Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.385
      1 /*	$NetBSD: pmap.c,v 1.385 2020/02/02 08:16:40 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_arm_debug.h"
    190 #include "opt_cpuoptions.h"
    191 #include "opt_pmap_debug.h"
    192 #include "opt_ddb.h"
    193 #include "opt_lockdebug.h"
    194 #include "opt_multiprocessor.h"
    195 
    196 #ifdef MULTIPROCESSOR
    197 #define _INTR_PRIVATE
    198 #endif
    199 
    200 #include <sys/cdefs.h>
    201 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.385 2020/02/02 08:16:40 skrll Exp $");
    202 
    203 #include <sys/param.h>
    204 #include <sys/types.h>
    205 #include <sys/atomic.h>
    206 #include <sys/bus.h>
    207 #include <sys/cpu.h>
    208 #include <sys/intr.h>
    209 #include <sys/kernel.h>
    210 #include <sys/kernhist.h>
    211 #include <sys/kmem.h>
    212 #include <sys/pool.h>
    213 #include <sys/proc.h>
    214 #include <sys/sysctl.h>
    215 #include <sys/systm.h>
    216 
    217 #include <uvm/uvm.h>
    218 #include <uvm/pmap/pmap_pvt.h>
    219 
    220 #include <arm/locore.h>
    221 
    222 #ifdef DDB
    223 #include <arm/db_machdep.h>
    224 #endif
    225 
    226 //#define PMAP_DEBUG
    227 #ifdef PMAP_DEBUG
    228 
    229 /* XXX need to get rid of all refs to this */
    230 int pmap_debug_level = 0;
    231 
    232 /*
    233  * for switching to potentially finer grained debugging
    234  */
    235 #define	PDB_FOLLOW	0x0001
    236 #define	PDB_INIT	0x0002
    237 #define	PDB_ENTER	0x0004
    238 #define	PDB_REMOVE	0x0008
    239 #define	PDB_CREATE	0x0010
    240 #define	PDB_PTPAGE	0x0020
    241 #define	PDB_GROWKERN	0x0040
    242 #define	PDB_BITS	0x0080
    243 #define	PDB_COLLECT	0x0100
    244 #define	PDB_PROTECT	0x0200
    245 #define	PDB_MAP_L1	0x0400
    246 #define	PDB_BOOTSTRAP	0x1000
    247 #define	PDB_PARANOIA	0x2000
    248 #define	PDB_WIRING	0x4000
    249 #define	PDB_PVDUMP	0x8000
    250 #define	PDB_VAC		0x10000
    251 #define	PDB_KENTER	0x20000
    252 #define	PDB_KREMOVE	0x40000
    253 #define	PDB_EXEC	0x80000
    254 
    255 int debugmap = 1;
    256 int pmapdebug = 0;
    257 #define	NPDEBUG(_lev_,_stat_) \
    258 	if (pmapdebug & (_lev_)) \
    259         	((_stat_))
    260 
    261 #else	/* PMAP_DEBUG */
    262 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    263 #endif	/* PMAP_DEBUG */
    264 
    265 
    266 #ifdef VERBOSE_INIT_ARM
    267 #define VPRINTF(...)	printf(__VA_ARGS__)
    268 #else
    269 #define VPRINTF(...)	__nothing
    270 #endif
    271 
    272 /*
    273  * pmap_kernel() points here
    274  */
    275 static struct pmap	kernel_pmap_store = {
    276 #ifndef ARM_MMU_EXTENDED
    277 	.pm_activated = true,
    278 	.pm_domain = PMAP_DOMAIN_KERNEL,
    279 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    280 #endif
    281 };
    282 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    283 #undef pmap_kernel
    284 #define pmap_kernel()	(&kernel_pmap_store)
    285 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    286 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    287 #endif
    288 
    289 /*
    290  * Pool and cache that pmap structures are allocated from.
    291  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    292  * in pmap_create().
    293  */
    294 static struct pool_cache pmap_cache;
    295 
    296 /*
    297  * Pool of PV structures
    298  */
    299 static struct pool pmap_pv_pool;
    300 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    301 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    302 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    303 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    304 };
    305 
    306 /*
    307  * Pool and cache of l2_dtable structures.
    308  * We use a cache to avoid clearing the structures when they're
    309  * allocated. (196 bytes)
    310  */
    311 static struct pool_cache pmap_l2dtable_cache;
    312 static vaddr_t pmap_kernel_l2dtable_kva;
    313 
    314 /*
    315  * Pool and cache of L2 page descriptors.
