pmap.c revision 1.348 1 /* $NetBSD: pmap.c,v 1.348 2017/05/24 06:27:33 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_arm_debug.h"
190 #include "opt_cpuoptions.h"
191 #include "opt_pmap_debug.h"
192 #include "opt_ddb.h"
193 #include "opt_lockdebug.h"
194 #include "opt_multiprocessor.h"
195
196 #ifdef MULTIPROCESSOR
197 #define _INTR_PRIVATE
198 #endif
199
200 #include <sys/param.h>
201 #include <sys/types.h>
202 #include <sys/kernel.h>
203 #include <sys/systm.h>
204 #include <sys/proc.h>
205 #include <sys/intr.h>
206 #include <sys/pool.h>
207 #include <sys/kmem.h>
208 #include <sys/cdefs.h>
209 #include <sys/cpu.h>
210 #include <sys/sysctl.h>
211 #include <sys/bus.h>
212 #include <sys/atomic.h>
213 #include <sys/kernhist.h>
214
215 #include <uvm/uvm.h>
216 #include <uvm/pmap/pmap_pvt.h>
217
218 #include <arm/locore.h>
219
220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.348 2017/05/24 06:27:33 skrll Exp $");
221
222 //#define PMAP_DEBUG
223 #ifdef PMAP_DEBUG
224
225 /* XXX need to get rid of all refs to this */
226 int pmap_debug_level = 0;
227
228 /*
229 * for switching to potentially finer grained debugging
230 */
231 #define PDB_FOLLOW 0x0001
232 #define PDB_INIT 0x0002
233 #define PDB_ENTER 0x0004
234 #define PDB_REMOVE 0x0008
235 #define PDB_CREATE 0x0010
236 #define PDB_PTPAGE 0x0020
237 #define PDB_GROWKERN 0x0040
238 #define PDB_BITS 0x0080
239 #define PDB_COLLECT 0x0100
240 #define PDB_PROTECT 0x0200
241 #define PDB_MAP_L1 0x0400
242 #define PDB_BOOTSTRAP 0x1000
243 #define PDB_PARANOIA 0x2000
244 #define PDB_WIRING 0x4000
245 #define PDB_PVDUMP 0x8000
246 #define PDB_VAC 0x10000
247 #define PDB_KENTER 0x20000
248 #define PDB_KREMOVE 0x40000
249 #define PDB_EXEC 0x80000
250
251 int debugmap = 1;
252 int pmapdebug = 0;
253 #define NPDEBUG(_lev_,_stat_) \
254 if (pmapdebug & (_lev_)) \
255 ((_stat_))
256
257 #else /* PMAP_DEBUG */
258 #define NPDEBUG(_lev_,_stat_) /* Nothing */
259 #endif /* PMAP_DEBUG */
260
261 /*
262 * pmap_kernel() points here
263 */
264 static struct pmap kernel_pmap_store = {
265 #ifndef ARM_MMU_EXTENDED
266 .pm_activated = true,
267 .pm_domain = PMAP_DOMAIN_KERNEL,
268 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
269 #endif
270 };
271 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
272 #undef pmap_kernel
273 #define pmap_kernel() (&kernel_pmap_store)
274 #ifdef PMAP_NEED_ALLOC_POOLPAGE
275 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
276 #endif
277
278 /*
279 * Pool and cache that pmap structures are allocated from.
280 * We use a cache to avoid clearing the pm_l2[] array (1KB)
281 * in pmap_create().
282 */
283 static struct pool_cache pmap_cache;
284
285 /*
286 * Pool of PV structures
287 */
288 static struct pool pmap_pv_pool;
289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
292 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
293 };
294
295 /*
296 * Pool and cache of l2_dtable structures.
297 * We use a cache to avoid clearing the structures when they're
298 * allocated. (196 bytes)
299 */
300 static struct pool_cache pmap_l2dtable_cache;
301 static vaddr_t pmap_kernel_l2dtable_kva;
302
303 /*
304 * Pool and cache of L2 page descriptors.
305 * We use a cache to avoid clearing the descriptor table
306 * when they're allocated. (1KB)
307 */
308 static struct pool_cache pmap_l2ptp_cache;
309 static vaddr_t pmap_kernel_l2ptp_kva;
310 static paddr_t pmap_kernel_l2ptp_phys;
311
312 #ifdef PMAPCOUNTERS
313 #define PMAP_EVCNT_INITIALIZER(name) \
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
315
316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
317 static struct evcnt pmap_ev_vac_clean_one =
318 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
319 static struct evcnt pmap_ev_vac_flush_one =
320 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
321 static struct evcnt pmap_ev_vac_flush_lots =
322 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
323 static struct evcnt pmap_ev_vac_flush_lots2 =
324 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
329
330 static struct evcnt pmap_ev_vac_color_new =
331 PMAP_EVCNT_INITIALIZER("new page color");
332 static struct evcnt pmap_ev_vac_color_reuse =
333 PMAP_EVCNT_INITIALIZER("ok first page color");
334 static struct evcnt pmap_ev_vac_color_ok =
335 PMAP_EVCNT_INITIALIZER("ok page color");
336 static struct evcnt pmap_ev_vac_color_blind =
337 PMAP_EVCNT_INITIALIZER("blind page color");
338 static struct evcnt pmap_ev_vac_color_change =
339 PMAP_EVCNT_INITIALIZER("change page color");
340 static struct evcnt pmap_ev_vac_color_erase =
341 PMAP_EVCNT_INITIALIZER("erase page color");
342 static struct evcnt pmap_ev_vac_color_none =
343 PMAP_EVCNT_INITIALIZER("no page color");
344 static struct evcnt pmap_ev_vac_color_restore =
345 PMAP_EVCNT_INITIALIZER("restore page color");
346
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
355 #endif
356
357 static struct evcnt pmap_ev_mappings =
358 PMAP_EVCNT_INITIALIZER("pages mapped");
359 static struct evcnt pmap_ev_unmappings =
360 PMAP_EVCNT_INITIALIZER("pages unmapped");
361 static struct evcnt pmap_ev_remappings =
362 PMAP_EVCNT_INITIALIZER("pages remapped");
363
364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
367
368 static struct evcnt pmap_ev_kernel_mappings =
369 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
370 static struct evcnt pmap_ev_kernel_unmappings =
371 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
372 static struct evcnt pmap_ev_kernel_remappings =
373 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
374
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
378
379 static struct evcnt pmap_ev_kenter_mappings =
380 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
381 static struct evcnt pmap_ev_kenter_unmappings =
382 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
383 static struct evcnt pmap_ev_kenter_remappings =
384 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
385 static struct evcnt pmap_ev_pt_mappings =
386 PMAP_EVCNT_INITIALIZER("page table pages mapped");
387
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
392
393 static struct evcnt pmap_ev_fixup_mod =
394 PMAP_EVCNT_INITIALIZER("page modification emulations");
395 static struct evcnt pmap_ev_fixup_ref =
396 PMAP_EVCNT_INITIALIZER("page reference emulations");
397 static struct evcnt pmap_ev_fixup_exec =
398 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
399 static struct evcnt pmap_ev_fixup_pdes =
400 PMAP_EVCNT_INITIALIZER("pdes fixed up");
401 #ifndef ARM_MMU_EXTENDED
402 static struct evcnt pmap_ev_fixup_ptesync =
403 PMAP_EVCNT_INITIALIZER("ptesync fixed");
404 #endif
405
406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
410 #ifndef ARM_MMU_EXTENDED
411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
412 #endif
413
414 #ifdef PMAP_CACHE_VIPT
415 static struct evcnt pmap_ev_exec_mappings =
416 PMAP_EVCNT_INITIALIZER("exec pages mapped");
417 static struct evcnt pmap_ev_exec_cached =
418 PMAP_EVCNT_INITIALIZER("exec pages cached");
419
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
422
423 static struct evcnt pmap_ev_exec_synced =
424 PMAP_EVCNT_INITIALIZER("exec pages synced");
425 static struct evcnt pmap_ev_exec_synced_map =
426 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
427 static struct evcnt pmap_ev_exec_synced_unmap =
428 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
429 static struct evcnt pmap_ev_exec_synced_remap =
430 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
431 static struct evcnt pmap_ev_exec_synced_clearbit =
432 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
433 #ifndef ARM_MMU_EXTENDED
434 static struct evcnt pmap_ev_exec_synced_kremove =
435 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
436 #endif
437
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
440 #ifndef ARM_MMU_EXTENDED
441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
445 #endif
446
447 static struct evcnt pmap_ev_exec_discarded_unmap =
448 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
449 static struct evcnt pmap_ev_exec_discarded_zero =
450 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
451 static struct evcnt pmap_ev_exec_discarded_copy =
452 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
453 static struct evcnt pmap_ev_exec_discarded_page_protect =
454 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
455 static struct evcnt pmap_ev_exec_discarded_clearbit =
456 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
457 static struct evcnt pmap_ev_exec_discarded_kremove =
458 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
459 #ifdef ARM_MMU_EXTENDED
460 static struct evcnt pmap_ev_exec_discarded_modfixup =
461 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
462 #endif
463
464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
470 #ifdef ARM_MMU_EXTENDED
471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
472 #endif
473 #endif /* PMAP_CACHE_VIPT */
474
475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
478
479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
482
483 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
484 #else
485 #define PMAPCOUNT(x) ((void)0)
486 #endif
487
488 #ifdef ARM_MMU_EXTENDED
489 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
490 void pmap_md_pdetab_deactivate(pmap_t pm);
491 #endif
492
493 /*
494 * pmap copy/zero page, and mem(5) hook point
495 */
496 static pt_entry_t *csrc_pte, *cdst_pte;
497 static vaddr_t csrcp, cdstp;
498 #ifdef MULTIPROCESSOR
499 static size_t cnptes;
500 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
501 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
502 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
503 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
504 #else
505 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
506 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
507 #define cpu_csrcp(o) (csrcp + (o))
508 #define cpu_cdstp(o) (cdstp + (o))
509 #endif
510 vaddr_t memhook; /* used by mem.c & others */
511 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
512 kmutex_t pmap_lock __cacheline_aligned;
513 extern void *msgbufaddr;
514 int pmap_kmpages;
515 /*
516 * Flag to indicate if pmap_init() has done its thing
517 */
518 bool pmap_initialized;
519
520 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
521 /*
522 * Virtual end of direct-mapped memory
523 */
524 vaddr_t pmap_directlimit;
525 #endif
526
527 /*
528 * Misc. locking data structures
529 */
530
531 static inline void
532 pmap_acquire_pmap_lock(pmap_t pm)
533 {
534 if (pm == pmap_kernel()) {
535 #ifdef MULTIPROCESSOR
536 KERNEL_LOCK(1, NULL);
537 #endif
538 } else {
539 mutex_enter(pm->pm_lock);
540 }
541 }
542
543 static inline void
544 pmap_release_pmap_lock(pmap_t pm)
545 {
546 if (pm == pmap_kernel()) {
547 #ifdef MULTIPROCESSOR
548 KERNEL_UNLOCK_ONE(NULL);
549 #endif
550 } else {
551 mutex_exit(pm->pm_lock);
552 }
553 }
554
555 static inline void
556 pmap_acquire_page_lock(struct vm_page_md *md)
557 {
558 mutex_enter(&pmap_lock);
559 }
560
561 static inline void
562 pmap_release_page_lock(struct vm_page_md *md)
563 {
564 mutex_exit(&pmap_lock);
565 }
566
567 #ifdef DIAGNOSTIC
568 static inline int
569 pmap_page_locked_p(struct vm_page_md *md)
570 {
571 return mutex_owned(&pmap_lock);
572 }
573 #endif
574
575
576 /*
577 * Metadata for L1 translation tables.
578 */
579 #ifndef ARM_MMU_EXTENDED
580 struct l1_ttable {
581 /* Entry on the L1 Table list */
582 SLIST_ENTRY(l1_ttable) l1_link;
583
584 /* Entry on the L1 Least Recently Used list */
585 TAILQ_ENTRY(l1_ttable) l1_lru;
586
587 /* Track how many domains are allocated from this L1 */
588 volatile u_int l1_domain_use_count;
589
590 /*
591 * A free-list of domain numbers for this L1.
592 * We avoid using ffs() and a bitmap to track domains since ffs()
593 * is slow on ARM.
594 */
595 uint8_t l1_domain_first;
596 uint8_t l1_domain_free[PMAP_DOMAINS];
597
598 /* Physical address of this L1 page table */
599 paddr_t l1_physaddr;
600
601 /* KVA of this L1 page table */
602 pd_entry_t *l1_kva;
603 };
604
605 /*
606 * L1 Page Tables are tracked using a Least Recently Used list.
607 * - New L1s are allocated from the HEAD.
608 * - Freed L1s are added to the TAIl.
609 * - Recently accessed L1s (where an 'access' is some change to one of
610 * the userland pmaps which owns this L1) are moved to the TAIL.
611 */
612 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
613 static kmutex_t l1_lru_lock __cacheline_aligned;
614
615 /*
616 * A list of all L1 tables
617 */
618 static SLIST_HEAD(, l1_ttable) l1_list;
619 #endif /* ARM_MMU_EXTENDED */
620
621 /*
622 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
623 *
624 * This is normally 16MB worth L2 page descriptors for any given pmap.
625 * Reference counts are maintained for L2 descriptors so they can be
626 * freed when empty.
627 */
628 struct l2_bucket {
629 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
630 paddr_t l2b_pa; /* Physical address of same */
631 u_short l2b_l1slot; /* This L2 table's L1 index */
632 u_short l2b_occupancy; /* How many active descriptors */
633 };
634
635 struct l2_dtable {
636 /* The number of L2 page descriptors allocated to this l2_dtable */
637 u_int l2_occupancy;
638
639 /* List of L2 page descriptors */
640 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
641 };
642
643 /*
644 * Given an L1 table index, calculate the corresponding l2_dtable index
645 * and bucket index within the l2_dtable.
646 */
647 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
648 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
649 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
650 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
651 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
652
653 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
654 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
655
656 /*
657 * Given a virtual address, this macro returns the
658 * virtual address required to drop into the next L2 bucket.
659 */
660 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
661
662 /*
663 * L2 allocation.
664 */
665 #define pmap_alloc_l2_dtable() \
666 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
667 #define pmap_free_l2_dtable(l2) \
668 pool_cache_put(&pmap_l2dtable_cache, (l2))
669 #define pmap_alloc_l2_ptp(pap) \
670 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
671 PR_NOWAIT, (pap)))
672
673 /*
674 * We try to map the page tables write-through, if possible. However, not
675 * all CPUs have a write-through cache mode, so on those we have to sync
676 * the cache when we frob page tables.
677 *
678 * We try to evaluate this at compile time, if possible. However, it's
679 * not always possible to do that, hence this run-time var.
680 */
681 int pmap_needs_pte_sync;
682
683 /*
684 * Real definition of pv_entry.
685 */
686 struct pv_entry {
687 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
688 pmap_t pv_pmap; /* pmap where mapping lies */
689 vaddr_t pv_va; /* virtual address for mapping */
690 u_int pv_flags; /* flags */
691 };
692
693 /*
694 * Macros to determine if a mapping might be resident in the
695 * instruction/data cache and/or TLB
696 */
697 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
698 /*
699 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
700 * there are no explicit accesses, so there may be always be TLB entries to
701 * flush. If we used ASIDs then this would not be a problem.
702 */
703 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
704 #define PV_BEEN_REFD(f) (true)
705 #else
706 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
707 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
708 #endif
709 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
710 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
711 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
712
713 /*
714 * Local prototypes
715 */
716 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
717 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
718 pt_entry_t **);
719 static bool pmap_is_current(pmap_t) __unused;
720 static bool pmap_is_cached(pmap_t);
721 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
722 pmap_t, vaddr_t, u_int);
723 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
724 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
725 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
726 u_int, u_int);
727
728 static void pmap_pinit(pmap_t);
729 static int pmap_pmap_ctor(void *, void *, int);
730
731 static void pmap_alloc_l1(pmap_t);
732 static void pmap_free_l1(pmap_t);
733 #ifndef ARM_MMU_EXTENDED
734 static void pmap_use_l1(pmap_t);
735 #endif
736
737 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
738 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
739 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
740 static int pmap_l2ptp_ctor(void *, void *, int);
741 static int pmap_l2dtable_ctor(void *, void *, int);
742
743 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
744 #ifdef PMAP_CACHE_VIVT
745 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
746 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
747 #endif
748
749 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
750 #ifdef PMAP_CACHE_VIVT
751 static bool pmap_clean_page(struct vm_page_md *, bool);
752 #endif
753 #ifdef PMAP_CACHE_VIPT
754 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
755 enum pmap_flush_op {
756 PMAP_FLUSH_PRIMARY,
757 PMAP_FLUSH_SECONDARY,
758 PMAP_CLEAN_PRIMARY
759 };
760 #ifndef ARM_MMU_EXTENDED
761 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
762 #endif
763 #endif
764 static void pmap_page_remove(struct vm_page_md *, paddr_t);
765 static void pmap_pv_remove(paddr_t);
766
767 #ifndef ARM_MMU_EXTENDED
768 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
769 #endif
770 static vaddr_t kernel_pt_lookup(paddr_t);
771
772
773 /*
774 * Misc variables
775 */
776 vaddr_t virtual_avail;
777 vaddr_t virtual_end;
778 vaddr_t pmap_curmaxkvaddr;
779
780 paddr_t avail_start;
781 paddr_t avail_end;
782
783 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
784 pv_addr_t kernelpages;
785 pv_addr_t kernel_l1pt;
786 pv_addr_t systempage;
787
788 /* Function to set the debug level of the pmap code */
789
790 #ifdef PMAP_DEBUG
791 void
792 pmap_debug(int level)
793 {
794 pmap_debug_level = level;
795 printf("pmap_debug: level=%d\n", pmap_debug_level);
796 }
797 #endif /* PMAP_DEBUG */
798
799 #ifdef PMAP_CACHE_VIPT
800 #define PMAP_VALIDATE_MD_PAGE(md) \
801 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
802 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
803 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
804 #endif /* PMAP_CACHE_VIPT */
805 /*
806 * A bunch of routines to conditionally flush the caches/TLB depending
807 * on whether the specified pmap actually needs to be flushed at any
808 * given time.
809 */
810 static inline void
811 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
812 {
813 #ifdef ARM_MMU_EXTENDED
814 pmap_tlb_invalidate_addr(pm, va);
815 #else
816 if (pm->pm_cstate.cs_tlb_id != 0) {
817 if (PV_BEEN_EXECD(flags)) {
818 cpu_tlb_flushID_SE(va);
819 } else if (PV_BEEN_REFD(flags)) {
820 cpu_tlb_flushD_SE(va);
821 }
822 }
823 #endif /* ARM_MMU_EXTENDED */
824 }
825
826 #ifndef ARM_MMU_EXTENDED
827 static inline void
828 pmap_tlb_flushID(pmap_t pm)
829 {
830 if (pm->pm_cstate.cs_tlb_id) {
831 cpu_tlb_flushID();
832 #if ARM_MMU_V7 == 0
833 /*
834 * Speculative loads by Cortex cores can cause TLB entries to
835 * be filled even if there are no explicit accesses, so there
836 * may be always be TLB entries to flush. If we used ASIDs
837 * then it would not be a problem.
838 * This is not true for other CPUs.
839 */
840 pm->pm_cstate.cs_tlb = 0;
841 #endif /* ARM_MMU_V7 */
842 }
843 }
844
845 static inline void
846 pmap_tlb_flushD(pmap_t pm)
847 {
848 if (pm->pm_cstate.cs_tlb_d) {
849 cpu_tlb_flushD();
850 #if ARM_MMU_V7 == 0
851 /*
852 * Speculative loads by Cortex cores can cause TLB entries to
853 * be filled even if there are no explicit accesses, so there
854 * may be always be TLB entries to flush. If we used ASIDs
855 * then it would not be a problem.
856 * This is not true for other CPUs.
857 */
858 pm->pm_cstate.cs_tlb_d = 0;
859 #endif /* ARM_MMU_V7 */
860 }
861 }
862 #endif /* ARM_MMU_EXTENDED */
863
864 #ifdef PMAP_CACHE_VIVT
865 static inline void
866 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
867 {
868 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
869 cpu_idcache_wbinv_range(va, PAGE_SIZE);
870 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
871 if (do_inv) {
872 if (flags & PVF_WRITE)
873 cpu_dcache_wbinv_range(va, PAGE_SIZE);
874 else
875 cpu_dcache_inv_range(va, PAGE_SIZE);
876 } else if (flags & PVF_WRITE) {
877 cpu_dcache_wb_range(va, PAGE_SIZE);
878 }
879 }
880 }
881
882 static inline void
883 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
884 {
885 if (PV_BEEN_EXECD(flags)) {
886 if (pm->pm_cstate.cs_cache_id) {
887 cpu_idcache_wbinv_all();
888 pm->pm_cstate.cs_cache = 0;
889 }
890 } else if (pm->pm_cstate.cs_cache_d) {
891 cpu_dcache_wbinv_all();
892 pm->pm_cstate.cs_cache_d = 0;
893 }
894 }
895 #endif /* PMAP_CACHE_VIVT */
896
897 static inline uint8_t
898 pmap_domain(pmap_t pm)
899 {
900 #ifdef ARM_MMU_EXTENDED
901 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
902 #else
903 return pm->pm_domain;
904 #endif
905 }
906
907 static inline pd_entry_t *
908 pmap_l1_kva(pmap_t pm)
909 {
910 #ifdef ARM_MMU_EXTENDED
911 return pm->pm_l1;
912 #else
913 return pm->pm_l1->l1_kva;
914 #endif
915 }
916
917 static inline bool
918 pmap_is_current(pmap_t pm)
919 {
920 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
921 return true;
922
923 return false;
924 }
925
926 static inline bool
927 pmap_is_cached(pmap_t pm)
928 {
929 #ifdef ARM_MMU_EXTENDED
930 if (pm == pmap_kernel())
931 return true;
932 #ifdef MULTIPROCESSOR
933 // Is this pmap active on any CPU?
934 if (!kcpuset_iszero(pm->pm_active))
935 return true;
936 #else
937 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
938 // Is this pmap active?
939 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
940 return true;
941 #endif
942 #else
943 struct cpu_info * const ci = curcpu();
944 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
945 || ci->ci_pmap_lastuser == pm)
946 return true;
947 #endif /* ARM_MMU_EXTENDED */
948
949 return false;
950 }
951
952 /*
953 * PTE_SYNC_CURRENT:
954 *
955 * Make sure the pte is written out to RAM.
956 * We need to do this for one of two cases:
957 * - We're dealing with the kernel pmap
958 * - There is no pmap active in the cache/tlb.
959 * - The specified pmap is 'active' in the cache/tlb.
960 */
961
962 #ifdef PMAP_INCLUDE_PTE_SYNC
963 static inline void
964 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
965 {
966 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
967 PTE_SYNC(ptep);
968 arm_dsb();
969 }
970
971 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
972 #else
973 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
974 #endif
975
976 /*
977 * main pv_entry manipulation functions:
978 * pmap_enter_pv: enter a mapping onto a vm_page list
979 * pmap_remove_pv: remove a mapping from a vm_page list
980 *
981 * NOTE: pmap_enter_pv expects to lock the pvh itself
982 * pmap_remove_pv expects the caller to lock the pvh before calling
983 */
984
985 /*
986 * pmap_enter_pv: enter a mapping onto a vm_page lst
987 *
988 * => caller should hold the proper lock on pmap_main_lock
989 * => caller should have pmap locked
990 * => we will gain the lock on the vm_page and allocate the new pv_entry
991 * => caller should adjust ptp's wire_count before calling
992 * => caller should not adjust pmap's wire_count
993 */
994 static void
995 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
996 vaddr_t va, u_int flags)
997 {
998 struct pv_entry **pvp;
999
1000 NPDEBUG(PDB_PVDUMP,
1001 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
1002
1003 pv->pv_pmap = pm;
1004 pv->pv_va = va;
1005 pv->pv_flags = flags;
1006
1007 pvp = &SLIST_FIRST(&md->pvh_list);
1008 #ifdef PMAP_CACHE_VIPT
1009 /*
1010 * Insert unmanaged entries, writeable first, at the head of
1011 * the pv list.
1012 */
1013 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1014 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1015 pvp = &SLIST_NEXT(*pvp, pv_link);
1016 }
1017 if (!PV_IS_WRITE_P(flags)) {
1018 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1019 pvp = &SLIST_NEXT(*pvp, pv_link);
1020 }
1021 #endif
1022 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1023 *pvp = pv; /* ... locked list */
1024 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1025 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1026 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1027 md->pvh_attrs |= PVF_KMOD;
1028 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1029 md->pvh_attrs |= PVF_DIRTY;
1030 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1031 #endif
1032 if (pm == pmap_kernel()) {
1033 PMAPCOUNT(kernel_mappings);
1034 if (flags & PVF_WRITE)
1035 md->krw_mappings++;
1036 else
1037 md->kro_mappings++;
1038 } else {
1039 if (flags & PVF_WRITE)
1040 md->urw_mappings++;
1041 else
1042 md->uro_mappings++;
1043 }
1044
1045 #ifdef PMAP_CACHE_VIPT
1046 #ifndef ARM_MMU_EXTENDED
1047 /*
1048 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1049 * do it here as well to keep the mappings & KVF_WRITE consistent.
1050 */
1051 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1052 md->pvh_attrs |= PVF_WRITE;
1053 }
1054 #endif
1055 /*
1056 * If this is an exec mapping and its the first exec mapping
1057 * for this page, make sure to sync the I-cache.
1058 */
1059 if (PV_IS_EXEC_P(flags)) {
1060 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1061 pmap_syncicache_page(md, pa);
1062 PMAPCOUNT(exec_synced_map);
1063 }
1064 PMAPCOUNT(exec_mappings);
1065 }
1066 #endif
1067
1068 PMAPCOUNT(mappings);
1069
1070 if (pv->pv_flags & PVF_WIRED)
1071 ++pm->pm_stats.wired_count;
1072 }
1073
1074 /*
1075 *
1076 * pmap_find_pv: Find a pv entry
1077 *
1078 * => caller should hold lock on vm_page
1079 */
1080 static inline struct pv_entry *
1081 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1082 {
1083 struct pv_entry *pv;
1084
1085 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1086 if (pm == pv->pv_pmap && va == pv->pv_va)
1087 break;
1088 }
1089
1090 return (pv);
1091 }
1092
1093 /*
1094 * pmap_remove_pv: try to remove a mapping from a pv_list
1095 *
1096 * => caller should hold proper lock on pmap_main_lock
1097 * => pmap should be locked
1098 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1099 * => caller should adjust ptp's wire_count and free PTP if needed
1100 * => caller should NOT adjust pmap's wire_count
1101 * => we return the removed pv
1102 */
1103 static struct pv_entry *
1104 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1105 {
1106 struct pv_entry *pv, **prevptr;
1107
1108 NPDEBUG(PDB_PVDUMP,
1109 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1110
1111 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1112 pv = *prevptr;
1113
1114 while (pv) {
1115 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1116 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1117 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1118 if (pv->pv_flags & PVF_WIRED) {
1119 --pm->pm_stats.wired_count;
1120 }
1121 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1122 if (pm == pmap_kernel()) {
1123 PMAPCOUNT(kernel_unmappings);
1124 if (pv->pv_flags & PVF_WRITE)
1125 md->krw_mappings--;
1126 else
1127 md->kro_mappings--;
1128 } else {
1129 if (pv->pv_flags & PVF_WRITE)
1130 md->urw_mappings--;
1131 else
1132 md->uro_mappings--;
1133 }
1134
1135 PMAPCOUNT(unmappings);
1136 #ifdef PMAP_CACHE_VIPT
1137 /*
1138 * If this page has had an exec mapping, then if
1139 * this was the last mapping, discard the contents,
1140 * otherwise sync the i-cache for this page.
1141 */
1142 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1143 if (SLIST_EMPTY(&md->pvh_list)) {
1144 md->pvh_attrs &= ~PVF_EXEC;
1145 PMAPCOUNT(exec_discarded_unmap);
1146 } else if (pv->pv_flags & PVF_WRITE) {
1147 pmap_syncicache_page(md, pa);
1148 PMAPCOUNT(exec_synced_unmap);
1149 }
1150 }
1151 #endif /* PMAP_CACHE_VIPT */
1152 break;
1153 }
1154 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1155 pv = *prevptr; /* advance */
1156 }
1157
1158 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1159 /*
1160 * If we no longer have a WRITEABLE KENTRY at the head of list,
1161 * clear the KMOD attribute from the page.
