pmap.c revision 1.341 1 /* $NetBSD: pmap.c,v 1.341 2016/12/17 14:36:29 flxd Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_arm_debug.h"
190 #include "opt_cpuoptions.h"
191 #include "opt_pmap_debug.h"
192 #include "opt_ddb.h"
193 #include "opt_lockdebug.h"
194 #include "opt_multiprocessor.h"
195
196 #ifdef MULTIPROCESSOR
197 #define _INTR_PRIVATE
198 #endif
199
200 #include <sys/param.h>
201 #include <sys/types.h>
202 #include <sys/kernel.h>
203 #include <sys/systm.h>
204 #include <sys/proc.h>
205 #include <sys/intr.h>
206 #include <sys/pool.h>
207 #include <sys/kmem.h>
208 #include <sys/cdefs.h>
209 #include <sys/cpu.h>
210 #include <sys/sysctl.h>
211 #include <sys/bus.h>
212 #include <sys/atomic.h>
213 #include <sys/kernhist.h>
214
215 #include <uvm/uvm.h>
216 #include <uvm/pmap/pmap_pvt.h>
217
218 #include <arm/locore.h>
219
220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.341 2016/12/17 14:36:29 flxd Exp $");
221
222 //#define PMAP_DEBUG
223 #ifdef PMAP_DEBUG
224
225 /* XXX need to get rid of all refs to this */
226 int pmap_debug_level = 0;
227
228 /*
229 * for switching to potentially finer grained debugging
230 */
231 #define PDB_FOLLOW 0x0001
232 #define PDB_INIT 0x0002
233 #define PDB_ENTER 0x0004
234 #define PDB_REMOVE 0x0008
235 #define PDB_CREATE 0x0010
236 #define PDB_PTPAGE 0x0020
237 #define PDB_GROWKERN 0x0040
238 #define PDB_BITS 0x0080
239 #define PDB_COLLECT 0x0100
240 #define PDB_PROTECT 0x0200
241 #define PDB_MAP_L1 0x0400
242 #define PDB_BOOTSTRAP 0x1000
243 #define PDB_PARANOIA 0x2000
244 #define PDB_WIRING 0x4000
245 #define PDB_PVDUMP 0x8000
246 #define PDB_VAC 0x10000
247 #define PDB_KENTER 0x20000
248 #define PDB_KREMOVE 0x40000
249 #define PDB_EXEC 0x80000
250
251 int debugmap = 1;
252 int pmapdebug = 0;
253 #define NPDEBUG(_lev_,_stat_) \
254 if (pmapdebug & (_lev_)) \
255 ((_stat_))
256
257 #else /* PMAP_DEBUG */
258 #define NPDEBUG(_lev_,_stat_) /* Nothing */
259 #endif /* PMAP_DEBUG */
260
261 /*
262 * pmap_kernel() points here
263 */
264 static struct pmap kernel_pmap_store = {
265 #ifndef ARM_MMU_EXTENDED
266 .pm_activated = true,
267 .pm_domain = PMAP_DOMAIN_KERNEL,
268 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
269 #endif
270 };
271 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
272 #undef pmap_kernel
273 #define pmap_kernel() (&kernel_pmap_store)
274 #ifdef PMAP_NEED_ALLOC_POOLPAGE
275 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
276 #endif
277
278 /*
279 * Pool and cache that pmap structures are allocated from.
280 * We use a cache to avoid clearing the pm_l2[] array (1KB)
281 * in pmap_create().
282 */
283 static struct pool_cache pmap_cache;
284
285 /*
286 * Pool of PV structures
287 */
288 static struct pool pmap_pv_pool;
289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
292 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
293 };
294
295 /*
296 * Pool and cache of l2_dtable structures.
297 * We use a cache to avoid clearing the structures when they're
298 * allocated. (196 bytes)
299 */
300 static struct pool_cache pmap_l2dtable_cache;
301 static vaddr_t pmap_kernel_l2dtable_kva;
302
303 /*
304 * Pool and cache of L2 page descriptors.
305 * We use a cache to avoid clearing the descriptor table
306 * when they're allocated. (1KB)
307 */
308 static struct pool_cache pmap_l2ptp_cache;
309 static vaddr_t pmap_kernel_l2ptp_kva;
310 static paddr_t pmap_kernel_l2ptp_phys;
311
312 #ifdef PMAPCOUNTERS
313 #define PMAP_EVCNT_INITIALIZER(name) \
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
315
316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
317 static struct evcnt pmap_ev_vac_clean_one =
318 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
319 static struct evcnt pmap_ev_vac_flush_one =
320 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
321 static struct evcnt pmap_ev_vac_flush_lots =
322 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
323 static struct evcnt pmap_ev_vac_flush_lots2 =
324 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
329
330 static struct evcnt pmap_ev_vac_color_new =
331 PMAP_EVCNT_INITIALIZER("new page color");
332 static struct evcnt pmap_ev_vac_color_reuse =
333 PMAP_EVCNT_INITIALIZER("ok first page color");
334 static struct evcnt pmap_ev_vac_color_ok =
335 PMAP_EVCNT_INITIALIZER("ok page color");
336 static struct evcnt pmap_ev_vac_color_blind =
337 PMAP_EVCNT_INITIALIZER("blind page color");
338 static struct evcnt pmap_ev_vac_color_change =
339 PMAP_EVCNT_INITIALIZER("change page color");
340 static struct evcnt pmap_ev_vac_color_erase =
341 PMAP_EVCNT_INITIALIZER("erase page color");
342 static struct evcnt pmap_ev_vac_color_none =
343 PMAP_EVCNT_INITIALIZER("no page color");
344 static struct evcnt pmap_ev_vac_color_restore =
345 PMAP_EVCNT_INITIALIZER("restore page color");
346
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
355 #endif
356
357 static struct evcnt pmap_ev_mappings =
358 PMAP_EVCNT_INITIALIZER("pages mapped");
359 static struct evcnt pmap_ev_unmappings =
360 PMAP_EVCNT_INITIALIZER("pages unmapped");
361 static struct evcnt pmap_ev_remappings =
362 PMAP_EVCNT_INITIALIZER("pages remapped");
363
364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
367
368 static struct evcnt pmap_ev_kernel_mappings =
369 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
370 static struct evcnt pmap_ev_kernel_unmappings =
371 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
372 static struct evcnt pmap_ev_kernel_remappings =
373 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
374
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
378
379 static struct evcnt pmap_ev_kenter_mappings =
380 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
381 static struct evcnt pmap_ev_kenter_unmappings =
382 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
383 static struct evcnt pmap_ev_kenter_remappings =
384 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
385 static struct evcnt pmap_ev_pt_mappings =
386 PMAP_EVCNT_INITIALIZER("page table pages mapped");
387
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
392
393 static struct evcnt pmap_ev_fixup_mod =
394 PMAP_EVCNT_INITIALIZER("page modification emulations");
395 static struct evcnt pmap_ev_fixup_ref =
396 PMAP_EVCNT_INITIALIZER("page reference emulations");
397 static struct evcnt pmap_ev_fixup_exec =
398 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
399 static struct evcnt pmap_ev_fixup_pdes =
400 PMAP_EVCNT_INITIALIZER("pdes fixed up");
401 #ifndef ARM_MMU_EXTENDED
402 static struct evcnt pmap_ev_fixup_ptesync =
403 PMAP_EVCNT_INITIALIZER("ptesync fixed");
404 #endif
405
406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
410 #ifndef ARM_MMU_EXTENDED
411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
412 #endif
413
414 #ifdef PMAP_CACHE_VIPT
415 static struct evcnt pmap_ev_exec_mappings =
416 PMAP_EVCNT_INITIALIZER("exec pages mapped");
417 static struct evcnt pmap_ev_exec_cached =
418 PMAP_EVCNT_INITIALIZER("exec pages cached");
419
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
422
423 static struct evcnt pmap_ev_exec_synced =
424 PMAP_EVCNT_INITIALIZER("exec pages synced");
425 static struct evcnt pmap_ev_exec_synced_map =
426 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
427 #ifndef ARM_MMU_EXTENDED
428 static struct evcnt pmap_ev_exec_synced_unmap =
429 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
430 static struct evcnt pmap_ev_exec_synced_remap =
431 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
432 static struct evcnt pmap_ev_exec_synced_clearbit =
433 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
434 static struct evcnt pmap_ev_exec_synced_kremove =
435 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
436 #endif
437
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
440 #ifndef ARM_MMU_EXTENDED
441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
445 #endif
446
447 static struct evcnt pmap_ev_exec_discarded_unmap =
448 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
449 static struct evcnt pmap_ev_exec_discarded_zero =
450 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
451 static struct evcnt pmap_ev_exec_discarded_copy =
452 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
453 static struct evcnt pmap_ev_exec_discarded_page_protect =
454 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
455 static struct evcnt pmap_ev_exec_discarded_clearbit =
456 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
457 static struct evcnt pmap_ev_exec_discarded_kremove =
458 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
459 #ifdef ARM_MMU_EXTENDED
460 static struct evcnt pmap_ev_exec_discarded_modfixup =
461 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
462 #endif
463
464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
470 #ifdef ARM_MMU_EXTENDED
471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
472 #endif
473 #endif /* PMAP_CACHE_VIPT */
474
475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
478
479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
482
483 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
484 #else
485 #define PMAPCOUNT(x) ((void)0)
486 #endif
487
488 /*
489 * pmap copy/zero page, and mem(5) hook point
490 */
491 static pt_entry_t *csrc_pte, *cdst_pte;
492 static vaddr_t csrcp, cdstp;
493 #ifdef MULTIPROCESSOR
494 static size_t cnptes;
495 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
496 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
497 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
498 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
499 #else
500 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
501 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
502 #define cpu_csrcp(o) (csrcp + (o))
503 #define cpu_cdstp(o) (cdstp + (o))
504 #endif
505 vaddr_t memhook; /* used by mem.c & others */
506 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
507 kmutex_t pmap_lock __cacheline_aligned;
508 extern void *msgbufaddr;
509 int pmap_kmpages;
510 /*
511 * Flag to indicate if pmap_init() has done its thing
512 */
513 bool pmap_initialized;
514
515 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
516 /*
517 * Virtual end of direct-mapped memory
518 */
519 vaddr_t pmap_directlimit;
520 #endif
521
522 /*
523 * Misc. locking data structures
524 */
525
526 static inline void
527 pmap_acquire_pmap_lock(pmap_t pm)
528 {
529 if (pm == pmap_kernel()) {
530 #ifdef MULTIPROCESSOR
531 KERNEL_LOCK(1, NULL);
532 #endif
533 } else {
534 mutex_enter(pm->pm_lock);
535 }
536 }
537
538 static inline void
539 pmap_release_pmap_lock(pmap_t pm)
540 {
541 if (pm == pmap_kernel()) {
542 #ifdef MULTIPROCESSOR
543 KERNEL_UNLOCK_ONE(NULL);
544 #endif
545 } else {
546 mutex_exit(pm->pm_lock);
547 }
548 }
549
550 static inline void
551 pmap_acquire_page_lock(struct vm_page_md *md)
552 {
553 mutex_enter(&pmap_lock);
554 }
555
556 static inline void
557 pmap_release_page_lock(struct vm_page_md *md)
558 {
559 mutex_exit(&pmap_lock);
560 }
561
562 #ifdef DIAGNOSTIC
563 static inline int
564 pmap_page_locked_p(struct vm_page_md *md)
565 {
566 return mutex_owned(&pmap_lock);
567 }
568 #endif
569
570
571 /*
572 * Metadata for L1 translation tables.
573 */
574 #ifndef ARM_MMU_EXTENDED
575 struct l1_ttable {
576 /* Entry on the L1 Table list */
577 SLIST_ENTRY(l1_ttable) l1_link;
578
579 /* Entry on the L1 Least Recently Used list */
580 TAILQ_ENTRY(l1_ttable) l1_lru;
581
582 /* Track how many domains are allocated from this L1 */
583 volatile u_int l1_domain_use_count;
584
585 /*
586 * A free-list of domain numbers for this L1.
587 * We avoid using ffs() and a bitmap to track domains since ffs()
588 * is slow on ARM.
589 */
590 uint8_t l1_domain_first;
591 uint8_t l1_domain_free[PMAP_DOMAINS];
592
593 /* Physical address of this L1 page table */
594 paddr_t l1_physaddr;
595
596 /* KVA of this L1 page table */
597 pd_entry_t *l1_kva;
598 };
599
600 /*
601 * L1 Page Tables are tracked using a Least Recently Used list.
602 * - New L1s are allocated from the HEAD.
603 * - Freed L1s are added to the TAIl.
604 * - Recently accessed L1s (where an 'access' is some change to one of
605 * the userland pmaps which owns this L1) are moved to the TAIL.
606 */
607 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
608 static kmutex_t l1_lru_lock __cacheline_aligned;
609
610 /*
611 * A list of all L1 tables
612 */
613 static SLIST_HEAD(, l1_ttable) l1_list;
614 #endif /* ARM_MMU_EXTENDED */
615
616 /*
617 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
618 *
619 * This is normally 16MB worth L2 page descriptors for any given pmap.
620 * Reference counts are maintained for L2 descriptors so they can be
621 * freed when empty.
622 */
623 struct l2_bucket {
624 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
625 paddr_t l2b_pa; /* Physical address of same */
626 u_short l2b_l1slot; /* This L2 table's L1 index */
627 u_short l2b_occupancy; /* How many active descriptors */
628 };
629
630 struct l2_dtable {
631 /* The number of L2 page descriptors allocated to this l2_dtable */
632 u_int l2_occupancy;
633
634 /* List of L2 page descriptors */
635 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
636 };
637
638 /*
639 * Given an L1 table index, calculate the corresponding l2_dtable index
640 * and bucket index within the l2_dtable.
641 */
642 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
643 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
644 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
645 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
646 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
647
648 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
649 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
650
651 /*
652 * Given a virtual address, this macro returns the
653 * virtual address required to drop into the next L2 bucket.
654 */
655 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
656
657 /*
658 * L2 allocation.
659 */
660 #define pmap_alloc_l2_dtable() \
661 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
662 #define pmap_free_l2_dtable(l2) \
663 pool_cache_put(&pmap_l2dtable_cache, (l2))
664 #define pmap_alloc_l2_ptp(pap) \
665 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
666 PR_NOWAIT, (pap)))
667
668 /*
669 * We try to map the page tables write-through, if possible. However, not
670 * all CPUs have a write-through cache mode, so on those we have to sync
671 * the cache when we frob page tables.
672 *
673 * We try to evaluate this at compile time, if possible. However, it's
674 * not always possible to do that, hence this run-time var.
675 */
676 int pmap_needs_pte_sync;
677
678 /*
679 * Real definition of pv_entry.
680 */
681 struct pv_entry {
682 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
683 pmap_t pv_pmap; /* pmap where mapping lies */
684 vaddr_t pv_va; /* virtual address for mapping */
685 u_int pv_flags; /* flags */
686 };
687
688 /*
689 * Macros to determine if a mapping might be resident in the
690 * instruction/data cache and/or TLB
691 */
692 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
693 /*
694 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
695 * there are no explicit accesses, so there may be always be TLB entries to
696 * flush. If we used ASIDs then this would not be a problem.
697 */
698 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
699 #define PV_BEEN_REFD(f) (true)
700 #else
701 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
702 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
703 #endif
704 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
705 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
706 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
707
708 /*
709 * Local prototypes
710 */
711 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
712 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
713 pt_entry_t **);
714 static bool pmap_is_current(pmap_t) __unused;
715 static bool pmap_is_cached(pmap_t);
716 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
717 pmap_t, vaddr_t, u_int);
718 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
719 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
720 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
721 u_int, u_int);
722
723 static void pmap_pinit(pmap_t);
724 static int pmap_pmap_ctor(void *, void *, int);
725
726 static void pmap_alloc_l1(pmap_t);
727 static void pmap_free_l1(pmap_t);
728 #ifndef ARM_MMU_EXTENDED
729 static void pmap_use_l1(pmap_t);
730 #endif
731
732 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
733 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
734 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
735 static int pmap_l2ptp_ctor(void *, void *, int);
736 static int pmap_l2dtable_ctor(void *, void *, int);
737
738 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
739 #ifdef PMAP_CACHE_VIVT
740 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
741 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
742 #endif
743
744 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
745 #ifdef PMAP_CACHE_VIVT
746 static bool pmap_clean_page(struct vm_page_md *, bool);
747 #endif
748 #ifdef PMAP_CACHE_VIPT
749 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
750 enum pmap_flush_op {
751 PMAP_FLUSH_PRIMARY,
752 PMAP_FLUSH_SECONDARY,
753 PMAP_CLEAN_PRIMARY
754 };
755 #ifndef ARM_MMU_EXTENDED
756 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
757 #endif
758 #endif
759 static void pmap_page_remove(struct vm_page_md *, paddr_t);
760 static void pmap_pv_remove(paddr_t);
761
762 #ifndef ARM_MMU_EXTENDED
763 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
764 #endif
765 static vaddr_t kernel_pt_lookup(paddr_t);
766
767
768 /*
769 * Misc variables
770 */
771 vaddr_t virtual_avail;
772 vaddr_t virtual_end;
773 vaddr_t pmap_curmaxkvaddr;
774
775 paddr_t avail_start;
776 paddr_t avail_end;
777
778 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
779 pv_addr_t kernelpages;
780 pv_addr_t kernel_l1pt;
781 pv_addr_t systempage;
782
783 /* Function to set the debug level of the pmap code */
784
785 #ifdef PMAP_DEBUG
786 void
787 pmap_debug(int level)
788 {
789 pmap_debug_level = level;
790 printf("pmap_debug: level=%d\n", pmap_debug_level);
791 }
792 #endif /* PMAP_DEBUG */
793
794 #ifdef PMAP_CACHE_VIPT
795 #define PMAP_VALIDATE_MD_PAGE(md) \
796 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
797 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
798 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
799 #endif /* PMAP_CACHE_VIPT */
800 /*
801 * A bunch of routines to conditionally flush the caches/TLB depending
802 * on whether the specified pmap actually needs to be flushed at any
803 * given time.
804 */
805 static inline void
806 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
807 {
808 #ifdef ARM_MMU_EXTENDED
809 pmap_tlb_invalidate_addr(pm, va);
810 #else
811 if (pm->pm_cstate.cs_tlb_id != 0) {
812 if (PV_BEEN_EXECD(flags)) {
813 cpu_tlb_flushID_SE(va);
814 } else if (PV_BEEN_REFD(flags)) {
815 cpu_tlb_flushD_SE(va);
816 }
817 }
818 #endif /* ARM_MMU_EXTENDED */
819 }
820
821 #ifndef ARM_MMU_EXTENDED
822 static inline void
823 pmap_tlb_flushID(pmap_t pm)
824 {
825 if (pm->pm_cstate.cs_tlb_id) {
826 cpu_tlb_flushID();
827 #if ARM_MMU_V7 == 0
828 /*
829 * Speculative loads by Cortex cores can cause TLB entries to
830 * be filled even if there are no explicit accesses, so there
831 * may be always be TLB entries to flush. If we used ASIDs
832 * then it would not be a problem.
833 * This is not true for other CPUs.
834 */
835 pm->pm_cstate.cs_tlb = 0;
836 #endif /* ARM_MMU_V7 */
837 }
838 }
839
840 static inline void
841 pmap_tlb_flushD(pmap_t pm)
842 {
843 if (pm->pm_cstate.cs_tlb_d) {
844 cpu_tlb_flushD();
845 #if ARM_MMU_V7 == 0
846 /*
847 * Speculative loads by Cortex cores can cause TLB entries to
848 * be filled even if there are no explicit accesses, so there
849 * may be always be TLB entries to flush. If we used ASIDs
850 * then it would not be a problem.
851 * This is not true for other CPUs.
852 */
853 pm->pm_cstate.cs_tlb_d = 0;
854 #endif /* ARM_MMU_V7 */
855 }
856 }
857 #endif /* ARM_MMU_EXTENDED */
858
859 #ifdef PMAP_CACHE_VIVT
860 static inline void
861 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
862 {
863 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
864 cpu_idcache_wbinv_range(va, PAGE_SIZE);
865 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
866 if (do_inv) {
867 if (flags & PVF_WRITE)
868 cpu_dcache_wbinv_range(va, PAGE_SIZE);
869 else
870 cpu_dcache_inv_range(va, PAGE_SIZE);
871 } else if (flags & PVF_WRITE) {
872 cpu_dcache_wb_range(va, PAGE_SIZE);
873 }
874 }
875 }
876
877 static inline void
878 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
879 {
880 if (PV_BEEN_EXECD(flags)) {
881 if (pm->pm_cstate.cs_cache_id) {
882 cpu_idcache_wbinv_all();
883 pm->pm_cstate.cs_cache = 0;
884 }
885 } else if (pm->pm_cstate.cs_cache_d) {
886 cpu_dcache_wbinv_all();
887 pm->pm_cstate.cs_cache_d = 0;
888 }
889 }
890 #endif /* PMAP_CACHE_VIVT */
891
892 static inline uint8_t
893 pmap_domain(pmap_t pm)
894 {
895 #ifdef ARM_MMU_EXTENDED
896 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
897 #else
898 return pm->pm_domain;
899 #endif
900 }
901
902 static inline pd_entry_t *
903 pmap_l1_kva(pmap_t pm)
904 {
905 #ifdef ARM_MMU_EXTENDED
906 return pm->pm_l1;
907 #else
908 return pm->pm_l1->l1_kva;
909 #endif
910 }
911
912 static inline bool
913 pmap_is_current(pmap_t pm)
914 {
915 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
916 return true;
917
918 return false;
919 }
920
921 static inline bool
922 pmap_is_cached(pmap_t pm)
923 {
924 #ifdef ARM_MMU_EXTENDED
925 if (pm == pmap_kernel())
926 return true;
927 #ifdef MULTIPROCESSOR
928 // Is this pmap active on any CPU?
929 if (!kcpuset_iszero(pm->pm_active))
930 return true;
931 #else
932 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
933 // Is this pmap active?
934 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
935 return true;
936 #endif
937 #else
938 struct cpu_info * const ci = curcpu();
939 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
940 || ci->ci_pmap_lastuser == pm)
941 return true;
942 #endif /* ARM_MMU_EXTENDED */
943
944 return false;
945 }
946
947 /*
948 * PTE_SYNC_CURRENT:
949 *
950 * Make sure the pte is written out to RAM.
951 * We need to do this for one of two cases:
952 * - We're dealing with the kernel pmap
953 * - There is no pmap active in the cache/tlb.
954 * - The specified pmap is 'active' in the cache/tlb.
955 */
956
957 static inline void
958 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
959 {
960 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
961 PTE_SYNC(ptep);
962 arm_dsb();
963 }
964
965 #ifdef PMAP_INCLUDE_PTE_SYNC
966 #define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
967 #else
968 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
969 #endif
970
971 /*
972 * main pv_entry manipulation functions:
973 * pmap_enter_pv: enter a mapping onto a vm_page list
974 * pmap_remove_pv: remove a mapping from a vm_page list
975 *
976 * NOTE: pmap_enter_pv expects to lock the pvh itself
977 * pmap_remove_pv expects the caller to lock the pvh before calling
978 */
979
980 /*
981 * pmap_enter_pv: enter a mapping onto a vm_page lst
982 *
983 * => caller should hold the proper lock on pmap_main_lock
984 * => caller should have pmap locked
985 * => we will gain the lock on the vm_page and allocate the new pv_entry
986 * => caller should adjust ptp's wire_count before calling
987 * => caller should not adjust pmap's wire_count
988 */
989 static void
990 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
991 vaddr_t va, u_int flags)
992 {
993 struct pv_entry **pvp;
994
995 NPDEBUG(PDB_PVDUMP,
996 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
997
998 pv->pv_pmap = pm;
999 pv->pv_va = va;
1000 pv->pv_flags = flags;
1001
1002 pvp = &SLIST_FIRST(&md->pvh_list);
1003 #ifdef PMAP_CACHE_VIPT
1004 /*
1005 * Insert unmanaged entries, writeable first, at the head of
1006 * the pv list.
1007 */
1008 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1009 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1010 pvp = &SLIST_NEXT(*pvp, pv_link);
1011 }
1012 if (!PV_IS_WRITE_P(flags)) {
1013 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1014 pvp = &SLIST_NEXT(*pvp, pv_link);
1015 }
1016 #endif
1017 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1018 *pvp = pv; /* ... locked list */
1019 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1020 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1021 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1022 md->pvh_attrs |= PVF_KMOD;
1023 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1024 md->pvh_attrs |= PVF_DIRTY;
1025 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1026 #endif
1027 if (pm == pmap_kernel()) {
1028 PMAPCOUNT(kernel_mappings);
1029 if (flags & PVF_WRITE)
1030 md->krw_mappings++;
1031 else
1032 md->kro_mappings++;
1033 } else {
1034 if (flags & PVF_WRITE)
1035 md->urw_mappings++;
1036 else
1037 md->uro_mappings++;
1038 }
1039
1040 #ifdef PMAP_CACHE_VIPT
1041 #ifndef ARM_MMU_EXTENDED
1042 /*
1043 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1044 * do it here as well to keep the mappings & KVF_WRITE consistent.
1045 */
1046 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1047 md->pvh_attrs |= PVF_WRITE;
1048 }
1049 #endif
1050 /*
1051 * If this is an exec mapping and its the first exec mapping
1052 * for this page, make sure to sync the I-cache.
1053 */
1054 if (PV_IS_EXEC_P(flags)) {
1055 #ifndef ARM_MMU_EXTENDED
1056 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1057 pmap_syncicache_page(md, pa);
1058 PMAPCOUNT(exec_synced_map);
1059 }
1060 #endif
1061 PMAPCOUNT(exec_mappings);
1062 }
1063 #endif
1064
1065 PMAPCOUNT(mappings);
1066
1067 if (pv->pv_flags & PVF_WIRED)
1068 ++pm->pm_stats.wired_count;
1069 }
1070
1071 /*
1072 *
1073 * pmap_find_pv: Find a pv entry
1074 *
1075 * => caller should hold lock on vm_page
1076 */
1077 static inline struct pv_entry *
1078 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1079 {
1080 struct pv_entry *pv;
1081
1082 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1083 if (pm == pv->pv_pmap && va == pv->pv_va)
1084 break;
1085 }
1086
1087 return (pv);
1088 }
1089
1090 /*
1091 * pmap_remove_pv: try to remove a mapping from a pv_list
1092 *
1093 * => caller should hold proper lock on pmap_main_lock
1094 * => pmap should be locked
1095 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1096 * => caller should adjust ptp's wire_count and free PTP if needed
1097 * => caller should NOT adjust pmap's wire_count
1098 * => we return the removed pv
1099 */
1100 static struct pv_entry *
1101 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1102 {
1103 struct pv_entry *pv, **prevptr;
1104
1105 NPDEBUG(PDB_PVDUMP,
1106 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1107
1108 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1109 pv = *prevptr;
1110
1111 while (pv) {
1112 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1113 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1114 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1115 if (pv->pv_flags & PVF_WIRED) {
1116 --pm->pm_stats.wired_count;
1117 }
1118 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1119 if (pm == pmap_kernel()) {
1120 PMAPCOUNT(kernel_unmappings);
1121 if (pv->pv_flags & PVF_WRITE)
1122 md->krw_mappings--;
1123 else
1124 md->kro_mappings--;
1125 } else {
1126 if (pv->pv_flags & PVF_WRITE)
1127 md->urw_mappings--;
1128 else
1129 md->uro_mappings--;
1130 }
1131
1132 PMAPCOUNT(unmappings);
1133 #ifdef PMAP_CACHE_VIPT
1134 if (!(pv->pv_flags & PVF_WRITE))
1135 break;
1136 /*
1137 * If this page has had an exec mapping, then if
1138 * this was the last mapping, discard the contents,
1139 * otherwise sync the i-cache for this page.
1140 */
1141 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1142 #ifdef ARM_MMU_EXTENDED
1143 md->pvh_attrs &= ~PVF_EXEC;
1144 PMAPCOUNT(exec_discarded_unmap);
1145 #else
1146 if (SLIST_EMPTY(&md->pvh_list)) {
1147 md->pvh_attrs &= ~PVF_EXEC;
1148 PMAPCOUNT(exec_discarded_unmap);
1149 } else {
1150 pmap_syncicache_page(md, pa);
1151 PMAPCOUNT(exec_synced_unmap);
1152 }
1153 #endif /* ARM_MMU_EXTENDED */
1154 }
1155 #endif /* PMAP_CACHE_VIPT */
1156 break;
1157 }
1158 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1159 pv = *prevptr; /* advance */
1160 }
1161
1162 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1163 /*
1164 * If we no longer have a WRITEABLE KENTRY at the head of list,
1165 * clear the KMOD attribute from the page.
