pmap.c revision 1.365 1 /* $NetBSD: pmap.c,v 1.365 2018/04/01 04:35:03 ryo Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_arm_debug.h"
190 #include "opt_cpuoptions.h"
191 #include "opt_pmap_debug.h"
192 #include "opt_ddb.h"
193 #include "opt_lockdebug.h"
194 #include "opt_multiprocessor.h"
195
196 #ifdef MULTIPROCESSOR
197 #define _INTR_PRIVATE
198 #endif
199
200 #include <sys/param.h>
201 #include <sys/types.h>
202 #include <sys/kernel.h>
203 #include <sys/systm.h>
204 #include <sys/proc.h>
205 #include <sys/intr.h>
206 #include <sys/pool.h>
207 #include <sys/kmem.h>
208 #include <sys/cdefs.h>
209 #include <sys/cpu.h>
210 #include <sys/sysctl.h>
211 #include <sys/bus.h>
212 #include <sys/atomic.h>
213 #include <sys/kernhist.h>
214
215 #include <uvm/uvm.h>
216 #include <uvm/pmap/pmap_pvt.h>
217
218 #include <arm/locore.h>
219
220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.365 2018/04/01 04:35:03 ryo Exp $");
221
222 //#define PMAP_DEBUG
223 #ifdef PMAP_DEBUG
224
225 /* XXX need to get rid of all refs to this */
226 int pmap_debug_level = 0;
227
228 /*
229 * for switching to potentially finer grained debugging
230 */
231 #define PDB_FOLLOW 0x0001
232 #define PDB_INIT 0x0002
233 #define PDB_ENTER 0x0004
234 #define PDB_REMOVE 0x0008
235 #define PDB_CREATE 0x0010
236 #define PDB_PTPAGE 0x0020
237 #define PDB_GROWKERN 0x0040
238 #define PDB_BITS 0x0080
239 #define PDB_COLLECT 0x0100
240 #define PDB_PROTECT 0x0200
241 #define PDB_MAP_L1 0x0400
242 #define PDB_BOOTSTRAP 0x1000
243 #define PDB_PARANOIA 0x2000
244 #define PDB_WIRING 0x4000
245 #define PDB_PVDUMP 0x8000
246 #define PDB_VAC 0x10000
247 #define PDB_KENTER 0x20000
248 #define PDB_KREMOVE 0x40000
249 #define PDB_EXEC 0x80000
250
251 int debugmap = 1;
252 int pmapdebug = 0;
253 #define NPDEBUG(_lev_,_stat_) \
254 if (pmapdebug & (_lev_)) \
255 ((_stat_))
256
257 #else /* PMAP_DEBUG */
258 #define NPDEBUG(_lev_,_stat_) /* Nothing */
259 #endif /* PMAP_DEBUG */
260
261 /*
262 * pmap_kernel() points here
263 */
264 static struct pmap kernel_pmap_store = {
265 #ifndef ARM_MMU_EXTENDED
266 .pm_activated = true,
267 .pm_domain = PMAP_DOMAIN_KERNEL,
268 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
269 #endif
270 };
271 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
272 #undef pmap_kernel
273 #define pmap_kernel() (&kernel_pmap_store)
274 #ifdef PMAP_NEED_ALLOC_POOLPAGE
275 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
276 #endif
277
278 /*
279 * Pool and cache that pmap structures are allocated from.
280 * We use a cache to avoid clearing the pm_l2[] array (1KB)
281 * in pmap_create().
282 */
283 static struct pool_cache pmap_cache;
284
285 /*
286 * Pool of PV structures
287 */
288 static struct pool pmap_pv_pool;
289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
290 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
291 static struct pool_allocator pmap_bootstrap_pv_allocator = {
292 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
293 };
294
295 /*
296 * Pool and cache of l2_dtable structures.
297 * We use a cache to avoid clearing the structures when they're
298 * allocated. (196 bytes)
299 */
300 static struct pool_cache pmap_l2dtable_cache;
301 static vaddr_t pmap_kernel_l2dtable_kva;
302
303 /*
304 * Pool and cache of L2 page descriptors.
305 * We use a cache to avoid clearing the descriptor table
306 * when they're allocated. (1KB)
307 */
308 static struct pool_cache pmap_l2ptp_cache;
309 static vaddr_t pmap_kernel_l2ptp_kva;
310 static paddr_t pmap_kernel_l2ptp_phys;
311
312 #ifdef PMAPCOUNTERS
313 #define PMAP_EVCNT_INITIALIZER(name) \
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
315
316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
317 static struct evcnt pmap_ev_vac_clean_one =
318 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
319 static struct evcnt pmap_ev_vac_flush_one =
320 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
321 static struct evcnt pmap_ev_vac_flush_lots =
322 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
323 static struct evcnt pmap_ev_vac_flush_lots2 =
324 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
329
330 static struct evcnt pmap_ev_vac_color_new =
331 PMAP_EVCNT_INITIALIZER("new page color");
332 static struct evcnt pmap_ev_vac_color_reuse =
333 PMAP_EVCNT_INITIALIZER("ok first page color");
334 static struct evcnt pmap_ev_vac_color_ok =
335 PMAP_EVCNT_INITIALIZER("ok page color");
336 static struct evcnt pmap_ev_vac_color_blind =
337 PMAP_EVCNT_INITIALIZER("blind page color");
338 static struct evcnt pmap_ev_vac_color_change =
339 PMAP_EVCNT_INITIALIZER("change page color");
340 static struct evcnt pmap_ev_vac_color_erase =
341 PMAP_EVCNT_INITIALIZER("erase page color");
342 static struct evcnt pmap_ev_vac_color_none =
343 PMAP_EVCNT_INITIALIZER("no page color");
344 static struct evcnt pmap_ev_vac_color_restore =
345 PMAP_EVCNT_INITIALIZER("restore page color");
346
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
355 #endif
356
357 static struct evcnt pmap_ev_mappings =
358 PMAP_EVCNT_INITIALIZER("pages mapped");
359 static struct evcnt pmap_ev_unmappings =
360 PMAP_EVCNT_INITIALIZER("pages unmapped");
361 static struct evcnt pmap_ev_remappings =
362 PMAP_EVCNT_INITIALIZER("pages remapped");
363
364 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
366 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
367
368 static struct evcnt pmap_ev_kernel_mappings =
369 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
370 static struct evcnt pmap_ev_kernel_unmappings =
371 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
372 static struct evcnt pmap_ev_kernel_remappings =
373 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
374
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
378
379 static struct evcnt pmap_ev_kenter_mappings =
380 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
381 static struct evcnt pmap_ev_kenter_unmappings =
382 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
383 static struct evcnt pmap_ev_kenter_remappings =
384 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
385 static struct evcnt pmap_ev_pt_mappings =
386 PMAP_EVCNT_INITIALIZER("page table pages mapped");
387
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
392
393 static struct evcnt pmap_ev_fixup_mod =
394 PMAP_EVCNT_INITIALIZER("page modification emulations");
395 static struct evcnt pmap_ev_fixup_ref =
396 PMAP_EVCNT_INITIALIZER("page reference emulations");
397 static struct evcnt pmap_ev_fixup_exec =
398 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
399 static struct evcnt pmap_ev_fixup_pdes =
400 PMAP_EVCNT_INITIALIZER("pdes fixed up");
401 #ifndef ARM_MMU_EXTENDED
402 static struct evcnt pmap_ev_fixup_ptesync =
403 PMAP_EVCNT_INITIALIZER("ptesync fixed");
404 #endif
405
406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
410 #ifndef ARM_MMU_EXTENDED
411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
412 #endif
413
414 #ifdef PMAP_CACHE_VIPT
415 static struct evcnt pmap_ev_exec_mappings =
416 PMAP_EVCNT_INITIALIZER("exec pages mapped");
417 static struct evcnt pmap_ev_exec_cached =
418 PMAP_EVCNT_INITIALIZER("exec pages cached");
419
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
422
423 static struct evcnt pmap_ev_exec_synced =
424 PMAP_EVCNT_INITIALIZER("exec pages synced");
425 static struct evcnt pmap_ev_exec_synced_map =
426 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
427 static struct evcnt pmap_ev_exec_synced_unmap =
428 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
429 static struct evcnt pmap_ev_exec_synced_remap =
430 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
431 static struct evcnt pmap_ev_exec_synced_clearbit =
432 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
433 #ifndef ARM_MMU_EXTENDED
434 static struct evcnt pmap_ev_exec_synced_kremove =
435 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
436 #endif
437
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
440 #ifndef ARM_MMU_EXTENDED
441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
445 #endif
446
447 static struct evcnt pmap_ev_exec_discarded_unmap =
448 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
449 static struct evcnt pmap_ev_exec_discarded_zero =
450 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
451 static struct evcnt pmap_ev_exec_discarded_copy =
452 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
453 static struct evcnt pmap_ev_exec_discarded_page_protect =
454 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
455 static struct evcnt pmap_ev_exec_discarded_clearbit =
456 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
457 static struct evcnt pmap_ev_exec_discarded_kremove =
458 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
459 #ifdef ARM_MMU_EXTENDED
460 static struct evcnt pmap_ev_exec_discarded_modfixup =
461 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
462 #endif
463
464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
470 #ifdef ARM_MMU_EXTENDED
471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
472 #endif
473 #endif /* PMAP_CACHE_VIPT */
474
475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
478
479 EVCNT_ATTACH_STATIC(pmap_ev_updates);
480 EVCNT_ATTACH_STATIC(pmap_ev_collects);
481 EVCNT_ATTACH_STATIC(pmap_ev_activations);
482
483 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
484 #else
485 #define PMAPCOUNT(x) ((void)0)
486 #endif
487
488 #ifdef ARM_MMU_EXTENDED
489 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
490 void pmap_md_pdetab_deactivate(pmap_t pm);
491 #endif
492
493 /*
494 * pmap copy/zero page, and mem(5) hook point
495 */
496 static pt_entry_t *csrc_pte, *cdst_pte;
497 static vaddr_t csrcp, cdstp;
498 #ifdef MULTIPROCESSOR
499 static size_t cnptes;
500 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
501 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
502 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
503 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
504 #else
505 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
506 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
507 #define cpu_csrcp(o) (csrcp + (o))
508 #define cpu_cdstp(o) (cdstp + (o))
509 #endif
510 vaddr_t memhook; /* used by mem.c & others */
511 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
512 kmutex_t pmap_lock __cacheline_aligned;
513 extern void *msgbufaddr;
514 int pmap_kmpages;
515 /*
516 * Flag to indicate if pmap_init() has done its thing
517 */
518 bool pmap_initialized;
519
520 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
521 /*
522 * Virtual end of direct-mapped memory
523 */
524 vaddr_t pmap_directlimit;
525 #endif
526
527 /*
528 * Misc. locking data structures
529 */
530
531 static inline void
532 pmap_acquire_pmap_lock(pmap_t pm)
533 {
534 if (pm == pmap_kernel()) {
535 #ifdef MULTIPROCESSOR
536 KERNEL_LOCK(1, NULL);
537 #endif
538 } else {
539 mutex_enter(pm->pm_lock);
540 }
541 }
542
543 static inline void
544 pmap_release_pmap_lock(pmap_t pm)
545 {
546 if (pm == pmap_kernel()) {
547 #ifdef MULTIPROCESSOR
548 KERNEL_UNLOCK_ONE(NULL);
549 #endif
550 } else {
551 mutex_exit(pm->pm_lock);
552 }
553 }
554
555 static inline void
556 pmap_acquire_page_lock(struct vm_page_md *md)
557 {
558 mutex_enter(&pmap_lock);
559 }
560
561 static inline void
562 pmap_release_page_lock(struct vm_page_md *md)
563 {
564 mutex_exit(&pmap_lock);
565 }
566
567 #ifdef DIAGNOSTIC
568 static inline int
569 pmap_page_locked_p(struct vm_page_md *md)
570 {
571 return mutex_owned(&pmap_lock);
572 }
573 #endif
574
575
576 /*
577 * Metadata for L1 translation tables.
578 */
579 #ifndef ARM_MMU_EXTENDED
580 struct l1_ttable {
581 /* Entry on the L1 Table list */
582 SLIST_ENTRY(l1_ttable) l1_link;
583
584 /* Entry on the L1 Least Recently Used list */
585 TAILQ_ENTRY(l1_ttable) l1_lru;
586
587 /* Track how many domains are allocated from this L1 */
588 volatile u_int l1_domain_use_count;
589
590 /*
591 * A free-list of domain numbers for this L1.
592 * We avoid using ffs() and a bitmap to track domains since ffs()
593 * is slow on ARM.
594 */
595 uint8_t l1_domain_first;
596 uint8_t l1_domain_free[PMAP_DOMAINS];
597
598 /* Physical address of this L1 page table */
599 paddr_t l1_physaddr;
600
601 /* KVA of this L1 page table */
602 pd_entry_t *l1_kva;
603 };
604
605 /*
606 * L1 Page Tables are tracked using a Least Recently Used list.
607 * - New L1s are allocated from the HEAD.
608 * - Freed L1s are added to the TAIl.
609 * - Recently accessed L1s (where an 'access' is some change to one of
610 * the userland pmaps which owns this L1) are moved to the TAIL.
611 */
612 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
613 static kmutex_t l1_lru_lock __cacheline_aligned;
614
615 /*
616 * A list of all L1 tables
617 */
618 static SLIST_HEAD(, l1_ttable) l1_list;
619 #endif /* ARM_MMU_EXTENDED */
620
621 /*
622 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
623 *
624 * This is normally 16MB worth L2 page descriptors for any given pmap.
625 * Reference counts are maintained for L2 descriptors so they can be
626 * freed when empty.
627 */
628 struct l2_bucket {
629 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
630 paddr_t l2b_pa; /* Physical address of same */
631 u_short l2b_l1slot; /* This L2 table's L1 index */
632 u_short l2b_occupancy; /* How many active descriptors */
633 };
634
635 struct l2_dtable {
636 /* The number of L2 page descriptors allocated to this l2_dtable */
637 u_int l2_occupancy;
638
639 /* List of L2 page descriptors */
640 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
641 };
642
643 /*
644 * Given an L1 table index, calculate the corresponding l2_dtable index
645 * and bucket index within the l2_dtable.
646 */
647 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
648 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
649 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
650 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
651 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
652
653 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
654 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
655
656 /*
657 * Given a virtual address, this macro returns the
658 * virtual address required to drop into the next L2 bucket.
659 */
660 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
661
662 /*
663 * L2 allocation.
664 */
665 #define pmap_alloc_l2_dtable() \
666 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
667 #define pmap_free_l2_dtable(l2) \
668 pool_cache_put(&pmap_l2dtable_cache, (l2))
669 #define pmap_alloc_l2_ptp(pap) \
670 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
671 PR_NOWAIT, (pap)))
672
673 /*
674 * We try to map the page tables write-through, if possible. However, not
675 * all CPUs have a write-through cache mode, so on those we have to sync
676 * the cache when we frob page tables.
677 *
678 * We try to evaluate this at compile time, if possible. However, it's
679 * not always possible to do that, hence this run-time var.
680 */
681 int pmap_needs_pte_sync;
682
683 /*
684 * Real definition of pv_entry.
685 */
686 struct pv_entry {
687 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
688 pmap_t pv_pmap; /* pmap where mapping lies */
689 vaddr_t pv_va; /* virtual address for mapping */
690 u_int pv_flags; /* flags */
691 };
692
693 /*
694 * Macros to determine if a mapping might be resident in the
695 * instruction/data cache and/or TLB
696 */
697 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
698 /*
699 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
700 * there are no explicit accesses, so there may be always be TLB entries to
701 * flush. If we used ASIDs then this would not be a problem.
702 */
703 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
704 #define PV_BEEN_REFD(f) (true)
705 #else
706 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
707 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
708 #endif
709 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
710 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
711 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
712
713 /*
714 * Local prototypes
715 */
716 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
717 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
718 pt_entry_t **);
719 static bool pmap_is_current(pmap_t) __unused;
720 static bool pmap_is_cached(pmap_t);
721 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
722 pmap_t, vaddr_t, u_int);
723 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
724 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
725 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
726 u_int, u_int);
727
728 static void pmap_pinit(pmap_t);
729 static int pmap_pmap_ctor(void *, void *, int);
730
731 static void pmap_alloc_l1(pmap_t);
732 static void pmap_free_l1(pmap_t);
733 #ifndef ARM_MMU_EXTENDED
734 static void pmap_use_l1(pmap_t);
735 #endif
736
737 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
738 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
739 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
740 static int pmap_l2ptp_ctor(void *, void *, int);
741 static int pmap_l2dtable_ctor(void *, void *, int);
742
743 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
744 #ifdef PMAP_CACHE_VIVT
745 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
746 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
747 #endif
748
749 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
750 #ifdef PMAP_CACHE_VIVT
751 static bool pmap_clean_page(struct vm_page_md *, bool);
752 #endif
753 #ifdef PMAP_CACHE_VIPT
754 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
755 enum pmap_flush_op {
756 PMAP_FLUSH_PRIMARY,
757 PMAP_FLUSH_SECONDARY,
758 PMAP_CLEAN_PRIMARY
759 };
760 #ifndef ARM_MMU_EXTENDED
761 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
762 #endif
763 #endif
764 static void pmap_page_remove(struct vm_page_md *, paddr_t);
765 static void pmap_pv_remove(paddr_t);
766
767 #ifndef ARM_MMU_EXTENDED
768 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
769 #endif
770 static vaddr_t kernel_pt_lookup(paddr_t);
771
772
773 /*
774 * Misc variables
775 */
776 vaddr_t virtual_avail;
777 vaddr_t virtual_end;
778 vaddr_t pmap_curmaxkvaddr;
779
780 paddr_t avail_start;
781 paddr_t avail_end;
782
783 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
784 pv_addr_t kernelpages;
785 pv_addr_t kernel_l1pt;
786 pv_addr_t systempage;
787
788 /* Function to set the debug level of the pmap code */
789
790 #ifdef PMAP_DEBUG
791 void
792 pmap_debug(int level)
793 {
794 pmap_debug_level = level;
795 printf("pmap_debug: level=%d\n", pmap_debug_level);
796 }
797 #endif /* PMAP_DEBUG */
798
799 #ifdef PMAP_CACHE_VIPT
800 #define PMAP_VALIDATE_MD_PAGE(md) \
801 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
802 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
803 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
804 #endif /* PMAP_CACHE_VIPT */
805 /*
806 * A bunch of routines to conditionally flush the caches/TLB depending
807 * on whether the specified pmap actually needs to be flushed at any
808 * given time.
809 */
810 static inline void
811 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
812 {
813 #ifdef ARM_MMU_EXTENDED
814 pmap_tlb_invalidate_addr(pm, va);
815 #else
816 if (pm->pm_cstate.cs_tlb_id != 0) {
817 if (PV_BEEN_EXECD(flags)) {
818 cpu_tlb_flushID_SE(va);
819 } else if (PV_BEEN_REFD(flags)) {
820 cpu_tlb_flushD_SE(va);
821 }
822 }
823 #endif /* ARM_MMU_EXTENDED */
824 }
825
826 #ifndef ARM_MMU_EXTENDED
827 static inline void
828 pmap_tlb_flushID(pmap_t pm)
829 {
830 if (pm->pm_cstate.cs_tlb_id) {
831 cpu_tlb_flushID();
832 #if ARM_MMU_V7 == 0
833 /*
834 * Speculative loads by Cortex cores can cause TLB entries to
835 * be filled even if there are no explicit accesses, so there
836 * may be always be TLB entries to flush. If we used ASIDs
837 * then it would not be a problem.
838 * This is not true for other CPUs.
839 */
840 pm->pm_cstate.cs_tlb = 0;
841 #endif /* ARM_MMU_V7 */
842 }
843 }
844
845 static inline void
846 pmap_tlb_flushD(pmap_t pm)
847 {
848 if (pm->pm_cstate.cs_tlb_d) {
849 cpu_tlb_flushD();
850 #if ARM_MMU_V7 == 0
851 /*
852 * Speculative loads by Cortex cores can cause TLB entries to
853 * be filled even if there are no explicit accesses, so there
854 * may be always be TLB entries to flush. If we used ASIDs
855 * then it would not be a problem.
856 * This is not true for other CPUs.
857 */
858 pm->pm_cstate.cs_tlb_d = 0;
859 #endif /* ARM_MMU_V7 */
860 }
861 }
862 #endif /* ARM_MMU_EXTENDED */
863
864 #ifdef PMAP_CACHE_VIVT
865 static inline void
866 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
867 {
868 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
869 cpu_idcache_wbinv_range(va, PAGE_SIZE);
870 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
871 if (do_inv) {
872 if (flags & PVF_WRITE)
873 cpu_dcache_wbinv_range(va, PAGE_SIZE);
874 else
875 cpu_dcache_inv_range(va, PAGE_SIZE);
876 } else if (flags & PVF_WRITE) {
877 cpu_dcache_wb_range(va, PAGE_SIZE);
878 }
879 }
880 }
881
882 static inline void
883 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
884 {
885 if (PV_BEEN_EXECD(flags)) {
886 if (pm->pm_cstate.cs_cache_id) {
887 cpu_idcache_wbinv_all();
888 pm->pm_cstate.cs_cache = 0;
889 }
890 } else if (pm->pm_cstate.cs_cache_d) {
891 cpu_dcache_wbinv_all();
892 pm->pm_cstate.cs_cache_d = 0;
893 }
894 }
895 #endif /* PMAP_CACHE_VIVT */
896
897 static inline uint8_t
898 pmap_domain(pmap_t pm)
899 {
900 #ifdef ARM_MMU_EXTENDED
901 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
902 #else
903 return pm->pm_domain;
904 #endif
905 }
906
907 static inline pd_entry_t *
908 pmap_l1_kva(pmap_t pm)
909 {
910 #ifdef ARM_MMU_EXTENDED
911 return pm->pm_l1;
912 #else
913 return pm->pm_l1->l1_kva;
914 #endif
915 }
916
917 static inline bool
918 pmap_is_current(pmap_t pm)
919 {
920 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
921 return true;
922
923 return false;
924 }
925
926 static inline bool
927 pmap_is_cached(pmap_t pm)
928 {
929 #ifdef ARM_MMU_EXTENDED
930 if (pm == pmap_kernel())
931 return true;
932 #ifdef MULTIPROCESSOR
933 // Is this pmap active on any CPU?
934 if (!kcpuset_iszero(pm->pm_active))
935 return true;
936 #else
937 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
938 // Is this pmap active?
939 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
940 return true;
941 #endif
942 #else
943 struct cpu_info * const ci = curcpu();
944 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
945 || ci->ci_pmap_lastuser == pm)
946 return true;
947 #endif /* ARM_MMU_EXTENDED */
948
949 return false;
950 }
951
952 /*
953 * PTE_SYNC_CURRENT:
954 *
955 * Make sure the pte is written out to RAM.
956 * We need to do this for one of two cases:
957 * - We're dealing with the kernel pmap
958 * - There is no pmap active in the cache/tlb.
959 * - The specified pmap is 'active' in the cache/tlb.
960 */
961
962 #ifdef PMAP_INCLUDE_PTE_SYNC
963 static inline void
964 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
965 {
966 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
967 PTE_SYNC(ptep);
968 arm_dsb();
969 }
970
971 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
972 #else
973 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
974 #endif
975
976 /*
977 * main pv_entry manipulation functions:
978 * pmap_enter_pv: enter a mapping onto a vm_page list
979 * pmap_remove_pv: remove a mapping from a vm_page list
980 *
981 * NOTE: pmap_enter_pv expects to lock the pvh itself
982 * pmap_remove_pv expects the caller to lock the pvh before calling
983 */
984
985 /*
986 * pmap_enter_pv: enter a mapping onto a vm_page lst
987 *
988 * => caller should hold the proper lock on pmap_main_lock
989 * => caller should have pmap locked
990 * => we will gain the lock on the vm_page and allocate the new pv_entry
991 * => caller should adjust ptp's wire_count before calling
992 * => caller should not adjust pmap's wire_count
993 */
994 static void
995 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
996 vaddr_t va, u_int flags)
997 {
998 struct pv_entry **pvp;
999
1000 NPDEBUG(PDB_PVDUMP,
1001 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
1002
1003 pv->pv_pmap = pm;
1004 pv->pv_va = va;
1005 pv->pv_flags = flags;
1006
1007 pvp = &SLIST_FIRST(&md->pvh_list);
1008 #ifdef PMAP_CACHE_VIPT
1009 /*
1010 * Insert unmanaged entries, writeable first, at the head of
1011 * the pv list.
1012 */
1013 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1014 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1015 pvp = &SLIST_NEXT(*pvp, pv_link);
1016 }
1017 if (!PV_IS_WRITE_P(flags)) {
1018 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1019 pvp = &SLIST_NEXT(*pvp, pv_link);
1020 }
1021 #endif
1022 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1023 *pvp = pv; /* ... locked list */
1024 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1025 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1026 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1027 md->pvh_attrs |= PVF_KMOD;
1028 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1029 md->pvh_attrs |= PVF_DIRTY;
1030 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1031 #endif
1032 if (pm == pmap_kernel()) {
1033 PMAPCOUNT(kernel_mappings);
1034 if (flags & PVF_WRITE)
1035 md->krw_mappings++;
1036 else
1037 md->kro_mappings++;
1038 } else {
1039 if (flags & PVF_WRITE)
1040 md->urw_mappings++;
1041 else
1042 md->uro_mappings++;
1043 }
1044
1045 #ifdef PMAP_CACHE_VIPT
1046 #ifndef ARM_MMU_EXTENDED
1047 /*
1048 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1049 * do it here as well to keep the mappings & KVF_WRITE consistent.
1050 */
1051 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1052 md->pvh_attrs |= PVF_WRITE;
1053 }
1054 #endif
1055 /*
1056 * If this is an exec mapping and its the first exec mapping
1057 * for this page, make sure to sync the I-cache.
1058 */
1059 if (PV_IS_EXEC_P(flags)) {
1060 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1061 pmap_syncicache_page(md, pa);
1062 PMAPCOUNT(exec_synced_map);
1063 }
1064 PMAPCOUNT(exec_mappings);
1065 }
1066 #endif
1067
1068 PMAPCOUNT(mappings);
1069
1070 if (pv->pv_flags & PVF_WIRED)
1071 ++pm->pm_stats.wired_count;
1072 }
1073
1074 /*
1075 *
1076 * pmap_find_pv: Find a pv entry
1077 *
1078 * => caller should hold lock on vm_page
1079 */
1080 static inline struct pv_entry *
1081 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1082 {
1083 struct pv_entry *pv;
1084
1085 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1086 if (pm == pv->pv_pmap && va == pv->pv_va)
1087 break;
1088 }
1089
1090 return (pv);
1091 }
1092
1093 /*
1094 * pmap_remove_pv: try to remove a mapping from a pv_list
1095 *
1096 * => caller should hold proper lock on pmap_main_lock
1097 * => pmap should be locked
1098 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1099 * => caller should adjust ptp's wire_count and free PTP if needed
1100 * => caller should NOT adjust pmap's wire_count
1101 * => we return the removed pv
1102 */
1103 static struct pv_entry *
1104 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1105 {
1106 struct pv_entry *pv, **prevptr;
1107
1108 NPDEBUG(PDB_PVDUMP,
1109 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1110
1111 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1112 pv = *prevptr;
1113
1114 while (pv) {
1115 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1116 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1117 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1118 if (pv->pv_flags & PVF_WIRED) {
1119 --pm->pm_stats.wired_count;
1120 }
1121 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1122 if (pm == pmap_kernel()) {
1123 PMAPCOUNT(kernel_unmappings);
1124 if (pv->pv_flags & PVF_WRITE)
1125 md->krw_mappings--;
1126 else
1127 md->kro_mappings--;
1128 } else {
1129 if (pv->pv_flags & PVF_WRITE)
1130 md->urw_mappings--;
1131 else
1132 md->uro_mappings--;
1133 }
1134
1135 PMAPCOUNT(unmappings);
1136 #ifdef PMAP_CACHE_VIPT
1137 /*
1138 * If this page has had an exec mapping, then if
1139 * this was the last mapping, discard the contents,
1140 * otherwise sync the i-cache for this page.
