pmap.c revision 1.333 1 /* $NetBSD: pmap.c,v 1.333 2016/07/12 15:40:53 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_arm_debug.h"
190 #include "opt_cpuoptions.h"
191 #include "opt_pmap_debug.h"
192 #include "opt_ddb.h"
193 #include "opt_lockdebug.h"
194 #include "opt_multiprocessor.h"
195
196 #ifdef MULTIPROCESSOR
197 #define _INTR_PRIVATE
198 #endif
199
200 #include <sys/param.h>
201 #include <sys/types.h>
202 #include <sys/kernel.h>
203 #include <sys/systm.h>
204 #include <sys/proc.h>
205 #include <sys/intr.h>
206 #include <sys/pool.h>
207 #include <sys/kmem.h>
208 #include <sys/cdefs.h>
209 #include <sys/cpu.h>
210 #include <sys/sysctl.h>
211 #include <sys/bus.h>
212 #include <sys/atomic.h>
213 #include <sys/kernhist.h>
214
215 #include <uvm/uvm.h>
216 #include <uvm/pmap/pmap_pvt.h>
217
218 #include <arm/locore.h>
219
220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.333 2016/07/12 15:40:53 skrll Exp $");
221
222 //#define PMAP_DEBUG
223 #ifdef PMAP_DEBUG
224
225 /* XXX need to get rid of all refs to this */
226 int pmap_debug_level = 0;
227
228 /*
229 * for switching to potentially finer grained debugging
230 */
231 #define PDB_FOLLOW 0x0001
232 #define PDB_INIT 0x0002
233 #define PDB_ENTER 0x0004
234 #define PDB_REMOVE 0x0008
235 #define PDB_CREATE 0x0010
236 #define PDB_PTPAGE 0x0020
237 #define PDB_GROWKERN 0x0040
238 #define PDB_BITS 0x0080
239 #define PDB_COLLECT 0x0100
240 #define PDB_PROTECT 0x0200
241 #define PDB_MAP_L1 0x0400
242 #define PDB_BOOTSTRAP 0x1000
243 #define PDB_PARANOIA 0x2000
244 #define PDB_WIRING 0x4000
245 #define PDB_PVDUMP 0x8000
246 #define PDB_VAC 0x10000
247 #define PDB_KENTER 0x20000
248 #define PDB_KREMOVE 0x40000
249 #define PDB_EXEC 0x80000
250
251 int debugmap = 1;
252 int pmapdebug = 0;
253 #define NPDEBUG(_lev_,_stat_) \
254 if (pmapdebug & (_lev_)) \
255 ((_stat_))
256
257 #else /* PMAP_DEBUG */
258 #define NPDEBUG(_lev_,_stat_) /* Nothing */
259 #endif /* PMAP_DEBUG */
260
261 /*
262 * pmap_kernel() points here
263 */
264 static struct pmap kernel_pmap_store = {
265 #ifndef ARM_MMU_EXTENDED
266 .pm_activated = true,
267 .pm_domain = PMAP_DOMAIN_KERNEL,
268 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
269 #endif
270 };
271 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
272 #undef pmap_kernel
273 #define pmap_kernel() (&kernel_pmap_store)
274 #ifdef PMAP_NEED_ALLOC_POOLPAGE
275 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
276 #endif
277
278 /*
279 * Pool and cache that pmap structures are allocated from.
280 * We use a cache to avoid clearing the pm_l2[] array (1KB)
281 * in pmap_create().
282 */
283 static struct pool_cache pmap_cache;
284
285 /*
286 * Pool of PV structures
287 */
288 static struct pool pmap_pv_pool;
289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
292 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
293 };
294
295 /*
296 * Pool and cache of l2_dtable structures.
297 * We use a cache to avoid clearing the structures when they're
298 * allocated. (196 bytes)
299 */
300 static struct pool_cache pmap_l2dtable_cache;
301 static vaddr_t pmap_kernel_l2dtable_kva;
302
303 /*
304 * Pool and cache of L2 page descriptors.
305 * We use a cache to avoid clearing the descriptor table
306 * when they're allocated. (1KB)
307 */
308 static struct pool_cache pmap_l2ptp_cache;
309 static vaddr_t pmap_kernel_l2ptp_kva;
310 static paddr_t pmap_kernel_l2ptp_phys;
311
312 #ifdef PMAPCOUNTERS
313 #define PMAP_EVCNT_INITIALIZER(name) \
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
315
316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
317 static struct evcnt pmap_ev_vac_clean_one =
318 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
319 static struct evcnt pmap_ev_vac_flush_one =
320 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
321 static struct evcnt pmap_ev_vac_flush_lots =
322 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
323 static struct evcnt pmap_ev_vac_flush_lots2 =
324 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
329
330 static struct evcnt pmap_ev_vac_color_new =
331 PMAP_EVCNT_INITIALIZER("new page color");
332 static struct evcnt pmap_ev_vac_color_reuse =
333 PMAP_EVCNT_INITIALIZER("ok first page color");
334 static struct evcnt pmap_ev_vac_color_ok =
335 PMAP_EVCNT_INITIALIZER("ok page color");
336 static struct evcnt pmap_ev_vac_color_blind =
337 PMAP_EVCNT_INITIALIZER("blind page color");
338 static struct evcnt pmap_ev_vac_color_change =
339 PMAP_EVCNT_INITIALIZER("change page color");
340 static struct evcnt pmap_ev_vac_color_erase =
341 PMAP_EVCNT_INITIALIZER("erase page color");
342 static struct evcnt pmap_ev_vac_color_none =
343 PMAP_EVCNT_INITIALIZER("no page color");
344 static struct evcnt pmap_ev_vac_color_restore =
345 PMAP_EVCNT_INITIALIZER("restore page color");
346
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
355 #endif
356
357 static struct evcnt pmap_ev_mappings =
358 PMAP_EVCNT_INITIALIZER("pages mapped");
359 static struct evcnt pmap_ev_unmappings =
360 PMAP_EVCNT_INITIALIZER("pages unmapped");
361 static struct evcnt pmap_ev_remappings =
362 PMAP_EVCNT_INITIALIZER("pages remapped");
363
364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
367
368 static struct evcnt pmap_ev_kernel_mappings =
369 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
370 static struct evcnt pmap_ev_kernel_unmappings =
371 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
372 static struct evcnt pmap_ev_kernel_remappings =
373 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
374
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
378
379 static struct evcnt pmap_ev_kenter_mappings =
380 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
381 static struct evcnt pmap_ev_kenter_unmappings =
382 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
383 static struct evcnt pmap_ev_kenter_remappings =
384 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
385 static struct evcnt pmap_ev_pt_mappings =
386 PMAP_EVCNT_INITIALIZER("page table pages mapped");
387
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
392
393 static struct evcnt pmap_ev_fixup_mod =
394 PMAP_EVCNT_INITIALIZER("page modification emulations");
395 static struct evcnt pmap_ev_fixup_ref =
396 PMAP_EVCNT_INITIALIZER("page reference emulations");
397 static struct evcnt pmap_ev_fixup_exec =
398 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
399 static struct evcnt pmap_ev_fixup_pdes =
400 PMAP_EVCNT_INITIALIZER("pdes fixed up");
401 #ifndef ARM_MMU_EXTENDED
402 static struct evcnt pmap_ev_fixup_ptesync =
403 PMAP_EVCNT_INITIALIZER("ptesync fixed");
404 #endif
405
406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
410 #ifndef ARM_MMU_EXTENDED
411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
412 #endif
413
414 #ifdef PMAP_CACHE_VIPT
415 static struct evcnt pmap_ev_exec_mappings =
416 PMAP_EVCNT_INITIALIZER("exec pages mapped");
417 static struct evcnt pmap_ev_exec_cached =
418 PMAP_EVCNT_INITIALIZER("exec pages cached");
419
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
422
423 static struct evcnt pmap_ev_exec_synced =
424 PMAP_EVCNT_INITIALIZER("exec pages synced");
425 static struct evcnt pmap_ev_exec_synced_map =
426 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
427 #ifndef ARM_MMU_EXTENDED
428 static struct evcnt pmap_ev_exec_synced_unmap =
429 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
430 static struct evcnt pmap_ev_exec_synced_remap =
431 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
432 static struct evcnt pmap_ev_exec_synced_clearbit =
433 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
434 static struct evcnt pmap_ev_exec_synced_kremove =
435 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
436 #endif
437
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
440 #ifndef ARM_MMU_EXTENDED
441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
445 #endif
446
447 static struct evcnt pmap_ev_exec_discarded_unmap =
448 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
449 static struct evcnt pmap_ev_exec_discarded_zero =
450 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
451 static struct evcnt pmap_ev_exec_discarded_copy =
452 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
453 static struct evcnt pmap_ev_exec_discarded_page_protect =
454 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
455 static struct evcnt pmap_ev_exec_discarded_clearbit =
456 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
457 static struct evcnt pmap_ev_exec_discarded_kremove =
458 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
459 #ifdef ARM_MMU_EXTENDED
460 static struct evcnt pmap_ev_exec_discarded_modfixup =
461 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
462 #endif
463
464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
470 #ifdef ARM_MMU_EXTENDED
471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
472 #endif
473 #endif /* PMAP_CACHE_VIPT */
474
475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
478
479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
482
483 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
484 #else
485 #define PMAPCOUNT(x) ((void)0)
486 #endif
487
488 /*
489 * pmap copy/zero page, and mem(5) hook point
490 */
491 static pt_entry_t *csrc_pte, *cdst_pte;
492 static vaddr_t csrcp, cdstp;
493 #ifdef MULTIPROCESSOR
494 static size_t cnptes;
495 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
496 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
497 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
498 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
499 #else
500 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
501 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
502 #define cpu_csrcp(o) (csrcp + (o))
503 #define cpu_cdstp(o) (cdstp + (o))
504 #endif
505 vaddr_t memhook; /* used by mem.c & others */
506 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
507 kmutex_t pmap_lock __cacheline_aligned;
508 extern void *msgbufaddr;
509 int pmap_kmpages;
510 /*
511 * Flag to indicate if pmap_init() has done its thing
512 */
513 bool pmap_initialized;
514
515 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
516 /*
517 * Virtual end of direct-mapped memory
518 */
519 vaddr_t pmap_directlimit;
520 #endif
521
522 /*
523 * Misc. locking data structures
524 */
525
526 static inline void
527 pmap_acquire_pmap_lock(pmap_t pm)
528 {
529 if (pm == pmap_kernel()) {
530 #ifdef MULTIPROCESSOR
531 KERNEL_LOCK(1, NULL);
532 #endif
533 } else {
534 mutex_enter(pm->pm_lock);
535 }
536 }
537
538 static inline void
539 pmap_release_pmap_lock(pmap_t pm)
540 {
541 if (pm == pmap_kernel()) {
542 #ifdef MULTIPROCESSOR
543 KERNEL_UNLOCK_ONE(NULL);
544 #endif
545 } else {
546 mutex_exit(pm->pm_lock);
547 }
548 }
549
550 static inline void
551 pmap_acquire_page_lock(struct vm_page_md *md)
552 {
553 mutex_enter(&pmap_lock);
554 }
555
556 static inline void
557 pmap_release_page_lock(struct vm_page_md *md)
558 {
559 mutex_exit(&pmap_lock);
560 }
561
562 #ifdef DIAGNOSTIC
563 static inline int
564 pmap_page_locked_p(struct vm_page_md *md)
565 {
566 return mutex_owned(&pmap_lock);
567 }
568 #endif
569
570
571 /*
572 * Metadata for L1 translation tables.
573 */
574 #ifndef ARM_MMU_EXTENDED
575 struct l1_ttable {
576 /* Entry on the L1 Table list */
577 SLIST_ENTRY(l1_ttable) l1_link;
578
579 /* Entry on the L1 Least Recently Used list */
580 TAILQ_ENTRY(l1_ttable) l1_lru;
581
582 /* Track how many domains are allocated from this L1 */
583 volatile u_int l1_domain_use_count;
584
585 /*
586 * A free-list of domain numbers for this L1.
587 * We avoid using ffs() and a bitmap to track domains since ffs()
588 * is slow on ARM.
589 */
590 uint8_t l1_domain_first;
591 uint8_t l1_domain_free[PMAP_DOMAINS];
592
593 /* Physical address of this L1 page table */
594 paddr_t l1_physaddr;
595
596 /* KVA of this L1 page table */
597 pd_entry_t *l1_kva;
598 };
599
600 /*
601 * L1 Page Tables are tracked using a Least Recently Used list.
602 * - New L1s are allocated from the HEAD.
603 * - Freed L1s are added to the TAIl.
604 * - Recently accessed L1s (where an 'access' is some change to one of
605 * the userland pmaps which owns this L1) are moved to the TAIL.
606 */
607 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
608 static kmutex_t l1_lru_lock __cacheline_aligned;
609
610 /*
611 * A list of all L1 tables
612 */
613 static SLIST_HEAD(, l1_ttable) l1_list;
614 #endif /* ARM_MMU_EXTENDED */
615
616 /*
617 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
618 *
619 * This is normally 16MB worth L2 page descriptors for any given pmap.
620 * Reference counts are maintained for L2 descriptors so they can be
621 * freed when empty.
622 */
623 struct l2_bucket {
624 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
625 paddr_t l2b_pa; /* Physical address of same */
626 u_short l2b_l1slot; /* This L2 table's L1 index */
627 u_short l2b_occupancy; /* How many active descriptors */
628 };
629
630 struct l2_dtable {
631 /* The number of L2 page descriptors allocated to this l2_dtable */
632 u_int l2_occupancy;
633
634 /* List of L2 page descriptors */
635 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
636 };
637
638 /*
639 * Given an L1 table index, calculate the corresponding l2_dtable index
640 * and bucket index within the l2_dtable.
641 */
642 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
643 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
644 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
645 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
646 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
647
648 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
649 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
650
651 /*
652 * Given a virtual address, this macro returns the
653 * virtual address required to drop into the next L2 bucket.
654 */
655 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
656
657 /*
658 * L2 allocation.
659 */
660 #define pmap_alloc_l2_dtable() \
661 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
662 #define pmap_free_l2_dtable(l2) \
663 pool_cache_put(&pmap_l2dtable_cache, (l2))
664 #define pmap_alloc_l2_ptp(pap) \
665 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
666 PR_NOWAIT, (pap)))
667
668 /*
669 * We try to map the page tables write-through, if possible. However, not
670 * all CPUs have a write-through cache mode, so on those we have to sync
671 * the cache when we frob page tables.
672 *
673 * We try to evaluate this at compile time, if possible. However, it's
674 * not always possible to do that, hence this run-time var.
675 */
676 int pmap_needs_pte_sync;
677
678 /*
679 * Real definition of pv_entry.
680 */
681 struct pv_entry {
682 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
683 pmap_t pv_pmap; /* pmap where mapping lies */
684 vaddr_t pv_va; /* virtual address for mapping */
685 u_int pv_flags; /* flags */
686 };
687
688 /*
689 * Macros to determine if a mapping might be resident in the
690 * instruction/data cache and/or TLB
691 */
692 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
693 /*
694 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
695 * there are no explicit accesses, so there may be always be TLB entries to
696 * flush. If we used ASIDs then this would not be a problem.
697 */
698 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
699 #define PV_BEEN_REFD(f) (true)
700 #else
701 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
702 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
703 #endif
704 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
705 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
706 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
707
708 /*
709 * Local prototypes
710 */
711 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
712 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
713 pt_entry_t **);
714 static bool pmap_is_current(pmap_t) __unused;
715 static bool pmap_is_cached(pmap_t);
716 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
717 pmap_t, vaddr_t, u_int);
718 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
719 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
720 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
721 u_int, u_int);
722
723 static void pmap_pinit(pmap_t);
724 static int pmap_pmap_ctor(void *, void *, int);
725
726 static void pmap_alloc_l1(pmap_t);
727 static void pmap_free_l1(pmap_t);
728 #ifndef ARM_MMU_EXTENDED
729 static void pmap_use_l1(pmap_t);
730 #endif
731
732 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
733 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
734 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
735 static int pmap_l2ptp_ctor(void *, void *, int);
736 static int pmap_l2dtable_ctor(void *, void *, int);
737
738 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
739 #ifdef PMAP_CACHE_VIVT
740 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
741 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
742 #endif
743
744 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
745 #ifdef PMAP_CACHE_VIVT
746 static bool pmap_clean_page(struct vm_page_md *, bool);
747 #endif
748 #ifdef PMAP_CACHE_VIPT
749 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
750 enum pmap_flush_op {
751 PMAP_FLUSH_PRIMARY,
752 PMAP_FLUSH_SECONDARY,
753 PMAP_CLEAN_PRIMARY
754 };
755 #ifndef ARM_MMU_EXTENDED
756 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
757 #endif
758 #endif
759 static void pmap_page_remove(struct vm_page_md *, paddr_t);
760 static void pmap_pv_remove(paddr_t);
761
762 #ifndef ARM_MMU_EXTENDED
763 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
764 #endif
765 static vaddr_t kernel_pt_lookup(paddr_t);
766
767
768 /*
769 * Misc variables
770 */
771 vaddr_t virtual_avail;
772 vaddr_t virtual_end;
773 vaddr_t pmap_curmaxkvaddr;
774
775 paddr_t avail_start;
776 paddr_t avail_end;
777
778 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
779 pv_addr_t kernelpages;
780 pv_addr_t kernel_l1pt;
781 pv_addr_t systempage;
782
783 /* Function to set the debug level of the pmap code */
784
785 #ifdef PMAP_DEBUG
786 void
787 pmap_debug(int level)
788 {
789 pmap_debug_level = level;
790 printf("pmap_debug: level=%d\n", pmap_debug_level);
791 }
792 #endif /* PMAP_DEBUG */
793
794 #ifdef PMAP_CACHE_VIPT
795 #define PMAP_VALIDATE_MD_PAGE(md) \
796 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
797 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
798 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
799 #endif /* PMAP_CACHE_VIPT */
800 /*
801 * A bunch of routines to conditionally flush the caches/TLB depending
802 * on whether the specified pmap actually needs to be flushed at any
803 * given time.
804 */
805 static inline void
806 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
807 {
808 #ifdef ARM_MMU_EXTENDED
809 pmap_tlb_invalidate_addr(pm, va);
810 #else
811 if (pm->pm_cstate.cs_tlb_id != 0) {
812 if (PV_BEEN_EXECD(flags)) {
813 cpu_tlb_flushID_SE(va);
814 } else if (PV_BEEN_REFD(flags)) {
815 cpu_tlb_flushD_SE(va);
816 }
817 }
818 #endif /* ARM_MMU_EXTENDED */
819 }
820
821 static inline void
822 pmap_tlb_flushID(pmap_t pm)
823 {
824 #ifdef ARM_MMU_EXTENDED
825 pmap_tlb_asid_release_all(pm);
826 #else
827 if (pm->pm_cstate.cs_tlb_id) {
828 cpu_tlb_flushID();
829 #if ARM_MMU_V7 == 0
830 /*
831 * Speculative loads by Cortex cores can cause TLB entries to
832 * be filled even if there are no explicit accesses, so there
833 * may be always be TLB entries to flush. If we used ASIDs
834 * then it would not be a problem.
835 * This is not true for other CPUs.
836 */
837 pm->pm_cstate.cs_tlb = 0;
838 #endif /* ARM_MMU_V7 */
839 }
840 #endif /* ARM_MMU_EXTENDED */
841 }
842
843 #ifndef ARM_MMU_EXTENDED
844 static inline void
845 pmap_tlb_flushD(pmap_t pm)
846 {
847 if (pm->pm_cstate.cs_tlb_d) {
848 cpu_tlb_flushD();
849 #if ARM_MMU_V7 == 0
850 /*
851 * Speculative loads by Cortex cores can cause TLB entries to
852 * be filled even if there are no explicit accesses, so there
853 * may be always be TLB entries to flush. If we used ASIDs
854 * then it would not be a problem.
855 * This is not true for other CPUs.
856 */
857 pm->pm_cstate.cs_tlb_d = 0;
858 #endif /* ARM_MMU_V7 */
859 }
860 }
861 #endif /* ARM_MMU_EXTENDED */
862
863 #ifdef PMAP_CACHE_VIVT
864 static inline void
865 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
866 {
867 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
868 cpu_idcache_wbinv_range(va, PAGE_SIZE);
869 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
870 if (do_inv) {
871 if (flags & PVF_WRITE)
872 cpu_dcache_wbinv_range(va, PAGE_SIZE);
873 else
874 cpu_dcache_inv_range(va, PAGE_SIZE);
875 } else if (flags & PVF_WRITE) {
876 cpu_dcache_wb_range(va, PAGE_SIZE);
877 }
878 }
879 }
880
881 static inline void
882 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
883 {
884 if (PV_BEEN_EXECD(flags)) {
885 if (pm->pm_cstate.cs_cache_id) {
886 cpu_idcache_wbinv_all();
887 pm->pm_cstate.cs_cache = 0;
888 }
889 } else if (pm->pm_cstate.cs_cache_d) {
890 cpu_dcache_wbinv_all();
891 pm->pm_cstate.cs_cache_d = 0;
892 }
893 }
894 #endif /* PMAP_CACHE_VIVT */
895
896 static inline uint8_t
897 pmap_domain(pmap_t pm)
898 {
899 #ifdef ARM_MMU_EXTENDED
900 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
901 #else
902 return pm->pm_domain;
903 #endif
904 }
905
906 static inline pd_entry_t *
907 pmap_l1_kva(pmap_t pm)
908 {
909 #ifdef ARM_MMU_EXTENDED
910 return pm->pm_l1;
911 #else
912 return pm->pm_l1->l1_kva;
913 #endif
914 }
915
916 static inline bool
917 pmap_is_current(pmap_t pm)
918 {
919 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
920 return true;
921
922 return false;
923 }
924
925 static inline bool
926 pmap_is_cached(pmap_t pm)
927 {
928 #ifdef ARM_MMU_EXTENDED
929 if (pm == pmap_kernel())
930 return true;
931 #ifdef MULTIPROCESSOR
932 // Is this pmap active on any CPU?
933 if (!kcpuset_iszero(pm->pm_active))
934 return true;
935 #else
936 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
937 // Is this pmap active?
938 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
939 return true;
940 #endif
941 #else
942 struct cpu_info * const ci = curcpu();
943 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
944 || ci->ci_pmap_lastuser == pm)
945 return true;
946 #endif /* ARM_MMU_EXTENDED */
947
948 return false;
949 }
950
951 /*
952 * PTE_SYNC_CURRENT:
953 *
954 * Make sure the pte is written out to RAM.
955 * We need to do this for one of two cases:
956 * - We're dealing with the kernel pmap
957 * - There is no pmap active in the cache/tlb.
958 * - The specified pmap is 'active' in the cache/tlb.
959 */
960
961 static inline void
962 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
963 {
964 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
965 PTE_SYNC(ptep);
966 arm_dsb();
967 }
968
969 #ifdef PMAP_INCLUDE_PTE_SYNC
970 #define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
971 #else
972 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
973 #endif
974
975 /*
976 * main pv_entry manipulation functions:
977 * pmap_enter_pv: enter a mapping onto a vm_page list
978 * pmap_remove_pv: remove a mapping from a vm_page list
979 *
980 * NOTE: pmap_enter_pv expects to lock the pvh itself
981 * pmap_remove_pv expects the caller to lock the pvh before calling
982 */
983
984 /*
985 * pmap_enter_pv: enter a mapping onto a vm_page lst
986 *
987 * => caller should hold the proper lock on pmap_main_lock
988 * => caller should have pmap locked
989 * => we will gain the lock on the vm_page and allocate the new pv_entry
990 * => caller should adjust ptp's wire_count before calling
991 * => caller should not adjust pmap's wire_count
992 */
993 static void
994 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
995 vaddr_t va, u_int flags)
996 {
997 struct pv_entry **pvp;
998
999 NPDEBUG(PDB_PVDUMP,
1000 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
1001
1002 pv->pv_pmap = pm;
1003 pv->pv_va = va;
1004 pv->pv_flags = flags;
1005
1006 pvp = &SLIST_FIRST(&md->pvh_list);
1007 #ifdef PMAP_CACHE_VIPT
1008 /*
1009 * Insert unmanaged entries, writeable first, at the head of
1010 * the pv list.
1011 */
1012 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1013 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1014 pvp = &SLIST_NEXT(*pvp, pv_link);
1015 }
1016 if (!PV_IS_WRITE_P(flags)) {
1017 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1018 pvp = &SLIST_NEXT(*pvp, pv_link);
1019 }
1020 #endif
1021 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1022 *pvp = pv; /* ... locked list */
1023 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1024 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1025 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1026 md->pvh_attrs |= PVF_KMOD;
1027 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1028 md->pvh_attrs |= PVF_DIRTY;
1029 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1030 #endif
1031 if (pm == pmap_kernel()) {
1032 PMAPCOUNT(kernel_mappings);
1033 if (flags & PVF_WRITE)
1034 md->krw_mappings++;
1035 else
1036 md->kro_mappings++;
1037 } else {
1038 if (flags & PVF_WRITE)
1039 md->urw_mappings++;
1040 else
1041 md->uro_mappings++;
1042 }
1043
1044 #ifdef PMAP_CACHE_VIPT
1045 #ifndef ARM_MMU_EXTENDED
1046 /*
1047 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1048 * do it here as well to keep the mappings & KVF_WRITE consistent.
1049 */
1050 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1051 md->pvh_attrs |= PVF_WRITE;
1052 }
1053 #endif
1054 /*
1055 * If this is an exec mapping and its the first exec mapping
1056 * for this page, make sure to sync the I-cache.
1057 */
1058 if (PV_IS_EXEC_P(flags)) {
1059 #ifndef ARM_MMU_EXTENDED
1060 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1061 pmap_syncicache_page(md, pa);
1062 PMAPCOUNT(exec_synced_map);
1063 }
1064 #endif
1065 PMAPCOUNT(exec_mappings);
1066 }
1067 #endif
1068
1069 PMAPCOUNT(mappings);
1070
1071 if (pv->pv_flags & PVF_WIRED)
1072 ++pm->pm_stats.wired_count;
1073 }
1074
1075 /*
1076 *
1077 * pmap_find_pv: Find a pv entry
1078 *
1079 * => caller should hold lock on vm_page
1080 */
1081 static inline struct pv_entry *
1082 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1083 {
1084 struct pv_entry *pv;
1085
1086 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1087 if (pm == pv->pv_pmap && va == pv->pv_va)
1088 break;
1089 }
1090
1091 return (pv);
1092 }
1093
1094 /*
1095 * pmap_remove_pv: try to remove a mapping from a pv_list
1096 *
1097 * => caller should hold proper lock on pmap_main_lock
1098 * => pmap should be locked
1099 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1100 * => caller should adjust ptp's wire_count and free PTP if needed
1101 * => caller should NOT adjust pmap's wire_count
1102 * => we return the removed pv
1103 */
1104 static struct pv_entry *
1105 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1106 {
1107 struct pv_entry *pv, **prevptr;
1108
1109 NPDEBUG(PDB_PVDUMP,
1110 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1111
1112 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1113 pv = *prevptr;
1114
1115 while (pv) {
1116 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1117 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1118 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1119 if (pv->pv_flags & PVF_WIRED) {
1120 --pm->pm_stats.wired_count;
1121 }
1122 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1123 if (pm == pmap_kernel()) {
1124 PMAPCOUNT(kernel_unmappings);
1125 if (pv->pv_flags & PVF_WRITE)
1126 md->krw_mappings--;
1127 else
1128 md->kro_mappings--;
1129 } else {
1130 if (pv->pv_flags & PVF_WRITE)
1131 md->urw_mappings--;
1132 else
1133 md->uro_mappings--;
1134 }
1135
1136 PMAPCOUNT(unmappings);
1137 #ifdef PMAP_CACHE_VIPT
1138 if (!(pv->pv_flags & PVF_WRITE))
1139 break;
1140 /*
1141 * If this page has had an exec mapping, then if
1142 * this was the last mapping, discard the contents,
1143 * otherwise sync the i-cache for this page.
