pmap.c revision 1.366 1 /* $NetBSD: pmap.c,v 1.366 2018/07/31 07:00:48 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_arm_debug.h"
190 #include "opt_cpuoptions.h"
191 #include "opt_pmap_debug.h"
192 #include "opt_ddb.h"
193 #include "opt_lockdebug.h"
194 #include "opt_multiprocessor.h"
195
196 #ifdef MULTIPROCESSOR
197 #define _INTR_PRIVATE
198 #endif
199
200 #include <sys/param.h>
201 #include <sys/types.h>
202 #include <sys/kernel.h>
203 #include <sys/systm.h>
204 #include <sys/proc.h>
205 #include <sys/intr.h>
206 #include <sys/pool.h>
207 #include <sys/kmem.h>
208 #include <sys/cdefs.h>
209 #include <sys/cpu.h>
210 #include <sys/sysctl.h>
211 #include <sys/bus.h>
212 #include <sys/atomic.h>
213 #include <sys/kernhist.h>
214
215 #include <uvm/uvm.h>
216 #include <uvm/pmap/pmap_pvt.h>
217
218 #include <arm/locore.h>
219
220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.366 2018/07/31 07:00:48 skrll Exp $");
221
222 //#define PMAP_DEBUG
223 #ifdef PMAP_DEBUG
224
225 /* XXX need to get rid of all refs to this */
226 int pmap_debug_level = 0;
227
228 /*
229 * for switching to potentially finer grained debugging
230 */
231 #define PDB_FOLLOW 0x0001
232 #define PDB_INIT 0x0002
233 #define PDB_ENTER 0x0004
234 #define PDB_REMOVE 0x0008
235 #define PDB_CREATE 0x0010
236 #define PDB_PTPAGE 0x0020
237 #define PDB_GROWKERN 0x0040
238 #define PDB_BITS 0x0080
239 #define PDB_COLLECT 0x0100
240 #define PDB_PROTECT 0x0200
241 #define PDB_MAP_L1 0x0400
242 #define PDB_BOOTSTRAP 0x1000
243 #define PDB_PARANOIA 0x2000
244 #define PDB_WIRING 0x4000
245 #define PDB_PVDUMP 0x8000
246 #define PDB_VAC 0x10000
247 #define PDB_KENTER 0x20000
248 #define PDB_KREMOVE 0x40000
249 #define PDB_EXEC 0x80000
250
251 int debugmap = 1;
252 int pmapdebug = 0;
253 #define NPDEBUG(_lev_,_stat_) \
254 if (pmapdebug & (_lev_)) \
255 ((_stat_))
256
257 #else /* PMAP_DEBUG */
258 #define NPDEBUG(_lev_,_stat_) /* Nothing */
259 #endif /* PMAP_DEBUG */
260
261
262 #ifdef VERBOSE_INIT_ARM
263 #define VPRINTF(...) printf(__VA_ARGS__)
264 #else
265 #define VPRINTF(...) do { } while (/* CONSTCOND */ 0)
266 #endif
267
268 /*
269 * pmap_kernel() points here
270 */
271 static struct pmap kernel_pmap_store = {
272 #ifndef ARM_MMU_EXTENDED
273 .pm_activated = true,
274 .pm_domain = PMAP_DOMAIN_KERNEL,
275 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
276 #endif
277 };
278 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
279 #undef pmap_kernel
280 #define pmap_kernel() (&kernel_pmap_store)
281 #ifdef PMAP_NEED_ALLOC_POOLPAGE
282 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
283 #endif
284
285 /*
286 * Pool and cache that pmap structures are allocated from.
287 * We use a cache to avoid clearing the pm_l2[] array (1KB)
288 * in pmap_create().
289 */
290 static struct pool_cache pmap_cache;
291
292 /*
293 * Pool of PV structures
294 */
295 static struct pool pmap_pv_pool;
296 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
297 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
298 static struct pool_allocator pmap_bootstrap_pv_allocator = {
299 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
300 };
301
302 /*
303 * Pool and cache of l2_dtable structures.
304 * We use a cache to avoid clearing the structures when they're
305 * allocated. (196 bytes)
306 */
307 static struct pool_cache pmap_l2dtable_cache;
308 static vaddr_t pmap_kernel_l2dtable_kva;
309
310 /*
311 * Pool and cache of L2 page descriptors.
312 * We use a cache to avoid clearing the descriptor table
313 * when they're allocated. (1KB)
314 */
315 static struct pool_cache pmap_l2ptp_cache;
316 static vaddr_t pmap_kernel_l2ptp_kva;
317 static paddr_t pmap_kernel_l2ptp_phys;
318
319 #ifdef PMAPCOUNTERS
320 #define PMAP_EVCNT_INITIALIZER(name) \
321 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
322
323 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
324 static struct evcnt pmap_ev_vac_clean_one =
325 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
326 static struct evcnt pmap_ev_vac_flush_one =
327 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
328 static struct evcnt pmap_ev_vac_flush_lots =
329 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
330 static struct evcnt pmap_ev_vac_flush_lots2 =
331 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
332 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
333 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
334 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
335 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
336
337 static struct evcnt pmap_ev_vac_color_new =
338 PMAP_EVCNT_INITIALIZER("new page color");
339 static struct evcnt pmap_ev_vac_color_reuse =
340 PMAP_EVCNT_INITIALIZER("ok first page color");
341 static struct evcnt pmap_ev_vac_color_ok =
342 PMAP_EVCNT_INITIALIZER("ok page color");
343 static struct evcnt pmap_ev_vac_color_blind =
344 PMAP_EVCNT_INITIALIZER("blind page color");
345 static struct evcnt pmap_ev_vac_color_change =
346 PMAP_EVCNT_INITIALIZER("change page color");
347 static struct evcnt pmap_ev_vac_color_erase =
348 PMAP_EVCNT_INITIALIZER("erase page color");
349 static struct evcnt pmap_ev_vac_color_none =
350 PMAP_EVCNT_INITIALIZER("no page color");
351 static struct evcnt pmap_ev_vac_color_restore =
352 PMAP_EVCNT_INITIALIZER("restore page color");
353
354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
355 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
356 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
357 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
358 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
359 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
360 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
361 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
362 #endif
363
364 static struct evcnt pmap_ev_mappings =
365 PMAP_EVCNT_INITIALIZER("pages mapped");
366 static struct evcnt pmap_ev_unmappings =
367 PMAP_EVCNT_INITIALIZER("pages unmapped");
368 static struct evcnt pmap_ev_remappings =
369 PMAP_EVCNT_INITIALIZER("pages remapped");
370
371 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
372 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
373 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
374
375 static struct evcnt pmap_ev_kernel_mappings =
376 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
377 static struct evcnt pmap_ev_kernel_unmappings =
378 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
379 static struct evcnt pmap_ev_kernel_remappings =
380 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
381
382 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
383 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
384 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
385
386 static struct evcnt pmap_ev_kenter_mappings =
387 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
388 static struct evcnt pmap_ev_kenter_unmappings =
389 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
390 static struct evcnt pmap_ev_kenter_remappings =
391 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
392 static struct evcnt pmap_ev_pt_mappings =
393 PMAP_EVCNT_INITIALIZER("page table pages mapped");
394
395 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
396 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
397 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
398 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
399
400 static struct evcnt pmap_ev_fixup_mod =
401 PMAP_EVCNT_INITIALIZER("page modification emulations");
402 static struct evcnt pmap_ev_fixup_ref =
403 PMAP_EVCNT_INITIALIZER("page reference emulations");
404 static struct evcnt pmap_ev_fixup_exec =
405 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
406 static struct evcnt pmap_ev_fixup_pdes =
407 PMAP_EVCNT_INITIALIZER("pdes fixed up");
408 #ifndef ARM_MMU_EXTENDED
409 static struct evcnt pmap_ev_fixup_ptesync =
410 PMAP_EVCNT_INITIALIZER("ptesync fixed");
411 #endif
412
413 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
414 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
415 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
416 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
417 #ifndef ARM_MMU_EXTENDED
418 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
419 #endif
420
421 #ifdef PMAP_CACHE_VIPT
422 static struct evcnt pmap_ev_exec_mappings =
423 PMAP_EVCNT_INITIALIZER("exec pages mapped");
424 static struct evcnt pmap_ev_exec_cached =
425 PMAP_EVCNT_INITIALIZER("exec pages cached");
426
427 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
428 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
429
430 static struct evcnt pmap_ev_exec_synced =
431 PMAP_EVCNT_INITIALIZER("exec pages synced");
432 static struct evcnt pmap_ev_exec_synced_map =
433 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
434 static struct evcnt pmap_ev_exec_synced_unmap =
435 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
436 static struct evcnt pmap_ev_exec_synced_remap =
437 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
438 static struct evcnt pmap_ev_exec_synced_clearbit =
439 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
440 #ifndef ARM_MMU_EXTENDED
441 static struct evcnt pmap_ev_exec_synced_kremove =
442 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
443 #endif
444
445 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
446 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
447 #ifndef ARM_MMU_EXTENDED
448 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
449 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
450 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
451 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
452 #endif
453
454 static struct evcnt pmap_ev_exec_discarded_unmap =
455 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
456 static struct evcnt pmap_ev_exec_discarded_zero =
457 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
458 static struct evcnt pmap_ev_exec_discarded_copy =
459 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
460 static struct evcnt pmap_ev_exec_discarded_page_protect =
461 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
462 static struct evcnt pmap_ev_exec_discarded_clearbit =
463 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
464 static struct evcnt pmap_ev_exec_discarded_kremove =
465 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
466 #ifdef ARM_MMU_EXTENDED
467 static struct evcnt pmap_ev_exec_discarded_modfixup =
468 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
469 #endif
470
471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
472 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
473 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
474 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
475 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
476 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
477 #ifdef ARM_MMU_EXTENDED
478 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
479 #endif
480 #endif /* PMAP_CACHE_VIPT */
481
482 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
483 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
484 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
485
486 EVCNT_ATTACH_STATIC(pmap_ev_updates);
487 EVCNT_ATTACH_STATIC(pmap_ev_collects);
488 EVCNT_ATTACH_STATIC(pmap_ev_activations);
489
490 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
491 #else
492 #define PMAPCOUNT(x) ((void)0)
493 #endif
494
495 #ifdef ARM_MMU_EXTENDED
496 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
497 void pmap_md_pdetab_deactivate(pmap_t pm);
498 #endif
499
500 /*
501 * pmap copy/zero page, and mem(5) hook point
502 */
503 static pt_entry_t *csrc_pte, *cdst_pte;
504 static vaddr_t csrcp, cdstp;
505 #ifdef MULTIPROCESSOR
506 static size_t cnptes;
507 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
508 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
509 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
510 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
511 #else
512 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
513 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
514 #define cpu_csrcp(o) (csrcp + (o))
515 #define cpu_cdstp(o) (cdstp + (o))
516 #endif
517 vaddr_t memhook; /* used by mem.c & others */
518 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
519 kmutex_t pmap_lock __cacheline_aligned;
520 extern void *msgbufaddr;
521 int pmap_kmpages;
522 /*
523 * Flag to indicate if pmap_init() has done its thing
524 */
525 bool pmap_initialized;
526
527 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
528 /*
529 * Virtual end of direct-mapped memory
530 */
531 vaddr_t pmap_directlimit;
532 #endif
533
534 /*
535 * Misc. locking data structures
536 */
537
538 static inline void
539 pmap_acquire_pmap_lock(pmap_t pm)
540 {
541 if (pm == pmap_kernel()) {
542 #ifdef MULTIPROCESSOR
543 KERNEL_LOCK(1, NULL);
544 #endif
545 } else {
546 mutex_enter(pm->pm_lock);
547 }
548 }
549
550 static inline void
551 pmap_release_pmap_lock(pmap_t pm)
552 {
553 if (pm == pmap_kernel()) {
554 #ifdef MULTIPROCESSOR
555 KERNEL_UNLOCK_ONE(NULL);
556 #endif
557 } else {
558 mutex_exit(pm->pm_lock);
559 }
560 }
561
562 static inline void
563 pmap_acquire_page_lock(struct vm_page_md *md)
564 {
565 mutex_enter(&pmap_lock);
566 }
567
568 static inline void
569 pmap_release_page_lock(struct vm_page_md *md)
570 {
571 mutex_exit(&pmap_lock);
572 }
573
574 #ifdef DIAGNOSTIC
575 static inline int
576 pmap_page_locked_p(struct vm_page_md *md)
577 {
578 return mutex_owned(&pmap_lock);
579 }
580 #endif
581
582
583 /*
584 * Metadata for L1 translation tables.
585 */
586 #ifndef ARM_MMU_EXTENDED
587 struct l1_ttable {
588 /* Entry on the L1 Table list */
589 SLIST_ENTRY(l1_ttable) l1_link;
590
591 /* Entry on the L1 Least Recently Used list */
592 TAILQ_ENTRY(l1_ttable) l1_lru;
593
594 /* Track how many domains are allocated from this L1 */
595 volatile u_int l1_domain_use_count;
596
597 /*
598 * A free-list of domain numbers for this L1.
599 * We avoid using ffs() and a bitmap to track domains since ffs()
600 * is slow on ARM.
601 */
602 uint8_t l1_domain_first;
603 uint8_t l1_domain_free[PMAP_DOMAINS];
604
605 /* Physical address of this L1 page table */
606 paddr_t l1_physaddr;
607
608 /* KVA of this L1 page table */
609 pd_entry_t *l1_kva;
610 };
611
612 /*
613 * L1 Page Tables are tracked using a Least Recently Used list.
614 * - New L1s are allocated from the HEAD.
615 * - Freed L1s are added to the TAIl.
616 * - Recently accessed L1s (where an 'access' is some change to one of
617 * the userland pmaps which owns this L1) are moved to the TAIL.
618 */
619 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
620 static kmutex_t l1_lru_lock __cacheline_aligned;
621
622 /*
623 * A list of all L1 tables
624 */
625 static SLIST_HEAD(, l1_ttable) l1_list;
626 #endif /* ARM_MMU_EXTENDED */
627
628 /*
629 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
630 *
631 * This is normally 16MB worth L2 page descriptors for any given pmap.
632 * Reference counts are maintained for L2 descriptors so they can be
633 * freed when empty.
634 */
635 struct l2_bucket {
636 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
637 paddr_t l2b_pa; /* Physical address of same */
638 u_short l2b_l1slot; /* This L2 table's L1 index */
639 u_short l2b_occupancy; /* How many active descriptors */
640 };
641
642 struct l2_dtable {
643 /* The number of L2 page descriptors allocated to this l2_dtable */
644 u_int l2_occupancy;
645
646 /* List of L2 page descriptors */
647 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
648 };
649
650 /*
651 * Given an L1 table index, calculate the corresponding l2_dtable index
652 * and bucket index within the l2_dtable.
653 */
654 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
655 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
656 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
657 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
658 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
659
660 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
661 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
662
663 /*
664 * Given a virtual address, this macro returns the
665 * virtual address required to drop into the next L2 bucket.
666 */
667 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
668
669 /*
670 * L2 allocation.
671 */
672 #define pmap_alloc_l2_dtable() \
673 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
674 #define pmap_free_l2_dtable(l2) \
675 pool_cache_put(&pmap_l2dtable_cache, (l2))
676 #define pmap_alloc_l2_ptp(pap) \
677 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
678 PR_NOWAIT, (pap)))
679
680 /*
681 * We try to map the page tables write-through, if possible. However, not
682 * all CPUs have a write-through cache mode, so on those we have to sync
683 * the cache when we frob page tables.
684 *
685 * We try to evaluate this at compile time, if possible. However, it's
686 * not always possible to do that, hence this run-time var.
687 */
688 int pmap_needs_pte_sync;
689
690 /*
691 * Real definition of pv_entry.
692 */
693 struct pv_entry {
694 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
695 pmap_t pv_pmap; /* pmap where mapping lies */
696 vaddr_t pv_va; /* virtual address for mapping */
697 u_int pv_flags; /* flags */
698 };
699
700 /*
701 * Macros to determine if a mapping might be resident in the
702 * instruction/data cache and/or TLB
703 */
704 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
705 /*
706 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
707 * there are no explicit accesses, so there may be always be TLB entries to
708 * flush. If we used ASIDs then this would not be a problem.
709 */
710 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
711 #define PV_BEEN_REFD(f) (true)
712 #else
713 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
714 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
715 #endif
716 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
717 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
718 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
719
720 /*
721 * Local prototypes
722 */
723 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
724 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
725 pt_entry_t **);
726 static bool pmap_is_current(pmap_t) __unused;
727 static bool pmap_is_cached(pmap_t);
728 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
729 pmap_t, vaddr_t, u_int);
730 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
731 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
732 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
733 u_int, u_int);
734
735 static void pmap_pinit(pmap_t);
736 static int pmap_pmap_ctor(void *, void *, int);
737
738 static void pmap_alloc_l1(pmap_t);
739 static void pmap_free_l1(pmap_t);
740 #ifndef ARM_MMU_EXTENDED
741 static void pmap_use_l1(pmap_t);
742 #endif
743
744 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
745 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
746 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
747 static int pmap_l2ptp_ctor(void *, void *, int);
748 static int pmap_l2dtable_ctor(void *, void *, int);
749
750 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
751 #ifdef PMAP_CACHE_VIVT
752 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
753 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
754 #endif
755
756 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
757 #ifdef PMAP_CACHE_VIVT
758 static bool pmap_clean_page(struct vm_page_md *, bool);
759 #endif
760 #ifdef PMAP_CACHE_VIPT
761 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
762 enum pmap_flush_op {
763 PMAP_FLUSH_PRIMARY,
764 PMAP_FLUSH_SECONDARY,
765 PMAP_CLEAN_PRIMARY
766 };
767 #ifndef ARM_MMU_EXTENDED
768 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
769 #endif
770 #endif
771 static void pmap_page_remove(struct vm_page_md *, paddr_t);
772 static void pmap_pv_remove(paddr_t);
773
774 #ifndef ARM_MMU_EXTENDED
775 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
776 #endif
777 static vaddr_t kernel_pt_lookup(paddr_t);
778
779
780 /*
781 * Misc variables
782 */
783 vaddr_t virtual_avail;
784 vaddr_t virtual_end;
785 vaddr_t pmap_curmaxkvaddr;
786
787 paddr_t avail_start;
788 paddr_t avail_end;
789
790 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
791 pv_addr_t kernelpages;
792 pv_addr_t kernel_l1pt;
793 pv_addr_t systempage;
794
795 /* Function to set the debug level of the pmap code */
796
797 #ifdef PMAP_DEBUG
798 void
799 pmap_debug(int level)
800 {
801 pmap_debug_level = level;
802 printf("pmap_debug: level=%d\n", pmap_debug_level);
803 }
804 #endif /* PMAP_DEBUG */
805
806 #ifdef PMAP_CACHE_VIPT
807 #define PMAP_VALIDATE_MD_PAGE(md) \
808 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
809 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
810 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
811 #endif /* PMAP_CACHE_VIPT */
812 /*
813 * A bunch of routines to conditionally flush the caches/TLB depending
814 * on whether the specified pmap actually needs to be flushed at any
815 * given time.
816 */
817 static inline void
818 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
819 {
820 #ifdef ARM_MMU_EXTENDED
821 pmap_tlb_invalidate_addr(pm, va);
822 #else
823 if (pm->pm_cstate.cs_tlb_id != 0) {
824 if (PV_BEEN_EXECD(flags)) {
825 cpu_tlb_flushID_SE(va);
826 } else if (PV_BEEN_REFD(flags)) {
827 cpu_tlb_flushD_SE(va);
828 }
829 }
830 #endif /* ARM_MMU_EXTENDED */
831 }
832
833 #ifndef ARM_MMU_EXTENDED
834 static inline void
835 pmap_tlb_flushID(pmap_t pm)
836 {
837 if (pm->pm_cstate.cs_tlb_id) {
838 cpu_tlb_flushID();
839 #if ARM_MMU_V7 == 0
840 /*
841 * Speculative loads by Cortex cores can cause TLB entries to
842 * be filled even if there are no explicit accesses, so there
843 * may be always be TLB entries to flush. If we used ASIDs
844 * then it would not be a problem.
845 * This is not true for other CPUs.
846 */
847 pm->pm_cstate.cs_tlb = 0;
848 #endif /* ARM_MMU_V7 */
849 }
850 }
851
852 static inline void
853 pmap_tlb_flushD(pmap_t pm)
854 {
855 if (pm->pm_cstate.cs_tlb_d) {
856 cpu_tlb_flushD();
857 #if ARM_MMU_V7 == 0
858 /*
859 * Speculative loads by Cortex cores can cause TLB entries to
860 * be filled even if there are no explicit accesses, so there
861 * may be always be TLB entries to flush. If we used ASIDs
862 * then it would not be a problem.
863 * This is not true for other CPUs.
864 */
865 pm->pm_cstate.cs_tlb_d = 0;
866 #endif /* ARM_MMU_V7 */
867 }
868 }
869 #endif /* ARM_MMU_EXTENDED */
870
871 #ifdef PMAP_CACHE_VIVT
872 static inline void
873 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
874 {
875 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
876 cpu_idcache_wbinv_range(va, PAGE_SIZE);
877 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
878 if (do_inv) {
879 if (flags & PVF_WRITE)
880 cpu_dcache_wbinv_range(va, PAGE_SIZE);
881 else
882 cpu_dcache_inv_range(va, PAGE_SIZE);
883 } else if (flags & PVF_WRITE) {
884 cpu_dcache_wb_range(va, PAGE_SIZE);
885 }
886 }
887 }
888
889 static inline void
890 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
891 {
892 if (PV_BEEN_EXECD(flags)) {
893 if (pm->pm_cstate.cs_cache_id) {
894 cpu_idcache_wbinv_all();
895 pm->pm_cstate.cs_cache = 0;
896 }
897 } else if (pm->pm_cstate.cs_cache_d) {
898 cpu_dcache_wbinv_all();
899 pm->pm_cstate.cs_cache_d = 0;
900 }
901 }
902 #endif /* PMAP_CACHE_VIVT */
903
904 static inline uint8_t
905 pmap_domain(pmap_t pm)
906 {
907 #ifdef ARM_MMU_EXTENDED
908 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
909 #else
910 return pm->pm_domain;
911 #endif
912 }
913
914 static inline pd_entry_t *
915 pmap_l1_kva(pmap_t pm)
916 {
917 #ifdef ARM_MMU_EXTENDED
918 return pm->pm_l1;
919 #else
920 return pm->pm_l1->l1_kva;
921 #endif
922 }
923
924 static inline bool
925 pmap_is_current(pmap_t pm)
926 {
927 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
928 return true;
929
930 return false;
931 }
932
933 static inline bool
934 pmap_is_cached(pmap_t pm)
935 {
936 #ifdef ARM_MMU_EXTENDED
937 if (pm == pmap_kernel())
938 return true;
939 #ifdef MULTIPROCESSOR
940 // Is this pmap active on any CPU?
941 if (!kcpuset_iszero(pm->pm_active))
942 return true;
943 #else
944 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
945 // Is this pmap active?
946 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
947 return true;
948 #endif
949 #else
950 struct cpu_info * const ci = curcpu();
951 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
952 || ci->ci_pmap_lastuser == pm)
953 return true;
954 #endif /* ARM_MMU_EXTENDED */
955
956 return false;
957 }
958
959 /*
960 * PTE_SYNC_CURRENT:
961 *
962 * Make sure the pte is written out to RAM.
963 * We need to do this for one of two cases:
964 * - We're dealing with the kernel pmap
965 * - There is no pmap active in the cache/tlb.
966 * - The specified pmap is 'active' in the cache/tlb.
967 */
968
969 #ifdef PMAP_INCLUDE_PTE_SYNC
970 static inline void
971 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
972 {
973 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
974 PTE_SYNC(ptep);
975 arm_dsb();
976 }
977
978 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
979 #else
980 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
981 #endif
982
983 /*
984 * main pv_entry manipulation functions:
985 * pmap_enter_pv: enter a mapping onto a vm_page list
986 * pmap_remove_pv: remove a mapping from a vm_page list
987 *
988 * NOTE: pmap_enter_pv expects to lock the pvh itself
989 * pmap_remove_pv expects the caller to lock the pvh before calling
990 */
991
992 /*
993 * pmap_enter_pv: enter a mapping onto a vm_page lst
994 *
995 * => caller should hold the proper lock on pmap_main_lock
996 * => caller should have pmap locked
997 * => we will gain the lock on the vm_page and allocate the new pv_entry
998 * => caller should adjust ptp's wire_count before calling
999 * => caller should not adjust pmap's wire_count
1000 */
1001 static void
1002 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
1003 vaddr_t va, u_int flags)
1004 {
1005 struct pv_entry **pvp;
1006
1007 NPDEBUG(PDB_PVDUMP,
1008 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
1009
1010 pv->pv_pmap = pm;
1011 pv->pv_va = va;
1012 pv->pv_flags = flags;
1013
1014 pvp = &SLIST_FIRST(&md->pvh_list);
1015 #ifdef PMAP_CACHE_VIPT
1016 /*
1017 * Insert unmanaged entries, writeable first, at the head of
1018 * the pv list.
1019 */
1020 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1021 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1022 pvp = &SLIST_NEXT(*pvp, pv_link);
1023 }
1024 if (!PV_IS_WRITE_P(flags)) {
1025 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1026 pvp = &SLIST_NEXT(*pvp, pv_link);
1027 }
1028 #endif
1029 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1030 *pvp = pv; /* ... locked list */
1031 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1032 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1033 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1034 md->pvh_attrs |= PVF_KMOD;
1035 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1036 md->pvh_attrs |= PVF_DIRTY;
1037 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1038 #endif
1039 if (pm == pmap_kernel()) {
1040 PMAPCOUNT(kernel_mappings);
1041 if (flags & PVF_WRITE)
1042 md->krw_mappings++;
1043 else
1044 md->kro_mappings++;
1045 } else {
1046 if (flags & PVF_WRITE)
1047 md->urw_mappings++;
1048 else
1049 md->uro_mappings++;
1050 }
1051
1052 #ifdef PMAP_CACHE_VIPT
1053 #ifndef ARM_MMU_EXTENDED
1054 /*
1055 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1056 * do it here as well to keep the mappings & KVF_WRITE consistent.
1057 */
1058 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1059 md->pvh_attrs |= PVF_WRITE;
1060 }
1061 #endif
1062 /*
1063 * If this is an exec mapping and its the first exec mapping
1064 * for this page, make sure to sync the I-cache.
1065 */
1066 if (PV_IS_EXEC_P(flags)) {
1067 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1068 pmap_syncicache_page(md, pa);
1069 PMAPCOUNT(exec_synced_map);
1070 }
1071 PMAPCOUNT(exec_mappings);
1072 }
1073 #endif
1074
1075 PMAPCOUNT(mappings);
1076
1077 if (pv->pv_flags & PVF_WIRED)
1078 ++pm->pm_stats.wired_count;
1079 }
1080
1081 /*
1082 *
1083 * pmap_find_pv: Find a pv entry
1084 *
1085 * => caller should hold lock on vm_page
1086 */
1087 static inline struct pv_entry *
1088 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1089 {
1090 struct pv_entry *pv;
1091
1092 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1093 if (pm == pv->pv_pmap && va == pv->pv_va)
1094 break;
1095 }
1096
1097 return (pv);
1098 }
1099
1100 /*
1101 * pmap_remove_pv: try to remove a mapping from a pv_list
1102 *
1103 * => caller should hold proper lock on pmap_main_lock
1104 * => pmap should be locked
1105 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1106 * => caller should adjust ptp's wire_count and free PTP if needed
1107 * => caller should NOT adjust pmap's wire_count
1108 * => we return the removed pv
1109 */
1110 static struct pv_entry *
1111 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1112 {
1113 struct pv_entry *pv, **prevptr;
1114
1115 NPDEBUG(PDB_PVDUMP,
1116 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1117
1118 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1119 pv = *prevptr;
1120
1121 while (pv) {
1122 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1123 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1124 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1125 if (pv->pv_flags & PVF_WIRED) {
1126 --pm->pm_stats.wired_count;
1127 }
1128 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1129 if (pm == pmap_kernel()) {
1130 PMAPCOUNT(kernel_unmappings);
1131 if (pv->pv_flags & PVF_WRITE)
1132 md->krw_mappings--;
1133 else
1134 md->kro_mappings--;
1135 } else {
1136 if (pv->pv_flags & PVF_WRITE)
1137 md->urw_mappings--;
1138 else
1139 md->uro_mappings--;
1140 }
1141
1142 PMAPCOUNT(unmappings);
1143 #ifdef PMAP_CACHE_VIPT
1144 /*
1145 * If this page has had an exec mapping, then if
1146 * this was the last mapping, discard the contents,
1147 * otherwise sync the i-cache for this page.