    316  * We use a cache to avoid clearing the descriptor table
    317  * when they're allocated. (1KB)
    318  */
    319 static struct pool_cache pmap_l2ptp_cache;
    320 static vaddr_t pmap_kernel_l2ptp_kva;
    321 static paddr_t pmap_kernel_l2ptp_phys;
    322 
    323 #ifdef PMAPCOUNTERS
    324 #define	PMAP_EVCNT_INITIALIZER(name) \
    325 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    326 
    327 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    328 static struct evcnt pmap_ev_vac_clean_one =
    329    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    330 static struct evcnt pmap_ev_vac_flush_one =
    331    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    332 static struct evcnt pmap_ev_vac_flush_lots =
    333    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    334 static struct evcnt pmap_ev_vac_flush_lots2 =
    335    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    336 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    337 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    338 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    339 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    340 
    341 static struct evcnt pmap_ev_vac_color_new =
    342    PMAP_EVCNT_INITIALIZER("new page color");
    343 static struct evcnt pmap_ev_vac_color_reuse =
    344    PMAP_EVCNT_INITIALIZER("ok first page color");
    345 static struct evcnt pmap_ev_vac_color_ok =
    346    PMAP_EVCNT_INITIALIZER("ok page color");
    347 static struct evcnt pmap_ev_vac_color_blind =
    348    PMAP_EVCNT_INITIALIZER("blind page color");
    349 static struct evcnt pmap_ev_vac_color_change =
    350    PMAP_EVCNT_INITIALIZER("change page color");
    351 static struct evcnt pmap_ev_vac_color_erase =
    352    PMAP_EVCNT_INITIALIZER("erase page color");
    353 static struct evcnt pmap_ev_vac_color_none =
    354    PMAP_EVCNT_INITIALIZER("no page color");
    355 static struct evcnt pmap_ev_vac_color_restore =
    356    PMAP_EVCNT_INITIALIZER("restore page color");
    357 
    358 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    359 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    360 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    361 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    362 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    363 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    364 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    365 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    366 #endif
    367 
    368 static struct evcnt pmap_ev_mappings =
    369    PMAP_EVCNT_INITIALIZER("pages mapped");
    370 static struct evcnt pmap_ev_unmappings =
    371    PMAP_EVCNT_INITIALIZER("pages unmapped");
    372 static struct evcnt pmap_ev_remappings =
    373    PMAP_EVCNT_INITIALIZER("pages remapped");
    374 
    375 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    377 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    378 
    379 static struct evcnt pmap_ev_kernel_mappings =
    380    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    381 static struct evcnt pmap_ev_kernel_unmappings =
    382    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    383 static struct evcnt pmap_ev_kernel_remappings =
    384    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    385 
    386 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    387 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    388 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    389 
    390 static struct evcnt pmap_ev_kenter_mappings =
    391    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    392 static struct evcnt pmap_ev_kenter_unmappings =
    393    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    394 static struct evcnt pmap_ev_kenter_remappings =
    395    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    396 static struct evcnt pmap_ev_pt_mappings =
    397    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    398 
    399 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    400 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    401 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    402 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    403 
    404 static struct evcnt pmap_ev_fixup_mod =
    405    PMAP_EVCNT_INITIALIZER("page modification emulations");
    406 static struct evcnt pmap_ev_fixup_ref =
    407    PMAP_EVCNT_INITIALIZER("page reference emulations");
    408 static struct evcnt pmap_ev_fixup_exec =
    409    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    410 static struct evcnt pmap_ev_fixup_pdes =
    411    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    412 #ifndef ARM_MMU_EXTENDED
    413 static struct evcnt pmap_ev_fixup_ptesync =
    414    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    415 #endif
    416 
    417 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    418 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    419 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    420 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    421 #ifndef ARM_MMU_EXTENDED
    422 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    423 #endif
    424 
    425 #ifdef PMAP_CACHE_VIPT
    426 static struct evcnt pmap_ev_exec_mappings =
    427    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    428 static struct evcnt pmap_ev_exec_cached =
    429    PMAP_EVCNT_INITIALIZER("exec pages cached");
    430 
    431 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    432 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    433 
    434 static struct evcnt pmap_ev_exec_synced =
    435    PMAP_EVCNT_INITIALIZER("exec pages synced");
    436 static struct evcnt pmap_ev_exec_synced_map =
    437    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    438 static struct evcnt pmap_ev_exec_synced_unmap =
    439    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    440 static struct evcnt pmap_ev_exec_synced_remap =
    441    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    442 static struct evcnt pmap_ev_exec_synced_clearbit =
    443    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    444 #ifndef ARM_MMU_EXTENDED
    445 static struct evcnt pmap_ev_exec_synced_kremove =
    446    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    447 #endif
    448 
    449 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    450 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    451 #ifndef ARM_MMU_EXTENDED
    452 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    453 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    454 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    455 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    456 #endif
    457 
    458 static struct evcnt pmap_ev_exec_discarded_unmap =
    459    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    460 static struct evcnt pmap_ev_exec_discarded_zero =
    461    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    462 static struct evcnt pmap_ev_exec_discarded_copy =
    463    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    464 static struct evcnt pmap_ev_exec_discarded_page_protect =
    465    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    466 static struct evcnt pmap_ev_exec_discarded_clearbit =
    467    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    468 static struct evcnt pmap_ev_exec_discarded_kremove =
    469    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    470 #ifdef ARM_MMU_EXTENDED
    471 static struct evcnt pmap_ev_exec_discarded_modfixup =
