Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.32
      1 /*	$NetBSD: pmap.c,v 1.32 2001/11/22 18:24:43 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Richard Earnshaw
      5  * Copyright (c) 2001 Christopher Gilbert
      6  * All rights reserved.
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. The name of the company nor the name of the author may be used to
     14  *    endorse or promote products derived from this software without specific
     15  *    prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     21  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     23  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 
     30 /*-
     31  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     32  * All rights reserved.
     33  *
     34  * This code is derived from software contributed to The NetBSD Foundation
     35  * by Charles M. Hannum.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *        This product includes software developed by the NetBSD
     48  *        Foundation, Inc. and its contributors.
     49  * 4. Neither the name of The NetBSD Foundation nor the names of its
     50  *    contributors may be used to endorse or promote products derived
     51  *    from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 /*
     67  * Copyright (c) 1994-1998 Mark Brinicombe.
     68  * Copyright (c) 1994 Brini.
     69  * All rights reserved.
     70  *
     71  * This code is derived from software written for Brini by Mark Brinicombe
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by Mark Brinicombe.
     84  * 4. The name of the author may not be used to endorse or promote products
     85  *    derived from this software without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     88  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     89  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     90  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     91  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     92  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     93  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     94  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     95  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     96  *
     97  * RiscBSD kernel project
     98  *
     99  * pmap.c
    100  *
    101  * Machine dependant vm stuff
    102  *
    103  * Created      : 20/09/94
    104  */
    105 
    106 /*
    107  * Performance improvements, UVM changes, overhauls and part-rewrites
    108  * were contributed by Neil A. Carson <neil (at) causality.com>.
    109  */
    110 
    111 /*
    112  * The dram block info is currently referenced from the bootconfig.
    113  * This should be placed in a separate structure.
    114  */
    115 
    116 /*
    117  * Special compilation symbols
    118  * PMAP_DEBUG		- Build in pmap_debug_level code
    119  */
    120 
    121 /* Include header files */
    122 
    123 #include "opt_pmap_debug.h"
    124 #include "opt_ddb.h"
    125 
    126 #include <sys/types.h>
    127 #include <sys/param.h>
    128 #include <sys/kernel.h>
    129 #include <sys/systm.h>
    130 #include <sys/proc.h>
    131 #include <sys/malloc.h>
    132 #include <sys/user.h>
    133 #include <sys/pool.h>
    134 #include <sys/cdefs.h>
    135 
    136 #include <uvm/uvm.h>
    137 
    138 #include <machine/bootconfig.h>
    139 #include <machine/bus.h>
    140 #include <machine/pmap.h>
    141 #include <machine/pcb.h>
    142 #include <machine/param.h>
    143 #include <arm/arm32/katelib.h>
    144 
    145 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.32 2001/11/22 18:24:43 thorpej Exp $");
    146 #ifdef PMAP_DEBUG
    147 #define	PDEBUG(_lev_,_stat_) \
    148 	if (pmap_debug_level >= (_lev_)) \
    149         	((_stat_))
    150 int pmap_debug_level = -2;
    151 
    152 /*
    153  * for switching to potentially finer grained debugging
    154  */
    155 #define	PDB_FOLLOW	0x0001
    156 #define	PDB_INIT	0x0002
    157 #define	PDB_ENTER	0x0004
    158 #define	PDB_REMOVE	0x0008
    159 #define	PDB_CREATE	0x0010
    160 #define	PDB_PTPAGE	0x0020
    161 #define	PDB_ASN		0x0040
    162 #define	PDB_BITS	0x0080
    163 #define	PDB_COLLECT	0x0100
    164 #define	PDB_PROTECT	0x0200
    165 #define	PDB_BOOTSTRAP	0x1000
    166 #define	PDB_PARANOIA	0x2000
    167 #define	PDB_WIRING	0x4000
    168 #define	PDB_PVDUMP	0x8000
    169 
    170 int debugmap = 0;
    171 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    172 #define	NPDEBUG(_lev_,_stat_) \
    173 	if (pmapdebug & (_lev_)) \
    174         	((_stat_))
    175 
    176 #else	/* PMAP_DEBUG */
    177 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    178 #define PDEBUG(_lev_,_stat_) /* Nothing */
    179 #endif	/* PMAP_DEBUG */
    180 
    181 struct pmap     kernel_pmap_store;
    182 
    183 /*
    184  * pool that pmap structures are allocated from
    185  */
    186 
    187 struct pool pmap_pmap_pool;
    188 
    189 pagehook_t page_hook0;
    190 pagehook_t page_hook1;
    191 char *memhook;
    192 pt_entry_t msgbufpte;
    193 extern caddr_t msgbufaddr;
    194 
    195 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    196 /*
    197  * locking data structures
    198  */
    199 
    200 static struct lock pmap_main_lock;
    201 static struct simplelock pvalloc_lock;
    202 #ifdef LOCKDEBUG
    203 #define PMAP_MAP_TO_HEAD_LOCK() \
    204      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    205 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    206      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    207 
    208 #define PMAP_HEAD_TO_MAP_LOCK() \
    209      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    210 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    211      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    212 #else
    213 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    214 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    215 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    216 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    217 #endif /* LOCKDEBUG */
    218 
    219 /*
    220  * pv_page management structures: locked by pvalloc_lock
    221  */
    222 
    223 TAILQ_HEAD(pv_pagelist, pv_page);
    224 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    225 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    226 static int pv_nfpvents;			/* # of free pv entries */
    227 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    228 static vaddr_t pv_cachedva;		/* cached VA for later use */
    229 
    230 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    231 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    232 					/* high water mark */
    233 
    234 /*
    235  * local prototypes
    236  */
    237 
    238 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    239 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    240 #define ALLOCPV_NEED	0	/* need PV now */
    241 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    242 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    243 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    244 static void		 pmap_enter_pv __P((struct pv_head *,
    245 					    struct pv_entry *, struct pmap *,
    246 					    vaddr_t, struct vm_page *, int));
    247 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    248 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    249 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    250 static void		 pmap_free_pvpage __P((void));
    251 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    252 static struct pv_entry	*pmap_remove_pv __P((struct pv_head *, struct pmap *,
    253 			vaddr_t));
    254 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    255 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    256 
    257 vsize_t npages;
    258 
    259 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
    260 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
    261 __inline static void pmap_clearbit __P((paddr_t, unsigned int));
    262 __inline static boolean_t pmap_testbit __P((paddr_t, unsigned int));
    263 
    264 extern paddr_t physical_start;
    265 extern paddr_t physical_freestart;
    266 extern paddr_t physical_end;
    267 extern paddr_t physical_freeend;
    268 extern unsigned int free_pages;
    269 extern int max_processes;
    270 
    271 vaddr_t virtual_start;
    272 vaddr_t virtual_end;
    273 
    274 vaddr_t avail_start;
    275 vaddr_t avail_end;
    276 
    277 extern pv_addr_t systempage;
    278 
    279 #define ALLOC_PAGE_HOOK(x, s) \
    280 	x.va = virtual_start; \
    281 	x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
    282 	virtual_start += s;
    283 
    284 /* Variables used by the L1 page table queue code */
    285 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    286 struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    287 int l1pt_static_queue_count;		/* items in the static l1 queue */
    288 int l1pt_static_create_count;		/* static l1 items created */
    289 struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    290 int l1pt_queue_count;			/* items in the l1 queue */
    291 int l1pt_create_count;			/* stat - L1's create count */
    292 int l1pt_reuse_count;			/* stat - L1's reused count */
    293 
    294 /* Local function prototypes (not used outside this file) */
    295 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
    296 void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
    297     paddr_t pa, unsigned int flags));
    298 void pmap_copy_on_write __P((paddr_t pa));
    299 void pmap_pinit __P((struct pmap *));
    300 void pmap_freepagedir __P((struct pmap *));
    301 
    302 /* Other function prototypes */
    303 extern void bzero_page __P((vaddr_t));
    304 extern void bcopy_page __P((vaddr_t, vaddr_t));
    305 
    306 struct l1pt *pmap_alloc_l1pt __P((void));
    307 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    308      vaddr_t l2pa, boolean_t));
    309 
    310 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    311 static void pmap_unmap_ptes __P((struct pmap *));
    312 
    313 __inline static void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
    314     pt_entry_t *, boolean_t));
    315 static void pmap_vac_me_kpmap __P((struct pmap *, struct pv_head *,
    316     pt_entry_t *, boolean_t));
    317 static void pmap_vac_me_user __P((struct pmap *, struct pv_head *,
    318     pt_entry_t *, boolean_t));
    319 
    320 /*
    321  * Cache enable bits in PTE to use on pages that are cacheable.
    322  * On most machines this is cacheable/bufferable, but on some, eg arm10, we
    323  * can chose between write-through and write-back cacheing.
    324  */
    325 pt_entry_t pte_cache_mode = (PT_C | PT_B);
    326 
    327 /*
    328  * real definition of pv_entry.
    329  */
    330 
    331 struct pv_entry {
    332 	struct pv_entry *pv_next;       /* next pv_entry */
    333 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    334 	vaddr_t         pv_va;          /* virtual address for mapping */
    335 	int             pv_flags;       /* flags */
    336 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    337 };
    338 
    339 /*
    340  * pv_entrys are dynamically allocated in chunks from a single page.
    341  * we keep track of how many pv_entrys are in use for each page and
    342  * we can free pv_entry pages if needed.  there is one lock for the
    343  * entire allocation system.
    344  */
    345 
    346 struct pv_page_info {
    347 	TAILQ_ENTRY(pv_page) pvpi_list;
    348 	struct pv_entry *pvpi_pvfree;
    349 	int pvpi_nfree;
    350 };
    351 
    352 /*
    353  * number of pv_entry's in a pv_page
    354  * (note: won't work on systems where NPBG isn't a constant)
    355  */
    356 
    357 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    358 			sizeof(struct pv_entry))
    359 
    360 /*
    361  * a pv_page: where pv_entrys are allocated from
    362  */
    363 
    364 struct pv_page {
    365 	struct pv_page_info pvinfo;
    366 	struct pv_entry pvents[PVE_PER_PVPAGE];
    367 };
    368 
    369 #ifdef MYCROFT_HACK
    370 int mycroft_hack = 0;
    371 #endif
    372 
    373 /* Function to set the debug level of the pmap code */
    374 
    375 #ifdef PMAP_DEBUG
    376 void
    377 pmap_debug(level)
    378 	int level;
    379 {
    380 	pmap_debug_level = level;
    381 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    382 }
    383 #endif	/* PMAP_DEBUG */
    384 
    385 __inline static boolean_t
    386 pmap_is_curpmap(struct pmap *pmap)
    387 {
    388     if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
    389 	    || (pmap == pmap_kernel()))
    390 	return (TRUE);
    391     return (FALSE);
    392 }
    393 #include "isadma.h"
    394 
    395 #if NISADMA > 0
    396 /*
    397  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    398  * pages into the system, memory intersects with any of these ranges,
    399  * the intersecting memory will be loaded into a lower-priority free list.
    400  */
    401 bus_dma_segment_t *pmap_isa_dma_ranges;
    402 int pmap_isa_dma_nranges;
    403 
    404 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    405 	    paddr_t *, psize_t *));
    406 
    407 /*
    408  * Check if a memory range intersects with an ISA DMA range, and
    409  * return the page-rounded intersection if it does.  The intersection
    410  * will be placed on a lower-priority free list.
    411  */
    412 boolean_t
    413 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    414 	paddr_t pa;
    415 	psize_t size;
    416 	paddr_t *pap;
    417 	psize_t *sizep;
    418 {
    419 	bus_dma_segment_t *ds;
    420 	int i;
    421 
    422 	if (pmap_isa_dma_ranges == NULL)
    423 		return (FALSE);
    424 
    425 	for (i = 0, ds = pmap_isa_dma_ranges;
    426 	     i < pmap_isa_dma_nranges; i++, ds++) {
    427 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    428 			/*
    429 			 * Beginning of region intersects with this range.
    430 			 */
    431 			*pap = trunc_page(pa);
    432 			*sizep = round_page(min(pa + size,
    433 			    ds->ds_addr + ds->ds_len) - pa);
    434 			return (TRUE);
    435 		}
    436 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    437 			/*
    438 			 * End of region intersects with this range.
    439 			 */
    440 			*pap = trunc_page(ds->ds_addr);
    441 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    442 			    ds->ds_len));
    443 			return (TRUE);
    444 		}
    445 	}
    446 
    447 	/*
    448 	 * No intersection found.
    449 	 */
    450 	return (FALSE);
    451 }
    452 #endif /* NISADMA > 0 */
    453 
    454 /*
    455  * p v _ e n t r y   f u n c t i o n s
    456  */
    457 
    458 /*
    459  * pv_entry allocation functions:
    460  *   the main pv_entry allocation functions are:
    461  *     pmap_alloc_pv: allocate a pv_entry structure
    462  *     pmap_free_pv: free one pv_entry
    463  *     pmap_free_pvs: free a list of pv_entrys
    464  *
    465  * the rest are helper functions
    466  */
    467 
    468 /*
    469  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    470  * => we lock pvalloc_lock
    471  * => if we fail, we call out to pmap_alloc_pvpage
    472  * => 3 modes:
    473  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    474  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    475  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    476  *			one now
    477  *
    478  * "try" is for optional functions like pmap_copy().
    479  */
    480 
    481 __inline static struct pv_entry *
    482 pmap_alloc_pv(pmap, mode)
    483 	struct pmap *pmap;
    484 	int mode;
    485 {
    486 	struct pv_page *pvpage;
    487 	struct pv_entry *pv;
    488 
    489 	simple_lock(&pvalloc_lock);
    490 
    491 	if (pv_freepages.tqh_first != NULL) {
    492 		pvpage = pv_freepages.tqh_first;
    493 		pvpage->pvinfo.pvpi_nfree--;
    494 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    495 			/* nothing left in this one? */
    496 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    497 		}
    498 		pv = pvpage->pvinfo.pvpi_pvfree;
    499 #ifdef DIAGNOSTIC
    500 		if (pv == NULL)
    501 			panic("pmap_alloc_pv: pvpi_nfree off");
    502 #endif
    503 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    504 		pv_nfpvents--;  /* took one from pool */
    505 	} else {
    506 		pv = NULL;		/* need more of them */
    507 	}
    508 
    509 	/*
    510 	 * if below low water mark or we didn't get a pv_entry we try and
    511 	 * create more pv_entrys ...
    512 	 */
    513 
    514 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    515 		if (pv == NULL)
    516 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    517 					       mode : ALLOCPV_NEED);
    518 		else
    519 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    520 	}
    521 
    522 	simple_unlock(&pvalloc_lock);
    523 	return(pv);
    524 }
    525 
    526 /*
    527  * pmap_alloc_pvpage: maybe allocate a new pvpage
    528  *
    529  * if need_entry is false: try and allocate a new pv_page
    530  * if need_entry is true: try and allocate a new pv_page and return a
    531  *	new pv_entry from it.   if we are unable to allocate a pv_page
    532  *	we make a last ditch effort to steal a pv_page from some other
    533  *	mapping.    if that fails, we panic...
