pmap.c revision 1.325 1 /* $NetBSD: pmap.c,v 1.325 2015/06/09 10:44:55 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_arm_debug.h"
190 #include "opt_cpuoptions.h"
191 #include "opt_pmap_debug.h"
192 #include "opt_ddb.h"
193 #include "opt_lockdebug.h"
194 #include "opt_multiprocessor.h"
195
196 #ifdef MULTIPROCESSOR
197 #define _INTR_PRIVATE
198 #endif
199
200 #include <sys/param.h>
201 #include <sys/types.h>
202 #include <sys/kernel.h>
203 #include <sys/systm.h>
204 #include <sys/proc.h>
205 #include <sys/intr.h>
206 #include <sys/pool.h>
207 #include <sys/kmem.h>
208 #include <sys/cdefs.h>
209 #include <sys/cpu.h>
210 #include <sys/sysctl.h>
211 #include <sys/bus.h>
212 #include <sys/atomic.h>
213 #include <sys/kernhist.h>
214
215 #include <uvm/uvm.h>
216
217 #include <arm/locore.h>
218
219 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.325 2015/06/09 10:44:55 skrll Exp $");
220
221 //#define PMAP_DEBUG
222 #ifdef PMAP_DEBUG
223
224 /* XXX need to get rid of all refs to this */
225 int pmap_debug_level = 0;
226
227 /*
228 * for switching to potentially finer grained debugging
229 */
230 #define PDB_FOLLOW 0x0001
231 #define PDB_INIT 0x0002
232 #define PDB_ENTER 0x0004
233 #define PDB_REMOVE 0x0008
234 #define PDB_CREATE 0x0010
235 #define PDB_PTPAGE 0x0020
236 #define PDB_GROWKERN 0x0040
237 #define PDB_BITS 0x0080
238 #define PDB_COLLECT 0x0100
239 #define PDB_PROTECT 0x0200
240 #define PDB_MAP_L1 0x0400
241 #define PDB_BOOTSTRAP 0x1000
242 #define PDB_PARANOIA 0x2000
243 #define PDB_WIRING 0x4000
244 #define PDB_PVDUMP 0x8000
245 #define PDB_VAC 0x10000
246 #define PDB_KENTER 0x20000
247 #define PDB_KREMOVE 0x40000
248 #define PDB_EXEC 0x80000
249
250 int debugmap = 1;
251 int pmapdebug = 0;
252 #define NPDEBUG(_lev_,_stat_) \
253 if (pmapdebug & (_lev_)) \
254 ((_stat_))
255
256 #else /* PMAP_DEBUG */
257 #define NPDEBUG(_lev_,_stat_) /* Nothing */
258 #endif /* PMAP_DEBUG */
259
260 /*
261 * pmap_kernel() points here
262 */
263 static struct pmap kernel_pmap_store = {
264 #ifndef ARM_MMU_EXTENDED
265 .pm_activated = true,
266 .pm_domain = PMAP_DOMAIN_KERNEL,
267 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
268 #endif
269 };
270 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
271 #undef pmap_kernel
272 #define pmap_kernel() (&kernel_pmap_store)
273 #ifdef PMAP_NEED_ALLOC_POOLPAGE
274 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
275 #endif
276
277 /*
278 * Pool and cache that pmap structures are allocated from.
279 * We use a cache to avoid clearing the pm_l2[] array (1KB)
280 * in pmap_create().
281 */
282 static struct pool_cache pmap_cache;
283 static LIST_HEAD(, pmap) pmap_pmaps;
284
285 /*
286 * Pool of PV structures
287 */
288 static struct pool pmap_pv_pool;
289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
292 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
293 };
294
295 /*
296 * Pool and cache of l2_dtable structures.
297 * We use a cache to avoid clearing the structures when they're
298 * allocated. (196 bytes)
299 */
300 static struct pool_cache pmap_l2dtable_cache;
301 static vaddr_t pmap_kernel_l2dtable_kva;
302
303 /*
304 * Pool and cache of L2 page descriptors.
305 * We use a cache to avoid clearing the descriptor table
306 * when they're allocated. (1KB)
307 */
308 static struct pool_cache pmap_l2ptp_cache;
309 static vaddr_t pmap_kernel_l2ptp_kva;
310 static paddr_t pmap_kernel_l2ptp_phys;
311
312 #ifdef PMAPCOUNTERS
313 #define PMAP_EVCNT_INITIALIZER(name) \
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
315
316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
317 static struct evcnt pmap_ev_vac_clean_one =
318 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
319 static struct evcnt pmap_ev_vac_flush_one =
320 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
321 static struct evcnt pmap_ev_vac_flush_lots =
322 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
323 static struct evcnt pmap_ev_vac_flush_lots2 =
324 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
329
330 static struct evcnt pmap_ev_vac_color_new =
331 PMAP_EVCNT_INITIALIZER("new page color");
332 static struct evcnt pmap_ev_vac_color_reuse =
333 PMAP_EVCNT_INITIALIZER("ok first page color");
334 static struct evcnt pmap_ev_vac_color_ok =
335 PMAP_EVCNT_INITIALIZER("ok page color");
336 static struct evcnt pmap_ev_vac_color_blind =
337 PMAP_EVCNT_INITIALIZER("blind page color");
338 static struct evcnt pmap_ev_vac_color_change =
339 PMAP_EVCNT_INITIALIZER("change page color");
340 static struct evcnt pmap_ev_vac_color_erase =
341 PMAP_EVCNT_INITIALIZER("erase page color");
342 static struct evcnt pmap_ev_vac_color_none =
343 PMAP_EVCNT_INITIALIZER("no page color");
344 static struct evcnt pmap_ev_vac_color_restore =
345 PMAP_EVCNT_INITIALIZER("restore page color");
346
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
355 #endif
356
357 static struct evcnt pmap_ev_mappings =
358 PMAP_EVCNT_INITIALIZER("pages mapped");
359 static struct evcnt pmap_ev_unmappings =
360 PMAP_EVCNT_INITIALIZER("pages unmapped");
361 static struct evcnt pmap_ev_remappings =
362 PMAP_EVCNT_INITIALIZER("pages remapped");
363
364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
367
368 static struct evcnt pmap_ev_kernel_mappings =
369 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
370 static struct evcnt pmap_ev_kernel_unmappings =
371 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
372 static struct evcnt pmap_ev_kernel_remappings =
373 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
374
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
378
379 static struct evcnt pmap_ev_kenter_mappings =
380 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
381 static struct evcnt pmap_ev_kenter_unmappings =
382 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
383 static struct evcnt pmap_ev_kenter_remappings =
384 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
385 static struct evcnt pmap_ev_pt_mappings =
386 PMAP_EVCNT_INITIALIZER("page table pages mapped");
387
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
392
393 static struct evcnt pmap_ev_fixup_mod =
394 PMAP_EVCNT_INITIALIZER("page modification emulations");
395 static struct evcnt pmap_ev_fixup_ref =
396 PMAP_EVCNT_INITIALIZER("page reference emulations");
397 static struct evcnt pmap_ev_fixup_exec =
398 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
399 static struct evcnt pmap_ev_fixup_pdes =
400 PMAP_EVCNT_INITIALIZER("pdes fixed up");
401 #ifndef ARM_MMU_EXTENDED
402 static struct evcnt pmap_ev_fixup_ptesync =
403 PMAP_EVCNT_INITIALIZER("ptesync fixed");
404 #endif
405
406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
410 #ifndef ARM_MMU_EXTENDED
411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
412 #endif
413
414 #ifdef PMAP_CACHE_VIPT
415 static struct evcnt pmap_ev_exec_mappings =
416 PMAP_EVCNT_INITIALIZER("exec pages mapped");
417 static struct evcnt pmap_ev_exec_cached =
418 PMAP_EVCNT_INITIALIZER("exec pages cached");
419
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
422
423 static struct evcnt pmap_ev_exec_synced =
424 PMAP_EVCNT_INITIALIZER("exec pages synced");
425 static struct evcnt pmap_ev_exec_synced_map =
426 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
427 #ifndef ARM_MMU_EXTENDED
428 static struct evcnt pmap_ev_exec_synced_unmap =
429 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
430 static struct evcnt pmap_ev_exec_synced_remap =
431 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
432 static struct evcnt pmap_ev_exec_synced_clearbit =
433 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
434 static struct evcnt pmap_ev_exec_synced_kremove =
435 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
436 #endif
437
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
440 #ifndef ARM_MMU_EXTENDED
441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
445 #endif
446
447 static struct evcnt pmap_ev_exec_discarded_unmap =
448 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
449 static struct evcnt pmap_ev_exec_discarded_zero =
450 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
451 static struct evcnt pmap_ev_exec_discarded_copy =
452 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
453 static struct evcnt pmap_ev_exec_discarded_page_protect =
454 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
455 static struct evcnt pmap_ev_exec_discarded_clearbit =
456 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
457 static struct evcnt pmap_ev_exec_discarded_kremove =
458 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
459 #ifdef ARM_MMU_EXTENDED
460 static struct evcnt pmap_ev_exec_discarded_modfixup =
461 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
462 #endif
463
464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
470 #ifdef ARM_MMU_EXTENDED
471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
472 #endif
473 #endif /* PMAP_CACHE_VIPT */
474
475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
478
479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
482
483 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
484 #else
485 #define PMAPCOUNT(x) ((void)0)
486 #endif
487
488 /*
489 * pmap copy/zero page, and mem(5) hook point
490 */
491 static pt_entry_t *csrc_pte, *cdst_pte;
492 static vaddr_t csrcp, cdstp;
493 #ifdef MULTIPROCESSOR
494 static size_t cnptes;
495 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
496 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
497 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
498 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
499 #else
500 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
501 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
502 #define cpu_csrcp(o) (csrcp + (o))
503 #define cpu_cdstp(o) (cdstp + (o))
504 #endif
505 vaddr_t memhook; /* used by mem.c & others */
506 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
507 kmutex_t pmap_lock __cacheline_aligned;
508 extern void *msgbufaddr;
509 int pmap_kmpages;
510 /*
511 * Flag to indicate if pmap_init() has done its thing
512 */
513 bool pmap_initialized;
514
515 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
516 /*
517 * Virtual end of direct-mapped memory
518 */
519 vaddr_t pmap_directlimit;
520 #endif
521
522 /*
523 * Misc. locking data structures
524 */
525
526 static inline void
527 pmap_acquire_pmap_lock(pmap_t pm)
528 {
529 if (pm == pmap_kernel()) {
530 #ifdef MULTIPROCESSOR
531 KERNEL_LOCK(1, NULL);
532 #endif
533 } else {
534 mutex_enter(pm->pm_lock);
535 }
536 }
537
538 static inline void
539 pmap_release_pmap_lock(pmap_t pm)
540 {
541 if (pm == pmap_kernel()) {
542 #ifdef MULTIPROCESSOR
543 KERNEL_UNLOCK_ONE(NULL);
544 #endif
545 } else {
546 mutex_exit(pm->pm_lock);
547 }
548 }
549
550 static inline void
551 pmap_acquire_page_lock(struct vm_page_md *md)
552 {
553 mutex_enter(&pmap_lock);
554 }
555
556 static inline void
557 pmap_release_page_lock(struct vm_page_md *md)
558 {
559 mutex_exit(&pmap_lock);
560 }
561
562 #ifdef DIAGNOSTIC
563 static inline int
564 pmap_page_locked_p(struct vm_page_md *md)
565 {
566 return mutex_owned(&pmap_lock);
567 }
568 #endif
569
570
571 /*
572 * Metadata for L1 translation tables.
573 */
574 #ifndef ARM_MMU_EXTENDED
575 struct l1_ttable {
576 /* Entry on the L1 Table list */
577 SLIST_ENTRY(l1_ttable) l1_link;
578
579 /* Entry on the L1 Least Recently Used list */
580 TAILQ_ENTRY(l1_ttable) l1_lru;
581
582 /* Track how many domains are allocated from this L1 */
583 volatile u_int l1_domain_use_count;
584
585 /*
586 * A free-list of domain numbers for this L1.
587 * We avoid using ffs() and a bitmap to track domains since ffs()
588 * is slow on ARM.
589 */
590 uint8_t l1_domain_first;
591 uint8_t l1_domain_free[PMAP_DOMAINS];
592
593 /* Physical address of this L1 page table */
594 paddr_t l1_physaddr;
595
596 /* KVA of this L1 page table */
597 pd_entry_t *l1_kva;
598 };
599
600 /*
601 * L1 Page Tables are tracked using a Least Recently Used list.
602 * - New L1s are allocated from the HEAD.
603 * - Freed L1s are added to the TAIl.
604 * - Recently accessed L1s (where an 'access' is some change to one of
605 * the userland pmaps which owns this L1) are moved to the TAIL.
606 */
607 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
608 static kmutex_t l1_lru_lock __cacheline_aligned;
609
610 /*
611 * A list of all L1 tables
612 */
613 static SLIST_HEAD(, l1_ttable) l1_list;
614 #endif /* ARM_MMU_EXTENDED */
615
616 /*
617 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
618 *
619 * This is normally 16MB worth L2 page descriptors for any given pmap.
620 * Reference counts are maintained for L2 descriptors so they can be
621 * freed when empty.
622 */
623 struct l2_bucket {
624 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
625 paddr_t l2b_pa; /* Physical address of same */
626 u_short l2b_l1slot; /* This L2 table's L1 index */
627 u_short l2b_occupancy; /* How many active descriptors */
628 };
629
630 struct l2_dtable {
631 /* The number of L2 page descriptors allocated to this l2_dtable */
632 u_int l2_occupancy;
633
634 /* List of L2 page descriptors */
635 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
636 };
637
638 /*
639 * Given an L1 table index, calculate the corresponding l2_dtable index
640 * and bucket index within the l2_dtable.
641 */
642 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
643 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
644 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
645 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
646 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
647
648 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
649 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
650
651 /*
652 * Given a virtual address, this macro returns the
653 * virtual address required to drop into the next L2 bucket.
654 */
655 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
656
657 /*
658 * L2 allocation.
659 */
660 #define pmap_alloc_l2_dtable() \
661 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
662 #define pmap_free_l2_dtable(l2) \
663 pool_cache_put(&pmap_l2dtable_cache, (l2))
664 #define pmap_alloc_l2_ptp(pap) \
665 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
666 PR_NOWAIT, (pap)))
667
668 /*
669 * We try to map the page tables write-through, if possible. However, not
670 * all CPUs have a write-through cache mode, so on those we have to sync
671 * the cache when we frob page tables.
672 *
673 * We try to evaluate this at compile time, if possible. However, it's
674 * not always possible to do that, hence this run-time var.
675 */
676 int pmap_needs_pte_sync;
677
678 /*
679 * Real definition of pv_entry.
680 */
681 struct pv_entry {
682 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
683 pmap_t pv_pmap; /* pmap where mapping lies */
684 vaddr_t pv_va; /* virtual address for mapping */
685 u_int pv_flags; /* flags */
686 };
687
688 /*
689 * Macros to determine if a mapping might be resident in the
690 * instruction/data cache and/or TLB
691 */
692 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
693 /*
694 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
695 * there are no explicit accesses, so there may be always be TLB entries to
696 * flush. If we used ASIDs then this would not be a problem.
697 */
698 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
699 #define PV_BEEN_REFD(f) (true)
700 #else
701 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
702 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
703 #endif
704 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
705 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
706 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
707
708 /*
709 * Local prototypes
710 */
711 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
712 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
713 pt_entry_t **);
714 static bool pmap_is_current(pmap_t) __unused;
715 static bool pmap_is_cached(pmap_t);
716 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
717 pmap_t, vaddr_t, u_int);
718 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
719 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
720 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
721 u_int, u_int);
722
723 static void pmap_pinit(pmap_t);
724 static int pmap_pmap_ctor(void *, void *, int);
725
726 static void pmap_alloc_l1(pmap_t);
727 static void pmap_free_l1(pmap_t);
728 #ifndef ARM_MMU_EXTENDED
729 static void pmap_use_l1(pmap_t);
730 #endif
731
732 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
733 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
734 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
735 static int pmap_l2ptp_ctor(void *, void *, int);
736 static int pmap_l2dtable_ctor(void *, void *, int);
737
738 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
739 #ifdef PMAP_CACHE_VIVT
740 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
741 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
742 #endif
743
744 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
745 #ifdef PMAP_CACHE_VIVT
746 static bool pmap_clean_page(struct vm_page_md *, bool);
747 #endif
748 #ifdef PMAP_CACHE_VIPT
749 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
750 enum pmap_flush_op {
751 PMAP_FLUSH_PRIMARY,
752 PMAP_FLUSH_SECONDARY,
753 PMAP_CLEAN_PRIMARY
754 };
755 #ifndef ARM_MMU_EXTENDED
756 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
757 #endif
758 #endif
759 static void pmap_page_remove(struct vm_page_md *, paddr_t);
760
761 #ifndef ARM_MMU_EXTENDED
762 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
763 #endif
764 static vaddr_t kernel_pt_lookup(paddr_t);
765
766
767 /*
768 * Misc variables
769 */
770 vaddr_t virtual_avail;
771 vaddr_t virtual_end;
772 vaddr_t pmap_curmaxkvaddr;
773
774 paddr_t avail_start;
775 paddr_t avail_end;
776
777 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
778 pv_addr_t kernelpages;
779 pv_addr_t kernel_l1pt;
780 pv_addr_t systempage;
781
782 /* Function to set the debug level of the pmap code */
783
784 #ifdef PMAP_DEBUG
785 void
786 pmap_debug(int level)
787 {
788 pmap_debug_level = level;
789 printf("pmap_debug: level=%d\n", pmap_debug_level);
790 }
791 #endif /* PMAP_DEBUG */
792
793 #ifdef PMAP_CACHE_VIPT
794 #define PMAP_VALIDATE_MD_PAGE(md) \
795 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
796 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
797 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
798 #endif /* PMAP_CACHE_VIPT */
799 /*
800 * A bunch of routines to conditionally flush the caches/TLB depending
801 * on whether the specified pmap actually needs to be flushed at any
802 * given time.
803 */
804 static inline void
805 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
806 {
807 #ifdef ARM_MMU_EXTENDED
808 pmap_tlb_invalidate_addr(pm, va);
809 #else
810 if (pm->pm_cstate.cs_tlb_id != 0) {
811 if (PV_BEEN_EXECD(flags)) {
812 cpu_tlb_flushID_SE(va);
813 } else if (PV_BEEN_REFD(flags)) {
814 cpu_tlb_flushD_SE(va);
815 }
816 }
817 #endif /* ARM_MMU_EXTENDED */
818 }
819
820 static inline void
821 pmap_tlb_flushID(pmap_t pm)
822 {
823 #ifdef ARM_MMU_EXTENDED
824 pmap_tlb_asid_release_all(pm);
825 #else
826 if (pm->pm_cstate.cs_tlb_id) {
827 cpu_tlb_flushID();
828 #if ARM_MMU_V7 == 0
829 /*
830 * Speculative loads by Cortex cores can cause TLB entries to
831 * be filled even if there are no explicit accesses, so there
832 * may be always be TLB entries to flush. If we used ASIDs
833 * then it would not be a problem.
834 * This is not true for other CPUs.
835 */
836 pm->pm_cstate.cs_tlb = 0;
837 #endif /* ARM_MMU_V7 */
838 }
839 #endif /* ARM_MMU_EXTENDED */
840 }
841
842 #ifndef ARM_MMU_EXTENDED
843 static inline void
844 pmap_tlb_flushD(pmap_t pm)
845 {
846 if (pm->pm_cstate.cs_tlb_d) {
847 cpu_tlb_flushD();
848 #if ARM_MMU_V7 == 0
849 /*
850 * Speculative loads by Cortex cores can cause TLB entries to
851 * be filled even if there are no explicit accesses, so there
852 * may be always be TLB entries to flush. If we used ASIDs
853 * then it would not be a problem.
854 * This is not true for other CPUs.
855 */
856 pm->pm_cstate.cs_tlb_d = 0;
857 #endif /* ARM_MMU_V7 */
858 }
859 }
860 #endif /* ARM_MMU_EXTENDED */
861
862 #ifdef PMAP_CACHE_VIVT
863 static inline void
864 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
865 {
866 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
867 cpu_idcache_wbinv_range(va, PAGE_SIZE);
868 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
869 if (do_inv) {
870 if (flags & PVF_WRITE)
871 cpu_dcache_wbinv_range(va, PAGE_SIZE);
872 else
873 cpu_dcache_inv_range(va, PAGE_SIZE);
874 } else if (flags & PVF_WRITE) {
875 cpu_dcache_wb_range(va, PAGE_SIZE);
876 }
877 }
878 }
879
880 static inline void
881 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
882 {
883 if (PV_BEEN_EXECD(flags)) {
884 if (pm->pm_cstate.cs_cache_id) {
885 cpu_idcache_wbinv_all();
886 pm->pm_cstate.cs_cache = 0;
887 }
888 } else if (pm->pm_cstate.cs_cache_d) {
889 cpu_dcache_wbinv_all();
890 pm->pm_cstate.cs_cache_d = 0;
891 }
892 }
893 #endif /* PMAP_CACHE_VIVT */
894
895 static inline uint8_t
896 pmap_domain(pmap_t pm)
897 {
898 #ifdef ARM_MMU_EXTENDED
899 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
900 #else
901 return pm->pm_domain;
902 #endif
903 }
904
905 static inline pd_entry_t *
906 pmap_l1_kva(pmap_t pm)
907 {
908 #ifdef ARM_MMU_EXTENDED
909 return pm->pm_l1;
910 #else
911 return pm->pm_l1->l1_kva;
912 #endif
913 }
914
915 static inline bool
916 pmap_is_current(pmap_t pm)
917 {
918 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
919 return true;
920
921 return false;
922 }
923
924 static inline bool
925 pmap_is_cached(pmap_t pm)
926 {
927 #ifdef ARM_MMU_EXTENDED
928 if (pm == pmap_kernel())
929 return true;
930 #ifdef MULTIPROCESSOR
931 // Is this pmap active on any CPU?
932 if (!kcpuset_iszero(pm->pm_active))
933 return true;
934 #else
935 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
936 // Is this pmap active?
937 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
938 return true;
939 #endif
940 #else
941 struct cpu_info * const ci = curcpu();
942 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
943 || ci->ci_pmap_lastuser == pm)
944 return true;
945 #endif /* ARM_MMU_EXTENDED */
946
947 return false;
948 }
949
950 /*
951 * PTE_SYNC_CURRENT:
952 *
953 * Make sure the pte is written out to RAM.
954 * We need to do this for one of two cases:
955 * - We're dealing with the kernel pmap
956 * - There is no pmap active in the cache/tlb.
957 * - The specified pmap is 'active' in the cache/tlb.
958 */
959
960 static inline void
961 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
962 {
963 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
964 PTE_SYNC(ptep);
965 arm_dsb();
966 }
967
968 #ifdef PMAP_INCLUDE_PTE_SYNC
969 #define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
970 #else
971 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
972 #endif
973
974 /*
975 * main pv_entry manipulation functions:
976 * pmap_enter_pv: enter a mapping onto a vm_page list
977 * pmap_remove_pv: remove a mapping from a vm_page list
978 *
979 * NOTE: pmap_enter_pv expects to lock the pvh itself
980 * pmap_remove_pv expects the caller to lock the pvh before calling
981 */
982
983 /*
984 * pmap_enter_pv: enter a mapping onto a vm_page lst
985 *
986 * => caller should hold the proper lock on pmap_main_lock
987 * => caller should have pmap locked
988 * => we will gain the lock on the vm_page and allocate the new pv_entry
989 * => caller should adjust ptp's wire_count before calling
990 * => caller should not adjust pmap's wire_count
991 */
992 static void
993 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
994 vaddr_t va, u_int flags)
995 {
996 struct pv_entry **pvp;
997
998 NPDEBUG(PDB_PVDUMP,
999 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
1000
1001 pv->pv_pmap = pm;
1002 pv->pv_va = va;
1003 pv->pv_flags = flags;
1004
1005 pvp = &SLIST_FIRST(&md->pvh_list);
1006 #ifdef PMAP_CACHE_VIPT
1007 /*
1008 * Insert unmanaged entries, writeable first, at the head of
1009 * the pv list.
1010 */
1011 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1012 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1013 pvp = &SLIST_NEXT(*pvp, pv_link);
1014 }
1015 if (!PV_IS_WRITE_P(flags)) {
1016 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1017 pvp = &SLIST_NEXT(*pvp, pv_link);
1018 }
1019 #endif
1020 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1021 *pvp = pv; /* ... locked list */
1022 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1023 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1024 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1025 md->pvh_attrs |= PVF_KMOD;
1026 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1027 md->pvh_attrs |= PVF_DIRTY;
1028 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1029 #endif
1030 if (pm == pmap_kernel()) {
1031 PMAPCOUNT(kernel_mappings);
1032 if (flags & PVF_WRITE)
1033 md->krw_mappings++;
1034 else
1035 md->kro_mappings++;
1036 } else {
1037 if (flags & PVF_WRITE)
1038 md->urw_mappings++;
1039 else
1040 md->uro_mappings++;
1041 }
1042
1043 #ifdef PMAP_CACHE_VIPT
1044 #ifndef ARM_MMU_EXTENDED
1045 /*
1046 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1047 * do it here as well to keep the mappings & KVF_WRITE consistent.
1048 */
1049 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1050 md->pvh_attrs |= PVF_WRITE;
1051 }
1052 #endif
1053 /*
1054 * If this is an exec mapping and its the first exec mapping
1055 * for this page, make sure to sync the I-cache.
1056 */
1057 if (PV_IS_EXEC_P(flags)) {
1058 #ifndef ARM_MMU_EXTENDED
1059 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1060 pmap_syncicache_page(md, pa);
1061 PMAPCOUNT(exec_synced_map);
1062 }
1063 #endif
1064 PMAPCOUNT(exec_mappings);
1065 }
1066 #endif
1067
1068 PMAPCOUNT(mappings);
1069
1070 if (pv->pv_flags & PVF_WIRED)
1071 ++pm->pm_stats.wired_count;
1072 }
1073
1074 /*
1075 *
1076 * pmap_find_pv: Find a pv entry
1077 *
1078 * => caller should hold lock on vm_page
1079 */
1080 static inline struct pv_entry *
1081 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1082 {
1083 struct pv_entry *pv;
1084
1085 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1086 if (pm == pv->pv_pmap && va == pv->pv_va)
1087 break;
1088 }
1089
1090 return (pv);
1091 }
1092
1093 /*
1094 * pmap_remove_pv: try to remove a mapping from a pv_list
1095 *
1096 * => caller should hold proper lock on pmap_main_lock
1097 * => pmap should be locked
1098 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1099 * => caller should adjust ptp's wire_count and free PTP if needed
1100 * => caller should NOT adjust pmap's wire_count
1101 * => we return the removed pv
1102 */
1103 static struct pv_entry *
1104 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1105 {
1106 struct pv_entry *pv, **prevptr;
1107
1108 NPDEBUG(PDB_PVDUMP,
1109 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1110
1111 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1112 pv = *prevptr;
1113
1114 while (pv) {
1115 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1116 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1117 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1118 if (pv->pv_flags & PVF_WIRED) {
1119 --pm->pm_stats.wired_count;
1120 }
1121 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1122 if (pm == pmap_kernel()) {
1123 PMAPCOUNT(kernel_unmappings);
1124 if (pv->pv_flags & PVF_WRITE)
1125 md->krw_mappings--;
1126 else
1127 md->kro_mappings--;
1128 } else {
1129 if (pv->pv_flags & PVF_WRITE)
1130 md->urw_mappings--;
1131 else
1132 md->uro_mappings--;
1133 }
1134
1135 PMAPCOUNT(unmappings);
1136 #ifdef PMAP_CACHE_VIPT
1137 if (!(pv->pv_flags & PVF_WRITE))
1138 break;
1139 /*
1140 * If this page has had an exec mapping, then if
1141 * this was the last mapping, discard the contents,
1142 * otherwise sync the i-cache for this page.
