Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.317
      1 /*	$NetBSD: pmap.c,v 1.317 2015/02/25 13:52:42 joerg Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #ifdef MULTIPROCESSOR
    196 #define _INTR_PRIVATE
    197 #endif
    198 
    199 #include <sys/param.h>
    200 #include <sys/types.h>
    201 #include <sys/kernel.h>
    202 #include <sys/systm.h>
    203 #include <sys/proc.h>
    204 #include <sys/intr.h>
    205 #include <sys/pool.h>
    206 #include <sys/kmem.h>
    207 #include <sys/cdefs.h>
    208 #include <sys/cpu.h>
    209 #include <sys/sysctl.h>
    210 #include <sys/bus.h>
    211 #include <sys/atomic.h>
    212 #include <sys/kernhist.h>
    213 
    214 #include <uvm/uvm.h>
    215 
    216 #include <arm/locore.h>
    217 
    218 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.317 2015/02/25 13:52:42 joerg Exp $");
    219 
    220 //#define PMAP_DEBUG
    221 #ifdef PMAP_DEBUG
    222 
    223 /* XXX need to get rid of all refs to this */
    224 int pmap_debug_level = 0;
    225 
    226 /*
    227  * for switching to potentially finer grained debugging
    228  */
    229 #define	PDB_FOLLOW	0x0001
    230 #define	PDB_INIT	0x0002
    231 #define	PDB_ENTER	0x0004
    232 #define	PDB_REMOVE	0x0008
    233 #define	PDB_CREATE	0x0010
    234 #define	PDB_PTPAGE	0x0020
    235 #define	PDB_GROWKERN	0x0040
    236 #define	PDB_BITS	0x0080
    237 #define	PDB_COLLECT	0x0100
    238 #define	PDB_PROTECT	0x0200
    239 #define	PDB_MAP_L1	0x0400
    240 #define	PDB_BOOTSTRAP	0x1000
    241 #define	PDB_PARANOIA	0x2000
    242 #define	PDB_WIRING	0x4000
    243 #define	PDB_PVDUMP	0x8000
    244 #define	PDB_VAC		0x10000
    245 #define	PDB_KENTER	0x20000
    246 #define	PDB_KREMOVE	0x40000
    247 #define	PDB_EXEC	0x80000
    248 
    249 int debugmap = 1;
    250 int pmapdebug = 0;
    251 #define	NPDEBUG(_lev_,_stat_) \
    252 	if (pmapdebug & (_lev_)) \
    253         	((_stat_))
    254 
    255 #else	/* PMAP_DEBUG */
    256 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    257 #endif	/* PMAP_DEBUG */
    258 
    259 /*
    260  * pmap_kernel() points here
    261  */
    262 static struct pmap	kernel_pmap_store = {
    263 #ifndef ARM_MMU_EXTENDED
    264 	.pm_activated = true,
    265 	.pm_domain = PMAP_DOMAIN_KERNEL,
    266 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    267 #endif
    268 };
    269 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    270 #undef pmap_kernel
    271 #define pmap_kernel()	(&kernel_pmap_store)
    272 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    273 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    274 #endif
    275 
    276 /*
    277  * Pool and cache that pmap structures are allocated from.
    278  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    279  * in pmap_create().
    280  */
    281 static struct pool_cache pmap_cache;
    282 static LIST_HEAD(, pmap) pmap_pmaps;
    283 
    284 /*
    285  * Pool of PV structures
    286  */
    287 static struct pool pmap_pv_pool;
    288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    291 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    292 };
    293 
    294 /*
    295  * Pool and cache of l2_dtable structures.
    296  * We use a cache to avoid clearing the structures when they're
    297  * allocated. (196 bytes)
    298  */
    299 static struct pool_cache pmap_l2dtable_cache;
    300 static vaddr_t pmap_kernel_l2dtable_kva;
    301 
    302 /*
    303  * Pool and cache of L2 page descriptors.
    304  * We use a cache to avoid clearing the descriptor table
    305  * when they're allocated. (1KB)
    306  */
    307 static struct pool_cache pmap_l2ptp_cache;
    308 static vaddr_t pmap_kernel_l2ptp_kva;
    309 static paddr_t pmap_kernel_l2ptp_phys;
    310 
    311 #ifdef PMAPCOUNTERS
    312 #define	PMAP_EVCNT_INITIALIZER(name) \
    313 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    314 
    315 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    316 static struct evcnt pmap_ev_vac_clean_one =
    317    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    318 static struct evcnt pmap_ev_vac_flush_one =
    319    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    320 static struct evcnt pmap_ev_vac_flush_lots =
    321    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    322 static struct evcnt pmap_ev_vac_flush_lots2 =
    323    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    328 
    329 static struct evcnt pmap_ev_vac_color_new =
    330    PMAP_EVCNT_INITIALIZER("new page color");
    331 static struct evcnt pmap_ev_vac_color_reuse =
    332    PMAP_EVCNT_INITIALIZER("ok first page color");
    333 static struct evcnt pmap_ev_vac_color_ok =
    334    PMAP_EVCNT_INITIALIZER("ok page color");
    335 static struct evcnt pmap_ev_vac_color_blind =
    336    PMAP_EVCNT_INITIALIZER("blind page color");
    337 static struct evcnt pmap_ev_vac_color_change =
    338    PMAP_EVCNT_INITIALIZER("change page color");
    339 static struct evcnt pmap_ev_vac_color_erase =
    340    PMAP_EVCNT_INITIALIZER("erase page color");
    341 static struct evcnt pmap_ev_vac_color_none =
    342    PMAP_EVCNT_INITIALIZER("no page color");
    343 static struct evcnt pmap_ev_vac_color_restore =
    344    PMAP_EVCNT_INITIALIZER("restore page color");
    345 
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    354 #endif
    355 
    356 static struct evcnt pmap_ev_mappings =
    357    PMAP_EVCNT_INITIALIZER("pages mapped");
    358 static struct evcnt pmap_ev_unmappings =
    359    PMAP_EVCNT_INITIALIZER("pages unmapped");
    360 static struct evcnt pmap_ev_remappings =
    361    PMAP_EVCNT_INITIALIZER("pages remapped");
    362 
    363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    366 
    367 static struct evcnt pmap_ev_kernel_mappings =
    368    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    369 static struct evcnt pmap_ev_kernel_unmappings =
    370    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    371 static struct evcnt pmap_ev_kernel_remappings =
    372    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    373 
    374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    377 
    378 static struct evcnt pmap_ev_kenter_mappings =
    379    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    380 static struct evcnt pmap_ev_kenter_unmappings =
    381    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    382 static struct evcnt pmap_ev_kenter_remappings =
    383    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    384 static struct evcnt pmap_ev_pt_mappings =
    385    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    386 
    387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    391 
    392 static struct evcnt pmap_ev_fixup_mod =
    393    PMAP_EVCNT_INITIALIZER("page modification emulations");
    394 static struct evcnt pmap_ev_fixup_ref =
    395    PMAP_EVCNT_INITIALIZER("page reference emulations");
    396 static struct evcnt pmap_ev_fixup_exec =
    397    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    398 static struct evcnt pmap_ev_fixup_pdes =
    399    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    400 #ifndef ARM_MMU_EXTENDED
    401 static struct evcnt pmap_ev_fixup_ptesync =
    402    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    403 #endif
    404 
    405 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    409 #ifndef ARM_MMU_EXTENDED
    410 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    411 #endif
    412 
    413 #ifdef PMAP_CACHE_VIPT
    414 static struct evcnt pmap_ev_exec_mappings =
    415    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    416 static struct evcnt pmap_ev_exec_cached =
    417    PMAP_EVCNT_INITIALIZER("exec pages cached");
    418 
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    421 
    422 static struct evcnt pmap_ev_exec_synced =
    423    PMAP_EVCNT_INITIALIZER("exec pages synced");
    424 static struct evcnt pmap_ev_exec_synced_map =
    425    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    426 #ifndef ARM_MMU_EXTENDED
    427 static struct evcnt pmap_ev_exec_synced_unmap =
    428    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    429 static struct evcnt pmap_ev_exec_synced_remap =
    430    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    431 static struct evcnt pmap_ev_exec_synced_clearbit =
    432    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    433 static struct evcnt pmap_ev_exec_synced_kremove =
    434    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    435 #endif
    436 
    437 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    439 #ifndef ARM_MMU_EXTENDED
    440 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    444 #endif
    445 
    446 static struct evcnt pmap_ev_exec_discarded_unmap =
    447    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    448 static struct evcnt pmap_ev_exec_discarded_zero =
    449    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    450 static struct evcnt pmap_ev_exec_discarded_copy =
    451    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    452 static struct evcnt pmap_ev_exec_discarded_page_protect =
    453    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    454 static struct evcnt pmap_ev_exec_discarded_clearbit =
    455    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    456 static struct evcnt pmap_ev_exec_discarded_kremove =
    457    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    458 #ifdef ARM_MMU_EXTENDED
    459 static struct evcnt pmap_ev_exec_discarded_modfixup =
    460    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    461 #endif
    462 
    463 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    469 #ifdef ARM_MMU_EXTENDED
    470 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    471 #endif
    472 #endif /* PMAP_CACHE_VIPT */
    473 
    474 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    475 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    476 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    477 
    478 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    479 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    480 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    481 
    482 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    483 #else
    484 #define	PMAPCOUNT(x)	((void)0)
    485 #endif
    486 
    487 /*
    488  * pmap copy/zero page, and mem(5) hook point
    489  */
    490 static pt_entry_t *csrc_pte, *cdst_pte;
    491 static vaddr_t csrcp, cdstp;
    492 #ifdef MULTIPROCESSOR
    493 static size_t cnptes;
    494 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    495 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    496 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    497 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    498 #else
    499 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    500 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    501 #define	cpu_csrcp(o)	(csrcp + (o))
    502 #define	cpu_cdstp(o)	(cdstp + (o))
    503 #endif
    504 vaddr_t memhook;			/* used by mem.c & others */
    505 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    506 kmutex_t pmap_lock __cacheline_aligned;
    507 extern void *msgbufaddr;
    508 int pmap_kmpages;
    509 /*
    510  * Flag to indicate if pmap_init() has done its thing
    511  */
    512 bool pmap_initialized;
    513 
    514 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    515 /*
    516  * Start of direct-mapped memory
    517  */
    518 vaddr_t pmap_directbase = KERNEL_BASE;
    519 #endif
    520 
    521 /*
    522  * Misc. locking data structures
    523  */
    524 
    525 static inline void
    526 pmap_acquire_pmap_lock(pmap_t pm)
    527 {
    528 	if (pm == pmap_kernel()) {
    529 #ifdef MULTIPROCESSOR
    530 		KERNEL_LOCK(1, NULL);
    531 #endif
    532 	} else {
    533 		mutex_enter(pm->pm_lock);
    534 	}
    535 }
    536 
    537 static inline void
    538 pmap_release_pmap_lock(pmap_t pm)
    539 {
    540 	if (pm == pmap_kernel()) {
    541 #ifdef MULTIPROCESSOR
    542 		KERNEL_UNLOCK_ONE(NULL);
    543 #endif
    544 	} else {
    545 		mutex_exit(pm->pm_lock);
    546 	}
    547 }
    548 
    549 static inline void
    550 pmap_acquire_page_lock(struct vm_page_md *md)
    551 {
    552 	mutex_enter(&pmap_lock);
    553 }
    554 
    555 static inline void
    556 pmap_release_page_lock(struct vm_page_md *md)
    557 {
    558 	mutex_exit(&pmap_lock);
    559 }
    560 
    561 #ifdef DIAGNOSTIC
    562 static inline int
    563 pmap_page_locked_p(struct vm_page_md *md)
    564 {
    565 	return mutex_owned(&pmap_lock);
    566 }
    567 #endif
    568 
    569 
    570 /*
    571  * Metadata for L1 translation tables.
    572  */
    573 #ifndef ARM_MMU_EXTENDED
    574 struct l1_ttable {
    575 	/* Entry on the L1 Table list */
    576 	SLIST_ENTRY(l1_ttable) l1_link;
    577 
    578 	/* Entry on the L1 Least Recently Used list */
    579 	TAILQ_ENTRY(l1_ttable) l1_lru;
    580 
    581 	/* Track how many domains are allocated from this L1 */
    582 	volatile u_int l1_domain_use_count;
    583 
    584 	/*
    585 	 * A free-list of domain numbers for this L1.
    586 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    587 	 * is slow on ARM.
    588 	 */
    589 	uint8_t l1_domain_first;
    590 	uint8_t l1_domain_free[PMAP_DOMAINS];
    591 
    592 	/* Physical address of this L1 page table */
    593 	paddr_t l1_physaddr;
    594 
    595 	/* KVA of this L1 page table */
    596 	pd_entry_t *l1_kva;
    597 };
    598 
    599 /*
    600  * L1 Page Tables are tracked using a Least Recently Used list.
    601  *  - New L1s are allocated from the HEAD.
    602  *  - Freed L1s are added to the TAIl.
    603  *  - Recently accessed L1s (where an 'access' is some change to one of
    604  *    the userland pmaps which owns this L1) are moved to the TAIL.
    605  */
    606 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    607 static kmutex_t l1_lru_lock __cacheline_aligned;
    608 
    609 /*
    610  * A list of all L1 tables
    611  */
    612 static SLIST_HEAD(, l1_ttable) l1_list;
    613 #endif /* ARM_MMU_EXTENDED */
    614 
    615 /*
    616  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    617  *
    618  * This is normally 16MB worth L2 page descriptors for any given pmap.
    619  * Reference counts are maintained for L2 descriptors so they can be
    620  * freed when empty.
    621  */
    622 struct l2_bucket {
    623 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
    624 	paddr_t l2b_pa;			/* Physical address of same */
    625 	u_short l2b_l1slot;		/* This L2 table's L1 index */
    626 	u_short l2b_occupancy;		/* How many active descriptors */
    627 };
    628 
    629 struct l2_dtable {
    630 	/* The number of L2 page descriptors allocated to this l2_dtable */
    631 	u_int l2_occupancy;
    632 
    633 	/* List of L2 page descriptors */
    634 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
    635 };
    636 
    637 /*
    638  * Given an L1 table index, calculate the corresponding l2_dtable index
    639  * and bucket index within the l2_dtable.
    640  */
    641 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    642 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    643 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    644 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    645 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    646 
    647 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    648 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    649 
    650 /*
    651  * Given a virtual address, this macro returns the
    652  * virtual address required to drop into the next L2 bucket.
    653  */
    654 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    655 
    656 /*
    657  * L2 allocation.
    658  */
    659 #define	pmap_alloc_l2_dtable()		\
    660 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    661 #define	pmap_free_l2_dtable(l2)		\
    662 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    663 #define pmap_alloc_l2_ptp(pap)		\
    664 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    665 	    PR_NOWAIT, (pap)))
    666 
    667 /*
    668  * We try to map the page tables write-through, if possible.  However, not
    669  * all CPUs have a write-through cache mode, so on those we have to sync
    670  * the cache when we frob page tables.
    671  *
    672  * We try to evaluate this at compile time, if possible.  However, it's
    673  * not always possible to do that, hence this run-time var.
    674  */
    675 int	pmap_needs_pte_sync;
    676 
    677 /*
    678  * Real definition of pv_entry.
    679  */
    680 struct pv_entry {
    681 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    682 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    683 	vaddr_t		pv_va;          /* virtual address for mapping */
    684 	u_int		pv_flags;       /* flags */
    685 };
    686 
    687 /*
    688  * Macros to determine if a mapping might be resident in the
    689  * instruction/data cache and/or TLB
    690  */
    691 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    692 /*
    693  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    694  * there are no explicit accesses, so there may be always be TLB entries to
    695  * flush.  If we used ASIDs then this would not be a problem.
    696  */
    697 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    698 #define	PV_BEEN_REFD(f)   (true)
    699 #else
    700 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    701 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    702 #endif
    703 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    704 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    705 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    706 
    707 /*
    708  * Local prototypes
    709  */
    710 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    711 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    712 			    pt_entry_t **);
    713 static bool		pmap_is_current(pmap_t) __unused;
    714 static bool		pmap_is_cached(pmap_t);
    715 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    716 			    pmap_t, vaddr_t, u_int);
    717 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    718 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    719 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    720 			    u_int, u_int);
    721 
    722 static void		pmap_pinit(pmap_t);
    723 static int		pmap_pmap_ctor(void *, void *, int);
    724 
    725 static void		pmap_alloc_l1(pmap_t);
    726 static void		pmap_free_l1(pmap_t);
    727 #ifndef ARM_MMU_EXTENDED
    728 static void		pmap_use_l1(pmap_t);
    729 #endif
    730 
    731 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    732 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    733 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    734 static int		pmap_l2ptp_ctor(void *, void *, int);
    735 static int		pmap_l2dtable_ctor(void *, void *, int);
    736 
    737 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    738 #ifdef PMAP_CACHE_VIVT
    739 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    740 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    741 #endif
    742 
    743 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    744 #ifdef PMAP_CACHE_VIVT
    745 static bool		pmap_clean_page(struct vm_page_md *, bool);
    746 #endif
    747 #ifdef PMAP_CACHE_VIPT
    748 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    749 enum pmap_flush_op {
    750 	PMAP_FLUSH_PRIMARY,
    751 	PMAP_FLUSH_SECONDARY,
    752 	PMAP_CLEAN_PRIMARY
    753 };
    754 #ifndef ARM_MMU_EXTENDED
    755 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    756 #endif
    757 #endif
    758 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    759 
    760 #ifndef ARM_MMU_EXTENDED
    761 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    762 #endif
    763 static vaddr_t		kernel_pt_lookup(paddr_t);
    764 
    765 
    766 /*
    767  * Misc variables
    768  */
    769 vaddr_t virtual_avail;
    770 vaddr_t virtual_end;
    771 vaddr_t pmap_curmaxkvaddr;
    772 
    773 paddr_t avail_start;
    774 paddr_t avail_end;
    775 
    776 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    777 pv_addr_t kernelpages;
    778 pv_addr_t kernel_l1pt;
    779 pv_addr_t systempage;
    780 
    781 /* Function to set the debug level of the pmap code */
    782 
    783 #ifdef PMAP_DEBUG
    784 void
    785 pmap_debug(int level)
    786 {
    787 	pmap_debug_level = level;
    788 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    789 }
    790 #endif	/* PMAP_DEBUG */
    791 
    792 #ifdef PMAP_CACHE_VIPT
    793 #define PMAP_VALIDATE_MD_PAGE(md)	\
    794 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    795 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    796 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    797 #endif /* PMAP_CACHE_VIPT */
    798 /*
    799  * A bunch of routines to conditionally flush the caches/TLB depending
    800  * on whether the specified pmap actually needs to be flushed at any
    801  * given time.
    802  */
    803 static inline void
    804 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    805 {
    806 #ifdef ARM_MMU_EXTENDED
    807 	pmap_tlb_invalidate_addr(pm, va);
    808 #else
    809 	if (pm->pm_cstate.cs_tlb_id != 0) {
    810 		if (PV_BEEN_EXECD(flags)) {
    811 			cpu_tlb_flushID_SE(va);
    812 		} else if (PV_BEEN_REFD(flags)) {
    813 			cpu_tlb_flushD_SE(va);
    814 		}
    815 	}
    816 #endif /* ARM_MMU_EXTENDED */
    817 }
    818 
    819 static inline void
    820 pmap_tlb_flushID(pmap_t pm)
    821 {
    822 #ifdef ARM_MMU_EXTENDED
    823 	pmap_tlb_asid_release_all(pm);
    824 #else
    825 	if (pm->pm_cstate.cs_tlb_id) {
    826 		cpu_tlb_flushID();
    827 #if ARM_MMU_V7 == 0
    828 		/*
    829 		 * Speculative loads by Cortex cores can cause TLB entries to
    830 		 * be filled even if there are no explicit accesses, so there
    831 		 * may be always be TLB entries to flush.  If we used ASIDs
    832 		 * then it would not be a problem.
    833 		 * This is not true for other CPUs.
    834 		 */
    835 		pm->pm_cstate.cs_tlb = 0;
    836 #endif /* ARM_MMU_V7 */
    837 	}
    838 #endif /* ARM_MMU_EXTENDED */
    839 }
    840 
    841 #ifndef ARM_MMU_EXTENDED
    842 static inline void
    843 pmap_tlb_flushD(pmap_t pm)
    844 {
    845 	if (pm->pm_cstate.cs_tlb_d) {
    846 		cpu_tlb_flushD();
    847 #if ARM_MMU_V7 == 0
    848 		/*
    849 		 * Speculative loads by Cortex cores can cause TLB entries to
    850 		 * be filled even if there are no explicit accesses, so there
    851 		 * may be always be TLB entries to flush.  If we used ASIDs
    852 		 * then it would not be a problem.
    853 		 * This is not true for other CPUs.
    854 		 */
    855 		pm->pm_cstate.cs_tlb_d = 0;
    856 #endif /* ARM_MMU_V7 */
    857 	}
    858 }
    859 #endif /* ARM_MMU_EXTENDED */
    860 
    861 #ifdef PMAP_CACHE_VIVT
    862 static inline void
    863 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    864 {
    865 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    866 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    867 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    868 		if (do_inv) {
    869 			if (flags & PVF_WRITE)
    870 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    871 			else
    872 				cpu_dcache_inv_range(va, PAGE_SIZE);
    873 		} else if (flags & PVF_WRITE) {
    874 			cpu_dcache_wb_range(va, PAGE_SIZE);
    875 		}
    876 	}
    877 }
    878 
    879 static inline void
    880 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    881 {
    882 	if (PV_BEEN_EXECD(flags)) {
    883 		if (pm->pm_cstate.cs_cache_id) {
    884 			cpu_idcache_wbinv_all();
    885 			pm->pm_cstate.cs_cache = 0;
    886 		}
    887 	} else if (pm->pm_cstate.cs_cache_d) {
    888 		cpu_dcache_wbinv_all();
    889 		pm->pm_cstate.cs_cache_d = 0;
    890 	}
    891 }
    892 #endif /* PMAP_CACHE_VIVT */
    893 
    894 static inline uint8_t
    895 pmap_domain(pmap_t pm)
    896 {
    897 #ifdef ARM_MMU_EXTENDED
    898 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    899 #else
    900 	return pm->pm_domain;
    901 #endif
    902 }
    903 
    904 static inline pd_entry_t *
    905 pmap_l1_kva(pmap_t pm)
    906 {
    907 #ifdef ARM_MMU_EXTENDED
    908 	return pm->pm_l1;
    909 #else
    910 	return pm->pm_l1->l1_kva;
    911 #endif
    912 }
    913 
    914 static inline bool
    915 pmap_is_current(pmap_t pm)
    916 {
    917 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    918 		return true;
    919 
    920 	return false;
    921 }
    922 
    923 static inline bool
    924 pmap_is_cached(pmap_t pm)
    925 {
    926 #ifdef ARM_MMU_EXTENDED
    927 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    928 	if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    929 		return true;
    930 #else
    931 	struct cpu_info * const ci = curcpu();
    932 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    933 	    || ci->ci_pmap_lastuser == pm)
    934 		return true;
    935 #endif /* ARM_MMU_EXTENDED */
    936 
    937 	return false;
    938 }
    939 
    940 /*
    941  * PTE_SYNC_CURRENT:
    942  *
    943  *     Make sure the pte is written out to RAM.
    944  *     We need to do this for one of two cases:
    945  *       - We're dealing with the kernel pmap
    946  *       - There is no pmap active in the cache/tlb.
    947  *       - The specified pmap is 'active' in the cache/tlb.
    948  */
    949 
    950 static inline void
    951 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
    952 {
    953 	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
    954 		PTE_SYNC(ptep);
    955 	arm_dsb();
    956 }
    957 
    958 #ifdef PMAP_INCLUDE_PTE_SYNC
    959 #define	PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
    960 #else
    961 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    962 #endif
    963 
    964 /*
    965  * main pv_entry manipulation functions:
    966  *   pmap_enter_pv: enter a mapping onto a vm_page list
    967  *   pmap_remove_pv: remove a mapping from a vm_page list
    968  *
    969  * NOTE: pmap_enter_pv expects to lock the pvh itself
    970  *       pmap_remove_pv expects the caller to lock the pvh before calling
    971  */
    972 
    973 /*
    974  * pmap_enter_pv: enter a mapping onto a vm_page lst
    975  *
    976  * => caller should hold the proper lock on pmap_main_lock
    977  * => caller should have pmap locked
    978  * => we will gain the lock on the vm_page and allocate the new pv_entry
    979  * => caller should adjust ptp's wire_count before calling
    980  * => caller should not adjust pmap's wire_count
    981  */
    982 static void
    983 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    984     vaddr_t va, u_int flags)
    985 {
    986 	struct pv_entry **pvp;
    987 
    988 	NPDEBUG(PDB_PVDUMP,
    989 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    990 
    991 	pv->pv_pmap = pm;
    992 	pv->pv_va = va;
    993 	pv->pv_flags = flags;
    994 
    995 	pvp = &SLIST_FIRST(&md->pvh_list);
    996 #ifdef PMAP_CACHE_VIPT
    997 	/*
    998 	 * Insert unmanaged entries, writeable first, at the head of
    999 	 * the pv list.
   1000 	 */
   1001 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1002 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1003 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1004 	}
   1005 	if (!PV_IS_WRITE_P(flags)) {
   1006 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1007 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1008 	}
   1009 #endif
   1010 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1011 	*pvp = pv;				/* ... locked list */
   1012 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1013 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1014 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1015 		md->pvh_attrs |= PVF_KMOD;
   1016 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1017 		md->pvh_attrs |= PVF_DIRTY;
   1018 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1019 #endif
   1020 	if (pm == pmap_kernel()) {
   1021 		PMAPCOUNT(kernel_mappings);
   1022 		if (flags & PVF_WRITE)
   1023 			md->krw_mappings++;
   1024 		else
   1025 			md->kro_mappings++;
   1026 	} else {
   1027 		if (flags & PVF_WRITE)
   1028 			md->urw_mappings++;
   1029 		else
   1030 			md->uro_mappings++;
   1031 	}
   1032 
   1033 #ifdef PMAP_CACHE_VIPT
   1034 #ifndef ARM_MMU_EXTENDED
   1035 	/*
   1036 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1037 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1038 	 */
   1039 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1040 		md->pvh_attrs |= PVF_WRITE;
   1041 	}
   1042 #endif
   1043 	/*
   1044 	 * If this is an exec mapping and its the first exec mapping
   1045 	 * for this page, make sure to sync the I-cache.
   1046 	 */
   1047 	if (PV_IS_EXEC_P(flags)) {
   1048 #ifndef ARM_MMU_EXTENDED
   1049 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1050 			pmap_syncicache_page(md, pa);
   1051 			PMAPCOUNT(exec_synced_map);
   1052 		}
   1053 #endif
   1054 		PMAPCOUNT(exec_mappings);
   1055 	}
   1056 #endif
   1057 
   1058 	PMAPCOUNT(mappings);
   1059 
   1060 	if (pv->pv_flags & PVF_WIRED)
   1061 		++pm->pm_stats.wired_count;
   1062 }
   1063 
   1064 /*
   1065  *
   1066  * pmap_find_pv: Find a pv entry
   1067  *
   1068  * => caller should hold lock on vm_page
   1069  */
   1070 static inline struct pv_entry *
   1071 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1072 {
   1073 	struct pv_entry *pv;
   1074 
   1075 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1076 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1077 			break;
   1078 	}
   1079 
   1080 	return (pv);
   1081 }
   1082 
   1083 /*
   1084  * pmap_remove_pv: try to remove a mapping from a pv_list
   1085  *
   1086  * => caller should hold proper lock on pmap_main_lock
   1087  * => pmap should be locked
   1088  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1089  * => caller should adjust ptp's wire_count and free PTP if needed
   1090  * => caller should NOT adjust pmap's wire_count
   1091  * => we return the removed pv
   1092  */
   1093 static struct pv_entry *
   1094 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1095 {
   1096 	struct pv_entry *pv, **prevptr;
   1097 
   1098 	NPDEBUG(PDB_PVDUMP,
   1099 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
   1100 
   1101 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1102 	pv = *prevptr;
   1103 
   1104 	while (pv) {
   1105 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1106 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
   1107 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
   1108 			if (pv->pv_flags & PVF_WIRED) {
   1109 				--pm->pm_stats.wired_count;
   1110 			}
   1111 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1112 			if (pm == pmap_kernel()) {
   1113 				PMAPCOUNT(kernel_unmappings);
   1114 				if (pv->pv_flags & PVF_WRITE)
   1115 					md->krw_mappings--;
   1116 				else
   1117 					md->kro_mappings--;
   1118 			} else {
   1119 				if (pv->pv_flags & PVF_WRITE)
   1120 					md->urw_mappings--;
   1121 				else
   1122 					md->uro_mappings--;
   1123 			}
   1124 
   1125 			PMAPCOUNT(unmappings);
   1126 #ifdef PMAP_CACHE_VIPT
   1127 			if (!(pv->pv_flags & PVF_WRITE))
   1128 				break;
   1129 			/*
   1130 			 * If this page has had an exec mapping, then if
   1131 			 * this was the last mapping, discard the contents,
   1132 			 * otherwise sync the i-cache for this page.
   1133 			 */
   1134 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1135 #ifdef ARM_MMU_EXTENDED
   1136 				md->pvh_attrs &= ~PVF_EXEC;
   1137 				PMAPCOUNT(exec_discarded_unmap);
   1138 #else
   1139 				if (SLIST_EMPTY(&md->pvh_list)) {
   1140 					md->pvh_attrs &= ~PVF_EXEC;
   1141 					PMAPCOUNT(exec_discarded_unmap);
   1142 				} else {
   1143 					pmap_syncicache_page(md, pa);
   1144 					PMAPCOUNT(exec_synced_unmap);
   1145 				}
   1146 #endif /* ARM_MMU_EXTENDED */
   1147 			}
   1148 #endif /* PMAP_CACHE_VIPT */
   1149 			break;
   1150 		}
   1151 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1152 		pv = *prevptr;				/* advance */
   1153 	}
   1154 
   1155 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1156 	/*
   1157 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1158 	 * clear the KMOD attribute from the page.
   1159 	 */
   1160 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1161 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1162 		md->pvh_attrs &= ~PVF_KMOD;
   1163 
   1164 	/*
   1165 	 * If this was a writeable page and there are no more writeable
   1166 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1167 	 * the contents to memory.