1148 */
1149 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1150 if (SLIST_EMPTY(&md->pvh_list)) {
1151 md->pvh_attrs &= ~PVF_EXEC;
1152 PMAPCOUNT(exec_discarded_unmap);
1153 } else if (pv->pv_flags & PVF_WRITE) {
1154 pmap_syncicache_page(md, pa);
1155 PMAPCOUNT(exec_synced_unmap);
1156 }
1157 }
1158 #endif /* PMAP_CACHE_VIPT */
1159 break;
1160 }
1161 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1162 pv = *prevptr; /* advance */
1163 }
1164
1165 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1166 /*
1167 * If we no longer have a WRITEABLE KENTRY at the head of list,
1168 * clear the KMOD attribute from the page.
1169 */
1170 if (SLIST_FIRST(&md->pvh_list) == NULL
1171 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1172 md->pvh_attrs &= ~PVF_KMOD;
1173
1174 /*
1175 * If this was a writeable page and there are no more writeable
1176 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1177 * the contents to memory.
1178 */
1179 if (arm_cache_prefer_mask != 0) {
1180 if (md->krw_mappings + md->urw_mappings == 0)
1181 md->pvh_attrs &= ~PVF_WRITE;
1182 PMAP_VALIDATE_MD_PAGE(md);
1183 }
1184 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1185 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1186
1187 /* return removed pv */
1188 return pv;
1189 }
1190
1191 /*
1192 *
1193 * pmap_modify_pv: Update pv flags
1194 *
1195 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1196 * => caller should NOT adjust pmap's wire_count
1197 * => caller must call pmap_vac_me_harder() if writable status of a page
1198 * may have changed.
1199 * => we return the old flags
1200 *
1201 * Modify a physical-virtual mapping in the pv table
1202 */
1203 static u_int
1204 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1205 u_int clr_mask, u_int set_mask)
1206 {
1207 struct pv_entry *npv;
1208 u_int flags, oflags;
1209
1210 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1211 KASSERT(!PV_IS_KENTRY_P(set_mask));
1212
1213 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1214 return (0);
1215
1216 NPDEBUG(PDB_PVDUMP,
1217 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1218
1219 /*
1220 * There is at least one VA mapping this page.
1221 */
1222
1223 if (clr_mask & (PVF_REF | PVF_MOD)) {
1224 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1225 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1226 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1227 md->pvh_attrs |= PVF_DIRTY;
1228 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1229 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1230 }
1231
1232 oflags = npv->pv_flags;
1233 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1234
1235 if ((flags ^ oflags) & PVF_WIRED) {
1236 if (flags & PVF_WIRED)
1237 ++pm->pm_stats.wired_count;
1238 else
1239 --pm->pm_stats.wired_count;
1240 }
1241
1242 if ((flags ^ oflags) & PVF_WRITE) {
1243 if (pm == pmap_kernel()) {
1244 if (flags & PVF_WRITE) {
1245 md->krw_mappings++;
1246 md->kro_mappings--;
1247 } else {
1248 md->kro_mappings++;
1249 md->krw_mappings--;
1250 }
1251 } else {
1252 if (flags & PVF_WRITE) {
1253 md->urw_mappings++;
1254 md->uro_mappings--;
1255 } else {
1256 md->uro_mappings++;
1257 md->urw_mappings--;
1258 }
1259 }
1260 }
1261 #ifdef PMAP_CACHE_VIPT
1262 if (arm_cache_prefer_mask != 0) {
1263 if (md->urw_mappings + md->krw_mappings == 0) {
1264 md->pvh_attrs &= ~PVF_WRITE;
1265 } else {
1266 md->pvh_attrs |= PVF_WRITE;
1267 }
1268 }
1269 /*
1270 * We have two cases here: the first is from enter_pv (new exec
1271 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1272 * Since in latter, pmap_enter_pv won't do anything, we just have
1273 * to do what pmap_remove_pv would do.
1274 */
1275 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1276 || (PV_IS_EXEC_P(md->pvh_attrs)
1277 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1278 pmap_syncicache_page(md, pa);
1279 PMAPCOUNT(exec_synced_remap);
1280 }
1281 #ifndef ARM_MMU_EXTENDED
1282 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1283 #endif /* !ARM_MMU_EXTENDED */
1284 #endif /* PMAP_CACHE_VIPT */
1285
1286 PMAPCOUNT(remappings);
1287
1288 return (oflags);
1289 }
1290
1291 /*
1292 * Allocate an L1 translation table for the specified pmap.
1293 * This is called at pmap creation time.
1294 */
1295 static void
1296 pmap_alloc_l1(pmap_t pm)
1297 {
1298 #ifdef ARM_MMU_EXTENDED
1299 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1300 struct vm_page *pg;
1301 bool ok __diagused;
1302 for (;;) {
1303 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1304 pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1305 #else
1306 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1307 #endif
1308 if (pg != NULL)
1309 break;
1310 uvm_wait("pmapl1alloc");
1311 }
1312 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1313 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1314 KASSERT(ok);
1315 KASSERT(va >= KERNEL_BASE);
1316
1317 #else
1318 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1319 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1320 UVM_KMF_WIRED|UVM_KMF_ZERO);
1321 KASSERT(va);
1322 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1323 #endif
1324 pm->pm_l1 = (pd_entry_t *)va;
1325 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1326 #else
1327 struct l1_ttable *l1;
1328 uint8_t domain;
1329
1330 /*
1331 * Remove the L1 at the head of the LRU list
1332 */
1333 mutex_spin_enter(&l1_lru_lock);
1334 l1 = TAILQ_FIRST(&l1_lru_list);
1335 KDASSERT(l1 != NULL);
1336 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1337
1338 /*
1339 * Pick the first available domain number, and update
1340 * the link to the next number.
1341 */
1342 domain = l1->l1_domain_first;
1343 l1->l1_domain_first = l1->l1_domain_free[domain];
1344
1345 /*
1346 * If there are still free domain numbers in this L1,
1347 * put it back on the TAIL of the LRU list.
1348 */
1349 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1350 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1351
1352 mutex_spin_exit(&l1_lru_lock);
1353
1354 /*
1355 * Fix up the relevant bits in the pmap structure
1356 */
1357 pm->pm_l1 = l1;
1358 pm->pm_domain = domain + 1;
1359 #endif
1360 }
1361
1362 /*
1363 * Free an L1 translation table.
1364 * This is called at pmap destruction time.
1365 */
1366 static void
1367 pmap_free_l1(pmap_t pm)
1368 {
1369 #ifdef ARM_MMU_EXTENDED
1370 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1371 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1372 uvm_pagefree(pg);
1373 #else
1374 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1375 #endif
1376 pm->pm_l1 = NULL;
1377 pm->pm_l1_pa = 0;
1378 #else
1379 struct l1_ttable *l1 = pm->pm_l1;
1380
1381 mutex_spin_enter(&l1_lru_lock);
1382
1383 /*
1384 * If this L1 is currently on the LRU list, remove it.
1385 */
1386 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1387 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1388
1389 /*
1390 * Free up the domain number which was allocated to the pmap
1391 */
1392 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1393 l1->l1_domain_first = pmap_domain(pm) - 1;
1394 l1->l1_domain_use_count--;
1395
1396 /*
1397 * The L1 now must have at least 1 free domain, so add
1398 * it back to the LRU list. If the use count is zero,
1399 * put it at the head of the list, otherwise it goes
1400 * to the tail.
1401 */
1402 if (l1->l1_domain_use_count == 0)
1403 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1404 else
1405 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1406
1407 mutex_spin_exit(&l1_lru_lock);
1408 #endif /* ARM_MMU_EXTENDED */
1409 }
1410
1411 #ifndef ARM_MMU_EXTENDED
1412 static inline void
1413 pmap_use_l1(pmap_t pm)
1414 {
1415 struct l1_ttable *l1;
1416
1417 /*
1418 * Do nothing if we're in interrupt context.
1419 * Access to an L1 by the kernel pmap must not affect
1420 * the LRU list.
1421 */
1422 if (cpu_intr_p() || pm == pmap_kernel())
1423 return;
1424
1425 l1 = pm->pm_l1;
1426
1427 /*
1428 * If the L1 is not currently on the LRU list, just return
1429 */
1430 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1431 return;
1432
1433 mutex_spin_enter(&l1_lru_lock);
1434
1435 /*
1436 * Check the use count again, now that we've acquired the lock
1437 */
1438 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1439 mutex_spin_exit(&l1_lru_lock);
1440 return;
1441 }
1442
1443 /*
1444 * Move the L1 to the back of the LRU list
1445 */
1446 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1447 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1448
1449 mutex_spin_exit(&l1_lru_lock);
1450 }
1451 #endif /* !ARM_MMU_EXTENDED */
1452
1453 /*
1454 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1455 *
1456 * Free an L2 descriptor table.
1457 */
1458 static inline void
1459 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1460 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1461 #else
1462 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1463 #endif
1464 {
1465 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1466 /*
1467 * Note: With a write-back cache, we may need to sync this
1468 * L2 table before re-using it.
1469 * This is because it may have belonged to a non-current
1470 * pmap, in which case the cache syncs would have been
1471 * skipped for the pages that were being unmapped. If the
1472 * L2 table were then to be immediately re-allocated to
1473 * the *current* pmap, it may well contain stale mappings
1474 * which have not yet been cleared by a cache write-back
1475 * and so would still be visible to the mmu.
1476 */
1477 if (need_sync)
1478 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1479 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1480 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1481 }
1482
1483 /*
1484 * Returns a pointer to the L2 bucket associated with the specified pmap
1485 * and VA, or NULL if no L2 bucket exists for the address.
1486 */
1487 static inline struct l2_bucket *
1488 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1489 {
1490 const size_t l1slot = l1pte_index(va);
1491 struct l2_dtable *l2;
1492 struct l2_bucket *l2b;
1493
1494 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1495 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1496 return (NULL);
1497
1498 return (l2b);
1499 }
1500
1501 /*
1502 * Returns a pointer to the L2 bucket associated with the specified pmap
1503 * and VA.
1504 *
1505 * If no L2 bucket exists, perform the necessary allocations to put an L2
1506 * bucket/page table in place.
1507 *
1508 * Note that if a new L2 bucket/page was allocated, the caller *must*
1509 * increment the bucket occupancy counter appropriately *before*
1510 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1511 * the bucket/page in the meantime.
1512 */
1513 static struct l2_bucket *
1514 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1515 {
1516 const size_t l1slot = l1pte_index(va);
1517 struct l2_dtable *l2;
1518
1519 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1520 /*
1521 * No mapping at this address, as there is
1522 * no entry in the L1 table.
1523 * Need to allocate a new l2_dtable.
1524 */
1525 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1526 return (NULL);
1527
1528 /*
1529 * Link it into the parent pmap
1530 */
1531 pm->pm_l2[L2_IDX(l1slot)] = l2;
1532 }
1533
1534 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1535
1536 /*
1537 * Fetch pointer to the L2 page table associated with the address.
1538 */
1539 if (l2b->l2b_kva == NULL) {
1540 pt_entry_t *ptep;
1541
1542 /*
1543 * No L2 page table has been allocated. Chances are, this
1544 * is because we just allocated the l2_dtable, above.
1545 */
1546 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1547 /*
1548 * Oops, no more L2 page tables available at this
1549 * time. We may need to deallocate the l2_dtable
1550 * if we allocated a new one above.
1551 */
1552 if (l2->l2_occupancy == 0) {
1553 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1554 pmap_free_l2_dtable(l2);
1555 }
1556 return (NULL);
1557 }
1558
1559 l2->l2_occupancy++;
1560 l2b->l2b_kva = ptep;
1561 l2b->l2b_l1slot = l1slot;
1562
1563 #ifdef ARM_MMU_EXTENDED
1564 /*
1565 * We know there will be a mapping here, so simply
1566 * enter this PTP into the L1 now.
1567 */
1568 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1569 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1570 | L1_C_DOM(pmap_domain(pm));
1571 KASSERT(*pdep == 0);
1572 l1pte_setone(pdep, npde);
1573 PDE_SYNC(pdep);
1574 #endif
1575 }
1576
1577 return (l2b);
1578 }
1579
1580 /*
1581 * One or more mappings in the specified L2 descriptor table have just been
1582 * invalidated.
1583 *
1584 * Garbage collect the metadata and descriptor table itself if necessary.
1585 *
1586 * The pmap lock must be acquired when this is called (not necessary
1587 * for the kernel pmap).
1588 */
1589 static void
1590 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1591 {
1592 KDASSERT(count <= l2b->l2b_occupancy);
1593
1594 /*
1595 * Update the bucket's reference count according to how many
1596 * PTEs the caller has just invalidated.
1597 */
1598 l2b->l2b_occupancy -= count;
1599
1600 /*
1601 * Note:
1602 *
1603 * Level 2 page tables allocated to the kernel pmap are never freed
1604 * as that would require checking all Level 1 page tables and
1605 * removing any references to the Level 2 page table. See also the
1606 * comment elsewhere about never freeing bootstrap L2 descriptors.
1607 *
1608 * We make do with just invalidating the mapping in the L2 table.
1609 *
1610 * This isn't really a big deal in practice and, in fact, leads
1611 * to a performance win over time as we don't need to continually
1612 * alloc/free.
1613 */
1614 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1615 return;
1616
1617 /*
1618 * There are no more valid mappings in this level 2 page table.
1619 * Go ahead and NULL-out the pointer in the bucket, then
1620 * free the page table.
1621 */
1622 const size_t l1slot = l2b->l2b_l1slot;
1623 pt_entry_t * const ptep = l2b->l2b_kva;
1624 l2b->l2b_kva = NULL;
1625
1626 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1627 pd_entry_t pde __diagused = *pdep;
1628
1629 #ifdef ARM_MMU_EXTENDED
1630 /*
1631 * Invalidate the L1 slot.
1632 */
1633 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1634 #else
1635 /*
1636 * If the L1 slot matches the pmap's domain number, then invalidate it.
1637 */
1638 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1639 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1640 #endif
1641 l1pte_setone(pdep, 0);
1642 PDE_SYNC(pdep);
1643 #ifndef ARM_MMU_EXTENDED
1644 }
1645 #endif
1646
1647 /*
1648 * Release the L2 descriptor table back to the pool cache.
1649 */
1650 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1651 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1652 #else
1653 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1654 #endif
1655
1656 /*
1657 * Update the reference count in the associated l2_dtable
1658 */
1659 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1660 if (--l2->l2_occupancy > 0)
1661 return;
1662
1663 /*
1664 * There are no more valid mappings in any of the Level 1
1665 * slots managed by this l2_dtable. Go ahead and NULL-out
1666 * the pointer in the parent pmap and free the l2_dtable.
1667 */
1668 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1669 pmap_free_l2_dtable(l2);
1670 }
1671
1672 /*
1673 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1674 * structures.
1675 */
1676 static int
1677 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1678 {
1679 #ifndef PMAP_INCLUDE_PTE_SYNC
1680 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1681
1682 /*
1683 * The mappings for these page tables were initially made using
1684 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1685 * mode will not be right for page table mappings. To avoid
1686 * polluting the pmap_kenter_pa() code with a special case for
1687 * page tables, we simply fix up the cache-mode here if it's not
1688 * correct.
1689 */
1690 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1691 const struct l2_bucket * const l2b =
1692 pmap_get_l2_bucket(pmap_kernel(), va);
1693 KASSERTMSG(l2b != NULL, "%#lx", va);
1694 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1695 const pt_entry_t opte = *ptep;
1696
1697 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1698 /*
1699 * Page tables must have the cache-mode set correctly.
1700 */
1701 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1702 | pte_l2_s_cache_mode_pt;
1703 l2pte_set(ptep, npte, opte);
1704 PTE_SYNC(ptep);
1705 cpu_tlb_flushD_SE(va);
1706 cpu_cpwait();
1707 }
1708 }
1709 #endif
1710
1711 memset(v, 0, L2_TABLE_SIZE_REAL);
1712 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1713 return (0);
1714 }
1715
1716 static int
1717 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1718 {
1719
1720 memset(v, 0, sizeof(struct l2_dtable));
1721 return (0);
1722 }
1723
1724 static int
1725 pmap_pmap_ctor(void *arg, void *v, int flags)
1726 {
1727
1728 memset(v, 0, sizeof(struct pmap));
1729 return (0);
1730 }
1731
1732 static void
1733 pmap_pinit(pmap_t pm)
1734 {
1735 #ifndef ARM_HAS_VBAR
1736 struct l2_bucket *l2b;
1737
1738 if (vector_page < KERNEL_BASE) {
1739 /*
1740 * Map the vector page.
1741 */
1742 pmap_enter(pm, vector_page, systempage.pv_pa,
1743 VM_PROT_READ | VM_PROT_EXECUTE,
1744 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1745 pmap_update(pm);
1746
1747 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1748 l2b = pmap_get_l2_bucket(pm, vector_page);
1749 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1750 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1751 L1_C_DOM(pmap_domain(pm));
1752 } else
1753 pm->pm_pl1vec = NULL;
1754 #endif
1755 }
1756
1757 #ifdef PMAP_CACHE_VIVT
1758 /*
1759 * Since we have a virtually indexed cache, we may need to inhibit caching if
1760 * there is more than one mapping and at least one of them is writable.
1761 * Since we purge the cache on every context switch, we only need to check for
1762 * other mappings within the same pmap, or kernel_pmap.
1763 * This function is also called when a page is unmapped, to possibly reenable
1764 * caching on any remaining mappings.
1765 *
1766 * The code implements the following logic, where:
1767 *
1768 * KW = # of kernel read/write pages
1769 * KR = # of kernel read only pages
1770 * UW = # of user read/write pages
1771 * UR = # of user read only pages
1772 *
1773 * KC = kernel mapping is cacheable
1774 * UC = user mapping is cacheable
1775 *
1776 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1777 * +---------------------------------------------
1778 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1779 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1780 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1781 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1782 */
1783
1784 static const int pmap_vac_flags[4][4] = {
1785 {-1, 0, 0, PVF_KNC},
1786 {0, 0, PVF_NC, PVF_NC},
1787 {0, PVF_NC, PVF_NC, PVF_NC},
1788 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1789 };
1790
1791 static inline int
1792 pmap_get_vac_flags(const struct vm_page_md *md)
1793 {
1794 int kidx, uidx;
1795
1796 kidx = 0;
1797 if (md->kro_mappings || md->krw_mappings > 1)
1798 kidx |= 1;
1799 if (md->krw_mappings)
1800 kidx |= 2;
1801
1802 uidx = 0;
1803 if (md->uro_mappings || md->urw_mappings > 1)
1804 uidx |= 1;
1805 if (md->urw_mappings)
1806 uidx |= 2;
1807
1808 return (pmap_vac_flags[uidx][kidx]);
1809 }
1810
1811 static inline void
1812 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1813 {
1814 int nattr;
1815
1816 nattr = pmap_get_vac_flags(md);
1817
1818 if (nattr < 0) {
1819 md->pvh_attrs &= ~PVF_NC;
1820 return;
1821 }
1822
1823 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1824 return;
1825
1826 if (pm == pmap_kernel())
1827 pmap_vac_me_kpmap(md, pa, pm, va);
1828 else
1829 pmap_vac_me_user(md, pa, pm, va);
1830
1831 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1832 }
1833
1834 static void
1835 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1836 {
1837 u_int u_cacheable, u_entries;
1838 struct pv_entry *pv;
1839 pmap_t last_pmap = pm;
1840
1841 /*
1842 * Pass one, see if there are both kernel and user pmaps for
1843 * this page. Calculate whether there are user-writable or
1844 * kernel-writable pages.
1845 */
1846 u_cacheable = 0;
1847 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1848 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1849 u_cacheable++;
1850 }
1851
1852 u_entries = md->urw_mappings + md->uro_mappings;
1853
1854 /*
1855 * We know we have just been updating a kernel entry, so if
1856 * all user pages are already cacheable, then there is nothing
1857 * further to do.
1858 */
1859 if (md->k_mappings == 0 && u_cacheable == u_entries)
1860 return;
1861
1862 if (u_entries) {
1863 /*
1864 * Scan over the list again, for each entry, if it
1865 * might not be set correctly, call pmap_vac_me_user
1866 * to recalculate the settings.
1867 */
1868 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1869 /*
1870 * We know kernel mappings will get set
1871 * correctly in other calls. We also know
1872 * that if the pmap is the same as last_pmap
1873 * then we've just handled this entry.
1874 */
1875 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1876 continue;
1877
1878 /*
1879 * If there are kernel entries and this page
1880 * is writable but non-cacheable, then we can
1881 * skip this entry also.
1882 */
1883 if (md->k_mappings &&
1884 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1885 (PVF_NC | PVF_WRITE))
1886 continue;
1887
1888 /*
1889 * Similarly if there are no kernel-writable
1890 * entries and the page is already
1891 * read-only/cacheable.
1892 */
1893 if (md->krw_mappings == 0 &&
1894 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1895 continue;
1896
1897 /*
1898 * For some of the remaining cases, we know
1899 * that we must recalculate, but for others we
1900 * can't tell if they are correct or not, so
1901 * we recalculate anyway.
1902 */
1903 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1904 }
1905
1906 if (md->k_mappings == 0)
1907 return;
1908 }
1909
1910 pmap_vac_me_user(md, pa, pm, va);
1911 }
1912
1913 static void
1914 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1915 {
1916 pmap_t kpmap = pmap_kernel();
1917 struct pv_entry *pv, *npv = NULL;
1918 u_int entries = 0;
1919 u_int writable = 0;
1920 u_int cacheable_entries = 0;
1921 u_int kern_cacheable = 0;
1922 u_int other_writable = 0;
1923
1924 /*
1925 * Count mappings and writable mappings in this pmap.
1926 * Include kernel mappings as part of our own.
1927 * Keep a pointer to the first one.
1928 */
1929 npv = NULL;
1930 KASSERT(pmap_page_locked_p(md));
1931 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1932 /* Count mappings in the same pmap */
1933 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1934 if (entries++ == 0)
1935 npv = pv;
1936
1937 /* Cacheable mappings */
1938 if ((pv->pv_flags & PVF_NC) == 0) {
1939 cacheable_entries++;
1940 if (kpmap == pv->pv_pmap)
1941 kern_cacheable++;
1942 }
1943
1944 /* Writable mappings */
1945 if (pv->pv_flags & PVF_WRITE)
1946 ++writable;
1947 } else if (pv->pv_flags & PVF_WRITE)
1948 other_writable = 1;
1949 }
1950
1951 /*
1952 * Enable or disable caching as necessary.
1953 * Note: the first entry might be part of the kernel pmap,
1954 * so we can't assume this is indicative of the state of the
1955 * other (maybe non-kpmap) entries.
1956 */
1957 if ((entries > 1 && writable) ||
1958 (entries > 0 && pm == kpmap && other_writable)) {
1959 if (cacheable_entries == 0) {
1960 return;
1961 }
1962
1963 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1964 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1965 (pv->pv_flags & PVF_NC))
1966 continue;
1967
1968 pv->pv_flags |= PVF_NC;
1969
1970 struct l2_bucket * const l2b
1971 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1972 KASSERTMSG(l2b != NULL, "%#lx", va);
1973 pt_entry_t * const ptep
1974 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1975 const pt_entry_t opte = *ptep;
1976 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1977
1978 if ((va != pv->pv_va || pm != pv->pv_pmap)
1979 && l2pte_valid_p(opte)) {
1980 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1981 true, pv->pv_flags);
1982 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1983 pv->pv_flags);
1984 }
1985
1986 l2pte_set(ptep, npte, opte);
1987 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1988 }
1989 cpu_cpwait();
1990 } else if (entries > cacheable_entries) {
1991 /*
1992 * Turn cacheing back on for some pages. If it is a kernel
1993 * page, only do so if there are no other writable pages.
1994 */
1995 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1996 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1997 (kpmap != pv->pv_pmap || other_writable)))
1998 continue;
1999
2000 pv->pv_flags &= ~PVF_NC;
2001
2002 struct l2_bucket * const l2b
2003 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2004 KASSERTMSG(l2b != NULL, "%#lx", va);
2005 pt_entry_t * const ptep
2006 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2007 const pt_entry_t opte = *ptep;
2008 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2009 | pte_l2_s_cache_mode;
2010
2011 if (l2pte_valid_p(opte)) {
2012 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2013 pv->pv_flags);
2014 }
2015
2016 l2pte_set(ptep, npte, opte);
2017 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2018 }
2019 }
2020 }
2021 #endif
2022
2023 #ifdef PMAP_CACHE_VIPT
2024 static void
2025 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2026 {
2027 #ifndef ARM_MMU_EXTENDED
2028 struct pv_entry *pv;
2029 vaddr_t tst_mask;
2030 bool bad_alias;
2031 const u_int
2032 rw_mappings = md->urw_mappings + md->krw_mappings,
2033 ro_mappings = md->uro_mappings + md->kro_mappings;
2034
2035 /* do we need to do anything? */
2036 if (arm_cache_prefer_mask == 0)
2037 return;
2038
2039 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2040 md, pm, va));
2041
2042 KASSERT(!va || pm);
2043 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2044
2045 /* Already a conflict? */
2046 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2047 /* just an add, things are already non-cached */
2048 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2049 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2050 bad_alias = false;
2051 if (va) {
2052 PMAPCOUNT(vac_color_none);
2053 bad_alias = true;
2054 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2055 goto fixup;
2056 }
2057 pv = SLIST_FIRST(&md->pvh_list);
2058 /* the list can't be empty because it would be cachable */
2059 if (md->pvh_attrs & PVF_KMPAGE) {
2060 tst_mask = md->pvh_attrs;
2061 } else {
2062 KASSERT(pv);
2063 tst_mask = pv->pv_va;
2064 pv = SLIST_NEXT(pv, pv_link);
2065 }
2066 /*
2067 * Only check for a bad alias if we have writable mappings.
2068 */
2069 tst_mask &= arm_cache_prefer_mask;
2070 if (rw_mappings > 0) {
2071 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2072 /* if there's a bad alias, stop checking. */
2073 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2074 bad_alias = true;
2075 }
2076 md->pvh_attrs |= PVF_WRITE;
2077 if (!bad_alias)
2078 md->pvh_attrs |= PVF_DIRTY;
2079 } else {
2080 /*
2081 * We have only read-only mappings. Let's see if there
2082 * are multiple colors in use or if we mapped a KMPAGE.
2083 * If the latter, we have a bad alias. If the former,
2084 * we need to remember that.
2085 */
2086 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2087 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2088 if (md->pvh_attrs & PVF_KMPAGE)
2089 bad_alias = true;
2090 break;
2091 }
2092 }
2093 md->pvh_attrs &= ~PVF_WRITE;
2094 /*
2095 * No KMPAGE and we exited early, so we must have
2096 * multiple color mappings.
2097 */
2098 if (!bad_alias && pv != NULL)
2099 md->pvh_attrs |= PVF_MULTCLR;
2100 }
2101
2102 /* If no conflicting colors, set everything back to cached */
2103 if (!bad_alias) {
2104 #ifdef DEBUG
2105 if ((md->pvh_attrs & PVF_WRITE)
2106 || ro_mappings < 2) {
2107 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2108 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2109 }
2110 #endif
2111 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2112 md->pvh_attrs |= tst_mask | PVF_COLORED;
2113 /*
2114 * Restore DIRTY bit if page is modified
2115 */
2116 if (md->pvh_attrs & PVF_DMOD)
2117 md->pvh_attrs |= PVF_DIRTY;
2118 PMAPCOUNT(vac_color_restore);
2119 } else {
2120 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2121 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2122 }
2123 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2124 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2125 } else if (!va) {
2126 KASSERT(pmap_is_page_colored_p(md));
2127 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2128 || (md->pvh_attrs & PVF_DIRTY));
2129 if (rw_mappings == 0) {
2130 md->pvh_attrs &= ~PVF_WRITE;
2131 if (ro_mappings == 1
2132 && (md->pvh_attrs & PVF_MULTCLR)) {
2133 /*
2134 * If this is the last readonly mapping
2135 * but it doesn't match the current color
2136 * for the page, change the current color
2137 * to match this last readonly mapping.