1143 */
1144 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1145 #ifdef ARM_MMU_EXTENDED
1146 md->pvh_attrs &= ~PVF_EXEC;
1147 PMAPCOUNT(exec_discarded_unmap);
1148 #else
1149 if (SLIST_EMPTY(&md->pvh_list)) {
1150 md->pvh_attrs &= ~PVF_EXEC;
1151 PMAPCOUNT(exec_discarded_unmap);
1152 } else {
1153 pmap_syncicache_page(md, pa);
1154 PMAPCOUNT(exec_synced_unmap);
1155 }
1156 #endif /* ARM_MMU_EXTENDED */
1157 }
1158 #endif /* PMAP_CACHE_VIPT */
1159 break;
1160 }
1161 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1162 pv = *prevptr; /* advance */
1163 }
1164
1165 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1166 /*
1167 * If we no longer have a WRITEABLE KENTRY at the head of list,
1168 * clear the KMOD attribute from the page.
1169 */
1170 if (SLIST_FIRST(&md->pvh_list) == NULL
1171 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1172 md->pvh_attrs &= ~PVF_KMOD;
1173
1174 /*
1175 * If this was a writeable page and there are no more writeable
1176 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1177 * the contents to memory.
1178 */
1179 if (arm_cache_prefer_mask != 0) {
1180 if (md->krw_mappings + md->urw_mappings == 0)
1181 md->pvh_attrs &= ~PVF_WRITE;
1182 PMAP_VALIDATE_MD_PAGE(md);
1183 }
1184 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1185 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1186
1187 return(pv); /* return removed pv */
1188 }
1189
1190 /*
1191 *
1192 * pmap_modify_pv: Update pv flags
1193 *
1194 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1195 * => caller should NOT adjust pmap's wire_count
1196 * => caller must call pmap_vac_me_harder() if writable status of a page
1197 * may have changed.
1198 * => we return the old flags
1199 *
1200 * Modify a physical-virtual mapping in the pv table
1201 */
1202 static u_int
1203 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1204 u_int clr_mask, u_int set_mask)
1205 {
1206 struct pv_entry *npv;
1207 u_int flags, oflags;
1208
1209 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1210 KASSERT(!PV_IS_KENTRY_P(set_mask));
1211
1212 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1213 return (0);
1214
1215 NPDEBUG(PDB_PVDUMP,
1216 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1217
1218 /*
1219 * There is at least one VA mapping this page.
1220 */
1221
1222 if (clr_mask & (PVF_REF | PVF_MOD)) {
1223 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1224 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1225 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1226 md->pvh_attrs |= PVF_DIRTY;
1227 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1228 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1229 }
1230
1231 oflags = npv->pv_flags;
1232 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1233
1234 if ((flags ^ oflags) & PVF_WIRED) {
1235 if (flags & PVF_WIRED)
1236 ++pm->pm_stats.wired_count;
1237 else
1238 --pm->pm_stats.wired_count;
1239 }
1240
1241 if ((flags ^ oflags) & PVF_WRITE) {
1242 if (pm == pmap_kernel()) {
1243 if (flags & PVF_WRITE) {
1244 md->krw_mappings++;
1245 md->kro_mappings--;
1246 } else {
1247 md->kro_mappings++;
1248 md->krw_mappings--;
1249 }
1250 } else {
1251 if (flags & PVF_WRITE) {
1252 md->urw_mappings++;
1253 md->uro_mappings--;
1254 } else {
1255 md->uro_mappings++;
1256 md->urw_mappings--;
1257 }
1258 }
1259 }
1260 #ifdef PMAP_CACHE_VIPT
1261 if (arm_cache_prefer_mask != 0) {
1262 if (md->urw_mappings + md->krw_mappings == 0) {
1263 md->pvh_attrs &= ~PVF_WRITE;
1264 } else {
1265 md->pvh_attrs |= PVF_WRITE;
1266 }
1267 }
1268 #ifndef ARM_MMU_EXTENDED
1269 /*
1270 * We have two cases here: the first is from enter_pv (new exec
1271 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1272 * Since in latter, pmap_enter_pv won't do anything, we just have
1273 * to do what pmap_remove_pv would do.
1274 */
1275 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1276 || (PV_IS_EXEC_P(md->pvh_attrs)
1277 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1278 pmap_syncicache_page(md, pa);
1279 PMAPCOUNT(exec_synced_remap);
1280 }
1281 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1282 #endif /* !ARM_MMU_EXTENDED */
1283 #endif /* PMAP_CACHE_VIPT */
1284
1285 PMAPCOUNT(remappings);
1286
1287 return (oflags);
1288 }
1289
1290 /*
1291 * Allocate an L1 translation table for the specified pmap.
1292 * This is called at pmap creation time.
1293 */
1294 static void
1295 pmap_alloc_l1(pmap_t pm)
1296 {
1297 #ifdef ARM_MMU_EXTENDED
1298 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1299 struct vm_page *pg;
1300 bool ok __diagused;
1301 for (;;) {
1302 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1303 pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1304 #else
1305 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1306 #endif
1307 if (pg != NULL)
1308 break;
1309 uvm_wait("pmapl1alloc");
1310 }
1311 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1312 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1313 KASSERT(ok);
1314 KASSERT(va >= KERNEL_BASE);
1315
1316 #else
1317 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1318 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1319 UVM_KMF_WIRED|UVM_KMF_ZERO);
1320 KASSERT(va);
1321 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1322 #endif
1323 pm->pm_l1 = (pd_entry_t *)va;
1324 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1325 #else
1326 struct l1_ttable *l1;
1327 uint8_t domain;
1328
1329 /*
1330 * Remove the L1 at the head of the LRU list
1331 */
1332 mutex_spin_enter(&l1_lru_lock);
1333 l1 = TAILQ_FIRST(&l1_lru_list);
1334 KDASSERT(l1 != NULL);
1335 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1336
1337 /*
1338 * Pick the first available domain number, and update
1339 * the link to the next number.
1340 */
1341 domain = l1->l1_domain_first;
1342 l1->l1_domain_first = l1->l1_domain_free[domain];
1343
1344 /*
1345 * If there are still free domain numbers in this L1,
1346 * put it back on the TAIL of the LRU list.
1347 */
1348 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1349 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1350
1351 mutex_spin_exit(&l1_lru_lock);
1352
1353 /*
1354 * Fix up the relevant bits in the pmap structure
1355 */
1356 pm->pm_l1 = l1;
1357 pm->pm_domain = domain + 1;
1358 #endif
1359 }
1360
1361 /*
1362 * Free an L1 translation table.
1363 * This is called at pmap destruction time.
1364 */
1365 static void
1366 pmap_free_l1(pmap_t pm)
1367 {
1368 #ifdef ARM_MMU_EXTENDED
1369 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1370 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1371 uvm_pagefree(pg);
1372 #else
1373 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1374 #endif
1375 pm->pm_l1 = NULL;
1376 pm->pm_l1_pa = 0;
1377 #else
1378 struct l1_ttable *l1 = pm->pm_l1;
1379
1380 mutex_spin_enter(&l1_lru_lock);
1381
1382 /*
1383 * If this L1 is currently on the LRU list, remove it.
1384 */
1385 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1386 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1387
1388 /*
1389 * Free up the domain number which was allocated to the pmap
1390 */
1391 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1392 l1->l1_domain_first = pmap_domain(pm) - 1;
1393 l1->l1_domain_use_count--;
1394
1395 /*
1396 * The L1 now must have at least 1 free domain, so add
1397 * it back to the LRU list. If the use count is zero,
1398 * put it at the head of the list, otherwise it goes
1399 * to the tail.
1400 */
1401 if (l1->l1_domain_use_count == 0)
1402 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1403 else
1404 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1405
1406 mutex_spin_exit(&l1_lru_lock);
1407 #endif /* ARM_MMU_EXTENDED */
1408 }
1409
1410 #ifndef ARM_MMU_EXTENDED
1411 static inline void
1412 pmap_use_l1(pmap_t pm)
1413 {
1414 struct l1_ttable *l1;
1415
1416 /*
1417 * Do nothing if we're in interrupt context.
1418 * Access to an L1 by the kernel pmap must not affect
1419 * the LRU list.
1420 */
1421 if (cpu_intr_p() || pm == pmap_kernel())
1422 return;
1423
1424 l1 = pm->pm_l1;
1425
1426 /*
1427 * If the L1 is not currently on the LRU list, just return
1428 */
1429 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1430 return;
1431
1432 mutex_spin_enter(&l1_lru_lock);
1433
1434 /*
1435 * Check the use count again, now that we've acquired the lock
1436 */
1437 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1438 mutex_spin_exit(&l1_lru_lock);
1439 return;
1440 }
1441
1442 /*
1443 * Move the L1 to the back of the LRU list
1444 */
1445 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1446 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1447
1448 mutex_spin_exit(&l1_lru_lock);
1449 }
1450 #endif /* !ARM_MMU_EXTENDED */
1451
1452 /*
1453 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1454 *
1455 * Free an L2 descriptor table.
1456 */
1457 static inline void
1458 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1459 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1460 #else
1461 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1462 #endif
1463 {
1464 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1465 /*
1466 * Note: With a write-back cache, we may need to sync this
1467 * L2 table before re-using it.
1468 * This is because it may have belonged to a non-current
1469 * pmap, in which case the cache syncs would have been
1470 * skipped for the pages that were being unmapped. If the
1471 * L2 table were then to be immediately re-allocated to
1472 * the *current* pmap, it may well contain stale mappings
1473 * which have not yet been cleared by a cache write-back
1474 * and so would still be visible to the mmu.
1475 */
1476 if (need_sync)
1477 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1478 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1479 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1480 }
1481
1482 /*
1483 * Returns a pointer to the L2 bucket associated with the specified pmap
1484 * and VA, or NULL if no L2 bucket exists for the address.
1485 */
1486 static inline struct l2_bucket *
1487 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1488 {
1489 const size_t l1slot = l1pte_index(va);
1490 struct l2_dtable *l2;
1491 struct l2_bucket *l2b;
1492
1493 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1494 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1495 return (NULL);
1496
1497 return (l2b);
1498 }
1499
1500 /*
1501 * Returns a pointer to the L2 bucket associated with the specified pmap
1502 * and VA.
1503 *
1504 * If no L2 bucket exists, perform the necessary allocations to put an L2
1505 * bucket/page table in place.
1506 *
1507 * Note that if a new L2 bucket/page was allocated, the caller *must*
1508 * increment the bucket occupancy counter appropriately *before*
1509 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1510 * the bucket/page in the meantime.
1511 */
1512 static struct l2_bucket *
1513 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1514 {
1515 const size_t l1slot = l1pte_index(va);
1516 struct l2_dtable *l2;
1517
1518 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1519 /*
1520 * No mapping at this address, as there is
1521 * no entry in the L1 table.
1522 * Need to allocate a new l2_dtable.
1523 */
1524 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1525 return (NULL);
1526
1527 /*
1528 * Link it into the parent pmap
1529 */
1530 pm->pm_l2[L2_IDX(l1slot)] = l2;
1531 }
1532
1533 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1534
1535 /*
1536 * Fetch pointer to the L2 page table associated with the address.
1537 */
1538 if (l2b->l2b_kva == NULL) {
1539 pt_entry_t *ptep;
1540
1541 /*
1542 * No L2 page table has been allocated. Chances are, this
1543 * is because we just allocated the l2_dtable, above.
1544 */
1545 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1546 /*
1547 * Oops, no more L2 page tables available at this
1548 * time. We may need to deallocate the l2_dtable
1549 * if we allocated a new one above.
1550 */
1551 if (l2->l2_occupancy == 0) {
1552 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1553 pmap_free_l2_dtable(l2);
1554 }
1555 return (NULL);
1556 }
1557
1558 l2->l2_occupancy++;
1559 l2b->l2b_kva = ptep;
1560 l2b->l2b_l1slot = l1slot;
1561
1562 #ifdef ARM_MMU_EXTENDED
1563 /*
1564 * We know there will be a mapping here, so simply
1565 * enter this PTP into the L1 now.
1566 */
1567 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1568 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1569 | L1_C_DOM(pmap_domain(pm));
1570 KASSERT(*pdep == 0);
1571 l1pte_setone(pdep, npde);
1572 PDE_SYNC(pdep);
1573 #endif
1574 }
1575
1576 return (l2b);
1577 }
1578
1579 /*
1580 * One or more mappings in the specified L2 descriptor table have just been
1581 * invalidated.
1582 *
1583 * Garbage collect the metadata and descriptor table itself if necessary.
1584 *
1585 * The pmap lock must be acquired when this is called (not necessary
1586 * for the kernel pmap).
1587 */
1588 static void
1589 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1590 {
1591 KDASSERT(count <= l2b->l2b_occupancy);
1592
1593 /*
1594 * Update the bucket's reference count according to how many
1595 * PTEs the caller has just invalidated.
1596 */
1597 l2b->l2b_occupancy -= count;
1598
1599 /*
1600 * Note:
1601 *
1602 * Level 2 page tables allocated to the kernel pmap are never freed
1603 * as that would require checking all Level 1 page tables and
1604 * removing any references to the Level 2 page table. See also the
1605 * comment elsewhere about never freeing bootstrap L2 descriptors.
1606 *
1607 * We make do with just invalidating the mapping in the L2 table.
1608 *
1609 * This isn't really a big deal in practice and, in fact, leads
1610 * to a performance win over time as we don't need to continually
1611 * alloc/free.
1612 */
1613 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1614 return;
1615
1616 /*
1617 * There are no more valid mappings in this level 2 page table.
1618 * Go ahead and NULL-out the pointer in the bucket, then
1619 * free the page table.
1620 */
1621 const size_t l1slot = l2b->l2b_l1slot;
1622 pt_entry_t * const ptep = l2b->l2b_kva;
1623 l2b->l2b_kva = NULL;
1624
1625 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1626 pd_entry_t pde __diagused = *pdep;
1627
1628 #ifdef ARM_MMU_EXTENDED
1629 /*
1630 * Invalidate the L1 slot.
1631 */
1632 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1633 #else
1634 /*
1635 * If the L1 slot matches the pmap's domain number, then invalidate it.
1636 */
1637 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1638 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1639 #endif
1640 l1pte_setone(pdep, 0);
1641 PDE_SYNC(pdep);
1642 #ifndef ARM_MMU_EXTENDED
1643 }
1644 #endif
1645
1646 /*
1647 * Release the L2 descriptor table back to the pool cache.
1648 */
1649 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1650 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1651 #else
1652 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1653 #endif
1654
1655 /*
1656 * Update the reference count in the associated l2_dtable
1657 */
1658 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1659 if (--l2->l2_occupancy > 0)
1660 return;
1661
1662 /*
1663 * There are no more valid mappings in any of the Level 1
1664 * slots managed by this l2_dtable. Go ahead and NULL-out
1665 * the pointer in the parent pmap and free the l2_dtable.
1666 */
1667 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1668 pmap_free_l2_dtable(l2);
1669 }
1670
1671 /*
1672 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1673 * structures.
1674 */
1675 static int
1676 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1677 {
1678 #ifndef PMAP_INCLUDE_PTE_SYNC
1679 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1680
1681 /*
1682 * The mappings for these page tables were initially made using
1683 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1684 * mode will not be right for page table mappings. To avoid
1685 * polluting the pmap_kenter_pa() code with a special case for
1686 * page tables, we simply fix up the cache-mode here if it's not
1687 * correct.
1688 */
1689 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1690 const struct l2_bucket * const l2b =
1691 pmap_get_l2_bucket(pmap_kernel(), va);
1692 KASSERTMSG(l2b != NULL, "%#lx", va);
1693 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1694 const pt_entry_t opte = *ptep;
1695
1696 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1697 /*
1698 * Page tables must have the cache-mode set correctly.
1699 */
1700 const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
1701 | pte_l2_s_cache_mode_pt;
1702 l2pte_set(ptep, npte, opte);
1703 PTE_SYNC(ptep);
1704 cpu_tlb_flushD_SE(va);
1705 cpu_cpwait();
1706 }
1707 }
1708 #endif
1709
1710 memset(v, 0, L2_TABLE_SIZE_REAL);
1711 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1712 return (0);
1713 }
1714
1715 static int
1716 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1717 {
1718
1719 memset(v, 0, sizeof(struct l2_dtable));
1720 return (0);
1721 }
1722
1723 static int
1724 pmap_pmap_ctor(void *arg, void *v, int flags)
1725 {
1726
1727 memset(v, 0, sizeof(struct pmap));
1728 return (0);
1729 }
1730
1731 static void
1732 pmap_pinit(pmap_t pm)
1733 {
1734 #ifndef ARM_HAS_VBAR
1735 struct l2_bucket *l2b;
1736
1737 if (vector_page < KERNEL_BASE) {
1738 /*
1739 * Map the vector page.
1740 */
1741 pmap_enter(pm, vector_page, systempage.pv_pa,
1742 VM_PROT_READ | VM_PROT_EXECUTE,
1743 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1744 pmap_update(pm);
1745
1746 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1747 l2b = pmap_get_l2_bucket(pm, vector_page);
1748 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1749 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1750 L1_C_DOM(pmap_domain(pm));
1751 } else
1752 pm->pm_pl1vec = NULL;
1753 #endif
1754 }
1755
1756 #ifdef PMAP_CACHE_VIVT
1757 /*
1758 * Since we have a virtually indexed cache, we may need to inhibit caching if
1759 * there is more than one mapping and at least one of them is writable.
1760 * Since we purge the cache on every context switch, we only need to check for
1761 * other mappings within the same pmap, or kernel_pmap.
1762 * This function is also called when a page is unmapped, to possibly reenable
1763 * caching on any remaining mappings.
1764 *
1765 * The code implements the following logic, where:
1766 *
1767 * KW = # of kernel read/write pages
1768 * KR = # of kernel read only pages
1769 * UW = # of user read/write pages
1770 * UR = # of user read only pages
1771 *
1772 * KC = kernel mapping is cacheable
1773 * UC = user mapping is cacheable
1774 *
1775 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1776 * +---------------------------------------------
1777 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1778 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1779 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1780 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1781 */
1782
1783 static const int pmap_vac_flags[4][4] = {
1784 {-1, 0, 0, PVF_KNC},
1785 {0, 0, PVF_NC, PVF_NC},
1786 {0, PVF_NC, PVF_NC, PVF_NC},
1787 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1788 };
1789
1790 static inline int
1791 pmap_get_vac_flags(const struct vm_page_md *md)
1792 {
1793 int kidx, uidx;
1794
1795 kidx = 0;
1796 if (md->kro_mappings || md->krw_mappings > 1)
1797 kidx |= 1;
1798 if (md->krw_mappings)
1799 kidx |= 2;
1800
1801 uidx = 0;
1802 if (md->uro_mappings || md->urw_mappings > 1)
1803 uidx |= 1;
1804 if (md->urw_mappings)
1805 uidx |= 2;
1806
1807 return (pmap_vac_flags[uidx][kidx]);
1808 }
1809
1810 static inline void
1811 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1812 {
1813 int nattr;
1814
1815 nattr = pmap_get_vac_flags(md);
1816
1817 if (nattr < 0) {
1818 md->pvh_attrs &= ~PVF_NC;
1819 return;
1820 }
1821
1822 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1823 return;
1824
1825 if (pm == pmap_kernel())
1826 pmap_vac_me_kpmap(md, pa, pm, va);
1827 else
1828 pmap_vac_me_user(md, pa, pm, va);
1829
1830 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1831 }
1832
1833 static void
1834 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1835 {
1836 u_int u_cacheable, u_entries;
1837 struct pv_entry *pv;
1838 pmap_t last_pmap = pm;
1839
1840 /*
1841 * Pass one, see if there are both kernel and user pmaps for
1842 * this page. Calculate whether there are user-writable or
1843 * kernel-writable pages.
1844 */
1845 u_cacheable = 0;
1846 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1847 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1848 u_cacheable++;
1849 }
1850
1851 u_entries = md->urw_mappings + md->uro_mappings;
1852
1853 /*
1854 * We know we have just been updating a kernel entry, so if
1855 * all user pages are already cacheable, then there is nothing
1856 * further to do.
1857 */
1858 if (md->k_mappings == 0 && u_cacheable == u_entries)
1859 return;
1860
1861 if (u_entries) {
1862 /*
1863 * Scan over the list again, for each entry, if it
1864 * might not be set correctly, call pmap_vac_me_user
1865 * to recalculate the settings.
1866 */
1867 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1868 /*
1869 * We know kernel mappings will get set
1870 * correctly in other calls. We also know
1871 * that if the pmap is the same as last_pmap
1872 * then we've just handled this entry.
1873 */
1874 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1875 continue;
1876
1877 /*
1878 * If there are kernel entries and this page
1879 * is writable but non-cacheable, then we can
1880 * skip this entry also.
1881 */
1882 if (md->k_mappings &&
1883 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1884 (PVF_NC | PVF_WRITE))
1885 continue;
1886
1887 /*
1888 * Similarly if there are no kernel-writable
1889 * entries and the page is already
1890 * read-only/cacheable.
1891 */
1892 if (md->krw_mappings == 0 &&
1893 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1894 continue;
1895
1896 /*
1897 * For some of the remaining cases, we know
1898 * that we must recalculate, but for others we
1899 * can't tell if they are correct or not, so
1900 * we recalculate anyway.
1901 */
1902 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1903 }
1904
1905 if (md->k_mappings == 0)
1906 return;
1907 }
1908
1909 pmap_vac_me_user(md, pa, pm, va);
1910 }
1911
1912 static void
1913 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1914 {
1915 pmap_t kpmap = pmap_kernel();
1916 struct pv_entry *pv, *npv = NULL;
1917 u_int entries = 0;
1918 u_int writable = 0;
1919 u_int cacheable_entries = 0;
1920 u_int kern_cacheable = 0;
1921 u_int other_writable = 0;
1922
1923 /*
1924 * Count mappings and writable mappings in this pmap.
1925 * Include kernel mappings as part of our own.
1926 * Keep a pointer to the first one.
1927 */
1928 npv = NULL;
1929 KASSERT(pmap_page_locked_p(md));
1930 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1931 /* Count mappings in the same pmap */
1932 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1933 if (entries++ == 0)
1934 npv = pv;
1935
1936 /* Cacheable mappings */
1937 if ((pv->pv_flags & PVF_NC) == 0) {
1938 cacheable_entries++;
1939 if (kpmap == pv->pv_pmap)
1940 kern_cacheable++;
1941 }
1942
1943 /* Writable mappings */
1944 if (pv->pv_flags & PVF_WRITE)
1945 ++writable;
1946 } else
1947 if (pv->pv_flags & PVF_WRITE)
1948 other_writable = 1;
1949 }
1950
1951 /*
1952 * Enable or disable caching as necessary.
1953 * Note: the first entry might be part of the kernel pmap,
1954 * so we can't assume this is indicative of the state of the
1955 * other (maybe non-kpmap) entries.
1956 */
1957 if ((entries > 1 && writable) ||
1958 (entries > 0 && pm == kpmap && other_writable)) {
1959 if (cacheable_entries == 0) {
1960 return;
1961 }
1962
1963 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1964 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1965 (pv->pv_flags & PVF_NC))
1966 continue;
1967
1968 pv->pv_flags |= PVF_NC;
1969
1970 struct l2_bucket * const l2b
1971 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1972 KASSERTMSG(l2b != NULL, "%#lx", va);
1973 pt_entry_t * const ptep
1974 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1975 const pt_entry_t opte = *ptep;
1976 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1977
1978 if ((va != pv->pv_va || pm != pv->pv_pmap)
1979 && l2pte_valid_p(npte)) {
1980 #ifdef PMAP_CACHE_VIVT
1981 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1982 true, pv->pv_flags);
1983 #endif
1984 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1985 pv->pv_flags);
1986 }
1987
1988 l2pte_set(ptep, npte, opte);
1989 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1990 }
1991 cpu_cpwait();
1992 } else
1993 if (entries > cacheable_entries) {
1994 /*
1995 * Turn cacheing back on for some pages. If it is a kernel
1996 * page, only do so if there are no other writable pages.
1997 */
1998 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1999 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
2000 (kpmap != pv->pv_pmap || other_writable)))
2001 continue;
2002
2003 pv->pv_flags &= ~PVF_NC;
2004
2005 struct l2_bucket * const l2b
2006 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2007 KASSERTMSG(l2b != NULL, "%#lx", va);
2008 pt_entry_t * const ptep
2009 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2010 const pt_entry_t opte = *ptep;
2011 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2012 | pte_l2_s_cache_mode;
2013
2014 if (l2pte_valid_p(opte)) {
2015 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2016 pv->pv_flags);
2017 }
2018
2019 l2pte_set(ptep, npte, opte);
2020 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2021 }
2022 }
2023 }
2024 #endif
2025
2026 #ifdef PMAP_CACHE_VIPT
2027 static void
2028 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2029 {
2030 #ifndef ARM_MMU_EXTENDED
2031 struct pv_entry *pv;
2032 vaddr_t tst_mask;
2033 bool bad_alias;
2034 const u_int
2035 rw_mappings = md->urw_mappings + md->krw_mappings,
2036 ro_mappings = md->uro_mappings + md->kro_mappings;
2037
2038 /* do we need to do anything? */
2039 if (arm_cache_prefer_mask == 0)
2040 return;
2041
2042 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2043 md, pm, va));
2044
2045 KASSERT(!va || pm);
2046 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2047
2048 /* Already a conflict? */
2049 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2050 /* just an add, things are already non-cached */
2051 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2052 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2053 bad_alias = false;
2054 if (va) {
2055 PMAPCOUNT(vac_color_none);
2056 bad_alias = true;
2057 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2058 goto fixup;
2059 }
2060 pv = SLIST_FIRST(&md->pvh_list);
2061 /* the list can't be empty because it would be cachable */
2062 if (md->pvh_attrs & PVF_KMPAGE) {
2063 tst_mask = md->pvh_attrs;
2064 } else {
2065 KASSERT(pv);
2066 tst_mask = pv->pv_va;
2067 pv = SLIST_NEXT(pv, pv_link);
2068 }
2069 /*
2070 * Only check for a bad alias if we have writable mappings.
2071 */
2072 tst_mask &= arm_cache_prefer_mask;
2073 if (rw_mappings > 0) {
2074 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2075 /* if there's a bad alias, stop checking. */
2076 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2077 bad_alias = true;
2078 }
2079 md->pvh_attrs |= PVF_WRITE;
2080 if (!bad_alias)
2081 md->pvh_attrs |= PVF_DIRTY;
2082 } else {
2083 /*
2084 * We have only read-only mappings. Let's see if there
2085 * are multiple colors in use or if we mapped a KMPAGE.
2086 * If the latter, we have a bad alias. If the former,
2087 * we need to remember that.
2088 */
2089 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2090 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2091 if (md->pvh_attrs & PVF_KMPAGE)
2092 bad_alias = true;
2093 break;
2094 }
2095 }
2096 md->pvh_attrs &= ~PVF_WRITE;
2097 /*
2098 * No KMPAGE and we exited early, so we must have
2099 * multiple color mappings.
2100 */
2101 if (!bad_alias && pv != NULL)
2102 md->pvh_attrs |= PVF_MULTCLR;
2103 }
2104
2105 /* If no conflicting colors, set everything back to cached */
2106 if (!bad_alias) {
2107 #ifdef DEBUG
2108 if ((md->pvh_attrs & PVF_WRITE)
2109 || ro_mappings < 2) {
2110 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2111 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2112 }
2113 #endif
2114 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2115 md->pvh_attrs |= tst_mask | PVF_COLORED;
2116 /*
2117 * Restore DIRTY bit if page is modified
2118 */
2119 if (md->pvh_attrs & PVF_DMOD)
2120 md->pvh_attrs |= PVF_DIRTY;
2121 PMAPCOUNT(vac_color_restore);
2122 } else {
2123 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2124 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2125 }
2126 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2127 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2128 } else if (!va) {
2129 KASSERT(pmap_is_page_colored_p(md));
2130 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2131 || (md->pvh_attrs & PVF_DIRTY));
2132 if (rw_mappings == 0) {
2133 md->pvh_attrs &= ~PVF_WRITE;
2134 if (ro_mappings == 1
2135 && (md->pvh_attrs & PVF_MULTCLR)) {
2136 /*
2137 * If this is the last readonly mapping
2138 * but it doesn't match the current color
2139 * for the page, change the current color
2140 * to match this last readonly mapping.