1166 */
1167 if (SLIST_FIRST(&md->pvh_list) == NULL
1168 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1169 md->pvh_attrs &= ~PVF_KMOD;
1170
1171 /*
1172 * If this was a writeable page and there are no more writeable
1173 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1174 * the contents to memory.
1175 */
1176 if (arm_cache_prefer_mask != 0) {
1177 if (md->krw_mappings + md->urw_mappings == 0)
1178 md->pvh_attrs &= ~PVF_WRITE;
1179 PMAP_VALIDATE_MD_PAGE(md);
1180 }
1181 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1182 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1183
1184 return(pv); /* return removed pv */
1185 }
1186
1187 /*
1188 *
1189 * pmap_modify_pv: Update pv flags
1190 *
1191 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1192 * => caller should NOT adjust pmap's wire_count
1193 * => caller must call pmap_vac_me_harder() if writable status of a page
1194 * may have changed.
1195 * => we return the old flags
1196 *
1197 * Modify a physical-virtual mapping in the pv table
1198 */
1199 static u_int
1200 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1201 u_int clr_mask, u_int set_mask)
1202 {
1203 struct pv_entry *npv;
1204 u_int flags, oflags;
1205
1206 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1207 KASSERT(!PV_IS_KENTRY_P(set_mask));
1208
1209 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1210 return (0);
1211
1212 NPDEBUG(PDB_PVDUMP,
1213 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1214
1215 /*
1216 * There is at least one VA mapping this page.
1217 */
1218
1219 if (clr_mask & (PVF_REF | PVF_MOD)) {
1220 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1221 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1222 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1223 md->pvh_attrs |= PVF_DIRTY;
1224 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1225 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1226 }
1227
1228 oflags = npv->pv_flags;
1229 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1230
1231 if ((flags ^ oflags) & PVF_WIRED) {
1232 if (flags & PVF_WIRED)
1233 ++pm->pm_stats.wired_count;
1234 else
1235 --pm->pm_stats.wired_count;
1236 }
1237
1238 if ((flags ^ oflags) & PVF_WRITE) {
1239 if (pm == pmap_kernel()) {
1240 if (flags & PVF_WRITE) {
1241 md->krw_mappings++;
1242 md->kro_mappings--;
1243 } else {
1244 md->kro_mappings++;
1245 md->krw_mappings--;
1246 }
1247 } else {
1248 if (flags & PVF_WRITE) {
1249 md->urw_mappings++;
1250 md->uro_mappings--;
1251 } else {
1252 md->uro_mappings++;
1253 md->urw_mappings--;
1254 }
1255 }
1256 }
1257 #ifdef PMAP_CACHE_VIPT
1258 if (arm_cache_prefer_mask != 0) {
1259 if (md->urw_mappings + md->krw_mappings == 0) {
1260 md->pvh_attrs &= ~PVF_WRITE;
1261 } else {
1262 md->pvh_attrs |= PVF_WRITE;
1263 }
1264 }
1265 #ifndef ARM_MMU_EXTENDED
1266 /*
1267 * We have two cases here: the first is from enter_pv (new exec
1268 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1269 * Since in latter, pmap_enter_pv won't do anything, we just have
1270 * to do what pmap_remove_pv would do.
1271 */
1272 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1273 || (PV_IS_EXEC_P(md->pvh_attrs)
1274 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1275 pmap_syncicache_page(md, pa);
1276 PMAPCOUNT(exec_synced_remap);
1277 }
1278 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1279 #endif /* !ARM_MMU_EXTENDED */
1280 #endif /* PMAP_CACHE_VIPT */
1281
1282 PMAPCOUNT(remappings);
1283
1284 return (oflags);
1285 }
1286
1287 /*
1288 * Allocate an L1 translation table for the specified pmap.
1289 * This is called at pmap creation time.
1290 */
1291 static void
1292 pmap_alloc_l1(pmap_t pm)
1293 {
1294 #ifdef ARM_MMU_EXTENDED
1295 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1296 struct vm_page *pg;
1297 bool ok __diagused;
1298 for (;;) {
1299 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1300 pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1301 #else
1302 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1303 #endif
1304 if (pg != NULL)
1305 break;
1306 uvm_wait("pmapl1alloc");
1307 }
1308 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1309 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1310 KASSERT(ok);
1311 KASSERT(va >= KERNEL_BASE);
1312
1313 #else
1314 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1315 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1316 UVM_KMF_WIRED|UVM_KMF_ZERO);
1317 KASSERT(va);
1318 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1319 #endif
1320 pm->pm_l1 = (pd_entry_t *)va;
1321 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1322 #else
1323 struct l1_ttable *l1;
1324 uint8_t domain;
1325
1326 /*
1327 * Remove the L1 at the head of the LRU list
1328 */
1329 mutex_spin_enter(&l1_lru_lock);
1330 l1 = TAILQ_FIRST(&l1_lru_list);
1331 KDASSERT(l1 != NULL);
1332 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1333
1334 /*
1335 * Pick the first available domain number, and update
1336 * the link to the next number.
1337 */
1338 domain = l1->l1_domain_first;
1339 l1->l1_domain_first = l1->l1_domain_free[domain];
1340
1341 /*
1342 * If there are still free domain numbers in this L1,
1343 * put it back on the TAIL of the LRU list.
1344 */
1345 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1346 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1347
1348 mutex_spin_exit(&l1_lru_lock);
1349
1350 /*
1351 * Fix up the relevant bits in the pmap structure
1352 */
1353 pm->pm_l1 = l1;
1354 pm->pm_domain = domain + 1;
1355 #endif
1356 }
1357
1358 /*
1359 * Free an L1 translation table.
1360 * This is called at pmap destruction time.
1361 */
1362 static void
1363 pmap_free_l1(pmap_t pm)
1364 {
1365 #ifdef ARM_MMU_EXTENDED
1366 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1367 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1368 uvm_pagefree(pg);
1369 #else
1370 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1371 #endif
1372 pm->pm_l1 = NULL;
1373 pm->pm_l1_pa = 0;
1374 #else
1375 struct l1_ttable *l1 = pm->pm_l1;
1376
1377 mutex_spin_enter(&l1_lru_lock);
1378
1379 /*
1380 * If this L1 is currently on the LRU list, remove it.
1381 */
1382 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1383 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1384
1385 /*
1386 * Free up the domain number which was allocated to the pmap
1387 */
1388 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1389 l1->l1_domain_first = pmap_domain(pm) - 1;
1390 l1->l1_domain_use_count--;
1391
1392 /*
1393 * The L1 now must have at least 1 free domain, so add
1394 * it back to the LRU list. If the use count is zero,
1395 * put it at the head of the list, otherwise it goes
1396 * to the tail.
1397 */
1398 if (l1->l1_domain_use_count == 0)
1399 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1400 else
1401 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1402
1403 mutex_spin_exit(&l1_lru_lock);
1404 #endif /* ARM_MMU_EXTENDED */
1405 }
1406
1407 #ifndef ARM_MMU_EXTENDED
1408 static inline void
1409 pmap_use_l1(pmap_t pm)
1410 {
1411 struct l1_ttable *l1;
1412
1413 /*
1414 * Do nothing if we're in interrupt context.
1415 * Access to an L1 by the kernel pmap must not affect
1416 * the LRU list.
1417 */
1418 if (cpu_intr_p() || pm == pmap_kernel())
1419 return;
1420
1421 l1 = pm->pm_l1;
1422
1423 /*
1424 * If the L1 is not currently on the LRU list, just return
1425 */
1426 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1427 return;
1428
1429 mutex_spin_enter(&l1_lru_lock);
1430
1431 /*
1432 * Check the use count again, now that we've acquired the lock
1433 */
1434 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1435 mutex_spin_exit(&l1_lru_lock);
1436 return;
1437 }
1438
1439 /*
1440 * Move the L1 to the back of the LRU list
1441 */
1442 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1443 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1444
1445 mutex_spin_exit(&l1_lru_lock);
1446 }
1447 #endif /* !ARM_MMU_EXTENDED */
1448
1449 /*
1450 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1451 *
1452 * Free an L2 descriptor table.
1453 */
1454 static inline void
1455 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1456 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1457 #else
1458 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1459 #endif
1460 {
1461 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1462 /*
1463 * Note: With a write-back cache, we may need to sync this
1464 * L2 table before re-using it.
1465 * This is because it may have belonged to a non-current
1466 * pmap, in which case the cache syncs would have been
1467 * skipped for the pages that were being unmapped. If the
1468 * L2 table were then to be immediately re-allocated to
1469 * the *current* pmap, it may well contain stale mappings
1470 * which have not yet been cleared by a cache write-back
1471 * and so would still be visible to the mmu.
1472 */
1473 if (need_sync)
1474 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1475 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1476 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1477 }
1478
1479 /*
1480 * Returns a pointer to the L2 bucket associated with the specified pmap
1481 * and VA, or NULL if no L2 bucket exists for the address.
1482 */
1483 static inline struct l2_bucket *
1484 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1485 {
1486 const size_t l1slot = l1pte_index(va);
1487 struct l2_dtable *l2;
1488 struct l2_bucket *l2b;
1489
1490 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1491 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1492 return (NULL);
1493
1494 return (l2b);
1495 }
1496
1497 /*
1498 * Returns a pointer to the L2 bucket associated with the specified pmap
1499 * and VA.
1500 *
1501 * If no L2 bucket exists, perform the necessary allocations to put an L2
1502 * bucket/page table in place.
1503 *
1504 * Note that if a new L2 bucket/page was allocated, the caller *must*
1505 * increment the bucket occupancy counter appropriately *before*
1506 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1507 * the bucket/page in the meantime.
1508 */
1509 static struct l2_bucket *
1510 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1511 {
1512 const size_t l1slot = l1pte_index(va);
1513 struct l2_dtable *l2;
1514
1515 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1516 /*
1517 * No mapping at this address, as there is
1518 * no entry in the L1 table.
1519 * Need to allocate a new l2_dtable.
1520 */
1521 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1522 return (NULL);
1523
1524 /*
1525 * Link it into the parent pmap
1526 */
1527 pm->pm_l2[L2_IDX(l1slot)] = l2;
1528 }
1529
1530 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1531
1532 /*
1533 * Fetch pointer to the L2 page table associated with the address.
1534 */
1535 if (l2b->l2b_kva == NULL) {
1536 pt_entry_t *ptep;
1537
1538 /*
1539 * No L2 page table has been allocated. Chances are, this
1540 * is because we just allocated the l2_dtable, above.
1541 */
1542 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1543 /*
1544 * Oops, no more L2 page tables available at this
1545 * time. We may need to deallocate the l2_dtable
1546 * if we allocated a new one above.
1547 */
1548 if (l2->l2_occupancy == 0) {
1549 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1550 pmap_free_l2_dtable(l2);
1551 }
1552 return (NULL);
1553 }
1554
1555 l2->l2_occupancy++;
1556 l2b->l2b_kva = ptep;
1557 l2b->l2b_l1slot = l1slot;
1558
1559 #ifdef ARM_MMU_EXTENDED
1560 /*
1561 * We know there will be a mapping here, so simply
1562 * enter this PTP into the L1 now.
1563 */
1564 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1565 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1566 | L1_C_DOM(pmap_domain(pm));
1567 KASSERT(*pdep == 0);
1568 l1pte_setone(pdep, npde);
1569 PDE_SYNC(pdep);
1570 #endif
1571 }
1572
1573 return (l2b);
1574 }
1575
1576 /*
1577 * One or more mappings in the specified L2 descriptor table have just been
1578 * invalidated.
1579 *
1580 * Garbage collect the metadata and descriptor table itself if necessary.
1581 *
1582 * The pmap lock must be acquired when this is called (not necessary
1583 * for the kernel pmap).
1584 */
1585 static void
1586 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1587 {
1588 KDASSERT(count <= l2b->l2b_occupancy);
1589
1590 /*
1591 * Update the bucket's reference count according to how many
1592 * PTEs the caller has just invalidated.
1593 */
1594 l2b->l2b_occupancy -= count;
1595
1596 /*
1597 * Note:
1598 *
1599 * Level 2 page tables allocated to the kernel pmap are never freed
1600 * as that would require checking all Level 1 page tables and
1601 * removing any references to the Level 2 page table. See also the
1602 * comment elsewhere about never freeing bootstrap L2 descriptors.
1603 *
1604 * We make do with just invalidating the mapping in the L2 table.
1605 *
1606 * This isn't really a big deal in practice and, in fact, leads
1607 * to a performance win over time as we don't need to continually
1608 * alloc/free.
1609 */
1610 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1611 return;
1612
1613 /*
1614 * There are no more valid mappings in this level 2 page table.
1615 * Go ahead and NULL-out the pointer in the bucket, then
1616 * free the page table.
1617 */
1618 const size_t l1slot = l2b->l2b_l1slot;
1619 pt_entry_t * const ptep = l2b->l2b_kva;
1620 l2b->l2b_kva = NULL;
1621
1622 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1623 pd_entry_t pde __diagused = *pdep;
1624
1625 #ifdef ARM_MMU_EXTENDED
1626 /*
1627 * Invalidate the L1 slot.
1628 */
1629 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1630 #else
1631 /*
1632 * If the L1 slot matches the pmap's domain number, then invalidate it.
1633 */
1634 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1635 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1636 #endif
1637 l1pte_setone(pdep, 0);
1638 PDE_SYNC(pdep);
1639 #ifndef ARM_MMU_EXTENDED
1640 }
1641 #endif
1642
1643 /*
1644 * Release the L2 descriptor table back to the pool cache.
1645 */
1646 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1647 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1648 #else
1649 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1650 #endif
1651
1652 /*
1653 * Update the reference count in the associated l2_dtable
1654 */
1655 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1656 if (--l2->l2_occupancy > 0)
1657 return;
1658
1659 /*
1660 * There are no more valid mappings in any of the Level 1
1661 * slots managed by this l2_dtable. Go ahead and NULL-out
1662 * the pointer in the parent pmap and free the l2_dtable.
1663 */
1664 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1665 pmap_free_l2_dtable(l2);
1666 }
1667
1668 /*
1669 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1670 * structures.
1671 */
1672 static int
1673 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1674 {
1675 #ifndef PMAP_INCLUDE_PTE_SYNC
1676 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1677
1678 /*
1679 * The mappings for these page tables were initially made using
1680 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1681 * mode will not be right for page table mappings. To avoid
1682 * polluting the pmap_kenter_pa() code with a special case for
1683 * page tables, we simply fix up the cache-mode here if it's not
1684 * correct.
1685 */
1686 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1687 const struct l2_bucket * const l2b =
1688 pmap_get_l2_bucket(pmap_kernel(), va);
1689 KASSERTMSG(l2b != NULL, "%#lx", va);
1690 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1691 const pt_entry_t opte = *ptep;
1692
1693 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1694 /*
1695 * Page tables must have the cache-mode set correctly.
1696 */
1697 const pt_entry_t npte = (pte & ~L2_S_CACHE_MASK)
1698 | pte_l2_s_cache_mode_pt;
1699 l2pte_set(ptep, npte, opte);
1700 PTE_SYNC(ptep);
1701 cpu_tlb_flushD_SE(va);
1702 cpu_cpwait();
1703 }
1704 }
1705 #endif
1706
1707 memset(v, 0, L2_TABLE_SIZE_REAL);
1708 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1709 return (0);
1710 }
1711
1712 static int
1713 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1714 {
1715
1716 memset(v, 0, sizeof(struct l2_dtable));
1717 return (0);
1718 }
1719
1720 static int
1721 pmap_pmap_ctor(void *arg, void *v, int flags)
1722 {
1723
1724 memset(v, 0, sizeof(struct pmap));
1725 return (0);
1726 }
1727
1728 static void
1729 pmap_pinit(pmap_t pm)
1730 {
1731 #ifndef ARM_HAS_VBAR
1732 struct l2_bucket *l2b;
1733
1734 if (vector_page < KERNEL_BASE) {
1735 /*
1736 * Map the vector page.
1737 */
1738 pmap_enter(pm, vector_page, systempage.pv_pa,
1739 VM_PROT_READ | VM_PROT_EXECUTE,
1740 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1741 pmap_update(pm);
1742
1743 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1744 l2b = pmap_get_l2_bucket(pm, vector_page);
1745 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1746 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1747 L1_C_DOM(pmap_domain(pm));
1748 } else
1749 pm->pm_pl1vec = NULL;
1750 #endif
1751 }
1752
1753 #ifdef PMAP_CACHE_VIVT
1754 /*
1755 * Since we have a virtually indexed cache, we may need to inhibit caching if
1756 * there is more than one mapping and at least one of them is writable.
1757 * Since we purge the cache on every context switch, we only need to check for
1758 * other mappings within the same pmap, or kernel_pmap.
1759 * This function is also called when a page is unmapped, to possibly reenable
1760 * caching on any remaining mappings.
1761 *
1762 * The code implements the following logic, where:
1763 *
1764 * KW = # of kernel read/write pages
1765 * KR = # of kernel read only pages
1766 * UW = # of user read/write pages
1767 * UR = # of user read only pages
1768 *
1769 * KC = kernel mapping is cacheable
1770 * UC = user mapping is cacheable
1771 *
1772 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1773 * +---------------------------------------------
1774 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1775 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1776 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1777 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1778 */
1779
1780 static const int pmap_vac_flags[4][4] = {
1781 {-1, 0, 0, PVF_KNC},
1782 {0, 0, PVF_NC, PVF_NC},
1783 {0, PVF_NC, PVF_NC, PVF_NC},
1784 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1785 };
1786
1787 static inline int
1788 pmap_get_vac_flags(const struct vm_page_md *md)
1789 {
1790 int kidx, uidx;
1791
1792 kidx = 0;
1793 if (md->kro_mappings || md->krw_mappings > 1)
1794 kidx |= 1;
1795 if (md->krw_mappings)
1796 kidx |= 2;
1797
1798 uidx = 0;
1799 if (md->uro_mappings || md->urw_mappings > 1)
1800 uidx |= 1;
1801 if (md->urw_mappings)
1802 uidx |= 2;
1803
1804 return (pmap_vac_flags[uidx][kidx]);
1805 }
1806
1807 static inline void
1808 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1809 {
1810 int nattr;
1811
1812 nattr = pmap_get_vac_flags(md);
1813
1814 if (nattr < 0) {
1815 md->pvh_attrs &= ~PVF_NC;
1816 return;
1817 }
1818
1819 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1820 return;
1821
1822 if (pm == pmap_kernel())
1823 pmap_vac_me_kpmap(md, pa, pm, va);
1824 else
1825 pmap_vac_me_user(md, pa, pm, va);
1826
1827 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1828 }
1829
1830 static void
1831 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1832 {
1833 u_int u_cacheable, u_entries;
1834 struct pv_entry *pv;
1835 pmap_t last_pmap = pm;
1836
1837 /*
1838 * Pass one, see if there are both kernel and user pmaps for
1839 * this page. Calculate whether there are user-writable or
1840 * kernel-writable pages.
1841 */
1842 u_cacheable = 0;
1843 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1844 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1845 u_cacheable++;
1846 }
1847
1848 u_entries = md->urw_mappings + md->uro_mappings;
1849
1850 /*
1851 * We know we have just been updating a kernel entry, so if
1852 * all user pages are already cacheable, then there is nothing
1853 * further to do.
1854 */
1855 if (md->k_mappings == 0 && u_cacheable == u_entries)
1856 return;
1857
1858 if (u_entries) {
1859 /*
1860 * Scan over the list again, for each entry, if it
1861 * might not be set correctly, call pmap_vac_me_user
1862 * to recalculate the settings.
1863 */
1864 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1865 /*
1866 * We know kernel mappings will get set
1867 * correctly in other calls. We also know
1868 * that if the pmap is the same as last_pmap
1869 * then we've just handled this entry.
1870 */
1871 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1872 continue;
1873
1874 /*
1875 * If there are kernel entries and this page
1876 * is writable but non-cacheable, then we can
1877 * skip this entry also.
1878 */
1879 if (md->k_mappings &&
1880 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1881 (PVF_NC | PVF_WRITE))
1882 continue;
1883
1884 /*
1885 * Similarly if there are no kernel-writable
1886 * entries and the page is already
1887 * read-only/cacheable.
1888 */
1889 if (md->krw_mappings == 0 &&
1890 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1891 continue;
1892
1893 /*
1894 * For some of the remaining cases, we know
1895 * that we must recalculate, but for others we
1896 * can't tell if they are correct or not, so
1897 * we recalculate anyway.
1898 */
1899 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1900 }
1901
1902 if (md->k_mappings == 0)
1903 return;
1904 }
1905
1906 pmap_vac_me_user(md, pa, pm, va);
1907 }
1908
1909 static void
1910 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1911 {
1912 pmap_t kpmap = pmap_kernel();
1913 struct pv_entry *pv, *npv = NULL;
1914 u_int entries = 0;
1915 u_int writable = 0;
1916 u_int cacheable_entries = 0;
1917 u_int kern_cacheable = 0;
1918 u_int other_writable = 0;
1919
1920 /*
1921 * Count mappings and writable mappings in this pmap.
1922 * Include kernel mappings as part of our own.
1923 * Keep a pointer to the first one.
1924 */
1925 npv = NULL;
1926 KASSERT(pmap_page_locked_p(md));
1927 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1928 /* Count mappings in the same pmap */
1929 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1930 if (entries++ == 0)
1931 npv = pv;
1932
1933 /* Cacheable mappings */
1934 if ((pv->pv_flags & PVF_NC) == 0) {
1935 cacheable_entries++;
1936 if (kpmap == pv->pv_pmap)
1937 kern_cacheable++;
1938 }
1939
1940 /* Writable mappings */
1941 if (pv->pv_flags & PVF_WRITE)
1942 ++writable;
1943 } else
1944 if (pv->pv_flags & PVF_WRITE)
1945 other_writable = 1;
1946 }
1947
1948 /*
1949 * Enable or disable caching as necessary.
1950 * Note: the first entry might be part of the kernel pmap,
1951 * so we can't assume this is indicative of the state of the
1952 * other (maybe non-kpmap) entries.
1953 */
1954 if ((entries > 1 && writable) ||
1955 (entries > 0 && pm == kpmap && other_writable)) {
1956 if (cacheable_entries == 0) {
1957 return;
1958 }
1959
1960 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1961 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1962 (pv->pv_flags & PVF_NC))
1963 continue;
1964
1965 pv->pv_flags |= PVF_NC;
1966
1967 struct l2_bucket * const l2b
1968 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1969 KASSERTMSG(l2b != NULL, "%#lx", va);
1970 pt_entry_t * const ptep
1971 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1972 const pt_entry_t opte = *ptep;
1973 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1974
1975 if ((va != pv->pv_va || pm != pv->pv_pmap)
1976 && l2pte_valid_p(npte)) {
1977 #ifdef PMAP_CACHE_VIVT
1978 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1979 true, pv->pv_flags);
1980 #endif
1981 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1982 pv->pv_flags);
1983 }
1984
1985 l2pte_set(ptep, npte, opte);
1986 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1987 }
1988 cpu_cpwait();
1989 } else
1990 if (entries > cacheable_entries) {
1991 /*
1992 * Turn cacheing back on for some pages. If it is a kernel
1993 * page, only do so if there are no other writable pages.
1994 */
1995 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1996 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1997 (kpmap != pv->pv_pmap || other_writable)))
1998 continue;
1999
2000 pv->pv_flags &= ~PVF_NC;
2001
2002 struct l2_bucket * const l2b
2003 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2004 KASSERTMSG(l2b != NULL, "%#lx", va);
2005 pt_entry_t * const ptep
2006 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2007 const pt_entry_t opte = *ptep;
2008 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2009 | pte_l2_s_cache_mode;
2010
2011 if (l2pte_valid_p(opte)) {
2012 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2013 pv->pv_flags);
2014 }
2015
2016 l2pte_set(ptep, npte, opte);
2017 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2018 }
2019 }
2020 }
2021 #endif
2022
2023 #ifdef PMAP_CACHE_VIPT
2024 static void
2025 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2026 {
2027 #ifndef ARM_MMU_EXTENDED
2028 struct pv_entry *pv;
2029 vaddr_t tst_mask;
2030 bool bad_alias;
2031 const u_int
2032 rw_mappings = md->urw_mappings + md->krw_mappings,
2033 ro_mappings = md->uro_mappings + md->kro_mappings;
2034
2035 /* do we need to do anything? */
2036 if (arm_cache_prefer_mask == 0)
2037 return;
2038
2039 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2040 md, pm, va));
2041
2042 KASSERT(!va || pm);
2043 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2044
2045 /* Already a conflict? */
2046 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2047 /* just an add, things are already non-cached */
2048 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2049 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2050 bad_alias = false;
2051 if (va) {
2052 PMAPCOUNT(vac_color_none);
2053 bad_alias = true;
2054 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2055 goto fixup;
2056 }
2057 pv = SLIST_FIRST(&md->pvh_list);
2058 /* the list can't be empty because it would be cachable */
2059 if (md->pvh_attrs & PVF_KMPAGE) {
2060 tst_mask = md->pvh_attrs;
2061 } else {
2062 KASSERT(pv);
2063 tst_mask = pv->pv_va;
2064 pv = SLIST_NEXT(pv, pv_link);
2065 }
2066 /*
2067 * Only check for a bad alias if we have writable mappings.
2068 */
2069 tst_mask &= arm_cache_prefer_mask;
2070 if (rw_mappings > 0) {
2071 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2072 /* if there's a bad alias, stop checking. */
2073 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2074 bad_alias = true;
2075 }
2076 md->pvh_attrs |= PVF_WRITE;
2077 if (!bad_alias)
2078 md->pvh_attrs |= PVF_DIRTY;
2079 } else {
2080 /*
2081 * We have only read-only mappings. Let's see if there
2082 * are multiple colors in use or if we mapped a KMPAGE.
2083 * If the latter, we have a bad alias. If the former,
2084 * we need to remember that.
2085 */
2086 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2087 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2088 if (md->pvh_attrs & PVF_KMPAGE)
2089 bad_alias = true;
2090 break;
2091 }
2092 }
2093 md->pvh_attrs &= ~PVF_WRITE;
2094 /*
2095 * No KMPAGE and we exited early, so we must have
2096 * multiple color mappings.
2097 */
2098 if (!bad_alias && pv != NULL)
2099 md->pvh_attrs |= PVF_MULTCLR;
2100 }
2101
2102 /* If no conflicting colors, set everything back to cached */
2103 if (!bad_alias) {
2104 #ifdef DEBUG
2105 if ((md->pvh_attrs & PVF_WRITE)
2106 || ro_mappings < 2) {
2107 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2108 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2109 }
2110 #endif
2111 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2112 md->pvh_attrs |= tst_mask | PVF_COLORED;
2113 /*
2114 * Restore DIRTY bit if page is modified
2115 */
2116 if (md->pvh_attrs & PVF_DMOD)
2117 md->pvh_attrs |= PVF_DIRTY;
2118 PMAPCOUNT(vac_color_restore);
2119 } else {
2120 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2121 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2122 }
2123 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2124 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2125 } else if (!va) {
2126 KASSERT(pmap_is_page_colored_p(md));
2127 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2128 || (md->pvh_attrs & PVF_DIRTY));
2129 if (rw_mappings == 0) {
2130 md->pvh_attrs &= ~PVF_WRITE;
2131 if (ro_mappings == 1
2132 && (md->pvh_attrs & PVF_MULTCLR)) {
2133 /*
2134 * If this is the last readonly mapping
2135 * but it doesn't match the current color
2136 * for the page, change the current color
2137 * to match this last readonly mapping.
2138 */
2139 pv = SLIST_FIRST(&md->pvh_list);
2140 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2141 & arm_cache_prefer_mask;
2142 if (tst_mask) {
2143 md->pvh_attrs ^= tst_mask;
2144 PMAPCOUNT(vac_color_change);
2145 }
2146 }
2147 }
2148 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2149 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2150 return;
2151 } else if (!pmap_is_page_colored_p(md)) {
2152 /* not colored so we just use its color */
2153 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2154 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2155 PMAPCOUNT(vac_color_new);
2156 md->pvh_attrs &= PAGE_SIZE - 1;
2157 md->pvh_attrs |= PVF_COLORED
2158 | (va & arm_cache_prefer_mask)
2159 | (rw_mappings > 0 ? PVF_WRITE : 0);
2160 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2161 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2162 return;
2163 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2164 bad_alias = false;
2165 if (rw_mappings > 0) {
2166 /*
2167 * We now have writeable mappings and if we have
2168 * readonly mappings in more than once color, we have
2169 * an aliasing problem. Regardless mark the page as
2170 * writeable.
