Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.331
      1 /*	$NetBSD: pmap.c,v 1.331 2015/11/25 08:36:50 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_arm_debug.h"
    190 #include "opt_cpuoptions.h"
    191 #include "opt_pmap_debug.h"
    192 #include "opt_ddb.h"
    193 #include "opt_lockdebug.h"
    194 #include "opt_multiprocessor.h"
    195 
    196 #ifdef MULTIPROCESSOR
    197 #define _INTR_PRIVATE
    198 #endif
    199 
    200 #include <sys/param.h>
    201 #include <sys/types.h>
    202 #include <sys/kernel.h>
    203 #include <sys/systm.h>
    204 #include <sys/proc.h>
    205 #include <sys/intr.h>
    206 #include <sys/pool.h>
    207 #include <sys/kmem.h>
    208 #include <sys/cdefs.h>
    209 #include <sys/cpu.h>
    210 #include <sys/sysctl.h>
    211 #include <sys/bus.h>
    212 #include <sys/atomic.h>
    213 #include <sys/kernhist.h>
    214 
    215 #include <uvm/uvm.h>
    216 #include <uvm/pmap/pmap_pvt.h>
    217 
    218 #include <arm/locore.h>
    219 
    220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.331 2015/11/25 08:36:50 skrll Exp $");
    221 
    222 //#define PMAP_DEBUG
    223 #ifdef PMAP_DEBUG
    224 
    225 /* XXX need to get rid of all refs to this */
    226 int pmap_debug_level = 0;
    227 
    228 /*
    229  * for switching to potentially finer grained debugging
    230  */
    231 #define	PDB_FOLLOW	0x0001
    232 #define	PDB_INIT	0x0002
    233 #define	PDB_ENTER	0x0004
    234 #define	PDB_REMOVE	0x0008
    235 #define	PDB_CREATE	0x0010
    236 #define	PDB_PTPAGE	0x0020
    237 #define	PDB_GROWKERN	0x0040
    238 #define	PDB_BITS	0x0080
    239 #define	PDB_COLLECT	0x0100
    240 #define	PDB_PROTECT	0x0200
    241 #define	PDB_MAP_L1	0x0400
    242 #define	PDB_BOOTSTRAP	0x1000
    243 #define	PDB_PARANOIA	0x2000
    244 #define	PDB_WIRING	0x4000
    245 #define	PDB_PVDUMP	0x8000
    246 #define	PDB_VAC		0x10000
    247 #define	PDB_KENTER	0x20000
    248 #define	PDB_KREMOVE	0x40000
    249 #define	PDB_EXEC	0x80000
    250 
    251 int debugmap = 1;
    252 int pmapdebug = 0;
    253 #define	NPDEBUG(_lev_,_stat_) \
    254 	if (pmapdebug & (_lev_)) \
    255         	((_stat_))
    256 
    257 #else	/* PMAP_DEBUG */
    258 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    259 #endif	/* PMAP_DEBUG */
    260 
    261 /*
    262  * pmap_kernel() points here
    263  */
    264 static struct pmap	kernel_pmap_store = {
    265 #ifndef ARM_MMU_EXTENDED
    266 	.pm_activated = true,
    267 	.pm_domain = PMAP_DOMAIN_KERNEL,
    268 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    269 #endif
    270 };
    271 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    272 #undef pmap_kernel
    273 #define pmap_kernel()	(&kernel_pmap_store)
    274 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    275 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    276 #endif
    277 
    278 /*
    279  * Pool and cache that pmap structures are allocated from.
    280  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    281  * in pmap_create().
    282  */
    283 static struct pool_cache pmap_cache;
    284 static LIST_HEAD(, pmap) pmap_pmaps;
    285 
    286 /*
    287  * Pool of PV structures
    288  */
    289 static struct pool pmap_pv_pool;
    290 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    291 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    292 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    293 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    294 };
    295 
    296 /*
    297  * Pool and cache of l2_dtable structures.
    298  * We use a cache to avoid clearing the structures when they're
    299  * allocated. (196 bytes)
    300  */
    301 static struct pool_cache pmap_l2dtable_cache;
    302 static vaddr_t pmap_kernel_l2dtable_kva;
    303 
    304 /*
    305  * Pool and cache of L2 page descriptors.
    306  * We use a cache to avoid clearing the descriptor table
    307  * when they're allocated. (1KB)
    308  */
    309 static struct pool_cache pmap_l2ptp_cache;
    310 static vaddr_t pmap_kernel_l2ptp_kva;
    311 static paddr_t pmap_kernel_l2ptp_phys;
    312 
    313 #ifdef PMAPCOUNTERS
    314 #define	PMAP_EVCNT_INITIALIZER(name) \
    315 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    316 
    317 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    318 static struct evcnt pmap_ev_vac_clean_one =
    319    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    320 static struct evcnt pmap_ev_vac_flush_one =
    321    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    322 static struct evcnt pmap_ev_vac_flush_lots =
    323    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    324 static struct evcnt pmap_ev_vac_flush_lots2 =
    325    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    329 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    330 
    331 static struct evcnt pmap_ev_vac_color_new =
    332    PMAP_EVCNT_INITIALIZER("new page color");
    333 static struct evcnt pmap_ev_vac_color_reuse =
    334    PMAP_EVCNT_INITIALIZER("ok first page color");
    335 static struct evcnt pmap_ev_vac_color_ok =
    336    PMAP_EVCNT_INITIALIZER("ok page color");
    337 static struct evcnt pmap_ev_vac_color_blind =
    338    PMAP_EVCNT_INITIALIZER("blind page color");
    339 static struct evcnt pmap_ev_vac_color_change =
    340    PMAP_EVCNT_INITIALIZER("change page color");
    341 static struct evcnt pmap_ev_vac_color_erase =
    342    PMAP_EVCNT_INITIALIZER("erase page color");
    343 static struct evcnt pmap_ev_vac_color_none =
    344    PMAP_EVCNT_INITIALIZER("no page color");
    345 static struct evcnt pmap_ev_vac_color_restore =
    346    PMAP_EVCNT_INITIALIZER("restore page color");
    347 
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    355 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    356 #endif
    357 
    358 static struct evcnt pmap_ev_mappings =
    359    PMAP_EVCNT_INITIALIZER("pages mapped");
    360 static struct evcnt pmap_ev_unmappings =
    361    PMAP_EVCNT_INITIALIZER("pages unmapped");
    362 static struct evcnt pmap_ev_remappings =
    363    PMAP_EVCNT_INITIALIZER("pages remapped");
    364 
    365 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    366 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    367 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    368 
    369 static struct evcnt pmap_ev_kernel_mappings =
    370    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    371 static struct evcnt pmap_ev_kernel_unmappings =
    372    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    373 static struct evcnt pmap_ev_kernel_remappings =
    374    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    375 
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    378 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    379 
    380 static struct evcnt pmap_ev_kenter_mappings =
    381    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    382 static struct evcnt pmap_ev_kenter_unmappings =
    383    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    384 static struct evcnt pmap_ev_kenter_remappings =
    385    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    386 static struct evcnt pmap_ev_pt_mappings =
    387    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    388 
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    391 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    392 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    393 
    394 static struct evcnt pmap_ev_fixup_mod =
    395    PMAP_EVCNT_INITIALIZER("page modification emulations");
    396 static struct evcnt pmap_ev_fixup_ref =
    397    PMAP_EVCNT_INITIALIZER("page reference emulations");
    398 static struct evcnt pmap_ev_fixup_exec =
    399    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    400 static struct evcnt pmap_ev_fixup_pdes =
    401    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    402 #ifndef ARM_MMU_EXTENDED
    403 static struct evcnt pmap_ev_fixup_ptesync =
    404    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    405 #endif
    406 
    407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    410 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    411 #ifndef ARM_MMU_EXTENDED
    412 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    413 #endif
    414 
    415 #ifdef PMAP_CACHE_VIPT
    416 static struct evcnt pmap_ev_exec_mappings =
    417    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    418 static struct evcnt pmap_ev_exec_cached =
    419    PMAP_EVCNT_INITIALIZER("exec pages cached");
    420 
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    422 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    423 
    424 static struct evcnt pmap_ev_exec_synced =
    425    PMAP_EVCNT_INITIALIZER("exec pages synced");
    426 static struct evcnt pmap_ev_exec_synced_map =
    427    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    428 #ifndef ARM_MMU_EXTENDED
    429 static struct evcnt pmap_ev_exec_synced_unmap =
    430    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    431 static struct evcnt pmap_ev_exec_synced_remap =
    432    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    433 static struct evcnt pmap_ev_exec_synced_clearbit =
    434    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    435 static struct evcnt pmap_ev_exec_synced_kremove =
    436    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    437 #endif
    438 
    439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    440 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    441 #ifndef ARM_MMU_EXTENDED
    442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    445 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    446 #endif
    447 
    448 static struct evcnt pmap_ev_exec_discarded_unmap =
    449    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    450 static struct evcnt pmap_ev_exec_discarded_zero =
    451    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    452 static struct evcnt pmap_ev_exec_discarded_copy =
    453    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    454 static struct evcnt pmap_ev_exec_discarded_page_protect =
    455    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    456 static struct evcnt pmap_ev_exec_discarded_clearbit =
    457    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    458 static struct evcnt pmap_ev_exec_discarded_kremove =
    459    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    460 #ifdef ARM_MMU_EXTENDED
    461 static struct evcnt pmap_ev_exec_discarded_modfixup =
    462    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    463 #endif
    464 
    465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    470 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    471 #ifdef ARM_MMU_EXTENDED
    472 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    473 #endif
    474 #endif /* PMAP_CACHE_VIPT */
    475 
    476 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    477 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    478 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    479 
    480 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    481 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    482 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    483 
    484 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    485 #else
    486 #define	PMAPCOUNT(x)	((void)0)
    487 #endif
    488 
    489 /*
    490  * pmap copy/zero page, and mem(5) hook point
    491  */
    492 static pt_entry_t *csrc_pte, *cdst_pte;
    493 static vaddr_t csrcp, cdstp;
    494 #ifdef MULTIPROCESSOR
    495 static size_t cnptes;
    496 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    497 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    498 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    499 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    500 #else
    501 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    502 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    503 #define	cpu_csrcp(o)	(csrcp + (o))
    504 #define	cpu_cdstp(o)	(cdstp + (o))
    505 #endif
    506 vaddr_t memhook;			/* used by mem.c & others */
    507 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    508 kmutex_t pmap_lock __cacheline_aligned;
    509 extern void *msgbufaddr;
    510 int pmap_kmpages;
    511 /*
    512  * Flag to indicate if pmap_init() has done its thing
    513  */
    514 bool pmap_initialized;
    515 
    516 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    517 /*
    518  * Virtual end of direct-mapped memory
    519  */
    520 vaddr_t pmap_directlimit;
    521 #endif
    522 
    523 /*
    524  * Misc. locking data structures
    525  */
    526 
    527 static inline void
    528 pmap_acquire_pmap_lock(pmap_t pm)
    529 {
    530 	if (pm == pmap_kernel()) {
    531 #ifdef MULTIPROCESSOR
    532 		KERNEL_LOCK(1, NULL);
    533 #endif
    534 	} else {
    535 		mutex_enter(pm->pm_lock);
    536 	}
    537 }
    538 
    539 static inline void
    540 pmap_release_pmap_lock(pmap_t pm)
    541 {
    542 	if (pm == pmap_kernel()) {
    543 #ifdef MULTIPROCESSOR
    544 		KERNEL_UNLOCK_ONE(NULL);
    545 #endif
    546 	} else {
    547 		mutex_exit(pm->pm_lock);
    548 	}
    549 }
    550 
    551 static inline void
    552 pmap_acquire_page_lock(struct vm_page_md *md)
    553 {
    554 	mutex_enter(&pmap_lock);
    555 }
    556 
    557 static inline void
    558 pmap_release_page_lock(struct vm_page_md *md)
    559 {
    560 	mutex_exit(&pmap_lock);
    561 }
    562 
    563 #ifdef DIAGNOSTIC
    564 static inline int
    565 pmap_page_locked_p(struct vm_page_md *md)
    566 {
    567 	return mutex_owned(&pmap_lock);
    568 }
    569 #endif
    570 
    571 
    572 /*
    573  * Metadata for L1 translation tables.
    574  */
    575 #ifndef ARM_MMU_EXTENDED
    576 struct l1_ttable {
    577 	/* Entry on the L1 Table list */
    578 	SLIST_ENTRY(l1_ttable) l1_link;
    579 
    580 	/* Entry on the L1 Least Recently Used list */
    581 	TAILQ_ENTRY(l1_ttable) l1_lru;
    582 
    583 	/* Track how many domains are allocated from this L1 */
    584 	volatile u_int l1_domain_use_count;
    585 
    586 	/*
    587 	 * A free-list of domain numbers for this L1.
    588 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    589 	 * is slow on ARM.
    590 	 */
    591 	uint8_t l1_domain_first;
    592 	uint8_t l1_domain_free[PMAP_DOMAINS];
    593 
    594 	/* Physical address of this L1 page table */
    595 	paddr_t l1_physaddr;
    596 
    597 	/* KVA of this L1 page table */
    598 	pd_entry_t *l1_kva;
    599 };
    600 
    601 /*
    602  * L1 Page Tables are tracked using a Least Recently Used list.
    603  *  - New L1s are allocated from the HEAD.
    604  *  - Freed L1s are added to the TAIl.
    605  *  - Recently accessed L1s (where an 'access' is some change to one of
    606  *    the userland pmaps which owns this L1) are moved to the TAIL.
    607  */
    608 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    609 static kmutex_t l1_lru_lock __cacheline_aligned;
    610 
    611 /*
    612  * A list of all L1 tables
    613  */
    614 static SLIST_HEAD(, l1_ttable) l1_list;
    615 #endif /* ARM_MMU_EXTENDED */
    616 
    617 /*
    618  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    619  *
    620  * This is normally 16MB worth L2 page descriptors for any given pmap.
    621  * Reference counts are maintained for L2 descriptors so they can be
    622  * freed when empty.
    623  */
    624 struct l2_bucket {
    625 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
    626 	paddr_t l2b_pa;			/* Physical address of same */
    627 	u_short l2b_l1slot;		/* This L2 table's L1 index */
    628 	u_short l2b_occupancy;		/* How many active descriptors */
    629 };
    630 
    631 struct l2_dtable {
    632 	/* The number of L2 page descriptors allocated to this l2_dtable */
    633 	u_int l2_occupancy;
    634 
    635 	/* List of L2 page descriptors */
    636 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
    637 };
    638 
    639 /*
    640  * Given an L1 table index, calculate the corresponding l2_dtable index
    641  * and bucket index within the l2_dtable.
    642  */
    643 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    644 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    645 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    646 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    647 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    648 
    649 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    650 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    651 
    652 /*
    653  * Given a virtual address, this macro returns the
    654  * virtual address required to drop into the next L2 bucket.
    655  */
    656 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    657 
    658 /*
    659  * L2 allocation.
    660  */
    661 #define	pmap_alloc_l2_dtable()		\
    662 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    663 #define	pmap_free_l2_dtable(l2)		\
    664 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    665 #define pmap_alloc_l2_ptp(pap)		\
    666 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    667 	    PR_NOWAIT, (pap)))
    668 
    669 /*
    670  * We try to map the page tables write-through, if possible.  However, not
    671  * all CPUs have a write-through cache mode, so on those we have to sync
    672  * the cache when we frob page tables.
    673  *
    674  * We try to evaluate this at compile time, if possible.  However, it's
    675  * not always possible to do that, hence this run-time var.
    676  */
    677 int	pmap_needs_pte_sync;
    678 
    679 /*
    680  * Real definition of pv_entry.
    681  */
    682 struct pv_entry {
    683 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    684 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    685 	vaddr_t		pv_va;          /* virtual address for mapping */
    686 	u_int		pv_flags;       /* flags */
    687 };
    688 
    689 /*
    690  * Macros to determine if a mapping might be resident in the
    691  * instruction/data cache and/or TLB
    692  */
    693 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    694 /*
    695  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    696  * there are no explicit accesses, so there may be always be TLB entries to
    697  * flush.  If we used ASIDs then this would not be a problem.
    698  */
    699 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    700 #define	PV_BEEN_REFD(f)   (true)
    701 #else
    702 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    703 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    704 #endif
    705 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    706 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    707 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    708 
    709 /*
    710  * Local prototypes
    711  */
    712 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    713 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    714 			    pt_entry_t **);
    715 static bool		pmap_is_current(pmap_t) __unused;
    716 static bool		pmap_is_cached(pmap_t);
    717 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    718 			    pmap_t, vaddr_t, u_int);
    719 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    720 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    721 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    722 			    u_int, u_int);
    723 
    724 static void		pmap_pinit(pmap_t);
    725 static int		pmap_pmap_ctor(void *, void *, int);
    726 
    727 static void		pmap_alloc_l1(pmap_t);
    728 static void		pmap_free_l1(pmap_t);
    729 #ifndef ARM_MMU_EXTENDED
    730 static void		pmap_use_l1(pmap_t);
    731 #endif
    732 
    733 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    734 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    735 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    736 static int		pmap_l2ptp_ctor(void *, void *, int);
    737 static int		pmap_l2dtable_ctor(void *, void *, int);
    738 
    739 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    740 #ifdef PMAP_CACHE_VIVT
    741 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    742 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    743 #endif
    744 
    745 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    746 #ifdef PMAP_CACHE_VIVT
    747 static bool		pmap_clean_page(struct vm_page_md *, bool);
    748 #endif
    749 #ifdef PMAP_CACHE_VIPT
    750 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    751 enum pmap_flush_op {
    752 	PMAP_FLUSH_PRIMARY,
    753 	PMAP_FLUSH_SECONDARY,
    754 	PMAP_CLEAN_PRIMARY
    755 };
    756 #ifndef ARM_MMU_EXTENDED
    757 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    758 #endif
    759 #endif
    760 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    761 static void		pmap_pv_remove(paddr_t);
    762 
    763 #ifndef ARM_MMU_EXTENDED
    764 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    765 #endif
    766 static vaddr_t		kernel_pt_lookup(paddr_t);
    767 
    768 
    769 /*
    770  * Misc variables
    771  */
    772 vaddr_t virtual_avail;
    773 vaddr_t virtual_end;
    774 vaddr_t pmap_curmaxkvaddr;
    775 
    776 paddr_t avail_start;
    777 paddr_t avail_end;
    778 
    779 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    780 pv_addr_t kernelpages;
    781 pv_addr_t kernel_l1pt;
    782 pv_addr_t systempage;
    783 
    784 /* Function to set the debug level of the pmap code */
    785 
    786 #ifdef PMAP_DEBUG
    787 void
    788 pmap_debug(int level)
    789 {
    790 	pmap_debug_level = level;
    791 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    792 }
    793 #endif	/* PMAP_DEBUG */
    794 
    795 #ifdef PMAP_CACHE_VIPT
    796 #define PMAP_VALIDATE_MD_PAGE(md)	\
    797 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    798 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    799 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    800 #endif /* PMAP_CACHE_VIPT */
    801 /*
    802  * A bunch of routines to conditionally flush the caches/TLB depending
    803  * on whether the specified pmap actually needs to be flushed at any
    804  * given time.
    805  */
    806 static inline void
    807 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    808 {
    809 #ifdef ARM_MMU_EXTENDED
    810 	pmap_tlb_invalidate_addr(pm, va);
    811 #else
    812 	if (pm->pm_cstate.cs_tlb_id != 0) {
    813 		if (PV_BEEN_EXECD(flags)) {
    814 			cpu_tlb_flushID_SE(va);
    815 		} else if (PV_BEEN_REFD(flags)) {
    816 			cpu_tlb_flushD_SE(va);
    817 		}
    818 	}
    819 #endif /* ARM_MMU_EXTENDED */
    820 }
    821 
    822 static inline void
    823 pmap_tlb_flushID(pmap_t pm)
    824 {
    825 #ifdef ARM_MMU_EXTENDED
    826 	pmap_tlb_asid_release_all(pm);
    827 #else
    828 	if (pm->pm_cstate.cs_tlb_id) {
    829 		cpu_tlb_flushID();
    830 #if ARM_MMU_V7 == 0
    831 		/*
    832 		 * Speculative loads by Cortex cores can cause TLB entries to
    833 		 * be filled even if there are no explicit accesses, so there
    834 		 * may be always be TLB entries to flush.  If we used ASIDs
    835 		 * then it would not be a problem.
    836 		 * This is not true for other CPUs.
    837 		 */
    838 		pm->pm_cstate.cs_tlb = 0;
    839 #endif /* ARM_MMU_V7 */
    840 	}
    841 #endif /* ARM_MMU_EXTENDED */
    842 }
    843 
    844 #ifndef ARM_MMU_EXTENDED
    845 static inline void
    846 pmap_tlb_flushD(pmap_t pm)
    847 {
    848 	if (pm->pm_cstate.cs_tlb_d) {
    849 		cpu_tlb_flushD();
    850 #if ARM_MMU_V7 == 0
    851 		/*
    852 		 * Speculative loads by Cortex cores can cause TLB entries to
    853 		 * be filled even if there are no explicit accesses, so there
    854 		 * may be always be TLB entries to flush.  If we used ASIDs
    855 		 * then it would not be a problem.
    856 		 * This is not true for other CPUs.
    857 		 */
    858 		pm->pm_cstate.cs_tlb_d = 0;
    859 #endif /* ARM_MMU_V7 */
    860 	}
    861 }
    862 #endif /* ARM_MMU_EXTENDED */
    863 
    864 #ifdef PMAP_CACHE_VIVT
    865 static inline void
    866 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    867 {
    868 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    869 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    870 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    871 		if (do_inv) {
    872 			if (flags & PVF_WRITE)
    873 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    874 			else
    875 				cpu_dcache_inv_range(va, PAGE_SIZE);
    876 		} else if (flags & PVF_WRITE) {
    877 			cpu_dcache_wb_range(va, PAGE_SIZE);
    878 		}
    879 	}
    880 }
    881 
    882 static inline void
    883 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    884 {
    885 	if (PV_BEEN_EXECD(flags)) {
    886 		if (pm->pm_cstate.cs_cache_id) {
    887 			cpu_idcache_wbinv_all();
    888 			pm->pm_cstate.cs_cache = 0;
    889 		}
    890 	} else if (pm->pm_cstate.cs_cache_d) {
    891 		cpu_dcache_wbinv_all();
    892 		pm->pm_cstate.cs_cache_d = 0;
    893 	}
    894 }
    895 #endif /* PMAP_CACHE_VIVT */
    896 
    897 static inline uint8_t
    898 pmap_domain(pmap_t pm)
    899 {
    900 #ifdef ARM_MMU_EXTENDED
    901 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    902 #else
    903 	return pm->pm_domain;
    904 #endif
    905 }
    906 
    907 static inline pd_entry_t *
    908 pmap_l1_kva(pmap_t pm)
    909 {
    910 #ifdef ARM_MMU_EXTENDED
    911 	return pm->pm_l1;
    912 #else
    913 	return pm->pm_l1->l1_kva;
    914 #endif
    915 }
    916 
    917 static inline bool
    918 pmap_is_current(pmap_t pm)
    919 {
    920 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    921 		return true;
    922 
    923 	return false;
    924 }
    925 
    926 static inline bool
    927 pmap_is_cached(pmap_t pm)
    928 {
    929 #ifdef ARM_MMU_EXTENDED
    930 	if (pm == pmap_kernel())
    931 		return true;
    932 #ifdef MULTIPROCESSOR
    933 	// Is this pmap active on any CPU?
    934 	if (!kcpuset_iszero(pm->pm_active))
    935 		return true;
    936 #else
    937 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    938 	// Is this pmap active?
    939 	if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    940 		return true;
    941 #endif
    942 #else
    943 	struct cpu_info * const ci = curcpu();
    944 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    945 	    || ci->ci_pmap_lastuser == pm)
    946 		return true;
    947 #endif /* ARM_MMU_EXTENDED */
    948 
    949 	return false;
    950 }
    951 
    952 /*
    953  * PTE_SYNC_CURRENT:
    954  *
    955  *     Make sure the pte is written out to RAM.
    956  *     We need to do this for one of two cases:
    957  *       - We're dealing with the kernel pmap
    958  *       - There is no pmap active in the cache/tlb.
    959  *       - The specified pmap is 'active' in the cache/tlb.
    960  */
    961 
    962 static inline void
    963 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
    964 {
    965 	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
    966 		PTE_SYNC(ptep);
    967 	arm_dsb();
    968 }
    969 
    970 #ifdef PMAP_INCLUDE_PTE_SYNC
    971 #define	PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
    972 #else
    973 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    974 #endif
    975 
    976 /*
    977  * main pv_entry manipulation functions:
    978  *   pmap_enter_pv: enter a mapping onto a vm_page list
    979  *   pmap_remove_pv: remove a mapping from a vm_page list
    980  *
    981  * NOTE: pmap_enter_pv expects to lock the pvh itself
    982  *       pmap_remove_pv expects the caller to lock the pvh before calling
    983  */
    984 
    985 /*
    986  * pmap_enter_pv: enter a mapping onto a vm_page lst
    987  *
    988  * => caller should hold the proper lock on pmap_main_lock
    989  * => caller should have pmap locked
    990  * => we will gain the lock on the vm_page and allocate the new pv_entry
    991  * => caller should adjust ptp's wire_count before calling
    992  * => caller should not adjust pmap's wire_count
    993  */
    994 static void
    995 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    996     vaddr_t va, u_int flags)
    997 {
    998 	struct pv_entry **pvp;
    999 
   1000 	NPDEBUG(PDB_PVDUMP,
   1001 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
   1002 
   1003 	pv->pv_pmap = pm;
   1004 	pv->pv_va = va;
   1005 	pv->pv_flags = flags;
   1006 
   1007 	pvp = &SLIST_FIRST(&md->pvh_list);
   1008 #ifdef PMAP_CACHE_VIPT
   1009 	/*
   1010 	 * Insert unmanaged entries, writeable first, at the head of
   1011 	 * the pv list.
   1012 	 */
   1013 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1014 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1015 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1016 	}
   1017 	if (!PV_IS_WRITE_P(flags)) {
   1018 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1019 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1020 	}
   1021 #endif
   1022 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1023 	*pvp = pv;				/* ... locked list */
   1024 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1025 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1026 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1027 		md->pvh_attrs |= PVF_KMOD;
   1028 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1029 		md->pvh_attrs |= PVF_DIRTY;
   1030 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1031 #endif
   1032 	if (pm == pmap_kernel()) {
   1033 		PMAPCOUNT(kernel_mappings);
   1034 		if (flags & PVF_WRITE)
   1035 			md->krw_mappings++;
   1036 		else
   1037 			md->kro_mappings++;
   1038 	} else {
   1039 		if (flags & PVF_WRITE)
   1040 			md->urw_mappings++;
   1041 		else
   1042 			md->uro_mappings++;
   1043 	}
   1044 
   1045 #ifdef PMAP_CACHE_VIPT
   1046 #ifndef ARM_MMU_EXTENDED
   1047 	/*
   1048 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1049 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1050 	 */
   1051 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1052 		md->pvh_attrs |= PVF_WRITE;
   1053 	}
   1054 #endif
   1055 	/*
   1056 	 * If this is an exec mapping and its the first exec mapping
   1057 	 * for this page, make sure to sync the I-cache.
   1058 	 */
   1059 	if (PV_IS_EXEC_P(flags)) {
   1060 #ifndef ARM_MMU_EXTENDED
   1061 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1062 			pmap_syncicache_page(md, pa);
   1063 			PMAPCOUNT(exec_synced_map);
   1064 		}
   1065 #endif
   1066 		PMAPCOUNT(exec_mappings);
   1067 	}
   1068 #endif
   1069 
   1070 	PMAPCOUNT(mappings);
   1071 
   1072 	if (pv->pv_flags & PVF_WIRED)
   1073 		++pm->pm_stats.wired_count;
   1074 }
   1075 
   1076 /*
   1077  *
   1078  * pmap_find_pv: Find a pv entry
   1079  *
   1080  * => caller should hold lock on vm_page
   1081  */
   1082 static inline struct pv_entry *
   1083 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1084 {
   1085 	struct pv_entry *pv;
   1086 
   1087 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1088 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1089 			break;
   1090 	}
   1091 
   1092 	return (pv);
   1093 }
   1094 
   1095 /*
   1096  * pmap_remove_pv: try to remove a mapping from a pv_list
   1097  *
   1098  * => caller should hold proper lock on pmap_main_lock
   1099  * => pmap should be locked
   1100  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1101  * => caller should adjust ptp's wire_count and free PTP if needed
   1102  * => caller should NOT adjust pmap's wire_count
   1103  * => we return the removed pv
   1104  */
   1105 static struct pv_entry *
   1106 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1107 {
   1108 	struct pv_entry *pv, **prevptr;
   1109 
   1110 	NPDEBUG(PDB_PVDUMP,
   1111 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
   1112 
   1113 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1114 	pv = *prevptr;
   1115 
   1116 	while (pv) {
   1117 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1118 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
   1119 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
   1120 			if (pv->pv_flags & PVF_WIRED) {
   1121 				--pm->pm_stats.wired_count;
   1122 			}
   1123 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1124 			if (pm == pmap_kernel()) {
   1125 				PMAPCOUNT(kernel_unmappings);
   1126 				if (pv->pv_flags & PVF_WRITE)
   1127 					md->krw_mappings--;
   1128 				else
   1129 					md->kro_mappings--;
   1130 			} else {
   1131 				if (pv->pv_flags & PVF_WRITE)
   1132 					md->urw_mappings--;
   1133 				else
   1134 					md->uro_mappings--;
   1135 			}
   1136 
   1137 			PMAPCOUNT(unmappings);
   1138 #ifdef PMAP_CACHE_VIPT
   1139 			if (!(pv->pv_flags & PVF_WRITE))
   1140 				break;
   1141 			/*
   1142 			 * If this page has had an exec mapping, then if
   1143 			 * this was the last mapping, discard the contents,
   1144 			 * otherwise sync the i-cache for this page.
   1145 			 */
   1146 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1147 #ifdef ARM_MMU_EXTENDED
   1148 				md->pvh_attrs &= ~PVF_EXEC;
   1149 				PMAPCOUNT(exec_discarded_unmap);
   1150 #else
   1151 				if (SLIST_EMPTY(&md->pvh_list)) {
   1152 					md->pvh_attrs &= ~PVF_EXEC;
   1153 					PMAPCOUNT(exec_discarded_unmap);
   1154 				} else {
   1155 					pmap_syncicache_page(md, pa);
   1156 					PMAPCOUNT(exec_synced_unmap);
   1157 				}
   1158 #endif /* ARM_MMU_EXTENDED */
   1159 			}
   1160 #endif /* PMAP_CACHE_VIPT */
   1161 			break;
   1162 		}
   1163 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1164 		pv = *prevptr;				/* advance */
   1165 	}
   1166 
   1167 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1168 	/*
   1169 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1170 	 * clear the KMOD attribute from the page.
