Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.325
      1 /*	$NetBSD: pmap.c,v 1.325 2015/06/09 10:44:55 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_arm_debug.h"
    190 #include "opt_cpuoptions.h"
    191 #include "opt_pmap_debug.h"
    192 #include "opt_ddb.h"
    193 #include "opt_lockdebug.h"
    194 #include "opt_multiprocessor.h"
    195 
    196 #ifdef MULTIPROCESSOR
    197 #define _INTR_PRIVATE
    198 #endif
    199 
    200 #include <sys/param.h>
    201 #include <sys/types.h>
    202 #include <sys/kernel.h>
    203 #include <sys/systm.h>
    204 #include <sys/proc.h>
    205 #include <sys/intr.h>
    206 #include <sys/pool.h>
    207 #include <sys/kmem.h>
    208 #include <sys/cdefs.h>
    209 #include <sys/cpu.h>
    210 #include <sys/sysctl.h>
    211 #include <sys/bus.h>
    212 #include <sys/atomic.h>
    213 #include <sys/kernhist.h>
    214 
    215 #include <uvm/uvm.h>
    216 
    217 #include <arm/locore.h>
    218 
    219 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.325 2015/06/09 10:44:55 skrll Exp $");
    220 
    221 //#define PMAP_DEBUG
    222 #ifdef PMAP_DEBUG
    223 
    224 /* XXX need to get rid of all refs to this */
    225 int pmap_debug_level = 0;
    226 
    227 /*
    228  * for switching to potentially finer grained debugging
    229  */
    230 #define	PDB_FOLLOW	0x0001
    231 #define	PDB_INIT	0x0002
    232 #define	PDB_ENTER	0x0004
    233 #define	PDB_REMOVE	0x0008
    234 #define	PDB_CREATE	0x0010
    235 #define	PDB_PTPAGE	0x0020
    236 #define	PDB_GROWKERN	0x0040
    237 #define	PDB_BITS	0x0080
    238 #define	PDB_COLLECT	0x0100
    239 #define	PDB_PROTECT	0x0200
    240 #define	PDB_MAP_L1	0x0400
    241 #define	PDB_BOOTSTRAP	0x1000
    242 #define	PDB_PARANOIA	0x2000
    243 #define	PDB_WIRING	0x4000
    244 #define	PDB_PVDUMP	0x8000
    245 #define	PDB_VAC		0x10000
    246 #define	PDB_KENTER	0x20000
    247 #define	PDB_KREMOVE	0x40000
    248 #define	PDB_EXEC	0x80000
    249 
    250 int debugmap = 1;
    251 int pmapdebug = 0;
    252 #define	NPDEBUG(_lev_,_stat_) \
    253 	if (pmapdebug & (_lev_)) \
    254         	((_stat_))
    255 
    256 #else	/* PMAP_DEBUG */
    257 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    258 #endif	/* PMAP_DEBUG */
    259 
    260 /*
    261  * pmap_kernel() points here
    262  */
    263 static struct pmap	kernel_pmap_store = {
    264 #ifndef ARM_MMU_EXTENDED
    265 	.pm_activated = true,
    266 	.pm_domain = PMAP_DOMAIN_KERNEL,
    267 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    268 #endif
    269 };
    270 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    271 #undef pmap_kernel
    272 #define pmap_kernel()	(&kernel_pmap_store)
    273 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    274 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    275 #endif
    276 
    277 /*
    278  * Pool and cache that pmap structures are allocated from.
    279  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    280  * in pmap_create().
    281  */
    282 static struct pool_cache pmap_cache;
    283 static LIST_HEAD(, pmap) pmap_pmaps;
    284 
    285 /*
    286  * Pool of PV structures
    287  */
    288 static struct pool pmap_pv_pool;
    289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    292 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    293 };
    294 
    295 /*
    296  * Pool and cache of l2_dtable structures.
    297  * We use a cache to avoid clearing the structures when they're
    298  * allocated. (196 bytes)
    299  */
    300 static struct pool_cache pmap_l2dtable_cache;
    301 static vaddr_t pmap_kernel_l2dtable_kva;
    302 
    303 /*
    304  * Pool and cache of L2 page descriptors.
    305  * We use a cache to avoid clearing the descriptor table
    306  * when they're allocated. (1KB)
    307  */
    308 static struct pool_cache pmap_l2ptp_cache;
    309 static vaddr_t pmap_kernel_l2ptp_kva;
    310 static paddr_t pmap_kernel_l2ptp_phys;
    311 
    312 #ifdef PMAPCOUNTERS
    313 #define	PMAP_EVCNT_INITIALIZER(name) \
    314 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    315 
    316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    317 static struct evcnt pmap_ev_vac_clean_one =
    318    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    319 static struct evcnt pmap_ev_vac_flush_one =
    320    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    321 static struct evcnt pmap_ev_vac_flush_lots =
    322    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    323 static struct evcnt pmap_ev_vac_flush_lots2 =
    324    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    329 
    330 static struct evcnt pmap_ev_vac_color_new =
    331    PMAP_EVCNT_INITIALIZER("new page color");
    332 static struct evcnt pmap_ev_vac_color_reuse =
    333    PMAP_EVCNT_INITIALIZER("ok first page color");
    334 static struct evcnt pmap_ev_vac_color_ok =
    335    PMAP_EVCNT_INITIALIZER("ok page color");
    336 static struct evcnt pmap_ev_vac_color_blind =
    337    PMAP_EVCNT_INITIALIZER("blind page color");
    338 static struct evcnt pmap_ev_vac_color_change =
    339    PMAP_EVCNT_INITIALIZER("change page color");
    340 static struct evcnt pmap_ev_vac_color_erase =
    341    PMAP_EVCNT_INITIALIZER("erase page color");
    342 static struct evcnt pmap_ev_vac_color_none =
    343    PMAP_EVCNT_INITIALIZER("no page color");
    344 static struct evcnt pmap_ev_vac_color_restore =
    345    PMAP_EVCNT_INITIALIZER("restore page color");
    346 
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    355 #endif
    356 
    357 static struct evcnt pmap_ev_mappings =
    358    PMAP_EVCNT_INITIALIZER("pages mapped");
    359 static struct evcnt pmap_ev_unmappings =
    360    PMAP_EVCNT_INITIALIZER("pages unmapped");
    361 static struct evcnt pmap_ev_remappings =
    362    PMAP_EVCNT_INITIALIZER("pages remapped");
    363 
    364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    367 
    368 static struct evcnt pmap_ev_kernel_mappings =
    369    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    370 static struct evcnt pmap_ev_kernel_unmappings =
    371    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    372 static struct evcnt pmap_ev_kernel_remappings =
    373    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    374 
    375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    378 
    379 static struct evcnt pmap_ev_kenter_mappings =
    380    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    381 static struct evcnt pmap_ev_kenter_unmappings =
    382    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    383 static struct evcnt pmap_ev_kenter_remappings =
    384    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    385 static struct evcnt pmap_ev_pt_mappings =
    386    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    387 
    388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    392 
    393 static struct evcnt pmap_ev_fixup_mod =
    394    PMAP_EVCNT_INITIALIZER("page modification emulations");
    395 static struct evcnt pmap_ev_fixup_ref =
    396    PMAP_EVCNT_INITIALIZER("page reference emulations");
    397 static struct evcnt pmap_ev_fixup_exec =
    398    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    399 static struct evcnt pmap_ev_fixup_pdes =
    400    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    401 #ifndef ARM_MMU_EXTENDED
    402 static struct evcnt pmap_ev_fixup_ptesync =
    403    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    404 #endif
    405 
    406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    410 #ifndef ARM_MMU_EXTENDED
    411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    412 #endif
    413 
    414 #ifdef PMAP_CACHE_VIPT
    415 static struct evcnt pmap_ev_exec_mappings =
    416    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    417 static struct evcnt pmap_ev_exec_cached =
    418    PMAP_EVCNT_INITIALIZER("exec pages cached");
    419 
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    422 
    423 static struct evcnt pmap_ev_exec_synced =
    424    PMAP_EVCNT_INITIALIZER("exec pages synced");
    425 static struct evcnt pmap_ev_exec_synced_map =
    426    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    427 #ifndef ARM_MMU_EXTENDED
    428 static struct evcnt pmap_ev_exec_synced_unmap =
    429    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    430 static struct evcnt pmap_ev_exec_synced_remap =
    431    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    432 static struct evcnt pmap_ev_exec_synced_clearbit =
    433    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    434 static struct evcnt pmap_ev_exec_synced_kremove =
    435    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    436 #endif
    437 
    438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    440 #ifndef ARM_MMU_EXTENDED
    441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    445 #endif
    446 
    447 static struct evcnt pmap_ev_exec_discarded_unmap =
    448    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    449 static struct evcnt pmap_ev_exec_discarded_zero =
    450    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    451 static struct evcnt pmap_ev_exec_discarded_copy =
    452    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    453 static struct evcnt pmap_ev_exec_discarded_page_protect =
    454    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    455 static struct evcnt pmap_ev_exec_discarded_clearbit =
    456    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    457 static struct evcnt pmap_ev_exec_discarded_kremove =
    458    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    459 #ifdef ARM_MMU_EXTENDED
    460 static struct evcnt pmap_ev_exec_discarded_modfixup =
    461    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    462 #endif
    463 
    464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    470 #ifdef ARM_MMU_EXTENDED
    471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    472 #endif
    473 #endif /* PMAP_CACHE_VIPT */
    474 
    475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    478 
    479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    482 
    483 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    484 #else
    485 #define	PMAPCOUNT(x)	((void)0)
    486 #endif
    487 
    488 /*
    489  * pmap copy/zero page, and mem(5) hook point
    490  */
    491 static pt_entry_t *csrc_pte, *cdst_pte;
    492 static vaddr_t csrcp, cdstp;
    493 #ifdef MULTIPROCESSOR
    494 static size_t cnptes;
    495 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    496 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    497 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    498 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    499 #else
    500 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    501 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    502 #define	cpu_csrcp(o)	(csrcp + (o))
    503 #define	cpu_cdstp(o)	(cdstp + (o))
    504 #endif
    505 vaddr_t memhook;			/* used by mem.c & others */
    506 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    507 kmutex_t pmap_lock __cacheline_aligned;
    508 extern void *msgbufaddr;
    509 int pmap_kmpages;
    510 /*
    511  * Flag to indicate if pmap_init() has done its thing
    512  */
    513 bool pmap_initialized;
    514 
    515 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    516 /*
    517  * Virtual end of direct-mapped memory
    518  */
    519 vaddr_t pmap_directlimit;
    520 #endif
    521 
    522 /*
    523  * Misc. locking data structures
    524  */
    525 
    526 static inline void
    527 pmap_acquire_pmap_lock(pmap_t pm)
    528 {
    529 	if (pm == pmap_kernel()) {
    530 #ifdef MULTIPROCESSOR
    531 		KERNEL_LOCK(1, NULL);
    532 #endif
    533 	} else {
    534 		mutex_enter(pm->pm_lock);
    535 	}
    536 }
    537 
    538 static inline void
    539 pmap_release_pmap_lock(pmap_t pm)
    540 {
    541 	if (pm == pmap_kernel()) {
    542 #ifdef MULTIPROCESSOR
    543 		KERNEL_UNLOCK_ONE(NULL);
    544 #endif
    545 	} else {
    546 		mutex_exit(pm->pm_lock);
    547 	}
    548 }
    549 
    550 static inline void
    551 pmap_acquire_page_lock(struct vm_page_md *md)
    552 {
    553 	mutex_enter(&pmap_lock);
    554 }
    555 
    556 static inline void
    557 pmap_release_page_lock(struct vm_page_md *md)
    558 {
    559 	mutex_exit(&pmap_lock);
    560 }
    561 
    562 #ifdef DIAGNOSTIC
    563 static inline int
    564 pmap_page_locked_p(struct vm_page_md *md)
    565 {
    566 	return mutex_owned(&pmap_lock);
    567 }
    568 #endif
    569 
    570 
    571 /*
    572  * Metadata for L1 translation tables.
    573  */
    574 #ifndef ARM_MMU_EXTENDED
    575 struct l1_ttable {
    576 	/* Entry on the L1 Table list */
    577 	SLIST_ENTRY(l1_ttable) l1_link;
    578 
    579 	/* Entry on the L1 Least Recently Used list */
    580 	TAILQ_ENTRY(l1_ttable) l1_lru;
    581 
    582 	/* Track how many domains are allocated from this L1 */
    583 	volatile u_int l1_domain_use_count;
    584 
    585 	/*
    586 	 * A free-list of domain numbers for this L1.
    587 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    588 	 * is slow on ARM.
    589 	 */
    590 	uint8_t l1_domain_first;
    591 	uint8_t l1_domain_free[PMAP_DOMAINS];
    592 
    593 	/* Physical address of this L1 page table */
    594 	paddr_t l1_physaddr;
    595 
    596 	/* KVA of this L1 page table */
    597 	pd_entry_t *l1_kva;
    598 };
    599 
    600 /*
    601  * L1 Page Tables are tracked using a Least Recently Used list.
    602  *  - New L1s are allocated from the HEAD.
    603  *  - Freed L1s are added to the TAIl.
    604  *  - Recently accessed L1s (where an 'access' is some change to one of
    605  *    the userland pmaps which owns this L1) are moved to the TAIL.
    606  */
    607 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    608 static kmutex_t l1_lru_lock __cacheline_aligned;
    609 
    610 /*
    611  * A list of all L1 tables
    612  */
    613 static SLIST_HEAD(, l1_ttable) l1_list;
    614 #endif /* ARM_MMU_EXTENDED */
    615 
    616 /*
    617  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    618  *
    619  * This is normally 16MB worth L2 page descriptors for any given pmap.
    620  * Reference counts are maintained for L2 descriptors so they can be
    621  * freed when empty.
    622  */
    623 struct l2_bucket {
    624 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
    625 	paddr_t l2b_pa;			/* Physical address of same */
    626 	u_short l2b_l1slot;		/* This L2 table's L1 index */
    627 	u_short l2b_occupancy;		/* How many active descriptors */
    628 };
    629 
    630 struct l2_dtable {
    631 	/* The number of L2 page descriptors allocated to this l2_dtable */
    632 	u_int l2_occupancy;
    633 
    634 	/* List of L2 page descriptors */
    635 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
    636 };
    637 
    638 /*
    639  * Given an L1 table index, calculate the corresponding l2_dtable index
    640  * and bucket index within the l2_dtable.
    641  */
    642 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    643 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    644 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    645 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    646 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    647 
    648 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    649 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    650 
    651 /*
    652  * Given a virtual address, this macro returns the
    653  * virtual address required to drop into the next L2 bucket.
    654  */
    655 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    656 
    657 /*
    658  * L2 allocation.
    659  */
    660 #define	pmap_alloc_l2_dtable()		\
    661 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    662 #define	pmap_free_l2_dtable(l2)		\
    663 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    664 #define pmap_alloc_l2_ptp(pap)		\
    665 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    666 	    PR_NOWAIT, (pap)))
    667 
    668 /*
    669  * We try to map the page tables write-through, if possible.  However, not
    670  * all CPUs have a write-through cache mode, so on those we have to sync
    671  * the cache when we frob page tables.
    672  *
    673  * We try to evaluate this at compile time, if possible.  However, it's
    674  * not always possible to do that, hence this run-time var.
    675  */
    676 int	pmap_needs_pte_sync;
    677 
    678 /*
    679  * Real definition of pv_entry.
    680  */
    681 struct pv_entry {
    682 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    683 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    684 	vaddr_t		pv_va;          /* virtual address for mapping */
    685 	u_int		pv_flags;       /* flags */
    686 };
    687 
    688 /*
    689  * Macros to determine if a mapping might be resident in the
    690  * instruction/data cache and/or TLB
    691  */
    692 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    693 /*
    694  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    695  * there are no explicit accesses, so there may be always be TLB entries to
    696  * flush.  If we used ASIDs then this would not be a problem.
    697  */
    698 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    699 #define	PV_BEEN_REFD(f)   (true)
    700 #else
    701 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    702 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    703 #endif
    704 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    705 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    706 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    707 
    708 /*
    709  * Local prototypes
    710  */
    711 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    712 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    713 			    pt_entry_t **);
    714 static bool		pmap_is_current(pmap_t) __unused;
    715 static bool		pmap_is_cached(pmap_t);
    716 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    717 			    pmap_t, vaddr_t, u_int);
    718 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    719 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    720 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    721 			    u_int, u_int);
    722 
    723 static void		pmap_pinit(pmap_t);
    724 static int		pmap_pmap_ctor(void *, void *, int);
    725 
    726 static void		pmap_alloc_l1(pmap_t);
    727 static void		pmap_free_l1(pmap_t);
    728 #ifndef ARM_MMU_EXTENDED
    729 static void		pmap_use_l1(pmap_t);
    730 #endif
    731 
    732 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    733 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    734 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    735 static int		pmap_l2ptp_ctor(void *, void *, int);
    736 static int		pmap_l2dtable_ctor(void *, void *, int);
    737 
    738 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    739 #ifdef PMAP_CACHE_VIVT
    740 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    741 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    742 #endif
    743 
    744 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    745 #ifdef PMAP_CACHE_VIVT
    746 static bool		pmap_clean_page(struct vm_page_md *, bool);
    747 #endif
    748 #ifdef PMAP_CACHE_VIPT
    749 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    750 enum pmap_flush_op {
    751 	PMAP_FLUSH_PRIMARY,
    752 	PMAP_FLUSH_SECONDARY,
    753 	PMAP_CLEAN_PRIMARY
    754 };
    755 #ifndef ARM_MMU_EXTENDED
    756 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    757 #endif
    758 #endif
    759 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    760 
    761 #ifndef ARM_MMU_EXTENDED
    762 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    763 #endif
    764 static vaddr_t		kernel_pt_lookup(paddr_t);
    765 
    766 
    767 /*
    768  * Misc variables
    769  */
    770 vaddr_t virtual_avail;
    771 vaddr_t virtual_end;
    772 vaddr_t pmap_curmaxkvaddr;
    773 
    774 paddr_t avail_start;
    775 paddr_t avail_end;
    776 
    777 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    778 pv_addr_t kernelpages;
    779 pv_addr_t kernel_l1pt;
    780 pv_addr_t systempage;
    781 
    782 /* Function to set the debug level of the pmap code */
    783 
    784 #ifdef PMAP_DEBUG
    785 void
    786 pmap_debug(int level)
    787 {
    788 	pmap_debug_level = level;
    789 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    790 }
    791 #endif	/* PMAP_DEBUG */
    792 
    793 #ifdef PMAP_CACHE_VIPT
    794 #define PMAP_VALIDATE_MD_PAGE(md)	\
    795 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    796 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    797 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    798 #endif /* PMAP_CACHE_VIPT */
    799 /*
    800  * A bunch of routines to conditionally flush the caches/TLB depending
    801  * on whether the specified pmap actually needs to be flushed at any
    802  * given time.
    803  */
    804 static inline void
    805 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    806 {
    807 #ifdef ARM_MMU_EXTENDED
    808 	pmap_tlb_invalidate_addr(pm, va);
    809 #else
    810 	if (pm->pm_cstate.cs_tlb_id != 0) {
    811 		if (PV_BEEN_EXECD(flags)) {
    812 			cpu_tlb_flushID_SE(va);
    813 		} else if (PV_BEEN_REFD(flags)) {
    814 			cpu_tlb_flushD_SE(va);
    815 		}
    816 	}
    817 #endif /* ARM_MMU_EXTENDED */
    818 }
    819 
    820 static inline void
    821 pmap_tlb_flushID(pmap_t pm)
    822 {
    823 #ifdef ARM_MMU_EXTENDED
    824 	pmap_tlb_asid_release_all(pm);
    825 #else
    826 	if (pm->pm_cstate.cs_tlb_id) {
    827 		cpu_tlb_flushID();
    828 #if ARM_MMU_V7 == 0
    829 		/*
    830 		 * Speculative loads by Cortex cores can cause TLB entries to
    831 		 * be filled even if there are no explicit accesses, so there
    832 		 * may be always be TLB entries to flush.  If we used ASIDs
    833 		 * then it would not be a problem.
    834 		 * This is not true for other CPUs.
    835 		 */
    836 		pm->pm_cstate.cs_tlb = 0;
    837 #endif /* ARM_MMU_V7 */
    838 	}
    839 #endif /* ARM_MMU_EXTENDED */
    840 }
    841 
    842 #ifndef ARM_MMU_EXTENDED
    843 static inline void
    844 pmap_tlb_flushD(pmap_t pm)
    845 {
    846 	if (pm->pm_cstate.cs_tlb_d) {
    847 		cpu_tlb_flushD();
    848 #if ARM_MMU_V7 == 0
    849 		/*
    850 		 * Speculative loads by Cortex cores can cause TLB entries to
    851 		 * be filled even if there are no explicit accesses, so there
    852 		 * may be always be TLB entries to flush.  If we used ASIDs
    853 		 * then it would not be a problem.
    854 		 * This is not true for other CPUs.
    855 		 */
    856 		pm->pm_cstate.cs_tlb_d = 0;
    857 #endif /* ARM_MMU_V7 */
    858 	}
    859 }
    860 #endif /* ARM_MMU_EXTENDED */
    861 
    862 #ifdef PMAP_CACHE_VIVT
    863 static inline void
    864 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    865 {
    866 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    867 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    868 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    869 		if (do_inv) {
    870 			if (flags & PVF_WRITE)
    871 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    872 			else
    873 				cpu_dcache_inv_range(va, PAGE_SIZE);
    874 		} else if (flags & PVF_WRITE) {
    875 			cpu_dcache_wb_range(va, PAGE_SIZE);
    876 		}
    877 	}
    878 }
    879 
    880 static inline void
    881 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    882 {
    883 	if (PV_BEEN_EXECD(flags)) {
    884 		if (pm->pm_cstate.cs_cache_id) {
    885 			cpu_idcache_wbinv_all();
    886 			pm->pm_cstate.cs_cache = 0;
    887 		}
    888 	} else if (pm->pm_cstate.cs_cache_d) {
    889 		cpu_dcache_wbinv_all();
    890 		pm->pm_cstate.cs_cache_d = 0;
    891 	}
    892 }
    893 #endif /* PMAP_CACHE_VIVT */
    894 
    895 static inline uint8_t
    896 pmap_domain(pmap_t pm)
    897 {
    898 #ifdef ARM_MMU_EXTENDED
    899 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    900 #else
    901 	return pm->pm_domain;
    902 #endif
    903 }
    904 
    905 static inline pd_entry_t *
    906 pmap_l1_kva(pmap_t pm)
    907 {
    908 #ifdef ARM_MMU_EXTENDED
    909 	return pm->pm_l1;
    910 #else
    911 	return pm->pm_l1->l1_kva;
    912 #endif
    913 }
    914 
    915 static inline bool
    916 pmap_is_current(pmap_t pm)
    917 {
    918 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    919 		return true;
    920 
    921 	return false;
    922 }
    923 
    924 static inline bool
    925 pmap_is_cached(pmap_t pm)
    926 {
    927 #ifdef ARM_MMU_EXTENDED
    928 	if (pm == pmap_kernel())
    929 		return true;
    930 #ifdef MULTIPROCESSOR
    931 	// Is this pmap active on any CPU?
    932 	if (!kcpuset_iszero(pm->pm_active))
    933 		return true;
    934 #else
    935 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    936 	// Is this pmap active?
    937 	if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    938 		return true;
    939 #endif
    940 #else
    941 	struct cpu_info * const ci = curcpu();
    942 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    943 	    || ci->ci_pmap_lastuser == pm)
    944 		return true;
    945 #endif /* ARM_MMU_EXTENDED */
    946 
    947 	return false;
    948 }
    949 
    950 /*
    951  * PTE_SYNC_CURRENT:
    952  *
    953  *     Make sure the pte is written out to RAM.
    954  *     We need to do this for one of two cases:
    955  *       - We're dealing with the kernel pmap
    956  *       - There is no pmap active in the cache/tlb.
    957  *       - The specified pmap is 'active' in the cache/tlb.
    958  */
    959 
    960 static inline void
    961 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
    962 {
    963 	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
    964 		PTE_SYNC(ptep);
    965 	arm_dsb();
    966 }
    967 
    968 #ifdef PMAP_INCLUDE_PTE_SYNC
    969 #define	PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
    970 #else
    971 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    972 #endif
    973 
    974 /*
    975  * main pv_entry manipulation functions:
    976  *   pmap_enter_pv: enter a mapping onto a vm_page list
    977  *   pmap_remove_pv: remove a mapping from a vm_page list
    978  *
    979  * NOTE: pmap_enter_pv expects to lock the pvh itself
    980  *       pmap_remove_pv expects the caller to lock the pvh before calling
    981  */
    982 
    983 /*
    984  * pmap_enter_pv: enter a mapping onto a vm_page lst
    985  *
    986  * => caller should hold the proper lock on pmap_main_lock
    987  * => caller should have pmap locked
    988  * => we will gain the lock on the vm_page and allocate the new pv_entry
    989  * => caller should adjust ptp's wire_count before calling
    990  * => caller should not adjust pmap's wire_count
    991  */
    992 static void
    993 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    994     vaddr_t va, u_int flags)
    995 {
    996 	struct pv_entry **pvp;
    997 
    998 	NPDEBUG(PDB_PVDUMP,
    999 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
   1000 
   1001 	pv->pv_pmap = pm;
   1002 	pv->pv_va = va;
   1003 	pv->pv_flags = flags;
   1004 
   1005 	pvp = &SLIST_FIRST(&md->pvh_list);
   1006 #ifdef PMAP_CACHE_VIPT
   1007 	/*
   1008 	 * Insert unmanaged entries, writeable first, at the head of
   1009 	 * the pv list.
   1010 	 */
   1011 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1012 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1013 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1014 	}
   1015 	if (!PV_IS_WRITE_P(flags)) {
   1016 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1017 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1018 	}
   1019 #endif
   1020 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1021 	*pvp = pv;				/* ... locked list */
   1022 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1023 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1024 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1025 		md->pvh_attrs |= PVF_KMOD;
   1026 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1027 		md->pvh_attrs |= PVF_DIRTY;
   1028 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1029 #endif
   1030 	if (pm == pmap_kernel()) {
   1031 		PMAPCOUNT(kernel_mappings);
   1032 		if (flags & PVF_WRITE)
   1033 			md->krw_mappings++;
   1034 		else
   1035 			md->kro_mappings++;
   1036 	} else {
   1037 		if (flags & PVF_WRITE)
   1038 			md->urw_mappings++;
   1039 		else
   1040 			md->uro_mappings++;
   1041 	}
   1042 
   1043 #ifdef PMAP_CACHE_VIPT
   1044 #ifndef ARM_MMU_EXTENDED
   1045 	/*
   1046 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1047 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1048 	 */
   1049 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1050 		md->pvh_attrs |= PVF_WRITE;
   1051 	}
   1052 #endif
   1053 	/*
   1054 	 * If this is an exec mapping and its the first exec mapping
   1055 	 * for this page, make sure to sync the I-cache.
   1056 	 */
   1057 	if (PV_IS_EXEC_P(flags)) {
   1058 #ifndef ARM_MMU_EXTENDED
   1059 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1060 			pmap_syncicache_page(md, pa);
   1061 			PMAPCOUNT(exec_synced_map);
   1062 		}
   1063 #endif
   1064 		PMAPCOUNT(exec_mappings);
   1065 	}
   1066 #endif
   1067 
   1068 	PMAPCOUNT(mappings);
   1069 
   1070 	if (pv->pv_flags & PVF_WIRED)
   1071 		++pm->pm_stats.wired_count;
   1072 }
   1073 
   1074 /*
   1075  *
   1076  * pmap_find_pv: Find a pv entry
   1077  *
   1078  * => caller should hold lock on vm_page
   1079  */
   1080 static inline struct pv_entry *
   1081 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1082 {
   1083 	struct pv_entry *pv;
   1084 
   1085 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1086 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1087 			break;
   1088 	}
   1089 
   1090 	return (pv);
   1091 }
   1092 
   1093 /*
   1094  * pmap_remove_pv: try to remove a mapping from a pv_list
   1095  *
   1096  * => caller should hold proper lock on pmap_main_lock
   1097  * => pmap should be locked
   1098  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1099  * => caller should adjust ptp's wire_count and free PTP if needed
   1100  * => caller should NOT adjust pmap's wire_count
   1101  * => we return the removed pv
   1102  */
   1103 static struct pv_entry *
   1104 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1105 {
   1106 	struct pv_entry *pv, **prevptr;
   1107 
   1108 	NPDEBUG(PDB_PVDUMP,
   1109 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
   1110 
   1111 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1112 	pv = *prevptr;
   1113 
   1114 	while (pv) {
   1115 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1116 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
   1117 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
   1118 			if (pv->pv_flags & PVF_WIRED) {
   1119 				--pm->pm_stats.wired_count;
   1120 			}
   1121 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1122 			if (pm == pmap_kernel()) {
   1123 				PMAPCOUNT(kernel_unmappings);
   1124 				if (pv->pv_flags & PVF_WRITE)
   1125 					md->krw_mappings--;
   1126 				else
   1127 					md->kro_mappings--;
   1128 			} else {
   1129 				if (pv->pv_flags & PVF_WRITE)
   1130 					md->urw_mappings--;
   1131 				else
   1132 					md->uro_mappings--;
   1133 			}
   1134 
   1135 			PMAPCOUNT(unmappings);
   1136 #ifdef PMAP_CACHE_VIPT
   1137 			if (!(pv->pv_flags & PVF_WRITE))
   1138 				break;
   1139 			/*
   1140 			 * If this page has had an exec mapping, then if
   1141 			 * this was the last mapping, discard the contents,
   1142 			 * otherwise sync the i-cache for this page.
   1143 			 */
   1144 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1145 #ifdef ARM_MMU_EXTENDED
   1146 				md->pvh_attrs &= ~PVF_EXEC;
   1147 				PMAPCOUNT(exec_discarded_unmap);
   1148 #else
   1149 				if (SLIST_EMPTY(&md->pvh_list)) {
   1150 					md->pvh_attrs &= ~PVF_EXEC;
   1151 					PMAPCOUNT(exec_discarded_unmap);
   1152 				} else {
   1153 					pmap_syncicache_page(md, pa);
   1154 					PMAPCOUNT(exec_synced_unmap);
   1155 				}
   1156 #endif /* ARM_MMU_EXTENDED */
   1157 			}
   1158 #endif /* PMAP_CACHE_VIPT */
   1159 			break;
   1160 		}
   1161 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1162 		pv = *prevptr;				/* advance */
   1163 	}
   1164 
   1165 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1166 	/*
   1167 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1168 	 * clear the KMOD attribute from the page.
