Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.372
      1 /*	$NetBSD: pmap.c,v 1.372 2019/04/23 11:05:14 bouyer Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_arm_debug.h"
    190 #include "opt_cpuoptions.h"
    191 #include "opt_pmap_debug.h"
    192 #include "opt_ddb.h"
    193 #include "opt_lockdebug.h"
    194 #include "opt_multiprocessor.h"
    195 
    196 #ifdef MULTIPROCESSOR
    197 #define _INTR_PRIVATE
    198 #endif
    199 
    200 #include <sys/param.h>
    201 #include <sys/types.h>
    202 #include <sys/kernel.h>
    203 #include <sys/systm.h>
    204 #include <sys/proc.h>
    205 #include <sys/intr.h>
    206 #include <sys/pool.h>
    207 #include <sys/kmem.h>
    208 #include <sys/cdefs.h>
    209 #include <sys/cpu.h>
    210 #include <sys/sysctl.h>
    211 #include <sys/bus.h>
    212 #include <sys/atomic.h>
    213 #include <sys/kernhist.h>
    214 
    215 #include <uvm/uvm.h>
    216 #include <uvm/pmap/pmap_pvt.h>
    217 
    218 #include <arm/locore.h>
    219 
    220 #ifdef DDB
    221 #include <arm/db_machdep.h>
    222 #endif
    223 
    224 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.372 2019/04/23 11:05:14 bouyer Exp $");
    225 
    226 //#define PMAP_DEBUG
    227 #ifdef PMAP_DEBUG
    228 
    229 /* XXX need to get rid of all refs to this */
    230 int pmap_debug_level = 0;
    231 
    232 /*
    233  * for switching to potentially finer grained debugging
    234  */
    235 #define	PDB_FOLLOW	0x0001
    236 #define	PDB_INIT	0x0002
    237 #define	PDB_ENTER	0x0004
    238 #define	PDB_REMOVE	0x0008
    239 #define	PDB_CREATE	0x0010
    240 #define	PDB_PTPAGE	0x0020
    241 #define	PDB_GROWKERN	0x0040
    242 #define	PDB_BITS	0x0080
    243 #define	PDB_COLLECT	0x0100
    244 #define	PDB_PROTECT	0x0200
    245 #define	PDB_MAP_L1	0x0400
    246 #define	PDB_BOOTSTRAP	0x1000
    247 #define	PDB_PARANOIA	0x2000
    248 #define	PDB_WIRING	0x4000
    249 #define	PDB_PVDUMP	0x8000
    250 #define	PDB_VAC		0x10000
    251 #define	PDB_KENTER	0x20000
    252 #define	PDB_KREMOVE	0x40000
    253 #define	PDB_EXEC	0x80000
    254 
    255 int debugmap = 1;
    256 int pmapdebug = 0;
    257 #define	NPDEBUG(_lev_,_stat_) \
    258 	if (pmapdebug & (_lev_)) \
    259         	((_stat_))
    260 
    261 #else	/* PMAP_DEBUG */
    262 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    263 #endif	/* PMAP_DEBUG */
    264 
    265 
    266 #ifdef VERBOSE_INIT_ARM
    267 #define VPRINTF(...)	printf(__VA_ARGS__)
    268 #else
    269 #define VPRINTF(...)	__nothing
    270 #endif
    271 
    272 /*
    273  * pmap_kernel() points here
    274  */
    275 static struct pmap	kernel_pmap_store = {
    276 #ifndef ARM_MMU_EXTENDED
    277 	.pm_activated = true,
    278 	.pm_domain = PMAP_DOMAIN_KERNEL,
    279 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    280 #endif
    281 };
    282 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    283 #undef pmap_kernel
    284 #define pmap_kernel()	(&kernel_pmap_store)
    285 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    286 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    287 #endif
    288 
    289 /*
    290  * Pool and cache that pmap structures are allocated from.
    291  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    292  * in pmap_create().
    293  */
    294 static struct pool_cache pmap_cache;
    295 
    296 /*
    297  * Pool of PV structures
    298  */
    299 static struct pool pmap_pv_pool;
    300 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    301 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    302 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    303 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    304 };
    305 
    306 /*
    307  * Pool and cache of l2_dtable structures.
    308  * We use a cache to avoid clearing the structures when they're
    309  * allocated. (196 bytes)
    310  */
    311 static struct pool_cache pmap_l2dtable_cache;
    312 static vaddr_t pmap_kernel_l2dtable_kva;
    313 
    314 /*
    315  * Pool and cache of L2 page descriptors.
    316  * We use a cache to avoid clearing the descriptor table
    317  * when they're allocated. (1KB)
    318  */
    319 static struct pool_cache pmap_l2ptp_cache;
    320 static vaddr_t pmap_kernel_l2ptp_kva;
    321 static paddr_t pmap_kernel_l2ptp_phys;
    322 
    323 #ifdef PMAPCOUNTERS
    324 #define	PMAP_EVCNT_INITIALIZER(name) \
    325 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    326 
    327 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    328 static struct evcnt pmap_ev_vac_clean_one =
    329    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    330 static struct evcnt pmap_ev_vac_flush_one =
    331    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    332 static struct evcnt pmap_ev_vac_flush_lots =
    333    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    334 static struct evcnt pmap_ev_vac_flush_lots2 =
    335    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    336 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    337 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    338 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    339 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    340 
    341 static struct evcnt pmap_ev_vac_color_new =
    342    PMAP_EVCNT_INITIALIZER("new page color");
    343 static struct evcnt pmap_ev_vac_color_reuse =
    344    PMAP_EVCNT_INITIALIZER("ok first page color");
    345 static struct evcnt pmap_ev_vac_color_ok =
    346    PMAP_EVCNT_INITIALIZER("ok page color");
    347 static struct evcnt pmap_ev_vac_color_blind =
    348    PMAP_EVCNT_INITIALIZER("blind page color");
    349 static struct evcnt pmap_ev_vac_color_change =
    350    PMAP_EVCNT_INITIALIZER("change page color");
    351 static struct evcnt pmap_ev_vac_color_erase =
    352    PMAP_EVCNT_INITIALIZER("erase page color");
    353 static struct evcnt pmap_ev_vac_color_none =
    354    PMAP_EVCNT_INITIALIZER("no page color");
    355 static struct evcnt pmap_ev_vac_color_restore =
    356    PMAP_EVCNT_INITIALIZER("restore page color");
    357 
    358 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    359 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    360 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    361 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    362 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    363 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    364 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    365 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    366 #endif
    367 
    368 static struct evcnt pmap_ev_mappings =
    369    PMAP_EVCNT_INITIALIZER("pages mapped");
    370 static struct evcnt pmap_ev_unmappings =
    371    PMAP_EVCNT_INITIALIZER("pages unmapped");
    372 static struct evcnt pmap_ev_remappings =
    373    PMAP_EVCNT_INITIALIZER("pages remapped");
    374 
    375 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    377 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    378 
    379 static struct evcnt pmap_ev_kernel_mappings =
    380    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    381 static struct evcnt pmap_ev_kernel_unmappings =
    382    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    383 static struct evcnt pmap_ev_kernel_remappings =
    384    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    385 
    386 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    387 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    388 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    389 
    390 static struct evcnt pmap_ev_kenter_mappings =
    391    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    392 static struct evcnt pmap_ev_kenter_unmappings =
    393    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    394 static struct evcnt pmap_ev_kenter_remappings =
    395    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    396 static struct evcnt pmap_ev_pt_mappings =
    397    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    398 
    399 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    400 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    401 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    402 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    403 
    404 static struct evcnt pmap_ev_fixup_mod =
    405    PMAP_EVCNT_INITIALIZER("page modification emulations");
    406 static struct evcnt pmap_ev_fixup_ref =
    407    PMAP_EVCNT_INITIALIZER("page reference emulations");
    408 static struct evcnt pmap_ev_fixup_exec =
    409    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    410 static struct evcnt pmap_ev_fixup_pdes =
    411    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    412 #ifndef ARM_MMU_EXTENDED
    413 static struct evcnt pmap_ev_fixup_ptesync =
    414    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    415 #endif
    416 
    417 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    418 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    419 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    420 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    421 #ifndef ARM_MMU_EXTENDED
    422 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    423 #endif
    424 
    425 #ifdef PMAP_CACHE_VIPT
    426 static struct evcnt pmap_ev_exec_mappings =
    427    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    428 static struct evcnt pmap_ev_exec_cached =
    429    PMAP_EVCNT_INITIALIZER("exec pages cached");
    430 
    431 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    432 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    433 
    434 static struct evcnt pmap_ev_exec_synced =
    435    PMAP_EVCNT_INITIALIZER("exec pages synced");
    436 static struct evcnt pmap_ev_exec_synced_map =
    437    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    438 static struct evcnt pmap_ev_exec_synced_unmap =
    439    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    440 static struct evcnt pmap_ev_exec_synced_remap =
    441    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    442 static struct evcnt pmap_ev_exec_synced_clearbit =
    443    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    444 #ifndef ARM_MMU_EXTENDED
    445 static struct evcnt pmap_ev_exec_synced_kremove =
    446    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    447 #endif
    448 
    449 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    450 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    451 #ifndef ARM_MMU_EXTENDED
    452 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    453 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    454 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    455 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    456 #endif
    457 
    458 static struct evcnt pmap_ev_exec_discarded_unmap =
    459    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    460 static struct evcnt pmap_ev_exec_discarded_zero =
    461    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    462 static struct evcnt pmap_ev_exec_discarded_copy =
    463    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    464 static struct evcnt pmap_ev_exec_discarded_page_protect =
    465    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    466 static struct evcnt pmap_ev_exec_discarded_clearbit =
    467    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    468 static struct evcnt pmap_ev_exec_discarded_kremove =
    469    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    470 #ifdef ARM_MMU_EXTENDED
    471 static struct evcnt pmap_ev_exec_discarded_modfixup =
    472    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    473 #endif
    474 
    475 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    476 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    477 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    478 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    479 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    480 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    481 #ifdef ARM_MMU_EXTENDED
    482 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    483 #endif
    484 #endif /* PMAP_CACHE_VIPT */
    485 
    486 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    487 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    488 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    489 
    490 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    491 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    492 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    493 
    494 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    495 #else
    496 #define	PMAPCOUNT(x)	((void)0)
    497 #endif
    498 
    499 #ifdef ARM_MMU_EXTENDED
    500 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
    501 void pmap_md_pdetab_deactivate(pmap_t pm);
    502 #endif
    503 
    504 /*
    505  * pmap copy/zero page, and mem(5) hook point
    506  */
    507 static pt_entry_t *csrc_pte, *cdst_pte;
    508 static vaddr_t csrcp, cdstp;
    509 #ifdef MULTIPROCESSOR
    510 static size_t cnptes;
    511 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    512 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    513 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    514 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    515 #else
    516 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    517 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    518 #define	cpu_csrcp(o)	(csrcp + (o))
    519 #define	cpu_cdstp(o)	(cdstp + (o))
    520 #endif
    521 vaddr_t memhook;			/* used by mem.c & others */
    522 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    523 kmutex_t pmap_lock __cacheline_aligned;
    524 extern void *msgbufaddr;
    525 int pmap_kmpages;
    526 /*
    527  * Flag to indicate if pmap_init() has done its thing
    528  */
    529 bool pmap_initialized;
    530 
    531 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    532 /*
    533  * Virtual end of direct-mapped memory
    534  */
    535 vaddr_t pmap_directlimit;
    536 #endif
    537 
    538 /*
    539  * Misc. locking data structures
    540  */
    541 
    542 static inline void
    543 pmap_acquire_pmap_lock(pmap_t pm)
    544 {
    545 #if defined(MULTIPROCESSOR) && defined(DDB)
    546 	if (db_onproc != NULL)
    547 		return;
    548 #endif
    549 
    550 	if (pm == pmap_kernel()) {
    551 #ifdef MULTIPROCESSOR
    552 		KERNEL_LOCK(1, NULL);
    553 #endif
    554 	} else {
    555 		mutex_enter(pm->pm_lock);
    556 	}
    557 }
    558 
    559 static inline void
    560 pmap_release_pmap_lock(pmap_t pm)
    561 {
    562 #if defined(MULTIPROCESSOR) && defined(DDB)
    563 	if (db_onproc != NULL)
    564 		return;
    565 #endif
    566 	if (pm == pmap_kernel()) {
    567 #ifdef MULTIPROCESSOR
    568 		KERNEL_UNLOCK_ONE(NULL);
    569 #endif
    570 	} else {
    571 		mutex_exit(pm->pm_lock);
    572 	}
    573 }
    574 
    575 static inline void
    576 pmap_acquire_page_lock(struct vm_page_md *md)
    577 {
    578 	mutex_enter(&pmap_lock);
    579 }
    580 
    581 static inline void
    582 pmap_release_page_lock(struct vm_page_md *md)
    583 {
    584 	mutex_exit(&pmap_lock);
    585 }
    586 
    587 #ifdef DIAGNOSTIC
    588 static inline int
    589 pmap_page_locked_p(struct vm_page_md *md)
    590 {
    591 	return mutex_owned(&pmap_lock);
    592 }
    593 #endif
    594 
    595 
    596 /*
    597  * Metadata for L1 translation tables.
    598  */
    599 #ifndef ARM_MMU_EXTENDED
    600 struct l1_ttable {
    601 	/* Entry on the L1 Table list */
    602 	SLIST_ENTRY(l1_ttable) l1_link;
    603 
    604 	/* Entry on the L1 Least Recently Used list */
    605 	TAILQ_ENTRY(l1_ttable) l1_lru;
    606 
    607 	/* Track how many domains are allocated from this L1 */
    608 	volatile u_int l1_domain_use_count;
    609 
    610 	/*
    611 	 * A free-list of domain numbers for this L1.
    612 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    613 	 * is slow on ARM.
    614 	 */
    615 	uint8_t l1_domain_first;
    616 	uint8_t l1_domain_free[PMAP_DOMAINS];
    617 
    618 	/* Physical address of this L1 page table */
    619 	paddr_t l1_physaddr;
    620 
    621 	/* KVA of this L1 page table */
    622 	pd_entry_t *l1_kva;
    623 };
    624 
    625 /*
    626  * L1 Page Tables are tracked using a Least Recently Used list.
    627  *  - New L1s are allocated from the HEAD.
    628  *  - Freed L1s are added to the TAIl.
    629  *  - Recently accessed L1s (where an 'access' is some change to one of
    630  *    the userland pmaps which owns this L1) are moved to the TAIL.
    631  */
    632 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    633 static kmutex_t l1_lru_lock __cacheline_aligned;
    634 
    635 /*
    636  * A list of all L1 tables
    637  */
    638 static SLIST_HEAD(, l1_ttable) l1_list;
    639 #endif /* ARM_MMU_EXTENDED */
    640 
    641 /*
    642  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    643  *
    644  * This is normally 16MB worth L2 page descriptors for any given pmap.
    645  * Reference counts are maintained for L2 descriptors so they can be
    646  * freed when empty.
    647  */
    648 struct l2_bucket {
    649 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
    650 	paddr_t l2b_pa;			/* Physical address of same */
    651 	u_short l2b_l1slot;		/* This L2 table's L1 index */
    652 	u_short l2b_occupancy;		/* How many active descriptors */
    653 };
    654 
    655 struct l2_dtable {
    656 	/* The number of L2 page descriptors allocated to this l2_dtable */
    657 	u_int l2_occupancy;
    658 
    659 	/* List of L2 page descriptors */
    660 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
    661 };
    662 
    663 /*
    664  * Given an L1 table index, calculate the corresponding l2_dtable index
    665  * and bucket index within the l2_dtable.
    666  */
    667 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    668 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    669 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    670 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    671 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    672 
    673 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    674 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    675 
    676 /*
    677  * Given a virtual address, this macro returns the
    678  * virtual address required to drop into the next L2 bucket.
    679  */
    680 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    681 
    682 /*
    683  * L2 allocation.
    684  */
    685 #define	pmap_alloc_l2_dtable()		\
    686 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    687 #define	pmap_free_l2_dtable(l2)		\
    688 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    689 #define pmap_alloc_l2_ptp(pap)		\
    690 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    691 	    PR_NOWAIT, (pap)))
    692 
    693 /*
    694  * We try to map the page tables write-through, if possible.  However, not
    695  * all CPUs have a write-through cache mode, so on those we have to sync
    696  * the cache when we frob page tables.
    697  *
    698  * We try to evaluate this at compile time, if possible.  However, it's
    699  * not always possible to do that, hence this run-time var.
    700  */
    701 int	pmap_needs_pte_sync;
    702 
    703 /*
    704  * Real definition of pv_entry.
    705  */
    706 struct pv_entry {
    707 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    708 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    709 	vaddr_t		pv_va;          /* virtual address for mapping */
    710 	u_int		pv_flags;       /* flags */
    711 };
    712 
    713 /*
    714  * Macros to determine if a mapping might be resident in the
    715  * instruction/data cache and/or TLB
    716  */
    717 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    718 /*
    719  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    720  * there are no explicit accesses, so there may be always be TLB entries to
    721  * flush.  If we used ASIDs then this would not be a problem.
    722  */
    723 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    724 #define	PV_BEEN_REFD(f)   (true)
    725 #else
    726 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    727 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    728 #endif
    729 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    730 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    731 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    732 
    733 /*
    734  * Local prototypes
    735  */
    736 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    737 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    738 			    pt_entry_t **);
    739 static bool		pmap_is_current(pmap_t) __unused;
    740 static bool		pmap_is_cached(pmap_t);
    741 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    742 			    pmap_t, vaddr_t, u_int);
    743 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    744 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    745 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    746 			    u_int, u_int);
    747 
    748 static void		pmap_pinit(pmap_t);
    749 static int		pmap_pmap_ctor(void *, void *, int);
    750 
    751 static void		pmap_alloc_l1(pmap_t);
    752 static void		pmap_free_l1(pmap_t);
    753 #ifndef ARM_MMU_EXTENDED
    754 static void		pmap_use_l1(pmap_t);
    755 #endif
    756 
    757 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    758 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    759 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    760 static int		pmap_l2ptp_ctor(void *, void *, int);
    761 static int		pmap_l2dtable_ctor(void *, void *, int);
    762 
    763 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    764 #ifdef PMAP_CACHE_VIVT
    765 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    766 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    767 #endif
    768 
    769 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    770 #ifdef PMAP_CACHE_VIVT
    771 static bool		pmap_clean_page(struct vm_page_md *, bool);
    772 #endif
    773 #ifdef PMAP_CACHE_VIPT
    774 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    775 enum pmap_flush_op {
    776 	PMAP_FLUSH_PRIMARY,
    777 	PMAP_FLUSH_SECONDARY,
    778 	PMAP_CLEAN_PRIMARY
    779 };
    780 #ifndef ARM_MMU_EXTENDED
    781 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    782 #endif
    783 #endif
    784 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    785 static void		pmap_pv_remove(paddr_t);
    786 
    787 #ifndef ARM_MMU_EXTENDED
    788 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    789 #endif
    790 static vaddr_t		kernel_pt_lookup(paddr_t);
    791 
    792 
    793 /*
    794  * Misc variables
    795  */
    796 vaddr_t virtual_avail;
    797 vaddr_t virtual_end;
    798 vaddr_t pmap_curmaxkvaddr;
    799 
    800 paddr_t avail_start;
    801 paddr_t avail_end;
    802 
    803 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    804 pv_addr_t kernelpages;
    805 pv_addr_t kernel_l1pt;
    806 pv_addr_t systempage;
    807 
    808 /* Function to set the debug level of the pmap code */
    809 
    810 #ifdef PMAP_DEBUG
    811 void
    812 pmap_debug(int level)
    813 {
    814 	pmap_debug_level = level;
    815 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    816 }
    817 #endif	/* PMAP_DEBUG */
    818 
    819 #ifdef PMAP_CACHE_VIPT
    820 #define PMAP_VALIDATE_MD_PAGE(md)	\
    821 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    822 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    823 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    824 #endif /* PMAP_CACHE_VIPT */
    825 /*
    826  * A bunch of routines to conditionally flush the caches/TLB depending
    827  * on whether the specified pmap actually needs to be flushed at any
    828  * given time.
    829  */
    830 static inline void
    831 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    832 {
    833 #ifdef ARM_MMU_EXTENDED
    834 	pmap_tlb_invalidate_addr(pm, va);
    835 #else
    836 	if (pm->pm_cstate.cs_tlb_id != 0) {
    837 		if (PV_BEEN_EXECD(flags)) {
    838 			cpu_tlb_flushID_SE(va);
    839 		} else if (PV_BEEN_REFD(flags)) {
    840 			cpu_tlb_flushD_SE(va);
    841 		}
    842 	}
    843 #endif /* ARM_MMU_EXTENDED */
    844 }
    845 
    846 #ifndef ARM_MMU_EXTENDED
    847 static inline void
    848 pmap_tlb_flushID(pmap_t pm)
    849 {
    850 	if (pm->pm_cstate.cs_tlb_id) {
    851 		cpu_tlb_flushID();
    852 #if ARM_MMU_V7 == 0
    853 		/*
    854 		 * Speculative loads by Cortex cores can cause TLB entries to
    855 		 * be filled even if there are no explicit accesses, so there
    856 		 * may be always be TLB entries to flush.  If we used ASIDs
    857 		 * then it would not be a problem.
    858 		 * This is not true for other CPUs.
    859 		 */
    860 		pm->pm_cstate.cs_tlb = 0;
    861 #endif /* ARM_MMU_V7 */
    862 	}
    863 }
    864 
    865 static inline void
    866 pmap_tlb_flushD(pmap_t pm)
    867 {
    868 	if (pm->pm_cstate.cs_tlb_d) {
    869 		cpu_tlb_flushD();
    870 #if ARM_MMU_V7 == 0
    871 		/*
    872 		 * Speculative loads by Cortex cores can cause TLB entries to
    873 		 * be filled even if there are no explicit accesses, so there
    874 		 * may be always be TLB entries to flush.  If we used ASIDs
    875 		 * then it would not be a problem.
    876 		 * This is not true for other CPUs.
    877 		 */
    878 		pm->pm_cstate.cs_tlb_d = 0;
    879 #endif /* ARM_MMU_V7 */
    880 	}
    881 }
    882 #endif /* ARM_MMU_EXTENDED */
    883 
    884 #ifdef PMAP_CACHE_VIVT
    885 static inline void
    886 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    887 {
    888 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    889 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    890 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    891 		if (do_inv) {
    892 			if (flags & PVF_WRITE)
    893 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    894 			else
    895 				cpu_dcache_inv_range(va, PAGE_SIZE);
    896 		} else if (flags & PVF_WRITE) {
    897 			cpu_dcache_wb_range(va, PAGE_SIZE);
    898 		}
    899 	}
    900 }
    901 
    902 static inline void
    903 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    904 {
    905 	if (PV_BEEN_EXECD(flags)) {
    906 		if (pm->pm_cstate.cs_cache_id) {
    907 			cpu_idcache_wbinv_all();
    908 			pm->pm_cstate.cs_cache = 0;
    909 		}
    910 	} else if (pm->pm_cstate.cs_cache_d) {
    911 		cpu_dcache_wbinv_all();
    912 		pm->pm_cstate.cs_cache_d = 0;
    913 	}
    914 }
    915 #endif /* PMAP_CACHE_VIVT */
    916 
    917 static inline uint8_t
    918 pmap_domain(pmap_t pm)
    919 {
    920 #ifdef ARM_MMU_EXTENDED
    921 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    922 #else
    923 	return pm->pm_domain;
    924 #endif
    925 }
    926 
    927 static inline pd_entry_t *
    928 pmap_l1_kva(pmap_t pm)
    929 {
    930 #ifdef ARM_MMU_EXTENDED
    931 	return pm->pm_l1;
    932 #else
    933 	return pm->pm_l1->l1_kva;
    934 #endif
    935 }
    936 
    937 static inline bool
    938 pmap_is_current(pmap_t pm)
    939 {
    940 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    941 		return true;
    942 
    943 	return false;
    944 }
    945 
    946 static inline bool
    947 pmap_is_cached(pmap_t pm)
    948 {
    949 #ifdef ARM_MMU_EXTENDED
    950 	if (pm == pmap_kernel())
    951 		return true;
    952 #ifdef MULTIPROCESSOR
    953 	// Is this pmap active on any CPU?
    954 	if (!kcpuset_iszero(pm->pm_active))
    955 		return true;
    956 #else
    957 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    958 	// Is this pmap active?
    959 	if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    960 		return true;
    961 #endif
    962 #else
    963 	struct cpu_info * const ci = curcpu();
    964 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    965 	    || ci->ci_pmap_lastuser == pm)
    966 		return true;
    967 #endif /* ARM_MMU_EXTENDED */
    968 
    969 	return false;
    970 }
    971 
    972 /*
    973  * PTE_SYNC_CURRENT:
    974  *
    975  *     Make sure the pte is written out to RAM.
    976  *     We need to do this for one of two cases:
    977  *       - We're dealing with the kernel pmap
    978  *       - There is no pmap active in the cache/tlb.
    979  *       - The specified pmap is 'active' in the cache/tlb.
    980  */
    981 
    982 #ifdef PMAP_INCLUDE_PTE_SYNC
    983 static inline void
    984 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
    985 {
    986 	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
    987 		PTE_SYNC(ptep);
    988 	arm_dsb();
    989 }
    990 
    991 # define PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
    992 #else
    993 # define PTE_SYNC_CURRENT(pm, ptep)	__nothing
    994 #endif
    995 
    996 /*
    997  * main pv_entry manipulation functions:
    998  *   pmap_enter_pv: enter a mapping onto a vm_page list
    999  *   pmap_remove_pv: remove a mapping from a vm_page list
   1000  *
   1001  * NOTE: pmap_enter_pv expects to lock the pvh itself
   1002  *       pmap_remove_pv expects the caller to lock the pvh before calling
   1003  */
   1004 
   1005 /*
   1006  * pmap_enter_pv: enter a mapping onto a vm_page lst
   1007  *
   1008  * => caller should hold the proper lock on pmap_main_lock
   1009  * => caller should have pmap locked
   1010  * => we will gain the lock on the vm_page and allocate the new pv_entry
   1011  * => caller should adjust ptp's wire_count before calling
   1012  * => caller should not adjust pmap's wire_count
   1013  */
   1014 static void
   1015 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
   1016     vaddr_t va, u_int flags)
   1017 {
   1018 	struct pv_entry **pvp;
   1019 
   1020 	NPDEBUG(PDB_PVDUMP,
   1021 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
   1022 
   1023 	pv->pv_pmap = pm;
   1024 	pv->pv_va = va;
   1025 	pv->pv_flags = flags;
   1026 
   1027 	pvp = &SLIST_FIRST(&md->pvh_list);
   1028 #ifdef PMAP_CACHE_VIPT
   1029 	/*
   1030 	 * Insert unmanaged entries, writeable first, at the head of
   1031 	 * the pv list.
   1032 	 */
   1033 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1034 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1035 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1036 	}
   1037 	if (!PV_IS_WRITE_P(flags)) {
   1038 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1039 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1040 	}
   1041 #endif
   1042 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1043 	*pvp = pv;				/* ... locked list */
   1044 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1045 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1046 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1047 		md->pvh_attrs |= PVF_KMOD;
   1048 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1049 		md->pvh_attrs |= PVF_DIRTY;
   1050 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1051 #endif
   1052 	if (pm == pmap_kernel()) {
   1053 		PMAPCOUNT(kernel_mappings);
   1054 		if (flags & PVF_WRITE)
   1055 			md->krw_mappings++;
   1056 		else
   1057 			md->kro_mappings++;
   1058 	} else {
   1059 		if (flags & PVF_WRITE)
   1060 			md->urw_mappings++;
   1061 		else
   1062 			md->uro_mappings++;
   1063 	}
   1064 
   1065 #ifdef PMAP_CACHE_VIPT
   1066 #ifndef ARM_MMU_EXTENDED
   1067 	/*
   1068 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1069 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1070 	 */
   1071 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1072 		md->pvh_attrs |= PVF_WRITE;
   1073 	}
   1074 #endif
   1075 	/*
   1076 	 * If this is an exec mapping and its the first exec mapping
   1077 	 * for this page, make sure to sync the I-cache.
   1078 	 */
   1079 	if (PV_IS_EXEC_P(flags)) {
   1080 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1081 			pmap_syncicache_page(md, pa);
   1082 			PMAPCOUNT(exec_synced_map);
   1083 		}
   1084 		PMAPCOUNT(exec_mappings);
   1085 	}
   1086 #endif
   1087 
   1088 	PMAPCOUNT(mappings);
   1089 
   1090 	if (pv->pv_flags & PVF_WIRED)
   1091 		++pm->pm_stats.wired_count;
   1092 }
   1093 
   1094 /*
   1095  *
   1096  * pmap_find_pv: Find a pv entry
   1097  *
   1098  * => caller should hold lock on vm_page
   1099  */
   1100 static inline struct pv_entry *
   1101 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1102 {
   1103 	struct pv_entry *pv;
   1104 
   1105 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1106 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1107 			break;
   1108 	}
   1109 
   1110 	return (pv);
   1111 }
   1112 
   1113 /*
   1114  * pmap_remove_pv: try to remove a mapping from a pv_list
   1115  *
   1116  * => caller should hold proper lock on pmap_main_lock
   1117  * => pmap should be locked
   1118  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1119  * => caller should adjust ptp's wire_count and free PTP if needed
   1120  * => caller should NOT adjust pmap's wire_count
   1121  * => we return the removed pv
   1122  */
   1123 static struct pv_entry *
   1124 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1125 {
   1126 	struct pv_entry *pv, **prevptr;
   1127 
   1128 	NPDEBUG(PDB_PVDUMP,
   1129 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
   1130 
   1131 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1132 	pv = *prevptr;
   1133 
   1134 	while (pv) {
   1135 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1136 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
   1137 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
   1138 			if (pv->pv_flags & PVF_WIRED) {
   1139 				--pm->pm_stats.wired_count;
   1140 			}
   1141 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1142 			if (pm == pmap_kernel()) {
   1143 				PMAPCOUNT(kernel_unmappings);
   1144 				if (pv->pv_flags & PVF_WRITE)
   1145 					md->krw_mappings--;
   1146 				else
   1147 					md->kro_mappings--;
   1148 			} else {
   1149 				if (pv->pv_flags & PVF_WRITE)
   1150 					md->urw_mappings--;
   1151 				else
   1152 					md->uro_mappings--;
   1153 			}
   1154 
   1155 			PMAPCOUNT(unmappings);
   1156 #ifdef PMAP_CACHE_VIPT
   1157 			/*
   1158 			 * If this page has had an exec mapping, then if
   1159 			 * this was the last mapping, discard the contents,
   1160 			 * otherwise sync the i-cache for this page.