   1171 	 */
   1172 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1173 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1174 		md->pvh_attrs &= ~PVF_KMOD;
   1175 
   1176 	/*
   1177 	 * If this was a writeable page and there are no more writeable
   1178 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1179 	 * the contents to memory.
   1180 	 */
   1181 	if (arm_cache_prefer_mask != 0) {
   1182 		if (md->krw_mappings + md->urw_mappings == 0)
   1183 			md->pvh_attrs &= ~PVF_WRITE;
   1184 		PMAP_VALIDATE_MD_PAGE(md);
   1185 	}
   1186 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1187 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1188 
   1189 	return(pv);				/* return removed pv */
   1190 }
   1191 
   1192 /*
   1193  *
   1194  * pmap_modify_pv: Update pv flags
   1195  *
   1196  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1197  * => caller should NOT adjust pmap's wire_count
   1198  * => caller must call pmap_vac_me_harder() if writable status of a page
   1199  *    may have changed.
   1200  * => we return the old flags
   1201  *
   1202  * Modify a physical-virtual mapping in the pv table
   1203  */
   1204 static u_int
   1205 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1206     u_int clr_mask, u_int set_mask)
   1207 {
   1208 	struct pv_entry *npv;
   1209 	u_int flags, oflags;
   1210 
   1211 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1212 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1213 
   1214 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1215 		return (0);
   1216 
   1217 	NPDEBUG(PDB_PVDUMP,
   1218 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1219 
   1220 	/*
   1221 	 * There is at least one VA mapping this page.
   1222 	 */
   1223 
   1224 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1225 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1226 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1227 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1228 			md->pvh_attrs |= PVF_DIRTY;
   1229 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1230 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1231 	}
   1232 
   1233 	oflags = npv->pv_flags;
   1234 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1235 
   1236 	if ((flags ^ oflags) & PVF_WIRED) {
   1237 		if (flags & PVF_WIRED)
   1238 			++pm->pm_stats.wired_count;
   1239 		else
   1240 			--pm->pm_stats.wired_count;
   1241 	}
   1242 
   1243 	if ((flags ^ oflags) & PVF_WRITE) {
   1244 		if (pm == pmap_kernel()) {
   1245 			if (flags & PVF_WRITE) {
   1246 				md->krw_mappings++;
   1247 				md->kro_mappings--;
   1248 			} else {
   1249 				md->kro_mappings++;
   1250 				md->krw_mappings--;
   1251 			}
   1252 		} else {
   1253 			if (flags & PVF_WRITE) {
   1254 				md->urw_mappings++;
   1255 				md->uro_mappings--;
   1256 			} else {
   1257 				md->uro_mappings++;
   1258 				md->urw_mappings--;
   1259 			}
   1260 		}
   1261 	}
   1262 #ifdef PMAP_CACHE_VIPT
   1263 	if (arm_cache_prefer_mask != 0) {
   1264 		if (md->urw_mappings + md->krw_mappings == 0) {
   1265 			md->pvh_attrs &= ~PVF_WRITE;
   1266 		} else {
   1267 			md->pvh_attrs |= PVF_WRITE;
   1268 		}
   1269 	}
   1270 #ifndef ARM_MMU_EXTENDED
   1271 	/*
   1272 	 * We have two cases here: the first is from enter_pv (new exec
   1273 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1274 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1275 	 * to do what pmap_remove_pv would do.
   1276 	 */
   1277 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1278 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1279 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1280 		pmap_syncicache_page(md, pa);
   1281 		PMAPCOUNT(exec_synced_remap);
   1282 	}
   1283 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1284 #endif /* !ARM_MMU_EXTENDED */
   1285 #endif /* PMAP_CACHE_VIPT */
   1286 
   1287 	PMAPCOUNT(remappings);
   1288 
   1289 	return (oflags);
   1290 }
   1291 
   1292 /*
   1293  * Allocate an L1 translation table for the specified pmap.
   1294  * This is called at pmap creation time.
   1295  */
   1296 static void
   1297 pmap_alloc_l1(pmap_t pm)
   1298 {
   1299 #ifdef ARM_MMU_EXTENDED
   1300 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1301 	struct vm_page *pg;
   1302 	bool ok __diagused;
   1303 	for (;;) {
   1304 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1305 		pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
   1306 #else
   1307 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1308 #endif
   1309 		if (pg != NULL)
   1310 			break;
   1311 		uvm_wait("pmapl1alloc");
   1312 	}
   1313 	pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
   1314 	vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
   1315 	KASSERT(ok);
   1316 	KASSERT(va >= KERNEL_BASE);
   1317 
   1318 #else
   1319 	KASSERTMSG(kernel_map != NULL, "pm %p", pm);
   1320 	vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1321 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1322 	KASSERT(va);
   1323 	pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
   1324 #endif
   1325 	pm->pm_l1 = (pd_entry_t *)va;
   1326 	PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
   1327 #else
   1328 	struct l1_ttable *l1;
   1329 	uint8_t domain;
   1330 
   1331 	/*
   1332 	 * Remove the L1 at the head of the LRU list
   1333 	 */
   1334 	mutex_spin_enter(&l1_lru_lock);
   1335 	l1 = TAILQ_FIRST(&l1_lru_list);
   1336 	KDASSERT(l1 != NULL);
   1337 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1338 
   1339 	/*
   1340 	 * Pick the first available domain number, and update
   1341 	 * the link to the next number.
   1342 	 */
   1343 	domain = l1->l1_domain_first;
   1344 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1345 
   1346 	/*
   1347 	 * If there are still free domain numbers in this L1,
   1348 	 * put it back on the TAIL of the LRU list.
   1349 	 */
   1350 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1351 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1352 
   1353 	mutex_spin_exit(&l1_lru_lock);
   1354 
   1355 	/*
   1356 	 * Fix up the relevant bits in the pmap structure
   1357 	 */
   1358 	pm->pm_l1 = l1;
   1359 	pm->pm_domain = domain + 1;
   1360 #endif
   1361 }
   1362 
   1363 /*
   1364  * Free an L1 translation table.
   1365  * This is called at pmap destruction time.
   1366  */
   1367 static void
   1368 pmap_free_l1(pmap_t pm)
   1369 {
   1370 #ifdef ARM_MMU_EXTENDED
   1371 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1372 	struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
   1373 	uvm_pagefree(pg);
   1374 #else
   1375 	uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
   1376 #endif
   1377 	pm->pm_l1 = NULL;
   1378 	pm->pm_l1_pa = 0;
   1379 #else
   1380 	struct l1_ttable *l1 = pm->pm_l1;
   1381 
   1382 	mutex_spin_enter(&l1_lru_lock);
   1383 
   1384 	/*
   1385 	 * If this L1 is currently on the LRU list, remove it.
   1386 	 */
   1387 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1388 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1389 
   1390 	/*
   1391 	 * Free up the domain number which was allocated to the pmap
   1392 	 */
   1393 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1394 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1395 	l1->l1_domain_use_count--;
   1396 
   1397 	/*
   1398 	 * The L1 now must have at least 1 free domain, so add
   1399 	 * it back to the LRU list. If the use count is zero,
   1400 	 * put it at the head of the list, otherwise it goes
   1401 	 * to the tail.
   1402 	 */
   1403 	if (l1->l1_domain_use_count == 0)
   1404 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1405 	else
   1406 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1407 
   1408 	mutex_spin_exit(&l1_lru_lock);
   1409 #endif /* ARM_MMU_EXTENDED */
   1410 }
   1411 
   1412 #ifndef ARM_MMU_EXTENDED
   1413 static inline void
   1414 pmap_use_l1(pmap_t pm)
   1415 {
   1416 	struct l1_ttable *l1;
   1417 
   1418 	/*
   1419 	 * Do nothing if we're in interrupt context.
   1420 	 * Access to an L1 by the kernel pmap must not affect
   1421 	 * the LRU list.
   1422 	 */
   1423 	if (cpu_intr_p() || pm == pmap_kernel())
   1424 		return;
   1425 
   1426 	l1 = pm->pm_l1;
   1427 
   1428 	/*
   1429 	 * If the L1 is not currently on the LRU list, just return
   1430 	 */
   1431 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1432 		return;
   1433 
   1434 	mutex_spin_enter(&l1_lru_lock);
   1435 
   1436 	/*
   1437 	 * Check the use count again, now that we've acquired the lock
   1438 	 */
   1439 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1440 		mutex_spin_exit(&l1_lru_lock);
   1441 		return;
   1442 	}
   1443 
   1444 	/*
   1445 	 * Move the L1 to the back of the LRU list
   1446 	 */
   1447 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1448 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1449 
   1450 	mutex_spin_exit(&l1_lru_lock);
   1451 }
   1452 #endif /* !ARM_MMU_EXTENDED */
   1453 
   1454 /*
   1455  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1456  *
   1457  * Free an L2 descriptor table.
   1458  */
   1459 static inline void
   1460 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1461 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1462 #else
   1463 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1464 #endif
   1465 {
   1466 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1467 	/*
   1468 	 * Note: With a write-back cache, we may need to sync this
   1469 	 * L2 table before re-using it.
   1470 	 * This is because it may have belonged to a non-current
   1471 	 * pmap, in which case the cache syncs would have been
   1472 	 * skipped for the pages that were being unmapped. If the
   1473 	 * L2 table were then to be immediately re-allocated to
   1474 	 * the *current* pmap, it may well contain stale mappings
   1475 	 * which have not yet been cleared by a cache write-back
   1476 	 * and so would still be visible to the mmu.
   1477 	 */
   1478 	if (need_sync)
   1479 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1480 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1481 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1482 }
   1483 
   1484 /*
   1485  * Returns a pointer to the L2 bucket associated with the specified pmap
   1486  * and VA, or NULL if no L2 bucket exists for the address.
   1487  */
   1488 static inline struct l2_bucket *
   1489 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1490 {
   1491 	const size_t l1slot = l1pte_index(va);
   1492 	struct l2_dtable *l2;
   1493 	struct l2_bucket *l2b;
   1494 
   1495 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1496 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1497 		return (NULL);
   1498 
   1499 	return (l2b);
   1500 }
   1501 
   1502 /*
   1503  * Returns a pointer to the L2 bucket associated with the specified pmap
   1504  * and VA.
   1505  *
   1506  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1507  * bucket/page table in place.
   1508  *
   1509  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1510  * increment the bucket occupancy counter appropriately *before*
   1511  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1512  * the bucket/page in the meantime.
   1513  */
   1514 static struct l2_bucket *
   1515 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1516 {
   1517 	const size_t l1slot = l1pte_index(va);
   1518 	struct l2_dtable *l2;
   1519 
   1520 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1521 		/*
   1522 		 * No mapping at this address, as there is
   1523 		 * no entry in the L1 table.
   1524 		 * Need to allocate a new l2_dtable.
   1525 		 */
   1526 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1527 			return (NULL);
   1528 
   1529 		/*
   1530 		 * Link it into the parent pmap
   1531 		 */
   1532 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1533 	}
   1534 
   1535 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1536 
   1537 	/*
   1538 	 * Fetch pointer to the L2 page table associated with the address.
   1539 	 */
   1540 	if (l2b->l2b_kva == NULL) {
   1541 		pt_entry_t *ptep;
   1542 
   1543 		/*
   1544 		 * No L2 page table has been allocated. Chances are, this
   1545 		 * is because we just allocated the l2_dtable, above.
   1546 		 */
   1547 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1548 			/*
   1549 			 * Oops, no more L2 page tables available at this
   1550 			 * time. We may need to deallocate the l2_dtable
   1551 			 * if we allocated a new one above.
   1552 			 */
   1553 			if (l2->l2_occupancy == 0) {
   1554 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1555 				pmap_free_l2_dtable(l2);
   1556 			}
   1557 			return (NULL);
   1558 		}
   1559 
   1560 		l2->l2_occupancy++;
   1561 		l2b->l2b_kva = ptep;
   1562 		l2b->l2b_l1slot = l1slot;
   1563 
   1564 #ifdef ARM_MMU_EXTENDED
   1565 		/*
   1566 		 * We know there will be a mapping here, so simply
   1567 		 * enter this PTP into the L1 now.
   1568 		 */
   1569 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1570 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1571 		    | L1_C_DOM(pmap_domain(pm));
   1572 		KASSERT(*pdep == 0);
   1573 		l1pte_setone(pdep, npde);
   1574 		PDE_SYNC(pdep);
   1575 #endif
   1576 	}
   1577 
   1578 	return (l2b);
   1579 }
   1580 
   1581 /*
   1582  * One or more mappings in the specified L2 descriptor table have just been
   1583  * invalidated.
   1584  *
   1585  * Garbage collect the metadata and descriptor table itself if necessary.
   1586  *
   1587  * The pmap lock must be acquired when this is called (not necessary
   1588  * for the kernel pmap).
   1589  */
   1590 static void
   1591 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1592 {
   1593 	KDASSERT(count <= l2b->l2b_occupancy);
   1594 
   1595 	/*
   1596 	 * Update the bucket's reference count according to how many
   1597 	 * PTEs the caller has just invalidated.
   1598 	 */
   1599 	l2b->l2b_occupancy -= count;
   1600 
   1601 	/*
   1602 	 * Note:
   1603 	 *
   1604 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1605 	 * as that would require checking all Level 1 page tables and
   1606 	 * removing any references to the Level 2 page table. See also the
   1607 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1608 	 *
   1609 	 * We make do with just invalidating the mapping in the L2 table.
   1610 	 *
   1611 	 * This isn't really a big deal in practice and, in fact, leads
   1612 	 * to a performance win over time as we don't need to continually
   1613 	 * alloc/free.
   1614 	 */
   1615 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1616 		return;
   1617 
   1618 	/*
   1619 	 * There are no more valid mappings in this level 2 page table.
   1620 	 * Go ahead and NULL-out the pointer in the bucket, then
   1621 	 * free the page table.
   1622 	 */
   1623 	const size_t l1slot = l2b->l2b_l1slot;
   1624 	pt_entry_t * const ptep = l2b->l2b_kva;
   1625 	l2b->l2b_kva = NULL;
   1626 
   1627 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1628 	pd_entry_t pde __diagused = *pdep;
   1629 
   1630 #ifdef ARM_MMU_EXTENDED
   1631 	/*
   1632 	 * Invalidate the L1 slot.
   1633 	 */
   1634 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1635 #else
   1636 	/*
   1637 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1638 	 */
   1639 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1640 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1641 #endif
   1642 		l1pte_setone(pdep, 0);
   1643 		PDE_SYNC(pdep);
   1644 #ifndef ARM_MMU_EXTENDED
   1645 	}
   1646 #endif
   1647 
   1648 	/*
   1649 	 * Release the L2 descriptor table back to the pool cache.
   1650 	 */
   1651 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1652 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1653 #else
   1654 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1655 #endif
   1656 
   1657 	/*
   1658 	 * Update the reference count in the associated l2_dtable
   1659 	 */
   1660 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1661 	if (--l2->l2_occupancy > 0)
   1662 		return;
   1663 
   1664 	/*
   1665 	 * There are no more valid mappings in any of the Level 1
   1666 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1667 	 * the pointer in the parent pmap and free the l2_dtable.
   1668 	 */
   1669 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1670 	pmap_free_l2_dtable(l2);
   1671 }
   1672 
   1673 /*
   1674  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1675  * structures.
   1676  */
   1677 static int
   1678 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1679 {
   1680 #ifndef PMAP_INCLUDE_PTE_SYNC
   1681 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1682 
   1683 	/*
   1684 	 * The mappings for these page tables were initially made using
   1685 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1686 	 * mode will not be right for page table mappings. To avoid
   1687 	 * polluting the pmap_kenter_pa() code with a special case for
   1688 	 * page tables, we simply fix up the cache-mode here if it's not
   1689 	 * correct.
   1690 	 */
   1691 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1692 		const struct l2_bucket * const l2b =
   1693 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1694 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1695 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1696 		const pt_entry_t opte = *ptep;
   1697 
   1698 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1699 			/*
   1700 			 * Page tables must have the cache-mode set correctly.
   1701 			 */
   1702 			const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
   1703 			    | pte_l2_s_cache_mode_pt;
   1704 			l2pte_set(ptep, npte, opte);
   1705 			PTE_SYNC(ptep);
   1706 			cpu_tlb_flushD_SE(va);
   1707 			cpu_cpwait();
   1708 		}
   1709 	}
   1710 #endif
   1711 
   1712 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1713 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1714 	return (0);
   1715 }
   1716 
   1717 static int
   1718 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1719 {
   1720 
   1721 	memset(v, 0, sizeof(struct l2_dtable));
   1722 	return (0);
   1723 }
   1724 
   1725 static int
   1726 pmap_pmap_ctor(void *arg, void *v, int flags)
   1727 {
   1728 
   1729 	memset(v, 0, sizeof(struct pmap));
   1730 	return (0);
   1731 }
   1732 
   1733 static void
   1734 pmap_pinit(pmap_t pm)
   1735 {
   1736 #ifndef ARM_HAS_VBAR
   1737 	struct l2_bucket *l2b;
   1738 
   1739 	if (vector_page < KERNEL_BASE) {
   1740 		/*
   1741 		 * Map the vector page.
   1742 		 */
   1743 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1744 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1745 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1746 		pmap_update(pm);
   1747 
   1748 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1749 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1750 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1751 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1752 		    L1_C_DOM(pmap_domain(pm));
   1753 	} else
   1754 		pm->pm_pl1vec = NULL;
   1755 #endif
   1756 }
   1757 
   1758 #ifdef PMAP_CACHE_VIVT
   1759 /*
   1760  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1761  * there is more than one mapping and at least one of them is writable.
   1762  * Since we purge the cache on every context switch, we only need to check for
   1763  * other mappings within the same pmap, or kernel_pmap.
   1764  * This function is also called when a page is unmapped, to possibly reenable
   1765  * caching on any remaining mappings.
   1766  *
   1767  * The code implements the following logic, where:
   1768  *
   1769  * KW = # of kernel read/write pages
   1770  * KR = # of kernel read only pages
   1771  * UW = # of user read/write pages
   1772  * UR = # of user read only pages
   1773  *
   1774  * KC = kernel mapping is cacheable
   1775  * UC = user mapping is cacheable
   1776  *
   1777  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1778  *             +---------------------------------------------
   1779  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1780  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1781  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1782  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1783  */
   1784 
   1785 static const int pmap_vac_flags[4][4] = {
   1786 	{-1,		0,		0,		PVF_KNC},
   1787 	{0,		0,		PVF_NC,		PVF_NC},
   1788 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1789 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1790 };
   1791 
   1792 static inline int
   1793 pmap_get_vac_flags(const struct vm_page_md *md)
   1794 {
   1795 	int kidx, uidx;
   1796 
   1797 	kidx = 0;
   1798 	if (md->kro_mappings || md->krw_mappings > 1)
   1799 		kidx |= 1;
   1800 	if (md->krw_mappings)
   1801 		kidx |= 2;
   1802 
   1803 	uidx = 0;
   1804 	if (md->uro_mappings || md->urw_mappings > 1)
   1805 		uidx |= 1;
   1806 	if (md->urw_mappings)
   1807 		uidx |= 2;
   1808 
   1809 	return (pmap_vac_flags[uidx][kidx]);
   1810 }
   1811 
   1812 static inline void
   1813 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1814 {
   1815 	int nattr;
   1816 
   1817 	nattr = pmap_get_vac_flags(md);
   1818 
   1819 	if (nattr < 0) {
   1820 		md->pvh_attrs &= ~PVF_NC;
   1821 		return;
   1822 	}
   1823 
   1824 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1825 		return;
   1826 
   1827 	if (pm == pmap_kernel())
   1828 		pmap_vac_me_kpmap(md, pa, pm, va);
   1829 	else
   1830 		pmap_vac_me_user(md, pa, pm, va);
   1831 
   1832 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1833 }
   1834 
   1835 static void
   1836 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1837 {
   1838 	u_int u_cacheable, u_entries;
   1839 	struct pv_entry *pv;
   1840 	pmap_t last_pmap = pm;
   1841 
   1842 	/*
   1843 	 * Pass one, see if there are both kernel and user pmaps for
   1844 	 * this page.  Calculate whether there are user-writable or
   1845 	 * kernel-writable pages.
   1846 	 */
   1847 	u_cacheable = 0;
   1848 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1849 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1850 			u_cacheable++;
   1851 	}
   1852 
   1853 	u_entries = md->urw_mappings + md->uro_mappings;
   1854 
   1855 	/*
   1856 	 * We know we have just been updating a kernel entry, so if
   1857 	 * all user pages are already cacheable, then there is nothing
   1858 	 * further to do.
   1859 	 */
   1860 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1861 		return;
   1862 
   1863 	if (u_entries) {
   1864 		/*
   1865 		 * Scan over the list again, for each entry, if it
   1866 		 * might not be set correctly, call pmap_vac_me_user
   1867 		 * to recalculate the settings.
   1868 		 */
   1869 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1870 			/*
   1871 			 * We know kernel mappings will get set
   1872 			 * correctly in other calls.  We also know
   1873 			 * that if the pmap is the same as last_pmap
   1874 			 * then we've just handled this entry.
   1875 			 */
   1876 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1877 				continue;
   1878 
   1879 			/*
   1880 			 * If there are kernel entries and this page
   1881 			 * is writable but non-cacheable, then we can
   1882 			 * skip this entry also.
   1883 			 */
   1884 			if (md->k_mappings &&
   1885 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1886 			    (PVF_NC | PVF_WRITE))
   1887 				continue;
   1888 
   1889 			/*
   1890 			 * Similarly if there are no kernel-writable
   1891 			 * entries and the page is already
   1892 			 * read-only/cacheable.
   1893 			 */
   1894 			if (md->krw_mappings == 0 &&
   1895 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1896 				continue;
   1897 
   1898 			/*
   1899 			 * For some of the remaining cases, we know
   1900 			 * that we must recalculate, but for others we
   1901 			 * can't tell if they are correct or not, so
   1902 			 * we recalculate anyway.
   1903 			 */
   1904 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1905 		}
   1906 
   1907 		if (md->k_mappings == 0)
   1908 			return;
   1909 	}
   1910 
   1911 	pmap_vac_me_user(md, pa, pm, va);
   1912 }
   1913 
   1914 static void
   1915 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1916 {
   1917 	pmap_t kpmap = pmap_kernel();
   1918 	struct pv_entry *pv, *npv = NULL;
   1919 	u_int entries = 0;
   1920 	u_int writable = 0;
   1921 	u_int cacheable_entries = 0;
   1922 	u_int kern_cacheable = 0;
   1923 	u_int other_writable = 0;
   1924 
   1925 	/*
   1926 	 * Count mappings and writable mappings in this pmap.
   1927 	 * Include kernel mappings as part of our own.
   1928 	 * Keep a pointer to the first one.
   1929 	 */
   1930 	npv = NULL;
   1931 	KASSERT(pmap_page_locked_p(md));
   1932 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1933 		/* Count mappings in the same pmap */
   1934 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1935 			if (entries++ == 0)
   1936 				npv = pv;
   1937 
   1938 			/* Cacheable mappings */
   1939 			if ((pv->pv_flags & PVF_NC) == 0) {
   1940 				cacheable_entries++;
   1941 				if (kpmap == pv->pv_pmap)
   1942 					kern_cacheable++;
   1943 			}
   1944 
   1945 			/* Writable mappings */
   1946 			if (pv->pv_flags & PVF_WRITE)
   1947 				++writable;
   1948 		} else
   1949 		if (pv->pv_flags & PVF_WRITE)
   1950 			other_writable = 1;
   1951 	}
   1952 
   1953 	/*
   1954 	 * Enable or disable caching as necessary.
   1955 	 * Note: the first entry might be part of the kernel pmap,
   1956 	 * so we can't assume this is indicative of the state of the
   1957 	 * other (maybe non-kpmap) entries.
   1958 	 */
   1959 	if ((entries > 1 && writable) ||
   1960 	    (entries > 0 && pm == kpmap && other_writable)) {
   1961 		if (cacheable_entries == 0) {
   1962 			return;
   1963 		}
   1964 
   1965 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1966 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1967 			    (pv->pv_flags & PVF_NC))
   1968 				continue;
   1969 
   1970 			pv->pv_flags |= PVF_NC;
   1971 
   1972 			struct l2_bucket * const l2b
   1973 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1974 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1975 			pt_entry_t * const ptep
   1976 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1977 			const pt_entry_t opte = *ptep;
   1978 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1979 
   1980 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1981 			    && l2pte_valid_p(npte)) {
   1982 #ifdef PMAP_CACHE_VIVT
   1983 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1984 				    true, pv->pv_flags);
   1985 #endif
   1986 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1987 				    pv->pv_flags);
   1988 			}
   1989 
   1990 			l2pte_set(ptep, npte, opte);
   1991 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1992 		}
   1993 		cpu_cpwait();
   1994 	} else
   1995 	if (entries > cacheable_entries) {
   1996 		/*
   1997 		 * Turn cacheing back on for some pages.  If it is a kernel
   1998 		 * page, only do so if there are no other writable pages.
   1999 		 */
   2000 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2001 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   2002 			    (kpmap != pv->pv_pmap || other_writable)))
   2003 				continue;
   2004 
   2005 			pv->pv_flags &= ~PVF_NC;
   2006 
   2007 			struct l2_bucket * const l2b
   2008 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2009 			KASSERTMSG(l2b != NULL, "%#lx", va);
   2010 			pt_entry_t * const ptep
   2011 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2012 			const pt_entry_t opte = *ptep;
   2013 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   2014 			    | pte_l2_s_cache_mode;
   2015 
   2016 			if (l2pte_valid_p(opte)) {
   2017 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2018 				    pv->pv_flags);
   2019 			}
   2020 
   2021 			l2pte_set(ptep, npte, opte);
   2022 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2023 		}
   2024 	}
   2025 }
   2026 #endif
   2027 
   2028 #ifdef PMAP_CACHE_VIPT
   2029 static void
   2030 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2031 {
   2032 #ifndef ARM_MMU_EXTENDED
   2033 	struct pv_entry *pv;
   2034 	vaddr_t tst_mask;
   2035 	bool bad_alias;
   2036 	const u_int
   2037 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2038 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2039 
   2040 	/* do we need to do anything? */
   2041 	if (arm_cache_prefer_mask == 0)
   2042 		return;
   2043 
   2044 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   2045 	    md, pm, va));
   2046 
   2047 	KASSERT(!va || pm);
   2048 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2049 
   2050 	/* Already a conflict? */
   2051 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2052 		/* just an add, things are already non-cached */
   2053 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2054 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2055 		bad_alias = false;
   2056 		if (va) {
   2057 			PMAPCOUNT(vac_color_none);
   2058 			bad_alias = true;
   2059 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2060 			goto fixup;
   2061 		}
   2062 		pv = SLIST_FIRST(&md->pvh_list);
   2063 		/* the list can't be empty because it would be cachable */
   2064 		if (md->pvh_attrs & PVF_KMPAGE) {
   2065 			tst_mask = md->pvh_attrs;
   2066 		} else {
   2067 			KASSERT(pv);
   2068 			tst_mask = pv->pv_va;
   2069 			pv = SLIST_NEXT(pv, pv_link);
   2070 		}
   2071 		/*
   2072 		 * Only check for a bad alias if we have writable mappings.
   2073 		 */
   2074 		tst_mask &= arm_cache_prefer_mask;
   2075 		if (rw_mappings > 0) {
   2076 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2077 				/* if there's a bad alias, stop checking. */
   2078 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2079 					bad_alias = true;
   2080 			}
   2081 			md->pvh_attrs |= PVF_WRITE;
   2082 			if (!bad_alias)
   2083 				md->pvh_attrs |= PVF_DIRTY;
   2084 		} else {
   2085 			/*
   2086 			 * We have only read-only mappings.  Let's see if there
   2087 			 * are multiple colors in use or if we mapped a KMPAGE.
   2088 			 * If the latter, we have a bad alias.  If the former,
   2089 			 * we need to remember that.
   2090 			 */
   2091 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2092 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2093 					if (md->pvh_attrs & PVF_KMPAGE)
   2094 						bad_alias = true;
   2095 					break;
   2096 				}
   2097 			}
   2098 			md->pvh_attrs &= ~PVF_WRITE;
   2099 			/*
   2100 			 * No KMPAGE and we exited early, so we must have
   2101 			 * multiple color mappings.
   2102 			 */
   2103 			if (!bad_alias && pv != NULL)
   2104 				md->pvh_attrs |= PVF_MULTCLR;
   2105 		}
   2106 
   2107 		/* If no conflicting colors, set everything back to cached */
   2108 		if (!bad_alias) {
   2109 #ifdef DEBUG
   2110 			if ((md->pvh_attrs & PVF_WRITE)
   2111 			    || ro_mappings < 2) {
   2112 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2113 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2114 			}
   2115 #endif
   2116 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2117 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2118 			/*
   2119 			 * Restore DIRTY bit if page is modified
   2120 			 */
   2121 			if (md->pvh_attrs & PVF_DMOD)
   2122 				md->pvh_attrs |= PVF_DIRTY;
   2123 			PMAPCOUNT(vac_color_restore);
   2124 		} else {
   2125 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2126 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2127 		}
   2128 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2129 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2130 	} else if (!va) {
   2131 		KASSERT(pmap_is_page_colored_p(md));
   2132 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2133 		    || (md->pvh_attrs & PVF_DIRTY));
   2134 		if (rw_mappings == 0) {
   2135 			md->pvh_attrs &= ~PVF_WRITE;
   2136 			if (ro_mappings == 1
   2137 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2138 				/*
   2139 				 * If this is the last readonly mapping
   2140 				 * but it doesn't match the current color
   2141 				 * for the page, change the current color
   2142 				 * to match this last readonly mapping.
   2143 				 */
   2144 				pv = SLIST_FIRST(&md->pvh_list);
   2145 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2146 				    & arm_cache_prefer_mask;
   2147 				if (tst_mask) {
   2148 					md->pvh_attrs ^= tst_mask;
   2149 					PMAPCOUNT(vac_color_change);
   2150 				}
   2151 			}
   2152 		}
   2153 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2154 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2155 		return;
   2156 	} else if (!pmap_is_page_colored_p(md)) {
   2157 		/* not colored so we just use its color */
   2158 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2159 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2160 		PMAPCOUNT(vac_color_new);
   2161 		md->pvh_attrs &= PAGE_SIZE - 1;
   2162 		md->pvh_attrs |= PVF_COLORED
   2163 		    | (va & arm_cache_prefer_mask)
   2164 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2165 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2166 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2167 		return;
   2168 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2169 		bad_alias = false;
   2170 		if (rw_mappings > 0) {
   2171 			/*
   2172 			 * We now have writeable mappings and if we have
   2173 			 * readonly mappings in more than once color, we have
   2174 			 * an aliasing problem.  Regardless mark the page as
   2175 			 * writeable.