2138 */
2139 pv = SLIST_FIRST(&md->pvh_list);
2140 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2141 & arm_cache_prefer_mask;
2142 if (tst_mask) {
2143 md->pvh_attrs ^= tst_mask;
2144 PMAPCOUNT(vac_color_change);
2145 }
2146 }
2147 }
2148 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2149 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2150 return;
2151 } else if (!pmap_is_page_colored_p(md)) {
2152 /* not colored so we just use its color */
2153 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2154 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2155 PMAPCOUNT(vac_color_new);
2156 md->pvh_attrs &= PAGE_SIZE - 1;
2157 md->pvh_attrs |= PVF_COLORED
2158 | (va & arm_cache_prefer_mask)
2159 | (rw_mappings > 0 ? PVF_WRITE : 0);
2160 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2161 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2162 return;
2163 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2164 bad_alias = false;
2165 if (rw_mappings > 0) {
2166 /*
2167 * We now have writeable mappings and if we have
2168 * readonly mappings in more than once color, we have
2169 * an aliasing problem. Regardless mark the page as
2170 * writeable.
2171 */
2172 if (md->pvh_attrs & PVF_MULTCLR) {
2173 if (ro_mappings < 2) {
2174 /*
2175 * If we only have less than two
2176 * read-only mappings, just flush the
2177 * non-primary colors from the cache.
2178 */
2179 pmap_flush_page(md, pa,
2180 PMAP_FLUSH_SECONDARY);
2181 } else {
2182 bad_alias = true;
2183 }
2184 }
2185 md->pvh_attrs |= PVF_WRITE;
2186 }
2187 /* If no conflicting colors, set everything back to cached */
2188 if (!bad_alias) {
2189 #ifdef DEBUG
2190 if (rw_mappings > 0
2191 || (md->pvh_attrs & PMAP_KMPAGE)) {
2192 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2193 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2194 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2195 }
2196 #endif
2197 if (SLIST_EMPTY(&md->pvh_list))
2198 PMAPCOUNT(vac_color_reuse);
2199 else
2200 PMAPCOUNT(vac_color_ok);
2201
2202 /* matching color, just return */
2203 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2204 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2205 return;
2206 }
2207 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2208 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2209
2210 /* color conflict. evict from cache. */
2211
2212 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2213 md->pvh_attrs &= ~PVF_COLORED;
2214 md->pvh_attrs |= PVF_NC;
2215 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2216 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2217 PMAPCOUNT(vac_color_erase);
2218 } else if (rw_mappings == 0
2219 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2220 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2221
2222 /*
2223 * If the page has dirty cache lines, clean it.
2224 */
2225 if (md->pvh_attrs & PVF_DIRTY)
2226 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2227
2228 /*
2229 * If this is the first remapping (we know that there are no
2230 * writeable mappings), then this is a simple color change.
2231 * Otherwise this is a seconary r/o mapping, which means
2232 * we don't have to do anything.
2233 */
2234 if (ro_mappings == 1) {
2235 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2236 md->pvh_attrs &= PAGE_SIZE - 1;
2237 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2238 PMAPCOUNT(vac_color_change);
2239 } else {
2240 PMAPCOUNT(vac_color_blind);
2241 }
2242 md->pvh_attrs |= PVF_MULTCLR;
2243 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2244 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2245 return;
2246 } else {
2247 if (rw_mappings > 0)
2248 md->pvh_attrs |= PVF_WRITE;
2249
2250 /* color conflict. evict from cache. */
2251 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2252
2253 /* the list can't be empty because this was a enter/modify */
2254 pv = SLIST_FIRST(&md->pvh_list);
2255 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2256 KASSERT(pv);
2257 /*
2258 * If there's only one mapped page, change color to the
2259 * page's new color and return. Restore the DIRTY bit
2260 * that was erased by pmap_flush_page.
2261 */
2262 if (SLIST_NEXT(pv, pv_link) == NULL) {
2263 md->pvh_attrs &= PAGE_SIZE - 1;
2264 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2265 if (md->pvh_attrs & PVF_DMOD)
2266 md->pvh_attrs |= PVF_DIRTY;
2267 PMAPCOUNT(vac_color_change);
2268 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2269 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2270 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2271 return;
2272 }
2273 }
2274 bad_alias = true;
2275 md->pvh_attrs &= ~PVF_COLORED;
2276 md->pvh_attrs |= PVF_NC;
2277 PMAPCOUNT(vac_color_erase);
2278 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2279 }
2280
2281 fixup:
2282 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2283
2284 /*
2285 * Turn cacheing on/off for all pages.
2286 */
2287 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2288 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2289 pv->pv_va);
2290 KASSERTMSG(l2b != NULL, "%#lx", va);
2291 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2292 const pt_entry_t opte = *ptep;
2293 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2294 if (bad_alias) {
2295 pv->pv_flags |= PVF_NC;
2296 } else {
2297 pv->pv_flags &= ~PVF_NC;
2298 npte |= pte_l2_s_cache_mode;
2299 }
2300
2301 if (opte == npte) /* only update is there's a change */
2302 continue;
2303
2304 if (l2pte_valid_p(opte)) {
2305 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2306 }
2307
2308 l2pte_set(ptep, npte, opte);
2309 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2310 }
2311 #endif /* !ARM_MMU_EXTENDED */
2312 }
2313 #endif /* PMAP_CACHE_VIPT */
2314
2315
2316 /*
2317 * Modify pte bits for all ptes corresponding to the given physical address.
2318 * We use `maskbits' rather than `clearbits' because we're always passing
2319 * constants and the latter would require an extra inversion at run-time.
2320 */
2321 static void
2322 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2323 {
2324 struct pv_entry *pv;
2325 #ifdef PMAP_CACHE_VIPT
2326 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2327 bool need_syncicache = false;
2328 #ifdef ARM_MMU_EXTENDED
2329 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2330 #else
2331 const u_int execbits = 0;
2332 bool need_vac_me_harder = false;
2333 #endif
2334 #else
2335 const u_int execbits = 0;
2336 #endif
2337
2338 NPDEBUG(PDB_BITS,
2339 printf("pmap_clearbit: md %p mask 0x%x\n",
2340 md, maskbits));
2341
2342 #ifdef PMAP_CACHE_VIPT
2343 /*
2344 * If we might want to sync the I-cache and we've modified it,
2345 * then we know we definitely need to sync or discard it.
2346 */
2347 if (want_syncicache) {
2348 if (md->pvh_attrs & PVF_MOD) {
2349 need_syncicache = true;
2350 }
2351 }
2352 #endif
2353 KASSERT(pmap_page_locked_p(md));
2354
2355 /*
2356 * Clear saved attributes (modify, reference)
2357 */
2358 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2359
2360 if (SLIST_EMPTY(&md->pvh_list)) {
2361 #if defined(PMAP_CACHE_VIPT)
2362 if (need_syncicache) {
2363 /*
2364 * No one has it mapped, so just discard it. The next
2365 * exec remapping will cause it to be synced.
2366 */
2367 md->pvh_attrs &= ~PVF_EXEC;
2368 PMAPCOUNT(exec_discarded_clearbit);
2369 }
2370 #endif
2371 return;
2372 }
2373
2374 /*
2375 * Loop over all current mappings setting/clearing as appropos
2376 */
2377 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2378 pmap_t pm = pv->pv_pmap;
2379 const vaddr_t va = pv->pv_va;
2380 const u_int oflags = pv->pv_flags;
2381 #ifndef ARM_MMU_EXTENDED
2382 /*
2383 * Kernel entries are unmanaged and as such not to be changed.
2384 */
2385 if (PV_IS_KENTRY_P(oflags))
2386 continue;
2387 #endif
2388 pv->pv_flags &= ~maskbits;
2389
2390 pmap_release_page_lock(md);
2391 pmap_acquire_pmap_lock(pm);
2392
2393 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2394 if (l2b == NULL) {
2395 pmap_release_pmap_lock(pm);
2396 pmap_acquire_page_lock(md);
2397 continue;
2398 }
2399 KASSERTMSG(l2b != NULL, "%#lx", va);
2400
2401 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2402 const pt_entry_t opte = *ptep;
2403 pt_entry_t npte = opte | execbits;
2404
2405 #ifdef ARM_MMU_EXTENDED
2406 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2407 #endif
2408
2409 NPDEBUG(PDB_BITS,
2410 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2411 __func__, pv, pm, va, oflags));
2412
2413 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2414 #ifdef PMAP_CACHE_VIVT
2415 if ((oflags & PVF_NC)) {
2416 /*
2417 * Entry is not cacheable:
2418 *
2419 * Don't turn caching on again if this is a
2420 * modified emulation. This would be
2421 * inconsitent with the settings created by
2422 * pmap_vac_me_harder(). Otherwise, it's safe
2423 * to re-enable cacheing.
2424 *
2425 * There's no need to call pmap_vac_me_harder()
2426 * here: all pages are losing their write
2427 * permission.
2428 */
2429 if (maskbits & PVF_WRITE) {
2430 npte |= pte_l2_s_cache_mode;
2431 pv->pv_flags &= ~PVF_NC;
2432 }
2433 } else if (l2pte_writable_p(opte)) {
2434 /*
2435 * Entry is writable/cacheable: check if pmap
2436 * is current if it is flush it, otherwise it
2437 * won't be in the cache
2438 */
2439 pmap_cache_wbinv_page(pm, va,
2440 (maskbits & PVF_REF) != 0,
2441 oflags|PVF_WRITE);
2442 }
2443 #endif
2444
2445 /* make the pte read only */
2446 npte = l2pte_set_readonly(npte);
2447
2448 pmap_acquire_page_lock(md);
2449 #ifdef MULTIPROCESSOR
2450 pv = pmap_find_pv(md, pm, va);
2451 #endif
2452 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2453 /*
2454 * Keep alias accounting up to date
2455 */
2456 if (pm == pmap_kernel()) {
2457 md->krw_mappings--;
2458 md->kro_mappings++;
2459 } else {
2460 md->urw_mappings--;
2461 md->uro_mappings++;
2462 }
2463 #ifdef PMAP_CACHE_VIPT
2464 if (arm_cache_prefer_mask != 0) {
2465 if (md->urw_mappings + md->krw_mappings == 0) {
2466 md->pvh_attrs &= ~PVF_WRITE;
2467 } else {
2468 PMAP_VALIDATE_MD_PAGE(md);
2469 }
2470 }
2471 if (want_syncicache)
2472 need_syncicache = true;
2473 #ifndef ARM_MMU_EXTENDED
2474 need_vac_me_harder = true;
2475 #endif
2476 #endif /* PMAP_CACHE_VIPT */
2477 }
2478 pmap_release_page_lock(md);
2479 }
2480
2481 if (maskbits & PVF_REF) {
2482 if (true
2483 #ifndef ARM_MMU_EXTENDED
2484 && (oflags & PVF_NC) == 0
2485 #endif
2486 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2487 && l2pte_valid_p(npte)) {
2488 #ifdef PMAP_CACHE_VIVT
2489 /*
2490 * Check npte here; we may have already
2491 * done the wbinv above, and the validity
2492 * of the PTE is the same for opte and
2493 * npte.
2494 */
2495 pmap_cache_wbinv_page(pm, va, true, oflags);
2496 #endif
2497 }
2498
2499 /*
2500 * Make the PTE invalid so that we will take a
2501 * page fault the next time the mapping is
2502 * referenced.
2503 */
2504 npte &= ~L2_TYPE_MASK;
2505 npte |= L2_TYPE_INV;
2506 }
2507
2508 if (npte != opte) {
2509 l2pte_reset(ptep);
2510 PTE_SYNC(ptep);
2511
2512 /* Flush the TLB entry if a current pmap. */
2513 pmap_tlb_flush_SE(pm, va, oflags);
2514
2515 l2pte_set(ptep, npte, 0);
2516 PTE_SYNC(ptep);
2517 }
2518
2519 pmap_release_pmap_lock(pm);
2520 pmap_acquire_page_lock(md);
2521
2522 NPDEBUG(PDB_BITS,
2523 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2524 pm, va, opte, npte));
2525 }
2526
2527 #if defined(PMAP_CACHE_VIPT)
2528 /*
2529 * If we need to sync the I-cache and we haven't done it yet, do it.
2530 */
2531 if (need_syncicache) {
2532 pmap_release_page_lock(md);
2533 pmap_syncicache_page(md, pa);
2534 pmap_acquire_page_lock(md);
2535 PMAPCOUNT(exec_synced_clearbit);
2536 }
2537 #ifndef ARM_MMU_EXTENDED
2538 /*
2539 * If we are changing this to read-only, we need to call vac_me_harder
2540 * so we can change all the read-only pages to cacheable. We pretend
2541 * this as a page deletion.
2542 */
2543 if (need_vac_me_harder) {
2544 if (md->pvh_attrs & PVF_NC)
2545 pmap_vac_me_harder(md, pa, NULL, 0);
2546 }
2547 #endif /* !ARM_MMU_EXTENDED */
2548 #endif /* PMAP_CACHE_VIPT */
2549 }
2550
2551 /*
2552 * pmap_clean_page()
2553 *
2554 * This is a local function used to work out the best strategy to clean
2555 * a single page referenced by its entry in the PV table. It's used by
2556 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2557 *
2558 * Its policy is effectively:
2559 * o If there are no mappings, we don't bother doing anything with the cache.
2560 * o If there is one mapping, we clean just that page.
2561 * o If there are multiple mappings, we clean the entire cache.
2562 *
2563 * So that some functions can be further optimised, it returns 0 if it didn't
2564 * clean the entire cache, or 1 if it did.
2565 *
2566 * XXX One bug in this routine is that if the pv_entry has a single page
2567 * mapped at 0x00000000 a whole cache clean will be performed rather than
2568 * just the 1 page. Since this should not occur in everyday use and if it does
2569 * it will just result in not the most efficient clean for the page.
2570 */
2571 #ifdef PMAP_CACHE_VIVT
2572 static bool
2573 pmap_clean_page(struct vm_page_md *md, bool is_src)
2574 {
2575 struct pv_entry *pv;
2576 pmap_t pm_to_clean = NULL;
2577 bool cache_needs_cleaning = false;
2578 vaddr_t page_to_clean = 0;
2579 u_int flags = 0;
2580
2581 /*
2582 * Since we flush the cache each time we change to a different
2583 * user vmspace, we only need to flush the page if it is in the
2584 * current pmap.
2585 */
2586 KASSERT(pmap_page_locked_p(md));
2587 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2588 if (pmap_is_current(pv->pv_pmap)) {
2589 flags |= pv->pv_flags;
2590 /*
2591 * The page is mapped non-cacheable in
2592 * this map. No need to flush the cache.
2593 */
2594 if (pv->pv_flags & PVF_NC) {
2595 #ifdef DIAGNOSTIC
2596 KASSERT(!cache_needs_cleaning);
2597 #endif
2598 break;
2599 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2600 continue;
2601 if (cache_needs_cleaning) {
2602 page_to_clean = 0;
2603 break;
2604 } else {
2605 page_to_clean = pv->pv_va;
2606 pm_to_clean = pv->pv_pmap;
2607 }
2608 cache_needs_cleaning = true;
2609 }
2610 }
2611
2612 if (page_to_clean) {
2613 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2614 !is_src, flags | PVF_REF);
2615 } else if (cache_needs_cleaning) {
2616 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2617
2618 pmap_cache_wbinv_all(pm, flags);
2619 return true;
2620 }
2621 return false;
2622 }
2623 #endif
2624
2625 #ifdef PMAP_CACHE_VIPT
2626 /*
2627 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2628 * right cache alias to make sure we flush the right stuff.
2629 */
2630 void
2631 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2632 {
2633 pmap_t kpm = pmap_kernel();
2634 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2635 ? PAGE_SIZE
2636 : arm_pcache.icache_way_size;
2637
2638 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2639 md, md->pvh_attrs));
2640 /*
2641 * No need to clean the page if it's non-cached.
2642 */
2643 #ifndef ARM_MMU_EXTENDED
2644 if (md->pvh_attrs & PVF_NC)
2645 return;
2646 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2647 #endif
2648
2649 pt_entry_t * const ptep = cpu_cdst_pte(0);
2650 const vaddr_t dstp = cpu_cdstp(0);
2651 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2652 if (way_size <= PAGE_SIZE) {
2653 bool ok = false;
2654 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2655 if (ok) {
2656 cpu_icache_sync_range(vdstp, way_size);
2657 return;
2658 }
2659 }
2660 #endif
2661
2662 /*
2663 * We don't worry about the color of the exec page, we map the
2664 * same page to pages in the way and then do the icache_sync on
2665 * the entire way making sure we are cleaned.
2666 */
2667 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2668 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2669
2670 for (size_t i = 0, j = 0; i < way_size;
2671 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2672 l2pte_reset(ptep + j);
2673 PTE_SYNC(ptep + j);
2674
2675 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2676 /*
2677 * Set up a PTE with to flush these cache lines.
2678 */
2679 l2pte_set(ptep + j, npte, 0);
2680 }
2681 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2682
2683 /*
2684 * Flush it.
2685 */
2686 cpu_icache_sync_range(dstp, way_size);
2687
2688 for (size_t i = 0, j = 0; i < way_size;
2689 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2690 /*
2691 * Unmap the page(s).
2692 */
2693 l2pte_reset(ptep + j);
2694 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2695 }
2696 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2697
2698 md->pvh_attrs |= PVF_EXEC;
2699 PMAPCOUNT(exec_synced);
2700 }
2701
2702 #ifndef ARM_MMU_EXTENDED
2703 void
2704 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2705 {
2706 vsize_t va_offset, end_va;
2707 bool wbinv_p;
2708
2709 if (arm_cache_prefer_mask == 0)
2710 return;
2711
2712 switch (flush) {
2713 case PMAP_FLUSH_PRIMARY:
2714 if (md->pvh_attrs & PVF_MULTCLR) {
2715 va_offset = 0;
2716 end_va = arm_cache_prefer_mask;
2717 md->pvh_attrs &= ~PVF_MULTCLR;
2718 PMAPCOUNT(vac_flush_lots);
2719 } else {
2720 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2721 end_va = va_offset;
2722 PMAPCOUNT(vac_flush_one);
2723 }
2724 /*
2725 * Mark that the page is no longer dirty.
2726 */
2727 md->pvh_attrs &= ~PVF_DIRTY;
2728 wbinv_p = true;
2729 break;
2730 case PMAP_FLUSH_SECONDARY:
2731 va_offset = 0;
2732 end_va = arm_cache_prefer_mask;
2733 wbinv_p = true;
2734 md->pvh_attrs &= ~PVF_MULTCLR;
2735 PMAPCOUNT(vac_flush_lots);
2736 break;
2737 case PMAP_CLEAN_PRIMARY:
2738 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2739 end_va = va_offset;
2740 wbinv_p = false;
2741 /*
2742 * Mark that the page is no longer dirty.
2743 */
2744 if ((md->pvh_attrs & PVF_DMOD) == 0)
2745 md->pvh_attrs &= ~PVF_DIRTY;
2746 PMAPCOUNT(vac_clean_one);
2747 break;
2748 default:
2749 return;
2750 }
2751
2752 KASSERT(!(md->pvh_attrs & PVF_NC));
2753
2754 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2755 md, md->pvh_attrs));
2756
2757 const size_t scache_line_size = arm_scache.dcache_line_size;
2758
2759 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2760 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2761 const vaddr_t dstp = cpu_cdstp(va_offset);
2762 const pt_entry_t opte = *ptep;
2763
2764 if (flush == PMAP_FLUSH_SECONDARY
2765 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2766 continue;
2767
2768 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2769 /*
2770 * Set up a PTE with the right coloring to flush
2771 * existing cache entries.
2772 */
2773 const pt_entry_t npte = L2_S_PROTO
2774 | pa
2775 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2776 | pte_l2_s_cache_mode;
2777 l2pte_set(ptep, npte, opte);
2778 PTE_SYNC(ptep);
2779
2780 /*
2781 * Flush it. Make sure to flush secondary cache too since
2782 * bus_dma will ignore uncached pages.
2783 */
2784 if (scache_line_size != 0) {
2785 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2786 if (wbinv_p) {
2787 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2788 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2789 } else {
2790 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2791 }
2792 } else {
2793 if (wbinv_p) {
2794 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2795 } else {
2796 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2797 }
2798 }
2799
2800 /*
2801 * Restore the page table entry since we might have interrupted
2802 * pmap_zero_page or pmap_copy_page which was already using
2803 * this pte.
2804 */
2805 if (opte) {
2806 l2pte_set(ptep, opte, npte);
2807 } else {
2808 l2pte_reset(ptep);
2809 }
2810 PTE_SYNC(ptep);
2811 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2812 }
2813 }
2814 #endif /* ARM_MMU_EXTENDED */
2815 #endif /* PMAP_CACHE_VIPT */
2816
2817 /*
2818 * Routine: pmap_page_remove
2819 * Function:
2820 * Removes this physical page from
2821 * all physical maps in which it resides.
2822 * Reflects back modify bits to the pager.
2823 */
2824 static void
2825 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2826 {
2827 struct l2_bucket *l2b;
2828 struct pv_entry *pv;
2829 pt_entry_t *ptep;
2830 #ifndef ARM_MMU_EXTENDED
2831 bool flush = false;
2832 #endif
2833 u_int flags = 0;
2834
2835 NPDEBUG(PDB_FOLLOW,
2836 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2837 pa));
2838
2839 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2840 pmap_acquire_page_lock(md);
2841 if (*pvp == NULL) {
2842 #ifdef PMAP_CACHE_VIPT
2843 /*
2844 * We *know* the page contents are about to be replaced.
2845 * Discard the exec contents
2846 */
2847 if (PV_IS_EXEC_P(md->pvh_attrs))
2848 PMAPCOUNT(exec_discarded_page_protect);
2849 md->pvh_attrs &= ~PVF_EXEC;
2850 PMAP_VALIDATE_MD_PAGE(md);
2851 #endif
2852 pmap_release_page_lock(md);
2853 return;
2854 }
2855 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2856 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2857 #endif
2858
2859 /*
2860 * Clear alias counts
2861 */
2862 #ifdef PMAP_CACHE_VIVT
2863 md->k_mappings = 0;
2864 #endif
2865 md->urw_mappings = md->uro_mappings = 0;
2866
2867 #ifdef PMAP_CACHE_VIVT
2868 pmap_clean_page(md, false);
2869 #endif
2870
2871 while ((pv = *pvp) != NULL) {
2872 pmap_t pm = pv->pv_pmap;
2873 #ifndef ARM_MMU_EXTENDED
2874 if (flush == false && pmap_is_current(pm))
2875 flush = true;
2876 #endif
2877
2878 if (pm == pmap_kernel()) {
2879 #ifdef PMAP_CACHE_VIPT
2880 /*
2881 * If this was unmanaged mapping, it must be preserved.
2882 * Move it back on the list and advance the end-of-list
2883 * pointer.
2884 */
2885 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2886 *pvp = pv;
2887 pvp = &SLIST_NEXT(pv, pv_link);
2888 continue;
2889 }
2890 if (pv->pv_flags & PVF_WRITE)
2891 md->krw_mappings--;
2892 else
2893 md->kro_mappings--;
2894 #endif
2895 PMAPCOUNT(kernel_unmappings);
2896 }
2897 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2898 PMAPCOUNT(unmappings);
2899
2900 pmap_release_page_lock(md);
2901 pmap_acquire_pmap_lock(pm);
2902
2903 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2904 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2905
2906 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2907
2908 /*
2909 * Update statistics
2910 */
2911 --pm->pm_stats.resident_count;
2912
2913 /* Wired bit */
2914 if (pv->pv_flags & PVF_WIRED)
2915 --pm->pm_stats.wired_count;
2916
2917 flags |= pv->pv_flags;
2918
2919 /*
2920 * Invalidate the PTEs.
2921 */
2922 l2pte_reset(ptep);
2923 PTE_SYNC_CURRENT(pm, ptep);
2924
2925 #ifdef ARM_MMU_EXTENDED
2926 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2927 #endif
2928
2929 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2930
2931 pmap_release_pmap_lock(pm);
2932
2933 pool_put(&pmap_pv_pool, pv);
2934 pmap_acquire_page_lock(md);
2935 #ifdef MULTIPROCESSOR
2936 /*
2937 * Restart of the beginning of the list.
2938 */
2939 pvp = &SLIST_FIRST(&md->pvh_list);
2940 #endif
2941 }
2942 /*
2943 * if we reach the end of the list and there are still mappings, they
2944 * might be able to be cached now. And they must be kernel mappings.
2945 */
2946 if (!SLIST_EMPTY(&md->pvh_list)) {
2947 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2948 }
2949
2950 #ifdef PMAP_CACHE_VIPT
2951 /*
2952 * Its EXEC cache is now gone.
2953 */
2954 if (PV_IS_EXEC_P(md->pvh_attrs))
2955 PMAPCOUNT(exec_discarded_page_protect);
2956 md->pvh_attrs &= ~PVF_EXEC;
2957 KASSERT(md->urw_mappings == 0);
2958 KASSERT(md->uro_mappings == 0);
2959 #ifndef ARM_MMU_EXTENDED
2960 if (arm_cache_prefer_mask != 0) {
2961 if (md->krw_mappings == 0)
2962 md->pvh_attrs &= ~PVF_WRITE;
2963 PMAP_VALIDATE_MD_PAGE(md);
2964 }
2965 #endif /* ARM_MMU_EXTENDED */
2966 #endif /* PMAP_CACHE_VIPT */
2967 pmap_release_page_lock(md);
2968
2969 #ifndef ARM_MMU_EXTENDED
2970 if (flush) {
2971 /*
2972 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2973 * would need a subsequent call to pmap_update() to ensure
2974 * curpm->pm_cstate.cs_all is reset. Our callers are not
2975 * required to do that (see pmap(9)), so we can't modify
2976 * the current pmap's state.
2977 */
2978 if (PV_BEEN_EXECD(flags))
2979 cpu_tlb_flushID();
2980 else
2981 cpu_tlb_flushD();
2982 }
2983 cpu_cpwait();
2984 #endif /* ARM_MMU_EXTENDED */
2985 }
2986
2987 /*
2988 * pmap_t pmap_create(void)
2989 *
2990 * Create a new pmap structure from scratch.
2991 */
2992 pmap_t
2993 pmap_create(void)
2994 {
2995 pmap_t pm;
2996
2997 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2998
2999 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
3000 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
3001 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
3002
3003 pm->pm_stats.wired_count = 0;
3004 pm->pm_stats.resident_count = 1;
3005 #ifdef ARM_MMU_EXTENDED
3006 #ifdef MULTIPROCESSOR
3007 kcpuset_create(&pm->pm_active, true);
3008 kcpuset_create(&pm->pm_onproc, true);
3009 #endif
3010 #else
3011 pm->pm_cstate.cs_all = 0;
3012 #endif
3013 pmap_alloc_l1(pm);
3014
3015 /*
3016 * Note: The pool cache ensures that the pm_l2[] array is already
3017 * initialised to zero.
3018 */
3019
3020 pmap_pinit(pm);
3021
3022 return (pm);
3023 }
3024
3025 u_int
3026 arm32_mmap_flags(paddr_t pa)
3027 {
3028 /*
3029 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3030 * and we're using the upper bits in page numbers to pass flags around
3031 * so we might as well use the same bits
3032 */
3033 return (u_int)pa & PMAP_MD_MASK;
3034 }
3035 /*
3036 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3037 * u_int flags)
3038 *
3039 * Insert the given physical page (p) at
3040 * the specified virtual address (v) in the
3041 * target physical map with the protection requested.
3042 *
3043 * NB: This is the only routine which MAY NOT lazy-evaluate
3044 * or lose information. That is, this routine must actually
3045 * insert this page into the given map NOW.
3046 */
3047 int
3048 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3049 {
3050 struct l2_bucket *l2b;
3051 struct vm_page *pg, *opg;
3052 u_int nflags;
3053 u_int oflags;
3054 const bool kpm_p = (pm == pmap_kernel());
3055 #ifdef ARM_HAS_VBAR
3056 const bool vector_page_p = false;
3057 #else
3058 const bool vector_page_p = (va == vector_page);
3059 #endif
3060
3061 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3062
3063 UVMHIST_LOG(maphist, " (pm %#jx va %#jx pa %#jx prot %#jx",
3064 (uintptr_t)pm, va, pa, prot);
3065 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0);
3066
3067 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3068 KDASSERT(((va | pa) & PGOFSET) == 0);
3069
3070 /*
3071 * Get a pointer to the page. Later on in this function, we
3072 * test for a managed page by checking pg != NULL.