   1161 			 */
   1162 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1163 				if (SLIST_EMPTY(&md->pvh_list)) {
   1164 					md->pvh_attrs &= ~PVF_EXEC;
   1165 					PMAPCOUNT(exec_discarded_unmap);
   1166 				} else if (pv->pv_flags & PVF_WRITE) {
   1167 					pmap_syncicache_page(md, pa);
   1168 					PMAPCOUNT(exec_synced_unmap);
   1169 				}
   1170 			}
   1171 #endif /* PMAP_CACHE_VIPT */
   1172 			break;
   1173 		}
   1174 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1175 		pv = *prevptr;				/* advance */
   1176 	}
   1177 
   1178 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1179 	/*
   1180 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1181 	 * clear the KMOD attribute from the page.
   1182 	 */
   1183 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1184 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1185 		md->pvh_attrs &= ~PVF_KMOD;
   1186 
   1187 	/*
   1188 	 * If this was a writeable page and there are no more writeable
   1189 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1190 	 * the contents to memory.
   1191 	 */
   1192 	if (arm_cache_prefer_mask != 0) {
   1193 		if (md->krw_mappings + md->urw_mappings == 0)
   1194 			md->pvh_attrs &= ~PVF_WRITE;
   1195 		PMAP_VALIDATE_MD_PAGE(md);
   1196 	}
   1197 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1198 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1199 
   1200 	/* return removed pv */
   1201 	return pv;
   1202 }
   1203 
   1204 /*
   1205  *
   1206  * pmap_modify_pv: Update pv flags
   1207  *
   1208  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1209  * => caller should NOT adjust pmap's wire_count
   1210  * => caller must call pmap_vac_me_harder() if writable status of a page
   1211  *    may have changed.
   1212  * => we return the old flags
   1213  *
   1214  * Modify a physical-virtual mapping in the pv table
   1215  */
   1216 static u_int
   1217 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1218     u_int clr_mask, u_int set_mask)
   1219 {
   1220 	struct pv_entry *npv;
   1221 	u_int flags, oflags;
   1222 
   1223 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1224 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1225 
   1226 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1227 		return (0);
   1228 
   1229 	NPDEBUG(PDB_PVDUMP,
   1230 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1231 
   1232 	/*
   1233 	 * There is at least one VA mapping this page.
   1234 	 */
   1235 
   1236 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1237 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1238 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1239 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1240 			md->pvh_attrs |= PVF_DIRTY;
   1241 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1242 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1243 	}
   1244 
   1245 	oflags = npv->pv_flags;
   1246 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1247 
   1248 	if ((flags ^ oflags) & PVF_WIRED) {
   1249 		if (flags & PVF_WIRED)
   1250 			++pm->pm_stats.wired_count;
   1251 		else
   1252 			--pm->pm_stats.wired_count;
   1253 	}
   1254 
   1255 	if ((flags ^ oflags) & PVF_WRITE) {
   1256 		if (pm == pmap_kernel()) {
   1257 			if (flags & PVF_WRITE) {
   1258 				md->krw_mappings++;
   1259 				md->kro_mappings--;
   1260 			} else {
   1261 				md->kro_mappings++;
   1262 				md->krw_mappings--;
   1263 			}
   1264 		} else {
   1265 			if (flags & PVF_WRITE) {
   1266 				md->urw_mappings++;
   1267 				md->uro_mappings--;
   1268 			} else {
   1269 				md->uro_mappings++;
   1270 				md->urw_mappings--;
   1271 			}
   1272 		}
   1273 	}
   1274 #ifdef PMAP_CACHE_VIPT
   1275 	if (arm_cache_prefer_mask != 0) {
   1276 		if (md->urw_mappings + md->krw_mappings == 0) {
   1277 			md->pvh_attrs &= ~PVF_WRITE;
   1278 		} else {
   1279 			md->pvh_attrs |= PVF_WRITE;
   1280 		}
   1281 	}
   1282 	/*
   1283 	 * We have two cases here: the first is from enter_pv (new exec
   1284 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1285 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1286 	 * to do what pmap_remove_pv would do.
   1287 	 */
   1288 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1289 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1290 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1291 		pmap_syncicache_page(md, pa);
   1292 		PMAPCOUNT(exec_synced_remap);
   1293 	}
   1294 #ifndef ARM_MMU_EXTENDED
   1295 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1296 #endif /* !ARM_MMU_EXTENDED */
   1297 #endif /* PMAP_CACHE_VIPT */
   1298 
   1299 	PMAPCOUNT(remappings);
   1300 
   1301 	return (oflags);
   1302 }
   1303 
   1304 /*
   1305  * Allocate an L1 translation table for the specified pmap.
   1306  * This is called at pmap creation time.
   1307  */
   1308 static void
   1309 pmap_alloc_l1(pmap_t pm)
   1310 {
   1311 #ifdef ARM_MMU_EXTENDED
   1312 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1313 	struct vm_page *pg;
   1314 	bool ok __diagused;
   1315 	for (;;) {
   1316 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1317 		pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
   1318 #else
   1319 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1320 #endif
   1321 		if (pg != NULL)
   1322 			break;
   1323 		uvm_wait("pmapl1alloc");
   1324 	}
   1325 	pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
   1326 	vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
   1327 	KASSERT(ok);
   1328 	KASSERT(va >= KERNEL_BASE);
   1329 
   1330 #else
   1331 	KASSERTMSG(kernel_map != NULL, "pm %p", pm);
   1332 	vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1333 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1334 	KASSERT(va);
   1335 	pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
   1336 #endif
   1337 	pm->pm_l1 = (pd_entry_t *)va;
   1338 	PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
   1339 #else
   1340 	struct l1_ttable *l1;
   1341 	uint8_t domain;
   1342 
   1343 	/*
   1344 	 * Remove the L1 at the head of the LRU list
   1345 	 */
   1346 	mutex_spin_enter(&l1_lru_lock);
   1347 	l1 = TAILQ_FIRST(&l1_lru_list);
   1348 	KDASSERT(l1 != NULL);
   1349 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1350 
   1351 	/*
   1352 	 * Pick the first available domain number, and update
   1353 	 * the link to the next number.
   1354 	 */
   1355 	domain = l1->l1_domain_first;
   1356 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1357 
   1358 	/*
   1359 	 * If there are still free domain numbers in this L1,
   1360 	 * put it back on the TAIL of the LRU list.
   1361 	 */
   1362 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1363 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1364 
   1365 	mutex_spin_exit(&l1_lru_lock);
   1366 
   1367 	/*
   1368 	 * Fix up the relevant bits in the pmap structure
   1369 	 */
   1370 	pm->pm_l1 = l1;
   1371 	pm->pm_domain = domain + 1;
   1372 #endif
   1373 }
   1374 
   1375 /*
   1376  * Free an L1 translation table.
   1377  * This is called at pmap destruction time.
   1378  */
   1379 static void
   1380 pmap_free_l1(pmap_t pm)
   1381 {
   1382 #ifdef ARM_MMU_EXTENDED
   1383 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1384 	struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
   1385 	uvm_pagefree(pg);
   1386 #else
   1387 	uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
   1388 #endif
   1389 	pm->pm_l1 = NULL;
   1390 	pm->pm_l1_pa = 0;
   1391 #else
   1392 	struct l1_ttable *l1 = pm->pm_l1;
   1393 
   1394 	mutex_spin_enter(&l1_lru_lock);
   1395 
   1396 	/*
   1397 	 * If this L1 is currently on the LRU list, remove it.
   1398 	 */
   1399 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1400 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1401 
   1402 	/*
   1403 	 * Free up the domain number which was allocated to the pmap
   1404 	 */
   1405 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1406 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1407 	l1->l1_domain_use_count--;
   1408 
   1409 	/*
   1410 	 * The L1 now must have at least 1 free domain, so add
   1411 	 * it back to the LRU list. If the use count is zero,
   1412 	 * put it at the head of the list, otherwise it goes
   1413 	 * to the tail.
   1414 	 */
   1415 	if (l1->l1_domain_use_count == 0)
   1416 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1417 	else
   1418 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1419 
   1420 	mutex_spin_exit(&l1_lru_lock);
   1421 #endif /* ARM_MMU_EXTENDED */
   1422 }
   1423 
   1424 #ifndef ARM_MMU_EXTENDED
   1425 static inline void
   1426 pmap_use_l1(pmap_t pm)
   1427 {
   1428 	struct l1_ttable *l1;
   1429 
   1430 	/*
   1431 	 * Do nothing if we're in interrupt context.
   1432 	 * Access to an L1 by the kernel pmap must not affect
   1433 	 * the LRU list.
   1434 	 */
   1435 	if (cpu_intr_p() || pm == pmap_kernel())
   1436 		return;
   1437 
   1438 	l1 = pm->pm_l1;
   1439 
   1440 	/*
   1441 	 * If the L1 is not currently on the LRU list, just return
   1442 	 */
   1443 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1444 		return;
   1445 
   1446 	mutex_spin_enter(&l1_lru_lock);
   1447 
   1448 	/*
   1449 	 * Check the use count again, now that we've acquired the lock
   1450 	 */
   1451 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1452 		mutex_spin_exit(&l1_lru_lock);
   1453 		return;
   1454 	}
   1455 
   1456 	/*
   1457 	 * Move the L1 to the back of the LRU list
   1458 	 */
   1459 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1460 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1461 
   1462 	mutex_spin_exit(&l1_lru_lock);
   1463 }
   1464 #endif /* !ARM_MMU_EXTENDED */
   1465 
   1466 /*
   1467  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1468  *
   1469  * Free an L2 descriptor table.
   1470  */
   1471 static inline void
   1472 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1473 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1474 #else
   1475 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1476 #endif
   1477 {
   1478 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1479 	/*
   1480 	 * Note: With a write-back cache, we may need to sync this
   1481 	 * L2 table before re-using it.
   1482 	 * This is because it may have belonged to a non-current
   1483 	 * pmap, in which case the cache syncs would have been
   1484 	 * skipped for the pages that were being unmapped. If the
   1485 	 * L2 table were then to be immediately re-allocated to
   1486 	 * the *current* pmap, it may well contain stale mappings
   1487 	 * which have not yet been cleared by a cache write-back
   1488 	 * and so would still be visible to the mmu.
   1489 	 */
   1490 	if (need_sync)
   1491 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1492 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1493 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1494 }
   1495 
   1496 /*
   1497  * Returns a pointer to the L2 bucket associated with the specified pmap
   1498  * and VA, or NULL if no L2 bucket exists for the address.
   1499  */
   1500 static inline struct l2_bucket *
   1501 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1502 {
   1503 	const size_t l1slot = l1pte_index(va);
   1504 	struct l2_dtable *l2;
   1505 	struct l2_bucket *l2b;
   1506 
   1507 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1508 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1509 		return (NULL);
   1510 
   1511 	return (l2b);
   1512 }
   1513 
   1514 /*
   1515  * Returns a pointer to the L2 bucket associated with the specified pmap
   1516  * and VA.
   1517  *
   1518  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1519  * bucket/page table in place.
   1520  *
   1521  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1522  * increment the bucket occupancy counter appropriately *before*
   1523  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1524  * the bucket/page in the meantime.
   1525  */
   1526 static struct l2_bucket *
   1527 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1528 {
   1529 	const size_t l1slot = l1pte_index(va);
   1530 	struct l2_dtable *l2;
   1531 
   1532 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1533 		/*
   1534 		 * No mapping at this address, as there is
   1535 		 * no entry in the L1 table.
   1536 		 * Need to allocate a new l2_dtable.
   1537 		 */
   1538 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1539 			return (NULL);
   1540 
   1541 		/*
   1542 		 * Link it into the parent pmap
   1543 		 */
   1544 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1545 	}
   1546 
   1547 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1548 
   1549 	/*
   1550 	 * Fetch pointer to the L2 page table associated with the address.
   1551 	 */
   1552 	if (l2b->l2b_kva == NULL) {
   1553 		pt_entry_t *ptep;
   1554 
   1555 		/*
   1556 		 * No L2 page table has been allocated. Chances are, this
   1557 		 * is because we just allocated the l2_dtable, above.
   1558 		 */
   1559 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1560 			/*
   1561 			 * Oops, no more L2 page tables available at this
   1562 			 * time. We may need to deallocate the l2_dtable
   1563 			 * if we allocated a new one above.
   1564 			 */
   1565 			if (l2->l2_occupancy == 0) {
   1566 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1567 				pmap_free_l2_dtable(l2);
   1568 			}
   1569 			return (NULL);
   1570 		}
   1571 
   1572 		l2->l2_occupancy++;
   1573 		l2b->l2b_kva = ptep;
   1574 		l2b->l2b_l1slot = l1slot;
   1575 
   1576 #ifdef ARM_MMU_EXTENDED
   1577 		/*
   1578 		 * We know there will be a mapping here, so simply
   1579 		 * enter this PTP into the L1 now.
   1580 		 */
   1581 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1582 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1583 		    | L1_C_DOM(pmap_domain(pm));
   1584 		KASSERT(*pdep == 0);
   1585 		l1pte_setone(pdep, npde);
   1586 		PDE_SYNC(pdep);
   1587 #endif
   1588 	}
   1589 
   1590 	return (l2b);
   1591 }
   1592 
   1593 /*
   1594  * One or more mappings in the specified L2 descriptor table have just been
   1595  * invalidated.
   1596  *
   1597  * Garbage collect the metadata and descriptor table itself if necessary.
   1598  *
   1599  * The pmap lock must be acquired when this is called (not necessary
   1600  * for the kernel pmap).
   1601  */
   1602 static void
   1603 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1604 {
   1605 	KDASSERT(count <= l2b->l2b_occupancy);
   1606 
   1607 	/*
   1608 	 * Update the bucket's reference count according to how many
   1609 	 * PTEs the caller has just invalidated.
   1610 	 */
   1611 	l2b->l2b_occupancy -= count;
   1612 
   1613 	/*
   1614 	 * Note:
   1615 	 *
   1616 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1617 	 * as that would require checking all Level 1 page tables and
   1618 	 * removing any references to the Level 2 page table. See also the
   1619 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1620 	 *
   1621 	 * We make do with just invalidating the mapping in the L2 table.
   1622 	 *
   1623 	 * This isn't really a big deal in practice and, in fact, leads
   1624 	 * to a performance win over time as we don't need to continually
   1625 	 * alloc/free.
   1626 	 */
   1627 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1628 		return;
   1629 
   1630 	/*
   1631 	 * There are no more valid mappings in this level 2 page table.
   1632 	 * Go ahead and NULL-out the pointer in the bucket, then
   1633 	 * free the page table.
   1634 	 */
   1635 	const size_t l1slot = l2b->l2b_l1slot;
   1636 	pt_entry_t * const ptep = l2b->l2b_kva;
   1637 	l2b->l2b_kva = NULL;
   1638 
   1639 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1640 	pd_entry_t pde __diagused = *pdep;
   1641 
   1642 #ifdef ARM_MMU_EXTENDED
   1643 	/*
   1644 	 * Invalidate the L1 slot.
   1645 	 */
   1646 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1647 #else
   1648 	/*
   1649 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1650 	 */
   1651 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1652 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1653 #endif
   1654 		l1pte_setone(pdep, 0);
   1655 		PDE_SYNC(pdep);
   1656 #ifndef ARM_MMU_EXTENDED
   1657 	}
   1658 #endif
   1659 
   1660 	/*
   1661 	 * Release the L2 descriptor table back to the pool cache.
   1662 	 */
   1663 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1664 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1665 #else
   1666 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1667 #endif
   1668 
   1669 	/*
   1670 	 * Update the reference count in the associated l2_dtable
   1671 	 */
   1672 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1673 	if (--l2->l2_occupancy > 0)
   1674 		return;
   1675 
   1676 	/*
   1677 	 * There are no more valid mappings in any of the Level 1
   1678 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1679 	 * the pointer in the parent pmap and free the l2_dtable.
   1680 	 */
   1681 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1682 	pmap_free_l2_dtable(l2);
   1683 }
   1684 
   1685 /*
   1686  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1687  * structures.
   1688  */
   1689 static int
   1690 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1691 {
   1692 #ifndef PMAP_INCLUDE_PTE_SYNC
   1693 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1694 
   1695 	/*
   1696 	 * The mappings for these page tables were initially made using
   1697 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1698 	 * mode will not be right for page table mappings. To avoid
   1699 	 * polluting the pmap_kenter_pa() code with a special case for
   1700 	 * page tables, we simply fix up the cache-mode here if it's not
   1701 	 * correct.
   1702 	 */
   1703 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1704 		const struct l2_bucket * const l2b =
   1705 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1706 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1707 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1708 		const pt_entry_t opte = *ptep;
   1709 
   1710 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1711 			/*
   1712 			 * Page tables must have the cache-mode set correctly.
   1713 			 */
   1714 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   1715 			    | pte_l2_s_cache_mode_pt;
   1716 			l2pte_set(ptep, npte, opte);
   1717 			PTE_SYNC(ptep);
   1718 			cpu_tlb_flushD_SE(va);
   1719 			cpu_cpwait();
   1720 		}
   1721 	}
   1722 #endif
   1723 
   1724 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1725 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1726 	return (0);
   1727 }
   1728 
   1729 static int
   1730 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1731 {
   1732 
   1733 	memset(v, 0, sizeof(struct l2_dtable));
   1734 	return (0);
   1735 }
   1736 
   1737 static int
   1738 pmap_pmap_ctor(void *arg, void *v, int flags)
   1739 {
   1740 
   1741 	memset(v, 0, sizeof(struct pmap));
   1742 	return (0);
   1743 }
   1744 
   1745 static void
   1746 pmap_pinit(pmap_t pm)
   1747 {
   1748 #ifndef ARM_HAS_VBAR
   1749 	struct l2_bucket *l2b;
   1750 
   1751 	if (vector_page < KERNEL_BASE) {
   1752 		/*
   1753 		 * Map the vector page.
   1754 		 */
   1755 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1756 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1757 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1758 		pmap_update(pm);
   1759 
   1760 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1761 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1762 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1763 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1764 		    L1_C_DOM(pmap_domain(pm));
   1765 	} else
   1766 		pm->pm_pl1vec = NULL;
   1767 #endif
   1768 }
   1769 
   1770 #ifdef PMAP_CACHE_VIVT
   1771 /*
   1772  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1773  * there is more than one mapping and at least one of them is writable.
   1774  * Since we purge the cache on every context switch, we only need to check for
   1775  * other mappings within the same pmap, or kernel_pmap.
   1776  * This function is also called when a page is unmapped, to possibly reenable
   1777  * caching on any remaining mappings.
   1778  *
   1779  * The code implements the following logic, where:
   1780  *
   1781  * KW = # of kernel read/write pages
   1782  * KR = # of kernel read only pages
   1783  * UW = # of user read/write pages
   1784  * UR = # of user read only pages
   1785  *
   1786  * KC = kernel mapping is cacheable
   1787  * UC = user mapping is cacheable
   1788  *
   1789  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1790  *             +---------------------------------------------
   1791  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1792  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1793  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1794  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1795  */
   1796 
   1797 static const int pmap_vac_flags[4][4] = {
   1798 	{-1,		0,		0,		PVF_KNC},
   1799 	{0,		0,		PVF_NC,		PVF_NC},
   1800 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1801 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1802 };
   1803 
   1804 static inline int
   1805 pmap_get_vac_flags(const struct vm_page_md *md)
   1806 {
   1807 	int kidx, uidx;
   1808 
   1809 	kidx = 0;
   1810 	if (md->kro_mappings || md->krw_mappings > 1)
   1811 		kidx |= 1;
   1812 	if (md->krw_mappings)
   1813 		kidx |= 2;
   1814 
   1815 	uidx = 0;
   1816 	if (md->uro_mappings || md->urw_mappings > 1)
   1817 		uidx |= 1;
   1818 	if (md->urw_mappings)
   1819 		uidx |= 2;
   1820 
   1821 	return (pmap_vac_flags[uidx][kidx]);
   1822 }
   1823 
   1824 static inline void
   1825 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1826 {
   1827 	int nattr;
   1828 
   1829 	nattr = pmap_get_vac_flags(md);
   1830 
   1831 	if (nattr < 0) {
   1832 		md->pvh_attrs &= ~PVF_NC;
   1833 		return;
   1834 	}
   1835 
   1836 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1837 		return;
   1838 
   1839 	if (pm == pmap_kernel())
   1840 		pmap_vac_me_kpmap(md, pa, pm, va);
   1841 	else
   1842 		pmap_vac_me_user(md, pa, pm, va);
   1843 
   1844 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1845 }
   1846 
   1847 static void
   1848 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1849 {
   1850 	u_int u_cacheable, u_entries;
   1851 	struct pv_entry *pv;
   1852 	pmap_t last_pmap = pm;
   1853 
   1854 	/*
   1855 	 * Pass one, see if there are both kernel and user pmaps for
   1856 	 * this page.  Calculate whether there are user-writable or
   1857 	 * kernel-writable pages.
   1858 	 */
   1859 	u_cacheable = 0;
   1860 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1861 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1862 			u_cacheable++;
   1863 	}
   1864 
   1865 	u_entries = md->urw_mappings + md->uro_mappings;
   1866 
   1867 	/*
   1868 	 * We know we have just been updating a kernel entry, so if
   1869 	 * all user pages are already cacheable, then there is nothing
   1870 	 * further to do.
   1871 	 */
   1872 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1873 		return;
   1874 
   1875 	if (u_entries) {
   1876 		/*
   1877 		 * Scan over the list again, for each entry, if it
   1878 		 * might not be set correctly, call pmap_vac_me_user
   1879 		 * to recalculate the settings.
   1880 		 */
   1881 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1882 			/*
   1883 			 * We know kernel mappings will get set
   1884 			 * correctly in other calls.  We also know
   1885 			 * that if the pmap is the same as last_pmap
   1886 			 * then we've just handled this entry.
   1887 			 */
   1888 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1889 				continue;
   1890 
   1891 			/*
   1892 			 * If there are kernel entries and this page
   1893 			 * is writable but non-cacheable, then we can
   1894 			 * skip this entry also.
   1895 			 */
   1896 			if (md->k_mappings &&
   1897 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1898 			    (PVF_NC | PVF_WRITE))
   1899 				continue;
   1900 
   1901 			/*
   1902 			 * Similarly if there are no kernel-writable
   1903 			 * entries and the page is already
   1904 			 * read-only/cacheable.
   1905 			 */
   1906 			if (md->krw_mappings == 0 &&
   1907 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1908 				continue;
   1909 
   1910 			/*
   1911 			 * For some of the remaining cases, we know
   1912 			 * that we must recalculate, but for others we
   1913 			 * can't tell if they are correct or not, so
   1914 			 * we recalculate anyway.
   1915 			 */
   1916 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1917 		}
   1918 
   1919 		if (md->k_mappings == 0)
   1920 			return;
   1921 	}
   1922 
   1923 	pmap_vac_me_user(md, pa, pm, va);
   1924 }
   1925 
   1926 static void
   1927 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1928 {
   1929 	pmap_t kpmap = pmap_kernel();
   1930 	struct pv_entry *pv, *npv = NULL;
   1931 	u_int entries = 0;
   1932 	u_int writable = 0;
   1933 	u_int cacheable_entries = 0;
   1934 	u_int kern_cacheable = 0;
   1935 	u_int other_writable = 0;
   1936 
   1937 	/*
   1938 	 * Count mappings and writable mappings in this pmap.
   1939 	 * Include kernel mappings as part of our own.
   1940 	 * Keep a pointer to the first one.
   1941 	 */
   1942 	npv = NULL;
   1943 	KASSERT(pmap_page_locked_p(md));
   1944 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1945 		/* Count mappings in the same pmap */
   1946 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1947 			if (entries++ == 0)
   1948 				npv = pv;
   1949 
   1950 			/* Cacheable mappings */
   1951 			if ((pv->pv_flags & PVF_NC) == 0) {
   1952 				cacheable_entries++;
   1953 				if (kpmap == pv->pv_pmap)
   1954 					kern_cacheable++;
   1955 			}
   1956 
   1957 			/* Writable mappings */
   1958 			if (pv->pv_flags & PVF_WRITE)
   1959 				++writable;
   1960 		} else if (pv->pv_flags & PVF_WRITE)
   1961 			other_writable = 1;
   1962 	}
   1963 
   1964 	/*
   1965 	 * Enable or disable caching as necessary.
   1966 	 * Note: the first entry might be part of the kernel pmap,
   1967 	 * so we can't assume this is indicative of the state of the
   1968 	 * other (maybe non-kpmap) entries.
   1969 	 */
   1970 	if ((entries > 1 && writable) ||
   1971 	    (entries > 0 && pm == kpmap && other_writable)) {
   1972 		if (cacheable_entries == 0) {
   1973 			return;
   1974 		}
   1975 
   1976 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1977 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1978 			    (pv->pv_flags & PVF_NC))
   1979 				continue;
   1980 
   1981 			pv->pv_flags |= PVF_NC;
   1982 
   1983 			struct l2_bucket * const l2b
   1984 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1985 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1986 			pt_entry_t * const ptep
   1987 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1988 			const pt_entry_t opte = *ptep;
   1989 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1990 
   1991 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1992 			    && l2pte_valid_p(opte)) {
   1993 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1994 				    true, pv->pv_flags);
   1995 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1996 				    pv->pv_flags);
   1997 			}
   1998 
   1999 			l2pte_set(ptep, npte, opte);
   2000 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2001 		}
   2002 		cpu_cpwait();
   2003 	} else if (entries > cacheable_entries) {
   2004 		/*
   2005 		 * Turn cacheing back on for some pages.  If it is a kernel
   2006 		 * page, only do so if there are no other writable pages.
   2007 		 */
   2008 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2009 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   2010 			    (kpmap != pv->pv_pmap || other_writable)))
   2011 				continue;
   2012 
   2013 			pv->pv_flags &= ~PVF_NC;
   2014 
   2015 			struct l2_bucket * const l2b
   2016 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2017 			KASSERTMSG(l2b != NULL, "%#lx", va);
   2018 			pt_entry_t * const ptep
   2019 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2020 			const pt_entry_t opte = *ptep;
   2021 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   2022 			    | pte_l2_s_cache_mode;
   2023 
   2024 			if (l2pte_valid_p(opte)) {
   2025 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2026 				    pv->pv_flags);
   2027 			}
   2028 
   2029 			l2pte_set(ptep, npte, opte);
   2030 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2031 		}
   2032 	}
   2033 }
   2034 #endif
   2035 
   2036 #ifdef PMAP_CACHE_VIPT
   2037 static void
   2038 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2039 {
   2040 #ifndef ARM_MMU_EXTENDED
   2041 	struct pv_entry *pv;
   2042 	vaddr_t tst_mask;
   2043 	bool bad_alias;
   2044 	const u_int
   2045 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2046 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2047 
   2048 	/* do we need to do anything? */
   2049 	if (arm_cache_prefer_mask == 0)
   2050 		return;
   2051 
   2052 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   2053 	    md, pm, va));
   2054 
   2055 	KASSERT(!va || pm);
   2056 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2057 
   2058 	/* Already a conflict? */
   2059 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2060 		/* just an add, things are already non-cached */
   2061 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2062 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2063 		bad_alias = false;
   2064 		if (va) {
   2065 			PMAPCOUNT(vac_color_none);
   2066 			bad_alias = true;
   2067 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2068 			goto fixup;
   2069 		}
   2070 		pv = SLIST_FIRST(&md->pvh_list);
   2071 		/* the list can't be empty because it would be cachable */
   2072 		if (md->pvh_attrs & PVF_KMPAGE) {
   2073 			tst_mask = md->pvh_attrs;
   2074 		} else {
   2075 			KASSERT(pv);
   2076 			tst_mask = pv->pv_va;
   2077 			pv = SLIST_NEXT(pv, pv_link);
   2078 		}
   2079 		/*
   2080 		 * Only check for a bad alias if we have writable mappings.
   2081 		 */
   2082 		tst_mask &= arm_cache_prefer_mask;
   2083 		if (rw_mappings > 0) {
   2084 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2085 				/* if there's a bad alias, stop checking. */
   2086 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2087 					bad_alias = true;
   2088 			}
   2089 			md->pvh_attrs |= PVF_WRITE;
   2090 			if (!bad_alias)
   2091 				md->pvh_attrs |= PVF_DIRTY;
   2092 		} else {
   2093 			/*
   2094 			 * We have only read-only mappings.  Let's see if there
   2095 			 * are multiple colors in use or if we mapped a KMPAGE.
   2096 			 * If the latter, we have a bad alias.  If the former,
   2097 			 * we need to remember that.
   2098 			 */
   2099 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2100 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2101 					if (md->pvh_attrs & PVF_KMPAGE)
   2102 						bad_alias = true;
   2103 					break;
   2104 				}
   2105 			}
   2106 			md->pvh_attrs &= ~PVF_WRITE;
   2107 			/*
   2108 			 * No KMPAGE and we exited early, so we must have
   2109 			 * multiple color mappings.
   2110 			 */
   2111 			if (!bad_alias && pv != NULL)
   2112 				md->pvh_attrs |= PVF_MULTCLR;
   2113 		}
   2114 
   2115 		/* If no conflicting colors, set everything back to cached */
   2116 		if (!bad_alias) {
   2117 #ifdef DEBUG
   2118 			if ((md->pvh_attrs & PVF_WRITE)
   2119 			    || ro_mappings < 2) {
   2120 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2121 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2122 			}
   2123 #endif
   2124 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2125 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2126 			/*
   2127 			 * Restore DIRTY bit if page is modified
   2128 			 */
   2129 			if (md->pvh_attrs & PVF_DMOD)
   2130 				md->pvh_attrs |= PVF_DIRTY;
   2131 			PMAPCOUNT(vac_color_restore);
   2132 		} else {
   2133 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2134 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2135 		}
   2136 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2137 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2138 	} else if (!va) {
   2139 		KASSERT(pmap_is_page_colored_p(md));
   2140 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2141 		    || (md->pvh_attrs & PVF_DIRTY));
   2142 		if (rw_mappings == 0) {
   2143 			md->pvh_attrs &= ~PVF_WRITE;
   2144 			if (ro_mappings == 1
   2145 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2146 				/*
   2147 				 * If this is the last readonly mapping
   2148 				 * but it doesn't match the current color
   2149 				 * for the page, change the current color
   2150 				 * to match this last readonly mapping.
   2151 				 */
   2152 				pv = SLIST_FIRST(&md->pvh_list);
   2153 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2154 				    & arm_cache_prefer_mask;
   2155 				if (tst_mask) {
   2156 					md->pvh_attrs ^= tst_mask;
   2157 					PMAPCOUNT(vac_color_change);
   2158 				}
   2159 			}
   2160 		}
   2161 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2162 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2163 		return;
   2164 	} else if (!pmap_is_page_colored_p(md)) {
   2165 		/* not colored so we just use its color */
   2166 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2167 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2168 		PMAPCOUNT(vac_color_new);
   2169 		md->pvh_attrs &= PAGE_SIZE - 1;
   2170 		md->pvh_attrs |= PVF_COLORED
   2171 		    | (va & arm_cache_prefer_mask)
   2172 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2173 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2174 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2175 		return;
   2176 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2177 		bad_alias = false;
   2178 		if (rw_mappings > 0) {
   2179 			/*
   2180 			 * We now have writeable mappings and if we have
   2181 			 * readonly mappings in more than once color, we have
   2182 			 * an aliasing problem.  Regardless mark the page as
   2183 			 * writeable.