2141 */
2142 pv = SLIST_FIRST(&md->pvh_list);
2143 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2144 & arm_cache_prefer_mask;
2145 if (tst_mask) {
2146 md->pvh_attrs ^= tst_mask;
2147 PMAPCOUNT(vac_color_change);
2148 }
2149 }
2150 }
2151 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2152 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2153 return;
2154 } else if (!pmap_is_page_colored_p(md)) {
2155 /* not colored so we just use its color */
2156 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2157 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2158 PMAPCOUNT(vac_color_new);
2159 md->pvh_attrs &= PAGE_SIZE - 1;
2160 md->pvh_attrs |= PVF_COLORED
2161 | (va & arm_cache_prefer_mask)
2162 | (rw_mappings > 0 ? PVF_WRITE : 0);
2163 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2164 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2165 return;
2166 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2167 bad_alias = false;
2168 if (rw_mappings > 0) {
2169 /*
2170 * We now have writeable mappings and if we have
2171 * readonly mappings in more than once color, we have
2172 * an aliasing problem. Regardless mark the page as
2173 * writeable.
2174 */
2175 if (md->pvh_attrs & PVF_MULTCLR) {
2176 if (ro_mappings < 2) {
2177 /*
2178 * If we only have less than two
2179 * read-only mappings, just flush the
2180 * non-primary colors from the cache.
2181 */
2182 pmap_flush_page(md, pa,
2183 PMAP_FLUSH_SECONDARY);
2184 } else {
2185 bad_alias = true;
2186 }
2187 }
2188 md->pvh_attrs |= PVF_WRITE;
2189 }
2190 /* If no conflicting colors, set everything back to cached */
2191 if (!bad_alias) {
2192 #ifdef DEBUG
2193 if (rw_mappings > 0
2194 || (md->pvh_attrs & PMAP_KMPAGE)) {
2195 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2196 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2197 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2198 }
2199 #endif
2200 if (SLIST_EMPTY(&md->pvh_list))
2201 PMAPCOUNT(vac_color_reuse);
2202 else
2203 PMAPCOUNT(vac_color_ok);
2204
2205 /* matching color, just return */
2206 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2207 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2208 return;
2209 }
2210 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2211 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2212
2213 /* color conflict. evict from cache. */
2214
2215 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2216 md->pvh_attrs &= ~PVF_COLORED;
2217 md->pvh_attrs |= PVF_NC;
2218 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2219 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2220 PMAPCOUNT(vac_color_erase);
2221 } else if (rw_mappings == 0
2222 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2223 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2224
2225 /*
2226 * If the page has dirty cache lines, clean it.
2227 */
2228 if (md->pvh_attrs & PVF_DIRTY)
2229 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2230
2231 /*
2232 * If this is the first remapping (we know that there are no
2233 * writeable mappings), then this is a simple color change.
2234 * Otherwise this is a seconary r/o mapping, which means
2235 * we don't have to do anything.
2236 */
2237 if (ro_mappings == 1) {
2238 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2239 md->pvh_attrs &= PAGE_SIZE - 1;
2240 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2241 PMAPCOUNT(vac_color_change);
2242 } else {
2243 PMAPCOUNT(vac_color_blind);
2244 }
2245 md->pvh_attrs |= PVF_MULTCLR;
2246 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2247 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2248 return;
2249 } else {
2250 if (rw_mappings > 0)
2251 md->pvh_attrs |= PVF_WRITE;
2252
2253 /* color conflict. evict from cache. */
2254 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2255
2256 /* the list can't be empty because this was a enter/modify */
2257 pv = SLIST_FIRST(&md->pvh_list);
2258 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2259 KASSERT(pv);
2260 /*
2261 * If there's only one mapped page, change color to the
2262 * page's new color and return. Restore the DIRTY bit
2263 * that was erased by pmap_flush_page.
2264 */
2265 if (SLIST_NEXT(pv, pv_link) == NULL) {
2266 md->pvh_attrs &= PAGE_SIZE - 1;
2267 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2268 if (md->pvh_attrs & PVF_DMOD)
2269 md->pvh_attrs |= PVF_DIRTY;
2270 PMAPCOUNT(vac_color_change);
2271 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2272 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2273 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2274 return;
2275 }
2276 }
2277 bad_alias = true;
2278 md->pvh_attrs &= ~PVF_COLORED;
2279 md->pvh_attrs |= PVF_NC;
2280 PMAPCOUNT(vac_color_erase);
2281 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2282 }
2283
2284 fixup:
2285 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2286
2287 /*
2288 * Turn cacheing on/off for all pages.
2289 */
2290 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2291 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2292 pv->pv_va);
2293 KASSERTMSG(l2b != NULL, "%#lx", va);
2294 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2295 const pt_entry_t opte = *ptep;
2296 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2297 if (bad_alias) {
2298 pv->pv_flags |= PVF_NC;
2299 } else {
2300 pv->pv_flags &= ~PVF_NC;
2301 npte |= pte_l2_s_cache_mode;
2302 }
2303
2304 if (opte == npte) /* only update is there's a change */
2305 continue;
2306
2307 if (l2pte_valid_p(npte)) {
2308 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2309 }
2310
2311 l2pte_set(ptep, npte, opte);
2312 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2313 }
2314 #endif /* !ARM_MMU_EXTENDED */
2315 }
2316 #endif /* PMAP_CACHE_VIPT */
2317
2318
2319 /*
2320 * Modify pte bits for all ptes corresponding to the given physical address.
2321 * We use `maskbits' rather than `clearbits' because we're always passing
2322 * constants and the latter would require an extra inversion at run-time.
2323 */
2324 static void
2325 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2326 {
2327 struct pv_entry *pv;
2328 #ifdef PMAP_CACHE_VIPT
2329 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2330 #ifdef ARM_MMU_EXTENDED
2331 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2332 #else
2333 const u_int execbits = 0;
2334 bool need_vac_me_harder = false;
2335 bool need_syncicache = false;
2336 #endif
2337 #else
2338 const u_int execbits = 0;
2339 #endif
2340
2341 NPDEBUG(PDB_BITS,
2342 printf("pmap_clearbit: md %p mask 0x%x\n",
2343 md, maskbits));
2344
2345 #ifdef PMAP_CACHE_VIPT
2346 /*
2347 * If we might want to sync the I-cache and we've modified it,
2348 * then we know we definitely need to sync or discard it.
2349 */
2350 if (want_syncicache) {
2351 #ifdef ARM_MMU_EXTENDED
2352 if (md->pvh_attrs & PVF_MOD)
2353 md->pvh_attrs &= ~PVF_EXEC;
2354 #else
2355 need_syncicache = md->pvh_attrs & PVF_MOD;
2356 #endif
2357 }
2358 #endif
2359 KASSERT(pmap_page_locked_p(md));
2360
2361 /*
2362 * Clear saved attributes (modify, reference)
2363 */
2364 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2365
2366 if (SLIST_EMPTY(&md->pvh_list)) {
2367 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2368 if (need_syncicache) {
2369 /*
2370 * No one has it mapped, so just discard it. The next
2371 * exec remapping will cause it to be synced.
2372 */
2373 md->pvh_attrs &= ~PVF_EXEC;
2374 PMAPCOUNT(exec_discarded_clearbit);
2375 }
2376 #endif
2377 return;
2378 }
2379
2380 /*
2381 * Loop over all current mappings setting/clearing as appropos
2382 */
2383 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2384 pmap_t pm = pv->pv_pmap;
2385 const vaddr_t va = pv->pv_va;
2386 const u_int oflags = pv->pv_flags;
2387 #ifndef ARM_MMU_EXTENDED
2388 /*
2389 * Kernel entries are unmanaged and as such not to be changed.
2390 */
2391 if (PV_IS_KENTRY_P(oflags))
2392 continue;
2393 #endif
2394 pv->pv_flags &= ~maskbits;
2395
2396 pmap_release_page_lock(md);
2397 pmap_acquire_pmap_lock(pm);
2398
2399 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2400 if (l2b == NULL) {
2401 pmap_release_pmap_lock(pm);
2402 pmap_acquire_page_lock(md);
2403 continue;
2404 }
2405 KASSERTMSG(l2b != NULL, "%#lx", va);
2406
2407 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2408 const pt_entry_t opte = *ptep;
2409 pt_entry_t npte = opte | execbits;
2410
2411 #ifdef ARM_MMU_EXTENDED
2412 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2413 #endif
2414
2415 NPDEBUG(PDB_BITS,
2416 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2417 __func__, pv, pm, va, oflags));
2418
2419 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2420 #ifdef PMAP_CACHE_VIVT
2421 if ((oflags & PVF_NC)) {
2422 /*
2423 * Entry is not cacheable:
2424 *
2425 * Don't turn caching on again if this is a
2426 * modified emulation. This would be
2427 * inconsitent with the settings created by
2428 * pmap_vac_me_harder(). Otherwise, it's safe
2429 * to re-enable cacheing.
2430 *
2431 * There's no need to call pmap_vac_me_harder()
2432 * here: all pages are losing their write
2433 * permission.
2434 */
2435 if (maskbits & PVF_WRITE) {
2436 npte |= pte_l2_s_cache_mode;
2437 pv->pv_flags &= ~PVF_NC;
2438 }
2439 } else
2440 if (l2pte_writable_p(opte)) {
2441 /*
2442 * Entry is writable/cacheable: check if pmap
2443 * is current if it is flush it, otherwise it
2444 * won't be in the cache
2445 */
2446 pmap_cache_wbinv_page(pm, va,
2447 (maskbits & PVF_REF) != 0,
2448 oflags|PVF_WRITE);
2449 }
2450 #endif
2451
2452 /* make the pte read only */
2453 npte = l2pte_set_readonly(npte);
2454
2455 pmap_acquire_page_lock(md);
2456 #ifdef MULTIPROCESSOR
2457 pv = pmap_find_pv(md, pm, va);
2458 #endif
2459 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2460 /*
2461 * Keep alias accounting up to date
2462 */
2463 if (pm == pmap_kernel()) {
2464 md->krw_mappings--;
2465 md->kro_mappings++;
2466 } else {
2467 md->urw_mappings--;
2468 md->uro_mappings++;
2469 }
2470 #ifdef PMAP_CACHE_VIPT
2471 if (arm_cache_prefer_mask != 0) {
2472 if (md->urw_mappings + md->krw_mappings == 0) {
2473 md->pvh_attrs &= ~PVF_WRITE;
2474 } else {
2475 PMAP_VALIDATE_MD_PAGE(md);
2476 }
2477 }
2478 #ifndef ARM_MMU_EXTENDED
2479 if (want_syncicache)
2480 need_syncicache = true;
2481 need_vac_me_harder = true;
2482 #endif
2483 #endif /* PMAP_CACHE_VIPT */
2484 }
2485 pmap_release_page_lock(md);
2486 }
2487
2488 if (maskbits & PVF_REF) {
2489 if (true
2490 #ifndef ARM_MMU_EXTENDED
2491 && (oflags & PVF_NC) == 0
2492 #endif
2493 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2494 && l2pte_valid_p(npte)) {
2495 #ifdef PMAP_CACHE_VIVT
2496 /*
2497 * Check npte here; we may have already
2498 * done the wbinv above, and the validity
2499 * of the PTE is the same for opte and
2500 * npte.
2501 */
2502 pmap_cache_wbinv_page(pm, va, true, oflags);
2503 #endif
2504 }
2505
2506 /*
2507 * Make the PTE invalid so that we will take a
2508 * page fault the next time the mapping is
2509 * referenced.
2510 */
2511 npte &= ~L2_TYPE_MASK;
2512 npte |= L2_TYPE_INV;
2513 }
2514
2515 if (npte != opte) {
2516 l2pte_reset(ptep);
2517 PTE_SYNC(ptep);
2518
2519 /* Flush the TLB entry if a current pmap. */
2520 pmap_tlb_flush_SE(pm, va, oflags);
2521
2522 l2pte_set(ptep, npte, 0);
2523 PTE_SYNC(ptep);
2524 }
2525
2526 pmap_release_pmap_lock(pm);
2527 pmap_acquire_page_lock(md);
2528
2529 NPDEBUG(PDB_BITS,
2530 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2531 pm, va, opte, npte));
2532 }
2533
2534 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2535 /*
2536 * If we need to sync the I-cache and we haven't done it yet, do it.
2537 */
2538 if (need_syncicache) {
2539 pmap_release_page_lock(md);
2540 pmap_syncicache_page(md, pa);
2541 pmap_acquire_page_lock(md);
2542 PMAPCOUNT(exec_synced_clearbit);
2543 }
2544
2545 /*
2546 * If we are changing this to read-only, we need to call vac_me_harder
2547 * so we can change all the read-only pages to cacheable. We pretend
2548 * this as a page deletion.
2549 */
2550 if (need_vac_me_harder) {
2551 if (md->pvh_attrs & PVF_NC)
2552 pmap_vac_me_harder(md, pa, NULL, 0);
2553 }
2554 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
2555 }
2556
2557 /*
2558 * pmap_clean_page()
2559 *
2560 * This is a local function used to work out the best strategy to clean
2561 * a single page referenced by its entry in the PV table. It's used by
2562 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2563 *
2564 * Its policy is effectively:
2565 * o If there are no mappings, we don't bother doing anything with the cache.
2566 * o If there is one mapping, we clean just that page.
2567 * o If there are multiple mappings, we clean the entire cache.
2568 *
2569 * So that some functions can be further optimised, it returns 0 if it didn't
2570 * clean the entire cache, or 1 if it did.
2571 *
2572 * XXX One bug in this routine is that if the pv_entry has a single page
2573 * mapped at 0x00000000 a whole cache clean will be performed rather than
2574 * just the 1 page. Since this should not occur in everyday use and if it does
2575 * it will just result in not the most efficient clean for the page.
2576 */
2577 #ifdef PMAP_CACHE_VIVT
2578 static bool
2579 pmap_clean_page(struct vm_page_md *md, bool is_src)
2580 {
2581 struct pv_entry *pv;
2582 pmap_t pm_to_clean = NULL;
2583 bool cache_needs_cleaning = false;
2584 vaddr_t page_to_clean = 0;
2585 u_int flags = 0;
2586
2587 /*
2588 * Since we flush the cache each time we change to a different
2589 * user vmspace, we only need to flush the page if it is in the
2590 * current pmap.
2591 */
2592 KASSERT(pmap_page_locked_p(md));
2593 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2594 if (pmap_is_current(pv->pv_pmap)) {
2595 flags |= pv->pv_flags;
2596 /*
2597 * The page is mapped non-cacheable in
2598 * this map. No need to flush the cache.
2599 */
2600 if (pv->pv_flags & PVF_NC) {
2601 #ifdef DIAGNOSTIC
2602 KASSERT(!cache_needs_cleaning);
2603 #endif
2604 break;
2605 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2606 continue;
2607 if (cache_needs_cleaning) {
2608 page_to_clean = 0;
2609 break;
2610 } else {
2611 page_to_clean = pv->pv_va;
2612 pm_to_clean = pv->pv_pmap;
2613 }
2614 cache_needs_cleaning = true;
2615 }
2616 }
2617
2618 if (page_to_clean) {
2619 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2620 !is_src, flags | PVF_REF);
2621 } else if (cache_needs_cleaning) {
2622 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2623
2624 pmap_cache_wbinv_all(pm, flags);
2625 return true;
2626 }
2627 return false;
2628 }
2629 #endif
2630
2631 #ifdef PMAP_CACHE_VIPT
2632 /*
2633 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2634 * right cache alias to make sure we flush the right stuff.
2635 */
2636 void
2637 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2638 {
2639 pmap_t kpm = pmap_kernel();
2640 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2641 ? PAGE_SIZE
2642 : arm_pcache.icache_way_size;
2643
2644 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2645 md, md->pvh_attrs));
2646 /*
2647 * No need to clean the page if it's non-cached.
2648 */
2649 #ifndef ARM_MMU_EXTENDED
2650 if (md->pvh_attrs & PVF_NC)
2651 return;
2652 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2653 #endif
2654
2655 pt_entry_t * const ptep = cpu_cdst_pte(0);
2656 const vaddr_t dstp = cpu_cdstp(0);
2657 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2658 if (way_size <= PAGE_SIZE) {
2659 bool ok = false;
2660 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2661 if (ok) {
2662 cpu_icache_sync_range(vdstp, way_size);
2663 return;
2664 }
2665 }
2666 #endif
2667
2668 /*
2669 * We don't worry about the color of the exec page, we map the
2670 * same page to pages in the way and then do the icache_sync on
2671 * the entire way making sure we are cleaned.
2672 */
2673 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2674 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2675
2676 for (size_t i = 0, j = 0; i < way_size;
2677 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2678 l2pte_reset(ptep + j);
2679 PTE_SYNC(ptep + j);
2680
2681 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2682 /*
2683 * Set up a PTE with to flush these cache lines.
2684 */
2685 l2pte_set(ptep + j, npte, 0);
2686 }
2687 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2688
2689 /*
2690 * Flush it.
2691 */
2692 cpu_icache_sync_range(dstp, way_size);
2693
2694 for (size_t i = 0, j = 0; i < way_size;
2695 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2696 /*
2697 * Unmap the page(s).
2698 */
2699 l2pte_reset(ptep + j);
2700 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2701 }
2702 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2703
2704 md->pvh_attrs |= PVF_EXEC;
2705 PMAPCOUNT(exec_synced);
2706 }
2707
2708 #ifndef ARM_MMU_EXTENDED
2709 void
2710 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2711 {
2712 vsize_t va_offset, end_va;
2713 bool wbinv_p;
2714
2715 if (arm_cache_prefer_mask == 0)
2716 return;
2717
2718 switch (flush) {
2719 case PMAP_FLUSH_PRIMARY:
2720 if (md->pvh_attrs & PVF_MULTCLR) {
2721 va_offset = 0;
2722 end_va = arm_cache_prefer_mask;
2723 md->pvh_attrs &= ~PVF_MULTCLR;
2724 PMAPCOUNT(vac_flush_lots);
2725 } else {
2726 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2727 end_va = va_offset;
2728 PMAPCOUNT(vac_flush_one);
2729 }
2730 /*
2731 * Mark that the page is no longer dirty.
2732 */
2733 md->pvh_attrs &= ~PVF_DIRTY;
2734 wbinv_p = true;
2735 break;
2736 case PMAP_FLUSH_SECONDARY:
2737 va_offset = 0;
2738 end_va = arm_cache_prefer_mask;
2739 wbinv_p = true;
2740 md->pvh_attrs &= ~PVF_MULTCLR;
2741 PMAPCOUNT(vac_flush_lots);
2742 break;
2743 case PMAP_CLEAN_PRIMARY:
2744 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2745 end_va = va_offset;
2746 wbinv_p = false;
2747 /*
2748 * Mark that the page is no longer dirty.
2749 */
2750 if ((md->pvh_attrs & PVF_DMOD) == 0)
2751 md->pvh_attrs &= ~PVF_DIRTY;
2752 PMAPCOUNT(vac_clean_one);
2753 break;
2754 default:
2755 return;
2756 }
2757
2758 KASSERT(!(md->pvh_attrs & PVF_NC));
2759
2760 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2761 md, md->pvh_attrs));
2762
2763 const size_t scache_line_size = arm_scache.dcache_line_size;
2764
2765 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2766 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2767 const vaddr_t dstp = cpu_cdstp(va_offset);
2768 const pt_entry_t opte = *ptep;
2769
2770 if (flush == PMAP_FLUSH_SECONDARY
2771 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2772 continue;
2773
2774 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2775 /*
2776 * Set up a PTE with the right coloring to flush
2777 * existing cache entries.
2778 */
2779 const pt_entry_t npte = L2_S_PROTO
2780 | pa
2781 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2782 | pte_l2_s_cache_mode;
2783 l2pte_set(ptep, npte, opte);
2784 PTE_SYNC(ptep);
2785
2786 /*
2787 * Flush it. Make sure to flush secondary cache too since
2788 * bus_dma will ignore uncached pages.
2789 */
2790 if (scache_line_size != 0) {
2791 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2792 if (wbinv_p) {
2793 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2794 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2795 } else {
2796 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2797 }
2798 } else {
2799 if (wbinv_p) {
2800 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2801 } else {
2802 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2803 }
2804 }
2805
2806 /*
2807 * Restore the page table entry since we might have interrupted
2808 * pmap_zero_page or pmap_copy_page which was already using
2809 * this pte.
2810 */
2811 if (opte) {
2812 l2pte_set(ptep, opte, npte);
2813 } else {
2814 l2pte_reset(ptep);
2815 }
2816 PTE_SYNC(ptep);
2817 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2818 }
2819 }
2820 #endif /* ARM_MMU_EXTENDED */
2821 #endif /* PMAP_CACHE_VIPT */
2822
2823 /*
2824 * Routine: pmap_page_remove
2825 * Function:
2826 * Removes this physical page from
2827 * all physical maps in which it resides.
2828 * Reflects back modify bits to the pager.
2829 */
2830 static void
2831 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2832 {
2833 struct l2_bucket *l2b;
2834 struct pv_entry *pv;
2835 pt_entry_t *ptep;
2836 #ifndef ARM_MMU_EXTENDED
2837 bool flush = false;
2838 #endif
2839 u_int flags = 0;
2840
2841 NPDEBUG(PDB_FOLLOW,
2842 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2843 pa));
2844
2845 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2846 pmap_acquire_page_lock(md);
2847 if (*pvp == NULL) {
2848 #ifdef PMAP_CACHE_VIPT
2849 /*
2850 * We *know* the page contents are about to be replaced.
2851 * Discard the exec contents
2852 */
2853 if (PV_IS_EXEC_P(md->pvh_attrs))
2854 PMAPCOUNT(exec_discarded_page_protect);
2855 md->pvh_attrs &= ~PVF_EXEC;
2856 PMAP_VALIDATE_MD_PAGE(md);
2857 #endif
2858 pmap_release_page_lock(md);
2859 return;
2860 }
2861 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2862 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2863 #endif
2864
2865 /*
2866 * Clear alias counts
2867 */
2868 #ifdef PMAP_CACHE_VIVT
2869 md->k_mappings = 0;
2870 #endif
2871 md->urw_mappings = md->uro_mappings = 0;
2872
2873 #ifdef PMAP_CACHE_VIVT
2874 pmap_clean_page(md, false);
2875 #endif
2876
2877 while ((pv = *pvp) != NULL) {
2878 pmap_t pm = pv->pv_pmap;
2879 #ifndef ARM_MMU_EXTENDED
2880 if (flush == false && pmap_is_current(pm))
2881 flush = true;
2882 #endif
2883
2884 if (pm == pmap_kernel()) {
2885 #ifdef PMAP_CACHE_VIPT
2886 /*
2887 * If this was unmanaged mapping, it must be preserved.
2888 * Move it back on the list and advance the end-of-list
2889 * pointer.
2890 */
2891 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2892 *pvp = pv;
2893 pvp = &SLIST_NEXT(pv, pv_link);
2894 continue;
2895 }
2896 if (pv->pv_flags & PVF_WRITE)
2897 md->krw_mappings--;
2898 else
2899 md->kro_mappings--;
2900 #endif
2901 PMAPCOUNT(kernel_unmappings);
2902 }
2903 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2904 PMAPCOUNT(unmappings);
2905
2906 pmap_release_page_lock(md);
2907 pmap_acquire_pmap_lock(pm);
2908
2909 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2910 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2911
2912 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2913
2914 /*
2915 * Update statistics
2916 */
2917 --pm->pm_stats.resident_count;
2918
2919 /* Wired bit */
2920 if (pv->pv_flags & PVF_WIRED)
2921 --pm->pm_stats.wired_count;
2922
2923 flags |= pv->pv_flags;
2924
2925 /*
2926 * Invalidate the PTEs.
2927 */
2928 l2pte_reset(ptep);
2929 PTE_SYNC_CURRENT(pm, ptep);
2930
2931 #ifdef ARM_MMU_EXTENDED
2932 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2933 #endif
2934
2935 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2936
2937 pmap_release_pmap_lock(pm);
2938
2939 pool_put(&pmap_pv_pool, pv);
2940 pmap_acquire_page_lock(md);
2941 #ifdef MULTIPROCESSOR
2942 /*
2943 * Restart of the beginning of the list.
2944 */
2945 pvp = &SLIST_FIRST(&md->pvh_list);
2946 #endif
2947 }
2948 /*
2949 * if we reach the end of the list and there are still mappings, they
2950 * might be able to be cached now. And they must be kernel mappings.
2951 */
2952 if (!SLIST_EMPTY(&md->pvh_list)) {
2953 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2954 }
2955
2956 #ifdef PMAP_CACHE_VIPT
2957 /*
2958 * Its EXEC cache is now gone.
2959 */
2960 if (PV_IS_EXEC_P(md->pvh_attrs))
2961 PMAPCOUNT(exec_discarded_page_protect);
2962 md->pvh_attrs &= ~PVF_EXEC;
2963 KASSERT(md->urw_mappings == 0);
2964 KASSERT(md->uro_mappings == 0);
2965 #ifndef ARM_MMU_EXTENDED
2966 if (arm_cache_prefer_mask != 0) {
2967 if (md->krw_mappings == 0)
2968 md->pvh_attrs &= ~PVF_WRITE;
2969 PMAP_VALIDATE_MD_PAGE(md);
2970 }
2971 #endif /* ARM_MMU_EXTENDED */
2972 #endif /* PMAP_CACHE_VIPT */
2973 pmap_release_page_lock(md);
2974
2975 #ifndef ARM_MMU_EXTENDED
2976 if (flush) {
2977 /*
2978 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2979 * would need a subsequent call to pmap_update() to ensure
2980 * curpm->pm_cstate.cs_all is reset. Our callers are not
2981 * required to do that (see pmap(9)), so we can't modify
2982 * the current pmap's state.
2983 */
2984 if (PV_BEEN_EXECD(flags))
2985 cpu_tlb_flushID();
2986 else
2987 cpu_tlb_flushD();
2988 }
2989 cpu_cpwait();
2990 #endif /* ARM_MMU_EXTENDED */
2991 }
2992
2993 /*
2994 * pmap_t pmap_create(void)
2995 *
2996 * Create a new pmap structure from scratch.
2997 */
2998 pmap_t
2999 pmap_create(void)
3000 {
3001 pmap_t pm;
3002
3003 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3004
3005 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
3006 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
3007 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
3008
3009 pm->pm_stats.wired_count = 0;
3010 pm->pm_stats.resident_count = 1;
3011 #ifdef ARM_MMU_EXTENDED
3012 #ifdef MULTIPROCESSOR
3013 kcpuset_create(&pm->pm_active, true);
3014 kcpuset_create(&pm->pm_onproc, true);
3015 #endif
3016 #else
3017 pm->pm_cstate.cs_all = 0;
3018 #endif
3019 pmap_alloc_l1(pm);
3020
3021 /*
3022 * Note: The pool cache ensures that the pm_l2[] array is already
3023 * initialised to zero.
3024 */
3025
3026 pmap_pinit(pm);
3027
3028 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
3029
3030 return (pm);
3031 }
3032
3033 u_int
3034 arm32_mmap_flags(paddr_t pa)
3035 {
3036 /*
3037 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3038 * and we're using the upper bits in page numbers to pass flags around
3039 * so we might as well use the same bits
3040 */
3041 return (u_int)pa & PMAP_MD_MASK;
3042 }
3043 /*
3044 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3045 * u_int flags)
3046 *
3047 * Insert the given physical page (p) at
3048 * the specified virtual address (v) in the
3049 * target physical map with the protection requested.
3050 *
3051 * NB: This is the only routine which MAY NOT lazy-evaluate
3052 * or lose information. That is, this routine must actually
3053 * insert this page into the given map NOW.
