md)) {
5510 PMAPCOUNT(vac_color_new);
5511 dst_md->pvh_attrs |= PVF_COLORED;
5512 }
5513 dst_md->pvh_attrs |= PVF_DIRTY;
5514 #endif
5515 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5516 dst_md->pvh_attrs &= ~PVF_EXEC;
5517 PMAPCOUNT(exec_discarded_copy);
5518 }
5519 pmap_release_page_lock(dst_md);
5520 #endif
5521 }
5522 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5523
5524 #if ARM_MMU_XSCALE == 1
5525 void
5526 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5527 {
5528 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5529 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5530 #ifdef DEBUG
5531 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5532
5533 if (!SLIST_EMPTY(&dst_md->pvh_list))
5534 panic("pmap_copy_page: dst page has mappings");
5535 #endif
5536
5537 KDASSERT((src & PGOFSET) == 0);
5538 KDASSERT((dst & PGOFSET) == 0);
5539
5540 /*
5541 * Clean the source page. Hold the source page's lock for
5542 * the duration of the copy so that no other mappings can
5543 * be created while we have a potentially aliased mapping.
5544 */
5545 #ifdef PMAP_CACHE_VIVT
5546 pmap_acquire_page_lock(src_md);
5547 (void) pmap_clean_page(src_md, true);
5548 pmap_release_page_lock(src_md);
5549 #endif
5550
5551 /*
5552 * Map the pages into the page hook points, copy them, and purge
5553 * the cache for the appropriate page. Invalidate the TLB
5554 * as required.
5555 */
5556 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5557 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5558 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5559 l2pte_set(csrc_pte, nsrc_pte, 0);
5560 PTE_SYNC(csrc_pte);
5561
5562 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5563 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5564 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5565 l2pte_set(cdst_pte, ndst_pte, 0);
5566 PTE_SYNC(cdst_pte);
5567
5568 cpu_tlb_flushD_SE(csrcp);
5569 cpu_tlb_flushD_SE(cdstp);
5570 cpu_cpwait();
5571 bcopy_page(csrcp, cdstp);
5572 xscale_cache_clean_minidata();
5573 l2pte_reset(csrc_pte);
5574 l2pte_reset(cdst_pte);
5575 PTE_SYNC(csrc_pte);
5576 PTE_SYNC(cdst_pte);
5577 }
5578 #endif /* ARM_MMU_XSCALE == 1 */
5579
5580 /*
5581 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5582 *
5583 * Return the start and end addresses of the kernel's virtual space.
5584 * These values are setup in pmap_bootstrap and are updated as pages
5585 * are allocated.
5586 */
5587 void
5588 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5589 {
5590 *start = virtual_avail;
5591 *end = virtual_end;
5592 }
5593
5594 /*
5595 * Helper function for pmap_grow_l2_bucket()
5596 */
5597 static inline int
5598 pmap_grow_map(vaddr_t va, paddr_t *pap)
5599 {
5600 paddr_t pa;
5601
5602 if (uvm.page_init_done == false) {
5603 #ifdef PMAP_STEAL_MEMORY
5604 pv_addr_t pv;
5605 pmap_boot_pagealloc(PAGE_SIZE,
5606 #ifdef PMAP_CACHE_VIPT
5607 arm_cache_prefer_mask,
5608 va & arm_cache_prefer_mask,
5609 #else
5610 0, 0,
5611 #endif
5612 &pv);
5613 pa = pv.pv_pa;
5614 #else
5615 if (uvm_page_physget(&pa) == false)
5616 return (1);
5617 #endif /* PMAP_STEAL_MEMORY */
5618 } else {
5619 struct vm_page *pg;
5620 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5621 if (pg == NULL)
5622 return (1);
5623 pa = VM_PAGE_TO_PHYS(pg);
5624 /*
5625 * This new page must not have any mappings. Enter it via
5626 * pmap_kenter_pa and let that routine do the hard work.
5627 */
5628 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5629 KASSERT(SLIST_EMPTY(&md->pvh_list));
5630 pmap_kenter_pa(va, pa,
5631 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5632 }
5633
5634 if (pap)
5635 *pap = pa;
5636
5637 PMAPCOUNT(pt_mappings);
5638 #ifdef DEBUG
5639 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5640 KDASSERT(l2b != NULL);
5641
5642 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5643 const pt_entry_t opte = *ptep;
5644 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5645 #endif
5646 memset((void *)va, 0, PAGE_SIZE);
5647 return (0);
5648 }
5649
5650 /*
5651 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5652 * used by pmap_growkernel().
5653 */
5654 static inline struct l2_bucket *
5655 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5656 {
5657 struct l2_dtable *l2;
5658 struct l2_bucket *l2b;
5659 u_short l1slot;
5660 vaddr_t nva;
5661
5662 l1slot = l1pte_index(va);
5663
5664 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5665 /*
5666 * No mapping at this address, as there is
5667 * no entry in the L1 table.
5668 * Need to allocate a new l2_dtable.
5669 */
5670 nva = pmap_kernel_l2dtable_kva;
5671 if ((nva & PGOFSET) == 0) {
5672 /*
5673 * Need to allocate a backing page
5674 */
5675 if (pmap_grow_map(nva, NULL))
5676 return (NULL);
5677 }
5678
5679 l2 = (struct l2_dtable *)nva;
5680 nva += sizeof(struct l2_dtable);
5681
5682 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5683 /*
5684 * The new l2_dtable straddles a page boundary.
5685 * Map in another page to cover it.
5686 */
5687 if (pmap_grow_map(nva, NULL))
5688 return (NULL);
5689 }
5690
5691 pmap_kernel_l2dtable_kva = nva;
5692
5693 /*
5694 * Link it into the parent pmap
5695 */
5696 pm->pm_l2[L2_IDX(l1slot)] = l2;
5697 }
5698
5699 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5700
5701 /*
5702 * Fetch pointer to the L2 page table associated with the address.
5703 */
5704 if (l2b->l2b_kva == NULL) {
5705 pt_entry_t *ptep;
5706
5707 /*
5708 * No L2 page table has been allocated. Chances are, this
5709 * is because we just allocated the l2_dtable, above.
5710 */
5711 nva = pmap_kernel_l2ptp_kva;
5712 ptep = (pt_entry_t *)nva;
5713 if ((nva & PGOFSET) == 0) {
5714 /*
5715 * Need to allocate a backing page
5716 */
5717 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5718 return (NULL);
5719 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5720 }
5721
5722 l2->l2_occupancy++;
5723 l2b->l2b_kva = ptep;
5724 l2b->l2b_l1slot = l1slot;
5725 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5726
5727 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5728 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5729 }
5730
5731 return (l2b);
5732 }
5733
5734 vaddr_t
5735 pmap_growkernel(vaddr_t maxkvaddr)
5736 {
5737 pmap_t kpm = pmap_kernel();
5738 #ifndef ARM_MMU_EXTENDED
5739 struct l1_ttable *l1;
5740 #endif
5741 int s;
5742
5743 if (maxkvaddr <= pmap_curmaxkvaddr)
5744 goto out; /* we are OK */
5745
5746 NPDEBUG(PDB_GROWKERN,
5747 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5748 pmap_curmaxkvaddr, maxkvaddr));
5749
5750 KDASSERT(maxkvaddr <= virtual_end);
5751
5752 /*
5753 * whoops! we need to add kernel PTPs
5754 */
5755
5756 s = splhigh(); /* to be safe */
5757 mutex_enter(kpm->pm_lock);
5758
5759 /* Map 1MB at a time */
5760 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5761 #ifdef ARM_MMU_EXTENDED
5762 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5763 pd_entry_t *pdep = spdep;
5764 #endif
5765 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5766 #ifdef ARM_MMU_EXTENDED
5767 pdep++,
5768 #endif
5769 l1slot++) {
5770 struct l2_bucket *l2b =
5771 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5772 KASSERT(l2b != NULL);
5773
5774 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5775 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5776 #ifdef ARM_MMU_EXTENDED
5777 l1pte_setone(pdep, npde);
5778 #else
5779 /* Distribute new L1 entry to all other L1s */
5780 SLIST_FOREACH(l1, &l1_list, l1_link) {
5781 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5782 l1pte_setone(pdep, npde);
5783 PDE_SYNC(pdep);
5784 }
5785 #endif
5786 }
5787 #ifdef ARM_MMU_EXTENDED
5788 PDE_SYNC_RANGE(spdep, pdep - spdep);
5789 #endif
5790
5791 #ifdef PMAP_CACHE_VIVT
5792 /*
5793 * flush out the cache, expensive but growkernel will happen so
5794 * rarely
5795 */
5796 cpu_dcache_wbinv_all();
5797 cpu_tlb_flushD();
5798 cpu_cpwait();
5799 #endif
5800
5801 mutex_exit(kpm->pm_lock);
5802 splx(s);
5803
5804 out:
5805 return (pmap_curmaxkvaddr);
5806 }
5807
5808 /************************ Utility routines ****************************/
5809
5810 #ifndef ARM_HAS_VBAR
5811 /*
5812 * vector_page_setprot:
5813 *
5814 * Manipulate the protection of the vector page.
