Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.365
      1 /*	$NetBSD: pmap.c,v 1.365 2018/04/01 04:35:03 ryo Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_arm_debug.h"
    190 #include "opt_cpuoptions.h"
    191 #include "opt_pmap_debug.h"
    192 #include "opt_ddb.h"
    193 #include "opt_lockdebug.h"
    194 #include "opt_multiprocessor.h"
    195 
    196 #ifdef MULTIPROCESSOR
    197 #define _INTR_PRIVATE
    198 #endif
    199 
    200 #include <sys/param.h>
    201 #include <sys/types.h>
    202 #include <sys/kernel.h>
    203 #include <sys/systm.h>
    204 #include <sys/proc.h>
    205 #include <sys/intr.h>
    206 #include <sys/pool.h>
    207 #include <sys/kmem.h>
    208 #include <sys/cdefs.h>
    209 #include <sys/cpu.h>
    210 #include <sys/sysctl.h>
    211 #include <sys/bus.h>
    212 #include <sys/atomic.h>
    213 #include <sys/kernhist.h>
    214 
    215 #include <uvm/uvm.h>
    216 #include <uvm/pmap/pmap_pvt.h>
    217 
    218 #include <arm/locore.h>
    219 
    220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.365 2018/04/01 04:35:03 ryo Exp $");
    221 
    222 //#define PMAP_DEBUG
    223 #ifdef PMAP_DEBUG
    224 
    225 /* XXX need to get rid of all refs to this */
    226 int pmap_debug_level = 0;
    227 
    228 /*
    229  * for switching to potentially finer grained debugging
    230  */
    231 #define	PDB_FOLLOW	0x0001
    232 #define	PDB_INIT	0x0002
    233 #define	PDB_ENTER	0x0004
    234 #define	PDB_REMOVE	0x0008
    235 #define	PDB_CREATE	0x0010
    236 #define	PDB_PTPAGE	0x0020
    237 #define	PDB_GROWKERN	0x0040
    238 #define	PDB_BITS	0x0080
    239 #define	PDB_COLLECT	0x0100
    240 #define	PDB_PROTECT	0x0200
    241 #define	PDB_MAP_L1	0x0400
    242 #define	PDB_BOOTSTRAP	0x1000
    243 #define	PDB_PARANOIA	0x2000
    244 #define	PDB_WIRING	0x4000
    245 #define	PDB_PVDUMP	0x8000
    246 #define	PDB_VAC		0x10000
    247 #define	PDB_KENTER	0x20000
    248 #define	PDB_KREMOVE	0x40000
    249 #define	PDB_EXEC	0x80000
    250 
    251 int debugmap = 1;
    252 int pmapdebug = 0;
    253 #define	NPDEBUG(_lev_,_stat_) \
    254 	if (pmapdebug & (_lev_)) \
    255         	((_stat_))
    256 
    257 #else	/* PMAP_DEBUG */
    258 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    259 #endif	/* PMAP_DEBUG */
    260 
    261 /*
    262  * pmap_kernel() points here
    263  */
    264 static struct pmap	kernel_pmap_store = {
    265 #ifndef ARM_MMU_EXTENDED
    266 	.pm_activated = true,
    267 	.pm_domain = PMAP_DOMAIN_KERNEL,
    268 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    269 #endif
    270 };
    271 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    272 #undef pmap_kernel
    273 #define pmap_kernel()	(&kernel_pmap_store)
    274 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    275 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    276 #endif
    277 
    278 /*
    279  * Pool and cache that pmap structures are allocated from.
    280  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    281  * in pmap_create().
    282  */
    283 static struct pool_cache pmap_cache;
    284 
    285 /*
    286  * Pool of PV structures
    287  */
    288 static struct pool pmap_pv_pool;
    289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    292 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    293 };
    294 
    295 /*
    296  * Pool and cache of l2_dtable structures.
    297  * We use a cache to avoid clearing the structures when they're
    298  * allocated. (196 bytes)
    299  */
    300 static struct pool_cache pmap_l2dtable_cache;
    301 static vaddr_t pmap_kernel_l2dtable_kva;
    302 
    303 /*
    304  * Pool and cache of L2 page descriptors.
    305  * We use a cache to avoid clearing the descriptor table
    306  * when they're allocated. (1KB)
    307  */
    308 static struct pool_cache pmap_l2ptp_cache;
    309 static vaddr_t pmap_kernel_l2ptp_kva;
    310 static paddr_t pmap_kernel_l2ptp_phys;
    311 
    312 #ifdef PMAPCOUNTERS
    313 #define	PMAP_EVCNT_INITIALIZER(name) \
    314 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    315 
    316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    317 static struct evcnt pmap_ev_vac_clean_one =
    318    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    319 static struct evcnt pmap_ev_vac_flush_one =
    320    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    321 static struct evcnt pmap_ev_vac_flush_lots =
    322    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    323 static struct evcnt pmap_ev_vac_flush_lots2 =
    324    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    329 
    330 static struct evcnt pmap_ev_vac_color_new =
    331    PMAP_EVCNT_INITIALIZER("new page color");
    332 static struct evcnt pmap_ev_vac_color_reuse =
    333    PMAP_EVCNT_INITIALIZER("ok first page color");
    334 static struct evcnt pmap_ev_vac_color_ok =
    335    PMAP_EVCNT_INITIALIZER("ok page color");
    336 static struct evcnt pmap_ev_vac_color_blind =
    337    PMAP_EVCNT_INITIALIZER("blind page color");
    338 static struct evcnt pmap_ev_vac_color_change =
    339    PMAP_EVCNT_INITIALIZER("change page color");
    340 static struct evcnt pmap_ev_vac_color_erase =
    341    PMAP_EVCNT_INITIALIZER("erase page color");
    342 static struct evcnt pmap_ev_vac_color_none =
    343    PMAP_EVCNT_INITIALIZER("no page color");
    344 static struct evcnt pmap_ev_vac_color_restore =
    345    PMAP_EVCNT_INITIALIZER("restore page color");
    346 
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    355 #endif
    356 
    357 static struct evcnt pmap_ev_mappings =
    358    PMAP_EVCNT_INITIALIZER("pages mapped");
    359 static struct evcnt pmap_ev_unmappings =
    360    PMAP_EVCNT_INITIALIZER("pages unmapped");
    361 static struct evcnt pmap_ev_remappings =
    362    PMAP_EVCNT_INITIALIZER("pages remapped");
    363 
    364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    367 
    368 static struct evcnt pmap_ev_kernel_mappings =
    369    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    370 static struct evcnt pmap_ev_kernel_unmappings =
    371    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    372 static struct evcnt pmap_ev_kernel_remappings =
    373    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    374 
    375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    378 
    379 static struct evcnt pmap_ev_kenter_mappings =
    380    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    381 static struct evcnt pmap_ev_kenter_unmappings =
    382    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    383 static struct evcnt pmap_ev_kenter_remappings =
    384    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    385 static struct evcnt pmap_ev_pt_mappings =
    386    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    387 
    388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    392 
    393 static struct evcnt pmap_ev_fixup_mod =
    394    PMAP_EVCNT_INITIALIZER("page modification emulations");
    395 static struct evcnt pmap_ev_fixup_ref =
    396    PMAP_EVCNT_INITIALIZER("page reference emulations");
    397 static struct evcnt pmap_ev_fixup_exec =
    398    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    399 static struct evcnt pmap_ev_fixup_pdes =
    400    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    401 #ifndef ARM_MMU_EXTENDED
    402 static struct evcnt pmap_ev_fixup_ptesync =
    403    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    404 #endif
    405 
    406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    410 #ifndef ARM_MMU_EXTENDED
    411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    412 #endif
    413 
    414 #ifdef PMAP_CACHE_VIPT
    415 static struct evcnt pmap_ev_exec_mappings =
    416    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    417 static struct evcnt pmap_ev_exec_cached =
    418    PMAP_EVCNT_INITIALIZER("exec pages cached");
    419 
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    422 
    423 static struct evcnt pmap_ev_exec_synced =
    424    PMAP_EVCNT_INITIALIZER("exec pages synced");
    425 static struct evcnt pmap_ev_exec_synced_map =
    426    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    427 static struct evcnt pmap_ev_exec_synced_unmap =
    428    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    429 static struct evcnt pmap_ev_exec_synced_remap =
    430    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    431 static struct evcnt pmap_ev_exec_synced_clearbit =
    432    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    433 #ifndef ARM_MMU_EXTENDED
    434 static struct evcnt pmap_ev_exec_synced_kremove =
    435    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    436 #endif
    437 
    438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    440 #ifndef ARM_MMU_EXTENDED
    441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    445 #endif
    446 
    447 static struct evcnt pmap_ev_exec_discarded_unmap =
    448    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    449 static struct evcnt pmap_ev_exec_discarded_zero =
    450    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    451 static struct evcnt pmap_ev_exec_discarded_copy =
    452    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    453 static struct evcnt pmap_ev_exec_discarded_page_protect =
    454    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    455 static struct evcnt pmap_ev_exec_discarded_clearbit =
    456    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    457 static struct evcnt pmap_ev_exec_discarded_kremove =
    458    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    459 #ifdef ARM_MMU_EXTENDED
    460 static struct evcnt pmap_ev_exec_discarded_modfixup =
    461    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    462 #endif
    463 
    464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    470 #ifdef ARM_MMU_EXTENDED
    471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    472 #endif
    473 #endif /* PMAP_CACHE_VIPT */
    474 
    475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    478 
    479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    482 
    483 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    484 #else
    485 #define	PMAPCOUNT(x)	((void)0)
    486 #endif
    487 
    488 #ifdef ARM_MMU_EXTENDED
    489 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
    490 void pmap_md_pdetab_deactivate(pmap_t pm);
    491 #endif
    492 
    493 /*
    494  * pmap copy/zero page, and mem(5) hook point
    495  */
    496 static pt_entry_t *csrc_pte, *cdst_pte;
    497 static vaddr_t csrcp, cdstp;
    498 #ifdef MULTIPROCESSOR
    499 static size_t cnptes;
    500 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    501 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    502 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    503 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    504 #else
    505 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    506 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    507 #define	cpu_csrcp(o)	(csrcp + (o))
    508 #define	cpu_cdstp(o)	(cdstp + (o))
    509 #endif
    510 vaddr_t memhook;			/* used by mem.c & others */
    511 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    512 kmutex_t pmap_lock __cacheline_aligned;
    513 extern void *msgbufaddr;
    514 int pmap_kmpages;
    515 /*
    516  * Flag to indicate if pmap_init() has done its thing
    517  */
    518 bool pmap_initialized;
    519 
    520 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    521 /*
    522  * Virtual end of direct-mapped memory
    523  */
    524 vaddr_t pmap_directlimit;
    525 #endif
    526 
    527 /*
    528  * Misc. locking data structures
    529  */
    530 
    531 static inline void
    532 pmap_acquire_pmap_lock(pmap_t pm)
    533 {
    534 	if (pm == pmap_kernel()) {
    535 #ifdef MULTIPROCESSOR
    536 		KERNEL_LOCK(1, NULL);
    537 #endif
    538 	} else {
    539 		mutex_enter(pm->pm_lock);
    540 	}
    541 }
    542 
    543 static inline void
    544 pmap_release_pmap_lock(pmap_t pm)
    545 {
    546 	if (pm == pmap_kernel()) {
    547 #ifdef MULTIPROCESSOR
    548 		KERNEL_UNLOCK_ONE(NULL);
    549 #endif
    550 	} else {
    551 		mutex_exit(pm->pm_lock);
    552 	}
    553 }
    554 
    555 static inline void
    556 pmap_acquire_page_lock(struct vm_page_md *md)
    557 {
    558 	mutex_enter(&pmap_lock);
    559 }
    560 
    561 static inline void
    562 pmap_release_page_lock(struct vm_page_md *md)
    563 {
    564 	mutex_exit(&pmap_lock);
    565 }
    566 
    567 #ifdef DIAGNOSTIC
    568 static inline int
    569 pmap_page_locked_p(struct vm_page_md *md)
    570 {
    571 	return mutex_owned(&pmap_lock);
    572 }
    573 #endif
    574 
    575 
    576 /*
    577  * Metadata for L1 translation tables.
    578  */
    579 #ifndef ARM_MMU_EXTENDED
    580 struct l1_ttable {
    581 	/* Entry on the L1 Table list */
    582 	SLIST_ENTRY(l1_ttable) l1_link;
    583 
    584 	/* Entry on the L1 Least Recently Used list */
    585 	TAILQ_ENTRY(l1_ttable) l1_lru;
    586 
    587 	/* Track how many domains are allocated from this L1 */
    588 	volatile u_int l1_domain_use_count;
    589 
    590 	/*
    591 	 * A free-list of domain numbers for this L1.
    592 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    593 	 * is slow on ARM.
    594 	 */
    595 	uint8_t l1_domain_first;
    596 	uint8_t l1_domain_free[PMAP_DOMAINS];
    597 
    598 	/* Physical address of this L1 page table */
    599 	paddr_t l1_physaddr;
    600 
    601 	/* KVA of this L1 page table */
    602 	pd_entry_t *l1_kva;
    603 };
    604 
    605 /*
    606  * L1 Page Tables are tracked using a Least Recently Used list.
    607  *  - New L1s are allocated from the HEAD.
    608  *  - Freed L1s are added to the TAIl.
    609  *  - Recently accessed L1s (where an 'access' is some change to one of
    610  *    the userland pmaps which owns this L1) are moved to the TAIL.
    611  */
    612 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    613 static kmutex_t l1_lru_lock __cacheline_aligned;
    614 
    615 /*
    616  * A list of all L1 tables
    617  */
    618 static SLIST_HEAD(, l1_ttable) l1_list;
    619 #endif /* ARM_MMU_EXTENDED */
    620 
    621 /*
    622  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    623  *
    624  * This is normally 16MB worth L2 page descriptors for any given pmap.
    625  * Reference counts are maintained for L2 descriptors so they can be
    626  * freed when empty.
    627  */
    628 struct l2_bucket {
    629 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
    630 	paddr_t l2b_pa;			/* Physical address of same */
    631 	u_short l2b_l1slot;		/* This L2 table's L1 index */
    632 	u_short l2b_occupancy;		/* How many active descriptors */
    633 };
    634 
    635 struct l2_dtable {
    636 	/* The number of L2 page descriptors allocated to this l2_dtable */
    637 	u_int l2_occupancy;
    638 
    639 	/* List of L2 page descriptors */
    640 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
    641 };
    642 
    643 /*
    644  * Given an L1 table index, calculate the corresponding l2_dtable index
    645  * and bucket index within the l2_dtable.
    646  */
    647 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    648 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    649 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    650 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    651 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    652 
    653 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    654 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    655 
    656 /*
    657  * Given a virtual address, this macro returns the
    658  * virtual address required to drop into the next L2 bucket.
    659  */
    660 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    661 
    662 /*
    663  * L2 allocation.
    664  */
    665 #define	pmap_alloc_l2_dtable()		\
    666 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    667 #define	pmap_free_l2_dtable(l2)		\
    668 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    669 #define pmap_alloc_l2_ptp(pap)		\
    670 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    671 	    PR_NOWAIT, (pap)))
    672 
    673 /*
    674  * We try to map the page tables write-through, if possible.  However, not
    675  * all CPUs have a write-through cache mode, so on those we have to sync
    676  * the cache when we frob page tables.
    677  *
    678  * We try to evaluate this at compile time, if possible.  However, it's
    679  * not always possible to do that, hence this run-time var.
    680  */
    681 int	pmap_needs_pte_sync;
    682 
    683 /*
    684  * Real definition of pv_entry.
    685  */
    686 struct pv_entry {
    687 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    688 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    689 	vaddr_t		pv_va;          /* virtual address for mapping */
    690 	u_int		pv_flags;       /* flags */
    691 };
    692 
    693 /*
    694  * Macros to determine if a mapping might be resident in the
    695  * instruction/data cache and/or TLB
    696  */
    697 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    698 /*
    699  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    700  * there are no explicit accesses, so there may be always be TLB entries to
    701  * flush.  If we used ASIDs then this would not be a problem.
    702  */
    703 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    704 #define	PV_BEEN_REFD(f)   (true)
    705 #else
    706 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    707 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    708 #endif
    709 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    710 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    711 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    712 
    713 /*
    714  * Local prototypes
    715  */
    716 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    717 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    718 			    pt_entry_t **);
    719 static bool		pmap_is_current(pmap_t) __unused;
    720 static bool		pmap_is_cached(pmap_t);
    721 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    722 			    pmap_t, vaddr_t, u_int);
    723 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    724 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    725 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    726 			    u_int, u_int);
    727 
    728 static void		pmap_pinit(pmap_t);
    729 static int		pmap_pmap_ctor(void *, void *, int);
    730 
    731 static void		pmap_alloc_l1(pmap_t);
    732 static void		pmap_free_l1(pmap_t);
    733 #ifndef ARM_MMU_EXTENDED
    734 static void		pmap_use_l1(pmap_t);
    735 #endif
    736 
    737 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    738 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    739 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    740 static int		pmap_l2ptp_ctor(void *, void *, int);
    741 static int		pmap_l2dtable_ctor(void *, void *, int);
    742 
    743 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    744 #ifdef PMAP_CACHE_VIVT
    745 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    746 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    747 #endif
    748 
    749 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    750 #ifdef PMAP_CACHE_VIVT
    751 static bool		pmap_clean_page(struct vm_page_md *, bool);
    752 #endif
    753 #ifdef PMAP_CACHE_VIPT
    754 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    755 enum pmap_flush_op {
    756 	PMAP_FLUSH_PRIMARY,
    757 	PMAP_FLUSH_SECONDARY,
    758 	PMAP_CLEAN_PRIMARY
    759 };
    760 #ifndef ARM_MMU_EXTENDED
    761 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    762 #endif
    763 #endif
    764 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    765 static void		pmap_pv_remove(paddr_t);
    766 
    767 #ifndef ARM_MMU_EXTENDED
    768 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    769 #endif
    770 static vaddr_t		kernel_pt_lookup(paddr_t);
    771 
    772 
    773 /*
    774  * Misc variables
    775  */
    776 vaddr_t virtual_avail;
    777 vaddr_t virtual_end;
    778 vaddr_t pmap_curmaxkvaddr;
    779 
    780 paddr_t avail_start;
    781 paddr_t avail_end;
    782 
    783 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    784 pv_addr_t kernelpages;
    785 pv_addr_t kernel_l1pt;
    786 pv_addr_t systempage;
    787 
    788 /* Function to set the debug level of the pmap code */
    789 
    790 #ifdef PMAP_DEBUG
    791 void
    792 pmap_debug(int level)
    793 {
    794 	pmap_debug_level = level;
    795 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    796 }
    797 #endif	/* PMAP_DEBUG */
    798 
    799 #ifdef PMAP_CACHE_VIPT
    800 #define PMAP_VALIDATE_MD_PAGE(md)	\
    801 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    802 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    803 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    804 #endif /* PMAP_CACHE_VIPT */
    805 /*
    806  * A bunch of routines to conditionally flush the caches/TLB depending
    807  * on whether the specified pmap actually needs to be flushed at any
    808  * given time.
    809  */
    810 static inline void
    811 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    812 {
    813 #ifdef ARM_MMU_EXTENDED
    814 	pmap_tlb_invalidate_addr(pm, va);
    815 #else
    816 	if (pm->pm_cstate.cs_tlb_id != 0) {
    817 		if (PV_BEEN_EXECD(flags)) {
    818 			cpu_tlb_flushID_SE(va);
    819 		} else if (PV_BEEN_REFD(flags)) {
    820 			cpu_tlb_flushD_SE(va);
    821 		}
    822 	}
    823 #endif /* ARM_MMU_EXTENDED */
    824 }
    825 
    826 #ifndef ARM_MMU_EXTENDED
    827 static inline void
    828 pmap_tlb_flushID(pmap_t pm)
    829 {
    830 	if (pm->pm_cstate.cs_tlb_id) {
    831 		cpu_tlb_flushID();
    832 #if ARM_MMU_V7 == 0
    833 		/*
    834 		 * Speculative loads by Cortex cores can cause TLB entries to
    835 		 * be filled even if there are no explicit accesses, so there
    836 		 * may be always be TLB entries to flush.  If we used ASIDs
    837 		 * then it would not be a problem.
    838 		 * This is not true for other CPUs.
    839 		 */
    840 		pm->pm_cstate.cs_tlb = 0;
    841 #endif /* ARM_MMU_V7 */
    842 	}
    843 }
    844 
    845 static inline void
    846 pmap_tlb_flushD(pmap_t pm)
    847 {
    848 	if (pm->pm_cstate.cs_tlb_d) {
    849 		cpu_tlb_flushD();
    850 #if ARM_MMU_V7 == 0
    851 		/*
    852 		 * Speculative loads by Cortex cores can cause TLB entries to
    853 		 * be filled even if there are no explicit accesses, so there
    854 		 * may be always be TLB entries to flush.  If we used ASIDs
    855 		 * then it would not be a problem.
    856 		 * This is not true for other CPUs.
    857 		 */
    858 		pm->pm_cstate.cs_tlb_d = 0;
    859 #endif /* ARM_MMU_V7 */
    860 	}
    861 }
    862 #endif /* ARM_MMU_EXTENDED */
    863 
    864 #ifdef PMAP_CACHE_VIVT
    865 static inline void
    866 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    867 {
    868 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    869 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    870 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    871 		if (do_inv) {
    872 			if (flags & PVF_WRITE)
    873 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    874 			else
    875 				cpu_dcache_inv_range(va, PAGE_SIZE);
    876 		} else if (flags & PVF_WRITE) {
    877 			cpu_dcache_wb_range(va, PAGE_SIZE);
    878 		}
    879 	}
    880 }
    881 
    882 static inline void
    883 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    884 {
    885 	if (PV_BEEN_EXECD(flags)) {
    886 		if (pm->pm_cstate.cs_cache_id) {
    887 			cpu_idcache_wbinv_all();
    888 			pm->pm_cstate.cs_cache = 0;
    889 		}
    890 	} else if (pm->pm_cstate.cs_cache_d) {
    891 		cpu_dcache_wbinv_all();
    892 		pm->pm_cstate.cs_cache_d = 0;
    893 	}
    894 }
    895 #endif /* PMAP_CACHE_VIVT */
    896 
    897 static inline uint8_t
    898 pmap_domain(pmap_t pm)
    899 {
    900 #ifdef ARM_MMU_EXTENDED
    901 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    902 #else
    903 	return pm->pm_domain;
    904 #endif
    905 }
    906 
    907 static inline pd_entry_t *
    908 pmap_l1_kva(pmap_t pm)
    909 {
    910 #ifdef ARM_MMU_EXTENDED
    911 	return pm->pm_l1;
    912 #else
    913 	return pm->pm_l1->l1_kva;
    914 #endif
    915 }
    916 
    917 static inline bool
    918 pmap_is_current(pmap_t pm)
    919 {
    920 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    921 		return true;
    922 
    923 	return false;
    924 }
    925 
    926 static inline bool
    927 pmap_is_cached(pmap_t pm)
    928 {
    929 #ifdef ARM_MMU_EXTENDED
    930 	if (pm == pmap_kernel())
    931 		return true;
    932 #ifdef MULTIPROCESSOR
    933 	// Is this pmap active on any CPU?
    934 	if (!kcpuset_iszero(pm->pm_active))
    935 		return true;
    936 #else
    937 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    938 	// Is this pmap active?
    939 	if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    940 		return true;
    941 #endif
    942 #else
    943 	struct cpu_info * const ci = curcpu();
    944 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    945 	    || ci->ci_pmap_lastuser == pm)
    946 		return true;
    947 #endif /* ARM_MMU_EXTENDED */
    948 
    949 	return false;
    950 }
    951 
    952 /*
    953  * PTE_SYNC_CURRENT:
    954  *
    955  *     Make sure the pte is written out to RAM.
    956  *     We need to do this for one of two cases:
    957  *       - We're dealing with the kernel pmap
    958  *       - There is no pmap active in the cache/tlb.
    959  *       - The specified pmap is 'active' in the cache/tlb.
    960  */
    961 
    962 #ifdef PMAP_INCLUDE_PTE_SYNC
    963 static inline void
    964 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
    965 {
    966 	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
    967 		PTE_SYNC(ptep);
    968 	arm_dsb();
    969 }
    970 
    971 # define PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
    972 #else
    973 # define PTE_SYNC_CURRENT(pm, ptep)	__nothing
    974 #endif
    975 
    976 /*
    977  * main pv_entry manipulation functions:
    978  *   pmap_enter_pv: enter a mapping onto a vm_page list
    979  *   pmap_remove_pv: remove a mapping from a vm_page list
    980  *
    981  * NOTE: pmap_enter_pv expects to lock the pvh itself
    982  *       pmap_remove_pv expects the caller to lock the pvh before calling
    983  */
    984 
    985 /*
    986  * pmap_enter_pv: enter a mapping onto a vm_page lst
    987  *
    988  * => caller should hold the proper lock on pmap_main_lock
    989  * => caller should have pmap locked
    990  * => we will gain the lock on the vm_page and allocate the new pv_entry
    991  * => caller should adjust ptp's wire_count before calling
    992  * => caller should not adjust pmap's wire_count
    993  */
    994 static void
    995 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    996     vaddr_t va, u_int flags)
    997 {
    998 	struct pv_entry **pvp;
    999 
   1000 	NPDEBUG(PDB_PVDUMP,
   1001 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
   1002 
   1003 	pv->pv_pmap = pm;
   1004 	pv->pv_va = va;
   1005 	pv->pv_flags = flags;
   1006 
   1007 	pvp = &SLIST_FIRST(&md->pvh_list);
   1008 #ifdef PMAP_CACHE_VIPT
   1009 	/*
   1010 	 * Insert unmanaged entries, writeable first, at the head of
   1011 	 * the pv list.
   1012 	 */
   1013 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1014 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1015 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1016 	}
   1017 	if (!PV_IS_WRITE_P(flags)) {
   1018 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1019 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1020 	}
   1021 #endif
   1022 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1023 	*pvp = pv;				/* ... locked list */
   1024 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1025 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1026 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1027 		md->pvh_attrs |= PVF_KMOD;
   1028 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1029 		md->pvh_attrs |= PVF_DIRTY;
   1030 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1031 #endif
   1032 	if (pm == pmap_kernel()) {
   1033 		PMAPCOUNT(kernel_mappings);
   1034 		if (flags & PVF_WRITE)
   1035 			md->krw_mappings++;
   1036 		else
   1037 			md->kro_mappings++;
   1038 	} else {
   1039 		if (flags & PVF_WRITE)
   1040 			md->urw_mappings++;
   1041 		else
   1042 			md->uro_mappings++;
   1043 	}
   1044 
   1045 #ifdef PMAP_CACHE_VIPT
   1046 #ifndef ARM_MMU_EXTENDED
   1047 	/*
   1048 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1049 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1050 	 */
   1051 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1052 		md->pvh_attrs |= PVF_WRITE;
   1053 	}
   1054 #endif
   1055 	/*
   1056 	 * If this is an exec mapping and its the first exec mapping
   1057 	 * for this page, make sure to sync the I-cache.
   1058 	 */
   1059 	if (PV_IS_EXEC_P(flags)) {
   1060 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1061 			pmap_syncicache_page(md, pa);
   1062 			PMAPCOUNT(exec_synced_map);
   1063 		}
   1064 		PMAPCOUNT(exec_mappings);
   1065 	}
   1066 #endif
   1067 
   1068 	PMAPCOUNT(mappings);
   1069 
   1070 	if (pv->pv_flags & PVF_WIRED)
   1071 		++pm->pm_stats.wired_count;
   1072 }
   1073 
   1074 /*
   1075  *
   1076  * pmap_find_pv: Find a pv entry
   1077  *
   1078  * => caller should hold lock on vm_page
   1079  */
   1080 static inline struct pv_entry *
   1081 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1082 {
   1083 	struct pv_entry *pv;
   1084 
   1085 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1086 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1087 			break;
   1088 	}
   1089 
   1090 	return (pv);
   1091 }
   1092 
   1093 /*
   1094  * pmap_remove_pv: try to remove a mapping from a pv_list
   1095  *
   1096  * => caller should hold proper lock on pmap_main_lock
   1097  * => pmap should be locked
   1098  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1099  * => caller should adjust ptp's wire_count and free PTP if needed
   1100  * => caller should NOT adjust pmap's wire_count
   1101  * => we return the removed pv
   1102  */
   1103 static struct pv_entry *
   1104 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1105 {
   1106 	struct pv_entry *pv, **prevptr;
   1107 
   1108 	NPDEBUG(PDB_PVDUMP,
   1109 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
   1110 
   1111 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1112 	pv = *prevptr;
   1113 
   1114 	while (pv) {
   1115 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1116 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
   1117 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
   1118 			if (pv->pv_flags & PVF_WIRED) {
   1119 				--pm->pm_stats.wired_count;
   1120 			}
   1121 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1122 			if (pm == pmap_kernel()) {
   1123 				PMAPCOUNT(kernel_unmappings);
   1124 				if (pv->pv_flags & PVF_WRITE)
   1125 					md->krw_mappings--;
   1126 				else
   1127 					md->kro_mappings--;
   1128 			} else {
   1129 				if (pv->pv_flags & PVF_WRITE)
   1130 					md->urw_mappings--;
   1131 				else
   1132 					md->uro_mappings--;
   1133 			}
   1134 
   1135 			PMAPCOUNT(unmappings);
   1136 #ifdef PMAP_CACHE_VIPT
   1137 			/*
   1138 			 * If this page has had an exec mapping, then if
   1139 			 * this was the last mapping, discard the contents,
   1140 			 * otherwise sync the i-cache for this page.
   1141 			 */
   1142 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1143 				if (SLIST_EMPTY(&md->pvh_list)) {
   1144 					md->pvh_attrs &= ~PVF_EXEC;
   1145 					PMAPCOUNT(exec_discarded_unmap);
   1146 				} else if (pv->pv_flags & PVF_WRITE) {
   1147 					pmap_syncicache_page(md, pa);
   1148 					PMAPCOUNT(exec_synced_unmap);
   1149 				}
   1150 			}
   1151 #endif /* PMAP_CACHE_VIPT */
   1152 			break;
   1153 		}
   1154 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1155 		pv = *prevptr;				/* advance */
   1156 	}
   1157 
   1158 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1159 	/*
   1160 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1161 	 * clear the KMOD attribute from the page.
   1162 	 */
   1163 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1164 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1165 		md->pvh_attrs &= ~PVF_KMOD;
   1166 
   1167 	/*
   1168 	 * If this was a writeable page and there are no more writeable
   1169 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1170 	 * the contents to memory.