1144 */
1145 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1146 #ifdef ARM_MMU_EXTENDED
1147 md->pvh_attrs &= ~PVF_EXEC;
1148 PMAPCOUNT(exec_discarded_unmap);
1149 #else
1150 if (SLIST_EMPTY(&md->pvh_list)) {
1151 md->pvh_attrs &= ~PVF_EXEC;
1152 PMAPCOUNT(exec_discarded_unmap);
1153 } else {
1154 pmap_syncicache_page(md, pa);
1155 PMAPCOUNT(exec_synced_unmap);
1156 }
1157 #endif /* ARM_MMU_EXTENDED */
1158 }
1159 #endif /* PMAP_CACHE_VIPT */
1160 break;
1161 }
1162 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1163 pv = *prevptr; /* advance */
1164 }
1165
1166 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1167 /*
1168 * If we no longer have a WRITEABLE KENTRY at the head of list,
1169 * clear the KMOD attribute from the page.
1170 */
1171 if (SLIST_FIRST(&md->pvh_list) == NULL
1172 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1173 md->pvh_attrs &= ~PVF_KMOD;
1174
1175 /*
1176 * If this was a writeable page and there are no more writeable
1177 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1178 * the contents to memory.
1179 */
1180 if (arm_cache_prefer_mask != 0) {
1181 if (md->krw_mappings + md->urw_mappings == 0)
1182 md->pvh_attrs &= ~PVF_WRITE;
1183 PMAP_VALIDATE_MD_PAGE(md);
1184 }
1185 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1186 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1187
1188 return(pv); /* return removed pv */
1189 }
1190
1191 /*
1192 *
1193 * pmap_modify_pv: Update pv flags
1194 *
1195 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1196 * => caller should NOT adjust pmap's wire_count
1197 * => caller must call pmap_vac_me_harder() if writable status of a page
1198 * may have changed.
1199 * => we return the old flags
1200 *
1201 * Modify a physical-virtual mapping in the pv table
1202 */
1203 static u_int
1204 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1205 u_int clr_mask, u_int set_mask)
1206 {
1207 struct pv_entry *npv;
1208 u_int flags, oflags;
1209
1210 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1211 KASSERT(!PV_IS_KENTRY_P(set_mask));
1212
1213 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1214 return (0);
1215
1216 NPDEBUG(PDB_PVDUMP,
1217 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1218
1219 /*
1220 * There is at least one VA mapping this page.
1221 */
1222
1223 if (clr_mask & (PVF_REF | PVF_MOD)) {
1224 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1225 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1226 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1227 md->pvh_attrs |= PVF_DIRTY;
1228 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1229 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1230 }
1231
1232 oflags = npv->pv_flags;
1233 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1234
1235 if ((flags ^ oflags) & PVF_WIRED) {
1236 if (flags & PVF_WIRED)
1237 ++pm->pm_stats.wired_count;
1238 else
1239 --pm->pm_stats.wired_count;
1240 }
1241
1242 if ((flags ^ oflags) & PVF_WRITE) {
1243 if (pm == pmap_kernel()) {
1244 if (flags & PVF_WRITE) {
1245 md->krw_mappings++;
1246 md->kro_mappings--;
1247 } else {
1248 md->kro_mappings++;
1249 md->krw_mappings--;
1250 }
1251 } else {
1252 if (flags & PVF_WRITE) {
1253 md->urw_mappings++;
1254 md->uro_mappings--;
1255 } else {
1256 md->uro_mappings++;
1257 md->urw_mappings--;
1258 }
1259 }
1260 }
1261 #ifdef PMAP_CACHE_VIPT
1262 if (arm_cache_prefer_mask != 0) {
1263 if (md->urw_mappings + md->krw_mappings == 0) {
1264 md->pvh_attrs &= ~PVF_WRITE;
1265 } else {
1266 md->pvh_attrs |= PVF_WRITE;
1267 }
1268 }
1269 #ifndef ARM_MMU_EXTENDED
1270 /*
1271 * We have two cases here: the first is from enter_pv (new exec
1272 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1273 * Since in latter, pmap_enter_pv won't do anything, we just have
1274 * to do what pmap_remove_pv would do.
1275 */
1276 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1277 || (PV_IS_EXEC_P(md->pvh_attrs)
1278 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1279 pmap_syncicache_page(md, pa);
1280 PMAPCOUNT(exec_synced_remap);
1281 }
1282 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1283 #endif /* !ARM_MMU_EXTENDED */
1284 #endif /* PMAP_CACHE_VIPT */
1285
1286 PMAPCOUNT(remappings);
1287
1288 return (oflags);
1289 }
1290
1291 /*
1292 * Allocate an L1 translation table for the specified pmap.
1293 * This is called at pmap creation time.
1294 */
1295 static void
1296 pmap_alloc_l1(pmap_t pm)
1297 {
1298 #ifdef ARM_MMU_EXTENDED
1299 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1300 struct vm_page *pg;
1301 bool ok __diagused;
1302 for (;;) {
1303 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1304 pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1305 #else
1306 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1307 #endif
1308 if (pg != NULL)
1309 break;
1310 uvm_wait("pmapl1alloc");
1311 }
1312 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1313 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1314 KASSERT(ok);
1315 KASSERT(va >= KERNEL_BASE);
1316
1317 #else
1318 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1319 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1320 UVM_KMF_WIRED|UVM_KMF_ZERO);
1321 KASSERT(va);
1322 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1323 #endif
1324 pm->pm_l1 = (pd_entry_t *)va;
1325 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1326 #else
1327 struct l1_ttable *l1;
1328 uint8_t domain;
1329
1330 /*
1331 * Remove the L1 at the head of the LRU list
1332 */
1333 mutex_spin_enter(&l1_lru_lock);
1334 l1 = TAILQ_FIRST(&l1_lru_list);
1335 KDASSERT(l1 != NULL);
1336 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1337
1338 /*
1339 * Pick the first available domain number, and update
1340 * the link to the next number.
1341 */
1342 domain = l1->l1_domain_first;
1343 l1->l1_domain_first = l1->l1_domain_free[domain];
1344
1345 /*
1346 * If there are still free domain numbers in this L1,
1347 * put it back on the TAIL of the LRU list.
1348 */
1349 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1350 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1351
1352 mutex_spin_exit(&l1_lru_lock);
1353
1354 /*
1355 * Fix up the relevant bits in the pmap structure
1356 */
1357 pm->pm_l1 = l1;
1358 pm->pm_domain = domain + 1;
1359 #endif
1360 }
1361
1362 /*
1363 * Free an L1 translation table.
1364 * This is called at pmap destruction time.
1365 */
1366 static void
1367 pmap_free_l1(pmap_t pm)
1368 {
1369 #ifdef ARM_MMU_EXTENDED
1370 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1371 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1372 uvm_pagefree(pg);
1373 #else
1374 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1375 #endif
1376 pm->pm_l1 = NULL;
1377 pm->pm_l1_pa = 0;
1378 #else
1379 struct l1_ttable *l1 = pm->pm_l1;
1380
1381 mutex_spin_enter(&l1_lru_lock);
1382
1383 /*
1384 * If this L1 is currently on the LRU list, remove it.
1385 */
1386 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1387 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1388
1389 /*
1390 * Free up the domain number which was allocated to the pmap
1391 */
1392 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1393 l1->l1_domain_first = pmap_domain(pm) - 1;
1394 l1->l1_domain_use_count--;
1395
1396 /*
1397 * The L1 now must have at least 1 free domain, so add
1398 * it back to the LRU list. If the use count is zero,
1399 * put it at the head of the list, otherwise it goes
1400 * to the tail.
1401 */
1402 if (l1->l1_domain_use_count == 0)
1403 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1404 else
1405 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1406
1407 mutex_spin_exit(&l1_lru_lock);
1408 #endif /* ARM_MMU_EXTENDED */
1409 }
1410
1411 #ifndef ARM_MMU_EXTENDED
1412 static inline void
1413 pmap_use_l1(pmap_t pm)
1414 {
1415 struct l1_ttable *l1;
1416
1417 /*
1418 * Do nothing if we're in interrupt context.
1419 * Access to an L1 by the kernel pmap must not affect
1420 * the LRU list.
1421 */
1422 if (cpu_intr_p() || pm == pmap_kernel())
1423 return;
1424
1425 l1 = pm->pm_l1;
1426
1427 /*
1428 * If the L1 is not currently on the LRU list, just return
1429 */
1430 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1431 return;
1432
1433 mutex_spin_enter(&l1_lru_lock);
1434
1435 /*
1436 * Check the use count again, now that we've acquired the lock
1437 */
1438 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1439 mutex_spin_exit(&l1_lru_lock);
1440 return;
1441 }
1442
1443 /*
1444 * Move the L1 to the back of the LRU list
1445 */
1446 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1447 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1448
1449 mutex_spin_exit(&l1_lru_lock);
1450 }
1451 #endif /* !ARM_MMU_EXTENDED */
1452
1453 /*
1454 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1455 *
1456 * Free an L2 descriptor table.
1457 */
1458 static inline void
1459 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1460 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1461 #else
1462 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1463 #endif
1464 {
1465 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1466 /*
1467 * Note: With a write-back cache, we may need to sync this
1468 * L2 table before re-using it.
1469 * This is because it may have belonged to a non-current
1470 * pmap, in which case the cache syncs would have been
1471 * skipped for the pages that were being unmapped. If the
1472 * L2 table were then to be immediately re-allocated to
1473 * the *current* pmap, it may well contain stale mappings
1474 * which have not yet been cleared by a cache write-back
1475 * and so would still be visible to the mmu.
1476 */
1477 if (need_sync)
1478 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1479 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1480 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1481 }
1482
1483 /*
1484 * Returns a pointer to the L2 bucket associated with the specified pmap
1485 * and VA, or NULL if no L2 bucket exists for the address.
1486 */
1487 static inline struct l2_bucket *
1488 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1489 {
1490 const size_t l1slot = l1pte_index(va);
1491 struct l2_dtable *l2;
1492 struct l2_bucket *l2b;
1493
1494 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1495 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1496 return (NULL);
1497
1498 return (l2b);
1499 }
1500
1501 /*
1502 * Returns a pointer to the L2 bucket associated with the specified pmap
1503 * and VA.
1504 *
1505 * If no L2 bucket exists, perform the necessary allocations to put an L2
1506 * bucket/page table in place.
1507 *
1508 * Note that if a new L2 bucket/page was allocated, the caller *must*
1509 * increment the bucket occupancy counter appropriately *before*
1510 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1511 * the bucket/page in the meantime.
1512 */
1513 static struct l2_bucket *
1514 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1515 {
1516 const size_t l1slot = l1pte_index(va);
1517 struct l2_dtable *l2;
1518
1519 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1520 /*
1521 * No mapping at this address, as there is
1522 * no entry in the L1 table.
1523 * Need to allocate a new l2_dtable.
1524 */
1525 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1526 return (NULL);
1527
1528 /*
1529 * Link it into the parent pmap
1530 */
1531 pm->pm_l2[L2_IDX(l1slot)] = l2;
1532 }
1533
1534 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1535
1536 /*
1537 * Fetch pointer to the L2 page table associated with the address.
1538 */
1539 if (l2b->l2b_kva == NULL) {
1540 pt_entry_t *ptep;
1541
1542 /*
1543 * No L2 page table has been allocated. Chances are, this
1544 * is because we just allocated the l2_dtable, above.
1545 */
1546 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1547 /*
1548 * Oops, no more L2 page tables available at this
1549 * time. We may need to deallocate the l2_dtable
1550 * if we allocated a new one above.
1551 */
1552 if (l2->l2_occupancy == 0) {
1553 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1554 pmap_free_l2_dtable(l2);
1555 }
1556 return (NULL);
1557 }
1558
1559 l2->l2_occupancy++;
1560 l2b->l2b_kva = ptep;
1561 l2b->l2b_l1slot = l1slot;
1562
1563 #ifdef ARM_MMU_EXTENDED
1564 /*
1565 * We know there will be a mapping here, so simply
1566 * enter this PTP into the L1 now.
1567 */
1568 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1569 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1570 | L1_C_DOM(pmap_domain(pm));
1571 KASSERT(*pdep == 0);
1572 l1pte_setone(pdep, npde);
1573 PDE_SYNC(pdep);
1574 #endif
1575 }
1576
1577 return (l2b);
1578 }
1579
1580 /*
1581 * One or more mappings in the specified L2 descriptor table have just been
1582 * invalidated.
1583 *
1584 * Garbage collect the metadata and descriptor table itself if necessary.
1585 *
1586 * The pmap lock must be acquired when this is called (not necessary
1587 * for the kernel pmap).
1588 */
1589 static void
1590 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1591 {
1592 KDASSERT(count <= l2b->l2b_occupancy);
1593
1594 /*
1595 * Update the bucket's reference count according to how many
1596 * PTEs the caller has just invalidated.
1597 */
1598 l2b->l2b_occupancy -= count;
1599
1600 /*
1601 * Note:
1602 *
1603 * Level 2 page tables allocated to the kernel pmap are never freed
1604 * as that would require checking all Level 1 page tables and
1605 * removing any references to the Level 2 page table. See also the
1606 * comment elsewhere about never freeing bootstrap L2 descriptors.
1607 *
1608 * We make do with just invalidating the mapping in the L2 table.
1609 *
1610 * This isn't really a big deal in practice and, in fact, leads
1611 * to a performance win over time as we don't need to continually
1612 * alloc/free.
1613 */
1614 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1615 return;
1616
1617 /*
1618 * There are no more valid mappings in this level 2 page table.
1619 * Go ahead and NULL-out the pointer in the bucket, then
1620 * free the page table.
1621 */
1622 const size_t l1slot = l2b->l2b_l1slot;
1623 pt_entry_t * const ptep = l2b->l2b_kva;
1624 l2b->l2b_kva = NULL;
1625
1626 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1627 pd_entry_t pde __diagused = *pdep;
1628
1629 #ifdef ARM_MMU_EXTENDED
1630 /*
1631 * Invalidate the L1 slot.
1632 */
1633 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1634 #else
1635 /*
1636 * If the L1 slot matches the pmap's domain number, then invalidate it.
1637 */
1638 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1639 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1640 #endif
1641 l1pte_setone(pdep, 0);
1642 PDE_SYNC(pdep);
1643 #ifndef ARM_MMU_EXTENDED
1644 }
1645 #endif
1646
1647 /*
1648 * Release the L2 descriptor table back to the pool cache.
1649 */
1650 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1651 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1652 #else
1653 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1654 #endif
1655
1656 /*
1657 * Update the reference count in the associated l2_dtable
1658 */
1659 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1660 if (--l2->l2_occupancy > 0)
1661 return;
1662
1663 /*
1664 * There are no more valid mappings in any of the Level 1
1665 * slots managed by this l2_dtable. Go ahead and NULL-out
1666 * the pointer in the parent pmap and free the l2_dtable.
1667 */
1668 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1669 pmap_free_l2_dtable(l2);
1670 }
1671
1672 /*
1673 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1674 * structures.
1675 */
1676 static int
1677 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1678 {
1679 #ifndef PMAP_INCLUDE_PTE_SYNC
1680 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1681
1682 /*
1683 * The mappings for these page tables were initially made using
1684 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1685 * mode will not be right for page table mappings. To avoid
1686 * polluting the pmap_kenter_pa() code with a special case for
1687 * page tables, we simply fix up the cache-mode here if it's not
1688 * correct.
1689 */
1690 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1691 const struct l2_bucket * const l2b =
1692 pmap_get_l2_bucket(pmap_kernel(), va);
1693 KASSERTMSG(l2b != NULL, "%#lx", va);
1694 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1695 const pt_entry_t opte = *ptep;
1696
1697 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1698 /*
1699 * Page tables must have the cache-mode set correctly.
1700 */
1701 const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
1702 | pte_l2_s_cache_mode_pt;
1703 l2pte_set(ptep, npte, opte);
1704 PTE_SYNC(ptep);
1705 cpu_tlb_flushD_SE(va);
1706 cpu_cpwait();
1707 }
1708 }
1709 #endif
1710
1711 memset(v, 0, L2_TABLE_SIZE_REAL);
1712 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1713 return (0);
1714 }
1715
1716 static int
1717 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1718 {
1719
1720 memset(v, 0, sizeof(struct l2_dtable));
1721 return (0);
1722 }
1723
1724 static int
1725 pmap_pmap_ctor(void *arg, void *v, int flags)
1726 {
1727
1728 memset(v, 0, sizeof(struct pmap));
1729 return (0);
1730 }
1731
1732 static void
1733 pmap_pinit(pmap_t pm)
1734 {
1735 #ifndef ARM_HAS_VBAR
1736 struct l2_bucket *l2b;
1737
1738 if (vector_page < KERNEL_BASE) {
1739 /*
1740 * Map the vector page.
1741 */
1742 pmap_enter(pm, vector_page, systempage.pv_pa,
1743 VM_PROT_READ | VM_PROT_EXECUTE,
1744 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1745 pmap_update(pm);
1746
1747 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1748 l2b = pmap_get_l2_bucket(pm, vector_page);
1749 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1750 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1751 L1_C_DOM(pmap_domain(pm));
1752 } else
1753 pm->pm_pl1vec = NULL;
1754 #endif
1755 }
1756
1757 #ifdef PMAP_CACHE_VIVT
1758 /*
1759 * Since we have a virtually indexed cache, we may need to inhibit caching if
1760 * there is more than one mapping and at least one of them is writable.
1761 * Since we purge the cache on every context switch, we only need to check for
1762 * other mappings within the same pmap, or kernel_pmap.
1763 * This function is also called when a page is unmapped, to possibly reenable
1764 * caching on any remaining mappings.
1765 *
1766 * The code implements the following logic, where:
1767 *
1768 * KW = # of kernel read/write pages
1769 * KR = # of kernel read only pages
1770 * UW = # of user read/write pages
1771 * UR = # of user read only pages
1772 *
1773 * KC = kernel mapping is cacheable
1774 * UC = user mapping is cacheable
1775 *
1776 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1777 * +---------------------------------------------
1778 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1779 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1780 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1781 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1782 */
1783
1784 static const int pmap_vac_flags[4][4] = {
1785 {-1, 0, 0, PVF_KNC},
1786 {0, 0, PVF_NC, PVF_NC},
1787 {0, PVF_NC, PVF_NC, PVF_NC},
1788 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1789 };
1790
1791 static inline int
1792 pmap_get_vac_flags(const struct vm_page_md *md)
1793 {
1794 int kidx, uidx;
1795
1796 kidx = 0;
1797 if (md->kro_mappings || md->krw_mappings > 1)
1798 kidx |= 1;
1799 if (md->krw_mappings)
1800 kidx |= 2;
1801
1802 uidx = 0;
1803 if (md->uro_mappings || md->urw_mappings > 1)
1804 uidx |= 1;
1805 if (md->urw_mappings)
1806 uidx |= 2;
1807
1808 return (pmap_vac_flags[uidx][kidx]);
1809 }
1810
1811 static inline void
1812 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1813 {
1814 int nattr;
1815
1816 nattr = pmap_get_vac_flags(md);
1817
1818 if (nattr < 0) {
1819 md->pvh_attrs &= ~PVF_NC;
1820 return;
1821 }
1822
1823 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1824 return;
1825
1826 if (pm == pmap_kernel())
1827 pmap_vac_me_kpmap(md, pa, pm, va);
1828 else
1829 pmap_vac_me_user(md, pa, pm, va);
1830
1831 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1832 }
1833
1834 static void
1835 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1836 {
1837 u_int u_cacheable, u_entries;
1838 struct pv_entry *pv;
1839 pmap_t last_pmap = pm;
1840
1841 /*
1842 * Pass one, see if there are both kernel and user pmaps for
1843 * this page. Calculate whether there are user-writable or
1844 * kernel-writable pages.
1845 */
1846 u_cacheable = 0;
1847 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1848 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1849 u_cacheable++;
1850 }
1851
1852 u_entries = md->urw_mappings + md->uro_mappings;
1853
1854 /*
1855 * We know we have just been updating a kernel entry, so if
1856 * all user pages are already cacheable, then there is nothing
1857 * further to do.
1858 */
1859 if (md->k_mappings == 0 && u_cacheable == u_entries)
1860 return;
1861
1862 if (u_entries) {
1863 /*
1864 * Scan over the list again, for each entry, if it
1865 * might not be set correctly, call pmap_vac_me_user
1866 * to recalculate the settings.
1867 */
1868 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1869 /*
1870 * We know kernel mappings will get set
1871 * correctly in other calls. We also know
1872 * that if the pmap is the same as last_pmap
1873 * then we've just handled this entry.
1874 */
1875 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1876 continue;
1877
1878 /*
1879 * If there are kernel entries and this page
1880 * is writable but non-cacheable, then we can
1881 * skip this entry also.
1882 */
1883 if (md->k_mappings &&
1884 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1885 (PVF_NC | PVF_WRITE))
1886 continue;
1887
1888 /*
1889 * Similarly if there are no kernel-writable
1890 * entries and the page is already
1891 * read-only/cacheable.
1892 */
1893 if (md->krw_mappings == 0 &&
1894 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1895 continue;
1896
1897 /*
1898 * For some of the remaining cases, we know
1899 * that we must recalculate, but for others we
1900 * can't tell if they are correct or not, so
1901 * we recalculate anyway.
1902 */
1903 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1904 }
1905
1906 if (md->k_mappings == 0)
1907 return;
1908 }
1909
1910 pmap_vac_me_user(md, pa, pm, va);
1911 }
1912
1913 static void
1914 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1915 {
1916 pmap_t kpmap = pmap_kernel();
1917 struct pv_entry *pv, *npv = NULL;
1918 u_int entries = 0;
1919 u_int writable = 0;
1920 u_int cacheable_entries = 0;
1921 u_int kern_cacheable = 0;
1922 u_int other_writable = 0;
1923
1924 /*
1925 * Count mappings and writable mappings in this pmap.
1926 * Include kernel mappings as part of our own.
1927 * Keep a pointer to the first one.
1928 */
1929 npv = NULL;
1930 KASSERT(pmap_page_locked_p(md));
1931 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1932 /* Count mappings in the same pmap */
1933 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1934 if (entries++ == 0)
1935 npv = pv;
1936
1937 /* Cacheable mappings */
1938 if ((pv->pv_flags & PVF_NC) == 0) {
1939 cacheable_entries++;
1940 if (kpmap == pv->pv_pmap)
1941 kern_cacheable++;
1942 }
1943
1944 /* Writable mappings */
1945 if (pv->pv_flags & PVF_WRITE)
1946 ++writable;
1947 } else
1948 if (pv->pv_flags & PVF_WRITE)
1949 other_writable = 1;
1950 }
1951
1952 /*
1953 * Enable or disable caching as necessary.
1954 * Note: the first entry might be part of the kernel pmap,
1955 * so we can't assume this is indicative of the state of the
1956 * other (maybe non-kpmap) entries.
1957 */
1958 if ((entries > 1 && writable) ||
1959 (entries > 0 && pm == kpmap && other_writable)) {
1960 if (cacheable_entries == 0) {
1961 return;
1962 }
1963
1964 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1965 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1966 (pv->pv_flags & PVF_NC))
1967 continue;
1968
1969 pv->pv_flags |= PVF_NC;
1970
1971 struct l2_bucket * const l2b
1972 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1973 KASSERTMSG(l2b != NULL, "%#lx", va);
1974 pt_entry_t * const ptep
1975 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1976 const pt_entry_t opte = *ptep;
1977 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1978
1979 if ((va != pv->pv_va || pm != pv->pv_pmap)
1980 && l2pte_valid_p(npte)) {
1981 #ifdef PMAP_CACHE_VIVT
1982 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1983 true, pv->pv_flags);
1984 #endif
1985 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1986 pv->pv_flags);
1987 }
1988
1989 l2pte_set(ptep, npte, opte);
1990 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1991 }
1992 cpu_cpwait();
1993 } else
1994 if (entries > cacheable_entries) {
1995 /*
1996 * Turn cacheing back on for some pages. If it is a kernel
1997 * page, only do so if there are no other writable pages.
1998 */
1999 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
2000 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
2001 (kpmap != pv->pv_pmap || other_writable)))
2002 continue;
2003
2004 pv->pv_flags &= ~PVF_NC;
2005
2006 struct l2_bucket * const l2b
2007 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2008 KASSERTMSG(l2b != NULL, "%#lx", va);
2009 pt_entry_t * const ptep
2010 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2011 const pt_entry_t opte = *ptep;
2012 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2013 | pte_l2_s_cache_mode;
2014
2015 if (l2pte_valid_p(opte)) {
2016 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2017 pv->pv_flags);
2018 }
2019
2020 l2pte_set(ptep, npte, opte);
2021 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2022 }
2023 }
2024 }
2025 #endif
2026
2027 #ifdef PMAP_CACHE_VIPT
2028 static void
2029 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2030 {
2031 #ifndef ARM_MMU_EXTENDED
2032 struct pv_entry *pv;
2033 vaddr_t tst_mask;
2034 bool bad_alias;
2035 const u_int
2036 rw_mappings = md->urw_mappings + md->krw_mappings,
2037 ro_mappings = md->uro_mappings + md->kro_mappings;
2038
2039 /* do we need to do anything? */
2040 if (arm_cache_prefer_mask == 0)
2041 return;
2042
2043 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2044 md, pm, va));
2045
2046 KASSERT(!va || pm);
2047 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2048
2049 /* Already a conflict? */
2050 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2051 /* just an add, things are already non-cached */
2052 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2053 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2054 bad_alias = false;
2055 if (va) {
2056 PMAPCOUNT(vac_color_none);
2057 bad_alias = true;
2058 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2059 goto fixup;
2060 }
2061 pv = SLIST_FIRST(&md->pvh_list);
2062 /* the list can't be empty because it would be cachable */
2063 if (md->pvh_attrs & PVF_KMPAGE) {
2064 tst_mask = md->pvh_attrs;
2065 } else {
2066 KASSERT(pv);
2067 tst_mask = pv->pv_va;
2068 pv = SLIST_NEXT(pv, pv_link);
2069 }
2070 /*
2071 * Only check for a bad alias if we have writable mappings.
2072 */
2073 tst_mask &= arm_cache_prefer_mask;
2074 if (rw_mappings > 0) {
2075 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2076 /* if there's a bad alias, stop checking. */
2077 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2078 bad_alias = true;
2079 }
2080 md->pvh_attrs |= PVF_WRITE;
2081 if (!bad_alias)
2082 md->pvh_attrs |= PVF_DIRTY;
2083 } else {
2084 /*
2085 * We have only read-only mappings. Let's see if there
2086 * are multiple colors in use or if we mapped a KMPAGE.
2087 * If the latter, we have a bad alias. If the former,
2088 * we need to remember that.
2089 */
2090 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2091 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2092 if (md->pvh_attrs & PVF_KMPAGE)
2093 bad_alias = true;
2094 break;
2095 }
2096 }
2097 md->pvh_attrs &= ~PVF_WRITE;
2098 /*
2099 * No KMPAGE and we exited early, so we must have
2100 * multiple color mappings.
2101 */
2102 if (!bad_alias && pv != NULL)
2103 md->pvh_attrs |= PVF_MULTCLR;
2104 }
2105
2106 /* If no conflicting colors, set everything back to cached */
2107 if (!bad_alias) {
2108 #ifdef DEBUG
2109 if ((md->pvh_attrs & PVF_WRITE)
2110 || ro_mappings < 2) {
2111 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2112 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2113 }
2114 #endif
2115 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2116 md->pvh_attrs |= tst_mask | PVF_COLORED;
2117 /*
2118 * Restore DIRTY bit if page is modified
2119 */
2120 if (md->pvh_attrs & PVF_DMOD)
2121 md->pvh_attrs |= PVF_DIRTY;
2122 PMAPCOUNT(vac_color_restore);
2123 } else {
2124 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2125 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2126 }
2127 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2128 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2129 } else if (!va) {
2130 KASSERT(pmap_is_page_colored_p(md));
2131 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2132 || (md->pvh_attrs & PVF_DIRTY));
2133 if (rw_mappings == 0) {
2134 md->pvh_attrs &= ~PVF_WRITE;
2135 if (ro_mappings == 1
2136 && (md->pvh_attrs & PVF_MULTCLR)) {
2137 /*
2138 * If this is the last readonly mapping
2139 * but it doesn't match the current color
2140 * for the page, change the current color
2141 * to match this last readonly mapping.
