pmap.c revision 1.379 1 /* $NetBSD: pmap.c,v 1.379 2020/01/18 07:52:33 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_arm_debug.h"
190 #include "opt_cpuoptions.h"
191 #include "opt_pmap_debug.h"
192 #include "opt_ddb.h"
193 #include "opt_lockdebug.h"
194 #include "opt_multiprocessor.h"
195
196 #ifdef MULTIPROCESSOR
197 #define _INTR_PRIVATE
198 #endif
199
200 #include <sys/param.h>
201 #include <sys/types.h>
202 #include <sys/kernel.h>
203 #include <sys/systm.h>
204 #include <sys/proc.h>
205 #include <sys/intr.h>
206 #include <sys/pool.h>
207 #include <sys/kmem.h>
208 #include <sys/cdefs.h>
209 #include <sys/cpu.h>
210 #include <sys/sysctl.h>
211 #include <sys/bus.h>
212 #include <sys/atomic.h>
213 #include <sys/kernhist.h>
214
215 #include <uvm/uvm.h>
216 #include <uvm/pmap/pmap_pvt.h>
217
218 #include <arm/locore.h>
219
220 #ifdef DDB
221 #include <arm/db_machdep.h>
222 #endif
223
224 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.379 2020/01/18 07:52:33 skrll Exp $");
225
226 //#define PMAP_DEBUG
227 #ifdef PMAP_DEBUG
228
229 /* XXX need to get rid of all refs to this */
230 int pmap_debug_level = 0;
231
232 /*
233 * for switching to potentially finer grained debugging
234 */
235 #define PDB_FOLLOW 0x0001
236 #define PDB_INIT 0x0002
237 #define PDB_ENTER 0x0004
238 #define PDB_REMOVE 0x0008
239 #define PDB_CREATE 0x0010
240 #define PDB_PTPAGE 0x0020
241 #define PDB_GROWKERN 0x0040
242 #define PDB_BITS 0x0080
243 #define PDB_COLLECT 0x0100
244 #define PDB_PROTECT 0x0200
245 #define PDB_MAP_L1 0x0400
246 #define PDB_BOOTSTRAP 0x1000
247 #define PDB_PARANOIA 0x2000
248 #define PDB_WIRING 0x4000
249 #define PDB_PVDUMP 0x8000
250 #define PDB_VAC 0x10000
251 #define PDB_KENTER 0x20000
252 #define PDB_KREMOVE 0x40000
253 #define PDB_EXEC 0x80000
254
255 int debugmap = 1;
256 int pmapdebug = 0;
257 #define NPDEBUG(_lev_,_stat_) \
258 if (pmapdebug & (_lev_)) \
259 ((_stat_))
260
261 #else /* PMAP_DEBUG */
262 #define NPDEBUG(_lev_,_stat_) /* Nothing */
263 #endif /* PMAP_DEBUG */
264
265
266 #ifdef VERBOSE_INIT_ARM
267 #define VPRINTF(...) printf(__VA_ARGS__)
268 #else
269 #define VPRINTF(...) __nothing
270 #endif
271
272 /*
273 * pmap_kernel() points here
274 */
275 static struct pmap kernel_pmap_store = {
276 #ifndef ARM_MMU_EXTENDED
277 .pm_activated = true,
278 .pm_domain = PMAP_DOMAIN_KERNEL,
279 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
280 #endif
281 };
282 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
283 #undef pmap_kernel
284 #define pmap_kernel() (&kernel_pmap_store)
285 #ifdef PMAP_NEED_ALLOC_POOLPAGE
286 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
287 #endif
288
289 /*
290 * Pool and cache that pmap structures are allocated from.
291 * We use a cache to avoid clearing the pm_l2[] array (1KB)
292 * in pmap_create().
293 */
294 static struct pool_cache pmap_cache;
295
296 /*
297 * Pool of PV structures
298 */
299 static struct pool pmap_pv_pool;
300 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
301 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
302 static struct pool_allocator pmap_bootstrap_pv_allocator = {
303 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
304 };
305
306 /*
307 * Pool and cache of l2_dtable structures.
308 * We use a cache to avoid clearing the structures when they're
309 * allocated. (196 bytes)
310 */
311 static struct pool_cache pmap_l2dtable_cache;
312 static vaddr_t pmap_kernel_l2dtable_kva;
313
314 /*
315 * Pool and cache of L2 page descriptors.
316 * We use a cache to avoid clearing the descriptor table
317 * when they're allocated. (1KB)
318 */
319 static struct pool_cache pmap_l2ptp_cache;
320 static vaddr_t pmap_kernel_l2ptp_kva;
321 static paddr_t pmap_kernel_l2ptp_phys;
322
323 #ifdef PMAPCOUNTERS
324 #define PMAP_EVCNT_INITIALIZER(name) \
325 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
326
327 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
328 static struct evcnt pmap_ev_vac_clean_one =
329 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
330 static struct evcnt pmap_ev_vac_flush_one =
331 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
332 static struct evcnt pmap_ev_vac_flush_lots =
333 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
334 static struct evcnt pmap_ev_vac_flush_lots2 =
335 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
336 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
337 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
338 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
339 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
340
341 static struct evcnt pmap_ev_vac_color_new =
342 PMAP_EVCNT_INITIALIZER("new page color");
343 static struct evcnt pmap_ev_vac_color_reuse =
344 PMAP_EVCNT_INITIALIZER("ok first page color");
345 static struct evcnt pmap_ev_vac_color_ok =
346 PMAP_EVCNT_INITIALIZER("ok page color");
347 static struct evcnt pmap_ev_vac_color_blind =
348 PMAP_EVCNT_INITIALIZER("blind page color");
349 static struct evcnt pmap_ev_vac_color_change =
350 PMAP_EVCNT_INITIALIZER("change page color");
351 static struct evcnt pmap_ev_vac_color_erase =
352 PMAP_EVCNT_INITIALIZER("erase page color");
353 static struct evcnt pmap_ev_vac_color_none =
354 PMAP_EVCNT_INITIALIZER("no page color");
355 static struct evcnt pmap_ev_vac_color_restore =
356 PMAP_EVCNT_INITIALIZER("restore page color");
357
358 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
359 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
360 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
361 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
362 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
363 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
364 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
365 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
366 #endif
367
368 static struct evcnt pmap_ev_mappings =
369 PMAP_EVCNT_INITIALIZER("pages mapped");
370 static struct evcnt pmap_ev_unmappings =
371 PMAP_EVCNT_INITIALIZER("pages unmapped");
372 static struct evcnt pmap_ev_remappings =
373 PMAP_EVCNT_INITIALIZER("pages remapped");
374
375 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
377 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
378
379 static struct evcnt pmap_ev_kernel_mappings =
380 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
381 static struct evcnt pmap_ev_kernel_unmappings =
382 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
383 static struct evcnt pmap_ev_kernel_remappings =
384 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
385
386 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
387 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
389
390 static struct evcnt pmap_ev_kenter_mappings =
391 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
392 static struct evcnt pmap_ev_kenter_unmappings =
393 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
394 static struct evcnt pmap_ev_kenter_remappings =
395 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
396 static struct evcnt pmap_ev_pt_mappings =
397 PMAP_EVCNT_INITIALIZER("page table pages mapped");
398
399 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
400 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
401 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
402 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
403
404 static struct evcnt pmap_ev_fixup_mod =
405 PMAP_EVCNT_INITIALIZER("page modification emulations");
406 static struct evcnt pmap_ev_fixup_ref =
407 PMAP_EVCNT_INITIALIZER("page reference emulations");
408 static struct evcnt pmap_ev_fixup_exec =
409 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
410 static struct evcnt pmap_ev_fixup_pdes =
411 PMAP_EVCNT_INITIALIZER("pdes fixed up");
412 #ifndef ARM_MMU_EXTENDED
413 static struct evcnt pmap_ev_fixup_ptesync =
414 PMAP_EVCNT_INITIALIZER("ptesync fixed");
415 #endif
416
417 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
418 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
419 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
420 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
421 #ifndef ARM_MMU_EXTENDED
422 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
423 #endif
424
425 #ifdef PMAP_CACHE_VIPT
426 static struct evcnt pmap_ev_exec_mappings =
427 PMAP_EVCNT_INITIALIZER("exec pages mapped");
428 static struct evcnt pmap_ev_exec_cached =
429 PMAP_EVCNT_INITIALIZER("exec pages cached");
430
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
433
434 static struct evcnt pmap_ev_exec_synced =
435 PMAP_EVCNT_INITIALIZER("exec pages synced");
436 static struct evcnt pmap_ev_exec_synced_map =
437 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
438 static struct evcnt pmap_ev_exec_synced_unmap =
439 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
440 static struct evcnt pmap_ev_exec_synced_remap =
441 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
442 static struct evcnt pmap_ev_exec_synced_clearbit =
443 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
444 #ifndef ARM_MMU_EXTENDED
445 static struct evcnt pmap_ev_exec_synced_kremove =
446 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
447 #endif
448
449 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
450 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
451 #ifndef ARM_MMU_EXTENDED
452 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
453 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
454 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
455 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
456 #endif
457
458 static struct evcnt pmap_ev_exec_discarded_unmap =
459 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
460 static struct evcnt pmap_ev_exec_discarded_zero =
461 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
462 static struct evcnt pmap_ev_exec_discarded_copy =
463 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
464 static struct evcnt pmap_ev_exec_discarded_page_protect =
465 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
466 static struct evcnt pmap_ev_exec_discarded_clearbit =
467 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
468 static struct evcnt pmap_ev_exec_discarded_kremove =
469 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
470 #ifdef ARM_MMU_EXTENDED
471 static struct evcnt pmap_ev_exec_discarded_modfixup =
472 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
473 #endif
474
475 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
476 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
477 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
478 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
479 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
480 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
481 #ifdef ARM_MMU_EXTENDED
482 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
483 #endif
484 #endif /* PMAP_CACHE_VIPT */
485
486 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
487 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
488 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
489
490 EVCNT_ATTACH_STATIC(pmap_ev_updates);
491 EVCNT_ATTACH_STATIC(pmap_ev_collects);
492 EVCNT_ATTACH_STATIC(pmap_ev_activations);
493
494 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
495 #else
496 #define PMAPCOUNT(x) ((void)0)
497 #endif
498
499 #ifdef ARM_MMU_EXTENDED
500 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
501 void pmap_md_pdetab_deactivate(pmap_t pm);
502 #endif
503
504 /*
505 * pmap copy/zero page, and mem(5) hook point
506 */
507 static pt_entry_t *csrc_pte, *cdst_pte;
508 static vaddr_t csrcp, cdstp;
509 #ifdef MULTIPROCESSOR
510 static size_t cnptes;
511 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
512 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
513 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
514 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
515 #else
516 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
517 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
518 #define cpu_csrcp(o) (csrcp + (o))
519 #define cpu_cdstp(o) (cdstp + (o))
520 #endif
521 vaddr_t memhook; /* used by mem.c & others */
522 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
523 kmutex_t pmap_lock __cacheline_aligned;
524 kmutex_t kpm_lock __cacheline_aligned;
525 extern void *msgbufaddr;
526 int pmap_kmpages;
527 /*
528 * Flag to indicate if pmap_init() has done its thing
529 */
530 bool pmap_initialized;
531
532 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
533 /*
534 * Virtual end of direct-mapped memory
535 */
536 vaddr_t pmap_directlimit;
537 #endif
538
539 /*
540 * Misc. locking data structures
541 */
542
543 static inline void
544 pmap_acquire_pmap_lock(pmap_t pm)
545 {
546 #if defined(MULTIPROCESSOR) && defined(DDB)
547 if (__predict_false(db_onproc != NULL))
548 return;
549 #endif
550
551 mutex_enter(pm->pm_lock);
552 }
553
554 static inline void
555 pmap_release_pmap_lock(pmap_t pm)
556 {
557 #if defined(MULTIPROCESSOR) && defined(DDB)
558 if (__predict_false(db_onproc != NULL))
559 return;
560 #endif
561 mutex_exit(pm->pm_lock);
562 }
563
564 static inline void
565 pmap_acquire_page_lock(struct vm_page_md *md)
566 {
567 mutex_enter(&pmap_lock);
568 }
569
570 static inline void
571 pmap_release_page_lock(struct vm_page_md *md)
572 {
573 mutex_exit(&pmap_lock);
574 }
575
576 #ifdef DIAGNOSTIC
577 static inline int
578 pmap_page_locked_p(struct vm_page_md *md)
579 {
580 return mutex_owned(&pmap_lock);
581 }
582 #endif
583
584
585 /*
586 * Metadata for L1 translation tables.
587 */
588 #ifndef ARM_MMU_EXTENDED
589 struct l1_ttable {
590 /* Entry on the L1 Table list */
591 SLIST_ENTRY(l1_ttable) l1_link;
592
593 /* Entry on the L1 Least Recently Used list */
594 TAILQ_ENTRY(l1_ttable) l1_lru;
595
596 /* Track how many domains are allocated from this L1 */
597 volatile u_int l1_domain_use_count;
598
599 /*
600 * A free-list of domain numbers for this L1.
601 * We avoid using ffs() and a bitmap to track domains since ffs()
602 * is slow on ARM.
603 */
604 uint8_t l1_domain_first;
605 uint8_t l1_domain_free[PMAP_DOMAINS];
606
607 /* Physical address of this L1 page table */
608 paddr_t l1_physaddr;
609
610 /* KVA of this L1 page table */
611 pd_entry_t *l1_kva;
612 };
613
614 /*
615 * L1 Page Tables are tracked using a Least Recently Used list.
616 * - New L1s are allocated from the HEAD.
617 * - Freed L1s are added to the TAIl.
618 * - Recently accessed L1s (where an 'access' is some change to one of
619 * the userland pmaps which owns this L1) are moved to the TAIL.
620 */
621 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
622 static kmutex_t l1_lru_lock __cacheline_aligned;
623
624 /*
625 * A list of all L1 tables
626 */
627 static SLIST_HEAD(, l1_ttable) l1_list;
628 #endif /* ARM_MMU_EXTENDED */
629
630 /*
631 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
632 *
633 * This is normally 16MB worth L2 page descriptors for any given pmap.
634 * Reference counts are maintained for L2 descriptors so they can be
635 * freed when empty.
636 */
637 struct l2_bucket {
638 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
639 paddr_t l2b_pa; /* Physical address of same */
640 u_short l2b_l1slot; /* This L2 table's L1 index */
641 u_short l2b_occupancy; /* How many active descriptors */
642 };
643
644 struct l2_dtable {
645 /* The number of L2 page descriptors allocated to this l2_dtable */
646 u_int l2_occupancy;
647
648 /* List of L2 page descriptors */
649 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
650 };
651
652 /*
653 * Given an L1 table index, calculate the corresponding l2_dtable index
654 * and bucket index within the l2_dtable.
655 */
656 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
657 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
658 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
659 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
660 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
661
662 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
663 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
664
665 /*
666 * Given a virtual address, this macro returns the
667 * virtual address required to drop into the next L2 bucket.
668 */
669 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
670
671 /*
672 * L2 allocation.
673 */
674 #define pmap_alloc_l2_dtable() \
675 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
676 #define pmap_free_l2_dtable(l2) \
677 pool_cache_put(&pmap_l2dtable_cache, (l2))
678 #define pmap_alloc_l2_ptp(pap) \
679 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
680 PR_NOWAIT, (pap)))
681
682 /*
683 * We try to map the page tables write-through, if possible. However, not
684 * all CPUs have a write-through cache mode, so on those we have to sync
685 * the cache when we frob page tables.
686 *
687 * We try to evaluate this at compile time, if possible. However, it's
688 * not always possible to do that, hence this run-time var.
689 */
690 int pmap_needs_pte_sync;
691
692 /*
693 * Real definition of pv_entry.
694 */
695 struct pv_entry {
696 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
697 pmap_t pv_pmap; /* pmap where mapping lies */
698 vaddr_t pv_va; /* virtual address for mapping */
699 u_int pv_flags; /* flags */
700 };
701
702 /*
703 * Macros to determine if a mapping might be resident in the
704 * instruction/data cache and/or TLB
705 */
706 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
707 /*
708 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
709 * there are no explicit accesses, so there may be always be TLB entries to
710 * flush. If we used ASIDs then this would not be a problem.
711 */
712 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
713 #define PV_BEEN_REFD(f) (true)
714 #else
715 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
716 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
717 #endif
718 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
719 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
720 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
721
722 /*
723 * Local prototypes
724 */
725 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
726 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
727 pt_entry_t **);
728 static bool pmap_is_current(pmap_t) __unused;
729 static bool pmap_is_cached(pmap_t);
730 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
731 pmap_t, vaddr_t, u_int);
732 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
733 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
734 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
735 u_int, u_int);
736
737 static void pmap_pinit(pmap_t);
738 static int pmap_pmap_ctor(void *, void *, int);
739
740 static void pmap_alloc_l1(pmap_t);
741 static void pmap_free_l1(pmap_t);
742 #ifndef ARM_MMU_EXTENDED
743 static void pmap_use_l1(pmap_t);
744 #endif
745
746 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
747 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
748 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
749 static int pmap_l2ptp_ctor(void *, void *, int);
750 static int pmap_l2dtable_ctor(void *, void *, int);
751
752 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
753 #ifdef PMAP_CACHE_VIVT
754 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
755 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
756 #endif
757
758 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
759 #ifdef PMAP_CACHE_VIVT
760 static bool pmap_clean_page(struct vm_page_md *, bool);
761 #endif
762 #ifdef PMAP_CACHE_VIPT
763 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
764 enum pmap_flush_op {
765 PMAP_FLUSH_PRIMARY,
766 PMAP_FLUSH_SECONDARY,
767 PMAP_CLEAN_PRIMARY
768 };
769 #ifndef ARM_MMU_EXTENDED
770 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
771 #endif
772 #endif
773 static void pmap_page_remove(struct vm_page_md *, paddr_t);
774 static void pmap_pv_remove(paddr_t);
775
776 #ifndef ARM_MMU_EXTENDED
777 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
778 #endif
779 static vaddr_t kernel_pt_lookup(paddr_t);
780
781
782 /*
783 * Misc variables
784 */
785 vaddr_t virtual_avail;
786 vaddr_t virtual_end;
787 vaddr_t pmap_curmaxkvaddr;
788
789 paddr_t avail_start;
790 paddr_t avail_end;
791
792 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
793 pv_addr_t kernelpages;
794 pv_addr_t kernel_l1pt;
795 pv_addr_t systempage;
796
797 /* Function to set the debug level of the pmap code */
798
799 #ifdef PMAP_DEBUG
800 void
801 pmap_debug(int level)
802 {
803 pmap_debug_level = level;
804 printf("pmap_debug: level=%d\n", pmap_debug_level);
805 }
806 #endif /* PMAP_DEBUG */
807
808 #ifdef PMAP_CACHE_VIPT
809 #define PMAP_VALIDATE_MD_PAGE(md) \
810 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
811 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
812 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
813 #endif /* PMAP_CACHE_VIPT */
814 /*
815 * A bunch of routines to conditionally flush the caches/TLB depending
816 * on whether the specified pmap actually needs to be flushed at any
817 * given time.
818 */
819 static inline void
820 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
821 {
822 #ifdef ARM_MMU_EXTENDED
823 pmap_tlb_invalidate_addr(pm, va);
824 #else
825 if (pm->pm_cstate.cs_tlb_id != 0) {
826 if (PV_BEEN_EXECD(flags)) {
827 cpu_tlb_flushID_SE(va);
828 } else if (PV_BEEN_REFD(flags)) {
829 cpu_tlb_flushD_SE(va);
830 }
831 }
832 #endif /* ARM_MMU_EXTENDED */
833 }
834
835 #ifndef ARM_MMU_EXTENDED
836 static inline void
837 pmap_tlb_flushID(pmap_t pm)
838 {
839 if (pm->pm_cstate.cs_tlb_id) {
840 cpu_tlb_flushID();
841 #if ARM_MMU_V7 == 0
842 /*
843 * Speculative loads by Cortex cores can cause TLB entries to
844 * be filled even if there are no explicit accesses, so there
845 * may be always be TLB entries to flush. If we used ASIDs
846 * then it would not be a problem.
847 * This is not true for other CPUs.
848 */
849 pm->pm_cstate.cs_tlb = 0;
850 #endif /* ARM_MMU_V7 */
851 }
852 }
853
854 static inline void
855 pmap_tlb_flushD(pmap_t pm)
856 {
857 if (pm->pm_cstate.cs_tlb_d) {
858 cpu_tlb_flushD();
859 #if ARM_MMU_V7 == 0
860 /*
861 * Speculative loads by Cortex cores can cause TLB entries to
862 * be filled even if there are no explicit accesses, so there
863 * may be always be TLB entries to flush. If we used ASIDs
864 * then it would not be a problem.
865 * This is not true for other CPUs.
866 */
867 pm->pm_cstate.cs_tlb_d = 0;
868 #endif /* ARM_MMU_V7 */
869 }
870 }
871 #endif /* ARM_MMU_EXTENDED */
872
873 #ifdef PMAP_CACHE_VIVT
874 static inline void
875 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
876 {
877 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
878 cpu_idcache_wbinv_range(va, PAGE_SIZE);
879 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
880 if (do_inv) {
881 if (flags & PVF_WRITE)
882 cpu_dcache_wbinv_range(va, PAGE_SIZE);
883 else
884 cpu_dcache_inv_range(va, PAGE_SIZE);
885 } else if (flags & PVF_WRITE) {
886 cpu_dcache_wb_range(va, PAGE_SIZE);
887 }
888 }
889 }
890
891 static inline void
892 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
893 {
894 if (PV_BEEN_EXECD(flags)) {
895 if (pm->pm_cstate.cs_cache_id) {
896 cpu_idcache_wbinv_all();
897 pm->pm_cstate.cs_cache = 0;
898 }
899 } else if (pm->pm_cstate.cs_cache_d) {
900 cpu_dcache_wbinv_all();
901 pm->pm_cstate.cs_cache_d = 0;
902 }
903 }
904 #endif /* PMAP_CACHE_VIVT */
905
906 static inline uint8_t
907 pmap_domain(pmap_t pm)
908 {
909 #ifdef ARM_MMU_EXTENDED
910 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
911 #else
912 return pm->pm_domain;
913 #endif
914 }
915
916 static inline pd_entry_t *
917 pmap_l1_kva(pmap_t pm)
918 {
919 #ifdef ARM_MMU_EXTENDED
920 return pm->pm_l1;
921 #else
922 return pm->pm_l1->l1_kva;
923 #endif
924 }
925
926 static inline bool
927 pmap_is_current(pmap_t pm)
928 {
929 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
930 return true;
931
932 return false;
933 }
934
935 static inline bool
936 pmap_is_cached(pmap_t pm)
937 {
938 #ifdef ARM_MMU_EXTENDED
939 if (pm == pmap_kernel())
940 return true;
941 #ifdef MULTIPROCESSOR
942 // Is this pmap active on any CPU?
943 if (!kcpuset_iszero(pm->pm_active))
944 return true;
945 #else
946 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
947 // Is this pmap active?
948 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
949 return true;
950 #endif
951 #else
952 struct cpu_info * const ci = curcpu();
953 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
954 || ci->ci_pmap_lastuser == pm)
955 return true;
956 #endif /* ARM_MMU_EXTENDED */
957
958 return false;
959 }
960
961 /*
962 * PTE_SYNC_CURRENT:
963 *
964 * Make sure the pte is written out to RAM.
965 * We need to do this for one of two cases:
966 * - We're dealing with the kernel pmap
967 * - There is no pmap active in the cache/tlb.
968 * - The specified pmap is 'active' in the cache/tlb.
969 */
970
971 #ifdef PMAP_INCLUDE_PTE_SYNC
972 static inline void
973 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
974 {
975 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
976 PTE_SYNC(ptep);
977 arm_dsb();
978 }
979
980 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
981 #else
982 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
983 #endif
984
985 /*
986 * main pv_entry manipulation functions:
987 * pmap_enter_pv: enter a mapping onto a vm_page list
988 * pmap_remove_pv: remove a mapping from a vm_page list
989 *
990 * NOTE: pmap_enter_pv expects to lock the pvh itself
991 * pmap_remove_pv expects the caller to lock the pvh before calling
992 */
993
994 /*
995 * pmap_enter_pv: enter a mapping onto a vm_page lst
996 *
997 * => caller should hold the proper lock on pmap_main_lock
998 * => caller should have pmap locked
999 * => we will gain the lock on the vm_page and allocate the new pv_entry
1000 * => caller should adjust ptp's wire_count before calling
1001 * => caller should not adjust pmap's wire_count
1002 */
1003 static void
1004 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
1005 vaddr_t va, u_int flags)
1006 {
1007 struct pv_entry **pvp;
1008
1009 NPDEBUG(PDB_PVDUMP,
1010 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
1011
1012 pv->pv_pmap = pm;
1013 pv->pv_va = va;
1014 pv->pv_flags = flags;
1015
1016 pvp = &SLIST_FIRST(&md->pvh_list);
1017 #ifdef PMAP_CACHE_VIPT
1018 /*
1019 * Insert unmanaged entries, writeable first, at the head of
1020 * the pv list.
1021 */
1022 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1023 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1024 pvp = &SLIST_NEXT(*pvp, pv_link);
1025 }
1026 if (!PV_IS_WRITE_P(flags)) {
1027 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1028 pvp = &SLIST_NEXT(*pvp, pv_link);
1029 }
1030 #endif
1031 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1032 *pvp = pv; /* ... locked list */
1033 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1034 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1035 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1036 md->pvh_attrs |= PVF_KMOD;
1037 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1038 md->pvh_attrs |= PVF_DIRTY;
1039 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1040 #endif
1041 if (pm == pmap_kernel()) {
1042 PMAPCOUNT(kernel_mappings);
1043 if (flags & PVF_WRITE)
1044 md->krw_mappings++;
1045 else
1046 md->kro_mappings++;
1047 } else {
1048 if (flags & PVF_WRITE)
1049 md->urw_mappings++;
1050 else
1051 md->uro_mappings++;
1052 }
1053
1054 #ifdef PMAP_CACHE_VIPT
1055 #ifndef ARM_MMU_EXTENDED
1056 /*
1057 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1058 * do it here as well to keep the mappings & KVF_WRITE consistent.
1059 */
1060 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1061 md->pvh_attrs |= PVF_WRITE;
1062 }
1063 #endif
1064 /*
1065 * If this is an exec mapping and its the first exec mapping
1066 * for this page, make sure to sync the I-cache.
1067 */
1068 if (PV_IS_EXEC_P(flags)) {
1069 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1070 pmap_syncicache_page(md, pa);
1071 PMAPCOUNT(exec_synced_map);
1072 }
1073 PMAPCOUNT(exec_mappings);
1074 }
1075 #endif
1076
1077 PMAPCOUNT(mappings);
1078
1079 if (pv->pv_flags & PVF_WIRED)
1080 ++pm->pm_stats.wired_count;
1081 }
1082
1083 /*
1084 *
1085 * pmap_find_pv: Find a pv entry
1086 *
1087 * => caller should hold lock on vm_page
1088 */
1089 static inline struct pv_entry *
1090 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1091 {
1092 struct pv_entry *pv;
1093
1094 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1095 if (pm == pv->pv_pmap && va == pv->pv_va)
1096 break;
1097 }
1098
1099 return (pv);
1100 }
1101
1102 /*
1103 * pmap_remove_pv: try to remove a mapping from a pv_list
1104 *
1105 * => caller should hold proper lock on pmap_main_lock
1106 * => pmap should be locked
1107 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1108 * => caller should adjust ptp's wire_count and free PTP if needed
1109 * => caller should NOT adjust pmap's wire_count
1110 * => we return the removed pv
1111 */
1112 static struct pv_entry *
1113 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1114 {
1115 struct pv_entry *pv, **prevptr;
1116
1117 NPDEBUG(PDB_PVDUMP,
1118 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1119
1120 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1121 pv = *prevptr;
1122
1123 while (pv) {
1124 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1125 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1126 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1127 if (pv->pv_flags & PVF_WIRED) {
1128 --pm->pm_stats.wired_count;
1129 }
1130 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1131 if (pm == pmap_kernel()) {
1132 PMAPCOUNT(kernel_unmappings);
1133 if (pv->pv_flags & PVF_WRITE)
1134 md->krw_mappings--;
1135 else
1136 md->kro_mappings--;
1137 } else {
1138 if (pv->pv_flags & PVF_WRITE)
1139 md->urw_mappings--;
1140 else
1141 md->uro_mappings--;
1142 }
1143
1144 PMAPCOUNT(unmappings);
1145 #ifdef PMAP_CACHE_VIPT
1146 /*
1147 * If this page has had an exec mapping, then if
1148 * this was the last mapping, discard the contents,
1149 * otherwise sync the i-cache for this page.