3054 */
3055 int
3056 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3057 {
3058 struct l2_bucket *l2b;
3059 struct vm_page *pg, *opg;
3060 u_int nflags;
3061 u_int oflags;
3062 const bool kpm_p = (pm == pmap_kernel());
3063 #ifdef ARM_HAS_VBAR
3064 const bool vector_page_p = false;
3065 #else
3066 const bool vector_page_p = (va == vector_page);
3067 #endif
3068
3069 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3070
3071 UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
3072 pm, va, pa, prot);
3073 UVMHIST_LOG(maphist, " flag %#x", flags, 0, 0, 0);
3074
3075 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3076 KDASSERT(((va | pa) & PGOFSET) == 0);
3077
3078 /*
3079 * Get a pointer to the page. Later on in this function, we
3080 * test for a managed page by checking pg != NULL.
3081 */
3082 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3083
3084 nflags = 0;
3085 if (prot & VM_PROT_WRITE)
3086 nflags |= PVF_WRITE;
3087 if (prot & VM_PROT_EXECUTE)
3088 nflags |= PVF_EXEC;
3089 if (flags & PMAP_WIRED)
3090 nflags |= PVF_WIRED;
3091
3092 pmap_acquire_pmap_lock(pm);
3093
3094 /*
3095 * Fetch the L2 bucket which maps this page, allocating one if
3096 * necessary for user pmaps.
3097 */
3098 if (kpm_p) {
3099 l2b = pmap_get_l2_bucket(pm, va);
3100 } else {
3101 l2b = pmap_alloc_l2_bucket(pm, va);
3102 }
3103 if (l2b == NULL) {
3104 if (flags & PMAP_CANFAIL) {
3105 pmap_release_pmap_lock(pm);
3106 return (ENOMEM);
3107 }
3108 panic("pmap_enter: failed to allocate L2 bucket");
3109 }
3110 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3111 const pt_entry_t opte = *ptep;
3112 pt_entry_t npte = pa;
3113 oflags = 0;
3114
3115 if (opte) {
3116 /*
3117 * There is already a mapping at this address.
3118 * If the physical address is different, lookup the
3119 * vm_page.
3120 */
3121 if (l2pte_pa(opte) != pa)
3122 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3123 else
3124 opg = pg;
3125 } else
3126 opg = NULL;
3127
3128 if (pg) {
3129 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3130
3131 /*
3132 * This is to be a managed mapping.
3133 */
3134 pmap_acquire_page_lock(md);
3135 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3136 /*
3137 * - The access type indicates that we don't need
3138 * to do referenced emulation.
3139 * OR
3140 * - The physical page has already been referenced
3141 * so no need to re-do referenced emulation here.
3142 */
3143 npte |= l2pte_set_readonly(L2_S_PROTO);
3144
3145 nflags |= PVF_REF;
3146
3147 if ((prot & VM_PROT_WRITE) != 0 &&
3148 ((flags & VM_PROT_WRITE) != 0 ||
3149 (md->pvh_attrs & PVF_MOD) != 0)) {
3150 /*
3151 * This is a writable mapping, and the
3152 * page's mod state indicates it has
3153 * already been modified. Make it
3154 * writable from the outset.
3155 */
3156 npte = l2pte_set_writable(npte);
3157 nflags |= PVF_MOD;
3158 }
3159
3160 #ifdef ARM_MMU_EXTENDED
3161 /*
3162 * If the page has been cleaned, then the pvh_attrs
3163 * will have PVF_EXEC set, so mark it execute so we
3164 * don't get an access fault when trying to execute
3165 * from it.
3166 */
3167 if (md->pvh_attrs & nflags & PVF_EXEC) {
3168 npte &= ~L2_XS_XN;
3169 }
3170 #endif
3171 } else {
3172 /*
3173 * Need to do page referenced emulation.
3174 */
3175 npte |= L2_TYPE_INV;
3176 }
3177
3178 if (flags & ARM32_MMAP_WRITECOMBINE) {
3179 npte |= pte_l2_s_wc_mode;
3180 } else
3181 npte |= pte_l2_s_cache_mode;
3182
3183 if (pg == opg) {
3184 /*
3185 * We're changing the attrs of an existing mapping.
3186 */
3187 oflags = pmap_modify_pv(md, pa, pm, va,
3188 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3189 PVF_MOD | PVF_REF, nflags);
3190
3191 #ifdef PMAP_CACHE_VIVT
3192 /*
3193 * We may need to flush the cache if we're
3194 * doing rw-ro...
3195 */
3196 if (pm->pm_cstate.cs_cache_d &&
3197 (oflags & PVF_NC) == 0 &&
3198 l2pte_writable_p(opte) &&
3199 (prot & VM_PROT_WRITE) == 0)
3200 cpu_dcache_wb_range(va, PAGE_SIZE);
3201 #endif
3202 } else {
3203 struct pv_entry *pv;
3204 /*
3205 * New mapping, or changing the backing page
3206 * of an existing mapping.
3207 */
3208 if (opg) {
3209 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3210 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3211
3212 /*
3213 * Replacing an existing mapping with a new one.
3214 * It is part of our managed memory so we
3215 * must remove it from the PV list
3216 */
3217 pv = pmap_remove_pv(omd, opa, pm, va);
3218 pmap_vac_me_harder(omd, opa, pm, 0);
3219 oflags = pv->pv_flags;
3220
3221 #ifdef PMAP_CACHE_VIVT
3222 /*
3223 * If the old mapping was valid (ref/mod
3224 * emulation creates 'invalid' mappings
3225 * initially) then make sure to frob
3226 * the cache.
3227 */
3228 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3229 pmap_cache_wbinv_page(pm, va, true,
3230 oflags);
3231 }
3232 #endif
3233 } else {
3234 pmap_release_page_lock(md);
3235 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3236 if (pv == NULL) {
3237 pmap_release_pmap_lock(pm);
3238 if ((flags & PMAP_CANFAIL) == 0)
3239 panic("pmap_enter: "
3240 "no pv entries");
3241
3242 pmap_free_l2_bucket(pm, l2b, 0);
3243 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3244 0, 0, 0, 0);
3245 return (ENOMEM);
3246 }
3247 pmap_acquire_page_lock(md);
3248 }
3249
3250 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3251 }
3252 pmap_release_page_lock(md);
3253 } else {
3254 /*
3255 * We're mapping an unmanaged page.
3256 * These are always readable, and possibly writable, from
3257 * the get go as we don't need to track ref/mod status.
3258 */
3259 npte |= l2pte_set_readonly(L2_S_PROTO);
3260 if (prot & VM_PROT_WRITE)
3261 npte = l2pte_set_writable(npte);
3262
3263 /*
3264 * Make sure the vector table is mapped cacheable
3265 */
3266 if ((vector_page_p && !kpm_p)
3267 || (flags & ARM32_MMAP_CACHEABLE)) {
3268 npte |= pte_l2_s_cache_mode;
3269 #ifdef ARM_MMU_EXTENDED
3270 npte &= ~L2_XS_XN; /* and executable */
3271 #endif
3272 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3273 npte |= pte_l2_s_wc_mode;
3274 }
3275 if (opg) {
3276 /*
3277 * Looks like there's an existing 'managed' mapping
3278 * at this address.
3279 */
3280 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3281 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3282
3283 pmap_acquire_page_lock(omd);
3284 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3285 pmap_vac_me_harder(omd, opa, pm, 0);
3286 oflags = pv->pv_flags;
3287 pmap_release_page_lock(omd);
3288
3289 #ifdef PMAP_CACHE_VIVT
3290 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3291 pmap_cache_wbinv_page(pm, va, true, oflags);
3292 }
3293 #endif
3294 pool_put(&pmap_pv_pool, pv);
3295 }
3296 }
3297
3298 /*
3299 * Make sure userland mappings get the right permissions
3300 */
3301 if (!vector_page_p && !kpm_p) {
3302 npte |= L2_S_PROT_U;
3303 #ifdef ARM_MMU_EXTENDED
3304 npte |= L2_XS_nG; /* user pages are not global */
3305 #endif
3306 }
3307
3308 /*
3309 * Keep the stats up to date
3310 */
3311 if (opte == 0) {
3312 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3313 pm->pm_stats.resident_count++;
3314 }
3315
3316 UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
3317
3318 #if defined(ARM_MMU_EXTENDED)
3319 /*
3320 * If exec protection was requested but the page hasn't been synced,
3321 * sync it now and allow execution from it.
3322 */
3323 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3324 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3325 npte &= ~L2_XS_XN;
3326 pmap_syncicache_page(md, pa);
3327 PMAPCOUNT(exec_synced_map);
3328 }
3329 #endif
3330 /*
3331 * If this is just a wiring change, the two PTEs will be
3332 * identical, so there's no need to update the page table.
3333 */
3334 if (npte != opte) {
3335 l2pte_reset(ptep);
3336 PTE_SYNC(ptep);
3337 if (l2pte_valid_p(opte)) {
3338 pmap_tlb_flush_SE(pm, va, oflags);
3339 }
3340 l2pte_set(ptep, npte, 0);
3341 PTE_SYNC(ptep);
3342 #ifndef ARM_MMU_EXTENDED
3343 bool is_cached = pmap_is_cached(pm);
3344 if (is_cached) {
3345 /*
3346 * We only need to frob the cache/tlb if this pmap
3347 * is current
3348 */
3349 if (!vector_page_p && l2pte_valid_p(npte)) {
3350 /*
3351 * This mapping is likely to be accessed as
3352 * soon as we return to userland. Fix up the
3353 * L1 entry to avoid taking another
3354 * page/domain fault.
3355 */
3356 pd_entry_t *pdep = pmap_l1_kva(pm)
3357 + l1pte_index(va);
3358 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3359 | L1_C_DOM(pmap_domain(pm));
3360 if (*pdep != pde) {
3361 l1pte_setone(pdep, pde);
3362 PDE_SYNC(pdep);
3363 }
3364 }
3365 }
3366 #endif /* !ARM_MMU_EXTENDED */
3367
3368 #ifndef ARM_MMU_EXTENDED
3369 UVMHIST_LOG(maphist, " is_cached %d cs 0x%08x\n",
3370 is_cached, pm->pm_cstate.cs_all, 0, 0);
3371
3372 if (pg != NULL) {
3373 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3374
3375 pmap_acquire_page_lock(md);
3376 pmap_vac_me_harder(md, pa, pm, va);
3377 pmap_release_page_lock(md);
3378 }
3379 #endif
3380 }
3381 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3382 if (pg) {
3383 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3384
3385 pmap_acquire_page_lock(md);
3386 #ifndef ARM_MMU_EXTENDED
3387 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3388 #endif
3389 PMAP_VALIDATE_MD_PAGE(md);
3390 pmap_release_page_lock(md);
3391 }
3392 #endif
3393
3394 pmap_release_pmap_lock(pm);
3395
3396 return (0);
3397 }
3398
3399 /*
3400 * pmap_remove()
3401 *
3402 * pmap_remove is responsible for nuking a number of mappings for a range
3403 * of virtual address space in the current pmap. To do this efficiently
3404 * is interesting, because in a number of cases a wide virtual address
3405 * range may be supplied that contains few actual mappings. So, the
3406 * optimisations are:
3407 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3408 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3409 * maybe do just a partial cache clean. This path of execution is
3410 * complicated by the fact that the cache must be flushed _before_
3411 * the PTE is nuked, being a VAC :-)
3412 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3413 * all invalidations until pmap_update(), since pmap_remove_all() has
3414 * already flushed the cache.
3415 * 4. Maybe later fast-case a single page, but I don't think this is
3416 * going to make _that_ much difference overall.
3417 */
3418
3419 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3420
3421 void
3422 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3423 {
3424 vaddr_t next_bucket;
3425 u_int cleanlist_idx, total, cnt;
3426 struct {
3427 vaddr_t va;
3428 pt_entry_t *ptep;
3429 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3430 u_int mappings;
3431
3432 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3433 UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
3434
3435 /*
3436 * we lock in the pmap => pv_head direction
3437 */
3438 pmap_acquire_pmap_lock(pm);
3439
3440 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3441 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3442 #ifndef ARM_MMU_EXTENDED
3443 if (pm->pm_cstate.cs_tlb == 0)
3444 pm->pm_remove_all = true;
3445 #endif
3446 } else
3447 cleanlist_idx = 0;
3448
3449 total = 0;
3450
3451 while (sva < eva) {
3452 /*
3453 * Do one L2 bucket's worth at a time.
3454 */
3455 next_bucket = L2_NEXT_BUCKET_VA(sva);
3456 if (next_bucket > eva)
3457 next_bucket = eva;
3458
3459 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3460 if (l2b == NULL) {
3461 sva = next_bucket;
3462 continue;
3463 }
3464
3465 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3466
3467 for (mappings = 0;
3468 sva < next_bucket;
3469 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3470 pt_entry_t opte = *ptep;
3471
3472 if (opte == 0) {
3473 /* Nothing here, move along */
3474 continue;
3475 }
3476
3477 u_int flags = PVF_REF;
3478 paddr_t pa = l2pte_pa(opte);
3479 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3480
3481 /*
3482 * Update flags. In a number of circumstances,
3483 * we could cluster a lot of these and do a
3484 * number of sequential pages in one go.
3485 */
3486 if (pg != NULL) {
3487 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3488 struct pv_entry *pv;
3489
3490 pmap_acquire_page_lock(md);
3491 pv = pmap_remove_pv(md, pa, pm, sva);
3492 pmap_vac_me_harder(md, pa, pm, 0);
3493 pmap_release_page_lock(md);
3494 if (pv != NULL) {
3495 if (pm->pm_remove_all == false) {
3496 flags = pv->pv_flags;
3497 }
3498 pool_put(&pmap_pv_pool, pv);
3499 }
3500 }
3501 mappings += PAGE_SIZE / L2_S_SIZE;
3502
3503 if (!l2pte_valid_p(opte)) {
3504 /*
3505 * Ref/Mod emulation is still active for this
3506 * mapping, therefore it is has not yet been
3507 * accessed. No need to frob the cache/tlb.
3508 */
3509 l2pte_reset(ptep);
3510 PTE_SYNC_CURRENT(pm, ptep);
3511 continue;
3512 }
3513
3514 #ifdef ARM_MMU_EXTENDED
3515 if (pm == pmap_kernel()) {
3516 l2pte_reset(ptep);
3517 PTE_SYNC(ptep);
3518 pmap_tlb_flush_SE(pm, sva, flags);
3519 continue;
3520 }
3521 #endif
3522 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3523 /* Add to the clean list. */
3524 cleanlist[cleanlist_idx].ptep = ptep;
3525 cleanlist[cleanlist_idx].va =
3526 sva | (flags & PVF_EXEC);
3527 cleanlist_idx++;
3528 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3529 /* Nuke everything if needed. */
3530 #ifdef PMAP_CACHE_VIVT
3531 pmap_cache_wbinv_all(pm, PVF_EXEC);
3532 #endif
3533 /*
3534 * Roll back the previous PTE list,
3535 * and zero out the current PTE.
3536 */
3537 for (cnt = 0;
3538 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3539 l2pte_reset(cleanlist[cnt].ptep);
3540 PTE_SYNC(cleanlist[cnt].ptep);
3541 }
3542 l2pte_reset(ptep);
3543 PTE_SYNC(ptep);
3544 cleanlist_idx++;
3545 pm->pm_remove_all = true;
3546 } else {
3547 l2pte_reset(ptep);
3548 PTE_SYNC(ptep);
3549 if (pm->pm_remove_all == false) {
3550 pmap_tlb_flush_SE(pm, sva, flags);
3551 }
3552 }
3553 }
3554
3555 /*
3556 * Deal with any left overs
3557 */
3558 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3559 total += cleanlist_idx;
3560 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3561 l2pte_reset(cleanlist[cnt].ptep);
3562 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3563 #ifdef ARM_MMU_EXTENDED
3564 vaddr_t clva = cleanlist[cnt].va;
3565 pmap_tlb_flush_SE(pm, clva, PVF_REF);
3566 #else
3567 vaddr_t va = cleanlist[cnt].va;
3568 if (pm->pm_cstate.cs_all != 0) {
3569 vaddr_t clva = va & ~PAGE_MASK;
3570 u_int flags = va & PVF_EXEC;
3571 #ifdef PMAP_CACHE_VIVT
3572 pmap_cache_wbinv_page(pm, clva, true,
3573 PVF_REF | PVF_WRITE | flags);
3574 #endif
3575 pmap_tlb_flush_SE(pm, clva,
3576 PVF_REF | flags);
3577 }
3578 #endif /* ARM_MMU_EXTENDED */
3579 }
3580
3581 /*
3582 * If it looks like we're removing a whole bunch
3583 * of mappings, it's faster to just write-back
3584 * the whole cache now and defer TLB flushes until
3585 * pmap_update() is called.
3586 */
3587 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3588 cleanlist_idx = 0;
3589 else {
3590 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3591 #ifdef PMAP_CACHE_VIVT
3592 pmap_cache_wbinv_all(pm, PVF_EXEC);
3593 #endif
3594 pm->pm_remove_all = true;
3595 }
3596 }
3597
3598
3599 pmap_free_l2_bucket(pm, l2b, mappings);
3600 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3601 }
3602
3603 pmap_release_pmap_lock(pm);
3604 }
3605
3606 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3607 static struct pv_entry *
3608 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3609 {
3610 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3611 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3612 struct pv_entry *pv;
3613
3614 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3615 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3616 KASSERT(pmap_page_locked_p(md));
3617
3618 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3619 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3620 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3621
3622 /*
3623 * If we are removing a writeable mapping to a cached exec page,
3624 * if it's the last mapping then clear it execness other sync
3625 * the page to the icache.
3626 */
3627 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3628 && (pv->pv_flags & PVF_WRITE) != 0) {
3629 if (SLIST_EMPTY(&md->pvh_list)) {
3630 md->pvh_attrs &= ~PVF_EXEC;
3631 PMAPCOUNT(exec_discarded_kremove);
3632 } else {
3633 pmap_syncicache_page(md, pa);
3634 PMAPCOUNT(exec_synced_kremove);
3635 }
3636 }
3637 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3638
3639 return pv;
3640 }
3641 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3642
3643 /*
3644 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3645 *
3646 * We assume there is already sufficient KVM space available
3647 * to do this, as we can't allocate L2 descriptor tables/metadata
3648 * from here.
3649 */
3650 void
3651 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3652 {
3653 #ifdef PMAP_CACHE_VIVT
3654 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3655 #endif
3656 #ifdef PMAP_CACHE_VIPT
3657 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3658 struct vm_page *opg;
3659 #ifndef ARM_MMU_EXTENDED
3660 struct pv_entry *pv = NULL;
3661 #endif
3662 #endif
3663 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3664
3665 UVMHIST_FUNC(__func__);
3666
3667 if (pmap_initialized) {
3668 UVMHIST_CALLED(maphist);
3669 UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
3670 va, pa, prot, flags);
3671 }
3672
3673 pmap_t kpm = pmap_kernel();
3674 pmap_acquire_pmap_lock(kpm);
3675 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3676 const size_t l1slot __diagused = l1pte_index(va);
3677 KASSERTMSG(l2b != NULL,
3678 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3679 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3680 kpm->pm_l2[L2_IDX(l1slot)]
3681 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3682 : NULL,
3683 kpm->pm_l2[L2_IDX(l1slot)]
3684 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3685 : NULL);
3686 KASSERT(l2b->l2b_kva != NULL);
3687
3688 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3689 const pt_entry_t opte = *ptep;
3690
3691 if (opte == 0) {
3692 PMAPCOUNT(kenter_mappings);
3693 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3694 } else {
3695 PMAPCOUNT(kenter_remappings);
3696 #ifdef PMAP_CACHE_VIPT
3697 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3698 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3699 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3700 #endif
3701 if (opg && arm_cache_prefer_mask != 0) {
3702 KASSERT(opg != pg);
3703 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3704 KASSERT((flags & PMAP_KMPAGE) == 0);
3705 #ifndef ARM_MMU_EXTENDED
3706 pmap_acquire_page_lock(omd);
3707 pv = pmap_kremove_pg(opg, va);
3708 pmap_release_page_lock(omd);
3709 #endif
3710 }
3711 #endif
3712 if (l2pte_valid_p(opte)) {
3713 l2pte_reset(ptep);
3714 PTE_SYNC(ptep);
3715 #ifdef PMAP_CACHE_VIVT
3716 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3717 #endif
3718 cpu_tlb_flushD_SE(va);
3719 cpu_cpwait();
3720 }
3721 }
3722 pmap_release_pmap_lock(kpm);
3723
3724 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3725 | ((flags & PMAP_NOCACHE)
3726 ? 0
3727 : ((flags & PMAP_PTE)
3728 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3729 #ifdef ARM_MMU_EXTENDED
3730 if (prot & VM_PROT_EXECUTE)
3731 npte &= ~L2_XS_XN;
3732 #endif
3733 l2pte_set(ptep, npte, 0);
3734 PTE_SYNC(ptep);
3735
3736 if (pg) {
3737 if (flags & PMAP_KMPAGE) {
3738 KASSERT(md->urw_mappings == 0);
3739 KASSERT(md->uro_mappings == 0);
3740 KASSERT(md->krw_mappings == 0);
3741 KASSERT(md->kro_mappings == 0);
3742 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3743 KASSERT(pv == NULL);
3744 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3745 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3746 /* if there is a color conflict, evict from cache. */
3747 if (pmap_is_page_colored_p(md)
3748 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3749 PMAPCOUNT(vac_color_change);
3750 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3751 } else if (md->pvh_attrs & PVF_MULTCLR) {
3752 /*
3753 * If this page has multiple colors, expunge
3754 * them.
3755 */
3756 PMAPCOUNT(vac_flush_lots2);
3757 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3758 }
3759 /*
3760 * Since this is a KMPAGE, there can be no contention
3761 * for this page so don't lock it.
3762 */
3763 md->pvh_attrs &= PAGE_SIZE - 1;
3764 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3765 | (va & arm_cache_prefer_mask);
3766 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3767 md->pvh_attrs |= PVF_KMPAGE;
3768 #endif
3769 atomic_inc_32(&pmap_kmpages);
3770 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3771 } else if (arm_cache_prefer_mask != 0) {
3772 if (pv == NULL) {
3773 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3774 KASSERT(pv != NULL);
3775 }
3776 pmap_acquire_page_lock(md);
3777 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3778 PVF_WIRED | PVF_KENTRY
3779 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3780 if ((prot & VM_PROT_WRITE)
3781 && !(md->pvh_attrs & PVF_NC))
3782 md->pvh_attrs |= PVF_DIRTY;
3783 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3784 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3785 pmap_release_page_lock(md);
3786 #endif
3787 }
3788 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3789 } else {
3790 if (pv != NULL)
3791 pool_put(&pmap_pv_pool, pv);
3792 #endif
3793 }
3794 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3795 KASSERT(md == NULL || !pmap_page_locked_p(md));
3796 #endif
3797 if (pmap_initialized) {
3798 UVMHIST_LOG(maphist, " <-- done (ptep %p: %#x -> %#x)",
3799 ptep, opte, npte, 0);
3800 }
3801
3802 }
3803
3804 void
3805 pmap_kremove(vaddr_t va, vsize_t len)
3806 {
3807 #ifdef UVMHIST
3808 u_int total_mappings = 0;
3809 #endif
3810
3811 PMAPCOUNT(kenter_unmappings);
3812
3813 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3814
3815 UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
3816
3817 const vaddr_t eva = va + len;
3818
3819 pmap_acquire_pmap_lock(pmap_kernel());
3820
3821 while (va < eva) {
3822 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3823 if (next_bucket > eva)
3824 next_bucket = eva;
3825
3826 pmap_t kpm = pmap_kernel();
3827 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3828 KDASSERT(l2b != NULL);
3829
3830 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3831 pt_entry_t *ptep = sptep;
3832 u_int mappings = 0;
3833
3834 while (va < next_bucket) {
3835 const pt_entry_t opte = *ptep;
3836 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3837 if (opg != NULL) {
3838 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3839
3840 if (omd->pvh_attrs & PVF_KMPAGE) {
3841 KASSERT(omd->urw_mappings == 0);
3842 KASSERT(omd->uro_mappings == 0);
3843 KASSERT(omd->krw_mappings == 0);
3844 KASSERT(omd->kro_mappings == 0);
3845 omd->pvh_attrs &= ~PVF_KMPAGE;
3846 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3847 if (arm_cache_prefer_mask != 0) {
3848 omd->pvh_attrs &= ~PVF_WRITE;
3849 }
3850 #endif
3851 atomic_dec_32(&pmap_kmpages);
3852 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3853 } else if (arm_cache_prefer_mask != 0) {
3854 pmap_acquire_page_lock(omd);
3855 pool_put(&pmap_pv_pool,
3856 pmap_kremove_pg(opg, va));
3857 pmap_release_page_lock(omd);
3858 #endif
3859 }
3860 }
3861 if (l2pte_valid_p(opte)) {
3862 l2pte_reset(ptep);
3863 PTE_SYNC(ptep);
3864 #ifdef PMAP_CACHE_VIVT
3865 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3866 #endif
3867 cpu_tlb_flushD_SE(va);
3868
3869 mappings += PAGE_SIZE / L2_S_SIZE;
3870 }
3871 va += PAGE_SIZE;
3872 ptep += PAGE_SIZE / L2_S_SIZE;
3873 }
3874 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3875 mappings, l2b->l2b_occupancy);
3876 l2b->l2b_occupancy -= mappings;
3877 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3878 #ifdef UVMHIST
3879 total_mappings += mappings;
3880 #endif
3881 }
3882 pmap_release_pmap_lock(pmap_kernel());
3883 cpu_cpwait();
3884 UVMHIST_LOG(maphist, " <--- done (%u mappings removed)",
3885 total_mappings, 0, 0, 0);
3886 }
3887
3888 bool
3889 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3890 {
3891 struct l2_dtable *l2;
3892 pd_entry_t *pdep, pde;
3893 pt_entry_t *ptep, pte;
3894 paddr_t pa;
3895 u_int l1slot;
3896
3897 pmap_acquire_pmap_lock(pm);
3898
3899 l1slot = l1pte_index(va);
3900 pdep = pmap_l1_kva(pm) + l1slot;
3901 pde = *pdep;
3902
3903 if (l1pte_section_p(pde)) {
3904 /*
3905 * These should only happen for pmap_kernel()
3906 */
3907 KDASSERT(pm == pmap_kernel());
3908 pmap_release_pmap_lock(pm);
3909 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3910 if (l1pte_supersection_p(pde)) {
3911 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3912 } else
3913 #endif
3914 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3915 } else {
3916 /*
3917 * Note that we can't rely on the validity of the L1
3918 * descriptor as an indication that a mapping exists.
3919 * We have to look it up in the L2 dtable.
3920 */
3921 l2 = pm->pm_l2[L2_IDX(l1slot)];
3922
3923 if (l2 == NULL ||
3924 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3925 pmap_release_pmap_lock(pm);
3926 return false;
3927 }
3928
3929 pte = ptep[l2pte_index(va)];
3930 pmap_release_pmap_lock(pm);
3931
3932 if (pte == 0)
3933 return false;
3934
3935 switch (pte & L2_TYPE_MASK) {
3936 case L2_TYPE_L:
3937 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3938 break;
3939
3940 default:
3941 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3942 break;
3943 }
3944 }
3945
3946 if (pap != NULL)
3947 *pap = pa;
3948
3949 return true;
3950 }
3951
3952 void
3953 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3954 {
3955 struct l2_bucket *l2b;
3956 vaddr_t next_bucket;
3957
3958 NPDEBUG(PDB_PROTECT,
3959 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3960 pm, sva, eva, prot));
3961
3962 if ((prot & VM_PROT_READ) == 0) {
3963 pmap_remove(pm, sva, eva);
3964 return;
3965 }
3966
3967 if (prot & VM_PROT_WRITE) {
3968 /*
3969 * If this is a read->write transition, just ignore it and let
3970 * uvm_fault() take care of it later.