    472    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    473 #endif
    474 
    475 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    476 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    477 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    478 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    479 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    480 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    481 #ifdef ARM_MMU_EXTENDED
    482 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    483 #endif
    484 #endif /* PMAP_CACHE_VIPT */
    485 
    486 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    487 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    488 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    489 
    490 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    491 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    492 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    493 
    494 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    495 #else
    496 #define	PMAPCOUNT(x)	((void)0)
    497 #endif
    498 
    499 #ifdef ARM_MMU_EXTENDED
    500 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
    501 void pmap_md_pdetab_deactivate(pmap_t pm);
    502 #endif
    503 
    504 /*
    505  * pmap copy/zero page, and mem(5) hook point
    506  */
    507 static pt_entry_t *csrc_pte, *cdst_pte;
    508 static vaddr_t csrcp, cdstp;
    509 #ifdef MULTIPROCESSOR
    510 static size_t cnptes;
    511 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    512 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    513 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    514 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    515 #else
    516 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    517 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    518 #define	cpu_csrcp(o)	(csrcp + (o))
    519 #define	cpu_cdstp(o)	(cdstp + (o))
    520 #endif
    521 vaddr_t memhook;			/* used by mem.c & others */
    522 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    523 kmutex_t pmap_lock __cacheline_aligned;
    524 kmutex_t kpm_lock __cacheline_aligned;
    525 extern void *msgbufaddr;
    526 int pmap_kmpages;
    527 /*
    528  * Flag to indicate if pmap_init() has done its thing
    529  */
    530 bool pmap_initialized;
    531 
    532 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    533 /*
    534  * Virtual end of direct-mapped memory
    535  */
    536 vaddr_t pmap_directlimit;
    537 #endif
    538 
    539 /*
    540  * Misc. locking data structures
    541  */
    542 
    543 static inline void
    544 pmap_acquire_pmap_lock(pmap_t pm)
    545 {
    546 #if defined(MULTIPROCESSOR) && defined(DDB)
    547 	if (__predict_false(db_onproc != NULL))
    548 		return;
    549 #endif
    550 
    551 	mutex_enter(pm->pm_lock);
    552 }
    553 
    554 static inline void
    555 pmap_release_pmap_lock(pmap_t pm)
    556 {
    557 #if defined(MULTIPROCESSOR) && defined(DDB)
    558 	if (__predict_false(db_onproc != NULL))
    559 		return;
    560 #endif
    561 	mutex_exit(pm->pm_lock);
    562 }
    563 
    564 static inline void
    565 pmap_acquire_page_lock(struct vm_page_md *md)
    566 {
    567 	mutex_enter(&pmap_lock);
    568 }
    569 
    570 static inline void
    571 pmap_release_page_lock(struct vm_page_md *md)
    572 {
    573 	mutex_exit(&pmap_lock);
    574 }
    575 
    576 #ifdef DIAGNOSTIC
    577 static inline int
    578 pmap_page_locked_p(struct vm_page_md *md)
    579 {
    580 	return mutex_owned(&pmap_lock);
    581 }
    582 #endif
    583 
    584 
    585 /*
    586  * Metadata for L1 translation tables.
    587  */
    588 #ifndef ARM_MMU_EXTENDED
    589 struct l1_ttable {
    590 	/* Entry on the L1 Table list */
    591 	SLIST_ENTRY(l1_ttable) l1_link;
    592 
    593 	/* Entry on the L1 Least Recently Used list */
    594 	TAILQ_ENTRY(l1_ttable) l1_lru;
    595 
    596 	/* Track how many domains are allocated from this L1 */
    597 	volatile u_int l1_domain_use_count;
    598 
    599 	/*
    600 	 * A free-list of domain numbers for this L1.
    601 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    602 	 * is slow on ARM.
    603 	 */
    604 	uint8_t l1_domain_first;
    605 	uint8_t l1_domain_free[PMAP_DOMAINS];
    606 
    607 	/* Physical address of this L1 page table */
    608 	paddr_t l1_physaddr;
    609 
    610 	/* KVA of this L1 page table */
    611 	pd_entry_t *l1_kva;
    612 };
    613 
    614 /*
    615  * L1 Page Tables are tracked using a Least Recently Used list.
    616  *  - New L1s are allocated from the HEAD.
    617  *  - Freed L1s are added to the TAIL.
    618  *  - Recently accessed L1s (where an 'access' is some change to one of
    619  *    the userland pmaps which owns this L1) are moved to the TAIL.
    620  */
    621 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    622 static kmutex_t l1_lru_lock __cacheline_aligned;
    623 
    624 /*
    625  * A list of all L1 tables
    626  */
    627 static SLIST_HEAD(, l1_ttable) l1_list;
    628 #endif /* ARM_MMU_EXTENDED */
    629 
    630 /*
    631  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    632  *
    633  * This is normally 16MB worth L2 page descriptors for any given pmap.
    634  * Reference counts are maintained for L2 descriptors so they can be
    635  * freed when empty.
    636  */
    637 struct l2_bucket {
    638 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
    639 	paddr_t l2b_pa;			/* Physical address of same */
    640 	u_short l2b_l1slot;		/* This L2 table's L1 index */
    641 	u_short l2b_occupancy;		/* How many active descriptors */
    642 };
    643 
    644 struct l2_dtable {
    645 	/* The number of L2 page descriptors allocated to this l2_dtable */
    646 	u_int l2_occupancy;
    647 
    648 	/* List of L2 page descriptors */
    649 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
    650 };
    651 
    652 /*
    653  * Given an L1 table index, calculate the corresponding l2_dtable index
    654  * and bucket index within the l2_dtable.
    655  */
    656 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    657 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    658 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    659 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    660 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    661 
    662 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    663 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    664 
    665 /*
    666  * Given a virtual address, this macro returns the
    667  * virtual address required to drop into the next L2 bucket.
    668  */
    669 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    670 
    671 /*
    672  * L2 allocation.
    673  */
    674 #define	pmap_alloc_l2_dtable()		\
    675 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    676 #define	pmap_free_l2_dtable(l2)		\
    677 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    678 #define pmap_alloc_l2_ptp(pap)		\
    679 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    680 	    PR_NOWAIT, (pap)))
    681 
    682 /*
    683  * We try to map the page tables write-through, if possible.  However, not
    684  * all CPUs have a write-through cache mode, so on those we have to sync
    685  * the cache when we frob page tables.
    686  *
    687  * We try to evaluate this at compile time, if possible.  However, it's
    688  * not always possible to do that, hence this run-time var.
    689  */
    690 int	pmap_needs_pte_sync;
    691 
    692 /*
    693  * Real definition of pv_entry.