1150 */
1151 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1152 if (SLIST_EMPTY(&md->pvh_list)) {
1153 md->pvh_attrs &= ~PVF_EXEC;
1154 PMAPCOUNT(exec_discarded_unmap);
1155 } else if (pv->pv_flags & PVF_WRITE) {
1156 pmap_syncicache_page(md, pa);
1157 PMAPCOUNT(exec_synced_unmap);
1158 }
1159 }
1160 #endif /* PMAP_CACHE_VIPT */
1161 break;
1162 }
1163 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1164 pv = *prevptr; /* advance */
1165 }
1166
1167 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1168 /*
1169 * If we no longer have a WRITEABLE KENTRY at the head of list,
1170 * clear the KMOD attribute from the page.
1171 */
1172 if (SLIST_FIRST(&md->pvh_list) == NULL
1173 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1174 md->pvh_attrs &= ~PVF_KMOD;
1175
1176 /*
1177 * If this was a writeable page and there are no more writeable
1178 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1179 * the contents to memory.
1180 */
1181 if (arm_cache_prefer_mask != 0) {
1182 if (md->krw_mappings + md->urw_mappings == 0)
1183 md->pvh_attrs &= ~PVF_WRITE;
1184 PMAP_VALIDATE_MD_PAGE(md);
1185 }
1186 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1187 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1188
1189 /* return removed pv */
1190 return pv;
1191 }
1192
1193 /*
1194 *
1195 * pmap_modify_pv: Update pv flags
1196 *
1197 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1198 * => caller should NOT adjust pmap's wire_count
1199 * => caller must call pmap_vac_me_harder() if writable status of a page
1200 * may have changed.
1201 * => we return the old flags
1202 *
1203 * Modify a physical-virtual mapping in the pv table
1204 */
1205 static u_int
1206 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1207 u_int clr_mask, u_int set_mask)
1208 {
1209 struct pv_entry *npv;
1210 u_int flags, oflags;
1211
1212 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1213 KASSERT(!PV_IS_KENTRY_P(set_mask));
1214
1215 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1216 return (0);
1217
1218 NPDEBUG(PDB_PVDUMP,
1219 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1220
1221 /*
1222 * There is at least one VA mapping this page.
1223 */
1224
1225 if (clr_mask & (PVF_REF | PVF_MOD)) {
1226 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1227 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1228 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1229 md->pvh_attrs |= PVF_DIRTY;
1230 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1231 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1232 }
1233
1234 oflags = npv->pv_flags;
1235 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1236
1237 if ((flags ^ oflags) & PVF_WIRED) {
1238 if (flags & PVF_WIRED)
1239 ++pm->pm_stats.wired_count;
1240 else
1241 --pm->pm_stats.wired_count;
1242 }
1243
1244 if ((flags ^ oflags) & PVF_WRITE) {
1245 if (pm == pmap_kernel()) {
1246 if (flags & PVF_WRITE) {
1247 md->krw_mappings++;
1248 md->kro_mappings--;
1249 } else {
1250 md->kro_mappings++;
1251 md->krw_mappings--;
1252 }
1253 } else {
1254 if (flags & PVF_WRITE) {
1255 md->urw_mappings++;
1256 md->uro_mappings--;
1257 } else {
1258 md->uro_mappings++;
1259 md->urw_mappings--;
1260 }
1261 }
1262 }
1263 #ifdef PMAP_CACHE_VIPT
1264 if (arm_cache_prefer_mask != 0) {
1265 if (md->urw_mappings + md->krw_mappings == 0) {
1266 md->pvh_attrs &= ~PVF_WRITE;
1267 } else {
1268 md->pvh_attrs |= PVF_WRITE;
1269 }
1270 }
1271 /*
1272 * We have two cases here: the first is from enter_pv (new exec
1273 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1274 * Since in latter, pmap_enter_pv won't do anything, we just have
1275 * to do what pmap_remove_pv would do.
1276 */
1277 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1278 || (PV_IS_EXEC_P(md->pvh_attrs)
1279 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1280 pmap_syncicache_page(md, pa);
1281 PMAPCOUNT(exec_synced_remap);
1282 }
1283 #ifndef ARM_MMU_EXTENDED
1284 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1285 #endif /* !ARM_MMU_EXTENDED */
1286 #endif /* PMAP_CACHE_VIPT */
1287
1288 PMAPCOUNT(remappings);
1289
1290 return (oflags);
1291 }
1292
1293 /*
1294 * Allocate an L1 translation table for the specified pmap.
1295 * This is called at pmap creation time.
1296 */
1297 static void
1298 pmap_alloc_l1(pmap_t pm)
1299 {
1300 #ifdef ARM_MMU_EXTENDED
1301 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1302 struct vm_page *pg;
1303 bool ok __diagused;
1304 for (;;) {
1305 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1306 pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO);
1307 #else
1308 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1309 #endif
1310 if (pg != NULL)
1311 break;
1312 uvm_wait("pmapl1alloc");
1313 }
1314 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg);
1315 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0);
1316 KASSERT(ok);
1317 KASSERT(va >= KERNEL_BASE);
1318
1319 #else
1320 KASSERTMSG(kernel_map != NULL, "pm %p", pm);
1321 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1322 UVM_KMF_WIRED|UVM_KMF_ZERO);
1323 KASSERT(va);
1324 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa);
1325 #endif
1326 pm->pm_l1 = (pd_entry_t *)va;
1327 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t));
1328 #else
1329 struct l1_ttable *l1;
1330 uint8_t domain;
1331
1332 /*
1333 * Remove the L1 at the head of the LRU list
1334 */
1335 mutex_spin_enter(&l1_lru_lock);
1336 l1 = TAILQ_FIRST(&l1_lru_list);
1337 KDASSERT(l1 != NULL);
1338 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1339
1340 /*
1341 * Pick the first available domain number, and update
1342 * the link to the next number.
1343 */
1344 domain = l1->l1_domain_first;
1345 l1->l1_domain_first = l1->l1_domain_free[domain];
1346
1347 /*
1348 * If there are still free domain numbers in this L1,
1349 * put it back on the TAIL of the LRU list.
1350 */
1351 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1352 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1353
1354 mutex_spin_exit(&l1_lru_lock);
1355
1356 /*
1357 * Fix up the relevant bits in the pmap structure
1358 */
1359 pm->pm_l1 = l1;
1360 pm->pm_domain = domain + 1;
1361 #endif
1362 }
1363
1364 /*
1365 * Free an L1 translation table.
1366 * This is called at pmap destruction time.
1367 */
1368 static void
1369 pmap_free_l1(pmap_t pm)
1370 {
1371 #ifdef ARM_MMU_EXTENDED
1372 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1373 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa);
1374 uvm_pagefree(pg);
1375 #else
1376 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED);
1377 #endif
1378 pm->pm_l1 = NULL;
1379 pm->pm_l1_pa = 0;
1380 #else
1381 struct l1_ttable *l1 = pm->pm_l1;
1382
1383 mutex_spin_enter(&l1_lru_lock);
1384
1385 /*
1386 * If this L1 is currently on the LRU list, remove it.
1387 */
1388 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1389 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1390
1391 /*
1392 * Free up the domain number which was allocated to the pmap
1393 */
1394 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1395 l1->l1_domain_first = pmap_domain(pm) - 1;
1396 l1->l1_domain_use_count--;
1397
1398 /*
1399 * The L1 now must have at least 1 free domain, so add
1400 * it back to the LRU list. If the use count is zero,
1401 * put it at the head of the list, otherwise it goes
1402 * to the tail.
1403 */
1404 if (l1->l1_domain_use_count == 0)
1405 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1406 else
1407 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1408
1409 mutex_spin_exit(&l1_lru_lock);
1410 #endif /* ARM_MMU_EXTENDED */
1411 }
1412
1413 #ifndef ARM_MMU_EXTENDED
1414 static inline void
1415 pmap_use_l1(pmap_t pm)
1416 {
1417 struct l1_ttable *l1;
1418
1419 /*
1420 * Do nothing if we're in interrupt context.
1421 * Access to an L1 by the kernel pmap must not affect
1422 * the LRU list.
1423 */
1424 if (cpu_intr_p() || pm == pmap_kernel())
1425 return;
1426
1427 l1 = pm->pm_l1;
1428
1429 /*
1430 * If the L1 is not currently on the LRU list, just return
1431 */
1432 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1433 return;
1434
1435 mutex_spin_enter(&l1_lru_lock);
1436
1437 /*
1438 * Check the use count again, now that we've acquired the lock
1439 */
1440 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1441 mutex_spin_exit(&l1_lru_lock);
1442 return;
1443 }
1444
1445 /*
1446 * Move the L1 to the back of the LRU list
1447 */
1448 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1449 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1450
1451 mutex_spin_exit(&l1_lru_lock);
1452 }
1453 #endif /* !ARM_MMU_EXTENDED */
1454
1455 /*
1456 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1457 *
1458 * Free an L2 descriptor table.
1459 */
1460 static inline void
1461 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1462 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1463 #else
1464 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1465 #endif
1466 {
1467 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1468 /*
1469 * Note: With a write-back cache, we may need to sync this
1470 * L2 table before re-using it.
1471 * This is because it may have belonged to a non-current
1472 * pmap, in which case the cache syncs would have been
1473 * skipped for the pages that were being unmapped. If the
1474 * L2 table were then to be immediately re-allocated to
1475 * the *current* pmap, it may well contain stale mappings
1476 * which have not yet been cleared by a cache write-back
1477 * and so would still be visible to the mmu.
1478 */
1479 if (need_sync)
1480 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1481 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1482 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1483 }
1484
1485 /*
1486 * Returns a pointer to the L2 bucket associated with the specified pmap
1487 * and VA, or NULL if no L2 bucket exists for the address.
1488 */
1489 static inline struct l2_bucket *
1490 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1491 {
1492 const size_t l1slot = l1pte_index(va);
1493 struct l2_dtable *l2;
1494 struct l2_bucket *l2b;
1495
1496 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1497 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1498 return (NULL);
1499
1500 return (l2b);
1501 }
1502
1503 /*
1504 * Returns a pointer to the L2 bucket associated with the specified pmap
1505 * and VA.
1506 *
1507 * If no L2 bucket exists, perform the necessary allocations to put an L2
1508 * bucket/page table in place.
1509 *
1510 * Note that if a new L2 bucket/page was allocated, the caller *must*
1511 * increment the bucket occupancy counter appropriately *before*
1512 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1513 * the bucket/page in the meantime.
1514 */
1515 static struct l2_bucket *
1516 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1517 {
1518 const size_t l1slot = l1pte_index(va);
1519 struct l2_dtable *l2;
1520
1521 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1522 /*
1523 * No mapping at this address, as there is
1524 * no entry in the L1 table.
1525 * Need to allocate a new l2_dtable.
1526 */
1527 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1528 return (NULL);
1529
1530 /*
1531 * Link it into the parent pmap
1532 */
1533 pm->pm_l2[L2_IDX(l1slot)] = l2;
1534 }
1535
1536 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1537
1538 /*
1539 * Fetch pointer to the L2 page table associated with the address.
1540 */
1541 if (l2b->l2b_kva == NULL) {
1542 pt_entry_t *ptep;
1543
1544 /*
1545 * No L2 page table has been allocated. Chances are, this
1546 * is because we just allocated the l2_dtable, above.
1547 */
1548 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1549 /*
1550 * Oops, no more L2 page tables available at this
1551 * time. We may need to deallocate the l2_dtable
1552 * if we allocated a new one above.
1553 */
1554 if (l2->l2_occupancy == 0) {
1555 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1556 pmap_free_l2_dtable(l2);
1557 }
1558 return (NULL);
1559 }
1560
1561 l2->l2_occupancy++;
1562 l2b->l2b_kva = ptep;
1563 l2b->l2b_l1slot = l1slot;
1564
1565 #ifdef ARM_MMU_EXTENDED
1566 /*
1567 * We know there will be a mapping here, so simply
1568 * enter this PTP into the L1 now.
1569 */
1570 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1571 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1572 | L1_C_DOM(pmap_domain(pm));
1573 KASSERT(*pdep == 0);
1574 l1pte_setone(pdep, npde);
1575 PDE_SYNC(pdep);
1576 #endif
1577 }
1578
1579 return (l2b);
1580 }
1581
1582 /*
1583 * One or more mappings in the specified L2 descriptor table have just been
1584 * invalidated.
1585 *
1586 * Garbage collect the metadata and descriptor table itself if necessary.
1587 *
1588 * The pmap lock must be acquired when this is called (not necessary
1589 * for the kernel pmap).
1590 */
1591 static void
1592 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1593 {
1594 KDASSERT(count <= l2b->l2b_occupancy);
1595
1596 /*
1597 * Update the bucket's reference count according to how many
1598 * PTEs the caller has just invalidated.
1599 */
1600 l2b->l2b_occupancy -= count;
1601
1602 /*
1603 * Note:
1604 *
1605 * Level 2 page tables allocated to the kernel pmap are never freed
1606 * as that would require checking all Level 1 page tables and
1607 * removing any references to the Level 2 page table. See also the
1608 * comment elsewhere about never freeing bootstrap L2 descriptors.
1609 *
1610 * We make do with just invalidating the mapping in the L2 table.
1611 *
1612 * This isn't really a big deal in practice and, in fact, leads
1613 * to a performance win over time as we don't need to continually
1614 * alloc/free.
1615 */
1616 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1617 return;
1618
1619 /*
1620 * There are no more valid mappings in this level 2 page table.
1621 * Go ahead and NULL-out the pointer in the bucket, then
1622 * free the page table.
1623 */
1624 const size_t l1slot = l2b->l2b_l1slot;
1625 pt_entry_t * const ptep = l2b->l2b_kva;
1626 l2b->l2b_kva = NULL;
1627
1628 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1629 pd_entry_t pde __diagused = *pdep;
1630
1631 #ifdef ARM_MMU_EXTENDED
1632 /*
1633 * Invalidate the L1 slot.
1634 */
1635 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1636 #else
1637 /*
1638 * If the L1 slot matches the pmap's domain number, then invalidate it.
1639 */
1640 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1641 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1642 #endif
1643 l1pte_setone(pdep, 0);
1644 PDE_SYNC(pdep);
1645 #ifndef ARM_MMU_EXTENDED
1646 }
1647 #endif
1648
1649 /*
1650 * Release the L2 descriptor table back to the pool cache.
1651 */
1652 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1653 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1654 #else
1655 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1656 #endif
1657
1658 /*
1659 * Update the reference count in the associated l2_dtable
1660 */
1661 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1662 if (--l2->l2_occupancy > 0)
1663 return;
1664
1665 /*
1666 * There are no more valid mappings in any of the Level 1
1667 * slots managed by this l2_dtable. Go ahead and NULL-out
1668 * the pointer in the parent pmap and free the l2_dtable.
1669 */
1670 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1671 pmap_free_l2_dtable(l2);
1672 }
1673
1674 /*
1675 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1676 * structures.
1677 */
1678 static int
1679 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1680 {
1681 #ifndef PMAP_INCLUDE_PTE_SYNC
1682 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1683
1684 /*
1685 * The mappings for these page tables were initially made using
1686 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1687 * mode will not be right for page table mappings. To avoid
1688 * polluting the pmap_kenter_pa() code with a special case for
1689 * page tables, we simply fix up the cache-mode here if it's not
1690 * correct.
1691 */
1692 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1693 const struct l2_bucket * const l2b =
1694 pmap_get_l2_bucket(pmap_kernel(), va);
1695 KASSERTMSG(l2b != NULL, "%#lx", va);
1696 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1697 const pt_entry_t opte = *ptep;
1698
1699 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1700 /*
1701 * Page tables must have the cache-mode set correctly.
1702 */
1703 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1704 | pte_l2_s_cache_mode_pt;
1705 l2pte_set(ptep, npte, opte);
1706 PTE_SYNC(ptep);
1707 cpu_tlb_flushD_SE(va);
1708 cpu_cpwait();
1709 }
1710 }
1711 #endif
1712
1713 memset(v, 0, L2_TABLE_SIZE_REAL);
1714 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1715 return (0);
1716 }
1717
1718 static int
1719 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1720 {
1721
1722 memset(v, 0, sizeof(struct l2_dtable));
1723 return (0);
1724 }
1725
1726 static int
1727 pmap_pmap_ctor(void *arg, void *v, int flags)
1728 {
1729
1730 memset(v, 0, sizeof(struct pmap));
1731 return (0);
1732 }
1733
1734 static void
1735 pmap_pinit(pmap_t pm)
1736 {
1737 #ifndef ARM_HAS_VBAR
1738 struct l2_bucket *l2b;
1739
1740 if (vector_page < KERNEL_BASE) {
1741 /*
1742 * Map the vector page.
1743 */
1744 pmap_enter(pm, vector_page, systempage.pv_pa,
1745 VM_PROT_READ | VM_PROT_EXECUTE,
1746 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1747 pmap_update(pm);
1748
1749 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1750 l2b = pmap_get_l2_bucket(pm, vector_page);
1751 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1752 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1753 L1_C_DOM(pmap_domain(pm));
1754 } else
1755 pm->pm_pl1vec = NULL;
1756 #endif
1757 }
1758
1759 #ifdef PMAP_CACHE_VIVT
1760 /*
1761 * Since we have a virtually indexed cache, we may need to inhibit caching if
1762 * there is more than one mapping and at least one of them is writable.
1763 * Since we purge the cache on every context switch, we only need to check for
1764 * other mappings within the same pmap, or kernel_pmap.
1765 * This function is also called when a page is unmapped, to possibly reenable
1766 * caching on any remaining mappings.
1767 *
1768 * The code implements the following logic, where:
1769 *
1770 * KW = # of kernel read/write pages
1771 * KR = # of kernel read only pages
1772 * UW = # of user read/write pages
1773 * UR = # of user read only pages
1774 *
1775 * KC = kernel mapping is cacheable
1776 * UC = user mapping is cacheable
1777 *
1778 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1779 * +---------------------------------------------
1780 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1781 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1782 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1783 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1784 */
1785
1786 static const int pmap_vac_flags[4][4] = {
1787 {-1, 0, 0, PVF_KNC},
1788 {0, 0, PVF_NC, PVF_NC},
1789 {0, PVF_NC, PVF_NC, PVF_NC},
1790 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1791 };
1792
1793 static inline int
1794 pmap_get_vac_flags(const struct vm_page_md *md)
1795 {
1796 int kidx, uidx;
1797
1798 kidx = 0;
1799 if (md->kro_mappings || md->krw_mappings > 1)
1800 kidx |= 1;
1801 if (md->krw_mappings)
1802 kidx |= 2;
1803
1804 uidx = 0;
1805 if (md->uro_mappings || md->urw_mappings > 1)
1806 uidx |= 1;
1807 if (md->urw_mappings)
1808 uidx |= 2;
1809
1810 return (pmap_vac_flags[uidx][kidx]);
1811 }
1812
1813 static inline void
1814 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1815 {
1816 int nattr;
1817
1818 nattr = pmap_get_vac_flags(md);
1819
1820 if (nattr < 0) {
1821 md->pvh_attrs &= ~PVF_NC;
1822 return;
1823 }
1824
1825 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1826 return;
1827
1828 if (pm == pmap_kernel())
1829 pmap_vac_me_kpmap(md, pa, pm, va);
1830 else
1831 pmap_vac_me_user(md, pa, pm, va);
1832
1833 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1834 }
1835
1836 static void
1837 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1838 {
1839 u_int u_cacheable, u_entries;
1840 struct pv_entry *pv;
1841 pmap_t last_pmap = pm;
1842
1843 /*
1844 * Pass one, see if there are both kernel and user pmaps for
1845 * this page. Calculate whether there are user-writable or
1846 * kernel-writable pages.
1847 */
1848 u_cacheable = 0;
1849 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1850 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1851 u_cacheable++;
1852 }
1853
1854 u_entries = md->urw_mappings + md->uro_mappings;
1855
1856 /*
1857 * We know we have just been updating a kernel entry, so if
1858 * all user pages are already cacheable, then there is nothing
1859 * further to do.
1860 */
1861 if (md->k_mappings == 0 && u_cacheable == u_entries)
1862 return;
1863
1864 if (u_entries) {
1865 /*
1866 * Scan over the list again, for each entry, if it
1867 * might not be set correctly, call pmap_vac_me_user
1868 * to recalculate the settings.
1869 */
1870 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1871 /*
1872 * We know kernel mappings will get set
1873 * correctly in other calls. We also know
1874 * that if the pmap is the same as last_pmap
1875 * then we've just handled this entry.
1876 */
1877 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1878 continue;
1879
1880 /*
1881 * If there are kernel entries and this page
1882 * is writable but non-cacheable, then we can
1883 * skip this entry also.
1884 */
1885 if (md->k_mappings &&
1886 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1887 (PVF_NC | PVF_WRITE))
1888 continue;
1889
1890 /*
1891 * Similarly if there are no kernel-writable
1892 * entries and the page is already
1893 * read-only/cacheable.
1894 */
1895 if (md->krw_mappings == 0 &&
1896 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1897 continue;
1898
1899 /*
1900 * For some of the remaining cases, we know
1901 * that we must recalculate, but for others we
1902 * can't tell if they are correct or not, so
1903 * we recalculate anyway.
1904 */
1905 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1906 }
1907
1908 if (md->k_mappings == 0)
1909 return;
1910 }
1911
1912 pmap_vac_me_user(md, pa, pm, va);
1913 }
1914
1915 static void
1916 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1917 {
1918 pmap_t kpmap = pmap_kernel();
1919 struct pv_entry *pv, *npv = NULL;
1920 u_int entries = 0;
1921 u_int writable = 0;
1922 u_int cacheable_entries = 0;
1923 u_int kern_cacheable = 0;
1924 u_int other_writable = 0;
1925
1926 /*
1927 * Count mappings and writable mappings in this pmap.
1928 * Include kernel mappings as part of our own.
1929 * Keep a pointer to the first one.
1930 */
1931 npv = NULL;
1932 KASSERT(pmap_page_locked_p(md));
1933 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1934 /* Count mappings in the same pmap */
1935 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1936 if (entries++ == 0)
1937 npv = pv;
1938
1939 /* Cacheable mappings */
1940 if ((pv->pv_flags & PVF_NC) == 0) {
1941 cacheable_entries++;
1942 if (kpmap == pv->pv_pmap)
1943 kern_cacheable++;
1944 }
1945
1946 /* Writable mappings */
1947 if (pv->pv_flags & PVF_WRITE)
1948 ++writable;
1949 } else if (pv->pv_flags & PVF_WRITE)
1950 other_writable = 1;
1951 }
1952
1953 /*
1954 * Enable or disable caching as necessary.
1955 * Note: the first entry might be part of the kernel pmap,
1956 * so we can't assume this is indicative of the state of the
1957 * other (maybe non-kpmap) entries.
1958 */
1959 if ((entries > 1 && writable) ||
1960 (entries > 0 && pm == kpmap && other_writable)) {
1961 if (cacheable_entries == 0) {
1962 return;
1963 }
1964
1965 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1966 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1967 (pv->pv_flags & PVF_NC))
1968 continue;
1969
1970 pv->pv_flags |= PVF_NC;
1971
1972 struct l2_bucket * const l2b
1973 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1974 KASSERTMSG(l2b != NULL, "%#lx", va);
1975 pt_entry_t * const ptep
1976 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1977 const pt_entry_t opte = *ptep;
1978 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1979
1980 if ((va != pv->pv_va || pm != pv->pv_pmap)
1981 && l2pte_valid_p(opte)) {
1982 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1983 true, pv->pv_flags);
1984 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1985 pv->pv_flags);
1986 }
1987
1988 l2pte_set(ptep, npte, opte);
1989 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1990 }
1991 cpu_cpwait();
1992 } else if (entries > cacheable_entries) {
1993 /*
1994 * Turn cacheing back on for some pages. If it is a kernel
1995 * page, only do so if there are no other writable pages.
1996 */
1997 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1998 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1999 (kpmap != pv->pv_pmap || other_writable)))
2000 continue;
2001
2002 pv->pv_flags &= ~PVF_NC;
2003
2004 struct l2_bucket * const l2b
2005 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2006 KASSERTMSG(l2b != NULL, "%#lx", va);
2007 pt_entry_t * const ptep
2008 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2009 const pt_entry_t opte = *ptep;
2010 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2011 | pte_l2_s_cache_mode;
2012
2013 if (l2pte_valid_p(opte)) {
2014 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2015 pv->pv_flags);
2016 }
2017
2018 l2pte_set(ptep, npte, opte);
2019 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2020 }
2021 }
2022 }
2023 #endif
2024
2025 #ifdef PMAP_CACHE_VIPT
2026 static void
2027 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2028 {
2029 #ifndef ARM_MMU_EXTENDED
2030 struct pv_entry *pv;
2031 vaddr_t tst_mask;
2032 bool bad_alias;
2033 const u_int
2034 rw_mappings = md->urw_mappings + md->krw_mappings,
2035 ro_mappings = md->uro_mappings + md->kro_mappings;
2036
2037 /* do we need to do anything? */
2038 if (arm_cache_prefer_mask == 0)
2039 return;
2040
2041 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2042 md, pm, va));
2043
2044 KASSERT(!va || pm);
2045 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2046
2047 /* Already a conflict? */
2048 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2049 /* just an add, things are already non-cached */
2050 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2051 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2052 bad_alias = false;
2053 if (va) {
2054 PMAPCOUNT(vac_color_none);
2055 bad_alias = true;
2056 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2057 goto fixup;
2058 }
2059 pv = SLIST_FIRST(&md->pvh_list);
2060 /* the list can't be empty because it would be cachable */
2061 if (md->pvh_attrs & PVF_KMPAGE) {
2062 tst_mask = md->pvh_attrs;
2063 } else {
2064 KASSERT(pv);
2065 tst_mask = pv->pv_va;
2066 pv = SLIST_NEXT(pv, pv_link);
2067 }
2068 /*
2069 * Only check for a bad alias if we have writable mappings.
2070 */
2071 tst_mask &= arm_cache_prefer_mask;
2072 if (rw_mappings > 0) {
2073 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2074 /* if there's a bad alias, stop checking. */
2075 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2076 bad_alias = true;
2077 }
2078 md->pvh_attrs |= PVF_WRITE;
2079 if (!bad_alias)
2080 md->pvh_attrs |= PVF_DIRTY;
2081 } else {
2082 /*
2083 * We have only read-only mappings. Let's see if there
2084 * are multiple colors in use or if we mapped a KMPAGE.
2085 * If the latter, we have a bad alias. If the former,
2086 * we need to remember that.
2087 */
2088 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2089 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2090 if (md->pvh_attrs & PVF_KMPAGE)
2091 bad_alias = true;
2092 break;
2093 }
2094 }
2095 md->pvh_attrs &= ~PVF_WRITE;
2096 /*
2097 * No KMPAGE and we exited early, so we must have
2098 * multiple color mappings.
2099 */
2100 if (!bad_alias && pv != NULL)
2101 md->pvh_attrs |= PVF_MULTCLR;
2102 }
2103
2104 /* If no conflicting colors, set everything back to cached */
2105 if (!bad_alias) {
2106 #ifdef DEBUG
2107 if ((md->pvh_attrs & PVF_WRITE)
2108 || ro_mappings < 2) {
2109 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2110 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2111 }
2112 #endif
2113 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2114 md->pvh_attrs |= tst_mask | PVF_COLORED;
2115 /*
2116 * Restore DIRTY bit if page is modified
2117 */
2118 if (md->pvh_attrs & PVF_DMOD)
2119 md->pvh_attrs |= PVF_DIRTY;
2120 PMAPCOUNT(vac_color_restore);
2121 } else {
2122 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2123 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2124 }
2125 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2126 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2127 } else if (!va) {
2128 KASSERT(pmap_is_page_colored_p(md));
2129 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2130 || (md->pvh_attrs & PVF_DIRTY));
2131 if (rw_mappings == 0) {
2132 md->pvh_attrs &= ~PVF_WRITE;
2133 if (ro_mappings == 1
2134 && (md->pvh_attrs & PVF_MULTCLR)) {
2135 /*
2136 * If this is the last readonly mapping
2137 * but it doesn't match the current color
2138 * for the page, change the current color
2139 * to match this last readonly mapping.