3971 */
3972 return;
3973 }
3974
3975 pmap_acquire_pmap_lock(pm);
3976
3977 #ifndef ARM_MMU_EXTENDED
3978 const bool flush = eva - sva >= PAGE_SIZE * 4;
3979 u_int flags = 0;
3980 #endif
3981 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3982
3983 while (sva < eva) {
3984 next_bucket = L2_NEXT_BUCKET_VA(sva);
3985 if (next_bucket > eva)
3986 next_bucket = eva;
3987
3988 l2b = pmap_get_l2_bucket(pm, sva);
3989 if (l2b == NULL) {
3990 sva = next_bucket;
3991 continue;
3992 }
3993
3994 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3995
3996 while (sva < next_bucket) {
3997 const pt_entry_t opte = *ptep;
3998 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
3999 struct vm_page *pg;
4000 #ifndef ARM_MMU_EXTENDED
4001 u_int f;
4002 #endif
4003
4004 #ifdef PMAP_CACHE_VIVT
4005 /*
4006 * OK, at this point, we know we're doing
4007 * write-protect operation. If the pmap is
4008 * active, write-back the page.
4009 */
4010 pmap_cache_wbinv_page(pm, sva, false,
4011 PVF_REF | PVF_WRITE);
4012 #endif
4013
4014 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4015 pt_entry_t npte = l2pte_set_readonly(opte);
4016 l2pte_reset(ptep);
4017 PTE_SYNC(ptep);
4018 #ifdef ARM_MMU_EXTENDED
4019 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4020 #endif
4021 l2pte_set(ptep, npte, 0);
4022 PTE_SYNC(ptep);
4023
4024 if (pg != NULL) {
4025 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4026 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4027
4028 pmap_acquire_page_lock(md);
4029 #ifndef ARM_MMU_EXTENDED
4030 f =
4031 #endif
4032 pmap_modify_pv(md, pa, pm, sva,
4033 clr_mask, 0);
4034 pmap_vac_me_harder(md, pa, pm, sva);
4035 pmap_release_page_lock(md);
4036 #ifndef ARM_MMU_EXTENDED
4037 } else {
4038 f = PVF_REF | PVF_EXEC;
4039 }
4040
4041 if (flush) {
4042 flags |= f;
4043 } else {
4044 pmap_tlb_flush_SE(pm, sva, f);
4045 #endif
4046 }
4047 }
4048
4049 sva += PAGE_SIZE;
4050 ptep += PAGE_SIZE / L2_S_SIZE;
4051 }
4052 }
4053
4054 #ifndef ARM_MMU_EXTENDED
4055 if (flush) {
4056 if (PV_BEEN_EXECD(flags)) {
4057 pmap_tlb_flushID(pm);
4058 } else if (PV_BEEN_REFD(flags)) {
4059 pmap_tlb_flushD(pm);
4060 }
4061 }
4062 #endif
4063
4064 pmap_release_pmap_lock(pm);
4065 }
4066
4067 void
4068 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4069 {
4070 struct l2_bucket *l2b;
4071 pt_entry_t *ptep;
4072 vaddr_t next_bucket;
4073 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4074
4075 NPDEBUG(PDB_EXEC,
4076 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4077 pm, sva, eva));
4078
4079 pmap_acquire_pmap_lock(pm);
4080
4081 while (sva < eva) {
4082 next_bucket = L2_NEXT_BUCKET_VA(sva);
4083 if (next_bucket > eva)
4084 next_bucket = eva;
4085
4086 l2b = pmap_get_l2_bucket(pm, sva);
4087 if (l2b == NULL) {
4088 sva = next_bucket;
4089 continue;
4090 }
4091
4092 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4093 sva < next_bucket;
4094 sva += page_size,
4095 ptep += PAGE_SIZE / L2_S_SIZE,
4096 page_size = PAGE_SIZE) {
4097 if (l2pte_valid_p(*ptep)) {
4098 cpu_icache_sync_range(sva,
4099 min(page_size, eva - sva));
4100 }
4101 }
4102 }
4103
4104 pmap_release_pmap_lock(pm);
4105 }
4106
4107 void
4108 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4109 {
4110 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4111 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4112
4113 NPDEBUG(PDB_PROTECT,
4114 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4115 md, pa, prot));
4116
4117 switch(prot) {
4118 case VM_PROT_READ|VM_PROT_WRITE:
4119 #if defined(ARM_MMU_EXTENDED)
4120 pmap_acquire_page_lock(md);
4121 pmap_clearbit(md, pa, PVF_EXEC);
4122 pmap_release_page_lock(md);
4123 break;
4124 #endif
4125 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4126 break;
4127
4128 case VM_PROT_READ:
4129 #if defined(ARM_MMU_EXTENDED)
4130 pmap_acquire_page_lock(md);
4131 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4132 pmap_release_page_lock(md);
4133 break;
4134 #endif
4135 case VM_PROT_READ|VM_PROT_EXECUTE:
4136 pmap_acquire_page_lock(md);
4137 pmap_clearbit(md, pa, PVF_WRITE);
4138 pmap_release_page_lock(md);
4139 break;
4140
4141 default:
4142 pmap_page_remove(md, pa);
4143 break;
4144 }
4145 }
4146
4147 /*
4148 * pmap_clear_modify:
4149 *
4150 * Clear the "modified" attribute for a page.
4151 */
4152 bool
4153 pmap_clear_modify(struct vm_page *pg)
4154 {
4155 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4156 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4157 bool rv;
4158
4159 pmap_acquire_page_lock(md);
4160
4161 if (md->pvh_attrs & PVF_MOD) {
4162 rv = true;
4163 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4164 /*
4165 * If we are going to clear the modified bit and there are
4166 * no other modified bits set, flush the page to memory and
4167 * mark it clean.
4168 */
4169 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4170 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4171 #endif
4172 pmap_clearbit(md, pa, PVF_MOD);
4173 } else {
4174 rv = false;
4175 }
4176 pmap_release_page_lock(md);
4177
4178 return rv;
4179 }
4180
4181 /*
4182 * pmap_clear_reference:
4183 *
4184 * Clear the "referenced" attribute for a page.
4185 */
4186 bool
4187 pmap_clear_reference(struct vm_page *pg)
4188 {
4189 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4190 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4191 bool rv;
4192
4193 pmap_acquire_page_lock(md);
4194
4195 if (md->pvh_attrs & PVF_REF) {
4196 rv = true;
4197 pmap_clearbit(md, pa, PVF_REF);
4198 } else {
4199 rv = false;
4200 }
4201 pmap_release_page_lock(md);
4202
4203 return rv;
4204 }
4205
4206 /*
4207 * pmap_is_modified:
4208 *
4209 * Test if a page has the "modified" attribute.
4210 */
4211 /* See <arm/arm32/pmap.h> */
4212
4213 /*
4214 * pmap_is_referenced:
4215 *
4216 * Test if a page has the "referenced" attribute.
4217 */
4218 /* See <arm/arm32/pmap.h> */
4219
4220 #if defined(ARM_MMU_EXTENDED) && 0
4221 int
4222 pmap_prefetchabt_fixup(void *v)
4223 {
4224 struct trapframe * const tf = v;
4225 vaddr_t va = trunc_page(tf->tf_pc);
4226 int rv = ABORT_FIXUP_FAILED;
4227
4228 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4229 return rv;
4230
4231 kpreempt_disable();
4232 pmap_t pm = curcpu()->ci_pmap_cur;
4233 const size_t l1slot = l1pte_index(va);
4234 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4235 if (l2 == NULL)
4236 goto out;
4237
4238 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4239 if (l2b->l2b_kva == NULL)
4240 goto out;
4241
4242 /*
4243 * Check the PTE itself.
4244 */
4245 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4246 const pt_entry_t opte = *ptep;
4247 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4248 goto out;
4249
4250 paddr_t pa = l2pte_pa(pte);
4251 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4252 KASSERT(pg != NULL);
4253
4254 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4255
4256 pmap_acquire_page_lock(md);
4257 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4258 KASSERT(pv != NULL);
4259
4260 if (PV_IS_EXEC_P(pv->pv_flags)) {
4261 l2pte_reset(ptep);
4262 PTE_SYNC(ptep);
4263 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4264 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4265 pmap_syncicache_page(md, pa);
4266 }
4267 rv = ABORT_FIXUP_RETURN;
4268 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4269 PTE_SYNC(ptep);
4270 }
4271 pmap_release_page_lock(md);
4272
4273 out:
4274 kpreempt_enable();
4275 return rv;
4276 }
4277 #endif
4278
4279 int
4280 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4281 {
4282 struct l2_dtable *l2;
4283 struct l2_bucket *l2b;
4284 paddr_t pa;
4285 const size_t l1slot = l1pte_index(va);
4286 int rv = 0;
4287
4288 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4289
4290 va = trunc_page(va);
4291
4292 KASSERT(!user || (pm != pmap_kernel()));
4293
4294 UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
4295 pm, va, ftype, user);
4296 #ifdef ARM_MMU_EXTENDED
4297 UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
4298 cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4299 PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4300 #endif
4301
4302 pmap_acquire_pmap_lock(pm);
4303
4304 /*
4305 * If there is no l2_dtable for this address, then the process
4306 * has no business accessing it.
4307 *
4308 * Note: This will catch userland processes trying to access
4309 * kernel addresses.
4310 */
4311 l2 = pm->pm_l2[L2_IDX(l1slot)];
4312 if (l2 == NULL) {
4313 UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
4314 goto out;
4315 }
4316
4317 /*
4318 * Likewise if there is no L2 descriptor table
4319 */
4320 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4321 if (l2b->l2b_kva == NULL) {
4322 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
4323 goto out;
4324 }
4325
4326 /*
4327 * Check the PTE itself.
4328 */
4329 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4330 pt_entry_t const opte = *ptep;
4331 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4332 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
4333 goto out;
4334 }
4335
4336 #ifndef ARM_HAS_VBAR
4337 /*
4338 * Catch a userland access to the vector page mapped at 0x0
4339 */
4340 if (user && (opte & L2_S_PROT_U) == 0) {
4341 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4342 goto out;
4343 }
4344 #endif
4345
4346 pa = l2pte_pa(opte);
4347
4348 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4349 /*
4350 * This looks like a good candidate for "page modified"
4351 * emulation...
4352 */
4353 struct pv_entry *pv;
4354 struct vm_page *pg;
4355
4356 /* Extract the physical address of the page */
4357 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4358 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4359 goto out;
4360 }
4361
4362 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4363
4364 /* Get the current flags for this page. */
4365 pmap_acquire_page_lock(md);
4366 pv = pmap_find_pv(md, pm, va);
4367 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4368 pmap_release_page_lock(md);
4369 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4370 goto out;
4371 }
4372
4373 /*
4374 * Do the flags say this page is writable? If not then it
4375 * is a genuine write fault. If yes then the write fault is
4376 * our fault as we did not reflect the write access in the
4377 * PTE. Now we know a write has occurred we can correct this
4378 * and also set the modified bit
4379 */
4380 if ((pv->pv_flags & PVF_WRITE) == 0) {
4381 pmap_release_page_lock(md);
4382 goto out;
4383 }
4384
4385 md->pvh_attrs |= PVF_REF | PVF_MOD;
4386 pv->pv_flags |= PVF_REF | PVF_MOD;
4387 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4388 /*
4389 * If there are cacheable mappings for this page, mark it dirty.
4390 */
4391 if ((md->pvh_attrs & PVF_NC) == 0)
4392 md->pvh_attrs |= PVF_DIRTY;
4393 #endif
4394 #ifdef ARM_MMU_EXTENDED
4395 if (md->pvh_attrs & PVF_EXEC) {
4396 md->pvh_attrs &= ~PVF_EXEC;
4397 PMAPCOUNT(exec_discarded_modfixup);
4398 }
4399 #endif
4400 pmap_release_page_lock(md);
4401
4402 /*
4403 * Re-enable write permissions for the page. No need to call
4404 * pmap_vac_me_harder(), since this is just a
4405 * modified-emulation fault, and the PVF_WRITE bit isn't
4406 * changing. We've already set the cacheable bits based on
4407 * the assumption that we can write to this page.
4408 */
4409 const pt_entry_t npte =
4410 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4411 #ifdef ARM_MMU_EXTENDED
4412 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4413 #endif
4414 | 0;
4415 l2pte_reset(ptep);
4416 PTE_SYNC(ptep);
4417 pmap_tlb_flush_SE(pm, va,
4418 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4419 l2pte_set(ptep, npte, 0);
4420 PTE_SYNC(ptep);
4421 PMAPCOUNT(fixup_mod);
4422 rv = 1;
4423 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
4424 opte, npte, 0, 0);
4425 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4426 /*
4427 * This looks like a good candidate for "page referenced"
4428 * emulation.
4429 */
4430 struct vm_page *pg;
4431
4432 /* Extract the physical address of the page */
4433 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4434 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4435 goto out;
4436 }
4437
4438 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4439
4440 /* Get the current flags for this page. */
4441 pmap_acquire_page_lock(md);
4442 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4443 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4444 pmap_release_page_lock(md);
4445 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4446 goto out;
4447 }
4448
4449 md->pvh_attrs |= PVF_REF;
4450 pv->pv_flags |= PVF_REF;
4451
4452 pt_entry_t npte =
4453 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4454 #ifdef ARM_MMU_EXTENDED
4455 if (pm != pmap_kernel()) {
4456 npte |= L2_XS_nG;
4457 }
4458 /*
4459 * If we got called from prefetch abort, then ftype will have
4460 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4461 * the PTE.
4462 */
4463 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4464 /*
4465 * Is this a mapping of an executable page?
4466 */
4467 if ((pv->pv_flags & PVF_EXEC) == 0) {
4468 pmap_release_page_lock(md);
4469 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4470 0, 0, 0, 0);
4471 goto out;
4472 }
4473 /*
4474 * If we haven't synced the page, do so now.
4475 */
4476 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4477 UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
4478 pa, 0, 0, 0);
4479 pmap_syncicache_page(md, pa);
4480 PMAPCOUNT(fixup_exec);
4481 }
4482 npte &= ~L2_XS_XN;
4483 }
4484 #endif /* ARM_MMU_EXTENDED */
4485 pmap_release_page_lock(md);
4486 l2pte_reset(ptep);
4487 PTE_SYNC(ptep);
4488 pmap_tlb_flush_SE(pm, va,
4489 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4490 l2pte_set(ptep, npte, 0);
4491 PTE_SYNC(ptep);
4492 PMAPCOUNT(fixup_ref);
4493 rv = 1;
4494 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
4495 opte, npte, 0, 0);
4496 #ifdef ARM_MMU_EXTENDED
4497 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4498 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4499 if (pg == NULL) {
4500 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4501 goto out;
4502 }
4503
4504 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4505
4506 /* Get the current flags for this page. */
4507 pmap_acquire_page_lock(md);
4508 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4509 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4510 pmap_release_page_lock(md);
4511 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4512 goto out;
4513 }
4514
4515 /*
4516 * If we haven't synced the page, do so now.
4517 */
4518 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4519 UVMHIST_LOG(maphist, "syncicache page #%#x",
4520 pa, 0, 0, 0);
4521 pmap_syncicache_page(md, pa);
4522 }
4523 pmap_release_page_lock(md);
4524 /*
4525 * Turn off no-execute.
4526 */
4527 KASSERT(opte & L2_XS_nG);
4528 l2pte_reset(ptep);
4529 PTE_SYNC(ptep);
4530 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4531 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4532 PTE_SYNC(ptep);
4533 rv = 1;
4534 PMAPCOUNT(fixup_exec);
4535 UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
4536 opte, opte & ~L2_XS_XN, 0, 0);
4537 #endif
4538 }
4539
4540 #ifndef ARM_MMU_EXTENDED
4541 /*
4542 * We know there is a valid mapping here, so simply
4543 * fix up the L1 if necessary.
4544 */
4545 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4546 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4547 if (*pdep != pde) {
4548 l1pte_setone(pdep, pde);
4549 PDE_SYNC(pdep);
4550 rv = 1;
4551 PMAPCOUNT(fixup_pdes);
4552 }
4553 #endif
4554
4555 #ifdef CPU_SA110
4556 /*
4557 * There are bugs in the rev K SA110. This is a check for one
4558 * of them.
4559 */
4560 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4561 curcpu()->ci_arm_cpurev < 3) {
4562 /* Always current pmap */
4563 if (l2pte_valid_p(opte)) {
4564 extern int kernel_debug;
4565 if (kernel_debug & 1) {
4566 struct proc *p = curlwp->l_proc;
4567 printf("prefetch_abort: page is already "
4568 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4569 printf("prefetch_abort: pc=%08lx proc=%p "
4570 "process=%s\n", va, p, p->p_comm);
4571 printf("prefetch_abort: far=%08x fs=%x\n",
4572 cpu_faultaddress(), cpu_faultstatus());
4573 }
4574 #ifdef DDB
4575 if (kernel_debug & 2)
4576 Debugger();
4577 #endif
4578 rv = 1;
4579 }
4580 }
4581 #endif /* CPU_SA110 */
4582
4583 #ifndef ARM_MMU_EXTENDED
4584 /*
4585 * If 'rv == 0' at this point, it generally indicates that there is a
4586 * stale TLB entry for the faulting address. That might be due to a
4587 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4588 */
4589 if (rv == 0
4590 && pm->pm_l1->l1_domain_use_count == 1
4591 && pmap_needs_pte_sync == 0) {
4592 pmap_needs_pte_sync = 1;
4593 PTE_SYNC(ptep);
4594 PMAPCOUNT(fixup_ptesync);
4595 rv = 1;
4596 }
4597 #endif
4598
4599 #ifndef MULTIPROCESSOR
4600 #if defined(DEBUG) || 1
4601 /*
4602 * If 'rv == 0' at this point, it generally indicates that there is a
4603 * stale TLB entry for the faulting address. This happens when two or
4604 * more processes are sharing an L1. Since we don't flush the TLB on
4605 * a context switch between such processes, we can take domain faults
4606 * for mappings which exist at the same VA in both processes. EVEN IF
4607 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4608 * example.
4609 *
4610 * This is extremely likely to happen if pmap_enter() updated the L1
4611 * entry for a recently entered mapping. In this case, the TLB is
4612 * flushed for the new mapping, but there may still be TLB entries for
4613 * other mappings belonging to other processes in the 1MB range
4614 * covered by the L1 entry.
4615 *
4616 * Since 'rv == 0', we know that the L1 already contains the correct
4617 * value, so the fault must be due to a stale TLB entry.
4618 *
4619 * Since we always need to flush the TLB anyway in the case where we
4620 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4621 * stale TLB entries dynamically.
4622 *
4623 * However, the above condition can ONLY happen if the current L1 is
4624 * being shared. If it happens when the L1 is unshared, it indicates
4625 * that other parts of the pmap are not doing their job WRT managing
4626 * the TLB.
4627 */
4628 if (rv == 0
4629 #ifndef ARM_MMU_EXTENDED
4630 && pm->pm_l1->l1_domain_use_count == 1
4631 #endif
4632 && true) {
4633 #ifdef DEBUG
4634 extern int last_fault_code;
4635 #else
4636 int last_fault_code = ftype & VM_PROT_EXECUTE
4637 ? armreg_ifsr_read()
4638 : armreg_dfsr_read();
4639 #endif
4640 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4641 pm, va, ftype);
4642 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4643 l2, l2b, ptep, opte);
4644
4645 #ifndef ARM_MMU_EXTENDED
4646 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4647 pdep, pde, last_fault_code);
4648 #else
4649 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4650 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4651 armreg_ttbcr_read());
4652 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4653 last_fault_code, curcpu()->ci_pmap_cur,
4654 curcpu()->ci_pmap_asid_cur,
4655 armreg_contextidr_read(), armreg_dacr_read());
4656 #ifdef _ARM_ARCH_7
4657 if (ftype & VM_PROT_WRITE)
4658 armreg_ats1cuw_write(va);
4659 else
4660 armreg_ats1cur_write(va);
4661 arm_isb();
4662 printf("fixup: par %#x\n", armreg_par_read());
4663 #endif
4664 #endif
4665 #ifdef DDB
4666 extern int kernel_debug;
4667
4668 if (kernel_debug & 2) {
4669 pmap_release_pmap_lock(pm);
4670 #ifdef UVMHIST
4671 KERNHIST_DUMP(maphist);
4672 #endif
4673 cpu_Debugger();
4674 pmap_acquire_pmap_lock(pm);
4675 }
4676 #endif
4677 }
4678 #endif
4679 #endif
4680
4681 #ifndef ARM_MMU_EXTENDED
4682 /* Flush the TLB in the shared L1 case - see comment above */
4683 pmap_tlb_flush_SE(pm, va,
4684 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4685 #endif
4686
4687 rv = 1;
4688
4689 out:
4690 pmap_release_pmap_lock(pm);
4691
4692 return (rv);
4693 }
4694
4695 /*
4696 * Routine: pmap_procwr
4697 *
4698 * Function:
4699 * Synchronize caches corresponding to [addr, addr+len) in p.
4700 *
4701 */
4702 void
4703 pmap_procwr(struct proc *p, vaddr_t va, int len)
4704 {
4705 /* We only need to do anything if it is the current process. */
4706 if (p == curproc)
4707 cpu_icache_sync_range(va, len);
4708 }
4709
4710 /*
4711 * Routine: pmap_unwire
4712 * Function: Clear the wired attribute for a map/virtual-address pair.
4713 *
4714 * In/out conditions:
4715 * The mapping must already exist in the pmap.
4716 */
4717 void
4718 pmap_unwire(pmap_t pm, vaddr_t va)
4719 {
4720 struct l2_bucket *l2b;
4721 pt_entry_t *ptep, pte;
4722 struct vm_page *pg;
4723 paddr_t pa;
4724
4725 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4726
4727 pmap_acquire_pmap_lock(pm);
4728
4729 l2b = pmap_get_l2_bucket(pm, va);
4730 KDASSERT(l2b != NULL);
4731
4732 ptep = &l2b->l2b_kva[l2pte_index(va)];
4733 pte = *ptep;
4734
4735 /* Extract the physical address of the page */
4736 pa = l2pte_pa(pte);
4737
4738 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4739 /* Update the wired bit in the pv entry for this page. */
4740 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4741
4742 pmap_acquire_page_lock(md);
4743 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4744 pmap_release_page_lock(md);
4745 }
4746
4747 pmap_release_pmap_lock(pm);
4748 }
4749
4750 void
4751 pmap_activate(struct lwp *l)
4752 {
4753 struct cpu_info * const ci = curcpu();
4754 extern int block_userspace_access;
4755 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4756 #ifdef ARM_MMU_EXTENDED
4757 struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
4758 #endif
4759
4760 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4761
4762 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
4763
4764 /*
4765 * If activating a non-current lwp or the current lwp is
4766 * already active, just return.
4767 */
4768 if (false
4769 || l != curlwp
4770 #ifdef ARM_MMU_EXTENDED
4771 || (ci->ci_pmap_cur == npm &&
4772 (npm == pmap_kernel()
4773 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4774 #else
4775 || npm->pm_activated == true
4776 #endif
4777 || false) {
4778 UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
4779 return;
4780 }
4781
4782 #ifndef ARM_MMU_EXTENDED
4783 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4784 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4785
4786 /*
4787 * If TTB and DACR are unchanged, short-circuit all the
4788 * TLB/cache management stuff.
4789 */
4790 pmap_t opm = ci->ci_lastlwp
4791 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4792 : NULL;
4793 if (opm != NULL) {
4794 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4795 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4796
4797 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4798 goto all_done;
4799 }
4800 #endif /* !ARM_MMU_EXTENDED */
4801
4802 PMAPCOUNT(activations);
4803 block_userspace_access = 1;
4804
4805 #ifndef ARM_MMU_EXTENDED
4806 /*
4807 * If switching to a user vmspace which is different to the
4808 * most recent one, and the most recent one is potentially
4809 * live in the cache, we must write-back and invalidate the
4810 * entire cache.
4811 */
4812 pmap_t rpm = ci->ci_pmap_lastuser;
4813 #endif
4814
4815 /*
4816 * XXXSCW: There's a corner case here which can leave turds in the cache as
4817 * reported in kern/41058. They're probably left over during tear-down and
4818 * switching away from an exiting process. Until the root cause is identified
4819 * and fixed, zap the cache when switching pmaps. This will result in a few
4820 * unnecessary cache flushes, but that's better than silently corrupting data.
4821 */
4822 #ifndef ARM_MMU_EXTENDED
4823 #if 0
4824 if (npm != pmap_kernel() && rpm && npm != rpm &&
4825 rpm->pm_cstate.cs_cache) {
4826 rpm->pm_cstate.cs_cache = 0;
4827 #ifdef PMAP_CACHE_VIVT
4828 cpu_idcache_wbinv_all();
4829 #endif
4830 }
4831 #else
4832 if (rpm) {
4833 rpm->pm_cstate.cs_cache = 0;
4834 if (npm == pmap_kernel())
4835 ci->ci_pmap_lastuser = NULL;
4836 #ifdef PMAP_CACHE_VIVT
4837 cpu_idcache_wbinv_all();
4838 #endif
4839 }
4840 #endif
4841
4842 /* No interrupts while we frob the TTB/DACR */
4843 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4844 #endif /* !ARM_MMU_EXTENDED */
4845
4846 #ifndef ARM_HAS_VBAR
4847 /*
4848 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4849 * entry corresponding to 'vector_page' in the incoming L1 table
4850 * before switching to it otherwise subsequent interrupts/exceptions
4851 * (including domain faults!) will jump into hyperspace.
4852 */
4853 if (npm->pm_pl1vec != NULL) {
4854 cpu_tlb_flushID_SE((u_int)vector_page);
4855 cpu_cpwait();
4856 *npm->pm_pl1vec = npm->pm_l1vec;
4857 PTE_SYNC(npm->pm_pl1vec);
4858 }
4859 #endif
4860
4861 #ifdef ARM_MMU_EXTENDED
4862 /*
4863 * Assume that TTBR1 has only global mappings and TTBR0 only has
4864 * non-global mappings. To prevent speculation from doing evil things
4865 * we disable translation table walks using TTBR0 before setting the
4866 * CONTEXTIDR (ASID) or new TTBR0 value. Once both are set, table
4867 * walks are reenabled.
4868 */
4869 UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
4870 const uint32_t old_ttbcr = armreg_ttbcr_read();
4871 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4872 arm_isb();
4873 pmap_tlb_asid_acquire(npm, l);
4874 UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
4875 cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
4876 /*
4877 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
4878 * been updated.
4879 */
4880 arm_isb();
4881 if (npm != pmap_kernel()) {
4882 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4883 }
4884 cpu_cpwait();
4885 ci->ci_pmap_asid_cur = pai->pai_asid;
4886 #else
4887 cpu_domains(ndacr);
4888 if (npm == pmap_kernel() || npm == rpm) {
4889 /*
4890 * Switching to a kernel thread, or back to the
4891 * same user vmspace as before... Simply update
4892 * the TTB (no TLB flush required)
4893 */
4894 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4895 cpu_cpwait();
4896 } else {
4897 /*
4898 * Otherwise, update TTB and flush TLB
4899 */
4900 cpu_context_switch(npm->pm_l1->l1_physaddr);
4901 if (rpm != NULL)
4902 rpm->pm_cstate.cs_tlb = 0;
4903 }
4904
4905 restore_interrupts(oldirqstate);
4906 #endif /* ARM_MMU_EXTENDED */
4907
4908 block_userspace_access = 0;
4909
4910 #ifndef ARM_MMU_EXTENDED
4911 all_done:
4912 /*
4913 * The new pmap is resident. Make sure it's marked
4914 * as resident in the cache/TLB.
4915 */
4916 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4917 if (npm != pmap_kernel())
4918 ci->ci_pmap_lastuser = npm;
4919
4920 /* The old pmap is not longer active */
4921 if (opm != npm) {
4922 if (opm != NULL)
4923 opm->pm_activated = false;
4924
4925 /* But the new one is */
4926 npm->pm_activated = true;
4927 }
4928 #endif
4929 ci->ci_pmap_cur = npm;
4930 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4931 }
4932
4933 void
4934 pmap_deactivate(struct lwp *l)
4935 {
4936 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
4937
4938 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4939
4940 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
4941
4942 #ifdef ARM_MMU_EXTENDED
4943 kpreempt_disable();
4944 struct cpu_info * const ci = curcpu();
4945 /*
4946 * Disable translation table walks from TTBR0 while no pmap has been
4947 * activated.