2142 */
2143 pv = SLIST_FIRST(&md->pvh_list);
2144 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2145 & arm_cache_prefer_mask;
2146 if (tst_mask) {
2147 md->pvh_attrs ^= tst_mask;
2148 PMAPCOUNT(vac_color_change);
2149 }
2150 }
2151 }
2152 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2153 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2154 return;
2155 } else if (!pmap_is_page_colored_p(md)) {
2156 /* not colored so we just use its color */
2157 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2158 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2159 PMAPCOUNT(vac_color_new);
2160 md->pvh_attrs &= PAGE_SIZE - 1;
2161 md->pvh_attrs |= PVF_COLORED
2162 | (va & arm_cache_prefer_mask)
2163 | (rw_mappings > 0 ? PVF_WRITE : 0);
2164 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2165 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2166 return;
2167 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2168 bad_alias = false;
2169 if (rw_mappings > 0) {
2170 /*
2171 * We now have writeable mappings and if we have
2172 * readonly mappings in more than once color, we have
2173 * an aliasing problem. Regardless mark the page as
2174 * writeable.
2175 */
2176 if (md->pvh_attrs & PVF_MULTCLR) {
2177 if (ro_mappings < 2) {
2178 /*
2179 * If we only have less than two
2180 * read-only mappings, just flush the
2181 * non-primary colors from the cache.
2182 */
2183 pmap_flush_page(md, pa,
2184 PMAP_FLUSH_SECONDARY);
2185 } else {
2186 bad_alias = true;
2187 }
2188 }
2189 md->pvh_attrs |= PVF_WRITE;
2190 }
2191 /* If no conflicting colors, set everything back to cached */
2192 if (!bad_alias) {
2193 #ifdef DEBUG
2194 if (rw_mappings > 0
2195 || (md->pvh_attrs & PMAP_KMPAGE)) {
2196 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2197 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2198 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2199 }
2200 #endif
2201 if (SLIST_EMPTY(&md->pvh_list))
2202 PMAPCOUNT(vac_color_reuse);
2203 else
2204 PMAPCOUNT(vac_color_ok);
2205
2206 /* matching color, just return */
2207 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2208 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2209 return;
2210 }
2211 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2212 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2213
2214 /* color conflict. evict from cache. */
2215
2216 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2217 md->pvh_attrs &= ~PVF_COLORED;
2218 md->pvh_attrs |= PVF_NC;
2219 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2220 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2221 PMAPCOUNT(vac_color_erase);
2222 } else if (rw_mappings == 0
2223 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2224 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2225
2226 /*
2227 * If the page has dirty cache lines, clean it.
2228 */
2229 if (md->pvh_attrs & PVF_DIRTY)
2230 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2231
2232 /*
2233 * If this is the first remapping (we know that there are no
2234 * writeable mappings), then this is a simple color change.
2235 * Otherwise this is a seconary r/o mapping, which means
2236 * we don't have to do anything.
2237 */
2238 if (ro_mappings == 1) {
2239 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2240 md->pvh_attrs &= PAGE_SIZE - 1;
2241 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2242 PMAPCOUNT(vac_color_change);
2243 } else {
2244 PMAPCOUNT(vac_color_blind);
2245 }
2246 md->pvh_attrs |= PVF_MULTCLR;
2247 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2248 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2249 return;
2250 } else {
2251 if (rw_mappings > 0)
2252 md->pvh_attrs |= PVF_WRITE;
2253
2254 /* color conflict. evict from cache. */
2255 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2256
2257 /* the list can't be empty because this was a enter/modify */
2258 pv = SLIST_FIRST(&md->pvh_list);
2259 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2260 KASSERT(pv);
2261 /*
2262 * If there's only one mapped page, change color to the
2263 * page's new color and return. Restore the DIRTY bit
2264 * that was erased by pmap_flush_page.
2265 */
2266 if (SLIST_NEXT(pv, pv_link) == NULL) {
2267 md->pvh_attrs &= PAGE_SIZE - 1;
2268 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2269 if (md->pvh_attrs & PVF_DMOD)
2270 md->pvh_attrs |= PVF_DIRTY;
2271 PMAPCOUNT(vac_color_change);
2272 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2273 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2274 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2275 return;
2276 }
2277 }
2278 bad_alias = true;
2279 md->pvh_attrs &= ~PVF_COLORED;
2280 md->pvh_attrs |= PVF_NC;
2281 PMAPCOUNT(vac_color_erase);
2282 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2283 }
2284
2285 fixup:
2286 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2287
2288 /*
2289 * Turn cacheing on/off for all pages.
2290 */
2291 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2292 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2293 pv->pv_va);
2294 KASSERTMSG(l2b != NULL, "%#lx", va);
2295 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2296 const pt_entry_t opte = *ptep;
2297 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2298 if (bad_alias) {
2299 pv->pv_flags |= PVF_NC;
2300 } else {
2301 pv->pv_flags &= ~PVF_NC;
2302 npte |= pte_l2_s_cache_mode;
2303 }
2304
2305 if (opte == npte) /* only update is there's a change */
2306 continue;
2307
2308 if (l2pte_valid_p(npte)) {
2309 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2310 }
2311
2312 l2pte_set(ptep, npte, opte);
2313 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2314 }
2315 #endif /* !ARM_MMU_EXTENDED */
2316 }
2317 #endif /* PMAP_CACHE_VIPT */
2318
2319
2320 /*
2321 * Modify pte bits for all ptes corresponding to the given physical address.
2322 * We use `maskbits' rather than `clearbits' because we're always passing
2323 * constants and the latter would require an extra inversion at run-time.
2324 */
2325 static void
2326 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2327 {
2328 struct pv_entry *pv;
2329 #ifdef PMAP_CACHE_VIPT
2330 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2331 #ifdef ARM_MMU_EXTENDED
2332 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2333 #else
2334 const u_int execbits = 0;
2335 bool need_vac_me_harder = false;
2336 bool need_syncicache = false;
2337 #endif
2338 #else
2339 const u_int execbits = 0;
2340 #endif
2341
2342 NPDEBUG(PDB_BITS,
2343 printf("pmap_clearbit: md %p mask 0x%x\n",
2344 md, maskbits));
2345
2346 #ifdef PMAP_CACHE_VIPT
2347 /*
2348 * If we might want to sync the I-cache and we've modified it,
2349 * then we know we definitely need to sync or discard it.
2350 */
2351 if (want_syncicache) {
2352 #ifdef ARM_MMU_EXTENDED
2353 if (md->pvh_attrs & PVF_MOD)
2354 md->pvh_attrs &= ~PVF_EXEC;
2355 #else
2356 need_syncicache = md->pvh_attrs & PVF_MOD;
2357 #endif
2358 }
2359 #endif
2360 KASSERT(pmap_page_locked_p(md));
2361
2362 /*
2363 * Clear saved attributes (modify, reference)
2364 */
2365 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2366
2367 if (SLIST_EMPTY(&md->pvh_list)) {
2368 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2369 if (need_syncicache) {
2370 /*
2371 * No one has it mapped, so just discard it. The next
2372 * exec remapping will cause it to be synced.
2373 */
2374 md->pvh_attrs &= ~PVF_EXEC;
2375 PMAPCOUNT(exec_discarded_clearbit);
2376 }
2377 #endif
2378 return;
2379 }
2380
2381 /*
2382 * Loop over all current mappings setting/clearing as appropos
2383 */
2384 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2385 pmap_t pm = pv->pv_pmap;
2386 const vaddr_t va = pv->pv_va;
2387 const u_int oflags = pv->pv_flags;
2388 #ifndef ARM_MMU_EXTENDED
2389 /*
2390 * Kernel entries are unmanaged and as such not to be changed.
2391 */
2392 if (PV_IS_KENTRY_P(oflags))
2393 continue;
2394 #endif
2395 pv->pv_flags &= ~maskbits;
2396
2397 pmap_release_page_lock(md);
2398 pmap_acquire_pmap_lock(pm);
2399
2400 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2401 if (l2b == NULL) {
2402 pmap_release_pmap_lock(pm);
2403 pmap_acquire_page_lock(md);
2404 continue;
2405 }
2406 KASSERTMSG(l2b != NULL, "%#lx", va);
2407
2408 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2409 const pt_entry_t opte = *ptep;
2410 pt_entry_t npte = opte | execbits;
2411
2412 #ifdef ARM_MMU_EXTENDED
2413 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2414 #endif
2415
2416 NPDEBUG(PDB_BITS,
2417 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2418 __func__, pv, pm, va, oflags));
2419
2420 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2421 #ifdef PMAP_CACHE_VIVT
2422 if ((oflags & PVF_NC)) {
2423 /*
2424 * Entry is not cacheable:
2425 *
2426 * Don't turn caching on again if this is a
2427 * modified emulation. This would be
2428 * inconsitent with the settings created by
2429 * pmap_vac_me_harder(). Otherwise, it's safe
2430 * to re-enable cacheing.
2431 *
2432 * There's no need to call pmap_vac_me_harder()
2433 * here: all pages are losing their write
2434 * permission.
2435 */
2436 if (maskbits & PVF_WRITE) {
2437 npte |= pte_l2_s_cache_mode;
2438 pv->pv_flags &= ~PVF_NC;
2439 }
2440 } else
2441 if (l2pte_writable_p(opte)) {
2442 /*
2443 * Entry is writable/cacheable: check if pmap
2444 * is current if it is flush it, otherwise it
2445 * won't be in the cache
2446 */
2447 pmap_cache_wbinv_page(pm, va,
2448 (maskbits & PVF_REF) != 0,
2449 oflags|PVF_WRITE);
2450 }
2451 #endif
2452
2453 /* make the pte read only */
2454 npte = l2pte_set_readonly(npte);
2455
2456 pmap_acquire_page_lock(md);
2457 #ifdef MULTIPROCESSOR
2458 pv = pmap_find_pv(md, pm, va);
2459 #endif
2460 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2461 /*
2462 * Keep alias accounting up to date
2463 */
2464 if (pm == pmap_kernel()) {
2465 md->krw_mappings--;
2466 md->kro_mappings++;
2467 } else {
2468 md->urw_mappings--;
2469 md->uro_mappings++;
2470 }
2471 #ifdef PMAP_CACHE_VIPT
2472 if (arm_cache_prefer_mask != 0) {
2473 if (md->urw_mappings + md->krw_mappings == 0) {
2474 md->pvh_attrs &= ~PVF_WRITE;
2475 } else {
2476 PMAP_VALIDATE_MD_PAGE(md);
2477 }
2478 }
2479 #ifndef ARM_MMU_EXTENDED
2480 if (want_syncicache)
2481 need_syncicache = true;
2482 need_vac_me_harder = true;
2483 #endif
2484 #endif /* PMAP_CACHE_VIPT */
2485 }
2486 pmap_release_page_lock(md);
2487 }
2488
2489 if (maskbits & PVF_REF) {
2490 if (true
2491 #ifndef ARM_MMU_EXTENDED
2492 && (oflags & PVF_NC) == 0
2493 #endif
2494 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2495 && l2pte_valid_p(npte)) {
2496 #ifdef PMAP_CACHE_VIVT
2497 /*
2498 * Check npte here; we may have already
2499 * done the wbinv above, and the validity
2500 * of the PTE is the same for opte and
2501 * npte.
2502 */
2503 pmap_cache_wbinv_page(pm, va, true, oflags);
2504 #endif
2505 }
2506
2507 /*
2508 * Make the PTE invalid so that we will take a
2509 * page fault the next time the mapping is
2510 * referenced.
2511 */
2512 npte &= ~L2_TYPE_MASK;
2513 npte |= L2_TYPE_INV;
2514 }
2515
2516 if (npte != opte) {
2517 l2pte_reset(ptep);
2518 PTE_SYNC(ptep);
2519
2520 /* Flush the TLB entry if a current pmap. */
2521 pmap_tlb_flush_SE(pm, va, oflags);
2522
2523 l2pte_set(ptep, npte, 0);
2524 PTE_SYNC(ptep);
2525 }
2526
2527 pmap_release_pmap_lock(pm);
2528 pmap_acquire_page_lock(md);
2529
2530 NPDEBUG(PDB_BITS,
2531 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2532 pm, va, opte, npte));
2533 }
2534
2535 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2536 /*
2537 * If we need to sync the I-cache and we haven't done it yet, do it.
2538 */
2539 if (need_syncicache) {
2540 pmap_release_page_lock(md);
2541 pmap_syncicache_page(md, pa);
2542 pmap_acquire_page_lock(md);
2543 PMAPCOUNT(exec_synced_clearbit);
2544 }
2545
2546 /*
2547 * If we are changing this to read-only, we need to call vac_me_harder
2548 * so we can change all the read-only pages to cacheable. We pretend
2549 * this as a page deletion.
2550 */
2551 if (need_vac_me_harder) {
2552 if (md->pvh_attrs & PVF_NC)
2553 pmap_vac_me_harder(md, pa, NULL, 0);
2554 }
2555 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
2556 }
2557
2558 /*
2559 * pmap_clean_page()
2560 *
2561 * This is a local function used to work out the best strategy to clean
2562 * a single page referenced by its entry in the PV table. It's used by
2563 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2564 *
2565 * Its policy is effectively:
2566 * o If there are no mappings, we don't bother doing anything with the cache.
2567 * o If there is one mapping, we clean just that page.
2568 * o If there are multiple mappings, we clean the entire cache.
2569 *
2570 * So that some functions can be further optimised, it returns 0 if it didn't
2571 * clean the entire cache, or 1 if it did.
2572 *
2573 * XXX One bug in this routine is that if the pv_entry has a single page
2574 * mapped at 0x00000000 a whole cache clean will be performed rather than
2575 * just the 1 page. Since this should not occur in everyday use and if it does
2576 * it will just result in not the most efficient clean for the page.
2577 */
2578 #ifdef PMAP_CACHE_VIVT
2579 static bool
2580 pmap_clean_page(struct vm_page_md *md, bool is_src)
2581 {
2582 struct pv_entry *pv;
2583 pmap_t pm_to_clean = NULL;
2584 bool cache_needs_cleaning = false;
2585 vaddr_t page_to_clean = 0;
2586 u_int flags = 0;
2587
2588 /*
2589 * Since we flush the cache each time we change to a different
2590 * user vmspace, we only need to flush the page if it is in the
2591 * current pmap.
2592 */
2593 KASSERT(pmap_page_locked_p(md));
2594 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2595 if (pmap_is_current(pv->pv_pmap)) {
2596 flags |= pv->pv_flags;
2597 /*
2598 * The page is mapped non-cacheable in
2599 * this map. No need to flush the cache.
2600 */
2601 if (pv->pv_flags & PVF_NC) {
2602 #ifdef DIAGNOSTIC
2603 KASSERT(!cache_needs_cleaning);
2604 #endif
2605 break;
2606 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2607 continue;
2608 if (cache_needs_cleaning) {
2609 page_to_clean = 0;
2610 break;
2611 } else {
2612 page_to_clean = pv->pv_va;
2613 pm_to_clean = pv->pv_pmap;
2614 }
2615 cache_needs_cleaning = true;
2616 }
2617 }
2618
2619 if (page_to_clean) {
2620 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2621 !is_src, flags | PVF_REF);
2622 } else if (cache_needs_cleaning) {
2623 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2624
2625 pmap_cache_wbinv_all(pm, flags);
2626 return true;
2627 }
2628 return false;
2629 }
2630 #endif
2631
2632 #ifdef PMAP_CACHE_VIPT
2633 /*
2634 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2635 * right cache alias to make sure we flush the right stuff.
2636 */
2637 void
2638 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2639 {
2640 pmap_t kpm = pmap_kernel();
2641 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2642 ? PAGE_SIZE
2643 : arm_pcache.icache_way_size;
2644
2645 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2646 md, md->pvh_attrs));
2647 /*
2648 * No need to clean the page if it's non-cached.
2649 */
2650 #ifndef ARM_MMU_EXTENDED
2651 if (md->pvh_attrs & PVF_NC)
2652 return;
2653 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2654 #endif
2655
2656 pt_entry_t * const ptep = cpu_cdst_pte(0);
2657 const vaddr_t dstp = cpu_cdstp(0);
2658 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2659 if (way_size <= PAGE_SIZE) {
2660 bool ok = false;
2661 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2662 if (ok) {
2663 cpu_icache_sync_range(vdstp, way_size);
2664 return;
2665 }
2666 }
2667 #endif
2668
2669 /*
2670 * We don't worry about the color of the exec page, we map the
2671 * same page to pages in the way and then do the icache_sync on
2672 * the entire way making sure we are cleaned.
2673 */
2674 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2675 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2676
2677 for (size_t i = 0, j = 0; i < way_size;
2678 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2679 l2pte_reset(ptep + j);
2680 PTE_SYNC(ptep + j);
2681
2682 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2683 /*
2684 * Set up a PTE with to flush these cache lines.
2685 */
2686 l2pte_set(ptep + j, npte, 0);
2687 }
2688 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2689
2690 /*
2691 * Flush it.
2692 */
2693 cpu_icache_sync_range(dstp, way_size);
2694
2695 for (size_t i = 0, j = 0; i < way_size;
2696 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2697 /*
2698 * Unmap the page(s).
2699 */
2700 l2pte_reset(ptep + j);
2701 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2702 }
2703 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2704
2705 md->pvh_attrs |= PVF_EXEC;
2706 PMAPCOUNT(exec_synced);
2707 }
2708
2709 #ifndef ARM_MMU_EXTENDED
2710 void
2711 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2712 {
2713 vsize_t va_offset, end_va;
2714 bool wbinv_p;
2715
2716 if (arm_cache_prefer_mask == 0)
2717 return;
2718
2719 switch (flush) {
2720 case PMAP_FLUSH_PRIMARY:
2721 if (md->pvh_attrs & PVF_MULTCLR) {
2722 va_offset = 0;
2723 end_va = arm_cache_prefer_mask;
2724 md->pvh_attrs &= ~PVF_MULTCLR;
2725 PMAPCOUNT(vac_flush_lots);
2726 } else {
2727 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2728 end_va = va_offset;
2729 PMAPCOUNT(vac_flush_one);
2730 }
2731 /*
2732 * Mark that the page is no longer dirty.
2733 */
2734 md->pvh_attrs &= ~PVF_DIRTY;
2735 wbinv_p = true;
2736 break;
2737 case PMAP_FLUSH_SECONDARY:
2738 va_offset = 0;
2739 end_va = arm_cache_prefer_mask;
2740 wbinv_p = true;
2741 md->pvh_attrs &= ~PVF_MULTCLR;
2742 PMAPCOUNT(vac_flush_lots);
2743 break;
2744 case PMAP_CLEAN_PRIMARY:
2745 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2746 end_va = va_offset;
2747 wbinv_p = false;
2748 /*
2749 * Mark that the page is no longer dirty.
2750 */
2751 if ((md->pvh_attrs & PVF_DMOD) == 0)
2752 md->pvh_attrs &= ~PVF_DIRTY;
2753 PMAPCOUNT(vac_clean_one);
2754 break;
2755 default:
2756 return;
2757 }
2758
2759 KASSERT(!(md->pvh_attrs & PVF_NC));
2760
2761 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2762 md, md->pvh_attrs));
2763
2764 const size_t scache_line_size = arm_scache.dcache_line_size;
2765
2766 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2767 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2768 const vaddr_t dstp = cpu_cdstp(va_offset);
2769 const pt_entry_t opte = *ptep;
2770
2771 if (flush == PMAP_FLUSH_SECONDARY
2772 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2773 continue;
2774
2775 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2776 /*
2777 * Set up a PTE with the right coloring to flush
2778 * existing cache entries.
2779 */
2780 const pt_entry_t npte = L2_S_PROTO
2781 | pa
2782 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2783 | pte_l2_s_cache_mode;
2784 l2pte_set(ptep, npte, opte);
2785 PTE_SYNC(ptep);
2786
2787 /*
2788 * Flush it. Make sure to flush secondary cache too since
2789 * bus_dma will ignore uncached pages.
2790 */
2791 if (scache_line_size != 0) {
2792 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2793 if (wbinv_p) {
2794 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2795 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2796 } else {
2797 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2798 }
2799 } else {
2800 if (wbinv_p) {
2801 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2802 } else {
2803 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2804 }
2805 }
2806
2807 /*
2808 * Restore the page table entry since we might have interrupted
2809 * pmap_zero_page or pmap_copy_page which was already using
2810 * this pte.
2811 */
2812 if (opte) {
2813 l2pte_set(ptep, opte, npte);
2814 } else {
2815 l2pte_reset(ptep);
2816 }
2817 PTE_SYNC(ptep);
2818 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2819 }
2820 }
2821 #endif /* ARM_MMU_EXTENDED */
2822 #endif /* PMAP_CACHE_VIPT */
2823
2824 /*
2825 * Routine: pmap_page_remove
2826 * Function:
2827 * Removes this physical page from
2828 * all physical maps in which it resides.
2829 * Reflects back modify bits to the pager.
2830 */
2831 static void
2832 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2833 {
2834 struct l2_bucket *l2b;
2835 struct pv_entry *pv;
2836 pt_entry_t *ptep;
2837 #ifndef ARM_MMU_EXTENDED
2838 bool flush = false;
2839 #endif
2840 u_int flags = 0;
2841
2842 NPDEBUG(PDB_FOLLOW,
2843 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2844 pa));
2845
2846 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2847 pmap_acquire_page_lock(md);
2848 if (*pvp == NULL) {
2849 #ifdef PMAP_CACHE_VIPT
2850 /*
2851 * We *know* the page contents are about to be replaced.
2852 * Discard the exec contents
2853 */
2854 if (PV_IS_EXEC_P(md->pvh_attrs))
2855 PMAPCOUNT(exec_discarded_page_protect);
2856 md->pvh_attrs &= ~PVF_EXEC;
2857 PMAP_VALIDATE_MD_PAGE(md);
2858 #endif
2859 pmap_release_page_lock(md);
2860 return;
2861 }
2862 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2863 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2864 #endif
2865
2866 /*
2867 * Clear alias counts
2868 */
2869 #ifdef PMAP_CACHE_VIVT
2870 md->k_mappings = 0;
2871 #endif
2872 md->urw_mappings = md->uro_mappings = 0;
2873
2874 #ifdef PMAP_CACHE_VIVT
2875 pmap_clean_page(md, false);
2876 #endif
2877
2878 while ((pv = *pvp) != NULL) {
2879 pmap_t pm = pv->pv_pmap;
2880 #ifndef ARM_MMU_EXTENDED
2881 if (flush == false && pmap_is_current(pm))
2882 flush = true;
2883 #endif
2884
2885 if (pm == pmap_kernel()) {
2886 #ifdef PMAP_CACHE_VIPT
2887 /*
2888 * If this was unmanaged mapping, it must be preserved.
2889 * Move it back on the list and advance the end-of-list
2890 * pointer.
2891 */
2892 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2893 *pvp = pv;
2894 pvp = &SLIST_NEXT(pv, pv_link);
2895 continue;
2896 }
2897 if (pv->pv_flags & PVF_WRITE)
2898 md->krw_mappings--;
2899 else
2900 md->kro_mappings--;
2901 #endif
2902 PMAPCOUNT(kernel_unmappings);
2903 }
2904 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2905 PMAPCOUNT(unmappings);
2906
2907 pmap_release_page_lock(md);
2908 pmap_acquire_pmap_lock(pm);
2909
2910 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2911 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2912
2913 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2914
2915 /*
2916 * Update statistics
2917 */
2918 --pm->pm_stats.resident_count;
2919
2920 /* Wired bit */
2921 if (pv->pv_flags & PVF_WIRED)
2922 --pm->pm_stats.wired_count;
2923
2924 flags |= pv->pv_flags;
2925
2926 /*
2927 * Invalidate the PTEs.
2928 */
2929 l2pte_reset(ptep);
2930 PTE_SYNC_CURRENT(pm, ptep);
2931
2932 #ifdef ARM_MMU_EXTENDED
2933 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2934 #endif
2935
2936 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2937
2938 pmap_release_pmap_lock(pm);
2939
2940 pool_put(&pmap_pv_pool, pv);
2941 pmap_acquire_page_lock(md);
2942 #ifdef MULTIPROCESSOR
2943 /*
2944 * Restart of the beginning of the list.
2945 */
2946 pvp = &SLIST_FIRST(&md->pvh_list);
2947 #endif
2948 }
2949 /*
2950 * if we reach the end of the list and there are still mappings, they
2951 * might be able to be cached now. And they must be kernel mappings.
2952 */
2953 if (!SLIST_EMPTY(&md->pvh_list)) {
2954 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2955 }
2956
2957 #ifdef PMAP_CACHE_VIPT
2958 /*
2959 * Its EXEC cache is now gone.
2960 */
2961 if (PV_IS_EXEC_P(md->pvh_attrs))
2962 PMAPCOUNT(exec_discarded_page_protect);
2963 md->pvh_attrs &= ~PVF_EXEC;
2964 KASSERT(md->urw_mappings == 0);
2965 KASSERT(md->uro_mappings == 0);
2966 #ifndef ARM_MMU_EXTENDED
2967 if (arm_cache_prefer_mask != 0) {
2968 if (md->krw_mappings == 0)
2969 md->pvh_attrs &= ~PVF_WRITE;
2970 PMAP_VALIDATE_MD_PAGE(md);
2971 }
2972 #endif /* ARM_MMU_EXTENDED */
2973 #endif /* PMAP_CACHE_VIPT */
2974 pmap_release_page_lock(md);
2975
2976 #ifndef ARM_MMU_EXTENDED
2977 if (flush) {
2978 /*
2979 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2980 * would need a subsequent call to pmap_update() to ensure
2981 * curpm->pm_cstate.cs_all is reset. Our callers are not
2982 * required to do that (see pmap(9)), so we can't modify
2983 * the current pmap's state.
2984 */
2985 if (PV_BEEN_EXECD(flags))
2986 cpu_tlb_flushID();
2987 else
2988 cpu_tlb_flushD();
2989 }
2990 cpu_cpwait();
2991 #endif /* ARM_MMU_EXTENDED */
2992 }
2993
2994 /*
2995 * pmap_t pmap_create(void)
2996 *
2997 * Create a new pmap structure from scratch.
2998 */
2999 pmap_t
3000 pmap_create(void)
3001 {
3002 pmap_t pm;
3003
3004 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3005
3006 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
3007 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
3008 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
3009
3010 pm->pm_stats.wired_count = 0;
3011 pm->pm_stats.resident_count = 1;
3012 #ifdef ARM_MMU_EXTENDED
3013 #ifdef MULTIPROCESSOR
3014 kcpuset_create(&pm->pm_active, true);
3015 kcpuset_create(&pm->pm_onproc, true);
3016 #endif
3017 #else
3018 pm->pm_cstate.cs_all = 0;
3019 #endif
3020 pmap_alloc_l1(pm);
3021
3022 /*
3023 * Note: The pool cache ensures that the pm_l2[] array is already
3024 * initialised to zero.
3025 */
3026
3027 pmap_pinit(pm);
3028
3029 return (pm);
3030 }
3031
3032 u_int
3033 arm32_mmap_flags(paddr_t pa)
3034 {
3035 /*
3036 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3037 * and we're using the upper bits in page numbers to pass flags around
3038 * so we might as well use the same bits
3039 */
3040 return (u_int)pa & PMAP_MD_MASK;
3041 }
3042 /*
3043 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3044 * u_int flags)
3045 *
3046 * Insert the given physical page (p) at
3047 * the specified virtual address (v) in the
3048 * target physical map with the protection requested.
3049 *
3050 * NB: This is the only routine which MAY NOT lazy-evaluate
3051 * or lose information. That is, this routine must actually
3052 * insert this page into the given map NOW.
3053 */
3054 int
3055 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3056 {
3057 struct l2_bucket *l2b;
3058 struct vm_page *pg, *opg;
3059 u_int nflags;
3060 u_int oflags;
3061 const bool kpm_p = (pm == pmap_kernel());
3062 #ifdef ARM_HAS_VBAR
3063 const bool vector_page_p = false;
3064 #else
3065 const bool vector_page_p = (va == vector_page);
3066 #endif
3067
3068 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3069
3070 UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
3071 pm, va, pa, prot);
3072 UVMHIST_LOG(maphist, " flag %#x", flags, 0, 0, 0);
3073
3074 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3075 KDASSERT(((va | pa) & PGOFSET) == 0);
3076
3077 /*
3078 * Get a pointer to the page. Later on in this function, we
3079 * test for a managed page by checking pg != NULL.