2171 */
2172 if (md->pvh_attrs & PVF_MULTCLR) {
2173 if (ro_mappings < 2) {
2174 /*
2175 * If we only have less than two
2176 * read-only mappings, just flush the
2177 * non-primary colors from the cache.
2178 */
2179 pmap_flush_page(md, pa,
2180 PMAP_FLUSH_SECONDARY);
2181 } else {
2182 bad_alias = true;
2183 }
2184 }
2185 md->pvh_attrs |= PVF_WRITE;
2186 }
2187 /* If no conflicting colors, set everything back to cached */
2188 if (!bad_alias) {
2189 #ifdef DEBUG
2190 if (rw_mappings > 0
2191 || (md->pvh_attrs & PMAP_KMPAGE)) {
2192 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2193 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2194 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2195 }
2196 #endif
2197 if (SLIST_EMPTY(&md->pvh_list))
2198 PMAPCOUNT(vac_color_reuse);
2199 else
2200 PMAPCOUNT(vac_color_ok);
2201
2202 /* matching color, just return */
2203 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2204 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2205 return;
2206 }
2207 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2208 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2209
2210 /* color conflict. evict from cache. */
2211
2212 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2213 md->pvh_attrs &= ~PVF_COLORED;
2214 md->pvh_attrs |= PVF_NC;
2215 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2216 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2217 PMAPCOUNT(vac_color_erase);
2218 } else if (rw_mappings == 0
2219 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2220 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2221
2222 /*
2223 * If the page has dirty cache lines, clean it.
2224 */
2225 if (md->pvh_attrs & PVF_DIRTY)
2226 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2227
2228 /*
2229 * If this is the first remapping (we know that there are no
2230 * writeable mappings), then this is a simple color change.
2231 * Otherwise this is a seconary r/o mapping, which means
2232 * we don't have to do anything.
2233 */
2234 if (ro_mappings == 1) {
2235 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2236 md->pvh_attrs &= PAGE_SIZE - 1;
2237 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2238 PMAPCOUNT(vac_color_change);
2239 } else {
2240 PMAPCOUNT(vac_color_blind);
2241 }
2242 md->pvh_attrs |= PVF_MULTCLR;
2243 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2244 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2245 return;
2246 } else {
2247 if (rw_mappings > 0)
2248 md->pvh_attrs |= PVF_WRITE;
2249
2250 /* color conflict. evict from cache. */
2251 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2252
2253 /* the list can't be empty because this was a enter/modify */
2254 pv = SLIST_FIRST(&md->pvh_list);
2255 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2256 KASSERT(pv);
2257 /*
2258 * If there's only one mapped page, change color to the
2259 * page's new color and return. Restore the DIRTY bit
2260 * that was erased by pmap_flush_page.
2261 */
2262 if (SLIST_NEXT(pv, pv_link) == NULL) {
2263 md->pvh_attrs &= PAGE_SIZE - 1;
2264 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2265 if (md->pvh_attrs & PVF_DMOD)
2266 md->pvh_attrs |= PVF_DIRTY;
2267 PMAPCOUNT(vac_color_change);
2268 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2269 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2270 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2271 return;
2272 }
2273 }
2274 bad_alias = true;
2275 md->pvh_attrs &= ~PVF_COLORED;
2276 md->pvh_attrs |= PVF_NC;
2277 PMAPCOUNT(vac_color_erase);
2278 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2279 }
2280
2281 fixup:
2282 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2283
2284 /*
2285 * Turn cacheing on/off for all pages.
2286 */
2287 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2288 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2289 pv->pv_va);
2290 KASSERTMSG(l2b != NULL, "%#lx", va);
2291 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2292 const pt_entry_t opte = *ptep;
2293 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2294 if (bad_alias) {
2295 pv->pv_flags |= PVF_NC;
2296 } else {
2297 pv->pv_flags &= ~PVF_NC;
2298 npte |= pte_l2_s_cache_mode;
2299 }
2300
2301 if (opte == npte) /* only update is there's a change */
2302 continue;
2303
2304 if (l2pte_valid_p(npte)) {
2305 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2306 }
2307
2308 l2pte_set(ptep, npte, opte);
2309 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2310 }
2311 #endif /* !ARM_MMU_EXTENDED */
2312 }
2313 #endif /* PMAP_CACHE_VIPT */
2314
2315
2316 /*
2317 * Modify pte bits for all ptes corresponding to the given physical address.
2318 * We use `maskbits' rather than `clearbits' because we're always passing
2319 * constants and the latter would require an extra inversion at run-time.
2320 */
2321 static void
2322 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2323 {
2324 struct pv_entry *pv;
2325 #ifdef PMAP_CACHE_VIPT
2326 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2327 #ifdef ARM_MMU_EXTENDED
2328 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2329 #else
2330 const u_int execbits = 0;
2331 bool need_vac_me_harder = false;
2332 bool need_syncicache = false;
2333 #endif
2334 #else
2335 const u_int execbits = 0;
2336 #endif
2337
2338 NPDEBUG(PDB_BITS,
2339 printf("pmap_clearbit: md %p mask 0x%x\n",
2340 md, maskbits));
2341
2342 #ifdef PMAP_CACHE_VIPT
2343 /*
2344 * If we might want to sync the I-cache and we've modified it,
2345 * then we know we definitely need to sync or discard it.
2346 */
2347 if (want_syncicache) {
2348 #ifdef ARM_MMU_EXTENDED
2349 if (md->pvh_attrs & PVF_MOD)
2350 md->pvh_attrs &= ~PVF_EXEC;
2351 #else
2352 need_syncicache = md->pvh_attrs & PVF_MOD;
2353 #endif
2354 }
2355 #endif
2356 KASSERT(pmap_page_locked_p(md));
2357
2358 /*
2359 * Clear saved attributes (modify, reference)
2360 */
2361 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2362
2363 if (SLIST_EMPTY(&md->pvh_list)) {
2364 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2365 if (need_syncicache) {
2366 /*
2367 * No one has it mapped, so just discard it. The next
2368 * exec remapping will cause it to be synced.
2369 */
2370 md->pvh_attrs &= ~PVF_EXEC;
2371 PMAPCOUNT(exec_discarded_clearbit);
2372 }
2373 #endif
2374 return;
2375 }
2376
2377 /*
2378 * Loop over all current mappings setting/clearing as appropos
2379 */
2380 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2381 pmap_t pm = pv->pv_pmap;
2382 const vaddr_t va = pv->pv_va;
2383 const u_int oflags = pv->pv_flags;
2384 #ifndef ARM_MMU_EXTENDED
2385 /*
2386 * Kernel entries are unmanaged and as such not to be changed.
2387 */
2388 if (PV_IS_KENTRY_P(oflags))
2389 continue;
2390 #endif
2391 pv->pv_flags &= ~maskbits;
2392
2393 pmap_release_page_lock(md);
2394 pmap_acquire_pmap_lock(pm);
2395
2396 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2397 if (l2b == NULL) {
2398 pmap_release_pmap_lock(pm);
2399 pmap_acquire_page_lock(md);
2400 continue;
2401 }
2402 KASSERTMSG(l2b != NULL, "%#lx", va);
2403
2404 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2405 const pt_entry_t opte = *ptep;
2406 pt_entry_t npte = opte | execbits;
2407
2408 #ifdef ARM_MMU_EXTENDED
2409 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2410 #endif
2411
2412 NPDEBUG(PDB_BITS,
2413 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2414 __func__, pv, pm, va, oflags));
2415
2416 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2417 #ifdef PMAP_CACHE_VIVT
2418 if ((oflags & PVF_NC)) {
2419 /*
2420 * Entry is not cacheable:
2421 *
2422 * Don't turn caching on again if this is a
2423 * modified emulation. This would be
2424 * inconsitent with the settings created by
2425 * pmap_vac_me_harder(). Otherwise, it's safe
2426 * to re-enable cacheing.
2427 *
2428 * There's no need to call pmap_vac_me_harder()
2429 * here: all pages are losing their write
2430 * permission.
2431 */
2432 if (maskbits & PVF_WRITE) {
2433 npte |= pte_l2_s_cache_mode;
2434 pv->pv_flags &= ~PVF_NC;
2435 }
2436 } else
2437 if (l2pte_writable_p(opte)) {
2438 /*
2439 * Entry is writable/cacheable: check if pmap
2440 * is current if it is flush it, otherwise it
2441 * won't be in the cache
2442 */
2443 pmap_cache_wbinv_page(pm, va,
2444 (maskbits & PVF_REF) != 0,
2445 oflags|PVF_WRITE);
2446 }
2447 #endif
2448
2449 /* make the pte read only */
2450 npte = l2pte_set_readonly(npte);
2451
2452 pmap_acquire_page_lock(md);
2453 #ifdef MULTIPROCESSOR
2454 pv = pmap_find_pv(md, pm, va);
2455 #endif
2456 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2457 /*
2458 * Keep alias accounting up to date
2459 */
2460 if (pm == pmap_kernel()) {
2461 md->krw_mappings--;
2462 md->kro_mappings++;
2463 } else {
2464 md->urw_mappings--;
2465 md->uro_mappings++;
2466 }
2467 #ifdef PMAP_CACHE_VIPT
2468 if (arm_cache_prefer_mask != 0) {
2469 if (md->urw_mappings + md->krw_mappings == 0) {
2470 md->pvh_attrs &= ~PVF_WRITE;
2471 } else {
2472 PMAP_VALIDATE_MD_PAGE(md);
2473 }
2474 }
2475 #ifndef ARM_MMU_EXTENDED
2476 if (want_syncicache)
2477 need_syncicache = true;
2478 need_vac_me_harder = true;
2479 #endif
2480 #endif /* PMAP_CACHE_VIPT */
2481 }
2482 pmap_release_page_lock(md);
2483 }
2484
2485 if (maskbits & PVF_REF) {
2486 if (true
2487 #ifndef ARM_MMU_EXTENDED
2488 && (oflags & PVF_NC) == 0
2489 #endif
2490 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2491 && l2pte_valid_p(npte)) {
2492 #ifdef PMAP_CACHE_VIVT
2493 /*
2494 * Check npte here; we may have already
2495 * done the wbinv above, and the validity
2496 * of the PTE is the same for opte and
2497 * npte.
2498 */
2499 pmap_cache_wbinv_page(pm, va, true, oflags);
2500 #endif
2501 }
2502
2503 /*
2504 * Make the PTE invalid so that we will take a
2505 * page fault the next time the mapping is
2506 * referenced.
2507 */
2508 npte &= ~L2_TYPE_MASK;
2509 npte |= L2_TYPE_INV;
2510 }
2511
2512 if (npte != opte) {
2513 l2pte_reset(ptep);
2514 PTE_SYNC(ptep);
2515
2516 /* Flush the TLB entry if a current pmap. */
2517 pmap_tlb_flush_SE(pm, va, oflags);
2518
2519 l2pte_set(ptep, npte, 0);
2520 PTE_SYNC(ptep);
2521 }
2522
2523 pmap_release_pmap_lock(pm);
2524 pmap_acquire_page_lock(md);
2525
2526 NPDEBUG(PDB_BITS,
2527 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2528 pm, va, opte, npte));
2529 }
2530
2531 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2532 /*
2533 * If we need to sync the I-cache and we haven't done it yet, do it.
2534 */
2535 if (need_syncicache) {
2536 pmap_release_page_lock(md);
2537 pmap_syncicache_page(md, pa);
2538 pmap_acquire_page_lock(md);
2539 PMAPCOUNT(exec_synced_clearbit);
2540 }
2541
2542 /*
2543 * If we are changing this to read-only, we need to call vac_me_harder
2544 * so we can change all the read-only pages to cacheable. We pretend
2545 * this as a page deletion.
2546 */
2547 if (need_vac_me_harder) {
2548 if (md->pvh_attrs & PVF_NC)
2549 pmap_vac_me_harder(md, pa, NULL, 0);
2550 }
2551 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
2552 }
2553
2554 /*
2555 * pmap_clean_page()
2556 *
2557 * This is a local function used to work out the best strategy to clean
2558 * a single page referenced by its entry in the PV table. It's used by
2559 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2560 *
2561 * Its policy is effectively:
2562 * o If there are no mappings, we don't bother doing anything with the cache.
2563 * o If there is one mapping, we clean just that page.
2564 * o If there are multiple mappings, we clean the entire cache.
2565 *
2566 * So that some functions can be further optimised, it returns 0 if it didn't
2567 * clean the entire cache, or 1 if it did.
2568 *
2569 * XXX One bug in this routine is that if the pv_entry has a single page
2570 * mapped at 0x00000000 a whole cache clean will be performed rather than
2571 * just the 1 page. Since this should not occur in everyday use and if it does
2572 * it will just result in not the most efficient clean for the page.
2573 */
2574 #ifdef PMAP_CACHE_VIVT
2575 static bool
2576 pmap_clean_page(struct vm_page_md *md, bool is_src)
2577 {
2578 struct pv_entry *pv;
2579 pmap_t pm_to_clean = NULL;
2580 bool cache_needs_cleaning = false;
2581 vaddr_t page_to_clean = 0;
2582 u_int flags = 0;
2583
2584 /*
2585 * Since we flush the cache each time we change to a different
2586 * user vmspace, we only need to flush the page if it is in the
2587 * current pmap.
2588 */
2589 KASSERT(pmap_page_locked_p(md));
2590 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2591 if (pmap_is_current(pv->pv_pmap)) {
2592 flags |= pv->pv_flags;
2593 /*
2594 * The page is mapped non-cacheable in
2595 * this map. No need to flush the cache.
2596 */
2597 if (pv->pv_flags & PVF_NC) {
2598 #ifdef DIAGNOSTIC
2599 KASSERT(!cache_needs_cleaning);
2600 #endif
2601 break;
2602 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2603 continue;
2604 if (cache_needs_cleaning) {
2605 page_to_clean = 0;
2606 break;
2607 } else {
2608 page_to_clean = pv->pv_va;
2609 pm_to_clean = pv->pv_pmap;
2610 }
2611 cache_needs_cleaning = true;
2612 }
2613 }
2614
2615 if (page_to_clean) {
2616 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2617 !is_src, flags | PVF_REF);
2618 } else if (cache_needs_cleaning) {
2619 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2620
2621 pmap_cache_wbinv_all(pm, flags);
2622 return true;
2623 }
2624 return false;
2625 }
2626 #endif
2627
2628 #ifdef PMAP_CACHE_VIPT
2629 /*
2630 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2631 * right cache alias to make sure we flush the right stuff.
2632 */
2633 void
2634 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2635 {
2636 pmap_t kpm = pmap_kernel();
2637 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2638 ? PAGE_SIZE
2639 : arm_pcache.icache_way_size;
2640
2641 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2642 md, md->pvh_attrs));
2643 /*
2644 * No need to clean the page if it's non-cached.
2645 */
2646 #ifndef ARM_MMU_EXTENDED
2647 if (md->pvh_attrs & PVF_NC)
2648 return;
2649 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2650 #endif
2651
2652 pt_entry_t * const ptep = cpu_cdst_pte(0);
2653 const vaddr_t dstp = cpu_cdstp(0);
2654 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2655 if (way_size <= PAGE_SIZE) {
2656 bool ok = false;
2657 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2658 if (ok) {
2659 cpu_icache_sync_range(vdstp, way_size);
2660 return;
2661 }
2662 }
2663 #endif
2664
2665 /*
2666 * We don't worry about the color of the exec page, we map the
2667 * same page to pages in the way and then do the icache_sync on
2668 * the entire way making sure we are cleaned.
2669 */
2670 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2671 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2672
2673 for (size_t i = 0, j = 0; i < way_size;
2674 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2675 l2pte_reset(ptep + j);
2676 PTE_SYNC(ptep + j);
2677
2678 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2679 /*
2680 * Set up a PTE with to flush these cache lines.
2681 */
2682 l2pte_set(ptep + j, npte, 0);
2683 }
2684 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2685
2686 /*
2687 * Flush it.
2688 */
2689 cpu_icache_sync_range(dstp, way_size);
2690
2691 for (size_t i = 0, j = 0; i < way_size;
2692 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2693 /*
2694 * Unmap the page(s).
2695 */
2696 l2pte_reset(ptep + j);
2697 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2698 }
2699 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2700
2701 md->pvh_attrs |= PVF_EXEC;
2702 PMAPCOUNT(exec_synced);
2703 }
2704
2705 #ifndef ARM_MMU_EXTENDED
2706 void
2707 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2708 {
2709 vsize_t va_offset, end_va;
2710 bool wbinv_p;
2711
2712 if (arm_cache_prefer_mask == 0)
2713 return;
2714
2715 switch (flush) {
2716 case PMAP_FLUSH_PRIMARY:
2717 if (md->pvh_attrs & PVF_MULTCLR) {
2718 va_offset = 0;
2719 end_va = arm_cache_prefer_mask;
2720 md->pvh_attrs &= ~PVF_MULTCLR;
2721 PMAPCOUNT(vac_flush_lots);
2722 } else {
2723 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2724 end_va = va_offset;
2725 PMAPCOUNT(vac_flush_one);
2726 }
2727 /*
2728 * Mark that the page is no longer dirty.
2729 */
2730 md->pvh_attrs &= ~PVF_DIRTY;
2731 wbinv_p = true;
2732 break;
2733 case PMAP_FLUSH_SECONDARY:
2734 va_offset = 0;
2735 end_va = arm_cache_prefer_mask;
2736 wbinv_p = true;
2737 md->pvh_attrs &= ~PVF_MULTCLR;
2738 PMAPCOUNT(vac_flush_lots);
2739 break;
2740 case PMAP_CLEAN_PRIMARY:
2741 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2742 end_va = va_offset;
2743 wbinv_p = false;
2744 /*
2745 * Mark that the page is no longer dirty.
2746 */
2747 if ((md->pvh_attrs & PVF_DMOD) == 0)
2748 md->pvh_attrs &= ~PVF_DIRTY;
2749 PMAPCOUNT(vac_clean_one);
2750 break;
2751 default:
2752 return;
2753 }
2754
2755 KASSERT(!(md->pvh_attrs & PVF_NC));
2756
2757 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2758 md, md->pvh_attrs));
2759
2760 const size_t scache_line_size = arm_scache.dcache_line_size;
2761
2762 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2763 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2764 const vaddr_t dstp = cpu_cdstp(va_offset);
2765 const pt_entry_t opte = *ptep;
2766
2767 if (flush == PMAP_FLUSH_SECONDARY
2768 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2769 continue;
2770
2771 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2772 /*
2773 * Set up a PTE with the right coloring to flush
2774 * existing cache entries.
2775 */
2776 const pt_entry_t npte = L2_S_PROTO
2777 | pa
2778 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2779 | pte_l2_s_cache_mode;
2780 l2pte_set(ptep, npte, opte);
2781 PTE_SYNC(ptep);
2782
2783 /*
2784 * Flush it. Make sure to flush secondary cache too since
2785 * bus_dma will ignore uncached pages.
2786 */
2787 if (scache_line_size != 0) {
2788 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2789 if (wbinv_p) {
2790 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2791 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2792 } else {
2793 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2794 }
2795 } else {
2796 if (wbinv_p) {
2797 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2798 } else {
2799 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2800 }
2801 }
2802
2803 /*
2804 * Restore the page table entry since we might have interrupted
2805 * pmap_zero_page or pmap_copy_page which was already using
2806 * this pte.
2807 */
2808 if (opte) {
2809 l2pte_set(ptep, opte, npte);
2810 } else {
2811 l2pte_reset(ptep);
2812 }
2813 PTE_SYNC(ptep);
2814 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2815 }
2816 }
2817 #endif /* ARM_MMU_EXTENDED */
2818 #endif /* PMAP_CACHE_VIPT */
2819
2820 /*
2821 * Routine: pmap_page_remove
2822 * Function:
2823 * Removes this physical page from
2824 * all physical maps in which it resides.
2825 * Reflects back modify bits to the pager.
2826 */
2827 static void
2828 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2829 {
2830 struct l2_bucket *l2b;
2831 struct pv_entry *pv;
2832 pt_entry_t *ptep;
2833 #ifndef ARM_MMU_EXTENDED
2834 bool flush = false;
2835 #endif
2836 u_int flags = 0;
2837
2838 NPDEBUG(PDB_FOLLOW,
2839 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2840 pa));
2841
2842 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2843 pmap_acquire_page_lock(md);
2844 if (*pvp == NULL) {
2845 #ifdef PMAP_CACHE_VIPT
2846 /*
2847 * We *know* the page contents are about to be replaced.
2848 * Discard the exec contents
2849 */
2850 if (PV_IS_EXEC_P(md->pvh_attrs))
2851 PMAPCOUNT(exec_discarded_page_protect);
2852 md->pvh_attrs &= ~PVF_EXEC;
2853 PMAP_VALIDATE_MD_PAGE(md);
2854 #endif
2855 pmap_release_page_lock(md);
2856 return;
2857 }
2858 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2859 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2860 #endif
2861
2862 /*
2863 * Clear alias counts
2864 */
2865 #ifdef PMAP_CACHE_VIVT
2866 md->k_mappings = 0;
2867 #endif
2868 md->urw_mappings = md->uro_mappings = 0;
2869
2870 #ifdef PMAP_CACHE_VIVT
2871 pmap_clean_page(md, false);
2872 #endif
2873
2874 while ((pv = *pvp) != NULL) {
2875 pmap_t pm = pv->pv_pmap;
2876 #ifndef ARM_MMU_EXTENDED
2877 if (flush == false && pmap_is_current(pm))
2878 flush = true;
2879 #endif
2880
2881 if (pm == pmap_kernel()) {
2882 #ifdef PMAP_CACHE_VIPT
2883 /*
2884 * If this was unmanaged mapping, it must be preserved.
2885 * Move it back on the list and advance the end-of-list
2886 * pointer.
2887 */
2888 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2889 *pvp = pv;
2890 pvp = &SLIST_NEXT(pv, pv_link);
2891 continue;
2892 }
2893 if (pv->pv_flags & PVF_WRITE)
2894 md->krw_mappings--;
2895 else
2896 md->kro_mappings--;
2897 #endif
2898 PMAPCOUNT(kernel_unmappings);
2899 }
2900 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2901 PMAPCOUNT(unmappings);
2902
2903 pmap_release_page_lock(md);
2904 pmap_acquire_pmap_lock(pm);
2905
2906 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2907 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2908
2909 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2910
2911 /*
2912 * Update statistics
2913 */
2914 --pm->pm_stats.resident_count;
2915
2916 /* Wired bit */
2917 if (pv->pv_flags & PVF_WIRED)
2918 --pm->pm_stats.wired_count;
2919
2920 flags |= pv->pv_flags;
2921
2922 /*
2923 * Invalidate the PTEs.
2924 */
2925 l2pte_reset(ptep);
2926 PTE_SYNC_CURRENT(pm, ptep);
2927
2928 #ifdef ARM_MMU_EXTENDED
2929 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2930 #endif
2931
2932 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2933
2934 pmap_release_pmap_lock(pm);
2935
2936 pool_put(&pmap_pv_pool, pv);
2937 pmap_acquire_page_lock(md);
2938 #ifdef MULTIPROCESSOR
2939 /*
2940 * Restart of the beginning of the list.
2941 */
2942 pvp = &SLIST_FIRST(&md->pvh_list);
2943 #endif
2944 }
2945 /*
2946 * if we reach the end of the list and there are still mappings, they
2947 * might be able to be cached now. And they must be kernel mappings.
2948 */
2949 if (!SLIST_EMPTY(&md->pvh_list)) {
2950 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2951 }
2952
2953 #ifdef PMAP_CACHE_VIPT
2954 /*
2955 * Its EXEC cache is now gone.
2956 */
2957 if (PV_IS_EXEC_P(md->pvh_attrs))
2958 PMAPCOUNT(exec_discarded_page_protect);
2959 md->pvh_attrs &= ~PVF_EXEC;
2960 KASSERT(md->urw_mappings == 0);
2961 KASSERT(md->uro_mappings == 0);
2962 #ifndef ARM_MMU_EXTENDED
2963 if (arm_cache_prefer_mask != 0) {
2964 if (md->krw_mappings == 0)
2965 md->pvh_attrs &= ~PVF_WRITE;
2966 PMAP_VALIDATE_MD_PAGE(md);
2967 }
2968 #endif /* ARM_MMU_EXTENDED */
2969 #endif /* PMAP_CACHE_VIPT */
2970 pmap_release_page_lock(md);
2971
2972 #ifndef ARM_MMU_EXTENDED
2973 if (flush) {
2974 /*
2975 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2976 * would need a subsequent call to pmap_update() to ensure
2977 * curpm->pm_cstate.cs_all is reset. Our callers are not
2978 * required to do that (see pmap(9)), so we can't modify
2979 * the current pmap's state.
2980 */
2981 if (PV_BEEN_EXECD(flags))
2982 cpu_tlb_flushID();
2983 else
2984 cpu_tlb_flushD();
2985 }
2986 cpu_cpwait();
2987 #endif /* ARM_MMU_EXTENDED */
2988 }
2989
2990 /*
2991 * pmap_t pmap_create(void)
2992 *
2993 * Create a new pmap structure from scratch.
2994 */
2995 pmap_t
2996 pmap_create(void)
2997 {
2998 pmap_t pm;
2999
3000 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3001
3002 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
3003 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
3004 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
3005
3006 pm->pm_stats.wired_count = 0;
3007 pm->pm_stats.resident_count = 1;
3008 #ifdef ARM_MMU_EXTENDED
3009 #ifdef MULTIPROCESSOR
3010 kcpuset_create(&pm->pm_active, true);
3011 kcpuset_create(&pm->pm_onproc, true);
3012 #endif
3013 #else
3014 pm->pm_cstate.cs_all = 0;
3015 #endif
3016 pmap_alloc_l1(pm);
3017
3018 /*
3019 * Note: The pool cache ensures that the pm_l2[] array is already
3020 * initialised to zero.
3021 */
3022
3023 pmap_pinit(pm);
3024
3025 return (pm);
3026 }
3027
3028 u_int
3029 arm32_mmap_flags(paddr_t pa)
3030 {
3031 /*
3032 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3033 * and we're using the upper bits in page numbers to pass flags around
3034 * so we might as well use the same bits
3035 */
3036 return (u_int)pa & PMAP_MD_MASK;
3037 }
3038 /*
3039 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3040 * u_int flags)
3041 *
3042 * Insert the given physical page (p) at
3043 * the specified virtual address (v) in the
3044 * target physical map with the protection requested.
3045 *
3046 * NB: This is the only routine which MAY NOT lazy-evaluate
3047 * or lose information. That is, this routine must actually
3048 * insert this page into the given map NOW.
3049 */
3050 int
3051 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3052 {
3053 struct l2_bucket *l2b;
3054 struct vm_page *pg, *opg;
3055 u_int nflags;
3056 u_int oflags;
3057 const bool kpm_p = (pm == pmap_kernel());
3058 #ifdef ARM_HAS_VBAR
3059 const bool vector_page_p = false;
3060 #else
3061 const bool vector_page_p = (va == vector_page);
3062 #endif
3063
3064 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3065
3066 UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
3067 pm, va, pa, prot);
3068 UVMHIST_LOG(maphist, " flag %#x", flags, 0, 0, 0);
3069
3070 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3071 KDASSERT(((va | pa) & PGOFSET) == 0);
3072
3073 /*
3074 * Get a pointer to the page. Later on in this function, we
3075 * test for a managed page by checking pg != NULL.
3076 */
3077 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3078
3079 nflags = 0;
3080 if (prot & VM_PROT_WRITE)
3081 nflags |= PVF_WRITE;
3082 if (prot & VM_PROT_EXECUTE)
3083 nflags |= PVF_EXEC;
3084 if (flags & PMAP_WIRED)
3085 nflags |= PVF_WIRED;
3086
3087 pmap_acquire_pmap_lock(pm);
3088
3089 /*
3090 * Fetch the L2 bucket which maps this page, allocating one if
3091 * necessary for user pmaps.