1162 */
1163 if (SLIST_FIRST(&md->pvh_list) == NULL
1164 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1165 md->pvh_attrs &= ~PVF_KMOD;
1166
1167 /*
1168 * If this was a writeable page and there are no more writeable
1169 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1170 * the contents to memory.
1171 */
1172 if (arm_cache_prefer_mask != 0) {
1173 if (md->krw_mappings + md->urw_mappings == 0)
1174 md->pvh_attrs &= ~PVF_WRITE;
1175 PMAP_VALIDATE_MD_PAGE(md);
1176 }
1177 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1178 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1179
1180 /* return removed pv */
1181 return pv;
1182 }
1183
1184 /*
1185 *
1186 * pmap_modify_pv: Update pv flags
1187 *
1188 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1189 * => caller should NOT adjust pmap's wire_count
1190 * => caller must call pmap_vac_me_harder() if writable status of a page
1191 * may have changed.
1192 * => we return the old flags
1193 *
1194 * Modify a physical-virtual mapping in the pv table
1195 */
1196 static u_int
1197 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1198 u_int clr_mask, u_int set_mask)
1199 {
1200 struct pv_entry *npv;
1201 u_int flags, oflags;
1202
1203 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1204 KASSERT(!PV_IS_KENTRY_P(set_mask));
1205
1206 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1207 return (0);
1208
1209 NPDEBUG(PDB_PVDUMP,
1210 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1211
1212 /*
1213 * There is at least one VA mapping this page.
1214 */
1215
1216 if (clr_mask & (PVF_REF | PVF_MOD)) {
1217 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1218 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1219 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1220 md->pvh_attrs |= PVF_DIRTY;
1221 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1222 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1223 }
1224
1225 oflags = npv->pv_flags;
1226 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1227
1228 if ((flags ^ oflags) & PVF_WIRED) {
1229 if (flags & PVF_WIRED)
1230 ++pm->pm_stats.wired_count;
1231 else
1232 --pm->pm_stats.wired_count;
1233 }
1234
1235 if ((flags ^ oflags) & PVF_WRITE) {
1236 if (pm == pmap_kernel()) {
1237 if (flags & PVF_WRITE) {
1238 md->krw_mappings++;
1239 md->kro_mappings--;
1240 } else {
1241 md->kro_mappings++;
1242 md->krw_mappings--;
1243 }
1244 } else {
1245 if (flags & PVF_WRITE) {
1246 md->urw_mappings++;
1247 md->uro_mappings--;
1248 } else {
1249 md->uro_mappings++;
1250 md->urw_mappings--;
1251 }
1252 }
1253 }
1254 #ifdef PMAP_CACHE_VIPT
1255 if (arm_cache_prefer_mask != 0) {
1256 if (md->urw_mappings + md->krw_mappings == 0) {
1257 md->pvh_attrs &= ~PVF_WRITE;
1258 } else {
1259 md->pvh_attrs |= PVF_WRITE;
1260 }
1261 }
1262 /*
1263 * We have two cases here: the first is from enter_pv (new exec
1264 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1265 * Since in latter, pmap_enter_pv won't do anything, we just have
1266 * to do what pmap_remove_pv would do.
1267 */
1268 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1269 || (PV_IS_EXEC_P(md->pvh_attrs)
1270 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1271 pmap_syncicache_page(md, pa);
1272 PMAPCOUNT(exec_synced_remap);
1273 }
1274 #ifndef ARM_MMU_EXTENDED
1275 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1276 #endif /* !ARM_MMU_EXTENDED */
1277 #endif /* PMAP_CACHE_VIPT */
1278
1279 PMAPCOUNT(remappings);
1280
1281 return (oflags);
1282 }
1283
1284 /*
1285 * Allocate an L1 translation table for the specified pmap.
1286 * This is called at pmap creation time.
1287 */
1288 static void
1289 pmap_alloc_l1(pmap_t pm)
1290 {
1291 #ifdef ARM_MMU_EXTENDED
1292 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1293 struct vm_page *pg;
1294 bool ok __diagused;
1295 for (;;) {
1296 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1297 pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1298 #else
1299 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1300 #endif
1301 if (pg != NULL)
1302 break;
1303 uvm_wait("pmapl1alloc");
1304 }
1305 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1306 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1307 KASSERT(ok);
1308 KASSERT(va >= KERNEL_BASE);
1309
1310 #else
1311 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1312 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1313 UVM_KMF_WIRED|UVM_KMF_ZERO);
1314 KASSERT(va);
1315 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1316 #endif
1317 pm->pm_l1 = (pd_entry_t *)va;
1318 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1319 #else
1320 struct l1_ttable *l1;
1321 uint8_t domain;
1322
1323 /*
1324 * Remove the L1 at the head of the LRU list
1325 */
1326 mutex_spin_enter(&l1_lru_lock);
1327 l1 = TAILQ_FIRST(&l1_lru_list);
1328 KDASSERT(l1 != NULL);
1329 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1330
1331 /*
1332 * Pick the first available domain number, and update
1333 * the link to the next number.
1334 */
1335 domain = l1->l1_domain_first;
1336 l1->l1_domain_first = l1->l1_domain_free[domain];
1337
1338 /*
1339 * If there are still free domain numbers in this L1,
1340 * put it back on the TAIL of the LRU list.
1341 */
1342 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1343 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1344
1345 mutex_spin_exit(&l1_lru_lock);
1346
1347 /*
1348 * Fix up the relevant bits in the pmap structure
1349 */
1350 pm->pm_l1 = l1;
1351 pm->pm_domain = domain + 1;
1352 #endif
1353 }
1354
1355 /*
1356 * Free an L1 translation table.
1357 * This is called at pmap destruction time.
1358 */
1359 static void
1360 pmap_free_l1(pmap_t pm)
1361 {
1362 #ifdef ARM_MMU_EXTENDED
1363 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1364 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1365 uvm_pagefree(pg);
1366 #else
1367 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1368 #endif
1369 pm->pm_l1 = NULL;
1370 pm->pm_l1_pa = 0;
1371 #else
1372 struct l1_ttable *l1 = pm->pm_l1;
1373
1374 mutex_spin_enter(&l1_lru_lock);
1375
1376 /*
1377 * If this L1 is currently on the LRU list, remove it.
1378 */
1379 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1380 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1381
1382 /*
1383 * Free up the domain number which was allocated to the pmap
1384 */
1385 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1386 l1->l1_domain_first = pmap_domain(pm) - 1;
1387 l1->l1_domain_use_count--;
1388
1389 /*
1390 * The L1 now must have at least 1 free domain, so add
1391 * it back to the LRU list. If the use count is zero,
1392 * put it at the head of the list, otherwise it goes
1393 * to the tail.
1394 */
1395 if (l1->l1_domain_use_count == 0)
1396 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1397 else
1398 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1399
1400 mutex_spin_exit(&l1_lru_lock);
1401 #endif /* ARM_MMU_EXTENDED */
1402 }
1403
1404 #ifndef ARM_MMU_EXTENDED
1405 static inline void
1406 pmap_use_l1(pmap_t pm)
1407 {
1408 struct l1_ttable *l1;
1409
1410 /*
1411 * Do nothing if we're in interrupt context.
1412 * Access to an L1 by the kernel pmap must not affect
1413 * the LRU list.
1414 */
1415 if (cpu_intr_p() || pm == pmap_kernel())
1416 return;
1417
1418 l1 = pm->pm_l1;
1419
1420 /*
1421 * If the L1 is not currently on the LRU list, just return
1422 */
1423 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1424 return;
1425
1426 mutex_spin_enter(&l1_lru_lock);
1427
1428 /*
1429 * Check the use count again, now that we've acquired the lock
1430 */
1431 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1432 mutex_spin_exit(&l1_lru_lock);
1433 return;
1434 }
1435
1436 /*
1437 * Move the L1 to the back of the LRU list
1438 */
1439 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1440 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1441
1442 mutex_spin_exit(&l1_lru_lock);
1443 }
1444 #endif /* !ARM_MMU_EXTENDED */
1445
1446 /*
1447 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1448 *
1449 * Free an L2 descriptor table.
1450 */
1451 static inline void
1452 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1453 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1454 #else
1455 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1456 #endif
1457 {
1458 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1459 /*
1460 * Note: With a write-back cache, we may need to sync this
1461 * L2 table before re-using it.
1462 * This is because it may have belonged to a non-current
1463 * pmap, in which case the cache syncs would have been
1464 * skipped for the pages that were being unmapped. If the
1465 * L2 table were then to be immediately re-allocated to
1466 * the *current* pmap, it may well contain stale mappings
1467 * which have not yet been cleared by a cache write-back
1468 * and so would still be visible to the mmu.
1469 */
1470 if (need_sync)
1471 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1472 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1473 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1474 }
1475
1476 /*
1477 * Returns a pointer to the L2 bucket associated with the specified pmap
1478 * and VA, or NULL if no L2 bucket exists for the address.
1479 */
1480 static inline struct l2_bucket *
1481 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1482 {
1483 const size_t l1slot = l1pte_index(va);
1484 struct l2_dtable *l2;
1485 struct l2_bucket *l2b;
1486
1487 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1488 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1489 return (NULL);
1490
1491 return (l2b);
1492 }
1493
1494 /*
1495 * Returns a pointer to the L2 bucket associated with the specified pmap
1496 * and VA.
1497 *
1498 * If no L2 bucket exists, perform the necessary allocations to put an L2
1499 * bucket/page table in place.
1500 *
1501 * Note that if a new L2 bucket/page was allocated, the caller *must*
1502 * increment the bucket occupancy counter appropriately *before*
1503 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1504 * the bucket/page in the meantime.
1505 */
1506 static struct l2_bucket *
1507 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1508 {
1509 const size_t l1slot = l1pte_index(va);
1510 struct l2_dtable *l2;
1511
1512 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1513 /*
1514 * No mapping at this address, as there is
1515 * no entry in the L1 table.
1516 * Need to allocate a new l2_dtable.
1517 */
1518 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1519 return (NULL);
1520
1521 /*
1522 * Link it into the parent pmap
1523 */
1524 pm->pm_l2[L2_IDX(l1slot)] = l2;
1525 }
1526
1527 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1528
1529 /*
1530 * Fetch pointer to the L2 page table associated with the address.
1531 */
1532 if (l2b->l2b_kva == NULL) {
1533 pt_entry_t *ptep;
1534
1535 /*
1536 * No L2 page table has been allocated. Chances are, this
1537 * is because we just allocated the l2_dtable, above.
1538 */
1539 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1540 /*
1541 * Oops, no more L2 page tables available at this
1542 * time. We may need to deallocate the l2_dtable
1543 * if we allocated a new one above.
1544 */
1545 if (l2->l2_occupancy == 0) {
1546 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1547 pmap_free_l2_dtable(l2);
1548 }
1549 return (NULL);
1550 }
1551
1552 l2->l2_occupancy++;
1553 l2b->l2b_kva = ptep;
1554 l2b->l2b_l1slot = l1slot;
1555
1556 #ifdef ARM_MMU_EXTENDED
1557 /*
1558 * We know there will be a mapping here, so simply
1559 * enter this PTP into the L1 now.
1560 */
1561 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1562 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1563 | L1_C_DOM(pmap_domain(pm));
1564 KASSERT(*pdep == 0);
1565 l1pte_setone(pdep, npde);
1566 PDE_SYNC(pdep);
1567 #endif
1568 }
1569
1570 return (l2b);
1571 }
1572
1573 /*
1574 * One or more mappings in the specified L2 descriptor table have just been
1575 * invalidated.
1576 *
1577 * Garbage collect the metadata and descriptor table itself if necessary.
1578 *
1579 * The pmap lock must be acquired when this is called (not necessary
1580 * for the kernel pmap).
1581 */
1582 static void
1583 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1584 {
1585 KDASSERT(count <= l2b->l2b_occupancy);
1586
1587 /*
1588 * Update the bucket's reference count according to how many
1589 * PTEs the caller has just invalidated.
1590 */
1591 l2b->l2b_occupancy -= count;
1592
1593 /*
1594 * Note:
1595 *
1596 * Level 2 page tables allocated to the kernel pmap are never freed
1597 * as that would require checking all Level 1 page tables and
1598 * removing any references to the Level 2 page table. See also the
1599 * comment elsewhere about never freeing bootstrap L2 descriptors.
1600 *
1601 * We make do with just invalidating the mapping in the L2 table.
1602 *
1603 * This isn't really a big deal in practice and, in fact, leads
1604 * to a performance win over time as we don't need to continually
1605 * alloc/free.
1606 */
1607 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1608 return;
1609
1610 /*
1611 * There are no more valid mappings in this level 2 page table.
1612 * Go ahead and NULL-out the pointer in the bucket, then
1613 * free the page table.
1614 */
1615 const size_t l1slot = l2b->l2b_l1slot;
1616 pt_entry_t * const ptep = l2b->l2b_kva;
1617 l2b->l2b_kva = NULL;
1618
1619 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1620 pd_entry_t pde __diagused = *pdep;
1621
1622 #ifdef ARM_MMU_EXTENDED
1623 /*
1624 * Invalidate the L1 slot.
1625 */
1626 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1627 #else
1628 /*
1629 * If the L1 slot matches the pmap's domain number, then invalidate it.
1630 */
1631 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1632 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1633 #endif
1634 l1pte_setone(pdep, 0);
1635 PDE_SYNC(pdep);
1636 #ifndef ARM_MMU_EXTENDED
1637 }
1638 #endif
1639
1640 /*
1641 * Release the L2 descriptor table back to the pool cache.
1642 */
1643 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1644 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1645 #else
1646 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1647 #endif
1648
1649 /*
1650 * Update the reference count in the associated l2_dtable
1651 */
1652 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1653 if (--l2->l2_occupancy > 0)
1654 return;
1655
1656 /*
1657 * There are no more valid mappings in any of the Level 1
1658 * slots managed by this l2_dtable. Go ahead and NULL-out
1659 * the pointer in the parent pmap and free the l2_dtable.
1660 */
1661 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1662 pmap_free_l2_dtable(l2);
1663 }
1664
1665 /*
1666 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1667 * structures.
1668 */
1669 static int
1670 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1671 {
1672 #ifndef PMAP_INCLUDE_PTE_SYNC
1673 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1674
1675 /*
1676 * The mappings for these page tables were initially made using
1677 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1678 * mode will not be right for page table mappings. To avoid
1679 * polluting the pmap_kenter_pa() code with a special case for
1680 * page tables, we simply fix up the cache-mode here if it's not
1681 * correct.
1682 */
1683 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1684 const struct l2_bucket * const l2b =
1685 pmap_get_l2_bucket(pmap_kernel(), va);
1686 KASSERTMSG(l2b != NULL, "%#lx", va);
1687 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1688 const pt_entry_t opte = *ptep;
1689
1690 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1691 /*
1692 * Page tables must have the cache-mode set correctly.
1693 */
1694 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1695 | pte_l2_s_cache_mode_pt;
1696 l2pte_set(ptep, npte, opte);
1697 PTE_SYNC(ptep);
1698 cpu_tlb_flushD_SE(va);
1699 cpu_cpwait();
1700 }
1701 }
1702 #endif
1703
1704 memset(v, 0, L2_TABLE_SIZE_REAL);
1705 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1706 return (0);
1707 }
1708
1709 static int
1710 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1711 {
1712
1713 memset(v, 0, sizeof(struct l2_dtable));
1714 return (0);
1715 }
1716
1717 static int
1718 pmap_pmap_ctor(void *arg, void *v, int flags)
1719 {
1720
1721 memset(v, 0, sizeof(struct pmap));
1722 return (0);
1723 }
1724
1725 static void
1726 pmap_pinit(pmap_t pm)
1727 {
1728 #ifndef ARM_HAS_VBAR
1729 struct l2_bucket *l2b;
1730
1731 if (vector_page < KERNEL_BASE) {
1732 /*
1733 * Map the vector page.
1734 */
1735 pmap_enter(pm, vector_page, systempage.pv_pa,
1736 VM_PROT_READ | VM_PROT_EXECUTE,
1737 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1738 pmap_update(pm);
1739
1740 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1741 l2b = pmap_get_l2_bucket(pm, vector_page);
1742 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1743 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1744 L1_C_DOM(pmap_domain(pm));
1745 } else
1746 pm->pm_pl1vec = NULL;
1747 #endif
1748 }
1749
1750 #ifdef PMAP_CACHE_VIVT
1751 /*
1752 * Since we have a virtually indexed cache, we may need to inhibit caching if
1753 * there is more than one mapping and at least one of them is writable.
1754 * Since we purge the cache on every context switch, we only need to check for
1755 * other mappings within the same pmap, or kernel_pmap.
1756 * This function is also called when a page is unmapped, to possibly reenable
1757 * caching on any remaining mappings.
1758 *
1759 * The code implements the following logic, where:
1760 *
1761 * KW = # of kernel read/write pages
1762 * KR = # of kernel read only pages
1763 * UW = # of user read/write pages
1764 * UR = # of user read only pages
1765 *
1766 * KC = kernel mapping is cacheable
1767 * UC = user mapping is cacheable
1768 *
1769 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1770 * +---------------------------------------------
1771 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1772 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1773 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1774 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1775 */
1776
1777 static const int pmap_vac_flags[4][4] = {
1778 {-1, 0, 0, PVF_KNC},
1779 {0, 0, PVF_NC, PVF_NC},
1780 {0, PVF_NC, PVF_NC, PVF_NC},
1781 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1782 };
1783
1784 static inline int
1785 pmap_get_vac_flags(const struct vm_page_md *md)
1786 {
1787 int kidx, uidx;
1788
1789 kidx = 0;
1790 if (md->kro_mappings || md->krw_mappings > 1)
1791 kidx |= 1;
1792 if (md->krw_mappings)
1793 kidx |= 2;
1794
1795 uidx = 0;
1796 if (md->uro_mappings || md->urw_mappings > 1)
1797 uidx |= 1;
1798 if (md->urw_mappings)
1799 uidx |= 2;
1800
1801 return (pmap_vac_flags[uidx][kidx]);
1802 }
1803
1804 static inline void
1805 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1806 {
1807 int nattr;
1808
1809 nattr = pmap_get_vac_flags(md);
1810
1811 if (nattr < 0) {
1812 md->pvh_attrs &= ~PVF_NC;
1813 return;
1814 }
1815
1816 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1817 return;
1818
1819 if (pm == pmap_kernel())
1820 pmap_vac_me_kpmap(md, pa, pm, va);
1821 else
1822 pmap_vac_me_user(md, pa, pm, va);
1823
1824 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1825 }
1826
1827 static void
1828 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1829 {
1830 u_int u_cacheable, u_entries;
1831 struct pv_entry *pv;
1832 pmap_t last_pmap = pm;
1833
1834 /*
1835 * Pass one, see if there are both kernel and user pmaps for
1836 * this page. Calculate whether there are user-writable or
1837 * kernel-writable pages.
1838 */
1839 u_cacheable = 0;
1840 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1841 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1842 u_cacheable++;
1843 }
1844
1845 u_entries = md->urw_mappings + md->uro_mappings;
1846
1847 /*
1848 * We know we have just been updating a kernel entry, so if
1849 * all user pages are already cacheable, then there is nothing
1850 * further to do.
1851 */
1852 if (md->k_mappings == 0 && u_cacheable == u_entries)
1853 return;
1854
1855 if (u_entries) {
1856 /*
1857 * Scan over the list again, for each entry, if it
1858 * might not be set correctly, call pmap_vac_me_user
1859 * to recalculate the settings.
1860 */
1861 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1862 /*
1863 * We know kernel mappings will get set
1864 * correctly in other calls. We also know
1865 * that if the pmap is the same as last_pmap
1866 * then we've just handled this entry.
1867 */
1868 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1869 continue;
1870
1871 /*
1872 * If there are kernel entries and this page
1873 * is writable but non-cacheable, then we can
1874 * skip this entry also.
1875 */
1876 if (md->k_mappings &&
1877 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1878 (PVF_NC | PVF_WRITE))
1879 continue;
1880
1881 /*
1882 * Similarly if there are no kernel-writable
1883 * entries and the page is already
1884 * read-only/cacheable.
1885 */
1886 if (md->krw_mappings == 0 &&
1887 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1888 continue;
1889
1890 /*
1891 * For some of the remaining cases, we know
1892 * that we must recalculate, but for others we
1893 * can't tell if they are correct or not, so
1894 * we recalculate anyway.
1895 */
1896 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1897 }
1898
1899 if (md->k_mappings == 0)
1900 return;
1901 }
1902
1903 pmap_vac_me_user(md, pa, pm, va);
1904 }
1905
1906 static void
1907 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1908 {
1909 pmap_t kpmap = pmap_kernel();
1910 struct pv_entry *pv, *npv = NULL;
1911 u_int entries = 0;
1912 u_int writable = 0;
1913 u_int cacheable_entries = 0;
1914 u_int kern_cacheable = 0;
1915 u_int other_writable = 0;
1916
1917 /*
1918 * Count mappings and writable mappings in this pmap.
1919 * Include kernel mappings as part of our own.
1920 * Keep a pointer to the first one.
1921 */
1922 npv = NULL;
1923 KASSERT(pmap_page_locked_p(md));
1924 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1925 /* Count mappings in the same pmap */
1926 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1927 if (entries++ == 0)
1928 npv = pv;
1929
1930 /* Cacheable mappings */
1931 if ((pv->pv_flags & PVF_NC) == 0) {
1932 cacheable_entries++;
1933 if (kpmap == pv->pv_pmap)
1934 kern_cacheable++;
1935 }
1936
1937 /* Writable mappings */
1938 if (pv->pv_flags & PVF_WRITE)
1939 ++writable;
1940 } else
1941 if (pv->pv_flags & PVF_WRITE)
1942 other_writable = 1;
1943 }
1944
1945 /*
1946 * Enable or disable caching as necessary.
1947 * Note: the first entry might be part of the kernel pmap,
1948 * so we can't assume this is indicative of the state of the
1949 * other (maybe non-kpmap) entries.
1950 */
1951 if ((entries > 1 && writable) ||
1952 (entries > 0 && pm == kpmap && other_writable)) {
1953 if (cacheable_entries == 0) {
1954 return;
1955 }
1956
1957 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1958 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1959 (pv->pv_flags & PVF_NC))
1960 continue;
1961
1962 pv->pv_flags |= PVF_NC;
1963
1964 struct l2_bucket * const l2b
1965 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1966 KASSERTMSG(l2b != NULL, "%#lx", va);
1967 pt_entry_t * const ptep
1968 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1969 const pt_entry_t opte = *ptep;
1970 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1971
1972 if ((va != pv->pv_va || pm != pv->pv_pmap)
1973 && l2pte_valid_p(opte)) {
1974 #ifdef PMAP_CACHE_VIVT
1975 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1976 true, pv->pv_flags);
1977 #endif
1978 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1979 pv->pv_flags);
1980 }
1981
1982 l2pte_set(ptep, npte, opte);
1983 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1984 }
1985 cpu_cpwait();
1986 } else
1987 if (entries > cacheable_entries) {
1988 /*
1989 * Turn cacheing back on for some pages. If it is a kernel
1990 * page, only do so if there are no other writable pages.
1991 */
1992 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1993 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1994 (kpmap != pv->pv_pmap || other_writable)))
1995 continue;
1996
1997 pv->pv_flags &= ~PVF_NC;
1998
1999 struct l2_bucket * const l2b
2000 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2001 KASSERTMSG(l2b != NULL, "%#lx", va);
2002 pt_entry_t * const ptep
2003 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2004 const pt_entry_t opte = *ptep;
2005 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2006 | pte_l2_s_cache_mode;
2007
2008 if (l2pte_valid_p(opte)) {
2009 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2010 pv->pv_flags);
2011 }
2012
2013 l2pte_set(ptep, npte, opte);
2014 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2015 }
2016 }
2017 }
2018 #endif
2019
2020 #ifdef PMAP_CACHE_VIPT
2021 static void
2022 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2023 {
2024 #ifndef ARM_MMU_EXTENDED
2025 struct pv_entry *pv;
2026 vaddr_t tst_mask;
2027 bool bad_alias;
2028 const u_int
2029 rw_mappings = md->urw_mappings + md->krw_mappings,
2030 ro_mappings = md->uro_mappings + md->kro_mappings;
2031
2032 /* do we need to do anything? */
2033 if (arm_cache_prefer_mask == 0)
2034 return;
2035
2036 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2037 md, pm, va));
2038
2039 KASSERT(!va || pm);
2040 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2041
2042 /* Already a conflict? */
2043 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2044 /* just an add, things are already non-cached */
2045 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2046 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2047 bad_alias = false;
2048 if (va) {
2049 PMAPCOUNT(vac_color_none);
2050 bad_alias = true;
2051 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2052 goto fixup;
2053 }
2054 pv = SLIST_FIRST(&md->pvh_list);
2055 /* the list can't be empty because it would be cachable */
2056 if (md->pvh_attrs & PVF_KMPAGE) {
2057 tst_mask = md->pvh_attrs;
2058 } else {
2059 KASSERT(pv);
2060 tst_mask = pv->pv_va;
2061 pv = SLIST_NEXT(pv, pv_link);
2062 }
2063 /*
2064 * Only check for a bad alias if we have writable mappings.
2065 */
2066 tst_mask &= arm_cache_prefer_mask;
2067 if (rw_mappings > 0) {
2068 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2069 /* if there's a bad alias, stop checking. */
2070 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2071 bad_alias = true;
2072 }
2073 md->pvh_attrs |= PVF_WRITE;
2074 if (!bad_alias)
2075 md->pvh_attrs |= PVF_DIRTY;
2076 } else {
2077 /*
2078 * We have only read-only mappings. Let's see if there
2079 * are multiple colors in use or if we mapped a KMPAGE.
2080 * If the latter, we have a bad alias. If the former,
2081 * we need to remember that.
2082 */
2083 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2084 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2085 if (md->pvh_attrs & PVF_KMPAGE)
2086 bad_alias = true;
2087 break;
2088 }
2089 }
2090 md->pvh_attrs &= ~PVF_WRITE;
2091 /*
2092 * No KMPAGE and we exited early, so we must have
2093 * multiple color mappings.
2094 */
2095 if (!bad_alias && pv != NULL)
2096 md->pvh_attrs |= PVF_MULTCLR;
2097 }
2098
2099 /* If no conflicting colors, set everything back to cached */
2100 if (!bad_alias) {
2101 #ifdef DEBUG
2102 if ((md->pvh_attrs & PVF_WRITE)
2103 || ro_mappings < 2) {
2104 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2105 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2106 }
2107 #endif
2108 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2109 md->pvh_attrs |= tst_mask | PVF_COLORED;
2110 /*
2111 * Restore DIRTY bit if page is modified
2112 */
2113 if (md->pvh_attrs & PVF_DMOD)
2114 md->pvh_attrs |= PVF_DIRTY;
2115 PMAPCOUNT(vac_color_restore);
2116 } else {
2117 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2118 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2119 }
2120 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2121 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2122 } else if (!va) {
2123 KASSERT(pmap_is_page_colored_p(md));
2124 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2125 || (md->pvh_attrs & PVF_DIRTY));
2126 if (rw_mappings == 0) {
2127 md->pvh_attrs &= ~PVF_WRITE;
2128 if (ro_mappings == 1
2129 && (md->pvh_attrs & PVF_MULTCLR)) {
2130 /*
2131 * If this is the last readonly mapping
2132 * but it doesn't match the current color
2133 * for the page, change the current color
2134 * to match this last readonly mapping.
2135 */
2136 pv = SLIST_FIRST(&md->pvh_list);
2137 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2138 & arm_cache_prefer_mask;
2139 if (tst_mask) {
2140 md->pvh_attrs ^= tst_mask;
2141 PMAPCOUNT(vac_color_change);
2142 }
2143 }
2144 }
2145 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2146 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2147 return;
2148 } else if (!pmap_is_page_colored_p(md)) {
2149 /* not colored so we just use its color */
2150 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2151 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2152 PMAPCOUNT(vac_color_new);
2153 md->pvh_attrs &= PAGE_SIZE - 1;
2154 md->pvh_attrs |= PVF_COLORED
2155 | (va & arm_cache_prefer_mask)
2156 | (rw_mappings > 0 ? PVF_WRITE : 0);
2157 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2158 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2159 return;
2160 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2161 bad_alias = false;
2162 if (rw_mappings > 0) {
2163 /*
2164 * We now have writeable mappings and if we have
2165 * readonly mappings in more than once color, we have
2166 * an aliasing problem. Regardless mark the page as
2167 * writeable.