1141 */
1142 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1143 if (SLIST_EMPTY(&md->pvh_list)) {
1144 md->pvh_attrs &= ~PVF_EXEC;
1145 PMAPCOUNT(exec_discarded_unmap);
1146 } else if (pv->pv_flags & PVF_WRITE) {
1147 pmap_syncicache_page(md, pa);
1148 PMAPCOUNT(exec_synced_unmap);
1149 }
1150 }
1151 #endif /* PMAP_CACHE_VIPT */
1152 break;
1153 }
1154 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1155 pv = *prevptr; /* advance */
1156 }
1157
1158 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1159 /*
1160 * If we no longer have a WRITEABLE KENTRY at the head of list,
1161 * clear the KMOD attribute from the page.
1162 */
1163 if (SLIST_FIRST(&md->pvh_list) == NULL
1164 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1165 md->pvh_attrs &= ~PVF_KMOD;
1166
1167 /*
1168 * If this was a writeable page and there are no more writeable
1169 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1170 * the contents to memory.
1171 */
1172 if (arm_cache_prefer_mask != 0) {
1173 if (md->krw_mappings + md->urw_mappings == 0)
1174 md->pvh_attrs &= ~PVF_WRITE;
1175 PMAP_VALIDATE_MD_PAGE(md);
1176 }
1177 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1178 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1179
1180 /* return removed pv */
1181 return pv;
1182 }
1183
1184 /*
1185 *
1186 * pmap_modify_pv: Update pv flags
1187 *
1188 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1189 * => caller should NOT adjust pmap's wire_count
1190 * => caller must call pmap_vac_me_harder() if writable status of a page
1191 * may have changed.
1192 * => we return the old flags
1193 *
1194 * Modify a physical-virtual mapping in the pv table
1195 */
1196 static u_int
1197 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1198 u_int clr_mask, u_int set_mask)
1199 {
1200 struct pv_entry *npv;
1201 u_int flags, oflags;
1202
1203 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1204 KASSERT(!PV_IS_KENTRY_P(set_mask));
1205
1206 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1207 return (0);
1208
1209 NPDEBUG(PDB_PVDUMP,
1210 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1211
1212 /*
1213 * There is at least one VA mapping this page.
1214 */
1215
1216 if (clr_mask & (PVF_REF | PVF_MOD)) {
1217 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1218 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1219 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1220 md->pvh_attrs |= PVF_DIRTY;
1221 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1222 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1223 }
1224
1225 oflags = npv->pv_flags;
1226 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1227
1228 if ((flags ^ oflags) & PVF_WIRED) {
1229 if (flags & PVF_WIRED)
1230 ++pm->pm_stats.wired_count;
1231 else
1232 --pm->pm_stats.wired_count;
1233 }
1234
1235 if ((flags ^ oflags) & PVF_WRITE) {
1236 if (pm == pmap_kernel()) {
1237 if (flags & PVF_WRITE) {
1238 md->krw_mappings++;
1239 md->kro_mappings--;
1240 } else {
1241 md->kro_mappings++;
1242 md->krw_mappings--;
1243 }
1244 } else {
1245 if (flags & PVF_WRITE) {
1246 md->urw_mappings++;
1247 md->uro_mappings--;
1248 } else {
1249 md->uro_mappings++;
1250 md->urw_mappings--;
1251 }
1252 }
1253 }
1254 #ifdef PMAP_CACHE_VIPT
1255 if (arm_cache_prefer_mask != 0) {
1256 if (md->urw_mappings + md->krw_mappings == 0) {
1257 md->pvh_attrs &= ~PVF_WRITE;
1258 } else {
1259 md->pvh_attrs |= PVF_WRITE;
1260 }
1261 }
1262 /*
1263 * We have two cases here: the first is from enter_pv (new exec
1264 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1265 * Since in latter, pmap_enter_pv won't do anything, we just have
1266 * to do what pmap_remove_pv would do.
1267 */
1268 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1269 || (PV_IS_EXEC_P(md->pvh_attrs)
1270 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1271 pmap_syncicache_page(md, pa);
1272 PMAPCOUNT(exec_synced_remap);
1273 }
1274 #ifndef ARM_MMU_EXTENDED
1275 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1276 #endif /* !ARM_MMU_EXTENDED */
1277 #endif /* PMAP_CACHE_VIPT */
1278
1279 PMAPCOUNT(remappings);
1280
1281 return (oflags);
1282 }
1283
1284 /*
1285 * Allocate an L1 translation table for the specified pmap.
1286 * This is called at pmap creation time.
1287 */
1288 static void
1289 pmap_alloc_l1(pmap_t pm)
1290 {
1291 #ifdef ARM_MMU_EXTENDED
1292 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1293 struct vm_page *pg;
1294 bool ok __diagused;
1295 for (;;) {
1296 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1297 pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1298 #else
1299 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1300 #endif
1301 if (pg != NULL)
1302 break;
1303 uvm_wait("pmapl1alloc");
1304 }
1305 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1306 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1307 KASSERT(ok);
1308 KASSERT(va >= KERNEL_BASE);
1309
1310 #else
1311 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1312 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1313 UVM_KMF_WIRED|UVM_KMF_ZERO);
1314 KASSERT(va);
1315 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1316 #endif
1317 pm->pm_l1 = (pd_entry_t *)va;
1318 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1319 #else
1320 struct l1_ttable *l1;
1321 uint8_t domain;
1322
1323 /*
1324 * Remove the L1 at the head of the LRU list
1325 */
1326 mutex_spin_enter(&l1_lru_lock);
1327 l1 = TAILQ_FIRST(&l1_lru_list);
1328 KDASSERT(l1 != NULL);
1329 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1330
1331 /*
1332 * Pick the first available domain number, and update
1333 * the link to the next number.
1334 */
1335 domain = l1->l1_domain_first;
1336 l1->l1_domain_first = l1->l1_domain_free[domain];
1337
1338 /*
1339 * If there are still free domain numbers in this L1,
1340 * put it back on the TAIL of the LRU list.
1341 */
1342 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1343 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1344
1345 mutex_spin_exit(&l1_lru_lock);
1346
1347 /*
1348 * Fix up the relevant bits in the pmap structure
1349 */
1350 pm->pm_l1 = l1;
1351 pm->pm_domain = domain + 1;
1352 #endif
1353 }
1354
1355 /*
1356 * Free an L1 translation table.
1357 * This is called at pmap destruction time.
1358 */
1359 static void
1360 pmap_free_l1(pmap_t pm)
1361 {
1362 #ifdef ARM_MMU_EXTENDED
1363 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1364 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1365 uvm_pagefree(pg);
1366 #else
1367 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1368 #endif
1369 pm->pm_l1 = NULL;
1370 pm->pm_l1_pa = 0;
1371 #else
1372 struct l1_ttable *l1 = pm->pm_l1;
1373
1374 mutex_spin_enter(&l1_lru_lock);
1375
1376 /*
1377 * If this L1 is currently on the LRU list, remove it.
1378 */
1379 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1380 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1381
1382 /*
1383 * Free up the domain number which was allocated to the pmap
1384 */
1385 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1386 l1->l1_domain_first = pmap_domain(pm) - 1;
1387 l1->l1_domain_use_count--;
1388
1389 /*
1390 * The L1 now must have at least 1 free domain, so add
1391 * it back to the LRU list. If the use count is zero,
1392 * put it at the head of the list, otherwise it goes
1393 * to the tail.
1394 */
1395 if (l1->l1_domain_use_count == 0)
1396 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1397 else
1398 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1399
1400 mutex_spin_exit(&l1_lru_lock);
1401 #endif /* ARM_MMU_EXTENDED */
1402 }
1403
1404 #ifndef ARM_MMU_EXTENDED
1405 static inline void
1406 pmap_use_l1(pmap_t pm)
1407 {
1408 struct l1_ttable *l1;
1409
1410 /*
1411 * Do nothing if we're in interrupt context.
1412 * Access to an L1 by the kernel pmap must not affect
1413 * the LRU list.
1414 */
1415 if (cpu_intr_p() || pm == pmap_kernel())
1416 return;
1417
1418 l1 = pm->pm_l1;
1419
1420 /*
1421 * If the L1 is not currently on the LRU list, just return
1422 */
1423 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1424 return;
1425
1426 mutex_spin_enter(&l1_lru_lock);
1427
1428 /*
1429 * Check the use count again, now that we've acquired the lock
1430 */
1431 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1432 mutex_spin_exit(&l1_lru_lock);
1433 return;
1434 }
1435
1436 /*
1437 * Move the L1 to the back of the LRU list
1438 */
1439 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1440 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1441
1442 mutex_spin_exit(&l1_lru_lock);
1443 }
1444 #endif /* !ARM_MMU_EXTENDED */
1445
1446 /*
1447 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1448 *
1449 * Free an L2 descriptor table.
1450 */
1451 static inline void
1452 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1453 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1454 #else
1455 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1456 #endif
1457 {
1458 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1459 /*
1460 * Note: With a write-back cache, we may need to sync this
1461 * L2 table before re-using it.
1462 * This is because it may have belonged to a non-current
1463 * pmap, in which case the cache syncs would have been
1464 * skipped for the pages that were being unmapped. If the
1465 * L2 table were then to be immediately re-allocated to
1466 * the *current* pmap, it may well contain stale mappings
1467 * which have not yet been cleared by a cache write-back
1468 * and so would still be visible to the mmu.
1469 */
1470 if (need_sync)
1471 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1472 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1473 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1474 }
1475
1476 /*
1477 * Returns a pointer to the L2 bucket associated with the specified pmap
1478 * and VA, or NULL if no L2 bucket exists for the address.
1479 */
1480 static inline struct l2_bucket *
1481 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1482 {
1483 const size_t l1slot = l1pte_index(va);
1484 struct l2_dtable *l2;
1485 struct l2_bucket *l2b;
1486
1487 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1488 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1489 return (NULL);
1490
1491 return (l2b);
1492 }
1493
1494 /*
1495 * Returns a pointer to the L2 bucket associated with the specified pmap
1496 * and VA.
1497 *
1498 * If no L2 bucket exists, perform the necessary allocations to put an L2
1499 * bucket/page table in place.
1500 *
1501 * Note that if a new L2 bucket/page was allocated, the caller *must*
1502 * increment the bucket occupancy counter appropriately *before*
1503 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1504 * the bucket/page in the meantime.
1505 */
1506 static struct l2_bucket *
1507 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1508 {
1509 const size_t l1slot = l1pte_index(va);
1510 struct l2_dtable *l2;
1511
1512 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1513 /*
1514 * No mapping at this address, as there is
1515 * no entry in the L1 table.
1516 * Need to allocate a new l2_dtable.
1517 */
1518 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1519 return (NULL);
1520
1521 /*
1522 * Link it into the parent pmap
1523 */
1524 pm->pm_l2[L2_IDX(l1slot)] = l2;
1525 }
1526
1527 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1528
1529 /*
1530 * Fetch pointer to the L2 page table associated with the address.
1531 */
1532 if (l2b->l2b_kva == NULL) {
1533 pt_entry_t *ptep;
1534
1535 /*
1536 * No L2 page table has been allocated. Chances are, this
1537 * is because we just allocated the l2_dtable, above.
1538 */
1539 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1540 /*
1541 * Oops, no more L2 page tables available at this
1542 * time. We may need to deallocate the l2_dtable
1543 * if we allocated a new one above.
1544 */
1545 if (l2->l2_occupancy == 0) {
1546 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1547 pmap_free_l2_dtable(l2);
1548 }
1549 return (NULL);
1550 }
1551
1552 l2->l2_occupancy++;
1553 l2b->l2b_kva = ptep;
1554 l2b->l2b_l1slot = l1slot;
1555
1556 #ifdef ARM_MMU_EXTENDED
1557 /*
1558 * We know there will be a mapping here, so simply
1559 * enter this PTP into the L1 now.
1560 */
1561 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1562 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1563 | L1_C_DOM(pmap_domain(pm));
1564 KASSERT(*pdep == 0);
1565 l1pte_setone(pdep, npde);
1566 PDE_SYNC(pdep);
1567 #endif
1568 }
1569
1570 return (l2b);
1571 }
1572
1573 /*
1574 * One or more mappings in the specified L2 descriptor table have just been
1575 * invalidated.
1576 *
1577 * Garbage collect the metadata and descriptor table itself if necessary.
1578 *
1579 * The pmap lock must be acquired when this is called (not necessary
1580 * for the kernel pmap).
1581 */
1582 static void
1583 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1584 {
1585 KDASSERT(count <= l2b->l2b_occupancy);
1586
1587 /*
1588 * Update the bucket's reference count according to how many
1589 * PTEs the caller has just invalidated.
1590 */
1591 l2b->l2b_occupancy -= count;
1592
1593 /*
1594 * Note:
1595 *
1596 * Level 2 page tables allocated to the kernel pmap are never freed
1597 * as that would require checking all Level 1 page tables and
1598 * removing any references to the Level 2 page table. See also the
1599 * comment elsewhere about never freeing bootstrap L2 descriptors.
1600 *
1601 * We make do with just invalidating the mapping in the L2 table.
1602 *
1603 * This isn't really a big deal in practice and, in fact, leads
1604 * to a performance win over time as we don't need to continually
1605 * alloc/free.
1606 */
1607 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1608 return;
1609
1610 /*
1611 * There are no more valid mappings in this level 2 page table.
1612 * Go ahead and NULL-out the pointer in the bucket, then
1613 * free the page table.
1614 */
1615 const size_t l1slot = l2b->l2b_l1slot;
1616 pt_entry_t * const ptep = l2b->l2b_kva;
1617 l2b->l2b_kva = NULL;
1618
1619 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1620 pd_entry_t pde __diagused = *pdep;
1621
1622 #ifdef ARM_MMU_EXTENDED
1623 /*
1624 * Invalidate the L1 slot.
1625 */
1626 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1627 #else
1628 /*
1629 * If the L1 slot matches the pmap's domain number, then invalidate it.
1630 */
1631 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1632 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1633 #endif
1634 l1pte_setone(pdep, 0);
1635 PDE_SYNC(pdep);
1636 #ifndef ARM_MMU_EXTENDED
1637 }
1638 #endif
1639
1640 /*
1641 * Release the L2 descriptor table back to the pool cache.
1642 */
1643 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1644 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1645 #else
1646 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1647 #endif
1648
1649 /*
1650 * Update the reference count in the associated l2_dtable
1651 */
1652 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1653 if (--l2->l2_occupancy > 0)
1654 return;
1655
1656 /*
1657 * There are no more valid mappings in any of the Level 1
1658 * slots managed by this l2_dtable. Go ahead and NULL-out
1659 * the pointer in the parent pmap and free the l2_dtable.
1660 */
1661 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1662 pmap_free_l2_dtable(l2);
1663 }
1664
1665 /*
1666 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1667 * structures.
1668 */
1669 static int
1670 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1671 {
1672 #ifndef PMAP_INCLUDE_PTE_SYNC
1673 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1674
1675 /*
1676 * The mappings for these page tables were initially made using
1677 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1678 * mode will not be right for page table mappings. To avoid
1679 * polluting the pmap_kenter_pa() code with a special case for
1680 * page tables, we simply fix up the cache-mode here if it's not
1681 * correct.
1682 */
1683 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1684 const struct l2_bucket * const l2b =
1685 pmap_get_l2_bucket(pmap_kernel(), va);
1686 KASSERTMSG(l2b != NULL, "%#lx", va);
1687 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1688 const pt_entry_t opte = *ptep;
1689
1690 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1691 /*
1692 * Page tables must have the cache-mode set correctly.
1693 */
1694 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1695 | pte_l2_s_cache_mode_pt;
1696 l2pte_set(ptep, npte, opte);
1697 PTE_SYNC(ptep);
1698 cpu_tlb_flushD_SE(va);
1699 cpu_cpwait();
1700 }
1701 }
1702 #endif
1703
1704 memset(v, 0, L2_TABLE_SIZE_REAL);
1705 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1706 return (0);
1707 }
1708
1709 static int
1710 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1711 {
1712
1713 memset(v, 0, sizeof(struct l2_dtable));
1714 return (0);
1715 }
1716
1717 static int
1718 pmap_pmap_ctor(void *arg, void *v, int flags)
1719 {
1720
1721 memset(v, 0, sizeof(struct pmap));
1722 return (0);
1723 }
1724
1725 static void
1726 pmap_pinit(pmap_t pm)
1727 {
1728 #ifndef ARM_HAS_VBAR
1729 struct l2_bucket *l2b;
1730
1731 if (vector_page < KERNEL_BASE) {
1732 /*
1733 * Map the vector page.
1734 */
1735 pmap_enter(pm, vector_page, systempage.pv_pa,
1736 VM_PROT_READ | VM_PROT_EXECUTE,
1737 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1738 pmap_update(pm);
1739
1740 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1741 l2b = pmap_get_l2_bucket(pm, vector_page);
1742 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1743 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1744 L1_C_DOM(pmap_domain(pm));
1745 } else
1746 pm->pm_pl1vec = NULL;
1747 #endif
1748 }
1749
1750 #ifdef PMAP_CACHE_VIVT
1751 /*
1752 * Since we have a virtually indexed cache, we may need to inhibit caching if
1753 * there is more than one mapping and at least one of them is writable.
1754 * Since we purge the cache on every context switch, we only need to check for
1755 * other mappings within the same pmap, or kernel_pmap.
1756 * This function is also called when a page is unmapped, to possibly reenable
1757 * caching on any remaining mappings.
1758 *
1759 * The code implements the following logic, where:
1760 *
1761 * KW = # of kernel read/write pages
1762 * KR = # of kernel read only pages
1763 * UW = # of user read/write pages
1764 * UR = # of user read only pages
1765 *
1766 * KC = kernel mapping is cacheable
1767 * UC = user mapping is cacheable
1768 *
1769 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1770 * +---------------------------------------------
1771 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1772 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1773 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1774 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1775 */
1776
1777 static const int pmap_vac_flags[4][4] = {
1778 {-1, 0, 0, PVF_KNC},
1779 {0, 0, PVF_NC, PVF_NC},
1780 {0, PVF_NC, PVF_NC, PVF_NC},
1781 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1782 };
1783
1784 static inline int
1785 pmap_get_vac_flags(const struct vm_page_md *md)
1786 {
1787 int kidx, uidx;
1788
1789 kidx = 0;
1790 if (md->kro_mappings || md->krw_mappings > 1)
1791 kidx |= 1;
1792 if (md->krw_mappings)
1793 kidx |= 2;
1794
1795 uidx = 0;
1796 if (md->uro_mappings || md->urw_mappings > 1)
1797 uidx |= 1;
1798 if (md->urw_mappings)
1799 uidx |= 2;
1800
1801 return (pmap_vac_flags[uidx][kidx]);
1802 }
1803
1804 static inline void
1805 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1806 {
1807 int nattr;
1808
1809 nattr = pmap_get_vac_flags(md);
1810
1811 if (nattr < 0) {
1812 md->pvh_attrs &= ~PVF_NC;
1813 return;
1814 }
1815
1816 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1817 return;
1818
1819 if (pm == pmap_kernel())
1820 pmap_vac_me_kpmap(md, pa, pm, va);
1821 else
1822 pmap_vac_me_user(md, pa, pm, va);
1823
1824 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1825 }
1826
1827 static void
1828 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1829 {
1830 u_int u_cacheable, u_entries;
1831 struct pv_entry *pv;
1832 pmap_t last_pmap = pm;
1833
1834 /*
1835 * Pass one, see if there are both kernel and user pmaps for
1836 * this page. Calculate whether there are user-writable or
1837 * kernel-writable pages.
1838 */
1839 u_cacheable = 0;
1840 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1841 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1842 u_cacheable++;
1843 }
1844
1845 u_entries = md->urw_mappings + md->uro_mappings;
1846
1847 /*
1848 * We know we have just been updating a kernel entry, so if
1849 * all user pages are already cacheable, then there is nothing
1850 * further to do.
1851 */
1852 if (md->k_mappings == 0 && u_cacheable == u_entries)
1853 return;
1854
1855 if (u_entries) {
1856 /*
1857 * Scan over the list again, for each entry, if it
1858 * might not be set correctly, call pmap_vac_me_user
1859 * to recalculate the settings.
1860 */
1861 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1862 /*
1863 * We know kernel mappings will get set
1864 * correctly in other calls. We also know
1865 * that if the pmap is the same as last_pmap
1866 * then we've just handled this entry.
1867 */
1868 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1869 continue;
1870
1871 /*
1872 * If there are kernel entries and this page
1873 * is writable but non-cacheable, then we can
1874 * skip this entry also.
1875 */
1876 if (md->k_mappings &&
1877 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1878 (PVF_NC | PVF_WRITE))
1879 continue;
1880
1881 /*
1882 * Similarly if there are no kernel-writable
1883 * entries and the page is already
1884 * read-only/cacheable.
1885 */
1886 if (md->krw_mappings == 0 &&
1887 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1888 continue;
1889
1890 /*
1891 * For some of the remaining cases, we know
1892 * that we must recalculate, but for others we
1893 * can't tell if they are correct or not, so
1894 * we recalculate anyway.
1895 */
1896 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1897 }
1898
1899 if (md->k_mappings == 0)
1900 return;
1901 }
1902
1903 pmap_vac_me_user(md, pa, pm, va);
1904 }
1905
1906 static void
1907 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1908 {
1909 pmap_t kpmap = pmap_kernel();
1910 struct pv_entry *pv, *npv = NULL;
1911 u_int entries = 0;
1912 u_int writable = 0;
1913 u_int cacheable_entries = 0;
1914 u_int kern_cacheable = 0;
1915 u_int other_writable = 0;
1916
1917 /*
1918 * Count mappings and writable mappings in this pmap.
1919 * Include kernel mappings as part of our own.
1920 * Keep a pointer to the first one.
1921 */
1922 npv = NULL;
1923 KASSERT(pmap_page_locked_p(md));
1924 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1925 /* Count mappings in the same pmap */
1926 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1927 if (entries++ == 0)
1928 npv = pv;
1929
1930 /* Cacheable mappings */
1931 if ((pv->pv_flags & PVF_NC) == 0) {
1932 cacheable_entries++;
1933 if (kpmap == pv->pv_pmap)
1934 kern_cacheable++;
1935 }
1936
1937 /* Writable mappings */
1938 if (pv->pv_flags & PVF_WRITE)
1939 ++writable;
1940 } else if (pv->pv_flags & PVF_WRITE)
1941 other_writable = 1;
1942 }
1943
1944 /*
1945 * Enable or disable caching as necessary.
1946 * Note: the first entry might be part of the kernel pmap,
1947 * so we can't assume this is indicative of the state of the
1948 * other (maybe non-kpmap) entries.
1949 */
1950 if ((entries > 1 && writable) ||
1951 (entries > 0 && pm == kpmap && other_writable)) {
1952 if (cacheable_entries == 0) {
1953 return;
1954 }
1955
1956 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1957 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1958 (pv->pv_flags & PVF_NC))
1959 continue;
1960
1961 pv->pv_flags |= PVF_NC;
1962
1963 struct l2_bucket * const l2b
1964 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1965 KASSERTMSG(l2b != NULL, "%#lx", va);
1966 pt_entry_t * const ptep
1967 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1968 const pt_entry_t opte = *ptep;
1969 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1970
1971 if ((va != pv->pv_va || pm != pv->pv_pmap)
1972 && l2pte_valid_p(opte)) {
1973 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1974 true, pv->pv_flags);
1975 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1976 pv->pv_flags);
1977 }
1978
1979 l2pte_set(ptep, npte, opte);
1980 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1981 }
1982 cpu_cpwait();
1983 } else if (entries > cacheable_entries) {
1984 /*
1985 * Turn cacheing back on for some pages. If it is a kernel
1986 * page, only do so if there are no other writable pages.
1987 */
1988 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1989 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1990 (kpmap != pv->pv_pmap || other_writable)))
1991 continue;
1992
1993 pv->pv_flags &= ~PVF_NC;
1994
1995 struct l2_bucket * const l2b
1996 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1997 KASSERTMSG(l2b != NULL, "%#lx", va);
1998 pt_entry_t * const ptep
1999 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2000 const pt_entry_t opte = *ptep;
2001 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2002 | pte_l2_s_cache_mode;
2003
2004 if (l2pte_valid_p(opte)) {
2005 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2006 pv->pv_flags);
2007 }
2008
2009 l2pte_set(ptep, npte, opte);
2010 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2011 }
2012 }
2013 }
2014 #endif
2015
2016 #ifdef PMAP_CACHE_VIPT
2017 static void
2018 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2019 {
2020 #ifndef ARM_MMU_EXTENDED
2021 struct pv_entry *pv;
2022 vaddr_t tst_mask;
2023 bool bad_alias;
2024 const u_int
2025 rw_mappings = md->urw_mappings + md->krw_mappings,
2026 ro_mappings = md->uro_mappings + md->kro_mappings;
2027
2028 /* do we need to do anything? */
2029 if (arm_cache_prefer_mask == 0)
2030 return;
2031
2032 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2033 md, pm, va));
2034
2035 KASSERT(!va || pm);
2036 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2037
2038 /* Already a conflict? */
2039 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2040 /* just an add, things are already non-cached */
2041 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2042 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2043 bad_alias = false;
2044 if (va) {
2045 PMAPCOUNT(vac_color_none);
2046 bad_alias = true;
2047 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2048 goto fixup;
2049 }
2050 pv = SLIST_FIRST(&md->pvh_list);
2051 /* the list can't be empty because it would be cachable */
2052 if (md->pvh_attrs & PVF_KMPAGE) {
2053 tst_mask = md->pvh_attrs;
2054 } else {
2055 KASSERT(pv);
2056 tst_mask = pv->pv_va;
2057 pv = SLIST_NEXT(pv, pv_link);
2058 }
2059 /*
2060 * Only check for a bad alias if we have writable mappings.
2061 */
2062 tst_mask &= arm_cache_prefer_mask;
2063 if (rw_mappings > 0) {
2064 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2065 /* if there's a bad alias, stop checking. */
2066 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2067 bad_alias = true;
2068 }
2069 md->pvh_attrs |= PVF_WRITE;
2070 if (!bad_alias)
2071 md->pvh_attrs |= PVF_DIRTY;
2072 } else {
2073 /*
2074 * We have only read-only mappings. Let's see if there
2075 * are multiple colors in use or if we mapped a KMPAGE.
2076 * If the latter, we have a bad alias. If the former,
2077 * we need to remember that.
2078 */
2079 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2080 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2081 if (md->pvh_attrs & PVF_KMPAGE)
2082 bad_alias = true;
2083 break;
2084 }
2085 }
2086 md->pvh_attrs &= ~PVF_WRITE;
2087 /*
2088 * No KMPAGE and we exited early, so we must have
2089 * multiple color mappings.
2090 */
2091 if (!bad_alias && pv != NULL)
2092 md->pvh_attrs |= PVF_MULTCLR;
2093 }
2094
2095 /* If no conflicting colors, set everything back to cached */
2096 if (!bad_alias) {
2097 #ifdef DEBUG
2098 if ((md->pvh_attrs & PVF_WRITE)
2099 || ro_mappings < 2) {
2100 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2101 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2102 }
2103 #endif
2104 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2105 md->pvh_attrs |= tst_mask | PVF_COLORED;
2106 /*
2107 * Restore DIRTY bit if page is modified
2108 */
2109 if (md->pvh_attrs & PVF_DMOD)
2110 md->pvh_attrs |= PVF_DIRTY;
2111 PMAPCOUNT(vac_color_restore);
2112 } else {
2113 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2114 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2115 }
2116 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2117 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2118 } else if (!va) {
2119 KASSERT(pmap_is_page_colored_p(md));
2120 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2121 || (md->pvh_attrs & PVF_DIRTY));
2122 if (rw_mappings == 0) {
2123 md->pvh_attrs &= ~PVF_WRITE;
2124 if (ro_mappings == 1
2125 && (md->pvh_attrs & PVF_MULTCLR)) {
2126 /*
2127 * If this is the last readonly mapping
2128 * but it doesn't match the current color
2129 * for the page, change the current color
2130 * to match this last readonly mapping.
2131 */
2132 pv = SLIST_FIRST(&md->pvh_list);
2133 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2134 & arm_cache_prefer_mask;
2135 if (tst_mask) {
2136 md->pvh_attrs ^= tst_mask;
2137 PMAPCOUNT(vac_color_change);
2138 }
2139 }
2140 }
2141 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2142 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2143 return;
2144 } else if (!pmap_is_page_colored_p(md)) {
2145 /* not colored so we just use its color */
2146 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2147 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2148 PMAPCOUNT(vac_color_new);
2149 md->pvh_attrs &= PAGE_SIZE - 1;
2150 md->pvh_attrs |= PVF_COLORED
2151 | (va & arm_cache_prefer_mask)
2152 | (rw_mappings > 0 ? PVF_WRITE : 0);
2153 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2154 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2155 return;
2156 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2157 bad_alias = false;
2158 if (rw_mappings > 0) {
2159 /*
2160 * We now have writeable mappings and if we have
2161 * readonly mappings in more than once color, we have
2162 * an aliasing problem. Regardless mark the page as
2163 * writeable.