   2184 			 */
   2185 			if (md->pvh_attrs & PVF_MULTCLR) {
   2186 				if (ro_mappings < 2) {
   2187 					/*
   2188 					 * If we only have less than two
   2189 					 * read-only mappings, just flush the
   2190 					 * non-primary colors from the cache.
   2191 					 */
   2192 					pmap_flush_page(md, pa,
   2193 					    PMAP_FLUSH_SECONDARY);
   2194 				} else {
   2195 					bad_alias = true;
   2196 				}
   2197 			}
   2198 			md->pvh_attrs |= PVF_WRITE;
   2199 		}
   2200 		/* If no conflicting colors, set everything back to cached */
   2201 		if (!bad_alias) {
   2202 #ifdef DEBUG
   2203 			if (rw_mappings > 0
   2204 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2205 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2206 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2207 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2208 			}
   2209 #endif
   2210 			if (SLIST_EMPTY(&md->pvh_list))
   2211 				PMAPCOUNT(vac_color_reuse);
   2212 			else
   2213 				PMAPCOUNT(vac_color_ok);
   2214 
   2215 			/* matching color, just return */
   2216 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2217 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2218 			return;
   2219 		}
   2220 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2221 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2222 
   2223 		/* color conflict.  evict from cache. */
   2224 
   2225 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2226 		md->pvh_attrs &= ~PVF_COLORED;
   2227 		md->pvh_attrs |= PVF_NC;
   2228 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2229 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2230 		PMAPCOUNT(vac_color_erase);
   2231 	} else if (rw_mappings == 0
   2232 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2233 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2234 
   2235 		/*
   2236 		 * If the page has dirty cache lines, clean it.
   2237 		 */
   2238 		if (md->pvh_attrs & PVF_DIRTY)
   2239 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2240 
   2241 		/*
   2242 		 * If this is the first remapping (we know that there are no
   2243 		 * writeable mappings), then this is a simple color change.
   2244 		 * Otherwise this is a seconary r/o mapping, which means
   2245 		 * we don't have to do anything.
   2246 		 */
   2247 		if (ro_mappings == 1) {
   2248 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2249 			md->pvh_attrs &= PAGE_SIZE - 1;
   2250 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2251 			PMAPCOUNT(vac_color_change);
   2252 		} else {
   2253 			PMAPCOUNT(vac_color_blind);
   2254 		}
   2255 		md->pvh_attrs |= PVF_MULTCLR;
   2256 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2257 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2258 		return;
   2259 	} else {
   2260 		if (rw_mappings > 0)
   2261 			md->pvh_attrs |= PVF_WRITE;
   2262 
   2263 		/* color conflict.  evict from cache. */
   2264 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2265 
   2266 		/* the list can't be empty because this was a enter/modify */
   2267 		pv = SLIST_FIRST(&md->pvh_list);
   2268 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2269 			KASSERT(pv);
   2270 			/*
   2271 			 * If there's only one mapped page, change color to the
   2272 			 * page's new color and return.  Restore the DIRTY bit
   2273 			 * that was erased by pmap_flush_page.
   2274 			 */
   2275 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2276 				md->pvh_attrs &= PAGE_SIZE - 1;
   2277 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2278 				if (md->pvh_attrs & PVF_DMOD)
   2279 					md->pvh_attrs |= PVF_DIRTY;
   2280 				PMAPCOUNT(vac_color_change);
   2281 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2282 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2283 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2284 				return;
   2285 			}
   2286 		}
   2287 		bad_alias = true;
   2288 		md->pvh_attrs &= ~PVF_COLORED;
   2289 		md->pvh_attrs |= PVF_NC;
   2290 		PMAPCOUNT(vac_color_erase);
   2291 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2292 	}
   2293 
   2294   fixup:
   2295 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2296 
   2297 	/*
   2298 	 * Turn cacheing on/off for all pages.
   2299 	 */
   2300 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2301 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2302 		    pv->pv_va);
   2303 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2304 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2305 		const pt_entry_t opte = *ptep;
   2306 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2307 		if (bad_alias) {
   2308 			pv->pv_flags |= PVF_NC;
   2309 		} else {
   2310 			pv->pv_flags &= ~PVF_NC;
   2311 			npte |= pte_l2_s_cache_mode;
   2312 		}
   2313 
   2314 		if (opte == npte)	/* only update is there's a change */
   2315 			continue;
   2316 
   2317 		if (l2pte_valid_p(opte)) {
   2318 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2319 		}
   2320 
   2321 		l2pte_set(ptep, npte, opte);
   2322 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2323 	}
   2324 #endif /* !ARM_MMU_EXTENDED */
   2325 }
   2326 #endif	/* PMAP_CACHE_VIPT */
   2327 
   2328 
   2329 /*
   2330  * Modify pte bits for all ptes corresponding to the given physical address.
   2331  * We use `maskbits' rather than `clearbits' because we're always passing
   2332  * constants and the latter would require an extra inversion at run-time.
   2333  */
   2334 static void
   2335 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2336 {
   2337 	struct pv_entry *pv;
   2338 #ifdef PMAP_CACHE_VIPT
   2339 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2340 	bool need_syncicache = false;
   2341 #ifdef ARM_MMU_EXTENDED
   2342 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
   2343 #else
   2344 	const u_int execbits = 0;
   2345 	bool need_vac_me_harder = false;
   2346 #endif
   2347 #else
   2348 	const u_int execbits = 0;
   2349 #endif
   2350 
   2351 	NPDEBUG(PDB_BITS,
   2352 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2353 	    md, maskbits));
   2354 
   2355 #ifdef PMAP_CACHE_VIPT
   2356 	/*
   2357 	 * If we might want to sync the I-cache and we've modified it,
   2358 	 * then we know we definitely need to sync or discard it.
   2359 	 */
   2360 	if (want_syncicache) {
   2361 		if (md->pvh_attrs & PVF_MOD) {
   2362 			need_syncicache = true;
   2363 		}
   2364 	}
   2365 #endif
   2366 	KASSERT(pmap_page_locked_p(md));
   2367 
   2368 	/*
   2369 	 * Clear saved attributes (modify, reference)
   2370 	 */
   2371 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2372 
   2373 	if (SLIST_EMPTY(&md->pvh_list)) {
   2374 #if defined(PMAP_CACHE_VIPT)
   2375 		if (need_syncicache) {
   2376 			/*
   2377 			 * No one has it mapped, so just discard it.  The next
   2378 			 * exec remapping will cause it to be synced.
   2379 			 */
   2380 			md->pvh_attrs &= ~PVF_EXEC;
   2381 			PMAPCOUNT(exec_discarded_clearbit);
   2382 		}
   2383 #endif
   2384 		return;
   2385 	}
   2386 
   2387 	/*
   2388 	 * Loop over all current mappings setting/clearing as appropos
   2389 	 */
   2390 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2391 		pmap_t pm = pv->pv_pmap;
   2392 		const vaddr_t va = pv->pv_va;
   2393 		const u_int oflags = pv->pv_flags;
   2394 #ifndef ARM_MMU_EXTENDED
   2395 		/*
   2396 		 * Kernel entries are unmanaged and as such not to be changed.
   2397 		 */
   2398 		if (PV_IS_KENTRY_P(oflags))
   2399 			continue;
   2400 #endif
   2401 		pv->pv_flags &= ~maskbits;
   2402 
   2403 		pmap_release_page_lock(md);
   2404 		pmap_acquire_pmap_lock(pm);
   2405 
   2406 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2407 		if (l2b == NULL) {
   2408 			pmap_release_pmap_lock(pm);
   2409 			pmap_acquire_page_lock(md);
   2410 			continue;
   2411 		}
   2412 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2413 
   2414 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2415 		const pt_entry_t opte = *ptep;
   2416 		pt_entry_t npte = opte | execbits;
   2417 
   2418 #ifdef ARM_MMU_EXTENDED
   2419 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2420 #endif
   2421 
   2422 		NPDEBUG(PDB_BITS,
   2423 		    printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2424 			__func__, pv, pm, va, oflags));
   2425 
   2426 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2427 #ifdef PMAP_CACHE_VIVT
   2428 			if ((oflags & PVF_NC)) {
   2429 				/*
   2430 				 * Entry is not cacheable:
   2431 				 *
   2432 				 * Don't turn caching on again if this is a
   2433 				 * modified emulation. This would be
   2434 				 * inconsitent with the settings created by
   2435 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2436 				 * to re-enable cacheing.
   2437 				 *
   2438 				 * There's no need to call pmap_vac_me_harder()
   2439 				 * here: all pages are losing their write
   2440 				 * permission.
   2441 				 */
   2442 				if (maskbits & PVF_WRITE) {
   2443 					npte |= pte_l2_s_cache_mode;
   2444 					pv->pv_flags &= ~PVF_NC;
   2445 				}
   2446 			} else if (l2pte_writable_p(opte)) {
   2447 				/*
   2448 				 * Entry is writable/cacheable: check if pmap
   2449 				 * is current if it is flush it, otherwise it
   2450 				 * won't be in the cache
   2451 				 */
   2452 				pmap_cache_wbinv_page(pm, va,
   2453 				    (maskbits & PVF_REF) != 0,
   2454 				    oflags|PVF_WRITE);
   2455 			}
   2456 #endif
   2457 
   2458 			/* make the pte read only */
   2459 			npte = l2pte_set_readonly(npte);
   2460 
   2461 			pmap_acquire_page_lock(md);
   2462 #ifdef MULTIPROCESSOR
   2463 			pv = pmap_find_pv(md, pm, va);
   2464 #endif
   2465 			if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
   2466 				/*
   2467 				 * Keep alias accounting up to date
   2468 				 */
   2469 				if (pm == pmap_kernel()) {
   2470 					md->krw_mappings--;
   2471 					md->kro_mappings++;
   2472 				} else {
   2473 					md->urw_mappings--;
   2474 					md->uro_mappings++;
   2475 				}
   2476 #ifdef PMAP_CACHE_VIPT
   2477 				if (arm_cache_prefer_mask != 0) {
   2478 					if (md->urw_mappings + md->krw_mappings == 0) {
   2479 						md->pvh_attrs &= ~PVF_WRITE;
   2480 					} else {
   2481 						PMAP_VALIDATE_MD_PAGE(md);
   2482 					}
   2483 				}
   2484 				if (want_syncicache)
   2485 					need_syncicache = true;
   2486 #ifndef ARM_MMU_EXTENDED
   2487 				need_vac_me_harder = true;
   2488 #endif
   2489 #endif /* PMAP_CACHE_VIPT */
   2490 			}
   2491 			pmap_release_page_lock(md);
   2492 		}
   2493 
   2494 		if (maskbits & PVF_REF) {
   2495 			if (true
   2496 #ifndef ARM_MMU_EXTENDED
   2497 			    && (oflags & PVF_NC) == 0
   2498 #endif
   2499 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2500 			    && l2pte_valid_p(npte)) {
   2501 #ifdef PMAP_CACHE_VIVT
   2502 				/*
   2503 				 * Check npte here; we may have already
   2504 				 * done the wbinv above, and the validity
   2505 				 * of the PTE is the same for opte and
   2506 				 * npte.
   2507 				 */
   2508 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2509 #endif
   2510 			}
   2511 
   2512 			/*
   2513 			 * Make the PTE invalid so that we will take a
   2514 			 * page fault the next time the mapping is
   2515 			 * referenced.
   2516 			 */
   2517 			npte &= ~L2_TYPE_MASK;
   2518 			npte |= L2_TYPE_INV;
   2519 		}
   2520 
   2521 		if (npte != opte) {
   2522 			l2pte_reset(ptep);
   2523 			PTE_SYNC(ptep);
   2524 
   2525 			/* Flush the TLB entry if a current pmap. */
   2526 			pmap_tlb_flush_SE(pm, va, oflags);
   2527 
   2528 			l2pte_set(ptep, npte, 0);
   2529 			PTE_SYNC(ptep);
   2530 		}
   2531 
   2532 		pmap_release_pmap_lock(pm);
   2533 		pmap_acquire_page_lock(md);
   2534 
   2535 		NPDEBUG(PDB_BITS,
   2536 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2537 		    pm, va, opte, npte));
   2538 	}
   2539 
   2540 #if defined(PMAP_CACHE_VIPT)
   2541 	/*
   2542 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2543 	 */
   2544 	if (need_syncicache) {
   2545 		pmap_release_page_lock(md);
   2546 		pmap_syncicache_page(md, pa);
   2547 		pmap_acquire_page_lock(md);
   2548 		PMAPCOUNT(exec_synced_clearbit);
   2549 	}
   2550 #ifndef ARM_MMU_EXTENDED
   2551 	/*
   2552 	 * If we are changing this to read-only, we need to call vac_me_harder
   2553 	 * so we can change all the read-only pages to cacheable.  We pretend
   2554 	 * this as a page deletion.
   2555 	 */
   2556 	if (need_vac_me_harder) {
   2557 		if (md->pvh_attrs & PVF_NC)
   2558 			pmap_vac_me_harder(md, pa, NULL, 0);
   2559 	}
   2560 #endif /* !ARM_MMU_EXTENDED */
   2561 #endif /* PMAP_CACHE_VIPT */
   2562 }
   2563 
   2564 /*
   2565  * pmap_clean_page()
   2566  *
   2567  * This is a local function used to work out the best strategy to clean
   2568  * a single page referenced by its entry in the PV table. It's used by
   2569  * pmap_copy_page, pmap_zero_page and maybe some others later on.
   2570  *
   2571  * Its policy is effectively:
   2572  *  o If there are no mappings, we don't bother doing anything with the cache.
   2573  *  o If there is one mapping, we clean just that page.
   2574  *  o If there are multiple mappings, we clean the entire cache.
   2575  *
   2576  * So that some functions can be further optimised, it returns 0 if it didn't
   2577  * clean the entire cache, or 1 if it did.
   2578  *
   2579  * XXX One bug in this routine is that if the pv_entry has a single page
   2580  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2581  * just the 1 page. Since this should not occur in everyday use and if it does
   2582  * it will just result in not the most efficient clean for the page.
   2583  */
   2584 #ifdef PMAP_CACHE_VIVT
   2585 static bool
   2586 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2587 {
   2588 	struct pv_entry *pv;
   2589 	pmap_t pm_to_clean = NULL;
   2590 	bool cache_needs_cleaning = false;
   2591 	vaddr_t page_to_clean = 0;
   2592 	u_int flags = 0;
   2593 
   2594 	/*
   2595 	 * Since we flush the cache each time we change to a different
   2596 	 * user vmspace, we only need to flush the page if it is in the
   2597 	 * current pmap.
   2598 	 */
   2599 	KASSERT(pmap_page_locked_p(md));
   2600 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2601 		if (pmap_is_current(pv->pv_pmap)) {
   2602 			flags |= pv->pv_flags;
   2603 			/*
   2604 			 * The page is mapped non-cacheable in
   2605 			 * this map.  No need to flush the cache.
   2606 			 */
   2607 			if (pv->pv_flags & PVF_NC) {
   2608 #ifdef DIAGNOSTIC
   2609 				KASSERT(!cache_needs_cleaning);
   2610 #endif
   2611 				break;
   2612 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2613 				continue;
   2614 			if (cache_needs_cleaning) {
   2615 				page_to_clean = 0;
   2616 				break;
   2617 			} else {
   2618 				page_to_clean = pv->pv_va;
   2619 				pm_to_clean = pv->pv_pmap;
   2620 			}
   2621 			cache_needs_cleaning = true;
   2622 		}
   2623 	}
   2624 
   2625 	if (page_to_clean) {
   2626 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2627 		    !is_src, flags | PVF_REF);
   2628 	} else if (cache_needs_cleaning) {
   2629 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2630 
   2631 		pmap_cache_wbinv_all(pm, flags);
   2632 		return true;
   2633 	}
   2634 	return false;
   2635 }
   2636 #endif
   2637 
   2638 #ifdef PMAP_CACHE_VIPT
   2639 /*
   2640  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2641  * right cache alias to make sure we flush the right stuff.
   2642  */
   2643 void
   2644 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2645 {
   2646 	pmap_t kpm = pmap_kernel();
   2647 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2648 	    ? PAGE_SIZE
   2649 	    : arm_pcache.icache_way_size;
   2650 
   2651 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2652 	    md, md->pvh_attrs));
   2653 	/*
   2654 	 * No need to clean the page if it's non-cached.
   2655 	 */
   2656 #ifndef ARM_MMU_EXTENDED
   2657 	if (md->pvh_attrs & PVF_NC)
   2658 		return;
   2659 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2660 #endif
   2661 
   2662 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2663 	const vaddr_t dstp = cpu_cdstp(0);
   2664 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2665 	if (way_size <= PAGE_SIZE) {
   2666 		bool ok = false;
   2667 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2668 		if (ok) {
   2669 			cpu_icache_sync_range(vdstp, way_size);
   2670 			return;
   2671 		}
   2672 	}
   2673 #endif
   2674 
   2675 	/*
   2676 	 * We don't worry about the color of the exec page, we map the
   2677 	 * same page to pages in the way and then do the icache_sync on
   2678 	 * the entire way making sure we are cleaned.
   2679 	 */
   2680 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2681 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2682 
   2683 	for (size_t i = 0, j = 0; i < way_size;
   2684 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2685 		l2pte_reset(ptep + j);
   2686 		PTE_SYNC(ptep + j);
   2687 
   2688 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2689 		/*
   2690 		 * Set up a PTE with to flush these cache lines.
   2691 		 */
   2692 		l2pte_set(ptep + j, npte, 0);
   2693 	}
   2694 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2695 
   2696 	/*
   2697 	 * Flush it.
   2698 	 */
   2699 	cpu_icache_sync_range(dstp, way_size);
   2700 
   2701 	for (size_t i = 0, j = 0; i < way_size;
   2702 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2703 		/*
   2704 		 * Unmap the page(s).
   2705 		 */
   2706 		l2pte_reset(ptep + j);
   2707 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2708 	}
   2709 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2710 
   2711 	md->pvh_attrs |= PVF_EXEC;
   2712 	PMAPCOUNT(exec_synced);
   2713 }
   2714 
   2715 #ifndef ARM_MMU_EXTENDED
   2716 void
   2717 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2718 {
   2719 	vsize_t va_offset, end_va;
   2720 	bool wbinv_p;
   2721 
   2722 	if (arm_cache_prefer_mask == 0)
   2723 		return;
   2724 
   2725 	switch (flush) {
   2726 	case PMAP_FLUSH_PRIMARY:
   2727 		if (md->pvh_attrs & PVF_MULTCLR) {
   2728 			va_offset = 0;
   2729 			end_va = arm_cache_prefer_mask;
   2730 			md->pvh_attrs &= ~PVF_MULTCLR;
   2731 			PMAPCOUNT(vac_flush_lots);
   2732 		} else {
   2733 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2734 			end_va = va_offset;
   2735 			PMAPCOUNT(vac_flush_one);
   2736 		}
   2737 		/*
   2738 		 * Mark that the page is no longer dirty.
   2739 		 */
   2740 		md->pvh_attrs &= ~PVF_DIRTY;
   2741 		wbinv_p = true;
   2742 		break;
   2743 	case PMAP_FLUSH_SECONDARY:
   2744 		va_offset = 0;
   2745 		end_va = arm_cache_prefer_mask;
   2746 		wbinv_p = true;
   2747 		md->pvh_attrs &= ~PVF_MULTCLR;
   2748 		PMAPCOUNT(vac_flush_lots);
   2749 		break;
   2750 	case PMAP_CLEAN_PRIMARY:
   2751 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2752 		end_va = va_offset;
   2753 		wbinv_p = false;
   2754 		/*
   2755 		 * Mark that the page is no longer dirty.
   2756 		 */
   2757 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2758 			md->pvh_attrs &= ~PVF_DIRTY;
   2759 		PMAPCOUNT(vac_clean_one);
   2760 		break;
   2761 	default:
   2762 		return;
   2763 	}
   2764 
   2765 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2766 
   2767 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2768 	    md, md->pvh_attrs));
   2769 
   2770 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2771 
   2772 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2773 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2774 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2775 		const pt_entry_t opte = *ptep;
   2776 
   2777 		if (flush == PMAP_FLUSH_SECONDARY
   2778 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2779 			continue;
   2780 
   2781 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2782 		/*
   2783 		 * Set up a PTE with the right coloring to flush
   2784 		 * existing cache entries.
   2785 		 */
   2786 		const pt_entry_t npte = L2_S_PROTO
   2787 		    | pa
   2788 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2789 		    | pte_l2_s_cache_mode;
   2790 		l2pte_set(ptep, npte, opte);
   2791 		PTE_SYNC(ptep);
   2792 
   2793 		/*
   2794 		 * Flush it.  Make sure to flush secondary cache too since
   2795 		 * bus_dma will ignore uncached pages.
   2796 		 */
   2797 		if (scache_line_size != 0) {
   2798 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2799 			if (wbinv_p) {
   2800 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2801 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2802 			} else {
   2803 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2804 			}
   2805 		} else {
   2806 			if (wbinv_p) {
   2807 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2808 			} else {
   2809 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2810 			}
   2811 		}
   2812 
   2813 		/*
   2814 		 * Restore the page table entry since we might have interrupted
   2815 		 * pmap_zero_page or pmap_copy_page which was already using
   2816 		 * this pte.
   2817 		 */
   2818 		if (opte) {
   2819 			l2pte_set(ptep, opte, npte);
   2820 		} else {
   2821 			l2pte_reset(ptep);
   2822 		}
   2823 		PTE_SYNC(ptep);
   2824 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2825 	}
   2826 }
   2827 #endif /* ARM_MMU_EXTENDED */
   2828 #endif /* PMAP_CACHE_VIPT */
   2829 
   2830 /*
   2831  * Routine:	pmap_page_remove
   2832  * Function:
   2833  *		Removes this physical page from
   2834  *		all physical maps in which it resides.
   2835  *		Reflects back modify bits to the pager.
   2836  */
   2837 static void
   2838 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2839 {
   2840 	struct l2_bucket *l2b;
   2841 	struct pv_entry *pv;
   2842 	pt_entry_t *ptep;
   2843 #ifndef ARM_MMU_EXTENDED
   2844 	bool flush = false;
   2845 #endif
   2846 	u_int flags = 0;
   2847 
   2848 	NPDEBUG(PDB_FOLLOW,
   2849 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2850 	    pa));
   2851 
   2852 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2853 	pmap_acquire_page_lock(md);
   2854 	if (*pvp == NULL) {
   2855 #ifdef PMAP_CACHE_VIPT
   2856 		/*
   2857 		 * We *know* the page contents are about to be replaced.
   2858 		 * Discard the exec contents
   2859 		 */
   2860 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2861 			PMAPCOUNT(exec_discarded_page_protect);
   2862 		md->pvh_attrs &= ~PVF_EXEC;
   2863 		PMAP_VALIDATE_MD_PAGE(md);
   2864 #endif
   2865 		pmap_release_page_lock(md);
   2866 		return;
   2867 	}
   2868 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2869 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2870 #endif
   2871 
   2872 	/*
   2873 	 * Clear alias counts
   2874 	 */
   2875 #ifdef PMAP_CACHE_VIVT
   2876 	md->k_mappings = 0;
   2877 #endif
   2878 	md->urw_mappings = md->uro_mappings = 0;
   2879 
   2880 #ifdef PMAP_CACHE_VIVT
   2881 	pmap_clean_page(md, false);
   2882 #endif
   2883 
   2884 	while ((pv = *pvp) != NULL) {
   2885 		pmap_t pm = pv->pv_pmap;
   2886 #ifndef ARM_MMU_EXTENDED
   2887 		if (flush == false && pmap_is_current(pm))
   2888 			flush = true;
   2889 #endif
   2890 
   2891 		if (pm == pmap_kernel()) {
   2892 #ifdef PMAP_CACHE_VIPT
   2893 			/*
   2894 			 * If this was unmanaged mapping, it must be preserved.
   2895 			 * Move it back on the list and advance the end-of-list
   2896 			 * pointer.
   2897 			 */
   2898 			if (PV_IS_KENTRY_P(pv->pv_flags)) {
   2899 				*pvp = pv;
   2900 				pvp = &SLIST_NEXT(pv, pv_link);
   2901 				continue;
   2902 			}
   2903 			if (pv->pv_flags & PVF_WRITE)
   2904 				md->krw_mappings--;
   2905 			else
   2906 				md->kro_mappings--;
   2907 #endif
   2908 			PMAPCOUNT(kernel_unmappings);
   2909 		}
   2910 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2911 		PMAPCOUNT(unmappings);
   2912 
   2913 		pmap_release_page_lock(md);
   2914 		pmap_acquire_pmap_lock(pm);
   2915 
   2916 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2917 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2918 
   2919 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2920 
   2921 		/*
   2922 		 * Update statistics
   2923 		 */
   2924 		--pm->pm_stats.resident_count;
   2925 
   2926 		/* Wired bit */
   2927 		if (pv->pv_flags & PVF_WIRED)
   2928 			--pm->pm_stats.wired_count;
   2929 
   2930 		flags |= pv->pv_flags;
   2931 
   2932 		/*
   2933 		 * Invalidate the PTEs.
   2934 		 */
   2935 		l2pte_reset(ptep);
   2936 		PTE_SYNC_CURRENT(pm, ptep);
   2937 
   2938 #ifdef ARM_MMU_EXTENDED
   2939 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2940 #endif
   2941 
   2942 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2943 
   2944 		pmap_release_pmap_lock(pm);
   2945 
   2946 		pool_put(&pmap_pv_pool, pv);
   2947 		pmap_acquire_page_lock(md);
   2948 #ifdef MULTIPROCESSOR
   2949 		/*
   2950 		 * Restart of the beginning of the list.
   2951 		 */
   2952 		pvp = &SLIST_FIRST(&md->pvh_list);
   2953 #endif
   2954 	}
   2955 	/*
   2956 	 * if we reach the end of the list and there are still mappings, they
   2957 	 * might be able to be cached now.  And they must be kernel mappings.
   2958 	 */
   2959 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2960 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2961 	}
   2962 
   2963 #ifdef PMAP_CACHE_VIPT
   2964 	/*
   2965 	 * Its EXEC cache is now gone.
   2966 	 */
   2967 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2968 		PMAPCOUNT(exec_discarded_page_protect);
   2969 	md->pvh_attrs &= ~PVF_EXEC;
   2970 	KASSERT(md->urw_mappings == 0);
   2971 	KASSERT(md->uro_mappings == 0);
   2972 #ifndef ARM_MMU_EXTENDED
   2973 	if (arm_cache_prefer_mask != 0) {
   2974 		if (md->krw_mappings == 0)
   2975 			md->pvh_attrs &= ~PVF_WRITE;
   2976 		PMAP_VALIDATE_MD_PAGE(md);
   2977 	}
   2978 #endif /* ARM_MMU_EXTENDED */
   2979 #endif /* PMAP_CACHE_VIPT */
   2980 	pmap_release_page_lock(md);
   2981 
   2982 #ifndef ARM_MMU_EXTENDED
   2983 	if (flush) {
   2984 		/*
   2985 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2986 		 * would need a subsequent call to pmap_update() to ensure
   2987 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2988 		 * required to do that (see pmap(9)), so we can't modify
   2989 		 * the current pmap's state.
   2990 		 */
   2991 		if (PV_BEEN_EXECD(flags))
   2992 			cpu_tlb_flushID();
   2993 		else
   2994 			cpu_tlb_flushD();
   2995 	}
   2996 	cpu_cpwait();
   2997 #endif /* ARM_MMU_EXTENDED */
   2998 }
   2999 
   3000 /*
   3001  * pmap_t pmap_create(void)
   3002  *
   3003  *      Create a new pmap structure from scratch.
   3004  */
   3005 pmap_t
   3006 pmap_create(void)
   3007 {
   3008 	pmap_t pm;
   3009 
   3010 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   3011 
   3012 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   3013 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   3014 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   3015 
   3016 	pm->pm_stats.wired_count = 0;
   3017 	pm->pm_stats.resident_count = 1;
   3018 #ifdef ARM_MMU_EXTENDED
   3019 #ifdef MULTIPROCESSOR
   3020 	kcpuset_create(&pm->pm_active, true);
   3021 	kcpuset_create(&pm->pm_onproc, true);
   3022 #endif
   3023 #else
   3024 	pm->pm_cstate.cs_all = 0;
   3025 #endif
   3026 	pmap_alloc_l1(pm);
   3027 
   3028 	/*
   3029 	 * Note: The pool cache ensures that the pm_l2[] array is already
   3030 	 * initialised to zero.
   3031 	 */
   3032 
   3033 	pmap_pinit(pm);
   3034 
   3035 	return (pm);
   3036 }
   3037 
   3038 u_int
   3039 arm32_mmap_flags(paddr_t pa)
   3040 {
   3041 	/*
   3042 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3043 	 * and we're using the upper bits in page numbers to pass flags around
   3044 	 * so we might as well use the same bits
   3045 	 */
   3046 	return (u_int)pa & PMAP_MD_MASK;
   3047 }
   3048 /*
   3049  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3050  *      u_int flags)
   3051  *
   3052  *      Insert the given physical page (p) at
   3053  *      the specified virtual address (v) in the
   3054  *      target physical map with the protection requested.
   3055  *
   3056  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3057  *      or lose information.  That is, this routine must actually
   3058  *      insert this page into the given map NOW.
   3059  */
   3060 int
   3061 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3062 {
   3063 	struct l2_bucket *l2b;
   3064 	struct vm_page *pg, *opg;
   3065 	u_int nflags;
   3066 	u_int oflags;
   3067 	const bool kpm_p = (pm == pmap_kernel());
   3068 #ifdef ARM_HAS_VBAR
   3069 	const bool vector_page_p = false;
   3070 #else
   3071 	const bool vector_page_p = (va == vector_page);
   3072 #endif
   3073 
   3074 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3075 
   3076 	UVMHIST_LOG(maphist, " (pm %#jx va %#jx pa %#jx prot %#jx",
   3077 	    (uintptr_t)pm, va, pa, prot);
   3078 	UVMHIST_LOG(maphist, "  flag %#jx", flags, 0, 0, 0);
   3079 
   3080 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3081 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3082 
   3083 	/*
   3084 	 * Get a pointer to the page.  Later on in this function, we
   3085 	 * test for a managed page by checking pg != NULL.
   3086 	 */
   3087 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3088 
   3089 	nflags = 0;
   3090 	if (prot & VM_PROT_WRITE)
   3091 		nflags |= PVF_WRITE;
   3092 	if (prot & VM_PROT_EXECUTE)
   3093 		nflags |= PVF_EXEC;
   3094 	if (flags & PMAP_WIRED)
   3095 		nflags |= PVF_WIRED;
   3096 
   3097 	pmap_acquire_pmap_lock(pm);
   3098 
   3099 	/*
   3100 	 * Fetch the L2 bucket which maps this page, allocating one if
   3101 	 * necessary for user pmaps.