   2176 			 */
   2177 			if (md->pvh_attrs & PVF_MULTCLR) {
   2178 				if (ro_mappings < 2) {
   2179 					/*
   2180 					 * If we only have less than two
   2181 					 * read-only mappings, just flush the
   2182 					 * non-primary colors from the cache.
   2183 					 */
   2184 					pmap_flush_page(md, pa,
   2185 					    PMAP_FLUSH_SECONDARY);
   2186 				} else {
   2187 					bad_alias = true;
   2188 				}
   2189 			}
   2190 			md->pvh_attrs |= PVF_WRITE;
   2191 		}
   2192 		/* If no conflicting colors, set everything back to cached */
   2193 		if (!bad_alias) {
   2194 #ifdef DEBUG
   2195 			if (rw_mappings > 0
   2196 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2197 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2198 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2199 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2200 			}
   2201 #endif
   2202 			if (SLIST_EMPTY(&md->pvh_list))
   2203 				PMAPCOUNT(vac_color_reuse);
   2204 			else
   2205 				PMAPCOUNT(vac_color_ok);
   2206 
   2207 			/* matching color, just return */
   2208 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2209 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2210 			return;
   2211 		}
   2212 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2213 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2214 
   2215 		/* color conflict.  evict from cache. */
   2216 
   2217 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2218 		md->pvh_attrs &= ~PVF_COLORED;
   2219 		md->pvh_attrs |= PVF_NC;
   2220 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2221 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2222 		PMAPCOUNT(vac_color_erase);
   2223 	} else if (rw_mappings == 0
   2224 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2225 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2226 
   2227 		/*
   2228 		 * If the page has dirty cache lines, clean it.
   2229 		 */
   2230 		if (md->pvh_attrs & PVF_DIRTY)
   2231 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2232 
   2233 		/*
   2234 		 * If this is the first remapping (we know that there are no
   2235 		 * writeable mappings), then this is a simple color change.
   2236 		 * Otherwise this is a seconary r/o mapping, which means
   2237 		 * we don't have to do anything.
   2238 		 */
   2239 		if (ro_mappings == 1) {
   2240 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2241 			md->pvh_attrs &= PAGE_SIZE - 1;
   2242 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2243 			PMAPCOUNT(vac_color_change);
   2244 		} else {
   2245 			PMAPCOUNT(vac_color_blind);
   2246 		}
   2247 		md->pvh_attrs |= PVF_MULTCLR;
   2248 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2249 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2250 		return;
   2251 	} else {
   2252 		if (rw_mappings > 0)
   2253 			md->pvh_attrs |= PVF_WRITE;
   2254 
   2255 		/* color conflict.  evict from cache. */
   2256 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2257 
   2258 		/* the list can't be empty because this was a enter/modify */
   2259 		pv = SLIST_FIRST(&md->pvh_list);
   2260 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2261 			KASSERT(pv);
   2262 			/*
   2263 			 * If there's only one mapped page, change color to the
   2264 			 * page's new color and return.  Restore the DIRTY bit
   2265 			 * that was erased by pmap_flush_page.
   2266 			 */
   2267 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2268 				md->pvh_attrs &= PAGE_SIZE - 1;
   2269 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2270 				if (md->pvh_attrs & PVF_DMOD)
   2271 					md->pvh_attrs |= PVF_DIRTY;
   2272 				PMAPCOUNT(vac_color_change);
   2273 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2274 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2275 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2276 				return;
   2277 			}
   2278 		}
   2279 		bad_alias = true;
   2280 		md->pvh_attrs &= ~PVF_COLORED;
   2281 		md->pvh_attrs |= PVF_NC;
   2282 		PMAPCOUNT(vac_color_erase);
   2283 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2284 	}
   2285 
   2286   fixup:
   2287 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2288 
   2289 	/*
   2290 	 * Turn cacheing on/off for all pages.
   2291 	 */
   2292 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2293 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2294 		    pv->pv_va);
   2295 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2296 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2297 		const pt_entry_t opte = *ptep;
   2298 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2299 		if (bad_alias) {
   2300 			pv->pv_flags |= PVF_NC;
   2301 		} else {
   2302 			pv->pv_flags &= ~PVF_NC;
   2303 			npte |= pte_l2_s_cache_mode;
   2304 		}
   2305 
   2306 		if (opte == npte)	/* only update is there's a change */
   2307 			continue;
   2308 
   2309 		if (l2pte_valid_p(npte)) {
   2310 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2311 		}
   2312 
   2313 		l2pte_set(ptep, npte, opte);
   2314 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2315 	}
   2316 #endif /* !ARM_MMU_EXTENDED */
   2317 }
   2318 #endif	/* PMAP_CACHE_VIPT */
   2319 
   2320 
   2321 /*
   2322  * Modify pte bits for all ptes corresponding to the given physical address.
   2323  * We use `maskbits' rather than `clearbits' because we're always passing
   2324  * constants and the latter would require an extra inversion at run-time.
   2325  */
   2326 static void
   2327 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2328 {
   2329 	struct pv_entry *pv;
   2330 #ifdef PMAP_CACHE_VIPT
   2331 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2332 #ifdef ARM_MMU_EXTENDED
   2333 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
   2334 #else
   2335 	const u_int execbits = 0;
   2336 	bool need_vac_me_harder = false;
   2337 	bool need_syncicache = false;
   2338 #endif
   2339 #else
   2340 	const u_int execbits = 0;
   2341 #endif
   2342 
   2343 	NPDEBUG(PDB_BITS,
   2344 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2345 	    md, maskbits));
   2346 
   2347 #ifdef PMAP_CACHE_VIPT
   2348 	/*
   2349 	 * If we might want to sync the I-cache and we've modified it,
   2350 	 * then we know we definitely need to sync or discard it.
   2351 	 */
   2352 	if (want_syncicache) {
   2353 #ifdef ARM_MMU_EXTENDED
   2354 		if (md->pvh_attrs & PVF_MOD)
   2355 			md->pvh_attrs &= ~PVF_EXEC;
   2356 #else
   2357 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2358 #endif
   2359 	}
   2360 #endif
   2361 	KASSERT(pmap_page_locked_p(md));
   2362 
   2363 	/*
   2364 	 * Clear saved attributes (modify, reference)
   2365 	 */
   2366 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2367 
   2368 	if (SLIST_EMPTY(&md->pvh_list)) {
   2369 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2370 		if (need_syncicache) {
   2371 			/*
   2372 			 * No one has it mapped, so just discard it.  The next
   2373 			 * exec remapping will cause it to be synced.
   2374 			 */
   2375 			md->pvh_attrs &= ~PVF_EXEC;
   2376 			PMAPCOUNT(exec_discarded_clearbit);
   2377 		}
   2378 #endif
   2379 		return;
   2380 	}
   2381 
   2382 	/*
   2383 	 * Loop over all current mappings setting/clearing as appropos
   2384 	 */
   2385 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2386 		pmap_t pm = pv->pv_pmap;
   2387 		const vaddr_t va = pv->pv_va;
   2388 		const u_int oflags = pv->pv_flags;
   2389 #ifndef ARM_MMU_EXTENDED
   2390 		/*
   2391 		 * Kernel entries are unmanaged and as such not to be changed.
   2392 		 */
   2393 		if (PV_IS_KENTRY_P(oflags))
   2394 			continue;
   2395 #endif
   2396 		pv->pv_flags &= ~maskbits;
   2397 
   2398 		pmap_release_page_lock(md);
   2399 		pmap_acquire_pmap_lock(pm);
   2400 
   2401 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2402 		if (l2b == NULL) {
   2403 			pmap_release_pmap_lock(pm);
   2404 			pmap_acquire_page_lock(md);
   2405 			continue;
   2406 		}
   2407 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2408 
   2409 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2410 		const pt_entry_t opte = *ptep;
   2411 		pt_entry_t npte = opte | execbits;
   2412 
   2413 #ifdef ARM_MMU_EXTENDED
   2414 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2415 #endif
   2416 
   2417 		NPDEBUG(PDB_BITS,
   2418 		    printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2419 			__func__, pv, pm, va, oflags));
   2420 
   2421 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2422 #ifdef PMAP_CACHE_VIVT
   2423 			if ((oflags & PVF_NC)) {
   2424 				/*
   2425 				 * Entry is not cacheable:
   2426 				 *
   2427 				 * Don't turn caching on again if this is a
   2428 				 * modified emulation. This would be
   2429 				 * inconsitent with the settings created by
   2430 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2431 				 * to re-enable cacheing.
   2432 				 *
   2433 				 * There's no need to call pmap_vac_me_harder()
   2434 				 * here: all pages are losing their write
   2435 				 * permission.
   2436 				 */
   2437 				if (maskbits & PVF_WRITE) {
   2438 					npte |= pte_l2_s_cache_mode;
   2439 					pv->pv_flags &= ~PVF_NC;
   2440 				}
   2441 			} else
   2442 			if (l2pte_writable_p(opte)) {
   2443 				/*
   2444 				 * Entry is writable/cacheable: check if pmap
   2445 				 * is current if it is flush it, otherwise it
   2446 				 * won't be in the cache
   2447 				 */
   2448 				pmap_cache_wbinv_page(pm, va,
   2449 				    (maskbits & PVF_REF) != 0,
   2450 				    oflags|PVF_WRITE);
   2451 			}
   2452 #endif
   2453 
   2454 			/* make the pte read only */
   2455 			npte = l2pte_set_readonly(npte);
   2456 
   2457 			pmap_acquire_page_lock(md);
   2458 #ifdef MULTIPROCESSOR
   2459 			pv = pmap_find_pv(md, pm, va);
   2460 #endif
   2461 			if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
   2462 				/*
   2463 				 * Keep alias accounting up to date
   2464 				 */
   2465 				if (pm == pmap_kernel()) {
   2466 					md->krw_mappings--;
   2467 					md->kro_mappings++;
   2468 				} else {
   2469 					md->urw_mappings--;
   2470 					md->uro_mappings++;
   2471 				}
   2472 #ifdef PMAP_CACHE_VIPT
   2473 				if (arm_cache_prefer_mask != 0) {
   2474 					if (md->urw_mappings + md->krw_mappings == 0) {
   2475 						md->pvh_attrs &= ~PVF_WRITE;
   2476 					} else {
   2477 						PMAP_VALIDATE_MD_PAGE(md);
   2478 					}
   2479 				}
   2480 #ifndef ARM_MMU_EXTENDED
   2481 				if (want_syncicache)
   2482 					need_syncicache = true;
   2483 				need_vac_me_harder = true;
   2484 #endif
   2485 #endif /* PMAP_CACHE_VIPT */
   2486 			}
   2487 			pmap_release_page_lock(md);
   2488 		}
   2489 
   2490 		if (maskbits & PVF_REF) {
   2491 			if (true
   2492 #ifndef ARM_MMU_EXTENDED
   2493 			    && (oflags & PVF_NC) == 0
   2494 #endif
   2495 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2496 			    && l2pte_valid_p(npte)) {
   2497 #ifdef PMAP_CACHE_VIVT
   2498 				/*
   2499 				 * Check npte here; we may have already
   2500 				 * done the wbinv above, and the validity
   2501 				 * of the PTE is the same for opte and
   2502 				 * npte.
   2503 				 */
   2504 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2505 #endif
   2506 			}
   2507 
   2508 			/*
   2509 			 * Make the PTE invalid so that we will take a
   2510 			 * page fault the next time the mapping is
   2511 			 * referenced.
   2512 			 */
   2513 			npte &= ~L2_TYPE_MASK;
   2514 			npte |= L2_TYPE_INV;
   2515 		}
   2516 
   2517 		if (npte != opte) {
   2518 			l2pte_reset(ptep);
   2519 			PTE_SYNC(ptep);
   2520 
   2521 			/* Flush the TLB entry if a current pmap. */
   2522 			pmap_tlb_flush_SE(pm, va, oflags);
   2523 
   2524 			l2pte_set(ptep, npte, 0);
   2525 			PTE_SYNC(ptep);
   2526 		}
   2527 
   2528 		pmap_release_pmap_lock(pm);
   2529 		pmap_acquire_page_lock(md);
   2530 
   2531 		NPDEBUG(PDB_BITS,
   2532 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2533 		    pm, va, opte, npte));
   2534 	}
   2535 
   2536 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2537 	/*
   2538 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2539 	 */
   2540 	if (need_syncicache) {
   2541 		pmap_release_page_lock(md);
   2542 		pmap_syncicache_page(md, pa);
   2543 		pmap_acquire_page_lock(md);
   2544 		PMAPCOUNT(exec_synced_clearbit);
   2545 	}
   2546 
   2547 	/*
   2548 	 * If we are changing this to read-only, we need to call vac_me_harder
   2549 	 * so we can change all the read-only pages to cacheable.  We pretend
   2550 	 * this as a page deletion.
   2551 	 */
   2552 	if (need_vac_me_harder) {
   2553 		if (md->pvh_attrs & PVF_NC)
   2554 			pmap_vac_me_harder(md, pa, NULL, 0);
   2555 	}
   2556 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   2557 }
   2558 
   2559 /*
   2560  * pmap_clean_page()
   2561  *
   2562  * This is a local function used to work out the best strategy to clean
   2563  * a single page referenced by its entry in the PV table. It's used by
   2564  * pmap_copy_page, pmap_zero_page and maybe some others later on.
   2565  *
   2566  * Its policy is effectively:
   2567  *  o If there are no mappings, we don't bother doing anything with the cache.
   2568  *  o If there is one mapping, we clean just that page.
   2569  *  o If there are multiple mappings, we clean the entire cache.
   2570  *
   2571  * So that some functions can be further optimised, it returns 0 if it didn't
   2572  * clean the entire cache, or 1 if it did.
   2573  *
   2574  * XXX One bug in this routine is that if the pv_entry has a single page
   2575  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2576  * just the 1 page. Since this should not occur in everyday use and if it does
   2577  * it will just result in not the most efficient clean for the page.
   2578  */
   2579 #ifdef PMAP_CACHE_VIVT
   2580 static bool
   2581 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2582 {
   2583 	struct pv_entry *pv;
   2584 	pmap_t pm_to_clean = NULL;
   2585 	bool cache_needs_cleaning = false;
   2586 	vaddr_t page_to_clean = 0;
   2587 	u_int flags = 0;
   2588 
   2589 	/*
   2590 	 * Since we flush the cache each time we change to a different
   2591 	 * user vmspace, we only need to flush the page if it is in the
   2592 	 * current pmap.
   2593 	 */
   2594 	KASSERT(pmap_page_locked_p(md));
   2595 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2596 		if (pmap_is_current(pv->pv_pmap)) {
   2597 			flags |= pv->pv_flags;
   2598 			/*
   2599 			 * The page is mapped non-cacheable in
   2600 			 * this map.  No need to flush the cache.
   2601 			 */
   2602 			if (pv->pv_flags & PVF_NC) {
   2603 #ifdef DIAGNOSTIC
   2604 				KASSERT(!cache_needs_cleaning);
   2605 #endif
   2606 				break;
   2607 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2608 				continue;
   2609 			if (cache_needs_cleaning) {
   2610 				page_to_clean = 0;
   2611 				break;
   2612 			} else {
   2613 				page_to_clean = pv->pv_va;
   2614 				pm_to_clean = pv->pv_pmap;
   2615 			}
   2616 			cache_needs_cleaning = true;
   2617 		}
   2618 	}
   2619 
   2620 	if (page_to_clean) {
   2621 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2622 		    !is_src, flags | PVF_REF);
   2623 	} else if (cache_needs_cleaning) {
   2624 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2625 
   2626 		pmap_cache_wbinv_all(pm, flags);
   2627 		return true;
   2628 	}
   2629 	return false;
   2630 }
   2631 #endif
   2632 
   2633 #ifdef PMAP_CACHE_VIPT
   2634 /*
   2635  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2636  * right cache alias to make sure we flush the right stuff.
   2637  */
   2638 void
   2639 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2640 {
   2641 	pmap_t kpm = pmap_kernel();
   2642 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2643 	    ? PAGE_SIZE
   2644 	    : arm_pcache.icache_way_size;
   2645 
   2646 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2647 	    md, md->pvh_attrs));
   2648 	/*
   2649 	 * No need to clean the page if it's non-cached.
   2650 	 */
   2651 #ifndef ARM_MMU_EXTENDED
   2652 	if (md->pvh_attrs & PVF_NC)
   2653 		return;
   2654 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2655 #endif
   2656 
   2657 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2658 	const vaddr_t dstp = cpu_cdstp(0);
   2659 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2660 	if (way_size <= PAGE_SIZE) {
   2661 		bool ok = false;
   2662 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2663 		if (ok) {
   2664 			cpu_icache_sync_range(vdstp, way_size);
   2665 			return;
   2666 		}
   2667 	}
   2668 #endif
   2669 
   2670 	/*
   2671 	 * We don't worry about the color of the exec page, we map the
   2672 	 * same page to pages in the way and then do the icache_sync on
   2673 	 * the entire way making sure we are cleaned.
   2674 	 */
   2675 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2676 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2677 
   2678 	for (size_t i = 0, j = 0; i < way_size;
   2679 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2680 		l2pte_reset(ptep + j);
   2681 		PTE_SYNC(ptep + j);
   2682 
   2683 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2684 		/*
   2685 		 * Set up a PTE with to flush these cache lines.
   2686 		 */
   2687 		l2pte_set(ptep + j, npte, 0);
   2688 	}
   2689 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2690 
   2691 	/*
   2692 	 * Flush it.
   2693 	 */
   2694 	cpu_icache_sync_range(dstp, way_size);
   2695 
   2696 	for (size_t i = 0, j = 0; i < way_size;
   2697 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2698 		/*
   2699 		 * Unmap the page(s).
   2700 		 */
   2701 		l2pte_reset(ptep + j);
   2702 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2703 	}
   2704 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2705 
   2706 	md->pvh_attrs |= PVF_EXEC;
   2707 	PMAPCOUNT(exec_synced);
   2708 }
   2709 
   2710 #ifndef ARM_MMU_EXTENDED
   2711 void
   2712 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2713 {
   2714 	vsize_t va_offset, end_va;
   2715 	bool wbinv_p;
   2716 
   2717 	if (arm_cache_prefer_mask == 0)
   2718 		return;
   2719 
   2720 	switch (flush) {
   2721 	case PMAP_FLUSH_PRIMARY:
   2722 		if (md->pvh_attrs & PVF_MULTCLR) {
   2723 			va_offset = 0;
   2724 			end_va = arm_cache_prefer_mask;
   2725 			md->pvh_attrs &= ~PVF_MULTCLR;
   2726 			PMAPCOUNT(vac_flush_lots);
   2727 		} else {
   2728 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2729 			end_va = va_offset;
   2730 			PMAPCOUNT(vac_flush_one);
   2731 		}
   2732 		/*
   2733 		 * Mark that the page is no longer dirty.
   2734 		 */
   2735 		md->pvh_attrs &= ~PVF_DIRTY;
   2736 		wbinv_p = true;
   2737 		break;
   2738 	case PMAP_FLUSH_SECONDARY:
   2739 		va_offset = 0;
   2740 		end_va = arm_cache_prefer_mask;
   2741 		wbinv_p = true;
   2742 		md->pvh_attrs &= ~PVF_MULTCLR;
   2743 		PMAPCOUNT(vac_flush_lots);
   2744 		break;
   2745 	case PMAP_CLEAN_PRIMARY:
   2746 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2747 		end_va = va_offset;
   2748 		wbinv_p = false;
   2749 		/*
   2750 		 * Mark that the page is no longer dirty.
   2751 		 */
   2752 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2753 			md->pvh_attrs &= ~PVF_DIRTY;
   2754 		PMAPCOUNT(vac_clean_one);
   2755 		break;
   2756 	default:
   2757 		return;
   2758 	}
   2759 
   2760 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2761 
   2762 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2763 	    md, md->pvh_attrs));
   2764 
   2765 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2766 
   2767 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2768 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2769 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2770 		const pt_entry_t opte = *ptep;
   2771 
   2772 		if (flush == PMAP_FLUSH_SECONDARY
   2773 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2774 			continue;
   2775 
   2776 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2777 		/*
   2778 		 * Set up a PTE with the right coloring to flush
   2779 		 * existing cache entries.
   2780 		 */
   2781 		const pt_entry_t npte = L2_S_PROTO
   2782 		    | pa
   2783 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2784 		    | pte_l2_s_cache_mode;
   2785 		l2pte_set(ptep, npte, opte);
   2786 		PTE_SYNC(ptep);
   2787 
   2788 		/*
   2789 		 * Flush it.  Make sure to flush secondary cache too since
   2790 		 * bus_dma will ignore uncached pages.
   2791 		 */
   2792 		if (scache_line_size != 0) {
   2793 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2794 			if (wbinv_p) {
   2795 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2796 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2797 			} else {
   2798 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2799 			}
   2800 		} else {
   2801 			if (wbinv_p) {
   2802 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2803 			} else {
   2804 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2805 			}
   2806 		}
   2807 
   2808 		/*
   2809 		 * Restore the page table entry since we might have interrupted
   2810 		 * pmap_zero_page or pmap_copy_page which was already using
   2811 		 * this pte.
   2812 		 */
   2813 		if (opte) {
   2814 			l2pte_set(ptep, opte, npte);
   2815 		} else {
   2816 			l2pte_reset(ptep);
   2817 		}
   2818 		PTE_SYNC(ptep);
   2819 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2820 	}
   2821 }
   2822 #endif /* ARM_MMU_EXTENDED */
   2823 #endif /* PMAP_CACHE_VIPT */
   2824 
   2825 /*
   2826  * Routine:	pmap_page_remove
   2827  * Function:
   2828  *		Removes this physical page from
   2829  *		all physical maps in which it resides.
   2830  *		Reflects back modify bits to the pager.
   2831  */
   2832 static void
   2833 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2834 {
   2835 	struct l2_bucket *l2b;
   2836 	struct pv_entry *pv;
   2837 	pt_entry_t *ptep;
   2838 #ifndef ARM_MMU_EXTENDED
   2839 	bool flush = false;
   2840 #endif
   2841 	u_int flags = 0;
   2842 
   2843 	NPDEBUG(PDB_FOLLOW,
   2844 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2845 	    pa));
   2846 
   2847 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2848 	pmap_acquire_page_lock(md);
   2849 	if (*pvp == NULL) {
   2850 #ifdef PMAP_CACHE_VIPT
   2851 		/*
   2852 		 * We *know* the page contents are about to be replaced.
   2853 		 * Discard the exec contents
   2854 		 */
   2855 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2856 			PMAPCOUNT(exec_discarded_page_protect);
   2857 		md->pvh_attrs &= ~PVF_EXEC;
   2858 		PMAP_VALIDATE_MD_PAGE(md);
   2859 #endif
   2860 		pmap_release_page_lock(md);
   2861 		return;
   2862 	}
   2863 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2864 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2865 #endif
   2866 
   2867 	/*
   2868 	 * Clear alias counts
   2869 	 */
   2870 #ifdef PMAP_CACHE_VIVT
   2871 	md->k_mappings = 0;
   2872 #endif
   2873 	md->urw_mappings = md->uro_mappings = 0;
   2874 
   2875 #ifdef PMAP_CACHE_VIVT
   2876 	pmap_clean_page(md, false);
   2877 #endif
   2878 
   2879 	while ((pv = *pvp) != NULL) {
   2880 		pmap_t pm = pv->pv_pmap;
   2881 #ifndef ARM_MMU_EXTENDED
   2882 		if (flush == false && pmap_is_current(pm))
   2883 			flush = true;
   2884 #endif
   2885 
   2886 		if (pm == pmap_kernel()) {
   2887 #ifdef PMAP_CACHE_VIPT
   2888 			/*
   2889 			 * If this was unmanaged mapping, it must be preserved.
   2890 			 * Move it back on the list and advance the end-of-list
   2891 			 * pointer.
   2892 			 */
   2893 			if (PV_IS_KENTRY_P(pv->pv_flags)) {
   2894 				*pvp = pv;
   2895 				pvp = &SLIST_NEXT(pv, pv_link);
   2896 				continue;
   2897 			}
   2898 			if (pv->pv_flags & PVF_WRITE)
   2899 				md->krw_mappings--;
   2900 			else
   2901 				md->kro_mappings--;
   2902 #endif
   2903 			PMAPCOUNT(kernel_unmappings);
   2904 		}
   2905 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2906 		PMAPCOUNT(unmappings);
   2907 
   2908 		pmap_release_page_lock(md);
   2909 		pmap_acquire_pmap_lock(pm);
   2910 
   2911 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2912 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2913 
   2914 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2915 
   2916 		/*
   2917 		 * Update statistics
   2918 		 */
   2919 		--pm->pm_stats.resident_count;
   2920 
   2921 		/* Wired bit */
   2922 		if (pv->pv_flags & PVF_WIRED)
   2923 			--pm->pm_stats.wired_count;
   2924 
   2925 		flags |= pv->pv_flags;
   2926 
   2927 		/*
   2928 		 * Invalidate the PTEs.
   2929 		 */
   2930 		l2pte_reset(ptep);
   2931 		PTE_SYNC_CURRENT(pm, ptep);
   2932 
   2933 #ifdef ARM_MMU_EXTENDED
   2934 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2935 #endif
   2936 
   2937 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2938 
   2939 		pmap_release_pmap_lock(pm);
   2940 
   2941 		pool_put(&pmap_pv_pool, pv);
   2942 		pmap_acquire_page_lock(md);
   2943 #ifdef MULTIPROCESSOR
   2944 		/*
   2945 		 * Restart of the beginning of the list.
   2946 		 */
   2947 		pvp = &SLIST_FIRST(&md->pvh_list);
   2948 #endif
   2949 	}
   2950 	/*
   2951 	 * if we reach the end of the list and there are still mappings, they
   2952 	 * might be able to be cached now.  And they must be kernel mappings.
   2953 	 */
   2954 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2955 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2956 	}
   2957 
   2958 #ifdef PMAP_CACHE_VIPT
   2959 	/*
   2960 	 * Its EXEC cache is now gone.
   2961 	 */
   2962 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2963 		PMAPCOUNT(exec_discarded_page_protect);
   2964 	md->pvh_attrs &= ~PVF_EXEC;
   2965 	KASSERT(md->urw_mappings == 0);
   2966 	KASSERT(md->uro_mappings == 0);
   2967 #ifndef ARM_MMU_EXTENDED
   2968 	if (arm_cache_prefer_mask != 0) {
   2969 		if (md->krw_mappings == 0)
   2970 			md->pvh_attrs &= ~PVF_WRITE;
   2971 		PMAP_VALIDATE_MD_PAGE(md);
   2972 	}
   2973 #endif /* ARM_MMU_EXTENDED */
   2974 #endif /* PMAP_CACHE_VIPT */
   2975 	pmap_release_page_lock(md);
   2976 
   2977 #ifndef ARM_MMU_EXTENDED
   2978 	if (flush) {
   2979 		/*
   2980 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2981 		 * would need a subsequent call to pmap_update() to ensure
   2982 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2983 		 * required to do that (see pmap(9)), so we can't modify
   2984 		 * the current pmap's state.
   2985 		 */
   2986 		if (PV_BEEN_EXECD(flags))
   2987 			cpu_tlb_flushID();
   2988 		else
   2989 			cpu_tlb_flushD();
   2990 	}
   2991 	cpu_cpwait();
   2992 #endif /* ARM_MMU_EXTENDED */
   2993 }
   2994 
   2995 /*
   2996  * pmap_t pmap_create(void)
   2997  *
   2998  *      Create a new pmap structure from scratch.
   2999  */
   3000 pmap_t
   3001 pmap_create(void)
   3002 {
   3003 	pmap_t pm;
   3004 
   3005 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   3006 
   3007 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   3008 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   3009 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   3010 
   3011 	pm->pm_stats.wired_count = 0;
   3012 	pm->pm_stats.resident_count = 1;
   3013 #ifdef ARM_MMU_EXTENDED
   3014 #ifdef MULTIPROCESSOR
   3015 	kcpuset_create(&pm->pm_active, true);
   3016 	kcpuset_create(&pm->pm_onproc, true);
   3017 #endif
   3018 #else
   3019 	pm->pm_cstate.cs_all = 0;
   3020 #endif
   3021 	pmap_alloc_l1(pm);
   3022 
   3023 	/*
   3024 	 * Note: The pool cache ensures that the pm_l2[] array is already
   3025 	 * initialised to zero.
   3026 	 */
   3027 
   3028 	pmap_pinit(pm);
   3029 
   3030 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   3031 
   3032 	return (pm);
   3033 }
   3034 
   3035 u_int
   3036 arm32_mmap_flags(paddr_t pa)
   3037 {
   3038 	/*
   3039 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3040 	 * and we're using the upper bits in page numbers to pass flags around
   3041 	 * so we might as well use the same bits
   3042 	 */
   3043 	return (u_int)pa & PMAP_MD_MASK;
   3044 }
   3045 /*
   3046  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3047  *      u_int flags)
   3048  *
   3049  *      Insert the given physical page (p) at
   3050  *      the specified virtual address (v) in the
   3051  *      target physical map with the protection requested.
   3052  *
   3053  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3054  *      or lose information.  That is, this routine must actually
   3055  *      insert this page into the given map NOW.
   3056  */
   3057 int
   3058 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3059 {
   3060 	struct l2_bucket *l2b;
   3061 	struct vm_page *pg, *opg;
   3062 	u_int nflags;
   3063 	u_int oflags;
   3064 	const bool kpm_p = (pm == pmap_kernel());
   3065 #ifdef ARM_HAS_VBAR
   3066 	const bool vector_page_p = false;
   3067 #else
   3068 	const bool vector_page_p = (va == vector_page);
   3069 #endif
   3070 
   3071 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3072 
   3073 	UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
   3074 	    pm, va, pa, prot);
   3075 	UVMHIST_LOG(maphist, "  flag %#x", flags, 0, 0, 0);
   3076 
   3077 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3078 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3079 
   3080 	/*
   3081 	 * Get a pointer to the page.  Later on in this function, we
   3082 	 * test for a managed page by checking pg != NULL.