4948 */
4949 const uint32_t old_ttbcr = armreg_ttbcr_read();
4950 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4951 arm_isb();
4952 pmap_tlb_asid_deactivate(pm);
4953 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4954 ci->ci_pmap_cur = pmap_kernel();
4955 ci->ci_pmap_asid_cur = KERNEL_PID;
4956 kpreempt_enable();
4957 #else
4958 /*
4959 * If the process is exiting, make sure pmap_activate() does
4960 * a full MMU context-switch and cache flush, which we might
4961 * otherwise skip. See PR port-arm/38950.
4962 */
4963 if (l->l_proc->p_sflag & PS_WEXIT)
4964 curcpu()->ci_lastlwp = NULL;
4965
4966 pm->pm_activated = false;
4967 #endif
4968 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4969 }
4970
4971 void
4972 pmap_update(pmap_t pm)
4973 {
4974
4975 if (pm->pm_remove_all) {
4976 #ifdef ARM_MMU_EXTENDED
4977 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
4978 /*
4979 * Finish up the pmap_remove_all() optimisation by flushing
4980 * all our ASIDs.
4981 */
4982 pmap_tlb_asid_release_all(pm);
4983 #else
4984 /*
4985 * Finish up the pmap_remove_all() optimisation by flushing
4986 * the TLB.
4987 */
4988 pmap_tlb_flushID(pm);
4989 #endif
4990 pm->pm_remove_all = false;
4991 }
4992
4993 #ifdef ARM_MMU_EXTENDED
4994 #if defined(MULTIPROCESSOR)
4995 armreg_bpiallis_write(0);
4996 #else
4997 armreg_bpiall_write(0);
4998 #endif
4999
5000 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
5001 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5002 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5003 PMAP_COUNT(shootdown_ipis);
5004 }
5005 #endif
5006 KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5007 #else
5008 if (pmap_is_current(pm)) {
5009 /*
5010 * If we're dealing with a current userland pmap, move its L1
5011 * to the end of the LRU.
5012 */
5013 if (pm != pmap_kernel())
5014 pmap_use_l1(pm);
5015
5016 /*
5017 * We can assume we're done with frobbing the cache/tlb for
5018 * now. Make sure any future pmap ops don't skip cache/tlb
5019 * flushes.
5020 */
5021 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5022 }
5023 #endif
5024
5025 PMAPCOUNT(updates);
5026
5027 /*
5028 * make sure TLB/cache operations have completed.
5029 */
5030 cpu_cpwait();
5031 }
5032
5033 void
5034 pmap_remove_all(pmap_t pm)
5035 {
5036
5037 /*
5038 * The vmspace described by this pmap is about to be torn down.
5039 * Until pmap_update() is called, UVM will only make calls
5040 * to pmap_remove(). We can make life much simpler by flushing
5041 * the cache now, and deferring TLB invalidation to pmap_update().
5042 */
5043 #ifdef PMAP_CACHE_VIVT
5044 pmap_cache_wbinv_all(pm, PVF_EXEC);
5045 #endif
5046 pm->pm_remove_all = true;
5047 }
5048
5049 /*
5050 * Retire the given physical map from service.
5051 * Should only be called if the map contains no valid mappings.
5052 */
5053 void
5054 pmap_destroy(pmap_t pm)
5055 {
5056 u_int count;
5057
5058 if (pm == NULL)
5059 return;
5060
5061 if (pm->pm_remove_all) {
5062 pmap_tlb_flushID(pm);
5063 pm->pm_remove_all = false;
5064 }
5065
5066 /*
5067 * Drop reference count
5068 */
5069 mutex_enter(pm->pm_lock);
5070 count = --pm->pm_obj.uo_refs;
5071 mutex_exit(pm->pm_lock);
5072 if (count > 0) {
5073 #ifndef ARM_MMU_EXTENDED
5074 if (pmap_is_current(pm)) {
5075 if (pm != pmap_kernel())
5076 pmap_use_l1(pm);
5077 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5078 }
5079 #endif
5080 return;
5081 }
5082
5083 /*
5084 * reference count is zero, free pmap resources and then free pmap.
5085 */
5086
5087 #ifndef ARM_HAS_VBAR
5088 if (vector_page < KERNEL_BASE) {
5089 KDASSERT(!pmap_is_current(pm));
5090
5091 /* Remove the vector page mapping */
5092 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5093 pmap_update(pm);
5094 }
5095 #endif
5096
5097 LIST_REMOVE(pm, pm_list);
5098
5099 pmap_free_l1(pm);
5100
5101 #ifdef ARM_MMU_EXTENDED
5102 #ifdef MULTIPROCESSOR
5103 kcpuset_destroy(pm->pm_active);
5104 kcpuset_destroy(pm->pm_onproc);
5105 #endif
5106 #else
5107 struct cpu_info * const ci = curcpu();
5108 if (ci->ci_pmap_lastuser == pm)
5109 ci->ci_pmap_lastuser = NULL;
5110 #endif
5111
5112 uvm_obj_destroy(&pm->pm_obj, false);
5113 mutex_destroy(&pm->pm_obj_lock);
5114 pool_cache_put(&pmap_cache, pm);
5115 }
5116
5117
5118 /*
5119 * void pmap_reference(pmap_t pm)
5120 *
5121 * Add a reference to the specified pmap.
5122 */
5123 void
5124 pmap_reference(pmap_t pm)
5125 {
5126
5127 if (pm == NULL)
5128 return;
5129
5130 #ifndef ARM_MMU_EXTENDED
5131 pmap_use_l1(pm);
5132 #endif
5133
5134 mutex_enter(pm->pm_lock);
5135 pm->pm_obj.uo_refs++;
5136 mutex_exit(pm->pm_lock);
5137 }
5138
5139 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5140
5141 static struct evcnt pmap_prefer_nochange_ev =
5142 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5143 static struct evcnt pmap_prefer_change_ev =
5144 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5145
5146 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5147 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5148
5149 void
5150 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5151 {
5152 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5153 vaddr_t va = *vap;
5154 vaddr_t diff = (hint - va) & mask;
5155 if (diff == 0) {
5156 pmap_prefer_nochange_ev.ev_count++;
5157 } else {
5158 pmap_prefer_change_ev.ev_count++;
5159 if (__predict_false(td))
5160 va -= mask + 1;
5161 *vap = va + diff;
5162 }
5163 }
5164 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5165
5166 /*
5167 * pmap_zero_page()
5168 *
5169 * Zero a given physical page by mapping it at a page hook point.
5170 * In doing the zero page op, the page we zero is mapped cachable, as with
5171 * StrongARM accesses to non-cached pages are non-burst making writing
5172 * _any_ bulk data very slow.
5173 */
5174 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5175 void
5176 pmap_zero_page_generic(paddr_t pa)
5177 {
5178 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5179 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5180 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5181 #endif
5182 #if defined(PMAP_CACHE_VIPT)
5183 /* Choose the last page color it had, if any */
5184 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5185 #else
5186 const vsize_t va_offset = 0;
5187 #endif
5188 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5189 /*
5190 * Is this page mapped at its natural color?
5191 * If we have all of memory mapped, then just convert PA to VA.
5192 */
5193 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5194 || va_offset == (pa & arm_cache_prefer_mask);
5195 const vaddr_t vdstp = okcolor
5196 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5197 : cpu_cdstp(va_offset);
5198 #else
5199 const bool okcolor = false;
5200 const vaddr_t vdstp = cpu_cdstp(va_offset);
5201 #endif
5202 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5203
5204
5205 #ifdef DEBUG
5206 if (!SLIST_EMPTY(&md->pvh_list))
5207 panic("pmap_zero_page: page has mappings");
5208 #endif
5209
5210 KDASSERT((pa & PGOFSET) == 0);
5211
5212 if (!okcolor) {
5213 /*
5214 * Hook in the page, zero it, and purge the cache for that
5215 * zeroed page. Invalidate the TLB as needed.
5216 */
5217 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5218 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5219 l2pte_set(ptep, npte, 0);
5220 PTE_SYNC(ptep);
5221 cpu_tlb_flushD_SE(vdstp);
5222 cpu_cpwait();
5223 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5224 && !defined(ARM_MMU_EXTENDED)
5225 /*
5226 * If we are direct-mapped and our color isn't ok, then before
5227 * we bzero the page invalidate its contents from the cache and
5228 * reset the color to its natural color.
5229 */
5230 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5231 md->pvh_attrs &= ~arm_cache_prefer_mask;
5232 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5233 #endif
5234 }
5235 bzero_page(vdstp);
5236 if (!okcolor) {
5237 /*
5238 * Unmap the page.
5239 */
5240 l2pte_reset(ptep);
5241 PTE_SYNC(ptep);
5242 cpu_tlb_flushD_SE(vdstp);
5243 #ifdef PMAP_CACHE_VIVT
5244 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5245 #endif
5246 }
5247 #ifdef PMAP_CACHE_VIPT
5248 /*
5249 * This page is now cache resident so it now has a page color.
5250 * Any contents have been obliterated so clear the EXEC flag.
5251 */
5252 #ifndef ARM_MMU_EXTENDED
5253 if (!pmap_is_page_colored_p(md)) {
5254 PMAPCOUNT(vac_color_new);
5255 md->pvh_attrs |= PVF_COLORED;
5256 }
5257 md->pvh_attrs |= PVF_DIRTY;
5258 #endif
5259 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5260 md->pvh_attrs &= ~PVF_EXEC;
5261 PMAPCOUNT(exec_discarded_zero);
5262 }
5263 #endif
5264 }
5265 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5266
5267 #if ARM_MMU_XSCALE == 1
5268 void
5269 pmap_zero_page_xscale(paddr_t pa)
5270 {
5271 #ifdef DEBUG
5272 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5273 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5274
5275 if (!SLIST_EMPTY(&md->pvh_list))
5276 panic("pmap_zero_page: page has mappings");
5277 #endif
5278
5279 KDASSERT((pa & PGOFSET) == 0);
5280
5281 /*
5282 * Hook in the page, zero it, and purge the cache for that
5283 * zeroed page. Invalidate the TLB as needed.
5284 */
5285
5286 pt_entry_t npte = L2_S_PROTO | pa |
5287 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5288 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5289 l2pte_set(cdst_pte, npte, 0);
5290 PTE_SYNC(cdst_pte);
5291 cpu_tlb_flushD_SE(cdstp);
5292 cpu_cpwait();
5293 bzero_page(cdstp);
5294 xscale_cache_clean_minidata();
5295 l2pte_reset(cdst_pte);
5296 PTE_SYNC(cdst_pte);
5297 }
5298 #endif /* ARM_MMU_XSCALE == 1 */
5299
5300 /* pmap_pageidlezero()
5301 *
5302 * The same as above, except that we assume that the page is not
5303 * mapped. This means we never have to flush the cache first. Called
5304 * from the idle loop.
5305 */
5306 bool
5307 pmap_pageidlezero(paddr_t pa)
5308 {
5309 bool rv = true;
5310 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5311 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5312 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5313 #endif
5314 #ifdef PMAP_CACHE_VIPT
5315 /* Choose the last page color it had, if any */
5316 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5317 #else
5318 const vsize_t va_offset = 0;
5319 #endif
5320 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5321 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5322 || va_offset == (pa & arm_cache_prefer_mask);
5323 const vaddr_t vdstp = okcolor
5324 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5325 : cpu_cdstp(va_offset);
5326 #else
5327 const bool okcolor = false;
5328 const vaddr_t vdstp = cpu_cdstp(va_offset);
5329 #endif
5330 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5331
5332
5333 #ifdef DEBUG
5334 if (!SLIST_EMPTY(&md->pvh_list))
5335 panic("pmap_pageidlezero: page has mappings");
5336 #endif
5337
5338 KDASSERT((pa & PGOFSET) == 0);
5339
5340 if (!okcolor) {
5341 /*
5342 * Hook in the page, zero it, and purge the cache for that
5343 * zeroed page. Invalidate the TLB as needed.
5344 */
5345 const pt_entry_t npte = L2_S_PROTO | pa |
5346 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5347 l2pte_set(ptep, npte, 0);
5348 PTE_SYNC(ptep);
5349 cpu_tlb_flushD_SE(vdstp);
5350 cpu_cpwait();
5351 }
5352
5353 uint64_t *ptr = (uint64_t *)vdstp;
5354 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5355 if (sched_curcpu_runnable_p() != 0) {
5356 /*
5357 * A process has become ready. Abort now,
5358 * so we don't keep it waiting while we
5359 * do slow memory access to finish this
5360 * page.
5361 */
5362 rv = false;
5363 break;
5364 }
5365 *ptr++ = 0;
5366 }
5367
5368 #ifdef PMAP_CACHE_VIVT
5369 if (rv)
5370 /*
5371 * if we aborted we'll rezero this page again later so don't
5372 * purge it unless we finished it
5373 */
5374 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5375 #elif defined(PMAP_CACHE_VIPT)
5376 /*
5377 * This page is now cache resident so it now has a page color.
5378 * Any contents have been obliterated so clear the EXEC flag.
5379 */
5380 #ifndef ARM_MMU_EXTENDED
5381 if (!pmap_is_page_colored_p(md)) {
5382 PMAPCOUNT(vac_color_new);
5383 md->pvh_attrs |= PVF_COLORED;
5384 }
5385 #endif
5386 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5387 md->pvh_attrs &= ~PVF_EXEC;
5388 PMAPCOUNT(exec_discarded_zero);
5389 }
5390 #endif
5391 /*
5392 * Unmap the page.
5393 */
5394 if (!okcolor) {
5395 l2pte_reset(ptep);
5396 PTE_SYNC(ptep);
5397 cpu_tlb_flushD_SE(vdstp);
5398 }
5399
5400 return rv;
5401 }
5402
5403 /*
5404 * pmap_copy_page()
5405 *
5406 * Copy one physical page into another, by mapping the pages into
5407 * hook points. The same comment regarding cachability as in
5408 * pmap_zero_page also applies here.
5409 */
5410 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5411 void
5412 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5413 {
5414 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5415 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5416 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5417 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5418 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5419 #endif
5420 #ifdef PMAP_CACHE_VIPT
5421 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5422 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5423 #else
5424 const vsize_t src_va_offset = 0;
5425 const vsize_t dst_va_offset = 0;
5426 #endif
5427 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5428 /*
5429 * Is this page mapped at its natural color?
5430 * If we have all of memory mapped, then just convert PA to VA.
5431 */
5432 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5433 || src_va_offset == (src & arm_cache_prefer_mask);
5434 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5435 || dst_va_offset == (dst & arm_cache_prefer_mask);
5436 const vaddr_t vsrcp = src_okcolor
5437 ? pmap_direct_mapped_phys(src, &src_okcolor,
5438 cpu_csrcp(src_va_offset))
5439 : cpu_csrcp(src_va_offset);
5440 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5441 cpu_cdstp(dst_va_offset));
5442 #else
5443 const bool src_okcolor = false;
5444 const bool dst_okcolor = false;
5445 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5446 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5447 #endif
5448 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5449 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5450
5451 #ifdef DEBUG
5452 if (!SLIST_EMPTY(&dst_md->pvh_list))
5453 panic("pmap_copy_page: dst page has mappings");
5454 #endif
5455
5456 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5457 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5458 #endif
5459 KDASSERT((src & PGOFSET) == 0);
5460 KDASSERT((dst & PGOFSET) == 0);
5461
5462 /*
5463 * Clean the source page. Hold the source page's lock for
5464 * the duration of the copy so that no other mappings can
5465 * be created while we have a potentially aliased mapping.
5466 */
5467 #ifdef PMAP_CACHE_VIVT
5468 pmap_acquire_page_lock(src_md);
5469 (void) pmap_clean_page(src_md, true);
5470 pmap_release_page_lock(src_md);
5471 #endif
5472
5473 /*
5474 * Map the pages into the page hook points, copy them, and purge
5475 * the cache for the appropriate page. Invalidate the TLB
5476 * as required.
5477 */
5478 if (!src_okcolor) {
5479 const pt_entry_t nsrc_pte = L2_S_PROTO
5480 | src
5481 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5482 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5483 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5484 | pte_l2_s_cache_mode
5485 #endif
5486 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5487 l2pte_set(src_ptep, nsrc_pte, 0);
5488 PTE_SYNC(src_ptep);
5489 cpu_tlb_flushD_SE(vsrcp);
5490 cpu_cpwait();
5491 }
5492 if (!dst_okcolor) {
5493 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5494 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5495 l2pte_set(dst_ptep, ndst_pte, 0);
5496 PTE_SYNC(dst_ptep);
5497 cpu_tlb_flushD_SE(vdstp);
5498 cpu_cpwait();
5499 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5500 /*
5501 * If we are direct-mapped and our color isn't ok, then before
5502 * we bcopy to the new page invalidate its contents from the
5503 * cache and reset its color to its natural color.
5504 */
5505 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5506 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5507 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5508 #endif
5509 }
5510 bcopy_page(vsrcp, vdstp);
5511 #ifdef PMAP_CACHE_VIVT
5512 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5513 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5514 #endif
5515 /*
5516 * Unmap the pages.
5517 */
5518 if (!src_okcolor) {
5519 l2pte_reset(src_ptep);
5520 PTE_SYNC(src_ptep);
5521 cpu_tlb_flushD_SE(vsrcp);
5522 cpu_cpwait();
5523 }
5524 if (!dst_okcolor) {
5525 l2pte_reset(dst_ptep);
5526 PTE_SYNC(dst_ptep);
5527 cpu_tlb_flushD_SE(vdstp);
5528 cpu_cpwait();
5529 }
5530 #ifdef PMAP_CACHE_VIPT
5531 /*
5532 * Now that the destination page is in the cache, mark it as colored.
5533 * If this was an exec page, discard it.
5534 */
5535 pmap_acquire_page_lock(dst_md);
5536 #ifndef ARM_MMU_EXTENDED
5537 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5538 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5539 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5540 }
5541 if (!pmap_is_page_colored_p(dst_md)) {
5542 PMAPCOUNT(vac_color_new);
5543 dst_md->pvh_attrs |= PVF_COLORED;
5544 }
5545 dst_md->pvh_attrs |= PVF_DIRTY;
5546 #endif
5547 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5548 dst_md->pvh_attrs &= ~PVF_EXEC;
5549 PMAPCOUNT(exec_discarded_copy);
5550 }
5551 pmap_release_page_lock(dst_md);
5552 #endif
5553 }
5554 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5555
5556 #if ARM_MMU_XSCALE == 1
5557 void
5558 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5559 {
5560 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5561 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5562 #ifdef DEBUG
5563 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5564
5565 if (!SLIST_EMPTY(&dst_md->pvh_list))
5566 panic("pmap_copy_page: dst page has mappings");
5567 #endif
5568
5569 KDASSERT((src & PGOFSET) == 0);
5570 KDASSERT((dst & PGOFSET) == 0);
5571
5572 /*
5573 * Clean the source page. Hold the source page's lock for
5574 * the duration of the copy so that no other mappings can
5575 * be created while we have a potentially aliased mapping.
5576 */
5577 #ifdef PMAP_CACHE_VIVT
5578 pmap_acquire_page_lock(src_md);
5579 (void) pmap_clean_page(src_md, true);
5580 pmap_release_page_lock(src_md);
5581 #endif
5582
5583 /*
5584 * Map the pages into the page hook points, copy them, and purge
5585 * the cache for the appropriate page. Invalidate the TLB
5586 * as required.
5587 */
5588 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5589 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5590 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5591 l2pte_set(csrc_pte, nsrc_pte, 0);
5592 PTE_SYNC(csrc_pte);
5593
5594 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5595 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5596 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5597 l2pte_set(cdst_pte, ndst_pte, 0);
5598 PTE_SYNC(cdst_pte);
5599
5600 cpu_tlb_flushD_SE(csrcp);
5601 cpu_tlb_flushD_SE(cdstp);
5602 cpu_cpwait();
5603 bcopy_page(csrcp, cdstp);
5604 xscale_cache_clean_minidata();
5605 l2pte_reset(csrc_pte);
5606 l2pte_reset(cdst_pte);
5607 PTE_SYNC(csrc_pte);
5608 PTE_SYNC(cdst_pte);
5609 }
5610 #endif /* ARM_MMU_XSCALE == 1 */
5611
5612 /*
5613 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5614 *
5615 * Return the start and end addresses of the kernel's virtual space.
5616 * These values are setup in pmap_bootstrap and are updated as pages
5617 * are allocated.
5618 */
5619 void
5620 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5621 {
5622 *start = virtual_avail;
5623 *end = virtual_end;
5624 }
5625
5626 /*
5627 * Helper function for pmap_grow_l2_bucket()
5628 */
5629 static inline int
5630 pmap_grow_map(vaddr_t va, paddr_t *pap)
5631 {
5632 paddr_t pa;
5633
5634 if (uvm.page_init_done == false) {
5635 #ifdef PMAP_STEAL_MEMORY
5636 pv_addr_t pv;
5637 pmap_boot_pagealloc(PAGE_SIZE,
5638 #ifdef PMAP_CACHE_VIPT
5639 arm_cache_prefer_mask,
5640 va & arm_cache_prefer_mask,
5641 #else
5642 0, 0,
5643 #endif
5644 &pv);
5645 pa = pv.pv_pa;
5646 #else
5647 if (uvm_page_physget(&pa) == false)
5648 return (1);
5649 #endif /* PMAP_STEAL_MEMORY */
5650 } else {
5651 struct vm_page *pg;
5652 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5653 if (pg == NULL)
5654 return (1);
5655 pa = VM_PAGE_TO_PHYS(pg);
5656 /*
5657 * This new page must not have any mappings. Enter it via
5658 * pmap_kenter_pa and let that routine do the hard work.
5659 */
5660 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5661 KASSERT(SLIST_EMPTY(&md->pvh_list));
5662 pmap_kenter_pa(va, pa,
5663 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5664 }
5665
5666 if (pap)
5667 *pap = pa;
5668
5669 PMAPCOUNT(pt_mappings);
5670 #ifdef DEBUG
5671 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5672 KDASSERT(l2b != NULL);
5673
5674 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5675 const pt_entry_t opte = *ptep;
5676 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5677 #endif
5678 memset((void *)va, 0, PAGE_SIZE);
5679 return (0);
5680 }
5681
5682 /*
5683 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5684 * used by pmap_growkernel().
5685 */
5686 static inline struct l2_bucket *
5687 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5688 {
5689 struct l2_dtable *l2;
5690 struct l2_bucket *l2b;
5691 u_short l1slot;
5692 vaddr_t nva;
5693
5694 l1slot = l1pte_index(va);
5695
5696 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5697 /*
5698 * No mapping at this address, as there is
5699 * no entry in the L1 table.
5700 * Need to allocate a new l2_dtable.
5701 */
5702 nva = pmap_kernel_l2dtable_kva;
5703 if ((nva & PGOFSET) == 0) {
5704 /*
5705 * Need to allocate a backing page
5706 */
5707 if (pmap_grow_map(nva, NULL))
5708 return (NULL);
5709 }
5710
5711 l2 = (struct l2_dtable *)nva;
5712 nva += sizeof(struct l2_dtable);
5713
5714 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5715 /*
5716 * The new l2_dtable straddles a page boundary.
5717 * Map in another page to cover it.
5718 */
5719 if (pmap_grow_map(nva, NULL))
5720 return (NULL);
5721 }
5722
5723 pmap_kernel_l2dtable_kva = nva;
5724
5725 /*
5726 * Link it into the parent pmap
5727 */
5728 pm->pm_l2[L2_IDX(l1slot)] = l2;
5729 }
5730
5731 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5732
5733 /*
5734 * Fetch pointer to the L2 page table associated with the address.
5735 */
5736 if (l2b->l2b_kva == NULL) {
5737 pt_entry_t *ptep;
5738
5739 /*
5740 * No L2 page table has been allocated. Chances are, this
5741 * is because we just allocated the l2_dtable, above.
5742 */
5743 nva = pmap_kernel_l2ptp_kva;
5744 ptep = (pt_entry_t *)nva;
5745 if ((nva & PGOFSET) == 0) {
5746 /*
5747 * Need to allocate a backing page
5748 */
5749 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5750 return (NULL);
5751 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5752 }
5753
5754 l2->l2_occupancy++;
5755 l2b->l2b_kva = ptep;
5756 l2b->l2b_l1slot = l1slot;
5757 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5758
5759 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5760 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5761 }
5762
5763 return (l2b);
5764 }
5765
5766 vaddr_t
5767 pmap_growkernel(vaddr_t maxkvaddr)
5768 {
5769 pmap_t kpm = pmap_kernel();
5770 #ifndef ARM_MMU_EXTENDED
5771 struct l1_ttable *l1;
5772 #endif
5773 int s;
5774
5775 if (maxkvaddr <= pmap_curmaxkvaddr)
5776 goto out; /* we are OK */
5777
5778 NPDEBUG(PDB_GROWKERN,
5779 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5780 pmap_curmaxkvaddr, maxkvaddr));
5781
5782 KDASSERT(maxkvaddr <= virtual_end);
5783
5784 /*
5785 * whoops! we need to add kernel PTPs
5786 */
5787
5788 s = splhigh(); /* to be safe */
5789 mutex_enter(kpm->pm_lock);
5790
5791 /* Map 1MB at a time */
5792 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5793 #ifdef ARM_MMU_EXTENDED
5794 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5795 pd_entry_t *pdep = spdep;
5796 #endif
5797 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5798 #ifdef ARM_MMU_EXTENDED
5799 pdep++,
5800 #endif
5801 l1slot++) {
5802 struct l2_bucket *l2b =
5803 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5804 KASSERT(l2b != NULL);
5805
5806 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5807 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5808 #ifdef ARM_MMU_EXTENDED
5809 l1pte_setone(pdep, npde);
5810 #else
5811 /* Distribute new L1 entry to all other L1s */
5812 SLIST_FOREACH(l1, &l1_list, l1_link) {
5813 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5814 l1pte_setone(pdep, npde);
5815 PDE_SYNC(pdep);
5816 }
5817 #endif
5818 }
5819 #ifdef ARM_MMU_EXTENDED
5820 PDE_SYNC_RANGE(spdep, pdep - spdep);
5821 #endif
5822
5823 #ifdef PMAP_CACHE_VIVT
5824 /*
5825 * flush out the cache, expensive but growkernel will happen so
5826 * rarely
5827 */
5828 cpu_dcache_wbinv_all();
5829 cpu_tlb_flushD();
5830 cpu_cpwait();
5831 #endif
5832
5833 mutex_exit(kpm->pm_lock);
5834 splx(s);
5835
5836 out:
5837 return (pmap_curmaxkvaddr);
5838 }
5839
5840 /************************ Utility routines ****************************/
5841
5842 #ifndef ARM_HAS_VBAR
5843 /*
5844 * vector_page_setprot:
5845 *
5846 * Manipulate the protection of the vector page.
5847 */
5848 void
5849 vector_page_setprot(int prot)
5850 {
5851 struct l2_bucket *l2b;
5852 pt_entry_t *ptep;
5853
5854 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5855 /*
5856 * If we are using VBAR to use the vectors in the kernel, then it's
5857 * already mapped in the kernel text so no need to anything here.
5858 */
5859 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5860 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5861 return;
5862 }
5863 #endif
5864
5865 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5866 KASSERT(l2b != NULL);
5867
5868 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5869
5870 const pt_entry_t opte = *ptep;
5871 #ifdef ARM_MMU_EXTENDED
5872 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5873 | L2_S_PROT(PTE_KERNEL, prot);
5874 #else
5875 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5876 | L2_S_PROT(PTE_KERNEL, prot);
5877 #endif
5878 l2pte_set(ptep, npte, opte);
5879 PTE_SYNC(ptep);
5880 cpu_tlb_flushD_SE(vector_page);
5881 cpu_cpwait();
5882 }
5883 #endif
5884
5885 /*
5886 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5887 * Returns true if the mapping exists, else false.
5888 *
5889 * NOTE: This function is only used by a couple of arm-specific modules.
5890 * It is not safe to take any pmap locks here, since we could be right
5891 * in the middle of debugging the pmap anyway...
5892 *
5893 * It is possible for this routine to return false even though a valid
5894 * mapping does exist. This is because we don't lock, so the metadata
5895 * state may be inconsistent.
5896 *
5897 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5898 * a "section" mapping.