3080 */
3081 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3082
3083 nflags = 0;
3084 if (prot & VM_PROT_WRITE)
3085 nflags |= PVF_WRITE;
3086 if (prot & VM_PROT_EXECUTE)
3087 nflags |= PVF_EXEC;
3088 if (flags & PMAP_WIRED)
3089 nflags |= PVF_WIRED;
3090
3091 pmap_acquire_pmap_lock(pm);
3092
3093 /*
3094 * Fetch the L2 bucket which maps this page, allocating one if
3095 * necessary for user pmaps.
3096 */
3097 if (kpm_p) {
3098 l2b = pmap_get_l2_bucket(pm, va);
3099 } else {
3100 l2b = pmap_alloc_l2_bucket(pm, va);
3101 }
3102 if (l2b == NULL) {
3103 if (flags & PMAP_CANFAIL) {
3104 pmap_release_pmap_lock(pm);
3105 return (ENOMEM);
3106 }
3107 panic("pmap_enter: failed to allocate L2 bucket");
3108 }
3109 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3110 const pt_entry_t opte = *ptep;
3111 pt_entry_t npte = pa;
3112 oflags = 0;
3113
3114 if (opte) {
3115 /*
3116 * There is already a mapping at this address.
3117 * If the physical address is different, lookup the
3118 * vm_page.
3119 */
3120 if (l2pte_pa(opte) != pa) {
3121 KASSERT(!pmap_pv_tracked(pa));
3122 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3123 } else
3124 opg = pg;
3125 } else
3126 opg = NULL;
3127
3128 struct pmap_page *pp = pmap_pv_tracked(pa);
3129
3130 if (pg || pp) {
3131 KASSERT((pg != NULL) != (pp != NULL));
3132 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3133 PMAP_PAGE_TO_MD(pp);
3134
3135 /*
3136 * This is to be a managed mapping.
3137 */
3138 pmap_acquire_page_lock(md);
3139 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3140 /*
3141 * - The access type indicates that we don't need
3142 * to do referenced emulation.
3143 * OR
3144 * - The physical page has already been referenced
3145 * so no need to re-do referenced emulation here.
3146 */
3147 npte |= l2pte_set_readonly(L2_S_PROTO);
3148
3149 nflags |= PVF_REF;
3150
3151 if ((prot & VM_PROT_WRITE) != 0 &&
3152 ((flags & VM_PROT_WRITE) != 0 ||
3153 (md->pvh_attrs & PVF_MOD) != 0)) {
3154 /*
3155 * This is a writable mapping, and the
3156 * page's mod state indicates it has
3157 * already been modified. Make it
3158 * writable from the outset.
3159 */
3160 npte = l2pte_set_writable(npte);
3161 nflags |= PVF_MOD;
3162 }
3163
3164 #ifdef ARM_MMU_EXTENDED
3165 /*
3166 * If the page has been cleaned, then the pvh_attrs
3167 * will have PVF_EXEC set, so mark it execute so we
3168 * don't get an access fault when trying to execute
3169 * from it.
3170 */
3171 if (md->pvh_attrs & nflags & PVF_EXEC) {
3172 npte &= ~L2_XS_XN;
3173 }
3174 #endif
3175 } else {
3176 /*
3177 * Need to do page referenced emulation.
3178 */
3179 npte |= L2_TYPE_INV;
3180 }
3181
3182 if (flags & ARM32_MMAP_WRITECOMBINE) {
3183 npte |= pte_l2_s_wc_mode;
3184 } else
3185 npte |= pte_l2_s_cache_mode;
3186
3187 if (pg != NULL && pg == opg) {
3188 /*
3189 * We're changing the attrs of an existing mapping.
3190 */
3191 oflags = pmap_modify_pv(md, pa, pm, va,
3192 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3193 PVF_MOD | PVF_REF, nflags);
3194
3195 #ifdef PMAP_CACHE_VIVT
3196 /*
3197 * We may need to flush the cache if we're
3198 * doing rw-ro...
3199 */
3200 if (pm->pm_cstate.cs_cache_d &&
3201 (oflags & PVF_NC) == 0 &&
3202 l2pte_writable_p(opte) &&
3203 (prot & VM_PROT_WRITE) == 0)
3204 cpu_dcache_wb_range(va, PAGE_SIZE);
3205 #endif
3206 } else {
3207 struct pv_entry *pv;
3208 /*
3209 * New mapping, or changing the backing page
3210 * of an existing mapping.
3211 */
3212 if (opg) {
3213 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3214 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3215
3216 /*
3217 * Replacing an existing mapping with a new one.
3218 * It is part of our managed memory so we
3219 * must remove it from the PV list
3220 */
3221 pv = pmap_remove_pv(omd, opa, pm, va);
3222 pmap_vac_me_harder(omd, opa, pm, 0);
3223 oflags = pv->pv_flags;
3224
3225 #ifdef PMAP_CACHE_VIVT
3226 /*
3227 * If the old mapping was valid (ref/mod
3228 * emulation creates 'invalid' mappings
3229 * initially) then make sure to frob
3230 * the cache.
3231 */
3232 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3233 pmap_cache_wbinv_page(pm, va, true,
3234 oflags);
3235 }
3236 #endif
3237 } else {
3238 pmap_release_page_lock(md);
3239 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3240 if (pv == NULL) {
3241 pmap_release_pmap_lock(pm);
3242 if ((flags & PMAP_CANFAIL) == 0)
3243 panic("pmap_enter: "
3244 "no pv entries");
3245
3246 pmap_free_l2_bucket(pm, l2b, 0);
3247 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3248 0, 0, 0, 0);
3249 return (ENOMEM);
3250 }
3251 pmap_acquire_page_lock(md);
3252 }
3253
3254 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3255 }
3256 pmap_release_page_lock(md);
3257 } else {
3258 /*
3259 * We're mapping an unmanaged page.
3260 * These are always readable, and possibly writable, from
3261 * the get go as we don't need to track ref/mod status.
3262 */
3263 npte |= l2pte_set_readonly(L2_S_PROTO);
3264 if (prot & VM_PROT_WRITE)
3265 npte = l2pte_set_writable(npte);
3266
3267 /*
3268 * Make sure the vector table is mapped cacheable
3269 */
3270 if ((vector_page_p && !kpm_p)
3271 || (flags & ARM32_MMAP_CACHEABLE)) {
3272 npte |= pte_l2_s_cache_mode;
3273 #ifdef ARM_MMU_EXTENDED
3274 npte &= ~L2_XS_XN; /* and executable */
3275 #endif
3276 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3277 npte |= pte_l2_s_wc_mode;
3278 }
3279 if (opg) {
3280 /*
3281 * Looks like there's an existing 'managed' mapping
3282 * at this address.
3283 */
3284 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3285 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3286
3287 pmap_acquire_page_lock(omd);
3288 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3289 pmap_vac_me_harder(omd, opa, pm, 0);
3290 oflags = pv->pv_flags;
3291 pmap_release_page_lock(omd);
3292
3293 #ifdef PMAP_CACHE_VIVT
3294 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3295 pmap_cache_wbinv_page(pm, va, true, oflags);
3296 }
3297 #endif
3298 pool_put(&pmap_pv_pool, pv);
3299 }
3300 }
3301
3302 /*
3303 * Make sure userland mappings get the right permissions
3304 */
3305 if (!vector_page_p && !kpm_p) {
3306 npte |= L2_S_PROT_U;
3307 #ifdef ARM_MMU_EXTENDED
3308 npte |= L2_XS_nG; /* user pages are not global */
3309 #endif
3310 }
3311
3312 /*
3313 * Keep the stats up to date
3314 */
3315 if (opte == 0) {
3316 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3317 pm->pm_stats.resident_count++;
3318 }
3319
3320 UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
3321
3322 #if defined(ARM_MMU_EXTENDED)
3323 /*
3324 * If exec protection was requested but the page hasn't been synced,
3325 * sync it now and allow execution from it.
3326 */
3327 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3328 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3329 npte &= ~L2_XS_XN;
3330 pmap_syncicache_page(md, pa);
3331 PMAPCOUNT(exec_synced_map);
3332 }
3333 #endif
3334 /*
3335 * If this is just a wiring change, the two PTEs will be
3336 * identical, so there's no need to update the page table.
3337 */
3338 if (npte != opte) {
3339 l2pte_reset(ptep);
3340 PTE_SYNC(ptep);
3341 if (l2pte_valid_p(opte)) {
3342 pmap_tlb_flush_SE(pm, va, oflags);
3343 }
3344 l2pte_set(ptep, npte, 0);
3345 PTE_SYNC(ptep);
3346 #ifndef ARM_MMU_EXTENDED
3347 bool is_cached = pmap_is_cached(pm);
3348 if (is_cached) {
3349 /*
3350 * We only need to frob the cache/tlb if this pmap
3351 * is current
3352 */
3353 if (!vector_page_p && l2pte_valid_p(npte)) {
3354 /*
3355 * This mapping is likely to be accessed as
3356 * soon as we return to userland. Fix up the
3357 * L1 entry to avoid taking another
3358 * page/domain fault.
3359 */
3360 pd_entry_t *pdep = pmap_l1_kva(pm)
3361 + l1pte_index(va);
3362 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3363 | L1_C_DOM(pmap_domain(pm));
3364 if (*pdep != pde) {
3365 l1pte_setone(pdep, pde);
3366 PDE_SYNC(pdep);
3367 }
3368 }
3369 }
3370 #endif /* !ARM_MMU_EXTENDED */
3371
3372 #ifndef ARM_MMU_EXTENDED
3373 UVMHIST_LOG(maphist, " is_cached %d cs 0x%08x\n",
3374 is_cached, pm->pm_cstate.cs_all, 0, 0);
3375
3376 if (pg != NULL) {
3377 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3378
3379 pmap_acquire_page_lock(md);
3380 pmap_vac_me_harder(md, pa, pm, va);
3381 pmap_release_page_lock(md);
3382 }
3383 #endif
3384 }
3385 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3386 if (pg) {
3387 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3388
3389 pmap_acquire_page_lock(md);
3390 #ifndef ARM_MMU_EXTENDED
3391 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3392 #endif
3393 PMAP_VALIDATE_MD_PAGE(md);
3394 pmap_release_page_lock(md);
3395 }
3396 #endif
3397
3398 pmap_release_pmap_lock(pm);
3399
3400 return (0);
3401 }
3402
3403 /*
3404 * pmap_remove()
3405 *
3406 * pmap_remove is responsible for nuking a number of mappings for a range
3407 * of virtual address space in the current pmap. To do this efficiently
3408 * is interesting, because in a number of cases a wide virtual address
3409 * range may be supplied that contains few actual mappings. So, the
3410 * optimisations are:
3411 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3412 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3413 * maybe do just a partial cache clean. This path of execution is
3414 * complicated by the fact that the cache must be flushed _before_
3415 * the PTE is nuked, being a VAC :-)
3416 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3417 * all invalidations until pmap_update(), since pmap_remove_all() has
3418 * already flushed the cache.
3419 * 4. Maybe later fast-case a single page, but I don't think this is
3420 * going to make _that_ much difference overall.
3421 */
3422
3423 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3424
3425 void
3426 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3427 {
3428 vaddr_t next_bucket;
3429 u_int cleanlist_idx, total, cnt;
3430 struct {
3431 vaddr_t va;
3432 pt_entry_t *ptep;
3433 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3434 u_int mappings;
3435
3436 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3437 UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
3438
3439 /*
3440 * we lock in the pmap => pv_head direction
3441 */
3442 pmap_acquire_pmap_lock(pm);
3443
3444 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3445 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3446 #ifndef ARM_MMU_EXTENDED
3447 if (pm->pm_cstate.cs_tlb == 0)
3448 pm->pm_remove_all = true;
3449 #endif
3450 } else
3451 cleanlist_idx = 0;
3452
3453 total = 0;
3454
3455 while (sva < eva) {
3456 /*
3457 * Do one L2 bucket's worth at a time.
3458 */
3459 next_bucket = L2_NEXT_BUCKET_VA(sva);
3460 if (next_bucket > eva)
3461 next_bucket = eva;
3462
3463 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3464 if (l2b == NULL) {
3465 sva = next_bucket;
3466 continue;
3467 }
3468
3469 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3470
3471 for (mappings = 0;
3472 sva < next_bucket;
3473 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3474 pt_entry_t opte = *ptep;
3475
3476 if (opte == 0) {
3477 /* Nothing here, move along */
3478 continue;
3479 }
3480
3481 u_int flags = PVF_REF;
3482 paddr_t pa = l2pte_pa(opte);
3483 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3484
3485 /*
3486 * Update flags. In a number of circumstances,
3487 * we could cluster a lot of these and do a
3488 * number of sequential pages in one go.
3489 */
3490 if (pg != NULL) {
3491 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3492 struct pv_entry *pv;
3493
3494 pmap_acquire_page_lock(md);
3495 pv = pmap_remove_pv(md, pa, pm, sva);
3496 pmap_vac_me_harder(md, pa, pm, 0);
3497 pmap_release_page_lock(md);
3498 if (pv != NULL) {
3499 if (pm->pm_remove_all == false) {
3500 flags = pv->pv_flags;
3501 }
3502 pool_put(&pmap_pv_pool, pv);
3503 }
3504 }
3505 mappings += PAGE_SIZE / L2_S_SIZE;
3506
3507 if (!l2pte_valid_p(opte)) {
3508 /*
3509 * Ref/Mod emulation is still active for this
3510 * mapping, therefore it is has not yet been
3511 * accessed. No need to frob the cache/tlb.
3512 */
3513 l2pte_reset(ptep);
3514 PTE_SYNC_CURRENT(pm, ptep);
3515 continue;
3516 }
3517
3518 #ifdef ARM_MMU_EXTENDED
3519 if (pm == pmap_kernel()) {
3520 l2pte_reset(ptep);
3521 PTE_SYNC(ptep);
3522 pmap_tlb_flush_SE(pm, sva, flags);
3523 continue;
3524 }
3525 #endif
3526 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3527 /* Add to the clean list. */
3528 cleanlist[cleanlist_idx].ptep = ptep;
3529 cleanlist[cleanlist_idx].va =
3530 sva | (flags & PVF_EXEC);
3531 cleanlist_idx++;
3532 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3533 /* Nuke everything if needed. */
3534 #ifdef PMAP_CACHE_VIVT
3535 pmap_cache_wbinv_all(pm, PVF_EXEC);
3536 #endif
3537 /*
3538 * Roll back the previous PTE list,
3539 * and zero out the current PTE.
3540 */
3541 for (cnt = 0;
3542 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3543 l2pte_reset(cleanlist[cnt].ptep);
3544 PTE_SYNC(cleanlist[cnt].ptep);
3545 }
3546 l2pte_reset(ptep);
3547 PTE_SYNC(ptep);
3548 cleanlist_idx++;
3549 pm->pm_remove_all = true;
3550 } else {
3551 l2pte_reset(ptep);
3552 PTE_SYNC(ptep);
3553 if (pm->pm_remove_all == false) {
3554 pmap_tlb_flush_SE(pm, sva, flags);
3555 }
3556 }
3557 }
3558
3559 /*
3560 * Deal with any left overs
3561 */
3562 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3563 total += cleanlist_idx;
3564 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3565 l2pte_reset(cleanlist[cnt].ptep);
3566 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3567 #ifdef ARM_MMU_EXTENDED
3568 vaddr_t clva = cleanlist[cnt].va;
3569 pmap_tlb_flush_SE(pm, clva, PVF_REF);
3570 #else
3571 vaddr_t va = cleanlist[cnt].va;
3572 if (pm->pm_cstate.cs_all != 0) {
3573 vaddr_t clva = va & ~PAGE_MASK;
3574 u_int flags = va & PVF_EXEC;
3575 #ifdef PMAP_CACHE_VIVT
3576 pmap_cache_wbinv_page(pm, clva, true,
3577 PVF_REF | PVF_WRITE | flags);
3578 #endif
3579 pmap_tlb_flush_SE(pm, clva,
3580 PVF_REF | flags);
3581 }
3582 #endif /* ARM_MMU_EXTENDED */
3583 }
3584
3585 /*
3586 * If it looks like we're removing a whole bunch
3587 * of mappings, it's faster to just write-back
3588 * the whole cache now and defer TLB flushes until
3589 * pmap_update() is called.
3590 */
3591 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3592 cleanlist_idx = 0;
3593 else {
3594 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3595 #ifdef PMAP_CACHE_VIVT
3596 pmap_cache_wbinv_all(pm, PVF_EXEC);
3597 #endif
3598 pm->pm_remove_all = true;
3599 }
3600 }
3601
3602
3603 pmap_free_l2_bucket(pm, l2b, mappings);
3604 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3605 }
3606
3607 pmap_release_pmap_lock(pm);
3608 }
3609
3610 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3611 static struct pv_entry *
3612 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3613 {
3614 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3615 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3616 struct pv_entry *pv;
3617
3618 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3619 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3620 KASSERT(pmap_page_locked_p(md));
3621
3622 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3623 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3624 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3625
3626 /*
3627 * If we are removing a writeable mapping to a cached exec page,
3628 * if it's the last mapping then clear it execness other sync
3629 * the page to the icache.
3630 */
3631 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3632 && (pv->pv_flags & PVF_WRITE) != 0) {
3633 if (SLIST_EMPTY(&md->pvh_list)) {
3634 md->pvh_attrs &= ~PVF_EXEC;
3635 PMAPCOUNT(exec_discarded_kremove);
3636 } else {
3637 pmap_syncicache_page(md, pa);
3638 PMAPCOUNT(exec_synced_kremove);
3639 }
3640 }
3641 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3642
3643 return pv;
3644 }
3645 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3646
3647 /*
3648 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3649 *
3650 * We assume there is already sufficient KVM space available
3651 * to do this, as we can't allocate L2 descriptor tables/metadata
3652 * from here.
3653 */
3654 void
3655 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3656 {
3657 #ifdef PMAP_CACHE_VIVT
3658 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3659 #endif
3660 #ifdef PMAP_CACHE_VIPT
3661 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3662 struct vm_page *opg;
3663 #ifndef ARM_MMU_EXTENDED
3664 struct pv_entry *pv = NULL;
3665 #endif
3666 #endif
3667 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3668
3669 UVMHIST_FUNC(__func__);
3670
3671 if (pmap_initialized) {
3672 UVMHIST_CALLED(maphist);
3673 UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
3674 va, pa, prot, flags);
3675 }
3676
3677 pmap_t kpm = pmap_kernel();
3678 pmap_acquire_pmap_lock(kpm);
3679 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3680 const size_t l1slot __diagused = l1pte_index(va);
3681 KASSERTMSG(l2b != NULL,
3682 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3683 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3684 kpm->pm_l2[L2_IDX(l1slot)]
3685 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3686 : NULL,
3687 kpm->pm_l2[L2_IDX(l1slot)]
3688 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3689 : NULL);
3690 KASSERT(l2b->l2b_kva != NULL);
3691
3692 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3693 const pt_entry_t opte = *ptep;
3694
3695 if (opte == 0) {
3696 PMAPCOUNT(kenter_mappings);
3697 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3698 } else {
3699 PMAPCOUNT(kenter_remappings);
3700 #ifdef PMAP_CACHE_VIPT
3701 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3702 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3703 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3704 #endif
3705 if (opg && arm_cache_prefer_mask != 0) {
3706 KASSERT(opg != pg);
3707 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3708 KASSERT((flags & PMAP_KMPAGE) == 0);
3709 #ifndef ARM_MMU_EXTENDED
3710 pmap_acquire_page_lock(omd);
3711 pv = pmap_kremove_pg(opg, va);
3712 pmap_release_page_lock(omd);
3713 #endif
3714 }
3715 #endif
3716 if (l2pte_valid_p(opte)) {
3717 l2pte_reset(ptep);
3718 PTE_SYNC(ptep);
3719 #ifdef PMAP_CACHE_VIVT
3720 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3721 #endif
3722 cpu_tlb_flushD_SE(va);
3723 cpu_cpwait();
3724 }
3725 }
3726 pmap_release_pmap_lock(kpm);
3727
3728 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3729 | ((flags & PMAP_NOCACHE)
3730 ? 0
3731 : ((flags & PMAP_PTE)
3732 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3733 #ifdef ARM_MMU_EXTENDED
3734 if (prot & VM_PROT_EXECUTE)
3735 npte &= ~L2_XS_XN;
3736 #endif
3737 l2pte_set(ptep, npte, 0);
3738 PTE_SYNC(ptep);
3739
3740 if (pg) {
3741 if (flags & PMAP_KMPAGE) {
3742 KASSERT(md->urw_mappings == 0);
3743 KASSERT(md->uro_mappings == 0);
3744 KASSERT(md->krw_mappings == 0);
3745 KASSERT(md->kro_mappings == 0);
3746 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3747 KASSERT(pv == NULL);
3748 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3749 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3750 /* if there is a color conflict, evict from cache. */
3751 if (pmap_is_page_colored_p(md)
3752 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3753 PMAPCOUNT(vac_color_change);
3754 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3755 } else if (md->pvh_attrs & PVF_MULTCLR) {
3756 /*
3757 * If this page has multiple colors, expunge
3758 * them.
3759 */
3760 PMAPCOUNT(vac_flush_lots2);
3761 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3762 }
3763 /*
3764 * Since this is a KMPAGE, there can be no contention
3765 * for this page so don't lock it.
3766 */
3767 md->pvh_attrs &= PAGE_SIZE - 1;
3768 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3769 | (va & arm_cache_prefer_mask);
3770 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3771 md->pvh_attrs |= PVF_KMPAGE;
3772 #endif
3773 atomic_inc_32(&pmap_kmpages);
3774 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3775 } else if (arm_cache_prefer_mask != 0) {
3776 if (pv == NULL) {
3777 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3778 KASSERT(pv != NULL);
3779 }
3780 pmap_acquire_page_lock(md);
3781 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3782 PVF_WIRED | PVF_KENTRY
3783 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3784 if ((prot & VM_PROT_WRITE)
3785 && !(md->pvh_attrs & PVF_NC))
3786 md->pvh_attrs |= PVF_DIRTY;
3787 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3788 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3789 pmap_release_page_lock(md);
3790 #endif
3791 }
3792 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3793 } else {
3794 if (pv != NULL)
3795 pool_put(&pmap_pv_pool, pv);
3796 #endif
3797 }
3798 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3799 KASSERT(md == NULL || !pmap_page_locked_p(md));
3800 #endif
3801 if (pmap_initialized) {
3802 UVMHIST_LOG(maphist, " <-- done (ptep %p: %#x -> %#x)",
3803 ptep, opte, npte, 0);
3804 }
3805
3806 }
3807
3808 void
3809 pmap_kremove(vaddr_t va, vsize_t len)
3810 {
3811 #ifdef UVMHIST
3812 u_int total_mappings = 0;
3813 #endif
3814
3815 PMAPCOUNT(kenter_unmappings);
3816
3817 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3818
3819 UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
3820
3821 const vaddr_t eva = va + len;
3822
3823 pmap_acquire_pmap_lock(pmap_kernel());
3824
3825 while (va < eva) {
3826 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3827 if (next_bucket > eva)
3828 next_bucket = eva;
3829
3830 pmap_t kpm = pmap_kernel();
3831 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3832 KDASSERT(l2b != NULL);
3833
3834 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3835 pt_entry_t *ptep = sptep;
3836 u_int mappings = 0;
3837
3838 while (va < next_bucket) {
3839 const pt_entry_t opte = *ptep;
3840 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3841 if (opg != NULL) {
3842 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3843
3844 if (omd->pvh_attrs & PVF_KMPAGE) {
3845 KASSERT(omd->urw_mappings == 0);
3846 KASSERT(omd->uro_mappings == 0);
3847 KASSERT(omd->krw_mappings == 0);
3848 KASSERT(omd->kro_mappings == 0);
3849 omd->pvh_attrs &= ~PVF_KMPAGE;
3850 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3851 if (arm_cache_prefer_mask != 0) {
3852 omd->pvh_attrs &= ~PVF_WRITE;
3853 }
3854 #endif
3855 atomic_dec_32(&pmap_kmpages);
3856 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3857 } else if (arm_cache_prefer_mask != 0) {
3858 pmap_acquire_page_lock(omd);
3859 pool_put(&pmap_pv_pool,
3860 pmap_kremove_pg(opg, va));
3861 pmap_release_page_lock(omd);
3862 #endif
3863 }
3864 }
3865 if (l2pte_valid_p(opte)) {
3866 l2pte_reset(ptep);
3867 PTE_SYNC(ptep);
3868 #ifdef PMAP_CACHE_VIVT
3869 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3870 #endif
3871 cpu_tlb_flushD_SE(va);
3872
3873 mappings += PAGE_SIZE / L2_S_SIZE;
3874 }
3875 va += PAGE_SIZE;
3876 ptep += PAGE_SIZE / L2_S_SIZE;
3877 }
3878 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3879 mappings, l2b->l2b_occupancy);
3880 l2b->l2b_occupancy -= mappings;
3881 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3882 #ifdef UVMHIST
3883 total_mappings += mappings;
3884 #endif
3885 }
3886 pmap_release_pmap_lock(pmap_kernel());
3887 cpu_cpwait();
3888 UVMHIST_LOG(maphist, " <--- done (%u mappings removed)",
3889 total_mappings, 0, 0, 0);
3890 }
3891
3892 bool
3893 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3894 {
3895 struct l2_dtable *l2;
3896 pd_entry_t *pdep, pde;
3897 pt_entry_t *ptep, pte;
3898 paddr_t pa;
3899 u_int l1slot;
3900
3901 pmap_acquire_pmap_lock(pm);
3902
3903 l1slot = l1pte_index(va);
3904 pdep = pmap_l1_kva(pm) + l1slot;
3905 pde = *pdep;
3906
3907 if (l1pte_section_p(pde)) {
3908 /*
3909 * These should only happen for pmap_kernel()
3910 */
3911 KDASSERT(pm == pmap_kernel());
3912 pmap_release_pmap_lock(pm);
3913 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3914 if (l1pte_supersection_p(pde)) {
3915 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3916 } else
3917 #endif
3918 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3919 } else {
3920 /*
3921 * Note that we can't rely on the validity of the L1
3922 * descriptor as an indication that a mapping exists.
3923 * We have to look it up in the L2 dtable.
3924 */
3925 l2 = pm->pm_l2[L2_IDX(l1slot)];
3926
3927 if (l2 == NULL ||
3928 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3929 pmap_release_pmap_lock(pm);
3930 return false;
3931 }
3932
3933 pte = ptep[l2pte_index(va)];
3934 pmap_release_pmap_lock(pm);
3935
3936 if (pte == 0)
3937 return false;
3938
3939 switch (pte & L2_TYPE_MASK) {
3940 case L2_TYPE_L:
3941 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3942 break;
3943
3944 default:
3945 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3946 break;
3947 }
3948 }
3949
3950 if (pap != NULL)
3951 *pap = pa;
3952
3953 return true;
3954 }
3955
3956 /*
3957 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
3958 * that map it
3959 */
3960
3961 static void
3962 pmap_pv_remove(paddr_t pa)
3963 {
3964 struct pmap_page *pp;
3965
3966 pp = pmap_pv_tracked(pa);
3967 if (pp == NULL)
3968 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
3969 pa);
3970
3971 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
3972 pmap_page_remove(md, pa);
3973 }
3974
3975 void
3976 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
3977 {
3978
3979 /* the only case is remove at the moment */
3980 KASSERT(prot == VM_PROT_NONE);
3981 pmap_pv_remove(pa);
3982 }
3983
3984 void
3985 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3986 {
3987 struct l2_bucket *l2b;
3988 vaddr_t next_bucket;
3989
3990 NPDEBUG(PDB_PROTECT,
3991 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3992 pm, sva, eva, prot));
3993
3994 if ((prot & VM_PROT_READ) == 0) {
3995 pmap_remove(pm, sva, eva);
3996 return;
3997 }
3998
3999 if (prot & VM_PROT_WRITE) {
4000 /*
4001 * If this is a read->write transition, just ignore it and let
4002 * uvm_fault() take care of it later.