    534  *
    535  * => we assume that the caller holds pvalloc_lock
    536  */
    537 
    538 static struct pv_entry *
    539 pmap_alloc_pvpage(pmap, mode)
    540 	struct pmap *pmap;
    541 	int mode;
    542 {
    543 	struct vm_page *pg;
    544 	struct pv_page *pvpage;
    545 	struct pv_entry *pv;
    546 	int s;
    547 
    548 	/*
    549 	 * if we need_entry and we've got unused pv_pages, allocate from there
    550 	 */
    551 
    552 	if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
    553 
    554 		/* move it to pv_freepages list */
    555 		pvpage = pv_unusedpgs.tqh_first;
    556 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    557 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    558 
    559 		/* allocate a pv_entry */
    560 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    561 		pv = pvpage->pvinfo.pvpi_pvfree;
    562 #ifdef DIAGNOSTIC
    563 		if (pv == NULL)
    564 			panic("pmap_alloc_pvpage: pvpi_nfree off");
    565 #endif
    566 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    567 
    568 		pv_nfpvents--;  /* took one from pool */
    569 		return(pv);
    570 	}
    571 
    572 	/*
    573 	 *  see if we've got a cached unmapped VA that we can map a page in.
    574 	 * if not, try to allocate one.
    575 	 */
    576 
    577 
    578 	if (pv_cachedva == 0) {
    579 		s = splvm();
    580 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    581 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    582 		splx(s);
    583 		if (pv_cachedva == 0) {
    584 			return (NULL);
    585 		}
    586 	}
    587 
    588 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    589 	    UVM_PGA_USERESERVE);
    590 	if (pg)
    591 		pg->flags &= ~PG_BUSY;	/* never busy */
    592 
    593 	if (pg == NULL)
    594 		return (NULL);
    595 
    596 	/*
    597 	 * add a mapping for our new pv_page and free its entrys (save one!)
    598 	 *
    599 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    600 	 * pmap is already locked!  (...but entering the mapping is safe...)
    601 	 */
    602 
    603 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    604 	pmap_update(pmap_kernel());
    605 	pvpage = (struct pv_page *) pv_cachedva;
    606 	pv_cachedva = 0;
    607 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    608 }
    609 
    610 /*
    611  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    612  *
    613  * => caller must hold pvalloc_lock
    614  * => if need_entry is true, we allocate and return one pv_entry
    615  */
    616 
    617 static struct pv_entry *
    618 pmap_add_pvpage(pvp, need_entry)
    619 	struct pv_page *pvp;
    620 	boolean_t need_entry;
    621 {
    622 	int tofree, lcv;
    623 
    624 	/* do we need to return one? */
    625 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    626 
    627 	pvp->pvinfo.pvpi_pvfree = NULL;
    628 	pvp->pvinfo.pvpi_nfree = tofree;
    629 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    630 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    631 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    632 	}
    633 	if (need_entry)
    634 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    635 	else
    636 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    637 	pv_nfpvents += tofree;
    638 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    639 }
    640 
    641 /*
    642  * pmap_free_pv_doit: actually free a pv_entry
    643  *
    644  * => do not call this directly!  instead use either
    645  *    1. pmap_free_pv ==> free a single pv_entry
    646  *    2. pmap_free_pvs => free a list of pv_entrys
    647  * => we must be holding pvalloc_lock
    648  */
    649 
    650 __inline static void
    651 pmap_free_pv_doit(pv)
    652 	struct pv_entry *pv;
    653 {
    654 	struct pv_page *pvp;
    655 
    656 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    657 	pv_nfpvents++;
    658 	pvp->pvinfo.pvpi_nfree++;
    659 
    660 	/* nfree == 1 => fully allocated page just became partly allocated */
    661 	if (pvp->pvinfo.pvpi_nfree == 1) {
    662 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    663 	}
    664 
    665 	/* free it */
    666 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    667 	pvp->pvinfo.pvpi_pvfree = pv;
    668 
    669 	/*
    670 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    671 	 */
    672 
    673 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    674 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    675 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    676 	}
    677 }
    678 
    679 /*
    680  * pmap_free_pv: free a single pv_entry
    681  *
    682  * => we gain the pvalloc_lock
    683  */
    684 
    685 __inline static void
    686 pmap_free_pv(pmap, pv)
    687 	struct pmap *pmap;
    688 	struct pv_entry *pv;
    689 {
    690 	simple_lock(&pvalloc_lock);
    691 	pmap_free_pv_doit(pv);
    692 
    693 	/*
    694 	 * Can't free the PV page if the PV entries were associated with
    695 	 * the kernel pmap; the pmap is already locked.
    696 	 */
    697 	if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
    698 	    pmap != pmap_kernel())
    699 		pmap_free_pvpage();
    700 
    701 	simple_unlock(&pvalloc_lock);
    702 }
    703 
    704 /*
    705  * pmap_free_pvs: free a list of pv_entrys
    706  *
    707  * => we gain the pvalloc_lock
    708  */
    709 
    710 __inline static void
    711 pmap_free_pvs(pmap, pvs)
    712 	struct pmap *pmap;
    713 	struct pv_entry *pvs;
    714 {
    715 	struct pv_entry *nextpv;
    716 
    717 	simple_lock(&pvalloc_lock);
    718 
    719 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    720 		nextpv = pvs->pv_next;
    721 		pmap_free_pv_doit(pvs);
    722 	}
    723 
    724 	/*
    725 	 * Can't free the PV page if the PV entries were associated with
    726 	 * the kernel pmap; the pmap is already locked.
    727 	 */
    728 	if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
    729 	    pmap != pmap_kernel())
    730 		pmap_free_pvpage();
    731 
    732 	simple_unlock(&pvalloc_lock);
    733 }
    734 
    735 
    736 /*
    737  * pmap_free_pvpage: try and free an unused pv_page structure
    738  *
    739  * => assume caller is holding the pvalloc_lock and that
    740  *	there is a page on the pv_unusedpgs list
    741  * => if we can't get a lock on the kmem_map we try again later
    742  * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
    743  *	that if we can lock the kmem_map then we are not already
    744  *	holding kmem_object's lock.
    745  */
    746 
    747 static void
    748 pmap_free_pvpage()
    749 {
    750 	int s;
    751 	struct vm_map *map;
    752 	struct vm_map_entry *dead_entries;
    753 	struct pv_page *pvp;
    754 
    755 	s = splvm(); /* protect kmem_map */
    756 
    757 	pvp = pv_unusedpgs.tqh_first;
    758 
    759 	/*
    760 	 * note: watch out for pv_initpage which is allocated out of
    761 	 * kernel_map rather than kmem_map.
    762 	 */
    763 	if (pvp == pv_initpage)
    764 		map = kernel_map;
    765 	else
    766 		map = kmem_map;
    767 
    768 	if (vm_map_lock_try(map)) {
    769 
    770 		/* remove pvp from pv_unusedpgs */
    771 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    772 
    773 		/* unmap the page */
    774 		dead_entries = NULL;
    775 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    776 		    &dead_entries);
    777 		vm_map_unlock(map);
    778 
    779 		if (dead_entries != NULL)
    780 			uvm_unmap_detach(dead_entries, 0);
    781 
    782 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    783 	}
    784 
    785 	if (pvp == pv_initpage)
    786 		/* no more initpage, we've freed it */
    787 		pv_initpage = NULL;
    788 
    789 	splx(s);
    790 }
    791 
    792 /*
    793  * main pv_entry manipulation functions:
    794  *   pmap_enter_pv: enter a mapping onto a pv_head list
    795  *   pmap_remove_pv: remove a mappiing from a pv_head list
    796  *
    797  * NOTE: pmap_enter_pv expects to lock the pvh itself
    798  *       pmap_remove_pv expects te caller to lock the pvh before calling
    799  */
    800 
    801 /*
    802  * pmap_enter_pv: enter a mapping onto a pv_head lst
    803  *
    804  * => caller should hold the proper lock on pmap_main_lock
    805  * => caller should have pmap locked
    806  * => we will gain the lock on the pv_head and allocate the new pv_entry
    807  * => caller should adjust ptp's wire_count before calling
    808  * => caller should not adjust pmap's wire_count
    809  */
    810 
    811 __inline static void
    812 pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
    813 	struct pv_head *pvh;
    814 	struct pv_entry *pve;	/* preallocated pve for us to use */
    815 	struct pmap *pmap;
    816 	vaddr_t va;
    817 	struct vm_page *ptp;	/* PTP in pmap that maps this VA */
    818 	int flags;
    819 {
    820 	pve->pv_pmap = pmap;
    821 	pve->pv_va = va;
    822 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    823 	pve->pv_flags = flags;
    824 	simple_lock(&pvh->pvh_lock);		/* lock pv_head */
    825 	pve->pv_next = pvh->pvh_list;		/* add to ... */
    826 	pvh->pvh_list = pve;			/* ... locked list */
    827 	simple_unlock(&pvh->pvh_lock);		/* unlock, done! */
    828 	if (pve->pv_flags & PT_W)
    829 		++pmap->pm_stats.wired_count;
    830 }
    831 
    832 /*
    833  * pmap_remove_pv: try to remove a mapping from a pv_list
    834  *
    835  * => caller should hold proper lock on pmap_main_lock
    836  * => pmap should be locked
    837  * => caller should hold lock on pv_head [so that attrs can be adjusted]
    838  * => caller should adjust ptp's wire_count and free PTP if needed
    839  * => caller should NOT adjust pmap's wire_count
    840  * => we return the removed pve
    841  */
    842 
    843 __inline static struct pv_entry *
    844 pmap_remove_pv(pvh, pmap, va)
    845 	struct pv_head *pvh;
    846 	struct pmap *pmap;
    847 	vaddr_t va;
    848 {
    849 	struct pv_entry *pve, **prevptr;
    850 
    851 	prevptr = &pvh->pvh_list;		/* previous pv_entry pointer */
    852 	pve = *prevptr;
    853 	while (pve) {
    854 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    855 			*prevptr = pve->pv_next;		/* remove it! */
    856 			if (pve->pv_flags & PT_W)
    857 			    --pmap->pm_stats.wired_count;
    858 			break;
    859 		}
    860 		prevptr = &pve->pv_next;		/* previous pointer */
    861 		pve = pve->pv_next;			/* advance */
    862 	}
    863 	return(pve);				/* return removed pve */
    864 }
    865 
    866 /*
    867  *
    868  * pmap_modify_pv: Update pv flags
    869  *
    870  * => caller should hold lock on pv_head [so that attrs can be adjusted]
    871  * => caller should NOT adjust pmap's wire_count
    872  * => caller must call pmap_vac_me_harder() if writable status of a page
    873  *    may have changed.
    874  * => we return the old flags
    875  *
    876  * Modify a physical-virtual mapping in the pv table
    877  */
    878 
    879 /*__inline */ u_int
    880 pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
    881 	struct pmap *pmap;
    882 	vaddr_t va;
    883 	struct pv_head *pvh;
    884 	u_int bic_mask;
    885 	u_int eor_mask;
    886 {
    887 	struct pv_entry *npv;
    888 	u_int flags, oflags;
    889 
    890 	/*
    891 	 * There is at least one VA mapping this page.
    892 	 */
    893 
    894 	for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
    895 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    896 			oflags = npv->pv_flags;
    897 			npv->pv_flags = flags =
    898 			    ((oflags & ~bic_mask) ^ eor_mask);
    899 			if ((flags ^ oflags) & PT_W) {
    900 				if (flags & PT_W)
    901 					++pmap->pm_stats.wired_count;
    902 				else
    903 					--pmap->pm_stats.wired_count;
    904 			}
    905 			return (oflags);
    906 		}
    907 	}
    908 	return (0);
    909 }
    910 
    911 /*
    912  * Map the specified level 2 pagetable into the level 1 page table for
    913  * the given pmap to cover a chunk of virtual address space starting from the
    914  * address specified.
    915  */
    916 static /*__inline*/ void
    917 pmap_map_in_l1(pmap, va, l2pa, selfref)
    918 	struct pmap *pmap;
    919 	vaddr_t va, l2pa;
    920 	boolean_t selfref;
    921 {
    922 	vaddr_t ptva;
    923 
    924 	/* Calculate the index into the L1 page table. */
    925 	ptva = (va >> PDSHIFT) & ~3;
    926 
    927 	PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    928 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    929 
    930 	/* Map page table into the L1. */
    931 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    932 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    933 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    934 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    935 
    936 	PDEBUG(0, printf("pt self reference %lx in %lx\n",
    937 	    L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    938 
    939 	/* Map the page table into the page table area. */
    940 	if (selfref) {
    941 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    942 			L2_PTE_NC_NB(l2pa, AP_KRW);
    943 	}
    944 	/* XXX should be a purge */
    945 /*	cpu_tlb_flushD();*/
    946 }
    947 
    948 #if 0
    949 static /*__inline*/ void
    950 pmap_unmap_in_l1(pmap, va)
    951 	struct pmap *pmap;
    952 	vaddr_t va;
    953 {
    954 	vaddr_t ptva;
    955 
    956 	/* Calculate the index into the L1 page table. */
    957 	ptva = (va >> PDSHIFT) & ~3;
    958 
    959 	/* Unmap page table from the L1. */
    960 	pmap->pm_pdir[ptva + 0] = 0;
    961 	pmap->pm_pdir[ptva + 1] = 0;
    962 	pmap->pm_pdir[ptva + 2] = 0;
    963 	pmap->pm_pdir[ptva + 3] = 0;
    964 
    965 	/* Unmap the page table from the page table area. */
    966 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    967 
    968 	/* XXX should be a purge */
    969 /*	cpu_tlb_flushD();*/
    970 }
    971 #endif
    972 
    973 /*
    974  *	Used to map a range of physical addresses into kernel
    975  *	virtual address space.
    976  *
    977  *	For now, VM is already on, we only need to map the
    978  *	specified memory.
    979  */
    980 vaddr_t
    981 pmap_map(va, spa, epa, prot)
    982 	vaddr_t va, spa, epa;
    983 	int prot;
    984 {
    985 	while (spa < epa) {
    986 		pmap_kenter_pa(va, spa, prot);
    987 		va += NBPG;
    988 		spa += NBPG;
    989 	}
    990 	pmap_update(pmap_kernel());
    991 	return(va);
    992 }
    993 
    994 
    995 /*
    996  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    997  *
    998  * bootstrap the pmap system. This is called from initarm and allows
    999  * the pmap system to initailise any structures it requires.
   1000  *
   1001  * Currently this sets up the kernel_pmap that is statically allocated
   1002  * and also allocated virtual addresses for certain page hooks.
   1003  * Currently the only one page hook is allocated that is used
   1004  * to zero physical pages of memory.
   1005  * It also initialises the start and end address of the kernel data space.