   1168 	 */
   1169 	if (arm_cache_prefer_mask != 0) {
   1170 		if (md->krw_mappings + md->urw_mappings == 0)
   1171 			md->pvh_attrs &= ~PVF_WRITE;
   1172 		PMAP_VALIDATE_MD_PAGE(md);
   1173 	}
   1174 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1175 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1176 
   1177 	return(pv);				/* return removed pv */
   1178 }
   1179 
   1180 /*
   1181  *
   1182  * pmap_modify_pv: Update pv flags
   1183  *
   1184  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1185  * => caller should NOT adjust pmap's wire_count
   1186  * => caller must call pmap_vac_me_harder() if writable status of a page
   1187  *    may have changed.
   1188  * => we return the old flags
   1189  *
   1190  * Modify a physical-virtual mapping in the pv table
   1191  */
   1192 static u_int
   1193 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1194     u_int clr_mask, u_int set_mask)
   1195 {
   1196 	struct pv_entry *npv;
   1197 	u_int flags, oflags;
   1198 
   1199 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1200 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1201 
   1202 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1203 		return (0);
   1204 
   1205 	NPDEBUG(PDB_PVDUMP,
   1206 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1207 
   1208 	/*
   1209 	 * There is at least one VA mapping this page.
   1210 	 */
   1211 
   1212 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1213 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1214 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1215 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1216 			md->pvh_attrs |= PVF_DIRTY;
   1217 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1218 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1219 	}
   1220 
   1221 	oflags = npv->pv_flags;
   1222 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1223 
   1224 	if ((flags ^ oflags) & PVF_WIRED) {
   1225 		if (flags & PVF_WIRED)
   1226 			++pm->pm_stats.wired_count;
   1227 		else
   1228 			--pm->pm_stats.wired_count;
   1229 	}
   1230 
   1231 	if ((flags ^ oflags) & PVF_WRITE) {
   1232 		if (pm == pmap_kernel()) {
   1233 			if (flags & PVF_WRITE) {
   1234 				md->krw_mappings++;
   1235 				md->kro_mappings--;
   1236 			} else {
   1237 				md->kro_mappings++;
   1238 				md->krw_mappings--;
   1239 			}
   1240 		} else {
   1241 			if (flags & PVF_WRITE) {
   1242 				md->urw_mappings++;
   1243 				md->uro_mappings--;
   1244 			} else {
   1245 				md->uro_mappings++;
   1246 				md->urw_mappings--;
   1247 			}
   1248 		}
   1249 	}
   1250 #ifdef PMAP_CACHE_VIPT
   1251 	if (arm_cache_prefer_mask != 0) {
   1252 		if (md->urw_mappings + md->krw_mappings == 0) {
   1253 			md->pvh_attrs &= ~PVF_WRITE;
   1254 		} else {
   1255 			md->pvh_attrs |= PVF_WRITE;
   1256 		}
   1257 	}
   1258 #ifndef ARM_MMU_EXTENDED
   1259 	/*
   1260 	 * We have two cases here: the first is from enter_pv (new exec
   1261 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1262 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1263 	 * to do what pmap_remove_pv would do.
   1264 	 */
   1265 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1266 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1267 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1268 		pmap_syncicache_page(md, pa);
   1269 		PMAPCOUNT(exec_synced_remap);
   1270 	}
   1271 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1272 #endif /* !ARM_MMU_EXTENDED */
   1273 #endif /* PMAP_CACHE_VIPT */
   1274 
   1275 	PMAPCOUNT(remappings);
   1276 
   1277 	return (oflags);
   1278 }
   1279 
   1280 /*
   1281  * Allocate an L1 translation table for the specified pmap.
   1282  * This is called at pmap creation time.
   1283  */
   1284 static void
   1285 pmap_alloc_l1(pmap_t pm)
   1286 {
   1287 #ifdef ARM_MMU_EXTENDED
   1288 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1289 	struct vm_page *pg;
   1290 	bool ok __diagused;
   1291 	for (;;) {
   1292 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1293 		pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
   1294 #else
   1295 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1296 #endif
   1297 		if (pg != NULL)
   1298 			break;
   1299 		uvm_wait("pmapl1alloc");
   1300 	}
   1301 	pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
   1302 	vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
   1303 	KASSERT(ok);
   1304 	KASSERT(va >= KERNEL_BASE);
   1305 
   1306 #else
   1307 	KASSERTMSG(kernel_map != NULL, "pm %p", pm);
   1308 	vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1309 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1310 	KASSERT(va);
   1311 	pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
   1312 #endif
   1313 	pm->pm_l1 = (pd_entry_t *)va;
   1314 	PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
   1315 #else
   1316 	struct l1_ttable *l1;
   1317 	uint8_t domain;
   1318 
   1319 	/*
   1320 	 * Remove the L1 at the head of the LRU list
   1321 	 */
   1322 	mutex_spin_enter(&l1_lru_lock);
   1323 	l1 = TAILQ_FIRST(&l1_lru_list);
   1324 	KDASSERT(l1 != NULL);
   1325 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1326 
   1327 	/*
   1328 	 * Pick the first available domain number, and update
   1329 	 * the link to the next number.
   1330 	 */
   1331 	domain = l1->l1_domain_first;
   1332 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1333 
   1334 	/*
   1335 	 * If there are still free domain numbers in this L1,
   1336 	 * put it back on the TAIL of the LRU list.
   1337 	 */
   1338 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1339 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1340 
   1341 	mutex_spin_exit(&l1_lru_lock);
   1342 
   1343 	/*
   1344 	 * Fix up the relevant bits in the pmap structure
   1345 	 */
   1346 	pm->pm_l1 = l1;
   1347 	pm->pm_domain = domain + 1;
   1348 #endif
   1349 }
   1350 
   1351 /*
   1352  * Free an L1 translation table.
   1353  * This is called at pmap destruction time.
   1354  */
   1355 static void
   1356 pmap_free_l1(pmap_t pm)
   1357 {
   1358 #ifdef ARM_MMU_EXTENDED
   1359 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1360 	struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
   1361 	uvm_pagefree(pg);
   1362 #else
   1363 	uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
   1364 #endif
   1365 	pm->pm_l1 = NULL;
   1366 	pm->pm_l1_pa = 0;
   1367 #else
   1368 	struct l1_ttable *l1 = pm->pm_l1;
   1369 
   1370 	mutex_spin_enter(&l1_lru_lock);
   1371 
   1372 	/*
   1373 	 * If this L1 is currently on the LRU list, remove it.
   1374 	 */
   1375 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1376 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1377 
   1378 	/*
   1379 	 * Free up the domain number which was allocated to the pmap
   1380 	 */
   1381 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1382 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1383 	l1->l1_domain_use_count--;
   1384 
   1385 	/*
   1386 	 * The L1 now must have at least 1 free domain, so add
   1387 	 * it back to the LRU list. If the use count is zero,
   1388 	 * put it at the head of the list, otherwise it goes
   1389 	 * to the tail.
   1390 	 */
   1391 	if (l1->l1_domain_use_count == 0)
   1392 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1393 	else
   1394 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1395 
   1396 	mutex_spin_exit(&l1_lru_lock);
   1397 #endif /* ARM_MMU_EXTENDED */
   1398 }
   1399 
   1400 #ifndef ARM_MMU_EXTENDED
   1401 static inline void
   1402 pmap_use_l1(pmap_t pm)
   1403 {
   1404 	struct l1_ttable *l1;
   1405 
   1406 	/*
   1407 	 * Do nothing if we're in interrupt context.
   1408 	 * Access to an L1 by the kernel pmap must not affect
   1409 	 * the LRU list.
   1410 	 */
   1411 	if (cpu_intr_p() || pm == pmap_kernel())
   1412 		return;
   1413 
   1414 	l1 = pm->pm_l1;
   1415 
   1416 	/*
   1417 	 * If the L1 is not currently on the LRU list, just return
   1418 	 */
   1419 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1420 		return;
   1421 
   1422 	mutex_spin_enter(&l1_lru_lock);
   1423 
   1424 	/*
   1425 	 * Check the use count again, now that we've acquired the lock
   1426 	 */
   1427 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1428 		mutex_spin_exit(&l1_lru_lock);
   1429 		return;
   1430 	}
   1431 
   1432 	/*
   1433 	 * Move the L1 to the back of the LRU list
   1434 	 */
   1435 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1436 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1437 
   1438 	mutex_spin_exit(&l1_lru_lock);
   1439 }
   1440 #endif /* !ARM_MMU_EXTENDED */
   1441 
   1442 /*
   1443  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1444  *
   1445  * Free an L2 descriptor table.
   1446  */
   1447 static inline void
   1448 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1449 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1450 #else
   1451 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1452 #endif
   1453 {
   1454 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1455 	/*
   1456 	 * Note: With a write-back cache, we may need to sync this
   1457 	 * L2 table before re-using it.
   1458 	 * This is because it may have belonged to a non-current
   1459 	 * pmap, in which case the cache syncs would have been
   1460 	 * skipped for the pages that were being unmapped. If the
   1461 	 * L2 table were then to be immediately re-allocated to
   1462 	 * the *current* pmap, it may well contain stale mappings
   1463 	 * which have not yet been cleared by a cache write-back
   1464 	 * and so would still be visible to the mmu.
   1465 	 */
   1466 	if (need_sync)
   1467 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1468 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1469 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1470 }
   1471 
   1472 /*
   1473  * Returns a pointer to the L2 bucket associated with the specified pmap
   1474  * and VA, or NULL if no L2 bucket exists for the address.
   1475  */
   1476 static inline struct l2_bucket *
   1477 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1478 {
   1479 	const size_t l1slot = l1pte_index(va);
   1480 	struct l2_dtable *l2;
   1481 	struct l2_bucket *l2b;
   1482 
   1483 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1484 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1485 		return (NULL);
   1486 
   1487 	return (l2b);
   1488 }
   1489 
   1490 /*
   1491  * Returns a pointer to the L2 bucket associated with the specified pmap
   1492  * and VA.
   1493  *
   1494  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1495  * bucket/page table in place.
   1496  *
   1497  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1498  * increment the bucket occupancy counter appropriately *before*
   1499  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1500  * the bucket/page in the meantime.
   1501  */
   1502 static struct l2_bucket *
   1503 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1504 {
   1505 	const size_t l1slot = l1pte_index(va);
   1506 	struct l2_dtable *l2;
   1507 
   1508 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1509 		/*
   1510 		 * No mapping at this address, as there is
   1511 		 * no entry in the L1 table.
   1512 		 * Need to allocate a new l2_dtable.
   1513 		 */
   1514 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1515 			return (NULL);
   1516 
   1517 		/*
   1518 		 * Link it into the parent pmap
   1519 		 */
   1520 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1521 	}
   1522 
   1523 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1524 
   1525 	/*
   1526 	 * Fetch pointer to the L2 page table associated with the address.
   1527 	 */
   1528 	if (l2b->l2b_kva == NULL) {
   1529 		pt_entry_t *ptep;
   1530 
   1531 		/*
   1532 		 * No L2 page table has been allocated. Chances are, this
   1533 		 * is because we just allocated the l2_dtable, above.
   1534 		 */
   1535 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1536 			/*
   1537 			 * Oops, no more L2 page tables available at this
   1538 			 * time. We may need to deallocate the l2_dtable
   1539 			 * if we allocated a new one above.
   1540 			 */
   1541 			if (l2->l2_occupancy == 0) {
   1542 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1543 				pmap_free_l2_dtable(l2);
   1544 			}
   1545 			return (NULL);
   1546 		}
   1547 
   1548 		l2->l2_occupancy++;
   1549 		l2b->l2b_kva = ptep;
   1550 		l2b->l2b_l1slot = l1slot;
   1551 
   1552 #ifdef ARM_MMU_EXTENDED
   1553 		/*
   1554 		 * We know there will be a mapping here, so simply
   1555 		 * enter this PTP into the L1 now.
   1556 		 */
   1557 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1558 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1559 		    | L1_C_DOM(pmap_domain(pm));
   1560 		KASSERT(*pdep == 0);
   1561 		l1pte_setone(pdep, npde);
   1562 		PTE_SYNC(pdep);
   1563 #endif
   1564 	}
   1565 
   1566 	return (l2b);
   1567 }
   1568 
   1569 /*
   1570  * One or more mappings in the specified L2 descriptor table have just been
   1571  * invalidated.
   1572  *
   1573  * Garbage collect the metadata and descriptor table itself if necessary.
   1574  *
   1575  * The pmap lock must be acquired when this is called (not necessary
   1576  * for the kernel pmap).
   1577  */
   1578 static void
   1579 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1580 {
   1581 	KDASSERT(count <= l2b->l2b_occupancy);
   1582 
   1583 	/*
   1584 	 * Update the bucket's reference count according to how many
   1585 	 * PTEs the caller has just invalidated.
   1586 	 */
   1587 	l2b->l2b_occupancy -= count;
   1588 
   1589 	/*
   1590 	 * Note:
   1591 	 *
   1592 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1593 	 * as that would require checking all Level 1 page tables and
   1594 	 * removing any references to the Level 2 page table. See also the
   1595 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1596 	 *
   1597 	 * We make do with just invalidating the mapping in the L2 table.
   1598 	 *
   1599 	 * This isn't really a big deal in practice and, in fact, leads
   1600 	 * to a performance win over time as we don't need to continually
   1601 	 * alloc/free.
   1602 	 */
   1603 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1604 		return;
   1605 
   1606 	/*
   1607 	 * There are no more valid mappings in this level 2 page table.
   1608 	 * Go ahead and NULL-out the pointer in the bucket, then
   1609 	 * free the page table.
   1610 	 */
   1611 	const size_t l1slot = l2b->l2b_l1slot;
   1612 	pt_entry_t * const ptep = l2b->l2b_kva;
   1613 	l2b->l2b_kva = NULL;
   1614 
   1615 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1616 	pd_entry_t pde __diagused = *pdep;
   1617 
   1618 #ifdef ARM_MMU_EXTENDED
   1619 	/*
   1620 	 * Invalidate the L1 slot.
   1621 	 */
   1622 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1623 #else
   1624 	/*
   1625 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1626 	 */
   1627 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1628 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1629 #endif
   1630 		l1pte_setone(pdep, 0);
   1631 		PDE_SYNC(pdep);
   1632 #ifndef ARM_MMU_EXTENDED
   1633 	}
   1634 #endif
   1635 
   1636 	/*
   1637 	 * Release the L2 descriptor table back to the pool cache.
   1638 	 */
   1639 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1640 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1641 #else
   1642 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1643 #endif
   1644 
   1645 	/*
   1646 	 * Update the reference count in the associated l2_dtable
   1647 	 */
   1648 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1649 	if (--l2->l2_occupancy > 0)
   1650 		return;
   1651 
   1652 	/*
   1653 	 * There are no more valid mappings in any of the Level 1
   1654 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1655 	 * the pointer in the parent pmap and free the l2_dtable.
   1656 	 */
   1657 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1658 	pmap_free_l2_dtable(l2);
   1659 }
   1660 
   1661 /*
   1662  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1663  * structures.
   1664  */
   1665 static int
   1666 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1667 {
   1668 #ifndef PMAP_INCLUDE_PTE_SYNC
   1669 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1670 
   1671 	/*
   1672 	 * The mappings for these page tables were initially made using
   1673 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1674 	 * mode will not be right for page table mappings. To avoid
   1675 	 * polluting the pmap_kenter_pa() code with a special case for
   1676 	 * page tables, we simply fix up the cache-mode here if it's not
   1677 	 * correct.
   1678 	 */
   1679 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1680 		const struct l2_bucket * const l2b =
   1681 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1682 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1683 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1684 		const pt_entry_t opte = *ptep;
   1685 
   1686 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1687 			/*
   1688 			 * Page tables must have the cache-mode set correctly.
   1689 			 */
   1690 			const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
   1691 			    | pte_l2_s_cache_mode_pt;
   1692 			l2pte_set(ptep, npte, opte);
   1693 			PTE_SYNC(ptep);
   1694 			cpu_tlb_flushD_SE(va);
   1695 			cpu_cpwait();
   1696 		}
   1697 	}
   1698 #endif
   1699 
   1700 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1701 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1702 	return (0);
   1703 }
   1704 
   1705 static int
   1706 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1707 {
   1708 
   1709 	memset(v, 0, sizeof(struct l2_dtable));
   1710 	return (0);
   1711 }
   1712 
   1713 static int
   1714 pmap_pmap_ctor(void *arg, void *v, int flags)
   1715 {
   1716 
   1717 	memset(v, 0, sizeof(struct pmap));
   1718 	return (0);
   1719 }
   1720 
   1721 static void
   1722 pmap_pinit(pmap_t pm)
   1723 {
   1724 #ifndef ARM_HAS_VBAR
   1725 	struct l2_bucket *l2b;
   1726 
   1727 	if (vector_page < KERNEL_BASE) {
   1728 		/*
   1729 		 * Map the vector page.
   1730 		 */
   1731 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1732 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1733 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1734 		pmap_update(pm);
   1735 
   1736 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1737 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1738 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1739 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1740 		    L1_C_DOM(pmap_domain(pm));
   1741 	} else
   1742 		pm->pm_pl1vec = NULL;
   1743 #endif
   1744 }
   1745 
   1746 #ifdef PMAP_CACHE_VIVT
   1747 /*
   1748  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1749  * there is more than one mapping and at least one of them is writable.
   1750  * Since we purge the cache on every context switch, we only need to check for
   1751  * other mappings within the same pmap, or kernel_pmap.
   1752  * This function is also called when a page is unmapped, to possibly reenable
   1753  * caching on any remaining mappings.
   1754  *
   1755  * The code implements the following logic, where:
   1756  *
   1757  * KW = # of kernel read/write pages
   1758  * KR = # of kernel read only pages
   1759  * UW = # of user read/write pages
   1760  * UR = # of user read only pages
   1761  *
   1762  * KC = kernel mapping is cacheable
   1763  * UC = user mapping is cacheable
   1764  *
   1765  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1766  *             +---------------------------------------------
   1767  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1768  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1769  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1770  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1771  */
   1772 
   1773 static const int pmap_vac_flags[4][4] = {
   1774 	{-1,		0,		0,		PVF_KNC},
   1775 	{0,		0,		PVF_NC,		PVF_NC},
   1776 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1777 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1778 };
   1779 
   1780 static inline int
   1781 pmap_get_vac_flags(const struct vm_page_md *md)
   1782 {
   1783 	int kidx, uidx;
   1784 
   1785 	kidx = 0;
   1786 	if (md->kro_mappings || md->krw_mappings > 1)
   1787 		kidx |= 1;
   1788 	if (md->krw_mappings)
   1789 		kidx |= 2;
   1790 
   1791 	uidx = 0;
   1792 	if (md->uro_mappings || md->urw_mappings > 1)
   1793 		uidx |= 1;
   1794 	if (md->urw_mappings)
   1795 		uidx |= 2;
   1796 
   1797 	return (pmap_vac_flags[uidx][kidx]);
   1798 }
   1799 
   1800 static inline void
   1801 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1802 {
   1803 	int nattr;
   1804 
   1805 	nattr = pmap_get_vac_flags(md);
   1806 
   1807 	if (nattr < 0) {
   1808 		md->pvh_attrs &= ~PVF_NC;
   1809 		return;
   1810 	}
   1811 
   1812 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1813 		return;
   1814 
   1815 	if (pm == pmap_kernel())
   1816 		pmap_vac_me_kpmap(md, pa, pm, va);
   1817 	else
   1818 		pmap_vac_me_user(md, pa, pm, va);
   1819 
   1820 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1821 }
   1822 
   1823 static void
   1824 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1825 {
   1826 	u_int u_cacheable, u_entries;
   1827 	struct pv_entry *pv;
   1828 	pmap_t last_pmap = pm;
   1829 
   1830 	/*
   1831 	 * Pass one, see if there are both kernel and user pmaps for
   1832 	 * this page.  Calculate whether there are user-writable or
   1833 	 * kernel-writable pages.
   1834 	 */
   1835 	u_cacheable = 0;
   1836 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1837 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1838 			u_cacheable++;
   1839 	}
   1840 
   1841 	u_entries = md->urw_mappings + md->uro_mappings;
   1842 
   1843 	/*
   1844 	 * We know we have just been updating a kernel entry, so if
   1845 	 * all user pages are already cacheable, then there is nothing
   1846 	 * further to do.
   1847 	 */
   1848 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1849 		return;
   1850 
   1851 	if (u_entries) {
   1852 		/*
   1853 		 * Scan over the list again, for each entry, if it
   1854 		 * might not be set correctly, call pmap_vac_me_user
   1855 		 * to recalculate the settings.
   1856 		 */
   1857 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1858 			/*
   1859 			 * We know kernel mappings will get set
   1860 			 * correctly in other calls.  We also know
   1861 			 * that if the pmap is the same as last_pmap
   1862 			 * then we've just handled this entry.
   1863 			 */
   1864 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1865 				continue;
   1866 
   1867 			/*
   1868 			 * If there are kernel entries and this page
   1869 			 * is writable but non-cacheable, then we can
   1870 			 * skip this entry also.
   1871 			 */
   1872 			if (md->k_mappings &&
   1873 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1874 			    (PVF_NC | PVF_WRITE))
   1875 				continue;
   1876 
   1877 			/*
   1878 			 * Similarly if there are no kernel-writable
   1879 			 * entries and the page is already
   1880 			 * read-only/cacheable.
   1881 			 */
   1882 			if (md->krw_mappings == 0 &&
   1883 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1884 				continue;
   1885 
   1886 			/*
   1887 			 * For some of the remaining cases, we know
   1888 			 * that we must recalculate, but for others we
   1889 			 * can't tell if they are correct or not, so
   1890 			 * we recalculate anyway.
   1891 			 */
   1892 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1893 		}
   1894 
   1895 		if (md->k_mappings == 0)
   1896 			return;
   1897 	}
   1898 
   1899 	pmap_vac_me_user(md, pa, pm, va);
   1900 }
   1901 
   1902 static void
   1903 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1904 {
   1905 	pmap_t kpmap = pmap_kernel();
   1906 	struct pv_entry *pv, *npv = NULL;
   1907 	u_int entries = 0;
   1908 	u_int writable = 0;
   1909 	u_int cacheable_entries = 0;
   1910 	u_int kern_cacheable = 0;
   1911 	u_int other_writable = 0;
   1912 
   1913 	/*
   1914 	 * Count mappings and writable mappings in this pmap.
   1915 	 * Include kernel mappings as part of our own.
   1916 	 * Keep a pointer to the first one.
   1917 	 */
   1918 	npv = NULL;
   1919 	KASSERT(pmap_page_locked_p(md));
   1920 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1921 		/* Count mappings in the same pmap */
   1922 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1923 			if (entries++ == 0)
   1924 				npv = pv;
   1925 
   1926 			/* Cacheable mappings */
   1927 			if ((pv->pv_flags & PVF_NC) == 0) {
   1928 				cacheable_entries++;
   1929 				if (kpmap == pv->pv_pmap)
   1930 					kern_cacheable++;
   1931 			}
   1932 
   1933 			/* Writable mappings */
   1934 			if (pv->pv_flags & PVF_WRITE)
   1935 				++writable;
   1936 		} else
   1937 		if (pv->pv_flags & PVF_WRITE)
   1938 			other_writable = 1;
   1939 	}
   1940 
   1941 	/*
   1942 	 * Enable or disable caching as necessary.
   1943 	 * Note: the first entry might be part of the kernel pmap,
   1944 	 * so we can't assume this is indicative of the state of the
   1945 	 * other (maybe non-kpmap) entries.
   1946 	 */
   1947 	if ((entries > 1 && writable) ||
   1948 	    (entries > 0 && pm == kpmap && other_writable)) {
   1949 		if (cacheable_entries == 0) {
   1950 			return;
   1951 		}
   1952 
   1953 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1954 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1955 			    (pv->pv_flags & PVF_NC))
   1956 				continue;
   1957 
   1958 			pv->pv_flags |= PVF_NC;
   1959 
   1960 			struct l2_bucket * const l2b
   1961 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1962 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1963 			pt_entry_t * const ptep
   1964 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1965 			const pt_entry_t opte = *ptep;
   1966 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1967 
   1968 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1969 			    && l2pte_valid_p(npte)) {
   1970 #ifdef PMAP_CACHE_VIVT
   1971 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1972 				    true, pv->pv_flags);
   1973 #endif
   1974 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1975 				    pv->pv_flags);
   1976 			}
   1977 
   1978 			l2pte_set(ptep, npte, opte);
   1979 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1980 		}
   1981 		cpu_cpwait();
   1982 	} else
   1983 	if (entries > cacheable_entries) {
   1984 		/*
   1985 		 * Turn cacheing back on for some pages.  If it is a kernel
   1986 		 * page, only do so if there are no other writable pages.
   1987 		 */
   1988 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1989 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1990 			    (kpmap != pv->pv_pmap || other_writable)))
   1991 				continue;
   1992 
   1993 			pv->pv_flags &= ~PVF_NC;
   1994 
   1995 			struct l2_bucket * const l2b
   1996 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1997 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1998 			pt_entry_t * const ptep
   1999 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2000 			const pt_entry_t opte = *ptep;
   2001 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   2002 			    | pte_l2_s_cache_mode;
   2003 
   2004 			if (l2pte_valid_p(opte)) {
   2005 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2006 				    pv->pv_flags);
   2007 			}
   2008 
   2009 			l2pte_set(ptep, npte, opte);
   2010 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2011 		}
   2012 	}
   2013 }
   2014 #endif
   2015 
   2016 #ifdef PMAP_CACHE_VIPT
   2017 static void
   2018 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2019 {
   2020 #ifndef ARM_MMU_EXTENDED
   2021 	struct pv_entry *pv;
   2022 	vaddr_t tst_mask;
   2023 	bool bad_alias;
   2024 	const u_int
   2025 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2026 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2027 
   2028 	/* do we need to do anything? */
   2029 	if (arm_cache_prefer_mask == 0)
   2030 		return;
   2031 
   2032 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   2033 	    md, pm, va));
   2034 
   2035 	KASSERT(!va || pm);
   2036 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2037 
   2038 	/* Already a conflict? */
   2039 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2040 		/* just an add, things are already non-cached */
   2041 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2042 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2043 		bad_alias = false;
   2044 		if (va) {
   2045 			PMAPCOUNT(vac_color_none);
   2046 			bad_alias = true;
   2047 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2048 			goto fixup;
   2049 		}
   2050 		pv = SLIST_FIRST(&md->pvh_list);
   2051 		/* the list can't be empty because it would be cachable */
   2052 		if (md->pvh_attrs & PVF_KMPAGE) {
   2053 			tst_mask = md->pvh_attrs;
   2054 		} else {
   2055 			KASSERT(pv);
   2056 			tst_mask = pv->pv_va;
   2057 			pv = SLIST_NEXT(pv, pv_link);
   2058 		}
   2059 		/*
   2060 		 * Only check for a bad alias if we have writable mappings.
   2061 		 */
   2062 		tst_mask &= arm_cache_prefer_mask;
   2063 		if (rw_mappings > 0) {
   2064 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2065 				/* if there's a bad alias, stop checking. */
   2066 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2067 					bad_alias = true;
   2068 			}
   2069 			md->pvh_attrs |= PVF_WRITE;
   2070 			if (!bad_alias)
   2071 				md->pvh_attrs |= PVF_DIRTY;
   2072 		} else {
   2073 			/*
   2074 			 * We have only read-only mappings.  Let's see if there
   2075 			 * are multiple colors in use or if we mapped a KMPAGE.
   2076 			 * If the latter, we have a bad alias.  If the former,
   2077 			 * we need to remember that.
   2078 			 */
   2079 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2080 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2081 					if (md->pvh_attrs & PVF_KMPAGE)
   2082 						bad_alias = true;
   2083 					break;
   2084 				}
   2085 			}
   2086 			md->pvh_attrs &= ~PVF_WRITE;
   2087 			/*
   2088 			 * No KMPAGE and we exited early, so we must have
   2089 			 * multiple color mappings.
   2090 			 */
   2091 			if (!bad_alias && pv != NULL)
   2092 				md->pvh_attrs |= PVF_MULTCLR;
   2093 		}
   2094 
   2095 		/* If no conflicting colors, set everything back to cached */
   2096 		if (!bad_alias) {
   2097 #ifdef DEBUG
   2098 			if ((md->pvh_attrs & PVF_WRITE)
   2099 			    || ro_mappings < 2) {
   2100 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2101 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2102 			}
   2103 #endif
   2104 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2105 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2106 			/*
   2107 			 * Restore DIRTY bit if page is modified
   2108 			 */
   2109 			if (md->pvh_attrs & PVF_DMOD)
   2110 				md->pvh_attrs |= PVF_DIRTY;
   2111 			PMAPCOUNT(vac_color_restore);
   2112 		} else {
   2113 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2114 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2115 		}
   2116 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2117 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2118 	} else if (!va) {
   2119 		KASSERT(pmap_is_page_colored_p(md));
   2120 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2121 		    || (md->pvh_attrs & PVF_DIRTY));
   2122 		if (rw_mappings == 0) {
   2123 			md->pvh_attrs &= ~PVF_WRITE;
   2124 			if (ro_mappings == 1
   2125 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2126 				/*
   2127 				 * If this is the last readonly mapping
   2128 				 * but it doesn't match the current color
   2129 				 * for the page, change the current color
   2130 				 * to match this last readonly mapping.
   2131 				 */
   2132 				pv = SLIST_FIRST(&md->pvh_list);
   2133 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2134 				    & arm_cache_prefer_mask;
   2135 				if (tst_mask) {
   2136 					md->pvh_attrs ^= tst_mask;
   2137 					PMAPCOUNT(vac_color_change);
   2138 				}
   2139 			}
   2140 		}
   2141 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2142 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2143 		return;
   2144 	} else if (!pmap_is_page_colored_p(md)) {
   2145 		/* not colored so we just use its color */
   2146 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2147 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2148 		PMAPCOUNT(vac_color_new);
   2149 		md->pvh_attrs &= PAGE_SIZE - 1;
   2150 		md->pvh_attrs |= PVF_COLORED
   2151 		    | (va & arm_cache_prefer_mask)
   2152 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2153 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2154 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2155 		return;
   2156 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2157 		bad_alias = false;
   2158 		if (rw_mappings > 0) {
   2159 			/*
   2160 			 * We now have writeable mappings and if we have
   2161 			 * readonly mappings in more than once color, we have
   2162 			 * an aliasing problem.  Regardless mark the page as
   2163 			 * writeable.