   3102 	 */
   3103 	if (kpm_p) {
   3104 		l2b = pmap_get_l2_bucket(pm, va);
   3105 	} else {
   3106 		l2b = pmap_alloc_l2_bucket(pm, va);
   3107 	}
   3108 	if (l2b == NULL) {
   3109 		if (flags & PMAP_CANFAIL) {
   3110 			pmap_release_pmap_lock(pm);
   3111 			return (ENOMEM);
   3112 		}
   3113 		panic("pmap_enter: failed to allocate L2 bucket");
   3114 	}
   3115 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3116 	const pt_entry_t opte = *ptep;
   3117 	pt_entry_t npte = pa;
   3118 	oflags = 0;
   3119 
   3120 	if (opte) {
   3121 		/*
   3122 		 * There is already a mapping at this address.
   3123 		 * If the physical address is different, lookup the
   3124 		 * vm_page.
   3125 		 */
   3126 		if (l2pte_pa(opte) != pa) {
   3127 			KASSERT(!pmap_pv_tracked(pa));
   3128 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3129 		} else
   3130 			opg = pg;
   3131 	} else
   3132 		opg = NULL;
   3133 
   3134 	struct pmap_page *pp = pmap_pv_tracked(pa);
   3135 
   3136 	if (pg || pp) {
   3137 		KASSERT((pg != NULL) != (pp != NULL));
   3138 		struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
   3139 		    PMAP_PAGE_TO_MD(pp);
   3140 
   3141 		/*
   3142 		 * This is to be a managed mapping.
   3143 		 */
   3144 		pmap_acquire_page_lock(md);
   3145 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3146 			/*
   3147 			 * - The access type indicates that we don't need
   3148 			 *   to do referenced emulation.
   3149 			 * OR
   3150 			 * - The physical page has already been referenced
   3151 			 *   so no need to re-do referenced emulation here.
   3152 			 */
   3153 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3154 
   3155 			nflags |= PVF_REF;
   3156 
   3157 			if ((prot & VM_PROT_WRITE) != 0 &&
   3158 			    ((flags & VM_PROT_WRITE) != 0 ||
   3159 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3160 				/*
   3161 				 * This is a writable mapping, and the
   3162 				 * page's mod state indicates it has
   3163 				 * already been modified. Make it
   3164 				 * writable from the outset.
   3165 				 */
   3166 				npte = l2pte_set_writable(npte);
   3167 				nflags |= PVF_MOD;
   3168 			}
   3169 
   3170 #ifdef ARM_MMU_EXTENDED
   3171 			/*
   3172 			 * If the page has been cleaned, then the pvh_attrs
   3173 			 * will have PVF_EXEC set, so mark it execute so we
   3174 			 * don't get an access fault when trying to execute
   3175 			 * from it.
   3176 			 */
   3177 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3178 				npte &= ~L2_XS_XN;
   3179 			}
   3180 #endif
   3181 		} else {
   3182 			/*
   3183 			 * Need to do page referenced emulation.
   3184 			 */
   3185 			npte |= L2_TYPE_INV;
   3186 		}
   3187 
   3188 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3189 			npte |= pte_l2_s_wc_mode;
   3190 		} else
   3191 			npte |= pte_l2_s_cache_mode;
   3192 
   3193 		if (pg != NULL && pg == opg) {
   3194 			/*
   3195 			 * We're changing the attrs of an existing mapping.
   3196 			 */
   3197 			oflags = pmap_modify_pv(md, pa, pm, va,
   3198 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3199 			    PVF_MOD | PVF_REF, nflags);
   3200 
   3201 #ifdef PMAP_CACHE_VIVT
   3202 			/*
   3203 			 * We may need to flush the cache if we're
   3204 			 * doing rw-ro...
   3205 			 */
   3206 			if (pm->pm_cstate.cs_cache_d &&
   3207 			    (oflags & PVF_NC) == 0 &&
   3208 			    l2pte_writable_p(opte) &&
   3209 			    (prot & VM_PROT_WRITE) == 0)
   3210 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3211 #endif
   3212 		} else {
   3213 			struct pv_entry *pv;
   3214 			/*
   3215 			 * New mapping, or changing the backing page
   3216 			 * of an existing mapping.
   3217 			 */
   3218 			if (opg) {
   3219 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3220 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3221 
   3222 				/*
   3223 				 * Replacing an existing mapping with a new one.
   3224 				 * It is part of our managed memory so we
   3225 				 * must remove it from the PV list
   3226 				 */
   3227 				pv = pmap_remove_pv(omd, opa, pm, va);
   3228 				pmap_vac_me_harder(omd, opa, pm, 0);
   3229 				oflags = pv->pv_flags;
   3230 
   3231 #ifdef PMAP_CACHE_VIVT
   3232 				/*
   3233 				 * If the old mapping was valid (ref/mod
   3234 				 * emulation creates 'invalid' mappings
   3235 				 * initially) then make sure to frob
   3236 				 * the cache.
   3237 				 */
   3238 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3239 					pmap_cache_wbinv_page(pm, va, true,
   3240 					    oflags);
   3241 				}
   3242 #endif
   3243 			} else {
   3244 				pmap_release_page_lock(md);
   3245 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3246 				if (pv == NULL) {
   3247 					pmap_release_pmap_lock(pm);
   3248 					if ((flags & PMAP_CANFAIL) == 0)
   3249 						panic("pmap_enter: "
   3250 						    "no pv entries");
   3251 
   3252 					pmap_free_l2_bucket(pm, l2b, 0);
   3253 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3254 					    0, 0, 0, 0);
   3255 					return (ENOMEM);
   3256 				}
   3257 				pmap_acquire_page_lock(md);
   3258 			}
   3259 
   3260 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3261 		}
   3262 		pmap_release_page_lock(md);
   3263 	} else {
   3264 		/*
   3265 		 * We're mapping an unmanaged page.
   3266 		 * These are always readable, and possibly writable, from
   3267 		 * the get go as we don't need to track ref/mod status.
   3268 		 */
   3269 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3270 		if (prot & VM_PROT_WRITE)
   3271 			npte = l2pte_set_writable(npte);
   3272 
   3273 		/*
   3274 		 * Make sure the vector table is mapped cacheable
   3275 		 */
   3276 		if ((vector_page_p && !kpm_p)
   3277 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3278 			npte |= pte_l2_s_cache_mode;
   3279 #ifdef ARM_MMU_EXTENDED
   3280 			npte &= ~L2_XS_XN;	/* and executable */
   3281 #endif
   3282 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3283 			npte |= pte_l2_s_wc_mode;
   3284 		}
   3285 		if (opg) {
   3286 			/*
   3287 			 * Looks like there's an existing 'managed' mapping
   3288 			 * at this address.
   3289 			 */
   3290 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3291 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3292 
   3293 			pmap_acquire_page_lock(omd);
   3294 			struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va);
   3295 			pmap_vac_me_harder(omd, opa, pm, 0);
   3296 			oflags = pv->pv_flags;
   3297 			pmap_release_page_lock(omd);
   3298 
   3299 #ifdef PMAP_CACHE_VIVT
   3300 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3301 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3302 			}
   3303 #endif
   3304 			pool_put(&pmap_pv_pool, pv);
   3305 		}
   3306 	}
   3307 
   3308 	/*
   3309 	 * Make sure userland mappings get the right permissions
   3310 	 */
   3311 	if (!vector_page_p && !kpm_p) {
   3312 		npte |= L2_S_PROT_U;
   3313 #ifdef ARM_MMU_EXTENDED
   3314 		npte |= L2_XS_nG;	/* user pages are not global */
   3315 #endif
   3316 	}
   3317 
   3318 	/*
   3319 	 * Keep the stats up to date
   3320 	 */
   3321 	if (opte == 0) {
   3322 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3323 		pm->pm_stats.resident_count++;
   3324 	}
   3325 
   3326 	UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
   3327 
   3328 #if defined(ARM_MMU_EXTENDED)
   3329 	/*
   3330 	 * If exec protection was requested but the page hasn't been synced,
   3331 	 * sync it now and allow execution from it.
   3332 	 */
   3333 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3334 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3335 		npte &= ~L2_XS_XN;
   3336 		pmap_syncicache_page(md, pa);
   3337 		PMAPCOUNT(exec_synced_map);
   3338 	}
   3339 #endif
   3340 	/*
   3341 	 * If this is just a wiring change, the two PTEs will be
   3342 	 * identical, so there's no need to update the page table.
   3343 	 */
   3344 	if (npte != opte) {
   3345 		l2pte_reset(ptep);
   3346 		PTE_SYNC(ptep);
   3347 		if (l2pte_valid_p(opte)) {
   3348 			pmap_tlb_flush_SE(pm, va, oflags);
   3349 		}
   3350 		l2pte_set(ptep, npte, 0);
   3351 		PTE_SYNC(ptep);
   3352 #ifndef ARM_MMU_EXTENDED
   3353 		bool is_cached = pmap_is_cached(pm);
   3354 		if (is_cached) {
   3355 			/*
   3356 			 * We only need to frob the cache/tlb if this pmap
   3357 			 * is current
   3358 			 */
   3359 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3360 				/*
   3361 				 * This mapping is likely to be accessed as
   3362 				 * soon as we return to userland. Fix up the
   3363 				 * L1 entry to avoid taking another
   3364 				 * page/domain fault.
   3365 				 */
   3366 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3367 				     + l1pte_index(va);
   3368 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3369 				    | L1_C_DOM(pmap_domain(pm));
   3370 				if (*pdep != pde) {
   3371 					l1pte_setone(pdep, pde);
   3372 					PDE_SYNC(pdep);
   3373 				}
   3374 			}
   3375 		}
   3376 #endif /* !ARM_MMU_EXTENDED */
   3377 
   3378 #ifndef ARM_MMU_EXTENDED
   3379 		UVMHIST_LOG(maphist, "  is_cached %jd cs 0x%08jx",
   3380 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3381 
   3382 		if (pg != NULL) {
   3383 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3384 
   3385 			pmap_acquire_page_lock(md);
   3386 			pmap_vac_me_harder(md, pa, pm, va);
   3387 			pmap_release_page_lock(md);
   3388 		}
   3389 #endif
   3390 	}
   3391 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3392 	if (pg) {
   3393 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3394 
   3395 		pmap_acquire_page_lock(md);
   3396 #ifndef ARM_MMU_EXTENDED
   3397 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3398 #endif
   3399 		PMAP_VALIDATE_MD_PAGE(md);
   3400 		pmap_release_page_lock(md);
   3401 	}
   3402 #endif
   3403 
   3404 	pmap_release_pmap_lock(pm);
   3405 
   3406 	return (0);
   3407 }
   3408 
   3409 /*
   3410  * pmap_remove()
   3411  *
   3412  * pmap_remove is responsible for nuking a number of mappings for a range
   3413  * of virtual address space in the current pmap. To do this efficiently
   3414  * is interesting, because in a number of cases a wide virtual address
   3415  * range may be supplied that contains few actual mappings. So, the
   3416  * optimisations are:
   3417  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3418  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3419  *     maybe do just a partial cache clean. This path of execution is
   3420  *     complicated by the fact that the cache must be flushed _before_
   3421  *     the PTE is nuked, being a VAC :-)
   3422  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3423  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3424  *     already flushed the cache.
   3425  *  4. Maybe later fast-case a single page, but I don't think this is
   3426  *     going to make _that_ much difference overall.
   3427  */
   3428 
   3429 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3430 
   3431 void
   3432 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3433 {
   3434 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3435 	UVMHIST_LOG(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
   3436 	    (uintptr_t)pm, sva, eva, 0);
   3437 
   3438 	/*
   3439 	 * we lock in the pmap => pv_head direction
   3440 	 */
   3441 	pmap_acquire_pmap_lock(pm);
   3442 
   3443 #ifndef ARM_MMU_EXTENDED
   3444 	u_int cleanlist_idx, total, cnt;
   3445 	struct {
   3446 		vaddr_t va;
   3447 		pt_entry_t *ptep;
   3448 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3449 
   3450 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3451 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3452 		if (pm->pm_cstate.cs_tlb == 0)
   3453 			pm->pm_remove_all = true;
   3454 	} else
   3455 		cleanlist_idx = 0;
   3456 	total = 0;
   3457 #endif
   3458 
   3459 	while (sva < eva) {
   3460 		/*
   3461 		 * Do one L2 bucket's worth at a time.
   3462 		 */
   3463 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
   3464 		if (next_bucket > eva)
   3465 			next_bucket = eva;
   3466 
   3467 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3468 		if (l2b == NULL) {
   3469 			sva = next_bucket;
   3470 			continue;
   3471 		}
   3472 
   3473 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3474 		u_int mappings = 0;
   3475 
   3476 		for (;sva < next_bucket;
   3477 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3478 			pt_entry_t opte = *ptep;
   3479 
   3480 			if (opte == 0) {
   3481 				/* Nothing here, move along */
   3482 				continue;
   3483 			}
   3484 
   3485 			u_int flags = PVF_REF;
   3486 			paddr_t pa = l2pte_pa(opte);
   3487 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3488 
   3489 			/*
   3490 			 * Update flags. In a number of circumstances,
   3491 			 * we could cluster a lot of these and do a
   3492 			 * number of sequential pages in one go.
   3493 			 */
   3494 			if (pg != NULL) {
   3495 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3496 				struct pv_entry *pv;
   3497 
   3498 				pmap_acquire_page_lock(md);
   3499 				pv = pmap_remove_pv(md, pa, pm, sva);
   3500 				pmap_vac_me_harder(md, pa, pm, 0);
   3501 				pmap_release_page_lock(md);
   3502 				if (pv != NULL) {
   3503 					if (pm->pm_remove_all == false) {
   3504 						flags = pv->pv_flags;
   3505 					}
   3506 					pool_put(&pmap_pv_pool, pv);
   3507 				}
   3508 			}
   3509 			mappings += PAGE_SIZE / L2_S_SIZE;
   3510 
   3511 			if (!l2pte_valid_p(opte)) {
   3512 				/*
   3513 				 * Ref/Mod emulation is still active for this
   3514 				 * mapping, therefore it is has not yet been
   3515 				 * accessed. No need to frob the cache/tlb.
   3516 				 */
   3517 				l2pte_reset(ptep);
   3518 				PTE_SYNC_CURRENT(pm, ptep);
   3519 				continue;
   3520 			}
   3521 
   3522 #ifdef ARM_MMU_EXTENDED
   3523 			l2pte_reset(ptep);
   3524 			PTE_SYNC(ptep);
   3525 			if (__predict_false(pm->pm_remove_all == false)) {
   3526 				pmap_tlb_flush_SE(pm, sva, flags);
   3527 			}
   3528 #else
   3529 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3530 				/* Add to the clean list. */
   3531 				cleanlist[cleanlist_idx].ptep = ptep;
   3532 				cleanlist[cleanlist_idx].va =
   3533 				    sva | (flags & PVF_EXEC);
   3534 				cleanlist_idx++;
   3535 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3536 				/* Nuke everything if needed. */
   3537 #ifdef PMAP_CACHE_VIVT
   3538 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3539 #endif
   3540 				/*
   3541 				 * Roll back the previous PTE list,
   3542 				 * and zero out the current PTE.
   3543 				 */
   3544 				for (cnt = 0;
   3545 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3546 					l2pte_reset(cleanlist[cnt].ptep);
   3547 					PTE_SYNC(cleanlist[cnt].ptep);
   3548 				}
   3549 				l2pte_reset(ptep);
   3550 				PTE_SYNC(ptep);
   3551 				cleanlist_idx++;
   3552 				pm->pm_remove_all = true;
   3553 			} else {
   3554 				l2pte_reset(ptep);
   3555 				PTE_SYNC(ptep);
   3556 				if (pm->pm_remove_all == false) {
   3557 					pmap_tlb_flush_SE(pm, sva, flags);
   3558 				}
   3559 			}
   3560 #endif
   3561 		}
   3562 
   3563 #ifndef ARM_MMU_EXTENDED
   3564 		/*
   3565 		 * Deal with any left overs
   3566 		 */
   3567 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3568 			total += cleanlist_idx;
   3569 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3570 				l2pte_reset(cleanlist[cnt].ptep);
   3571 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3572 				vaddr_t va = cleanlist[cnt].va;
   3573 				if (pm->pm_cstate.cs_all != 0) {
   3574 					vaddr_t clva = va & ~PAGE_MASK;
   3575 					u_int flags = va & PVF_EXEC;
   3576 #ifdef PMAP_CACHE_VIVT
   3577 					pmap_cache_wbinv_page(pm, clva, true,
   3578 					    PVF_REF | PVF_WRITE | flags);
   3579 #endif
   3580 					pmap_tlb_flush_SE(pm, clva,
   3581 					    PVF_REF | flags);
   3582 				}
   3583 			}
   3584 
   3585 			/*
   3586 			 * If it looks like we're removing a whole bunch
   3587 			 * of mappings, it's faster to just write-back
   3588 			 * the whole cache now and defer TLB flushes until
   3589 			 * pmap_update() is called.
   3590 			 */
   3591 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3592 				cleanlist_idx = 0;
   3593 			else {
   3594 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3595 #ifdef PMAP_CACHE_VIVT
   3596 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3597 #endif
   3598 				pm->pm_remove_all = true;
   3599 			}
   3600 		}
   3601 #endif /* ARM_MMU_EXTENDED */
   3602 
   3603 		pmap_free_l2_bucket(pm, l2b, mappings);
   3604 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3605 	}
   3606 
   3607 	pmap_release_pmap_lock(pm);
   3608 }
   3609 
   3610 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3611 static struct pv_entry *
   3612 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3613 {
   3614 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3615 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3616 	struct pv_entry *pv;
   3617 
   3618 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3619 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3620 	KASSERT(pmap_page_locked_p(md));
   3621 
   3622 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3623 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3624 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3625 
   3626 	/*
   3627 	 * If we are removing a writeable mapping to a cached exec page,
   3628 	 * if it's the last mapping then clear it execness other sync
   3629 	 * the page to the icache.
   3630 	 */
   3631 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3632 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3633 		if (SLIST_EMPTY(&md->pvh_list)) {
   3634 			md->pvh_attrs &= ~PVF_EXEC;
   3635 			PMAPCOUNT(exec_discarded_kremove);
   3636 		} else {
   3637 			pmap_syncicache_page(md, pa);
   3638 			PMAPCOUNT(exec_synced_kremove);
   3639 		}
   3640 	}
   3641 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3642 
   3643 	return pv;
   3644 }
   3645 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3646 
   3647 /*
   3648  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3649  *
   3650  * We assume there is already sufficient KVM space available
   3651  * to do this, as we can't allocate L2 descriptor tables/metadata
   3652  * from here.
   3653  */
   3654 void
   3655 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3656 {
   3657 #ifdef PMAP_CACHE_VIVT
   3658 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3659 #endif
   3660 #ifdef PMAP_CACHE_VIPT
   3661 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3662 	struct vm_page *opg;
   3663 #ifndef ARM_MMU_EXTENDED
   3664 	struct pv_entry *pv = NULL;
   3665 #endif
   3666 #endif
   3667 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3668 
   3669 	UVMHIST_FUNC(__func__);
   3670 
   3671 	if (pmap_initialized) {
   3672 		UVMHIST_CALLED(maphist);
   3673 		UVMHIST_LOG(maphist, " (va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx",
   3674 		    va, pa, prot, flags);
   3675 	}
   3676 
   3677 	pmap_t kpm = pmap_kernel();
   3678 	pmap_acquire_pmap_lock(kpm);
   3679 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3680 	const size_t l1slot __diagused = l1pte_index(va);
   3681 	KASSERTMSG(l2b != NULL,
   3682 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3683 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3684 	    kpm->pm_l2[L2_IDX(l1slot)]
   3685 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3686 		: NULL,
   3687 	    kpm->pm_l2[L2_IDX(l1slot)]
   3688 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3689 		: NULL);
   3690 	KASSERT(l2b->l2b_kva != NULL);
   3691 
   3692 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3693 	const pt_entry_t opte = *ptep;
   3694 
   3695 	if (opte == 0) {
   3696 		PMAPCOUNT(kenter_mappings);
   3697 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3698 	} else {
   3699 		PMAPCOUNT(kenter_remappings);
   3700 #ifdef PMAP_CACHE_VIPT
   3701 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3702 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
   3703 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
   3704 #endif
   3705 		if (opg && arm_cache_prefer_mask != 0) {
   3706 			KASSERT(opg != pg);
   3707 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3708 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3709 #ifndef ARM_MMU_EXTENDED
   3710 			pmap_acquire_page_lock(omd);
   3711 			pv = pmap_kremove_pg(opg, va);
   3712 			pmap_release_page_lock(omd);
   3713 #endif
   3714 		}
   3715 #endif
   3716 		if (l2pte_valid_p(opte)) {
   3717 			l2pte_reset(ptep);
   3718 			PTE_SYNC(ptep);
   3719 #ifdef PMAP_CACHE_VIVT
   3720 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3721 #endif
   3722 			cpu_tlb_flushD_SE(va);
   3723 			cpu_cpwait();
   3724 		}
   3725 	}
   3726 	pmap_release_pmap_lock(kpm);
   3727 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   3728 
   3729 	if (flags & PMAP_PTE) {
   3730 		KASSERT((flags & PMAP_CACHE_MASK) == 0);
   3731 		if (!(flags & PMAP_NOCACHE))
   3732 			npte |= pte_l2_s_cache_mode_pt;
   3733 	} else {
   3734 		switch (flags & PMAP_CACHE_MASK) {
   3735 		case PMAP_NOCACHE:
   3736 			break;
   3737 		case PMAP_WRITE_COMBINE:
   3738 			npte |= pte_l2_s_wc_mode;
   3739 			break;
   3740 		default:
   3741 			npte |= pte_l2_s_cache_mode;
   3742 			break;
   3743 		}
   3744 	}
   3745 #ifdef ARM_MMU_EXTENDED
   3746 	if (prot & VM_PROT_EXECUTE)
   3747 		npte &= ~L2_XS_XN;
   3748 #endif
   3749 	l2pte_set(ptep, npte, 0);
   3750 	PTE_SYNC(ptep);
   3751 
   3752 	if (pg) {
   3753 		if (flags & PMAP_KMPAGE) {
   3754 			KASSERT(md->urw_mappings == 0);
   3755 			KASSERT(md->uro_mappings == 0);
   3756 			KASSERT(md->krw_mappings == 0);
   3757 			KASSERT(md->kro_mappings == 0);
   3758 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3759 			KASSERT(pv == NULL);
   3760 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3761 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3762 			/* if there is a color conflict, evict from cache. */
   3763 			if (pmap_is_page_colored_p(md)
   3764 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3765 				PMAPCOUNT(vac_color_change);
   3766 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3767 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3768 				/*
   3769 				 * If this page has multiple colors, expunge
   3770 				 * them.
   3771 				 */
   3772 				PMAPCOUNT(vac_flush_lots2);
   3773 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3774 			}
   3775 			/*
   3776 			 * Since this is a KMPAGE, there can be no contention
   3777 			 * for this page so don't lock it.
   3778 			 */
   3779 			md->pvh_attrs &= PAGE_SIZE - 1;
   3780 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3781 			    | (va & arm_cache_prefer_mask);
   3782 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3783 			md->pvh_attrs |= PVF_KMPAGE;
   3784 #endif
   3785 			atomic_inc_32(&pmap_kmpages);
   3786 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3787 		} else if (arm_cache_prefer_mask != 0) {
   3788 			if (pv == NULL) {
   3789 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3790 				KASSERT(pv != NULL);
   3791 			}
   3792 			pmap_acquire_page_lock(md);
   3793 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3794 			    PVF_WIRED | PVF_KENTRY
   3795 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3796 			if ((prot & VM_PROT_WRITE)
   3797 			    && !(md->pvh_attrs & PVF_NC))
   3798 				md->pvh_attrs |= PVF_DIRTY;
   3799 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3800 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3801 			pmap_release_page_lock(md);
   3802 #endif
   3803 		}
   3804 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3805 	} else {
   3806 		if (pv != NULL)
   3807 			pool_put(&pmap_pv_pool, pv);
   3808 #endif
   3809 	}
   3810 	if (pmap_initialized) {
   3811 		UVMHIST_LOG(maphist, "  <-- done (ptep %#jx: %#jx -> %#jx)",
   3812 		    (uintptr_t)ptep, opte, npte, 0);
   3813 	}
   3814 
   3815 }
   3816 
   3817 void
   3818 pmap_kremove(vaddr_t va, vsize_t len)
   3819 {
   3820 #ifdef UVMHIST
   3821 	u_int total_mappings = 0;
   3822 #endif
   3823 
   3824 	PMAPCOUNT(kenter_unmappings);
   3825 
   3826 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3827 
   3828 	UVMHIST_LOG(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
   3829 
   3830 	const vaddr_t eva = va + len;
   3831 
   3832 	pmap_acquire_pmap_lock(pmap_kernel());
   3833 
   3834 	while (va < eva) {
   3835 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3836 		if (next_bucket > eva)
   3837 			next_bucket = eva;
   3838 
   3839 		pmap_t kpm = pmap_kernel();
   3840 		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3841 		KDASSERT(l2b != NULL);
   3842 
   3843 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3844 		pt_entry_t *ptep = sptep;
   3845 		u_int mappings = 0;
   3846 
   3847 		while (va < next_bucket) {
   3848 			const pt_entry_t opte = *ptep;
   3849 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3850 			if (opg != NULL) {
   3851 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3852 
   3853 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3854 					KASSERT(omd->urw_mappings == 0);
   3855 					KASSERT(omd->uro_mappings == 0);
   3856 					KASSERT(omd->krw_mappings == 0);
   3857 					KASSERT(omd->kro_mappings == 0);
   3858 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3859 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3860 					if (arm_cache_prefer_mask != 0) {
   3861 						omd->pvh_attrs &= ~PVF_WRITE;
   3862 					}
   3863 #endif
   3864 					atomic_dec_32(&pmap_kmpages);
   3865 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3866 				} else if (arm_cache_prefer_mask != 0) {
   3867 					pmap_acquire_page_lock(omd);
   3868 					pool_put(&pmap_pv_pool,
   3869 					    pmap_kremove_pg(opg, va));
   3870 					pmap_release_page_lock(omd);
   3871 #endif
   3872 				}
   3873 			}
   3874 			if (l2pte_valid_p(opte)) {
   3875 				l2pte_reset(ptep);
   3876 				PTE_SYNC(ptep);
   3877 #ifdef PMAP_CACHE_VIVT
   3878 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3879 #endif
   3880 				cpu_tlb_flushD_SE(va);
   3881 
   3882 				mappings += PAGE_SIZE / L2_S_SIZE;
   3883 			}
   3884 			va += PAGE_SIZE;
   3885 			ptep += PAGE_SIZE / L2_S_SIZE;
   3886 		}
   3887 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3888 		    mappings, l2b->l2b_occupancy);
   3889 		l2b->l2b_occupancy -= mappings;
   3890 		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3891 #ifdef UVMHIST
   3892 		total_mappings += mappings;
   3893 #endif
   3894 	}
   3895 	pmap_release_pmap_lock(pmap_kernel());
   3896 	cpu_cpwait();
   3897 	UVMHIST_LOG(maphist, "  <--- done (%ju mappings removed)",
   3898 	    total_mappings, 0, 0, 0);
   3899 }
   3900 
   3901 bool
   3902 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3903 {
   3904 
   3905 	return pmap_extract_coherency(pm, va, pap, NULL);
   3906 }
   3907 
   3908 bool
   3909 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
   3910 {
   3911 	struct l2_dtable *l2;
   3912 	pd_entry_t *pdep, pde;
   3913 	pt_entry_t *ptep, pte;
   3914 	paddr_t pa;
   3915 	u_int l1slot;
   3916 	bool coherent;
   3917 
   3918 	pmap_acquire_pmap_lock(pm);
   3919 
   3920 	l1slot = l1pte_index(va);
   3921 	pdep = pmap_l1_kva(pm) + l1slot;
   3922 	pde = *pdep;
   3923 
   3924 	if (l1pte_section_p(pde)) {
   3925 		/*
   3926 		 * These should only happen for pmap_kernel()
   3927 		 */
   3928 		KDASSERT(pm == pmap_kernel());
   3929 		pmap_release_pmap_lock(pm);
   3930 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3931 		if (l1pte_supersection_p(pde)) {
   3932 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3933 		} else
   3934 #endif
   3935 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3936 		coherent = (pde & L1_S_CACHE_MASK) == 0;
   3937 	} else {
   3938 		/*
   3939 		 * Note that we can't rely on the validity of the L1
   3940 		 * descriptor as an indication that a mapping exists.
   3941 		 * We have to look it up in the L2 dtable.
   3942 		 */
   3943 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   3944 
   3945 		if (l2 == NULL ||
   3946 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   3947 			pmap_release_pmap_lock(pm);
   3948 			return false;
   3949 		}
   3950 
   3951 		pte = ptep[l2pte_index(va)];
   3952 		pmap_release_pmap_lock(pm);
   3953 
   3954 		if (pte == 0)
   3955 			return false;
   3956 
   3957 		switch (pte & L2_TYPE_MASK) {
   3958 		case L2_TYPE_L:
   3959 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3960 			coherent = (pte & L2_L_CACHE_MASK) == 0;
   3961 			break;
   3962 
   3963 		default:
   3964 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   3965 			coherent = (pte & L2_S_CACHE_MASK) == 0;
   3966 			break;
   3967 		}
   3968 	}
   3969 
   3970 	if (pap != NULL)
   3971 		*pap = pa;
   3972 
   3973 	if (coherentp != NULL)
   3974 		*coherentp = (pm == pmap_kernel() && coherent);
   3975 
   3976 	return true;
   3977 }
   3978 
   3979 /*
   3980  * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
   3981  *	that map it
   3982  */
   3983 
   3984 static void
   3985 pmap_pv_remove(paddr_t pa)
   3986 {
   3987 	struct pmap_page *pp;
   3988 
   3989 	pp = pmap_pv_tracked(pa);
   3990 	if (pp == NULL)
   3991 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
   3992 		    pa);
   3993 
   3994 	struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
   3995 	pmap_page_remove(md, pa);
   3996 }
   3997 
   3998 void
   3999 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
   4000 {
   4001 
   4002 	/* the only case is remove at the moment */
   4003 	KASSERT(prot == VM_PROT_NONE);
   4004 	pmap_pv_remove(pa);
   4005 }
   4006 
   4007 void
   4008 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   4009 {
   4010 	struct l2_bucket *l2b;
   4011 	vaddr_t next_bucket;
   4012 
   4013 	NPDEBUG(PDB_PROTECT,
   4014 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   4015 	    pm, sva, eva, prot));
   4016 
   4017 	if ((prot & VM_PROT_READ) == 0) {
   4018 		pmap_remove(pm, sva, eva);
   4019 		return;
   4020 	}
   4021 
   4022 	if (prot & VM_PROT_WRITE) {
   4023 		/*
   4024 		 * If this is a read->write transition, just ignore it and let
   4025 		 * uvm_fault() take care of it later.