3073 */
3074 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3075
3076 nflags = 0;
3077 if (prot & VM_PROT_WRITE)
3078 nflags |= PVF_WRITE;
3079 if (prot & VM_PROT_EXECUTE)
3080 nflags |= PVF_EXEC;
3081 if (flags & PMAP_WIRED)
3082 nflags |= PVF_WIRED;
3083
3084 pmap_acquire_pmap_lock(pm);
3085
3086 /*
3087 * Fetch the L2 bucket which maps this page, allocating one if
3088 * necessary for user pmaps.
3089 */
3090 if (kpm_p) {
3091 l2b = pmap_get_l2_bucket(pm, va);
3092 } else {
3093 l2b = pmap_alloc_l2_bucket(pm, va);
3094 }
3095 if (l2b == NULL) {
3096 if (flags & PMAP_CANFAIL) {
3097 pmap_release_pmap_lock(pm);
3098 return (ENOMEM);
3099 }
3100 panic("pmap_enter: failed to allocate L2 bucket");
3101 }
3102 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3103 const pt_entry_t opte = *ptep;
3104 pt_entry_t npte = pa;
3105 oflags = 0;
3106
3107 if (opte) {
3108 /*
3109 * There is already a mapping at this address.
3110 * If the physical address is different, lookup the
3111 * vm_page.
3112 */
3113 if (l2pte_pa(opte) != pa) {
3114 KASSERT(!pmap_pv_tracked(pa));
3115 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3116 } else
3117 opg = pg;
3118 } else
3119 opg = NULL;
3120
3121 struct pmap_page *pp = pmap_pv_tracked(pa);
3122
3123 if (pg || pp) {
3124 KASSERT((pg != NULL) != (pp != NULL));
3125 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3126 PMAP_PAGE_TO_MD(pp);
3127
3128 /*
3129 * This is to be a managed mapping.
3130 */
3131 pmap_acquire_page_lock(md);
3132 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3133 /*
3134 * - The access type indicates that we don't need
3135 * to do referenced emulation.
3136 * OR
3137 * - The physical page has already been referenced
3138 * so no need to re-do referenced emulation here.
3139 */
3140 npte |= l2pte_set_readonly(L2_S_PROTO);
3141
3142 nflags |= PVF_REF;
3143
3144 if ((prot & VM_PROT_WRITE) != 0 &&
3145 ((flags & VM_PROT_WRITE) != 0 ||
3146 (md->pvh_attrs & PVF_MOD) != 0)) {
3147 /*
3148 * This is a writable mapping, and the
3149 * page's mod state indicates it has
3150 * already been modified. Make it
3151 * writable from the outset.
3152 */
3153 npte = l2pte_set_writable(npte);
3154 nflags |= PVF_MOD;
3155 }
3156
3157 #ifdef ARM_MMU_EXTENDED
3158 /*
3159 * If the page has been cleaned, then the pvh_attrs
3160 * will have PVF_EXEC set, so mark it execute so we
3161 * don't get an access fault when trying to execute
3162 * from it.
3163 */
3164 if (md->pvh_attrs & nflags & PVF_EXEC) {
3165 npte &= ~L2_XS_XN;
3166 }
3167 #endif
3168 } else {
3169 /*
3170 * Need to do page referenced emulation.
3171 */
3172 npte |= L2_TYPE_INV;
3173 }
3174
3175 if (flags & ARM32_MMAP_WRITECOMBINE) {
3176 npte |= pte_l2_s_wc_mode;
3177 } else
3178 npte |= pte_l2_s_cache_mode;
3179
3180 if (pg != NULL && pg == opg) {
3181 /*
3182 * We're changing the attrs of an existing mapping.
3183 */
3184 oflags = pmap_modify_pv(md, pa, pm, va,
3185 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3186 PVF_MOD | PVF_REF, nflags);
3187
3188 #ifdef PMAP_CACHE_VIVT
3189 /*
3190 * We may need to flush the cache if we're
3191 * doing rw-ro...
3192 */
3193 if (pm->pm_cstate.cs_cache_d &&
3194 (oflags & PVF_NC) == 0 &&
3195 l2pte_writable_p(opte) &&
3196 (prot & VM_PROT_WRITE) == 0)
3197 cpu_dcache_wb_range(va, PAGE_SIZE);
3198 #endif
3199 } else {
3200 struct pv_entry *pv;
3201 /*
3202 * New mapping, or changing the backing page
3203 * of an existing mapping.
3204 */
3205 if (opg) {
3206 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3207 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3208
3209 /*
3210 * Replacing an existing mapping with a new one.
3211 * It is part of our managed memory so we
3212 * must remove it from the PV list
3213 */
3214 pv = pmap_remove_pv(omd, opa, pm, va);
3215 pmap_vac_me_harder(omd, opa, pm, 0);
3216 oflags = pv->pv_flags;
3217
3218 #ifdef PMAP_CACHE_VIVT
3219 /*
3220 * If the old mapping was valid (ref/mod
3221 * emulation creates 'invalid' mappings
3222 * initially) then make sure to frob
3223 * the cache.
3224 */
3225 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3226 pmap_cache_wbinv_page(pm, va, true,
3227 oflags);
3228 }
3229 #endif
3230 } else {
3231 pmap_release_page_lock(md);
3232 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3233 if (pv == NULL) {
3234 pmap_release_pmap_lock(pm);
3235 if ((flags & PMAP_CANFAIL) == 0)
3236 panic("pmap_enter: "
3237 "no pv entries");
3238
3239 pmap_free_l2_bucket(pm, l2b, 0);
3240 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3241 0, 0, 0, 0);
3242 return (ENOMEM);
3243 }
3244 pmap_acquire_page_lock(md);
3245 }
3246
3247 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3248 }
3249 pmap_release_page_lock(md);
3250 } else {
3251 /*
3252 * We're mapping an unmanaged page.
3253 * These are always readable, and possibly writable, from
3254 * the get go as we don't need to track ref/mod status.
3255 */
3256 npte |= l2pte_set_readonly(L2_S_PROTO);
3257 if (prot & VM_PROT_WRITE)
3258 npte = l2pte_set_writable(npte);
3259
3260 /*
3261 * Make sure the vector table is mapped cacheable
3262 */
3263 if ((vector_page_p && !kpm_p)
3264 || (flags & ARM32_MMAP_CACHEABLE)) {
3265 npte |= pte_l2_s_cache_mode;
3266 #ifdef ARM_MMU_EXTENDED
3267 npte &= ~L2_XS_XN; /* and executable */
3268 #endif
3269 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3270 npte |= pte_l2_s_wc_mode;
3271 }
3272 if (opg) {
3273 /*
3274 * Looks like there's an existing 'managed' mapping
3275 * at this address.
3276 */
3277 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3278 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3279
3280 pmap_acquire_page_lock(omd);
3281 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
3282 pmap_vac_me_harder(omd, opa, pm, 0);
3283 oflags = pv->pv_flags;
3284 pmap_release_page_lock(omd);
3285
3286 #ifdef PMAP_CACHE_VIVT
3287 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3288 pmap_cache_wbinv_page(pm, va, true, oflags);
3289 }
3290 #endif
3291 pool_put(&pmap_pv_pool, pv);
3292 }
3293 }
3294
3295 /*
3296 * Make sure userland mappings get the right permissions
3297 */
3298 if (!vector_page_p && !kpm_p) {
3299 npte |= L2_S_PROT_U;
3300 #ifdef ARM_MMU_EXTENDED
3301 npte |= L2_XS_nG; /* user pages are not global */
3302 #endif
3303 }
3304
3305 /*
3306 * Keep the stats up to date
3307 */
3308 if (opte == 0) {
3309 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3310 pm->pm_stats.resident_count++;
3311 }
3312
3313 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3314
3315 #if defined(ARM_MMU_EXTENDED)
3316 /*
3317 * If exec protection was requested but the page hasn't been synced,
3318 * sync it now and allow execution from it.
3319 */
3320 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3321 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3322 npte &= ~L2_XS_XN;
3323 pmap_syncicache_page(md, pa);
3324 PMAPCOUNT(exec_synced_map);
3325 }
3326 #endif
3327 /*
3328 * If this is just a wiring change, the two PTEs will be
3329 * identical, so there's no need to update the page table.
3330 */
3331 if (npte != opte) {
3332 l2pte_reset(ptep);
3333 PTE_SYNC(ptep);
3334 if (l2pte_valid_p(opte)) {
3335 pmap_tlb_flush_SE(pm, va, oflags);
3336 }
3337 l2pte_set(ptep, npte, 0);
3338 PTE_SYNC(ptep);
3339 #ifndef ARM_MMU_EXTENDED
3340 bool is_cached = pmap_is_cached(pm);
3341 if (is_cached) {
3342 /*
3343 * We only need to frob the cache/tlb if this pmap
3344 * is current
3345 */
3346 if (!vector_page_p && l2pte_valid_p(npte)) {
3347 /*
3348 * This mapping is likely to be accessed as
3349 * soon as we return to userland. Fix up the
3350 * L1 entry to avoid taking another
3351 * page/domain fault.
3352 */
3353 pd_entry_t *pdep = pmap_l1_kva(pm)
3354 + l1pte_index(va);
3355 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3356 | L1_C_DOM(pmap_domain(pm));
3357 if (*pdep != pde) {
3358 l1pte_setone(pdep, pde);
3359 PDE_SYNC(pdep);
3360 }
3361 }
3362 }
3363 #endif /* !ARM_MMU_EXTENDED */
3364
3365 #ifndef ARM_MMU_EXTENDED
3366 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx",
3367 is_cached, pm->pm_cstate.cs_all, 0, 0);
3368
3369 if (pg != NULL) {
3370 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3371
3372 pmap_acquire_page_lock(md);
3373 pmap_vac_me_harder(md, pa, pm, va);
3374 pmap_release_page_lock(md);
3375 }
3376 #endif
3377 }
3378 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3379 if (pg) {
3380 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3381
3382 pmap_acquire_page_lock(md);
3383 #ifndef ARM_MMU_EXTENDED
3384 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3385 #endif
3386 PMAP_VALIDATE_MD_PAGE(md);
3387 pmap_release_page_lock(md);
3388 }
3389 #endif
3390
3391 pmap_release_pmap_lock(pm);
3392
3393 return (0);
3394 }
3395
3396 /*
3397 * pmap_remove()
3398 *
3399 * pmap_remove is responsible for nuking a number of mappings for a range
3400 * of virtual address space in the current pmap. To do this efficiently
3401 * is interesting, because in a number of cases a wide virtual address
3402 * range may be supplied that contains few actual mappings. So, the
3403 * optimisations are:
3404 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3405 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3406 * maybe do just a partial cache clean. This path of execution is
3407 * complicated by the fact that the cache must be flushed _before_
3408 * the PTE is nuked, being a VAC :-)
3409 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3410 * all invalidations until pmap_update(), since pmap_remove_all() has
3411 * already flushed the cache.
3412 * 4. Maybe later fast-case a single page, but I don't think this is
3413 * going to make _that_ much difference overall.
3414 */
3415
3416 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3417
3418 void
3419 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3420 {
3421 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3422 UVMHIST_LOG(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3423 (uintptr_t)pm, sva, eva, 0);
3424
3425 /*
3426 * we lock in the pmap => pv_head direction
3427 */
3428 pmap_acquire_pmap_lock(pm);
3429
3430 #ifndef ARM_MMU_EXTENDED
3431 u_int cleanlist_idx, total, cnt;
3432 struct {
3433 vaddr_t va;
3434 pt_entry_t *ptep;
3435 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3436
3437 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3438 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3439 if (pm->pm_cstate.cs_tlb == 0)
3440 pm->pm_remove_all = true;
3441 } else
3442 cleanlist_idx = 0;
3443 total = 0;
3444 #endif
3445
3446 while (sva < eva) {
3447 /*
3448 * Do one L2 bucket's worth at a time.
3449 */
3450 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3451 if (next_bucket > eva)
3452 next_bucket = eva;
3453
3454 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3455 if (l2b == NULL) {
3456 sva = next_bucket;
3457 continue;
3458 }
3459
3460 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3461 u_int mappings = 0;
3462
3463 for (;sva < next_bucket;
3464 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3465 pt_entry_t opte = *ptep;
3466
3467 if (opte == 0) {
3468 /* Nothing here, move along */
3469 continue;
3470 }
3471
3472 u_int flags = PVF_REF;
3473 paddr_t pa = l2pte_pa(opte);
3474 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3475
3476 /*
3477 * Update flags. In a number of circumstances,
3478 * we could cluster a lot of these and do a
3479 * number of sequential pages in one go.
3480 */
3481 if (pg != NULL) {
3482 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3483 struct pv_entry *pv;
3484
3485 pmap_acquire_page_lock(md);
3486 pv = pmap_remove_pv(md, pa, pm, sva);
3487 pmap_vac_me_harder(md, pa, pm, 0);
3488 pmap_release_page_lock(md);
3489 if (pv != NULL) {
3490 if (pm->pm_remove_all == false) {
3491 flags = pv->pv_flags;
3492 }
3493 pool_put(&pmap_pv_pool, pv);
3494 }
3495 }
3496 mappings += PAGE_SIZE / L2_S_SIZE;
3497
3498 if (!l2pte_valid_p(opte)) {
3499 /*
3500 * Ref/Mod emulation is still active for this
3501 * mapping, therefore it is has not yet been
3502 * accessed. No need to frob the cache/tlb.
3503 */
3504 l2pte_reset(ptep);
3505 PTE_SYNC_CURRENT(pm, ptep);
3506 continue;
3507 }
3508
3509 #ifdef ARM_MMU_EXTENDED
3510 l2pte_reset(ptep);
3511 PTE_SYNC(ptep);
3512 if (__predict_false(pm->pm_remove_all == false)) {
3513 pmap_tlb_flush_SE(pm, sva, flags);
3514 }
3515 #else
3516 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3517 /* Add to the clean list. */
3518 cleanlist[cleanlist_idx].ptep = ptep;
3519 cleanlist[cleanlist_idx].va =
3520 sva | (flags & PVF_EXEC);
3521 cleanlist_idx++;
3522 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3523 /* Nuke everything if needed. */
3524 #ifdef PMAP_CACHE_VIVT
3525 pmap_cache_wbinv_all(pm, PVF_EXEC);
3526 #endif
3527 /*
3528 * Roll back the previous PTE list,
3529 * and zero out the current PTE.
3530 */
3531 for (cnt = 0;
3532 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3533 l2pte_reset(cleanlist[cnt].ptep);
3534 PTE_SYNC(cleanlist[cnt].ptep);
3535 }
3536 l2pte_reset(ptep);
3537 PTE_SYNC(ptep);
3538 cleanlist_idx++;
3539 pm->pm_remove_all = true;
3540 } else {
3541 l2pte_reset(ptep);
3542 PTE_SYNC(ptep);
3543 if (pm->pm_remove_all == false) {
3544 pmap_tlb_flush_SE(pm, sva, flags);
3545 }
3546 }
3547 #endif
3548 }
3549
3550 #ifndef ARM_MMU_EXTENDED
3551 /*
3552 * Deal with any left overs
3553 */
3554 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3555 total += cleanlist_idx;
3556 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3557 l2pte_reset(cleanlist[cnt].ptep);
3558 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3559 vaddr_t va = cleanlist[cnt].va;
3560 if (pm->pm_cstate.cs_all != 0) {
3561 vaddr_t clva = va & ~PAGE_MASK;
3562 u_int flags = va & PVF_EXEC;
3563 #ifdef PMAP_CACHE_VIVT
3564 pmap_cache_wbinv_page(pm, clva, true,
3565 PVF_REF | PVF_WRITE | flags);
3566 #endif
3567 pmap_tlb_flush_SE(pm, clva,
3568 PVF_REF | flags);
3569 }
3570 }
3571
3572 /*
3573 * If it looks like we're removing a whole bunch
3574 * of mappings, it's faster to just write-back
3575 * the whole cache now and defer TLB flushes until
3576 * pmap_update() is called.
3577 */
3578 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3579 cleanlist_idx = 0;
3580 else {
3581 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3582 #ifdef PMAP_CACHE_VIVT
3583 pmap_cache_wbinv_all(pm, PVF_EXEC);
3584 #endif
3585 pm->pm_remove_all = true;
3586 }
3587 }
3588 #endif /* ARM_MMU_EXTENDED */
3589
3590 pmap_free_l2_bucket(pm, l2b, mappings);
3591 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3592 }
3593
3594 pmap_release_pmap_lock(pm);
3595 }
3596
3597 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3598 static struct pv_entry *
3599 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3600 {
3601 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3602 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3603 struct pv_entry *pv;
3604
3605 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3606 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3607 KASSERT(pmap_page_locked_p(md));
3608
3609 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3610 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3611 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3612
3613 /*
3614 * If we are removing a writeable mapping to a cached exec page,
3615 * if it's the last mapping then clear it execness other sync
3616 * the page to the icache.
3617 */
3618 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3619 && (pv->pv_flags & PVF_WRITE) != 0) {
3620 if (SLIST_EMPTY(&md->pvh_list)) {
3621 md->pvh_attrs &= ~PVF_EXEC;
3622 PMAPCOUNT(exec_discarded_kremove);
3623 } else {
3624 pmap_syncicache_page(md, pa);
3625 PMAPCOUNT(exec_synced_kremove);
3626 }
3627 }
3628 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3629
3630 return pv;
3631 }
3632 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3633
3634 /*
3635 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3636 *
3637 * We assume there is already sufficient KVM space available
3638 * to do this, as we can't allocate L2 descriptor tables/metadata
3639 * from here.
3640 */
3641 void
3642 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3643 {
3644 #ifdef PMAP_CACHE_VIVT
3645 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3646 #endif
3647 #ifdef PMAP_CACHE_VIPT
3648 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3649 struct vm_page *opg;
3650 #ifndef ARM_MMU_EXTENDED
3651 struct pv_entry *pv = NULL;
3652 #endif
3653 #endif
3654 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3655
3656 UVMHIST_FUNC(__func__);
3657
3658 if (pmap_initialized) {
3659 UVMHIST_CALLED(maphist);
3660 UVMHIST_LOG(maphist, " (va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx",
3661 va, pa, prot, flags);
3662 }
3663
3664 pmap_t kpm = pmap_kernel();
3665 pmap_acquire_pmap_lock(kpm);
3666 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3667 const size_t l1slot __diagused = l1pte_index(va);
3668 KASSERTMSG(l2b != NULL,
3669 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3670 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3671 kpm->pm_l2[L2_IDX(l1slot)]
3672 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3673 : NULL,
3674 kpm->pm_l2[L2_IDX(l1slot)]
3675 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3676 : NULL);
3677 KASSERT(l2b->l2b_kva != NULL);
3678
3679 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3680 const pt_entry_t opte = *ptep;
3681
3682 if (opte == 0) {
3683 PMAPCOUNT(kenter_mappings);
3684 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3685 } else {
3686 PMAPCOUNT(kenter_remappings);
3687 #ifdef PMAP_CACHE_VIPT
3688 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3689 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3690 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3691 #endif
3692 if (opg && arm_cache_prefer_mask != 0) {
3693 KASSERT(opg != pg);
3694 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3695 KASSERT((flags & PMAP_KMPAGE) == 0);
3696 #ifndef ARM_MMU_EXTENDED
3697 pmap_acquire_page_lock(omd);
3698 pv = pmap_kremove_pg(opg, va);
3699 pmap_release_page_lock(omd);
3700 #endif
3701 }
3702 #endif
3703 if (l2pte_valid_p(opte)) {
3704 l2pte_reset(ptep);
3705 PTE_SYNC(ptep);
3706 #ifdef PMAP_CACHE_VIVT
3707 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3708 #endif
3709 cpu_tlb_flushD_SE(va);
3710 cpu_cpwait();
3711 }
3712 }
3713 pmap_release_pmap_lock(kpm);
3714 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3715
3716 if (flags & PMAP_PTE) {
3717 KASSERT((flags & PMAP_CACHE_MASK) == 0);
3718 if (!(flags & PMAP_NOCACHE))
3719 npte |= pte_l2_s_cache_mode_pt;
3720 } else {
3721 switch (flags & PMAP_CACHE_MASK) {
3722 case PMAP_NOCACHE:
3723 break;
3724 case PMAP_WRITE_COMBINE:
3725 npte |= pte_l2_s_wc_mode;
3726 break;
3727 default:
3728 npte |= pte_l2_s_cache_mode;
3729 break;
3730 }
3731 }
3732 #ifdef ARM_MMU_EXTENDED
3733 if (prot & VM_PROT_EXECUTE)
3734 npte &= ~L2_XS_XN;
3735 #endif
3736 l2pte_set(ptep, npte, 0);
3737 PTE_SYNC(ptep);
3738
3739 if (pg) {
3740 if (flags & PMAP_KMPAGE) {
3741 KASSERT(md->urw_mappings == 0);
3742 KASSERT(md->uro_mappings == 0);
3743 KASSERT(md->krw_mappings == 0);
3744 KASSERT(md->kro_mappings == 0);
3745 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3746 KASSERT(pv == NULL);
3747 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3748 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3749 /* if there is a color conflict, evict from cache. */
3750 if (pmap_is_page_colored_p(md)
3751 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3752 PMAPCOUNT(vac_color_change);
3753 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3754 } else if (md->pvh_attrs & PVF_MULTCLR) {
3755 /*
3756 * If this page has multiple colors, expunge
3757 * them.
3758 */
3759 PMAPCOUNT(vac_flush_lots2);
3760 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3761 }
3762 /*
3763 * Since this is a KMPAGE, there can be no contention
3764 * for this page so don't lock it.
3765 */
3766 md->pvh_attrs &= PAGE_SIZE - 1;
3767 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3768 | (va & arm_cache_prefer_mask);
3769 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3770 md->pvh_attrs |= PVF_KMPAGE;
3771 #endif
3772 atomic_inc_32(&pmap_kmpages);
3773 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3774 } else if (arm_cache_prefer_mask != 0) {
3775 if (pv == NULL) {
3776 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3777 KASSERT(pv != NULL);
3778 }
3779 pmap_acquire_page_lock(md);
3780 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3781 PVF_WIRED | PVF_KENTRY
3782 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3783 if ((prot & VM_PROT_WRITE)
3784 && !(md->pvh_attrs & PVF_NC))
3785 md->pvh_attrs |= PVF_DIRTY;
3786 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3787 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3788 pmap_release_page_lock(md);
3789 #endif
3790 }
3791 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3792 } else {
3793 if (pv != NULL)
3794 pool_put(&pmap_pv_pool, pv);
3795 #endif
3796 }
3797 if (pmap_initialized) {
3798 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)",
3799 (uintptr_t)ptep, opte, npte, 0);
3800 }
3801
3802 }
3803
3804 void
3805 pmap_kremove(vaddr_t va, vsize_t len)
3806 {
3807 #ifdef UVMHIST
3808 u_int total_mappings = 0;
3809 #endif
3810
3811 PMAPCOUNT(kenter_unmappings);
3812
3813 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3814
3815 UVMHIST_LOG(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3816
3817 const vaddr_t eva = va + len;
3818
3819 pmap_acquire_pmap_lock(pmap_kernel());
3820
3821 while (va < eva) {
3822 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3823 if (next_bucket > eva)
3824 next_bucket = eva;
3825
3826 pmap_t kpm = pmap_kernel();
3827 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3828 KDASSERT(l2b != NULL);
3829
3830 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3831 pt_entry_t *ptep = sptep;
3832 u_int mappings = 0;
3833
3834 while (va < next_bucket) {
3835 const pt_entry_t opte = *ptep;
3836 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3837 if (opg != NULL) {
3838 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3839
3840 if (omd->pvh_attrs & PVF_KMPAGE) {
3841 KASSERT(omd->urw_mappings == 0);
3842 KASSERT(omd->uro_mappings == 0);
3843 KASSERT(omd->krw_mappings == 0);
3844 KASSERT(omd->kro_mappings == 0);
3845 omd->pvh_attrs &= ~PVF_KMPAGE;
3846 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3847 if (arm_cache_prefer_mask != 0) {
3848 omd->pvh_attrs &= ~PVF_WRITE;
3849 }
3850 #endif
3851 atomic_dec_32(&pmap_kmpages);
3852 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3853 } else if (arm_cache_prefer_mask != 0) {
3854 pmap_acquire_page_lock(omd);
3855 pool_put(&pmap_pv_pool,
3856 pmap_kremove_pg(opg, va));
3857 pmap_release_page_lock(omd);
3858 #endif
3859 }
3860 }
3861 if (l2pte_valid_p(opte)) {
3862 l2pte_reset(ptep);
3863 PTE_SYNC(ptep);
3864 #ifdef PMAP_CACHE_VIVT
3865 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3866 #endif
3867 cpu_tlb_flushD_SE(va);
3868
3869 mappings += PAGE_SIZE / L2_S_SIZE;
3870 }
3871 va += PAGE_SIZE;
3872 ptep += PAGE_SIZE / L2_S_SIZE;
3873 }
3874 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3875 mappings, l2b->l2b_occupancy);
3876 l2b->l2b_occupancy -= mappings;
3877 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3878 #ifdef UVMHIST
3879 total_mappings += mappings;
3880 #endif
3881 }
3882 pmap_release_pmap_lock(pmap_kernel());
3883 cpu_cpwait();
3884 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)",
3885 total_mappings, 0, 0, 0);
3886 }
3887
3888 bool
3889 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3890 {
3891
3892 return pmap_extract_coherency(pm, va, pap, NULL);
3893 }
3894
3895 bool
3896 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3897 {
3898 struct l2_dtable *l2;
3899 pd_entry_t *pdep, pde;
3900 pt_entry_t *ptep, pte;
3901 paddr_t pa;
3902 u_int l1slot;
3903 bool coherent;
3904
3905 pmap_acquire_pmap_lock(pm);
3906
3907 l1slot = l1pte_index(va);
3908 pdep = pmap_l1_kva(pm) + l1slot;
3909 pde = *pdep;
3910
3911 if (l1pte_section_p(pde)) {
3912 /*
3913 * These should only happen for pmap_kernel()
3914 */
3915 KDASSERT(pm == pmap_kernel());
3916 pmap_release_pmap_lock(pm);
3917 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3918 if (l1pte_supersection_p(pde)) {
3919 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3920 } else
3921 #endif
3922 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3923 coherent = (pde & L1_S_CACHE_MASK) == 0;
3924 } else {
3925 /*
3926 * Note that we can't rely on the validity of the L1
3927 * descriptor as an indication that a mapping exists.
3928 * We have to look it up in the L2 dtable.
3929 */
3930 l2 = pm->pm_l2[L2_IDX(l1slot)];
3931
3932 if (l2 == NULL ||
3933 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3934 pmap_release_pmap_lock(pm);
3935 return false;
3936 }
3937
3938 pte = ptep[l2pte_index(va)];
3939 pmap_release_pmap_lock(pm);
3940
3941 if (pte == 0)
3942 return false;
3943
3944 switch (pte & L2_TYPE_MASK) {
3945 case L2_TYPE_L:
3946 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3947 coherent = (pte & L2_L_CACHE_MASK) == 0;
3948 break;
3949
3950 default:
3951 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3952 coherent = (pte & L2_S_CACHE_MASK) == 0;
3953 break;
3954 }
3955 }
3956
3957 if (pap != NULL)
3958 *pap = pa;
3959
3960 if (coherentp != NULL)
3961 *coherentp = (pm == pmap_kernel() && coherent);
3962
3963 return true;
3964 }
3965
3966 /*
3967 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
3968 * that map it
3969 */
3970
3971 static void
3972 pmap_pv_remove(paddr_t pa)
3973 {
3974 struct pmap_page *pp;
3975
3976 pp = pmap_pv_tracked(pa);
3977 if (pp == NULL)
3978 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
3979 pa);
3980
3981 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
3982 pmap_page_remove(md, pa);
3983 }
3984
3985 void
3986 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
3987 {
3988
3989 /* the only case is remove at the moment */
3990 KASSERT(prot == VM_PROT_NONE);
3991 pmap_pv_remove(pa);
3992 }
3993
3994 void
3995 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3996 {
3997 struct l2_bucket *l2b;
3998 vaddr_t next_bucket;
3999
4000 NPDEBUG(PDB_PROTECT,
4001 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
4002 pm, sva, eva, prot));
4003
4004 if ((prot & VM_PROT_READ) == 0) {
4005 pmap_remove(pm, sva, eva);
4006 return;
4007 }
4008
4009 if (prot & VM_PROT_WRITE) {
4010 /*
4011 * If this is a read->write transition, just ignore it and let
4012 * uvm_fault() take care of it later.