    694  */
    695 struct pv_entry {
    696 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    697 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    698 	vaddr_t		pv_va;          /* virtual address for mapping */
    699 	u_int		pv_flags;       /* flags */
    700 };
    701 
    702 /*
    703  * Macros to determine if a mapping might be resident in the
    704  * instruction/data cache and/or TLB
    705  */
    706 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    707 /*
    708  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    709  * there are no explicit accesses, so there may be always be TLB entries to
    710  * flush.  If we used ASIDs then this would not be a problem.
    711  */
    712 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    713 #define	PV_BEEN_REFD(f)   (true)
    714 #else
    715 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    716 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    717 #endif
    718 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    719 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    720 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    721 
    722 /*
    723  * Local prototypes
    724  */
    725 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    726 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    727 			    pt_entry_t **);
    728 static bool		pmap_is_current(pmap_t) __unused;
    729 static bool		pmap_is_cached(pmap_t);
    730 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    731 			    pmap_t, vaddr_t, u_int);
    732 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    733 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    734 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    735 			    u_int, u_int);
    736 
    737 static void		pmap_pinit(pmap_t);
    738 static int		pmap_pmap_ctor(void *, void *, int);
    739 
    740 static void		pmap_alloc_l1(pmap_t);
    741 static void		pmap_free_l1(pmap_t);
    742 #ifndef ARM_MMU_EXTENDED
    743 static void		pmap_use_l1(pmap_t);
    744 #endif
    745 
    746 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    747 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    748 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    749 static int		pmap_l2ptp_ctor(void *, void *, int);
    750 static int		pmap_l2dtable_ctor(void *, void *, int);
    751 
    752 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    753 #ifdef PMAP_CACHE_VIVT
    754 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    755 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    756 #endif
    757 
    758 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    759 #ifdef PMAP_CACHE_VIVT
    760 static bool		pmap_clean_page(struct vm_page_md *, bool);
    761 #endif
    762 #ifdef PMAP_CACHE_VIPT
    763 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    764 enum pmap_flush_op {
    765 	PMAP_FLUSH_PRIMARY,
    766 	PMAP_FLUSH_SECONDARY,
    767 	PMAP_CLEAN_PRIMARY
    768 };
    769 #ifndef ARM_MMU_EXTENDED
    770 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    771 #endif
    772 #endif
    773 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    774 static void		pmap_pv_remove(paddr_t);
    775 
    776 #ifndef ARM_MMU_EXTENDED
    777 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    778 #endif
    779 static vaddr_t		kernel_pt_lookup(paddr_t);
    780 
    781 #ifdef ARM_MMU_EXTENDED
    782 static struct pool_cache pmap_l1tt_cache;
    783 
    784 static int		pmap_l1tt_ctor(void *, void *, int);
    785 static void *		pmap_l1tt_alloc(struct pool *, int);
    786 static void		pmap_l1tt_free(struct pool *, void *);
    787 
    788 static struct pool_allocator pmap_l1tt_allocator = {
    789 	.pa_alloc = pmap_l1tt_alloc,
    790 	.pa_free = pmap_l1tt_free,
    791 	.pa_pagesz = L1TT_SIZE,
    792 };
    793 #endif
    794 
    795 /*
    796  * Misc variables
    797  */
    798 vaddr_t virtual_avail;
    799 vaddr_t virtual_end;
    800 vaddr_t pmap_curmaxkvaddr;
    801 
    802 paddr_t avail_start;
    803 paddr_t avail_end;
    804 
    805 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    806 pv_addr_t kernelpages;
    807 pv_addr_t kernel_l1pt;
    808 pv_addr_t systempage;
    809 
    810 /* Function to set the debug level of the pmap code */
    811 
    812 #ifdef PMAP_DEBUG
    813 void
    814 pmap_debug(int level)
    815 {
    816 	pmap_debug_level = level;
    817 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    818 }
    819 #endif	/* PMAP_DEBUG */
    820 
    821 #ifdef PMAP_CACHE_VIPT
    822 #define PMAP_VALIDATE_MD_PAGE(md)	\
    823 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    824 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    825 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    826 #endif /* PMAP_CACHE_VIPT */
    827 /*
    828  * A bunch of routines to conditionally flush the caches/TLB depending
    829  * on whether the specified pmap actually needs to be flushed at any
    830  * given time.
    831  */
    832 static inline void
    833 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    834 {
    835 #ifdef ARM_MMU_EXTENDED
    836 	pmap_tlb_invalidate_addr(pm, va);
    837 #else
    838 	if (pm->pm_cstate.cs_tlb_id != 0) {
    839 		if (PV_BEEN_EXECD(flags)) {
    840 			cpu_tlb_flushID_SE(va);
    841 		} else if (PV_BEEN_REFD(flags)) {
    842 			cpu_tlb_flushD_SE(va);
    843 		}
    844 	}
    845 #endif /* ARM_MMU_EXTENDED */
    846 }
    847 
    848 #ifndef ARM_MMU_EXTENDED
    849 static inline void
    850 pmap_tlb_flushID(pmap_t pm)
    851 {
    852 	if (pm->pm_cstate.cs_tlb_id) {
    853 		cpu_tlb_flushID();
    854 #if ARM_MMU_V7 == 0
    855 		/*
    856 		 * Speculative loads by Cortex cores can cause TLB entries to
    857 		 * be filled even if there are no explicit accesses, so there
    858 		 * may be always be TLB entries to flush.  If we used ASIDs
    859 		 * then it would not be a problem.
    860 		 * This is not true for other CPUs.