5815 */
5816 void
5817 vector_page_setprot(int prot)
5818 {
5819 struct l2_bucket *l2b;
5820 pt_entry_t *ptep;
5821
5822 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5823 /*
5824 * If we are using VBAR to use the vectors in the kernel, then it's
5825 * already mapped in the kernel text so no need to anything here.
5826 */
5827 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5828 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5829 return;
5830 }
5831 #endif
5832
5833 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5834 KASSERT(l2b != NULL);
5835
5836 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5837
5838 const pt_entry_t opte = *ptep;
5839 #ifdef ARM_MMU_EXTENDED
5840 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5841 | L2_S_PROT(PTE_KERNEL, prot);
5842 #else
5843 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5844 | L2_S_PROT(PTE_KERNEL, prot);
5845 #endif
5846 l2pte_set(ptep, npte, opte);
5847 PTE_SYNC(ptep);
5848 cpu_tlb_flushD_SE(vector_page);
5849 cpu_cpwait();
5850 }
5851 #endif
5852
5853 /*
5854 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5855 * Returns true if the mapping exists, else false.
5856 *
5857 * NOTE: This function is only used by a couple of arm-specific modules.
5858 * It is not safe to take any pmap locks here, since we could be right
5859 * in the middle of debugging the pmap anyway...
5860 *
5861 * It is possible for this routine to return false even though a valid
5862 * mapping does exist. This is because we don't lock, so the metadata
5863 * state may be inconsistent.
5864 *
5865 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5866 * a "section" mapping.
5867 */
5868 bool
5869 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5870 {
5871 struct l2_dtable *l2;
5872 pd_entry_t *pdep, pde;
5873 pt_entry_t *ptep;
5874 u_short l1slot;
5875
5876 if (pm->pm_l1 == NULL)
5877 return false;
5878
5879 l1slot = l1pte_index(va);
5880 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
5881 pde = *pdep;
5882
5883 if (l1pte_section_p(pde)) {
5884 *ptp = NULL;
5885 return true;
5886 }
5887
5888 l2 = pm->pm_l2[L2_IDX(l1slot)];
5889 if (l2 == NULL ||
5890 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
5891 return false;
5892 }
5893
5894 *ptp = &ptep[l2pte_index(va)];
5895 return true;
5896 }
5897
5898 bool
5899 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5900 {
5901
5902 if (pm->pm_l1 == NULL)
5903 return false;
5904
5905 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
5906
5907 return true;
5908 }
5909
5910 /************************ Bootstrapping routines ****************************/
5911
5912 #ifndef ARM_MMU_EXTENDED
5913 static void
5914 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5915 {
5916 int i;
5917
5918 l1->l1_kva = l1pt;
5919 l1->l1_domain_use_count = 0;
5920 l1->l1_domain_first = 0;
5921
5922 for (i = 0; i < PMAP_DOMAINS; i++)
5923 l1->l1_domain_free[i] = i + 1;
5924
5925 /*
5926 * Copy the kernel's L1 entries to each new L1.
5927 */
5928 if (pmap_initialized)
5929 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5930
5931 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5932 &l1->l1_physaddr) == false)
5933 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5934
5935 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5936 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5937 }
5938 #endif /* !ARM_MMU_EXTENDED */
5939
5940 /*
5941 * pmap_bootstrap() is called from the board-specific initarm() routine
5942 * once the kernel L1/L2 descriptors tables have been set up.
5943 *
5944 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5945 * spread over a number of disparate files/functions.
5946 *
5947 * We are passed the following parameters
5948 * - kernel_l1pt
5949 * This is a pointer to the base of the kernel's L1 translation table.
5950 * - vstart
5951 * 1MB-aligned start of managed kernel virtual memory.
5952 * - vend
5953 * 1MB-aligned end of managed kernel virtual memory.
5954 *
5955 * We use the first parameter to build the metadata (struct l1_ttable and
5956 * struct l2_dtable) necessary to track kernel mappings.
5957 */
5958 #define PMAP_STATIC_L2_SIZE 16
5959 void
5960 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5961 {
5962 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5963 #ifndef ARM_MMU_EXTENDED
5964 static struct l1_ttable static_l1;
5965 struct l1_ttable *l1 = &static_l1;
5966 #endif
5967 struct l2_dtable *l2;
5968 struct l2_bucket *l2b;
5969 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5970 pmap_t pm = pmap_kernel();
5971 pt_entry_t *ptep;
5972 paddr_t pa;
5973 vsize_t size;
5974 int nptes, l2idx, l2next = 0;
5975
5976 #ifdef ARM_MMU_EXTENDED
5977 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
5978 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
5979 #endif
5980
5981 #ifdef VERBOSE_INIT_ARM
5982 printf("kpm ");
5983 #endif
5984 /*
5985 * Initialise the kernel pmap object
5986 */
5987 curcpu()->ci_pmap_cur = pm;
5988 #ifdef ARM_MMU_EXTENDED
5989 pm->pm_l1 = l1pt;
5990 pm->pm_l1_pa = kernel_l1pt.pv_pa;
5991 #ifdef VERBOSE_INIT_ARM
5992 printf("tlb0 ");
5993 #endif
5994 pmap_tlb_info_init(&pmap_tlb0_info);
5995 #ifdef MULTIPROCESSOR
5996 #ifdef VERBOSE_INIT_ARM
5997 printf("kcpusets ");
5998 #endif
5999 pm->pm_onproc = kcpuset_running;
6000 pm->pm_active = kcpuset_running;
6001 #endif
6002 #else
6003 pm->pm_l1 = l1;
6004 #endif
6005
6006 #ifdef VERBOSE_INIT_ARM
6007 printf("locks ");
6008 #endif
6009 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6010 if (arm_cache_prefer_mask != 0) {
6011 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6012 } else {
6013 #endif
6014 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
6015 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6016 }
6017 #endif
6018 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
6019 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
6020 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
6021
6022 #ifdef VERBOSE_INIT_ARM
6023 printf("l1pt ");
6024 #endif
6025 /*
6026 * Scan the L1 translation table created by initarm() and create
6027 * the required metadata for all valid mappings found in it.
6028 */
6029 for (size_t l1slot = 0;
6030 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6031 l1slot++) {
6032 pd_entry_t pde = l1pt[l1slot];
6033
6034 /*
6035 * We're only interested in Coarse mappings.
6036 * pmap_extract() can deal with section mappings without
6037 * recourse to checking L2 metadata.
6038 */
6039 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6040 continue;
6041
6042 /*
6043 * Lookup the KVA of this L2 descriptor table
6044 */
6045 pa = l1pte_pa(pde);
6046 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6047 if (ptep == NULL) {
6048 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6049 (u_int)l1slot << L1_S_SHIFT, pa);
6050 }
6051
6052 /*
6053 * Fetch the associated L2 metadata structure.
6054 * Allocate a new one if necessary.
6055 */
6056 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6057 if (l2next == PMAP_STATIC_L2_SIZE)
6058 panic("pmap_bootstrap: out of static L2s");
6059 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6060 }
6061
6062 /*
6063 * One more L1 slot tracked...
6064 */
6065 l2->l2_occupancy++;
6066
6067 /*
6068 * Fill in the details of the L2 descriptor in the
6069 * appropriate bucket.
6070 */
6071 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6072 l2b->l2b_kva = ptep;
6073 l2b->l2b_pa = pa;
6074 l2b->l2b_l1slot = l1slot;
6075
6076 /*
6077 * Establish an initial occupancy count for this descriptor
6078 */
6079 for (l2idx = 0;
6080 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6081 l2idx++) {
6082 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6083 l2b->l2b_occupancy++;
6084 }
6085 }
6086
6087 /*
6088 * Make sure the descriptor itself has the correct cache mode.