2168 */
2169 if (md->pvh_attrs & PVF_MULTCLR) {
2170 if (ro_mappings < 2) {
2171 /*
2172 * If we only have less than two
2173 * read-only mappings, just flush the
2174 * non-primary colors from the cache.
2175 */
2176 pmap_flush_page(md, pa,
2177 PMAP_FLUSH_SECONDARY);
2178 } else {
2179 bad_alias = true;
2180 }
2181 }
2182 md->pvh_attrs |= PVF_WRITE;
2183 }
2184 /* If no conflicting colors, set everything back to cached */
2185 if (!bad_alias) {
2186 #ifdef DEBUG
2187 if (rw_mappings > 0
2188 || (md->pvh_attrs & PMAP_KMPAGE)) {
2189 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2190 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2191 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2192 }
2193 #endif
2194 if (SLIST_EMPTY(&md->pvh_list))
2195 PMAPCOUNT(vac_color_reuse);
2196 else
2197 PMAPCOUNT(vac_color_ok);
2198
2199 /* matching color, just return */
2200 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2201 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2202 return;
2203 }
2204 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2205 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2206
2207 /* color conflict. evict from cache. */
2208
2209 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2210 md->pvh_attrs &= ~PVF_COLORED;
2211 md->pvh_attrs |= PVF_NC;
2212 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2213 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2214 PMAPCOUNT(vac_color_erase);
2215 } else if (rw_mappings == 0
2216 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2217 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2218
2219 /*
2220 * If the page has dirty cache lines, clean it.
2221 */
2222 if (md->pvh_attrs & PVF_DIRTY)
2223 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2224
2225 /*
2226 * If this is the first remapping (we know that there are no
2227 * writeable mappings), then this is a simple color change.
2228 * Otherwise this is a seconary r/o mapping, which means
2229 * we don't have to do anything.
2230 */
2231 if (ro_mappings == 1) {
2232 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2233 md->pvh_attrs &= PAGE_SIZE - 1;
2234 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2235 PMAPCOUNT(vac_color_change);
2236 } else {
2237 PMAPCOUNT(vac_color_blind);
2238 }
2239 md->pvh_attrs |= PVF_MULTCLR;
2240 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2241 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2242 return;
2243 } else {
2244 if (rw_mappings > 0)
2245 md->pvh_attrs |= PVF_WRITE;
2246
2247 /* color conflict. evict from cache. */
2248 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2249
2250 /* the list can't be empty because this was a enter/modify */
2251 pv = SLIST_FIRST(&md->pvh_list);
2252 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2253 KASSERT(pv);
2254 /*
2255 * If there's only one mapped page, change color to the
2256 * page's new color and return. Restore the DIRTY bit
2257 * that was erased by pmap_flush_page.
2258 */
2259 if (SLIST_NEXT(pv, pv_link) == NULL) {
2260 md->pvh_attrs &= PAGE_SIZE - 1;
2261 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2262 if (md->pvh_attrs & PVF_DMOD)
2263 md->pvh_attrs |= PVF_DIRTY;
2264 PMAPCOUNT(vac_color_change);
2265 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2266 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2267 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2268 return;
2269 }
2270 }
2271 bad_alias = true;
2272 md->pvh_attrs &= ~PVF_COLORED;
2273 md->pvh_attrs |= PVF_NC;
2274 PMAPCOUNT(vac_color_erase);
2275 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2276 }
2277
2278 fixup:
2279 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2280
2281 /*
2282 * Turn cacheing on/off for all pages.
2283 */
2284 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2285 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2286 pv->pv_va);
2287 KASSERTMSG(l2b != NULL, "%#lx", va);
2288 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2289 const pt_entry_t opte = *ptep;
2290 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2291 if (bad_alias) {
2292 pv->pv_flags |= PVF_NC;
2293 } else {
2294 pv->pv_flags &= ~PVF_NC;
2295 npte |= pte_l2_s_cache_mode;
2296 }
2297
2298 if (opte == npte) /* only update is there's a change */
2299 continue;
2300
2301 if (l2pte_valid_p(opte)) {
2302 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2303 }
2304
2305 l2pte_set(ptep, npte, opte);
2306 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2307 }
2308 #endif /* !ARM_MMU_EXTENDED */
2309 }
2310 #endif /* PMAP_CACHE_VIPT */
2311
2312
2313 /*
2314 * Modify pte bits for all ptes corresponding to the given physical address.
2315 * We use `maskbits' rather than `clearbits' because we're always passing
2316 * constants and the latter would require an extra inversion at run-time.
2317 */
2318 static void
2319 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2320 {
2321 struct pv_entry *pv;
2322 #ifdef PMAP_CACHE_VIPT
2323 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2324 bool need_syncicache = false;
2325 #ifdef ARM_MMU_EXTENDED
2326 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2327 #else
2328 const u_int execbits = 0;
2329 bool need_vac_me_harder = false;
2330 #endif
2331 #else
2332 const u_int execbits = 0;
2333 #endif
2334
2335 NPDEBUG(PDB_BITS,
2336 printf("pmap_clearbit: md %p mask 0x%x\n",
2337 md, maskbits));
2338
2339 #ifdef PMAP_CACHE_VIPT
2340 /*
2341 * If we might want to sync the I-cache and we've modified it,
2342 * then we know we definitely need to sync or discard it.
2343 */
2344 if (want_syncicache) {
2345 if (md->pvh_attrs & PVF_MOD) {
2346 need_syncicache = true;
2347 }
2348 }
2349 #endif
2350 KASSERT(pmap_page_locked_p(md));
2351
2352 /*
2353 * Clear saved attributes (modify, reference)
2354 */
2355 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2356
2357 if (SLIST_EMPTY(&md->pvh_list)) {
2358 #if defined(PMAP_CACHE_VIPT)
2359 if (need_syncicache) {
2360 /*
2361 * No one has it mapped, so just discard it. The next
2362 * exec remapping will cause it to be synced.
2363 */
2364 md->pvh_attrs &= ~PVF_EXEC;
2365 PMAPCOUNT(exec_discarded_clearbit);
2366 }
2367 #endif
2368 return;
2369 }
2370
2371 /*
2372 * Loop over all current mappings setting/clearing as appropos
2373 */
2374 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2375 pmap_t pm = pv->pv_pmap;
2376 const vaddr_t va = pv->pv_va;
2377 const u_int oflags = pv->pv_flags;
2378 #ifndef ARM_MMU_EXTENDED
2379 /*
2380 * Kernel entries are unmanaged and as such not to be changed.
2381 */
2382 if (PV_IS_KENTRY_P(oflags))
2383 continue;
2384 #endif
2385 pv->pv_flags &= ~maskbits;
2386
2387 pmap_release_page_lock(md);
2388 pmap_acquire_pmap_lock(pm);
2389
2390 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2391 if (l2b == NULL) {
2392 pmap_release_pmap_lock(pm);
2393 pmap_acquire_page_lock(md);
2394 continue;
2395 }
2396 KASSERTMSG(l2b != NULL, "%#lx", va);
2397
2398 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2399 const pt_entry_t opte = *ptep;
2400 pt_entry_t npte = opte | execbits;
2401
2402 #ifdef ARM_MMU_EXTENDED
2403 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2404 #endif
2405
2406 NPDEBUG(PDB_BITS,
2407 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2408 __func__, pv, pm, va, oflags));
2409
2410 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2411 #ifdef PMAP_CACHE_VIVT
2412 if ((oflags & PVF_NC)) {
2413 /*
2414 * Entry is not cacheable:
2415 *
2416 * Don't turn caching on again if this is a
2417 * modified emulation. This would be
2418 * inconsitent with the settings created by
2419 * pmap_vac_me_harder(). Otherwise, it's safe
2420 * to re-enable cacheing.
2421 *
2422 * There's no need to call pmap_vac_me_harder()
2423 * here: all pages are losing their write
2424 * permission.
2425 */
2426 if (maskbits & PVF_WRITE) {
2427 npte |= pte_l2_s_cache_mode;
2428 pv->pv_flags &= ~PVF_NC;
2429 }
2430 } else
2431 if (l2pte_writable_p(opte)) {
2432 /*
2433 * Entry is writable/cacheable: check if pmap
2434 * is current if it is flush it, otherwise it
2435 * won't be in the cache
2436 */
2437 pmap_cache_wbinv_page(pm, va,
2438 (maskbits & PVF_REF) != 0,
2439 oflags|PVF_WRITE);
2440 }
2441 #endif
2442
2443 /* make the pte read only */
2444 npte = l2pte_set_readonly(npte);
2445
2446 pmap_acquire_page_lock(md);
2447 #ifdef MULTIPROCESSOR
2448 pv = pmap_find_pv(md, pm, va);
2449 #endif
2450 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2451 /*
2452 * Keep alias accounting up to date
2453 */
2454 if (pm == pmap_kernel()) {
2455 md->krw_mappings--;
2456 md->kro_mappings++;
2457 } else {
2458 md->urw_mappings--;
2459 md->uro_mappings++;
2460 }
2461 #ifdef PMAP_CACHE_VIPT
2462 if (arm_cache_prefer_mask != 0) {
2463 if (md->urw_mappings + md->krw_mappings == 0) {
2464 md->pvh_attrs &= ~PVF_WRITE;
2465 } else {
2466 PMAP_VALIDATE_MD_PAGE(md);
2467 }
2468 }
2469 if (want_syncicache)
2470 need_syncicache = true;
2471 #ifndef ARM_MMU_EXTENDED
2472 need_vac_me_harder = true;
2473 #endif
2474 #endif /* PMAP_CACHE_VIPT */
2475 }
2476 pmap_release_page_lock(md);
2477 }
2478
2479 if (maskbits & PVF_REF) {
2480 if (true
2481 #ifndef ARM_MMU_EXTENDED
2482 && (oflags & PVF_NC) == 0
2483 #endif
2484 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2485 && l2pte_valid_p(npte)) {
2486 #ifdef PMAP_CACHE_VIVT
2487 /*
2488 * Check npte here; we may have already
2489 * done the wbinv above, and the validity
2490 * of the PTE is the same for opte and
2491 * npte.
2492 */
2493 pmap_cache_wbinv_page(pm, va, true, oflags);
2494 #endif
2495 }
2496
2497 /*
2498 * Make the PTE invalid so that we will take a
2499 * page fault the next time the mapping is
2500 * referenced.
2501 */
2502 npte &= ~L2_TYPE_MASK;
2503 npte |= L2_TYPE_INV;
2504 }
2505
2506 if (npte != opte) {
2507 l2pte_reset(ptep);
2508 PTE_SYNC(ptep);
2509
2510 /* Flush the TLB entry if a current pmap. */
2511 pmap_tlb_flush_SE(pm, va, oflags);
2512
2513 l2pte_set(ptep, npte, 0);
2514 PTE_SYNC(ptep);
2515 }
2516
2517 pmap_release_pmap_lock(pm);
2518 pmap_acquire_page_lock(md);
2519
2520 NPDEBUG(PDB_BITS,
2521 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2522 pm, va, opte, npte));
2523 }
2524
2525 #if defined(PMAP_CACHE_VIPT)
2526 /*
2527 * If we need to sync the I-cache and we haven't done it yet, do it.
2528 */
2529 if (need_syncicache) {
2530 pmap_release_page_lock(md);
2531 pmap_syncicache_page(md, pa);
2532 pmap_acquire_page_lock(md);
2533 PMAPCOUNT(exec_synced_clearbit);
2534 }
2535 #ifndef ARM_MMU_EXTENDED
2536 /*
2537 * If we are changing this to read-only, we need to call vac_me_harder
2538 * so we can change all the read-only pages to cacheable. We pretend
2539 * this as a page deletion.
2540 */
2541 if (need_vac_me_harder) {
2542 if (md->pvh_attrs & PVF_NC)
2543 pmap_vac_me_harder(md, pa, NULL, 0);
2544 }
2545 #endif /* !ARM_MMU_EXTENDED */
2546 #endif /* PMAP_CACHE_VIPT */
2547 }
2548
2549 /*
2550 * pmap_clean_page()
2551 *
2552 * This is a local function used to work out the best strategy to clean
2553 * a single page referenced by its entry in the PV table. It's used by
2554 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2555 *
2556 * Its policy is effectively:
2557 * o If there are no mappings, we don't bother doing anything with the cache.
2558 * o If there is one mapping, we clean just that page.
2559 * o If there are multiple mappings, we clean the entire cache.
2560 *
2561 * So that some functions can be further optimised, it returns 0 if it didn't
2562 * clean the entire cache, or 1 if it did.
2563 *
2564 * XXX One bug in this routine is that if the pv_entry has a single page
2565 * mapped at 0x00000000 a whole cache clean will be performed rather than
2566 * just the 1 page. Since this should not occur in everyday use and if it does
2567 * it will just result in not the most efficient clean for the page.
2568 */
2569 #ifdef PMAP_CACHE_VIVT
2570 static bool
2571 pmap_clean_page(struct vm_page_md *md, bool is_src)
2572 {
2573 struct pv_entry *pv;
2574 pmap_t pm_to_clean = NULL;
2575 bool cache_needs_cleaning = false;
2576 vaddr_t page_to_clean = 0;
2577 u_int flags = 0;
2578
2579 /*
2580 * Since we flush the cache each time we change to a different
2581 * user vmspace, we only need to flush the page if it is in the
2582 * current pmap.
2583 */
2584 KASSERT(pmap_page_locked_p(md));
2585 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2586 if (pmap_is_current(pv->pv_pmap)) {
2587 flags |= pv->pv_flags;
2588 /*
2589 * The page is mapped non-cacheable in
2590 * this map. No need to flush the cache.
2591 */
2592 if (pv->pv_flags & PVF_NC) {
2593 #ifdef DIAGNOSTIC
2594 KASSERT(!cache_needs_cleaning);
2595 #endif
2596 break;
2597 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2598 continue;
2599 if (cache_needs_cleaning) {
2600 page_to_clean = 0;
2601 break;
2602 } else {
2603 page_to_clean = pv->pv_va;
2604 pm_to_clean = pv->pv_pmap;
2605 }
2606 cache_needs_cleaning = true;
2607 }
2608 }
2609
2610 if (page_to_clean) {
2611 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2612 !is_src, flags | PVF_REF);
2613 } else if (cache_needs_cleaning) {
2614 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2615
2616 pmap_cache_wbinv_all(pm, flags);
2617 return true;
2618 }
2619 return false;
2620 }
2621 #endif
2622
2623 #ifdef PMAP_CACHE_VIPT
2624 /*
2625 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2626 * right cache alias to make sure we flush the right stuff.
2627 */
2628 void
2629 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2630 {
2631 pmap_t kpm = pmap_kernel();
2632 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2633 ? PAGE_SIZE
2634 : arm_pcache.icache_way_size;
2635
2636 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2637 md, md->pvh_attrs));
2638 /*
2639 * No need to clean the page if it's non-cached.
2640 */
2641 #ifndef ARM_MMU_EXTENDED
2642 if (md->pvh_attrs & PVF_NC)
2643 return;
2644 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2645 #endif
2646
2647 pt_entry_t * const ptep = cpu_cdst_pte(0);
2648 const vaddr_t dstp = cpu_cdstp(0);
2649 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2650 if (way_size <= PAGE_SIZE) {
2651 bool ok = false;
2652 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2653 if (ok) {
2654 cpu_icache_sync_range(vdstp, way_size);
2655 return;
2656 }
2657 }
2658 #endif
2659
2660 /*
2661 * We don't worry about the color of the exec page, we map the
2662 * same page to pages in the way and then do the icache_sync on
2663 * the entire way making sure we are cleaned.
2664 */
2665 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2666 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2667
2668 for (size_t i = 0, j = 0; i < way_size;
2669 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2670 l2pte_reset(ptep + j);
2671 PTE_SYNC(ptep + j);
2672
2673 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2674 /*
2675 * Set up a PTE with to flush these cache lines.
2676 */
2677 l2pte_set(ptep + j, npte, 0);
2678 }
2679 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2680
2681 /*
2682 * Flush it.
2683 */
2684 cpu_icache_sync_range(dstp, way_size);
2685
2686 for (size_t i = 0, j = 0; i < way_size;
2687 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2688 /*
2689 * Unmap the page(s).
2690 */
2691 l2pte_reset(ptep + j);
2692 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2693 }
2694 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2695
2696 md->pvh_attrs |= PVF_EXEC;
2697 PMAPCOUNT(exec_synced);
2698 }
2699
2700 #ifndef ARM_MMU_EXTENDED
2701 void
2702 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2703 {
2704 vsize_t va_offset, end_va;
2705 bool wbinv_p;
2706
2707 if (arm_cache_prefer_mask == 0)
2708 return;
2709
2710 switch (flush) {
2711 case PMAP_FLUSH_PRIMARY:
2712 if (md->pvh_attrs & PVF_MULTCLR) {
2713 va_offset = 0;
2714 end_va = arm_cache_prefer_mask;
2715 md->pvh_attrs &= ~PVF_MULTCLR;
2716 PMAPCOUNT(vac_flush_lots);
2717 } else {
2718 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2719 end_va = va_offset;
2720 PMAPCOUNT(vac_flush_one);
2721 }
2722 /*
2723 * Mark that the page is no longer dirty.
2724 */
2725 md->pvh_attrs &= ~PVF_DIRTY;
2726 wbinv_p = true;
2727 break;
2728 case PMAP_FLUSH_SECONDARY:
2729 va_offset = 0;
2730 end_va = arm_cache_prefer_mask;
2731 wbinv_p = true;
2732 md->pvh_attrs &= ~PVF_MULTCLR;
2733 PMAPCOUNT(vac_flush_lots);
2734 break;
2735 case PMAP_CLEAN_PRIMARY:
2736 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2737 end_va = va_offset;
2738 wbinv_p = false;
2739 /*
2740 * Mark that the page is no longer dirty.
2741 */
2742 if ((md->pvh_attrs & PVF_DMOD) == 0)
2743 md->pvh_attrs &= ~PVF_DIRTY;
2744 PMAPCOUNT(vac_clean_one);
2745 break;
2746 default:
2747 return;
2748 }
2749
2750 KASSERT(!(md->pvh_attrs & PVF_NC));
2751
2752 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2753 md, md->pvh_attrs));
2754
2755 const size_t scache_line_size = arm_scache.dcache_line_size;
2756
2757 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2758 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2759 const vaddr_t dstp = cpu_cdstp(va_offset);
2760 const pt_entry_t opte = *ptep;
2761
2762 if (flush == PMAP_FLUSH_SECONDARY
2763 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2764 continue;
2765
2766 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2767 /*
2768 * Set up a PTE with the right coloring to flush
2769 * existing cache entries.
2770 */
2771 const pt_entry_t npte = L2_S_PROTO
2772 | pa
2773 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2774 | pte_l2_s_cache_mode;
2775 l2pte_set(ptep, npte, opte);
2776 PTE_SYNC(ptep);
2777
2778 /*
2779 * Flush it. Make sure to flush secondary cache too since
2780 * bus_dma will ignore uncached pages.
2781 */
2782 if (scache_line_size != 0) {
2783 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2784 if (wbinv_p) {
2785 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2786 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2787 } else {
2788 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2789 }
2790 } else {
2791 if (wbinv_p) {
2792 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2793 } else {
2794 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2795 }
2796 }
2797
2798 /*
2799 * Restore the page table entry since we might have interrupted
2800 * pmap_zero_page or pmap_copy_page which was already using
2801 * this pte.
2802 */
2803 if (opte) {
2804 l2pte_set(ptep, opte, npte);
2805 } else {
2806 l2pte_reset(ptep);
2807 }
2808 PTE_SYNC(ptep);
2809 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2810 }
2811 }
2812 #endif /* ARM_MMU_EXTENDED */
2813 #endif /* PMAP_CACHE_VIPT */
2814
2815 /*
2816 * Routine: pmap_page_remove
2817 * Function:
2818 * Removes this physical page from
2819 * all physical maps in which it resides.
2820 * Reflects back modify bits to the pager.
2821 */
2822 static void
2823 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2824 {
2825 struct l2_bucket *l2b;
2826 struct pv_entry *pv;
2827 pt_entry_t *ptep;
2828 #ifndef ARM_MMU_EXTENDED
2829 bool flush = false;
2830 #endif
2831 u_int flags = 0;
2832
2833 NPDEBUG(PDB_FOLLOW,
2834 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2835 pa));
2836
2837 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2838 pmap_acquire_page_lock(md);
2839 if (*pvp == NULL) {
2840 #ifdef PMAP_CACHE_VIPT
2841 /*
2842 * We *know* the page contents are about to be replaced.
2843 * Discard the exec contents
2844 */
2845 if (PV_IS_EXEC_P(md->pvh_attrs))
2846 PMAPCOUNT(exec_discarded_page_protect);
2847 md->pvh_attrs &= ~PVF_EXEC;
2848 PMAP_VALIDATE_MD_PAGE(md);
2849 #endif
2850 pmap_release_page_lock(md);
2851 return;
2852 }
2853 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2854 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2855 #endif
2856
2857 /*
2858 * Clear alias counts
2859 */
2860 #ifdef PMAP_CACHE_VIVT
2861 md->k_mappings = 0;
2862 #endif
2863 md->urw_mappings = md->uro_mappings = 0;
2864
2865 #ifdef PMAP_CACHE_VIVT
2866 pmap_clean_page(md, false);
2867 #endif
2868
2869 while ((pv = *pvp) != NULL) {
2870 pmap_t pm = pv->pv_pmap;
2871 #ifndef ARM_MMU_EXTENDED
2872 if (flush == false && pmap_is_current(pm))
2873 flush = true;
2874 #endif
2875
2876 if (pm == pmap_kernel()) {
2877 #ifdef PMAP_CACHE_VIPT
2878 /*
2879 * If this was unmanaged mapping, it must be preserved.
2880 * Move it back on the list and advance the end-of-list
2881 * pointer.
2882 */
2883 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2884 *pvp = pv;
2885 pvp = &SLIST_NEXT(pv, pv_link);
2886 continue;
2887 }
2888 if (pv->pv_flags & PVF_WRITE)
2889 md->krw_mappings--;
2890 else
2891 md->kro_mappings--;
2892 #endif
2893 PMAPCOUNT(kernel_unmappings);
2894 }
2895 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2896 PMAPCOUNT(unmappings);
2897
2898 pmap_release_page_lock(md);
2899 pmap_acquire_pmap_lock(pm);
2900
2901 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2902 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2903
2904 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2905
2906 /*
2907 * Update statistics
2908 */
2909 --pm->pm_stats.resident_count;
2910
2911 /* Wired bit */
2912 if (pv->pv_flags & PVF_WIRED)
2913 --pm->pm_stats.wired_count;
2914
2915 flags |= pv->pv_flags;
2916
2917 /*
2918 * Invalidate the PTEs.
2919 */
2920 l2pte_reset(ptep);
2921 PTE_SYNC_CURRENT(pm, ptep);
2922
2923 #ifdef ARM_MMU_EXTENDED
2924 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2925 #endif
2926
2927 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2928
2929 pmap_release_pmap_lock(pm);
2930
2931 pool_put(&pmap_pv_pool, pv);
2932 pmap_acquire_page_lock(md);
2933 #ifdef MULTIPROCESSOR
2934 /*
2935 * Restart of the beginning of the list.
2936 */
2937 pvp = &SLIST_FIRST(&md->pvh_list);
2938 #endif
2939 }
2940 /*
2941 * if we reach the end of the list and there are still mappings, they
2942 * might be able to be cached now. And they must be kernel mappings.
2943 */
2944 if (!SLIST_EMPTY(&md->pvh_list)) {
2945 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2946 }
2947
2948 #ifdef PMAP_CACHE_VIPT
2949 /*
2950 * Its EXEC cache is now gone.
2951 */
2952 if (PV_IS_EXEC_P(md->pvh_attrs))
2953 PMAPCOUNT(exec_discarded_page_protect);
2954 md->pvh_attrs &= ~PVF_EXEC;
2955 KASSERT(md->urw_mappings == 0);
2956 KASSERT(md->uro_mappings == 0);
2957 #ifndef ARM_MMU_EXTENDED
2958 if (arm_cache_prefer_mask != 0) {
2959 if (md->krw_mappings == 0)
2960 md->pvh_attrs &= ~PVF_WRITE;
2961 PMAP_VALIDATE_MD_PAGE(md);
2962 }
2963 #endif /* ARM_MMU_EXTENDED */
2964 #endif /* PMAP_CACHE_VIPT */
2965 pmap_release_page_lock(md);
2966
2967 #ifndef ARM_MMU_EXTENDED
2968 if (flush) {
2969 /*
2970 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2971 * would need a subsequent call to pmap_update() to ensure
2972 * curpm->pm_cstate.cs_all is reset. Our callers are not
2973 * required to do that (see pmap(9)), so we can't modify
2974 * the current pmap's state.
2975 */
2976 if (PV_BEEN_EXECD(flags))
2977 cpu_tlb_flushID();
2978 else
2979 cpu_tlb_flushD();
2980 }
2981 cpu_cpwait();
2982 #endif /* ARM_MMU_EXTENDED */
2983 }
2984
2985 /*
2986 * pmap_t pmap_create(void)
2987 *
2988 * Create a new pmap structure from scratch.
2989 */
2990 pmap_t
2991 pmap_create(void)
2992 {
2993 pmap_t pm;
2994
2995 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2996
2997 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2998 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2999 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
3000
3001 pm->pm_stats.wired_count = 0;
3002 pm->pm_stats.resident_count = 1;
3003 #ifdef ARM_MMU_EXTENDED
3004 #ifdef MULTIPROCESSOR
3005 kcpuset_create(&pm->pm_active, true);
3006 kcpuset_create(&pm->pm_onproc, true);
3007 #endif
3008 #else
3009 pm->pm_cstate.cs_all = 0;
3010 #endif
3011 pmap_alloc_l1(pm);
3012
3013 /*
3014 * Note: The pool cache ensures that the pm_l2[] array is already
3015 * initialised to zero.
3016 */
3017
3018 pmap_pinit(pm);
3019
3020 return (pm);
3021 }
3022
3023 u_int
3024 arm32_mmap_flags(paddr_t pa)
3025 {
3026 /*
3027 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3028 * and we're using the upper bits in page numbers to pass flags around
3029 * so we might as well use the same bits
3030 */
3031 return (u_int)pa & PMAP_MD_MASK;
3032 }
3033 /*
3034 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3035 * u_int flags)
3036 *
3037 * Insert the given physical page (p) at
3038 * the specified virtual address (v) in the
3039 * target physical map with the protection requested.
3040 *
3041 * NB: This is the only routine which MAY NOT lazy-evaluate
3042 * or lose information. That is, this routine must actually
3043 * insert this page into the given map NOW.
3044 */
3045 int
3046 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3047 {
3048 struct l2_bucket *l2b;
3049 struct vm_page *pg, *opg;
3050 u_int nflags;
3051 u_int oflags;
3052 const bool kpm_p = (pm == pmap_kernel());
3053 #ifdef ARM_HAS_VBAR
3054 const bool vector_page_p = false;
3055 #else
3056 const bool vector_page_p = (va == vector_page);
3057 #endif
3058
3059 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3060
3061 UVMHIST_LOG(maphist, " (pm %p va %#x pa %#x prot %#x",
3062 pm, va, pa, prot);
3063 UVMHIST_LOG(maphist, " flag %#x", flags, 0, 0, 0);
3064
3065 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3066 KDASSERT(((va | pa) & PGOFSET) == 0);
3067
3068 /*
3069 * Get a pointer to the page. Later on in this function, we
3070 * test for a managed page by checking pg != NULL.
3071 */
3072 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3073
3074 nflags = 0;
3075 if (prot & VM_PROT_WRITE)
3076 nflags |= PVF_WRITE;
3077 if (prot & VM_PROT_EXECUTE)
3078 nflags |= PVF_EXEC;
3079 if (flags & PMAP_WIRED)
3080 nflags |= PVF_WIRED;
3081
3082 pmap_acquire_pmap_lock(pm);
3083
3084 /*
3085 * Fetch the L2 bucket which maps this page, allocating one if
3086 * necessary for user pmaps.
3087 */
3088 if (kpm_p) {
3089 l2b = pmap_get_l2_bucket(pm, va);
3090 } else {
3091 l2b = pmap_alloc_l2_bucket(pm, va);
3092 }
3093 if (l2b == NULL) {
3094 if (flags & PMAP_CANFAIL) {
3095 pmap_release_pmap_lock(pm);
3096 return (ENOMEM);
3097 }
3098 panic("pmap_enter: failed to allocate L2 bucket");
3099 }
3100 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3101 const pt_entry_t opte = *ptep;
3102 pt_entry_t npte = pa;
3103 oflags = 0;
3104
3105 if (opte) {
3106 /*
3107 * There is already a mapping at this address.