   1169 	 */
   1170 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1171 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1172 		md->pvh_attrs &= ~PVF_KMOD;
   1173 
   1174 	/*
   1175 	 * If this was a writeable page and there are no more writeable
   1176 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1177 	 * the contents to memory.
   1178 	 */
   1179 	if (arm_cache_prefer_mask != 0) {
   1180 		if (md->krw_mappings + md->urw_mappings == 0)
   1181 			md->pvh_attrs &= ~PVF_WRITE;
   1182 		PMAP_VALIDATE_MD_PAGE(md);
   1183 	}
   1184 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1185 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1186 
   1187 	return(pv);				/* return removed pv */
   1188 }
   1189 
   1190 /*
   1191  *
   1192  * pmap_modify_pv: Update pv flags
   1193  *
   1194  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1195  * => caller should NOT adjust pmap's wire_count
   1196  * => caller must call pmap_vac_me_harder() if writable status of a page
   1197  *    may have changed.
   1198  * => we return the old flags
   1199  *
   1200  * Modify a physical-virtual mapping in the pv table
   1201  */
   1202 static u_int
   1203 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1204     u_int clr_mask, u_int set_mask)
   1205 {
   1206 	struct pv_entry *npv;
   1207 	u_int flags, oflags;
   1208 
   1209 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1210 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1211 
   1212 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1213 		return (0);
   1214 
   1215 	NPDEBUG(PDB_PVDUMP,
   1216 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1217 
   1218 	/*
   1219 	 * There is at least one VA mapping this page.
   1220 	 */
   1221 
   1222 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1223 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1224 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1225 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1226 			md->pvh_attrs |= PVF_DIRTY;
   1227 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1228 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1229 	}
   1230 
   1231 	oflags = npv->pv_flags;
   1232 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1233 
   1234 	if ((flags ^ oflags) & PVF_WIRED) {
   1235 		if (flags & PVF_WIRED)
   1236 			++pm->pm_stats.wired_count;
   1237 		else
   1238 			--pm->pm_stats.wired_count;
   1239 	}
   1240 
   1241 	if ((flags ^ oflags) & PVF_WRITE) {
   1242 		if (pm == pmap_kernel()) {
   1243 			if (flags & PVF_WRITE) {
   1244 				md->krw_mappings++;
   1245 				md->kro_mappings--;
   1246 			} else {
   1247 				md->kro_mappings++;
   1248 				md->krw_mappings--;
   1249 			}
   1250 		} else {
   1251 			if (flags & PVF_WRITE) {
   1252 				md->urw_mappings++;
   1253 				md->uro_mappings--;
   1254 			} else {
   1255 				md->uro_mappings++;
   1256 				md->urw_mappings--;
   1257 			}
   1258 		}
   1259 	}
   1260 #ifdef PMAP_CACHE_VIPT
   1261 	if (arm_cache_prefer_mask != 0) {
   1262 		if (md->urw_mappings + md->krw_mappings == 0) {
   1263 			md->pvh_attrs &= ~PVF_WRITE;
   1264 		} else {
   1265 			md->pvh_attrs |= PVF_WRITE;
   1266 		}
   1267 	}
   1268 #ifndef ARM_MMU_EXTENDED
   1269 	/*
   1270 	 * We have two cases here: the first is from enter_pv (new exec
   1271 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1272 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1273 	 * to do what pmap_remove_pv would do.
   1274 	 */
   1275 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1276 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1277 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1278 		pmap_syncicache_page(md, pa);
   1279 		PMAPCOUNT(exec_synced_remap);
   1280 	}
   1281 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1282 #endif /* !ARM_MMU_EXTENDED */
   1283 #endif /* PMAP_CACHE_VIPT */
   1284 
   1285 	PMAPCOUNT(remappings);
   1286 
   1287 	return (oflags);
   1288 }
   1289 
   1290 /*
   1291  * Allocate an L1 translation table for the specified pmap.
   1292  * This is called at pmap creation time.
   1293  */
   1294 static void
   1295 pmap_alloc_l1(pmap_t pm)
   1296 {
   1297 #ifdef ARM_MMU_EXTENDED
   1298 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1299 	struct vm_page *pg;
   1300 	bool ok __diagused;
   1301 	for (;;) {
   1302 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1303 		pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
   1304 #else
   1305 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1306 #endif
   1307 		if (pg != NULL)
   1308 			break;
   1309 		uvm_wait("pmapl1alloc");
   1310 	}
   1311 	pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
   1312 	vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
   1313 	KASSERT(ok);
   1314 	KASSERT(va >= KERNEL_BASE);
   1315 
   1316 #else
   1317 	KASSERTMSG(kernel_map != NULL, "pm %p", pm);
   1318 	vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1319 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1320 	KASSERT(va);
   1321 	pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
   1322 #endif
   1323 	pm->pm_l1 = (pd_entry_t *)va;
   1324 	PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
   1325 #else
   1326 	struct l1_ttable *l1;
   1327 	uint8_t domain;
   1328 
   1329 	/*
   1330 	 * Remove the L1 at the head of the LRU list
   1331 	 */
   1332 	mutex_spin_enter(&l1_lru_lock);
   1333 	l1 = TAILQ_FIRST(&l1_lru_list);
   1334 	KDASSERT(l1 != NULL);
   1335 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1336 
   1337 	/*
   1338 	 * Pick the first available domain number, and update
   1339 	 * the link to the next number.
   1340 	 */
   1341 	domain = l1->l1_domain_first;
   1342 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1343 
   1344 	/*
   1345 	 * If there are still free domain numbers in this L1,
   1346 	 * put it back on the TAIL of the LRU list.
   1347 	 */
   1348 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1349 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1350 
   1351 	mutex_spin_exit(&l1_lru_lock);
   1352 
   1353 	/*
   1354 	 * Fix up the relevant bits in the pmap structure
   1355 	 */
   1356 	pm->pm_l1 = l1;
   1357 	pm->pm_domain = domain + 1;
   1358 #endif
   1359 }
   1360 
   1361 /*
   1362  * Free an L1 translation table.
   1363  * This is called at pmap destruction time.
   1364  */
   1365 static void
   1366 pmap_free_l1(pmap_t pm)
   1367 {
   1368 #ifdef ARM_MMU_EXTENDED
   1369 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1370 	struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
   1371 	uvm_pagefree(pg);
   1372 #else
   1373 	uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
   1374 #endif
   1375 	pm->pm_l1 = NULL;
   1376 	pm->pm_l1_pa = 0;
   1377 #else
   1378 	struct l1_ttable *l1 = pm->pm_l1;
   1379 
   1380 	mutex_spin_enter(&l1_lru_lock);
   1381 
   1382 	/*
   1383 	 * If this L1 is currently on the LRU list, remove it.
   1384 	 */
   1385 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1386 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1387 
   1388 	/*
   1389 	 * Free up the domain number which was allocated to the pmap
   1390 	 */
   1391 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1392 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1393 	l1->l1_domain_use_count--;
   1394 
   1395 	/*
   1396 	 * The L1 now must have at least 1 free domain, so add
   1397 	 * it back to the LRU list. If the use count is zero,
   1398 	 * put it at the head of the list, otherwise it goes
   1399 	 * to the tail.
   1400 	 */
   1401 	if (l1->l1_domain_use_count == 0)
   1402 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1403 	else
   1404 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1405 
   1406 	mutex_spin_exit(&l1_lru_lock);
   1407 #endif /* ARM_MMU_EXTENDED */
   1408 }
   1409 
   1410 #ifndef ARM_MMU_EXTENDED
   1411 static inline void
   1412 pmap_use_l1(pmap_t pm)
   1413 {
   1414 	struct l1_ttable *l1;
   1415 
   1416 	/*
   1417 	 * Do nothing if we're in interrupt context.
   1418 	 * Access to an L1 by the kernel pmap must not affect
   1419 	 * the LRU list.
   1420 	 */
   1421 	if (cpu_intr_p() || pm == pmap_kernel())
   1422 		return;
   1423 
   1424 	l1 = pm->pm_l1;
   1425 
   1426 	/*
   1427 	 * If the L1 is not currently on the LRU list, just return
   1428 	 */
   1429 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1430 		return;
   1431 
   1432 	mutex_spin_enter(&l1_lru_lock);
   1433 
   1434 	/*
   1435 	 * Check the use count again, now that we've acquired the lock
   1436 	 */
   1437 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1438 		mutex_spin_exit(&l1_lru_lock);
   1439 		return;
   1440 	}
   1441 
   1442 	/*
   1443 	 * Move the L1 to the back of the LRU list
   1444 	 */
   1445 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1446 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1447 
   1448 	mutex_spin_exit(&l1_lru_lock);
   1449 }
   1450 #endif /* !ARM_MMU_EXTENDED */
   1451 
   1452 /*
   1453  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1454  *
   1455  * Free an L2 descriptor table.
   1456  */
   1457 static inline void
   1458 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1459 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1460 #else
   1461 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1462 #endif
   1463 {
   1464 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1465 	/*
   1466 	 * Note: With a write-back cache, we may need to sync this
   1467 	 * L2 table before re-using it.
   1468 	 * This is because it may have belonged to a non-current
   1469 	 * pmap, in which case the cache syncs would have been
   1470 	 * skipped for the pages that were being unmapped. If the
   1471 	 * L2 table were then to be immediately re-allocated to
   1472 	 * the *current* pmap, it may well contain stale mappings
   1473 	 * which have not yet been cleared by a cache write-back
   1474 	 * and so would still be visible to the mmu.
   1475 	 */
   1476 	if (need_sync)
   1477 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1478 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1479 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1480 }
   1481 
   1482 /*
   1483  * Returns a pointer to the L2 bucket associated with the specified pmap
   1484  * and VA, or NULL if no L2 bucket exists for the address.
   1485  */
   1486 static inline struct l2_bucket *
   1487 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1488 {
   1489 	const size_t l1slot = l1pte_index(va);
   1490 	struct l2_dtable *l2;
   1491 	struct l2_bucket *l2b;
   1492 
   1493 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1494 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1495 		return (NULL);
   1496 
   1497 	return (l2b);
   1498 }
   1499 
   1500 /*
   1501  * Returns a pointer to the L2 bucket associated with the specified pmap
   1502  * and VA.
   1503  *
   1504  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1505  * bucket/page table in place.
   1506  *
   1507  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1508  * increment the bucket occupancy counter appropriately *before*
   1509  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1510  * the bucket/page in the meantime.
   1511  */
   1512 static struct l2_bucket *
   1513 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1514 {
   1515 	const size_t l1slot = l1pte_index(va);
   1516 	struct l2_dtable *l2;
   1517 
   1518 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1519 		/*
   1520 		 * No mapping at this address, as there is
   1521 		 * no entry in the L1 table.
   1522 		 * Need to allocate a new l2_dtable.
   1523 		 */
   1524 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1525 			return (NULL);
   1526 
   1527 		/*
   1528 		 * Link it into the parent pmap
   1529 		 */
   1530 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1531 	}
   1532 
   1533 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1534 
   1535 	/*
   1536 	 * Fetch pointer to the L2 page table associated with the address.
   1537 	 */
   1538 	if (l2b->l2b_kva == NULL) {
   1539 		pt_entry_t *ptep;
   1540 
   1541 		/*
   1542 		 * No L2 page table has been allocated. Chances are, this
   1543 		 * is because we just allocated the l2_dtable, above.
   1544 		 */
   1545 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1546 			/*
   1547 			 * Oops, no more L2 page tables available at this
   1548 			 * time. We may need to deallocate the l2_dtable
   1549 			 * if we allocated a new one above.
   1550 			 */
   1551 			if (l2->l2_occupancy == 0) {
   1552 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1553 				pmap_free_l2_dtable(l2);
   1554 			}
   1555 			return (NULL);
   1556 		}
   1557 
   1558 		l2->l2_occupancy++;
   1559 		l2b->l2b_kva = ptep;
   1560 		l2b->l2b_l1slot = l1slot;
   1561 
   1562 #ifdef ARM_MMU_EXTENDED
   1563 		/*
   1564 		 * We know there will be a mapping here, so simply
   1565 		 * enter this PTP into the L1 now.
   1566 		 */
   1567 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1568 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1569 		    | L1_C_DOM(pmap_domain(pm));
   1570 		KASSERT(*pdep == 0);
   1571 		l1pte_setone(pdep, npde);
   1572 		PDE_SYNC(pdep);
   1573 #endif
   1574 	}
   1575 
   1576 	return (l2b);
   1577 }
   1578 
   1579 /*
   1580  * One or more mappings in the specified L2 descriptor table have just been
   1581  * invalidated.
   1582  *
   1583  * Garbage collect the metadata and descriptor table itself if necessary.
   1584  *
   1585  * The pmap lock must be acquired when this is called (not necessary
   1586  * for the kernel pmap).
   1587  */
   1588 static void
   1589 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1590 {
   1591 	KDASSERT(count <= l2b->l2b_occupancy);
   1592 
   1593 	/*
   1594 	 * Update the bucket's reference count according to how many
   1595 	 * PTEs the caller has just invalidated.
   1596 	 */
   1597 	l2b->l2b_occupancy -= count;
   1598 
   1599 	/*
   1600 	 * Note:
   1601 	 *
   1602 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1603 	 * as that would require checking all Level 1 page tables and
   1604 	 * removing any references to the Level 2 page table. See also the
   1605 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1606 	 *
   1607 	 * We make do with just invalidating the mapping in the L2 table.
   1608 	 *
   1609 	 * This isn't really a big deal in practice and, in fact, leads
   1610 	 * to a performance win over time as we don't need to continually
   1611 	 * alloc/free.
   1612 	 */
   1613 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1614 		return;
   1615 
   1616 	/*
   1617 	 * There are no more valid mappings in this level 2 page table.
   1618 	 * Go ahead and NULL-out the pointer in the bucket, then
   1619 	 * free the page table.
   1620 	 */
   1621 	const size_t l1slot = l2b->l2b_l1slot;
   1622 	pt_entry_t * const ptep = l2b->l2b_kva;
   1623 	l2b->l2b_kva = NULL;
   1624 
   1625 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1626 	pd_entry_t pde __diagused = *pdep;
   1627 
   1628 #ifdef ARM_MMU_EXTENDED
   1629 	/*
   1630 	 * Invalidate the L1 slot.
   1631 	 */
   1632 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1633 #else
   1634 	/*
   1635 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1636 	 */
   1637 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1638 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1639 #endif
   1640 		l1pte_setone(pdep, 0);
   1641 		PDE_SYNC(pdep);
   1642 #ifndef ARM_MMU_EXTENDED
   1643 	}
   1644 #endif
   1645 
   1646 	/*
   1647 	 * Release the L2 descriptor table back to the pool cache.
   1648 	 */
   1649 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1650 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1651 #else
   1652 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1653 #endif
   1654 
   1655 	/*
   1656 	 * Update the reference count in the associated l2_dtable
   1657 	 */
   1658 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1659 	if (--l2->l2_occupancy > 0)
   1660 		return;
   1661 
   1662 	/*
   1663 	 * There are no more valid mappings in any of the Level 1
   1664 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1665 	 * the pointer in the parent pmap and free the l2_dtable.
   1666 	 */
   1667 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1668 	pmap_free_l2_dtable(l2);
   1669 }
   1670 
   1671 /*
   1672  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1673  * structures.
   1674  */
   1675 static int
   1676 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1677 {
   1678 #ifndef PMAP_INCLUDE_PTE_SYNC
   1679 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1680 
   1681 	/*
   1682 	 * The mappings for these page tables were initially made using
   1683 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1684 	 * mode will not be right for page table mappings. To avoid
   1685 	 * polluting the pmap_kenter_pa() code with a special case for
   1686 	 * page tables, we simply fix up the cache-mode here if it's not
   1687 	 * correct.
   1688 	 */
   1689 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1690 		const struct l2_bucket * const l2b =
   1691 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1692 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1693 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1694 		const pt_entry_t opte = *ptep;
   1695 
   1696 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1697 			/*
   1698 			 * Page tables must have the cache-mode set correctly.
   1699 			 */
   1700 			const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
   1701 			    | pte_l2_s_cache_mode_pt;
   1702 			l2pte_set(ptep, npte, opte);
   1703 			PTE_SYNC(ptep);
   1704 			cpu_tlb_flushD_SE(va);
   1705 			cpu_cpwait();
   1706 		}
   1707 	}
   1708 #endif
   1709 
   1710 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1711 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1712 	return (0);
   1713 }
   1714 
   1715 static int
   1716 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1717 {
   1718 
   1719 	memset(v, 0, sizeof(struct l2_dtable));
   1720 	return (0);
   1721 }
   1722 
   1723 static int
   1724 pmap_pmap_ctor(void *arg, void *v, int flags)
   1725 {
   1726 
   1727 	memset(v, 0, sizeof(struct pmap));
   1728 	return (0);
   1729 }
   1730 
   1731 static void
   1732 pmap_pinit(pmap_t pm)
   1733 {
   1734 #ifndef ARM_HAS_VBAR
   1735 	struct l2_bucket *l2b;
   1736 
   1737 	if (vector_page < KERNEL_BASE) {
   1738 		/*
   1739 		 * Map the vector page.
   1740 		 */
   1741 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1742 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1743 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1744 		pmap_update(pm);
   1745 
   1746 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1747 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1748 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1749 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1750 		    L1_C_DOM(pmap_domain(pm));
   1751 	} else
   1752 		pm->pm_pl1vec = NULL;
   1753 #endif
   1754 }
   1755 
   1756 #ifdef PMAP_CACHE_VIVT
   1757 /*
   1758  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1759  * there is more than one mapping and at least one of them is writable.
   1760  * Since we purge the cache on every context switch, we only need to check for
   1761  * other mappings within the same pmap, or kernel_pmap.
   1762  * This function is also called when a page is unmapped, to possibly reenable
   1763  * caching on any remaining mappings.
   1764  *
   1765  * The code implements the following logic, where:
   1766  *
   1767  * KW = # of kernel read/write pages
   1768  * KR = # of kernel read only pages
   1769  * UW = # of user read/write pages
   1770  * UR = # of user read only pages
   1771  *
   1772  * KC = kernel mapping is cacheable
   1773  * UC = user mapping is cacheable
   1774  *
   1775  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1776  *             +---------------------------------------------
   1777  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1778  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1779  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1780  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1781  */
   1782 
   1783 static const int pmap_vac_flags[4][4] = {
   1784 	{-1,		0,		0,		PVF_KNC},
   1785 	{0,		0,		PVF_NC,		PVF_NC},
   1786 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1787 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1788 };
   1789 
   1790 static inline int
   1791 pmap_get_vac_flags(const struct vm_page_md *md)
   1792 {
   1793 	int kidx, uidx;
   1794 
   1795 	kidx = 0;
   1796 	if (md->kro_mappings || md->krw_mappings > 1)
   1797 		kidx |= 1;
   1798 	if (md->krw_mappings)
   1799 		kidx |= 2;
   1800 
   1801 	uidx = 0;
   1802 	if (md->uro_mappings || md->urw_mappings > 1)
   1803 		uidx |= 1;
   1804 	if (md->urw_mappings)
   1805 		uidx |= 2;
   1806 
   1807 	return (pmap_vac_flags[uidx][kidx]);
   1808 }
   1809 
   1810 static inline void
   1811 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1812 {
   1813 	int nattr;
   1814 
   1815 	nattr = pmap_get_vac_flags(md);
   1816 
   1817 	if (nattr < 0) {
   1818 		md->pvh_attrs &= ~PVF_NC;
   1819 		return;
   1820 	}
   1821 
   1822 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1823 		return;
   1824 
   1825 	if (pm == pmap_kernel())
   1826 		pmap_vac_me_kpmap(md, pa, pm, va);
   1827 	else
   1828 		pmap_vac_me_user(md, pa, pm, va);
   1829 
   1830 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1831 }
   1832 
   1833 static void
   1834 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1835 {
   1836 	u_int u_cacheable, u_entries;
   1837 	struct pv_entry *pv;
   1838 	pmap_t last_pmap = pm;
   1839 
   1840 	/*
   1841 	 * Pass one, see if there are both kernel and user pmaps for
   1842 	 * this page.  Calculate whether there are user-writable or
   1843 	 * kernel-writable pages.
   1844 	 */
   1845 	u_cacheable = 0;
   1846 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1847 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1848 			u_cacheable++;
   1849 	}
   1850 
   1851 	u_entries = md->urw_mappings + md->uro_mappings;
   1852 
   1853 	/*
   1854 	 * We know we have just been updating a kernel entry, so if
   1855 	 * all user pages are already cacheable, then there is nothing
   1856 	 * further to do.
   1857 	 */
   1858 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1859 		return;
   1860 
   1861 	if (u_entries) {
   1862 		/*
   1863 		 * Scan over the list again, for each entry, if it
   1864 		 * might not be set correctly, call pmap_vac_me_user
   1865 		 * to recalculate the settings.
   1866 		 */
   1867 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1868 			/*
   1869 			 * We know kernel mappings will get set
   1870 			 * correctly in other calls.  We also know
   1871 			 * that if the pmap is the same as last_pmap
   1872 			 * then we've just handled this entry.
   1873 			 */
   1874 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1875 				continue;
   1876 
   1877 			/*
   1878 			 * If there are kernel entries and this page
   1879 			 * is writable but non-cacheable, then we can
   1880 			 * skip this entry also.
   1881 			 */
   1882 			if (md->k_mappings &&
   1883 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1884 			    (PVF_NC | PVF_WRITE))
   1885 				continue;
   1886 
   1887 			/*
   1888 			 * Similarly if there are no kernel-writable
   1889 			 * entries and the page is already
   1890 			 * read-only/cacheable.
   1891 			 */
   1892 			if (md->krw_mappings == 0 &&
   1893 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1894 				continue;
   1895 
   1896 			/*
   1897 			 * For some of the remaining cases, we know
   1898 			 * that we must recalculate, but for others we
   1899 			 * can't tell if they are correct or not, so
   1900 			 * we recalculate anyway.
   1901 			 */
   1902 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1903 		}
   1904 
   1905 		if (md->k_mappings == 0)
   1906 			return;
   1907 	}
   1908 
   1909 	pmap_vac_me_user(md, pa, pm, va);
   1910 }
   1911 
   1912 static void
   1913 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1914 {
   1915 	pmap_t kpmap = pmap_kernel();
   1916 	struct pv_entry *pv, *npv = NULL;
   1917 	u_int entries = 0;
   1918 	u_int writable = 0;
   1919 	u_int cacheable_entries = 0;
   1920 	u_int kern_cacheable = 0;
   1921 	u_int other_writable = 0;
   1922 
   1923 	/*
   1924 	 * Count mappings and writable mappings in this pmap.
   1925 	 * Include kernel mappings as part of our own.
   1926 	 * Keep a pointer to the first one.
   1927 	 */
   1928 	npv = NULL;
   1929 	KASSERT(pmap_page_locked_p(md));
   1930 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1931 		/* Count mappings in the same pmap */
   1932 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1933 			if (entries++ == 0)
   1934 				npv = pv;
   1935 
   1936 			/* Cacheable mappings */
   1937 			if ((pv->pv_flags & PVF_NC) == 0) {
   1938 				cacheable_entries++;
   1939 				if (kpmap == pv->pv_pmap)
   1940 					kern_cacheable++;
   1941 			}
   1942 
   1943 			/* Writable mappings */
   1944 			if (pv->pv_flags & PVF_WRITE)
   1945 				++writable;
   1946 		} else
   1947 		if (pv->pv_flags & PVF_WRITE)
   1948 			other_writable = 1;
   1949 	}
   1950 
   1951 	/*
   1952 	 * Enable or disable caching as necessary.
   1953 	 * Note: the first entry might be part of the kernel pmap,
   1954 	 * so we can't assume this is indicative of the state of the
   1955 	 * other (maybe non-kpmap) entries.
   1956 	 */
   1957 	if ((entries > 1 && writable) ||
   1958 	    (entries > 0 && pm == kpmap && other_writable)) {
   1959 		if (cacheable_entries == 0) {
   1960 			return;
   1961 		}
   1962 
   1963 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1964 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1965 			    (pv->pv_flags & PVF_NC))
   1966 				continue;
   1967 
   1968 			pv->pv_flags |= PVF_NC;
   1969 
   1970 			struct l2_bucket * const l2b
   1971 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1972 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1973 			pt_entry_t * const ptep
   1974 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1975 			const pt_entry_t opte = *ptep;
   1976 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1977 
   1978 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1979 			    && l2pte_valid_p(npte)) {
   1980 #ifdef PMAP_CACHE_VIVT
   1981 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1982 				    true, pv->pv_flags);
   1983 #endif
   1984 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1985 				    pv->pv_flags);
   1986 			}
   1987 
   1988 			l2pte_set(ptep, npte, opte);
   1989 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1990 		}
   1991 		cpu_cpwait();
   1992 	} else
   1993 	if (entries > cacheable_entries) {
   1994 		/*
   1995 		 * Turn cacheing back on for some pages.  If it is a kernel
   1996 		 * page, only do so if there are no other writable pages.
   1997 		 */
   1998 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1999 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   2000 			    (kpmap != pv->pv_pmap || other_writable)))
   2001 				continue;
   2002 
   2003 			pv->pv_flags &= ~PVF_NC;
   2004 
   2005 			struct l2_bucket * const l2b
   2006 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2007 			KASSERTMSG(l2b != NULL, "%#lx", va);
   2008 			pt_entry_t * const ptep
   2009 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2010 			const pt_entry_t opte = *ptep;
   2011 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   2012 			    | pte_l2_s_cache_mode;
   2013 
   2014 			if (l2pte_valid_p(opte)) {
   2015 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2016 				    pv->pv_flags);
   2017 			}
   2018 
   2019 			l2pte_set(ptep, npte, opte);
   2020 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2021 		}
   2022 	}
   2023 }
   2024 #endif
   2025 
   2026 #ifdef PMAP_CACHE_VIPT
   2027 static void
   2028 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2029 {
   2030 #ifndef ARM_MMU_EXTENDED
   2031 	struct pv_entry *pv;
   2032 	vaddr_t tst_mask;
   2033 	bool bad_alias;
   2034 	const u_int
   2035 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2036 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2037 
   2038 	/* do we need to do anything? */
   2039 	if (arm_cache_prefer_mask == 0)
   2040 		return;
   2041 
   2042 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   2043 	    md, pm, va));
   2044 
   2045 	KASSERT(!va || pm);
   2046 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2047 
   2048 	/* Already a conflict? */
   2049 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2050 		/* just an add, things are already non-cached */
   2051 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2052 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2053 		bad_alias = false;
   2054 		if (va) {
   2055 			PMAPCOUNT(vac_color_none);
   2056 			bad_alias = true;
   2057 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2058 			goto fixup;
   2059 		}
   2060 		pv = SLIST_FIRST(&md->pvh_list);
   2061 		/* the list can't be empty because it would be cachable */
   2062 		if (md->pvh_attrs & PVF_KMPAGE) {
   2063 			tst_mask = md->pvh_attrs;
   2064 		} else {
   2065 			KASSERT(pv);
   2066 			tst_mask = pv->pv_va;
   2067 			pv = SLIST_NEXT(pv, pv_link);
   2068 		}
   2069 		/*
   2070 		 * Only check for a bad alias if we have writable mappings.
   2071 		 */
   2072 		tst_mask &= arm_cache_prefer_mask;
   2073 		if (rw_mappings > 0) {
   2074 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2075 				/* if there's a bad alias, stop checking. */
   2076 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2077 					bad_alias = true;
   2078 			}
   2079 			md->pvh_attrs |= PVF_WRITE;
   2080 			if (!bad_alias)
   2081 				md->pvh_attrs |= PVF_DIRTY;
   2082 		} else {
   2083 			/*
   2084 			 * We have only read-only mappings.  Let's see if there
   2085 			 * are multiple colors in use or if we mapped a KMPAGE.
   2086 			 * If the latter, we have a bad alias.  If the former,
   2087 			 * we need to remember that.
   2088 			 */
   2089 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2090 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2091 					if (md->pvh_attrs & PVF_KMPAGE)
   2092 						bad_alias = true;
   2093 					break;
   2094 				}
   2095 			}
   2096 			md->pvh_attrs &= ~PVF_WRITE;
   2097 			/*
   2098 			 * No KMPAGE and we exited early, so we must have
   2099 			 * multiple color mappings.
   2100 			 */
   2101 			if (!bad_alias && pv != NULL)
   2102 				md->pvh_attrs |= PVF_MULTCLR;
   2103 		}
   2104 
   2105 		/* If no conflicting colors, set everything back to cached */
   2106 		if (!bad_alias) {
   2107 #ifdef DEBUG
   2108 			if ((md->pvh_attrs & PVF_WRITE)
   2109 			    || ro_mappings < 2) {
   2110 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2111 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2112 			}
   2113 #endif
   2114 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2115 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2116 			/*
   2117 			 * Restore DIRTY bit if page is modified
   2118 			 */
   2119 			if (md->pvh_attrs & PVF_DMOD)
   2120 				md->pvh_attrs |= PVF_DIRTY;
   2121 			PMAPCOUNT(vac_color_restore);
   2122 		} else {
   2123 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2124 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2125 		}
   2126 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2127 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2128 	} else if (!va) {
   2129 		KASSERT(pmap_is_page_colored_p(md));
   2130 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2131 		    || (md->pvh_attrs & PVF_DIRTY));
   2132 		if (rw_mappings == 0) {
   2133 			md->pvh_attrs &= ~PVF_WRITE;
   2134 			if (ro_mappings == 1
   2135 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2136 				/*
   2137 				 * If this is the last readonly mapping
   2138 				 * but it doesn't match the current color
   2139 				 * for the page, change the current color
   2140 				 * to match this last readonly mapping.