    861 		 */
    862 		pm->pm_cstate.cs_tlb = 0;
    863 #endif /* ARM_MMU_V7 */
    864 	}
    865 }
    866 
    867 static inline void
    868 pmap_tlb_flushD(pmap_t pm)
    869 {
    870 	if (pm->pm_cstate.cs_tlb_d) {
    871 		cpu_tlb_flushD();
    872 #if ARM_MMU_V7 == 0
    873 		/*
    874 		 * Speculative loads by Cortex cores can cause TLB entries to
    875 		 * be filled even if there are no explicit accesses, so there
    876 		 * may be always be TLB entries to flush.  If we used ASIDs
    877 		 * then it would not be a problem.
    878 		 * This is not true for other CPUs.
    879 		 */
    880 		pm->pm_cstate.cs_tlb_d = 0;
    881 #endif /* ARM_MMU_V7 */
    882 	}
    883 }
    884 #endif /* ARM_MMU_EXTENDED */
    885 
    886 #ifdef PMAP_CACHE_VIVT
    887 static inline void
    888 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    889 {
    890 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    891 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    892 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    893 		if (do_inv) {
    894 			if (flags & PVF_WRITE)
    895 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    896 			else
    897 				cpu_dcache_inv_range(va, PAGE_SIZE);
    898 		} else if (flags & PVF_WRITE) {
    899 			cpu_dcache_wb_range(va, PAGE_SIZE);
    900 		}
    901 	}
    902 }
    903 
    904 static inline void
    905 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    906 {
    907 	if (PV_BEEN_EXECD(flags)) {
    908 		if (pm->pm_cstate.cs_cache_id) {
    909 			cpu_idcache_wbinv_all();
    910 			pm->pm_cstate.cs_cache = 0;
    911 		}
    912 	} else if (pm->pm_cstate.cs_cache_d) {
    913 		cpu_dcache_wbinv_all();
    914 		pm->pm_cstate.cs_cache_d = 0;
    915 	}
    916 }
    917 #endif /* PMAP_CACHE_VIVT */
    918 
    919 static inline uint8_t
    920 pmap_domain(pmap_t pm)
    921 {
    922 #ifdef ARM_MMU_EXTENDED
    923 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    924 #else
    925 	return pm->pm_domain;
    926 #endif
    927 }
    928 
    929 static inline pd_entry_t *
    930 pmap_l1_kva(pmap_t pm)
    931 {
    932 #ifdef ARM_MMU_EXTENDED
    933 	return pm->pm_l1;
    934 #else
    935 	return pm->pm_l1->l1_kva;
    936 #endif
    937 }
    938 
    939 static inline bool
    940 pmap_is_current(pmap_t pm)
    941 {
    942 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    943 		return true;
    944 
    945 	return false;
    946 }
    947 
    948 static inline bool
    949 pmap_is_cached(pmap_t pm)
    950 {
    951 #ifdef ARM_MMU_EXTENDED
    952 	if (pm == pmap_kernel())
    953 		return true;
    954 #ifdef MULTIPROCESSOR
    955 	// Is this pmap active on any CPU?
    956 	if (!kcpuset_iszero(pm->pm_active))
    957 		return true;
    958 #else
    959 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    960 	// Is this pmap active?
    961 	if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    962 		return true;
    963 #endif
    964 #else
    965 	struct cpu_info * const ci = curcpu();
    966 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    967 	    || ci->ci_pmap_lastuser == pm)
    968 		return true;
    969 #endif /* ARM_MMU_EXTENDED */
    970 
    971 	return false;
    972 }
    973 
    974 /*
    975  * PTE_SYNC_CURRENT:
    976  *
    977  *     Make sure the pte is written out to RAM.
    978  *     We need to do this for one of two cases:
    979  *       - We're dealing with the kernel pmap
    980  *       - There is no pmap active in the cache/tlb.
    981  *       - The specified pmap is 'active' in the cache/tlb.
    982  */
    983 
    984 #ifdef PMAP_INCLUDE_PTE_SYNC
    985 static inline void
    986 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
    987 {
    988 	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
    989 		PTE_SYNC(ptep);
    990 	arm_dsb();
    991 }
    992 
    993 # define PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
    994 #else
    995 # define PTE_SYNC_CURRENT(pm, ptep)	__nothing
    996 #endif
    997 
    998 /*
    999  * main pv_entry manipulation functions:
   1000  *   pmap_enter_pv: enter a mapping onto a vm_page list
   1001  *   pmap_remove_pv: remove a mapping from a vm_page list
   1002  *
   1003  * NOTE: pmap_enter_pv expects to lock the pvh itself
   1004  *       pmap_remove_pv expects the caller to lock the pvh before calling
   1005  */
   1006 
   1007 /*
   1008  * pmap_enter_pv: enter a mapping onto a vm_page lst
   1009  *
   1010  * => caller should hold the proper lock on pmap_main_lock
   1011  * => caller should have pmap locked
   1012  * => we will gain the lock on the vm_page and allocate the new pv_entry
   1013  * => caller should adjust ptp's wire_count before calling
   1014  * => caller should not adjust pmap's wire_count
   1015  */
   1016 static void
   1017 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
   1018     vaddr_t va, u_int flags)
   1019 {
   1020 	struct pv_entry **pvp;
   1021 
   1022 	NPDEBUG(PDB_PVDUMP,
   1023 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
   1024 
   1025 	pv->pv_pmap = pm;
   1026 	pv->pv_va = va;
   1027 	pv->pv_flags = flags;
   1028 
   1029 	pvp = &SLIST_FIRST(&md->pvh_list);
   1030 #ifdef PMAP_CACHE_VIPT
   1031 	/*
   1032 	 * Insert unmanaged entries, writeable first, at the head of
   1033 	 * the pv list.