   1171 	 */
   1172 	if (arm_cache_prefer_mask != 0) {
   1173 		if (md->krw_mappings + md->urw_mappings == 0)
   1174 			md->pvh_attrs &= ~PVF_WRITE;
   1175 		PMAP_VALIDATE_MD_PAGE(md);
   1176 	}
   1177 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1178 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1179 
   1180 	/* return removed pv */
   1181 	return pv;
   1182 }
   1183 
   1184 /*
   1185  *
   1186  * pmap_modify_pv: Update pv flags
   1187  *
   1188  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1189  * => caller should NOT adjust pmap's wire_count
   1190  * => caller must call pmap_vac_me_harder() if writable status of a page
   1191  *    may have changed.
   1192  * => we return the old flags
   1193  *
   1194  * Modify a physical-virtual mapping in the pv table
   1195  */
   1196 static u_int
   1197 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1198     u_int clr_mask, u_int set_mask)
   1199 {
   1200 	struct pv_entry *npv;
   1201 	u_int flags, oflags;
   1202 
   1203 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1204 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1205 
   1206 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1207 		return (0);
   1208 
   1209 	NPDEBUG(PDB_PVDUMP,
   1210 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1211 
   1212 	/*
   1213 	 * There is at least one VA mapping this page.
   1214 	 */
   1215 
   1216 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1217 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1218 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1219 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1220 			md->pvh_attrs |= PVF_DIRTY;
   1221 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1222 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1223 	}
   1224 
   1225 	oflags = npv->pv_flags;
   1226 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1227 
   1228 	if ((flags ^ oflags) & PVF_WIRED) {
   1229 		if (flags & PVF_WIRED)
   1230 			++pm->pm_stats.wired_count;
   1231 		else
   1232 			--pm->pm_stats.wired_count;
   1233 	}
   1234 
   1235 	if ((flags ^ oflags) & PVF_WRITE) {
   1236 		if (pm == pmap_kernel()) {
   1237 			if (flags & PVF_WRITE) {
   1238 				md->krw_mappings++;
   1239 				md->kro_mappings--;
   1240 			} else {
   1241 				md->kro_mappings++;
   1242 				md->krw_mappings--;
   1243 			}
   1244 		} else {
   1245 			if (flags & PVF_WRITE) {
   1246 				md->urw_mappings++;
   1247 				md->uro_mappings--;
   1248 			} else {
   1249 				md->uro_mappings++;
   1250 				md->urw_mappings--;
   1251 			}
   1252 		}
   1253 	}
   1254 #ifdef PMAP_CACHE_VIPT
   1255 	if (arm_cache_prefer_mask != 0) {
   1256 		if (md->urw_mappings + md->krw_mappings == 0) {
   1257 			md->pvh_attrs &= ~PVF_WRITE;
   1258 		} else {
   1259 			md->pvh_attrs |= PVF_WRITE;
   1260 		}
   1261 	}
   1262 	/*
   1263 	 * We have two cases here: the first is from enter_pv (new exec
   1264 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1265 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1266 	 * to do what pmap_remove_pv would do.
   1267 	 */
   1268 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1269 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1270 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1271 		pmap_syncicache_page(md, pa);
   1272 		PMAPCOUNT(exec_synced_remap);
   1273 	}
   1274 #ifndef ARM_MMU_EXTENDED
   1275 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1276 #endif /* !ARM_MMU_EXTENDED */
   1277 #endif /* PMAP_CACHE_VIPT */
   1278 
   1279 	PMAPCOUNT(remappings);
   1280 
   1281 	return (oflags);
   1282 }
   1283 
   1284 /*
   1285  * Allocate an L1 translation table for the specified pmap.
   1286  * This is called at pmap creation time.
   1287  */
   1288 static void
   1289 pmap_alloc_l1(pmap_t pm)
   1290 {
   1291 #ifdef ARM_MMU_EXTENDED
   1292 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1293 	struct vm_page *pg;
   1294 	bool ok __diagused;
   1295 	for (;;) {
   1296 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1297 		pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
   1298 #else
   1299 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1300 #endif
   1301 		if (pg != NULL)
   1302 			break;
   1303 		uvm_wait("pmapl1alloc");
   1304 	}
   1305 	pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
   1306 	vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
   1307 	KASSERT(ok);
   1308 	KASSERT(va >= KERNEL_BASE);
   1309 
   1310 #else
   1311 	KASSERTMSG(kernel_map != NULL, "pm %p", pm);
   1312 	vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1313 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1314 	KASSERT(va);
   1315 	pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
   1316 #endif
   1317 	pm->pm_l1 = (pd_entry_t *)va;
   1318 	PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
   1319 #else
   1320 	struct l1_ttable *l1;
   1321 	uint8_t domain;
   1322 
   1323 	/*
   1324 	 * Remove the L1 at the head of the LRU list
   1325 	 */
   1326 	mutex_spin_enter(&l1_lru_lock);
   1327 	l1 = TAILQ_FIRST(&l1_lru_list);
   1328 	KDASSERT(l1 != NULL);
   1329 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1330 
   1331 	/*
   1332 	 * Pick the first available domain number, and update
   1333 	 * the link to the next number.
   1334 	 */
   1335 	domain = l1->l1_domain_first;
   1336 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1337 
   1338 	/*
   1339 	 * If there are still free domain numbers in this L1,
   1340 	 * put it back on the TAIL of the LRU list.
   1341 	 */
   1342 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1343 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1344 
   1345 	mutex_spin_exit(&l1_lru_lock);
   1346 
   1347 	/*
   1348 	 * Fix up the relevant bits in the pmap structure
   1349 	 */
   1350 	pm->pm_l1 = l1;
   1351 	pm->pm_domain = domain + 1;
   1352 #endif
   1353 }
   1354 
   1355 /*
   1356  * Free an L1 translation table.
   1357  * This is called at pmap destruction time.
   1358  */
   1359 static void
   1360 pmap_free_l1(pmap_t pm)
   1361 {
   1362 #ifdef ARM_MMU_EXTENDED
   1363 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1364 	struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
   1365 	uvm_pagefree(pg);
   1366 #else
   1367 	uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
   1368 #endif
   1369 	pm->pm_l1 = NULL;
   1370 	pm->pm_l1_pa = 0;
   1371 #else
   1372 	struct l1_ttable *l1 = pm->pm_l1;
   1373 
   1374 	mutex_spin_enter(&l1_lru_lock);
   1375 
   1376 	/*
   1377 	 * If this L1 is currently on the LRU list, remove it.
   1378 	 */
   1379 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1380 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1381 
   1382 	/*
   1383 	 * Free up the domain number which was allocated to the pmap
   1384 	 */
   1385 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1386 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1387 	l1->l1_domain_use_count--;
   1388 
   1389 	/*
   1390 	 * The L1 now must have at least 1 free domain, so add
   1391 	 * it back to the LRU list. If the use count is zero,
   1392 	 * put it at the head of the list, otherwise it goes
   1393 	 * to the tail.
   1394 	 */
   1395 	if (l1->l1_domain_use_count == 0)
   1396 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1397 	else
   1398 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1399 
   1400 	mutex_spin_exit(&l1_lru_lock);
   1401 #endif /* ARM_MMU_EXTENDED */
   1402 }
   1403 
   1404 #ifndef ARM_MMU_EXTENDED
   1405 static inline void
   1406 pmap_use_l1(pmap_t pm)
   1407 {
   1408 	struct l1_ttable *l1;
   1409 
   1410 	/*
   1411 	 * Do nothing if we're in interrupt context.
   1412 	 * Access to an L1 by the kernel pmap must not affect
   1413 	 * the LRU list.
   1414 	 */
   1415 	if (cpu_intr_p() || pm == pmap_kernel())
   1416 		return;
   1417 
   1418 	l1 = pm->pm_l1;
   1419 
   1420 	/*
   1421 	 * If the L1 is not currently on the LRU list, just return
   1422 	 */
   1423 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1424 		return;
   1425 
   1426 	mutex_spin_enter(&l1_lru_lock);
   1427 
   1428 	/*
   1429 	 * Check the use count again, now that we've acquired the lock
   1430 	 */
   1431 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1432 		mutex_spin_exit(&l1_lru_lock);
   1433 		return;
   1434 	}
   1435 
   1436 	/*
   1437 	 * Move the L1 to the back of the LRU list
   1438 	 */
   1439 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1440 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1441 
   1442 	mutex_spin_exit(&l1_lru_lock);
   1443 }
   1444 #endif /* !ARM_MMU_EXTENDED */
   1445 
   1446 /*
   1447  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1448  *
   1449  * Free an L2 descriptor table.
   1450  */
   1451 static inline void
   1452 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1453 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1454 #else
   1455 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1456 #endif
   1457 {
   1458 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1459 	/*
   1460 	 * Note: With a write-back cache, we may need to sync this
   1461 	 * L2 table before re-using it.
   1462 	 * This is because it may have belonged to a non-current
   1463 	 * pmap, in which case the cache syncs would have been
   1464 	 * skipped for the pages that were being unmapped. If the
   1465 	 * L2 table were then to be immediately re-allocated to
   1466 	 * the *current* pmap, it may well contain stale mappings
   1467 	 * which have not yet been cleared by a cache write-back
   1468 	 * and so would still be visible to the mmu.
   1469 	 */
   1470 	if (need_sync)
   1471 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1472 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1473 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1474 }
   1475 
   1476 /*
   1477  * Returns a pointer to the L2 bucket associated with the specified pmap
   1478  * and VA, or NULL if no L2 bucket exists for the address.
   1479  */
   1480 static inline struct l2_bucket *
   1481 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1482 {
   1483 	const size_t l1slot = l1pte_index(va);
   1484 	struct l2_dtable *l2;
   1485 	struct l2_bucket *l2b;
   1486 
   1487 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1488 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1489 		return (NULL);
   1490 
   1491 	return (l2b);
   1492 }
   1493 
   1494 /*
   1495  * Returns a pointer to the L2 bucket associated with the specified pmap
   1496  * and VA.
   1497  *
   1498  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1499  * bucket/page table in place.
   1500  *
   1501  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1502  * increment the bucket occupancy counter appropriately *before*
   1503  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1504  * the bucket/page in the meantime.
   1505  */
   1506 static struct l2_bucket *
   1507 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1508 {
   1509 	const size_t l1slot = l1pte_index(va);
   1510 	struct l2_dtable *l2;
   1511 
   1512 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1513 		/*
   1514 		 * No mapping at this address, as there is
   1515 		 * no entry in the L1 table.
   1516 		 * Need to allocate a new l2_dtable.
   1517 		 */
   1518 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1519 			return (NULL);
   1520 
   1521 		/*
   1522 		 * Link it into the parent pmap
   1523 		 */
   1524 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1525 	}
   1526 
   1527 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1528 
   1529 	/*
   1530 	 * Fetch pointer to the L2 page table associated with the address.
   1531 	 */
   1532 	if (l2b->l2b_kva == NULL) {
   1533 		pt_entry_t *ptep;
   1534 
   1535 		/*
   1536 		 * No L2 page table has been allocated. Chances are, this
   1537 		 * is because we just allocated the l2_dtable, above.
   1538 		 */
   1539 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1540 			/*
   1541 			 * Oops, no more L2 page tables available at this
   1542 			 * time. We may need to deallocate the l2_dtable
   1543 			 * if we allocated a new one above.
   1544 			 */
   1545 			if (l2->l2_occupancy == 0) {
   1546 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1547 				pmap_free_l2_dtable(l2);
   1548 			}
   1549 			return (NULL);
   1550 		}
   1551 
   1552 		l2->l2_occupancy++;
   1553 		l2b->l2b_kva = ptep;
   1554 		l2b->l2b_l1slot = l1slot;
   1555 
   1556 #ifdef ARM_MMU_EXTENDED
   1557 		/*
   1558 		 * We know there will be a mapping here, so simply
   1559 		 * enter this PTP into the L1 now.
   1560 		 */
   1561 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1562 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1563 		    | L1_C_DOM(pmap_domain(pm));
   1564 		KASSERT(*pdep == 0);
   1565 		l1pte_setone(pdep, npde);
   1566 		PDE_SYNC(pdep);
   1567 #endif
   1568 	}
   1569 
   1570 	return (l2b);
   1571 }
   1572 
   1573 /*
   1574  * One or more mappings in the specified L2 descriptor table have just been
   1575  * invalidated.
   1576  *
   1577  * Garbage collect the metadata and descriptor table itself if necessary.
   1578  *
   1579  * The pmap lock must be acquired when this is called (not necessary
   1580  * for the kernel pmap).
   1581  */
   1582 static void
   1583 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1584 {
   1585 	KDASSERT(count <= l2b->l2b_occupancy);
   1586 
   1587 	/*
   1588 	 * Update the bucket's reference count according to how many
   1589 	 * PTEs the caller has just invalidated.
   1590 	 */
   1591 	l2b->l2b_occupancy -= count;
   1592 
   1593 	/*
   1594 	 * Note:
   1595 	 *
   1596 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1597 	 * as that would require checking all Level 1 page tables and
   1598 	 * removing any references to the Level 2 page table. See also the
   1599 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1600 	 *
   1601 	 * We make do with just invalidating the mapping in the L2 table.
   1602 	 *
   1603 	 * This isn't really a big deal in practice and, in fact, leads
   1604 	 * to a performance win over time as we don't need to continually
   1605 	 * alloc/free.
   1606 	 */
   1607 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1608 		return;
   1609 
   1610 	/*
   1611 	 * There are no more valid mappings in this level 2 page table.
   1612 	 * Go ahead and NULL-out the pointer in the bucket, then
   1613 	 * free the page table.
   1614 	 */
   1615 	const size_t l1slot = l2b->l2b_l1slot;
   1616 	pt_entry_t * const ptep = l2b->l2b_kva;
   1617 	l2b->l2b_kva = NULL;
   1618 
   1619 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1620 	pd_entry_t pde __diagused = *pdep;
   1621 
   1622 #ifdef ARM_MMU_EXTENDED
   1623 	/*
   1624 	 * Invalidate the L1 slot.
   1625 	 */
   1626 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1627 #else
   1628 	/*
   1629 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1630 	 */
   1631 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1632 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1633 #endif
   1634 		l1pte_setone(pdep, 0);
   1635 		PDE_SYNC(pdep);
   1636 #ifndef ARM_MMU_EXTENDED
   1637 	}
   1638 #endif
   1639 
   1640 	/*
   1641 	 * Release the L2 descriptor table back to the pool cache.
   1642 	 */
   1643 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1644 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1645 #else
   1646 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1647 #endif
   1648 
   1649 	/*
   1650 	 * Update the reference count in the associated l2_dtable
   1651 	 */
   1652 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1653 	if (--l2->l2_occupancy > 0)
   1654 		return;
   1655 
   1656 	/*
   1657 	 * There are no more valid mappings in any of the Level 1
   1658 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1659 	 * the pointer in the parent pmap and free the l2_dtable.
   1660 	 */
   1661 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1662 	pmap_free_l2_dtable(l2);
   1663 }
   1664 
   1665 /*
   1666  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1667  * structures.
   1668  */
   1669 static int
   1670 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1671 {
   1672 #ifndef PMAP_INCLUDE_PTE_SYNC
   1673 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1674 
   1675 	/*
   1676 	 * The mappings for these page tables were initially made using
   1677 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1678 	 * mode will not be right for page table mappings. To avoid
   1679 	 * polluting the pmap_kenter_pa() code with a special case for
   1680 	 * page tables, we simply fix up the cache-mode here if it's not
   1681 	 * correct.
   1682 	 */
   1683 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1684 		const struct l2_bucket * const l2b =
   1685 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1686 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1687 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1688 		const pt_entry_t opte = *ptep;
   1689 
   1690 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1691 			/*
   1692 			 * Page tables must have the cache-mode set correctly.
   1693 			 */
   1694 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   1695 			    | pte_l2_s_cache_mode_pt;
   1696 			l2pte_set(ptep, npte, opte);
   1697 			PTE_SYNC(ptep);
   1698 			cpu_tlb_flushD_SE(va);
   1699 			cpu_cpwait();
   1700 		}
   1701 	}
   1702 #endif
   1703 
   1704 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1705 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1706 	return (0);
   1707 }
   1708 
   1709 static int
   1710 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1711 {
   1712 
   1713 	memset(v, 0, sizeof(struct l2_dtable));
   1714 	return (0);
   1715 }
   1716 
   1717 static int
   1718 pmap_pmap_ctor(void *arg, void *v, int flags)
   1719 {
   1720 
   1721 	memset(v, 0, sizeof(struct pmap));
   1722 	return (0);
   1723 }
   1724 
   1725 static void
   1726 pmap_pinit(pmap_t pm)
   1727 {
   1728 #ifndef ARM_HAS_VBAR
   1729 	struct l2_bucket *l2b;
   1730 
   1731 	if (vector_page < KERNEL_BASE) {
   1732 		/*
   1733 		 * Map the vector page.
   1734 		 */
   1735 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1736 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1737 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1738 		pmap_update(pm);
   1739 
   1740 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1741 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1742 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1743 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1744 		    L1_C_DOM(pmap_domain(pm));
   1745 	} else
   1746 		pm->pm_pl1vec = NULL;
   1747 #endif
   1748 }
   1749 
   1750 #ifdef PMAP_CACHE_VIVT
   1751 /*
   1752  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1753  * there is more than one mapping and at least one of them is writable.
   1754  * Since we purge the cache on every context switch, we only need to check for
   1755  * other mappings within the same pmap, or kernel_pmap.
   1756  * This function is also called when a page is unmapped, to possibly reenable
   1757  * caching on any remaining mappings.
   1758  *
   1759  * The code implements the following logic, where:
   1760  *
   1761  * KW = # of kernel read/write pages
   1762  * KR = # of kernel read only pages
   1763  * UW = # of user read/write pages
   1764  * UR = # of user read only pages
   1765  *
   1766  * KC = kernel mapping is cacheable
   1767  * UC = user mapping is cacheable
   1768  *
   1769  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1770  *             +---------------------------------------------
   1771  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1772  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1773  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1774  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1775  */
   1776 
   1777 static const int pmap_vac_flags[4][4] = {
   1778 	{-1,		0,		0,		PVF_KNC},
   1779 	{0,		0,		PVF_NC,		PVF_NC},
   1780 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1781 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1782 };
   1783 
   1784 static inline int
   1785 pmap_get_vac_flags(const struct vm_page_md *md)
   1786 {
   1787 	int kidx, uidx;
   1788 
   1789 	kidx = 0;
   1790 	if (md->kro_mappings || md->krw_mappings > 1)
   1791 		kidx |= 1;
   1792 	if (md->krw_mappings)
   1793 		kidx |= 2;
   1794 
   1795 	uidx = 0;
   1796 	if (md->uro_mappings || md->urw_mappings > 1)
   1797 		uidx |= 1;
   1798 	if (md->urw_mappings)
   1799 		uidx |= 2;
   1800 
   1801 	return (pmap_vac_flags[uidx][kidx]);
   1802 }
   1803 
   1804 static inline void
   1805 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1806 {
   1807 	int nattr;
   1808 
   1809 	nattr = pmap_get_vac_flags(md);
   1810 
   1811 	if (nattr < 0) {
   1812 		md->pvh_attrs &= ~PVF_NC;
   1813 		return;
   1814 	}
   1815 
   1816 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1817 		return;
   1818 
   1819 	if (pm == pmap_kernel())
   1820 		pmap_vac_me_kpmap(md, pa, pm, va);
   1821 	else
   1822 		pmap_vac_me_user(md, pa, pm, va);
   1823 
   1824 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1825 }
   1826 
   1827 static void
   1828 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1829 {
   1830 	u_int u_cacheable, u_entries;
   1831 	struct pv_entry *pv;
   1832 	pmap_t last_pmap = pm;
   1833 
   1834 	/*
   1835 	 * Pass one, see if there are both kernel and user pmaps for
   1836 	 * this page.  Calculate whether there are user-writable or
   1837 	 * kernel-writable pages.
   1838 	 */
   1839 	u_cacheable = 0;
   1840 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1841 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1842 			u_cacheable++;
   1843 	}
   1844 
   1845 	u_entries = md->urw_mappings + md->uro_mappings;
   1846 
   1847 	/*
   1848 	 * We know we have just been updating a kernel entry, so if
   1849 	 * all user pages are already cacheable, then there is nothing
   1850 	 * further to do.
   1851 	 */
   1852 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1853 		return;
   1854 
   1855 	if (u_entries) {
   1856 		/*
   1857 		 * Scan over the list again, for each entry, if it
   1858 		 * might not be set correctly, call pmap_vac_me_user
   1859 		 * to recalculate the settings.
   1860 		 */
   1861 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1862 			/*
   1863 			 * We know kernel mappings will get set
   1864 			 * correctly in other calls.  We also know
   1865 			 * that if the pmap is the same as last_pmap
   1866 			 * then we've just handled this entry.
   1867 			 */
   1868 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1869 				continue;
   1870 
   1871 			/*
   1872 			 * If there are kernel entries and this page
   1873 			 * is writable but non-cacheable, then we can
   1874 			 * skip this entry also.
   1875 			 */
   1876 			if (md->k_mappings &&
   1877 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1878 			    (PVF_NC | PVF_WRITE))
   1879 				continue;
   1880 
   1881 			/*
   1882 			 * Similarly if there are no kernel-writable
   1883 			 * entries and the page is already
   1884 			 * read-only/cacheable.
   1885 			 */
   1886 			if (md->krw_mappings == 0 &&
   1887 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1888 				continue;
   1889 
   1890 			/*
   1891 			 * For some of the remaining cases, we know
   1892 			 * that we must recalculate, but for others we
   1893 			 * can't tell if they are correct or not, so
   1894 			 * we recalculate anyway.
   1895 			 */
   1896 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1897 		}
   1898 
   1899 		if (md->k_mappings == 0)
   1900 			return;
   1901 	}
   1902 
   1903 	pmap_vac_me_user(md, pa, pm, va);
   1904 }
   1905 
   1906 static void
   1907 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1908 {
   1909 	pmap_t kpmap = pmap_kernel();
   1910 	struct pv_entry *pv, *npv = NULL;
   1911 	u_int entries = 0;
   1912 	u_int writable = 0;
   1913 	u_int cacheable_entries = 0;
   1914 	u_int kern_cacheable = 0;
   1915 	u_int other_writable = 0;
   1916 
   1917 	/*
   1918 	 * Count mappings and writable mappings in this pmap.
   1919 	 * Include kernel mappings as part of our own.
   1920 	 * Keep a pointer to the first one.
   1921 	 */
   1922 	npv = NULL;
   1923 	KASSERT(pmap_page_locked_p(md));
   1924 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1925 		/* Count mappings in the same pmap */
   1926 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1927 			if (entries++ == 0)
   1928 				npv = pv;
   1929 
   1930 			/* Cacheable mappings */
   1931 			if ((pv->pv_flags & PVF_NC) == 0) {
   1932 				cacheable_entries++;
   1933 				if (kpmap == pv->pv_pmap)
   1934 					kern_cacheable++;
   1935 			}
   1936 
   1937 			/* Writable mappings */
   1938 			if (pv->pv_flags & PVF_WRITE)
   1939 				++writable;
   1940 		} else if (pv->pv_flags & PVF_WRITE)
   1941 			other_writable = 1;
   1942 	}
   1943 
   1944 	/*
   1945 	 * Enable or disable caching as necessary.
   1946 	 * Note: the first entry might be part of the kernel pmap,
   1947 	 * so we can't assume this is indicative of the state of the
   1948 	 * other (maybe non-kpmap) entries.
   1949 	 */
   1950 	if ((entries > 1 && writable) ||
   1951 	    (entries > 0 && pm == kpmap && other_writable)) {
   1952 		if (cacheable_entries == 0) {
   1953 			return;
   1954 		}
   1955 
   1956 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1957 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1958 			    (pv->pv_flags & PVF_NC))
   1959 				continue;
   1960 
   1961 			pv->pv_flags |= PVF_NC;
   1962 
   1963 			struct l2_bucket * const l2b
   1964 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1965 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1966 			pt_entry_t * const ptep
   1967 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1968 			const pt_entry_t opte = *ptep;
   1969 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1970 
   1971 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1972 			    && l2pte_valid_p(opte)) {
   1973 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1974 				    true, pv->pv_flags);
   1975 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1976 				    pv->pv_flags);
   1977 			}
   1978 
   1979 			l2pte_set(ptep, npte, opte);
   1980 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1981 		}
   1982 		cpu_cpwait();
   1983 	} else if (entries > cacheable_entries) {
   1984 		/*
   1985 		 * Turn cacheing back on for some pages.  If it is a kernel
   1986 		 * page, only do so if there are no other writable pages.
   1987 		 */
   1988 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1989 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1990 			    (kpmap != pv->pv_pmap || other_writable)))
   1991 				continue;
   1992 
   1993 			pv->pv_flags &= ~PVF_NC;
   1994 
   1995 			struct l2_bucket * const l2b
   1996 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1997 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1998 			pt_entry_t * const ptep
   1999 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2000 			const pt_entry_t opte = *ptep;
   2001 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   2002 			    | pte_l2_s_cache_mode;
   2003 
   2004 			if (l2pte_valid_p(opte)) {
   2005 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2006 				    pv->pv_flags);
   2007 			}
   2008 
   2009 			l2pte_set(ptep, npte, opte);
   2010 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2011 		}
   2012 	}
   2013 }
   2014 #endif
   2015 
   2016 #ifdef PMAP_CACHE_VIPT
   2017 static void
   2018 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2019 {
   2020 #ifndef ARM_MMU_EXTENDED
   2021 	struct pv_entry *pv;
   2022 	vaddr_t tst_mask;
   2023 	bool bad_alias;
   2024 	const u_int
   2025 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2026 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2027 
   2028 	/* do we need to do anything? */
   2029 	if (arm_cache_prefer_mask == 0)
   2030 		return;
   2031 
   2032 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   2033 	    md, pm, va));
   2034 
   2035 	KASSERT(!va || pm);
   2036 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2037 
   2038 	/* Already a conflict? */
   2039 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2040 		/* just an add, things are already non-cached */
   2041 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2042 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2043 		bad_alias = false;
   2044 		if (va) {
   2045 			PMAPCOUNT(vac_color_none);
   2046 			bad_alias = true;
   2047 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2048 			goto fixup;
   2049 		}
   2050 		pv = SLIST_FIRST(&md->pvh_list);
   2051 		/* the list can't be empty because it would be cachable */
   2052 		if (md->pvh_attrs & PVF_KMPAGE) {
   2053 			tst_mask = md->pvh_attrs;
   2054 		} else {
   2055 			KASSERT(pv);
   2056 			tst_mask = pv->pv_va;
   2057 			pv = SLIST_NEXT(pv, pv_link);
   2058 		}
   2059 		/*
   2060 		 * Only check for a bad alias if we have writable mappings.
   2061 		 */
   2062 		tst_mask &= arm_cache_prefer_mask;
   2063 		if (rw_mappings > 0) {
   2064 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2065 				/* if there's a bad alias, stop checking. */
   2066 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2067 					bad_alias = true;
   2068 			}
   2069 			md->pvh_attrs |= PVF_WRITE;
   2070 			if (!bad_alias)
   2071 				md->pvh_attrs |= PVF_DIRTY;
   2072 		} else {
   2073 			/*
   2074 			 * We have only read-only mappings.  Let's see if there
   2075 			 * are multiple colors in use or if we mapped a KMPAGE.
   2076 			 * If the latter, we have a bad alias.  If the former,
   2077 			 * we need to remember that.
   2078 			 */
   2079 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2080 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2081 					if (md->pvh_attrs & PVF_KMPAGE)
   2082 						bad_alias = true;
   2083 					break;
   2084 				}
   2085 			}
   2086 			md->pvh_attrs &= ~PVF_WRITE;
   2087 			/*
   2088 			 * No KMPAGE and we exited early, so we must have
   2089 			 * multiple color mappings.
   2090 			 */
   2091 			if (!bad_alias && pv != NULL)
   2092 				md->pvh_attrs |= PVF_MULTCLR;
   2093 		}
   2094 
   2095 		/* If no conflicting colors, set everything back to cached */
   2096 		if (!bad_alias) {
   2097 #ifdef DEBUG
   2098 			if ((md->pvh_attrs & PVF_WRITE)
   2099 			    || ro_mappings < 2) {
   2100 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2101 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2102 			}
   2103 #endif
   2104 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2105 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2106 			/*
   2107 			 * Restore DIRTY bit if page is modified
   2108 			 */
   2109 			if (md->pvh_attrs & PVF_DMOD)
   2110 				md->pvh_attrs |= PVF_DIRTY;
   2111 			PMAPCOUNT(vac_color_restore);
   2112 		} else {
   2113 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2114 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2115 		}
   2116 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2117 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2118 	} else if (!va) {
   2119 		KASSERT(pmap_is_page_colored_p(md));
   2120 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2121 		    || (md->pvh_attrs & PVF_DIRTY));
   2122 		if (rw_mappings == 0) {
   2123 			md->pvh_attrs &= ~PVF_WRITE;
   2124 			if (ro_mappings == 1
   2125 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2126 				/*
   2127 				 * If this is the last readonly mapping
   2128 				 * but it doesn't match the current color
   2129 				 * for the page, change the current color
   2130 				 * to match this last readonly mapping.
   2131 				 */
   2132 				pv = SLIST_FIRST(&md->pvh_list);
   2133 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2134 				    & arm_cache_prefer_mask;
   2135 				if (tst_mask) {
   2136 					md->pvh_attrs ^= tst_mask;
   2137 					PMAPCOUNT(vac_color_change);
   2138 				}
   2139 			}
   2140 		}
   2141 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2142 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2143 		return;
   2144 	} else if (!pmap_is_page_colored_p(md)) {
   2145 		/* not colored so we just use its color */
   2146 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2147 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2148 		PMAPCOUNT(vac_color_new);
   2149 		md->pvh_attrs &= PAGE_SIZE - 1;
   2150 		md->pvh_attrs |= PVF_COLORED
   2151 		    | (va & arm_cache_prefer_mask)
   2152 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2153 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2154 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2155 		return;
   2156 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2157 		bad_alias = false;
   2158 		if (rw_mappings > 0) {
   2159 			/*
   2160 			 * We now have writeable mappings and if we have
   2161 			 * readonly mappings in more than once color, we have
   2162 			 * an aliasing problem.  Regardless mark the page as
   2163 			 * writeable.
   2164 			 */
   2165 			if (md->pvh_attrs & PVF_MULTCLR) {
   2166 				if (ro_mappings < 2) {
   2167 					/*
   2168 					 * If we only have less than two
   2169 					 * read-only mappings, just flush the
   2170 					 * non-primary colors from the cache.