6089 * If not, fix it, but whine about the problem. Port-meisters
6090 * should consider this a clue to fix up their initarm()
6091 * function. :)
6092 */
6093 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6094 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6095 "L2 pte @ %p\n", ptep);
6096 }
6097 }
6098
6099 #ifdef VERBOSE_INIT_ARM
6100 printf("cache(l1pt) ");
6101 #endif
6102 /*
6103 * Ensure the primary (kernel) L1 has the correct cache mode for
6104 * a page table. Bitch if it is not correctly set.
6105 */
6106 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6107 L1_TABLE_SIZE / L2_S_SIZE)) {
6108 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6109 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6110 }
6111
6112 #ifdef PMAP_CACHE_VIVT
6113 cpu_dcache_wbinv_all();
6114 cpu_tlb_flushID();
6115 cpu_cpwait();
6116 #endif
6117
6118 /*
6119 * now we allocate the "special" VAs which are used for tmp mappings
6120 * by the pmap (and other modules). we allocate the VAs by advancing
6121 * virtual_avail (note that there are no pages mapped at these VAs).
6122 *
6123 * Managed KVM space start from wherever initarm() tells us.
6124 */
6125 virtual_avail = vstart;
6126 virtual_end = vend;
6127
6128 #ifdef VERBOSE_INIT_ARM
6129 printf("specials ");
6130 #endif
6131 #ifdef PMAP_CACHE_VIPT
6132 /*
6133 * If we have a VIPT cache, we need one page/pte per possible alias
6134 * page so we won't violate cache aliasing rules.
6135 */
6136 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6137 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6138 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6139 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6140 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6141 }
6142 #else
6143 nptes = PAGE_SIZE / L2_S_SIZE;
6144 #endif
6145 #ifdef MULTIPROCESSOR
6146 cnptes = nptes;
6147 nptes *= arm_cpu_max;
6148 #endif
6149 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6150 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6151 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6152 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6153 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6154 if (msgbufaddr == NULL) {
6155 pmap_alloc_specials(&virtual_avail,
6156 round_page(MSGBUFSIZE) / PAGE_SIZE,
6157 (void *)&msgbufaddr, NULL);
6158 }
6159
6160 /*
6161 * Allocate a range of kernel virtual address space to be used
6162 * for L2 descriptor tables and metadata allocation in
6163 * pmap_growkernel().
6164 */
6165 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6166 pmap_alloc_specials(&virtual_avail,
6167 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6168 &pmap_kernel_l2ptp_kva, NULL);
6169
6170 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6171 pmap_alloc_specials(&virtual_avail,
6172 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6173 &pmap_kernel_l2dtable_kva, NULL);
6174
6175 #ifndef ARM_MMU_EXTENDED
6176 /*
6177 * init the static-global locks and global pmap list.
6178 */
6179 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6180
6181 /*
6182 * We can now initialise the first L1's metadata.
6183 */
6184 SLIST_INIT(&l1_list);
6185 TAILQ_INIT(&l1_lru_list);
6186 pmap_init_l1(l1, l1pt);
6187 #endif /* ARM_MMU_EXTENDED */
6188
6189 #ifndef ARM_HAS_VBAR
6190 /* Set up vector page L1 details, if necessary */
6191 if (vector_page < KERNEL_BASE) {
6192 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6193 l2b = pmap_get_l2_bucket(pm, vector_page);
6194 KDASSERT(l2b != NULL);
6195 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6196 L1_C_DOM(pmap_domain(pm));
6197 } else
6198 pm->pm_pl1vec = NULL;
6199 #endif
6200
6201 #ifdef VERBOSE_INIT_ARM
6202 printf("pools ");
6203 #endif
6204 /*
6205 * Initialize the pmap cache
6206 */
6207 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6208 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6209 LIST_INIT(&pmap_pmaps);
6210 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
6211
6212 /*
6213 * Initialize the pv pool.
6214 */
6215 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6216 &pmap_bootstrap_pv_allocator, IPL_NONE);
6217
6218 /*
6219 * Initialize the L2 dtable pool and cache.
6220 */
6221 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6222 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6223
6224 /*
6225 * Initialise the L2 descriptor table pool and cache
6226 */
6227 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6228 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6229 pmap_l2ptp_ctor, NULL, NULL);
6230
6231 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6232
6233 cpu_dcache_wbinv_all();
6234 }
6235
6236 static bool
6237 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6238 {
6239 #ifdef ARM_MMU_EXTENDED
6240 return false;
6241 #else
6242 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6243 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6244 return false;
6245
6246 const vaddr_t eva = va + nptes * PAGE_SIZE;
6247 int rv = 0;
6248
6249 while (va < eva) {
6250 /*
6251 * Make sure the descriptor itself has the correct cache mode
6252 */
6253 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6254 pd_entry_t pde = *pdep;
6255
6256 if (l1pte_section_p(pde)) {
6257 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6258 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6259 *pdep = (pde & ~L1_S_CACHE_MASK) |
6260 pte_l1_s_cache_mode_pt;
6261 PDE_SYNC(pdep);
6262 cpu_dcache_wbinv_range((vaddr_t)pdep,
6263 sizeof(*pdep));
6264 rv = 1;
6265 }
6266 return rv;
6267 }
6268 vaddr_t pa = l1pte_pa(pde);
6269 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6270 if (ptep == NULL)
6271 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6272
6273 ptep += l2pte_index(va);
6274 const pt_entry_t opte = *ptep;
6275 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6276 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6277 | pte_l2_s_cache_mode_pt;
6278 l2pte_set(ptep, npte, opte);
6279 PTE_SYNC(ptep);
6280 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6281 rv = 1;
6282 }
6283 va += PAGE_SIZE;
6284 }
6285
6286 return (rv);
6287 #endif
6288 }
6289
6290 static void
6291 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6292 {
6293 vaddr_t va = *availp;
6294 struct l2_bucket *l2b;
6295
6296 if (ptep) {
6297 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6298 if (l2b == NULL)
6299 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6300
6301 if (ptep)
6302 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6303 }
6304
6305 *vap = va;
6306 *availp = va + (PAGE_SIZE * pages);
6307 }
6308
6309 void
6310 pmap_init(void)
6311 {
6312
6313 /*
6314 * Set the available memory vars - These do not map to real memory
6315 * addresses and cannot as the physical memory is fragmented.
6316 * They are used by ps for %mem calculations.
6317 * One could argue whether this should be the entire memory or just
6318 * the memory that is useable in a user process.
6319 */
6320 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
6321 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
6322
6323 /*
6324 * Now we need to free enough pv_entry structures to allow us to get
6325 * the kmem_map/kmem_object allocated and inited (done after this
6326 * function is finished). to do this we allocate one bootstrap page out
6327 * of kernel_map and use it to provide an initial pool of pv_entry
6328 * structures. we never free this page.
6329 */
6330 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6331
6332 #ifdef ARM_MMU_EXTENDED
6333 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6334 #endif
6335
6336 pmap_initialized = true;
6337 }
6338
6339 static vaddr_t last_bootstrap_page = 0;
6340 static void *free_bootstrap_pages = NULL;
6341
6342 static void *
6343 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6344 {
6345 extern void *pool_page_alloc(struct pool *, int);
6346 vaddr_t new_page;
6347 void *rv;
6348
6349 if (pmap_initialized)
6350 return (pool_page_alloc(pp, flags));
6351
6352 if (free_bootstrap_pages) {
6353 rv = free_bootstrap_pages;
6354 free_bootstrap_pages = *((void **)rv);
6355 return (rv);
6356 }
6357
6358 KASSERT(kernel_map != NULL);
6359 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6360 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6361
6362 KASSERT(new_page > last_bootstrap_page);
6363 last_bootstrap_page = new_page;
6364 return ((void *)new_page);
6365 }
6366
6367 static void
6368 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6369 {
6370 extern void pool_page_free(struct pool *, void *);
6371
6372 if ((vaddr_t)v <= last_bootstrap_page) {
6373 *((void **)v) = free_bootstrap_pages;
6374 free_bootstrap_pages = v;
6375 return;
6376 }
6377
6378 if (pmap_initialized) {
6379 pool_page_free(pp, v);
6380 return;
6381 }
6382 }
6383
6384 /*
6385 * pmap_postinit()
6386 *
6387 * This routine is called after the vm and kmem subsystems have been
6388 * initialised. This allows the pmap code to perform any initialisation
6389 * that can only be done one the memory allocation is in place.