4003 */
4004 return;
4005 }
4006
4007 pmap_acquire_pmap_lock(pm);
4008
4009 #ifndef ARM_MMU_EXTENDED
4010 const bool flush = eva - sva >= PAGE_SIZE * 4;
4011 u_int flags = 0;
4012 #endif
4013 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4014
4015 while (sva < eva) {
4016 next_bucket = L2_NEXT_BUCKET_VA(sva);
4017 if (next_bucket > eva)
4018 next_bucket = eva;
4019
4020 l2b = pmap_get_l2_bucket(pm, sva);
4021 if (l2b == NULL) {
4022 sva = next_bucket;
4023 continue;
4024 }
4025
4026 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4027
4028 while (sva < next_bucket) {
4029 const pt_entry_t opte = *ptep;
4030 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4031 struct vm_page *pg;
4032 #ifndef ARM_MMU_EXTENDED
4033 u_int f;
4034 #endif
4035
4036 #ifdef PMAP_CACHE_VIVT
4037 /*
4038 * OK, at this point, we know we're doing
4039 * write-protect operation. If the pmap is
4040 * active, write-back the page.
4041 */
4042 pmap_cache_wbinv_page(pm, sva, false,
4043 PVF_REF | PVF_WRITE);
4044 #endif
4045
4046 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4047 pt_entry_t npte = l2pte_set_readonly(opte);
4048 l2pte_reset(ptep);
4049 PTE_SYNC(ptep);
4050 #ifdef ARM_MMU_EXTENDED
4051 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4052 #endif
4053 l2pte_set(ptep, npte, 0);
4054 PTE_SYNC(ptep);
4055
4056 if (pg != NULL) {
4057 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4058 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4059
4060 pmap_acquire_page_lock(md);
4061 #ifndef ARM_MMU_EXTENDED
4062 f =
4063 #endif
4064 pmap_modify_pv(md, pa, pm, sva,
4065 clr_mask, 0);
4066 pmap_vac_me_harder(md, pa, pm, sva);
4067 pmap_release_page_lock(md);
4068 #ifndef ARM_MMU_EXTENDED
4069 } else {
4070 f = PVF_REF | PVF_EXEC;
4071 }
4072
4073 if (flush) {
4074 flags |= f;
4075 } else {
4076 pmap_tlb_flush_SE(pm, sva, f);
4077 #endif
4078 }
4079 }
4080
4081 sva += PAGE_SIZE;
4082 ptep += PAGE_SIZE / L2_S_SIZE;
4083 }
4084 }
4085
4086 #ifndef ARM_MMU_EXTENDED
4087 if (flush) {
4088 if (PV_BEEN_EXECD(flags)) {
4089 pmap_tlb_flushID(pm);
4090 } else if (PV_BEEN_REFD(flags)) {
4091 pmap_tlb_flushD(pm);
4092 }
4093 }
4094 #endif
4095
4096 pmap_release_pmap_lock(pm);
4097 }
4098
4099 void
4100 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4101 {
4102 struct l2_bucket *l2b;
4103 pt_entry_t *ptep;
4104 vaddr_t next_bucket;
4105 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4106
4107 NPDEBUG(PDB_EXEC,
4108 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4109 pm, sva, eva));
4110
4111 pmap_acquire_pmap_lock(pm);
4112
4113 while (sva < eva) {
4114 next_bucket = L2_NEXT_BUCKET_VA(sva);
4115 if (next_bucket > eva)
4116 next_bucket = eva;
4117
4118 l2b = pmap_get_l2_bucket(pm, sva);
4119 if (l2b == NULL) {
4120 sva = next_bucket;
4121 continue;
4122 }
4123
4124 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4125 sva < next_bucket;
4126 sva += page_size,
4127 ptep += PAGE_SIZE / L2_S_SIZE,
4128 page_size = PAGE_SIZE) {
4129 if (l2pte_valid_p(*ptep)) {
4130 cpu_icache_sync_range(sva,
4131 min(page_size, eva - sva));
4132 }
4133 }
4134 }
4135
4136 pmap_release_pmap_lock(pm);
4137 }
4138
4139 void
4140 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4141 {
4142 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4143 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4144
4145 NPDEBUG(PDB_PROTECT,
4146 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4147 md, pa, prot));
4148
4149 switch(prot) {
4150 case VM_PROT_READ|VM_PROT_WRITE:
4151 #if defined(ARM_MMU_EXTENDED)
4152 pmap_acquire_page_lock(md);
4153 pmap_clearbit(md, pa, PVF_EXEC);
4154 pmap_release_page_lock(md);
4155 break;
4156 #endif
4157 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4158 break;
4159
4160 case VM_PROT_READ:
4161 #if defined(ARM_MMU_EXTENDED)
4162 pmap_acquire_page_lock(md);
4163 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4164 pmap_release_page_lock(md);
4165 break;
4166 #endif
4167 case VM_PROT_READ|VM_PROT_EXECUTE:
4168 pmap_acquire_page_lock(md);
4169 pmap_clearbit(md, pa, PVF_WRITE);
4170 pmap_release_page_lock(md);
4171 break;
4172
4173 default:
4174 pmap_page_remove(md, pa);
4175 break;
4176 }
4177 }
4178
4179 /*
4180 * pmap_clear_modify:
4181 *
4182 * Clear the "modified" attribute for a page.
4183 */
4184 bool
4185 pmap_clear_modify(struct vm_page *pg)
4186 {
4187 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4188 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4189 bool rv;
4190
4191 pmap_acquire_page_lock(md);
4192
4193 if (md->pvh_attrs & PVF_MOD) {
4194 rv = true;
4195 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4196 /*
4197 * If we are going to clear the modified bit and there are
4198 * no other modified bits set, flush the page to memory and
4199 * mark it clean.
4200 */
4201 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4202 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4203 #endif
4204 pmap_clearbit(md, pa, PVF_MOD);
4205 } else {
4206 rv = false;
4207 }
4208 pmap_release_page_lock(md);
4209
4210 return rv;
4211 }
4212
4213 /*
4214 * pmap_clear_reference:
4215 *
4216 * Clear the "referenced" attribute for a page.
4217 */
4218 bool
4219 pmap_clear_reference(struct vm_page *pg)
4220 {
4221 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4222 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4223 bool rv;
4224
4225 pmap_acquire_page_lock(md);
4226
4227 if (md->pvh_attrs & PVF_REF) {
4228 rv = true;
4229 pmap_clearbit(md, pa, PVF_REF);
4230 } else {
4231 rv = false;
4232 }
4233 pmap_release_page_lock(md);
4234
4235 return rv;
4236 }
4237
4238 /*
4239 * pmap_is_modified:
4240 *
4241 * Test if a page has the "modified" attribute.
4242 */
4243 /* See <arm/arm32/pmap.h> */
4244
4245 /*
4246 * pmap_is_referenced:
4247 *
4248 * Test if a page has the "referenced" attribute.
4249 */
4250 /* See <arm/arm32/pmap.h> */
4251
4252 #if defined(ARM_MMU_EXTENDED) && 0
4253 int
4254 pmap_prefetchabt_fixup(void *v)
4255 {
4256 struct trapframe * const tf = v;
4257 vaddr_t va = trunc_page(tf->tf_pc);
4258 int rv = ABORT_FIXUP_FAILED;
4259
4260 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4261 return rv;
4262
4263 kpreempt_disable();
4264 pmap_t pm = curcpu()->ci_pmap_cur;
4265 const size_t l1slot = l1pte_index(va);
4266 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4267 if (l2 == NULL)
4268 goto out;
4269
4270 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4271 if (l2b->l2b_kva == NULL)
4272 goto out;
4273
4274 /*
4275 * Check the PTE itself.
4276 */
4277 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4278 const pt_entry_t opte = *ptep;
4279 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4280 goto out;
4281
4282 paddr_t pa = l2pte_pa(pte);
4283 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4284 KASSERT(pg != NULL);
4285
4286 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4287
4288 pmap_acquire_page_lock(md);
4289 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4290 KASSERT(pv != NULL);
4291
4292 if (PV_IS_EXEC_P(pv->pv_flags)) {
4293 l2pte_reset(ptep);
4294 PTE_SYNC(ptep);
4295 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4296 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4297 pmap_syncicache_page(md, pa);
4298 }
4299 rv = ABORT_FIXUP_RETURN;
4300 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4301 PTE_SYNC(ptep);
4302 }
4303 pmap_release_page_lock(md);
4304
4305 out:
4306 kpreempt_enable();
4307 return rv;
4308 }
4309 #endif
4310
4311 int
4312 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4313 {
4314 struct l2_dtable *l2;
4315 struct l2_bucket *l2b;
4316 paddr_t pa;
4317 const size_t l1slot = l1pte_index(va);
4318 int rv = 0;
4319
4320 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4321
4322 va = trunc_page(va);
4323
4324 KASSERT(!user || (pm != pmap_kernel()));
4325
4326 UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
4327 pm, va, ftype, user);
4328 #ifdef ARM_MMU_EXTENDED
4329 UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
4330 cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4331 PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4332 #endif
4333
4334 pmap_acquire_pmap_lock(pm);
4335
4336 /*
4337 * If there is no l2_dtable for this address, then the process
4338 * has no business accessing it.
4339 *
4340 * Note: This will catch userland processes trying to access
4341 * kernel addresses.
4342 */
4343 l2 = pm->pm_l2[L2_IDX(l1slot)];
4344 if (l2 == NULL) {
4345 UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
4346 goto out;
4347 }
4348
4349 /*
4350 * Likewise if there is no L2 descriptor table
4351 */
4352 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4353 if (l2b->l2b_kva == NULL) {
4354 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
4355 goto out;
4356 }
4357
4358 /*
4359 * Check the PTE itself.
4360 */
4361 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4362 pt_entry_t const opte = *ptep;
4363 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4364 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
4365 goto out;
4366 }
4367
4368 #ifndef ARM_HAS_VBAR
4369 /*
4370 * Catch a userland access to the vector page mapped at 0x0
4371 */
4372 if (user && (opte & L2_S_PROT_U) == 0) {
4373 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4374 goto out;
4375 }
4376 #endif
4377
4378 pa = l2pte_pa(opte);
4379
4380 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4381 /*
4382 * This looks like a good candidate for "page modified"
4383 * emulation...
4384 */
4385 struct pv_entry *pv;
4386 struct vm_page *pg;
4387
4388 /* Extract the physical address of the page */
4389 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4390 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4391 goto out;
4392 }
4393
4394 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4395
4396 /* Get the current flags for this page. */
4397 pmap_acquire_page_lock(md);
4398 pv = pmap_find_pv(md, pm, va);
4399 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4400 pmap_release_page_lock(md);
4401 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4402 goto out;
4403 }
4404
4405 /*
4406 * Do the flags say this page is writable? If not then it
4407 * is a genuine write fault. If yes then the write fault is
4408 * our fault as we did not reflect the write access in the
4409 * PTE. Now we know a write has occurred we can correct this
4410 * and also set the modified bit
4411 */
4412 if ((pv->pv_flags & PVF_WRITE) == 0) {
4413 pmap_release_page_lock(md);
4414 goto out;
4415 }
4416
4417 md->pvh_attrs |= PVF_REF | PVF_MOD;
4418 pv->pv_flags |= PVF_REF | PVF_MOD;
4419 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4420 /*
4421 * If there are cacheable mappings for this page, mark it dirty.
4422 */
4423 if ((md->pvh_attrs & PVF_NC) == 0)
4424 md->pvh_attrs |= PVF_DIRTY;
4425 #endif
4426 #ifdef ARM_MMU_EXTENDED
4427 if (md->pvh_attrs & PVF_EXEC) {
4428 md->pvh_attrs &= ~PVF_EXEC;
4429 PMAPCOUNT(exec_discarded_modfixup);
4430 }
4431 #endif
4432 pmap_release_page_lock(md);
4433
4434 /*
4435 * Re-enable write permissions for the page. No need to call
4436 * pmap_vac_me_harder(), since this is just a
4437 * modified-emulation fault, and the PVF_WRITE bit isn't
4438 * changing. We've already set the cacheable bits based on
4439 * the assumption that we can write to this page.
4440 */
4441 const pt_entry_t npte =
4442 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4443 #ifdef ARM_MMU_EXTENDED
4444 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4445 #endif
4446 | 0;
4447 l2pte_reset(ptep);
4448 PTE_SYNC(ptep);
4449 pmap_tlb_flush_SE(pm, va,
4450 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4451 l2pte_set(ptep, npte, 0);
4452 PTE_SYNC(ptep);
4453 PMAPCOUNT(fixup_mod);
4454 rv = 1;
4455 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
4456 opte, npte, 0, 0);
4457 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4458 /*
4459 * This looks like a good candidate for "page referenced"
4460 * emulation.
4461 */
4462 struct vm_page *pg;
4463
4464 /* Extract the physical address of the page */
4465 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4466 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4467 goto out;
4468 }
4469
4470 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4471
4472 /* Get the current flags for this page. */
4473 pmap_acquire_page_lock(md);
4474 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4475 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4476 pmap_release_page_lock(md);
4477 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4478 goto out;
4479 }
4480
4481 md->pvh_attrs |= PVF_REF;
4482 pv->pv_flags |= PVF_REF;
4483
4484 pt_entry_t npte =
4485 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4486 #ifdef ARM_MMU_EXTENDED
4487 if (pm != pmap_kernel()) {
4488 npte |= L2_XS_nG;
4489 }
4490 /*
4491 * If we got called from prefetch abort, then ftype will have
4492 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4493 * the PTE.
4494 */
4495 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4496 /*
4497 * Is this a mapping of an executable page?
4498 */
4499 if ((pv->pv_flags & PVF_EXEC) == 0) {
4500 pmap_release_page_lock(md);
4501 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4502 0, 0, 0, 0);
4503 goto out;
4504 }
4505 /*
4506 * If we haven't synced the page, do so now.
4507 */
4508 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4509 UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
4510 pa, 0, 0, 0);
4511 pmap_syncicache_page(md, pa);
4512 PMAPCOUNT(fixup_exec);
4513 }
4514 npte &= ~L2_XS_XN;
4515 }
4516 #endif /* ARM_MMU_EXTENDED */
4517 pmap_release_page_lock(md);
4518 l2pte_reset(ptep);
4519 PTE_SYNC(ptep);
4520 pmap_tlb_flush_SE(pm, va,
4521 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4522 l2pte_set(ptep, npte, 0);
4523 PTE_SYNC(ptep);
4524 PMAPCOUNT(fixup_ref);
4525 rv = 1;
4526 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
4527 opte, npte, 0, 0);
4528 #ifdef ARM_MMU_EXTENDED
4529 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4530 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4531 if (pg == NULL) {
4532 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4533 goto out;
4534 }
4535
4536 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4537
4538 /* Get the current flags for this page. */
4539 pmap_acquire_page_lock(md);
4540 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4541 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4542 pmap_release_page_lock(md);
4543 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4544 goto out;
4545 }
4546
4547 /*
4548 * If we haven't synced the page, do so now.
4549 */
4550 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4551 UVMHIST_LOG(maphist, "syncicache page #%#x",
4552 pa, 0, 0, 0);
4553 pmap_syncicache_page(md, pa);
4554 }
4555 pmap_release_page_lock(md);
4556 /*
4557 * Turn off no-execute.
4558 */
4559 KASSERT(opte & L2_XS_nG);
4560 l2pte_reset(ptep);
4561 PTE_SYNC(ptep);
4562 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4563 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4564 PTE_SYNC(ptep);
4565 rv = 1;
4566 PMAPCOUNT(fixup_exec);
4567 UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
4568 opte, opte & ~L2_XS_XN, 0, 0);
4569 #endif
4570 }
4571
4572 #ifndef ARM_MMU_EXTENDED
4573 /*
4574 * We know there is a valid mapping here, so simply
4575 * fix up the L1 if necessary.
4576 */
4577 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4578 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4579 if (*pdep != pde) {
4580 l1pte_setone(pdep, pde);
4581 PDE_SYNC(pdep);
4582 rv = 1;
4583 PMAPCOUNT(fixup_pdes);
4584 }
4585 #endif
4586
4587 #ifdef CPU_SA110
4588 /*
4589 * There are bugs in the rev K SA110. This is a check for one
4590 * of them.
4591 */
4592 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4593 curcpu()->ci_arm_cpurev < 3) {
4594 /* Always current pmap */
4595 if (l2pte_valid_p(opte)) {
4596 extern int kernel_debug;
4597 if (kernel_debug & 1) {
4598 struct proc *p = curlwp->l_proc;
4599 printf("prefetch_abort: page is already "
4600 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4601 printf("prefetch_abort: pc=%08lx proc=%p "
4602 "process=%s\n", va, p, p->p_comm);
4603 printf("prefetch_abort: far=%08x fs=%x\n",
4604 cpu_faultaddress(), cpu_faultstatus());
4605 }
4606 #ifdef DDB
4607 if (kernel_debug & 2)
4608 Debugger();
4609 #endif
4610 rv = 1;
4611 }
4612 }
4613 #endif /* CPU_SA110 */
4614
4615 #ifndef ARM_MMU_EXTENDED
4616 /*
4617 * If 'rv == 0' at this point, it generally indicates that there is a
4618 * stale TLB entry for the faulting address. That might be due to a
4619 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4620 */
4621 if (rv == 0
4622 && pm->pm_l1->l1_domain_use_count == 1
4623 && pmap_needs_pte_sync == 0) {
4624 pmap_needs_pte_sync = 1;
4625 PTE_SYNC(ptep);
4626 PMAPCOUNT(fixup_ptesync);
4627 rv = 1;
4628 }
4629 #endif
4630
4631 #ifndef MULTIPROCESSOR
4632 #if defined(DEBUG) || 1
4633 /*
4634 * If 'rv == 0' at this point, it generally indicates that there is a
4635 * stale TLB entry for the faulting address. This happens when two or
4636 * more processes are sharing an L1. Since we don't flush the TLB on
4637 * a context switch between such processes, we can take domain faults
4638 * for mappings which exist at the same VA in both processes. EVEN IF
4639 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4640 * example.
4641 *
4642 * This is extremely likely to happen if pmap_enter() updated the L1
4643 * entry for a recently entered mapping. In this case, the TLB is
4644 * flushed for the new mapping, but there may still be TLB entries for
4645 * other mappings belonging to other processes in the 1MB range
4646 * covered by the L1 entry.
4647 *
4648 * Since 'rv == 0', we know that the L1 already contains the correct
4649 * value, so the fault must be due to a stale TLB entry.
4650 *
4651 * Since we always need to flush the TLB anyway in the case where we
4652 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4653 * stale TLB entries dynamically.
4654 *
4655 * However, the above condition can ONLY happen if the current L1 is
4656 * being shared. If it happens when the L1 is unshared, it indicates
4657 * that other parts of the pmap are not doing their job WRT managing
4658 * the TLB.
4659 */
4660 if (rv == 0
4661 #ifndef ARM_MMU_EXTENDED
4662 && pm->pm_l1->l1_domain_use_count == 1
4663 #endif
4664 && true) {
4665 #ifdef DEBUG
4666 extern int last_fault_code;
4667 #else
4668 int last_fault_code = ftype & VM_PROT_EXECUTE
4669 ? armreg_ifsr_read()
4670 : armreg_dfsr_read();
4671 #endif
4672 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4673 pm, va, ftype);
4674 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4675 l2, l2b, ptep, opte);
4676
4677 #ifndef ARM_MMU_EXTENDED
4678 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4679 pdep, pde, last_fault_code);
4680 #else
4681 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4682 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4683 armreg_ttbcr_read());
4684 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4685 last_fault_code, curcpu()->ci_pmap_cur,
4686 curcpu()->ci_pmap_asid_cur,
4687 armreg_contextidr_read(), armreg_dacr_read());
4688 #ifdef _ARM_ARCH_7
4689 if (ftype & VM_PROT_WRITE)
4690 armreg_ats1cuw_write(va);
4691 else
4692 armreg_ats1cur_write(va);
4693 arm_isb();
4694 printf("fixup: par %#x\n", armreg_par_read());
4695 #endif
4696 #endif
4697 #ifdef DDB
4698 extern int kernel_debug;
4699
4700 if (kernel_debug & 2) {
4701 pmap_release_pmap_lock(pm);
4702 #ifdef UVMHIST
4703 KERNHIST_DUMP(maphist);
4704 #endif
4705 cpu_Debugger();
4706 pmap_acquire_pmap_lock(pm);
4707 }
4708 #endif
4709 }
4710 #endif
4711 #endif
4712
4713 #ifndef ARM_MMU_EXTENDED
4714 /* Flush the TLB in the shared L1 case - see comment above */
4715 pmap_tlb_flush_SE(pm, va,
4716 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4717 #endif
4718
4719 rv = 1;
4720
4721 out:
4722 pmap_release_pmap_lock(pm);
4723
4724 return (rv);
4725 }
4726
4727 /*
4728 * Routine: pmap_procwr
4729 *
4730 * Function:
4731 * Synchronize caches corresponding to [addr, addr+len) in p.
4732 *
4733 */
4734 void
4735 pmap_procwr(struct proc *p, vaddr_t va, int len)
4736 {
4737 /* We only need to do anything if it is the current process. */
4738 if (p == curproc)
4739 cpu_icache_sync_range(va, len);
4740 }
4741
4742 /*
4743 * Routine: pmap_unwire
4744 * Function: Clear the wired attribute for a map/virtual-address pair.
4745 *
4746 * In/out conditions:
4747 * The mapping must already exist in the pmap.
4748 */
4749 void
4750 pmap_unwire(pmap_t pm, vaddr_t va)
4751 {
4752 struct l2_bucket *l2b;
4753 pt_entry_t *ptep, pte;
4754 struct vm_page *pg;
4755 paddr_t pa;
4756
4757 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4758
4759 pmap_acquire_pmap_lock(pm);
4760
4761 l2b = pmap_get_l2_bucket(pm, va);
4762 KDASSERT(l2b != NULL);
4763
4764 ptep = &l2b->l2b_kva[l2pte_index(va)];
4765 pte = *ptep;
4766
4767 /* Extract the physical address of the page */
4768 pa = l2pte_pa(pte);
4769
4770 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4771 /* Update the wired bit in the pv entry for this page. */
4772 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4773
4774 pmap_acquire_page_lock(md);
4775 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4776 pmap_release_page_lock(md);
4777 }
4778
4779 pmap_release_pmap_lock(pm);
4780 }
4781
4782 void
4783 pmap_activate(struct lwp *l)
4784 {
4785 struct cpu_info * const ci = curcpu();
4786 extern int block_userspace_access;
4787 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4788 #ifdef ARM_MMU_EXTENDED
4789 struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
4790 #endif
4791
4792 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4793
4794 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
4795
4796 /*
4797 * If activating a non-current lwp or the current lwp is
4798 * already active, just return.
4799 */
4800 if (false
4801 || l != curlwp
4802 #ifdef ARM_MMU_EXTENDED
4803 || (ci->ci_pmap_cur == npm &&
4804 (npm == pmap_kernel()
4805 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4806 #else
4807 || npm->pm_activated == true
4808 #endif
4809 || false) {
4810 UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
4811 return;
4812 }
4813
4814 #ifndef ARM_MMU_EXTENDED
4815 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4816 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4817
4818 /*
4819 * If TTB and DACR are unchanged, short-circuit all the
4820 * TLB/cache management stuff.
4821 */
4822 pmap_t opm = ci->ci_lastlwp
4823 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4824 : NULL;
4825 if (opm != NULL) {
4826 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4827 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4828
4829 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4830 goto all_done;
4831 }
4832 #endif /* !ARM_MMU_EXTENDED */
4833
4834 PMAPCOUNT(activations);
4835 block_userspace_access = 1;
4836
4837 #ifndef ARM_MMU_EXTENDED
4838 /*
4839 * If switching to a user vmspace which is different to the
4840 * most recent one, and the most recent one is potentially
4841 * live in the cache, we must write-back and invalidate the
4842 * entire cache.
4843 */
4844 pmap_t rpm = ci->ci_pmap_lastuser;
4845 #endif
4846
4847 /*
4848 * XXXSCW: There's a corner case here which can leave turds in the cache as
4849 * reported in kern/41058. They're probably left over during tear-down and
4850 * switching away from an exiting process. Until the root cause is identified
4851 * and fixed, zap the cache when switching pmaps. This will result in a few
4852 * unnecessary cache flushes, but that's better than silently corrupting data.
4853 */
4854 #ifndef ARM_MMU_EXTENDED
4855 #if 0
4856 if (npm != pmap_kernel() && rpm && npm != rpm &&
4857 rpm->pm_cstate.cs_cache) {
4858 rpm->pm_cstate.cs_cache = 0;
4859 #ifdef PMAP_CACHE_VIVT
4860 cpu_idcache_wbinv_all();
4861 #endif
4862 }
4863 #else
4864 if (rpm) {
4865 rpm->pm_cstate.cs_cache = 0;
4866 if (npm == pmap_kernel())
4867 ci->ci_pmap_lastuser = NULL;
4868 #ifdef PMAP_CACHE_VIVT
4869 cpu_idcache_wbinv_all();
4870 #endif
4871 }
4872 #endif
4873
4874 /* No interrupts while we frob the TTB/DACR */
4875 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4876 #endif /* !ARM_MMU_EXTENDED */
4877
4878 #ifndef ARM_HAS_VBAR
4879 /*
4880 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4881 * entry corresponding to 'vector_page' in the incoming L1 table
4882 * before switching to it otherwise subsequent interrupts/exceptions
4883 * (including domain faults!) will jump into hyperspace.
4884 */
4885 if (npm->pm_pl1vec != NULL) {
4886 cpu_tlb_flushID_SE((u_int)vector_page);
4887 cpu_cpwait();
4888 *npm->pm_pl1vec = npm->pm_l1vec;
4889 PTE_SYNC(npm->pm_pl1vec);
4890 }
4891 #endif
4892
4893 #ifdef ARM_MMU_EXTENDED
4894 /*
4895 * Assume that TTBR1 has only global mappings and TTBR0 only has
4896 * non-global mappings. To prevent speculation from doing evil things
4897 * we disable translation table walks using TTBR0 before setting the
4898 * CONTEXTIDR (ASID) or new TTBR0 value. Once both are set, table
4899 * walks are reenabled.
4900 */
4901 UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
4902 const uint32_t old_ttbcr = armreg_ttbcr_read();
4903 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4904 arm_isb();
4905 pmap_tlb_asid_acquire(npm, l);
4906 UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
4907 cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
4908 /*
4909 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
4910 * been updated.
4911 */
4912 arm_isb();
4913 if (npm != pmap_kernel()) {
4914 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4915 }
4916 cpu_cpwait();
4917 ci->ci_pmap_asid_cur = pai->pai_asid;
4918 #else
4919 cpu_domains(ndacr);
4920 if (npm == pmap_kernel() || npm == rpm) {
4921 /*
4922 * Switching to a kernel thread, or back to the
4923 * same user vmspace as before... Simply update
4924 * the TTB (no TLB flush required)
4925 */
4926 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4927 cpu_cpwait();
4928 } else {
4929 /*
4930 * Otherwise, update TTB and flush TLB
4931 */
4932 cpu_context_switch(npm->pm_l1->l1_physaddr);
4933 if (rpm != NULL)
4934 rpm->pm_cstate.cs_tlb = 0;
4935 }
4936
4937 restore_interrupts(oldirqstate);
4938 #endif /* ARM_MMU_EXTENDED */
4939
4940 block_userspace_access = 0;
4941
4942 #ifndef ARM_MMU_EXTENDED
4943 all_done:
4944 /*
4945 * The new pmap is resident. Make sure it's marked
4946 * as resident in the cache/TLB.
4947 */
4948 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4949 if (npm != pmap_kernel())
4950 ci->ci_pmap_lastuser = npm;
4951
4952 /* The old pmap is not longer active */
4953 if (opm != npm) {
4954 if (opm != NULL)
4955 opm->pm_activated = false;
4956
4957 /* But the new one is */
4958 npm->pm_activated = true;
4959 }
4960 #endif
4961 ci->ci_pmap_cur = npm;
4962 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4963 }
4964
4965 void
4966 pmap_deactivate(struct lwp *l)
4967 {
4968 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
4969
4970 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4971
4972 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
4973
4974 #ifdef ARM_MMU_EXTENDED
4975 kpreempt_disable();
4976 struct cpu_info * const ci = curcpu();
4977 /*
4978 * Disable translation table walks from TTBR0 while no pmap has been
4979 * activated.