2164 */
2165 if (md->pvh_attrs & PVF_MULTCLR) {
2166 if (ro_mappings < 2) {
2167 /*
2168 * If we only have less than two
2169 * read-only mappings, just flush the
2170 * non-primary colors from the cache.
2171 */
2172 pmap_flush_page(md, pa,
2173 PMAP_FLUSH_SECONDARY);
2174 } else {
2175 bad_alias = true;
2176 }
2177 }
2178 md->pvh_attrs |= PVF_WRITE;
2179 }
2180 /* If no conflicting colors, set everything back to cached */
2181 if (!bad_alias) {
2182 #ifdef DEBUG
2183 if (rw_mappings > 0
2184 || (md->pvh_attrs & PMAP_KMPAGE)) {
2185 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2186 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2187 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2188 }
2189 #endif
2190 if (SLIST_EMPTY(&md->pvh_list))
2191 PMAPCOUNT(vac_color_reuse);
2192 else
2193 PMAPCOUNT(vac_color_ok);
2194
2195 /* matching color, just return */
2196 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2197 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2198 return;
2199 }
2200 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2201 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2202
2203 /* color conflict. evict from cache. */
2204
2205 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2206 md->pvh_attrs &= ~PVF_COLORED;
2207 md->pvh_attrs |= PVF_NC;
2208 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2209 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2210 PMAPCOUNT(vac_color_erase);
2211 } else if (rw_mappings == 0
2212 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2213 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2214
2215 /*
2216 * If the page has dirty cache lines, clean it.
2217 */
2218 if (md->pvh_attrs & PVF_DIRTY)
2219 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2220
2221 /*
2222 * If this is the first remapping (we know that there are no
2223 * writeable mappings), then this is a simple color change.
2224 * Otherwise this is a seconary r/o mapping, which means
2225 * we don't have to do anything.
2226 */
2227 if (ro_mappings == 1) {
2228 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2229 md->pvh_attrs &= PAGE_SIZE - 1;
2230 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2231 PMAPCOUNT(vac_color_change);
2232 } else {
2233 PMAPCOUNT(vac_color_blind);
2234 }
2235 md->pvh_attrs |= PVF_MULTCLR;
2236 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2237 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2238 return;
2239 } else {
2240 if (rw_mappings > 0)
2241 md->pvh_attrs |= PVF_WRITE;
2242
2243 /* color conflict. evict from cache. */
2244 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2245
2246 /* the list can't be empty because this was a enter/modify */
2247 pv = SLIST_FIRST(&md->pvh_list);
2248 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2249 KASSERT(pv);
2250 /*
2251 * If there's only one mapped page, change color to the
2252 * page's new color and return. Restore the DIRTY bit
2253 * that was erased by pmap_flush_page.
2254 */
2255 if (SLIST_NEXT(pv, pv_link) == NULL) {
2256 md->pvh_attrs &= PAGE_SIZE - 1;
2257 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2258 if (md->pvh_attrs & PVF_DMOD)
2259 md->pvh_attrs |= PVF_DIRTY;
2260 PMAPCOUNT(vac_color_change);
2261 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2262 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2263 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2264 return;
2265 }
2266 }
2267 bad_alias = true;
2268 md->pvh_attrs &= ~PVF_COLORED;
2269 md->pvh_attrs |= PVF_NC;
2270 PMAPCOUNT(vac_color_erase);
2271 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2272 }
2273
2274 fixup:
2275 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2276
2277 /*
2278 * Turn cacheing on/off for all pages.
2279 */
2280 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2281 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2282 pv->pv_va);
2283 KASSERTMSG(l2b != NULL, "%#lx", va);
2284 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2285 const pt_entry_t opte = *ptep;
2286 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2287 if (bad_alias) {
2288 pv->pv_flags |= PVF_NC;
2289 } else {
2290 pv->pv_flags &= ~PVF_NC;
2291 npte |= pte_l2_s_cache_mode;
2292 }
2293
2294 if (opte == npte) /* only update is there's a change */
2295 continue;
2296
2297 if (l2pte_valid_p(opte)) {
2298 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2299 }
2300
2301 l2pte_set(ptep, npte, opte);
2302 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2303 }
2304 #endif /* !ARM_MMU_EXTENDED */
2305 }
2306 #endif /* PMAP_CACHE_VIPT */
2307
2308
2309 /*
2310 * Modify pte bits for all ptes corresponding to the given physical address.
2311 * We use `maskbits' rather than `clearbits' because we're always passing
2312 * constants and the latter would require an extra inversion at run-time.
2313 */
2314 static void
2315 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2316 {
2317 struct pv_entry *pv;
2318 #ifdef PMAP_CACHE_VIPT
2319 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2320 bool need_syncicache = false;
2321 #ifdef ARM_MMU_EXTENDED
2322 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2323 #else
2324 const u_int execbits = 0;
2325 bool need_vac_me_harder = false;
2326 #endif
2327 #else
2328 const u_int execbits = 0;
2329 #endif
2330
2331 NPDEBUG(PDB_BITS,
2332 printf("pmap_clearbit: md %p mask 0x%x\n",
2333 md, maskbits));
2334
2335 #ifdef PMAP_CACHE_VIPT
2336 /*
2337 * If we might want to sync the I-cache and we've modified it,
2338 * then we know we definitely need to sync or discard it.
2339 */
2340 if (want_syncicache) {
2341 if (md->pvh_attrs & PVF_MOD) {
2342 need_syncicache = true;
2343 }
2344 }
2345 #endif
2346 KASSERT(pmap_page_locked_p(md));
2347
2348 /*
2349 * Clear saved attributes (modify, reference)
2350 */
2351 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2352
2353 if (SLIST_EMPTY(&md->pvh_list)) {
2354 #if defined(PMAP_CACHE_VIPT)
2355 if (need_syncicache) {
2356 /*
2357 * No one has it mapped, so just discard it. The next
2358 * exec remapping will cause it to be synced.
2359 */
2360 md->pvh_attrs &= ~PVF_EXEC;
2361 PMAPCOUNT(exec_discarded_clearbit);
2362 }
2363 #endif
2364 return;
2365 }
2366
2367 /*
2368 * Loop over all current mappings setting/clearing as appropos
2369 */
2370 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2371 pmap_t pm = pv->pv_pmap;
2372 const vaddr_t va = pv->pv_va;
2373 const u_int oflags = pv->pv_flags;
2374 #ifndef ARM_MMU_EXTENDED
2375 /*
2376 * Kernel entries are unmanaged and as such not to be changed.
2377 */
2378 if (PV_IS_KENTRY_P(oflags))
2379 continue;
2380 #endif
2381 pv->pv_flags &= ~maskbits;
2382
2383 pmap_release_page_lock(md);
2384 pmap_acquire_pmap_lock(pm);
2385
2386 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2387 if (l2b == NULL) {
2388 pmap_release_pmap_lock(pm);
2389 pmap_acquire_page_lock(md);
2390 continue;
2391 }
2392 KASSERTMSG(l2b != NULL, "%#lx", va);
2393
2394 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2395 const pt_entry_t opte = *ptep;
2396 pt_entry_t npte = opte | execbits;
2397
2398 #ifdef ARM_MMU_EXTENDED
2399 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2400 #endif
2401
2402 NPDEBUG(PDB_BITS,
2403 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2404 __func__, pv, pm, va, oflags));
2405
2406 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2407 #ifdef PMAP_CACHE_VIVT
2408 if ((oflags & PVF_NC)) {
2409 /*
2410 * Entry is not cacheable:
2411 *
2412 * Don't turn caching on again if this is a
2413 * modified emulation. This would be
2414 * inconsitent with the settings created by
2415 * pmap_vac_me_harder(). Otherwise, it's safe
2416 * to re-enable cacheing.
2417 *
2418 * There's no need to call pmap_vac_me_harder()
2419 * here: all pages are losing their write
2420 * permission.
2421 */
2422 if (maskbits & PVF_WRITE) {
2423 npte |= pte_l2_s_cache_mode;
2424 pv->pv_flags &= ~PVF_NC;
2425 }
2426 } else if (l2pte_writable_p(opte)) {
2427 /*
2428 * Entry is writable/cacheable: check if pmap
2429 * is current if it is flush it, otherwise it
2430 * won't be in the cache
2431 */
2432 pmap_cache_wbinv_page(pm, va,
2433 (maskbits & PVF_REF) != 0,
2434 oflags|PVF_WRITE);
2435 }
2436 #endif
2437
2438 /* make the pte read only */
2439 npte = l2pte_set_readonly(npte);
2440
2441 pmap_acquire_page_lock(md);
2442 #ifdef MULTIPROCESSOR
2443 pv = pmap_find_pv(md, pm, va);
2444 #endif
2445 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2446 /*
2447 * Keep alias accounting up to date
2448 */
2449 if (pm == pmap_kernel()) {
2450 md->krw_mappings--;
2451 md->kro_mappings++;
2452 } else {
2453 md->urw_mappings--;
2454 md->uro_mappings++;
2455 }
2456 #ifdef PMAP_CACHE_VIPT
2457 if (arm_cache_prefer_mask != 0) {
2458 if (md->urw_mappings + md->krw_mappings == 0) {
2459 md->pvh_attrs &= ~PVF_WRITE;
2460 } else {
2461 PMAP_VALIDATE_MD_PAGE(md);
2462 }
2463 }
2464 if (want_syncicache)
2465 need_syncicache = true;
2466 #ifndef ARM_MMU_EXTENDED
2467 need_vac_me_harder = true;
2468 #endif
2469 #endif /* PMAP_CACHE_VIPT */
2470 }
2471 pmap_release_page_lock(md);
2472 }
2473
2474 if (maskbits & PVF_REF) {
2475 if (true
2476 #ifndef ARM_MMU_EXTENDED
2477 && (oflags & PVF_NC) == 0
2478 #endif
2479 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2480 && l2pte_valid_p(npte)) {
2481 #ifdef PMAP_CACHE_VIVT
2482 /*
2483 * Check npte here; we may have already
2484 * done the wbinv above, and the validity
2485 * of the PTE is the same for opte and
2486 * npte.
2487 */
2488 pmap_cache_wbinv_page(pm, va, true, oflags);
2489 #endif
2490 }
2491
2492 /*
2493 * Make the PTE invalid so that we will take a
2494 * page fault the next time the mapping is
2495 * referenced.
2496 */
2497 npte &= ~L2_TYPE_MASK;
2498 npte |= L2_TYPE_INV;
2499 }
2500
2501 if (npte != opte) {
2502 l2pte_reset(ptep);
2503 PTE_SYNC(ptep);
2504
2505 /* Flush the TLB entry if a current pmap. */
2506 pmap_tlb_flush_SE(pm, va, oflags);
2507
2508 l2pte_set(ptep, npte, 0);
2509 PTE_SYNC(ptep);
2510 }
2511
2512 pmap_release_pmap_lock(pm);
2513 pmap_acquire_page_lock(md);
2514
2515 NPDEBUG(PDB_BITS,
2516 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2517 pm, va, opte, npte));
2518 }
2519
2520 #if defined(PMAP_CACHE_VIPT)
2521 /*
2522 * If we need to sync the I-cache and we haven't done it yet, do it.
2523 */
2524 if (need_syncicache) {
2525 pmap_release_page_lock(md);
2526 pmap_syncicache_page(md, pa);
2527 pmap_acquire_page_lock(md);
2528 PMAPCOUNT(exec_synced_clearbit);
2529 }
2530 #ifndef ARM_MMU_EXTENDED
2531 /*
2532 * If we are changing this to read-only, we need to call vac_me_harder
2533 * so we can change all the read-only pages to cacheable. We pretend
2534 * this as a page deletion.
2535 */
2536 if (need_vac_me_harder) {
2537 if (md->pvh_attrs & PVF_NC)
2538 pmap_vac_me_harder(md, pa, NULL, 0);
2539 }
2540 #endif /* !ARM_MMU_EXTENDED */
2541 #endif /* PMAP_CACHE_VIPT */
2542 }
2543
2544 /*
2545 * pmap_clean_page()
2546 *
2547 * This is a local function used to work out the best strategy to clean
2548 * a single page referenced by its entry in the PV table. It's used by
2549 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2550 *
2551 * Its policy is effectively:
2552 * o If there are no mappings, we don't bother doing anything with the cache.
2553 * o If there is one mapping, we clean just that page.
2554 * o If there are multiple mappings, we clean the entire cache.
2555 *
2556 * So that some functions can be further optimised, it returns 0 if it didn't
2557 * clean the entire cache, or 1 if it did.
2558 *
2559 * XXX One bug in this routine is that if the pv_entry has a single page
2560 * mapped at 0x00000000 a whole cache clean will be performed rather than
2561 * just the 1 page. Since this should not occur in everyday use and if it does
2562 * it will just result in not the most efficient clean for the page.
2563 */
2564 #ifdef PMAP_CACHE_VIVT
2565 static bool
2566 pmap_clean_page(struct vm_page_md *md, bool is_src)
2567 {
2568 struct pv_entry *pv;
2569 pmap_t pm_to_clean = NULL;
2570 bool cache_needs_cleaning = false;
2571 vaddr_t page_to_clean = 0;
2572 u_int flags = 0;
2573
2574 /*
2575 * Since we flush the cache each time we change to a different
2576 * user vmspace, we only need to flush the page if it is in the
2577 * current pmap.
2578 */
2579 KASSERT(pmap_page_locked_p(md));
2580 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2581 if (pmap_is_current(pv->pv_pmap)) {
2582 flags |= pv->pv_flags;
2583 /*
2584 * The page is mapped non-cacheable in
2585 * this map. No need to flush the cache.
2586 */
2587 if (pv->pv_flags & PVF_NC) {
2588 #ifdef DIAGNOSTIC
2589 KASSERT(!cache_needs_cleaning);
2590 #endif
2591 break;
2592 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2593 continue;
2594 if (cache_needs_cleaning) {
2595 page_to_clean = 0;
2596 break;
2597 } else {
2598 page_to_clean = pv->pv_va;
2599 pm_to_clean = pv->pv_pmap;
2600 }
2601 cache_needs_cleaning = true;
2602 }
2603 }
2604
2605 if (page_to_clean) {
2606 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2607 !is_src, flags | PVF_REF);
2608 } else if (cache_needs_cleaning) {
2609 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2610
2611 pmap_cache_wbinv_all(pm, flags);
2612 return true;
2613 }
2614 return false;
2615 }
2616 #endif
2617
2618 #ifdef PMAP_CACHE_VIPT
2619 /*
2620 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2621 * right cache alias to make sure we flush the right stuff.
2622 */
2623 void
2624 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2625 {
2626 pmap_t kpm = pmap_kernel();
2627 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2628 ? PAGE_SIZE
2629 : arm_pcache.icache_way_size;
2630
2631 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2632 md, md->pvh_attrs));
2633 /*
2634 * No need to clean the page if it's non-cached.
2635 */
2636 #ifndef ARM_MMU_EXTENDED
2637 if (md->pvh_attrs & PVF_NC)
2638 return;
2639 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2640 #endif
2641
2642 pt_entry_t * const ptep = cpu_cdst_pte(0);
2643 const vaddr_t dstp = cpu_cdstp(0);
2644 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2645 if (way_size <= PAGE_SIZE) {
2646 bool ok = false;
2647 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2648 if (ok) {
2649 cpu_icache_sync_range(vdstp, way_size);
2650 return;
2651 }
2652 }
2653 #endif
2654
2655 /*
2656 * We don't worry about the color of the exec page, we map the
2657 * same page to pages in the way and then do the icache_sync on
2658 * the entire way making sure we are cleaned.
2659 */
2660 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2661 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2662
2663 for (size_t i = 0, j = 0; i < way_size;
2664 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2665 l2pte_reset(ptep + j);
2666 PTE_SYNC(ptep + j);
2667
2668 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2669 /*
2670 * Set up a PTE with to flush these cache lines.
2671 */
2672 l2pte_set(ptep + j, npte, 0);
2673 }
2674 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2675
2676 /*
2677 * Flush it.
2678 */
2679 cpu_icache_sync_range(dstp, way_size);
2680
2681 for (size_t i = 0, j = 0; i < way_size;
2682 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2683 /*
2684 * Unmap the page(s).
2685 */
2686 l2pte_reset(ptep + j);
2687 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2688 }
2689 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2690
2691 md->pvh_attrs |= PVF_EXEC;
2692 PMAPCOUNT(exec_synced);
2693 }
2694
2695 #ifndef ARM_MMU_EXTENDED
2696 void
2697 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2698 {
2699 vsize_t va_offset, end_va;
2700 bool wbinv_p;
2701
2702 if (arm_cache_prefer_mask == 0)
2703 return;
2704
2705 switch (flush) {
2706 case PMAP_FLUSH_PRIMARY:
2707 if (md->pvh_attrs & PVF_MULTCLR) {
2708 va_offset = 0;
2709 end_va = arm_cache_prefer_mask;
2710 md->pvh_attrs &= ~PVF_MULTCLR;
2711 PMAPCOUNT(vac_flush_lots);
2712 } else {
2713 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2714 end_va = va_offset;
2715 PMAPCOUNT(vac_flush_one);
2716 }
2717 /*
2718 * Mark that the page is no longer dirty.
2719 */
2720 md->pvh_attrs &= ~PVF_DIRTY;
2721 wbinv_p = true;
2722 break;
2723 case PMAP_FLUSH_SECONDARY:
2724 va_offset = 0;
2725 end_va = arm_cache_prefer_mask;
2726 wbinv_p = true;
2727 md->pvh_attrs &= ~PVF_MULTCLR;
2728 PMAPCOUNT(vac_flush_lots);
2729 break;
2730 case PMAP_CLEAN_PRIMARY:
2731 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2732 end_va = va_offset;
2733 wbinv_p = false;
2734 /*
2735 * Mark that the page is no longer dirty.
2736 */
2737 if ((md->pvh_attrs & PVF_DMOD) == 0)
2738 md->pvh_attrs &= ~PVF_DIRTY;
2739 PMAPCOUNT(vac_clean_one);
2740 break;
2741 default:
2742 return;
2743 }
2744
2745 KASSERT(!(md->pvh_attrs & PVF_NC));
2746
2747 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2748 md, md->pvh_attrs));
2749
2750 const size_t scache_line_size = arm_scache.dcache_line_size;
2751
2752 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2753 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2754 const vaddr_t dstp = cpu_cdstp(va_offset);
2755 const pt_entry_t opte = *ptep;
2756
2757 if (flush == PMAP_FLUSH_SECONDARY
2758 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2759 continue;
2760
2761 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2762 /*
2763 * Set up a PTE with the right coloring to flush
2764 * existing cache entries.
2765 */
2766 const pt_entry_t npte = L2_S_PROTO
2767 | pa
2768 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2769 | pte_l2_s_cache_mode;
2770 l2pte_set(ptep, npte, opte);
2771 PTE_SYNC(ptep);
2772
2773 /*
2774 * Flush it. Make sure to flush secondary cache too since
2775 * bus_dma will ignore uncached pages.
2776 */
2777 if (scache_line_size != 0) {
2778 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2779 if (wbinv_p) {
2780 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2781 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2782 } else {
2783 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2784 }
2785 } else {
2786 if (wbinv_p) {
2787 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2788 } else {
2789 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2790 }
2791 }
2792
2793 /*
2794 * Restore the page table entry since we might have interrupted
2795 * pmap_zero_page or pmap_copy_page which was already using
2796 * this pte.
2797 */
2798 if (opte) {
2799 l2pte_set(ptep, opte, npte);
2800 } else {
2801 l2pte_reset(ptep);
2802 }
2803 PTE_SYNC(ptep);
2804 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2805 }
2806 }
2807 #endif /* ARM_MMU_EXTENDED */
2808 #endif /* PMAP_CACHE_VIPT */
2809
2810 /*
2811 * Routine: pmap_page_remove
2812 * Function:
2813 * Removes this physical page from
2814 * all physical maps in which it resides.
2815 * Reflects back modify bits to the pager.
2816 */
2817 static void
2818 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2819 {
2820 struct l2_bucket *l2b;
2821 struct pv_entry *pv;
2822 pt_entry_t *ptep;
2823 #ifndef ARM_MMU_EXTENDED
2824 bool flush = false;
2825 #endif
2826 u_int flags = 0;
2827
2828 NPDEBUG(PDB_FOLLOW,
2829 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2830 pa));
2831
2832 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2833 pmap_acquire_page_lock(md);
2834 if (*pvp == NULL) {
2835 #ifdef PMAP_CACHE_VIPT
2836 /*
2837 * We *know* the page contents are about to be replaced.
2838 * Discard the exec contents
2839 */
2840 if (PV_IS_EXEC_P(md->pvh_attrs))
2841 PMAPCOUNT(exec_discarded_page_protect);
2842 md->pvh_attrs &= ~PVF_EXEC;
2843 PMAP_VALIDATE_MD_PAGE(md);
2844 #endif
2845 pmap_release_page_lock(md);
2846 return;
2847 }
2848 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2849 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2850 #endif
2851
2852 /*
2853 * Clear alias counts
2854 */
2855 #ifdef PMAP_CACHE_VIVT
2856 md->k_mappings = 0;
2857 #endif
2858 md->urw_mappings = md->uro_mappings = 0;
2859
2860 #ifdef PMAP_CACHE_VIVT
2861 pmap_clean_page(md, false);
2862 #endif
2863
2864 while ((pv = *pvp) != NULL) {
2865 pmap_t pm = pv->pv_pmap;
2866 #ifndef ARM_MMU_EXTENDED
2867 if (flush == false && pmap_is_current(pm))
2868 flush = true;
2869 #endif
2870
2871 if (pm == pmap_kernel()) {
2872 #ifdef PMAP_CACHE_VIPT
2873 /*
2874 * If this was unmanaged mapping, it must be preserved.
2875 * Move it back on the list and advance the end-of-list
2876 * pointer.
2877 */
2878 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2879 *pvp = pv;
2880 pvp = &SLIST_NEXT(pv, pv_link);
2881 continue;
2882 }
2883 if (pv->pv_flags & PVF_WRITE)
2884 md->krw_mappings--;
2885 else
2886 md->kro_mappings--;
2887 #endif
2888 PMAPCOUNT(kernel_unmappings);
2889 }
2890 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2891 PMAPCOUNT(unmappings);
2892
2893 pmap_release_page_lock(md);
2894 pmap_acquire_pmap_lock(pm);
2895
2896 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2897 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2898
2899 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2900
2901 /*
2902 * Update statistics
2903 */
2904 --pm->pm_stats.resident_count;
2905
2906 /* Wired bit */
2907 if (pv->pv_flags & PVF_WIRED)
2908 --pm->pm_stats.wired_count;
2909
2910 flags |= pv->pv_flags;
2911
2912 /*
2913 * Invalidate the PTEs.
2914 */
2915 l2pte_reset(ptep);
2916 PTE_SYNC_CURRENT(pm, ptep);
2917
2918 #ifdef ARM_MMU_EXTENDED
2919 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2920 #endif
2921
2922 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2923
2924 pmap_release_pmap_lock(pm);
2925
2926 pool_put(&pmap_pv_pool, pv);
2927 pmap_acquire_page_lock(md);
2928 #ifdef MULTIPROCESSOR
2929 /*
2930 * Restart of the beginning of the list.
2931 */
2932 pvp = &SLIST_FIRST(&md->pvh_list);
2933 #endif
2934 }
2935 /*
2936 * if we reach the end of the list and there are still mappings, they
2937 * might be able to be cached now. And they must be kernel mappings.
2938 */
2939 if (!SLIST_EMPTY(&md->pvh_list)) {
2940 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2941 }
2942
2943 #ifdef PMAP_CACHE_VIPT
2944 /*
2945 * Its EXEC cache is now gone.
2946 */
2947 if (PV_IS_EXEC_P(md->pvh_attrs))
2948 PMAPCOUNT(exec_discarded_page_protect);
2949 md->pvh_attrs &= ~PVF_EXEC;
2950 KASSERT(md->urw_mappings == 0);
2951 KASSERT(md->uro_mappings == 0);
2952 #ifndef ARM_MMU_EXTENDED
2953 if (arm_cache_prefer_mask != 0) {
2954 if (md->krw_mappings == 0)
2955 md->pvh_attrs &= ~PVF_WRITE;
2956 PMAP_VALIDATE_MD_PAGE(md);
2957 }
2958 #endif /* ARM_MMU_EXTENDED */
2959 #endif /* PMAP_CACHE_VIPT */
2960 pmap_release_page_lock(md);
2961
2962 #ifndef ARM_MMU_EXTENDED
2963 if (flush) {
2964 /*
2965 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2966 * would need a subsequent call to pmap_update() to ensure
2967 * curpm->pm_cstate.cs_all is reset. Our callers are not
2968 * required to do that (see pmap(9)), so we can't modify
2969 * the current pmap's state.
2970 */
2971 if (PV_BEEN_EXECD(flags))
2972 cpu_tlb_flushID();
2973 else
2974 cpu_tlb_flushD();
2975 }
2976 cpu_cpwait();
2977 #endif /* ARM_MMU_EXTENDED */
2978 }
2979
2980 /*
2981 * pmap_t pmap_create(void)
2982 *
2983 * Create a new pmap structure from scratch.
2984 */
2985 pmap_t
2986 pmap_create(void)
2987 {
2988 pmap_t pm;
2989
2990 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2991
2992 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2993 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2994 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2995
2996 pm->pm_stats.wired_count = 0;
2997 pm->pm_stats.resident_count = 1;
2998 #ifdef ARM_MMU_EXTENDED
2999 #ifdef MULTIPROCESSOR
3000 kcpuset_create(&pm->pm_active, true);
3001 kcpuset_create(&pm->pm_onproc, true);
3002 #endif
3003 #else
3004 pm->pm_cstate.cs_all = 0;
3005 #endif
3006 pmap_alloc_l1(pm);
3007
3008 /*
3009 * Note: The pool cache ensures that the pm_l2[] array is already
3010 * initialised to zero.
3011 */
3012
3013 pmap_pinit(pm);
3014
3015 return (pm);
3016 }
3017
3018 u_int
3019 arm32_mmap_flags(paddr_t pa)
3020 {
3021 /*
3022 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3023 * and we're using the upper bits in page numbers to pass flags around
3024 * so we might as well use the same bits
3025 */
3026 return (u_int)pa & PMAP_MD_MASK;
3027 }
3028 /*
3029 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3030 * u_int flags)
3031 *
3032 * Insert the given physical page (p) at
3033 * the specified virtual address (v) in the
3034 * target physical map with the protection requested.
3035 *
3036 * NB: This is the only routine which MAY NOT lazy-evaluate
3037 * or lose information. That is, this routine must actually
3038 * insert this page into the given map NOW.
3039 */
3040 int
3041 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3042 {
3043 struct l2_bucket *l2b;
3044 struct vm_page *pg, *opg;
3045 u_int nflags;
3046 u_int oflags;
3047 const bool kpm_p = (pm == pmap_kernel());
3048 #ifdef ARM_HAS_VBAR
3049 const bool vector_page_p = false;
3050 #else
3051 const bool vector_page_p = (va == vector_page);
3052 #endif
3053
3054 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3055
3056 UVMHIST_LOG(maphist, " (pm %#jx va %#jx pa %#jx prot %#jx",
3057 (uintptr_t)pm, va, pa, prot);
3058 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0);
3059
3060 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3061 KDASSERT(((va | pa) & PGOFSET) == 0);
3062
3063 /*
3064 * Get a pointer to the page. Later on in this function, we
3065 * test for a managed page by checking pg != NULL.
3066 */
3067 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3068
3069 nflags = 0;
3070 if (prot & VM_PROT_WRITE)
3071 nflags |= PVF_WRITE;
3072 if (prot & VM_PROT_EXECUTE)
3073 nflags |= PVF_EXEC;
3074 if (flags & PMAP_WIRED)
3075 nflags |= PVF_WIRED;
3076
3077 pmap_acquire_pmap_lock(pm);
3078
3079 /*
3080 * Fetch the L2 bucket which maps this page, allocating one if
3081 * necessary for user pmaps.