5899 */
5900 bool
5901 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5902 {
5903 struct l2_dtable *l2;
5904 pd_entry_t *pdep, pde;
5905 pt_entry_t *ptep;
5906 u_short l1slot;
5907
5908 if (pm->pm_l1 == NULL)
5909 return false;
5910
5911 l1slot = l1pte_index(va);
5912 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
5913 pde = *pdep;
5914
5915 if (l1pte_section_p(pde)) {
5916 *ptp = NULL;
5917 return true;
5918 }
5919
5920 l2 = pm->pm_l2[L2_IDX(l1slot)];
5921 if (l2 == NULL ||
5922 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
5923 return false;
5924 }
5925
5926 *ptp = &ptep[l2pte_index(va)];
5927 return true;
5928 }
5929
5930 bool
5931 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5932 {
5933
5934 if (pm->pm_l1 == NULL)
5935 return false;
5936
5937 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
5938
5939 return true;
5940 }
5941
5942 /************************ Bootstrapping routines ****************************/
5943
5944 #ifndef ARM_MMU_EXTENDED
5945 static void
5946 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5947 {
5948 int i;
5949
5950 l1->l1_kva = l1pt;
5951 l1->l1_domain_use_count = 0;
5952 l1->l1_domain_first = 0;
5953
5954 for (i = 0; i < PMAP_DOMAINS; i++)
5955 l1->l1_domain_free[i] = i + 1;
5956
5957 /*
5958 * Copy the kernel's L1 entries to each new L1.
5959 */
5960 if (pmap_initialized)
5961 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
5962
5963 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5964 &l1->l1_physaddr) == false)
5965 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5966
5967 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5968 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5969 }
5970 #endif /* !ARM_MMU_EXTENDED */
5971
5972 /*
5973 * pmap_bootstrap() is called from the board-specific initarm() routine
5974 * once the kernel L1/L2 descriptors tables have been set up.
5975 *
5976 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5977 * spread over a number of disparate files/functions.
5978 *
5979 * We are passed the following parameters
5980 * - kernel_l1pt
5981 * This is a pointer to the base of the kernel's L1 translation table.
5982 * - vstart
5983 * 1MB-aligned start of managed kernel virtual memory.
5984 * - vend
5985 * 1MB-aligned end of managed kernel virtual memory.
5986 *
5987 * We use the first parameter to build the metadata (struct l1_ttable and
5988 * struct l2_dtable) necessary to track kernel mappings.
5989 */
5990 #define PMAP_STATIC_L2_SIZE 16
5991 void
5992 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5993 {
5994 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5995 #ifndef ARM_MMU_EXTENDED
5996 static struct l1_ttable static_l1;
5997 struct l1_ttable *l1 = &static_l1;
5998 #endif
5999 struct l2_dtable *l2;
6000 struct l2_bucket *l2b;
6001 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6002 pmap_t pm = pmap_kernel();
6003 pt_entry_t *ptep;
6004 paddr_t pa;
6005 vsize_t size;
6006 int nptes, l2idx, l2next = 0;
6007
6008 #ifdef ARM_MMU_EXTENDED
6009 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6010 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6011 #endif
6012
6013 #ifdef VERBOSE_INIT_ARM
6014 printf("kpm ");
6015 #endif
6016 /*
6017 * Initialise the kernel pmap object
6018 */
6019 curcpu()->ci_pmap_cur = pm;
6020 #ifdef ARM_MMU_EXTENDED
6021 pm->pm_l1 = l1pt;
6022 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6023 #ifdef VERBOSE_INIT_ARM
6024 printf("tlb0 ");
6025 #endif
6026 pmap_tlb_info_init(&pmap_tlb0_info);
6027 #ifdef MULTIPROCESSOR
6028 #ifdef VERBOSE_INIT_ARM
6029 printf("kcpusets ");
6030 #endif
6031 pm->pm_onproc = kcpuset_running;
6032 pm->pm_active = kcpuset_running;
6033 #endif
6034 #else
6035 pm->pm_l1 = l1;
6036 #endif
6037
6038 #ifdef VERBOSE_INIT_ARM
6039 printf("locks ");
6040 #endif
6041 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6042 if (arm_cache_prefer_mask != 0) {
6043 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6044 } else {
6045 #endif
6046 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
6047 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6048 }
6049 #endif
6050 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
6051 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
6052 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
6053
6054 #ifdef VERBOSE_INIT_ARM
6055 printf("l1pt ");
6056 #endif
6057 /*
6058 * Scan the L1 translation table created by initarm() and create
6059 * the required metadata for all valid mappings found in it.
6060 */
6061 for (size_t l1slot = 0;
6062 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6063 l1slot++) {
6064 pd_entry_t pde = l1pt[l1slot];
6065
6066 /*
6067 * We're only interested in Coarse mappings.
6068 * pmap_extract() can deal with section mappings without
6069 * recourse to checking L2 metadata.
6070 */
6071 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6072 continue;
6073
6074 /*
6075 * Lookup the KVA of this L2 descriptor table
6076 */
6077 pa = l1pte_pa(pde);
6078 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6079 if (ptep == NULL) {
6080 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6081 (u_int)l1slot << L1_S_SHIFT, pa);
6082 }
6083
6084 /*
6085 * Fetch the associated L2 metadata structure.
6086 * Allocate a new one if necessary.
6087 */
6088 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6089 if (l2next == PMAP_STATIC_L2_SIZE)
6090 panic("pmap_bootstrap: out of static L2s");
6091 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6092 }
6093
6094 /*
6095 * One more L1 slot tracked...
6096 */
6097 l2->l2_occupancy++;
6098
6099 /*
6100 * Fill in the details of the L2 descriptor in the
6101 * appropriate bucket.
6102 */
6103 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6104 l2b->l2b_kva = ptep;
6105 l2b->l2b_pa = pa;
6106 l2b->l2b_l1slot = l1slot;
6107
6108 /*
6109 * Establish an initial occupancy count for this descriptor
6110 */
6111 for (l2idx = 0;
6112 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6113 l2idx++) {
6114 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6115 l2b->l2b_occupancy++;
6116 }
6117 }
6118
6119 /*
6120 * Make sure the descriptor itself has the correct cache mode.
6121 * If not, fix it, but whine about the problem. Port-meisters
6122 * should consider this a clue to fix up their initarm()
6123 * function. :)
6124 */
6125 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6126 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6127 "L2 pte @ %p\n", ptep);
6128 }
6129 }
6130
6131 #ifdef VERBOSE_INIT_ARM
6132 printf("cache(l1pt) ");
6133 #endif
6134 /*
6135 * Ensure the primary (kernel) L1 has the correct cache mode for
6136 * a page table. Bitch if it is not correctly set.
6137 */
6138 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6139 L1_TABLE_SIZE / L2_S_SIZE)) {
6140 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6141 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6142 }
6143
6144 #ifdef PMAP_CACHE_VIVT
6145 cpu_dcache_wbinv_all();
6146 cpu_tlb_flushID();
6147 cpu_cpwait();
6148 #endif
6149
6150 /*
6151 * now we allocate the "special" VAs which are used for tmp mappings
6152 * by the pmap (and other modules). we allocate the VAs by advancing
6153 * virtual_avail (note that there are no pages mapped at these VAs).
6154 *
6155 * Managed KVM space start from wherever initarm() tells us.
6156 */
6157 virtual_avail = vstart;
6158 virtual_end = vend;
6159
6160 #ifdef VERBOSE_INIT_ARM
6161 printf("specials ");
6162 #endif
6163 #ifdef PMAP_CACHE_VIPT
6164 /*
6165 * If we have a VIPT cache, we need one page/pte per possible alias
6166 * page so we won't violate cache aliasing rules.
6167 */
6168 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6169 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6170 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6171 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6172 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6173 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6174 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6175 }
6176 #else
6177 nptes = PAGE_SIZE / L2_S_SIZE;
6178 #endif
6179 #ifdef MULTIPROCESSOR
6180 cnptes = nptes;
6181 nptes *= arm_cpu_max;
6182 #endif
6183 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6184 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6185 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6186 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6187 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6188 if (msgbufaddr == NULL) {
6189 pmap_alloc_specials(&virtual_avail,
6190 round_page(MSGBUFSIZE) / PAGE_SIZE,
6191 (void *)&msgbufaddr, NULL);
6192 }
6193
6194 /*
6195 * Allocate a range of kernel virtual address space to be used
6196 * for L2 descriptor tables and metadata allocation in
6197 * pmap_growkernel().
6198 */
6199 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6200 pmap_alloc_specials(&virtual_avail,
6201 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6202 &pmap_kernel_l2ptp_kva, NULL);
6203
6204 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6205 pmap_alloc_specials(&virtual_avail,
6206 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6207 &pmap_kernel_l2dtable_kva, NULL);
6208
6209 #ifndef ARM_MMU_EXTENDED
6210 /*
6211 * init the static-global locks and global pmap list.
6212 */
6213 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6214
6215 /*
6216 * We can now initialise the first L1's metadata.
6217 */
6218 SLIST_INIT(&l1_list);
6219 TAILQ_INIT(&l1_lru_list);
6220 pmap_init_l1(l1, l1pt);
6221 #endif /* ARM_MMU_EXTENDED */
6222
6223 #ifndef ARM_HAS_VBAR
6224 /* Set up vector page L1 details, if necessary */
6225 if (vector_page < KERNEL_BASE) {
6226 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6227 l2b = pmap_get_l2_bucket(pm, vector_page);
6228 KDASSERT(l2b != NULL);
6229 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6230 L1_C_DOM(pmap_domain(pm));
6231 } else
6232 pm->pm_pl1vec = NULL;
6233 #endif
6234
6235 #ifdef VERBOSE_INIT_ARM
6236 printf("pools ");
6237 #endif
6238 /*
6239 * Initialize the pmap cache
6240 */
6241 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6242 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6243 LIST_INIT(&pmap_pmaps);
6244 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
6245
6246 /*
6247 * Initialize the pv pool.
6248 */
6249 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6250 &pmap_bootstrap_pv_allocator, IPL_NONE);
6251
6252 /*
6253 * Initialize the L2 dtable pool and cache.
6254 */
6255 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6256 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6257
6258 /*
6259 * Initialise the L2 descriptor table pool and cache
6260 */
6261 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6262 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6263 pmap_l2ptp_ctor, NULL, NULL);
6264
6265 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6266
6267 cpu_dcache_wbinv_all();
6268 }
6269
6270 static bool
6271 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6272 {
6273 #ifdef ARM_MMU_EXTENDED
6274 return false;
6275 #else
6276 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6277 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6278 return false;
6279
6280 const vaddr_t eva = va + nptes * PAGE_SIZE;
6281 int rv = 0;
6282
6283 while (va < eva) {
6284 /*
6285 * Make sure the descriptor itself has the correct cache mode
6286 */
6287 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6288 pd_entry_t pde = *pdep;
6289
6290 if (l1pte_section_p(pde)) {
6291 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6292 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6293 *pdep = (pde & ~L1_S_CACHE_MASK) |
6294 pte_l1_s_cache_mode_pt;
6295 PDE_SYNC(pdep);
6296 cpu_dcache_wbinv_range((vaddr_t)pdep,
6297 sizeof(*pdep));
6298 rv = 1;
6299 }
6300 return rv;
6301 }
6302 vaddr_t pa = l1pte_pa(pde);
6303 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6304 if (ptep == NULL)
6305 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6306
6307 ptep += l2pte_index(va);
6308 const pt_entry_t opte = *ptep;
6309 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6310 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6311 | pte_l2_s_cache_mode_pt;
6312 l2pte_set(ptep, npte, opte);
6313 PTE_SYNC(ptep);
6314 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6315 rv = 1;
6316 }
6317 va += PAGE_SIZE;
6318 }
6319
6320 return (rv);
6321 #endif
6322 }
6323
6324 static void
6325 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6326 {
6327 vaddr_t va = *availp;
6328 struct l2_bucket *l2b;
6329
6330 if (ptep) {
6331 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6332 if (l2b == NULL)
6333 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6334
6335 if (ptep)
6336 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6337 }
6338
6339 *vap = va;
6340 *availp = va + (PAGE_SIZE * pages);
6341 }
6342
6343 void
6344 pmap_init(void)
6345 {
6346
6347 /*
6348 * Set the available memory vars - These do not map to real memory
6349 * addresses and cannot as the physical memory is fragmented.
6350 * They are used by ps for %mem calculations.
6351 * One could argue whether this should be the entire memory or just
6352 * the memory that is useable in a user process.
6353 */
6354 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
6355 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
6356
6357 /*
6358 * Now we need to free enough pv_entry structures to allow us to get
6359 * the kmem_map/kmem_object allocated and inited (done after this
6360 * function is finished). to do this we allocate one bootstrap page out
6361 * of kernel_map and use it to provide an initial pool of pv_entry
6362 * structures. we never free this page.
6363 */
6364 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6365
6366 #ifdef ARM_MMU_EXTENDED
6367 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6368 #endif
6369
6370 pmap_initialized = true;
6371 }
6372
6373 static vaddr_t last_bootstrap_page = 0;
6374 static void *free_bootstrap_pages = NULL;
6375
6376 static void *
6377 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6378 {
6379 extern void *pool_page_alloc(struct pool *, int);
6380 vaddr_t new_page;
6381 void *rv;
6382
6383 if (pmap_initialized)
6384 return (pool_page_alloc(pp, flags));
6385
6386 if (free_bootstrap_pages) {
6387 rv = free_bootstrap_pages;
6388 free_bootstrap_pages = *((void **)rv);
6389 return (rv);
6390 }
6391
6392 KASSERT(kernel_map != NULL);
6393 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6394 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6395
6396 KASSERT(new_page > last_bootstrap_page);
6397 last_bootstrap_page = new_page;
6398 return ((void *)new_page);
6399 }
6400
6401 static void
6402 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6403 {
6404 extern void pool_page_free(struct pool *, void *);
6405
6406 if ((vaddr_t)v <= last_bootstrap_page) {
6407 *((void **)v) = free_bootstrap_pages;
6408 free_bootstrap_pages = v;
6409 return;
6410 }
6411
6412 if (pmap_initialized) {
6413 pool_page_free(pp, v);
6414 return;
6415 }
6416 }
6417
6418 /*
6419 * pmap_postinit()
6420 *
6421 * This routine is called after the vm and kmem subsystems have been
6422 * initialised. This allows the pmap code to perform any initialisation
6423 * that can only be done one the memory allocation is in place.
6424 */
6425 void
6426 pmap_postinit(void)
6427 {
6428 #ifndef ARM_MMU_EXTENDED
6429 extern paddr_t physical_start, physical_end;
6430 struct l1_ttable *l1;
6431 struct pglist plist;
6432 struct vm_page *m;
6433 pd_entry_t *pdep;
6434 vaddr_t va, eva;
6435 u_int loop, needed;
6436 int error;
6437 #endif
6438
6439 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6440 pool_cache_setlowat(&pmap_l2dtable_cache,
6441 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6442
6443 #ifndef ARM_MMU_EXTENDED
6444 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6445 needed -= 1;
6446
6447 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6448
6449 for (loop = 0; loop < needed; loop++, l1++) {
6450 /* Allocate a L1 page table */
6451 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6452 if (va == 0)
6453 panic("Cannot allocate L1 KVM");
6454
6455 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6456 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6457 if (error)
6458 panic("Cannot allocate L1 physical pages");
6459
6460 m = TAILQ_FIRST(&plist);
6461 eva = va + L1_TABLE_SIZE;
6462 pdep = (pd_entry_t *)va;
6463
6464 while (m && va < eva) {
6465 paddr_t pa = VM_PAGE_TO_PHYS(m);
6466
6467 pmap_kenter_pa(va, pa,
6468 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6469
6470 va += PAGE_SIZE;
6471 m = TAILQ_NEXT(m, pageq.queue);
6472 }
6473
6474 #ifdef DIAGNOSTIC
6475 if (m)
6476 panic("pmap_alloc_l1pt: pglist not empty");
6477 #endif /* DIAGNOSTIC */
6478
6479 pmap_init_l1(l1, pdep);
6480 }
6481
6482 #ifdef DEBUG
6483 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6484 needed);
6485 #endif
6486 #endif /* !ARM_MMU_EXTENDED */
6487 }
6488
6489 /*
6490 * Note that the following routines are used by board-specific initialisation
6491 * code to configure the initial kernel page tables.
6492 *
6493 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
6494 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
6495 * behaviour of the old pmap, and provides an easy migration path for
6496 * initial bring-up of the new pmap on existing ports. Fortunately,
6497 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
6498 * will be deprecated.
6499 *
6500 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
6501 * tables.
6502 */
6503
6504 /*
6505 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6506 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6507 * find them as necessary.
6508 *
6509 * Note that the data on this list MUST remain valid after initarm() returns,
6510 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6511 */
6512 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6513
6514 static vaddr_t
6515 kernel_pt_lookup(paddr_t pa)
6516 {
6517 pv_addr_t *pv;
6518
6519 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6520 if (pv->pv_pa == (pa & ~PGOFSET))
6521 return (pv->pv_va | (pa & PGOFSET));
6522 }
6523 return (0);
6524 }
6525
6526 /*
6527 * pmap_map_section:
6528 *
6529 * Create a single section mapping.
6530 */
6531 void
6532 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6533 {
6534 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6535 const size_t l1slot = l1pte_index(va);
6536 pd_entry_t fl;
6537
6538 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6539
6540 switch (cache) {
6541 case PTE_NOCACHE:
6542 default:
6543 fl = 0;
6544 break;
6545
6546 case PTE_CACHE:
6547 fl = pte_l1_s_cache_mode;
6548 break;
6549
6550 case PTE_PAGETABLE:
6551 fl = pte_l1_s_cache_mode_pt;
6552 break;
6553 }
6554
6555 const pd_entry_t npde = L1_S_PROTO | pa |
6556 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6557 l1pte_setone(pdep + l1slot, npde);
6558 PDE_SYNC(pdep + l1slot);
6559 }
6560
6561 /*
6562 * pmap_map_entry:
6563 *
6564 * Create a single page mapping.
6565 */
6566 void
6567 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6568 {
6569 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6570 const size_t l1slot = l1pte_index(va);
6571 pt_entry_t npte;
6572 pt_entry_t *ptep;
6573
6574 KASSERT(((va | pa) & PGOFSET) == 0);
6575
6576 switch (cache) {
6577 case PTE_NOCACHE:
6578 default:
6579 npte = 0;
6580 break;
6581
6582 case PTE_CACHE:
6583 npte = pte_l2_s_cache_mode;
6584 break;
6585
6586 case PTE_PAGETABLE:
6587 npte = pte_l2_s_cache_mode_pt;
6588 break;
6589 }
6590
6591 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6592 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6593
6594 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6595 if (ptep == NULL)
6596 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6597
6598 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6599 #ifdef ARM_MMU_EXTENDED
6600 if (prot & VM_PROT_EXECUTE) {
6601 npte &= ~L2_XS_XN;
6602 }
6603 #endif
6604 ptep += l2pte_index(va);
6605 l2pte_set(ptep, npte, 0);
6606 PTE_SYNC(ptep);
6607 }
6608
6609 /*
6610 * pmap_link_l2pt:
6611 *
6612 * Link the L2 page table specified by "l2pv" into the L1
6613 * page table at the slot for "va".
6614 */
6615 void
6616 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6617 {
6618 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6619
6620 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6621 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6622
6623 const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6624 | l2pv->pv_pa;
6625
6626 l1pte_set(pdep, npde);
6627 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6628
6629 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6630 }
6631
6632 /*
6633 * pmap_map_chunk:
6634 *
6635 * Map a chunk of memory using the most efficient mappings
6636 * possible (section, large page, small page) into the
6637 * provided L1 and L2 tables at the specified virtual address.
6638 */
6639 vsize_t
6640 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6641 int prot, int cache)
6642 {
6643 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6644 pt_entry_t f1, f2s, f2l;
6645 vsize_t resid;
6646
6647 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6648
6649 if (l1pt == 0)
6650 panic("pmap_map_chunk: no L1 table provided");
6651
6652 #ifdef VERBOSE_INIT_ARM
6653 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6654 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6655 #endif
6656
6657 switch (cache) {
6658 case PTE_NOCACHE:
6659 default:
6660 f1 = 0;
6661 f2l = 0;
6662 f2s = 0;
6663 break;
6664
6665 case PTE_CACHE:
6666 f1 = pte_l1_s_cache_mode;
6667 f2l = pte_l2_l_cache_mode;
6668 f2s = pte_l2_s_cache_mode;
6669 break;
6670
6671 case PTE_PAGETABLE:
6672 f1 = pte_l1_s_cache_mode_pt;
6673 f2l = pte_l2_l_cache_mode_pt;
6674 f2s = pte_l2_s_cache_mode_pt;
6675 break;
6676 }
6677
6678 size = resid;
6679
6680 while (resid > 0) {
6681 const size_t l1slot = l1pte_index(va);
6682 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6683 /* See if we can use a supersection mapping. */
6684 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6685 /* Supersection are always domain 0 */
6686 const pd_entry_t npde = L1_SS_PROTO | pa
6687 #ifdef ARM_MMU_EXTENDED_XXX
6688 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6689 #endif
6690 #ifdef ARM_MMU_EXTENDED
6691 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6692 #endif
6693 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6694 #ifdef VERBOSE_INIT_ARM
6695 printf("sS");
6696 #endif
6697 l1pte_set(&pdep[l1slot], npde);
6698 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6699 va += L1_SS_SIZE;
6700 pa += L1_SS_SIZE;
6701 resid -= L1_SS_SIZE;
6702 continue;
6703 }
6704 #endif
6705 /* See if we can use a section mapping. */
6706 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6707 const pd_entry_t npde = L1_S_PROTO | pa
6708 #ifdef ARM_MMU_EXTENDED_XXX
6709 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6710 #endif
6711 #ifdef ARM_MMU_EXTENDED
6712 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6713 #endif
6714 | L1_S_PROT(PTE_KERNEL, prot) | f1
6715 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6716 #ifdef VERBOSE_INIT_ARM
6717 printf("S");
6718 #endif
6719 l1pte_set(&pdep[l1slot], npde);
6720 PDE_SYNC(&pdep[l1slot]);
6721 va += L1_S_SIZE;
6722 pa += L1_S_SIZE;
6723 resid -= L1_S_SIZE;
6724 continue;
6725 }
6726
6727 /*
6728 * Ok, we're going to use an L2 table. Make sure
6729 * one is actually in the corresponding L1 slot
6730 * for the current VA.
6731 */
6732 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6733 panic("%s: no L2 table for VA %#lx", __func__, va);
6734
6735 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6736 if (ptep == NULL)
6737 panic("%s: can't find L2 table for VA %#lx", __func__,
6738 va);
6739
6740 ptep += l2pte_index(va);
6741
6742 /* See if we can use a L2 large page mapping. */
6743 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6744 const pt_entry_t npte = L2_L_PROTO | pa
6745 #ifdef ARM_MMU_EXTENDED_XXX
6746 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6747 #endif
6748 #ifdef ARM_MMU_EXTENDED
6749 | (va & 0x80000000 ? 0 : L2_XS_nG)
6750 #endif
6751 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6752 #ifdef VERBOSE_INIT_ARM
6753 printf("L");
6754 #endif
6755 l2pte_set(ptep, npte, 0);
6756 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6757 va += L2_L_SIZE;
6758 pa += L2_L_SIZE;
6759 resid -= L2_L_SIZE;
6760 continue;
6761 }
6762
6763 /* Use a small page mapping. */
6764 #ifdef VERBOSE_INIT_ARM
6765 printf("P");
6766 #endif
6767 const pt_entry_t npte = L2_S_PROTO | pa
6768 #ifdef ARM_MMU_EXTENDED_XXX
6769 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6770 #endif
6771 #ifdef ARM_MMU_EXTENDED
6772 | (va & 0x80000000 ? 0 : L2_XS_nG)
6773 #endif
6774 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6775 l2pte_set(ptep, npte, 0);
6776 PTE_SYNC(ptep);
6777 va += PAGE_SIZE;
6778 pa += PAGE_SIZE;
6779 resid -= PAGE_SIZE;
6780 }
6781 #ifdef VERBOSE_INIT_ARM
6782 printf("\n");
6783 #endif
6784 return (size);
6785 }
6786
6787 /********************** Static device map routines ***************************/
6788
6789 static const struct pmap_devmap *pmap_devmap_table;
6790
6791 /*
6792 * Register the devmap table. This is provided in case early console
6793 * initialization needs to register mappings created by bootstrap code
6794 * before pmap_devmap_bootstrap() is called.
6795 */
6796 void
6797 pmap_devmap_register(const struct pmap_devmap *table)
6798 {
6799
6800 pmap_devmap_table = table;
6801 }
6802
6803 /*
6804 * Map all of the static regions in the devmap table, and remember
6805 * the devmap table so other parts of the kernel can look up entries
6806 * later.
6807 */
6808 void
6809 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6810 {
6811 int i;
6812
6813 pmap_devmap_table = table;
6814
6815 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6816 #ifdef VERBOSE_INIT_ARM
6817 printf("devmap: %08lx -> %08lx @ %08lx\n",
6818 pmap_devmap_table[i].pd_pa,
6819 pmap_devmap_table[i].pd_pa +
6820 pmap_devmap_table[i].pd_size - 1,
6821 pmap_devmap_table[i].pd_va);
6822 #endif
6823 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6824 pmap_devmap_table[i].pd_pa,
6825 pmap_devmap_table[i].pd_size,
6826 pmap_devmap_table[i].pd_prot,
6827 pmap_devmap_table[i].pd_cache);
6828 }
6829 }
6830
6831 const struct pmap_devmap *
6832 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6833 {
6834 uint64_t endpa;
6835 int i;
6836
6837 if (pmap_devmap_table == NULL)
6838 return (NULL);
6839
6840 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6841
6842 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6843 if (pa >= pmap_devmap_table[i].pd_pa &&
6844 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6845 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6846 return (&pmap_devmap_table[i]);
6847 }
6848
6849 return (NULL);
6850 }
6851
6852 const struct pmap_devmap *
6853 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6854 {
6855 int i;
6856
6857 if (pmap_devmap_table == NULL)
6858 return (NULL);
6859
6860 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6861 if (va >= pmap_devmap_table[i].pd_va &&
6862 va + size - 1 <= pmap_devmap_table[i].pd_va +
6863 pmap_devmap_table[i].pd_size - 1)
6864 return (&pmap_devmap_table[i]);
6865 }
6866
6867 return (NULL);
6868 }
6869
6870 /********************** PTE initialization routines **************************/
6871
6872 /*
6873 * These routines are called when the CPU type is identified to set up
6874 * the PTE prototypes, cache modes, etc.
6875 *
6876 * The variables are always here, just in case modules need to reference
6877 * them (though, they shouldn't).
6878 */
6879
6880 pt_entry_t pte_l1_s_cache_mode;
6881 pt_entry_t pte_l1_s_wc_mode;
6882 pt_entry_t pte_l1_s_cache_mode_pt;
6883 pt_entry_t pte_l1_s_cache_mask;
6884
6885 pt_entry_t pte_l2_l_cache_mode;
6886 pt_entry_t pte_l2_l_wc_mode;
6887 pt_entry_t pte_l2_l_cache_mode_pt;
6888 pt_entry_t pte_l2_l_cache_mask;
6889
6890 pt_entry_t pte_l2_s_cache_mode;
6891 pt_entry_t pte_l2_s_wc_mode;
6892 pt_entry_t pte_l2_s_cache_mode_pt;
6893 pt_entry_t pte_l2_s_cache_mask;
6894
6895 pt_entry_t pte_l1_s_prot_u;
6896 pt_entry_t pte_l1_s_prot_w;
6897 pt_entry_t pte_l1_s_prot_ro;
6898 pt_entry_t pte_l1_s_prot_mask;
6899
6900 pt_entry_t pte_l2_s_prot_u;
6901 pt_entry_t pte_l2_s_prot_w;
6902 pt_entry_t pte_l2_s_prot_ro;
6903 pt_entry_t pte_l2_s_prot_mask;
6904
6905 pt_entry_t pte_l2_l_prot_u;
6906 pt_entry_t pte_l2_l_prot_w;
6907 pt_entry_t pte_l2_l_prot_ro;
6908 pt_entry_t pte_l2_l_prot_mask;
6909
6910 pt_entry_t pte_l1_ss_proto;
6911 pt_entry_t pte_l1_s_proto;
6912 pt_entry_t pte_l1_c_proto;
6913 pt_entry_t pte_l2_s_proto;
6914
6915 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6916 void (*pmap_zero_page_func)(paddr_t);
6917
6918 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6919 void
6920 pmap_pte_init_generic(void)
6921 {
6922
6923 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6924 pte_l1_s_wc_mode = L1_S_B;
6925 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6926
6927 pte_l2_l_cache_mode = L2_B|L2_C;
6928 pte_l2_l_wc_mode = L2_B;
6929 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6930
6931 pte_l2_s_cache_mode = L2_B|L2_C;
6932 pte_l2_s_wc_mode = L2_B;
6933 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6934
6935 /*
6936 * If we have a write-through cache, set B and C. If
6937 * we have a write-back cache, then we assume setting
6938 * only C will make those pages write-through (except for those
6939 * Cortex CPUs which can read the L1 caches).