2140 */
2141 pv = SLIST_FIRST(&md->pvh_list);
2142 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2143 & arm_cache_prefer_mask;
2144 if (tst_mask) {
2145 md->pvh_attrs ^= tst_mask;
2146 PMAPCOUNT(vac_color_change);
2147 }
2148 }
2149 }
2150 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2151 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2152 return;
2153 } else if (!pmap_is_page_colored_p(md)) {
2154 /* not colored so we just use its color */
2155 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2156 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2157 PMAPCOUNT(vac_color_new);
2158 md->pvh_attrs &= PAGE_SIZE - 1;
2159 md->pvh_attrs |= PVF_COLORED
2160 | (va & arm_cache_prefer_mask)
2161 | (rw_mappings > 0 ? PVF_WRITE : 0);
2162 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2163 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2164 return;
2165 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2166 bad_alias = false;
2167 if (rw_mappings > 0) {
2168 /*
2169 * We now have writeable mappings and if we have
2170 * readonly mappings in more than once color, we have
2171 * an aliasing problem. Regardless mark the page as
2172 * writeable.
2173 */
2174 if (md->pvh_attrs & PVF_MULTCLR) {
2175 if (ro_mappings < 2) {
2176 /*
2177 * If we only have less than two
2178 * read-only mappings, just flush the
2179 * non-primary colors from the cache.
2180 */
2181 pmap_flush_page(md, pa,
2182 PMAP_FLUSH_SECONDARY);
2183 } else {
2184 bad_alias = true;
2185 }
2186 }
2187 md->pvh_attrs |= PVF_WRITE;
2188 }
2189 /* If no conflicting colors, set everything back to cached */
2190 if (!bad_alias) {
2191 #ifdef DEBUG
2192 if (rw_mappings > 0
2193 || (md->pvh_attrs & PMAP_KMPAGE)) {
2194 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2195 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2196 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2197 }
2198 #endif
2199 if (SLIST_EMPTY(&md->pvh_list))
2200 PMAPCOUNT(vac_color_reuse);
2201 else
2202 PMAPCOUNT(vac_color_ok);
2203
2204 /* matching color, just return */
2205 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2206 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2207 return;
2208 }
2209 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2210 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2211
2212 /* color conflict. evict from cache. */
2213
2214 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2215 md->pvh_attrs &= ~PVF_COLORED;
2216 md->pvh_attrs |= PVF_NC;
2217 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2218 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2219 PMAPCOUNT(vac_color_erase);
2220 } else if (rw_mappings == 0
2221 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2222 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2223
2224 /*
2225 * If the page has dirty cache lines, clean it.
2226 */
2227 if (md->pvh_attrs & PVF_DIRTY)
2228 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2229
2230 /*
2231 * If this is the first remapping (we know that there are no
2232 * writeable mappings), then this is a simple color change.
2233 * Otherwise this is a seconary r/o mapping, which means
2234 * we don't have to do anything.
2235 */
2236 if (ro_mappings == 1) {
2237 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2238 md->pvh_attrs &= PAGE_SIZE - 1;
2239 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2240 PMAPCOUNT(vac_color_change);
2241 } else {
2242 PMAPCOUNT(vac_color_blind);
2243 }
2244 md->pvh_attrs |= PVF_MULTCLR;
2245 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2246 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2247 return;
2248 } else {
2249 if (rw_mappings > 0)
2250 md->pvh_attrs |= PVF_WRITE;
2251
2252 /* color conflict. evict from cache. */
2253 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2254
2255 /* the list can't be empty because this was a enter/modify */
2256 pv = SLIST_FIRST(&md->pvh_list);
2257 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2258 KASSERT(pv);
2259 /*
2260 * If there's only one mapped page, change color to the
2261 * page's new color and return. Restore the DIRTY bit
2262 * that was erased by pmap_flush_page.
2263 */
2264 if (SLIST_NEXT(pv, pv_link) == NULL) {
2265 md->pvh_attrs &= PAGE_SIZE - 1;
2266 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2267 if (md->pvh_attrs & PVF_DMOD)
2268 md->pvh_attrs |= PVF_DIRTY;
2269 PMAPCOUNT(vac_color_change);
2270 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2271 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2272 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2273 return;
2274 }
2275 }
2276 bad_alias = true;
2277 md->pvh_attrs &= ~PVF_COLORED;
2278 md->pvh_attrs |= PVF_NC;
2279 PMAPCOUNT(vac_color_erase);
2280 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2281 }
2282
2283 fixup:
2284 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2285
2286 /*
2287 * Turn cacheing on/off for all pages.
2288 */
2289 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2290 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2291 pv->pv_va);
2292 KASSERTMSG(l2b != NULL, "%#lx", va);
2293 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2294 const pt_entry_t opte = *ptep;
2295 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2296 if (bad_alias) {
2297 pv->pv_flags |= PVF_NC;
2298 } else {
2299 pv->pv_flags &= ~PVF_NC;
2300 npte |= pte_l2_s_cache_mode;
2301 }
2302
2303 if (opte == npte) /* only update is there's a change */
2304 continue;
2305
2306 if (l2pte_valid_p(opte)) {
2307 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2308 }
2309
2310 l2pte_set(ptep, npte, opte);
2311 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2312 }
2313 #endif /* !ARM_MMU_EXTENDED */
2314 }
2315 #endif /* PMAP_CACHE_VIPT */
2316
2317
2318 /*
2319 * Modify pte bits for all ptes corresponding to the given physical address.
2320 * We use `maskbits' rather than `clearbits' because we're always passing
2321 * constants and the latter would require an extra inversion at run-time.
2322 */
2323 static void
2324 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2325 {
2326 struct pv_entry *pv;
2327 #ifdef PMAP_CACHE_VIPT
2328 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2329 bool need_syncicache = false;
2330 #ifdef ARM_MMU_EXTENDED
2331 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2332 #else
2333 const u_int execbits = 0;
2334 bool need_vac_me_harder = false;
2335 #endif
2336 #else
2337 const u_int execbits = 0;
2338 #endif
2339
2340 NPDEBUG(PDB_BITS,
2341 printf("pmap_clearbit: md %p mask 0x%x\n",
2342 md, maskbits));
2343
2344 #ifdef PMAP_CACHE_VIPT
2345 /*
2346 * If we might want to sync the I-cache and we've modified it,
2347 * then we know we definitely need to sync or discard it.
2348 */
2349 if (want_syncicache) {
2350 if (md->pvh_attrs & PVF_MOD) {
2351 need_syncicache = true;
2352 }
2353 }
2354 #endif
2355 KASSERT(pmap_page_locked_p(md));
2356
2357 /*
2358 * Clear saved attributes (modify, reference)
2359 */
2360 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2361
2362 if (SLIST_EMPTY(&md->pvh_list)) {
2363 #if defined(PMAP_CACHE_VIPT)
2364 if (need_syncicache) {
2365 /*
2366 * No one has it mapped, so just discard it. The next
2367 * exec remapping will cause it to be synced.
2368 */
2369 md->pvh_attrs &= ~PVF_EXEC;
2370 PMAPCOUNT(exec_discarded_clearbit);
2371 }
2372 #endif
2373 return;
2374 }
2375
2376 /*
2377 * Loop over all current mappings setting/clearing as appropos
2378 */
2379 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2380 pmap_t pm = pv->pv_pmap;
2381 const vaddr_t va = pv->pv_va;
2382 const u_int oflags = pv->pv_flags;
2383 #ifndef ARM_MMU_EXTENDED
2384 /*
2385 * Kernel entries are unmanaged and as such not to be changed.
2386 */
2387 if (PV_IS_KENTRY_P(oflags))
2388 continue;
2389 #endif
2390 pv->pv_flags &= ~maskbits;
2391
2392 pmap_release_page_lock(md);
2393 pmap_acquire_pmap_lock(pm);
2394
2395 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2396 if (l2b == NULL) {
2397 pmap_release_pmap_lock(pm);
2398 pmap_acquire_page_lock(md);
2399 continue;
2400 }
2401 KASSERTMSG(l2b != NULL, "%#lx", va);
2402
2403 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2404 const pt_entry_t opte = *ptep;
2405 pt_entry_t npte = opte | execbits;
2406
2407 #ifdef ARM_MMU_EXTENDED
2408 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2409 #endif
2410
2411 NPDEBUG(PDB_BITS,
2412 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2413 __func__, pv, pm, va, oflags));
2414
2415 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2416 #ifdef PMAP_CACHE_VIVT
2417 if ((oflags & PVF_NC)) {
2418 /*
2419 * Entry is not cacheable:
2420 *
2421 * Don't turn caching on again if this is a
2422 * modified emulation. This would be
2423 * inconsitent with the settings created by
2424 * pmap_vac_me_harder(). Otherwise, it's safe
2425 * to re-enable cacheing.
2426 *
2427 * There's no need to call pmap_vac_me_harder()
2428 * here: all pages are losing their write
2429 * permission.
2430 */
2431 if (maskbits & PVF_WRITE) {
2432 npte |= pte_l2_s_cache_mode;
2433 pv->pv_flags &= ~PVF_NC;
2434 }
2435 } else if (l2pte_writable_p(opte)) {
2436 /*
2437 * Entry is writable/cacheable: check if pmap
2438 * is current if it is flush it, otherwise it
2439 * won't be in the cache
2440 */
2441 pmap_cache_wbinv_page(pm, va,
2442 (maskbits & PVF_REF) != 0,
2443 oflags|PVF_WRITE);
2444 }
2445 #endif
2446
2447 /* make the pte read only */
2448 npte = l2pte_set_readonly(npte);
2449
2450 pmap_acquire_page_lock(md);
2451 #ifdef MULTIPROCESSOR
2452 pv = pmap_find_pv(md, pm, va);
2453 #endif
2454 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2455 /*
2456 * Keep alias accounting up to date
2457 */
2458 if (pm == pmap_kernel()) {
2459 md->krw_mappings--;
2460 md->kro_mappings++;
2461 } else {
2462 md->urw_mappings--;
2463 md->uro_mappings++;
2464 }
2465 #ifdef PMAP_CACHE_VIPT
2466 if (arm_cache_prefer_mask != 0) {
2467 if (md->urw_mappings + md->krw_mappings == 0) {
2468 md->pvh_attrs &= ~PVF_WRITE;
2469 } else {
2470 PMAP_VALIDATE_MD_PAGE(md);
2471 }
2472 }
2473 if (want_syncicache)
2474 need_syncicache = true;
2475 #ifndef ARM_MMU_EXTENDED
2476 need_vac_me_harder = true;
2477 #endif
2478 #endif /* PMAP_CACHE_VIPT */
2479 }
2480 pmap_release_page_lock(md);
2481 }
2482
2483 if (maskbits & PVF_REF) {
2484 if (true
2485 #ifndef ARM_MMU_EXTENDED
2486 && (oflags & PVF_NC) == 0
2487 #endif
2488 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2489 && l2pte_valid_p(npte)) {
2490 #ifdef PMAP_CACHE_VIVT
2491 /*
2492 * Check npte here; we may have already
2493 * done the wbinv above, and the validity
2494 * of the PTE is the same for opte and
2495 * npte.
2496 */
2497 pmap_cache_wbinv_page(pm, va, true, oflags);
2498 #endif
2499 }
2500
2501 /*
2502 * Make the PTE invalid so that we will take a
2503 * page fault the next time the mapping is
2504 * referenced.
2505 */
2506 npte &= ~L2_TYPE_MASK;
2507 npte |= L2_TYPE_INV;
2508 }
2509
2510 if (npte != opte) {
2511 l2pte_reset(ptep);
2512 PTE_SYNC(ptep);
2513
2514 /* Flush the TLB entry if a current pmap. */
2515 pmap_tlb_flush_SE(pm, va, oflags);
2516
2517 l2pte_set(ptep, npte, 0);
2518 PTE_SYNC(ptep);
2519 }
2520
2521 pmap_release_pmap_lock(pm);
2522 pmap_acquire_page_lock(md);
2523
2524 NPDEBUG(PDB_BITS,
2525 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2526 pm, va, opte, npte));
2527 }
2528
2529 #if defined(PMAP_CACHE_VIPT)
2530 /*
2531 * If we need to sync the I-cache and we haven't done it yet, do it.
2532 */
2533 if (need_syncicache) {
2534 pmap_release_page_lock(md);
2535 pmap_syncicache_page(md, pa);
2536 pmap_acquire_page_lock(md);
2537 PMAPCOUNT(exec_synced_clearbit);
2538 }
2539 #ifndef ARM_MMU_EXTENDED
2540 /*
2541 * If we are changing this to read-only, we need to call vac_me_harder
2542 * so we can change all the read-only pages to cacheable. We pretend
2543 * this as a page deletion.
2544 */
2545 if (need_vac_me_harder) {
2546 if (md->pvh_attrs & PVF_NC)
2547 pmap_vac_me_harder(md, pa, NULL, 0);
2548 }
2549 #endif /* !ARM_MMU_EXTENDED */
2550 #endif /* PMAP_CACHE_VIPT */
2551 }
2552
2553 /*
2554 * pmap_clean_page()
2555 *
2556 * This is a local function used to work out the best strategy to clean
2557 * a single page referenced by its entry in the PV table. It's used by
2558 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2559 *
2560 * Its policy is effectively:
2561 * o If there are no mappings, we don't bother doing anything with the cache.
2562 * o If there is one mapping, we clean just that page.
2563 * o If there are multiple mappings, we clean the entire cache.
2564 *
2565 * So that some functions can be further optimised, it returns 0 if it didn't
2566 * clean the entire cache, or 1 if it did.
2567 *
2568 * XXX One bug in this routine is that if the pv_entry has a single page
2569 * mapped at 0x00000000 a whole cache clean will be performed rather than
2570 * just the 1 page. Since this should not occur in everyday use and if it does
2571 * it will just result in not the most efficient clean for the page.
2572 */
2573 #ifdef PMAP_CACHE_VIVT
2574 static bool
2575 pmap_clean_page(struct vm_page_md *md, bool is_src)
2576 {
2577 struct pv_entry *pv;
2578 pmap_t pm_to_clean = NULL;
2579 bool cache_needs_cleaning = false;
2580 vaddr_t page_to_clean = 0;
2581 u_int flags = 0;
2582
2583 /*
2584 * Since we flush the cache each time we change to a different
2585 * user vmspace, we only need to flush the page if it is in the
2586 * current pmap.
2587 */
2588 KASSERT(pmap_page_locked_p(md));
2589 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2590 if (pmap_is_current(pv->pv_pmap)) {
2591 flags |= pv->pv_flags;
2592 /*
2593 * The page is mapped non-cacheable in
2594 * this map. No need to flush the cache.
2595 */
2596 if (pv->pv_flags & PVF_NC) {
2597 #ifdef DIAGNOSTIC
2598 KASSERT(!cache_needs_cleaning);
2599 #endif
2600 break;
2601 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2602 continue;
2603 if (cache_needs_cleaning) {
2604 page_to_clean = 0;
2605 break;
2606 } else {
2607 page_to_clean = pv->pv_va;
2608 pm_to_clean = pv->pv_pmap;
2609 }
2610 cache_needs_cleaning = true;
2611 }
2612 }
2613
2614 if (page_to_clean) {
2615 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2616 !is_src, flags | PVF_REF);
2617 } else if (cache_needs_cleaning) {
2618 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2619
2620 pmap_cache_wbinv_all(pm, flags);
2621 return true;
2622 }
2623 return false;
2624 }
2625 #endif
2626
2627 #ifdef PMAP_CACHE_VIPT
2628 /*
2629 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2630 * right cache alias to make sure we flush the right stuff.
2631 */
2632 void
2633 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2634 {
2635 pmap_t kpm = pmap_kernel();
2636 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2637 ? PAGE_SIZE
2638 : arm_pcache.icache_way_size;
2639
2640 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2641 md, md->pvh_attrs));
2642 /*
2643 * No need to clean the page if it's non-cached.
2644 */
2645 #ifndef ARM_MMU_EXTENDED
2646 if (md->pvh_attrs & PVF_NC)
2647 return;
2648 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2649 #endif
2650
2651 pt_entry_t * const ptep = cpu_cdst_pte(0);
2652 const vaddr_t dstp = cpu_cdstp(0);
2653 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2654 if (way_size <= PAGE_SIZE) {
2655 bool ok = false;
2656 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2657 if (ok) {
2658 cpu_icache_sync_range(vdstp, way_size);
2659 return;
2660 }
2661 }
2662 #endif
2663
2664 /*
2665 * We don't worry about the color of the exec page, we map the
2666 * same page to pages in the way and then do the icache_sync on
2667 * the entire way making sure we are cleaned.
2668 */
2669 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2670 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2671
2672 for (size_t i = 0, j = 0; i < way_size;
2673 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2674 l2pte_reset(ptep + j);
2675 PTE_SYNC(ptep + j);
2676
2677 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2678 /*
2679 * Set up a PTE with to flush these cache lines.
2680 */
2681 l2pte_set(ptep + j, npte, 0);
2682 }
2683 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2684
2685 /*
2686 * Flush it.
2687 */
2688 cpu_icache_sync_range(dstp, way_size);
2689
2690 for (size_t i = 0, j = 0; i < way_size;
2691 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2692 /*
2693 * Unmap the page(s).
2694 */
2695 l2pte_reset(ptep + j);
2696 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2697 }
2698 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2699
2700 md->pvh_attrs |= PVF_EXEC;
2701 PMAPCOUNT(exec_synced);
2702 }
2703
2704 #ifndef ARM_MMU_EXTENDED
2705 void
2706 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2707 {
2708 vsize_t va_offset, end_va;
2709 bool wbinv_p;
2710
2711 if (arm_cache_prefer_mask == 0)
2712 return;
2713
2714 switch (flush) {
2715 case PMAP_FLUSH_PRIMARY:
2716 if (md->pvh_attrs & PVF_MULTCLR) {
2717 va_offset = 0;
2718 end_va = arm_cache_prefer_mask;
2719 md->pvh_attrs &= ~PVF_MULTCLR;
2720 PMAPCOUNT(vac_flush_lots);
2721 } else {
2722 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2723 end_va = va_offset;
2724 PMAPCOUNT(vac_flush_one);
2725 }
2726 /*
2727 * Mark that the page is no longer dirty.
2728 */
2729 md->pvh_attrs &= ~PVF_DIRTY;
2730 wbinv_p = true;
2731 break;
2732 case PMAP_FLUSH_SECONDARY:
2733 va_offset = 0;
2734 end_va = arm_cache_prefer_mask;
2735 wbinv_p = true;
2736 md->pvh_attrs &= ~PVF_MULTCLR;
2737 PMAPCOUNT(vac_flush_lots);
2738 break;
2739 case PMAP_CLEAN_PRIMARY:
2740 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2741 end_va = va_offset;
2742 wbinv_p = false;
2743 /*
2744 * Mark that the page is no longer dirty.
2745 */
2746 if ((md->pvh_attrs & PVF_DMOD) == 0)
2747 md->pvh_attrs &= ~PVF_DIRTY;
2748 PMAPCOUNT(vac_clean_one);
2749 break;
2750 default:
2751 return;
2752 }
2753
2754 KASSERT(!(md->pvh_attrs & PVF_NC));
2755
2756 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2757 md, md->pvh_attrs));
2758
2759 const size_t scache_line_size = arm_scache.dcache_line_size;
2760
2761 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2762 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2763 const vaddr_t dstp = cpu_cdstp(va_offset);
2764 const pt_entry_t opte = *ptep;
2765
2766 if (flush == PMAP_FLUSH_SECONDARY
2767 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2768 continue;
2769
2770 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2771 /*
2772 * Set up a PTE with the right coloring to flush
2773 * existing cache entries.
2774 */
2775 const pt_entry_t npte = L2_S_PROTO
2776 | pa
2777 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2778 | pte_l2_s_cache_mode;
2779 l2pte_set(ptep, npte, opte);
2780 PTE_SYNC(ptep);
2781
2782 /*
2783 * Flush it. Make sure to flush secondary cache too since
2784 * bus_dma will ignore uncached pages.
2785 */
2786 if (scache_line_size != 0) {
2787 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2788 if (wbinv_p) {
2789 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2790 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2791 } else {
2792 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2793 }
2794 } else {
2795 if (wbinv_p) {
2796 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2797 } else {
2798 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2799 }
2800 }
2801
2802 /*
2803 * Restore the page table entry since we might have interrupted
2804 * pmap_zero_page or pmap_copy_page which was already using
2805 * this pte.
2806 */
2807 if (opte) {
2808 l2pte_set(ptep, opte, npte);
2809 } else {
2810 l2pte_reset(ptep);
2811 }
2812 PTE_SYNC(ptep);
2813 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2814 }
2815 }
2816 #endif /* ARM_MMU_EXTENDED */
2817 #endif /* PMAP_CACHE_VIPT */
2818
2819 /*
2820 * Routine: pmap_page_remove
2821 * Function:
2822 * Removes this physical page from
2823 * all physical maps in which it resides.
2824 * Reflects back modify bits to the pager.
2825 */
2826 static void
2827 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2828 {
2829 struct l2_bucket *l2b;
2830 struct pv_entry *pv;
2831 pt_entry_t *ptep;
2832 #ifndef ARM_MMU_EXTENDED
2833 bool flush = false;
2834 #endif
2835 u_int flags = 0;
2836
2837 NPDEBUG(PDB_FOLLOW,
2838 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2839 pa));
2840
2841 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2842 pmap_acquire_page_lock(md);
2843 if (*pvp == NULL) {
2844 #ifdef PMAP_CACHE_VIPT
2845 /*
2846 * We *know* the page contents are about to be replaced.
2847 * Discard the exec contents
2848 */
2849 if (PV_IS_EXEC_P(md->pvh_attrs))
2850 PMAPCOUNT(exec_discarded_page_protect);
2851 md->pvh_attrs &= ~PVF_EXEC;
2852 PMAP_VALIDATE_MD_PAGE(md);
2853 #endif
2854 pmap_release_page_lock(md);
2855 return;
2856 }
2857 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2858 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2859 #endif
2860
2861 /*
2862 * Clear alias counts
2863 */
2864 #ifdef PMAP_CACHE_VIVT
2865 md->k_mappings = 0;
2866 #endif
2867 md->urw_mappings = md->uro_mappings = 0;
2868
2869 #ifdef PMAP_CACHE_VIVT
2870 pmap_clean_page(md, false);
2871 #endif
2872
2873 while ((pv = *pvp) != NULL) {
2874 pmap_t pm = pv->pv_pmap;
2875 #ifndef ARM_MMU_EXTENDED
2876 if (flush == false && pmap_is_current(pm))
2877 flush = true;
2878 #endif
2879
2880 if (pm == pmap_kernel()) {
2881 #ifdef PMAP_CACHE_VIPT
2882 /*
2883 * If this was unmanaged mapping, it must be preserved.
2884 * Move it back on the list and advance the end-of-list
2885 * pointer.
2886 */
2887 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2888 *pvp = pv;
2889 pvp = &SLIST_NEXT(pv, pv_link);
2890 continue;
2891 }
2892 if (pv->pv_flags & PVF_WRITE)
2893 md->krw_mappings--;
2894 else
2895 md->kro_mappings--;
2896 #endif
2897 PMAPCOUNT(kernel_unmappings);
2898 }
2899 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2900 PMAPCOUNT(unmappings);
2901
2902 pmap_release_page_lock(md);
2903 pmap_acquire_pmap_lock(pm);
2904
2905 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2906 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2907
2908 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2909
2910 /*
2911 * Update statistics
2912 */
2913 --pm->pm_stats.resident_count;
2914
2915 /* Wired bit */
2916 if (pv->pv_flags & PVF_WIRED)
2917 --pm->pm_stats.wired_count;
2918
2919 flags |= pv->pv_flags;
2920
2921 /*
2922 * Invalidate the PTEs.
2923 */
2924 l2pte_reset(ptep);
2925 PTE_SYNC_CURRENT(pm, ptep);
2926
2927 #ifdef ARM_MMU_EXTENDED
2928 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2929 #endif
2930
2931 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2932
2933 pmap_release_pmap_lock(pm);
2934
2935 pool_put(&pmap_pv_pool, pv);
2936 pmap_acquire_page_lock(md);
2937 #ifdef MULTIPROCESSOR
2938 /*
2939 * Restart of the beginning of the list.
2940 */
2941 pvp = &SLIST_FIRST(&md->pvh_list);
2942 #endif
2943 }
2944 /*
2945 * if we reach the end of the list and there are still mappings, they
2946 * might be able to be cached now. And they must be kernel mappings.
2947 */
2948 if (!SLIST_EMPTY(&md->pvh_list)) {
2949 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2950 }
2951
2952 #ifdef PMAP_CACHE_VIPT
2953 /*
2954 * Its EXEC cache is now gone.
2955 */
2956 if (PV_IS_EXEC_P(md->pvh_attrs))
2957 PMAPCOUNT(exec_discarded_page_protect);
2958 md->pvh_attrs &= ~PVF_EXEC;
2959 KASSERT(md->urw_mappings == 0);
2960 KASSERT(md->uro_mappings == 0);
2961 #ifndef ARM_MMU_EXTENDED
2962 if (arm_cache_prefer_mask != 0) {
2963 if (md->krw_mappings == 0)
2964 md->pvh_attrs &= ~PVF_WRITE;
2965 PMAP_VALIDATE_MD_PAGE(md);
2966 }
2967 #endif /* ARM_MMU_EXTENDED */
2968 #endif /* PMAP_CACHE_VIPT */
2969 pmap_release_page_lock(md);
2970
2971 #ifndef ARM_MMU_EXTENDED
2972 if (flush) {
2973 /*
2974 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2975 * would need a subsequent call to pmap_update() to ensure
2976 * curpm->pm_cstate.cs_all is reset. Our callers are not
2977 * required to do that (see pmap(9)), so we can't modify
2978 * the current pmap's state.
2979 */
2980 if (PV_BEEN_EXECD(flags))
2981 cpu_tlb_flushID();
2982 else
2983 cpu_tlb_flushD();
2984 }
2985 cpu_cpwait();
2986 #endif /* ARM_MMU_EXTENDED */
2987 }
2988
2989 /*
2990 * pmap_t pmap_create(void)
2991 *
2992 * Create a new pmap structure from scratch.
2993 */
2994 pmap_t
2995 pmap_create(void)
2996 {
2997 pmap_t pm;
2998
2999 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3000
3001 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
3002 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
3003 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
3004
3005 pm->pm_stats.wired_count = 0;
3006 pm->pm_stats.resident_count = 1;
3007 #ifdef ARM_MMU_EXTENDED
3008 #ifdef MULTIPROCESSOR
3009 kcpuset_create(&pm->pm_active, true);
3010 kcpuset_create(&pm->pm_onproc, true);
3011 #endif
3012 #else
3013 pm->pm_cstate.cs_all = 0;
3014 #endif
3015 pmap_alloc_l1(pm);
3016
3017 /*
3018 * Note: The pool cache ensures that the pm_l2[] array is already
3019 * initialised to zero.
3020 */
3021
3022 pmap_pinit(pm);
3023
3024 return (pm);
3025 }
3026
3027 u_int
3028 arm32_mmap_flags(paddr_t pa)
3029 {
3030 /*
3031 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3032 * and we're using the upper bits in page numbers to pass flags around
3033 * so we might as well use the same bits
3034 */
3035 return (u_int)pa & PMAP_MD_MASK;
3036 }
3037 /*
3038 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3039 * u_int flags)
3040 *
3041 * Insert the given physical page (p) at
3042 * the specified virtual address (v) in the
3043 * target physical map with the protection requested.
3044 *
3045 * NB: This is the only routine which MAY NOT lazy-evaluate
3046 * or lose information. That is, this routine must actually
3047 * insert this page into the given map NOW.
3048 */
3049 int
3050 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3051 {
3052 struct l2_bucket *l2b;
3053 struct vm_page *pg, *opg;
3054 u_int nflags;
3055 u_int oflags;
3056 const bool kpm_p = (pm == pmap_kernel());
3057 #ifdef ARM_HAS_VBAR
3058 const bool vector_page_p = false;
3059 #else
3060 const bool vector_page_p = (va == vector_page);
3061 #endif
3062 struct pmap_page *pp = pmap_pv_tracked(pa);
3063 struct pv_entry *new_pv = NULL;
3064 struct pv_entry *old_pv = NULL;
3065 int error = 0;
3066
3067 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3068
3069 UVMHIST_LOG(maphist, " (pm %#jx va %#jx pa %#jx prot %#jx",
3070 (uintptr_t)pm, va, pa, prot);
3071 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0);
3072
3073 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3074 KDASSERT(((va | pa) & PGOFSET) == 0);
3075
3076 /*
3077 * Get a pointer to the page. Later on in this function, we
3078 * test for a managed page by checking pg != NULL.