3092 */
3093 if (kpm_p) {
3094 l2b = pmap_get_l2_bucket(pm, va);
3095 } else {
3096 l2b = pmap_alloc_l2_bucket(pm, va);
3097 }
3098 if (l2b == NULL) {
3099 if (flags & PMAP_CANFAIL) {
3100 pmap_release_pmap_lock(pm);
3101 return (ENOMEM);
3102 }
3103 panic("pmap_enter: failed to allocate L2 bucket");
3104 }
3105 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3106 const pt_entry_t opte = *ptep;
3107 pt_entry_t npte = pa;
3108 oflags = 0;
3109
3110 if (opte) {
3111 /*
3112 * There is already a mapping at this address.
3113 * If the physical address is different, lookup the
3114 * vm_page.
3115 */
3116 if (l2pte_pa(opte) != pa) {
3117 KASSERT(!pmap_pv_tracked(pa));
3118 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3119 } else
3120 opg = pg;
3121 } else
3122 opg = NULL;
3123
3124 struct pmap_page *pp = pmap_pv_tracked(pa);
3125
3126 if (pg || pp) {
3127 KASSERT((pg != NULL) != (pp != NULL));
3128 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3129 PMAP_PAGE_TO_MD(pp);
3130
3131 /*
3132 * This is to be a managed mapping.
3133 */
3134 pmap_acquire_page_lock(md);
3135 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3136 /*
3137 * - The access type indicates that we don't need
3138 * to do referenced emulation.
3139 * OR
3140 * - The physical page has already been referenced
3141 * so no need to re-do referenced emulation here.
3142 */
3143 npte |= l2pte_set_readonly(L2_S_PROTO);
3144
3145 nflags |= PVF_REF;
3146
3147 if ((prot & VM_PROT_WRITE) != 0 &&
3148 ((flags & VM_PROT_WRITE) != 0 ||
3149 (md->pvh_attrs & PVF_MOD) != 0)) {
3150 /*
3151 * This is a writable mapping, and the
3152 * page's mod state indicates it has
3153 * already been modified. Make it
3154 * writable from the outset.
3155 */
3156 npte = l2pte_set_writable(npte);
3157 nflags |= PVF_MOD;
3158 }
3159
3160 #ifdef ARM_MMU_EXTENDED
3161 /*
3162 * If the page has been cleaned, then the pvh_attrs
3163 * will have PVF_EXEC set, so mark it execute so we
3164 * don't get an access fault when trying to execute
3165 * from it.
3166 */
3167 if (md->pvh_attrs & nflags & PVF_EXEC) {
3168 npte &= ~L2_XS_XN;
3169 }
3170 #endif
3171 } else {
3172 /*
3173 * Need to do page referenced emulation.
3174 */
3175 npte |= L2_TYPE_INV;
3176 }
3177
3178 if (flags & ARM32_MMAP_WRITECOMBINE) {
3179 npte |= pte_l2_s_wc_mode;
3180 } else
3181 npte |= pte_l2_s_cache_mode;
3182
3183 if (pg != NULL && pg == opg) {
3184 /*
3185 * We're changing the attrs of an existing mapping.
3186 */
3187 oflags = pmap_modify_pv(md, pa, pm, va,
3188 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3189 PVF_MOD | PVF_REF, nflags);
3190
3191 #ifdef PMAP_CACHE_VIVT
3192 /*
3193 * We may need to flush the cache if we're
3194 * doing rw-ro...
3195 */
3196 if (pm->pm_cstate.cs_cache_d &&
3197 (oflags & PVF_NC) == 0 &&
3198 l2pte_writable_p(opte) &&
3199 (prot & VM_PROT_WRITE) == 0)
3200 cpu_dcache_wb_range(va, PAGE_SIZE);
3201 #endif
3202 } else {
3203 struct pv_entry *pv;
3204 /*
3205 * New mapping, or changing the backing page
3206 * of an existing mapping.
3207 */
3208 if (opg) {
3209 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3210 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3211
3212 /*
3213 * Replacing an existing mapping with a new one.
3214 * It is part of our managed memory so we
3215 * must remove it from the PV list
3216 */
3217 pv = pmap_remove_pv(omd, opa, pm, va);
3218 pmap_vac_me_harder(omd, opa, pm, 0);
3219 oflags = pv->pv_flags;
3220
3221 #ifdef PMAP_CACHE_VIVT
3222 /*
3223 * If the old mapping was valid (ref/mod
3224 * emulation creates 'invalid' mappings
3225 * initially) then make sure to frob
3226 * the cache.
3227 */
3228 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3229 pmap_cache_wbinv_page(pm, va, true,
3230 oflags);
3231 }
3232 #endif
3233 } else {
3234 pmap_release_page_lock(md);
3235 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3236 if (pv == NULL) {
3237 pmap_release_pmap_lock(pm);
3238 if ((flags & PMAP_CANFAIL) == 0)
3239 panic("pmap_enter: "
3240 "no pv entries");
3241
3242 pmap_free_l2_bucket(pm, l2b, 0);
3243 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3244 0, 0, 0, 0);
3245 return (ENOMEM);
3246 }
3247 pmap_acquire_page_lock(md);
3248 }
3249
3250 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3251 }
3252 pmap_release_page_lock(md);
3253 } else {
3254 /*
3255 * We're mapping an unmanaged page.
3256 * These are always readable, and possibly writable, from
3257 * the get go as we don't need to track ref/mod status.
3258 */
3259 npte |= l2pte_set_readonly(L2_S_PROTO);
3260 if (prot & VM_PROT_WRITE)
3261 npte = l2pte_set_writable(npte);
3262
3263 /*
3264 * Make sure the vector table is mapped cacheable
3265 */
3266 if ((vector_page_p && !kpm_p)
3267 || (flags & ARM32_MMAP_CACHEABLE)) {
3268 npte |= pte_l2_s_cache_mode;
3269 #ifdef ARM_MMU_EXTENDED
3270 npte &= ~L2_XS_XN; /* and executable */
3271 #endif
3272 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3273 npte |= pte_l2_s_wc_mode;
3274 }
3275 if (opg) {
3276 /*
3277 * Looks like there's an existing 'managed' mapping
3278 * at this address.
3279 */
3280 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3281 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3282
3283 pmap_acquire_page_lock(omd);
3284 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3285 pmap_vac_me_harder(omd, opa, pm, 0);
3286 oflags = pv->pv_flags;
3287 pmap_release_page_lock(omd);
3288
3289 #ifdef PMAP_CACHE_VIVT
3290 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3291 pmap_cache_wbinv_page(pm, va, true, oflags);
3292 }
3293 #endif
3294 pool_put(&pmap_pv_pool, pv);
3295 }
3296 }
3297
3298 /*
3299 * Make sure userland mappings get the right permissions
3300 */
3301 if (!vector_page_p && !kpm_p) {
3302 npte |= L2_S_PROT_U;
3303 #ifdef ARM_MMU_EXTENDED
3304 npte |= L2_XS_nG; /* user pages are not global */
3305 #endif
3306 }
3307
3308 /*
3309 * Keep the stats up to date
3310 */
3311 if (opte == 0) {
3312 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3313 pm->pm_stats.resident_count++;
3314 }
3315
3316 UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
3317
3318 #if defined(ARM_MMU_EXTENDED)
3319 /*
3320 * If exec protection was requested but the page hasn't been synced,
3321 * sync it now and allow execution from it.
3322 */
3323 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3324 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3325 npte &= ~L2_XS_XN;
3326 pmap_syncicache_page(md, pa);
3327 PMAPCOUNT(exec_synced_map);
3328 }
3329 #endif
3330 /*
3331 * If this is just a wiring change, the two PTEs will be
3332 * identical, so there's no need to update the page table.
3333 */
3334 if (npte != opte) {
3335 l2pte_reset(ptep);
3336 PTE_SYNC(ptep);
3337 if (l2pte_valid_p(opte)) {
3338 pmap_tlb_flush_SE(pm, va, oflags);
3339 }
3340 l2pte_set(ptep, npte, 0);
3341 PTE_SYNC(ptep);
3342 #ifndef ARM_MMU_EXTENDED
3343 bool is_cached = pmap_is_cached(pm);
3344 if (is_cached) {
3345 /*
3346 * We only need to frob the cache/tlb if this pmap
3347 * is current
3348 */
3349 if (!vector_page_p && l2pte_valid_p(npte)) {
3350 /*
3351 * This mapping is likely to be accessed as
3352 * soon as we return to userland. Fix up the
3353 * L1 entry to avoid taking another
3354 * page/domain fault.
3355 */
3356 pd_entry_t *pdep = pmap_l1_kva(pm)
3357 + l1pte_index(va);
3358 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3359 | L1_C_DOM(pmap_domain(pm));
3360 if (*pdep != pde) {
3361 l1pte_setone(pdep, pde);
3362 PDE_SYNC(pdep);
3363 }
3364 }
3365 }
3366 #endif /* !ARM_MMU_EXTENDED */
3367
3368 #ifndef ARM_MMU_EXTENDED
3369 UVMHIST_LOG(maphist, " is_cached %d cs 0x%08x\n",
3370 is_cached, pm->pm_cstate.cs_all, 0, 0);
3371
3372 if (pg != NULL) {
3373 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3374
3375 pmap_acquire_page_lock(md);
3376 pmap_vac_me_harder(md, pa, pm, va);
3377 pmap_release_page_lock(md);
3378 }
3379 #endif
3380 }
3381 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3382 if (pg) {
3383 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3384
3385 pmap_acquire_page_lock(md);
3386 #ifndef ARM_MMU_EXTENDED
3387 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3388 #endif
3389 PMAP_VALIDATE_MD_PAGE(md);
3390 pmap_release_page_lock(md);
3391 }
3392 #endif
3393
3394 pmap_release_pmap_lock(pm);
3395
3396 return (0);
3397 }
3398
3399 /*
3400 * pmap_remove()
3401 *
3402 * pmap_remove is responsible for nuking a number of mappings for a range
3403 * of virtual address space in the current pmap. To do this efficiently
3404 * is interesting, because in a number of cases a wide virtual address
3405 * range may be supplied that contains few actual mappings. So, the
3406 * optimisations are:
3407 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3408 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3409 * maybe do just a partial cache clean. This path of execution is
3410 * complicated by the fact that the cache must be flushed _before_
3411 * the PTE is nuked, being a VAC :-)
3412 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3413 * all invalidations until pmap_update(), since pmap_remove_all() has
3414 * already flushed the cache.
3415 * 4. Maybe later fast-case a single page, but I don't think this is
3416 * going to make _that_ much difference overall.
3417 */
3418
3419 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3420
3421 void
3422 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3423 {
3424 vaddr_t next_bucket;
3425 u_int cleanlist_idx, total, cnt;
3426 struct {
3427 vaddr_t va;
3428 pt_entry_t *ptep;
3429 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3430 u_int mappings;
3431
3432 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3433 UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
3434
3435 /*
3436 * we lock in the pmap => pv_head direction
3437 */
3438 pmap_acquire_pmap_lock(pm);
3439
3440 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3441 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3442 #ifndef ARM_MMU_EXTENDED
3443 if (pm->pm_cstate.cs_tlb == 0)
3444 pm->pm_remove_all = true;
3445 #endif
3446 } else
3447 cleanlist_idx = 0;
3448
3449 total = 0;
3450
3451 while (sva < eva) {
3452 /*
3453 * Do one L2 bucket's worth at a time.
3454 */
3455 next_bucket = L2_NEXT_BUCKET_VA(sva);
3456 if (next_bucket > eva)
3457 next_bucket = eva;
3458
3459 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3460 if (l2b == NULL) {
3461 sva = next_bucket;
3462 continue;
3463 }
3464
3465 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3466
3467 for (mappings = 0;
3468 sva < next_bucket;
3469 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3470 pt_entry_t opte = *ptep;
3471
3472 if (opte == 0) {
3473 /* Nothing here, move along */
3474 continue;
3475 }
3476
3477 u_int flags = PVF_REF;
3478 paddr_t pa = l2pte_pa(opte);
3479 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3480
3481 /*
3482 * Update flags. In a number of circumstances,
3483 * we could cluster a lot of these and do a
3484 * number of sequential pages in one go.
3485 */
3486 if (pg != NULL) {
3487 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3488 struct pv_entry *pv;
3489
3490 pmap_acquire_page_lock(md);
3491 pv = pmap_remove_pv(md, pa, pm, sva);
3492 pmap_vac_me_harder(md, pa, pm, 0);
3493 pmap_release_page_lock(md);
3494 if (pv != NULL) {
3495 if (pm->pm_remove_all == false) {
3496 flags = pv->pv_flags;
3497 }
3498 pool_put(&pmap_pv_pool, pv);
3499 }
3500 }
3501 mappings += PAGE_SIZE / L2_S_SIZE;
3502
3503 if (!l2pte_valid_p(opte)) {
3504 /*
3505 * Ref/Mod emulation is still active for this
3506 * mapping, therefore it is has not yet been
3507 * accessed. No need to frob the cache/tlb.
3508 */
3509 l2pte_reset(ptep);
3510 PTE_SYNC_CURRENT(pm, ptep);
3511 continue;
3512 }
3513
3514 #ifdef ARM_MMU_EXTENDED
3515 if (pm == pmap_kernel()) {
3516 l2pte_reset(ptep);
3517 PTE_SYNC(ptep);
3518 pmap_tlb_flush_SE(pm, sva, flags);
3519 continue;
3520 }
3521 #endif
3522 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3523 /* Add to the clean list. */
3524 cleanlist[cleanlist_idx].ptep = ptep;
3525 cleanlist[cleanlist_idx].va =
3526 sva | (flags & PVF_EXEC);
3527 cleanlist_idx++;
3528 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3529 /* Nuke everything if needed. */
3530 #ifdef PMAP_CACHE_VIVT
3531 pmap_cache_wbinv_all(pm, PVF_EXEC);
3532 #endif
3533 /*
3534 * Roll back the previous PTE list,
3535 * and zero out the current PTE.
3536 */
3537 for (cnt = 0;
3538 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3539 l2pte_reset(cleanlist[cnt].ptep);
3540 PTE_SYNC(cleanlist[cnt].ptep);
3541 }
3542 l2pte_reset(ptep);
3543 PTE_SYNC(ptep);
3544 cleanlist_idx++;
3545 pm->pm_remove_all = true;
3546 } else {
3547 l2pte_reset(ptep);
3548 PTE_SYNC(ptep);
3549 if (pm->pm_remove_all == false) {
3550 pmap_tlb_flush_SE(pm, sva, flags);
3551 }
3552 }
3553 }
3554
3555 /*
3556 * Deal with any left overs
3557 */
3558 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3559 total += cleanlist_idx;
3560 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3561 l2pte_reset(cleanlist[cnt].ptep);
3562 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3563 #ifdef ARM_MMU_EXTENDED
3564 vaddr_t clva = cleanlist[cnt].va;
3565 pmap_tlb_flush_SE(pm, clva, PVF_REF);
3566 #else
3567 vaddr_t va = cleanlist[cnt].va;
3568 if (pm->pm_cstate.cs_all != 0) {
3569 vaddr_t clva = va & ~PAGE_MASK;
3570 u_int flags = va & PVF_EXEC;
3571 #ifdef PMAP_CACHE_VIVT
3572 pmap_cache_wbinv_page(pm, clva, true,
3573 PVF_REF | PVF_WRITE | flags);
3574 #endif
3575 pmap_tlb_flush_SE(pm, clva,
3576 PVF_REF | flags);
3577 }
3578 #endif /* ARM_MMU_EXTENDED */
3579 }
3580
3581 /*
3582 * If it looks like we're removing a whole bunch
3583 * of mappings, it's faster to just write-back
3584 * the whole cache now and defer TLB flushes until
3585 * pmap_update() is called.
3586 */
3587 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3588 cleanlist_idx = 0;
3589 else {
3590 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3591 #ifdef PMAP_CACHE_VIVT
3592 pmap_cache_wbinv_all(pm, PVF_EXEC);
3593 #endif
3594 pm->pm_remove_all = true;
3595 }
3596 }
3597
3598
3599 pmap_free_l2_bucket(pm, l2b, mappings);
3600 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3601 }
3602
3603 pmap_release_pmap_lock(pm);
3604 }
3605
3606 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3607 static struct pv_entry *
3608 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3609 {
3610 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3611 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3612 struct pv_entry *pv;
3613
3614 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3615 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3616 KASSERT(pmap_page_locked_p(md));
3617
3618 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3619 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3620 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3621
3622 /*
3623 * If we are removing a writeable mapping to a cached exec page,
3624 * if it's the last mapping then clear it execness other sync
3625 * the page to the icache.
3626 */
3627 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3628 && (pv->pv_flags & PVF_WRITE) != 0) {
3629 if (SLIST_EMPTY(&md->pvh_list)) {
3630 md->pvh_attrs &= ~PVF_EXEC;
3631 PMAPCOUNT(exec_discarded_kremove);
3632 } else {
3633 pmap_syncicache_page(md, pa);
3634 PMAPCOUNT(exec_synced_kremove);
3635 }
3636 }
3637 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3638
3639 return pv;
3640 }
3641 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3642
3643 /*
3644 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3645 *
3646 * We assume there is already sufficient KVM space available
3647 * to do this, as we can't allocate L2 descriptor tables/metadata
3648 * from here.
3649 */
3650 void
3651 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3652 {
3653 #ifdef PMAP_CACHE_VIVT
3654 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3655 #endif
3656 #ifdef PMAP_CACHE_VIPT
3657 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3658 struct vm_page *opg;
3659 #ifndef ARM_MMU_EXTENDED
3660 struct pv_entry *pv = NULL;
3661 #endif
3662 #endif
3663 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3664
3665 UVMHIST_FUNC(__func__);
3666
3667 if (pmap_initialized) {
3668 UVMHIST_CALLED(maphist);
3669 UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
3670 va, pa, prot, flags);
3671 }
3672
3673 pmap_t kpm = pmap_kernel();
3674 pmap_acquire_pmap_lock(kpm);
3675 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3676 const size_t l1slot __diagused = l1pte_index(va);
3677 KASSERTMSG(l2b != NULL,
3678 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3679 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3680 kpm->pm_l2[L2_IDX(l1slot)]
3681 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3682 : NULL,
3683 kpm->pm_l2[L2_IDX(l1slot)]
3684 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3685 : NULL);
3686 KASSERT(l2b->l2b_kva != NULL);
3687
3688 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3689 const pt_entry_t opte = *ptep;
3690
3691 if (opte == 0) {
3692 PMAPCOUNT(kenter_mappings);
3693 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3694 } else {
3695 PMAPCOUNT(kenter_remappings);
3696 #ifdef PMAP_CACHE_VIPT
3697 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3698 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3699 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3700 #endif
3701 if (opg && arm_cache_prefer_mask != 0) {
3702 KASSERT(opg != pg);
3703 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3704 KASSERT((flags & PMAP_KMPAGE) == 0);
3705 #ifndef ARM_MMU_EXTENDED
3706 pmap_acquire_page_lock(omd);
3707 pv = pmap_kremove_pg(opg, va);
3708 pmap_release_page_lock(omd);
3709 #endif
3710 }
3711 #endif
3712 if (l2pte_valid_p(opte)) {
3713 l2pte_reset(ptep);
3714 PTE_SYNC(ptep);
3715 #ifdef PMAP_CACHE_VIVT
3716 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3717 #endif
3718 cpu_tlb_flushD_SE(va);
3719 cpu_cpwait();
3720 }
3721 }
3722 pmap_release_pmap_lock(kpm);
3723
3724 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3725 | ((flags & PMAP_NOCACHE)
3726 ? 0
3727 : ((flags & PMAP_PTE)
3728 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3729 #ifdef ARM_MMU_EXTENDED
3730 if (prot & VM_PROT_EXECUTE)
3731 npte &= ~L2_XS_XN;
3732 #endif
3733 l2pte_set(ptep, npte, 0);
3734 PTE_SYNC(ptep);
3735
3736 if (pg) {
3737 if (flags & PMAP_KMPAGE) {
3738 KASSERT(md->urw_mappings == 0);
3739 KASSERT(md->uro_mappings == 0);
3740 KASSERT(md->krw_mappings == 0);
3741 KASSERT(md->kro_mappings == 0);
3742 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3743 KASSERT(pv == NULL);
3744 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3745 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3746 /* if there is a color conflict, evict from cache. */
3747 if (pmap_is_page_colored_p(md)
3748 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3749 PMAPCOUNT(vac_color_change);
3750 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3751 } else if (md->pvh_attrs & PVF_MULTCLR) {
3752 /*
3753 * If this page has multiple colors, expunge
3754 * them.
3755 */
3756 PMAPCOUNT(vac_flush_lots2);
3757 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3758 }
3759 /*
3760 * Since this is a KMPAGE, there can be no contention
3761 * for this page so don't lock it.
3762 */
3763 md->pvh_attrs &= PAGE_SIZE - 1;
3764 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3765 | (va & arm_cache_prefer_mask);
3766 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3767 md->pvh_attrs |= PVF_KMPAGE;
3768 #endif
3769 atomic_inc_32(&pmap_kmpages);
3770 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3771 } else if (arm_cache_prefer_mask != 0) {
3772 if (pv == NULL) {
3773 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3774 KASSERT(pv != NULL);
3775 }
3776 pmap_acquire_page_lock(md);
3777 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3778 PVF_WIRED | PVF_KENTRY
3779 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3780 if ((prot & VM_PROT_WRITE)
3781 && !(md->pvh_attrs & PVF_NC))
3782 md->pvh_attrs |= PVF_DIRTY;
3783 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3784 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3785 pmap_release_page_lock(md);
3786 #endif
3787 }
3788 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3789 } else {
3790 if (pv != NULL)
3791 pool_put(&pmap_pv_pool, pv);
3792 #endif
3793 }
3794 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3795 KASSERT(md == NULL || !pmap_page_locked_p(md));
3796 #endif
3797 if (pmap_initialized) {
3798 UVMHIST_LOG(maphist, " <-- done (ptep %p: %#x -> %#x)",
3799 ptep, opte, npte, 0);
3800 }
3801
3802 }
3803
3804 void
3805 pmap_kremove(vaddr_t va, vsize_t len)
3806 {
3807 #ifdef UVMHIST
3808 u_int total_mappings = 0;
3809 #endif
3810
3811 PMAPCOUNT(kenter_unmappings);
3812
3813 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3814
3815 UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
3816
3817 const vaddr_t eva = va + len;
3818
3819 pmap_acquire_pmap_lock(pmap_kernel());
3820
3821 while (va < eva) {
3822 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3823 if (next_bucket > eva)
3824 next_bucket = eva;
3825
3826 pmap_t kpm = pmap_kernel();
3827 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3828 KDASSERT(l2b != NULL);
3829
3830 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3831 pt_entry_t *ptep = sptep;
3832 u_int mappings = 0;
3833
3834 while (va < next_bucket) {
3835 const pt_entry_t opte = *ptep;
3836 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3837 if (opg != NULL) {
3838 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3839
3840 if (omd->pvh_attrs & PVF_KMPAGE) {
3841 KASSERT(omd->urw_mappings == 0);
3842 KASSERT(omd->uro_mappings == 0);
3843 KASSERT(omd->krw_mappings == 0);
3844 KASSERT(omd->kro_mappings == 0);
3845 omd->pvh_attrs &= ~PVF_KMPAGE;
3846 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3847 if (arm_cache_prefer_mask != 0) {
3848 omd->pvh_attrs &= ~PVF_WRITE;
3849 }
3850 #endif
3851 atomic_dec_32(&pmap_kmpages);
3852 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3853 } else if (arm_cache_prefer_mask != 0) {
3854 pmap_acquire_page_lock(omd);
3855 pool_put(&pmap_pv_pool,
3856 pmap_kremove_pg(opg, va));
3857 pmap_release_page_lock(omd);
3858 #endif
3859 }
3860 }
3861 if (l2pte_valid_p(opte)) {
3862 l2pte_reset(ptep);
3863 PTE_SYNC(ptep);
3864 #ifdef PMAP_CACHE_VIVT
3865 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3866 #endif
3867 cpu_tlb_flushD_SE(va);
3868
3869 mappings += PAGE_SIZE / L2_S_SIZE;
3870 }
3871 va += PAGE_SIZE;
3872 ptep += PAGE_SIZE / L2_S_SIZE;
3873 }
3874 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3875 mappings, l2b->l2b_occupancy);
3876 l2b->l2b_occupancy -= mappings;
3877 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3878 #ifdef UVMHIST
3879 total_mappings += mappings;
3880 #endif
3881 }
3882 pmap_release_pmap_lock(pmap_kernel());
3883 cpu_cpwait();
3884 UVMHIST_LOG(maphist, " <--- done (%u mappings removed)",
3885 total_mappings, 0, 0, 0);
3886 }
3887
3888 bool
3889 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3890 {
3891 struct l2_dtable *l2;
3892 pd_entry_t *pdep, pde;
3893 pt_entry_t *ptep, pte;
3894 paddr_t pa;
3895 u_int l1slot;
3896
3897 pmap_acquire_pmap_lock(pm);
3898
3899 l1slot = l1pte_index(va);
3900 pdep = pmap_l1_kva(pm) + l1slot;
3901 pde = *pdep;
3902
3903 if (l1pte_section_p(pde)) {
3904 /*
3905 * These should only happen for pmap_kernel()
3906 */
3907 KDASSERT(pm == pmap_kernel());
3908 pmap_release_pmap_lock(pm);
3909 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3910 if (l1pte_supersection_p(pde)) {
3911 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3912 } else
3913 #endif
3914 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3915 } else {
3916 /*
3917 * Note that we can't rely on the validity of the L1
3918 * descriptor as an indication that a mapping exists.
3919 * We have to look it up in the L2 dtable.
3920 */
3921 l2 = pm->pm_l2[L2_IDX(l1slot)];
3922
3923 if (l2 == NULL ||
3924 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3925 pmap_release_pmap_lock(pm);
3926 return false;
3927 }
3928
3929 pte = ptep[l2pte_index(va)];
3930 pmap_release_pmap_lock(pm);
3931
3932 if (pte == 0)
3933 return false;
3934
3935 switch (pte & L2_TYPE_MASK) {
3936 case L2_TYPE_L:
3937 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3938 break;
3939
3940 default:
3941 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3942 break;
3943 }
3944 }
3945
3946 if (pap != NULL)
3947 *pap = pa;
3948
3949 return true;
3950 }
3951
3952 /*
3953 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
3954 * that map it
3955 */
3956
3957 static void
3958 pmap_pv_remove(paddr_t pa)
3959 {
3960 struct pmap_page *pp;
3961
3962 pp = pmap_pv_tracked(pa);
3963 if (pp == NULL)
3964 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
3965 pa);
3966
3967 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
3968 pmap_page_remove(md, pa);
3969 }
3970
3971 void
3972 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
3973 {
3974
3975 /* the only case is remove at the moment */
3976 KASSERT(prot == VM_PROT_NONE);
3977 pmap_pv_remove(pa);
3978 }
3979
3980 void
3981 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3982 {
3983 struct l2_bucket *l2b;
3984 vaddr_t next_bucket;
3985
3986 NPDEBUG(PDB_PROTECT,
3987 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3988 pm, sva, eva, prot));
3989
3990 if ((prot & VM_PROT_READ) == 0) {
3991 pmap_remove(pm, sva, eva);
3992 return;
3993 }
3994
3995 if (prot & VM_PROT_WRITE) {
3996 /*
3997 * If this is a read->write transition, just ignore it and let
3998 * uvm_fault() take care of it later.
3999 */
4000 return;
4001 }
4002
4003 pmap_acquire_pmap_lock(pm);
4004
4005 #ifndef ARM_MMU_EXTENDED
4006 const bool flush = eva - sva >= PAGE_SIZE * 4;
4007 u_int flags = 0;
4008 #endif
4009 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4010
4011 while (sva < eva) {
4012 next_bucket = L2_NEXT_BUCKET_VA(sva);
4013 if (next_bucket > eva)
4014 next_bucket = eva;
4015
4016 l2b = pmap_get_l2_bucket(pm, sva);
4017 if (l2b == NULL) {
4018 sva = next_bucket;
4019 continue;
4020 }
4021
4022 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4023
4024 while (sva < next_bucket) {
4025 const pt_entry_t opte = *ptep;
4026 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4027 struct vm_page *pg;
4028 #ifndef ARM_MMU_EXTENDED
4029 u_int f;
4030 #endif
4031
4032 #ifdef PMAP_CACHE_VIVT
4033 /*
4034 * OK, at this point, we know we're doing
4035 * write-protect operation. If the pmap is
4036 * active, write-back the page.