3082 */
3083 if (kpm_p) {
3084 l2b = pmap_get_l2_bucket(pm, va);
3085 } else {
3086 l2b = pmap_alloc_l2_bucket(pm, va);
3087 }
3088 if (l2b == NULL) {
3089 if (flags & PMAP_CANFAIL) {
3090 pmap_release_pmap_lock(pm);
3091 return (ENOMEM);
3092 }
3093 panic("pmap_enter: failed to allocate L2 bucket");
3094 }
3095 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3096 const pt_entry_t opte = *ptep;
3097 pt_entry_t npte = pa;
3098 oflags = 0;
3099
3100 if (opte) {
3101 /*
3102 * There is already a mapping at this address.
3103 * If the physical address is different, lookup the
3104 * vm_page.
3105 */
3106 if (l2pte_pa(opte) != pa) {
3107 KASSERT(!pmap_pv_tracked(pa));
3108 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3109 } else
3110 opg = pg;
3111 } else
3112 opg = NULL;
3113
3114 struct pmap_page *pp = pmap_pv_tracked(pa);
3115
3116 if (pg || pp) {
3117 KASSERT((pg != NULL) != (pp != NULL));
3118 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3119 PMAP_PAGE_TO_MD(pp);
3120
3121 /*
3122 * This is to be a managed mapping.
3123 */
3124 pmap_acquire_page_lock(md);
3125 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3126 /*
3127 * - The access type indicates that we don't need
3128 * to do referenced emulation.
3129 * OR
3130 * - The physical page has already been referenced
3131 * so no need to re-do referenced emulation here.
3132 */
3133 npte |= l2pte_set_readonly(L2_S_PROTO);
3134
3135 nflags |= PVF_REF;
3136
3137 if ((prot & VM_PROT_WRITE) != 0 &&
3138 ((flags & VM_PROT_WRITE) != 0 ||
3139 (md->pvh_attrs & PVF_MOD) != 0)) {
3140 /*
3141 * This is a writable mapping, and the
3142 * page's mod state indicates it has
3143 * already been modified. Make it
3144 * writable from the outset.
3145 */
3146 npte = l2pte_set_writable(npte);
3147 nflags |= PVF_MOD;
3148 }
3149
3150 #ifdef ARM_MMU_EXTENDED
3151 /*
3152 * If the page has been cleaned, then the pvh_attrs
3153 * will have PVF_EXEC set, so mark it execute so we
3154 * don't get an access fault when trying to execute
3155 * from it.
3156 */
3157 if (md->pvh_attrs & nflags & PVF_EXEC) {
3158 npte &= ~L2_XS_XN;
3159 }
3160 #endif
3161 } else {
3162 /*
3163 * Need to do page referenced emulation.
3164 */
3165 npte |= L2_TYPE_INV;
3166 }
3167
3168 if (flags & ARM32_MMAP_WRITECOMBINE) {
3169 npte |= pte_l2_s_wc_mode;
3170 } else
3171 npte |= pte_l2_s_cache_mode;
3172
3173 if (pg != NULL && pg == opg) {
3174 /*
3175 * We're changing the attrs of an existing mapping.
3176 */
3177 oflags = pmap_modify_pv(md, pa, pm, va,
3178 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3179 PVF_MOD | PVF_REF, nflags);
3180
3181 #ifdef PMAP_CACHE_VIVT
3182 /*
3183 * We may need to flush the cache if we're
3184 * doing rw-ro...
3185 */
3186 if (pm->pm_cstate.cs_cache_d &&
3187 (oflags & PVF_NC) == 0 &&
3188 l2pte_writable_p(opte) &&
3189 (prot & VM_PROT_WRITE) == 0)
3190 cpu_dcache_wb_range(va, PAGE_SIZE);
3191 #endif
3192 } else {
3193 struct pv_entry *pv;
3194 /*
3195 * New mapping, or changing the backing page
3196 * of an existing mapping.
3197 */
3198 if (opg) {
3199 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3200 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3201
3202 /*
3203 * Replacing an existing mapping with a new one.
3204 * It is part of our managed memory so we
3205 * must remove it from the PV list
3206 */
3207 pv = pmap_remove_pv(omd, opa, pm, va);
3208 pmap_vac_me_harder(omd, opa, pm, 0);
3209 oflags = pv->pv_flags;
3210
3211 #ifdef PMAP_CACHE_VIVT
3212 /*
3213 * If the old mapping was valid (ref/mod
3214 * emulation creates 'invalid' mappings
3215 * initially) then make sure to frob
3216 * the cache.
3217 */
3218 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3219 pmap_cache_wbinv_page(pm, va, true,
3220 oflags);
3221 }
3222 #endif
3223 } else {
3224 pmap_release_page_lock(md);
3225 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3226 if (pv == NULL) {
3227 pmap_release_pmap_lock(pm);
3228 if ((flags & PMAP_CANFAIL) == 0)
3229 panic("pmap_enter: "
3230 "no pv entries");
3231
3232 pmap_free_l2_bucket(pm, l2b, 0);
3233 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3234 0, 0, 0, 0);
3235 return (ENOMEM);
3236 }
3237 pmap_acquire_page_lock(md);
3238 }
3239
3240 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3241 }
3242 pmap_release_page_lock(md);
3243 } else {
3244 /*
3245 * We're mapping an unmanaged page.
3246 * These are always readable, and possibly writable, from
3247 * the get go as we don't need to track ref/mod status.
3248 */
3249 npte |= l2pte_set_readonly(L2_S_PROTO);
3250 if (prot & VM_PROT_WRITE)
3251 npte = l2pte_set_writable(npte);
3252
3253 /*
3254 * Make sure the vector table is mapped cacheable
3255 */
3256 if ((vector_page_p && !kpm_p)
3257 || (flags & ARM32_MMAP_CACHEABLE)) {
3258 npte |= pte_l2_s_cache_mode;
3259 #ifdef ARM_MMU_EXTENDED
3260 npte &= ~L2_XS_XN; /* and executable */
3261 #endif
3262 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3263 npte |= pte_l2_s_wc_mode;
3264 }
3265 if (opg) {
3266 /*
3267 * Looks like there's an existing 'managed' mapping
3268 * at this address.
3269 */
3270 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3271 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3272
3273 pmap_acquire_page_lock(omd);
3274 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3275 pmap_vac_me_harder(omd, opa, pm, 0);
3276 oflags = pv->pv_flags;
3277 pmap_release_page_lock(omd);
3278
3279 #ifdef PMAP_CACHE_VIVT
3280 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3281 pmap_cache_wbinv_page(pm, va, true, oflags);
3282 }
3283 #endif
3284 pool_put(&pmap_pv_pool, pv);
3285 }
3286 }
3287
3288 /*
3289 * Make sure userland mappings get the right permissions
3290 */
3291 if (!vector_page_p && !kpm_p) {
3292 npte |= L2_S_PROT_U;
3293 #ifdef ARM_MMU_EXTENDED
3294 npte |= L2_XS_nG; /* user pages are not global */
3295 #endif
3296 }
3297
3298 /*
3299 * Keep the stats up to date
3300 */
3301 if (opte == 0) {
3302 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3303 pm->pm_stats.resident_count++;
3304 }
3305
3306 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3307
3308 #if defined(ARM_MMU_EXTENDED)
3309 /*
3310 * If exec protection was requested but the page hasn't been synced,
3311 * sync it now and allow execution from it.
3312 */
3313 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3314 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3315 npte &= ~L2_XS_XN;
3316 pmap_syncicache_page(md, pa);
3317 PMAPCOUNT(exec_synced_map);
3318 }
3319 #endif
3320 /*
3321 * If this is just a wiring change, the two PTEs will be
3322 * identical, so there's no need to update the page table.
3323 */
3324 if (npte != opte) {
3325 l2pte_reset(ptep);
3326 PTE_SYNC(ptep);
3327 if (l2pte_valid_p(opte)) {
3328 pmap_tlb_flush_SE(pm, va, oflags);
3329 }
3330 l2pte_set(ptep, npte, 0);
3331 PTE_SYNC(ptep);
3332 #ifndef ARM_MMU_EXTENDED
3333 bool is_cached = pmap_is_cached(pm);
3334 if (is_cached) {
3335 /*
3336 * We only need to frob the cache/tlb if this pmap
3337 * is current
3338 */
3339 if (!vector_page_p && l2pte_valid_p(npte)) {
3340 /*
3341 * This mapping is likely to be accessed as
3342 * soon as we return to userland. Fix up the
3343 * L1 entry to avoid taking another
3344 * page/domain fault.
3345 */
3346 pd_entry_t *pdep = pmap_l1_kva(pm)
3347 + l1pte_index(va);
3348 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3349 | L1_C_DOM(pmap_domain(pm));
3350 if (*pdep != pde) {
3351 l1pte_setone(pdep, pde);
3352 PDE_SYNC(pdep);
3353 }
3354 }
3355 }
3356 #endif /* !ARM_MMU_EXTENDED */
3357
3358 #ifndef ARM_MMU_EXTENDED
3359 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx",
3360 is_cached, pm->pm_cstate.cs_all, 0, 0);
3361
3362 if (pg != NULL) {
3363 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3364
3365 pmap_acquire_page_lock(md);
3366 pmap_vac_me_harder(md, pa, pm, va);
3367 pmap_release_page_lock(md);
3368 }
3369 #endif
3370 }
3371 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3372 if (pg) {
3373 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3374
3375 pmap_acquire_page_lock(md);
3376 #ifndef ARM_MMU_EXTENDED
3377 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3378 #endif
3379 PMAP_VALIDATE_MD_PAGE(md);
3380 pmap_release_page_lock(md);
3381 }
3382 #endif
3383
3384 pmap_release_pmap_lock(pm);
3385
3386 return (0);
3387 }
3388
3389 /*
3390 * pmap_remove()
3391 *
3392 * pmap_remove is responsible for nuking a number of mappings for a range
3393 * of virtual address space in the current pmap. To do this efficiently
3394 * is interesting, because in a number of cases a wide virtual address
3395 * range may be supplied that contains few actual mappings. So, the
3396 * optimisations are:
3397 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3398 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3399 * maybe do just a partial cache clean. This path of execution is
3400 * complicated by the fact that the cache must be flushed _before_
3401 * the PTE is nuked, being a VAC :-)
3402 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3403 * all invalidations until pmap_update(), since pmap_remove_all() has
3404 * already flushed the cache.
3405 * 4. Maybe later fast-case a single page, but I don't think this is
3406 * going to make _that_ much difference overall.
3407 */
3408
3409 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3410
3411 void
3412 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3413 {
3414 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3415 UVMHIST_LOG(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3416 (uintptr_t)pm, sva, eva, 0);
3417
3418 /*
3419 * we lock in the pmap => pv_head direction
3420 */
3421 pmap_acquire_pmap_lock(pm);
3422
3423 #ifndef ARM_MMU_EXTENDED
3424 u_int cleanlist_idx, total, cnt;
3425 struct {
3426 vaddr_t va;
3427 pt_entry_t *ptep;
3428 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3429
3430 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3431 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3432 if (pm->pm_cstate.cs_tlb == 0)
3433 pm->pm_remove_all = true;
3434 } else
3435 cleanlist_idx = 0;
3436 total = 0;
3437 #endif
3438
3439 while (sva < eva) {
3440 /*
3441 * Do one L2 bucket's worth at a time.
3442 */
3443 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3444 if (next_bucket > eva)
3445 next_bucket = eva;
3446
3447 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3448 if (l2b == NULL) {
3449 sva = next_bucket;
3450 continue;
3451 }
3452
3453 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3454 u_int mappings = 0;
3455
3456 for (;sva < next_bucket;
3457 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3458 pt_entry_t opte = *ptep;
3459
3460 if (opte == 0) {
3461 /* Nothing here, move along */
3462 continue;
3463 }
3464
3465 u_int flags = PVF_REF;
3466 paddr_t pa = l2pte_pa(opte);
3467 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3468
3469 /*
3470 * Update flags. In a number of circumstances,
3471 * we could cluster a lot of these and do a
3472 * number of sequential pages in one go.
3473 */
3474 if (pg != NULL) {
3475 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3476 struct pv_entry *pv;
3477
3478 pmap_acquire_page_lock(md);
3479 pv = pmap_remove_pv(md, pa, pm, sva);
3480 pmap_vac_me_harder(md, pa, pm, 0);
3481 pmap_release_page_lock(md);
3482 if (pv != NULL) {
3483 if (pm->pm_remove_all == false) {
3484 flags = pv->pv_flags;
3485 }
3486 pool_put(&pmap_pv_pool, pv);
3487 }
3488 }
3489 mappings += PAGE_SIZE / L2_S_SIZE;
3490
3491 if (!l2pte_valid_p(opte)) {
3492 /*
3493 * Ref/Mod emulation is still active for this
3494 * mapping, therefore it is has not yet been
3495 * accessed. No need to frob the cache/tlb.
3496 */
3497 l2pte_reset(ptep);
3498 PTE_SYNC_CURRENT(pm, ptep);
3499 continue;
3500 }
3501
3502 #ifdef ARM_MMU_EXTENDED
3503 l2pte_reset(ptep);
3504 PTE_SYNC(ptep);
3505 if (__predict_false(pm->pm_remove_all == false)) {
3506 pmap_tlb_flush_SE(pm, sva, flags);
3507 }
3508 #else
3509 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3510 /* Add to the clean list. */
3511 cleanlist[cleanlist_idx].ptep = ptep;
3512 cleanlist[cleanlist_idx].va =
3513 sva | (flags & PVF_EXEC);
3514 cleanlist_idx++;
3515 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3516 /* Nuke everything if needed. */
3517 #ifdef PMAP_CACHE_VIVT
3518 pmap_cache_wbinv_all(pm, PVF_EXEC);
3519 #endif
3520 /*
3521 * Roll back the previous PTE list,
3522 * and zero out the current PTE.
3523 */
3524 for (cnt = 0;
3525 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3526 l2pte_reset(cleanlist[cnt].ptep);
3527 PTE_SYNC(cleanlist[cnt].ptep);
3528 }
3529 l2pte_reset(ptep);
3530 PTE_SYNC(ptep);
3531 cleanlist_idx++;
3532 pm->pm_remove_all = true;
3533 } else {
3534 l2pte_reset(ptep);
3535 PTE_SYNC(ptep);
3536 if (pm->pm_remove_all == false) {
3537 pmap_tlb_flush_SE(pm, sva, flags);
3538 }
3539 }
3540 #endif
3541 }
3542
3543 #ifndef ARM_MMU_EXTENDED
3544 /*
3545 * Deal with any left overs
3546 */
3547 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3548 total += cleanlist_idx;
3549 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3550 l2pte_reset(cleanlist[cnt].ptep);
3551 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3552 vaddr_t va = cleanlist[cnt].va;
3553 if (pm->pm_cstate.cs_all != 0) {
3554 vaddr_t clva = va & ~PAGE_MASK;
3555 u_int flags = va & PVF_EXEC;
3556 #ifdef PMAP_CACHE_VIVT
3557 pmap_cache_wbinv_page(pm, clva, true,
3558 PVF_REF | PVF_WRITE | flags);
3559 #endif
3560 pmap_tlb_flush_SE(pm, clva,
3561 PVF_REF | flags);
3562 }
3563 }
3564
3565 /*
3566 * If it looks like we're removing a whole bunch
3567 * of mappings, it's faster to just write-back
3568 * the whole cache now and defer TLB flushes until
3569 * pmap_update() is called.
3570 */
3571 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3572 cleanlist_idx = 0;
3573 else {
3574 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3575 #ifdef PMAP_CACHE_VIVT
3576 pmap_cache_wbinv_all(pm, PVF_EXEC);
3577 #endif
3578 pm->pm_remove_all = true;
3579 }
3580 }
3581 #endif /* ARM_MMU_EXTENDED */
3582
3583 pmap_free_l2_bucket(pm, l2b, mappings);
3584 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3585 }
3586
3587 pmap_release_pmap_lock(pm);
3588 }
3589
3590 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3591 static struct pv_entry *
3592 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3593 {
3594 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3595 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3596 struct pv_entry *pv;
3597
3598 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3599 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3600 KASSERT(pmap_page_locked_p(md));
3601
3602 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3603 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3604 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3605
3606 /*
3607 * If we are removing a writeable mapping to a cached exec page,
3608 * if it's the last mapping then clear it execness other sync
3609 * the page to the icache.
3610 */
3611 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3612 && (pv->pv_flags & PVF_WRITE) != 0) {
3613 if (SLIST_EMPTY(&md->pvh_list)) {
3614 md->pvh_attrs &= ~PVF_EXEC;
3615 PMAPCOUNT(exec_discarded_kremove);
3616 } else {
3617 pmap_syncicache_page(md, pa);
3618 PMAPCOUNT(exec_synced_kremove);
3619 }
3620 }
3621 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3622
3623 return pv;
3624 }
3625 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3626
3627 /*
3628 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3629 *
3630 * We assume there is already sufficient KVM space available
3631 * to do this, as we can't allocate L2 descriptor tables/metadata
3632 * from here.
3633 */
3634 void
3635 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3636 {
3637 #ifdef PMAP_CACHE_VIVT
3638 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3639 #endif
3640 #ifdef PMAP_CACHE_VIPT
3641 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3642 struct vm_page *opg;
3643 #ifndef ARM_MMU_EXTENDED
3644 struct pv_entry *pv = NULL;
3645 #endif
3646 #endif
3647 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3648
3649 UVMHIST_FUNC(__func__);
3650
3651 if (pmap_initialized) {
3652 UVMHIST_CALLED(maphist);
3653 UVMHIST_LOG(maphist, " (va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx",
3654 va, pa, prot, flags);
3655 }
3656
3657 pmap_t kpm = pmap_kernel();
3658 pmap_acquire_pmap_lock(kpm);
3659 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3660 const size_t l1slot __diagused = l1pte_index(va);
3661 KASSERTMSG(l2b != NULL,
3662 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3663 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3664 kpm->pm_l2[L2_IDX(l1slot)]
3665 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3666 : NULL,
3667 kpm->pm_l2[L2_IDX(l1slot)]
3668 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3669 : NULL);
3670 KASSERT(l2b->l2b_kva != NULL);
3671
3672 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3673 const pt_entry_t opte = *ptep;
3674
3675 if (opte == 0) {
3676 PMAPCOUNT(kenter_mappings);
3677 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3678 } else {
3679 PMAPCOUNT(kenter_remappings);
3680 #ifdef PMAP_CACHE_VIPT
3681 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3682 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3683 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3684 #endif
3685 if (opg && arm_cache_prefer_mask != 0) {
3686 KASSERT(opg != pg);
3687 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3688 KASSERT((flags & PMAP_KMPAGE) == 0);
3689 #ifndef ARM_MMU_EXTENDED
3690 pmap_acquire_page_lock(omd);
3691 pv = pmap_kremove_pg(opg, va);
3692 pmap_release_page_lock(omd);
3693 #endif
3694 }
3695 #endif
3696 if (l2pte_valid_p(opte)) {
3697 l2pte_reset(ptep);
3698 PTE_SYNC(ptep);
3699 #ifdef PMAP_CACHE_VIVT
3700 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3701 #endif
3702 cpu_tlb_flushD_SE(va);
3703 cpu_cpwait();
3704 }
3705 }
3706 pmap_release_pmap_lock(kpm);
3707 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3708
3709 if (flags & PMAP_PTE) {
3710 KASSERT((flags & PMAP_CACHE_MASK) == 0);
3711 if (!(flags & PMAP_NOCACHE))
3712 npte |= pte_l2_s_cache_mode_pt;
3713 } else {
3714 switch (flags & PMAP_CACHE_MASK) {
3715 case PMAP_NOCACHE:
3716 break;
3717 case PMAP_WRITE_COMBINE:
3718 npte |= pte_l2_s_wc_mode;
3719 break;
3720 default:
3721 npte |= pte_l2_s_cache_mode;
3722 break;
3723 }
3724 }
3725 #ifdef ARM_MMU_EXTENDED
3726 if (prot & VM_PROT_EXECUTE)
3727 npte &= ~L2_XS_XN;
3728 #endif
3729 l2pte_set(ptep, npte, 0);
3730 PTE_SYNC(ptep);
3731
3732 if (pg) {
3733 if (flags & PMAP_KMPAGE) {
3734 KASSERT(md->urw_mappings == 0);
3735 KASSERT(md->uro_mappings == 0);
3736 KASSERT(md->krw_mappings == 0);
3737 KASSERT(md->kro_mappings == 0);
3738 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3739 KASSERT(pv == NULL);
3740 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3741 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3742 /* if there is a color conflict, evict from cache. */
3743 if (pmap_is_page_colored_p(md)
3744 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3745 PMAPCOUNT(vac_color_change);
3746 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3747 } else if (md->pvh_attrs & PVF_MULTCLR) {
3748 /*
3749 * If this page has multiple colors, expunge
3750 * them.
3751 */
3752 PMAPCOUNT(vac_flush_lots2);
3753 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3754 }
3755 /*
3756 * Since this is a KMPAGE, there can be no contention
3757 * for this page so don't lock it.
3758 */
3759 md->pvh_attrs &= PAGE_SIZE - 1;
3760 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3761 | (va & arm_cache_prefer_mask);
3762 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3763 md->pvh_attrs |= PVF_KMPAGE;
3764 #endif
3765 atomic_inc_32(&pmap_kmpages);
3766 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3767 } else if (arm_cache_prefer_mask != 0) {
3768 if (pv == NULL) {
3769 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3770 KASSERT(pv != NULL);
3771 }
3772 pmap_acquire_page_lock(md);
3773 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3774 PVF_WIRED | PVF_KENTRY
3775 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3776 if ((prot & VM_PROT_WRITE)
3777 && !(md->pvh_attrs & PVF_NC))
3778 md->pvh_attrs |= PVF_DIRTY;
3779 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3780 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3781 pmap_release_page_lock(md);
3782 #endif
3783 }
3784 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3785 } else {
3786 if (pv != NULL)
3787 pool_put(&pmap_pv_pool, pv);
3788 #endif
3789 }
3790 if (pmap_initialized) {
3791 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)",
3792 (uintptr_t)ptep, opte, npte, 0);
3793 }
3794
3795 }
3796
3797 void
3798 pmap_kremove(vaddr_t va, vsize_t len)
3799 {
3800 #ifdef UVMHIST
3801 u_int total_mappings = 0;
3802 #endif
3803
3804 PMAPCOUNT(kenter_unmappings);
3805
3806 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3807
3808 UVMHIST_LOG(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3809
3810 const vaddr_t eva = va + len;
3811
3812 pmap_acquire_pmap_lock(pmap_kernel());
3813
3814 while (va < eva) {
3815 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3816 if (next_bucket > eva)
3817 next_bucket = eva;
3818
3819 pmap_t kpm = pmap_kernel();
3820 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3821 KDASSERT(l2b != NULL);
3822
3823 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3824 pt_entry_t *ptep = sptep;
3825 u_int mappings = 0;
3826
3827 while (va < next_bucket) {
3828 const pt_entry_t opte = *ptep;
3829 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3830 if (opg != NULL) {
3831 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3832
3833 if (omd->pvh_attrs & PVF_KMPAGE) {
3834 KASSERT(omd->urw_mappings == 0);
3835 KASSERT(omd->uro_mappings == 0);
3836 KASSERT(omd->krw_mappings == 0);
3837 KASSERT(omd->kro_mappings == 0);
3838 omd->pvh_attrs &= ~PVF_KMPAGE;
3839 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3840 if (arm_cache_prefer_mask != 0) {
3841 omd->pvh_attrs &= ~PVF_WRITE;
3842 }
3843 #endif
3844 atomic_dec_32(&pmap_kmpages);
3845 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3846 } else if (arm_cache_prefer_mask != 0) {
3847 pmap_acquire_page_lock(omd);
3848 pool_put(&pmap_pv_pool,
3849 pmap_kremove_pg(opg, va));
3850 pmap_release_page_lock(omd);
3851 #endif
3852 }
3853 }
3854 if (l2pte_valid_p(opte)) {
3855 l2pte_reset(ptep);
3856 PTE_SYNC(ptep);
3857 #ifdef PMAP_CACHE_VIVT
3858 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3859 #endif
3860 cpu_tlb_flushD_SE(va);
3861
3862 mappings += PAGE_SIZE / L2_S_SIZE;
3863 }
3864 va += PAGE_SIZE;
3865 ptep += PAGE_SIZE / L2_S_SIZE;
3866 }
3867 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3868 mappings, l2b->l2b_occupancy);
3869 l2b->l2b_occupancy -= mappings;
3870 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3871 #ifdef UVMHIST
3872 total_mappings += mappings;
3873 #endif
3874 }
3875 pmap_release_pmap_lock(pmap_kernel());
3876 cpu_cpwait();
3877 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)",
3878 total_mappings, 0, 0, 0);
3879 }
3880
3881 bool
3882 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3883 {
3884
3885 return pmap_extract_coherency(pm, va, pap, NULL);
3886 }
3887
3888 bool
3889 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3890 {
3891 struct l2_dtable *l2;
3892 pd_entry_t *pdep, pde;
3893 pt_entry_t *ptep, pte;
3894 paddr_t pa;
3895 u_int l1slot;
3896 bool coherent;
3897
3898 pmap_acquire_pmap_lock(pm);
3899
3900 l1slot = l1pte_index(va);
3901 pdep = pmap_l1_kva(pm) + l1slot;
3902 pde = *pdep;
3903
3904 if (l1pte_section_p(pde)) {
3905 /*
3906 * These should only happen for pmap_kernel()
3907 */
3908 KDASSERT(pm == pmap_kernel());
3909 pmap_release_pmap_lock(pm);
3910 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3911 if (l1pte_supersection_p(pde)) {
3912 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3913 } else
3914 #endif
3915 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3916 coherent = (pde & L1_S_CACHE_MASK) == 0;
3917 } else {
3918 /*
3919 * Note that we can't rely on the validity of the L1
3920 * descriptor as an indication that a mapping exists.
3921 * We have to look it up in the L2 dtable.
3922 */
3923 l2 = pm->pm_l2[L2_IDX(l1slot)];
3924
3925 if (l2 == NULL ||
3926 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3927 pmap_release_pmap_lock(pm);
3928 return false;
3929 }
3930
3931 pte = ptep[l2pte_index(va)];
3932 pmap_release_pmap_lock(pm);
3933
3934 if (pte == 0)
3935 return false;
3936
3937 switch (pte & L2_TYPE_MASK) {
3938 case L2_TYPE_L:
3939 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3940 coherent = (pte & L2_L_CACHE_MASK) == 0;
3941 break;
3942
3943 default:
3944 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3945 coherent = (pte & L2_S_CACHE_MASK) == 0;
3946 break;
3947 }
3948 }
3949
3950 if (pap != NULL)
3951 *pap = pa;
3952
3953 if (coherentp != NULL)
3954 *coherentp = (pm == pmap_kernel() && coherent);
3955
3956 return true;
3957 }
3958
3959 /*
3960 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
3961 * that map it
3962 */
3963
3964 static void
3965 pmap_pv_remove(paddr_t pa)
3966 {
3967 struct pmap_page *pp;
3968
3969 pp = pmap_pv_tracked(pa);
3970 if (pp == NULL)
3971 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
3972 pa);
3973
3974 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
3975 pmap_page_remove(md, pa);
3976 }
3977
3978 void
3979 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
3980 {
3981
3982 /* the only case is remove at the moment */
3983 KASSERT(prot == VM_PROT_NONE);
3984 pmap_pv_remove(pa);
3985 }
3986
3987 void
3988 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3989 {
3990 struct l2_bucket *l2b;
3991 vaddr_t next_bucket;
3992
3993 NPDEBUG(PDB_PROTECT,
3994 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3995 pm, sva, eva, prot));
3996
3997 if ((prot & VM_PROT_READ) == 0) {
3998 pmap_remove(pm, sva, eva);
3999 return;
4000 }
4001
4002 if (prot & VM_PROT_WRITE) {
4003 /*
4004 * If this is a read->write transition, just ignore it and let
4005 * uvm_fault() take care of it later.