3079 */
3080 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3081 /*
3082 * if we may need a new pv entry allocate if now, as we can't do it
3083 * with the kernel_pmap locked
3084 */
3085 if (pg || pp)
3086 new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3087
3088 nflags = 0;
3089 if (prot & VM_PROT_WRITE)
3090 nflags |= PVF_WRITE;
3091 if (prot & VM_PROT_EXECUTE)
3092 nflags |= PVF_EXEC;
3093 if (flags & PMAP_WIRED)
3094 nflags |= PVF_WIRED;
3095
3096 pmap_acquire_pmap_lock(pm);
3097
3098 /*
3099 * Fetch the L2 bucket which maps this page, allocating one if
3100 * necessary for user pmaps.
3101 */
3102 if (kpm_p) {
3103 l2b = pmap_get_l2_bucket(pm, va);
3104 } else {
3105 l2b = pmap_alloc_l2_bucket(pm, va);
3106 }
3107 if (l2b == NULL) {
3108 if (flags & PMAP_CANFAIL) {
3109 pmap_release_pmap_lock(pm);
3110 error = ENOMEM;
3111 goto free_pv;
3112 }
3113 panic("pmap_enter: failed to allocate L2 bucket");
3114 }
3115 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3116 const pt_entry_t opte = *ptep;
3117 pt_entry_t npte = pa;
3118 oflags = 0;
3119
3120 if (opte) {
3121 /*
3122 * There is already a mapping at this address.
3123 * If the physical address is different, lookup the
3124 * vm_page.
3125 */
3126 if (l2pte_pa(opte) != pa) {
3127 KASSERT(!pmap_pv_tracked(pa));
3128 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3129 } else
3130 opg = pg;
3131 } else
3132 opg = NULL;
3133
3134 if (pg || pp) {
3135 KASSERT((pg != NULL) != (pp != NULL));
3136 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3137 PMAP_PAGE_TO_MD(pp);
3138
3139 /*
3140 * This is to be a managed mapping.
3141 */
3142 pmap_acquire_page_lock(md);
3143 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3144 /*
3145 * - The access type indicates that we don't need
3146 * to do referenced emulation.
3147 * OR
3148 * - The physical page has already been referenced
3149 * so no need to re-do referenced emulation here.
3150 */
3151 npte |= l2pte_set_readonly(L2_S_PROTO);
3152
3153 nflags |= PVF_REF;
3154
3155 if ((prot & VM_PROT_WRITE) != 0 &&
3156 ((flags & VM_PROT_WRITE) != 0 ||
3157 (md->pvh_attrs & PVF_MOD) != 0)) {
3158 /*
3159 * This is a writable mapping, and the
3160 * page's mod state indicates it has
3161 * already been modified. Make it
3162 * writable from the outset.
3163 */
3164 npte = l2pte_set_writable(npte);
3165 nflags |= PVF_MOD;
3166 }
3167
3168 #ifdef ARM_MMU_EXTENDED
3169 /*
3170 * If the page has been cleaned, then the pvh_attrs
3171 * will have PVF_EXEC set, so mark it execute so we
3172 * don't get an access fault when trying to execute
3173 * from it.
3174 */
3175 if (md->pvh_attrs & nflags & PVF_EXEC) {
3176 npte &= ~L2_XS_XN;
3177 }
3178 #endif
3179 } else {
3180 /*
3181 * Need to do page referenced emulation.
3182 */
3183 npte |= L2_TYPE_INV;
3184 }
3185
3186 if (flags & ARM32_MMAP_WRITECOMBINE) {
3187 npte |= pte_l2_s_wc_mode;
3188 } else
3189 npte |= pte_l2_s_cache_mode;
3190
3191 if (pg != NULL && pg == opg) {
3192 /*
3193 * We're changing the attrs of an existing mapping.
3194 */
3195 oflags = pmap_modify_pv(md, pa, pm, va,
3196 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3197 PVF_MOD | PVF_REF, nflags);
3198
3199 #ifdef PMAP_CACHE_VIVT
3200 /*
3201 * We may need to flush the cache if we're
3202 * doing rw-ro...
3203 */
3204 if (pm->pm_cstate.cs_cache_d &&
3205 (oflags & PVF_NC) == 0 &&
3206 l2pte_writable_p(opte) &&
3207 (prot & VM_PROT_WRITE) == 0)
3208 cpu_dcache_wb_range(va, PAGE_SIZE);
3209 #endif
3210 } else {
3211 struct pv_entry *pv;
3212 /*
3213 * New mapping, or changing the backing page
3214 * of an existing mapping.
3215 */
3216 if (opg) {
3217 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3218 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3219
3220 /*
3221 * Replacing an existing mapping with a new one.
3222 * It is part of our managed memory so we
3223 * must remove it from the PV list
3224 */
3225 pv = pmap_remove_pv(omd, opa, pm, va);
3226 pmap_vac_me_harder(omd, opa, pm, 0);
3227 oflags = pv->pv_flags;
3228
3229 #ifdef PMAP_CACHE_VIVT
3230 /*
3231 * If the old mapping was valid (ref/mod
3232 * emulation creates 'invalid' mappings
3233 * initially) then make sure to frob
3234 * the cache.
3235 */
3236 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3237 pmap_cache_wbinv_page(pm, va, true,
3238 oflags);
3239 }
3240 #endif
3241 } else {
3242 pv = new_pv;
3243 new_pv = NULL;
3244 if (pv == NULL) {
3245 pmap_release_page_lock(md);
3246 pmap_release_pmap_lock(pm);
3247 if ((flags & PMAP_CANFAIL) == 0)
3248 panic("pmap_enter: "
3249 "no pv entries");
3250
3251 pmap_free_l2_bucket(pm, l2b, 0);
3252 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3253 0, 0, 0, 0);
3254 return (ENOMEM);
3255 }
3256 }
3257
3258 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3259 }
3260 pmap_release_page_lock(md);
3261 } else {
3262 /*
3263 * We're mapping an unmanaged page.
3264 * These are always readable, and possibly writable, from
3265 * the get go as we don't need to track ref/mod status.
3266 */
3267 npte |= l2pte_set_readonly(L2_S_PROTO);
3268 if (prot & VM_PROT_WRITE)
3269 npte = l2pte_set_writable(npte);
3270
3271 /*
3272 * Make sure the vector table is mapped cacheable
3273 */
3274 if ((vector_page_p && !kpm_p)
3275 || (flags & ARM32_MMAP_CACHEABLE)) {
3276 npte |= pte_l2_s_cache_mode;
3277 #ifdef ARM_MMU_EXTENDED
3278 npte &= ~L2_XS_XN; /* and executable */
3279 #endif
3280 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3281 npte |= pte_l2_s_wc_mode;
3282 }
3283 if (opg) {
3284 /*
3285 * Looks like there's an existing 'managed' mapping
3286 * at this address.
3287 */
3288 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3289 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3290
3291 pmap_acquire_page_lock(omd);
3292 old_pv = pmap_remove_pv(omd, opa, pm, va);
3293 pmap_vac_me_harder(omd, opa, pm, 0);
3294 oflags = old_pv->pv_flags;
3295 pmap_release_page_lock(omd);
3296
3297 #ifdef PMAP_CACHE_VIVT
3298 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3299 pmap_cache_wbinv_page(pm, va, true, oflags);
3300 }
3301 #endif
3302 }
3303 }
3304
3305 /*
3306 * Make sure userland mappings get the right permissions
3307 */
3308 if (!vector_page_p && !kpm_p) {
3309 npte |= L2_S_PROT_U;
3310 #ifdef ARM_MMU_EXTENDED
3311 npte |= L2_XS_nG; /* user pages are not global */
3312 #endif
3313 }
3314
3315 /*
3316 * Keep the stats up to date
3317 */
3318 if (opte == 0) {
3319 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3320 pm->pm_stats.resident_count++;
3321 }
3322
3323 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3324
3325 #if defined(ARM_MMU_EXTENDED)
3326 /*
3327 * If exec protection was requested but the page hasn't been synced,
3328 * sync it now and allow execution from it.
3329 */
3330 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3331 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3332 npte &= ~L2_XS_XN;
3333 pmap_syncicache_page(md, pa);
3334 PMAPCOUNT(exec_synced_map);
3335 }
3336 #endif
3337 /*
3338 * If this is just a wiring change, the two PTEs will be
3339 * identical, so there's no need to update the page table.
3340 */
3341 if (npte != opte) {
3342 l2pte_reset(ptep);
3343 PTE_SYNC(ptep);
3344 if (l2pte_valid_p(opte)) {
3345 pmap_tlb_flush_SE(pm, va, oflags);
3346 }
3347 l2pte_set(ptep, npte, 0);
3348 PTE_SYNC(ptep);
3349 #ifndef ARM_MMU_EXTENDED
3350 bool is_cached = pmap_is_cached(pm);
3351 if (is_cached) {
3352 /*
3353 * We only need to frob the cache/tlb if this pmap
3354 * is current
3355 */
3356 if (!vector_page_p && l2pte_valid_p(npte)) {
3357 /*
3358 * This mapping is likely to be accessed as
3359 * soon as we return to userland. Fix up the
3360 * L1 entry to avoid taking another
3361 * page/domain fault.
3362 */
3363 pd_entry_t *pdep = pmap_l1_kva(pm)
3364 + l1pte_index(va);
3365 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3366 | L1_C_DOM(pmap_domain(pm));
3367 if (*pdep != pde) {
3368 l1pte_setone(pdep, pde);
3369 PDE_SYNC(pdep);
3370 }
3371 }
3372 }
3373 #endif /* !ARM_MMU_EXTENDED */
3374
3375 #ifndef ARM_MMU_EXTENDED
3376 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx",
3377 is_cached, pm->pm_cstate.cs_all, 0, 0);
3378
3379 if (pg != NULL) {
3380 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3381
3382 pmap_acquire_page_lock(md);
3383 pmap_vac_me_harder(md, pa, pm, va);
3384 pmap_release_page_lock(md);
3385 }
3386 #endif
3387 }
3388 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3389 if (pg) {
3390 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3391
3392 pmap_acquire_page_lock(md);
3393 #ifndef ARM_MMU_EXTENDED
3394 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3395 #endif
3396 PMAP_VALIDATE_MD_PAGE(md);
3397 pmap_release_page_lock(md);
3398 }
3399 #endif
3400
3401 pmap_release_pmap_lock(pm);
3402
3403
3404 if (old_pv)
3405 pool_put(&pmap_pv_pool, old_pv);
3406 free_pv:
3407 if (new_pv)
3408 pool_put(&pmap_pv_pool, new_pv);
3409 return (error);
3410 }
3411
3412 /*
3413 * pmap_remove()
3414 *
3415 * pmap_remove is responsible for nuking a number of mappings for a range
3416 * of virtual address space in the current pmap. To do this efficiently
3417 * is interesting, because in a number of cases a wide virtual address
3418 * range may be supplied that contains few actual mappings. So, the
3419 * optimisations are:
3420 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3421 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3422 * maybe do just a partial cache clean. This path of execution is
3423 * complicated by the fact that the cache must be flushed _before_
3424 * the PTE is nuked, being a VAC :-)
3425 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3426 * all invalidations until pmap_update(), since pmap_remove_all() has
3427 * already flushed the cache.
3428 * 4. Maybe later fast-case a single page, but I don't think this is
3429 * going to make _that_ much difference overall.
3430 */
3431
3432 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3433
3434 void
3435 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3436 {
3437 SLIST_HEAD(,pv_entry) opv_list;
3438 struct pv_entry *pv, *npv;
3439 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3440 UVMHIST_LOG(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3441 (uintptr_t)pm, sva, eva, 0);
3442
3443 SLIST_INIT(&opv_list);
3444 /*
3445 * we lock in the pmap => pv_head direction
3446 */
3447 pmap_acquire_pmap_lock(pm);
3448
3449 #ifndef ARM_MMU_EXTENDED
3450 u_int cleanlist_idx, total, cnt;
3451 struct {
3452 vaddr_t va;
3453 pt_entry_t *ptep;
3454 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3455
3456 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3457 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3458 if (pm->pm_cstate.cs_tlb == 0)
3459 pm->pm_remove_all = true;
3460 } else
3461 cleanlist_idx = 0;
3462 total = 0;
3463 #endif
3464
3465 while (sva < eva) {
3466 /*
3467 * Do one L2 bucket's worth at a time.
3468 */
3469 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3470 if (next_bucket > eva)
3471 next_bucket = eva;
3472
3473 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3474 if (l2b == NULL) {
3475 sva = next_bucket;
3476 continue;
3477 }
3478
3479 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3480 u_int mappings = 0;
3481
3482 for (;sva < next_bucket;
3483 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3484 pt_entry_t opte = *ptep;
3485
3486 if (opte == 0) {
3487 /* Nothing here, move along */
3488 continue;
3489 }
3490
3491 u_int flags = PVF_REF;
3492 paddr_t pa = l2pte_pa(opte);
3493 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3494
3495 /*
3496 * Update flags. In a number of circumstances,
3497 * we could cluster a lot of these and do a
3498 * number of sequential pages in one go.
3499 */
3500 if (pg != NULL) {
3501 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3502
3503 pmap_acquire_page_lock(md);
3504 pv = pmap_remove_pv(md, pa, pm, sva);
3505 pmap_vac_me_harder(md, pa, pm, 0);
3506 pmap_release_page_lock(md);
3507 if (pv != NULL) {
3508 if (pm->pm_remove_all == false) {
3509 flags = pv->pv_flags;
3510 }
3511 SLIST_INSERT_HEAD(&opv_list,
3512 pv, pv_link);
3513 }
3514 }
3515 mappings += PAGE_SIZE / L2_S_SIZE;
3516
3517 if (!l2pte_valid_p(opte)) {
3518 /*
3519 * Ref/Mod emulation is still active for this
3520 * mapping, therefore it is has not yet been
3521 * accessed. No need to frob the cache/tlb.
3522 */
3523 l2pte_reset(ptep);
3524 PTE_SYNC_CURRENT(pm, ptep);
3525 continue;
3526 }
3527
3528 #ifdef ARM_MMU_EXTENDED
3529 l2pte_reset(ptep);
3530 PTE_SYNC(ptep);
3531 if (__predict_false(pm->pm_remove_all == false)) {
3532 pmap_tlb_flush_SE(pm, sva, flags);
3533 }
3534 #else
3535 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3536 /* Add to the clean list. */
3537 cleanlist[cleanlist_idx].ptep = ptep;
3538 cleanlist[cleanlist_idx].va =
3539 sva | (flags & PVF_EXEC);
3540 cleanlist_idx++;
3541 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3542 /* Nuke everything if needed. */
3543 #ifdef PMAP_CACHE_VIVT
3544 pmap_cache_wbinv_all(pm, PVF_EXEC);
3545 #endif
3546 /*
3547 * Roll back the previous PTE list,
3548 * and zero out the current PTE.
3549 */
3550 for (cnt = 0;
3551 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3552 l2pte_reset(cleanlist[cnt].ptep);
3553 PTE_SYNC(cleanlist[cnt].ptep);
3554 }
3555 l2pte_reset(ptep);
3556 PTE_SYNC(ptep);
3557 cleanlist_idx++;
3558 pm->pm_remove_all = true;
3559 } else {
3560 l2pte_reset(ptep);
3561 PTE_SYNC(ptep);
3562 if (pm->pm_remove_all == false) {
3563 pmap_tlb_flush_SE(pm, sva, flags);
3564 }
3565 }
3566 #endif
3567 }
3568
3569 #ifndef ARM_MMU_EXTENDED
3570 /*
3571 * Deal with any left overs
3572 */
3573 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3574 total += cleanlist_idx;
3575 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3576 l2pte_reset(cleanlist[cnt].ptep);
3577 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3578 vaddr_t va = cleanlist[cnt].va;
3579 if (pm->pm_cstate.cs_all != 0) {
3580 vaddr_t clva = va & ~PAGE_MASK;
3581 u_int flags = va & PVF_EXEC;
3582 #ifdef PMAP_CACHE_VIVT
3583 pmap_cache_wbinv_page(pm, clva, true,
3584 PVF_REF | PVF_WRITE | flags);
3585 #endif
3586 pmap_tlb_flush_SE(pm, clva,
3587 PVF_REF | flags);
3588 }
3589 }
3590
3591 /*
3592 * If it looks like we're removing a whole bunch
3593 * of mappings, it's faster to just write-back
3594 * the whole cache now and defer TLB flushes until
3595 * pmap_update() is called.
3596 */
3597 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3598 cleanlist_idx = 0;
3599 else {
3600 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3601 #ifdef PMAP_CACHE_VIVT
3602 pmap_cache_wbinv_all(pm, PVF_EXEC);
3603 #endif
3604 pm->pm_remove_all = true;
3605 }
3606 }
3607 #endif /* ARM_MMU_EXTENDED */
3608
3609 pmap_free_l2_bucket(pm, l2b, mappings);
3610 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3611 }
3612
3613 pmap_release_pmap_lock(pm);
3614 SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3615 pool_put(&pmap_pv_pool, pv);
3616 }
3617 }
3618
3619 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3620 static struct pv_entry *
3621 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3622 {
3623 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3624 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3625 struct pv_entry *pv;
3626
3627 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3628 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3629 KASSERT(pmap_page_locked_p(md));
3630
3631 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3632 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3633 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3634
3635 /*
3636 * We are removing a writeable mapping to a cached exec page, if
3637 * it's the last mapping then clear its execness otherwise sync
3638 * the page to the icache.
3639 */
3640 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3641 && (pv->pv_flags & PVF_WRITE) != 0) {
3642 if (SLIST_EMPTY(&md->pvh_list)) {
3643 md->pvh_attrs &= ~PVF_EXEC;
3644 PMAPCOUNT(exec_discarded_kremove);
3645 } else {
3646 pmap_syncicache_page(md, pa);
3647 PMAPCOUNT(exec_synced_kremove);
3648 }
3649 }
3650 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3651
3652 return pv;
3653 }
3654 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3655
3656 /*
3657 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3658 *
3659 * We assume there is already sufficient KVM space available
3660 * to do this, as we can't allocate L2 descriptor tables/metadata
3661 * from here.
3662 */
3663 void
3664 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3665 {
3666 #ifdef PMAP_CACHE_VIVT
3667 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3668 #endif
3669 #ifdef PMAP_CACHE_VIPT
3670 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3671 struct vm_page *opg;
3672 #ifndef ARM_MMU_EXTENDED
3673 struct pv_entry *pv = NULL;
3674 #endif
3675 #endif
3676 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3677
3678 UVMHIST_FUNC(__func__);
3679
3680 if (pmap_initialized) {
3681 UVMHIST_CALLED(maphist);
3682 UVMHIST_LOG(maphist, " (va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx",
3683 va, pa, prot, flags);
3684 }
3685
3686 pmap_t kpm = pmap_kernel();
3687 pmap_acquire_pmap_lock(kpm);
3688 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3689 const size_t l1slot __diagused = l1pte_index(va);
3690 KASSERTMSG(l2b != NULL,
3691 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3692 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3693 kpm->pm_l2[L2_IDX(l1slot)]
3694 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3695 : NULL,
3696 kpm->pm_l2[L2_IDX(l1slot)]
3697 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3698 : NULL);
3699 KASSERT(l2b->l2b_kva != NULL);
3700
3701 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3702 const pt_entry_t opte = *ptep;
3703
3704 if (opte == 0) {
3705 PMAPCOUNT(kenter_mappings);
3706 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3707 } else {
3708 PMAPCOUNT(kenter_remappings);
3709 #ifdef PMAP_CACHE_VIPT
3710 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3711 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3712 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3713 #endif
3714 if (opg && arm_cache_prefer_mask != 0) {
3715 KASSERT(opg != pg);
3716 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3717 KASSERT((flags & PMAP_KMPAGE) == 0);
3718 #ifndef ARM_MMU_EXTENDED
3719 pmap_acquire_page_lock(omd);
3720 pv = pmap_kremove_pg(opg, va);
3721 pmap_release_page_lock(omd);
3722 #endif
3723 }
3724 #endif
3725 if (l2pte_valid_p(opte)) {
3726 l2pte_reset(ptep);
3727 PTE_SYNC(ptep);
3728 #ifdef PMAP_CACHE_VIVT
3729 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3730 #endif
3731 cpu_tlb_flushD_SE(va);
3732 cpu_cpwait();
3733 }
3734 }
3735 pmap_release_pmap_lock(kpm);
3736 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3737
3738 if (flags & PMAP_PTE) {
3739 KASSERT((flags & PMAP_CACHE_MASK) == 0);
3740 if (!(flags & PMAP_NOCACHE))
3741 npte |= pte_l2_s_cache_mode_pt;
3742 } else {
3743 switch (flags & PMAP_CACHE_MASK) {
3744 case PMAP_NOCACHE:
3745 break;
3746 case PMAP_WRITE_COMBINE:
3747 npte |= pte_l2_s_wc_mode;
3748 break;
3749 default:
3750 npte |= pte_l2_s_cache_mode;
3751 break;
3752 }
3753 }
3754 #ifdef ARM_MMU_EXTENDED
3755 if (prot & VM_PROT_EXECUTE)
3756 npte &= ~L2_XS_XN;
3757 #endif
3758 l2pte_set(ptep, npte, 0);
3759 PTE_SYNC(ptep);
3760
3761 if (pg) {
3762 if (flags & PMAP_KMPAGE) {
3763 KASSERT(md->urw_mappings == 0);
3764 KASSERT(md->uro_mappings == 0);
3765 KASSERT(md->krw_mappings == 0);
3766 KASSERT(md->kro_mappings == 0);
3767 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3768 KASSERT(pv == NULL);
3769 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3770 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3771 /* if there is a color conflict, evict from cache. */
3772 if (pmap_is_page_colored_p(md)
3773 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3774 PMAPCOUNT(vac_color_change);
3775 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3776 } else if (md->pvh_attrs & PVF_MULTCLR) {
3777 /*
3778 * If this page has multiple colors, expunge
3779 * them.
3780 */
3781 PMAPCOUNT(vac_flush_lots2);
3782 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3783 }
3784 /*
3785 * Since this is a KMPAGE, there can be no contention
3786 * for this page so don't lock it.
3787 */
3788 md->pvh_attrs &= PAGE_SIZE - 1;
3789 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3790 | (va & arm_cache_prefer_mask);
3791 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3792 md->pvh_attrs |= PVF_KMPAGE;
3793 #endif
3794 atomic_inc_32(&pmap_kmpages);
3795 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3796 } else if (arm_cache_prefer_mask != 0) {
3797 if (pv == NULL) {
3798 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3799 KASSERT(pv != NULL);
3800 }
3801 pmap_acquire_page_lock(md);
3802 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3803 PVF_WIRED | PVF_KENTRY
3804 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3805 if ((prot & VM_PROT_WRITE)
3806 && !(md->pvh_attrs & PVF_NC))
3807 md->pvh_attrs |= PVF_DIRTY;
3808 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3809 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3810 pmap_release_page_lock(md);
3811 #endif
3812 }
3813 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3814 } else {
3815 if (pv != NULL)
3816 pool_put(&pmap_pv_pool, pv);
3817 #endif
3818 }
3819 if (pmap_initialized) {
3820 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)",
3821 (uintptr_t)ptep, opte, npte, 0);
3822 }
3823
3824 }
3825
3826 void
3827 pmap_kremove(vaddr_t va, vsize_t len)
3828 {
3829 #ifdef UVMHIST
3830 u_int total_mappings = 0;
3831 #endif
3832
3833 PMAPCOUNT(kenter_unmappings);
3834
3835 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3836
3837 UVMHIST_LOG(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3838
3839 const vaddr_t eva = va + len;
3840 pmap_t kpm = pmap_kernel();
3841
3842 pmap_acquire_pmap_lock(kpm);
3843
3844 while (va < eva) {
3845 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3846 if (next_bucket > eva)
3847 next_bucket = eva;
3848
3849 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3850 KDASSERT(l2b != NULL);
3851
3852 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3853 pt_entry_t *ptep = sptep;
3854 u_int mappings = 0;
3855
3856 while (va < next_bucket) {
3857 const pt_entry_t opte = *ptep;
3858 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3859 if (opg != NULL) {
3860 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3861
3862 if (omd->pvh_attrs & PVF_KMPAGE) {
3863 KASSERT(omd->urw_mappings == 0);
3864 KASSERT(omd->uro_mappings == 0);
3865 KASSERT(omd->krw_mappings == 0);
3866 KASSERT(omd->kro_mappings == 0);
3867 omd->pvh_attrs &= ~PVF_KMPAGE;
3868 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3869 if (arm_cache_prefer_mask != 0) {
3870 omd->pvh_attrs &= ~PVF_WRITE;
3871 }
3872 #endif
3873 atomic_dec_32(&pmap_kmpages);
3874 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3875 } else if (arm_cache_prefer_mask != 0) {
3876 pmap_acquire_page_lock(omd);
3877 pool_put(&pmap_pv_pool,
3878 pmap_kremove_pg(opg, va));
3879 pmap_release_page_lock(omd);
3880 #endif
3881 }
3882 }
3883 if (l2pte_valid_p(opte)) {
3884 l2pte_reset(ptep);
3885 PTE_SYNC(ptep);
3886 #ifdef PMAP_CACHE_VIVT
3887 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3888 #endif
3889 cpu_tlb_flushD_SE(va);
3890
3891 mappings += PAGE_SIZE / L2_S_SIZE;
3892 }
3893 va += PAGE_SIZE;
3894 ptep += PAGE_SIZE / L2_S_SIZE;
3895 }
3896 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3897 mappings, l2b->l2b_occupancy);
3898 l2b->l2b_occupancy -= mappings;
3899 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3900 #ifdef UVMHIST
3901 total_mappings += mappings;
3902 #endif
3903 }
3904 pmap_release_pmap_lock(kpm);
3905 cpu_cpwait();
3906 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)",
3907 total_mappings, 0, 0, 0);
3908 }
3909
3910 bool
3911 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3912 {
3913
3914 return pmap_extract_coherency(pm, va, pap, NULL);
3915 }
3916
3917 bool
3918 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3919 {
3920 struct l2_dtable *l2;
3921 pd_entry_t *pdep, pde;
3922 pt_entry_t *ptep, pte;
3923 paddr_t pa;
3924 u_int l1slot;
3925 bool coherent;
3926
3927 pmap_acquire_pmap_lock(pm);
3928
3929 l1slot = l1pte_index(va);
3930 pdep = pmap_l1_kva(pm) + l1slot;
3931 pde = *pdep;
3932
3933 if (l1pte_section_p(pde)) {
3934 /*
3935 * These should only happen for pmap_kernel()
3936 */
3937 KDASSERT(pm == pmap_kernel());
3938 pmap_release_pmap_lock(pm);
3939 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3940 if (l1pte_supersection_p(pde)) {
3941 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3942 } else
3943 #endif
3944 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3945 coherent = (pde & L1_S_CACHE_MASK) == 0;
3946 } else {
3947 /*
3948 * Note that we can't rely on the validity of the L1
3949 * descriptor as an indication that a mapping exists.
3950 * We have to look it up in the L2 dtable.
3951 */
3952 l2 = pm->pm_l2[L2_IDX(l1slot)];
3953
3954 if (l2 == NULL ||
3955 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3956 pmap_release_pmap_lock(pm);
3957 return false;
3958 }
3959
3960 pte = ptep[l2pte_index(va)];
3961 pmap_release_pmap_lock(pm);
3962
3963 if (pte == 0)
3964 return false;
3965
3966 switch (pte & L2_TYPE_MASK) {
3967 case L2_TYPE_L:
3968 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3969 coherent = (pte & L2_L_CACHE_MASK) == 0;
3970 break;
3971
3972 default:
3973 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3974 coherent = (pte & L2_S_CACHE_MASK) == 0;
3975 break;
3976 }
3977 }
3978
3979 if (pap != NULL)
3980 *pap = pa;
3981
3982 if (coherentp != NULL)
3983 *coherentp = (pm == pmap_kernel() && coherent);
3984
3985 return true;
3986 }
3987
3988 /*
3989 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
3990 * that map it
3991 */
3992
3993 static void
3994 pmap_pv_remove(paddr_t pa)
3995 {
3996 struct pmap_page *pp;
3997
3998 pp = pmap_pv_tracked(pa);
3999 if (pp == NULL)
4000 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4001 pa);
4002
4003 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4004 pmap_page_remove(md, pa);
4005 }
4006
4007 void
4008 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4009 {
4010
4011 /* the only case is remove at the moment */
4012 KASSERT(prot == VM_PROT_NONE);
4013 pmap_pv_remove(pa);
4014 }
4015
4016 void
4017 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4018 {
4019 struct l2_bucket *l2b;
4020 vaddr_t next_bucket;
4021
4022 NPDEBUG(PDB_PROTECT,
4023 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
4024 pm, sva, eva, prot));
4025
4026 if ((prot & VM_PROT_READ) == 0) {
4027 pmap_remove(pm, sva, eva);
4028 return;
4029 }
4030
4031 if (prot & VM_PROT_WRITE) {
4032 /*
4033 * If this is a read->write transition, just ignore it and let
4034 * uvm_fault() take care of it later.