   2141 				 */
   2142 				pv = SLIST_FIRST(&md->pvh_list);
   2143 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2144 				    & arm_cache_prefer_mask;
   2145 				if (tst_mask) {
   2146 					md->pvh_attrs ^= tst_mask;
   2147 					PMAPCOUNT(vac_color_change);
   2148 				}
   2149 			}
   2150 		}
   2151 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2152 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2153 		return;
   2154 	} else if (!pmap_is_page_colored_p(md)) {
   2155 		/* not colored so we just use its color */
   2156 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2157 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2158 		PMAPCOUNT(vac_color_new);
   2159 		md->pvh_attrs &= PAGE_SIZE - 1;
   2160 		md->pvh_attrs |= PVF_COLORED
   2161 		    | (va & arm_cache_prefer_mask)
   2162 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2163 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2164 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2165 		return;
   2166 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2167 		bad_alias = false;
   2168 		if (rw_mappings > 0) {
   2169 			/*
   2170 			 * We now have writeable mappings and if we have
   2171 			 * readonly mappings in more than once color, we have
   2172 			 * an aliasing problem.  Regardless mark the page as
   2173 			 * writeable.
   2174 			 */
   2175 			if (md->pvh_attrs & PVF_MULTCLR) {
   2176 				if (ro_mappings < 2) {
   2177 					/*
   2178 					 * If we only have less than two
   2179 					 * read-only mappings, just flush the
   2180 					 * non-primary colors from the cache.
   2181 					 */
   2182 					pmap_flush_page(md, pa,
   2183 					    PMAP_FLUSH_SECONDARY);
   2184 				} else {
   2185 					bad_alias = true;
   2186 				}
   2187 			}
   2188 			md->pvh_attrs |= PVF_WRITE;
   2189 		}
   2190 		/* If no conflicting colors, set everything back to cached */
   2191 		if (!bad_alias) {
   2192 #ifdef DEBUG
   2193 			if (rw_mappings > 0
   2194 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2195 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2196 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2197 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2198 			}
   2199 #endif
   2200 			if (SLIST_EMPTY(&md->pvh_list))
   2201 				PMAPCOUNT(vac_color_reuse);
   2202 			else
   2203 				PMAPCOUNT(vac_color_ok);
   2204 
   2205 			/* matching color, just return */
   2206 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2207 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2208 			return;
   2209 		}
   2210 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2211 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2212 
   2213 		/* color conflict.  evict from cache. */
   2214 
   2215 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2216 		md->pvh_attrs &= ~PVF_COLORED;
   2217 		md->pvh_attrs |= PVF_NC;
   2218 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2219 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2220 		PMAPCOUNT(vac_color_erase);
   2221 	} else if (rw_mappings == 0
   2222 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2223 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2224 
   2225 		/*
   2226 		 * If the page has dirty cache lines, clean it.
   2227 		 */
   2228 		if (md->pvh_attrs & PVF_DIRTY)
   2229 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2230 
   2231 		/*
   2232 		 * If this is the first remapping (we know that there are no
   2233 		 * writeable mappings), then this is a simple color change.
   2234 		 * Otherwise this is a seconary r/o mapping, which means
   2235 		 * we don't have to do anything.
   2236 		 */
   2237 		if (ro_mappings == 1) {
   2238 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2239 			md->pvh_attrs &= PAGE_SIZE - 1;
   2240 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2241 			PMAPCOUNT(vac_color_change);
   2242 		} else {
   2243 			PMAPCOUNT(vac_color_blind);
   2244 		}
   2245 		md->pvh_attrs |= PVF_MULTCLR;
   2246 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2247 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2248 		return;
   2249 	} else {
   2250 		if (rw_mappings > 0)
   2251 			md->pvh_attrs |= PVF_WRITE;
   2252 
   2253 		/* color conflict.  evict from cache. */
   2254 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2255 
   2256 		/* the list can't be empty because this was a enter/modify */
   2257 		pv = SLIST_FIRST(&md->pvh_list);
   2258 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2259 			KASSERT(pv);
   2260 			/*
   2261 			 * If there's only one mapped page, change color to the
   2262 			 * page's new color and return.  Restore the DIRTY bit
   2263 			 * that was erased by pmap_flush_page.
   2264 			 */
   2265 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2266 				md->pvh_attrs &= PAGE_SIZE - 1;
   2267 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2268 				if (md->pvh_attrs & PVF_DMOD)
   2269 					md->pvh_attrs |= PVF_DIRTY;
   2270 				PMAPCOUNT(vac_color_change);
   2271 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2272 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2273 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2274 				return;
   2275 			}
   2276 		}
   2277 		bad_alias = true;
   2278 		md->pvh_attrs &= ~PVF_COLORED;
   2279 		md->pvh_attrs |= PVF_NC;
   2280 		PMAPCOUNT(vac_color_erase);
   2281 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2282 	}
   2283 
   2284   fixup:
   2285 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2286 
   2287 	/*
   2288 	 * Turn cacheing on/off for all pages.
   2289 	 */
   2290 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2291 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2292 		    pv->pv_va);
   2293 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2294 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2295 		const pt_entry_t opte = *ptep;
   2296 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2297 		if (bad_alias) {
   2298 			pv->pv_flags |= PVF_NC;
   2299 		} else {
   2300 			pv->pv_flags &= ~PVF_NC;
   2301 			npte |= pte_l2_s_cache_mode;
   2302 		}
   2303 
   2304 		if (opte == npte)	/* only update is there's a change */
   2305 			continue;
   2306 
   2307 		if (l2pte_valid_p(npte)) {
   2308 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2309 		}
   2310 
   2311 		l2pte_set(ptep, npte, opte);
   2312 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2313 	}
   2314 #endif /* !ARM_MMU_EXTENDED */
   2315 }
   2316 #endif	/* PMAP_CACHE_VIPT */
   2317 
   2318 
   2319 /*
   2320  * Modify pte bits for all ptes corresponding to the given physical address.
   2321  * We use `maskbits' rather than `clearbits' because we're always passing
   2322  * constants and the latter would require an extra inversion at run-time.
   2323  */
   2324 static void
   2325 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2326 {
   2327 	struct pv_entry *pv;
   2328 #ifdef PMAP_CACHE_VIPT
   2329 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2330 #ifdef ARM_MMU_EXTENDED
   2331 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
   2332 #else
   2333 	const u_int execbits = 0;
   2334 	bool need_vac_me_harder = false;
   2335 	bool need_syncicache = false;
   2336 #endif
   2337 #else
   2338 	const u_int execbits = 0;
   2339 #endif
   2340 
   2341 	NPDEBUG(PDB_BITS,
   2342 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2343 	    md, maskbits));
   2344 
   2345 #ifdef PMAP_CACHE_VIPT
   2346 	/*
   2347 	 * If we might want to sync the I-cache and we've modified it,
   2348 	 * then we know we definitely need to sync or discard it.
   2349 	 */
   2350 	if (want_syncicache) {
   2351 #ifdef ARM_MMU_EXTENDED
   2352 		if (md->pvh_attrs & PVF_MOD)
   2353 			md->pvh_attrs &= ~PVF_EXEC;
   2354 #else
   2355 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2356 #endif
   2357 	}
   2358 #endif
   2359 	KASSERT(pmap_page_locked_p(md));
   2360 
   2361 	/*
   2362 	 * Clear saved attributes (modify, reference)
   2363 	 */
   2364 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2365 
   2366 	if (SLIST_EMPTY(&md->pvh_list)) {
   2367 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2368 		if (need_syncicache) {
   2369 			/*
   2370 			 * No one has it mapped, so just discard it.  The next
   2371 			 * exec remapping will cause it to be synced.
   2372 			 */
   2373 			md->pvh_attrs &= ~PVF_EXEC;
   2374 			PMAPCOUNT(exec_discarded_clearbit);
   2375 		}
   2376 #endif
   2377 		return;
   2378 	}
   2379 
   2380 	/*
   2381 	 * Loop over all current mappings setting/clearing as appropos
   2382 	 */
   2383 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2384 		pmap_t pm = pv->pv_pmap;
   2385 		const vaddr_t va = pv->pv_va;
   2386 		const u_int oflags = pv->pv_flags;
   2387 #ifndef ARM_MMU_EXTENDED
   2388 		/*
   2389 		 * Kernel entries are unmanaged and as such not to be changed.
   2390 		 */
   2391 		if (PV_IS_KENTRY_P(oflags))
   2392 			continue;
   2393 #endif
   2394 		pv->pv_flags &= ~maskbits;
   2395 
   2396 		pmap_release_page_lock(md);
   2397 		pmap_acquire_pmap_lock(pm);
   2398 
   2399 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2400 		if (l2b == NULL) {
   2401 			pmap_release_pmap_lock(pm);
   2402 			pmap_acquire_page_lock(md);
   2403 			continue;
   2404 		}
   2405 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2406 
   2407 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2408 		const pt_entry_t opte = *ptep;
   2409 		pt_entry_t npte = opte | execbits;
   2410 
   2411 #ifdef ARM_MMU_EXTENDED
   2412 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2413 #endif
   2414 
   2415 		NPDEBUG(PDB_BITS,
   2416 		    printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2417 			__func__, pv, pm, va, oflags));
   2418 
   2419 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2420 #ifdef PMAP_CACHE_VIVT
   2421 			if ((oflags & PVF_NC)) {
   2422 				/*
   2423 				 * Entry is not cacheable:
   2424 				 *
   2425 				 * Don't turn caching on again if this is a
   2426 				 * modified emulation. This would be
   2427 				 * inconsitent with the settings created by
   2428 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2429 				 * to re-enable cacheing.
   2430 				 *
   2431 				 * There's no need to call pmap_vac_me_harder()
   2432 				 * here: all pages are losing their write
   2433 				 * permission.
   2434 				 */
   2435 				if (maskbits & PVF_WRITE) {
   2436 					npte |= pte_l2_s_cache_mode;
   2437 					pv->pv_flags &= ~PVF_NC;
   2438 				}
   2439 			} else
   2440 			if (l2pte_writable_p(opte)) {
   2441 				/*
   2442 				 * Entry is writable/cacheable: check if pmap
   2443 				 * is current if it is flush it, otherwise it
   2444 				 * won't be in the cache
   2445 				 */
   2446 				pmap_cache_wbinv_page(pm, va,
   2447 				    (maskbits & PVF_REF) != 0,
   2448 				    oflags|PVF_WRITE);
   2449 			}
   2450 #endif
   2451 
   2452 			/* make the pte read only */
   2453 			npte = l2pte_set_readonly(npte);
   2454 
   2455 			pmap_acquire_page_lock(md);
   2456 #ifdef MULTIPROCESSOR
   2457 			pv = pmap_find_pv(md, pm, va);
   2458 #endif
   2459 			if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
   2460 				/*
   2461 				 * Keep alias accounting up to date
   2462 				 */
   2463 				if (pm == pmap_kernel()) {
   2464 					md->krw_mappings--;
   2465 					md->kro_mappings++;
   2466 				} else {
   2467 					md->urw_mappings--;
   2468 					md->uro_mappings++;
   2469 				}
   2470 #ifdef PMAP_CACHE_VIPT
   2471 				if (arm_cache_prefer_mask != 0) {
   2472 					if (md->urw_mappings + md->krw_mappings == 0) {
   2473 						md->pvh_attrs &= ~PVF_WRITE;
   2474 					} else {
   2475 						PMAP_VALIDATE_MD_PAGE(md);
   2476 					}
   2477 				}
   2478 #ifndef ARM_MMU_EXTENDED
   2479 				if (want_syncicache)
   2480 					need_syncicache = true;
   2481 				need_vac_me_harder = true;
   2482 #endif
   2483 #endif /* PMAP_CACHE_VIPT */
   2484 			}
   2485 			pmap_release_page_lock(md);
   2486 		}
   2487 
   2488 		if (maskbits & PVF_REF) {
   2489 			if (true
   2490 #ifndef ARM_MMU_EXTENDED
   2491 			    && (oflags & PVF_NC) == 0
   2492 #endif
   2493 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2494 			    && l2pte_valid_p(npte)) {
   2495 #ifdef PMAP_CACHE_VIVT
   2496 				/*
   2497 				 * Check npte here; we may have already
   2498 				 * done the wbinv above, and the validity
   2499 				 * of the PTE is the same for opte and
   2500 				 * npte.
   2501 				 */
   2502 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2503 #endif
   2504 			}
   2505 
   2506 			/*
   2507 			 * Make the PTE invalid so that we will take a
   2508 			 * page fault the next time the mapping is
   2509 			 * referenced.
   2510 			 */
   2511 			npte &= ~L2_TYPE_MASK;
   2512 			npte |= L2_TYPE_INV;
   2513 		}
   2514 
   2515 		if (npte != opte) {
   2516 			l2pte_reset(ptep);
   2517 			PTE_SYNC(ptep);
   2518 
   2519 			/* Flush the TLB entry if a current pmap. */
   2520 			pmap_tlb_flush_SE(pm, va, oflags);
   2521 
   2522 			l2pte_set(ptep, npte, 0);
   2523 			PTE_SYNC(ptep);
   2524 		}
   2525 
   2526 		pmap_release_pmap_lock(pm);
   2527 		pmap_acquire_page_lock(md);
   2528 
   2529 		NPDEBUG(PDB_BITS,
   2530 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2531 		    pm, va, opte, npte));
   2532 	}
   2533 
   2534 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2535 	/*
   2536 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2537 	 */
   2538 	if (need_syncicache) {
   2539 		pmap_release_page_lock(md);
   2540 		pmap_syncicache_page(md, pa);
   2541 		pmap_acquire_page_lock(md);
   2542 		PMAPCOUNT(exec_synced_clearbit);
   2543 	}
   2544 
   2545 	/*
   2546 	 * If we are changing this to read-only, we need to call vac_me_harder
   2547 	 * so we can change all the read-only pages to cacheable.  We pretend
   2548 	 * this as a page deletion.
   2549 	 */
   2550 	if (need_vac_me_harder) {
   2551 		if (md->pvh_attrs & PVF_NC)
   2552 			pmap_vac_me_harder(md, pa, NULL, 0);
   2553 	}
   2554 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   2555 }
   2556 
   2557 /*
   2558  * pmap_clean_page()
   2559  *
   2560  * This is a local function used to work out the best strategy to clean
   2561  * a single page referenced by its entry in the PV table. It's used by
   2562  * pmap_copy_page, pmap_zero_page and maybe some others later on.
   2563  *
   2564  * Its policy is effectively:
   2565  *  o If there are no mappings, we don't bother doing anything with the cache.
   2566  *  o If there is one mapping, we clean just that page.
   2567  *  o If there are multiple mappings, we clean the entire cache.
   2568  *
   2569  * So that some functions can be further optimised, it returns 0 if it didn't
   2570  * clean the entire cache, or 1 if it did.
   2571  *
   2572  * XXX One bug in this routine is that if the pv_entry has a single page
   2573  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2574  * just the 1 page. Since this should not occur in everyday use and if it does
   2575  * it will just result in not the most efficient clean for the page.
   2576  */
   2577 #ifdef PMAP_CACHE_VIVT
   2578 static bool
   2579 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2580 {
   2581 	struct pv_entry *pv;
   2582 	pmap_t pm_to_clean = NULL;
   2583 	bool cache_needs_cleaning = false;
   2584 	vaddr_t page_to_clean = 0;
   2585 	u_int flags = 0;
   2586 
   2587 	/*
   2588 	 * Since we flush the cache each time we change to a different
   2589 	 * user vmspace, we only need to flush the page if it is in the
   2590 	 * current pmap.
   2591 	 */
   2592 	KASSERT(pmap_page_locked_p(md));
   2593 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2594 		if (pmap_is_current(pv->pv_pmap)) {
   2595 			flags |= pv->pv_flags;
   2596 			/*
   2597 			 * The page is mapped non-cacheable in
   2598 			 * this map.  No need to flush the cache.
   2599 			 */
   2600 			if (pv->pv_flags & PVF_NC) {
   2601 #ifdef DIAGNOSTIC
   2602 				KASSERT(!cache_needs_cleaning);
   2603 #endif
   2604 				break;
   2605 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2606 				continue;
   2607 			if (cache_needs_cleaning) {
   2608 				page_to_clean = 0;
   2609 				break;
   2610 			} else {
   2611 				page_to_clean = pv->pv_va;
   2612 				pm_to_clean = pv->pv_pmap;
   2613 			}
   2614 			cache_needs_cleaning = true;
   2615 		}
   2616 	}
   2617 
   2618 	if (page_to_clean) {
   2619 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2620 		    !is_src, flags | PVF_REF);
   2621 	} else if (cache_needs_cleaning) {
   2622 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2623 
   2624 		pmap_cache_wbinv_all(pm, flags);
   2625 		return true;
   2626 	}
   2627 	return false;
   2628 }
   2629 #endif
   2630 
   2631 #ifdef PMAP_CACHE_VIPT
   2632 /*
   2633  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2634  * right cache alias to make sure we flush the right stuff.
   2635  */
   2636 void
   2637 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2638 {
   2639 	pmap_t kpm = pmap_kernel();
   2640 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2641 	    ? PAGE_SIZE
   2642 	    : arm_pcache.icache_way_size;
   2643 
   2644 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2645 	    md, md->pvh_attrs));
   2646 	/*
   2647 	 * No need to clean the page if it's non-cached.
   2648 	 */
   2649 #ifndef ARM_MMU_EXTENDED
   2650 	if (md->pvh_attrs & PVF_NC)
   2651 		return;
   2652 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2653 #endif
   2654 
   2655 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2656 	const vaddr_t dstp = cpu_cdstp(0);
   2657 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2658 	if (way_size <= PAGE_SIZE) {
   2659 		bool ok = false;
   2660 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2661 		if (ok) {
   2662 			cpu_icache_sync_range(vdstp, way_size);
   2663 			return;
   2664 		}
   2665 	}
   2666 #endif
   2667 
   2668 	/*
   2669 	 * We don't worry about the color of the exec page, we map the
   2670 	 * same page to pages in the way and then do the icache_sync on
   2671 	 * the entire way making sure we are cleaned.
   2672 	 */
   2673 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2674 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2675 
   2676 	for (size_t i = 0, j = 0; i < way_size;
   2677 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2678 		l2pte_reset(ptep + j);
   2679 		PTE_SYNC(ptep + j);
   2680 
   2681 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2682 		/*
   2683 		 * Set up a PTE with to flush these cache lines.
   2684 		 */
   2685 		l2pte_set(ptep + j, npte, 0);
   2686 	}
   2687 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2688 
   2689 	/*
   2690 	 * Flush it.
   2691 	 */
   2692 	cpu_icache_sync_range(dstp, way_size);
   2693 
   2694 	for (size_t i = 0, j = 0; i < way_size;
   2695 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2696 		/*
   2697 		 * Unmap the page(s).
   2698 		 */
   2699 		l2pte_reset(ptep + j);
   2700 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2701 	}
   2702 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2703 
   2704 	md->pvh_attrs |= PVF_EXEC;
   2705 	PMAPCOUNT(exec_synced);
   2706 }
   2707 
   2708 #ifndef ARM_MMU_EXTENDED
   2709 void
   2710 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2711 {
   2712 	vsize_t va_offset, end_va;
   2713 	bool wbinv_p;
   2714 
   2715 	if (arm_cache_prefer_mask == 0)
   2716 		return;
   2717 
   2718 	switch (flush) {
   2719 	case PMAP_FLUSH_PRIMARY:
   2720 		if (md->pvh_attrs & PVF_MULTCLR) {
   2721 			va_offset = 0;
   2722 			end_va = arm_cache_prefer_mask;
   2723 			md->pvh_attrs &= ~PVF_MULTCLR;
   2724 			PMAPCOUNT(vac_flush_lots);
   2725 		} else {
   2726 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2727 			end_va = va_offset;
   2728 			PMAPCOUNT(vac_flush_one);
   2729 		}
   2730 		/*
   2731 		 * Mark that the page is no longer dirty.
   2732 		 */
   2733 		md->pvh_attrs &= ~PVF_DIRTY;
   2734 		wbinv_p = true;
   2735 		break;
   2736 	case PMAP_FLUSH_SECONDARY:
   2737 		va_offset = 0;
   2738 		end_va = arm_cache_prefer_mask;
   2739 		wbinv_p = true;
   2740 		md->pvh_attrs &= ~PVF_MULTCLR;
   2741 		PMAPCOUNT(vac_flush_lots);
   2742 		break;
   2743 	case PMAP_CLEAN_PRIMARY:
   2744 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2745 		end_va = va_offset;
   2746 		wbinv_p = false;
   2747 		/*
   2748 		 * Mark that the page is no longer dirty.
   2749 		 */
   2750 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2751 			md->pvh_attrs &= ~PVF_DIRTY;
   2752 		PMAPCOUNT(vac_clean_one);
   2753 		break;
   2754 	default:
   2755 		return;
   2756 	}
   2757 
   2758 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2759 
   2760 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2761 	    md, md->pvh_attrs));
   2762 
   2763 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2764 
   2765 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2766 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2767 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2768 		const pt_entry_t opte = *ptep;
   2769 
   2770 		if (flush == PMAP_FLUSH_SECONDARY
   2771 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2772 			continue;
   2773 
   2774 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2775 		/*
   2776 		 * Set up a PTE with the right coloring to flush
   2777 		 * existing cache entries.
   2778 		 */
   2779 		const pt_entry_t npte = L2_S_PROTO
   2780 		    | pa
   2781 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2782 		    | pte_l2_s_cache_mode;
   2783 		l2pte_set(ptep, npte, opte);
   2784 		PTE_SYNC(ptep);
   2785 
   2786 		/*
   2787 		 * Flush it.  Make sure to flush secondary cache too since
   2788 		 * bus_dma will ignore uncached pages.
   2789 		 */
   2790 		if (scache_line_size != 0) {
   2791 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2792 			if (wbinv_p) {
   2793 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2794 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2795 			} else {
   2796 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2797 			}
   2798 		} else {
   2799 			if (wbinv_p) {
   2800 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2801 			} else {
   2802 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2803 			}
   2804 		}
   2805 
   2806 		/*
   2807 		 * Restore the page table entry since we might have interrupted
   2808 		 * pmap_zero_page or pmap_copy_page which was already using
   2809 		 * this pte.
   2810 		 */
   2811 		if (opte) {
   2812 			l2pte_set(ptep, opte, npte);
   2813 		} else {
   2814 			l2pte_reset(ptep);
   2815 		}
   2816 		PTE_SYNC(ptep);
   2817 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2818 	}
   2819 }
   2820 #endif /* ARM_MMU_EXTENDED */
   2821 #endif /* PMAP_CACHE_VIPT */
   2822 
   2823 /*
   2824  * Routine:	pmap_page_remove
   2825  * Function:
   2826  *		Removes this physical page from
   2827  *		all physical maps in which it resides.
   2828  *		Reflects back modify bits to the pager.
   2829  */
   2830 static void
   2831 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2832 {
   2833 	struct l2_bucket *l2b;
   2834 	struct pv_entry *pv;
   2835 	pt_entry_t *ptep;
   2836 #ifndef ARM_MMU_EXTENDED
   2837 	bool flush = false;
   2838 #endif
   2839 	u_int flags = 0;
   2840 
   2841 	NPDEBUG(PDB_FOLLOW,
   2842 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2843 	    pa));
   2844 
   2845 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2846 	pmap_acquire_page_lock(md);
   2847 	if (*pvp == NULL) {
   2848 #ifdef PMAP_CACHE_VIPT
   2849 		/*
   2850 		 * We *know* the page contents are about to be replaced.
   2851 		 * Discard the exec contents
   2852 		 */
   2853 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2854 			PMAPCOUNT(exec_discarded_page_protect);
   2855 		md->pvh_attrs &= ~PVF_EXEC;
   2856 		PMAP_VALIDATE_MD_PAGE(md);
   2857 #endif
   2858 		pmap_release_page_lock(md);
   2859 		return;
   2860 	}
   2861 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2862 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2863 #endif
   2864 
   2865 	/*
   2866 	 * Clear alias counts
   2867 	 */
   2868 #ifdef PMAP_CACHE_VIVT
   2869 	md->k_mappings = 0;
   2870 #endif
   2871 	md->urw_mappings = md->uro_mappings = 0;
   2872 
   2873 #ifdef PMAP_CACHE_VIVT
   2874 	pmap_clean_page(md, false);
   2875 #endif
   2876 
   2877 	while ((pv = *pvp) != NULL) {
   2878 		pmap_t pm = pv->pv_pmap;
   2879 #ifndef ARM_MMU_EXTENDED
   2880 		if (flush == false && pmap_is_current(pm))
   2881 			flush = true;
   2882 #endif
   2883 
   2884 		if (pm == pmap_kernel()) {
   2885 #ifdef PMAP_CACHE_VIPT
   2886 			/*
   2887 			 * If this was unmanaged mapping, it must be preserved.
   2888 			 * Move it back on the list and advance the end-of-list
   2889 			 * pointer.
   2890 			 */
   2891 			if (PV_IS_KENTRY_P(pv->pv_flags)) {
   2892 				*pvp = pv;
   2893 				pvp = &SLIST_NEXT(pv, pv_link);
   2894 				continue;
   2895 			}
   2896 			if (pv->pv_flags & PVF_WRITE)
   2897 				md->krw_mappings--;
   2898 			else
   2899 				md->kro_mappings--;
   2900 #endif
   2901 			PMAPCOUNT(kernel_unmappings);
   2902 		}
   2903 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2904 		PMAPCOUNT(unmappings);
   2905 
   2906 		pmap_release_page_lock(md);
   2907 		pmap_acquire_pmap_lock(pm);
   2908 
   2909 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2910 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2911 
   2912 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2913 
   2914 		/*
   2915 		 * Update statistics
   2916 		 */
   2917 		--pm->pm_stats.resident_count;
   2918 
   2919 		/* Wired bit */
   2920 		if (pv->pv_flags & PVF_WIRED)
   2921 			--pm->pm_stats.wired_count;
   2922 
   2923 		flags |= pv->pv_flags;
   2924 
   2925 		/*
   2926 		 * Invalidate the PTEs.
   2927 		 */
   2928 		l2pte_reset(ptep);
   2929 		PTE_SYNC_CURRENT(pm, ptep);
   2930 
   2931 #ifdef ARM_MMU_EXTENDED
   2932 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2933 #endif
   2934 
   2935 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2936 
   2937 		pmap_release_pmap_lock(pm);
   2938 
   2939 		pool_put(&pmap_pv_pool, pv);
   2940 		pmap_acquire_page_lock(md);
   2941 #ifdef MULTIPROCESSOR
   2942 		/*
   2943 		 * Restart of the beginning of the list.
   2944 		 */
   2945 		pvp = &SLIST_FIRST(&md->pvh_list);
   2946 #endif
   2947 	}
   2948 	/*
   2949 	 * if we reach the end of the list and there are still mappings, they
   2950 	 * might be able to be cached now.  And they must be kernel mappings.
   2951 	 */
   2952 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2953 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2954 	}
   2955 
   2956 #ifdef PMAP_CACHE_VIPT
   2957 	/*
   2958 	 * Its EXEC cache is now gone.
   2959 	 */
   2960 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2961 		PMAPCOUNT(exec_discarded_page_protect);
   2962 	md->pvh_attrs &= ~PVF_EXEC;
   2963 	KASSERT(md->urw_mappings == 0);
   2964 	KASSERT(md->uro_mappings == 0);
   2965 #ifndef ARM_MMU_EXTENDED
   2966 	if (arm_cache_prefer_mask != 0) {
   2967 		if (md->krw_mappings == 0)
   2968 			md->pvh_attrs &= ~PVF_WRITE;
   2969 		PMAP_VALIDATE_MD_PAGE(md);
   2970 	}
   2971 #endif /* ARM_MMU_EXTENDED */
   2972 #endif /* PMAP_CACHE_VIPT */
   2973 	pmap_release_page_lock(md);
   2974 
   2975 #ifndef ARM_MMU_EXTENDED
   2976 	if (flush) {
   2977 		/*
   2978 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2979 		 * would need a subsequent call to pmap_update() to ensure
   2980 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2981 		 * required to do that (see pmap(9)), so we can't modify
   2982 		 * the current pmap's state.
   2983 		 */
   2984 		if (PV_BEEN_EXECD(flags))
   2985 			cpu_tlb_flushID();
   2986 		else
   2987 			cpu_tlb_flushD();
   2988 	}
   2989 	cpu_cpwait();
   2990 #endif /* ARM_MMU_EXTENDED */
   2991 }
   2992 
   2993 /*
   2994  * pmap_t pmap_create(void)
   2995  *
   2996  *      Create a new pmap structure from scratch.
   2997  */
   2998 pmap_t
   2999 pmap_create(void)
   3000 {
   3001 	pmap_t pm;
   3002 
   3003 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   3004 
   3005 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   3006 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   3007 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   3008 
   3009 	pm->pm_stats.wired_count = 0;
   3010 	pm->pm_stats.resident_count = 1;
   3011 #ifdef ARM_MMU_EXTENDED
   3012 #ifdef MULTIPROCESSOR
   3013 	kcpuset_create(&pm->pm_active, true);
   3014 	kcpuset_create(&pm->pm_onproc, true);
   3015 #endif
   3016 #else
   3017 	pm->pm_cstate.cs_all = 0;
   3018 #endif
   3019 	pmap_alloc_l1(pm);
   3020 
   3021 	/*
   3022 	 * Note: The pool cache ensures that the pm_l2[] array is already
   3023 	 * initialised to zero.
   3024 	 */
   3025 
   3026 	pmap_pinit(pm);
   3027 
   3028 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   3029 
   3030 	return (pm);
   3031 }
   3032 
   3033 u_int
   3034 arm32_mmap_flags(paddr_t pa)
   3035 {
   3036 	/*
   3037 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3038 	 * and we're using the upper bits in page numbers to pass flags around
   3039 	 * so we might as well use the same bits
   3040 	 */
   3041 	return (u_int)pa & PMAP_MD_MASK;
   3042 }
   3043 /*
   3044  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3045  *      u_int flags)
   3046  *
   3047  *      Insert the given physical page (p) at
   3048  *      the specified virtual address (v) in the
   3049  *      target physical map with the protection requested.
   3050  *
   3051  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3052  *      or lose information.  That is, this routine must actually
   3053  *      insert this page into the given map NOW.
   3054  */
   3055 int
   3056 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3057 {
   3058 	struct l2_bucket *l2b;
   3059 	struct vm_page *pg, *opg;
   3060 	u_int nflags;
   3061 	u_int oflags;
   3062 	const bool kpm_p = (pm == pmap_kernel());
   3063 #ifdef ARM_HAS_VBAR
   3064 	const bool vector_page_p = false;
   3065 #else
   3066 	const bool vector_page_p = (va == vector_page);
   3067 #endif
   3068 
   3069 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3070 
   3071 	UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
   3072 	    pm, va, pa, prot);
   3073 	UVMHIST_LOG(maphist, "  flag %#x", flags, 0, 0, 0);
   3074 
   3075 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3076 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3077 
   3078 	/*
   3079 	 * Get a pointer to the page.  Later on in this function, we
   3080 	 * test for a managed page by checking pg != NULL.