4013 */
4014 return;
4015 }
4016
4017 pmap_acquire_pmap_lock(pm);
4018
4019 #ifndef ARM_MMU_EXTENDED
4020 const bool flush = eva - sva >= PAGE_SIZE * 4;
4021 u_int flags = 0;
4022 #endif
4023 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4024
4025 while (sva < eva) {
4026 next_bucket = L2_NEXT_BUCKET_VA(sva);
4027 if (next_bucket > eva)
4028 next_bucket = eva;
4029
4030 l2b = pmap_get_l2_bucket(pm, sva);
4031 if (l2b == NULL) {
4032 sva = next_bucket;
4033 continue;
4034 }
4035
4036 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4037
4038 while (sva < next_bucket) {
4039 const pt_entry_t opte = *ptep;
4040 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4041 struct vm_page *pg;
4042 #ifndef ARM_MMU_EXTENDED
4043 u_int f;
4044 #endif
4045
4046 #ifdef PMAP_CACHE_VIVT
4047 /*
4048 * OK, at this point, we know we're doing
4049 * write-protect operation. If the pmap is
4050 * active, write-back the page.
4051 */
4052 pmap_cache_wbinv_page(pm, sva, false,
4053 PVF_REF | PVF_WRITE);
4054 #endif
4055
4056 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4057 pt_entry_t npte = l2pte_set_readonly(opte);
4058 l2pte_reset(ptep);
4059 PTE_SYNC(ptep);
4060 #ifdef ARM_MMU_EXTENDED
4061 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4062 #endif
4063 l2pte_set(ptep, npte, 0);
4064 PTE_SYNC(ptep);
4065
4066 if (pg != NULL) {
4067 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4068 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4069
4070 pmap_acquire_page_lock(md);
4071 #ifndef ARM_MMU_EXTENDED
4072 f =
4073 #endif
4074 pmap_modify_pv(md, pa, pm, sva,
4075 clr_mask, 0);
4076 pmap_vac_me_harder(md, pa, pm, sva);
4077 pmap_release_page_lock(md);
4078 #ifndef ARM_MMU_EXTENDED
4079 } else {
4080 f = PVF_REF | PVF_EXEC;
4081 }
4082
4083 if (flush) {
4084 flags |= f;
4085 } else {
4086 pmap_tlb_flush_SE(pm, sva, f);
4087 #endif
4088 }
4089 }
4090
4091 sva += PAGE_SIZE;
4092 ptep += PAGE_SIZE / L2_S_SIZE;
4093 }
4094 }
4095
4096 #ifndef ARM_MMU_EXTENDED
4097 if (flush) {
4098 if (PV_BEEN_EXECD(flags)) {
4099 pmap_tlb_flushID(pm);
4100 } else if (PV_BEEN_REFD(flags)) {
4101 pmap_tlb_flushD(pm);
4102 }
4103 }
4104 #endif
4105
4106 pmap_release_pmap_lock(pm);
4107 }
4108
4109 void
4110 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4111 {
4112 struct l2_bucket *l2b;
4113 pt_entry_t *ptep;
4114 vaddr_t next_bucket;
4115 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4116
4117 NPDEBUG(PDB_EXEC,
4118 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4119 pm, sva, eva));
4120
4121 pmap_acquire_pmap_lock(pm);
4122
4123 while (sva < eva) {
4124 next_bucket = L2_NEXT_BUCKET_VA(sva);
4125 if (next_bucket > eva)
4126 next_bucket = eva;
4127
4128 l2b = pmap_get_l2_bucket(pm, sva);
4129 if (l2b == NULL) {
4130 sva = next_bucket;
4131 continue;
4132 }
4133
4134 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4135 sva < next_bucket;
4136 sva += page_size,
4137 ptep += PAGE_SIZE / L2_S_SIZE,
4138 page_size = PAGE_SIZE) {
4139 if (l2pte_valid_p(*ptep)) {
4140 cpu_icache_sync_range(sva,
4141 min(page_size, eva - sva));
4142 }
4143 }
4144 }
4145
4146 pmap_release_pmap_lock(pm);
4147 }
4148
4149 void
4150 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4151 {
4152 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4153 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4154
4155 NPDEBUG(PDB_PROTECT,
4156 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4157 md, pa, prot));
4158
4159 switch(prot) {
4160 case VM_PROT_READ|VM_PROT_WRITE:
4161 #if defined(ARM_MMU_EXTENDED)
4162 pmap_acquire_page_lock(md);
4163 pmap_clearbit(md, pa, PVF_EXEC);
4164 pmap_release_page_lock(md);
4165 break;
4166 #endif
4167 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4168 break;
4169
4170 case VM_PROT_READ:
4171 #if defined(ARM_MMU_EXTENDED)
4172 pmap_acquire_page_lock(md);
4173 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4174 pmap_release_page_lock(md);
4175 break;
4176 #endif
4177 case VM_PROT_READ|VM_PROT_EXECUTE:
4178 pmap_acquire_page_lock(md);
4179 pmap_clearbit(md, pa, PVF_WRITE);
4180 pmap_release_page_lock(md);
4181 break;
4182
4183 default:
4184 pmap_page_remove(md, pa);
4185 break;
4186 }
4187 }
4188
4189 /*
4190 * pmap_clear_modify:
4191 *
4192 * Clear the "modified" attribute for a page.
4193 */
4194 bool
4195 pmap_clear_modify(struct vm_page *pg)
4196 {
4197 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4198 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4199 bool rv;
4200
4201 pmap_acquire_page_lock(md);
4202
4203 if (md->pvh_attrs & PVF_MOD) {
4204 rv = true;
4205 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4206 /*
4207 * If we are going to clear the modified bit and there are
4208 * no other modified bits set, flush the page to memory and
4209 * mark it clean.
4210 */
4211 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4212 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4213 #endif
4214 pmap_clearbit(md, pa, PVF_MOD);
4215 } else {
4216 rv = false;
4217 }
4218 pmap_release_page_lock(md);
4219
4220 return rv;
4221 }
4222
4223 /*
4224 * pmap_clear_reference:
4225 *
4226 * Clear the "referenced" attribute for a page.
4227 */
4228 bool
4229 pmap_clear_reference(struct vm_page *pg)
4230 {
4231 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4232 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4233 bool rv;
4234
4235 pmap_acquire_page_lock(md);
4236
4237 if (md->pvh_attrs & PVF_REF) {
4238 rv = true;
4239 pmap_clearbit(md, pa, PVF_REF);
4240 } else {
4241 rv = false;
4242 }
4243 pmap_release_page_lock(md);
4244
4245 return rv;
4246 }
4247
4248 /*
4249 * pmap_is_modified:
4250 *
4251 * Test if a page has the "modified" attribute.
4252 */
4253 /* See <arm/arm32/pmap.h> */
4254
4255 /*
4256 * pmap_is_referenced:
4257 *
4258 * Test if a page has the "referenced" attribute.
4259 */
4260 /* See <arm/arm32/pmap.h> */
4261
4262 #if defined(ARM_MMU_EXTENDED) && 0
4263 int
4264 pmap_prefetchabt_fixup(void *v)
4265 {
4266 struct trapframe * const tf = v;
4267 vaddr_t va = trunc_page(tf->tf_pc);
4268 int rv = ABORT_FIXUP_FAILED;
4269
4270 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4271 return rv;
4272
4273 kpreempt_disable();
4274 pmap_t pm = curcpu()->ci_pmap_cur;
4275 const size_t l1slot = l1pte_index(va);
4276 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4277 if (l2 == NULL)
4278 goto out;
4279
4280 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4281 if (l2b->l2b_kva == NULL)
4282 goto out;
4283
4284 /*
4285 * Check the PTE itself.
4286 */
4287 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4288 const pt_entry_t opte = *ptep;
4289 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4290 goto out;
4291
4292 paddr_t pa = l2pte_pa(opte);
4293 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4294 KASSERT(pg != NULL);
4295
4296 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4297
4298 pmap_acquire_page_lock(md);
4299 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4300 KASSERT(pv != NULL);
4301
4302 if (PV_IS_EXEC_P(pv->pv_flags)) {
4303 l2pte_reset(ptep);
4304 PTE_SYNC(ptep);
4305 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4306 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4307 pmap_syncicache_page(md, pa);
4308 }
4309 rv = ABORT_FIXUP_RETURN;
4310 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4311 PTE_SYNC(ptep);
4312 }
4313 pmap_release_page_lock(md);
4314
4315 out:
4316 kpreempt_enable();
4317 return rv;
4318 }
4319 #endif
4320
4321 int
4322 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4323 {
4324 struct l2_dtable *l2;
4325 struct l2_bucket *l2b;
4326 paddr_t pa;
4327 const size_t l1slot = l1pte_index(va);
4328 int rv = 0;
4329
4330 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4331
4332 va = trunc_page(va);
4333
4334 KASSERT(!user || (pm != pmap_kernel()));
4335
4336 UVMHIST_LOG(maphist, " (pm=%#jx, va=%#jx, ftype=%#jx, user=%jd)",
4337 (uintptr_t)pm, va, ftype, user);
4338 #ifdef ARM_MMU_EXTENDED
4339 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4340 (uintptr_t)cpu_tlb_info(curcpu()),
4341 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4342 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4343 #endif
4344
4345 pmap_acquire_pmap_lock(pm);
4346
4347 /*
4348 * If there is no l2_dtable for this address, then the process
4349 * has no business accessing it.
4350 *
4351 * Note: This will catch userland processes trying to access
4352 * kernel addresses.
4353 */
4354 l2 = pm->pm_l2[L2_IDX(l1slot)];
4355 if (l2 == NULL) {
4356 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4357 goto out;
4358 }
4359
4360 /*
4361 * Likewise if there is no L2 descriptor table
4362 */
4363 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4364 if (l2b->l2b_kva == NULL) {
4365 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4366 l1slot, 0, 0, 0);
4367 goto out;
4368 }
4369
4370 /*
4371 * Check the PTE itself.
4372 */
4373 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4374 pt_entry_t const opte = *ptep;
4375 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4376 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
4377 l1slot, 0, 0, 0);
4378 goto out;
4379 }
4380
4381 #ifndef ARM_HAS_VBAR
4382 /*
4383 * Catch a userland access to the vector page mapped at 0x0
4384 */
4385 if (user && (opte & L2_S_PROT_U) == 0) {
4386 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4387 goto out;
4388 }
4389 #endif
4390
4391 pa = l2pte_pa(opte);
4392
4393 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4394 /*
4395 * This looks like a good candidate for "page modified"
4396 * emulation...
4397 */
4398 struct pv_entry *pv;
4399 struct vm_page *pg;
4400
4401 /* Extract the physical address of the page */
4402 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4403 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4404 goto out;
4405 }
4406
4407 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4408
4409 /* Get the current flags for this page. */
4410 pmap_acquire_page_lock(md);
4411 pv = pmap_find_pv(md, pm, va);
4412 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4413 pmap_release_page_lock(md);
4414 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4415 goto out;
4416 }
4417
4418 /*
4419 * Do the flags say this page is writable? If not then it
4420 * is a genuine write fault. If yes then the write fault is
4421 * our fault as we did not reflect the write access in the
4422 * PTE. Now we know a write has occurred we can correct this
4423 * and also set the modified bit
4424 */
4425 if ((pv->pv_flags & PVF_WRITE) == 0) {
4426 pmap_release_page_lock(md);
4427 goto out;
4428 }
4429
4430 md->pvh_attrs |= PVF_REF | PVF_MOD;
4431 pv->pv_flags |= PVF_REF | PVF_MOD;
4432 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4433 /*
4434 * If there are cacheable mappings for this page, mark it dirty.
4435 */
4436 if ((md->pvh_attrs & PVF_NC) == 0)
4437 md->pvh_attrs |= PVF_DIRTY;
4438 #endif
4439 #ifdef ARM_MMU_EXTENDED
4440 if (md->pvh_attrs & PVF_EXEC) {
4441 md->pvh_attrs &= ~PVF_EXEC;
4442 PMAPCOUNT(exec_discarded_modfixup);
4443 }
4444 #endif
4445 pmap_release_page_lock(md);
4446
4447 /*
4448 * Re-enable write permissions for the page. No need to call
4449 * pmap_vac_me_harder(), since this is just a
4450 * modified-emulation fault, and the PVF_WRITE bit isn't
4451 * changing. We've already set the cacheable bits based on
4452 * the assumption that we can write to this page.
4453 */
4454 const pt_entry_t npte =
4455 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4456 #ifdef ARM_MMU_EXTENDED
4457 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4458 #endif
4459 | 0;
4460 l2pte_reset(ptep);
4461 PTE_SYNC(ptep);
4462 pmap_tlb_flush_SE(pm, va,
4463 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4464 l2pte_set(ptep, npte, 0);
4465 PTE_SYNC(ptep);
4466 PMAPCOUNT(fixup_mod);
4467 rv = 1;
4468 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4469 "from %#jx to %#jx)", opte, npte, 0, 0);
4470 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4471 /*
4472 * This looks like a good candidate for "page referenced"
4473 * emulation.
4474 */
4475 struct vm_page *pg;
4476
4477 /* Extract the physical address of the page */
4478 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4479 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4480 goto out;
4481 }
4482
4483 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4484
4485 /* Get the current flags for this page. */
4486 pmap_acquire_page_lock(md);
4487 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4488 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4489 pmap_release_page_lock(md);
4490 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4491 goto out;
4492 }
4493
4494 md->pvh_attrs |= PVF_REF;
4495 pv->pv_flags |= PVF_REF;
4496
4497 pt_entry_t npte =
4498 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4499 #ifdef ARM_MMU_EXTENDED
4500 if (pm != pmap_kernel()) {
4501 npte |= L2_XS_nG;
4502 }
4503 /*
4504 * If we got called from prefetch abort, then ftype will have
4505 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4506 * the PTE.
4507 */
4508 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4509 /*
4510 * Is this a mapping of an executable page?
4511 */
4512 if ((pv->pv_flags & PVF_EXEC) == 0) {
4513 pmap_release_page_lock(md);
4514 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4515 0, 0, 0, 0);
4516 goto out;
4517 }
4518 /*
4519 * If we haven't synced the page, do so now.
4520 */
4521 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4522 UVMHIST_LOG(maphist, " ref emul: syncicache "
4523 "page #%#jx", pa, 0, 0, 0);
4524 pmap_syncicache_page(md, pa);
4525 PMAPCOUNT(fixup_exec);
4526 }
4527 npte &= ~L2_XS_XN;
4528 }
4529 #endif /* ARM_MMU_EXTENDED */
4530 pmap_release_page_lock(md);
4531 l2pte_reset(ptep);
4532 PTE_SYNC(ptep);
4533 pmap_tlb_flush_SE(pm, va,
4534 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4535 l2pte_set(ptep, npte, 0);
4536 PTE_SYNC(ptep);
4537 PMAPCOUNT(fixup_ref);
4538 rv = 1;
4539 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4540 "%#jx to %#jx)", opte, npte, 0, 0);
4541 #ifdef ARM_MMU_EXTENDED
4542 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4543 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4544 if (pg == NULL) {
4545 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4546 goto out;
4547 }
4548
4549 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4550
4551 /* Get the current flags for this page. */
4552 pmap_acquire_page_lock(md);
4553 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4554 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4555 pmap_release_page_lock(md);
4556 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4557 goto out;
4558 }
4559
4560 /*
4561 * If we haven't synced the page, do so now.
4562 */
4563 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4564 UVMHIST_LOG(maphist, "syncicache page #%#jx",
4565 pa, 0, 0, 0);
4566 pmap_syncicache_page(md, pa);
4567 }
4568 pmap_release_page_lock(md);
4569 /*
4570 * Turn off no-execute.
4571 */
4572 KASSERT(opte & L2_XS_nG);
4573 l2pte_reset(ptep);
4574 PTE_SYNC(ptep);
4575 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4576 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4577 PTE_SYNC(ptep);
4578 rv = 1;
4579 PMAPCOUNT(fixup_exec);
4580 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4581 opte, opte & ~L2_XS_XN, 0, 0);
4582 #endif
4583 }
4584
4585 #ifndef ARM_MMU_EXTENDED
4586 /*
4587 * We know there is a valid mapping here, so simply
4588 * fix up the L1 if necessary.
4589 */
4590 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4591 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4592 if (*pdep != pde) {
4593 l1pte_setone(pdep, pde);
4594 PDE_SYNC(pdep);
4595 rv = 1;
4596 PMAPCOUNT(fixup_pdes);
4597 }
4598 #endif
4599
4600 #ifdef CPU_SA110
4601 /*
4602 * There are bugs in the rev K SA110. This is a check for one
4603 * of them.
4604 */
4605 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4606 curcpu()->ci_arm_cpurev < 3) {
4607 /* Always current pmap */
4608 if (l2pte_valid_p(opte)) {
4609 extern int kernel_debug;
4610 if (kernel_debug & 1) {
4611 struct proc *p = curlwp->l_proc;
4612 printf("prefetch_abort: page is already "
4613 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4614 printf("prefetch_abort: pc=%08lx proc=%p "
4615 "process=%s\n", va, p, p->p_comm);
4616 printf("prefetch_abort: far=%08x fs=%x\n",
4617 cpu_faultaddress(), cpu_faultstatus());
4618 }
4619 #ifdef DDB
4620 if (kernel_debug & 2)
4621 Debugger();
4622 #endif
4623 rv = 1;
4624 }
4625 }
4626 #endif /* CPU_SA110 */
4627
4628 #ifndef ARM_MMU_EXTENDED
4629 /*
4630 * If 'rv == 0' at this point, it generally indicates that there is a
4631 * stale TLB entry for the faulting address. That might be due to a
4632 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4633 */
4634 if (rv == 0
4635 && pm->pm_l1->l1_domain_use_count == 1
4636 && pmap_needs_pte_sync == 0) {
4637 pmap_needs_pte_sync = 1;
4638 PTE_SYNC(ptep);
4639 PMAPCOUNT(fixup_ptesync);
4640 rv = 1;
4641 }
4642 #endif
4643
4644 #ifndef MULTIPROCESSOR
4645 #if defined(DEBUG) || 1
4646 /*
4647 * If 'rv == 0' at this point, it generally indicates that there is a
4648 * stale TLB entry for the faulting address. This happens when two or
4649 * more processes are sharing an L1. Since we don't flush the TLB on
4650 * a context switch between such processes, we can take domain faults
4651 * for mappings which exist at the same VA in both processes. EVEN IF
4652 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4653 * example.
4654 *
4655 * This is extremely likely to happen if pmap_enter() updated the L1
4656 * entry for a recently entered mapping. In this case, the TLB is
4657 * flushed for the new mapping, but there may still be TLB entries for
4658 * other mappings belonging to other processes in the 1MB range
4659 * covered by the L1 entry.
4660 *
4661 * Since 'rv == 0', we know that the L1 already contains the correct
4662 * value, so the fault must be due to a stale TLB entry.
4663 *
4664 * Since we always need to flush the TLB anyway in the case where we
4665 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4666 * stale TLB entries dynamically.
4667 *
4668 * However, the above condition can ONLY happen if the current L1 is
4669 * being shared. If it happens when the L1 is unshared, it indicates
4670 * that other parts of the pmap are not doing their job WRT managing
4671 * the TLB.
4672 */
4673 if (rv == 0
4674 #ifndef ARM_MMU_EXTENDED
4675 && pm->pm_l1->l1_domain_use_count == 1
4676 #endif
4677 && true) {
4678 #ifdef DEBUG
4679 extern int last_fault_code;
4680 #else
4681 int last_fault_code = ftype & VM_PROT_EXECUTE
4682 ? armreg_ifsr_read()
4683 : armreg_dfsr_read();
4684 #endif
4685 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4686 pm, va, ftype);
4687 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4688 l2, l2b, ptep, opte);
4689
4690 #ifndef ARM_MMU_EXTENDED
4691 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4692 pdep, pde, last_fault_code);
4693 #else
4694 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4695 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4696 armreg_ttbcr_read());
4697 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4698 last_fault_code, curcpu()->ci_pmap_cur,
4699 curcpu()->ci_pmap_asid_cur,
4700 armreg_contextidr_read(), armreg_dacr_read());
4701 #ifdef _ARM_ARCH_7
4702 if (ftype & VM_PROT_WRITE)
4703 armreg_ats1cuw_write(va);
4704 else
4705 armreg_ats1cur_write(va);
4706 arm_isb();
4707 printf("fixup: par %#x\n", armreg_par_read());
4708 #endif
4709 #endif
4710 #ifdef DDB
4711 extern int kernel_debug;
4712
4713 if (kernel_debug & 2) {
4714 pmap_release_pmap_lock(pm);
4715 #ifdef UVMHIST
4716 KERNHIST_DUMP(maphist);
4717 #endif
4718 cpu_Debugger();
4719 pmap_acquire_pmap_lock(pm);
4720 }
4721 #endif
4722 }
4723 #endif
4724 #endif
4725
4726 #ifndef ARM_MMU_EXTENDED
4727 /* Flush the TLB in the shared L1 case - see comment above */
4728 pmap_tlb_flush_SE(pm, va,
4729 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4730 #endif
4731
4732 rv = 1;
4733
4734 out:
4735 pmap_release_pmap_lock(pm);
4736
4737 return (rv);
4738 }
4739
4740 /*
4741 * Routine: pmap_procwr
4742 *
4743 * Function:
4744 * Synchronize caches corresponding to [addr, addr+len) in p.
4745 *
4746 */
4747 void
4748 pmap_procwr(struct proc *p, vaddr_t va, int len)
4749 {
4750 #ifndef ARM_MMU_EXTENDED
4751
4752 /* We only need to do anything if it is the current process. */
4753 if (p == curproc)
4754 cpu_icache_sync_range(va, len);
4755 #endif
4756 }
4757
4758 /*
4759 * Routine: pmap_unwire
4760 * Function: Clear the wired attribute for a map/virtual-address pair.
4761 *
4762 * In/out conditions:
4763 * The mapping must already exist in the pmap.
4764 */
4765 void
4766 pmap_unwire(pmap_t pm, vaddr_t va)
4767 {
4768 struct l2_bucket *l2b;
4769 pt_entry_t *ptep, pte;
4770 struct vm_page *pg;
4771 paddr_t pa;
4772
4773 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4774
4775 pmap_acquire_pmap_lock(pm);
4776
4777 l2b = pmap_get_l2_bucket(pm, va);
4778 KDASSERT(l2b != NULL);
4779
4780 ptep = &l2b->l2b_kva[l2pte_index(va)];
4781 pte = *ptep;
4782
4783 /* Extract the physical address of the page */
4784 pa = l2pte_pa(pte);
4785
4786 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4787 /* Update the wired bit in the pv entry for this page. */
4788 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4789
4790 pmap_acquire_page_lock(md);
4791 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4792 pmap_release_page_lock(md);
4793 }
4794
4795 pmap_release_pmap_lock(pm);
4796 }
4797
4798 #ifdef ARM_MMU_EXTENDED
4799 void
4800 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4801 {
4802 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4803
4804 /*
4805 * Assume that TTBR1 has only global mappings and TTBR0 only
4806 * has non-global mappings. To prevent speculation from doing
4807 * evil things we disable translation table walks using TTBR0
4808 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4809 * Once both are set, table walks are reenabled.
4810 */
4811 const uint32_t old_ttbcr = armreg_ttbcr_read();
4812 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4813 arm_isb();
4814
4815 pmap_tlb_asid_acquire(pm, l);
4816
4817 struct cpu_info * const ci = curcpu();
4818 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4819
4820 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4821 /*
4822 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4823 * have been updated.
4824 */
4825 arm_isb();
4826
4827 if (pm != pmap_kernel()) {
4828 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4829 }
4830 cpu_cpwait();
4831
4832 UVMHIST_LOG(maphist, " pm %#jx pm->pm_l1_pa %08jx asid %ju... done",
4833 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4834
4835 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4836 ci->ci_pmap_asid_cur, pai->pai_asid);
4837 ci->ci_pmap_cur = pm;
4838 }
4839
4840 void
4841 pmap_md_pdetab_deactivate(pmap_t pm)
4842 {
4843
4844 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4845
4846 kpreempt_disable();
4847 struct cpu_info * const ci = curcpu();
4848 /*
4849 * Disable translation table walks from TTBR0 while no pmap has been
4850 * activated.
4851 */
4852 const uint32_t old_ttbcr = armreg_ttbcr_read();
4853 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4854 arm_isb();
4855 pmap_tlb_asid_deactivate(pm);
4856 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4857 arm_isb();
4858
4859 ci->ci_pmap_cur = pmap_kernel();
4860 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4861 ci->ci_pmap_asid_cur);
4862 kpreempt_enable();
4863 }
4864 #endif
4865
4866 void
4867 pmap_activate(struct lwp *l)
4868 {
4869 extern int block_userspace_access;
4870 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4871
4872 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4873
4874 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)npm,
4875 0, 0);
4876
4877 struct cpu_info * const ci = curcpu();
4878
4879 /*
4880 * If activating a non-current lwp or the current lwp is
4881 * already active, just return.
4882 */
4883 if (false
4884 || l != curlwp
4885 #ifdef ARM_MMU_EXTENDED
4886 || (ci->ci_pmap_cur == npm &&
4887 (npm == pmap_kernel()
4888 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4889 #else
4890 || npm->pm_activated == true
4891 #endif
4892 || false) {
4893 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4894 (uintptr_t)l, 0, 0);
4895 return;
4896 }
4897
4898 #ifndef ARM_MMU_EXTENDED
4899 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4900 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4901
4902 /*
4903 * If TTB and DACR are unchanged, short-circuit all the
4904 * TLB/cache management stuff.
4905 */
4906 pmap_t opm = ci->ci_lastlwp
4907 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4908 : NULL;
4909 if (opm != NULL) {
4910 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4911 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4912
4913 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4914 goto all_done;
4915 }
4916 #endif /* !ARM_MMU_EXTENDED */
4917
4918 PMAPCOUNT(activations);
4919 block_userspace_access = 1;
4920
4921 #ifndef ARM_MMU_EXTENDED
4922 /*
4923 * If switching to a user vmspace which is different to the
4924 * most recent one, and the most recent one is potentially
4925 * live in the cache, we must write-back and invalidate the
4926 * entire cache.
4927 */
4928 pmap_t rpm = ci->ci_pmap_lastuser;
4929
4930 /*
4931 * XXXSCW: There's a corner case here which can leave turds in the
4932 * cache as reported in kern/41058. They're probably left over during
4933 * tear-down and switching away from an exiting process. Until the root
4934 * cause is identified and fixed, zap the cache when switching pmaps.
4935 * This will result in a few unnecessary cache flushes, but that's
4936 * better than silently corrupting data.
4937 */
4938 #if 0
4939 if (npm != pmap_kernel() && rpm && npm != rpm &&
4940 rpm->pm_cstate.cs_cache) {
4941 rpm->pm_cstate.cs_cache = 0;
4942 #ifdef PMAP_CACHE_VIVT
4943 cpu_idcache_wbinv_all();
4944 #endif
4945 }
4946 #else
4947 if (rpm) {
4948 rpm->pm_cstate.cs_cache = 0;
4949 if (npm == pmap_kernel())
4950 ci->ci_pmap_lastuser = NULL;
4951 #ifdef PMAP_CACHE_VIVT
4952 cpu_idcache_wbinv_all();
4953 #endif
4954 }
4955 #endif
4956
4957 /* No interrupts while we frob the TTB/DACR */
4958 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4959 #endif /* !ARM_MMU_EXTENDED */
4960
4961 #ifndef ARM_HAS_VBAR
4962 /*
4963 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4964 * entry corresponding to 'vector_page' in the incoming L1 table
4965 * before switching to it otherwise subsequent interrupts/exceptions
4966 * (including domain faults!) will jump into hyperspace.