4980 */
4981 const uint32_t old_ttbcr = armreg_ttbcr_read();
4982 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4983 arm_isb();
4984 pmap_tlb_asid_deactivate(pm);
4985 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4986 ci->ci_pmap_cur = pmap_kernel();
4987 ci->ci_pmap_asid_cur = KERNEL_PID;
4988 kpreempt_enable();
4989 #else
4990 /*
4991 * If the process is exiting, make sure pmap_activate() does
4992 * a full MMU context-switch and cache flush, which we might
4993 * otherwise skip. See PR port-arm/38950.
4994 */
4995 if (l->l_proc->p_sflag & PS_WEXIT)
4996 curcpu()->ci_lastlwp = NULL;
4997
4998 pm->pm_activated = false;
4999 #endif
5000 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5001 }
5002
5003 void
5004 pmap_update(pmap_t pm)
5005 {
5006
5007 if (pm->pm_remove_all) {
5008 #ifdef ARM_MMU_EXTENDED
5009 KASSERT(pm != pmap_kernel());
5010
5011 KASSERTMSG(curcpu()->ci_pmap_cur != pm
5012 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5013 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5014 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5015 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5016 /*
5017 * Finish up the pmap_remove_all() optimisation by flushing
5018 * all our ASIDs.
5019 */
5020 pmap_tlb_asid_release_all(pm);
5021 #else
5022 /*
5023 * Finish up the pmap_remove_all() optimisation by flushing
5024 * the TLB.
5025 */
5026 pmap_tlb_flushID(pm);
5027 #endif
5028 pm->pm_remove_all = false;
5029 }
5030
5031 #ifdef ARM_MMU_EXTENDED
5032 #if defined(MULTIPROCESSOR)
5033 armreg_bpiallis_write(0);
5034 #else
5035 armreg_bpiall_write(0);
5036 #endif
5037
5038 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5039 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5040 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5041 PMAP_COUNT(shootdown_ipis);
5042 }
5043 #endif
5044 KASSERTMSG(pm == pmap_kernel()
5045 || curcpu()->ci_pmap_cur != pm
5046 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5047 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5048 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5049 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5050 #else
5051 if (pmap_is_current(pm)) {
5052 /*
5053 * If we're dealing with a current userland pmap, move its L1
5054 * to the end of the LRU.
5055 */
5056 if (pm != pmap_kernel())
5057 pmap_use_l1(pm);
5058
5059 /*
5060 * We can assume we're done with frobbing the cache/tlb for
5061 * now. Make sure any future pmap ops don't skip cache/tlb
5062 * flushes.
5063 */
5064 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5065 }
5066 #endif
5067
5068 PMAPCOUNT(updates);
5069
5070 /*
5071 * make sure TLB/cache operations have completed.
5072 */
5073 cpu_cpwait();
5074 }
5075
5076 void
5077 pmap_remove_all(pmap_t pm)
5078 {
5079
5080 /*
5081 * The vmspace described by this pmap is about to be torn down.
5082 * Until pmap_update() is called, UVM will only make calls
5083 * to pmap_remove(). We can make life much simpler by flushing
5084 * the cache now, and deferring TLB invalidation to pmap_update().
5085 */
5086 #ifdef PMAP_CACHE_VIVT
5087 pmap_cache_wbinv_all(pm, PVF_EXEC);
5088 #endif
5089 pm->pm_remove_all = true;
5090 }
5091
5092 /*
5093 * Retire the given physical map from service.
5094 * Should only be called if the map contains no valid mappings.
5095 */
5096 void
5097 pmap_destroy(pmap_t pm)
5098 {
5099 u_int count;
5100
5101 if (pm == NULL)
5102 return;
5103
5104 if (pm->pm_remove_all) {
5105 pmap_tlb_flushID(pm);
5106 pm->pm_remove_all = false;
5107 }
5108
5109 /*
5110 * Drop reference count
5111 */
5112 mutex_enter(pm->pm_lock);
5113 count = --pm->pm_obj.uo_refs;
5114 mutex_exit(pm->pm_lock);
5115 if (count > 0) {
5116 #ifndef ARM_MMU_EXTENDED
5117 if (pmap_is_current(pm)) {
5118 if (pm != pmap_kernel())
5119 pmap_use_l1(pm);
5120 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5121 }
5122 #endif
5123 return;
5124 }
5125
5126 /*
5127 * reference count is zero, free pmap resources and then free pmap.
5128 */
5129
5130 #ifndef ARM_HAS_VBAR
5131 if (vector_page < KERNEL_BASE) {
5132 KDASSERT(!pmap_is_current(pm));
5133
5134 /* Remove the vector page mapping */
5135 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5136 pmap_update(pm);
5137 }
5138 #endif
5139
5140 pmap_free_l1(pm);
5141
5142 #ifdef ARM_MMU_EXTENDED
5143 #ifdef MULTIPROCESSOR
5144 kcpuset_destroy(pm->pm_active);
5145 kcpuset_destroy(pm->pm_onproc);
5146 #endif
5147 #else
5148 struct cpu_info * const ci = curcpu();
5149 if (ci->ci_pmap_lastuser == pm)
5150 ci->ci_pmap_lastuser = NULL;
5151 #endif
5152
5153 uvm_obj_destroy(&pm->pm_obj, false);
5154 mutex_destroy(&pm->pm_obj_lock);
5155 pool_cache_put(&pmap_cache, pm);
5156 }
5157
5158
5159 /*
5160 * void pmap_reference(pmap_t pm)
5161 *
5162 * Add a reference to the specified pmap.
5163 */
5164 void
5165 pmap_reference(pmap_t pm)
5166 {
5167
5168 if (pm == NULL)
5169 return;
5170
5171 #ifndef ARM_MMU_EXTENDED
5172 pmap_use_l1(pm);
5173 #endif
5174
5175 mutex_enter(pm->pm_lock);
5176 pm->pm_obj.uo_refs++;
5177 mutex_exit(pm->pm_lock);
5178 }
5179
5180 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5181
5182 static struct evcnt pmap_prefer_nochange_ev =
5183 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5184 static struct evcnt pmap_prefer_change_ev =
5185 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5186
5187 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5188 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5189
5190 void
5191 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5192 {
5193 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5194 vaddr_t va = *vap;
5195 vaddr_t diff = (hint - va) & mask;
5196 if (diff == 0) {
5197 pmap_prefer_nochange_ev.ev_count++;
5198 } else {
5199 pmap_prefer_change_ev.ev_count++;
5200 if (__predict_false(td))
5201 va -= mask + 1;
5202 *vap = va + diff;
5203 }
5204 }
5205 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5206
5207 /*
5208 * pmap_zero_page()
5209 *
5210 * Zero a given physical page by mapping it at a page hook point.
5211 * In doing the zero page op, the page we zero is mapped cachable, as with
5212 * StrongARM accesses to non-cached pages are non-burst making writing
5213 * _any_ bulk data very slow.
5214 */
5215 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5216 void
5217 pmap_zero_page_generic(paddr_t pa)
5218 {
5219 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5220 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5221 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5222 #endif
5223 #if defined(PMAP_CACHE_VIPT)
5224 /* Choose the last page color it had, if any */
5225 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5226 #else
5227 const vsize_t va_offset = 0;
5228 #endif
5229 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5230 /*
5231 * Is this page mapped at its natural color?
5232 * If we have all of memory mapped, then just convert PA to VA.
5233 */
5234 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5235 || va_offset == (pa & arm_cache_prefer_mask);
5236 const vaddr_t vdstp = okcolor
5237 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5238 : cpu_cdstp(va_offset);
5239 #else
5240 const bool okcolor = false;
5241 const vaddr_t vdstp = cpu_cdstp(va_offset);
5242 #endif
5243 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5244
5245
5246 #ifdef DEBUG
5247 if (!SLIST_EMPTY(&md->pvh_list))
5248 panic("pmap_zero_page: page has mappings");
5249 #endif
5250
5251 KDASSERT((pa & PGOFSET) == 0);
5252
5253 if (!okcolor) {
5254 /*
5255 * Hook in the page, zero it, and purge the cache for that
5256 * zeroed page. Invalidate the TLB as needed.
5257 */
5258 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5259 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5260 l2pte_set(ptep, npte, 0);
5261 PTE_SYNC(ptep);
5262 cpu_tlb_flushD_SE(vdstp);
5263 cpu_cpwait();
5264 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5265 && !defined(ARM_MMU_EXTENDED)
5266 /*
5267 * If we are direct-mapped and our color isn't ok, then before
5268 * we bzero the page invalidate its contents from the cache and
5269 * reset the color to its natural color.
5270 */
5271 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5272 md->pvh_attrs &= ~arm_cache_prefer_mask;
5273 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5274 #endif
5275 }
5276 bzero_page(vdstp);
5277 if (!okcolor) {
5278 /*
5279 * Unmap the page.
5280 */
5281 l2pte_reset(ptep);
5282 PTE_SYNC(ptep);
5283 cpu_tlb_flushD_SE(vdstp);
5284 #ifdef PMAP_CACHE_VIVT
5285 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5286 #endif
5287 }
5288 #ifdef PMAP_CACHE_VIPT
5289 /*
5290 * This page is now cache resident so it now has a page color.
5291 * Any contents have been obliterated so clear the EXEC flag.
5292 */
5293 #ifndef ARM_MMU_EXTENDED
5294 if (!pmap_is_page_colored_p(md)) {
5295 PMAPCOUNT(vac_color_new);
5296 md->pvh_attrs |= PVF_COLORED;
5297 }
5298 md->pvh_attrs |= PVF_DIRTY;
5299 #endif
5300 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5301 md->pvh_attrs &= ~PVF_EXEC;
5302 PMAPCOUNT(exec_discarded_zero);
5303 }
5304 #endif
5305 }
5306 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5307
5308 #if ARM_MMU_XSCALE == 1
5309 void
5310 pmap_zero_page_xscale(paddr_t pa)
5311 {
5312 #ifdef DEBUG
5313 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5314 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5315
5316 if (!SLIST_EMPTY(&md->pvh_list))
5317 panic("pmap_zero_page: page has mappings");
5318 #endif
5319
5320 KDASSERT((pa & PGOFSET) == 0);
5321
5322 /*
5323 * Hook in the page, zero it, and purge the cache for that
5324 * zeroed page. Invalidate the TLB as needed.
5325 */
5326
5327 pt_entry_t npte = L2_S_PROTO | pa |
5328 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5329 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5330 l2pte_set(cdst_pte, npte, 0);
5331 PTE_SYNC(cdst_pte);
5332 cpu_tlb_flushD_SE(cdstp);
5333 cpu_cpwait();
5334 bzero_page(cdstp);
5335 xscale_cache_clean_minidata();
5336 l2pte_reset(cdst_pte);
5337 PTE_SYNC(cdst_pte);
5338 }
5339 #endif /* ARM_MMU_XSCALE == 1 */
5340
5341 /* pmap_pageidlezero()
5342 *
5343 * The same as above, except that we assume that the page is not
5344 * mapped. This means we never have to flush the cache first. Called
5345 * from the idle loop.
5346 */
5347 bool
5348 pmap_pageidlezero(paddr_t pa)
5349 {
5350 bool rv = true;
5351 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5352 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5353 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5354 #endif
5355 #ifdef PMAP_CACHE_VIPT
5356 /* Choose the last page color it had, if any */
5357 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5358 #else
5359 const vsize_t va_offset = 0;
5360 #endif
5361 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5362 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5363 || va_offset == (pa & arm_cache_prefer_mask);
5364 const vaddr_t vdstp = okcolor
5365 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5366 : cpu_cdstp(va_offset);
5367 #else
5368 const bool okcolor = false;
5369 const vaddr_t vdstp = cpu_cdstp(va_offset);
5370 #endif
5371 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5372
5373
5374 #ifdef DEBUG
5375 if (!SLIST_EMPTY(&md->pvh_list))
5376 panic("pmap_pageidlezero: page has mappings");
5377 #endif
5378
5379 KDASSERT((pa & PGOFSET) == 0);
5380
5381 if (!okcolor) {
5382 /*
5383 * Hook in the page, zero it, and purge the cache for that
5384 * zeroed page. Invalidate the TLB as needed.
5385 */
5386 const pt_entry_t npte = L2_S_PROTO | pa |
5387 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5388 l2pte_set(ptep, npte, 0);
5389 PTE_SYNC(ptep);
5390 cpu_tlb_flushD_SE(vdstp);
5391 cpu_cpwait();
5392 }
5393
5394 uint64_t *ptr = (uint64_t *)vdstp;
5395 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5396 if (sched_curcpu_runnable_p() != 0) {
5397 /*
5398 * A process has become ready. Abort now,
5399 * so we don't keep it waiting while we
5400 * do slow memory access to finish this
5401 * page.
5402 */
5403 rv = false;
5404 break;
5405 }
5406 *ptr++ = 0;
5407 }
5408
5409 #ifdef PMAP_CACHE_VIVT
5410 if (rv)
5411 /*
5412 * if we aborted we'll rezero this page again later so don't
5413 * purge it unless we finished it
5414 */
5415 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5416 #elif defined(PMAP_CACHE_VIPT)
5417 /*
5418 * This page is now cache resident so it now has a page color.
5419 * Any contents have been obliterated so clear the EXEC flag.
5420 */
5421 #ifndef ARM_MMU_EXTENDED
5422 if (!pmap_is_page_colored_p(md)) {
5423 PMAPCOUNT(vac_color_new);
5424 md->pvh_attrs |= PVF_COLORED;
5425 }
5426 #endif
5427 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5428 md->pvh_attrs &= ~PVF_EXEC;
5429 PMAPCOUNT(exec_discarded_zero);
5430 }
5431 #endif
5432 /*
5433 * Unmap the page.
5434 */
5435 if (!okcolor) {
5436 l2pte_reset(ptep);
5437 PTE_SYNC(ptep);
5438 cpu_tlb_flushD_SE(vdstp);
5439 }
5440
5441 return rv;
5442 }
5443
5444 /*
5445 * pmap_copy_page()
5446 *
5447 * Copy one physical page into another, by mapping the pages into
5448 * hook points. The same comment regarding cachability as in
5449 * pmap_zero_page also applies here.
5450 */
5451 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5452 void
5453 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5454 {
5455 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5456 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5457 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5458 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5459 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5460 #endif
5461 #ifdef PMAP_CACHE_VIPT
5462 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5463 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5464 #else
5465 const vsize_t src_va_offset = 0;
5466 const vsize_t dst_va_offset = 0;
5467 #endif
5468 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5469 /*
5470 * Is this page mapped at its natural color?
5471 * If we have all of memory mapped, then just convert PA to VA.
5472 */
5473 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5474 || src_va_offset == (src & arm_cache_prefer_mask);
5475 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5476 || dst_va_offset == (dst & arm_cache_prefer_mask);
5477 const vaddr_t vsrcp = src_okcolor
5478 ? pmap_direct_mapped_phys(src, &src_okcolor,
5479 cpu_csrcp(src_va_offset))
5480 : cpu_csrcp(src_va_offset);
5481 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5482 cpu_cdstp(dst_va_offset));
5483 #else
5484 const bool src_okcolor = false;
5485 const bool dst_okcolor = false;
5486 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5487 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5488 #endif
5489 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5490 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5491
5492 #ifdef DEBUG
5493 if (!SLIST_EMPTY(&dst_md->pvh_list))
5494 panic("pmap_copy_page: dst page has mappings");
5495 #endif
5496
5497 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5498 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5499 #endif
5500 KDASSERT((src & PGOFSET) == 0);
5501 KDASSERT((dst & PGOFSET) == 0);
5502
5503 /*
5504 * Clean the source page. Hold the source page's lock for
5505 * the duration of the copy so that no other mappings can
5506 * be created while we have a potentially aliased mapping.
5507 */
5508 #ifdef PMAP_CACHE_VIVT
5509 pmap_acquire_page_lock(src_md);
5510 (void) pmap_clean_page(src_md, true);
5511 pmap_release_page_lock(src_md);
5512 #endif
5513
5514 /*
5515 * Map the pages into the page hook points, copy them, and purge
5516 * the cache for the appropriate page. Invalidate the TLB
5517 * as required.
5518 */
5519 if (!src_okcolor) {
5520 const pt_entry_t nsrc_pte = L2_S_PROTO
5521 | src
5522 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5523 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5524 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5525 | pte_l2_s_cache_mode
5526 #endif
5527 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5528 l2pte_set(src_ptep, nsrc_pte, 0);
5529 PTE_SYNC(src_ptep);
5530 cpu_tlb_flushD_SE(vsrcp);
5531 cpu_cpwait();
5532 }
5533 if (!dst_okcolor) {
5534 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5535 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5536 l2pte_set(dst_ptep, ndst_pte, 0);
5537 PTE_SYNC(dst_ptep);
5538 cpu_tlb_flushD_SE(vdstp);
5539 cpu_cpwait();
5540 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5541 /*
5542 * If we are direct-mapped and our color isn't ok, then before
5543 * we bcopy to the new page invalidate its contents from the
5544 * cache and reset its color to its natural color.
5545 */
5546 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5547 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5548 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5549 #endif
5550 }
5551 bcopy_page(vsrcp, vdstp);
5552 #ifdef PMAP_CACHE_VIVT
5553 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5554 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5555 #endif
5556 /*
5557 * Unmap the pages.
5558 */
5559 if (!src_okcolor) {
5560 l2pte_reset(src_ptep);
5561 PTE_SYNC(src_ptep);
5562 cpu_tlb_flushD_SE(vsrcp);
5563 cpu_cpwait();
5564 }
5565 if (!dst_okcolor) {
5566 l2pte_reset(dst_ptep);
5567 PTE_SYNC(dst_ptep);
5568 cpu_tlb_flushD_SE(vdstp);
5569 cpu_cpwait();
5570 }
5571 #ifdef PMAP_CACHE_VIPT
5572 /*
5573 * Now that the destination page is in the cache, mark it as colored.
5574 * If this was an exec page, discard it.
5575 */
5576 pmap_acquire_page_lock(dst_md);
5577 #ifndef ARM_MMU_EXTENDED
5578 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5579 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5580 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5581 }
5582 if (!pmap_is_page_colored_p(dst_md)) {
5583 PMAPCOUNT(vac_color_new);
5584 dst_md->pvh_attrs |= PVF_COLORED;
5585 }
5586 dst_md->pvh_attrs |= PVF_DIRTY;
5587 #endif
5588 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5589 dst_md->pvh_attrs &= ~PVF_EXEC;
5590 PMAPCOUNT(exec_discarded_copy);
5591 }
5592 pmap_release_page_lock(dst_md);
5593 #endif
5594 }
5595 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5596
5597 #if ARM_MMU_XSCALE == 1
5598 void
5599 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5600 {
5601 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5602 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5603 #ifdef DEBUG
5604 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5605
5606 if (!SLIST_EMPTY(&dst_md->pvh_list))
5607 panic("pmap_copy_page: dst page has mappings");
5608 #endif
5609
5610 KDASSERT((src & PGOFSET) == 0);
5611 KDASSERT((dst & PGOFSET) == 0);
5612
5613 /*
5614 * Clean the source page. Hold the source page's lock for
5615 * the duration of the copy so that no other mappings can
5616 * be created while we have a potentially aliased mapping.
5617 */
5618 #ifdef PMAP_CACHE_VIVT
5619 pmap_acquire_page_lock(src_md);
5620 (void) pmap_clean_page(src_md, true);
5621 pmap_release_page_lock(src_md);
5622 #endif
5623
5624 /*
5625 * Map the pages into the page hook points, copy them, and purge
5626 * the cache for the appropriate page. Invalidate the TLB
5627 * as required.
5628 */
5629 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5630 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5631 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5632 l2pte_set(csrc_pte, nsrc_pte, 0);
5633 PTE_SYNC(csrc_pte);
5634
5635 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5636 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5637 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5638 l2pte_set(cdst_pte, ndst_pte, 0);
5639 PTE_SYNC(cdst_pte);
5640
5641 cpu_tlb_flushD_SE(csrcp);
5642 cpu_tlb_flushD_SE(cdstp);
5643 cpu_cpwait();
5644 bcopy_page(csrcp, cdstp);
5645 xscale_cache_clean_minidata();
5646 l2pte_reset(csrc_pte);
5647 l2pte_reset(cdst_pte);
5648 PTE_SYNC(csrc_pte);
5649 PTE_SYNC(cdst_pte);
5650 }
5651 #endif /* ARM_MMU_XSCALE == 1 */
5652
5653 /*
5654 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5655 *
5656 * Return the start and end addresses of the kernel's virtual space.
5657 * These values are setup in pmap_bootstrap and are updated as pages
5658 * are allocated.
5659 */
5660 void
5661 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5662 {
5663 *start = virtual_avail;
5664 *end = virtual_end;
5665 }
5666
5667 /*
5668 * Helper function for pmap_grow_l2_bucket()
5669 */
5670 static inline int
5671 pmap_grow_map(vaddr_t va, paddr_t *pap)
5672 {
5673 paddr_t pa;
5674
5675 if (uvm.page_init_done == false) {
5676 #ifdef PMAP_STEAL_MEMORY
5677 pv_addr_t pv;
5678 pmap_boot_pagealloc(PAGE_SIZE,
5679 #ifdef PMAP_CACHE_VIPT
5680 arm_cache_prefer_mask,
5681 va & arm_cache_prefer_mask,
5682 #else
5683 0, 0,
5684 #endif
5685 &pv);
5686 pa = pv.pv_pa;
5687 #else
5688 if (uvm_page_physget(&pa) == false)
5689 return (1);
5690 #endif /* PMAP_STEAL_MEMORY */
5691 } else {
5692 struct vm_page *pg;
5693 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5694 if (pg == NULL)
5695 return (1);
5696 pa = VM_PAGE_TO_PHYS(pg);
5697 /*
5698 * This new page must not have any mappings. Enter it via
5699 * pmap_kenter_pa and let that routine do the hard work.
5700 */
5701 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5702 KASSERT(SLIST_EMPTY(&md->pvh_list));
5703 pmap_kenter_pa(va, pa,
5704 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5705 }
5706
5707 if (pap)
5708 *pap = pa;
5709
5710 PMAPCOUNT(pt_mappings);
5711 #ifdef DEBUG
5712 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5713 KDASSERT(l2b != NULL);
5714
5715 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5716 const pt_entry_t opte = *ptep;
5717 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5718 #endif
5719 memset((void *)va, 0, PAGE_SIZE);
5720 return (0);
5721 }
5722
5723 /*
5724 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5725 * used by pmap_growkernel().
5726 */
5727 static inline struct l2_bucket *
5728 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5729 {
5730 struct l2_dtable *l2;
5731 struct l2_bucket *l2b;
5732 u_short l1slot;
5733 vaddr_t nva;
5734
5735 l1slot = l1pte_index(va);
5736
5737 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5738 /*
5739 * No mapping at this address, as there is
5740 * no entry in the L1 table.
5741 * Need to allocate a new l2_dtable.
5742 */
5743 nva = pmap_kernel_l2dtable_kva;
5744 if ((nva & PGOFSET) == 0) {
5745 /*
5746 * Need to allocate a backing page
5747 */
5748 if (pmap_grow_map(nva, NULL))
5749 return (NULL);
5750 }
5751
5752 l2 = (struct l2_dtable *)nva;
5753 nva += sizeof(struct l2_dtable);
5754
5755 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5756 /*
5757 * The new l2_dtable straddles a page boundary.
5758 * Map in another page to cover it.
5759 */
5760 if (pmap_grow_map(nva, NULL))
5761 return (NULL);
5762 }
5763
5764 pmap_kernel_l2dtable_kva = nva;
5765
5766 /*
5767 * Link it into the parent pmap
5768 */
5769 pm->pm_l2[L2_IDX(l1slot)] = l2;
5770 }
5771
5772 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5773
5774 /*
5775 * Fetch pointer to the L2 page table associated with the address.
5776 */
5777 if (l2b->l2b_kva == NULL) {
5778 pt_entry_t *ptep;
5779
5780 /*
5781 * No L2 page table has been allocated. Chances are, this
5782 * is because we just allocated the l2_dtable, above.
5783 */
5784 nva = pmap_kernel_l2ptp_kva;
5785 ptep = (pt_entry_t *)nva;
5786 if ((nva & PGOFSET) == 0) {
5787 /*
5788 * Need to allocate a backing page
5789 */
5790 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5791 return (NULL);
5792 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5793 }
5794
5795 l2->l2_occupancy++;
5796 l2b->l2b_kva = ptep;
5797 l2b->l2b_l1slot = l1slot;
5798 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5799
5800 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5801 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5802 }
5803
5804 return (l2b);
5805 }
5806
5807 vaddr_t
5808 pmap_growkernel(vaddr_t maxkvaddr)
5809 {
5810 pmap_t kpm = pmap_kernel();
5811 #ifndef ARM_MMU_EXTENDED
5812 struct l1_ttable *l1;
5813 #endif
5814 int s;
5815
5816 if (maxkvaddr <= pmap_curmaxkvaddr)
5817 goto out; /* we are OK */
5818
5819 NPDEBUG(PDB_GROWKERN,
5820 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5821 pmap_curmaxkvaddr, maxkvaddr));
5822
5823 KDASSERT(maxkvaddr <= virtual_end);
5824
5825 /*
5826 * whoops! we need to add kernel PTPs
5827 */
5828
5829 s = splhigh(); /* to be safe */
5830 mutex_enter(kpm->pm_lock);
5831
5832 /* Map 1MB at a time */
5833 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5834 #ifdef ARM_MMU_EXTENDED
5835 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5836 pd_entry_t *pdep = spdep;
5837 #endif
5838 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5839 #ifdef ARM_MMU_EXTENDED
5840 pdep++,
5841 #endif
5842 l1slot++) {
5843 struct l2_bucket *l2b =
5844 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5845 KASSERT(l2b != NULL);
5846
5847 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5848 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5849 #ifdef ARM_MMU_EXTENDED
5850 l1pte_setone(pdep, npde);
5851 #else
5852 /* Distribute new L1 entry to all other L1s */
5853 SLIST_FOREACH(l1, &l1_list, l1_link) {
5854 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5855 l1pte_setone(pdep, npde);
5856 PDE_SYNC(pdep);
5857 }
5858 #endif
5859 }
5860 #ifdef ARM_MMU_EXTENDED
5861 PDE_SYNC_RANGE(spdep, pdep - spdep);
5862 #endif
5863
5864 #ifdef PMAP_CACHE_VIVT
5865 /*
5866 * flush out the cache, expensive but growkernel will happen so
5867 * rarely
5868 */
5869 cpu_dcache_wbinv_all();
5870 cpu_tlb_flushD();
5871 cpu_cpwait();
5872 #endif
5873
5874 mutex_exit(kpm->pm_lock);
5875 splx(s);
5876
5877 out:
5878 return (pmap_curmaxkvaddr);
5879 }
5880
5881 /************************ Utility routines ****************************/
5882
5883 #ifndef ARM_HAS_VBAR
5884 /*
5885 * vector_page_setprot:
5886 *
5887 * Manipulate the protection of the vector page.
5888 */
5889 void
5890 vector_page_setprot(int prot)
5891 {
5892 struct l2_bucket *l2b;
5893 pt_entry_t *ptep;
5894
5895 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5896 /*
5897 * If we are using VBAR to use the vectors in the kernel, then it's
5898 * already mapped in the kernel text so no need to anything here.
5899 */
5900 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5901 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5902 return;
5903 }
5904 #endif
5905
5906 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5907 KASSERT(l2b != NULL);
5908
5909 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5910
5911 const pt_entry_t opte = *ptep;
5912 #ifdef ARM_MMU_EXTENDED
5913 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5914 | L2_S_PROT(PTE_KERNEL, prot);
5915 #else
5916 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5917 | L2_S_PROT(PTE_KERNEL, prot);
5918 #endif
5919 l2pte_set(ptep, npte, opte);
5920 PTE_SYNC(ptep);
5921 cpu_tlb_flushD_SE(vector_page);
5922 cpu_cpwait();
5923 }
5924 #endif
5925
5926 /*
5927 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5928 * Returns true if the mapping exists, else false.