   2171 					 */
   2172 					pmap_flush_page(md, pa,
   2173 					    PMAP_FLUSH_SECONDARY);
   2174 				} else {
   2175 					bad_alias = true;
   2176 				}
   2177 			}
   2178 			md->pvh_attrs |= PVF_WRITE;
   2179 		}
   2180 		/* If no conflicting colors, set everything back to cached */
   2181 		if (!bad_alias) {
   2182 #ifdef DEBUG
   2183 			if (rw_mappings > 0
   2184 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2185 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2186 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2187 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2188 			}
   2189 #endif
   2190 			if (SLIST_EMPTY(&md->pvh_list))
   2191 				PMAPCOUNT(vac_color_reuse);
   2192 			else
   2193 				PMAPCOUNT(vac_color_ok);
   2194 
   2195 			/* matching color, just return */
   2196 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2197 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2198 			return;
   2199 		}
   2200 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2201 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2202 
   2203 		/* color conflict.  evict from cache. */
   2204 
   2205 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2206 		md->pvh_attrs &= ~PVF_COLORED;
   2207 		md->pvh_attrs |= PVF_NC;
   2208 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2209 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2210 		PMAPCOUNT(vac_color_erase);
   2211 	} else if (rw_mappings == 0
   2212 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2213 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2214 
   2215 		/*
   2216 		 * If the page has dirty cache lines, clean it.
   2217 		 */
   2218 		if (md->pvh_attrs & PVF_DIRTY)
   2219 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2220 
   2221 		/*
   2222 		 * If this is the first remapping (we know that there are no
   2223 		 * writeable mappings), then this is a simple color change.
   2224 		 * Otherwise this is a seconary r/o mapping, which means
   2225 		 * we don't have to do anything.
   2226 		 */
   2227 		if (ro_mappings == 1) {
   2228 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2229 			md->pvh_attrs &= PAGE_SIZE - 1;
   2230 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2231 			PMAPCOUNT(vac_color_change);
   2232 		} else {
   2233 			PMAPCOUNT(vac_color_blind);
   2234 		}
   2235 		md->pvh_attrs |= PVF_MULTCLR;
   2236 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2237 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2238 		return;
   2239 	} else {
   2240 		if (rw_mappings > 0)
   2241 			md->pvh_attrs |= PVF_WRITE;
   2242 
   2243 		/* color conflict.  evict from cache. */
   2244 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2245 
   2246 		/* the list can't be empty because this was a enter/modify */
   2247 		pv = SLIST_FIRST(&md->pvh_list);
   2248 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2249 			KASSERT(pv);
   2250 			/*
   2251 			 * If there's only one mapped page, change color to the
   2252 			 * page's new color and return.  Restore the DIRTY bit
   2253 			 * that was erased by pmap_flush_page.
   2254 			 */
   2255 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2256 				md->pvh_attrs &= PAGE_SIZE - 1;
   2257 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2258 				if (md->pvh_attrs & PVF_DMOD)
   2259 					md->pvh_attrs |= PVF_DIRTY;
   2260 				PMAPCOUNT(vac_color_change);
   2261 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2262 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2263 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2264 				return;
   2265 			}
   2266 		}
   2267 		bad_alias = true;
   2268 		md->pvh_attrs &= ~PVF_COLORED;
   2269 		md->pvh_attrs |= PVF_NC;
   2270 		PMAPCOUNT(vac_color_erase);
   2271 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2272 	}
   2273 
   2274   fixup:
   2275 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2276 
   2277 	/*
   2278 	 * Turn cacheing on/off for all pages.
   2279 	 */
   2280 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2281 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2282 		    pv->pv_va);
   2283 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2284 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2285 		const pt_entry_t opte = *ptep;
   2286 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2287 		if (bad_alias) {
   2288 			pv->pv_flags |= PVF_NC;
   2289 		} else {
   2290 			pv->pv_flags &= ~PVF_NC;
   2291 			npte |= pte_l2_s_cache_mode;
   2292 		}
   2293 
   2294 		if (opte == npte)	/* only update is there's a change */
   2295 			continue;
   2296 
   2297 		if (l2pte_valid_p(opte)) {
   2298 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2299 		}
   2300 
   2301 		l2pte_set(ptep, npte, opte);
   2302 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2303 	}
   2304 #endif /* !ARM_MMU_EXTENDED */
   2305 }
   2306 #endif	/* PMAP_CACHE_VIPT */
   2307 
   2308 
   2309 /*
   2310  * Modify pte bits for all ptes corresponding to the given physical address.
   2311  * We use `maskbits' rather than `clearbits' because we're always passing
   2312  * constants and the latter would require an extra inversion at run-time.
   2313  */
   2314 static void
   2315 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2316 {
   2317 	struct pv_entry *pv;
   2318 #ifdef PMAP_CACHE_VIPT
   2319 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2320 	bool need_syncicache = false;
   2321 #ifdef ARM_MMU_EXTENDED
   2322 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
   2323 #else
   2324 	const u_int execbits = 0;
   2325 	bool need_vac_me_harder = false;
   2326 #endif
   2327 #else
   2328 	const u_int execbits = 0;
   2329 #endif
   2330 
   2331 	NPDEBUG(PDB_BITS,
   2332 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2333 	    md, maskbits));
   2334 
   2335 #ifdef PMAP_CACHE_VIPT
   2336 	/*
   2337 	 * If we might want to sync the I-cache and we've modified it,
   2338 	 * then we know we definitely need to sync or discard it.
   2339 	 */
   2340 	if (want_syncicache) {
   2341 		if (md->pvh_attrs & PVF_MOD) {
   2342 			need_syncicache = true;
   2343 		}
   2344 	}
   2345 #endif
   2346 	KASSERT(pmap_page_locked_p(md));
   2347 
   2348 	/*
   2349 	 * Clear saved attributes (modify, reference)
   2350 	 */
   2351 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2352 
   2353 	if (SLIST_EMPTY(&md->pvh_list)) {
   2354 #if defined(PMAP_CACHE_VIPT)
   2355 		if (need_syncicache) {
   2356 			/*
   2357 			 * No one has it mapped, so just discard it.  The next
   2358 			 * exec remapping will cause it to be synced.
   2359 			 */
   2360 			md->pvh_attrs &= ~PVF_EXEC;
   2361 			PMAPCOUNT(exec_discarded_clearbit);
   2362 		}
   2363 #endif
   2364 		return;
   2365 	}
   2366 
   2367 	/*
   2368 	 * Loop over all current mappings setting/clearing as appropos
   2369 	 */
   2370 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2371 		pmap_t pm = pv->pv_pmap;
   2372 		const vaddr_t va = pv->pv_va;
   2373 		const u_int oflags = pv->pv_flags;
   2374 #ifndef ARM_MMU_EXTENDED
   2375 		/*
   2376 		 * Kernel entries are unmanaged and as such not to be changed.
   2377 		 */
   2378 		if (PV_IS_KENTRY_P(oflags))
   2379 			continue;
   2380 #endif
   2381 		pv->pv_flags &= ~maskbits;
   2382 
   2383 		pmap_release_page_lock(md);
   2384 		pmap_acquire_pmap_lock(pm);
   2385 
   2386 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2387 		if (l2b == NULL) {
   2388 			pmap_release_pmap_lock(pm);
   2389 			pmap_acquire_page_lock(md);
   2390 			continue;
   2391 		}
   2392 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2393 
   2394 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2395 		const pt_entry_t opte = *ptep;
   2396 		pt_entry_t npte = opte | execbits;
   2397 
   2398 #ifdef ARM_MMU_EXTENDED
   2399 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2400 #endif
   2401 
   2402 		NPDEBUG(PDB_BITS,
   2403 		    printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2404 			__func__, pv, pm, va, oflags));
   2405 
   2406 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2407 #ifdef PMAP_CACHE_VIVT
   2408 			if ((oflags & PVF_NC)) {
   2409 				/*
   2410 				 * Entry is not cacheable:
   2411 				 *
   2412 				 * Don't turn caching on again if this is a
   2413 				 * modified emulation. This would be
   2414 				 * inconsitent with the settings created by
   2415 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2416 				 * to re-enable cacheing.
   2417 				 *
   2418 				 * There's no need to call pmap_vac_me_harder()
   2419 				 * here: all pages are losing their write
   2420 				 * permission.
   2421 				 */
   2422 				if (maskbits & PVF_WRITE) {
   2423 					npte |= pte_l2_s_cache_mode;
   2424 					pv->pv_flags &= ~PVF_NC;
   2425 				}
   2426 			} else if (l2pte_writable_p(opte)) {
   2427 				/*
   2428 				 * Entry is writable/cacheable: check if pmap
   2429 				 * is current if it is flush it, otherwise it
   2430 				 * won't be in the cache
   2431 				 */
   2432 				pmap_cache_wbinv_page(pm, va,
   2433 				    (maskbits & PVF_REF) != 0,
   2434 				    oflags|PVF_WRITE);
   2435 			}
   2436 #endif
   2437 
   2438 			/* make the pte read only */
   2439 			npte = l2pte_set_readonly(npte);
   2440 
   2441 			pmap_acquire_page_lock(md);
   2442 #ifdef MULTIPROCESSOR
   2443 			pv = pmap_find_pv(md, pm, va);
   2444 #endif
   2445 			if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
   2446 				/*
   2447 				 * Keep alias accounting up to date
   2448 				 */
   2449 				if (pm == pmap_kernel()) {
   2450 					md->krw_mappings--;
   2451 					md->kro_mappings++;
   2452 				} else {
   2453 					md->urw_mappings--;
   2454 					md->uro_mappings++;
   2455 				}
   2456 #ifdef PMAP_CACHE_VIPT
   2457 				if (arm_cache_prefer_mask != 0) {
   2458 					if (md->urw_mappings + md->krw_mappings == 0) {
   2459 						md->pvh_attrs &= ~PVF_WRITE;
   2460 					} else {
   2461 						PMAP_VALIDATE_MD_PAGE(md);
   2462 					}
   2463 				}
   2464 				if (want_syncicache)
   2465 					need_syncicache = true;
   2466 #ifndef ARM_MMU_EXTENDED
   2467 				need_vac_me_harder = true;
   2468 #endif
   2469 #endif /* PMAP_CACHE_VIPT */
   2470 			}
   2471 			pmap_release_page_lock(md);
   2472 		}
   2473 
   2474 		if (maskbits & PVF_REF) {
   2475 			if (true
   2476 #ifndef ARM_MMU_EXTENDED
   2477 			    && (oflags & PVF_NC) == 0
   2478 #endif
   2479 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2480 			    && l2pte_valid_p(npte)) {
   2481 #ifdef PMAP_CACHE_VIVT
   2482 				/*
   2483 				 * Check npte here; we may have already
   2484 				 * done the wbinv above, and the validity
   2485 				 * of the PTE is the same for opte and
   2486 				 * npte.
   2487 				 */
   2488 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2489 #endif
   2490 			}
   2491 
   2492 			/*
   2493 			 * Make the PTE invalid so that we will take a
   2494 			 * page fault the next time the mapping is
   2495 			 * referenced.
   2496 			 */
   2497 			npte &= ~L2_TYPE_MASK;
   2498 			npte |= L2_TYPE_INV;
   2499 		}
   2500 
   2501 		if (npte != opte) {
   2502 			l2pte_reset(ptep);
   2503 			PTE_SYNC(ptep);
   2504 
   2505 			/* Flush the TLB entry if a current pmap. */
   2506 			pmap_tlb_flush_SE(pm, va, oflags);
   2507 
   2508 			l2pte_set(ptep, npte, 0);
   2509 			PTE_SYNC(ptep);
   2510 		}
   2511 
   2512 		pmap_release_pmap_lock(pm);
   2513 		pmap_acquire_page_lock(md);
   2514 
   2515 		NPDEBUG(PDB_BITS,
   2516 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2517 		    pm, va, opte, npte));
   2518 	}
   2519 
   2520 #if defined(PMAP_CACHE_VIPT)
   2521 	/*
   2522 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2523 	 */
   2524 	if (need_syncicache) {
   2525 		pmap_release_page_lock(md);
   2526 		pmap_syncicache_page(md, pa);
   2527 		pmap_acquire_page_lock(md);
   2528 		PMAPCOUNT(exec_synced_clearbit);
   2529 	}
   2530 #ifndef ARM_MMU_EXTENDED
   2531 	/*
   2532 	 * If we are changing this to read-only, we need to call vac_me_harder
   2533 	 * so we can change all the read-only pages to cacheable.  We pretend
   2534 	 * this as a page deletion.
   2535 	 */
   2536 	if (need_vac_me_harder) {
   2537 		if (md->pvh_attrs & PVF_NC)
   2538 			pmap_vac_me_harder(md, pa, NULL, 0);
   2539 	}
   2540 #endif /* !ARM_MMU_EXTENDED */
   2541 #endif /* PMAP_CACHE_VIPT */
   2542 }
   2543 
   2544 /*
   2545  * pmap_clean_page()
   2546  *
   2547  * This is a local function used to work out the best strategy to clean
   2548  * a single page referenced by its entry in the PV table. It's used by
   2549  * pmap_copy_page, pmap_zero_page and maybe some others later on.
   2550  *
   2551  * Its policy is effectively:
   2552  *  o If there are no mappings, we don't bother doing anything with the cache.
   2553  *  o If there is one mapping, we clean just that page.
   2554  *  o If there are multiple mappings, we clean the entire cache.
   2555  *
   2556  * So that some functions can be further optimised, it returns 0 if it didn't
   2557  * clean the entire cache, or 1 if it did.
   2558  *
   2559  * XXX One bug in this routine is that if the pv_entry has a single page
   2560  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2561  * just the 1 page. Since this should not occur in everyday use and if it does
   2562  * it will just result in not the most efficient clean for the page.
   2563  */
   2564 #ifdef PMAP_CACHE_VIVT
   2565 static bool
   2566 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2567 {
   2568 	struct pv_entry *pv;
   2569 	pmap_t pm_to_clean = NULL;
   2570 	bool cache_needs_cleaning = false;
   2571 	vaddr_t page_to_clean = 0;
   2572 	u_int flags = 0;
   2573 
   2574 	/*
   2575 	 * Since we flush the cache each time we change to a different
   2576 	 * user vmspace, we only need to flush the page if it is in the
   2577 	 * current pmap.
   2578 	 */
   2579 	KASSERT(pmap_page_locked_p(md));
   2580 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2581 		if (pmap_is_current(pv->pv_pmap)) {
   2582 			flags |= pv->pv_flags;
   2583 			/*
   2584 			 * The page is mapped non-cacheable in
   2585 			 * this map.  No need to flush the cache.
   2586 			 */
   2587 			if (pv->pv_flags & PVF_NC) {
   2588 #ifdef DIAGNOSTIC
   2589 				KASSERT(!cache_needs_cleaning);
   2590 #endif
   2591 				break;
   2592 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2593 				continue;
   2594 			if (cache_needs_cleaning) {
   2595 				page_to_clean = 0;
   2596 				break;
   2597 			} else {
   2598 				page_to_clean = pv->pv_va;
   2599 				pm_to_clean = pv->pv_pmap;
   2600 			}
   2601 			cache_needs_cleaning = true;
   2602 		}
   2603 	}
   2604 
   2605 	if (page_to_clean) {
   2606 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2607 		    !is_src, flags | PVF_REF);
   2608 	} else if (cache_needs_cleaning) {
   2609 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2610 
   2611 		pmap_cache_wbinv_all(pm, flags);
   2612 		return true;
   2613 	}
   2614 	return false;
   2615 }
   2616 #endif
   2617 
   2618 #ifdef PMAP_CACHE_VIPT
   2619 /*
   2620  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2621  * right cache alias to make sure we flush the right stuff.
   2622  */
   2623 void
   2624 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2625 {
   2626 	pmap_t kpm = pmap_kernel();
   2627 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2628 	    ? PAGE_SIZE
   2629 	    : arm_pcache.icache_way_size;
   2630 
   2631 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2632 	    md, md->pvh_attrs));
   2633 	/*
   2634 	 * No need to clean the page if it's non-cached.
   2635 	 */
   2636 #ifndef ARM_MMU_EXTENDED
   2637 	if (md->pvh_attrs & PVF_NC)
   2638 		return;
   2639 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2640 #endif
   2641 
   2642 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2643 	const vaddr_t dstp = cpu_cdstp(0);
   2644 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2645 	if (way_size <= PAGE_SIZE) {
   2646 		bool ok = false;
   2647 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2648 		if (ok) {
   2649 			cpu_icache_sync_range(vdstp, way_size);
   2650 			return;
   2651 		}
   2652 	}
   2653 #endif
   2654 
   2655 	/*
   2656 	 * We don't worry about the color of the exec page, we map the
   2657 	 * same page to pages in the way and then do the icache_sync on
   2658 	 * the entire way making sure we are cleaned.
   2659 	 */
   2660 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2661 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2662 
   2663 	for (size_t i = 0, j = 0; i < way_size;
   2664 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2665 		l2pte_reset(ptep + j);
   2666 		PTE_SYNC(ptep + j);
   2667 
   2668 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2669 		/*
   2670 		 * Set up a PTE with to flush these cache lines.
   2671 		 */
   2672 		l2pte_set(ptep + j, npte, 0);
   2673 	}
   2674 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2675 
   2676 	/*
   2677 	 * Flush it.
   2678 	 */
   2679 	cpu_icache_sync_range(dstp, way_size);
   2680 
   2681 	for (size_t i = 0, j = 0; i < way_size;
   2682 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2683 		/*
   2684 		 * Unmap the page(s).
   2685 		 */
   2686 		l2pte_reset(ptep + j);
   2687 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2688 	}
   2689 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2690 
   2691 	md->pvh_attrs |= PVF_EXEC;
   2692 	PMAPCOUNT(exec_synced);
   2693 }
   2694 
   2695 #ifndef ARM_MMU_EXTENDED
   2696 void
   2697 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2698 {
   2699 	vsize_t va_offset, end_va;
   2700 	bool wbinv_p;
   2701 
   2702 	if (arm_cache_prefer_mask == 0)
   2703 		return;
   2704 
   2705 	switch (flush) {
   2706 	case PMAP_FLUSH_PRIMARY:
   2707 		if (md->pvh_attrs & PVF_MULTCLR) {
   2708 			va_offset = 0;
   2709 			end_va = arm_cache_prefer_mask;
   2710 			md->pvh_attrs &= ~PVF_MULTCLR;
   2711 			PMAPCOUNT(vac_flush_lots);
   2712 		} else {
   2713 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2714 			end_va = va_offset;
   2715 			PMAPCOUNT(vac_flush_one);
   2716 		}
   2717 		/*
   2718 		 * Mark that the page is no longer dirty.
   2719 		 */
   2720 		md->pvh_attrs &= ~PVF_DIRTY;
   2721 		wbinv_p = true;
   2722 		break;
   2723 	case PMAP_FLUSH_SECONDARY:
   2724 		va_offset = 0;
   2725 		end_va = arm_cache_prefer_mask;
   2726 		wbinv_p = true;
   2727 		md->pvh_attrs &= ~PVF_MULTCLR;
   2728 		PMAPCOUNT(vac_flush_lots);
   2729 		break;
   2730 	case PMAP_CLEAN_PRIMARY:
   2731 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2732 		end_va = va_offset;
   2733 		wbinv_p = false;
   2734 		/*
   2735 		 * Mark that the page is no longer dirty.
   2736 		 */
   2737 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2738 			md->pvh_attrs &= ~PVF_DIRTY;
   2739 		PMAPCOUNT(vac_clean_one);
   2740 		break;
   2741 	default:
   2742 		return;
   2743 	}
   2744 
   2745 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2746 
   2747 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2748 	    md, md->pvh_attrs));
   2749 
   2750 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2751 
   2752 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2753 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2754 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2755 		const pt_entry_t opte = *ptep;
   2756 
   2757 		if (flush == PMAP_FLUSH_SECONDARY
   2758 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2759 			continue;
   2760 
   2761 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2762 		/*
   2763 		 * Set up a PTE with the right coloring to flush
   2764 		 * existing cache entries.
   2765 		 */
   2766 		const pt_entry_t npte = L2_S_PROTO
   2767 		    | pa
   2768 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2769 		    | pte_l2_s_cache_mode;
   2770 		l2pte_set(ptep, npte, opte);
   2771 		PTE_SYNC(ptep);
   2772 
   2773 		/*
   2774 		 * Flush it.  Make sure to flush secondary cache too since
   2775 		 * bus_dma will ignore uncached pages.
   2776 		 */
   2777 		if (scache_line_size != 0) {
   2778 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2779 			if (wbinv_p) {
   2780 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2781 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2782 			} else {
   2783 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2784 			}
   2785 		} else {
   2786 			if (wbinv_p) {
   2787 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2788 			} else {
   2789 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2790 			}
   2791 		}
   2792 
   2793 		/*
   2794 		 * Restore the page table entry since we might have interrupted
   2795 		 * pmap_zero_page or pmap_copy_page which was already using
   2796 		 * this pte.
   2797 		 */
   2798 		if (opte) {
   2799 			l2pte_set(ptep, opte, npte);
   2800 		} else {
   2801 			l2pte_reset(ptep);
   2802 		}
   2803 		PTE_SYNC(ptep);
   2804 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2805 	}
   2806 }
   2807 #endif /* ARM_MMU_EXTENDED */
   2808 #endif /* PMAP_CACHE_VIPT */
   2809 
   2810 /*
   2811  * Routine:	pmap_page_remove
   2812  * Function:
   2813  *		Removes this physical page from
   2814  *		all physical maps in which it resides.
   2815  *		Reflects back modify bits to the pager.
   2816  */
   2817 static void
   2818 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2819 {
   2820 	struct l2_bucket *l2b;
   2821 	struct pv_entry *pv;
   2822 	pt_entry_t *ptep;
   2823 #ifndef ARM_MMU_EXTENDED
   2824 	bool flush = false;
   2825 #endif
   2826 	u_int flags = 0;
   2827 
   2828 	NPDEBUG(PDB_FOLLOW,
   2829 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2830 	    pa));
   2831 
   2832 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2833 	pmap_acquire_page_lock(md);
   2834 	if (*pvp == NULL) {
   2835 #ifdef PMAP_CACHE_VIPT
   2836 		/*
   2837 		 * We *know* the page contents are about to be replaced.
   2838 		 * Discard the exec contents
   2839 		 */
   2840 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2841 			PMAPCOUNT(exec_discarded_page_protect);
   2842 		md->pvh_attrs &= ~PVF_EXEC;
   2843 		PMAP_VALIDATE_MD_PAGE(md);
   2844 #endif
   2845 		pmap_release_page_lock(md);
   2846 		return;
   2847 	}
   2848 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2849 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2850 #endif
   2851 
   2852 	/*
   2853 	 * Clear alias counts
   2854 	 */
   2855 #ifdef PMAP_CACHE_VIVT
   2856 	md->k_mappings = 0;
   2857 #endif
   2858 	md->urw_mappings = md->uro_mappings = 0;
   2859 
   2860 #ifdef PMAP_CACHE_VIVT
   2861 	pmap_clean_page(md, false);
   2862 #endif
   2863 
   2864 	while ((pv = *pvp) != NULL) {
   2865 		pmap_t pm = pv->pv_pmap;
   2866 #ifndef ARM_MMU_EXTENDED
   2867 		if (flush == false && pmap_is_current(pm))
   2868 			flush = true;
   2869 #endif
   2870 
   2871 		if (pm == pmap_kernel()) {
   2872 #ifdef PMAP_CACHE_VIPT
   2873 			/*
   2874 			 * If this was unmanaged mapping, it must be preserved.
   2875 			 * Move it back on the list and advance the end-of-list
   2876 			 * pointer.
   2877 			 */
   2878 			if (PV_IS_KENTRY_P(pv->pv_flags)) {
   2879 				*pvp = pv;
   2880 				pvp = &SLIST_NEXT(pv, pv_link);
   2881 				continue;
   2882 			}
   2883 			if (pv->pv_flags & PVF_WRITE)
   2884 				md->krw_mappings--;
   2885 			else
   2886 				md->kro_mappings--;
   2887 #endif
   2888 			PMAPCOUNT(kernel_unmappings);
   2889 		}
   2890 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2891 		PMAPCOUNT(unmappings);
   2892 
   2893 		pmap_release_page_lock(md);
   2894 		pmap_acquire_pmap_lock(pm);
   2895 
   2896 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2897 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2898 
   2899 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2900 
   2901 		/*
   2902 		 * Update statistics
   2903 		 */
   2904 		--pm->pm_stats.resident_count;
   2905 
   2906 		/* Wired bit */
   2907 		if (pv->pv_flags & PVF_WIRED)
   2908 			--pm->pm_stats.wired_count;
   2909 
   2910 		flags |= pv->pv_flags;
   2911 
   2912 		/*
   2913 		 * Invalidate the PTEs.
   2914 		 */
   2915 		l2pte_reset(ptep);
   2916 		PTE_SYNC_CURRENT(pm, ptep);
   2917 
   2918 #ifdef ARM_MMU_EXTENDED
   2919 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2920 #endif
   2921 
   2922 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2923 
   2924 		pmap_release_pmap_lock(pm);
   2925 
   2926 		pool_put(&pmap_pv_pool, pv);
   2927 		pmap_acquire_page_lock(md);
   2928 #ifdef MULTIPROCESSOR
   2929 		/*
   2930 		 * Restart of the beginning of the list.
   2931 		 */
   2932 		pvp = &SLIST_FIRST(&md->pvh_list);
   2933 #endif
   2934 	}
   2935 	/*
   2936 	 * if we reach the end of the list and there are still mappings, they
   2937 	 * might be able to be cached now.  And they must be kernel mappings.
   2938 	 */
   2939 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2940 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2941 	}
   2942 
   2943 #ifdef PMAP_CACHE_VIPT
   2944 	/*
   2945 	 * Its EXEC cache is now gone.
   2946 	 */
   2947 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2948 		PMAPCOUNT(exec_discarded_page_protect);
   2949 	md->pvh_attrs &= ~PVF_EXEC;
   2950 	KASSERT(md->urw_mappings == 0);
   2951 	KASSERT(md->uro_mappings == 0);
   2952 #ifndef ARM_MMU_EXTENDED
   2953 	if (arm_cache_prefer_mask != 0) {
   2954 		if (md->krw_mappings == 0)
   2955 			md->pvh_attrs &= ~PVF_WRITE;
   2956 		PMAP_VALIDATE_MD_PAGE(md);
   2957 	}
   2958 #endif /* ARM_MMU_EXTENDED */
   2959 #endif /* PMAP_CACHE_VIPT */
   2960 	pmap_release_page_lock(md);
   2961 
   2962 #ifndef ARM_MMU_EXTENDED
   2963 	if (flush) {
   2964 		/*
   2965 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2966 		 * would need a subsequent call to pmap_update() to ensure
   2967 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2968 		 * required to do that (see pmap(9)), so we can't modify
   2969 		 * the current pmap's state.
   2970 		 */
   2971 		if (PV_BEEN_EXECD(flags))
   2972 			cpu_tlb_flushID();
   2973 		else
   2974 			cpu_tlb_flushD();
   2975 	}
   2976 	cpu_cpwait();
   2977 #endif /* ARM_MMU_EXTENDED */
   2978 }
   2979 
   2980 /*
   2981  * pmap_t pmap_create(void)
   2982  *
   2983  *      Create a new pmap structure from scratch.
   2984  */
   2985 pmap_t
   2986 pmap_create(void)
   2987 {
   2988 	pmap_t pm;
   2989 
   2990 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2991 
   2992 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2993 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2994 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2995 
   2996 	pm->pm_stats.wired_count = 0;
   2997 	pm->pm_stats.resident_count = 1;
   2998 #ifdef ARM_MMU_EXTENDED
   2999 #ifdef MULTIPROCESSOR
   3000 	kcpuset_create(&pm->pm_active, true);
   3001 	kcpuset_create(&pm->pm_onproc, true);
   3002 #endif
   3003 #else
   3004 	pm->pm_cstate.cs_all = 0;
   3005 #endif
   3006 	pmap_alloc_l1(pm);
   3007 
   3008 	/*
   3009 	 * Note: The pool cache ensures that the pm_l2[] array is already
   3010 	 * initialised to zero.
   3011 	 */
   3012 
   3013 	pmap_pinit(pm);
   3014 
   3015 	return (pm);
   3016 }
   3017 
   3018 u_int
   3019 arm32_mmap_flags(paddr_t pa)
   3020 {
   3021 	/*
   3022 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3023 	 * and we're using the upper bits in page numbers to pass flags around
   3024 	 * so we might as well use the same bits
   3025 	 */
   3026 	return (u_int)pa & PMAP_MD_MASK;
   3027 }
   3028 /*
   3029  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3030  *      u_int flags)
   3031  *
   3032  *      Insert the given physical page (p) at
   3033  *      the specified virtual address (v) in the
   3034  *      target physical map with the protection requested.
   3035  *
   3036  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3037  *      or lose information.  That is, this routine must actually
   3038  *      insert this page into the given map NOW.
   3039  */
   3040 int
   3041 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3042 {
   3043 	struct l2_bucket *l2b;
   3044 	struct vm_page *pg, *opg;
   3045 	u_int nflags;
   3046 	u_int oflags;
   3047 	const bool kpm_p = (pm == pmap_kernel());
   3048 #ifdef ARM_HAS_VBAR
   3049 	const bool vector_page_p = false;
   3050 #else
   3051 	const bool vector_page_p = (va == vector_page);
   3052 #endif
   3053 
   3054 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3055 
   3056 	UVMHIST_LOG(maphist, " (pm %#jx va %#jx pa %#jx prot %#jx",
   3057 	    (uintptr_t)pm, va, pa, prot);
   3058 	UVMHIST_LOG(maphist, "  flag %#jx", flags, 0, 0, 0);
   3059 
   3060 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3061 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3062 
   3063 	/*
   3064 	 * Get a pointer to the page.  Later on in this function, we
   3065 	 * test for a managed page by checking pg != NULL.
   3066 	 */
   3067 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3068 
   3069 	nflags = 0;
   3070 	if (prot & VM_PROT_WRITE)
   3071 		nflags |= PVF_WRITE;
   3072 	if (prot & VM_PROT_EXECUTE)
   3073 		nflags |= PVF_EXEC;
   3074 	if (flags & PMAP_WIRED)
   3075 		nflags |= PVF_WIRED;
   3076 
   3077 	pmap_acquire_pmap_lock(pm);
   3078 
   3079 	/*
   3080 	 * Fetch the L2 bucket which maps this page, allocating one if
   3081 	 * necessary for user pmaps.
   3082 	 */
   3083 	if (kpm_p) {
   3084 		l2b = pmap_get_l2_bucket(pm, va);
   3085 	} else {
   3086 		l2b = pmap_alloc_l2_bucket(pm, va);
   3087 	}
   3088 	if (l2b == NULL) {
   3089 		if (flags & PMAP_CANFAIL) {
   3090 			pmap_release_pmap_lock(pm);
   3091 			return (ENOMEM);
   3092 		}
   3093 		panic("pmap_enter: failed to allocate L2 bucket");
   3094 	}
   3095 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3096 	const pt_entry_t opte = *ptep;
   3097 	pt_entry_t npte = pa;
   3098 	oflags = 0;
   3099 
   3100 	if (opte) {
   3101 		/*
   3102 		 * There is already a mapping at this address.