4037 */
4038 pmap_cache_wbinv_page(pm, sva, false,
4039 PVF_REF | PVF_WRITE);
4040 #endif
4041
4042 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4043 pt_entry_t npte = l2pte_set_readonly(opte);
4044 l2pte_reset(ptep);
4045 PTE_SYNC(ptep);
4046 #ifdef ARM_MMU_EXTENDED
4047 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4048 #endif
4049 l2pte_set(ptep, npte, 0);
4050 PTE_SYNC(ptep);
4051
4052 if (pg != NULL) {
4053 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4054 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4055
4056 pmap_acquire_page_lock(md);
4057 #ifndef ARM_MMU_EXTENDED
4058 f =
4059 #endif
4060 pmap_modify_pv(md, pa, pm, sva,
4061 clr_mask, 0);
4062 pmap_vac_me_harder(md, pa, pm, sva);
4063 pmap_release_page_lock(md);
4064 #ifndef ARM_MMU_EXTENDED
4065 } else {
4066 f = PVF_REF | PVF_EXEC;
4067 }
4068
4069 if (flush) {
4070 flags |= f;
4071 } else {
4072 pmap_tlb_flush_SE(pm, sva, f);
4073 #endif
4074 }
4075 }
4076
4077 sva += PAGE_SIZE;
4078 ptep += PAGE_SIZE / L2_S_SIZE;
4079 }
4080 }
4081
4082 #ifndef ARM_MMU_EXTENDED
4083 if (flush) {
4084 if (PV_BEEN_EXECD(flags)) {
4085 pmap_tlb_flushID(pm);
4086 } else if (PV_BEEN_REFD(flags)) {
4087 pmap_tlb_flushD(pm);
4088 }
4089 }
4090 #endif
4091
4092 pmap_release_pmap_lock(pm);
4093 }
4094
4095 void
4096 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4097 {
4098 struct l2_bucket *l2b;
4099 pt_entry_t *ptep;
4100 vaddr_t next_bucket;
4101 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4102
4103 NPDEBUG(PDB_EXEC,
4104 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4105 pm, sva, eva));
4106
4107 pmap_acquire_pmap_lock(pm);
4108
4109 while (sva < eva) {
4110 next_bucket = L2_NEXT_BUCKET_VA(sva);
4111 if (next_bucket > eva)
4112 next_bucket = eva;
4113
4114 l2b = pmap_get_l2_bucket(pm, sva);
4115 if (l2b == NULL) {
4116 sva = next_bucket;
4117 continue;
4118 }
4119
4120 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4121 sva < next_bucket;
4122 sva += page_size,
4123 ptep += PAGE_SIZE / L2_S_SIZE,
4124 page_size = PAGE_SIZE) {
4125 if (l2pte_valid_p(*ptep)) {
4126 cpu_icache_sync_range(sva,
4127 min(page_size, eva - sva));
4128 }
4129 }
4130 }
4131
4132 pmap_release_pmap_lock(pm);
4133 }
4134
4135 void
4136 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4137 {
4138 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4139 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4140
4141 NPDEBUG(PDB_PROTECT,
4142 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4143 md, pa, prot));
4144
4145 switch(prot) {
4146 case VM_PROT_READ|VM_PROT_WRITE:
4147 #if defined(ARM_MMU_EXTENDED)
4148 pmap_acquire_page_lock(md);
4149 pmap_clearbit(md, pa, PVF_EXEC);
4150 pmap_release_page_lock(md);
4151 break;
4152 #endif
4153 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4154 break;
4155
4156 case VM_PROT_READ:
4157 #if defined(ARM_MMU_EXTENDED)
4158 pmap_acquire_page_lock(md);
4159 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4160 pmap_release_page_lock(md);
4161 break;
4162 #endif
4163 case VM_PROT_READ|VM_PROT_EXECUTE:
4164 pmap_acquire_page_lock(md);
4165 pmap_clearbit(md, pa, PVF_WRITE);
4166 pmap_release_page_lock(md);
4167 break;
4168
4169 default:
4170 pmap_page_remove(md, pa);
4171 break;
4172 }
4173 }
4174
4175 /*
4176 * pmap_clear_modify:
4177 *
4178 * Clear the "modified" attribute for a page.
4179 */
4180 bool
4181 pmap_clear_modify(struct vm_page *pg)
4182 {
4183 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4184 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4185 bool rv;
4186
4187 pmap_acquire_page_lock(md);
4188
4189 if (md->pvh_attrs & PVF_MOD) {
4190 rv = true;
4191 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4192 /*
4193 * If we are going to clear the modified bit and there are
4194 * no other modified bits set, flush the page to memory and
4195 * mark it clean.
4196 */
4197 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4198 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4199 #endif
4200 pmap_clearbit(md, pa, PVF_MOD);
4201 } else {
4202 rv = false;
4203 }
4204 pmap_release_page_lock(md);
4205
4206 return rv;
4207 }
4208
4209 /*
4210 * pmap_clear_reference:
4211 *
4212 * Clear the "referenced" attribute for a page.
4213 */
4214 bool
4215 pmap_clear_reference(struct vm_page *pg)
4216 {
4217 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4218 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4219 bool rv;
4220
4221 pmap_acquire_page_lock(md);
4222
4223 if (md->pvh_attrs & PVF_REF) {
4224 rv = true;
4225 pmap_clearbit(md, pa, PVF_REF);
4226 } else {
4227 rv = false;
4228 }
4229 pmap_release_page_lock(md);
4230
4231 return rv;
4232 }
4233
4234 /*
4235 * pmap_is_modified:
4236 *
4237 * Test if a page has the "modified" attribute.
4238 */
4239 /* See <arm/arm32/pmap.h> */
4240
4241 /*
4242 * pmap_is_referenced:
4243 *
4244 * Test if a page has the "referenced" attribute.
4245 */
4246 /* See <arm/arm32/pmap.h> */
4247
4248 #if defined(ARM_MMU_EXTENDED) && 0
4249 int
4250 pmap_prefetchabt_fixup(void *v)
4251 {
4252 struct trapframe * const tf = v;
4253 vaddr_t va = trunc_page(tf->tf_pc);
4254 int rv = ABORT_FIXUP_FAILED;
4255
4256 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4257 return rv;
4258
4259 kpreempt_disable();
4260 pmap_t pm = curcpu()->ci_pmap_cur;
4261 const size_t l1slot = l1pte_index(va);
4262 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4263 if (l2 == NULL)
4264 goto out;
4265
4266 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4267 if (l2b->l2b_kva == NULL)
4268 goto out;
4269
4270 /*
4271 * Check the PTE itself.
4272 */
4273 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4274 const pt_entry_t opte = *ptep;
4275 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4276 goto out;
4277
4278 paddr_t pa = l2pte_pa(pte);
4279 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4280 KASSERT(pg != NULL);
4281
4282 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4283
4284 pmap_acquire_page_lock(md);
4285 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4286 KASSERT(pv != NULL);
4287
4288 if (PV_IS_EXEC_P(pv->pv_flags)) {
4289 l2pte_reset(ptep);
4290 PTE_SYNC(ptep);
4291 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4292 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4293 pmap_syncicache_page(md, pa);
4294 }
4295 rv = ABORT_FIXUP_RETURN;
4296 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4297 PTE_SYNC(ptep);
4298 }
4299 pmap_release_page_lock(md);
4300
4301 out:
4302 kpreempt_enable();
4303 return rv;
4304 }
4305 #endif
4306
4307 int
4308 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4309 {
4310 struct l2_dtable *l2;
4311 struct l2_bucket *l2b;
4312 paddr_t pa;
4313 const size_t l1slot = l1pte_index(va);
4314 int rv = 0;
4315
4316 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4317
4318 va = trunc_page(va);
4319
4320 KASSERT(!user || (pm != pmap_kernel()));
4321
4322 UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
4323 pm, va, ftype, user);
4324 #ifdef ARM_MMU_EXTENDED
4325 UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
4326 cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4327 PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4328 #endif
4329
4330 pmap_acquire_pmap_lock(pm);
4331
4332 /*
4333 * If there is no l2_dtable for this address, then the process
4334 * has no business accessing it.
4335 *
4336 * Note: This will catch userland processes trying to access
4337 * kernel addresses.
4338 */
4339 l2 = pm->pm_l2[L2_IDX(l1slot)];
4340 if (l2 == NULL) {
4341 UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
4342 goto out;
4343 }
4344
4345 /*
4346 * Likewise if there is no L2 descriptor table
4347 */
4348 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4349 if (l2b->l2b_kva == NULL) {
4350 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
4351 goto out;
4352 }
4353
4354 /*
4355 * Check the PTE itself.
4356 */
4357 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4358 pt_entry_t const opte = *ptep;
4359 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4360 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
4361 goto out;
4362 }
4363
4364 #ifndef ARM_HAS_VBAR
4365 /*
4366 * Catch a userland access to the vector page mapped at 0x0
4367 */
4368 if (user && (opte & L2_S_PROT_U) == 0) {
4369 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4370 goto out;
4371 }
4372 #endif
4373
4374 pa = l2pte_pa(opte);
4375
4376 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4377 /*
4378 * This looks like a good candidate for "page modified"
4379 * emulation...
4380 */
4381 struct pv_entry *pv;
4382 struct vm_page *pg;
4383
4384 /* Extract the physical address of the page */
4385 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4386 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4387 goto out;
4388 }
4389
4390 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4391
4392 /* Get the current flags for this page. */
4393 pmap_acquire_page_lock(md);
4394 pv = pmap_find_pv(md, pm, va);
4395 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4396 pmap_release_page_lock(md);
4397 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4398 goto out;
4399 }
4400
4401 /*
4402 * Do the flags say this page is writable? If not then it
4403 * is a genuine write fault. If yes then the write fault is
4404 * our fault as we did not reflect the write access in the
4405 * PTE. Now we know a write has occurred we can correct this
4406 * and also set the modified bit
4407 */
4408 if ((pv->pv_flags & PVF_WRITE) == 0) {
4409 pmap_release_page_lock(md);
4410 goto out;
4411 }
4412
4413 md->pvh_attrs |= PVF_REF | PVF_MOD;
4414 pv->pv_flags |= PVF_REF | PVF_MOD;
4415 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4416 /*
4417 * If there are cacheable mappings for this page, mark it dirty.
4418 */
4419 if ((md->pvh_attrs & PVF_NC) == 0)
4420 md->pvh_attrs |= PVF_DIRTY;
4421 #endif
4422 #ifdef ARM_MMU_EXTENDED
4423 if (md->pvh_attrs & PVF_EXEC) {
4424 md->pvh_attrs &= ~PVF_EXEC;
4425 PMAPCOUNT(exec_discarded_modfixup);
4426 }
4427 #endif
4428 pmap_release_page_lock(md);
4429
4430 /*
4431 * Re-enable write permissions for the page. No need to call
4432 * pmap_vac_me_harder(), since this is just a
4433 * modified-emulation fault, and the PVF_WRITE bit isn't
4434 * changing. We've already set the cacheable bits based on
4435 * the assumption that we can write to this page.
4436 */
4437 const pt_entry_t npte =
4438 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4439 #ifdef ARM_MMU_EXTENDED
4440 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4441 #endif
4442 | 0;
4443 l2pte_reset(ptep);
4444 PTE_SYNC(ptep);
4445 pmap_tlb_flush_SE(pm, va,
4446 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4447 l2pte_set(ptep, npte, 0);
4448 PTE_SYNC(ptep);
4449 PMAPCOUNT(fixup_mod);
4450 rv = 1;
4451 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
4452 opte, npte, 0, 0);
4453 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4454 /*
4455 * This looks like a good candidate for "page referenced"
4456 * emulation.
4457 */
4458 struct vm_page *pg;
4459
4460 /* Extract the physical address of the page */
4461 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4462 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4463 goto out;
4464 }
4465
4466 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4467
4468 /* Get the current flags for this page. */
4469 pmap_acquire_page_lock(md);
4470 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4471 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4472 pmap_release_page_lock(md);
4473 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4474 goto out;
4475 }
4476
4477 md->pvh_attrs |= PVF_REF;
4478 pv->pv_flags |= PVF_REF;
4479
4480 pt_entry_t npte =
4481 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4482 #ifdef ARM_MMU_EXTENDED
4483 if (pm != pmap_kernel()) {
4484 npte |= L2_XS_nG;
4485 }
4486 /*
4487 * If we got called from prefetch abort, then ftype will have
4488 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4489 * the PTE.
4490 */
4491 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4492 /*
4493 * Is this a mapping of an executable page?
4494 */
4495 if ((pv->pv_flags & PVF_EXEC) == 0) {
4496 pmap_release_page_lock(md);
4497 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4498 0, 0, 0, 0);
4499 goto out;
4500 }
4501 /*
4502 * If we haven't synced the page, do so now.
4503 */
4504 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4505 UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
4506 pa, 0, 0, 0);
4507 pmap_syncicache_page(md, pa);
4508 PMAPCOUNT(fixup_exec);
4509 }
4510 npte &= ~L2_XS_XN;
4511 }
4512 #endif /* ARM_MMU_EXTENDED */
4513 pmap_release_page_lock(md);
4514 l2pte_reset(ptep);
4515 PTE_SYNC(ptep);
4516 pmap_tlb_flush_SE(pm, va,
4517 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4518 l2pte_set(ptep, npte, 0);
4519 PTE_SYNC(ptep);
4520 PMAPCOUNT(fixup_ref);
4521 rv = 1;
4522 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
4523 opte, npte, 0, 0);
4524 #ifdef ARM_MMU_EXTENDED
4525 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4526 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4527 if (pg == NULL) {
4528 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4529 goto out;
4530 }
4531
4532 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4533
4534 /* Get the current flags for this page. */
4535 pmap_acquire_page_lock(md);
4536 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4537 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4538 pmap_release_page_lock(md);
4539 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4540 goto out;
4541 }
4542
4543 /*
4544 * If we haven't synced the page, do so now.
4545 */
4546 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4547 UVMHIST_LOG(maphist, "syncicache page #%#x",
4548 pa, 0, 0, 0);
4549 pmap_syncicache_page(md, pa);
4550 }
4551 pmap_release_page_lock(md);
4552 /*
4553 * Turn off no-execute.
4554 */
4555 KASSERT(opte & L2_XS_nG);
4556 l2pte_reset(ptep);
4557 PTE_SYNC(ptep);
4558 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4559 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4560 PTE_SYNC(ptep);
4561 rv = 1;
4562 PMAPCOUNT(fixup_exec);
4563 UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
4564 opte, opte & ~L2_XS_XN, 0, 0);
4565 #endif
4566 }
4567
4568 #ifndef ARM_MMU_EXTENDED
4569 /*
4570 * We know there is a valid mapping here, so simply
4571 * fix up the L1 if necessary.
4572 */
4573 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4574 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4575 if (*pdep != pde) {
4576 l1pte_setone(pdep, pde);
4577 PDE_SYNC(pdep);
4578 rv = 1;
4579 PMAPCOUNT(fixup_pdes);
4580 }
4581 #endif
4582
4583 #ifdef CPU_SA110
4584 /*
4585 * There are bugs in the rev K SA110. This is a check for one
4586 * of them.
4587 */
4588 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4589 curcpu()->ci_arm_cpurev < 3) {
4590 /* Always current pmap */
4591 if (l2pte_valid_p(opte)) {
4592 extern int kernel_debug;
4593 if (kernel_debug & 1) {
4594 struct proc *p = curlwp->l_proc;
4595 printf("prefetch_abort: page is already "
4596 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4597 printf("prefetch_abort: pc=%08lx proc=%p "
4598 "process=%s\n", va, p, p->p_comm);
4599 printf("prefetch_abort: far=%08x fs=%x\n",
4600 cpu_faultaddress(), cpu_faultstatus());
4601 }
4602 #ifdef DDB
4603 if (kernel_debug & 2)
4604 Debugger();
4605 #endif
4606 rv = 1;
4607 }
4608 }
4609 #endif /* CPU_SA110 */
4610
4611 #ifndef ARM_MMU_EXTENDED
4612 /*
4613 * If 'rv == 0' at this point, it generally indicates that there is a
4614 * stale TLB entry for the faulting address. That might be due to a
4615 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4616 */
4617 if (rv == 0
4618 && pm->pm_l1->l1_domain_use_count == 1
4619 && pmap_needs_pte_sync == 0) {
4620 pmap_needs_pte_sync = 1;
4621 PTE_SYNC(ptep);
4622 PMAPCOUNT(fixup_ptesync);
4623 rv = 1;
4624 }
4625 #endif
4626
4627 #ifndef MULTIPROCESSOR
4628 #if defined(DEBUG) || 1
4629 /*
4630 * If 'rv == 0' at this point, it generally indicates that there is a
4631 * stale TLB entry for the faulting address. This happens when two or
4632 * more processes are sharing an L1. Since we don't flush the TLB on
4633 * a context switch between such processes, we can take domain faults
4634 * for mappings which exist at the same VA in both processes. EVEN IF
4635 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4636 * example.
4637 *
4638 * This is extremely likely to happen if pmap_enter() updated the L1
4639 * entry for a recently entered mapping. In this case, the TLB is
4640 * flushed for the new mapping, but there may still be TLB entries for
4641 * other mappings belonging to other processes in the 1MB range
4642 * covered by the L1 entry.
4643 *
4644 * Since 'rv == 0', we know that the L1 already contains the correct
4645 * value, so the fault must be due to a stale TLB entry.
4646 *
4647 * Since we always need to flush the TLB anyway in the case where we
4648 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4649 * stale TLB entries dynamically.
4650 *
4651 * However, the above condition can ONLY happen if the current L1 is
4652 * being shared. If it happens when the L1 is unshared, it indicates
4653 * that other parts of the pmap are not doing their job WRT managing
4654 * the TLB.
4655 */
4656 if (rv == 0
4657 #ifndef ARM_MMU_EXTENDED
4658 && pm->pm_l1->l1_domain_use_count == 1
4659 #endif
4660 && true) {
4661 #ifdef DEBUG
4662 extern int last_fault_code;
4663 #else
4664 int last_fault_code = ftype & VM_PROT_EXECUTE
4665 ? armreg_ifsr_read()
4666 : armreg_dfsr_read();
4667 #endif
4668 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4669 pm, va, ftype);
4670 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4671 l2, l2b, ptep, opte);
4672
4673 #ifndef ARM_MMU_EXTENDED
4674 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4675 pdep, pde, last_fault_code);
4676 #else
4677 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4678 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4679 armreg_ttbcr_read());
4680 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4681 last_fault_code, curcpu()->ci_pmap_cur,
4682 curcpu()->ci_pmap_asid_cur,
4683 armreg_contextidr_read(), armreg_dacr_read());
4684 #ifdef _ARM_ARCH_7
4685 if (ftype & VM_PROT_WRITE)
4686 armreg_ats1cuw_write(va);
4687 else
4688 armreg_ats1cur_write(va);
4689 arm_isb();
4690 printf("fixup: par %#x\n", armreg_par_read());
4691 #endif
4692 #endif
4693 #ifdef DDB
4694 extern int kernel_debug;
4695
4696 if (kernel_debug & 2) {
4697 pmap_release_pmap_lock(pm);
4698 #ifdef UVMHIST
4699 KERNHIST_DUMP(maphist);
4700 #endif
4701 cpu_Debugger();
4702 pmap_acquire_pmap_lock(pm);
4703 }
4704 #endif
4705 }
4706 #endif
4707 #endif
4708
4709 #ifndef ARM_MMU_EXTENDED
4710 /* Flush the TLB in the shared L1 case - see comment above */
4711 pmap_tlb_flush_SE(pm, va,
4712 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4713 #endif
4714
4715 rv = 1;
4716
4717 out:
4718 pmap_release_pmap_lock(pm);
4719
4720 return (rv);
4721 }
4722
4723 /*
4724 * Routine: pmap_procwr
4725 *
4726 * Function:
4727 * Synchronize caches corresponding to [addr, addr+len) in p.
4728 *
4729 */
4730 void
4731 pmap_procwr(struct proc *p, vaddr_t va, int len)
4732 {
4733 /* We only need to do anything if it is the current process. */
4734 if (p == curproc)
4735 cpu_icache_sync_range(va, len);
4736 }
4737
4738 /*
4739 * Routine: pmap_unwire
4740 * Function: Clear the wired attribute for a map/virtual-address pair.
4741 *
4742 * In/out conditions:
4743 * The mapping must already exist in the pmap.
4744 */
4745 void
4746 pmap_unwire(pmap_t pm, vaddr_t va)
4747 {
4748 struct l2_bucket *l2b;
4749 pt_entry_t *ptep, pte;
4750 struct vm_page *pg;
4751 paddr_t pa;
4752
4753 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4754
4755 pmap_acquire_pmap_lock(pm);
4756
4757 l2b = pmap_get_l2_bucket(pm, va);
4758 KDASSERT(l2b != NULL);
4759
4760 ptep = &l2b->l2b_kva[l2pte_index(va)];
4761 pte = *ptep;
4762
4763 /* Extract the physical address of the page */
4764 pa = l2pte_pa(pte);
4765
4766 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4767 /* Update the wired bit in the pv entry for this page. */
4768 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4769
4770 pmap_acquire_page_lock(md);
4771 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4772 pmap_release_page_lock(md);
4773 }
4774
4775 pmap_release_pmap_lock(pm);
4776 }
4777
4778 void
4779 pmap_activate(struct lwp *l)
4780 {
4781 struct cpu_info * const ci = curcpu();
4782 extern int block_userspace_access;
4783 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4784 #ifdef ARM_MMU_EXTENDED
4785 struct pmap_asid_info * const pai = PMAP_PAI(npm, cpu_tlb_info(ci));
4786 #endif
4787
4788 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4789
4790 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
4791
4792 /*
4793 * If activating a non-current lwp or the current lwp is
4794 * already active, just return.
4795 */
4796 if (false
4797 || l != curlwp
4798 #ifdef ARM_MMU_EXTENDED
4799 || (ci->ci_pmap_cur == npm &&
4800 (npm == pmap_kernel()
4801 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4802 #else
4803 || npm->pm_activated == true
4804 #endif
4805 || false) {
4806 UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
4807 return;
4808 }
4809
4810 #ifndef ARM_MMU_EXTENDED
4811 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4812 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4813
4814 /*
4815 * If TTB and DACR are unchanged, short-circuit all the
4816 * TLB/cache management stuff.
4817 */
4818 pmap_t opm = ci->ci_lastlwp
4819 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4820 : NULL;
4821 if (opm != NULL) {
4822 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4823 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4824
4825 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4826 goto all_done;
4827 }
4828 #endif /* !ARM_MMU_EXTENDED */
4829
4830 PMAPCOUNT(activations);
4831 block_userspace_access = 1;
4832
4833 #ifndef ARM_MMU_EXTENDED
4834 /*
4835 * If switching to a user vmspace which is different to the
4836 * most recent one, and the most recent one is potentially
4837 * live in the cache, we must write-back and invalidate the
4838 * entire cache.
4839 */
4840 pmap_t rpm = ci->ci_pmap_lastuser;
4841 #endif
4842
4843 /*
4844 * XXXSCW: There's a corner case here which can leave turds in the cache as
4845 * reported in kern/41058. They're probably left over during tear-down and
4846 * switching away from an exiting process. Until the root cause is identified
4847 * and fixed, zap the cache when switching pmaps. This will result in a few
4848 * unnecessary cache flushes, but that's better than silently corrupting data.
4849 */
4850 #ifndef ARM_MMU_EXTENDED
4851 #if 0
4852 if (npm != pmap_kernel() && rpm && npm != rpm &&
4853 rpm->pm_cstate.cs_cache) {
4854 rpm->pm_cstate.cs_cache = 0;
4855 #ifdef PMAP_CACHE_VIVT
4856 cpu_idcache_wbinv_all();
4857 #endif
4858 }
4859 #else
4860 if (rpm) {
4861 rpm->pm_cstate.cs_cache = 0;
4862 if (npm == pmap_kernel())
4863 ci->ci_pmap_lastuser = NULL;
4864 #ifdef PMAP_CACHE_VIVT
4865 cpu_idcache_wbinv_all();
4866 #endif
4867 }
4868 #endif
4869
4870 /* No interrupts while we frob the TTB/DACR */
4871 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4872 #endif /* !ARM_MMU_EXTENDED */
4873
4874 #ifndef ARM_HAS_VBAR
4875 /*
4876 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4877 * entry corresponding to 'vector_page' in the incoming L1 table
4878 * before switching to it otherwise subsequent interrupts/exceptions
4879 * (including domain faults!) will jump into hyperspace.
4880 */
4881 if (npm->pm_pl1vec != NULL) {
4882 cpu_tlb_flushID_SE((u_int)vector_page);
4883 cpu_cpwait();
4884 *npm->pm_pl1vec = npm->pm_l1vec;
4885 PTE_SYNC(npm->pm_pl1vec);
4886 }
4887 #endif
4888
4889 #ifdef ARM_MMU_EXTENDED
4890 /*
4891 * Assume that TTBR1 has only global mappings and TTBR0 only has
4892 * non-global mappings. To prevent speculation from doing evil things
4893 * we disable translation table walks using TTBR0 before setting the
4894 * CONTEXTIDR (ASID) or new TTBR0 value. Once both are set, table
4895 * walks are reenabled.
4896 */
4897 UVMHIST_LOG(maphist, " acquiring asid", 0, 0, 0, 0);
4898 const uint32_t old_ttbcr = armreg_ttbcr_read();
4899 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4900 arm_isb();
4901 pmap_tlb_asid_acquire(npm, l);
4902 UVMHIST_LOG(maphist, " setting ttbr pa=%#x asid=%#x", npm->pm_l1_pa, pai->pai_asid, 0, 0);
4903 cpu_setttb(npm->pm_l1_pa, pai->pai_asid);
4904 /*
4905 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 have
4906 * been updated.
4907 */
4908 arm_isb();
4909 if (npm != pmap_kernel()) {
4910 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4911 }
4912 cpu_cpwait();
4913 ci->ci_pmap_asid_cur = pai->pai_asid;
4914 #else
4915 cpu_domains(ndacr);
4916 if (npm == pmap_kernel() || npm == rpm) {
4917 /*
4918 * Switching to a kernel thread, or back to the
4919 * same user vmspace as before... Simply update
4920 * the TTB (no TLB flush required)
4921 */
4922 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4923 cpu_cpwait();
4924 } else {
4925 /*
4926 * Otherwise, update TTB and flush TLB
4927 */
4928 cpu_context_switch(npm->pm_l1->l1_physaddr);
4929 if (rpm != NULL)
4930 rpm->pm_cstate.cs_tlb = 0;
4931 }
4932
4933 restore_interrupts(oldirqstate);
4934 #endif /* ARM_MMU_EXTENDED */
4935
4936 block_userspace_access = 0;
4937
4938 #ifndef ARM_MMU_EXTENDED
4939 all_done:
4940 /*
4941 * The new pmap is resident. Make sure it's marked
4942 * as resident in the cache/TLB.
4943 */
4944 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4945 if (npm != pmap_kernel())
4946 ci->ci_pmap_lastuser = npm;
4947
4948 /* The old pmap is not longer active */
4949 if (opm != npm) {
4950 if (opm != NULL)
4951 opm->pm_activated = false;
4952
4953 /* But the new one is */
4954 npm->pm_activated = true;
4955 }
4956 #endif
4957 ci->ci_pmap_cur = npm;
4958 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4959 }
4960
4961 void
4962 pmap_deactivate(struct lwp *l)
4963 {
4964 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
4965
4966 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4967
4968 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
4969
4970 #ifdef ARM_MMU_EXTENDED
4971 kpreempt_disable();
4972 struct cpu_info * const ci = curcpu();
4973 /*
4974 * Disable translation table walks from TTBR0 while no pmap has been
4975 * activated.
4976 */
4977 const uint32_t old_ttbcr = armreg_ttbcr_read();
4978 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4979 arm_isb();
4980 pmap_tlb_asid_deactivate(pm);
4981 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4982 ci->ci_pmap_cur = pmap_kernel();
4983 ci->ci_pmap_asid_cur = KERNEL_PID;
4984 kpreempt_enable();
4985 #else
4986 /*
4987 * If the process is exiting, make sure pmap_activate() does
4988 * a full MMU context-switch and cache flush, which we might
4989 * otherwise skip. See PR port-arm/38950.
4990 */
4991 if (l->l_proc->p_sflag & PS_WEXIT)
4992 curcpu()->ci_lastlwp = NULL;
4993
4994 pm->pm_activated = false;
4995 #endif
4996 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4997 }
4998
4999 #ifdef ARM_MMU_EXTENDED
5000 static inline void
5001 pmap_remove_all_complete(pmap_t pm)
5002 {
5003 KASSERT(pm != pmap_kernel());
5004
5005 KASSERTMSG(curcpu()->ci_pmap_cur != pm
5006 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5007 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5008 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5009 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5010
5011 /*
5012 * Finish up the pmap_remove_all() optimisation by flushing
5013 * all our ASIDs.