4006 */
4007 return;
4008 }
4009
4010 pmap_acquire_pmap_lock(pm);
4011
4012 #ifndef ARM_MMU_EXTENDED
4013 const bool flush = eva - sva >= PAGE_SIZE * 4;
4014 u_int flags = 0;
4015 #endif
4016 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4017
4018 while (sva < eva) {
4019 next_bucket = L2_NEXT_BUCKET_VA(sva);
4020 if (next_bucket > eva)
4021 next_bucket = eva;
4022
4023 l2b = pmap_get_l2_bucket(pm, sva);
4024 if (l2b == NULL) {
4025 sva = next_bucket;
4026 continue;
4027 }
4028
4029 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4030
4031 while (sva < next_bucket) {
4032 const pt_entry_t opte = *ptep;
4033 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4034 struct vm_page *pg;
4035 #ifndef ARM_MMU_EXTENDED
4036 u_int f;
4037 #endif
4038
4039 #ifdef PMAP_CACHE_VIVT
4040 /*
4041 * OK, at this point, we know we're doing
4042 * write-protect operation. If the pmap is
4043 * active, write-back the page.
4044 */
4045 pmap_cache_wbinv_page(pm, sva, false,
4046 PVF_REF | PVF_WRITE);
4047 #endif
4048
4049 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4050 pt_entry_t npte = l2pte_set_readonly(opte);
4051 l2pte_reset(ptep);
4052 PTE_SYNC(ptep);
4053 #ifdef ARM_MMU_EXTENDED
4054 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4055 #endif
4056 l2pte_set(ptep, npte, 0);
4057 PTE_SYNC(ptep);
4058
4059 if (pg != NULL) {
4060 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4061 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4062
4063 pmap_acquire_page_lock(md);
4064 #ifndef ARM_MMU_EXTENDED
4065 f =
4066 #endif
4067 pmap_modify_pv(md, pa, pm, sva,
4068 clr_mask, 0);
4069 pmap_vac_me_harder(md, pa, pm, sva);
4070 pmap_release_page_lock(md);
4071 #ifndef ARM_MMU_EXTENDED
4072 } else {
4073 f = PVF_REF | PVF_EXEC;
4074 }
4075
4076 if (flush) {
4077 flags |= f;
4078 } else {
4079 pmap_tlb_flush_SE(pm, sva, f);
4080 #endif
4081 }
4082 }
4083
4084 sva += PAGE_SIZE;
4085 ptep += PAGE_SIZE / L2_S_SIZE;
4086 }
4087 }
4088
4089 #ifndef ARM_MMU_EXTENDED
4090 if (flush) {
4091 if (PV_BEEN_EXECD(flags)) {
4092 pmap_tlb_flushID(pm);
4093 } else if (PV_BEEN_REFD(flags)) {
4094 pmap_tlb_flushD(pm);
4095 }
4096 }
4097 #endif
4098
4099 pmap_release_pmap_lock(pm);
4100 }
4101
4102 void
4103 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4104 {
4105 struct l2_bucket *l2b;
4106 pt_entry_t *ptep;
4107 vaddr_t next_bucket;
4108 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4109
4110 NPDEBUG(PDB_EXEC,
4111 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4112 pm, sva, eva));
4113
4114 pmap_acquire_pmap_lock(pm);
4115
4116 while (sva < eva) {
4117 next_bucket = L2_NEXT_BUCKET_VA(sva);
4118 if (next_bucket > eva)
4119 next_bucket = eva;
4120
4121 l2b = pmap_get_l2_bucket(pm, sva);
4122 if (l2b == NULL) {
4123 sva = next_bucket;
4124 continue;
4125 }
4126
4127 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4128 sva < next_bucket;
4129 sva += page_size,
4130 ptep += PAGE_SIZE / L2_S_SIZE,
4131 page_size = PAGE_SIZE) {
4132 if (l2pte_valid_p(*ptep)) {
4133 cpu_icache_sync_range(sva,
4134 min(page_size, eva - sva));
4135 }
4136 }
4137 }
4138
4139 pmap_release_pmap_lock(pm);
4140 }
4141
4142 void
4143 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4144 {
4145 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4146 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4147
4148 NPDEBUG(PDB_PROTECT,
4149 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4150 md, pa, prot));
4151
4152 switch(prot) {
4153 case VM_PROT_READ|VM_PROT_WRITE:
4154 #if defined(ARM_MMU_EXTENDED)
4155 pmap_acquire_page_lock(md);
4156 pmap_clearbit(md, pa, PVF_EXEC);
4157 pmap_release_page_lock(md);
4158 break;
4159 #endif
4160 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4161 break;
4162
4163 case VM_PROT_READ:
4164 #if defined(ARM_MMU_EXTENDED)
4165 pmap_acquire_page_lock(md);
4166 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4167 pmap_release_page_lock(md);
4168 break;
4169 #endif
4170 case VM_PROT_READ|VM_PROT_EXECUTE:
4171 pmap_acquire_page_lock(md);
4172 pmap_clearbit(md, pa, PVF_WRITE);
4173 pmap_release_page_lock(md);
4174 break;
4175
4176 default:
4177 pmap_page_remove(md, pa);
4178 break;
4179 }
4180 }
4181
4182 /*
4183 * pmap_clear_modify:
4184 *
4185 * Clear the "modified" attribute for a page.
4186 */
4187 bool
4188 pmap_clear_modify(struct vm_page *pg)
4189 {
4190 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4191 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4192 bool rv;
4193
4194 pmap_acquire_page_lock(md);
4195
4196 if (md->pvh_attrs & PVF_MOD) {
4197 rv = true;
4198 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4199 /*
4200 * If we are going to clear the modified bit and there are
4201 * no other modified bits set, flush the page to memory and
4202 * mark it clean.
4203 */
4204 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4205 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4206 #endif
4207 pmap_clearbit(md, pa, PVF_MOD);
4208 } else {
4209 rv = false;
4210 }
4211 pmap_release_page_lock(md);
4212
4213 return rv;
4214 }
4215
4216 /*
4217 * pmap_clear_reference:
4218 *
4219 * Clear the "referenced" attribute for a page.
4220 */
4221 bool
4222 pmap_clear_reference(struct vm_page *pg)
4223 {
4224 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4225 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4226 bool rv;
4227
4228 pmap_acquire_page_lock(md);
4229
4230 if (md->pvh_attrs & PVF_REF) {
4231 rv = true;
4232 pmap_clearbit(md, pa, PVF_REF);
4233 } else {
4234 rv = false;
4235 }
4236 pmap_release_page_lock(md);
4237
4238 return rv;
4239 }
4240
4241 /*
4242 * pmap_is_modified:
4243 *
4244 * Test if a page has the "modified" attribute.
4245 */
4246 /* See <arm/arm32/pmap.h> */
4247
4248 /*
4249 * pmap_is_referenced:
4250 *
4251 * Test if a page has the "referenced" attribute.
4252 */
4253 /* See <arm/arm32/pmap.h> */
4254
4255 #if defined(ARM_MMU_EXTENDED) && 0
4256 int
4257 pmap_prefetchabt_fixup(void *v)
4258 {
4259 struct trapframe * const tf = v;
4260 vaddr_t va = trunc_page(tf->tf_pc);
4261 int rv = ABORT_FIXUP_FAILED;
4262
4263 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4264 return rv;
4265
4266 kpreempt_disable();
4267 pmap_t pm = curcpu()->ci_pmap_cur;
4268 const size_t l1slot = l1pte_index(va);
4269 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4270 if (l2 == NULL)
4271 goto out;
4272
4273 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4274 if (l2b->l2b_kva == NULL)
4275 goto out;
4276
4277 /*
4278 * Check the PTE itself.
4279 */
4280 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4281 const pt_entry_t opte = *ptep;
4282 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4283 goto out;
4284
4285 paddr_t pa = l2pte_pa(opte);
4286 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4287 KASSERT(pg != NULL);
4288
4289 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4290
4291 pmap_acquire_page_lock(md);
4292 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4293 KASSERT(pv != NULL);
4294
4295 if (PV_IS_EXEC_P(pv->pv_flags)) {
4296 l2pte_reset(ptep);
4297 PTE_SYNC(ptep);
4298 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4299 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4300 pmap_syncicache_page(md, pa);
4301 }
4302 rv = ABORT_FIXUP_RETURN;
4303 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4304 PTE_SYNC(ptep);
4305 }
4306 pmap_release_page_lock(md);
4307
4308 out:
4309 kpreempt_enable();
4310 return rv;
4311 }
4312 #endif
4313
4314 int
4315 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4316 {
4317 struct l2_dtable *l2;
4318 struct l2_bucket *l2b;
4319 paddr_t pa;
4320 const size_t l1slot = l1pte_index(va);
4321 int rv = 0;
4322
4323 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4324
4325 va = trunc_page(va);
4326
4327 KASSERT(!user || (pm != pmap_kernel()));
4328
4329 UVMHIST_LOG(maphist, " (pm=%#jx, va=%#jx, ftype=%#jx, user=%jd)",
4330 (uintptr_t)pm, va, ftype, user);
4331 #ifdef ARM_MMU_EXTENDED
4332 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4333 (uintptr_t)cpu_tlb_info(curcpu()),
4334 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4335 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4336 #endif
4337
4338 pmap_acquire_pmap_lock(pm);
4339
4340 /*
4341 * If there is no l2_dtable for this address, then the process
4342 * has no business accessing it.
4343 *
4344 * Note: This will catch userland processes trying to access
4345 * kernel addresses.
4346 */
4347 l2 = pm->pm_l2[L2_IDX(l1slot)];
4348 if (l2 == NULL) {
4349 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4350 goto out;
4351 }
4352
4353 /*
4354 * Likewise if there is no L2 descriptor table
4355 */
4356 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4357 if (l2b->l2b_kva == NULL) {
4358 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4359 l1slot, 0, 0, 0);
4360 goto out;
4361 }
4362
4363 /*
4364 * Check the PTE itself.
4365 */
4366 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4367 pt_entry_t const opte = *ptep;
4368 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4369 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
4370 l1slot, 0, 0, 0);
4371 goto out;
4372 }
4373
4374 #ifndef ARM_HAS_VBAR
4375 /*
4376 * Catch a userland access to the vector page mapped at 0x0
4377 */
4378 if (user && (opte & L2_S_PROT_U) == 0) {
4379 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4380 goto out;
4381 }
4382 #endif
4383
4384 pa = l2pte_pa(opte);
4385
4386 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4387 /*
4388 * This looks like a good candidate for "page modified"
4389 * emulation...
4390 */
4391 struct pv_entry *pv;
4392 struct vm_page *pg;
4393
4394 /* Extract the physical address of the page */
4395 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4396 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4397 goto out;
4398 }
4399
4400 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4401
4402 /* Get the current flags for this page. */
4403 pmap_acquire_page_lock(md);
4404 pv = pmap_find_pv(md, pm, va);
4405 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4406 pmap_release_page_lock(md);
4407 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4408 goto out;
4409 }
4410
4411 /*
4412 * Do the flags say this page is writable? If not then it
4413 * is a genuine write fault. If yes then the write fault is
4414 * our fault as we did not reflect the write access in the
4415 * PTE. Now we know a write has occurred we can correct this
4416 * and also set the modified bit
4417 */
4418 if ((pv->pv_flags & PVF_WRITE) == 0) {
4419 pmap_release_page_lock(md);
4420 goto out;
4421 }
4422
4423 md->pvh_attrs |= PVF_REF | PVF_MOD;
4424 pv->pv_flags |= PVF_REF | PVF_MOD;
4425 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4426 /*
4427 * If there are cacheable mappings for this page, mark it dirty.
4428 */
4429 if ((md->pvh_attrs & PVF_NC) == 0)
4430 md->pvh_attrs |= PVF_DIRTY;
4431 #endif
4432 #ifdef ARM_MMU_EXTENDED
4433 if (md->pvh_attrs & PVF_EXEC) {
4434 md->pvh_attrs &= ~PVF_EXEC;
4435 PMAPCOUNT(exec_discarded_modfixup);
4436 }
4437 #endif
4438 pmap_release_page_lock(md);
4439
4440 /*
4441 * Re-enable write permissions for the page. No need to call
4442 * pmap_vac_me_harder(), since this is just a
4443 * modified-emulation fault, and the PVF_WRITE bit isn't
4444 * changing. We've already set the cacheable bits based on
4445 * the assumption that we can write to this page.
4446 */
4447 const pt_entry_t npte =
4448 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4449 #ifdef ARM_MMU_EXTENDED
4450 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4451 #endif
4452 | 0;
4453 l2pte_reset(ptep);
4454 PTE_SYNC(ptep);
4455 pmap_tlb_flush_SE(pm, va,
4456 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4457 l2pte_set(ptep, npte, 0);
4458 PTE_SYNC(ptep);
4459 PMAPCOUNT(fixup_mod);
4460 rv = 1;
4461 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4462 "from %#jx to %#jx)", opte, npte, 0, 0);
4463 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4464 /*
4465 * This looks like a good candidate for "page referenced"
4466 * emulation.
4467 */
4468 struct vm_page *pg;
4469
4470 /* Extract the physical address of the page */
4471 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4472 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4473 goto out;
4474 }
4475
4476 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4477
4478 /* Get the current flags for this page. */
4479 pmap_acquire_page_lock(md);
4480 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4481 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4482 pmap_release_page_lock(md);
4483 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4484 goto out;
4485 }
4486
4487 md->pvh_attrs |= PVF_REF;
4488 pv->pv_flags |= PVF_REF;
4489
4490 pt_entry_t npte =
4491 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4492 #ifdef ARM_MMU_EXTENDED
4493 if (pm != pmap_kernel()) {
4494 npte |= L2_XS_nG;
4495 }
4496 /*
4497 * If we got called from prefetch abort, then ftype will have
4498 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4499 * the PTE.
4500 */
4501 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4502 /*
4503 * Is this a mapping of an executable page?
4504 */
4505 if ((pv->pv_flags & PVF_EXEC) == 0) {
4506 pmap_release_page_lock(md);
4507 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4508 0, 0, 0, 0);
4509 goto out;
4510 }
4511 /*
4512 * If we haven't synced the page, do so now.
4513 */
4514 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4515 UVMHIST_LOG(maphist, " ref emul: syncicache "
4516 "page #%#jx", pa, 0, 0, 0);
4517 pmap_syncicache_page(md, pa);
4518 PMAPCOUNT(fixup_exec);
4519 }
4520 npte &= ~L2_XS_XN;
4521 }
4522 #endif /* ARM_MMU_EXTENDED */
4523 pmap_release_page_lock(md);
4524 l2pte_reset(ptep);
4525 PTE_SYNC(ptep);
4526 pmap_tlb_flush_SE(pm, va,
4527 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4528 l2pte_set(ptep, npte, 0);
4529 PTE_SYNC(ptep);
4530 PMAPCOUNT(fixup_ref);
4531 rv = 1;
4532 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4533 "%#jx to %#jx)", opte, npte, 0, 0);
4534 #ifdef ARM_MMU_EXTENDED
4535 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4536 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4537 if (pg == NULL) {
4538 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4539 goto out;
4540 }
4541
4542 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4543
4544 /* Get the current flags for this page. */
4545 pmap_acquire_page_lock(md);
4546 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4547 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4548 pmap_release_page_lock(md);
4549 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4550 goto out;
4551 }
4552
4553 /*
4554 * If we haven't synced the page, do so now.
4555 */
4556 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4557 UVMHIST_LOG(maphist, "syncicache page #%#jx",
4558 pa, 0, 0, 0);
4559 pmap_syncicache_page(md, pa);
4560 }
4561 pmap_release_page_lock(md);
4562 /*
4563 * Turn off no-execute.
4564 */
4565 KASSERT(opte & L2_XS_nG);
4566 l2pte_reset(ptep);
4567 PTE_SYNC(ptep);
4568 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4569 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4570 PTE_SYNC(ptep);
4571 rv = 1;
4572 PMAPCOUNT(fixup_exec);
4573 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4574 opte, opte & ~L2_XS_XN, 0, 0);
4575 #endif
4576 }
4577
4578 #ifndef ARM_MMU_EXTENDED
4579 /*
4580 * We know there is a valid mapping here, so simply
4581 * fix up the L1 if necessary.
4582 */
4583 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4584 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4585 if (*pdep != pde) {
4586 l1pte_setone(pdep, pde);
4587 PDE_SYNC(pdep);
4588 rv = 1;
4589 PMAPCOUNT(fixup_pdes);
4590 }
4591 #endif
4592
4593 #ifdef CPU_SA110
4594 /*
4595 * There are bugs in the rev K SA110. This is a check for one
4596 * of them.
4597 */
4598 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4599 curcpu()->ci_arm_cpurev < 3) {
4600 /* Always current pmap */
4601 if (l2pte_valid_p(opte)) {
4602 extern int kernel_debug;
4603 if (kernel_debug & 1) {
4604 struct proc *p = curlwp->l_proc;
4605 printf("prefetch_abort: page is already "
4606 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4607 printf("prefetch_abort: pc=%08lx proc=%p "
4608 "process=%s\n", va, p, p->p_comm);
4609 printf("prefetch_abort: far=%08x fs=%x\n",
4610 cpu_faultaddress(), cpu_faultstatus());
4611 }
4612 #ifdef DDB
4613 if (kernel_debug & 2)
4614 Debugger();
4615 #endif
4616 rv = 1;
4617 }
4618 }
4619 #endif /* CPU_SA110 */
4620
4621 #ifndef ARM_MMU_EXTENDED
4622 /*
4623 * If 'rv == 0' at this point, it generally indicates that there is a
4624 * stale TLB entry for the faulting address. That might be due to a
4625 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4626 */
4627 if (rv == 0
4628 && pm->pm_l1->l1_domain_use_count == 1
4629 && pmap_needs_pte_sync == 0) {
4630 pmap_needs_pte_sync = 1;
4631 PTE_SYNC(ptep);
4632 PMAPCOUNT(fixup_ptesync);
4633 rv = 1;
4634 }
4635 #endif
4636
4637 #ifndef MULTIPROCESSOR
4638 #if defined(DEBUG) || 1
4639 /*
4640 * If 'rv == 0' at this point, it generally indicates that there is a
4641 * stale TLB entry for the faulting address. This happens when two or
4642 * more processes are sharing an L1. Since we don't flush the TLB on
4643 * a context switch between such processes, we can take domain faults
4644 * for mappings which exist at the same VA in both processes. EVEN IF
4645 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4646 * example.
4647 *
4648 * This is extremely likely to happen if pmap_enter() updated the L1
4649 * entry for a recently entered mapping. In this case, the TLB is
4650 * flushed for the new mapping, but there may still be TLB entries for
4651 * other mappings belonging to other processes in the 1MB range
4652 * covered by the L1 entry.
4653 *
4654 * Since 'rv == 0', we know that the L1 already contains the correct
4655 * value, so the fault must be due to a stale TLB entry.
4656 *
4657 * Since we always need to flush the TLB anyway in the case where we
4658 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4659 * stale TLB entries dynamically.
4660 *
4661 * However, the above condition can ONLY happen if the current L1 is
4662 * being shared. If it happens when the L1 is unshared, it indicates
4663 * that other parts of the pmap are not doing their job WRT managing
4664 * the TLB.
4665 */
4666 if (rv == 0
4667 #ifndef ARM_MMU_EXTENDED
4668 && pm->pm_l1->l1_domain_use_count == 1
4669 #endif
4670 && true) {
4671 #ifdef DEBUG
4672 extern int last_fault_code;
4673 #else
4674 int last_fault_code = ftype & VM_PROT_EXECUTE
4675 ? armreg_ifsr_read()
4676 : armreg_dfsr_read();
4677 #endif
4678 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4679 pm, va, ftype);
4680 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4681 l2, l2b, ptep, opte);
4682
4683 #ifndef ARM_MMU_EXTENDED
4684 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4685 pdep, pde, last_fault_code);
4686 #else
4687 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4688 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4689 armreg_ttbcr_read());
4690 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4691 last_fault_code, curcpu()->ci_pmap_cur,
4692 curcpu()->ci_pmap_asid_cur,
4693 armreg_contextidr_read(), armreg_dacr_read());
4694 #ifdef _ARM_ARCH_7
4695 if (ftype & VM_PROT_WRITE)
4696 armreg_ats1cuw_write(va);
4697 else
4698 armreg_ats1cur_write(va);
4699 arm_isb();
4700 printf("fixup: par %#x\n", armreg_par_read());
4701 #endif
4702 #endif
4703 #ifdef DDB
4704 extern int kernel_debug;
4705
4706 if (kernel_debug & 2) {
4707 pmap_release_pmap_lock(pm);
4708 #ifdef UVMHIST
4709 KERNHIST_DUMP(maphist);
4710 #endif
4711 cpu_Debugger();
4712 pmap_acquire_pmap_lock(pm);
4713 }
4714 #endif
4715 }
4716 #endif
4717 #endif
4718
4719 #ifndef ARM_MMU_EXTENDED
4720 /* Flush the TLB in the shared L1 case - see comment above */
4721 pmap_tlb_flush_SE(pm, va,
4722 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4723 #endif
4724
4725 rv = 1;
4726
4727 out:
4728 pmap_release_pmap_lock(pm);
4729
4730 return (rv);
4731 }
4732
4733 /*
4734 * Routine: pmap_procwr
4735 *
4736 * Function:
4737 * Synchronize caches corresponding to [addr, addr+len) in p.
4738 *
4739 */
4740 void
4741 pmap_procwr(struct proc *p, vaddr_t va, int len)
4742 {
4743 #ifndef ARM_MMU_EXTENDED
4744
4745 /* We only need to do anything if it is the current process. */
4746 if (p == curproc)
4747 cpu_icache_sync_range(va, len);
4748 #endif
4749 }
4750
4751 /*
4752 * Routine: pmap_unwire
4753 * Function: Clear the wired attribute for a map/virtual-address pair.
4754 *
4755 * In/out conditions:
4756 * The mapping must already exist in the pmap.
4757 */
4758 void
4759 pmap_unwire(pmap_t pm, vaddr_t va)
4760 {
4761 struct l2_bucket *l2b;
4762 pt_entry_t *ptep, pte;
4763 struct vm_page *pg;
4764 paddr_t pa;
4765
4766 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4767
4768 pmap_acquire_pmap_lock(pm);
4769
4770 l2b = pmap_get_l2_bucket(pm, va);
4771 KDASSERT(l2b != NULL);
4772
4773 ptep = &l2b->l2b_kva[l2pte_index(va)];
4774 pte = *ptep;
4775
4776 /* Extract the physical address of the page */
4777 pa = l2pte_pa(pte);
4778
4779 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4780 /* Update the wired bit in the pv entry for this page. */
4781 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4782
4783 pmap_acquire_page_lock(md);
4784 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4785 pmap_release_page_lock(md);
4786 }
4787
4788 pmap_release_pmap_lock(pm);
4789 }
4790
4791 #ifdef ARM_MMU_EXTENDED
4792 void
4793 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4794 {
4795 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4796
4797 /*
4798 * Assume that TTBR1 has only global mappings and TTBR0 only
4799 * has non-global mappings. To prevent speculation from doing
4800 * evil things we disable translation table walks using TTBR0
4801 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4802 * Once both are set, table walks are reenabled.
4803 */
4804 const uint32_t old_ttbcr = armreg_ttbcr_read();
4805 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4806 arm_isb();
4807
4808 pmap_tlb_asid_acquire(pm, l);
4809
4810 struct cpu_info * const ci = curcpu();
4811 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4812
4813 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4814 /*
4815 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4816 * have been updated.
4817 */
4818 arm_isb();
4819
4820 if (pm != pmap_kernel()) {
4821 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4822 }
4823 cpu_cpwait();
4824
4825 UVMHIST_LOG(maphist, " pm %#jx pm->pm_l1_pa %08jx asid %ju... done",
4826 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4827
4828 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4829 ci->ci_pmap_asid_cur, pai->pai_asid);
4830 ci->ci_pmap_cur = pm;
4831 }
4832
4833 void
4834 pmap_md_pdetab_deactivate(pmap_t pm)
4835 {
4836
4837 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4838
4839 kpreempt_disable();
4840 struct cpu_info * const ci = curcpu();
4841 /*
4842 * Disable translation table walks from TTBR0 while no pmap has been
4843 * activated.
4844 */
4845 const uint32_t old_ttbcr = armreg_ttbcr_read();
4846 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4847 arm_isb();
4848 pmap_tlb_asid_deactivate(pm);
4849 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4850 arm_isb();
4851
4852 ci->ci_pmap_cur = pmap_kernel();
4853 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4854 ci->ci_pmap_asid_cur);
4855 kpreempt_enable();
4856 }
4857 #endif
4858
4859 void
4860 pmap_activate(struct lwp *l)
4861 {
4862 extern int block_userspace_access;
4863 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4864
4865 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4866
4867 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)npm,
4868 0, 0);
4869
4870 struct cpu_info * const ci = curcpu();
4871
4872 /*
4873 * If activating a non-current lwp or the current lwp is
4874 * already active, just return.
4875 */
4876 if (false
4877 || l != curlwp
4878 #ifdef ARM_MMU_EXTENDED
4879 || (ci->ci_pmap_cur == npm &&
4880 (npm == pmap_kernel()
4881 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4882 #else
4883 || npm->pm_activated == true
4884 #endif
4885 || false) {
4886 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4887 (uintptr_t)l, 0, 0);
4888 return;
4889 }
4890
4891 #ifndef ARM_MMU_EXTENDED
4892 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4893 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4894
4895 /*
4896 * If TTB and DACR are unchanged, short-circuit all the
4897 * TLB/cache management stuff.
4898 */
4899 pmap_t opm = ci->ci_lastlwp
4900 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4901 : NULL;
4902 if (opm != NULL) {
4903 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4904 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4905
4906 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4907 goto all_done;
4908 }
4909 #endif /* !ARM_MMU_EXTENDED */
4910
4911 PMAPCOUNT(activations);
4912 block_userspace_access = 1;
4913
4914 #ifndef ARM_MMU_EXTENDED
4915 /*
4916 * If switching to a user vmspace which is different to the
4917 * most recent one, and the most recent one is potentially
4918 * live in the cache, we must write-back and invalidate the
4919 * entire cache.
4920 */
4921 pmap_t rpm = ci->ci_pmap_lastuser;
4922
4923 /*
4924 * XXXSCW: There's a corner case here which can leave turds in the
4925 * cache as reported in kern/41058. They're probably left over during
4926 * tear-down and switching away from an exiting process. Until the root
4927 * cause is identified and fixed, zap the cache when switching pmaps.
4928 * This will result in a few unnecessary cache flushes, but that's
4929 * better than silently corrupting data.
4930 */
4931 #if 0
4932 if (npm != pmap_kernel() && rpm && npm != rpm &&
4933 rpm->pm_cstate.cs_cache) {
4934 rpm->pm_cstate.cs_cache = 0;
4935 #ifdef PMAP_CACHE_VIVT
4936 cpu_idcache_wbinv_all();
4937 #endif
4938 }
4939 #else
4940 if (rpm) {
4941 rpm->pm_cstate.cs_cache = 0;
4942 if (npm == pmap_kernel())
4943 ci->ci_pmap_lastuser = NULL;
4944 #ifdef PMAP_CACHE_VIVT
4945 cpu_idcache_wbinv_all();
4946 #endif
4947 }
4948 #endif
4949
4950 /* No interrupts while we frob the TTB/DACR */
4951 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4952 #endif /* !ARM_MMU_EXTENDED */
4953
4954 #ifndef ARM_HAS_VBAR
4955 /*
4956 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4957 * entry corresponding to 'vector_page' in the incoming L1 table
4958 * before switching to it otherwise subsequent interrupts/exceptions
4959 * (including domain faults!) will jump into hyperspace.
4960 */
4961 if (npm->pm_pl1vec != NULL) {
4962 cpu_tlb_flushID_SE((u_int)vector_page);
4963 cpu_cpwait();
4964 *npm->pm_pl1vec = npm->pm_l1vec;
4965 PTE_SYNC(npm->pm_pl1vec);
4966 }
4967 #endif
4968
4969 #ifdef ARM_MMU_EXTENDED
4970 pmap_md_pdetab_activate(npm, l);
4971 #else
4972 cpu_domains(ndacr);
4973 if (npm == pmap_kernel() || npm == rpm) {
4974 /*
4975 * Switching to a kernel thread, or back to the
4976 * same user vmspace as before... Simply update
4977 * the TTB (no TLB flush required)
4978 */
4979 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4980 cpu_cpwait();
4981 } else {
4982 /*
4983 * Otherwise, update TTB and flush TLB
4984 */
4985 cpu_context_switch(npm->pm_l1->l1_physaddr);
4986 if (rpm != NULL)
4987 rpm->pm_cstate.cs_tlb = 0;
4988 }
4989
4990 restore_interrupts(oldirqstate);
4991 #endif /* ARM_MMU_EXTENDED */
4992
4993 block_userspace_access = 0;
4994
4995 #ifndef ARM_MMU_EXTENDED
4996 all_done:
4997 /*
4998 * The new pmap is resident. Make sure it's marked
4999 * as resident in the cache/TLB.