   3081 	 */
   3082 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3083 
   3084 	nflags = 0;
   3085 	if (prot & VM_PROT_WRITE)
   3086 		nflags |= PVF_WRITE;
   3087 	if (prot & VM_PROT_EXECUTE)
   3088 		nflags |= PVF_EXEC;
   3089 	if (flags & PMAP_WIRED)
   3090 		nflags |= PVF_WIRED;
   3091 
   3092 	pmap_acquire_pmap_lock(pm);
   3093 
   3094 	/*
   3095 	 * Fetch the L2 bucket which maps this page, allocating one if
   3096 	 * necessary for user pmaps.
   3097 	 */
   3098 	if (kpm_p) {
   3099 		l2b = pmap_get_l2_bucket(pm, va);
   3100 	} else {
   3101 		l2b = pmap_alloc_l2_bucket(pm, va);
   3102 	}
   3103 	if (l2b == NULL) {
   3104 		if (flags & PMAP_CANFAIL) {
   3105 			pmap_release_pmap_lock(pm);
   3106 			return (ENOMEM);
   3107 		}
   3108 		panic("pmap_enter: failed to allocate L2 bucket");
   3109 	}
   3110 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3111 	const pt_entry_t opte = *ptep;
   3112 	pt_entry_t npte = pa;
   3113 	oflags = 0;
   3114 
   3115 	if (opte) {
   3116 		/*
   3117 		 * There is already a mapping at this address.
   3118 		 * If the physical address is different, lookup the
   3119 		 * vm_page.
   3120 		 */
   3121 		if (l2pte_pa(opte) != pa)
   3122 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3123 		else
   3124 			opg = pg;
   3125 	} else
   3126 		opg = NULL;
   3127 
   3128 	if (pg) {
   3129 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3130 
   3131 		/*
   3132 		 * This is to be a managed mapping.
   3133 		 */
   3134 		pmap_acquire_page_lock(md);
   3135 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3136 			/*
   3137 			 * - The access type indicates that we don't need
   3138 			 *   to do referenced emulation.
   3139 			 * OR
   3140 			 * - The physical page has already been referenced
   3141 			 *   so no need to re-do referenced emulation here.
   3142 			 */
   3143 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3144 
   3145 			nflags |= PVF_REF;
   3146 
   3147 			if ((prot & VM_PROT_WRITE) != 0 &&
   3148 			    ((flags & VM_PROT_WRITE) != 0 ||
   3149 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3150 				/*
   3151 				 * This is a writable mapping, and the
   3152 				 * page's mod state indicates it has
   3153 				 * already been modified. Make it
   3154 				 * writable from the outset.
   3155 				 */
   3156 				npte = l2pte_set_writable(npte);
   3157 				nflags |= PVF_MOD;
   3158 			}
   3159 
   3160 #ifdef ARM_MMU_EXTENDED
   3161 			/*
   3162 			 * If the page has been cleaned, then the pvh_attrs
   3163 			 * will have PVF_EXEC set, so mark it execute so we
   3164 			 * don't get an access fault when trying to execute
   3165 			 * from it.
   3166 			 */
   3167 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3168 				npte &= ~L2_XS_XN;
   3169 			}
   3170 #endif
   3171 		} else {
   3172 			/*
   3173 			 * Need to do page referenced emulation.
   3174 			 */
   3175 			npte |= L2_TYPE_INV;
   3176 		}
   3177 
   3178 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3179 			npte |= pte_l2_s_wc_mode;
   3180 		} else
   3181 			npte |= pte_l2_s_cache_mode;
   3182 
   3183 		if (pg == opg) {
   3184 			/*
   3185 			 * We're changing the attrs of an existing mapping.
   3186 			 */
   3187 			oflags = pmap_modify_pv(md, pa, pm, va,
   3188 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3189 			    PVF_MOD | PVF_REF, nflags);
   3190 
   3191 #ifdef PMAP_CACHE_VIVT
   3192 			/*
   3193 			 * We may need to flush the cache if we're
   3194 			 * doing rw-ro...
   3195 			 */
   3196 			if (pm->pm_cstate.cs_cache_d &&
   3197 			    (oflags & PVF_NC) == 0 &&
   3198 			    l2pte_writable_p(opte) &&
   3199 			    (prot & VM_PROT_WRITE) == 0)
   3200 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3201 #endif
   3202 		} else {
   3203 			struct pv_entry *pv;
   3204 			/*
   3205 			 * New mapping, or changing the backing page
   3206 			 * of an existing mapping.
   3207 			 */
   3208 			if (opg) {
   3209 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3210 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3211 
   3212 				/*
   3213 				 * Replacing an existing mapping with a new one.
   3214 				 * It is part of our managed memory so we
   3215 				 * must remove it from the PV list
   3216 				 */
   3217 				pv = pmap_remove_pv(omd, opa, pm, va);
   3218 				pmap_vac_me_harder(omd, opa, pm, 0);
   3219 				oflags = pv->pv_flags;
   3220 
   3221 #ifdef PMAP_CACHE_VIVT
   3222 				/*
   3223 				 * If the old mapping was valid (ref/mod
   3224 				 * emulation creates 'invalid' mappings
   3225 				 * initially) then make sure to frob
   3226 				 * the cache.
   3227 				 */
   3228 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3229 					pmap_cache_wbinv_page(pm, va, true,
   3230 					    oflags);
   3231 				}
   3232 #endif
   3233 			} else {
   3234 				pmap_release_page_lock(md);
   3235 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3236 				if (pv == NULL) {
   3237 					pmap_release_pmap_lock(pm);
   3238 					if ((flags & PMAP_CANFAIL) == 0)
   3239 						panic("pmap_enter: "
   3240 						    "no pv entries");
   3241 
   3242 					pmap_free_l2_bucket(pm, l2b, 0);
   3243 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3244 					    0, 0, 0, 0);
   3245 					return (ENOMEM);
   3246 				}
   3247 				pmap_acquire_page_lock(md);
   3248 			}
   3249 
   3250 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3251 		}
   3252 		pmap_release_page_lock(md);
   3253 	} else {
   3254 		/*
   3255 		 * We're mapping an unmanaged page.
   3256 		 * These are always readable, and possibly writable, from
   3257 		 * the get go as we don't need to track ref/mod status.
   3258 		 */
   3259 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3260 		if (prot & VM_PROT_WRITE)
   3261 			npte = l2pte_set_writable(npte);
   3262 
   3263 		/*
   3264 		 * Make sure the vector table is mapped cacheable
   3265 		 */
   3266 		if ((vector_page_p && !kpm_p)
   3267 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3268 			npte |= pte_l2_s_cache_mode;
   3269 #ifdef ARM_MMU_EXTENDED
   3270 			npte &= ~L2_XS_XN;	/* and executable */
   3271 #endif
   3272 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3273 			npte |= pte_l2_s_wc_mode;
   3274 		}
   3275 		if (opg) {
   3276 			/*
   3277 			 * Looks like there's an existing 'managed' mapping
   3278 			 * at this address.
   3279 			 */
   3280 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3281 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3282 
   3283 			pmap_acquire_page_lock(omd);
   3284 			struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
   3285 			pmap_vac_me_harder(omd, opa, pm, 0);
   3286 			oflags = pv->pv_flags;
   3287 			pmap_release_page_lock(omd);
   3288 
   3289 #ifdef PMAP_CACHE_VIVT
   3290 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3291 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3292 			}
   3293 #endif
   3294 			pool_put(&pmap_pv_pool, pv);
   3295 		}
   3296 	}
   3297 
   3298 	/*
   3299 	 * Make sure userland mappings get the right permissions
   3300 	 */
   3301 	if (!vector_page_p && !kpm_p) {
   3302 		npte |= L2_S_PROT_U;
   3303 #ifdef ARM_MMU_EXTENDED
   3304 		npte |= L2_XS_nG;	/* user pages are not global */
   3305 #endif
   3306 	}
   3307 
   3308 	/*
   3309 	 * Keep the stats up to date
   3310 	 */
   3311 	if (opte == 0) {
   3312 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3313 		pm->pm_stats.resident_count++;
   3314 	}
   3315 
   3316 	UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
   3317 
   3318 #if defined(ARM_MMU_EXTENDED)
   3319 	/*
   3320 	 * If exec protection was requested but the page hasn't been synced,
   3321 	 * sync it now and allow execution from it.
   3322 	 */
   3323 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3324 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3325 		npte &= ~L2_XS_XN;
   3326 		pmap_syncicache_page(md, pa);
   3327 		PMAPCOUNT(exec_synced_map);
   3328 	}
   3329 #endif
   3330 	/*
   3331 	 * If this is just a wiring change, the two PTEs will be
   3332 	 * identical, so there's no need to update the page table.
   3333 	 */
   3334 	if (npte != opte) {
   3335 		l2pte_reset(ptep);
   3336 		PTE_SYNC(ptep);
   3337 		if (l2pte_valid_p(opte)) {
   3338 			pmap_tlb_flush_SE(pm, va, oflags);
   3339 		}
   3340 		l2pte_set(ptep, npte, 0);
   3341 		PTE_SYNC(ptep);
   3342 #ifndef ARM_MMU_EXTENDED
   3343 		bool is_cached = pmap_is_cached(pm);
   3344 		if (is_cached) {
   3345 			/*
   3346 			 * We only need to frob the cache/tlb if this pmap
   3347 			 * is current
   3348 			 */
   3349 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3350 				/*
   3351 				 * This mapping is likely to be accessed as
   3352 				 * soon as we return to userland. Fix up the
   3353 				 * L1 entry to avoid taking another
   3354 				 * page/domain fault.
   3355 				 */
   3356 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3357 				     + l1pte_index(va);
   3358 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3359 				    | L1_C_DOM(pmap_domain(pm));
   3360 				if (*pdep != pde) {
   3361 					l1pte_setone(pdep, pde);
   3362 					PDE_SYNC(pdep);
   3363 				}
   3364 			}
   3365 		}
   3366 #endif /* !ARM_MMU_EXTENDED */
   3367 
   3368 #ifndef ARM_MMU_EXTENDED
   3369 		UVMHIST_LOG(maphist, "  is_cached %d cs 0x%08x\n",
   3370 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3371 
   3372 		if (pg != NULL) {
   3373 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3374 
   3375 			pmap_acquire_page_lock(md);
   3376 			pmap_vac_me_harder(md, pa, pm, va);
   3377 			pmap_release_page_lock(md);
   3378 		}
   3379 #endif
   3380 	}
   3381 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3382 	if (pg) {
   3383 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3384 
   3385 		pmap_acquire_page_lock(md);
   3386 #ifndef ARM_MMU_EXTENDED
   3387 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3388 #endif
   3389 		PMAP_VALIDATE_MD_PAGE(md);
   3390 		pmap_release_page_lock(md);
   3391 	}
   3392 #endif
   3393 
   3394 	pmap_release_pmap_lock(pm);
   3395 
   3396 	return (0);
   3397 }
   3398 
   3399 /*
   3400  * pmap_remove()
   3401  *
   3402  * pmap_remove is responsible for nuking a number of mappings for a range
   3403  * of virtual address space in the current pmap. To do this efficiently
   3404  * is interesting, because in a number of cases a wide virtual address
   3405  * range may be supplied that contains few actual mappings. So, the
   3406  * optimisations are:
   3407  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3408  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3409  *     maybe do just a partial cache clean. This path of execution is
   3410  *     complicated by the fact that the cache must be flushed _before_
   3411  *     the PTE is nuked, being a VAC :-)
   3412  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3413  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3414  *     already flushed the cache.
   3415  *  4. Maybe later fast-case a single page, but I don't think this is
   3416  *     going to make _that_ much difference overall.
   3417  */
   3418 
   3419 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3420 
   3421 void
   3422 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3423 {
   3424 	vaddr_t next_bucket;
   3425 	u_int cleanlist_idx, total, cnt;
   3426 	struct {
   3427 		vaddr_t va;
   3428 		pt_entry_t *ptep;
   3429 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3430 	u_int mappings;
   3431 
   3432 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3433 	UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
   3434 
   3435 	/*
   3436 	 * we lock in the pmap => pv_head direction
   3437 	 */
   3438 	pmap_acquire_pmap_lock(pm);
   3439 
   3440 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3441 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3442 #ifndef ARM_MMU_EXTENDED
   3443 		if (pm->pm_cstate.cs_tlb == 0)
   3444 			pm->pm_remove_all = true;
   3445 #endif
   3446 	} else
   3447 		cleanlist_idx = 0;
   3448 
   3449 	total = 0;
   3450 
   3451 	while (sva < eva) {
   3452 		/*
   3453 		 * Do one L2 bucket's worth at a time.
   3454 		 */
   3455 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3456 		if (next_bucket > eva)
   3457 			next_bucket = eva;
   3458 
   3459 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3460 		if (l2b == NULL) {
   3461 			sva = next_bucket;
   3462 			continue;
   3463 		}
   3464 
   3465 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3466 
   3467 		for (mappings = 0;
   3468 		     sva < next_bucket;
   3469 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3470 			pt_entry_t opte = *ptep;
   3471 
   3472 			if (opte == 0) {
   3473 				/* Nothing here, move along */
   3474 				continue;
   3475 			}
   3476 
   3477 			u_int flags = PVF_REF;
   3478 			paddr_t pa = l2pte_pa(opte);
   3479 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3480 
   3481 			/*
   3482 			 * Update flags. In a number of circumstances,
   3483 			 * we could cluster a lot of these and do a
   3484 			 * number of sequential pages in one go.
   3485 			 */
   3486 			if (pg != NULL) {
   3487 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3488 				struct pv_entry *pv;
   3489 
   3490 				pmap_acquire_page_lock(md);
   3491 				pv = pmap_remove_pv(md, pa, pm, sva);
   3492 				pmap_vac_me_harder(md, pa, pm, 0);
   3493 				pmap_release_page_lock(md);
   3494 				if (pv != NULL) {
   3495 					if (pm->pm_remove_all == false) {
   3496 						flags = pv->pv_flags;
   3497 					}
   3498 					pool_put(&pmap_pv_pool, pv);
   3499 				}
   3500 			}
   3501 			mappings += PAGE_SIZE / L2_S_SIZE;
   3502 
   3503 			if (!l2pte_valid_p(opte)) {
   3504 				/*
   3505 				 * Ref/Mod emulation is still active for this
   3506 				 * mapping, therefore it is has not yet been
   3507 				 * accessed. No need to frob the cache/tlb.
   3508 				 */
   3509 				l2pte_reset(ptep);
   3510 				PTE_SYNC_CURRENT(pm, ptep);
   3511 				continue;
   3512 			}
   3513 
   3514 #ifdef ARM_MMU_EXTENDED
   3515 			if (pm == pmap_kernel()) {
   3516 				l2pte_reset(ptep);
   3517 				PTE_SYNC(ptep);
   3518  				pmap_tlb_flush_SE(pm, sva, flags);
   3519 				continue;
   3520 			}
   3521 #endif
   3522 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3523 				/* Add to the clean list. */
   3524 				cleanlist[cleanlist_idx].ptep = ptep;
   3525 				cleanlist[cleanlist_idx].va =
   3526 				    sva | (flags & PVF_EXEC);
   3527 				cleanlist_idx++;
   3528 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3529 				/* Nuke everything if needed. */
   3530 #ifdef PMAP_CACHE_VIVT
   3531 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3532 #endif
   3533 				/*
   3534 				 * Roll back the previous PTE list,
   3535 				 * and zero out the current PTE.
   3536 				 */
   3537 				for (cnt = 0;
   3538 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3539 					l2pte_reset(cleanlist[cnt].ptep);
   3540 					PTE_SYNC(cleanlist[cnt].ptep);
   3541 				}
   3542 				l2pte_reset(ptep);
   3543 				PTE_SYNC(ptep);
   3544 				cleanlist_idx++;
   3545 				pm->pm_remove_all = true;
   3546 			} else {
   3547 				l2pte_reset(ptep);
   3548 				PTE_SYNC(ptep);
   3549 				if (pm->pm_remove_all == false) {
   3550 					pmap_tlb_flush_SE(pm, sva, flags);
   3551 				}
   3552 			}
   3553 		}
   3554 
   3555 		/*
   3556 		 * Deal with any left overs
   3557 		 */
   3558 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3559 			total += cleanlist_idx;
   3560 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3561 				l2pte_reset(cleanlist[cnt].ptep);
   3562 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3563 #ifdef ARM_MMU_EXTENDED
   3564 				vaddr_t clva = cleanlist[cnt].va;
   3565 				pmap_tlb_flush_SE(pm, clva, PVF_REF);
   3566 #else
   3567 				vaddr_t va = cleanlist[cnt].va;
   3568 				if (pm->pm_cstate.cs_all != 0) {
   3569 					vaddr_t clva = va & ~PAGE_MASK;
   3570 					u_int flags = va & PVF_EXEC;
   3571 #ifdef PMAP_CACHE_VIVT
   3572 					pmap_cache_wbinv_page(pm, clva, true,
   3573 					    PVF_REF | PVF_WRITE | flags);
   3574 #endif
   3575 					pmap_tlb_flush_SE(pm, clva,
   3576 					    PVF_REF | flags);
   3577 				}
   3578 #endif /* ARM_MMU_EXTENDED */
   3579 			}
   3580 
   3581 			/*
   3582 			 * If it looks like we're removing a whole bunch
   3583 			 * of mappings, it's faster to just write-back
   3584 			 * the whole cache now and defer TLB flushes until
   3585 			 * pmap_update() is called.
   3586 			 */
   3587 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3588 				cleanlist_idx = 0;
   3589 			else {
   3590 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3591 #ifdef PMAP_CACHE_VIVT
   3592 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3593 #endif
   3594 				pm->pm_remove_all = true;
   3595 			}
   3596 		}
   3597 
   3598 
   3599 		pmap_free_l2_bucket(pm, l2b, mappings);
   3600 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3601 	}
   3602 
   3603 	pmap_release_pmap_lock(pm);
   3604 }
   3605 
   3606 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3607 static struct pv_entry *
   3608 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3609 {
   3610 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3611 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3612 	struct pv_entry *pv;
   3613 
   3614 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3615 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3616 	KASSERT(pmap_page_locked_p(md));
   3617 
   3618 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3619 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3620 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3621 
   3622 	/*
   3623 	 * If we are removing a writeable mapping to a cached exec page,
   3624 	 * if it's the last mapping then clear it execness other sync
   3625 	 * the page to the icache.
   3626 	 */
   3627 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3628 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3629 		if (SLIST_EMPTY(&md->pvh_list)) {
   3630 			md->pvh_attrs &= ~PVF_EXEC;
   3631 			PMAPCOUNT(exec_discarded_kremove);
   3632 		} else {
   3633 			pmap_syncicache_page(md, pa);
   3634 			PMAPCOUNT(exec_synced_kremove);
   3635 		}
   3636 	}
   3637 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3638 
   3639 	return pv;
   3640 }
   3641 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3642 
   3643 /*
   3644  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3645  *
   3646  * We assume there is already sufficient KVM space available
   3647  * to do this, as we can't allocate L2 descriptor tables/metadata
   3648  * from here.
   3649  */
   3650 void
   3651 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3652 {
   3653 #ifdef PMAP_CACHE_VIVT
   3654 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3655 #endif
   3656 #ifdef PMAP_CACHE_VIPT
   3657 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3658 	struct vm_page *opg;
   3659 #ifndef ARM_MMU_EXTENDED
   3660 	struct pv_entry *pv = NULL;
   3661 #endif
   3662 #endif
   3663 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3664 
   3665 	UVMHIST_FUNC(__func__);
   3666 
   3667 	if (pmap_initialized) {
   3668 		UVMHIST_CALLED(maphist);
   3669 		UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
   3670 		    va, pa, prot, flags);
   3671 	}
   3672 
   3673 	pmap_t kpm = pmap_kernel();
   3674 	pmap_acquire_pmap_lock(kpm);
   3675 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3676 	const size_t l1slot __diagused = l1pte_index(va);
   3677 	KASSERTMSG(l2b != NULL,
   3678 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3679 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3680 	    kpm->pm_l2[L2_IDX(l1slot)]
   3681 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3682 		: NULL,
   3683 	    kpm->pm_l2[L2_IDX(l1slot)]
   3684 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3685 		: NULL);
   3686 	KASSERT(l2b->l2b_kva != NULL);
   3687 
   3688 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3689 	const pt_entry_t opte = *ptep;
   3690 
   3691 	if (opte == 0) {
   3692 		PMAPCOUNT(kenter_mappings);
   3693 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3694 	} else {
   3695 		PMAPCOUNT(kenter_remappings);
   3696 #ifdef PMAP_CACHE_VIPT
   3697 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3698 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
   3699 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
   3700 #endif
   3701 		if (opg && arm_cache_prefer_mask != 0) {
   3702 			KASSERT(opg != pg);
   3703 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3704 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3705 #ifndef ARM_MMU_EXTENDED
   3706 			pmap_acquire_page_lock(omd);
   3707 			pv = pmap_kremove_pg(opg, va);
   3708 			pmap_release_page_lock(omd);
   3709 #endif
   3710 		}
   3711 #endif
   3712 		if (l2pte_valid_p(opte)) {
   3713 			l2pte_reset(ptep);
   3714 			PTE_SYNC(ptep);
   3715 #ifdef PMAP_CACHE_VIVT
   3716 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3717 #endif
   3718 			cpu_tlb_flushD_SE(va);
   3719 			cpu_cpwait();
   3720 		}
   3721 	}
   3722 	pmap_release_pmap_lock(kpm);
   3723 
   3724 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3725 	    | ((flags & PMAP_NOCACHE)
   3726 		? 0
   3727 		: ((flags & PMAP_PTE)
   3728 		    ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
   3729 #ifdef ARM_MMU_EXTENDED
   3730 	if (prot & VM_PROT_EXECUTE)
   3731 		npte &= ~L2_XS_XN;
   3732 #endif
   3733 	l2pte_set(ptep, npte, 0);
   3734 	PTE_SYNC(ptep);
   3735 
   3736 	if (pg) {
   3737 		if (flags & PMAP_KMPAGE) {
   3738 			KASSERT(md->urw_mappings == 0);
   3739 			KASSERT(md->uro_mappings == 0);
   3740 			KASSERT(md->krw_mappings == 0);
   3741 			KASSERT(md->kro_mappings == 0);
   3742 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3743 			KASSERT(pv == NULL);
   3744 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3745 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3746 			/* if there is a color conflict, evict from cache. */
   3747 			if (pmap_is_page_colored_p(md)
   3748 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3749 				PMAPCOUNT(vac_color_change);
   3750 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3751 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3752 				/*
   3753 				 * If this page has multiple colors, expunge
   3754 				 * them.
   3755 				 */
   3756 				PMAPCOUNT(vac_flush_lots2);
   3757 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3758 			}
   3759 			/*
   3760 			 * Since this is a KMPAGE, there can be no contention
   3761 			 * for this page so don't lock it.
   3762 			 */
   3763 			md->pvh_attrs &= PAGE_SIZE - 1;
   3764 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3765 			    | (va & arm_cache_prefer_mask);
   3766 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3767 			md->pvh_attrs |= PVF_KMPAGE;
   3768 #endif
   3769 			atomic_inc_32(&pmap_kmpages);
   3770 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3771 		} else if (arm_cache_prefer_mask != 0) {
   3772 			if (pv == NULL) {
   3773 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3774 				KASSERT(pv != NULL);
   3775 			}
   3776 			pmap_acquire_page_lock(md);
   3777 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3778 			    PVF_WIRED | PVF_KENTRY
   3779 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3780 			if ((prot & VM_PROT_WRITE)
   3781 			    && !(md->pvh_attrs & PVF_NC))
   3782 				md->pvh_attrs |= PVF_DIRTY;
   3783 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3784 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3785 			pmap_release_page_lock(md);
   3786 #endif
   3787 		}
   3788 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3789 	} else {
   3790 		if (pv != NULL)
   3791 			pool_put(&pmap_pv_pool, pv);
   3792 #endif
   3793 	}
   3794 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3795 	KASSERT(md == NULL || !pmap_page_locked_p(md));
   3796 #endif
   3797 	if (pmap_initialized) {
   3798 		UVMHIST_LOG(maphist, "  <-- done (ptep %p: %#x -> %#x)",
   3799 		    ptep, opte, npte, 0);
   3800 	}
   3801 
   3802 }
   3803 
   3804 void
   3805 pmap_kremove(vaddr_t va, vsize_t len)
   3806 {
   3807 #ifdef UVMHIST
   3808 	u_int total_mappings = 0;
   3809 #endif
   3810 
   3811 	PMAPCOUNT(kenter_unmappings);
   3812 
   3813 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3814 
   3815 	UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
   3816 
   3817 	const vaddr_t eva = va + len;
   3818 
   3819 	pmap_acquire_pmap_lock(pmap_kernel());
   3820 
   3821 	while (va < eva) {
   3822 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3823 		if (next_bucket > eva)
   3824 			next_bucket = eva;
   3825 
   3826 		pmap_t kpm = pmap_kernel();
   3827 		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3828 		KDASSERT(l2b != NULL);
   3829 
   3830 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3831 		pt_entry_t *ptep = sptep;
   3832 		u_int mappings = 0;
   3833 
   3834 		while (va < next_bucket) {
   3835 			const pt_entry_t opte = *ptep;
   3836 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3837 			if (opg != NULL) {
   3838 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3839 
   3840 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3841 					KASSERT(omd->urw_mappings == 0);
   3842 					KASSERT(omd->uro_mappings == 0);
   3843 					KASSERT(omd->krw_mappings == 0);
   3844 					KASSERT(omd->kro_mappings == 0);
   3845 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3846 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3847 					if (arm_cache_prefer_mask != 0) {
   3848 						omd->pvh_attrs &= ~PVF_WRITE;
   3849 					}
   3850 #endif
   3851 					atomic_dec_32(&pmap_kmpages);
   3852 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3853 				} else if (arm_cache_prefer_mask != 0) {
   3854 					pmap_acquire_page_lock(omd);
   3855 					pool_put(&pmap_pv_pool,
   3856 					    pmap_kremove_pg(opg, va));
   3857 					pmap_release_page_lock(omd);
   3858 #endif
   3859 				}
   3860 			}
   3861 			if (l2pte_valid_p(opte)) {
   3862 				l2pte_reset(ptep);
   3863 				PTE_SYNC(ptep);
   3864 #ifdef PMAP_CACHE_VIVT
   3865 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3866 #endif
   3867 				cpu_tlb_flushD_SE(va);
   3868 
   3869 				mappings += PAGE_SIZE / L2_S_SIZE;
   3870 			}
   3871 			va += PAGE_SIZE;
   3872 			ptep += PAGE_SIZE / L2_S_SIZE;
   3873 		}
   3874 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3875 		    mappings, l2b->l2b_occupancy);
   3876 		l2b->l2b_occupancy -= mappings;
   3877 		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3878 #ifdef UVMHIST
   3879 		total_mappings += mappings;
   3880 #endif
   3881 	}
   3882 	pmap_release_pmap_lock(pmap_kernel());
   3883 	cpu_cpwait();
   3884 	UVMHIST_LOG(maphist, "  <--- done (%u mappings removed)",
   3885 	    total_mappings, 0, 0, 0);
   3886 }
   3887 
   3888 bool
   3889 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3890 {
   3891 	struct l2_dtable *l2;
   3892 	pd_entry_t *pdep, pde;
   3893 	pt_entry_t *ptep, pte;
   3894 	paddr_t pa;
   3895 	u_int l1slot;
   3896 
   3897 	pmap_acquire_pmap_lock(pm);
   3898 
   3899 	l1slot = l1pte_index(va);
   3900 	pdep = pmap_l1_kva(pm) + l1slot;
   3901 	pde = *pdep;
   3902 
   3903 	if (l1pte_section_p(pde)) {
   3904 		/*
   3905 		 * These should only happen for pmap_kernel()
   3906 		 */
   3907 		KDASSERT(pm == pmap_kernel());
   3908 		pmap_release_pmap_lock(pm);
   3909 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3910 		if (l1pte_supersection_p(pde)) {
   3911 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3912 		} else
   3913 #endif
   3914 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3915 	} else {
   3916 		/*
   3917 		 * Note that we can't rely on the validity of the L1
   3918 		 * descriptor as an indication that a mapping exists.
   3919 		 * We have to look it up in the L2 dtable.
   3920 		 */
   3921 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   3922 
   3923 		if (l2 == NULL ||
   3924 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   3925 			pmap_release_pmap_lock(pm);
   3926 			return false;
   3927 		}
   3928 
   3929 		pte = ptep[l2pte_index(va)];
   3930 		pmap_release_pmap_lock(pm);
   3931 
   3932 		if (pte == 0)
   3933 			return false;
   3934 
   3935 		switch (pte & L2_TYPE_MASK) {
   3936 		case L2_TYPE_L:
   3937 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3938 			break;
   3939 
   3940 		default:
   3941 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   3942 			break;
   3943 		}
   3944 	}
   3945 
   3946 	if (pap != NULL)
   3947 		*pap = pa;
   3948 
   3949 	return true;
   3950 }
   3951 
   3952 void
   3953 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3954 {
   3955 	struct l2_bucket *l2b;
   3956 	vaddr_t next_bucket;
   3957 
   3958 	NPDEBUG(PDB_PROTECT,
   3959 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3960 	    pm, sva, eva, prot));
   3961 
   3962 	if ((prot & VM_PROT_READ) == 0) {
   3963 		pmap_remove(pm, sva, eva);
   3964 		return;
   3965 	}
   3966 
   3967 	if (prot & VM_PROT_WRITE) {
   3968 		/*
   3969 		 * If this is a read->write transition, just ignore it and let
   3970 		 * uvm_fault() take care of it later.
   3971 		 */
   3972 		return;
   3973 	}
   3974 
   3975 	pmap_acquire_pmap_lock(pm);
   3976 
   3977 #ifndef ARM_MMU_EXTENDED
   3978 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   3979 	u_int flags = 0;
   3980 #endif
   3981 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3982 
   3983 	while (sva < eva) {
   3984 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3985 		if (next_bucket > eva)
   3986 			next_bucket = eva;
   3987 
   3988 		l2b = pmap_get_l2_bucket(pm, sva);
   3989 		if (l2b == NULL) {
   3990 			sva = next_bucket;
   3991 			continue;
   3992 		}
   3993 
   3994 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3995 
   3996 		while (sva < next_bucket) {
   3997 			const pt_entry_t opte = *ptep;
   3998 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   3999 				struct vm_page *pg;
   4000 #ifndef ARM_MMU_EXTENDED
   4001 				u_int f;
   4002 #endif
   4003 
   4004 #ifdef PMAP_CACHE_VIVT
   4005 				/*
   4006 				 * OK, at this point, we know we're doing
   4007 				 * write-protect operation.  If the pmap is
   4008 				 * active, write-back the page.