5014 */
5015 #ifdef MULTIPROCESSOR
5016 // This should be the last CPU with this pmap onproc
5017 // KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(curcpu())));
5018 #if PMAP_TLB_MAX > 1
5019 for (u_int i = 0; !kcpuset_iszero(pm->pm_active); i++) {
5020 KASSERT(i < pmap_ntlbs);
5021 struct pmap_tlb_info * const ti = pmap_tlbs[i];
5022 #else
5023 struct pmap_tlb_info * const ti = &pmap_tlb0_info;
5024 #endif
5025 struct cpu_info * const ci = curcpu();
5026 TLBINFO_LOCK(ti);
5027 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
5028 if (PMAP_PAI_ASIDVALID_P(pai, ti)) {
5029 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci))) {
5030 #if PMAP_TLB_MAX == 1
5031 KASSERT(cpu_tlb_info(ci) == ti);
5032
5033 tlb_invalidate_asids(pai->pai_asid,
5034 pai->pai_asid);
5035 #else
5036 if (cpu_tlb_info(ci) == ti) {
5037 tlb_invalidate_asids(pai->pai_asid,
5038 pai->pai_asid);
5039 } else {
5040 pm->pm_shootdown_needed = 1;
5041 }
5042 #endif
5043 }
5044 }
5045 TLBINFO_UNLOCK(ti);
5046
5047 #if PMAP_TLB_MAX > 1
5048 }
5049 #endif
5050 #else /* MULTIPROCESSOR */
5051
5052 struct pmap_asid_info * const pai =
5053 PMAP_PAI(pm, cpu_tlb_info(ci));
5054
5055 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid);
5056 #endif /* MULTIPROCESSOR */
5057 }
5058 #endif
5059
5060 void
5061 pmap_update(pmap_t pm)
5062 {
5063
5064 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5065
5066 UVMHIST_LOG(maphist, "pm=%#x remove_all %d", pm, pm->pm_remove_all, 0,
5067 0);
5068
5069 if (pm->pm_remove_all) {
5070 #ifdef ARM_MMU_EXTENDED
5071 pmap_remove_all_complete(pm);
5072 #else
5073 /*
5074 * Finish up the pmap_remove_all() optimisation by flushing
5075 * the TLB.
5076 */
5077 pmap_tlb_flushID(pm);
5078 #endif
5079 pm->pm_remove_all = false;
5080 }
5081
5082 #ifdef ARM_MMU_EXTENDED
5083 #if defined(MULTIPROCESSOR)
5084 armreg_bpiallis_write(0);
5085 #else
5086 armreg_bpiall_write(0);
5087 #endif
5088
5089 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5090 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5091 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5092 PMAP_COUNT(shootdown_ipis);
5093 }
5094 #endif
5095 KASSERTMSG(pm == pmap_kernel()
5096 || curcpu()->ci_pmap_cur != pm
5097 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5098 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5099 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5100 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5101 #else
5102 if (pmap_is_current(pm)) {
5103 /*
5104 * If we're dealing with a current userland pmap, move its L1
5105 * to the end of the LRU.
5106 */
5107 if (pm != pmap_kernel())
5108 pmap_use_l1(pm);
5109
5110 /*
5111 * We can assume we're done with frobbing the cache/tlb for
5112 * now. Make sure any future pmap ops don't skip cache/tlb
5113 * flushes.
5114 */
5115 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5116 }
5117 #endif
5118
5119 PMAPCOUNT(updates);
5120
5121 /*
5122 * make sure TLB/cache operations have completed.
5123 */
5124 cpu_cpwait();
5125 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5126 }
5127
5128 void
5129 pmap_remove_all(pmap_t pm)
5130 {
5131
5132 /*
5133 * The vmspace described by this pmap is about to be torn down.
5134 * Until pmap_update() is called, UVM will only make calls
5135 * to pmap_remove(). We can make life much simpler by flushing
5136 * the cache now, and deferring TLB invalidation to pmap_update().
5137 */
5138 #ifdef PMAP_CACHE_VIVT
5139 pmap_cache_wbinv_all(pm, PVF_EXEC);
5140 #endif
5141 pm->pm_remove_all = true;
5142 }
5143
5144 /*
5145 * Retire the given physical map from service.
5146 * Should only be called if the map contains no valid mappings.
5147 */
5148 void
5149 pmap_destroy(pmap_t pm)
5150 {
5151 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5152
5153 u_int count;
5154
5155 if (pm == NULL)
5156 return;
5157
5158 UVMHIST_LOG(maphist, "pm=%#x remove_all %d", pm, pm->pm_remove_all, 0,
5159 0);
5160
5161 if (pm->pm_remove_all) {
5162 #ifdef ARM_MMU_EXTENDED
5163 pmap_remove_all_complete(pm);
5164 pmap_tlb_asid_release_all(pm);
5165 #else
5166 pmap_tlb_flushID(pm);
5167 #endif
5168 pm->pm_remove_all = false;
5169 }
5170
5171 /*
5172 * Drop reference count
5173 */
5174 mutex_enter(pm->pm_lock);
5175 count = --pm->pm_obj.uo_refs;
5176 mutex_exit(pm->pm_lock);
5177 if (count > 0) {
5178 #ifndef ARM_MMU_EXTENDED
5179 if (pmap_is_current(pm)) {
5180 if (pm != pmap_kernel())
5181 pmap_use_l1(pm);
5182 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5183 }
5184 #endif
5185 return;
5186 }
5187
5188 /*
5189 * reference count is zero, free pmap resources and then free pmap.
5190 */
5191
5192 #ifndef ARM_HAS_VBAR
5193 if (vector_page < KERNEL_BASE) {
5194 KDASSERT(!pmap_is_current(pm));
5195
5196 /* Remove the vector page mapping */
5197 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5198 pmap_update(pm);
5199 }
5200 #endif
5201
5202 pmap_free_l1(pm);
5203
5204 #ifdef ARM_MMU_EXTENDED
5205 #ifdef MULTIPROCESSOR
5206 kcpuset_destroy(pm->pm_active);
5207 kcpuset_destroy(pm->pm_onproc);
5208 #endif
5209 #else
5210 struct cpu_info * const ci = curcpu();
5211 if (ci->ci_pmap_lastuser == pm)
5212 ci->ci_pmap_lastuser = NULL;
5213 #endif
5214
5215 uvm_obj_destroy(&pm->pm_obj, false);
5216 mutex_destroy(&pm->pm_obj_lock);
5217 pool_cache_put(&pmap_cache, pm);
5218 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5219 }
5220
5221
5222 /*
5223 * void pmap_reference(pmap_t pm)
5224 *
5225 * Add a reference to the specified pmap.
5226 */
5227 void
5228 pmap_reference(pmap_t pm)
5229 {
5230
5231 if (pm == NULL)
5232 return;
5233
5234 #ifndef ARM_MMU_EXTENDED
5235 pmap_use_l1(pm);
5236 #endif
5237
5238 mutex_enter(pm->pm_lock);
5239 pm->pm_obj.uo_refs++;
5240 mutex_exit(pm->pm_lock);
5241 }
5242
5243 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5244
5245 static struct evcnt pmap_prefer_nochange_ev =
5246 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5247 static struct evcnt pmap_prefer_change_ev =
5248 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5249
5250 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5251 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5252
5253 void
5254 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5255 {
5256 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5257 vaddr_t va = *vap;
5258 vaddr_t diff = (hint - va) & mask;
5259 if (diff == 0) {
5260 pmap_prefer_nochange_ev.ev_count++;
5261 } else {
5262 pmap_prefer_change_ev.ev_count++;
5263 if (__predict_false(td))
5264 va -= mask + 1;
5265 *vap = va + diff;
5266 }
5267 }
5268 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5269
5270 /*
5271 * pmap_zero_page()
5272 *
5273 * Zero a given physical page by mapping it at a page hook point.
5274 * In doing the zero page op, the page we zero is mapped cachable, as with
5275 * StrongARM accesses to non-cached pages are non-burst making writing
5276 * _any_ bulk data very slow.
5277 */
5278 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5279 void
5280 pmap_zero_page_generic(paddr_t pa)
5281 {
5282 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5283 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5284 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5285 #endif
5286 #if defined(PMAP_CACHE_VIPT)
5287 /* Choose the last page color it had, if any */
5288 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5289 #else
5290 const vsize_t va_offset = 0;
5291 #endif
5292 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5293 /*
5294 * Is this page mapped at its natural color?
5295 * If we have all of memory mapped, then just convert PA to VA.
5296 */
5297 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5298 || va_offset == (pa & arm_cache_prefer_mask);
5299 const vaddr_t vdstp = okcolor
5300 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5301 : cpu_cdstp(va_offset);
5302 #else
5303 const bool okcolor = false;
5304 const vaddr_t vdstp = cpu_cdstp(va_offset);
5305 #endif
5306 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5307
5308
5309 #ifdef DEBUG
5310 if (!SLIST_EMPTY(&md->pvh_list))
5311 panic("pmap_zero_page: page has mappings");
5312 #endif
5313
5314 KDASSERT((pa & PGOFSET) == 0);
5315
5316 if (!okcolor) {
5317 /*
5318 * Hook in the page, zero it, and purge the cache for that
5319 * zeroed page. Invalidate the TLB as needed.
5320 */
5321 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5322 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5323 l2pte_set(ptep, npte, 0);
5324 PTE_SYNC(ptep);
5325 cpu_tlb_flushD_SE(vdstp);
5326 cpu_cpwait();
5327 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5328 && !defined(ARM_MMU_EXTENDED)
5329 /*
5330 * If we are direct-mapped and our color isn't ok, then before
5331 * we bzero the page invalidate its contents from the cache and
5332 * reset the color to its natural color.
5333 */
5334 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5335 md->pvh_attrs &= ~arm_cache_prefer_mask;
5336 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5337 #endif
5338 }
5339 bzero_page(vdstp);
5340 if (!okcolor) {
5341 /*
5342 * Unmap the page.
5343 */
5344 l2pte_reset(ptep);
5345 PTE_SYNC(ptep);
5346 cpu_tlb_flushD_SE(vdstp);
5347 #ifdef PMAP_CACHE_VIVT
5348 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5349 #endif
5350 }
5351 #ifdef PMAP_CACHE_VIPT
5352 /*
5353 * This page is now cache resident so it now has a page color.
5354 * Any contents have been obliterated so clear the EXEC flag.
5355 */
5356 #ifndef ARM_MMU_EXTENDED
5357 if (!pmap_is_page_colored_p(md)) {
5358 PMAPCOUNT(vac_color_new);
5359 md->pvh_attrs |= PVF_COLORED;
5360 }
5361 md->pvh_attrs |= PVF_DIRTY;
5362 #endif
5363 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5364 md->pvh_attrs &= ~PVF_EXEC;
5365 PMAPCOUNT(exec_discarded_zero);
5366 }
5367 #endif
5368 }
5369 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5370
5371 #if ARM_MMU_XSCALE == 1
5372 void
5373 pmap_zero_page_xscale(paddr_t pa)
5374 {
5375 #ifdef DEBUG
5376 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5377 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5378
5379 if (!SLIST_EMPTY(&md->pvh_list))
5380 panic("pmap_zero_page: page has mappings");
5381 #endif
5382
5383 KDASSERT((pa & PGOFSET) == 0);
5384
5385 /*
5386 * Hook in the page, zero it, and purge the cache for that
5387 * zeroed page. Invalidate the TLB as needed.
5388 */
5389
5390 pt_entry_t npte = L2_S_PROTO | pa |
5391 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5392 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5393 l2pte_set(cdst_pte, npte, 0);
5394 PTE_SYNC(cdst_pte);
5395 cpu_tlb_flushD_SE(cdstp);
5396 cpu_cpwait();
5397 bzero_page(cdstp);
5398 xscale_cache_clean_minidata();
5399 l2pte_reset(cdst_pte);
5400 PTE_SYNC(cdst_pte);
5401 }
5402 #endif /* ARM_MMU_XSCALE == 1 */
5403
5404 /* pmap_pageidlezero()
5405 *
5406 * The same as above, except that we assume that the page is not
5407 * mapped. This means we never have to flush the cache first. Called
5408 * from the idle loop.
5409 */
5410 bool
5411 pmap_pageidlezero(paddr_t pa)
5412 {
5413 bool rv = true;
5414 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5415 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5416 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5417 #endif
5418 #ifdef PMAP_CACHE_VIPT
5419 /* Choose the last page color it had, if any */
5420 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5421 #else
5422 const vsize_t va_offset = 0;
5423 #endif
5424 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5425 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5426 || va_offset == (pa & arm_cache_prefer_mask);
5427 const vaddr_t vdstp = okcolor
5428 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5429 : cpu_cdstp(va_offset);
5430 #else
5431 const bool okcolor = false;
5432 const vaddr_t vdstp = cpu_cdstp(va_offset);
5433 #endif
5434 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5435
5436
5437 #ifdef DEBUG
5438 if (!SLIST_EMPTY(&md->pvh_list))
5439 panic("pmap_pageidlezero: page has mappings");
5440 #endif
5441
5442 KDASSERT((pa & PGOFSET) == 0);
5443
5444 if (!okcolor) {
5445 /*
5446 * Hook in the page, zero it, and purge the cache for that
5447 * zeroed page. Invalidate the TLB as needed.
5448 */
5449 const pt_entry_t npte = L2_S_PROTO | pa |
5450 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5451 l2pte_set(ptep, npte, 0);
5452 PTE_SYNC(ptep);
5453 cpu_tlb_flushD_SE(vdstp);
5454 cpu_cpwait();
5455 }
5456
5457 uint64_t *ptr = (uint64_t *)vdstp;
5458 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5459 if (sched_curcpu_runnable_p() != 0) {
5460 /*
5461 * A process has become ready. Abort now,
5462 * so we don't keep it waiting while we
5463 * do slow memory access to finish this
5464 * page.
5465 */
5466 rv = false;
5467 break;
5468 }
5469 *ptr++ = 0;
5470 }
5471
5472 #ifdef PMAP_CACHE_VIVT
5473 if (rv)
5474 /*
5475 * if we aborted we'll rezero this page again later so don't
5476 * purge it unless we finished it
5477 */
5478 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5479 #elif defined(PMAP_CACHE_VIPT)
5480 /*
5481 * This page is now cache resident so it now has a page color.
5482 * Any contents have been obliterated so clear the EXEC flag.
5483 */
5484 #ifndef ARM_MMU_EXTENDED
5485 if (!pmap_is_page_colored_p(md)) {
5486 PMAPCOUNT(vac_color_new);
5487 md->pvh_attrs |= PVF_COLORED;
5488 }
5489 #endif
5490 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5491 md->pvh_attrs &= ~PVF_EXEC;
5492 PMAPCOUNT(exec_discarded_zero);
5493 }
5494 #endif
5495 /*
5496 * Unmap the page.
5497 */
5498 if (!okcolor) {
5499 l2pte_reset(ptep);
5500 PTE_SYNC(ptep);
5501 cpu_tlb_flushD_SE(vdstp);
5502 }
5503
5504 return rv;
5505 }
5506
5507 /*
5508 * pmap_copy_page()
5509 *
5510 * Copy one physical page into another, by mapping the pages into
5511 * hook points. The same comment regarding cachability as in
5512 * pmap_zero_page also applies here.
5513 */
5514 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5515 void
5516 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5517 {
5518 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5519 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5520 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5521 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5522 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5523 #endif
5524 #ifdef PMAP_CACHE_VIPT
5525 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5526 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5527 #else
5528 const vsize_t src_va_offset = 0;
5529 const vsize_t dst_va_offset = 0;
5530 #endif
5531 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5532 /*
5533 * Is this page mapped at its natural color?
5534 * If we have all of memory mapped, then just convert PA to VA.
5535 */
5536 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5537 || src_va_offset == (src & arm_cache_prefer_mask);
5538 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5539 || dst_va_offset == (dst & arm_cache_prefer_mask);
5540 const vaddr_t vsrcp = src_okcolor
5541 ? pmap_direct_mapped_phys(src, &src_okcolor,
5542 cpu_csrcp(src_va_offset))
5543 : cpu_csrcp(src_va_offset);
5544 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5545 cpu_cdstp(dst_va_offset));
5546 #else
5547 const bool src_okcolor = false;
5548 const bool dst_okcolor = false;
5549 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5550 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5551 #endif
5552 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5553 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5554
5555 #ifdef DEBUG
5556 if (!SLIST_EMPTY(&dst_md->pvh_list))
5557 panic("pmap_copy_page: dst page has mappings");
5558 #endif
5559
5560 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5561 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5562 #endif
5563 KDASSERT((src & PGOFSET) == 0);
5564 KDASSERT((dst & PGOFSET) == 0);
5565
5566 /*
5567 * Clean the source page. Hold the source page's lock for
5568 * the duration of the copy so that no other mappings can
5569 * be created while we have a potentially aliased mapping.
5570 */
5571 #ifdef PMAP_CACHE_VIVT
5572 pmap_acquire_page_lock(src_md);
5573 (void) pmap_clean_page(src_md, true);
5574 pmap_release_page_lock(src_md);
5575 #endif
5576
5577 /*
5578 * Map the pages into the page hook points, copy them, and purge
5579 * the cache for the appropriate page. Invalidate the TLB
5580 * as required.
5581 */
5582 if (!src_okcolor) {
5583 const pt_entry_t nsrc_pte = L2_S_PROTO
5584 | src
5585 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5586 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5587 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5588 | pte_l2_s_cache_mode
5589 #endif
5590 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5591 l2pte_set(src_ptep, nsrc_pte, 0);
5592 PTE_SYNC(src_ptep);
5593 cpu_tlb_flushD_SE(vsrcp);
5594 cpu_cpwait();
5595 }
5596 if (!dst_okcolor) {
5597 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5598 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5599 l2pte_set(dst_ptep, ndst_pte, 0);
5600 PTE_SYNC(dst_ptep);
5601 cpu_tlb_flushD_SE(vdstp);
5602 cpu_cpwait();
5603 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5604 /*
5605 * If we are direct-mapped and our color isn't ok, then before
5606 * we bcopy to the new page invalidate its contents from the
5607 * cache and reset its color to its natural color.
5608 */
5609 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5610 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5611 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5612 #endif
5613 }
5614 bcopy_page(vsrcp, vdstp);
5615 #ifdef PMAP_CACHE_VIVT
5616 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5617 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5618 #endif
5619 /*
5620 * Unmap the pages.
5621 */
5622 if (!src_okcolor) {
5623 l2pte_reset(src_ptep);
5624 PTE_SYNC(src_ptep);
5625 cpu_tlb_flushD_SE(vsrcp);
5626 cpu_cpwait();
5627 }
5628 if (!dst_okcolor) {
5629 l2pte_reset(dst_ptep);
5630 PTE_SYNC(dst_ptep);
5631 cpu_tlb_flushD_SE(vdstp);
5632 cpu_cpwait();
5633 }
5634 #ifdef PMAP_CACHE_VIPT
5635 /*
5636 * Now that the destination page is in the cache, mark it as colored.
5637 * If this was an exec page, discard it.
5638 */
5639 pmap_acquire_page_lock(dst_md);
5640 #ifndef ARM_MMU_EXTENDED
5641 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5642 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5643 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5644 }
5645 if (!pmap_is_page_colored_p(dst_md)) {
5646 PMAPCOUNT(vac_color_new);
5647 dst_md->pvh_attrs |= PVF_COLORED;
5648 }
5649 dst_md->pvh_attrs |= PVF_DIRTY;
5650 #endif
5651 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5652 dst_md->pvh_attrs &= ~PVF_EXEC;
5653 PMAPCOUNT(exec_discarded_copy);
5654 }
5655 pmap_release_page_lock(dst_md);
5656 #endif
5657 }
5658 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5659
5660 #if ARM_MMU_XSCALE == 1
5661 void
5662 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5663 {
5664 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5665 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5666 #ifdef DEBUG
5667 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5668
5669 if (!SLIST_EMPTY(&dst_md->pvh_list))
5670 panic("pmap_copy_page: dst page has mappings");
5671 #endif
5672
5673 KDASSERT((src & PGOFSET) == 0);
5674 KDASSERT((dst & PGOFSET) == 0);
5675
5676 /*
5677 * Clean the source page. Hold the source page's lock for
5678 * the duration of the copy so that no other mappings can
5679 * be created while we have a potentially aliased mapping.
5680 */
5681 #ifdef PMAP_CACHE_VIVT
5682 pmap_acquire_page_lock(src_md);
5683 (void) pmap_clean_page(src_md, true);
5684 pmap_release_page_lock(src_md);
5685 #endif
5686
5687 /*
5688 * Map the pages into the page hook points, copy them, and purge
5689 * the cache for the appropriate page. Invalidate the TLB
5690 * as required.
5691 */
5692 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5693 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5694 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5695 l2pte_set(csrc_pte, nsrc_pte, 0);
5696 PTE_SYNC(csrc_pte);
5697
5698 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5699 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5700 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5701 l2pte_set(cdst_pte, ndst_pte, 0);
5702 PTE_SYNC(cdst_pte);
5703
5704 cpu_tlb_flushD_SE(csrcp);
5705 cpu_tlb_flushD_SE(cdstp);
5706 cpu_cpwait();
5707 bcopy_page(csrcp, cdstp);
5708 xscale_cache_clean_minidata();
5709 l2pte_reset(csrc_pte);
5710 l2pte_reset(cdst_pte);
5711 PTE_SYNC(csrc_pte);
5712 PTE_SYNC(cdst_pte);
5713 }
5714 #endif /* ARM_MMU_XSCALE == 1 */
5715
5716 /*
5717 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5718 *
5719 * Return the start and end addresses of the kernel's virtual space.
5720 * These values are setup in pmap_bootstrap and are updated as pages
5721 * are allocated.
5722 */
5723 void
5724 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5725 {
5726 *start = virtual_avail;
5727 *end = virtual_end;
5728 }
5729
5730 /*
5731 * Helper function for pmap_grow_l2_bucket()
5732 */
5733 static inline int
5734 pmap_grow_map(vaddr_t va, paddr_t *pap)
5735 {
5736 paddr_t pa;
5737
5738 if (uvm.page_init_done == false) {
5739 #ifdef PMAP_STEAL_MEMORY
5740 pv_addr_t pv;
5741 pmap_boot_pagealloc(PAGE_SIZE,
5742 #ifdef PMAP_CACHE_VIPT
5743 arm_cache_prefer_mask,
5744 va & arm_cache_prefer_mask,
5745 #else
5746 0, 0,
5747 #endif
5748 &pv);
5749 pa = pv.pv_pa;
5750 #else
5751 if (uvm_page_physget(&pa) == false)
5752 return (1);
5753 #endif /* PMAP_STEAL_MEMORY */
5754 } else {
5755 struct vm_page *pg;
5756 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5757 if (pg == NULL)
5758 return (1);
5759 pa = VM_PAGE_TO_PHYS(pg);
5760 /*
5761 * This new page must not have any mappings. Enter it via
5762 * pmap_kenter_pa and let that routine do the hard work.
5763 */
5764 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5765 KASSERT(SLIST_EMPTY(&md->pvh_list));
5766 pmap_kenter_pa(va, pa,
5767 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5768 }
5769
5770 if (pap)
5771 *pap = pa;
5772
5773 PMAPCOUNT(pt_mappings);
5774 #ifdef DEBUG
5775 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5776 KDASSERT(l2b != NULL);
5777
5778 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5779 const pt_entry_t opte = *ptep;
5780 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5781 #endif
5782 memset((void *)va, 0, PAGE_SIZE);
5783 return (0);
5784 }
5785
5786 /*
5787 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5788 * used by pmap_growkernel().
5789 */
5790 static inline struct l2_bucket *
5791 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5792 {
5793 struct l2_dtable *l2;
5794 struct l2_bucket *l2b;
5795 u_short l1slot;
5796 vaddr_t nva;
5797
5798 l1slot = l1pte_index(va);
5799
5800 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5801 /*
5802 * No mapping at this address, as there is
5803 * no entry in the L1 table.
5804 * Need to allocate a new l2_dtable.
5805 */
5806 nva = pmap_kernel_l2dtable_kva;
5807 if ((nva & PGOFSET) == 0) {
5808 /*
5809 * Need to allocate a backing page
5810 */
5811 if (pmap_grow_map(nva, NULL))
5812 return (NULL);
5813 }
5814
5815 l2 = (struct l2_dtable *)nva;
5816 nva += sizeof(struct l2_dtable);
5817
5818 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5819 /*
5820 * The new l2_dtable straddles a page boundary.
5821 * Map in another page to cover it.
5822 */
5823 if (pmap_grow_map(nva, NULL))
5824 return (NULL);
5825 }
5826
5827 pmap_kernel_l2dtable_kva = nva;
5828
5829 /*
5830 * Link it into the parent pmap
5831 */
5832 pm->pm_l2[L2_IDX(l1slot)] = l2;
5833 }
5834
5835 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5836
5837 /*
5838 * Fetch pointer to the L2 page table associated with the address.
5839 */
5840 if (l2b->l2b_kva == NULL) {
5841 pt_entry_t *ptep;
5842
5843 /*
5844 * No L2 page table has been allocated. Chances are, this
5845 * is because we just allocated the l2_dtable, above.
5846 */
5847 nva = pmap_kernel_l2ptp_kva;
5848 ptep = (pt_entry_t *)nva;
5849 if ((nva & PGOFSET) == 0) {
5850 /*
5851 * Need to allocate a backing page
5852 */
5853 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5854 return (NULL);
5855 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5856 }
5857
5858 l2->l2_occupancy++;
5859 l2b->l2b_kva = ptep;
5860 l2b->l2b_l1slot = l1slot;
5861 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5862
5863 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5864 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5865 }
5866
5867 return (l2b);
5868 }
5869
5870 vaddr_t
5871 pmap_growkernel(vaddr_t maxkvaddr)
5872 {
5873 pmap_t kpm = pmap_kernel();
5874 #ifndef ARM_MMU_EXTENDED
5875 struct l1_ttable *l1;
5876 #endif
5877 int s;
5878
5879 if (maxkvaddr <= pmap_curmaxkvaddr)
5880 goto out; /* we are OK */
5881
5882 NPDEBUG(PDB_GROWKERN,
5883 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5884 pmap_curmaxkvaddr, maxkvaddr));
5885
5886 KDASSERT(maxkvaddr <= virtual_end);
5887
5888 /*
5889 * whoops! we need to add kernel PTPs
5890 */
5891
5892 s = splhigh(); /* to be safe */
5893 mutex_enter(kpm->pm_lock);
5894
5895 /* Map 1MB at a time */
5896 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5897 #ifdef ARM_MMU_EXTENDED
5898 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5899 pd_entry_t *pdep = spdep;
5900 #endif
5901 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5902 #ifdef ARM_MMU_EXTENDED
5903 pdep++,
5904 #endif
5905 l1slot++) {
5906 struct l2_bucket *l2b =
5907 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5908 KASSERT(l2b != NULL);
5909
5910 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5911 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5912 #ifdef ARM_MMU_EXTENDED
5913 l1pte_setone(pdep, npde);
5914 #else
5915 /* Distribute new L1 entry to all other L1s */
5916 SLIST_FOREACH(l1, &l1_list, l1_link) {
5917 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5918 l1pte_setone(pdep, npde);
5919 PDE_SYNC(pdep);
5920 }
5921 #endif
5922 }
5923 #ifdef ARM_MMU_EXTENDED
5924 PDE_SYNC_RANGE(spdep, pdep - spdep);
5925 #endif
5926
5927 #ifdef PMAP_CACHE_VIVT
5928 /*
5929 * flush out the cache, expensive but growkernel will happen so
5930 * rarely
5931 */
5932 cpu_dcache_wbinv_all();
5933 cpu_tlb_flushD();
5934 cpu_cpwait();
5935 #endif
5936
5937 mutex_exit(kpm->pm_lock);
5938 splx(s);
5939
5940 out:
5941 return (pmap_curmaxkvaddr);
5942 }
5943
5944 /************************ Utility routines ****************************/
5945
5946 #ifndef ARM_HAS_VBAR
5947 /*
5948 * vector_page_setprot:
5949 *
5950 * Manipulate the protection of the vector page.
5951 */
5952 void
5953 vector_page_setprot(int prot)
5954 {
5955 struct l2_bucket *l2b;
5956 pt_entry_t *ptep;
5957
5958 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5959 /*
5960 * If we are using VBAR to use the vectors in the kernel, then it's
5961 * already mapped in the kernel text so no need to anything here.