3108 * If the physical address is different, lookup the
3109 * vm_page.
3110 */
3111 if (l2pte_pa(opte) != pa) {
3112 KASSERT(!pmap_pv_tracked(pa));
3113 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3114 } else
3115 opg = pg;
3116 } else
3117 opg = NULL;
3118
3119 struct pmap_page *pp = pmap_pv_tracked(pa);
3120
3121 if (pg || pp) {
3122 KASSERT((pg != NULL) != (pp != NULL));
3123 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3124 PMAP_PAGE_TO_MD(pp);
3125
3126 /*
3127 * This is to be a managed mapping.
3128 */
3129 pmap_acquire_page_lock(md);
3130 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3131 /*
3132 * - The access type indicates that we don't need
3133 * to do referenced emulation.
3134 * OR
3135 * - The physical page has already been referenced
3136 * so no need to re-do referenced emulation here.
3137 */
3138 npte |= l2pte_set_readonly(L2_S_PROTO);
3139
3140 nflags |= PVF_REF;
3141
3142 if ((prot & VM_PROT_WRITE) != 0 &&
3143 ((flags & VM_PROT_WRITE) != 0 ||
3144 (md->pvh_attrs & PVF_MOD) != 0)) {
3145 /*
3146 * This is a writable mapping, and the
3147 * page's mod state indicates it has
3148 * already been modified. Make it
3149 * writable from the outset.
3150 */
3151 npte = l2pte_set_writable(npte);
3152 nflags |= PVF_MOD;
3153 }
3154
3155 #ifdef ARM_MMU_EXTENDED
3156 /*
3157 * If the page has been cleaned, then the pvh_attrs
3158 * will have PVF_EXEC set, so mark it execute so we
3159 * don't get an access fault when trying to execute
3160 * from it.
3161 */
3162 if (md->pvh_attrs & nflags & PVF_EXEC) {
3163 npte &= ~L2_XS_XN;
3164 }
3165 #endif
3166 } else {
3167 /*
3168 * Need to do page referenced emulation.
3169 */
3170 npte |= L2_TYPE_INV;
3171 }
3172
3173 if (flags & ARM32_MMAP_WRITECOMBINE) {
3174 npte |= pte_l2_s_wc_mode;
3175 } else
3176 npte |= pte_l2_s_cache_mode;
3177
3178 if (pg != NULL && pg == opg) {
3179 /*
3180 * We're changing the attrs of an existing mapping.
3181 */
3182 oflags = pmap_modify_pv(md, pa, pm, va,
3183 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3184 PVF_MOD | PVF_REF, nflags);
3185
3186 #ifdef PMAP_CACHE_VIVT
3187 /*
3188 * We may need to flush the cache if we're
3189 * doing rw-ro...
3190 */
3191 if (pm->pm_cstate.cs_cache_d &&
3192 (oflags & PVF_NC) == 0 &&
3193 l2pte_writable_p(opte) &&
3194 (prot & VM_PROT_WRITE) == 0)
3195 cpu_dcache_wb_range(va, PAGE_SIZE);
3196 #endif
3197 } else {
3198 struct pv_entry *pv;
3199 /*
3200 * New mapping, or changing the backing page
3201 * of an existing mapping.
3202 */
3203 if (opg) {
3204 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3205 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3206
3207 /*
3208 * Replacing an existing mapping with a new one.
3209 * It is part of our managed memory so we
3210 * must remove it from the PV list
3211 */
3212 pv = pmap_remove_pv(omd, opa, pm, va);
3213 pmap_vac_me_harder(omd, opa, pm, 0);
3214 oflags = pv->pv_flags;
3215
3216 #ifdef PMAP_CACHE_VIVT
3217 /*
3218 * If the old mapping was valid (ref/mod
3219 * emulation creates 'invalid' mappings
3220 * initially) then make sure to frob
3221 * the cache.
3222 */
3223 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3224 pmap_cache_wbinv_page(pm, va, true,
3225 oflags);
3226 }
3227 #endif
3228 } else {
3229 pmap_release_page_lock(md);
3230 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3231 if (pv == NULL) {
3232 pmap_release_pmap_lock(pm);
3233 if ((flags & PMAP_CANFAIL) == 0)
3234 panic("pmap_enter: "
3235 "no pv entries");
3236
3237 pmap_free_l2_bucket(pm, l2b, 0);
3238 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3239 0, 0, 0, 0);
3240 return (ENOMEM);
3241 }
3242 pmap_acquire_page_lock(md);
3243 }
3244
3245 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3246 }
3247 pmap_release_page_lock(md);
3248 } else {
3249 /*
3250 * We're mapping an unmanaged page.
3251 * These are always readable, and possibly writable, from
3252 * the get go as we don't need to track ref/mod status.
3253 */
3254 npte |= l2pte_set_readonly(L2_S_PROTO);
3255 if (prot & VM_PROT_WRITE)
3256 npte = l2pte_set_writable(npte);
3257
3258 /*
3259 * Make sure the vector table is mapped cacheable
3260 */
3261 if ((vector_page_p && !kpm_p)
3262 || (flags & ARM32_MMAP_CACHEABLE)) {
3263 npte |= pte_l2_s_cache_mode;
3264 #ifdef ARM_MMU_EXTENDED
3265 npte &= ~L2_XS_XN; /* and executable */
3266 #endif
3267 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3268 npte |= pte_l2_s_wc_mode;
3269 }
3270 if (opg) {
3271 /*
3272 * Looks like there's an existing 'managed' mapping
3273 * at this address.
3274 */
3275 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3276 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3277
3278 pmap_acquire_page_lock(omd);
3279 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3280 pmap_vac_me_harder(omd, opa, pm, 0);
3281 oflags = pv->pv_flags;
3282 pmap_release_page_lock(omd);
3283
3284 #ifdef PMAP_CACHE_VIVT
3285 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3286 pmap_cache_wbinv_page(pm, va, true, oflags);
3287 }
3288 #endif
3289 pool_put(&pmap_pv_pool, pv);
3290 }
3291 }
3292
3293 /*
3294 * Make sure userland mappings get the right permissions
3295 */
3296 if (!vector_page_p && !kpm_p) {
3297 npte |= L2_S_PROT_U;
3298 #ifdef ARM_MMU_EXTENDED
3299 npte |= L2_XS_nG; /* user pages are not global */
3300 #endif
3301 }
3302
3303 /*
3304 * Keep the stats up to date
3305 */
3306 if (opte == 0) {
3307 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3308 pm->pm_stats.resident_count++;
3309 }
3310
3311 UVMHIST_LOG(maphist, " opte %#x npte %#x", opte, npte, 0, 0);
3312
3313 #if defined(ARM_MMU_EXTENDED)
3314 /*
3315 * If exec protection was requested but the page hasn't been synced,
3316 * sync it now and allow execution from it.
3317 */
3318 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3319 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3320 npte &= ~L2_XS_XN;
3321 pmap_syncicache_page(md, pa);
3322 PMAPCOUNT(exec_synced_map);
3323 }
3324 #endif
3325 /*
3326 * If this is just a wiring change, the two PTEs will be
3327 * identical, so there's no need to update the page table.
3328 */
3329 if (npte != opte) {
3330 l2pte_reset(ptep);
3331 PTE_SYNC(ptep);
3332 if (l2pte_valid_p(opte)) {
3333 pmap_tlb_flush_SE(pm, va, oflags);
3334 }
3335 l2pte_set(ptep, npte, 0);
3336 PTE_SYNC(ptep);
3337 #ifndef ARM_MMU_EXTENDED
3338 bool is_cached = pmap_is_cached(pm);
3339 if (is_cached) {
3340 /*
3341 * We only need to frob the cache/tlb if this pmap
3342 * is current
3343 */
3344 if (!vector_page_p && l2pte_valid_p(npte)) {
3345 /*
3346 * This mapping is likely to be accessed as
3347 * soon as we return to userland. Fix up the
3348 * L1 entry to avoid taking another
3349 * page/domain fault.
3350 */
3351 pd_entry_t *pdep = pmap_l1_kva(pm)
3352 + l1pte_index(va);
3353 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3354 | L1_C_DOM(pmap_domain(pm));
3355 if (*pdep != pde) {
3356 l1pte_setone(pdep, pde);
3357 PDE_SYNC(pdep);
3358 }
3359 }
3360 }
3361 #endif /* !ARM_MMU_EXTENDED */
3362
3363 #ifndef ARM_MMU_EXTENDED
3364 UVMHIST_LOG(maphist, " is_cached %d cs 0x%08x\n",
3365 is_cached, pm->pm_cstate.cs_all, 0, 0);
3366
3367 if (pg != NULL) {
3368 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3369
3370 pmap_acquire_page_lock(md);
3371 pmap_vac_me_harder(md, pa, pm, va);
3372 pmap_release_page_lock(md);
3373 }
3374 #endif
3375 }
3376 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3377 if (pg) {
3378 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3379
3380 pmap_acquire_page_lock(md);
3381 #ifndef ARM_MMU_EXTENDED
3382 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3383 #endif
3384 PMAP_VALIDATE_MD_PAGE(md);
3385 pmap_release_page_lock(md);
3386 }
3387 #endif
3388
3389 pmap_release_pmap_lock(pm);
3390
3391 return (0);
3392 }
3393
3394 /*
3395 * pmap_remove()
3396 *
3397 * pmap_remove is responsible for nuking a number of mappings for a range
3398 * of virtual address space in the current pmap. To do this efficiently
3399 * is interesting, because in a number of cases a wide virtual address
3400 * range may be supplied that contains few actual mappings. So, the
3401 * optimisations are:
3402 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3403 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3404 * maybe do just a partial cache clean. This path of execution is
3405 * complicated by the fact that the cache must be flushed _before_
3406 * the PTE is nuked, being a VAC :-)
3407 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3408 * all invalidations until pmap_update(), since pmap_remove_all() has
3409 * already flushed the cache.
3410 * 4. Maybe later fast-case a single page, but I don't think this is
3411 * going to make _that_ much difference overall.
3412 */
3413
3414 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3415
3416 void
3417 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3418 {
3419 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3420 UVMHIST_LOG(maphist, " (pm=%p, sva=%#x, eva=%#x)", pm, sva, eva, 0);
3421
3422 /*
3423 * we lock in the pmap => pv_head direction
3424 */
3425 pmap_acquire_pmap_lock(pm);
3426
3427 #ifndef ARM_MMU_EXTENDED
3428 u_int cleanlist_idx, total, cnt;
3429 struct {
3430 vaddr_t va;
3431 pt_entry_t *ptep;
3432 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3433
3434 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3435 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3436 if (pm->pm_cstate.cs_tlb == 0)
3437 pm->pm_remove_all = true;
3438 } else
3439 cleanlist_idx = 0;
3440 total = 0;
3441 #endif
3442
3443 while (sva < eva) {
3444 /*
3445 * Do one L2 bucket's worth at a time.
3446 */
3447 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3448 if (next_bucket > eva)
3449 next_bucket = eva;
3450
3451 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3452 if (l2b == NULL) {
3453 sva = next_bucket;
3454 continue;
3455 }
3456
3457 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3458 u_int mappings = 0;
3459
3460 for (;sva < next_bucket;
3461 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3462 pt_entry_t opte = *ptep;
3463
3464 if (opte == 0) {
3465 /* Nothing here, move along */
3466 continue;
3467 }
3468
3469 u_int flags = PVF_REF;
3470 paddr_t pa = l2pte_pa(opte);
3471 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3472
3473 /*
3474 * Update flags. In a number of circumstances,
3475 * we could cluster a lot of these and do a
3476 * number of sequential pages in one go.
3477 */
3478 if (pg != NULL) {
3479 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3480 struct pv_entry *pv;
3481
3482 pmap_acquire_page_lock(md);
3483 pv = pmap_remove_pv(md, pa, pm, sva);
3484 pmap_vac_me_harder(md, pa, pm, 0);
3485 pmap_release_page_lock(md);
3486 if (pv != NULL) {
3487 if (pm->pm_remove_all == false) {
3488 flags = pv->pv_flags;
3489 }
3490 pool_put(&pmap_pv_pool, pv);
3491 }
3492 }
3493 mappings += PAGE_SIZE / L2_S_SIZE;
3494
3495 if (!l2pte_valid_p(opte)) {
3496 /*
3497 * Ref/Mod emulation is still active for this
3498 * mapping, therefore it is has not yet been
3499 * accessed. No need to frob the cache/tlb.
3500 */
3501 l2pte_reset(ptep);
3502 PTE_SYNC_CURRENT(pm, ptep);
3503 continue;
3504 }
3505
3506 #ifdef ARM_MMU_EXTENDED
3507 l2pte_reset(ptep);
3508 PTE_SYNC(ptep);
3509 if (__predict_false(pm->pm_remove_all == false)) {
3510 pmap_tlb_flush_SE(pm, sva, flags);
3511 }
3512 #else
3513 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3514 /* Add to the clean list. */
3515 cleanlist[cleanlist_idx].ptep = ptep;
3516 cleanlist[cleanlist_idx].va =
3517 sva | (flags & PVF_EXEC);
3518 cleanlist_idx++;
3519 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3520 /* Nuke everything if needed. */
3521 #ifdef PMAP_CACHE_VIVT
3522 pmap_cache_wbinv_all(pm, PVF_EXEC);
3523 #endif
3524 /*
3525 * Roll back the previous PTE list,
3526 * and zero out the current PTE.
3527 */
3528 for (cnt = 0;
3529 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3530 l2pte_reset(cleanlist[cnt].ptep);
3531 PTE_SYNC(cleanlist[cnt].ptep);
3532 }
3533 l2pte_reset(ptep);
3534 PTE_SYNC(ptep);
3535 cleanlist_idx++;
3536 pm->pm_remove_all = true;
3537 } else {
3538 l2pte_reset(ptep);
3539 PTE_SYNC(ptep);
3540 if (pm->pm_remove_all == false) {
3541 pmap_tlb_flush_SE(pm, sva, flags);
3542 }
3543 }
3544 #endif
3545 }
3546
3547 #ifndef ARM_MMU_EXTENDED
3548 /*
3549 * Deal with any left overs
3550 */
3551 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3552 total += cleanlist_idx;
3553 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3554 l2pte_reset(cleanlist[cnt].ptep);
3555 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3556 vaddr_t va = cleanlist[cnt].va;
3557 if (pm->pm_cstate.cs_all != 0) {
3558 vaddr_t clva = va & ~PAGE_MASK;
3559 u_int flags = va & PVF_EXEC;
3560 #ifdef PMAP_CACHE_VIVT
3561 pmap_cache_wbinv_page(pm, clva, true,
3562 PVF_REF | PVF_WRITE | flags);
3563 #endif
3564 pmap_tlb_flush_SE(pm, clva,
3565 PVF_REF | flags);
3566 }
3567 }
3568
3569 /*
3570 * If it looks like we're removing a whole bunch
3571 * of mappings, it's faster to just write-back
3572 * the whole cache now and defer TLB flushes until
3573 * pmap_update() is called.
3574 */
3575 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3576 cleanlist_idx = 0;
3577 else {
3578 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3579 #ifdef PMAP_CACHE_VIVT
3580 pmap_cache_wbinv_all(pm, PVF_EXEC);
3581 #endif
3582 pm->pm_remove_all = true;
3583 }
3584 }
3585 #endif /* ARM_MMU_EXTENDED */
3586
3587 pmap_free_l2_bucket(pm, l2b, mappings);
3588 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3589 }
3590
3591 pmap_release_pmap_lock(pm);
3592 }
3593
3594 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3595 static struct pv_entry *
3596 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3597 {
3598 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3599 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3600 struct pv_entry *pv;
3601
3602 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3603 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3604 KASSERT(pmap_page_locked_p(md));
3605
3606 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3607 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3608 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3609
3610 /*
3611 * If we are removing a writeable mapping to a cached exec page,
3612 * if it's the last mapping then clear it execness other sync
3613 * the page to the icache.
3614 */
3615 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3616 && (pv->pv_flags & PVF_WRITE) != 0) {
3617 if (SLIST_EMPTY(&md->pvh_list)) {
3618 md->pvh_attrs &= ~PVF_EXEC;
3619 PMAPCOUNT(exec_discarded_kremove);
3620 } else {
3621 pmap_syncicache_page(md, pa);
3622 PMAPCOUNT(exec_synced_kremove);
3623 }
3624 }
3625 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3626
3627 return pv;
3628 }
3629 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3630
3631 /*
3632 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3633 *
3634 * We assume there is already sufficient KVM space available
3635 * to do this, as we can't allocate L2 descriptor tables/metadata
3636 * from here.
3637 */
3638 void
3639 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3640 {
3641 #ifdef PMAP_CACHE_VIVT
3642 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3643 #endif
3644 #ifdef PMAP_CACHE_VIPT
3645 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3646 struct vm_page *opg;
3647 #ifndef ARM_MMU_EXTENDED
3648 struct pv_entry *pv = NULL;
3649 #endif
3650 #endif
3651 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3652
3653 UVMHIST_FUNC(__func__);
3654
3655 if (pmap_initialized) {
3656 UVMHIST_CALLED(maphist);
3657 UVMHIST_LOG(maphist, " (va=%#x, pa=%#x, prot=%#x, flags=%#x",
3658 va, pa, prot, flags);
3659 }
3660
3661 pmap_t kpm = pmap_kernel();
3662 pmap_acquire_pmap_lock(kpm);
3663 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3664 const size_t l1slot __diagused = l1pte_index(va);
3665 KASSERTMSG(l2b != NULL,
3666 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3667 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3668 kpm->pm_l2[L2_IDX(l1slot)]
3669 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3670 : NULL,
3671 kpm->pm_l2[L2_IDX(l1slot)]
3672 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3673 : NULL);
3674 KASSERT(l2b->l2b_kva != NULL);
3675
3676 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3677 const pt_entry_t opte = *ptep;
3678
3679 if (opte == 0) {
3680 PMAPCOUNT(kenter_mappings);
3681 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3682 } else {
3683 PMAPCOUNT(kenter_remappings);
3684 #ifdef PMAP_CACHE_VIPT
3685 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3686 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3687 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3688 #endif
3689 if (opg && arm_cache_prefer_mask != 0) {
3690 KASSERT(opg != pg);
3691 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3692 KASSERT((flags & PMAP_KMPAGE) == 0);
3693 #ifndef ARM_MMU_EXTENDED
3694 pmap_acquire_page_lock(omd);
3695 pv = pmap_kremove_pg(opg, va);
3696 pmap_release_page_lock(omd);
3697 #endif
3698 }
3699 #endif
3700 if (l2pte_valid_p(opte)) {
3701 l2pte_reset(ptep);
3702 PTE_SYNC(ptep);
3703 #ifdef PMAP_CACHE_VIVT
3704 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3705 #endif
3706 cpu_tlb_flushD_SE(va);
3707 cpu_cpwait();
3708 }
3709 }
3710 pmap_release_pmap_lock(kpm);
3711
3712 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3713 | ((flags & PMAP_NOCACHE)
3714 ? 0
3715 : ((flags & PMAP_PTE)
3716 ? pte_l2_s_cache_mode_pt : pte_l2_s_cache_mode));
3717 #ifdef ARM_MMU_EXTENDED
3718 if (prot & VM_PROT_EXECUTE)
3719 npte &= ~L2_XS_XN;
3720 #endif
3721 l2pte_set(ptep, npte, 0);
3722 PTE_SYNC(ptep);
3723
3724 if (pg) {
3725 if (flags & PMAP_KMPAGE) {
3726 KASSERT(md->urw_mappings == 0);
3727 KASSERT(md->uro_mappings == 0);
3728 KASSERT(md->krw_mappings == 0);
3729 KASSERT(md->kro_mappings == 0);
3730 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3731 KASSERT(pv == NULL);
3732 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3733 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3734 /* if there is a color conflict, evict from cache. */
3735 if (pmap_is_page_colored_p(md)
3736 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3737 PMAPCOUNT(vac_color_change);
3738 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3739 } else if (md->pvh_attrs & PVF_MULTCLR) {
3740 /*
3741 * If this page has multiple colors, expunge
3742 * them.
3743 */
3744 PMAPCOUNT(vac_flush_lots2);
3745 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3746 }
3747 /*
3748 * Since this is a KMPAGE, there can be no contention
3749 * for this page so don't lock it.
3750 */
3751 md->pvh_attrs &= PAGE_SIZE - 1;
3752 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3753 | (va & arm_cache_prefer_mask);
3754 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3755 md->pvh_attrs |= PVF_KMPAGE;
3756 #endif
3757 atomic_inc_32(&pmap_kmpages);
3758 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3759 } else if (arm_cache_prefer_mask != 0) {
3760 if (pv == NULL) {
3761 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3762 KASSERT(pv != NULL);
3763 }
3764 pmap_acquire_page_lock(md);
3765 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3766 PVF_WIRED | PVF_KENTRY
3767 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3768 if ((prot & VM_PROT_WRITE)
3769 && !(md->pvh_attrs & PVF_NC))
3770 md->pvh_attrs |= PVF_DIRTY;
3771 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3772 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3773 pmap_release_page_lock(md);
3774 #endif
3775 }
3776 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3777 } else {
3778 if (pv != NULL)
3779 pool_put(&pmap_pv_pool, pv);
3780 #endif
3781 }
3782 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3783 KASSERT(md == NULL || !pmap_page_locked_p(md));
3784 #endif
3785 if (pmap_initialized) {
3786 UVMHIST_LOG(maphist, " <-- done (ptep %p: %#x -> %#x)",
3787 ptep, opte, npte, 0);
3788 }
3789
3790 }
3791
3792 void
3793 pmap_kremove(vaddr_t va, vsize_t len)
3794 {
3795 #ifdef UVMHIST
3796 u_int total_mappings = 0;
3797 #endif
3798
3799 PMAPCOUNT(kenter_unmappings);
3800
3801 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3802
3803 UVMHIST_LOG(maphist, " (va=%#x, len=%#x)", va, len, 0, 0);
3804
3805 const vaddr_t eva = va + len;
3806
3807 pmap_acquire_pmap_lock(pmap_kernel());
3808
3809 while (va < eva) {
3810 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3811 if (next_bucket > eva)
3812 next_bucket = eva;
3813
3814 pmap_t kpm = pmap_kernel();
3815 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3816 KDASSERT(l2b != NULL);
3817
3818 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3819 pt_entry_t *ptep = sptep;
3820 u_int mappings = 0;
3821
3822 while (va < next_bucket) {
3823 const pt_entry_t opte = *ptep;
3824 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3825 if (opg != NULL) {
3826 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3827
3828 if (omd->pvh_attrs & PVF_KMPAGE) {
3829 KASSERT(omd->urw_mappings == 0);
3830 KASSERT(omd->uro_mappings == 0);
3831 KASSERT(omd->krw_mappings == 0);
3832 KASSERT(omd->kro_mappings == 0);
3833 omd->pvh_attrs &= ~PVF_KMPAGE;
3834 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3835 if (arm_cache_prefer_mask != 0) {
3836 omd->pvh_attrs &= ~PVF_WRITE;
3837 }
3838 #endif
3839 atomic_dec_32(&pmap_kmpages);
3840 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3841 } else if (arm_cache_prefer_mask != 0) {
3842 pmap_acquire_page_lock(omd);
3843 pool_put(&pmap_pv_pool,
3844 pmap_kremove_pg(opg, va));
3845 pmap_release_page_lock(omd);
3846 #endif
3847 }
3848 }
3849 if (l2pte_valid_p(opte)) {
3850 l2pte_reset(ptep);
3851 PTE_SYNC(ptep);
3852 #ifdef PMAP_CACHE_VIVT
3853 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3854 #endif
3855 cpu_tlb_flushD_SE(va);
3856
3857 mappings += PAGE_SIZE / L2_S_SIZE;
3858 }
3859 va += PAGE_SIZE;
3860 ptep += PAGE_SIZE / L2_S_SIZE;
3861 }
3862 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3863 mappings, l2b->l2b_occupancy);
3864 l2b->l2b_occupancy -= mappings;
3865 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3866 #ifdef UVMHIST
3867 total_mappings += mappings;
3868 #endif
3869 }
3870 pmap_release_pmap_lock(pmap_kernel());
3871 cpu_cpwait();
3872 UVMHIST_LOG(maphist, " <--- done (%u mappings removed)",
3873 total_mappings, 0, 0, 0);
3874 }
3875
3876 bool
3877 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3878 {
3879 struct l2_dtable *l2;
3880 pd_entry_t *pdep, pde;
3881 pt_entry_t *ptep, pte;
3882 paddr_t pa;
3883 u_int l1slot;
3884
3885 pmap_acquire_pmap_lock(pm);
3886
3887 l1slot = l1pte_index(va);
3888 pdep = pmap_l1_kva(pm) + l1slot;
3889 pde = *pdep;
3890
3891 if (l1pte_section_p(pde)) {
3892 /*
3893 * These should only happen for pmap_kernel()
3894 */
3895 KDASSERT(pm == pmap_kernel());
3896 pmap_release_pmap_lock(pm);
3897 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3898 if (l1pte_supersection_p(pde)) {
3899 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3900 } else
3901 #endif
3902 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3903 } else {
3904 /*
3905 * Note that we can't rely on the validity of the L1
3906 * descriptor as an indication that a mapping exists.
3907 * We have to look it up in the L2 dtable.
3908 */
3909 l2 = pm->pm_l2[L2_IDX(l1slot)];
3910
3911 if (l2 == NULL ||
3912 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3913 pmap_release_pmap_lock(pm);
3914 return false;
3915 }
3916
3917 pte = ptep[l2pte_index(va)];
3918 pmap_release_pmap_lock(pm);
3919
3920 if (pte == 0)
3921 return false;
3922
3923 switch (pte & L2_TYPE_MASK) {
3924 case L2_TYPE_L:
3925 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3926 break;
3927
3928 default:
3929 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3930 break;
3931 }
3932 }
3933
3934 if (pap != NULL)
3935 *pap = pa;
3936
3937 return true;
3938 }
3939
3940 /*
3941 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
3942 * that map it
3943 */
3944
3945 static void
3946 pmap_pv_remove(paddr_t pa)
3947 {
3948 struct pmap_page *pp;
3949
3950 pp = pmap_pv_tracked(pa);
3951 if (pp == NULL)
3952 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
3953 pa);
3954
3955 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
3956 pmap_page_remove(md, pa);
3957 }
3958
3959 void
3960 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
3961 {
3962
3963 /* the only case is remove at the moment */
3964 KASSERT(prot == VM_PROT_NONE);
3965 pmap_pv_remove(pa);
3966 }
3967
3968 void
3969 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3970 {
3971 struct l2_bucket *l2b;
3972 vaddr_t next_bucket;
3973
3974 NPDEBUG(PDB_PROTECT,
3975 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3976 pm, sva, eva, prot));
3977
3978 if ((prot & VM_PROT_READ) == 0) {
3979 pmap_remove(pm, sva, eva);
3980 return;
3981 }
3982
3983 if (prot & VM_PROT_WRITE) {
3984 /*
3985 * If this is a read->write transition, just ignore it and let
3986 * uvm_fault() take care of it later.
3987 */
3988 return;
3989 }
3990
3991 pmap_acquire_pmap_lock(pm);
3992
3993 #ifndef ARM_MMU_EXTENDED
3994 const bool flush = eva - sva >= PAGE_SIZE * 4;
3995 u_int flags = 0;
3996 #endif
3997 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3998
3999 while (sva < eva) {
4000 next_bucket = L2_NEXT_BUCKET_VA(sva);
4001 if (next_bucket > eva)
4002 next_bucket = eva;
4003
4004 l2b = pmap_get_l2_bucket(pm, sva);
4005 if (l2b == NULL) {
4006 sva = next_bucket;
4007 continue;
4008 }
4009
4010 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4011
4012 while (sva < next_bucket) {
4013 const pt_entry_t opte = *ptep;
4014 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4015 struct vm_page *pg;
4016 #ifndef ARM_MMU_EXTENDED
4017 u_int f;
4018 #endif
4019
4020 #ifdef PMAP_CACHE_VIVT
4021 /*
4022 * OK, at this point, we know we're doing
4023 * write-protect operation. If the pmap is
4024 * active, write-back the page.