   3103 		 * If the physical address is different, lookup the
   3104 		 * vm_page.
   3105 		 */
   3106 		if (l2pte_pa(opte) != pa) {
   3107 			KASSERT(!pmap_pv_tracked(pa));
   3108 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3109 		} else
   3110 			opg = pg;
   3111 	} else
   3112 		opg = NULL;
   3113 
   3114 	struct pmap_page *pp = pmap_pv_tracked(pa);
   3115 
   3116 	if (pg || pp) {
   3117 		KASSERT((pg != NULL) != (pp != NULL));
   3118 		struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
   3119 		    PMAP_PAGE_TO_MD(pp);
   3120 
   3121 		/*
   3122 		 * This is to be a managed mapping.
   3123 		 */
   3124 		pmap_acquire_page_lock(md);
   3125 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3126 			/*
   3127 			 * - The access type indicates that we don't need
   3128 			 *   to do referenced emulation.
   3129 			 * OR
   3130 			 * - The physical page has already been referenced
   3131 			 *   so no need to re-do referenced emulation here.
   3132 			 */
   3133 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3134 
   3135 			nflags |= PVF_REF;
   3136 
   3137 			if ((prot & VM_PROT_WRITE) != 0 &&
   3138 			    ((flags & VM_PROT_WRITE) != 0 ||
   3139 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3140 				/*
   3141 				 * This is a writable mapping, and the
   3142 				 * page's mod state indicates it has
   3143 				 * already been modified. Make it
   3144 				 * writable from the outset.
   3145 				 */
   3146 				npte = l2pte_set_writable(npte);
   3147 				nflags |= PVF_MOD;
   3148 			}
   3149 
   3150 #ifdef ARM_MMU_EXTENDED
   3151 			/*
   3152 			 * If the page has been cleaned, then the pvh_attrs
   3153 			 * will have PVF_EXEC set, so mark it execute so we
   3154 			 * don't get an access fault when trying to execute
   3155 			 * from it.
   3156 			 */
   3157 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3158 				npte &= ~L2_XS_XN;
   3159 			}
   3160 #endif
   3161 		} else {
   3162 			/*
   3163 			 * Need to do page referenced emulation.
   3164 			 */
   3165 			npte |= L2_TYPE_INV;
   3166 		}
   3167 
   3168 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3169 			npte |= pte_l2_s_wc_mode;
   3170 		} else
   3171 			npte |= pte_l2_s_cache_mode;
   3172 
   3173 		if (pg != NULL && pg == opg) {
   3174 			/*
   3175 			 * We're changing the attrs of an existing mapping.
   3176 			 */
   3177 			oflags = pmap_modify_pv(md, pa, pm, va,
   3178 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3179 			    PVF_MOD | PVF_REF, nflags);
   3180 
   3181 #ifdef PMAP_CACHE_VIVT
   3182 			/*
   3183 			 * We may need to flush the cache if we're
   3184 			 * doing rw-ro...
   3185 			 */
   3186 			if (pm->pm_cstate.cs_cache_d &&
   3187 			    (oflags & PVF_NC) == 0 &&
   3188 			    l2pte_writable_p(opte) &&
   3189 			    (prot & VM_PROT_WRITE) == 0)
   3190 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3191 #endif
   3192 		} else {
   3193 			struct pv_entry *pv;
   3194 			/*
   3195 			 * New mapping, or changing the backing page
   3196 			 * of an existing mapping.
   3197 			 */
   3198 			if (opg) {
   3199 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3200 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3201 
   3202 				/*
   3203 				 * Replacing an existing mapping with a new one.
   3204 				 * It is part of our managed memory so we
   3205 				 * must remove it from the PV list
   3206 				 */
   3207 				pv = pmap_remove_pv(omd, opa, pm, va);
   3208 				pmap_vac_me_harder(omd, opa, pm, 0);
   3209 				oflags = pv->pv_flags;
   3210 
   3211 #ifdef PMAP_CACHE_VIVT
   3212 				/*
   3213 				 * If the old mapping was valid (ref/mod
   3214 				 * emulation creates 'invalid' mappings
   3215 				 * initially) then make sure to frob
   3216 				 * the cache.
   3217 				 */
   3218 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3219 					pmap_cache_wbinv_page(pm, va, true,
   3220 					    oflags);
   3221 				}
   3222 #endif
   3223 			} else {
   3224 				pmap_release_page_lock(md);
   3225 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3226 				if (pv == NULL) {
   3227 					pmap_release_pmap_lock(pm);
   3228 					if ((flags & PMAP_CANFAIL) == 0)
   3229 						panic("pmap_enter: "
   3230 						    "no pv entries");
   3231 
   3232 					pmap_free_l2_bucket(pm, l2b, 0);
   3233 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3234 					    0, 0, 0, 0);
   3235 					return (ENOMEM);
   3236 				}
   3237 				pmap_acquire_page_lock(md);
   3238 			}
   3239 
   3240 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3241 		}
   3242 		pmap_release_page_lock(md);
   3243 	} else {
   3244 		/*
   3245 		 * We're mapping an unmanaged page.
   3246 		 * These are always readable, and possibly writable, from
   3247 		 * the get go as we don't need to track ref/mod status.
   3248 		 */
   3249 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3250 		if (prot & VM_PROT_WRITE)
   3251 			npte = l2pte_set_writable(npte);
   3252 
   3253 		/*
   3254 		 * Make sure the vector table is mapped cacheable
   3255 		 */
   3256 		if ((vector_page_p && !kpm_p)
   3257 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3258 			npte |= pte_l2_s_cache_mode;
   3259 #ifdef ARM_MMU_EXTENDED
   3260 			npte &= ~L2_XS_XN;	/* and executable */
   3261 #endif
   3262 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3263 			npte |= pte_l2_s_wc_mode;
   3264 		}
   3265 		if (opg) {
   3266 			/*
   3267 			 * Looks like there's an existing 'managed' mapping
   3268 			 * at this address.
   3269 			 */
   3270 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3271 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3272 
   3273 			pmap_acquire_page_lock(omd);
   3274 			struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
   3275 			pmap_vac_me_harder(omd, opa, pm, 0);
   3276 			oflags = pv->pv_flags;
   3277 			pmap_release_page_lock(omd);
   3278 
   3279 #ifdef PMAP_CACHE_VIVT
   3280 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3281 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3282 			}
   3283 #endif
   3284 			pool_put(&pmap_pv_pool, pv);
   3285 		}
   3286 	}
   3287 
   3288 	/*
   3289 	 * Make sure userland mappings get the right permissions
   3290 	 */
   3291 	if (!vector_page_p && !kpm_p) {
   3292 		npte |= L2_S_PROT_U;
   3293 #ifdef ARM_MMU_EXTENDED
   3294 		npte |= L2_XS_nG;	/* user pages are not global */
   3295 #endif
   3296 	}
   3297 
   3298 	/*
   3299 	 * Keep the stats up to date
   3300 	 */
   3301 	if (opte == 0) {
   3302 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3303 		pm->pm_stats.resident_count++;
   3304 	}
   3305 
   3306 	UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
   3307 
   3308 #if defined(ARM_MMU_EXTENDED)
   3309 	/*
   3310 	 * If exec protection was requested but the page hasn't been synced,
   3311 	 * sync it now and allow execution from it.
   3312 	 */
   3313 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3314 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3315 		npte &= ~L2_XS_XN;
   3316 		pmap_syncicache_page(md, pa);
   3317 		PMAPCOUNT(exec_synced_map);
   3318 	}
   3319 #endif
   3320 	/*
   3321 	 * If this is just a wiring change, the two PTEs will be
   3322 	 * identical, so there's no need to update the page table.
   3323 	 */
   3324 	if (npte != opte) {
   3325 		l2pte_reset(ptep);
   3326 		PTE_SYNC(ptep);
   3327 		if (l2pte_valid_p(opte)) {
   3328 			pmap_tlb_flush_SE(pm, va, oflags);
   3329 		}
   3330 		l2pte_set(ptep, npte, 0);
   3331 		PTE_SYNC(ptep);
   3332 #ifndef ARM_MMU_EXTENDED
   3333 		bool is_cached = pmap_is_cached(pm);
   3334 		if (is_cached) {
   3335 			/*
   3336 			 * We only need to frob the cache/tlb if this pmap
   3337 			 * is current
   3338 			 */
   3339 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3340 				/*
   3341 				 * This mapping is likely to be accessed as
   3342 				 * soon as we return to userland. Fix up the
   3343 				 * L1 entry to avoid taking another
   3344 				 * page/domain fault.
   3345 				 */
   3346 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3347 				     + l1pte_index(va);
   3348 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3349 				    | L1_C_DOM(pmap_domain(pm));
   3350 				if (*pdep != pde) {
   3351 					l1pte_setone(pdep, pde);
   3352 					PDE_SYNC(pdep);
   3353 				}
   3354 			}
   3355 		}
   3356 #endif /* !ARM_MMU_EXTENDED */
   3357 
   3358 #ifndef ARM_MMU_EXTENDED
   3359 		UVMHIST_LOG(maphist, "  is_cached %jd cs 0x%08jx",
   3360 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3361 
   3362 		if (pg != NULL) {
   3363 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3364 
   3365 			pmap_acquire_page_lock(md);
   3366 			pmap_vac_me_harder(md, pa, pm, va);
   3367 			pmap_release_page_lock(md);
   3368 		}
   3369 #endif
   3370 	}
   3371 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3372 	if (pg) {
   3373 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3374 
   3375 		pmap_acquire_page_lock(md);
   3376 #ifndef ARM_MMU_EXTENDED
   3377 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3378 #endif
   3379 		PMAP_VALIDATE_MD_PAGE(md);
   3380 		pmap_release_page_lock(md);
   3381 	}
   3382 #endif
   3383 
   3384 	pmap_release_pmap_lock(pm);
   3385 
   3386 	return (0);
   3387 }
   3388 
   3389 /*
   3390  * pmap_remove()
   3391  *
   3392  * pmap_remove is responsible for nuking a number of mappings for a range
   3393  * of virtual address space in the current pmap. To do this efficiently
   3394  * is interesting, because in a number of cases a wide virtual address
   3395  * range may be supplied that contains few actual mappings. So, the
   3396  * optimisations are:
   3397  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3398  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3399  *     maybe do just a partial cache clean. This path of execution is
   3400  *     complicated by the fact that the cache must be flushed _before_
   3401  *     the PTE is nuked, being a VAC :-)
   3402  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3403  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3404  *     already flushed the cache.
   3405  *  4. Maybe later fast-case a single page, but I don't think this is
   3406  *     going to make _that_ much difference overall.
   3407  */
   3408 
   3409 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3410 
   3411 void
   3412 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3413 {
   3414 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3415 	UVMHIST_LOG(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
   3416 	    (uintptr_t)pm, sva, eva, 0);
   3417 
   3418 	/*
   3419 	 * we lock in the pmap => pv_head direction
   3420 	 */
   3421 	pmap_acquire_pmap_lock(pm);
   3422 
   3423 #ifndef ARM_MMU_EXTENDED
   3424 	u_int cleanlist_idx, total, cnt;
   3425 	struct {
   3426 		vaddr_t va;
   3427 		pt_entry_t *ptep;
   3428 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3429 
   3430 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3431 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3432 		if (pm->pm_cstate.cs_tlb == 0)
   3433 			pm->pm_remove_all = true;
   3434 	} else
   3435 		cleanlist_idx = 0;
   3436 	total = 0;
   3437 #endif
   3438 
   3439 	while (sva < eva) {
   3440 		/*
   3441 		 * Do one L2 bucket's worth at a time.
   3442 		 */
   3443 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
   3444 		if (next_bucket > eva)
   3445 			next_bucket = eva;
   3446 
   3447 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3448 		if (l2b == NULL) {
   3449 			sva = next_bucket;
   3450 			continue;
   3451 		}
   3452 
   3453 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3454 		u_int mappings = 0;
   3455 
   3456 		for (;sva < next_bucket;
   3457 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3458 			pt_entry_t opte = *ptep;
   3459 
   3460 			if (opte == 0) {
   3461 				/* Nothing here, move along */
   3462 				continue;
   3463 			}
   3464 
   3465 			u_int flags = PVF_REF;
   3466 			paddr_t pa = l2pte_pa(opte);
   3467 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3468 
   3469 			/*
   3470 			 * Update flags. In a number of circumstances,
   3471 			 * we could cluster a lot of these and do a
   3472 			 * number of sequential pages in one go.
   3473 			 */
   3474 			if (pg != NULL) {
   3475 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3476 				struct pv_entry *pv;
   3477 
   3478 				pmap_acquire_page_lock(md);
   3479 				pv = pmap_remove_pv(md, pa, pm, sva);
   3480 				pmap_vac_me_harder(md, pa, pm, 0);
   3481 				pmap_release_page_lock(md);
   3482 				if (pv != NULL) {
   3483 					if (pm->pm_remove_all == false) {
   3484 						flags = pv->pv_flags;
   3485 					}
   3486 					pool_put(&pmap_pv_pool, pv);
   3487 				}
   3488 			}
   3489 			mappings += PAGE_SIZE / L2_S_SIZE;
   3490 
   3491 			if (!l2pte_valid_p(opte)) {
   3492 				/*
   3493 				 * Ref/Mod emulation is still active for this
   3494 				 * mapping, therefore it is has not yet been
   3495 				 * accessed. No need to frob the cache/tlb.
   3496 				 */
   3497 				l2pte_reset(ptep);
   3498 				PTE_SYNC_CURRENT(pm, ptep);
   3499 				continue;
   3500 			}
   3501 
   3502 #ifdef ARM_MMU_EXTENDED
   3503 			l2pte_reset(ptep);
   3504 			PTE_SYNC(ptep);
   3505 			if (__predict_false(pm->pm_remove_all == false)) {
   3506 				pmap_tlb_flush_SE(pm, sva, flags);
   3507 			}
   3508 #else
   3509 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3510 				/* Add to the clean list. */
   3511 				cleanlist[cleanlist_idx].ptep = ptep;
   3512 				cleanlist[cleanlist_idx].va =
   3513 				    sva | (flags & PVF_EXEC);
   3514 				cleanlist_idx++;
   3515 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3516 				/* Nuke everything if needed. */
   3517 #ifdef PMAP_CACHE_VIVT
   3518 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3519 #endif
   3520 				/*
   3521 				 * Roll back the previous PTE list,
   3522 				 * and zero out the current PTE.
   3523 				 */
   3524 				for (cnt = 0;
   3525 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3526 					l2pte_reset(cleanlist[cnt].ptep);
   3527 					PTE_SYNC(cleanlist[cnt].ptep);
   3528 				}
   3529 				l2pte_reset(ptep);
   3530 				PTE_SYNC(ptep);
   3531 				cleanlist_idx++;
   3532 				pm->pm_remove_all = true;
   3533 			} else {
   3534 				l2pte_reset(ptep);
   3535 				PTE_SYNC(ptep);
   3536 				if (pm->pm_remove_all == false) {
   3537 					pmap_tlb_flush_SE(pm, sva, flags);
   3538 				}
   3539 			}
   3540 #endif
   3541 		}
   3542 
   3543 #ifndef ARM_MMU_EXTENDED
   3544 		/*
   3545 		 * Deal with any left overs
   3546 		 */
   3547 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3548 			total += cleanlist_idx;
   3549 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3550 				l2pte_reset(cleanlist[cnt].ptep);
   3551 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3552 				vaddr_t va = cleanlist[cnt].va;
   3553 				if (pm->pm_cstate.cs_all != 0) {
   3554 					vaddr_t clva = va & ~PAGE_MASK;
   3555 					u_int flags = va & PVF_EXEC;
   3556 #ifdef PMAP_CACHE_VIVT
   3557 					pmap_cache_wbinv_page(pm, clva, true,
   3558 					    PVF_REF | PVF_WRITE | flags);
   3559 #endif
   3560 					pmap_tlb_flush_SE(pm, clva,
   3561 					    PVF_REF | flags);
   3562 				}
   3563 			}
   3564 
   3565 			/*
   3566 			 * If it looks like we're removing a whole bunch
   3567 			 * of mappings, it's faster to just write-back
   3568 			 * the whole cache now and defer TLB flushes until
   3569 			 * pmap_update() is called.
   3570 			 */
   3571 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3572 				cleanlist_idx = 0;
   3573 			else {
   3574 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3575 #ifdef PMAP_CACHE_VIVT
   3576 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3577 #endif
   3578 				pm->pm_remove_all = true;
   3579 			}
   3580 		}
   3581 #endif /* ARM_MMU_EXTENDED */
   3582 
   3583 		pmap_free_l2_bucket(pm, l2b, mappings);
   3584 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3585 	}
   3586 
   3587 	pmap_release_pmap_lock(pm);
   3588 }
   3589 
   3590 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3591 static struct pv_entry *
   3592 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3593 {
   3594 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3595 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3596 	struct pv_entry *pv;
   3597 
   3598 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3599 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3600 	KASSERT(pmap_page_locked_p(md));
   3601 
   3602 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3603 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3604 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3605 
   3606 	/*
   3607 	 * If we are removing a writeable mapping to a cached exec page,
   3608 	 * if it's the last mapping then clear it execness other sync
   3609 	 * the page to the icache.
   3610 	 */
   3611 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3612 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3613 		if (SLIST_EMPTY(&md->pvh_list)) {
   3614 			md->pvh_attrs &= ~PVF_EXEC;
   3615 			PMAPCOUNT(exec_discarded_kremove);
   3616 		} else {
   3617 			pmap_syncicache_page(md, pa);
   3618 			PMAPCOUNT(exec_synced_kremove);
   3619 		}
   3620 	}
   3621 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3622 
   3623 	return pv;
   3624 }
   3625 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3626 
   3627 /*
   3628  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3629  *
   3630  * We assume there is already sufficient KVM space available
   3631  * to do this, as we can't allocate L2 descriptor tables/metadata
   3632  * from here.
   3633  */
   3634 void
   3635 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3636 {
   3637 #ifdef PMAP_CACHE_VIVT
   3638 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3639 #endif
   3640 #ifdef PMAP_CACHE_VIPT
   3641 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3642 	struct vm_page *opg;
   3643 #ifndef ARM_MMU_EXTENDED
   3644 	struct pv_entry *pv = NULL;
   3645 #endif
   3646 #endif
   3647 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3648 
   3649 	UVMHIST_FUNC(__func__);
   3650 
   3651 	if (pmap_initialized) {
   3652 		UVMHIST_CALLED(maphist);
   3653 		UVMHIST_LOG(maphist, " (va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx",
   3654 		    va, pa, prot, flags);
   3655 	}
   3656 
   3657 	pmap_t kpm = pmap_kernel();
   3658 	pmap_acquire_pmap_lock(kpm);
   3659 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3660 	const size_t l1slot __diagused = l1pte_index(va);
   3661 	KASSERTMSG(l2b != NULL,
   3662 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3663 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3664 	    kpm->pm_l2[L2_IDX(l1slot)]
   3665 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3666 		: NULL,
   3667 	    kpm->pm_l2[L2_IDX(l1slot)]
   3668 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3669 		: NULL);
   3670 	KASSERT(l2b->l2b_kva != NULL);
   3671 
   3672 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3673 	const pt_entry_t opte = *ptep;
   3674 
   3675 	if (opte == 0) {
   3676 		PMAPCOUNT(kenter_mappings);
   3677 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3678 	} else {
   3679 		PMAPCOUNT(kenter_remappings);
   3680 #ifdef PMAP_CACHE_VIPT
   3681 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3682 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
   3683 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
   3684 #endif
   3685 		if (opg && arm_cache_prefer_mask != 0) {
   3686 			KASSERT(opg != pg);
   3687 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3688 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3689 #ifndef ARM_MMU_EXTENDED
   3690 			pmap_acquire_page_lock(omd);
   3691 			pv = pmap_kremove_pg(opg, va);
   3692 			pmap_release_page_lock(omd);
   3693 #endif
   3694 		}
   3695 #endif
   3696 		if (l2pte_valid_p(opte)) {
   3697 			l2pte_reset(ptep);
   3698 			PTE_SYNC(ptep);
   3699 #ifdef PMAP_CACHE_VIVT
   3700 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3701 #endif
   3702 			cpu_tlb_flushD_SE(va);
   3703 			cpu_cpwait();
   3704 		}
   3705 	}
   3706 	pmap_release_pmap_lock(kpm);
   3707 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   3708 
   3709 	if (flags & PMAP_PTE) {
   3710 		KASSERT((flags & PMAP_CACHE_MASK) == 0);
   3711 		if (!(flags & PMAP_NOCACHE))
   3712 			npte |= pte_l2_s_cache_mode_pt;
   3713 	} else {
   3714 		switch (flags & PMAP_CACHE_MASK) {
   3715 		case PMAP_NOCACHE:
   3716 			break;
   3717 		case PMAP_WRITE_COMBINE:
   3718 			npte |= pte_l2_s_wc_mode;
   3719 			break;
   3720 		default:
   3721 			npte |= pte_l2_s_cache_mode;
   3722 			break;
   3723 		}
   3724 	}
   3725 #ifdef ARM_MMU_EXTENDED
   3726 	if (prot & VM_PROT_EXECUTE)
   3727 		npte &= ~L2_XS_XN;
   3728 #endif
   3729 	l2pte_set(ptep, npte, 0);
   3730 	PTE_SYNC(ptep);
   3731 
   3732 	if (pg) {
   3733 		if (flags & PMAP_KMPAGE) {
   3734 			KASSERT(md->urw_mappings == 0);
   3735 			KASSERT(md->uro_mappings == 0);
   3736 			KASSERT(md->krw_mappings == 0);
   3737 			KASSERT(md->kro_mappings == 0);
   3738 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3739 			KASSERT(pv == NULL);
   3740 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3741 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3742 			/* if there is a color conflict, evict from cache. */
   3743 			if (pmap_is_page_colored_p(md)
   3744 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3745 				PMAPCOUNT(vac_color_change);
   3746 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3747 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3748 				/*
   3749 				 * If this page has multiple colors, expunge
   3750 				 * them.
   3751 				 */
   3752 				PMAPCOUNT(vac_flush_lots2);
   3753 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3754 			}
   3755 			/*
   3756 			 * Since this is a KMPAGE, there can be no contention
   3757 			 * for this page so don't lock it.
   3758 			 */
   3759 			md->pvh_attrs &= PAGE_SIZE - 1;
   3760 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3761 			    | (va & arm_cache_prefer_mask);
   3762 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3763 			md->pvh_attrs |= PVF_KMPAGE;
   3764 #endif
   3765 			atomic_inc_32(&pmap_kmpages);
   3766 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3767 		} else if (arm_cache_prefer_mask != 0) {
   3768 			if (pv == NULL) {
   3769 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3770 				KASSERT(pv != NULL);
   3771 			}
   3772 			pmap_acquire_page_lock(md);
   3773 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3774 			    PVF_WIRED | PVF_KENTRY
   3775 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3776 			if ((prot & VM_PROT_WRITE)
   3777 			    && !(md->pvh_attrs & PVF_NC))
   3778 				md->pvh_attrs |= PVF_DIRTY;
   3779 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3780 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3781 			pmap_release_page_lock(md);
   3782 #endif
   3783 		}
   3784 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3785 	} else {
   3786 		if (pv != NULL)
   3787 			pool_put(&pmap_pv_pool, pv);
   3788 #endif
   3789 	}
   3790 	if (pmap_initialized) {
   3791 		UVMHIST_LOG(maphist, "  <-- done (ptep %#jx: %#jx -> %#jx)",
   3792 		    (uintptr_t)ptep, opte, npte, 0);
   3793 	}
   3794 
   3795 }
   3796 
   3797 void
   3798 pmap_kremove(vaddr_t va, vsize_t len)
   3799 {
   3800 #ifdef UVMHIST
   3801 	u_int total_mappings = 0;
   3802 #endif
   3803 
   3804 	PMAPCOUNT(kenter_unmappings);
   3805 
   3806 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3807 
   3808 	UVMHIST_LOG(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
   3809 
   3810 	const vaddr_t eva = va + len;
   3811 
   3812 	pmap_acquire_pmap_lock(pmap_kernel());
   3813 
   3814 	while (va < eva) {
   3815 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3816 		if (next_bucket > eva)
   3817 			next_bucket = eva;
   3818 
   3819 		pmap_t kpm = pmap_kernel();
   3820 		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3821 		KDASSERT(l2b != NULL);
   3822 
   3823 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3824 		pt_entry_t *ptep = sptep;
   3825 		u_int mappings = 0;
   3826 
   3827 		while (va < next_bucket) {
   3828 			const pt_entry_t opte = *ptep;
   3829 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3830 			if (opg != NULL) {
   3831 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3832 
   3833 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3834 					KASSERT(omd->urw_mappings == 0);
   3835 					KASSERT(omd->uro_mappings == 0);
   3836 					KASSERT(omd->krw_mappings == 0);
   3837 					KASSERT(omd->kro_mappings == 0);
   3838 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3839 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3840 					if (arm_cache_prefer_mask != 0) {
   3841 						omd->pvh_attrs &= ~PVF_WRITE;
   3842 					}
   3843 #endif
   3844 					atomic_dec_32(&pmap_kmpages);
   3845 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3846 				} else if (arm_cache_prefer_mask != 0) {
   3847 					pmap_acquire_page_lock(omd);
   3848 					pool_put(&pmap_pv_pool,
   3849 					    pmap_kremove_pg(opg, va));
   3850 					pmap_release_page_lock(omd);
   3851 #endif
   3852 				}
   3853 			}
   3854 			if (l2pte_valid_p(opte)) {
   3855 				l2pte_reset(ptep);
   3856 				PTE_SYNC(ptep);
   3857 #ifdef PMAP_CACHE_VIVT
   3858 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3859 #endif
   3860 				cpu_tlb_flushD_SE(va);
   3861 
   3862 				mappings += PAGE_SIZE / L2_S_SIZE;
   3863 			}
   3864 			va += PAGE_SIZE;
   3865 			ptep += PAGE_SIZE / L2_S_SIZE;
   3866 		}
   3867 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3868 		    mappings, l2b->l2b_occupancy);
   3869 		l2b->l2b_occupancy -= mappings;
   3870 		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3871 #ifdef UVMHIST
   3872 		total_mappings += mappings;
   3873 #endif
   3874 	}
   3875 	pmap_release_pmap_lock(pmap_kernel());
   3876 	cpu_cpwait();
   3877 	UVMHIST_LOG(maphist, "  <--- done (%ju mappings removed)",
   3878 	    total_mappings, 0, 0, 0);
   3879 }
   3880 
   3881 bool
   3882 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3883 {
   3884 
   3885 	return pmap_extract_coherency(pm, va, pap, NULL);
   3886 }
   3887 
   3888 bool
   3889 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
   3890 {
   3891 	struct l2_dtable *l2;
   3892 	pd_entry_t *pdep, pde;
   3893 	pt_entry_t *ptep, pte;
   3894 	paddr_t pa;
   3895 	u_int l1slot;
   3896 	bool coherent;
   3897 
   3898 	pmap_acquire_pmap_lock(pm);
   3899 
   3900 	l1slot = l1pte_index(va);
   3901 	pdep = pmap_l1_kva(pm) + l1slot;
   3902 	pde = *pdep;
   3903 
   3904 	if (l1pte_section_p(pde)) {
   3905 		/*
   3906 		 * These should only happen for pmap_kernel()
   3907 		 */
   3908 		KDASSERT(pm == pmap_kernel());
   3909 		pmap_release_pmap_lock(pm);
   3910 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3911 		if (l1pte_supersection_p(pde)) {
   3912 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3913 		} else
   3914 #endif
   3915 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3916 		coherent = (pde & L1_S_CACHE_MASK) == 0;
   3917 	} else {
   3918 		/*
   3919 		 * Note that we can't rely on the validity of the L1
   3920 		 * descriptor as an indication that a mapping exists.
   3921 		 * We have to look it up in the L2 dtable.
   3922 		 */
   3923 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   3924 
   3925 		if (l2 == NULL ||
   3926 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   3927 			pmap_release_pmap_lock(pm);
   3928 			return false;
   3929 		}
   3930 
   3931 		pte = ptep[l2pte_index(va)];
   3932 		pmap_release_pmap_lock(pm);
   3933 
   3934 		if (pte == 0)
   3935 			return false;
   3936 
   3937 		switch (pte & L2_TYPE_MASK) {
   3938 		case L2_TYPE_L:
   3939 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3940 			coherent = (pte & L2_L_CACHE_MASK) == 0;
   3941 			break;
   3942 
   3943 		default:
   3944 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   3945 			coherent = (pte & L2_S_CACHE_MASK) == 0;
   3946 			break;
   3947 		}
   3948 	}
   3949 
   3950 	if (pap != NULL)
   3951 		*pap = pa;
   3952 
   3953 	if (coherentp != NULL)
   3954 		*coherentp = (pm == pmap_kernel() && coherent);
   3955 
   3956 	return true;
   3957 }
   3958 
   3959 /*
   3960  * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
   3961  *	that map it
   3962  */
   3963 
   3964 static void
   3965 pmap_pv_remove(paddr_t pa)
   3966 {
   3967 	struct pmap_page *pp;
   3968 
   3969 	pp = pmap_pv_tracked(pa);
   3970 	if (pp == NULL)
   3971 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
   3972 		    pa);
   3973 
   3974 	struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
   3975 	pmap_page_remove(md, pa);
   3976 }
   3977 
   3978 void
   3979 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
   3980 {
   3981 
   3982 	/* the only case is remove at the moment */
   3983 	KASSERT(prot == VM_PROT_NONE);
   3984 	pmap_pv_remove(pa);
   3985 }
   3986 
   3987 void
   3988 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3989 {
   3990 	struct l2_bucket *l2b;
   3991 	vaddr_t next_bucket;
   3992 
   3993 	NPDEBUG(PDB_PROTECT,
   3994 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3995 	    pm, sva, eva, prot));
   3996 
   3997 	if ((prot & VM_PROT_READ) == 0) {
   3998 		pmap_remove(pm, sva, eva);
   3999 		return;
   4000 	}
   4001 
   4002 	if (prot & VM_PROT_WRITE) {
   4003 		/*
   4004 		 * If this is a read->write transition, just ignore it and let
   4005 		 * uvm_fault() take care of it later.
   4006 		 */
   4007 		return;
   4008 	}
   4009 
   4010 	pmap_acquire_pmap_lock(pm);
   4011 
   4012 #ifndef ARM_MMU_EXTENDED
   4013 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   4014 	u_int flags = 0;
   4015 #endif
   4016 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   4017 
   4018 	while (sva < eva) {
   4019 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4020 		if (next_bucket > eva)
   4021 			next_bucket = eva;
   4022 
   4023 		l2b = pmap_get_l2_bucket(pm, sva);
   4024 		if (l2b == NULL) {
   4025 			sva = next_bucket;
   4026 			continue;
   4027 		}
   4028 
   4029 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4030 
   4031 		while (sva < next_bucket) {
   4032 			const pt_entry_t opte = *ptep;
   4033 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   4034 				struct vm_page *pg;
   4035 #ifndef ARM_MMU_EXTENDED
   4036 				u_int f;
   4037 #endif
   4038 
   4039 #ifdef PMAP_CACHE_VIVT
   4040 				/*
   4041 				 * OK, at this point, we know we're doing
   4042 				 * write-protect operation.  If the pmap is
   4043 				 * active, write-back the page.