5000 */
5001 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5002 if (npm != pmap_kernel())
5003 ci->ci_pmap_lastuser = npm;
5004
5005 /* The old pmap is not longer active */
5006 if (opm != npm) {
5007 if (opm != NULL)
5008 opm->pm_activated = false;
5009
5010 /* But the new one is */
5011 npm->pm_activated = true;
5012 }
5013 ci->ci_pmap_cur = npm;
5014 #endif
5015 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5016 }
5017
5018 void
5019 pmap_deactivate(struct lwp *l)
5020 {
5021 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5022
5023 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5024
5025 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)pm,
5026 0, 0);
5027
5028 #ifdef ARM_MMU_EXTENDED
5029 pmap_md_pdetab_deactivate(pm);
5030 #else
5031 /*
5032 * If the process is exiting, make sure pmap_activate() does
5033 * a full MMU context-switch and cache flush, which we might
5034 * otherwise skip. See PR port-arm/38950.
5035 */
5036 if (l->l_proc->p_sflag & PS_WEXIT)
5037 curcpu()->ci_lastlwp = NULL;
5038
5039 pm->pm_activated = false;
5040 #endif
5041 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5042 }
5043
5044 void
5045 pmap_update(pmap_t pm)
5046 {
5047
5048 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5049
5050 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5051 pm->pm_remove_all, 0, 0);
5052
5053 #ifndef ARM_MMU_EXTENDED
5054 if (pm->pm_remove_all) {
5055 /*
5056 * Finish up the pmap_remove_all() optimisation by flushing
5057 * the TLB.
5058 */
5059 pmap_tlb_flushID(pm);
5060 pm->pm_remove_all = false;
5061 }
5062
5063 if (pmap_is_current(pm)) {
5064 /*
5065 * If we're dealing with a current userland pmap, move its L1
5066 * to the end of the LRU.
5067 */
5068 if (pm != pmap_kernel())
5069 pmap_use_l1(pm);
5070
5071 /*
5072 * We can assume we're done with frobbing the cache/tlb for
5073 * now. Make sure any future pmap ops don't skip cache/tlb
5074 * flushes.
5075 */
5076 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5077 }
5078 #else
5079
5080 kpreempt_disable();
5081 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5082 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5083 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5084 PMAP_COUNT(shootdown_ipis);
5085 }
5086 #endif
5087
5088 /*
5089 * If pmap_remove_all was called, we deactivated ourselves and released
5090 * our ASID. Now we have to reactivate ourselves.
5091 */
5092 if (__predict_false(pm->pm_remove_all)) {
5093 pm->pm_remove_all = false;
5094
5095 KASSERT(pm != pmap_kernel());
5096 pmap_md_pdetab_activate(pm, curlwp);
5097 }
5098
5099 if (arm_has_mpext_p)
5100 armreg_bpiallis_write(0);
5101 else
5102 armreg_bpiall_write(0);
5103
5104 kpreempt_enable();
5105
5106 KASSERTMSG(pm == pmap_kernel()
5107 || curcpu()->ci_pmap_cur != pm
5108 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5109 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5110 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5111 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5112 #endif
5113
5114 PMAPCOUNT(updates);
5115
5116 /*
5117 * make sure TLB/cache operations have completed.
5118 */
5119 cpu_cpwait();
5120 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5121 }
5122
5123 void
5124 pmap_remove_all(pmap_t pm)
5125 {
5126
5127 /*
5128 * The vmspace described by this pmap is about to be torn down.
5129 * Until pmap_update() is called, UVM will only make calls
5130 * to pmap_remove(). We can make life much simpler by flushing
5131 * the cache now, and deferring TLB invalidation to pmap_update().
5132 */
5133 #ifdef PMAP_CACHE_VIVT
5134 pmap_cache_wbinv_all(pm, PVF_EXEC);
5135 #endif
5136 #ifdef ARM_MMU_EXTENDED
5137 #ifdef MULTIPROCESSOR
5138 struct cpu_info * const ci = curcpu();
5139 // This should be the last CPU with this pmap onproc
5140 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5141 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5142 #endif
5143 pmap_tlb_asid_deactivate(pm);
5144 #ifdef MULTIPROCESSOR
5145 KASSERT(kcpuset_iszero(pm->pm_onproc));
5146 #endif
5147
5148 pmap_tlb_asid_release_all(pm);
5149 #endif
5150 pm->pm_remove_all = true;
5151 }
5152
5153 /*
5154 * Retire the given physical map from service.
5155 * Should only be called if the map contains no valid mappings.
5156 */
5157 void
5158 pmap_destroy(pmap_t pm)
5159 {
5160 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5161
5162 u_int count;
5163
5164 if (pm == NULL)
5165 return;
5166
5167 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5168 pm->pm_remove_all, 0, 0);
5169
5170 if (pm->pm_remove_all) {
5171 #ifdef ARM_MMU_EXTENDED
5172 pmap_tlb_asid_release_all(pm);
5173 #else
5174 pmap_tlb_flushID(pm);
5175 #endif
5176 pm->pm_remove_all = false;
5177 }
5178
5179 /*
5180 * Drop reference count
5181 */
5182 mutex_enter(pm->pm_lock);
5183 count = --pm->pm_obj.uo_refs;
5184 mutex_exit(pm->pm_lock);
5185 if (count > 0) {
5186 #ifndef ARM_MMU_EXTENDED
5187 if (pmap_is_current(pm)) {
5188 if (pm != pmap_kernel())
5189 pmap_use_l1(pm);
5190 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5191 }
5192 #endif
5193 return;
5194 }
5195
5196 /*
5197 * reference count is zero, free pmap resources and then free pmap.
5198 */
5199
5200 #ifndef ARM_HAS_VBAR
5201 if (vector_page < KERNEL_BASE) {
5202 KDASSERT(!pmap_is_current(pm));
5203
5204 /* Remove the vector page mapping */
5205 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5206 pmap_update(pm);
5207 }
5208 #endif
5209
5210 pmap_free_l1(pm);
5211
5212 #ifdef ARM_MMU_EXTENDED
5213 #ifdef MULTIPROCESSOR
5214 kcpuset_destroy(pm->pm_active);
5215 kcpuset_destroy(pm->pm_onproc);
5216 #endif
5217 #else
5218 struct cpu_info * const ci = curcpu();
5219 if (ci->ci_pmap_lastuser == pm)
5220 ci->ci_pmap_lastuser = NULL;
5221 #endif
5222
5223 uvm_obj_destroy(&pm->pm_obj, false);
5224 mutex_destroy(&pm->pm_obj_lock);
5225 pool_cache_put(&pmap_cache, pm);
5226 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5227 }
5228
5229
5230 /*
5231 * void pmap_reference(pmap_t pm)
5232 *
5233 * Add a reference to the specified pmap.
5234 */
5235 void
5236 pmap_reference(pmap_t pm)
5237 {
5238
5239 if (pm == NULL)
5240 return;
5241
5242 #ifndef ARM_MMU_EXTENDED
5243 pmap_use_l1(pm);
5244 #endif
5245
5246 mutex_enter(pm->pm_lock);
5247 pm->pm_obj.uo_refs++;
5248 mutex_exit(pm->pm_lock);
5249 }
5250
5251 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5252
5253 static struct evcnt pmap_prefer_nochange_ev =
5254 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5255 static struct evcnt pmap_prefer_change_ev =
5256 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5257
5258 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5259 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5260
5261 void
5262 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5263 {
5264 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5265 vaddr_t va = *vap;
5266 vaddr_t diff = (hint - va) & mask;
5267 if (diff == 0) {
5268 pmap_prefer_nochange_ev.ev_count++;
5269 } else {
5270 pmap_prefer_change_ev.ev_count++;
5271 if (__predict_false(td))
5272 va -= mask + 1;
5273 *vap = va + diff;
5274 }
5275 }
5276 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5277
5278 /*
5279 * pmap_zero_page()
5280 *
5281 * Zero a given physical page by mapping it at a page hook point.
5282 * In doing the zero page op, the page we zero is mapped cachable, as with
5283 * StrongARM accesses to non-cached pages are non-burst making writing
5284 * _any_ bulk data very slow.
5285 */
5286 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5287 void
5288 pmap_zero_page_generic(paddr_t pa)
5289 {
5290 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5291 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5292 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5293 #endif
5294 #if defined(PMAP_CACHE_VIPT)
5295 /* Choose the last page color it had, if any */
5296 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5297 #else
5298 const vsize_t va_offset = 0;
5299 #endif
5300 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5301 /*
5302 * Is this page mapped at its natural color?
5303 * If we have all of memory mapped, then just convert PA to VA.
5304 */
5305 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5306 || va_offset == (pa & arm_cache_prefer_mask);
5307 const vaddr_t vdstp = okcolor
5308 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5309 : cpu_cdstp(va_offset);
5310 #else
5311 const bool okcolor = false;
5312 const vaddr_t vdstp = cpu_cdstp(va_offset);
5313 #endif
5314 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5315
5316
5317 #ifdef DEBUG
5318 if (!SLIST_EMPTY(&md->pvh_list))
5319 panic("pmap_zero_page: page has mappings");
5320 #endif
5321
5322 KDASSERT((pa & PGOFSET) == 0);
5323
5324 if (!okcolor) {
5325 /*
5326 * Hook in the page, zero it, and purge the cache for that
5327 * zeroed page. Invalidate the TLB as needed.
5328 */
5329 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5330 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5331 l2pte_set(ptep, npte, 0);
5332 PTE_SYNC(ptep);
5333 cpu_tlb_flushD_SE(vdstp);
5334 cpu_cpwait();
5335 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5336 && !defined(ARM_MMU_EXTENDED)
5337 /*
5338 * If we are direct-mapped and our color isn't ok, then before
5339 * we bzero the page invalidate its contents from the cache and
5340 * reset the color to its natural color.
5341 */
5342 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5343 md->pvh_attrs &= ~arm_cache_prefer_mask;
5344 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5345 #endif
5346 }
5347 bzero_page(vdstp);
5348 if (!okcolor) {
5349 /*
5350 * Unmap the page.
5351 */
5352 l2pte_reset(ptep);
5353 PTE_SYNC(ptep);
5354 cpu_tlb_flushD_SE(vdstp);
5355 #ifdef PMAP_CACHE_VIVT
5356 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5357 #endif
5358 }
5359 #ifdef PMAP_CACHE_VIPT
5360 /*
5361 * This page is now cache resident so it now has a page color.
5362 * Any contents have been obliterated so clear the EXEC flag.
5363 */
5364 #ifndef ARM_MMU_EXTENDED
5365 if (!pmap_is_page_colored_p(md)) {
5366 PMAPCOUNT(vac_color_new);
5367 md->pvh_attrs |= PVF_COLORED;
5368 }
5369 md->pvh_attrs |= PVF_DIRTY;
5370 #endif
5371 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5372 md->pvh_attrs &= ~PVF_EXEC;
5373 PMAPCOUNT(exec_discarded_zero);
5374 }
5375 #endif
5376 }
5377 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5378
5379 #if ARM_MMU_XSCALE == 1
5380 void
5381 pmap_zero_page_xscale(paddr_t pa)
5382 {
5383 #ifdef DEBUG
5384 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5385 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5386
5387 if (!SLIST_EMPTY(&md->pvh_list))
5388 panic("pmap_zero_page: page has mappings");
5389 #endif
5390
5391 KDASSERT((pa & PGOFSET) == 0);
5392
5393 /*
5394 * Hook in the page, zero it, and purge the cache for that
5395 * zeroed page. Invalidate the TLB as needed.
5396 */
5397
5398 pt_entry_t npte = L2_S_PROTO | pa |
5399 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5400 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5401 l2pte_set(cdst_pte, npte, 0);
5402 PTE_SYNC(cdst_pte);
5403 cpu_tlb_flushD_SE(cdstp);
5404 cpu_cpwait();
5405 bzero_page(cdstp);
5406 xscale_cache_clean_minidata();
5407 l2pte_reset(cdst_pte);
5408 PTE_SYNC(cdst_pte);
5409 }
5410 #endif /* ARM_MMU_XSCALE == 1 */
5411
5412 /* pmap_pageidlezero()
5413 *
5414 * The same as above, except that we assume that the page is not
5415 * mapped. This means we never have to flush the cache first. Called
5416 * from the idle loop.
5417 */
5418 bool
5419 pmap_pageidlezero(paddr_t pa)
5420 {
5421 bool rv = true;
5422 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5423 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5424 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5425 #endif
5426 #ifdef PMAP_CACHE_VIPT
5427 /* Choose the last page color it had, if any */
5428 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5429 #else
5430 const vsize_t va_offset = 0;
5431 #endif
5432 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5433 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5434 || va_offset == (pa & arm_cache_prefer_mask);
5435 const vaddr_t vdstp = okcolor
5436 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5437 : cpu_cdstp(va_offset);
5438 #else
5439 const bool okcolor = false;
5440 const vaddr_t vdstp = cpu_cdstp(va_offset);
5441 #endif
5442 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5443
5444
5445 #ifdef DEBUG
5446 if (!SLIST_EMPTY(&md->pvh_list))
5447 panic("pmap_pageidlezero: page has mappings");
5448 #endif
5449
5450 KDASSERT((pa & PGOFSET) == 0);
5451
5452 if (!okcolor) {
5453 /*
5454 * Hook in the page, zero it, and purge the cache for that
5455 * zeroed page. Invalidate the TLB as needed.
5456 */
5457 const pt_entry_t npte = L2_S_PROTO | pa |
5458 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5459 l2pte_set(ptep, npte, 0);
5460 PTE_SYNC(ptep);
5461 cpu_tlb_flushD_SE(vdstp);
5462 cpu_cpwait();
5463 }
5464
5465 uint64_t *ptr = (uint64_t *)vdstp;
5466 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5467 if (sched_curcpu_runnable_p() != 0) {
5468 /*
5469 * A process has become ready. Abort now,
5470 * so we don't keep it waiting while we
5471 * do slow memory access to finish this
5472 * page.
5473 */
5474 rv = false;
5475 break;
5476 }
5477 *ptr++ = 0;
5478 }
5479
5480 #ifdef PMAP_CACHE_VIVT
5481 if (rv)
5482 /*
5483 * if we aborted we'll rezero this page again later so don't
5484 * purge it unless we finished it
5485 */
5486 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5487 #elif defined(PMAP_CACHE_VIPT)
5488 /*
5489 * This page is now cache resident so it now has a page color.
5490 * Any contents have been obliterated so clear the EXEC flag.
5491 */
5492 #ifndef ARM_MMU_EXTENDED
5493 if (!pmap_is_page_colored_p(md)) {
5494 PMAPCOUNT(vac_color_new);
5495 md->pvh_attrs |= PVF_COLORED;
5496 }
5497 #endif
5498 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5499 md->pvh_attrs &= ~PVF_EXEC;
5500 PMAPCOUNT(exec_discarded_zero);
5501 }
5502 #endif
5503 /*
5504 * Unmap the page.
5505 */
5506 if (!okcolor) {
5507 l2pte_reset(ptep);
5508 PTE_SYNC(ptep);
5509 cpu_tlb_flushD_SE(vdstp);
5510 }
5511
5512 return rv;
5513 }
5514
5515 /*
5516 * pmap_copy_page()
5517 *
5518 * Copy one physical page into another, by mapping the pages into
5519 * hook points. The same comment regarding cachability as in
5520 * pmap_zero_page also applies here.
5521 */
5522 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5523 void
5524 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5525 {
5526 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5527 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5528 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5529 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5530 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5531 #endif
5532 #ifdef PMAP_CACHE_VIPT
5533 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5534 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5535 #else
5536 const vsize_t src_va_offset = 0;
5537 const vsize_t dst_va_offset = 0;
5538 #endif
5539 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5540 /*
5541 * Is this page mapped at its natural color?
5542 * If we have all of memory mapped, then just convert PA to VA.
5543 */
5544 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5545 || src_va_offset == (src & arm_cache_prefer_mask);
5546 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5547 || dst_va_offset == (dst & arm_cache_prefer_mask);
5548 const vaddr_t vsrcp = src_okcolor
5549 ? pmap_direct_mapped_phys(src, &src_okcolor,
5550 cpu_csrcp(src_va_offset))
5551 : cpu_csrcp(src_va_offset);
5552 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5553 cpu_cdstp(dst_va_offset));
5554 #else
5555 const bool src_okcolor = false;
5556 const bool dst_okcolor = false;
5557 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5558 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5559 #endif
5560 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5561 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5562
5563 #ifdef DEBUG
5564 if (!SLIST_EMPTY(&dst_md->pvh_list))
5565 panic("pmap_copy_page: dst page has mappings");
5566 #endif
5567
5568 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5569 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5570 #endif
5571 KDASSERT((src & PGOFSET) == 0);
5572 KDASSERT((dst & PGOFSET) == 0);
5573
5574 /*
5575 * Clean the source page. Hold the source page's lock for
5576 * the duration of the copy so that no other mappings can
5577 * be created while we have a potentially aliased mapping.
5578 */
5579 #ifdef PMAP_CACHE_VIVT
5580 pmap_acquire_page_lock(src_md);
5581 (void) pmap_clean_page(src_md, true);
5582 pmap_release_page_lock(src_md);
5583 #endif
5584
5585 /*
5586 * Map the pages into the page hook points, copy them, and purge
5587 * the cache for the appropriate page. Invalidate the TLB
5588 * as required.
5589 */
5590 if (!src_okcolor) {
5591 const pt_entry_t nsrc_pte = L2_S_PROTO
5592 | src
5593 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5594 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5595 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5596 | pte_l2_s_cache_mode
5597 #endif
5598 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5599 l2pte_set(src_ptep, nsrc_pte, 0);
5600 PTE_SYNC(src_ptep);
5601 cpu_tlb_flushD_SE(vsrcp);
5602 cpu_cpwait();
5603 }
5604 if (!dst_okcolor) {
5605 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5606 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5607 l2pte_set(dst_ptep, ndst_pte, 0);
5608 PTE_SYNC(dst_ptep);
5609 cpu_tlb_flushD_SE(vdstp);
5610 cpu_cpwait();
5611 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5612 /*
5613 * If we are direct-mapped and our color isn't ok, then before
5614 * we bcopy to the new page invalidate its contents from the
5615 * cache and reset its color to its natural color.
5616 */
5617 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5618 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5619 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5620 #endif
5621 }
5622 bcopy_page(vsrcp, vdstp);
5623 #ifdef PMAP_CACHE_VIVT
5624 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5625 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5626 #endif
5627 /*
5628 * Unmap the pages.
5629 */
5630 if (!src_okcolor) {
5631 l2pte_reset(src_ptep);
5632 PTE_SYNC(src_ptep);
5633 cpu_tlb_flushD_SE(vsrcp);
5634 cpu_cpwait();
5635 }
5636 if (!dst_okcolor) {
5637 l2pte_reset(dst_ptep);
5638 PTE_SYNC(dst_ptep);
5639 cpu_tlb_flushD_SE(vdstp);
5640 cpu_cpwait();
5641 }
5642 #ifdef PMAP_CACHE_VIPT
5643 /*
5644 * Now that the destination page is in the cache, mark it as colored.
5645 * If this was an exec page, discard it.
5646 */
5647 pmap_acquire_page_lock(dst_md);
5648 #ifndef ARM_MMU_EXTENDED
5649 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5650 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5651 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5652 }
5653 if (!pmap_is_page_colored_p(dst_md)) {
5654 PMAPCOUNT(vac_color_new);
5655 dst_md->pvh_attrs |= PVF_COLORED;
5656 }
5657 dst_md->pvh_attrs |= PVF_DIRTY;
5658 #endif
5659 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5660 dst_md->pvh_attrs &= ~PVF_EXEC;
5661 PMAPCOUNT(exec_discarded_copy);
5662 }
5663 pmap_release_page_lock(dst_md);
5664 #endif
5665 }
5666 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5667
5668 #if ARM_MMU_XSCALE == 1
5669 void
5670 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5671 {
5672 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5673 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5674 #ifdef DEBUG
5675 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5676
5677 if (!SLIST_EMPTY(&dst_md->pvh_list))
5678 panic("pmap_copy_page: dst page has mappings");
5679 #endif
5680
5681 KDASSERT((src & PGOFSET) == 0);
5682 KDASSERT((dst & PGOFSET) == 0);
5683
5684 /*
5685 * Clean the source page. Hold the source page's lock for
5686 * the duration of the copy so that no other mappings can
5687 * be created while we have a potentially aliased mapping.
5688 */
5689 #ifdef PMAP_CACHE_VIVT
5690 pmap_acquire_page_lock(src_md);
5691 (void) pmap_clean_page(src_md, true);
5692 pmap_release_page_lock(src_md);
5693 #endif
5694
5695 /*
5696 * Map the pages into the page hook points, copy them, and purge
5697 * the cache for the appropriate page. Invalidate the TLB
5698 * as required.
5699 */
5700 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5701 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5702 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5703 l2pte_set(csrc_pte, nsrc_pte, 0);
5704 PTE_SYNC(csrc_pte);
5705
5706 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5707 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5708 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5709 l2pte_set(cdst_pte, ndst_pte, 0);
5710 PTE_SYNC(cdst_pte);
5711
5712 cpu_tlb_flushD_SE(csrcp);
5713 cpu_tlb_flushD_SE(cdstp);
5714 cpu_cpwait();
5715 bcopy_page(csrcp, cdstp);
5716 xscale_cache_clean_minidata();
5717 l2pte_reset(csrc_pte);
5718 l2pte_reset(cdst_pte);
5719 PTE_SYNC(csrc_pte);
5720 PTE_SYNC(cdst_pte);
5721 }
5722 #endif /* ARM_MMU_XSCALE == 1 */
5723
5724 /*
5725 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5726 *
5727 * Return the start and end addresses of the kernel's virtual space.
5728 * These values are setup in pmap_bootstrap and are updated as pages
5729 * are allocated.
5730 */
5731 void
5732 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5733 {
5734 *start = virtual_avail;
5735 *end = virtual_end;
5736 }
5737
5738 /*
5739 * Helper function for pmap_grow_l2_bucket()
5740 */
5741 static inline int
5742 pmap_grow_map(vaddr_t va, paddr_t *pap)
5743 {
5744 paddr_t pa;
5745
5746 if (uvm.page_init_done == false) {
5747 #ifdef PMAP_STEAL_MEMORY
5748 pv_addr_t pv;
5749 pmap_boot_pagealloc(PAGE_SIZE,
5750 #ifdef PMAP_CACHE_VIPT
5751 arm_cache_prefer_mask,
5752 va & arm_cache_prefer_mask,
5753 #else
5754 0, 0,
5755 #endif
5756 &pv);
5757 pa = pv.pv_pa;
5758 #else
5759 if (uvm_page_physget(&pa) == false)
5760 return (1);
5761 #endif /* PMAP_STEAL_MEMORY */
5762 } else {
5763 struct vm_page *pg;
5764 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5765 if (pg == NULL)
5766 return (1);
5767 pa = VM_PAGE_TO_PHYS(pg);
5768 /*
5769 * This new page must not have any mappings. Enter it via
5770 * pmap_kenter_pa and let that routine do the hard work.
5771 */
5772 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5773 KASSERT(SLIST_EMPTY(&md->pvh_list));
5774 pmap_kenter_pa(va, pa,
5775 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5776 }
5777
5778 if (pap)
5779 *pap = pa;
5780
5781 PMAPCOUNT(pt_mappings);
5782 #ifdef DEBUG
5783 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5784 KDASSERT(l2b != NULL);
5785
5786 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5787 const pt_entry_t opte = *ptep;
5788 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5789 #endif
5790 memset((void *)va, 0, PAGE_SIZE);
5791 return (0);
5792 }
5793
5794 /*
5795 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5796 * used by pmap_growkernel().
5797 */
5798 static inline struct l2_bucket *
5799 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5800 {
5801 struct l2_dtable *l2;
5802 struct l2_bucket *l2b;
5803 u_short l1slot;
5804 vaddr_t nva;
5805
5806 l1slot = l1pte_index(va);
5807
5808 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5809 /*
5810 * No mapping at this address, as there is
5811 * no entry in the L1 table.
5812 * Need to allocate a new l2_dtable.
5813 */
5814 nva = pmap_kernel_l2dtable_kva;
5815 if ((nva & PGOFSET) == 0) {
5816 /*
5817 * Need to allocate a backing page
5818 */
5819 if (pmap_grow_map(nva, NULL))
5820 return (NULL);
5821 }
5822
5823 l2 = (struct l2_dtable *)nva;
5824 nva += sizeof(struct l2_dtable);
5825
5826 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5827 /*
5828 * The new l2_dtable straddles a page boundary.
5829 * Map in another page to cover it.
5830 */
5831 if (pmap_grow_map(nva, NULL))
5832 return (NULL);
5833 }
5834
5835 pmap_kernel_l2dtable_kva = nva;
5836
5837 /*
5838 * Link it into the parent pmap
5839 */
5840 pm->pm_l2[L2_IDX(l1slot)] = l2;
5841 }
5842
5843 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5844
5845 /*
5846 * Fetch pointer to the L2 page table associated with the address.
5847 */
5848 if (l2b->l2b_kva == NULL) {
5849 pt_entry_t *ptep;
5850
5851 /*
5852 * No L2 page table has been allocated. Chances are, this
5853 * is because we just allocated the l2_dtable, above.
5854 */
5855 nva = pmap_kernel_l2ptp_kva;
5856 ptep = (pt_entry_t *)nva;
5857 if ((nva & PGOFSET) == 0) {
5858 /*
5859 * Need to allocate a backing page
5860 */
5861 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5862 return (NULL);
5863 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5864 }
5865
5866 l2->l2_occupancy++;
5867 l2b->l2b_kva = ptep;
5868 l2b->l2b_l1slot = l1slot;
5869 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5870
5871 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5872 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5873 }
5874
5875 return (l2b);
5876 }
5877
5878 vaddr_t
5879 pmap_growkernel(vaddr_t maxkvaddr)
5880 {
5881 pmap_t kpm = pmap_kernel();
5882 #ifndef ARM_MMU_EXTENDED
5883 struct l1_ttable *l1;
5884 #endif
5885 int s;
5886
5887 if (maxkvaddr <= pmap_curmaxkvaddr)
5888 goto out; /* we are OK */
5889
5890 NPDEBUG(PDB_GROWKERN,
5891 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5892 pmap_curmaxkvaddr, maxkvaddr));
5893
5894 KDASSERT(maxkvaddr <= virtual_end);
5895
5896 /*
5897 * whoops! we need to add kernel PTPs
5898 */
5899
5900 s = splhigh(); /* to be safe */
5901 mutex_enter(kpm->pm_lock);
5902
5903 /* Map 1MB at a time */
5904 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5905 #ifdef ARM_MMU_EXTENDED
5906 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5907 pd_entry_t *pdep = spdep;
5908 #endif
5909 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5910 #ifdef ARM_MMU_EXTENDED
5911 pdep++,
5912 #endif
5913 l1slot++) {
5914 struct l2_bucket *l2b =
5915 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5916 KASSERT(l2b != NULL);
5917
5918 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5919 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5920 #ifdef ARM_MMU_EXTENDED
5921 l1pte_setone(pdep, npde);
5922 #else
5923 /* Distribute new L1 entry to all other L1s */
5924 SLIST_FOREACH(l1, &l1_list, l1_link) {
5925 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5926 l1pte_setone(pdep, npde);
5927 PDE_SYNC(pdep);
5928 }
5929 #endif
5930 }
5931 #ifdef ARM_MMU_EXTENDED
5932 PDE_SYNC_RANGE(spdep, pdep - spdep);
5933 #endif
5934
5935 #ifdef PMAP_CACHE_VIVT
5936 /*
5937 * flush out the cache, expensive but growkernel will happen so
5938 * rarely
5939 */
5940 cpu_dcache_wbinv_all();
5941 cpu_tlb_flushD();
5942 cpu_cpwait();
5943 #endif
5944
5945 mutex_exit(kpm->pm_lock);
5946 splx(s);
5947
5948 out:
5949 return (pmap_curmaxkvaddr);
5950 }
5951
5952 /************************ Utility routines ****************************/
5953
5954 #ifndef ARM_HAS_VBAR
5955 /*
5956 * vector_page_setprot:
5957 *
5958 * Manipulate the protection of the vector page.