4025 */
4026 pmap_cache_wbinv_page(pm, sva, false,
4027 PVF_REF | PVF_WRITE);
4028 #endif
4029
4030 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4031 pt_entry_t npte = l2pte_set_readonly(opte);
4032 l2pte_reset(ptep);
4033 PTE_SYNC(ptep);
4034 #ifdef ARM_MMU_EXTENDED
4035 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4036 #endif
4037 l2pte_set(ptep, npte, 0);
4038 PTE_SYNC(ptep);
4039
4040 if (pg != NULL) {
4041 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4042 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4043
4044 pmap_acquire_page_lock(md);
4045 #ifndef ARM_MMU_EXTENDED
4046 f =
4047 #endif
4048 pmap_modify_pv(md, pa, pm, sva,
4049 clr_mask, 0);
4050 pmap_vac_me_harder(md, pa, pm, sva);
4051 pmap_release_page_lock(md);
4052 #ifndef ARM_MMU_EXTENDED
4053 } else {
4054 f = PVF_REF | PVF_EXEC;
4055 }
4056
4057 if (flush) {
4058 flags |= f;
4059 } else {
4060 pmap_tlb_flush_SE(pm, sva, f);
4061 #endif
4062 }
4063 }
4064
4065 sva += PAGE_SIZE;
4066 ptep += PAGE_SIZE / L2_S_SIZE;
4067 }
4068 }
4069
4070 #ifndef ARM_MMU_EXTENDED
4071 if (flush) {
4072 if (PV_BEEN_EXECD(flags)) {
4073 pmap_tlb_flushID(pm);
4074 } else if (PV_BEEN_REFD(flags)) {
4075 pmap_tlb_flushD(pm);
4076 }
4077 }
4078 #endif
4079
4080 pmap_release_pmap_lock(pm);
4081 }
4082
4083 void
4084 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4085 {
4086 struct l2_bucket *l2b;
4087 pt_entry_t *ptep;
4088 vaddr_t next_bucket;
4089 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4090
4091 NPDEBUG(PDB_EXEC,
4092 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4093 pm, sva, eva));
4094
4095 pmap_acquire_pmap_lock(pm);
4096
4097 while (sva < eva) {
4098 next_bucket = L2_NEXT_BUCKET_VA(sva);
4099 if (next_bucket > eva)
4100 next_bucket = eva;
4101
4102 l2b = pmap_get_l2_bucket(pm, sva);
4103 if (l2b == NULL) {
4104 sva = next_bucket;
4105 continue;
4106 }
4107
4108 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4109 sva < next_bucket;
4110 sva += page_size,
4111 ptep += PAGE_SIZE / L2_S_SIZE,
4112 page_size = PAGE_SIZE) {
4113 if (l2pte_valid_p(*ptep)) {
4114 cpu_icache_sync_range(sva,
4115 min(page_size, eva - sva));
4116 }
4117 }
4118 }
4119
4120 pmap_release_pmap_lock(pm);
4121 }
4122
4123 void
4124 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4125 {
4126 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4127 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4128
4129 NPDEBUG(PDB_PROTECT,
4130 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4131 md, pa, prot));
4132
4133 switch(prot) {
4134 case VM_PROT_READ|VM_PROT_WRITE:
4135 #if defined(ARM_MMU_EXTENDED)
4136 pmap_acquire_page_lock(md);
4137 pmap_clearbit(md, pa, PVF_EXEC);
4138 pmap_release_page_lock(md);
4139 break;
4140 #endif
4141 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4142 break;
4143
4144 case VM_PROT_READ:
4145 #if defined(ARM_MMU_EXTENDED)
4146 pmap_acquire_page_lock(md);
4147 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4148 pmap_release_page_lock(md);
4149 break;
4150 #endif
4151 case VM_PROT_READ|VM_PROT_EXECUTE:
4152 pmap_acquire_page_lock(md);
4153 pmap_clearbit(md, pa, PVF_WRITE);
4154 pmap_release_page_lock(md);
4155 break;
4156
4157 default:
4158 pmap_page_remove(md, pa);
4159 break;
4160 }
4161 }
4162
4163 /*
4164 * pmap_clear_modify:
4165 *
4166 * Clear the "modified" attribute for a page.
4167 */
4168 bool
4169 pmap_clear_modify(struct vm_page *pg)
4170 {
4171 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4172 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4173 bool rv;
4174
4175 pmap_acquire_page_lock(md);
4176
4177 if (md->pvh_attrs & PVF_MOD) {
4178 rv = true;
4179 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4180 /*
4181 * If we are going to clear the modified bit and there are
4182 * no other modified bits set, flush the page to memory and
4183 * mark it clean.
4184 */
4185 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4186 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4187 #endif
4188 pmap_clearbit(md, pa, PVF_MOD);
4189 } else {
4190 rv = false;
4191 }
4192 pmap_release_page_lock(md);
4193
4194 return rv;
4195 }
4196
4197 /*
4198 * pmap_clear_reference:
4199 *
4200 * Clear the "referenced" attribute for a page.
4201 */
4202 bool
4203 pmap_clear_reference(struct vm_page *pg)
4204 {
4205 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4206 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4207 bool rv;
4208
4209 pmap_acquire_page_lock(md);
4210
4211 if (md->pvh_attrs & PVF_REF) {
4212 rv = true;
4213 pmap_clearbit(md, pa, PVF_REF);
4214 } else {
4215 rv = false;
4216 }
4217 pmap_release_page_lock(md);
4218
4219 return rv;
4220 }
4221
4222 /*
4223 * pmap_is_modified:
4224 *
4225 * Test if a page has the "modified" attribute.
4226 */
4227 /* See <arm/arm32/pmap.h> */
4228
4229 /*
4230 * pmap_is_referenced:
4231 *
4232 * Test if a page has the "referenced" attribute.
4233 */
4234 /* See <arm/arm32/pmap.h> */
4235
4236 #if defined(ARM_MMU_EXTENDED) && 0
4237 int
4238 pmap_prefetchabt_fixup(void *v)
4239 {
4240 struct trapframe * const tf = v;
4241 vaddr_t va = trunc_page(tf->tf_pc);
4242 int rv = ABORT_FIXUP_FAILED;
4243
4244 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4245 return rv;
4246
4247 kpreempt_disable();
4248 pmap_t pm = curcpu()->ci_pmap_cur;
4249 const size_t l1slot = l1pte_index(va);
4250 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4251 if (l2 == NULL)
4252 goto out;
4253
4254 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4255 if (l2b->l2b_kva == NULL)
4256 goto out;
4257
4258 /*
4259 * Check the PTE itself.
4260 */
4261 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4262 const pt_entry_t opte = *ptep;
4263 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4264 goto out;
4265
4266 paddr_t pa = l2pte_pa(opte);
4267 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4268 KASSERT(pg != NULL);
4269
4270 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4271
4272 pmap_acquire_page_lock(md);
4273 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4274 KASSERT(pv != NULL);
4275
4276 if (PV_IS_EXEC_P(pv->pv_flags)) {
4277 l2pte_reset(ptep);
4278 PTE_SYNC(ptep);
4279 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4280 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4281 pmap_syncicache_page(md, pa);
4282 }
4283 rv = ABORT_FIXUP_RETURN;
4284 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4285 PTE_SYNC(ptep);
4286 }
4287 pmap_release_page_lock(md);
4288
4289 out:
4290 kpreempt_enable();
4291 return rv;
4292 }
4293 #endif
4294
4295 int
4296 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4297 {
4298 struct l2_dtable *l2;
4299 struct l2_bucket *l2b;
4300 paddr_t pa;
4301 const size_t l1slot = l1pte_index(va);
4302 int rv = 0;
4303
4304 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4305
4306 va = trunc_page(va);
4307
4308 KASSERT(!user || (pm != pmap_kernel()));
4309
4310 UVMHIST_LOG(maphist, " (pm=%#x, va=%#x, ftype=%#x, user=%d)",
4311 pm, va, ftype, user);
4312 #ifdef ARM_MMU_EXTENDED
4313 UVMHIST_LOG(maphist, " ti=%#x pai=%#x asid=%#x",
4314 cpu_tlb_info(curcpu()), PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4315 PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4316 #endif
4317
4318 pmap_acquire_pmap_lock(pm);
4319
4320 /*
4321 * If there is no l2_dtable for this address, then the process
4322 * has no business accessing it.
4323 *
4324 * Note: This will catch userland processes trying to access
4325 * kernel addresses.
4326 */
4327 l2 = pm->pm_l2[L2_IDX(l1slot)];
4328 if (l2 == NULL) {
4329 UVMHIST_LOG(maphist, " no l2 for l1slot %#x", l1slot, 0, 0, 0);
4330 goto out;
4331 }
4332
4333 /*
4334 * Likewise if there is no L2 descriptor table
4335 */
4336 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4337 if (l2b->l2b_kva == NULL) {
4338 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#x)", l1slot, 0, 0, 0);
4339 goto out;
4340 }
4341
4342 /*
4343 * Check the PTE itself.
4344 */
4345 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4346 pt_entry_t const opte = *ptep;
4347 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4348 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#x)", l1slot, 0, 0, 0);
4349 goto out;
4350 }
4351
4352 #ifndef ARM_HAS_VBAR
4353 /*
4354 * Catch a userland access to the vector page mapped at 0x0
4355 */
4356 if (user && (opte & L2_S_PROT_U) == 0) {
4357 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4358 goto out;
4359 }
4360 #endif
4361
4362 pa = l2pte_pa(opte);
4363
4364 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4365 /*
4366 * This looks like a good candidate for "page modified"
4367 * emulation...
4368 */
4369 struct pv_entry *pv;
4370 struct vm_page *pg;
4371
4372 /* Extract the physical address of the page */
4373 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4374 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4375 goto out;
4376 }
4377
4378 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4379
4380 /* Get the current flags for this page. */
4381 pmap_acquire_page_lock(md);
4382 pv = pmap_find_pv(md, pm, va);
4383 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4384 pmap_release_page_lock(md);
4385 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4386 goto out;
4387 }
4388
4389 /*
4390 * Do the flags say this page is writable? If not then it
4391 * is a genuine write fault. If yes then the write fault is
4392 * our fault as we did not reflect the write access in the
4393 * PTE. Now we know a write has occurred we can correct this
4394 * and also set the modified bit
4395 */
4396 if ((pv->pv_flags & PVF_WRITE) == 0) {
4397 pmap_release_page_lock(md);
4398 goto out;
4399 }
4400
4401 md->pvh_attrs |= PVF_REF | PVF_MOD;
4402 pv->pv_flags |= PVF_REF | PVF_MOD;
4403 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4404 /*
4405 * If there are cacheable mappings for this page, mark it dirty.
4406 */
4407 if ((md->pvh_attrs & PVF_NC) == 0)
4408 md->pvh_attrs |= PVF_DIRTY;
4409 #endif
4410 #ifdef ARM_MMU_EXTENDED
4411 if (md->pvh_attrs & PVF_EXEC) {
4412 md->pvh_attrs &= ~PVF_EXEC;
4413 PMAPCOUNT(exec_discarded_modfixup);
4414 }
4415 #endif
4416 pmap_release_page_lock(md);
4417
4418 /*
4419 * Re-enable write permissions for the page. No need to call
4420 * pmap_vac_me_harder(), since this is just a
4421 * modified-emulation fault, and the PVF_WRITE bit isn't
4422 * changing. We've already set the cacheable bits based on
4423 * the assumption that we can write to this page.
4424 */
4425 const pt_entry_t npte =
4426 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4427 #ifdef ARM_MMU_EXTENDED
4428 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4429 #endif
4430 | 0;
4431 l2pte_reset(ptep);
4432 PTE_SYNC(ptep);
4433 pmap_tlb_flush_SE(pm, va,
4434 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4435 l2pte_set(ptep, npte, 0);
4436 PTE_SYNC(ptep);
4437 PMAPCOUNT(fixup_mod);
4438 rv = 1;
4439 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte from %#x to %#x)",
4440 opte, npte, 0, 0);
4441 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4442 /*
4443 * This looks like a good candidate for "page referenced"
4444 * emulation.
4445 */
4446 struct vm_page *pg;
4447
4448 /* Extract the physical address of the page */
4449 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4450 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4451 goto out;
4452 }
4453
4454 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4455
4456 /* Get the current flags for this page. */
4457 pmap_acquire_page_lock(md);
4458 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4459 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4460 pmap_release_page_lock(md);
4461 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4462 goto out;
4463 }
4464
4465 md->pvh_attrs |= PVF_REF;
4466 pv->pv_flags |= PVF_REF;
4467
4468 pt_entry_t npte =
4469 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4470 #ifdef ARM_MMU_EXTENDED
4471 if (pm != pmap_kernel()) {
4472 npte |= L2_XS_nG;
4473 }
4474 /*
4475 * If we got called from prefetch abort, then ftype will have
4476 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4477 * the PTE.
4478 */
4479 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4480 /*
4481 * Is this a mapping of an executable page?
4482 */
4483 if ((pv->pv_flags & PVF_EXEC) == 0) {
4484 pmap_release_page_lock(md);
4485 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4486 0, 0, 0, 0);
4487 goto out;
4488 }
4489 /*
4490 * If we haven't synced the page, do so now.
4491 */
4492 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4493 UVMHIST_LOG(maphist, " ref emul: syncicache page #%#x",
4494 pa, 0, 0, 0);
4495 pmap_syncicache_page(md, pa);
4496 PMAPCOUNT(fixup_exec);
4497 }
4498 npte &= ~L2_XS_XN;
4499 }
4500 #endif /* ARM_MMU_EXTENDED */
4501 pmap_release_page_lock(md);
4502 l2pte_reset(ptep);
4503 PTE_SYNC(ptep);
4504 pmap_tlb_flush_SE(pm, va,
4505 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4506 l2pte_set(ptep, npte, 0);
4507 PTE_SYNC(ptep);
4508 PMAPCOUNT(fixup_ref);
4509 rv = 1;
4510 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from %#x to %#x)",
4511 opte, npte, 0, 0);
4512 #ifdef ARM_MMU_EXTENDED
4513 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4514 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4515 if (pg == NULL) {
4516 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4517 goto out;
4518 }
4519
4520 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4521
4522 /* Get the current flags for this page. */
4523 pmap_acquire_page_lock(md);
4524 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4525 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4526 pmap_release_page_lock(md);
4527 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4528 goto out;
4529 }
4530
4531 /*
4532 * If we haven't synced the page, do so now.
4533 */
4534 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4535 UVMHIST_LOG(maphist, "syncicache page #%#x",
4536 pa, 0, 0, 0);
4537 pmap_syncicache_page(md, pa);
4538 }
4539 pmap_release_page_lock(md);
4540 /*
4541 * Turn off no-execute.
4542 */
4543 KASSERT(opte & L2_XS_nG);
4544 l2pte_reset(ptep);
4545 PTE_SYNC(ptep);
4546 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4547 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4548 PTE_SYNC(ptep);
4549 rv = 1;
4550 PMAPCOUNT(fixup_exec);
4551 UVMHIST_LOG(maphist, "exec: changed pte from %#x to %#x",
4552 opte, opte & ~L2_XS_XN, 0, 0);
4553 #endif
4554 }
4555
4556 #ifndef ARM_MMU_EXTENDED
4557 /*
4558 * We know there is a valid mapping here, so simply
4559 * fix up the L1 if necessary.
4560 */
4561 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4562 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4563 if (*pdep != pde) {
4564 l1pte_setone(pdep, pde);
4565 PDE_SYNC(pdep);
4566 rv = 1;
4567 PMAPCOUNT(fixup_pdes);
4568 }
4569 #endif
4570
4571 #ifdef CPU_SA110
4572 /*
4573 * There are bugs in the rev K SA110. This is a check for one
4574 * of them.
4575 */
4576 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4577 curcpu()->ci_arm_cpurev < 3) {
4578 /* Always current pmap */
4579 if (l2pte_valid_p(opte)) {
4580 extern int kernel_debug;
4581 if (kernel_debug & 1) {
4582 struct proc *p = curlwp->l_proc;
4583 printf("prefetch_abort: page is already "
4584 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4585 printf("prefetch_abort: pc=%08lx proc=%p "
4586 "process=%s\n", va, p, p->p_comm);
4587 printf("prefetch_abort: far=%08x fs=%x\n",
4588 cpu_faultaddress(), cpu_faultstatus());
4589 }
4590 #ifdef DDB
4591 if (kernel_debug & 2)
4592 Debugger();
4593 #endif
4594 rv = 1;
4595 }
4596 }
4597 #endif /* CPU_SA110 */
4598
4599 #ifndef ARM_MMU_EXTENDED
4600 /*
4601 * If 'rv == 0' at this point, it generally indicates that there is a
4602 * stale TLB entry for the faulting address. That might be due to a
4603 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4604 */
4605 if (rv == 0
4606 && pm->pm_l1->l1_domain_use_count == 1
4607 && pmap_needs_pte_sync == 0) {
4608 pmap_needs_pte_sync = 1;
4609 PTE_SYNC(ptep);
4610 PMAPCOUNT(fixup_ptesync);
4611 rv = 1;
4612 }
4613 #endif
4614
4615 #ifndef MULTIPROCESSOR
4616 #if defined(DEBUG) || 1
4617 /*
4618 * If 'rv == 0' at this point, it generally indicates that there is a
4619 * stale TLB entry for the faulting address. This happens when two or
4620 * more processes are sharing an L1. Since we don't flush the TLB on
4621 * a context switch between such processes, we can take domain faults
4622 * for mappings which exist at the same VA in both processes. EVEN IF
4623 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4624 * example.
4625 *
4626 * This is extremely likely to happen if pmap_enter() updated the L1
4627 * entry for a recently entered mapping. In this case, the TLB is
4628 * flushed for the new mapping, but there may still be TLB entries for
4629 * other mappings belonging to other processes in the 1MB range
4630 * covered by the L1 entry.
4631 *
4632 * Since 'rv == 0', we know that the L1 already contains the correct
4633 * value, so the fault must be due to a stale TLB entry.
4634 *
4635 * Since we always need to flush the TLB anyway in the case where we
4636 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4637 * stale TLB entries dynamically.
4638 *
4639 * However, the above condition can ONLY happen if the current L1 is
4640 * being shared. If it happens when the L1 is unshared, it indicates
4641 * that other parts of the pmap are not doing their job WRT managing
4642 * the TLB.
4643 */
4644 if (rv == 0
4645 #ifndef ARM_MMU_EXTENDED
4646 && pm->pm_l1->l1_domain_use_count == 1
4647 #endif
4648 && true) {
4649 #ifdef DEBUG
4650 extern int last_fault_code;
4651 #else
4652 int last_fault_code = ftype & VM_PROT_EXECUTE
4653 ? armreg_ifsr_read()
4654 : armreg_dfsr_read();
4655 #endif
4656 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4657 pm, va, ftype);
4658 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4659 l2, l2b, ptep, opte);
4660
4661 #ifndef ARM_MMU_EXTENDED
4662 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4663 pdep, pde, last_fault_code);
4664 #else
4665 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4666 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4667 armreg_ttbcr_read());
4668 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4669 last_fault_code, curcpu()->ci_pmap_cur,
4670 curcpu()->ci_pmap_asid_cur,
4671 armreg_contextidr_read(), armreg_dacr_read());
4672 #ifdef _ARM_ARCH_7
4673 if (ftype & VM_PROT_WRITE)
4674 armreg_ats1cuw_write(va);
4675 else
4676 armreg_ats1cur_write(va);
4677 arm_isb();
4678 printf("fixup: par %#x\n", armreg_par_read());
4679 #endif
4680 #endif
4681 #ifdef DDB
4682 extern int kernel_debug;
4683
4684 if (kernel_debug & 2) {
4685 pmap_release_pmap_lock(pm);
4686 #ifdef UVMHIST
4687 KERNHIST_DUMP(maphist);
4688 #endif
4689 cpu_Debugger();
4690 pmap_acquire_pmap_lock(pm);
4691 }
4692 #endif
4693 }
4694 #endif
4695 #endif
4696
4697 #ifndef ARM_MMU_EXTENDED
4698 /* Flush the TLB in the shared L1 case - see comment above */
4699 pmap_tlb_flush_SE(pm, va,
4700 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4701 #endif
4702
4703 rv = 1;
4704
4705 out:
4706 pmap_release_pmap_lock(pm);
4707
4708 return (rv);
4709 }
4710
4711 /*
4712 * Routine: pmap_procwr
4713 *
4714 * Function:
4715 * Synchronize caches corresponding to [addr, addr+len) in p.
4716 *
4717 */
4718 void
4719 pmap_procwr(struct proc *p, vaddr_t va, int len)
4720 {
4721 #ifndef ARM_MMU_EXTENDED
4722
4723 /* We only need to do anything if it is the current process. */
4724 if (p == curproc)
4725 cpu_icache_sync_range(va, len);
4726 #endif
4727 }
4728
4729 /*
4730 * Routine: pmap_unwire
4731 * Function: Clear the wired attribute for a map/virtual-address pair.
4732 *
4733 * In/out conditions:
4734 * The mapping must already exist in the pmap.
4735 */
4736 void
4737 pmap_unwire(pmap_t pm, vaddr_t va)
4738 {
4739 struct l2_bucket *l2b;
4740 pt_entry_t *ptep, pte;
4741 struct vm_page *pg;
4742 paddr_t pa;
4743
4744 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4745
4746 pmap_acquire_pmap_lock(pm);
4747
4748 l2b = pmap_get_l2_bucket(pm, va);
4749 KDASSERT(l2b != NULL);
4750
4751 ptep = &l2b->l2b_kva[l2pte_index(va)];
4752 pte = *ptep;
4753
4754 /* Extract the physical address of the page */
4755 pa = l2pte_pa(pte);
4756
4757 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4758 /* Update the wired bit in the pv entry for this page. */
4759 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4760
4761 pmap_acquire_page_lock(md);
4762 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4763 pmap_release_page_lock(md);
4764 }
4765
4766 pmap_release_pmap_lock(pm);
4767 }
4768
4769 #ifdef ARM_MMU_EXTENDED
4770 void
4771 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4772 {
4773 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4774
4775 /*
4776 * Assume that TTBR1 has only global mappings and TTBR0 only
4777 * has non-global mappings. To prevent speculation from doing
4778 * evil things we disable translation table walks using TTBR0
4779 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4780 * Once both are set, table walks are reenabled.
4781 */
4782 const uint32_t old_ttbcr = armreg_ttbcr_read();
4783 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4784 arm_isb();
4785
4786 pmap_tlb_asid_acquire(pm, l);
4787
4788 struct cpu_info * const ci = curcpu();
4789 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4790
4791 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4792 /*
4793 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4794 * have been updated.
4795 */
4796 arm_isb();
4797
4798 if (pm != pmap_kernel()) {
4799 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4800 }
4801 cpu_cpwait();
4802
4803 UVMHIST_LOG(maphist, " pm %p pm->pm_l1_pa %08x asid %u... done", pm,
4804 pm->pm_l1_pa, pai->pai_asid, 0);
4805
4806 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4807 ci->ci_pmap_asid_cur, pai->pai_asid);
4808 ci->ci_pmap_cur = pm;
4809 }
4810
4811 void
4812 pmap_md_pdetab_deactivate(pmap_t pm)
4813 {
4814
4815 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4816
4817 kpreempt_disable();
4818 struct cpu_info * const ci = curcpu();
4819 /*
4820 * Disable translation table walks from TTBR0 while no pmap has been
4821 * activated.
4822 */
4823 const uint32_t old_ttbcr = armreg_ttbcr_read();
4824 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4825 arm_isb();
4826 pmap_tlb_asid_deactivate(pm);
4827 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4828 arm_isb();
4829
4830 ci->ci_pmap_cur = pmap_kernel();
4831 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4832 ci->ci_pmap_asid_cur);
4833 kpreempt_enable();
4834 }
4835 #endif
4836
4837 void
4838 pmap_activate(struct lwp *l)
4839 {
4840 extern int block_userspace_access;
4841 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4842
4843 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4844
4845 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, npm, 0, 0);
4846
4847 struct cpu_info * const ci = curcpu();
4848
4849 /*
4850 * If activating a non-current lwp or the current lwp is
4851 * already active, just return.
4852 */
4853 if (false
4854 || l != curlwp
4855 #ifdef ARM_MMU_EXTENDED
4856 || (ci->ci_pmap_cur == npm &&
4857 (npm == pmap_kernel()
4858 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4859 #else
4860 || npm->pm_activated == true
4861 #endif
4862 || false) {
4863 UVMHIST_LOG(maphist, " <-- (same pmap)", curlwp, l, 0, 0);
4864 return;
4865 }
4866
4867 #ifndef ARM_MMU_EXTENDED
4868 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4869 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4870
4871 /*
4872 * If TTB and DACR are unchanged, short-circuit all the
4873 * TLB/cache management stuff.
4874 */
4875 pmap_t opm = ci->ci_lastlwp
4876 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4877 : NULL;
4878 if (opm != NULL) {
4879 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4880 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4881
4882 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4883 goto all_done;
4884 }
4885 #endif /* !ARM_MMU_EXTENDED */
4886
4887 PMAPCOUNT(activations);
4888 block_userspace_access = 1;
4889
4890 #ifndef ARM_MMU_EXTENDED
4891 /*
4892 * If switching to a user vmspace which is different to the
4893 * most recent one, and the most recent one is potentially
4894 * live in the cache, we must write-back and invalidate the
4895 * entire cache.
4896 */
4897 pmap_t rpm = ci->ci_pmap_lastuser;
4898
4899 /*
4900 * XXXSCW: There's a corner case here which can leave turds in the
4901 * cache as reported in kern/41058. They're probably left over during
4902 * tear-down and switching away from an exiting process. Until the root
4903 * cause is identified and fixed, zap the cache when switching pmaps.
4904 * This will result in a few unnecessary cache flushes, but that's
4905 * better than silently corrupting data.
4906 */
4907 #if 0
4908 if (npm != pmap_kernel() && rpm && npm != rpm &&
4909 rpm->pm_cstate.cs_cache) {
4910 rpm->pm_cstate.cs_cache = 0;
4911 #ifdef PMAP_CACHE_VIVT
4912 cpu_idcache_wbinv_all();
4913 #endif
4914 }
4915 #else
4916 if (rpm) {
4917 rpm->pm_cstate.cs_cache = 0;
4918 if (npm == pmap_kernel())
4919 ci->ci_pmap_lastuser = NULL;
4920 #ifdef PMAP_CACHE_VIVT
4921 cpu_idcache_wbinv_all();
4922 #endif
4923 }
4924 #endif
4925
4926 /* No interrupts while we frob the TTB/DACR */
4927 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4928 #endif /* !ARM_MMU_EXTENDED */
4929
4930 #ifndef ARM_HAS_VBAR
4931 /*
4932 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4933 * entry corresponding to 'vector_page' in the incoming L1 table
4934 * before switching to it otherwise subsequent interrupts/exceptions
4935 * (including domain faults!) will jump into hyperspace.
4936 */
4937 if (npm->pm_pl1vec != NULL) {
4938 cpu_tlb_flushID_SE((u_int)vector_page);
4939 cpu_cpwait();
4940 *npm->pm_pl1vec = npm->pm_l1vec;
4941 PTE_SYNC(npm->pm_pl1vec);
4942 }
4943 #endif
4944
4945 #ifdef ARM_MMU_EXTENDED
4946 pmap_md_pdetab_activate(npm, l);
4947 #else
4948 cpu_domains(ndacr);
4949 if (npm == pmap_kernel() || npm == rpm) {
4950 /*
4951 * Switching to a kernel thread, or back to the
4952 * same user vmspace as before... Simply update
4953 * the TTB (no TLB flush required)
4954 */
4955 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4956 cpu_cpwait();
4957 } else {
4958 /*
4959 * Otherwise, update TTB and flush TLB
4960 */
4961 cpu_context_switch(npm->pm_l1->l1_physaddr);
4962 if (rpm != NULL)
4963 rpm->pm_cstate.cs_tlb = 0;
4964 }
4965
4966 restore_interrupts(oldirqstate);
4967 #endif /* ARM_MMU_EXTENDED */
4968
4969 block_userspace_access = 0;
4970
4971 #ifndef ARM_MMU_EXTENDED
4972 all_done:
4973 /*
4974 * The new pmap is resident. Make sure it's marked
4975 * as resident in the cache/TLB.