5929 *
5930 * NOTE: This function is only used by a couple of arm-specific modules.
5931 * It is not safe to take any pmap locks here, since we could be right
5932 * in the middle of debugging the pmap anyway...
5933 *
5934 * It is possible for this routine to return false even though a valid
5935 * mapping does exist. This is because we don't lock, so the metadata
5936 * state may be inconsistent.
5937 *
5938 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5939 * a "section" mapping.
5940 */
5941 bool
5942 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5943 {
5944 struct l2_dtable *l2;
5945 pd_entry_t *pdep, pde;
5946 pt_entry_t *ptep;
5947 u_short l1slot;
5948
5949 if (pm->pm_l1 == NULL)
5950 return false;
5951
5952 l1slot = l1pte_index(va);
5953 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
5954 pde = *pdep;
5955
5956 if (l1pte_section_p(pde)) {
5957 *ptp = NULL;
5958 return true;
5959 }
5960
5961 l2 = pm->pm_l2[L2_IDX(l1slot)];
5962 if (l2 == NULL ||
5963 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
5964 return false;
5965 }
5966
5967 *ptp = &ptep[l2pte_index(va)];
5968 return true;
5969 }
5970
5971 bool
5972 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5973 {
5974
5975 if (pm->pm_l1 == NULL)
5976 return false;
5977
5978 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
5979
5980 return true;
5981 }
5982
5983 /************************ Bootstrapping routines ****************************/
5984
5985 #ifndef ARM_MMU_EXTENDED
5986 static void
5987 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5988 {
5989 int i;
5990
5991 l1->l1_kva = l1pt;
5992 l1->l1_domain_use_count = 0;
5993 l1->l1_domain_first = 0;
5994
5995 for (i = 0; i < PMAP_DOMAINS; i++)
5996 l1->l1_domain_free[i] = i + 1;
5997
5998 /*
5999 * Copy the kernel's L1 entries to each new L1.
6000 */
6001 if (pmap_initialized)
6002 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6003
6004 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6005 &l1->l1_physaddr) == false)
6006 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6007
6008 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6009 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6010 }
6011 #endif /* !ARM_MMU_EXTENDED */
6012
6013 /*
6014 * pmap_bootstrap() is called from the board-specific initarm() routine
6015 * once the kernel L1/L2 descriptors tables have been set up.
6016 *
6017 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6018 * spread over a number of disparate files/functions.
6019 *
6020 * We are passed the following parameters
6021 * - kernel_l1pt
6022 * This is a pointer to the base of the kernel's L1 translation table.
6023 * - vstart
6024 * 1MB-aligned start of managed kernel virtual memory.
6025 * - vend
6026 * 1MB-aligned end of managed kernel virtual memory.
6027 *
6028 * We use the first parameter to build the metadata (struct l1_ttable and
6029 * struct l2_dtable) necessary to track kernel mappings.
6030 */
6031 #define PMAP_STATIC_L2_SIZE 16
6032 void
6033 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6034 {
6035 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6036 #ifndef ARM_MMU_EXTENDED
6037 static struct l1_ttable static_l1;
6038 struct l1_ttable *l1 = &static_l1;
6039 #endif
6040 struct l2_dtable *l2;
6041 struct l2_bucket *l2b;
6042 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6043 pmap_t pm = pmap_kernel();
6044 pt_entry_t *ptep;
6045 paddr_t pa;
6046 vsize_t size;
6047 int nptes, l2idx, l2next = 0;
6048
6049 #ifdef ARM_MMU_EXTENDED
6050 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6051 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6052 #endif
6053
6054 #ifdef VERBOSE_INIT_ARM
6055 printf("kpm ");
6056 #endif
6057 /*
6058 * Initialise the kernel pmap object
6059 */
6060 curcpu()->ci_pmap_cur = pm;
6061 #ifdef ARM_MMU_EXTENDED
6062 pm->pm_l1 = l1pt;
6063 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6064 #ifdef VERBOSE_INIT_ARM
6065 printf("tlb0 ");
6066 #endif
6067 pmap_tlb_info_init(&pmap_tlb0_info);
6068 #ifdef MULTIPROCESSOR
6069 #ifdef VERBOSE_INIT_ARM
6070 printf("kcpusets ");
6071 #endif
6072 pm->pm_onproc = kcpuset_running;
6073 pm->pm_active = kcpuset_running;
6074 #endif
6075 #else
6076 pm->pm_l1 = l1;
6077 #endif
6078
6079 #ifdef VERBOSE_INIT_ARM
6080 printf("locks ");
6081 #endif
6082 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6083 if (arm_cache_prefer_mask != 0) {
6084 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6085 } else {
6086 #endif
6087 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
6088 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6089 }
6090 #endif
6091 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
6092 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
6093 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
6094
6095 #ifdef VERBOSE_INIT_ARM
6096 printf("l1pt ");
6097 #endif
6098 /*
6099 * Scan the L1 translation table created by initarm() and create
6100 * the required metadata for all valid mappings found in it.
6101 */
6102 for (size_t l1slot = 0;
6103 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6104 l1slot++) {
6105 pd_entry_t pde = l1pt[l1slot];
6106
6107 /*
6108 * We're only interested in Coarse mappings.
6109 * pmap_extract() can deal with section mappings without
6110 * recourse to checking L2 metadata.
6111 */
6112 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6113 continue;
6114
6115 /*
6116 * Lookup the KVA of this L2 descriptor table
6117 */
6118 pa = l1pte_pa(pde);
6119 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6120 if (ptep == NULL) {
6121 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6122 (u_int)l1slot << L1_S_SHIFT, pa);
6123 }
6124
6125 /*
6126 * Fetch the associated L2 metadata structure.
6127 * Allocate a new one if necessary.
6128 */
6129 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6130 if (l2next == PMAP_STATIC_L2_SIZE)
6131 panic("pmap_bootstrap: out of static L2s");
6132 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6133 }
6134
6135 /*
6136 * One more L1 slot tracked...
6137 */
6138 l2->l2_occupancy++;
6139
6140 /*
6141 * Fill in the details of the L2 descriptor in the
6142 * appropriate bucket.
6143 */
6144 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6145 l2b->l2b_kva = ptep;
6146 l2b->l2b_pa = pa;
6147 l2b->l2b_l1slot = l1slot;
6148
6149 /*
6150 * Establish an initial occupancy count for this descriptor
6151 */
6152 for (l2idx = 0;
6153 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6154 l2idx++) {
6155 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6156 l2b->l2b_occupancy++;
6157 }
6158 }
6159
6160 /*
6161 * Make sure the descriptor itself has the correct cache mode.
6162 * If not, fix it, but whine about the problem. Port-meisters
6163 * should consider this a clue to fix up their initarm()
6164 * function. :)
6165 */
6166 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6167 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6168 "L2 pte @ %p\n", ptep);
6169 }
6170 }
6171
6172 #ifdef VERBOSE_INIT_ARM
6173 printf("cache(l1pt) ");
6174 #endif
6175 /*
6176 * Ensure the primary (kernel) L1 has the correct cache mode for
6177 * a page table. Bitch if it is not correctly set.
6178 */
6179 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6180 L1_TABLE_SIZE / L2_S_SIZE)) {
6181 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6182 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6183 }
6184
6185 #ifdef PMAP_CACHE_VIVT
6186 cpu_dcache_wbinv_all();
6187 cpu_tlb_flushID();
6188 cpu_cpwait();
6189 #endif
6190
6191 /*
6192 * now we allocate the "special" VAs which are used for tmp mappings
6193 * by the pmap (and other modules). we allocate the VAs by advancing
6194 * virtual_avail (note that there are no pages mapped at these VAs).
6195 *
6196 * Managed KVM space start from wherever initarm() tells us.
6197 */
6198 virtual_avail = vstart;
6199 virtual_end = vend;
6200
6201 #ifdef VERBOSE_INIT_ARM
6202 printf("specials ");
6203 #endif
6204 #ifdef PMAP_CACHE_VIPT
6205 /*
6206 * If we have a VIPT cache, we need one page/pte per possible alias
6207 * page so we won't violate cache aliasing rules.
6208 */
6209 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6210 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6211 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6212 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6213 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6214 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6215 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6216 }
6217 #else
6218 nptes = PAGE_SIZE / L2_S_SIZE;
6219 #endif
6220 #ifdef MULTIPROCESSOR
6221 cnptes = nptes;
6222 nptes *= arm_cpu_max;
6223 #endif
6224 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6225 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6226 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6227 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6228 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6229 if (msgbufaddr == NULL) {
6230 pmap_alloc_specials(&virtual_avail,
6231 round_page(MSGBUFSIZE) / PAGE_SIZE,
6232 (void *)&msgbufaddr, NULL);
6233 }
6234
6235 /*
6236 * Allocate a range of kernel virtual address space to be used
6237 * for L2 descriptor tables and metadata allocation in
6238 * pmap_growkernel().
6239 */
6240 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6241 pmap_alloc_specials(&virtual_avail,
6242 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6243 &pmap_kernel_l2ptp_kva, NULL);
6244
6245 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6246 pmap_alloc_specials(&virtual_avail,
6247 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6248 &pmap_kernel_l2dtable_kva, NULL);
6249
6250 #ifndef ARM_MMU_EXTENDED
6251 /*
6252 * init the static-global locks and global pmap list.
6253 */
6254 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6255
6256 /*
6257 * We can now initialise the first L1's metadata.
6258 */
6259 SLIST_INIT(&l1_list);
6260 TAILQ_INIT(&l1_lru_list);
6261 pmap_init_l1(l1, l1pt);
6262 #endif /* ARM_MMU_EXTENDED */
6263
6264 #ifndef ARM_HAS_VBAR
6265 /* Set up vector page L1 details, if necessary */
6266 if (vector_page < KERNEL_BASE) {
6267 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6268 l2b = pmap_get_l2_bucket(pm, vector_page);
6269 KDASSERT(l2b != NULL);
6270 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6271 L1_C_DOM(pmap_domain(pm));
6272 } else
6273 pm->pm_pl1vec = NULL;
6274 #endif
6275
6276 #ifdef VERBOSE_INIT_ARM
6277 printf("pools ");
6278 #endif
6279 /*
6280 * Initialize the pmap cache
6281 */
6282 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6283 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6284
6285 /*
6286 * Initialize the pv pool.
6287 */
6288 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6289 &pmap_bootstrap_pv_allocator, IPL_NONE);
6290
6291 /*
6292 * Initialize the L2 dtable pool and cache.
6293 */
6294 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6295 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6296
6297 /*
6298 * Initialise the L2 descriptor table pool and cache
6299 */
6300 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6301 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6302 pmap_l2ptp_ctor, NULL, NULL);
6303
6304 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6305
6306 cpu_dcache_wbinv_all();
6307 }
6308
6309 static bool
6310 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6311 {
6312 #ifdef ARM_MMU_EXTENDED
6313 return false;
6314 #else
6315 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6316 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6317 return false;
6318
6319 const vaddr_t eva = va + nptes * PAGE_SIZE;
6320 int rv = 0;
6321
6322 while (va < eva) {
6323 /*
6324 * Make sure the descriptor itself has the correct cache mode
6325 */
6326 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6327 pd_entry_t pde = *pdep;
6328
6329 if (l1pte_section_p(pde)) {
6330 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6331 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6332 *pdep = (pde & ~L1_S_CACHE_MASK) |
6333 pte_l1_s_cache_mode_pt;
6334 PDE_SYNC(pdep);
6335 cpu_dcache_wbinv_range((vaddr_t)pdep,
6336 sizeof(*pdep));
6337 rv = 1;
6338 }
6339 return rv;
6340 }
6341 vaddr_t pa = l1pte_pa(pde);
6342 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6343 if (ptep == NULL)
6344 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6345
6346 ptep += l2pte_index(va);
6347 const pt_entry_t opte = *ptep;
6348 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6349 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6350 | pte_l2_s_cache_mode_pt;
6351 l2pte_set(ptep, npte, opte);
6352 PTE_SYNC(ptep);
6353 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6354 rv = 1;
6355 }
6356 va += PAGE_SIZE;
6357 }
6358
6359 return (rv);
6360 #endif
6361 }
6362
6363 static void
6364 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6365 {
6366 vaddr_t va = *availp;
6367 struct l2_bucket *l2b;
6368
6369 if (ptep) {
6370 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6371 if (l2b == NULL)
6372 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6373
6374 if (ptep)
6375 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6376 }
6377
6378 *vap = va;
6379 *availp = va + (PAGE_SIZE * pages);
6380 }
6381
6382 void
6383 pmap_init(void)
6384 {
6385
6386 /*
6387 * Set the available memory vars - These do not map to real memory
6388 * addresses and cannot as the physical memory is fragmented.
6389 * They are used by ps for %mem calculations.
6390 * One could argue whether this should be the entire memory or just
6391 * the memory that is useable in a user process.
6392 */
6393 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
6394 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
6395
6396 /*
6397 * Now we need to free enough pv_entry structures to allow us to get
6398 * the kmem_map/kmem_object allocated and inited (done after this
6399 * function is finished). to do this we allocate one bootstrap page out
6400 * of kernel_map and use it to provide an initial pool of pv_entry
6401 * structures. we never free this page.
6402 */
6403 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6404
6405 #ifdef ARM_MMU_EXTENDED
6406 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6407 #endif
6408
6409 pmap_initialized = true;
6410 }
6411
6412 static vaddr_t last_bootstrap_page = 0;
6413 static void *free_bootstrap_pages = NULL;
6414
6415 static void *
6416 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6417 {
6418 extern void *pool_page_alloc(struct pool *, int);
6419 vaddr_t new_page;
6420 void *rv;
6421
6422 if (pmap_initialized)
6423 return (pool_page_alloc(pp, flags));
6424
6425 if (free_bootstrap_pages) {
6426 rv = free_bootstrap_pages;
6427 free_bootstrap_pages = *((void **)rv);
6428 return (rv);
6429 }
6430
6431 KASSERT(kernel_map != NULL);
6432 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6433 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6434
6435 KASSERT(new_page > last_bootstrap_page);
6436 last_bootstrap_page = new_page;
6437 return ((void *)new_page);
6438 }
6439
6440 static void
6441 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6442 {
6443 extern void pool_page_free(struct pool *, void *);
6444
6445 if ((vaddr_t)v <= last_bootstrap_page) {
6446 *((void **)v) = free_bootstrap_pages;
6447 free_bootstrap_pages = v;
6448 return;
6449 }
6450
6451 if (pmap_initialized) {
6452 pool_page_free(pp, v);
6453 return;
6454 }
6455 }
6456
6457 /*
6458 * pmap_postinit()
6459 *
6460 * This routine is called after the vm and kmem subsystems have been
6461 * initialised. This allows the pmap code to perform any initialisation
6462 * that can only be done one the memory allocation is in place.
6463 */
6464 void
6465 pmap_postinit(void)
6466 {
6467 #ifndef ARM_MMU_EXTENDED
6468 extern paddr_t physical_start, physical_end;
6469 struct l1_ttable *l1;
6470 struct pglist plist;
6471 struct vm_page *m;
6472 pd_entry_t *pdep;
6473 vaddr_t va, eva;
6474 u_int loop, needed;
6475 int error;
6476 #endif
6477
6478 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6479 pool_cache_setlowat(&pmap_l2dtable_cache,
6480 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6481
6482 #ifndef ARM_MMU_EXTENDED
6483 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6484 needed -= 1;
6485
6486 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6487
6488 for (loop = 0; loop < needed; loop++, l1++) {
6489 /* Allocate a L1 page table */
6490 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6491 if (va == 0)
6492 panic("Cannot allocate L1 KVM");
6493
6494 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6495 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6496 if (error)
6497 panic("Cannot allocate L1 physical pages");
6498
6499 m = TAILQ_FIRST(&plist);
6500 eva = va + L1_TABLE_SIZE;
6501 pdep = (pd_entry_t *)va;
6502
6503 while (m && va < eva) {
6504 paddr_t pa = VM_PAGE_TO_PHYS(m);
6505
6506 pmap_kenter_pa(va, pa,
6507 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6508
6509 va += PAGE_SIZE;
6510 m = TAILQ_NEXT(m, pageq.queue);
6511 }
6512
6513 #ifdef DIAGNOSTIC
6514 if (m)
6515 panic("pmap_alloc_l1pt: pglist not empty");
6516 #endif /* DIAGNOSTIC */
6517
6518 pmap_init_l1(l1, pdep);
6519 }
6520
6521 #ifdef DEBUG
6522 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6523 needed);
6524 #endif
6525 #endif /* !ARM_MMU_EXTENDED */
6526 }
6527
6528 /*
6529 * Note that the following routines are used by board-specific initialisation
6530 * code to configure the initial kernel page tables.
6531 *
6532 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
6533 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
6534 * behaviour of the old pmap, and provides an easy migration path for
6535 * initial bring-up of the new pmap on existing ports. Fortunately,
6536 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
6537 * will be deprecated.
6538 *
6539 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
6540 * tables.
6541 */
6542
6543 /*
6544 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6545 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6546 * find them as necessary.
6547 *
6548 * Note that the data on this list MUST remain valid after initarm() returns,
6549 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6550 */
6551 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6552
6553 static vaddr_t
6554 kernel_pt_lookup(paddr_t pa)
6555 {
6556 pv_addr_t *pv;
6557
6558 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6559 if (pv->pv_pa == (pa & ~PGOFSET))
6560 return (pv->pv_va | (pa & PGOFSET));
6561 }
6562 return (0);
6563 }
6564
6565 /*
6566 * pmap_map_section:
6567 *
6568 * Create a single section mapping.
6569 */
6570 void
6571 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6572 {
6573 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6574 const size_t l1slot = l1pte_index(va);
6575 pd_entry_t fl;
6576
6577 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6578
6579 switch (cache) {
6580 case PTE_NOCACHE:
6581 default:
6582 fl = 0;
6583 break;
6584
6585 case PTE_CACHE:
6586 fl = pte_l1_s_cache_mode;
6587 break;
6588
6589 case PTE_PAGETABLE:
6590 fl = pte_l1_s_cache_mode_pt;
6591 break;
6592 }
6593
6594 const pd_entry_t npde = L1_S_PROTO | pa |
6595 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6596 l1pte_setone(pdep + l1slot, npde);
6597 PDE_SYNC(pdep + l1slot);
6598 }
6599
6600 /*
6601 * pmap_map_entry:
6602 *
6603 * Create a single page mapping.
6604 */
6605 void
6606 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6607 {
6608 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6609 const size_t l1slot = l1pte_index(va);
6610 pt_entry_t npte;
6611 pt_entry_t *ptep;
6612
6613 KASSERT(((va | pa) & PGOFSET) == 0);
6614
6615 switch (cache) {
6616 case PTE_NOCACHE:
6617 default:
6618 npte = 0;
6619 break;
6620
6621 case PTE_CACHE:
6622 npte = pte_l2_s_cache_mode;
6623 break;
6624
6625 case PTE_PAGETABLE:
6626 npte = pte_l2_s_cache_mode_pt;
6627 break;
6628 }
6629
6630 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6631 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6632
6633 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6634 if (ptep == NULL)
6635 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6636
6637 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6638 #ifdef ARM_MMU_EXTENDED
6639 if (prot & VM_PROT_EXECUTE) {
6640 npte &= ~L2_XS_XN;
6641 }
6642 #endif
6643 ptep += l2pte_index(va);
6644 l2pte_set(ptep, npte, 0);
6645 PTE_SYNC(ptep);
6646 }
6647
6648 /*
6649 * pmap_link_l2pt:
6650 *
6651 * Link the L2 page table specified by "l2pv" into the L1
6652 * page table at the slot for "va".
6653 */
6654 void
6655 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6656 {
6657 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6658
6659 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6660 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6661
6662 const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6663 | l2pv->pv_pa;
6664
6665 l1pte_set(pdep, npde);
6666 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6667
6668 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6669 }
6670
6671 /*
6672 * pmap_map_chunk:
6673 *
6674 * Map a chunk of memory using the most efficient mappings
6675 * possible (section, large page, small page) into the
6676 * provided L1 and L2 tables at the specified virtual address.
6677 */
6678 vsize_t
6679 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6680 int prot, int cache)
6681 {
6682 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6683 pt_entry_t f1, f2s, f2l;
6684 vsize_t resid;
6685
6686 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6687
6688 if (l1pt == 0)
6689 panic("pmap_map_chunk: no L1 table provided");
6690
6691 #ifdef VERBOSE_INIT_ARM
6692 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6693 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6694 #endif
6695
6696 switch (cache) {
6697 case PTE_NOCACHE:
6698 default:
6699 f1 = 0;
6700 f2l = 0;
6701 f2s = 0;
6702 break;
6703
6704 case PTE_CACHE:
6705 f1 = pte_l1_s_cache_mode;
6706 f2l = pte_l2_l_cache_mode;
6707 f2s = pte_l2_s_cache_mode;
6708 break;
6709
6710 case PTE_PAGETABLE:
6711 f1 = pte_l1_s_cache_mode_pt;
6712 f2l = pte_l2_l_cache_mode_pt;
6713 f2s = pte_l2_s_cache_mode_pt;
6714 break;
6715 }
6716
6717 size = resid;
6718
6719 while (resid > 0) {
6720 const size_t l1slot = l1pte_index(va);
6721 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6722 /* See if we can use a supersection mapping. */
6723 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6724 /* Supersection are always domain 0 */
6725 const pd_entry_t npde = L1_SS_PROTO | pa
6726 #ifdef ARM_MMU_EXTENDED
6727 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6728 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6729 #endif
6730 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6731 #ifdef VERBOSE_INIT_ARM
6732 printf("sS");
6733 #endif
6734 l1pte_set(&pdep[l1slot], npde);
6735 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6736 va += L1_SS_SIZE;
6737 pa += L1_SS_SIZE;
6738 resid -= L1_SS_SIZE;
6739 continue;
6740 }
6741 #endif
6742 /* See if we can use a section mapping. */
6743 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6744 const pd_entry_t npde = L1_S_PROTO | pa
6745 #ifdef ARM_MMU_EXTENDED
6746 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6747 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6748 #endif
6749 | L1_S_PROT(PTE_KERNEL, prot) | f1
6750 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6751 #ifdef VERBOSE_INIT_ARM
6752 printf("S");
6753 #endif
6754 l1pte_set(&pdep[l1slot], npde);
6755 PDE_SYNC(&pdep[l1slot]);
6756 va += L1_S_SIZE;
6757 pa += L1_S_SIZE;
6758 resid -= L1_S_SIZE;
6759 continue;
6760 }
6761
6762 /*
6763 * Ok, we're going to use an L2 table. Make sure
6764 * one is actually in the corresponding L1 slot
6765 * for the current VA.
6766 */
6767 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6768 panic("%s: no L2 table for VA %#lx", __func__, va);
6769
6770 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6771 if (ptep == NULL)
6772 panic("%s: can't find L2 table for VA %#lx", __func__,
6773 va);
6774
6775 ptep += l2pte_index(va);
6776
6777 /* See if we can use a L2 large page mapping. */
6778 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6779 const pt_entry_t npte = L2_L_PROTO | pa
6780 #ifdef ARM_MMU_EXTENDED
6781 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6782 | (va & 0x80000000 ? 0 : L2_XS_nG)
6783 #endif
6784 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6785 #ifdef VERBOSE_INIT_ARM
6786 printf("L");
6787 #endif
6788 l2pte_set(ptep, npte, 0);
6789 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6790 va += L2_L_SIZE;
6791 pa += L2_L_SIZE;
6792 resid -= L2_L_SIZE;
6793 continue;
6794 }
6795
6796 #ifdef VERBOSE_INIT_ARM
6797 printf("P");
6798 #endif
6799 /* Use a small page mapping. */
6800 pt_entry_t npte = L2_S_PROTO | pa
6801 #ifdef ARM_MMU_EXTENDED
6802 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6803 | (va & 0x80000000 ? 0 : L2_XS_nG)
6804 #endif
6805 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6806 #ifdef ARM_MMU_EXTENDED
6807 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6808 #endif
6809 l2pte_set(ptep, npte, 0);
6810 PTE_SYNC(ptep);
6811 va += PAGE_SIZE;
6812 pa += PAGE_SIZE;
6813 resid -= PAGE_SIZE;
6814 }
6815 #ifdef VERBOSE_INIT_ARM
6816 printf("\n");
6817 #endif
6818 return (size);
6819 }
6820
6821 /********************** Static device map routines ***************************/
6822
6823 static const struct pmap_devmap *pmap_devmap_table;
6824
6825 /*
6826 * Register the devmap table. This is provided in case early console
6827 * initialization needs to register mappings created by bootstrap code
6828 * before pmap_devmap_bootstrap() is called.
6829 */
6830 void
6831 pmap_devmap_register(const struct pmap_devmap *table)
6832 {
6833
6834 pmap_devmap_table = table;
6835 }
6836
6837 /*
6838 * Map all of the static regions in the devmap table, and remember
6839 * the devmap table so other parts of the kernel can look up entries
6840 * later.
6841 */
6842 void
6843 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6844 {
6845 int i;
6846
6847 pmap_devmap_table = table;
6848
6849 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6850 #ifdef VERBOSE_INIT_ARM
6851 printf("devmap: %08lx -> %08lx @ %08lx\n",
6852 pmap_devmap_table[i].pd_pa,
6853 pmap_devmap_table[i].pd_pa +
6854 pmap_devmap_table[i].pd_size - 1,
6855 pmap_devmap_table[i].pd_va);
6856 #endif
6857 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6858 pmap_devmap_table[i].pd_pa,
6859 pmap_devmap_table[i].pd_size,
6860 pmap_devmap_table[i].pd_prot,
6861 pmap_devmap_table[i].pd_cache);
6862 }
6863 }
6864
6865 const struct pmap_devmap *
6866 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6867 {
6868 uint64_t endpa;
6869 int i;
6870
6871 if (pmap_devmap_table == NULL)
6872 return (NULL);
6873
6874 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6875
6876 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6877 if (pa >= pmap_devmap_table[i].pd_pa &&
6878 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6879 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6880 return (&pmap_devmap_table[i]);
6881 }
6882
6883 return (NULL);
6884 }
6885
6886 const struct pmap_devmap *
6887 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6888 {
6889 int i;
6890
6891 if (pmap_devmap_table == NULL)
6892 return (NULL);
6893
6894 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6895 if (va >= pmap_devmap_table[i].pd_va &&
6896 va + size - 1 <= pmap_devmap_table[i].pd_va +
6897 pmap_devmap_table[i].pd_size - 1)
6898 return (&pmap_devmap_table[i]);
6899 }
6900
6901 return (NULL);
6902 }
6903
6904 /********************** PTE initialization routines **************************/
6905
6906 /*
6907 * These routines are called when the CPU type is identified to set up
6908 * the PTE prototypes, cache modes, etc.
6909 *
6910 * The variables are always here, just in case modules need to reference
6911 * them (though, they shouldn't).