   2164 			 */
   2165 			if (md->pvh_attrs & PVF_MULTCLR) {
   2166 				if (ro_mappings < 2) {
   2167 					/*
   2168 					 * If we only have less than two
   2169 					 * read-only mappings, just flush the
   2170 					 * non-primary colors from the cache.
   2171 					 */
   2172 					pmap_flush_page(md, pa,
   2173 					    PMAP_FLUSH_SECONDARY);
   2174 				} else {
   2175 					bad_alias = true;
   2176 				}
   2177 			}
   2178 			md->pvh_attrs |= PVF_WRITE;
   2179 		}
   2180 		/* If no conflicting colors, set everything back to cached */
   2181 		if (!bad_alias) {
   2182 #ifdef DEBUG
   2183 			if (rw_mappings > 0
   2184 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2185 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2186 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2187 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2188 			}
   2189 #endif
   2190 			if (SLIST_EMPTY(&md->pvh_list))
   2191 				PMAPCOUNT(vac_color_reuse);
   2192 			else
   2193 				PMAPCOUNT(vac_color_ok);
   2194 
   2195 			/* matching color, just return */
   2196 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2197 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2198 			return;
   2199 		}
   2200 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2201 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2202 
   2203 		/* color conflict.  evict from cache. */
   2204 
   2205 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2206 		md->pvh_attrs &= ~PVF_COLORED;
   2207 		md->pvh_attrs |= PVF_NC;
   2208 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2209 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2210 		PMAPCOUNT(vac_color_erase);
   2211 	} else if (rw_mappings == 0
   2212 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2213 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2214 
   2215 		/*
   2216 		 * If the page has dirty cache lines, clean it.
   2217 		 */
   2218 		if (md->pvh_attrs & PVF_DIRTY)
   2219 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2220 
   2221 		/*
   2222 		 * If this is the first remapping (we know that there are no
   2223 		 * writeable mappings), then this is a simple color change.
   2224 		 * Otherwise this is a seconary r/o mapping, which means
   2225 		 * we don't have to do anything.
   2226 		 */
   2227 		if (ro_mappings == 1) {
   2228 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2229 			md->pvh_attrs &= PAGE_SIZE - 1;
   2230 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2231 			PMAPCOUNT(vac_color_change);
   2232 		} else {
   2233 			PMAPCOUNT(vac_color_blind);
   2234 		}
   2235 		md->pvh_attrs |= PVF_MULTCLR;
   2236 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2237 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2238 		return;
   2239 	} else {
   2240 		if (rw_mappings > 0)
   2241 			md->pvh_attrs |= PVF_WRITE;
   2242 
   2243 		/* color conflict.  evict from cache. */
   2244 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2245 
   2246 		/* the list can't be empty because this was a enter/modify */
   2247 		pv = SLIST_FIRST(&md->pvh_list);
   2248 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2249 			KASSERT(pv);
   2250 			/*
   2251 			 * If there's only one mapped page, change color to the
   2252 			 * page's new color and return.  Restore the DIRTY bit
   2253 			 * that was erased by pmap_flush_page.
   2254 			 */
   2255 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2256 				md->pvh_attrs &= PAGE_SIZE - 1;
   2257 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2258 				if (md->pvh_attrs & PVF_DMOD)
   2259 					md->pvh_attrs |= PVF_DIRTY;
   2260 				PMAPCOUNT(vac_color_change);
   2261 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2262 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2263 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2264 				return;
   2265 			}
   2266 		}
   2267 		bad_alias = true;
   2268 		md->pvh_attrs &= ~PVF_COLORED;
   2269 		md->pvh_attrs |= PVF_NC;
   2270 		PMAPCOUNT(vac_color_erase);
   2271 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2272 	}
   2273 
   2274   fixup:
   2275 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2276 
   2277 	/*
   2278 	 * Turn cacheing on/off for all pages.
   2279 	 */
   2280 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2281 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2282 		    pv->pv_va);
   2283 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2284 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2285 		const pt_entry_t opte = *ptep;
   2286 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2287 		if (bad_alias) {
   2288 			pv->pv_flags |= PVF_NC;
   2289 		} else {
   2290 			pv->pv_flags &= ~PVF_NC;
   2291 			npte |= pte_l2_s_cache_mode;
   2292 		}
   2293 
   2294 		if (opte == npte)	/* only update is there's a change */
   2295 			continue;
   2296 
   2297 		if (l2pte_valid_p(npte)) {
   2298 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2299 		}
   2300 
   2301 		l2pte_set(ptep, npte, opte);
   2302 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2303 	}
   2304 #endif /* !ARM_MMU_EXTENDED */
   2305 }
   2306 #endif	/* PMAP_CACHE_VIPT */
   2307 
   2308 
   2309 /*
   2310  * Modify pte bits for all ptes corresponding to the given physical address.
   2311  * We use `maskbits' rather than `clearbits' because we're always passing
   2312  * constants and the latter would require an extra inversion at run-time.
   2313  */
   2314 static void
   2315 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2316 {
   2317 	struct pv_entry *pv;
   2318 #ifdef PMAP_CACHE_VIPT
   2319 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2320 #ifdef ARM_MMU_EXTENDED
   2321 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
   2322 #else
   2323 	const u_int execbits = 0;
   2324 	bool need_vac_me_harder = false;
   2325 	bool need_syncicache = false;
   2326 #endif
   2327 #else
   2328 	const u_int execbits = 0;
   2329 #endif
   2330 
   2331 	NPDEBUG(PDB_BITS,
   2332 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2333 	    md, maskbits));
   2334 
   2335 #ifdef PMAP_CACHE_VIPT
   2336 	/*
   2337 	 * If we might want to sync the I-cache and we've modified it,
   2338 	 * then we know we definitely need to sync or discard it.
   2339 	 */
   2340 	if (want_syncicache) {
   2341 #ifdef ARM_MMU_EXTENDED
   2342 		if (md->pvh_attrs & PVF_MOD)
   2343 			md->pvh_attrs &= ~PVF_EXEC;
   2344 #else
   2345 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2346 #endif
   2347 	}
   2348 #endif
   2349 	KASSERT(pmap_page_locked_p(md));
   2350 
   2351 	/*
   2352 	 * Clear saved attributes (modify, reference)
   2353 	 */
   2354 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2355 
   2356 	if (SLIST_EMPTY(&md->pvh_list)) {
   2357 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2358 		if (need_syncicache) {
   2359 			/*
   2360 			 * No one has it mapped, so just discard it.  The next
   2361 			 * exec remapping will cause it to be synced.
   2362 			 */
   2363 			md->pvh_attrs &= ~PVF_EXEC;
   2364 			PMAPCOUNT(exec_discarded_clearbit);
   2365 		}
   2366 #endif
   2367 		return;
   2368 	}
   2369 
   2370 	/*
   2371 	 * Loop over all current mappings setting/clearing as appropos
   2372 	 */
   2373 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2374 		pmap_t pm = pv->pv_pmap;
   2375 		const vaddr_t va = pv->pv_va;
   2376 		const u_int oflags = pv->pv_flags;
   2377 #ifndef ARM_MMU_EXTENDED
   2378 		/*
   2379 		 * Kernel entries are unmanaged and as such not to be changed.
   2380 		 */
   2381 		if (PV_IS_KENTRY_P(oflags))
   2382 			continue;
   2383 #endif
   2384 		pv->pv_flags &= ~maskbits;
   2385 
   2386 		pmap_release_page_lock(md);
   2387 		pmap_acquire_pmap_lock(pm);
   2388 
   2389 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2390 		if (l2b == NULL) {
   2391 			pmap_release_pmap_lock(pm);
   2392 			pmap_acquire_page_lock(md);
   2393 			continue;
   2394 		}
   2395 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2396 
   2397 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2398 		const pt_entry_t opte = *ptep;
   2399 		pt_entry_t npte = opte | execbits;
   2400 
   2401 #ifdef ARM_MMU_EXTENDED
   2402 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2403 #endif
   2404 
   2405 		NPDEBUG(PDB_BITS,
   2406 		    printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2407 			__func__, pv, pm, va, oflags));
   2408 
   2409 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2410 #ifdef PMAP_CACHE_VIVT
   2411 			if ((oflags & PVF_NC)) {
   2412 				/*
   2413 				 * Entry is not cacheable:
   2414 				 *
   2415 				 * Don't turn caching on again if this is a
   2416 				 * modified emulation. This would be
   2417 				 * inconsitent with the settings created by
   2418 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2419 				 * to re-enable cacheing.
   2420 				 *
   2421 				 * There's no need to call pmap_vac_me_harder()
   2422 				 * here: all pages are losing their write
   2423 				 * permission.
   2424 				 */
   2425 				if (maskbits & PVF_WRITE) {
   2426 					npte |= pte_l2_s_cache_mode;
   2427 					pv->pv_flags &= ~PVF_NC;
   2428 				}
   2429 			} else
   2430 			if (l2pte_writable_p(opte)) {
   2431 				/*
   2432 				 * Entry is writable/cacheable: check if pmap
   2433 				 * is current if it is flush it, otherwise it
   2434 				 * won't be in the cache
   2435 				 */
   2436 				pmap_cache_wbinv_page(pm, va,
   2437 				    (maskbits & PVF_REF) != 0,
   2438 				    oflags|PVF_WRITE);
   2439 			}
   2440 #endif
   2441 
   2442 			/* make the pte read only */
   2443 			npte = l2pte_set_readonly(npte);
   2444 
   2445 			pmap_acquire_page_lock(md);
   2446 #ifdef MULTIPROCESSOR
   2447 			pv = pmap_find_pv(md, pm, va);
   2448 #endif
   2449 			if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
   2450 				/*
   2451 				 * Keep alias accounting up to date
   2452 				 */
   2453 				if (pm == pmap_kernel()) {
   2454 					md->krw_mappings--;
   2455 					md->kro_mappings++;
   2456 				} else {
   2457 					md->urw_mappings--;
   2458 					md->uro_mappings++;
   2459 				}
   2460 #ifdef PMAP_CACHE_VIPT
   2461 				if (arm_cache_prefer_mask != 0) {
   2462 					if (md->urw_mappings + md->krw_mappings == 0) {
   2463 						md->pvh_attrs &= ~PVF_WRITE;
   2464 					} else {
   2465 						PMAP_VALIDATE_MD_PAGE(md);
   2466 					}
   2467 				}
   2468 #ifndef ARM_MMU_EXTENDED
   2469 				if (want_syncicache)
   2470 					need_syncicache = true;
   2471 				need_vac_me_harder = true;
   2472 #endif
   2473 #endif /* PMAP_CACHE_VIPT */
   2474 			}
   2475 			pmap_release_page_lock(md);
   2476 		}
   2477 
   2478 		if (maskbits & PVF_REF) {
   2479 			if (true
   2480 #ifndef ARM_MMU_EXTENDED
   2481 			    && (oflags & PVF_NC) == 0
   2482 #endif
   2483 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2484 			    && l2pte_valid_p(npte)) {
   2485 #ifdef PMAP_CACHE_VIVT
   2486 				/*
   2487 				 * Check npte here; we may have already
   2488 				 * done the wbinv above, and the validity
   2489 				 * of the PTE is the same for opte and
   2490 				 * npte.
   2491 				 */
   2492 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2493 #endif
   2494 			}
   2495 
   2496 			/*
   2497 			 * Make the PTE invalid so that we will take a
   2498 			 * page fault the next time the mapping is
   2499 			 * referenced.
   2500 			 */
   2501 			npte &= ~L2_TYPE_MASK;
   2502 			npte |= L2_TYPE_INV;
   2503 		}
   2504 
   2505 		if (npte != opte) {
   2506 			l2pte_reset(ptep);
   2507 			PTE_SYNC(ptep);
   2508 
   2509 			/* Flush the TLB entry if a current pmap. */
   2510 			pmap_tlb_flush_SE(pm, va, oflags);
   2511 
   2512 			l2pte_set(ptep, npte, 0);
   2513 			PTE_SYNC(ptep);
   2514 		}
   2515 
   2516 		pmap_release_pmap_lock(pm);
   2517 		pmap_acquire_page_lock(md);
   2518 
   2519 		NPDEBUG(PDB_BITS,
   2520 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2521 		    pm, va, opte, npte));
   2522 	}
   2523 
   2524 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2525 	/*
   2526 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2527 	 */
   2528 	if (need_syncicache) {
   2529 		pmap_release_page_lock(md);
   2530 		pmap_syncicache_page(md, pa);
   2531 		pmap_acquire_page_lock(md);
   2532 		PMAPCOUNT(exec_synced_clearbit);
   2533 	}
   2534 
   2535 	/*
   2536 	 * If we are changing this to read-only, we need to call vac_me_harder
   2537 	 * so we can change all the read-only pages to cacheable.  We pretend
   2538 	 * this as a page deletion.
   2539 	 */
   2540 	if (need_vac_me_harder) {
   2541 		if (md->pvh_attrs & PVF_NC)
   2542 			pmap_vac_me_harder(md, pa, NULL, 0);
   2543 	}
   2544 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   2545 }
   2546 
   2547 /*
   2548  * pmap_clean_page()
   2549  *
   2550  * This is a local function used to work out the best strategy to clean
   2551  * a single page referenced by its entry in the PV table. It's used by
   2552  * pmap_copy_page, pmap_zero_page and maybe some others later on.
   2553  *
   2554  * Its policy is effectively:
   2555  *  o If there are no mappings, we don't bother doing anything with the cache.
   2556  *  o If there is one mapping, we clean just that page.
   2557  *  o If there are multiple mappings, we clean the entire cache.
   2558  *
   2559  * So that some functions can be further optimised, it returns 0 if it didn't
   2560  * clean the entire cache, or 1 if it did.
   2561  *
   2562  * XXX One bug in this routine is that if the pv_entry has a single page
   2563  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2564  * just the 1 page. Since this should not occur in everyday use and if it does
   2565  * it will just result in not the most efficient clean for the page.
   2566  */
   2567 #ifdef PMAP_CACHE_VIVT
   2568 static bool
   2569 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2570 {
   2571 	struct pv_entry *pv;
   2572 	pmap_t pm_to_clean = NULL;
   2573 	bool cache_needs_cleaning = false;
   2574 	vaddr_t page_to_clean = 0;
   2575 	u_int flags = 0;
   2576 
   2577 	/*
   2578 	 * Since we flush the cache each time we change to a different
   2579 	 * user vmspace, we only need to flush the page if it is in the
   2580 	 * current pmap.
   2581 	 */
   2582 	KASSERT(pmap_page_locked_p(md));
   2583 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2584 		if (pmap_is_current(pv->pv_pmap)) {
   2585 			flags |= pv->pv_flags;
   2586 			/*
   2587 			 * The page is mapped non-cacheable in
   2588 			 * this map.  No need to flush the cache.
   2589 			 */
   2590 			if (pv->pv_flags & PVF_NC) {
   2591 #ifdef DIAGNOSTIC
   2592 				KASSERT(!cache_needs_cleaning);
   2593 #endif
   2594 				break;
   2595 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2596 				continue;
   2597 			if (cache_needs_cleaning) {
   2598 				page_to_clean = 0;
   2599 				break;
   2600 			} else {
   2601 				page_to_clean = pv->pv_va;
   2602 				pm_to_clean = pv->pv_pmap;
   2603 			}
   2604 			cache_needs_cleaning = true;
   2605 		}
   2606 	}
   2607 
   2608 	if (page_to_clean) {
   2609 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2610 		    !is_src, flags | PVF_REF);
   2611 	} else if (cache_needs_cleaning) {
   2612 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2613 
   2614 		pmap_cache_wbinv_all(pm, flags);
   2615 		return true;
   2616 	}
   2617 	return false;
   2618 }
   2619 #endif
   2620 
   2621 #ifdef PMAP_CACHE_VIPT
   2622 /*
   2623  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2624  * right cache alias to make sure we flush the right stuff.
   2625  */
   2626 void
   2627 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2628 {
   2629 	pmap_t kpm = pmap_kernel();
   2630 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2631 	    ? PAGE_SIZE
   2632 	    : arm_pcache.icache_way_size;
   2633 
   2634 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2635 	    md, md->pvh_attrs));
   2636 	/*
   2637 	 * No need to clean the page if it's non-cached.
   2638 	 */
   2639 #ifndef ARM_MMU_EXTENDED
   2640 	if (md->pvh_attrs & PVF_NC)
   2641 		return;
   2642 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2643 #endif
   2644 
   2645 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2646 	const vaddr_t dstp = cpu_cdstp(0);
   2647 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2648 	if (way_size <= PAGE_SIZE) {
   2649 		bool ok = false;
   2650 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2651 		if (ok) {
   2652 			cpu_icache_sync_range(vdstp, way_size);
   2653 			return;
   2654 		}
   2655 	}
   2656 #endif
   2657 
   2658 	/*
   2659 	 * We don't worry about the color of the exec page, we map the
   2660 	 * same page to pages in the way and then do the icache_sync on
   2661 	 * the entire way making sure we are cleaned.
   2662 	 */
   2663 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2664 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2665 
   2666 	for (size_t i = 0, j = 0; i < way_size;
   2667 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2668 		l2pte_reset(ptep + j);
   2669 		PTE_SYNC(ptep + j);
   2670 
   2671 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2672 		/*
   2673 		 * Set up a PTE with to flush these cache lines.
   2674 		 */
   2675 		l2pte_set(ptep + j, npte, 0);
   2676 	}
   2677 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2678 
   2679 	/*
   2680 	 * Flush it.
   2681 	 */
   2682 	cpu_icache_sync_range(dstp, way_size);
   2683 
   2684 	for (size_t i = 0, j = 0; i < way_size;
   2685 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2686 		/*
   2687 		 * Unmap the page(s).
   2688 		 */
   2689 		l2pte_reset(ptep + j);
   2690 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2691 	}
   2692 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2693 
   2694 	md->pvh_attrs |= PVF_EXEC;
   2695 	PMAPCOUNT(exec_synced);
   2696 }
   2697 
   2698 #ifndef ARM_MMU_EXTENDED
   2699 void
   2700 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2701 {
   2702 	vsize_t va_offset, end_va;
   2703 	bool wbinv_p;
   2704 
   2705 	if (arm_cache_prefer_mask == 0)
   2706 		return;
   2707 
   2708 	switch (flush) {
   2709 	case PMAP_FLUSH_PRIMARY:
   2710 		if (md->pvh_attrs & PVF_MULTCLR) {
   2711 			va_offset = 0;
   2712 			end_va = arm_cache_prefer_mask;
   2713 			md->pvh_attrs &= ~PVF_MULTCLR;
   2714 			PMAPCOUNT(vac_flush_lots);
   2715 		} else {
   2716 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2717 			end_va = va_offset;
   2718 			PMAPCOUNT(vac_flush_one);
   2719 		}
   2720 		/*
   2721 		 * Mark that the page is no longer dirty.
   2722 		 */
   2723 		md->pvh_attrs &= ~PVF_DIRTY;
   2724 		wbinv_p = true;
   2725 		break;
   2726 	case PMAP_FLUSH_SECONDARY:
   2727 		va_offset = 0;
   2728 		end_va = arm_cache_prefer_mask;
   2729 		wbinv_p = true;
   2730 		md->pvh_attrs &= ~PVF_MULTCLR;
   2731 		PMAPCOUNT(vac_flush_lots);
   2732 		break;
   2733 	case PMAP_CLEAN_PRIMARY:
   2734 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2735 		end_va = va_offset;
   2736 		wbinv_p = false;
   2737 		/*
   2738 		 * Mark that the page is no longer dirty.
   2739 		 */
   2740 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2741 			md->pvh_attrs &= ~PVF_DIRTY;
   2742 		PMAPCOUNT(vac_clean_one);
   2743 		break;
   2744 	default:
   2745 		return;
   2746 	}
   2747 
   2748 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2749 
   2750 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2751 	    md, md->pvh_attrs));
   2752 
   2753 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2754 
   2755 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2756 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2757 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2758 		const pt_entry_t opte = *ptep;
   2759 
   2760 		if (flush == PMAP_FLUSH_SECONDARY
   2761 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2762 			continue;
   2763 
   2764 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2765 		/*
   2766 		 * Set up a PTE with the right coloring to flush
   2767 		 * existing cache entries.
   2768 		 */
   2769 		const pt_entry_t npte = L2_S_PROTO
   2770 		    | pa
   2771 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2772 		    | pte_l2_s_cache_mode;
   2773 		l2pte_set(ptep, npte, opte);
   2774 		PTE_SYNC(ptep);
   2775 
   2776 		/*
   2777 		 * Flush it.  Make sure to flush secondary cache too since
   2778 		 * bus_dma will ignore uncached pages.
   2779 		 */
   2780 		if (scache_line_size != 0) {
   2781 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2782 			if (wbinv_p) {
   2783 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2784 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2785 			} else {
   2786 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2787 			}
   2788 		} else {
   2789 			if (wbinv_p) {
   2790 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2791 			} else {
   2792 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2793 			}
   2794 		}
   2795 
   2796 		/*
   2797 		 * Restore the page table entry since we might have interrupted
   2798 		 * pmap_zero_page or pmap_copy_page which was already using
   2799 		 * this pte.
   2800 		 */
   2801 		if (opte) {
   2802 			l2pte_set(ptep, opte, npte);
   2803 		} else {
   2804 			l2pte_reset(ptep);
   2805 		}
   2806 		PTE_SYNC(ptep);
   2807 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2808 	}
   2809 }
   2810 #endif /* ARM_MMU_EXTENDED */
   2811 #endif /* PMAP_CACHE_VIPT */
   2812 
   2813 /*
   2814  * Routine:	pmap_page_remove
   2815  * Function:
   2816  *		Removes this physical page from
   2817  *		all physical maps in which it resides.
   2818  *		Reflects back modify bits to the pager.
   2819  */
   2820 static void
   2821 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2822 {
   2823 	struct l2_bucket *l2b;
   2824 	struct pv_entry *pv;
   2825 	pt_entry_t *ptep;
   2826 #ifndef ARM_MMU_EXTENDED
   2827 	bool flush = false;
   2828 #endif
   2829 	u_int flags = 0;
   2830 
   2831 	NPDEBUG(PDB_FOLLOW,
   2832 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2833 	    pa));
   2834 
   2835 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2836 	pmap_acquire_page_lock(md);
   2837 	if (*pvp == NULL) {
   2838 #ifdef PMAP_CACHE_VIPT
   2839 		/*
   2840 		 * We *know* the page contents are about to be replaced.
   2841 		 * Discard the exec contents
   2842 		 */
   2843 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2844 			PMAPCOUNT(exec_discarded_page_protect);
   2845 		md->pvh_attrs &= ~PVF_EXEC;
   2846 		PMAP_VALIDATE_MD_PAGE(md);
   2847 #endif
   2848 		pmap_release_page_lock(md);
   2849 		return;
   2850 	}
   2851 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2852 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2853 #endif
   2854 
   2855 	/*
   2856 	 * Clear alias counts
   2857 	 */
   2858 #ifdef PMAP_CACHE_VIVT
   2859 	md->k_mappings = 0;
   2860 #endif
   2861 	md->urw_mappings = md->uro_mappings = 0;
   2862 
   2863 #ifdef PMAP_CACHE_VIVT
   2864 	pmap_clean_page(md, false);
   2865 #endif
   2866 
   2867 	while ((pv = *pvp) != NULL) {
   2868 		pmap_t pm = pv->pv_pmap;
   2869 #ifndef ARM_MMU_EXTENDED
   2870 		if (flush == false && pmap_is_current(pm))
   2871 			flush = true;
   2872 #endif
   2873 
   2874 		if (pm == pmap_kernel()) {
   2875 #ifdef PMAP_CACHE_VIPT
   2876 			/*
   2877 			 * If this was unmanaged mapping, it must be preserved.
   2878 			 * Move it back on the list and advance the end-of-list
   2879 			 * pointer.
   2880 			 */
   2881 			if (PV_IS_KENTRY_P(pv->pv_flags)) {
   2882 				*pvp = pv;
   2883 				pvp = &SLIST_NEXT(pv, pv_link);
   2884 				continue;
   2885 			}
   2886 			if (pv->pv_flags & PVF_WRITE)
   2887 				md->krw_mappings--;
   2888 			else
   2889 				md->kro_mappings--;
   2890 #endif
   2891 			PMAPCOUNT(kernel_unmappings);
   2892 		}
   2893 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2894 		PMAPCOUNT(unmappings);
   2895 
   2896 		pmap_release_page_lock(md);
   2897 		pmap_acquire_pmap_lock(pm);
   2898 
   2899 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2900 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2901 
   2902 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2903 
   2904 		/*
   2905 		 * Update statistics
   2906 		 */
   2907 		--pm->pm_stats.resident_count;
   2908 
   2909 		/* Wired bit */
   2910 		if (pv->pv_flags & PVF_WIRED)
   2911 			--pm->pm_stats.wired_count;
   2912 
   2913 		flags |= pv->pv_flags;
   2914 
   2915 		/*
   2916 		 * Invalidate the PTEs.
   2917 		 */
   2918 		l2pte_reset(ptep);
   2919 		PTE_SYNC_CURRENT(pm, ptep);
   2920 
   2921 #ifdef ARM_MMU_EXTENDED
   2922 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2923 #endif
   2924 
   2925 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2926 
   2927 		pmap_release_pmap_lock(pm);
   2928 
   2929 		pool_put(&pmap_pv_pool, pv);
   2930 		pmap_acquire_page_lock(md);
   2931 #ifdef MULTIPROCESSOR
   2932 		/*
   2933 		 * Restart of the beginning of the list.
   2934 		 */
   2935 		pvp = &SLIST_FIRST(&md->pvh_list);
   2936 #endif
   2937 	}
   2938 	/*
   2939 	 * if we reach the end of the list and there are still mappings, they
   2940 	 * might be able to be cached now.  And they must be kernel mappings.
   2941 	 */
   2942 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2943 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2944 	}
   2945 
   2946 #ifdef PMAP_CACHE_VIPT
   2947 	/*
   2948 	 * Its EXEC cache is now gone.
   2949 	 */
   2950 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2951 		PMAPCOUNT(exec_discarded_page_protect);
   2952 	md->pvh_attrs &= ~PVF_EXEC;
   2953 	KASSERT(md->urw_mappings == 0);
   2954 	KASSERT(md->uro_mappings == 0);
   2955 #ifndef ARM_MMU_EXTENDED
   2956 	if (arm_cache_prefer_mask != 0) {
   2957 		if (md->krw_mappings == 0)
   2958 			md->pvh_attrs &= ~PVF_WRITE;
   2959 		PMAP_VALIDATE_MD_PAGE(md);
   2960 	}
   2961 #endif /* ARM_MMU_EXTENDED */
   2962 #endif /* PMAP_CACHE_VIPT */
   2963 	pmap_release_page_lock(md);
   2964 
   2965 #ifndef ARM_MMU_EXTENDED
   2966 	if (flush) {
   2967 		/*
   2968 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2969 		 * would need a subsequent call to pmap_update() to ensure
   2970 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2971 		 * required to do that (see pmap(9)), so we can't modify
   2972 		 * the current pmap's state.
   2973 		 */
   2974 		if (PV_BEEN_EXECD(flags))
   2975 			cpu_tlb_flushID();
   2976 		else
   2977 			cpu_tlb_flushD();
   2978 	}
   2979 	cpu_cpwait();
   2980 #endif /* ARM_MMU_EXTENDED */
   2981 }
   2982 
   2983 /*
   2984  * pmap_t pmap_create(void)
   2985  *
   2986  *      Create a new pmap structure from scratch.
   2987  */
   2988 pmap_t
   2989 pmap_create(void)
   2990 {
   2991 	pmap_t pm;
   2992 
   2993 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2994 
   2995 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2996 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2997 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2998 
   2999 	pm->pm_stats.wired_count = 0;
   3000 	pm->pm_stats.resident_count = 1;
   3001 #ifdef ARM_MMU_EXTENDED
   3002 #ifdef MULTIPROCESSOR
   3003 	kcpuset_create(&pm->pm_active, true);
   3004 	kcpuset_create(&pm->pm_onproc, true);
   3005 #endif
   3006 #else
   3007 	pm->pm_cstate.cs_all = 0;
   3008 #endif
   3009 	pmap_alloc_l1(pm);
   3010 
   3011 	/*
   3012 	 * Note: The pool cache ensures that the pm_l2[] array is already
   3013 	 * initialised to zero.
   3014 	 */
   3015 
   3016 	pmap_pinit(pm);
   3017 
   3018 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   3019 
   3020 	return (pm);
   3021 }
   3022 
   3023 u_int
   3024 arm32_mmap_flags(paddr_t pa)
   3025 {
   3026 	/*
   3027 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3028 	 * and we're using the upper bits in page numbers to pass flags around
   3029 	 * so we might as well use the same bits
   3030 	 */
   3031 	return (u_int)pa & PMAP_MD_MASK;
   3032 }
   3033 /*
   3034  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3035  *      u_int flags)
   3036  *
   3037  *      Insert the given physical page (p) at
   3038  *      the specified virtual address (v) in the
   3039  *      target physical map with the protection requested.
   3040  *
   3041  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3042  *      or lose information.  That is, this routine must actually
   3043  *      insert this page into the given map NOW.
   3044  */
   3045 int
   3046 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3047 {
   3048 	struct l2_bucket *l2b;
   3049 	struct vm_page *pg, *opg;
   3050 	u_int nflags;
   3051 	u_int oflags;
   3052 	const bool kpm_p = (pm == pmap_kernel());
   3053 #ifdef ARM_HAS_VBAR
   3054 	const bool vector_page_p = false;
   3055 #else
   3056 	const bool vector_page_p = (va == vector_page);
   3057 #endif
   3058 
   3059 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3060 
   3061 	UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
   3062 	    pm, va, pa, prot);
   3063 	UVMHIST_LOG(maphist, "  flag %#x", flags, 0, 0, 0);
   3064 
   3065 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3066 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3067 
   3068 	/*
   3069 	 * Get a pointer to the page.  Later on in this function, we
   3070 	 * test for a managed page by checking pg != NULL.