6940 */
6941 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6942 #if ARM_MMU_V7 > 0
6943 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6944 #endif
6945 #if ARM_MMU_V6 > 0
6946 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6947 #endif
6948 || false) {
6949 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6950 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6951 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6952 } else {
6953 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6954 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6955 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6956 }
6957
6958 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6959 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6960 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6961 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6962
6963 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6964 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6965 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6966 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6967
6968 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6969 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6970 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6971 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6972
6973 pte_l1_ss_proto = L1_SS_PROTO_generic;
6974 pte_l1_s_proto = L1_S_PROTO_generic;
6975 pte_l1_c_proto = L1_C_PROTO_generic;
6976 pte_l2_s_proto = L2_S_PROTO_generic;
6977
6978 pmap_copy_page_func = pmap_copy_page_generic;
6979 pmap_zero_page_func = pmap_zero_page_generic;
6980 }
6981
6982 #if defined(CPU_ARM8)
6983 void
6984 pmap_pte_init_arm8(void)
6985 {
6986
6987 /*
6988 * ARM8 is compatible with generic, but we need to use
6989 * the page tables uncached.
6990 */
6991 pmap_pte_init_generic();
6992
6993 pte_l1_s_cache_mode_pt = 0;
6994 pte_l2_l_cache_mode_pt = 0;
6995 pte_l2_s_cache_mode_pt = 0;
6996 }
6997 #endif /* CPU_ARM8 */
6998
6999 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7000 void
7001 pmap_pte_init_arm9(void)
7002 {
7003
7004 /*
7005 * ARM9 is compatible with generic, but we want to use
7006 * write-through caching for now.
7007 */
7008 pmap_pte_init_generic();
7009
7010 pte_l1_s_cache_mode = L1_S_C;
7011 pte_l2_l_cache_mode = L2_C;
7012 pte_l2_s_cache_mode = L2_C;
7013
7014 pte_l1_s_wc_mode = L1_S_B;
7015 pte_l2_l_wc_mode = L2_B;
7016 pte_l2_s_wc_mode = L2_B;
7017
7018 pte_l1_s_cache_mode_pt = L1_S_C;
7019 pte_l2_l_cache_mode_pt = L2_C;
7020 pte_l2_s_cache_mode_pt = L2_C;
7021 }
7022 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7023 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7024
7025 #if defined(CPU_ARM10)
7026 void
7027 pmap_pte_init_arm10(void)
7028 {
7029
7030 /*
7031 * ARM10 is compatible with generic, but we want to use
7032 * write-through caching for now.
7033 */
7034 pmap_pte_init_generic();
7035
7036 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7037 pte_l2_l_cache_mode = L2_B | L2_C;
7038 pte_l2_s_cache_mode = L2_B | L2_C;
7039
7040 pte_l1_s_cache_mode = L1_S_B;
7041 pte_l2_l_cache_mode = L2_B;
7042 pte_l2_s_cache_mode = L2_B;
7043
7044 pte_l1_s_cache_mode_pt = L1_S_C;
7045 pte_l2_l_cache_mode_pt = L2_C;
7046 pte_l2_s_cache_mode_pt = L2_C;
7047
7048 }
7049 #endif /* CPU_ARM10 */
7050
7051 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7052 void
7053 pmap_pte_init_arm11(void)
7054 {
7055
7056 /*
7057 * ARM11 is compatible with generic, but we want to use
7058 * write-through caching for now.
7059 */
7060 pmap_pte_init_generic();
7061
7062 pte_l1_s_cache_mode = L1_S_C;
7063 pte_l2_l_cache_mode = L2_C;
7064 pte_l2_s_cache_mode = L2_C;
7065
7066 pte_l1_s_wc_mode = L1_S_B;
7067 pte_l2_l_wc_mode = L2_B;
7068 pte_l2_s_wc_mode = L2_B;
7069
7070 pte_l1_s_cache_mode_pt = L1_S_C;
7071 pte_l2_l_cache_mode_pt = L2_C;
7072 pte_l2_s_cache_mode_pt = L2_C;
7073 }
7074 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7075
7076 #if ARM_MMU_SA1 == 1
7077 void
7078 pmap_pte_init_sa1(void)
7079 {
7080
7081 /*
7082 * The StrongARM SA-1 cache does not have a write-through
7083 * mode. So, do the generic initialization, then reset
7084 * the page table cache mode to B=1,C=1, and note that
7085 * the PTEs need to be sync'd.
7086 */
7087 pmap_pte_init_generic();
7088
7089 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7090 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7091 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7092
7093 pmap_needs_pte_sync = 1;
7094 }
7095 #endif /* ARM_MMU_SA1 == 1*/
7096
7097 #if ARM_MMU_XSCALE == 1
7098 #if (ARM_NMMUS > 1)
7099 static u_int xscale_use_minidata;
7100 #endif
7101
7102 void
7103 pmap_pte_init_xscale(void)
7104 {
7105 uint32_t auxctl;
7106 int write_through = 0;
7107
7108 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7109 pte_l1_s_wc_mode = L1_S_B;
7110 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7111
7112 pte_l2_l_cache_mode = L2_B|L2_C;
7113 pte_l2_l_wc_mode = L2_B;
7114 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7115
7116 pte_l2_s_cache_mode = L2_B|L2_C;
7117 pte_l2_s_wc_mode = L2_B;
7118 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7119
7120 pte_l1_s_cache_mode_pt = L1_S_C;
7121 pte_l2_l_cache_mode_pt = L2_C;
7122 pte_l2_s_cache_mode_pt = L2_C;
7123
7124 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7125 /*
7126 * The XScale core has an enhanced mode where writes that
7127 * miss the cache cause a cache line to be allocated. This
7128 * is significantly faster than the traditional, write-through
7129 * behavior of this case.
7130 */
7131 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7132 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7133 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7134 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7135
7136 #ifdef XSCALE_CACHE_WRITE_THROUGH
7137 /*
7138 * Some versions of the XScale core have various bugs in
7139 * their cache units, the work-around for which is to run
7140 * the cache in write-through mode. Unfortunately, this
7141 * has a major (negative) impact on performance. So, we
7142 * go ahead and run fast-and-loose, in the hopes that we
7143 * don't line up the planets in a way that will trip the
7144 * bugs.
7145 *
7146 * However, we give you the option to be slow-but-correct.
7147 */
7148 write_through = 1;
7149 #elif defined(XSCALE_CACHE_WRITE_BACK)
7150 /* force write back cache mode */
7151 write_through = 0;
7152 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7153 /*
7154 * Intel PXA2[15]0 processors are known to have a bug in
7155 * write-back cache on revision 4 and earlier (stepping
7156 * A[01] and B[012]). Fixed for C0 and later.
7157 */
7158 {
7159 uint32_t id, type;
7160
7161 id = cpufunc_id();
7162 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7163
7164 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7165 if ((id & CPU_ID_REVISION_MASK) < 5) {
7166 /* write through for stepping A0-1 and B0-2 */
7167 write_through = 1;
7168 }
7169 }
7170 }
7171 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7172
7173 if (write_through) {
7174 pte_l1_s_cache_mode = L1_S_C;
7175 pte_l2_l_cache_mode = L2_C;
7176 pte_l2_s_cache_mode = L2_C;
7177 }
7178
7179 #if (ARM_NMMUS > 1)
7180 xscale_use_minidata = 1;
7181 #endif
7182
7183 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7184 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7185 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7186 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7187
7188 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7189 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7190 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7191 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7192
7193 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7194 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7195 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7196 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7197
7198 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7199 pte_l1_s_proto = L1_S_PROTO_xscale;
7200 pte_l1_c_proto = L1_C_PROTO_xscale;
7201 pte_l2_s_proto = L2_S_PROTO_xscale;
7202
7203 pmap_copy_page_func = pmap_copy_page_xscale;
7204 pmap_zero_page_func = pmap_zero_page_xscale;
7205
7206 /*
7207 * Disable ECC protection of page table access, for now.
7208 */
7209 auxctl = armreg_auxctl_read();
7210 auxctl &= ~XSCALE_AUXCTL_P;
7211 armreg_auxctl_write(auxctl);
7212 }
7213
7214 /*
7215 * xscale_setup_minidata:
7216 *
7217 * Set up the mini-data cache clean area. We require the
7218 * caller to allocate the right amount of physically and
7219 * virtually contiguous space.
7220 */
7221 void
7222 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7223 {
7224 extern vaddr_t xscale_minidata_clean_addr;
7225 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7226 pd_entry_t *pde = (pd_entry_t *) l1pt;
7227 vsize_t size;
7228 uint32_t auxctl;
7229
7230 xscale_minidata_clean_addr = va;
7231
7232 /* Round it to page size. */
7233 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7234
7235 for (; size != 0;
7236 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7237 const size_t l1slot = l1pte_index(va);
7238 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7239 if (ptep == NULL)
7240 panic("xscale_setup_minidata: can't find L2 table for "
7241 "VA 0x%08lx", va);
7242
7243 ptep += l2pte_index(va);
7244 pt_entry_t opte = *ptep;
7245 l2pte_set(ptep,
7246 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7247 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7248 }
7249
7250 /*
7251 * Configure the mini-data cache for write-back with
7252 * read/write-allocate.
7253 *
7254 * NOTE: In order to reconfigure the mini-data cache, we must
7255 * make sure it contains no valid data! In order to do that,
7256 * we must issue a global data cache invalidate command!
7257 *
7258 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7259 * THIS IS VERY IMPORTANT!
7260 */
7261
7262 /* Invalidate data and mini-data. */
7263 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7264 auxctl = armreg_auxctl_read();
7265 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7266 armreg_auxctl_write(auxctl);
7267 }
7268
7269 /*
7270 * Change the PTEs for the specified kernel mappings such that they
7271 * will use the mini data cache instead of the main data cache.
7272 */
7273 void
7274 pmap_uarea(vaddr_t va)
7275 {
7276 vaddr_t next_bucket, eva;
7277
7278 #if (ARM_NMMUS > 1)
7279 if (xscale_use_minidata == 0)
7280 return;
7281 #endif
7282
7283 eva = va + USPACE;
7284
7285 while (va < eva) {
7286 next_bucket = L2_NEXT_BUCKET_VA(va);
7287 if (next_bucket > eva)
7288 next_bucket = eva;
7289
7290 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7291 KDASSERT(l2b != NULL);
7292
7293 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7294 pt_entry_t *ptep = sptep;
7295
7296 while (va < next_bucket) {
7297 const pt_entry_t opte = *ptep;
7298 if (!l2pte_minidata_p(opte)) {
7299 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7300 cpu_tlb_flushD_SE(va);
7301 l2pte_set(ptep, opte & ~L2_B, opte);
7302 }
7303 ptep += PAGE_SIZE / L2_S_SIZE;
7304 va += PAGE_SIZE;
7305 }
7306 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7307 }
7308 cpu_cpwait();
7309 }
7310 #endif /* ARM_MMU_XSCALE == 1 */
7311
7312
7313 #if defined(CPU_ARM11MPCORE)
7314
7315 void
7316 pmap_pte_init_arm11mpcore(void)
7317 {
7318
7319 /* cache mode is controlled by 5 bits (B, C, TEX) */
7320 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7321 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7322 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7323 /* use extended small page (without APn, with TEX) */
7324 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7325 #else
7326 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7327 #endif
7328
7329 /* write-back, write-allocate */
7330 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7331 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7332 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7333 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7334 #else
7335 /* no TEX. read-allocate */
7336 pte_l2_s_cache_mode = L2_C | L2_B;
7337 #endif
7338 /*
7339 * write-back, write-allocate for page tables.
7340 */
7341 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7342 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7343 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7344 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7345 #else
7346 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7347 #endif
7348
7349 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7350 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7351 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7352 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7353
7354 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7355 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7356 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7357 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7358 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7359
7360 #else
7361 /* with AP[0..3] */
7362 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7363 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7364 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7365 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7366 #endif
7367
7368 #ifdef ARM11MPCORE_COMPAT_MMU
7369 /* with AP[0..3] */
7370 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7371 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7372 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7373 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7374
7375 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7376 pte_l1_s_proto = L1_S_PROTO_armv6;
7377 pte_l1_c_proto = L1_C_PROTO_armv6;
7378 pte_l2_s_proto = L2_S_PROTO_armv6c;
7379 #else
7380 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7381 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7382 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7383 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7384
7385 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7386 pte_l1_s_proto = L1_S_PROTO_armv6;
7387 pte_l1_c_proto = L1_C_PROTO_armv6;
7388 pte_l2_s_proto = L2_S_PROTO_armv6n;
7389 #endif
7390
7391 pmap_copy_page_func = pmap_copy_page_generic;
7392 pmap_zero_page_func = pmap_zero_page_generic;
7393 pmap_needs_pte_sync = 1;
7394 }
7395 #endif /* CPU_ARM11MPCORE */
7396
7397
7398 #if ARM_MMU_V7 == 1
7399 void
7400 pmap_pte_init_armv7(void)
7401 {
7402 /*
7403 * The ARMv7-A MMU is mostly compatible with generic. If the
7404 * AP field is zero, that now means "no access" rather than
7405 * read-only. The prototypes are a little different because of
7406 * the XN bit.
7407 */
7408 pmap_pte_init_generic();
7409
7410 pmap_needs_pte_sync = 1;
7411
7412 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7413 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7414 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7415
7416 /*
7417 * If the core support coherent walk then updates to translation tables
7418 * do not require a clean to the point of unification to ensure
7419 * visibility by subsequent translation table walks. That means we can
7420 * map everything shareable and cached and the right thing will happen.
7421 */
7422 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7423 pmap_needs_pte_sync = 0;
7424
7425 /*
7426 * write-back, no write-allocate, shareable for normal pages.
7427 */
7428 pte_l1_s_cache_mode |= L1_S_V6_S;
7429 pte_l2_l_cache_mode |= L2_XS_S;
7430 pte_l2_s_cache_mode |= L2_XS_S;
7431 }
7432
7433 /*
7434 * Page tables are just all other memory. We can use write-back since
7435 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7436 */
7437 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7438 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7439 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7440
7441 /*
7442 * Check the Memory Model Features to see if this CPU supports
7443 * the TLBIASID coproc op.
7444 */
7445 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7446 arm_has_tlbiasid_p = true;
7447 }
7448
7449 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7450 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7451 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7452 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7453
7454 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7455 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7456 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7457 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7458
7459 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7460 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7461 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7462 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7463
7464 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7465 pte_l1_s_proto = L1_S_PROTO_armv7;
7466 pte_l1_c_proto = L1_C_PROTO_armv7;
7467 pte_l2_s_proto = L2_S_PROTO_armv7;
7468
7469 }
7470 #endif /* ARM_MMU_V7 */
7471
7472 /*
7473 * return the PA of the current L1 table, for use when handling a crash dump
7474 */
7475 uint32_t
7476 pmap_kernel_L1_addr(void)
7477 {
7478 #ifdef ARM_MMU_EXTENDED
7479 return pmap_kernel()->pm_l1_pa;
7480 #else
7481 return pmap_kernel()->pm_l1->l1_physaddr;
7482 #endif
7483 }
7484
7485 #if defined(DDB)
7486 /*
7487 * A couple of ddb-callable functions for dumping pmaps
7488 */
7489 void pmap_dump_all(void);
7490 void pmap_dump(pmap_t);
7491
7492 void
7493 pmap_dump_all(void)
7494 {
7495 pmap_t pm;
7496
7497 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
7498 if (pm == pmap_kernel())
7499 continue;
7500 pmap_dump(pm);
7501 printf("\n");
7502 }
7503 }
7504
7505 static pt_entry_t ncptes[64];
7506 static void pmap_dump_ncpg(pmap_t);
7507
7508 void
7509 pmap_dump(pmap_t pm)
7510 {
7511 struct l2_dtable *l2;
7512 struct l2_bucket *l2b;
7513 pt_entry_t *ptep, pte;
7514 vaddr_t l2_va, l2b_va, va;
7515 int i, j, k, occ, rows = 0;
7516
7517 if (pm == pmap_kernel())
7518 printf("pmap_kernel (%p): ", pm);
7519 else
7520 printf("user pmap (%p): ", pm);
7521
7522 #ifdef ARM_MMU_EXTENDED
7523 printf("l1 at %p\n", pmap_l1_kva(pm));
7524 #else
7525 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7526 #endif
7527
7528 l2_va = 0;
7529 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7530 l2 = pm->pm_l2[i];
7531
7532 if (l2 == NULL || l2->l2_occupancy == 0)
7533 continue;
7534
7535 l2b_va = l2_va;
7536 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7537 l2b = &l2->l2_bucket[j];
7538
7539 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7540 continue;
7541
7542 ptep = l2b->l2b_kva;
7543
7544 for (k = 0; k < 256 && ptep[k] == 0; k++)
7545 ;
7546
7547 k &= ~63;
7548 occ = l2b->l2b_occupancy;
7549 va = l2b_va + (k * 4096);
7550 for (; k < 256; k++, va += 0x1000) {
7551 char ch = ' ';
7552 if ((k % 64) == 0) {
7553 if ((rows % 8) == 0) {
7554 printf(
7555 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7556 }
7557 printf("%08lx: ", va);
7558 }
7559
7560 ncptes[k & 63] = 0;
7561 pte = ptep[k];
7562 if (pte == 0) {
7563 ch = '.';
7564 } else {
7565 occ--;
7566 switch (pte & 0x0c) {
7567 case 0x00:
7568 ch = 'D'; /* No cache No buff */
7569 break;
7570 case 0x04:
7571 ch = 'B'; /* No cache buff */
7572 break;
7573 case 0x08:
7574 if (pte & 0x40)
7575 ch = 'm';
7576 else
7577 ch = 'C'; /* Cache No buff */
7578 break;
7579 case 0x0c:
7580 ch = 'F'; /* Cache Buff */
7581 break;
7582 }
7583
7584 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7585 ch += 0x20;
7586
7587 if ((pte & 0xc) == 0)
7588 ncptes[k & 63] = pte;
7589 }
7590
7591 if ((k % 64) == 63) {
7592 rows++;
7593 printf("%c\n", ch);
7594 pmap_dump_ncpg(pm);
7595 if (occ == 0)
7596 break;
7597 } else
7598 printf("%c", ch);
7599 }
7600 }
7601 }
7602 }
7603
7604 static void
7605 pmap_dump_ncpg(pmap_t pm)
7606 {
7607 struct vm_page *pg;
7608 struct vm_page_md *md;
7609 struct pv_entry *pv;
7610 int i;
7611
7612 for (i = 0; i < 63; i++) {
7613 if (ncptes[i] == 0)
7614 continue;
7615
7616 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7617 if (pg == NULL)
7618 continue;
7619 md = VM_PAGE_TO_MD(pg);
7620
7621 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7622 VM_PAGE_TO_PHYS(pg),
7623 md->krw_mappings, md->kro_mappings,
7624 md->urw_mappings, md->uro_mappings);
7625
7626 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7627 printf(" %c va 0x%08lx, flags 0x%x\n",
7628 (pm == pv->pv_pmap) ? '*' : ' ',
7629 pv->pv_va, pv->pv_flags);
7630 }
7631 }
7632 }
7633 #endif
7634
7635 #ifdef PMAP_STEAL_MEMORY
7636 void
7637 pmap_boot_pageadd(pv_addr_t *newpv)
7638 {
7639 pv_addr_t *pv, *npv;
7640
7641 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7642 if (newpv->pv_pa < pv->pv_va) {
7643 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7644 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7645 newpv->pv_size += pv->pv_size;
7646 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7647 }
7648 pv = NULL;
7649 } else {
7650 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7651 pv = npv) {
7652 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7653 KASSERT(pv->pv_pa < newpv->pv_pa);
7654 if (newpv->pv_pa > npv->pv_pa)
7655 continue;
7656 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7657 pv->pv_size += newpv->pv_size;
7658 return;
7659 }
7660 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7661 break;
7662 newpv->pv_size += npv->pv_size;
7663 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7664 SLIST_REMOVE_AFTER(newpv, pv_list);
7665 return;
7666 }
7667 }
7668 }
7669
7670 if (pv) {
7671 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7672 } else {
7673 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7674 }
7675 }
7676
7677 void
7678 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7679 pv_addr_t *rpv)
7680 {
7681 pv_addr_t *pv, **pvp;
7682 struct vm_physseg *ps;
7683 size_t i;
7684
7685 KASSERT(amount & PGOFSET);
7686 KASSERT((mask & PGOFSET) == 0);
7687 KASSERT((match & PGOFSET) == 0);
7688 KASSERT(amount != 0);
7689
7690 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7691 (pv = *pvp) != NULL;
7692 pvp = &SLIST_NEXT(pv, pv_list)) {
7693 pv_addr_t *newpv;
7694 psize_t off;
7695 /*
7696 * If this entry is too small to satify the request...
7697 */
7698 KASSERT(pv->pv_size > 0);
7699 if (pv->pv_size < amount)
7700 continue;
7701
7702 for (off = 0; off <= mask; off += PAGE_SIZE) {
7703 if (((pv->pv_pa + off) & mask) == match
7704 && off + amount <= pv->pv_size)
7705 break;
7706 }
7707 if (off > mask)
7708 continue;
7709
7710 rpv->pv_va = pv->pv_va + off;
7711 rpv->pv_pa = pv->pv_pa + off;
7712 rpv->pv_size = amount;
7713 pv->pv_size -= amount;
7714 if (pv->pv_size == 0) {
7715 KASSERT(off == 0);
7716 KASSERT((vaddr_t) pv == rpv->pv_va);
7717 *pvp = SLIST_NEXT(pv, pv_list);
7718 } else if (off == 0) {
7719 KASSERT((vaddr_t) pv == rpv->pv_va);
7720 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7721 *newpv = *pv;
7722 newpv->pv_pa += amount;
7723 newpv->pv_va += amount;
7724 *pvp = newpv;
7725 } else if (off < pv->pv_size) {
7726 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7727 *newpv = *pv;
7728 newpv->pv_size -= off;
7729 newpv->pv_pa += off + amount;
7730 newpv->pv_va += off + amount;
7731
7732 SLIST_NEXT(pv, pv_list) = newpv;
7733 pv->pv_size = off;
7734 } else {
7735 KASSERT((vaddr_t) pv != rpv->pv_va);
7736 }
7737 memset((void *)rpv->pv_va, 0, amount);
7738 return;
7739 }
7740
7741 if (vm_nphysseg == 0)
7742 panic("pmap_boot_pagealloc: couldn't allocate memory");
7743
7744 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7745 (pv = *pvp) != NULL;
7746 pvp = &SLIST_NEXT(pv, pv_list)) {
7747 if (SLIST_NEXT(pv, pv_list) == NULL)
7748 break;
7749 }
7750 KASSERT(mask == 0);
7751 for (i = 0; i < vm_nphysseg; i++) {
7752 ps = VM_PHYSMEM_PTR(i);
7753 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7754 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7755 rpv->pv_va = pv->pv_va;
7756 rpv->pv_pa = pv->pv_pa;
7757 rpv->pv_size = amount;
7758 *pvp = NULL;
7759 pmap_map_chunk(kernel_l1pt.pv_va,
7760 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7761 ptoa(ps->avail_start),
7762 amount - pv->pv_size,
7763 VM_PROT_READ|VM_PROT_WRITE,
7764 PTE_CACHE);
7765 ps->avail_start += atop(amount - pv->pv_size);
7766 /*
7767 * If we consumed the entire physseg, remove it.
7768 */
7769 if (ps->avail_start == ps->avail_end) {
7770 for (--vm_nphysseg; i < vm_nphysseg; i++)
7771 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7772 }
7773 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7774 return;
7775 }
7776 }
7777
7778 panic("pmap_boot_pagealloc: couldn't allocate memory");
7779 }
7780
7781 vaddr_t
7782 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7783 {
7784 pv_addr_t pv;
7785
7786 pmap_boot_pagealloc(size, 0, 0, &pv);
7787
7788 return pv.pv_va;
7789 }
7790 #endif /* PMAP_STEAL_MEMORY */
7791
7792 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7793 {
7794 sysctl_createv(clog, 0, NULL, NULL,
7795 CTLFLAG_PERMANENT,
7796 CTLTYPE_NODE, "machdep", NULL,
7797 NULL, 0, NULL, 0,
7798 CTL_MACHDEP, CTL_EOL);
7799
7800 sysctl_createv(clog, 0, NULL, NULL,
7801 CTLFLAG_PERMANENT,
7802 CTLTYPE_INT, "kmpages",
7803 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7804 NULL, 0, &pmap_kmpages, 0,
7805 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7806 }
7807
7808 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7809 struct vm_page *
7810 arm_pmap_alloc_poolpage(int flags)
7811 {
7812 /*
7813 * On some systems, only some pages may be "coherent" for dma and we
7814 * want to prefer those for pool pages (think mbufs) but fallback to
7815 * any page if none is available. But we can only fallback if we
7816 * aren't direct mapping memory or all of memory can be direct-mapped.
7817 * If that isn't true, pool changes can only come from direct-mapped
7818 * memory.
7819 */
7820 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7821 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7822 UVM_PGA_STRAT_FALLBACK,
7823 arm_poolpage_vmfreelist);
7824 }
7825
7826 return uvm_pagealloc(NULL, 0, NULL, flags);
7827 }
7828 #endif
7829
7830 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7831 void
7832 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7833 {
7834 /* nothing */
7835 }
7836
7837 int
7838 pic_ipi_shootdown(void *arg)
7839 {
7840 #if PMAP_NEED_TLB_SHOOTDOWN
7841 pmap_tlb_shootdown_process();
7842 #endif
7843 return 1;
7844 }
7845 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7846
7847
7848 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7849 vaddr_t
7850 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7851 {
7852 bool ok = false;
7853 if (physical_start <= pa && pa < physical_end) {
7854 #ifdef KERNEL_BASE_VOFFSET
7855 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
7856 #else
7857 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
7858 #endif
7859 #ifdef ARM_MMU_EXTENDED
7860 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
7861 #endif
7862 va = newva;
7863 ok = true;
7864 #ifdef ARM_MMU_EXTENDED
7865 }
7866 #endif
7867 }
7868 KASSERT(ok_p);
7869 *ok_p = ok;
7870 return va;
7871 }
7872
7873 vaddr_t
7874 pmap_map_poolpage(paddr_t pa)
7875 {
7876 bool ok __diagused;
7877 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7878 KASSERT(ok);
7879 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7880 if (arm_cache_prefer_mask != 0) {
7881 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7882 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7883 pmap_acquire_page_lock(md);
7884 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7885 pmap_release_page_lock(md);
7886 }
7887 #endif
7888 return va;
7889 }
7890
7891 paddr_t
7892 pmap_unmap_poolpage(vaddr_t va)
7893 {
7894 KASSERT(va >= KERNEL_BASE);
7895 #ifdef PMAP_CACHE_VIVT
7896 cpu_idcache_wbinv_range(va, PAGE_SIZE);
7897 #endif
7898 #if defined(KERNEL_BASE_VOFFSET)
7899 return va - KERNEL_BASE_VOFFSET;
7900 #else
7901 return va - KERNEL_BASE + physical_start;
7902 #endif
7903 }
7904 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
7905