5959 */
5960 void
5961 vector_page_setprot(int prot)
5962 {
5963 struct l2_bucket *l2b;
5964 pt_entry_t *ptep;
5965
5966 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5967 /*
5968 * If we are using VBAR to use the vectors in the kernel, then it's
5969 * already mapped in the kernel text so no need to anything here.
5970 */
5971 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5972 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5973 return;
5974 }
5975 #endif
5976
5977 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5978 KASSERT(l2b != NULL);
5979
5980 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5981
5982 const pt_entry_t opte = *ptep;
5983 #ifdef ARM_MMU_EXTENDED
5984 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5985 | L2_S_PROT(PTE_KERNEL, prot);
5986 #else
5987 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5988 | L2_S_PROT(PTE_KERNEL, prot);
5989 #endif
5990 l2pte_set(ptep, npte, opte);
5991 PTE_SYNC(ptep);
5992 cpu_tlb_flushD_SE(vector_page);
5993 cpu_cpwait();
5994 }
5995 #endif
5996
5997 /*
5998 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5999 * Returns true if the mapping exists, else false.
6000 *
6001 * NOTE: This function is only used by a couple of arm-specific modules.
6002 * It is not safe to take any pmap locks here, since we could be right
6003 * in the middle of debugging the pmap anyway...
6004 *
6005 * It is possible for this routine to return false even though a valid
6006 * mapping does exist. This is because we don't lock, so the metadata
6007 * state may be inconsistent.
6008 *
6009 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6010 * a "section" mapping.
6011 */
6012 bool
6013 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6014 {
6015 struct l2_dtable *l2;
6016 pd_entry_t *pdep, pde;
6017 pt_entry_t *ptep;
6018 u_short l1slot;
6019
6020 if (pm->pm_l1 == NULL)
6021 return false;
6022
6023 l1slot = l1pte_index(va);
6024 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6025 pde = *pdep;
6026
6027 if (l1pte_section_p(pde)) {
6028 *ptp = NULL;
6029 return true;
6030 }
6031
6032 l2 = pm->pm_l2[L2_IDX(l1slot)];
6033 if (l2 == NULL ||
6034 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6035 return false;
6036 }
6037
6038 *ptp = &ptep[l2pte_index(va)];
6039 return true;
6040 }
6041
6042 bool
6043 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6044 {
6045
6046 if (pm->pm_l1 == NULL)
6047 return false;
6048
6049 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6050
6051 return true;
6052 }
6053
6054 /************************ Bootstrapping routines ****************************/
6055
6056 #ifndef ARM_MMU_EXTENDED
6057 static void
6058 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6059 {
6060 int i;
6061
6062 l1->l1_kva = l1pt;
6063 l1->l1_domain_use_count = 0;
6064 l1->l1_domain_first = 0;
6065
6066 for (i = 0; i < PMAP_DOMAINS; i++)
6067 l1->l1_domain_free[i] = i + 1;
6068
6069 /*
6070 * Copy the kernel's L1 entries to each new L1.
6071 */
6072 if (pmap_initialized)
6073 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6074
6075 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6076 &l1->l1_physaddr) == false)
6077 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6078
6079 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6080 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6081 }
6082 #endif /* !ARM_MMU_EXTENDED */
6083
6084 /*
6085 * pmap_bootstrap() is called from the board-specific initarm() routine
6086 * once the kernel L1/L2 descriptors tables have been set up.
6087 *
6088 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6089 * spread over a number of disparate files/functions.
6090 *
6091 * We are passed the following parameters
6092 * - kernel_l1pt
6093 * This is a pointer to the base of the kernel's L1 translation table.
6094 * - vstart
6095 * 1MB-aligned start of managed kernel virtual memory.
6096 * - vend
6097 * 1MB-aligned end of managed kernel virtual memory.
6098 *
6099 * We use the first parameter to build the metadata (struct l1_ttable and
6100 * struct l2_dtable) necessary to track kernel mappings.
6101 */
6102 #define PMAP_STATIC_L2_SIZE 16
6103 void
6104 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6105 {
6106 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6107 #ifndef ARM_MMU_EXTENDED
6108 static struct l1_ttable static_l1;
6109 struct l1_ttable *l1 = &static_l1;
6110 #endif
6111 struct l2_dtable *l2;
6112 struct l2_bucket *l2b;
6113 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6114 pmap_t pm = pmap_kernel();
6115 pt_entry_t *ptep;
6116 paddr_t pa;
6117 vsize_t size;
6118 int nptes, l2idx, l2next = 0;
6119
6120 #ifdef ARM_MMU_EXTENDED
6121 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6122 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6123 #endif
6124
6125 #ifdef VERBOSE_INIT_ARM
6126 printf("kpm ");
6127 #endif
6128 /*
6129 * Initialise the kernel pmap object
6130 */
6131 curcpu()->ci_pmap_cur = pm;
6132 #ifdef ARM_MMU_EXTENDED
6133 pm->pm_l1 = l1pt;
6134 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6135 #ifdef VERBOSE_INIT_ARM
6136 printf("tlb0 ");
6137 #endif
6138 pmap_tlb_info_init(&pmap_tlb0_info);
6139 #ifdef MULTIPROCESSOR
6140 #ifdef VERBOSE_INIT_ARM
6141 printf("kcpusets ");
6142 #endif
6143 pm->pm_onproc = kcpuset_running;
6144 pm->pm_active = kcpuset_running;
6145 #endif
6146 #else
6147 pm->pm_l1 = l1;
6148 #endif
6149
6150 #ifdef VERBOSE_INIT_ARM
6151 printf("locks ");
6152 #endif
6153 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6154 if (arm_cache_prefer_mask != 0) {
6155 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6156 } else {
6157 #endif
6158 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
6159 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6160 }
6161 #endif
6162 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
6163 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
6164 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
6165
6166 #ifdef VERBOSE_INIT_ARM
6167 printf("l1pt ");
6168 #endif
6169 /*
6170 * Scan the L1 translation table created by initarm() and create
6171 * the required metadata for all valid mappings found in it.
6172 */
6173 for (size_t l1slot = 0;
6174 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6175 l1slot++) {
6176 pd_entry_t pde = l1pt[l1slot];
6177
6178 /*
6179 * We're only interested in Coarse mappings.
6180 * pmap_extract() can deal with section mappings without
6181 * recourse to checking L2 metadata.
6182 */
6183 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6184 continue;
6185
6186 /*
6187 * Lookup the KVA of this L2 descriptor table
6188 */
6189 pa = l1pte_pa(pde);
6190 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6191 if (ptep == NULL) {
6192 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6193 (u_int)l1slot << L1_S_SHIFT, pa);
6194 }
6195
6196 /*
6197 * Fetch the associated L2 metadata structure.
6198 * Allocate a new one if necessary.
6199 */
6200 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6201 if (l2next == PMAP_STATIC_L2_SIZE)
6202 panic("pmap_bootstrap: out of static L2s");
6203 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6204 }
6205
6206 /*
6207 * One more L1 slot tracked...
6208 */
6209 l2->l2_occupancy++;
6210
6211 /*
6212 * Fill in the details of the L2 descriptor in the
6213 * appropriate bucket.
6214 */
6215 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6216 l2b->l2b_kva = ptep;
6217 l2b->l2b_pa = pa;
6218 l2b->l2b_l1slot = l1slot;
6219
6220 /*
6221 * Establish an initial occupancy count for this descriptor
6222 */
6223 for (l2idx = 0;
6224 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6225 l2idx++) {
6226 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6227 l2b->l2b_occupancy++;
6228 }
6229 }
6230
6231 /*
6232 * Make sure the descriptor itself has the correct cache mode.
6233 * If not, fix it, but whine about the problem. Port-meisters
6234 * should consider this a clue to fix up their initarm()
6235 * function. :)
6236 */
6237 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6238 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6239 "L2 pte @ %p\n", ptep);
6240 }
6241 }
6242
6243 #ifdef VERBOSE_INIT_ARM
6244 printf("cache(l1pt) ");
6245 #endif
6246 /*
6247 * Ensure the primary (kernel) L1 has the correct cache mode for
6248 * a page table. Bitch if it is not correctly set.
6249 */
6250 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6251 L1_TABLE_SIZE / L2_S_SIZE)) {
6252 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6253 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6254 }
6255
6256 #ifdef PMAP_CACHE_VIVT
6257 cpu_dcache_wbinv_all();
6258 cpu_tlb_flushID();
6259 cpu_cpwait();
6260 #endif
6261
6262 /*
6263 * now we allocate the "special" VAs which are used for tmp mappings
6264 * by the pmap (and other modules). we allocate the VAs by advancing
6265 * virtual_avail (note that there are no pages mapped at these VAs).
6266 *
6267 * Managed KVM space start from wherever initarm() tells us.
6268 */
6269 virtual_avail = vstart;
6270 virtual_end = vend;
6271
6272 #ifdef VERBOSE_INIT_ARM
6273 printf("specials ");
6274 #endif
6275 #ifdef PMAP_CACHE_VIPT
6276 /*
6277 * If we have a VIPT cache, we need one page/pte per possible alias
6278 * page so we won't violate cache aliasing rules.
6279 */
6280 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6281 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6282 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6283 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6284 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6285 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6286 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6287 }
6288 #else
6289 nptes = PAGE_SIZE / L2_S_SIZE;
6290 #endif
6291 #ifdef MULTIPROCESSOR
6292 cnptes = nptes;
6293 nptes *= arm_cpu_max;
6294 #endif
6295 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6296 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6297 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6298 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6299 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6300 if (msgbufaddr == NULL) {
6301 pmap_alloc_specials(&virtual_avail,
6302 round_page(MSGBUFSIZE) / PAGE_SIZE,
6303 (void *)&msgbufaddr, NULL);
6304 }
6305
6306 /*
6307 * Allocate a range of kernel virtual address space to be used
6308 * for L2 descriptor tables and metadata allocation in
6309 * pmap_growkernel().
6310 */
6311 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6312 pmap_alloc_specials(&virtual_avail,
6313 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6314 &pmap_kernel_l2ptp_kva, NULL);
6315
6316 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6317 pmap_alloc_specials(&virtual_avail,
6318 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6319 &pmap_kernel_l2dtable_kva, NULL);
6320
6321 #ifndef ARM_MMU_EXTENDED
6322 /*
6323 * init the static-global locks and global pmap list.
6324 */
6325 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6326
6327 /*
6328 * We can now initialise the first L1's metadata.
6329 */
6330 SLIST_INIT(&l1_list);
6331 TAILQ_INIT(&l1_lru_list);
6332 pmap_init_l1(l1, l1pt);
6333 #endif /* ARM_MMU_EXTENDED */
6334
6335 #ifndef ARM_HAS_VBAR
6336 /* Set up vector page L1 details, if necessary */
6337 if (vector_page < KERNEL_BASE) {
6338 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6339 l2b = pmap_get_l2_bucket(pm, vector_page);
6340 KDASSERT(l2b != NULL);
6341 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6342 L1_C_DOM(pmap_domain(pm));
6343 } else
6344 pm->pm_pl1vec = NULL;
6345 #endif
6346
6347 #ifdef VERBOSE_INIT_ARM
6348 printf("pools ");
6349 #endif
6350 /*
6351 * Initialize the pmap cache
6352 */
6353 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6354 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6355
6356 /*
6357 * Initialize the pv pool.
6358 */
6359 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6360 &pmap_bootstrap_pv_allocator, IPL_NONE);
6361
6362 /*
6363 * Initialize the L2 dtable pool and cache.
6364 */
6365 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6366 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6367
6368 /*
6369 * Initialise the L2 descriptor table pool and cache
6370 */
6371 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6372 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6373 pmap_l2ptp_ctor, NULL, NULL);
6374
6375 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6376
6377 cpu_dcache_wbinv_all();
6378 }
6379
6380 static bool
6381 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6382 {
6383 #ifdef ARM_MMU_EXTENDED
6384 return false;
6385 #else
6386 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6387 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6388 return false;
6389
6390 const vaddr_t eva = va + nptes * PAGE_SIZE;
6391 int rv = 0;
6392
6393 while (va < eva) {
6394 /*
6395 * Make sure the descriptor itself has the correct cache mode
6396 */
6397 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6398 pd_entry_t pde = *pdep;
6399
6400 if (l1pte_section_p(pde)) {
6401 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6402 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6403 *pdep = (pde & ~L1_S_CACHE_MASK) |
6404 pte_l1_s_cache_mode_pt;
6405 PDE_SYNC(pdep);
6406 cpu_dcache_wbinv_range((vaddr_t)pdep,
6407 sizeof(*pdep));
6408 rv = 1;
6409 }
6410 return rv;
6411 }
6412 vaddr_t pa = l1pte_pa(pde);
6413 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6414 if (ptep == NULL)
6415 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6416
6417 ptep += l2pte_index(va);
6418 const pt_entry_t opte = *ptep;
6419 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6420 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6421 | pte_l2_s_cache_mode_pt;
6422 l2pte_set(ptep, npte, opte);
6423 PTE_SYNC(ptep);
6424 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6425 rv = 1;
6426 }
6427 va += PAGE_SIZE;
6428 }
6429
6430 return (rv);
6431 #endif
6432 }
6433
6434 static void
6435 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6436 {
6437 vaddr_t va = *availp;
6438 struct l2_bucket *l2b;
6439
6440 if (ptep) {
6441 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6442 if (l2b == NULL)
6443 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6444
6445 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6446 }
6447
6448 *vap = va;
6449 *availp = va + (PAGE_SIZE * pages);
6450 }
6451
6452 void
6453 pmap_init(void)
6454 {
6455
6456 /*
6457 * Set the available memory vars - These do not map to real memory
6458 * addresses and cannot as the physical memory is fragmented.
6459 * They are used by ps for %mem calculations.
6460 * One could argue whether this should be the entire memory or just
6461 * the memory that is useable in a user process.
6462 */
6463 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6464 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6465
6466 /*
6467 * Now we need to free enough pv_entry structures to allow us to get
6468 * the kmem_map/kmem_object allocated and inited (done after this
6469 * function is finished). to do this we allocate one bootstrap page out
6470 * of kernel_map and use it to provide an initial pool of pv_entry
6471 * structures. we never free this page.
6472 */
6473 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6474
6475 #ifdef ARM_MMU_EXTENDED
6476 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6477 #endif
6478
6479 pmap_initialized = true;
6480 }
6481
6482 static vaddr_t last_bootstrap_page = 0;
6483 static void *free_bootstrap_pages = NULL;
6484
6485 static void *
6486 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6487 {
6488 extern void *pool_page_alloc(struct pool *, int);
6489 vaddr_t new_page;
6490 void *rv;
6491
6492 if (pmap_initialized)
6493 return (pool_page_alloc(pp, flags));
6494
6495 if (free_bootstrap_pages) {
6496 rv = free_bootstrap_pages;
6497 free_bootstrap_pages = *((void **)rv);
6498 return (rv);
6499 }
6500
6501 KASSERT(kernel_map != NULL);
6502 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6503 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6504
6505 KASSERT(new_page > last_bootstrap_page);
6506 last_bootstrap_page = new_page;
6507 return ((void *)new_page);
6508 }
6509
6510 static void
6511 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6512 {
6513 extern void pool_page_free(struct pool *, void *);
6514
6515 if ((vaddr_t)v <= last_bootstrap_page) {
6516 *((void **)v) = free_bootstrap_pages;
6517 free_bootstrap_pages = v;
6518 return;
6519 }
6520
6521 if (pmap_initialized) {
6522 pool_page_free(pp, v);
6523 return;
6524 }
6525 }
6526
6527 /*
6528 * pmap_postinit()
6529 *
6530 * This routine is called after the vm and kmem subsystems have been
6531 * initialised. This allows the pmap code to perform any initialisation
6532 * that can only be done once the memory allocation is in place.
6533 */
6534 void
6535 pmap_postinit(void)
6536 {
6537 #ifndef ARM_MMU_EXTENDED
6538 extern paddr_t physical_start, physical_end;
6539 struct l1_ttable *l1;
6540 struct pglist plist;
6541 struct vm_page *m;
6542 pd_entry_t *pdep;
6543 vaddr_t va, eva;
6544 u_int loop, needed;
6545 int error;
6546 #endif
6547
6548 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6549 pool_cache_setlowat(&pmap_l2dtable_cache,
6550 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6551
6552 #ifndef ARM_MMU_EXTENDED
6553 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6554 needed -= 1;
6555
6556 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6557
6558 for (loop = 0; loop < needed; loop++, l1++) {
6559 /* Allocate a L1 page table */
6560 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6561 if (va == 0)
6562 panic("Cannot allocate L1 KVM");
6563
6564 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6565 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6566 if (error)
6567 panic("Cannot allocate L1 physical pages");
6568
6569 m = TAILQ_FIRST(&plist);
6570 eva = va + L1_TABLE_SIZE;
6571 pdep = (pd_entry_t *)va;
6572
6573 while (m && va < eva) {
6574 paddr_t pa = VM_PAGE_TO_PHYS(m);
6575
6576 pmap_kenter_pa(va, pa,
6577 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6578
6579 va += PAGE_SIZE;
6580 m = TAILQ_NEXT(m, pageq.queue);
6581 }
6582
6583 #ifdef DIAGNOSTIC
6584 if (m)
6585 panic("pmap_alloc_l1pt: pglist not empty");
6586 #endif /* DIAGNOSTIC */
6587
6588 pmap_init_l1(l1, pdep);
6589 }
6590
6591 #ifdef DEBUG
6592 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6593 needed);
6594 #endif
6595 #endif /* !ARM_MMU_EXTENDED */
6596 }
6597
6598 /*
6599 * Note that the following routines are used by board-specific initialisation
6600 * code to configure the initial kernel page tables.
6601 *
6602 */
6603
6604 /*
6605 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6606 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6607 * find them as necessary.
6608 *
6609 * Note that the data on this list MUST remain valid after initarm() returns,
6610 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6611 */
6612 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6613
6614 static vaddr_t
6615 kernel_pt_lookup(paddr_t pa)
6616 {
6617 pv_addr_t *pv;
6618
6619 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6620 if (pv->pv_pa == (pa & ~PGOFSET))
6621 return (pv->pv_va | (pa & PGOFSET));
6622 }
6623 return (0);
6624 }
6625
6626 /*
6627 * pmap_map_section:
6628 *
6629 * Create a single section mapping.
6630 */
6631 void
6632 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6633 {
6634 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6635 const size_t l1slot = l1pte_index(va);
6636 pd_entry_t fl;
6637
6638 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6639
6640 switch (cache) {
6641 case PTE_NOCACHE:
6642 default:
6643 fl = 0;
6644 break;
6645
6646 case PTE_CACHE:
6647 fl = pte_l1_s_cache_mode;
6648 break;
6649
6650 case PTE_PAGETABLE:
6651 fl = pte_l1_s_cache_mode_pt;
6652 break;
6653 }
6654
6655 const pd_entry_t npde = L1_S_PROTO | pa |
6656 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6657 l1pte_setone(pdep + l1slot, npde);
6658 PDE_SYNC(pdep + l1slot);
6659 }
6660
6661 /*
6662 * pmap_map_entry:
6663 *
6664 * Create a single page mapping.
6665 */
6666 void
6667 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6668 {
6669 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6670 const size_t l1slot = l1pte_index(va);
6671 pt_entry_t npte;
6672 pt_entry_t *ptep;
6673
6674 KASSERT(((va | pa) & PGOFSET) == 0);
6675
6676 switch (cache) {
6677 case PTE_NOCACHE:
6678 default:
6679 npte = 0;
6680 break;
6681
6682 case PTE_CACHE:
6683 npte = pte_l2_s_cache_mode;
6684 break;
6685
6686 case PTE_PAGETABLE:
6687 npte = pte_l2_s_cache_mode_pt;
6688 break;
6689 }
6690
6691 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6692 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6693
6694 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6695 if (ptep == NULL)
6696 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6697
6698 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6699 #ifdef ARM_MMU_EXTENDED
6700 if (prot & VM_PROT_EXECUTE) {
6701 npte &= ~L2_XS_XN;
6702 }
6703 #endif
6704 ptep += l2pte_index(va);
6705 l2pte_set(ptep, npte, 0);
6706 PTE_SYNC(ptep);
6707 }
6708
6709 /*
6710 * pmap_link_l2pt:
6711 *
6712 * Link the L2 page table specified by "l2pv" into the L1
6713 * page table at the slot for "va".
6714 */
6715 void
6716 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6717 {
6718 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6719
6720 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6721 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6722
6723 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6724 | l2pv->pv_pa;
6725
6726 l1pte_set(pdep, npde);
6727 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6728
6729 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6730 }
6731
6732 /*
6733 * pmap_map_chunk:
6734 *
6735 * Map a chunk of memory using the most efficient mappings
6736 * possible (section, large page, small page) into the
6737 * provided L1 and L2 tables at the specified virtual address.
6738 */
6739 vsize_t
6740 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6741 int prot, int cache)
6742 {
6743 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6744 pt_entry_t f1, f2s, f2l;
6745 vsize_t resid;
6746
6747 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6748
6749 if (l1pt == 0)
6750 panic("pmap_map_chunk: no L1 table provided");
6751
6752 #ifdef VERBOSE_INIT_ARM
6753 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6754 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6755 #endif
6756
6757 switch (cache) {
6758 case PTE_NOCACHE:
6759 default:
6760 f1 = 0;
6761 f2l = 0;
6762 f2s = 0;
6763 break;
6764
6765 case PTE_CACHE:
6766 f1 = pte_l1_s_cache_mode;
6767 f2l = pte_l2_l_cache_mode;
6768 f2s = pte_l2_s_cache_mode;
6769 break;
6770
6771 case PTE_PAGETABLE:
6772 f1 = pte_l1_s_cache_mode_pt;
6773 f2l = pte_l2_l_cache_mode_pt;
6774 f2s = pte_l2_s_cache_mode_pt;
6775 break;
6776 }
6777
6778 size = resid;
6779
6780 while (resid > 0) {
6781 const size_t l1slot = l1pte_index(va);
6782 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6783 /* See if we can use a supersection mapping. */
6784 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6785 /* Supersection are always domain 0 */
6786 const pd_entry_t npde = L1_SS_PROTO | pa
6787 #ifdef ARM_MMU_EXTENDED
6788 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6789 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6790 #endif
6791 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6792 #ifdef VERBOSE_INIT_ARM
6793 printf("sS");
6794 #endif
6795 l1pte_set(&pdep[l1slot], npde);
6796 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6797 va += L1_SS_SIZE;
6798 pa += L1_SS_SIZE;
6799 resid -= L1_SS_SIZE;
6800 continue;
6801 }
6802 #endif
6803 /* See if we can use a section mapping. */
6804 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6805 const pd_entry_t npde = L1_S_PROTO | pa
6806 #ifdef ARM_MMU_EXTENDED
6807 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6808 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6809 #endif
6810 | L1_S_PROT(PTE_KERNEL, prot) | f1
6811 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6812 #ifdef VERBOSE_INIT_ARM
6813 printf("S");
6814 #endif
6815 l1pte_set(&pdep[l1slot], npde);
6816 PDE_SYNC(&pdep[l1slot]);
6817 va += L1_S_SIZE;
6818 pa += L1_S_SIZE;
6819 resid -= L1_S_SIZE;
6820 continue;
6821 }
6822
6823 /*
6824 * Ok, we're going to use an L2 table. Make sure
6825 * one is actually in the corresponding L1 slot
6826 * for the current VA.
6827 */
6828 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6829 panic("%s: no L2 table for VA %#lx", __func__, va);
6830
6831 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6832 if (ptep == NULL)
6833 panic("%s: can't find L2 table for VA %#lx", __func__,
6834 va);
6835
6836 ptep += l2pte_index(va);
6837
6838 /* See if we can use a L2 large page mapping. */
6839 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6840 const pt_entry_t npte = L2_L_PROTO | pa
6841 #ifdef ARM_MMU_EXTENDED
6842 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6843 | (va & 0x80000000 ? 0 : L2_XS_nG)
6844 #endif
6845 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6846 #ifdef VERBOSE_INIT_ARM
6847 printf("L");
6848 #endif
6849 l2pte_set(ptep, npte, 0);
6850 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6851 va += L2_L_SIZE;
6852 pa += L2_L_SIZE;
6853 resid -= L2_L_SIZE;
6854 continue;
6855 }
6856
6857 #ifdef VERBOSE_INIT_ARM
6858 printf("P");
6859 #endif
6860 /* Use a small page mapping. */
6861 pt_entry_t npte = L2_S_PROTO | pa
6862 #ifdef ARM_MMU_EXTENDED
6863 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6864 | (va & 0x80000000 ? 0 : L2_XS_nG)
6865 #endif
6866 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6867 #ifdef ARM_MMU_EXTENDED
6868 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6869 #endif
6870 l2pte_set(ptep, npte, 0);
6871 PTE_SYNC(ptep);
6872 va += PAGE_SIZE;
6873 pa += PAGE_SIZE;
6874 resid -= PAGE_SIZE;
6875 }
6876 #ifdef VERBOSE_INIT_ARM
6877 printf("\n");
6878 #endif
6879 return (size);
6880 }
6881
6882 /********************** Static device map routines ***************************/
6883
6884 static const struct pmap_devmap *pmap_devmap_table;
6885
6886 /*
6887 * Register the devmap table. This is provided in case early console
6888 * initialization needs to register mappings created by bootstrap code
6889 * before pmap_devmap_bootstrap() is called.
6890 */
6891 void
6892 pmap_devmap_register(const struct pmap_devmap *table)
6893 {
6894
6895 pmap_devmap_table = table;
6896 }
6897
6898 /*
6899 * Map all of the static regions in the devmap table, and remember
6900 * the devmap table so other parts of the kernel can look up entries
6901 * later.
6902 */
6903 void
6904 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6905 {
6906 int i;
6907
6908 pmap_devmap_table = table;
6909
6910 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6911 #ifdef VERBOSE_INIT_ARM
6912 printf("devmap: %08lx -> %08lx @ %08lx\n",
6913 pmap_devmap_table[i].pd_pa,
6914 pmap_devmap_table[i].pd_pa +
6915 pmap_devmap_table[i].pd_size - 1,
6916 pmap_devmap_table[i].pd_va);
6917 #endif
6918 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6919 pmap_devmap_table[i].pd_pa,
6920 pmap_devmap_table[i].pd_size,
6921 pmap_devmap_table[i].pd_prot,
6922 pmap_devmap_table[i].pd_cache);
6923 }
6924 }
6925
6926 const struct pmap_devmap *
6927 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6928 {
6929 uint64_t endpa;
6930 int i;
6931
6932 if (pmap_devmap_table == NULL)
6933 return (NULL);
6934
6935 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6936
6937 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6938 if (pa >= pmap_devmap_table[i].pd_pa &&
6939 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6940 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6941 return (&pmap_devmap_table[i]);
6942 }
6943
6944 return (NULL);
6945 }
6946
6947 const struct pmap_devmap *
6948 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6949 {
6950 int i;
6951
6952 if (pmap_devmap_table == NULL)
6953 return (NULL);
6954
6955 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6956 if (va >= pmap_devmap_table[i].pd_va &&
6957 va + size - 1 <= pmap_devmap_table[i].pd_va +
6958 pmap_devmap_table[i].pd_size - 1)
6959 return (&pmap_devmap_table[i]);
6960 }
6961
6962 return (NULL);
6963 }
6964
6965 /********************** PTE initialization routines **************************/
6966
6967 /*
6968 * These routines are called when the CPU type is identified to set up
6969 * the PTE prototypes, cache modes, etc.
6970 *
6971 * The variables are always here, just in case modules need to reference
6972 * them (though, they shouldn't).