   4044 				 */
   4045 				pmap_cache_wbinv_page(pm, sva, false,
   4046 				    PVF_REF | PVF_WRITE);
   4047 #endif
   4048 
   4049 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   4050 				pt_entry_t npte = l2pte_set_readonly(opte);
   4051 				l2pte_reset(ptep);
   4052 				PTE_SYNC(ptep);
   4053 #ifdef ARM_MMU_EXTENDED
   4054 				pmap_tlb_flush_SE(pm, sva, PVF_REF);
   4055 #endif
   4056 				l2pte_set(ptep, npte, 0);
   4057 				PTE_SYNC(ptep);
   4058 
   4059 				if (pg != NULL) {
   4060 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4061 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4062 
   4063 					pmap_acquire_page_lock(md);
   4064 #ifndef ARM_MMU_EXTENDED
   4065 					f =
   4066 #endif
   4067 					    pmap_modify_pv(md, pa, pm, sva,
   4068 					       clr_mask, 0);
   4069 					pmap_vac_me_harder(md, pa, pm, sva);
   4070 					pmap_release_page_lock(md);
   4071 #ifndef ARM_MMU_EXTENDED
   4072 				} else {
   4073 					f = PVF_REF | PVF_EXEC;
   4074 				}
   4075 
   4076 				if (flush) {
   4077 					flags |= f;
   4078 				} else {
   4079 					pmap_tlb_flush_SE(pm, sva, f);
   4080 #endif
   4081 				}
   4082 			}
   4083 
   4084 			sva += PAGE_SIZE;
   4085 			ptep += PAGE_SIZE / L2_S_SIZE;
   4086 		}
   4087 	}
   4088 
   4089 #ifndef ARM_MMU_EXTENDED
   4090 	if (flush) {
   4091 		if (PV_BEEN_EXECD(flags)) {
   4092 			pmap_tlb_flushID(pm);
   4093 		} else if (PV_BEEN_REFD(flags)) {
   4094 			pmap_tlb_flushD(pm);
   4095 		}
   4096 	}
   4097 #endif
   4098 
   4099 	pmap_release_pmap_lock(pm);
   4100 }
   4101 
   4102 void
   4103 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4104 {
   4105 	struct l2_bucket *l2b;
   4106 	pt_entry_t *ptep;
   4107 	vaddr_t next_bucket;
   4108 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4109 
   4110 	NPDEBUG(PDB_EXEC,
   4111 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   4112 	    pm, sva, eva));
   4113 
   4114 	pmap_acquire_pmap_lock(pm);
   4115 
   4116 	while (sva < eva) {
   4117 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4118 		if (next_bucket > eva)
   4119 			next_bucket = eva;
   4120 
   4121 		l2b = pmap_get_l2_bucket(pm, sva);
   4122 		if (l2b == NULL) {
   4123 			sva = next_bucket;
   4124 			continue;
   4125 		}
   4126 
   4127 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4128 		     sva < next_bucket;
   4129 		     sva += page_size,
   4130 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4131 		     page_size = PAGE_SIZE) {
   4132 			if (l2pte_valid_p(*ptep)) {
   4133 				cpu_icache_sync_range(sva,
   4134 				    min(page_size, eva - sva));
   4135 			}
   4136 		}
   4137 	}
   4138 
   4139 	pmap_release_pmap_lock(pm);
   4140 }
   4141 
   4142 void
   4143 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4144 {
   4145 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4146 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4147 
   4148 	NPDEBUG(PDB_PROTECT,
   4149 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   4150 	    md, pa, prot));
   4151 
   4152 	switch(prot) {
   4153 	case VM_PROT_READ|VM_PROT_WRITE:
   4154 #if defined(ARM_MMU_EXTENDED)
   4155 		pmap_acquire_page_lock(md);
   4156 		pmap_clearbit(md, pa, PVF_EXEC);
   4157 		pmap_release_page_lock(md);
   4158 		break;
   4159 #endif
   4160 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4161 		break;
   4162 
   4163 	case VM_PROT_READ:
   4164 #if defined(ARM_MMU_EXTENDED)
   4165 		pmap_acquire_page_lock(md);
   4166 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4167 		pmap_release_page_lock(md);
   4168 		break;
   4169 #endif
   4170 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4171 		pmap_acquire_page_lock(md);
   4172 		pmap_clearbit(md, pa, PVF_WRITE);
   4173 		pmap_release_page_lock(md);
   4174 		break;
   4175 
   4176 	default:
   4177 		pmap_page_remove(md, pa);
   4178 		break;
   4179 	}
   4180 }
   4181 
   4182 /*
   4183  * pmap_clear_modify:
   4184  *
   4185  *	Clear the "modified" attribute for a page.
   4186  */
   4187 bool
   4188 pmap_clear_modify(struct vm_page *pg)
   4189 {
   4190 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4191 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4192 	bool rv;
   4193 
   4194 	pmap_acquire_page_lock(md);
   4195 
   4196 	if (md->pvh_attrs & PVF_MOD) {
   4197 		rv = true;
   4198 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4199 		/*
   4200 		 * If we are going to clear the modified bit and there are
   4201 		 * no other modified bits set, flush the page to memory and
   4202 		 * mark it clean.
   4203 		 */
   4204 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4205 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4206 #endif
   4207 		pmap_clearbit(md, pa, PVF_MOD);
   4208 	} else {
   4209 		rv = false;
   4210 	}
   4211 	pmap_release_page_lock(md);
   4212 
   4213 	return rv;
   4214 }
   4215 
   4216 /*
   4217  * pmap_clear_reference:
   4218  *
   4219  *	Clear the "referenced" attribute for a page.
   4220  */
   4221 bool
   4222 pmap_clear_reference(struct vm_page *pg)
   4223 {
   4224 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4225 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4226 	bool rv;
   4227 
   4228 	pmap_acquire_page_lock(md);
   4229 
   4230 	if (md->pvh_attrs & PVF_REF) {
   4231 		rv = true;
   4232 		pmap_clearbit(md, pa, PVF_REF);
   4233 	} else {
   4234 		rv = false;
   4235 	}
   4236 	pmap_release_page_lock(md);
   4237 
   4238 	return rv;
   4239 }
   4240 
   4241 /*
   4242  * pmap_is_modified:
   4243  *
   4244  *	Test if a page has the "modified" attribute.
   4245  */
   4246 /* See <arm/arm32/pmap.h> */
   4247 
   4248 /*
   4249  * pmap_is_referenced:
   4250  *
   4251  *	Test if a page has the "referenced" attribute.
   4252  */
   4253 /* See <arm/arm32/pmap.h> */
   4254 
   4255 #if defined(ARM_MMU_EXTENDED) && 0
   4256 int
   4257 pmap_prefetchabt_fixup(void *v)
   4258 {
   4259 	struct trapframe * const tf = v;
   4260 	vaddr_t va = trunc_page(tf->tf_pc);
   4261 	int rv = ABORT_FIXUP_FAILED;
   4262 
   4263 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4264 		return rv;
   4265 
   4266 	kpreempt_disable();
   4267 	pmap_t pm = curcpu()->ci_pmap_cur;
   4268 	const size_t l1slot = l1pte_index(va);
   4269 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4270 	if (l2 == NULL)
   4271 		goto out;
   4272 
   4273 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4274 	if (l2b->l2b_kva == NULL)
   4275 		goto out;
   4276 
   4277 	/*
   4278 	 * Check the PTE itself.
   4279 	 */
   4280 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4281 	const pt_entry_t opte = *ptep;
   4282 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4283 		goto out;
   4284 
   4285 	paddr_t pa = l2pte_pa(opte);
   4286 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4287 	KASSERT(pg != NULL);
   4288 
   4289 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4290 
   4291 	pmap_acquire_page_lock(md);
   4292 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4293 	KASSERT(pv != NULL);
   4294 
   4295 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4296 		l2pte_reset(ptep);
   4297 		PTE_SYNC(ptep);
   4298 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4299 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4300 			pmap_syncicache_page(md, pa);
   4301 		}
   4302 		rv = ABORT_FIXUP_RETURN;
   4303 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4304 		PTE_SYNC(ptep);
   4305 	}
   4306 	pmap_release_page_lock(md);
   4307 
   4308   out:
   4309 	kpreempt_enable();
   4310 	return rv;
   4311 }
   4312 #endif
   4313 
   4314 int
   4315 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4316 {
   4317 	struct l2_dtable *l2;
   4318 	struct l2_bucket *l2b;
   4319 	paddr_t pa;
   4320 	const size_t l1slot = l1pte_index(va);
   4321 	int rv = 0;
   4322 
   4323 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4324 
   4325 	va = trunc_page(va);
   4326 
   4327 	KASSERT(!user || (pm != pmap_kernel()));
   4328 
   4329 	UVMHIST_LOG(maphist, " (pm=%#jx, va=%#jx, ftype=%#jx, user=%jd)",
   4330 	    (uintptr_t)pm, va, ftype, user);
   4331 #ifdef ARM_MMU_EXTENDED
   4332 	UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
   4333 	    (uintptr_t)cpu_tlb_info(curcpu()),
   4334 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4335 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4336 #endif
   4337 
   4338 	pmap_acquire_pmap_lock(pm);
   4339 
   4340 	/*
   4341 	 * If there is no l2_dtable for this address, then the process
   4342 	 * has no business accessing it.
   4343 	 *
   4344 	 * Note: This will catch userland processes trying to access
   4345 	 * kernel addresses.
   4346 	 */
   4347 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4348 	if (l2 == NULL) {
   4349 		UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
   4350 		goto out;
   4351 	}
   4352 
   4353 	/*
   4354 	 * Likewise if there is no L2 descriptor table
   4355 	 */
   4356 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4357 	if (l2b->l2b_kva == NULL) {
   4358 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
   4359 		    l1slot, 0, 0, 0);
   4360 		goto out;
   4361 	}
   4362 
   4363 	/*
   4364 	 * Check the PTE itself.
   4365 	 */
   4366 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4367 	pt_entry_t const opte = *ptep;
   4368 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4369 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
   4370 		    l1slot, 0, 0, 0);
   4371 		goto out;
   4372 	}
   4373 
   4374 #ifndef ARM_HAS_VBAR
   4375 	/*
   4376 	 * Catch a userland access to the vector page mapped at 0x0
   4377 	 */
   4378 	if (user && (opte & L2_S_PROT_U) == 0) {
   4379 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4380 		goto out;
   4381 	}
   4382 #endif
   4383 
   4384 	pa = l2pte_pa(opte);
   4385 
   4386 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4387 		/*
   4388 		 * This looks like a good candidate for "page modified"
   4389 		 * emulation...
   4390 		 */
   4391 		struct pv_entry *pv;
   4392 		struct vm_page *pg;
   4393 
   4394 		/* Extract the physical address of the page */
   4395 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4396 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4397 			goto out;
   4398 		}
   4399 
   4400 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4401 
   4402 		/* Get the current flags for this page. */
   4403 		pmap_acquire_page_lock(md);
   4404 		pv = pmap_find_pv(md, pm, va);
   4405 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4406 			pmap_release_page_lock(md);
   4407 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4408 			goto out;
   4409 		}
   4410 
   4411 		/*
   4412 		 * Do the flags say this page is writable? If not then it
   4413 		 * is a genuine write fault. If yes then the write fault is
   4414 		 * our fault as we did not reflect the write access in the
   4415 		 * PTE. Now we know a write has occurred we can correct this
   4416 		 * and also set the modified bit
   4417 		 */
   4418 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4419 			pmap_release_page_lock(md);
   4420 			goto out;
   4421 		}
   4422 
   4423 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4424 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4425 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4426 		/*
   4427 		 * If there are cacheable mappings for this page, mark it dirty.
   4428 		 */
   4429 		if ((md->pvh_attrs & PVF_NC) == 0)
   4430 			md->pvh_attrs |= PVF_DIRTY;
   4431 #endif
   4432 #ifdef ARM_MMU_EXTENDED
   4433 		if (md->pvh_attrs & PVF_EXEC) {
   4434 			md->pvh_attrs &= ~PVF_EXEC;
   4435 			PMAPCOUNT(exec_discarded_modfixup);
   4436 		}
   4437 #endif
   4438 		pmap_release_page_lock(md);
   4439 
   4440 		/*
   4441 		 * Re-enable write permissions for the page.  No need to call
   4442 		 * pmap_vac_me_harder(), since this is just a
   4443 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4444 		 * changing. We've already set the cacheable bits based on
   4445 		 * the assumption that we can write to this page.
   4446 		 */
   4447 		const pt_entry_t npte =
   4448 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4449 #ifdef ARM_MMU_EXTENDED
   4450 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4451 #endif
   4452 		    | 0;
   4453 		l2pte_reset(ptep);
   4454 		PTE_SYNC(ptep);
   4455 		pmap_tlb_flush_SE(pm, va,
   4456 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4457 		l2pte_set(ptep, npte, 0);
   4458 		PTE_SYNC(ptep);
   4459 		PMAPCOUNT(fixup_mod);
   4460 		rv = 1;
   4461 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
   4462 		    "from %#jx to %#jx)", opte, npte, 0, 0);
   4463 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4464 		/*
   4465 		 * This looks like a good candidate for "page referenced"
   4466 		 * emulation.
   4467 		 */
   4468 		struct vm_page *pg;
   4469 
   4470 		/* Extract the physical address of the page */
   4471 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4472 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4473 			goto out;
   4474 		}
   4475 
   4476 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4477 
   4478 		/* Get the current flags for this page. */
   4479 		pmap_acquire_page_lock(md);
   4480 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4481 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4482 			pmap_release_page_lock(md);
   4483 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4484 			goto out;
   4485 		}
   4486 
   4487 		md->pvh_attrs |= PVF_REF;
   4488 		pv->pv_flags |= PVF_REF;
   4489 
   4490 		pt_entry_t npte =
   4491 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4492 #ifdef ARM_MMU_EXTENDED
   4493 		if (pm != pmap_kernel()) {
   4494 			npte |= L2_XS_nG;
   4495 		}
   4496 		/*
   4497 		 * If we got called from prefetch abort, then ftype will have
   4498 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4499 		 * the PTE.
   4500 		 */
   4501 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4502 			/*
   4503 			 * Is this a mapping of an executable page?
   4504 			 */
   4505 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4506 				pmap_release_page_lock(md);
   4507 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4508 				    0, 0, 0, 0);
   4509 				goto out;
   4510 			}
   4511 			/*
   4512 			 * If we haven't synced the page, do so now.
   4513 			 */
   4514 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4515 				UVMHIST_LOG(maphist, " ref emul: syncicache "
   4516 				    "page #%#jx", pa, 0, 0, 0);
   4517 				pmap_syncicache_page(md, pa);
   4518 				PMAPCOUNT(fixup_exec);
   4519 			}
   4520 			npte &= ~L2_XS_XN;
   4521 		}
   4522 #endif /* ARM_MMU_EXTENDED */
   4523 		pmap_release_page_lock(md);
   4524 		l2pte_reset(ptep);
   4525 		PTE_SYNC(ptep);
   4526 		pmap_tlb_flush_SE(pm, va,
   4527 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4528 		l2pte_set(ptep, npte, 0);
   4529 		PTE_SYNC(ptep);
   4530 		PMAPCOUNT(fixup_ref);
   4531 		rv = 1;
   4532 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
   4533 		    "%#jx to %#jx)", opte, npte, 0, 0);
   4534 #ifdef ARM_MMU_EXTENDED
   4535 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4536 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4537 		if (pg == NULL) {
   4538 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4539 			goto out;
   4540 		}
   4541 
   4542 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4543 
   4544 		/* Get the current flags for this page. */
   4545 		pmap_acquire_page_lock(md);
   4546 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4547 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4548 			pmap_release_page_lock(md);
   4549 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4550 			goto out;
   4551 		}
   4552 
   4553 		/*
   4554 		 * If we haven't synced the page, do so now.
   4555 		 */
   4556 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4557 			UVMHIST_LOG(maphist, "syncicache page #%#jx",
   4558 			    pa, 0, 0, 0);
   4559 			pmap_syncicache_page(md, pa);
   4560 		}
   4561 		pmap_release_page_lock(md);
   4562 		/*
   4563 		 * Turn off no-execute.
   4564 		 */
   4565 		KASSERT(opte & L2_XS_nG);
   4566 		l2pte_reset(ptep);
   4567 		PTE_SYNC(ptep);
   4568 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4569 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4570 		PTE_SYNC(ptep);
   4571 		rv = 1;
   4572 		PMAPCOUNT(fixup_exec);
   4573 		UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
   4574 		    opte, opte & ~L2_XS_XN, 0, 0);
   4575 #endif
   4576 	}
   4577 
   4578 #ifndef ARM_MMU_EXTENDED
   4579 	/*
   4580 	 * We know there is a valid mapping here, so simply
   4581 	 * fix up the L1 if necessary.
   4582 	 */
   4583 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4584 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4585 	if (*pdep != pde) {
   4586 		l1pte_setone(pdep, pde);
   4587 		PDE_SYNC(pdep);
   4588 		rv = 1;
   4589 		PMAPCOUNT(fixup_pdes);
   4590 	}
   4591 #endif
   4592 
   4593 #ifdef CPU_SA110
   4594 	/*
   4595 	 * There are bugs in the rev K SA110.  This is a check for one
   4596 	 * of them.
   4597 	 */
   4598 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4599 	    curcpu()->ci_arm_cpurev < 3) {
   4600 		/* Always current pmap */
   4601 		if (l2pte_valid_p(opte)) {
   4602 			extern int kernel_debug;
   4603 			if (kernel_debug & 1) {
   4604 				struct proc *p = curlwp->l_proc;
   4605 				printf("prefetch_abort: page is already "
   4606 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4607 				printf("prefetch_abort: pc=%08lx proc=%p "
   4608 				    "process=%s\n", va, p, p->p_comm);
   4609 				printf("prefetch_abort: far=%08x fs=%x\n",
   4610 				    cpu_faultaddress(), cpu_faultstatus());
   4611 			}
   4612 #ifdef DDB
   4613 			if (kernel_debug & 2)
   4614 				Debugger();
   4615 #endif
   4616 			rv = 1;
   4617 		}
   4618 	}
   4619 #endif /* CPU_SA110 */
   4620 
   4621 #ifndef ARM_MMU_EXTENDED
   4622 	/*
   4623 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4624 	 * stale TLB entry for the faulting address.  That might be due to a
   4625 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4626 	 */
   4627 	if (rv == 0
   4628 	    && pm->pm_l1->l1_domain_use_count == 1
   4629 	    && pmap_needs_pte_sync == 0) {
   4630 		pmap_needs_pte_sync = 1;
   4631 		PTE_SYNC(ptep);
   4632 		PMAPCOUNT(fixup_ptesync);
   4633 		rv = 1;
   4634 	}
   4635 #endif
   4636 
   4637 #ifndef MULTIPROCESSOR
   4638 #if defined(DEBUG) || 1
   4639 	/*
   4640 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4641 	 * stale TLB entry for the faulting address. This happens when two or
   4642 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4643 	 * a context switch between such processes, we can take domain faults
   4644 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4645 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4646 	 * example.
   4647 	 *
   4648 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4649 	 * entry for a recently entered mapping. In this case, the TLB is
   4650 	 * flushed for the new mapping, but there may still be TLB entries for
   4651 	 * other mappings belonging to other processes in the 1MB range
   4652 	 * covered by the L1 entry.
   4653 	 *
   4654 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4655 	 * value, so the fault must be due to a stale TLB entry.
   4656 	 *
   4657 	 * Since we always need to flush the TLB anyway in the case where we
   4658 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4659 	 * stale TLB entries dynamically.
   4660 	 *
   4661 	 * However, the above condition can ONLY happen if the current L1 is
   4662 	 * being shared. If it happens when the L1 is unshared, it indicates
   4663 	 * that other parts of the pmap are not doing their job WRT managing
   4664 	 * the TLB.
   4665 	 */
   4666 	if (rv == 0
   4667 #ifndef ARM_MMU_EXTENDED
   4668 	    && pm->pm_l1->l1_domain_use_count == 1
   4669 #endif
   4670 	    && true) {
   4671 #ifdef DEBUG
   4672 		extern int last_fault_code;
   4673 #else
   4674 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4675 		    ? armreg_ifsr_read()
   4676 		    : armreg_dfsr_read();
   4677 #endif
   4678 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4679 		    pm, va, ftype);
   4680 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4681 		    l2, l2b, ptep, opte);
   4682 
   4683 #ifndef ARM_MMU_EXTENDED
   4684 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4685 		    pdep, pde, last_fault_code);
   4686 #else
   4687 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4688 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4689 		   armreg_ttbcr_read());
   4690 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4691 		    last_fault_code, curcpu()->ci_pmap_cur,
   4692 		    curcpu()->ci_pmap_asid_cur,
   4693 		    armreg_contextidr_read(), armreg_dacr_read());
   4694 #ifdef _ARM_ARCH_7
   4695 		if (ftype & VM_PROT_WRITE)
   4696 			armreg_ats1cuw_write(va);
   4697 		else
   4698 			armreg_ats1cur_write(va);
   4699 		arm_isb();
   4700 		printf("fixup: par %#x\n", armreg_par_read());
   4701 #endif
   4702 #endif
   4703 #ifdef DDB
   4704 		extern int kernel_debug;
   4705 
   4706 		if (kernel_debug & 2) {
   4707 			pmap_release_pmap_lock(pm);
   4708 #ifdef UVMHIST
   4709 			KERNHIST_DUMP(maphist);
   4710 #endif
   4711 			cpu_Debugger();
   4712 			pmap_acquire_pmap_lock(pm);
   4713 		}
   4714 #endif
   4715 	}
   4716 #endif
   4717 #endif
   4718 
   4719 #ifndef ARM_MMU_EXTENDED
   4720 	/* Flush the TLB in the shared L1 case - see comment above */
   4721 	pmap_tlb_flush_SE(pm, va,
   4722 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4723 #endif
   4724 
   4725 	rv = 1;
   4726 
   4727 out:
   4728 	pmap_release_pmap_lock(pm);
   4729 
   4730 	return (rv);
   4731 }
   4732 
   4733 /*
   4734  * Routine:	pmap_procwr
   4735  *
   4736  * Function:
   4737  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4738  *
   4739  */
   4740 void
   4741 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4742 {
   4743 #ifndef ARM_MMU_EXTENDED
   4744 
   4745 	/* We only need to do anything if it is the current process. */
   4746 	if (p == curproc)
   4747 		cpu_icache_sync_range(va, len);
   4748 #endif
   4749 }
   4750 
   4751 /*
   4752  * Routine:	pmap_unwire
   4753  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4754  *
   4755  * In/out conditions:
   4756  *		The mapping must already exist in the pmap.
   4757  */
   4758 void
   4759 pmap_unwire(pmap_t pm, vaddr_t va)
   4760 {
   4761 	struct l2_bucket *l2b;
   4762 	pt_entry_t *ptep, pte;
   4763 	struct vm_page *pg;
   4764 	paddr_t pa;
   4765 
   4766 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4767 
   4768 	pmap_acquire_pmap_lock(pm);
   4769 
   4770 	l2b = pmap_get_l2_bucket(pm, va);
   4771 	KDASSERT(l2b != NULL);
   4772 
   4773 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4774 	pte = *ptep;
   4775 
   4776 	/* Extract the physical address of the page */
   4777 	pa = l2pte_pa(pte);
   4778 
   4779 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4780 		/* Update the wired bit in the pv entry for this page. */
   4781 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4782 
   4783 		pmap_acquire_page_lock(md);
   4784 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4785 		pmap_release_page_lock(md);
   4786 	}
   4787 
   4788 	pmap_release_pmap_lock(pm);
   4789 }
   4790 
   4791 #ifdef ARM_MMU_EXTENDED
   4792 void
   4793 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
   4794 {
   4795 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4796 
   4797 	/*
   4798 	 * Assume that TTBR1 has only global mappings and TTBR0 only
   4799 	 * has non-global mappings.  To prevent speculation from doing
   4800 	 * evil things we disable translation table walks using TTBR0
   4801 	 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
   4802 	 * Once both are set, table walks are reenabled.
   4803 	 */
   4804 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4805 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4806 	arm_isb();
   4807 
   4808 	pmap_tlb_asid_acquire(pm, l);
   4809 
   4810 	struct cpu_info * const ci = curcpu();
   4811 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
   4812 
   4813 	cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
   4814 	/*
   4815 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
   4816 	 * have been updated.
   4817 	 */
   4818 	arm_isb();
   4819 
   4820 	if (pm != pmap_kernel()) {
   4821 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4822 	}
   4823 	cpu_cpwait();
   4824 
   4825 	UVMHIST_LOG(maphist, " pm %#jx pm->pm_l1_pa %08jx asid %ju... done",
   4826 	    (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
   4827 
   4828 	KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
   4829 	    ci->ci_pmap_asid_cur, pai->pai_asid);
   4830 	ci->ci_pmap_cur = pm;
   4831 }
   4832 
   4833 void
   4834 pmap_md_pdetab_deactivate(pmap_t pm)
   4835 {
   4836 
   4837 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4838 
   4839 	kpreempt_disable();
   4840 	struct cpu_info * const ci = curcpu();
   4841 	/*
   4842 	 * Disable translation table walks from TTBR0 while no pmap has been
   4843 	 * activated.
   4844 	 */
   4845 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4846 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4847 	arm_isb();
   4848 	pmap_tlb_asid_deactivate(pm);
   4849 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
   4850 	arm_isb();
   4851 
   4852 	ci->ci_pmap_cur = pmap_kernel();
   4853 	KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
   4854 	    ci->ci_pmap_asid_cur);
   4855 	kpreempt_enable();
   4856 }
   4857 #endif
   4858 
   4859 void
   4860 pmap_activate(struct lwp *l)
   4861 {
   4862 	extern int block_userspace_access;
   4863 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   4864 
   4865 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4866 
   4867 	UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)npm,
   4868 	    0, 0);
   4869 
   4870 	struct cpu_info * const ci = curcpu();
   4871 
   4872 	/*
   4873 	 * If activating a non-current lwp or the current lwp is
   4874 	 * already active, just return.
   4875 	 */
   4876 	if (false
   4877 	    || l != curlwp
   4878 #ifdef ARM_MMU_EXTENDED
   4879 	    || (ci->ci_pmap_cur == npm &&
   4880 		(npm == pmap_kernel()
   4881 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   4882 #else
   4883 	    || npm->pm_activated == true
   4884 #endif
   4885 	    || false) {
   4886 		UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
   4887 		    (uintptr_t)l, 0, 0);
   4888 		return;
   4889 	}
   4890 
   4891 #ifndef ARM_MMU_EXTENDED
   4892 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4893 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4894 
   4895 	/*
   4896 	 * If TTB and DACR are unchanged, short-circuit all the
   4897 	 * TLB/cache management stuff.
   4898 	 */
   4899 	pmap_t opm = ci->ci_lastlwp
   4900 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   4901 	    : NULL;
   4902 	if (opm != NULL) {
   4903 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4904 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4905 
   4906 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4907 			goto all_done;
   4908 	}
   4909 #endif /* !ARM_MMU_EXTENDED */
   4910 
   4911 	PMAPCOUNT(activations);
   4912 	block_userspace_access = 1;
   4913 
   4914 #ifndef ARM_MMU_EXTENDED
   4915 	/*
   4916 	 * If switching to a user vmspace which is different to the
   4917 	 * most recent one, and the most recent one is potentially
   4918 	 * live in the cache, we must write-back and invalidate the
   4919 	 * entire cache.
   4920 	 */
   4921 	pmap_t rpm = ci->ci_pmap_lastuser;
   4922 
   4923 	/*
   4924 	 * XXXSCW: There's a corner case here which can leave turds in the
   4925 	 * cache as reported in kern/41058. They're probably left over during
   4926 	 * tear-down and switching away from an exiting process. Until the root
   4927 	 * cause is identified and fixed, zap the cache when switching pmaps.
   4928 	 * This will result in a few unnecessary cache flushes, but that's
   4929 	 * better than silently corrupting data.
   4930 	 */
   4931 #if 0
   4932 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4933 	    rpm->pm_cstate.cs_cache) {
   4934 		rpm->pm_cstate.cs_cache = 0;
   4935 #ifdef PMAP_CACHE_VIVT
   4936 		cpu_idcache_wbinv_all();
   4937 #endif
   4938 	}
   4939 #else
   4940 	if (rpm) {
   4941 		rpm->pm_cstate.cs_cache = 0;
   4942 		if (npm == pmap_kernel())
   4943 			ci->ci_pmap_lastuser = NULL;
   4944 #ifdef PMAP_CACHE_VIVT
   4945 		cpu_idcache_wbinv_all();
   4946 #endif
   4947 	}
   4948 #endif
   4949 
   4950 	/* No interrupts while we frob the TTB/DACR */
   4951 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   4952 #endif /* !ARM_MMU_EXTENDED */
   4953 
   4954 #ifndef ARM_HAS_VBAR
   4955 	/*
   4956 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4957 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4958 	 * before switching to it otherwise subsequent interrupts/exceptions
   4959 	 * (including domain faults!) will jump into hyperspace.
   4960 	 */
   4961 	if (npm->pm_pl1vec != NULL) {
   4962 		cpu_tlb_flushID_SE((u_int)vector_page);
   4963 		cpu_cpwait();
   4964 		*npm->pm_pl1vec = npm->pm_l1vec;
   4965 		PTE_SYNC(npm->pm_pl1vec);
   4966 	}
   4967 #endif
   4968 
   4969 #ifdef ARM_MMU_EXTENDED
   4970 	pmap_md_pdetab_activate(npm, l);
   4971 #else
   4972 	cpu_domains(ndacr);
   4973 	if (npm == pmap_kernel() || npm == rpm) {
   4974 		/*
   4975 		 * Switching to a kernel thread, or back to the
   4976 		 * same user vmspace as before... Simply update
   4977 		 * the TTB (no TLB flush required)
   4978 		 */
   4979 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4980 		cpu_cpwait();
   4981 	} else {
   4982 		/*
   4983 		 * Otherwise, update TTB and flush TLB
   4984 		 */
   4985 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4986 		if (rpm != NULL)
   4987 			rpm->pm_cstate.cs_tlb = 0;
   4988 	}
   4989 
   4990 	restore_interrupts(oldirqstate);
   4991 #endif /* ARM_MMU_EXTENDED */
   4992 
   4993 	block_userspace_access = 0;
   4994 
   4995 #ifndef ARM_MMU_EXTENDED
   4996  all_done:
   4997 	/*
   4998 	 * The new pmap is resident. Make sure it's marked
   4999 	 * as resident in the cache/TLB.