   4009 				 */
   4010 				pmap_cache_wbinv_page(pm, sva, false,
   4011 				    PVF_REF | PVF_WRITE);
   4012 #endif
   4013 
   4014 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   4015 				pt_entry_t npte = l2pte_set_readonly(opte);
   4016 				l2pte_reset(ptep);
   4017 				PTE_SYNC(ptep);
   4018 #ifdef ARM_MMU_EXTENDED
   4019 				pmap_tlb_flush_SE(pm, sva, PVF_REF);
   4020 #endif
   4021 				l2pte_set(ptep, npte, 0);
   4022 				PTE_SYNC(ptep);
   4023 
   4024 				if (pg != NULL) {
   4025 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4026 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4027 
   4028 					pmap_acquire_page_lock(md);
   4029 #ifndef ARM_MMU_EXTENDED
   4030 					f =
   4031 #endif
   4032 					    pmap_modify_pv(md, pa, pm, sva,
   4033 					       clr_mask, 0);
   4034 					pmap_vac_me_harder(md, pa, pm, sva);
   4035 					pmap_release_page_lock(md);
   4036 #ifndef ARM_MMU_EXTENDED
   4037 				} else {
   4038 					f = PVF_REF | PVF_EXEC;
   4039 				}
   4040 
   4041 				if (flush) {
   4042 					flags |= f;
   4043 				} else {
   4044 					pmap_tlb_flush_SE(pm, sva, f);
   4045 #endif
   4046 				}
   4047 			}
   4048 
   4049 			sva += PAGE_SIZE;
   4050 			ptep += PAGE_SIZE / L2_S_SIZE;
   4051 		}
   4052 	}
   4053 
   4054 #ifndef ARM_MMU_EXTENDED
   4055 	if (flush) {
   4056 		if (PV_BEEN_EXECD(flags)) {
   4057 			pmap_tlb_flushID(pm);
   4058 		} else if (PV_BEEN_REFD(flags)) {
   4059 			pmap_tlb_flushD(pm);
   4060 		}
   4061 	}
   4062 #endif
   4063 
   4064 	pmap_release_pmap_lock(pm);
   4065 }
   4066 
   4067 void
   4068 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4069 {
   4070 	struct l2_bucket *l2b;
   4071 	pt_entry_t *ptep;
   4072 	vaddr_t next_bucket;
   4073 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4074 
   4075 	NPDEBUG(PDB_EXEC,
   4076 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   4077 	    pm, sva, eva));
   4078 
   4079 	pmap_acquire_pmap_lock(pm);
   4080 
   4081 	while (sva < eva) {
   4082 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4083 		if (next_bucket > eva)
   4084 			next_bucket = eva;
   4085 
   4086 		l2b = pmap_get_l2_bucket(pm, sva);
   4087 		if (l2b == NULL) {
   4088 			sva = next_bucket;
   4089 			continue;
   4090 		}
   4091 
   4092 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4093 		     sva < next_bucket;
   4094 		     sva += page_size,
   4095 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4096 		     page_size = PAGE_SIZE) {
   4097 			if (l2pte_valid_p(*ptep)) {
   4098 				cpu_icache_sync_range(sva,
   4099 				    min(page_size, eva - sva));
   4100 			}
   4101 		}
   4102 	}
   4103 
   4104 	pmap_release_pmap_lock(pm);
   4105 }
   4106 
   4107 void
   4108 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4109 {
   4110 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4111 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4112 
   4113 	NPDEBUG(PDB_PROTECT,
   4114 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   4115 	    md, pa, prot));
   4116 
   4117 	switch(prot) {
   4118 	case VM_PROT_READ|VM_PROT_WRITE:
   4119 #if defined(ARM_MMU_EXTENDED)
   4120 		pmap_acquire_page_lock(md);
   4121 		pmap_clearbit(md, pa, PVF_EXEC);
   4122 		pmap_release_page_lock(md);
   4123 		break;
   4124 #endif
   4125 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4126 		break;
   4127 
   4128 	case VM_PROT_READ:
   4129 #if defined(ARM_MMU_EXTENDED)
   4130 		pmap_acquire_page_lock(md);
   4131 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4132 		pmap_release_page_lock(md);
   4133 		break;
   4134 #endif
   4135 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4136 		pmap_acquire_page_lock(md);
   4137 		pmap_clearbit(md, pa, PVF_WRITE);
   4138 		pmap_release_page_lock(md);
   4139 		break;
   4140 
   4141 	default:
   4142 		pmap_page_remove(md, pa);
   4143 		break;
   4144 	}
   4145 }
   4146 
   4147 /*
   4148  * pmap_clear_modify:
   4149  *
   4150  *	Clear the "modified" attribute for a page.
   4151  */
   4152 bool
   4153 pmap_clear_modify(struct vm_page *pg)
   4154 {
   4155 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4156 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4157 	bool rv;
   4158 
   4159 	pmap_acquire_page_lock(md);
   4160 
   4161 	if (md->pvh_attrs & PVF_MOD) {
   4162 		rv = true;
   4163 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4164 		/*
   4165 		 * If we are going to clear the modified bit and there are
   4166 		 * no other modified bits set, flush the page to memory and
   4167 		 * mark it clean.
   4168 		 */
   4169 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4170 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4171 #endif
   4172 		pmap_clearbit(md, pa, PVF_MOD);
   4173 	} else {
   4174 		rv = false;
   4175 	}
   4176 	pmap_release_page_lock(md);
   4177 
   4178 	return rv;
   4179 }
   4180 
   4181 /*
   4182  * pmap_clear_reference:
   4183  *
   4184  *	Clear the "referenced" attribute for a page.
   4185  */
   4186 bool
   4187 pmap_clear_reference(struct vm_page *pg)
   4188 {
   4189 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4190 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4191 	bool rv;
   4192 
   4193 	pmap_acquire_page_lock(md);
   4194 
   4195 	if (md->pvh_attrs & PVF_REF) {
   4196 		rv = true;
   4197 		pmap_clearbit(md, pa, PVF_REF);
   4198 	} else {
   4199 		rv = false;
   4200 	}
   4201 	pmap_release_page_lock(md);
   4202 
   4203 	return rv;
   4204 }
   4205 
   4206 /*
   4207  * pmap_is_modified:
   4208  *
   4209  *	Test if a page has the "modified" attribute.
   4210  */
   4211 /* See <arm/arm32/pmap.h> */
   4212 
   4213 /*
   4214  * pmap_is_referenced:
   4215  *
   4216  *	Test if a page has the "referenced" attribute.
   4217  */
   4218 /* See <arm/arm32/pmap.h> */
   4219 
   4220 #if defined(ARM_MMU_EXTENDED) && 0
   4221 int
   4222 pmap_prefetchabt_fixup(void *v)
   4223 {
   4224 	struct trapframe * const tf = v;
   4225 	vaddr_t va = trunc_page(tf->tf_pc);
   4226 	int rv = ABORT_FIXUP_FAILED;
   4227 
   4228 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4229 		return rv;
   4230 
   4231 	kpreempt_disable();
   4232 	pmap_t pm = curcpu()->ci_pmap_cur;
   4233 	const size_t l1slot = l1pte_index(va);
   4234 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4235 	if (l2 == NULL)
   4236 		goto out;
   4237 
   4238 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4239 	if (l2b->l2b_kva == NULL)
   4240 		goto out;
   4241 
   4242 	/*
   4243 	 * Check the PTE itself.
   4244 	 */
   4245 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4246 	const pt_entry_t opte = *ptep;
   4247 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4248 		goto out;
   4249 
   4250 	paddr_t pa = l2pte_pa(pte);
   4251 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4252 	KASSERT(pg != NULL);
   4253 
   4254 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4255 
   4256 	pmap_acquire_page_lock(md);
   4257 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4258 	KASSERT(pv != NULL);
   4259 
   4260 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4261 		l2pte_reset(ptep);
   4262 		PTE_SYNC(ptep);
   4263 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4264 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4265 			pmap_syncicache_page(md, pa);
   4266 		}
   4267 		rv = ABORT_FIXUP_RETURN;
   4268 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4269 		PTE_SYNC(ptep);
   4270 	}
   4271 	pmap_release_page_lock(md);
   4272 
   4273   out:
   4274 	kpreempt_enable();
   4275 	return rv;
   4276 }
   4277 #endif
   4278 
   4279 int
   4280 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4281 {
   4282 	struct l2_dtable *l2;
   4283 	struct l2_bucket *l2b;
   4284 	paddr_t pa;
   4285 	const size_t l1slot = l1pte_index(va);
   4286 	int rv = 0;
   4287 
   4288 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4289 
   4290 	va = trunc_page(va);
   4291 
   4292 	KASSERT(!user || (pm != pmap_kernel()));
   4293 
   4294 	UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
   4295 	    pm, va, ftype, user);
   4296 #ifdef ARM_MMU_EXTENDED
   4297 	UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
   4298 	    cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4299 	    PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4300 #endif
   4301 
   4302 	pmap_acquire_pmap_lock(pm);
   4303 
   4304 	/*
   4305 	 * If there is no l2_dtable for this address, then the process
   4306 	 * has no business accessing it.
   4307 	 *
   4308 	 * Note: This will catch userland processes trying to access
   4309 	 * kernel addresses.
   4310 	 */
   4311 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4312 	if (l2 == NULL) {
   4313 		UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
   4314 		goto out;
   4315 	}
   4316 
   4317 	/*
   4318 	 * Likewise if there is no L2 descriptor table
   4319 	 */
   4320 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4321 	if (l2b->l2b_kva == NULL) {
   4322 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
   4323 		goto out;
   4324 	}
   4325 
   4326 	/*
   4327 	 * Check the PTE itself.
   4328 	 */
   4329 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4330 	pt_entry_t const opte = *ptep;
   4331 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4332 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
   4333 		goto out;
   4334 	}
   4335 
   4336 #ifndef ARM_HAS_VBAR
   4337 	/*
   4338 	 * Catch a userland access to the vector page mapped at 0x0
   4339 	 */
   4340 	if (user && (opte & L2_S_PROT_U) == 0) {
   4341 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4342 		goto out;
   4343 	}
   4344 #endif
   4345 
   4346 	pa = l2pte_pa(opte);
   4347 
   4348 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4349 		/*
   4350 		 * This looks like a good candidate for "page modified"
   4351 		 * emulation...
   4352 		 */
   4353 		struct pv_entry *pv;
   4354 		struct vm_page *pg;
   4355 
   4356 		/* Extract the physical address of the page */
   4357 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4358 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4359 			goto out;
   4360 		}
   4361 
   4362 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4363 
   4364 		/* Get the current flags for this page. */
   4365 		pmap_acquire_page_lock(md);
   4366 		pv = pmap_find_pv(md, pm, va);
   4367 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4368 			pmap_release_page_lock(md);
   4369 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4370 			goto out;
   4371 		}
   4372 
   4373 		/*
   4374 		 * Do the flags say this page is writable? If not then it
   4375 		 * is a genuine write fault. If yes then the write fault is
   4376 		 * our fault as we did not reflect the write access in the
   4377 		 * PTE. Now we know a write has occurred we can correct this
   4378 		 * and also set the modified bit
   4379 		 */
   4380 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4381 			pmap_release_page_lock(md);
   4382 			goto out;
   4383 		}
   4384 
   4385 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4386 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4387 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4388 		/*
   4389 		 * If there are cacheable mappings for this page, mark it dirty.
   4390 		 */
   4391 		if ((md->pvh_attrs & PVF_NC) == 0)
   4392 			md->pvh_attrs |= PVF_DIRTY;
   4393 #endif
   4394 #ifdef ARM_MMU_EXTENDED
   4395 		if (md->pvh_attrs & PVF_EXEC) {
   4396 			md->pvh_attrs &= ~PVF_EXEC;
   4397 			PMAPCOUNT(exec_discarded_modfixup);
   4398 		}
   4399 #endif
   4400 		pmap_release_page_lock(md);
   4401 
   4402 		/*
   4403 		 * Re-enable write permissions for the page.  No need to call
   4404 		 * pmap_vac_me_harder(), since this is just a
   4405 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4406 		 * changing. We've already set the cacheable bits based on
   4407 		 * the assumption that we can write to this page.
   4408 		 */
   4409 		const pt_entry_t npte =
   4410 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4411 #ifdef ARM_MMU_EXTENDED
   4412 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4413 #endif
   4414 		    | 0;
   4415 		l2pte_reset(ptep);
   4416 		PTE_SYNC(ptep);
   4417 		pmap_tlb_flush_SE(pm, va,
   4418 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4419 		l2pte_set(ptep, npte, 0);
   4420 		PTE_SYNC(ptep);
   4421 		PMAPCOUNT(fixup_mod);
   4422 		rv = 1;
   4423 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
   4424 		    opte, npte, 0, 0);
   4425 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4426 		/*
   4427 		 * This looks like a good candidate for "page referenced"
   4428 		 * emulation.
   4429 		 */
   4430 		struct vm_page *pg;
   4431 
   4432 		/* Extract the physical address of the page */
   4433 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4434 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4435 			goto out;
   4436 		}
   4437 
   4438 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4439 
   4440 		/* Get the current flags for this page. */
   4441 		pmap_acquire_page_lock(md);
   4442 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4443 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4444 			pmap_release_page_lock(md);
   4445 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4446 			goto out;
   4447 		}
   4448 
   4449 		md->pvh_attrs |= PVF_REF;
   4450 		pv->pv_flags |= PVF_REF;
   4451 
   4452 		pt_entry_t npte =
   4453 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4454 #ifdef ARM_MMU_EXTENDED
   4455 		if (pm != pmap_kernel()) {
   4456 			npte |= L2_XS_nG;
   4457 		}
   4458 		/*
   4459 		 * If we got called from prefetch abort, then ftype will have
   4460 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4461 		 * the PTE.
   4462 		 */
   4463 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4464 			/*
   4465 			 * Is this a mapping of an executable page?
   4466 			 */
   4467 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4468 				pmap_release_page_lock(md);
   4469 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4470 				    0, 0, 0, 0);
   4471 				goto out;
   4472 			}
   4473 			/*
   4474 			 * If we haven't synced the page, do so now.
   4475 			 */
   4476 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4477 				UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
   4478 				    pa, 0, 0, 0);
   4479 				pmap_syncicache_page(md, pa);
   4480 				PMAPCOUNT(fixup_exec);
   4481 			}
   4482 			npte &= ~L2_XS_XN;
   4483 		}
   4484 #endif /* ARM_MMU_EXTENDED */
   4485 		pmap_release_page_lock(md);
   4486 		l2pte_reset(ptep);
   4487 		PTE_SYNC(ptep);
   4488 		pmap_tlb_flush_SE(pm, va,
   4489 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4490 		l2pte_set(ptep, npte, 0);
   4491 		PTE_SYNC(ptep);
   4492 		PMAPCOUNT(fixup_ref);
   4493 		rv = 1;
   4494 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
   4495 		    opte, npte, 0, 0);
   4496 #ifdef ARM_MMU_EXTENDED
   4497 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4498 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4499 		if (pg == NULL) {
   4500 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4501 			goto out;
   4502 		}
   4503 
   4504 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4505 
   4506 		/* Get the current flags for this page. */
   4507 		pmap_acquire_page_lock(md);
   4508 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4509 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4510 			pmap_release_page_lock(md);
   4511 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4512 			goto out;
   4513 		}
   4514 
   4515 		/*
   4516 		 * If we haven't synced the page, do so now.
   4517 		 */
   4518 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4519 			UVMHIST_LOG(maphist, "syncicache page #%#x",
   4520 			    pa, 0, 0, 0);
   4521 			pmap_syncicache_page(md, pa);
   4522 		}
   4523 		pmap_release_page_lock(md);
   4524 		/*
   4525 		 * Turn off no-execute.
   4526 		 */
   4527 		KASSERT(opte & L2_XS_nG);
   4528 		l2pte_reset(ptep);
   4529 		PTE_SYNC(ptep);
   4530 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4531 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4532 		PTE_SYNC(ptep);
   4533 		rv = 1;
   4534 		PMAPCOUNT(fixup_exec);
   4535 		UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
   4536 		    opte, opte & ~L2_XS_XN, 0, 0);
   4537 #endif
   4538 	}
   4539 
   4540 #ifndef ARM_MMU_EXTENDED
   4541 	/*
   4542 	 * We know there is a valid mapping here, so simply
   4543 	 * fix up the L1 if necessary.
   4544 	 */
   4545 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4546 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4547 	if (*pdep != pde) {
   4548 		l1pte_setone(pdep, pde);
   4549 		PDE_SYNC(pdep);
   4550 		rv = 1;
   4551 		PMAPCOUNT(fixup_pdes);
   4552 	}
   4553 #endif
   4554 
   4555 #ifdef CPU_SA110
   4556 	/*
   4557 	 * There are bugs in the rev K SA110.  This is a check for one
   4558 	 * of them.
   4559 	 */
   4560 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4561 	    curcpu()->ci_arm_cpurev < 3) {
   4562 		/* Always current pmap */
   4563 		if (l2pte_valid_p(opte)) {
   4564 			extern int kernel_debug;
   4565 			if (kernel_debug & 1) {
   4566 				struct proc *p = curlwp->l_proc;
   4567 				printf("prefetch_abort: page is already "
   4568 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4569 				printf("prefetch_abort: pc=%08lx proc=%p "
   4570 				    "process=%s\n", va, p, p->p_comm);
   4571 				printf("prefetch_abort: far=%08x fs=%x\n",
   4572 				    cpu_faultaddress(), cpu_faultstatus());
   4573 			}
   4574 #ifdef DDB
   4575 			if (kernel_debug & 2)
   4576 				Debugger();
   4577 #endif
   4578 			rv = 1;
   4579 		}
   4580 	}
   4581 #endif /* CPU_SA110 */
   4582 
   4583 #ifndef ARM_MMU_EXTENDED
   4584 	/*
   4585 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4586 	 * stale TLB entry for the faulting address.  That might be due to a
   4587 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4588 	 */
   4589 	if (rv == 0
   4590 	    && pm->pm_l1->l1_domain_use_count == 1
   4591 	    && pmap_needs_pte_sync == 0) {
   4592 		pmap_needs_pte_sync = 1;
   4593 		PTE_SYNC(ptep);
   4594 		PMAPCOUNT(fixup_ptesync);
   4595 		rv = 1;
   4596 	}
   4597 #endif
   4598 
   4599 #ifndef MULTIPROCESSOR
   4600 #if defined(DEBUG) || 1
   4601 	/*
   4602 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4603 	 * stale TLB entry for the faulting address. This happens when two or
   4604 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4605 	 * a context switch between such processes, we can take domain faults
   4606 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4607 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4608 	 * example.
   4609 	 *
   4610 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4611 	 * entry for a recently entered mapping. In this case, the TLB is
   4612 	 * flushed for the new mapping, but there may still be TLB entries for
   4613 	 * other mappings belonging to other processes in the 1MB range
   4614 	 * covered by the L1 entry.
   4615 	 *
   4616 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4617 	 * value, so the fault must be due to a stale TLB entry.
   4618 	 *
   4619 	 * Since we always need to flush the TLB anyway in the case where we
   4620 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4621 	 * stale TLB entries dynamically.
   4622 	 *
   4623 	 * However, the above condition can ONLY happen if the current L1 is
   4624 	 * being shared. If it happens when the L1 is unshared, it indicates
   4625 	 * that other parts of the pmap are not doing their job WRT managing
   4626 	 * the TLB.
   4627 	 */
   4628 	if (rv == 0
   4629 #ifndef ARM_MMU_EXTENDED
   4630 	    && pm->pm_l1->l1_domain_use_count == 1
   4631 #endif
   4632 	    && true) {
   4633 #ifdef DEBUG
   4634 		extern int last_fault_code;
   4635 #else
   4636 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4637 		    ? armreg_ifsr_read()
   4638 		    : armreg_dfsr_read();
   4639 #endif
   4640 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4641 		    pm, va, ftype);
   4642 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4643 		    l2, l2b, ptep, opte);
   4644 
   4645 #ifndef ARM_MMU_EXTENDED
   4646 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4647 		    pdep, pde, last_fault_code);
   4648 #else
   4649 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4650 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4651 		   armreg_ttbcr_read());
   4652 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4653 		    last_fault_code, curcpu()->ci_pmap_cur,
   4654 		    curcpu()->ci_pmap_asid_cur,
   4655 		    armreg_contextidr_read(), armreg_dacr_read());
   4656 #ifdef _ARM_ARCH_7
   4657 		if (ftype & VM_PROT_WRITE)
   4658 			armreg_ats1cuw_write(va);
   4659 		else
   4660 			armreg_ats1cur_write(va);
   4661 		arm_isb();
   4662 		printf("fixup: par %#x\n", armreg_par_read());
   4663 #endif
   4664 #endif
   4665 #ifdef DDB
   4666 		extern int kernel_debug;
   4667 
   4668 		if (kernel_debug & 2) {
   4669 			pmap_release_pmap_lock(pm);
   4670 #ifdef UVMHIST
   4671 			KERNHIST_DUMP(maphist);
   4672 #endif
   4673 			cpu_Debugger();
   4674 			pmap_acquire_pmap_lock(pm);
   4675 		}
   4676 #endif
   4677 	}
   4678 #endif
   4679 #endif
   4680 
   4681 #ifndef ARM_MMU_EXTENDED
   4682 	/* Flush the TLB in the shared L1 case - see comment above */
   4683 	pmap_tlb_flush_SE(pm, va,
   4684 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4685 #endif
   4686 
   4687 	rv = 1;
   4688 
   4689 out:
   4690 	pmap_release_pmap_lock(pm);
   4691 
   4692 	return (rv);
   4693 }
   4694 
   4695 /*
   4696  * Routine:	pmap_procwr
   4697  *
   4698  * Function:
   4699  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4700  *
   4701  */
   4702 void
   4703 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4704 {
   4705 	/* We only need to do anything if it is the current process. */
   4706 	if (p == curproc)
   4707 		cpu_icache_sync_range(va, len);
   4708 }
   4709 
   4710 /*
   4711  * Routine:	pmap_unwire
   4712  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4713  *
   4714  * In/out conditions:
   4715  *		The mapping must already exist in the pmap.
   4716  */
   4717 void
   4718 pmap_unwire(pmap_t pm, vaddr_t va)
   4719 {
   4720 	struct l2_bucket *l2b;
   4721 	pt_entry_t *ptep, pte;
   4722 	struct vm_page *pg;
   4723 	paddr_t pa;
   4724 
   4725 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4726 
   4727 	pmap_acquire_pmap_lock(pm);
   4728 
   4729 	l2b = pmap_get_l2_bucket(pm, va);
   4730 	KDASSERT(l2b != NULL);
   4731 
   4732 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4733 	pte = *ptep;
   4734 
   4735 	/* Extract the physical address of the page */
   4736 	pa = l2pte_pa(pte);
   4737 
   4738 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4739 		/* Update the wired bit in the pv entry for this page. */
   4740 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4741 
   4742 		pmap_acquire_page_lock(md);
   4743 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4744 		pmap_release_page_lock(md);
   4745 	}
   4746 
   4747 	pmap_release_pmap_lock(pm);
   4748 }
   4749 
   4750 void
   4751 pmap_activate(struct lwp *l)
   4752 {
   4753 	struct cpu_info * const ci = curcpu();
   4754 	extern int block_userspace_access;
   4755 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   4756 #ifdef ARM_MMU_EXTENDED
   4757 	struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
   4758 #endif
   4759 
   4760 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4761 
   4762 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
   4763 
   4764 	/*
   4765 	 * If activating a non-current lwp or the current lwp is
   4766 	 * already active, just return.
   4767 	 */
   4768 	if (false
   4769 	    || l != curlwp
   4770 #ifdef ARM_MMU_EXTENDED
   4771 	    || (ci->ci_pmap_cur == npm &&
   4772 		(npm == pmap_kernel()
   4773 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   4774 #else
   4775 	    || npm->pm_activated == true
   4776 #endif
   4777 	    || false) {
   4778 		UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
   4779 		return;
   4780 	}
   4781 
   4782 #ifndef ARM_MMU_EXTENDED
   4783 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4784 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4785 
   4786 	/*
   4787 	 * If TTB and DACR are unchanged, short-circuit all the
   4788 	 * TLB/cache management stuff.
   4789 	 */
   4790 	pmap_t opm = ci->ci_lastlwp
   4791 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   4792 	    : NULL;
   4793 	if (opm != NULL) {
   4794 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4795 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4796 
   4797 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4798 			goto all_done;
   4799 	}
   4800 #endif /* !ARM_MMU_EXTENDED */
   4801 
   4802 	PMAPCOUNT(activations);
   4803 	block_userspace_access = 1;
   4804 
   4805 #ifndef ARM_MMU_EXTENDED
   4806 	/*
   4807 	 * If switching to a user vmspace which is different to the
   4808 	 * most recent one, and the most recent one is potentially
   4809 	 * live in the cache, we must write-back and invalidate the
   4810 	 * entire cache.
   4811 	 */
   4812 	pmap_t rpm = ci->ci_pmap_lastuser;
   4813 #endif
   4814 
   4815 /*
   4816  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4817  * reported in kern/41058. They're probably left over during tear-down and
   4818  * switching away from an exiting process. Until the root cause is identified
   4819  * and fixed, zap the cache when switching pmaps. This will result in a few
   4820  * unnecessary cache flushes, but that's better than silently corrupting data.
   4821  */
   4822 #ifndef ARM_MMU_EXTENDED
   4823 #if 0
   4824 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4825 	    rpm->pm_cstate.cs_cache) {
   4826 		rpm->pm_cstate.cs_cache = 0;
   4827 #ifdef PMAP_CACHE_VIVT
   4828 		cpu_idcache_wbinv_all();
   4829 #endif
   4830 	}
   4831 #else
   4832 	if (rpm) {
   4833 		rpm->pm_cstate.cs_cache = 0;
   4834 		if (npm == pmap_kernel())
   4835 			ci->ci_pmap_lastuser = NULL;
   4836 #ifdef PMAP_CACHE_VIVT
   4837 		cpu_idcache_wbinv_all();
   4838 #endif
   4839 	}
   4840 #endif
   4841 
   4842 	/* No interrupts while we frob the TTB/DACR */
   4843 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   4844 #endif /* !ARM_MMU_EXTENDED */
   4845 
   4846 #ifndef ARM_HAS_VBAR
   4847 	/*
   4848 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4849 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4850 	 * before switching to it otherwise subsequent interrupts/exceptions
   4851 	 * (including domain faults!) will jump into hyperspace.
   4852 	 */
   4853 	if (npm->pm_pl1vec != NULL) {
   4854 		cpu_tlb_flushID_SE((u_int)vector_page);
   4855 		cpu_cpwait();
   4856 		*npm->pm_pl1vec = npm->pm_l1vec;
   4857 		PTE_SYNC(npm->pm_pl1vec);
   4858 	}
   4859 #endif
   4860 
   4861 #ifdef ARM_MMU_EXTENDED
   4862 	/*
   4863 	 * Assume that TTBR1 has only global mappings and TTBR0 only has
   4864 	 * non-global mappings.  To prevent speculation from doing evil things
   4865 	 * we disable translation table walks using TTBR0 before setting the
   4866 	 * CONTEXTIDR (ASID) or new TTBR0 value.  Once both are set, table
   4867 	 * walks are reenabled.
   4868 	 */
   4869 	UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
   4870 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4871 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4872 	arm_isb();
   4873 	pmap_tlb_asid_acquire(npm, l);
   4874 	UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
   4875 	cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
   4876 	/*
   4877 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
   4878 	 * been updated.
   4879 	 */
   4880 	arm_isb();
   4881 	if (npm != pmap_kernel()) {
   4882 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4883 	}
   4884 	cpu_cpwait();
   4885 	ci->ci_pmap_asid_cur = pai->pai_asid;
   4886 #else
   4887 	cpu_domains(ndacr);
   4888 	if (npm == pmap_kernel() || npm == rpm) {
   4889 		/*
   4890 		 * Switching to a kernel thread, or back to the
   4891 		 * same user vmspace as before... Simply update
   4892 		 * the TTB (no TLB flush required)
   4893 		 */
   4894 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4895 		cpu_cpwait();
   4896 	} else {
   4897 		/*
   4898 		 * Otherwise, update TTB and flush TLB
   4899 		 */
   4900 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4901 		if (rpm != NULL)
   4902 			rpm->pm_cstate.cs_tlb = 0;
   4903 	}
   4904 
   4905 	restore_interrupts(oldirqstate);
   4906 #endif /* ARM_MMU_EXTENDED */
   4907 
   4908 	block_userspace_access = 0;
   4909 
   4910 #ifndef ARM_MMU_EXTENDED
   4911  all_done:
   4912 	/*
   4913 	 * The new pmap is resident. Make sure it's marked
   4914 	 * as resident in the cache/TLB.
   4915 	 */
   4916 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4917 	if (npm != pmap_kernel())
   4918 		ci->ci_pmap_lastuser = npm;
   4919 
   4920 	/* The old pmap is not longer active */
   4921 	if (opm != npm) {
   4922 		if (opm != NULL)
   4923 			opm->pm_activated = false;
   4924 
   4925 		/* But the new one is */
   4926 		npm->pm_activated = true;
   4927 	}
   4928 #endif
   4929 	ci->ci_pmap_cur = npm;
   4930 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   4931 }
   4932 
   4933 void
   4934 pmap_deactivate(struct lwp *l)
   4935 {
   4936 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   4937 
   4938 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4939 
   4940 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
   4941 
   4942 #ifdef ARM_MMU_EXTENDED
   4943 	kpreempt_disable();
   4944 	struct cpu_info * const ci = curcpu();
   4945 	/*
   4946 	 * Disable translation table walks from TTBR0 while no pmap has been
   4947 	 * activated.