6973 */
6974
6975 pt_entry_t pte_l1_s_cache_mode;
6976 pt_entry_t pte_l1_s_wc_mode;
6977 pt_entry_t pte_l1_s_cache_mode_pt;
6978 pt_entry_t pte_l1_s_cache_mask;
6979
6980 pt_entry_t pte_l2_l_cache_mode;
6981 pt_entry_t pte_l2_l_wc_mode;
6982 pt_entry_t pte_l2_l_cache_mode_pt;
6983 pt_entry_t pte_l2_l_cache_mask;
6984
6985 pt_entry_t pte_l2_s_cache_mode;
6986 pt_entry_t pte_l2_s_wc_mode;
6987 pt_entry_t pte_l2_s_cache_mode_pt;
6988 pt_entry_t pte_l2_s_cache_mask;
6989
6990 pt_entry_t pte_l1_s_prot_u;
6991 pt_entry_t pte_l1_s_prot_w;
6992 pt_entry_t pte_l1_s_prot_ro;
6993 pt_entry_t pte_l1_s_prot_mask;
6994
6995 pt_entry_t pte_l2_s_prot_u;
6996 pt_entry_t pte_l2_s_prot_w;
6997 pt_entry_t pte_l2_s_prot_ro;
6998 pt_entry_t pte_l2_s_prot_mask;
6999
7000 pt_entry_t pte_l2_l_prot_u;
7001 pt_entry_t pte_l2_l_prot_w;
7002 pt_entry_t pte_l2_l_prot_ro;
7003 pt_entry_t pte_l2_l_prot_mask;
7004
7005 pt_entry_t pte_l1_ss_proto;
7006 pt_entry_t pte_l1_s_proto;
7007 pt_entry_t pte_l1_c_proto;
7008 pt_entry_t pte_l2_s_proto;
7009
7010 void (*pmap_copy_page_func)(paddr_t, paddr_t);
7011 void (*pmap_zero_page_func)(paddr_t);
7012
7013 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7014 void
7015 pmap_pte_init_generic(void)
7016 {
7017
7018 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7019 pte_l1_s_wc_mode = L1_S_B;
7020 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7021
7022 pte_l2_l_cache_mode = L2_B|L2_C;
7023 pte_l2_l_wc_mode = L2_B;
7024 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7025
7026 pte_l2_s_cache_mode = L2_B|L2_C;
7027 pte_l2_s_wc_mode = L2_B;
7028 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7029
7030 /*
7031 * If we have a write-through cache, set B and C. If
7032 * we have a write-back cache, then we assume setting
7033 * only C will make those pages write-through (except for those
7034 * Cortex CPUs which can read the L1 caches).
7035 */
7036 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7037 #if ARM_MMU_V7 > 0
7038 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7039 #endif
7040 #if ARM_MMU_V6 > 0
7041 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7042 #endif
7043 || false) {
7044 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7045 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7046 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7047 } else {
7048 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7049 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7050 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7051 }
7052
7053 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7054 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7055 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7056 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7057
7058 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7059 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7060 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7061 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7062
7063 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7064 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7065 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7066 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7067
7068 pte_l1_ss_proto = L1_SS_PROTO_generic;
7069 pte_l1_s_proto = L1_S_PROTO_generic;
7070 pte_l1_c_proto = L1_C_PROTO_generic;
7071 pte_l2_s_proto = L2_S_PROTO_generic;
7072
7073 pmap_copy_page_func = pmap_copy_page_generic;
7074 pmap_zero_page_func = pmap_zero_page_generic;
7075 }
7076
7077 #if defined(CPU_ARM8)
7078 void
7079 pmap_pte_init_arm8(void)
7080 {
7081
7082 /*
7083 * ARM8 is compatible with generic, but we need to use
7084 * the page tables uncached.
7085 */
7086 pmap_pte_init_generic();
7087
7088 pte_l1_s_cache_mode_pt = 0;
7089 pte_l2_l_cache_mode_pt = 0;
7090 pte_l2_s_cache_mode_pt = 0;
7091 }
7092 #endif /* CPU_ARM8 */
7093
7094 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7095 void
7096 pmap_pte_init_arm9(void)
7097 {
7098
7099 /*
7100 * ARM9 is compatible with generic, but we want to use
7101 * write-through caching for now.
7102 */
7103 pmap_pte_init_generic();
7104
7105 pte_l1_s_cache_mode = L1_S_C;
7106 pte_l2_l_cache_mode = L2_C;
7107 pte_l2_s_cache_mode = L2_C;
7108
7109 pte_l1_s_wc_mode = L1_S_B;
7110 pte_l2_l_wc_mode = L2_B;
7111 pte_l2_s_wc_mode = L2_B;
7112
7113 pte_l1_s_cache_mode_pt = L1_S_C;
7114 pte_l2_l_cache_mode_pt = L2_C;
7115 pte_l2_s_cache_mode_pt = L2_C;
7116 }
7117 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7118 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7119
7120 #if defined(CPU_ARM10)
7121 void
7122 pmap_pte_init_arm10(void)
7123 {
7124
7125 /*
7126 * ARM10 is compatible with generic, but we want to use
7127 * write-through caching for now.
7128 */
7129 pmap_pte_init_generic();
7130
7131 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7132 pte_l2_l_cache_mode = L2_B | L2_C;
7133 pte_l2_s_cache_mode = L2_B | L2_C;
7134
7135 pte_l1_s_cache_mode = L1_S_B;
7136 pte_l2_l_cache_mode = L2_B;
7137 pte_l2_s_cache_mode = L2_B;
7138
7139 pte_l1_s_cache_mode_pt = L1_S_C;
7140 pte_l2_l_cache_mode_pt = L2_C;
7141 pte_l2_s_cache_mode_pt = L2_C;
7142
7143 }
7144 #endif /* CPU_ARM10 */
7145
7146 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7147 void
7148 pmap_pte_init_arm11(void)
7149 {
7150
7151 /*
7152 * ARM11 is compatible with generic, but we want to use
7153 * write-through caching for now.
7154 */
7155 pmap_pte_init_generic();
7156
7157 pte_l1_s_cache_mode = L1_S_C;
7158 pte_l2_l_cache_mode = L2_C;
7159 pte_l2_s_cache_mode = L2_C;
7160
7161 pte_l1_s_wc_mode = L1_S_B;
7162 pte_l2_l_wc_mode = L2_B;
7163 pte_l2_s_wc_mode = L2_B;
7164
7165 pte_l1_s_cache_mode_pt = L1_S_C;
7166 pte_l2_l_cache_mode_pt = L2_C;
7167 pte_l2_s_cache_mode_pt = L2_C;
7168 }
7169 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7170
7171 #if ARM_MMU_SA1 == 1
7172 void
7173 pmap_pte_init_sa1(void)
7174 {
7175
7176 /*
7177 * The StrongARM SA-1 cache does not have a write-through
7178 * mode. So, do the generic initialization, then reset
7179 * the page table cache mode to B=1,C=1, and note that
7180 * the PTEs need to be sync'd.
7181 */
7182 pmap_pte_init_generic();
7183
7184 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7185 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7186 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7187
7188 pmap_needs_pte_sync = 1;
7189 }
7190 #endif /* ARM_MMU_SA1 == 1*/
7191
7192 #if ARM_MMU_XSCALE == 1
7193 #if (ARM_NMMUS > 1)
7194 static u_int xscale_use_minidata;
7195 #endif
7196
7197 void
7198 pmap_pte_init_xscale(void)
7199 {
7200 uint32_t auxctl;
7201 int write_through = 0;
7202
7203 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7204 pte_l1_s_wc_mode = L1_S_B;
7205 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7206
7207 pte_l2_l_cache_mode = L2_B|L2_C;
7208 pte_l2_l_wc_mode = L2_B;
7209 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7210
7211 pte_l2_s_cache_mode = L2_B|L2_C;
7212 pte_l2_s_wc_mode = L2_B;
7213 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7214
7215 pte_l1_s_cache_mode_pt = L1_S_C;
7216 pte_l2_l_cache_mode_pt = L2_C;
7217 pte_l2_s_cache_mode_pt = L2_C;
7218
7219 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7220 /*
7221 * The XScale core has an enhanced mode where writes that
7222 * miss the cache cause a cache line to be allocated. This
7223 * is significantly faster than the traditional, write-through
7224 * behavior of this case.
7225 */
7226 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7227 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7228 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7229 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7230
7231 #ifdef XSCALE_CACHE_WRITE_THROUGH
7232 /*
7233 * Some versions of the XScale core have various bugs in
7234 * their cache units, the work-around for which is to run
7235 * the cache in write-through mode. Unfortunately, this
7236 * has a major (negative) impact on performance. So, we
7237 * go ahead and run fast-and-loose, in the hopes that we
7238 * don't line up the planets in a way that will trip the
7239 * bugs.
7240 *
7241 * However, we give you the option to be slow-but-correct.
7242 */
7243 write_through = 1;
7244 #elif defined(XSCALE_CACHE_WRITE_BACK)
7245 /* force write back cache mode */
7246 write_through = 0;
7247 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7248 /*
7249 * Intel PXA2[15]0 processors are known to have a bug in
7250 * write-back cache on revision 4 and earlier (stepping
7251 * A[01] and B[012]). Fixed for C0 and later.
7252 */
7253 {
7254 uint32_t id, type;
7255
7256 id = cpufunc_id();
7257 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7258
7259 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7260 if ((id & CPU_ID_REVISION_MASK) < 5) {
7261 /* write through for stepping A0-1 and B0-2 */
7262 write_through = 1;
7263 }
7264 }
7265 }
7266 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7267
7268 if (write_through) {
7269 pte_l1_s_cache_mode = L1_S_C;
7270 pte_l2_l_cache_mode = L2_C;
7271 pte_l2_s_cache_mode = L2_C;
7272 }
7273
7274 #if (ARM_NMMUS > 1)
7275 xscale_use_minidata = 1;
7276 #endif
7277
7278 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7279 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7280 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7281 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7282
7283 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7284 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7285 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7286 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7287
7288 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7289 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7290 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7291 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7292
7293 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7294 pte_l1_s_proto = L1_S_PROTO_xscale;
7295 pte_l1_c_proto = L1_C_PROTO_xscale;
7296 pte_l2_s_proto = L2_S_PROTO_xscale;
7297
7298 pmap_copy_page_func = pmap_copy_page_xscale;
7299 pmap_zero_page_func = pmap_zero_page_xscale;
7300
7301 /*
7302 * Disable ECC protection of page table access, for now.
7303 */
7304 auxctl = armreg_auxctl_read();
7305 auxctl &= ~XSCALE_AUXCTL_P;
7306 armreg_auxctl_write(auxctl);
7307 }
7308
7309 /*
7310 * xscale_setup_minidata:
7311 *
7312 * Set up the mini-data cache clean area. We require the
7313 * caller to allocate the right amount of physically and
7314 * virtually contiguous space.
7315 */
7316 void
7317 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7318 {
7319 extern vaddr_t xscale_minidata_clean_addr;
7320 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7321 pd_entry_t *pde = (pd_entry_t *) l1pt;
7322 vsize_t size;
7323 uint32_t auxctl;
7324
7325 xscale_minidata_clean_addr = va;
7326
7327 /* Round it to page size. */
7328 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7329
7330 for (; size != 0;
7331 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7332 const size_t l1slot = l1pte_index(va);
7333 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7334 if (ptep == NULL)
7335 panic("xscale_setup_minidata: can't find L2 table for "
7336 "VA 0x%08lx", va);
7337
7338 ptep += l2pte_index(va);
7339 pt_entry_t opte = *ptep;
7340 l2pte_set(ptep,
7341 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7342 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7343 }
7344
7345 /*
7346 * Configure the mini-data cache for write-back with
7347 * read/write-allocate.
7348 *
7349 * NOTE: In order to reconfigure the mini-data cache, we must
7350 * make sure it contains no valid data! In order to do that,
7351 * we must issue a global data cache invalidate command!
7352 *
7353 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7354 * THIS IS VERY IMPORTANT!
7355 */
7356
7357 /* Invalidate data and mini-data. */
7358 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7359 auxctl = armreg_auxctl_read();
7360 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7361 armreg_auxctl_write(auxctl);
7362 }
7363
7364 /*
7365 * Change the PTEs for the specified kernel mappings such that they
7366 * will use the mini data cache instead of the main data cache.
7367 */
7368 void
7369 pmap_uarea(vaddr_t va)
7370 {
7371 vaddr_t next_bucket, eva;
7372
7373 #if (ARM_NMMUS > 1)
7374 if (xscale_use_minidata == 0)
7375 return;
7376 #endif
7377
7378 eva = va + USPACE;
7379
7380 while (va < eva) {
7381 next_bucket = L2_NEXT_BUCKET_VA(va);
7382 if (next_bucket > eva)
7383 next_bucket = eva;
7384
7385 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7386 KDASSERT(l2b != NULL);
7387
7388 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7389 pt_entry_t *ptep = sptep;
7390
7391 while (va < next_bucket) {
7392 const pt_entry_t opte = *ptep;
7393 if (!l2pte_minidata_p(opte)) {
7394 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7395 cpu_tlb_flushD_SE(va);
7396 l2pte_set(ptep, opte & ~L2_B, opte);
7397 }
7398 ptep += PAGE_SIZE / L2_S_SIZE;
7399 va += PAGE_SIZE;
7400 }
7401 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7402 }
7403 cpu_cpwait();
7404 }
7405 #endif /* ARM_MMU_XSCALE == 1 */
7406
7407
7408 #if defined(CPU_ARM11MPCORE)
7409
7410 void
7411 pmap_pte_init_arm11mpcore(void)
7412 {
7413
7414 /* cache mode is controlled by 5 bits (B, C, TEX) */
7415 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7416 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7417 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7418 /* use extended small page (without APn, with TEX) */
7419 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7420 #else
7421 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7422 #endif
7423
7424 /* write-back, write-allocate */
7425 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7426 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7427 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7428 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7429 #else
7430 /* no TEX. read-allocate */
7431 pte_l2_s_cache_mode = L2_C | L2_B;
7432 #endif
7433 /*
7434 * write-back, write-allocate for page tables.
7435 */
7436 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7437 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7438 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7439 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7440 #else
7441 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7442 #endif
7443
7444 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7445 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7446 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7447 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7448
7449 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7450 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7451 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7452 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7453 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7454
7455 #else
7456 /* with AP[0..3] */
7457 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7458 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7459 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7460 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7461 #endif
7462
7463 #ifdef ARM11MPCORE_COMPAT_MMU
7464 /* with AP[0..3] */
7465 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7466 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7467 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7468 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7469
7470 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7471 pte_l1_s_proto = L1_S_PROTO_armv6;
7472 pte_l1_c_proto = L1_C_PROTO_armv6;
7473 pte_l2_s_proto = L2_S_PROTO_armv6c;
7474 #else
7475 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7476 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7477 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7478 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7479
7480 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7481 pte_l1_s_proto = L1_S_PROTO_armv6;
7482 pte_l1_c_proto = L1_C_PROTO_armv6;
7483 pte_l2_s_proto = L2_S_PROTO_armv6n;
7484 #endif
7485
7486 pmap_copy_page_func = pmap_copy_page_generic;
7487 pmap_zero_page_func = pmap_zero_page_generic;
7488 pmap_needs_pte_sync = 1;
7489 }
7490 #endif /* CPU_ARM11MPCORE */
7491
7492
7493 #if ARM_MMU_V7 == 1
7494 void
7495 pmap_pte_init_armv7(void)
7496 {
7497 /*
7498 * The ARMv7-A MMU is mostly compatible with generic. If the
7499 * AP field is zero, that now means "no access" rather than
7500 * read-only. The prototypes are a little different because of
7501 * the XN bit.
7502 */
7503 pmap_pte_init_generic();
7504
7505 pmap_needs_pte_sync = 1;
7506
7507 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7508 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7509 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7510
7511 /*
7512 * If the core support coherent walk then updates to translation tables
7513 * do not require a clean to the point of unification to ensure
7514 * visibility by subsequent translation table walks. That means we can
7515 * map everything shareable and cached and the right thing will happen.
7516 */
7517 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7518 pmap_needs_pte_sync = 0;
7519
7520 /*
7521 * write-back, no write-allocate, shareable for normal pages.
7522 */
7523 pte_l1_s_cache_mode |= L1_S_V6_S;
7524 pte_l2_l_cache_mode |= L2_XS_S;
7525 pte_l2_s_cache_mode |= L2_XS_S;
7526 }
7527
7528 /*
7529 * Page tables are just all other memory. We can use write-back since
7530 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7531 */
7532 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7533 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7534 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7535
7536 /*
7537 * Check the Memory Model Features to see if this CPU supports
7538 * the TLBIASID coproc op.
7539 */
7540 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7541 arm_has_tlbiasid_p = true;
7542 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7543 arm_has_tlbiasid_p = true;
7544 }
7545
7546 /*
7547 * Check the MPIDR to see if this CPU supports MP extensions.
7548 */
7549 #ifdef MULTIPROCESSOR
7550 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7551 #else
7552 arm_has_mpext_p = false;
7553 #endif
7554
7555 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7556 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7557 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7558 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7559
7560 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7561 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7562 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7563 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7564
7565 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7566 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7567 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7568 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7569
7570 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7571 pte_l1_s_proto = L1_S_PROTO_armv7;
7572 pte_l1_c_proto = L1_C_PROTO_armv7;
7573 pte_l2_s_proto = L2_S_PROTO_armv7;
7574
7575 }
7576 #endif /* ARM_MMU_V7 */
7577
7578 /*
7579 * return the PA of the current L1 table, for use when handling a crash dump
7580 */
7581 uint32_t
7582 pmap_kernel_L1_addr(void)
7583 {
7584 #ifdef ARM_MMU_EXTENDED
7585 return pmap_kernel()->pm_l1_pa;
7586 #else
7587 return pmap_kernel()->pm_l1->l1_physaddr;
7588 #endif
7589 }
7590
7591 #if defined(DDB)
7592 /*
7593 * A couple of ddb-callable functions for dumping pmaps
7594 */
7595 void pmap_dump(pmap_t);
7596
7597 static pt_entry_t ncptes[64];
7598 static void pmap_dump_ncpg(pmap_t);
7599
7600 void
7601 pmap_dump(pmap_t pm)
7602 {
7603 struct l2_dtable *l2;
7604 struct l2_bucket *l2b;
7605 pt_entry_t *ptep, pte;
7606 vaddr_t l2_va, l2b_va, va;
7607 int i, j, k, occ, rows = 0;
7608
7609 if (pm == pmap_kernel())
7610 printf("pmap_kernel (%p): ", pm);
7611 else
7612 printf("user pmap (%p): ", pm);
7613
7614 #ifdef ARM_MMU_EXTENDED
7615 printf("l1 at %p\n", pmap_l1_kva(pm));
7616 #else
7617 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7618 #endif
7619
7620 l2_va = 0;
7621 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7622 l2 = pm->pm_l2[i];
7623
7624 if (l2 == NULL || l2->l2_occupancy == 0)
7625 continue;
7626
7627 l2b_va = l2_va;
7628 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7629 l2b = &l2->l2_bucket[j];
7630
7631 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7632 continue;
7633
7634 ptep = l2b->l2b_kva;
7635
7636 for (k = 0; k < 256 && ptep[k] == 0; k++)
7637 ;
7638
7639 k &= ~63;
7640 occ = l2b->l2b_occupancy;
7641 va = l2b_va + (k * 4096);
7642 for (; k < 256; k++, va += 0x1000) {
7643 char ch = ' ';
7644 if ((k % 64) == 0) {
7645 if ((rows % 8) == 0) {
7646 printf(
7647 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7648 }
7649 printf("%08lx: ", va);
7650 }
7651
7652 ncptes[k & 63] = 0;
7653 pte = ptep[k];
7654 if (pte == 0) {
7655 ch = '.';
7656 } else {
7657 occ--;
7658 switch (pte & 0x0c) {
7659 case 0x00:
7660 ch = 'D'; /* No cache No buff */
7661 break;
7662 case 0x04:
7663 ch = 'B'; /* No cache buff */
7664 break;
7665 case 0x08:
7666 if (pte & 0x40)
7667 ch = 'm';
7668 else
7669 ch = 'C'; /* Cache No buff */
7670 break;
7671 case 0x0c:
7672 ch = 'F'; /* Cache Buff */
7673 break;
7674 }
7675
7676 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7677 ch += 0x20;
7678
7679 if ((pte & 0xc) == 0)
7680 ncptes[k & 63] = pte;
7681 }
7682
7683 if ((k % 64) == 63) {
7684 rows++;
7685 printf("%c\n", ch);
7686 pmap_dump_ncpg(pm);
7687 if (occ == 0)
7688 break;
7689 } else
7690 printf("%c", ch);
7691 }
7692 }
7693 }
7694 }
7695
7696 static void
7697 pmap_dump_ncpg(pmap_t pm)
7698 {
7699 struct vm_page *pg;
7700 struct vm_page_md *md;
7701 struct pv_entry *pv;
7702 int i;
7703
7704 for (i = 0; i < 63; i++) {
7705 if (ncptes[i] == 0)
7706 continue;
7707
7708 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7709 if (pg == NULL)
7710 continue;
7711 md = VM_PAGE_TO_MD(pg);
7712
7713 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7714 VM_PAGE_TO_PHYS(pg),
7715 md->krw_mappings, md->kro_mappings,
7716 md->urw_mappings, md->uro_mappings);
7717
7718 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7719 printf(" %c va 0x%08lx, flags 0x%x\n",
7720 (pm == pv->pv_pmap) ? '*' : ' ',
7721 pv->pv_va, pv->pv_flags);
7722 }
7723 }
7724 }
7725 #endif
7726
7727 #ifdef PMAP_STEAL_MEMORY
7728 void
7729 pmap_boot_pageadd(pv_addr_t *newpv)
7730 {
7731 pv_addr_t *pv, *npv;
7732
7733 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7734 if (newpv->pv_pa < pv->pv_va) {
7735 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7736 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7737 newpv->pv_size += pv->pv_size;
7738 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7739 }
7740 pv = NULL;
7741 } else {
7742 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7743 pv = npv) {
7744 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7745 KASSERT(pv->pv_pa < newpv->pv_pa);
7746 if (newpv->pv_pa > npv->pv_pa)
7747 continue;
7748 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7749 pv->pv_size += newpv->pv_size;
7750 return;
7751 }
7752 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7753 break;
7754 newpv->pv_size += npv->pv_size;
7755 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7756 SLIST_REMOVE_AFTER(newpv, pv_list);
7757 return;
7758 }
7759 }
7760 }
7761
7762 if (pv) {
7763 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7764 } else {
7765 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7766 }
7767 }
7768
7769 void
7770 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7771 pv_addr_t *rpv)
7772 {
7773 pv_addr_t *pv, **pvp;
7774 struct vm_physseg *ps;
7775 size_t i;
7776
7777 KASSERT(amount & PGOFSET);
7778 KASSERT((mask & PGOFSET) == 0);
7779 KASSERT((match & PGOFSET) == 0);
7780 KASSERT(amount != 0);
7781
7782 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7783 (pv = *pvp) != NULL;
7784 pvp = &SLIST_NEXT(pv, pv_list)) {
7785 pv_addr_t *newpv;
7786 psize_t off;
7787 /*
7788 * If this entry is too small to satify the request...
7789 */
7790 KASSERT(pv->pv_size > 0);
7791 if (pv->pv_size < amount)
7792 continue;
7793
7794 for (off = 0; off <= mask; off += PAGE_SIZE) {
7795 if (((pv->pv_pa + off) & mask) == match
7796 && off + amount <= pv->pv_size)
7797 break;
7798 }
7799 if (off > mask)
7800 continue;
7801
7802 rpv->pv_va = pv->pv_va + off;
7803 rpv->pv_pa = pv->pv_pa + off;
7804 rpv->pv_size = amount;
7805 pv->pv_size -= amount;
7806 if (pv->pv_size == 0) {
7807 KASSERT(off == 0);
7808 KASSERT((vaddr_t) pv == rpv->pv_va);
7809 *pvp = SLIST_NEXT(pv, pv_list);
7810 } else if (off == 0) {
7811 KASSERT((vaddr_t) pv == rpv->pv_va);
7812 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7813 *newpv = *pv;
7814 newpv->pv_pa += amount;
7815 newpv->pv_va += amount;
7816 *pvp = newpv;
7817 } else if (off < pv->pv_size) {
7818 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7819 *newpv = *pv;
7820 newpv->pv_size -= off;
7821 newpv->pv_pa += off + amount;
7822 newpv->pv_va += off + amount;
7823
7824 SLIST_NEXT(pv, pv_list) = newpv;
7825 pv->pv_size = off;
7826 } else {
7827 KASSERT((vaddr_t) pv != rpv->pv_va);
7828 }
7829 memset((void *)rpv->pv_va, 0, amount);
7830 return;
7831 }
7832
7833 if (vm_nphysseg == 0)
7834 panic("pmap_boot_pagealloc: couldn't allocate memory");
7835
7836 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7837 (pv = *pvp) != NULL;
7838 pvp = &SLIST_NEXT(pv, pv_list)) {
7839 if (SLIST_NEXT(pv, pv_list) == NULL)
7840 break;
7841 }
7842 KASSERT(mask == 0);
7843 for (i = 0; i < vm_nphysseg; i++) {
7844 ps = VM_PHYSMEM_PTR(i);
7845 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7846 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7847 rpv->pv_va = pv->pv_va;
7848 rpv->pv_pa = pv->pv_pa;
7849 rpv->pv_size = amount;
7850 *pvp = NULL;
7851 pmap_map_chunk(kernel_l1pt.pv_va,
7852 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7853 ptoa(ps->avail_start),
7854 amount - pv->pv_size,
7855 VM_PROT_READ|VM_PROT_WRITE,
7856 PTE_CACHE);
7857 ps->avail_start += atop(amount - pv->pv_size);
7858 /*
7859 * If we consumed the entire physseg, remove it.
7860 */
7861 if (ps->avail_start == ps->avail_end) {
7862 for (--vm_nphysseg; i < vm_nphysseg; i++)
7863 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7864 }
7865 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7866 return;
7867 }
7868 }
7869
7870 panic("pmap_boot_pagealloc: couldn't allocate memory");
7871 }
7872
7873 vaddr_t
7874 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7875 {
7876 pv_addr_t pv;
7877
7878 pmap_boot_pagealloc(size, 0, 0, &pv);
7879
7880 return pv.pv_va;
7881 }
7882 #endif /* PMAP_STEAL_MEMORY */
7883
7884 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7885 {
7886 sysctl_createv(clog, 0, NULL, NULL,
7887 CTLFLAG_PERMANENT,
7888 CTLTYPE_NODE, "machdep", NULL,
7889 NULL, 0, NULL, 0,
7890 CTL_MACHDEP, CTL_EOL);
7891
7892 sysctl_createv(clog, 0, NULL, NULL,
7893 CTLFLAG_PERMANENT,
7894 CTLTYPE_INT, "kmpages",
7895 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7896 NULL, 0, &pmap_kmpages, 0,
7897 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7898 }
7899
7900 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7901 struct vm_page *
7902 arm_pmap_alloc_poolpage(int flags)
7903 {
7904 /*
7905 * On some systems, only some pages may be "coherent" for dma and we
7906 * want to prefer those for pool pages (think mbufs) but fallback to
7907 * any page if none is available.
7908 */
7909 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7910 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7911 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
7912 }
7913
7914 return uvm_pagealloc(NULL, 0, NULL, flags);
7915 }
7916 #endif
7917
7918 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7919 void
7920 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7921 {
7922 /* nothing */
7923 }
7924
7925 int
7926 pic_ipi_shootdown(void *arg)
7927 {
7928 #if PMAP_TLB_NEED_SHOOTDOWN
7929 pmap_tlb_shootdown_process();
7930 #endif
7931 return 1;
7932 }
7933 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7934
7935
7936 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7937 vaddr_t
7938 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7939 {
7940 bool ok = false;
7941 if (physical_start <= pa && pa < physical_end) {
7942 #ifdef KERNEL_BASE_VOFFSET
7943 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
7944 #else
7945 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
7946 #endif
7947 #ifdef ARM_MMU_EXTENDED
7948 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
7949 #endif
7950 va = newva;
7951 ok = true;
7952 #ifdef ARM_MMU_EXTENDED
7953 }
7954 #endif
7955 }
7956 KASSERT(ok_p);
7957 *ok_p = ok;
7958 return va;
7959 }
7960
7961 vaddr_t
7962 pmap_map_poolpage(paddr_t pa)
7963 {
7964 bool ok __diagused;
7965 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7966 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
7967 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7968 if (arm_cache_prefer_mask != 0) {
7969 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7970 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7971 pmap_acquire_page_lock(md);
7972 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7973 pmap_release_page_lock(md);
7974 }
7975 #endif
7976 return va;
7977 }
7978
7979 paddr_t
7980 pmap_unmap_poolpage(vaddr_t va)
7981 {
7982 KASSERT(va >= KERNEL_BASE);
7983 #ifdef PMAP_CACHE_VIVT
7984 cpu_idcache_wbinv_range(va, PAGE_SIZE);
7985 #endif
7986 #if defined(KERNEL_BASE_VOFFSET)
7987 return va - KERNEL_BASE_VOFFSET;
7988 #else
7989 return va - KERNEL_BASE + physical_start;
7990 #endif
7991 }
7992 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
7993