5962 */
5963 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5964 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5965 return;
5966 }
5967 #endif
5968
5969 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5970 KASSERT(l2b != NULL);
5971
5972 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5973
5974 const pt_entry_t opte = *ptep;
5975 #ifdef ARM_MMU_EXTENDED
5976 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5977 | L2_S_PROT(PTE_KERNEL, prot);
5978 #else
5979 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5980 | L2_S_PROT(PTE_KERNEL, prot);
5981 #endif
5982 l2pte_set(ptep, npte, opte);
5983 PTE_SYNC(ptep);
5984 cpu_tlb_flushD_SE(vector_page);
5985 cpu_cpwait();
5986 }
5987 #endif
5988
5989 /*
5990 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5991 * Returns true if the mapping exists, else false.
5992 *
5993 * NOTE: This function is only used by a couple of arm-specific modules.
5994 * It is not safe to take any pmap locks here, since we could be right
5995 * in the middle of debugging the pmap anyway...
5996 *
5997 * It is possible for this routine to return false even though a valid
5998 * mapping does exist. This is because we don't lock, so the metadata
5999 * state may be inconsistent.
6000 *
6001 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6002 * a "section" mapping.
6003 */
6004 bool
6005 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6006 {
6007 struct l2_dtable *l2;
6008 pd_entry_t *pdep, pde;
6009 pt_entry_t *ptep;
6010 u_short l1slot;
6011
6012 if (pm->pm_l1 == NULL)
6013 return false;
6014
6015 l1slot = l1pte_index(va);
6016 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6017 pde = *pdep;
6018
6019 if (l1pte_section_p(pde)) {
6020 *ptp = NULL;
6021 return true;
6022 }
6023
6024 l2 = pm->pm_l2[L2_IDX(l1slot)];
6025 if (l2 == NULL ||
6026 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6027 return false;
6028 }
6029
6030 *ptp = &ptep[l2pte_index(va)];
6031 return true;
6032 }
6033
6034 bool
6035 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6036 {
6037
6038 if (pm->pm_l1 == NULL)
6039 return false;
6040
6041 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6042
6043 return true;
6044 }
6045
6046 /************************ Bootstrapping routines ****************************/
6047
6048 #ifndef ARM_MMU_EXTENDED
6049 static void
6050 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6051 {
6052 int i;
6053
6054 l1->l1_kva = l1pt;
6055 l1->l1_domain_use_count = 0;
6056 l1->l1_domain_first = 0;
6057
6058 for (i = 0; i < PMAP_DOMAINS; i++)
6059 l1->l1_domain_free[i] = i + 1;
6060
6061 /*
6062 * Copy the kernel's L1 entries to each new L1.
6063 */
6064 if (pmap_initialized)
6065 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6066
6067 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6068 &l1->l1_physaddr) == false)
6069 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6070
6071 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6072 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6073 }
6074 #endif /* !ARM_MMU_EXTENDED */
6075
6076 /*
6077 * pmap_bootstrap() is called from the board-specific initarm() routine
6078 * once the kernel L1/L2 descriptors tables have been set up.
6079 *
6080 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6081 * spread over a number of disparate files/functions.
6082 *
6083 * We are passed the following parameters
6084 * - kernel_l1pt
6085 * This is a pointer to the base of the kernel's L1 translation table.
6086 * - vstart
6087 * 1MB-aligned start of managed kernel virtual memory.
6088 * - vend
6089 * 1MB-aligned end of managed kernel virtual memory.
6090 *
6091 * We use the first parameter to build the metadata (struct l1_ttable and
6092 * struct l2_dtable) necessary to track kernel mappings.
6093 */
6094 #define PMAP_STATIC_L2_SIZE 16
6095 void
6096 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6097 {
6098 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6099 #ifndef ARM_MMU_EXTENDED
6100 static struct l1_ttable static_l1;
6101 struct l1_ttable *l1 = &static_l1;
6102 #endif
6103 struct l2_dtable *l2;
6104 struct l2_bucket *l2b;
6105 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6106 pmap_t pm = pmap_kernel();
6107 pt_entry_t *ptep;
6108 paddr_t pa;
6109 vsize_t size;
6110 int nptes, l2idx, l2next = 0;
6111
6112 #ifdef ARM_MMU_EXTENDED
6113 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6114 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6115 #endif
6116
6117 #ifdef VERBOSE_INIT_ARM
6118 printf("kpm ");
6119 #endif
6120 /*
6121 * Initialise the kernel pmap object
6122 */
6123 curcpu()->ci_pmap_cur = pm;
6124 #ifdef ARM_MMU_EXTENDED
6125 pm->pm_l1 = l1pt;
6126 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6127 #ifdef VERBOSE_INIT_ARM
6128 printf("tlb0 ");
6129 #endif
6130 pmap_tlb_info_init(&pmap_tlb0_info);
6131 #ifdef MULTIPROCESSOR
6132 #ifdef VERBOSE_INIT_ARM
6133 printf("kcpusets ");
6134 #endif
6135 pm->pm_onproc = kcpuset_running;
6136 pm->pm_active = kcpuset_running;
6137 #endif
6138 #else
6139 pm->pm_l1 = l1;
6140 #endif
6141
6142 #ifdef VERBOSE_INIT_ARM
6143 printf("locks ");
6144 #endif
6145 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6146 if (arm_cache_prefer_mask != 0) {
6147 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6148 } else {
6149 #endif
6150 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
6151 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6152 }
6153 #endif
6154 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
6155 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
6156 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
6157
6158 #ifdef VERBOSE_INIT_ARM
6159 printf("l1pt ");
6160 #endif
6161 /*
6162 * Scan the L1 translation table created by initarm() and create
6163 * the required metadata for all valid mappings found in it.
6164 */
6165 for (size_t l1slot = 0;
6166 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6167 l1slot++) {
6168 pd_entry_t pde = l1pt[l1slot];
6169
6170 /*
6171 * We're only interested in Coarse mappings.
6172 * pmap_extract() can deal with section mappings without
6173 * recourse to checking L2 metadata.
6174 */
6175 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6176 continue;
6177
6178 /*
6179 * Lookup the KVA of this L2 descriptor table
6180 */
6181 pa = l1pte_pa(pde);
6182 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6183 if (ptep == NULL) {
6184 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6185 (u_int)l1slot << L1_S_SHIFT, pa);
6186 }
6187
6188 /*
6189 * Fetch the associated L2 metadata structure.
6190 * Allocate a new one if necessary.
6191 */
6192 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6193 if (l2next == PMAP_STATIC_L2_SIZE)
6194 panic("pmap_bootstrap: out of static L2s");
6195 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6196 }
6197
6198 /*
6199 * One more L1 slot tracked...
6200 */
6201 l2->l2_occupancy++;
6202
6203 /*
6204 * Fill in the details of the L2 descriptor in the
6205 * appropriate bucket.
6206 */
6207 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6208 l2b->l2b_kva = ptep;
6209 l2b->l2b_pa = pa;
6210 l2b->l2b_l1slot = l1slot;
6211
6212 /*
6213 * Establish an initial occupancy count for this descriptor
6214 */
6215 for (l2idx = 0;
6216 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6217 l2idx++) {
6218 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6219 l2b->l2b_occupancy++;
6220 }
6221 }
6222
6223 /*
6224 * Make sure the descriptor itself has the correct cache mode.
6225 * If not, fix it, but whine about the problem. Port-meisters
6226 * should consider this a clue to fix up their initarm()
6227 * function. :)
6228 */
6229 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6230 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6231 "L2 pte @ %p\n", ptep);
6232 }
6233 }
6234
6235 #ifdef VERBOSE_INIT_ARM
6236 printf("cache(l1pt) ");
6237 #endif
6238 /*
6239 * Ensure the primary (kernel) L1 has the correct cache mode for
6240 * a page table. Bitch if it is not correctly set.
6241 */
6242 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6243 L1_TABLE_SIZE / L2_S_SIZE)) {
6244 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6245 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6246 }
6247
6248 #ifdef PMAP_CACHE_VIVT
6249 cpu_dcache_wbinv_all();
6250 cpu_tlb_flushID();
6251 cpu_cpwait();
6252 #endif
6253
6254 /*
6255 * now we allocate the "special" VAs which are used for tmp mappings
6256 * by the pmap (and other modules). we allocate the VAs by advancing
6257 * virtual_avail (note that there are no pages mapped at these VAs).
6258 *
6259 * Managed KVM space start from wherever initarm() tells us.
6260 */
6261 virtual_avail = vstart;
6262 virtual_end = vend;
6263
6264 #ifdef VERBOSE_INIT_ARM
6265 printf("specials ");
6266 #endif
6267 #ifdef PMAP_CACHE_VIPT
6268 /*
6269 * If we have a VIPT cache, we need one page/pte per possible alias
6270 * page so we won't violate cache aliasing rules.
6271 */
6272 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6273 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6274 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6275 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6276 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6277 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6278 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6279 }
6280 #else
6281 nptes = PAGE_SIZE / L2_S_SIZE;
6282 #endif
6283 #ifdef MULTIPROCESSOR
6284 cnptes = nptes;
6285 nptes *= arm_cpu_max;
6286 #endif
6287 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6288 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6289 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6290 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6291 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6292 if (msgbufaddr == NULL) {
6293 pmap_alloc_specials(&virtual_avail,
6294 round_page(MSGBUFSIZE) / PAGE_SIZE,
6295 (void *)&msgbufaddr, NULL);
6296 }
6297
6298 /*
6299 * Allocate a range of kernel virtual address space to be used
6300 * for L2 descriptor tables and metadata allocation in
6301 * pmap_growkernel().
6302 */
6303 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6304 pmap_alloc_specials(&virtual_avail,
6305 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6306 &pmap_kernel_l2ptp_kva, NULL);
6307
6308 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6309 pmap_alloc_specials(&virtual_avail,
6310 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6311 &pmap_kernel_l2dtable_kva, NULL);
6312
6313 #ifndef ARM_MMU_EXTENDED
6314 /*
6315 * init the static-global locks and global pmap list.
6316 */
6317 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6318
6319 /*
6320 * We can now initialise the first L1's metadata.
6321 */
6322 SLIST_INIT(&l1_list);
6323 TAILQ_INIT(&l1_lru_list);
6324 pmap_init_l1(l1, l1pt);
6325 #endif /* ARM_MMU_EXTENDED */
6326
6327 #ifndef ARM_HAS_VBAR
6328 /* Set up vector page L1 details, if necessary */
6329 if (vector_page < KERNEL_BASE) {
6330 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6331 l2b = pmap_get_l2_bucket(pm, vector_page);
6332 KDASSERT(l2b != NULL);
6333 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6334 L1_C_DOM(pmap_domain(pm));
6335 } else
6336 pm->pm_pl1vec = NULL;
6337 #endif
6338
6339 #ifdef VERBOSE_INIT_ARM
6340 printf("pools ");
6341 #endif
6342 /*
6343 * Initialize the pmap cache
6344 */
6345 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6346 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6347
6348 /*
6349 * Initialize the pv pool.
6350 */
6351 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6352 &pmap_bootstrap_pv_allocator, IPL_NONE);
6353
6354 /*
6355 * Initialize the L2 dtable pool and cache.
6356 */
6357 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6358 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6359
6360 /*
6361 * Initialise the L2 descriptor table pool and cache
6362 */
6363 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6364 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6365 pmap_l2ptp_ctor, NULL, NULL);
6366
6367 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6368
6369 cpu_dcache_wbinv_all();
6370 }
6371
6372 static bool
6373 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6374 {
6375 #ifdef ARM_MMU_EXTENDED
6376 return false;
6377 #else
6378 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6379 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6380 return false;
6381
6382 const vaddr_t eva = va + nptes * PAGE_SIZE;
6383 int rv = 0;
6384
6385 while (va < eva) {
6386 /*
6387 * Make sure the descriptor itself has the correct cache mode
6388 */
6389 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6390 pd_entry_t pde = *pdep;
6391
6392 if (l1pte_section_p(pde)) {
6393 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6394 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6395 *pdep = (pde & ~L1_S_CACHE_MASK) |
6396 pte_l1_s_cache_mode_pt;
6397 PDE_SYNC(pdep);
6398 cpu_dcache_wbinv_range((vaddr_t)pdep,
6399 sizeof(*pdep));
6400 rv = 1;
6401 }
6402 return rv;
6403 }
6404 vaddr_t pa = l1pte_pa(pde);
6405 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6406 if (ptep == NULL)
6407 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6408
6409 ptep += l2pte_index(va);
6410 const pt_entry_t opte = *ptep;
6411 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6412 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6413 | pte_l2_s_cache_mode_pt;
6414 l2pte_set(ptep, npte, opte);
6415 PTE_SYNC(ptep);
6416 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6417 rv = 1;
6418 }
6419 va += PAGE_SIZE;
6420 }
6421
6422 return (rv);
6423 #endif
6424 }
6425
6426 static void
6427 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6428 {
6429 vaddr_t va = *availp;
6430 struct l2_bucket *l2b;
6431
6432 if (ptep) {
6433 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6434 if (l2b == NULL)
6435 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6436
6437 if (ptep)
6438 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6439 }
6440
6441 *vap = va;
6442 *availp = va + (PAGE_SIZE * pages);
6443 }
6444
6445 void
6446 pmap_init(void)
6447 {
6448
6449 /*
6450 * Set the available memory vars - These do not map to real memory
6451 * addresses and cannot as the physical memory is fragmented.
6452 * They are used by ps for %mem calculations.
6453 * One could argue whether this should be the entire memory or just
6454 * the memory that is useable in a user process.
6455 */
6456 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
6457 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
6458
6459 /*
6460 * Now we need to free enough pv_entry structures to allow us to get
6461 * the kmem_map/kmem_object allocated and inited (done after this
6462 * function is finished). to do this we allocate one bootstrap page out
6463 * of kernel_map and use it to provide an initial pool of pv_entry
6464 * structures. we never free this page.
6465 */
6466 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6467
6468 #ifdef ARM_MMU_EXTENDED
6469 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6470 #endif
6471
6472 pmap_initialized = true;
6473 }
6474
6475 static vaddr_t last_bootstrap_page = 0;
6476 static void *free_bootstrap_pages = NULL;
6477
6478 static void *
6479 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6480 {
6481 extern void *pool_page_alloc(struct pool *, int);
6482 vaddr_t new_page;
6483 void *rv;
6484
6485 if (pmap_initialized)
6486 return (pool_page_alloc(pp, flags));
6487
6488 if (free_bootstrap_pages) {
6489 rv = free_bootstrap_pages;
6490 free_bootstrap_pages = *((void **)rv);
6491 return (rv);
6492 }
6493
6494 KASSERT(kernel_map != NULL);
6495 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6496 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6497
6498 KASSERT(new_page > last_bootstrap_page);
6499 last_bootstrap_page = new_page;
6500 return ((void *)new_page);
6501 }
6502
6503 static void
6504 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6505 {
6506 extern void pool_page_free(struct pool *, void *);
6507
6508 if ((vaddr_t)v <= last_bootstrap_page) {
6509 *((void **)v) = free_bootstrap_pages;
6510 free_bootstrap_pages = v;
6511 return;
6512 }
6513
6514 if (pmap_initialized) {
6515 pool_page_free(pp, v);
6516 return;
6517 }
6518 }
6519
6520 /*
6521 * pmap_postinit()
6522 *
6523 * This routine is called after the vm and kmem subsystems have been
6524 * initialised. This allows the pmap code to perform any initialisation
6525 * that can only be done once the memory allocation is in place.
6526 */
6527 void
6528 pmap_postinit(void)
6529 {
6530 #ifndef ARM_MMU_EXTENDED
6531 extern paddr_t physical_start, physical_end;
6532 struct l1_ttable *l1;
6533 struct pglist plist;
6534 struct vm_page *m;
6535 pd_entry_t *pdep;
6536 vaddr_t va, eva;
6537 u_int loop, needed;
6538 int error;
6539 #endif
6540
6541 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6542 pool_cache_setlowat(&pmap_l2dtable_cache,
6543 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6544
6545 #ifndef ARM_MMU_EXTENDED
6546 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6547 needed -= 1;
6548
6549 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6550
6551 for (loop = 0; loop < needed; loop++, l1++) {
6552 /* Allocate a L1 page table */
6553 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6554 if (va == 0)
6555 panic("Cannot allocate L1 KVM");
6556
6557 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6558 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6559 if (error)
6560 panic("Cannot allocate L1 physical pages");
6561
6562 m = TAILQ_FIRST(&plist);
6563 eva = va + L1_TABLE_SIZE;
6564 pdep = (pd_entry_t *)va;
6565
6566 while (m && va < eva) {
6567 paddr_t pa = VM_PAGE_TO_PHYS(m);
6568
6569 pmap_kenter_pa(va, pa,
6570 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6571
6572 va += PAGE_SIZE;
6573 m = TAILQ_NEXT(m, pageq.queue);
6574 }
6575
6576 #ifdef DIAGNOSTIC
6577 if (m)
6578 panic("pmap_alloc_l1pt: pglist not empty");
6579 #endif /* DIAGNOSTIC */
6580
6581 pmap_init_l1(l1, pdep);
6582 }
6583
6584 #ifdef DEBUG
6585 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6586 needed);
6587 #endif
6588 #endif /* !ARM_MMU_EXTENDED */
6589 }
6590
6591 /*
6592 * Note that the following routines are used by board-specific initialisation
6593 * code to configure the initial kernel page tables.
6594 *
6595 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
6596 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
6597 * behaviour of the old pmap, and provides an easy migration path for
6598 * initial bring-up of the new pmap on existing ports. Fortunately,
6599 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
6600 * will be deprecated.
6601 *
6602 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
6603 * tables.
6604 */
6605
6606 /*
6607 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6608 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6609 * find them as necessary.
6610 *
6611 * Note that the data on this list MUST remain valid after initarm() returns,
6612 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6613 */
6614 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6615
6616 static vaddr_t
6617 kernel_pt_lookup(paddr_t pa)
6618 {
6619 pv_addr_t *pv;
6620
6621 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6622 if (pv->pv_pa == (pa & ~PGOFSET))
6623 return (pv->pv_va | (pa & PGOFSET));
6624 }
6625 return (0);
6626 }
6627
6628 /*
6629 * pmap_map_section:
6630 *
6631 * Create a single section mapping.
6632 */
6633 void
6634 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6635 {
6636 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6637 const size_t l1slot = l1pte_index(va);
6638 pd_entry_t fl;
6639
6640 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6641
6642 switch (cache) {
6643 case PTE_NOCACHE:
6644 default:
6645 fl = 0;
6646 break;
6647
6648 case PTE_CACHE:
6649 fl = pte_l1_s_cache_mode;
6650 break;
6651
6652 case PTE_PAGETABLE:
6653 fl = pte_l1_s_cache_mode_pt;
6654 break;
6655 }
6656
6657 const pd_entry_t npde = L1_S_PROTO | pa |
6658 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6659 l1pte_setone(pdep + l1slot, npde);
6660 PDE_SYNC(pdep + l1slot);
6661 }
6662
6663 /*
6664 * pmap_map_entry:
6665 *
6666 * Create a single page mapping.
6667 */
6668 void
6669 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6670 {
6671 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6672 const size_t l1slot = l1pte_index(va);
6673 pt_entry_t npte;
6674 pt_entry_t *ptep;
6675
6676 KASSERT(((va | pa) & PGOFSET) == 0);
6677
6678 switch (cache) {
6679 case PTE_NOCACHE:
6680 default:
6681 npte = 0;
6682 break;
6683
6684 case PTE_CACHE:
6685 npte = pte_l2_s_cache_mode;
6686 break;
6687
6688 case PTE_PAGETABLE:
6689 npte = pte_l2_s_cache_mode_pt;
6690 break;
6691 }
6692
6693 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6694 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6695
6696 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6697 if (ptep == NULL)
6698 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6699
6700 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6701 #ifdef ARM_MMU_EXTENDED
6702 if (prot & VM_PROT_EXECUTE) {
6703 npte &= ~L2_XS_XN;
6704 }
6705 #endif
6706 ptep += l2pte_index(va);
6707 l2pte_set(ptep, npte, 0);
6708 PTE_SYNC(ptep);
6709 }
6710
6711 /*
6712 * pmap_link_l2pt:
6713 *
6714 * Link the L2 page table specified by "l2pv" into the L1
6715 * page table at the slot for "va".
6716 */
6717 void
6718 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6719 {
6720 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6721
6722 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6723 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6724
6725 const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6726 | l2pv->pv_pa;
6727
6728 l1pte_set(pdep, npde);
6729 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6730
6731 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6732 }
6733
6734 /*
6735 * pmap_map_chunk:
6736 *
6737 * Map a chunk of memory using the most efficient mappings
6738 * possible (section, large page, small page) into the
6739 * provided L1 and L2 tables at the specified virtual address.
6740 */
6741 vsize_t
6742 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6743 int prot, int cache)
6744 {
6745 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6746 pt_entry_t f1, f2s, f2l;
6747 vsize_t resid;
6748
6749 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6750
6751 if (l1pt == 0)
6752 panic("pmap_map_chunk: no L1 table provided");
6753
6754 #ifdef VERBOSE_INIT_ARM
6755 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6756 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6757 #endif
6758
6759 switch (cache) {
6760 case PTE_NOCACHE:
6761 default:
6762 f1 = 0;
6763 f2l = 0;
6764 f2s = 0;
6765 break;
6766
6767 case PTE_CACHE:
6768 f1 = pte_l1_s_cache_mode;
6769 f2l = pte_l2_l_cache_mode;
6770 f2s = pte_l2_s_cache_mode;
6771 break;
6772
6773 case PTE_PAGETABLE:
6774 f1 = pte_l1_s_cache_mode_pt;
6775 f2l = pte_l2_l_cache_mode_pt;
6776 f2s = pte_l2_s_cache_mode_pt;
6777 break;
6778 }
6779
6780 size = resid;
6781
6782 while (resid > 0) {
6783 const size_t l1slot = l1pte_index(va);
6784 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6785 /* See if we can use a supersection mapping. */
6786 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6787 /* Supersection are always domain 0 */
6788 const pd_entry_t npde = L1_SS_PROTO | pa
6789 #ifdef ARM_MMU_EXTENDED
6790 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6791 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6792 #endif
6793 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6794 #ifdef VERBOSE_INIT_ARM
6795 printf("sS");
6796 #endif
6797 l1pte_set(&pdep[l1slot], npde);
6798 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6799 va += L1_SS_SIZE;
6800 pa += L1_SS_SIZE;
6801 resid -= L1_SS_SIZE;
6802 continue;
6803 }
6804 #endif
6805 /* See if we can use a section mapping. */
6806 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6807 const pd_entry_t npde = L1_S_PROTO | pa
6808 #ifdef ARM_MMU_EXTENDED
6809 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6810 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6811 #endif
6812 | L1_S_PROT(PTE_KERNEL, prot) | f1
6813 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6814 #ifdef VERBOSE_INIT_ARM
6815 printf("S");
6816 #endif
6817 l1pte_set(&pdep[l1slot], npde);
6818 PDE_SYNC(&pdep[l1slot]);
6819 va += L1_S_SIZE;
6820 pa += L1_S_SIZE;
6821 resid -= L1_S_SIZE;
6822 continue;
6823 }
6824
6825 /*
6826 * Ok, we're going to use an L2 table. Make sure
6827 * one is actually in the corresponding L1 slot
6828 * for the current VA.
6829 */
6830 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6831 panic("%s: no L2 table for VA %#lx", __func__, va);
6832
6833 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6834 if (ptep == NULL)
6835 panic("%s: can't find L2 table for VA %#lx", __func__,
6836 va);
6837
6838 ptep += l2pte_index(va);
6839
6840 /* See if we can use a L2 large page mapping. */
6841 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6842 const pt_entry_t npte = L2_L_PROTO | pa
6843 #ifdef ARM_MMU_EXTENDED
6844 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6845 | (va & 0x80000000 ? 0 : L2_XS_nG)
6846 #endif
6847 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6848 #ifdef VERBOSE_INIT_ARM
6849 printf("L");
6850 #endif
6851 l2pte_set(ptep, npte, 0);
6852 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6853 va += L2_L_SIZE;
6854 pa += L2_L_SIZE;
6855 resid -= L2_L_SIZE;
6856 continue;
6857 }
6858
6859 #ifdef VERBOSE_INIT_ARM
6860 printf("P");
6861 #endif
6862 /* Use a small page mapping. */
6863 pt_entry_t npte = L2_S_PROTO | pa
6864 #ifdef ARM_MMU_EXTENDED
6865 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6866 | (va & 0x80000000 ? 0 : L2_XS_nG)
6867 #endif
6868 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6869 #ifdef ARM_MMU_EXTENDED
6870 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6871 #endif
6872 l2pte_set(ptep, npte, 0);
6873 PTE_SYNC(ptep);
6874 va += PAGE_SIZE;
6875 pa += PAGE_SIZE;
6876 resid -= PAGE_SIZE;
6877 }
6878 #ifdef VERBOSE_INIT_ARM
6879 printf("\n");
6880 #endif
6881 return (size);
6882 }
6883
6884 /********************** Static device map routines ***************************/
6885
6886 static const struct pmap_devmap *pmap_devmap_table;
6887
6888 /*
6889 * Register the devmap table. This is provided in case early console
6890 * initialization needs to register mappings created by bootstrap code
6891 * before pmap_devmap_bootstrap() is called.
6892 */
6893 void
6894 pmap_devmap_register(const struct pmap_devmap *table)
6895 {
6896
6897 pmap_devmap_table = table;
6898 }
6899
6900 /*
6901 * Map all of the static regions in the devmap table, and remember
6902 * the devmap table so other parts of the kernel can look up entries
6903 * later.
6904 */
6905 void
6906 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6907 {
6908 int i;
6909
6910 pmap_devmap_table = table;
6911
6912 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6913 #ifdef VERBOSE_INIT_ARM
6914 printf("devmap: %08lx -> %08lx @ %08lx\n",
6915 pmap_devmap_table[i].pd_pa,
6916 pmap_devmap_table[i].pd_pa +
6917 pmap_devmap_table[i].pd_size - 1,
6918 pmap_devmap_table[i].pd_va);
6919 #endif
6920 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6921 pmap_devmap_table[i].pd_pa,
6922 pmap_devmap_table[i].pd_size,
6923 pmap_devmap_table[i].pd_prot,
6924 pmap_devmap_table[i].pd_cache);
6925 }
6926 }
6927
6928 const struct pmap_devmap *
6929 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6930 {
6931 uint64_t endpa;
6932 int i;
6933
6934 if (pmap_devmap_table == NULL)
6935 return (NULL);
6936
6937 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6938
6939 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6940 if (pa >= pmap_devmap_table[i].pd_pa &&
6941 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6942 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6943 return (&pmap_devmap_table[i]);
6944 }
6945
6946 return (NULL);
6947 }
6948
6949 const struct pmap_devmap *
6950 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6951 {
6952 int i;
6953
6954 if (pmap_devmap_table == NULL)
6955 return (NULL);
6956
6957 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6958 if (va >= pmap_devmap_table[i].pd_va &&
6959 va + size - 1 <= pmap_devmap_table[i].pd_va +
6960 pmap_devmap_table[i].pd_size - 1)
6961 return (&pmap_devmap_table[i]);
6962 }
6963
6964 return (NULL);
6965 }
6966
6967 /********************** PTE initialization routines **************************/
6968
6969 /*
6970 * These routines are called when the CPU type is identified to set up
6971 * the PTE prototypes, cache modes, etc.
6972 *
6973 * The variables are always here, just in case modules need to reference
6974 * them (though, they shouldn't).