   1006  */
   1007 extern paddr_t physical_freestart;
   1008 extern paddr_t physical_freeend;
   1009 
   1010 char *boot_head;
   1011 
   1012 void
   1013 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
   1014 	pd_entry_t *kernel_l1pt;
   1015 	pv_addr_t kernel_ptpt;
   1016 {
   1017 	int loop;
   1018 	paddr_t start, end;
   1019 #if NISADMA > 0
   1020 	paddr_t istart;
   1021 	psize_t isize;
   1022 #endif
   1023 
   1024 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1025 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1026 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1027 	simple_lock_init(&pmap_kernel()->pm_lock);
   1028 	pmap_kernel()->pm_obj.pgops = NULL;
   1029 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1030 	pmap_kernel()->pm_obj.uo_npages = 0;
   1031 	pmap_kernel()->pm_obj.uo_refs = 1;
   1032 
   1033 	/*
   1034 	 * Initialize PAGE_SIZE-dependent variables.
   1035 	 */
   1036 	uvm_setpagesize();
   1037 
   1038 	npages = 0;
   1039 	loop = 0;
   1040 	while (loop < bootconfig.dramblocks) {
   1041 		start = (paddr_t)bootconfig.dram[loop].address;
   1042 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1043 		if (start < physical_freestart)
   1044 			start = physical_freestart;
   1045 		if (end > physical_freeend)
   1046 			end = physical_freeend;
   1047 #if 0
   1048 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1049 #endif
   1050 #if NISADMA > 0
   1051 		if (pmap_isa_dma_range_intersect(start, end - start,
   1052 		    &istart, &isize)) {
   1053 			/*
   1054 			 * Place the pages that intersect with the
   1055 			 * ISA DMA range onto the ISA DMA free list.
   1056 			 */
   1057 #if 0
   1058 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1059 			    istart + isize - 1);
   1060 #endif
   1061 			uvm_page_physload(atop(istart),
   1062 			    atop(istart + isize), atop(istart),
   1063 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1064 			npages += atop(istart + isize) - atop(istart);
   1065 
   1066 			/*
   1067 			 * Load the pieces that come before
   1068 			 * the intersection into the default
   1069 			 * free list.
   1070 			 */
   1071 			if (start < istart) {
   1072 #if 0
   1073 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1074 				    start, istart - 1);
   1075 #endif
   1076 				uvm_page_physload(atop(start),
   1077 				    atop(istart), atop(start),
   1078 				    atop(istart), VM_FREELIST_DEFAULT);
   1079 				npages += atop(istart) - atop(start);
   1080 			}
   1081 
   1082 			/*
   1083 			 * Load the pieces that come after
   1084 			 * the intersection into the default
   1085 			 * free list.
   1086 			 */
   1087 			if ((istart + isize) < end) {
   1088 #if 0
   1089 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1090 				    (istart + isize), end - 1);
   1091 #endif
   1092 				uvm_page_physload(atop(istart + isize),
   1093 				    atop(end), atop(istart + isize),
   1094 				    atop(end), VM_FREELIST_DEFAULT);
   1095 				npages += atop(end) - atop(istart + isize);
   1096 			}
   1097 		} else {
   1098 			uvm_page_physload(atop(start), atop(end),
   1099 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1100 			npages += atop(end) - atop(start);
   1101 		}
   1102 #else	/* NISADMA > 0 */
   1103 		uvm_page_physload(atop(start), atop(end),
   1104 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1105 		npages += atop(end) - atop(start);
   1106 #endif /* NISADMA > 0 */
   1107 		++loop;
   1108 	}
   1109 
   1110 #ifdef MYCROFT_HACK
   1111 	printf("npages = %ld\n", npages);
   1112 #endif
   1113 
   1114 	virtual_start = KERNEL_VM_BASE;
   1115 	virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
   1116 
   1117 	ALLOC_PAGE_HOOK(page_hook0, NBPG);
   1118 	ALLOC_PAGE_HOOK(page_hook1, NBPG);
   1119 
   1120 	/*
   1121 	 * The mem special device needs a virtual hook but we don't
   1122 	 * need a pte
   1123 	 */
   1124 	memhook = (char *)virtual_start;
   1125 	virtual_start += NBPG;
   1126 
   1127 	msgbufaddr = (caddr_t)virtual_start;
   1128 	msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
   1129 	virtual_start += round_page(MSGBUFSIZE);
   1130 
   1131 	/*
   1132 	 * init the static-global locks and global lists.
   1133 	 */
   1134 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1135 	simple_lock_init(&pvalloc_lock);
   1136 	TAILQ_INIT(&pv_freepages);
   1137 	TAILQ_INIT(&pv_unusedpgs);
   1138 
   1139 	/*
   1140 	 * compute the number of pages we have and then allocate RAM
   1141 	 * for each pages' pv_head and saved attributes.
   1142 	 */
   1143 	{
   1144 	       	int npages, lcv;
   1145 		vsize_t s;
   1146 
   1147 		npages = 0;
   1148 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
   1149 			npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
   1150 		s = (vsize_t) (sizeof(struct pv_head) * npages +
   1151 				sizeof(char) * npages);
   1152 		s = round_page(s); /* round up */
   1153 		boot_head = (char *)uvm_pageboot_alloc(s);
   1154 		bzero((char *)boot_head, s);
   1155 		if (boot_head == 0)
   1156 			panic("pmap_init: unable to allocate pv_heads");
   1157 	}
   1158 
   1159 	/*
   1160 	 * initialize the pmap pool.
   1161 	 */
   1162 
   1163 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1164 		  0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
   1165 
   1166 	cpu_cache_cleanD();
   1167 }
   1168 
   1169 /*
   1170  * void pmap_init(void)
   1171  *
   1172  * Initialize the pmap module.
   1173  * Called by vm_init() in vm/vm_init.c in order to initialise
   1174  * any structures that the pmap system needs to map virtual memory.
   1175  */
   1176 
   1177 extern int physmem;
   1178 
   1179 void
   1180 pmap_init()
   1181 {
   1182 	int lcv, i;
   1183 
   1184 #ifdef MYCROFT_HACK
   1185 	printf("physmem = %d\n", physmem);
   1186 #endif
   1187 
   1188 	/*
   1189 	 * Set the available memory vars - These do not map to real memory
   1190 	 * addresses and cannot as the physical memory is fragmented.
   1191 	 * They are used by ps for %mem calculations.
   1192 	 * One could argue whether this should be the entire memory or just
   1193 	 * the memory that is useable in a user process.
   1194 	 */
   1195 	avail_start = 0;
   1196 	avail_end = physmem * NBPG;
   1197 
   1198 	/* allocate pv_head stuff first */
   1199 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1200 		vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
   1201 		boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
   1202 				 (vm_physmem[lcv].end - vm_physmem[lcv].start));
   1203 		for (i = 0;
   1204 		     i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
   1205 			simple_lock_init(
   1206 			    &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
   1207 		}
   1208 	}
   1209 
   1210 	/* now allocate attrs */
   1211 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1212 		vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
   1213 		boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
   1214 				 (vm_physmem[lcv].end - vm_physmem[lcv].start));
   1215 	}
   1216 
   1217 	/*
   1218 	 * now we need to free enough pv_entry structures to allow us to get
   1219 	 * the kmem_map/kmem_object allocated and inited (done after this
   1220 	 * function is finished).  to do this we allocate one bootstrap page out
   1221 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1222 	 * structures.   we never free this page.
   1223 	 */
   1224 
   1225 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1226 	if (pv_initpage == NULL)
   1227 		panic("pmap_init: pv_initpage");
   1228 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1229 	pv_nfpvents = 0;
   1230 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1231 
   1232 #ifdef MYCROFT_HACK
   1233 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1234 		printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
   1235 		    lcv,
   1236 		    vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
   1237 		    vm_physmem[lcv].start, vm_physmem[lcv].end);
   1238 	}
   1239 #endif
   1240 	pmap_initialized = TRUE;
   1241 
   1242 	/* Initialise our L1 page table queues and counters */
   1243 	SIMPLEQ_INIT(&l1pt_static_queue);
   1244 	l1pt_static_queue_count = 0;
   1245 	l1pt_static_create_count = 0;
   1246 	SIMPLEQ_INIT(&l1pt_queue);
   1247 	l1pt_queue_count = 0;
   1248 	l1pt_create_count = 0;
   1249 	l1pt_reuse_count = 0;
   1250 }
   1251 
   1252 /*
   1253  * pmap_postinit()
   1254  *
   1255  * This routine is called after the vm and kmem subsystems have been
   1256  * initialised. This allows the pmap code to perform any initialisation
   1257  * that can only be done one the memory allocation is in place.
   1258  */
   1259 
   1260 void
   1261 pmap_postinit()
   1262 {
   1263 	int loop;
   1264 	struct l1pt *pt;
   1265 
   1266 #ifdef PMAP_STATIC_L1S
   1267 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1268 #else	/* PMAP_STATIC_L1S */
   1269 	for (loop = 0; loop < max_processes; ++loop) {
   1270 #endif	/* PMAP_STATIC_L1S */
   1271 		/* Allocate a L1 page table */
   1272 		pt = pmap_alloc_l1pt();
   1273 		if (!pt)
   1274 			panic("Cannot allocate static L1 page tables\n");
   1275 
   1276 		/* Clean it */
   1277 		bzero((void *)pt->pt_va, PD_SIZE);
   1278 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1279 		/* Add the page table to the queue */
   1280 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1281 		++l1pt_static_queue_count;
   1282 		++l1pt_static_create_count;
   1283 	}
   1284 }
   1285 
   1286 
   1287 /*
   1288  * Create and return a physical map.
   1289  *
   1290  * If the size specified for the map is zero, the map is an actual physical
   1291  * map, and may be referenced by the hardware.
   1292  *
   1293  * If the size specified is non-zero, the map will be used in software only,
   1294  * and is bounded by that size.
   1295  */
   1296 
   1297 pmap_t
   1298 pmap_create()
   1299 {
   1300 	struct pmap *pmap;
   1301 
   1302 	/*
   1303 	 * Fetch pmap entry from the pool
   1304 	 */
   1305 
   1306 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1307 	/* XXX is this really needed! */
   1308 	memset(pmap, 0, sizeof(*pmap));
   1309 
   1310 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1311 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1312 	TAILQ_INIT(&pmap->pm_obj.memq);
   1313 	pmap->pm_obj.uo_npages = 0;
   1314 	pmap->pm_obj.uo_refs = 1;
   1315 	pmap->pm_stats.wired_count = 0;
   1316 	pmap->pm_stats.resident_count = 1;
   1317 
   1318 	/* Now init the machine part of the pmap */
   1319 	pmap_pinit(pmap);
   1320 	return(pmap);
   1321 }
   1322 
   1323 /*
   1324  * pmap_alloc_l1pt()
   1325  *
   1326  * This routine allocates physical and virtual memory for a L1 page table
   1327  * and wires it.
   1328  * A l1pt structure is returned to describe the allocated page table.
   1329  *
   1330  * This routine is allowed to fail if the required memory cannot be allocated.
   1331  * In this case NULL is returned.
   1332  */
   1333 
   1334 struct l1pt *
   1335 pmap_alloc_l1pt(void)
   1336 {
   1337 	paddr_t pa;
   1338 	vaddr_t va;
   1339 	struct l1pt *pt;
   1340 	int error;
   1341 	struct vm_page *m;
   1342 	pt_entry_t *ptes;
   1343 
   1344 	/* Allocate virtual address space for the L1 page table */
   1345 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1346 	if (va == 0) {
   1347 #ifdef DIAGNOSTIC
   1348 		PDEBUG(0,
   1349 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1350 #endif	/* DIAGNOSTIC */
   1351 		return(NULL);
   1352 	}
   1353 
   1354 	/* Allocate memory for the l1pt structure */
   1355 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1356 
   1357 	/*
   1358 	 * Allocate pages from the VM system.
   1359 	 */
   1360 	TAILQ_INIT(&pt->pt_plist);
   1361 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1362 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1363 	if (error) {
   1364 #ifdef DIAGNOSTIC
   1365 		PDEBUG(0,
   1366 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1367 		    error));
   1368 #endif	/* DIAGNOSTIC */
   1369 		/* Release the resources we already have claimed */
   1370 		free(pt, M_VMPMAP);
   1371 		uvm_km_free(kernel_map, va, PD_SIZE);
   1372 		return(NULL);
   1373 	}
   1374 
   1375 	/* Map our physical pages into our virtual space */
   1376 	pt->pt_va = va;
   1377 	m = pt->pt_plist.tqh_first;
   1378 	ptes = pmap_map_ptes(pmap_kernel());
   1379 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1380 		pa = VM_PAGE_TO_PHYS(m);
   1381 
   1382 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1383 
   1384 		/* Revoke cacheability and bufferability */
   1385 		/* XXX should be done better than this */
   1386 		ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
   1387 
   1388 		va += NBPG;
   1389 		m = m->pageq.tqe_next;
   1390 	}
   1391 	pmap_unmap_ptes(pmap_kernel());
   1392 	pmap_update(pmap_kernel());
   1393 
   1394 #ifdef DIAGNOSTIC
   1395 	if (m)
   1396 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1397 #endif	/* DIAGNOSTIC */
   1398 
   1399 	pt->pt_flags = 0;
   1400 	return(pt);
   1401 }
   1402 
   1403 /*
   1404  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1405  */
   1406 void
   1407 pmap_free_l1pt(pt)
   1408 	struct l1pt *pt;
   1409 {
   1410 	/* Separate the physical memory for the virtual space */
   1411 	pmap_kremove(pt->pt_va, PD_SIZE);
   1412 	pmap_update(pmap_kernel());
   1413 
   1414 	/* Return the physical memory */
   1415 	uvm_pglistfree(&pt->pt_plist);
   1416 
   1417 	/* Free the virtual space */
   1418 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1419 
   1420 	/* Free the l1pt structure */
   1421 	free(pt, M_VMPMAP);
   1422 }
   1423 
   1424 /*
   1425  * Allocate a page directory.
   1426  * This routine will either allocate a new page directory from the pool
   1427  * of L1 page tables currently held by the kernel or it will allocate
   1428  * a new one via pmap_alloc_l1pt().
   1429  * It will then initialise the l1 page table for use.