   5000 	 */
   5001 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5002 	if (npm != pmap_kernel())
   5003 		ci->ci_pmap_lastuser = npm;
   5004 
   5005 	/* The old pmap is not longer active */
   5006 	if (opm != npm) {
   5007 		if (opm != NULL)
   5008 			opm->pm_activated = false;
   5009 
   5010 		/* But the new one is */
   5011 		npm->pm_activated = true;
   5012 	}
   5013 	ci->ci_pmap_cur = npm;
   5014 #endif
   5015 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   5016 }
   5017 
   5018 void
   5019 pmap_deactivate(struct lwp *l)
   5020 {
   5021 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   5022 
   5023 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5024 
   5025 	UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)pm,
   5026 	    0, 0);
   5027 
   5028 #ifdef ARM_MMU_EXTENDED
   5029 	pmap_md_pdetab_deactivate(pm);
   5030 #else
   5031 	/*
   5032 	 * If the process is exiting, make sure pmap_activate() does
   5033 	 * a full MMU context-switch and cache flush, which we might
   5034 	 * otherwise skip. See PR port-arm/38950.
   5035 	 */
   5036 	if (l->l_proc->p_sflag & PS_WEXIT)
   5037 		curcpu()->ci_lastlwp = NULL;
   5038 
   5039 	pm->pm_activated = false;
   5040 #endif
   5041 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5042 }
   5043 
   5044 void
   5045 pmap_update(pmap_t pm)
   5046 {
   5047 
   5048 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5049 
   5050 	UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
   5051 	    pm->pm_remove_all, 0, 0);
   5052 
   5053 #ifndef ARM_MMU_EXTENDED
   5054 	if (pm->pm_remove_all) {
   5055 		/*
   5056 		 * Finish up the pmap_remove_all() optimisation by flushing
   5057 		 * the TLB.
   5058 		 */
   5059 		pmap_tlb_flushID(pm);
   5060 		pm->pm_remove_all = false;
   5061 	}
   5062 
   5063 	if (pmap_is_current(pm)) {
   5064 		/*
   5065 		 * If we're dealing with a current userland pmap, move its L1
   5066 		 * to the end of the LRU.
   5067 		 */
   5068 		if (pm != pmap_kernel())
   5069 			pmap_use_l1(pm);
   5070 
   5071 		/*
   5072 		 * We can assume we're done with frobbing the cache/tlb for
   5073 		 * now. Make sure any future pmap ops don't skip cache/tlb
   5074 		 * flushes.
   5075 		 */
   5076 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5077 	}
   5078 #else
   5079 
   5080 	kpreempt_disable();
   5081 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
   5082 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   5083 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   5084 		PMAP_COUNT(shootdown_ipis);
   5085 	}
   5086 #endif
   5087 
   5088 	/*
   5089 	 * If pmap_remove_all was called, we deactivated ourselves and released
   5090 	 * our ASID.  Now we have to reactivate ourselves.
   5091 	 */
   5092 	if (__predict_false(pm->pm_remove_all)) {
   5093 		pm->pm_remove_all = false;
   5094 
   5095 		KASSERT(pm != pmap_kernel());
   5096 		pmap_md_pdetab_activate(pm, curlwp);
   5097 	}
   5098 
   5099 	if (arm_has_mpext_p)
   5100 		armreg_bpiallis_write(0);
   5101 	else
   5102 		armreg_bpiall_write(0);
   5103 
   5104 	kpreempt_enable();
   5105 
   5106 	KASSERTMSG(pm == pmap_kernel()
   5107 	    || curcpu()->ci_pmap_cur != pm
   5108 	    || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
   5109 	    "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
   5110 	    pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
   5111 	    curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   5112 #endif
   5113 
   5114 	PMAPCOUNT(updates);
   5115 
   5116 	/*
   5117 	 * make sure TLB/cache operations have completed.
   5118 	 */
   5119 	cpu_cpwait();
   5120 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5121 }
   5122 
   5123 void
   5124 pmap_remove_all(pmap_t pm)
   5125 {
   5126 
   5127 	/*
   5128 	 * The vmspace described by this pmap is about to be torn down.
   5129 	 * Until pmap_update() is called, UVM will only make calls
   5130 	 * to pmap_remove(). We can make life much simpler by flushing
   5131 	 * the cache now, and deferring TLB invalidation to pmap_update().
   5132 	 */
   5133 #ifdef PMAP_CACHE_VIVT
   5134 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   5135 #endif
   5136 #ifdef ARM_MMU_EXTENDED
   5137 #ifdef MULTIPROCESSOR
   5138 	struct cpu_info * const ci = curcpu();
   5139 	// This should be the last CPU with this pmap onproc
   5140 	KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
   5141 	if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
   5142 #endif
   5143 		pmap_tlb_asid_deactivate(pm);
   5144 #ifdef MULTIPROCESSOR
   5145 	KASSERT(kcpuset_iszero(pm->pm_onproc));
   5146 #endif
   5147 
   5148 	pmap_tlb_asid_release_all(pm);
   5149 #endif
   5150 	pm->pm_remove_all = true;
   5151 }
   5152 
   5153 /*
   5154  * Retire the given physical map from service.
   5155  * Should only be called if the map contains no valid mappings.
   5156  */
   5157 void
   5158 pmap_destroy(pmap_t pm)
   5159 {
   5160 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5161 
   5162 	u_int count;
   5163 
   5164 	if (pm == NULL)
   5165 		return;
   5166 
   5167 	UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
   5168 	    pm->pm_remove_all, 0, 0);
   5169 
   5170 	if (pm->pm_remove_all) {
   5171 #ifdef ARM_MMU_EXTENDED
   5172  		pmap_tlb_asid_release_all(pm);
   5173 #else
   5174 		pmap_tlb_flushID(pm);
   5175 #endif
   5176 		pm->pm_remove_all = false;
   5177 	}
   5178 
   5179 	/*
   5180 	 * Drop reference count
   5181 	 */
   5182 	mutex_enter(pm->pm_lock);
   5183 	count = --pm->pm_obj.uo_refs;
   5184 	mutex_exit(pm->pm_lock);
   5185 	if (count > 0) {
   5186 #ifndef ARM_MMU_EXTENDED
   5187 		if (pmap_is_current(pm)) {
   5188 			if (pm != pmap_kernel())
   5189 				pmap_use_l1(pm);
   5190 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5191 		}
   5192 #endif
   5193 		return;
   5194 	}
   5195 
   5196 	/*
   5197 	 * reference count is zero, free pmap resources and then free pmap.
   5198 	 */
   5199 
   5200 #ifndef ARM_HAS_VBAR
   5201 	if (vector_page < KERNEL_BASE) {
   5202 		KDASSERT(!pmap_is_current(pm));
   5203 
   5204 		/* Remove the vector page mapping */
   5205 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5206 		pmap_update(pm);
   5207 	}
   5208 #endif
   5209 
   5210 	pmap_free_l1(pm);
   5211 
   5212 #ifdef ARM_MMU_EXTENDED
   5213 #ifdef MULTIPROCESSOR
   5214 	kcpuset_destroy(pm->pm_active);
   5215 	kcpuset_destroy(pm->pm_onproc);
   5216 #endif
   5217 #else
   5218 	struct cpu_info * const ci = curcpu();
   5219 	if (ci->ci_pmap_lastuser == pm)
   5220 		ci->ci_pmap_lastuser = NULL;
   5221 #endif
   5222 
   5223 	uvm_obj_destroy(&pm->pm_obj, false);
   5224 	mutex_destroy(&pm->pm_obj_lock);
   5225 	pool_cache_put(&pmap_cache, pm);
   5226 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5227 }
   5228 
   5229 
   5230 /*
   5231  * void pmap_reference(pmap_t pm)
   5232  *
   5233  * Add a reference to the specified pmap.
   5234  */
   5235 void
   5236 pmap_reference(pmap_t pm)
   5237 {
   5238 
   5239 	if (pm == NULL)
   5240 		return;
   5241 
   5242 #ifndef ARM_MMU_EXTENDED
   5243 	pmap_use_l1(pm);
   5244 #endif
   5245 
   5246 	mutex_enter(pm->pm_lock);
   5247 	pm->pm_obj.uo_refs++;
   5248 	mutex_exit(pm->pm_lock);
   5249 }
   5250 
   5251 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5252 
   5253 static struct evcnt pmap_prefer_nochange_ev =
   5254     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5255 static struct evcnt pmap_prefer_change_ev =
   5256     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5257 
   5258 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5259 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5260 
   5261 void
   5262 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5263 {
   5264 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5265 	vaddr_t va = *vap;
   5266 	vaddr_t diff = (hint - va) & mask;
   5267 	if (diff == 0) {
   5268 		pmap_prefer_nochange_ev.ev_count++;
   5269 	} else {
   5270 		pmap_prefer_change_ev.ev_count++;
   5271 		if (__predict_false(td))
   5272 			va -= mask + 1;
   5273 		*vap = va + diff;
   5274 	}
   5275 }
   5276 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5277 
   5278 /*
   5279  * pmap_zero_page()
   5280  *
   5281  * Zero a given physical page by mapping it at a page hook point.
   5282  * In doing the zero page op, the page we zero is mapped cachable, as with
   5283  * StrongARM accesses to non-cached pages are non-burst making writing
   5284  * _any_ bulk data very slow.
   5285  */
   5286 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5287 void
   5288 pmap_zero_page_generic(paddr_t pa)
   5289 {
   5290 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5291 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5292 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5293 #endif
   5294 #if defined(PMAP_CACHE_VIPT)
   5295 	/* Choose the last page color it had, if any */
   5296 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5297 #else
   5298 	const vsize_t va_offset = 0;
   5299 #endif
   5300 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5301 	/*
   5302 	 * Is this page mapped at its natural color?
   5303 	 * If we have all of memory mapped, then just convert PA to VA.
   5304 	 */
   5305 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5306 	   || va_offset == (pa & arm_cache_prefer_mask);
   5307 	const vaddr_t vdstp = okcolor
   5308 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5309 	    : cpu_cdstp(va_offset);
   5310 #else
   5311 	const bool okcolor = false;
   5312 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5313 #endif
   5314 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5315 
   5316 
   5317 #ifdef DEBUG
   5318 	if (!SLIST_EMPTY(&md->pvh_list))
   5319 		panic("pmap_zero_page: page has mappings");
   5320 #endif
   5321 
   5322 	KDASSERT((pa & PGOFSET) == 0);
   5323 
   5324 	if (!okcolor) {
   5325 		/*
   5326 		 * Hook in the page, zero it, and purge the cache for that
   5327 		 * zeroed page. Invalidate the TLB as needed.
   5328 		 */
   5329 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5330 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5331 		l2pte_set(ptep, npte, 0);
   5332 		PTE_SYNC(ptep);
   5333 		cpu_tlb_flushD_SE(vdstp);
   5334 		cpu_cpwait();
   5335 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5336     && !defined(ARM_MMU_EXTENDED)
   5337 		/*
   5338 		 * If we are direct-mapped and our color isn't ok, then before
   5339 		 * we bzero the page invalidate its contents from the cache and
   5340 		 * reset the color to its natural color.
   5341 		 */
   5342 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5343 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5344 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5345 #endif
   5346 	}
   5347 	bzero_page(vdstp);
   5348 	if (!okcolor) {
   5349 		/*
   5350 		 * Unmap the page.
   5351 		 */
   5352 		l2pte_reset(ptep);
   5353 		PTE_SYNC(ptep);
   5354 		cpu_tlb_flushD_SE(vdstp);
   5355 #ifdef PMAP_CACHE_VIVT
   5356 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5357 #endif
   5358 	}
   5359 #ifdef PMAP_CACHE_VIPT
   5360 	/*
   5361 	 * This page is now cache resident so it now has a page color.
   5362 	 * Any contents have been obliterated so clear the EXEC flag.
   5363 	 */
   5364 #ifndef ARM_MMU_EXTENDED
   5365 	if (!pmap_is_page_colored_p(md)) {
   5366 		PMAPCOUNT(vac_color_new);
   5367 		md->pvh_attrs |= PVF_COLORED;
   5368 	}
   5369 	md->pvh_attrs |= PVF_DIRTY;
   5370 #endif
   5371 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5372 		md->pvh_attrs &= ~PVF_EXEC;
   5373 		PMAPCOUNT(exec_discarded_zero);
   5374 	}
   5375 #endif
   5376 }
   5377 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5378 
   5379 #if ARM_MMU_XSCALE == 1
   5380 void
   5381 pmap_zero_page_xscale(paddr_t pa)
   5382 {
   5383 #ifdef DEBUG
   5384 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5385 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5386 
   5387 	if (!SLIST_EMPTY(&md->pvh_list))
   5388 		panic("pmap_zero_page: page has mappings");
   5389 #endif
   5390 
   5391 	KDASSERT((pa & PGOFSET) == 0);
   5392 
   5393 	/*
   5394 	 * Hook in the page, zero it, and purge the cache for that
   5395 	 * zeroed page. Invalidate the TLB as needed.
   5396 	 */
   5397 
   5398 	pt_entry_t npte = L2_S_PROTO | pa |
   5399 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5400 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5401 	l2pte_set(cdst_pte, npte, 0);
   5402 	PTE_SYNC(cdst_pte);
   5403 	cpu_tlb_flushD_SE(cdstp);
   5404 	cpu_cpwait();
   5405 	bzero_page(cdstp);
   5406 	xscale_cache_clean_minidata();
   5407 	l2pte_reset(cdst_pte);
   5408 	PTE_SYNC(cdst_pte);
   5409 }
   5410 #endif /* ARM_MMU_XSCALE == 1 */
   5411 
   5412 /* pmap_pageidlezero()
   5413  *
   5414  * The same as above, except that we assume that the page is not
   5415  * mapped.  This means we never have to flush the cache first.  Called
   5416  * from the idle loop.
   5417  */
   5418 bool
   5419 pmap_pageidlezero(paddr_t pa)
   5420 {
   5421 	bool rv = true;
   5422 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5423 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5424 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5425 #endif
   5426 #ifdef PMAP_CACHE_VIPT
   5427 	/* Choose the last page color it had, if any */
   5428 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5429 #else
   5430 	const vsize_t va_offset = 0;
   5431 #endif
   5432 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5433 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5434 	   || va_offset == (pa & arm_cache_prefer_mask);
   5435 	const vaddr_t vdstp = okcolor
   5436 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5437 	    : cpu_cdstp(va_offset);
   5438 #else
   5439 	const bool okcolor = false;
   5440 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5441 #endif
   5442 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5443 
   5444 
   5445 #ifdef DEBUG
   5446 	if (!SLIST_EMPTY(&md->pvh_list))
   5447 		panic("pmap_pageidlezero: page has mappings");
   5448 #endif
   5449 
   5450 	KDASSERT((pa & PGOFSET) == 0);
   5451 
   5452 	if (!okcolor) {
   5453 		/*
   5454 		 * Hook in the page, zero it, and purge the cache for that
   5455 		 * zeroed page. Invalidate the TLB as needed.
   5456 		 */
   5457 		const pt_entry_t npte = L2_S_PROTO | pa |
   5458 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5459 		l2pte_set(ptep, npte, 0);
   5460 		PTE_SYNC(ptep);
   5461 		cpu_tlb_flushD_SE(vdstp);
   5462 		cpu_cpwait();
   5463 	}
   5464 
   5465 	uint64_t *ptr = (uint64_t *)vdstp;
   5466 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5467 		if (sched_curcpu_runnable_p() != 0) {
   5468 			/*
   5469 			 * A process has become ready.  Abort now,
   5470 			 * so we don't keep it waiting while we
   5471 			 * do slow memory access to finish this
   5472 			 * page.
   5473 			 */
   5474 			rv = false;
   5475 			break;
   5476 		}
   5477 		*ptr++ = 0;
   5478 	}
   5479 
   5480 #ifdef PMAP_CACHE_VIVT
   5481 	if (rv)
   5482 		/*
   5483 		 * if we aborted we'll rezero this page again later so don't
   5484 		 * purge it unless we finished it
   5485 		 */
   5486 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5487 #elif defined(PMAP_CACHE_VIPT)
   5488 	/*
   5489 	 * This page is now cache resident so it now has a page color.
   5490 	 * Any contents have been obliterated so clear the EXEC flag.
   5491 	 */
   5492 #ifndef ARM_MMU_EXTENDED
   5493 	if (!pmap_is_page_colored_p(md)) {
   5494 		PMAPCOUNT(vac_color_new);
   5495 		md->pvh_attrs |= PVF_COLORED;
   5496 	}
   5497 #endif
   5498 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5499 		md->pvh_attrs &= ~PVF_EXEC;
   5500 		PMAPCOUNT(exec_discarded_zero);
   5501 	}
   5502 #endif
   5503 	/*
   5504 	 * Unmap the page.
   5505 	 */
   5506 	if (!okcolor) {
   5507 		l2pte_reset(ptep);
   5508 		PTE_SYNC(ptep);
   5509 		cpu_tlb_flushD_SE(vdstp);
   5510 	}
   5511 
   5512 	return rv;
   5513 }
   5514 
   5515 /*
   5516  * pmap_copy_page()
   5517  *
   5518  * Copy one physical page into another, by mapping the pages into
   5519  * hook points. The same comment regarding cachability as in
   5520  * pmap_zero_page also applies here.
   5521  */
   5522 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5523 void
   5524 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5525 {
   5526 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5527 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5528 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5529 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5530 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5531 #endif
   5532 #ifdef PMAP_CACHE_VIPT
   5533 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5534 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5535 #else
   5536 	const vsize_t src_va_offset = 0;
   5537 	const vsize_t dst_va_offset = 0;
   5538 #endif
   5539 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5540 	/*
   5541 	 * Is this page mapped at its natural color?
   5542 	 * If we have all of memory mapped, then just convert PA to VA.
   5543 	 */
   5544 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5545 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5546 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5547 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5548 	const vaddr_t vsrcp = src_okcolor
   5549 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5550 		cpu_csrcp(src_va_offset))
   5551 	    : cpu_csrcp(src_va_offset);
   5552 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5553 	    cpu_cdstp(dst_va_offset));
   5554 #else
   5555 	const bool src_okcolor = false;
   5556 	const bool dst_okcolor = false;
   5557 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5558 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5559 #endif
   5560 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5561 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5562 
   5563 #ifdef DEBUG
   5564 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5565 		panic("pmap_copy_page: dst page has mappings");
   5566 #endif
   5567 
   5568 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5569 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5570 #endif
   5571 	KDASSERT((src & PGOFSET) == 0);
   5572 	KDASSERT((dst & PGOFSET) == 0);
   5573 
   5574 	/*
   5575 	 * Clean the source page.  Hold the source page's lock for
   5576 	 * the duration of the copy so that no other mappings can
   5577 	 * be created while we have a potentially aliased mapping.
   5578 	 */
   5579 #ifdef PMAP_CACHE_VIVT
   5580 	pmap_acquire_page_lock(src_md);
   5581 	(void) pmap_clean_page(src_md, true);
   5582 	pmap_release_page_lock(src_md);
   5583 #endif
   5584 
   5585 	/*
   5586 	 * Map the pages into the page hook points, copy them, and purge
   5587 	 * the cache for the appropriate page. Invalidate the TLB
   5588 	 * as required.
   5589 	 */
   5590 	if (!src_okcolor) {
   5591 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5592 		    | src
   5593 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5594 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5595 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5596 		    | pte_l2_s_cache_mode
   5597 #endif
   5598 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5599 		l2pte_set(src_ptep, nsrc_pte, 0);
   5600 		PTE_SYNC(src_ptep);
   5601 		cpu_tlb_flushD_SE(vsrcp);
   5602 		cpu_cpwait();
   5603 	}
   5604 	if (!dst_okcolor) {
   5605 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5606 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5607 		l2pte_set(dst_ptep, ndst_pte, 0);
   5608 		PTE_SYNC(dst_ptep);
   5609 		cpu_tlb_flushD_SE(vdstp);
   5610 		cpu_cpwait();
   5611 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5612 		/*
   5613 		 * If we are direct-mapped and our color isn't ok, then before
   5614 		 * we bcopy to the new page invalidate its contents from the
   5615 		 * cache and reset its color to its natural color.
   5616 		 */
   5617 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5618 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5619 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5620 #endif
   5621 	}
   5622 	bcopy_page(vsrcp, vdstp);
   5623 #ifdef PMAP_CACHE_VIVT
   5624 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5625 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5626 #endif
   5627 	/*
   5628 	 * Unmap the pages.
   5629 	 */
   5630 	if (!src_okcolor) {
   5631 		l2pte_reset(src_ptep);
   5632 		PTE_SYNC(src_ptep);
   5633 		cpu_tlb_flushD_SE(vsrcp);
   5634 		cpu_cpwait();
   5635 	}
   5636 	if (!dst_okcolor) {
   5637 		l2pte_reset(dst_ptep);
   5638 		PTE_SYNC(dst_ptep);
   5639 		cpu_tlb_flushD_SE(vdstp);
   5640 		cpu_cpwait();
   5641 	}
   5642 #ifdef PMAP_CACHE_VIPT
   5643 	/*
   5644 	 * Now that the destination page is in the cache, mark it as colored.
   5645 	 * If this was an exec page, discard it.
   5646 	 */
   5647 	pmap_acquire_page_lock(dst_md);
   5648 #ifndef ARM_MMU_EXTENDED
   5649 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5650 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5651 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5652 	}
   5653 	if (!pmap_is_page_colored_p(dst_md)) {
   5654 		PMAPCOUNT(vac_color_new);
   5655 		dst_md->pvh_attrs |= PVF_COLORED;
   5656 	}
   5657 	dst_md->pvh_attrs |= PVF_DIRTY;
   5658 #endif
   5659 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5660 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5661 		PMAPCOUNT(exec_discarded_copy);
   5662 	}
   5663 	pmap_release_page_lock(dst_md);
   5664 #endif
   5665 }
   5666 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5667 
   5668 #if ARM_MMU_XSCALE == 1
   5669 void
   5670 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5671 {
   5672 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5673 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5674 #ifdef DEBUG
   5675 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5676 
   5677 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5678 		panic("pmap_copy_page: dst page has mappings");
   5679 #endif
   5680 
   5681 	KDASSERT((src & PGOFSET) == 0);
   5682 	KDASSERT((dst & PGOFSET) == 0);
   5683 
   5684 	/*
   5685 	 * Clean the source page.  Hold the source page's lock for
   5686 	 * the duration of the copy so that no other mappings can
   5687 	 * be created while we have a potentially aliased mapping.
   5688 	 */
   5689 #ifdef PMAP_CACHE_VIVT
   5690 	pmap_acquire_page_lock(src_md);
   5691 	(void) pmap_clean_page(src_md, true);
   5692 	pmap_release_page_lock(src_md);
   5693 #endif
   5694 
   5695 	/*
   5696 	 * Map the pages into the page hook points, copy them, and purge
   5697 	 * the cache for the appropriate page. Invalidate the TLB
   5698 	 * as required.
   5699 	 */
   5700 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
   5701 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   5702 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5703 	l2pte_set(csrc_pte, nsrc_pte, 0);
   5704 	PTE_SYNC(csrc_pte);
   5705 
   5706 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
   5707 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
   5708 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5709 	l2pte_set(cdst_pte, ndst_pte, 0);
   5710 	PTE_SYNC(cdst_pte);
   5711 
   5712 	cpu_tlb_flushD_SE(csrcp);
   5713 	cpu_tlb_flushD_SE(cdstp);
   5714 	cpu_cpwait();
   5715 	bcopy_page(csrcp, cdstp);
   5716 	xscale_cache_clean_minidata();
   5717 	l2pte_reset(csrc_pte);
   5718 	l2pte_reset(cdst_pte);
   5719 	PTE_SYNC(csrc_pte);
   5720 	PTE_SYNC(cdst_pte);
   5721 }
   5722 #endif /* ARM_MMU_XSCALE == 1 */
   5723 
   5724 /*
   5725  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5726  *
   5727  * Return the start and end addresses of the kernel's virtual space.
   5728  * These values are setup in pmap_bootstrap and are updated as pages
   5729  * are allocated.
   5730  */
   5731 void
   5732 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5733 {
   5734 	*start = virtual_avail;
   5735 	*end = virtual_end;
   5736 }
   5737 
   5738 /*
   5739  * Helper function for pmap_grow_l2_bucket()
   5740  */
   5741 static inline int
   5742 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5743 {
   5744 	paddr_t pa;
   5745 
   5746 	if (uvm.page_init_done == false) {
   5747 #ifdef PMAP_STEAL_MEMORY
   5748 		pv_addr_t pv;
   5749 		pmap_boot_pagealloc(PAGE_SIZE,
   5750 #ifdef PMAP_CACHE_VIPT
   5751 		    arm_cache_prefer_mask,
   5752 		    va & arm_cache_prefer_mask,
   5753 #else
   5754 		    0, 0,
   5755 #endif
   5756 		    &pv);
   5757 		pa = pv.pv_pa;
   5758 #else
   5759 		if (uvm_page_physget(&pa) == false)
   5760 			return (1);
   5761 #endif	/* PMAP_STEAL_MEMORY */
   5762 	} else {
   5763 		struct vm_page *pg;
   5764 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5765 		if (pg == NULL)
   5766 			return (1);
   5767 		pa = VM_PAGE_TO_PHYS(pg);
   5768 		/*
   5769 		 * This new page must not have any mappings.  Enter it via
   5770 		 * pmap_kenter_pa and let that routine do the hard work.
   5771 		 */
   5772 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5773 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5774 		pmap_kenter_pa(va, pa,
   5775 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5776 	}
   5777 
   5778 	if (pap)
   5779 		*pap = pa;
   5780 
   5781 	PMAPCOUNT(pt_mappings);
   5782 #ifdef DEBUG
   5783 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5784 	KDASSERT(l2b != NULL);
   5785 
   5786 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   5787 	const pt_entry_t opte = *ptep;
   5788 	KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   5789 #endif
   5790 	memset((void *)va, 0, PAGE_SIZE);
   5791 	return (0);
   5792 }
   5793 
   5794 /*
   5795  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   5796  * used by pmap_growkernel().
   5797  */
   5798 static inline struct l2_bucket *
   5799 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   5800 {
   5801 	struct l2_dtable *l2;
   5802 	struct l2_bucket *l2b;
   5803 	u_short l1slot;
   5804 	vaddr_t nva;
   5805 
   5806 	l1slot = l1pte_index(va);
   5807 
   5808 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   5809 		/*
   5810 		 * No mapping at this address, as there is
   5811 		 * no entry in the L1 table.
   5812 		 * Need to allocate a new l2_dtable.
   5813 		 */
   5814 		nva = pmap_kernel_l2dtable_kva;
   5815 		if ((nva & PGOFSET) == 0) {
   5816 			/*
   5817 			 * Need to allocate a backing page
   5818 			 */
   5819 			if (pmap_grow_map(nva, NULL))
   5820 				return (NULL);
   5821 		}
   5822 
   5823 		l2 = (struct l2_dtable *)nva;
   5824 		nva += sizeof(struct l2_dtable);
   5825 
   5826 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   5827 			/*
   5828 			 * The new l2_dtable straddles a page boundary.
   5829 			 * Map in another page to cover it.
   5830 			 */
   5831 			if (pmap_grow_map(nva, NULL))
   5832 				return (NULL);
   5833 		}
   5834 
   5835 		pmap_kernel_l2dtable_kva = nva;
   5836 
   5837 		/*
   5838 		 * Link it into the parent pmap
   5839 		 */
   5840 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   5841 	}
   5842 
   5843 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   5844 
   5845 	/*
   5846 	 * Fetch pointer to the L2 page table associated with the address.
   5847 	 */
   5848 	if (l2b->l2b_kva == NULL) {
   5849 		pt_entry_t *ptep;
   5850 
   5851 		/*
   5852 		 * No L2 page table has been allocated. Chances are, this
   5853 		 * is because we just allocated the l2_dtable, above.
   5854 		 */
   5855 		nva = pmap_kernel_l2ptp_kva;
   5856 		ptep = (pt_entry_t *)nva;
   5857 		if ((nva & PGOFSET) == 0) {
   5858 			/*
   5859 			 * Need to allocate a backing page
   5860 			 */
   5861 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   5862 				return (NULL);
   5863 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   5864 		}
   5865 
   5866 		l2->l2_occupancy++;
   5867 		l2b->l2b_kva = ptep;
   5868 		l2b->l2b_l1slot = l1slot;
   5869 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   5870 
   5871 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   5872 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   5873 	}
   5874 
   5875 	return (l2b);
   5876 }
   5877 
   5878 vaddr_t
   5879 pmap_growkernel(vaddr_t maxkvaddr)
   5880 {
   5881 	pmap_t kpm = pmap_kernel();
   5882 #ifndef ARM_MMU_EXTENDED
   5883 	struct l1_ttable *l1;
   5884 #endif
   5885 	int s;
   5886 
   5887 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5888 		goto out;		/* we are OK */
   5889 
   5890 	NPDEBUG(PDB_GROWKERN,
   5891 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5892 	    pmap_curmaxkvaddr, maxkvaddr));
   5893 
   5894 	KDASSERT(maxkvaddr <= virtual_end);
   5895 
   5896 	/*
   5897 	 * whoops!   we need to add kernel PTPs
   5898 	 */
   5899 
   5900 	s = splhigh();	/* to be safe */
   5901 	mutex_enter(kpm->pm_lock);
   5902 
   5903 	/* Map 1MB at a time */
   5904 	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
   5905 #ifdef ARM_MMU_EXTENDED
   5906 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   5907 	pd_entry_t *pdep = spdep;
   5908 #endif
   5909 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   5910 #ifdef ARM_MMU_EXTENDED
   5911 	     pdep++,
   5912 #endif
   5913 	     l1slot++) {
   5914 		struct l2_bucket *l2b =
   5915 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5916 		KASSERT(l2b != NULL);
   5917 
   5918 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   5919 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   5920 #ifdef ARM_MMU_EXTENDED
   5921 		l1pte_setone(pdep, npde);
   5922 #else
   5923 		/* Distribute new L1 entry to all other L1s */
   5924 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5925 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   5926 			l1pte_setone(pdep, npde);
   5927 			PDE_SYNC(pdep);
   5928 		}
   5929 #endif
   5930 	}
   5931 #ifdef ARM_MMU_EXTENDED
   5932 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   5933 #endif
   5934 
   5935 #ifdef PMAP_CACHE_VIVT
   5936 	/*
   5937 	 * flush out the cache, expensive but growkernel will happen so
   5938 	 * rarely
   5939 	 */
   5940 	cpu_dcache_wbinv_all();
   5941 	cpu_tlb_flushD();
   5942 	cpu_cpwait();
   5943 #endif
   5944 
   5945 	mutex_exit(kpm->pm_lock);
   5946 	splx(s);
   5947 
   5948 out:
   5949 	return (pmap_curmaxkvaddr);
   5950 }
   5951 
   5952 /************************ Utility routines ****************************/
   5953 
   5954 #ifndef ARM_HAS_VBAR
   5955 /*
   5956  * vector_page_setprot:
   5957  *
   5958  *	Manipulate the protection of the vector page.