4035 */
4036 return;
4037 }
4038
4039 pmap_acquire_pmap_lock(pm);
4040
4041 #ifndef ARM_MMU_EXTENDED
4042 const bool flush = eva - sva >= PAGE_SIZE * 4;
4043 u_int flags = 0;
4044 #endif
4045 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4046
4047 while (sva < eva) {
4048 next_bucket = L2_NEXT_BUCKET_VA(sva);
4049 if (next_bucket > eva)
4050 next_bucket = eva;
4051
4052 l2b = pmap_get_l2_bucket(pm, sva);
4053 if (l2b == NULL) {
4054 sva = next_bucket;
4055 continue;
4056 }
4057
4058 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4059
4060 while (sva < next_bucket) {
4061 const pt_entry_t opte = *ptep;
4062 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4063 struct vm_page *pg;
4064 #ifndef ARM_MMU_EXTENDED
4065 u_int f;
4066 #endif
4067
4068 #ifdef PMAP_CACHE_VIVT
4069 /*
4070 * OK, at this point, we know we're doing
4071 * write-protect operation. If the pmap is
4072 * active, write-back the page.
4073 */
4074 pmap_cache_wbinv_page(pm, sva, false,
4075 PVF_REF | PVF_WRITE);
4076 #endif
4077
4078 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4079 pt_entry_t npte = l2pte_set_readonly(opte);
4080 l2pte_reset(ptep);
4081 PTE_SYNC(ptep);
4082 #ifdef ARM_MMU_EXTENDED
4083 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4084 #endif
4085 l2pte_set(ptep, npte, 0);
4086 PTE_SYNC(ptep);
4087
4088 if (pg != NULL) {
4089 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4090 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4091
4092 pmap_acquire_page_lock(md);
4093 #ifndef ARM_MMU_EXTENDED
4094 f =
4095 #endif
4096 pmap_modify_pv(md, pa, pm, sva,
4097 clr_mask, 0);
4098 pmap_vac_me_harder(md, pa, pm, sva);
4099 pmap_release_page_lock(md);
4100 #ifndef ARM_MMU_EXTENDED
4101 } else {
4102 f = PVF_REF | PVF_EXEC;
4103 }
4104
4105 if (flush) {
4106 flags |= f;
4107 } else {
4108 pmap_tlb_flush_SE(pm, sva, f);
4109 #endif
4110 }
4111 }
4112
4113 sva += PAGE_SIZE;
4114 ptep += PAGE_SIZE / L2_S_SIZE;
4115 }
4116 }
4117
4118 #ifndef ARM_MMU_EXTENDED
4119 if (flush) {
4120 if (PV_BEEN_EXECD(flags)) {
4121 pmap_tlb_flushID(pm);
4122 } else if (PV_BEEN_REFD(flags)) {
4123 pmap_tlb_flushD(pm);
4124 }
4125 }
4126 #endif
4127
4128 pmap_release_pmap_lock(pm);
4129 }
4130
4131 void
4132 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4133 {
4134 struct l2_bucket *l2b;
4135 pt_entry_t *ptep;
4136 vaddr_t next_bucket;
4137 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4138
4139 NPDEBUG(PDB_EXEC,
4140 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4141 pm, sva, eva));
4142
4143 pmap_acquire_pmap_lock(pm);
4144
4145 while (sva < eva) {
4146 next_bucket = L2_NEXT_BUCKET_VA(sva);
4147 if (next_bucket > eva)
4148 next_bucket = eva;
4149
4150 l2b = pmap_get_l2_bucket(pm, sva);
4151 if (l2b == NULL) {
4152 sva = next_bucket;
4153 continue;
4154 }
4155
4156 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4157 sva < next_bucket;
4158 sva += page_size,
4159 ptep += PAGE_SIZE / L2_S_SIZE,
4160 page_size = PAGE_SIZE) {
4161 if (l2pte_valid_p(*ptep)) {
4162 cpu_icache_sync_range(sva,
4163 uimin(page_size, eva - sva));
4164 }
4165 }
4166 }
4167
4168 pmap_release_pmap_lock(pm);
4169 }
4170
4171 void
4172 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4173 {
4174 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4175 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4176
4177 NPDEBUG(PDB_PROTECT,
4178 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4179 md, pa, prot));
4180
4181 switch(prot) {
4182 case VM_PROT_READ|VM_PROT_WRITE:
4183 #if defined(ARM_MMU_EXTENDED)
4184 pmap_acquire_page_lock(md);
4185 pmap_clearbit(md, pa, PVF_EXEC);
4186 pmap_release_page_lock(md);
4187 break;
4188 #endif
4189 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4190 break;
4191
4192 case VM_PROT_READ:
4193 #if defined(ARM_MMU_EXTENDED)
4194 pmap_acquire_page_lock(md);
4195 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4196 pmap_release_page_lock(md);
4197 break;
4198 #endif
4199 case VM_PROT_READ|VM_PROT_EXECUTE:
4200 pmap_acquire_page_lock(md);
4201 pmap_clearbit(md, pa, PVF_WRITE);
4202 pmap_release_page_lock(md);
4203 break;
4204
4205 default:
4206 pmap_page_remove(md, pa);
4207 break;
4208 }
4209 }
4210
4211 /*
4212 * pmap_clear_modify:
4213 *
4214 * Clear the "modified" attribute for a page.
4215 */
4216 bool
4217 pmap_clear_modify(struct vm_page *pg)
4218 {
4219 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4220 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4221 bool rv;
4222
4223 pmap_acquire_page_lock(md);
4224
4225 if (md->pvh_attrs & PVF_MOD) {
4226 rv = true;
4227 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4228 /*
4229 * If we are going to clear the modified bit and there are
4230 * no other modified bits set, flush the page to memory and
4231 * mark it clean.
4232 */
4233 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4234 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4235 #endif
4236 pmap_clearbit(md, pa, PVF_MOD);
4237 } else {
4238 rv = false;
4239 }
4240 pmap_release_page_lock(md);
4241
4242 return rv;
4243 }
4244
4245 /*
4246 * pmap_clear_reference:
4247 *
4248 * Clear the "referenced" attribute for a page.
4249 */
4250 bool
4251 pmap_clear_reference(struct vm_page *pg)
4252 {
4253 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4254 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4255 bool rv;
4256
4257 pmap_acquire_page_lock(md);
4258
4259 if (md->pvh_attrs & PVF_REF) {
4260 rv = true;
4261 pmap_clearbit(md, pa, PVF_REF);
4262 } else {
4263 rv = false;
4264 }
4265 pmap_release_page_lock(md);
4266
4267 return rv;
4268 }
4269
4270 /*
4271 * pmap_is_modified:
4272 *
4273 * Test if a page has the "modified" attribute.
4274 */
4275 /* See <arm/arm32/pmap.h> */
4276
4277 /*
4278 * pmap_is_referenced:
4279 *
4280 * Test if a page has the "referenced" attribute.
4281 */
4282 /* See <arm/arm32/pmap.h> */
4283
4284 #if defined(ARM_MMU_EXTENDED) && 0
4285 int
4286 pmap_prefetchabt_fixup(void *v)
4287 {
4288 struct trapframe * const tf = v;
4289 vaddr_t va = trunc_page(tf->tf_pc);
4290 int rv = ABORT_FIXUP_FAILED;
4291
4292 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4293 return rv;
4294
4295 kpreempt_disable();
4296 pmap_t pm = curcpu()->ci_pmap_cur;
4297 const size_t l1slot = l1pte_index(va);
4298 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4299 if (l2 == NULL)
4300 goto out;
4301
4302 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4303 if (l2b->l2b_kva == NULL)
4304 goto out;
4305
4306 /*
4307 * Check the PTE itself.
4308 */
4309 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4310 const pt_entry_t opte = *ptep;
4311 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4312 goto out;
4313
4314 paddr_t pa = l2pte_pa(opte);
4315 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4316 KASSERT(pg != NULL);
4317
4318 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4319
4320 pmap_acquire_page_lock(md);
4321 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4322 KASSERT(pv != NULL);
4323
4324 if (PV_IS_EXEC_P(pv->pv_flags)) {
4325 l2pte_reset(ptep);
4326 PTE_SYNC(ptep);
4327 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4328 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4329 pmap_syncicache_page(md, pa);
4330 }
4331 rv = ABORT_FIXUP_RETURN;
4332 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4333 PTE_SYNC(ptep);
4334 }
4335 pmap_release_page_lock(md);
4336
4337 out:
4338 kpreempt_enable();
4339 return rv;
4340 }
4341 #endif
4342
4343 int
4344 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4345 {
4346 struct l2_dtable *l2;
4347 struct l2_bucket *l2b;
4348 paddr_t pa;
4349 const size_t l1slot = l1pte_index(va);
4350 int rv = 0;
4351
4352 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4353
4354 va = trunc_page(va);
4355
4356 KASSERT(!user || (pm != pmap_kernel()));
4357
4358 UVMHIST_LOG(maphist, " (pm=%#jx, va=%#jx, ftype=%#jx, user=%jd)",
4359 (uintptr_t)pm, va, ftype, user);
4360 #ifdef ARM_MMU_EXTENDED
4361 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4362 (uintptr_t)cpu_tlb_info(curcpu()),
4363 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4364 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4365 #endif
4366
4367 pmap_acquire_pmap_lock(pm);
4368
4369 /*
4370 * If there is no l2_dtable for this address, then the process
4371 * has no business accessing it.
4372 *
4373 * Note: This will catch userland processes trying to access
4374 * kernel addresses.
4375 */
4376 l2 = pm->pm_l2[L2_IDX(l1slot)];
4377 if (l2 == NULL) {
4378 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4379 goto out;
4380 }
4381
4382 /*
4383 * Likewise if there is no L2 descriptor table
4384 */
4385 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4386 if (l2b->l2b_kva == NULL) {
4387 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4388 l1slot, 0, 0, 0);
4389 goto out;
4390 }
4391
4392 /*
4393 * Check the PTE itself.
4394 */
4395 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4396 pt_entry_t const opte = *ptep;
4397 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4398 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
4399 l1slot, 0, 0, 0);
4400 goto out;
4401 }
4402
4403 #ifndef ARM_HAS_VBAR
4404 /*
4405 * Catch a userland access to the vector page mapped at 0x0
4406 */
4407 if (user && (opte & L2_S_PROT_U) == 0) {
4408 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4409 goto out;
4410 }
4411 #endif
4412
4413 pa = l2pte_pa(opte);
4414
4415 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4416 /*
4417 * This looks like a good candidate for "page modified"
4418 * emulation...
4419 */
4420 struct pv_entry *pv;
4421 struct vm_page *pg;
4422
4423 /* Extract the physical address of the page */
4424 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4425 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4426 goto out;
4427 }
4428
4429 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4430
4431 /* Get the current flags for this page. */
4432 pmap_acquire_page_lock(md);
4433 pv = pmap_find_pv(md, pm, va);
4434 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4435 pmap_release_page_lock(md);
4436 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4437 goto out;
4438 }
4439
4440 /*
4441 * Do the flags say this page is writable? If not then it
4442 * is a genuine write fault. If yes then the write fault is
4443 * our fault as we did not reflect the write access in the
4444 * PTE. Now we know a write has occurred we can correct this
4445 * and also set the modified bit
4446 */
4447 if ((pv->pv_flags & PVF_WRITE) == 0) {
4448 pmap_release_page_lock(md);
4449 goto out;
4450 }
4451
4452 md->pvh_attrs |= PVF_REF | PVF_MOD;
4453 pv->pv_flags |= PVF_REF | PVF_MOD;
4454 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4455 /*
4456 * If there are cacheable mappings for this page, mark it dirty.
4457 */
4458 if ((md->pvh_attrs & PVF_NC) == 0)
4459 md->pvh_attrs |= PVF_DIRTY;
4460 #endif
4461 #ifdef ARM_MMU_EXTENDED
4462 if (md->pvh_attrs & PVF_EXEC) {
4463 md->pvh_attrs &= ~PVF_EXEC;
4464 PMAPCOUNT(exec_discarded_modfixup);
4465 }
4466 #endif
4467 pmap_release_page_lock(md);
4468
4469 /*
4470 * Re-enable write permissions for the page. No need to call
4471 * pmap_vac_me_harder(), since this is just a
4472 * modified-emulation fault, and the PVF_WRITE bit isn't
4473 * changing. We've already set the cacheable bits based on
4474 * the assumption that we can write to this page.
4475 */
4476 const pt_entry_t npte =
4477 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4478 #ifdef ARM_MMU_EXTENDED
4479 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4480 #endif
4481 | 0;
4482 l2pte_reset(ptep);
4483 PTE_SYNC(ptep);
4484 pmap_tlb_flush_SE(pm, va,
4485 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4486 l2pte_set(ptep, npte, 0);
4487 PTE_SYNC(ptep);
4488 PMAPCOUNT(fixup_mod);
4489 rv = 1;
4490 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4491 "from %#jx to %#jx)", opte, npte, 0, 0);
4492 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4493 /*
4494 * This looks like a good candidate for "page referenced"
4495 * emulation.
4496 */
4497 struct vm_page *pg;
4498
4499 /* Extract the physical address of the page */
4500 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4501 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4502 goto out;
4503 }
4504
4505 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4506
4507 /* Get the current flags for this page. */
4508 pmap_acquire_page_lock(md);
4509 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4510 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4511 pmap_release_page_lock(md);
4512 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4513 goto out;
4514 }
4515
4516 md->pvh_attrs |= PVF_REF;
4517 pv->pv_flags |= PVF_REF;
4518
4519 pt_entry_t npte =
4520 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4521 #ifdef ARM_MMU_EXTENDED
4522 if (pm != pmap_kernel()) {
4523 npte |= L2_XS_nG;
4524 }
4525 /*
4526 * If we got called from prefetch abort, then ftype will have
4527 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4528 * the PTE.
4529 */
4530 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4531 /*
4532 * Is this a mapping of an executable page?
4533 */
4534 if ((pv->pv_flags & PVF_EXEC) == 0) {
4535 pmap_release_page_lock(md);
4536 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4537 0, 0, 0, 0);
4538 goto out;
4539 }
4540 /*
4541 * If we haven't synced the page, do so now.
4542 */
4543 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4544 UVMHIST_LOG(maphist, " ref emul: syncicache "
4545 "page #%#jx", pa, 0, 0, 0);
4546 pmap_syncicache_page(md, pa);
4547 PMAPCOUNT(fixup_exec);
4548 }
4549 npte &= ~L2_XS_XN;
4550 }
4551 #endif /* ARM_MMU_EXTENDED */
4552 pmap_release_page_lock(md);
4553 l2pte_reset(ptep);
4554 PTE_SYNC(ptep);
4555 pmap_tlb_flush_SE(pm, va,
4556 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4557 l2pte_set(ptep, npte, 0);
4558 PTE_SYNC(ptep);
4559 PMAPCOUNT(fixup_ref);
4560 rv = 1;
4561 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4562 "%#jx to %#jx)", opte, npte, 0, 0);
4563 #ifdef ARM_MMU_EXTENDED
4564 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4565 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4566 if (pg == NULL) {
4567 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4568 goto out;
4569 }
4570
4571 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4572
4573 /* Get the current flags for this page. */
4574 pmap_acquire_page_lock(md);
4575 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4576 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4577 pmap_release_page_lock(md);
4578 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4579 goto out;
4580 }
4581
4582 /*
4583 * If we haven't synced the page, do so now.
4584 */
4585 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4586 UVMHIST_LOG(maphist, "syncicache page #%#jx",
4587 pa, 0, 0, 0);
4588 pmap_syncicache_page(md, pa);
4589 }
4590 pmap_release_page_lock(md);
4591 /*
4592 * Turn off no-execute.
4593 */
4594 KASSERT(opte & L2_XS_nG);
4595 l2pte_reset(ptep);
4596 PTE_SYNC(ptep);
4597 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4598 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4599 PTE_SYNC(ptep);
4600 rv = 1;
4601 PMAPCOUNT(fixup_exec);
4602 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4603 opte, opte & ~L2_XS_XN, 0, 0);
4604 #endif
4605 }
4606
4607 #ifndef ARM_MMU_EXTENDED
4608 /*
4609 * We know there is a valid mapping here, so simply
4610 * fix up the L1 if necessary.
4611 */
4612 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4613 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4614 if (*pdep != pde) {
4615 l1pte_setone(pdep, pde);
4616 PDE_SYNC(pdep);
4617 rv = 1;
4618 PMAPCOUNT(fixup_pdes);
4619 }
4620 #endif
4621
4622 #ifdef CPU_SA110
4623 /*
4624 * There are bugs in the rev K SA110. This is a check for one
4625 * of them.
4626 */
4627 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4628 curcpu()->ci_arm_cpurev < 3) {
4629 /* Always current pmap */
4630 if (l2pte_valid_p(opte)) {
4631 extern int kernel_debug;
4632 if (kernel_debug & 1) {
4633 struct proc *p = curlwp->l_proc;
4634 printf("prefetch_abort: page is already "
4635 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4636 printf("prefetch_abort: pc=%08lx proc=%p "
4637 "process=%s\n", va, p, p->p_comm);
4638 printf("prefetch_abort: far=%08x fs=%x\n",
4639 cpu_faultaddress(), cpu_faultstatus());
4640 }
4641 #ifdef DDB
4642 if (kernel_debug & 2)
4643 Debugger();
4644 #endif
4645 rv = 1;
4646 }
4647 }
4648 #endif /* CPU_SA110 */
4649
4650 #ifndef ARM_MMU_EXTENDED
4651 /*
4652 * If 'rv == 0' at this point, it generally indicates that there is a
4653 * stale TLB entry for the faulting address. That might be due to a
4654 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4655 */
4656 if (rv == 0
4657 && pm->pm_l1->l1_domain_use_count == 1
4658 && pmap_needs_pte_sync == 0) {
4659 pmap_needs_pte_sync = 1;
4660 PTE_SYNC(ptep);
4661 PMAPCOUNT(fixup_ptesync);
4662 rv = 1;
4663 }
4664 #endif
4665
4666 #ifndef MULTIPROCESSOR
4667 #if defined(DEBUG) || 1
4668 /*
4669 * If 'rv == 0' at this point, it generally indicates that there is a
4670 * stale TLB entry for the faulting address. This happens when two or
4671 * more processes are sharing an L1. Since we don't flush the TLB on
4672 * a context switch between such processes, we can take domain faults
4673 * for mappings which exist at the same VA in both processes. EVEN IF
4674 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4675 * example.
4676 *
4677 * This is extremely likely to happen if pmap_enter() updated the L1
4678 * entry for a recently entered mapping. In this case, the TLB is
4679 * flushed for the new mapping, but there may still be TLB entries for
4680 * other mappings belonging to other processes in the 1MB range
4681 * covered by the L1 entry.
4682 *
4683 * Since 'rv == 0', we know that the L1 already contains the correct
4684 * value, so the fault must be due to a stale TLB entry.
4685 *
4686 * Since we always need to flush the TLB anyway in the case where we
4687 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4688 * stale TLB entries dynamically.
4689 *
4690 * However, the above condition can ONLY happen if the current L1 is
4691 * being shared. If it happens when the L1 is unshared, it indicates
4692 * that other parts of the pmap are not doing their job WRT managing
4693 * the TLB.
4694 */
4695 if (rv == 0
4696 #ifndef ARM_MMU_EXTENDED
4697 && pm->pm_l1->l1_domain_use_count == 1
4698 #endif
4699 && true) {
4700 #ifdef DEBUG
4701 extern int last_fault_code;
4702 #else
4703 int last_fault_code = ftype & VM_PROT_EXECUTE
4704 ? armreg_ifsr_read()
4705 : armreg_dfsr_read();
4706 #endif
4707 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4708 pm, va, ftype);
4709 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4710 l2, l2b, ptep, opte);
4711
4712 #ifndef ARM_MMU_EXTENDED
4713 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4714 pdep, pde, last_fault_code);
4715 #else
4716 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4717 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4718 armreg_ttbcr_read());
4719 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4720 last_fault_code, curcpu()->ci_pmap_cur,
4721 curcpu()->ci_pmap_asid_cur,
4722 armreg_contextidr_read(), armreg_dacr_read());
4723 #ifdef _ARM_ARCH_7
4724 if (ftype & VM_PROT_WRITE)
4725 armreg_ats1cuw_write(va);
4726 else
4727 armreg_ats1cur_write(va);
4728 arm_isb();
4729 printf("fixup: par %#x\n", armreg_par_read());
4730 #endif
4731 #endif
4732 #ifdef DDB
4733 extern int kernel_debug;
4734
4735 if (kernel_debug & 2) {
4736 pmap_release_pmap_lock(pm);
4737 #ifdef UVMHIST
4738 KERNHIST_DUMP(maphist);
4739 #endif
4740 cpu_Debugger();
4741 pmap_acquire_pmap_lock(pm);
4742 }
4743 #endif
4744 }
4745 #endif
4746 #endif
4747
4748 #ifndef ARM_MMU_EXTENDED
4749 /* Flush the TLB in the shared L1 case - see comment above */
4750 pmap_tlb_flush_SE(pm, va,
4751 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4752 #endif
4753
4754 rv = 1;
4755
4756 out:
4757 pmap_release_pmap_lock(pm);
4758
4759 return (rv);
4760 }
4761
4762 /*
4763 * Routine: pmap_procwr
4764 *
4765 * Function:
4766 * Synchronize caches corresponding to [addr, addr+len) in p.
4767 *
4768 */
4769 void
4770 pmap_procwr(struct proc *p, vaddr_t va, int len)
4771 {
4772 #ifndef ARM_MMU_EXTENDED
4773
4774 /* We only need to do anything if it is the current process. */
4775 if (p == curproc)
4776 cpu_icache_sync_range(va, len);
4777 #endif
4778 }
4779
4780 /*
4781 * Routine: pmap_unwire
4782 * Function: Clear the wired attribute for a map/virtual-address pair.
4783 *
4784 * In/out conditions:
4785 * The mapping must already exist in the pmap.
4786 */
4787 void
4788 pmap_unwire(pmap_t pm, vaddr_t va)
4789 {
4790 struct l2_bucket *l2b;
4791 pt_entry_t *ptep, pte;
4792 struct vm_page *pg;
4793 paddr_t pa;
4794
4795 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4796
4797 pmap_acquire_pmap_lock(pm);
4798
4799 l2b = pmap_get_l2_bucket(pm, va);
4800 KDASSERT(l2b != NULL);
4801
4802 ptep = &l2b->l2b_kva[l2pte_index(va)];
4803 pte = *ptep;
4804
4805 /* Extract the physical address of the page */
4806 pa = l2pte_pa(pte);
4807
4808 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4809 /* Update the wired bit in the pv entry for this page. */
4810 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4811
4812 pmap_acquire_page_lock(md);
4813 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4814 pmap_release_page_lock(md);
4815 }
4816
4817 pmap_release_pmap_lock(pm);
4818 }
4819
4820 #ifdef ARM_MMU_EXTENDED
4821 void
4822 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4823 {
4824 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4825
4826 /*
4827 * Assume that TTBR1 has only global mappings and TTBR0 only
4828 * has non-global mappings. To prevent speculation from doing
4829 * evil things we disable translation table walks using TTBR0
4830 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4831 * Once both are set, table walks are reenabled.
4832 */
4833 const uint32_t old_ttbcr = armreg_ttbcr_read();
4834 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4835 arm_isb();
4836
4837 pmap_tlb_asid_acquire(pm, l);
4838
4839 struct cpu_info * const ci = curcpu();
4840 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4841
4842 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4843 /*
4844 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4845 * have been updated.
4846 */
4847 arm_isb();
4848
4849 if (pm != pmap_kernel()) {
4850 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4851 }
4852 cpu_cpwait();
4853
4854 UVMHIST_LOG(maphist, " pm %#jx pm->pm_l1_pa %08jx asid %ju... done",
4855 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4856
4857 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4858 ci->ci_pmap_asid_cur, pai->pai_asid);
4859 ci->ci_pmap_cur = pm;
4860 }
4861
4862 void
4863 pmap_md_pdetab_deactivate(pmap_t pm)
4864 {
4865
4866 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4867
4868 kpreempt_disable();
4869 struct cpu_info * const ci = curcpu();
4870 /*
4871 * Disable translation table walks from TTBR0 while no pmap has been
4872 * activated.
4873 */
4874 const uint32_t old_ttbcr = armreg_ttbcr_read();
4875 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4876 arm_isb();
4877 pmap_tlb_asid_deactivate(pm);
4878 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4879 arm_isb();
4880
4881 ci->ci_pmap_cur = pmap_kernel();
4882 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4883 ci->ci_pmap_asid_cur);
4884 kpreempt_enable();
4885 }
4886 #endif
4887
4888 void
4889 pmap_activate(struct lwp *l)
4890 {
4891 extern int block_userspace_access;
4892 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4893
4894 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4895
4896 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)npm,
4897 0, 0);
4898
4899 struct cpu_info * const ci = curcpu();
4900
4901 /*
4902 * If activating a non-current lwp or the current lwp is
4903 * already active, just return.
4904 */
4905 if (false
4906 || l != curlwp
4907 #ifdef ARM_MMU_EXTENDED
4908 || (ci->ci_pmap_cur == npm &&
4909 (npm == pmap_kernel()
4910 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4911 #else
4912 || npm->pm_activated == true
4913 #endif
4914 || false) {
4915 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4916 (uintptr_t)l, 0, 0);
4917 return;
4918 }
4919
4920 #ifndef ARM_MMU_EXTENDED
4921 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4922 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4923
4924 /*
4925 * If TTB and DACR are unchanged, short-circuit all the
4926 * TLB/cache management stuff.
4927 */
4928 pmap_t opm = ci->ci_lastlwp
4929 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4930 : NULL;
4931 if (opm != NULL) {
4932 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4933 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4934
4935 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4936 goto all_done;
4937 }
4938 #endif /* !ARM_MMU_EXTENDED */
4939
4940 PMAPCOUNT(activations);
4941 block_userspace_access = 1;
4942
4943 #ifndef ARM_MMU_EXTENDED
4944 /*
4945 * If switching to a user vmspace which is different to the
4946 * most recent one, and the most recent one is potentially
4947 * live in the cache, we must write-back and invalidate the
4948 * entire cache.
4949 */
4950 pmap_t rpm = ci->ci_pmap_lastuser;
4951
4952 /*
4953 * XXXSCW: There's a corner case here which can leave turds in the
4954 * cache as reported in kern/41058. They're probably left over during
4955 * tear-down and switching away from an exiting process. Until the root
4956 * cause is identified and fixed, zap the cache when switching pmaps.
4957 * This will result in a few unnecessary cache flushes, but that's
4958 * better than silently corrupting data.
4959 */
4960 #if 0
4961 if (npm != pmap_kernel() && rpm && npm != rpm &&
4962 rpm->pm_cstate.cs_cache) {
4963 rpm->pm_cstate.cs_cache = 0;
4964 #ifdef PMAP_CACHE_VIVT
4965 cpu_idcache_wbinv_all();
4966 #endif
4967 }
4968 #else
4969 if (rpm) {
4970 rpm->pm_cstate.cs_cache = 0;
4971 if (npm == pmap_kernel())
4972 ci->ci_pmap_lastuser = NULL;
4973 #ifdef PMAP_CACHE_VIVT
4974 cpu_idcache_wbinv_all();
4975 #endif
4976 }
4977 #endif
4978
4979 /* No interrupts while we frob the TTB/DACR */
4980 uint32_t oldirqstate = disable_interrupts(IF32_bits);
4981 #endif /* !ARM_MMU_EXTENDED */
4982
4983 #ifndef ARM_HAS_VBAR
4984 /*
4985 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4986 * entry corresponding to 'vector_page' in the incoming L1 table
4987 * before switching to it otherwise subsequent interrupts/exceptions
4988 * (including domain faults!) will jump into hyperspace.