   3071 	 */
   3072 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3073 
   3074 	nflags = 0;
   3075 	if (prot & VM_PROT_WRITE)
   3076 		nflags |= PVF_WRITE;
   3077 	if (prot & VM_PROT_EXECUTE)
   3078 		nflags |= PVF_EXEC;
   3079 	if (flags & PMAP_WIRED)
   3080 		nflags |= PVF_WIRED;
   3081 
   3082 	pmap_acquire_pmap_lock(pm);
   3083 
   3084 	/*
   3085 	 * Fetch the L2 bucket which maps this page, allocating one if
   3086 	 * necessary for user pmaps.
   3087 	 */
   3088 	if (kpm_p) {
   3089 		l2b = pmap_get_l2_bucket(pm, va);
   3090 	} else {
   3091 		l2b = pmap_alloc_l2_bucket(pm, va);
   3092 	}
   3093 	if (l2b == NULL) {
   3094 		if (flags & PMAP_CANFAIL) {
   3095 			pmap_release_pmap_lock(pm);
   3096 			return (ENOMEM);
   3097 		}
   3098 		panic("pmap_enter: failed to allocate L2 bucket");
   3099 	}
   3100 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3101 	const pt_entry_t opte = *ptep;
   3102 	pt_entry_t npte = pa;
   3103 	oflags = 0;
   3104 
   3105 	if (opte) {
   3106 		/*
   3107 		 * There is already a mapping at this address.
   3108 		 * If the physical address is different, lookup the
   3109 		 * vm_page.
   3110 		 */
   3111 		if (l2pte_pa(opte) != pa)
   3112 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3113 		else
   3114 			opg = pg;
   3115 	} else
   3116 		opg = NULL;
   3117 
   3118 	if (pg) {
   3119 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3120 
   3121 		/*
   3122 		 * This is to be a managed mapping.
   3123 		 */
   3124 		pmap_acquire_page_lock(md);
   3125 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3126 			/*
   3127 			 * - The access type indicates that we don't need
   3128 			 *   to do referenced emulation.
   3129 			 * OR
   3130 			 * - The physical page has already been referenced
   3131 			 *   so no need to re-do referenced emulation here.
   3132 			 */
   3133 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3134 
   3135 			nflags |= PVF_REF;
   3136 
   3137 			if ((prot & VM_PROT_WRITE) != 0 &&
   3138 			    ((flags & VM_PROT_WRITE) != 0 ||
   3139 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3140 				/*
   3141 				 * This is a writable mapping, and the
   3142 				 * page's mod state indicates it has
   3143 				 * already been modified. Make it
   3144 				 * writable from the outset.
   3145 				 */
   3146 				npte = l2pte_set_writable(npte);
   3147 				nflags |= PVF_MOD;
   3148 			}
   3149 
   3150 #ifdef ARM_MMU_EXTENDED
   3151 			/*
   3152 			 * If the page has been cleaned, then the pvh_attrs
   3153 			 * will have PVF_EXEC set, so mark it execute so we
   3154 			 * don't get an access fault when trying to execute
   3155 			 * from it.
   3156 			 */
   3157 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3158 				npte &= ~L2_XS_XN;
   3159 			}
   3160 #endif
   3161 		} else {
   3162 			/*
   3163 			 * Need to do page referenced emulation.
   3164 			 */
   3165 			npte |= L2_TYPE_INV;
   3166 		}
   3167 
   3168 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3169 			npte |= pte_l2_s_wc_mode;
   3170 		} else
   3171 			npte |= pte_l2_s_cache_mode;
   3172 
   3173 		if (pg == opg) {
   3174 			/*
   3175 			 * We're changing the attrs of an existing mapping.
   3176 			 */
   3177 			oflags = pmap_modify_pv(md, pa, pm, va,
   3178 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3179 			    PVF_MOD | PVF_REF, nflags);
   3180 
   3181 #ifdef PMAP_CACHE_VIVT
   3182 			/*
   3183 			 * We may need to flush the cache if we're
   3184 			 * doing rw-ro...
   3185 			 */
   3186 			if (pm->pm_cstate.cs_cache_d &&
   3187 			    (oflags & PVF_NC) == 0 &&
   3188 			    l2pte_writable_p(opte) &&
   3189 			    (prot & VM_PROT_WRITE) == 0)
   3190 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3191 #endif
   3192 		} else {
   3193 			struct pv_entry *pv;
   3194 			/*
   3195 			 * New mapping, or changing the backing page
   3196 			 * of an existing mapping.
   3197 			 */
   3198 			if (opg) {
   3199 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3200 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3201 
   3202 				/*
   3203 				 * Replacing an existing mapping with a new one.
   3204 				 * It is part of our managed memory so we
   3205 				 * must remove it from the PV list
   3206 				 */
   3207 				pv = pmap_remove_pv(omd, opa, pm, va);
   3208 				pmap_vac_me_harder(omd, opa, pm, 0);
   3209 				oflags = pv->pv_flags;
   3210 
   3211 #ifdef PMAP_CACHE_VIVT
   3212 				/*
   3213 				 * If the old mapping was valid (ref/mod
   3214 				 * emulation creates 'invalid' mappings
   3215 				 * initially) then make sure to frob
   3216 				 * the cache.
   3217 				 */
   3218 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3219 					pmap_cache_wbinv_page(pm, va, true,
   3220 					    oflags);
   3221 				}
   3222 #endif
   3223 			} else {
   3224 				pmap_release_page_lock(md);
   3225 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3226 				if (pv == NULL) {
   3227 					pmap_release_pmap_lock(pm);
   3228 					if ((flags & PMAP_CANFAIL) == 0)
   3229 						panic("pmap_enter: "
   3230 						    "no pv entries");
   3231 
   3232 					pmap_free_l2_bucket(pm, l2b, 0);
   3233 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3234 					    0, 0, 0, 0);
   3235 					return (ENOMEM);
   3236 				}
   3237 				pmap_acquire_page_lock(md);
   3238 			}
   3239 
   3240 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3241 		}
   3242 		pmap_release_page_lock(md);
   3243 	} else {
   3244 		/*
   3245 		 * We're mapping an unmanaged page.
   3246 		 * These are always readable, and possibly writable, from
   3247 		 * the get go as we don't need to track ref/mod status.
   3248 		 */
   3249 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3250 		if (prot & VM_PROT_WRITE)
   3251 			npte = l2pte_set_writable(npte);
   3252 
   3253 		/*
   3254 		 * Make sure the vector table is mapped cacheable
   3255 		 */
   3256 		if ((vector_page_p && !kpm_p)
   3257 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3258 			npte |= pte_l2_s_cache_mode;
   3259 #ifdef ARM_MMU_EXTENDED
   3260 			npte &= ~L2_XS_XN;	/* and executable */
   3261 #endif
   3262 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3263 			npte |= pte_l2_s_wc_mode;
   3264 		}
   3265 		if (opg) {
   3266 			/*
   3267 			 * Looks like there's an existing 'managed' mapping
   3268 			 * at this address.
   3269 			 */
   3270 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3271 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3272 
   3273 			pmap_acquire_page_lock(omd);
   3274 			struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
   3275 			pmap_vac_me_harder(omd, opa, pm, 0);
   3276 			oflags = pv->pv_flags;
   3277 			pmap_release_page_lock(omd);
   3278 
   3279 #ifdef PMAP_CACHE_VIVT
   3280 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3281 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3282 			}
   3283 #endif
   3284 			pool_put(&pmap_pv_pool, pv);
   3285 		}
   3286 	}
   3287 
   3288 	/*
   3289 	 * Make sure userland mappings get the right permissions
   3290 	 */
   3291 	if (!vector_page_p && !kpm_p) {
   3292 		npte |= L2_S_PROT_U;
   3293 #ifdef ARM_MMU_EXTENDED
   3294 		npte |= L2_XS_nG;	/* user pages are not global */
   3295 #endif
   3296 	}
   3297 
   3298 	/*
   3299 	 * Keep the stats up to date
   3300 	 */
   3301 	if (opte == 0) {
   3302 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3303 		pm->pm_stats.resident_count++;
   3304 	}
   3305 
   3306 	UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
   3307 
   3308 #if defined(ARM_MMU_EXTENDED)
   3309 	/*
   3310 	 * If exec protection was requested but the page hasn't been synced,
   3311 	 * sync it now and allow execution from it.
   3312 	 */
   3313 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3314 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3315 		npte &= ~L2_XS_XN;
   3316 		pmap_syncicache_page(md, pa);
   3317 		PMAPCOUNT(exec_synced_map);
   3318 	}
   3319 #endif
   3320 	/*
   3321 	 * If this is just a wiring change, the two PTEs will be
   3322 	 * identical, so there's no need to update the page table.
   3323 	 */
   3324 	if (npte != opte) {
   3325 		l2pte_reset(ptep);
   3326 		PTE_SYNC(ptep);
   3327 		if (l2pte_valid_p(opte)) {
   3328 			pmap_tlb_flush_SE(pm, va, oflags);
   3329 		}
   3330 		l2pte_set(ptep, npte, 0);
   3331 		PTE_SYNC(ptep);
   3332 #ifndef ARM_MMU_EXTENDED
   3333 		bool is_cached = pmap_is_cached(pm);
   3334 		if (is_cached) {
   3335 			/*
   3336 			 * We only need to frob the cache/tlb if this pmap
   3337 			 * is current
   3338 			 */
   3339 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3340 				/*
   3341 				 * This mapping is likely to be accessed as
   3342 				 * soon as we return to userland. Fix up the
   3343 				 * L1 entry to avoid taking another
   3344 				 * page/domain fault.
   3345 				 */
   3346 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3347 				     + l1pte_index(va);
   3348 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3349 				    | L1_C_DOM(pmap_domain(pm));
   3350 				if (*pdep != pde) {
   3351 					l1pte_setone(pdep, pde);
   3352 					PTE_SYNC(pdep);
   3353 				}
   3354 			}
   3355 		}
   3356 #endif /* !ARM_MMU_EXTENDED */
   3357 
   3358 #ifndef ARM_MMU_EXTENDED
   3359 		UVMHIST_LOG(maphist, "  is_cached %d cs 0x%08x\n",
   3360 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3361 
   3362 		if (pg != NULL) {
   3363 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3364 
   3365 			pmap_acquire_page_lock(md);
   3366 			pmap_vac_me_harder(md, pa, pm, va);
   3367 			pmap_release_page_lock(md);
   3368 		}
   3369 #endif
   3370 	}
   3371 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3372 	if (pg) {
   3373 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3374 
   3375 		pmap_acquire_page_lock(md);
   3376 #ifndef ARM_MMU_EXTENDED
   3377 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3378 #endif
   3379 		PMAP_VALIDATE_MD_PAGE(md);
   3380 		pmap_release_page_lock(md);
   3381 	}
   3382 #endif
   3383 
   3384 	pmap_release_pmap_lock(pm);
   3385 
   3386 	return (0);
   3387 }
   3388 
   3389 /*
   3390  * pmap_remove()
   3391  *
   3392  * pmap_remove is responsible for nuking a number of mappings for a range
   3393  * of virtual address space in the current pmap. To do this efficiently
   3394  * is interesting, because in a number of cases a wide virtual address
   3395  * range may be supplied that contains few actual mappings. So, the
   3396  * optimisations are:
   3397  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3398  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3399  *     maybe do just a partial cache clean. This path of execution is
   3400  *     complicated by the fact that the cache must be flushed _before_
   3401  *     the PTE is nuked, being a VAC :-)
   3402  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3403  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3404  *     already flushed the cache.
   3405  *  4. Maybe later fast-case a single page, but I don't think this is
   3406  *     going to make _that_ much difference overall.
   3407  */
   3408 
   3409 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3410 
   3411 void
   3412 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3413 {
   3414 	vaddr_t next_bucket;
   3415 	u_int cleanlist_idx, total, cnt;
   3416 	struct {
   3417 		vaddr_t va;
   3418 		pt_entry_t *ptep;
   3419 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3420 	u_int mappings;
   3421 
   3422 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3423 	UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
   3424 
   3425 	/*
   3426 	 * we lock in the pmap => pv_head direction
   3427 	 */
   3428 	pmap_acquire_pmap_lock(pm);
   3429 
   3430 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3431 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3432 #ifndef ARM_MMU_EXTENDED
   3433 		if (pm->pm_cstate.cs_tlb == 0)
   3434 			pm->pm_remove_all = true;
   3435 #endif
   3436 	} else
   3437 		cleanlist_idx = 0;
   3438 
   3439 	total = 0;
   3440 
   3441 	while (sva < eva) {
   3442 		/*
   3443 		 * Do one L2 bucket's worth at a time.
   3444 		 */
   3445 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3446 		if (next_bucket > eva)
   3447 			next_bucket = eva;
   3448 
   3449 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3450 		if (l2b == NULL) {
   3451 			sva = next_bucket;
   3452 			continue;
   3453 		}
   3454 
   3455 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3456 
   3457 		for (mappings = 0;
   3458 		     sva < next_bucket;
   3459 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3460 			pt_entry_t opte = *ptep;
   3461 
   3462 			if (opte == 0) {
   3463 				/* Nothing here, move along */
   3464 				continue;
   3465 			}
   3466 
   3467 			u_int flags = PVF_REF;
   3468 			paddr_t pa = l2pte_pa(opte);
   3469 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3470 
   3471 			/*
   3472 			 * Update flags. In a number of circumstances,
   3473 			 * we could cluster a lot of these and do a
   3474 			 * number of sequential pages in one go.
   3475 			 */
   3476 			if (pg != NULL) {
   3477 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3478 				struct pv_entry *pv;
   3479 
   3480 				pmap_acquire_page_lock(md);
   3481 				pv = pmap_remove_pv(md, pa, pm, sva);
   3482 				pmap_vac_me_harder(md, pa, pm, 0);
   3483 				pmap_release_page_lock(md);
   3484 				if (pv != NULL) {
   3485 					if (pm->pm_remove_all == false) {
   3486 						flags = pv->pv_flags;
   3487 					}
   3488 					pool_put(&pmap_pv_pool, pv);
   3489 				}
   3490 			}
   3491 			mappings += PAGE_SIZE / L2_S_SIZE;
   3492 
   3493 			if (!l2pte_valid_p(opte)) {
   3494 				/*
   3495 				 * Ref/Mod emulation is still active for this
   3496 				 * mapping, therefore it is has not yet been
   3497 				 * accessed. No need to frob the cache/tlb.
   3498 				 */
   3499 				l2pte_reset(ptep);
   3500 				PTE_SYNC_CURRENT(pm, ptep);
   3501 				continue;
   3502 			}
   3503 
   3504 #ifdef ARM_MMU_EXTENDED
   3505 			if (pm == pmap_kernel()) {
   3506 				l2pte_reset(ptep);
   3507 				PTE_SYNC(ptep);
   3508  				pmap_tlb_flush_SE(pm, sva, flags);
   3509 				continue;
   3510 			}
   3511 #endif
   3512 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3513 				/* Add to the clean list. */
   3514 				cleanlist[cleanlist_idx].ptep = ptep;
   3515 				cleanlist[cleanlist_idx].va =
   3516 				    sva | (flags & PVF_EXEC);
   3517 				cleanlist_idx++;
   3518 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3519 				/* Nuke everything if needed. */
   3520 #ifdef PMAP_CACHE_VIVT
   3521 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3522 #endif
   3523 				/*
   3524 				 * Roll back the previous PTE list,
   3525 				 * and zero out the current PTE.
   3526 				 */
   3527 				for (cnt = 0;
   3528 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3529 					l2pte_reset(cleanlist[cnt].ptep);
   3530 					PTE_SYNC(cleanlist[cnt].ptep);
   3531 				}
   3532 				l2pte_reset(ptep);
   3533 				PTE_SYNC(ptep);
   3534 				cleanlist_idx++;
   3535 				pm->pm_remove_all = true;
   3536 			} else {
   3537 				l2pte_reset(ptep);
   3538 				PTE_SYNC(ptep);
   3539 				if (pm->pm_remove_all == false) {
   3540 					pmap_tlb_flush_SE(pm, sva, flags);
   3541 				}
   3542 			}
   3543 		}
   3544 
   3545 		/*
   3546 		 * Deal with any left overs
   3547 		 */
   3548 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3549 			total += cleanlist_idx;
   3550 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3551 				l2pte_reset(cleanlist[cnt].ptep);
   3552 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3553 #ifdef ARM_MMU_EXTENDED
   3554 				vaddr_t clva = cleanlist[cnt].va;
   3555 				pmap_tlb_flush_SE(pm, clva, PVF_REF);
   3556 #else
   3557 				vaddr_t va = cleanlist[cnt].va;
   3558 				if (pm->pm_cstate.cs_all != 0) {
   3559 					vaddr_t clva = va & ~PAGE_MASK;
   3560 					u_int flags = va & PVF_EXEC;
   3561 #ifdef PMAP_CACHE_VIVT
   3562 					pmap_cache_wbinv_page(pm, clva, true,
   3563 					    PVF_REF | PVF_WRITE | flags);
   3564 #endif
   3565 					pmap_tlb_flush_SE(pm, clva,
   3566 					    PVF_REF | flags);
   3567 				}
   3568 #endif /* ARM_MMU_EXTENDED */
   3569 			}
   3570 
   3571 			/*
   3572 			 * If it looks like we're removing a whole bunch
   3573 			 * of mappings, it's faster to just write-back
   3574 			 * the whole cache now and defer TLB flushes until
   3575 			 * pmap_update() is called.
   3576 			 */
   3577 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3578 				cleanlist_idx = 0;
   3579 			else {
   3580 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3581 #ifdef PMAP_CACHE_VIVT
   3582 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3583 #endif
   3584 				pm->pm_remove_all = true;
   3585 			}
   3586 		}
   3587 
   3588 
   3589 		pmap_free_l2_bucket(pm, l2b, mappings);
   3590 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3591 	}
   3592 
   3593 	pmap_release_pmap_lock(pm);
   3594 }
   3595 
   3596 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3597 static struct pv_entry *
   3598 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3599 {
   3600 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3601 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3602 	struct pv_entry *pv;
   3603 
   3604 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3605 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3606 	KASSERT(pmap_page_locked_p(md));
   3607 
   3608 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3609 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3610 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3611 
   3612 	/*
   3613 	 * If we are removing a writeable mapping to a cached exec page,
   3614 	 * if it's the last mapping then clear it execness other sync
   3615 	 * the page to the icache.
   3616 	 */
   3617 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3618 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3619 		if (SLIST_EMPTY(&md->pvh_list)) {
   3620 			md->pvh_attrs &= ~PVF_EXEC;
   3621 			PMAPCOUNT(exec_discarded_kremove);
   3622 		} else {
   3623 			pmap_syncicache_page(md, pa);
   3624 			PMAPCOUNT(exec_synced_kremove);
   3625 		}
   3626 	}
   3627 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3628 
   3629 	return pv;
   3630 }
   3631 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3632 
   3633 /*
   3634  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3635  *
   3636  * We assume there is already sufficient KVM space available
   3637  * to do this, as we can't allocate L2 descriptor tables/metadata
   3638  * from here.
   3639  */
   3640 void
   3641 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3642 {
   3643 #ifdef PMAP_CACHE_VIVT
   3644 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3645 #endif
   3646 #ifdef PMAP_CACHE_VIPT
   3647 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3648 	struct vm_page *opg;
   3649 #ifndef ARM_MMU_EXTENDED
   3650 	struct pv_entry *pv = NULL;
   3651 #endif
   3652 #endif
   3653 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3654 
   3655 	UVMHIST_FUNC(__func__);
   3656 
   3657 	if (pmap_initialized) {
   3658 		UVMHIST_CALLED(maphist);
   3659 		UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
   3660 		    va, pa, prot, flags);
   3661 	}
   3662 
   3663 	pmap_t kpm = pmap_kernel();
   3664 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3665 	const size_t l1slot __diagused = l1pte_index(va);
   3666 	KASSERTMSG(l2b != NULL,
   3667 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3668 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3669 	    kpm->pm_l2[L2_IDX(l1slot)]
   3670 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3671 		: NULL,
   3672 	    kpm->pm_l2[L2_IDX(l1slot)]
   3673 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3674 		: NULL);
   3675 	KASSERT(l2b->l2b_kva != NULL);
   3676 
   3677 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3678 	const pt_entry_t opte = *ptep;
   3679 
   3680 	if (opte == 0) {
   3681 		PMAPCOUNT(kenter_mappings);
   3682 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3683 	} else {
   3684 		PMAPCOUNT(kenter_remappings);
   3685 #ifdef PMAP_CACHE_VIPT
   3686 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3687 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
   3688 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
   3689 #endif
   3690 		if (opg && arm_cache_prefer_mask != 0) {
   3691 			KASSERT(opg != pg);
   3692 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3693 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3694 #ifndef ARM_MMU_EXTENDED
   3695 			pmap_acquire_page_lock(omd);
   3696 			pv = pmap_kremove_pg(opg, va);
   3697 			pmap_release_page_lock(omd);
   3698 #endif
   3699 		}
   3700 #endif
   3701 		if (l2pte_valid_p(opte)) {
   3702 			l2pte_reset(ptep);
   3703 			PTE_SYNC(ptep);
   3704 #ifdef PMAP_CACHE_VIVT
   3705 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3706 #endif
   3707 			cpu_tlb_flushD_SE(va);
   3708 			cpu_cpwait();
   3709 		}
   3710 	}
   3711 
   3712 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3713 	    | ((flags & PMAP_NOCACHE)
   3714 		? 0
   3715 		: ((flags & PMAP_PTE)
   3716 		    ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
   3717 #ifdef ARM_MMU_EXTENDED
   3718 	if (prot & VM_PROT_EXECUTE)
   3719 		npte &= ~L2_XS_XN;
   3720 #endif
   3721 	l2pte_set(ptep, npte, 0);
   3722 	PTE_SYNC(ptep);
   3723 
   3724 	if (pg) {
   3725 		if (flags & PMAP_KMPAGE) {
   3726 			KASSERT(md->urw_mappings == 0);
   3727 			KASSERT(md->uro_mappings == 0);
   3728 			KASSERT(md->krw_mappings == 0);
   3729 			KASSERT(md->kro_mappings == 0);
   3730 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3731 			KASSERT(pv == NULL);
   3732 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3733 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3734 			/* if there is a color conflict, evict from cache. */
   3735 			if (pmap_is_page_colored_p(md)
   3736 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3737 				PMAPCOUNT(vac_color_change);
   3738 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3739 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3740 				/*
   3741 				 * If this page has multiple colors, expunge
   3742 				 * them.
   3743 				 */
   3744 				PMAPCOUNT(vac_flush_lots2);
   3745 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3746 			}
   3747 			/*
   3748 			 * Since this is a KMPAGE, there can be no contention
   3749 			 * for this page so don't lock it.
   3750 			 */
   3751 			md->pvh_attrs &= PAGE_SIZE - 1;
   3752 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3753 			    | (va & arm_cache_prefer_mask);
   3754 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3755 			md->pvh_attrs |= PVF_KMPAGE;
   3756 #endif
   3757 			atomic_inc_32(&pmap_kmpages);
   3758 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3759 		} else if (arm_cache_prefer_mask != 0) {
   3760 			if (pv == NULL) {
   3761 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3762 				KASSERT(pv != NULL);
   3763 			}
   3764 			pmap_acquire_page_lock(md);
   3765 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3766 			    PVF_WIRED | PVF_KENTRY
   3767 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3768 			if ((prot & VM_PROT_WRITE)
   3769 			    && !(md->pvh_attrs & PVF_NC))
   3770 				md->pvh_attrs |= PVF_DIRTY;
   3771 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3772 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3773 			pmap_release_page_lock(md);
   3774 #endif
   3775 		}
   3776 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3777 	} else {
   3778 		if (pv != NULL)
   3779 			pool_put(&pmap_pv_pool, pv);
   3780 #endif
   3781 	}
   3782 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3783 	KASSERT(md == NULL || !pmap_page_locked_p(md));
   3784 #endif
   3785 	if (pmap_initialized) {
   3786 		UVMHIST_LOG(maphist, "  <-- done (ptep %p: %#x -> %#x)",
   3787 		    ptep, opte, npte, 0);
   3788 	}
   3789 
   3790 }
   3791 
   3792 void
   3793 pmap_kremove(vaddr_t va, vsize_t len)
   3794 {
   3795 #ifdef UVMHIST
   3796 	u_int total_mappings = 0;
   3797 #endif
   3798 
   3799 	PMAPCOUNT(kenter_unmappings);
   3800 
   3801 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3802 
   3803 	UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
   3804 
   3805 	const vaddr_t eva = va + len;
   3806 
   3807 	while (va < eva) {
   3808 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3809 		if (next_bucket > eva)
   3810 			next_bucket = eva;
   3811 
   3812 		pmap_t kpm = pmap_kernel();
   3813 		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3814 		KDASSERT(l2b != NULL);
   3815 
   3816 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3817 		pt_entry_t *ptep = sptep;
   3818 		u_int mappings = 0;
   3819 
   3820 		while (va < next_bucket) {
   3821 			const pt_entry_t opte = *ptep;
   3822 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3823 			if (opg != NULL) {
   3824 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3825 
   3826 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3827 					KASSERT(omd->urw_mappings == 0);
   3828 					KASSERT(omd->uro_mappings == 0);
   3829 					KASSERT(omd->krw_mappings == 0);
   3830 					KASSERT(omd->kro_mappings == 0);
   3831 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3832 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3833 					if (arm_cache_prefer_mask != 0) {
   3834 						omd->pvh_attrs &= ~PVF_WRITE;
   3835 					}
   3836 #endif
   3837 					atomic_dec_32(&pmap_kmpages);
   3838 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3839 				} else if (arm_cache_prefer_mask != 0) {
   3840 					pmap_acquire_page_lock(omd);
   3841 					pool_put(&pmap_pv_pool,
   3842 					    pmap_kremove_pg(opg, va));
   3843 					pmap_release_page_lock(omd);
   3844 #endif
   3845 				}
   3846 			}
   3847 			if (l2pte_valid_p(opte)) {
   3848 				l2pte_reset(ptep);
   3849 				PTE_SYNC(ptep);
   3850 #ifdef PMAP_CACHE_VIVT
   3851 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3852 #endif
   3853 				cpu_tlb_flushD_SE(va);
   3854 
   3855 				mappings += PAGE_SIZE / L2_S_SIZE;
   3856 			}
   3857 			va += PAGE_SIZE;
   3858 			ptep += PAGE_SIZE / L2_S_SIZE;
   3859 		}
   3860 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3861 		    mappings, l2b->l2b_occupancy);
   3862 		l2b->l2b_occupancy -= mappings;
   3863 		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3864 #ifdef UVMHIST
   3865 		total_mappings += mappings;
   3866 #endif
   3867 	}
   3868 	cpu_cpwait();
   3869 	UVMHIST_LOG(maphist, "  <--- done (%u mappings removed)",
   3870 	    total_mappings, 0, 0, 0);
   3871 }
   3872 
   3873 bool
   3874 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3875 {
   3876 	struct l2_dtable *l2;
   3877 	pd_entry_t *pdep, pde;
   3878 	pt_entry_t *ptep, pte;
   3879 	paddr_t pa;
   3880 	u_int l1slot;
   3881 
   3882 	pmap_acquire_pmap_lock(pm);
   3883 
   3884 	l1slot = l1pte_index(va);
   3885 	pdep = pmap_l1_kva(pm) + l1slot;
   3886 	pde = *pdep;
   3887 
   3888 	if (l1pte_section_p(pde)) {
   3889 		/*
   3890 		 * These should only happen for pmap_kernel()
   3891 		 */
   3892 		KDASSERT(pm == pmap_kernel());
   3893 		pmap_release_pmap_lock(pm);
   3894 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3895 		if (l1pte_supersection_p(pde)) {
   3896 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3897 		} else
   3898 #endif
   3899 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3900 	} else {
   3901 		/*
   3902 		 * Note that we can't rely on the validity of the L1
   3903 		 * descriptor as an indication that a mapping exists.
   3904 		 * We have to look it up in the L2 dtable.
   3905 		 */
   3906 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   3907 
   3908 		if (l2 == NULL ||
   3909 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   3910 			pmap_release_pmap_lock(pm);
   3911 			return false;
   3912 		}
   3913 
   3914 		pte = ptep[l2pte_index(va)];
   3915 		pmap_release_pmap_lock(pm);
   3916 
   3917 		if (pte == 0)
   3918 			return false;
   3919 
   3920 		switch (pte & L2_TYPE_MASK) {
   3921 		case L2_TYPE_L:
   3922 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3923 			break;
   3924 
   3925 		default:
   3926 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   3927 			break;
   3928 		}
   3929 	}
   3930 
   3931 	if (pap != NULL)
   3932 		*pap = pa;
   3933 
   3934 	return true;
   3935 }
   3936 
   3937 void
   3938 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3939 {
   3940 	struct l2_bucket *l2b;
   3941 	vaddr_t next_bucket;
   3942 
   3943 	NPDEBUG(PDB_PROTECT,
   3944 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3945 	    pm, sva, eva, prot));
   3946 
   3947 	if ((prot & VM_PROT_READ) == 0) {
   3948 		pmap_remove(pm, sva, eva);
   3949 		return;
   3950 	}
   3951 
   3952 	if (prot & VM_PROT_WRITE) {
   3953 		/*
   3954 		 * If this is a read->write transition, just ignore it and let
   3955 		 * uvm_fault() take care of it later.
   3956 		 */
   3957 		return;
   3958 	}
   3959 
   3960 	pmap_acquire_pmap_lock(pm);
   3961 
   3962 #ifndef ARM_MMU_EXTENDED
   3963 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   3964 	u_int flags = 0;
   3965 #endif
   3966 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3967 
   3968 	while (sva < eva) {
   3969 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3970 		if (next_bucket > eva)
   3971 			next_bucket = eva;
   3972 
   3973 		l2b = pmap_get_l2_bucket(pm, sva);
   3974 		if (l2b == NULL) {
   3975 			sva = next_bucket;
   3976 			continue;
   3977 		}
   3978 
   3979 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3980 
   3981 		while (sva < next_bucket) {
   3982 			const pt_entry_t opte = *ptep;
   3983 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   3984 				struct vm_page *pg;
   3985 #ifndef ARM_MMU_EXTENDED
   3986 				u_int f;
   3987 #endif
   3988 
   3989 #ifdef PMAP_CACHE_VIVT
   3990 				/*
   3991 				 * OK, at this point, we know we're doing
   3992 				 * write-protect operation.  If the pmap is
   3993 				 * active, write-back the page.