   5959  */
   5960 void
   5961 vector_page_setprot(int prot)
   5962 {
   5963 	struct l2_bucket *l2b;
   5964 	pt_entry_t *ptep;
   5965 
   5966 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5967 	/*
   5968 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5969 	 * already mapped in the kernel text so no need to anything here.
   5970 	 */
   5971 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5972 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5973 		return;
   5974 	}
   5975 #endif
   5976 
   5977 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5978 	KASSERT(l2b != NULL);
   5979 
   5980 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5981 
   5982 	const pt_entry_t opte = *ptep;
   5983 #ifdef ARM_MMU_EXTENDED
   5984 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   5985 	    | L2_S_PROT(PTE_KERNEL, prot);
   5986 #else
   5987 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   5988 	    | L2_S_PROT(PTE_KERNEL, prot);
   5989 #endif
   5990 	l2pte_set(ptep, npte, opte);
   5991 	PTE_SYNC(ptep);
   5992 	cpu_tlb_flushD_SE(vector_page);
   5993 	cpu_cpwait();
   5994 }
   5995 #endif
   5996 
   5997 /*
   5998  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5999  * Returns true if the mapping exists, else false.
   6000  *
   6001  * NOTE: This function is only used by a couple of arm-specific modules.
   6002  * It is not safe to take any pmap locks here, since we could be right
   6003  * in the middle of debugging the pmap anyway...
   6004  *
   6005  * It is possible for this routine to return false even though a valid
   6006  * mapping does exist. This is because we don't lock, so the metadata
   6007  * state may be inconsistent.
   6008  *
   6009  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   6010  * a "section" mapping.
   6011  */
   6012 bool
   6013 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   6014 {
   6015 	struct l2_dtable *l2;
   6016 	pd_entry_t *pdep, pde;
   6017 	pt_entry_t *ptep;
   6018 	u_short l1slot;
   6019 
   6020 	if (pm->pm_l1 == NULL)
   6021 		return false;
   6022 
   6023 	l1slot = l1pte_index(va);
   6024 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   6025 	pde = *pdep;
   6026 
   6027 	if (l1pte_section_p(pde)) {
   6028 		*ptp = NULL;
   6029 		return true;
   6030 	}
   6031 
   6032 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   6033 	if (l2 == NULL ||
   6034 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   6035 		return false;
   6036 	}
   6037 
   6038 	*ptp = &ptep[l2pte_index(va)];
   6039 	return true;
   6040 }
   6041 
   6042 bool
   6043 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   6044 {
   6045 
   6046 	if (pm->pm_l1 == NULL)
   6047 		return false;
   6048 
   6049 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   6050 
   6051 	return true;
   6052 }
   6053 
   6054 /************************ Bootstrapping routines ****************************/
   6055 
   6056 #ifndef ARM_MMU_EXTENDED
   6057 static void
   6058 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   6059 {
   6060 	int i;
   6061 
   6062 	l1->l1_kva = l1pt;
   6063 	l1->l1_domain_use_count = 0;
   6064 	l1->l1_domain_first = 0;
   6065 
   6066 	for (i = 0; i < PMAP_DOMAINS; i++)
   6067 		l1->l1_domain_free[i] = i + 1;
   6068 
   6069 	/*
   6070 	 * Copy the kernel's L1 entries to each new L1.
   6071 	 */
   6072 	if (pmap_initialized)
   6073 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   6074 
   6075 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   6076 	    &l1->l1_physaddr) == false)
   6077 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   6078 
   6079 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   6080 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   6081 }
   6082 #endif /* !ARM_MMU_EXTENDED */
   6083 
   6084 /*
   6085  * pmap_bootstrap() is called from the board-specific initarm() routine
   6086  * once the kernel L1/L2 descriptors tables have been set up.
   6087  *
   6088  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   6089  * spread over a number of disparate files/functions.
   6090  *
   6091  * We are passed the following parameters
   6092  *  - kernel_l1pt
   6093  *    This is a pointer to the base of the kernel's L1 translation table.
   6094  *  - vstart
   6095  *    1MB-aligned start of managed kernel virtual memory.
   6096  *  - vend
   6097  *    1MB-aligned end of managed kernel virtual memory.
   6098  *
   6099  * We use the first parameter to build the metadata (struct l1_ttable and
   6100  * struct l2_dtable) necessary to track kernel mappings.
   6101  */
   6102 #define	PMAP_STATIC_L2_SIZE 16
   6103 void
   6104 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   6105 {
   6106 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   6107 #ifndef ARM_MMU_EXTENDED
   6108 	static struct l1_ttable static_l1;
   6109 	struct l1_ttable *l1 = &static_l1;
   6110 #endif
   6111 	struct l2_dtable *l2;
   6112 	struct l2_bucket *l2b;
   6113 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   6114 	pmap_t pm = pmap_kernel();
   6115 	pt_entry_t *ptep;
   6116 	paddr_t pa;
   6117 	vsize_t size;
   6118 	int nptes, l2idx, l2next = 0;
   6119 
   6120 #ifdef ARM_MMU_EXTENDED
   6121 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   6122 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   6123 #endif
   6124 
   6125 #ifdef VERBOSE_INIT_ARM
   6126 	printf("kpm ");
   6127 #endif
   6128 	/*
   6129 	 * Initialise the kernel pmap object
   6130 	 */
   6131 	curcpu()->ci_pmap_cur = pm;
   6132 #ifdef ARM_MMU_EXTENDED
   6133 	pm->pm_l1 = l1pt;
   6134 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   6135 #ifdef VERBOSE_INIT_ARM
   6136 	printf("tlb0 ");
   6137 #endif
   6138 	pmap_tlb_info_init(&pmap_tlb0_info);
   6139 #ifdef MULTIPROCESSOR
   6140 #ifdef VERBOSE_INIT_ARM
   6141 	printf("kcpusets ");
   6142 #endif
   6143 	pm->pm_onproc = kcpuset_running;
   6144 	pm->pm_active = kcpuset_running;
   6145 #endif
   6146 #else
   6147 	pm->pm_l1 = l1;
   6148 #endif
   6149 
   6150 #ifdef VERBOSE_INIT_ARM
   6151 	printf("locks ");
   6152 #endif
   6153 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6154 	if (arm_cache_prefer_mask != 0) {
   6155 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   6156 	} else {
   6157 #endif
   6158 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
   6159 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6160 	}
   6161 #endif
   6162 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   6163 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   6164 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   6165 
   6166 #ifdef VERBOSE_INIT_ARM
   6167 	printf("l1pt ");
   6168 #endif
   6169 	/*
   6170 	 * Scan the L1 translation table created by initarm() and create
   6171 	 * the required metadata for all valid mappings found in it.
   6172 	 */
   6173 	for (size_t l1slot = 0;
   6174 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   6175 	     l1slot++) {
   6176 		pd_entry_t pde = l1pt[l1slot];
   6177 
   6178 		/*
   6179 		 * We're only interested in Coarse mappings.
   6180 		 * pmap_extract() can deal with section mappings without
   6181 		 * recourse to checking L2 metadata.
   6182 		 */
   6183 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   6184 			continue;
   6185 
   6186 		/*
   6187 		 * Lookup the KVA of this L2 descriptor table
   6188 		 */
   6189 		pa = l1pte_pa(pde);
   6190 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6191 		if (ptep == NULL) {
   6192 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6193 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6194 		}
   6195 
   6196 		/*
   6197 		 * Fetch the associated L2 metadata structure.
   6198 		 * Allocate a new one if necessary.
   6199 		 */
   6200 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6201 			if (l2next == PMAP_STATIC_L2_SIZE)
   6202 				panic("pmap_bootstrap: out of static L2s");
   6203 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6204 		}
   6205 
   6206 		/*
   6207 		 * One more L1 slot tracked...
   6208 		 */
   6209 		l2->l2_occupancy++;
   6210 
   6211 		/*
   6212 		 * Fill in the details of the L2 descriptor in the
   6213 		 * appropriate bucket.
   6214 		 */
   6215 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6216 		l2b->l2b_kva = ptep;
   6217 		l2b->l2b_pa = pa;
   6218 		l2b->l2b_l1slot = l1slot;
   6219 
   6220 		/*
   6221 		 * Establish an initial occupancy count for this descriptor
   6222 		 */
   6223 		for (l2idx = 0;
   6224 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6225 		    l2idx++) {
   6226 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6227 				l2b->l2b_occupancy++;
   6228 			}
   6229 		}
   6230 
   6231 		/*
   6232 		 * Make sure the descriptor itself has the correct cache mode.
   6233 		 * If not, fix it, but whine about the problem. Port-meisters
   6234 		 * should consider this a clue to fix up their initarm()
   6235 		 * function. :)
   6236 		 */
   6237 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6238 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6239 			    "L2 pte @ %p\n", ptep);
   6240 		}
   6241 	}
   6242 
   6243 #ifdef VERBOSE_INIT_ARM
   6244 	printf("cache(l1pt) ");
   6245 #endif
   6246 	/*
   6247 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6248 	 * a page table. Bitch if it is not correctly set.
   6249 	 */
   6250 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6251 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6252 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6253 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6254 	}
   6255 
   6256 #ifdef PMAP_CACHE_VIVT
   6257 	cpu_dcache_wbinv_all();
   6258 	cpu_tlb_flushID();
   6259 	cpu_cpwait();
   6260 #endif
   6261 
   6262 	/*
   6263 	 * now we allocate the "special" VAs which are used for tmp mappings
   6264 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6265 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6266 	 *
   6267 	 * Managed KVM space start from wherever initarm() tells us.
   6268 	 */
   6269 	virtual_avail = vstart;
   6270 	virtual_end = vend;
   6271 
   6272 #ifdef VERBOSE_INIT_ARM
   6273 	printf("specials ");
   6274 #endif
   6275 #ifdef PMAP_CACHE_VIPT
   6276 	/*
   6277 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6278 	 * page so we won't violate cache aliasing rules.
   6279 	 */
   6280 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6281 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6282 	nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6283 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6284 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6285 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6286 		nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6287 	}
   6288 #else
   6289 	nptes = PAGE_SIZE / L2_S_SIZE;
   6290 #endif
   6291 #ifdef MULTIPROCESSOR
   6292 	cnptes = nptes;
   6293 	nptes *= arm_cpu_max;
   6294 #endif
   6295 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6296 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6297 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6298 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6299 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   6300 	if (msgbufaddr == NULL) {
   6301 		pmap_alloc_specials(&virtual_avail,
   6302 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6303 		    (void *)&msgbufaddr, NULL);
   6304 	}
   6305 
   6306 	/*
   6307 	 * Allocate a range of kernel virtual address space to be used
   6308 	 * for L2 descriptor tables and metadata allocation in
   6309 	 * pmap_growkernel().
   6310 	 */
   6311 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   6312 	pmap_alloc_specials(&virtual_avail,
   6313 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6314 	    &pmap_kernel_l2ptp_kva, NULL);
   6315 
   6316 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   6317 	pmap_alloc_specials(&virtual_avail,
   6318 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6319 	    &pmap_kernel_l2dtable_kva, NULL);
   6320 
   6321 #ifndef ARM_MMU_EXTENDED
   6322 	/*
   6323 	 * init the static-global locks and global pmap list.
   6324 	 */
   6325 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6326 
   6327 	/*
   6328 	 * We can now initialise the first L1's metadata.
   6329 	 */
   6330 	SLIST_INIT(&l1_list);
   6331 	TAILQ_INIT(&l1_lru_list);
   6332 	pmap_init_l1(l1, l1pt);
   6333 #endif /* ARM_MMU_EXTENDED */
   6334 
   6335 #ifndef ARM_HAS_VBAR
   6336 	/* Set up vector page L1 details, if necessary */
   6337 	if (vector_page < KERNEL_BASE) {
   6338 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6339 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6340 		KDASSERT(l2b != NULL);
   6341 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6342 		    L1_C_DOM(pmap_domain(pm));
   6343 	} else
   6344 		pm->pm_pl1vec = NULL;
   6345 #endif
   6346 
   6347 #ifdef VERBOSE_INIT_ARM
   6348 	printf("pools ");
   6349 #endif
   6350 	/*
   6351 	 * Initialize the pmap cache
   6352 	 */
   6353 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6354 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6355 
   6356 	/*
   6357 	 * Initialize the pv pool.
   6358 	 */
   6359 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6360 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6361 
   6362 	/*
   6363 	 * Initialize the L2 dtable pool and cache.
   6364 	 */
   6365 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6366 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6367 
   6368 	/*
   6369 	 * Initialise the L2 descriptor table pool and cache
   6370 	 */
   6371 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   6372 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   6373 	    pmap_l2ptp_ctor, NULL, NULL);
   6374 
   6375 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6376 
   6377 	cpu_dcache_wbinv_all();
   6378 }
   6379 
   6380 static bool
   6381 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6382 {
   6383 #ifdef ARM_MMU_EXTENDED
   6384 	return false;
   6385 #else
   6386 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6387 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6388 		return false;
   6389 
   6390 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6391 	int rv = 0;
   6392 
   6393 	while (va < eva) {
   6394 		/*
   6395 		 * Make sure the descriptor itself has the correct cache mode
   6396 		 */
   6397 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6398 		pd_entry_t pde = *pdep;
   6399 
   6400 		if (l1pte_section_p(pde)) {
   6401 			__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6402 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6403 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6404 				    pte_l1_s_cache_mode_pt;
   6405 				PDE_SYNC(pdep);
   6406 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6407 				    sizeof(*pdep));
   6408 				rv = 1;
   6409 			}
   6410 			return rv;
   6411 		}
   6412 		vaddr_t pa = l1pte_pa(pde);
   6413 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6414 		if (ptep == NULL)
   6415 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6416 
   6417 		ptep += l2pte_index(va);
   6418 		const pt_entry_t opte = *ptep;
   6419 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6420 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6421 			    | pte_l2_s_cache_mode_pt;
   6422 			l2pte_set(ptep, npte, opte);
   6423 			PTE_SYNC(ptep);
   6424 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6425 			rv = 1;
   6426 		}
   6427 		va += PAGE_SIZE;
   6428 	}
   6429 
   6430 	return (rv);
   6431 #endif
   6432 }
   6433 
   6434 static void
   6435 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6436 {
   6437 	vaddr_t va = *availp;
   6438 	struct l2_bucket *l2b;
   6439 
   6440 	if (ptep) {
   6441 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6442 		if (l2b == NULL)
   6443 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6444 
   6445 		*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6446 	}
   6447 
   6448 	*vap = va;
   6449 	*availp = va + (PAGE_SIZE * pages);
   6450 }
   6451 
   6452 void
   6453 pmap_init(void)
   6454 {
   6455 
   6456 	/*
   6457 	 * Set the available memory vars - These do not map to real memory
   6458 	 * addresses and cannot as the physical memory is fragmented.
   6459 	 * They are used by ps for %mem calculations.
   6460 	 * One could argue whether this should be the entire memory or just
   6461 	 * the memory that is useable in a user process.
   6462 	 */
   6463 	avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
   6464 	avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
   6465 
   6466 	/*
   6467 	 * Now we need to free enough pv_entry structures to allow us to get
   6468 	 * the kmem_map/kmem_object allocated and inited (done after this
   6469 	 * function is finished).  to do this we allocate one bootstrap page out
   6470 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6471 	 * structures.   we never free this page.
   6472 	 */
   6473 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6474 
   6475 #ifdef ARM_MMU_EXTENDED
   6476 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6477 #endif
   6478 
   6479 	pmap_initialized = true;
   6480 }
   6481 
   6482 static vaddr_t last_bootstrap_page = 0;
   6483 static void *free_bootstrap_pages = NULL;
   6484 
   6485 static void *
   6486 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6487 {
   6488 	extern void *pool_page_alloc(struct pool *, int);
   6489 	vaddr_t new_page;
   6490 	void *rv;
   6491 
   6492 	if (pmap_initialized)
   6493 		return (pool_page_alloc(pp, flags));
   6494 
   6495 	if (free_bootstrap_pages) {
   6496 		rv = free_bootstrap_pages;
   6497 		free_bootstrap_pages = *((void **)rv);
   6498 		return (rv);
   6499 	}
   6500 
   6501 	KASSERT(kernel_map != NULL);
   6502 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6503 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6504 
   6505 	KASSERT(new_page > last_bootstrap_page);
   6506 	last_bootstrap_page = new_page;
   6507 	return ((void *)new_page);
   6508 }
   6509 
   6510 static void
   6511 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6512 {
   6513 	extern void pool_page_free(struct pool *, void *);
   6514 
   6515 	if ((vaddr_t)v <= last_bootstrap_page) {
   6516 		*((void **)v) = free_bootstrap_pages;
   6517 		free_bootstrap_pages = v;
   6518 		return;
   6519 	}
   6520 
   6521 	if (pmap_initialized) {
   6522 		pool_page_free(pp, v);
   6523 		return;
   6524 	}
   6525 }
   6526 
   6527 /*
   6528  * pmap_postinit()
   6529  *
   6530  * This routine is called after the vm and kmem subsystems have been
   6531  * initialised. This allows the pmap code to perform any initialisation
   6532  * that can only be done once the memory allocation is in place.
   6533  */
   6534 void
   6535 pmap_postinit(void)
   6536 {
   6537 #ifndef ARM_MMU_EXTENDED
   6538 	extern paddr_t physical_start, physical_end;
   6539 	struct l1_ttable *l1;
   6540 	struct pglist plist;
   6541 	struct vm_page *m;
   6542 	pd_entry_t *pdep;
   6543 	vaddr_t va, eva;
   6544 	u_int loop, needed;
   6545 	int error;
   6546 #endif
   6547 
   6548 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6549 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6550 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6551 
   6552 #ifndef ARM_MMU_EXTENDED
   6553 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6554 	needed -= 1;
   6555 
   6556 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6557 
   6558 	for (loop = 0; loop < needed; loop++, l1++) {
   6559 		/* Allocate a L1 page table */
   6560 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6561 		if (va == 0)
   6562 			panic("Cannot allocate L1 KVM");
   6563 
   6564 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6565 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6566 		if (error)
   6567 			panic("Cannot allocate L1 physical pages");
   6568 
   6569 		m = TAILQ_FIRST(&plist);
   6570 		eva = va + L1_TABLE_SIZE;
   6571 		pdep = (pd_entry_t *)va;
   6572 
   6573 		while (m && va < eva) {
   6574 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6575 
   6576 			pmap_kenter_pa(va, pa,
   6577 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6578 
   6579 			va += PAGE_SIZE;
   6580 			m = TAILQ_NEXT(m, pageq.queue);
   6581 		}
   6582 
   6583 #ifdef DIAGNOSTIC
   6584 		if (m)
   6585 			panic("pmap_alloc_l1pt: pglist not empty");
   6586 #endif	/* DIAGNOSTIC */
   6587 
   6588 		pmap_init_l1(l1, pdep);
   6589 	}
   6590 
   6591 #ifdef DEBUG
   6592 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6593 	    needed);
   6594 #endif
   6595 #endif /* !ARM_MMU_EXTENDED */
   6596 }
   6597 
   6598 /*
   6599  * Note that the following routines are used by board-specific initialisation
   6600  * code to configure the initial kernel page tables.
   6601  *
   6602  */
   6603 
   6604 /*
   6605  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6606  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6607  * find them as necessary.
   6608  *
   6609  * Note that the data on this list MUST remain valid after initarm() returns,
   6610  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   6611  */
   6612 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6613 
   6614 static vaddr_t
   6615 kernel_pt_lookup(paddr_t pa)
   6616 {
   6617 	pv_addr_t *pv;
   6618 
   6619 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6620 		if (pv->pv_pa == (pa & ~PGOFSET))
   6621 			return (pv->pv_va | (pa & PGOFSET));
   6622 	}
   6623 	return (0);
   6624 }
   6625 
   6626 /*
   6627  * pmap_map_section:
   6628  *
   6629  *	Create a single section mapping.
   6630  */
   6631 void
   6632 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6633 {
   6634 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6635 	const size_t l1slot = l1pte_index(va);
   6636 	pd_entry_t fl;
   6637 
   6638 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6639 
   6640 	switch (cache) {
   6641 	case PTE_NOCACHE:
   6642 	default:
   6643 		fl = 0;
   6644 		break;
   6645 
   6646 	case PTE_CACHE:
   6647 		fl = pte_l1_s_cache_mode;
   6648 		break;
   6649 
   6650 	case PTE_PAGETABLE:
   6651 		fl = pte_l1_s_cache_mode_pt;
   6652 		break;
   6653 	}
   6654 
   6655 	const pd_entry_t npde = L1_S_PROTO | pa |
   6656 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6657 	l1pte_setone(pdep + l1slot, npde);
   6658 	PDE_SYNC(pdep + l1slot);
   6659 }
   6660 
   6661 /*
   6662  * pmap_map_entry:
   6663  *
   6664  *	Create a single page mapping.
   6665  */
   6666 void
   6667 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6668 {
   6669 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6670 	const size_t l1slot = l1pte_index(va);
   6671 	pt_entry_t npte;
   6672 	pt_entry_t *ptep;
   6673 
   6674 	KASSERT(((va | pa) & PGOFSET) == 0);
   6675 
   6676 	switch (cache) {
   6677 	case PTE_NOCACHE:
   6678 	default:
   6679 		npte = 0;
   6680 		break;
   6681 
   6682 	case PTE_CACHE:
   6683 		npte = pte_l2_s_cache_mode;
   6684 		break;
   6685 
   6686 	case PTE_PAGETABLE:
   6687 		npte = pte_l2_s_cache_mode_pt;
   6688 		break;
   6689 	}
   6690 
   6691 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6692 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   6693 
   6694 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6695 	if (ptep == NULL)
   6696 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   6697 
   6698 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   6699 #ifdef ARM_MMU_EXTENDED
   6700 	if (prot & VM_PROT_EXECUTE) {
   6701 		npte &= ~L2_XS_XN;
   6702 	}
   6703 #endif
   6704 	ptep += l2pte_index(va);
   6705 	l2pte_set(ptep, npte, 0);
   6706 	PTE_SYNC(ptep);
   6707 }
   6708 
   6709 /*
   6710  * pmap_link_l2pt:
   6711  *
   6712  *	Link the L2 page table specified by "l2pv" into the L1
   6713  *	page table at the slot for "va".
   6714  */
   6715 void
   6716 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   6717 {
   6718 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   6719 
   6720 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   6721 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   6722 
   6723 	const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   6724 	    | l2pv->pv_pa;
   6725 
   6726 	l1pte_set(pdep, npde);
   6727 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   6728 
   6729 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   6730 }
   6731 
   6732 /*
   6733  * pmap_map_chunk:
   6734  *
   6735  *	Map a chunk of memory using the most efficient mappings
   6736  *	possible (section, large page, small page) into the
   6737  *	provided L1 and L2 tables at the specified virtual address.
   6738  */
   6739 vsize_t
   6740 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   6741     int prot, int cache)
   6742 {
   6743 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6744 	pt_entry_t f1, f2s, f2l;
   6745 	vsize_t resid;
   6746 
   6747 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   6748 
   6749 	if (l1pt == 0)
   6750 		panic("pmap_map_chunk: no L1 table provided");
   6751 
   6752 #ifdef VERBOSE_INIT_ARM
   6753 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   6754 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   6755 #endif
   6756 
   6757 	switch (cache) {
   6758 	case PTE_NOCACHE:
   6759 	default:
   6760 		f1 = 0;
   6761 		f2l = 0;
   6762 		f2s = 0;
   6763 		break;
   6764 
   6765 	case PTE_CACHE:
   6766 		f1 = pte_l1_s_cache_mode;
   6767 		f2l = pte_l2_l_cache_mode;
   6768 		f2s = pte_l2_s_cache_mode;
   6769 		break;
   6770 
   6771 	case PTE_PAGETABLE:
   6772 		f1 = pte_l1_s_cache_mode_pt;
   6773 		f2l = pte_l2_l_cache_mode_pt;
   6774 		f2s = pte_l2_s_cache_mode_pt;
   6775 		break;
   6776 	}
   6777 
   6778 	size = resid;
   6779 
   6780 	while (resid > 0) {
   6781 		const size_t l1slot = l1pte_index(va);
   6782 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   6783 		/* See if we can use a supersection mapping. */
   6784 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   6785 			/* Supersection are always domain 0 */
   6786 			const pd_entry_t npde = L1_SS_PROTO | pa
   6787 #ifdef ARM_MMU_EXTENDED
   6788 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6789 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6790 #endif
   6791 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   6792 #ifdef VERBOSE_INIT_ARM
   6793 			printf("sS");
   6794 #endif
   6795 			l1pte_set(&pdep[l1slot], npde);
   6796 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   6797 			va += L1_SS_SIZE;
   6798 			pa += L1_SS_SIZE;
   6799 			resid -= L1_SS_SIZE;
   6800 			continue;
   6801 		}
   6802 #endif
   6803 		/* See if we can use a section mapping. */
   6804 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   6805 			const pd_entry_t npde = L1_S_PROTO | pa
   6806 #ifdef ARM_MMU_EXTENDED
   6807 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6808 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6809 #endif
   6810 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   6811 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6812 #ifdef VERBOSE_INIT_ARM
   6813 			printf("S");
   6814 #endif
   6815 			l1pte_set(&pdep[l1slot], npde);
   6816 			PDE_SYNC(&pdep[l1slot]);
   6817 			va += L1_S_SIZE;
   6818 			pa += L1_S_SIZE;
   6819 			resid -= L1_S_SIZE;
   6820 			continue;
   6821 		}
   6822 
   6823 		/*
   6824 		 * Ok, we're going to use an L2 table.  Make sure
   6825 		 * one is actually in the corresponding L1 slot
   6826 		 * for the current VA.
   6827 		 */
   6828 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6829 			panic("%s: no L2 table for VA %#lx", __func__, va);
   6830 
   6831 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6832 		if (ptep == NULL)
   6833 			panic("%s: can't find L2 table for VA %#lx", __func__,
   6834 			    va);
   6835 
   6836 		ptep += l2pte_index(va);
   6837 
   6838 		/* See if we can use a L2 large page mapping. */
   6839 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   6840 			const pt_entry_t npte = L2_L_PROTO | pa
   6841 #ifdef ARM_MMU_EXTENDED
   6842 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   6843 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6844 #endif
   6845 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   6846 #ifdef VERBOSE_INIT_ARM
   6847 			printf("L");
   6848 #endif
   6849 			l2pte_set(ptep, npte, 0);
   6850 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   6851 			va += L2_L_SIZE;
   6852 			pa += L2_L_SIZE;
   6853 			resid -= L2_L_SIZE;
   6854 			continue;
   6855 		}
   6856 
   6857 #ifdef VERBOSE_INIT_ARM
   6858 		printf("P");
   6859 #endif
   6860 		/* Use a small page mapping. */
   6861 		pt_entry_t npte = L2_S_PROTO | pa
   6862 #ifdef ARM_MMU_EXTENDED
   6863 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   6864 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6865 #endif
   6866 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   6867 #ifdef ARM_MMU_EXTENDED
   6868 		npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
   6869 #endif
   6870 		l2pte_set(ptep, npte, 0);
   6871 		PTE_SYNC(ptep);
   6872 		va += PAGE_SIZE;
   6873 		pa += PAGE_SIZE;
   6874 		resid -= PAGE_SIZE;
   6875 	}
   6876 #ifdef VERBOSE_INIT_ARM
   6877 	printf("\n");
   6878 #endif
   6879 	return (size);
   6880 }
   6881 
   6882 /********************** Static device map routines ***************************/
   6883 
   6884 static const struct pmap_devmap *pmap_devmap_table;
   6885 
   6886 /*
   6887  * Register the devmap table.  This is provided in case early console
   6888  * initialization needs to register mappings created by bootstrap code
   6889  * before pmap_devmap_bootstrap() is called.
   6890  */
   6891 void
   6892 pmap_devmap_register(const struct pmap_devmap *table)
   6893 {
   6894 
   6895 	pmap_devmap_table = table;
   6896 }
   6897 
   6898 /*
   6899  * Map all of the static regions in the devmap table, and remember
   6900  * the devmap table so other parts of the kernel can look up entries
   6901  * later.
   6902  */
   6903 void
   6904 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   6905 {
   6906 	int i;
   6907 
   6908 	pmap_devmap_table = table;
   6909 
   6910 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6911 #ifdef VERBOSE_INIT_ARM
   6912 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   6913 		    pmap_devmap_table[i].pd_pa,
   6914 		    pmap_devmap_table[i].pd_pa +
   6915 			pmap_devmap_table[i].pd_size - 1,
   6916 		    pmap_devmap_table[i].pd_va);
   6917 #endif
   6918 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   6919 		    pmap_devmap_table[i].pd_pa,
   6920 		    pmap_devmap_table[i].pd_size,
   6921 		    pmap_devmap_table[i].pd_prot,
   6922 		    pmap_devmap_table[i].pd_cache);
   6923 	}
   6924 }
   6925 
   6926 const struct pmap_devmap *
   6927 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   6928 {
   6929 	uint64_t endpa;
   6930 	int i;
   6931 
   6932 	if (pmap_devmap_table == NULL)
   6933 		return (NULL);
   6934 
   6935 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   6936 
   6937 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6938 		if (pa >= pmap_devmap_table[i].pd_pa &&
   6939 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   6940 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   6941 			return (&pmap_devmap_table[i]);
   6942 	}
   6943 
   6944 	return (NULL);
   6945 }
   6946 
   6947 const struct pmap_devmap *
   6948 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6949 {
   6950 	int i;
   6951 
   6952 	if (pmap_devmap_table == NULL)
   6953 		return (NULL);
   6954 
   6955 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6956 		if (va >= pmap_devmap_table[i].pd_va &&
   6957 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6958 				     pmap_devmap_table[i].pd_size - 1)
   6959 			return (&pmap_devmap_table[i]);
   6960 	}
   6961 
   6962 	return (NULL);
   6963 }
   6964 
   6965 /********************** PTE initialization routines **************************/
   6966 
   6967 /*
   6968  * These routines are called when the CPU type is identified to set up
   6969  * the PTE prototypes, cache modes, etc.
   6970  *
   6971  * The variables are always here, just in case modules need to reference
   6972  * them (though, they shouldn't).