4989 */
4990 if (npm->pm_pl1vec != NULL) {
4991 cpu_tlb_flushID_SE((u_int)vector_page);
4992 cpu_cpwait();
4993 *npm->pm_pl1vec = npm->pm_l1vec;
4994 PTE_SYNC(npm->pm_pl1vec);
4995 }
4996 #endif
4997
4998 #ifdef ARM_MMU_EXTENDED
4999 pmap_md_pdetab_activate(npm, l);
5000 #else
5001 cpu_domains(ndacr);
5002 if (npm == pmap_kernel() || npm == rpm) {
5003 /*
5004 * Switching to a kernel thread, or back to the
5005 * same user vmspace as before... Simply update
5006 * the TTB (no TLB flush required)
5007 */
5008 cpu_setttb(npm->pm_l1->l1_physaddr, false);
5009 cpu_cpwait();
5010 } else {
5011 /*
5012 * Otherwise, update TTB and flush TLB
5013 */
5014 cpu_context_switch(npm->pm_l1->l1_physaddr);
5015 if (rpm != NULL)
5016 rpm->pm_cstate.cs_tlb = 0;
5017 }
5018
5019 restore_interrupts(oldirqstate);
5020 #endif /* ARM_MMU_EXTENDED */
5021
5022 block_userspace_access = 0;
5023
5024 #ifndef ARM_MMU_EXTENDED
5025 all_done:
5026 /*
5027 * The new pmap is resident. Make sure it's marked
5028 * as resident in the cache/TLB.
5029 */
5030 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5031 if (npm != pmap_kernel())
5032 ci->ci_pmap_lastuser = npm;
5033
5034 /* The old pmap is not longer active */
5035 if (opm != npm) {
5036 if (opm != NULL)
5037 opm->pm_activated = false;
5038
5039 /* But the new one is */
5040 npm->pm_activated = true;
5041 }
5042 ci->ci_pmap_cur = npm;
5043 #endif
5044 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5045 }
5046
5047 void
5048 pmap_deactivate(struct lwp *l)
5049 {
5050 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5051
5052 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5053
5054 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)pm,
5055 0, 0);
5056
5057 #ifdef ARM_MMU_EXTENDED
5058 pmap_md_pdetab_deactivate(pm);
5059 #else
5060 /*
5061 * If the process is exiting, make sure pmap_activate() does
5062 * a full MMU context-switch and cache flush, which we might
5063 * otherwise skip. See PR port-arm/38950.
5064 */
5065 if (l->l_proc->p_sflag & PS_WEXIT)
5066 curcpu()->ci_lastlwp = NULL;
5067
5068 pm->pm_activated = false;
5069 #endif
5070 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5071 }
5072
5073 void
5074 pmap_update(pmap_t pm)
5075 {
5076
5077 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5078
5079 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5080 pm->pm_remove_all, 0, 0);
5081
5082 #ifndef ARM_MMU_EXTENDED
5083 if (pm->pm_remove_all) {
5084 /*
5085 * Finish up the pmap_remove_all() optimisation by flushing
5086 * the TLB.
5087 */
5088 pmap_tlb_flushID(pm);
5089 pm->pm_remove_all = false;
5090 }
5091
5092 if (pmap_is_current(pm)) {
5093 /*
5094 * If we're dealing with a current userland pmap, move its L1
5095 * to the end of the LRU.
5096 */
5097 if (pm != pmap_kernel())
5098 pmap_use_l1(pm);
5099
5100 /*
5101 * We can assume we're done with frobbing the cache/tlb for
5102 * now. Make sure any future pmap ops don't skip cache/tlb
5103 * flushes.
5104 */
5105 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5106 }
5107 #else
5108
5109 kpreempt_disable();
5110 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5111 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5112 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5113 PMAP_COUNT(shootdown_ipis);
5114 }
5115 #endif
5116
5117 /*
5118 * If pmap_remove_all was called, we deactivated ourselves and released
5119 * our ASID. Now we have to reactivate ourselves.
5120 */
5121 if (__predict_false(pm->pm_remove_all)) {
5122 pm->pm_remove_all = false;
5123
5124 KASSERT(pm != pmap_kernel());
5125 pmap_md_pdetab_activate(pm, curlwp);
5126 }
5127
5128 if (arm_has_mpext_p)
5129 armreg_bpiallis_write(0);
5130 else
5131 armreg_bpiall_write(0);
5132
5133 kpreempt_enable();
5134
5135 KASSERTMSG(pm == pmap_kernel()
5136 || curcpu()->ci_pmap_cur != pm
5137 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5138 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5139 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5140 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5141 #endif
5142
5143 PMAPCOUNT(updates);
5144
5145 /*
5146 * make sure TLB/cache operations have completed.
5147 */
5148 cpu_cpwait();
5149 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5150 }
5151
5152 void
5153 pmap_remove_all(pmap_t pm)
5154 {
5155
5156 /*
5157 * The vmspace described by this pmap is about to be torn down.
5158 * Until pmap_update() is called, UVM will only make calls
5159 * to pmap_remove(). We can make life much simpler by flushing
5160 * the cache now, and deferring TLB invalidation to pmap_update().
5161 */
5162 #ifdef PMAP_CACHE_VIVT
5163 pmap_cache_wbinv_all(pm, PVF_EXEC);
5164 #endif
5165 #ifdef ARM_MMU_EXTENDED
5166 #ifdef MULTIPROCESSOR
5167 struct cpu_info * const ci = curcpu();
5168 // This should be the last CPU with this pmap onproc
5169 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5170 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5171 #endif
5172 pmap_tlb_asid_deactivate(pm);
5173 #ifdef MULTIPROCESSOR
5174 KASSERT(kcpuset_iszero(pm->pm_onproc));
5175 #endif
5176
5177 pmap_tlb_asid_release_all(pm);
5178 #endif
5179 pm->pm_remove_all = true;
5180 }
5181
5182 /*
5183 * Retire the given physical map from service.
5184 * Should only be called if the map contains no valid mappings.
5185 */
5186 void
5187 pmap_destroy(pmap_t pm)
5188 {
5189 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5190
5191 u_int count;
5192
5193 if (pm == NULL)
5194 return;
5195
5196 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5197 pm->pm_remove_all, 0, 0);
5198
5199 if (pm->pm_remove_all) {
5200 #ifdef ARM_MMU_EXTENDED
5201 pmap_tlb_asid_release_all(pm);
5202 #else
5203 pmap_tlb_flushID(pm);
5204 #endif
5205 pm->pm_remove_all = false;
5206 }
5207
5208 /*
5209 * Drop reference count
5210 */
5211 mutex_enter(pm->pm_lock);
5212 count = --pm->pm_obj.uo_refs;
5213 mutex_exit(pm->pm_lock);
5214 if (count > 0) {
5215 #ifndef ARM_MMU_EXTENDED
5216 if (pmap_is_current(pm)) {
5217 if (pm != pmap_kernel())
5218 pmap_use_l1(pm);
5219 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5220 }
5221 #endif
5222 return;
5223 }
5224
5225 /*
5226 * reference count is zero, free pmap resources and then free pmap.
5227 */
5228
5229 #ifndef ARM_HAS_VBAR
5230 if (vector_page < KERNEL_BASE) {
5231 KDASSERT(!pmap_is_current(pm));
5232
5233 /* Remove the vector page mapping */
5234 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5235 pmap_update(pm);
5236 }
5237 #endif
5238
5239 pmap_free_l1(pm);
5240
5241 #ifdef ARM_MMU_EXTENDED
5242 #ifdef MULTIPROCESSOR
5243 kcpuset_destroy(pm->pm_active);
5244 kcpuset_destroy(pm->pm_onproc);
5245 #endif
5246 #else
5247 struct cpu_info * const ci = curcpu();
5248 if (ci->ci_pmap_lastuser == pm)
5249 ci->ci_pmap_lastuser = NULL;
5250 #endif
5251
5252 uvm_obj_destroy(&pm->pm_obj, false);
5253 mutex_destroy(&pm->pm_obj_lock);
5254 pool_cache_put(&pmap_cache, pm);
5255 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5256 }
5257
5258
5259 /*
5260 * void pmap_reference(pmap_t pm)
5261 *
5262 * Add a reference to the specified pmap.
5263 */
5264 void
5265 pmap_reference(pmap_t pm)
5266 {
5267
5268 if (pm == NULL)
5269 return;
5270
5271 #ifndef ARM_MMU_EXTENDED
5272 pmap_use_l1(pm);
5273 #endif
5274
5275 mutex_enter(pm->pm_lock);
5276 pm->pm_obj.uo_refs++;
5277 mutex_exit(pm->pm_lock);
5278 }
5279
5280 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5281
5282 static struct evcnt pmap_prefer_nochange_ev =
5283 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5284 static struct evcnt pmap_prefer_change_ev =
5285 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5286
5287 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5288 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5289
5290 void
5291 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5292 {
5293 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5294 vaddr_t va = *vap;
5295 vaddr_t diff = (hint - va) & mask;
5296 if (diff == 0) {
5297 pmap_prefer_nochange_ev.ev_count++;
5298 } else {
5299 pmap_prefer_change_ev.ev_count++;
5300 if (__predict_false(td))
5301 va -= mask + 1;
5302 *vap = va + diff;
5303 }
5304 }
5305 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5306
5307 /*
5308 * pmap_zero_page()
5309 *
5310 * Zero a given physical page by mapping it at a page hook point.
5311 * In doing the zero page op, the page we zero is mapped cachable, as with
5312 * StrongARM accesses to non-cached pages are non-burst making writing
5313 * _any_ bulk data very slow.
5314 */
5315 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5316 void
5317 pmap_zero_page_generic(paddr_t pa)
5318 {
5319 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5320 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5321 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5322 #endif
5323 #if defined(PMAP_CACHE_VIPT)
5324 /* Choose the last page color it had, if any */
5325 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5326 #else
5327 const vsize_t va_offset = 0;
5328 #endif
5329 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5330 /*
5331 * Is this page mapped at its natural color?
5332 * If we have all of memory mapped, then just convert PA to VA.
5333 */
5334 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5335 || va_offset == (pa & arm_cache_prefer_mask);
5336 const vaddr_t vdstp = okcolor
5337 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5338 : cpu_cdstp(va_offset);
5339 #else
5340 const bool okcolor = false;
5341 const vaddr_t vdstp = cpu_cdstp(va_offset);
5342 #endif
5343 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5344
5345
5346 #ifdef DEBUG
5347 if (!SLIST_EMPTY(&md->pvh_list))
5348 panic("pmap_zero_page: page has mappings");
5349 #endif
5350
5351 KDASSERT((pa & PGOFSET) == 0);
5352
5353 if (!okcolor) {
5354 /*
5355 * Hook in the page, zero it, and purge the cache for that
5356 * zeroed page. Invalidate the TLB as needed.
5357 */
5358 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5359 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5360 l2pte_set(ptep, npte, 0);
5361 PTE_SYNC(ptep);
5362 cpu_tlb_flushD_SE(vdstp);
5363 cpu_cpwait();
5364 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5365 && !defined(ARM_MMU_EXTENDED)
5366 /*
5367 * If we are direct-mapped and our color isn't ok, then before
5368 * we bzero the page invalidate its contents from the cache and
5369 * reset the color to its natural color.
5370 */
5371 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5372 md->pvh_attrs &= ~arm_cache_prefer_mask;
5373 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5374 #endif
5375 }
5376 bzero_page(vdstp);
5377 if (!okcolor) {
5378 /*
5379 * Unmap the page.
5380 */
5381 l2pte_reset(ptep);
5382 PTE_SYNC(ptep);
5383 cpu_tlb_flushD_SE(vdstp);
5384 #ifdef PMAP_CACHE_VIVT
5385 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5386 #endif
5387 }
5388 #ifdef PMAP_CACHE_VIPT
5389 /*
5390 * This page is now cache resident so it now has a page color.
5391 * Any contents have been obliterated so clear the EXEC flag.
5392 */
5393 #ifndef ARM_MMU_EXTENDED
5394 if (!pmap_is_page_colored_p(md)) {
5395 PMAPCOUNT(vac_color_new);
5396 md->pvh_attrs |= PVF_COLORED;
5397 }
5398 md->pvh_attrs |= PVF_DIRTY;
5399 #endif
5400 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5401 md->pvh_attrs &= ~PVF_EXEC;
5402 PMAPCOUNT(exec_discarded_zero);
5403 }
5404 #endif
5405 }
5406 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5407
5408 #if ARM_MMU_XSCALE == 1
5409 void
5410 pmap_zero_page_xscale(paddr_t pa)
5411 {
5412 #ifdef DEBUG
5413 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5414 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5415
5416 if (!SLIST_EMPTY(&md->pvh_list))
5417 panic("pmap_zero_page: page has mappings");
5418 #endif
5419
5420 KDASSERT((pa & PGOFSET) == 0);
5421
5422 /*
5423 * Hook in the page, zero it, and purge the cache for that
5424 * zeroed page. Invalidate the TLB as needed.
5425 */
5426
5427 pt_entry_t npte = L2_S_PROTO | pa |
5428 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5429 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5430 l2pte_set(cdst_pte, npte, 0);
5431 PTE_SYNC(cdst_pte);
5432 cpu_tlb_flushD_SE(cdstp);
5433 cpu_cpwait();
5434 bzero_page(cdstp);
5435 xscale_cache_clean_minidata();
5436 l2pte_reset(cdst_pte);
5437 PTE_SYNC(cdst_pte);
5438 }
5439 #endif /* ARM_MMU_XSCALE == 1 */
5440
5441 /* pmap_pageidlezero()
5442 *
5443 * The same as above, except that we assume that the page is not
5444 * mapped. This means we never have to flush the cache first. Called
5445 * from the idle loop.
5446 */
5447 bool
5448 pmap_pageidlezero(paddr_t pa)
5449 {
5450 bool rv = true;
5451 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5452 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5453 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5454 #endif
5455 #ifdef PMAP_CACHE_VIPT
5456 /* Choose the last page color it had, if any */
5457 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5458 #else
5459 const vsize_t va_offset = 0;
5460 #endif
5461 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5462 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5463 || va_offset == (pa & arm_cache_prefer_mask);
5464 const vaddr_t vdstp = okcolor
5465 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5466 : cpu_cdstp(va_offset);
5467 #else
5468 const bool okcolor = false;
5469 const vaddr_t vdstp = cpu_cdstp(va_offset);
5470 #endif
5471 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5472
5473
5474 #ifdef DEBUG
5475 if (!SLIST_EMPTY(&md->pvh_list))
5476 panic("pmap_pageidlezero: page has mappings");
5477 #endif
5478
5479 KDASSERT((pa & PGOFSET) == 0);
5480
5481 if (!okcolor) {
5482 /*
5483 * Hook in the page, zero it, and purge the cache for that
5484 * zeroed page. Invalidate the TLB as needed.
5485 */
5486 const pt_entry_t npte = L2_S_PROTO | pa |
5487 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5488 l2pte_set(ptep, npte, 0);
5489 PTE_SYNC(ptep);
5490 cpu_tlb_flushD_SE(vdstp);
5491 cpu_cpwait();
5492 }
5493
5494 uint64_t *ptr = (uint64_t *)vdstp;
5495 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5496 if (sched_curcpu_runnable_p() != 0) {
5497 /*
5498 * A process has become ready. Abort now,
5499 * so we don't keep it waiting while we
5500 * do slow memory access to finish this
5501 * page.
5502 */
5503 rv = false;
5504 break;
5505 }
5506 *ptr++ = 0;
5507 }
5508
5509 #ifdef PMAP_CACHE_VIVT
5510 if (rv)
5511 /*
5512 * if we aborted we'll rezero this page again later so don't
5513 * purge it unless we finished it
5514 */
5515 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5516 #elif defined(PMAP_CACHE_VIPT)
5517 /*
5518 * This page is now cache resident so it now has a page color.
5519 * Any contents have been obliterated so clear the EXEC flag.
5520 */
5521 #ifndef ARM_MMU_EXTENDED
5522 if (!pmap_is_page_colored_p(md)) {
5523 PMAPCOUNT(vac_color_new);
5524 md->pvh_attrs |= PVF_COLORED;
5525 }
5526 #endif
5527 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5528 md->pvh_attrs &= ~PVF_EXEC;
5529 PMAPCOUNT(exec_discarded_zero);
5530 }
5531 #endif
5532 /*
5533 * Unmap the page.
5534 */
5535 if (!okcolor) {
5536 l2pte_reset(ptep);
5537 PTE_SYNC(ptep);
5538 cpu_tlb_flushD_SE(vdstp);
5539 }
5540
5541 return rv;
5542 }
5543
5544 /*
5545 * pmap_copy_page()
5546 *
5547 * Copy one physical page into another, by mapping the pages into
5548 * hook points. The same comment regarding cachability as in
5549 * pmap_zero_page also applies here.
5550 */
5551 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5552 void
5553 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5554 {
5555 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5556 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5557 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5558 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5559 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5560 #endif
5561 #ifdef PMAP_CACHE_VIPT
5562 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5563 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5564 #else
5565 const vsize_t src_va_offset = 0;
5566 const vsize_t dst_va_offset = 0;
5567 #endif
5568 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5569 /*
5570 * Is this page mapped at its natural color?
5571 * If we have all of memory mapped, then just convert PA to VA.
5572 */
5573 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5574 || src_va_offset == (src & arm_cache_prefer_mask);
5575 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5576 || dst_va_offset == (dst & arm_cache_prefer_mask);
5577 const vaddr_t vsrcp = src_okcolor
5578 ? pmap_direct_mapped_phys(src, &src_okcolor,
5579 cpu_csrcp(src_va_offset))
5580 : cpu_csrcp(src_va_offset);
5581 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5582 cpu_cdstp(dst_va_offset));
5583 #else
5584 const bool src_okcolor = false;
5585 const bool dst_okcolor = false;
5586 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5587 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5588 #endif
5589 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5590 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5591
5592 #ifdef DEBUG
5593 if (!SLIST_EMPTY(&dst_md->pvh_list))
5594 panic("pmap_copy_page: dst page has mappings");
5595 #endif
5596
5597 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5598 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5599 #endif
5600 KDASSERT((src & PGOFSET) == 0);
5601 KDASSERT((dst & PGOFSET) == 0);
5602
5603 /*
5604 * Clean the source page. Hold the source page's lock for
5605 * the duration of the copy so that no other mappings can
5606 * be created while we have a potentially aliased mapping.
5607 */
5608 #ifdef PMAP_CACHE_VIVT
5609 pmap_acquire_page_lock(src_md);
5610 (void) pmap_clean_page(src_md, true);
5611 pmap_release_page_lock(src_md);
5612 #endif
5613
5614 /*
5615 * Map the pages into the page hook points, copy them, and purge
5616 * the cache for the appropriate page. Invalidate the TLB
5617 * as required.
5618 */
5619 if (!src_okcolor) {
5620 const pt_entry_t nsrc_pte = L2_S_PROTO
5621 | src
5622 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5623 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5624 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5625 | pte_l2_s_cache_mode
5626 #endif
5627 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5628 l2pte_set(src_ptep, nsrc_pte, 0);
5629 PTE_SYNC(src_ptep);
5630 cpu_tlb_flushD_SE(vsrcp);
5631 cpu_cpwait();
5632 }
5633 if (!dst_okcolor) {
5634 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5635 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5636 l2pte_set(dst_ptep, ndst_pte, 0);
5637 PTE_SYNC(dst_ptep);
5638 cpu_tlb_flushD_SE(vdstp);
5639 cpu_cpwait();
5640 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5641 /*
5642 * If we are direct-mapped and our color isn't ok, then before
5643 * we bcopy to the new page invalidate its contents from the
5644 * cache and reset its color to its natural color.
5645 */
5646 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5647 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5648 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5649 #endif
5650 }
5651 bcopy_page(vsrcp, vdstp);
5652 #ifdef PMAP_CACHE_VIVT
5653 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5654 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5655 #endif
5656 /*
5657 * Unmap the pages.
5658 */
5659 if (!src_okcolor) {
5660 l2pte_reset(src_ptep);
5661 PTE_SYNC(src_ptep);
5662 cpu_tlb_flushD_SE(vsrcp);
5663 cpu_cpwait();
5664 }
5665 if (!dst_okcolor) {
5666 l2pte_reset(dst_ptep);
5667 PTE_SYNC(dst_ptep);
5668 cpu_tlb_flushD_SE(vdstp);
5669 cpu_cpwait();
5670 }
5671 #ifdef PMAP_CACHE_VIPT
5672 /*
5673 * Now that the destination page is in the cache, mark it as colored.
5674 * If this was an exec page, discard it.
5675 */
5676 pmap_acquire_page_lock(dst_md);
5677 #ifndef ARM_MMU_EXTENDED
5678 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5679 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5680 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5681 }
5682 if (!pmap_is_page_colored_p(dst_md)) {
5683 PMAPCOUNT(vac_color_new);
5684 dst_md->pvh_attrs |= PVF_COLORED;
5685 }
5686 dst_md->pvh_attrs |= PVF_DIRTY;
5687 #endif
5688 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5689 dst_md->pvh_attrs &= ~PVF_EXEC;
5690 PMAPCOUNT(exec_discarded_copy);
5691 }
5692 pmap_release_page_lock(dst_md);
5693 #endif
5694 }
5695 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5696
5697 #if ARM_MMU_XSCALE == 1
5698 void
5699 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5700 {
5701 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5702 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5703 #ifdef DEBUG
5704 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5705
5706 if (!SLIST_EMPTY(&dst_md->pvh_list))
5707 panic("pmap_copy_page: dst page has mappings");
5708 #endif
5709
5710 KDASSERT((src & PGOFSET) == 0);
5711 KDASSERT((dst & PGOFSET) == 0);
5712
5713 /*
5714 * Clean the source page. Hold the source page's lock for
5715 * the duration of the copy so that no other mappings can
5716 * be created while we have a potentially aliased mapping.
5717 */
5718 #ifdef PMAP_CACHE_VIVT
5719 pmap_acquire_page_lock(src_md);
5720 (void) pmap_clean_page(src_md, true);
5721 pmap_release_page_lock(src_md);
5722 #endif
5723
5724 /*
5725 * Map the pages into the page hook points, copy them, and purge
5726 * the cache for the appropriate page. Invalidate the TLB
5727 * as required.
5728 */
5729 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5730 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5731 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5732 l2pte_set(csrc_pte, nsrc_pte, 0);
5733 PTE_SYNC(csrc_pte);
5734
5735 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5736 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5737 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5738 l2pte_set(cdst_pte, ndst_pte, 0);
5739 PTE_SYNC(cdst_pte);
5740
5741 cpu_tlb_flushD_SE(csrcp);
5742 cpu_tlb_flushD_SE(cdstp);
5743 cpu_cpwait();
5744 bcopy_page(csrcp, cdstp);
5745 xscale_cache_clean_minidata();
5746 l2pte_reset(csrc_pte);
5747 l2pte_reset(cdst_pte);
5748 PTE_SYNC(csrc_pte);
5749 PTE_SYNC(cdst_pte);
5750 }
5751 #endif /* ARM_MMU_XSCALE == 1 */
5752
5753 /*
5754 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5755 *
5756 * Return the start and end addresses of the kernel's virtual space.
5757 * These values are setup in pmap_bootstrap and are updated as pages
5758 * are allocated.
5759 */
5760 void
5761 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5762 {
5763 *start = virtual_avail;
5764 *end = virtual_end;
5765 }
5766
5767 /*
5768 * Helper function for pmap_grow_l2_bucket()
5769 */
5770 static inline int
5771 pmap_grow_map(vaddr_t va, paddr_t *pap)
5772 {
5773 paddr_t pa;
5774
5775 if (uvm.page_init_done == false) {
5776 #ifdef PMAP_STEAL_MEMORY
5777 pv_addr_t pv;
5778 pmap_boot_pagealloc(PAGE_SIZE,
5779 #ifdef PMAP_CACHE_VIPT
5780 arm_cache_prefer_mask,
5781 va & arm_cache_prefer_mask,
5782 #else
5783 0, 0,
5784 #endif
5785 &pv);
5786 pa = pv.pv_pa;
5787 #else
5788 if (uvm_page_physget(&pa) == false)
5789 return (1);
5790
5791 pmap_kenter_pa(va, pa,
5792 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5793 #endif /* PMAP_STEAL_MEMORY */
5794 } else {
5795 struct vm_page *pg;
5796 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5797 if (pg == NULL)
5798 return (1);
5799 pa = VM_PAGE_TO_PHYS(pg);
5800 /*
5801 * This new page must not have any mappings. Enter it via
5802 * pmap_kenter_pa and let that routine do the hard work.
5803 */
5804 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5805 KASSERT(SLIST_EMPTY(&md->pvh_list));
5806 pmap_kenter_pa(va, pa,
5807 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
5808 }
5809
5810 if (pap)
5811 *pap = pa;
5812
5813 PMAPCOUNT(pt_mappings);
5814 #ifdef DEBUG
5815 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5816 KDASSERT(l2b != NULL);
5817
5818 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
5819 const pt_entry_t opte = *ptep;
5820 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5821 #endif
5822 memset((void *)va, 0, PAGE_SIZE);
5823 return (0);
5824 }
5825
5826 /*
5827 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5828 * used by pmap_growkernel().
5829 */
5830 static inline struct l2_bucket *
5831 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5832 {
5833 struct l2_dtable *l2;
5834 struct l2_bucket *l2b;
5835 u_short l1slot;
5836 vaddr_t nva;
5837
5838 l1slot = l1pte_index(va);
5839
5840 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5841 /*
5842 * No mapping at this address, as there is
5843 * no entry in the L1 table.
5844 * Need to allocate a new l2_dtable.
5845 */
5846 nva = pmap_kernel_l2dtable_kva;
5847 if ((nva & PGOFSET) == 0) {
5848 /*
5849 * Need to allocate a backing page
5850 */
5851 if (pmap_grow_map(nva, NULL))
5852 return (NULL);
5853 }
5854
5855 l2 = (struct l2_dtable *)nva;
5856 nva += sizeof(struct l2_dtable);
5857
5858 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5859 /*
5860 * The new l2_dtable straddles a page boundary.
5861 * Map in another page to cover it.
5862 */
5863 if (pmap_grow_map(nva, NULL))
5864 return (NULL);
5865 }
5866
5867 pmap_kernel_l2dtable_kva = nva;
5868
5869 /*
5870 * Link it into the parent pmap
5871 */
5872 pm->pm_l2[L2_IDX(l1slot)] = l2;
5873 }
5874
5875 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5876
5877 /*
5878 * Fetch pointer to the L2 page table associated with the address.
5879 */
5880 if (l2b->l2b_kva == NULL) {
5881 pt_entry_t *ptep;
5882
5883 /*
5884 * No L2 page table has been allocated. Chances are, this
5885 * is because we just allocated the l2_dtable, above.
5886 */
5887 nva = pmap_kernel_l2ptp_kva;
5888 ptep = (pt_entry_t *)nva;
5889 if ((nva & PGOFSET) == 0) {
5890 /*
5891 * Need to allocate a backing page
5892 */
5893 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5894 return (NULL);
5895 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5896 }
5897
5898 l2->l2_occupancy++;
5899 l2b->l2b_kva = ptep;
5900 l2b->l2b_l1slot = l1slot;
5901 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5902
5903 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5904 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5905 }
5906
5907 return (l2b);
5908 }
5909
5910 vaddr_t
5911 pmap_growkernel(vaddr_t maxkvaddr)
5912 {
5913 pmap_t kpm = pmap_kernel();
5914 #ifndef ARM_MMU_EXTENDED
5915 struct l1_ttable *l1;
5916 #endif
5917 int s;
5918
5919 if (maxkvaddr <= pmap_curmaxkvaddr)
5920 goto out; /* we are OK */
5921
5922 NPDEBUG(PDB_GROWKERN,
5923 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5924 pmap_curmaxkvaddr, maxkvaddr));
5925
5926 KDASSERT(maxkvaddr <= virtual_end);
5927
5928 /*
5929 * whoops! we need to add kernel PTPs
5930 */
5931
5932 s = splvm(); /* to be safe */
5933 mutex_enter(&kpm_lock);
5934
5935 /* Map 1MB at a time */
5936 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5937 #ifdef ARM_MMU_EXTENDED
5938 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5939 pd_entry_t *pdep = spdep;
5940 #endif
5941 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5942 #ifdef ARM_MMU_EXTENDED
5943 pdep++,
5944 #endif
5945 l1slot++) {
5946 struct l2_bucket *l2b =
5947 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5948 KASSERT(l2b != NULL);
5949
5950 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5951 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5952 #ifdef ARM_MMU_EXTENDED
5953 l1pte_setone(pdep, npde);
5954 #else
5955 /* Distribute new L1 entry to all other L1s */
5956 SLIST_FOREACH(l1, &l1_list, l1_link) {
5957 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5958 l1pte_setone(pdep, npde);
5959 PDE_SYNC(pdep);
5960 }
5961 #endif
5962 }
5963 #ifdef ARM_MMU_EXTENDED
5964 PDE_SYNC_RANGE(spdep, pdep - spdep);
5965 #endif
5966
5967 #ifdef PMAP_CACHE_VIVT
5968 /*
5969 * flush out the cache, expensive but growkernel will happen so
5970 * rarely
5971 */
5972 cpu_dcache_wbinv_all();
5973 cpu_tlb_flushD();
5974 cpu_cpwait();
5975 #endif
5976
5977 mutex_exit(&kpm_lock);
5978 splx(s);
5979
5980 out:
5981 return (pmap_curmaxkvaddr);
5982 }
5983
5984 /************************ Utility routines ****************************/
5985
5986 #ifndef ARM_HAS_VBAR
5987 /*
5988 * vector_page_setprot:
5989 *
5990 * Manipulate the protection of the vector page.