   3994 				 */
   3995 				pmap_cache_wbinv_page(pm, sva, false,
   3996 				    PVF_REF | PVF_WRITE);
   3997 #endif
   3998 
   3999 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   4000 				pt_entry_t npte = l2pte_set_readonly(opte);
   4001 				l2pte_reset(ptep);
   4002 				PTE_SYNC(ptep);
   4003 #ifdef ARM_MMU_EXTENDED
   4004 				pmap_tlb_flush_SE(pm, sva, PVF_REF);
   4005 #endif
   4006 				l2pte_set(ptep, npte, 0);
   4007 				PTE_SYNC(ptep);
   4008 
   4009 				if (pg != NULL) {
   4010 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4011 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4012 
   4013 					pmap_acquire_page_lock(md);
   4014 #ifndef ARM_MMU_EXTENDED
   4015 					f =
   4016 #endif
   4017 					    pmap_modify_pv(md, pa, pm, sva,
   4018 					       clr_mask, 0);
   4019 					pmap_vac_me_harder(md, pa, pm, sva);
   4020 					pmap_release_page_lock(md);
   4021 #ifndef ARM_MMU_EXTENDED
   4022 				} else {
   4023 					f = PVF_REF | PVF_EXEC;
   4024 				}
   4025 
   4026 				if (flush) {
   4027 					flags |= f;
   4028 				} else {
   4029 					pmap_tlb_flush_SE(pm, sva, f);
   4030 #endif
   4031 				}
   4032 			}
   4033 
   4034 			sva += PAGE_SIZE;
   4035 			ptep += PAGE_SIZE / L2_S_SIZE;
   4036 		}
   4037 	}
   4038 
   4039 #ifndef ARM_MMU_EXTENDED
   4040 	if (flush) {
   4041 		if (PV_BEEN_EXECD(flags)) {
   4042 			pmap_tlb_flushID(pm);
   4043 		} else if (PV_BEEN_REFD(flags)) {
   4044 			pmap_tlb_flushD(pm);
   4045 		}
   4046 	}
   4047 #endif
   4048 
   4049 	pmap_release_pmap_lock(pm);
   4050 }
   4051 
   4052 void
   4053 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4054 {
   4055 	struct l2_bucket *l2b;
   4056 	pt_entry_t *ptep;
   4057 	vaddr_t next_bucket;
   4058 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4059 
   4060 	NPDEBUG(PDB_EXEC,
   4061 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   4062 	    pm, sva, eva));
   4063 
   4064 	pmap_acquire_pmap_lock(pm);
   4065 
   4066 	while (sva < eva) {
   4067 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4068 		if (next_bucket > eva)
   4069 			next_bucket = eva;
   4070 
   4071 		l2b = pmap_get_l2_bucket(pm, sva);
   4072 		if (l2b == NULL) {
   4073 			sva = next_bucket;
   4074 			continue;
   4075 		}
   4076 
   4077 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4078 		     sva < next_bucket;
   4079 		     sva += page_size,
   4080 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4081 		     page_size = PAGE_SIZE) {
   4082 			if (l2pte_valid_p(*ptep)) {
   4083 				cpu_icache_sync_range(sva,
   4084 				    min(page_size, eva - sva));
   4085 			}
   4086 		}
   4087 	}
   4088 
   4089 	pmap_release_pmap_lock(pm);
   4090 }
   4091 
   4092 void
   4093 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4094 {
   4095 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4096 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4097 
   4098 	NPDEBUG(PDB_PROTECT,
   4099 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   4100 	    md, pa, prot));
   4101 
   4102 	switch(prot) {
   4103 	case VM_PROT_READ|VM_PROT_WRITE:
   4104 #if defined(ARM_MMU_EXTENDED)
   4105 		pmap_acquire_page_lock(md);
   4106 		pmap_clearbit(md, pa, PVF_EXEC);
   4107 		pmap_release_page_lock(md);
   4108 		break;
   4109 #endif
   4110 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4111 		break;
   4112 
   4113 	case VM_PROT_READ:
   4114 #if defined(ARM_MMU_EXTENDED)
   4115 		pmap_acquire_page_lock(md);
   4116 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4117 		pmap_release_page_lock(md);
   4118 		break;
   4119 #endif
   4120 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4121 		pmap_acquire_page_lock(md);
   4122 		pmap_clearbit(md, pa, PVF_WRITE);
   4123 		pmap_release_page_lock(md);
   4124 		break;
   4125 
   4126 	default:
   4127 		pmap_page_remove(md, pa);
   4128 		break;
   4129 	}
   4130 }
   4131 
   4132 /*
   4133  * pmap_clear_modify:
   4134  *
   4135  *	Clear the "modified" attribute for a page.
   4136  */
   4137 bool
   4138 pmap_clear_modify(struct vm_page *pg)
   4139 {
   4140 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4141 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4142 	bool rv;
   4143 
   4144 	pmap_acquire_page_lock(md);
   4145 
   4146 	if (md->pvh_attrs & PVF_MOD) {
   4147 		rv = true;
   4148 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4149 		/*
   4150 		 * If we are going to clear the modified bit and there are
   4151 		 * no other modified bits set, flush the page to memory and
   4152 		 * mark it clean.
   4153 		 */
   4154 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4155 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4156 #endif
   4157 		pmap_clearbit(md, pa, PVF_MOD);
   4158 	} else {
   4159 		rv = false;
   4160 	}
   4161 	pmap_release_page_lock(md);
   4162 
   4163 	return rv;
   4164 }
   4165 
   4166 /*
   4167  * pmap_clear_reference:
   4168  *
   4169  *	Clear the "referenced" attribute for a page.
   4170  */
   4171 bool
   4172 pmap_clear_reference(struct vm_page *pg)
   4173 {
   4174 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4175 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4176 	bool rv;
   4177 
   4178 	pmap_acquire_page_lock(md);
   4179 
   4180 	if (md->pvh_attrs & PVF_REF) {
   4181 		rv = true;
   4182 		pmap_clearbit(md, pa, PVF_REF);
   4183 	} else {
   4184 		rv = false;
   4185 	}
   4186 	pmap_release_page_lock(md);
   4187 
   4188 	return rv;
   4189 }
   4190 
   4191 /*
   4192  * pmap_is_modified:
   4193  *
   4194  *	Test if a page has the "modified" attribute.
   4195  */
   4196 /* See <arm/arm32/pmap.h> */
   4197 
   4198 /*
   4199  * pmap_is_referenced:
   4200  *
   4201  *	Test if a page has the "referenced" attribute.
   4202  */
   4203 /* See <arm/arm32/pmap.h> */
   4204 
   4205 #if defined(ARM_MMU_EXTENDED) && 0
   4206 int
   4207 pmap_prefetchabt_fixup(void *v)
   4208 {
   4209 	struct trapframe * const tf = v;
   4210 	vaddr_t va = trunc_page(tf->tf_pc);
   4211 	int rv = ABORT_FIXUP_FAILED;
   4212 
   4213 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4214 		return rv;
   4215 
   4216 	kpreempt_disable();
   4217 	pmap_t pm = curcpu()->ci_pmap_cur;
   4218 	const size_t l1slot = l1pte_index(va);
   4219 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4220 	if (l2 == NULL)
   4221 		goto out;
   4222 
   4223 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4224 	if (l2b->l2b_kva == NULL)
   4225 		goto out;
   4226 
   4227 	/*
   4228 	 * Check the PTE itself.
   4229 	 */
   4230 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4231 	const pt_entry_t opte = *ptep;
   4232 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4233 		goto out;
   4234 
   4235 	paddr_t pa = l2pte_pa(pte);
   4236 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4237 	KASSERT(pg != NULL);
   4238 
   4239 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4240 
   4241 	pmap_acquire_page_lock(md);
   4242 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4243 	KASSERT(pv != NULL);
   4244 
   4245 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4246 		l2pte_reset(ptep);
   4247 		PTE_SYNC(ptep);
   4248 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4249 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4250 			pmap_syncicache_page(md, pa);
   4251 		}
   4252 		rv = ABORT_FIXUP_RETURN;
   4253 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4254 		PTE_SYNC(ptep);
   4255 	}
   4256 	pmap_release_page_lock(md);
   4257 
   4258   out:
   4259 	kpreempt_enable();
   4260 	return rv;
   4261 }
   4262 #endif
   4263 
   4264 int
   4265 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4266 {
   4267 	struct l2_dtable *l2;
   4268 	struct l2_bucket *l2b;
   4269 	paddr_t pa;
   4270 	const size_t l1slot = l1pte_index(va);
   4271 	int rv = 0;
   4272 
   4273 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4274 
   4275 	va = trunc_page(va);
   4276 
   4277 	KASSERT(!user || (pm != pmap_kernel()));
   4278 
   4279 	UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
   4280 	    pm, va, ftype, user);
   4281 #ifdef ARM_MMU_EXTENDED
   4282 	UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
   4283 	    cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4284 	    PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4285 #endif
   4286 
   4287 	pmap_acquire_pmap_lock(pm);
   4288 
   4289 	/*
   4290 	 * If there is no l2_dtable for this address, then the process
   4291 	 * has no business accessing it.
   4292 	 *
   4293 	 * Note: This will catch userland processes trying to access
   4294 	 * kernel addresses.
   4295 	 */
   4296 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4297 	if (l2 == NULL) {
   4298 		UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
   4299 		goto out;
   4300 	}
   4301 
   4302 	/*
   4303 	 * Likewise if there is no L2 descriptor table
   4304 	 */
   4305 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4306 	if (l2b->l2b_kva == NULL) {
   4307 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
   4308 		goto out;
   4309 	}
   4310 
   4311 	/*
   4312 	 * Check the PTE itself.
   4313 	 */
   4314 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4315 	pt_entry_t const opte = *ptep;
   4316 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4317 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
   4318 		goto out;
   4319 	}
   4320 
   4321 #ifndef ARM_HAS_VBAR
   4322 	/*
   4323 	 * Catch a userland access to the vector page mapped at 0x0
   4324 	 */
   4325 	if (user && (opte & L2_S_PROT_U) == 0) {
   4326 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4327 		goto out;
   4328 	}
   4329 #endif
   4330 
   4331 	pa = l2pte_pa(opte);
   4332 
   4333 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4334 		/*
   4335 		 * This looks like a good candidate for "page modified"
   4336 		 * emulation...
   4337 		 */
   4338 		struct pv_entry *pv;
   4339 		struct vm_page *pg;
   4340 
   4341 		/* Extract the physical address of the page */
   4342 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4343 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4344 			goto out;
   4345 		}
   4346 
   4347 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4348 
   4349 		/* Get the current flags for this page. */
   4350 		pmap_acquire_page_lock(md);
   4351 		pv = pmap_find_pv(md, pm, va);
   4352 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4353 			pmap_release_page_lock(md);
   4354 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4355 			goto out;
   4356 		}
   4357 
   4358 		/*
   4359 		 * Do the flags say this page is writable? If not then it
   4360 		 * is a genuine write fault. If yes then the write fault is
   4361 		 * our fault as we did not reflect the write access in the
   4362 		 * PTE. Now we know a write has occurred we can correct this
   4363 		 * and also set the modified bit
   4364 		 */
   4365 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4366 			pmap_release_page_lock(md);
   4367 			goto out;
   4368 		}
   4369 
   4370 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4371 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4372 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4373 		/*
   4374 		 * If there are cacheable mappings for this page, mark it dirty.
   4375 		 */
   4376 		if ((md->pvh_attrs & PVF_NC) == 0)
   4377 			md->pvh_attrs |= PVF_DIRTY;
   4378 #endif
   4379 #ifdef ARM_MMU_EXTENDED
   4380 		if (md->pvh_attrs & PVF_EXEC) {
   4381 			md->pvh_attrs &= ~PVF_EXEC;
   4382 			PMAPCOUNT(exec_discarded_modfixup);
   4383 		}
   4384 #endif
   4385 		pmap_release_page_lock(md);
   4386 
   4387 		/*
   4388 		 * Re-enable write permissions for the page.  No need to call
   4389 		 * pmap_vac_me_harder(), since this is just a
   4390 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4391 		 * changing. We've already set the cacheable bits based on
   4392 		 * the assumption that we can write to this page.
   4393 		 */
   4394 		const pt_entry_t npte =
   4395 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4396 #ifdef ARM_MMU_EXTENDED
   4397 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4398 #endif
   4399 		    | 0;
   4400 		l2pte_reset(ptep);
   4401 		PTE_SYNC(ptep);
   4402 		pmap_tlb_flush_SE(pm, va,
   4403 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4404 		l2pte_set(ptep, npte, 0);
   4405 		PTE_SYNC(ptep);
   4406 		PMAPCOUNT(fixup_mod);
   4407 		rv = 1;
   4408 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
   4409 		    opte, npte, 0, 0);
   4410 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4411 		/*
   4412 		 * This looks like a good candidate for "page referenced"
   4413 		 * emulation.
   4414 		 */
   4415 		struct vm_page *pg;
   4416 
   4417 		/* Extract the physical address of the page */
   4418 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4419 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4420 			goto out;
   4421 		}
   4422 
   4423 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4424 
   4425 		/* Get the current flags for this page. */
   4426 		pmap_acquire_page_lock(md);
   4427 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4428 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4429 			pmap_release_page_lock(md);
   4430 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4431 			goto out;
   4432 		}
   4433 
   4434 		md->pvh_attrs |= PVF_REF;
   4435 		pv->pv_flags |= PVF_REF;
   4436 
   4437 		pt_entry_t npte =
   4438 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4439 #ifdef ARM_MMU_EXTENDED
   4440 		if (pm != pmap_kernel()) {
   4441 			npte |= L2_XS_nG;
   4442 		}
   4443 		/*
   4444 		 * If we got called from prefetch abort, then ftype will have
   4445 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4446 		 * the PTE.
   4447 		 */
   4448 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4449 			/*
   4450 			 * Is this a mapping of an executable page?
   4451 			 */
   4452 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4453 				pmap_release_page_lock(md);
   4454 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4455 				    0, 0, 0, 0);
   4456 				goto out;
   4457 			}
   4458 			/*
   4459 			 * If we haven't synced the page, do so now.
   4460 			 */
   4461 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4462 				UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
   4463 				    pa, 0, 0, 0);
   4464 				pmap_syncicache_page(md, pa);
   4465 				PMAPCOUNT(fixup_exec);
   4466 			}
   4467 			npte &= ~L2_XS_XN;
   4468 		}
   4469 #endif /* ARM_MMU_EXTENDED */
   4470 		pmap_release_page_lock(md);
   4471 		l2pte_reset(ptep);
   4472 		PTE_SYNC(ptep);
   4473 		pmap_tlb_flush_SE(pm, va,
   4474 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4475 		l2pte_set(ptep, npte, 0);
   4476 		PTE_SYNC(ptep);
   4477 		PMAPCOUNT(fixup_ref);
   4478 		rv = 1;
   4479 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
   4480 		    opte, npte, 0, 0);
   4481 #ifdef ARM_MMU_EXTENDED
   4482 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4483 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4484 		if (pg == NULL) {
   4485 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4486 			goto out;
   4487 		}
   4488 
   4489 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4490 
   4491 		/* Get the current flags for this page. */
   4492 		pmap_acquire_page_lock(md);
   4493 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4494 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4495 			pmap_release_page_lock(md);
   4496 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4497 			goto out;
   4498 		}
   4499 
   4500 		/*
   4501 		 * If we haven't synced the page, do so now.
   4502 		 */
   4503 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4504 			UVMHIST_LOG(maphist, "syncicache page #%#x",
   4505 			    pa, 0, 0, 0);
   4506 			pmap_syncicache_page(md, pa);
   4507 		}
   4508 		pmap_release_page_lock(md);
   4509 		/*
   4510 		 * Turn off no-execute.
   4511 		 */
   4512 		KASSERT(opte & L2_XS_nG);
   4513 		l2pte_reset(ptep);
   4514 		PTE_SYNC(ptep);
   4515 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4516 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4517 		PTE_SYNC(ptep);
   4518 		rv = 1;
   4519 		PMAPCOUNT(fixup_exec);
   4520 		UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
   4521 		    opte, opte & ~L2_XS_XN, 0, 0);
   4522 #endif
   4523 	}
   4524 
   4525 #ifndef ARM_MMU_EXTENDED
   4526 	/*
   4527 	 * We know there is a valid mapping here, so simply
   4528 	 * fix up the L1 if necessary.
   4529 	 */
   4530 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4531 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4532 	if (*pdep != pde) {
   4533 		l1pte_setone(pdep, pde);
   4534 		PTE_SYNC(pdep);
   4535 		rv = 1;
   4536 		PMAPCOUNT(fixup_pdes);
   4537 	}
   4538 #endif
   4539 
   4540 #ifdef CPU_SA110
   4541 	/*
   4542 	 * There are bugs in the rev K SA110.  This is a check for one
   4543 	 * of them.
   4544 	 */
   4545 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4546 	    curcpu()->ci_arm_cpurev < 3) {
   4547 		/* Always current pmap */
   4548 		if (l2pte_valid_p(opte)) {
   4549 			extern int kernel_debug;
   4550 			if (kernel_debug & 1) {
   4551 				struct proc *p = curlwp->l_proc;
   4552 				printf("prefetch_abort: page is already "
   4553 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4554 				printf("prefetch_abort: pc=%08lx proc=%p "
   4555 				    "process=%s\n", va, p, p->p_comm);
   4556 				printf("prefetch_abort: far=%08x fs=%x\n",
   4557 				    cpu_faultaddress(), cpu_faultstatus());
   4558 			}
   4559 #ifdef DDB
   4560 			if (kernel_debug & 2)
   4561 				Debugger();
   4562 #endif
   4563 			rv = 1;
   4564 		}
   4565 	}
   4566 #endif /* CPU_SA110 */
   4567 
   4568 #ifndef ARM_MMU_EXTENDED
   4569 	/*
   4570 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4571 	 * stale TLB entry for the faulting address.  That might be due to a
   4572 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4573 	 */
   4574 	if (rv == 0
   4575 	    && pm->pm_l1->l1_domain_use_count == 1
   4576 	    && pmap_needs_pte_sync == 0) {
   4577 		pmap_needs_pte_sync = 1;
   4578 		PTE_SYNC(ptep);
   4579 		PMAPCOUNT(fixup_ptesync);
   4580 		rv = 1;
   4581 	}
   4582 #endif
   4583 
   4584 #ifndef MULTIPROCESSOR
   4585 #if defined(DEBUG) || 1
   4586 	/*
   4587 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4588 	 * stale TLB entry for the faulting address. This happens when two or
   4589 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4590 	 * a context switch between such processes, we can take domain faults
   4591 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4592 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4593 	 * example.
   4594 	 *
   4595 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4596 	 * entry for a recently entered mapping. In this case, the TLB is
   4597 	 * flushed for the new mapping, but there may still be TLB entries for
   4598 	 * other mappings belonging to other processes in the 1MB range
   4599 	 * covered by the L1 entry.
   4600 	 *
   4601 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4602 	 * value, so the fault must be due to a stale TLB entry.
   4603 	 *
   4604 	 * Since we always need to flush the TLB anyway in the case where we
   4605 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4606 	 * stale TLB entries dynamically.
   4607 	 *
   4608 	 * However, the above condition can ONLY happen if the current L1 is
   4609 	 * being shared. If it happens when the L1 is unshared, it indicates
   4610 	 * that other parts of the pmap are not doing their job WRT managing
   4611 	 * the TLB.
   4612 	 */
   4613 	if (rv == 0
   4614 #ifndef ARM_MMU_EXTENDED
   4615 	    && pm->pm_l1->l1_domain_use_count == 1
   4616 #endif
   4617 	    && true) {
   4618 #ifdef DEBUG
   4619 		extern int last_fault_code;
   4620 #else
   4621 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4622 		    ? armreg_ifsr_read()
   4623 		    : armreg_dfsr_read();
   4624 #endif
   4625 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4626 		    pm, va, ftype);
   4627 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4628 		    l2, l2b, ptep, opte);
   4629 
   4630 #ifndef ARM_MMU_EXTENDED
   4631 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4632 		    pdep, pde, last_fault_code);
   4633 #else
   4634 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4635 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4636 		   armreg_ttbcr_read());
   4637 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4638 		    last_fault_code, curcpu()->ci_pmap_cur,
   4639 		    curcpu()->ci_pmap_asid_cur,
   4640 		    armreg_contextidr_read(), armreg_dacr_read());
   4641 #ifdef _ARM_ARCH_7
   4642 		if (ftype & VM_PROT_WRITE)
   4643 			armreg_ats1cuw_write(va);
   4644 		else
   4645 			armreg_ats1cur_write(va);
   4646 		arm_isb();
   4647 		printf("fixup: par %#x\n", armreg_par_read());
   4648 #endif
   4649 #endif
   4650 #ifdef DDB
   4651 		extern int kernel_debug;
   4652 
   4653 		if (kernel_debug & 2) {
   4654 			pmap_release_pmap_lock(pm);
   4655 #ifdef UVMHIST
   4656 			KERNHIST_DUMP(maphist);
   4657 #endif
   4658 			cpu_Debugger();
   4659 			pmap_acquire_pmap_lock(pm);
   4660 		}
   4661 #endif
   4662 	}
   4663 #endif
   4664 #endif
   4665 
   4666 #ifndef ARM_MMU_EXTENDED
   4667 	/* Flush the TLB in the shared L1 case - see comment above */
   4668 	pmap_tlb_flush_SE(pm, va,
   4669 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4670 #endif
   4671 
   4672 	rv = 1;
   4673 
   4674 out:
   4675 	pmap_release_pmap_lock(pm);
   4676 
   4677 	return (rv);
   4678 }
   4679 
   4680 /*
   4681  * Routine:	pmap_procwr
   4682  *
   4683  * Function:
   4684  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4685  *
   4686  */
   4687 void
   4688 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4689 {
   4690 	/* We only need to do anything if it is the current process. */
   4691 	if (p == curproc)
   4692 		cpu_icache_sync_range(va, len);
   4693 }
   4694 
   4695 /*
   4696  * Routine:	pmap_unwire
   4697  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4698  *
   4699  * In/out conditions:
   4700  *		The mapping must already exist in the pmap.
   4701  */
   4702 void
   4703 pmap_unwire(pmap_t pm, vaddr_t va)
   4704 {
   4705 	struct l2_bucket *l2b;
   4706 	pt_entry_t *ptep, pte;
   4707 	struct vm_page *pg;
   4708 	paddr_t pa;
   4709 
   4710 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4711 
   4712 	pmap_acquire_pmap_lock(pm);
   4713 
   4714 	l2b = pmap_get_l2_bucket(pm, va);
   4715 	KDASSERT(l2b != NULL);
   4716 
   4717 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4718 	pte = *ptep;
   4719 
   4720 	/* Extract the physical address of the page */
   4721 	pa = l2pte_pa(pte);
   4722 
   4723 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4724 		/* Update the wired bit in the pv entry for this page. */
   4725 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4726 
   4727 		pmap_acquire_page_lock(md);
   4728 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4729 		pmap_release_page_lock(md);
   4730 	}
   4731 
   4732 	pmap_release_pmap_lock(pm);
   4733 }
   4734 
   4735 void
   4736 pmap_activate(struct lwp *l)
   4737 {
   4738 	struct cpu_info * const ci = curcpu();
   4739 	extern int block_userspace_access;
   4740 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   4741 #ifdef ARM_MMU_EXTENDED
   4742 	struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
   4743 #endif
   4744 
   4745 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4746 
   4747 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
   4748 
   4749 	/*
   4750 	 * If activating a non-current lwp or the current lwp is
   4751 	 * already active, just return.
   4752 	 */
   4753 	if (false
   4754 	    || l != curlwp
   4755 #ifdef ARM_MMU_EXTENDED
   4756 	    || (ci->ci_pmap_cur == npm &&
   4757 		(npm == pmap_kernel()
   4758 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   4759 #else
   4760 	    || npm->pm_activated == true
   4761 #endif
   4762 	    || false) {
   4763 		UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
   4764 		return;
   4765 	}
   4766 
   4767 #ifndef ARM_MMU_EXTENDED
   4768 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4769 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4770 
   4771 	/*
   4772 	 * If TTB and DACR are unchanged, short-circuit all the
   4773 	 * TLB/cache management stuff.
   4774 	 */
   4775 	pmap_t opm = ci->ci_lastlwp
   4776 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   4777 	    : NULL;
   4778 	if (opm != NULL) {
   4779 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4780 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4781 
   4782 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4783 			goto all_done;
   4784 	}
   4785 #endif /* !ARM_MMU_EXTENDED */
   4786 
   4787 	PMAPCOUNT(activations);
   4788 	block_userspace_access = 1;
   4789 
   4790 #ifndef ARM_MMU_EXTENDED
   4791 	/*
   4792 	 * If switching to a user vmspace which is different to the
   4793 	 * most recent one, and the most recent one is potentially
   4794 	 * live in the cache, we must write-back and invalidate the
   4795 	 * entire cache.
   4796 	 */
   4797 	pmap_t rpm = ci->ci_pmap_lastuser;
   4798 #endif
   4799 
   4800 /*
   4801  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4802  * reported in kern/41058. They're probably left over during tear-down and
   4803  * switching away from an exiting process. Until the root cause is identified
   4804  * and fixed, zap the cache when switching pmaps. This will result in a few
   4805  * unnecessary cache flushes, but that's better than silently corrupting data.
   4806  */
   4807 #ifndef ARM_MMU_EXTENDED
   4808 #if 0
   4809 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4810 	    rpm->pm_cstate.cs_cache) {
   4811 		rpm->pm_cstate.cs_cache = 0;
   4812 #ifdef PMAP_CACHE_VIVT
   4813 		cpu_idcache_wbinv_all();
   4814 #endif
   4815 	}
   4816 #else
   4817 	if (rpm) {
   4818 		rpm->pm_cstate.cs_cache = 0;
   4819 		if (npm == pmap_kernel())
   4820 			ci->ci_pmap_lastuser = NULL;
   4821 #ifdef PMAP_CACHE_VIVT
   4822 		cpu_idcache_wbinv_all();
   4823 #endif
   4824 	}
   4825 #endif
   4826 
   4827 	/* No interrupts while we frob the TTB/DACR */
   4828 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   4829 #endif /* !ARM_MMU_EXTENDED */
   4830 
   4831 #ifndef ARM_HAS_VBAR
   4832 	/*
   4833 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4834 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4835 	 * before switching to it otherwise subsequent interrupts/exceptions
   4836 	 * (including domain faults!) will jump into hyperspace.
   4837 	 */
   4838 	if (npm->pm_pl1vec != NULL) {
   4839 		cpu_tlb_flushID_SE((u_int)vector_page);
   4840 		cpu_cpwait();
   4841 		*npm->pm_pl1vec = npm->pm_l1vec;
   4842 		PTE_SYNC(npm->pm_pl1vec);
   4843 	}
   4844 #endif
   4845 
   4846 #ifdef ARM_MMU_EXTENDED
   4847 	/*
   4848 	 * Assume that TTBR1 has only global mappings and TTBR0 only has
   4849 	 * non-global mappings.  To prevent speculation from doing evil things
   4850 	 * we disable translation table walks using TTBR0 before setting the
   4851 	 * CONTEXTIDR (ASID) or new TTBR0 value.  Once both are set, table
   4852 	 * walks are reenabled.
   4853 	 */
   4854 	UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
   4855 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4856 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4857 	arm_isb();
   4858 	pmap_tlb_asid_acquire(npm, l);
   4859 	UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
   4860 	cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
   4861 	/*
   4862 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
   4863 	 * been updated.
   4864 	 */
   4865 	arm_isb();
   4866 	if (npm != pmap_kernel()) {
   4867 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4868 	}
   4869 	cpu_cpwait();
   4870 	ci->ci_pmap_asid_cur = pai->pai_asid;
   4871 #else
   4872 	cpu_domains(ndacr);
   4873 	if (npm == pmap_kernel() || npm == rpm) {
   4874 		/*
   4875 		 * Switching to a kernel thread, or back to the
   4876 		 * same user vmspace as before... Simply update
   4877 		 * the TTB (no TLB flush required)
   4878 		 */
   4879 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4880 		cpu_cpwait();
   4881 	} else {
   4882 		/*
   4883 		 * Otherwise, update TTB and flush TLB
   4884 		 */
   4885 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4886 		if (rpm != NULL)
   4887 			rpm->pm_cstate.cs_tlb = 0;
   4888 	}
   4889 
   4890 	restore_interrupts(oldirqstate);
   4891 #endif /* ARM_MMU_EXTENDED */
   4892 
   4893 	block_userspace_access = 0;
   4894 
   4895 #ifndef ARM_MMU_EXTENDED
   4896  all_done:
   4897 	/*
   4898 	 * The new pmap is resident. Make sure it's marked
   4899 	 * as resident in the cache/TLB.
   4900 	 */
   4901 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4902 	if (npm != pmap_kernel())
   4903 		ci->ci_pmap_lastuser = npm;
   4904 
   4905 	/* The old pmap is not longer active */
   4906 	if (opm != npm) {
   4907 		if (opm != NULL)
   4908 			opm->pm_activated = false;
   4909 
   4910 		/* But the new one is */
   4911 		npm->pm_activated = true;
   4912 	}
   4913 #endif
   4914 	ci->ci_pmap_cur = npm;
   4915 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   4916 }
   4917 
   4918 void
   4919 pmap_deactivate(struct lwp *l)
   4920 {
   4921 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   4922 
   4923 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4924 
   4925 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
   4926 
   4927 #ifdef ARM_MMU_EXTENDED
   4928 	kpreempt_disable();
   4929 	struct cpu_info * const ci = curcpu();
   4930 	/*
   4931 	 * Disable translation table walks from TTBR0 while no pmap has been
   4932 	 * activated.
   4933 	 */
   4934 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4935 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4936 	arm_isb();
   4937 	pmap_tlb_asid_deactivate(pm);
   4938 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
   4939 	ci->ci_pmap_cur = pmap_kernel();
   4940 	kpreempt_enable();
   4941 #else
   4942 	/*
   4943 	 * If the process is exiting, make sure pmap_activate() does
   4944 	 * a full MMU context-switch and cache flush, which we might
   4945 	 * otherwise skip. See PR port-arm/38950.