   6973  */
   6974 
   6975 pt_entry_t	pte_l1_s_cache_mode;
   6976 pt_entry_t	pte_l1_s_wc_mode;
   6977 pt_entry_t	pte_l1_s_cache_mode_pt;
   6978 pt_entry_t	pte_l1_s_cache_mask;
   6979 
   6980 pt_entry_t	pte_l2_l_cache_mode;
   6981 pt_entry_t	pte_l2_l_wc_mode;
   6982 pt_entry_t	pte_l2_l_cache_mode_pt;
   6983 pt_entry_t	pte_l2_l_cache_mask;
   6984 
   6985 pt_entry_t	pte_l2_s_cache_mode;
   6986 pt_entry_t	pte_l2_s_wc_mode;
   6987 pt_entry_t	pte_l2_s_cache_mode_pt;
   6988 pt_entry_t	pte_l2_s_cache_mask;
   6989 
   6990 pt_entry_t	pte_l1_s_prot_u;
   6991 pt_entry_t	pte_l1_s_prot_w;
   6992 pt_entry_t	pte_l1_s_prot_ro;
   6993 pt_entry_t	pte_l1_s_prot_mask;
   6994 
   6995 pt_entry_t	pte_l2_s_prot_u;
   6996 pt_entry_t	pte_l2_s_prot_w;
   6997 pt_entry_t	pte_l2_s_prot_ro;
   6998 pt_entry_t	pte_l2_s_prot_mask;
   6999 
   7000 pt_entry_t	pte_l2_l_prot_u;
   7001 pt_entry_t	pte_l2_l_prot_w;
   7002 pt_entry_t	pte_l2_l_prot_ro;
   7003 pt_entry_t	pte_l2_l_prot_mask;
   7004 
   7005 pt_entry_t	pte_l1_ss_proto;
   7006 pt_entry_t	pte_l1_s_proto;
   7007 pt_entry_t	pte_l1_c_proto;
   7008 pt_entry_t	pte_l2_s_proto;
   7009 
   7010 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   7011 void		(*pmap_zero_page_func)(paddr_t);
   7012 
   7013 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   7014 void
   7015 pmap_pte_init_generic(void)
   7016 {
   7017 
   7018 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7019 	pte_l1_s_wc_mode = L1_S_B;
   7020 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   7021 
   7022 	pte_l2_l_cache_mode = L2_B|L2_C;
   7023 	pte_l2_l_wc_mode = L2_B;
   7024 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   7025 
   7026 	pte_l2_s_cache_mode = L2_B|L2_C;
   7027 	pte_l2_s_wc_mode = L2_B;
   7028 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   7029 
   7030 	/*
   7031 	 * If we have a write-through cache, set B and C.  If
   7032 	 * we have a write-back cache, then we assume setting
   7033 	 * only C will make those pages write-through (except for those
   7034 	 * Cortex CPUs which can read the L1 caches).
   7035 	 */
   7036 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   7037 #if ARM_MMU_V7 > 0
   7038 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   7039 #endif
   7040 #if ARM_MMU_V6 > 0
   7041 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   7042 #endif
   7043 	    || false) {
   7044 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7045 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7046 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7047 	} else {
   7048 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   7049 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   7050 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   7051 	}
   7052 
   7053 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   7054 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   7055 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   7056 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   7057 
   7058 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7059 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7060 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7061 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7062 
   7063 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7064 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7065 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7066 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7067 
   7068 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   7069 	pte_l1_s_proto = L1_S_PROTO_generic;
   7070 	pte_l1_c_proto = L1_C_PROTO_generic;
   7071 	pte_l2_s_proto = L2_S_PROTO_generic;
   7072 
   7073 	pmap_copy_page_func = pmap_copy_page_generic;
   7074 	pmap_zero_page_func = pmap_zero_page_generic;
   7075 }
   7076 
   7077 #if defined(CPU_ARM8)
   7078 void
   7079 pmap_pte_init_arm8(void)
   7080 {
   7081 
   7082 	/*
   7083 	 * ARM8 is compatible with generic, but we need to use
   7084 	 * the page tables uncached.
   7085 	 */
   7086 	pmap_pte_init_generic();
   7087 
   7088 	pte_l1_s_cache_mode_pt = 0;
   7089 	pte_l2_l_cache_mode_pt = 0;
   7090 	pte_l2_s_cache_mode_pt = 0;
   7091 }
   7092 #endif /* CPU_ARM8 */
   7093 
   7094 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   7095 void
   7096 pmap_pte_init_arm9(void)
   7097 {
   7098 
   7099 	/*
   7100 	 * ARM9 is compatible with generic, but we want to use
   7101 	 * write-through caching for now.
   7102 	 */
   7103 	pmap_pte_init_generic();
   7104 
   7105 	pte_l1_s_cache_mode = L1_S_C;
   7106 	pte_l2_l_cache_mode = L2_C;
   7107 	pte_l2_s_cache_mode = L2_C;
   7108 
   7109 	pte_l1_s_wc_mode = L1_S_B;
   7110 	pte_l2_l_wc_mode = L2_B;
   7111 	pte_l2_s_wc_mode = L2_B;
   7112 
   7113 	pte_l1_s_cache_mode_pt = L1_S_C;
   7114 	pte_l2_l_cache_mode_pt = L2_C;
   7115 	pte_l2_s_cache_mode_pt = L2_C;
   7116 }
   7117 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   7118 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   7119 
   7120 #if defined(CPU_ARM10)
   7121 void
   7122 pmap_pte_init_arm10(void)
   7123 {
   7124 
   7125 	/*
   7126 	 * ARM10 is compatible with generic, but we want to use
   7127 	 * write-through caching for now.
   7128 	 */
   7129 	pmap_pte_init_generic();
   7130 
   7131 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   7132 	pte_l2_l_cache_mode = L2_B | L2_C;
   7133 	pte_l2_s_cache_mode = L2_B | L2_C;
   7134 
   7135 	pte_l1_s_cache_mode = L1_S_B;
   7136 	pte_l2_l_cache_mode = L2_B;
   7137 	pte_l2_s_cache_mode = L2_B;
   7138 
   7139 	pte_l1_s_cache_mode_pt = L1_S_C;
   7140 	pte_l2_l_cache_mode_pt = L2_C;
   7141 	pte_l2_s_cache_mode_pt = L2_C;
   7142 
   7143 }
   7144 #endif /* CPU_ARM10 */
   7145 
   7146 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   7147 void
   7148 pmap_pte_init_arm11(void)
   7149 {
   7150 
   7151 	/*
   7152 	 * ARM11 is compatible with generic, but we want to use
   7153 	 * write-through caching for now.
   7154 	 */
   7155 	pmap_pte_init_generic();
   7156 
   7157 	pte_l1_s_cache_mode = L1_S_C;
   7158 	pte_l2_l_cache_mode = L2_C;
   7159 	pte_l2_s_cache_mode = L2_C;
   7160 
   7161 	pte_l1_s_wc_mode = L1_S_B;
   7162 	pte_l2_l_wc_mode = L2_B;
   7163 	pte_l2_s_wc_mode = L2_B;
   7164 
   7165 	pte_l1_s_cache_mode_pt = L1_S_C;
   7166 	pte_l2_l_cache_mode_pt = L2_C;
   7167 	pte_l2_s_cache_mode_pt = L2_C;
   7168 }
   7169 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   7170 
   7171 #if ARM_MMU_SA1 == 1
   7172 void
   7173 pmap_pte_init_sa1(void)
   7174 {
   7175 
   7176 	/*
   7177 	 * The StrongARM SA-1 cache does not have a write-through
   7178 	 * mode.  So, do the generic initialization, then reset
   7179 	 * the page table cache mode to B=1,C=1, and note that
   7180 	 * the PTEs need to be sync'd.
   7181 	 */
   7182 	pmap_pte_init_generic();
   7183 
   7184 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7185 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7186 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7187 
   7188 	pmap_needs_pte_sync = 1;
   7189 }
   7190 #endif /* ARM_MMU_SA1 == 1*/
   7191 
   7192 #if ARM_MMU_XSCALE == 1
   7193 #if (ARM_NMMUS > 1)
   7194 static u_int xscale_use_minidata;
   7195 #endif
   7196 
   7197 void
   7198 pmap_pte_init_xscale(void)
   7199 {
   7200 	uint32_t auxctl;
   7201 	int write_through = 0;
   7202 
   7203 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7204 	pte_l1_s_wc_mode = L1_S_B;
   7205 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7206 
   7207 	pte_l2_l_cache_mode = L2_B|L2_C;
   7208 	pte_l2_l_wc_mode = L2_B;
   7209 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7210 
   7211 	pte_l2_s_cache_mode = L2_B|L2_C;
   7212 	pte_l2_s_wc_mode = L2_B;
   7213 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7214 
   7215 	pte_l1_s_cache_mode_pt = L1_S_C;
   7216 	pte_l2_l_cache_mode_pt = L2_C;
   7217 	pte_l2_s_cache_mode_pt = L2_C;
   7218 
   7219 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7220 	/*
   7221 	 * The XScale core has an enhanced mode where writes that
   7222 	 * miss the cache cause a cache line to be allocated.  This
   7223 	 * is significantly faster than the traditional, write-through
   7224 	 * behavior of this case.
   7225 	 */
   7226 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7227 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7228 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7229 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7230 
   7231 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7232 	/*
   7233 	 * Some versions of the XScale core have various bugs in
   7234 	 * their cache units, the work-around for which is to run
   7235 	 * the cache in write-through mode.  Unfortunately, this
   7236 	 * has a major (negative) impact on performance.  So, we
   7237 	 * go ahead and run fast-and-loose, in the hopes that we
   7238 	 * don't line up the planets in a way that will trip the
   7239 	 * bugs.
   7240 	 *
   7241 	 * However, we give you the option to be slow-but-correct.
   7242 	 */
   7243 	write_through = 1;
   7244 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7245 	/* force write back cache mode */
   7246 	write_through = 0;
   7247 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7248 	/*
   7249 	 * Intel PXA2[15]0 processors are known to have a bug in
   7250 	 * write-back cache on revision 4 and earlier (stepping
   7251 	 * A[01] and B[012]).  Fixed for C0 and later.
   7252 	 */
   7253 	{
   7254 		uint32_t id, type;
   7255 
   7256 		id = cpufunc_id();
   7257 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7258 
   7259 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7260 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7261 				/* write through for stepping A0-1 and B0-2 */
   7262 				write_through = 1;
   7263 			}
   7264 		}
   7265 	}
   7266 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7267 
   7268 	if (write_through) {
   7269 		pte_l1_s_cache_mode = L1_S_C;
   7270 		pte_l2_l_cache_mode = L2_C;
   7271 		pte_l2_s_cache_mode = L2_C;
   7272 	}
   7273 
   7274 #if (ARM_NMMUS > 1)
   7275 	xscale_use_minidata = 1;
   7276 #endif
   7277 
   7278 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7279 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7280 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7281 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7282 
   7283 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7284 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7285 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7286 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7287 
   7288 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7289 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7290 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7291 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7292 
   7293 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7294 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7295 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7296 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7297 
   7298 	pmap_copy_page_func = pmap_copy_page_xscale;
   7299 	pmap_zero_page_func = pmap_zero_page_xscale;
   7300 
   7301 	/*
   7302 	 * Disable ECC protection of page table access, for now.
   7303 	 */
   7304 	auxctl = armreg_auxctl_read();
   7305 	auxctl &= ~XSCALE_AUXCTL_P;
   7306 	armreg_auxctl_write(auxctl);
   7307 }
   7308 
   7309 /*
   7310  * xscale_setup_minidata:
   7311  *
   7312  *	Set up the mini-data cache clean area.  We require the
   7313  *	caller to allocate the right amount of physically and
   7314  *	virtually contiguous space.
   7315  */
   7316 void
   7317 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7318 {
   7319 	extern vaddr_t xscale_minidata_clean_addr;
   7320 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   7321 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7322 	vsize_t size;
   7323 	uint32_t auxctl;
   7324 
   7325 	xscale_minidata_clean_addr = va;
   7326 
   7327 	/* Round it to page size. */
   7328 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7329 
   7330 	for (; size != 0;
   7331 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7332 		const size_t l1slot = l1pte_index(va);
   7333 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7334 		if (ptep == NULL)
   7335 			panic("xscale_setup_minidata: can't find L2 table for "
   7336 			    "VA 0x%08lx", va);
   7337 
   7338 		ptep += l2pte_index(va);
   7339 		pt_entry_t opte = *ptep;
   7340 		l2pte_set(ptep,
   7341 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7342 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7343 	}
   7344 
   7345 	/*
   7346 	 * Configure the mini-data cache for write-back with
   7347 	 * read/write-allocate.
   7348 	 *
   7349 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7350 	 * make sure it contains no valid data!  In order to do that,
   7351 	 * we must issue a global data cache invalidate command!
   7352 	 *
   7353 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7354 	 * THIS IS VERY IMPORTANT!
   7355 	 */
   7356 
   7357 	/* Invalidate data and mini-data. */
   7358 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7359 	auxctl = armreg_auxctl_read();
   7360 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7361 	armreg_auxctl_write(auxctl);
   7362 }
   7363 
   7364 /*
   7365  * Change the PTEs for the specified kernel mappings such that they
   7366  * will use the mini data cache instead of the main data cache.
   7367  */
   7368 void
   7369 pmap_uarea(vaddr_t va)
   7370 {
   7371 	vaddr_t next_bucket, eva;
   7372 
   7373 #if (ARM_NMMUS > 1)
   7374 	if (xscale_use_minidata == 0)
   7375 		return;
   7376 #endif
   7377 
   7378 	eva = va + USPACE;
   7379 
   7380 	while (va < eva) {
   7381 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7382 		if (next_bucket > eva)
   7383 			next_bucket = eva;
   7384 
   7385 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7386 		KDASSERT(l2b != NULL);
   7387 
   7388 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7389 		pt_entry_t *ptep = sptep;
   7390 
   7391 		while (va < next_bucket) {
   7392 			const pt_entry_t opte = *ptep;
   7393 			if (!l2pte_minidata_p(opte)) {
   7394 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7395 				cpu_tlb_flushD_SE(va);
   7396 				l2pte_set(ptep, opte & ~L2_B, opte);
   7397 			}
   7398 			ptep += PAGE_SIZE / L2_S_SIZE;
   7399 			va += PAGE_SIZE;
   7400 		}
   7401 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7402 	}
   7403 	cpu_cpwait();
   7404 }
   7405 #endif /* ARM_MMU_XSCALE == 1 */
   7406 
   7407 
   7408 #if defined(CPU_ARM11MPCORE)
   7409 
   7410 void
   7411 pmap_pte_init_arm11mpcore(void)
   7412 {
   7413 
   7414 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   7415 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7416 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7417 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7418 	/* use extended small page (without APn, with TEX) */
   7419 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7420 #else
   7421 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7422 #endif
   7423 
   7424 	/* write-back, write-allocate */
   7425 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7426 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7427 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7428 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7429 #else
   7430 	/* no TEX. read-allocate */
   7431 	pte_l2_s_cache_mode = L2_C | L2_B;
   7432 #endif
   7433 	/*
   7434 	 * write-back, write-allocate for page tables.
   7435 	 */
   7436 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7437 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7438 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7439 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7440 #else
   7441 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7442 #endif
   7443 
   7444 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7445 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7446 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7447 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7448 
   7449 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7450 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7451 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7452 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7453 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7454 
   7455 #else
   7456 	/* with AP[0..3] */
   7457 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7458 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7459 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7460 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7461 #endif
   7462 
   7463 #ifdef	ARM11MPCORE_COMPAT_MMU
   7464 	/* with AP[0..3] */
   7465 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7466 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7467 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7468 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7469 
   7470 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7471 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7472 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7473 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7474 #else
   7475 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7476 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7477 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7478 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7479 
   7480 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7481 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7482 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7483 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7484 #endif
   7485 
   7486 	pmap_copy_page_func = pmap_copy_page_generic;
   7487 	pmap_zero_page_func = pmap_zero_page_generic;
   7488 	pmap_needs_pte_sync = 1;
   7489 }
   7490 #endif	/* CPU_ARM11MPCORE */
   7491 
   7492 
   7493 #if ARM_MMU_V7 == 1
   7494 void
   7495 pmap_pte_init_armv7(void)
   7496 {
   7497 	/*
   7498 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7499 	 * AP field is zero, that now means "no access" rather than
   7500 	 * read-only. The prototypes are a little different because of
   7501 	 * the XN bit.
   7502 	 */
   7503 	pmap_pte_init_generic();
   7504 
   7505 	pmap_needs_pte_sync = 1;
   7506 
   7507 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7508 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7509 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7510 
   7511 	/*
   7512 	 * If the core support coherent walk then updates to translation tables
   7513 	 * do not require a clean to the point of unification to ensure
   7514 	 * visibility by subsequent translation table walks.  That means we can
   7515 	 * map everything shareable and cached and the right thing will happen.
   7516 	 */
   7517         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7518 		pmap_needs_pte_sync = 0;
   7519 
   7520 		/*
   7521 		 * write-back, no write-allocate, shareable for normal pages.
   7522 		 */
   7523 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7524 		pte_l2_l_cache_mode |= L2_XS_S;
   7525 		pte_l2_s_cache_mode |= L2_XS_S;
   7526 	}
   7527 
   7528 	/*
   7529 	 * Page tables are just all other memory.  We can use write-back since
   7530 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7531 	 */
   7532 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7533 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7534 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7535 
   7536 	/*
   7537 	 * Check the Memory Model Features to see if this CPU supports
   7538 	 * the TLBIASID coproc op.
   7539 	 */
   7540 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7541 		arm_has_tlbiasid_p = true;
   7542 	} else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
   7543 		arm_has_tlbiasid_p = true;
   7544 	}
   7545 
   7546 	/*
   7547 	 * Check the MPIDR to see if this CPU supports MP extensions.
   7548 	 */
   7549 #ifdef MULTIPROCESSOR
   7550 	arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
   7551 #else
   7552 	arm_has_mpext_p = false;
   7553 #endif
   7554 
   7555 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7556 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7557 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7558 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7559 
   7560 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7561 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7562 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7563 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7564 
   7565 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7566 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7567 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7568 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7569 
   7570 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7571 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7572 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7573 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7574 
   7575 }
   7576 #endif /* ARM_MMU_V7 */
   7577 
   7578 /*
   7579  * return the PA of the current L1 table, for use when handling a crash dump
   7580  */
   7581 uint32_t
   7582 pmap_kernel_L1_addr(void)
   7583 {
   7584 #ifdef ARM_MMU_EXTENDED
   7585 	return pmap_kernel()->pm_l1_pa;
   7586 #else
   7587 	return pmap_kernel()->pm_l1->l1_physaddr;
   7588 #endif
   7589 }
   7590 
   7591 #if defined(DDB)
   7592 /*
   7593  * A couple of ddb-callable functions for dumping pmaps
   7594  */
   7595 void pmap_dump(pmap_t);
   7596 
   7597 static pt_entry_t ncptes[64];
   7598 static void pmap_dump_ncpg(pmap_t);
   7599 
   7600 void
   7601 pmap_dump(pmap_t pm)
   7602 {
   7603 	struct l2_dtable *l2;
   7604 	struct l2_bucket *l2b;
   7605 	pt_entry_t *ptep, pte;
   7606 	vaddr_t l2_va, l2b_va, va;
   7607 	int i, j, k, occ, rows = 0;
   7608 
   7609 	if (pm == pmap_kernel())
   7610 		printf("pmap_kernel (%p): ", pm);
   7611 	else
   7612 		printf("user pmap (%p): ", pm);
   7613 
   7614 #ifdef ARM_MMU_EXTENDED
   7615 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7616 #else
   7617 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7618 #endif
   7619 
   7620 	l2_va = 0;
   7621 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7622 		l2 = pm->pm_l2[i];
   7623 
   7624 		if (l2 == NULL || l2->l2_occupancy == 0)
   7625 			continue;
   7626 
   7627 		l2b_va = l2_va;
   7628 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7629 			l2b = &l2->l2_bucket[j];
   7630 
   7631 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7632 				continue;
   7633 
   7634 			ptep = l2b->l2b_kva;
   7635 
   7636 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7637 				;
   7638 
   7639 			k &= ~63;
   7640 			occ = l2b->l2b_occupancy;
   7641 			va = l2b_va + (k * 4096);
   7642 			for (; k < 256; k++, va += 0x1000) {
   7643 				char ch = ' ';
   7644 				if ((k % 64) == 0) {
   7645 					if ((rows % 8) == 0) {
   7646 						printf(
   7647 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7648 					}
   7649 					printf("%08lx: ", va);
   7650 				}
   7651 
   7652 				ncptes[k & 63] = 0;
   7653 				pte = ptep[k];
   7654 				if (pte == 0) {
   7655 					ch = '.';
   7656 				} else {
   7657 					occ--;
   7658 					switch (pte & 0x0c) {
   7659 					case 0x00:
   7660 						ch = 'D'; /* No cache No buff */
   7661 						break;
   7662 					case 0x04:
   7663 						ch = 'B'; /* No cache buff */
   7664 						break;
   7665 					case 0x08:
   7666 						if (pte & 0x40)
   7667 							ch = 'm';
   7668 						else
   7669 						   ch = 'C'; /* Cache No buff */
   7670 						break;
   7671 					case 0x0c:
   7672 						ch = 'F'; /* Cache Buff */
   7673 						break;
   7674 					}
   7675 
   7676 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   7677 						ch += 0x20;
   7678 
   7679 					if ((pte & 0xc) == 0)
   7680 						ncptes[k & 63] = pte;
   7681 				}
   7682 
   7683 				if ((k % 64) == 63) {
   7684 					rows++;
   7685 					printf("%c\n", ch);
   7686 					pmap_dump_ncpg(pm);
   7687 					if (occ == 0)
   7688 						break;
   7689 				} else
   7690 					printf("%c", ch);
   7691 			}
   7692 		}
   7693 	}
   7694 }
   7695 
   7696 static void
   7697 pmap_dump_ncpg(pmap_t pm)
   7698 {
   7699 	struct vm_page *pg;
   7700 	struct vm_page_md *md;
   7701 	struct pv_entry *pv;
   7702 	int i;
   7703 
   7704 	for (i = 0; i < 63; i++) {
   7705 		if (ncptes[i] == 0)
   7706 			continue;
   7707 
   7708 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   7709 		if (pg == NULL)
   7710 			continue;
   7711 		md = VM_PAGE_TO_MD(pg);
   7712 
   7713 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   7714 		    VM_PAGE_TO_PHYS(pg),
   7715 		    md->krw_mappings, md->kro_mappings,
   7716 		    md->urw_mappings, md->uro_mappings);
   7717 
   7718 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   7719 			printf("   %c va 0x%08lx, flags 0x%x\n",
   7720 			    (pm == pv->pv_pmap) ? '*' : ' ',
   7721 			    pv->pv_va, pv->pv_flags);
   7722 		}
   7723 	}
   7724 }
   7725 #endif
   7726 
   7727 #ifdef PMAP_STEAL_MEMORY
   7728 void
   7729 pmap_boot_pageadd(pv_addr_t *newpv)
   7730 {
   7731 	pv_addr_t *pv, *npv;
   7732 
   7733 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   7734 		if (newpv->pv_pa < pv->pv_va) {
   7735 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   7736 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   7737 				newpv->pv_size += pv->pv_size;
   7738 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   7739 			}
   7740 			pv = NULL;
   7741 		} else {
   7742 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   7743 			     pv = npv) {
   7744 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   7745 				KASSERT(pv->pv_pa < newpv->pv_pa);
   7746 				if (newpv->pv_pa > npv->pv_pa)
   7747 					continue;
   7748 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   7749 					pv->pv_size += newpv->pv_size;
   7750 					return;
   7751 				}
   7752 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   7753 					break;
   7754 				newpv->pv_size += npv->pv_size;
   7755 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7756 				SLIST_REMOVE_AFTER(newpv, pv_list);
   7757 				return;
   7758 			}
   7759 		}
   7760 	}
   7761 
   7762 	if (pv) {
   7763 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7764 	} else {
   7765 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   7766 	}
   7767 }
   7768 
   7769 void
   7770 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   7771 	pv_addr_t *rpv)
   7772 {
   7773 	pv_addr_t *pv, **pvp;
   7774 	struct vm_physseg *ps;
   7775 	size_t i;
   7776 
   7777 	KASSERT(amount & PGOFSET);
   7778 	KASSERT((mask & PGOFSET) == 0);
   7779 	KASSERT((match & PGOFSET) == 0);
   7780 	KASSERT(amount != 0);
   7781 
   7782 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7783 	     (pv = *pvp) != NULL;
   7784 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7785 		pv_addr_t *newpv;
   7786 		psize_t off;
   7787 		/*
   7788 		 * If this entry is too small to satify the request...
   7789 		 */
   7790 		KASSERT(pv->pv_size > 0);
   7791 		if (pv->pv_size < amount)
   7792 			continue;
   7793 
   7794 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   7795 			if (((pv->pv_pa + off) & mask) == match
   7796 			    && off + amount <= pv->pv_size)
   7797 				break;
   7798 		}
   7799 		if (off > mask)
   7800 			continue;
   7801 
   7802 		rpv->pv_va = pv->pv_va + off;
   7803 		rpv->pv_pa = pv->pv_pa + off;
   7804 		rpv->pv_size = amount;
   7805 		pv->pv_size -= amount;
   7806 		if (pv->pv_size == 0) {
   7807 			KASSERT(off == 0);
   7808 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7809 			*pvp = SLIST_NEXT(pv, pv_list);
   7810 		} else if (off == 0) {
   7811 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7812 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7813 			*newpv = *pv;
   7814 			newpv->pv_pa += amount;
   7815 			newpv->pv_va += amount;
   7816 			*pvp = newpv;
   7817 		} else if (off < pv->pv_size) {
   7818 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7819 			*newpv = *pv;
   7820 			newpv->pv_size -= off;
   7821 			newpv->pv_pa += off + amount;
   7822 			newpv->pv_va += off + amount;
   7823 
   7824 			SLIST_NEXT(pv, pv_list) = newpv;
   7825 			pv->pv_size = off;
   7826 		} else {
   7827 			KASSERT((vaddr_t) pv != rpv->pv_va);
   7828 		}
   7829 		memset((void *)rpv->pv_va, 0, amount);
   7830 		return;
   7831 	}
   7832 
   7833 	if (vm_nphysseg == 0)
   7834 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   7835 
   7836 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7837 	     (pv = *pvp) != NULL;
   7838 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7839 		if (SLIST_NEXT(pv, pv_list) == NULL)
   7840 			break;
   7841 	}
   7842 	KASSERT(mask == 0);
   7843 	for (i = 0; i < vm_nphysseg; i++) {
   7844 		ps = VM_PHYSMEM_PTR(i);
   7845 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   7846 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   7847 			rpv->pv_va = pv->pv_va;
   7848 			rpv->pv_pa = pv->pv_pa;
   7849 			rpv->pv_size = amount;
   7850 			*pvp = NULL;
   7851 			pmap_map_chunk(kernel_l1pt.pv_va,
   7852 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   7853 			     ptoa(ps->avail_start),
   7854 			     amount - pv->pv_size,
   7855 			     VM_PROT_READ|VM_PROT_WRITE,
   7856 			     PTE_CACHE);
   7857 			ps->avail_start += atop(amount - pv->pv_size);
   7858 			/*
   7859 			 * If we consumed the entire physseg, remove it.
   7860 			 */
   7861 			if (ps->avail_start == ps->avail_end) {
   7862 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   7863 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   7864 			}
   7865 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   7866 			return;
   7867 		}
   7868 	}
   7869 
   7870 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   7871 }
   7872 
   7873 vaddr_t
   7874 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   7875 {
   7876 	pv_addr_t pv;
   7877 
   7878 	pmap_boot_pagealloc(size, 0, 0, &pv);
   7879 
   7880 	return pv.pv_va;
   7881 }
   7882 #endif /* PMAP_STEAL_MEMORY */
   7883 
   7884 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   7885 {
   7886 	sysctl_createv(clog, 0, NULL, NULL,
   7887 			CTLFLAG_PERMANENT,
   7888 			CTLTYPE_NODE, "machdep", NULL,
   7889 			NULL, 0, NULL, 0,
   7890 			CTL_MACHDEP, CTL_EOL);
   7891 
   7892 	sysctl_createv(clog, 0, NULL, NULL,
   7893 			CTLFLAG_PERMANENT,
   7894 			CTLTYPE_INT, "kmpages",
   7895 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   7896 			NULL, 0, &pmap_kmpages, 0,
   7897 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   7898 }
   7899 
   7900 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   7901 struct vm_page *
   7902 arm_pmap_alloc_poolpage(int flags)
   7903 {
   7904 	/*
   7905 	 * On some systems, only some pages may be "coherent" for dma and we
   7906 	 * want to prefer those for pool pages (think mbufs) but fallback to
   7907 	 * any page if none is available.
   7908 	 */
   7909 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   7910 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   7911 		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
   7912 	}
   7913 
   7914 	return uvm_pagealloc(NULL, 0, NULL, flags);
   7915 }
   7916 #endif
   7917 
   7918 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   7919 void
   7920 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   7921 {
   7922         /* nothing */
   7923 }
   7924 
   7925 int
   7926 pic_ipi_shootdown(void *arg)
   7927 {
   7928 #if PMAP_TLB_NEED_SHOOTDOWN
   7929 	pmap_tlb_shootdown_process();
   7930 #endif
   7931 	return 1;
   7932 }
   7933 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   7934 
   7935 
   7936 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   7937 vaddr_t
   7938 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   7939 {
   7940 	bool ok = false;
   7941 	if (physical_start <= pa && pa < physical_end) {
   7942 #ifdef KERNEL_BASE_VOFFSET
   7943 		const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
   7944 #else
   7945 		const vaddr_t newva = KERNEL_BASE + pa - physical_start;
   7946 #endif
   7947 #ifdef ARM_MMU_EXTENDED
   7948 		if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
   7949 #endif
   7950 			va = newva;
   7951 			ok = true;
   7952 #ifdef ARM_MMU_EXTENDED
   7953 		}
   7954 #endif
   7955 	}
   7956 	KASSERT(ok_p);
   7957 	*ok_p = ok;
   7958 	return va;
   7959 }
   7960 
   7961 vaddr_t
   7962 pmap_map_poolpage(paddr_t pa)
   7963 {
   7964 	bool ok __diagused;
   7965 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   7966 	KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
   7967 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   7968 	if (arm_cache_prefer_mask != 0) {
   7969 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   7970 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   7971 		pmap_acquire_page_lock(md);
   7972 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   7973 		pmap_release_page_lock(md);
   7974 	}
   7975 #endif
   7976 	return va;
   7977 }
   7978 
   7979 paddr_t
   7980 pmap_unmap_poolpage(vaddr_t va)
   7981 {
   7982 	KASSERT(va >= KERNEL_BASE);
   7983 #ifdef PMAP_CACHE_VIVT
   7984 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   7985 #endif
   7986 #if defined(KERNEL_BASE_VOFFSET)
   7987         return va - KERNEL_BASE_VOFFSET;
   7988 #else
   7989         return va - KERNEL_BASE + physical_start;
   7990 #endif
   7991 }
   7992 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   7993