5991 */
5992 void
5993 vector_page_setprot(int prot)
5994 {
5995 struct l2_bucket *l2b;
5996 pt_entry_t *ptep;
5997
5998 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5999 /*
6000 * If we are using VBAR to use the vectors in the kernel, then it's
6001 * already mapped in the kernel text so no need to anything here.
6002 */
6003 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6004 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6005 return;
6006 }
6007 #endif
6008
6009 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6010 KASSERT(l2b != NULL);
6011
6012 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6013
6014 const pt_entry_t opte = *ptep;
6015 #ifdef ARM_MMU_EXTENDED
6016 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6017 | L2_S_PROT(PTE_KERNEL, prot);
6018 #else
6019 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6020 | L2_S_PROT(PTE_KERNEL, prot);
6021 #endif
6022 l2pte_set(ptep, npte, opte);
6023 PTE_SYNC(ptep);
6024 cpu_tlb_flushD_SE(vector_page);
6025 cpu_cpwait();
6026 }
6027 #endif
6028
6029 /*
6030 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6031 * Returns true if the mapping exists, else false.
6032 *
6033 * NOTE: This function is only used by a couple of arm-specific modules.
6034 * It is not safe to take any pmap locks here, since we could be right
6035 * in the middle of debugging the pmap anyway...
6036 *
6037 * It is possible for this routine to return false even though a valid
6038 * mapping does exist. This is because we don't lock, so the metadata
6039 * state may be inconsistent.
6040 *
6041 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6042 * a "section" mapping.
6043 */
6044 bool
6045 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6046 {
6047 struct l2_dtable *l2;
6048 pd_entry_t *pdep, pde;
6049 pt_entry_t *ptep;
6050 u_short l1slot;
6051
6052 if (pm->pm_l1 == NULL)
6053 return false;
6054
6055 l1slot = l1pte_index(va);
6056 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6057 pde = *pdep;
6058
6059 if (l1pte_section_p(pde)) {
6060 *ptp = NULL;
6061 return true;
6062 }
6063
6064 l2 = pm->pm_l2[L2_IDX(l1slot)];
6065 if (l2 == NULL ||
6066 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6067 return false;
6068 }
6069
6070 *ptp = &ptep[l2pte_index(va)];
6071 return true;
6072 }
6073
6074 bool
6075 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6076 {
6077
6078 if (pm->pm_l1 == NULL)
6079 return false;
6080
6081 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6082
6083 return true;
6084 }
6085
6086 /************************ Bootstrapping routines ****************************/
6087
6088 #ifndef ARM_MMU_EXTENDED
6089 static void
6090 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6091 {
6092 int i;
6093
6094 l1->l1_kva = l1pt;
6095 l1->l1_domain_use_count = 0;
6096 l1->l1_domain_first = 0;
6097
6098 for (i = 0; i < PMAP_DOMAINS; i++)
6099 l1->l1_domain_free[i] = i + 1;
6100
6101 /*
6102 * Copy the kernel's L1 entries to each new L1.
6103 */
6104 if (pmap_initialized)
6105 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6106
6107 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6108 &l1->l1_physaddr) == false)
6109 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6110
6111 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6112 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6113 }
6114 #endif /* !ARM_MMU_EXTENDED */
6115
6116 /*
6117 * pmap_bootstrap() is called from the board-specific initarm() routine
6118 * once the kernel L1/L2 descriptors tables have been set up.
6119 *
6120 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6121 * spread over a number of disparate files/functions.
6122 *
6123 * We are passed the following parameters
6124 * - vstart
6125 * 1MB-aligned start of managed kernel virtual memory.
6126 * - vend
6127 * 1MB-aligned end of managed kernel virtual memory.
6128 *
6129 * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6130 * struct l2_dtable) necessary to track kernel mappings.
6131 */
6132 #define PMAP_STATIC_L2_SIZE 16
6133 void
6134 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6135 {
6136 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6137 #ifndef ARM_MMU_EXTENDED
6138 static struct l1_ttable static_l1;
6139 struct l1_ttable *l1 = &static_l1;
6140 #endif
6141 struct l2_dtable *l2;
6142 struct l2_bucket *l2b;
6143 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6144 pmap_t pm = pmap_kernel();
6145 pt_entry_t *ptep;
6146 paddr_t pa;
6147 vsize_t size;
6148 int nptes, l2idx, l2next = 0;
6149
6150 #ifdef ARM_MMU_EXTENDED
6151 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6152 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6153 #endif
6154
6155 VPRINTF("kpm ");
6156 /*
6157 * Initialise the kernel pmap object
6158 */
6159 curcpu()->ci_pmap_cur = pm;
6160 #ifdef ARM_MMU_EXTENDED
6161 pm->pm_l1 = l1pt;
6162 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6163 VPRINTF("tlb0 ");
6164 pmap_tlb_info_init(&pmap_tlb0_info);
6165 #ifdef MULTIPROCESSOR
6166 VPRINTF("kcpusets ");
6167 pm->pm_onproc = kcpuset_running;
6168 pm->pm_active = kcpuset_running;
6169 #endif
6170 #else
6171 pm->pm_l1 = l1;
6172 #endif
6173
6174 VPRINTF("locks ");
6175 /*
6176 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6177 * context, so its locks have to be at IPL_VM
6178 */
6179 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6180 mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6181 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_VM);
6182 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
6183 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
6184
6185 VPRINTF("l1pt ");
6186 /*
6187 * Scan the L1 translation table created by initarm() and create
6188 * the required metadata for all valid mappings found in it.
6189 */
6190 for (size_t l1slot = 0;
6191 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6192 l1slot++) {
6193 pd_entry_t pde = l1pt[l1slot];
6194
6195 /*
6196 * We're only interested in Coarse mappings.
6197 * pmap_extract() can deal with section mappings without
6198 * recourse to checking L2 metadata.
6199 */
6200 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6201 continue;
6202
6203 /*
6204 * Lookup the KVA of this L2 descriptor table
6205 */
6206 pa = l1pte_pa(pde);
6207 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6208 if (ptep == NULL) {
6209 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6210 (u_int)l1slot << L1_S_SHIFT, pa);
6211 }
6212
6213 /*
6214 * Fetch the associated L2 metadata structure.
6215 * Allocate a new one if necessary.
6216 */
6217 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6218 if (l2next == PMAP_STATIC_L2_SIZE)
6219 panic("pmap_bootstrap: out of static L2s");
6220 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6221 }
6222
6223 /*
6224 * One more L1 slot tracked...
6225 */
6226 l2->l2_occupancy++;
6227
6228 /*
6229 * Fill in the details of the L2 descriptor in the
6230 * appropriate bucket.
6231 */
6232 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6233 l2b->l2b_kva = ptep;
6234 l2b->l2b_pa = pa;
6235 l2b->l2b_l1slot = l1slot;
6236
6237 /*
6238 * Establish an initial occupancy count for this descriptor
6239 */
6240 for (l2idx = 0;
6241 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6242 l2idx++) {
6243 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6244 l2b->l2b_occupancy++;
6245 }
6246 }
6247
6248 /*
6249 * Make sure the descriptor itself has the correct cache mode.
6250 * If not, fix it, but whine about the problem. Port-meisters
6251 * should consider this a clue to fix up their initarm()
6252 * function. :)
6253 */
6254 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6255 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6256 "L2 pte @ %p\n", ptep);
6257 }
6258 }
6259
6260 VPRINTF("cache(l1pt) ");
6261 /*
6262 * Ensure the primary (kernel) L1 has the correct cache mode for
6263 * a page table. Bitch if it is not correctly set.
6264 */
6265 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6266 L1_TABLE_SIZE / L2_S_SIZE)) {
6267 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6268 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6269 }
6270
6271 #ifdef PMAP_CACHE_VIVT
6272 cpu_dcache_wbinv_all();
6273 cpu_tlb_flushID();
6274 cpu_cpwait();
6275 #endif
6276
6277 /*
6278 * now we allocate the "special" VAs which are used for tmp mappings
6279 * by the pmap (and other modules). we allocate the VAs by advancing
6280 * virtual_avail (note that there are no pages mapped at these VAs).
6281 *
6282 * Managed KVM space start from wherever initarm() tells us.
6283 */
6284 virtual_avail = vstart;
6285 virtual_end = vend;
6286
6287 VPRINTF("specials ");
6288 #ifdef PMAP_CACHE_VIPT
6289 /*
6290 * If we have a VIPT cache, we need one page/pte per possible alias
6291 * page so we won't violate cache aliasing rules.
6292 */
6293 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6294 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6295 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6296 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6297 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6298 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6299 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6300 }
6301 #else
6302 nptes = PAGE_SIZE / L2_S_SIZE;
6303 #endif
6304 #ifdef MULTIPROCESSOR
6305 cnptes = nptes;
6306 nptes *= arm_cpu_max;
6307 #endif
6308 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6309 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6310 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6311 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6312 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6313 if (msgbufaddr == NULL) {
6314 pmap_alloc_specials(&virtual_avail,
6315 round_page(MSGBUFSIZE) / PAGE_SIZE,
6316 (void *)&msgbufaddr, NULL);
6317 }
6318
6319 /*
6320 * Allocate a range of kernel virtual address space to be used
6321 * for L2 descriptor tables and metadata allocation in
6322 * pmap_growkernel().
6323 */
6324 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6325 pmap_alloc_specials(&virtual_avail,
6326 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6327 &pmap_kernel_l2ptp_kva, NULL);
6328
6329 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6330 pmap_alloc_specials(&virtual_avail,
6331 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6332 &pmap_kernel_l2dtable_kva, NULL);
6333
6334 #ifndef ARM_MMU_EXTENDED
6335 /*
6336 * init the static-global locks and global pmap list.
6337 */
6338 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6339
6340 /*
6341 * We can now initialise the first L1's metadata.
6342 */
6343 SLIST_INIT(&l1_list);
6344 TAILQ_INIT(&l1_lru_list);
6345 pmap_init_l1(l1, l1pt);
6346 #endif /* ARM_MMU_EXTENDED */
6347
6348 #ifndef ARM_HAS_VBAR
6349 /* Set up vector page L1 details, if necessary */
6350 if (vector_page < KERNEL_BASE) {
6351 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6352 l2b = pmap_get_l2_bucket(pm, vector_page);
6353 KDASSERT(l2b != NULL);
6354 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6355 L1_C_DOM(pmap_domain(pm));
6356 } else
6357 pm->pm_pl1vec = NULL;
6358 #endif
6359
6360 VPRINTF("pools ");
6361 /*
6362 * Initialize the pmap cache
6363 */
6364 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6365 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6366
6367 /*
6368 * Initialize the pv pool.
6369 */
6370 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6371 &pmap_bootstrap_pv_allocator, IPL_NONE);
6372
6373 /*
6374 * Initialize the L2 dtable pool and cache.
6375 */
6376 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6377 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6378
6379 /*
6380 * Initialise the L2 descriptor table pool and cache
6381 */
6382 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6383 L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6384 pmap_l2ptp_ctor, NULL, NULL);
6385
6386 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6387
6388 cpu_dcache_wbinv_all();
6389 }
6390
6391 static bool
6392 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6393 {
6394 #ifdef ARM_MMU_EXTENDED
6395 return false;
6396 #else
6397 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6398 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6399 return false;
6400
6401 const vaddr_t eva = va + nptes * PAGE_SIZE;
6402 int rv = 0;
6403
6404 while (va < eva) {
6405 /*
6406 * Make sure the descriptor itself has the correct cache mode
6407 */
6408 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6409 pd_entry_t pde = *pdep;
6410
6411 if (l1pte_section_p(pde)) {
6412 KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6413 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6414 *pdep = (pde & ~L1_S_CACHE_MASK) |
6415 pte_l1_s_cache_mode_pt;
6416 PDE_SYNC(pdep);
6417 cpu_dcache_wbinv_range((vaddr_t)pdep,
6418 sizeof(*pdep));
6419 rv = 1;
6420 }
6421 return rv;
6422 }
6423 vaddr_t pa = l1pte_pa(pde);
6424 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6425 if (ptep == NULL)
6426 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6427
6428 ptep += l2pte_index(va);
6429 const pt_entry_t opte = *ptep;
6430 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6431 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6432 | pte_l2_s_cache_mode_pt;
6433 l2pte_set(ptep, npte, opte);
6434 PTE_SYNC(ptep);
6435 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6436 rv = 1;
6437 }
6438 va += PAGE_SIZE;
6439 }
6440
6441 return (rv);
6442 #endif
6443 }
6444
6445 static void
6446 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6447 {
6448 vaddr_t va = *availp;
6449 struct l2_bucket *l2b;
6450
6451 if (ptep) {
6452 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6453 if (l2b == NULL)
6454 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6455
6456 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6457 }
6458
6459 *vap = va;
6460 *availp = va + (PAGE_SIZE * pages);
6461 }
6462
6463 void
6464 pmap_init(void)
6465 {
6466
6467 /*
6468 * Set the available memory vars - These do not map to real memory
6469 * addresses and cannot as the physical memory is fragmented.
6470 * They are used by ps for %mem calculations.
6471 * One could argue whether this should be the entire memory or just
6472 * the memory that is useable in a user process.
6473 */
6474 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6475 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6476
6477 /*
6478 * Now we need to free enough pv_entry structures to allow us to get
6479 * the kmem_map/kmem_object allocated and inited (done after this
6480 * function is finished). to do this we allocate one bootstrap page out
6481 * of kernel_map and use it to provide an initial pool of pv_entry
6482 * structures. we never free this page.
6483 */
6484 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6485
6486 #ifdef ARM_MMU_EXTENDED
6487 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6488 #endif
6489
6490 pmap_initialized = true;
6491 }
6492
6493 static vaddr_t last_bootstrap_page = 0;
6494 static void *free_bootstrap_pages = NULL;
6495
6496 static void *
6497 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6498 {
6499 extern void *pool_page_alloc(struct pool *, int);
6500 vaddr_t new_page;
6501 void *rv;
6502
6503 if (pmap_initialized)
6504 return (pool_page_alloc(pp, flags));
6505
6506 if (free_bootstrap_pages) {
6507 rv = free_bootstrap_pages;
6508 free_bootstrap_pages = *((void **)rv);
6509 return (rv);
6510 }
6511
6512 KASSERT(kernel_map != NULL);
6513 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6514 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6515
6516 KASSERT(new_page > last_bootstrap_page);
6517 last_bootstrap_page = new_page;
6518 return ((void *)new_page);
6519 }
6520
6521 static void
6522 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6523 {
6524 extern void pool_page_free(struct pool *, void *);
6525
6526 if ((vaddr_t)v <= last_bootstrap_page) {
6527 *((void **)v) = free_bootstrap_pages;
6528 free_bootstrap_pages = v;
6529 return;
6530 }
6531
6532 if (pmap_initialized) {
6533 pool_page_free(pp, v);
6534 return;
6535 }
6536 }
6537
6538 /*
6539 * pmap_postinit()
6540 *
6541 * This routine is called after the vm and kmem subsystems have been
6542 * initialised. This allows the pmap code to perform any initialisation
6543 * that can only be done once the memory allocation is in place.
6544 */
6545 void
6546 pmap_postinit(void)
6547 {
6548 #ifndef ARM_MMU_EXTENDED
6549 extern paddr_t physical_start, physical_end;
6550 struct l1_ttable *l1;
6551 struct pglist plist;
6552 struct vm_page *m;
6553 pd_entry_t *pdep;
6554 vaddr_t va, eva;
6555 u_int loop, needed;
6556 int error;
6557 #endif
6558
6559 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6560 pool_cache_setlowat(&pmap_l2dtable_cache,
6561 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6562
6563 #ifndef ARM_MMU_EXTENDED
6564 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6565 needed -= 1;
6566
6567 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6568
6569 for (loop = 0; loop < needed; loop++, l1++) {
6570 /* Allocate a L1 page table */
6571 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6572 if (va == 0)
6573 panic("Cannot allocate L1 KVM");
6574
6575 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6576 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6577 if (error)
6578 panic("Cannot allocate L1 physical pages");
6579
6580 m = TAILQ_FIRST(&plist);
6581 eva = va + L1_TABLE_SIZE;
6582 pdep = (pd_entry_t *)va;
6583
6584 while (m && va < eva) {
6585 paddr_t pa = VM_PAGE_TO_PHYS(m);
6586
6587 pmap_kenter_pa(va, pa,
6588 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6589
6590 va += PAGE_SIZE;
6591 m = TAILQ_NEXT(m, pageq.queue);
6592 }
6593
6594 #ifdef DIAGNOSTIC
6595 if (m)
6596 panic("pmap_alloc_l1pt: pglist not empty");
6597 #endif /* DIAGNOSTIC */
6598
6599 pmap_init_l1(l1, pdep);
6600 }
6601
6602 #ifdef DEBUG
6603 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6604 needed);
6605 #endif
6606 #endif /* !ARM_MMU_EXTENDED */
6607 }
6608
6609 /*
6610 * Note that the following routines are used by board-specific initialisation
6611 * code to configure the initial kernel page tables.
6612 *
6613 */
6614
6615 /*
6616 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6617 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6618 * find them as necessary.
6619 *
6620 * Note that the data on this list MUST remain valid after initarm() returns,
6621 * as pmap_bootstrap() uses it to contruct L2 table metadata.
6622 */
6623 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6624
6625 static vaddr_t
6626 kernel_pt_lookup(paddr_t pa)
6627 {
6628 pv_addr_t *pv;
6629
6630 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6631 if (pv->pv_pa == (pa & ~PGOFSET))
6632 return (pv->pv_va | (pa & PGOFSET));
6633 }
6634 return (0);
6635 }
6636
6637 /*
6638 * pmap_map_section:
6639 *
6640 * Create a single section mapping.
6641 */
6642 void
6643 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6644 {
6645 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6646 const size_t l1slot = l1pte_index(va);
6647 pd_entry_t fl;
6648
6649 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6650
6651 switch (cache) {
6652 case PTE_NOCACHE:
6653 default:
6654 fl = 0;
6655 break;
6656
6657 case PTE_CACHE:
6658 fl = pte_l1_s_cache_mode;
6659 break;
6660
6661 case PTE_PAGETABLE:
6662 fl = pte_l1_s_cache_mode_pt;
6663 break;
6664 }
6665
6666 const pd_entry_t npde = L1_S_PROTO | pa |
6667 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6668 l1pte_setone(pdep + l1slot, npde);
6669 PDE_SYNC(pdep + l1slot);
6670 }
6671
6672 /*
6673 * pmap_map_entry:
6674 *
6675 * Create a single page mapping.
6676 */
6677 void
6678 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6679 {
6680 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6681 const size_t l1slot = l1pte_index(va);
6682 pt_entry_t npte;
6683 pt_entry_t *ptep;
6684
6685 KASSERT(((va | pa) & PGOFSET) == 0);
6686
6687 switch (cache) {
6688 case PTE_NOCACHE:
6689 default:
6690 npte = 0;
6691 break;
6692
6693 case PTE_CACHE:
6694 npte = pte_l2_s_cache_mode;
6695 break;
6696
6697 case PTE_PAGETABLE:
6698 npte = pte_l2_s_cache_mode_pt;
6699 break;
6700 }
6701
6702 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6703 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6704
6705 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6706 if (ptep == NULL)
6707 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6708
6709 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6710 #ifdef ARM_MMU_EXTENDED
6711 if (prot & VM_PROT_EXECUTE) {
6712 npte &= ~L2_XS_XN;
6713 }
6714 #endif
6715 ptep += l2pte_index(va);
6716 l2pte_set(ptep, npte, 0);
6717 PTE_SYNC(ptep);
6718 }
6719
6720 /*
6721 * pmap_link_l2pt:
6722 *
6723 * Link the L2 page table specified by "l2pv" into the L1
6724 * page table at the slot for "va".
6725 */
6726 void
6727 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6728 {
6729 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6730
6731 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6732 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6733
6734 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6735 | l2pv->pv_pa;
6736
6737 l1pte_set(pdep, npde);
6738 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6739
6740 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6741 }
6742
6743 /*
6744 * pmap_map_chunk:
6745 *
6746 * Map a chunk of memory using the most efficient mappings
6747 * possible (section, large page, small page) into the
6748 * provided L1 and L2 tables at the specified virtual address.
6749 */
6750 vsize_t
6751 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6752 int prot, int cache)
6753 {
6754 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6755 pt_entry_t f1, f2s, f2l;
6756 vsize_t resid;
6757
6758 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6759
6760 if (l1pt == 0)
6761 panic("pmap_map_chunk: no L1 table provided");
6762
6763 // VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6764 // "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6765
6766 switch (cache) {
6767 case PTE_NOCACHE:
6768 default:
6769 f1 = 0;
6770 f2l = 0;
6771 f2s = 0;
6772 break;
6773
6774 case PTE_CACHE:
6775 f1 = pte_l1_s_cache_mode;
6776 f2l = pte_l2_l_cache_mode;
6777 f2s = pte_l2_s_cache_mode;
6778 break;
6779
6780 case PTE_PAGETABLE:
6781 f1 = pte_l1_s_cache_mode_pt;
6782 f2l = pte_l2_l_cache_mode_pt;
6783 f2s = pte_l2_s_cache_mode_pt;
6784 break;
6785 }
6786
6787 size = resid;
6788
6789 while (resid > 0) {
6790 const size_t l1slot = l1pte_index(va);
6791 #ifdef ARM_MMU_EXTENDED
6792 /* See if we can use a supersection mapping. */
6793 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6794 /* Supersection are always domain 0 */
6795 const pd_entry_t npde = L1_SS_PROTO | pa
6796 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6797 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6798 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6799 VPRINTF("sS");
6800 l1pte_set(&pdep[l1slot], npde);
6801 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6802 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6803 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6804 va += L1_SS_SIZE;
6805 pa += L1_SS_SIZE;
6806 resid -= L1_SS_SIZE;
6807 continue;
6808 }
6809 #endif
6810 /* See if we can use a section mapping. */
6811 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6812 const pd_entry_t npde = L1_S_PROTO | pa
6813 #ifdef ARM_MMU_EXTENDED
6814 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6815 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6816 #endif
6817 | L1_S_PROT(PTE_KERNEL, prot) | f1
6818 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6819 VPRINTF("S");
6820 l1pte_set(&pdep[l1slot], npde);
6821 PDE_SYNC(&pdep[l1slot]);
6822 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6823 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6824 va += L1_S_SIZE;
6825 pa += L1_S_SIZE;
6826 resid -= L1_S_SIZE;
6827 continue;
6828 }
6829
6830 /*
6831 * Ok, we're going to use an L2 table. Make sure
6832 * one is actually in the corresponding L1 slot
6833 * for the current VA.
6834 */
6835 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6836 panic("%s: no L2 table for VA %#lx", __func__, va);
6837
6838 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6839 if (ptep == NULL)
6840 panic("%s: can't find L2 table for VA %#lx", __func__,
6841 va);
6842
6843 ptep += l2pte_index(va);
6844
6845 /* See if we can use a L2 large page mapping. */
6846 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6847 const pt_entry_t npte = L2_L_PROTO | pa
6848 #ifdef ARM_MMU_EXTENDED
6849 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6850 | (va & 0x80000000 ? 0 : L2_XS_nG)
6851 #endif
6852 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6853 VPRINTF("L");
6854 l2pte_set(ptep, npte, 0);
6855 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6856 va += L2_L_SIZE;
6857 pa += L2_L_SIZE;
6858 resid -= L2_L_SIZE;
6859 continue;
6860 }
6861
6862 VPRINTF("P");
6863 /* Use a small page mapping. */
6864 pt_entry_t npte = L2_S_PROTO | pa
6865 #ifdef ARM_MMU_EXTENDED
6866 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6867 | (va & 0x80000000 ? 0 : L2_XS_nG)
6868 #endif
6869 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6870 #ifdef ARM_MMU_EXTENDED
6871 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6872 #endif
6873 l2pte_set(ptep, npte, 0);
6874 PTE_SYNC(ptep);
6875 va += PAGE_SIZE;
6876 pa += PAGE_SIZE;
6877 resid -= PAGE_SIZE;
6878 }
6879 VPRINTF("\n");
6880 return (size);
6881 }
6882
6883 /*
6884 * pmap_unmap_chunk:
6885 *
6886 * Unmap a chunk of memory that was previously pmap_map_chunk
6887 */
6888 void
6889 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
6890 {
6891 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6892 const size_t l1slot = l1pte_index(va);
6893
6894 KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
6895
6896 l1pte_set(&pdep[l1slot], 0);
6897 PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
6898
6899 pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
6900 }
6901
6902
6903
6904 /********************** Static device map routines ***************************/
6905
6906 static const struct pmap_devmap *pmap_devmap_table;
6907
6908 /*
6909 * Register the devmap table. This is provided in case early console
6910 * initialization needs to register mappings created by bootstrap code
6911 * before pmap_devmap_bootstrap() is called.
6912 */
6913 void
6914 pmap_devmap_register(const struct pmap_devmap *table)
6915 {
6916
6917 pmap_devmap_table = table;
6918 }
6919
6920 /*
6921 * Map all of the static regions in the devmap table, and remember
6922 * the devmap table so other parts of the kernel can look up entries
6923 * later.
6924 */
6925 void
6926 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6927 {
6928 int i;
6929
6930 pmap_devmap_table = table;
6931
6932 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6933 const struct pmap_devmap *pdp = &pmap_devmap_table[i];
6934
6935 KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
6936 " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
6937 KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
6938 " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
6939 VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
6940 pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
6941
6942 pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
6943 pdp->pd_prot, pdp->pd_cache);
6944 }
6945 }
6946
6947 const struct pmap_devmap *
6948 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6949 {
6950 uint64_t endpa;
6951 int i;
6952
6953 if (pmap_devmap_table == NULL)
6954 return (NULL);
6955
6956 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6957
6958 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6959 if (pa >= pmap_devmap_table[i].pd_pa &&
6960 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6961 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6962 return (&pmap_devmap_table[i]);
6963 }
6964
6965 return (NULL);
6966 }
6967
6968 const struct pmap_devmap *
6969 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6970 {
6971 int i;
6972
6973 if (pmap_devmap_table == NULL)
6974 return (NULL);
6975
6976 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6977 if (va >= pmap_devmap_table[i].pd_va &&
6978 va + size - 1 <= pmap_devmap_table[i].pd_va +
6979 pmap_devmap_table[i].pd_size - 1)
6980 return (&pmap_devmap_table[i]);
6981 }
6982
6983 return (NULL);
6984 }
6985
6986 /********************** PTE initialization routines **************************/
6987
6988 /*
6989 * These routines are called when the CPU type is identified to set up
6990 * the PTE prototypes, cache modes, etc.
6991 *
6992 * The variables are always here, just in case modules need to reference
6993 * them (though, they shouldn't).