   3083 	 */
   3084 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3085 
   3086 	nflags = 0;
   3087 	if (prot & VM_PROT_WRITE)
   3088 		nflags |= PVF_WRITE;
   3089 	if (prot & VM_PROT_EXECUTE)
   3090 		nflags |= PVF_EXEC;
   3091 	if (flags & PMAP_WIRED)
   3092 		nflags |= PVF_WIRED;
   3093 
   3094 	pmap_acquire_pmap_lock(pm);
   3095 
   3096 	/*
   3097 	 * Fetch the L2 bucket which maps this page, allocating one if
   3098 	 * necessary for user pmaps.
   3099 	 */
   3100 	if (kpm_p) {
   3101 		l2b = pmap_get_l2_bucket(pm, va);
   3102 	} else {
   3103 		l2b = pmap_alloc_l2_bucket(pm, va);
   3104 	}
   3105 	if (l2b == NULL) {
   3106 		if (flags & PMAP_CANFAIL) {
   3107 			pmap_release_pmap_lock(pm);
   3108 			return (ENOMEM);
   3109 		}
   3110 		panic("pmap_enter: failed to allocate L2 bucket");
   3111 	}
   3112 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3113 	const pt_entry_t opte = *ptep;
   3114 	pt_entry_t npte = pa;
   3115 	oflags = 0;
   3116 
   3117 	if (opte) {
   3118 		/*
   3119 		 * There is already a mapping at this address.
   3120 		 * If the physical address is different, lookup the
   3121 		 * vm_page.
   3122 		 */
   3123 		if (l2pte_pa(opte) != pa) {
   3124 			KASSERT(!pmap_pv_tracked(pa));
   3125 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3126 		} else
   3127 			opg = pg;
   3128 	} else
   3129 		opg = NULL;
   3130 
   3131 	struct pmap_page *pp = pmap_pv_tracked(pa);
   3132 
   3133 	if (pg || pp) {
   3134 		KASSERT((pg != NULL) != (pp != NULL));
   3135 		struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
   3136 		    PMAP_PAGE_TO_MD(pp);
   3137 
   3138 		/*
   3139 		 * This is to be a managed mapping.
   3140 		 */
   3141 		pmap_acquire_page_lock(md);
   3142 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3143 			/*
   3144 			 * - The access type indicates that we don't need
   3145 			 *   to do referenced emulation.
   3146 			 * OR
   3147 			 * - The physical page has already been referenced
   3148 			 *   so no need to re-do referenced emulation here.
   3149 			 */
   3150 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3151 
   3152 			nflags |= PVF_REF;
   3153 
   3154 			if ((prot & VM_PROT_WRITE) != 0 &&
   3155 			    ((flags & VM_PROT_WRITE) != 0 ||
   3156 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3157 				/*
   3158 				 * This is a writable mapping, and the
   3159 				 * page's mod state indicates it has
   3160 				 * already been modified. Make it
   3161 				 * writable from the outset.
   3162 				 */
   3163 				npte = l2pte_set_writable(npte);
   3164 				nflags |= PVF_MOD;
   3165 			}
   3166 
   3167 #ifdef ARM_MMU_EXTENDED
   3168 			/*
   3169 			 * If the page has been cleaned, then the pvh_attrs
   3170 			 * will have PVF_EXEC set, so mark it execute so we
   3171 			 * don't get an access fault when trying to execute
   3172 			 * from it.
   3173 			 */
   3174 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3175 				npte &= ~L2_XS_XN;
   3176 			}
   3177 #endif
   3178 		} else {
   3179 			/*
   3180 			 * Need to do page referenced emulation.
   3181 			 */
   3182 			npte |= L2_TYPE_INV;
   3183 		}
   3184 
   3185 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3186 			npte |= pte_l2_s_wc_mode;
   3187 		} else
   3188 			npte |= pte_l2_s_cache_mode;
   3189 
   3190 		if (pg != NULL && pg == opg) {
   3191 			/*
   3192 			 * We're changing the attrs of an existing mapping.
   3193 			 */
   3194 			oflags = pmap_modify_pv(md, pa, pm, va,
   3195 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3196 			    PVF_MOD | PVF_REF, nflags);
   3197 
   3198 #ifdef PMAP_CACHE_VIVT
   3199 			/*
   3200 			 * We may need to flush the cache if we're
   3201 			 * doing rw-ro...
   3202 			 */
   3203 			if (pm->pm_cstate.cs_cache_d &&
   3204 			    (oflags & PVF_NC) == 0 &&
   3205 			    l2pte_writable_p(opte) &&
   3206 			    (prot & VM_PROT_WRITE) == 0)
   3207 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3208 #endif
   3209 		} else {
   3210 			struct pv_entry *pv;
   3211 			/*
   3212 			 * New mapping, or changing the backing page
   3213 			 * of an existing mapping.
   3214 			 */
   3215 			if (opg) {
   3216 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3217 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3218 
   3219 				/*
   3220 				 * Replacing an existing mapping with a new one.
   3221 				 * It is part of our managed memory so we
   3222 				 * must remove it from the PV list
   3223 				 */
   3224 				pv = pmap_remove_pv(omd, opa, pm, va);
   3225 				pmap_vac_me_harder(omd, opa, pm, 0);
   3226 				oflags = pv->pv_flags;
   3227 
   3228 #ifdef PMAP_CACHE_VIVT
   3229 				/*
   3230 				 * If the old mapping was valid (ref/mod
   3231 				 * emulation creates 'invalid' mappings
   3232 				 * initially) then make sure to frob
   3233 				 * the cache.
   3234 				 */
   3235 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3236 					pmap_cache_wbinv_page(pm, va, true,
   3237 					    oflags);
   3238 				}
   3239 #endif
   3240 			} else {
   3241 				pmap_release_page_lock(md);
   3242 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3243 				if (pv == NULL) {
   3244 					pmap_release_pmap_lock(pm);
   3245 					if ((flags & PMAP_CANFAIL) == 0)
   3246 						panic("pmap_enter: "
   3247 						    "no pv entries");
   3248 
   3249 					pmap_free_l2_bucket(pm, l2b, 0);
   3250 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3251 					    0, 0, 0, 0);
   3252 					return (ENOMEM);
   3253 				}
   3254 				pmap_acquire_page_lock(md);
   3255 			}
   3256 
   3257 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3258 		}
   3259 		pmap_release_page_lock(md);
   3260 	} else {
   3261 		/*
   3262 		 * We're mapping an unmanaged page.
   3263 		 * These are always readable, and possibly writable, from
   3264 		 * the get go as we don't need to track ref/mod status.
   3265 		 */
   3266 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3267 		if (prot & VM_PROT_WRITE)
   3268 			npte = l2pte_set_writable(npte);
   3269 
   3270 		/*
   3271 		 * Make sure the vector table is mapped cacheable
   3272 		 */
   3273 		if ((vector_page_p && !kpm_p)
   3274 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3275 			npte |= pte_l2_s_cache_mode;
   3276 #ifdef ARM_MMU_EXTENDED
   3277 			npte &= ~L2_XS_XN;	/* and executable */
   3278 #endif
   3279 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3280 			npte |= pte_l2_s_wc_mode;
   3281 		}
   3282 		if (opg) {
   3283 			/*
   3284 			 * Looks like there's an existing 'managed' mapping
   3285 			 * at this address.
   3286 			 */
   3287 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3288 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3289 
   3290 			pmap_acquire_page_lock(omd);
   3291 			struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
   3292 			pmap_vac_me_harder(omd, opa, pm, 0);
   3293 			oflags = pv->pv_flags;
   3294 			pmap_release_page_lock(omd);
   3295 
   3296 #ifdef PMAP_CACHE_VIVT
   3297 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3298 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3299 			}
   3300 #endif
   3301 			pool_put(&pmap_pv_pool, pv);
   3302 		}
   3303 	}
   3304 
   3305 	/*
   3306 	 * Make sure userland mappings get the right permissions
   3307 	 */
   3308 	if (!vector_page_p && !kpm_p) {
   3309 		npte |= L2_S_PROT_U;
   3310 #ifdef ARM_MMU_EXTENDED
   3311 		npte |= L2_XS_nG;	/* user pages are not global */
   3312 #endif
   3313 	}
   3314 
   3315 	/*
   3316 	 * Keep the stats up to date
   3317 	 */
   3318 	if (opte == 0) {
   3319 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3320 		pm->pm_stats.resident_count++;
   3321 	}
   3322 
   3323 	UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
   3324 
   3325 #if defined(ARM_MMU_EXTENDED)
   3326 	/*
   3327 	 * If exec protection was requested but the page hasn't been synced,
   3328 	 * sync it now and allow execution from it.
   3329 	 */
   3330 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3331 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3332 		npte &= ~L2_XS_XN;
   3333 		pmap_syncicache_page(md, pa);
   3334 		PMAPCOUNT(exec_synced_map);
   3335 	}
   3336 #endif
   3337 	/*
   3338 	 * If this is just a wiring change, the two PTEs will be
   3339 	 * identical, so there's no need to update the page table.
   3340 	 */
   3341 	if (npte != opte) {
   3342 		l2pte_reset(ptep);
   3343 		PTE_SYNC(ptep);
   3344 		if (l2pte_valid_p(opte)) {
   3345 			pmap_tlb_flush_SE(pm, va, oflags);
   3346 		}
   3347 		l2pte_set(ptep, npte, 0);
   3348 		PTE_SYNC(ptep);
   3349 #ifndef ARM_MMU_EXTENDED
   3350 		bool is_cached = pmap_is_cached(pm);
   3351 		if (is_cached) {
   3352 			/*
   3353 			 * We only need to frob the cache/tlb if this pmap
   3354 			 * is current
   3355 			 */
   3356 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3357 				/*
   3358 				 * This mapping is likely to be accessed as
   3359 				 * soon as we return to userland. Fix up the
   3360 				 * L1 entry to avoid taking another
   3361 				 * page/domain fault.
   3362 				 */
   3363 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3364 				     + l1pte_index(va);
   3365 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3366 				    | L1_C_DOM(pmap_domain(pm));
   3367 				if (*pdep != pde) {
   3368 					l1pte_setone(pdep, pde);
   3369 					PDE_SYNC(pdep);
   3370 				}
   3371 			}
   3372 		}
   3373 #endif /* !ARM_MMU_EXTENDED */
   3374 
   3375 #ifndef ARM_MMU_EXTENDED
   3376 		UVMHIST_LOG(maphist, "  is_cached %d cs 0x%08x\n",
   3377 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3378 
   3379 		if (pg != NULL) {
   3380 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3381 
   3382 			pmap_acquire_page_lock(md);
   3383 			pmap_vac_me_harder(md, pa, pm, va);
   3384 			pmap_release_page_lock(md);
   3385 		}
   3386 #endif
   3387 	}
   3388 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3389 	if (pg) {
   3390 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3391 
   3392 		pmap_acquire_page_lock(md);
   3393 #ifndef ARM_MMU_EXTENDED
   3394 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3395 #endif
   3396 		PMAP_VALIDATE_MD_PAGE(md);
   3397 		pmap_release_page_lock(md);
   3398 	}
   3399 #endif
   3400 
   3401 	pmap_release_pmap_lock(pm);
   3402 
   3403 	return (0);
   3404 }
   3405 
   3406 /*
   3407  * pmap_remove()
   3408  *
   3409  * pmap_remove is responsible for nuking a number of mappings for a range
   3410  * of virtual address space in the current pmap. To do this efficiently
   3411  * is interesting, because in a number of cases a wide virtual address
   3412  * range may be supplied that contains few actual mappings. So, the
   3413  * optimisations are:
   3414  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3415  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3416  *     maybe do just a partial cache clean. This path of execution is
   3417  *     complicated by the fact that the cache must be flushed _before_
   3418  *     the PTE is nuked, being a VAC :-)
   3419  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3420  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3421  *     already flushed the cache.
   3422  *  4. Maybe later fast-case a single page, but I don't think this is
   3423  *     going to make _that_ much difference overall.
   3424  */
   3425 
   3426 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3427 
   3428 void
   3429 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3430 {
   3431 	vaddr_t next_bucket;
   3432 	u_int cleanlist_idx, total, cnt;
   3433 	struct {
   3434 		vaddr_t va;
   3435 		pt_entry_t *ptep;
   3436 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3437 	u_int mappings;
   3438 
   3439 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3440 	UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
   3441 
   3442 	/*
   3443 	 * we lock in the pmap => pv_head direction
   3444 	 */
   3445 	pmap_acquire_pmap_lock(pm);
   3446 
   3447 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3448 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3449 #ifndef ARM_MMU_EXTENDED
   3450 		if (pm->pm_cstate.cs_tlb == 0)
   3451 			pm->pm_remove_all = true;
   3452 #endif
   3453 	} else
   3454 		cleanlist_idx = 0;
   3455 
   3456 	total = 0;
   3457 
   3458 	while (sva < eva) {
   3459 		/*
   3460 		 * Do one L2 bucket's worth at a time.
   3461 		 */
   3462 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   3463 		if (next_bucket > eva)
   3464 			next_bucket = eva;
   3465 
   3466 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3467 		if (l2b == NULL) {
   3468 			sva = next_bucket;
   3469 			continue;
   3470 		}
   3471 
   3472 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3473 
   3474 		for (mappings = 0;
   3475 		     sva < next_bucket;
   3476 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3477 			pt_entry_t opte = *ptep;
   3478 
   3479 			if (opte == 0) {
   3480 				/* Nothing here, move along */
   3481 				continue;
   3482 			}
   3483 
   3484 			u_int flags = PVF_REF;
   3485 			paddr_t pa = l2pte_pa(opte);
   3486 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3487 
   3488 			/*
   3489 			 * Update flags. In a number of circumstances,
   3490 			 * we could cluster a lot of these and do a
   3491 			 * number of sequential pages in one go.
   3492 			 */
   3493 			if (pg != NULL) {
   3494 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3495 				struct pv_entry *pv;
   3496 
   3497 				pmap_acquire_page_lock(md);
   3498 				pv = pmap_remove_pv(md, pa, pm, sva);
   3499 				pmap_vac_me_harder(md, pa, pm, 0);
   3500 				pmap_release_page_lock(md);
   3501 				if (pv != NULL) {
   3502 					if (pm->pm_remove_all == false) {
   3503 						flags = pv->pv_flags;
   3504 					}
   3505 					pool_put(&pmap_pv_pool, pv);
   3506 				}
   3507 			}
   3508 			mappings += PAGE_SIZE / L2_S_SIZE;
   3509 
   3510 			if (!l2pte_valid_p(opte)) {
   3511 				/*
   3512 				 * Ref/Mod emulation is still active for this
   3513 				 * mapping, therefore it is has not yet been
   3514 				 * accessed. No need to frob the cache/tlb.
   3515 				 */
   3516 				l2pte_reset(ptep);
   3517 				PTE_SYNC_CURRENT(pm, ptep);
   3518 				continue;
   3519 			}
   3520 
   3521 #ifdef ARM_MMU_EXTENDED
   3522 			if (pm == pmap_kernel()) {
   3523 				l2pte_reset(ptep);
   3524 				PTE_SYNC(ptep);
   3525  				pmap_tlb_flush_SE(pm, sva, flags);
   3526 				continue;
   3527 			}
   3528 #endif
   3529 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3530 				/* Add to the clean list. */
   3531 				cleanlist[cleanlist_idx].ptep = ptep;
   3532 				cleanlist[cleanlist_idx].va =
   3533 				    sva | (flags & PVF_EXEC);
   3534 				cleanlist_idx++;
   3535 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3536 				/* Nuke everything if needed. */
   3537 #ifdef PMAP_CACHE_VIVT
   3538 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3539 #endif
   3540 				/*
   3541 				 * Roll back the previous PTE list,
   3542 				 * and zero out the current PTE.
   3543 				 */
   3544 				for (cnt = 0;
   3545 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3546 					l2pte_reset(cleanlist[cnt].ptep);
   3547 					PTE_SYNC(cleanlist[cnt].ptep);
   3548 				}
   3549 				l2pte_reset(ptep);
   3550 				PTE_SYNC(ptep);
   3551 				cleanlist_idx++;
   3552 				pm->pm_remove_all = true;
   3553 			} else {
   3554 				l2pte_reset(ptep);
   3555 				PTE_SYNC(ptep);
   3556 				if (pm->pm_remove_all == false) {
   3557 					pmap_tlb_flush_SE(pm, sva, flags);
   3558 				}
   3559 			}
   3560 		}
   3561 
   3562 		/*
   3563 		 * Deal with any left overs
   3564 		 */
   3565 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3566 			total += cleanlist_idx;
   3567 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3568 				l2pte_reset(cleanlist[cnt].ptep);
   3569 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3570 #ifdef ARM_MMU_EXTENDED
   3571 				vaddr_t clva = cleanlist[cnt].va;
   3572 				pmap_tlb_flush_SE(pm, clva, PVF_REF);
   3573 #else
   3574 				vaddr_t va = cleanlist[cnt].va;
   3575 				if (pm->pm_cstate.cs_all != 0) {
   3576 					vaddr_t clva = va & ~PAGE_MASK;
   3577 					u_int flags = va & PVF_EXEC;
   3578 #ifdef PMAP_CACHE_VIVT
   3579 					pmap_cache_wbinv_page(pm, clva, true,
   3580 					    PVF_REF | PVF_WRITE | flags);
   3581 #endif
   3582 					pmap_tlb_flush_SE(pm, clva,
   3583 					    PVF_REF | flags);
   3584 				}
   3585 #endif /* ARM_MMU_EXTENDED */
   3586 			}
   3587 
   3588 			/*
   3589 			 * If it looks like we're removing a whole bunch
   3590 			 * of mappings, it's faster to just write-back
   3591 			 * the whole cache now and defer TLB flushes until
   3592 			 * pmap_update() is called.
   3593 			 */
   3594 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3595 				cleanlist_idx = 0;
   3596 			else {
   3597 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3598 #ifdef PMAP_CACHE_VIVT
   3599 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3600 #endif
   3601 				pm->pm_remove_all = true;
   3602 			}
   3603 		}
   3604 
   3605 
   3606 		pmap_free_l2_bucket(pm, l2b, mappings);
   3607 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3608 	}
   3609 
   3610 	pmap_release_pmap_lock(pm);
   3611 }
   3612 
   3613 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3614 static struct pv_entry *
   3615 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3616 {
   3617 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3618 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3619 	struct pv_entry *pv;
   3620 
   3621 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3622 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3623 	KASSERT(pmap_page_locked_p(md));
   3624 
   3625 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3626 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3627 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3628 
   3629 	/*
   3630 	 * If we are removing a writeable mapping to a cached exec page,
   3631 	 * if it's the last mapping then clear it execness other sync
   3632 	 * the page to the icache.
   3633 	 */
   3634 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3635 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3636 		if (SLIST_EMPTY(&md->pvh_list)) {
   3637 			md->pvh_attrs &= ~PVF_EXEC;
   3638 			PMAPCOUNT(exec_discarded_kremove);
   3639 		} else {
   3640 			pmap_syncicache_page(md, pa);
   3641 			PMAPCOUNT(exec_synced_kremove);
   3642 		}
   3643 	}
   3644 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3645 
   3646 	return pv;
   3647 }
   3648 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3649 
   3650 /*
   3651  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3652  *
   3653  * We assume there is already sufficient KVM space available
   3654  * to do this, as we can't allocate L2 descriptor tables/metadata
   3655  * from here.
   3656  */
   3657 void
   3658 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3659 {
   3660 #ifdef PMAP_CACHE_VIVT
   3661 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3662 #endif
   3663 #ifdef PMAP_CACHE_VIPT
   3664 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3665 	struct vm_page *opg;
   3666 #ifndef ARM_MMU_EXTENDED
   3667 	struct pv_entry *pv = NULL;
   3668 #endif
   3669 #endif
   3670 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3671 
   3672 	UVMHIST_FUNC(__func__);
   3673 
   3674 	if (pmap_initialized) {
   3675 		UVMHIST_CALLED(maphist);
   3676 		UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
   3677 		    va, pa, prot, flags);
   3678 	}
   3679 
   3680 	pmap_t kpm = pmap_kernel();
   3681 	pmap_acquire_pmap_lock(kpm);
   3682 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3683 	const size_t l1slot __diagused = l1pte_index(va);
   3684 	KASSERTMSG(l2b != NULL,
   3685 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3686 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3687 	    kpm->pm_l2[L2_IDX(l1slot)]
   3688 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3689 		: NULL,
   3690 	    kpm->pm_l2[L2_IDX(l1slot)]
   3691 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3692 		: NULL);
   3693 	KASSERT(l2b->l2b_kva != NULL);
   3694 
   3695 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3696 	const pt_entry_t opte = *ptep;
   3697 
   3698 	if (opte == 0) {
   3699 		PMAPCOUNT(kenter_mappings);
   3700 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3701 	} else {
   3702 		PMAPCOUNT(kenter_remappings);
   3703 #ifdef PMAP_CACHE_VIPT
   3704 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3705 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
   3706 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
   3707 #endif
   3708 		if (opg && arm_cache_prefer_mask != 0) {
   3709 			KASSERT(opg != pg);
   3710 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3711 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3712 #ifndef ARM_MMU_EXTENDED
   3713 			pmap_acquire_page_lock(omd);
   3714 			pv = pmap_kremove_pg(opg, va);
   3715 			pmap_release_page_lock(omd);
   3716 #endif
   3717 		}
   3718 #endif
   3719 		if (l2pte_valid_p(opte)) {
   3720 			l2pte_reset(ptep);
   3721 			PTE_SYNC(ptep);
   3722 #ifdef PMAP_CACHE_VIVT
   3723 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3724 #endif
   3725 			cpu_tlb_flushD_SE(va);
   3726 			cpu_cpwait();
   3727 		}
   3728 	}
   3729 	pmap_release_pmap_lock(kpm);
   3730 
   3731 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3732 	    | ((flags & PMAP_NOCACHE)
   3733 		? 0
   3734 		: ((flags & PMAP_PTE)
   3735 		    ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
   3736 #ifdef ARM_MMU_EXTENDED
   3737 	if (prot & VM_PROT_EXECUTE)
   3738 		npte &= ~L2_XS_XN;
   3739 #endif
   3740 	l2pte_set(ptep, npte, 0);
   3741 	PTE_SYNC(ptep);
   3742 
   3743 	if (pg) {
   3744 		if (flags & PMAP_KMPAGE) {
   3745 			KASSERT(md->urw_mappings == 0);
   3746 			KASSERT(md->uro_mappings == 0);
   3747 			KASSERT(md->krw_mappings == 0);
   3748 			KASSERT(md->kro_mappings == 0);
   3749 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3750 			KASSERT(pv == NULL);
   3751 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3752 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3753 			/* if there is a color conflict, evict from cache. */
   3754 			if (pmap_is_page_colored_p(md)
   3755 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3756 				PMAPCOUNT(vac_color_change);
   3757 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3758 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3759 				/*
   3760 				 * If this page has multiple colors, expunge
   3761 				 * them.
   3762 				 */
   3763 				PMAPCOUNT(vac_flush_lots2);
   3764 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3765 			}
   3766 			/*
   3767 			 * Since this is a KMPAGE, there can be no contention
   3768 			 * for this page so don't lock it.
   3769 			 */
   3770 			md->pvh_attrs &= PAGE_SIZE - 1;
   3771 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3772 			    | (va & arm_cache_prefer_mask);
   3773 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3774 			md->pvh_attrs |= PVF_KMPAGE;
   3775 #endif
   3776 			atomic_inc_32(&pmap_kmpages);
   3777 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3778 		} else if (arm_cache_prefer_mask != 0) {
   3779 			if (pv == NULL) {
   3780 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3781 				KASSERT(pv != NULL);
   3782 			}
   3783 			pmap_acquire_page_lock(md);
   3784 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3785 			    PVF_WIRED | PVF_KENTRY
   3786 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3787 			if ((prot & VM_PROT_WRITE)
   3788 			    && !(md->pvh_attrs & PVF_NC))
   3789 				md->pvh_attrs |= PVF_DIRTY;
   3790 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3791 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3792 			pmap_release_page_lock(md);
   3793 #endif
   3794 		}
   3795 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3796 	} else {
   3797 		if (pv != NULL)
   3798 			pool_put(&pmap_pv_pool, pv);
   3799 #endif
   3800 	}
   3801 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3802 	KASSERT(md == NULL || !pmap_page_locked_p(md));
   3803 #endif
   3804 	if (pmap_initialized) {
   3805 		UVMHIST_LOG(maphist, "  <-- done (ptep %p: %#x -> %#x)",
   3806 		    ptep, opte, npte, 0);
   3807 	}
   3808 
   3809 }
   3810 
   3811 void
   3812 pmap_kremove(vaddr_t va, vsize_t len)
   3813 {
   3814 #ifdef UVMHIST
   3815 	u_int total_mappings = 0;
   3816 #endif
   3817 
   3818 	PMAPCOUNT(kenter_unmappings);
   3819 
   3820 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3821 
   3822 	UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
   3823 
   3824 	const vaddr_t eva = va + len;
   3825 
   3826 	pmap_acquire_pmap_lock(pmap_kernel());
   3827 
   3828 	while (va < eva) {
   3829 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3830 		if (next_bucket > eva)
   3831 			next_bucket = eva;
   3832 
   3833 		pmap_t kpm = pmap_kernel();
   3834 		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3835 		KDASSERT(l2b != NULL);
   3836 
   3837 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3838 		pt_entry_t *ptep = sptep;
   3839 		u_int mappings = 0;
   3840 
   3841 		while (va < next_bucket) {
   3842 			const pt_entry_t opte = *ptep;
   3843 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3844 			if (opg != NULL) {
   3845 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3846 
   3847 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3848 					KASSERT(omd->urw_mappings == 0);
   3849 					KASSERT(omd->uro_mappings == 0);
   3850 					KASSERT(omd->krw_mappings == 0);
   3851 					KASSERT(omd->kro_mappings == 0);
   3852 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3853 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3854 					if (arm_cache_prefer_mask != 0) {
   3855 						omd->pvh_attrs &= ~PVF_WRITE;
   3856 					}
   3857 #endif
   3858 					atomic_dec_32(&pmap_kmpages);
   3859 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3860 				} else if (arm_cache_prefer_mask != 0) {
   3861 					pmap_acquire_page_lock(omd);
   3862 					pool_put(&pmap_pv_pool,
   3863 					    pmap_kremove_pg(opg, va));
   3864 					pmap_release_page_lock(omd);
   3865 #endif
   3866 				}
   3867 			}
   3868 			if (l2pte_valid_p(opte)) {
   3869 				l2pte_reset(ptep);
   3870 				PTE_SYNC(ptep);
   3871 #ifdef PMAP_CACHE_VIVT
   3872 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3873 #endif
   3874 				cpu_tlb_flushD_SE(va);
   3875 
   3876 				mappings += PAGE_SIZE / L2_S_SIZE;
   3877 			}
   3878 			va += PAGE_SIZE;
   3879 			ptep += PAGE_SIZE / L2_S_SIZE;
   3880 		}
   3881 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3882 		    mappings, l2b->l2b_occupancy);
   3883 		l2b->l2b_occupancy -= mappings;
   3884 		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3885 #ifdef UVMHIST
   3886 		total_mappings += mappings;
   3887 #endif
   3888 	}
   3889 	pmap_release_pmap_lock(pmap_kernel());
   3890 	cpu_cpwait();
   3891 	UVMHIST_LOG(maphist, "  <--- done (%u mappings removed)",
   3892 	    total_mappings, 0, 0, 0);
   3893 }
   3894 
   3895 bool
   3896 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3897 {
   3898 	struct l2_dtable *l2;
   3899 	pd_entry_t *pdep, pde;
   3900 	pt_entry_t *ptep, pte;
   3901 	paddr_t pa;
   3902 	u_int l1slot;
   3903 
   3904 	pmap_acquire_pmap_lock(pm);
   3905 
   3906 	l1slot = l1pte_index(va);
   3907 	pdep = pmap_l1_kva(pm) + l1slot;
   3908 	pde = *pdep;
   3909 
   3910 	if (l1pte_section_p(pde)) {
   3911 		/*
   3912 		 * These should only happen for pmap_kernel()
   3913 		 */
   3914 		KDASSERT(pm == pmap_kernel());
   3915 		pmap_release_pmap_lock(pm);
   3916 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3917 		if (l1pte_supersection_p(pde)) {
   3918 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3919 		} else
   3920 #endif
   3921 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3922 	} else {
   3923 		/*
   3924 		 * Note that we can't rely on the validity of the L1
   3925 		 * descriptor as an indication that a mapping exists.
   3926 		 * We have to look it up in the L2 dtable.
   3927 		 */
   3928 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   3929 
   3930 		if (l2 == NULL ||
   3931 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   3932 			pmap_release_pmap_lock(pm);
   3933 			return false;
   3934 		}
   3935 
   3936 		pte = ptep[l2pte_index(va)];
   3937 		pmap_release_pmap_lock(pm);
   3938 
   3939 		if (pte == 0)
   3940 			return false;
   3941 
   3942 		switch (pte & L2_TYPE_MASK) {
   3943 		case L2_TYPE_L:
   3944 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3945 			break;
   3946 
   3947 		default:
   3948 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   3949 			break;
   3950 		}
   3951 	}
   3952 
   3953 	if (pap != NULL)
   3954 		*pap = pa;
   3955 
   3956 	return true;
   3957 }
   3958 
   3959 /*
   3960  * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
   3961  *	that map it
   3962  */
   3963 
   3964 static void
   3965 pmap_pv_remove(paddr_t pa)
   3966 {
   3967 	struct pmap_page *pp;
   3968 
   3969 	pp = pmap_pv_tracked(pa);
   3970 	if (pp == NULL)
   3971 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
   3972 		    pa);
   3973 
   3974 	struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
   3975 	pmap_page_remove(md, pa);
   3976 }
   3977 
   3978 void
   3979 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
   3980 {
   3981 
   3982 	/* the only case is remove at the moment */
   3983 	KASSERT(prot == VM_PROT_NONE);
   3984 	pmap_pv_remove(pa);
   3985 }
   3986 
   3987 void
   3988 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3989 {
   3990 	struct l2_bucket *l2b;
   3991 	vaddr_t next_bucket;
   3992 
   3993 	NPDEBUG(PDB_PROTECT,
   3994 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3995 	    pm, sva, eva, prot));
   3996 
   3997 	if ((prot & VM_PROT_READ) == 0) {
   3998 		pmap_remove(pm, sva, eva);
   3999 		return;
   4000 	}
   4001 
   4002 	if (prot & VM_PROT_WRITE) {
   4003 		/*
   4004 		 * If this is a read->write transition, just ignore it and let
   4005 		 * uvm_fault() take care of it later.