6390 */
6391 void
6392 pmap_postinit(void)
6393 {
6394 #ifndef ARM_MMU_EXTENDED
6395 extern paddr_t physical_start, physical_end;
6396 struct l1_ttable *l1;
6397 struct pglist plist;
6398 struct vm_page *m;
6399 pd_entry_t *pdep;
6400 vaddr_t va, eva;
6401 u_int loop, needed;
6402 int error;
6403 #endif
6404
6405 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6406 pool_cache_setlowat(&pmap_l2dtable_cache,
6407 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6408
6409 #ifndef ARM_MMU_EXTENDED
6410 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6411 needed -= 1;
6412
6413 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6414
6415 for (loop = 0; loop < needed; loop++, l1++) {
6416 /* Allocate a L1 page table */
6417 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6418 if (va == 0)
6419 panic("Cannot allocate L1 KVM");
6420
6421 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6422 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6423 if (error)
6424 panic("Cannot allocate L1 physical pages");
6425
6426 m = TAILQ_FIRST(&plist);
6427 eva = va + L1_TABLE_SIZE;
6428 pdep = (pd_entry_t *)va;
6429
6430 while (m && va < eva) {
6431 paddr_t pa = VM_PAGE_TO_PHYS(m);
6432
6433 pmap_kenter_pa(va, pa,
6434 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6435
6436 va += PAGE_SIZE;
6437 m = TAILQ_NEXT(m, pageq.queue);
6438 }
6439
6440 #ifdef DIAGNOSTIC
6441 if (m)
6442 panic("pmap_alloc_l1pt: pglist not empty");
6443 #endif /* DIAGNOSTIC */
6444
6445 pmap_init_l1(l1, pdep);
6446 }
6447
6448 #ifdef DEBUG
6449 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6450 needed);
6451 #endif
6452 #endif /* !ARM_MMU_EXTENDED */
6453 }
6454
6455 /*
6456 * Note that the following routines are used by board-specific initialisation
6457 * code to configure the initial kernel page tables.
6458 *
6459 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
6460 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
6461 * behaviour of the old pmap, and provides an easy migration path for
6462 * initial bring-up of the new pmap on existing ports. Fortunately,
6463 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
6464 * will be deprecated.
6465 *
6466 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
6467 * tables.
6468 */
6469
6470 /*
6471 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6472 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6473 * find them as necessary.
6474 *
6475 * Note that the data on this list MUST remain valid after initarm() returns,
6476 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6477 */
6478 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6479
6480 static vaddr_t
6481 kernel_pt_lookup(paddr_t pa)
6482 {
6483 pv_addr_t *pv;
6484
6485 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6486 if (pv->pv_pa == (pa & ~PGOFSET))
6487 return (pv->pv_va | (pa & PGOFSET));
6488 }
6489 return (0);
6490 }
6491
6492 /*
6493 * pmap_map_section:
6494 *
6495 * Create a single section mapping.
6496 */
6497 void
6498 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6499 {
6500 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6501 const size_t l1slot = l1pte_index(va);
6502 pd_entry_t fl;
6503
6504 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6505
6506 switch (cache) {
6507 case PTE_NOCACHE:
6508 default:
6509 fl = 0;
6510 break;
6511
6512 case PTE_CACHE:
6513 fl = pte_l1_s_cache_mode;
6514 break;
6515
6516 case PTE_PAGETABLE:
6517 fl = pte_l1_s_cache_mode_pt;
6518 break;
6519 }
6520
6521 const pd_entry_t npde = L1_S_PROTO | pa |
6522 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6523 l1pte_setone(pdep + l1slot, npde);
6524 PDE_SYNC(pdep + l1slot);
6525 }
6526
6527 /*
6528 * pmap_map_entry:
6529 *
6530 * Create a single page mapping.
6531 */
6532 void
6533 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6534 {
6535 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6536 const size_t l1slot = l1pte_index(va);
6537 pt_entry_t npte;
6538 pt_entry_t *ptep;
6539
6540 KASSERT(((va | pa) & PGOFSET) == 0);
6541
6542 switch (cache) {
6543 case PTE_NOCACHE:
6544 default:
6545 npte = 0;
6546 break;
6547
6548 case PTE_CACHE:
6549 npte = pte_l2_s_cache_mode;
6550 break;
6551
6552 case PTE_PAGETABLE:
6553 npte = pte_l2_s_cache_mode_pt;
6554 break;
6555 }
6556
6557 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6558 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6559
6560 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6561 if (ptep == NULL)
6562 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6563
6564 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6565 #ifdef ARM_MMU_EXTENDED
6566 if (prot & VM_PROT_EXECUTE) {
6567 npte &= ~L2_XS_XN;
6568 }
6569 #endif
6570 ptep += l2pte_index(va);
6571 l2pte_set(ptep, npte, 0);
6572 PTE_SYNC(ptep);
6573 }
6574
6575 /*
6576 * pmap_link_l2pt:
6577 *
6578 * Link the L2 page table specified by "l2pv" into the L1
6579 * page table at the slot for "va".
6580 */
6581 void
6582 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6583 {
6584 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6585
6586 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6587 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6588
6589 const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6590 | l2pv->pv_pa;
6591
6592 l1pte_set(pdep, npde);
6593 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6594
6595 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6596 }
6597
6598 /*
6599 * pmap_map_chunk:
6600 *
6601 * Map a chunk of memory using the most efficient mappings
6602 * possible (section, large page, small page) into the
6603 * provided L1 and L2 tables at the specified virtual address.
6604 */
6605 vsize_t
6606 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6607 int prot, int cache)
6608 {
6609 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6610 pt_entry_t f1, f2s, f2l;
6611 vsize_t resid;
6612
6613 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6614
6615 if (l1pt == 0)
6616 panic("pmap_map_chunk: no L1 table provided");
6617
6618 #ifdef VERBOSE_INIT_ARM
6619 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6620 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6621 #endif
6622
6623 switch (cache) {
6624 case PTE_NOCACHE:
6625 default:
6626 f1 = 0;
6627 f2l = 0;
6628 f2s = 0;
6629 break;
6630
6631 case PTE_CACHE:
6632 f1 = pte_l1_s_cache_mode;
6633 f2l = pte_l2_l_cache_mode;
6634 f2s = pte_l2_s_cache_mode;
6635 break;
6636
6637 case PTE_PAGETABLE:
6638 f1 = pte_l1_s_cache_mode_pt;
6639 f2l = pte_l2_l_cache_mode_pt;
6640 f2s = pte_l2_s_cache_mode_pt;
6641 break;
6642 }
6643
6644 size = resid;
6645
6646 while (resid > 0) {
6647 const size_t l1slot = l1pte_index(va);
6648 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6649 /* See if we can use a supersection mapping. */
6650 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6651 /* Supersection are always domain 0 */
6652 const pd_entry_t npde = L1_SS_PROTO | pa
6653 #ifdef ARM_MMU_EXTENDED_XXX
6654 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6655 #endif
6656 #ifdef ARM_MMU_EXTENDED
6657 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6658 #endif
6659 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6660 #ifdef VERBOSE_INIT_ARM
6661 printf("sS");
6662 #endif
6663 l1pte_set(&pdep[l1slot], npde);
6664 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6665 va += L1_SS_SIZE;
6666 pa += L1_SS_SIZE;
6667 resid -= L1_SS_SIZE;
6668 continue;
6669 }
6670 #endif
6671 /* See if we can use a section mapping. */
6672 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6673 const pd_entry_t npde = L1_S_PROTO | pa
6674 #ifdef ARM_MMU_EXTENDED_XXX
6675 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6676 #endif
6677 #ifdef ARM_MMU_EXTENDED
6678 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6679 #endif
6680 | L1_S_PROT(PTE_KERNEL, prot) | f1
6681 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6682 #ifdef VERBOSE_INIT_ARM
6683 printf("S");
6684 #endif
6685 l1pte_set(&pdep[l1slot], npde);
6686 PDE_SYNC(&pdep[l1slot]);
6687 va += L1_S_SIZE;
6688 pa += L1_S_SIZE;
6689 resid -= L1_S_SIZE;
6690 continue;
6691 }
6692
6693 /*
6694 * Ok, we're going to use an L2 table. Make sure
6695 * one is actually in the corresponding L1 slot
6696 * for the current VA.