4967 */
4968 if (npm->pm_pl1vec != NULL) {
4969 cpu_tlb_flushID_SE((u_int)vector_page);
4970 cpu_cpwait();
4971 *npm->pm_pl1vec = npm->pm_l1vec;
4972 PTE_SYNC(npm->pm_pl1vec);
4973 }
4974 #endif
4975
4976 #ifdef ARM_MMU_EXTENDED
4977 pmap_md_pdetab_activate(npm, l);
4978 #else
4979 cpu_domains(ndacr);
4980 if (npm == pmap_kernel() || npm == rpm) {
4981 /*
4982 * Switching to a kernel thread, or back to the
4983 * same user vmspace as before... Simply update
4984 * the TTB (no TLB flush required)
4985 */
4986 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4987 cpu_cpwait();
4988 } else {
4989 /*
4990 * Otherwise, update TTB and flush TLB
4991 */
4992 cpu_context_switch(npm->pm_l1->l1_physaddr);
4993 if (rpm != NULL)
4994 rpm->pm_cstate.cs_tlb = 0;
4995 }
4996
4997 restore_interrupts(oldirqstate);
4998 #endif /* ARM_MMU_EXTENDED */
4999
5000 block_userspace_access = 0;
5001
5002 #ifndef ARM_MMU_EXTENDED
5003 all_done:
5004 /*
5005 * The new pmap is resident. Make sure it's marked
5006 * as resident in the cache/TLB.
5007 */
5008 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5009 if (npm != pmap_kernel())
5010 ci->ci_pmap_lastuser = npm;
5011
5012 /* The old pmap is not longer active */
5013 if (opm != npm) {
5014 if (opm != NULL)
5015 opm->pm_activated = false;
5016
5017 /* But the new one is */
5018 npm->pm_activated = true;
5019 }
5020 ci->ci_pmap_cur = npm;
5021 #endif
5022 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5023 }
5024
5025 void
5026 pmap_deactivate(struct lwp *l)
5027 {
5028 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5029
5030 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5031
5032 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)pm,
5033 0, 0);
5034
5035 #ifdef ARM_MMU_EXTENDED
5036 pmap_md_pdetab_deactivate(pm);
5037 #else
5038 /*
5039 * If the process is exiting, make sure pmap_activate() does
5040 * a full MMU context-switch and cache flush, which we might
5041 * otherwise skip. See PR port-arm/38950.
5042 */
5043 if (l->l_proc->p_sflag & PS_WEXIT)
5044 curcpu()->ci_lastlwp = NULL;
5045
5046 pm->pm_activated = false;
5047 #endif
5048 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5049 }
5050
5051 void
5052 pmap_update(pmap_t pm)
5053 {
5054
5055 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5056
5057 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5058 pm->pm_remove_all, 0, 0);
5059
5060 #ifndef ARM_MMU_EXTENDED
5061 if (pm->pm_remove_all) {
5062 /*
5063 * Finish up the pmap_remove_all() optimisation by flushing
5064 * the TLB.
5065 */
5066 pmap_tlb_flushID(pm);
5067 pm->pm_remove_all = false;
5068 }
5069
5070 if (pmap_is_current(pm)) {
5071 /*
5072 * If we're dealing with a current userland pmap, move its L1
5073 * to the end of the LRU.
5074 */
5075 if (pm != pmap_kernel())
5076 pmap_use_l1(pm);
5077
5078 /*
5079 * We can assume we're done with frobbing the cache/tlb for
5080 * now. Make sure any future pmap ops don't skip cache/tlb
5081 * flushes.
5082 */
5083 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5084 }
5085 #else
5086
5087 kpreempt_disable();
5088 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5089 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5090 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5091 PMAP_COUNT(shootdown_ipis);
5092 }
5093 #endif
5094
5095 /*
5096 * If pmap_remove_all was called, we deactivated ourselves and released
5097 * our ASID. Now we have to reactivate ourselves.
5098 */
5099 if (__predict_false(pm->pm_remove_all)) {
5100 pm->pm_remove_all = false;
5101
5102 KASSERT(pm != pmap_kernel());
5103 pmap_md_pdetab_activate(pm, curlwp);
5104 }
5105
5106 if (arm_has_mpext_p)
5107 armreg_bpiallis_write(0);
5108 else
5109 armreg_bpiall_write(0);
5110
5111 kpreempt_enable();
5112
5113 KASSERTMSG(pm == pmap_kernel()
5114 || curcpu()->ci_pmap_cur != pm
5115 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5116 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5117 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5118 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5119 #endif
5120
5121 PMAPCOUNT(updates);
5122
5123 /*
5124 * make sure TLB/cache operations have completed.
5125 */
5126 cpu_cpwait();
5127 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5128 }
5129
5130 void
5131 pmap_remove_all(pmap_t pm)
5132 {
5133
5134 /*
5135 * The vmspace described by this pmap is about to be torn down.
5136 * Until pmap_update() is called, UVM will only make calls
5137 * to pmap_remove(). We can make life much simpler by flushing
5138 * the cache now, and deferring TLB invalidation to pmap_update().
5139 */
5140 #ifdef PMAP_CACHE_VIVT
5141 pmap_cache_wbinv_all(pm, PVF_EXEC);
5142 #endif
5143 #ifdef ARM_MMU_EXTENDED
5144 #ifdef MULTIPROCESSOR
5145 struct cpu_info * const ci = curcpu();
5146 // This should be the last CPU with this pmap onproc
5147 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5148 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5149 #endif
5150 pmap_tlb_asid_deactivate(pm);
5151 #ifdef MULTIPROCESSOR
5152 KASSERT(kcpuset_iszero(pm->pm_onproc));
5153 #endif
5154
5155 pmap_tlb_asid_release_all(pm);
5156 #endif
5157 pm->pm_remove_all = true;
5158 }
5159
5160 /*
5161 * Retire the given physical map from service.
5162 * Should only be called if the map contains no valid mappings.
5163 */
5164 void
5165 pmap_destroy(pmap_t pm)
5166 {
5167 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5168
5169 u_int count;
5170
5171 if (pm == NULL)
5172 return;
5173
5174 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5175 pm->pm_remove_all, 0, 0);
5176
5177 if (pm->pm_remove_all) {
5178 #ifdef ARM_MMU_EXTENDED
5179 pmap_tlb_asid_release_all(pm);
5180 #else
5181 pmap_tlb_flushID(pm);
5182 #endif
5183 pm->pm_remove_all = false;
5184 }
5185
5186 /*
5187 * Drop reference count
5188 */
5189 mutex_enter(pm->pm_lock);
5190 count = --pm->pm_obj.uo_refs;
5191 mutex_exit(pm->pm_lock);
5192 if (count > 0) {
5193 #ifndef ARM_MMU_EXTENDED
5194 if (pmap_is_current(pm)) {
5195 if (pm != pmap_kernel())
5196 pmap_use_l1(pm);
5197 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5198 }
5199 #endif
5200 return;
5201 }
5202
5203 /*
5204 * reference count is zero, free pmap resources and then free pmap.
5205 */
5206
5207 #ifndef ARM_HAS_VBAR
5208 if (vector_page < KERNEL_BASE) {
5209 KDASSERT(!pmap_is_current(pm));
5210
5211 /* Remove the vector page mapping */
5212 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5213 pmap_update(pm);
5214 }
5215 #endif
5216
5217 pmap_free_l1(pm);
5218
5219 #ifdef ARM_MMU_EXTENDED
5220 #ifdef MULTIPROCESSOR
5221 kcpuset_destroy(pm->pm_active);
5222 kcpuset_destroy(pm->pm_onproc);
5223 #endif
5224 #else
5225 struct cpu_info * const ci = curcpu();
5226 if (ci->ci_pmap_lastuser == pm)
5227 ci->ci_pmap_lastuser = NULL;
5228 #endif
5229
5230 uvm_obj_destroy(&pm->pm_obj, false);
5231 mutex_destroy(&pm->pm_obj_lock);
5232 pool_cache_put(&pmap_cache, pm);
5233 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5234 }
5235
5236
5237 /*
5238 * void pmap_reference(pmap_t pm)
5239 *
5240 * Add a reference to the specified pmap.
5241 */
5242 void
5243 pmap_reference(pmap_t pm)
5244 {
5245
5246 if (pm == NULL)
5247 return;
5248
5249 #ifndef ARM_MMU_EXTENDED
5250 pmap_use_l1(pm);
5251 #endif
5252
5253 mutex_enter(pm->pm_lock);
5254 pm->pm_obj.uo_refs++;
5255 mutex_exit(pm->pm_lock);
5256 }
5257
5258 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5259
5260 static struct evcnt pmap_prefer_nochange_ev =
5261 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5262 static struct evcnt pmap_prefer_change_ev =
5263 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5264
5265 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5266 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5267
5268 void
5269 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5270 {
5271 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5272 vaddr_t va = *vap;
5273 vaddr_t diff = (hint - va) & mask;
5274 if (diff == 0) {
5275 pmap_prefer_nochange_ev.ev_count++;
5276 } else {
5277 pmap_prefer_change_ev.ev_count++;
5278 if (__predict_false(td))
5279 va -= mask + 1;
5280 *vap = va + diff;
5281 }
5282 }
5283 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5284
5285 /*
5286 * pmap_zero_page()
5287 *
5288 * Zero a given physical page by mapping it at a page hook point.
5289 * In doing the zero page op, the page we zero is mapped cachable, as with
5290 * StrongARM accesses to non-cached pages are non-burst making writing
5291 * _any_ bulk data very slow.
5292 */
5293 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5294 void
5295 pmap_zero_page_generic(paddr_t pa)
5296 {
5297 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5298 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5299 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5300 #endif
5301 #if defined(PMAP_CACHE_VIPT)
5302 /* Choose the last page color it had, if any */
5303 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5304 #else
5305 const vsize_t va_offset = 0;
5306 #endif
5307 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5308 /*
5309 * Is this page mapped at its natural color?
5310 * If we have all of memory mapped, then just convert PA to VA.
5311 */
5312 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5313 || va_offset == (pa & arm_cache_prefer_mask);
5314 const vaddr_t vdstp = okcolor
5315 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5316 : cpu_cdstp(va_offset);
5317 #else
5318 const bool okcolor = false;
5319 const vaddr_t vdstp = cpu_cdstp(va_offset);
5320 #endif
5321 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5322
5323
5324 #ifdef DEBUG
5325 if (!SLIST_EMPTY(&md->pvh_list))
5326 panic("pmap_zero_page: page has mappings");
5327 #endif
5328
5329 KDASSERT((pa & PGOFSET) == 0);
5330
5331 if (!okcolor) {
5332 /*
5333 * Hook in the page, zero it, and purge the cache for that
5334 * zeroed page. Invalidate the TLB as needed.
5335 */
5336 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5337 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5338 l2pte_set(ptep, npte, 0);
5339 PTE_SYNC(ptep);
5340 cpu_tlb_flushD_SE(vdstp);
5341 cpu_cpwait();
5342 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5343 && !defined(ARM_MMU_EXTENDED)
5344 /*
5345 * If we are direct-mapped and our color isn't ok, then before
5346 * we bzero the page invalidate its contents from the cache and
5347 * reset the color to its natural color.
5348 */
5349 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5350 md->pvh_attrs &= ~arm_cache_prefer_mask;
5351 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5352 #endif
5353 }
5354 bzero_page(vdstp);
5355 if (!okcolor) {
5356 /*
5357 * Unmap the page.
5358 */
5359 l2pte_reset(ptep);
5360 PTE_SYNC(ptep);
5361 cpu_tlb_flushD_SE(vdstp);
5362 #ifdef PMAP_CACHE_VIVT
5363 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5364 #endif
5365 }
5366 #ifdef PMAP_CACHE_VIPT
5367 /*
5368 * This page is now cache resident so it now has a page color.
5369 * Any contents have been obliterated so clear the EXEC flag.
5370 */
5371 #ifndef ARM_MMU_EXTENDED
5372 if (!pmap_is_page_colored_p(md)) {
5373 PMAPCOUNT(vac_color_new);
5374 md->pvh_attrs |= PVF_COLORED;
5375 }
5376 md->pvh_attrs |= PVF_DIRTY;
5377 #endif
5378 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5379 md->pvh_attrs &= ~PVF_EXEC;
5380 PMAPCOUNT(exec_discarded_zero);
5381 }
5382 #endif
5383 }
5384 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5385
5386 #if ARM_MMU_XSCALE == 1
5387 void
5388 pmap_zero_page_xscale(paddr_t pa)
5389 {
5390 #ifdef DEBUG
5391 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5392 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5393
5394 if (!SLIST_EMPTY(&md->pvh_list))
5395 panic("pmap_zero_page: page has mappings");
5396 #endif
5397
5398 KDASSERT((pa & PGOFSET) == 0);
5399
5400 /*
5401 * Hook in the page, zero it, and purge the cache for that
5402 * zeroed page. Invalidate the TLB as needed.
5403 */
5404
5405 pt_entry_t npte = L2_S_PROTO | pa |
5406 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5407 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5408 l2pte_set(cdst_pte, npte, 0);
5409 PTE_SYNC(cdst_pte);
5410 cpu_tlb_flushD_SE(cdstp);
5411 cpu_cpwait();
5412 bzero_page(cdstp);
5413 xscale_cache_clean_minidata();
5414 l2pte_reset(cdst_pte);
5415 PTE_SYNC(cdst_pte);
5416 }
5417 #endif /* ARM_MMU_XSCALE == 1 */
5418
5419 /* pmap_pageidlezero()
5420 *
5421 * The same as above, except that we assume that the page is not
5422 * mapped. This means we never have to flush the cache first. Called
5423 * from the idle loop.
5424 */
5425 bool
5426 pmap_pageidlezero(paddr_t pa)
5427 {
5428 bool rv = true;
5429 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5430 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5431 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5432 #endif
5433 #ifdef PMAP_CACHE_VIPT
5434 /* Choose the last page color it had, if any */
5435 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5436 #else
5437 const vsize_t va_offset = 0;
5438 #endif
5439 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5440 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5441 || va_offset == (pa & arm_cache_prefer_mask);
5442 const vaddr_t vdstp = okcolor
5443 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5444 : cpu_cdstp(va_offset);
5445 #else
5446 const bool okcolor = false;
5447 const vaddr_t vdstp = cpu_cdstp(va_offset);
5448 #endif
5449 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5450
5451
5452 #ifdef DEBUG
5453 if (!SLIST_EMPTY(&md->pvh_list))
5454 panic("pmap_pageidlezero: page has mappings");
5455 #endif
5456
5457 KDASSERT((pa & PGOFSET) == 0);
5458
5459 if (!okcolor) {
5460 /*
5461 * Hook in the page, zero it, and purge the cache for that
5462 * zeroed page. Invalidate the TLB as needed.
5463 */
5464 const pt_entry_t npte = L2_S_PROTO | pa |
5465 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5466 l2pte_set(ptep, npte, 0);
5467 PTE_SYNC(ptep);
5468 cpu_tlb_flushD_SE(vdstp);
5469 cpu_cpwait();
5470 }
5471
5472 uint64_t *ptr = (uint64_t *)vdstp;
5473 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5474 if (sched_curcpu_runnable_p() != 0) {
5475 /*
5476 * A process has become ready. Abort now,
5477 * so we don't keep it waiting while we
5478 * do slow memory access to finish this
5479 * page.
5480 */
5481 rv = false;
5482 break;
5483 }
5484 *ptr++ = 0;
5485 }
5486
5487 #ifdef PMAP_CACHE_VIVT
5488 if (rv)
5489 /*
5490 * if we aborted we'll rezero this page again later so don't
5491 * purge it unless we finished it
5492 */
5493 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5494 #elif defined(PMAP_CACHE_VIPT)
5495 /*
5496 * This page is now cache resident so it now has a page color.
5497 * Any contents have been obliterated so clear the EXEC flag.
5498 */
5499 #ifndef ARM_MMU_EXTENDED
5500 if (!pmap_is_page_colored_p(md)) {
5501 PMAPCOUNT(vac_color_new);
5502 md->pvh_attrs |= PVF_COLORED;
5503 }
5504 #endif
5505 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5506 md->pvh_attrs &= ~PVF_EXEC;
5507 PMAPCOUNT(exec_discarded_zero);
5508 }
5509 #endif
5510 /*
5511 * Unmap the page.
5512 */
5513 if (!okcolor) {
5514 l2pte_reset(ptep);
5515 PTE_SYNC(ptep);
5516 cpu_tlb_flushD_SE(vdstp);
5517 }
5518
5519 return rv;
5520 }
5521
5522 /*
5523 * pmap_copy_page()
5524 *
5525 * Copy one physical page into another, by mapping the pages into
5526 * hook points. The same comment regarding cachability as in
5527 * pmap_zero_page also applies here.
5528 */
5529 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5530 void
5531 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5532 {
5533 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5534 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5535 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5536 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5537 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5538 #endif
5539 #ifdef PMAP_CACHE_VIPT
5540 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5541 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5542 #else
5543 const vsize_t src_va_offset = 0;
5544 const vsize_t dst_va_offset = 0;
5545 #endif
5546 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5547 /*
5548 * Is this page mapped at its natural color?
5549 * If we have all of memory mapped, then just convert PA to VA.
5550 */
5551 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5552 || src_va_offset == (src & arm_cache_prefer_mask);
5553 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5554 || dst_va_offset == (dst & arm_cache_prefer_mask);
5555 const vaddr_t vsrcp = src_okcolor
5556 ? pmap_direct_mapped_phys(src, &src_okcolor,
5557 cpu_csrcp(src_va_offset))
5558 : cpu_csrcp(src_va_offset);
5559 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5560 cpu_cdstp(dst_va_offset));
5561 #else
5562 const bool src_okcolor = false;
5563 const bool dst_okcolor = false;
5564 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5565 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5566 #endif
5567 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5568 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5569
5570 #ifdef DEBUG
5571 if (!SLIST_EMPTY(&dst_md->pvh_list))
5572 panic("pmap_copy_page: dst page has mappings");
5573 #endif
5574
5575 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5576 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5577 #endif
5578 KDASSERT((src & PGOFSET) == 0);
5579 KDASSERT((dst & PGOFSET) == 0);
5580
5581 /*
5582 * Clean the source page. Hold the source page's lock for
5583 * the duration of the copy so that no other mappings can
5584 * be created while we have a potentially aliased mapping.
5585 */
5586 #ifdef PMAP_CACHE_VIVT
5587 pmap_acquire_page_lock(src_md);
5588 (void) pmap_clean_page(src_md, true);
5589 pmap_release_page_lock(src_md);
5590 #endif
5591
5592 /*
5593 * Map the pages into the page hook points, copy them, and purge
5594 * the cache for the appropriate page. Invalidate the TLB
5595 * as required.
5596 */
5597 if (!src_okcolor) {
5598 const pt_entry_t nsrc_pte = L2_S_PROTO
5599 | src
5600 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5601 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5602 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5603 | pte_l2_s_cache_mode
5604 #endif
5605 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5606 l2pte_set(src_ptep, nsrc_pte, 0);
5607 PTE_SYNC(src_ptep);
5608 cpu_tlb_flushD_SE(vsrcp);
5609 cpu_cpwait();
5610 }
5611 if (!dst_okcolor) {
5612 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5613 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5614 l2pte_set(dst_ptep, ndst_pte, 0);
5615 PTE_SYNC(dst_ptep);
5616 cpu_tlb_flushD_SE(vdstp);
5617 cpu_cpwait();
5618 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5619 /*
5620 * If we are direct-mapped and our color isn't ok, then before
5621 * we bcopy to the new page invalidate its contents from the
5622 * cache and reset its color to its natural color.
5623 */
5624 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5625 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5626 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5627 #endif
5628 }
5629 bcopy_page(vsrcp, vdstp);
5630 #ifdef PMAP_CACHE_VIVT
5631 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5632 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5633 #endif
5634 /*
5635 * Unmap the pages.
5636 */
5637 if (!src_okcolor) {
5638 l2pte_reset(src_ptep);
5639 PTE_SYNC(src_ptep);
5640 cpu_tlb_flushD_SE(vsrcp);
5641 cpu_cpwait();
5642 }
5643 if (!dst_okcolor) {
5644 l2pte_reset(dst_ptep);
5645 PTE_SYNC(dst_ptep);
5646 cpu_tlb_flushD_SE(vdstp);
5647 cpu_cpwait();
5648 }
5649 #ifdef PMAP_CACHE_VIPT
5650 /*
5651 * Now that the destination page is in the cache, mark it as colored.
5652 * If this was an exec page, discard it.
5653 */
5654 pmap_acquire_page_lock(dst_md);
5655 #ifndef ARM_MMU_EXTENDED
5656 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5657 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5658 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5659 }
5660 if (!pmap_is_page_colored_p(dst_md)) {
5661 PMAPCOUNT(vac_color_new);
5662 dst_md->pvh_attrs |= PVF_COLORED;
5663 }
5664 dst_md->pvh_attrs |= PVF_DIRTY;
5665 #endif
5666 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5667 dst_md->pvh_attrs &= ~PVF_EXEC;
5668 PMAPCOUNT(exec_discarded_copy);
5669 }
5670 pmap_release_page_lock(dst_md);
5671 #endif
5672 }
5673 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5674
5675 #if ARM_MMU_XSCALE == 1
5676 void
5677 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5678 {
5679 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5680 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5681 #ifdef DEBUG
5682 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5683
5684 if (!SLIST_EMPTY(&dst_md->pvh_list))
5685 panic("pmap_copy_page: dst page has mappings");
5686 #endif
5687
5688 KDASSERT((src & PGOFSET) == 0);
5689 KDASSERT((dst & PGOFSET) == 0);
5690
5691 /*
5692 * Clean the source page. Hold the source page's lock for
5693 * the duration of the copy so that no other mappings can
5694 * be created while we have a potentially aliased mapping.
5695 */
5696 #ifdef PMAP_CACHE_VIVT
5697 pmap_acquire_page_lock(src_md);
5698 (void) pmap_clean_page(src_md, true);
5699 pmap_release_page_lock(src_md);
5700 #endif
5701
5702 /*
5703 * Map the pages into the page hook points, copy them, and purge
5704 * the cache for the appropriate page. Invalidate the TLB
5705 * as required.
5706 */
5707 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5708 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5709 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5710 l2pte_set(csrc_pte, nsrc_pte, 0);
5711 PTE_SYNC(csrc_pte);
5712
5713 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5714 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5715 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5716 l2pte_set(cdst_pte, ndst_pte, 0);
5717 PTE_SYNC(cdst_pte);
5718
5719 cpu_tlb_flushD_SE(csrcp);
5720 cpu_tlb_flushD_SE(cdstp);
5721 cpu_cpwait();
5722 bcopy_page(csrcp, cdstp);
5723 xscale_cache_clean_minidata();
5724 l2pte_reset(csrc_pte);
5725 l2pte_reset(cdst_pte);
5726 PTE_SYNC(csrc_pte);
5727 PTE_SYNC(cdst_pte);
5728 }
5729 #endif /* ARM_MMU_XSCALE == 1 */
5730
5731 /*
5732 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5733 *
5734 * Return the start and end addresses of the kernel's virtual space.
5735 * These values are setup in pmap_bootstrap and are updated as pages
5736 * are allocated.
5737 */
5738 void
5739 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5740 {
5741 *start = virtual_avail;
5742 *end = virtual_end;
5743 }
5744
5745 /*
5746 * Helper function for pmap_grow_l2_bucket()
5747 */
5748 static inline int
5749 pmap_grow_map(vaddr_t va, paddr_t *pap)
5750 {
5751 paddr_t pa;
5752
5753 if (uvm.page_init_done == false) {
5754 #ifdef PMAP_STEAL_MEMORY
5755 pv_addr_t pv;
5756 pmap_boot_pagealloc(PAGE_SIZE,
5757 #ifdef PMAP_CACHE_VIPT
5758 arm_cache_prefer_mask,
5759 va & arm_cache_prefer_mask,
5760 #else
5761 0, 0,
5762 #endif
5763 &pv);
5764 pa = pv.pv_pa;
5765 #else
5766 if (uvm_page_physget(&pa) == false)
5767 return (1);
5768 #endif /* PMAP_STEAL_MEMORY */
5769 } else {
5770 struct vm_page *pg;
5771 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5772 if (pg == NULL)
5773 return (1);
5774 pa = VM_PAGE_TO_PHYS(pg);
5775 /*
5776 * This new page must not have any mappings. Enter it via
5777 * pmap_kenter_pa and let that routine do the hard work.
5778 */
5779 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5780 KASSERT(SLIST_EMPTY(&md->pvh_list));
5781 pmap_kenter_pa(va, pa,
5782 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5783 }
5784
5785 if (pap)
5786 *pap = pa;
5787
5788 PMAPCOUNT(pt_mappings);
5789 #ifdef DEBUG
5790 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5791 KDASSERT(l2b != NULL);
5792
5793 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5794 const pt_entry_t opte = *ptep;
5795 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5796 #endif
5797 memset((void *)va, 0, PAGE_SIZE);
5798 return (0);
5799 }
5800
5801 /*
5802 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5803 * used by pmap_growkernel().
5804 */
5805 static inline struct l2_bucket *
5806 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5807 {
5808 struct l2_dtable *l2;
5809 struct l2_bucket *l2b;
5810 u_short l1slot;
5811 vaddr_t nva;
5812
5813 l1slot = l1pte_index(va);
5814
5815 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5816 /*
5817 * No mapping at this address, as there is
5818 * no entry in the L1 table.
5819 * Need to allocate a new l2_dtable.
5820 */
5821 nva = pmap_kernel_l2dtable_kva;
5822 if ((nva & PGOFSET) == 0) {
5823 /*
5824 * Need to allocate a backing page
5825 */
5826 if (pmap_grow_map(nva, NULL))
5827 return (NULL);
5828 }
5829
5830 l2 = (struct l2_dtable *)nva;
5831 nva += sizeof(struct l2_dtable);
5832
5833 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5834 /*
5835 * The new l2_dtable straddles a page boundary.
5836 * Map in another page to cover it.
5837 */
5838 if (pmap_grow_map(nva, NULL))
5839 return (NULL);
5840 }
5841
5842 pmap_kernel_l2dtable_kva = nva;
5843
5844 /*
5845 * Link it into the parent pmap
5846 */
5847 pm->pm_l2[L2_IDX(l1slot)] = l2;
5848 }
5849
5850 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5851
5852 /*
5853 * Fetch pointer to the L2 page table associated with the address.
5854 */
5855 if (l2b->l2b_kva == NULL) {
5856 pt_entry_t *ptep;
5857
5858 /*
5859 * No L2 page table has been allocated. Chances are, this
5860 * is because we just allocated the l2_dtable, above.
5861 */
5862 nva = pmap_kernel_l2ptp_kva;
5863 ptep = (pt_entry_t *)nva;
5864 if ((nva & PGOFSET) == 0) {
5865 /*
5866 * Need to allocate a backing page
5867 */
5868 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5869 return (NULL);
5870 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5871 }
5872
5873 l2->l2_occupancy++;
5874 l2b->l2b_kva = ptep;
5875 l2b->l2b_l1slot = l1slot;
5876 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5877
5878 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5879 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5880 }
5881
5882 return (l2b);
5883 }
5884
5885 vaddr_t
5886 pmap_growkernel(vaddr_t maxkvaddr)
5887 {
5888 pmap_t kpm = pmap_kernel();
5889 #ifndef ARM_MMU_EXTENDED
5890 struct l1_ttable *l1;
5891 #endif
5892 int s;
5893
5894 if (maxkvaddr <= pmap_curmaxkvaddr)
5895 goto out; /* we are OK */
5896
5897 NPDEBUG(PDB_GROWKERN,
5898 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5899 pmap_curmaxkvaddr, maxkvaddr));
5900
5901 KDASSERT(maxkvaddr <= virtual_end);
5902
5903 /*
5904 * whoops! we need to add kernel PTPs
5905 */
5906
5907 s = splhigh(); /* to be safe */
5908 mutex_enter(kpm->pm_lock);
5909
5910 /* Map 1MB at a time */
5911 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5912 #ifdef ARM_MMU_EXTENDED
5913 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5914 pd_entry_t *pdep = spdep;
5915 #endif
5916 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5917 #ifdef ARM_MMU_EXTENDED
5918 pdep++,
5919 #endif
5920 l1slot++) {
5921 struct l2_bucket *l2b =
5922 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5923 KASSERT(l2b != NULL);
5924
5925 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5926 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5927 #ifdef ARM_MMU_EXTENDED
5928 l1pte_setone(pdep, npde);
5929 #else
5930 /* Distribute new L1 entry to all other L1s */
5931 SLIST_FOREACH(l1, &l1_list, l1_link) {
5932 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5933 l1pte_setone(pdep, npde);
5934 PDE_SYNC(pdep);
5935 }
5936 #endif
5937 }
5938 #ifdef ARM_MMU_EXTENDED
5939 PDE_SYNC_RANGE(spdep, pdep - spdep);
5940 #endif
5941
5942 #ifdef PMAP_CACHE_VIVT
5943 /*
5944 * flush out the cache, expensive but growkernel will happen so
5945 * rarely
5946 */
5947 cpu_dcache_wbinv_all();
5948 cpu_tlb_flushD();
5949 cpu_cpwait();
5950 #endif
5951
5952 mutex_exit(kpm->pm_lock);
5953 splx(s);
5954
5955 out:
5956 return (pmap_curmaxkvaddr);
5957 }
5958
5959 /************************ Utility routines ****************************/
5960
5961 #ifndef ARM_HAS_VBAR
5962 /*
5963 * vector_page_setprot:
5964 *
5965 * Manipulate the protection of the vector page.