   4006 		 */
   4007 		return;
   4008 	}
   4009 
   4010 	pmap_acquire_pmap_lock(pm);
   4011 
   4012 #ifndef ARM_MMU_EXTENDED
   4013 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   4014 	u_int flags = 0;
   4015 #endif
   4016 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   4017 
   4018 	while (sva < eva) {
   4019 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4020 		if (next_bucket > eva)
   4021 			next_bucket = eva;
   4022 
   4023 		l2b = pmap_get_l2_bucket(pm, sva);
   4024 		if (l2b == NULL) {
   4025 			sva = next_bucket;
   4026 			continue;
   4027 		}
   4028 
   4029 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4030 
   4031 		while (sva < next_bucket) {
   4032 			const pt_entry_t opte = *ptep;
   4033 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   4034 				struct vm_page *pg;
   4035 #ifndef ARM_MMU_EXTENDED
   4036 				u_int f;
   4037 #endif
   4038 
   4039 #ifdef PMAP_CACHE_VIVT
   4040 				/*
   4041 				 * OK, at this point, we know we're doing
   4042 				 * write-protect operation.  If the pmap is
   4043 				 * active, write-back the page.
   4044 				 */
   4045 				pmap_cache_wbinv_page(pm, sva, false,
   4046 				    PVF_REF | PVF_WRITE);
   4047 #endif
   4048 
   4049 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   4050 				pt_entry_t npte = l2pte_set_readonly(opte);
   4051 				l2pte_reset(ptep);
   4052 				PTE_SYNC(ptep);
   4053 #ifdef ARM_MMU_EXTENDED
   4054 				pmap_tlb_flush_SE(pm, sva, PVF_REF);
   4055 #endif
   4056 				l2pte_set(ptep, npte, 0);
   4057 				PTE_SYNC(ptep);
   4058 
   4059 				if (pg != NULL) {
   4060 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4061 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4062 
   4063 					pmap_acquire_page_lock(md);
   4064 #ifndef ARM_MMU_EXTENDED
   4065 					f =
   4066 #endif
   4067 					    pmap_modify_pv(md, pa, pm, sva,
   4068 					       clr_mask, 0);
   4069 					pmap_vac_me_harder(md, pa, pm, sva);
   4070 					pmap_release_page_lock(md);
   4071 #ifndef ARM_MMU_EXTENDED
   4072 				} else {
   4073 					f = PVF_REF | PVF_EXEC;
   4074 				}
   4075 
   4076 				if (flush) {
   4077 					flags |= f;
   4078 				} else {
   4079 					pmap_tlb_flush_SE(pm, sva, f);
   4080 #endif
   4081 				}
   4082 			}
   4083 
   4084 			sva += PAGE_SIZE;
   4085 			ptep += PAGE_SIZE / L2_S_SIZE;
   4086 		}
   4087 	}
   4088 
   4089 #ifndef ARM_MMU_EXTENDED
   4090 	if (flush) {
   4091 		if (PV_BEEN_EXECD(flags)) {
   4092 			pmap_tlb_flushID(pm);
   4093 		} else if (PV_BEEN_REFD(flags)) {
   4094 			pmap_tlb_flushD(pm);
   4095 		}
   4096 	}
   4097 #endif
   4098 
   4099 	pmap_release_pmap_lock(pm);
   4100 }
   4101 
   4102 void
   4103 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4104 {
   4105 	struct l2_bucket *l2b;
   4106 	pt_entry_t *ptep;
   4107 	vaddr_t next_bucket;
   4108 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4109 
   4110 	NPDEBUG(PDB_EXEC,
   4111 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   4112 	    pm, sva, eva));
   4113 
   4114 	pmap_acquire_pmap_lock(pm);
   4115 
   4116 	while (sva < eva) {
   4117 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4118 		if (next_bucket > eva)
   4119 			next_bucket = eva;
   4120 
   4121 		l2b = pmap_get_l2_bucket(pm, sva);
   4122 		if (l2b == NULL) {
   4123 			sva = next_bucket;
   4124 			continue;
   4125 		}
   4126 
   4127 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4128 		     sva < next_bucket;
   4129 		     sva += page_size,
   4130 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4131 		     page_size = PAGE_SIZE) {
   4132 			if (l2pte_valid_p(*ptep)) {
   4133 				cpu_icache_sync_range(sva,
   4134 				    min(page_size, eva - sva));
   4135 			}
   4136 		}
   4137 	}
   4138 
   4139 	pmap_release_pmap_lock(pm);
   4140 }
   4141 
   4142 void
   4143 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4144 {
   4145 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4146 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4147 
   4148 	NPDEBUG(PDB_PROTECT,
   4149 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   4150 	    md, pa, prot));
   4151 
   4152 	switch(prot) {
   4153 	case VM_PROT_READ|VM_PROT_WRITE:
   4154 #if defined(ARM_MMU_EXTENDED)
   4155 		pmap_acquire_page_lock(md);
   4156 		pmap_clearbit(md, pa, PVF_EXEC);
   4157 		pmap_release_page_lock(md);
   4158 		break;
   4159 #endif
   4160 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4161 		break;
   4162 
   4163 	case VM_PROT_READ:
   4164 #if defined(ARM_MMU_EXTENDED)
   4165 		pmap_acquire_page_lock(md);
   4166 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4167 		pmap_release_page_lock(md);
   4168 		break;
   4169 #endif
   4170 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4171 		pmap_acquire_page_lock(md);
   4172 		pmap_clearbit(md, pa, PVF_WRITE);
   4173 		pmap_release_page_lock(md);
   4174 		break;
   4175 
   4176 	default:
   4177 		pmap_page_remove(md, pa);
   4178 		break;
   4179 	}
   4180 }
   4181 
   4182 /*
   4183  * pmap_clear_modify:
   4184  *
   4185  *	Clear the "modified" attribute for a page.
   4186  */
   4187 bool
   4188 pmap_clear_modify(struct vm_page *pg)
   4189 {
   4190 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4191 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4192 	bool rv;
   4193 
   4194 	pmap_acquire_page_lock(md);
   4195 
   4196 	if (md->pvh_attrs & PVF_MOD) {
   4197 		rv = true;
   4198 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4199 		/*
   4200 		 * If we are going to clear the modified bit and there are
   4201 		 * no other modified bits set, flush the page to memory and
   4202 		 * mark it clean.
   4203 		 */
   4204 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4205 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4206 #endif
   4207 		pmap_clearbit(md, pa, PVF_MOD);
   4208 	} else {
   4209 		rv = false;
   4210 	}
   4211 	pmap_release_page_lock(md);
   4212 
   4213 	return rv;
   4214 }
   4215 
   4216 /*
   4217  * pmap_clear_reference:
   4218  *
   4219  *	Clear the "referenced" attribute for a page.
   4220  */
   4221 bool
   4222 pmap_clear_reference(struct vm_page *pg)
   4223 {
   4224 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4225 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4226 	bool rv;
   4227 
   4228 	pmap_acquire_page_lock(md);
   4229 
   4230 	if (md->pvh_attrs & PVF_REF) {
   4231 		rv = true;
   4232 		pmap_clearbit(md, pa, PVF_REF);
   4233 	} else {
   4234 		rv = false;
   4235 	}
   4236 	pmap_release_page_lock(md);
   4237 
   4238 	return rv;
   4239 }
   4240 
   4241 /*
   4242  * pmap_is_modified:
   4243  *
   4244  *	Test if a page has the "modified" attribute.
   4245  */
   4246 /* See <arm/arm32/pmap.h> */
   4247 
   4248 /*
   4249  * pmap_is_referenced:
   4250  *
   4251  *	Test if a page has the "referenced" attribute.
   4252  */
   4253 /* See <arm/arm32/pmap.h> */
   4254 
   4255 #if defined(ARM_MMU_EXTENDED) && 0
   4256 int
   4257 pmap_prefetchabt_fixup(void *v)
   4258 {
   4259 	struct trapframe * const tf = v;
   4260 	vaddr_t va = trunc_page(tf->tf_pc);
   4261 	int rv = ABORT_FIXUP_FAILED;
   4262 
   4263 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4264 		return rv;
   4265 
   4266 	kpreempt_disable();
   4267 	pmap_t pm = curcpu()->ci_pmap_cur;
   4268 	const size_t l1slot = l1pte_index(va);
   4269 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4270 	if (l2 == NULL)
   4271 		goto out;
   4272 
   4273 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4274 	if (l2b->l2b_kva == NULL)
   4275 		goto out;
   4276 
   4277 	/*
   4278 	 * Check the PTE itself.
   4279 	 */
   4280 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4281 	const pt_entry_t opte = *ptep;
   4282 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4283 		goto out;
   4284 
   4285 	paddr_t pa = l2pte_pa(pte);
   4286 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4287 	KASSERT(pg != NULL);
   4288 
   4289 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4290 
   4291 	pmap_acquire_page_lock(md);
   4292 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4293 	KASSERT(pv != NULL);
   4294 
   4295 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4296 		l2pte_reset(ptep);
   4297 		PTE_SYNC(ptep);
   4298 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4299 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4300 			pmap_syncicache_page(md, pa);
   4301 		}
   4302 		rv = ABORT_FIXUP_RETURN;
   4303 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4304 		PTE_SYNC(ptep);
   4305 	}
   4306 	pmap_release_page_lock(md);
   4307 
   4308   out:
   4309 	kpreempt_enable();
   4310 	return rv;
   4311 }
   4312 #endif
   4313 
   4314 int
   4315 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4316 {
   4317 	struct l2_dtable *l2;
   4318 	struct l2_bucket *l2b;
   4319 	paddr_t pa;
   4320 	const size_t l1slot = l1pte_index(va);
   4321 	int rv = 0;
   4322 
   4323 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4324 
   4325 	va = trunc_page(va);
   4326 
   4327 	KASSERT(!user || (pm != pmap_kernel()));
   4328 
   4329 	UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
   4330 	    pm, va, ftype, user);
   4331 #ifdef ARM_MMU_EXTENDED
   4332 	UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
   4333 	    cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4334 	    PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4335 #endif
   4336 
   4337 	pmap_acquire_pmap_lock(pm);
   4338 
   4339 	/*
   4340 	 * If there is no l2_dtable for this address, then the process
   4341 	 * has no business accessing it.
   4342 	 *
   4343 	 * Note: This will catch userland processes trying to access
   4344 	 * kernel addresses.
   4345 	 */
   4346 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4347 	if (l2 == NULL) {
   4348 		UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
   4349 		goto out;
   4350 	}
   4351 
   4352 	/*
   4353 	 * Likewise if there is no L2 descriptor table
   4354 	 */
   4355 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4356 	if (l2b->l2b_kva == NULL) {
   4357 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
   4358 		goto out;
   4359 	}
   4360 
   4361 	/*
   4362 	 * Check the PTE itself.
   4363 	 */
   4364 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4365 	pt_entry_t const opte = *ptep;
   4366 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4367 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
   4368 		goto out;
   4369 	}
   4370 
   4371 #ifndef ARM_HAS_VBAR
   4372 	/*
   4373 	 * Catch a userland access to the vector page mapped at 0x0
   4374 	 */
   4375 	if (user && (opte & L2_S_PROT_U) == 0) {
   4376 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4377 		goto out;
   4378 	}
   4379 #endif
   4380 
   4381 	pa = l2pte_pa(opte);
   4382 
   4383 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4384 		/*
   4385 		 * This looks like a good candidate for "page modified"
   4386 		 * emulation...
   4387 		 */
   4388 		struct pv_entry *pv;
   4389 		struct vm_page *pg;
   4390 
   4391 		/* Extract the physical address of the page */
   4392 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4393 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4394 			goto out;
   4395 		}
   4396 
   4397 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4398 
   4399 		/* Get the current flags for this page. */
   4400 		pmap_acquire_page_lock(md);
   4401 		pv = pmap_find_pv(md, pm, va);
   4402 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4403 			pmap_release_page_lock(md);
   4404 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4405 			goto out;
   4406 		}
   4407 
   4408 		/*
   4409 		 * Do the flags say this page is writable? If not then it
   4410 		 * is a genuine write fault. If yes then the write fault is
   4411 		 * our fault as we did not reflect the write access in the
   4412 		 * PTE. Now we know a write has occurred we can correct this
   4413 		 * and also set the modified bit
   4414 		 */
   4415 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4416 			pmap_release_page_lock(md);
   4417 			goto out;
   4418 		}
   4419 
   4420 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4421 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4422 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4423 		/*
   4424 		 * If there are cacheable mappings for this page, mark it dirty.
   4425 		 */
   4426 		if ((md->pvh_attrs & PVF_NC) == 0)
   4427 			md->pvh_attrs |= PVF_DIRTY;
   4428 #endif
   4429 #ifdef ARM_MMU_EXTENDED
   4430 		if (md->pvh_attrs & PVF_EXEC) {
   4431 			md->pvh_attrs &= ~PVF_EXEC;
   4432 			PMAPCOUNT(exec_discarded_modfixup);
   4433 		}
   4434 #endif
   4435 		pmap_release_page_lock(md);
   4436 
   4437 		/*
   4438 		 * Re-enable write permissions for the page.  No need to call
   4439 		 * pmap_vac_me_harder(), since this is just a
   4440 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4441 		 * changing. We've already set the cacheable bits based on
   4442 		 * the assumption that we can write to this page.
   4443 		 */
   4444 		const pt_entry_t npte =
   4445 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4446 #ifdef ARM_MMU_EXTENDED
   4447 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4448 #endif
   4449 		    | 0;
   4450 		l2pte_reset(ptep);
   4451 		PTE_SYNC(ptep);
   4452 		pmap_tlb_flush_SE(pm, va,
   4453 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4454 		l2pte_set(ptep, npte, 0);
   4455 		PTE_SYNC(ptep);
   4456 		PMAPCOUNT(fixup_mod);
   4457 		rv = 1;
   4458 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
   4459 		    opte, npte, 0, 0);
   4460 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4461 		/*
   4462 		 * This looks like a good candidate for "page referenced"
   4463 		 * emulation.
   4464 		 */
   4465 		struct vm_page *pg;
   4466 
   4467 		/* Extract the physical address of the page */
   4468 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4469 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4470 			goto out;
   4471 		}
   4472 
   4473 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4474 
   4475 		/* Get the current flags for this page. */
   4476 		pmap_acquire_page_lock(md);
   4477 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4478 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4479 			pmap_release_page_lock(md);
   4480 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4481 			goto out;
   4482 		}
   4483 
   4484 		md->pvh_attrs |= PVF_REF;
   4485 		pv->pv_flags |= PVF_REF;
   4486 
   4487 		pt_entry_t npte =
   4488 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4489 #ifdef ARM_MMU_EXTENDED
   4490 		if (pm != pmap_kernel()) {
   4491 			npte |= L2_XS_nG;
   4492 		}
   4493 		/*
   4494 		 * If we got called from prefetch abort, then ftype will have
   4495 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4496 		 * the PTE.
   4497 		 */
   4498 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4499 			/*
   4500 			 * Is this a mapping of an executable page?
   4501 			 */
   4502 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4503 				pmap_release_page_lock(md);
   4504 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4505 				    0, 0, 0, 0);
   4506 				goto out;
   4507 			}
   4508 			/*
   4509 			 * If we haven't synced the page, do so now.
   4510 			 */
   4511 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4512 				UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
   4513 				    pa, 0, 0, 0);
   4514 				pmap_syncicache_page(md, pa);
   4515 				PMAPCOUNT(fixup_exec);
   4516 			}
   4517 			npte &= ~L2_XS_XN;
   4518 		}
   4519 #endif /* ARM_MMU_EXTENDED */
   4520 		pmap_release_page_lock(md);
   4521 		l2pte_reset(ptep);
   4522 		PTE_SYNC(ptep);
   4523 		pmap_tlb_flush_SE(pm, va,
   4524 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4525 		l2pte_set(ptep, npte, 0);
   4526 		PTE_SYNC(ptep);
   4527 		PMAPCOUNT(fixup_ref);
   4528 		rv = 1;
   4529 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
   4530 		    opte, npte, 0, 0);
   4531 #ifdef ARM_MMU_EXTENDED
   4532 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4533 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4534 		if (pg == NULL) {
   4535 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4536 			goto out;
   4537 		}
   4538 
   4539 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4540 
   4541 		/* Get the current flags for this page. */
   4542 		pmap_acquire_page_lock(md);
   4543 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4544 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4545 			pmap_release_page_lock(md);
   4546 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4547 			goto out;
   4548 		}
   4549 
   4550 		/*
   4551 		 * If we haven't synced the page, do so now.
   4552 		 */
   4553 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4554 			UVMHIST_LOG(maphist, "syncicache page #%#x",
   4555 			    pa, 0, 0, 0);
   4556 			pmap_syncicache_page(md, pa);
   4557 		}
   4558 		pmap_release_page_lock(md);
   4559 		/*
   4560 		 * Turn off no-execute.
   4561 		 */
   4562 		KASSERT(opte & L2_XS_nG);
   4563 		l2pte_reset(ptep);
   4564 		PTE_SYNC(ptep);
   4565 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4566 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4567 		PTE_SYNC(ptep);
   4568 		rv = 1;
   4569 		PMAPCOUNT(fixup_exec);
   4570 		UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
   4571 		    opte, opte & ~L2_XS_XN, 0, 0);
   4572 #endif
   4573 	}
   4574 
   4575 #ifndef ARM_MMU_EXTENDED
   4576 	/*
   4577 	 * We know there is a valid mapping here, so simply
   4578 	 * fix up the L1 if necessary.
   4579 	 */
   4580 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4581 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4582 	if (*pdep != pde) {
   4583 		l1pte_setone(pdep, pde);
   4584 		PDE_SYNC(pdep);
   4585 		rv = 1;
   4586 		PMAPCOUNT(fixup_pdes);
   4587 	}
   4588 #endif
   4589 
   4590 #ifdef CPU_SA110
   4591 	/*
   4592 	 * There are bugs in the rev K SA110.  This is a check for one
   4593 	 * of them.
   4594 	 */
   4595 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4596 	    curcpu()->ci_arm_cpurev < 3) {
   4597 		/* Always current pmap */
   4598 		if (l2pte_valid_p(opte)) {
   4599 			extern int kernel_debug;
   4600 			if (kernel_debug & 1) {
   4601 				struct proc *p = curlwp->l_proc;
   4602 				printf("prefetch_abort: page is already "
   4603 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4604 				printf("prefetch_abort: pc=%08lx proc=%p "
   4605 				    "process=%s\n", va, p, p->p_comm);
   4606 				printf("prefetch_abort: far=%08x fs=%x\n",
   4607 				    cpu_faultaddress(), cpu_faultstatus());
   4608 			}
   4609 #ifdef DDB
   4610 			if (kernel_debug & 2)
   4611 				Debugger();
   4612 #endif
   4613 			rv = 1;
   4614 		}
   4615 	}
   4616 #endif /* CPU_SA110 */
   4617 
   4618 #ifndef ARM_MMU_EXTENDED
   4619 	/*
   4620 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4621 	 * stale TLB entry for the faulting address.  That might be due to a
   4622 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4623 	 */
   4624 	if (rv == 0
   4625 	    && pm->pm_l1->l1_domain_use_count == 1
   4626 	    && pmap_needs_pte_sync == 0) {
   4627 		pmap_needs_pte_sync = 1;
   4628 		PTE_SYNC(ptep);
   4629 		PMAPCOUNT(fixup_ptesync);
   4630 		rv = 1;
   4631 	}
   4632 #endif
   4633 
   4634 #ifndef MULTIPROCESSOR
   4635 #if defined(DEBUG) || 1
   4636 	/*
   4637 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4638 	 * stale TLB entry for the faulting address. This happens when two or
   4639 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4640 	 * a context switch between such processes, we can take domain faults
   4641 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4642 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4643 	 * example.
   4644 	 *
   4645 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4646 	 * entry for a recently entered mapping. In this case, the TLB is
   4647 	 * flushed for the new mapping, but there may still be TLB entries for
   4648 	 * other mappings belonging to other processes in the 1MB range
   4649 	 * covered by the L1 entry.
   4650 	 *
   4651 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4652 	 * value, so the fault must be due to a stale TLB entry.
   4653 	 *
   4654 	 * Since we always need to flush the TLB anyway in the case where we
   4655 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4656 	 * stale TLB entries dynamically.
   4657 	 *
   4658 	 * However, the above condition can ONLY happen if the current L1 is
   4659 	 * being shared. If it happens when the L1 is unshared, it indicates
   4660 	 * that other parts of the pmap are not doing their job WRT managing
   4661 	 * the TLB.
   4662 	 */
   4663 	if (rv == 0
   4664 #ifndef ARM_MMU_EXTENDED
   4665 	    && pm->pm_l1->l1_domain_use_count == 1
   4666 #endif
   4667 	    && true) {
   4668 #ifdef DEBUG
   4669 		extern int last_fault_code;
   4670 #else
   4671 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4672 		    ? armreg_ifsr_read()
   4673 		    : armreg_dfsr_read();
   4674 #endif
   4675 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4676 		    pm, va, ftype);
   4677 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4678 		    l2, l2b, ptep, opte);
   4679 
   4680 #ifndef ARM_MMU_EXTENDED
   4681 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4682 		    pdep, pde, last_fault_code);
   4683 #else
   4684 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4685 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4686 		   armreg_ttbcr_read());
   4687 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4688 		    last_fault_code, curcpu()->ci_pmap_cur,
   4689 		    curcpu()->ci_pmap_asid_cur,
   4690 		    armreg_contextidr_read(), armreg_dacr_read());
   4691 #ifdef _ARM_ARCH_7
   4692 		if (ftype & VM_PROT_WRITE)
   4693 			armreg_ats1cuw_write(va);
   4694 		else
   4695 			armreg_ats1cur_write(va);
   4696 		arm_isb();
   4697 		printf("fixup: par %#x\n", armreg_par_read());
   4698 #endif
   4699 #endif
   4700 #ifdef DDB
   4701 		extern int kernel_debug;
   4702 
   4703 		if (kernel_debug & 2) {
   4704 			pmap_release_pmap_lock(pm);
   4705 #ifdef UVMHIST
   4706 			KERNHIST_DUMP(maphist);
   4707 #endif
   4708 			cpu_Debugger();
   4709 			pmap_acquire_pmap_lock(pm);
   4710 		}
   4711 #endif
   4712 	}
   4713 #endif
   4714 #endif
   4715 
   4716 #ifndef ARM_MMU_EXTENDED
   4717 	/* Flush the TLB in the shared L1 case - see comment above */
   4718 	pmap_tlb_flush_SE(pm, va,
   4719 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4720 #endif
   4721 
   4722 	rv = 1;
   4723 
   4724 out:
   4725 	pmap_release_pmap_lock(pm);
   4726 
   4727 	return (rv);
   4728 }
   4729 
   4730 /*
   4731  * Routine:	pmap_procwr
   4732  *
   4733  * Function:
   4734  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4735  *
   4736  */
   4737 void
   4738 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4739 {
   4740 	/* We only need to do anything if it is the current process. */
   4741 	if (p == curproc)
   4742 		cpu_icache_sync_range(va, len);
   4743 }
   4744 
   4745 /*
   4746  * Routine:	pmap_unwire
   4747  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4748  *
   4749  * In/out conditions:
   4750  *		The mapping must already exist in the pmap.
   4751  */
   4752 void
   4753 pmap_unwire(pmap_t pm, vaddr_t va)
   4754 {
   4755 	struct l2_bucket *l2b;
   4756 	pt_entry_t *ptep, pte;
   4757 	struct vm_page *pg;
   4758 	paddr_t pa;
   4759 
   4760 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4761 
   4762 	pmap_acquire_pmap_lock(pm);
   4763 
   4764 	l2b = pmap_get_l2_bucket(pm, va);
   4765 	KDASSERT(l2b != NULL);
   4766 
   4767 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4768 	pte = *ptep;
   4769 
   4770 	/* Extract the physical address of the page */
   4771 	pa = l2pte_pa(pte);
   4772 
   4773 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4774 		/* Update the wired bit in the pv entry for this page. */
   4775 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4776 
   4777 		pmap_acquire_page_lock(md);
   4778 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4779 		pmap_release_page_lock(md);
   4780 	}
   4781 
   4782 	pmap_release_pmap_lock(pm);
   4783 }
   4784 
   4785 void
   4786 pmap_activate(struct lwp *l)
   4787 {
   4788 	struct cpu_info * const ci = curcpu();
   4789 	extern int block_userspace_access;
   4790 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   4791 #ifdef ARM_MMU_EXTENDED
   4792 	struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
   4793 #endif
   4794 
   4795 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4796 
   4797 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
   4798 
   4799 	/*
   4800 	 * If activating a non-current lwp or the current lwp is
   4801 	 * already active, just return.
   4802 	 */
   4803 	if (false
   4804 	    || l != curlwp
   4805 #ifdef ARM_MMU_EXTENDED
   4806 	    || (ci->ci_pmap_cur == npm &&
   4807 		(npm == pmap_kernel()
   4808 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   4809 #else
   4810 	    || npm->pm_activated == true
   4811 #endif
   4812 	    || false) {
   4813 		UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
   4814 		return;
   4815 	}
   4816 
   4817 #ifndef ARM_MMU_EXTENDED
   4818 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4819 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4820 
   4821 	/*
   4822 	 * If TTB and DACR are unchanged, short-circuit all the
   4823 	 * TLB/cache management stuff.
   4824 	 */
   4825 	pmap_t opm = ci->ci_lastlwp
   4826 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   4827 	    : NULL;
   4828 	if (opm != NULL) {
   4829 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4830 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4831 
   4832 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4833 			goto all_done;
   4834 	}
   4835 #endif /* !ARM_MMU_EXTENDED */
   4836 
   4837 	PMAPCOUNT(activations);
   4838 	block_userspace_access = 1;
   4839 
   4840 #ifndef ARM_MMU_EXTENDED
   4841 	/*
   4842 	 * If switching to a user vmspace which is different to the
   4843 	 * most recent one, and the most recent one is potentially
   4844 	 * live in the cache, we must write-back and invalidate the
   4845 	 * entire cache.
   4846 	 */
   4847 	pmap_t rpm = ci->ci_pmap_lastuser;
   4848 #endif
   4849 
   4850 /*
   4851  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4852  * reported in kern/41058. They're probably left over during tear-down and
   4853  * switching away from an exiting process. Until the root cause is identified
   4854  * and fixed, zap the cache when switching pmaps. This will result in a few
   4855  * unnecessary cache flushes, but that's better than silently corrupting data.
   4856  */
   4857 #ifndef ARM_MMU_EXTENDED
   4858 #if 0
   4859 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4860 	    rpm->pm_cstate.cs_cache) {
   4861 		rpm->pm_cstate.cs_cache = 0;
   4862 #ifdef PMAP_CACHE_VIVT
   4863 		cpu_idcache_wbinv_all();
   4864 #endif
   4865 	}
   4866 #else
   4867 	if (rpm) {
   4868 		rpm->pm_cstate.cs_cache = 0;
   4869 		if (npm == pmap_kernel())
   4870 			ci->ci_pmap_lastuser = NULL;
   4871 #ifdef PMAP_CACHE_VIVT
   4872 		cpu_idcache_wbinv_all();
   4873 #endif
   4874 	}
   4875 #endif
   4876 
   4877 	/* No interrupts while we frob the TTB/DACR */
   4878 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   4879 #endif /* !ARM_MMU_EXTENDED */
   4880 
   4881 #ifndef ARM_HAS_VBAR
   4882 	/*
   4883 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4884 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4885 	 * before switching to it otherwise subsequent interrupts/exceptions
   4886 	 * (including domain faults!) will jump into hyperspace.
   4887 	 */
   4888 	if (npm->pm_pl1vec != NULL) {
   4889 		cpu_tlb_flushID_SE((u_int)vector_page);
   4890 		cpu_cpwait();
   4891 		*npm->pm_pl1vec = npm->pm_l1vec;
   4892 		PTE_SYNC(npm->pm_pl1vec);
   4893 	}
   4894 #endif
   4895 
   4896 #ifdef ARM_MMU_EXTENDED
   4897 	/*
   4898 	 * Assume that TTBR1 has only global mappings and TTBR0 only has
   4899 	 * non-global mappings.  To prevent speculation from doing evil things
   4900 	 * we disable translation table walks using TTBR0 before setting the
   4901 	 * CONTEXTIDR (ASID) or new TTBR0 value.  Once both are set, table
   4902 	 * walks are reenabled.
   4903 	 */
   4904 	UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
   4905 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4906 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4907 	arm_isb();
   4908 	pmap_tlb_asid_acquire(npm, l);
   4909 	UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
   4910 	cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
   4911 	/*
   4912 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
   4913 	 * been updated.
   4914 	 */
   4915 	arm_isb();
   4916 	if (npm != pmap_kernel()) {
   4917 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4918 	}
   4919 	cpu_cpwait();
   4920 	ci->ci_pmap_asid_cur = pai->pai_asid;
   4921 #else
   4922 	cpu_domains(ndacr);
   4923 	if (npm == pmap_kernel() || npm == rpm) {
   4924 		/*
   4925 		 * Switching to a kernel thread, or back to the
   4926 		 * same user vmspace as before... Simply update
   4927 		 * the TTB (no TLB flush required)
   4928 		 */
   4929 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4930 		cpu_cpwait();
   4931 	} else {
   4932 		/*
   4933 		 * Otherwise, update TTB and flush TLB
   4934 		 */
   4935 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4936 		if (rpm != NULL)
   4937 			rpm->pm_cstate.cs_tlb = 0;
   4938 	}
   4939 
   4940 	restore_interrupts(oldirqstate);
   4941 #endif /* ARM_MMU_EXTENDED */
   4942 
   4943 	block_userspace_access = 0;
   4944 
   4945 #ifndef ARM_MMU_EXTENDED
   4946  all_done:
   4947 	/*
   4948 	 * The new pmap is resident. Make sure it's marked
   4949 	 * as resident in the cache/TLB.
   4950 	 */
   4951 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4952 	if (npm != pmap_kernel())
   4953 		ci->ci_pmap_lastuser = npm;
   4954 
   4955 	/* The old pmap is not longer active */
   4956 	if (opm != npm) {
   4957 		if (opm != NULL)
   4958 			opm->pm_activated = false;
   4959 
   4960 		/* But the new one is */
   4961 		npm->pm_activated = true;
   4962 	}
   4963 #endif
   4964 	ci->ci_pmap_cur = npm;
   4965 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   4966 }
   4967 
   4968 void
   4969 pmap_deactivate(struct lwp *l)
   4970 {
   4971 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   4972 
   4973 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4974 
   4975 	UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
   4976 
   4977 #ifdef ARM_MMU_EXTENDED
   4978 	kpreempt_disable();
   4979 	struct cpu_info * const ci = curcpu();
   4980 	/*
   4981 	 * Disable translation table walks from TTBR0 while no pmap has been
   4982 	 * activated.