4976 */
4977 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4978 if (npm != pmap_kernel())
4979 ci->ci_pmap_lastuser = npm;
4980
4981 /* The old pmap is not longer active */
4982 if (opm != npm) {
4983 if (opm != NULL)
4984 opm->pm_activated = false;
4985
4986 /* But the new one is */
4987 npm->pm_activated = true;
4988 }
4989 ci->ci_pmap_cur = npm;
4990 #endif
4991 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4992 }
4993
4994 void
4995 pmap_deactivate(struct lwp *l)
4996 {
4997 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
4998
4999 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5000
5001 UVMHIST_LOG(maphist, "(l=%#x) pm=%#x", l, pm, 0, 0);
5002
5003 #ifdef ARM_MMU_EXTENDED
5004 pmap_md_pdetab_deactivate(pm);
5005 #else
5006 /*
5007 * If the process is exiting, make sure pmap_activate() does
5008 * a full MMU context-switch and cache flush, which we might
5009 * otherwise skip. See PR port-arm/38950.
5010 */
5011 if (l->l_proc->p_sflag & PS_WEXIT)
5012 curcpu()->ci_lastlwp = NULL;
5013
5014 pm->pm_activated = false;
5015 #endif
5016 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5017 }
5018
5019 void
5020 pmap_update(pmap_t pm)
5021 {
5022
5023 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5024
5025 UVMHIST_LOG(maphist, "pm=%#x remove_all %d", pm, pm->pm_remove_all, 0,
5026 0);
5027
5028 #ifndef ARM_MMU_EXTENDED
5029 if (pm->pm_remove_all) {
5030 /*
5031 * Finish up the pmap_remove_all() optimisation by flushing
5032 * the TLB.
5033 */
5034 pmap_tlb_flushID(pm);
5035 pm->pm_remove_all = false;
5036 }
5037
5038 if (pmap_is_current(pm)) {
5039 /*
5040 * If we're dealing with a current userland pmap, move its L1
5041 * to the end of the LRU.
5042 */
5043 if (pm != pmap_kernel())
5044 pmap_use_l1(pm);
5045
5046 /*
5047 * We can assume we're done with frobbing the cache/tlb for
5048 * now. Make sure any future pmap ops don't skip cache/tlb
5049 * flushes.
5050 */
5051 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5052 }
5053 #else
5054
5055 kpreempt_disable();
5056 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5057 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5058 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5059 PMAP_COUNT(shootdown_ipis);
5060 }
5061 #endif
5062
5063 /*
5064 * If pmap_remove_all was called, we deactivated ourselves and released
5065 * our ASID. Now we have to reactivate ourselves.
5066 */
5067 if (__predict_false(pm->pm_remove_all)) {
5068 pm->pm_remove_all = false;
5069
5070 KASSERT(pm != pmap_kernel());
5071 pmap_md_pdetab_activate(pm, curlwp);
5072 }
5073
5074 #if defined(MULTIPROCESSOR)
5075 armreg_bpiallis_write(0);
5076 #else
5077 armreg_bpiall_write(0);
5078 #endif
5079 kpreempt_enable();
5080
5081 KASSERTMSG(pm == pmap_kernel()
5082 || curcpu()->ci_pmap_cur != pm
5083 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5084 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5085 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5086 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5087 #endif
5088
5089 PMAPCOUNT(updates);
5090
5091 /*
5092 * make sure TLB/cache operations have completed.
5093 */
5094 cpu_cpwait();
5095 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5096 }
5097
5098 void
5099 pmap_remove_all(pmap_t pm)
5100 {
5101
5102 /*
5103 * The vmspace described by this pmap is about to be torn down.
5104 * Until pmap_update() is called, UVM will only make calls
5105 * to pmap_remove(). We can make life much simpler by flushing
5106 * the cache now, and deferring TLB invalidation to pmap_update().
5107 */
5108 #ifdef PMAP_CACHE_VIVT
5109 pmap_cache_wbinv_all(pm, PVF_EXEC);
5110 #endif
5111 #ifdef ARM_MMU_EXTENDED
5112 #ifdef MULTIPROCESSOR
5113 struct cpu_info * const ci = curcpu();
5114 // This should be the last CPU with this pmap onproc
5115 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5116 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5117 #endif
5118 pmap_tlb_asid_deactivate(pm);
5119 #ifdef MULTIPROCESSOR
5120 KASSERT(kcpuset_iszero(pm->pm_onproc));
5121 #endif
5122
5123 pmap_tlb_asid_release_all(pm);
5124 #endif
5125 pm->pm_remove_all = true;
5126 }
5127
5128 /*
5129 * Retire the given physical map from service.
5130 * Should only be called if the map contains no valid mappings.
5131 */
5132 void
5133 pmap_destroy(pmap_t pm)
5134 {
5135 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5136
5137 u_int count;
5138
5139 if (pm == NULL)
5140 return;
5141
5142 UVMHIST_LOG(maphist, "pm=%#x remove_all %d", pm, pm->pm_remove_all, 0,
5143 0);
5144
5145 if (pm->pm_remove_all) {
5146 #ifdef ARM_MMU_EXTENDED
5147 pmap_tlb_asid_release_all(pm);
5148 #else
5149 pmap_tlb_flushID(pm);
5150 #endif
5151 pm->pm_remove_all = false;
5152 }
5153
5154 /*
5155 * Drop reference count
5156 */
5157 mutex_enter(pm->pm_lock);
5158 count = --pm->pm_obj.uo_refs;
5159 mutex_exit(pm->pm_lock);
5160 if (count > 0) {
5161 #ifndef ARM_MMU_EXTENDED
5162 if (pmap_is_current(pm)) {
5163 if (pm != pmap_kernel())
5164 pmap_use_l1(pm);
5165 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5166 }
5167 #endif
5168 return;
5169 }
5170
5171 /*
5172 * reference count is zero, free pmap resources and then free pmap.
5173 */
5174
5175 #ifndef ARM_HAS_VBAR
5176 if (vector_page < KERNEL_BASE) {
5177 KDASSERT(!pmap_is_current(pm));
5178
5179 /* Remove the vector page mapping */
5180 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5181 pmap_update(pm);
5182 }
5183 #endif
5184
5185 pmap_free_l1(pm);
5186
5187 #ifdef ARM_MMU_EXTENDED
5188 #ifdef MULTIPROCESSOR
5189 kcpuset_destroy(pm->pm_active);
5190 kcpuset_destroy(pm->pm_onproc);
5191 #endif
5192 #else
5193 struct cpu_info * const ci = curcpu();
5194 if (ci->ci_pmap_lastuser == pm)
5195 ci->ci_pmap_lastuser = NULL;
5196 #endif
5197
5198 uvm_obj_destroy(&pm->pm_obj, false);
5199 mutex_destroy(&pm->pm_obj_lock);
5200 pool_cache_put(&pmap_cache, pm);
5201 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5202 }
5203
5204
5205 /*
5206 * void pmap_reference(pmap_t pm)
5207 *
5208 * Add a reference to the specified pmap.
5209 */
5210 void
5211 pmap_reference(pmap_t pm)
5212 {
5213
5214 if (pm == NULL)
5215 return;
5216
5217 #ifndef ARM_MMU_EXTENDED
5218 pmap_use_l1(pm);
5219 #endif
5220
5221 mutex_enter(pm->pm_lock);
5222 pm->pm_obj.uo_refs++;
5223 mutex_exit(pm->pm_lock);
5224 }
5225
5226 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5227
5228 static struct evcnt pmap_prefer_nochange_ev =
5229 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5230 static struct evcnt pmap_prefer_change_ev =
5231 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5232
5233 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5234 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5235
5236 void
5237 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5238 {
5239 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5240 vaddr_t va = *vap;
5241 vaddr_t diff = (hint - va) & mask;
5242 if (diff == 0) {
5243 pmap_prefer_nochange_ev.ev_count++;
5244 } else {
5245 pmap_prefer_change_ev.ev_count++;
5246 if (__predict_false(td))
5247 va -= mask + 1;
5248 *vap = va + diff;
5249 }
5250 }
5251 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5252
5253 /*
5254 * pmap_zero_page()
5255 *
5256 * Zero a given physical page by mapping it at a page hook point.
5257 * In doing the zero page op, the page we zero is mapped cachable, as with
5258 * StrongARM accesses to non-cached pages are non-burst making writing
5259 * _any_ bulk data very slow.
5260 */
5261 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5262 void
5263 pmap_zero_page_generic(paddr_t pa)
5264 {
5265 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5266 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5267 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5268 #endif
5269 #if defined(PMAP_CACHE_VIPT)
5270 /* Choose the last page color it had, if any */
5271 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5272 #else
5273 const vsize_t va_offset = 0;
5274 #endif
5275 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5276 /*
5277 * Is this page mapped at its natural color?
5278 * If we have all of memory mapped, then just convert PA to VA.
5279 */
5280 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5281 || va_offset == (pa & arm_cache_prefer_mask);
5282 const vaddr_t vdstp = okcolor
5283 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5284 : cpu_cdstp(va_offset);
5285 #else
5286 const bool okcolor = false;
5287 const vaddr_t vdstp = cpu_cdstp(va_offset);
5288 #endif
5289 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5290
5291
5292 #ifdef DEBUG
5293 if (!SLIST_EMPTY(&md->pvh_list))
5294 panic("pmap_zero_page: page has mappings");
5295 #endif
5296
5297 KDASSERT((pa & PGOFSET) == 0);
5298
5299 if (!okcolor) {
5300 /*
5301 * Hook in the page, zero it, and purge the cache for that
5302 * zeroed page. Invalidate the TLB as needed.
5303 */
5304 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5305 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5306 l2pte_set(ptep, npte, 0);
5307 PTE_SYNC(ptep);
5308 cpu_tlb_flushD_SE(vdstp);
5309 cpu_cpwait();
5310 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5311 && !defined(ARM_MMU_EXTENDED)
5312 /*
5313 * If we are direct-mapped and our color isn't ok, then before
5314 * we bzero the page invalidate its contents from the cache and
5315 * reset the color to its natural color.
5316 */
5317 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5318 md->pvh_attrs &= ~arm_cache_prefer_mask;
5319 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5320 #endif
5321 }
5322 bzero_page(vdstp);
5323 if (!okcolor) {
5324 /*
5325 * Unmap the page.
5326 */
5327 l2pte_reset(ptep);
5328 PTE_SYNC(ptep);
5329 cpu_tlb_flushD_SE(vdstp);
5330 #ifdef PMAP_CACHE_VIVT
5331 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5332 #endif
5333 }
5334 #ifdef PMAP_CACHE_VIPT
5335 /*
5336 * This page is now cache resident so it now has a page color.
5337 * Any contents have been obliterated so clear the EXEC flag.
5338 */
5339 #ifndef ARM_MMU_EXTENDED
5340 if (!pmap_is_page_colored_p(md)) {
5341 PMAPCOUNT(vac_color_new);
5342 md->pvh_attrs |= PVF_COLORED;
5343 }
5344 md->pvh_attrs |= PVF_DIRTY;
5345 #endif
5346 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5347 md->pvh_attrs &= ~PVF_EXEC;
5348 PMAPCOUNT(exec_discarded_zero);
5349 }
5350 #endif
5351 }
5352 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5353
5354 #if ARM_MMU_XSCALE == 1
5355 void
5356 pmap_zero_page_xscale(paddr_t pa)
5357 {
5358 #ifdef DEBUG
5359 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5360 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5361
5362 if (!SLIST_EMPTY(&md->pvh_list))
5363 panic("pmap_zero_page: page has mappings");
5364 #endif
5365
5366 KDASSERT((pa & PGOFSET) == 0);
5367
5368 /*
5369 * Hook in the page, zero it, and purge the cache for that
5370 * zeroed page. Invalidate the TLB as needed.
5371 */
5372
5373 pt_entry_t npte = L2_S_PROTO | pa |
5374 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5375 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5376 l2pte_set(cdst_pte, npte, 0);
5377 PTE_SYNC(cdst_pte);
5378 cpu_tlb_flushD_SE(cdstp);
5379 cpu_cpwait();
5380 bzero_page(cdstp);
5381 xscale_cache_clean_minidata();
5382 l2pte_reset(cdst_pte);
5383 PTE_SYNC(cdst_pte);
5384 }
5385 #endif /* ARM_MMU_XSCALE == 1 */
5386
5387 /* pmap_pageidlezero()
5388 *
5389 * The same as above, except that we assume that the page is not
5390 * mapped. This means we never have to flush the cache first. Called
5391 * from the idle loop.
5392 */
5393 bool
5394 pmap_pageidlezero(paddr_t pa)
5395 {
5396 bool rv = true;
5397 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5398 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5399 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5400 #endif
5401 #ifdef PMAP_CACHE_VIPT
5402 /* Choose the last page color it had, if any */
5403 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5404 #else
5405 const vsize_t va_offset = 0;
5406 #endif
5407 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5408 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5409 || va_offset == (pa & arm_cache_prefer_mask);
5410 const vaddr_t vdstp = okcolor
5411 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5412 : cpu_cdstp(va_offset);
5413 #else
5414 const bool okcolor = false;
5415 const vaddr_t vdstp = cpu_cdstp(va_offset);
5416 #endif
5417 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5418
5419
5420 #ifdef DEBUG
5421 if (!SLIST_EMPTY(&md->pvh_list))
5422 panic("pmap_pageidlezero: page has mappings");
5423 #endif
5424
5425 KDASSERT((pa & PGOFSET) == 0);
5426
5427 if (!okcolor) {
5428 /*
5429 * Hook in the page, zero it, and purge the cache for that
5430 * zeroed page. Invalidate the TLB as needed.
5431 */
5432 const pt_entry_t npte = L2_S_PROTO | pa |
5433 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5434 l2pte_set(ptep, npte, 0);
5435 PTE_SYNC(ptep);
5436 cpu_tlb_flushD_SE(vdstp);
5437 cpu_cpwait();
5438 }
5439
5440 uint64_t *ptr = (uint64_t *)vdstp;
5441 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5442 if (sched_curcpu_runnable_p() != 0) {
5443 /*
5444 * A process has become ready. Abort now,
5445 * so we don't keep it waiting while we
5446 * do slow memory access to finish this
5447 * page.
5448 */
5449 rv = false;
5450 break;
5451 }
5452 *ptr++ = 0;
5453 }
5454
5455 #ifdef PMAP_CACHE_VIVT
5456 if (rv)
5457 /*
5458 * if we aborted we'll rezero this page again later so don't
5459 * purge it unless we finished it
5460 */
5461 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5462 #elif defined(PMAP_CACHE_VIPT)
5463 /*
5464 * This page is now cache resident so it now has a page color.
5465 * Any contents have been obliterated so clear the EXEC flag.
5466 */
5467 #ifndef ARM_MMU_EXTENDED
5468 if (!pmap_is_page_colored_p(md)) {
5469 PMAPCOUNT(vac_color_new);
5470 md->pvh_attrs |= PVF_COLORED;
5471 }
5472 #endif
5473 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5474 md->pvh_attrs &= ~PVF_EXEC;
5475 PMAPCOUNT(exec_discarded_zero);
5476 }
5477 #endif
5478 /*
5479 * Unmap the page.
5480 */
5481 if (!okcolor) {
5482 l2pte_reset(ptep);
5483 PTE_SYNC(ptep);
5484 cpu_tlb_flushD_SE(vdstp);
5485 }
5486
5487 return rv;
5488 }
5489
5490 /*
5491 * pmap_copy_page()
5492 *
5493 * Copy one physical page into another, by mapping the pages into
5494 * hook points. The same comment regarding cachability as in
5495 * pmap_zero_page also applies here.
5496 */
5497 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5498 void
5499 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5500 {
5501 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5502 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5503 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5504 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5505 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5506 #endif
5507 #ifdef PMAP_CACHE_VIPT
5508 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5509 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5510 #else
5511 const vsize_t src_va_offset = 0;
5512 const vsize_t dst_va_offset = 0;
5513 #endif
5514 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5515 /*
5516 * Is this page mapped at its natural color?
5517 * If we have all of memory mapped, then just convert PA to VA.
5518 */
5519 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5520 || src_va_offset == (src & arm_cache_prefer_mask);
5521 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5522 || dst_va_offset == (dst & arm_cache_prefer_mask);
5523 const vaddr_t vsrcp = src_okcolor
5524 ? pmap_direct_mapped_phys(src, &src_okcolor,
5525 cpu_csrcp(src_va_offset))
5526 : cpu_csrcp(src_va_offset);
5527 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5528 cpu_cdstp(dst_va_offset));
5529 #else
5530 const bool src_okcolor = false;
5531 const bool dst_okcolor = false;
5532 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5533 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5534 #endif
5535 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5536 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5537
5538 #ifdef DEBUG
5539 if (!SLIST_EMPTY(&dst_md->pvh_list))
5540 panic("pmap_copy_page: dst page has mappings");
5541 #endif
5542
5543 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5544 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5545 #endif
5546 KDASSERT((src & PGOFSET) == 0);
5547 KDASSERT((dst & PGOFSET) == 0);
5548
5549 /*
5550 * Clean the source page. Hold the source page's lock for
5551 * the duration of the copy so that no other mappings can
5552 * be created while we have a potentially aliased mapping.
5553 */
5554 #ifdef PMAP_CACHE_VIVT
5555 pmap_acquire_page_lock(src_md);
5556 (void) pmap_clean_page(src_md, true);
5557 pmap_release_page_lock(src_md);
5558 #endif
5559
5560 /*
5561 * Map the pages into the page hook points, copy them, and purge
5562 * the cache for the appropriate page. Invalidate the TLB
5563 * as required.
5564 */
5565 if (!src_okcolor) {
5566 const pt_entry_t nsrc_pte = L2_S_PROTO
5567 | src
5568 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5569 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5570 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5571 | pte_l2_s_cache_mode
5572 #endif
5573 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5574 l2pte_set(src_ptep, nsrc_pte, 0);
5575 PTE_SYNC(src_ptep);
5576 cpu_tlb_flushD_SE(vsrcp);
5577 cpu_cpwait();
5578 }
5579 if (!dst_okcolor) {
5580 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5581 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5582 l2pte_set(dst_ptep, ndst_pte, 0);
5583 PTE_SYNC(dst_ptep);
5584 cpu_tlb_flushD_SE(vdstp);
5585 cpu_cpwait();
5586 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5587 /*
5588 * If we are direct-mapped and our color isn't ok, then before
5589 * we bcopy to the new page invalidate its contents from the
5590 * cache and reset its color to its natural color.
5591 */
5592 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5593 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5594 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5595 #endif
5596 }
5597 bcopy_page(vsrcp, vdstp);
5598 #ifdef PMAP_CACHE_VIVT
5599 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5600 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5601 #endif
5602 /*
5603 * Unmap the pages.
5604 */
5605 if (!src_okcolor) {
5606 l2pte_reset(src_ptep);
5607 PTE_SYNC(src_ptep);
5608 cpu_tlb_flushD_SE(vsrcp);
5609 cpu_cpwait();
5610 }
5611 if (!dst_okcolor) {
5612 l2pte_reset(dst_ptep);
5613 PTE_SYNC(dst_ptep);
5614 cpu_tlb_flushD_SE(vdstp);
5615 cpu_cpwait();
5616 }
5617 #ifdef PMAP_CACHE_VIPT
5618 /*
5619 * Now that the destination page is in the cache, mark it as colored.
5620 * If this was an exec page, discard it.
5621 */
5622 pmap_acquire_page_lock(dst_md);
5623 #ifndef ARM_MMU_EXTENDED
5624 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5625 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5626 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5627 }
5628 if (!pmap_is_page_colored_p(dst_md)) {
5629 PMAPCOUNT(vac_color_new);
5630 dst_md->pvh_attrs |= PVF_COLORED;
5631 }
5632 dst_md->pvh_attrs |= PVF_DIRTY;
5633 #endif
5634 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5635 dst_md->pvh_attrs &= ~PVF_EXEC;
5636 PMAPCOUNT(exec_discarded_copy);
5637 }
5638 pmap_release_page_lock(dst_md);
5639 #endif
5640 }
5641 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5642
5643 #if ARM_MMU_XSCALE == 1
5644 void
5645 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5646 {
5647 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5648 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5649 #ifdef DEBUG
5650 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5651
5652 if (!SLIST_EMPTY(&dst_md->pvh_list))
5653 panic("pmap_copy_page: dst page has mappings");
5654 #endif
5655
5656 KDASSERT((src & PGOFSET) == 0);
5657 KDASSERT((dst & PGOFSET) == 0);
5658
5659 /*
5660 * Clean the source page. Hold the source page's lock for
5661 * the duration of the copy so that no other mappings can
5662 * be created while we have a potentially aliased mapping.
5663 */
5664 #ifdef PMAP_CACHE_VIVT
5665 pmap_acquire_page_lock(src_md);
5666 (void) pmap_clean_page(src_md, true);
5667 pmap_release_page_lock(src_md);
5668 #endif
5669
5670 /*
5671 * Map the pages into the page hook points, copy them, and purge
5672 * the cache for the appropriate page. Invalidate the TLB
5673 * as required.
5674 */
5675 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5676 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5677 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5678 l2pte_set(csrc_pte, nsrc_pte, 0);
5679 PTE_SYNC(csrc_pte);
5680
5681 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5682 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5683 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5684 l2pte_set(cdst_pte, ndst_pte, 0);
5685 PTE_SYNC(cdst_pte);
5686
5687 cpu_tlb_flushD_SE(csrcp);
5688 cpu_tlb_flushD_SE(cdstp);
5689 cpu_cpwait();
5690 bcopy_page(csrcp, cdstp);
5691 xscale_cache_clean_minidata();
5692 l2pte_reset(csrc_pte);
5693 l2pte_reset(cdst_pte);
5694 PTE_SYNC(csrc_pte);
5695 PTE_SYNC(cdst_pte);
5696 }
5697 #endif /* ARM_MMU_XSCALE == 1 */
5698
5699 /*
5700 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5701 *
5702 * Return the start and end addresses of the kernel's virtual space.
5703 * These values are setup in pmap_bootstrap and are updated as pages
5704 * are allocated.
5705 */
5706 void
5707 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5708 {
5709 *start = virtual_avail;
5710 *end = virtual_end;
5711 }
5712
5713 /*
5714 * Helper function for pmap_grow_l2_bucket()
5715 */
5716 static inline int
5717 pmap_grow_map(vaddr_t va, paddr_t *pap)
5718 {
5719 paddr_t pa;
5720
5721 if (uvm.page_init_done == false) {
5722 #ifdef PMAP_STEAL_MEMORY
5723 pv_addr_t pv;
5724 pmap_boot_pagealloc(PAGE_SIZE,
5725 #ifdef PMAP_CACHE_VIPT
5726 arm_cache_prefer_mask,
5727 va & arm_cache_prefer_mask,
5728 #else
5729 0, 0,
5730 #endif
5731 &pv);
5732 pa = pv.pv_pa;
5733 #else
5734 if (uvm_page_physget(&pa) == false)
5735 return (1);
5736 #endif /* PMAP_STEAL_MEMORY */
5737 } else {
5738 struct vm_page *pg;
5739 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5740 if (pg == NULL)
5741 return (1);
5742 pa = VM_PAGE_TO_PHYS(pg);
5743 /*
5744 * This new page must not have any mappings. Enter it via
5745 * pmap_kenter_pa and let that routine do the hard work.
5746 */
5747 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5748 KASSERT(SLIST_EMPTY(&md->pvh_list));
5749 pmap_kenter_pa(va, pa,
5750 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5751 }
5752
5753 if (pap)
5754 *pap = pa;
5755
5756 PMAPCOUNT(pt_mappings);
5757 #ifdef DEBUG
5758 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5759 KDASSERT(l2b != NULL);
5760
5761 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5762 const pt_entry_t opte = *ptep;
5763 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5764 #endif
5765 memset((void *)va, 0, PAGE_SIZE);
5766 return (0);
5767 }
5768
5769 /*
5770 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5771 * used by pmap_growkernel().
5772 */
5773 static inline struct l2_bucket *
5774 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5775 {
5776 struct l2_dtable *l2;
5777 struct l2_bucket *l2b;
5778 u_short l1slot;
5779 vaddr_t nva;
5780
5781 l1slot = l1pte_index(va);
5782
5783 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5784 /*
5785 * No mapping at this address, as there is
5786 * no entry in the L1 table.
5787 * Need to allocate a new l2_dtable.
5788 */
5789 nva = pmap_kernel_l2dtable_kva;
5790 if ((nva & PGOFSET) == 0) {
5791 /*
5792 * Need to allocate a backing page
5793 */
5794 if (pmap_grow_map(nva, NULL))
5795 return (NULL);
5796 }
5797
5798 l2 = (struct l2_dtable *)nva;
5799 nva += sizeof(struct l2_dtable);
5800
5801 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5802 /*
5803 * The new l2_dtable straddles a page boundary.
5804 * Map in another page to cover it.
5805 */
5806 if (pmap_grow_map(nva, NULL))
5807 return (NULL);
5808 }
5809
5810 pmap_kernel_l2dtable_kva = nva;
5811
5812 /*
5813 * Link it into the parent pmap
5814 */
5815 pm->pm_l2[L2_IDX(l1slot)] = l2;
5816 }
5817
5818 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5819
5820 /*
5821 * Fetch pointer to the L2 page table associated with the address.
5822 */
5823 if (l2b->l2b_kva == NULL) {
5824 pt_entry_t *ptep;
5825
5826 /*
5827 * No L2 page table has been allocated. Chances are, this
5828 * is because we just allocated the l2_dtable, above.
5829 */
5830 nva = pmap_kernel_l2ptp_kva;
5831 ptep = (pt_entry_t *)nva;
5832 if ((nva & PGOFSET) == 0) {
5833 /*
5834 * Need to allocate a backing page
5835 */
5836 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5837 return (NULL);
5838 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5839 }
5840
5841 l2->l2_occupancy++;
5842 l2b->l2b_kva = ptep;
5843 l2b->l2b_l1slot = l1slot;
5844 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5845
5846 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5847 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5848 }
5849
5850 return (l2b);
5851 }
5852
5853 vaddr_t
5854 pmap_growkernel(vaddr_t maxkvaddr)
5855 {
5856 pmap_t kpm = pmap_kernel();
5857 #ifndef ARM_MMU_EXTENDED
5858 struct l1_ttable *l1;
5859 #endif
5860 int s;
5861
5862 if (maxkvaddr <= pmap_curmaxkvaddr)
5863 goto out; /* we are OK */
5864
5865 NPDEBUG(PDB_GROWKERN,
5866 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5867 pmap_curmaxkvaddr, maxkvaddr));
5868
5869 KDASSERT(maxkvaddr <= virtual_end);
5870
5871 /*
5872 * whoops! we need to add kernel PTPs
5873 */
5874
5875 s = splhigh(); /* to be safe */
5876 mutex_enter(kpm->pm_lock);
5877
5878 /* Map 1MB at a time */
5879 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5880 #ifdef ARM_MMU_EXTENDED
5881 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5882 pd_entry_t *pdep = spdep;
5883 #endif
5884 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5885 #ifdef ARM_MMU_EXTENDED
5886 pdep++,
5887 #endif
5888 l1slot++) {
5889 struct l2_bucket *l2b =
5890 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5891 KASSERT(l2b != NULL);
5892
5893 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5894 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5895 #ifdef ARM_MMU_EXTENDED
5896 l1pte_setone(pdep, npde);
5897 #else
5898 /* Distribute new L1 entry to all other L1s */
5899 SLIST_FOREACH(l1, &l1_list, l1_link) {
5900 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5901 l1pte_setone(pdep, npde);
5902 PDE_SYNC(pdep);
5903 }
5904 #endif
5905 }
5906 #ifdef ARM_MMU_EXTENDED
5907 PDE_SYNC_RANGE(spdep, pdep - spdep);
5908 #endif
5909
5910 #ifdef PMAP_CACHE_VIVT
5911 /*
5912 * flush out the cache, expensive but growkernel will happen so
5913 * rarely
5914 */
5915 cpu_dcache_wbinv_all();
5916 cpu_tlb_flushD();
5917 cpu_cpwait();
5918 #endif
5919
5920 mutex_exit(kpm->pm_lock);
5921 splx(s);
5922
5923 out:
5924 return (pmap_curmaxkvaddr);
5925 }
5926
5927 /************************ Utility routines ****************************/
5928
5929 #ifndef ARM_HAS_VBAR
5930 /*
5931 * vector_page_setprot:
5932 *
5933 * Manipulate the protection of the vector page.
5934 */
5935 void
5936 vector_page_setprot(int prot)
5937 {
5938 struct l2_bucket *l2b;
5939 pt_entry_t *ptep;
5940
5941 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5942 /*
5943 * If we are using VBAR to use the vectors in the kernel, then it's
5944 * already mapped in the kernel text so no need to anything here.