6697 */
6698 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6699 panic("%s: no L2 table for VA %#lx", __func__, va);
6700
6701 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6702 if (ptep == NULL)
6703 panic("%s: can't find L2 table for VA %#lx", __func__,
6704 va);
6705
6706 ptep += l2pte_index(va);
6707
6708 /* See if we can use a L2 large page mapping. */
6709 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6710 const pt_entry_t npte = L2_L_PROTO | pa
6711 #ifdef ARM_MMU_EXTENDED_XXX
6712 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6713 #endif
6714 #ifdef ARM_MMU_EXTENDED
6715 | (va & 0x80000000 ? 0 : L2_XS_nG)
6716 #endif
6717 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6718 #ifdef VERBOSE_INIT_ARM
6719 printf("L");
6720 #endif
6721 l2pte_set(ptep, npte, 0);
6722 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6723 va += L2_L_SIZE;
6724 pa += L2_L_SIZE;
6725 resid -= L2_L_SIZE;
6726 continue;
6727 }
6728
6729 /* Use a small page mapping. */
6730 #ifdef VERBOSE_INIT_ARM
6731 printf("P");
6732 #endif
6733 const pt_entry_t npte = L2_S_PROTO | pa
6734 #ifdef ARM_MMU_EXTENDED_XXX
6735 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6736 #endif
6737 #ifdef ARM_MMU_EXTENDED
6738 | (va & 0x80000000 ? 0 : L2_XS_nG)
6739 #endif
6740 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6741 l2pte_set(ptep, npte, 0);
6742 PTE_SYNC(ptep);
6743 va += PAGE_SIZE;
6744 pa += PAGE_SIZE;
6745 resid -= PAGE_SIZE;
6746 }
6747 #ifdef VERBOSE_INIT_ARM
6748 printf("\n");
6749 #endif
6750 return (size);
6751 }
6752
6753 /********************** Static device map routines ***************************/
6754
6755 static const struct pmap_devmap *pmap_devmap_table;
6756
6757 /*
6758 * Register the devmap table. This is provided in case early console
6759 * initialization needs to register mappings created by bootstrap code
6760 * before pmap_devmap_bootstrap() is called.
6761 */
6762 void
6763 pmap_devmap_register(const struct pmap_devmap *table)
6764 {
6765
6766 pmap_devmap_table = table;
6767 }
6768
6769 /*
6770 * Map all of the static regions in the devmap table, and remember
6771 * the devmap table so other parts of the kernel can look up entries
6772 * later.
6773 */
6774 void
6775 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6776 {
6777 int i;
6778
6779 pmap_devmap_table = table;
6780
6781 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6782 #ifdef VERBOSE_INIT_ARM
6783 printf("devmap: %08lx -> %08lx @ %08lx\n",
6784 pmap_devmap_table[i].pd_pa,
6785 pmap_devmap_table[i].pd_pa +
6786 pmap_devmap_table[i].pd_size - 1,
6787 pmap_devmap_table[i].pd_va);
6788 #endif
6789 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6790 pmap_devmap_table[i].pd_pa,
6791 pmap_devmap_table[i].pd_size,
6792 pmap_devmap_table[i].pd_prot,
6793 pmap_devmap_table[i].pd_cache);
6794 }
6795 }
6796
6797 const struct pmap_devmap *
6798 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6799 {
6800 uint64_t endpa;
6801 int i;
6802
6803 if (pmap_devmap_table == NULL)
6804 return (NULL);
6805
6806 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6807
6808 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6809 if (pa >= pmap_devmap_table[i].pd_pa &&
6810 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6811 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6812 return (&pmap_devmap_table[i]);
6813 }
6814
6815 return (NULL);
6816 }
6817
6818 const struct pmap_devmap *
6819 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6820 {
6821 int i;
6822
6823 if (pmap_devmap_table == NULL)
6824 return (NULL);
6825
6826 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6827 if (va >= pmap_devmap_table[i].pd_va &&
6828 va + size - 1 <= pmap_devmap_table[i].pd_va +
6829 pmap_devmap_table[i].pd_size - 1)
6830 return (&pmap_devmap_table[i]);
6831 }
6832
6833 return (NULL);
6834 }
6835
6836 /********************** PTE initialization routines **************************/
6837
6838 /*
6839 * These routines are called when the CPU type is identified to set up
6840 * the PTE prototypes, cache modes, etc.
6841 *
6842 * The variables are always here, just in case modules need to reference
6843 * them (though, they shouldn't).
6844 */
6845
6846 pt_entry_t pte_l1_s_cache_mode;
6847 pt_entry_t pte_l1_s_wc_mode;
6848 pt_entry_t pte_l1_s_cache_mode_pt;
6849 pt_entry_t pte_l1_s_cache_mask;
6850
6851 pt_entry_t pte_l2_l_cache_mode;
6852 pt_entry_t pte_l2_l_wc_mode;
6853 pt_entry_t pte_l2_l_cache_mode_pt;
6854 pt_entry_t pte_l2_l_cache_mask;
6855
6856 pt_entry_t pte_l2_s_cache_mode;
6857 pt_entry_t pte_l2_s_wc_mode;
6858 pt_entry_t pte_l2_s_cache_mode_pt;
6859 pt_entry_t pte_l2_s_cache_mask;
6860
6861 pt_entry_t pte_l1_s_prot_u;
6862 pt_entry_t pte_l1_s_prot_w;
6863 pt_entry_t pte_l1_s_prot_ro;
6864 pt_entry_t pte_l1_s_prot_mask;
6865
6866 pt_entry_t pte_l2_s_prot_u;
6867 pt_entry_t pte_l2_s_prot_w;
6868 pt_entry_t pte_l2_s_prot_ro;
6869 pt_entry_t pte_l2_s_prot_mask;
6870
6871 pt_entry_t pte_l2_l_prot_u;
6872 pt_entry_t pte_l2_l_prot_w;
6873 pt_entry_t pte_l2_l_prot_ro;
6874 pt_entry_t pte_l2_l_prot_mask;
6875
6876 pt_entry_t pte_l1_ss_proto;
6877 pt_entry_t pte_l1_s_proto;
6878 pt_entry_t pte_l1_c_proto;
6879 pt_entry_t pte_l2_s_proto;
6880
6881 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6882 void (*pmap_zero_page_func)(paddr_t);
6883
6884 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6885 void
6886 pmap_pte_init_generic(void)
6887 {
6888
6889 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6890 pte_l1_s_wc_mode = L1_S_B;
6891 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6892
6893 pte_l2_l_cache_mode = L2_B|L2_C;
6894 pte_l2_l_wc_mode = L2_B;
6895 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6896
6897 pte_l2_s_cache_mode = L2_B|L2_C;
6898 pte_l2_s_wc_mode = L2_B;
6899 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6900
6901 /*
6902 * If we have a write-through cache, set B and C. If
6903 * we have a write-back cache, then we assume setting
6904 * only C will make those pages write-through (except for those
6905 * Cortex CPUs which can read the L1 caches).
6906 */
6907 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6908 #if ARM_MMU_V7 > 0
6909 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6910 #endif
6911 #if ARM_MMU_V6 > 0
6912 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6913 #endif
6914 || false) {
6915 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6916 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6917 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6918 } else {
6919 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6920 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6921 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6922 }
6923
6924 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6925 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6926 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6927 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6928
6929 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6930 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6931 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6932 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6933
6934 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6935 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6936 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6937 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6938
6939 pte_l1_ss_proto = L1_SS_PROTO_generic;
6940 pte_l1_s_proto = L1_S_PROTO_generic;
6941 pte_l1_c_proto = L1_C_PROTO_generic;
6942 pte_l2_s_proto = L2_S_PROTO_generic;
6943
6944 pmap_copy_page_func = pmap_copy_page_generic;
6945 pmap_zero_page_func = pmap_zero_page_generic;
6946 }
6947
6948 #if defined(CPU_ARM8)
6949 void
6950 pmap_pte_init_arm8(void)
6951 {
6952
6953 /*
6954 * ARM8 is compatible with generic, but we need to use
6955 * the page tables uncached.
6956 */
6957 pmap_pte_init_generic();
6958
6959 pte_l1_s_cache_mode_pt = 0;
6960 pte_l2_l_cache_mode_pt = 0;
6961 pte_l2_s_cache_mode_pt = 0;
6962 }
6963 #endif /* CPU_ARM8 */
6964
6965 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6966 void
6967 pmap_pte_init_arm9(void)
6968 {
6969
6970 /*
6971 * ARM9 is compatible with generic, but we want to use
6972 * write-through caching for now.
6973 */
6974 pmap_pte_init_generic();
6975
6976 pte_l1_s_cache_mode = L1_S_C;
6977 pte_l2_l_cache_mode = L2_C;
6978 pte_l2_s_cache_mode = L2_C;
6979
6980 pte_l1_s_wc_mode = L1_S_B;
6981 pte_l2_l_wc_mode = L2_B;
6982 pte_l2_s_wc_mode = L2_B;
6983
6984 pte_l1_s_cache_mode_pt = L1_S_C;
6985 pte_l2_l_cache_mode_pt = L2_C;
6986 pte_l2_s_cache_mode_pt = L2_C;
6987 }
6988 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6989 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6990
6991 #if defined(CPU_ARM10)
6992 void
6993 pmap_pte_init_arm10(void)
6994 {
6995
6996 /*
6997 * ARM10 is compatible with generic, but we want to use
6998 * write-through caching for now.