   4983 	 */
   4984 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4985 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4986 	arm_isb();
   4987 	pmap_tlb_asid_deactivate(pm);
   4988 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
   4989 	ci->ci_pmap_cur = pmap_kernel();
   4990 	ci->ci_pmap_asid_cur = KERNEL_PID;
   4991 	kpreempt_enable();
   4992 #else
   4993 	/*
   4994 	 * If the process is exiting, make sure pmap_activate() does
   4995 	 * a full MMU context-switch and cache flush, which we might
   4996 	 * otherwise skip. See PR port-arm/38950.
   4997 	 */
   4998 	if (l->l_proc->p_sflag & PS_WEXIT)
   4999 		curcpu()->ci_lastlwp = NULL;
   5000 
   5001 	pm->pm_activated = false;
   5002 #endif
   5003 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5004 }
   5005 
   5006 void
   5007 pmap_update(pmap_t pm)
   5008 {
   5009 
   5010 	if (pm->pm_remove_all) {
   5011 #ifdef ARM_MMU_EXTENDED
   5012 		KASSERT(pm != pmap_kernel());
   5013 
   5014 		KASSERTMSG(curcpu()->ci_pmap_cur != pm
   5015 		    || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
   5016 		    "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
   5017 		    pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
   5018 		    curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   5019 		/*
   5020 		 * Finish up the pmap_remove_all() optimisation by flushing
   5021 		 * all our ASIDs.
   5022 		 */
   5023 		pmap_tlb_asid_release_all(pm);
   5024 #else
   5025 		/*
   5026 		 * Finish up the pmap_remove_all() optimisation by flushing
   5027 		 * the TLB.
   5028 		 */
   5029 		pmap_tlb_flushID(pm);
   5030 #endif
   5031 		pm->pm_remove_all = false;
   5032 	}
   5033 
   5034 #ifdef ARM_MMU_EXTENDED
   5035 #if defined(MULTIPROCESSOR)
   5036 	armreg_bpiallis_write(0);
   5037 #else
   5038 	armreg_bpiall_write(0);
   5039 #endif
   5040 
   5041 #if defined(MULTIPROCESSOR) && PMAP_MAX_TLB > 1
   5042 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   5043 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   5044 		PMAP_COUNT(shootdown_ipis);
   5045 	}
   5046 #endif
   5047 	KASSERTMSG(pm == pmap_kernel()
   5048 	    || curcpu()->ci_pmap_cur != pm
   5049 	    || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
   5050 	    "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
   5051 	    pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
   5052 	    curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   5053 #else
   5054 	if (pmap_is_current(pm)) {
   5055 		/*
   5056 		 * If we're dealing with a current userland pmap, move its L1
   5057 		 * to the end of the LRU.
   5058 		 */
   5059 		if (pm != pmap_kernel())
   5060 			pmap_use_l1(pm);
   5061 
   5062 		/*
   5063 		 * We can assume we're done with frobbing the cache/tlb for
   5064 		 * now. Make sure any future pmap ops don't skip cache/tlb
   5065 		 * flushes.
   5066 		 */
   5067 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5068 	}
   5069 #endif
   5070 
   5071 	PMAPCOUNT(updates);
   5072 
   5073 	/*
   5074 	 * make sure TLB/cache operations have completed.
   5075 	 */
   5076 	cpu_cpwait();
   5077 }
   5078 
   5079 void
   5080 pmap_remove_all(pmap_t pm)
   5081 {
   5082 
   5083 	/*
   5084 	 * The vmspace described by this pmap is about to be torn down.
   5085 	 * Until pmap_update() is called, UVM will only make calls
   5086 	 * to pmap_remove(). We can make life much simpler by flushing
   5087 	 * the cache now, and deferring TLB invalidation to pmap_update().
   5088 	 */
   5089 #ifdef PMAP_CACHE_VIVT
   5090 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   5091 #endif
   5092 	pm->pm_remove_all = true;
   5093 }
   5094 
   5095 /*
   5096  * Retire the given physical map from service.
   5097  * Should only be called if the map contains no valid mappings.
   5098  */
   5099 void
   5100 pmap_destroy(pmap_t pm)
   5101 {
   5102 	u_int count;
   5103 
   5104 	if (pm == NULL)
   5105 		return;
   5106 
   5107 	if (pm->pm_remove_all) {
   5108 		pmap_tlb_flushID(pm);
   5109 		pm->pm_remove_all = false;
   5110 	}
   5111 
   5112 	/*
   5113 	 * Drop reference count
   5114 	 */
   5115 	mutex_enter(pm->pm_lock);
   5116 	count = --pm->pm_obj.uo_refs;
   5117 	mutex_exit(pm->pm_lock);
   5118 	if (count > 0) {
   5119 #ifndef ARM_MMU_EXTENDED
   5120 		if (pmap_is_current(pm)) {
   5121 			if (pm != pmap_kernel())
   5122 				pmap_use_l1(pm);
   5123 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5124 		}
   5125 #endif
   5126 		return;
   5127 	}
   5128 
   5129 	/*
   5130 	 * reference count is zero, free pmap resources and then free pmap.
   5131 	 */
   5132 
   5133 #ifndef ARM_HAS_VBAR
   5134 	if (vector_page < KERNEL_BASE) {
   5135 		KDASSERT(!pmap_is_current(pm));
   5136 
   5137 		/* Remove the vector page mapping */
   5138 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5139 		pmap_update(pm);
   5140 	}
   5141 #endif
   5142 
   5143 	LIST_REMOVE(pm, pm_list);
   5144 
   5145 	pmap_free_l1(pm);
   5146 
   5147 #ifdef ARM_MMU_EXTENDED
   5148 #ifdef MULTIPROCESSOR
   5149 	kcpuset_destroy(pm->pm_active);
   5150 	kcpuset_destroy(pm->pm_onproc);
   5151 #endif
   5152 #else
   5153 	struct cpu_info * const ci = curcpu();
   5154 	if (ci->ci_pmap_lastuser == pm)
   5155 		ci->ci_pmap_lastuser = NULL;
   5156 #endif
   5157 
   5158 	uvm_obj_destroy(&pm->pm_obj, false);
   5159 	mutex_destroy(&pm->pm_obj_lock);
   5160 	pool_cache_put(&pmap_cache, pm);
   5161 }
   5162 
   5163 
   5164 /*
   5165  * void pmap_reference(pmap_t pm)
   5166  *
   5167  * Add a reference to the specified pmap.
   5168  */
   5169 void
   5170 pmap_reference(pmap_t pm)
   5171 {
   5172 
   5173 	if (pm == NULL)
   5174 		return;
   5175 
   5176 #ifndef ARM_MMU_EXTENDED
   5177 	pmap_use_l1(pm);
   5178 #endif
   5179 
   5180 	mutex_enter(pm->pm_lock);
   5181 	pm->pm_obj.uo_refs++;
   5182 	mutex_exit(pm->pm_lock);
   5183 }
   5184 
   5185 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5186 
   5187 static struct evcnt pmap_prefer_nochange_ev =
   5188     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5189 static struct evcnt pmap_prefer_change_ev =
   5190     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5191 
   5192 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5193 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5194 
   5195 void
   5196 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5197 {
   5198 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5199 	vaddr_t va = *vap;
   5200 	vaddr_t diff = (hint - va) & mask;
   5201 	if (diff == 0) {
   5202 		pmap_prefer_nochange_ev.ev_count++;
   5203 	} else {
   5204 		pmap_prefer_change_ev.ev_count++;
   5205 		if (__predict_false(td))
   5206 			va -= mask + 1;
   5207 		*vap = va + diff;
   5208 	}
   5209 }
   5210 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5211 
   5212 /*
   5213  * pmap_zero_page()
   5214  *
   5215  * Zero a given physical page by mapping it at a page hook point.
   5216  * In doing the zero page op, the page we zero is mapped cachable, as with
   5217  * StrongARM accesses to non-cached pages are non-burst making writing
   5218  * _any_ bulk data very slow.
   5219  */
   5220 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5221 void
   5222 pmap_zero_page_generic(paddr_t pa)
   5223 {
   5224 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5225 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5226 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5227 #endif
   5228 #if defined(PMAP_CACHE_VIPT)
   5229 	/* Choose the last page color it had, if any */
   5230 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5231 #else
   5232 	const vsize_t va_offset = 0;
   5233 #endif
   5234 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5235 	/*
   5236 	 * Is this page mapped at its natural color?
   5237 	 * If we have all of memory mapped, then just convert PA to VA.
   5238 	 */
   5239 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5240 	   || va_offset == (pa & arm_cache_prefer_mask);
   5241 	const vaddr_t vdstp = okcolor
   5242 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5243 	    : cpu_cdstp(va_offset);
   5244 #else
   5245 	const bool okcolor = false;
   5246 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5247 #endif
   5248 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5249 
   5250 
   5251 #ifdef DEBUG
   5252 	if (!SLIST_EMPTY(&md->pvh_list))
   5253 		panic("pmap_zero_page: page has mappings");
   5254 #endif
   5255 
   5256 	KDASSERT((pa & PGOFSET) == 0);
   5257 
   5258 	if (!okcolor) {
   5259 		/*
   5260 		 * Hook in the page, zero it, and purge the cache for that
   5261 		 * zeroed page. Invalidate the TLB as needed.
   5262 		 */
   5263 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5264 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5265 		l2pte_set(ptep, npte, 0);
   5266 		PTE_SYNC(ptep);
   5267 		cpu_tlb_flushD_SE(vdstp);
   5268 		cpu_cpwait();
   5269 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5270     && !defined(ARM_MMU_EXTENDED)
   5271 		/*
   5272 		 * If we are direct-mapped and our color isn't ok, then before
   5273 		 * we bzero the page invalidate its contents from the cache and
   5274 		 * reset the color to its natural color.
   5275 		 */
   5276 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5277 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5278 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5279 #endif
   5280 	}
   5281 	bzero_page(vdstp);
   5282 	if (!okcolor) {
   5283 		/*
   5284 		 * Unmap the page.
   5285 		 */
   5286 		l2pte_reset(ptep);
   5287 		PTE_SYNC(ptep);
   5288 		cpu_tlb_flushD_SE(vdstp);
   5289 #ifdef PMAP_CACHE_VIVT
   5290 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5291 #endif
   5292 	}
   5293 #ifdef PMAP_CACHE_VIPT
   5294 	/*
   5295 	 * This page is now cache resident so it now has a page color.
   5296 	 * Any contents have been obliterated so clear the EXEC flag.
   5297 	 */
   5298 #ifndef ARM_MMU_EXTENDED
   5299 	if (!pmap_is_page_colored_p(md)) {
   5300 		PMAPCOUNT(vac_color_new);
   5301 		md->pvh_attrs |= PVF_COLORED;
   5302 	}
   5303 	md->pvh_attrs |= PVF_DIRTY;
   5304 #endif
   5305 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5306 		md->pvh_attrs &= ~PVF_EXEC;
   5307 		PMAPCOUNT(exec_discarded_zero);
   5308 	}
   5309 #endif
   5310 }
   5311 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5312 
   5313 #if ARM_MMU_XSCALE == 1
   5314 void
   5315 pmap_zero_page_xscale(paddr_t pa)
   5316 {
   5317 #ifdef DEBUG
   5318 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5319 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5320 
   5321 	if (!SLIST_EMPTY(&md->pvh_list))
   5322 		panic("pmap_zero_page: page has mappings");
   5323 #endif
   5324 
   5325 	KDASSERT((pa & PGOFSET) == 0);
   5326 
   5327 	/*
   5328 	 * Hook in the page, zero it, and purge the cache for that
   5329 	 * zeroed page. Invalidate the TLB as needed.
   5330 	 */
   5331 
   5332 	pt_entry_t npte = L2_S_PROTO | pa |
   5333 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5334 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5335 	l2pte_set(cdst_pte, npte, 0);
   5336 	PTE_SYNC(cdst_pte);
   5337 	cpu_tlb_flushD_SE(cdstp);
   5338 	cpu_cpwait();
   5339 	bzero_page(cdstp);
   5340 	xscale_cache_clean_minidata();
   5341 	l2pte_reset(cdst_pte);
   5342 	PTE_SYNC(cdst_pte);
   5343 }
   5344 #endif /* ARM_MMU_XSCALE == 1 */
   5345 
   5346 /* pmap_pageidlezero()
   5347  *
   5348  * The same as above, except that we assume that the page is not
   5349  * mapped.  This means we never have to flush the cache first.  Called
   5350  * from the idle loop.
   5351  */
   5352 bool
   5353 pmap_pageidlezero(paddr_t pa)
   5354 {
   5355 	bool rv = true;
   5356 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5357 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5358 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5359 #endif
   5360 #ifdef PMAP_CACHE_VIPT
   5361 	/* Choose the last page color it had, if any */
   5362 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5363 #else
   5364 	const vsize_t va_offset = 0;
   5365 #endif
   5366 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5367 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5368 	   || va_offset == (pa & arm_cache_prefer_mask);
   5369 	const vaddr_t vdstp = okcolor
   5370 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5371 	    : cpu_cdstp(va_offset);
   5372 #else
   5373 	const bool okcolor = false;
   5374 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5375 #endif
   5376 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5377 
   5378 
   5379 #ifdef DEBUG
   5380 	if (!SLIST_EMPTY(&md->pvh_list))
   5381 		panic("pmap_pageidlezero: page has mappings");
   5382 #endif
   5383 
   5384 	KDASSERT((pa & PGOFSET) == 0);
   5385 
   5386 	if (!okcolor) {
   5387 		/*
   5388 		 * Hook in the page, zero it, and purge the cache for that
   5389 		 * zeroed page. Invalidate the TLB as needed.
   5390 		 */
   5391 		const pt_entry_t npte = L2_S_PROTO | pa |
   5392 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5393 		l2pte_set(ptep, npte, 0);
   5394 		PTE_SYNC(ptep);
   5395 		cpu_tlb_flushD_SE(vdstp);
   5396 		cpu_cpwait();
   5397 	}
   5398 
   5399 	uint64_t *ptr = (uint64_t *)vdstp;
   5400 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5401 		if (sched_curcpu_runnable_p() != 0) {
   5402 			/*
   5403 			 * A process has become ready.  Abort now,
   5404 			 * so we don't keep it waiting while we
   5405 			 * do slow memory access to finish this
   5406 			 * page.
   5407 			 */
   5408 			rv = false;
   5409 			break;
   5410 		}
   5411 		*ptr++ = 0;
   5412 	}
   5413 
   5414 #ifdef PMAP_CACHE_VIVT
   5415 	if (rv)
   5416 		/*
   5417 		 * if we aborted we'll rezero this page again later so don't
   5418 		 * purge it unless we finished it
   5419 		 */
   5420 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5421 #elif defined(PMAP_CACHE_VIPT)
   5422 	/*
   5423 	 * This page is now cache resident so it now has a page color.
   5424 	 * Any contents have been obliterated so clear the EXEC flag.
   5425 	 */
   5426 #ifndef ARM_MMU_EXTENDED
   5427 	if (!pmap_is_page_colored_p(md)) {
   5428 		PMAPCOUNT(vac_color_new);
   5429 		md->pvh_attrs |= PVF_COLORED;
   5430 	}
   5431 #endif
   5432 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5433 		md->pvh_attrs &= ~PVF_EXEC;
   5434 		PMAPCOUNT(exec_discarded_zero);
   5435 	}
   5436 #endif
   5437 	/*
   5438 	 * Unmap the page.
   5439 	 */
   5440 	if (!okcolor) {
   5441 		l2pte_reset(ptep);
   5442 		PTE_SYNC(ptep);
   5443 		cpu_tlb_flushD_SE(vdstp);
   5444 	}
   5445 
   5446 	return rv;
   5447 }
   5448 
   5449 /*
   5450  * pmap_copy_page()
   5451  *
   5452  * Copy one physical page into another, by mapping the pages into
   5453  * hook points. The same comment regarding cachability as in
   5454  * pmap_zero_page also applies here.
   5455  */
   5456 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5457 void
   5458 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5459 {
   5460 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5461 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5462 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5463 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5464 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5465 #endif
   5466 #ifdef PMAP_CACHE_VIPT
   5467 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5468 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5469 #else
   5470 	const vsize_t src_va_offset = 0;
   5471 	const vsize_t dst_va_offset = 0;
   5472 #endif
   5473 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5474 	/*
   5475 	 * Is this page mapped at its natural color?
   5476 	 * If we have all of memory mapped, then just convert PA to VA.
   5477 	 */
   5478 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5479 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5480 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5481 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5482 	const vaddr_t vsrcp = src_okcolor
   5483 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5484 		cpu_csrcp(src_va_offset))
   5485 	    : cpu_csrcp(src_va_offset);
   5486 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5487 	    cpu_cdstp(dst_va_offset));
   5488 #else
   5489 	const bool src_okcolor = false;
   5490 	const bool dst_okcolor = false;
   5491 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5492 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5493 #endif
   5494 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5495 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5496 
   5497 #ifdef DEBUG
   5498 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5499 		panic("pmap_copy_page: dst page has mappings");
   5500 #endif
   5501 
   5502 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5503 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5504 #endif
   5505 	KDASSERT((src & PGOFSET) == 0);
   5506 	KDASSERT((dst & PGOFSET) == 0);
   5507 
   5508 	/*
   5509 	 * Clean the source page.  Hold the source page's lock for
   5510 	 * the duration of the copy so that no other mappings can
   5511 	 * be created while we have a potentially aliased mapping.
   5512 	 */
   5513 #ifdef PMAP_CACHE_VIVT
   5514 	pmap_acquire_page_lock(src_md);
   5515 	(void) pmap_clean_page(src_md, true);
   5516 	pmap_release_page_lock(src_md);
   5517 #endif
   5518 
   5519 	/*
   5520 	 * Map the pages into the page hook points, copy them, and purge
   5521 	 * the cache for the appropriate page. Invalidate the TLB
   5522 	 * as required.
   5523 	 */
   5524 	if (!src_okcolor) {
   5525 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5526 		    | src
   5527 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5528 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5529 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5530 		    | pte_l2_s_cache_mode
   5531 #endif
   5532 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5533 		l2pte_set(src_ptep, nsrc_pte, 0);
   5534 		PTE_SYNC(src_ptep);
   5535 		cpu_tlb_flushD_SE(vsrcp);
   5536 		cpu_cpwait();
   5537 	}
   5538 	if (!dst_okcolor) {
   5539 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5540 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5541 		l2pte_set(dst_ptep, ndst_pte, 0);
   5542 		PTE_SYNC(dst_ptep);
   5543 		cpu_tlb_flushD_SE(vdstp);
   5544 		cpu_cpwait();
   5545 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5546 		/*
   5547 		 * If we are direct-mapped and our color isn't ok, then before
   5548 		 * we bcopy to the new page invalidate its contents from the
   5549 		 * cache and reset its color to its natural color.
   5550 		 */
   5551 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5552 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5553 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5554 #endif
   5555 	}
   5556 	bcopy_page(vsrcp, vdstp);
   5557 #ifdef PMAP_CACHE_VIVT
   5558 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5559 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5560 #endif
   5561 	/*
   5562 	 * Unmap the pages.
   5563 	 */
   5564 	if (!src_okcolor) {
   5565 		l2pte_reset(src_ptep);
   5566 		PTE_SYNC(src_ptep);
   5567 		cpu_tlb_flushD_SE(vsrcp);
   5568 		cpu_cpwait();
   5569 	}
   5570 	if (!dst_okcolor) {
   5571 		l2pte_reset(dst_ptep);
   5572 		PTE_SYNC(dst_ptep);
   5573 		cpu_tlb_flushD_SE(vdstp);
   5574 		cpu_cpwait();
   5575 	}
   5576 #ifdef PMAP_CACHE_VIPT
   5577 	/*
   5578 	 * Now that the destination page is in the cache, mark it as colored.
   5579 	 * If this was an exec page, discard it.
   5580 	 */
   5581 	pmap_acquire_page_lock(dst_md);
   5582 #ifndef ARM_MMU_EXTENDED
   5583 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5584 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5585 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5586 	}
   5587 	if (!pmap_is_page_colored_p(dst_md)) {
   5588 		PMAPCOUNT(vac_color_new);
   5589 		dst_md->pvh_attrs |= PVF_COLORED;
   5590 	}
   5591 	dst_md->pvh_attrs |= PVF_DIRTY;
   5592 #endif
   5593 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5594 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5595 		PMAPCOUNT(exec_discarded_copy);
   5596 	}
   5597 	pmap_release_page_lock(dst_md);
   5598 #endif
   5599 }
   5600 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5601 
   5602 #if ARM_MMU_XSCALE == 1
   5603 void
   5604 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5605 {
   5606 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5607 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5608 #ifdef DEBUG
   5609 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5610 
   5611 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5612 		panic("pmap_copy_page: dst page has mappings");
   5613 #endif
   5614 
   5615 	KDASSERT((src & PGOFSET) == 0);
   5616 	KDASSERT((dst & PGOFSET) == 0);
   5617 
   5618 	/*
   5619 	 * Clean the source page.  Hold the source page's lock for
   5620 	 * the duration of the copy so that no other mappings can
   5621 	 * be created while we have a potentially aliased mapping.
   5622 	 */
   5623 #ifdef PMAP_CACHE_VIVT
   5624 	pmap_acquire_page_lock(src_md);
   5625 	(void) pmap_clean_page(src_md, true);
   5626 	pmap_release_page_lock(src_md);
   5627 #endif
   5628 
   5629 	/*
   5630 	 * Map the pages into the page hook points, copy them, and purge
   5631 	 * the cache for the appropriate page. Invalidate the TLB
   5632 	 * as required.
   5633 	 */
   5634 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
   5635 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   5636 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5637 	l2pte_set(csrc_pte, nsrc_pte, 0);
   5638 	PTE_SYNC(csrc_pte);
   5639 
   5640 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
   5641 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
   5642 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5643 	l2pte_set(cdst_pte, ndst_pte, 0);
   5644 	PTE_SYNC(cdst_pte);
   5645 
   5646 	cpu_tlb_flushD_SE(csrcp);
   5647 	cpu_tlb_flushD_SE(cdstp);
   5648 	cpu_cpwait();
   5649 	bcopy_page(csrcp, cdstp);
   5650 	xscale_cache_clean_minidata();
   5651 	l2pte_reset(csrc_pte);
   5652 	l2pte_reset(cdst_pte);
   5653 	PTE_SYNC(csrc_pte);
   5654 	PTE_SYNC(cdst_pte);
   5655 }
   5656 #endif /* ARM_MMU_XSCALE == 1 */
   5657 
   5658 /*
   5659  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5660  *
   5661  * Return the start and end addresses of the kernel's virtual space.
   5662  * These values are setup in pmap_bootstrap and are updated as pages
   5663  * are allocated.
   5664  */
   5665 void
   5666 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5667 {
   5668 	*start = virtual_avail;
   5669 	*end = virtual_end;
   5670 }
   5671 
   5672 /*
   5673  * Helper function for pmap_grow_l2_bucket()
   5674  */
   5675 static inline int
   5676 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5677 {
   5678 	paddr_t pa;
   5679 
   5680 	if (uvm.page_init_done == false) {
   5681 #ifdef PMAP_STEAL_MEMORY
   5682 		pv_addr_t pv;
   5683 		pmap_boot_pagealloc(PAGE_SIZE,
   5684 #ifdef PMAP_CACHE_VIPT
   5685 		    arm_cache_prefer_mask,
   5686 		    va & arm_cache_prefer_mask,
   5687 #else
   5688 		    0, 0,
   5689 #endif
   5690 		    &pv);
   5691 		pa = pv.pv_pa;
   5692 #else
   5693 		if (uvm_page_physget(&pa) == false)
   5694 			return (1);
   5695 #endif	/* PMAP_STEAL_MEMORY */
   5696 	} else {
   5697 		struct vm_page *pg;
   5698 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5699 		if (pg == NULL)
   5700 			return (1);
   5701 		pa = VM_PAGE_TO_PHYS(pg);
   5702 		/*
   5703 		 * This new page must not have any mappings.  Enter it via
   5704 		 * pmap_kenter_pa and let that routine do the hard work.
   5705 		 */
   5706 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5707 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5708 		pmap_kenter_pa(va, pa,
   5709 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5710 	}
   5711 
   5712 	if (pap)
   5713 		*pap = pa;
   5714 
   5715 	PMAPCOUNT(pt_mappings);
   5716 #ifdef DEBUG
   5717 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5718 	KDASSERT(l2b != NULL);
   5719 
   5720 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   5721 	const pt_entry_t opte = *ptep;
   5722 	KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   5723 #endif
   5724 	memset((void *)va, 0, PAGE_SIZE);
   5725 	return (0);
   5726 }
   5727 
   5728 /*
   5729  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   5730  * used by pmap_growkernel().
   5731  */
   5732 static inline struct l2_bucket *
   5733 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   5734 {
   5735 	struct l2_dtable *l2;
   5736 	struct l2_bucket *l2b;
   5737 	u_short l1slot;
   5738 	vaddr_t nva;
   5739 
   5740 	l1slot = l1pte_index(va);
   5741 
   5742 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   5743 		/*
   5744 		 * No mapping at this address, as there is
   5745 		 * no entry in the L1 table.
   5746 		 * Need to allocate a new l2_dtable.
   5747 		 */
   5748 		nva = pmap_kernel_l2dtable_kva;
   5749 		if ((nva & PGOFSET) == 0) {
   5750 			/*
   5751 			 * Need to allocate a backing page
   5752 			 */
   5753 			if (pmap_grow_map(nva, NULL))
   5754 				return (NULL);
   5755 		}
   5756 
   5757 		l2 = (struct l2_dtable *)nva;
   5758 		nva += sizeof(struct l2_dtable);
   5759 
   5760 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   5761 			/*
   5762 			 * The new l2_dtable straddles a page boundary.
   5763 			 * Map in another page to cover it.
   5764 			 */
   5765 			if (pmap_grow_map(nva, NULL))
   5766 				return (NULL);
   5767 		}
   5768 
   5769 		pmap_kernel_l2dtable_kva = nva;
   5770 
   5771 		/*
   5772 		 * Link it into the parent pmap
   5773 		 */
   5774 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   5775 	}
   5776 
   5777 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   5778 
   5779 	/*
   5780 	 * Fetch pointer to the L2 page table associated with the address.
   5781 	 */
   5782 	if (l2b->l2b_kva == NULL) {
   5783 		pt_entry_t *ptep;
   5784 
   5785 		/*
   5786 		 * No L2 page table has been allocated. Chances are, this
   5787 		 * is because we just allocated the l2_dtable, above.
   5788 		 */
   5789 		nva = pmap_kernel_l2ptp_kva;
   5790 		ptep = (pt_entry_t *)nva;
   5791 		if ((nva & PGOFSET) == 0) {
   5792 			/*
   5793 			 * Need to allocate a backing page
   5794 			 */
   5795 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   5796 				return (NULL);
   5797 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   5798 		}
   5799 
   5800 		l2->l2_occupancy++;
   5801 		l2b->l2b_kva = ptep;
   5802 		l2b->l2b_l1slot = l1slot;
   5803 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   5804 
   5805 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   5806 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   5807 	}
   5808 
   5809 	return (l2b);
   5810 }
   5811 
   5812 vaddr_t
   5813 pmap_growkernel(vaddr_t maxkvaddr)
   5814 {
   5815 	pmap_t kpm = pmap_kernel();
   5816 #ifndef ARM_MMU_EXTENDED
   5817 	struct l1_ttable *l1;
   5818 #endif
   5819 	int s;
   5820 
   5821 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5822 		goto out;		/* we are OK */
   5823 
   5824 	NPDEBUG(PDB_GROWKERN,
   5825 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5826 	    pmap_curmaxkvaddr, maxkvaddr));
   5827 
   5828 	KDASSERT(maxkvaddr <= virtual_end);
   5829 
   5830 	/*
   5831 	 * whoops!   we need to add kernel PTPs
   5832 	 */
   5833 
   5834 	s = splhigh();	/* to be safe */
   5835 	mutex_enter(kpm->pm_lock);
   5836 
   5837 	/* Map 1MB at a time */
   5838 	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
   5839 #ifdef ARM_MMU_EXTENDED
   5840 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   5841 	pd_entry_t *pdep = spdep;
   5842 #endif
   5843 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   5844 #ifdef ARM_MMU_EXTENDED
   5845 	     pdep++,
   5846 #endif
   5847 	     l1slot++) {
   5848 		struct l2_bucket *l2b =
   5849 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5850 		KASSERT(l2b != NULL);
   5851 
   5852 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   5853 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   5854 #ifdef ARM_MMU_EXTENDED
   5855 		l1pte_setone(pdep, npde);
   5856 #else
   5857 		/* Distribute new L1 entry to all other L1s */
   5858 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5859 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   5860 			l1pte_setone(pdep, npde);
   5861 			PDE_SYNC(pdep);
   5862 		}
   5863 #endif
   5864 	}
   5865 #ifdef ARM_MMU_EXTENDED
   5866 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   5867 #endif
   5868 
   5869 #ifdef PMAP_CACHE_VIVT
   5870 	/*
   5871 	 * flush out the cache, expensive but growkernel will happen so
   5872 	 * rarely
   5873 	 */
   5874 	cpu_dcache_wbinv_all();
   5875 	cpu_tlb_flushD();
   5876 	cpu_cpwait();
   5877 #endif
   5878 
   5879 	mutex_exit(kpm->pm_lock);
   5880 	splx(s);
   5881 
   5882 out:
   5883 	return (pmap_curmaxkvaddr);
   5884 }
   5885 
   5886 /************************ Utility routines ****************************/
   5887 
   5888 #ifndef ARM_HAS_VBAR
   5889 /*
   5890  * vector_page_setprot:
   5891  *
   5892  *	Manipulate the protection of the vector page.
   5893  */
   5894 void
   5895 vector_page_setprot(int prot)
   5896 {
   5897 	struct l2_bucket *l2b;
   5898 	pt_entry_t *ptep;
   5899 
   5900 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5901 	/*
   5902 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5903 	 * already mapped in the kernel text so no need to anything here.