5966 */
5967 void
5968 vector_page_setprot(int prot)
5969 {
5970 struct l2_bucket *l2b;
5971 pt_entry_t *ptep;
5972
5973 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5974 /*
5975 * If we are using VBAR to use the vectors in the kernel, then it's
5976 * already mapped in the kernel text so no need to anything here.
5977 */
5978 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5979 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5980 return;
5981 }
5982 #endif
5983
5984 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5985 KASSERT(l2b != NULL);
5986
5987 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5988
5989 const pt_entry_t opte = *ptep;
5990 #ifdef ARM_MMU_EXTENDED
5991 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
5992 | L2_S_PROT(PTE_KERNEL, prot);
5993 #else
5994 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
5995 | L2_S_PROT(PTE_KERNEL, prot);
5996 #endif
5997 l2pte_set(ptep, npte, opte);
5998 PTE_SYNC(ptep);
5999 cpu_tlb_flushD_SE(vector_page);
6000 cpu_cpwait();
6001 }
6002 #endif
6003
6004 /*
6005 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6006 * Returns true if the mapping exists, else false.
6007 *
6008 * NOTE: This function is only used by a couple of arm-specific modules.
6009 * It is not safe to take any pmap locks here, since we could be right
6010 * in the middle of debugging the pmap anyway...
6011 *
6012 * It is possible for this routine to return false even though a valid
6013 * mapping does exist. This is because we don't lock, so the metadata
6014 * state may be inconsistent.
6015 *
6016 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6017 * a "section" mapping.
6018 */
6019 bool
6020 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6021 {
6022 struct l2_dtable *l2;
6023 pd_entry_t *pdep, pde;
6024 pt_entry_t *ptep;
6025 u_short l1slot;
6026
6027 if (pm->pm_l1 == NULL)
6028 return false;
6029
6030 l1slot = l1pte_index(va);
6031 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6032 pde = *pdep;
6033
6034 if (l1pte_section_p(pde)) {
6035 *ptp = NULL;
6036 return true;
6037 }
6038
6039 l2 = pm->pm_l2[L2_IDX(l1slot)];
6040 if (l2 == NULL ||
6041 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6042 return false;
6043 }
6044
6045 *ptp = &ptep[l2pte_index(va)];
6046 return true;
6047 }
6048
6049 bool
6050 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6051 {
6052
6053 if (pm->pm_l1 == NULL)
6054 return false;
6055
6056 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6057
6058 return true;
6059 }
6060
6061 /************************ Bootstrapping routines ****************************/
6062
6063 #ifndef ARM_MMU_EXTENDED
6064 static void
6065 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6066 {
6067 int i;
6068
6069 l1->l1_kva = l1pt;
6070 l1->l1_domain_use_count = 0;
6071 l1->l1_domain_first = 0;
6072
6073 for (i = 0; i < PMAP_DOMAINS; i++)
6074 l1->l1_domain_free[i] = i + 1;
6075
6076 /*
6077 * Copy the kernel's L1 entries to each new L1.
6078 */
6079 if (pmap_initialized)
6080 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6081
6082 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6083 &l1->l1_physaddr) == false)
6084 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6085
6086 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6087 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6088 }
6089 #endif /* !ARM_MMU_EXTENDED */
6090
6091 /*
6092 * pmap_bootstrap() is called from the board-specific initarm() routine
6093 * once the kernel L1/L2 descriptors tables have been set up.
6094 *
6095 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6096 * spread over a number of disparate files/functions.
6097 *
6098 * We are passed the following parameters
6099 * - kernel_l1pt
6100 * This is a pointer to the base of the kernel's L1 translation table.
6101 * - vstart
6102 * 1MB-aligned start of managed kernel virtual memory.
6103 * - vend
6104 * 1MB-aligned end of managed kernel virtual memory.
6105 *
6106 * We use the first parameter to build the metadata (struct l1_ttable and
6107 * struct l2_dtable) necessary to track kernel mappings.
6108 */
6109 #define PMAP_STATIC_L2_SIZE 16
6110 void
6111 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6112 {
6113 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6114 #ifndef ARM_MMU_EXTENDED
6115 static struct l1_ttable static_l1;
6116 struct l1_ttable *l1 = &static_l1;
6117 #endif
6118 struct l2_dtable *l2;
6119 struct l2_bucket *l2b;
6120 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6121 pmap_t pm = pmap_kernel();
6122 pt_entry_t *ptep;
6123 paddr_t pa;
6124 vsize_t size;
6125 int nptes, l2idx, l2next = 0;
6126
6127 #ifdef ARM_MMU_EXTENDED
6128 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6129 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6130 #endif
6131
6132 VPRINTF("kpm ");
6133 /*
6134 * Initialise the kernel pmap object
6135 */
6136 curcpu()->ci_pmap_cur = pm;
6137 #ifdef ARM_MMU_EXTENDED
6138 pm->pm_l1 = l1pt;
6139 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6140 VPRINTF("tlb0 ");
6141 pmap_tlb_info_init(&pmap_tlb0_info);
6142 #ifdef MULTIPROCESSOR
6143 VPRINTF("kcpusets ");
6144 pm->pm_onproc = kcpuset_running;
6145 pm->pm_active = kcpuset_running;
6146 #endif
6147 #else
6148 pm->pm_l1 = l1;
6149 #endif
6150
6151 VPRINTF("locks ");
6152 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6153 if (arm_cache_prefer_mask != 0) {
6154 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6155 } else {
6156 #endif
6157 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
6158 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
6159 }
6160 #endif
6161 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
6162 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
6163 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
6164
6165 VPRINTF("l1pt ");
6166 /*
6167 * Scan the L1 translation table created by initarm() and create
6168 * the required metadata for all valid mappings found in it.
6169 */
6170 for (size_t l1slot = 0;
6171 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6172 l1slot++) {
6173 pd_entry_t pde = l1pt[l1slot];
6174
6175 /*
6176 * We're only interested in Coarse mappings.
6177 * pmap_extract() can deal with section mappings without
6178 * recourse to checking L2 metadata.
6179 */
6180 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6181 continue;
6182
6183 /*
6184 * Lookup the KVA of this L2 descriptor table
6185 */
6186 pa = l1pte_pa(pde);
6187 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6188 if (ptep == NULL) {
6189 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6190 (u_int)l1slot << L1_S_SHIFT, pa);
6191 }
6192
6193 /*
6194 * Fetch the associated L2 metadata structure.
6195 * Allocate a new one if necessary.
6196 */
6197 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6198 if (l2next == PMAP_STATIC_L2_SIZE)
6199 panic("pmap_bootstrap: out of static L2s");
6200 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6201 }
6202
6203 /*
6204 * One more L1 slot tracked...
6205 */
6206 l2->l2_occupancy++;
6207
6208 /*
6209 * Fill in the details of the L2 descriptor in the
6210 * appropriate bucket.
6211 */
6212 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6213 l2b->l2b_kva = ptep;
6214 l2b->l2b_pa = pa;
6215 l2b->l2b_l1slot = l1slot;
6216
6217 /*
6218 * Establish an initial occupancy count for this descriptor
6219 */
6220 for (l2idx = 0;
6221 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6222 l2idx++) {
6223 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6224 l2b->l2b_occupancy++;
6225 }
6226 }
6227
6228 /*
6229 * Make sure the descriptor itself has the correct cache mode.
6230 * If not, fix it, but whine about the problem. Port-meisters
6231 * should consider this a clue to fix up their initarm()
6232 * function. :)
6233 */
6234 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6235 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6236 "L2 pte @ %p\n", ptep);
6237 }
6238 }
6239
6240 VPRINTF("cache(l1pt) ");
6241 /*
6242 * Ensure the primary (kernel) L1 has the correct cache mode for
6243 * a page table. Bitch if it is not correctly set.
6244 */
6245 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6246 L1_TABLE_SIZE / L2_S_SIZE)) {
6247 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6248 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6249 }
6250
6251 #ifdef PMAP_CACHE_VIVT
6252 cpu_dcache_wbinv_all();
6253 cpu_tlb_flushID();
6254 cpu_cpwait();
6255 #endif
6256
6257 /*
6258 * now we allocate the "special" VAs which are used for tmp mappings
6259 * by the pmap (and other modules). we allocate the VAs by advancing
6260 * virtual_avail (note that there are no pages mapped at these VAs).
6261 *
6262 * Managed KVM space start from wherever initarm() tells us.
6263 */
6264 virtual_avail = vstart;
6265 virtual_end = vend;
6266
6267 VPRINTF("specials ");
6268 #ifdef PMAP_CACHE_VIPT
6269 /*
6270 * If we have a VIPT cache, we need one page/pte per possible alias
6271 * page so we won't violate cache aliasing rules.
6272 */
6273 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6274 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6275 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6276 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6277 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6278 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6279 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6280 }
6281 #else
6282 nptes = PAGE_SIZE / L2_S_SIZE;
6283 #endif
6284 #ifdef MULTIPROCESSOR
6285 cnptes = nptes;
6286 nptes *= arm_cpu_max;
6287 #endif
6288 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6289 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6290 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6291 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6292 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6293 if (msgbufaddr == NULL) {
6294 pmap_alloc_specials(&virtual_avail,
6295 round_page(MSGBUFSIZE) / PAGE_SIZE,
6296 (void *)&msgbufaddr, NULL);
6297 }
6298
6299 /*
6300 * Allocate a range of kernel virtual address space to be used
6301 * for L2 descriptor tables and metadata allocation in
6302 * pmap_growkernel().
6303 */
6304 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6305 pmap_alloc_specials(&virtual_avail,
6306 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6307 &pmap_kernel_l2ptp_kva, NULL);
6308
6309 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6310 pmap_alloc_specials(&virtual_avail,
6311 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6312 &pmap_kernel_l2dtable_kva, NULL);
6313
6314 #ifndef ARM_MMU_EXTENDED
6315 /*
6316 * init the static-global locks and global pmap list.
6317 */
6318 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6319
6320 /*
6321 * We can now initialise the first L1's metadata.
6322 */
6323 SLIST_INIT(&l1_list);
6324 TAILQ_INIT(&l1_lru_list);
6325 pmap_init_l1(l1, l1pt);
6326 #endif /* ARM_MMU_EXTENDED */
6327
6328 #ifndef ARM_HAS_VBAR
6329 /* Set up vector page L1 details, if necessary */
6330 if (vector_page < KERNEL_BASE) {
6331 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6332 l2b = pmap_get_l2_bucket(pm, vector_page);
6333 KDASSERT(l2b != NULL);
6334 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6335 L1_C_DOM(pmap_domain(pm));
6336 } else
6337 pm->pm_pl1vec = NULL;
6338 #endif
6339
6340 VPRINTF("pools ");
6341 /*
6342 * Initialize the pmap cache
6343 */
6344 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6345 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6346
6347 /*
6348 * Initialize the pv pool.
6349 */
6350 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6351 &pmap_bootstrap_pv_allocator, IPL_NONE);
6352
6353 /*
6354 * Initialize the L2 dtable pool and cache.
6355 */
6356 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6357 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6358
6359 /*
6360 * Initialise the L2 descriptor table pool and cache
6361 */
6362 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
6363 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
6364 pmap_l2ptp_ctor, NULL, NULL);
6365
6366 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6367
6368 cpu_dcache_wbinv_all();
6369 }
6370
6371 static bool
6372 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6373 {
6374 #ifdef ARM_MMU_EXTENDED
6375 return false;
6376 #else
6377 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6378 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6379 return false;
6380
6381 const vaddr_t eva = va + nptes * PAGE_SIZE;
6382 int rv = 0;
6383
6384 while (va < eva) {
6385 /*
6386 * Make sure the descriptor itself has the correct cache mode
6387 */
6388 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6389 pd_entry_t pde = *pdep;
6390
6391 if (l1pte_section_p(pde)) {
6392 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6393 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6394 *pdep = (pde & ~L1_S_CACHE_MASK) |
6395 pte_l1_s_cache_mode_pt;
6396 PDE_SYNC(pdep);
6397 cpu_dcache_wbinv_range((vaddr_t)pdep,
6398 sizeof(*pdep));
6399 rv = 1;
6400 }
6401 return rv;
6402 }
6403 vaddr_t pa = l1pte_pa(pde);
6404 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6405 if (ptep == NULL)
6406 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6407
6408 ptep += l2pte_index(va);
6409 const pt_entry_t opte = *ptep;
6410 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6411 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6412 | pte_l2_s_cache_mode_pt;
6413 l2pte_set(ptep, npte, opte);
6414 PTE_SYNC(ptep);
6415 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6416 rv = 1;
6417 }
6418 va += PAGE_SIZE;
6419 }
6420
6421 return (rv);
6422 #endif
6423 }
6424
6425 static void
6426 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6427 {
6428 vaddr_t va = *availp;
6429 struct l2_bucket *l2b;
6430
6431 if (ptep) {
6432 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6433 if (l2b == NULL)
6434 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6435
6436 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6437 }
6438
6439 *vap = va;
6440 *availp = va + (PAGE_SIZE * pages);
6441 }
6442
6443 void
6444 pmap_init(void)
6445 {
6446
6447 /*
6448 * Set the available memory vars - These do not map to real memory
6449 * addresses and cannot as the physical memory is fragmented.
6450 * They are used by ps for %mem calculations.
6451 * One could argue whether this should be the entire memory or just
6452 * the memory that is useable in a user process.
6453 */
6454 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6455 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6456
6457 /*
6458 * Now we need to free enough pv_entry structures to allow us to get
6459 * the kmem_map/kmem_object allocated and inited (done after this
6460 * function is finished). to do this we allocate one bootstrap page out
6461 * of kernel_map and use it to provide an initial pool of pv_entry
6462 * structures. we never free this page.
6463 */
6464 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6465
6466 #ifdef ARM_MMU_EXTENDED
6467 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6468 #endif
6469
6470 pmap_initialized = true;
6471 }
6472
6473 static vaddr_t last_bootstrap_page = 0;
6474 static void *free_bootstrap_pages = NULL;
6475
6476 static void *
6477 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6478 {
6479 extern void *pool_page_alloc(struct pool *, int);
6480 vaddr_t new_page;
6481 void *rv;
6482
6483 if (pmap_initialized)
6484 return (pool_page_alloc(pp, flags));
6485
6486 if (free_bootstrap_pages) {
6487 rv = free_bootstrap_pages;
6488 free_bootstrap_pages = *((void **)rv);
6489 return (rv);
6490 }
6491
6492 KASSERT(kernel_map != NULL);
6493 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6494 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6495
6496 KASSERT(new_page > last_bootstrap_page);
6497 last_bootstrap_page = new_page;
6498 return ((void *)new_page);
6499 }
6500
6501 static void
6502 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6503 {
6504 extern void pool_page_free(struct pool *, void *);
6505
6506 if ((vaddr_t)v <= last_bootstrap_page) {
6507 *((void **)v) = free_bootstrap_pages;
6508 free_bootstrap_pages = v;
6509 return;
6510 }
6511
6512 if (pmap_initialized) {
6513 pool_page_free(pp, v);
6514 return;
6515 }
6516 }
6517
6518 /*
6519 * pmap_postinit()
6520 *
6521 * This routine is called after the vm and kmem subsystems have been
6522 * initialised. This allows the pmap code to perform any initialisation
6523 * that can only be done once the memory allocation is in place.
6524 */
6525 void
6526 pmap_postinit(void)
6527 {
6528 #ifndef ARM_MMU_EXTENDED
6529 extern paddr_t physical_start, physical_end;
6530 struct l1_ttable *l1;
6531 struct pglist plist;
6532 struct vm_page *m;
6533 pd_entry_t *pdep;
6534 vaddr_t va, eva;
6535 u_int loop, needed;
6536 int error;
6537 #endif
6538
6539 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6540 pool_cache_setlowat(&pmap_l2dtable_cache,
6541 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6542
6543 #ifndef ARM_MMU_EXTENDED
6544 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6545 needed -= 1;
6546
6547 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6548
6549 for (loop = 0; loop < needed; loop++, l1++) {
6550 /* Allocate a L1 page table */
6551 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6552 if (va == 0)
6553 panic("Cannot allocate L1 KVM");
6554
6555 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6556 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6557 if (error)
6558 panic("Cannot allocate L1 physical pages");
6559
6560 m = TAILQ_FIRST(&plist);
6561 eva = va + L1_TABLE_SIZE;
6562 pdep = (pd_entry_t *)va;
6563
6564 while (m && va < eva) {
6565 paddr_t pa = VM_PAGE_TO_PHYS(m);
6566
6567 pmap_kenter_pa(va, pa,
6568 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6569
6570 va += PAGE_SIZE;
6571 m = TAILQ_NEXT(m, pageq.queue);
6572 }
6573
6574 #ifdef DIAGNOSTIC
6575 if (m)
6576 panic("pmap_alloc_l1pt: pglist not empty");
6577 #endif /* DIAGNOSTIC */
6578
6579 pmap_init_l1(l1, pdep);
6580 }
6581
6582 #ifdef DEBUG
6583 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6584 needed);
6585 #endif
6586 #endif /* !ARM_MMU_EXTENDED */
6587 }
6588
6589 /*
6590 * Note that the following routines are used by board-specific initialisation
6591 * code to configure the initial kernel page tables.
6592 *
6593 */
6594
6595 /*
6596 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6597 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6598 * find them as necessary.
6599 *
6600 * Note that the data on this list MUST remain valid after initarm() returns,
6601 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6602 */
6603 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6604
6605 static vaddr_t
6606 kernel_pt_lookup(paddr_t pa)
6607 {
6608 pv_addr_t *pv;
6609
6610 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6611 if (pv->pv_pa == (pa & ~PGOFSET))
6612 return (pv->pv_va | (pa & PGOFSET));
6613 }
6614 return (0);
6615 }
6616
6617 /*
6618 * pmap_map_section:
6619 *
6620 * Create a single section mapping.
6621 */
6622 void
6623 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6624 {
6625 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6626 const size_t l1slot = l1pte_index(va);
6627 pd_entry_t fl;
6628
6629 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6630
6631 switch (cache) {
6632 case PTE_NOCACHE:
6633 default:
6634 fl = 0;
6635 break;
6636
6637 case PTE_CACHE:
6638 fl = pte_l1_s_cache_mode;
6639 break;
6640
6641 case PTE_PAGETABLE:
6642 fl = pte_l1_s_cache_mode_pt;
6643 break;
6644 }
6645
6646 const pd_entry_t npde = L1_S_PROTO | pa |
6647 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6648 l1pte_setone(pdep + l1slot, npde);
6649 PDE_SYNC(pdep + l1slot);
6650 }
6651
6652 /*
6653 * pmap_map_entry:
6654 *
6655 * Create a single page mapping.
6656 */
6657 void
6658 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6659 {
6660 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6661 const size_t l1slot = l1pte_index(va);
6662 pt_entry_t npte;
6663 pt_entry_t *ptep;
6664
6665 KASSERT(((va | pa) & PGOFSET) == 0);
6666
6667 switch (cache) {
6668 case PTE_NOCACHE:
6669 default:
6670 npte = 0;
6671 break;
6672
6673 case PTE_CACHE:
6674 npte = pte_l2_s_cache_mode;
6675 break;
6676
6677 case PTE_PAGETABLE:
6678 npte = pte_l2_s_cache_mode_pt;
6679 break;
6680 }
6681
6682 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6683 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6684
6685 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6686 if (ptep == NULL)
6687 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6688
6689 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6690 #ifdef ARM_MMU_EXTENDED
6691 if (prot & VM_PROT_EXECUTE) {
6692 npte &= ~L2_XS_XN;
6693 }
6694 #endif
6695 ptep += l2pte_index(va);
6696 l2pte_set(ptep, npte, 0);
6697 PTE_SYNC(ptep);
6698 }
6699
6700 /*
6701 * pmap_link_l2pt:
6702 *
6703 * Link the L2 page table specified by "l2pv" into the L1
6704 * page table at the slot for "va".
6705 */
6706 void
6707 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6708 {
6709 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6710
6711 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6712 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6713
6714 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6715 | l2pv->pv_pa;
6716
6717 l1pte_set(pdep, npde);
6718 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6719
6720 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6721 }
6722
6723 /*
6724 * pmap_map_chunk:
6725 *
6726 * Map a chunk of memory using the most efficient mappings
6727 * possible (section, large page, small page) into the
6728 * provided L1 and L2 tables at the specified virtual address.
6729 */
6730 vsize_t
6731 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6732 int prot, int cache)
6733 {
6734 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6735 pt_entry_t f1, f2s, f2l;
6736 vsize_t resid;
6737
6738 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6739
6740 if (l1pt == 0)
6741 panic("pmap_map_chunk: no L1 table provided");
6742
6743 VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6744 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6745
6746 switch (cache) {
6747 case PTE_NOCACHE:
6748 default:
6749 f1 = 0;
6750 f2l = 0;
6751 f2s = 0;
6752 break;
6753
6754 case PTE_CACHE:
6755 f1 = pte_l1_s_cache_mode;
6756 f2l = pte_l2_l_cache_mode;
6757 f2s = pte_l2_s_cache_mode;
6758 break;
6759
6760 case PTE_PAGETABLE:
6761 f1 = pte_l1_s_cache_mode_pt;
6762 f2l = pte_l2_l_cache_mode_pt;
6763 f2s = pte_l2_s_cache_mode_pt;
6764 break;
6765 }
6766
6767 size = resid;
6768
6769 while (resid > 0) {
6770 const size_t l1slot = l1pte_index(va);
6771 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
6772 /* See if we can use a supersection mapping. */
6773 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6774 /* Supersection are always domain 0 */
6775 const pd_entry_t npde = L1_SS_PROTO | pa
6776 #ifdef ARM_MMU_EXTENDED
6777 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6778 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6779 #endif
6780 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6781 VPRINTF("sS");
6782 l1pte_set(&pdep[l1slot], npde);
6783 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6784 va += L1_SS_SIZE;
6785 pa += L1_SS_SIZE;
6786 resid -= L1_SS_SIZE;
6787 continue;
6788 }
6789 #endif
6790 /* See if we can use a section mapping. */
6791 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6792 const pd_entry_t npde = L1_S_PROTO | pa
6793 #ifdef ARM_MMU_EXTENDED
6794 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6795 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6796 #endif
6797 | L1_S_PROT(PTE_KERNEL, prot) | f1
6798 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6799 VPRINTF("S");
6800 l1pte_set(&pdep[l1slot], npde);
6801 PDE_SYNC(&pdep[l1slot]);
6802 va += L1_S_SIZE;
6803 pa += L1_S_SIZE;
6804 resid -= L1_S_SIZE;
6805 continue;
6806 }
6807
6808 /*
6809 * Ok, we're going to use an L2 table. Make sure
6810 * one is actually in the corresponding L1 slot
6811 * for the current VA.
6812 */
6813 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6814 panic("%s: no L2 table for VA %#lx", __func__, va);
6815
6816 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6817 if (ptep == NULL)
6818 panic("%s: can't find L2 table for VA %#lx", __func__,
6819 va);
6820
6821 ptep += l2pte_index(va);
6822
6823 /* See if we can use a L2 large page mapping. */
6824 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6825 const pt_entry_t npte = L2_L_PROTO | pa
6826 #ifdef ARM_MMU_EXTENDED
6827 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6828 | (va & 0x80000000 ? 0 : L2_XS_nG)
6829 #endif
6830 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6831 VPRINTF("L");
6832 l2pte_set(ptep, npte, 0);
6833 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6834 va += L2_L_SIZE;
6835 pa += L2_L_SIZE;
6836 resid -= L2_L_SIZE;
6837 continue;
6838 }
6839
6840 VPRINTF("P");
6841 /* Use a small page mapping. */
6842 pt_entry_t npte = L2_S_PROTO | pa
6843 #ifdef ARM_MMU_EXTENDED
6844 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6845 | (va & 0x80000000 ? 0 : L2_XS_nG)
6846 #endif
6847 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6848 #ifdef ARM_MMU_EXTENDED
6849 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6850 #endif
6851 l2pte_set(ptep, npte, 0);
6852 PTE_SYNC(ptep);
6853 va += PAGE_SIZE;
6854 pa += PAGE_SIZE;
6855 resid -= PAGE_SIZE;
6856 }
6857 VPRINTF("\n");
6858 return (size);
6859 }
6860
6861 /********************** Static device map routines ***************************/
6862
6863 static const struct pmap_devmap *pmap_devmap_table;
6864
6865 /*
6866 * Register the devmap table. This is provided in case early console
6867 * initialization needs to register mappings created by bootstrap code
6868 * before pmap_devmap_bootstrap() is called.
6869 */
6870 void
6871 pmap_devmap_register(const struct pmap_devmap *table)
6872 {
6873
6874 pmap_devmap_table = table;
6875 }
6876
6877 /*
6878 * Map all of the static regions in the devmap table, and remember
6879 * the devmap table so other parts of the kernel can look up entries
6880 * later.
6881 */
6882 void
6883 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6884 {
6885 int i;
6886
6887 pmap_devmap_table = table;
6888
6889 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6890 VPRINTF("devmap: %08lx -> %08lx @ %08lx\n",
6891 pmap_devmap_table[i].pd_pa,
6892 pmap_devmap_table[i].pd_pa +
6893 pmap_devmap_table[i].pd_size - 1,
6894 pmap_devmap_table[i].pd_va);
6895 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6896 pmap_devmap_table[i].pd_pa,
6897 pmap_devmap_table[i].pd_size,
6898 pmap_devmap_table[i].pd_prot,
6899 pmap_devmap_table[i].pd_cache);
6900 }
6901 }
6902
6903 const struct pmap_devmap *
6904 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6905 {
6906 uint64_t endpa;
6907 int i;
6908
6909 if (pmap_devmap_table == NULL)
6910 return (NULL);
6911
6912 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6913
6914 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6915 if (pa >= pmap_devmap_table[i].pd_pa &&
6916 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6917 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6918 return (&pmap_devmap_table[i]);
6919 }
6920
6921 return (NULL);
6922 }
6923
6924 const struct pmap_devmap *
6925 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6926 {
6927 int i;
6928
6929 if (pmap_devmap_table == NULL)
6930 return (NULL);
6931
6932 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6933 if (va >= pmap_devmap_table[i].pd_va &&
6934 va + size - 1 <= pmap_devmap_table[i].pd_va +
6935 pmap_devmap_table[i].pd_size - 1)
6936 return (&pmap_devmap_table[i]);
6937 }
6938
6939 return (NULL);
6940 }
6941
6942 /********************** PTE initialization routines **************************/
6943
6944 /*
6945 * These routines are called when the CPU type is identified to set up
6946 * the PTE prototypes, cache modes, etc.
6947 *
6948 * The variables are always here, just in case modules need to reference
6949 * them (though, they shouldn't).