   1034 	 */
   1035 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1036 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1037 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1038 	}
   1039 	if (!PV_IS_WRITE_P(flags)) {
   1040 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1041 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1042 	}
   1043 #endif
   1044 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1045 	*pvp = pv;				/* ... locked list */
   1046 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1047 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1048 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1049 		md->pvh_attrs |= PVF_KMOD;
   1050 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1051 		md->pvh_attrs |= PVF_DIRTY;
   1052 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1053 #endif
   1054 	if (pm == pmap_kernel()) {
   1055 		PMAPCOUNT(kernel_mappings);
   1056 		if (flags & PVF_WRITE)
   1057 			md->krw_mappings++;
   1058 		else
   1059 			md->kro_mappings++;
   1060 	} else {
   1061 		if (flags & PVF_WRITE)
   1062 			md->urw_mappings++;
   1063 		else
   1064 			md->uro_mappings++;
   1065 	}
   1066 
   1067 #ifdef PMAP_CACHE_VIPT
   1068 #ifndef ARM_MMU_EXTENDED
   1069 	/*
   1070 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1071 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1072 	 */
   1073 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1074 		md->pvh_attrs |= PVF_WRITE;
   1075 	}
   1076 #endif
   1077 	/*
   1078 	 * If this is an exec mapping and its the first exec mapping
   1079 	 * for this page, make sure to sync the I-cache.
   1080 	 */
   1081 	if (PV_IS_EXEC_P(flags)) {
   1082 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1083 			pmap_syncicache_page(md, pa);
   1084 			PMAPCOUNT(exec_synced_map);
   1085 		}
   1086 		PMAPCOUNT(exec_mappings);
   1087 	}
   1088 #endif
   1089 
   1090 	PMAPCOUNT(mappings);
   1091 
   1092 	if (pv->pv_flags & PVF_WIRED)
   1093 		++pm->pm_stats.wired_count;
   1094 }
   1095 
   1096 /*
   1097  *
   1098  * pmap_find_pv: Find a pv entry
   1099  *
   1100  * => caller should hold lock on vm_page
   1101  */
   1102 static inline struct pv_entry *
   1103 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1104 {
   1105 	struct pv_entry *pv;
   1106 
   1107 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1108 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1109 			break;
   1110 	}
   1111 
   1112 	return (pv);
   1113 }
   1114 
   1115 /*
   1116  * pmap_remove_pv: try to remove a mapping from a pv_list
   1117  *
   1118  * => caller should hold proper lock on pmap_main_lock
   1119  * => pmap should be locked
   1120  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1121  * => caller should adjust ptp's wire_count and free PTP if needed
   1122  * => caller should NOT adjust pmap's wire_count
   1123  * => we return the removed pv
   1124  */
   1125 static struct pv_entry *
   1126 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1127 {
   1128 	struct pv_entry *pv, **prevptr;
   1129 
   1130 	NPDEBUG(PDB_PVDUMP,
   1131 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
   1132 
   1133 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1134 	pv = *prevptr;
   1135 
   1136 	while (pv) {
   1137 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1138 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
   1139 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
   1140 			if (pv->pv_flags & PVF_WIRED) {
   1141 				--pm->pm_stats.wired_count;
   1142 			}
   1143 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1144 			if (pm == pmap_kernel()) {
   1145 				PMAPCOUNT(kernel_unmappings);
   1146 				if (pv->pv_flags & PVF_WRITE)
   1147 					md->krw_mappings--;
   1148 				else
   1149 					md->kro_mappings--;
   1150 			} else {
   1151 				if (pv->pv_flags & PVF_WRITE)
   1152 					md->urw_mappings--;
   1153 				else
   1154 					md->uro_mappings--;
   1155 			}
   1156 
   1157 			PMAPCOUNT(unmappings);
   1158 #ifdef PMAP_CACHE_VIPT
   1159 			/*
   1160 			 * If this page has had an exec mapping, then if
   1161 			 * this was the last mapping, discard the contents,
   1162 			 * otherwise sync the i-cache for this page.
   1163 			 */
   1164 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1165 				if (SLIST_EMPTY(&md->pvh_list)) {
   1166 					md->pvh_attrs &= ~PVF_EXEC;
   1167 					PMAPCOUNT(exec_discarded_unmap);
   1168 				} else if (pv->pv_flags & PVF_WRITE) {
   1169 					pmap_syncicache_page(md, pa);
   1170 					PMAPCOUNT(exec_synced_unmap);
   1171 				}
   1172 			}
   1173 #endif /* PMAP_CACHE_VIPT */
   1174 			break;
   1175 		}
   1176 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1177 		pv = *prevptr;				/* advance */
   1178 	}
   1179 
   1180 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1181 	/*
   1182 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1183 	 * clear the KMOD attribute from the page.
   1184 	 */
   1185 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1186 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1187 		md->pvh_attrs &= ~PVF_KMOD;
   1188 
   1189 	/*
   1190 	 * If this was a writeable page and there are no more writeable
   1191 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1192 	 * the contents to memory.