   4026 		 */
   4027 		return;
   4028 	}
   4029 
   4030 	pmap_acquire_pmap_lock(pm);
   4031 
   4032 #ifndef ARM_MMU_EXTENDED
   4033 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   4034 	u_int flags = 0;
   4035 #endif
   4036 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   4037 
   4038 	while (sva < eva) {
   4039 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4040 		if (next_bucket > eva)
   4041 			next_bucket = eva;
   4042 
   4043 		l2b = pmap_get_l2_bucket(pm, sva);
   4044 		if (l2b == NULL) {
   4045 			sva = next_bucket;
   4046 			continue;
   4047 		}
   4048 
   4049 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4050 
   4051 		while (sva < next_bucket) {
   4052 			const pt_entry_t opte = *ptep;
   4053 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   4054 				struct vm_page *pg;
   4055 #ifndef ARM_MMU_EXTENDED
   4056 				u_int f;
   4057 #endif
   4058 
   4059 #ifdef PMAP_CACHE_VIVT
   4060 				/*
   4061 				 * OK, at this point, we know we're doing
   4062 				 * write-protect operation.  If the pmap is
   4063 				 * active, write-back the page.
   4064 				 */
   4065 				pmap_cache_wbinv_page(pm, sva, false,
   4066 				    PVF_REF | PVF_WRITE);
   4067 #endif
   4068 
   4069 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   4070 				pt_entry_t npte = l2pte_set_readonly(opte);
   4071 				l2pte_reset(ptep);
   4072 				PTE_SYNC(ptep);
   4073 #ifdef ARM_MMU_EXTENDED
   4074 				pmap_tlb_flush_SE(pm, sva, PVF_REF);
   4075 #endif
   4076 				l2pte_set(ptep, npte, 0);
   4077 				PTE_SYNC(ptep);
   4078 
   4079 				if (pg != NULL) {
   4080 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4081 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4082 
   4083 					pmap_acquire_page_lock(md);
   4084 #ifndef ARM_MMU_EXTENDED
   4085 					f =
   4086 #endif
   4087 					    pmap_modify_pv(md, pa, pm, sva,
   4088 					       clr_mask, 0);
   4089 					pmap_vac_me_harder(md, pa, pm, sva);
   4090 					pmap_release_page_lock(md);
   4091 #ifndef ARM_MMU_EXTENDED
   4092 				} else {
   4093 					f = PVF_REF | PVF_EXEC;
   4094 				}
   4095 
   4096 				if (flush) {
   4097 					flags |= f;
   4098 				} else {
   4099 					pmap_tlb_flush_SE(pm, sva, f);
   4100 #endif
   4101 				}
   4102 			}
   4103 
   4104 			sva += PAGE_SIZE;
   4105 			ptep += PAGE_SIZE / L2_S_SIZE;
   4106 		}
   4107 	}
   4108 
   4109 #ifndef ARM_MMU_EXTENDED
   4110 	if (flush) {
   4111 		if (PV_BEEN_EXECD(flags)) {
   4112 			pmap_tlb_flushID(pm);
   4113 		} else if (PV_BEEN_REFD(flags)) {
   4114 			pmap_tlb_flushD(pm);
   4115 		}
   4116 	}
   4117 #endif
   4118 
   4119 	pmap_release_pmap_lock(pm);
   4120 }
   4121 
   4122 void
   4123 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4124 {
   4125 	struct l2_bucket *l2b;
   4126 	pt_entry_t *ptep;
   4127 	vaddr_t next_bucket;
   4128 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4129 
   4130 	NPDEBUG(PDB_EXEC,
   4131 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   4132 	    pm, sva, eva));
   4133 
   4134 	pmap_acquire_pmap_lock(pm);
   4135 
   4136 	while (sva < eva) {
   4137 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4138 		if (next_bucket > eva)
   4139 			next_bucket = eva;
   4140 
   4141 		l2b = pmap_get_l2_bucket(pm, sva);
   4142 		if (l2b == NULL) {
   4143 			sva = next_bucket;
   4144 			continue;
   4145 		}
   4146 
   4147 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4148 		     sva < next_bucket;
   4149 		     sva += page_size,
   4150 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4151 		     page_size = PAGE_SIZE) {
   4152 			if (l2pte_valid_p(*ptep)) {
   4153 				cpu_icache_sync_range(sva,
   4154 				    uimin(page_size, eva - sva));
   4155 			}
   4156 		}
   4157 	}
   4158 
   4159 	pmap_release_pmap_lock(pm);
   4160 }
   4161 
   4162 void
   4163 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4164 {
   4165 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4166 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4167 
   4168 	NPDEBUG(PDB_PROTECT,
   4169 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   4170 	    md, pa, prot));
   4171 
   4172 	switch(prot) {
   4173 	case VM_PROT_READ|VM_PROT_WRITE:
   4174 #if defined(ARM_MMU_EXTENDED)
   4175 		pmap_acquire_page_lock(md);
   4176 		pmap_clearbit(md, pa, PVF_EXEC);
   4177 		pmap_release_page_lock(md);
   4178 		break;
   4179 #endif
   4180 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4181 		break;
   4182 
   4183 	case VM_PROT_READ:
   4184 #if defined(ARM_MMU_EXTENDED)
   4185 		pmap_acquire_page_lock(md);
   4186 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4187 		pmap_release_page_lock(md);
   4188 		break;
   4189 #endif
   4190 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4191 		pmap_acquire_page_lock(md);
   4192 		pmap_clearbit(md, pa, PVF_WRITE);
   4193 		pmap_release_page_lock(md);
   4194 		break;
   4195 
   4196 	default:
   4197 		pmap_page_remove(md, pa);
   4198 		break;
   4199 	}
   4200 }
   4201 
   4202 /*
   4203  * pmap_clear_modify:
   4204  *
   4205  *	Clear the "modified" attribute for a page.
   4206  */
   4207 bool
   4208 pmap_clear_modify(struct vm_page *pg)
   4209 {
   4210 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4211 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4212 	bool rv;
   4213 
   4214 	pmap_acquire_page_lock(md);
   4215 
   4216 	if (md->pvh_attrs & PVF_MOD) {
   4217 		rv = true;
   4218 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4219 		/*
   4220 		 * If we are going to clear the modified bit and there are
   4221 		 * no other modified bits set, flush the page to memory and
   4222 		 * mark it clean.
   4223 		 */
   4224 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4225 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4226 #endif
   4227 		pmap_clearbit(md, pa, PVF_MOD);
   4228 	} else {
   4229 		rv = false;
   4230 	}
   4231 	pmap_release_page_lock(md);
   4232 
   4233 	return rv;
   4234 }
   4235 
   4236 /*
   4237  * pmap_clear_reference:
   4238  *
   4239  *	Clear the "referenced" attribute for a page.
   4240  */
   4241 bool
   4242 pmap_clear_reference(struct vm_page *pg)
   4243 {
   4244 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4245 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4246 	bool rv;
   4247 
   4248 	pmap_acquire_page_lock(md);
   4249 
   4250 	if (md->pvh_attrs & PVF_REF) {
   4251 		rv = true;
   4252 		pmap_clearbit(md, pa, PVF_REF);
   4253 	} else {
   4254 		rv = false;
   4255 	}
   4256 	pmap_release_page_lock(md);
   4257 
   4258 	return rv;
   4259 }
   4260 
   4261 /*
   4262  * pmap_is_modified:
   4263  *
   4264  *	Test if a page has the "modified" attribute.
   4265  */
   4266 /* See <arm/arm32/pmap.h> */
   4267 
   4268 /*
   4269  * pmap_is_referenced:
   4270  *
   4271  *	Test if a page has the "referenced" attribute.
   4272  */
   4273 /* See <arm/arm32/pmap.h> */
   4274 
   4275 #if defined(ARM_MMU_EXTENDED) && 0
   4276 int
   4277 pmap_prefetchabt_fixup(void *v)
   4278 {
   4279 	struct trapframe * const tf = v;
   4280 	vaddr_t va = trunc_page(tf->tf_pc);
   4281 	int rv = ABORT_FIXUP_FAILED;
   4282 
   4283 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4284 		return rv;
   4285 
   4286 	kpreempt_disable();
   4287 	pmap_t pm = curcpu()->ci_pmap_cur;
   4288 	const size_t l1slot = l1pte_index(va);
   4289 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4290 	if (l2 == NULL)
   4291 		goto out;
   4292 
   4293 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4294 	if (l2b->l2b_kva == NULL)
   4295 		goto out;
   4296 
   4297 	/*
   4298 	 * Check the PTE itself.
   4299 	 */
   4300 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4301 	const pt_entry_t opte = *ptep;
   4302 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4303 		goto out;
   4304 
   4305 	paddr_t pa = l2pte_pa(opte);
   4306 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4307 	KASSERT(pg != NULL);
   4308 
   4309 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4310 
   4311 	pmap_acquire_page_lock(md);
   4312 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4313 	KASSERT(pv != NULL);
   4314 
   4315 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4316 		l2pte_reset(ptep);
   4317 		PTE_SYNC(ptep);
   4318 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4319 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4320 			pmap_syncicache_page(md, pa);
   4321 		}
   4322 		rv = ABORT_FIXUP_RETURN;
   4323 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4324 		PTE_SYNC(ptep);
   4325 	}
   4326 	pmap_release_page_lock(md);
   4327 
   4328   out:
   4329 	kpreempt_enable();
   4330 	return rv;
   4331 }
   4332 #endif
   4333 
   4334 int
   4335 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4336 {
   4337 	struct l2_dtable *l2;
   4338 	struct l2_bucket *l2b;
   4339 	paddr_t pa;
   4340 	const size_t l1slot = l1pte_index(va);
   4341 	int rv = 0;
   4342 
   4343 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4344 
   4345 	va = trunc_page(va);
   4346 
   4347 	KASSERT(!user || (pm != pmap_kernel()));
   4348 
   4349 	UVMHIST_LOG(maphist, " (pm=%#jx, va=%#jx, ftype=%#jx, user=%jd)",
   4350 	    (uintptr_t)pm, va, ftype, user);
   4351 #ifdef ARM_MMU_EXTENDED
   4352 	UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
   4353 	    (uintptr_t)cpu_tlb_info(curcpu()),
   4354 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4355 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4356 #endif
   4357 
   4358 	pmap_acquire_pmap_lock(pm);
   4359 
   4360 	/*
   4361 	 * If there is no l2_dtable for this address, then the process
   4362 	 * has no business accessing it.
   4363 	 *
   4364 	 * Note: This will catch userland processes trying to access
   4365 	 * kernel addresses.
   4366 	 */
   4367 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4368 	if (l2 == NULL) {
   4369 		UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
   4370 		goto out;
   4371 	}
   4372 
   4373 	/*
   4374 	 * Likewise if there is no L2 descriptor table
   4375 	 */
   4376 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4377 	if (l2b->l2b_kva == NULL) {
   4378 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
   4379 		    l1slot, 0, 0, 0);
   4380 		goto out;
   4381 	}
   4382 
   4383 	/*
   4384 	 * Check the PTE itself.
   4385 	 */
   4386 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4387 	pt_entry_t const opte = *ptep;
   4388 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4389 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
   4390 		    l1slot, 0, 0, 0);
   4391 		goto out;
   4392 	}
   4393 
   4394 #ifndef ARM_HAS_VBAR
   4395 	/*
   4396 	 * Catch a userland access to the vector page mapped at 0x0
   4397 	 */
   4398 	if (user && (opte & L2_S_PROT_U) == 0) {
   4399 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4400 		goto out;
   4401 	}
   4402 #endif
   4403 
   4404 	pa = l2pte_pa(opte);
   4405 
   4406 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4407 		/*
   4408 		 * This looks like a good candidate for "page modified"
   4409 		 * emulation...
   4410 		 */
   4411 		struct pv_entry *pv;
   4412 		struct vm_page *pg;
   4413 
   4414 		/* Extract the physical address of the page */
   4415 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4416 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4417 			goto out;
   4418 		}
   4419 
   4420 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4421 
   4422 		/* Get the current flags for this page. */
   4423 		pmap_acquire_page_lock(md);
   4424 		pv = pmap_find_pv(md, pm, va);
   4425 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4426 			pmap_release_page_lock(md);
   4427 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4428 			goto out;
   4429 		}
   4430 
   4431 		/*
   4432 		 * Do the flags say this page is writable? If not then it
   4433 		 * is a genuine write fault. If yes then the write fault is
   4434 		 * our fault as we did not reflect the write access in the
   4435 		 * PTE. Now we know a write has occurred we can correct this
   4436 		 * and also set the modified bit
   4437 		 */
   4438 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4439 			pmap_release_page_lock(md);
   4440 			goto out;
   4441 		}
   4442 
   4443 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4444 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4445 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4446 		/*
   4447 		 * If there are cacheable mappings for this page, mark it dirty.
   4448 		 */
   4449 		if ((md->pvh_attrs & PVF_NC) == 0)
   4450 			md->pvh_attrs |= PVF_DIRTY;
   4451 #endif
   4452 #ifdef ARM_MMU_EXTENDED
   4453 		if (md->pvh_attrs & PVF_EXEC) {
   4454 			md->pvh_attrs &= ~PVF_EXEC;
   4455 			PMAPCOUNT(exec_discarded_modfixup);
   4456 		}
   4457 #endif
   4458 		pmap_release_page_lock(md);
   4459 
   4460 		/*
   4461 		 * Re-enable write permissions for the page.  No need to call
   4462 		 * pmap_vac_me_harder(), since this is just a
   4463 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4464 		 * changing. We've already set the cacheable bits based on
   4465 		 * the assumption that we can write to this page.
   4466 		 */
   4467 		const pt_entry_t npte =
   4468 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4469 #ifdef ARM_MMU_EXTENDED
   4470 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4471 #endif
   4472 		    | 0;
   4473 		l2pte_reset(ptep);
   4474 		PTE_SYNC(ptep);
   4475 		pmap_tlb_flush_SE(pm, va,
   4476 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4477 		l2pte_set(ptep, npte, 0);
   4478 		PTE_SYNC(ptep);
   4479 		PMAPCOUNT(fixup_mod);
   4480 		rv = 1;
   4481 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
   4482 		    "from %#jx to %#jx)", opte, npte, 0, 0);
   4483 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4484 		/*
   4485 		 * This looks like a good candidate for "page referenced"
   4486 		 * emulation.
   4487 		 */
   4488 		struct vm_page *pg;
   4489 
   4490 		/* Extract the physical address of the page */
   4491 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4492 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4493 			goto out;
   4494 		}
   4495 
   4496 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4497 
   4498 		/* Get the current flags for this page. */
   4499 		pmap_acquire_page_lock(md);
   4500 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4501 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4502 			pmap_release_page_lock(md);
   4503 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4504 			goto out;
   4505 		}
   4506 
   4507 		md->pvh_attrs |= PVF_REF;
   4508 		pv->pv_flags |= PVF_REF;
   4509 
   4510 		pt_entry_t npte =
   4511 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4512 #ifdef ARM_MMU_EXTENDED
   4513 		if (pm != pmap_kernel()) {
   4514 			npte |= L2_XS_nG;
   4515 		}
   4516 		/*
   4517 		 * If we got called from prefetch abort, then ftype will have
   4518 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4519 		 * the PTE.
   4520 		 */
   4521 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4522 			/*
   4523 			 * Is this a mapping of an executable page?
   4524 			 */
   4525 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4526 				pmap_release_page_lock(md);
   4527 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4528 				    0, 0, 0, 0);
   4529 				goto out;
   4530 			}
   4531 			/*
   4532 			 * If we haven't synced the page, do so now.
   4533 			 */
   4534 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4535 				UVMHIST_LOG(maphist, " ref emul: syncicache "
   4536 				    "page #%#jx", pa, 0, 0, 0);
   4537 				pmap_syncicache_page(md, pa);
   4538 				PMAPCOUNT(fixup_exec);
   4539 			}
   4540 			npte &= ~L2_XS_XN;
   4541 		}
   4542 #endif /* ARM_MMU_EXTENDED */
   4543 		pmap_release_page_lock(md);
   4544 		l2pte_reset(ptep);
   4545 		PTE_SYNC(ptep);
   4546 		pmap_tlb_flush_SE(pm, va,
   4547 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4548 		l2pte_set(ptep, npte, 0);
   4549 		PTE_SYNC(ptep);
   4550 		PMAPCOUNT(fixup_ref);
   4551 		rv = 1;
   4552 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
   4553 		    "%#jx to %#jx)", opte, npte, 0, 0);
   4554 #ifdef ARM_MMU_EXTENDED
   4555 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4556 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4557 		if (pg == NULL) {
   4558 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4559 			goto out;
   4560 		}
   4561 
   4562 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4563 
   4564 		/* Get the current flags for this page. */
   4565 		pmap_acquire_page_lock(md);
   4566 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4567 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4568 			pmap_release_page_lock(md);
   4569 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4570 			goto out;
   4571 		}
   4572 
   4573 		/*
   4574 		 * If we haven't synced the page, do so now.
   4575 		 */
   4576 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4577 			UVMHIST_LOG(maphist, "syncicache page #%#jx",
   4578 			    pa, 0, 0, 0);
   4579 			pmap_syncicache_page(md, pa);
   4580 		}
   4581 		pmap_release_page_lock(md);
   4582 		/*
   4583 		 * Turn off no-execute.
   4584 		 */
   4585 		KASSERT(opte & L2_XS_nG);
   4586 		l2pte_reset(ptep);
   4587 		PTE_SYNC(ptep);
   4588 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4589 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4590 		PTE_SYNC(ptep);
   4591 		rv = 1;
   4592 		PMAPCOUNT(fixup_exec);
   4593 		UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
   4594 		    opte, opte & ~L2_XS_XN, 0, 0);
   4595 #endif
   4596 	}
   4597 
   4598 #ifndef ARM_MMU_EXTENDED
   4599 	/*
   4600 	 * We know there is a valid mapping here, so simply
   4601 	 * fix up the L1 if necessary.
   4602 	 */
   4603 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4604 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4605 	if (*pdep != pde) {
   4606 		l1pte_setone(pdep, pde);
   4607 		PDE_SYNC(pdep);
   4608 		rv = 1;
   4609 		PMAPCOUNT(fixup_pdes);
   4610 	}
   4611 #endif
   4612 
   4613 #ifdef CPU_SA110
   4614 	/*
   4615 	 * There are bugs in the rev K SA110.  This is a check for one
   4616 	 * of them.
   4617 	 */
   4618 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4619 	    curcpu()->ci_arm_cpurev < 3) {
   4620 		/* Always current pmap */
   4621 		if (l2pte_valid_p(opte)) {
   4622 			extern int kernel_debug;
   4623 			if (kernel_debug & 1) {
   4624 				struct proc *p = curlwp->l_proc;
   4625 				printf("prefetch_abort: page is already "
   4626 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4627 				printf("prefetch_abort: pc=%08lx proc=%p "
   4628 				    "process=%s\n", va, p, p->p_comm);
   4629 				printf("prefetch_abort: far=%08x fs=%x\n",
   4630 				    cpu_faultaddress(), cpu_faultstatus());
   4631 			}
   4632 #ifdef DDB
   4633 			if (kernel_debug & 2)
   4634 				Debugger();
   4635 #endif
   4636 			rv = 1;
   4637 		}
   4638 	}
   4639 #endif /* CPU_SA110 */
   4640 
   4641 #ifndef ARM_MMU_EXTENDED
   4642 	/*
   4643 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4644 	 * stale TLB entry for the faulting address.  That might be due to a
   4645 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4646 	 */
   4647 	if (rv == 0
   4648 	    && pm->pm_l1->l1_domain_use_count == 1
   4649 	    && pmap_needs_pte_sync == 0) {
   4650 		pmap_needs_pte_sync = 1;
   4651 		PTE_SYNC(ptep);
   4652 		PMAPCOUNT(fixup_ptesync);
   4653 		rv = 1;
   4654 	}
   4655 #endif
   4656 
   4657 #ifndef MULTIPROCESSOR
   4658 #if defined(DEBUG) || 1
   4659 	/*
   4660 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4661 	 * stale TLB entry for the faulting address. This happens when two or
   4662 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4663 	 * a context switch between such processes, we can take domain faults
   4664 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4665 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4666 	 * example.
   4667 	 *
   4668 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4669 	 * entry for a recently entered mapping. In this case, the TLB is
   4670 	 * flushed for the new mapping, but there may still be TLB entries for
   4671 	 * other mappings belonging to other processes in the 1MB range
   4672 	 * covered by the L1 entry.
   4673 	 *
   4674 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4675 	 * value, so the fault must be due to a stale TLB entry.
   4676 	 *
   4677 	 * Since we always need to flush the TLB anyway in the case where we
   4678 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4679 	 * stale TLB entries dynamically.
   4680 	 *
   4681 	 * However, the above condition can ONLY happen if the current L1 is
   4682 	 * being shared. If it happens when the L1 is unshared, it indicates
   4683 	 * that other parts of the pmap are not doing their job WRT managing
   4684 	 * the TLB.
   4685 	 */
   4686 	if (rv == 0
   4687 #ifndef ARM_MMU_EXTENDED
   4688 	    && pm->pm_l1->l1_domain_use_count == 1
   4689 #endif
   4690 	    && true) {
   4691 #ifdef DEBUG
   4692 		extern int last_fault_code;
   4693 #else
   4694 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4695 		    ? armreg_ifsr_read()
   4696 		    : armreg_dfsr_read();
   4697 #endif
   4698 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4699 		    pm, va, ftype);
   4700 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4701 		    l2, l2b, ptep, opte);
   4702 
   4703 #ifndef ARM_MMU_EXTENDED
   4704 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4705 		    pdep, pde, last_fault_code);
   4706 #else
   4707 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4708 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4709 		   armreg_ttbcr_read());
   4710 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4711 		    last_fault_code, curcpu()->ci_pmap_cur,
   4712 		    curcpu()->ci_pmap_asid_cur,
   4713 		    armreg_contextidr_read(), armreg_dacr_read());
   4714 #ifdef _ARM_ARCH_7
   4715 		if (ftype & VM_PROT_WRITE)
   4716 			armreg_ats1cuw_write(va);
   4717 		else
   4718 			armreg_ats1cur_write(va);
   4719 		arm_isb();
   4720 		printf("fixup: par %#x\n", armreg_par_read());
   4721 #endif
   4722 #endif
   4723 #ifdef DDB
   4724 		extern int kernel_debug;
   4725 
   4726 		if (kernel_debug & 2) {
   4727 			pmap_release_pmap_lock(pm);
   4728 #ifdef UVMHIST
   4729 			KERNHIST_DUMP(maphist);
   4730 #endif
   4731 			cpu_Debugger();
   4732 			pmap_acquire_pmap_lock(pm);
   4733 		}
   4734 #endif
   4735 	}
   4736 #endif
   4737 #endif
   4738 
   4739 #ifndef ARM_MMU_EXTENDED
   4740 	/* Flush the TLB in the shared L1 case - see comment above */
   4741 	pmap_tlb_flush_SE(pm, va,
   4742 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4743 #endif
   4744 
   4745 	rv = 1;
   4746 
   4747 out:
   4748 	pmap_release_pmap_lock(pm);
   4749 
   4750 	return (rv);
   4751 }
   4752 
   4753 /*
   4754  * Routine:	pmap_procwr
   4755  *
   4756  * Function:
   4757  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4758  *
   4759  */
   4760 void
   4761 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4762 {
   4763 #ifndef ARM_MMU_EXTENDED
   4764 
   4765 	/* We only need to do anything if it is the current process. */
   4766 	if (p == curproc)
   4767 		cpu_icache_sync_range(va, len);
   4768 #endif
   4769 }
   4770 
   4771 /*
   4772  * Routine:	pmap_unwire
   4773  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4774  *
   4775  * In/out conditions:
   4776  *		The mapping must already exist in the pmap.
   4777  */
   4778 void
   4779 pmap_unwire(pmap_t pm, vaddr_t va)
   4780 {
   4781 	struct l2_bucket *l2b;
   4782 	pt_entry_t *ptep, pte;
   4783 	struct vm_page *pg;
   4784 	paddr_t pa;
   4785 
   4786 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4787 
   4788 	pmap_acquire_pmap_lock(pm);
   4789 
   4790 	l2b = pmap_get_l2_bucket(pm, va);
   4791 	KDASSERT(l2b != NULL);
   4792 
   4793 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4794 	pte = *ptep;
   4795 
   4796 	/* Extract the physical address of the page */
   4797 	pa = l2pte_pa(pte);
   4798 
   4799 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4800 		/* Update the wired bit in the pv entry for this page. */
   4801 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4802 
   4803 		pmap_acquire_page_lock(md);
   4804 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4805 		pmap_release_page_lock(md);
   4806 	}
   4807 
   4808 	pmap_release_pmap_lock(pm);
   4809 }
   4810 
   4811 #ifdef ARM_MMU_EXTENDED
   4812 void
   4813 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
   4814 {
   4815 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4816 
   4817 	/*
   4818 	 * Assume that TTBR1 has only global mappings and TTBR0 only
   4819 	 * has non-global mappings.  To prevent speculation from doing
   4820 	 * evil things we disable translation table walks using TTBR0
   4821 	 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
   4822 	 * Once both are set, table walks are reenabled.
   4823 	 */
   4824 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4825 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4826 	arm_isb();
   4827 
   4828 	pmap_tlb_asid_acquire(pm, l);
   4829 
   4830 	struct cpu_info * const ci = curcpu();
   4831 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
   4832 
   4833 	cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
   4834 	/*
   4835 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
   4836 	 * have been updated.
   4837 	 */
   4838 	arm_isb();
   4839 
   4840 	if (pm != pmap_kernel()) {
   4841 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4842 	}
   4843 	cpu_cpwait();
   4844 
   4845 	UVMHIST_LOG(maphist, " pm %#jx pm->pm_l1_pa %08jx asid %ju... done",
   4846 	    (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
   4847 
   4848 	KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
   4849 	    ci->ci_pmap_asid_cur, pai->pai_asid);
   4850 	ci->ci_pmap_cur = pm;
   4851 }
   4852 
   4853 void
   4854 pmap_md_pdetab_deactivate(pmap_t pm)
   4855 {
   4856 
   4857 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4858 
   4859 	kpreempt_disable();
   4860 	struct cpu_info * const ci = curcpu();
   4861 	/*
   4862 	 * Disable translation table walks from TTBR0 while no pmap has been
   4863 	 * activated.
   4864 	 */
   4865 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4866 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4867 	arm_isb();
   4868 	pmap_tlb_asid_deactivate(pm);
   4869 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
   4870 	arm_isb();
   4871 
   4872 	ci->ci_pmap_cur = pmap_kernel();
   4873 	KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
   4874 	    ci->ci_pmap_asid_cur);
   4875 	kpreempt_enable();
   4876 }
   4877 #endif
   4878 
   4879 void
   4880 pmap_activate(struct lwp *l)
   4881 {
   4882 	extern int block_userspace_access;
   4883 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   4884 
   4885 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4886 
   4887 	UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)npm,
   4888 	    0, 0);
   4889 
   4890 	struct cpu_info * const ci = curcpu();
   4891 
   4892 	/*
   4893 	 * If activating a non-current lwp or the current lwp is
   4894 	 * already active, just return.
   4895 	 */
   4896 	if (false
   4897 	    || l != curlwp
   4898 #ifdef ARM_MMU_EXTENDED
   4899 	    || (ci->ci_pmap_cur == npm &&
   4900 		(npm == pmap_kernel()
   4901 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   4902 #else
   4903 	    || npm->pm_activated == true
   4904 #endif
   4905 	    || false) {
   4906 		UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
   4907 		    (uintptr_t)l, 0, 0);
   4908 		return;
   4909 	}
   4910 
   4911 #ifndef ARM_MMU_EXTENDED
   4912 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4913 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4914 
   4915 	/*
   4916 	 * If TTB and DACR are unchanged, short-circuit all the
   4917 	 * TLB/cache management stuff.
   4918 	 */
   4919 	pmap_t opm = ci->ci_lastlwp
   4920 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   4921 	    : NULL;
   4922 	if (opm != NULL) {
   4923 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4924 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4925 
   4926 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4927 			goto all_done;
   4928 	}
   4929 #endif /* !ARM_MMU_EXTENDED */
   4930 
   4931 	PMAPCOUNT(activations);
   4932 	block_userspace_access = 1;
   4933 
   4934 #ifndef ARM_MMU_EXTENDED
   4935 	/*
   4936 	 * If switching to a user vmspace which is different to the
   4937 	 * most recent one, and the most recent one is potentially
   4938 	 * live in the cache, we must write-back and invalidate the
   4939 	 * entire cache.
   4940 	 */
   4941 	pmap_t rpm = ci->ci_pmap_lastuser;
   4942 
   4943 	/*
   4944 	 * XXXSCW: There's a corner case here which can leave turds in the
   4945 	 * cache as reported in kern/41058. They're probably left over during
   4946 	 * tear-down and switching away from an exiting process. Until the root
   4947 	 * cause is identified and fixed, zap the cache when switching pmaps.
   4948 	 * This will result in a few unnecessary cache flushes, but that's
   4949 	 * better than silently corrupting data.
   4950 	 */
   4951 #if 0
   4952 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4953 	    rpm->pm_cstate.cs_cache) {
   4954 		rpm->pm_cstate.cs_cache = 0;
   4955 #ifdef PMAP_CACHE_VIVT
   4956 		cpu_idcache_wbinv_all();
   4957 #endif
   4958 	}
   4959 #else
   4960 	if (rpm) {
   4961 		rpm->pm_cstate.cs_cache = 0;
   4962 		if (npm == pmap_kernel())
   4963 			ci->ci_pmap_lastuser = NULL;
   4964 #ifdef PMAP_CACHE_VIVT
   4965 		cpu_idcache_wbinv_all();
   4966 #endif
   4967 	}
   4968 #endif
   4969 
   4970 	/* No interrupts while we frob the TTB/DACR */
   4971 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   4972 #endif /* !ARM_MMU_EXTENDED */
   4973 
   4974 #ifndef ARM_HAS_VBAR
   4975 	/*
   4976 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4977 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4978 	 * before switching to it otherwise subsequent interrupts/exceptions
   4979 	 * (including domain faults!) will jump into hyperspace.