6950 */
6951
6952 pt_entry_t pte_l1_s_cache_mode;
6953 pt_entry_t pte_l1_s_wc_mode;
6954 pt_entry_t pte_l1_s_cache_mode_pt;
6955 pt_entry_t pte_l1_s_cache_mask;
6956
6957 pt_entry_t pte_l2_l_cache_mode;
6958 pt_entry_t pte_l2_l_wc_mode;
6959 pt_entry_t pte_l2_l_cache_mode_pt;
6960 pt_entry_t pte_l2_l_cache_mask;
6961
6962 pt_entry_t pte_l2_s_cache_mode;
6963 pt_entry_t pte_l2_s_wc_mode;
6964 pt_entry_t pte_l2_s_cache_mode_pt;
6965 pt_entry_t pte_l2_s_cache_mask;
6966
6967 pt_entry_t pte_l1_s_prot_u;
6968 pt_entry_t pte_l1_s_prot_w;
6969 pt_entry_t pte_l1_s_prot_ro;
6970 pt_entry_t pte_l1_s_prot_mask;
6971
6972 pt_entry_t pte_l2_s_prot_u;
6973 pt_entry_t pte_l2_s_prot_w;
6974 pt_entry_t pte_l2_s_prot_ro;
6975 pt_entry_t pte_l2_s_prot_mask;
6976
6977 pt_entry_t pte_l2_l_prot_u;
6978 pt_entry_t pte_l2_l_prot_w;
6979 pt_entry_t pte_l2_l_prot_ro;
6980 pt_entry_t pte_l2_l_prot_mask;
6981
6982 pt_entry_t pte_l1_ss_proto;
6983 pt_entry_t pte_l1_s_proto;
6984 pt_entry_t pte_l1_c_proto;
6985 pt_entry_t pte_l2_s_proto;
6986
6987 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6988 void (*pmap_zero_page_func)(paddr_t);
6989
6990 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6991 void
6992 pmap_pte_init_generic(void)
6993 {
6994
6995 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6996 pte_l1_s_wc_mode = L1_S_B;
6997 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6998
6999 pte_l2_l_cache_mode = L2_B|L2_C;
7000 pte_l2_l_wc_mode = L2_B;
7001 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7002
7003 pte_l2_s_cache_mode = L2_B|L2_C;
7004 pte_l2_s_wc_mode = L2_B;
7005 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7006
7007 /*
7008 * If we have a write-through cache, set B and C. If
7009 * we have a write-back cache, then we assume setting
7010 * only C will make those pages write-through (except for those
7011 * Cortex CPUs which can read the L1 caches).
7012 */
7013 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7014 #if ARM_MMU_V7 > 0
7015 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7016 #endif
7017 #if ARM_MMU_V6 > 0
7018 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7019 #endif
7020 || false) {
7021 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7022 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7023 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7024 } else {
7025 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7026 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7027 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7028 }
7029
7030 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7031 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7032 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7033 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7034
7035 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7036 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7037 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7038 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7039
7040 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7041 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7042 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7043 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7044
7045 pte_l1_ss_proto = L1_SS_PROTO_generic;
7046 pte_l1_s_proto = L1_S_PROTO_generic;
7047 pte_l1_c_proto = L1_C_PROTO_generic;
7048 pte_l2_s_proto = L2_S_PROTO_generic;
7049
7050 pmap_copy_page_func = pmap_copy_page_generic;
7051 pmap_zero_page_func = pmap_zero_page_generic;
7052 }
7053
7054 #if defined(CPU_ARM8)
7055 void
7056 pmap_pte_init_arm8(void)
7057 {
7058
7059 /*
7060 * ARM8 is compatible with generic, but we need to use
7061 * the page tables uncached.
7062 */
7063 pmap_pte_init_generic();
7064
7065 pte_l1_s_cache_mode_pt = 0;
7066 pte_l2_l_cache_mode_pt = 0;
7067 pte_l2_s_cache_mode_pt = 0;
7068 }
7069 #endif /* CPU_ARM8 */
7070
7071 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7072 void
7073 pmap_pte_init_arm9(void)
7074 {
7075
7076 /*
7077 * ARM9 is compatible with generic, but we want to use
7078 * write-through caching for now.
7079 */
7080 pmap_pte_init_generic();
7081
7082 pte_l1_s_cache_mode = L1_S_C;
7083 pte_l2_l_cache_mode = L2_C;
7084 pte_l2_s_cache_mode = L2_C;
7085
7086 pte_l1_s_wc_mode = L1_S_B;
7087 pte_l2_l_wc_mode = L2_B;
7088 pte_l2_s_wc_mode = L2_B;
7089
7090 pte_l1_s_cache_mode_pt = L1_S_C;
7091 pte_l2_l_cache_mode_pt = L2_C;
7092 pte_l2_s_cache_mode_pt = L2_C;
7093 }
7094 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7095 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7096
7097 #if defined(CPU_ARM10)
7098 void
7099 pmap_pte_init_arm10(void)
7100 {
7101
7102 /*
7103 * ARM10 is compatible with generic, but we want to use
7104 * write-through caching for now.
7105 */
7106 pmap_pte_init_generic();
7107
7108 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7109 pte_l2_l_cache_mode = L2_B | L2_C;
7110 pte_l2_s_cache_mode = L2_B | L2_C;
7111
7112 pte_l1_s_cache_mode = L1_S_B;
7113 pte_l2_l_cache_mode = L2_B;
7114 pte_l2_s_cache_mode = L2_B;
7115
7116 pte_l1_s_cache_mode_pt = L1_S_C;
7117 pte_l2_l_cache_mode_pt = L2_C;
7118 pte_l2_s_cache_mode_pt = L2_C;
7119
7120 }
7121 #endif /* CPU_ARM10 */
7122
7123 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7124 void
7125 pmap_pte_init_arm11(void)
7126 {
7127
7128 /*
7129 * ARM11 is compatible with generic, but we want to use
7130 * write-through caching for now.
7131 */
7132 pmap_pte_init_generic();
7133
7134 pte_l1_s_cache_mode = L1_S_C;
7135 pte_l2_l_cache_mode = L2_C;
7136 pte_l2_s_cache_mode = L2_C;
7137
7138 pte_l1_s_wc_mode = L1_S_B;
7139 pte_l2_l_wc_mode = L2_B;
7140 pte_l2_s_wc_mode = L2_B;
7141
7142 pte_l1_s_cache_mode_pt = L1_S_C;
7143 pte_l2_l_cache_mode_pt = L2_C;
7144 pte_l2_s_cache_mode_pt = L2_C;
7145 }
7146 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7147
7148 #if ARM_MMU_SA1 == 1
7149 void
7150 pmap_pte_init_sa1(void)
7151 {
7152
7153 /*
7154 * The StrongARM SA-1 cache does not have a write-through
7155 * mode. So, do the generic initialization, then reset
7156 * the page table cache mode to B=1,C=1, and note that
7157 * the PTEs need to be sync'd.
7158 */
7159 pmap_pte_init_generic();
7160
7161 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7162 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7163 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7164
7165 pmap_needs_pte_sync = 1;
7166 }
7167 #endif /* ARM_MMU_SA1 == 1*/
7168
7169 #if ARM_MMU_XSCALE == 1
7170 #if (ARM_NMMUS > 1)
7171 static u_int xscale_use_minidata;
7172 #endif
7173
7174 void
7175 pmap_pte_init_xscale(void)
7176 {
7177 uint32_t auxctl;
7178 int write_through = 0;
7179
7180 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7181 pte_l1_s_wc_mode = L1_S_B;
7182 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7183
7184 pte_l2_l_cache_mode = L2_B|L2_C;
7185 pte_l2_l_wc_mode = L2_B;
7186 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7187
7188 pte_l2_s_cache_mode = L2_B|L2_C;
7189 pte_l2_s_wc_mode = L2_B;
7190 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7191
7192 pte_l1_s_cache_mode_pt = L1_S_C;
7193 pte_l2_l_cache_mode_pt = L2_C;
7194 pte_l2_s_cache_mode_pt = L2_C;
7195
7196 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7197 /*
7198 * The XScale core has an enhanced mode where writes that
7199 * miss the cache cause a cache line to be allocated. This
7200 * is significantly faster than the traditional, write-through
7201 * behavior of this case.
7202 */
7203 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7204 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7205 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7206 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7207
7208 #ifdef XSCALE_CACHE_WRITE_THROUGH
7209 /*
7210 * Some versions of the XScale core have various bugs in
7211 * their cache units, the work-around for which is to run
7212 * the cache in write-through mode. Unfortunately, this
7213 * has a major (negative) impact on performance. So, we
7214 * go ahead and run fast-and-loose, in the hopes that we
7215 * don't line up the planets in a way that will trip the
7216 * bugs.
7217 *
7218 * However, we give you the option to be slow-but-correct.
7219 */
7220 write_through = 1;
7221 #elif defined(XSCALE_CACHE_WRITE_BACK)
7222 /* force write back cache mode */
7223 write_through = 0;
7224 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7225 /*
7226 * Intel PXA2[15]0 processors are known to have a bug in
7227 * write-back cache on revision 4 and earlier (stepping
7228 * A[01] and B[012]). Fixed for C0 and later.
7229 */
7230 {
7231 uint32_t id, type;
7232
7233 id = cpufunc_id();
7234 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7235
7236 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7237 if ((id & CPU_ID_REVISION_MASK) < 5) {
7238 /* write through for stepping A0-1 and B0-2 */
7239 write_through = 1;
7240 }
7241 }
7242 }
7243 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7244
7245 if (write_through) {
7246 pte_l1_s_cache_mode = L1_S_C;
7247 pte_l2_l_cache_mode = L2_C;
7248 pte_l2_s_cache_mode = L2_C;
7249 }
7250
7251 #if (ARM_NMMUS > 1)
7252 xscale_use_minidata = 1;
7253 #endif
7254
7255 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7256 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7257 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7258 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7259
7260 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7261 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7262 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7263 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7264
7265 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7266 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7267 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7268 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7269
7270 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7271 pte_l1_s_proto = L1_S_PROTO_xscale;
7272 pte_l1_c_proto = L1_C_PROTO_xscale;
7273 pte_l2_s_proto = L2_S_PROTO_xscale;
7274
7275 pmap_copy_page_func = pmap_copy_page_xscale;
7276 pmap_zero_page_func = pmap_zero_page_xscale;
7277
7278 /*
7279 * Disable ECC protection of page table access, for now.
7280 */
7281 auxctl = armreg_auxctl_read();
7282 auxctl &= ~XSCALE_AUXCTL_P;
7283 armreg_auxctl_write(auxctl);
7284 }
7285
7286 /*
7287 * xscale_setup_minidata:
7288 *
7289 * Set up the mini-data cache clean area. We require the
7290 * caller to allocate the right amount of physically and
7291 * virtually contiguous space.
7292 */
7293 void
7294 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7295 {
7296 extern vaddr_t xscale_minidata_clean_addr;
7297 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7298 pd_entry_t *pde = (pd_entry_t *) l1pt;
7299 vsize_t size;
7300 uint32_t auxctl;
7301
7302 xscale_minidata_clean_addr = va;
7303
7304 /* Round it to page size. */
7305 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7306
7307 for (; size != 0;
7308 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7309 const size_t l1slot = l1pte_index(va);
7310 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7311 if (ptep == NULL)
7312 panic("xscale_setup_minidata: can't find L2 table for "
7313 "VA 0x%08lx", va);
7314
7315 ptep += l2pte_index(va);
7316 pt_entry_t opte = *ptep;
7317 l2pte_set(ptep,
7318 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7319 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7320 }
7321
7322 /*
7323 * Configure the mini-data cache for write-back with
7324 * read/write-allocate.
7325 *
7326 * NOTE: In order to reconfigure the mini-data cache, we must
7327 * make sure it contains no valid data! In order to do that,
7328 * we must issue a global data cache invalidate command!
7329 *
7330 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7331 * THIS IS VERY IMPORTANT!
7332 */
7333
7334 /* Invalidate data and mini-data. */
7335 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7336 auxctl = armreg_auxctl_read();
7337 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7338 armreg_auxctl_write(auxctl);
7339 }
7340
7341 /*
7342 * Change the PTEs for the specified kernel mappings such that they
7343 * will use the mini data cache instead of the main data cache.
7344 */
7345 void
7346 pmap_uarea(vaddr_t va)
7347 {
7348 vaddr_t next_bucket, eva;
7349
7350 #if (ARM_NMMUS > 1)
7351 if (xscale_use_minidata == 0)
7352 return;
7353 #endif
7354
7355 eva = va + USPACE;
7356
7357 while (va < eva) {
7358 next_bucket = L2_NEXT_BUCKET_VA(va);
7359 if (next_bucket > eva)
7360 next_bucket = eva;
7361
7362 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7363 KDASSERT(l2b != NULL);
7364
7365 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7366 pt_entry_t *ptep = sptep;
7367
7368 while (va < next_bucket) {
7369 const pt_entry_t opte = *ptep;
7370 if (!l2pte_minidata_p(opte)) {
7371 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7372 cpu_tlb_flushD_SE(va);
7373 l2pte_set(ptep, opte & ~L2_B, opte);
7374 }
7375 ptep += PAGE_SIZE / L2_S_SIZE;
7376 va += PAGE_SIZE;
7377 }
7378 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7379 }
7380 cpu_cpwait();
7381 }
7382 #endif /* ARM_MMU_XSCALE == 1 */
7383
7384
7385 #if defined(CPU_ARM11MPCORE)
7386
7387 void
7388 pmap_pte_init_arm11mpcore(void)
7389 {
7390
7391 /* cache mode is controlled by 5 bits (B, C, TEX) */
7392 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7393 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7394 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7395 /* use extended small page (without APn, with TEX) */
7396 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7397 #else
7398 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7399 #endif
7400
7401 /* write-back, write-allocate */
7402 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7403 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7404 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7405 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7406 #else
7407 /* no TEX. read-allocate */
7408 pte_l2_s_cache_mode = L2_C | L2_B;
7409 #endif
7410 /*
7411 * write-back, write-allocate for page tables.
7412 */
7413 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7414 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7415 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7416 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7417 #else
7418 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7419 #endif
7420
7421 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7422 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7423 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7424 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7425
7426 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7427 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7428 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7429 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7430 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7431
7432 #else
7433 /* with AP[0..3] */
7434 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7435 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7436 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7437 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7438 #endif
7439
7440 #ifdef ARM11MPCORE_COMPAT_MMU
7441 /* with AP[0..3] */
7442 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7443 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7444 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7445 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7446
7447 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7448 pte_l1_s_proto = L1_S_PROTO_armv6;
7449 pte_l1_c_proto = L1_C_PROTO_armv6;
7450 pte_l2_s_proto = L2_S_PROTO_armv6c;
7451 #else
7452 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7453 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7454 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7455 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7456
7457 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7458 pte_l1_s_proto = L1_S_PROTO_armv6;
7459 pte_l1_c_proto = L1_C_PROTO_armv6;
7460 pte_l2_s_proto = L2_S_PROTO_armv6n;
7461 #endif
7462
7463 pmap_copy_page_func = pmap_copy_page_generic;
7464 pmap_zero_page_func = pmap_zero_page_generic;
7465 pmap_needs_pte_sync = 1;
7466 }
7467 #endif /* CPU_ARM11MPCORE */
7468
7469
7470 #if ARM_MMU_V7 == 1
7471 void
7472 pmap_pte_init_armv7(void)
7473 {
7474 /*
7475 * The ARMv7-A MMU is mostly compatible with generic. If the
7476 * AP field is zero, that now means "no access" rather than
7477 * read-only. The prototypes are a little different because of
7478 * the XN bit.
7479 */
7480 pmap_pte_init_generic();
7481
7482 pmap_needs_pte_sync = 1;
7483
7484 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7485 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7486 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7487
7488 /*
7489 * If the core support coherent walk then updates to translation tables
7490 * do not require a clean to the point of unification to ensure
7491 * visibility by subsequent translation table walks. That means we can
7492 * map everything shareable and cached and the right thing will happen.
7493 */
7494 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7495 pmap_needs_pte_sync = 0;
7496
7497 /*
7498 * write-back, no write-allocate, shareable for normal pages.
7499 */
7500 pte_l1_s_cache_mode |= L1_S_V6_S;
7501 pte_l2_l_cache_mode |= L2_XS_S;
7502 pte_l2_s_cache_mode |= L2_XS_S;
7503 }
7504
7505 /*
7506 * Page tables are just all other memory. We can use write-back since
7507 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7508 */
7509 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7510 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7511 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7512
7513 /*
7514 * Check the Memory Model Features to see if this CPU supports
7515 * the TLBIASID coproc op.
7516 */
7517 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7518 arm_has_tlbiasid_p = true;
7519 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7520 arm_has_tlbiasid_p = true;
7521 }
7522
7523 /*
7524 * Check the MPIDR to see if this CPU supports MP extensions.
7525 */
7526 #ifdef MULTIPROCESSOR
7527 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7528 #else
7529 arm_has_mpext_p = false;
7530 #endif
7531
7532 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7533 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7534 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7535 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7536
7537 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7538 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7539 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7540 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7541
7542 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7543 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7544 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7545 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7546
7547 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7548 pte_l1_s_proto = L1_S_PROTO_armv7;
7549 pte_l1_c_proto = L1_C_PROTO_armv7;
7550 pte_l2_s_proto = L2_S_PROTO_armv7;
7551
7552 }
7553 #endif /* ARM_MMU_V7 */
7554
7555 /*
7556 * return the PA of the current L1 table, for use when handling a crash dump
7557 */
7558 uint32_t
7559 pmap_kernel_L1_addr(void)
7560 {
7561 #ifdef ARM_MMU_EXTENDED
7562 return pmap_kernel()->pm_l1_pa;
7563 #else
7564 return pmap_kernel()->pm_l1->l1_physaddr;
7565 #endif
7566 }
7567
7568 #if defined(DDB)
7569 /*
7570 * A couple of ddb-callable functions for dumping pmaps
7571 */
7572 void pmap_dump(pmap_t);
7573
7574 static pt_entry_t ncptes[64];
7575 static void pmap_dump_ncpg(pmap_t);
7576
7577 void
7578 pmap_dump(pmap_t pm)
7579 {
7580 struct l2_dtable *l2;
7581 struct l2_bucket *l2b;
7582 pt_entry_t *ptep, pte;
7583 vaddr_t l2_va, l2b_va, va;
7584 int i, j, k, occ, rows = 0;
7585
7586 if (pm == pmap_kernel())
7587 printf("pmap_kernel (%p): ", pm);
7588 else
7589 printf("user pmap (%p): ", pm);
7590
7591 #ifdef ARM_MMU_EXTENDED
7592 printf("l1 at %p\n", pmap_l1_kva(pm));
7593 #else
7594 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7595 #endif
7596
7597 l2_va = 0;
7598 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7599 l2 = pm->pm_l2[i];
7600
7601 if (l2 == NULL || l2->l2_occupancy == 0)
7602 continue;
7603
7604 l2b_va = l2_va;
7605 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7606 l2b = &l2->l2_bucket[j];
7607
7608 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7609 continue;
7610
7611 ptep = l2b->l2b_kva;
7612
7613 for (k = 0; k < 256 && ptep[k] == 0; k++)
7614 ;
7615
7616 k &= ~63;
7617 occ = l2b->l2b_occupancy;
7618 va = l2b_va + (k * 4096);
7619 for (; k < 256; k++, va += 0x1000) {
7620 char ch = ' ';
7621 if ((k % 64) == 0) {
7622 if ((rows % 8) == 0) {
7623 printf(
7624 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7625 }
7626 printf("%08lx: ", va);
7627 }
7628
7629 ncptes[k & 63] = 0;
7630 pte = ptep[k];
7631 if (pte == 0) {
7632 ch = '.';
7633 } else {
7634 occ--;
7635 switch (pte & 0x0c) {
7636 case 0x00:
7637 ch = 'D'; /* No cache No buff */
7638 break;
7639 case 0x04:
7640 ch = 'B'; /* No cache buff */
7641 break;
7642 case 0x08:
7643 if (pte & 0x40)
7644 ch = 'm';
7645 else
7646 ch = 'C'; /* Cache No buff */
7647 break;
7648 case 0x0c:
7649 ch = 'F'; /* Cache Buff */
7650 break;
7651 }
7652
7653 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7654 ch += 0x20;
7655
7656 if ((pte & 0xc) == 0)
7657 ncptes[k & 63] = pte;
7658 }
7659
7660 if ((k % 64) == 63) {
7661 rows++;
7662 printf("%c\n", ch);
7663 pmap_dump_ncpg(pm);
7664 if (occ == 0)
7665 break;
7666 } else
7667 printf("%c", ch);
7668 }
7669 }
7670 }
7671 }
7672
7673 static void
7674 pmap_dump_ncpg(pmap_t pm)
7675 {
7676 struct vm_page *pg;
7677 struct vm_page_md *md;
7678 struct pv_entry *pv;
7679 int i;
7680
7681 for (i = 0; i < 63; i++) {
7682 if (ncptes[i] == 0)
7683 continue;
7684
7685 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7686 if (pg == NULL)
7687 continue;
7688 md = VM_PAGE_TO_MD(pg);
7689
7690 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7691 VM_PAGE_TO_PHYS(pg),
7692 md->krw_mappings, md->kro_mappings,
7693 md->urw_mappings, md->uro_mappings);
7694
7695 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7696 printf(" %c va 0x%08lx, flags 0x%x\n",
7697 (pm == pv->pv_pmap) ? '*' : ' ',
7698 pv->pv_va, pv->pv_flags);
7699 }
7700 }
7701 }
7702 #endif
7703
7704 #ifdef PMAP_STEAL_MEMORY
7705 void
7706 pmap_boot_pageadd(pv_addr_t *newpv)
7707 {
7708 pv_addr_t *pv, *npv;
7709
7710 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7711 if (newpv->pv_pa < pv->pv_va) {
7712 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7713 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7714 newpv->pv_size += pv->pv_size;
7715 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7716 }
7717 pv = NULL;
7718 } else {
7719 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7720 pv = npv) {
7721 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7722 KASSERT(pv->pv_pa < newpv->pv_pa);
7723 if (newpv->pv_pa > npv->pv_pa)
7724 continue;
7725 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7726 pv->pv_size += newpv->pv_size;
7727 return;
7728 }
7729 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7730 break;
7731 newpv->pv_size += npv->pv_size;
7732 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7733 SLIST_REMOVE_AFTER(newpv, pv_list);
7734 return;
7735 }
7736 }
7737 }
7738
7739 if (pv) {
7740 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7741 } else {
7742 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7743 }
7744 }
7745
7746 void
7747 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7748 pv_addr_t *rpv)
7749 {
7750 pv_addr_t *pv, **pvp;
7751 struct vm_physseg *ps;
7752 size_t i;
7753
7754 KASSERT(amount & PGOFSET);
7755 KASSERT((mask & PGOFSET) == 0);
7756 KASSERT((match & PGOFSET) == 0);
7757 KASSERT(amount != 0);
7758
7759 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7760 (pv = *pvp) != NULL;
7761 pvp = &SLIST_NEXT(pv, pv_list)) {
7762 pv_addr_t *newpv;
7763 psize_t off;
7764 /*
7765 * If this entry is too small to satify the request...
7766 */
7767 KASSERT(pv->pv_size > 0);
7768 if (pv->pv_size < amount)
7769 continue;
7770
7771 for (off = 0; off <= mask; off += PAGE_SIZE) {
7772 if (((pv->pv_pa + off) & mask) == match
7773 && off + amount <= pv->pv_size)
7774 break;
7775 }
7776 if (off > mask)
7777 continue;
7778
7779 rpv->pv_va = pv->pv_va + off;
7780 rpv->pv_pa = pv->pv_pa + off;
7781 rpv->pv_size = amount;
7782 pv->pv_size -= amount;
7783 if (pv->pv_size == 0) {
7784 KASSERT(off == 0);
7785 KASSERT((vaddr_t) pv == rpv->pv_va);
7786 *pvp = SLIST_NEXT(pv, pv_list);
7787 } else if (off == 0) {
7788 KASSERT((vaddr_t) pv == rpv->pv_va);
7789 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7790 *newpv = *pv;
7791 newpv->pv_pa += amount;
7792 newpv->pv_va += amount;
7793 *pvp = newpv;
7794 } else if (off < pv->pv_size) {
7795 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7796 *newpv = *pv;
7797 newpv->pv_size -= off;
7798 newpv->pv_pa += off + amount;
7799 newpv->pv_va += off + amount;
7800
7801 SLIST_NEXT(pv, pv_list) = newpv;
7802 pv->pv_size = off;
7803 } else {
7804 KASSERT((vaddr_t) pv != rpv->pv_va);
7805 }
7806 memset((void *)rpv->pv_va, 0, amount);
7807 return;
7808 }
7809
7810 if (vm_nphysseg == 0)
7811 panic("pmap_boot_pagealloc: couldn't allocate memory");
7812
7813 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7814 (pv = *pvp) != NULL;
7815 pvp = &SLIST_NEXT(pv, pv_list)) {
7816 if (SLIST_NEXT(pv, pv_list) == NULL)
7817 break;
7818 }
7819 KASSERT(mask == 0);
7820 for (i = 0; i < vm_nphysseg; i++) {
7821 ps = VM_PHYSMEM_PTR(i);
7822 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
7823 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
7824 rpv->pv_va = pv->pv_va;
7825 rpv->pv_pa = pv->pv_pa;
7826 rpv->pv_size = amount;
7827 *pvp = NULL;
7828 pmap_map_chunk(kernel_l1pt.pv_va,
7829 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
7830 ptoa(ps->avail_start),
7831 amount - pv->pv_size,
7832 VM_PROT_READ|VM_PROT_WRITE,
7833 PTE_CACHE);
7834 ps->avail_start += atop(amount - pv->pv_size);
7835 /*
7836 * If we consumed the entire physseg, remove it.
7837 */
7838 if (ps->avail_start == ps->avail_end) {
7839 for (--vm_nphysseg; i < vm_nphysseg; i++)
7840 VM_PHYSMEM_PTR_SWAP(i, i + 1);
7841 }
7842 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7843 return;
7844 }
7845 }
7846
7847 panic("pmap_boot_pagealloc: couldn't allocate memory");
7848 }
7849
7850 vaddr_t
7851 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7852 {
7853 pv_addr_t pv;
7854
7855 pmap_boot_pagealloc(size, 0, 0, &pv);
7856
7857 return pv.pv_va;
7858 }
7859 #endif /* PMAP_STEAL_MEMORY */
7860
7861 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7862 {
7863 sysctl_createv(clog, 0, NULL, NULL,
7864 CTLFLAG_PERMANENT,
7865 CTLTYPE_NODE, "machdep", NULL,
7866 NULL, 0, NULL, 0,
7867 CTL_MACHDEP, CTL_EOL);
7868
7869 sysctl_createv(clog, 0, NULL, NULL,
7870 CTLFLAG_PERMANENT,
7871 CTLTYPE_INT, "kmpages",
7872 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7873 NULL, 0, &pmap_kmpages, 0,
7874 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7875 }
7876
7877 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7878 struct vm_page *
7879 arm_pmap_alloc_poolpage(int flags)
7880 {
7881 /*
7882 * On some systems, only some pages may be "coherent" for dma and we
7883 * want to prefer those for pool pages (think mbufs) but fallback to
7884 * any page if none is available.
7885 */
7886 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7887 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7888 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
7889 }
7890
7891 return uvm_pagealloc(NULL, 0, NULL, flags);
7892 }
7893 #endif
7894
7895 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7896 void
7897 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7898 {
7899 /* nothing */
7900 }
7901
7902 int
7903 pic_ipi_shootdown(void *arg)
7904 {
7905 #if PMAP_TLB_NEED_SHOOTDOWN
7906 pmap_tlb_shootdown_process();
7907 #endif
7908 return 1;
7909 }
7910 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7911
7912
7913 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7914 vaddr_t
7915 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7916 {
7917 bool ok = false;
7918 if (physical_start <= pa && pa < physical_end) {
7919 #ifdef KERNEL_BASE_VOFFSET
7920 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
7921 #else
7922 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
7923 #endif
7924 #ifdef ARM_MMU_EXTENDED
7925 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
7926 #endif
7927 va = newva;
7928 ok = true;
7929 #ifdef ARM_MMU_EXTENDED
7930 }
7931 #endif
7932 }
7933 KASSERT(ok_p);
7934 *ok_p = ok;
7935 return va;
7936 }
7937
7938 vaddr_t
7939 pmap_map_poolpage(paddr_t pa)
7940 {
7941 bool ok __diagused;
7942 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7943 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
7944 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7945 if (arm_cache_prefer_mask != 0) {
7946 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7947 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7948 pmap_acquire_page_lock(md);
7949 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7950 pmap_release_page_lock(md);
7951 }
7952 #endif
7953 return va;
7954 }
7955
7956 paddr_t
7957 pmap_unmap_poolpage(vaddr_t va)
7958 {
7959 KASSERT(va >= KERNEL_BASE);
7960 #ifdef PMAP_CACHE_VIVT
7961 cpu_idcache_wbinv_range(va, PAGE_SIZE);
7962 #endif
7963 #if defined(KERNEL_BASE_VOFFSET)
7964 return va - KERNEL_BASE_VOFFSET;
7965 #else
7966 return va - KERNEL_BASE + physical_start;
7967 #endif
7968 }
7969 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
7970