   1193 	 */
   1194 	if (arm_cache_prefer_mask != 0) {
   1195 		if (md->krw_mappings + md->urw_mappings == 0)
   1196 			md->pvh_attrs &= ~PVF_WRITE;
   1197 		PMAP_VALIDATE_MD_PAGE(md);
   1198 	}
   1199 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1200 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1201 
   1202 	/* return removed pv */
   1203 	return pv;
   1204 }
   1205 
   1206 /*
   1207  *
   1208  * pmap_modify_pv: Update pv flags
   1209  *
   1210  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1211  * => caller should NOT adjust pmap's wire_count
   1212  * => caller must call pmap_vac_me_harder() if writable status of a page
   1213  *    may have changed.
   1214  * => we return the old flags
   1215  *
   1216  * Modify a physical-virtual mapping in the pv table
   1217  */
   1218 static u_int
   1219 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1220     u_int clr_mask, u_int set_mask)
   1221 {
   1222 	struct pv_entry *npv;
   1223 	u_int flags, oflags;
   1224 
   1225 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1226 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1227 
   1228 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1229 		return (0);
   1230 
   1231 	NPDEBUG(PDB_PVDUMP,
   1232 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1233 
   1234 	/*
   1235 	 * There is at least one VA mapping this page.
   1236 	 */
   1237 
   1238 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1239 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1240 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1241 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1242 			md->pvh_attrs |= PVF_DIRTY;
   1243 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1244 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1245 	}
   1246 
   1247 	oflags = npv->pv_flags;
   1248 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1249 
   1250 	if ((flags ^ oflags) & PVF_WIRED) {
   1251 		if (flags & PVF_WIRED)
   1252 			++pm->pm_stats.wired_count;
   1253 		else
   1254 			--pm->pm_stats.wired_count;
   1255 	}
   1256 
   1257 	if ((flags ^ oflags) & PVF_WRITE) {
   1258 		if (pm == pmap_kernel()) {
   1259 			if (flags & PVF_WRITE) {
   1260 				md->krw_mappings++;
   1261 				md->kro_mappings--;
   1262 			} else {
   1263 				md->kro_mappings++;
   1264 				md->krw_mappings--;
   1265 			}
   1266 		} else {
   1267 			if (flags & PVF_WRITE) {
   1268 				md->urw_mappings++;
   1269 				md->uro_mappings--;
   1270 			} else {
   1271 				md->uro_mappings++;
   1272 				md->urw_mappings--;
   1273 			}
   1274 		}
   1275 	}
   1276 #ifdef PMAP_CACHE_VIPT
   1277 	if (arm_cache_prefer_mask != 0) {
   1278 		if (md->urw_mappings + md->krw_mappings == 0) {
   1279 			md->pvh_attrs &= ~PVF_WRITE;
   1280 		} else {
   1281 			md->pvh_attrs |= PVF_WRITE;
   1282 		}
   1283 	}
   1284 	/*
   1285 	 * We have two cases here: the first is from enter_pv (new exec
   1286 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1287 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1288 	 * to do what pmap_remove_pv would do.
   1289 	 */
   1290 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1291 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1292 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1293 		pmap_syncicache_page(md, pa);
   1294 		PMAPCOUNT(exec_synced_remap);
   1295 	}
   1296 #ifndef ARM_MMU_EXTENDED
   1297 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1298 #endif /* !ARM_MMU_EXTENDED */
   1299 #endif /* PMAP_CACHE_VIPT */
   1300 
   1301 	PMAPCOUNT(remappings);
   1302 
   1303 	return (oflags);
   1304 }
   1305 
   1306 
   1307 #if defined(ARM_MMU_EXTENDED)
   1308 int
   1309 pmap_maxproc_set(int nmaxproc)
   1310 {
   1311 	static const char pmap_l1ttpool_warnmsg[] =
   1312 	    "WARNING: l1ttpool limit reached; increase kern.maxproc";
   1313 
   1314 //	pool_cache_setlowat(&pmap_l1tt_cache, nmaxproc);
   1315 
   1316 	/*
   1317 	 * Set the hard limit on the pmap_l1tt_cache to the number
   1318 	 * of processes the kernel is to support.  Log the limit
   1319 	 * reached message max once a minute.
   1320 	 */
   1321 	pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
   1322 	    pmap_l1ttpool_warnmsg, 60);
   1323 
   1324 	return 0;
   1325 }
   1326 
   1327 #endif
   1328 
   1329 /*
   1330  * Allocate an L1 translation table for the specified pmap.
   1331  * This is called at pmap creation time.
   1332  */
   1333 static void
   1334 pmap_alloc_l1(pmap_t pm)
   1335 {
   1336 #ifdef ARM_MMU_EXTENDED
   1337 	vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
   1338 	    &pm->pm_l1_pa);
   1339 
   1340 	pm->pm_l1 = (pd_entry_t *)va;
   1341 	PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
   1342 #else
   1343 	struct l1_ttable *l1;
   1344 	uint8_t domain;
   1345 
   1346 	/*
   1347 	 * Remove the L1 at the head of the LRU list
   1348 	 */
   1349 	mutex_spin_enter(&l1_lru_lock);
   1350 	l1 = TAILQ_FIRST(&l1_lru_list);
   1351 	KDASSERT(l1 != NULL);
   1352 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1353 
   1354 	/*
   1355 	 * Pick the first available domain number, and update
   1356 	 * the link to the next number.
   1357 	 */
   1358 	domain = l1->l1_domain_first;
   1359 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1360 
   1361 	/*
   1362 	 * If there are still free domain numbers in this L1,
   1363 	 * put it back on the TAIL of the LRU list.