6999 */
7000 pmap_pte_init_generic();
7001
7002 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7003 pte_l2_l_cache_mode = L2_B | L2_C;
7004 pte_l2_s_cache_mode = L2_B | L2_C;
7005
7006 pte_l1_s_cache_mode = L1_S_B;
7007 pte_l2_l_cache_mode = L2_B;
7008 pte_l2_s_cache_mode = L2_B;
7009
7010 pte_l1_s_cache_mode_pt = L1_S_C;
7011 pte_l2_l_cache_mode_pt = L2_C;
7012 pte_l2_s_cache_mode_pt = L2_C;
7013
7014 }
7015 #endif /* CPU_ARM10 */
7016
7017 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7018 void
7019 pmap_pte_init_arm11(void)
7020 {
7021
7022 /*
7023 * ARM11 is compatible with generic, but we want to use
7024 * write-through caching for now.
7025 */
7026 pmap_pte_init_generic();
7027
7028 pte_l1_s_cache_mode = L1_S_C;
7029 pte_l2_l_cache_mode = L2_C;
7030 pte_l2_s_cache_mode = L2_C;
7031
7032 pte_l1_s_wc_mode = L1_S_B;
7033 pte_l2_l_wc_mode = L2_B;
7034 pte_l2_s_wc_mode = L2_B;
7035
7036 pte_l1_s_cache_mode_pt = L1_S_C;
7037 pte_l2_l_cache_mode_pt = L2_C;
7038 pte_l2_s_cache_mode_pt = L2_C;
7039 }
7040 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7041
7042 #if ARM_MMU_SA1 == 1
7043 void
7044 pmap_pte_init_sa1(void)
7045 {
7046
7047 /*
7048 * The StrongARM SA-1 cache does not have a write-through
7049 * mode. So, do the generic initialization, then reset
7050 * the page table cache mode to B=1,C=1, and note that
7051 * the PTEs need to be sync'd.
7052 */
7053 pmap_pte_init_generic();
7054
7055 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7056 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7057 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7058
7059 pmap_needs_pte_sync = 1;
7060 }
7061 #endif /* ARM_MMU_SA1 == 1*/
7062
7063 #if ARM_MMU_XSCALE == 1
7064 #if (ARM_NMMUS > 1)
7065 static u_int xscale_use_minidata;
7066 #endif
7067
7068 void
7069 pmap_pte_init_xscale(void)
7070 {
7071 uint32_t auxctl;
7072 int write_through = 0;
7073
7074 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7075 pte_l1_s_wc_mode = L1_S_B;
7076 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7077
7078 pte_l2_l_cache_mode = L2_B|L2_C;
7079 pte_l2_l_wc_mode = L2_B;
7080 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7081
7082 pte_l2_s_cache_mode = L2_B|L2_C;
7083 pte_l2_s_wc_mode = L2_B;
7084 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7085
7086 pte_l1_s_cache_mode_pt = L1_S_C;
7087 pte_l2_l_cache_mode_pt = L2_C;
7088 pte_l2_s_cache_mode_pt = L2_C;
7089
7090 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7091 /*
7092 * The XScale core has an enhanced mode where writes that
7093 * miss the cache cause a cache line to be allocated. This
7094 * is significantly faster than the traditional, write-through
7095 * behavior of this case.
7096 */
7097 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7098 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7099 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7100 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7101
7102 #ifdef XSCALE_CACHE_WRITE_THROUGH
7103 /*
7104 * Some versions of the XScale core have various bugs in
7105 * their cache units, the work-around for which is to run
7106 * the cache in write-through mode. Unfortunately, this
7107 * has a major (negative) impact on performance. So, we
7108 * go ahead and run fast-and-loose, in the hopes that we
7109 * don't line up the planets in a way that will trip the
7110 * bugs.
7111 *
7112 * However, we give you the option to be slow-but-correct.
7113 */
7114 write_through = 1;
7115 #elif defined(XSCALE_CACHE_WRITE_BACK)
7116 /* force write back cache mode */
7117 write_through = 0;
7118 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7119 /*
7120 * Intel PXA2[15]0 processors are known to have a bug in
7121 * write-back cache on revision 4 and earlier (stepping
7122 * A[01] and B[012]). Fixed for C0 and later.
7123 */
7124 {
7125 uint32_t id, type;
7126
7127 id = cpufunc_id();
7128 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7129
7130 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7131 if ((id & CPU_ID_REVISION_MASK) < 5) {
7132 /* write through for stepping A0-1 and B0-2 */
7133 write_through = 1;
7134 }
7135 }
7136 }
7137 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7138
7139 if (write_through) {
7140 pte_l1_s_cache_mode = L1_S_C;
7141 pte_l2_l_cache_mode = L2_C;
7142 pte_l2_s_cache_mode = L2_C;
7143 }
7144
7145 #if (ARM_NMMUS > 1)
7146 xscale_use_minidata = 1;
7147 #endif
7148
7149 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7150 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7151 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7152 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7153
7154 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7155 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7156 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7157 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7158
7159 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7160 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7161 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7162 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7163
7164 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7165 pte_l1_s_proto = L1_S_PROTO_xscale;
7166 pte_l1_c_proto = L1_C_PROTO_xscale;
7167 pte_l2_s_proto = L2_S_PROTO_xscale;
7168
7169 pmap_copy_page_func = pmap_copy_page_xscale;
7170 pmap_zero_page_func = pmap_zero_page_xscale;
7171
7172 /*
7173 * Disable ECC protection of page table access, for now.
7174 */
7175 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
7176 auxctl &= ~XSCALE_AUXCTL_P;
7177 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
7178 }
7179
7180 /*
7181 * xscale_setup_minidata:
7182 *
7183 * Set up the mini-data cache clean area. We require the
7184 * caller to allocate the right amount of physically and
7185 * virtually contiguous space.
7186 */
7187 void
7188 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7189 {
7190 extern vaddr_t xscale_minidata_clean_addr;
7191 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7192 pd_entry_t *pde = (pd_entry_t *) l1pt;
7193 vsize_t size;
7194 uint32_t auxctl;
7195
7196 xscale_minidata_clean_addr = va;
7197
7198 /* Round it to page size. */
7199 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7200
7201 for (; size != 0;
7202 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7203 const size_t l1slot = l1pte_index(va);
7204 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7205 if (ptep == NULL)
7206 panic("xscale_setup_minidata: can't find L2 table for "
7207 "VA 0x%08lx", va);
7208
7209 ptep += l2pte_index(va);
7210 pt_entry_t opte = *ptep;
7211 l2pte_set(ptep,
7212 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7213 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7214 }
7215
7216 /*
7217 * Configure the mini-data cache for write-back with
7218 * read/write-allocate.
7219 *
7220 * NOTE: In order to reconfigure the mini-data cache, we must
7221 * make sure it contains no valid data! In order to do that,
7222 * we must issue a global data cache invalidate command!
7223 *
7224 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7225 * THIS IS VERY IMPORTANT!
7226 */
7227
7228 /* Invalidate data and mini-data. */
7229 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7230 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
7231 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7232 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
7233 }
7234
7235 /*
7236 * Change the PTEs for the specified kernel mappings such that they
7237 * will use the mini data cache instead of the main data cache.
7238 */
7239 void
7240 pmap_uarea(vaddr_t va)
7241 {
7242 vaddr_t next_bucket, eva;
7243
7244 #if (ARM_NMMUS > 1)
7245 if (xscale_use_minidata == 0)
7246 return;
7247 #endif
7248
7249 eva = va + USPACE;
7250
7251 while (va < eva) {
7252 next_bucket = L2_NEXT_BUCKET_VA(va);
7253 if (next_bucket > eva)
7254 next_bucket = eva;
7255
7256 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7257 KDASSERT(l2b != NULL);
7258
7259 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7260 pt_entry_t *ptep = sptep;
7261
7262 while (va < next_bucket) {
7263 const pt_entry_t opte = *ptep;
7264 if (!l2pte_minidata_p(opte)) {
7265 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7266 cpu_tlb_flushD_SE(va);
7267 l2pte_set(ptep, opte & ~L2_B, opte);
7268 }
7269 ptep += PAGE_SIZE / L2_S_SIZE;
7270 va += PAGE_SIZE;
7271 }
7272 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7273 }
7274 cpu_cpwait();
7275 }
7276 #endif /* ARM_MMU_XSCALE == 1 */
7277
7278
7279 #if defined(CPU_ARM11MPCORE)
7280
7281 void
7282 pmap_pte_init_arm11mpcore(void)
7283 {
7284
7285 /* cache mode is controlled by 5 bits (B, C, TEX) */
7286 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7287 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7288 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7289 /* use extended small page (without APn, with TEX) */
7290 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7291 #else
7292 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7293 #endif
7294
7295 /* write-back, write-allocate */
7296 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7297 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7298 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7299 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7300 #else
7301 /* no TEX. read-allocate */
7302 pte_l2_s_cache_mode = L2_C | L2_B;
7303 #endif
7304 /*
7305 * write-back, write-allocate for page tables.