6912 */
6913
6914 pt_entry_t pte_l1_s_cache_mode;
6915 pt_entry_t pte_l1_s_wc_mode;
6916 pt_entry_t pte_l1_s_cache_mode_pt;
6917 pt_entry_t pte_l1_s_cache_mask;
6918
6919 pt_entry_t pte_l2_l_cache_mode;
6920 pt_entry_t pte_l2_l_wc_mode;
6921 pt_entry_t pte_l2_l_cache_mode_pt;
6922 pt_entry_t pte_l2_l_cache_mask;
6923
6924 pt_entry_t pte_l2_s_cache_mode;
6925 pt_entry_t pte_l2_s_wc_mode;
6926 pt_entry_t pte_l2_s_cache_mode_pt;
6927 pt_entry_t pte_l2_s_cache_mask;
6928
6929 pt_entry_t pte_l1_s_prot_u;
6930 pt_entry_t pte_l1_s_prot_w;
6931 pt_entry_t pte_l1_s_prot_ro;
6932 pt_entry_t pte_l1_s_prot_mask;
6933
6934 pt_entry_t pte_l2_s_prot_u;
6935 pt_entry_t pte_l2_s_prot_w;
6936 pt_entry_t pte_l2_s_prot_ro;
6937 pt_entry_t pte_l2_s_prot_mask;
6938
6939 pt_entry_t pte_l2_l_prot_u;
6940 pt_entry_t pte_l2_l_prot_w;
6941 pt_entry_t pte_l2_l_prot_ro;
6942 pt_entry_t pte_l2_l_prot_mask;
6943
6944 pt_entry_t pte_l1_ss_proto;
6945 pt_entry_t pte_l1_s_proto;
6946 pt_entry_t pte_l1_c_proto;
6947 pt_entry_t pte_l2_s_proto;
6948
6949 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6950 void (*pmap_zero_page_func)(paddr_t);
6951
6952 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6953 void
6954 pmap_pte_init_generic(void)
6955 {
6956
6957 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6958 pte_l1_s_wc_mode = L1_S_B;
6959 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6960
6961 pte_l2_l_cache_mode = L2_B|L2_C;
6962 pte_l2_l_wc_mode = L2_B;
6963 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6964
6965 pte_l2_s_cache_mode = L2_B|L2_C;
6966 pte_l2_s_wc_mode = L2_B;
6967 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6968
6969 /*
6970 * If we have a write-through cache, set B and C. If
6971 * we have a write-back cache, then we assume setting
6972 * only C will make those pages write-through (except for those
6973 * Cortex CPUs which can read the L1 caches).
6974 */
6975 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6976 #if ARM_MMU_V7 > 0
6977 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6978 #endif
6979 #if ARM_MMU_V6 > 0
6980 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6981 #endif
6982 || false) {
6983 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6984 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6985 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6986 } else {
6987 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6988 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6989 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6990 }
6991
6992 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6993 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6994 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6995 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6996
6997 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6998 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6999 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7000 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7001
7002 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7003 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7004 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7005 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7006
7007 pte_l1_ss_proto = L1_SS_PROTO_generic;
7008 pte_l1_s_proto = L1_S_PROTO_generic;
7009 pte_l1_c_proto = L1_C_PROTO_generic;
7010 pte_l2_s_proto = L2_S_PROTO_generic;
7011
7012 pmap_copy_page_func = pmap_copy_page_generic;
7013 pmap_zero_page_func = pmap_zero_page_generic;
7014 }
7015
7016 #if defined(CPU_ARM8)
7017 void
7018 pmap_pte_init_arm8(void)
7019 {
7020
7021 /*
7022 * ARM8 is compatible with generic, but we need to use
7023 * the page tables uncached.
7024 */
7025 pmap_pte_init_generic();
7026
7027 pte_l1_s_cache_mode_pt = 0;
7028 pte_l2_l_cache_mode_pt = 0;
7029 pte_l2_s_cache_mode_pt = 0;
7030 }
7031 #endif /* CPU_ARM8 */
7032
7033 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7034 void
7035 pmap_pte_init_arm9(void)
7036 {
7037
7038 /*
7039 * ARM9 is compatible with generic, but we want to use
7040 * write-through caching for now.
7041 */
7042 pmap_pte_init_generic();
7043
7044 pte_l1_s_cache_mode = L1_S_C;
7045 pte_l2_l_cache_mode = L2_C;
7046 pte_l2_s_cache_mode = L2_C;
7047
7048 pte_l1_s_wc_mode = L1_S_B;
7049 pte_l2_l_wc_mode = L2_B;
7050 pte_l2_s_wc_mode = L2_B;
7051
7052 pte_l1_s_cache_mode_pt = L1_S_C;
7053 pte_l2_l_cache_mode_pt = L2_C;
7054 pte_l2_s_cache_mode_pt = L2_C;
7055 }
7056 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7057 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7058
7059 #if defined(CPU_ARM10)
7060 void
7061 pmap_pte_init_arm10(void)
7062 {
7063
7064 /*
7065 * ARM10 is compatible with generic, but we want to use
7066 * write-through caching for now.
7067 */
7068 pmap_pte_init_generic();
7069
7070 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7071 pte_l2_l_cache_mode = L2_B | L2_C;
7072 pte_l2_s_cache_mode = L2_B | L2_C;
7073
7074 pte_l1_s_cache_mode = L1_S_B;
7075 pte_l2_l_cache_mode = L2_B;
7076 pte_l2_s_cache_mode = L2_B;
7077
7078 pte_l1_s_cache_mode_pt = L1_S_C;
7079 pte_l2_l_cache_mode_pt = L2_C;
7080 pte_l2_s_cache_mode_pt = L2_C;
7081
7082 }
7083 #endif /* CPU_ARM10 */
7084
7085 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7086 void
7087 pmap_pte_init_arm11(void)
7088 {
7089
7090 /*
7091 * ARM11 is compatible with generic, but we want to use
7092 * write-through caching for now.
7093 */
7094 pmap_pte_init_generic();
7095
7096 pte_l1_s_cache_mode = L1_S_C;
7097 pte_l2_l_cache_mode = L2_C;
7098 pte_l2_s_cache_mode = L2_C;
7099
7100 pte_l1_s_wc_mode = L1_S_B;
7101 pte_l2_l_wc_mode = L2_B;
7102 pte_l2_s_wc_mode = L2_B;
7103
7104 pte_l1_s_cache_mode_pt = L1_S_C;
7105 pte_l2_l_cache_mode_pt = L2_C;
7106 pte_l2_s_cache_mode_pt = L2_C;
7107 }
7108 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7109
7110 #if ARM_MMU_SA1 == 1
7111 void
7112 pmap_pte_init_sa1(void)
7113 {
7114
7115 /*
7116 * The StrongARM SA-1 cache does not have a write-through
7117 * mode. So, do the generic initialization, then reset
7118 * the page table cache mode to B=1,C=1, and note that
7119 * the PTEs need to be sync'd.
7120 */
7121 pmap_pte_init_generic();
7122
7123 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7124 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7125 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7126
7127 pmap_needs_pte_sync = 1;
7128 }
7129 #endif /* ARM_MMU_SA1 == 1*/
7130
7131 #if ARM_MMU_XSCALE == 1
7132 #if (ARM_NMMUS > 1)
7133 static u_int xscale_use_minidata;
7134 #endif
7135
7136 void
7137 pmap_pte_init_xscale(void)
7138 {
7139 uint32_t auxctl;
7140 int write_through = 0;
7141
7142 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7143 pte_l1_s_wc_mode = L1_S_B;
7144 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7145
7146 pte_l2_l_cache_mode = L2_B|L2_C;
7147 pte_l2_l_wc_mode = L2_B;
7148 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7149
7150 pte_l2_s_cache_mode = L2_B|L2_C;
7151 pte_l2_s_wc_mode = L2_B;
7152 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7153
7154 pte_l1_s_cache_mode_pt = L1_S_C;
7155 pte_l2_l_cache_mode_pt = L2_C;
7156 pte_l2_s_cache_mode_pt = L2_C;
7157
7158 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7159 /*
7160 * The XScale core has an enhanced mode where writes that
7161 * miss the cache cause a cache line to be allocated. This
7162 * is significantly faster than the traditional, write-through
7163 * behavior of this case.
7164 */
7165 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7166 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7167 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7168 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7169
7170 #ifdef XSCALE_CACHE_WRITE_THROUGH
7171 /*
7172 * Some versions of the XScale core have various bugs in
7173 * their cache units, the work-around for which is to run
7174 * the cache in write-through mode. Unfortunately, this
7175 * has a major (negative) impact on performance. So, we
7176 * go ahead and run fast-and-loose, in the hopes that we
7177 * don't line up the planets in a way that will trip the
7178 * bugs.
7179 *
7180 * However, we give you the option to be slow-but-correct.
7181 */
7182 write_through = 1;
7183 #elif defined(XSCALE_CACHE_WRITE_BACK)
7184 /* force write back cache mode */
7185 write_through = 0;
7186 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7187 /*
7188 * Intel PXA2[15]0 processors are known to have a bug in
7189 * write-back cache on revision 4 and earlier (stepping
7190 * A[01] and B[012]). Fixed for C0 and later.
7191 */
7192 {
7193 uint32_t id, type;
7194
7195 id = cpufunc_id();
7196 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7197
7198 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7199 if ((id & CPU_ID_REVISION_MASK) < 5) {
7200 /* write through for stepping A0-1 and B0-2 */
7201 write_through = 1;
7202 }
7203 }
7204 }
7205 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7206
7207 if (write_through) {
7208 pte_l1_s_cache_mode = L1_S_C;
7209 pte_l2_l_cache_mode = L2_C;
7210 pte_l2_s_cache_mode = L2_C;
7211 }
7212
7213 #if (ARM_NMMUS > 1)
7214 xscale_use_minidata = 1;
7215 #endif
7216
7217 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7218 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7219 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7220 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7221
7222 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7223 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7224 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7225 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7226
7227 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7228 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7229 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7230 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7231
7232 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7233 pte_l1_s_proto = L1_S_PROTO_xscale;
7234 pte_l1_c_proto = L1_C_PROTO_xscale;
7235 pte_l2_s_proto = L2_S_PROTO_xscale;
7236
7237 pmap_copy_page_func = pmap_copy_page_xscale;
7238 pmap_zero_page_func = pmap_zero_page_xscale;
7239
7240 /*
7241 * Disable ECC protection of page table access, for now.
7242 */
7243 auxctl = armreg_auxctl_read();
7244 auxctl &= ~XSCALE_AUXCTL_P;
7245 armreg_auxctl_write(auxctl);
7246 }
7247
7248 /*
7249 * xscale_setup_minidata:
7250 *
7251 * Set up the mini-data cache clean area. We require the
7252 * caller to allocate the right amount of physically and
7253 * virtually contiguous space.
7254 */
7255 void
7256 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7257 {
7258 extern vaddr_t xscale_minidata_clean_addr;
7259 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7260 pd_entry_t *pde = (pd_entry_t *) l1pt;
7261 vsize_t size;
7262 uint32_t auxctl;
7263
7264 xscale_minidata_clean_addr = va;
7265
7266 /* Round it to page size. */
7267 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7268
7269 for (; size != 0;
7270 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7271 const size_t l1slot = l1pte_index(va);
7272 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7273 if (ptep == NULL)
7274 panic("xscale_setup_minidata: can't find L2 table for "
7275 "VA 0x%08lx", va);
7276
7277 ptep += l2pte_index(va);
7278 pt_entry_t opte = *ptep;
7279 l2pte_set(ptep,
7280 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7281 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7282 }
7283
7284 /*
7285 * Configure the mini-data cache for write-back with
7286 * read/write-allocate.
7287 *
7288 * NOTE: In order to reconfigure the mini-data cache, we must
7289 * make sure it contains no valid data! In order to do that,
7290 * we must issue a global data cache invalidate command!
7291 *
7292 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7293 * THIS IS VERY IMPORTANT!
7294 */
7295
7296 /* Invalidate data and mini-data. */
7297 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7298 auxctl = armreg_auxctl_read();
7299 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7300 armreg_auxctl_write(auxctl);
7301 }
7302
7303 /*
7304 * Change the PTEs for the specified kernel mappings such that they
7305 * will use the mini data cache instead of the main data cache.
7306 */
7307 void
7308 pmap_uarea(vaddr_t va)
7309 {
7310 vaddr_t next_bucket, eva;
7311
7312 #if (ARM_NMMUS > 1)
7313 if (xscale_use_minidata == 0)
7314 return;
7315 #endif
7316
7317 eva = va + USPACE;
7318
7319 while (va < eva) {
7320 next_bucket = L2_NEXT_BUCKET_VA(va);
7321 if (next_bucket > eva)
7322 next_bucket = eva;
7323
7324 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7325 KDASSERT(l2b != NULL);
7326
7327 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7328 pt_entry_t *ptep = sptep;
7329
7330 while (va < next_bucket) {
7331 const pt_entry_t opte = *ptep;
7332 if (!l2pte_minidata_p(opte)) {
7333 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7334 cpu_tlb_flushD_SE(va);
7335 l2pte_set(ptep, opte & ~L2_B, opte);
7336 }
7337 ptep += PAGE_SIZE / L2_S_SIZE;
7338 va += PAGE_SIZE;
7339 }
7340 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7341 }
7342 cpu_cpwait();
7343 }
7344 #endif /* ARM_MMU_XSCALE == 1 */
7345
7346
7347 #if defined(CPU_ARM11MPCORE)
7348
7349 void
7350 pmap_pte_init_arm11mpcore(void)
7351 {
7352
7353 /* cache mode is controlled by 5 bits (B, C, TEX) */
7354 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7355 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7356 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7357 /* use extended small page (without APn, with TEX) */
7358 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7359 #else
7360 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7361 #endif
7362
7363 /* write-back, write-allocate */
7364 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7365 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7366 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7367 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7368 #else
7369 /* no TEX. read-allocate */
7370 pte_l2_s_cache_mode = L2_C | L2_B;
7371 #endif
7372 /*
7373 * write-back, write-allocate for page tables.
7374 */
7375 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7376 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7377 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7378 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7379 #else
7380 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7381 #endif
7382
7383 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7384 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7385 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7386 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7387
7388 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7389 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7390 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7391 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7392 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7393
7394 #else
7395 /* with AP[0..3] */
7396 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7397 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7398 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7399 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7400 #endif
7401
7402 #ifdef ARM11MPCORE_COMPAT_MMU
7403 /* with AP[0..3] */
7404 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7405 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7406 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7407 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7408
7409 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7410 pte_l1_s_proto = L1_S_PROTO_armv6;
7411 pte_l1_c_proto = L1_C_PROTO_armv6;
7412 pte_l2_s_proto = L2_S_PROTO_armv6c;
7413 #else
7414 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7415 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7416 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7417 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7418
7419 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7420 pte_l1_s_proto = L1_S_PROTO_armv6;
7421 pte_l1_c_proto = L1_C_PROTO_armv6;
7422 pte_l2_s_proto = L2_S_PROTO_armv6n;
7423 #endif
7424
7425 pmap_copy_page_func = pmap_copy_page_generic;
7426 pmap_zero_page_func = pmap_zero_page_generic;
7427 pmap_needs_pte_sync = 1;
7428 }
7429 #endif /* CPU_ARM11MPCORE */
7430
7431
7432 #if ARM_MMU_V7 == 1
7433 void
7434 pmap_pte_init_armv7(void)
7435 {
7436 /*
7437 * The ARMv7-A MMU is mostly compatible with generic. If the
7438 * AP field is zero, that now means "no access" rather than
7439 * read-only. The prototypes are a little different because of
7440 * the XN bit.
7441 */
7442 pmap_pte_init_generic();
7443
7444 pmap_needs_pte_sync = 1;
7445
7446 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7447 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7448 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7449
7450 /*
7451 * If the core support coherent walk then updates to translation tables
7452 * do not require a clean to the point of unification to ensure
7453 * visibility by subsequent translation table walks. That means we can
7454 * map everything shareable and cached and the right thing will happen.
7455 */
7456 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7457 pmap_needs_pte_sync = 0;
7458
7459 /*
7460 * write-back, no write-allocate, shareable for normal pages.
7461 */
7462 pte_l1_s_cache_mode |= L1_S_V6_S;
7463 pte_l2_l_cache_mode |= L2_XS_S;
7464 pte_l2_s_cache_mode |= L2_XS_S;
7465 }
7466
7467 /*
7468 * Page tables are just all other memory. We can use write-back since
7469 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7470 */
7471 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7472 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7473 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7474
7475 /*
7476 * Check the Memory Model Features to see if this CPU supports
7477 * the TLBIASID coproc op.
7478 */
7479 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7480 arm_has_tlbiasid_p = true;
7481 }
7482
7483 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7484 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7485 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7486 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7487
7488 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7489 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7490 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7491 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7492
7493 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7494 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7495 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7496 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7497
7498 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7499 pte_l1_s_proto = L1_S_PROTO_armv7;
7500 pte_l1_c_proto = L1_C_PROTO_armv7;
7501 pte_l2_s_proto = L2_S_PROTO_armv7;
7502
7503 }
7504 #endif /* ARM_MMU_V7 */
7505
7506 /*
7507 * return the PA of the current L1 table, for use when handling a crash dump
7508 */
7509 uint32_t
7510 pmap_kernel_L1_addr(void)
7511 {
7512 #ifdef ARM_MMU_EXTENDED
7513 return pmap_kernel()->pm_l1_pa;
7514 #else
7515 return pmap_kernel()->pm_l1->l1_physaddr;
7516 #endif
7517 }
7518
7519 #if defined(DDB)
7520 /*
7521 * A couple of ddb-callable functions for dumping pmaps
7522 */
7523 void pmap_dump(pmap_t);
7524
7525 static pt_entry_t ncptes[64];
7526 static void pmap_dump_ncpg(pmap_t);
7527
7528 void
7529 pmap_dump(pmap_t pm)
7530 {
7531 struct l2_dtable *l2;
7532 struct l2_bucket *l2b;
7533 pt_entry_t *ptep, pte;
7534 vaddr_t l2_va, l2b_va, va;
7535 int i, j, k, occ, rows = 0;
7536
7537 if (pm == pmap_kernel())
7538 printf("pmap_kernel (%p): ", pm);
7539 else
7540 printf("user pmap (%p): ", pm);
7541
7542 #ifdef ARM_MMU_EXTENDED
7543 printf("l1 at %p\n", pmap_l1_kva(pm));
7544 #else
7545 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7546 #endif
7547
7548 l2_va = 0;
7549 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7550 l2 = pm->pm_l2[i];
7551
7552 if (l2 == NULL || l2->l2_occupancy == 0)
7553 continue;
7554
7555 l2b_va = l2_va;
7556 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7557 l2b = &l2->l2_bucket[j];
7558
7559 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7560 continue;
7561
7562 ptep = l2b->l2b_kva;
7563
7564 for (k = 0; k < 256 && ptep[k] == 0; k++)
7565 ;
7566
7567 k &= ~63;
7568 occ = l2b->l2b_occupancy;
7569 va = l2b_va + (k * 4096);
7570 for (; k < 256; k++, va += 0x1000) {
7571 char ch = ' ';
7572 if ((k % 64) == 0) {
7573 if ((rows % 8) == 0) {
7574 printf(
7575 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7576 }
7577 printf("%08lx: ", va);
7578 }
7579
7580 ncptes[k & 63] = 0;
7581 pte = ptep[k];
7582 if (pte == 0) {
7583 ch = '.';
7584 } else {
7585 occ--;
7586 switch (pte & 0x0c) {
7587 case 0x00:
7588 ch = 'D'; /* No cache No buff */
7589 break;
7590 case 0x04:
7591 ch = 'B'; /* No cache buff */
7592 break;
7593 case 0x08:
7594 if (pte & 0x40)
7595 ch = 'm';
7596 else
7597 ch = 'C'; /* Cache No buff */
7598 break;
7599 case 0x0c:
7600 ch = 'F'; /* Cache Buff */
7601 break;
7602 }
7603
7604 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7605 ch += 0x20;
7606
7607 if ((pte & 0xc) == 0)
7608 ncptes[k & 63] = pte;
7609 }
7610
7611 if ((k % 64) == 63) {
7612 rows++;
7613 printf("%c\n", ch);
7614 pmap_dump_ncpg(pm);
7615 if (occ == 0)
7616 break;
7617 } else
7618 printf("%c", ch);
7619 }
7620 }
7621 }
7622 }
7623
7624 static void
7625 pmap_dump_ncpg(pmap_t pm)
7626 {
7627 struct vm_page *pg;
7628 struct vm_page_md *md;
7629 struct pv_entry *pv;
7630 int i;
7631
7632 for (i = 0; i < 63; i++) {
7633 if (ncptes[i] == 0)
7634 continue;
7635
7636 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7637 if (pg == NULL)
7638 continue;
7639 md = VM_PAGE_TO_MD(pg);
7640
7641 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7642 VM_PAGE_TO_PHYS(pg),
7643 md->krw_mappings, md->kro_mappings,
7644 md->urw_mappings, md->uro_mappings);
7645
7646 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7647 printf(" %c va 0x%08lx, flags 0x%x\n",
7648 (pm == pv->pv_pmap) ? '*' : ' ',
7649 pv->pv_va, pv->pv_flags);
7650 }
7651 }
7652 }
7653 #endif
7654
7655 #ifdef PMAP_STEAL_MEMORY
7656 void
7657 pmap_boot_pageadd(pv_addr_t *newpv)
7658 {
7659 pv_addr_t *pv, *npv;
7660
7661 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7662 if (newpv->pv_pa < pv->pv_va) {
7663 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7664 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7665 newpv->pv_size += pv->pv_size;
7666 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7667 }
7668 pv = NULL;
7669 } else {
7670 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7671 pv = npv) {
7672 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7673 KASSERT(pv->pv_pa < newpv->pv_pa);
7674 if (newpv->pv_pa > npv->pv_pa)
7675 continue;
7676 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7677 pv->pv_size += newpv->pv_size;
7678 return;
7679 }
7680 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7681 break;
7682 newpv->pv_size += npv->pv_size;
7683 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7684 SLIST_REMOVE_AFTER(newpv, pv_list);
7685 return;
7686 }
7687 }
7688 }
7689
7690 if (pv) {
7691 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7692 } else {
7693 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7694 }
7695 }
7696
7697 void
7698 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7699 pv_addr_t *rpv)
7700 {
7701 pv_addr_t *pv, **pvp;
7702 struct vm_physseg *ps;
7703 size_t i;
7704
7705 KASSERT(amount & PGOFSET);
7706 KASSERT((mask & PGOFSET) == 0);
7707 KASSERT((match & PGOFSET) == 0);
7708 KASSERT(amount != 0);
7709
7710 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7711 (pv = *pvp) != NULL;
7712 pvp = &SLIST_NEXT(pv, pv_list)) {
7713 pv_addr_t *newpv;
7714 psize_t off;
7715 /*
7716 * If this entry is too small to satify the request...
7717 */
7718 KASSERT(pv->pv_size > 0);
7719 if (pv->pv_size < amount)
7720 continue;
7721
7722 for (off = 0; off <= mask; off += PAGE_SIZE) {
7723 if (((pv->pv_pa + off) & mask) == match
7724 && off + amount <= pv->pv_size)
7725 break;
7726 }
7727 if (off > mask)
7728 continue;
7729
7730 rpv->pv_va = pv->pv_va + off;
7731 rpv->pv_pa = pv->pv_pa + off;
7732 rpv->pv_size = amount;
7733 pv->pv_size -= amount;
7734 if (pv->pv_size == 0) {
7735 KASSERT(off == 0);
7736 KASSERT((vaddr_t) pv == rpv->pv_va);
7737 *pvp = SLIST_NEXT(pv, pv_list);
7738 } else if (off == 0) {
7739 KASSERT((vaddr_t) pv == rpv->pv_va);
7740 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7741 *newpv = *pv;
7742 newpv->pv_pa += amount;
7743 newpv->pv_va += amount;
7744 *pvp = newpv;
7745 } else if (off < pv->pv_size) {
7746 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7747 *newpv = *pv;
7748 newpv->pv_size -= off;
7749 newpv->pv_pa += off + amount;
7750 newpv->pv_va += off + amount;
7751
7752 SLIST_NEXT(pv, pv_list) = newpv;
7753 pv->pv_size = off;
7754 } else {
7755 KASSERT((vaddr_t) pv != rpv->pv_va);
7756 }
7757 memset((void *)rpv->pv_va, 0, amount);
7758 return;
7759 }
7760
7761 if (vm_nphysseg == 0)
7762 panic("pmap_boot_pagealloc: couldn't allocate memory");
7763
7764 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7765 (pv = *pvp) != NULL;
7766 pvp = &SLIST_NEXT(pv, pv_list)) {
7767 if (SLIST_NEXT(pv, pv_list) == NULL)
7768 break;
7769 }
7770 KASSERT(mask == 0);
7771 for (i = 0; i < vm_nphysseg; i++) {
7772 ps = VM_PHYSMEM_PTR(i);
7773 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7774 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7775 rpv->pv_va = pv->pv_va;
7776 rpv->pv_pa = pv->pv_pa;
7777 rpv->pv_size = amount;
7778 *pvp = NULL;
7779 pmap_map_chunk(kernel_l1pt.pv_va,
7780 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7781 ptoa(ps->avail_start),
7782 amount - pv->pv_size,
7783 VM_PROT_READ|VM_PROT_WRITE,
7784 PTE_CACHE);
7785 ps->avail_start += atop(amount - pv->pv_size);
7786 /*
7787 * If we consumed the entire physseg, remove it.
7788 */
7789 if (ps->avail_start == ps->avail_end) {
7790 for (--vm_nphysseg; i < vm_nphysseg; i++)
7791 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7792 }
7793 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7794 return;
7795 }
7796 }
7797
7798 panic("pmap_boot_pagealloc: couldn't allocate memory");
7799 }
7800
7801 vaddr_t
7802 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7803 {
7804 pv_addr_t pv;
7805
7806 pmap_boot_pagealloc(size, 0, 0, &pv);
7807
7808 return pv.pv_va;
7809 }
7810 #endif /* PMAP_STEAL_MEMORY */
7811
7812 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7813 {
7814 sysctl_createv(clog, 0, NULL, NULL,
7815 CTLFLAG_PERMANENT,
7816 CTLTYPE_NODE, "machdep", NULL,
7817 NULL, 0, NULL, 0,
7818 CTL_MACHDEP, CTL_EOL);
7819
7820 sysctl_createv(clog, 0, NULL, NULL,
7821 CTLFLAG_PERMANENT,
7822 CTLTYPE_INT, "kmpages",
7823 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7824 NULL, 0, &pmap_kmpages, 0,
7825 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7826 }
7827
7828 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7829 struct vm_page *
7830 arm_pmap_alloc_poolpage(int flags)
7831 {
7832 /*
7833 * On some systems, only some pages may be "coherent" for dma and we
7834 * want to prefer those for pool pages (think mbufs) but fallback to
7835 * any page if none is available. But we can only fallback if we
7836 * aren't direct mapping memory or all of memory can be direct-mapped.
7837 * If that isn't true, pool changes can only come from direct-mapped
7838 * memory.
7839 */
7840 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7841 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7842 UVM_PGA_STRAT_FALLBACK,
7843 arm_poolpage_vmfreelist);
7844 }
7845
7846 return uvm_pagealloc(NULL, 0, NULL, flags);
7847 }
7848 #endif
7849
7850 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7851 void
7852 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7853 {
7854 /* nothing */
7855 }
7856
7857 int
7858 pic_ipi_shootdown(void *arg)
7859 {
7860 #if PMAP_NEED_TLB_SHOOTDOWN
7861 pmap_tlb_shootdown_process();
7862 #endif
7863 return 1;
7864 }
7865 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7866
7867
7868 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7869 vaddr_t
7870 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7871 {
7872 bool ok = false;
7873 if (physical_start <= pa && pa < physical_end) {
7874 #ifdef KERNEL_BASE_VOFFSET
7875 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
7876 #else
7877 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
7878 #endif
7879 #ifdef ARM_MMU_EXTENDED
7880 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
7881 #endif
7882 va = newva;
7883 ok = true;
7884 #ifdef ARM_MMU_EXTENDED
7885 }
7886 #endif
7887 }
7888 KASSERT(ok_p);
7889 *ok_p = ok;
7890 return va;
7891 }
7892
7893 vaddr_t
7894 pmap_map_poolpage(paddr_t pa)
7895 {
7896 bool ok __diagused;
7897 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7898 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
7899 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7900 if (arm_cache_prefer_mask != 0) {
7901 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7902 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7903 pmap_acquire_page_lock(md);
7904 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7905 pmap_release_page_lock(md);
7906 }
7907 #endif
7908 return va;
7909 }
7910
7911 paddr_t
7912 pmap_unmap_poolpage(vaddr_t va)
7913 {
7914 KASSERT(va >= KERNEL_BASE);
7915 #ifdef PMAP_CACHE_VIVT
7916 cpu_idcache_wbinv_range(va, PAGE_SIZE);
7917 #endif
7918 #if defined(KERNEL_BASE_VOFFSET)
7919 return va - KERNEL_BASE_VOFFSET;
7920 #else
7921 return va - KERNEL_BASE + physical_start;
7922 #endif
7923 }
7924 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
7925