   4948 	 */
   4949 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4950 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4951 	arm_isb();
   4952 	pmap_tlb_asid_deactivate(pm);
   4953 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
   4954 	ci->ci_pmap_cur = pmap_kernel();
   4955 	ci->ci_pmap_asid_cur = KERNEL_PID;
   4956 	kpreempt_enable();
   4957 #else
   4958 	/*
   4959 	 * If the process is exiting, make sure pmap_activate() does
   4960 	 * a full MMU context-switch and cache flush, which we might
   4961 	 * otherwise skip. See PR port-arm/38950.
   4962 	 */
   4963 	if (l->l_proc->p_sflag & PS_WEXIT)
   4964 		curcpu()->ci_lastlwp = NULL;
   4965 
   4966 	pm->pm_activated = false;
   4967 #endif
   4968 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   4969 }
   4970 
   4971 void
   4972 pmap_update(pmap_t pm)
   4973 {
   4974 
   4975 	if (pm->pm_remove_all) {
   4976 #ifdef ARM_MMU_EXTENDED
   4977 		KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   4978 		/*
   4979 		 * Finish up the pmap_remove_all() optimisation by flushing
   4980 		 * all our ASIDs.
   4981 		 */
   4982 		pmap_tlb_asid_release_all(pm);
   4983 #else
   4984 		/*
   4985 		 * Finish up the pmap_remove_all() optimisation by flushing
   4986 		 * the TLB.
   4987 		 */
   4988 		pmap_tlb_flushID(pm);
   4989 #endif
   4990 		pm->pm_remove_all = false;
   4991 	}
   4992 
   4993 #ifdef ARM_MMU_EXTENDED
   4994 #if defined(MULTIPROCESSOR)
   4995 	armreg_bpiallis_write(0);
   4996 #else
   4997 	armreg_bpiall_write(0);
   4998 #endif
   4999 
   5000 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
   5001 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   5002 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   5003 		PMAP_COUNT(shootdown_ipis);
   5004 	}
   5005 #endif
   5006 	KASSERTMSG(curcpu()->ci_pmap_cur != pm || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   5007 #else
   5008 	if (pmap_is_current(pm)) {
   5009 		/*
   5010 		 * If we're dealing with a current userland pmap, move its L1
   5011 		 * to the end of the LRU.
   5012 		 */
   5013 		if (pm != pmap_kernel())
   5014 			pmap_use_l1(pm);
   5015 
   5016 		/*
   5017 		 * We can assume we're done with frobbing the cache/tlb for
   5018 		 * now. Make sure any future pmap ops don't skip cache/tlb
   5019 		 * flushes.
   5020 		 */
   5021 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5022 	}
   5023 #endif
   5024 
   5025 	PMAPCOUNT(updates);
   5026 
   5027 	/*
   5028 	 * make sure TLB/cache operations have completed.
   5029 	 */
   5030 	cpu_cpwait();
   5031 }
   5032 
   5033 void
   5034 pmap_remove_all(pmap_t pm)
   5035 {
   5036 
   5037 	/*
   5038 	 * The vmspace described by this pmap is about to be torn down.
   5039 	 * Until pmap_update() is called, UVM will only make calls
   5040 	 * to pmap_remove(). We can make life much simpler by flushing
   5041 	 * the cache now, and deferring TLB invalidation to pmap_update().
   5042 	 */
   5043 #ifdef PMAP_CACHE_VIVT
   5044 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   5045 #endif
   5046 	pm->pm_remove_all = true;
   5047 }
   5048 
   5049 /*
   5050  * Retire the given physical map from service.
   5051  * Should only be called if the map contains no valid mappings.
   5052  */
   5053 void
   5054 pmap_destroy(pmap_t pm)
   5055 {
   5056 	u_int count;
   5057 
   5058 	if (pm == NULL)
   5059 		return;
   5060 
   5061 	if (pm->pm_remove_all) {
   5062 		pmap_tlb_flushID(pm);
   5063 		pm->pm_remove_all = false;
   5064 	}
   5065 
   5066 	/*
   5067 	 * Drop reference count
   5068 	 */
   5069 	mutex_enter(pm->pm_lock);
   5070 	count = --pm->pm_obj.uo_refs;
   5071 	mutex_exit(pm->pm_lock);
   5072 	if (count > 0) {
   5073 #ifndef ARM_MMU_EXTENDED
   5074 		if (pmap_is_current(pm)) {
   5075 			if (pm != pmap_kernel())
   5076 				pmap_use_l1(pm);
   5077 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5078 		}
   5079 #endif
   5080 		return;
   5081 	}
   5082 
   5083 	/*
   5084 	 * reference count is zero, free pmap resources and then free pmap.
   5085 	 */
   5086 
   5087 #ifndef ARM_HAS_VBAR
   5088 	if (vector_page < KERNEL_BASE) {
   5089 		KDASSERT(!pmap_is_current(pm));
   5090 
   5091 		/* Remove the vector page mapping */
   5092 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5093 		pmap_update(pm);
   5094 	}
   5095 #endif
   5096 
   5097 	LIST_REMOVE(pm, pm_list);
   5098 
   5099 	pmap_free_l1(pm);
   5100 
   5101 #ifdef ARM_MMU_EXTENDED
   5102 #ifdef MULTIPROCESSOR
   5103 	kcpuset_destroy(pm->pm_active);
   5104 	kcpuset_destroy(pm->pm_onproc);
   5105 #endif
   5106 #else
   5107 	struct cpu_info * const ci = curcpu();
   5108 	if (ci->ci_pmap_lastuser == pm)
   5109 		ci->ci_pmap_lastuser = NULL;
   5110 #endif
   5111 
   5112 	uvm_obj_destroy(&pm->pm_obj, false);
   5113 	mutex_destroy(&pm->pm_obj_lock);
   5114 	pool_cache_put(&pmap_cache, pm);
   5115 }
   5116 
   5117 
   5118 /*
   5119  * void pmap_reference(pmap_t pm)
   5120  *
   5121  * Add a reference to the specified pmap.
   5122  */
   5123 void
   5124 pmap_reference(pmap_t pm)
   5125 {
   5126 
   5127 	if (pm == NULL)
   5128 		return;
   5129 
   5130 #ifndef ARM_MMU_EXTENDED
   5131 	pmap_use_l1(pm);
   5132 #endif
   5133 
   5134 	mutex_enter(pm->pm_lock);
   5135 	pm->pm_obj.uo_refs++;
   5136 	mutex_exit(pm->pm_lock);
   5137 }
   5138 
   5139 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5140 
   5141 static struct evcnt pmap_prefer_nochange_ev =
   5142     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5143 static struct evcnt pmap_prefer_change_ev =
   5144     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5145 
   5146 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5147 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5148 
   5149 void
   5150 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5151 {
   5152 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5153 	vaddr_t va = *vap;
   5154 	vaddr_t diff = (hint - va) & mask;
   5155 	if (diff == 0) {
   5156 		pmap_prefer_nochange_ev.ev_count++;
   5157 	} else {
   5158 		pmap_prefer_change_ev.ev_count++;
   5159 		if (__predict_false(td))
   5160 			va -= mask + 1;
   5161 		*vap = va + diff;
   5162 	}
   5163 }
   5164 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5165 
   5166 /*
   5167  * pmap_zero_page()
   5168  *
   5169  * Zero a given physical page by mapping it at a page hook point.
   5170  * In doing the zero page op, the page we zero is mapped cachable, as with
   5171  * StrongARM accesses to non-cached pages are non-burst making writing
   5172  * _any_ bulk data very slow.
   5173  */
   5174 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5175 void
   5176 pmap_zero_page_generic(paddr_t pa)
   5177 {
   5178 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5179 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5180 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5181 #endif
   5182 #if defined(PMAP_CACHE_VIPT)
   5183 	/* Choose the last page color it had, if any */
   5184 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5185 #else
   5186 	const vsize_t va_offset = 0;
   5187 #endif
   5188 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5189 	/*
   5190 	 * Is this page mapped at its natural color?
   5191 	 * If we have all of memory mapped, then just convert PA to VA.
   5192 	 */
   5193 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5194 	   || va_offset == (pa & arm_cache_prefer_mask);
   5195 	const vaddr_t vdstp = okcolor
   5196 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5197 	    : cpu_cdstp(va_offset);
   5198 #else
   5199 	const bool okcolor = false;
   5200 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5201 #endif
   5202 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5203 
   5204 
   5205 #ifdef DEBUG
   5206 	if (!SLIST_EMPTY(&md->pvh_list))
   5207 		panic("pmap_zero_page: page has mappings");
   5208 #endif
   5209 
   5210 	KDASSERT((pa & PGOFSET) == 0);
   5211 
   5212 	if (!okcolor) {
   5213 		/*
   5214 		 * Hook in the page, zero it, and purge the cache for that
   5215 		 * zeroed page. Invalidate the TLB as needed.
   5216 		 */
   5217 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5218 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5219 		l2pte_set(ptep, npte, 0);
   5220 		PTE_SYNC(ptep);
   5221 		cpu_tlb_flushD_SE(vdstp);
   5222 		cpu_cpwait();
   5223 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5224     && !defined(ARM_MMU_EXTENDED)
   5225 		/*
   5226 		 * If we are direct-mapped and our color isn't ok, then before
   5227 		 * we bzero the page invalidate its contents from the cache and
   5228 		 * reset the color to its natural color.
   5229 		 */
   5230 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5231 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5232 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5233 #endif
   5234 	}
   5235 	bzero_page(vdstp);
   5236 	if (!okcolor) {
   5237 		/*
   5238 		 * Unmap the page.
   5239 		 */
   5240 		l2pte_reset(ptep);
   5241 		PTE_SYNC(ptep);
   5242 		cpu_tlb_flushD_SE(vdstp);
   5243 #ifdef PMAP_CACHE_VIVT
   5244 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5245 #endif
   5246 	}
   5247 #ifdef PMAP_CACHE_VIPT
   5248 	/*
   5249 	 * This page is now cache resident so it now has a page color.
   5250 	 * Any contents have been obliterated so clear the EXEC flag.
   5251 	 */
   5252 #ifndef ARM_MMU_EXTENDED
   5253 	if (!pmap_is_page_colored_p(md)) {
   5254 		PMAPCOUNT(vac_color_new);
   5255 		md->pvh_attrs |= PVF_COLORED;
   5256 	}
   5257 	md->pvh_attrs |= PVF_DIRTY;
   5258 #endif
   5259 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5260 		md->pvh_attrs &= ~PVF_EXEC;
   5261 		PMAPCOUNT(exec_discarded_zero);
   5262 	}
   5263 #endif
   5264 }
   5265 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5266 
   5267 #if ARM_MMU_XSCALE == 1
   5268 void
   5269 pmap_zero_page_xscale(paddr_t pa)
   5270 {
   5271 #ifdef DEBUG
   5272 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5273 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5274 
   5275 	if (!SLIST_EMPTY(&md->pvh_list))
   5276 		panic("pmap_zero_page: page has mappings");
   5277 #endif
   5278 
   5279 	KDASSERT((pa & PGOFSET) == 0);
   5280 
   5281 	/*
   5282 	 * Hook in the page, zero it, and purge the cache for that
   5283 	 * zeroed page. Invalidate the TLB as needed.
   5284 	 */
   5285 
   5286 	pt_entry_t npte = L2_S_PROTO | pa |
   5287 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5288 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5289 	l2pte_set(cdst_pte, npte, 0);
   5290 	PTE_SYNC(cdst_pte);
   5291 	cpu_tlb_flushD_SE(cdstp);
   5292 	cpu_cpwait();
   5293 	bzero_page(cdstp);
   5294 	xscale_cache_clean_minidata();
   5295 	l2pte_reset(cdst_pte);
   5296 	PTE_SYNC(cdst_pte);
   5297 }
   5298 #endif /* ARM_MMU_XSCALE == 1 */
   5299 
   5300 /* pmap_pageidlezero()
   5301  *
   5302  * The same as above, except that we assume that the page is not
   5303  * mapped.  This means we never have to flush the cache first.  Called
   5304  * from the idle loop.
   5305  */
   5306 bool
   5307 pmap_pageidlezero(paddr_t pa)
   5308 {
   5309 	bool rv = true;
   5310 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5311 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5312 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5313 #endif
   5314 #ifdef PMAP_CACHE_VIPT
   5315 	/* Choose the last page color it had, if any */
   5316 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5317 #else
   5318 	const vsize_t va_offset = 0;
   5319 #endif
   5320 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5321 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5322 	   || va_offset == (pa & arm_cache_prefer_mask);
   5323 	const vaddr_t vdstp = okcolor
   5324 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5325 	    : cpu_cdstp(va_offset);
   5326 #else
   5327 	const bool okcolor = false;
   5328 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5329 #endif
   5330 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5331 
   5332 
   5333 #ifdef DEBUG
   5334 	if (!SLIST_EMPTY(&md->pvh_list))
   5335 		panic("pmap_pageidlezero: page has mappings");
   5336 #endif
   5337 
   5338 	KDASSERT((pa & PGOFSET) == 0);
   5339 
   5340 	if (!okcolor) {
   5341 		/*
   5342 		 * Hook in the page, zero it, and purge the cache for that
   5343 		 * zeroed page. Invalidate the TLB as needed.
   5344 		 */
   5345 		const pt_entry_t npte = L2_S_PROTO | pa |
   5346 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5347 		l2pte_set(ptep, npte, 0);
   5348 		PTE_SYNC(ptep);
   5349 		cpu_tlb_flushD_SE(vdstp);
   5350 		cpu_cpwait();
   5351 	}
   5352 
   5353 	uint64_t *ptr = (uint64_t *)vdstp;
   5354 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5355 		if (sched_curcpu_runnable_p() != 0) {
   5356 			/*
   5357 			 * A process has become ready.  Abort now,
   5358 			 * so we don't keep it waiting while we
   5359 			 * do slow memory access to finish this
   5360 			 * page.
   5361 			 */
   5362 			rv = false;
   5363 			break;
   5364 		}
   5365 		*ptr++ = 0;
   5366 	}
   5367 
   5368 #ifdef PMAP_CACHE_VIVT
   5369 	if (rv)
   5370 		/*
   5371 		 * if we aborted we'll rezero this page again later so don't
   5372 		 * purge it unless we finished it
   5373 		 */
   5374 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5375 #elif defined(PMAP_CACHE_VIPT)
   5376 	/*
   5377 	 * This page is now cache resident so it now has a page color.
   5378 	 * Any contents have been obliterated so clear the EXEC flag.
   5379 	 */
   5380 #ifndef ARM_MMU_EXTENDED
   5381 	if (!pmap_is_page_colored_p(md)) {
   5382 		PMAPCOUNT(vac_color_new);
   5383 		md->pvh_attrs |= PVF_COLORED;
   5384 	}
   5385 #endif
   5386 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5387 		md->pvh_attrs &= ~PVF_EXEC;
   5388 		PMAPCOUNT(exec_discarded_zero);
   5389 	}
   5390 #endif
   5391 	/*
   5392 	 * Unmap the page.
   5393 	 */
   5394 	if (!okcolor) {
   5395 		l2pte_reset(ptep);
   5396 		PTE_SYNC(ptep);
   5397 		cpu_tlb_flushD_SE(vdstp);
   5398 	}
   5399 
   5400 	return rv;
   5401 }
   5402 
   5403 /*
   5404  * pmap_copy_page()
   5405  *
   5406  * Copy one physical page into another, by mapping the pages into
   5407  * hook points. The same comment regarding cachability as in
   5408  * pmap_zero_page also applies here.
   5409  */
   5410 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5411 void
   5412 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5413 {
   5414 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5415 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5416 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5417 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5418 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5419 #endif
   5420 #ifdef PMAP_CACHE_VIPT
   5421 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5422 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5423 #else
   5424 	const vsize_t src_va_offset = 0;
   5425 	const vsize_t dst_va_offset = 0;
   5426 #endif
   5427 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5428 	/*
   5429 	 * Is this page mapped at its natural color?
   5430 	 * If we have all of memory mapped, then just convert PA to VA.
   5431 	 */
   5432 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5433 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5434 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5435 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5436 	const vaddr_t vsrcp = src_okcolor
   5437 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5438 		cpu_csrcp(src_va_offset))
   5439 	    : cpu_csrcp(src_va_offset);
   5440 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5441 	    cpu_cdstp(dst_va_offset));
   5442 #else
   5443 	const bool src_okcolor = false;
   5444 	const bool dst_okcolor = false;
   5445 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5446 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5447 #endif
   5448 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5449 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5450 
   5451 #ifdef DEBUG
   5452 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5453 		panic("pmap_copy_page: dst page has mappings");
   5454 #endif
   5455 
   5456 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5457 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5458 #endif
   5459 	KDASSERT((src & PGOFSET) == 0);
   5460 	KDASSERT((dst & PGOFSET) == 0);
   5461 
   5462 	/*
   5463 	 * Clean the source page.  Hold the source page's lock for
   5464 	 * the duration of the copy so that no other mappings can
   5465 	 * be created while we have a potentially aliased mapping.
   5466 	 */
   5467 #ifdef PMAP_CACHE_VIVT
   5468 	pmap_acquire_page_lock(src_md);
   5469 	(void) pmap_clean_page(src_md, true);
   5470 	pmap_release_page_lock(src_md);
   5471 #endif
   5472 
   5473 	/*
   5474 	 * Map the pages into the page hook points, copy them, and purge
   5475 	 * the cache for the appropriate page. Invalidate the TLB
   5476 	 * as required.
   5477 	 */
   5478 	if (!src_okcolor) {
   5479 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5480 		    | src
   5481 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5482 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5483 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5484 		    | pte_l2_s_cache_mode
   5485 #endif
   5486 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5487 		l2pte_set(src_ptep, nsrc_pte, 0);
   5488 		PTE_SYNC(src_ptep);
   5489 		cpu_tlb_flushD_SE(vsrcp);
   5490 		cpu_cpwait();
   5491 	}
   5492 	if (!dst_okcolor) {
   5493 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5494 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5495 		l2pte_set(dst_ptep, ndst_pte, 0);
   5496 		PTE_SYNC(dst_ptep);
   5497 		cpu_tlb_flushD_SE(vdstp);
   5498 		cpu_cpwait();
   5499 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5500 		/*
   5501 		 * If we are direct-mapped and our color isn't ok, then before
   5502 		 * we bcopy to the new page invalidate its contents from the
   5503 		 * cache and reset its color to its natural color.
   5504 		 */
   5505 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5506 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5507 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5508 #endif
   5509 	}
   5510 	bcopy_page(vsrcp, vdstp);
   5511 #ifdef PMAP_CACHE_VIVT
   5512 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5513 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5514 #endif
   5515 	/*
   5516 	 * Unmap the pages.
   5517 	 */
   5518 	if (!src_okcolor) {
   5519 		l2pte_reset(src_ptep);
   5520 		PTE_SYNC(src_ptep);
   5521 		cpu_tlb_flushD_SE(vsrcp);
   5522 		cpu_cpwait();
   5523 	}
   5524 	if (!dst_okcolor) {
   5525 		l2pte_reset(dst_ptep);
   5526 		PTE_SYNC(dst_ptep);
   5527 		cpu_tlb_flushD_SE(vdstp);
   5528 		cpu_cpwait();
   5529 	}
   5530 #ifdef PMAP_CACHE_VIPT
   5531 	/*
   5532 	 * Now that the destination page is in the cache, mark it as colored.
   5533 	 * If this was an exec page, discard it.
   5534 	 */
   5535 	pmap_acquire_page_lock(dst_md);
   5536 #ifndef ARM_MMU_EXTENDED
   5537 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5538 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5539 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5540 	}
   5541 	if (!pmap_is_page_colored_p(dst_md)) {
   5542 		PMAPCOUNT(vac_color_new);
   5543 		dst_md->pvh_attrs |= PVF_COLORED;
   5544 	}
   5545 	dst_md->pvh_attrs |= PVF_DIRTY;
   5546 #endif
   5547 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5548 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5549 		PMAPCOUNT(exec_discarded_copy);
   5550 	}
   5551 	pmap_release_page_lock(dst_md);
   5552 #endif
   5553 }
   5554 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5555 
   5556 #if ARM_MMU_XSCALE == 1
   5557 void
   5558 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5559 {
   5560 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5561 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5562 #ifdef DEBUG
   5563 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5564 
   5565 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5566 		panic("pmap_copy_page: dst page has mappings");
   5567 #endif
   5568 
   5569 	KDASSERT((src & PGOFSET) == 0);
   5570 	KDASSERT((dst & PGOFSET) == 0);
   5571 
   5572 	/*
   5573 	 * Clean the source page.  Hold the source page's lock for
   5574 	 * the duration of the copy so that no other mappings can
   5575 	 * be created while we have a potentially aliased mapping.
   5576 	 */
   5577 #ifdef PMAP_CACHE_VIVT
   5578 	pmap_acquire_page_lock(src_md);
   5579 	(void) pmap_clean_page(src_md, true);
   5580 	pmap_release_page_lock(src_md);
   5581 #endif
   5582 
   5583 	/*
   5584 	 * Map the pages into the page hook points, copy them, and purge
   5585 	 * the cache for the appropriate page. Invalidate the TLB
   5586 	 * as required.
   5587 	 */
   5588 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
   5589 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   5590 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5591 	l2pte_set(csrc_pte, nsrc_pte, 0);
   5592 	PTE_SYNC(csrc_pte);
   5593 
   5594 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
   5595 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
   5596 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5597 	l2pte_set(cdst_pte, ndst_pte, 0);
   5598 	PTE_SYNC(cdst_pte);
   5599 
   5600 	cpu_tlb_flushD_SE(csrcp);
   5601 	cpu_tlb_flushD_SE(cdstp);
   5602 	cpu_cpwait();
   5603 	bcopy_page(csrcp, cdstp);
   5604 	xscale_cache_clean_minidata();
   5605 	l2pte_reset(csrc_pte);
   5606 	l2pte_reset(cdst_pte);
   5607 	PTE_SYNC(csrc_pte);
   5608 	PTE_SYNC(cdst_pte);
   5609 }
   5610 #endif /* ARM_MMU_XSCALE == 1 */
   5611 
   5612 /*
   5613  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5614  *
   5615  * Return the start and end addresses of the kernel's virtual space.
   5616  * These values are setup in pmap_bootstrap and are updated as pages
   5617  * are allocated.
   5618  */
   5619 void
   5620 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5621 {
   5622 	*start = virtual_avail;
   5623 	*end = virtual_end;
   5624 }
   5625 
   5626 /*
   5627  * Helper function for pmap_grow_l2_bucket()
   5628  */
   5629 static inline int
   5630 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5631 {
   5632 	paddr_t pa;
   5633 
   5634 	if (uvm.page_init_done == false) {
   5635 #ifdef PMAP_STEAL_MEMORY
   5636 		pv_addr_t pv;
   5637 		pmap_boot_pagealloc(PAGE_SIZE,
   5638 #ifdef PMAP_CACHE_VIPT
   5639 		    arm_cache_prefer_mask,
   5640 		    va & arm_cache_prefer_mask,
   5641 #else
   5642 		    0, 0,
   5643 #endif
   5644 		    &pv);
   5645 		pa = pv.pv_pa;
   5646 #else
   5647 		if (uvm_page_physget(&pa) == false)
   5648 			return (1);
   5649 #endif	/* PMAP_STEAL_MEMORY */
   5650 	} else {
   5651 		struct vm_page *pg;
   5652 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5653 		if (pg == NULL)
   5654 			return (1);
   5655 		pa = VM_PAGE_TO_PHYS(pg);
   5656 		/*
   5657 		 * This new page must not have any mappings.  Enter it via
   5658 		 * pmap_kenter_pa and let that routine do the hard work.
   5659 		 */
   5660 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5661 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5662 		pmap_kenter_pa(va, pa,
   5663 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5664 	}
   5665 
   5666 	if (pap)
   5667 		*pap = pa;
   5668 
   5669 	PMAPCOUNT(pt_mappings);
   5670 #ifdef DEBUG
   5671 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5672 	KDASSERT(l2b != NULL);
   5673 
   5674 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   5675 	const pt_entry_t opte = *ptep;
   5676 	KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   5677 #endif
   5678 	memset((void *)va, 0, PAGE_SIZE);
   5679 	return (0);
   5680 }
   5681 
   5682 /*
   5683  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   5684  * used by pmap_growkernel().
   5685  */
   5686 static inline struct l2_bucket *
   5687 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   5688 {
   5689 	struct l2_dtable *l2;
   5690 	struct l2_bucket *l2b;
   5691 	u_short l1slot;
   5692 	vaddr_t nva;
   5693 
   5694 	l1slot = l1pte_index(va);
   5695 
   5696 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   5697 		/*
   5698 		 * No mapping at this address, as there is
   5699 		 * no entry in the L1 table.
   5700 		 * Need to allocate a new l2_dtable.
   5701 		 */
   5702 		nva = pmap_kernel_l2dtable_kva;
   5703 		if ((nva & PGOFSET) == 0) {
   5704 			/*
   5705 			 * Need to allocate a backing page
   5706 			 */
   5707 			if (pmap_grow_map(nva, NULL))
   5708 				return (NULL);
   5709 		}
   5710 
   5711 		l2 = (struct l2_dtable *)nva;
   5712 		nva += sizeof(struct l2_dtable);
   5713 
   5714 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   5715 			/*
   5716 			 * The new l2_dtable straddles a page boundary.
   5717 			 * Map in another page to cover it.
   5718 			 */
   5719 			if (pmap_grow_map(nva, NULL))
   5720 				return (NULL);
   5721 		}
   5722 
   5723 		pmap_kernel_l2dtable_kva = nva;
   5724 
   5725 		/*
   5726 		 * Link it into the parent pmap
   5727 		 */
   5728 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   5729 	}
   5730 
   5731 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   5732 
   5733 	/*
   5734 	 * Fetch pointer to the L2 page table associated with the address.
   5735 	 */
   5736 	if (l2b->l2b_kva == NULL) {
   5737 		pt_entry_t *ptep;
   5738 
   5739 		/*
   5740 		 * No L2 page table has been allocated. Chances are, this
   5741 		 * is because we just allocated the l2_dtable, above.
   5742 		 */
   5743 		nva = pmap_kernel_l2ptp_kva;
   5744 		ptep = (pt_entry_t *)nva;
   5745 		if ((nva & PGOFSET) == 0) {
   5746 			/*
   5747 			 * Need to allocate a backing page
   5748 			 */
   5749 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   5750 				return (NULL);
   5751 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   5752 		}
   5753 
   5754 		l2->l2_occupancy++;
   5755 		l2b->l2b_kva = ptep;
   5756 		l2b->l2b_l1slot = l1slot;
   5757 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   5758 
   5759 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   5760 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   5761 	}
   5762 
   5763 	return (l2b);
   5764 }
   5765 
   5766 vaddr_t
   5767 pmap_growkernel(vaddr_t maxkvaddr)
   5768 {
   5769 	pmap_t kpm = pmap_kernel();
   5770 #ifndef ARM_MMU_EXTENDED
   5771 	struct l1_ttable *l1;
   5772 #endif
   5773 	int s;
   5774 
   5775 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5776 		goto out;		/* we are OK */
   5777 
   5778 	NPDEBUG(PDB_GROWKERN,
   5779 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5780 	    pmap_curmaxkvaddr, maxkvaddr));
   5781 
   5782 	KDASSERT(maxkvaddr <= virtual_end);
   5783 
   5784 	/*
   5785 	 * whoops!   we need to add kernel PTPs
   5786 	 */
   5787 
   5788 	s = splhigh();	/* to be safe */
   5789 	mutex_enter(kpm->pm_lock);
   5790 
   5791 	/* Map 1MB at a time */
   5792 	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
   5793 #ifdef ARM_MMU_EXTENDED
   5794 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   5795 	pd_entry_t *pdep = spdep;
   5796 #endif
   5797 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   5798 #ifdef ARM_MMU_EXTENDED
   5799 	     pdep++,
   5800 #endif
   5801 	     l1slot++) {
   5802 		struct l2_bucket *l2b =
   5803 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5804 		KASSERT(l2b != NULL);
   5805 
   5806 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   5807 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   5808 #ifdef ARM_MMU_EXTENDED
   5809 		l1pte_setone(pdep, npde);
   5810 #else
   5811 		/* Distribute new L1 entry to all other L1s */
   5812 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5813 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   5814 			l1pte_setone(pdep, npde);
   5815 			PDE_SYNC(pdep);
   5816 		}
   5817 #endif
   5818 	}
   5819 #ifdef ARM_MMU_EXTENDED
   5820 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   5821 #endif
   5822 
   5823 #ifdef PMAP_CACHE_VIVT
   5824 	/*
   5825 	 * flush out the cache, expensive but growkernel will happen so
   5826 	 * rarely
   5827 	 */
   5828 	cpu_dcache_wbinv_all();
   5829 	cpu_tlb_flushD();
   5830 	cpu_cpwait();
   5831 #endif
   5832 
   5833 	mutex_exit(kpm->pm_lock);
   5834 	splx(s);
   5835 
   5836 out:
   5837 	return (pmap_curmaxkvaddr);
   5838 }
   5839 
   5840 /************************ Utility routines ****************************/
   5841 
   5842 #ifndef ARM_HAS_VBAR
   5843 /*
   5844  * vector_page_setprot:
   5845  *
   5846  *	Manipulate the protection of the vector page.
   5847  */
   5848 void
   5849 vector_page_setprot(int prot)
   5850 {
   5851 	struct l2_bucket *l2b;
   5852 	pt_entry_t *ptep;
   5853 
   5854 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5855 	/*
   5856 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5857 	 * already mapped in the kernel text so no need to anything here.
   5858 	 */
   5859 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5860 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5861 		return;
   5862 	}
   5863 #endif
   5864 
   5865 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5866 	KASSERT(l2b != NULL);
   5867 
   5868 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5869 
   5870 	const pt_entry_t opte = *ptep;
   5871 #ifdef ARM_MMU_EXTENDED
   5872 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   5873 	    | L2_S_PROT(PTE_KERNEL, prot);
   5874 #else
   5875 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   5876 	    | L2_S_PROT(PTE_KERNEL, prot);
   5877 #endif
   5878 	l2pte_set(ptep, npte, opte);
   5879 	PTE_SYNC(ptep);
   5880 	cpu_tlb_flushD_SE(vector_page);
   5881 	cpu_cpwait();
   5882 }
   5883 #endif
   5884 
   5885 /*
   5886  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5887  * Returns true if the mapping exists, else false.
   5888  *
   5889  * NOTE: This function is only used by a couple of arm-specific modules.
   5890  * It is not safe to take any pmap locks here, since we could be right
   5891  * in the middle of debugging the pmap anyway...