   4980 	 */
   4981 	if (npm->pm_pl1vec != NULL) {
   4982 		cpu_tlb_flushID_SE((u_int)vector_page);
   4983 		cpu_cpwait();
   4984 		*npm->pm_pl1vec = npm->pm_l1vec;
   4985 		PTE_SYNC(npm->pm_pl1vec);
   4986 	}
   4987 #endif
   4988 
   4989 #ifdef ARM_MMU_EXTENDED
   4990 	pmap_md_pdetab_activate(npm, l);
   4991 #else
   4992 	cpu_domains(ndacr);
   4993 	if (npm == pmap_kernel() || npm == rpm) {
   4994 		/*
   4995 		 * Switching to a kernel thread, or back to the
   4996 		 * same user vmspace as before... Simply update
   4997 		 * the TTB (no TLB flush required)
   4998 		 */
   4999 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   5000 		cpu_cpwait();
   5001 	} else {
   5002 		/*
   5003 		 * Otherwise, update TTB and flush TLB
   5004 		 */
   5005 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   5006 		if (rpm != NULL)
   5007 			rpm->pm_cstate.cs_tlb = 0;
   5008 	}
   5009 
   5010 	restore_interrupts(oldirqstate);
   5011 #endif /* ARM_MMU_EXTENDED */
   5012 
   5013 	block_userspace_access = 0;
   5014 
   5015 #ifndef ARM_MMU_EXTENDED
   5016  all_done:
   5017 	/*
   5018 	 * The new pmap is resident. Make sure it's marked
   5019 	 * as resident in the cache/TLB.
   5020 	 */
   5021 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5022 	if (npm != pmap_kernel())
   5023 		ci->ci_pmap_lastuser = npm;
   5024 
   5025 	/* The old pmap is not longer active */
   5026 	if (opm != npm) {
   5027 		if (opm != NULL)
   5028 			opm->pm_activated = false;
   5029 
   5030 		/* But the new one is */
   5031 		npm->pm_activated = true;
   5032 	}
   5033 	ci->ci_pmap_cur = npm;
   5034 #endif
   5035 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   5036 }
   5037 
   5038 void
   5039 pmap_deactivate(struct lwp *l)
   5040 {
   5041 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   5042 
   5043 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5044 
   5045 	UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)pm,
   5046 	    0, 0);
   5047 
   5048 #ifdef ARM_MMU_EXTENDED
   5049 	pmap_md_pdetab_deactivate(pm);
   5050 #else
   5051 	/*
   5052 	 * If the process is exiting, make sure pmap_activate() does
   5053 	 * a full MMU context-switch and cache flush, which we might
   5054 	 * otherwise skip. See PR port-arm/38950.
   5055 	 */
   5056 	if (l->l_proc->p_sflag & PS_WEXIT)
   5057 		curcpu()->ci_lastlwp = NULL;
   5058 
   5059 	pm->pm_activated = false;
   5060 #endif
   5061 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5062 }
   5063 
   5064 void
   5065 pmap_update(pmap_t pm)
   5066 {
   5067 
   5068 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5069 
   5070 	UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
   5071 	    pm->pm_remove_all, 0, 0);
   5072 
   5073 #ifndef ARM_MMU_EXTENDED
   5074 	if (pm->pm_remove_all) {
   5075 		/*
   5076 		 * Finish up the pmap_remove_all() optimisation by flushing
   5077 		 * the TLB.
   5078 		 */
   5079 		pmap_tlb_flushID(pm);
   5080 		pm->pm_remove_all = false;
   5081 	}
   5082 
   5083 	if (pmap_is_current(pm)) {
   5084 		/*
   5085 		 * If we're dealing with a current userland pmap, move its L1
   5086 		 * to the end of the LRU.
   5087 		 */
   5088 		if (pm != pmap_kernel())
   5089 			pmap_use_l1(pm);
   5090 
   5091 		/*
   5092 		 * We can assume we're done with frobbing the cache/tlb for
   5093 		 * now. Make sure any future pmap ops don't skip cache/tlb
   5094 		 * flushes.
   5095 		 */
   5096 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5097 	}
   5098 #else
   5099 
   5100 	kpreempt_disable();
   5101 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
   5102 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   5103 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   5104 		PMAP_COUNT(shootdown_ipis);
   5105 	}
   5106 #endif
   5107 
   5108 	/*
   5109 	 * If pmap_remove_all was called, we deactivated ourselves and released
   5110 	 * our ASID.  Now we have to reactivate ourselves.
   5111 	 */
   5112 	if (__predict_false(pm->pm_remove_all)) {
   5113 		pm->pm_remove_all = false;
   5114 
   5115 		KASSERT(pm != pmap_kernel());
   5116 		pmap_md_pdetab_activate(pm, curlwp);
   5117 	}
   5118 
   5119 	if (arm_has_mpext_p)
   5120 		armreg_bpiallis_write(0);
   5121 	else
   5122 		armreg_bpiall_write(0);
   5123 
   5124 	kpreempt_enable();
   5125 
   5126 	KASSERTMSG(pm == pmap_kernel()
   5127 	    || curcpu()->ci_pmap_cur != pm
   5128 	    || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
   5129 	    "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
   5130 	    pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
   5131 	    curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   5132 #endif
   5133 
   5134 	PMAPCOUNT(updates);
   5135 
   5136 	/*
   5137 	 * make sure TLB/cache operations have completed.
   5138 	 */
   5139 	cpu_cpwait();
   5140 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5141 }
   5142 
   5143 void
   5144 pmap_remove_all(pmap_t pm)
   5145 {
   5146 
   5147 	/*
   5148 	 * The vmspace described by this pmap is about to be torn down.
   5149 	 * Until pmap_update() is called, UVM will only make calls
   5150 	 * to pmap_remove(). We can make life much simpler by flushing
   5151 	 * the cache now, and deferring TLB invalidation to pmap_update().
   5152 	 */
   5153 #ifdef PMAP_CACHE_VIVT
   5154 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   5155 #endif
   5156 #ifdef ARM_MMU_EXTENDED
   5157 #ifdef MULTIPROCESSOR
   5158 	struct cpu_info * const ci = curcpu();
   5159 	// This should be the last CPU with this pmap onproc
   5160 	KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
   5161 	if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
   5162 #endif
   5163 		pmap_tlb_asid_deactivate(pm);
   5164 #ifdef MULTIPROCESSOR
   5165 	KASSERT(kcpuset_iszero(pm->pm_onproc));
   5166 #endif
   5167 
   5168 	pmap_tlb_asid_release_all(pm);
   5169 #endif
   5170 	pm->pm_remove_all = true;
   5171 }
   5172 
   5173 /*
   5174  * Retire the given physical map from service.
   5175  * Should only be called if the map contains no valid mappings.
   5176  */
   5177 void
   5178 pmap_destroy(pmap_t pm)
   5179 {
   5180 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5181 
   5182 	u_int count;
   5183 
   5184 	if (pm == NULL)
   5185 		return;
   5186 
   5187 	UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
   5188 	    pm->pm_remove_all, 0, 0);
   5189 
   5190 	if (pm->pm_remove_all) {
   5191 #ifdef ARM_MMU_EXTENDED
   5192  		pmap_tlb_asid_release_all(pm);
   5193 #else
   5194 		pmap_tlb_flushID(pm);
   5195 #endif
   5196 		pm->pm_remove_all = false;
   5197 	}
   5198 
   5199 	/*
   5200 	 * Drop reference count
   5201 	 */
   5202 	mutex_enter(pm->pm_lock);
   5203 	count = --pm->pm_obj.uo_refs;
   5204 	mutex_exit(pm->pm_lock);
   5205 	if (count > 0) {
   5206 #ifndef ARM_MMU_EXTENDED
   5207 		if (pmap_is_current(pm)) {
   5208 			if (pm != pmap_kernel())
   5209 				pmap_use_l1(pm);
   5210 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5211 		}
   5212 #endif
   5213 		return;
   5214 	}
   5215 
   5216 	/*
   5217 	 * reference count is zero, free pmap resources and then free pmap.
   5218 	 */
   5219 
   5220 #ifndef ARM_HAS_VBAR
   5221 	if (vector_page < KERNEL_BASE) {
   5222 		KDASSERT(!pmap_is_current(pm));
   5223 
   5224 		/* Remove the vector page mapping */
   5225 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5226 		pmap_update(pm);
   5227 	}
   5228 #endif
   5229 
   5230 	pmap_free_l1(pm);
   5231 
   5232 #ifdef ARM_MMU_EXTENDED
   5233 #ifdef MULTIPROCESSOR
   5234 	kcpuset_destroy(pm->pm_active);
   5235 	kcpuset_destroy(pm->pm_onproc);
   5236 #endif
   5237 #else
   5238 	struct cpu_info * const ci = curcpu();
   5239 	if (ci->ci_pmap_lastuser == pm)
   5240 		ci->ci_pmap_lastuser = NULL;
   5241 #endif
   5242 
   5243 	uvm_obj_destroy(&pm->pm_obj, false);
   5244 	mutex_destroy(&pm->pm_obj_lock);
   5245 	pool_cache_put(&pmap_cache, pm);
   5246 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5247 }
   5248 
   5249 
   5250 /*
   5251  * void pmap_reference(pmap_t pm)
   5252  *
   5253  * Add a reference to the specified pmap.
   5254  */
   5255 void
   5256 pmap_reference(pmap_t pm)
   5257 {
   5258 
   5259 	if (pm == NULL)
   5260 		return;
   5261 
   5262 #ifndef ARM_MMU_EXTENDED
   5263 	pmap_use_l1(pm);
   5264 #endif
   5265 
   5266 	mutex_enter(pm->pm_lock);
   5267 	pm->pm_obj.uo_refs++;
   5268 	mutex_exit(pm->pm_lock);
   5269 }
   5270 
   5271 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5272 
   5273 static struct evcnt pmap_prefer_nochange_ev =
   5274     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5275 static struct evcnt pmap_prefer_change_ev =
   5276     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5277 
   5278 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5279 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5280 
   5281 void
   5282 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5283 {
   5284 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5285 	vaddr_t va = *vap;
   5286 	vaddr_t diff = (hint - va) & mask;
   5287 	if (diff == 0) {
   5288 		pmap_prefer_nochange_ev.ev_count++;
   5289 	} else {
   5290 		pmap_prefer_change_ev.ev_count++;
   5291 		if (__predict_false(td))
   5292 			va -= mask + 1;
   5293 		*vap = va + diff;
   5294 	}
   5295 }
   5296 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5297 
   5298 /*
   5299  * pmap_zero_page()
   5300  *
   5301  * Zero a given physical page by mapping it at a page hook point.
   5302  * In doing the zero page op, the page we zero is mapped cachable, as with
   5303  * StrongARM accesses to non-cached pages are non-burst making writing
   5304  * _any_ bulk data very slow.
   5305  */
   5306 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5307 void
   5308 pmap_zero_page_generic(paddr_t pa)
   5309 {
   5310 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5311 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5312 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5313 #endif
   5314 #if defined(PMAP_CACHE_VIPT)
   5315 	/* Choose the last page color it had, if any */
   5316 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5317 #else
   5318 	const vsize_t va_offset = 0;
   5319 #endif
   5320 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5321 	/*
   5322 	 * Is this page mapped at its natural color?
   5323 	 * If we have all of memory mapped, then just convert PA to VA.
   5324 	 */
   5325 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5326 	   || va_offset == (pa & arm_cache_prefer_mask);
   5327 	const vaddr_t vdstp = okcolor
   5328 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5329 	    : cpu_cdstp(va_offset);
   5330 #else
   5331 	const bool okcolor = false;
   5332 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5333 #endif
   5334 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5335 
   5336 
   5337 #ifdef DEBUG
   5338 	if (!SLIST_EMPTY(&md->pvh_list))
   5339 		panic("pmap_zero_page: page has mappings");
   5340 #endif
   5341 
   5342 	KDASSERT((pa & PGOFSET) == 0);
   5343 
   5344 	if (!okcolor) {
   5345 		/*
   5346 		 * Hook in the page, zero it, and purge the cache for that
   5347 		 * zeroed page. Invalidate the TLB as needed.
   5348 		 */
   5349 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5350 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5351 		l2pte_set(ptep, npte, 0);
   5352 		PTE_SYNC(ptep);
   5353 		cpu_tlb_flushD_SE(vdstp);
   5354 		cpu_cpwait();
   5355 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5356     && !defined(ARM_MMU_EXTENDED)
   5357 		/*
   5358 		 * If we are direct-mapped and our color isn't ok, then before
   5359 		 * we bzero the page invalidate its contents from the cache and
   5360 		 * reset the color to its natural color.
   5361 		 */
   5362 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5363 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5364 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5365 #endif
   5366 	}
   5367 	bzero_page(vdstp);
   5368 	if (!okcolor) {
   5369 		/*
   5370 		 * Unmap the page.
   5371 		 */
   5372 		l2pte_reset(ptep);
   5373 		PTE_SYNC(ptep);
   5374 		cpu_tlb_flushD_SE(vdstp);
   5375 #ifdef PMAP_CACHE_VIVT
   5376 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5377 #endif
   5378 	}
   5379 #ifdef PMAP_CACHE_VIPT
   5380 	/*
   5381 	 * This page is now cache resident so it now has a page color.
   5382 	 * Any contents have been obliterated so clear the EXEC flag.
   5383 	 */
   5384 #ifndef ARM_MMU_EXTENDED
   5385 	if (!pmap_is_page_colored_p(md)) {
   5386 		PMAPCOUNT(vac_color_new);
   5387 		md->pvh_attrs |= PVF_COLORED;
   5388 	}
   5389 	md->pvh_attrs |= PVF_DIRTY;
   5390 #endif
   5391 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5392 		md->pvh_attrs &= ~PVF_EXEC;
   5393 		PMAPCOUNT(exec_discarded_zero);
   5394 	}
   5395 #endif
   5396 }
   5397 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5398 
   5399 #if ARM_MMU_XSCALE == 1
   5400 void
   5401 pmap_zero_page_xscale(paddr_t pa)
   5402 {
   5403 #ifdef DEBUG
   5404 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5405 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5406 
   5407 	if (!SLIST_EMPTY(&md->pvh_list))
   5408 		panic("pmap_zero_page: page has mappings");
   5409 #endif
   5410 
   5411 	KDASSERT((pa & PGOFSET) == 0);
   5412 
   5413 	/*
   5414 	 * Hook in the page, zero it, and purge the cache for that
   5415 	 * zeroed page. Invalidate the TLB as needed.
   5416 	 */
   5417 
   5418 	pt_entry_t npte = L2_S_PROTO | pa |
   5419 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5420 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5421 	l2pte_set(cdst_pte, npte, 0);
   5422 	PTE_SYNC(cdst_pte);
   5423 	cpu_tlb_flushD_SE(cdstp);
   5424 	cpu_cpwait();
   5425 	bzero_page(cdstp);
   5426 	xscale_cache_clean_minidata();
   5427 	l2pte_reset(cdst_pte);
   5428 	PTE_SYNC(cdst_pte);
   5429 }
   5430 #endif /* ARM_MMU_XSCALE == 1 */
   5431 
   5432 /* pmap_pageidlezero()
   5433  *
   5434  * The same as above, except that we assume that the page is not
   5435  * mapped.  This means we never have to flush the cache first.  Called
   5436  * from the idle loop.
   5437  */
   5438 bool
   5439 pmap_pageidlezero(paddr_t pa)
   5440 {
   5441 	bool rv = true;
   5442 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5443 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5444 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5445 #endif
   5446 #ifdef PMAP_CACHE_VIPT
   5447 	/* Choose the last page color it had, if any */
   5448 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5449 #else
   5450 	const vsize_t va_offset = 0;
   5451 #endif
   5452 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5453 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5454 	   || va_offset == (pa & arm_cache_prefer_mask);
   5455 	const vaddr_t vdstp = okcolor
   5456 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5457 	    : cpu_cdstp(va_offset);
   5458 #else
   5459 	const bool okcolor = false;
   5460 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5461 #endif
   5462 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5463 
   5464 
   5465 #ifdef DEBUG
   5466 	if (!SLIST_EMPTY(&md->pvh_list))
   5467 		panic("pmap_pageidlezero: page has mappings");
   5468 #endif
   5469 
   5470 	KDASSERT((pa & PGOFSET) == 0);
   5471 
   5472 	if (!okcolor) {
   5473 		/*
   5474 		 * Hook in the page, zero it, and purge the cache for that
   5475 		 * zeroed page. Invalidate the TLB as needed.
   5476 		 */
   5477 		const pt_entry_t npte = L2_S_PROTO | pa |
   5478 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5479 		l2pte_set(ptep, npte, 0);
   5480 		PTE_SYNC(ptep);
   5481 		cpu_tlb_flushD_SE(vdstp);
   5482 		cpu_cpwait();
   5483 	}
   5484 
   5485 	uint64_t *ptr = (uint64_t *)vdstp;
   5486 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5487 		if (sched_curcpu_runnable_p() != 0) {
   5488 			/*
   5489 			 * A process has become ready.  Abort now,
   5490 			 * so we don't keep it waiting while we
   5491 			 * do slow memory access to finish this
   5492 			 * page.
   5493 			 */
   5494 			rv = false;
   5495 			break;
   5496 		}
   5497 		*ptr++ = 0;
   5498 	}
   5499 
   5500 #ifdef PMAP_CACHE_VIVT
   5501 	if (rv)
   5502 		/*
   5503 		 * if we aborted we'll rezero this page again later so don't
   5504 		 * purge it unless we finished it
   5505 		 */
   5506 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5507 #elif defined(PMAP_CACHE_VIPT)
   5508 	/*
   5509 	 * This page is now cache resident so it now has a page color.
   5510 	 * Any contents have been obliterated so clear the EXEC flag.
   5511 	 */
   5512 #ifndef ARM_MMU_EXTENDED
   5513 	if (!pmap_is_page_colored_p(md)) {
   5514 		PMAPCOUNT(vac_color_new);
   5515 		md->pvh_attrs |= PVF_COLORED;
   5516 	}
   5517 #endif
   5518 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5519 		md->pvh_attrs &= ~PVF_EXEC;
   5520 		PMAPCOUNT(exec_discarded_zero);
   5521 	}
   5522 #endif
   5523 	/*
   5524 	 * Unmap the page.
   5525 	 */
   5526 	if (!okcolor) {
   5527 		l2pte_reset(ptep);
   5528 		PTE_SYNC(ptep);
   5529 		cpu_tlb_flushD_SE(vdstp);
   5530 	}
   5531 
   5532 	return rv;
   5533 }
   5534 
   5535 /*
   5536  * pmap_copy_page()
   5537  *
   5538  * Copy one physical page into another, by mapping the pages into
   5539  * hook points. The same comment regarding cachability as in
   5540  * pmap_zero_page also applies here.
   5541  */
   5542 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5543 void
   5544 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5545 {
   5546 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5547 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5548 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5549 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5550 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5551 #endif
   5552 #ifdef PMAP_CACHE_VIPT
   5553 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5554 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5555 #else
   5556 	const vsize_t src_va_offset = 0;
   5557 	const vsize_t dst_va_offset = 0;
   5558 #endif
   5559 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5560 	/*
   5561 	 * Is this page mapped at its natural color?
   5562 	 * If we have all of memory mapped, then just convert PA to VA.
   5563 	 */
   5564 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5565 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5566 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5567 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5568 	const vaddr_t vsrcp = src_okcolor
   5569 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5570 		cpu_csrcp(src_va_offset))
   5571 	    : cpu_csrcp(src_va_offset);
   5572 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5573 	    cpu_cdstp(dst_va_offset));
   5574 #else
   5575 	const bool src_okcolor = false;
   5576 	const bool dst_okcolor = false;
   5577 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5578 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5579 #endif
   5580 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5581 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5582 
   5583 #ifdef DEBUG
   5584 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5585 		panic("pmap_copy_page: dst page has mappings");
   5586 #endif
   5587 
   5588 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5589 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5590 #endif
   5591 	KDASSERT((src & PGOFSET) == 0);
   5592 	KDASSERT((dst & PGOFSET) == 0);
   5593 
   5594 	/*
   5595 	 * Clean the source page.  Hold the source page's lock for
   5596 	 * the duration of the copy so that no other mappings can
   5597 	 * be created while we have a potentially aliased mapping.
   5598 	 */
   5599 #ifdef PMAP_CACHE_VIVT
   5600 	pmap_acquire_page_lock(src_md);
   5601 	(void) pmap_clean_page(src_md, true);
   5602 	pmap_release_page_lock(src_md);
   5603 #endif
   5604 
   5605 	/*
   5606 	 * Map the pages into the page hook points, copy them, and purge
   5607 	 * the cache for the appropriate page. Invalidate the TLB
   5608 	 * as required.
   5609 	 */
   5610 	if (!src_okcolor) {
   5611 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5612 		    | src
   5613 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5614 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5615 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5616 		    | pte_l2_s_cache_mode
   5617 #endif
   5618 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5619 		l2pte_set(src_ptep, nsrc_pte, 0);
   5620 		PTE_SYNC(src_ptep);
   5621 		cpu_tlb_flushD_SE(vsrcp);
   5622 		cpu_cpwait();
   5623 	}
   5624 	if (!dst_okcolor) {
   5625 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5626 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5627 		l2pte_set(dst_ptep, ndst_pte, 0);
   5628 		PTE_SYNC(dst_ptep);
   5629 		cpu_tlb_flushD_SE(vdstp);
   5630 		cpu_cpwait();
   5631 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5632 		/*
   5633 		 * If we are direct-mapped and our color isn't ok, then before
   5634 		 * we bcopy to the new page invalidate its contents from the
   5635 		 * cache and reset its color to its natural color.
   5636 		 */
   5637 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5638 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5639 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5640 #endif
   5641 	}
   5642 	bcopy_page(vsrcp, vdstp);
   5643 #ifdef PMAP_CACHE_VIVT
   5644 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5645 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5646 #endif
   5647 	/*
   5648 	 * Unmap the pages.
   5649 	 */
   5650 	if (!src_okcolor) {
   5651 		l2pte_reset(src_ptep);
   5652 		PTE_SYNC(src_ptep);
   5653 		cpu_tlb_flushD_SE(vsrcp);
   5654 		cpu_cpwait();
   5655 	}
   5656 	if (!dst_okcolor) {
   5657 		l2pte_reset(dst_ptep);
   5658 		PTE_SYNC(dst_ptep);
   5659 		cpu_tlb_flushD_SE(vdstp);
   5660 		cpu_cpwait();
   5661 	}
   5662 #ifdef PMAP_CACHE_VIPT
   5663 	/*
   5664 	 * Now that the destination page is in the cache, mark it as colored.
   5665 	 * If this was an exec page, discard it.
   5666 	 */
   5667 	pmap_acquire_page_lock(dst_md);
   5668 #ifndef ARM_MMU_EXTENDED
   5669 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5670 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5671 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5672 	}
   5673 	if (!pmap_is_page_colored_p(dst_md)) {
   5674 		PMAPCOUNT(vac_color_new);
   5675 		dst_md->pvh_attrs |= PVF_COLORED;
   5676 	}
   5677 	dst_md->pvh_attrs |= PVF_DIRTY;
   5678 #endif
   5679 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5680 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5681 		PMAPCOUNT(exec_discarded_copy);
   5682 	}
   5683 	pmap_release_page_lock(dst_md);
   5684 #endif
   5685 }
   5686 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5687 
   5688 #if ARM_MMU_XSCALE == 1
   5689 void
   5690 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5691 {
   5692 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5693 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5694 #ifdef DEBUG
   5695 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5696 
   5697 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5698 		panic("pmap_copy_page: dst page has mappings");
   5699 #endif
   5700 
   5701 	KDASSERT((src & PGOFSET) == 0);
   5702 	KDASSERT((dst & PGOFSET) == 0);
   5703 
   5704 	/*
   5705 	 * Clean the source page.  Hold the source page's lock for
   5706 	 * the duration of the copy so that no other mappings can
   5707 	 * be created while we have a potentially aliased mapping.
   5708 	 */
   5709 #ifdef PMAP_CACHE_VIVT
   5710 	pmap_acquire_page_lock(src_md);
   5711 	(void) pmap_clean_page(src_md, true);
   5712 	pmap_release_page_lock(src_md);
   5713 #endif
   5714 
   5715 	/*
   5716 	 * Map the pages into the page hook points, copy them, and purge
   5717 	 * the cache for the appropriate page. Invalidate the TLB
   5718 	 * as required.
   5719 	 */
   5720 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
   5721 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   5722 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5723 	l2pte_set(csrc_pte, nsrc_pte, 0);
   5724 	PTE_SYNC(csrc_pte);
   5725 
   5726 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
   5727 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
   5728 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5729 	l2pte_set(cdst_pte, ndst_pte, 0);
   5730 	PTE_SYNC(cdst_pte);
   5731 
   5732 	cpu_tlb_flushD_SE(csrcp);
   5733 	cpu_tlb_flushD_SE(cdstp);
   5734 	cpu_cpwait();
   5735 	bcopy_page(csrcp, cdstp);
   5736 	xscale_cache_clean_minidata();
   5737 	l2pte_reset(csrc_pte);
   5738 	l2pte_reset(cdst_pte);
   5739 	PTE_SYNC(csrc_pte);
   5740 	PTE_SYNC(cdst_pte);
   5741 }
   5742 #endif /* ARM_MMU_XSCALE == 1 */
   5743 
   5744 /*
   5745  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5746  *
   5747  * Return the start and end addresses of the kernel's virtual space.
   5748  * These values are setup in pmap_bootstrap and are updated as pages
   5749  * are allocated.
   5750  */
   5751 void
   5752 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5753 {
   5754 	*start = virtual_avail;
   5755 	*end = virtual_end;
   5756 }
   5757 
   5758 /*
   5759  * Helper function for pmap_grow_l2_bucket()
   5760  */
   5761 static inline int
   5762 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5763 {
   5764 	paddr_t pa;
   5765 
   5766 	if (uvm.page_init_done == false) {
   5767 #ifdef PMAP_STEAL_MEMORY
   5768 		pv_addr_t pv;
   5769 		pmap_boot_pagealloc(PAGE_SIZE,
   5770 #ifdef PMAP_CACHE_VIPT
   5771 		    arm_cache_prefer_mask,
   5772 		    va & arm_cache_prefer_mask,
   5773 #else
   5774 		    0, 0,
   5775 #endif
   5776 		    &pv);
   5777 		pa = pv.pv_pa;
   5778 #else
   5779 		if (uvm_page_physget(&pa) == false)
   5780 			return (1);
   5781 #endif	/* PMAP_STEAL_MEMORY */
   5782 	} else {
   5783 		struct vm_page *pg;
   5784 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5785 		if (pg == NULL)
   5786 			return (1);
   5787 		pa = VM_PAGE_TO_PHYS(pg);
   5788 		/*
   5789 		 * This new page must not have any mappings.  Enter it via
   5790 		 * pmap_kenter_pa and let that routine do the hard work.
   5791 		 */
   5792 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5793 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5794 		pmap_kenter_pa(va, pa,
   5795 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5796 	}
   5797 
   5798 	if (pap)
   5799 		*pap = pa;
   5800 
   5801 	PMAPCOUNT(pt_mappings);
   5802 #ifdef DEBUG
   5803 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5804 	KDASSERT(l2b != NULL);
   5805 
   5806 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   5807 	const pt_entry_t opte = *ptep;
   5808 	KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   5809 #endif
   5810 	memset((void *)va, 0, PAGE_SIZE);
   5811 	return (0);
   5812 }
   5813 
   5814 /*
   5815  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   5816  * used by pmap_growkernel().
   5817  */
   5818 static inline struct l2_bucket *
   5819 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   5820 {
   5821 	struct l2_dtable *l2;
   5822 	struct l2_bucket *l2b;
   5823 	u_short l1slot;
   5824 	vaddr_t nva;
   5825 
   5826 	l1slot = l1pte_index(va);
   5827 
   5828 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   5829 		/*
   5830 		 * No mapping at this address, as there is
   5831 		 * no entry in the L1 table.
   5832 		 * Need to allocate a new l2_dtable.
   5833 		 */
   5834 		nva = pmap_kernel_l2dtable_kva;
   5835 		if ((nva & PGOFSET) == 0) {
   5836 			/*
   5837 			 * Need to allocate a backing page
   5838 			 */
   5839 			if (pmap_grow_map(nva, NULL))
   5840 				return (NULL);
   5841 		}
   5842 
   5843 		l2 = (struct l2_dtable *)nva;
   5844 		nva += sizeof(struct l2_dtable);
   5845 
   5846 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   5847 			/*
   5848 			 * The new l2_dtable straddles a page boundary.
   5849 			 * Map in another page to cover it.
   5850 			 */
   5851 			if (pmap_grow_map(nva, NULL))
   5852 				return (NULL);
   5853 		}
   5854 
   5855 		pmap_kernel_l2dtable_kva = nva;
   5856 
   5857 		/*
   5858 		 * Link it into the parent pmap
   5859 		 */
   5860 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   5861 	}
   5862 
   5863 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   5864 
   5865 	/*
   5866 	 * Fetch pointer to the L2 page table associated with the address.
   5867 	 */
   5868 	if (l2b->l2b_kva == NULL) {
   5869 		pt_entry_t *ptep;
   5870 
   5871 		/*
   5872 		 * No L2 page table has been allocated. Chances are, this
   5873 		 * is because we just allocated the l2_dtable, above.
   5874 		 */
   5875 		nva = pmap_kernel_l2ptp_kva;
   5876 		ptep = (pt_entry_t *)nva;
   5877 		if ((nva & PGOFSET) == 0) {
   5878 			/*
   5879 			 * Need to allocate a backing page
   5880 			 */
   5881 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   5882 				return (NULL);
   5883 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   5884 		}
   5885 
   5886 		l2->l2_occupancy++;
   5887 		l2b->l2b_kva = ptep;
   5888 		l2b->l2b_l1slot = l1slot;
   5889 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   5890 
   5891 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   5892 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   5893 	}
   5894 
   5895 	return (l2b);
   5896 }
   5897 
   5898 vaddr_t
   5899 pmap_growkernel(vaddr_t maxkvaddr)
   5900 {
   5901 	pmap_t kpm = pmap_kernel();
   5902 #ifndef ARM_MMU_EXTENDED
   5903 	struct l1_ttable *l1;
   5904 #endif
   5905 	int s;
   5906 
   5907 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5908 		goto out;		/* we are OK */
   5909 
   5910 	NPDEBUG(PDB_GROWKERN,
   5911 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5912 	    pmap_curmaxkvaddr, maxkvaddr));
   5913 
   5914 	KDASSERT(maxkvaddr <= virtual_end);
   5915 
   5916 	/*
   5917 	 * whoops!   we need to add kernel PTPs
   5918 	 */
   5919 
   5920 	s = splhigh();	/* to be safe */
   5921 	mutex_enter(kpm->pm_lock);
   5922 
   5923 	/* Map 1MB at a time */
   5924 	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
   5925 #ifdef ARM_MMU_EXTENDED
   5926 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   5927 	pd_entry_t *pdep = spdep;
   5928 #endif
   5929 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   5930 #ifdef ARM_MMU_EXTENDED
   5931 	     pdep++,
   5932 #endif
   5933 	     l1slot++) {
   5934 		struct l2_bucket *l2b =
   5935 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5936 		KASSERT(l2b != NULL);
   5937 
   5938 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   5939 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   5940 #ifdef ARM_MMU_EXTENDED
   5941 		l1pte_setone(pdep, npde);
   5942 #else
   5943 		/* Distribute new L1 entry to all other L1s */
   5944 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5945 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   5946 			l1pte_setone(pdep, npde);
   5947 			PDE_SYNC(pdep);
   5948 		}
   5949 #endif
   5950 	}
   5951 #ifdef ARM_MMU_EXTENDED
   5952 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   5953 #endif
   5954 
   5955 #ifdef PMAP_CACHE_VIVT
   5956 	/*
   5957 	 * flush out the cache, expensive but growkernel will happen so
   5958 	 * rarely
   5959 	 */
   5960 	cpu_dcache_wbinv_all();
   5961 	cpu_tlb_flushD();
   5962 	cpu_cpwait();
   5963 #endif
   5964 
   5965 	mutex_exit(kpm->pm_lock);
   5966 	splx(s);
   5967 
   5968 out:
   5969 	return (pmap_curmaxkvaddr);
   5970 }
   5971 
   5972 /************************ Utility routines ****************************/
   5973 
   5974 #ifndef ARM_HAS_VBAR
   5975 /*
   5976  * vector_page_setprot:
   5977  *
   5978  *	Manipulate the protection of the vector page.