6975 */
6976
6977 pt_entry_t pte_l1_s_cache_mode;
6978 pt_entry_t pte_l1_s_wc_mode;
6979 pt_entry_t pte_l1_s_cache_mode_pt;
6980 pt_entry_t pte_l1_s_cache_mask;
6981
6982 pt_entry_t pte_l2_l_cache_mode;
6983 pt_entry_t pte_l2_l_wc_mode;
6984 pt_entry_t pte_l2_l_cache_mode_pt;
6985 pt_entry_t pte_l2_l_cache_mask;
6986
6987 pt_entry_t pte_l2_s_cache_mode;
6988 pt_entry_t pte_l2_s_wc_mode;
6989 pt_entry_t pte_l2_s_cache_mode_pt;
6990 pt_entry_t pte_l2_s_cache_mask;
6991
6992 pt_entry_t pte_l1_s_prot_u;
6993 pt_entry_t pte_l1_s_prot_w;
6994 pt_entry_t pte_l1_s_prot_ro;
6995 pt_entry_t pte_l1_s_prot_mask;
6996
6997 pt_entry_t pte_l2_s_prot_u;
6998 pt_entry_t pte_l2_s_prot_w;
6999 pt_entry_t pte_l2_s_prot_ro;
7000 pt_entry_t pte_l2_s_prot_mask;
7001
7002 pt_entry_t pte_l2_l_prot_u;
7003 pt_entry_t pte_l2_l_prot_w;
7004 pt_entry_t pte_l2_l_prot_ro;
7005 pt_entry_t pte_l2_l_prot_mask;
7006
7007 pt_entry_t pte_l1_ss_proto;
7008 pt_entry_t pte_l1_s_proto;
7009 pt_entry_t pte_l1_c_proto;
7010 pt_entry_t pte_l2_s_proto;
7011
7012 void (*pmap_copy_page_func)(paddr_t, paddr_t);
7013 void (*pmap_zero_page_func)(paddr_t);
7014
7015 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7016 void
7017 pmap_pte_init_generic(void)
7018 {
7019
7020 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7021 pte_l1_s_wc_mode = L1_S_B;
7022 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7023
7024 pte_l2_l_cache_mode = L2_B|L2_C;
7025 pte_l2_l_wc_mode = L2_B;
7026 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7027
7028 pte_l2_s_cache_mode = L2_B|L2_C;
7029 pte_l2_s_wc_mode = L2_B;
7030 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7031
7032 /*
7033 * If we have a write-through cache, set B and C. If
7034 * we have a write-back cache, then we assume setting
7035 * only C will make those pages write-through (except for those
7036 * Cortex CPUs which can read the L1 caches).
7037 */
7038 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7039 #if ARM_MMU_V7 > 0
7040 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7041 #endif
7042 #if ARM_MMU_V6 > 0
7043 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7044 #endif
7045 || false) {
7046 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7047 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7048 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7049 } else {
7050 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7051 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7052 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7053 }
7054
7055 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7056 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7057 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7058 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7059
7060 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7061 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7062 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7063 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7064
7065 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7066 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7067 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7068 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7069
7070 pte_l1_ss_proto = L1_SS_PROTO_generic;
7071 pte_l1_s_proto = L1_S_PROTO_generic;
7072 pte_l1_c_proto = L1_C_PROTO_generic;
7073 pte_l2_s_proto = L2_S_PROTO_generic;
7074
7075 pmap_copy_page_func = pmap_copy_page_generic;
7076 pmap_zero_page_func = pmap_zero_page_generic;
7077 }
7078
7079 #if defined(CPU_ARM8)
7080 void
7081 pmap_pte_init_arm8(void)
7082 {
7083
7084 /*
7085 * ARM8 is compatible with generic, but we need to use
7086 * the page tables uncached.
7087 */
7088 pmap_pte_init_generic();
7089
7090 pte_l1_s_cache_mode_pt = 0;
7091 pte_l2_l_cache_mode_pt = 0;
7092 pte_l2_s_cache_mode_pt = 0;
7093 }
7094 #endif /* CPU_ARM8 */
7095
7096 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7097 void
7098 pmap_pte_init_arm9(void)
7099 {
7100
7101 /*
7102 * ARM9 is compatible with generic, but we want to use
7103 * write-through caching for now.
7104 */
7105 pmap_pte_init_generic();
7106
7107 pte_l1_s_cache_mode = L1_S_C;
7108 pte_l2_l_cache_mode = L2_C;
7109 pte_l2_s_cache_mode = L2_C;
7110
7111 pte_l1_s_wc_mode = L1_S_B;
7112 pte_l2_l_wc_mode = L2_B;
7113 pte_l2_s_wc_mode = L2_B;
7114
7115 pte_l1_s_cache_mode_pt = L1_S_C;
7116 pte_l2_l_cache_mode_pt = L2_C;
7117 pte_l2_s_cache_mode_pt = L2_C;
7118 }
7119 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7120 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7121
7122 #if defined(CPU_ARM10)
7123 void
7124 pmap_pte_init_arm10(void)
7125 {
7126
7127 /*
7128 * ARM10 is compatible with generic, but we want to use
7129 * write-through caching for now.
7130 */
7131 pmap_pte_init_generic();
7132
7133 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7134 pte_l2_l_cache_mode = L2_B | L2_C;
7135 pte_l2_s_cache_mode = L2_B | L2_C;
7136
7137 pte_l1_s_cache_mode = L1_S_B;
7138 pte_l2_l_cache_mode = L2_B;
7139 pte_l2_s_cache_mode = L2_B;
7140
7141 pte_l1_s_cache_mode_pt = L1_S_C;
7142 pte_l2_l_cache_mode_pt = L2_C;
7143 pte_l2_s_cache_mode_pt = L2_C;
7144
7145 }
7146 #endif /* CPU_ARM10 */
7147
7148 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7149 void
7150 pmap_pte_init_arm11(void)
7151 {
7152
7153 /*
7154 * ARM11 is compatible with generic, but we want to use
7155 * write-through caching for now.
7156 */
7157 pmap_pte_init_generic();
7158
7159 pte_l1_s_cache_mode = L1_S_C;
7160 pte_l2_l_cache_mode = L2_C;
7161 pte_l2_s_cache_mode = L2_C;
7162
7163 pte_l1_s_wc_mode = L1_S_B;
7164 pte_l2_l_wc_mode = L2_B;
7165 pte_l2_s_wc_mode = L2_B;
7166
7167 pte_l1_s_cache_mode_pt = L1_S_C;
7168 pte_l2_l_cache_mode_pt = L2_C;
7169 pte_l2_s_cache_mode_pt = L2_C;
7170 }
7171 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7172
7173 #if ARM_MMU_SA1 == 1
7174 void
7175 pmap_pte_init_sa1(void)
7176 {
7177
7178 /*
7179 * The StrongARM SA-1 cache does not have a write-through
7180 * mode. So, do the generic initialization, then reset
7181 * the page table cache mode to B=1,C=1, and note that
7182 * the PTEs need to be sync'd.
7183 */
7184 pmap_pte_init_generic();
7185
7186 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7187 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7188 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7189
7190 pmap_needs_pte_sync = 1;
7191 }
7192 #endif /* ARM_MMU_SA1 == 1*/
7193
7194 #if ARM_MMU_XSCALE == 1
7195 #if (ARM_NMMUS > 1)
7196 static u_int xscale_use_minidata;
7197 #endif
7198
7199 void
7200 pmap_pte_init_xscale(void)
7201 {
7202 uint32_t auxctl;
7203 int write_through = 0;
7204
7205 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7206 pte_l1_s_wc_mode = L1_S_B;
7207 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7208
7209 pte_l2_l_cache_mode = L2_B|L2_C;
7210 pte_l2_l_wc_mode = L2_B;
7211 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7212
7213 pte_l2_s_cache_mode = L2_B|L2_C;
7214 pte_l2_s_wc_mode = L2_B;
7215 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7216
7217 pte_l1_s_cache_mode_pt = L1_S_C;
7218 pte_l2_l_cache_mode_pt = L2_C;
7219 pte_l2_s_cache_mode_pt = L2_C;
7220
7221 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7222 /*
7223 * The XScale core has an enhanced mode where writes that
7224 * miss the cache cause a cache line to be allocated. This
7225 * is significantly faster than the traditional, write-through
7226 * behavior of this case.
7227 */
7228 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7229 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7230 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7231 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7232
7233 #ifdef XSCALE_CACHE_WRITE_THROUGH
7234 /*
7235 * Some versions of the XScale core have various bugs in
7236 * their cache units, the work-around for which is to run
7237 * the cache in write-through mode. Unfortunately, this
7238 * has a major (negative) impact on performance. So, we
7239 * go ahead and run fast-and-loose, in the hopes that we
7240 * don't line up the planets in a way that will trip the
7241 * bugs.
7242 *
7243 * However, we give you the option to be slow-but-correct.
7244 */
7245 write_through = 1;
7246 #elif defined(XSCALE_CACHE_WRITE_BACK)
7247 /* force write back cache mode */
7248 write_through = 0;
7249 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7250 /*
7251 * Intel PXA2[15]0 processors are known to have a bug in
7252 * write-back cache on revision 4 and earlier (stepping
7253 * A[01] and B[012]). Fixed for C0 and later.
7254 */
7255 {
7256 uint32_t id, type;
7257
7258 id = cpufunc_id();
7259 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7260
7261 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7262 if ((id & CPU_ID_REVISION_MASK) < 5) {
7263 /* write through for stepping A0-1 and B0-2 */
7264 write_through = 1;
7265 }
7266 }
7267 }
7268 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7269
7270 if (write_through) {
7271 pte_l1_s_cache_mode = L1_S_C;
7272 pte_l2_l_cache_mode = L2_C;
7273 pte_l2_s_cache_mode = L2_C;
7274 }
7275
7276 #if (ARM_NMMUS > 1)
7277 xscale_use_minidata = 1;
7278 #endif
7279
7280 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7281 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7282 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7283 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7284
7285 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7286 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7287 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7288 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7289
7290 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7291 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7292 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7293 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7294
7295 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7296 pte_l1_s_proto = L1_S_PROTO_xscale;
7297 pte_l1_c_proto = L1_C_PROTO_xscale;
7298 pte_l2_s_proto = L2_S_PROTO_xscale;
7299
7300 pmap_copy_page_func = pmap_copy_page_xscale;
7301 pmap_zero_page_func = pmap_zero_page_xscale;
7302
7303 /*
7304 * Disable ECC protection of page table access, for now.
7305 */
7306 auxctl = armreg_auxctl_read();
7307 auxctl &= ~XSCALE_AUXCTL_P;
7308 armreg_auxctl_write(auxctl);
7309 }
7310
7311 /*
7312 * xscale_setup_minidata:
7313 *
7314 * Set up the mini-data cache clean area. We require the
7315 * caller to allocate the right amount of physically and
7316 * virtually contiguous space.
7317 */
7318 void
7319 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7320 {
7321 extern vaddr_t xscale_minidata_clean_addr;
7322 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7323 pd_entry_t *pde = (pd_entry_t *) l1pt;
7324 vsize_t size;
7325 uint32_t auxctl;
7326
7327 xscale_minidata_clean_addr = va;
7328
7329 /* Round it to page size. */
7330 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7331
7332 for (; size != 0;
7333 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7334 const size_t l1slot = l1pte_index(va);
7335 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7336 if (ptep == NULL)
7337 panic("xscale_setup_minidata: can't find L2 table for "
7338 "VA 0x%08lx", va);
7339
7340 ptep += l2pte_index(va);
7341 pt_entry_t opte = *ptep;
7342 l2pte_set(ptep,
7343 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7344 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7345 }
7346
7347 /*
7348 * Configure the mini-data cache for write-back with
7349 * read/write-allocate.
7350 *
7351 * NOTE: In order to reconfigure the mini-data cache, we must
7352 * make sure it contains no valid data! In order to do that,
7353 * we must issue a global data cache invalidate command!
7354 *
7355 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7356 * THIS IS VERY IMPORTANT!
7357 */
7358
7359 /* Invalidate data and mini-data. */
7360 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7361 auxctl = armreg_auxctl_read();
7362 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7363 armreg_auxctl_write(auxctl);
7364 }
7365
7366 /*
7367 * Change the PTEs for the specified kernel mappings such that they
7368 * will use the mini data cache instead of the main data cache.
7369 */
7370 void
7371 pmap_uarea(vaddr_t va)
7372 {
7373 vaddr_t next_bucket, eva;
7374
7375 #if (ARM_NMMUS > 1)
7376 if (xscale_use_minidata == 0)
7377 return;
7378 #endif
7379
7380 eva = va + USPACE;
7381
7382 while (va < eva) {
7383 next_bucket = L2_NEXT_BUCKET_VA(va);
7384 if (next_bucket > eva)
7385 next_bucket = eva;
7386
7387 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7388 KDASSERT(l2b != NULL);
7389
7390 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7391 pt_entry_t *ptep = sptep;
7392
7393 while (va < next_bucket) {
7394 const pt_entry_t opte = *ptep;
7395 if (!l2pte_minidata_p(opte)) {
7396 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7397 cpu_tlb_flushD_SE(va);
7398 l2pte_set(ptep, opte & ~L2_B, opte);
7399 }
7400 ptep += PAGE_SIZE / L2_S_SIZE;
7401 va += PAGE_SIZE;
7402 }
7403 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7404 }
7405 cpu_cpwait();
7406 }
7407 #endif /* ARM_MMU_XSCALE == 1 */
7408
7409
7410 #if defined(CPU_ARM11MPCORE)
7411
7412 void
7413 pmap_pte_init_arm11mpcore(void)
7414 {
7415
7416 /* cache mode is controlled by 5 bits (B, C, TEX) */
7417 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7418 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7419 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7420 /* use extended small page (without APn, with TEX) */
7421 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7422 #else
7423 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7424 #endif
7425
7426 /* write-back, write-allocate */
7427 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7428 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7429 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7430 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7431 #else
7432 /* no TEX. read-allocate */
7433 pte_l2_s_cache_mode = L2_C | L2_B;
7434 #endif
7435 /*
7436 * write-back, write-allocate for page tables.
7437 */
7438 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7439 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7440 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7441 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7442 #else
7443 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7444 #endif
7445
7446 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7447 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7448 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7449 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7450
7451 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7452 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7453 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7454 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7455 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7456
7457 #else
7458 /* with AP[0..3] */
7459 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7460 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7461 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7462 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7463 #endif
7464
7465 #ifdef ARM11MPCORE_COMPAT_MMU
7466 /* with AP[0..3] */
7467 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7468 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7469 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7470 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7471
7472 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7473 pte_l1_s_proto = L1_S_PROTO_armv6;
7474 pte_l1_c_proto = L1_C_PROTO_armv6;
7475 pte_l2_s_proto = L2_S_PROTO_armv6c;
7476 #else
7477 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7478 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7479 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7480 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7481
7482 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7483 pte_l1_s_proto = L1_S_PROTO_armv6;
7484 pte_l1_c_proto = L1_C_PROTO_armv6;
7485 pte_l2_s_proto = L2_S_PROTO_armv6n;
7486 #endif
7487
7488 pmap_copy_page_func = pmap_copy_page_generic;
7489 pmap_zero_page_func = pmap_zero_page_generic;
7490 pmap_needs_pte_sync = 1;
7491 }
7492 #endif /* CPU_ARM11MPCORE */
7493
7494
7495 #if ARM_MMU_V7 == 1
7496 void
7497 pmap_pte_init_armv7(void)
7498 {
7499 /*
7500 * The ARMv7-A MMU is mostly compatible with generic. If the
7501 * AP field is zero, that now means "no access" rather than
7502 * read-only. The prototypes are a little different because of
7503 * the XN bit.
7504 */
7505 pmap_pte_init_generic();
7506
7507 pmap_needs_pte_sync = 1;
7508
7509 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7510 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7511 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7512
7513 /*
7514 * If the core support coherent walk then updates to translation tables
7515 * do not require a clean to the point of unification to ensure
7516 * visibility by subsequent translation table walks. That means we can
7517 * map everything shareable and cached and the right thing will happen.
7518 */
7519 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7520 pmap_needs_pte_sync = 0;
7521
7522 /*
7523 * write-back, no write-allocate, shareable for normal pages.
7524 */
7525 pte_l1_s_cache_mode |= L1_S_V6_S;
7526 pte_l2_l_cache_mode |= L2_XS_S;
7527 pte_l2_s_cache_mode |= L2_XS_S;
7528 }
7529
7530 /*
7531 * Page tables are just all other memory. We can use write-back since
7532 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7533 */
7534 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7535 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7536 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7537
7538 /*
7539 * Check the Memory Model Features to see if this CPU supports
7540 * the TLBIASID coproc op.
7541 */
7542 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7543 arm_has_tlbiasid_p = true;
7544 }
7545
7546 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7547 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7548 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7549 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7550
7551 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7552 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7553 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7554 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7555
7556 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7557 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7558 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7559 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7560
7561 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7562 pte_l1_s_proto = L1_S_PROTO_armv7;
7563 pte_l1_c_proto = L1_C_PROTO_armv7;
7564 pte_l2_s_proto = L2_S_PROTO_armv7;
7565
7566 }
7567 #endif /* ARM_MMU_V7 */
7568
7569 /*
7570 * return the PA of the current L1 table, for use when handling a crash dump
7571 */
7572 uint32_t
7573 pmap_kernel_L1_addr(void)
7574 {
7575 #ifdef ARM_MMU_EXTENDED
7576 return pmap_kernel()->pm_l1_pa;
7577 #else
7578 return pmap_kernel()->pm_l1->l1_physaddr;
7579 #endif
7580 }
7581
7582 #if defined(DDB)
7583 /*
7584 * A couple of ddb-callable functions for dumping pmaps
7585 */
7586 void pmap_dump(pmap_t);
7587
7588 static pt_entry_t ncptes[64];
7589 static void pmap_dump_ncpg(pmap_t);
7590
7591 void
7592 pmap_dump(pmap_t pm)
7593 {
7594 struct l2_dtable *l2;
7595 struct l2_bucket *l2b;
7596 pt_entry_t *ptep, pte;
7597 vaddr_t l2_va, l2b_va, va;
7598 int i, j, k, occ, rows = 0;
7599
7600 if (pm == pmap_kernel())
7601 printf("pmap_kernel (%p): ", pm);
7602 else
7603 printf("user pmap (%p): ", pm);
7604
7605 #ifdef ARM_MMU_EXTENDED
7606 printf("l1 at %p\n", pmap_l1_kva(pm));
7607 #else
7608 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7609 #endif
7610
7611 l2_va = 0;
7612 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7613 l2 = pm->pm_l2[i];
7614
7615 if (l2 == NULL || l2->l2_occupancy == 0)
7616 continue;
7617
7618 l2b_va = l2_va;
7619 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7620 l2b = &l2->l2_bucket[j];
7621
7622 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7623 continue;
7624
7625 ptep = l2b->l2b_kva;
7626
7627 for (k = 0; k < 256 && ptep[k] == 0; k++)
7628 ;
7629
7630 k &= ~63;
7631 occ = l2b->l2b_occupancy;
7632 va = l2b_va + (k * 4096);
7633 for (; k < 256; k++, va += 0x1000) {
7634 char ch = ' ';
7635 if ((k % 64) == 0) {
7636 if ((rows % 8) == 0) {
7637 printf(
7638 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7639 }
7640 printf("%08lx: ", va);
7641 }
7642
7643 ncptes[k & 63] = 0;
7644 pte = ptep[k];
7645 if (pte == 0) {
7646 ch = '.';
7647 } else {
7648 occ--;
7649 switch (pte & 0x0c) {
7650 case 0x00:
7651 ch = 'D'; /* No cache No buff */
7652 break;
7653 case 0x04:
7654 ch = 'B'; /* No cache buff */
7655 break;
7656 case 0x08:
7657 if (pte & 0x40)
7658 ch = 'm';
7659 else
7660 ch = 'C'; /* Cache No buff */
7661 break;
7662 case 0x0c:
7663 ch = 'F'; /* Cache Buff */
7664 break;
7665 }
7666
7667 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7668 ch += 0x20;
7669
7670 if ((pte & 0xc) == 0)
7671 ncptes[k & 63] = pte;
7672 }
7673
7674 if ((k % 64) == 63) {
7675 rows++;
7676 printf("%c\n", ch);
7677 pmap_dump_ncpg(pm);
7678 if (occ == 0)
7679 break;
7680 } else
7681 printf("%c", ch);
7682 }
7683 }
7684 }
7685 }
7686
7687 static void
7688 pmap_dump_ncpg(pmap_t pm)
7689 {
7690 struct vm_page *pg;
7691 struct vm_page_md *md;
7692 struct pv_entry *pv;
7693 int i;
7694
7695 for (i = 0; i < 63; i++) {
7696 if (ncptes[i] == 0)
7697 continue;
7698
7699 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7700 if (pg == NULL)
7701 continue;
7702 md = VM_PAGE_TO_MD(pg);
7703
7704 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7705 VM_PAGE_TO_PHYS(pg),
7706 md->krw_mappings, md->kro_mappings,
7707 md->urw_mappings, md->uro_mappings);
7708
7709 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7710 printf(" %c va 0x%08lx, flags 0x%x\n",
7711 (pm == pv->pv_pmap) ? '*' : ' ',
7712 pv->pv_va, pv->pv_flags);
7713 }
7714 }
7715 }
7716 #endif
7717
7718 #ifdef PMAP_STEAL_MEMORY
7719 void
7720 pmap_boot_pageadd(pv_addr_t *newpv)
7721 {
7722 pv_addr_t *pv, *npv;
7723
7724 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7725 if (newpv->pv_pa < pv->pv_va) {
7726 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7727 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7728 newpv->pv_size += pv->pv_size;
7729 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7730 }
7731 pv = NULL;
7732 } else {
7733 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7734 pv = npv) {
7735 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7736 KASSERT(pv->pv_pa < newpv->pv_pa);
7737 if (newpv->pv_pa > npv->pv_pa)
7738 continue;
7739 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7740 pv->pv_size += newpv->pv_size;
7741 return;
7742 }
7743 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7744 break;
7745 newpv->pv_size += npv->pv_size;
7746 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7747 SLIST_REMOVE_AFTER(newpv, pv_list);
7748 return;
7749 }
7750 }
7751 }
7752
7753 if (pv) {
7754 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7755 } else {
7756 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7757 }
7758 }
7759
7760 void
7761 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7762 pv_addr_t *rpv)
7763 {
7764 pv_addr_t *pv, **pvp;
7765 struct vm_physseg *ps;
7766 size_t i;
7767
7768 KASSERT(amount & PGOFSET);
7769 KASSERT((mask & PGOFSET) == 0);
7770 KASSERT((match & PGOFSET) == 0);
7771 KASSERT(amount != 0);
7772
7773 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7774 (pv = *pvp) != NULL;
7775 pvp = &SLIST_NEXT(pv, pv_list)) {
7776 pv_addr_t *newpv;
7777 psize_t off;
7778 /*
7779 * If this entry is too small to satify the request...
7780 */
7781 KASSERT(pv->pv_size > 0);
7782 if (pv->pv_size < amount)
7783 continue;
7784
7785 for (off = 0; off <= mask; off += PAGE_SIZE) {
7786 if (((pv->pv_pa + off) & mask) == match
7787 && off + amount <= pv->pv_size)
7788 break;
7789 }
7790 if (off > mask)
7791 continue;
7792
7793 rpv->pv_va = pv->pv_va + off;
7794 rpv->pv_pa = pv->pv_pa + off;
7795 rpv->pv_size = amount;
7796 pv->pv_size -= amount;
7797 if (pv->pv_size == 0) {
7798 KASSERT(off == 0);
7799 KASSERT((vaddr_t) pv == rpv->pv_va);
7800 *pvp = SLIST_NEXT(pv, pv_list);
7801 } else if (off == 0) {
7802 KASSERT((vaddr_t) pv == rpv->pv_va);
7803 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7804 *newpv = *pv;
7805 newpv->pv_pa += amount;
7806 newpv->pv_va += amount;
7807 *pvp = newpv;
7808 } else if (off < pv->pv_size) {
7809 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7810 *newpv = *pv;
7811 newpv->pv_size -= off;
7812 newpv->pv_pa += off + amount;
7813 newpv->pv_va += off + amount;
7814
7815 SLIST_NEXT(pv, pv_list) = newpv;
7816 pv->pv_size = off;
7817 } else {
7818 KASSERT((vaddr_t) pv != rpv->pv_va);
7819 }
7820 memset((void *)rpv->pv_va, 0, amount);
7821 return;
7822 }
7823
7824 if (vm_nphysseg == 0)
7825 panic("pmap_boot_pagealloc: couldn't allocate memory");
7826
7827 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7828 (pv = *pvp) != NULL;
7829 pvp = &SLIST_NEXT(pv, pv_list)) {
7830 if (SLIST_NEXT(pv, pv_list) == NULL)
7831 break;
7832 }
7833 KASSERT(mask == 0);
7834 for (i = 0; i < vm_nphysseg; i++) {
7835 ps = VM_PHYSMEM_PTR(i);
7836 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7837 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7838 rpv->pv_va = pv->pv_va;
7839 rpv->pv_pa = pv->pv_pa;
7840 rpv->pv_size = amount;
7841 *pvp = NULL;
7842 pmap_map_chunk(kernel_l1pt.pv_va,
7843 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7844 ptoa(ps->avail_start),
7845 amount - pv->pv_size,
7846 VM_PROT_READ|VM_PROT_WRITE,
7847 PTE_CACHE);
7848 ps->avail_start += atop(amount - pv->pv_size);
7849 /*
7850 * If we consumed the entire physseg, remove it.
7851 */
7852 if (ps->avail_start == ps->avail_end) {
7853 for (--vm_nphysseg; i < vm_nphysseg; i++)
7854 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7855 }
7856 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7857 return;
7858 }
7859 }
7860
7861 panic("pmap_boot_pagealloc: couldn't allocate memory");
7862 }
7863
7864 vaddr_t
7865 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7866 {
7867 pv_addr_t pv;
7868
7869 pmap_boot_pagealloc(size, 0, 0, &pv);
7870
7871 return pv.pv_va;
7872 }
7873 #endif /* PMAP_STEAL_MEMORY */
7874
7875 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7876 {
7877 sysctl_createv(clog, 0, NULL, NULL,
7878 CTLFLAG_PERMANENT,
7879 CTLTYPE_NODE, "machdep", NULL,
7880 NULL, 0, NULL, 0,
7881 CTL_MACHDEP, CTL_EOL);
7882
7883 sysctl_createv(clog, 0, NULL, NULL,
7884 CTLFLAG_PERMANENT,
7885 CTLTYPE_INT, "kmpages",
7886 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7887 NULL, 0, &pmap_kmpages, 0,
7888 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7889 }
7890
7891 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7892 struct vm_page *
7893 arm_pmap_alloc_poolpage(int flags)
7894 {
7895 /*
7896 * On some systems, only some pages may be "coherent" for dma and we
7897 * want to prefer those for pool pages (think mbufs) but fallback to
7898 * any page if none is available. But we can only fallback if we
7899 * aren't direct mapping memory or all of memory can be direct-mapped.
7900 * If that isn't true, pool changes can only come from direct-mapped
7901 * memory.
7902 */
7903 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7904 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7905 UVM_PGA_STRAT_FALLBACK,
7906 arm_poolpage_vmfreelist);
7907 }
7908
7909 return uvm_pagealloc(NULL, 0, NULL, flags);
7910 }
7911 #endif
7912
7913 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7914 void
7915 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7916 {
7917 /* nothing */
7918 }
7919
7920 int
7921 pic_ipi_shootdown(void *arg)
7922 {
7923 #if PMAP_TLB_NEED_SHOOTDOWN
7924 pmap_tlb_shootdown_process();
7925 #endif
7926 return 1;
7927 }
7928 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7929
7930
7931 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7932 vaddr_t
7933 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7934 {
7935 bool ok = false;
7936 if (physical_start <= pa && pa < physical_end) {
7937 #ifdef KERNEL_BASE_VOFFSET
7938 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
7939 #else
7940 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
7941 #endif
7942 #ifdef ARM_MMU_EXTENDED
7943 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
7944 #endif
7945 va = newva;
7946 ok = true;
7947 #ifdef ARM_MMU_EXTENDED
7948 }
7949 #endif
7950 }
7951 KASSERT(ok_p);
7952 *ok_p = ok;
7953 return va;
7954 }
7955
7956 vaddr_t
7957 pmap_map_poolpage(paddr_t pa)
7958 {
7959 bool ok __diagused;
7960 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7961 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
7962 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7963 if (arm_cache_prefer_mask != 0) {
7964 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7965 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7966 pmap_acquire_page_lock(md);
7967 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7968 pmap_release_page_lock(md);
7969 }
7970 #endif
7971 return va;
7972 }
7973
7974 paddr_t
7975 pmap_unmap_poolpage(vaddr_t va)
7976 {
7977 KASSERT(va >= KERNEL_BASE);
7978 #ifdef PMAP_CACHE_VIVT
7979 cpu_idcache_wbinv_range(va, PAGE_SIZE);
7980 #endif
7981 #if defined(KERNEL_BASE_VOFFSET)
7982 return va - KERNEL_BASE_VOFFSET;
7983 #else
7984 return va - KERNEL_BASE + physical_start;
7985 #endif
7986 }
7987 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
7988