   4946 	 */
   4947 	if (l->l_proc->p_sflag & PS_WEXIT)
   4948 		curcpu()->ci_lastlwp = NULL;
   4949 
   4950 	pm->pm_activated = false;
   4951 #endif
   4952 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   4953 }
   4954 
   4955 void
   4956 pmap_update(pmap_t pm)
   4957 {
   4958 
   4959 	if (pm->pm_remove_all) {
   4960 #ifdef ARM_MMU_EXTENDED
   4961 		KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   4962 		/*
   4963 		 * Finish up the pmap_remove_all() optimisation by flushing
   4964 		 * all our ASIDs.
   4965 		 */
   4966 		pmap_tlb_asid_release_all(pm);
   4967 #else
   4968 		/*
   4969 		 * Finish up the pmap_remove_all() optimisation by flushing
   4970 		 * the TLB.
   4971 		 */
   4972 		pmap_tlb_flushID(pm);
   4973 #endif
   4974 		pm->pm_remove_all = false;
   4975 	}
   4976 
   4977 #ifdef ARM_MMU_EXTENDED
   4978 #if defined(MULTIPROCESSOR)
   4979 	armreg_bpiallis_write(0);
   4980 #else
   4981 	armreg_bpiall_write(0);
   4982 #endif
   4983 
   4984 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
   4985 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   4986 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   4987 		PMAP_COUNT(shootdown_ipis);
   4988 	}
   4989 #endif
   4990 	KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   4991 #else
   4992 	if (pmap_is_current(pm)) {
   4993 		/*
   4994 		 * If we're dealing with a current userland pmap, move its L1
   4995 		 * to the end of the LRU.
   4996 		 */
   4997 		if (pm != pmap_kernel())
   4998 			pmap_use_l1(pm);
   4999 
   5000 		/*
   5001 		 * We can assume we're done with frobbing the cache/tlb for
   5002 		 * now. Make sure any future pmap ops don't skip cache/tlb
   5003 		 * flushes.
   5004 		 */
   5005 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5006 	}
   5007 #endif
   5008 
   5009 	PMAPCOUNT(updates);
   5010 
   5011 	/*
   5012 	 * make sure TLB/cache operations have completed.
   5013 	 */
   5014 	cpu_cpwait();
   5015 }
   5016 
   5017 void
   5018 pmap_remove_all(pmap_t pm)
   5019 {
   5020 
   5021 	/*
   5022 	 * The vmspace described by this pmap is about to be torn down.
   5023 	 * Until pmap_update() is called, UVM will only make calls
   5024 	 * to pmap_remove(). We can make life much simpler by flushing
   5025 	 * the cache now, and deferring TLB invalidation to pmap_update().
   5026 	 */
   5027 #ifdef PMAP_CACHE_VIVT
   5028 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   5029 #endif
   5030 	pm->pm_remove_all = true;
   5031 }
   5032 
   5033 /*
   5034  * Retire the given physical map from service.
   5035  * Should only be called if the map contains no valid mappings.
   5036  */
   5037 void
   5038 pmap_destroy(pmap_t pm)
   5039 {
   5040 	u_int count;
   5041 
   5042 	if (pm == NULL)
   5043 		return;
   5044 
   5045 	if (pm->pm_remove_all) {
   5046 		pmap_tlb_flushID(pm);
   5047 		pm->pm_remove_all = false;
   5048 	}
   5049 
   5050 	/*
   5051 	 * Drop reference count
   5052 	 */
   5053 	mutex_enter(pm->pm_lock);
   5054 	count = --pm->pm_obj.uo_refs;
   5055 	mutex_exit(pm->pm_lock);
   5056 	if (count > 0) {
   5057 #ifndef ARM_MMU_EXTENDED
   5058 		if (pmap_is_current(pm)) {
   5059 			if (pm != pmap_kernel())
   5060 				pmap_use_l1(pm);
   5061 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5062 		}
   5063 #endif
   5064 		return;
   5065 	}
   5066 
   5067 	/*
   5068 	 * reference count is zero, free pmap resources and then free pmap.
   5069 	 */
   5070 
   5071 #ifndef ARM_HAS_VBAR
   5072 	if (vector_page < KERNEL_BASE) {
   5073 		KDASSERT(!pmap_is_current(pm));
   5074 
   5075 		/* Remove the vector page mapping */
   5076 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5077 		pmap_update(pm);
   5078 	}
   5079 #endif
   5080 
   5081 	LIST_REMOVE(pm, pm_list);
   5082 
   5083 	pmap_free_l1(pm);
   5084 
   5085 #ifdef ARM_MMU_EXTENDED
   5086 #ifdef MULTIPROCESSOR
   5087 	kcpuset_destroy(pm->pm_active);
   5088 	kcpuset_destroy(pm->pm_onproc);
   5089 #endif
   5090 #else
   5091 	struct cpu_info * const ci = curcpu();
   5092 	if (ci->ci_pmap_lastuser == pm)
   5093 		ci->ci_pmap_lastuser = NULL;
   5094 #endif
   5095 
   5096 	uvm_obj_destroy(&pm->pm_obj, false);
   5097 	mutex_destroy(&pm->pm_obj_lock);
   5098 	pool_cache_put(&pmap_cache, pm);
   5099 }
   5100 
   5101 
   5102 /*
   5103  * void pmap_reference(pmap_t pm)
   5104  *
   5105  * Add a reference to the specified pmap.
   5106  */
   5107 void
   5108 pmap_reference(pmap_t pm)
   5109 {
   5110 
   5111 	if (pm == NULL)
   5112 		return;
   5113 
   5114 #ifndef ARM_MMU_EXTENDED
   5115 	pmap_use_l1(pm);
   5116 #endif
   5117 
   5118 	mutex_enter(pm->pm_lock);
   5119 	pm->pm_obj.uo_refs++;
   5120 	mutex_exit(pm->pm_lock);
   5121 }
   5122 
   5123 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5124 
   5125 static struct evcnt pmap_prefer_nochange_ev =
   5126     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5127 static struct evcnt pmap_prefer_change_ev =
   5128     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5129 
   5130 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5131 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5132 
   5133 void
   5134 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5135 {
   5136 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5137 	vaddr_t va = *vap;
   5138 	vaddr_t diff = (hint - va) & mask;
   5139 	if (diff == 0) {
   5140 		pmap_prefer_nochange_ev.ev_count++;
   5141 	} else {
   5142 		pmap_prefer_change_ev.ev_count++;
   5143 		if (__predict_false(td))
   5144 			va -= mask + 1;
   5145 		*vap = va + diff;
   5146 	}
   5147 }
   5148 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5149 
   5150 /*
   5151  * pmap_zero_page()
   5152  *
   5153  * Zero a given physical page by mapping it at a page hook point.
   5154  * In doing the zero page op, the page we zero is mapped cachable, as with
   5155  * StrongARM accesses to non-cached pages are non-burst making writing
   5156  * _any_ bulk data very slow.
   5157  */
   5158 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5159 void
   5160 pmap_zero_page_generic(paddr_t pa)
   5161 {
   5162 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5163 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5164 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5165 #endif
   5166 #if defined(PMAP_CACHE_VIPT)
   5167 	/* Choose the last page color it had, if any */
   5168 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5169 #else
   5170 	const vsize_t va_offset = 0;
   5171 #endif
   5172 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5173 	/*
   5174 	 * Is this page mapped at its natural color?
   5175 	 * If we have all of memory mapped, then just convert PA to VA.
   5176 	 */
   5177 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5178 	   || va_offset == (pa & arm_cache_prefer_mask);
   5179 	const vaddr_t vdstp = okcolor
   5180 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5181 	    : cpu_cdstp(va_offset);
   5182 #else
   5183 	const bool okcolor = false;
   5184 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5185 #endif
   5186 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5187 
   5188 
   5189 #ifdef DEBUG
   5190 	if (!SLIST_EMPTY(&md->pvh_list))
   5191 		panic("pmap_zero_page: page has mappings");
   5192 #endif
   5193 
   5194 	KDASSERT((pa & PGOFSET) == 0);
   5195 
   5196 	if (!okcolor) {
   5197 		/*
   5198 		 * Hook in the page, zero it, and purge the cache for that
   5199 		 * zeroed page. Invalidate the TLB as needed.
   5200 		 */
   5201 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5202 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5203 		l2pte_set(ptep, npte, 0);
   5204 		PTE_SYNC(ptep);
   5205 		cpu_tlb_flushD_SE(vdstp);
   5206 		cpu_cpwait();
   5207 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5208     && !defined(ARM_MMU_EXTENDED)
   5209 		/*
   5210 		 * If we are direct-mapped and our color isn't ok, then before
   5211 		 * we bzero the page invalidate its contents from the cache and
   5212 		 * reset the color to its natural color.
   5213 		 */
   5214 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5215 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5216 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5217 #endif
   5218 	}
   5219 	bzero_page(vdstp);
   5220 	if (!okcolor) {
   5221 		/*
   5222 		 * Unmap the page.
   5223 		 */
   5224 		l2pte_reset(ptep);
   5225 		PTE_SYNC(ptep);
   5226 		cpu_tlb_flushD_SE(vdstp);
   5227 #ifdef PMAP_CACHE_VIVT
   5228 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5229 #endif
   5230 	}
   5231 #ifdef PMAP_CACHE_VIPT
   5232 	/*
   5233 	 * This page is now cache resident so it now has a page color.
   5234 	 * Any contents have been obliterated so clear the EXEC flag.
   5235 	 */
   5236 #ifndef ARM_MMU_EXTENDED
   5237 	if (!pmap_is_page_colored_p(md)) {
   5238 		PMAPCOUNT(vac_color_new);
   5239 		md->pvh_attrs |= PVF_COLORED;
   5240 	}
   5241 	md->pvh_attrs |= PVF_DIRTY;
   5242 #endif
   5243 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5244 		md->pvh_attrs &= ~PVF_EXEC;
   5245 		PMAPCOUNT(exec_discarded_zero);
   5246 	}
   5247 #endif
   5248 }
   5249 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5250 
   5251 #if ARM_MMU_XSCALE == 1
   5252 void
   5253 pmap_zero_page_xscale(paddr_t pa)
   5254 {
   5255 #ifdef DEBUG
   5256 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5257 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5258 
   5259 	if (!SLIST_EMPTY(&md->pvh_list))
   5260 		panic("pmap_zero_page: page has mappings");
   5261 #endif
   5262 
   5263 	KDASSERT((pa & PGOFSET) == 0);
   5264 
   5265 	/*
   5266 	 * Hook in the page, zero it, and purge the cache for that
   5267 	 * zeroed page. Invalidate the TLB as needed.
   5268 	 */
   5269 
   5270 	pt_entry_t npte = L2_S_PROTO | pa |
   5271 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5272 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5273 	l2pte_set(cdst_pte, npte, 0);
   5274 	PTE_SYNC(cdst_pte);
   5275 	cpu_tlb_flushD_SE(cdstp);
   5276 	cpu_cpwait();
   5277 	bzero_page(cdstp);
   5278 	xscale_cache_clean_minidata();
   5279 	l2pte_reset(cdst_pte);
   5280 	PTE_SYNC(cdst_pte);
   5281 }
   5282 #endif /* ARM_MMU_XSCALE == 1 */
   5283 
   5284 /* pmap_pageidlezero()
   5285  *
   5286  * The same as above, except that we assume that the page is not
   5287  * mapped.  This means we never have to flush the cache first.  Called
   5288  * from the idle loop.
   5289  */
   5290 bool
   5291 pmap_pageidlezero(paddr_t pa)
   5292 {
   5293 	bool rv = true;
   5294 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5295 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5296 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5297 #endif
   5298 #ifdef PMAP_CACHE_VIPT
   5299 	/* Choose the last page color it had, if any */
   5300 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5301 #else
   5302 	const vsize_t va_offset = 0;
   5303 #endif
   5304 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5305 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5306 	   || va_offset == (pa & arm_cache_prefer_mask);
   5307 	const vaddr_t vdstp = okcolor
   5308 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5309 	    : cpu_cdstp(va_offset);
   5310 #else
   5311 	const bool okcolor = false;
   5312 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5313 #endif
   5314 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5315 
   5316 
   5317 #ifdef DEBUG
   5318 	if (!SLIST_EMPTY(&md->pvh_list))
   5319 		panic("pmap_pageidlezero: page has mappings");
   5320 #endif
   5321 
   5322 	KDASSERT((pa & PGOFSET) == 0);
   5323 
   5324 	if (!okcolor) {
   5325 		/*
   5326 		 * Hook in the page, zero it, and purge the cache for that
   5327 		 * zeroed page. Invalidate the TLB as needed.
   5328 		 */
   5329 		const pt_entry_t npte = L2_S_PROTO | pa |
   5330 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5331 		l2pte_set(ptep, npte, 0);
   5332 		PTE_SYNC(ptep);
   5333 		cpu_tlb_flushD_SE(vdstp);
   5334 		cpu_cpwait();
   5335 	}
   5336 
   5337 	uint64_t *ptr = (uint64_t *)vdstp;
   5338 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5339 		if (sched_curcpu_runnable_p() != 0) {
   5340 			/*
   5341 			 * A process has become ready.  Abort now,
   5342 			 * so we don't keep it waiting while we
   5343 			 * do slow memory access to finish this
   5344 			 * page.
   5345 			 */
   5346 			rv = false;
   5347 			break;
   5348 		}
   5349 		*ptr++ = 0;
   5350 	}
   5351 
   5352 #ifdef PMAP_CACHE_VIVT
   5353 	if (rv)
   5354 		/*
   5355 		 * if we aborted we'll rezero this page again later so don't
   5356 		 * purge it unless we finished it
   5357 		 */
   5358 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5359 #elif defined(PMAP_CACHE_VIPT)
   5360 	/*
   5361 	 * This page is now cache resident so it now has a page color.
   5362 	 * Any contents have been obliterated so clear the EXEC flag.
   5363 	 */
   5364 #ifndef ARM_MMU_EXTENDED
   5365 	if (!pmap_is_page_colored_p(md)) {
   5366 		PMAPCOUNT(vac_color_new);
   5367 		md->pvh_attrs |= PVF_COLORED;
   5368 	}
   5369 #endif
   5370 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5371 		md->pvh_attrs &= ~PVF_EXEC;
   5372 		PMAPCOUNT(exec_discarded_zero);
   5373 	}
   5374 #endif
   5375 	/*
   5376 	 * Unmap the page.
   5377 	 */
   5378 	if (!okcolor) {
   5379 		l2pte_reset(ptep);
   5380 		PTE_SYNC(ptep);
   5381 		cpu_tlb_flushD_SE(vdstp);
   5382 	}
   5383 
   5384 	return rv;
   5385 }
   5386 
   5387 /*
   5388  * pmap_copy_page()
   5389  *
   5390  * Copy one physical page into another, by mapping the pages into
   5391  * hook points. The same comment regarding cachability as in
   5392  * pmap_zero_page also applies here.
   5393  */
   5394 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5395 void
   5396 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5397 {
   5398 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5399 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5400 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5401 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5402 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5403 #endif
   5404 #ifdef PMAP_CACHE_VIPT
   5405 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5406 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5407 #else
   5408 	const vsize_t src_va_offset = 0;
   5409 	const vsize_t dst_va_offset = 0;
   5410 #endif
   5411 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5412 	/*
   5413 	 * Is this page mapped at its natural color?
   5414 	 * If we have all of memory mapped, then just convert PA to VA.
   5415 	 */
   5416 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5417 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5418 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5419 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5420 	const vaddr_t vsrcp = src_okcolor
   5421 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5422 		cpu_csrcp(src_va_offset))
   5423 	    : cpu_csrcp(src_va_offset);
   5424 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5425 	    cpu_cdstp(dst_va_offset));
   5426 #else
   5427 	const bool src_okcolor = false;
   5428 	const bool dst_okcolor = false;
   5429 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5430 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5431 #endif
   5432 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5433 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5434 
   5435 #ifdef DEBUG
   5436 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5437 		panic("pmap_copy_page: dst page has mappings");
   5438 #endif
   5439 
   5440 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5441 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5442 #endif
   5443 	KDASSERT((src & PGOFSET) == 0);
   5444 	KDASSERT((dst & PGOFSET) == 0);
   5445 
   5446 	/*
   5447 	 * Clean the source page.  Hold the source page's lock for
   5448 	 * the duration of the copy so that no other mappings can
   5449 	 * be created while we have a potentially aliased mapping.
   5450 	 */
   5451 #ifdef PMAP_CACHE_VIVT
   5452 	pmap_acquire_page_lock(src_md);
   5453 	(void) pmap_clean_page(src_md, true);
   5454 	pmap_release_page_lock(src_md);
   5455 #endif
   5456 
   5457 	/*
   5458 	 * Map the pages into the page hook points, copy them, and purge
   5459 	 * the cache for the appropriate page. Invalidate the TLB
   5460 	 * as required.
   5461 	 */
   5462 	if (!src_okcolor) {
   5463 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5464 		    | src
   5465 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5466 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5467 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5468 		    | pte_l2_s_cache_mode
   5469 #endif
   5470 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5471 		l2pte_set(src_ptep, nsrc_pte, 0);
   5472 		PTE_SYNC(src_ptep);
   5473 		cpu_tlb_flushD_SE(vsrcp);
   5474 		cpu_cpwait();
   5475 	}
   5476 	if (!dst_okcolor) {
   5477 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5478 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5479 		l2pte_set(dst_ptep, ndst_pte, 0);
   5480 		PTE_SYNC(dst_ptep);
   5481 		cpu_tlb_flushD_SE(vdstp);
   5482 		cpu_cpwait();
   5483 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5484 		/*
   5485 		 * If we are direct-mapped and our color isn't ok, then before
   5486 		 * we bcopy to the new page invalidate its contents from the
   5487 		 * cache and reset its color to its natural color.
   5488 		 */
   5489 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5490 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5491 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5492 #endif
   5493 	}
   5494 	bcopy_page(vsrcp, vdstp);
   5495 #ifdef PMAP_CACHE_VIVT
   5496 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5497 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5498 #endif
   5499 	/*
   5500 	 * Unmap the pages.
   5501 	 */
   5502 	if (!src_okcolor) {
   5503 		l2pte_reset(src_ptep);
   5504 		PTE_SYNC(src_ptep);
   5505 		cpu_tlb_flushD_SE(vsrcp);
   5506 		cpu_cpwait();
   5507 	}
   5508 	if (!dst_okcolor) {
   5509 		l2pte_reset(dst_ptep);
   5510 		PTE_SYNC(dst_ptep);
   5511 		cpu_tlb_flushD_SE(vdstp);
   5512 		cpu_cpwait();
   5513 	}
   5514 #ifdef PMAP_CACHE_VIPT
   5515 	/*
   5516 	 * Now that the destination page is in the cache, mark it as colored.
   5517 	 * If this was an exec page, discard it.
   5518 	 */
   5519 	pmap_acquire_page_lock(dst_md);
   5520 #ifndef ARM_MMU_EXTENDED
   5521 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5522 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5523 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5524 	}
   5525 	if (!pmap_is_page_colored_p(dst_md)) {
   5526 		PMAPCOUNT(vac_color_new);
   5527 		dst_md->pvh_attrs |= PVF_COLORED;
   5528 	}
   5529 	dst_md->pvh_attrs |= PVF_DIRTY;
   5530 #endif
   5531 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5532 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5533 		PMAPCOUNT(exec_discarded_copy);
   5534 	}
   5535 	pmap_release_page_lock(dst_md);
   5536 #endif
   5537 }
   5538 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5539 
   5540 #if ARM_MMU_XSCALE == 1
   5541 void
   5542 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5543 {
   5544 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5545 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5546 #ifdef DEBUG
   5547 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5548 
   5549 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5550 		panic("pmap_copy_page: dst page has mappings");
   5551 #endif
   5552 
   5553 	KDASSERT((src & PGOFSET) == 0);
   5554 	KDASSERT((dst & PGOFSET) == 0);
   5555 
   5556 	/*
   5557 	 * Clean the source page.  Hold the source page's lock for
   5558 	 * the duration of the copy so that no other mappings can
   5559 	 * be created while we have a potentially aliased mapping.
   5560 	 */
   5561 #ifdef PMAP_CACHE_VIVT
   5562 	pmap_acquire_page_lock(src_md);
   5563 	(void) pmap_clean_page(src_md, true);
   5564 	pmap_release_page_lock(src_md);
   5565 #endif
   5566 
   5567 	/*
   5568 	 * Map the pages into the page hook points, copy them, and purge
   5569 	 * the cache for the appropriate page. Invalidate the TLB
   5570 	 * as required.
   5571 	 */
   5572 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
   5573 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   5574 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5575 	l2pte_set(csrc_pte, nsrc_pte, 0);
   5576 	PTE_SYNC(csrc_pte);
   5577 
   5578 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
   5579 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
   5580 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5581 	l2pte_set(cdst_pte, ndst_pte, 0);
   5582 	PTE_SYNC(cdst_pte);
   5583 
   5584 	cpu_tlb_flushD_SE(csrcp);
   5585 	cpu_tlb_flushD_SE(cdstp);
   5586 	cpu_cpwait();
   5587 	bcopy_page(csrcp, cdstp);
   5588 	xscale_cache_clean_minidata();
   5589 	l2pte_reset(csrc_pte);
   5590 	l2pte_reset(cdst_pte);
   5591 	PTE_SYNC(csrc_pte);
   5592 	PTE_SYNC(cdst_pte);
   5593 }
   5594 #endif /* ARM_MMU_XSCALE == 1 */
   5595 
   5596 /*
   5597  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5598  *
   5599  * Return the start and end addresses of the kernel's virtual space.
   5600  * These values are setup in pmap_bootstrap and are updated as pages
   5601  * are allocated.
   5602  */
   5603 void
   5604 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5605 {
   5606 	*start = virtual_avail;
   5607 	*end = virtual_end;
   5608 }
   5609 
   5610 /*
   5611  * Helper function for pmap_grow_l2_bucket()
   5612  */
   5613 static inline int
   5614 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5615 {
   5616 	paddr_t pa;
   5617 
   5618 	if (uvm.page_init_done == false) {
   5619 #ifdef PMAP_STEAL_MEMORY
   5620 		pv_addr_t pv;
   5621 		pmap_boot_pagealloc(PAGE_SIZE,
   5622 #ifdef PMAP_CACHE_VIPT
   5623 		    arm_cache_prefer_mask,
   5624 		    va & arm_cache_prefer_mask,
   5625 #else
   5626 		    0, 0,
   5627 #endif
   5628 		    &pv);
   5629 		pa = pv.pv_pa;
   5630 #else
   5631 		if (uvm_page_physget(&pa) == false)
   5632 			return (1);
   5633 #endif	/* PMAP_STEAL_MEMORY */
   5634 	} else {
   5635 		struct vm_page *pg;
   5636 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5637 		if (pg == NULL)
   5638 			return (1);
   5639 		pa = VM_PAGE_TO_PHYS(pg);
   5640 		/*
   5641 		 * This new page must not have any mappings.  Enter it via
   5642 		 * pmap_kenter_pa and let that routine do the hard work.
   5643 		 */
   5644 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5645 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5646 		pmap_kenter_pa(va, pa,
   5647 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5648 	}
   5649 
   5650 	if (pap)
   5651 		*pap = pa;
   5652 
   5653 	PMAPCOUNT(pt_mappings);
   5654 #ifdef DEBUG
   5655 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5656 	KDASSERT(l2b != NULL);
   5657 
   5658 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   5659 	const pt_entry_t opte = *ptep;
   5660 	KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   5661 #endif
   5662 	memset((void *)va, 0, PAGE_SIZE);
   5663 	return (0);
   5664 }
   5665 
   5666 /*
   5667  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   5668  * used by pmap_growkernel().
   5669  */
   5670 static inline struct l2_bucket *
   5671 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   5672 {
   5673 	struct l2_dtable *l2;
   5674 	struct l2_bucket *l2b;
   5675 	u_short l1slot;
   5676 	vaddr_t nva;
   5677 
   5678 	l1slot = l1pte_index(va);
   5679 
   5680 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   5681 		/*
   5682 		 * No mapping at this address, as there is
   5683 		 * no entry in the L1 table.
   5684 		 * Need to allocate a new l2_dtable.
   5685 		 */
   5686 		nva = pmap_kernel_l2dtable_kva;
   5687 		if ((nva & PGOFSET) == 0) {
   5688 			/*
   5689 			 * Need to allocate a backing page
   5690 			 */
   5691 			if (pmap_grow_map(nva, NULL))
   5692 				return (NULL);
   5693 		}
   5694 
   5695 		l2 = (struct l2_dtable *)nva;
   5696 		nva += sizeof(struct l2_dtable);
   5697 
   5698 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   5699 			/*
   5700 			 * The new l2_dtable straddles a page boundary.
   5701 			 * Map in another page to cover it.
   5702 			 */
   5703 			if (pmap_grow_map(nva, NULL))
   5704 				return (NULL);
   5705 		}
   5706 
   5707 		pmap_kernel_l2dtable_kva = nva;
   5708 
   5709 		/*
   5710 		 * Link it into the parent pmap
   5711 		 */
   5712 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   5713 	}
   5714 
   5715 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   5716 
   5717 	/*
   5718 	 * Fetch pointer to the L2 page table associated with the address.
   5719 	 */
   5720 	if (l2b->l2b_kva == NULL) {
   5721 		pt_entry_t *ptep;
   5722 
   5723 		/*
   5724 		 * No L2 page table has been allocated. Chances are, this
   5725 		 * is because we just allocated the l2_dtable, above.
   5726 		 */
   5727 		nva = pmap_kernel_l2ptp_kva;
   5728 		ptep = (pt_entry_t *)nva;
   5729 		if ((nva & PGOFSET) == 0) {
   5730 			/*
   5731 			 * Need to allocate a backing page
   5732 			 */
   5733 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   5734 				return (NULL);
   5735 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   5736 		}
   5737 
   5738 		l2->l2_occupancy++;
   5739 		l2b->l2b_kva = ptep;
   5740 		l2b->l2b_l1slot = l1slot;
   5741 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   5742 
   5743 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   5744 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   5745 	}
   5746 
   5747 	return (l2b);
   5748 }
   5749 
   5750 vaddr_t
   5751 pmap_growkernel(vaddr_t maxkvaddr)
   5752 {
   5753 	pmap_t kpm = pmap_kernel();
   5754 #ifndef ARM_MMU_EXTENDED
   5755 	struct l1_ttable *l1;
   5756 #endif
   5757 	int s;
   5758 
   5759 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5760 		goto out;		/* we are OK */
   5761 
   5762 	NPDEBUG(PDB_GROWKERN,
   5763 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5764 	    pmap_curmaxkvaddr, maxkvaddr));
   5765 
   5766 	KDASSERT(maxkvaddr <= virtual_end);
   5767 
   5768 	/*
   5769 	 * whoops!   we need to add kernel PTPs
   5770 	 */
   5771 
   5772 	s = splhigh();	/* to be safe */
   5773 	mutex_enter(kpm->pm_lock);
   5774 
   5775 	/* Map 1MB at a time */
   5776 	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
   5777 #ifdef ARM_MMU_EXTENDED
   5778 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   5779 	pd_entry_t *pdep = spdep;
   5780 #endif
   5781 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   5782 #ifdef ARM_MMU_EXTENDED
   5783 	     pdep++,
   5784 #endif
   5785 	     l1slot++) {
   5786 		struct l2_bucket *l2b =
   5787 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5788 		KASSERT(l2b != NULL);
   5789 
   5790 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   5791 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   5792 #ifdef ARM_MMU_EXTENDED
   5793 		l1pte_setone(pdep, npde);
   5794 #else
   5795 		/* Distribute new L1 entry to all other L1s */
   5796 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5797 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   5798 			l1pte_setone(pdep, npde);
   5799 			PDE_SYNC(pdep);
   5800 		}
   5801 #endif
   5802 	}
   5803 #ifdef ARM_MMU_EXTENDED
   5804 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   5805 #endif
   5806 
   5807 #ifdef PMAP_CACHE_VIVT
   5808 	/*
   5809 	 * flush out the cache, expensive but growkernel will happen so
   5810 	 * rarely
   5811 	 */
   5812 	cpu_dcache_wbinv_all();
   5813 	cpu_tlb_flushD();
   5814 	cpu_cpwait();
   5815 #endif
   5816 
   5817 	mutex_exit(kpm->pm_lock);
   5818 	splx(s);
   5819 
   5820 out:
   5821 	return (pmap_curmaxkvaddr);
   5822 }
   5823 
   5824 /************************ Utility routines ****************************/
   5825 
   5826 #ifndef ARM_HAS_VBAR
   5827 /*
   5828  * vector_page_setprot:
   5829  *
   5830  *	Manipulate the protection of the vector page.
   5831  */
   5832 void
   5833 vector_page_setprot(int prot)
   5834 {
   5835 	struct l2_bucket *l2b;
   5836 	pt_entry_t *ptep;
   5837 
   5838 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5839 	/*
   5840 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5841 	 * already mapped in the kernel text so no need to anything here.
   5842 	 */
   5843 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5844 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5845 		return;
   5846 	}
   5847 #endif
   5848 
   5849 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5850 	KASSERT(l2b != NULL);
   5851 
   5852 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5853 
   5854 	const pt_entry_t opte = *ptep;
   5855 #ifdef ARM_MMU_EXTENDED
   5856 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   5857 	    | L2_S_PROT(PTE_KERNEL, prot);
   5858 #else
   5859 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   5860 	    | L2_S_PROT(PTE_KERNEL, prot);
   5861 #endif
   5862 	l2pte_set(ptep, npte, opte);
   5863 	PTE_SYNC(ptep);
   5864 	cpu_tlb_flushD_SE(vector_page);
   5865 	cpu_cpwait();
   5866 }
   5867 #endif
   5868 
   5869 /*
   5870  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5871  * Returns true if the mapping exists, else false.
   5872  *
   5873  * NOTE: This function is only used by a couple of arm-specific modules.
   5874  * It is not safe to take any pmap locks here, since we could be right
   5875  * in the middle of debugging the pmap anyway...
   5876  *
   5877  * It is possible for this routine to return false even though a valid
   5878  * mapping does exist. This is because we don't lock, so the metadata
   5879  * state may be inconsistent.
   5880  *
   5881  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5882  * a "section" mapping.