   5979  */
   5980 void
   5981 vector_page_setprot(int prot)
   5982 {
   5983 	struct l2_bucket *l2b;
   5984 	pt_entry_t *ptep;
   5985 
   5986 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   5987 	/*
   5988 	 * If we are using VBAR to use the vectors in the kernel, then it's
   5989 	 * already mapped in the kernel text so no need to anything here.
   5990 	 */
   5991 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   5992 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   5993 		return;
   5994 	}
   5995 #endif
   5996 
   5997 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5998 	KASSERT(l2b != NULL);
   5999 
   6000 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   6001 
   6002 	const pt_entry_t opte = *ptep;
   6003 #ifdef ARM_MMU_EXTENDED
   6004 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   6005 	    | L2_S_PROT(PTE_KERNEL, prot);
   6006 #else
   6007 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   6008 	    | L2_S_PROT(PTE_KERNEL, prot);
   6009 #endif
   6010 	l2pte_set(ptep, npte, opte);
   6011 	PTE_SYNC(ptep);
   6012 	cpu_tlb_flushD_SE(vector_page);
   6013 	cpu_cpwait();
   6014 }
   6015 #endif
   6016 
   6017 /*
   6018  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   6019  * Returns true if the mapping exists, else false.
   6020  *
   6021  * NOTE: This function is only used by a couple of arm-specific modules.
   6022  * It is not safe to take any pmap locks here, since we could be right
   6023  * in the middle of debugging the pmap anyway...
   6024  *
   6025  * It is possible for this routine to return false even though a valid
   6026  * mapping does exist. This is because we don't lock, so the metadata
   6027  * state may be inconsistent.
   6028  *
   6029  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   6030  * a "section" mapping.
   6031  */
   6032 bool
   6033 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   6034 {
   6035 	struct l2_dtable *l2;
   6036 	pd_entry_t *pdep, pde;
   6037 	pt_entry_t *ptep;
   6038 	u_short l1slot;
   6039 
   6040 	if (pm->pm_l1 == NULL)
   6041 		return false;
   6042 
   6043 	l1slot = l1pte_index(va);
   6044 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   6045 	pde = *pdep;
   6046 
   6047 	if (l1pte_section_p(pde)) {
   6048 		*ptp = NULL;
   6049 		return true;
   6050 	}
   6051 
   6052 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   6053 	if (l2 == NULL ||
   6054 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   6055 		return false;
   6056 	}
   6057 
   6058 	*ptp = &ptep[l2pte_index(va)];
   6059 	return true;
   6060 }
   6061 
   6062 bool
   6063 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   6064 {
   6065 
   6066 	if (pm->pm_l1 == NULL)
   6067 		return false;
   6068 
   6069 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   6070 
   6071 	return true;
   6072 }
   6073 
   6074 /************************ Bootstrapping routines ****************************/
   6075 
   6076 #ifndef ARM_MMU_EXTENDED
   6077 static void
   6078 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   6079 {
   6080 	int i;
   6081 
   6082 	l1->l1_kva = l1pt;
   6083 	l1->l1_domain_use_count = 0;
   6084 	l1->l1_domain_first = 0;
   6085 
   6086 	for (i = 0; i < PMAP_DOMAINS; i++)
   6087 		l1->l1_domain_free[i] = i + 1;
   6088 
   6089 	/*
   6090 	 * Copy the kernel's L1 entries to each new L1.
   6091 	 */
   6092 	if (pmap_initialized)
   6093 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   6094 
   6095 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   6096 	    &l1->l1_physaddr) == false)
   6097 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   6098 
   6099 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   6100 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   6101 }
   6102 #endif /* !ARM_MMU_EXTENDED */
   6103 
   6104 /*
   6105  * pmap_bootstrap() is called from the board-specific initarm() routine
   6106  * once the kernel L1/L2 descriptors tables have been set up.
   6107  *
   6108  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   6109  * spread over a number of disparate files/functions.
   6110  *
   6111  * We are passed the following parameters
   6112  *  - vstart
   6113  *    1MB-aligned start of managed kernel virtual memory.
   6114  *  - vend
   6115  *    1MB-aligned end of managed kernel virtual memory.
   6116  *
   6117  * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
   6118  * struct l2_dtable) necessary to track kernel mappings.
   6119  */
   6120 #define	PMAP_STATIC_L2_SIZE 16
   6121 void
   6122 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   6123 {
   6124 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   6125 #ifndef ARM_MMU_EXTENDED
   6126 	static struct l1_ttable static_l1;
   6127 	struct l1_ttable *l1 = &static_l1;
   6128 #endif
   6129 	struct l2_dtable *l2;
   6130 	struct l2_bucket *l2b;
   6131 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   6132 	pmap_t pm = pmap_kernel();
   6133 	pt_entry_t *ptep;
   6134 	paddr_t pa;
   6135 	vsize_t size;
   6136 	int nptes, l2idx, l2next = 0;
   6137 
   6138 #ifdef ARM_MMU_EXTENDED
   6139 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   6140 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   6141 #endif
   6142 
   6143 	VPRINTF("kpm ");
   6144 	/*
   6145 	 * Initialise the kernel pmap object
   6146 	 */
   6147 	curcpu()->ci_pmap_cur = pm;
   6148 #ifdef ARM_MMU_EXTENDED
   6149 	pm->pm_l1 = l1pt;
   6150 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   6151 	VPRINTF("tlb0 ");
   6152 	pmap_tlb_info_init(&pmap_tlb0_info);
   6153 #ifdef MULTIPROCESSOR
   6154 	VPRINTF("kcpusets ");
   6155 	pm->pm_onproc = kcpuset_running;
   6156 	pm->pm_active = kcpuset_running;
   6157 #endif
   6158 #else
   6159 	pm->pm_l1 = l1;
   6160 #endif
   6161 
   6162 	VPRINTF("locks ");
   6163 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6164 	if (arm_cache_prefer_mask != 0) {
   6165 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   6166 	} else {
   6167 #endif
   6168 		mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
   6169 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   6170 	}
   6171 #endif
   6172 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   6173 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   6174 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   6175 
   6176 	VPRINTF("l1pt ");
   6177 	/*
   6178 	 * Scan the L1 translation table created by initarm() and create
   6179 	 * the required metadata for all valid mappings found in it.
   6180 	 */
   6181 	for (size_t l1slot = 0;
   6182 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   6183 	     l1slot++) {
   6184 		pd_entry_t pde = l1pt[l1slot];
   6185 
   6186 		/*
   6187 		 * We're only interested in Coarse mappings.
   6188 		 * pmap_extract() can deal with section mappings without
   6189 		 * recourse to checking L2 metadata.
   6190 		 */
   6191 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   6192 			continue;
   6193 
   6194 		/*
   6195 		 * Lookup the KVA of this L2 descriptor table
   6196 		 */
   6197 		pa = l1pte_pa(pde);
   6198 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6199 		if (ptep == NULL) {
   6200 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6201 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6202 		}
   6203 
   6204 		/*
   6205 		 * Fetch the associated L2 metadata structure.
   6206 		 * Allocate a new one if necessary.
   6207 		 */
   6208 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6209 			if (l2next == PMAP_STATIC_L2_SIZE)
   6210 				panic("pmap_bootstrap: out of static L2s");
   6211 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6212 		}
   6213 
   6214 		/*
   6215 		 * One more L1 slot tracked...
   6216 		 */
   6217 		l2->l2_occupancy++;
   6218 
   6219 		/*
   6220 		 * Fill in the details of the L2 descriptor in the
   6221 		 * appropriate bucket.
   6222 		 */
   6223 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6224 		l2b->l2b_kva = ptep;
   6225 		l2b->l2b_pa = pa;
   6226 		l2b->l2b_l1slot = l1slot;
   6227 
   6228 		/*
   6229 		 * Establish an initial occupancy count for this descriptor
   6230 		 */
   6231 		for (l2idx = 0;
   6232 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6233 		    l2idx++) {
   6234 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6235 				l2b->l2b_occupancy++;
   6236 			}
   6237 		}
   6238 
   6239 		/*
   6240 		 * Make sure the descriptor itself has the correct cache mode.
   6241 		 * If not, fix it, but whine about the problem. Port-meisters
   6242 		 * should consider this a clue to fix up their initarm()
   6243 		 * function. :)
   6244 		 */
   6245 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6246 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6247 			    "L2 pte @ %p\n", ptep);
   6248 		}
   6249 	}
   6250 
   6251 	VPRINTF("cache(l1pt) ");
   6252 	/*
   6253 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6254 	 * a page table. Bitch if it is not correctly set.
   6255 	 */
   6256 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6257 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6258 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6259 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6260 	}
   6261 
   6262 #ifdef PMAP_CACHE_VIVT
   6263 	cpu_dcache_wbinv_all();
   6264 	cpu_tlb_flushID();
   6265 	cpu_cpwait();
   6266 #endif
   6267 
   6268 	/*
   6269 	 * now we allocate the "special" VAs which are used for tmp mappings
   6270 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6271 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6272 	 *
   6273 	 * Managed KVM space start from wherever initarm() tells us.
   6274 	 */
   6275 	virtual_avail = vstart;
   6276 	virtual_end = vend;
   6277 
   6278 	VPRINTF("specials ");
   6279 #ifdef PMAP_CACHE_VIPT
   6280 	/*
   6281 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6282 	 * page so we won't violate cache aliasing rules.
   6283 	 */
   6284 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6285 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6286 	nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6287 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6288 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6289 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6290 		nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6291 	}
   6292 #else
   6293 	nptes = PAGE_SIZE / L2_S_SIZE;
   6294 #endif
   6295 #ifdef MULTIPROCESSOR
   6296 	cnptes = nptes;
   6297 	nptes *= arm_cpu_max;
   6298 #endif
   6299 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6300 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6301 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6302 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6303 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   6304 	if (msgbufaddr == NULL) {
   6305 		pmap_alloc_specials(&virtual_avail,
   6306 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6307 		    (void *)&msgbufaddr, NULL);
   6308 	}
   6309 
   6310 	/*
   6311 	 * Allocate a range of kernel virtual address space to be used
   6312 	 * for L2 descriptor tables and metadata allocation in
   6313 	 * pmap_growkernel().
   6314 	 */
   6315 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   6316 	pmap_alloc_specials(&virtual_avail,
   6317 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6318 	    &pmap_kernel_l2ptp_kva, NULL);
   6319 
   6320 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   6321 	pmap_alloc_specials(&virtual_avail,
   6322 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6323 	    &pmap_kernel_l2dtable_kva, NULL);
   6324 
   6325 #ifndef ARM_MMU_EXTENDED
   6326 	/*
   6327 	 * init the static-global locks and global pmap list.
   6328 	 */
   6329 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6330 
   6331 	/*
   6332 	 * We can now initialise the first L1's metadata.
   6333 	 */
   6334 	SLIST_INIT(&l1_list);
   6335 	TAILQ_INIT(&l1_lru_list);
   6336 	pmap_init_l1(l1, l1pt);
   6337 #endif /* ARM_MMU_EXTENDED */
   6338 
   6339 #ifndef ARM_HAS_VBAR
   6340 	/* Set up vector page L1 details, if necessary */
   6341 	if (vector_page < KERNEL_BASE) {
   6342 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6343 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6344 		KDASSERT(l2b != NULL);
   6345 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6346 		    L1_C_DOM(pmap_domain(pm));
   6347 	} else
   6348 		pm->pm_pl1vec = NULL;
   6349 #endif
   6350 
   6351 	VPRINTF("pools ");
   6352 	/*
   6353 	 * Initialize the pmap cache
   6354 	 */
   6355 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6356 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6357 
   6358 	/*
   6359 	 * Initialize the pv pool.
   6360 	 */
   6361 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6362 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6363 
   6364 	/*
   6365 	 * Initialize the L2 dtable pool and cache.
   6366 	 */
   6367 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6368 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6369 
   6370 	/*
   6371 	 * Initialise the L2 descriptor table pool and cache
   6372 	 */
   6373 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
   6374 	    L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
   6375 	    pmap_l2ptp_ctor, NULL, NULL);
   6376 
   6377 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6378 
   6379 	cpu_dcache_wbinv_all();
   6380 }
   6381 
   6382 static bool
   6383 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6384 {
   6385 #ifdef ARM_MMU_EXTENDED
   6386 	return false;
   6387 #else
   6388 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6389 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6390 		return false;
   6391 
   6392 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6393 	int rv = 0;
   6394 
   6395 	while (va < eva) {
   6396 		/*
   6397 		 * Make sure the descriptor itself has the correct cache mode
   6398 		 */
   6399 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6400 		pd_entry_t pde = *pdep;
   6401 
   6402 		if (l1pte_section_p(pde)) {
   6403 			__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6404 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6405 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6406 				    pte_l1_s_cache_mode_pt;
   6407 				PDE_SYNC(pdep);
   6408 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6409 				    sizeof(*pdep));
   6410 				rv = 1;
   6411 			}
   6412 			return rv;
   6413 		}
   6414 		vaddr_t pa = l1pte_pa(pde);
   6415 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6416 		if (ptep == NULL)
   6417 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6418 
   6419 		ptep += l2pte_index(va);
   6420 		const pt_entry_t opte = *ptep;
   6421 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6422 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6423 			    | pte_l2_s_cache_mode_pt;
   6424 			l2pte_set(ptep, npte, opte);
   6425 			PTE_SYNC(ptep);
   6426 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6427 			rv = 1;
   6428 		}
   6429 		va += PAGE_SIZE;
   6430 	}
   6431 
   6432 	return (rv);
   6433 #endif
   6434 }
   6435 
   6436 static void
   6437 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6438 {
   6439 	vaddr_t va = *availp;
   6440 	struct l2_bucket *l2b;
   6441 
   6442 	if (ptep) {
   6443 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6444 		if (l2b == NULL)
   6445 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6446 
   6447 		*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6448 	}
   6449 
   6450 	*vap = va;
   6451 	*availp = va + (PAGE_SIZE * pages);
   6452 }
   6453 
   6454 void
   6455 pmap_init(void)
   6456 {
   6457 
   6458 	/*
   6459 	 * Set the available memory vars - These do not map to real memory
   6460 	 * addresses and cannot as the physical memory is fragmented.
   6461 	 * They are used by ps for %mem calculations.
   6462 	 * One could argue whether this should be the entire memory or just
   6463 	 * the memory that is useable in a user process.
   6464 	 */
   6465 	avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
   6466 	avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
   6467 
   6468 	/*
   6469 	 * Now we need to free enough pv_entry structures to allow us to get
   6470 	 * the kmem_map/kmem_object allocated and inited (done after this
   6471 	 * function is finished).  to do this we allocate one bootstrap page out
   6472 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6473 	 * structures.   we never free this page.
   6474 	 */
   6475 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6476 
   6477 #ifdef ARM_MMU_EXTENDED
   6478 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6479 #endif
   6480 
   6481 	pmap_initialized = true;
   6482 }
   6483 
   6484 static vaddr_t last_bootstrap_page = 0;
   6485 static void *free_bootstrap_pages = NULL;
   6486 
   6487 static void *
   6488 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6489 {
   6490 	extern void *pool_page_alloc(struct pool *, int);
   6491 	vaddr_t new_page;
   6492 	void *rv;
   6493 
   6494 	if (pmap_initialized)
   6495 		return (pool_page_alloc(pp, flags));
   6496 
   6497 	if (free_bootstrap_pages) {
   6498 		rv = free_bootstrap_pages;
   6499 		free_bootstrap_pages = *((void **)rv);
   6500 		return (rv);
   6501 	}
   6502 
   6503 	KASSERT(kernel_map != NULL);
   6504 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6505 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6506 
   6507 	KASSERT(new_page > last_bootstrap_page);
   6508 	last_bootstrap_page = new_page;
   6509 	return ((void *)new_page);
   6510 }
   6511 
   6512 static void
   6513 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6514 {
   6515 	extern void pool_page_free(struct pool *, void *);
   6516 
   6517 	if ((vaddr_t)v <= last_bootstrap_page) {
   6518 		*((void **)v) = free_bootstrap_pages;
   6519 		free_bootstrap_pages = v;
   6520 		return;
   6521 	}
   6522 
   6523 	if (pmap_initialized) {
   6524 		pool_page_free(pp, v);
   6525 		return;
   6526 	}
   6527 }
   6528 
   6529 /*
   6530  * pmap_postinit()
   6531  *
   6532  * This routine is called after the vm and kmem subsystems have been
   6533  * initialised. This allows the pmap code to perform any initialisation
   6534  * that can only be done once the memory allocation is in place.
   6535  */
   6536 void
   6537 pmap_postinit(void)
   6538 {
   6539 #ifndef ARM_MMU_EXTENDED
   6540 	extern paddr_t physical_start, physical_end;
   6541 	struct l1_ttable *l1;
   6542 	struct pglist plist;
   6543 	struct vm_page *m;
   6544 	pd_entry_t *pdep;
   6545 	vaddr_t va, eva;
   6546 	u_int loop, needed;
   6547 	int error;
   6548 #endif
   6549 
   6550 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6551 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6552 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6553 
   6554 #ifndef ARM_MMU_EXTENDED
   6555 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6556 	needed -= 1;
   6557 
   6558 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6559 
   6560 	for (loop = 0; loop < needed; loop++, l1++) {
   6561 		/* Allocate a L1 page table */
   6562 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6563 		if (va == 0)
   6564 			panic("Cannot allocate L1 KVM");
   6565 
   6566 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6567 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6568 		if (error)
   6569 			panic("Cannot allocate L1 physical pages");
   6570 
   6571 		m = TAILQ_FIRST(&plist);
   6572 		eva = va + L1_TABLE_SIZE;
   6573 		pdep = (pd_entry_t *)va;
   6574 
   6575 		while (m && va < eva) {
   6576 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6577 
   6578 			pmap_kenter_pa(va, pa,
   6579 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6580 
   6581 			va += PAGE_SIZE;
   6582 			m = TAILQ_NEXT(m, pageq.queue);
   6583 		}
   6584 
   6585 #ifdef DIAGNOSTIC
   6586 		if (m)
   6587 			panic("pmap_alloc_l1pt: pglist not empty");
   6588 #endif	/* DIAGNOSTIC */
   6589 
   6590 		pmap_init_l1(l1, pdep);
   6591 	}
   6592 
   6593 #ifdef DEBUG
   6594 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6595 	    needed);
   6596 #endif
   6597 #endif /* !ARM_MMU_EXTENDED */
   6598 }
   6599 
   6600 /*
   6601  * Note that the following routines are used by board-specific initialisation
   6602  * code to configure the initial kernel page tables.
   6603  *
   6604  */
   6605 
   6606 /*
   6607  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6608  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6609  * find them as necessary.
   6610  *
   6611  * Note that the data on this list MUST remain valid after initarm() returns,
   6612  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   6613  */
   6614 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6615 
   6616 static vaddr_t
   6617 kernel_pt_lookup(paddr_t pa)
   6618 {
   6619 	pv_addr_t *pv;
   6620 
   6621 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6622 		if (pv->pv_pa == (pa & ~PGOFSET))
   6623 			return (pv->pv_va | (pa & PGOFSET));
   6624 	}
   6625 	return (0);
   6626 }
   6627 
   6628 /*
   6629  * pmap_map_section:
   6630  *
   6631  *	Create a single section mapping.
   6632  */
   6633 void
   6634 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6635 {
   6636 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6637 	const size_t l1slot = l1pte_index(va);
   6638 	pd_entry_t fl;
   6639 
   6640 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6641 
   6642 	switch (cache) {
   6643 	case PTE_NOCACHE:
   6644 	default:
   6645 		fl = 0;
   6646 		break;
   6647 
   6648 	case PTE_CACHE:
   6649 		fl = pte_l1_s_cache_mode;
   6650 		break;
   6651 
   6652 	case PTE_PAGETABLE:
   6653 		fl = pte_l1_s_cache_mode_pt;
   6654 		break;
   6655 	}
   6656 
   6657 	const pd_entry_t npde = L1_S_PROTO | pa |
   6658 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6659 	l1pte_setone(pdep + l1slot, npde);
   6660 	PDE_SYNC(pdep + l1slot);
   6661 }
   6662 
   6663 /*
   6664  * pmap_map_entry:
   6665  *
   6666  *	Create a single page mapping.
   6667  */
   6668 void
   6669 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6670 {
   6671 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6672 	const size_t l1slot = l1pte_index(va);
   6673 	pt_entry_t npte;
   6674 	pt_entry_t *ptep;
   6675 
   6676 	KASSERT(((va | pa) & PGOFSET) == 0);
   6677 
   6678 	switch (cache) {
   6679 	case PTE_NOCACHE:
   6680 	default:
   6681 		npte = 0;
   6682 		break;
   6683 
   6684 	case PTE_CACHE:
   6685 		npte = pte_l2_s_cache_mode;
   6686 		break;
   6687 
   6688 	case PTE_PAGETABLE:
   6689 		npte = pte_l2_s_cache_mode_pt;
   6690 		break;
   6691 	}
   6692 
   6693 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6694 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   6695 
   6696 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6697 	if (ptep == NULL)
   6698 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   6699 
   6700 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   6701 #ifdef ARM_MMU_EXTENDED
   6702 	if (prot & VM_PROT_EXECUTE) {
   6703 		npte &= ~L2_XS_XN;
   6704 	}
   6705 #endif
   6706 	ptep += l2pte_index(va);
   6707 	l2pte_set(ptep, npte, 0);
   6708 	PTE_SYNC(ptep);
   6709 }
   6710 
   6711 /*
   6712  * pmap_link_l2pt:
   6713  *
   6714  *	Link the L2 page table specified by "l2pv" into the L1
   6715  *	page table at the slot for "va".
   6716  */
   6717 void
   6718 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   6719 {
   6720 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   6721 
   6722 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   6723 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   6724 
   6725 	const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   6726 	    | l2pv->pv_pa;
   6727 
   6728 	l1pte_set(pdep, npde);
   6729 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   6730 
   6731 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   6732 }
   6733 
   6734 /*
   6735  * pmap_map_chunk:
   6736  *
   6737  *	Map a chunk of memory using the most efficient mappings
   6738  *	possible (section, large page, small page) into the
   6739  *	provided L1 and L2 tables at the specified virtual address.
   6740  */
   6741 vsize_t
   6742 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   6743     int prot, int cache)
   6744 {
   6745 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6746 	pt_entry_t f1, f2s, f2l;
   6747 	vsize_t resid;
   6748 
   6749 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   6750 
   6751 	if (l1pt == 0)
   6752 		panic("pmap_map_chunk: no L1 table provided");
   6753 
   6754 // 	VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   6755 // 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   6756 
   6757 	switch (cache) {
   6758 	case PTE_NOCACHE:
   6759 	default:
   6760 		f1 = 0;
   6761 		f2l = 0;
   6762 		f2s = 0;
   6763 		break;
   6764 
   6765 	case PTE_CACHE:
   6766 		f1 = pte_l1_s_cache_mode;
   6767 		f2l = pte_l2_l_cache_mode;
   6768 		f2s = pte_l2_s_cache_mode;
   6769 		break;
   6770 
   6771 	case PTE_PAGETABLE:
   6772 		f1 = pte_l1_s_cache_mode_pt;
   6773 		f2l = pte_l2_l_cache_mode_pt;
   6774 		f2s = pte_l2_s_cache_mode_pt;
   6775 		break;
   6776 	}
   6777 
   6778 	size = resid;
   6779 
   6780 	while (resid > 0) {
   6781 		const size_t l1slot = l1pte_index(va);
   6782 #ifdef ARM_MMU_EXTENDED
   6783 		/* See if we can use a supersection mapping. */
   6784 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   6785 			/* Supersection are always domain 0 */
   6786 			const pd_entry_t npde = L1_SS_PROTO | pa
   6787 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6788 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6789 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   6790 			VPRINTF("sS");
   6791 			l1pte_set(&pdep[l1slot], npde);
   6792 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   6793 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
   6794 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
   6795 			va += L1_SS_SIZE;
   6796 			pa += L1_SS_SIZE;
   6797 			resid -= L1_SS_SIZE;
   6798 			continue;
   6799 		}
   6800 #endif
   6801 		/* See if we can use a section mapping. */
   6802 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   6803 			const pd_entry_t npde = L1_S_PROTO | pa
   6804 #ifdef ARM_MMU_EXTENDED
   6805 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6806 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6807 #endif
   6808 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   6809 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6810 			VPRINTF("S");
   6811 			l1pte_set(&pdep[l1slot], npde);
   6812 			PDE_SYNC(&pdep[l1slot]);
   6813 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
   6814 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
   6815 			va += L1_S_SIZE;
   6816 			pa += L1_S_SIZE;
   6817 			resid -= L1_S_SIZE;
   6818 			continue;
   6819 		}
   6820 
   6821 		/*
   6822 		 * Ok, we're going to use an L2 table.  Make sure
   6823 		 * one is actually in the corresponding L1 slot
   6824 		 * for the current VA.
   6825 		 */
   6826 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6827 			panic("%s: no L2 table for VA %#lx", __func__, va);
   6828 
   6829 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6830 		if (ptep == NULL)
   6831 			panic("%s: can't find L2 table for VA %#lx", __func__,
   6832 			    va);
   6833 
   6834 		ptep += l2pte_index(va);
   6835 
   6836 		/* See if we can use a L2 large page mapping. */
   6837 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   6838 			const pt_entry_t npte = L2_L_PROTO | pa
   6839 #ifdef ARM_MMU_EXTENDED
   6840 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   6841 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6842 #endif
   6843 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   6844 			VPRINTF("L");
   6845 			l2pte_set(ptep, npte, 0);
   6846 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   6847 			va += L2_L_SIZE;
   6848 			pa += L2_L_SIZE;
   6849 			resid -= L2_L_SIZE;
   6850 			continue;
   6851 		}
   6852 
   6853 		VPRINTF("P");
   6854 		/* Use a small page mapping. */
   6855 		pt_entry_t npte = L2_S_PROTO | pa
   6856 #ifdef ARM_MMU_EXTENDED
   6857 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   6858 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6859 #endif
   6860 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   6861 #ifdef ARM_MMU_EXTENDED
   6862 		npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
   6863 #endif
   6864 		l2pte_set(ptep, npte, 0);
   6865 		PTE_SYNC(ptep);
   6866 		va += PAGE_SIZE;
   6867 		pa += PAGE_SIZE;
   6868 		resid -= PAGE_SIZE;
   6869 	}
   6870 	VPRINTF("\n");
   6871 	return (size);
   6872 }
   6873 
   6874 /*
   6875  * pmap_unmap_chunk:
   6876  *
   6877  *	Unmap a chunk of memory that was previously pmap_map_chunk
   6878  */
   6879 void
   6880 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
   6881 {
   6882 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6883 	const size_t l1slot = l1pte_index(va);
   6884 
   6885 	KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
   6886 
   6887 	l1pte_set(&pdep[l1slot], 0);
   6888 	PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
   6889 
   6890 	pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
   6891 }
   6892 
   6893 
   6894 
   6895 /********************** Static device map routines ***************************/
   6896 
   6897 static const struct pmap_devmap *pmap_devmap_table;
   6898 
   6899 /*
   6900  * Register the devmap table.  This is provided in case early console
   6901  * initialization needs to register mappings created by bootstrap code
   6902  * before pmap_devmap_bootstrap() is called.
   6903  */
   6904 void
   6905 pmap_devmap_register(const struct pmap_devmap *table)
   6906 {
   6907 
   6908 	pmap_devmap_table = table;
   6909 }
   6910 
   6911 /*
   6912  * Map all of the static regions in the devmap table, and remember
   6913  * the devmap table so other parts of the kernel can look up entries
   6914  * later.
   6915  */
   6916 void
   6917 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   6918 {
   6919 	int i;
   6920 
   6921 	pmap_devmap_table = table;
   6922 
   6923 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6924 		const struct pmap_devmap *pdp = &pmap_devmap_table[i];
   6925 
   6926 		KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
   6927 		    " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
   6928 		KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
   6929 		    " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
   6930 		VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
   6931 		    pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
   6932 
   6933 		pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
   6934 		    pdp->pd_prot, pdp->pd_cache);
   6935 	}
   6936 }
   6937 
   6938 const struct pmap_devmap *
   6939 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   6940 {
   6941 	uint64_t endpa;
   6942 	int i;
   6943 
   6944 	if (pmap_devmap_table == NULL)
   6945 		return (NULL);
   6946 
   6947 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   6948 
   6949 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6950 		if (pa >= pmap_devmap_table[i].pd_pa &&
   6951 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   6952 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   6953 			return (&pmap_devmap_table[i]);
   6954 	}
   6955 
   6956 	return (NULL);
   6957 }
   6958 
   6959 const struct pmap_devmap *
   6960 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   6961 {
   6962 	int i;
   6963 
   6964 	if (pmap_devmap_table == NULL)
   6965 		return (NULL);
   6966 
   6967 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   6968 		if (va >= pmap_devmap_table[i].pd_va &&
   6969 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   6970 				     pmap_devmap_table[i].pd_size - 1)
   6971 			return (&pmap_devmap_table[i]);
   6972 	}
   6973 
   6974 	return (NULL);
   6975 }
   6976 
   6977 /********************** PTE initialization routines **************************/
   6978 
   6979 /*
   6980  * These routines are called when the CPU type is identified to set up
   6981  * the PTE prototypes, cache modes, etc.
   6982  *
   6983  * The variables are always here, just in case modules need to reference
   6984  * them (though, they shouldn't).