   5904 	 */
   5905 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5906 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5907 		return;
   5908 	}
   5909 #endif
   5910 
   5911 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5912 	KASSERT(l2b != NULL);
   5913 
   5914 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5915 
   5916 	const pt_entry_t opte = *ptep;
   5917 #ifdef ARM_MMU_EXTENDED
   5918 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   5919 	    | L2_S_PROT(PTE_KERNEL, prot);
   5920 #else
   5921 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   5922 	    | L2_S_PROT(PTE_KERNEL, prot);
   5923 #endif
   5924 	l2pte_set(ptep, npte, opte);
   5925 	PTE_SYNC(ptep);
   5926 	cpu_tlb_flushD_SE(vector_page);
   5927 	cpu_cpwait();
   5928 }
   5929 #endif
   5930 
   5931 /*
   5932  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5933  * Returns true if the mapping exists, else false.
   5934  *
   5935  * NOTE: This function is only used by a couple of arm-specific modules.
   5936  * It is not safe to take any pmap locks here, since we could be right
   5937  * in the middle of debugging the pmap anyway...
   5938  *
   5939  * It is possible for this routine to return false even though a valid
   5940  * mapping does exist. This is because we don't lock, so the metadata
   5941  * state may be inconsistent.
   5942  *
   5943  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5944  * a "section" mapping.
   5945  */
   5946 bool
   5947 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5948 {
   5949 	struct l2_dtable *l2;
   5950 	pd_entry_t *pdep, pde;
   5951 	pt_entry_t *ptep;
   5952 	u_short l1slot;
   5953 
   5954 	if (pm->pm_l1 == NULL)
   5955 		return false;
   5956 
   5957 	l1slot = l1pte_index(va);
   5958 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   5959 	pde = *pdep;
   5960 
   5961 	if (l1pte_section_p(pde)) {
   5962 		*ptp = NULL;
   5963 		return true;
   5964 	}
   5965 
   5966 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   5967 	if (l2 == NULL ||
   5968 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   5969 		return false;
   5970 	}
   5971 
   5972 	*ptp = &ptep[l2pte_index(va)];
   5973 	return true;
   5974 }
   5975 
   5976 bool
   5977 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5978 {
   5979 
   5980 	if (pm->pm_l1 == NULL)
   5981 		return false;
   5982 
   5983 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   5984 
   5985 	return true;
   5986 }
   5987 
   5988 /************************ Bootstrapping routines ****************************/
   5989 
   5990 #ifndef ARM_MMU_EXTENDED
   5991 static void
   5992 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5993 {
   5994 	int i;
   5995 
   5996 	l1->l1_kva = l1pt;
   5997 	l1->l1_domain_use_count = 0;
   5998 	l1->l1_domain_first = 0;
   5999 
   6000 	for (i = 0; i < PMAP_DOMAINS; i++)
   6001 		l1->l1_domain_free[i] = i + 1;
   6002 
   6003 	/*
   6004 	 * Copy the kernel's L1 entries to each new L1.
   6005 	 */
   6006 	if (pmap_initialized)
   6007 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   6008 
   6009 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   6010 	    &l1->l1_physaddr) == false)
   6011 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   6012 
   6013 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   6014 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   6015 }
   6016 #endif /* !ARM_MMU_EXTENDED */
   6017 
   6018 /*
   6019  * pmap_bootstrap() is called from the board-specific initarm() routine
   6020  * once the kernel L1/L2 descriptors tables have been set up.
   6021  *
   6022  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   6023  * spread over a number of disparate files/functions.
   6024  *
   6025  * We are passed the following parameters
   6026  *  - kernel_l1pt
   6027  *    This is a pointer to the base of the kernel's L1 translation table.
   6028  *  - vstart
   6029  *    1MB-aligned start of managed kernel virtual memory.
   6030  *  - vend
   6031  *    1MB-aligned end of managed kernel virtual memory.
   6032  *
   6033  * We use the first parameter to build the metadata (struct l1_ttable and
   6034  * struct l2_dtable) necessary to track kernel mappings.
   6035  */
   6036 #define	PMAP_STATIC_L2_SIZE 16
   6037 void
   6038 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   6039 {
   6040 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   6041 #ifndef ARM_MMU_EXTENDED
   6042 	static struct l1_ttable static_l1;
   6043 	struct l1_ttable *l1 = &static_l1;
   6044 #endif
   6045 	struct l2_dtable *l2;
   6046 	struct l2_bucket *l2b;
   6047 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   6048 	pmap_t pm = pmap_kernel();
   6049 	pt_entry_t *ptep;
   6050 	paddr_t pa;
   6051 	vsize_t size;
   6052 	int nptes, l2idx, l2next = 0;
   6053 
   6054 #ifdef ARM_MMU_EXTENDED
   6055 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   6056 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   6057 #endif
   6058 
   6059 #ifdef VERBOSE_INIT_ARM
   6060 	printf("kpm ");
   6061 #endif
   6062 	/*
   6063 	 * Initialise the kernel pmap object
   6064 	 */
   6065 	curcpu()->ci_pmap_cur = pm;
   6066 #ifdef ARM_MMU_EXTENDED
   6067 	pm->pm_l1 = l1pt;
   6068 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   6069 #ifdef VERBOSE_INIT_ARM
   6070 	printf("tlb0 ");
   6071 #endif
   6072 	pmap_tlb_info_init(&pmap_tlb0_info);
   6073 #ifdef MULTIPROCESSOR
   6074 #ifdef VERBOSE_INIT_ARM
   6075 	printf("kcpusets ");
   6076 #endif
   6077 	pm->pm_onproc = kcpuset_running;
   6078 	pm->pm_active = kcpuset_running;
   6079 #endif
   6080 #else
   6081 	pm->pm_l1 = l1;
   6082 #endif
   6083 
   6084 #ifdef VERBOSE_INIT_ARM
   6085 	printf("locks ");
   6086 #endif
   6087 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6088 	if (arm_cache_prefer_mask != 0) {
   6089 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   6090 	} else {
   6091 #endif
   6092 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
   6093 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6094 	}
   6095 #endif
   6096 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   6097 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   6098 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   6099 
   6100 #ifdef VERBOSE_INIT_ARM
   6101 	printf("l1pt ");
   6102 #endif
   6103 	/*
   6104 	 * Scan the L1 translation table created by initarm() and create
   6105 	 * the required metadata for all valid mappings found in it.
   6106 	 */
   6107 	for (size_t l1slot = 0;
   6108 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   6109 	     l1slot++) {
   6110 		pd_entry_t pde = l1pt[l1slot];
   6111 
   6112 		/*
   6113 		 * We're only interested in Coarse mappings.
   6114 		 * pmap_extract() can deal with section mappings without
   6115 		 * recourse to checking L2 metadata.
   6116 		 */
   6117 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   6118 			continue;
   6119 
   6120 		/*
   6121 		 * Lookup the KVA of this L2 descriptor table
   6122 		 */
   6123 		pa = l1pte_pa(pde);
   6124 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6125 		if (ptep == NULL) {
   6126 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6127 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6128 		}
   6129 
   6130 		/*
   6131 		 * Fetch the associated L2 metadata structure.
   6132 		 * Allocate a new one if necessary.
   6133 		 */
   6134 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6135 			if (l2next == PMAP_STATIC_L2_SIZE)
   6136 				panic("pmap_bootstrap: out of static L2s");
   6137 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6138 		}
   6139 
   6140 		/*
   6141 		 * One more L1 slot tracked...
   6142 		 */
   6143 		l2->l2_occupancy++;
   6144 
   6145 		/*
   6146 		 * Fill in the details of the L2 descriptor in the
   6147 		 * appropriate bucket.
   6148 		 */
   6149 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6150 		l2b->l2b_kva = ptep;
   6151 		l2b->l2b_pa = pa;
   6152 		l2b->l2b_l1slot = l1slot;
   6153 
   6154 		/*
   6155 		 * Establish an initial occupancy count for this descriptor
   6156 		 */
   6157 		for (l2idx = 0;
   6158 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6159 		    l2idx++) {
   6160 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6161 				l2b->l2b_occupancy++;
   6162 			}
   6163 		}
   6164 
   6165 		/*
   6166 		 * Make sure the descriptor itself has the correct cache mode.
   6167 		 * If not, fix it, but whine about the problem. Port-meisters
   6168 		 * should consider this a clue to fix up their initarm()
   6169 		 * function. :)
   6170 		 */
   6171 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6172 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6173 			    "L2 pte @ %p\n", ptep);
   6174 		}
   6175 	}
   6176 
   6177 #ifdef VERBOSE_INIT_ARM
   6178 	printf("cache(l1pt) ");
   6179 #endif
   6180 	/*
   6181 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6182 	 * a page table. Bitch if it is not correctly set.
   6183 	 */
   6184 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6185 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6186 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6187 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6188 	}
   6189 
   6190 #ifdef PMAP_CACHE_VIVT
   6191 	cpu_dcache_wbinv_all();
   6192 	cpu_tlb_flushID();
   6193 	cpu_cpwait();
   6194 #endif
   6195 
   6196 	/*
   6197 	 * now we allocate the "special" VAs which are used for tmp mappings
   6198 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6199 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6200 	 *
   6201 	 * Managed KVM space start from wherever initarm() tells us.
   6202 	 */
   6203 	virtual_avail = vstart;
   6204 	virtual_end = vend;
   6205 
   6206 #ifdef VERBOSE_INIT_ARM
   6207 	printf("specials ");
   6208 #endif
   6209 #ifdef PMAP_CACHE_VIPT
   6210 	/*
   6211 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6212 	 * page so we won't violate cache aliasing rules.
   6213 	 */
   6214 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6215 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6216 	nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6217 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6218 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6219 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6220 		nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6221 	}
   6222 #else
   6223 	nptes = PAGE_SIZE / L2_S_SIZE;
   6224 #endif
   6225 #ifdef MULTIPROCESSOR
   6226 	cnptes = nptes;
   6227 	nptes *= arm_cpu_max;
   6228 #endif
   6229 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6230 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6231 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6232 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6233 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   6234 	if (msgbufaddr == NULL) {
   6235 		pmap_alloc_specials(&virtual_avail,
   6236 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6237 		    (void *)&msgbufaddr, NULL);
   6238 	}
   6239 
   6240 	/*
   6241 	 * Allocate a range of kernel virtual address space to be used
   6242 	 * for L2 descriptor tables and metadata allocation in
   6243 	 * pmap_growkernel().
   6244 	 */
   6245 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   6246 	pmap_alloc_specials(&virtual_avail,
   6247 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6248 	    &pmap_kernel_l2ptp_kva, NULL);
   6249 
   6250 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   6251 	pmap_alloc_specials(&virtual_avail,
   6252 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6253 	    &pmap_kernel_l2dtable_kva, NULL);
   6254 
   6255 #ifndef ARM_MMU_EXTENDED
   6256 	/*
   6257 	 * init the static-global locks and global pmap list.
   6258 	 */
   6259 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6260 
   6261 	/*
   6262 	 * We can now initialise the first L1's metadata.
   6263 	 */
   6264 	SLIST_INIT(&l1_list);
   6265 	TAILQ_INIT(&l1_lru_list);
   6266 	pmap_init_l1(l1, l1pt);
   6267 #endif /* ARM_MMU_EXTENDED */
   6268 
   6269 #ifndef ARM_HAS_VBAR
   6270 	/* Set up vector page L1 details, if necessary */
   6271 	if (vector_page < KERNEL_BASE) {
   6272 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6273 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6274 		KDASSERT(l2b != NULL);
   6275 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6276 		    L1_C_DOM(pmap_domain(pm));
   6277 	} else
   6278 		pm->pm_pl1vec = NULL;
   6279 #endif
   6280 
   6281 #ifdef VERBOSE_INIT_ARM
   6282 	printf("pools ");
   6283 #endif
   6284 	/*
   6285 	 * Initialize the pmap cache
   6286 	 */
   6287 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6288 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6289 	LIST_INIT(&pmap_pmaps);
   6290 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   6291 
   6292 	/*
   6293 	 * Initialize the pv pool.
   6294 	 */
   6295 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6296 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6297 
   6298 	/*
   6299 	 * Initialize the L2 dtable pool and cache.
   6300 	 */
   6301 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6302 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6303 
   6304 	/*
   6305 	 * Initialise the L2 descriptor table pool and cache
   6306 	 */
   6307 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   6308 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   6309 	    pmap_l2ptp_ctor, NULL, NULL);
   6310 
   6311 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6312 
   6313 	cpu_dcache_wbinv_all();
   6314 }
   6315 
   6316 static bool
   6317 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6318 {
   6319 #ifdef ARM_MMU_EXTENDED
   6320 	return false;
   6321 #else
   6322 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6323 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6324 		return false;
   6325 
   6326 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6327 	int rv = 0;
   6328 
   6329 	while (va < eva) {
   6330 		/*
   6331 		 * Make sure the descriptor itself has the correct cache mode
   6332 		 */
   6333 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6334 		pd_entry_t pde = *pdep;
   6335 
   6336 		if (l1pte_section_p(pde)) {
   6337 			__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6338 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6339 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6340 				    pte_l1_s_cache_mode_pt;
   6341 				PDE_SYNC(pdep);
   6342 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6343 				    sizeof(*pdep));
   6344 				rv = 1;
   6345 			}
   6346 			return rv;
   6347 		}
   6348 		vaddr_t pa = l1pte_pa(pde);
   6349 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6350 		if (ptep == NULL)
   6351 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6352 
   6353 		ptep += l2pte_index(va);
   6354 		const pt_entry_t opte = *ptep;
   6355 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6356 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6357 			    | pte_l2_s_cache_mode_pt;
   6358 			l2pte_set(ptep, npte, opte);
   6359 			PTE_SYNC(ptep);
   6360 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6361 			rv = 1;
   6362 		}
   6363 		va += PAGE_SIZE;
   6364 	}
   6365 
   6366 	return (rv);
   6367 #endif
   6368 }
   6369 
   6370 static void
   6371 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6372 {
   6373 	vaddr_t va = *availp;
   6374 	struct l2_bucket *l2b;
   6375 
   6376 	if (ptep) {
   6377 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6378 		if (l2b == NULL)
   6379 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6380 
   6381 		if (ptep)
   6382 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6383 	}
   6384 
   6385 	*vap = va;
   6386 	*availp = va + (PAGE_SIZE * pages);
   6387 }
   6388 
   6389 void
   6390 pmap_init(void)
   6391 {
   6392 
   6393 	/*
   6394 	 * Set the available memory vars - These do not map to real memory
   6395 	 * addresses and cannot as the physical memory is fragmented.
   6396 	 * They are used by ps for %mem calculations.
   6397 	 * One could argue whether this should be the entire memory or just
   6398 	 * the memory that is useable in a user process.
   6399 	 */
   6400 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   6401 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   6402 
   6403 	/*
   6404 	 * Now we need to free enough pv_entry structures to allow us to get
   6405 	 * the kmem_map/kmem_object allocated and inited (done after this
   6406 	 * function is finished).  to do this we allocate one bootstrap page out
   6407 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6408 	 * structures.   we never free this page.
   6409 	 */
   6410 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6411 
   6412 #ifdef ARM_MMU_EXTENDED
   6413 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6414 #endif
   6415 
   6416 	pmap_initialized = true;
   6417 }
   6418 
   6419 static vaddr_t last_bootstrap_page = 0;
   6420 static void *free_bootstrap_pages = NULL;
   6421 
   6422 static void *
   6423 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6424 {
   6425 	extern void *pool_page_alloc(struct pool *, int);
   6426 	vaddr_t new_page;
   6427 	void *rv;
   6428 
   6429 	if (pmap_initialized)
   6430 		return (pool_page_alloc(pp, flags));
   6431 
   6432 	if (free_bootstrap_pages) {
   6433 		rv = free_bootstrap_pages;
   6434 		free_bootstrap_pages = *((void **)rv);
   6435 		return (rv);
   6436 	}
   6437 
   6438 	KASSERT(kernel_map != NULL);
   6439 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6440 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6441 
   6442 	KASSERT(new_page > last_bootstrap_page);
   6443 	last_bootstrap_page = new_page;
   6444 	return ((void *)new_page);
   6445 }
   6446 
   6447 static void
   6448 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6449 {
   6450 	extern void pool_page_free(struct pool *, void *);
   6451 
   6452 	if ((vaddr_t)v <= last_bootstrap_page) {
   6453 		*((void **)v) = free_bootstrap_pages;
   6454 		free_bootstrap_pages = v;
   6455 		return;
   6456 	}
   6457 
   6458 	if (pmap_initialized) {
   6459 		pool_page_free(pp, v);
   6460 		return;
   6461 	}
   6462 }
   6463 
   6464 /*
   6465  * pmap_postinit()
   6466  *
   6467  * This routine is called after the vm and kmem subsystems have been
   6468  * initialised. This allows the pmap code to perform any initialisation
   6469  * that can only be done one the memory allocation is in place.
   6470  */
   6471 void
   6472 pmap_postinit(void)
   6473 {
   6474 #ifndef ARM_MMU_EXTENDED
   6475 	extern paddr_t physical_start, physical_end;
   6476 	struct l1_ttable *l1;
   6477 	struct pglist plist;
   6478 	struct vm_page *m;
   6479 	pd_entry_t *pdep;
   6480 	vaddr_t va, eva;
   6481 	u_int loop, needed;
   6482 	int error;
   6483 #endif
   6484 
   6485 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6486 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6487 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6488 
   6489 #ifndef ARM_MMU_EXTENDED
   6490 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6491 	needed -= 1;
   6492 
   6493 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6494 
   6495 	for (loop = 0; loop < needed; loop++, l1++) {
   6496 		/* Allocate a L1 page table */
   6497 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6498 		if (va == 0)
   6499 			panic("Cannot allocate L1 KVM");
   6500 
   6501 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6502 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6503 		if (error)
   6504 			panic("Cannot allocate L1 physical pages");
   6505 
   6506 		m = TAILQ_FIRST(&plist);
   6507 		eva = va + L1_TABLE_SIZE;
   6508 		pdep = (pd_entry_t *)va;
   6509 
   6510 		while (m && va < eva) {
   6511 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6512 
   6513 			pmap_kenter_pa(va, pa,
   6514 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6515 
   6516 			va += PAGE_SIZE;
   6517 			m = TAILQ_NEXT(m, pageq.queue);
   6518 		}
   6519 
   6520 #ifdef DIAGNOSTIC
   6521 		if (m)
   6522 			panic("pmap_alloc_l1pt: pglist not empty");
   6523 #endif	/* DIAGNOSTIC */
   6524 
   6525 		pmap_init_l1(l1, pdep);
   6526 	}
   6527 
   6528 #ifdef DEBUG
   6529 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6530 	    needed);
   6531 #endif
   6532 #endif /* !ARM_MMU_EXTENDED */
   6533 }
   6534 
   6535 /*
   6536  * Note that the following routines are used by board-specific initialisation
   6537  * code to configure the initial kernel page tables.
   6538  *
   6539  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   6540  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   6541  * behaviour of the old pmap, and provides an easy migration path for
   6542  * initial bring-up of the new pmap on existing ports. Fortunately,
   6543  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   6544  * will be deprecated.
   6545  *
   6546  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   6547  * tables.
   6548  */
   6549 
   6550 /*
   6551  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6552  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6553  * find them as necessary.
   6554  *
   6555  * Note that the data on this list MUST remain valid after initarm() returns,
   6556  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   6557  */
   6558 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6559 
   6560 static vaddr_t
   6561 kernel_pt_lookup(paddr_t pa)
   6562 {
   6563 	pv_addr_t *pv;
   6564 
   6565 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6566 		if (pv->pv_pa == (pa & ~PGOFSET))
   6567 			return (pv->pv_va | (pa & PGOFSET));
   6568 	}
   6569 	return (0);
   6570 }
   6571 
   6572 /*
   6573  * pmap_map_section:
   6574  *
   6575  *	Create a single section mapping.
   6576  */
   6577 void
   6578 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6579 {
   6580 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6581 	const size_t l1slot = l1pte_index(va);
   6582 	pd_entry_t fl;
   6583 
   6584 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6585 
   6586 	switch (cache) {
   6587 	case PTE_NOCACHE:
   6588 	default:
   6589 		fl = 0;
   6590 		break;
   6591 
   6592 	case PTE_CACHE:
   6593 		fl = pte_l1_s_cache_mode;
   6594 		break;
   6595 
   6596 	case PTE_PAGETABLE:
   6597 		fl = pte_l1_s_cache_mode_pt;
   6598 		break;
   6599 	}
   6600 
   6601 	const pd_entry_t npde = L1_S_PROTO | pa |
   6602 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6603 	l1pte_setone(pdep + l1slot, npde);
   6604 	PDE_SYNC(pdep + l1slot);
   6605 }
   6606 
   6607 /*
   6608  * pmap_map_entry:
   6609  *
   6610  *	Create a single page mapping.
   6611  */
   6612 void
   6613 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6614 {
   6615 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6616 	const size_t l1slot = l1pte_index(va);
   6617 	pt_entry_t npte;
   6618 	pt_entry_t *ptep;
   6619 
   6620 	KASSERT(((va | pa) & PGOFSET) == 0);
   6621 
   6622 	switch (cache) {
   6623 	case PTE_NOCACHE:
   6624 	default:
   6625 		npte = 0;
   6626 		break;
   6627 
   6628 	case PTE_CACHE:
   6629 		npte = pte_l2_s_cache_mode;
   6630 		break;
   6631 
   6632 	case PTE_PAGETABLE:
   6633 		npte = pte_l2_s_cache_mode_pt;
   6634 		break;
   6635 	}
   6636 
   6637 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6638 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   6639 
   6640 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6641 	if (ptep == NULL)
   6642 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   6643 
   6644 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   6645 #ifdef ARM_MMU_EXTENDED
   6646 	if (prot & VM_PROT_EXECUTE) {
   6647 		npte &= ~L2_XS_XN;
   6648 	}
   6649 #endif
   6650 	ptep += l2pte_index(va);
   6651 	l2pte_set(ptep, npte, 0);
   6652 	PTE_SYNC(ptep);
   6653 }
   6654 
   6655 /*
   6656  * pmap_link_l2pt:
   6657  *
   6658  *	Link the L2 page table specified by "l2pv" into the L1
   6659  *	page table at the slot for "va".
   6660  */
   6661 void
   6662 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   6663 {
   6664 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   6665 
   6666 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   6667 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   6668 
   6669 	const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   6670 	    | l2pv->pv_pa;
   6671 
   6672 	l1pte_set(pdep, npde);
   6673 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   6674 
   6675 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   6676 }
   6677 
   6678 /*
   6679  * pmap_map_chunk:
   6680  *
   6681  *	Map a chunk of memory using the most efficient mappings
   6682  *	possible (section, large page, small page) into the
   6683  *	provided L1 and L2 tables at the specified virtual address.
   6684  */
   6685 vsize_t
   6686 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   6687     int prot, int cache)
   6688 {
   6689 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6690 	pt_entry_t f1, f2s, f2l;
   6691 	vsize_t resid;
   6692 
   6693 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   6694 
   6695 	if (l1pt == 0)
   6696 		panic("pmap_map_chunk: no L1 table provided");
   6697 
   6698 #ifdef VERBOSE_INIT_ARM
   6699 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   6700 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   6701 #endif
   6702 
   6703 	switch (cache) {
   6704 	case PTE_NOCACHE:
   6705 	default:
   6706 		f1 = 0;
   6707 		f2l = 0;
   6708 		f2s = 0;
   6709 		break;
   6710 
   6711 	case PTE_CACHE:
   6712 		f1 = pte_l1_s_cache_mode;
   6713 		f2l = pte_l2_l_cache_mode;
   6714 		f2s = pte_l2_s_cache_mode;
   6715 		break;
   6716 
   6717 	case PTE_PAGETABLE:
   6718 		f1 = pte_l1_s_cache_mode_pt;
   6719 		f2l = pte_l2_l_cache_mode_pt;
   6720 		f2s = pte_l2_s_cache_mode_pt;
   6721 		break;
   6722 	}
   6723 
   6724 	size = resid;
   6725 
   6726 	while (resid > 0) {
   6727 		const size_t l1slot = l1pte_index(va);
   6728 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   6729 		/* See if we can use a supersection mapping. */
   6730 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   6731 			/* Supersection are always domain 0 */
   6732 			const pd_entry_t npde = L1_SS_PROTO | pa
   6733 #ifdef ARM_MMU_EXTENDED
   6734 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6735 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6736 #endif
   6737 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   6738 #ifdef VERBOSE_INIT_ARM
   6739 			printf("sS");
   6740 #endif
   6741 			l1pte_set(&pdep[l1slot], npde);
   6742 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   6743 			va += L1_SS_SIZE;
   6744 			pa += L1_SS_SIZE;
   6745 			resid -= L1_SS_SIZE;
   6746 			continue;
   6747 		}
   6748 #endif
   6749 		/* See if we can use a section mapping. */
   6750 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   6751 			const pd_entry_t npde = L1_S_PROTO | pa
   6752 #ifdef ARM_MMU_EXTENDED
   6753 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6754 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6755 #endif
   6756 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   6757 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6758 #ifdef VERBOSE_INIT_ARM
   6759 			printf("S");
   6760 #endif
   6761 			l1pte_set(&pdep[l1slot], npde);
   6762 			PDE_SYNC(&pdep[l1slot]);
   6763 			va += L1_S_SIZE;
   6764 			pa += L1_S_SIZE;
   6765 			resid -= L1_S_SIZE;
   6766 			continue;
   6767 		}
   6768 
   6769 		/*
   6770 		 * Ok, we're going to use an L2 table.  Make sure
   6771 		 * one is actually in the corresponding L1 slot
   6772 		 * for the current VA.
   6773 		 */
   6774 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6775 			panic("%s: no L2 table for VA %#lx", __func__, va);
   6776 
   6777 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6778 		if (ptep == NULL)
   6779 			panic("%s: can't find L2 table for VA %#lx", __func__,
   6780 			    va);
   6781 
   6782 		ptep += l2pte_index(va);
   6783 
   6784 		/* See if we can use a L2 large page mapping. */
   6785 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   6786 			const pt_entry_t npte = L2_L_PROTO | pa
   6787 #ifdef ARM_MMU_EXTENDED
   6788 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   6789 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6790 #endif
   6791 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   6792 #ifdef VERBOSE_INIT_ARM
   6793 			printf("L");
   6794 #endif
   6795 			l2pte_set(ptep, npte, 0);
   6796 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   6797 			va += L2_L_SIZE;
   6798 			pa += L2_L_SIZE;
   6799 			resid -= L2_L_SIZE;
   6800 			continue;
   6801 		}
   6802 
   6803 #ifdef VERBOSE_INIT_ARM
   6804 		printf("P");
   6805 #endif
   6806 		/* Use a small page mapping. */
   6807 		pt_entry_t npte = L2_S_PROTO | pa
   6808 #ifdef ARM_MMU_EXTENDED
   6809 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   6810 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6811 #endif
   6812 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   6813 #ifdef ARM_MMU_EXTENDED
   6814 		npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
   6815 #endif
   6816 		l2pte_set(ptep, npte, 0);
   6817 		PTE_SYNC(ptep);
   6818 		va += PAGE_SIZE;
   6819 		pa += PAGE_SIZE;
   6820 		resid -= PAGE_SIZE;
   6821 	}
   6822 #ifdef VERBOSE_INIT_ARM
   6823 	printf("\n");
   6824 #endif
   6825 	return (size);
   6826 }
   6827 
   6828 /********************** Static device map routines ***************************/
   6829 
   6830 static const struct pmap_devmap *pmap_devmap_table;
   6831 
   6832 /*
   6833  * Register the devmap table.  This is provided in case early console
   6834  * initialization needs to register mappings created by bootstrap code
   6835  * before pmap_devmap_bootstrap() is called.
   6836  */
   6837 void
   6838 pmap_devmap_register(const struct pmap_devmap *table)
   6839 {
   6840 
   6841 	pmap_devmap_table = table;
   6842 }
   6843 
   6844 /*
   6845  * Map all of the static regions in the devmap table, and remember
   6846  * the devmap table so other parts of the kernel can look up entries
   6847  * later.
   6848  */
   6849 void
   6850 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   6851 {
   6852 	int i;
   6853 
   6854 	pmap_devmap_table = table;
   6855 
   6856 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6857 #ifdef VERBOSE_INIT_ARM
   6858 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   6859 		    pmap_devmap_table[i].pd_pa,
   6860 		    pmap_devmap_table[i].pd_pa +
   6861 			pmap_devmap_table[i].pd_size - 1,
   6862 		    pmap_devmap_table[i].pd_va);
   6863 #endif
   6864 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   6865 		    pmap_devmap_table[i].pd_pa,
   6866 		    pmap_devmap_table[i].pd_size,
   6867 		    pmap_devmap_table[i].pd_prot,
   6868 		    pmap_devmap_table[i].pd_cache);
   6869 	}
   6870 }
   6871 
   6872 const struct pmap_devmap *
   6873 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   6874 {
   6875 	uint64_t endpa;
   6876 	int i;
   6877 
   6878 	if (pmap_devmap_table == NULL)
   6879 		return (NULL);
   6880 
   6881 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   6882 
   6883 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6884 		if (pa >= pmap_devmap_table[i].pd_pa &&
   6885 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   6886 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   6887 			return (&pmap_devmap_table[i]);
   6888 	}
   6889 
   6890 	return (NULL);
   6891 }
   6892 
   6893 const struct pmap_devmap *
   6894 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6895 {
   6896 	int i;
   6897 
   6898 	if (pmap_devmap_table == NULL)
   6899 		return (NULL);
   6900 
   6901 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6902 		if (va >= pmap_devmap_table[i].pd_va &&
   6903 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6904 				     pmap_devmap_table[i].pd_size - 1)
   6905 			return (&pmap_devmap_table[i]);
   6906 	}
   6907 
   6908 	return (NULL);
   6909 }
   6910 
   6911 /********************** PTE initialization routines **************************/
   6912 
   6913 /*
   6914  * These routines are called when the CPU type is identified to set up
   6915  * the PTE prototypes, cache modes, etc.
   6916  *
   6917  * The variables are always here, just in case modules need to reference
   6918  * them (though, they shouldn't).