   5883  */
   5884 bool
   5885 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5886 {
   5887 	struct l2_dtable *l2;
   5888 	pd_entry_t *pdep, pde;
   5889 	pt_entry_t *ptep;
   5890 	u_short l1slot;
   5891 
   5892 	if (pm->pm_l1 == NULL)
   5893 		return false;
   5894 
   5895 	l1slot = l1pte_index(va);
   5896 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   5897 	pde = *pdep;
   5898 
   5899 	if (l1pte_section_p(pde)) {
   5900 		*ptp = NULL;
   5901 		return true;
   5902 	}
   5903 
   5904 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   5905 	if (l2 == NULL ||
   5906 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   5907 		return false;
   5908 	}
   5909 
   5910 	*ptp = &ptep[l2pte_index(va)];
   5911 	return true;
   5912 }
   5913 
   5914 bool
   5915 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5916 {
   5917 
   5918 	if (pm->pm_l1 == NULL)
   5919 		return false;
   5920 
   5921 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   5922 
   5923 	return true;
   5924 }
   5925 
   5926 /************************ Bootstrapping routines ****************************/
   5927 
   5928 #ifndef ARM_MMU_EXTENDED
   5929 static void
   5930 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5931 {
   5932 	int i;
   5933 
   5934 	l1->l1_kva = l1pt;
   5935 	l1->l1_domain_use_count = 0;
   5936 	l1->l1_domain_first = 0;
   5937 
   5938 	for (i = 0; i < PMAP_DOMAINS; i++)
   5939 		l1->l1_domain_free[i] = i + 1;
   5940 
   5941 	/*
   5942 	 * Copy the kernel's L1 entries to each new L1.
   5943 	 */
   5944 	if (pmap_initialized)
   5945 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   5946 
   5947 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5948 	    &l1->l1_physaddr) == false)
   5949 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5950 
   5951 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5952 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5953 }
   5954 #endif /* !ARM_MMU_EXTENDED */
   5955 
   5956 /*
   5957  * pmap_bootstrap() is called from the board-specific initarm() routine
   5958  * once the kernel L1/L2 descriptors tables have been set up.
   5959  *
   5960  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5961  * spread over a number of disparate files/functions.
   5962  *
   5963  * We are passed the following parameters
   5964  *  - kernel_l1pt
   5965  *    This is a pointer to the base of the kernel's L1 translation table.
   5966  *  - vstart
   5967  *    1MB-aligned start of managed kernel virtual memory.
   5968  *  - vend
   5969  *    1MB-aligned end of managed kernel virtual memory.
   5970  *
   5971  * We use the first parameter to build the metadata (struct l1_ttable and
   5972  * struct l2_dtable) necessary to track kernel mappings.
   5973  */
   5974 #define	PMAP_STATIC_L2_SIZE 16
   5975 void
   5976 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5977 {
   5978 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5979 #ifndef ARM_MMU_EXTENDED
   5980 	static struct l1_ttable static_l1;
   5981 	struct l1_ttable *l1 = &static_l1;
   5982 #endif
   5983 	struct l2_dtable *l2;
   5984 	struct l2_bucket *l2b;
   5985 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5986 	pmap_t pm = pmap_kernel();
   5987 	pt_entry_t *ptep;
   5988 	paddr_t pa;
   5989 	vsize_t size;
   5990 	int nptes, l2idx, l2next = 0;
   5991 
   5992 #ifdef ARM_MMU_EXTENDED
   5993 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   5994 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   5995 #endif
   5996 
   5997 #ifdef VERBOSE_INIT_ARM
   5998 	printf("kpm ");
   5999 #endif
   6000 	/*
   6001 	 * Initialise the kernel pmap object
   6002 	 */
   6003 	curcpu()->ci_pmap_cur = pm;
   6004 #ifdef ARM_MMU_EXTENDED
   6005 	pm->pm_l1 = l1pt;
   6006 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   6007 #ifdef VERBOSE_INIT_ARM
   6008 	printf("tlb0 ");
   6009 #endif
   6010 	pmap_tlb_info_init(&pmap_tlb0_info);
   6011 #ifdef MULTIPROCESSOR
   6012 #ifdef VERBOSE_INIT_ARM
   6013 	printf("kcpusets ");
   6014 #endif
   6015 	pm->pm_onproc = kcpuset_running;
   6016 	pm->pm_active = kcpuset_running;
   6017 #endif
   6018 #else
   6019 	pm->pm_l1 = l1;
   6020 #endif
   6021 
   6022 #ifdef VERBOSE_INIT_ARM
   6023 	printf("locks ");
   6024 #endif
   6025 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6026 	if (arm_cache_prefer_mask != 0) {
   6027 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   6028 	} else {
   6029 #endif
   6030 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
   6031 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6032 	}
   6033 #endif
   6034 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   6035 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   6036 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   6037 
   6038 #ifdef VERBOSE_INIT_ARM
   6039 	printf("l1pt ");
   6040 #endif
   6041 	/*
   6042 	 * Scan the L1 translation table created by initarm() and create
   6043 	 * the required metadata for all valid mappings found in it.
   6044 	 */
   6045 	for (size_t l1slot = 0;
   6046 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   6047 	     l1slot++) {
   6048 		pd_entry_t pde = l1pt[l1slot];
   6049 
   6050 		/*
   6051 		 * We're only interested in Coarse mappings.
   6052 		 * pmap_extract() can deal with section mappings without
   6053 		 * recourse to checking L2 metadata.
   6054 		 */
   6055 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   6056 			continue;
   6057 
   6058 		/*
   6059 		 * Lookup the KVA of this L2 descriptor table
   6060 		 */
   6061 		pa = l1pte_pa(pde);
   6062 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6063 		if (ptep == NULL) {
   6064 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6065 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6066 		}
   6067 
   6068 		/*
   6069 		 * Fetch the associated L2 metadata structure.
   6070 		 * Allocate a new one if necessary.
   6071 		 */
   6072 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6073 			if (l2next == PMAP_STATIC_L2_SIZE)
   6074 				panic("pmap_bootstrap: out of static L2s");
   6075 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6076 		}
   6077 
   6078 		/*
   6079 		 * One more L1 slot tracked...
   6080 		 */
   6081 		l2->l2_occupancy++;
   6082 
   6083 		/*
   6084 		 * Fill in the details of the L2 descriptor in the
   6085 		 * appropriate bucket.
   6086 		 */
   6087 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6088 		l2b->l2b_kva = ptep;
   6089 		l2b->l2b_pa = pa;
   6090 		l2b->l2b_l1slot = l1slot;
   6091 
   6092 		/*
   6093 		 * Establish an initial occupancy count for this descriptor
   6094 		 */
   6095 		for (l2idx = 0;
   6096 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6097 		    l2idx++) {
   6098 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6099 				l2b->l2b_occupancy++;
   6100 			}
   6101 		}
   6102 
   6103 		/*
   6104 		 * Make sure the descriptor itself has the correct cache mode.
   6105 		 * If not, fix it, but whine about the problem. Port-meisters
   6106 		 * should consider this a clue to fix up their initarm()
   6107 		 * function. :)
   6108 		 */
   6109 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6110 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6111 			    "L2 pte @ %p\n", ptep);
   6112 		}
   6113 	}
   6114 
   6115 #ifdef VERBOSE_INIT_ARM
   6116 	printf("cache(l1pt) ");
   6117 #endif
   6118 	/*
   6119 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6120 	 * a page table. Bitch if it is not correctly set.
   6121 	 */
   6122 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6123 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6124 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6125 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6126 	}
   6127 
   6128 #ifdef PMAP_CACHE_VIVT
   6129 	cpu_dcache_wbinv_all();
   6130 	cpu_tlb_flushID();
   6131 	cpu_cpwait();
   6132 #endif
   6133 
   6134 	/*
   6135 	 * now we allocate the "special" VAs which are used for tmp mappings
   6136 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6137 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6138 	 *
   6139 	 * Managed KVM space start from wherever initarm() tells us.
   6140 	 */
   6141 	virtual_avail = vstart;
   6142 	virtual_end = vend;
   6143 
   6144 #ifdef VERBOSE_INIT_ARM
   6145 	printf("specials ");
   6146 #endif
   6147 #ifdef PMAP_CACHE_VIPT
   6148 	/*
   6149 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6150 	 * page so we won't violate cache aliasing rules.
   6151 	 */
   6152 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6153 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6154 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6155 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6156 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6157 	}
   6158 #else
   6159 	nptes = PAGE_SIZE / L2_S_SIZE;
   6160 #endif
   6161 #ifdef MULTIPROCESSOR
   6162 	cnptes = nptes;
   6163 	nptes *= arm_cpu_max;
   6164 #endif
   6165 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6166 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6167 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6168 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6169 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   6170 	if (msgbufaddr == NULL) {
   6171 		pmap_alloc_specials(&virtual_avail,
   6172 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6173 		    (void *)&msgbufaddr, NULL);
   6174 	}
   6175 
   6176 	/*
   6177 	 * Allocate a range of kernel virtual address space to be used
   6178 	 * for L2 descriptor tables and metadata allocation in
   6179 	 * pmap_growkernel().
   6180 	 */
   6181 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   6182 	pmap_alloc_specials(&virtual_avail,
   6183 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6184 	    &pmap_kernel_l2ptp_kva, NULL);
   6185 
   6186 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   6187 	pmap_alloc_specials(&virtual_avail,
   6188 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6189 	    &pmap_kernel_l2dtable_kva, NULL);
   6190 
   6191 #ifndef ARM_MMU_EXTENDED
   6192 	/*
   6193 	 * init the static-global locks and global pmap list.
   6194 	 */
   6195 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6196 
   6197 	/*
   6198 	 * We can now initialise the first L1's metadata.
   6199 	 */
   6200 	SLIST_INIT(&l1_list);
   6201 	TAILQ_INIT(&l1_lru_list);
   6202 	pmap_init_l1(l1, l1pt);
   6203 #endif /* ARM_MMU_EXTENDED */
   6204 
   6205 #ifndef ARM_HAS_VBAR
   6206 	/* Set up vector page L1 details, if necessary */
   6207 	if (vector_page < KERNEL_BASE) {
   6208 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6209 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6210 		KDASSERT(l2b != NULL);
   6211 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6212 		    L1_C_DOM(pmap_domain(pm));
   6213 	} else
   6214 		pm->pm_pl1vec = NULL;
   6215 #endif
   6216 
   6217 #ifdef VERBOSE_INIT_ARM
   6218 	printf("pools ");
   6219 #endif
   6220 	/*
   6221 	 * Initialize the pmap cache
   6222 	 */
   6223 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6224 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6225 	LIST_INIT(&pmap_pmaps);
   6226 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   6227 
   6228 	/*
   6229 	 * Initialize the pv pool.
   6230 	 */
   6231 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6232 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6233 
   6234 	/*
   6235 	 * Initialize the L2 dtable pool and cache.
   6236 	 */
   6237 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6238 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6239 
   6240 	/*
   6241 	 * Initialise the L2 descriptor table pool and cache
   6242 	 */
   6243 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   6244 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   6245 	    pmap_l2ptp_ctor, NULL, NULL);
   6246 
   6247 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6248 
   6249 	cpu_dcache_wbinv_all();
   6250 }
   6251 
   6252 static bool
   6253 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6254 {
   6255 #ifdef ARM_MMU_EXTENDED
   6256 	return false;
   6257 #else
   6258 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6259 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6260 		return false;
   6261 
   6262 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6263 	int rv = 0;
   6264 
   6265 	while (va < eva) {
   6266 		/*
   6267 		 * Make sure the descriptor itself has the correct cache mode
   6268 		 */
   6269 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6270 		pd_entry_t pde = *pdep;
   6271 
   6272 		if (l1pte_section_p(pde)) {
   6273 			__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6274 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6275 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6276 				    pte_l1_s_cache_mode_pt;
   6277 				PDE_SYNC(pdep);
   6278 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6279 				    sizeof(*pdep));
   6280 				rv = 1;
   6281 			}
   6282 			return rv;
   6283 		}
   6284 		vaddr_t pa = l1pte_pa(pde);
   6285 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6286 		if (ptep == NULL)
   6287 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6288 
   6289 		ptep += l2pte_index(va);
   6290 		const pt_entry_t opte = *ptep;
   6291 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6292 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6293 			    | pte_l2_s_cache_mode_pt;
   6294 			l2pte_set(ptep, npte, opte);
   6295 			PTE_SYNC(ptep);
   6296 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6297 			rv = 1;
   6298 		}
   6299 		va += PAGE_SIZE;
   6300 	}
   6301 
   6302 	return (rv);
   6303 #endif
   6304 }
   6305 
   6306 static void
   6307 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6308 {
   6309 	vaddr_t va = *availp;
   6310 	struct l2_bucket *l2b;
   6311 
   6312 	if (ptep) {
   6313 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6314 		if (l2b == NULL)
   6315 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6316 
   6317 		if (ptep)
   6318 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6319 	}
   6320 
   6321 	*vap = va;
   6322 	*availp = va + (PAGE_SIZE * pages);
   6323 }
   6324 
   6325 void
   6326 pmap_init(void)
   6327 {
   6328 
   6329 	/*
   6330 	 * Set the available memory vars - These do not map to real memory
   6331 	 * addresses and cannot as the physical memory is fragmented.
   6332 	 * They are used by ps for %mem calculations.
   6333 	 * One could argue whether this should be the entire memory or just
   6334 	 * the memory that is useable in a user process.
   6335 	 */
   6336 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   6337 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   6338 
   6339 	/*
   6340 	 * Now we need to free enough pv_entry structures to allow us to get
   6341 	 * the kmem_map/kmem_object allocated and inited (done after this
   6342 	 * function is finished).  to do this we allocate one bootstrap page out
   6343 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6344 	 * structures.   we never free this page.
   6345 	 */
   6346 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6347 
   6348 #ifdef ARM_MMU_EXTENDED
   6349 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6350 #endif
   6351 
   6352 	pmap_initialized = true;
   6353 }
   6354 
   6355 static vaddr_t last_bootstrap_page = 0;
   6356 static void *free_bootstrap_pages = NULL;
   6357 
   6358 static void *
   6359 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6360 {
   6361 	extern void *pool_page_alloc(struct pool *, int);
   6362 	vaddr_t new_page;
   6363 	void *rv;
   6364 
   6365 	if (pmap_initialized)
   6366 		return (pool_page_alloc(pp, flags));
   6367 
   6368 	if (free_bootstrap_pages) {
   6369 		rv = free_bootstrap_pages;
   6370 		free_bootstrap_pages = *((void **)rv);
   6371 		return (rv);
   6372 	}
   6373 
   6374 	KASSERT(kernel_map != NULL);
   6375 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6376 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6377 
   6378 	KASSERT(new_page > last_bootstrap_page);
   6379 	last_bootstrap_page = new_page;
   6380 	return ((void *)new_page);
   6381 }
   6382 
   6383 static void
   6384 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6385 {
   6386 	extern void pool_page_free(struct pool *, void *);
   6387 
   6388 	if ((vaddr_t)v <= last_bootstrap_page) {
   6389 		*((void **)v) = free_bootstrap_pages;
   6390 		free_bootstrap_pages = v;
   6391 		return;
   6392 	}
   6393 
   6394 	if (pmap_initialized) {
   6395 		pool_page_free(pp, v);
   6396 		return;
   6397 	}
   6398 }
   6399 
   6400 /*
   6401  * pmap_postinit()
   6402  *
   6403  * This routine is called after the vm and kmem subsystems have been
   6404  * initialised. This allows the pmap code to perform any initialisation
   6405  * that can only be done one the memory allocation is in place.
   6406  */
   6407 void
   6408 pmap_postinit(void)
   6409 {
   6410 #ifndef ARM_MMU_EXTENDED
   6411 	extern paddr_t physical_start, physical_end;
   6412 	struct l1_ttable *l1;
   6413 	struct pglist plist;
   6414 	struct vm_page *m;
   6415 	pd_entry_t *pdep;
   6416 	vaddr_t va, eva;
   6417 	u_int loop, needed;
   6418 	int error;
   6419 #endif
   6420 
   6421 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6422 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6423 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6424 
   6425 #ifndef ARM_MMU_EXTENDED
   6426 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6427 	needed -= 1;
   6428 
   6429 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6430 
   6431 	for (loop = 0; loop < needed; loop++, l1++) {
   6432 		/* Allocate a L1 page table */
   6433 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6434 		if (va == 0)
   6435 			panic("Cannot allocate L1 KVM");
   6436 
   6437 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6438 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6439 		if (error)
   6440 			panic("Cannot allocate L1 physical pages");
   6441 
   6442 		m = TAILQ_FIRST(&plist);
   6443 		eva = va + L1_TABLE_SIZE;
   6444 		pdep = (pd_entry_t *)va;
   6445 
   6446 		while (m && va < eva) {
   6447 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6448 
   6449 			pmap_kenter_pa(va, pa,
   6450 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6451 
   6452 			va += PAGE_SIZE;
   6453 			m = TAILQ_NEXT(m, pageq.queue);
   6454 		}
   6455 
   6456 #ifdef DIAGNOSTIC
   6457 		if (m)
   6458 			panic("pmap_alloc_l1pt: pglist not empty");
   6459 #endif	/* DIAGNOSTIC */
   6460 
   6461 		pmap_init_l1(l1, pdep);
   6462 	}
   6463 
   6464 #ifdef DEBUG
   6465 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6466 	    needed);
   6467 #endif
   6468 #endif /* !ARM_MMU_EXTENDED */
   6469 }
   6470 
   6471 /*
   6472  * Note that the following routines are used by board-specific initialisation
   6473  * code to configure the initial kernel page tables.
   6474  *
   6475  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   6476  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   6477  * behaviour of the old pmap, and provides an easy migration path for
   6478  * initial bring-up of the new pmap on existing ports. Fortunately,
   6479  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   6480  * will be deprecated.
   6481  *
   6482  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   6483  * tables.
   6484  */
   6485 
   6486 /*
   6487  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6488  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6489  * find them as necessary.
   6490  *
   6491  * Note that the data on this list MUST remain valid after initarm() returns,
   6492  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   6493  */
   6494 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6495 
   6496 static vaddr_t
   6497 kernel_pt_lookup(paddr_t pa)
   6498 {
   6499 	pv_addr_t *pv;
   6500 
   6501 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6502 		if (pv->pv_pa == (pa & ~PGOFSET))
   6503 			return (pv->pv_va | (pa & PGOFSET));
   6504 	}
   6505 	return (0);
   6506 }
   6507 
   6508 /*
   6509  * pmap_map_section:
   6510  *
   6511  *	Create a single section mapping.
   6512  */
   6513 void
   6514 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6515 {
   6516 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6517 	const size_t l1slot = l1pte_index(va);
   6518 	pd_entry_t fl;
   6519 
   6520 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6521 
   6522 	switch (cache) {
   6523 	case PTE_NOCACHE:
   6524 	default:
   6525 		fl = 0;
   6526 		break;
   6527 
   6528 	case PTE_CACHE:
   6529 		fl = pte_l1_s_cache_mode;
   6530 		break;
   6531 
   6532 	case PTE_PAGETABLE:
   6533 		fl = pte_l1_s_cache_mode_pt;
   6534 		break;
   6535 	}
   6536 
   6537 	const pd_entry_t npde = L1_S_PROTO | pa |
   6538 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6539 	l1pte_setone(pdep + l1slot, npde);
   6540 	PDE_SYNC(pdep + l1slot);
   6541 }
   6542 
   6543 /*
   6544  * pmap_map_entry:
   6545  *
   6546  *	Create a single page mapping.
   6547  */
   6548 void
   6549 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6550 {
   6551 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6552 	const size_t l1slot = l1pte_index(va);
   6553 	pt_entry_t npte;
   6554 	pt_entry_t *ptep;
   6555 
   6556 	KASSERT(((va | pa) & PGOFSET) == 0);
   6557 
   6558 	switch (cache) {
   6559 	case PTE_NOCACHE:
   6560 	default:
   6561 		npte = 0;
   6562 		break;
   6563 
   6564 	case PTE_CACHE:
   6565 		npte = pte_l2_s_cache_mode;
   6566 		break;
   6567 
   6568 	case PTE_PAGETABLE:
   6569 		npte = pte_l2_s_cache_mode_pt;
   6570 		break;
   6571 	}
   6572 
   6573 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6574 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   6575 
   6576 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6577 	if (ptep == NULL)
   6578 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   6579 
   6580 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   6581 #ifdef ARM_MMU_EXTENDED
   6582 	if (prot & VM_PROT_EXECUTE) {
   6583 		npte &= ~L2_XS_XN;
   6584 	}
   6585 #endif
   6586 	ptep += l2pte_index(va);
   6587 	l2pte_set(ptep, npte, 0);
   6588 	PTE_SYNC(ptep);
   6589 }
   6590 
   6591 /*
   6592  * pmap_link_l2pt:
   6593  *
   6594  *	Link the L2 page table specified by "l2pv" into the L1
   6595  *	page table at the slot for "va".
   6596  */
   6597 void
   6598 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   6599 {
   6600 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   6601 
   6602 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   6603 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   6604 
   6605 	const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   6606 	    | l2pv->pv_pa;
   6607 
   6608 	l1pte_set(pdep, npde);
   6609 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   6610 
   6611 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   6612 }
   6613 
   6614 /*
   6615  * pmap_map_chunk:
   6616  *
   6617  *	Map a chunk of memory using the most efficient mappings
   6618  *	possible (section, large page, small page) into the
   6619  *	provided L1 and L2 tables at the specified virtual address.
   6620  */
   6621 vsize_t
   6622 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   6623     int prot, int cache)
   6624 {
   6625 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6626 	pt_entry_t f1, f2s, f2l;
   6627 	vsize_t resid;
   6628 
   6629 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   6630 
   6631 	if (l1pt == 0)
   6632 		panic("pmap_map_chunk: no L1 table provided");
   6633 
   6634 #ifdef VERBOSE_INIT_ARM
   6635 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   6636 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   6637 #endif
   6638 
   6639 	switch (cache) {
   6640 	case PTE_NOCACHE:
   6641 	default:
   6642 		f1 = 0;
   6643 		f2l = 0;
   6644 		f2s = 0;
   6645 		break;
   6646 
   6647 	case PTE_CACHE:
   6648 		f1 = pte_l1_s_cache_mode;
   6649 		f2l = pte_l2_l_cache_mode;
   6650 		f2s = pte_l2_s_cache_mode;
   6651 		break;
   6652 
   6653 	case PTE_PAGETABLE:
   6654 		f1 = pte_l1_s_cache_mode_pt;
   6655 		f2l = pte_l2_l_cache_mode_pt;
   6656 		f2s = pte_l2_s_cache_mode_pt;
   6657 		break;
   6658 	}
   6659 
   6660 	size = resid;
   6661 
   6662 	while (resid > 0) {
   6663 		const size_t l1slot = l1pte_index(va);
   6664 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   6665 		/* See if we can use a supersection mapping. */
   6666 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   6667 			/* Supersection are always domain 0 */
   6668 			const pd_entry_t npde = L1_SS_PROTO | pa
   6669 #ifdef ARM_MMU_EXTENDED_XXX
   6670 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6671 #endif
   6672 #ifdef ARM_MMU_EXTENDED
   6673 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6674 #endif
   6675 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   6676 #ifdef VERBOSE_INIT_ARM
   6677 			printf("sS");
   6678 #endif
   6679 			l1pte_set(&pdep[l1slot], npde);
   6680 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   6681 			va += L1_SS_SIZE;
   6682 			pa += L1_SS_SIZE;
   6683 			resid -= L1_SS_SIZE;
   6684 			continue;
   6685 		}
   6686 #endif
   6687 		/* See if we can use a section mapping. */
   6688 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   6689 			const pd_entry_t npde = L1_S_PROTO | pa
   6690 #ifdef ARM_MMU_EXTENDED_XXX
   6691 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6692 #endif
   6693 #ifdef ARM_MMU_EXTENDED
   6694 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6695 #endif
   6696 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   6697 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6698 #ifdef VERBOSE_INIT_ARM
   6699 			printf("S");
   6700 #endif
   6701 			l1pte_set(&pdep[l1slot], npde);
   6702 			PDE_SYNC(&pdep[l1slot]);
   6703 			va += L1_S_SIZE;
   6704 			pa += L1_S_SIZE;
   6705 			resid -= L1_S_SIZE;
   6706 			continue;
   6707 		}
   6708 
   6709 		/*
   6710 		 * Ok, we're going to use an L2 table.  Make sure
   6711 		 * one is actually in the corresponding L1 slot
   6712 		 * for the current VA.
   6713 		 */
   6714 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6715 			panic("%s: no L2 table for VA %#lx", __func__, va);
   6716 
   6717 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6718 		if (ptep == NULL)
   6719 			panic("%s: can't find L2 table for VA %#lx", __func__,
   6720 			    va);
   6721 
   6722 		ptep += l2pte_index(va);
   6723 
   6724 		/* See if we can use a L2 large page mapping. */
   6725 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   6726 			const pt_entry_t npte = L2_L_PROTO | pa
   6727 #ifdef ARM_MMU_EXTENDED_XXX
   6728 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   6729 #endif
   6730 #ifdef ARM_MMU_EXTENDED
   6731 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6732 #endif
   6733 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   6734 #ifdef VERBOSE_INIT_ARM
   6735 			printf("L");
   6736 #endif
   6737 			l2pte_set(ptep, npte, 0);
   6738 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   6739 			va += L2_L_SIZE;
   6740 			pa += L2_L_SIZE;
   6741 			resid -= L2_L_SIZE;
   6742 			continue;
   6743 		}
   6744 
   6745 		/* Use a small page mapping. */
   6746 #ifdef VERBOSE_INIT_ARM
   6747 		printf("P");
   6748 #endif
   6749 		const pt_entry_t npte = L2_S_PROTO | pa
   6750 #ifdef ARM_MMU_EXTENDED_XXX
   6751 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   6752 #endif
   6753 #ifdef ARM_MMU_EXTENDED
   6754 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6755 #endif
   6756 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   6757 		l2pte_set(ptep, npte, 0);
   6758 		PTE_SYNC(ptep);
   6759 		va += PAGE_SIZE;
   6760 		pa += PAGE_SIZE;
   6761 		resid -= PAGE_SIZE;
   6762 	}
   6763 #ifdef VERBOSE_INIT_ARM
   6764 	printf("\n");
   6765 #endif
   6766 	return (size);
   6767 }
   6768 
   6769 /********************** Static device map routines ***************************/
   6770 
   6771 static const struct pmap_devmap *pmap_devmap_table;
   6772 
   6773 /*
   6774  * Register the devmap table.  This is provided in case early console
   6775  * initialization needs to register mappings created by bootstrap code
   6776  * before pmap_devmap_bootstrap() is called.
   6777  */
   6778 void
   6779 pmap_devmap_register(const struct pmap_devmap *table)
   6780 {
   6781 
   6782 	pmap_devmap_table = table;
   6783 }
   6784 
   6785 /*
   6786  * Map all of the static regions in the devmap table, and remember
   6787  * the devmap table so other parts of the kernel can look up entries
   6788  * later.
   6789  */
   6790 void
   6791 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   6792 {
   6793 	int i;
   6794 
   6795 	pmap_devmap_table = table;
   6796 
   6797 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6798 #ifdef VERBOSE_INIT_ARM
   6799 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   6800 		    pmap_devmap_table[i].pd_pa,
   6801 		    pmap_devmap_table[i].pd_pa +
   6802 			pmap_devmap_table[i].pd_size - 1,
   6803 		    pmap_devmap_table[i].pd_va);
   6804 #endif
   6805 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   6806 		    pmap_devmap_table[i].pd_pa,
   6807 		    pmap_devmap_table[i].pd_size,
   6808 		    pmap_devmap_table[i].pd_prot,
   6809 		    pmap_devmap_table[i].pd_cache);
   6810 	}
   6811 }
   6812 
   6813 const struct pmap_devmap *
   6814 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   6815 {
   6816 	uint64_t endpa;
   6817 	int i;
   6818 
   6819 	if (pmap_devmap_table == NULL)
   6820 		return (NULL);
   6821 
   6822 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   6823 
   6824 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6825 		if (pa >= pmap_devmap_table[i].pd_pa &&
   6826 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   6827 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   6828 			return (&pmap_devmap_table[i]);
   6829 	}
   6830 
   6831 	return (NULL);
   6832 }
   6833 
   6834 const struct pmap_devmap *
   6835 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6836 {
   6837 	int i;
   6838 
   6839 	if (pmap_devmap_table == NULL)
   6840 		return (NULL);
   6841 
   6842 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6843 		if (va >= pmap_devmap_table[i].pd_va &&
   6844 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6845 				     pmap_devmap_table[i].pd_size - 1)
   6846 			return (&pmap_devmap_table[i]);
   6847 	}
   6848 
   6849 	return (NULL);
   6850 }
   6851 
   6852 /********************** PTE initialization routines **************************/
   6853 
   6854 /*
   6855  * These routines are called when the CPU type is identified to set up
   6856  * the PTE prototypes, cache modes, etc.
   6857  *
   6858  * The variables are always here, just in case modules need to reference
   6859  * them (though, they shouldn't).