   5892  *
   5893  * It is possible for this routine to return false even though a valid
   5894  * mapping does exist. This is because we don't lock, so the metadata
   5895  * state may be inconsistent.
   5896  *
   5897  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5898  * a "section" mapping.
   5899  */
   5900 bool
   5901 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5902 {
   5903 	struct l2_dtable *l2;
   5904 	pd_entry_t *pdep, pde;
   5905 	pt_entry_t *ptep;
   5906 	u_short l1slot;
   5907 
   5908 	if (pm->pm_l1 == NULL)
   5909 		return false;
   5910 
   5911 	l1slot = l1pte_index(va);
   5912 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   5913 	pde = *pdep;
   5914 
   5915 	if (l1pte_section_p(pde)) {
   5916 		*ptp = NULL;
   5917 		return true;
   5918 	}
   5919 
   5920 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   5921 	if (l2 == NULL ||
   5922 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   5923 		return false;
   5924 	}
   5925 
   5926 	*ptp = &ptep[l2pte_index(va)];
   5927 	return true;
   5928 }
   5929 
   5930 bool
   5931 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5932 {
   5933 
   5934 	if (pm->pm_l1 == NULL)
   5935 		return false;
   5936 
   5937 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   5938 
   5939 	return true;
   5940 }
   5941 
   5942 /************************ Bootstrapping routines ****************************/
   5943 
   5944 #ifndef ARM_MMU_EXTENDED
   5945 static void
   5946 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5947 {
   5948 	int i;
   5949 
   5950 	l1->l1_kva = l1pt;
   5951 	l1->l1_domain_use_count = 0;
   5952 	l1->l1_domain_first = 0;
   5953 
   5954 	for (i = 0; i < PMAP_DOMAINS; i++)
   5955 		l1->l1_domain_free[i] = i + 1;
   5956 
   5957 	/*
   5958 	 * Copy the kernel's L1 entries to each new L1.
   5959 	 */
   5960 	if (pmap_initialized)
   5961 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   5962 
   5963 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5964 	    &l1->l1_physaddr) == false)
   5965 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5966 
   5967 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5968 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5969 }
   5970 #endif /* !ARM_MMU_EXTENDED */
   5971 
   5972 /*
   5973  * pmap_bootstrap() is called from the board-specific initarm() routine
   5974  * once the kernel L1/L2 descriptors tables have been set up.
   5975  *
   5976  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5977  * spread over a number of disparate files/functions.
   5978  *
   5979  * We are passed the following parameters
   5980  *  - kernel_l1pt
   5981  *    This is a pointer to the base of the kernel's L1 translation table.
   5982  *  - vstart
   5983  *    1MB-aligned start of managed kernel virtual memory.
   5984  *  - vend
   5985  *    1MB-aligned end of managed kernel virtual memory.
   5986  *
   5987  * We use the first parameter to build the metadata (struct l1_ttable and
   5988  * struct l2_dtable) necessary to track kernel mappings.
   5989  */
   5990 #define	PMAP_STATIC_L2_SIZE 16
   5991 void
   5992 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5993 {
   5994 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5995 #ifndef ARM_MMU_EXTENDED
   5996 	static struct l1_ttable static_l1;
   5997 	struct l1_ttable *l1 = &static_l1;
   5998 #endif
   5999 	struct l2_dtable *l2;
   6000 	struct l2_bucket *l2b;
   6001 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   6002 	pmap_t pm = pmap_kernel();
   6003 	pt_entry_t *ptep;
   6004 	paddr_t pa;
   6005 	vsize_t size;
   6006 	int nptes, l2idx, l2next = 0;
   6007 
   6008 #ifdef ARM_MMU_EXTENDED
   6009 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   6010 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   6011 #endif
   6012 
   6013 #ifdef VERBOSE_INIT_ARM
   6014 	printf("kpm ");
   6015 #endif
   6016 	/*
   6017 	 * Initialise the kernel pmap object
   6018 	 */
   6019 	curcpu()->ci_pmap_cur = pm;
   6020 #ifdef ARM_MMU_EXTENDED
   6021 	pm->pm_l1 = l1pt;
   6022 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   6023 #ifdef VERBOSE_INIT_ARM
   6024 	printf("tlb0 ");
   6025 #endif
   6026 	pmap_tlb_info_init(&pmap_tlb0_info);
   6027 #ifdef MULTIPROCESSOR
   6028 #ifdef VERBOSE_INIT_ARM
   6029 	printf("kcpusets ");
   6030 #endif
   6031 	pm->pm_onproc = kcpuset_running;
   6032 	pm->pm_active = kcpuset_running;
   6033 #endif
   6034 #else
   6035 	pm->pm_l1 = l1;
   6036 #endif
   6037 
   6038 #ifdef VERBOSE_INIT_ARM
   6039 	printf("locks ");
   6040 #endif
   6041 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6042 	if (arm_cache_prefer_mask != 0) {
   6043 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   6044 	} else {
   6045 #endif
   6046 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
   6047 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6048 	}
   6049 #endif
   6050 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   6051 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   6052 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   6053 
   6054 #ifdef VERBOSE_INIT_ARM
   6055 	printf("l1pt ");
   6056 #endif
   6057 	/*
   6058 	 * Scan the L1 translation table created by initarm() and create
   6059 	 * the required metadata for all valid mappings found in it.
   6060 	 */
   6061 	for (size_t l1slot = 0;
   6062 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   6063 	     l1slot++) {
   6064 		pd_entry_t pde = l1pt[l1slot];
   6065 
   6066 		/*
   6067 		 * We're only interested in Coarse mappings.
   6068 		 * pmap_extract() can deal with section mappings without
   6069 		 * recourse to checking L2 metadata.
   6070 		 */
   6071 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   6072 			continue;
   6073 
   6074 		/*
   6075 		 * Lookup the KVA of this L2 descriptor table
   6076 		 */
   6077 		pa = l1pte_pa(pde);
   6078 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6079 		if (ptep == NULL) {
   6080 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6081 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6082 		}
   6083 
   6084 		/*
   6085 		 * Fetch the associated L2 metadata structure.
   6086 		 * Allocate a new one if necessary.
   6087 		 */
   6088 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6089 			if (l2next == PMAP_STATIC_L2_SIZE)
   6090 				panic("pmap_bootstrap: out of static L2s");
   6091 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6092 		}
   6093 
   6094 		/*
   6095 		 * One more L1 slot tracked...
   6096 		 */
   6097 		l2->l2_occupancy++;
   6098 
   6099 		/*
   6100 		 * Fill in the details of the L2 descriptor in the
   6101 		 * appropriate bucket.
   6102 		 */
   6103 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6104 		l2b->l2b_kva = ptep;
   6105 		l2b->l2b_pa = pa;
   6106 		l2b->l2b_l1slot = l1slot;
   6107 
   6108 		/*
   6109 		 * Establish an initial occupancy count for this descriptor
   6110 		 */
   6111 		for (l2idx = 0;
   6112 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6113 		    l2idx++) {
   6114 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6115 				l2b->l2b_occupancy++;
   6116 			}
   6117 		}
   6118 
   6119 		/*
   6120 		 * Make sure the descriptor itself has the correct cache mode.
   6121 		 * If not, fix it, but whine about the problem. Port-meisters
   6122 		 * should consider this a clue to fix up their initarm()
   6123 		 * function. :)
   6124 		 */
   6125 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6126 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6127 			    "L2 pte @ %p\n", ptep);
   6128 		}
   6129 	}
   6130 
   6131 #ifdef VERBOSE_INIT_ARM
   6132 	printf("cache(l1pt) ");
   6133 #endif
   6134 	/*
   6135 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6136 	 * a page table. Bitch if it is not correctly set.
   6137 	 */
   6138 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6139 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6140 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6141 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6142 	}
   6143 
   6144 #ifdef PMAP_CACHE_VIVT
   6145 	cpu_dcache_wbinv_all();
   6146 	cpu_tlb_flushID();
   6147 	cpu_cpwait();
   6148 #endif
   6149 
   6150 	/*
   6151 	 * now we allocate the "special" VAs which are used for tmp mappings
   6152 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6153 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6154 	 *
   6155 	 * Managed KVM space start from wherever initarm() tells us.
   6156 	 */
   6157 	virtual_avail = vstart;
   6158 	virtual_end = vend;
   6159 
   6160 #ifdef VERBOSE_INIT_ARM
   6161 	printf("specials ");
   6162 #endif
   6163 #ifdef PMAP_CACHE_VIPT
   6164 	/*
   6165 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6166 	 * page so we won't violate cache aliasing rules.
   6167 	 */
   6168 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6169 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6170 	nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6171 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6172 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6173 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6174 		nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6175 	}
   6176 #else
   6177 	nptes = PAGE_SIZE / L2_S_SIZE;
   6178 #endif
   6179 #ifdef MULTIPROCESSOR
   6180 	cnptes = nptes;
   6181 	nptes *= arm_cpu_max;
   6182 #endif
   6183 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6184 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6185 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6186 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6187 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   6188 	if (msgbufaddr == NULL) {
   6189 		pmap_alloc_specials(&virtual_avail,
   6190 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6191 		    (void *)&msgbufaddr, NULL);
   6192 	}
   6193 
   6194 	/*
   6195 	 * Allocate a range of kernel virtual address space to be used
   6196 	 * for L2 descriptor tables and metadata allocation in
   6197 	 * pmap_growkernel().
   6198 	 */
   6199 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   6200 	pmap_alloc_specials(&virtual_avail,
   6201 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6202 	    &pmap_kernel_l2ptp_kva, NULL);
   6203 
   6204 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   6205 	pmap_alloc_specials(&virtual_avail,
   6206 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6207 	    &pmap_kernel_l2dtable_kva, NULL);
   6208 
   6209 #ifndef ARM_MMU_EXTENDED
   6210 	/*
   6211 	 * init the static-global locks and global pmap list.
   6212 	 */
   6213 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6214 
   6215 	/*
   6216 	 * We can now initialise the first L1's metadata.
   6217 	 */
   6218 	SLIST_INIT(&l1_list);
   6219 	TAILQ_INIT(&l1_lru_list);
   6220 	pmap_init_l1(l1, l1pt);
   6221 #endif /* ARM_MMU_EXTENDED */
   6222 
   6223 #ifndef ARM_HAS_VBAR
   6224 	/* Set up vector page L1 details, if necessary */
   6225 	if (vector_page < KERNEL_BASE) {
   6226 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6227 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6228 		KDASSERT(l2b != NULL);
   6229 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6230 		    L1_C_DOM(pmap_domain(pm));
   6231 	} else
   6232 		pm->pm_pl1vec = NULL;
   6233 #endif
   6234 
   6235 #ifdef VERBOSE_INIT_ARM
   6236 	printf("pools ");
   6237 #endif
   6238 	/*
   6239 	 * Initialize the pmap cache
   6240 	 */
   6241 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6242 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6243 	LIST_INIT(&pmap_pmaps);
   6244 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   6245 
   6246 	/*
   6247 	 * Initialize the pv pool.
   6248 	 */
   6249 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6250 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6251 
   6252 	/*
   6253 	 * Initialize the L2 dtable pool and cache.
   6254 	 */
   6255 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6256 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6257 
   6258 	/*
   6259 	 * Initialise the L2 descriptor table pool and cache
   6260 	 */
   6261 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   6262 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   6263 	    pmap_l2ptp_ctor, NULL, NULL);
   6264 
   6265 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6266 
   6267 	cpu_dcache_wbinv_all();
   6268 }
   6269 
   6270 static bool
   6271 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6272 {
   6273 #ifdef ARM_MMU_EXTENDED
   6274 	return false;
   6275 #else
   6276 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6277 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6278 		return false;
   6279 
   6280 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6281 	int rv = 0;
   6282 
   6283 	while (va < eva) {
   6284 		/*
   6285 		 * Make sure the descriptor itself has the correct cache mode
   6286 		 */
   6287 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6288 		pd_entry_t pde = *pdep;
   6289 
   6290 		if (l1pte_section_p(pde)) {
   6291 			__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6292 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6293 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6294 				    pte_l1_s_cache_mode_pt;
   6295 				PDE_SYNC(pdep);
   6296 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6297 				    sizeof(*pdep));
   6298 				rv = 1;
   6299 			}
   6300 			return rv;
   6301 		}
   6302 		vaddr_t pa = l1pte_pa(pde);
   6303 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6304 		if (ptep == NULL)
   6305 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6306 
   6307 		ptep += l2pte_index(va);
   6308 		const pt_entry_t opte = *ptep;
   6309 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6310 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6311 			    | pte_l2_s_cache_mode_pt;
   6312 			l2pte_set(ptep, npte, opte);
   6313 			PTE_SYNC(ptep);
   6314 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6315 			rv = 1;
   6316 		}
   6317 		va += PAGE_SIZE;
   6318 	}
   6319 
   6320 	return (rv);
   6321 #endif
   6322 }
   6323 
   6324 static void
   6325 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6326 {
   6327 	vaddr_t va = *availp;
   6328 	struct l2_bucket *l2b;
   6329 
   6330 	if (ptep) {
   6331 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6332 		if (l2b == NULL)
   6333 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6334 
   6335 		if (ptep)
   6336 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6337 	}
   6338 
   6339 	*vap = va;
   6340 	*availp = va + (PAGE_SIZE * pages);
   6341 }
   6342 
   6343 void
   6344 pmap_init(void)
   6345 {
   6346 
   6347 	/*
   6348 	 * Set the available memory vars - These do not map to real memory
   6349 	 * addresses and cannot as the physical memory is fragmented.
   6350 	 * They are used by ps for %mem calculations.
   6351 	 * One could argue whether this should be the entire memory or just
   6352 	 * the memory that is useable in a user process.
   6353 	 */
   6354 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   6355 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   6356 
   6357 	/*
   6358 	 * Now we need to free enough pv_entry structures to allow us to get
   6359 	 * the kmem_map/kmem_object allocated and inited (done after this
   6360 	 * function is finished).  to do this we allocate one bootstrap page out
   6361 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6362 	 * structures.   we never free this page.
   6363 	 */
   6364 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6365 
   6366 #ifdef ARM_MMU_EXTENDED
   6367 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6368 #endif
   6369 
   6370 	pmap_initialized = true;
   6371 }
   6372 
   6373 static vaddr_t last_bootstrap_page = 0;
   6374 static void *free_bootstrap_pages = NULL;
   6375 
   6376 static void *
   6377 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6378 {
   6379 	extern void *pool_page_alloc(struct pool *, int);
   6380 	vaddr_t new_page;
   6381 	void *rv;
   6382 
   6383 	if (pmap_initialized)
   6384 		return (pool_page_alloc(pp, flags));
   6385 
   6386 	if (free_bootstrap_pages) {
   6387 		rv = free_bootstrap_pages;
   6388 		free_bootstrap_pages = *((void **)rv);
   6389 		return (rv);
   6390 	}
   6391 
   6392 	KASSERT(kernel_map != NULL);
   6393 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6394 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6395 
   6396 	KASSERT(new_page > last_bootstrap_page);
   6397 	last_bootstrap_page = new_page;
   6398 	return ((void *)new_page);
   6399 }
   6400 
   6401 static void
   6402 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6403 {
   6404 	extern void pool_page_free(struct pool *, void *);
   6405 
   6406 	if ((vaddr_t)v <= last_bootstrap_page) {
   6407 		*((void **)v) = free_bootstrap_pages;
   6408 		free_bootstrap_pages = v;
   6409 		return;
   6410 	}
   6411 
   6412 	if (pmap_initialized) {
   6413 		pool_page_free(pp, v);
   6414 		return;
   6415 	}
   6416 }
   6417 
   6418 /*
   6419  * pmap_postinit()
   6420  *
   6421  * This routine is called after the vm and kmem subsystems have been
   6422  * initialised. This allows the pmap code to perform any initialisation
   6423  * that can only be done one the memory allocation is in place.
   6424  */
   6425 void
   6426 pmap_postinit(void)
   6427 {
   6428 #ifndef ARM_MMU_EXTENDED
   6429 	extern paddr_t physical_start, physical_end;
   6430 	struct l1_ttable *l1;
   6431 	struct pglist plist;
   6432 	struct vm_page *m;
   6433 	pd_entry_t *pdep;
   6434 	vaddr_t va, eva;
   6435 	u_int loop, needed;
   6436 	int error;
   6437 #endif
   6438 
   6439 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6440 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6441 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6442 
   6443 #ifndef ARM_MMU_EXTENDED
   6444 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6445 	needed -= 1;
   6446 
   6447 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6448 
   6449 	for (loop = 0; loop < needed; loop++, l1++) {
   6450 		/* Allocate a L1 page table */
   6451 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6452 		if (va == 0)
   6453 			panic("Cannot allocate L1 KVM");
   6454 
   6455 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6456 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6457 		if (error)
   6458 			panic("Cannot allocate L1 physical pages");
   6459 
   6460 		m = TAILQ_FIRST(&plist);
   6461 		eva = va + L1_TABLE_SIZE;
   6462 		pdep = (pd_entry_t *)va;
   6463 
   6464 		while (m && va < eva) {
   6465 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6466 
   6467 			pmap_kenter_pa(va, pa,
   6468 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6469 
   6470 			va += PAGE_SIZE;
   6471 			m = TAILQ_NEXT(m, pageq.queue);
   6472 		}
   6473 
   6474 #ifdef DIAGNOSTIC
   6475 		if (m)
   6476 			panic("pmap_alloc_l1pt: pglist not empty");
   6477 #endif	/* DIAGNOSTIC */
   6478 
   6479 		pmap_init_l1(l1, pdep);
   6480 	}
   6481 
   6482 #ifdef DEBUG
   6483 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6484 	    needed);
   6485 #endif
   6486 #endif /* !ARM_MMU_EXTENDED */
   6487 }
   6488 
   6489 /*
   6490  * Note that the following routines are used by board-specific initialisation
   6491  * code to configure the initial kernel page tables.
   6492  *
   6493  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   6494  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   6495  * behaviour of the old pmap, and provides an easy migration path for
   6496  * initial bring-up of the new pmap on existing ports. Fortunately,
   6497  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   6498  * will be deprecated.
   6499  *
   6500  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   6501  * tables.
   6502  */
   6503 
   6504 /*
   6505  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6506  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6507  * find them as necessary.
   6508  *
   6509  * Note that the data on this list MUST remain valid after initarm() returns,
   6510  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   6511  */
   6512 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6513 
   6514 static vaddr_t
   6515 kernel_pt_lookup(paddr_t pa)
   6516 {
   6517 	pv_addr_t *pv;
   6518 
   6519 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6520 		if (pv->pv_pa == (pa & ~PGOFSET))
   6521 			return (pv->pv_va | (pa & PGOFSET));
   6522 	}
   6523 	return (0);
   6524 }
   6525 
   6526 /*
   6527  * pmap_map_section:
   6528  *
   6529  *	Create a single section mapping.
   6530  */
   6531 void
   6532 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6533 {
   6534 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6535 	const size_t l1slot = l1pte_index(va);
   6536 	pd_entry_t fl;
   6537 
   6538 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6539 
   6540 	switch (cache) {
   6541 	case PTE_NOCACHE:
   6542 	default:
   6543 		fl = 0;
   6544 		break;
   6545 
   6546 	case PTE_CACHE:
   6547 		fl = pte_l1_s_cache_mode;
   6548 		break;
   6549 
   6550 	case PTE_PAGETABLE:
   6551 		fl = pte_l1_s_cache_mode_pt;
   6552 		break;
   6553 	}
   6554 
   6555 	const pd_entry_t npde = L1_S_PROTO | pa |
   6556 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6557 	l1pte_setone(pdep + l1slot, npde);
   6558 	PDE_SYNC(pdep + l1slot);
   6559 }
   6560 
   6561 /*
   6562  * pmap_map_entry:
   6563  *
   6564  *	Create a single page mapping.
   6565  */
   6566 void
   6567 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6568 {
   6569 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6570 	const size_t l1slot = l1pte_index(va);
   6571 	pt_entry_t npte;
   6572 	pt_entry_t *ptep;
   6573 
   6574 	KASSERT(((va | pa) & PGOFSET) == 0);
   6575 
   6576 	switch (cache) {
   6577 	case PTE_NOCACHE:
   6578 	default:
   6579 		npte = 0;
   6580 		break;
   6581 
   6582 	case PTE_CACHE:
   6583 		npte = pte_l2_s_cache_mode;
   6584 		break;
   6585 
   6586 	case PTE_PAGETABLE:
   6587 		npte = pte_l2_s_cache_mode_pt;
   6588 		break;
   6589 	}
   6590 
   6591 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6592 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   6593 
   6594 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6595 	if (ptep == NULL)
   6596 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   6597 
   6598 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   6599 #ifdef ARM_MMU_EXTENDED
   6600 	if (prot & VM_PROT_EXECUTE) {
   6601 		npte &= ~L2_XS_XN;
   6602 	}
   6603 #endif
   6604 	ptep += l2pte_index(va);
   6605 	l2pte_set(ptep, npte, 0);
   6606 	PTE_SYNC(ptep);
   6607 }
   6608 
   6609 /*
   6610  * pmap_link_l2pt:
   6611  *
   6612  *	Link the L2 page table specified by "l2pv" into the L1
   6613  *	page table at the slot for "va".
   6614  */
   6615 void
   6616 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   6617 {
   6618 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   6619 
   6620 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   6621 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   6622 
   6623 	const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   6624 	    | l2pv->pv_pa;
   6625 
   6626 	l1pte_set(pdep, npde);
   6627 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   6628 
   6629 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   6630 }
   6631 
   6632 /*
   6633  * pmap_map_chunk:
   6634  *
   6635  *	Map a chunk of memory using the most efficient mappings
   6636  *	possible (section, large page, small page) into the
   6637  *	provided L1 and L2 tables at the specified virtual address.
   6638  */
   6639 vsize_t
   6640 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   6641     int prot, int cache)
   6642 {
   6643 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6644 	pt_entry_t f1, f2s, f2l;
   6645 	vsize_t resid;
   6646 
   6647 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   6648 
   6649 	if (l1pt == 0)
   6650 		panic("pmap_map_chunk: no L1 table provided");
   6651 
   6652 #ifdef VERBOSE_INIT_ARM
   6653 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   6654 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   6655 #endif
   6656 
   6657 	switch (cache) {
   6658 	case PTE_NOCACHE:
   6659 	default:
   6660 		f1 = 0;
   6661 		f2l = 0;
   6662 		f2s = 0;
   6663 		break;
   6664 
   6665 	case PTE_CACHE:
   6666 		f1 = pte_l1_s_cache_mode;
   6667 		f2l = pte_l2_l_cache_mode;
   6668 		f2s = pte_l2_s_cache_mode;
   6669 		break;
   6670 
   6671 	case PTE_PAGETABLE:
   6672 		f1 = pte_l1_s_cache_mode_pt;
   6673 		f2l = pte_l2_l_cache_mode_pt;
   6674 		f2s = pte_l2_s_cache_mode_pt;
   6675 		break;
   6676 	}
   6677 
   6678 	size = resid;
   6679 
   6680 	while (resid > 0) {
   6681 		const size_t l1slot = l1pte_index(va);
   6682 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   6683 		/* See if we can use a supersection mapping. */
   6684 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   6685 			/* Supersection are always domain 0 */
   6686 			const pd_entry_t npde = L1_SS_PROTO | pa
   6687 #ifdef ARM_MMU_EXTENDED_XXX
   6688 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6689 #endif
   6690 #ifdef ARM_MMU_EXTENDED
   6691 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6692 #endif
   6693 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   6694 #ifdef VERBOSE_INIT_ARM
   6695 			printf("sS");
   6696 #endif
   6697 			l1pte_set(&pdep[l1slot], npde);
   6698 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   6699 			va += L1_SS_SIZE;
   6700 			pa += L1_SS_SIZE;
   6701 			resid -= L1_SS_SIZE;
   6702 			continue;
   6703 		}
   6704 #endif
   6705 		/* See if we can use a section mapping. */
   6706 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   6707 			const pd_entry_t npde = L1_S_PROTO | pa
   6708 #ifdef ARM_MMU_EXTENDED_XXX
   6709 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6710 #endif
   6711 #ifdef ARM_MMU_EXTENDED
   6712 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6713 #endif
   6714 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   6715 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6716 #ifdef VERBOSE_INIT_ARM
   6717 			printf("S");
   6718 #endif
   6719 			l1pte_set(&pdep[l1slot], npde);
   6720 			PDE_SYNC(&pdep[l1slot]);
   6721 			va += L1_S_SIZE;
   6722 			pa += L1_S_SIZE;
   6723 			resid -= L1_S_SIZE;
   6724 			continue;
   6725 		}
   6726 
   6727 		/*
   6728 		 * Ok, we're going to use an L2 table.  Make sure
   6729 		 * one is actually in the corresponding L1 slot
   6730 		 * for the current VA.
   6731 		 */
   6732 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6733 			panic("%s: no L2 table for VA %#lx", __func__, va);
   6734 
   6735 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6736 		if (ptep == NULL)
   6737 			panic("%s: can't find L2 table for VA %#lx", __func__,
   6738 			    va);
   6739 
   6740 		ptep += l2pte_index(va);
   6741 
   6742 		/* See if we can use a L2 large page mapping. */
   6743 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   6744 			const pt_entry_t npte = L2_L_PROTO | pa
   6745 #ifdef ARM_MMU_EXTENDED_XXX
   6746 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   6747 #endif
   6748 #ifdef ARM_MMU_EXTENDED
   6749 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6750 #endif
   6751 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   6752 #ifdef VERBOSE_INIT_ARM
   6753 			printf("L");
   6754 #endif
   6755 			l2pte_set(ptep, npte, 0);
   6756 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   6757 			va += L2_L_SIZE;
   6758 			pa += L2_L_SIZE;
   6759 			resid -= L2_L_SIZE;
   6760 			continue;
   6761 		}
   6762 
   6763 		/* Use a small page mapping. */
   6764 #ifdef VERBOSE_INIT_ARM
   6765 		printf("P");
   6766 #endif
   6767 		const pt_entry_t npte = L2_S_PROTO | pa
   6768 #ifdef ARM_MMU_EXTENDED_XXX
   6769 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   6770 #endif
   6771 #ifdef ARM_MMU_EXTENDED
   6772 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6773 #endif
   6774 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   6775 		l2pte_set(ptep, npte, 0);
   6776 		PTE_SYNC(ptep);
   6777 		va += PAGE_SIZE;
   6778 		pa += PAGE_SIZE;
   6779 		resid -= PAGE_SIZE;
   6780 	}
   6781 #ifdef VERBOSE_INIT_ARM
   6782 	printf("\n");
   6783 #endif
   6784 	return (size);
   6785 }
   6786 
   6787 /********************** Static device map routines ***************************/
   6788 
   6789 static const struct pmap_devmap *pmap_devmap_table;
   6790 
   6791 /*
   6792  * Register the devmap table.  This is provided in case early console
   6793  * initialization needs to register mappings created by bootstrap code
   6794  * before pmap_devmap_bootstrap() is called.
   6795  */
   6796 void
   6797 pmap_devmap_register(const struct pmap_devmap *table)
   6798 {
   6799 
   6800 	pmap_devmap_table = table;
   6801 }
   6802 
   6803 /*
   6804  * Map all of the static regions in the devmap table, and remember
   6805  * the devmap table so other parts of the kernel can look up entries
   6806  * later.
   6807  */
   6808 void
   6809 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   6810 {
   6811 	int i;
   6812 
   6813 	pmap_devmap_table = table;
   6814 
   6815 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6816 #ifdef VERBOSE_INIT_ARM
   6817 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   6818 		    pmap_devmap_table[i].pd_pa,
   6819 		    pmap_devmap_table[i].pd_pa +
   6820 			pmap_devmap_table[i].pd_size - 1,
   6821 		    pmap_devmap_table[i].pd_va);
   6822 #endif
   6823 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   6824 		    pmap_devmap_table[i].pd_pa,
   6825 		    pmap_devmap_table[i].pd_size,
   6826 		    pmap_devmap_table[i].pd_prot,
   6827 		    pmap_devmap_table[i].pd_cache);
   6828 	}
   6829 }
   6830 
   6831 const struct pmap_devmap *
   6832 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   6833 {
   6834 	uint64_t endpa;
   6835 	int i;
   6836 
   6837 	if (pmap_devmap_table == NULL)
   6838 		return (NULL);
   6839 
   6840 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   6841 
   6842 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6843 		if (pa >= pmap_devmap_table[i].pd_pa &&
   6844 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   6845 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   6846 			return (&pmap_devmap_table[i]);
   6847 	}
   6848 
   6849 	return (NULL);
   6850 }
   6851 
   6852 const struct pmap_devmap *
   6853 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6854 {
   6855 	int i;
   6856 
   6857 	if (pmap_devmap_table == NULL)
   6858 		return (NULL);
   6859 
   6860 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6861 		if (va >= pmap_devmap_table[i].pd_va &&
   6862 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6863 				     pmap_devmap_table[i].pd_size - 1)
   6864 			return (&pmap_devmap_table[i]);
   6865 	}
   6866 
   6867 	return (NULL);
   6868 }
   6869 
   6870 /********************** PTE initialization routines **************************/
   6871 
   6872 /*
   6873  * These routines are called when the CPU type is identified to set up
   6874  * the PTE prototypes, cache modes, etc.
   6875  *
   6876  * The variables are always here, just in case modules need to reference
   6877  * them (though, they shouldn't).