7306 */
7307 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7308 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7309 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7310 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7311 #else
7312 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7313 #endif
7314
7315 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7316 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7317 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7318 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7319
7320 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7321 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7322 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7323 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7324 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7325
7326 #else
7327 /* with AP[0..3] */
7328 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7329 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7330 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7331 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7332 #endif
7333
7334 #ifdef ARM11MPCORE_COMPAT_MMU
7335 /* with AP[0..3] */
7336 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7337 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7338 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7339 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7340
7341 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7342 pte_l1_s_proto = L1_S_PROTO_armv6;
7343 pte_l1_c_proto = L1_C_PROTO_armv6;
7344 pte_l2_s_proto = L2_S_PROTO_armv6c;
7345 #else
7346 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7347 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7348 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7349 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7350
7351 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7352 pte_l1_s_proto = L1_S_PROTO_armv6;
7353 pte_l1_c_proto = L1_C_PROTO_armv6;
7354 pte_l2_s_proto = L2_S_PROTO_armv6n;
7355 #endif
7356
7357 pmap_copy_page_func = pmap_copy_page_generic;
7358 pmap_zero_page_func = pmap_zero_page_generic;
7359 pmap_needs_pte_sync = 1;
7360 }
7361 #endif /* CPU_ARM11MPCORE */
7362
7363
7364 #if ARM_MMU_V7 == 1
7365 void
7366 pmap_pte_init_armv7(void)
7367 {
7368 /*
7369 * The ARMv7-A MMU is mostly compatible with generic. If the
7370 * AP field is zero, that now means "no access" rather than
7371 * read-only. The prototypes are a little different because of
7372 * the XN bit.
7373 */
7374 pmap_pte_init_generic();
7375
7376 pmap_needs_pte_sync = 1;
7377
7378 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7379 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7380 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7381
7382 /*
7383 * If the core support coherent walk then updates to translation tables
7384 * do not require a clean to the point of unification to ensure
7385 * visibility by subsequent translation table walks. That means we can
7386 * map everything shareable and cached and the right thing will happen.
7387 */
7388 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7389 pmap_needs_pte_sync = 0;
7390
7391 /*
7392 * write-back, no write-allocate, shareable for normal pages.
7393 */
7394 pte_l1_s_cache_mode |= L1_S_V6_S;
7395 pte_l2_l_cache_mode |= L2_XS_S;
7396 pte_l2_s_cache_mode |= L2_XS_S;
7397 }
7398
7399 /*
7400 * Page tables are just all other memory. We can use write-back since
7401 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7402 */
7403 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7404 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7405 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7406
7407 /*
7408 * Check the Memory Model Features to see if this CPU supports
7409 * the TLBIASID coproc op.
7410 */
7411 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7412 arm_has_tlbiasid_p = true;
7413 }
7414
7415 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7416 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7417 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7418 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7419
7420 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7421 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7422 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7423 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7424
7425 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7426 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7427 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7428 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7429
7430 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7431 pte_l1_s_proto = L1_S_PROTO_armv7;
7432 pte_l1_c_proto = L1_C_PROTO_armv7;
7433 pte_l2_s_proto = L2_S_PROTO_armv7;
7434
7435 }
7436 #endif /* ARM_MMU_V7 */
7437
7438 /*
7439 * return the PA of the current L1 table, for use when handling a crash dump
7440 */
7441 uint32_t
7442 pmap_kernel_L1_addr(void)
7443 {
7444 #ifdef ARM_MMU_EXTENDED
7445 return pmap_kernel()->pm_l1_pa;
7446 #else
7447 return pmap_kernel()->pm_l1->l1_physaddr;
7448 #endif
7449 }
7450
7451 #if defined(DDB)
7452 /*
7453 * A couple of ddb-callable functions for dumping pmaps
7454 */
7455 void pmap_dump_all(void);
7456 void pmap_dump(pmap_t);
7457
7458 void
7459 pmap_dump_all(void)
7460 {
7461 pmap_t pm;
7462
7463 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
7464 if (pm == pmap_kernel())
7465 continue;
7466 pmap_dump(pm);
7467 printf("\n");
7468 }
7469 }
7470
7471 static pt_entry_t ncptes[64];
7472 static void pmap_dump_ncpg(pmap_t);
7473
7474 void
7475 pmap_dump(pmap_t pm)
7476 {
7477 struct l2_dtable *l2;
7478 struct l2_bucket *l2b;
7479 pt_entry_t *ptep, pte;
7480 vaddr_t l2_va, l2b_va, va;
7481 int i, j, k, occ, rows = 0;
7482
7483 if (pm == pmap_kernel())
7484 printf("pmap_kernel (%p): ", pm);
7485 else
7486 printf("user pmap (%p): ", pm);
7487
7488 #ifdef ARM_MMU_EXTENDED
7489 printf("l1 at %p\n", pmap_l1_kva(pm));
7490 #else
7491 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7492 #endif
7493
7494 l2_va = 0;
7495 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7496 l2 = pm->pm_l2[i];
7497
7498 if (l2 == NULL || l2->l2_occupancy == 0)
7499 continue;
7500
7501 l2b_va = l2_va;
7502 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7503 l2b = &l2->l2_bucket[j];
7504
7505 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7506 continue;
7507
7508 ptep = l2b->l2b_kva;
7509
7510 for (k = 0; k < 256 && ptep[k] == 0; k++)
7511 ;
7512
7513 k &= ~63;
7514 occ = l2b->l2b_occupancy;
7515 va = l2b_va + (k * 4096);
7516 for (; k < 256; k++, va += 0x1000) {
7517 char ch = ' ';
7518 if ((k % 64) == 0) {
7519 if ((rows % 8) == 0) {
7520 printf(
7521 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7522 }
7523 printf("%08lx: ", va);
7524 }
7525
7526 ncptes[k & 63] = 0;
7527 pte = ptep[k];
7528 if (pte == 0) {
7529 ch = '.';
7530 } else {
7531 occ--;
7532 switch (pte & 0x0c) {
7533 case 0x00:
7534 ch = 'D'; /* No cache No buff */
7535 break;
7536 case 0x04:
7537 ch = 'B'; /* No cache buff */
7538 break;
7539 case 0x08:
7540 if (pte & 0x40)
7541 ch = 'm';
7542 else
7543 ch = 'C'; /* Cache No buff */
7544 break;
7545 case 0x0c:
7546 ch = 'F'; /* Cache Buff */
7547 break;
7548 }
7549
7550 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7551 ch += 0x20;
7552
7553 if ((pte & 0xc) == 0)
7554 ncptes[k & 63] = pte;
7555 }
7556
7557 if ((k % 64) == 63) {
7558 rows++;
7559 printf("%c\n", ch);
7560 pmap_dump_ncpg(pm);
7561 if (occ == 0)
7562 break;
7563 } else
7564 printf("%c", ch);
7565 }
7566 }
7567 }
7568 }
7569
7570 static void
7571 pmap_dump_ncpg(pmap_t pm)
7572 {
7573 struct vm_page *pg;
7574 struct vm_page_md *md;
7575 struct pv_entry *pv;
7576 int i;
7577
7578 for (i = 0; i < 63; i++) {
7579 if (ncptes[i] == 0)
7580 continue;
7581
7582 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7583 if (pg == NULL)
7584 continue;
7585 md = VM_PAGE_TO_MD(pg);
7586
7587 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7588 VM_PAGE_TO_PHYS(pg),
7589 md->krw_mappings, md->kro_mappings,
7590 md->urw_mappings, md->uro_mappings);
7591
7592 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7593 printf(" %c va 0x%08lx, flags 0x%x\n",
7594 (pm == pv->pv_pmap) ? '*' : ' ',
7595 pv->pv_va, pv->pv_flags);
7596 }
7597 }
7598 }
7599 #endif
7600
7601 #ifdef PMAP_STEAL_MEMORY
7602 void
7603 pmap_boot_pageadd(pv_addr_t *newpv)
7604 {
7605 pv_addr_t *pv, *npv;
7606
7607 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7608 if (newpv->pv_pa < pv->pv_va) {
7609 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7610 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7611 newpv->pv_size += pv->pv_size;
7612 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7613 }
7614 pv = NULL;
7615 } else {
7616 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7617 pv = npv) {
7618 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7619 KASSERT(pv->pv_pa < newpv->pv_pa);
7620 if (newpv->pv_pa > npv->pv_pa)
7621 continue;
7622 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7623 pv->pv_size += newpv->pv_size;
7624 return;
7625 }
7626 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7627 break;
7628 newpv->pv_size += npv->pv_size;
7629 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7630 SLIST_REMOVE_AFTER(newpv, pv_list);
7631 return;
7632 }
7633 }
7634 }
7635
7636 if (pv) {
7637 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7638 } else {
7639 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7640 }
7641 }
7642
7643 void
7644 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7645 pv_addr_t *rpv)
7646 {
7647 pv_addr_t *pv, **pvp;
7648 struct vm_physseg *ps;
7649 size_t i;
7650
7651 KASSERT(amount & PGOFSET);
7652 KASSERT((mask & PGOFSET) == 0);
7653 KASSERT((match & PGOFSET) == 0);
7654 KASSERT(amount != 0);
7655
7656 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7657 (pv = *pvp) != NULL;
7658 pvp = &SLIST_NEXT(pv, pv_list)) {
7659 pv_addr_t *newpv;
7660 psize_t off;
7661 /*
7662 * If this entry is too small to satify the request...