   6860  */
   6861 
   6862 pt_entry_t	pte_l1_s_cache_mode;
   6863 pt_entry_t	pte_l1_s_wc_mode;
   6864 pt_entry_t	pte_l1_s_cache_mode_pt;
   6865 pt_entry_t	pte_l1_s_cache_mask;
   6866 
   6867 pt_entry_t	pte_l2_l_cache_mode;
   6868 pt_entry_t	pte_l2_l_wc_mode;
   6869 pt_entry_t	pte_l2_l_cache_mode_pt;
   6870 pt_entry_t	pte_l2_l_cache_mask;
   6871 
   6872 pt_entry_t	pte_l2_s_cache_mode;
   6873 pt_entry_t	pte_l2_s_wc_mode;
   6874 pt_entry_t	pte_l2_s_cache_mode_pt;
   6875 pt_entry_t	pte_l2_s_cache_mask;
   6876 
   6877 pt_entry_t	pte_l1_s_prot_u;
   6878 pt_entry_t	pte_l1_s_prot_w;
   6879 pt_entry_t	pte_l1_s_prot_ro;
   6880 pt_entry_t	pte_l1_s_prot_mask;
   6881 
   6882 pt_entry_t	pte_l2_s_prot_u;
   6883 pt_entry_t	pte_l2_s_prot_w;
   6884 pt_entry_t	pte_l2_s_prot_ro;
   6885 pt_entry_t	pte_l2_s_prot_mask;
   6886 
   6887 pt_entry_t	pte_l2_l_prot_u;
   6888 pt_entry_t	pte_l2_l_prot_w;
   6889 pt_entry_t	pte_l2_l_prot_ro;
   6890 pt_entry_t	pte_l2_l_prot_mask;
   6891 
   6892 pt_entry_t	pte_l1_ss_proto;
   6893 pt_entry_t	pte_l1_s_proto;
   6894 pt_entry_t	pte_l1_c_proto;
   6895 pt_entry_t	pte_l2_s_proto;
   6896 
   6897 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6898 void		(*pmap_zero_page_func)(paddr_t);
   6899 
   6900 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6901 void
   6902 pmap_pte_init_generic(void)
   6903 {
   6904 
   6905 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6906 	pte_l1_s_wc_mode = L1_S_B;
   6907 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6908 
   6909 	pte_l2_l_cache_mode = L2_B|L2_C;
   6910 	pte_l2_l_wc_mode = L2_B;
   6911 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6912 
   6913 	pte_l2_s_cache_mode = L2_B|L2_C;
   6914 	pte_l2_s_wc_mode = L2_B;
   6915 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6916 
   6917 	/*
   6918 	 * If we have a write-through cache, set B and C.  If
   6919 	 * we have a write-back cache, then we assume setting
   6920 	 * only C will make those pages write-through (except for those
   6921 	 * Cortex CPUs which can read the L1 caches).
   6922 	 */
   6923 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6924 #if ARM_MMU_V7 > 0
   6925 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6926 #endif
   6927 #if ARM_MMU_V6 > 0
   6928 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6929 #endif
   6930 	    || false) {
   6931 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6932 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6933 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6934 	} else {
   6935 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6936 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6937 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6938 	}
   6939 
   6940 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6941 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6942 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6943 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6944 
   6945 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6946 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6947 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6948 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6949 
   6950 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6951 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6952 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6953 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6954 
   6955 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6956 	pte_l1_s_proto = L1_S_PROTO_generic;
   6957 	pte_l1_c_proto = L1_C_PROTO_generic;
   6958 	pte_l2_s_proto = L2_S_PROTO_generic;
   6959 
   6960 	pmap_copy_page_func = pmap_copy_page_generic;
   6961 	pmap_zero_page_func = pmap_zero_page_generic;
   6962 }
   6963 
   6964 #if defined(CPU_ARM8)
   6965 void
   6966 pmap_pte_init_arm8(void)
   6967 {
   6968 
   6969 	/*
   6970 	 * ARM8 is compatible with generic, but we need to use
   6971 	 * the page tables uncached.
   6972 	 */
   6973 	pmap_pte_init_generic();
   6974 
   6975 	pte_l1_s_cache_mode_pt = 0;
   6976 	pte_l2_l_cache_mode_pt = 0;
   6977 	pte_l2_s_cache_mode_pt = 0;
   6978 }
   6979 #endif /* CPU_ARM8 */
   6980 
   6981 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6982 void
   6983 pmap_pte_init_arm9(void)
   6984 {
   6985 
   6986 	/*
   6987 	 * ARM9 is compatible with generic, but we want to use
   6988 	 * write-through caching for now.
   6989 	 */
   6990 	pmap_pte_init_generic();
   6991 
   6992 	pte_l1_s_cache_mode = L1_S_C;
   6993 	pte_l2_l_cache_mode = L2_C;
   6994 	pte_l2_s_cache_mode = L2_C;
   6995 
   6996 	pte_l1_s_wc_mode = L1_S_B;
   6997 	pte_l2_l_wc_mode = L2_B;
   6998 	pte_l2_s_wc_mode = L2_B;
   6999 
   7000 	pte_l1_s_cache_mode_pt = L1_S_C;
   7001 	pte_l2_l_cache_mode_pt = L2_C;
   7002 	pte_l2_s_cache_mode_pt = L2_C;
   7003 }
   7004 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   7005 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   7006 
   7007 #if defined(CPU_ARM10)
   7008 void
   7009 pmap_pte_init_arm10(void)
   7010 {
   7011 
   7012 	/*
   7013 	 * ARM10 is compatible with generic, but we want to use
   7014 	 * write-through caching for now.
   7015 	 */
   7016 	pmap_pte_init_generic();
   7017 
   7018 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   7019 	pte_l2_l_cache_mode = L2_B | L2_C;
   7020 	pte_l2_s_cache_mode = L2_B | L2_C;
   7021 
   7022 	pte_l1_s_cache_mode = L1_S_B;
   7023 	pte_l2_l_cache_mode = L2_B;
   7024 	pte_l2_s_cache_mode = L2_B;
   7025 
   7026 	pte_l1_s_cache_mode_pt = L1_S_C;
   7027 	pte_l2_l_cache_mode_pt = L2_C;
   7028 	pte_l2_s_cache_mode_pt = L2_C;
   7029 
   7030 }
   7031 #endif /* CPU_ARM10 */
   7032 
   7033 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   7034 void
   7035 pmap_pte_init_arm11(void)
   7036 {
   7037 
   7038 	/*
   7039 	 * ARM11 is compatible with generic, but we want to use
   7040 	 * write-through caching for now.
   7041 	 */
   7042 	pmap_pte_init_generic();
   7043 
   7044 	pte_l1_s_cache_mode = L1_S_C;
   7045 	pte_l2_l_cache_mode = L2_C;
   7046 	pte_l2_s_cache_mode = L2_C;
   7047 
   7048 	pte_l1_s_wc_mode = L1_S_B;
   7049 	pte_l2_l_wc_mode = L2_B;
   7050 	pte_l2_s_wc_mode = L2_B;
   7051 
   7052 	pte_l1_s_cache_mode_pt = L1_S_C;
   7053 	pte_l2_l_cache_mode_pt = L2_C;
   7054 	pte_l2_s_cache_mode_pt = L2_C;
   7055 }
   7056 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   7057 
   7058 #if ARM_MMU_SA1 == 1
   7059 void
   7060 pmap_pte_init_sa1(void)
   7061 {
   7062 
   7063 	/*
   7064 	 * The StrongARM SA-1 cache does not have a write-through
   7065 	 * mode.  So, do the generic initialization, then reset
   7066 	 * the page table cache mode to B=1,C=1, and note that
   7067 	 * the PTEs need to be sync'd.
   7068 	 */
   7069 	pmap_pte_init_generic();
   7070 
   7071 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7072 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7073 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7074 
   7075 	pmap_needs_pte_sync = 1;
   7076 }
   7077 #endif /* ARM_MMU_SA1 == 1*/
   7078 
   7079 #if ARM_MMU_XSCALE == 1
   7080 #if (ARM_NMMUS > 1)
   7081 static u_int xscale_use_minidata;
   7082 #endif
   7083 
   7084 void
   7085 pmap_pte_init_xscale(void)
   7086 {
   7087 	uint32_t auxctl;
   7088 	int write_through = 0;
   7089 
   7090 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7091 	pte_l1_s_wc_mode = L1_S_B;
   7092 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7093 
   7094 	pte_l2_l_cache_mode = L2_B|L2_C;
   7095 	pte_l2_l_wc_mode = L2_B;
   7096 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7097 
   7098 	pte_l2_s_cache_mode = L2_B|L2_C;
   7099 	pte_l2_s_wc_mode = L2_B;
   7100 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7101 
   7102 	pte_l1_s_cache_mode_pt = L1_S_C;
   7103 	pte_l2_l_cache_mode_pt = L2_C;
   7104 	pte_l2_s_cache_mode_pt = L2_C;
   7105 
   7106 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7107 	/*
   7108 	 * The XScale core has an enhanced mode where writes that
   7109 	 * miss the cache cause a cache line to be allocated.  This
   7110 	 * is significantly faster than the traditional, write-through
   7111 	 * behavior of this case.
   7112 	 */
   7113 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7114 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7115 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7116 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7117 
   7118 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7119 	/*
   7120 	 * Some versions of the XScale core have various bugs in
   7121 	 * their cache units, the work-around for which is to run
   7122 	 * the cache in write-through mode.  Unfortunately, this
   7123 	 * has a major (negative) impact on performance.  So, we
   7124 	 * go ahead and run fast-and-loose, in the hopes that we
   7125 	 * don't line up the planets in a way that will trip the
   7126 	 * bugs.
   7127 	 *
   7128 	 * However, we give you the option to be slow-but-correct.
   7129 	 */
   7130 	write_through = 1;
   7131 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7132 	/* force write back cache mode */
   7133 	write_through = 0;
   7134 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7135 	/*
   7136 	 * Intel PXA2[15]0 processors are known to have a bug in
   7137 	 * write-back cache on revision 4 and earlier (stepping
   7138 	 * A[01] and B[012]).  Fixed for C0 and later.
   7139 	 */
   7140 	{
   7141 		uint32_t id, type;
   7142 
   7143 		id = cpufunc_id();
   7144 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7145 
   7146 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7147 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7148 				/* write through for stepping A0-1 and B0-2 */
   7149 				write_through = 1;
   7150 			}
   7151 		}
   7152 	}
   7153 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7154 
   7155 	if (write_through) {
   7156 		pte_l1_s_cache_mode = L1_S_C;
   7157 		pte_l2_l_cache_mode = L2_C;
   7158 		pte_l2_s_cache_mode = L2_C;
   7159 	}
   7160 
   7161 #if (ARM_NMMUS > 1)
   7162 	xscale_use_minidata = 1;
   7163 #endif
   7164 
   7165 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7166 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7167 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7168 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7169 
   7170 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7171 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7172 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7173 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7174 
   7175 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7176 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7177 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7178 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7179 
   7180 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7181 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7182 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7183 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7184 
   7185 	pmap_copy_page_func = pmap_copy_page_xscale;
   7186 	pmap_zero_page_func = pmap_zero_page_xscale;
   7187 
   7188 	/*
   7189 	 * Disable ECC protection of page table access, for now.
   7190 	 */
   7191 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   7192 	auxctl &= ~XSCALE_AUXCTL_P;
   7193 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   7194 }
   7195 
   7196 /*
   7197  * xscale_setup_minidata:
   7198  *
   7199  *	Set up the mini-data cache clean area.  We require the
   7200  *	caller to allocate the right amount of physically and
   7201  *	virtually contiguous space.
   7202  */
   7203 void
   7204 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7205 {
   7206 	extern vaddr_t xscale_minidata_clean_addr;
   7207 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   7208 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7209 	vsize_t size;
   7210 	uint32_t auxctl;
   7211 
   7212 	xscale_minidata_clean_addr = va;
   7213 
   7214 	/* Round it to page size. */
   7215 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7216 
   7217 	for (; size != 0;
   7218 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7219 		const size_t l1slot = l1pte_index(va);
   7220 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7221 		if (ptep == NULL)
   7222 			panic("xscale_setup_minidata: can't find L2 table for "
   7223 			    "VA 0x%08lx", va);
   7224 
   7225 		ptep += l2pte_index(va);
   7226 		pt_entry_t opte = *ptep;
   7227 		l2pte_set(ptep,
   7228 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7229 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7230 	}
   7231 
   7232 	/*
   7233 	 * Configure the mini-data cache for write-back with
   7234 	 * read/write-allocate.
   7235 	 *
   7236 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7237 	 * make sure it contains no valid data!  In order to do that,
   7238 	 * we must issue a global data cache invalidate command!
   7239 	 *
   7240 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7241 	 * THIS IS VERY IMPORTANT!
   7242 	 */
   7243 
   7244 	/* Invalidate data and mini-data. */
   7245 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7246 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   7247 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7248 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   7249 }
   7250 
   7251 /*
   7252  * Change the PTEs for the specified kernel mappings such that they
   7253  * will use the mini data cache instead of the main data cache.
   7254  */
   7255 void
   7256 pmap_uarea(vaddr_t va)
   7257 {
   7258 	vaddr_t next_bucket, eva;
   7259 
   7260 #if (ARM_NMMUS > 1)
   7261 	if (xscale_use_minidata == 0)
   7262 		return;
   7263 #endif
   7264 
   7265 	eva = va + USPACE;
   7266 
   7267 	while (va < eva) {
   7268 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7269 		if (next_bucket > eva)
   7270 			next_bucket = eva;
   7271 
   7272 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7273 		KDASSERT(l2b != NULL);
   7274 
   7275 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7276 		pt_entry_t *ptep = sptep;
   7277 
   7278 		while (va < next_bucket) {
   7279 			const pt_entry_t opte = *ptep;
   7280 			if (!l2pte_minidata_p(opte)) {
   7281 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7282 				cpu_tlb_flushD_SE(va);
   7283 				l2pte_set(ptep, opte & ~L2_B, opte);
   7284 			}
   7285 			ptep += PAGE_SIZE / L2_S_SIZE;
   7286 			va += PAGE_SIZE;
   7287 		}
   7288 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7289 	}
   7290 	cpu_cpwait();
   7291 }
   7292 #endif /* ARM_MMU_XSCALE == 1 */
   7293 
   7294 
   7295 #if defined(CPU_ARM11MPCORE)
   7296 
   7297 void
   7298 pmap_pte_init_arm11mpcore(void)
   7299 {
   7300 
   7301 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   7302 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7303 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7304 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7305 	/* use extended small page (without APn, with TEX) */
   7306 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7307 #else
   7308 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7309 #endif
   7310 
   7311 	/* write-back, write-allocate */
   7312 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7313 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7314 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7315 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7316 #else
   7317 	/* no TEX. read-allocate */
   7318 	pte_l2_s_cache_mode = L2_C | L2_B;
   7319 #endif
   7320 	/*
   7321 	 * write-back, write-allocate for page tables.
   7322 	 */
   7323 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7324 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7325 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7326 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7327 #else
   7328 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7329 #endif
   7330 
   7331 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7332 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7333 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7334 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7335 
   7336 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7337 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7338 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7339 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7340 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7341 
   7342 #else
   7343 	/* with AP[0..3] */
   7344 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7345 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7346 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7347 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7348 #endif
   7349 
   7350 #ifdef	ARM11MPCORE_COMPAT_MMU
   7351 	/* with AP[0..3] */
   7352 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7353 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7354 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7355 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7356 
   7357 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7358 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7359 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7360 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7361 #else
   7362 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7363 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7364 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7365 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7366 
   7367 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7368 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7369 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7370 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7371 #endif
   7372 
   7373 	pmap_copy_page_func = pmap_copy_page_generic;
   7374 	pmap_zero_page_func = pmap_zero_page_generic;
   7375 	pmap_needs_pte_sync = 1;
   7376 }
   7377 #endif	/* CPU_ARM11MPCORE */
   7378 
   7379 
   7380 #if ARM_MMU_V7 == 1
   7381 void
   7382 pmap_pte_init_armv7(void)
   7383 {
   7384 	/*
   7385 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7386 	 * AP field is zero, that now means "no access" rather than
   7387 	 * read-only. The prototypes are a little different because of
   7388 	 * the XN bit.
   7389 	 */
   7390 	pmap_pte_init_generic();
   7391 
   7392 	pmap_needs_pte_sync = 1;
   7393 
   7394 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7395 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7396 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7397 
   7398 	/*
   7399 	 * If the core support coherent walk then updates to translation tables
   7400 	 * do not require a clean to the point of unification to ensure
   7401 	 * visibility by subsequent translation table walks.  That means we can
   7402 	 * map everything shareable and cached and the right thing will happen.
   7403 	 */
   7404         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7405 		pmap_needs_pte_sync = 0;
   7406 
   7407 		/*
   7408 		 * write-back, no write-allocate, shareable for normal pages.
   7409 		 */
   7410 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7411 		pte_l2_l_cache_mode |= L2_XS_S;
   7412 		pte_l2_s_cache_mode |= L2_XS_S;
   7413 	}
   7414 
   7415 	/*
   7416 	 * Page tables are just all other memory.  We can use write-back since
   7417 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7418 	 */
   7419 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7420 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7421 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7422 
   7423 	/*
   7424 	 * Check the Memory Model Features to see if this CPU supports
   7425 	 * the TLBIASID coproc op.
   7426 	 */
   7427 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7428 		arm_has_tlbiasid_p = true;
   7429 	}
   7430 
   7431 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7432 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7433 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7434 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7435 
   7436 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7437 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7438 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7439 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7440 
   7441 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7442 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7443 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7444 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7445 
   7446 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7447 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7448 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7449 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7450 
   7451 }
   7452 #endif /* ARM_MMU_V7 */
   7453 
   7454 /*
   7455  * return the PA of the current L1 table, for use when handling a crash dump
   7456  */
   7457 uint32_t
   7458 pmap_kernel_L1_addr(void)
   7459 {
   7460 #ifdef ARM_MMU_EXTENDED
   7461 	return pmap_kernel()->pm_l1_pa;
   7462 #else
   7463 	return pmap_kernel()->pm_l1->l1_physaddr;
   7464 #endif
   7465 }
   7466 
   7467 #if defined(DDB)
   7468 /*
   7469  * A couple of ddb-callable functions for dumping pmaps
   7470  */
   7471 void pmap_dump_all(void);
   7472 void pmap_dump(pmap_t);
   7473 
   7474 void
   7475 pmap_dump_all(void)
   7476 {
   7477 	pmap_t pm;
   7478 
   7479 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   7480 		if (pm == pmap_kernel())
   7481 			continue;
   7482 		pmap_dump(pm);
   7483 		printf("\n");
   7484 	}
   7485 }
   7486 
   7487 static pt_entry_t ncptes[64];
   7488 static void pmap_dump_ncpg(pmap_t);
   7489 
   7490 void
   7491 pmap_dump(pmap_t pm)
   7492 {
   7493 	struct l2_dtable *l2;
   7494 	struct l2_bucket *l2b;
   7495 	pt_entry_t *ptep, pte;
   7496 	vaddr_t l2_va, l2b_va, va;
   7497 	int i, j, k, occ, rows = 0;
   7498 
   7499 	if (pm == pmap_kernel())
   7500 		printf("pmap_kernel (%p): ", pm);
   7501 	else
   7502 		printf("user pmap (%p): ", pm);
   7503 
   7504 #ifdef ARM_MMU_EXTENDED
   7505 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7506 #else
   7507 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7508 #endif
   7509 
   7510 	l2_va = 0;
   7511 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7512 		l2 = pm->pm_l2[i];
   7513 
   7514 		if (l2 == NULL || l2->l2_occupancy == 0)
   7515 			continue;
   7516 
   7517 		l2b_va = l2_va;
   7518 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7519 			l2b = &l2->l2_bucket[j];
   7520 
   7521 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7522 				continue;
   7523 
   7524 			ptep = l2b->l2b_kva;
   7525 
   7526 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7527 				;
   7528 
   7529 			k &= ~63;
   7530 			occ = l2b->l2b_occupancy;
   7531 			va = l2b_va + (k * 4096);
   7532 			for (; k < 256; k++, va += 0x1000) {
   7533 				char ch = ' ';
   7534 				if ((k % 64) == 0) {
   7535 					if ((rows % 8) == 0) {
   7536 						printf(
   7537 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7538 					}
   7539 					printf("%08lx: ", va);
   7540 				}
   7541 
   7542 				ncptes[k & 63] = 0;
   7543 				pte = ptep[k];
   7544 				if (pte == 0) {
   7545 					ch = '.';
   7546 				} else {
   7547 					occ--;
   7548 					switch (pte & 0x0c) {
   7549 					case 0x00:
   7550 						ch = 'D'; /* No cache No buff */
   7551 						break;
   7552 					case 0x04:
   7553 						ch = 'B'; /* No cache buff */
   7554 						break;
   7555 					case 0x08:
   7556 						if (pte & 0x40)
   7557 							ch = 'm';
   7558 						else
   7559 						   ch = 'C'; /* Cache No buff */
   7560 						break;
   7561 					case 0x0c:
   7562 						ch = 'F'; /* Cache Buff */
   7563 						break;
   7564 					}
   7565 
   7566 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   7567 						ch += 0x20;
   7568 
   7569 					if ((pte & 0xc) == 0)
   7570 						ncptes[k & 63] = pte;
   7571 				}
   7572 
   7573 				if ((k % 64) == 63) {
   7574 					rows++;
   7575 					printf("%c\n", ch);
   7576 					pmap_dump_ncpg(pm);
   7577 					if (occ == 0)
   7578 						break;
   7579 				} else
   7580 					printf("%c", ch);
   7581 			}
   7582 		}
   7583 	}
   7584 }
   7585 
   7586 static void
   7587 pmap_dump_ncpg(pmap_t pm)
   7588 {
   7589 	struct vm_page *pg;
   7590 	struct vm_page_md *md;
   7591 	struct pv_entry *pv;
   7592 	int i;
   7593 
   7594 	for (i = 0; i < 63; i++) {
   7595 		if (ncptes[i] == 0)
   7596 			continue;
   7597 
   7598 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   7599 		if (pg == NULL)
   7600 			continue;
   7601 		md = VM_PAGE_TO_MD(pg);
   7602 
   7603 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   7604 		    VM_PAGE_TO_PHYS(pg),
   7605 		    md->krw_mappings, md->kro_mappings,
   7606 		    md->urw_mappings, md->uro_mappings);
   7607 
   7608 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   7609 			printf("   %c va 0x%08lx, flags 0x%x\n",
   7610 			    (pm == pv->pv_pmap) ? '*' : ' ',
   7611 			    pv->pv_va, pv->pv_flags);
   7612 		}
   7613 	}
   7614 }
   7615 #endif
   7616 
   7617 #ifdef PMAP_STEAL_MEMORY
   7618 void
   7619 pmap_boot_pageadd(pv_addr_t *newpv)
   7620 {
   7621 	pv_addr_t *pv, *npv;
   7622 
   7623 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   7624 		if (newpv->pv_pa < pv->pv_va) {
   7625 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   7626 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   7627 				newpv->pv_size += pv->pv_size;
   7628 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   7629 			}
   7630 			pv = NULL;
   7631 		} else {
   7632 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   7633 			     pv = npv) {
   7634 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   7635 				KASSERT(pv->pv_pa < newpv->pv_pa);
   7636 				if (newpv->pv_pa > npv->pv_pa)
   7637 					continue;
   7638 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   7639 					pv->pv_size += newpv->pv_size;
   7640 					return;
   7641 				}
   7642 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   7643 					break;
   7644 				newpv->pv_size += npv->pv_size;
   7645 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7646 				SLIST_REMOVE_AFTER(newpv, pv_list);
   7647 				return;
   7648 			}
   7649 		}
   7650 	}
   7651 
   7652 	if (pv) {
   7653 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7654 	} else {
   7655 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   7656 	}
   7657 }
   7658 
   7659 void
   7660 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   7661 	pv_addr_t *rpv)
   7662 {
   7663 	pv_addr_t *pv, **pvp;
   7664 	struct vm_physseg *ps;
   7665 	size_t i;
   7666 
   7667 	KASSERT(amount & PGOFSET);
   7668 	KASSERT((mask & PGOFSET) == 0);
   7669 	KASSERT((match & PGOFSET) == 0);
   7670 	KASSERT(amount != 0);
   7671 
   7672 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7673 	     (pv = *pvp) != NULL;
   7674 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7675 		pv_addr_t *newpv;
   7676 		psize_t off;
   7677 		/*
   7678 		 * If this entry is too small to satify the request...
   7679 		 */
   7680 		KASSERT(pv->pv_size > 0);
   7681 		if (pv->pv_size < amount)
   7682 			continue;
   7683 
   7684 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   7685 			if (((pv->pv_pa + off) & mask) == match
   7686 			    && off + amount <= pv->pv_size)
   7687 				break;
   7688 		}
   7689 		if (off > mask)
   7690 			continue;
   7691 
   7692 		rpv->pv_va = pv->pv_va + off;
   7693 		rpv->pv_pa = pv->pv_pa + off;
   7694 		rpv->pv_size = amount;
   7695 		pv->pv_size -= amount;
   7696 		if (pv->pv_size == 0) {
   7697 			KASSERT(off == 0);
   7698 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7699 			*pvp = SLIST_NEXT(pv, pv_list);
   7700 		} else if (off == 0) {
   7701 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7702 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7703 			*newpv = *pv;
   7704 			newpv->pv_pa += amount;
   7705 			newpv->pv_va += amount;
   7706 			*pvp = newpv;
   7707 		} else if (off < pv->pv_size) {
   7708 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7709 			*newpv = *pv;
   7710 			newpv->pv_size -= off;
   7711 			newpv->pv_pa += off + amount;
   7712 			newpv->pv_va += off + amount;
   7713 
   7714 			SLIST_NEXT(pv, pv_list) = newpv;
   7715 			pv->pv_size = off;
   7716 		} else {
   7717 			KASSERT((vaddr_t) pv != rpv->pv_va);
   7718 		}
   7719 		memset((void *)rpv->pv_va, 0, amount);
   7720 		return;
   7721 	}
   7722 
   7723 	if (vm_nphysseg == 0)
   7724 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   7725 
   7726 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7727 	     (pv = *pvp) != NULL;
   7728 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7729 		if (SLIST_NEXT(pv, pv_list) == NULL)
   7730 			break;
   7731 	}
   7732 	KASSERT(mask == 0);
   7733 	for (i = 0; i < vm_nphysseg; i++) {
   7734 		ps = VM_PHYSMEM_PTR(i);
   7735 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   7736 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   7737 			rpv->pv_va = pv->pv_va;
   7738 			rpv->pv_pa = pv->pv_pa;
   7739 			rpv->pv_size = amount;
   7740 			*pvp = NULL;
   7741 			pmap_map_chunk(kernel_l1pt.pv_va,
   7742 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   7743 			     ptoa(ps->avail_start),
   7744 			     amount - pv->pv_size,
   7745 			     VM_PROT_READ|VM_PROT_WRITE,
   7746 			     PTE_CACHE);
   7747 			ps->avail_start += atop(amount - pv->pv_size);
   7748 			/*
   7749 			 * If we consumed the entire physseg, remove it.
   7750 			 */
   7751 			if (ps->avail_start == ps->avail_end) {
   7752 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   7753 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   7754 			}
   7755 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   7756 			return;
   7757 		}
   7758 	}
   7759 
   7760 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   7761 }
   7762 
   7763 vaddr_t
   7764 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   7765 {
   7766 	pv_addr_t pv;
   7767 
   7768 	pmap_boot_pagealloc(size, 0, 0, &pv);
   7769 
   7770 	return pv.pv_va;
   7771 }
   7772 #endif /* PMAP_STEAL_MEMORY */
   7773 
   7774 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   7775 {
   7776 	sysctl_createv(clog, 0, NULL, NULL,
   7777 			CTLFLAG_PERMANENT,
   7778 			CTLTYPE_NODE, "machdep", NULL,
   7779 			NULL, 0, NULL, 0,
   7780 			CTL_MACHDEP, CTL_EOL);
   7781 
   7782 	sysctl_createv(clog, 0, NULL, NULL,
   7783 			CTLFLAG_PERMANENT,
   7784 			CTLTYPE_INT, "kmpages",
   7785 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   7786 			NULL, 0, &pmap_kmpages, 0,
   7787 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   7788 }
   7789 
   7790 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   7791 struct vm_page *
   7792 arm_pmap_alloc_poolpage(int flags)
   7793 {
   7794 	/*
   7795 	 * On some systems, only some pages may be "coherent" for dma and we
   7796 	 * want to prefer those for pool pages (think mbufs) but fallback to
   7797 	 * any page if none is available.  But we can only fallback if we
   7798 	 * aren't direct mapping memory or all of memory can be direct-mapped.
   7799 	 * If that isn't true, pool changes can only come from direct-mapped
   7800 	 * memory.
   7801 	 */
   7802 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   7803 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   7804 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(ARM_MMU_EXTENDED)
   7805 		    (pmap_directbase < KERNEL_BASE
   7806 			? UVM_PGA_STRAT_ONLY
   7807 			: UVM_PGA_STRAT_FALLBACK),
   7808 #else
   7809 		    UVM_PGA_STRAT_FALLBACK,
   7810 #endif
   7811 		    arm_poolpage_vmfreelist);
   7812 	}
   7813 
   7814 	return uvm_pagealloc(NULL, 0, NULL, flags);
   7815 }
   7816 #endif
   7817 
   7818 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   7819 void
   7820 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   7821 {
   7822         /* nothing */
   7823 }
   7824 
   7825 int
   7826 pic_ipi_shootdown(void *arg)
   7827 {
   7828 #if PMAP_NEED_TLB_SHOOTDOWN
   7829 	pmap_tlb_shootdown_process();
   7830 #endif
   7831 	return 1;
   7832 }
   7833 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   7834 
   7835 
   7836 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   7837 vaddr_t
   7838 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   7839 {
   7840 	bool ok = false;
   7841 	if (physical_start <= pa && pa < physical_end) {
   7842 #ifdef ARM_MMU_EXTENDED
   7843 		const vaddr_t newva = pmap_directbase + pa - physical_start;
   7844 		if (newva >= KERNEL_BASE) {
   7845 			va = newva;
   7846 			ok = true;
   7847 		}
   7848 #else
   7849 		va = KERNEL_BASE + pa - physical_start;
   7850 		ok = true;
   7851 #endif
   7852 	}
   7853 	KASSERT(ok_p);
   7854 	*ok_p = ok;
   7855 	return va;
   7856 }
   7857 
   7858 vaddr_t
   7859 pmap_map_poolpage(paddr_t pa)
   7860 {
   7861 	bool ok __diagused;
   7862 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   7863 	KASSERT(ok);
   7864 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   7865 	if (arm_cache_prefer_mask != 0) {
   7866 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   7867 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   7868 		pmap_acquire_page_lock(md);
   7869 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   7870 		pmap_release_page_lock(md);
   7871 	}
   7872 #endif
   7873 	return va;
   7874 }
   7875 
   7876 paddr_t
   7877 pmap_unmap_poolpage(vaddr_t va)
   7878 {
   7879 	KASSERT(va >= KERNEL_BASE);
   7880 #if defined(ARM_MMU_EXTENDED)
   7881 	return va - pmap_directbase + physical_start;
   7882 #else
   7883 #ifdef PMAP_CACHE_VIVT
   7884 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   7885 #endif
   7886         return va - KERNEL_BASE + physical_start;
   7887 #endif
   7888 }
   7889 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   7890