   1430  */
   1431 int
   1432 pmap_allocpagedir(pmap)
   1433 	struct pmap *pmap;
   1434 {
   1435 	paddr_t pa;
   1436 	struct l1pt *pt;
   1437 	pt_entry_t *pte;
   1438 
   1439 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1440 
   1441 	/* Do we have any spare L1's lying around ? */
   1442 	if (l1pt_static_queue_count) {
   1443 		--l1pt_static_queue_count;
   1444 		pt = l1pt_static_queue.sqh_first;
   1445 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1446 	} else if (l1pt_queue_count) {
   1447 		--l1pt_queue_count;
   1448 		pt = l1pt_queue.sqh_first;
   1449 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1450 		++l1pt_reuse_count;
   1451 	} else {
   1452 		pt = pmap_alloc_l1pt();
   1453 		if (!pt)
   1454 			return(ENOMEM);
   1455 		++l1pt_create_count;
   1456 	}
   1457 
   1458 	/* Store the pointer to the l1 descriptor in the pmap. */
   1459 	pmap->pm_l1pt = pt;
   1460 
   1461 	/* Get the physical address of the start of the l1 */
   1462 	pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
   1463 
   1464 	/* Store the virtual address of the l1 in the pmap. */
   1465 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1466 
   1467 	/* Clean the L1 if it is dirty */
   1468 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1469 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1470 
   1471 	/* Do we already have the kernel mappings ? */
   1472 	if (!(pt->pt_flags & PTFLAG_KPT)) {
   1473 		/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
   1474 
   1475 		bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1476 		    (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1477 		    KERNEL_PD_SIZE);
   1478 		pt->pt_flags |= PTFLAG_KPT;
   1479 	}
   1480 
   1481 	/* Allocate a page table to map all the page tables for this pmap */
   1482 
   1483 #ifdef DIAGNOSTIC
   1484 	if (pmap->pm_vptpt) {
   1485 		/* XXX What if we have one already ? */
   1486 		panic("pmap_allocpagedir: have pt already\n");
   1487 	}
   1488 #endif	/* DIAGNOSTIC */
   1489 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1490 	if (pmap->pm_vptpt == 0) {
   1491 		pmap_freepagedir(pmap);
   1492 		return(ENOMEM);
   1493 	}
   1494 
   1495 	(void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
   1496 	pmap->pm_pptpt &= PG_FRAME;
   1497 	/* Revoke cacheability and bufferability */
   1498 	/* XXX should be done better than this */
   1499 	pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
   1500 	*pte = *pte & ~(PT_C | PT_B);
   1501 
   1502 	/* Wire in this page table */
   1503 	pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
   1504 
   1505 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1506 
   1507 	/*
   1508 	 * Map the kernel page tables for 0xf0000000 +
   1509 	 * into the page table used to map the
   1510 	 * pmap's page tables
   1511 	 */
   1512 	bcopy((char *)(PROCESS_PAGE_TBLS_BASE
   1513 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
   1514 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1515 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1516 	    (KERNEL_PD_SIZE >> 2));
   1517 
   1518 	return(0);
   1519 }
   1520 
   1521 
   1522 /*
   1523  * Initialize a preallocated and zeroed pmap structure,
   1524  * such as one in a vmspace structure.
   1525  */
   1526 
   1527 void
   1528 pmap_pinit(pmap)
   1529 	struct pmap *pmap;
   1530 {
   1531 	int backoff = 6;
   1532 	int retry = 10;
   1533 
   1534 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1535 
   1536 	/* Keep looping until we succeed in allocating a page directory */
   1537 	while (pmap_allocpagedir(pmap) != 0) {
   1538 		/*
   1539 		 * Ok we failed to allocate a suitable block of memory for an
   1540 		 * L1 page table. This means that either:
   1541 		 * 1. 16KB of virtual address space could not be allocated
   1542 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1543 		 *    could not be allocated.
   1544 		 *
   1545 		 * Since we cannot fail we will sleep for a while and try
   1546 		 * again.
   1547 		 *
   1548 		 * Searching for a suitable L1 PT is expensive:
   1549 		 * to avoid hogging the system when memory is really
   1550 		 * scarce, use an exponential back-off so that
   1551 		 * eventually we won't retry more than once every 8
   1552 		 * seconds.  This should allow other processes to run
   1553 		 * to completion and free up resources.
   1554 		 */
   1555 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1556 		    NULL);
   1557 		if (--retry == 0) {
   1558 			retry = 10;
   1559 			if (backoff)
   1560 				--backoff;
   1561 		}
   1562 	}
   1563 
   1564 	/* Map zero page for the pmap. This will also map the L2 for it */
   1565 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1566 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1567 	pmap_update(pmap);
   1568 }
   1569 
   1570 
   1571 void
   1572 pmap_freepagedir(pmap)
   1573 	struct pmap *pmap;
   1574 {
   1575 	/* Free the memory used for the page table mapping */
   1576 	if (pmap->pm_vptpt != 0)
   1577 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1578 
   1579 	/* junk the L1 page table */
   1580 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1581 		/* Add the page table to the queue */
   1582 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1583 		++l1pt_static_queue_count;
   1584 	} else if (l1pt_queue_count < 8) {
   1585 		/* Add the page table to the queue */
   1586 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1587 		++l1pt_queue_count;
   1588 	} else
   1589 		pmap_free_l1pt(pmap->pm_l1pt);
   1590 }
   1591 
   1592 
   1593 /*
   1594  * Retire the given physical map from service.
   1595  * Should only be called if the map contains no valid mappings.
   1596  */
   1597 
   1598 void
   1599 pmap_destroy(pmap)
   1600 	struct pmap *pmap;
   1601 {
   1602 	struct vm_page *page;
   1603 	int count;
   1604 
   1605 	if (pmap == NULL)
   1606 		return;
   1607 
   1608 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1609 
   1610 	/*
   1611 	 * Drop reference count
   1612 	 */
   1613 	simple_lock(&pmap->pm_obj.vmobjlock);
   1614 	count = --pmap->pm_obj.uo_refs;
   1615 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1616 	if (count > 0) {
   1617 		return;
   1618 	}
   1619 
   1620 	/*
   1621 	 * reference count is zero, free pmap resources and then free pmap.
   1622 	 */
   1623 
   1624 	/* Remove the zero page mapping */
   1625 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1626 	pmap_update(pmap);
   1627 
   1628 	/*
   1629 	 * Free any page tables still mapped
   1630 	 * This is only temporay until pmap_enter can count the number
   1631 	 * of mappings made in a page table. Then pmap_remove() can
   1632 	 * reduce the count and free the pagetable when the count
   1633 	 * reaches zero.  Note that entries in this list should match the
   1634 	 * contents of the ptpt, however this is faster than walking a 1024
   1635 	 * entries looking for pt's
   1636 	 * taken from i386 pmap.c
   1637 	 */
   1638 	while (pmap->pm_obj.memq.tqh_first != NULL) {
   1639 		page = pmap->pm_obj.memq.tqh_first;
   1640 #ifdef DIAGNOSTIC
   1641 		if (page->flags & PG_BUSY)
   1642 			panic("pmap_release: busy page table page");
   1643 #endif
   1644 		/* pmap_page_protect?  currently no need for it. */
   1645 
   1646 		page->wire_count = 0;
   1647 		uvm_pagefree(page);
   1648 	}
   1649 
   1650 	/* Free the page dir */
   1651 	pmap_freepagedir(pmap);
   1652 
   1653 	/* return the pmap to the pool */
   1654 	pool_put(&pmap_pmap_pool, pmap);
   1655 }
   1656 
   1657 
   1658 /*
   1659  * void pmap_reference(struct pmap *pmap)
   1660  *
   1661  * Add a reference to the specified pmap.
   1662  */
   1663 
   1664 void
   1665 pmap_reference(pmap)
   1666 	struct pmap *pmap;
   1667 {
   1668 	if (pmap == NULL)
   1669 		return;
   1670 
   1671 	simple_lock(&pmap->pm_lock);
   1672 	pmap->pm_obj.uo_refs++;
   1673 	simple_unlock(&pmap->pm_lock);
   1674 }
   1675 
   1676 /*
   1677  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1678  *
   1679  * Return the start and end addresses of the kernel's virtual space.
   1680  * These values are setup in pmap_bootstrap and are updated as pages
   1681  * are allocated.
   1682  */
   1683 
   1684 void
   1685 pmap_virtual_space(start, end)
   1686 	vaddr_t *start;
   1687 	vaddr_t *end;
   1688 {
   1689 	*start = virtual_start;
   1690 	*end = virtual_end;
   1691 }
   1692 
   1693 
   1694 /*
   1695  * Activate the address space for the specified process.  If the process
   1696  * is the current process, load the new MMU context.
   1697  */
   1698 void
   1699 pmap_activate(p)
   1700 	struct proc *p;
   1701 {
   1702 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1703 	struct pcb *pcb = &p->p_addr->u_pcb;
   1704 
   1705 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1706 	    (paddr_t *)&pcb->pcb_pagedir);
   1707 
   1708 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1709 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1710 
   1711 	if (p == curproc) {
   1712 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1713 		setttb((u_int)pcb->pcb_pagedir);
   1714 	}
   1715 #if 0
   1716 	pmap->pm_pdchanged = FALSE;
   1717 #endif
   1718 }
   1719 
   1720 
   1721 /*
   1722  * Deactivate the address space of the specified process.
   1723  */
   1724 void
   1725 pmap_deactivate(p)
   1726 	struct proc *p;
   1727 {
   1728 }
   1729 
   1730 /*
   1731  * Perform any deferred pmap operations.
   1732  */
   1733 void
   1734 pmap_update(struct pmap *pmap)
   1735 {
   1736 
   1737 	/*
   1738 	 * We haven't deferred any pmap operations, but we do need to
   1739 	 * make sure TLB/cache operations have completed.
   1740 	 */
   1741 	cpu_cpwait();
   1742 }
   1743 
   1744 /*
   1745  * pmap_clean_page()
   1746  *
   1747  * This is a local function used to work out the best strategy to clean
   1748  * a single page referenced by its entry in the PV table. It's used by
   1749  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1750  *
   1751  * Its policy is effectively:
   1752  *  o If there are no mappings, we don't bother doing anything with the cache.
   1753  *  o If there is one mapping, we clean just that page.
   1754  *  o If there are multiple mappings, we clean the entire cache.
   1755  *
   1756  * So that some functions can be further optimised, it returns 0 if it didn't
   1757  * clean the entire cache, or 1 if it did.
   1758  *
   1759  * XXX One bug in this routine is that if the pv_entry has a single page
   1760  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1761  * just the 1 page. Since this should not occur in everyday use and if it does
   1762  * it will just result in not the most efficient clean for the page.
   1763  */
   1764 static int
   1765 pmap_clean_page(pv, is_src)
   1766 	struct pv_entry *pv;
   1767 	boolean_t is_src;
   1768 {
   1769 	struct pmap *pmap;
   1770 	struct pv_entry *npv;
   1771 	int cache_needs_cleaning = 0;
   1772 	vaddr_t page_to_clean = 0;
   1773 
   1774 	if (pv == NULL)
   1775 		/* nothing mapped in so nothing to flush */
   1776 		return (0);
   1777 
   1778 	/* Since we flush the cache each time we change curproc, we
   1779 	 * only need to flush the page if it is in the current pmap.
   1780 	 */
   1781 	if (curproc)
   1782 		pmap = curproc->p_vmspace->vm_map.pmap;
   1783 	else
   1784 		pmap = pmap_kernel();
   1785 
   1786 	for (npv = pv; npv; npv = npv->pv_next) {
   1787 		if (npv->pv_pmap == pmap) {
   1788 			/* The page is mapped non-cacheable in
   1789 			 * this map.  No need to flush the cache.
   1790 			 */
   1791 			if (npv->pv_flags & PT_NC) {
   1792 #ifdef DIAGNOSTIC
   1793 				if (cache_needs_cleaning)
   1794 					panic("pmap_clean_page: "
   1795 							"cache inconsistency");
   1796 #endif
   1797 				break;
   1798 			}
   1799 #if 0
   1800 			/* This doesn't work, because pmap_protect
   1801 			   doesn't flush changes on pages that it
   1802 			   has write-protected.  */
   1803 
   1804 			/* If the page is not writable and this
   1805 			   is the source, then there is no need
   1806 			   to flush it from the cache.  */
   1807 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1808 				continue;
   1809 #endif
   1810 			if (cache_needs_cleaning){
   1811 				page_to_clean = 0;
   1812 				break;
   1813 			}
   1814 			else
   1815 				page_to_clean = npv->pv_va;
   1816 			cache_needs_cleaning = 1;
   1817 		}
   1818 	}
   1819 
   1820 	if (page_to_clean)
   1821 		cpu_cache_purgeID_rng(page_to_clean, NBPG);
   1822 	else if (cache_needs_cleaning) {
   1823 		cpu_cache_purgeID();
   1824 		return (1);
   1825 	}
   1826 	return (0);
   1827 }
   1828 
   1829 /*
   1830  * pmap_find_pv()
   1831  *
   1832  * This is a local function that finds a PV head for a given physical page.
   1833  * This is a common op, and this function removes loads of ifdefs in the code.
   1834  */
   1835 static __inline struct pv_head *
   1836 pmap_find_pvh(phys)
   1837 	paddr_t phys;
   1838 {
   1839 	int bank, off;
   1840 	struct pv_head *pvh;
   1841 
   1842 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
   1843 		panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
   1844 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   1845 	return (pvh);
   1846 }
   1847 
   1848 /*
   1849  * pmap_zero_page()
   1850  *
   1851  * Zero a given physical page by mapping it at a page hook point.
   1852  * In doing the zero page op, the page we zero is mapped cachable, as with
   1853  * StrongARM accesses to non-cached pages are non-burst making writing
   1854  * _any_ bulk data very slow.
   1855  */
   1856 void
   1857 pmap_zero_page(phys)
   1858 	paddr_t phys;
   1859 {
   1860 	struct pv_head *pvh;
   1861 
   1862 	/* Get an entry for this page, and clean it it. */
   1863 	pvh = pmap_find_pvh(phys);
   1864 	simple_lock(&pvh->pvh_lock);
   1865 	pmap_clean_page(pvh->pvh_list, FALSE);
   1866 	simple_unlock(&pvh->pvh_lock);
   1867 
   1868 	/*
   1869 	 * Hook in the page, zero it, and purge the cache for that
   1870 	 * zeroed page. Invalidate the TLB as needed.
   1871 	 */
   1872 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1873 	cpu_tlb_flushD_SE(page_hook0.va);
   1874 	cpu_cpwait();
   1875 	bzero_page(page_hook0.va);
   1876 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1877 }
   1878 
   1879 /* pmap_pageidlezero()
   1880  *
   1881  * The same as above, except that we assume that the page is not
   1882  * mapped.  This means we never have to flush the cache first.  Called
   1883  * from the idle loop.
   1884  */
   1885 boolean_t
   1886 pmap_pageidlezero(phys)
   1887     paddr_t phys;
   1888 {
   1889 	int i, *ptr;
   1890 	boolean_t rv = TRUE;
   1891 
   1892 #ifdef DIAGNOSTIC
   1893 	struct pv_head *pvh;
   1894 
   1895 	pvh = pmap_find_pvh(phys);
   1896 	if (pvh->pvh_list != NULL)
   1897 		panic("pmap_pageidlezero: zeroing mapped page\n");
   1898 #endif
   1899 
   1900 	/*
   1901 	 * Hook in the page, zero it, and purge the cache for that
   1902 	 * zeroed page. Invalidate the TLB as needed.
   1903 	 */
   1904 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1905 	cpu_tlb_flushD_SE(page_hook0.va);
   1906 	cpu_cpwait();
   1907 
   1908 	for (i = 0, ptr = (int *)page_hook0.va;
   1909 			i < (NBPG / sizeof(int)); i++) {
   1910 		if (sched_whichqs != 0) {
   1911 			/*
   1912 			 * A process has become ready.  Abort now,
   1913 			 * so we don't keep it waiting while we
   1914 			 * do slow memory access to finish this
   1915 			 * page.