5945 */
5946 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5947 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5948 return;
5949 }
5950 #endif
5951
5952 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5953 KASSERT(l2b != NULL);
5954
5955 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5956
5957 const pt_entry_t opte = *ptep;
5958 #ifdef ARM_MMU_EXTENDED
5959 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5960 | L2_S_PROT(PTE_KERNEL, prot);
5961 #else
5962 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5963 | L2_S_PROT(PTE_KERNEL, prot);
5964 #endif
5965 l2pte_set(ptep, npte, opte);
5966 PTE_SYNC(ptep);
5967 cpu_tlb_flushD_SE(vector_page);
5968 cpu_cpwait();
5969 }
5970 #endif
5971
5972 /*
5973 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5974 * Returns true if the mapping exists, else false.
5975 *
5976 * NOTE: This function is only used by a couple of arm-specific modules.
5977 * It is not safe to take any pmap locks here, since we could be right
5978 * in the middle of debugging the pmap anyway...
5979 *
5980 * It is possible for this routine to return false even though a valid
5981 * mapping does exist. This is because we don't lock, so the metadata
5982 * state may be inconsistent.
5983 *
5984 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5985 * a "section" mapping.
5986 */
5987 bool
5988 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5989 {
5990 struct l2_dtable *l2;
5991 pd_entry_t *pdep, pde;
5992 pt_entry_t *ptep;
5993 u_short l1slot;
5994
5995 if (pm->pm_l1 == NULL)
5996 return false;
5997
5998 l1slot = l1pte_index(va);
5999 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6000 pde = *pdep;
6001
6002 if (l1pte_section_p(pde)) {
6003 *ptp = NULL;
6004 return true;
6005 }
6006
6007 l2 = pm->pm_l2[L2_IDX(l1slot)];
6008 if (l2 == NULL ||
6009 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6010 return false;
6011 }
6012
6013 *ptp = &ptep[l2pte_index(va)];
6014 return true;
6015 }
6016
6017 bool
6018 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6019 {
6020
6021 if (pm->pm_l1 == NULL)
6022 return false;
6023
6024 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6025
6026 return true;
6027 }
6028
6029 /************************ Bootstrapping routines ****************************/
6030
6031 #ifndef ARM_MMU_EXTENDED
6032 static void
6033 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6034 {
6035 int i;
6036
6037 l1->l1_kva = l1pt;
6038 l1->l1_domain_use_count = 0;
6039 l1->l1_domain_first = 0;
6040
6041 for (i = 0; i < PMAP_DOMAINS; i++)
6042 l1->l1_domain_free[i] = i + 1;
6043
6044 /*
6045 * Copy the kernel's L1 entries to each new L1.
6046 */
6047 if (pmap_initialized)
6048 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6049
6050 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6051 &l1->l1_physaddr) == false)
6052 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6053
6054 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6055 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6056 }
6057 #endif /* !ARM_MMU_EXTENDED */
6058
6059 /*
6060 * pmap_bootstrap() is called from the board-specific initarm() routine
6061 * once the kernel L1/L2 descriptors tables have been set up.
6062 *
6063 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6064 * spread over a number of disparate files/functions.
6065 *
6066 * We are passed the following parameters
6067 * - kernel_l1pt
6068 * This is a pointer to the base of the kernel's L1 translation table.
6069 * - vstart
6070 * 1MB-aligned start of managed kernel virtual memory.
6071 * - vend
6072 * 1MB-aligned end of managed kernel virtual memory.
6073 *
6074 * We use the first parameter to build the metadata (struct l1_ttable and
6075 * struct l2_dtable) necessary to track kernel mappings.
6076 */
6077 #define PMAP_STATIC_L2_SIZE 16
6078 void
6079 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6080 {
6081 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6082 #ifndef ARM_MMU_EXTENDED
6083 static struct l1_ttable static_l1;
6084 struct l1_ttable *l1 = &static_l1;
6085 #endif
6086 struct l2_dtable *l2;
6087 struct l2_bucket *l2b;
6088 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6089 pmap_t pm = pmap_kernel();
6090 pt_entry_t *ptep;
6091 paddr_t pa;
6092 vsize_t size;
6093 int nptes, l2idx, l2next = 0;
6094
6095 #ifdef ARM_MMU_EXTENDED
6096 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6097 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6098 #endif
6099
6100 #ifdef VERBOSE_INIT_ARM
6101 printf("kpm ");
6102 #endif
6103 /*
6104 * Initialise the kernel pmap object
6105 */
6106 curcpu()->ci_pmap_cur = pm;
6107 #ifdef ARM_MMU_EXTENDED
6108 pm->pm_l1 = l1pt;
6109 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6110 #ifdef VERBOSE_INIT_ARM
6111 printf("tlb0 ");
6112 #endif
6113 pmap_tlb_info_init(&pmap_tlb0_info);
6114 #ifdef MULTIPROCESSOR
6115 #ifdef VERBOSE_INIT_ARM
6116 printf("kcpusets ");
6117 #endif
6118 pm->pm_onproc = kcpuset_running;
6119 pm->pm_active = kcpuset_running;
6120 #endif
6121 #else
6122 pm->pm_l1 = l1;
6123 #endif
6124
6125 #ifdef VERBOSE_INIT_ARM
6126 printf("locks ");
6127 #endif
6128 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6129 if (arm_cache_prefer_mask != 0) {
6130 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6131 } else {
6132 #endif
6133 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
6134 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6135 }
6136 #endif
6137 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
6138 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
6139 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
6140
6141 #ifdef VERBOSE_INIT_ARM
6142 printf("l1pt ");
6143 #endif
6144 /*
6145 * Scan the L1 translation table created by initarm() and create
6146 * the required metadata for all valid mappings found in it.
6147 */
6148 for (size_t l1slot = 0;
6149 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6150 l1slot++) {
6151 pd_entry_t pde = l1pt[l1slot];
6152
6153 /*
6154 * We're only interested in Coarse mappings.
6155 * pmap_extract() can deal with section mappings without
6156 * recourse to checking L2 metadata.
6157 */
6158 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6159 continue;
6160
6161 /*
6162 * Lookup the KVA of this L2 descriptor table
6163 */
6164 pa = l1pte_pa(pde);
6165 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6166 if (ptep == NULL) {
6167 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6168 (u_int)l1slot << L1_S_SHIFT, pa);
6169 }
6170
6171 /*
6172 * Fetch the associated L2 metadata structure.
6173 * Allocate a new one if necessary.
6174 */
6175 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6176 if (l2next == PMAP_STATIC_L2_SIZE)
6177 panic("pmap_bootstrap: out of static L2s");
6178 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6179 }
6180
6181 /*
6182 * One more L1 slot tracked...
6183 */
6184 l2->l2_occupancy++;
6185
6186 /*
6187 * Fill in the details of the L2 descriptor in the
6188 * appropriate bucket.
6189 */
6190 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6191 l2b->l2b_kva = ptep;
6192 l2b->l2b_pa = pa;
6193 l2b->l2b_l1slot = l1slot;
6194
6195 /*
6196 * Establish an initial occupancy count for this descriptor
6197 */
6198 for (l2idx = 0;
6199 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6200 l2idx++) {
6201 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6202 l2b->l2b_occupancy++;
6203 }
6204 }
6205
6206 /*
6207 * Make sure the descriptor itself has the correct cache mode.
6208 * If not, fix it, but whine about the problem. Port-meisters
6209 * should consider this a clue to fix up their initarm()
6210 * function. :)
6211 */
6212 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6213 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6214 "L2 pte @ %p\n", ptep);
6215 }
6216 }
6217
6218 #ifdef VERBOSE_INIT_ARM
6219 printf("cache(l1pt) ");
6220 #endif
6221 /*
6222 * Ensure the primary (kernel) L1 has the correct cache mode for
6223 * a page table. Bitch if it is not correctly set.
6224 */
6225 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6226 L1_TABLE_SIZE / L2_S_SIZE)) {
6227 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6228 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6229 }
6230
6231 #ifdef PMAP_CACHE_VIVT
6232 cpu_dcache_wbinv_all();
6233 cpu_tlb_flushID();
6234 cpu_cpwait();
6235 #endif
6236
6237 /*
6238 * now we allocate the "special" VAs which are used for tmp mappings
6239 * by the pmap (and other modules). we allocate the VAs by advancing
6240 * virtual_avail (note that there are no pages mapped at these VAs).
6241 *
6242 * Managed KVM space start from wherever initarm() tells us.
6243 */
6244 virtual_avail = vstart;
6245 virtual_end = vend;
6246
6247 #ifdef VERBOSE_INIT_ARM
6248 printf("specials ");
6249 #endif
6250 #ifdef PMAP_CACHE_VIPT
6251 /*
6252 * If we have a VIPT cache, we need one page/pte per possible alias
6253 * page so we won't violate cache aliasing rules.
6254 */
6255 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6256 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6257 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6258 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6259 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6260 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6261 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6262 }
6263 #else
6264 nptes = PAGE_SIZE / L2_S_SIZE;
6265 #endif
6266 #ifdef MULTIPROCESSOR
6267 cnptes = nptes;
6268 nptes *= arm_cpu_max;
6269 #endif
6270 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6271 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6272 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6273 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6274 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6275 if (msgbufaddr == NULL) {
6276 pmap_alloc_specials(&virtual_avail,
6277 round_page(MSGBUFSIZE) / PAGE_SIZE,
6278 (void *)&msgbufaddr, NULL);
6279 }
6280
6281 /*
6282 * Allocate a range of kernel virtual address space to be used
6283 * for L2 descriptor tables and metadata allocation in
6284 * pmap_growkernel().
6285 */
6286 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6287 pmap_alloc_specials(&virtual_avail,
6288 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6289 &pmap_kernel_l2ptp_kva, NULL);
6290
6291 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6292 pmap_alloc_specials(&virtual_avail,
6293 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6294 &pmap_kernel_l2dtable_kva, NULL);
6295
6296 #ifndef ARM_MMU_EXTENDED
6297 /*
6298 * init the static-global locks and global pmap list.
6299 */
6300 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6301
6302 /*
6303 * We can now initialise the first L1's metadata.
6304 */
6305 SLIST_INIT(&l1_list);
6306 TAILQ_INIT(&l1_lru_list);
6307 pmap_init_l1(l1, l1pt);
6308 #endif /* ARM_MMU_EXTENDED */
6309
6310 #ifndef ARM_HAS_VBAR
6311 /* Set up vector page L1 details, if necessary */
6312 if (vector_page < KERNEL_BASE) {
6313 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6314 l2b = pmap_get_l2_bucket(pm, vector_page);
6315 KDASSERT(l2b != NULL);
6316 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6317 L1_C_DOM(pmap_domain(pm));
6318 } else
6319 pm->pm_pl1vec = NULL;
6320 #endif
6321
6322 #ifdef VERBOSE_INIT_ARM
6323 printf("pools ");
6324 #endif
6325 /*
6326 * Initialize the pmap cache
6327 */
6328 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6329 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6330
6331 /*
6332 * Initialize the pv pool.
6333 */
6334 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6335 &pmap_bootstrap_pv_allocator, IPL_NONE);
6336
6337 /*
6338 * Initialize the L2 dtable pool and cache.
6339 */
6340 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6341 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6342
6343 /*
6344 * Initialise the L2 descriptor table pool and cache
6345 */
6346 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6347 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6348 pmap_l2ptp_ctor, NULL, NULL);
6349
6350 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6351
6352 cpu_dcache_wbinv_all();
6353 }
6354
6355 static bool
6356 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6357 {
6358 #ifdef ARM_MMU_EXTENDED
6359 return false;
6360 #else
6361 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6362 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6363 return false;
6364
6365 const vaddr_t eva = va + nptes * PAGE_SIZE;
6366 int rv = 0;
6367
6368 while (va < eva) {
6369 /*
6370 * Make sure the descriptor itself has the correct cache mode
6371 */
6372 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6373 pd_entry_t pde = *pdep;
6374
6375 if (l1pte_section_p(pde)) {
6376 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6377 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6378 *pdep = (pde & ~L1_S_CACHE_MASK) |
6379 pte_l1_s_cache_mode_pt;
6380 PDE_SYNC(pdep);
6381 cpu_dcache_wbinv_range((vaddr_t)pdep,
6382 sizeof(*pdep));
6383 rv = 1;
6384 }
6385 return rv;
6386 }
6387 vaddr_t pa = l1pte_pa(pde);
6388 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6389 if (ptep == NULL)
6390 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6391
6392 ptep += l2pte_index(va);
6393 const pt_entry_t opte = *ptep;
6394 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6395 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6396 | pte_l2_s_cache_mode_pt;
6397 l2pte_set(ptep, npte, opte);
6398 PTE_SYNC(ptep);
6399 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6400 rv = 1;
6401 }
6402 va += PAGE_SIZE;
6403 }
6404
6405 return (rv);
6406 #endif
6407 }
6408
6409 static void
6410 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6411 {
6412 vaddr_t va = *availp;
6413 struct l2_bucket *l2b;
6414
6415 if (ptep) {
6416 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6417 if (l2b == NULL)
6418 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6419
6420 if (ptep)
6421 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6422 }
6423
6424 *vap = va;
6425 *availp = va + (PAGE_SIZE * pages);
6426 }
6427
6428 void
6429 pmap_init(void)
6430 {
6431
6432 /*
6433 * Set the available memory vars - These do not map to real memory
6434 * addresses and cannot as the physical memory is fragmented.
6435 * They are used by ps for %mem calculations.
6436 * One could argue whether this should be the entire memory or just
6437 * the memory that is useable in a user process.
6438 */
6439 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6440 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6441
6442 /*
6443 * Now we need to free enough pv_entry structures to allow us to get
6444 * the kmem_map/kmem_object allocated and inited (done after this
6445 * function is finished). to do this we allocate one bootstrap page out
6446 * of kernel_map and use it to provide an initial pool of pv_entry
6447 * structures. we never free this page.
6448 */
6449 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6450
6451 #ifdef ARM_MMU_EXTENDED
6452 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6453 #endif
6454
6455 pmap_initialized = true;
6456 }
6457
6458 static vaddr_t last_bootstrap_page = 0;
6459 static void *free_bootstrap_pages = NULL;
6460
6461 static void *
6462 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6463 {
6464 extern void *pool_page_alloc(struct pool *, int);
6465 vaddr_t new_page;
6466 void *rv;
6467
6468 if (pmap_initialized)
6469 return (pool_page_alloc(pp, flags));
6470
6471 if (free_bootstrap_pages) {
6472 rv = free_bootstrap_pages;
6473 free_bootstrap_pages = *((void **)rv);
6474 return (rv);
6475 }
6476
6477 KASSERT(kernel_map != NULL);
6478 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6479 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6480
6481 KASSERT(new_page > last_bootstrap_page);
6482 last_bootstrap_page = new_page;
6483 return ((void *)new_page);
6484 }
6485
6486 static void
6487 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6488 {
6489 extern void pool_page_free(struct pool *, void *);
6490
6491 if ((vaddr_t)v <= last_bootstrap_page) {
6492 *((void **)v) = free_bootstrap_pages;
6493 free_bootstrap_pages = v;
6494 return;
6495 }
6496
6497 if (pmap_initialized) {
6498 pool_page_free(pp, v);
6499 return;
6500 }
6501 }
6502
6503 /*
6504 * pmap_postinit()
6505 *
6506 * This routine is called after the vm and kmem subsystems have been
6507 * initialised. This allows the pmap code to perform any initialisation
6508 * that can only be done once the memory allocation is in place.
6509 */
6510 void
6511 pmap_postinit(void)
6512 {
6513 #ifndef ARM_MMU_EXTENDED
6514 extern paddr_t physical_start, physical_end;
6515 struct l1_ttable *l1;
6516 struct pglist plist;
6517 struct vm_page *m;
6518 pd_entry_t *pdep;
6519 vaddr_t va, eva;
6520 u_int loop, needed;
6521 int error;
6522 #endif
6523
6524 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6525 pool_cache_setlowat(&pmap_l2dtable_cache,
6526 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6527
6528 #ifndef ARM_MMU_EXTENDED
6529 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6530 needed -= 1;
6531
6532 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6533
6534 for (loop = 0; loop < needed; loop++, l1++) {
6535 /* Allocate a L1 page table */
6536 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6537 if (va == 0)
6538 panic("Cannot allocate L1 KVM");
6539
6540 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6541 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6542 if (error)
6543 panic("Cannot allocate L1 physical pages");
6544
6545 m = TAILQ_FIRST(&plist);
6546 eva = va + L1_TABLE_SIZE;
6547 pdep = (pd_entry_t *)va;
6548
6549 while (m && va < eva) {
6550 paddr_t pa = VM_PAGE_TO_PHYS(m);
6551
6552 pmap_kenter_pa(va, pa,
6553 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6554
6555 va += PAGE_SIZE;
6556 m = TAILQ_NEXT(m, pageq.queue);
6557 }
6558
6559 #ifdef DIAGNOSTIC
6560 if (m)
6561 panic("pmap_alloc_l1pt: pglist not empty");
6562 #endif /* DIAGNOSTIC */
6563
6564 pmap_init_l1(l1, pdep);
6565 }
6566
6567 #ifdef DEBUG
6568 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6569 needed);
6570 #endif
6571 #endif /* !ARM_MMU_EXTENDED */
6572 }
6573
6574 /*
6575 * Note that the following routines are used by board-specific initialisation
6576 * code to configure the initial kernel page tables.
6577 *
6578 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
6579 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
6580 * behaviour of the old pmap, and provides an easy migration path for
6581 * initial bring-up of the new pmap on existing ports. Fortunately,
6582 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
6583 * will be deprecated.
6584 *
6585 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
6586 * tables.
6587 */
6588
6589 /*
6590 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6591 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6592 * find them as necessary.
6593 *
6594 * Note that the data on this list MUST remain valid after initarm() returns,
6595 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6596 */
6597 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6598
6599 static vaddr_t
6600 kernel_pt_lookup(paddr_t pa)
6601 {
6602 pv_addr_t *pv;
6603
6604 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6605 if (pv->pv_pa == (pa & ~PGOFSET))
6606 return (pv->pv_va | (pa & PGOFSET));
6607 }
6608 return (0);
6609 }
6610
6611 /*
6612 * pmap_map_section:
6613 *
6614 * Create a single section mapping.
6615 */
6616 void
6617 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6618 {
6619 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6620 const size_t l1slot = l1pte_index(va);
6621 pd_entry_t fl;
6622
6623 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6624
6625 switch (cache) {
6626 case PTE_NOCACHE:
6627 default:
6628 fl = 0;
6629 break;
6630
6631 case PTE_CACHE:
6632 fl = pte_l1_s_cache_mode;
6633 break;
6634
6635 case PTE_PAGETABLE:
6636 fl = pte_l1_s_cache_mode_pt;
6637 break;
6638 }
6639
6640 const pd_entry_t npde = L1_S_PROTO | pa |
6641 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6642 l1pte_setone(pdep + l1slot, npde);
6643 PDE_SYNC(pdep + l1slot);
6644 }
6645
6646 /*
6647 * pmap_map_entry:
6648 *
6649 * Create a single page mapping.
6650 */
6651 void
6652 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6653 {
6654 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6655 const size_t l1slot = l1pte_index(va);
6656 pt_entry_t npte;
6657 pt_entry_t *ptep;
6658
6659 KASSERT(((va | pa) & PGOFSET) == 0);
6660
6661 switch (cache) {
6662 case PTE_NOCACHE:
6663 default:
6664 npte = 0;
6665 break;
6666
6667 case PTE_CACHE:
6668 npte = pte_l2_s_cache_mode;
6669 break;
6670
6671 case PTE_PAGETABLE:
6672 npte = pte_l2_s_cache_mode_pt;
6673 break;
6674 }
6675
6676 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6677 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6678
6679 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6680 if (ptep == NULL)
6681 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6682
6683 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6684 #ifdef ARM_MMU_EXTENDED
6685 if (prot & VM_PROT_EXECUTE) {
6686 npte &= ~L2_XS_XN;
6687 }
6688 #endif
6689 ptep += l2pte_index(va);
6690 l2pte_set(ptep, npte, 0);
6691 PTE_SYNC(ptep);
6692 }
6693
6694 /*
6695 * pmap_link_l2pt:
6696 *
6697 * Link the L2 page table specified by "l2pv" into the L1
6698 * page table at the slot for "va".
6699 */
6700 void
6701 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6702 {
6703 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6704
6705 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6706 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6707
6708 const pd_entry_t npde = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6709 | l2pv->pv_pa;
6710
6711 l1pte_set(pdep, npde);
6712 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6713
6714 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6715 }
6716
6717 /*
6718 * pmap_map_chunk:
6719 *
6720 * Map a chunk of memory using the most efficient mappings
6721 * possible (section, large page, small page) into the
6722 * provided L1 and L2 tables at the specified virtual address.
6723 */
6724 vsize_t
6725 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6726 int prot, int cache)
6727 {
6728 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6729 pt_entry_t f1, f2s, f2l;
6730 vsize_t resid;
6731
6732 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6733
6734 if (l1pt == 0)
6735 panic("pmap_map_chunk: no L1 table provided");
6736
6737 #ifdef VERBOSE_INIT_ARM
6738 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6739 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6740 #endif
6741
6742 switch (cache) {
6743 case PTE_NOCACHE:
6744 default:
6745 f1 = 0;
6746 f2l = 0;
6747 f2s = 0;
6748 break;
6749
6750 case PTE_CACHE:
6751 f1 = pte_l1_s_cache_mode;
6752 f2l = pte_l2_l_cache_mode;
6753 f2s = pte_l2_s_cache_mode;
6754 break;
6755
6756 case PTE_PAGETABLE:
6757 f1 = pte_l1_s_cache_mode_pt;
6758 f2l = pte_l2_l_cache_mode_pt;
6759 f2s = pte_l2_s_cache_mode_pt;
6760 break;
6761 }
6762
6763 size = resid;
6764
6765 while (resid > 0) {
6766 const size_t l1slot = l1pte_index(va);
6767 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6768 /* See if we can use a supersection mapping. */
6769 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6770 /* Supersection are always domain 0 */
6771 const pd_entry_t npde = L1_SS_PROTO | pa
6772 #ifdef ARM_MMU_EXTENDED
6773 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6774 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6775 #endif
6776 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6777 #ifdef VERBOSE_INIT_ARM
6778 printf("sS");
6779 #endif
6780 l1pte_set(&pdep[l1slot], npde);
6781 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6782 va += L1_SS_SIZE;
6783 pa += L1_SS_SIZE;
6784 resid -= L1_SS_SIZE;
6785 continue;
6786 }
6787 #endif
6788 /* See if we can use a section mapping. */
6789 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6790 const pd_entry_t npde = L1_S_PROTO | pa
6791 #ifdef ARM_MMU_EXTENDED
6792 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6793 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6794 #endif
6795 | L1_S_PROT(PTE_KERNEL, prot) | f1
6796 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6797 #ifdef VERBOSE_INIT_ARM
6798 printf("S");
6799 #endif
6800 l1pte_set(&pdep[l1slot], npde);
6801 PDE_SYNC(&pdep[l1slot]);
6802 va += L1_S_SIZE;
6803 pa += L1_S_SIZE;
6804 resid -= L1_S_SIZE;
6805 continue;
6806 }
6807
6808 /*
6809 * Ok, we're going to use an L2 table. Make sure
6810 * one is actually in the corresponding L1 slot
6811 * for the current VA.
6812 */
6813 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6814 panic("%s: no L2 table for VA %#lx", __func__, va);
6815
6816 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6817 if (ptep == NULL)
6818 panic("%s: can't find L2 table for VA %#lx", __func__,
6819 va);
6820
6821 ptep += l2pte_index(va);
6822
6823 /* See if we can use a L2 large page mapping. */
6824 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6825 const pt_entry_t npte = L2_L_PROTO | pa
6826 #ifdef ARM_MMU_EXTENDED
6827 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6828 | (va & 0x80000000 ? 0 : L2_XS_nG)
6829 #endif
6830 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6831 #ifdef VERBOSE_INIT_ARM
6832 printf("L");
6833 #endif
6834 l2pte_set(ptep, npte, 0);
6835 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6836 va += L2_L_SIZE;
6837 pa += L2_L_SIZE;
6838 resid -= L2_L_SIZE;
6839 continue;
6840 }
6841
6842 #ifdef VERBOSE_INIT_ARM
6843 printf("P");
6844 #endif
6845 /* Use a small page mapping. */
6846 pt_entry_t npte = L2_S_PROTO | pa
6847 #ifdef ARM_MMU_EXTENDED
6848 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6849 | (va & 0x80000000 ? 0 : L2_XS_nG)
6850 #endif
6851 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6852 #ifdef ARM_MMU_EXTENDED
6853 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6854 #endif
6855 l2pte_set(ptep, npte, 0);
6856 PTE_SYNC(ptep);
6857 va += PAGE_SIZE;
6858 pa += PAGE_SIZE;
6859 resid -= PAGE_SIZE;
6860 }
6861 #ifdef VERBOSE_INIT_ARM
6862 printf("\n");
6863 #endif
6864 return (size);
6865 }
6866
6867 /********************** Static device map routines ***************************/
6868
6869 static const struct pmap_devmap *pmap_devmap_table;
6870
6871 /*
6872 * Register the devmap table. This is provided in case early console
6873 * initialization needs to register mappings created by bootstrap code
6874 * before pmap_devmap_bootstrap() is called.
6875 */
6876 void
6877 pmap_devmap_register(const struct pmap_devmap *table)
6878 {
6879
6880 pmap_devmap_table = table;
6881 }
6882
6883 /*
6884 * Map all of the static regions in the devmap table, and remember
6885 * the devmap table so other parts of the kernel can look up entries
6886 * later.
6887 */
6888 void
6889 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6890 {
6891 int i;
6892
6893 pmap_devmap_table = table;
6894
6895 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6896 #ifdef VERBOSE_INIT_ARM
6897 printf("devmap: %08lx -> %08lx @ %08lx\n",
6898 pmap_devmap_table[i].pd_pa,
6899 pmap_devmap_table[i].pd_pa +
6900 pmap_devmap_table[i].pd_size - 1,
6901 pmap_devmap_table[i].pd_va);
6902 #endif
6903 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6904 pmap_devmap_table[i].pd_pa,
6905 pmap_devmap_table[i].pd_size,
6906 pmap_devmap_table[i].pd_prot,
6907 pmap_devmap_table[i].pd_cache);
6908 }
6909 }
6910
6911 const struct pmap_devmap *
6912 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6913 {
6914 uint64_t endpa;
6915 int i;
6916
6917 if (pmap_devmap_table == NULL)
6918 return (NULL);
6919
6920 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6921
6922 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6923 if (pa >= pmap_devmap_table[i].pd_pa &&
6924 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6925 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6926 return (&pmap_devmap_table[i]);
6927 }
6928
6929 return (NULL);
6930 }
6931
6932 const struct pmap_devmap *
6933 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6934 {
6935 int i;
6936
6937 if (pmap_devmap_table == NULL)
6938 return (NULL);
6939
6940 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6941 if (va >= pmap_devmap_table[i].pd_va &&
6942 va + size - 1 <= pmap_devmap_table[i].pd_va +
6943 pmap_devmap_table[i].pd_size - 1)
6944 return (&pmap_devmap_table[i]);
6945 }
6946
6947 return (NULL);
6948 }
6949
6950 /********************** PTE initialization routines **************************/
6951
6952 /*
6953 * These routines are called when the CPU type is identified to set up
6954 * the PTE prototypes, cache modes, etc.
6955 *
6956 * The variables are always here, just in case modules need to reference
6957 * them (though, they shouldn't).