   6919  */
   6920 
   6921 pt_entry_t	pte_l1_s_cache_mode;
   6922 pt_entry_t	pte_l1_s_wc_mode;
   6923 pt_entry_t	pte_l1_s_cache_mode_pt;
   6924 pt_entry_t	pte_l1_s_cache_mask;
   6925 
   6926 pt_entry_t	pte_l2_l_cache_mode;
   6927 pt_entry_t	pte_l2_l_wc_mode;
   6928 pt_entry_t	pte_l2_l_cache_mode_pt;
   6929 pt_entry_t	pte_l2_l_cache_mask;
   6930 
   6931 pt_entry_t	pte_l2_s_cache_mode;
   6932 pt_entry_t	pte_l2_s_wc_mode;
   6933 pt_entry_t	pte_l2_s_cache_mode_pt;
   6934 pt_entry_t	pte_l2_s_cache_mask;
   6935 
   6936 pt_entry_t	pte_l1_s_prot_u;
   6937 pt_entry_t	pte_l1_s_prot_w;
   6938 pt_entry_t	pte_l1_s_prot_ro;
   6939 pt_entry_t	pte_l1_s_prot_mask;
   6940 
   6941 pt_entry_t	pte_l2_s_prot_u;
   6942 pt_entry_t	pte_l2_s_prot_w;
   6943 pt_entry_t	pte_l2_s_prot_ro;
   6944 pt_entry_t	pte_l2_s_prot_mask;
   6945 
   6946 pt_entry_t	pte_l2_l_prot_u;
   6947 pt_entry_t	pte_l2_l_prot_w;
   6948 pt_entry_t	pte_l2_l_prot_ro;
   6949 pt_entry_t	pte_l2_l_prot_mask;
   6950 
   6951 pt_entry_t	pte_l1_ss_proto;
   6952 pt_entry_t	pte_l1_s_proto;
   6953 pt_entry_t	pte_l1_c_proto;
   6954 pt_entry_t	pte_l2_s_proto;
   6955 
   6956 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6957 void		(*pmap_zero_page_func)(paddr_t);
   6958 
   6959 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6960 void
   6961 pmap_pte_init_generic(void)
   6962 {
   6963 
   6964 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6965 	pte_l1_s_wc_mode = L1_S_B;
   6966 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6967 
   6968 	pte_l2_l_cache_mode = L2_B|L2_C;
   6969 	pte_l2_l_wc_mode = L2_B;
   6970 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6971 
   6972 	pte_l2_s_cache_mode = L2_B|L2_C;
   6973 	pte_l2_s_wc_mode = L2_B;
   6974 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6975 
   6976 	/*
   6977 	 * If we have a write-through cache, set B and C.  If
   6978 	 * we have a write-back cache, then we assume setting
   6979 	 * only C will make those pages write-through (except for those
   6980 	 * Cortex CPUs which can read the L1 caches).
   6981 	 */
   6982 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6983 #if ARM_MMU_V7 > 0
   6984 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6985 #endif
   6986 #if ARM_MMU_V6 > 0
   6987 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6988 #endif
   6989 	    || false) {
   6990 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6991 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6992 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6993 	} else {
   6994 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6995 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6996 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6997 	}
   6998 
   6999 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   7000 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   7001 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   7002 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   7003 
   7004 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7005 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7006 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7007 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7008 
   7009 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7010 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7011 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7012 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7013 
   7014 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   7015 	pte_l1_s_proto = L1_S_PROTO_generic;
   7016 	pte_l1_c_proto = L1_C_PROTO_generic;
   7017 	pte_l2_s_proto = L2_S_PROTO_generic;
   7018 
   7019 	pmap_copy_page_func = pmap_copy_page_generic;
   7020 	pmap_zero_page_func = pmap_zero_page_generic;
   7021 }
   7022 
   7023 #if defined(CPU_ARM8)
   7024 void
   7025 pmap_pte_init_arm8(void)
   7026 {
   7027 
   7028 	/*
   7029 	 * ARM8 is compatible with generic, but we need to use
   7030 	 * the page tables uncached.
   7031 	 */
   7032 	pmap_pte_init_generic();
   7033 
   7034 	pte_l1_s_cache_mode_pt = 0;
   7035 	pte_l2_l_cache_mode_pt = 0;
   7036 	pte_l2_s_cache_mode_pt = 0;
   7037 }
   7038 #endif /* CPU_ARM8 */
   7039 
   7040 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   7041 void
   7042 pmap_pte_init_arm9(void)
   7043 {
   7044 
   7045 	/*
   7046 	 * ARM9 is compatible with generic, but we want to use
   7047 	 * write-through caching for now.
   7048 	 */
   7049 	pmap_pte_init_generic();
   7050 
   7051 	pte_l1_s_cache_mode = L1_S_C;
   7052 	pte_l2_l_cache_mode = L2_C;
   7053 	pte_l2_s_cache_mode = L2_C;
   7054 
   7055 	pte_l1_s_wc_mode = L1_S_B;
   7056 	pte_l2_l_wc_mode = L2_B;
   7057 	pte_l2_s_wc_mode = L2_B;
   7058 
   7059 	pte_l1_s_cache_mode_pt = L1_S_C;
   7060 	pte_l2_l_cache_mode_pt = L2_C;
   7061 	pte_l2_s_cache_mode_pt = L2_C;
   7062 }
   7063 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   7064 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   7065 
   7066 #if defined(CPU_ARM10)
   7067 void
   7068 pmap_pte_init_arm10(void)
   7069 {
   7070 
   7071 	/*
   7072 	 * ARM10 is compatible with generic, but we want to use
   7073 	 * write-through caching for now.
   7074 	 */
   7075 	pmap_pte_init_generic();
   7076 
   7077 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   7078 	pte_l2_l_cache_mode = L2_B | L2_C;
   7079 	pte_l2_s_cache_mode = L2_B | L2_C;
   7080 
   7081 	pte_l1_s_cache_mode = L1_S_B;
   7082 	pte_l2_l_cache_mode = L2_B;
   7083 	pte_l2_s_cache_mode = L2_B;
   7084 
   7085 	pte_l1_s_cache_mode_pt = L1_S_C;
   7086 	pte_l2_l_cache_mode_pt = L2_C;
   7087 	pte_l2_s_cache_mode_pt = L2_C;
   7088 
   7089 }
   7090 #endif /* CPU_ARM10 */
   7091 
   7092 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   7093 void
   7094 pmap_pte_init_arm11(void)
   7095 {
   7096 
   7097 	/*
   7098 	 * ARM11 is compatible with generic, but we want to use
   7099 	 * write-through caching for now.
   7100 	 */
   7101 	pmap_pte_init_generic();
   7102 
   7103 	pte_l1_s_cache_mode = L1_S_C;
   7104 	pte_l2_l_cache_mode = L2_C;
   7105 	pte_l2_s_cache_mode = L2_C;
   7106 
   7107 	pte_l1_s_wc_mode = L1_S_B;
   7108 	pte_l2_l_wc_mode = L2_B;
   7109 	pte_l2_s_wc_mode = L2_B;
   7110 
   7111 	pte_l1_s_cache_mode_pt = L1_S_C;
   7112 	pte_l2_l_cache_mode_pt = L2_C;
   7113 	pte_l2_s_cache_mode_pt = L2_C;
   7114 }
   7115 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   7116 
   7117 #if ARM_MMU_SA1 == 1
   7118 void
   7119 pmap_pte_init_sa1(void)
   7120 {
   7121 
   7122 	/*
   7123 	 * The StrongARM SA-1 cache does not have a write-through
   7124 	 * mode.  So, do the generic initialization, then reset
   7125 	 * the page table cache mode to B=1,C=1, and note that
   7126 	 * the PTEs need to be sync'd.
   7127 	 */
   7128 	pmap_pte_init_generic();
   7129 
   7130 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7131 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7132 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7133 
   7134 	pmap_needs_pte_sync = 1;
   7135 }
   7136 #endif /* ARM_MMU_SA1 == 1*/
   7137 
   7138 #if ARM_MMU_XSCALE == 1
   7139 #if (ARM_NMMUS > 1)
   7140 static u_int xscale_use_minidata;
   7141 #endif
   7142 
   7143 void
   7144 pmap_pte_init_xscale(void)
   7145 {
   7146 	uint32_t auxctl;
   7147 	int write_through = 0;
   7148 
   7149 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7150 	pte_l1_s_wc_mode = L1_S_B;
   7151 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7152 
   7153 	pte_l2_l_cache_mode = L2_B|L2_C;
   7154 	pte_l2_l_wc_mode = L2_B;
   7155 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7156 
   7157 	pte_l2_s_cache_mode = L2_B|L2_C;
   7158 	pte_l2_s_wc_mode = L2_B;
   7159 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7160 
   7161 	pte_l1_s_cache_mode_pt = L1_S_C;
   7162 	pte_l2_l_cache_mode_pt = L2_C;
   7163 	pte_l2_s_cache_mode_pt = L2_C;
   7164 
   7165 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7166 	/*
   7167 	 * The XScale core has an enhanced mode where writes that
   7168 	 * miss the cache cause a cache line to be allocated.  This
   7169 	 * is significantly faster than the traditional, write-through
   7170 	 * behavior of this case.
   7171 	 */
   7172 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7173 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7174 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7175 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7176 
   7177 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7178 	/*
   7179 	 * Some versions of the XScale core have various bugs in
   7180 	 * their cache units, the work-around for which is to run
   7181 	 * the cache in write-through mode.  Unfortunately, this
   7182 	 * has a major (negative) impact on performance.  So, we
   7183 	 * go ahead and run fast-and-loose, in the hopes that we
   7184 	 * don't line up the planets in a way that will trip the
   7185 	 * bugs.
   7186 	 *
   7187 	 * However, we give you the option to be slow-but-correct.
   7188 	 */
   7189 	write_through = 1;
   7190 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7191 	/* force write back cache mode */
   7192 	write_through = 0;
   7193 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7194 	/*
   7195 	 * Intel PXA2[15]0 processors are known to have a bug in
   7196 	 * write-back cache on revision 4 and earlier (stepping
   7197 	 * A[01] and B[012]).  Fixed for C0 and later.
   7198 	 */
   7199 	{
   7200 		uint32_t id, type;
   7201 
   7202 		id = cpufunc_id();
   7203 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7204 
   7205 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7206 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7207 				/* write through for stepping A0-1 and B0-2 */
   7208 				write_through = 1;
   7209 			}
   7210 		}
   7211 	}
   7212 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7213 
   7214 	if (write_through) {
   7215 		pte_l1_s_cache_mode = L1_S_C;
   7216 		pte_l2_l_cache_mode = L2_C;
   7217 		pte_l2_s_cache_mode = L2_C;
   7218 	}
   7219 
   7220 #if (ARM_NMMUS > 1)
   7221 	xscale_use_minidata = 1;
   7222 #endif
   7223 
   7224 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7225 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7226 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7227 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7228 
   7229 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7230 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7231 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7232 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7233 
   7234 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7235 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7236 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7237 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7238 
   7239 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7240 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7241 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7242 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7243 
   7244 	pmap_copy_page_func = pmap_copy_page_xscale;
   7245 	pmap_zero_page_func = pmap_zero_page_xscale;
   7246 
   7247 	/*
   7248 	 * Disable ECC protection of page table access, for now.
   7249 	 */
   7250 	auxctl = armreg_auxctl_read();
   7251 	auxctl &= ~XSCALE_AUXCTL_P;
   7252 	armreg_auxctl_write(auxctl);
   7253 }
   7254 
   7255 /*
   7256  * xscale_setup_minidata:
   7257  *
   7258  *	Set up the mini-data cache clean area.  We require the
   7259  *	caller to allocate the right amount of physically and
   7260  *	virtually contiguous space.
   7261  */
   7262 void
   7263 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7264 {
   7265 	extern vaddr_t xscale_minidata_clean_addr;
   7266 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   7267 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7268 	vsize_t size;
   7269 	uint32_t auxctl;
   7270 
   7271 	xscale_minidata_clean_addr = va;
   7272 
   7273 	/* Round it to page size. */
   7274 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7275 
   7276 	for (; size != 0;
   7277 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7278 		const size_t l1slot = l1pte_index(va);
   7279 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7280 		if (ptep == NULL)
   7281 			panic("xscale_setup_minidata: can't find L2 table for "
   7282 			    "VA 0x%08lx", va);
   7283 
   7284 		ptep += l2pte_index(va);
   7285 		pt_entry_t opte = *ptep;
   7286 		l2pte_set(ptep,
   7287 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7288 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7289 	}
   7290 
   7291 	/*
   7292 	 * Configure the mini-data cache for write-back with
   7293 	 * read/write-allocate.
   7294 	 *
   7295 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7296 	 * make sure it contains no valid data!  In order to do that,
   7297 	 * we must issue a global data cache invalidate command!
   7298 	 *
   7299 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7300 	 * THIS IS VERY IMPORTANT!
   7301 	 */
   7302 
   7303 	/* Invalidate data and mini-data. */
   7304 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7305 	auxctl = armreg_auxctl_read();
   7306 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7307 	armreg_auxctl_write(auxctl);
   7308 }
   7309 
   7310 /*
   7311  * Change the PTEs for the specified kernel mappings such that they
   7312  * will use the mini data cache instead of the main data cache.
   7313  */
   7314 void
   7315 pmap_uarea(vaddr_t va)
   7316 {
   7317 	vaddr_t next_bucket, eva;
   7318 
   7319 #if (ARM_NMMUS > 1)
   7320 	if (xscale_use_minidata == 0)
   7321 		return;
   7322 #endif
   7323 
   7324 	eva = va + USPACE;
   7325 
   7326 	while (va < eva) {
   7327 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7328 		if (next_bucket > eva)
   7329 			next_bucket = eva;
   7330 
   7331 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7332 		KDASSERT(l2b != NULL);
   7333 
   7334 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7335 		pt_entry_t *ptep = sptep;
   7336 
   7337 		while (va < next_bucket) {
   7338 			const pt_entry_t opte = *ptep;
   7339 			if (!l2pte_minidata_p(opte)) {
   7340 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7341 				cpu_tlb_flushD_SE(va);
   7342 				l2pte_set(ptep, opte & ~L2_B, opte);
   7343 			}
   7344 			ptep += PAGE_SIZE / L2_S_SIZE;
   7345 			va += PAGE_SIZE;
   7346 		}
   7347 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7348 	}
   7349 	cpu_cpwait();
   7350 }
   7351 #endif /* ARM_MMU_XSCALE == 1 */
   7352 
   7353 
   7354 #if defined(CPU_ARM11MPCORE)
   7355 
   7356 void
   7357 pmap_pte_init_arm11mpcore(void)
   7358 {
   7359 
   7360 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   7361 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7362 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7363 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7364 	/* use extended small page (without APn, with TEX) */
   7365 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7366 #else
   7367 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7368 #endif
   7369 
   7370 	/* write-back, write-allocate */
   7371 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7372 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7373 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7374 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7375 #else
   7376 	/* no TEX. read-allocate */
   7377 	pte_l2_s_cache_mode = L2_C | L2_B;
   7378 #endif
   7379 	/*
   7380 	 * write-back, write-allocate for page tables.
   7381 	 */
   7382 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7383 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7384 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7385 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7386 #else
   7387 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7388 #endif
   7389 
   7390 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7391 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7392 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7393 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7394 
   7395 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7396 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7397 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7398 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7399 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7400 
   7401 #else
   7402 	/* with AP[0..3] */
   7403 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7404 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7405 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7406 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7407 #endif
   7408 
   7409 #ifdef	ARM11MPCORE_COMPAT_MMU
   7410 	/* with AP[0..3] */
   7411 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7412 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7413 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7414 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7415 
   7416 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7417 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7418 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7419 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7420 #else
   7421 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7422 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7423 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7424 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7425 
   7426 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7427 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7428 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7429 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7430 #endif
   7431 
   7432 	pmap_copy_page_func = pmap_copy_page_generic;
   7433 	pmap_zero_page_func = pmap_zero_page_generic;
   7434 	pmap_needs_pte_sync = 1;
   7435 }
   7436 #endif	/* CPU_ARM11MPCORE */
   7437 
   7438 
   7439 #if ARM_MMU_V7 == 1
   7440 void
   7441 pmap_pte_init_armv7(void)
   7442 {
   7443 	/*
   7444 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7445 	 * AP field is zero, that now means "no access" rather than
   7446 	 * read-only. The prototypes are a little different because of
   7447 	 * the XN bit.
   7448 	 */
   7449 	pmap_pte_init_generic();
   7450 
   7451 	pmap_needs_pte_sync = 1;
   7452 
   7453 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7454 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7455 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7456 
   7457 	/*
   7458 	 * If the core support coherent walk then updates to translation tables
   7459 	 * do not require a clean to the point of unification to ensure
   7460 	 * visibility by subsequent translation table walks.  That means we can
   7461 	 * map everything shareable and cached and the right thing will happen.
   7462 	 */
   7463         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7464 		pmap_needs_pte_sync = 0;
   7465 
   7466 		/*
   7467 		 * write-back, no write-allocate, shareable for normal pages.
   7468 		 */
   7469 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7470 		pte_l2_l_cache_mode |= L2_XS_S;
   7471 		pte_l2_s_cache_mode |= L2_XS_S;
   7472 	}
   7473 
   7474 	/*
   7475 	 * Page tables are just all other memory.  We can use write-back since
   7476 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7477 	 */
   7478 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7479 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7480 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7481 
   7482 	/*
   7483 	 * Check the Memory Model Features to see if this CPU supports
   7484 	 * the TLBIASID coproc op.
   7485 	 */
   7486 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7487 		arm_has_tlbiasid_p = true;
   7488 	}
   7489 
   7490 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7491 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7492 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7493 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7494 
   7495 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7496 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7497 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7498 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7499 
   7500 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7501 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7502 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7503 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7504 
   7505 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7506 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7507 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7508 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7509 
   7510 }
   7511 #endif /* ARM_MMU_V7 */
   7512 
   7513 /*
   7514  * return the PA of the current L1 table, for use when handling a crash dump
   7515  */
   7516 uint32_t
   7517 pmap_kernel_L1_addr(void)
   7518 {
   7519 #ifdef ARM_MMU_EXTENDED
   7520 	return pmap_kernel()->pm_l1_pa;
   7521 #else
   7522 	return pmap_kernel()->pm_l1->l1_physaddr;
   7523 #endif
   7524 }
   7525 
   7526 #if defined(DDB)
   7527 /*
   7528  * A couple of ddb-callable functions for dumping pmaps
   7529  */
   7530 void pmap_dump_all(void);
   7531 void pmap_dump(pmap_t);
   7532 
   7533 void
   7534 pmap_dump_all(void)
   7535 {
   7536 	pmap_t pm;
   7537 
   7538 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   7539 		if (pm == pmap_kernel())
   7540 			continue;
   7541 		pmap_dump(pm);
   7542 		printf("\n");
   7543 	}
   7544 }
   7545 
   7546 static pt_entry_t ncptes[64];
   7547 static void pmap_dump_ncpg(pmap_t);
   7548 
   7549 void
   7550 pmap_dump(pmap_t pm)
   7551 {
   7552 	struct l2_dtable *l2;
   7553 	struct l2_bucket *l2b;
   7554 	pt_entry_t *ptep, pte;
   7555 	vaddr_t l2_va, l2b_va, va;
   7556 	int i, j, k, occ, rows = 0;
   7557 
   7558 	if (pm == pmap_kernel())
   7559 		printf("pmap_kernel (%p): ", pm);
   7560 	else
   7561 		printf("user pmap (%p): ", pm);
   7562 
   7563 #ifdef ARM_MMU_EXTENDED
   7564 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7565 #else
   7566 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7567 #endif
   7568 
   7569 	l2_va = 0;
   7570 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7571 		l2 = pm->pm_l2[i];
   7572 
   7573 		if (l2 == NULL || l2->l2_occupancy == 0)
   7574 			continue;
   7575 
   7576 		l2b_va = l2_va;
   7577 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7578 			l2b = &l2->l2_bucket[j];
   7579 
   7580 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7581 				continue;
   7582 
   7583 			ptep = l2b->l2b_kva;
   7584 
   7585 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7586 				;
   7587 
   7588 			k &= ~63;
   7589 			occ = l2b->l2b_occupancy;
   7590 			va = l2b_va + (k * 4096);
   7591 			for (; k < 256; k++, va += 0x1000) {
   7592 				char ch = ' ';
   7593 				if ((k % 64) == 0) {
   7594 					if ((rows % 8) == 0) {
   7595 						printf(
   7596 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7597 					}
   7598 					printf("%08lx: ", va);
   7599 				}
   7600 
   7601 				ncptes[k & 63] = 0;
   7602 				pte = ptep[k];
   7603 				if (pte == 0) {
   7604 					ch = '.';
   7605 				} else {
   7606 					occ--;
   7607 					switch (pte & 0x0c) {
   7608 					case 0x00:
   7609 						ch = 'D'; /* No cache No buff */
   7610 						break;
   7611 					case 0x04:
   7612 						ch = 'B'; /* No cache buff */
   7613 						break;
   7614 					case 0x08:
   7615 						if (pte & 0x40)
   7616 							ch = 'm';
   7617 						else
   7618 						   ch = 'C'; /* Cache No buff */
   7619 						break;
   7620 					case 0x0c:
   7621 						ch = 'F'; /* Cache Buff */
   7622 						break;
   7623 					}
   7624 
   7625 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   7626 						ch += 0x20;
   7627 
   7628 					if ((pte & 0xc) == 0)
   7629 						ncptes[k & 63] = pte;
   7630 				}
   7631 
   7632 				if ((k % 64) == 63) {
   7633 					rows++;
   7634 					printf("%c\n", ch);
   7635 					pmap_dump_ncpg(pm);
   7636 					if (occ == 0)
   7637 						break;
   7638 				} else
   7639 					printf("%c", ch);
   7640 			}
   7641 		}
   7642 	}
   7643 }
   7644 
   7645 static void
   7646 pmap_dump_ncpg(pmap_t pm)
   7647 {
   7648 	struct vm_page *pg;
   7649 	struct vm_page_md *md;
   7650 	struct pv_entry *pv;
   7651 	int i;
   7652 
   7653 	for (i = 0; i < 63; i++) {
   7654 		if (ncptes[i] == 0)
   7655 			continue;
   7656 
   7657 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   7658 		if (pg == NULL)
   7659 			continue;
   7660 		md = VM_PAGE_TO_MD(pg);
   7661 
   7662 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   7663 		    VM_PAGE_TO_PHYS(pg),
   7664 		    md->krw_mappings, md->kro_mappings,
   7665 		    md->urw_mappings, md->uro_mappings);
   7666 
   7667 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   7668 			printf("   %c va 0x%08lx, flags 0x%x\n",
   7669 			    (pm == pv->pv_pmap) ? '*' : ' ',
   7670 			    pv->pv_va, pv->pv_flags);
   7671 		}
   7672 	}
   7673 }
   7674 #endif
   7675 
   7676 #ifdef PMAP_STEAL_MEMORY
   7677 void
   7678 pmap_boot_pageadd(pv_addr_t *newpv)
   7679 {
   7680 	pv_addr_t *pv, *npv;
   7681 
   7682 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   7683 		if (newpv->pv_pa < pv->pv_va) {
   7684 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   7685 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   7686 				newpv->pv_size += pv->pv_size;
   7687 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   7688 			}
   7689 			pv = NULL;
   7690 		} else {
   7691 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   7692 			     pv = npv) {
   7693 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   7694 				KASSERT(pv->pv_pa < newpv->pv_pa);
   7695 				if (newpv->pv_pa > npv->pv_pa)
   7696 					continue;
   7697 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   7698 					pv->pv_size += newpv->pv_size;
   7699 					return;
   7700 				}
   7701 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   7702 					break;
   7703 				newpv->pv_size += npv->pv_size;
   7704 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7705 				SLIST_REMOVE_AFTER(newpv, pv_list);
   7706 				return;
   7707 			}
   7708 		}
   7709 	}
   7710 
   7711 	if (pv) {
   7712 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7713 	} else {
   7714 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   7715 	}
   7716 }
   7717 
   7718 void
   7719 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   7720 	pv_addr_t *rpv)
   7721 {
   7722 	pv_addr_t *pv, **pvp;
   7723 	struct vm_physseg *ps;
   7724 	size_t i;
   7725 
   7726 	KASSERT(amount & PGOFSET);
   7727 	KASSERT((mask & PGOFSET) == 0);
   7728 	KASSERT((match & PGOFSET) == 0);
   7729 	KASSERT(amount != 0);
   7730 
   7731 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7732 	     (pv = *pvp) != NULL;
   7733 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7734 		pv_addr_t *newpv;
   7735 		psize_t off;
   7736 		/*
   7737 		 * If this entry is too small to satify the request...
   7738 		 */
   7739 		KASSERT(pv->pv_size > 0);
   7740 		if (pv->pv_size < amount)
   7741 			continue;
   7742 
   7743 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   7744 			if (((pv->pv_pa + off) & mask) == match
   7745 			    && off + amount <= pv->pv_size)
   7746 				break;
   7747 		}
   7748 		if (off > mask)
   7749 			continue;
   7750 
   7751 		rpv->pv_va = pv->pv_va + off;
   7752 		rpv->pv_pa = pv->pv_pa + off;
   7753 		rpv->pv_size = amount;
   7754 		pv->pv_size -= amount;
   7755 		if (pv->pv_size == 0) {
   7756 			KASSERT(off == 0);
   7757 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7758 			*pvp = SLIST_NEXT(pv, pv_list);
   7759 		} else if (off == 0) {
   7760 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7761 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7762 			*newpv = *pv;
   7763 			newpv->pv_pa += amount;
   7764 			newpv->pv_va += amount;
   7765 			*pvp = newpv;
   7766 		} else if (off < pv->pv_size) {
   7767 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7768 			*newpv = *pv;
   7769 			newpv->pv_size -= off;
   7770 			newpv->pv_pa += off + amount;
   7771 			newpv->pv_va += off + amount;
   7772 
   7773 			SLIST_NEXT(pv, pv_list) = newpv;
   7774 			pv->pv_size = off;
   7775 		} else {
   7776 			KASSERT((vaddr_t) pv != rpv->pv_va);
   7777 		}
   7778 		memset((void *)rpv->pv_va, 0, amount);
   7779 		return;
   7780 	}
   7781 
   7782 	if (vm_nphysseg == 0)
   7783 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   7784 
   7785 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7786 	     (pv = *pvp) != NULL;
   7787 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7788 		if (SLIST_NEXT(pv, pv_list) == NULL)
   7789 			break;
   7790 	}
   7791 	KASSERT(mask == 0);
   7792 	for (i = 0; i < vm_nphysseg; i++) {
   7793 		ps = VM_PHYSMEM_PTR(i);
   7794 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   7795 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   7796 			rpv->pv_va = pv->pv_va;
   7797 			rpv->pv_pa = pv->pv_pa;
   7798 			rpv->pv_size = amount;
   7799 			*pvp = NULL;
   7800 			pmap_map_chunk(kernel_l1pt.pv_va,
   7801 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   7802 			     ptoa(ps->avail_start),
   7803 			     amount - pv->pv_size,
   7804 			     VM_PROT_READ|VM_PROT_WRITE,
   7805 			     PTE_CACHE);
   7806 			ps->avail_start += atop(amount - pv->pv_size);
   7807 			/*
   7808 			 * If we consumed the entire physseg, remove it.
   7809 			 */
   7810 			if (ps->avail_start == ps->avail_end) {
   7811 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   7812 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   7813 			}
   7814 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   7815 			return;
   7816 		}
   7817 	}
   7818 
   7819 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   7820 }
   7821 
   7822 vaddr_t
   7823 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   7824 {
   7825 	pv_addr_t pv;
   7826 
   7827 	pmap_boot_pagealloc(size, 0, 0, &pv);
   7828 
   7829 	return pv.pv_va;
   7830 }
   7831 #endif /* PMAP_STEAL_MEMORY */
   7832 
   7833 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   7834 {
   7835 	sysctl_createv(clog, 0, NULL, NULL,
   7836 			CTLFLAG_PERMANENT,
   7837 			CTLTYPE_NODE, "machdep", NULL,
   7838 			NULL, 0, NULL, 0,
   7839 			CTL_MACHDEP, CTL_EOL);
   7840 
   7841 	sysctl_createv(clog, 0, NULL, NULL,
   7842 			CTLFLAG_PERMANENT,
   7843 			CTLTYPE_INT, "kmpages",
   7844 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   7845 			NULL, 0, &pmap_kmpages, 0,
   7846 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   7847 }
   7848 
   7849 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   7850 struct vm_page *
   7851 arm_pmap_alloc_poolpage(int flags)
   7852 {
   7853 	/*
   7854 	 * On some systems, only some pages may be "coherent" for dma and we
   7855 	 * want to prefer those for pool pages (think mbufs) but fallback to
   7856 	 * any page if none is available.  But we can only fallback if we
   7857 	 * aren't direct mapping memory or all of memory can be direct-mapped.
   7858 	 * If that isn't true, pool changes can only come from direct-mapped
   7859 	 * memory.
   7860 	 */
   7861 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   7862 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   7863 		    UVM_PGA_STRAT_FALLBACK,
   7864 		    arm_poolpage_vmfreelist);
   7865 	}
   7866 
   7867 	return uvm_pagealloc(NULL, 0, NULL, flags);
   7868 }
   7869 #endif
   7870 
   7871 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   7872 void
   7873 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   7874 {
   7875         /* nothing */
   7876 }
   7877 
   7878 int
   7879 pic_ipi_shootdown(void *arg)
   7880 {
   7881 #if PMAP_NEED_TLB_SHOOTDOWN
   7882 	pmap_tlb_shootdown_process();
   7883 #endif
   7884 	return 1;
   7885 }
   7886 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   7887 
   7888 
   7889 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   7890 vaddr_t
   7891 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   7892 {
   7893 	bool ok = false;
   7894 	if (physical_start <= pa && pa < physical_end) {
   7895 #ifdef KERNEL_BASE_VOFFSET
   7896 		const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
   7897 #else
   7898 		const vaddr_t newva = KERNEL_BASE + pa - physical_start;
   7899 #endif
   7900 #ifdef ARM_MMU_EXTENDED
   7901 		if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
   7902 #endif
   7903 			va = newva;
   7904 			ok = true;
   7905 #ifdef ARM_MMU_EXTENDED
   7906 		}
   7907 #endif
   7908 	}
   7909 	KASSERT(ok_p);
   7910 	*ok_p = ok;
   7911 	return va;
   7912 }
   7913 
   7914 vaddr_t
   7915 pmap_map_poolpage(paddr_t pa)
   7916 {
   7917 	bool ok __diagused;
   7918 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   7919 	KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
   7920 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   7921 	if (arm_cache_prefer_mask != 0) {
   7922 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   7923 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   7924 		pmap_acquire_page_lock(md);
   7925 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   7926 		pmap_release_page_lock(md);
   7927 	}
   7928 #endif
   7929 	return va;
   7930 }
   7931 
   7932 paddr_t
   7933 pmap_unmap_poolpage(vaddr_t va)
   7934 {
   7935 	KASSERT(va >= KERNEL_BASE);
   7936 #ifdef PMAP_CACHE_VIVT
   7937 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   7938 #endif
   7939 #if defined(KERNEL_BASE_VOFFSET)
   7940         return va - KERNEL_BASE_VOFFSET;
   7941 #else
   7942         return va - KERNEL_BASE + physical_start;
   7943 #endif
   7944 }
   7945 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   7946