   1916 			 */
   1917 			rv = FALSE;
   1918 			break;
   1919 		}
   1920 		*ptr++ = 0;
   1921 	}
   1922 
   1923 	if (rv)
   1924 		/*
   1925 		 * if we aborted we'll rezero this page again later so don't
   1926 		 * purge it unless we finished it
   1927 		 */
   1928 		cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1929 	return (rv);
   1930 }
   1931 
   1932 /*
   1933  * pmap_copy_page()
   1934  *
   1935  * Copy one physical page into another, by mapping the pages into
   1936  * hook points. The same comment regarding cachability as in
   1937  * pmap_zero_page also applies here.
   1938  */
   1939 void
   1940 pmap_copy_page(src, dest)
   1941 	paddr_t src;
   1942 	paddr_t dest;
   1943 {
   1944 	struct pv_head *src_pvh, *dest_pvh;
   1945 	boolean_t cleanedcache;
   1946 
   1947 	/* Get PV entries for the pages, and clean them if needed. */
   1948 	src_pvh = pmap_find_pvh(src);
   1949 
   1950 	simple_lock(&src_pvh->pvh_lock);
   1951 	cleanedcache = pmap_clean_page(src_pvh->pvh_list, TRUE);
   1952 	simple_unlock(&src_pvh->pvh_lock);
   1953 
   1954 	if (cleanedcache == 0) {
   1955 		dest_pvh = pmap_find_pvh(dest);
   1956 		simple_lock(&dest_pvh->pvh_lock);
   1957 		pmap_clean_page(dest_pvh->pvh_list, FALSE);
   1958 		simple_unlock(&dest_pvh->pvh_lock);
   1959 	}
   1960 	/*
   1961 	 * Map the pages into the page hook points, copy them, and purge
   1962 	 * the cache for the appropriate page. Invalidate the TLB
   1963 	 * as required.
   1964 	 */
   1965 	*page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1966 	*page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1967 	cpu_tlb_flushD_SE(page_hook0.va);
   1968 	cpu_tlb_flushD_SE(page_hook1.va);
   1969 	cpu_cpwait();
   1970 	bcopy_page(page_hook0.va, page_hook1.va);
   1971 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1972 	cpu_cache_purgeD_rng(page_hook1.va, NBPG);
   1973 }
   1974 
   1975 /*
   1976  * int pmap_next_phys_page(paddr_t *addr)
   1977  *
   1978  * Allocate another physical page returning true or false depending
   1979  * on whether a page could be allocated.
   1980  */
   1981 
   1982 paddr_t
   1983 pmap_next_phys_page(addr)
   1984 	paddr_t addr;
   1985 
   1986 {
   1987 	int loop;
   1988 
   1989 	if (addr < bootconfig.dram[0].address)
   1990 		return(bootconfig.dram[0].address);
   1991 
   1992 	loop = 0;
   1993 
   1994 	while (bootconfig.dram[loop].address != 0
   1995 	    && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
   1996 		++loop;
   1997 
   1998 	if (bootconfig.dram[loop].address == 0)
   1999 		return(0);
   2000 
   2001 	addr += NBPG;
   2002 
   2003 	if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
   2004 		if (bootconfig.dram[loop + 1].address == 0)
   2005 			return(0);
   2006 		addr = bootconfig.dram[loop + 1].address;
   2007 	}
   2008 
   2009 	return(addr);
   2010 }
   2011 
   2012 #if 0
   2013 void
   2014 pmap_pte_addref(pmap, va)
   2015 	struct pmap *pmap;
   2016 	vaddr_t va;
   2017 {
   2018 	pd_entry_t *pde;
   2019 	paddr_t pa;
   2020 	struct vm_page *m;
   2021 
   2022 	if (pmap == pmap_kernel())
   2023 		return;
   2024 
   2025 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   2026 	pa = pmap_pte_pa(pde);
   2027 	m = PHYS_TO_VM_PAGE(pa);
   2028 	++m->wire_count;
   2029 #ifdef MYCROFT_HACK
   2030 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2031 	    pmap, va, pde, pa, m, m->wire_count);
   2032 #endif
   2033 }
   2034 
   2035 void
   2036 pmap_pte_delref(pmap, va)
   2037 	struct pmap *pmap;
   2038 	vaddr_t va;
   2039 {
   2040 	pd_entry_t *pde;
   2041 	paddr_t pa;
   2042 	struct vm_page *m;
   2043 
   2044 	if (pmap == pmap_kernel())
   2045 		return;
   2046 
   2047 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   2048 	pa = pmap_pte_pa(pde);
   2049 	m = PHYS_TO_VM_PAGE(pa);
   2050 	--m->wire_count;
   2051 #ifdef MYCROFT_HACK
   2052 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2053 	    pmap, va, pde, pa, m, m->wire_count);
   2054 #endif
   2055 	if (m->wire_count == 0) {
   2056 #ifdef MYCROFT_HACK
   2057 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   2058 		    pmap, va, pde, pa, m);
   2059 #endif
   2060 		pmap_unmap_in_l1(pmap, va);
   2061 		uvm_pagefree(m);
   2062 		--pmap->pm_stats.resident_count;
   2063 	}
   2064 }
   2065 #else
   2066 #define	pmap_pte_addref(pmap, va)
   2067 #define	pmap_pte_delref(pmap, va)
   2068 #endif
   2069 
   2070 /*
   2071  * Since we have a virtually indexed cache, we may need to inhibit caching if
   2072  * there is more than one mapping and at least one of them is writable.
   2073  * Since we purge the cache on every context switch, we only need to check for
   2074  * other mappings within the same pmap, or kernel_pmap.
   2075  * This function is also called when a page is unmapped, to possibly reenable
   2076  * caching on any remaining mappings.
   2077  *
   2078  * The code implements the following logic, where:
   2079  *
   2080  * KW = # of kernel read/write pages
   2081  * KR = # of kernel read only pages
   2082  * UW = # of user read/write pages
   2083  * UR = # of user read only pages
   2084  * OW = # of user read/write pages in another pmap, then
   2085  *
   2086  * KC = kernel mapping is cacheable
   2087  * UC = user mapping is cacheable
   2088  *
   2089  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2090  *                   +---------------------------------------------
   2091  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2092  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2093  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2094  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2095  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2096  *
   2097  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2098  */
   2099 __inline static void
   2100 pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2101 	boolean_t clear_cache)
   2102 {
   2103 	if (pmap == pmap_kernel())
   2104 		pmap_vac_me_kpmap(pmap, pvh, ptes, clear_cache);
   2105 	else
   2106 		pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
   2107 }
   2108 
   2109 static void
   2110 pmap_vac_me_kpmap(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2111 	boolean_t clear_cache)
   2112 {
   2113 	int user_entries = 0;
   2114 	int user_writable = 0;
   2115 	int user_cacheable = 0;
   2116 	int kernel_entries = 0;
   2117 	int kernel_writable = 0;
   2118 	int kernel_cacheable = 0;
   2119 	struct pv_entry *pv;
   2120 	struct pmap *last_pmap = pmap;
   2121 
   2122 #ifdef DIAGNOSTIC
   2123 	if (pmap != pmap_kernel())
   2124 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2125 #endif
   2126 
   2127 	/*
   2128 	 * Pass one, see if there are both kernel and user pmaps for
   2129 	 * this page.  Calculate whether there are user-writable or
   2130 	 * kernel-writable pages.
   2131 	 */
   2132 	for (pv = pvh->pvh_list; pv != NULL; pv = pv->pv_next) {
   2133 		if (pv->pv_pmap != pmap) {
   2134 			user_entries++;
   2135 			if (pv->pv_flags & PT_Wr)
   2136 				user_writable++;
   2137 			if ((pv->pv_flags & PT_NC) == 0)
   2138 				user_cacheable++;
   2139 		} else {
   2140 			kernel_entries++;
   2141 			if (pv->pv_flags & PT_Wr)
   2142 				kernel_writable++;
   2143 			if ((pv->pv_flags & PT_NC) == 0)
   2144 				kernel_cacheable++;
   2145 		}
   2146 	}
   2147 
   2148 	/*
   2149 	 * We know we have just been updating a kernel entry, so if
   2150 	 * all user pages are already cacheable, then there is nothing
   2151 	 * further to do.
   2152 	 */
   2153 	if (kernel_entries == 0 &&
   2154 	    user_cacheable == user_entries)
   2155 		return;
   2156 
   2157 	if (user_entries) {
   2158 		/*
   2159 		 * Scan over the list again, for each entry, if it
   2160 		 * might not be set correctly, call pmap_vac_me_user
   2161 		 * to recalculate the settings.
   2162 		 */
   2163 		for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
   2164 			/*
   2165 			 * We know kernel mappings will get set
   2166 			 * correctly in other calls.  We also know
   2167 			 * that if the pmap is the same as last_pmap
   2168 			 * then we've just handled this entry.
   2169 			 */
   2170 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2171 				continue;
   2172 			/*
   2173 			 * If there are kernel entries and this page
   2174 			 * is writable but non-cacheable, then we can
   2175 			 * skip this entry also.
   2176 			 */
   2177 			if (kernel_entries > 0 &&
   2178 			    (pv->pv_flags & (PT_NC | PT_Wr)) ==
   2179 			    (PT_NC | PT_Wr))
   2180 				continue;
   2181 			/*
   2182 			 * Similarly if there are no kernel-writable
   2183 			 * entries and the page is already
   2184 			 * read-only/cacheable.
   2185 			 */
   2186 			if (kernel_writable == 0 &&
   2187 			    (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
   2188 				continue;
   2189 			/*
   2190 			 * For some of the remaining cases, we know
   2191 			 * that we must recalculate, but for others we
   2192 			 * can't tell if they are correct or not, so
   2193 			 * we recalculate anyway.
   2194 			 */
   2195 			pmap_unmap_ptes(last_pmap);
   2196 			last_pmap = pv->pv_pmap;
   2197 			ptes = pmap_map_ptes(last_pmap);
   2198 			pmap_vac_me_user(last_pmap, pvh, ptes,
   2199 			    pmap_is_curpmap(last_pmap));
   2200 		}
   2201 		/* Restore the pte mapping that was passed to us.  */
   2202 		if (last_pmap != pmap) {
   2203 			pmap_unmap_ptes(last_pmap);
   2204 			ptes = pmap_map_ptes(pmap);
   2205 		}
   2206 		if (kernel_entries == 0)
   2207 			return;
   2208 	}
   2209 
   2210 	pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
   2211 	return;
   2212 }
   2213 
   2214 static void
   2215 pmap_vac_me_user(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2216 	boolean_t clear_cache)
   2217 {
   2218 	struct pmap *kpmap = pmap_kernel();
   2219 	struct pv_entry *pv, *npv;
   2220 	int entries = 0;
   2221 	int writable = 0;
   2222 	int cacheable_entries = 0;
   2223 	int kern_cacheable = 0;
   2224 	int other_writable = 0;
   2225 
   2226 	pv = pvh->pvh_list;
   2227 	KASSERT(ptes != NULL);
   2228 
   2229 	/*
   2230 	 * Count mappings and writable mappings in this pmap.
   2231 	 * Include kernel mappings as part of our own.
   2232 	 * Keep a pointer to the first one.
   2233 	 */
   2234 	for (npv = pv; npv; npv = npv->pv_next) {
   2235 		/* Count mappings in the same pmap */
   2236 		if (pmap == npv->pv_pmap ||
   2237 		    kpmap == npv->pv_pmap) {
   2238 			if (entries++ == 0)
   2239 				pv = npv;
   2240 			/* Cacheable mappings */
   2241 			if ((npv->pv_flags & PT_NC) == 0) {
   2242 				cacheable_entries++;
   2243 				if (kpmap == npv->pv_pmap)
   2244 					kern_cacheable++;
   2245 			}
   2246 			/* Writable mappings */
   2247 			if (npv->pv_flags & PT_Wr)
   2248 				++writable;
   2249 		} else if (npv->pv_flags & PT_Wr)
   2250 			other_writable = 1;
   2251 	}
   2252 
   2253 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2254 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2255 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2256 
   2257 	/*
   2258 	 * Enable or disable caching as necessary.
   2259 	 * Note: the first entry might be part of the kernel pmap,
   2260 	 * so we can't assume this is indicative of the state of the
   2261 	 * other (maybe non-kpmap) entries.
   2262 	 */
   2263 	if ((entries > 1 && writable) ||
   2264 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2265 		if (cacheable_entries == 0)
   2266 		    return;
   2267 		for (npv = pv; npv; npv = npv->pv_next) {
   2268 			if ((pmap == npv->pv_pmap
   2269 			    || kpmap == npv->pv_pmap) &&
   2270 			    (npv->pv_flags & PT_NC) == 0) {
   2271 				ptes[arm_byte_to_page(npv->pv_va)] &=
   2272 				    ~(PT_C | PT_B);
   2273  				npv->pv_flags |= PT_NC;
   2274 				/*
   2275 				 * If this page needs flushing from the
   2276 				 * cache, and we aren't going to do it
   2277 				 * below, do it now.
   2278 				 */
   2279 				if ((cacheable_entries < 4 &&
   2280 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2281 				    (npv->pv_pmap == kpmap &&
   2282 				    !clear_cache && kern_cacheable < 4)) {
   2283 					cpu_cache_purgeID_rng(npv->pv_va,
   2284 					    NBPG);
   2285 					cpu_tlb_flushID_SE(npv->pv_va);
   2286 				}
   2287 			}
   2288 		}
   2289 		if ((clear_cache && cacheable_entries >= 4) ||
   2290 		    kern_cacheable >= 4) {
   2291 			cpu_cache_purgeID();
   2292 			cpu_tlb_flushID();
   2293 		}
   2294 		cpu_cpwait();
   2295 	} else if (entries > 0) {
   2296 		/*
   2297 		 * Turn cacheing back on for some pages.  If it is a kernel
   2298 		 * page, only do so if there are no other writable pages.
   2299 		 */
   2300 		for (npv = pv; npv; npv = npv->pv_next) {
   2301 			if ((pmap == npv->pv_pmap ||
   2302 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2303 			    (npv->pv_flags & PT_NC)) {
   2304 				ptes[arm_byte_to_page(npv->pv_va)] |=
   2305 				    pte_cache_mode;
   2306 				npv->pv_flags &= ~PT_NC;
   2307 			}
   2308 		}
   2309 	}
   2310 }
   2311 
   2312 /*
   2313  * pmap_remove()
   2314  *
   2315  * pmap_remove is responsible for nuking a number of mappings for a range
   2316  * of virtual address space in the current pmap. To do this efficiently
   2317  * is interesting, because in a number of cases a wide virtual address
   2318  * range may be supplied that contains few actual mappings. So, the
   2319  * optimisations are:
   2320  *  1. Try and skip over hunks of address space for which an L1 entry
   2321  *     does not exist.
   2322  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2323  *     maybe do just a partial cache clean. This path of execution is
   2324  *     complicated by the fact that the cache must be flushed _before_
   2325  *     the PTE is nuked, being a VAC :-)
   2326  *  3. Maybe later fast-case a single page, but I don't think this is
   2327  *     going to make _that_ much difference overall.