   6985  */
   6986 
   6987 pt_entry_t	pte_l1_s_cache_mode;
   6988 pt_entry_t	pte_l1_s_wc_mode;
   6989 pt_entry_t	pte_l1_s_cache_mode_pt;
   6990 pt_entry_t	pte_l1_s_cache_mask;
   6991 
   6992 pt_entry_t	pte_l2_l_cache_mode;
   6993 pt_entry_t	pte_l2_l_wc_mode;
   6994 pt_entry_t	pte_l2_l_cache_mode_pt;
   6995 pt_entry_t	pte_l2_l_cache_mask;
   6996 
   6997 pt_entry_t	pte_l2_s_cache_mode;
   6998 pt_entry_t	pte_l2_s_wc_mode;
   6999 pt_entry_t	pte_l2_s_cache_mode_pt;
   7000 pt_entry_t	pte_l2_s_cache_mask;
   7001 
   7002 pt_entry_t	pte_l1_s_prot_u;
   7003 pt_entry_t	pte_l1_s_prot_w;
   7004 pt_entry_t	pte_l1_s_prot_ro;
   7005 pt_entry_t	pte_l1_s_prot_mask;
   7006 
   7007 pt_entry_t	pte_l2_s_prot_u;
   7008 pt_entry_t	pte_l2_s_prot_w;
   7009 pt_entry_t	pte_l2_s_prot_ro;
   7010 pt_entry_t	pte_l2_s_prot_mask;
   7011 
   7012 pt_entry_t	pte_l2_l_prot_u;
   7013 pt_entry_t	pte_l2_l_prot_w;
   7014 pt_entry_t	pte_l2_l_prot_ro;
   7015 pt_entry_t	pte_l2_l_prot_mask;
   7016 
   7017 pt_entry_t	pte_l1_ss_proto;
   7018 pt_entry_t	pte_l1_s_proto;
   7019 pt_entry_t	pte_l1_c_proto;
   7020 pt_entry_t	pte_l2_s_proto;
   7021 
   7022 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   7023 void		(*pmap_zero_page_func)(paddr_t);
   7024 
   7025 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   7026 void
   7027 pmap_pte_init_generic(void)
   7028 {
   7029 
   7030 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7031 	pte_l1_s_wc_mode = L1_S_B;
   7032 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   7033 
   7034 	pte_l2_l_cache_mode = L2_B|L2_C;
   7035 	pte_l2_l_wc_mode = L2_B;
   7036 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   7037 
   7038 	pte_l2_s_cache_mode = L2_B|L2_C;
   7039 	pte_l2_s_wc_mode = L2_B;
   7040 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   7041 
   7042 	/*
   7043 	 * If we have a write-through cache, set B and C.  If
   7044 	 * we have a write-back cache, then we assume setting
   7045 	 * only C will make those pages write-through (except for those
   7046 	 * Cortex CPUs which can read the L1 caches).
   7047 	 */
   7048 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   7049 #if ARM_MMU_V7 > 0
   7050 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   7051 #endif
   7052 #if ARM_MMU_V6 > 0
   7053 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   7054 #endif
   7055 	    || false) {
   7056 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7057 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7058 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7059 	} else {
   7060 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   7061 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   7062 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   7063 	}
   7064 
   7065 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   7066 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   7067 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   7068 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   7069 
   7070 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7071 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7072 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7073 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7074 
   7075 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7076 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7077 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7078 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7079 
   7080 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   7081 	pte_l1_s_proto = L1_S_PROTO_generic;
   7082 	pte_l1_c_proto = L1_C_PROTO_generic;
   7083 	pte_l2_s_proto = L2_S_PROTO_generic;
   7084 
   7085 	pmap_copy_page_func = pmap_copy_page_generic;
   7086 	pmap_zero_page_func = pmap_zero_page_generic;
   7087 }
   7088 
   7089 #if defined(CPU_ARM8)
   7090 void
   7091 pmap_pte_init_arm8(void)
   7092 {
   7093 
   7094 	/*
   7095 	 * ARM8 is compatible with generic, but we need to use
   7096 	 * the page tables uncached.
   7097 	 */
   7098 	pmap_pte_init_generic();
   7099 
   7100 	pte_l1_s_cache_mode_pt = 0;
   7101 	pte_l2_l_cache_mode_pt = 0;
   7102 	pte_l2_s_cache_mode_pt = 0;
   7103 }
   7104 #endif /* CPU_ARM8 */
   7105 
   7106 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   7107 void
   7108 pmap_pte_init_arm9(void)
   7109 {
   7110 
   7111 	/*
   7112 	 * ARM9 is compatible with generic, but we want to use
   7113 	 * write-through caching for now.
   7114 	 */
   7115 	pmap_pte_init_generic();
   7116 
   7117 	pte_l1_s_cache_mode = L1_S_C;
   7118 	pte_l2_l_cache_mode = L2_C;
   7119 	pte_l2_s_cache_mode = L2_C;
   7120 
   7121 	pte_l1_s_wc_mode = L1_S_B;
   7122 	pte_l2_l_wc_mode = L2_B;
   7123 	pte_l2_s_wc_mode = L2_B;
   7124 
   7125 	pte_l1_s_cache_mode_pt = L1_S_C;
   7126 	pte_l2_l_cache_mode_pt = L2_C;
   7127 	pte_l2_s_cache_mode_pt = L2_C;
   7128 }
   7129 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   7130 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   7131 
   7132 #if defined(CPU_ARM10)
   7133 void
   7134 pmap_pte_init_arm10(void)
   7135 {
   7136 
   7137 	/*
   7138 	 * ARM10 is compatible with generic, but we want to use
   7139 	 * write-through caching for now.
   7140 	 */
   7141 	pmap_pte_init_generic();
   7142 
   7143 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   7144 	pte_l2_l_cache_mode = L2_B | L2_C;
   7145 	pte_l2_s_cache_mode = L2_B | L2_C;
   7146 
   7147 	pte_l1_s_cache_mode = L1_S_B;
   7148 	pte_l2_l_cache_mode = L2_B;
   7149 	pte_l2_s_cache_mode = L2_B;
   7150 
   7151 	pte_l1_s_cache_mode_pt = L1_S_C;
   7152 	pte_l2_l_cache_mode_pt = L2_C;
   7153 	pte_l2_s_cache_mode_pt = L2_C;
   7154 
   7155 }
   7156 #endif /* CPU_ARM10 */
   7157 
   7158 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   7159 void
   7160 pmap_pte_init_arm11(void)
   7161 {
   7162 
   7163 	/*
   7164 	 * ARM11 is compatible with generic, but we want to use
   7165 	 * write-through caching for now.
   7166 	 */
   7167 	pmap_pte_init_generic();
   7168 
   7169 	pte_l1_s_cache_mode = L1_S_C;
   7170 	pte_l2_l_cache_mode = L2_C;
   7171 	pte_l2_s_cache_mode = L2_C;
   7172 
   7173 	pte_l1_s_wc_mode = L1_S_B;
   7174 	pte_l2_l_wc_mode = L2_B;
   7175 	pte_l2_s_wc_mode = L2_B;
   7176 
   7177 	pte_l1_s_cache_mode_pt = L1_S_C;
   7178 	pte_l2_l_cache_mode_pt = L2_C;
   7179 	pte_l2_s_cache_mode_pt = L2_C;
   7180 }
   7181 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   7182 
   7183 #if ARM_MMU_SA1 == 1
   7184 void
   7185 pmap_pte_init_sa1(void)
   7186 {
   7187 
   7188 	/*
   7189 	 * The StrongARM SA-1 cache does not have a write-through
   7190 	 * mode.  So, do the generic initialization, then reset
   7191 	 * the page table cache mode to B=1,C=1, and note that
   7192 	 * the PTEs need to be sync'd.
   7193 	 */
   7194 	pmap_pte_init_generic();
   7195 
   7196 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7197 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7198 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7199 
   7200 	pmap_needs_pte_sync = 1;
   7201 }
   7202 #endif /* ARM_MMU_SA1 == 1*/
   7203 
   7204 #if ARM_MMU_XSCALE == 1
   7205 #if (ARM_NMMUS > 1)
   7206 static u_int xscale_use_minidata;
   7207 #endif
   7208 
   7209 void
   7210 pmap_pte_init_xscale(void)
   7211 {
   7212 	uint32_t auxctl;
   7213 	int write_through = 0;
   7214 
   7215 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7216 	pte_l1_s_wc_mode = L1_S_B;
   7217 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7218 
   7219 	pte_l2_l_cache_mode = L2_B|L2_C;
   7220 	pte_l2_l_wc_mode = L2_B;
   7221 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7222 
   7223 	pte_l2_s_cache_mode = L2_B|L2_C;
   7224 	pte_l2_s_wc_mode = L2_B;
   7225 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7226 
   7227 	pte_l1_s_cache_mode_pt = L1_S_C;
   7228 	pte_l2_l_cache_mode_pt = L2_C;
   7229 	pte_l2_s_cache_mode_pt = L2_C;
   7230 
   7231 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7232 	/*
   7233 	 * The XScale core has an enhanced mode where writes that
   7234 	 * miss the cache cause a cache line to be allocated.  This
   7235 	 * is significantly faster than the traditional, write-through
   7236 	 * behavior of this case.
   7237 	 */
   7238 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7239 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7240 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7241 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7242 
   7243 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7244 	/*
   7245 	 * Some versions of the XScale core have various bugs in
   7246 	 * their cache units, the work-around for which is to run
   7247 	 * the cache in write-through mode.  Unfortunately, this
   7248 	 * has a major (negative) impact on performance.  So, we
   7249 	 * go ahead and run fast-and-loose, in the hopes that we
   7250 	 * don't line up the planets in a way that will trip the
   7251 	 * bugs.
   7252 	 *
   7253 	 * However, we give you the option to be slow-but-correct.
   7254 	 */
   7255 	write_through = 1;
   7256 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7257 	/* force write back cache mode */
   7258 	write_through = 0;
   7259 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7260 	/*
   7261 	 * Intel PXA2[15]0 processors are known to have a bug in
   7262 	 * write-back cache on revision 4 and earlier (stepping
   7263 	 * A[01] and B[012]).  Fixed for C0 and later.
   7264 	 */
   7265 	{
   7266 		uint32_t id, type;
   7267 
   7268 		id = cpufunc_id();
   7269 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7270 
   7271 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7272 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7273 				/* write through for stepping A0-1 and B0-2 */
   7274 				write_through = 1;
   7275 			}
   7276 		}
   7277 	}
   7278 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7279 
   7280 	if (write_through) {
   7281 		pte_l1_s_cache_mode = L1_S_C;
   7282 		pte_l2_l_cache_mode = L2_C;
   7283 		pte_l2_s_cache_mode = L2_C;
   7284 	}
   7285 
   7286 #if (ARM_NMMUS > 1)
   7287 	xscale_use_minidata = 1;
   7288 #endif
   7289 
   7290 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7291 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7292 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7293 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7294 
   7295 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7296 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7297 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7298 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7299 
   7300 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7301 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7302 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7303 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7304 
   7305 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7306 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7307 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7308 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7309 
   7310 	pmap_copy_page_func = pmap_copy_page_xscale;
   7311 	pmap_zero_page_func = pmap_zero_page_xscale;
   7312 
   7313 	/*
   7314 	 * Disable ECC protection of page table access, for now.
   7315 	 */
   7316 	auxctl = armreg_auxctl_read();
   7317 	auxctl &= ~XSCALE_AUXCTL_P;
   7318 	armreg_auxctl_write(auxctl);
   7319 }
   7320 
   7321 /*
   7322  * xscale_setup_minidata:
   7323  *
   7324  *	Set up the mini-data cache clean area.  We require the
   7325  *	caller to allocate the right amount of physically and
   7326  *	virtually contiguous space.
   7327  */
   7328 void
   7329 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7330 {
   7331 	extern vaddr_t xscale_minidata_clean_addr;
   7332 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   7333 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7334 	vsize_t size;
   7335 	uint32_t auxctl;
   7336 
   7337 	xscale_minidata_clean_addr = va;
   7338 
   7339 	/* Round it to page size. */
   7340 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7341 
   7342 	for (; size != 0;
   7343 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7344 		const size_t l1slot = l1pte_index(va);
   7345 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7346 		if (ptep == NULL)
   7347 			panic("xscale_setup_minidata: can't find L2 table for "
   7348 			    "VA 0x%08lx", va);
   7349 
   7350 		ptep += l2pte_index(va);
   7351 		pt_entry_t opte = *ptep;
   7352 		l2pte_set(ptep,
   7353 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7354 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7355 	}
   7356 
   7357 	/*
   7358 	 * Configure the mini-data cache for write-back with
   7359 	 * read/write-allocate.
   7360 	 *
   7361 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7362 	 * make sure it contains no valid data!  In order to do that,
   7363 	 * we must issue a global data cache invalidate command!
   7364 	 *
   7365 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7366 	 * THIS IS VERY IMPORTANT!
   7367 	 */
   7368 
   7369 	/* Invalidate data and mini-data. */
   7370 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7371 	auxctl = armreg_auxctl_read();
   7372 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7373 	armreg_auxctl_write(auxctl);
   7374 }
   7375 
   7376 /*
   7377  * Change the PTEs for the specified kernel mappings such that they
   7378  * will use the mini data cache instead of the main data cache.
   7379  */
   7380 void
   7381 pmap_uarea(vaddr_t va)
   7382 {
   7383 	vaddr_t next_bucket, eva;
   7384 
   7385 #if (ARM_NMMUS > 1)
   7386 	if (xscale_use_minidata == 0)
   7387 		return;
   7388 #endif
   7389 
   7390 	eva = va + USPACE;
   7391 
   7392 	while (va < eva) {
   7393 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7394 		if (next_bucket > eva)
   7395 			next_bucket = eva;
   7396 
   7397 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7398 		KDASSERT(l2b != NULL);
   7399 
   7400 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7401 		pt_entry_t *ptep = sptep;
   7402 
   7403 		while (va < next_bucket) {
   7404 			const pt_entry_t opte = *ptep;
   7405 			if (!l2pte_minidata_p(opte)) {
   7406 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7407 				cpu_tlb_flushD_SE(va);
   7408 				l2pte_set(ptep, opte & ~L2_B, opte);
   7409 			}
   7410 			ptep += PAGE_SIZE / L2_S_SIZE;
   7411 			va += PAGE_SIZE;
   7412 		}
   7413 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7414 	}
   7415 	cpu_cpwait();
   7416 }
   7417 #endif /* ARM_MMU_XSCALE == 1 */
   7418 
   7419 
   7420 #if defined(CPU_ARM11MPCORE)
   7421 
   7422 void
   7423 pmap_pte_init_arm11mpcore(void)
   7424 {
   7425 
   7426 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   7427 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7428 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7429 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7430 	/* use extended small page (without APn, with TEX) */
   7431 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7432 #else
   7433 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7434 #endif
   7435 
   7436 	/* write-back, write-allocate */
   7437 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7438 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7439 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7440 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7441 #else
   7442 	/* no TEX. read-allocate */
   7443 	pte_l2_s_cache_mode = L2_C | L2_B;
   7444 #endif
   7445 	/*
   7446 	 * write-back, write-allocate for page tables.
   7447 	 */
   7448 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7449 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7450 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7451 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7452 #else
   7453 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7454 #endif
   7455 
   7456 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7457 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7458 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7459 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7460 
   7461 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7462 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7463 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7464 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7465 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7466 
   7467 #else
   7468 	/* with AP[0..3] */
   7469 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7470 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7471 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7472 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7473 #endif
   7474 
   7475 #ifdef	ARM11MPCORE_COMPAT_MMU
   7476 	/* with AP[0..3] */
   7477 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7478 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7479 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7480 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7481 
   7482 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7483 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7484 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7485 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7486 #else
   7487 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7488 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7489 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7490 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7491 
   7492 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7493 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7494 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7495 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7496 #endif
   7497 
   7498 	pmap_copy_page_func = pmap_copy_page_generic;
   7499 	pmap_zero_page_func = pmap_zero_page_generic;
   7500 	pmap_needs_pte_sync = 1;
   7501 }
   7502 #endif	/* CPU_ARM11MPCORE */
   7503 
   7504 
   7505 #if ARM_MMU_V7 == 1
   7506 void
   7507 pmap_pte_init_armv7(void)
   7508 {
   7509 	/*
   7510 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7511 	 * AP field is zero, that now means "no access" rather than
   7512 	 * read-only. The prototypes are a little different because of
   7513 	 * the XN bit.
   7514 	 */
   7515 	pmap_pte_init_generic();
   7516 
   7517 	pmap_needs_pte_sync = 1;
   7518 
   7519 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7520 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7521 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7522 
   7523 	/*
   7524 	 * If the core support coherent walk then updates to translation tables
   7525 	 * do not require a clean to the point of unification to ensure
   7526 	 * visibility by subsequent translation table walks.  That means we can
   7527 	 * map everything shareable and cached and the right thing will happen.
   7528 	 */
   7529         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7530 		pmap_needs_pte_sync = 0;
   7531 
   7532 		/*
   7533 		 * write-back, no write-allocate, shareable for normal pages.
   7534 		 */
   7535 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7536 		pte_l2_l_cache_mode |= L2_XS_S;
   7537 		pte_l2_s_cache_mode |= L2_XS_S;
   7538 	}
   7539 
   7540 	/*
   7541 	 * Page tables are just all other memory.  We can use write-back since
   7542 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7543 	 */
   7544 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7545 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7546 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7547 
   7548 	/*
   7549 	 * Check the Memory Model Features to see if this CPU supports
   7550 	 * the TLBIASID coproc op.
   7551 	 */
   7552 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7553 		arm_has_tlbiasid_p = true;
   7554 	} else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
   7555 		arm_has_tlbiasid_p = true;
   7556 	}
   7557 
   7558 	/*
   7559 	 * Check the MPIDR to see if this CPU supports MP extensions.
   7560 	 */
   7561 #ifdef MULTIPROCESSOR
   7562 	arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
   7563 #else
   7564 	arm_has_mpext_p = false;
   7565 #endif
   7566 
   7567 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7568 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7569 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7570 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7571 
   7572 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7573 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7574 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7575 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7576 
   7577 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7578 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7579 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7580 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7581 
   7582 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7583 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7584 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7585 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7586 
   7587 }
   7588 #endif /* ARM_MMU_V7 */
   7589 
   7590 /*
   7591  * return the PA of the current L1 table, for use when handling a crash dump
   7592  */
   7593 uint32_t
   7594 pmap_kernel_L1_addr(void)
   7595 {
   7596 #ifdef ARM_MMU_EXTENDED
   7597 	return pmap_kernel()->pm_l1_pa;
   7598 #else
   7599 	return pmap_kernel()->pm_l1->l1_physaddr;
   7600 #endif
   7601 }
   7602 
   7603 #if defined(DDB)
   7604 /*
   7605  * A couple of ddb-callable functions for dumping pmaps
   7606  */
   7607 void pmap_dump(pmap_t);
   7608 
   7609 static pt_entry_t ncptes[64];
   7610 static void pmap_dump_ncpg(pmap_t);
   7611 
   7612 void
   7613 pmap_dump(pmap_t pm)
   7614 {
   7615 	struct l2_dtable *l2;
   7616 	struct l2_bucket *l2b;
   7617 	pt_entry_t *ptep, pte;
   7618 	vaddr_t l2_va, l2b_va, va;
   7619 	int i, j, k, occ, rows = 0;
   7620 
   7621 	if (pm == pmap_kernel())
   7622 		printf("pmap_kernel (%p): ", pm);
   7623 	else
   7624 		printf("user pmap (%p): ", pm);
   7625 
   7626 #ifdef ARM_MMU_EXTENDED
   7627 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7628 #else
   7629 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7630 #endif
   7631 
   7632 	l2_va = 0;
   7633 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7634 		l2 = pm->pm_l2[i];
   7635 
   7636 		if (l2 == NULL || l2->l2_occupancy == 0)
   7637 			continue;
   7638 
   7639 		l2b_va = l2_va;
   7640 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7641 			l2b = &l2->l2_bucket[j];
   7642 
   7643 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7644 				continue;
   7645 
   7646 			ptep = l2b->l2b_kva;
   7647 
   7648 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7649 				;
   7650 
   7651 			k &= ~63;
   7652 			occ = l2b->l2b_occupancy;
   7653 			va = l2b_va + (k * 4096);
   7654 			for (; k < 256; k++, va += 0x1000) {
   7655 				char ch = ' ';
   7656 				if ((k % 64) == 0) {
   7657 					if ((rows % 8) == 0) {
   7658 						printf(
   7659 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7660 					}
   7661 					printf("%08lx: ", va);
   7662 				}
   7663 
   7664 				ncptes[k & 63] = 0;
   7665 				pte = ptep[k];
   7666 				if (pte == 0) {
   7667 					ch = '.';
   7668 				} else {
   7669 					occ--;
   7670 					switch (pte & 0x0c) {
   7671 					case 0x00:
   7672 						ch = 'D'; /* No cache No buff */
   7673 						break;
   7674 					case 0x04:
   7675 						ch = 'B'; /* No cache buff */
   7676 						break;
   7677 					case 0x08:
   7678 						if (pte & 0x40)
   7679 							ch = 'm';
   7680 						else
   7681 						   ch = 'C'; /* Cache No buff */
   7682 						break;
   7683 					case 0x0c:
   7684 						ch = 'F'; /* Cache Buff */
   7685 						break;
   7686 					}
   7687 
   7688 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   7689 						ch += 0x20;
   7690 
   7691 					if ((pte & 0xc) == 0)
   7692 						ncptes[k & 63] = pte;
   7693 				}
   7694 
   7695 				if ((k % 64) == 63) {
   7696 					rows++;
   7697 					printf("%c\n", ch);
   7698 					pmap_dump_ncpg(pm);
   7699 					if (occ == 0)
   7700 						break;
   7701 				} else
   7702 					printf("%c", ch);
   7703 			}
   7704 		}
   7705 	}
   7706 }
   7707 
   7708 static void
   7709 pmap_dump_ncpg(pmap_t pm)
   7710 {
   7711 	struct vm_page *pg;
   7712 	struct vm_page_md *md;
   7713 	struct pv_entry *pv;
   7714 	int i;
   7715 
   7716 	for (i = 0; i < 63; i++) {
   7717 		if (ncptes[i] == 0)
   7718 			continue;
   7719 
   7720 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   7721 		if (pg == NULL)
   7722 			continue;
   7723 		md = VM_PAGE_TO_MD(pg);
   7724 
   7725 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   7726 		    VM_PAGE_TO_PHYS(pg),
   7727 		    md->krw_mappings, md->kro_mappings,
   7728 		    md->urw_mappings, md->uro_mappings);
   7729 
   7730 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   7731 			printf("   %c va 0x%08lx, flags 0x%x\n",
   7732 			    (pm == pv->pv_pmap) ? '*' : ' ',
   7733 			    pv->pv_va, pv->pv_flags);
   7734 		}
   7735 	}
   7736 }
   7737 #endif
   7738 
   7739 #ifdef PMAP_STEAL_MEMORY
   7740 void
   7741 pmap_boot_pageadd(pv_addr_t *newpv)
   7742 {
   7743 	pv_addr_t *pv, *npv;
   7744 
   7745 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   7746 		if (newpv->pv_pa < pv->pv_va) {
   7747 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   7748 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   7749 				newpv->pv_size += pv->pv_size;
   7750 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   7751 			}
   7752 			pv = NULL;
   7753 		} else {
   7754 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   7755 			     pv = npv) {
   7756 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   7757 				KASSERT(pv->pv_pa < newpv->pv_pa);
   7758 				if (newpv->pv_pa > npv->pv_pa)
   7759 					continue;
   7760 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   7761 					pv->pv_size += newpv->pv_size;
   7762 					return;
   7763 				}
   7764 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   7765 					break;
   7766 				newpv->pv_size += npv->pv_size;
   7767 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7768 				SLIST_REMOVE_AFTER(newpv, pv_list);
   7769 				return;
   7770 			}
   7771 		}
   7772 	}
   7773 
   7774 	if (pv) {
   7775 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7776 	} else {
   7777 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   7778 	}
   7779 }
   7780 
   7781 void
   7782 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   7783 	pv_addr_t *rpv)
   7784 {
   7785 	pv_addr_t *pv, **pvp;
   7786 	struct vm_physseg *ps;
   7787 	size_t i;
   7788 
   7789 	KASSERT(amount & PGOFSET);
   7790 	KASSERT((mask & PGOFSET) == 0);
   7791 	KASSERT((match & PGOFSET) == 0);
   7792 	KASSERT(amount != 0);
   7793 
   7794 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7795 	     (pv = *pvp) != NULL;
   7796 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7797 		pv_addr_t *newpv;
   7798 		psize_t off;
   7799 		/*
   7800 		 * If this entry is too small to satify the request...
   7801 		 */
   7802 		KASSERT(pv->pv_size > 0);
   7803 		if (pv->pv_size < amount)
   7804 			continue;
   7805 
   7806 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   7807 			if (((pv->pv_pa + off) & mask) == match
   7808 			    && off + amount <= pv->pv_size)
   7809 				break;
   7810 		}
   7811 		if (off > mask)
   7812 			continue;
   7813 
   7814 		rpv->pv_va = pv->pv_va + off;
   7815 		rpv->pv_pa = pv->pv_pa + off;
   7816 		rpv->pv_size = amount;
   7817 		pv->pv_size -= amount;
   7818 		if (pv->pv_size == 0) {
   7819 			KASSERT(off == 0);
   7820 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7821 			*pvp = SLIST_NEXT(pv, pv_list);
   7822 		} else if (off == 0) {
   7823 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7824 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7825 			*newpv = *pv;
   7826 			newpv->pv_pa += amount;
   7827 			newpv->pv_va += amount;
   7828 			*pvp = newpv;
   7829 		} else if (off < pv->pv_size) {
   7830 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7831 			*newpv = *pv;
   7832 			newpv->pv_size -= off;
   7833 			newpv->pv_pa += off + amount;
   7834 			newpv->pv_va += off + amount;
   7835 
   7836 			SLIST_NEXT(pv, pv_list) = newpv;
   7837 			pv->pv_size = off;
   7838 		} else {
   7839 			KASSERT((vaddr_t) pv != rpv->pv_va);
   7840 		}
   7841 		memset((void *)rpv->pv_va, 0, amount);
   7842 		return;
   7843 	}
   7844 
   7845 	if (vm_nphysseg == 0)
   7846 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   7847 
   7848 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7849 	     (pv = *pvp) != NULL;
   7850 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7851 		if (SLIST_NEXT(pv, pv_list) == NULL)
   7852 			break;
   7853 	}
   7854 	KASSERT(mask == 0);
   7855 	for (i = 0; i < vm_nphysseg; i++) {
   7856 		ps = VM_PHYSMEM_PTR(i);
   7857 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   7858 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   7859 			rpv->pv_va = pv->pv_va;
   7860 			rpv->pv_pa = pv->pv_pa;
   7861 			rpv->pv_size = amount;
   7862 			*pvp = NULL;
   7863 			pmap_map_chunk(kernel_l1pt.pv_va,
   7864 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   7865 			     ptoa(ps->avail_start),
   7866 			     amount - pv->pv_size,
   7867 			     VM_PROT_READ|VM_PROT_WRITE,
   7868 			     PTE_CACHE);
   7869 			ps->avail_start += atop(amount - pv->pv_size);
   7870 			/*
   7871 			 * If we consumed the entire physseg, remove it.
   7872 			 */
   7873 			if (ps->avail_start == ps->avail_end) {
   7874 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   7875 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   7876 			}
   7877 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   7878 			return;
   7879 		}
   7880 	}
   7881 
   7882 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   7883 }
   7884 
   7885 vaddr_t
   7886 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   7887 {
   7888 	pv_addr_t pv;
   7889 
   7890 	pmap_boot_pagealloc(size, 0, 0, &pv);
   7891 
   7892 	return pv.pv_va;
   7893 }
   7894 #endif /* PMAP_STEAL_MEMORY */
   7895 
   7896 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   7897 {
   7898 	sysctl_createv(clog, 0, NULL, NULL,
   7899 			CTLFLAG_PERMANENT,
   7900 			CTLTYPE_NODE, "machdep", NULL,
   7901 			NULL, 0, NULL, 0,
   7902 			CTL_MACHDEP, CTL_EOL);
   7903 
   7904 	sysctl_createv(clog, 0, NULL, NULL,
   7905 			CTLFLAG_PERMANENT,
   7906 			CTLTYPE_INT, "kmpages",
   7907 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   7908 			NULL, 0, &pmap_kmpages, 0,
   7909 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   7910 }
   7911 
   7912 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   7913 struct vm_page *
   7914 arm_pmap_alloc_poolpage(int flags)
   7915 {
   7916 	/*
   7917 	 * On some systems, only some pages may be "coherent" for dma and we
   7918 	 * want to prefer those for pool pages (think mbufs) but fallback to
   7919 	 * any page if none is available.
   7920 	 */
   7921 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   7922 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   7923 		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
   7924 	}
   7925 
   7926 	return uvm_pagealloc(NULL, 0, NULL, flags);
   7927 }
   7928 #endif
   7929 
   7930 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   7931 void
   7932 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   7933 {
   7934         /* nothing */
   7935 }
   7936 
   7937 int
   7938 pic_ipi_shootdown(void *arg)
   7939 {
   7940 #if PMAP_TLB_NEED_SHOOTDOWN
   7941 	pmap_tlb_shootdown_process();
   7942 #endif
   7943 	return 1;
   7944 }
   7945 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   7946 
   7947 
   7948 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   7949 vaddr_t
   7950 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   7951 {
   7952 	bool ok = false;
   7953 	if (physical_start <= pa && pa < physical_end) {
   7954 #ifdef KERNEL_BASE_VOFFSET
   7955 		const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
   7956 #else
   7957 		const vaddr_t newva = KERNEL_BASE + pa - physical_start;
   7958 #endif
   7959 #ifdef ARM_MMU_EXTENDED
   7960 		if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
   7961 #endif
   7962 			va = newva;
   7963 			ok = true;
   7964 #ifdef ARM_MMU_EXTENDED
   7965 		}
   7966 #endif
   7967 	}
   7968 	KASSERT(ok_p);
   7969 	*ok_p = ok;
   7970 	return va;
   7971 }
   7972 
   7973 vaddr_t
   7974 pmap_map_poolpage(paddr_t pa)
   7975 {
   7976 	bool ok __diagused;
   7977 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   7978 	KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
   7979 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   7980 	if (arm_cache_prefer_mask != 0) {
   7981 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   7982 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   7983 		pmap_acquire_page_lock(md);
   7984 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   7985 		pmap_release_page_lock(md);
   7986 	}
   7987 #endif
   7988 	return va;
   7989 }
   7990 
   7991 paddr_t
   7992 pmap_unmap_poolpage(vaddr_t va)
   7993 {
   7994 	KASSERT(va >= KERNEL_BASE);
   7995 #ifdef PMAP_CACHE_VIVT
   7996 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   7997 #endif
   7998 #if defined(KERNEL_BASE_VOFFSET)
   7999         return va - KERNEL_BASE_VOFFSET;
   8000 #else
   8001         return va - KERNEL_BASE + physical_start;
   8002 #endif
   8003 }
   8004 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   8005