   6878  */
   6879 
   6880 pt_entry_t	pte_l1_s_cache_mode;
   6881 pt_entry_t	pte_l1_s_wc_mode;
   6882 pt_entry_t	pte_l1_s_cache_mode_pt;
   6883 pt_entry_t	pte_l1_s_cache_mask;
   6884 
   6885 pt_entry_t	pte_l2_l_cache_mode;
   6886 pt_entry_t	pte_l2_l_wc_mode;
   6887 pt_entry_t	pte_l2_l_cache_mode_pt;
   6888 pt_entry_t	pte_l2_l_cache_mask;
   6889 
   6890 pt_entry_t	pte_l2_s_cache_mode;
   6891 pt_entry_t	pte_l2_s_wc_mode;
   6892 pt_entry_t	pte_l2_s_cache_mode_pt;
   6893 pt_entry_t	pte_l2_s_cache_mask;
   6894 
   6895 pt_entry_t	pte_l1_s_prot_u;
   6896 pt_entry_t	pte_l1_s_prot_w;
   6897 pt_entry_t	pte_l1_s_prot_ro;
   6898 pt_entry_t	pte_l1_s_prot_mask;
   6899 
   6900 pt_entry_t	pte_l2_s_prot_u;
   6901 pt_entry_t	pte_l2_s_prot_w;
   6902 pt_entry_t	pte_l2_s_prot_ro;
   6903 pt_entry_t	pte_l2_s_prot_mask;
   6904 
   6905 pt_entry_t	pte_l2_l_prot_u;
   6906 pt_entry_t	pte_l2_l_prot_w;
   6907 pt_entry_t	pte_l2_l_prot_ro;
   6908 pt_entry_t	pte_l2_l_prot_mask;
   6909 
   6910 pt_entry_t	pte_l1_ss_proto;
   6911 pt_entry_t	pte_l1_s_proto;
   6912 pt_entry_t	pte_l1_c_proto;
   6913 pt_entry_t	pte_l2_s_proto;
   6914 
   6915 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6916 void		(*pmap_zero_page_func)(paddr_t);
   6917 
   6918 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6919 void
   6920 pmap_pte_init_generic(void)
   6921 {
   6922 
   6923 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6924 	pte_l1_s_wc_mode = L1_S_B;
   6925 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6926 
   6927 	pte_l2_l_cache_mode = L2_B|L2_C;
   6928 	pte_l2_l_wc_mode = L2_B;
   6929 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6930 
   6931 	pte_l2_s_cache_mode = L2_B|L2_C;
   6932 	pte_l2_s_wc_mode = L2_B;
   6933 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6934 
   6935 	/*
   6936 	 * If we have a write-through cache, set B and C.  If
   6937 	 * we have a write-back cache, then we assume setting
   6938 	 * only C will make those pages write-through (except for those
   6939 	 * Cortex CPUs which can read the L1 caches).
   6940 	 */
   6941 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6942 #if ARM_MMU_V7 > 0
   6943 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6944 #endif
   6945 #if ARM_MMU_V6 > 0
   6946 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6947 #endif
   6948 	    || false) {
   6949 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6950 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6951 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6952 	} else {
   6953 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6954 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6955 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6956 	}
   6957 
   6958 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6959 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6960 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6961 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6962 
   6963 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6964 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6965 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6966 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6967 
   6968 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6969 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6970 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6971 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6972 
   6973 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6974 	pte_l1_s_proto = L1_S_PROTO_generic;
   6975 	pte_l1_c_proto = L1_C_PROTO_generic;
   6976 	pte_l2_s_proto = L2_S_PROTO_generic;
   6977 
   6978 	pmap_copy_page_func = pmap_copy_page_generic;
   6979 	pmap_zero_page_func = pmap_zero_page_generic;
   6980 }
   6981 
   6982 #if defined(CPU_ARM8)
   6983 void
   6984 pmap_pte_init_arm8(void)
   6985 {
   6986 
   6987 	/*
   6988 	 * ARM8 is compatible with generic, but we need to use
   6989 	 * the page tables uncached.
   6990 	 */
   6991 	pmap_pte_init_generic();
   6992 
   6993 	pte_l1_s_cache_mode_pt = 0;
   6994 	pte_l2_l_cache_mode_pt = 0;
   6995 	pte_l2_s_cache_mode_pt = 0;
   6996 }
   6997 #endif /* CPU_ARM8 */
   6998 
   6999 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   7000 void
   7001 pmap_pte_init_arm9(void)
   7002 {
   7003 
   7004 	/*
   7005 	 * ARM9 is compatible with generic, but we want to use
   7006 	 * write-through caching for now.
   7007 	 */
   7008 	pmap_pte_init_generic();
   7009 
   7010 	pte_l1_s_cache_mode = L1_S_C;
   7011 	pte_l2_l_cache_mode = L2_C;
   7012 	pte_l2_s_cache_mode = L2_C;
   7013 
   7014 	pte_l1_s_wc_mode = L1_S_B;
   7015 	pte_l2_l_wc_mode = L2_B;
   7016 	pte_l2_s_wc_mode = L2_B;
   7017 
   7018 	pte_l1_s_cache_mode_pt = L1_S_C;
   7019 	pte_l2_l_cache_mode_pt = L2_C;
   7020 	pte_l2_s_cache_mode_pt = L2_C;
   7021 }
   7022 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   7023 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   7024 
   7025 #if defined(CPU_ARM10)
   7026 void
   7027 pmap_pte_init_arm10(void)
   7028 {
   7029 
   7030 	/*
   7031 	 * ARM10 is compatible with generic, but we want to use
   7032 	 * write-through caching for now.
   7033 	 */
   7034 	pmap_pte_init_generic();
   7035 
   7036 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   7037 	pte_l2_l_cache_mode = L2_B | L2_C;
   7038 	pte_l2_s_cache_mode = L2_B | L2_C;
   7039 
   7040 	pte_l1_s_cache_mode = L1_S_B;
   7041 	pte_l2_l_cache_mode = L2_B;
   7042 	pte_l2_s_cache_mode = L2_B;
   7043 
   7044 	pte_l1_s_cache_mode_pt = L1_S_C;
   7045 	pte_l2_l_cache_mode_pt = L2_C;
   7046 	pte_l2_s_cache_mode_pt = L2_C;
   7047 
   7048 }
   7049 #endif /* CPU_ARM10 */
   7050 
   7051 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   7052 void
   7053 pmap_pte_init_arm11(void)
   7054 {
   7055 
   7056 	/*
   7057 	 * ARM11 is compatible with generic, but we want to use
   7058 	 * write-through caching for now.
   7059 	 */
   7060 	pmap_pte_init_generic();
   7061 
   7062 	pte_l1_s_cache_mode = L1_S_C;
   7063 	pte_l2_l_cache_mode = L2_C;
   7064 	pte_l2_s_cache_mode = L2_C;
   7065 
   7066 	pte_l1_s_wc_mode = L1_S_B;
   7067 	pte_l2_l_wc_mode = L2_B;
   7068 	pte_l2_s_wc_mode = L2_B;
   7069 
   7070 	pte_l1_s_cache_mode_pt = L1_S_C;
   7071 	pte_l2_l_cache_mode_pt = L2_C;
   7072 	pte_l2_s_cache_mode_pt = L2_C;
   7073 }
   7074 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   7075 
   7076 #if ARM_MMU_SA1 == 1
   7077 void
   7078 pmap_pte_init_sa1(void)
   7079 {
   7080 
   7081 	/*
   7082 	 * The StrongARM SA-1 cache does not have a write-through
   7083 	 * mode.  So, do the generic initialization, then reset
   7084 	 * the page table cache mode to B=1,C=1, and note that
   7085 	 * the PTEs need to be sync'd.
   7086 	 */
   7087 	pmap_pte_init_generic();
   7088 
   7089 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7090 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7091 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7092 
   7093 	pmap_needs_pte_sync = 1;
   7094 }
   7095 #endif /* ARM_MMU_SA1 == 1*/
   7096 
   7097 #if ARM_MMU_XSCALE == 1
   7098 #if (ARM_NMMUS > 1)
   7099 static u_int xscale_use_minidata;
   7100 #endif
   7101 
   7102 void
   7103 pmap_pte_init_xscale(void)
   7104 {
   7105 	uint32_t auxctl;
   7106 	int write_through = 0;
   7107 
   7108 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7109 	pte_l1_s_wc_mode = L1_S_B;
   7110 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7111 
   7112 	pte_l2_l_cache_mode = L2_B|L2_C;
   7113 	pte_l2_l_wc_mode = L2_B;
   7114 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7115 
   7116 	pte_l2_s_cache_mode = L2_B|L2_C;
   7117 	pte_l2_s_wc_mode = L2_B;
   7118 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7119 
   7120 	pte_l1_s_cache_mode_pt = L1_S_C;
   7121 	pte_l2_l_cache_mode_pt = L2_C;
   7122 	pte_l2_s_cache_mode_pt = L2_C;
   7123 
   7124 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7125 	/*
   7126 	 * The XScale core has an enhanced mode where writes that
   7127 	 * miss the cache cause a cache line to be allocated.  This
   7128 	 * is significantly faster than the traditional, write-through
   7129 	 * behavior of this case.
   7130 	 */
   7131 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7132 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7133 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7134 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7135 
   7136 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7137 	/*
   7138 	 * Some versions of the XScale core have various bugs in
   7139 	 * their cache units, the work-around for which is to run
   7140 	 * the cache in write-through mode.  Unfortunately, this
   7141 	 * has a major (negative) impact on performance.  So, we
   7142 	 * go ahead and run fast-and-loose, in the hopes that we
   7143 	 * don't line up the planets in a way that will trip the
   7144 	 * bugs.
   7145 	 *
   7146 	 * However, we give you the option to be slow-but-correct.
   7147 	 */
   7148 	write_through = 1;
   7149 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7150 	/* force write back cache mode */
   7151 	write_through = 0;
   7152 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7153 	/*
   7154 	 * Intel PXA2[15]0 processors are known to have a bug in
   7155 	 * write-back cache on revision 4 and earlier (stepping
   7156 	 * A[01] and B[012]).  Fixed for C0 and later.
   7157 	 */
   7158 	{
   7159 		uint32_t id, type;
   7160 
   7161 		id = cpufunc_id();
   7162 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7163 
   7164 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7165 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7166 				/* write through for stepping A0-1 and B0-2 */
   7167 				write_through = 1;
   7168 			}
   7169 		}
   7170 	}
   7171 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7172 
   7173 	if (write_through) {
   7174 		pte_l1_s_cache_mode = L1_S_C;
   7175 		pte_l2_l_cache_mode = L2_C;
   7176 		pte_l2_s_cache_mode = L2_C;
   7177 	}
   7178 
   7179 #if (ARM_NMMUS > 1)
   7180 	xscale_use_minidata = 1;
   7181 #endif
   7182 
   7183 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7184 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7185 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7186 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7187 
   7188 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7189 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7190 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7191 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7192 
   7193 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7194 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7195 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7196 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7197 
   7198 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7199 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7200 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7201 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7202 
   7203 	pmap_copy_page_func = pmap_copy_page_xscale;
   7204 	pmap_zero_page_func = pmap_zero_page_xscale;
   7205 
   7206 	/*
   7207 	 * Disable ECC protection of page table access, for now.
   7208 	 */
   7209 	auxctl = armreg_auxctl_read();
   7210 	auxctl &= ~XSCALE_AUXCTL_P;
   7211 	armreg_auxctl_write(auxctl);
   7212 }
   7213 
   7214 /*
   7215  * xscale_setup_minidata:
   7216  *
   7217  *	Set up the mini-data cache clean area.  We require the
   7218  *	caller to allocate the right amount of physically and
   7219  *	virtually contiguous space.
   7220  */
   7221 void
   7222 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7223 {
   7224 	extern vaddr_t xscale_minidata_clean_addr;
   7225 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   7226 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7227 	vsize_t size;
   7228 	uint32_t auxctl;
   7229 
   7230 	xscale_minidata_clean_addr = va;
   7231 
   7232 	/* Round it to page size. */
   7233 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7234 
   7235 	for (; size != 0;
   7236 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7237 		const size_t l1slot = l1pte_index(va);
   7238 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7239 		if (ptep == NULL)
   7240 			panic("xscale_setup_minidata: can't find L2 table for "
   7241 			    "VA 0x%08lx", va);
   7242 
   7243 		ptep += l2pte_index(va);
   7244 		pt_entry_t opte = *ptep;
   7245 		l2pte_set(ptep,
   7246 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7247 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7248 	}
   7249 
   7250 	/*
   7251 	 * Configure the mini-data cache for write-back with
   7252 	 * read/write-allocate.
   7253 	 *
   7254 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7255 	 * make sure it contains no valid data!  In order to do that,
   7256 	 * we must issue a global data cache invalidate command!
   7257 	 *
   7258 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7259 	 * THIS IS VERY IMPORTANT!
   7260 	 */
   7261 
   7262 	/* Invalidate data and mini-data. */
   7263 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7264 	auxctl = armreg_auxctl_read();
   7265 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7266 	armreg_auxctl_write(auxctl);
   7267 }
   7268 
   7269 /*
   7270  * Change the PTEs for the specified kernel mappings such that they
   7271  * will use the mini data cache instead of the main data cache.
   7272  */
   7273 void
   7274 pmap_uarea(vaddr_t va)
   7275 {
   7276 	vaddr_t next_bucket, eva;
   7277 
   7278 #if (ARM_NMMUS > 1)
   7279 	if (xscale_use_minidata == 0)
   7280 		return;
   7281 #endif
   7282 
   7283 	eva = va + USPACE;
   7284 
   7285 	while (va < eva) {
   7286 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7287 		if (next_bucket > eva)
   7288 			next_bucket = eva;
   7289 
   7290 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7291 		KDASSERT(l2b != NULL);
   7292 
   7293 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7294 		pt_entry_t *ptep = sptep;
   7295 
   7296 		while (va < next_bucket) {
   7297 			const pt_entry_t opte = *ptep;
   7298 			if (!l2pte_minidata_p(opte)) {
   7299 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7300 				cpu_tlb_flushD_SE(va);
   7301 				l2pte_set(ptep, opte & ~L2_B, opte);
   7302 			}
   7303 			ptep += PAGE_SIZE / L2_S_SIZE;
   7304 			va += PAGE_SIZE;
   7305 		}
   7306 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7307 	}
   7308 	cpu_cpwait();
   7309 }
   7310 #endif /* ARM_MMU_XSCALE == 1 */
   7311 
   7312 
   7313 #if defined(CPU_ARM11MPCORE)
   7314 
   7315 void
   7316 pmap_pte_init_arm11mpcore(void)
   7317 {
   7318 
   7319 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   7320 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7321 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7322 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7323 	/* use extended small page (without APn, with TEX) */
   7324 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7325 #else
   7326 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7327 #endif
   7328 
   7329 	/* write-back, write-allocate */
   7330 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7331 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7332 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7333 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7334 #else
   7335 	/* no TEX. read-allocate */
   7336 	pte_l2_s_cache_mode = L2_C | L2_B;
   7337 #endif
   7338 	/*
   7339 	 * write-back, write-allocate for page tables.
   7340 	 */
   7341 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7342 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7343 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7344 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7345 #else
   7346 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7347 #endif
   7348 
   7349 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7350 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7351 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7352 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7353 
   7354 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7355 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7356 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7357 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7358 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7359 
   7360 #else
   7361 	/* with AP[0..3] */
   7362 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7363 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7364 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7365 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7366 #endif
   7367 
   7368 #ifdef	ARM11MPCORE_COMPAT_MMU
   7369 	/* with AP[0..3] */
   7370 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7371 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7372 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7373 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7374 
   7375 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7376 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7377 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7378 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7379 #else
   7380 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7381 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7382 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7383 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7384 
   7385 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7386 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7387 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7388 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7389 #endif
   7390 
   7391 	pmap_copy_page_func = pmap_copy_page_generic;
   7392 	pmap_zero_page_func = pmap_zero_page_generic;
   7393 	pmap_needs_pte_sync = 1;
   7394 }
   7395 #endif	/* CPU_ARM11MPCORE */
   7396 
   7397 
   7398 #if ARM_MMU_V7 == 1
   7399 void
   7400 pmap_pte_init_armv7(void)
   7401 {
   7402 	/*
   7403 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7404 	 * AP field is zero, that now means "no access" rather than
   7405 	 * read-only. The prototypes are a little different because of
   7406 	 * the XN bit.
   7407 	 */
   7408 	pmap_pte_init_generic();
   7409 
   7410 	pmap_needs_pte_sync = 1;
   7411 
   7412 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7413 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7414 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7415 
   7416 	/*
   7417 	 * If the core support coherent walk then updates to translation tables
   7418 	 * do not require a clean to the point of unification to ensure
   7419 	 * visibility by subsequent translation table walks.  That means we can
   7420 	 * map everything shareable and cached and the right thing will happen.
   7421 	 */
   7422         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7423 		pmap_needs_pte_sync = 0;
   7424 
   7425 		/*
   7426 		 * write-back, no write-allocate, shareable for normal pages.
   7427 		 */
   7428 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7429 		pte_l2_l_cache_mode |= L2_XS_S;
   7430 		pte_l2_s_cache_mode |= L2_XS_S;
   7431 	}
   7432 
   7433 	/*
   7434 	 * Page tables are just all other memory.  We can use write-back since
   7435 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7436 	 */
   7437 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7438 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7439 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7440 
   7441 	/*
   7442 	 * Check the Memory Model Features to see if this CPU supports
   7443 	 * the TLBIASID coproc op.
   7444 	 */
   7445 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7446 		arm_has_tlbiasid_p = true;
   7447 	}
   7448 
   7449 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7450 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7451 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7452 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7453 
   7454 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7455 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7456 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7457 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7458 
   7459 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7460 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7461 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7462 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7463 
   7464 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7465 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7466 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7467 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7468 
   7469 }
   7470 #endif /* ARM_MMU_V7 */
   7471 
   7472 /*
   7473  * return the PA of the current L1 table, for use when handling a crash dump
   7474  */
   7475 uint32_t
   7476 pmap_kernel_L1_addr(void)
   7477 {
   7478 #ifdef ARM_MMU_EXTENDED
   7479 	return pmap_kernel()->pm_l1_pa;
   7480 #else
   7481 	return pmap_kernel()->pm_l1->l1_physaddr;
   7482 #endif
   7483 }
   7484 
   7485 #if defined(DDB)
   7486 /*
   7487  * A couple of ddb-callable functions for dumping pmaps
   7488  */
   7489 void pmap_dump_all(void);
   7490 void pmap_dump(pmap_t);
   7491 
   7492 void
   7493 pmap_dump_all(void)
   7494 {
   7495 	pmap_t pm;
   7496 
   7497 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   7498 		if (pm == pmap_kernel())
   7499 			continue;
   7500 		pmap_dump(pm);
   7501 		printf("\n");
   7502 	}
   7503 }
   7504 
   7505 static pt_entry_t ncptes[64];
   7506 static void pmap_dump_ncpg(pmap_t);
   7507 
   7508 void
   7509 pmap_dump(pmap_t pm)
   7510 {
   7511 	struct l2_dtable *l2;
   7512 	struct l2_bucket *l2b;
   7513 	pt_entry_t *ptep, pte;
   7514 	vaddr_t l2_va, l2b_va, va;
   7515 	int i, j, k, occ, rows = 0;
   7516 
   7517 	if (pm == pmap_kernel())
   7518 		printf("pmap_kernel (%p): ", pm);
   7519 	else
   7520 		printf("user pmap (%p): ", pm);
   7521 
   7522 #ifdef ARM_MMU_EXTENDED
   7523 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7524 #else
   7525 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7526 #endif
   7527 
   7528 	l2_va = 0;
   7529 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7530 		l2 = pm->pm_l2[i];
   7531 
   7532 		if (l2 == NULL || l2->l2_occupancy == 0)
   7533 			continue;
   7534 
   7535 		l2b_va = l2_va;
   7536 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7537 			l2b = &l2->l2_bucket[j];
   7538 
   7539 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7540 				continue;
   7541 
   7542 			ptep = l2b->l2b_kva;
   7543 
   7544 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7545 				;
   7546 
   7547 			k &= ~63;
   7548 			occ = l2b->l2b_occupancy;
   7549 			va = l2b_va + (k * 4096);
   7550 			for (; k < 256; k++, va += 0x1000) {
   7551 				char ch = ' ';
   7552 				if ((k % 64) == 0) {
   7553 					if ((rows % 8) == 0) {
   7554 						printf(
   7555 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7556 					}
   7557 					printf("%08lx: ", va);
   7558 				}
   7559 
   7560 				ncptes[k & 63] = 0;
   7561 				pte = ptep[k];
   7562 				if (pte == 0) {
   7563 					ch = '.';
   7564 				} else {
   7565 					occ--;
   7566 					switch (pte & 0x0c) {
   7567 					case 0x00:
   7568 						ch = 'D'; /* No cache No buff */
   7569 						break;
   7570 					case 0x04:
   7571 						ch = 'B'; /* No cache buff */
   7572 						break;
   7573 					case 0x08:
   7574 						if (pte & 0x40)
   7575 							ch = 'm';
   7576 						else
   7577 						   ch = 'C'; /* Cache No buff */
   7578 						break;
   7579 					case 0x0c:
   7580 						ch = 'F'; /* Cache Buff */
   7581 						break;
   7582 					}
   7583 
   7584 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   7585 						ch += 0x20;
   7586 
   7587 					if ((pte & 0xc) == 0)
   7588 						ncptes[k & 63] = pte;
   7589 				}
   7590 
   7591 				if ((k % 64) == 63) {
   7592 					rows++;
   7593 					printf("%c\n", ch);
   7594 					pmap_dump_ncpg(pm);
   7595 					if (occ == 0)
   7596 						break;
   7597 				} else
   7598 					printf("%c", ch);
   7599 			}
   7600 		}
   7601 	}
   7602 }
   7603 
   7604 static void
   7605 pmap_dump_ncpg(pmap_t pm)
   7606 {
   7607 	struct vm_page *pg;
   7608 	struct vm_page_md *md;
   7609 	struct pv_entry *pv;
   7610 	int i;
   7611 
   7612 	for (i = 0; i < 63; i++) {
   7613 		if (ncptes[i] == 0)
   7614 			continue;
   7615 
   7616 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   7617 		if (pg == NULL)
   7618 			continue;
   7619 		md = VM_PAGE_TO_MD(pg);
   7620 
   7621 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   7622 		    VM_PAGE_TO_PHYS(pg),
   7623 		    md->krw_mappings, md->kro_mappings,
   7624 		    md->urw_mappings, md->uro_mappings);
   7625 
   7626 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   7627 			printf("   %c va 0x%08lx, flags 0x%x\n",
   7628 			    (pm == pv->pv_pmap) ? '*' : ' ',
   7629 			    pv->pv_va, pv->pv_flags);
   7630 		}
   7631 	}
   7632 }
   7633 #endif
   7634 
   7635 #ifdef PMAP_STEAL_MEMORY
   7636 void
   7637 pmap_boot_pageadd(pv_addr_t *newpv)
   7638 {
   7639 	pv_addr_t *pv, *npv;
   7640 
   7641 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   7642 		if (newpv->pv_pa < pv->pv_va) {
   7643 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   7644 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   7645 				newpv->pv_size += pv->pv_size;
   7646 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   7647 			}
   7648 			pv = NULL;
   7649 		} else {
   7650 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   7651 			     pv = npv) {
   7652 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   7653 				KASSERT(pv->pv_pa < newpv->pv_pa);
   7654 				if (newpv->pv_pa > npv->pv_pa)
   7655 					continue;
   7656 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   7657 					pv->pv_size += newpv->pv_size;
   7658 					return;
   7659 				}
   7660 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   7661 					break;
   7662 				newpv->pv_size += npv->pv_size;
   7663 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7664 				SLIST_REMOVE_AFTER(newpv, pv_list);
   7665 				return;
   7666 			}
   7667 		}
   7668 	}
   7669 
   7670 	if (pv) {
   7671 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7672 	} else {
   7673 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   7674 	}
   7675 }
   7676 
   7677 void
   7678 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   7679 	pv_addr_t *rpv)
   7680 {
   7681 	pv_addr_t *pv, **pvp;
   7682 	struct vm_physseg *ps;
   7683 	size_t i;
   7684 
   7685 	KASSERT(amount & PGOFSET);
   7686 	KASSERT((mask & PGOFSET) == 0);
   7687 	KASSERT((match & PGOFSET) == 0);
   7688 	KASSERT(amount != 0);
   7689 
   7690 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7691 	     (pv = *pvp) != NULL;
   7692 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7693 		pv_addr_t *newpv;
   7694 		psize_t off;
   7695 		/*
   7696 		 * If this entry is too small to satify the request...
   7697 		 */
   7698 		KASSERT(pv->pv_size > 0);
   7699 		if (pv->pv_size < amount)
   7700 			continue;
   7701 
   7702 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   7703 			if (((pv->pv_pa + off) & mask) == match
   7704 			    && off + amount <= pv->pv_size)
   7705 				break;
   7706 		}
   7707 		if (off > mask)
   7708 			continue;
   7709 
   7710 		rpv->pv_va = pv->pv_va + off;
   7711 		rpv->pv_pa = pv->pv_pa + off;
   7712 		rpv->pv_size = amount;
   7713 		pv->pv_size -= amount;
   7714 		if (pv->pv_size == 0) {
   7715 			KASSERT(off == 0);
   7716 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7717 			*pvp = SLIST_NEXT(pv, pv_list);
   7718 		} else if (off == 0) {
   7719 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7720 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7721 			*newpv = *pv;
   7722 			newpv->pv_pa += amount;
   7723 			newpv->pv_va += amount;
   7724 			*pvp = newpv;
   7725 		} else if (off < pv->pv_size) {
   7726 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7727 			*newpv = *pv;
   7728 			newpv->pv_size -= off;
   7729 			newpv->pv_pa += off + amount;
   7730 			newpv->pv_va += off + amount;
   7731 
   7732 			SLIST_NEXT(pv, pv_list) = newpv;
   7733 			pv->pv_size = off;
   7734 		} else {
   7735 			KASSERT((vaddr_t) pv != rpv->pv_va);
   7736 		}
   7737 		memset((void *)rpv->pv_va, 0, amount);
   7738 		return;
   7739 	}
   7740 
   7741 	if (vm_nphysseg == 0)
   7742 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   7743 
   7744 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7745 	     (pv = *pvp) != NULL;
   7746 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7747 		if (SLIST_NEXT(pv, pv_list) == NULL)
   7748 			break;
   7749 	}
   7750 	KASSERT(mask == 0);
   7751 	for (i = 0; i < vm_nphysseg; i++) {
   7752 		ps = VM_PHYSMEM_PTR(i);
   7753 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   7754 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   7755 			rpv->pv_va = pv->pv_va;
   7756 			rpv->pv_pa = pv->pv_pa;
   7757 			rpv->pv_size = amount;
   7758 			*pvp = NULL;
   7759 			pmap_map_chunk(kernel_l1pt.pv_va,
   7760 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   7761 			     ptoa(ps->avail_start),
   7762 			     amount - pv->pv_size,
   7763 			     VM_PROT_READ|VM_PROT_WRITE,
   7764 			     PTE_CACHE);
   7765 			ps->avail_start += atop(amount - pv->pv_size);
   7766 			/*
   7767 			 * If we consumed the entire physseg, remove it.
   7768 			 */
   7769 			if (ps->avail_start == ps->avail_end) {
   7770 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   7771 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   7772 			}
   7773 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   7774 			return;
   7775 		}
   7776 	}
   7777 
   7778 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   7779 }
   7780 
   7781 vaddr_t
   7782 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   7783 {
   7784 	pv_addr_t pv;
   7785 
   7786 	pmap_boot_pagealloc(size, 0, 0, &pv);
   7787 
   7788 	return pv.pv_va;
   7789 }
   7790 #endif /* PMAP_STEAL_MEMORY */
   7791 
   7792 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   7793 {
   7794 	sysctl_createv(clog, 0, NULL, NULL,
   7795 			CTLFLAG_PERMANENT,
   7796 			CTLTYPE_NODE, "machdep", NULL,
   7797 			NULL, 0, NULL, 0,
   7798 			CTL_MACHDEP, CTL_EOL);
   7799 
   7800 	sysctl_createv(clog, 0, NULL, NULL,
   7801 			CTLFLAG_PERMANENT,
   7802 			CTLTYPE_INT, "kmpages",
   7803 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   7804 			NULL, 0, &pmap_kmpages, 0,
   7805 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   7806 }
   7807 
   7808 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   7809 struct vm_page *
   7810 arm_pmap_alloc_poolpage(int flags)
   7811 {
   7812 	/*
   7813 	 * On some systems, only some pages may be "coherent" for dma and we
   7814 	 * want to prefer those for pool pages (think mbufs) but fallback to
   7815 	 * any page if none is available.  But we can only fallback if we
   7816 	 * aren't direct mapping memory or all of memory can be direct-mapped.
   7817 	 * If that isn't true, pool changes can only come from direct-mapped
   7818 	 * memory.
   7819 	 */
   7820 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   7821 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   7822 		    UVM_PGA_STRAT_FALLBACK,
   7823 		    arm_poolpage_vmfreelist);
   7824 	}
   7825 
   7826 	return uvm_pagealloc(NULL, 0, NULL, flags);
   7827 }
   7828 #endif
   7829 
   7830 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   7831 void
   7832 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   7833 {
   7834         /* nothing */
   7835 }
   7836 
   7837 int
   7838 pic_ipi_shootdown(void *arg)
   7839 {
   7840 #if PMAP_NEED_TLB_SHOOTDOWN
   7841 	pmap_tlb_shootdown_process();
   7842 #endif
   7843 	return 1;
   7844 }
   7845 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   7846 
   7847 
   7848 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   7849 vaddr_t
   7850 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   7851 {
   7852 	bool ok = false;
   7853 	if (physical_start <= pa && pa < physical_end) {
   7854 #ifdef KERNEL_BASE_VOFFSET
   7855 		const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
   7856 #else
   7857 		const vaddr_t newva = KERNEL_BASE + pa - physical_start;
   7858 #endif
   7859 #ifdef ARM_MMU_EXTENDED
   7860 		if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
   7861 #endif
   7862 			va = newva;
   7863 			ok = true;
   7864 #ifdef ARM_MMU_EXTENDED
   7865 		}
   7866 #endif
   7867 	}
   7868 	KASSERT(ok_p);
   7869 	*ok_p = ok;
   7870 	return va;
   7871 }
   7872 
   7873 vaddr_t
   7874 pmap_map_poolpage(paddr_t pa)
   7875 {
   7876 	bool ok __diagused;
   7877 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   7878 	KASSERT(ok);
   7879 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   7880 	if (arm_cache_prefer_mask != 0) {
   7881 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   7882 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   7883 		pmap_acquire_page_lock(md);
   7884 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   7885 		pmap_release_page_lock(md);
   7886 	}
   7887 #endif
   7888 	return va;
   7889 }
   7890 
   7891 paddr_t
   7892 pmap_unmap_poolpage(vaddr_t va)
   7893 {
   7894 	KASSERT(va >= KERNEL_BASE);
   7895 #ifdef PMAP_CACHE_VIVT
   7896 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   7897 #endif
   7898 #if defined(KERNEL_BASE_VOFFSET)
   7899         return va - KERNEL_BASE_VOFFSET;
   7900 #else
   7901         return va - KERNEL_BASE + physical_start;
   7902 #endif
   7903 }
   7904 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   7905