   2328  */
   2329 
   2330 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2331 
   2332 void
   2333 pmap_remove(pmap, sva, eva)
   2334 	struct pmap *pmap;
   2335 	vaddr_t sva;
   2336 	vaddr_t eva;
   2337 {
   2338 	int cleanlist_idx = 0;
   2339 	struct pagelist {
   2340 		vaddr_t va;
   2341 		pt_entry_t *pte;
   2342 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2343 	pt_entry_t *pte = 0, *ptes;
   2344 	paddr_t pa;
   2345 	int pmap_active;
   2346 	struct pv_head *pvh;
   2347 
   2348 	/* Exit quick if there is no pmap */
   2349 	if (!pmap)
   2350 		return;
   2351 
   2352 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2353 
   2354 	sva &= PG_FRAME;
   2355 	eva &= PG_FRAME;
   2356 
   2357 	/*
   2358 	 * we lock in the pmap => pv_head direction
   2359 	 */
   2360 	PMAP_MAP_TO_HEAD_LOCK();
   2361 
   2362 	ptes = pmap_map_ptes(pmap);
   2363 	/* Get a page table pointer */
   2364 	while (sva < eva) {
   2365 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2366 			break;
   2367 		sva = (sva & PD_MASK) + NBPD;
   2368 	}
   2369 
   2370 	pte = &ptes[arm_byte_to_page(sva)];
   2371 	/* Note if the pmap is active thus require cache and tlb cleans */
   2372 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2373 	    || (pmap == pmap_kernel()))
   2374 		pmap_active = 1;
   2375 	else
   2376 		pmap_active = 0;
   2377 
   2378 	/* Now loop along */
   2379 	while (sva < eva) {
   2380 		/* Check if we can move to the next PDE (l1 chunk) */
   2381 		if (!(sva & PT_MASK))
   2382 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2383 				sva += NBPD;
   2384 				pte += arm_byte_to_page(NBPD);
   2385 				continue;
   2386 			}
   2387 
   2388 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2389 		if (pmap_pte_v(pte)) {
   2390 			int bank, off;
   2391 
   2392 			/* Update statistics */
   2393 			--pmap->pm_stats.resident_count;
   2394 
   2395 			/*
   2396 			 * Add this page to our cache remove list, if we can.
   2397 			 * If, however the cache remove list is totally full,
   2398 			 * then do a complete cache invalidation taking note
   2399 			 * to backtrack the PTE table beforehand, and ignore
   2400 			 * the lists in future because there's no longer any
   2401 			 * point in bothering with them (we've paid the
   2402 			 * penalty, so will carry on unhindered). Otherwise,
   2403 			 * when we fall out, we just clean the list.
   2404 			 */
   2405 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2406 			pa = pmap_pte_pa(pte);
   2407 
   2408 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2409 				/* Add to the clean list. */
   2410 				cleanlist[cleanlist_idx].pte = pte;
   2411 				cleanlist[cleanlist_idx].va = sva;
   2412 				cleanlist_idx++;
   2413 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2414 				int cnt;
   2415 
   2416 				/* Nuke everything if needed. */
   2417 				if (pmap_active) {
   2418 					cpu_cache_purgeID();
   2419 					cpu_tlb_flushID();
   2420 				}
   2421 
   2422 				/*
   2423 				 * Roll back the previous PTE list,
   2424 				 * and zero out the current PTE.
   2425 				 */
   2426 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2427 					*cleanlist[cnt].pte = 0;
   2428 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2429 				}
   2430 				*pte = 0;
   2431 				pmap_pte_delref(pmap, sva);
   2432 				cleanlist_idx++;
   2433 			} else {
   2434 				/*
   2435 				 * We've already nuked the cache and
   2436 				 * TLB, so just carry on regardless,
   2437 				 * and we won't need to do it again
   2438 				 */
   2439 				*pte = 0;
   2440 				pmap_pte_delref(pmap, sva);
   2441 			}
   2442 
   2443 			/*
   2444 			 * Update flags. In a number of circumstances,
   2445 			 * we could cluster a lot of these and do a
   2446 			 * number of sequential pages in one go.
   2447 			 */
   2448 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2449 				struct pv_entry *pve;
   2450 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2451 				simple_lock(&pvh->pvh_lock);
   2452 				pve = pmap_remove_pv(pvh, pmap, sva);
   2453 				pmap_free_pv(pmap, pve);
   2454 				pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
   2455 				simple_unlock(&pvh->pvh_lock);
   2456 			}
   2457 		}
   2458 		sva += NBPG;
   2459 		pte++;
   2460 	}
   2461 
   2462 	pmap_unmap_ptes(pmap);
   2463 	/*
   2464 	 * Now, if we've fallen through down to here, chances are that there
   2465 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2466 	 */
   2467 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2468 		u_int cnt;
   2469 
   2470 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2471 			if (pmap_active) {
   2472 				cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
   2473 				*cleanlist[cnt].pte = 0;
   2474 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2475 			} else
   2476 				*cleanlist[cnt].pte = 0;
   2477 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2478 		}
   2479 	}
   2480 	PMAP_MAP_TO_HEAD_UNLOCK();
   2481 }
   2482 
   2483 /*
   2484  * Routine:	pmap_remove_all
   2485  * Function:
   2486  *		Removes this physical page from
   2487  *		all physical maps in which it resides.
   2488  *		Reflects back modify bits to the pager.
   2489  */
   2490 
   2491 void
   2492 pmap_remove_all(pa)
   2493 	paddr_t pa;
   2494 {
   2495 	struct pv_entry *pv, *npv;
   2496 	struct pv_head *pvh;
   2497 	struct pmap *pmap;
   2498 	pt_entry_t *pte, *ptes;
   2499 
   2500 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
   2501 
   2502 	/* set pv_head => pmap locking */
   2503 	PMAP_HEAD_TO_MAP_LOCK();
   2504 
   2505 	pvh = pmap_find_pvh(pa);
   2506 	simple_lock(&pvh->pvh_lock);
   2507 
   2508 	pv = pvh->pvh_list;
   2509 	if (pv == NULL)
   2510 	{
   2511 	    PDEBUG(0, printf("free page\n"));
   2512 	    simple_unlock(&pvh->pvh_lock);
   2513 	    PMAP_HEAD_TO_MAP_UNLOCK();
   2514 	    return;
   2515 	}
   2516 	pmap_clean_page(pv, FALSE);
   2517 
   2518 	while (pv) {
   2519 		pmap = pv->pv_pmap;
   2520 		ptes = pmap_map_ptes(pmap);
   2521 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   2522 
   2523 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2524 		    pv->pv_va, pv->pv_flags));
   2525 #ifdef DEBUG
   2526 		if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
   2527 		    !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   2528 			panic("pmap_remove_all: bad mapping");
   2529 #endif	/* DEBUG */
   2530 
   2531 		/*
   2532 		 * Update statistics
   2533 		 */
   2534 		--pmap->pm_stats.resident_count;
   2535 
   2536 		/* Wired bit */
   2537 		if (pv->pv_flags & PT_W)
   2538 			--pmap->pm_stats.wired_count;
   2539 
   2540 		/*
   2541 		 * Invalidate the PTEs.
   2542 		 * XXX: should cluster them up and invalidate as many
   2543 		 * as possible at once.
   2544 		 */
   2545 
   2546 #ifdef needednotdone
   2547 reduce wiring count on page table pages as references drop
   2548 #endif
   2549 
   2550 		*pte = 0;
   2551 		pmap_pte_delref(pmap, pv->pv_va);
   2552 
   2553 		npv = pv->pv_next;
   2554 		pmap_free_pv(pmap, pv);
   2555 		pv = npv;
   2556 		pmap_unmap_ptes(pmap);
   2557 	}
   2558 	pvh->pvh_list = NULL;
   2559 	simple_unlock(&pvh->pvh_lock);
   2560 	PMAP_HEAD_TO_MAP_UNLOCK();
   2561 
   2562 	PDEBUG(0, printf("done\n"));
   2563 	cpu_tlb_flushID();
   2564 	cpu_cpwait();
   2565 }
   2566 
   2567 
   2568 /*
   2569  * Set the physical protection on the specified range of this map as requested.
   2570  */
   2571 
   2572 void
   2573 pmap_protect(pmap, sva, eva, prot)
   2574 	struct pmap *pmap;
   2575 	vaddr_t sva;
   2576 	vaddr_t eva;
   2577 	vm_prot_t prot;
   2578 {
   2579 	pt_entry_t *pte = NULL, *ptes;
   2580 	int armprot;
   2581 	int flush = 0;
   2582 	paddr_t pa;
   2583 	int bank, off;
   2584 	struct pv_head *pvh;
   2585 
   2586 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2587 	    pmap, sva, eva, prot));
   2588 
   2589 	if (~prot & VM_PROT_READ) {
   2590 		/* Just remove the mappings. */
   2591 		pmap_remove(pmap, sva, eva);
   2592 		return;
   2593 	}
   2594 	if (prot & VM_PROT_WRITE) {
   2595 		/*
   2596 		 * If this is a read->write transition, just ignore it and let
   2597 		 * uvm_fault() take care of it later.
   2598 		 */
   2599 		return;
   2600 	}
   2601 
   2602 	sva &= PG_FRAME;
   2603 	eva &= PG_FRAME;
   2604 
   2605 	/* Need to lock map->head */
   2606 	PMAP_MAP_TO_HEAD_LOCK();
   2607 
   2608 	ptes = pmap_map_ptes(pmap);
   2609 	/*
   2610 	 * We need to acquire a pointer to a page table page before entering
   2611 	 * the following loop.
   2612 	 */
   2613 	while (sva < eva) {
   2614 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2615 			break;
   2616 		sva = (sva & PD_MASK) + NBPD;
   2617 	}
   2618 
   2619 	pte = &ptes[arm_byte_to_page(sva)];
   2620 
   2621 	while (sva < eva) {
   2622 		/* only check once in a while */
   2623 		if ((sva & PT_MASK) == 0) {
   2624 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2625 				/* We can race ahead here, to the next pde. */
   2626 				sva += NBPD;
   2627 				pte += arm_byte_to_page(NBPD);
   2628 				continue;
   2629 			}
   2630 		}
   2631 
   2632 		if (!pmap_pte_v(pte))
   2633 			goto next;
   2634 
   2635 		flush = 1;
   2636 
   2637 		armprot = 0;
   2638 		if (sva < VM_MAXUSER_ADDRESS)
   2639 			armprot |= PT_AP(AP_U);
   2640 		else if (sva < VM_MAX_ADDRESS)
   2641 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2642 		*pte = (*pte & 0xfffff00f) | armprot;
   2643 
   2644 		pa = pmap_pte_pa(pte);
   2645 
   2646 		/* Get the physical page index */
   2647 
   2648 		/* Clear write flag */
   2649 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2650 			pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2651 			simple_lock(&pvh->pvh_lock);
   2652 			(void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
   2653 			pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
   2654 			simple_unlock(&pvh->pvh_lock);
   2655 		}
   2656 
   2657 next:
   2658 		sva += NBPG;
   2659 		pte++;
   2660 	}
   2661 	pmap_unmap_ptes(pmap);
   2662 	PMAP_MAP_TO_HEAD_UNLOCK();
   2663 	if (flush)
   2664 		cpu_tlb_flushID();
   2665 }
   2666 
   2667 /*
   2668  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2669  * int flags)
   2670  *
   2671  *      Insert the given physical page (p) at
   2672  *      the specified virtual address (v) in the
   2673  *      target physical map with the protection requested.
   2674  *
   2675  *      If specified, the page will be wired down, meaning
   2676  *      that the related pte can not be reclaimed.
   2677  *
   2678  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2679  *      or lose information.  That is, this routine must actually
   2680  *      insert this page into the given map NOW.
   2681  */
   2682 
   2683 int
   2684 pmap_enter(pmap, va, pa, prot, flags)
   2685 	struct pmap *pmap;
   2686 	vaddr_t va;
   2687 	paddr_t pa;
   2688 	vm_prot_t prot;
   2689 	int flags;
   2690 {
   2691 	pt_entry_t *pte, *ptes;
   2692 	u_int npte;
   2693 	int bank, off;
   2694 	paddr_t opa;
   2695 	int nflags;
   2696 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2697 	struct pv_entry *pve;
   2698 	struct pv_head	*pvh;
   2699 	int error;
   2700 
   2701 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2702 	    va, pa, pmap, prot, wired));
   2703 
   2704 #ifdef DIAGNOSTIC
   2705 	/* Valid address ? */
   2706 	if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
   2707 		panic("pmap_enter: too big");
   2708 	if (pmap != pmap_kernel() && va != 0) {
   2709 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2710 			panic("pmap_enter: kernel page in user map");
   2711 	} else {
   2712 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2713 			panic("pmap_enter: user page in kernel map");
   2714 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2715 			panic("pmap_enter: entering PT page");
   2716 	}
   2717 #endif
   2718 	/* get lock */
   2719 	PMAP_MAP_TO_HEAD_LOCK();
   2720 	/*
   2721 	 * Get a pointer to the pte for this virtual address. If the
   2722 	 * pte pointer is NULL then we are missing the L2 page table
   2723 	 * so we need to create one.