7663 */
7664 KASSERT(pv->pv_size > 0);
7665 if (pv->pv_size < amount)
7666 continue;
7667
7668 for (off = 0; off <= mask; off += PAGE_SIZE) {
7669 if (((pv->pv_pa + off) & mask) == match
7670 && off + amount <= pv->pv_size)
7671 break;
7672 }
7673 if (off > mask)
7674 continue;
7675
7676 rpv->pv_va = pv->pv_va + off;
7677 rpv->pv_pa = pv->pv_pa + off;
7678 rpv->pv_size = amount;
7679 pv->pv_size -= amount;
7680 if (pv->pv_size == 0) {
7681 KASSERT(off == 0);
7682 KASSERT((vaddr_t) pv == rpv->pv_va);
7683 *pvp = SLIST_NEXT(pv, pv_list);
7684 } else if (off == 0) {
7685 KASSERT((vaddr_t) pv == rpv->pv_va);
7686 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7687 *newpv = *pv;
7688 newpv->pv_pa += amount;
7689 newpv->pv_va += amount;
7690 *pvp = newpv;
7691 } else if (off < pv->pv_size) {
7692 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7693 *newpv = *pv;
7694 newpv->pv_size -= off;
7695 newpv->pv_pa += off + amount;
7696 newpv->pv_va += off + amount;
7697
7698 SLIST_NEXT(pv, pv_list) = newpv;
7699 pv->pv_size = off;
7700 } else {
7701 KASSERT((vaddr_t) pv != rpv->pv_va);
7702 }
7703 memset((void *)rpv->pv_va, 0, amount);
7704 return;
7705 }
7706
7707 if (vm_nphysseg == 0)
7708 panic("pmap_boot_pagealloc: couldn't allocate memory");
7709
7710 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7711 (pv = *pvp) != NULL;
7712 pvp = &SLIST_NEXT(pv, pv_list)) {
7713 if (SLIST_NEXT(pv, pv_list) == NULL)
7714 break;
7715 }
7716 KASSERT(mask == 0);
7717 for (i = 0; i < vm_nphysseg; i++) {
7718 ps = VM_PHYSMEM_PTR(i);
7719 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7720 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7721 rpv->pv_va = pv->pv_va;
7722 rpv->pv_pa = pv->pv_pa;
7723 rpv->pv_size = amount;
7724 *pvp = NULL;
7725 pmap_map_chunk(kernel_l1pt.pv_va,
7726 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7727 ptoa(ps->avail_start),
7728 amount - pv->pv_size,
7729 VM_PROT_READ|VM_PROT_WRITE,
7730 PTE_CACHE);
7731 ps->avail_start += atop(amount - pv->pv_size);
7732 /*
7733 * If we consumed the entire physseg, remove it.
7734 */
7735 if (ps->avail_start == ps->avail_end) {
7736 for (--vm_nphysseg; i < vm_nphysseg; i++)
7737 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7738 }
7739 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7740 return;
7741 }
7742 }
7743
7744 panic("pmap_boot_pagealloc: couldn't allocate memory");
7745 }
7746
7747 vaddr_t
7748 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7749 {
7750 pv_addr_t pv;
7751
7752 pmap_boot_pagealloc(size, 0, 0, &pv);
7753
7754 return pv.pv_va;
7755 }
7756 #endif /* PMAP_STEAL_MEMORY */
7757
7758 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7759 {
7760 sysctl_createv(clog, 0, NULL, NULL,
7761 CTLFLAG_PERMANENT,
7762 CTLTYPE_NODE, "machdep", NULL,
7763 NULL, 0, NULL, 0,
7764 CTL_MACHDEP, CTL_EOL);
7765
7766 sysctl_createv(clog, 0, NULL, NULL,
7767 CTLFLAG_PERMANENT,
7768 CTLTYPE_INT, "kmpages",
7769 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7770 NULL, 0, &pmap_kmpages, 0,
7771 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7772 }
7773
7774 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7775 struct vm_page *
7776 arm_pmap_alloc_poolpage(int flags)
7777 {
7778 /*
7779 * On some systems, only some pages may be "coherent" for dma and we
7780 * want to prefer those for pool pages (think mbufs) but fallback to
7781 * any page if none is available. But we can only fallback if we
7782 * aren't direct mapping memory or all of memory can be direct-mapped.
7783 * If that isn't true, pool changes can only come from direct-mapped
7784 * memory.
7785 */
7786 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7787 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7788 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(ARM_MMU_EXTENDED)
7789 (pmap_directbase < KERNEL_BASE
7790 ? UVM_PGA_STRAT_ONLY
7791 : UVM_PGA_STRAT_FALLBACK),
7792 #else
7793 UVM_PGA_STRAT_FALLBACK,
7794 #endif
7795 arm_poolpage_vmfreelist);
7796 }
7797
7798 return uvm_pagealloc(NULL, 0, NULL, flags);
7799 }
7800 #endif
7801
7802 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7803 void
7804 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7805 {
7806 /* nothing */
7807 }
7808
7809 int
7810 pic_ipi_shootdown(void *arg)
7811 {
7812 #if PMAP_NEED_TLB_SHOOTDOWN
7813 pmap_tlb_shootdown_process();
7814 #endif
7815 return 1;
7816 }
7817 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7818
7819
7820 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7821 vaddr_t
7822 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7823 {
7824 bool ok = false;
7825 if (physical_start <= pa && pa < physical_end) {
7826 #ifdef ARM_MMU_EXTENDED
7827 const vaddr_t newva = pmap_directbase + pa - physical_start;
7828 if (newva >= KERNEL_BASE) {
7829 va = newva;
7830 ok = true;
7831 }
7832 #else
7833 va = KERNEL_BASE + pa - physical_start;
7834 ok = true;
7835 #endif
7836 }
7837 KASSERT(ok_p);
7838 *ok_p = ok;
7839 return va;
7840 }
7841
7842 vaddr_t
7843 pmap_map_poolpage(paddr_t pa)
7844 {
7845 bool ok __diagused;
7846 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7847 KASSERT(ok);
7848 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7849 if (arm_cache_prefer_mask != 0) {
7850 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7851 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7852 pmap_acquire_page_lock(md);
7853 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7854 pmap_release_page_lock(md);
7855 }
7856 #endif
7857 return va;
7858 }
7859
7860 paddr_t
7861 pmap_unmap_poolpage(vaddr_t va)
7862 {
7863 KASSERT(va >= KERNEL_BASE);
7864 #if defined(ARM_MMU_EXTENDED)
7865 return va - pmap_directbase + physical_start;
7866 #else
7867 #ifdef PMAP_CACHE_VIVT
7868 cpu_idcache_wbinv_range(va, PAGE_SIZE);
7869 #endif
7870 return va - KERNEL_BASE + physical_start;
7871 #endif
7872 }
7873 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
7874