6994 */
6995
6996 pt_entry_t pte_l1_s_cache_mode;
6997 pt_entry_t pte_l1_s_wc_mode;
6998 pt_entry_t pte_l1_s_cache_mode_pt;
6999 pt_entry_t pte_l1_s_cache_mask;
7000
7001 pt_entry_t pte_l2_l_cache_mode;
7002 pt_entry_t pte_l2_l_wc_mode;
7003 pt_entry_t pte_l2_l_cache_mode_pt;
7004 pt_entry_t pte_l2_l_cache_mask;
7005
7006 pt_entry_t pte_l2_s_cache_mode;
7007 pt_entry_t pte_l2_s_wc_mode;
7008 pt_entry_t pte_l2_s_cache_mode_pt;
7009 pt_entry_t pte_l2_s_cache_mask;
7010
7011 pt_entry_t pte_l1_s_prot_u;
7012 pt_entry_t pte_l1_s_prot_w;
7013 pt_entry_t pte_l1_s_prot_ro;
7014 pt_entry_t pte_l1_s_prot_mask;
7015
7016 pt_entry_t pte_l2_s_prot_u;
7017 pt_entry_t pte_l2_s_prot_w;
7018 pt_entry_t pte_l2_s_prot_ro;
7019 pt_entry_t pte_l2_s_prot_mask;
7020
7021 pt_entry_t pte_l2_l_prot_u;
7022 pt_entry_t pte_l2_l_prot_w;
7023 pt_entry_t pte_l2_l_prot_ro;
7024 pt_entry_t pte_l2_l_prot_mask;
7025
7026 pt_entry_t pte_l1_ss_proto;
7027 pt_entry_t pte_l1_s_proto;
7028 pt_entry_t pte_l1_c_proto;
7029 pt_entry_t pte_l2_s_proto;
7030
7031 void (*pmap_copy_page_func)(paddr_t, paddr_t);
7032 void (*pmap_zero_page_func)(paddr_t);
7033
7034 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7035 void
7036 pmap_pte_init_generic(void)
7037 {
7038
7039 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7040 pte_l1_s_wc_mode = L1_S_B;
7041 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7042
7043 pte_l2_l_cache_mode = L2_B|L2_C;
7044 pte_l2_l_wc_mode = L2_B;
7045 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7046
7047 pte_l2_s_cache_mode = L2_B|L2_C;
7048 pte_l2_s_wc_mode = L2_B;
7049 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7050
7051 /*
7052 * If we have a write-through cache, set B and C. If
7053 * we have a write-back cache, then we assume setting
7054 * only C will make those pages write-through (except for those
7055 * Cortex CPUs which can read the L1 caches).
7056 */
7057 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7058 #if ARM_MMU_V7 > 0
7059 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7060 #endif
7061 #if ARM_MMU_V6 > 0
7062 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7063 #endif
7064 || false) {
7065 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7066 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7067 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7068 } else {
7069 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7070 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7071 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7072 }
7073
7074 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7075 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7076 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7077 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7078
7079 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7080 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7081 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7082 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7083
7084 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7085 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7086 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7087 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7088
7089 pte_l1_ss_proto = L1_SS_PROTO_generic;
7090 pte_l1_s_proto = L1_S_PROTO_generic;
7091 pte_l1_c_proto = L1_C_PROTO_generic;
7092 pte_l2_s_proto = L2_S_PROTO_generic;
7093
7094 pmap_copy_page_func = pmap_copy_page_generic;
7095 pmap_zero_page_func = pmap_zero_page_generic;
7096 }
7097
7098 #if defined(CPU_ARM8)
7099 void
7100 pmap_pte_init_arm8(void)
7101 {
7102
7103 /*
7104 * ARM8 is compatible with generic, but we need to use
7105 * the page tables uncached.
7106 */
7107 pmap_pte_init_generic();
7108
7109 pte_l1_s_cache_mode_pt = 0;
7110 pte_l2_l_cache_mode_pt = 0;
7111 pte_l2_s_cache_mode_pt = 0;
7112 }
7113 #endif /* CPU_ARM8 */
7114
7115 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7116 void
7117 pmap_pte_init_arm9(void)
7118 {
7119
7120 /*
7121 * ARM9 is compatible with generic, but we want to use
7122 * write-through caching for now.
7123 */
7124 pmap_pte_init_generic();
7125
7126 pte_l1_s_cache_mode = L1_S_C;
7127 pte_l2_l_cache_mode = L2_C;
7128 pte_l2_s_cache_mode = L2_C;
7129
7130 pte_l1_s_wc_mode = L1_S_B;
7131 pte_l2_l_wc_mode = L2_B;
7132 pte_l2_s_wc_mode = L2_B;
7133
7134 pte_l1_s_cache_mode_pt = L1_S_C;
7135 pte_l2_l_cache_mode_pt = L2_C;
7136 pte_l2_s_cache_mode_pt = L2_C;
7137 }
7138 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7139 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7140
7141 #if defined(CPU_ARM10)
7142 void
7143 pmap_pte_init_arm10(void)
7144 {
7145
7146 /*
7147 * ARM10 is compatible with generic, but we want to use
7148 * write-through caching for now.
7149 */
7150 pmap_pte_init_generic();
7151
7152 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7153 pte_l2_l_cache_mode = L2_B | L2_C;
7154 pte_l2_s_cache_mode = L2_B | L2_C;
7155
7156 pte_l1_s_cache_mode = L1_S_B;
7157 pte_l2_l_cache_mode = L2_B;
7158 pte_l2_s_cache_mode = L2_B;
7159
7160 pte_l1_s_cache_mode_pt = L1_S_C;
7161 pte_l2_l_cache_mode_pt = L2_C;
7162 pte_l2_s_cache_mode_pt = L2_C;
7163
7164 }
7165 #endif /* CPU_ARM10 */
7166
7167 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7168 void
7169 pmap_pte_init_arm11(void)
7170 {
7171
7172 /*
7173 * ARM11 is compatible with generic, but we want to use
7174 * write-through caching for now.
7175 */
7176 pmap_pte_init_generic();
7177
7178 pte_l1_s_cache_mode = L1_S_C;
7179 pte_l2_l_cache_mode = L2_C;
7180 pte_l2_s_cache_mode = L2_C;
7181
7182 pte_l1_s_wc_mode = L1_S_B;
7183 pte_l2_l_wc_mode = L2_B;
7184 pte_l2_s_wc_mode = L2_B;
7185
7186 pte_l1_s_cache_mode_pt = L1_S_C;
7187 pte_l2_l_cache_mode_pt = L2_C;
7188 pte_l2_s_cache_mode_pt = L2_C;
7189 }
7190 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7191
7192 #if ARM_MMU_SA1 == 1
7193 void
7194 pmap_pte_init_sa1(void)
7195 {
7196
7197 /*
7198 * The StrongARM SA-1 cache does not have a write-through
7199 * mode. So, do the generic initialization, then reset
7200 * the page table cache mode to B=1,C=1, and note that
7201 * the PTEs need to be sync'd.
7202 */
7203 pmap_pte_init_generic();
7204
7205 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7206 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7207 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7208
7209 pmap_needs_pte_sync = 1;
7210 }
7211 #endif /* ARM_MMU_SA1 == 1*/
7212
7213 #if ARM_MMU_XSCALE == 1
7214 #if (ARM_NMMUS > 1)
7215 static u_int xscale_use_minidata;
7216 #endif
7217
7218 void
7219 pmap_pte_init_xscale(void)
7220 {
7221 uint32_t auxctl;
7222 int write_through = 0;
7223
7224 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7225 pte_l1_s_wc_mode = L1_S_B;
7226 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7227
7228 pte_l2_l_cache_mode = L2_B|L2_C;
7229 pte_l2_l_wc_mode = L2_B;
7230 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7231
7232 pte_l2_s_cache_mode = L2_B|L2_C;
7233 pte_l2_s_wc_mode = L2_B;
7234 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7235
7236 pte_l1_s_cache_mode_pt = L1_S_C;
7237 pte_l2_l_cache_mode_pt = L2_C;
7238 pte_l2_s_cache_mode_pt = L2_C;
7239
7240 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7241 /*
7242 * The XScale core has an enhanced mode where writes that
7243 * miss the cache cause a cache line to be allocated. This
7244 * is significantly faster than the traditional, write-through
7245 * behavior of this case.
7246 */
7247 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7248 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7249 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7250 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7251
7252 #ifdef XSCALE_CACHE_WRITE_THROUGH
7253 /*
7254 * Some versions of the XScale core have various bugs in
7255 * their cache units, the work-around for which is to run
7256 * the cache in write-through mode. Unfortunately, this
7257 * has a major (negative) impact on performance. So, we
7258 * go ahead and run fast-and-loose, in the hopes that we
7259 * don't line up the planets in a way that will trip the
7260 * bugs.
7261 *
7262 * However, we give you the option to be slow-but-correct.
7263 */
7264 write_through = 1;
7265 #elif defined(XSCALE_CACHE_WRITE_BACK)
7266 /* force write back cache mode */
7267 write_through = 0;
7268 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7269 /*
7270 * Intel PXA2[15]0 processors are known to have a bug in
7271 * write-back cache on revision 4 and earlier (stepping
7272 * A[01] and B[012]). Fixed for C0 and later.
7273 */
7274 {
7275 uint32_t id, type;
7276
7277 id = cpufunc_id();
7278 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7279
7280 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7281 if ((id & CPU_ID_REVISION_MASK) < 5) {
7282 /* write through for stepping A0-1 and B0-2 */
7283 write_through = 1;
7284 }
7285 }
7286 }
7287 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7288
7289 if (write_through) {
7290 pte_l1_s_cache_mode = L1_S_C;
7291 pte_l2_l_cache_mode = L2_C;
7292 pte_l2_s_cache_mode = L2_C;
7293 }
7294
7295 #if (ARM_NMMUS > 1)
7296 xscale_use_minidata = 1;
7297 #endif
7298
7299 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7300 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7301 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7302 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7303
7304 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7305 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7306 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7307 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7308
7309 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7310 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7311 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7312 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7313
7314 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7315 pte_l1_s_proto = L1_S_PROTO_xscale;
7316 pte_l1_c_proto = L1_C_PROTO_xscale;
7317 pte_l2_s_proto = L2_S_PROTO_xscale;
7318
7319 pmap_copy_page_func = pmap_copy_page_xscale;
7320 pmap_zero_page_func = pmap_zero_page_xscale;
7321
7322 /*
7323 * Disable ECC protection of page table access, for now.
7324 */
7325 auxctl = armreg_auxctl_read();
7326 auxctl &= ~XSCALE_AUXCTL_P;
7327 armreg_auxctl_write(auxctl);
7328 }
7329
7330 /*
7331 * xscale_setup_minidata:
7332 *
7333 * Set up the mini-data cache clean area. We require the
7334 * caller to allocate the right amount of physically and
7335 * virtually contiguous space.
7336 */
7337 void
7338 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7339 {
7340 extern vaddr_t xscale_minidata_clean_addr;
7341 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7342 pd_entry_t *pde = (pd_entry_t *) l1pt;
7343 vsize_t size;
7344 uint32_t auxctl;
7345
7346 xscale_minidata_clean_addr = va;
7347
7348 /* Round it to page size. */
7349 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7350
7351 for (; size != 0;
7352 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7353 const size_t l1slot = l1pte_index(va);
7354 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7355 if (ptep == NULL)
7356 panic("xscale_setup_minidata: can't find L2 table for "
7357 "VA 0x%08lx", va);
7358
7359 ptep += l2pte_index(va);
7360 pt_entry_t opte = *ptep;
7361 l2pte_set(ptep,
7362 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7363 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7364 }
7365
7366 /*
7367 * Configure the mini-data cache for write-back with
7368 * read/write-allocate.
7369 *
7370 * NOTE: In order to reconfigure the mini-data cache, we must
7371 * make sure it contains no valid data! In order to do that,
7372 * we must issue a global data cache invalidate command!
7373 *
7374 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7375 * THIS IS VERY IMPORTANT!
7376 */
7377
7378 /* Invalidate data and mini-data. */
7379 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7380 auxctl = armreg_auxctl_read();
7381 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7382 armreg_auxctl_write(auxctl);
7383 }
7384
7385 /*
7386 * Change the PTEs for the specified kernel mappings such that they
7387 * will use the mini data cache instead of the main data cache.
7388 */
7389 void
7390 pmap_uarea(vaddr_t va)
7391 {
7392 vaddr_t next_bucket, eva;
7393
7394 #if (ARM_NMMUS > 1)
7395 if (xscale_use_minidata == 0)
7396 return;
7397 #endif
7398
7399 eva = va + USPACE;
7400
7401 while (va < eva) {
7402 next_bucket = L2_NEXT_BUCKET_VA(va);
7403 if (next_bucket > eva)
7404 next_bucket = eva;
7405
7406 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7407 KDASSERT(l2b != NULL);
7408
7409 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7410 pt_entry_t *ptep = sptep;
7411
7412 while (va < next_bucket) {
7413 const pt_entry_t opte = *ptep;
7414 if (!l2pte_minidata_p(opte)) {
7415 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7416 cpu_tlb_flushD_SE(va);
7417 l2pte_set(ptep, opte & ~L2_B, opte);
7418 }
7419 ptep += PAGE_SIZE / L2_S_SIZE;
7420 va += PAGE_SIZE;
7421 }
7422 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7423 }
7424 cpu_cpwait();
7425 }
7426 #endif /* ARM_MMU_XSCALE == 1 */
7427
7428
7429 #if defined(CPU_ARM11MPCORE)
7430
7431 void
7432 pmap_pte_init_arm11mpcore(void)
7433 {
7434
7435 /* cache mode is controlled by 5 bits (B, C, TEX) */
7436 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7437 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7438 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7439 /* use extended small page (without APn, with TEX) */
7440 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7441 #else
7442 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7443 #endif
7444
7445 /* write-back, write-allocate */
7446 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7447 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7448 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7449 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7450 #else
7451 /* no TEX. read-allocate */
7452 pte_l2_s_cache_mode = L2_C | L2_B;
7453 #endif
7454 /*
7455 * write-back, write-allocate for page tables.
7456 */
7457 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7458 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7459 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7460 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7461 #else
7462 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7463 #endif
7464
7465 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7466 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7467 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7468 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7469
7470 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7471 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7472 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7473 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7474 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7475
7476 #else
7477 /* with AP[0..3] */
7478 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7479 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7480 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7481 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7482 #endif
7483
7484 #ifdef ARM11MPCORE_COMPAT_MMU
7485 /* with AP[0..3] */
7486 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7487 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7488 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7489 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7490
7491 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7492 pte_l1_s_proto = L1_S_PROTO_armv6;
7493 pte_l1_c_proto = L1_C_PROTO_armv6;
7494 pte_l2_s_proto = L2_S_PROTO_armv6c;
7495 #else
7496 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7497 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7498 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7499 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7500
7501 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7502 pte_l1_s_proto = L1_S_PROTO_armv6;
7503 pte_l1_c_proto = L1_C_PROTO_armv6;
7504 pte_l2_s_proto = L2_S_PROTO_armv6n;
7505 #endif
7506
7507 pmap_copy_page_func = pmap_copy_page_generic;
7508 pmap_zero_page_func = pmap_zero_page_generic;
7509 pmap_needs_pte_sync = 1;
7510 }
7511 #endif /* CPU_ARM11MPCORE */
7512
7513
7514 #if ARM_MMU_V7 == 1
7515 void
7516 pmap_pte_init_armv7(void)
7517 {
7518 /*
7519 * The ARMv7-A MMU is mostly compatible with generic. If the
7520 * AP field is zero, that now means "no access" rather than
7521 * read-only. The prototypes are a little different because of
7522 * the XN bit.
7523 */
7524 pmap_pte_init_generic();
7525
7526 pmap_needs_pte_sync = 1;
7527
7528 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7529 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7530 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7531
7532 /*
7533 * If the core support coherent walk then updates to translation tables
7534 * do not require a clean to the point of unification to ensure
7535 * visibility by subsequent translation table walks. That means we can
7536 * map everything shareable and cached and the right thing will happen.
7537 */
7538 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7539 pmap_needs_pte_sync = 0;
7540
7541 /*
7542 * write-back, no write-allocate, shareable for normal pages.
7543 */
7544 pte_l1_s_cache_mode |= L1_S_V6_S;
7545 pte_l2_l_cache_mode |= L2_XS_S;
7546 pte_l2_s_cache_mode |= L2_XS_S;
7547 }
7548
7549 /*
7550 * Page tables are just all other memory. We can use write-back since
7551 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7552 */
7553 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7554 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7555 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7556
7557 /*
7558 * Check the Memory Model Features to see if this CPU supports
7559 * the TLBIASID coproc op.
7560 */
7561 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7562 arm_has_tlbiasid_p = true;
7563 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7564 arm_has_tlbiasid_p = true;
7565 }
7566
7567 /*
7568 * Check the MPIDR to see if this CPU supports MP extensions.
7569 */
7570 #ifdef MULTIPROCESSOR
7571 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7572 #else
7573 arm_has_mpext_p = false;
7574 #endif
7575
7576 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7577 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7578 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7579 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7580
7581 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7582 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7583 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7584 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7585
7586 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7587 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7588 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7589 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7590
7591 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7592 pte_l1_s_proto = L1_S_PROTO_armv7;
7593 pte_l1_c_proto = L1_C_PROTO_armv7;
7594 pte_l2_s_proto = L2_S_PROTO_armv7;
7595
7596 }
7597 #endif /* ARM_MMU_V7 */
7598
7599 /*
7600 * return the PA of the current L1 table, for use when handling a crash dump
7601 */
7602 uint32_t
7603 pmap_kernel_L1_addr(void)
7604 {
7605 #ifdef ARM_MMU_EXTENDED
7606 return pmap_kernel()->pm_l1_pa;
7607 #else
7608 return pmap_kernel()->pm_l1->l1_physaddr;
7609 #endif
7610 }
7611
7612 #if defined(DDB)
7613 /*
7614 * A couple of ddb-callable functions for dumping pmaps
7615 */
7616 void pmap_dump(pmap_t);
7617
7618 static pt_entry_t ncptes[64];
7619 static void pmap_dump_ncpg(pmap_t);
7620
7621 void
7622 pmap_dump(pmap_t pm)
7623 {
7624 struct l2_dtable *l2;
7625 struct l2_bucket *l2b;
7626 pt_entry_t *ptep, pte;
7627 vaddr_t l2_va, l2b_va, va;
7628 int i, j, k, occ, rows = 0;
7629
7630 if (pm == pmap_kernel())
7631 printf("pmap_kernel (%p): ", pm);
7632 else
7633 printf("user pmap (%p): ", pm);
7634
7635 #ifdef ARM_MMU_EXTENDED
7636 printf("l1 at %p\n", pmap_l1_kva(pm));
7637 #else
7638 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7639 #endif
7640
7641 l2_va = 0;
7642 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7643 l2 = pm->pm_l2[i];
7644
7645 if (l2 == NULL || l2->l2_occupancy == 0)
7646 continue;
7647
7648 l2b_va = l2_va;
7649 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7650 l2b = &l2->l2_bucket[j];
7651
7652 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7653 continue;
7654
7655 ptep = l2b->l2b_kva;
7656
7657 for (k = 0; k < 256 && ptep[k] == 0; k++)
7658 ;
7659
7660 k &= ~63;
7661 occ = l2b->l2b_occupancy;
7662 va = l2b_va + (k * 4096);
7663 for (; k < 256; k++, va += 0x1000) {
7664 char ch = ' ';
7665 if ((k % 64) == 0) {
7666 if ((rows % 8) == 0) {
7667 printf(
7668 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7669 }
7670 printf("%08lx: ", va);
7671 }
7672
7673 ncptes[k & 63] = 0;
7674 pte = ptep[k];
7675 if (pte == 0) {
7676 ch = '.';
7677 } else {
7678 occ--;
7679 switch (pte & 0x0c) {
7680 case 0x00:
7681 ch = 'D'; /* No cache No buff */
7682 break;
7683 case 0x04:
7684 ch = 'B'; /* No cache buff */
7685 break;
7686 case 0x08:
7687 if (pte & 0x40)
7688 ch = 'm';
7689 else
7690 ch = 'C'; /* Cache No buff */
7691 break;
7692 case 0x0c:
7693 ch = 'F'; /* Cache Buff */
7694 break;
7695 }
7696
7697 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7698 ch += 0x20;
7699
7700 if ((pte & 0xc) == 0)
7701 ncptes[k & 63] = pte;
7702 }
7703
7704 if ((k % 64) == 63) {
7705 rows++;
7706 printf("%c\n", ch);
7707 pmap_dump_ncpg(pm);
7708 if (occ == 0)
7709 break;
7710 } else
7711 printf("%c", ch);
7712 }
7713 }
7714 }
7715 }
7716
7717 static void
7718 pmap_dump_ncpg(pmap_t pm)
7719 {
7720 struct vm_page *pg;
7721 struct vm_page_md *md;
7722 struct pv_entry *pv;
7723 int i;
7724
7725 for (i = 0; i < 63; i++) {
7726 if (ncptes[i] == 0)
7727 continue;
7728
7729 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7730 if (pg == NULL)
7731 continue;
7732 md = VM_PAGE_TO_MD(pg);
7733
7734 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7735 VM_PAGE_TO_PHYS(pg),
7736 md->krw_mappings, md->kro_mappings,
7737 md->urw_mappings, md->uro_mappings);
7738
7739 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7740 printf(" %c va 0x%08lx, flags 0x%x\n",
7741 (pm == pv->pv_pmap) ? '*' : ' ',
7742 pv->pv_va, pv->pv_flags);
7743 }
7744 }
7745 }
7746 #endif
7747
7748 #ifdef PMAP_STEAL_MEMORY
7749 void
7750 pmap_boot_pageadd(pv_addr_t *newpv)
7751 {
7752 pv_addr_t *pv, *npv;
7753
7754 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7755 if (newpv->pv_pa < pv->pv_va) {
7756 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7757 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7758 newpv->pv_size += pv->pv_size;
7759 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7760 }
7761 pv = NULL;
7762 } else {
7763 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7764 pv = npv) {
7765 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7766 KASSERT(pv->pv_pa < newpv->pv_pa);
7767 if (newpv->pv_pa > npv->pv_pa)
7768 continue;
7769 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7770 pv->pv_size += newpv->pv_size;
7771 return;
7772 }
7773 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7774 break;
7775 newpv->pv_size += npv->pv_size;
7776 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7777 SLIST_REMOVE_AFTER(newpv, pv_list);
7778 return;
7779 }
7780 }
7781 }
7782
7783 if (pv) {
7784 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7785 } else {
7786 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7787 }
7788 }
7789
7790 void
7791 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7792 pv_addr_t *rpv)
7793 {
7794 pv_addr_t *pv, **pvp;
7795
7796 KASSERT(amount & PGOFSET);
7797 KASSERT((mask & PGOFSET) == 0);
7798 KASSERT((match & PGOFSET) == 0);
7799 KASSERT(amount != 0);
7800
7801 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7802 (pv = *pvp) != NULL;
7803 pvp = &SLIST_NEXT(pv, pv_list)) {
7804 pv_addr_t *newpv;
7805 psize_t off;
7806 /*
7807 * If this entry is too small to satisfy the request...
7808 */
7809 KASSERT(pv->pv_size > 0);
7810 if (pv->pv_size < amount)
7811 continue;
7812
7813 for (off = 0; off <= mask; off += PAGE_SIZE) {
7814 if (((pv->pv_pa + off) & mask) == match
7815 && off + amount <= pv->pv_size)
7816 break;
7817 }
7818 if (off > mask)
7819 continue;
7820
7821 rpv->pv_va = pv->pv_va + off;
7822 rpv->pv_pa = pv->pv_pa + off;
7823 rpv->pv_size = amount;
7824 pv->pv_size -= amount;
7825 if (pv->pv_size == 0) {
7826 KASSERT(off == 0);
7827 KASSERT((vaddr_t) pv == rpv->pv_va);
7828 *pvp = SLIST_NEXT(pv, pv_list);
7829 } else if (off == 0) {
7830 KASSERT((vaddr_t) pv == rpv->pv_va);
7831 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7832 *newpv = *pv;
7833 newpv->pv_pa += amount;
7834 newpv->pv_va += amount;
7835 *pvp = newpv;
7836 } else if (off < pv->pv_size) {
7837 newpv = (pv_addr_t *) (rpv->pv_va + amount);
7838 *newpv = *pv;
7839 newpv->pv_size -= off;
7840 newpv->pv_pa += off + amount;
7841 newpv->pv_va += off + amount;
7842
7843 SLIST_NEXT(pv, pv_list) = newpv;
7844 pv->pv_size = off;
7845 } else {
7846 KASSERT((vaddr_t) pv != rpv->pv_va);
7847 }
7848 memset((void *)rpv->pv_va, 0, amount);
7849 return;
7850 }
7851
7852 if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
7853 panic("pmap_boot_pagealloc: couldn't allocate memory");
7854
7855 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7856 (pv = *pvp) != NULL;
7857 pvp = &SLIST_NEXT(pv, pv_list)) {
7858 if (SLIST_NEXT(pv, pv_list) == NULL)
7859 break;
7860 }
7861 KASSERT(mask == 0);
7862
7863 for (uvm_physseg_t ups = uvm_physseg_get_first();
7864 uvm_physseg_valid_p(ups);
7865 ups = uvm_physseg_get_next(ups)) {
7866
7867 paddr_t spn = uvm_physseg_get_start(ups);
7868 paddr_t epn = uvm_physseg_get_end(ups);
7869 if (spn == atop(pv->pv_pa + pv->pv_size)
7870 && pv->pv_va + pv->pv_size <= ptoa(epn)) {
7871 rpv->pv_va = pv->pv_va;
7872 rpv->pv_pa = pv->pv_pa;
7873 rpv->pv_size = amount;
7874 *pvp = NULL;
7875 pmap_map_chunk(kernel_l1pt.pv_va,
7876 ptoa(spn) + (pv->pv_va - pv->pv_pa),
7877 ptoa(spn),
7878 amount - pv->pv_size,
7879 VM_PROT_READ|VM_PROT_WRITE,
7880 PTE_CACHE);
7881
7882 uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
7883 memset((void *)rpv->pv_va, 0, rpv->pv_size);
7884 return;
7885 }
7886 }
7887
7888 panic("pmap_boot_pagealloc: couldn't allocate memory");
7889 }
7890
7891 vaddr_t
7892 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7893 {
7894 pv_addr_t pv;
7895
7896 pmap_boot_pagealloc(size, 0, 0, &pv);
7897
7898 return pv.pv_va;
7899 }
7900 #endif /* PMAP_STEAL_MEMORY */
7901
7902 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7903 {
7904 sysctl_createv(clog, 0, NULL, NULL,
7905 CTLFLAG_PERMANENT,
7906 CTLTYPE_NODE, "machdep", NULL,
7907 NULL, 0, NULL, 0,
7908 CTL_MACHDEP, CTL_EOL);
7909
7910 sysctl_createv(clog, 0, NULL, NULL,
7911 CTLFLAG_PERMANENT,
7912 CTLTYPE_INT, "kmpages",
7913 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7914 NULL, 0, &pmap_kmpages, 0,
7915 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7916 }
7917
7918 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7919 struct vm_page *
7920 arm_pmap_alloc_poolpage(int flags)
7921 {
7922 /*
7923 * On some systems, only some pages may be "coherent" for dma and we
7924 * want to prefer those for pool pages (think mbufs) but fallback to
7925 * any page if none is available.
7926 */
7927 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7928 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7929 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
7930 }
7931
7932 return uvm_pagealloc(NULL, 0, NULL, flags);
7933 }
7934 #endif
7935
7936 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
7937 void
7938 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
7939 {
7940 /* nothing */
7941 }
7942
7943 int
7944 pic_ipi_shootdown(void *arg)
7945 {
7946 #if PMAP_TLB_NEED_SHOOTDOWN
7947 pmap_tlb_shootdown_process();
7948 #endif
7949 return 1;
7950 }
7951 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
7952
7953
7954 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
7955 vaddr_t
7956 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
7957 {
7958 bool ok = false;
7959 if (physical_start <= pa && pa < physical_end) {
7960 #ifdef KERNEL_BASE_VOFFSET
7961 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
7962 #else
7963 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
7964 #endif
7965 #ifdef ARM_MMU_EXTENDED
7966 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
7967 #endif
7968 va = newva;
7969 ok = true;
7970 #ifdef ARM_MMU_EXTENDED
7971 }
7972 #endif
7973 }
7974 KASSERT(ok_p);
7975 *ok_p = ok;
7976 return va;
7977 }
7978
7979 vaddr_t
7980 pmap_map_poolpage(paddr_t pa)
7981 {
7982 bool ok __diagused;
7983 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
7984 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
7985 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
7986 if (arm_cache_prefer_mask != 0) {
7987 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
7988 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
7989 pmap_acquire_page_lock(md);
7990 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
7991 pmap_release_page_lock(md);
7992 }
7993 #endif
7994 return va;
7995 }
7996
7997 paddr_t
7998 pmap_unmap_poolpage(vaddr_t va)
7999 {
8000 KASSERT(va >= KERNEL_BASE);
8001 #ifdef PMAP_CACHE_VIVT
8002 cpu_idcache_wbinv_range(va, PAGE_SIZE);
8003 #endif
8004 #if defined(KERNEL_BASE_VOFFSET)
8005 return va - KERNEL_BASE_VOFFSET;
8006 #else
8007 return va - KERNEL_BASE + physical_start;
8008 #endif
8009 }
8010 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8011