6958 */
6959
6960 pt_entry_t pte_l1_s_cache_mode;
6961 pt_entry_t pte_l1_s_wc_mode;
6962 pt_entry_t pte_l1_s_cache_mode_pt;
6963 pt_entry_t pte_l1_s_cache_mask;
6964
6965 pt_entry_t pte_l2_l_cache_mode;
6966 pt_entry_t pte_l2_l_wc_mode;
6967 pt_entry_t pte_l2_l_cache_mode_pt;
6968 pt_entry_t pte_l2_l_cache_mask;
6969
6970 pt_entry_t pte_l2_s_cache_mode;
6971 pt_entry_t pte_l2_s_wc_mode;
6972 pt_entry_t pte_l2_s_cache_mode_pt;
6973 pt_entry_t pte_l2_s_cache_mask;
6974
6975 pt_entry_t pte_l1_s_prot_u;
6976 pt_entry_t pte_l1_s_prot_w;
6977 pt_entry_t pte_l1_s_prot_ro;
6978 pt_entry_t pte_l1_s_prot_mask;
6979
6980 pt_entry_t pte_l2_s_prot_u;
6981 pt_entry_t pte_l2_s_prot_w;
6982 pt_entry_t pte_l2_s_prot_ro;
6983 pt_entry_t pte_l2_s_prot_mask;
6984
6985 pt_entry_t pte_l2_l_prot_u;
6986 pt_entry_t pte_l2_l_prot_w;
6987 pt_entry_t pte_l2_l_prot_ro;
6988 pt_entry_t pte_l2_l_prot_mask;
6989
6990 pt_entry_t pte_l1_ss_proto;
6991 pt_entry_t pte_l1_s_proto;
6992 pt_entry_t pte_l1_c_proto;
6993 pt_entry_t pte_l2_s_proto;
6994
6995 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6996 void (*pmap_zero_page_func)(paddr_t);
6997
6998 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6999 void
7000 pmap_pte_init_generic(void)
7001 {
7002
7003 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7004 pte_l1_s_wc_mode = L1_S_B;
7005 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7006
7007 pte_l2_l_cache_mode = L2_B|L2_C;
7008 pte_l2_l_wc_mode = L2_B;
7009 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7010
7011 pte_l2_s_cache_mode = L2_B|L2_C;
7012 pte_l2_s_wc_mode = L2_B;
7013 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7014
7015 /*
7016 * If we have a write-through cache, set B and C. If
7017 * we have a write-back cache, then we assume setting
7018 * only C will make those pages write-through (except for those
7019 * Cortex CPUs which can read the L1 caches).
7020 */
7021 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7022 #if ARM_MMU_V7 > 0
7023 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7024 #endif
7025 #if ARM_MMU_V6 > 0
7026 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7027 #endif
7028 || false) {
7029 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7030 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7031 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7032 } else {
7033 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7034 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7035 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7036 }
7037
7038 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7039 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7040 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7041 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7042
7043 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7044 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7045 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7046 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7047
7048 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7049 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7050 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7051 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7052
7053 pte_l1_ss_proto = L1_SS_PROTO_generic;
7054 pte_l1_s_proto = L1_S_PROTO_generic;
7055 pte_l1_c_proto = L1_C_PROTO_generic;
7056 pte_l2_s_proto = L2_S_PROTO_generic;
7057
7058 pmap_copy_page_func = pmap_copy_page_generic;
7059 pmap_zero_page_func = pmap_zero_page_generic;
7060 }
7061
7062 #if defined(CPU_ARM8)
7063 void
7064 pmap_pte_init_arm8(void)
7065 {
7066
7067 /*
7068 * ARM8 is compatible with generic, but we need to use
7069 * the page tables uncached.
7070 */
7071 pmap_pte_init_generic();
7072
7073 pte_l1_s_cache_mode_pt = 0;
7074 pte_l2_l_cache_mode_pt = 0;
7075 pte_l2_s_cache_mode_pt = 0;
7076 }
7077 #endif /* CPU_ARM8 */
7078
7079 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7080 void
7081 pmap_pte_init_arm9(void)
7082 {
7083
7084 /*
7085 * ARM9 is compatible with generic, but we want to use
7086 * write-through caching for now.
7087 */
7088 pmap_pte_init_generic();
7089
7090 pte_l1_s_cache_mode = L1_S_C;
7091 pte_l2_l_cache_mode = L2_C;
7092 pte_l2_s_cache_mode = L2_C;
7093
7094 pte_l1_s_wc_mode = L1_S_B;
7095 pte_l2_l_wc_mode = L2_B;
7096 pte_l2_s_wc_mode = L2_B;
7097
7098 pte_l1_s_cache_mode_pt = L1_S_C;
7099 pte_l2_l_cache_mode_pt = L2_C;
7100 pte_l2_s_cache_mode_pt = L2_C;
7101 }
7102 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7103 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7104
7105 #if defined(CPU_ARM10)
7106 void
7107 pmap_pte_init_arm10(void)
7108 {
7109
7110 /*
7111 * ARM10 is compatible with generic, but we want to use
7112 * write-through caching for now.
7113 */
7114 pmap_pte_init_generic();
7115
7116 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7117 pte_l2_l_cache_mode = L2_B | L2_C;
7118 pte_l2_s_cache_mode = L2_B | L2_C;
7119
7120 pte_l1_s_cache_mode = L1_S_B;
7121 pte_l2_l_cache_mode = L2_B;
7122 pte_l2_s_cache_mode = L2_B;
7123
7124 pte_l1_s_cache_mode_pt = L1_S_C;
7125 pte_l2_l_cache_mode_pt = L2_C;
7126 pte_l2_s_cache_mode_pt = L2_C;
7127
7128 }
7129 #endif /* CPU_ARM10 */
7130
7131 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7132 void
7133 pmap_pte_init_arm11(void)
7134 {
7135
7136 /*
7137 * ARM11 is compatible with generic, but we want to use
7138 * write-through caching for now.
7139 */
7140 pmap_pte_init_generic();
7141
7142 pte_l1_s_cache_mode = L1_S_C;
7143 pte_l2_l_cache_mode = L2_C;
7144 pte_l2_s_cache_mode = L2_C;
7145
7146 pte_l1_s_wc_mode = L1_S_B;
7147 pte_l2_l_wc_mode = L2_B;
7148 pte_l2_s_wc_mode = L2_B;
7149
7150 pte_l1_s_cache_mode_pt = L1_S_C;
7151 pte_l2_l_cache_mode_pt = L2_C;
7152 pte_l2_s_cache_mode_pt = L2_C;
7153 }
7154 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7155
7156 #if ARM_MMU_SA1 == 1
7157 void
7158 pmap_pte_init_sa1(void)
7159 {
7160
7161 /*
7162 * The StrongARM SA-1 cache does not have a write-through
7163 * mode. So, do the generic initialization, then reset
7164 * the page table cache mode to B=1,C=1, and note that
7165 * the PTEs need to be sync'd.
7166 */
7167 pmap_pte_init_generic();
7168
7169 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7170 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7171 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7172
7173 pmap_needs_pte_sync = 1;
7174 }
7175 #endif /* ARM_MMU_SA1 == 1*/
7176
7177 #if ARM_MMU_XSCALE == 1
7178 #if (ARM_NMMUS > 1)
7179 static u_int xscale_use_minidata;
7180 #endif
7181
7182 void
7183 pmap_pte_init_xscale(void)
7184 {
7185 uint32_t auxctl;
7186 int write_through = 0;
7187
7188 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7189 pte_l1_s_wc_mode = L1_S_B;
7190 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7191
7192 pte_l2_l_cache_mode = L2_B|L2_C;
7193 pte_l2_l_wc_mode = L2_B;
7194 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7195
7196 pte_l2_s_cache_mode = L2_B|L2_C;
7197 pte_l2_s_wc_mode = L2_B;
7198 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7199
7200 pte_l1_s_cache_mode_pt = L1_S_C;
7201 pte_l2_l_cache_mode_pt = L2_C;
7202 pte_l2_s_cache_mode_pt = L2_C;
7203
7204 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7205 /*
7206 * The XScale core has an enhanced mode where writes that
7207 * miss the cache cause a cache line to be allocated. This
7208 * is significantly faster than the traditional, write-through
7209 * behavior of this case.
7210 */
7211 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7212 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7213 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7214 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7215
7216 #ifdef XSCALE_CACHE_WRITE_THROUGH
7217 /*
7218 * Some versions of the XScale core have various bugs in
7219 * their cache units, the work-around for which is to run
7220 * the cache in write-through mode. Unfortunately, this
7221 * has a major (negative) impact on performance. So, we
7222 * go ahead and run fast-and-loose, in the hopes that we
7223 * don't line up the planets in a way that will trip the
7224 * bugs.
7225 *
7226 * However, we give you the option to be slow-but-correct.
7227 */
7228 write_through = 1;
7229 #elif defined(XSCALE_CACHE_WRITE_BACK)
7230 /* force write back cache mode */
7231 write_through = 0;
7232 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7233 /*
7234 * Intel PXA2[15]0 processors are known to have a bug in
7235 * write-back cache on revision 4 and earlier (stepping
7236 * A[01] and B[012]). Fixed for C0 and later.
7237 */
7238 {
7239 uint32_t id, type;
7240
7241 id = cpufunc_id();
7242 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7243
7244 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7245 if ((id & CPU_ID_REVISION_MASK) < 5) {
7246 /* write through for stepping A0-1 and B0-2 */
7247 write_through = 1;
7248 }
7249 }
7250 }
7251 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7252
7253 if (write_through) {
7254 pte_l1_s_cache_mode = L1_S_C;
7255 pte_l2_l_cache_mode = L2_C;
7256 pte_l2_s_cache_mode = L2_C;
7257 }
7258
7259 #if (ARM_NMMUS > 1)
7260 xscale_use_minidata = 1;
7261 #endif
7262
7263 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7264 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7265 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7266 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7267
7268 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7269 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7270 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7271 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7272
7273 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7274 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7275 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7276 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7277
7278 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7279 pte_l1_s_proto = L1_S_PROTO_xscale;
7280 pte_l1_c_proto = L1_C_PROTO_xscale;
7281 pte_l2_s_proto = L2_S_PROTO_xscale;
7282
7283 pmap_copy_page_func = pmap_copy_page_xscale;
7284 pmap_zero_page_func = pmap_zero_page_xscale;
7285
7286 /*
7287 * Disable ECC protection of page table access, for now.
7288 */
7289 auxctl = armreg_auxctl_read();
7290 auxctl &= ~XSCALE_AUXCTL_P;
7291 armreg_auxctl_write(auxctl);
7292 }
7293
7294 /*
7295 * xscale_setup_minidata:
7296 *
7297 * Set up the mini-data cache clean area. We require the
7298 * caller to allocate the right amount of physically and
7299 * virtually contiguous space.
7300 */
7301 void
7302 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7303 {
7304 extern vaddr_t xscale_minidata_clean_addr;
7305 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7306 pd_entry_t *pde = (pd_entry_t *) l1pt;
7307 vsize_t size;
7308 uint32_t auxctl;
7309
7310 xscale_minidata_clean_addr = va;
7311
7312 /* Round it to page size. */
7313 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7314
7315 for (; size != 0;
7316 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7317 const size_t l1slot = l1pte_index(va);
7318 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7319 if (ptep == NULL)
7320 panic("xscale_setup_minidata: can't find L2 table for "
7321 "VA 0x%08lx", va);
7322
7323 ptep += l2pte_index(va);
7324 pt_entry_t opte = *ptep;
7325 l2pte_set(ptep,
7326 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7327 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7328 }
7329
7330 /*
7331 * Configure the mini-data cache for write-back with
7332 * read/write-allocate.
7333 *
7334 * NOTE: In order to reconfigure the mini-data cache, we must
7335 * make sure it contains no valid data! In order to do that,
7336 * we must issue a global data cache invalidate command!
7337 *
7338 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7339 * THIS IS VERY IMPORTANT!
7340 */
7341
7342 /* Invalidate data and mini-data. */
7343 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7344 auxctl = armreg_auxctl_read();
7345 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7346 armreg_auxctl_write(auxctl);
7347 }
7348
7349 /*
7350 * Change the PTEs for the specified kernel mappings such that they
7351 * will use the mini data cache instead of the main data cache.
7352 */
7353 void
7354 pmap_uarea(vaddr_t va)
7355 {
7356 vaddr_t next_bucket, eva;
7357
7358 #if (ARM_NMMUS > 1)
7359 if (xscale_use_minidata == 0)
7360 return;
7361 #endif
7362
7363 eva = va + USPACE;
7364
7365 while (va < eva) {
7366 next_bucket = L2_NEXT_BUCKET_VA(va);
7367 if (next_bucket > eva)
7368 next_bucket = eva;
7369
7370 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7371 KDASSERT(l2b != NULL);
7372
7373 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7374 pt_entry_t *ptep = sptep;
7375
7376 while (va < next_bucket) {
7377 const pt_entry_t opte = *ptep;
7378 if (!l2pte_minidata_p(opte)) {
7379 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7380 cpu_tlb_flushD_SE(va);
7381 l2pte_set(ptep, opte & ~L2_B, opte);
7382 }
7383 ptep += PAGE_SIZE / L2_S_SIZE;
7384 va += PAGE_SIZE;
7385 }
7386 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7387 }
7388 cpu_cpwait();
7389 }
7390 #endif /* ARM_MMU_XSCALE == 1 */
7391
7392
7393 #if defined(CPU_ARM11MPCORE)
7394
7395 void
7396 pmap_pte_init_arm11mpcore(void)
7397 {
7398
7399 /* cache mode is controlled by 5 bits (B, C, TEX) */
7400 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7401 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7402 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7403 /* use extended small page (without APn, with TEX) */
7404 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7405 #else
7406 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7407 #endif
7408
7409 /* write-back, write-allocate */
7410 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7411 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7412 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7413 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7414 #else
7415 /* no TEX. read-allocate */
7416 pte_l2_s_cache_mode = L2_C | L2_B;
7417 #endif
7418 /*
7419 * write-back, write-allocate for page tables.
7420 */
7421 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7422 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7423 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7424 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7425 #else
7426 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7427 #endif
7428
7429 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7430 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7431 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7432 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7433
7434 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7435 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7436 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7437 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7438 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7439
7440 #else
7441 /* with AP[0..3] */
7442 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7443 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7444 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7445 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7446 #endif
7447
7448 #ifdef ARM11MPCORE_COMPAT_MMU
7449 /* with AP[0..3] */
7450 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7451 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7452 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7453 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7454
7455 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7456 pte_l1_s_proto = L1_S_PROTO_armv6;
7457 pte_l1_c_proto = L1_C_PROTO_armv6;
7458 pte_l2_s_proto = L2_S_PROTO_armv6c;
7459 #else
7460 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7461 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7462 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7463 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7464
7465 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7466 pte_l1_s_proto = L1_S_PROTO_armv6;
7467 pte_l1_c_proto = L1_C_PROTO_armv6;
7468 pte_l2_s_proto = L2_S_PROTO_armv6n;
7469 #endif
7470
7471 pmap_copy_page_func = pmap_copy_page_generic;
7472 pmap_zero_page_func = pmap_zero_page_generic;
7473 pmap_needs_pte_sync = 1;
7474 }
7475 #endif /* CPU_ARM11MPCORE */
7476
7477
7478 #if ARM_MMU_V7 == 1
7479 void
7480 pmap_pte_init_armv7(void)
7481 {
7482 /*
7483 * The ARMv7-A MMU is mostly compatible with generic. If the
7484 * AP field is zero, that now means "no access" rather than
7485 * read-only. The prototypes are a little different because of
7486 * the XN bit.
7487 */
7488 pmap_pte_init_generic();
7489
7490 pmap_needs_pte_sync = 1;
7491
7492 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7493 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7494 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7495
7496 /*
7497 * If the core support coherent walk then updates to translation tables
7498 * do not require a clean to the point of unification to ensure
7499 * visibility by subsequent translation table walks. That means we can
7500 * map everything shareable and cached and the right thing will happen.
7501 */
7502 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7503 pmap_needs_pte_sync = 0;
7504
7505 /*
7506 * write-back, no write-allocate, shareable for normal pages.
7507 */
7508 pte_l1_s_cache_mode |= L1_S_V6_S;
7509 pte_l2_l_cache_mode |= L2_XS_S;
7510 pte_l2_s_cache_mode |= L2_XS_S;
7511 }
7512
7513 /*
7514 * Page tables are just all other memory. We can use write-back since
7515 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7516 */
7517 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7518 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7519 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7520
7521 /*
7522 * Check the Memory Model Features to see if this CPU supports
7523 * the TLBIASID coproc op.
7524 */
7525 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7526 arm_has_tlbiasid_p = true;
7527 }
7528
7529 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7530 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7531 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7532 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7533
7534 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7535 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7536 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7537 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7538
7539 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7540 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7541 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7542 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7543
7544 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7545 pte_l1_s_proto = L1_S_PROTO_armv7;
7546 pte_l1_c_proto = L1_C_PROTO_armv7;
7547 pte_l2_s_proto = L2_S_PROTO_armv7;
7548
7549 }
7550 #endif /* ARM_MMU_V7 */
7551
7552 /*
7553 * return the PA of the current L1 table, for use when handling a crash dump
7554 */
7555 uint32_t
7556 pmap_kernel_L1_addr(void)
7557 {
7558 #ifdef ARM_MMU_EXTENDED
7559 return pmap_kernel()->pm_l1_pa;
7560 #else
7561 return pmap_kernel()->pm_l1->l1_physaddr;
7562 #endif
7563 }
7564
7565 #if defined(DDB)
7566 /*
7567 * A couple of ddb-callable functions for dumping pmaps
7568 */
7569 void pmap_dump(pmap_t);
7570
7571 static pt_entry_t ncptes[64];
7572 static void pmap_dump_ncpg(pmap_t);
7573
7574 void
7575 pmap_dump(pmap_t pm)
7576 {
7577 struct l2_dtable *l2;
7578 struct l2_bucket *l2b;
7579 pt_entry_t *ptep, pte;
7580 vaddr_t l2_va, l2b_va, va;
7581 int i, j, k, occ, rows = 0;
7582
7583 if (pm == pmap_kernel())
7584 printf("pmap_kernel (%p): ", pm);
7585 else
7586 printf("user pmap (%p): ", pm);
7587
7588 #ifdef ARM_MMU_EXTENDED
7589 printf("l1 at %p\n", pmap_l1_kva(pm));
7590 #else
7591 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7592 #endif
7593
7594 l2_va = 0;
7595 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7596 l2 = pm->pm_l2[i];
7597
7598 if (l2 == NULL || l2->l2_occupancy == 0)
7599 continue;
7600
7601 l2b_va = l2_va;
7602 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7603 l2b = &l2->l2_bucket[j];
7604
7605 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7606 continue;
7607
7608 ptep = l2b->l2b_kva;
7609
7610 for (k = 0; k < 256 && ptep[k] == 0; k++)
7611 ;
7612
7613 k &= ~63;
7614 occ = l2b->l2b_occupancy;
7615 va = l2b_va + (k * 4096);
7616 for (; k < 256; k++, va += 0x1000) {
7617 char ch = ' ';
7618 if ((k % 64) == 0) {
7619 if ((rows % 8) == 0) {
7620 printf(
7621 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7622 }
7623 printf("%08lx: ", va);
7624 }
7625
7626 ncptes[k & 63] = 0;
7627 pte = ptep[k];
7628 if (pte == 0) {
7629 ch = '.';
7630 } else {
7631 occ--;
7632 switch (pte & 0x0c) {
7633 case 0x00:
7634 ch = 'D'; /* No cache No buff */
7635 break;
7636 case 0x04:
7637 ch = 'B'; /* No cache buff */
7638 break;
7639 case 0x08:
7640 if (pte & 0x40)
7641 ch = 'm';
7642 else
7643 ch = 'C'; /* Cache No buff */
7644 break;
7645 case 0x0c:
7646 ch = 'F'; /* Cache Buff */
7647 break;
7648 }
7649
7650 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7651 ch += 0x20;
7652
7653 if ((pte & 0xc) == 0)
7654 ncptes[k & 63] = pte;
7655 }
7656
7657 if ((k % 64) == 63) {
7658 rows++;
7659 printf("%c\n", ch);
7660 pmap_dump_ncpg(pm);
7661 if (occ == 0)
7662 break;
7663 } else
7664 printf("%c", ch);
7665 }
7666 }
7667 }
7668 }
7669
7670 static void
7671 pmap_dump_ncpg(pmap_t pm)
7672 {
7673 struct vm_page *pg;
7674 struct vm_page_md *md;
7675 struct pv_entry *pv;
7676 int i;
7677
7678 for (i = 0; i < 63; i++) {
7679 if (ncptes[i] == 0)
7680 continue;
7681
7682 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7683 if (pg == NULL)
7684 continue;
7685 md = VM_PAGE_TO_MD(pg);
7686
7687 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7688 VM_PAGE_TO_PHYS(pg),
7689 md->krw_mappings, md->kro_mappings,
7690 md->urw_mappings, md->uro_mappings);
7691
7692 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7693 printf(" %c va 0x%08lx, flags 0x%x\n",
7694 (pm == pv->pv_pmap) ? '*' : ' ',
7695 pv->pv_va, pv->pv_flags);
7696 }
7697 }
7698 }
7699 #endif
7700
7701 #ifdef PMAP_STEAL_MEMORY
7702 void
7703 pmap_boot_pageadd(pv_addr_t *newpv)
7704 {
7705 pv_addr_t *pv, *npv;
7706
7707 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7708 if (newpv->pv_pa < pv->pv_va) {
7709 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7710 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7711 newpv->pv_size += pv->pv_size;
7712 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7713 }
7714 pv = NULL;
7715 } else {
7716 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7717 pv = npv) {
7718 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7719 KASSERT(pv->pv_pa < newpv->pv_pa);
7720 if (newpv->pv_pa > npv->pv_pa)
7721 continue;
7722 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7723 pv->pv_size += newpv->pv_size;
7724 return;
7725 }
7726 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7727 break;
7728 newpv->pv_size += npv->pv_size;
7729 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7730 SLIST_REMOVE_AFTER(newpv, pv_list);
7731 return;
7732 }
7733 }
7734 }
7735
7736 if (pv) {
7737 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7738 } else {
7739 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7740 }
7741 }
7742
7743 void
7744 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7745 pv_addr_t *rpv)
7746 {
7747 pv_addr_t *pv, **pvp;
7748 struct vm_physseg *ps;
7749 size_t i;
7750
7751 KASSERT(amount & PGOFSET);
7752 KASSERT((mask & PGOFSET) == 0);
7753 KASSERT((match & PGOFSET) == 0);
7754 KASSERT(amount != 0);
7755
7756 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7757 (pv = *pvp) != NULL;
7758 pvp = &SLIST_NEXT(pv, pv_list)) {
7759 pv_addr_t *newpv;
7760 psize_t off;
7761 /*
7762 * If this entry is too small to satify the request...
7763 */
7764 KASSERT(pv->pv_size > 0);
7765 if (pv->pv_size < amount)
7766 continue;
7767
7768 for (off = 0; off <= mask; off += PAGE_SIZE) {
7769 if (((pv->pv_pa + off) & mask) == match
7770 && off + amount <= pv->pv_size)
7771 break;
7772 }
7773 if (off > mask)
7774 continue;
7775
7776 rpv->pv_va = pv->pv_va + off;
7777 rpv->pv_pa = pv->pv_pa + off;
7778 rpv->pv_size = amount;
7779 pv->pv_size -= amount;
7780 if (pv->pv_size == 0) {
7781 KASSERT(off == 0);
7782 KASSERT((vaddr_t) pv == rpv->pv_va);
7783 *pvp = SLIST_NEXT(pv, pv_list);
7784 } else if (off == 0) {
7785 KASSERT((vaddr_t) pv == rpv->pv_va);
7786 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7787 *newpv = *pv;
7788 newpv->pv_pa += amount;
7789 newpv->pv_va += amount;
7790 *pvp = newpv;
7791 } else if (off < pv->pv_size) {
7792 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7793 *newpv = *pv;
7794 newpv->pv_size -= off;
7795 newpv->pv_pa += off + amount;
7796 newpv->pv_va += off + amount;
7797
7798 SLIST_NEXT(pv, pv_list) = newpv;
7799 pv->pv_size = off;
7800 } else {
7801 KASSERT((vaddr_t) pv != rpv->pv_va);
7802 }
7803 memset((void *)rpv->pv_va, 0, amount);
7804 return;
7805 }
7806
7807 if (vm_nphysseg == 0)
7808 panic("pmap_boot_pagealloc: couldn't allocate memory");
7809
7810 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7811 (pv = *pvp) != NULL;
7812 pvp = &SLIST_NEXT(pv, pv_list)) {
7813 if (SLIST_NEXT(pv, pv_list) == NULL)
7814 break;
7815 }
7816 KASSERT(mask == 0);
7817 for (i = 0; i < vm_nphysseg; i++) {
7818 ps = VM_PHYSMEM_PTR(i);
7819 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7820 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7821 rpv->pv_va = pv->pv_va;
7822 rpv->pv_pa = pv->pv_pa;
7823 rpv->pv_size = amount;
7824 *pvp = NULL;
7825 pmap_map_chunk(kernel_l1pt.pv_va,
7826 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7827 ptoa(ps->avail_start),
7828 amount - pv->pv_size,
7829 VM_PROT_READ|VM_PROT_WRITE,
7830 PTE_CACHE);
7831 ps->avail_start += atop(amount - pv->pv_size);
7832 /*
7833 * If we consumed the entire physseg, remove it.
7834 */
7835 if (ps->avail_start == ps->avail_end) {
7836 for (--vm_nphysseg; i < vm_nphysseg; i++)
7837 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7838 }
7839 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7840 return;
7841 }
7842 }
7843
7844 panic("pmap_boot_pagealloc: couldn't allocate memory");
7845 }
7846
7847 vaddr_t
7848 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7849 {
7850 pv_addr_t pv;
7851
7852 pmap_boot_pagealloc(size, 0, 0, &pv);
7853
7854 return pv.pv_va;
7855 }
7856 #endif /* PMAP_STEAL_MEMORY */
7857
7858 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7859 {
7860 sysctl_createv(clog, 0, NULL, NULL,
7861 CTLFLAG_PERMANENT,
7862 CTLTYPE_NODE, "machdep", NULL,
7863 NULL, 0, NULL, 0,
7864 CTL_MACHDEP, CTL_EOL);
7865
7866 sysctl_createv(clog, 0, NULL, NULL,
7867 CTLFLAG_PERMANENT,
7868 CTLTYPE_INT, "kmpages",
7869 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7870 NULL, 0, &pmap_kmpages, 0,
7871 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7872 }
7873
7874 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7875 struct vm_page *
7876 arm_pmap_alloc_poolpage(int flags)
7877 {
7878 /*
7879 * On some systems, only some pages may be "coherent" for dma and we
7880 * want to prefer those for pool pages (think mbufs) but fallback to
7881 * any page if none is available. But we can only fallback if we
7882 * aren't direct mapping memory or all of memory can be direct-mapped.
7883 * If that isn't true, pool changes can only come from direct-mapped
7884 * memory.
7885 */
7886 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7887 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7888 UVM_PGA_STRAT_FALLBACK,
7889 arm_poolpage_vmfreelist);
7890 }
7891
7892 return uvm_pagealloc(NULL, 0, NULL, flags);
7893 }
7894 #endif
7895
7896 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7897 void
7898 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7899 {
7900 /* nothing */
7901 }
7902
7903 int
7904 pic_ipi_shootdown(void *arg)
7905 {
7906 #if PMAP_TLB_NEED_SHOOTDOWN
7907 pmap_tlb_shootdown_process();
7908 #endif
7909 return 1;
7910 }
7911 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7912
7913
7914 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7915 vaddr_t
7916 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7917 {
7918 bool ok = false;
7919 if (physical_start <= pa && pa < physical_end) {
7920 #ifdef KERNEL_BASE_VOFFSET
7921 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
7922 #else
7923 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
7924 #endif
7925 #ifdef ARM_MMU_EXTENDED
7926 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
7927 #endif
7928 va = newva;
7929 ok = true;
7930 #ifdef ARM_MMU_EXTENDED
7931 }
7932 #endif
7933 }
7934 KASSERT(ok_p);
7935 *ok_p = ok;
7936 return va;
7937 }
7938
7939 vaddr_t
7940 pmap_map_poolpage(paddr_t pa)
7941 {
7942 bool ok __diagused;
7943 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7944 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
7945 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7946 if (arm_cache_prefer_mask != 0) {
7947 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7948 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7949 pmap_acquire_page_lock(md);
7950 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7951 pmap_release_page_lock(md);
7952 }
7953 #endif
7954 return va;
7955 }
7956
7957 paddr_t
7958 pmap_unmap_poolpage(vaddr_t va)
7959 {
7960 KASSERT(va >= KERNEL_BASE);
7961 #ifdef PMAP_CACHE_VIVT
7962 cpu_idcache_wbinv_range(va, PAGE_SIZE);
7963 #endif
7964 #if defined(KERNEL_BASE_VOFFSET)
7965 return va - KERNEL_BASE_VOFFSET;
7966 #else
7967 return va - KERNEL_BASE + physical_start;
7968 #endif
7969 }
7970 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
7971