   2724 	 */
   2725 	/* XXX horrible hack to get us working with lockdebug */
   2726 	simple_lock(&pmap->pm_obj.vmobjlock);
   2727 	pte = pmap_pte(pmap, va);
   2728 	if (!pte) {
   2729 		struct vm_page *ptp;
   2730 
   2731 		/* if failure is allowed then don't try too hard */
   2732 		ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
   2733 		if (ptp == NULL) {
   2734 			if (flags & PMAP_CANFAIL) {
   2735 				error = ENOMEM;
   2736 				goto out;
   2737 			}
   2738 			panic("pmap_enter: get ptp failed");
   2739 		}
   2740 
   2741 		pte = pmap_pte(pmap, va);
   2742 #ifdef DIAGNOSTIC
   2743 		if (!pte)
   2744 			panic("pmap_enter: no pte");
   2745 #endif
   2746 	}
   2747 
   2748 	nflags = 0;
   2749 	if (prot & VM_PROT_WRITE)
   2750 		nflags |= PT_Wr;
   2751 	if (wired)
   2752 		nflags |= PT_W;
   2753 
   2754 	/* More debugging info */
   2755 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2756 	    *pte));
   2757 
   2758 	/* Is the pte valid ? If so then this page is already mapped */
   2759 	if (pmap_pte_v(pte)) {
   2760 		/* Get the physical address of the current page mapped */
   2761 		opa = pmap_pte_pa(pte);
   2762 
   2763 #ifdef MYCROFT_HACK
   2764 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2765 #endif
   2766 
   2767 		/* Are we mapping the same page ? */
   2768 		if (opa == pa) {
   2769 			/* All we must be doing is changing the protection */
   2770 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2771 			    va, pa));
   2772 
   2773 			/* Has the wiring changed ? */
   2774 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2775 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2776 				simple_lock(&pvh->pvh_lock);
   2777 				(void) pmap_modify_pv(pmap, va, pvh,
   2778 				    PT_Wr | PT_W, nflags);
   2779 				simple_unlock(&pvh->pvh_lock);
   2780  			} else {
   2781 				pvh = NULL;
   2782 			}
   2783 		} else {
   2784 			/* We are replacing the page with a new one. */
   2785 			cpu_cache_purgeID_rng(va, NBPG);
   2786 
   2787 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2788 			    va, pa, opa));
   2789 
   2790 			/*
   2791 			 * If it is part of our managed memory then we
   2792 			 * must remove it from the PV list
   2793 			 */
   2794 			if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
   2795 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2796 				simple_lock(&pvh->pvh_lock);
   2797 				pve = pmap_remove_pv(pvh, pmap, va);
   2798 				simple_unlock(&pvh->pvh_lock);
   2799 			} else {
   2800 				pve = NULL;
   2801 			}
   2802 
   2803 			goto enter;
   2804 		}
   2805 	} else {
   2806 		opa = 0;
   2807 		pve = NULL;
   2808 		pmap_pte_addref(pmap, va);
   2809 
   2810 		/* pte is not valid so we must be hooking in a new page */
   2811 		++pmap->pm_stats.resident_count;
   2812 
   2813 	enter:
   2814 		/*
   2815 		 * Enter on the PV list if part of our managed memory
   2816 		 */
   2817 		bank = vm_physseg_find(atop(pa), &off);
   2818 
   2819 		if (pmap_initialized && (bank != -1)) {
   2820 			pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2821 			if (pve == NULL) {
   2822 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2823 				if (pve == NULL) {
   2824 					if (flags & PMAP_CANFAIL) {
   2825 						error = ENOMEM;
   2826 						goto out;
   2827 					}
   2828 					panic("pmap_enter: no pv entries available");
   2829 				}
   2830 			}
   2831 			/* enter_pv locks pvh when adding */
   2832 			pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
   2833 		} else {
   2834 			pvh = NULL;
   2835 			if (pve != NULL)
   2836 				pmap_free_pv(pmap, pve);
   2837 		}
   2838 	}
   2839 
   2840 #ifdef MYCROFT_HACK
   2841 	if (mycroft_hack)
   2842 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2843 #endif
   2844 
   2845 	/* Construct the pte, giving the correct access. */
   2846 	npte = (pa & PG_FRAME);
   2847 
   2848 	/* VA 0 is magic. */
   2849 	if (pmap != pmap_kernel() && va != 0)
   2850 		npte |= PT_AP(AP_U);
   2851 
   2852 	if (pmap_initialized && bank != -1) {
   2853 #ifdef DIAGNOSTIC
   2854 		if ((flags & VM_PROT_ALL) & ~prot)
   2855 			panic("pmap_enter: access_type exceeds prot");
   2856 #endif
   2857 		npte |= pte_cache_mode;
   2858 		if (flags & VM_PROT_WRITE) {
   2859 			npte |= L2_SPAGE | PT_AP(AP_W);
   2860 			vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2861 		} else if (flags & VM_PROT_ALL) {
   2862 			npte |= L2_SPAGE;
   2863 			vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2864 		} else
   2865 			npte |= L2_INVAL;
   2866 	} else {
   2867 		if (prot & VM_PROT_WRITE)
   2868 			npte |= L2_SPAGE | PT_AP(AP_W);
   2869 		else if (prot & VM_PROT_ALL)
   2870 			npte |= L2_SPAGE;
   2871 		else
   2872 			npte |= L2_INVAL;
   2873 	}
   2874 
   2875 #ifdef MYCROFT_HACK
   2876 	if (mycroft_hack)
   2877 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2878 #endif
   2879 
   2880 	*pte = npte;
   2881 
   2882 	if (pmap_initialized && bank != -1)
   2883 	{
   2884 		boolean_t pmap_active = FALSE;
   2885 		/* XXX this will change once the whole of pmap_enter uses
   2886 		 * map_ptes
   2887 		 */
   2888 		ptes = pmap_map_ptes(pmap);
   2889 		if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2890 		    || (pmap == pmap_kernel()))
   2891 			pmap_active = TRUE;
   2892 		simple_lock(&pvh->pvh_lock);
   2893  		pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
   2894 		simple_unlock(&pvh->pvh_lock);
   2895 		pmap_unmap_ptes(pmap);
   2896 	}
   2897 
   2898 	/* Better flush the TLB ... */
   2899 	cpu_tlb_flushID_SE(va);
   2900 	error = 0;
   2901 out:
   2902 	simple_unlock(&pmap->pm_obj.vmobjlock);
   2903 	PMAP_MAP_TO_HEAD_UNLOCK();
   2904 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2905 
   2906 	return error;
   2907 }
   2908 
   2909 void
   2910 pmap_kenter_pa(va, pa, prot)
   2911 	vaddr_t va;
   2912 	paddr_t pa;
   2913 	vm_prot_t prot;
   2914 {
   2915 	struct pmap *pmap = pmap_kernel();
   2916 	pt_entry_t *pte;
   2917 	struct vm_page *pg;
   2918 
   2919 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   2920 
   2921 #ifdef DIAGNOSTIC
   2922 		if (pmap_pde_v(pmap_pde(pmap, va)))
   2923 			panic("Trying to map kernel page into section mapping"
   2924 			    " VA=%lx PA=%lx", va, pa);
   2925 #endif
   2926 		/*
   2927 		 * For the kernel pmaps it would be better to ensure
   2928 		 * that they are always present, and to grow the
   2929 		 * kernel as required.
   2930 		 */
   2931 
   2932 	    	/* must lock the pmap */
   2933 	    	simple_lock(&(pmap_kernel()->pm_obj.vmobjlock));
   2934 		/* Allocate a page table */
   2935 		pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
   2936 		    UVM_PGA_USERESERVE | UVM_PGA_ZERO);
   2937 		if (pg == NULL) {
   2938 			panic("pmap_kenter_pa: no free pages");
   2939 		}
   2940 		pg->flags &= ~PG_BUSY;	/* never busy */
   2941 
   2942 		/* Wire this page table into the L1. */
   2943 		pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
   2944 		simple_unlock(&(pmap_kernel()->pm_obj.vmobjlock));
   2945 	}
   2946 	pte = vtopte(va);
   2947 	KASSERT(!pmap_pte_v(pte));
   2948 	*pte = L2_PTE(pa, AP_KRW);
   2949 }
   2950 
   2951 void
   2952 pmap_kremove(va, len)
   2953 	vaddr_t va;
   2954 	vsize_t len;
   2955 {
   2956 	pt_entry_t *pte;
   2957 
   2958 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2959 
   2960 		/*
   2961 		 * We assume that we will only be called with small
   2962 		 * regions of memory.
   2963 		 */
   2964 
   2965 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2966 		pte = vtopte(va);
   2967 		cpu_cache_purgeID_rng(va, PAGE_SIZE);
   2968 		*pte = 0;
   2969 		cpu_tlb_flushID_SE(va);
   2970 	}
   2971 }
   2972 
   2973 /*
   2974  * pmap_page_protect:
   2975  *
   2976  * Lower the permission for all mappings to a given page.
   2977  */
   2978 
   2979 void
   2980 pmap_page_protect(pg, prot)
   2981 	struct vm_page *pg;
   2982 	vm_prot_t prot;
   2983 {
   2984 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2985 
   2986 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
   2987 
   2988 	switch(prot) {
   2989 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2990 	case VM_PROT_READ|VM_PROT_WRITE:
   2991 		return;
   2992 
   2993 	case VM_PROT_READ:
   2994 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2995 		pmap_copy_on_write(pa);
   2996 		break;
   2997 
   2998 	default:
   2999 		pmap_remove_all(pa);
   3000 		break;
   3001 	}
   3002 }
   3003 
   3004 
   3005 /*
   3006  * Routine:	pmap_unwire
   3007  * Function:	Clear the wired attribute for a map/virtual-address
   3008  *		pair.
   3009  * In/out conditions:
   3010  *		The mapping must already exist in the pmap.
   3011  */
   3012 
   3013 void
   3014 pmap_unwire(pmap, va)
   3015 	struct pmap *pmap;
   3016 	vaddr_t va;
   3017 {
   3018 	pt_entry_t *pte;
   3019 	paddr_t pa;
   3020 	int bank, off;
   3021 	struct pv_head *pvh;
   3022 
   3023 	/*
   3024 	 * Make sure pmap is valid. -dct
   3025 	 */
   3026 	if (pmap == NULL)
   3027 		return;
   3028 
   3029 	/* Get the pte */
   3030 	pte = pmap_pte(pmap, va);
   3031 	if (!pte)
   3032 		return;
   3033 
   3034 	/* Extract the physical address of the page */
   3035 	pa = pmap_pte_pa(pte);
   3036 
   3037 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3038 		return;
   3039 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3040 	simple_lock(&pvh->pvh_lock);
   3041 	/* Update the wired bit in the pv entry for this page. */
   3042 	(void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
   3043 	simple_unlock(&pvh->pvh_lock);
   3044 }
   3045 
   3046 /*
   3047  * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
   3048  *
   3049  * Return the pointer to a page table entry corresponding to the supplied
   3050  * virtual address.
   3051  *
   3052  * The page directory is first checked to make sure that a page table
   3053  * for the address in question exists and if it does a pointer to the
   3054  * entry is returned.
   3055  *
   3056  * The way this works is that that the kernel page tables are mapped
   3057  * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
   3058  * This allows page tables to be located quickly.
   3059  */
   3060 pt_entry_t *
   3061 pmap_pte(pmap, va)
   3062 	struct pmap *pmap;
   3063 	vaddr_t va;
   3064 {
   3065 	pt_entry_t *ptp;
   3066 	pt_entry_t *result;
   3067 
   3068 	/* The pmap must be valid */
   3069 	if (!pmap)
   3070 		return(NULL);
   3071 
   3072 	/* Return the address of the pte */
   3073 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   3074 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   3075 
   3076 	/* Do we have a valid pde ? If not we don't have a page table */
   3077 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   3078 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   3079 		    pmap_pde(pmap, va)));
   3080 		return(NULL);
   3081 	}
   3082 
   3083 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   3084 	    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3085 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3086 	    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
   3087 
   3088 	/*
   3089 	 * If the pmap is the kernel pmap or the pmap is the active one
   3090 	 * then we can just return a pointer to entry relative to
   3091 	 * PROCESS_PAGE_TBLS_BASE.
   3092 	 * Otherwise we need to map the page tables to an alternative
   3093 	 * address and reference them there.
   3094 	 */
   3095 	if (pmap == pmap_kernel() || pmap->pm_pptpt
   3096 	    == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3097 	    + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
   3098 	    ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   3099 		ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   3100 	} else {
   3101 		struct proc *p = curproc;
   3102 
   3103 		/* If we don't have a valid curproc use proc0 */
   3104 		/* Perhaps we should just use kernel_pmap instead */
   3105 		if (p == NULL)
   3106 			p = &proc0;
   3107 #ifdef DIAGNOSTIC
   3108 		/*
   3109 		 * The pmap should always be valid for the process so
   3110 		 * panic if it is not.
   3111 		 */
   3112 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   3113 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   3114 			    va, p, p->p_vmspace);
   3115 			console_debugger();
   3116 		}
   3117 		/*
   3118 		 * The pmap for the current process should be mapped. If it
   3119 		 * is not then we have a problem.
   3120 		 */
   3121 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   3122 		    (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3123 		    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3124 		    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   3125 			printf("pmap pagetable = P%08lx current = P%08x ",
   3126 			    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3127 			    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3128 			    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
   3129 			    PG_FRAME));
   3130 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   3131 			panic("pmap_pte: current and pmap mismatch\n");
   3132 		}
   3133 #endif
   3134 
   3135 		ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   3136 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   3137 		    pmap->pm_pptpt, FALSE);
   3138 		cpu_tlb_flushD();
   3139 		cpu_cpwait();
   3140 	}
   3141 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   3142 	    ((va >> (PGSHIFT-2)) & ~3)));
   3143 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   3144 	return(result);
   3145 }
   3146 
   3147 /*
   3148  * Routine:  pmap_extract
   3149  * Function:
   3150  *           Extract the physical page address associated
   3151  *           with the given map/virtual_address pair.
   3152  */
   3153 boolean_t
   3154 pmap_extract(pmap, va, pap)
   3155 	struct pmap *pmap;
   3156 	vaddr_t va;
   3157 	paddr_t *pap;
   3158 {
   3159 	pt_entry_t *pte, *ptes;
   3160 	paddr_t pa;
   3161 
   3162 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   3163 
   3164 	/*
   3165 	 * Get the pte for this virtual address.
   3166 	 */
   3167 	ptes = pmap_map_ptes(pmap);
   3168 	pte = &ptes[arm_byte_to_page(va)];
   3169 
   3170 	/*
   3171 	 * If there is no pte then there is no page table etc.
   3172 	 * Is the pte valid ? If not then no paged is actually mapped here
   3173 	 * XXX Should we handle section mappings?
   3174 	 */
   3175 	if (!pmap_pde_page(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
   3176 	    pmap_unmap_ptes(pmap);
   3177     	    return (FALSE);
   3178 	}
   3179 
   3180 	/* Return the physical address depending on the PTE type */
   3181 	/* XXX What about L1 section mappings ? */
   3182 	if ((*(pte) & L2_MASK) == L2_LPAGE) {
   3183 		/* Extract the physical address from the pte */
   3184 		pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
   3185 
   3186 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   3187 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   3188 
   3189 		if (pap != NULL)
   3190 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   3191 	} else {
   3192 		/* Extract the physical address from the pte */
   3193 		pa = pmap_pte_pa(pte);
   3194 
   3195 		PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   3196 		    (pa | (va & ~PG_FRAME))));
   3197 
   3198 		if (pap != NULL)
   3199 			*pap = pa | (va & ~PG_FRAME);
   3200 	}
   3201 	pmap_unmap_ptes(pmap);
   3202 	return (TRUE);
   3203 }
   3204 
   3205 
   3206 /*
   3207  * Copy the range specified by src_addr/len from the source map to the
   3208  * range dst_addr/len in the destination map.
   3209  *
   3210  * This routine is only advisory and need not do anything.
   3211  */
   3212 
   3213 void
   3214 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   3215 	struct pmap *dst_pmap;
   3216 	struct pmap *src_pmap;
   3217 	vaddr_t dst_addr;
   3218 	vsize_t len;
   3219 	vaddr_t src_addr;
   3220 {
   3221 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   3222 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   3223 }
   3224 
   3225 #if defined(PMAP_DEBUG)
   3226 void
   3227 pmap_dump_pvlist(phys, m)
   3228 	vaddr_t phys;
   3229 	char *m;
   3230 {
   3231 	struct pv_head *pvh;
   3232 	struct pv_entry *pv;
   3233 	int bank, off;
   3234 
   3235 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
   3236 		printf("INVALID PA\n");
   3237 		return;
   3238 	}
   3239 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3240 	simple_lock(&pvh->pvh_lock);
   3241 	printf("%s %08lx:", m, phys);
   3242 	if (pvh->pvh_list == NULL) {
   3243 		printf(" no mappings\n");
   3244 		return;
   3245 	}
   3246 
   3247 	for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
   3248 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3249 		    pv->pv_va, pv->pv_flags);
   3250 
   3251 	printf("\n");
   3252 	simple_unlock(&pvh->pvh_lock);
   3253 }
   3254 
   3255 #endif	/* PMAP_DEBUG */
   3256 
   3257 __inline static boolean_t
   3258 pmap_testbit(pa, setbits)
   3259 	paddr_t pa;
   3260 	unsigned int setbits;
   3261 {
   3262 	int bank, off;
   3263 
   3264 	PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
   3265 
   3266 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3267 		return(FALSE);
   3268 
   3269 	/*
   3270 	 * Check saved info only
   3271 	 */
   3272 	if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
   3273 		PDEBUG(0, printf("pmap_attributes = %02x\n",
   3274 		    vm_physmem[bank].pmseg.attrs[off]));
   3275 		return(TRUE);
   3276 	}
   3277 
   3278 	return(FALSE);
   3279 }
   3280 
   3281 static pt_entry_t *
   3282 pmap_map_ptes(struct pmap *pmap)
   3283 {
   3284     	struct proc *p;
   3285 
   3286     	/* the kernel's pmap is always accessible */
   3287 	if (pmap == pmap_kernel()) {
   3288 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
   3289 	}
   3290 
   3291 	if (pmap_is_curpmap(pmap)) {
   3292 		simple_lock(&pmap->pm_obj.vmobjlock);
   3293 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   3294 	}
   3295 
   3296 	p = curproc;
   3297 
   3298 	if (p == NULL)
   3299 		p = &proc0;
   3300 
   3301 	/* need to lock both curpmap and pmap: use ordered locking */
   3302 	if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
   3303 		simple_lock(&pmap->pm_obj.vmobjlock);
   3304 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3305 	} else {
   3306 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3307 		simple_lock(&pmap->pm_obj.vmobjlock);
   3308 	}
   3309 
   3310 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   3311 			pmap->pm_pptpt, FALSE);
   3312 	cpu_tlb_flushD();
   3313 	cpu_cpwait();
   3314 	return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   3315 }
   3316 
   3317 /*
   3318  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3319  */
   3320 
   3321 static void
   3322 pmap_unmap_ptes(pmap)
   3323 	struct pmap *pmap;
   3324 {
   3325 	if (pmap == pmap_kernel()) {
   3326 		return;
   3327 	}
   3328 	if (pmap_is_curpmap(pmap)) {
   3329 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3330 	} else {
   3331 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3332 		simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3333 	}
   3334 }
   3335 
   3336 /*
   3337  * Modify pte bits for all ptes corresponding to the given physical address.
   3338  * We use `maskbits' rather than `clearbits' because we're always passing
   3339  * constants and the latter would require an extra inversion at run-time.
   3340  */
   3341 
   3342 static void
   3343 pmap_clearbit(pa, maskbits)
   3344 	paddr_t pa;
   3345 	unsigned int maskbits;
   3346 {
   3347 	struct pv_entry *pv;
   3348 	struct pv_head *pvh;
   3349 	pt_entry_t *pte;
   3350 	vaddr_t va;
   3351 	int bank, off, tlbentry;
   3352 
   3353 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3354 	    pa, maskbits));
   3355 
   3356 	tlbentry = 0;
   3357 
   3358 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3359 		return;
   3360 	PMAP_HEAD_TO_MAP_LOCK();
   3361 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3362 	simple_lock(&pvh->pvh_lock);
   3363 
   3364 	/*
   3365 	 * Clear saved attributes (modify, reference)
   3366 	 */
   3367 	vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
   3368 
   3369 	if (pvh->pvh_list == NULL) {
   3370 		simple_unlock(&pvh->pvh_lock);
   3371 		PMAP_HEAD_TO_MAP_UNLOCK();
   3372 		return;
   3373 	}
   3374 
   3375 	/*
   3376 	 * Loop over all current mappings setting/clearing as appropos
   3377 	 */
   3378 	for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
   3379 		va = pv->pv_va;
   3380 		pv->pv_flags &= ~maskbits;
   3381 		pte = pmap_pte(pv->pv_pmap, va);
   3382 		KASSERT(pte != NULL);
   3383 		if (maskbits & (PT_Wr|PT_M)) {
   3384 			if ((pv->pv_flags & PT_NC)) {
   3385 				/*
   3386 				 * Entry is not cacheable: reenable
   3387 				 * the cache, nothing to flush
   3388 				 *
   3389 				 * Don't turn caching on again if this
   3390 				 * is a modified emulation.  This
   3391 				 * would be inconsitent with the
   3392 				 * settings created by
   3393 				 * pmap_vac_me_harder().
   3394 				 *
   3395 				 * There's no need to call
   3396 				 * pmap_vac_me_harder() here: all
   3397 				 * pages are loosing their write
   3398 				 * permission.
   3399 				 *
   3400 				 */
   3401 				if (maskbits & PT_Wr) {
   3402 					*pte |= pte_cache_mode;
   3403 					pv->pv_flags &= ~PT_NC;
   3404 				}
   3405 			} else if (pmap_is_curpmap(pv->pv_pmap))
   3406 				/*
   3407 				 * Entry is cacheable: check if pmap is
   3408 				 * current if it is flush it,
   3409 				 * otherwise it won't be in the cache
   3410 				 */
   3411 				cpu_cache_purgeID_rng(pv->pv_va, NBPG);
   3412 
   3413 			/* make the pte read only */
   3414 			*pte &= ~PT_AP(AP_W);
   3415 		}
   3416 
   3417 		if (maskbits & PT_H)
   3418 			*pte = (*pte & ~L2_MASK) | L2_INVAL;
   3419 
   3420 		if (pmap_is_curpmap(pv->pv_pmap))
   3421 			/*
   3422 			 * if we had cacheable pte's we'd clean the
   3423 			 * pte out to memory here
   3424 			 *
   3425 			 * flush tlb entry as it's in the current pmap
   3426 			 */
   3427 			cpu_tlb_flushID_SE(pv->pv_va);
   3428 	}
   3429 	cpu_cpwait();
   3430 
   3431 	simple_unlock(&pvh->pvh_lock);
   3432 	PMAP_HEAD_TO_MAP_UNLOCK();
   3433 }
   3434 
   3435 
   3436 boolean_t
   3437 pmap_clear_modify(pg)
   3438 	struct vm_page *pg;
   3439 {
   3440 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3441 	boolean_t rv;
   3442 
   3443 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
   3444 	rv = pmap_testbit(pa, PT_M);
   3445 	pmap_clearbit(pa, PT_M);
   3446 	return rv;
   3447 }
   3448 
   3449 
   3450 boolean_t
   3451 pmap_clear_reference(pg)
   3452 	struct vm_page *pg;
   3453 {
   3454 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3455 	boolean_t rv;
   3456 
   3457 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
   3458 	rv = pmap_testbit(pa, PT_H);
   3459 	pmap_clearbit(pa, PT_H);
   3460 	return rv;
   3461 }
   3462 
   3463 
   3464 void
   3465 pmap_copy_on_write(pa)
   3466 	paddr_t pa;
   3467 {
   3468 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
   3469 	pmap_clearbit(pa, PT_Wr);
   3470 }
   3471 
   3472 
   3473 boolean_t
   3474 pmap_is_modified(pg)
   3475 	struct vm_page *pg;
   3476 {
   3477 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3478 	boolean_t result;
   3479 
   3480 	result = pmap_testbit(pa, PT_M);
   3481 	PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
   3482 	return (result);
   3483 }
   3484 
   3485 
   3486 boolean_t
   3487 pmap_is_referenced(pg)
   3488 	struct vm_page *pg;
   3489 {
   3490 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3491 	boolean_t result;
   3492 
   3493 	result = pmap_testbit(pa, PT_H);
   3494 	PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
   3495 	return (result);
   3496 }
   3497 
   3498 
   3499 int
   3500 pmap_modified_emulation(pmap, va)
   3501 	struct pmap *pmap;
   3502 	vaddr_t va;
   3503 {
   3504 	pt_entry_t *pte;
   3505 	paddr_t pa;
   3506 	int bank, off;
   3507 	struct pv_head *pvh;
   3508 	u_int flags;
   3509 
   3510 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3511 
   3512 	/* Get the pte */
   3513 	pte = pmap_pte(pmap, va);
   3514 	if (!pte) {
   3515 		PDEBUG(2, printf("no pte\n"));
   3516 		return(0);
   3517 	}
   3518 
   3519 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3520 
   3521 	/* Check for a zero pte */
   3522 	if (*pte == 0)
   3523 		return(0);
   3524 
   3525 	/* This can happen if user code tries to access kernel memory. */
   3526 	if ((*pte & PT_AP(AP_W)) != 0)
   3527 		return (0);
   3528 
   3529 	/* Extract the physical address of the page */
   3530 	pa = pmap_pte_pa(pte);
   3531 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3532 		return(0);
   3533 
   3534 	PMAP_HEAD_TO_MAP_LOCK();
   3535 	/* Get the current flags for this page. */
   3536 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3537 	/* XXX: needed if we hold head->map lock? */
   3538 	simple_lock(&pvh->pvh_lock);
   3539 
   3540 	flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
   3541 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3542 
   3543 	/*
   3544 	 * Do the flags say this page is writable ? If not then it is a
   3545 	 * genuine write fault. If yes then the write fault is our fault
   3546 	 * as we did not reflect the write access in the PTE. Now we know
   3547 	 * a write has occurred we can correct this and also set the
   3548 	 * modified bit
   3549 	 */
   3550 	if (~flags & PT_Wr) {
   3551 	    	simple_unlock(&pvh->pvh_lock);
   3552 		PMAP_HEAD_TO_MAP_UNLOCK();
   3553 		return(0);
   3554 	}
   3555 
   3556 	PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
   3557 	    va, pte, *pte));
   3558 	vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   3559 
   3560 	/*
   3561 	 * Re-enable write permissions for the page.  No need to call
   3562 	 * pmap_vac_me_harder(), since this is just a
   3563 	 * modified-emulation fault, and the PT_Wr bit isn't changing.  We've
   3564 	 * already set the cacheable bits based on the assumption that we
   3565 	 * can write to this page.
   3566 	 */
   3567 	*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3568 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3569 
   3570 	simple_unlock(&pvh->pvh_lock);
   3571 	PMAP_HEAD_TO_MAP_UNLOCK();
   3572 	/* Return, indicating the problem has been dealt with */
   3573 	cpu_tlb_flushID_SE(va);
   3574 	cpu_cpwait();
   3575 	return(1);
   3576 }
   3577 
   3578 
   3579 int
   3580 pmap_handled_emulation(pmap, va)
   3581 	struct pmap *pmap;
   3582 	vaddr_t va;
   3583 {
   3584 	pt_entry_t *pte;
   3585 	paddr_t pa;
   3586 	int bank, off;
   3587 
   3588 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3589 
   3590 	/* Get the pte */
   3591 	pte = pmap_pte(pmap, va);
   3592 	if (!pte) {
   3593 		PDEBUG(2, printf("no pte\n"));
   3594 		return(0);
   3595 	}
   3596 
   3597 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3598 
   3599 	/* Check for a zero pte */
   3600 	if (*pte == 0)
   3601 		return(0);
   3602 
   3603 	/* This can happen if user code tries to access kernel memory. */
   3604 	if ((*pte & L2_MASK) != L2_INVAL)
   3605 		return (0);
   3606 
   3607 	/* Extract the physical address of the page */
   3608 	pa = pmap_pte_pa(pte);
   3609 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3610 		return(0);
   3611 
   3612 	/*
   3613 	 * Ok we just enable the pte and mark the attibs as handled
   3614 	 */
   3615 	PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
   3616 	    va, pte, *pte));
   3617 	vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   3618 	*pte = (*pte & ~L2_MASK) | L2_SPAGE;
   3619 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3620 
   3621 	/* Return, indicating the problem has been dealt with */
   3622 	cpu_tlb_flushID_SE(va);
   3623 	cpu_cpwait();
   3624 	return(1);
   3625 }
   3626 
   3627 
   3628 
   3629 
   3630 /*
   3631  * pmap_collect: free resources held by a pmap
   3632  *
   3633  * => optional function.
   3634  * => called when a process is swapped out to free memory.
   3635  */
   3636 
   3637 void
   3638 pmap_collect(pmap)
   3639 	struct pmap *pmap;
   3640 {
   3641 }
   3642 
   3643 /*
   3644  * Routine:	pmap_procwr
   3645  *
   3646  * Function:
   3647  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3648  *
   3649  */
   3650 void
   3651 pmap_procwr(p, va, len)
   3652 	struct proc	*p;
   3653 	vaddr_t		va;
   3654 	int		len;
   3655 {
   3656 	/* We only need to do anything if it is the current process. */
   3657 	if (p == curproc)
   3658 		cpu_cache_syncI_rng(va, len);
   3659 }
   3660 /*
   3661  * PTP functions
   3662  */
   3663 
   3664 /*
   3665  * pmap_steal_ptp: Steal a PTP from somewhere else.
   3666  *
   3667  * This is just a placeholder, for now we never steal.
   3668  */
   3669 
   3670 static struct vm_page *
   3671 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
   3672 {
   3673     return (NULL);
   3674 }
   3675 
   3676 /*
   3677  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3678  *
   3679  * => pmap should NOT be pmap_kernel()
   3680  * => pmap should be locked
   3681  */
   3682 
   3683 static struct vm_page *
   3684 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3685 {
   3686     struct vm_page *ptp;
   3687 
   3688     if (pmap_pde_page(pmap_pde(pmap, va))) {
   3689 
   3690 	/* valid... check hint (saves us a PA->PG lookup) */
   3691 #if 0
   3692 	if (pmap->pm_ptphint &&
   3693     		((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
   3694 		VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3695 	    return (pmap->pm_ptphint);
   3696 #endif
   3697 	ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3698 #ifdef DIAGNOSTIC
   3699 	if (ptp == NULL)
   3700     	    panic("pmap_get_ptp: unmanaged user PTP");
   3701 #endif
   3702 //	pmap->pm_ptphint = ptp;
   3703 	return(ptp);
   3704     }
   3705 
   3706     /* allocate a new PTP (updates ptphint) */
   3707     return(pmap_alloc_ptp(pmap, va, just_try));
   3708 }
   3709 
   3710 /*
   3711  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3712  *
   3713  * => pmap should already be locked by caller
   3714  * => we use the ptp's wire_count to count the number of active mappings
   3715  *	in the PTP (we start it at one to prevent any chance this PTP
   3716  *	will ever leak onto the active/inactive queues)
   3717  */
   3718 
   3719 /*__inline */ static struct vm_page *
   3720 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3721 {
   3722 	struct vm_page *ptp;
   3723 
   3724 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3725 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3726 	if (ptp == NULL) {
   3727 	    if (just_try)
   3728 		return (NULL);
   3729 
   3730 	    ptp = pmap_steal_ptp(pmap, va);
   3731 
   3732 	    if (ptp == NULL)
   3733 		return (NULL);
   3734 	    /* Stole a page, zero it.  */
   3735 	    pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
   3736 	}
   3737 
   3738 	/* got one! */
   3739 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3740 	ptp->wire_count = 1;	/* no mappings yet */
   3741 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3742 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3743 //	pmap->pm_ptphint = ptp;
   3744 	return (ptp);
   3745 }
   3746 
   3747 /* End of pmap.c */
   3748