   1364 	 */
   1365 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1366 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1367 
   1368 	mutex_spin_exit(&l1_lru_lock);
   1369 
   1370 	/*
   1371 	 * Fix up the relevant bits in the pmap structure
   1372 	 */
   1373 	pm->pm_l1 = l1;
   1374 	pm->pm_domain = domain + 1;
   1375 #endif
   1376 }
   1377 
   1378 /*
   1379  * Free an L1 translation table.
   1380  * This is called at pmap destruction time.
   1381  */
   1382 static void
   1383 pmap_free_l1(pmap_t pm)
   1384 {
   1385 #ifdef ARM_MMU_EXTENDED
   1386 	pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
   1387 
   1388 	pm->pm_l1 = NULL;
   1389 	pm->pm_l1_pa = 0;
   1390 #else
   1391 	struct l1_ttable *l1 = pm->pm_l1;
   1392 
   1393 	mutex_spin_enter(&l1_lru_lock);
   1394 
   1395 	/*
   1396 	 * If this L1 is currently on the LRU list, remove it.
   1397 	 */
   1398 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1399 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1400 
   1401 	/*
   1402 	 * Free up the domain number which was allocated to the pmap
   1403 	 */
   1404 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1405 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1406 	l1->l1_domain_use_count--;
   1407 
   1408 	/*
   1409 	 * The L1 now must have at least 1 free domain, so add
   1410 	 * it back to the LRU list. If the use count is zero,
   1411 	 * put it at the head of the list, otherwise it goes
   1412 	 * to the tail.
   1413 	 */
   1414 	if (l1->l1_domain_use_count == 0)
   1415 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1416 	else
   1417 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1418 
   1419 	mutex_spin_exit(&l1_lru_lock);
   1420 #endif /* ARM_MMU_EXTENDED */
   1421 }
   1422 
   1423 #ifndef ARM_MMU_EXTENDED
   1424 static inline void
   1425 pmap_use_l1(pmap_t pm)
   1426 {
   1427 	struct l1_ttable *l1;
   1428 
   1429 	/*
   1430 	 * Do nothing if we're in interrupt context.
   1431 	 * Access to an L1 by the kernel pmap must not affect
   1432 	 * the LRU list.
   1433 	 */
   1434 	if (cpu_intr_p() || pm == pmap_kernel())
   1435 		return;
   1436 
   1437 	l1 = pm->pm_l1;
   1438 
   1439 	/*
   1440 	 * If the L1 is not currently on the LRU list, just return
   1441 	 */
   1442 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1443 		return;
   1444 
   1445 	mutex_spin_enter(&l1_lru_lock);
   1446 
   1447 	/*
   1448 	 * Check the use count again, now that we've acquired the lock
   1449 	 */
   1450 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1451 		mutex_spin_exit(&l1_lru_lock);
   1452 		return;
   1453 	}
   1454 
   1455 	/*
   1456 	 * Move the L1 to the back of the LRU list
   1457 	 */
   1458 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1459 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1460 
   1461 	mutex_spin_exit(&l1_lru_lock);
   1462 }
   1463 #endif /* !ARM_MMU_EXTENDED */
   1464 
   1465 /*
   1466  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1467  *
   1468  * Free an L2 descriptor table.
   1469  */
   1470 static inline void
   1471 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1472 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1473 #else
   1474 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1475 #endif
   1476 {
   1477 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1478 	/*
   1479 	 * Note: With a write-back cache, we may need to sync this
   1480 	 * L2 table before re-using it.
   1481 	 * This is because it may have belonged to a non-current
   1482 	 * pmap, in which case the cache syncs would have been
   1483 	 * skipped for the pages that were being unmapped. If the
   1484 	 * L2 table were then to be immediately re-allocated to
   1485 	 * the *current* pmap, it may well contain stale mappings
   1486 	 * which have not yet been cleared by a cache write-back
   1487 	 * and so would still be visible to the mmu.
   1488 	 */
   1489 	if (need_sync)
   1490 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1491 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1492 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1493 }
   1494 
   1495 /*
   1496  * Returns a pointer to the L2 bucket associated with the specified pmap
   1497  * and VA, or NULL if no L2 bucket exists for the address.
   1498  */
   1499 static inline struct l2_bucket *
   1500 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1501 {
   1502 	const size_t l1slot = l1pte_index(va);
   1503 	struct l2_dtable *l2;
   1504 	struct l2_bucket *l2b;
   1505 
   1506 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1507 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1508 		return (NULL);
   1509 
   1510 	return (l2b);
   1511 }
   1512 
   1513 /*
   1514  * Returns a pointer to the L2 bucket associated with the specified pmap
   1515  * and VA.
   1516  *
   1517  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1518  * bucket/page table in place.
   1519  *
   1520  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1521  * increment the bucket occupancy counter appropriately *before*
   1522  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1523  * the bucket/page in the meantime.
   1524  */
   1525 static struct l2_bucket *
   1526 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1527 {
   1528 	const size_t l1slot = l1pte_index(va);
   1529 	struct l2_dtable *l2;
   1530 
   1531 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1532 		/*
   1533 		 * No mapping at this address, as there is
   1534 		 * no entry in the L1 table.
   1535 		 * Need to allocate a new l2_dtable.
   1536 		 */
   1537 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1538 			return (NULL);
   1539 
   1540 		/*
   1541 		 * Link it into the parent pmap
   1542 		 */
   1543 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1544 	}
   1545 
   1546 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1547 
   1548 	/*
   1549 	 * Fetch pointer to the L2 page table associated with the address.
   1550 	 */
   1551 	if (l2b->l2b_kva == NULL) {
   1552 		pt_entry_t *ptep;
   1553 
   1554 		/*
   1555 		 * No L2 page table has been allocated. Chances are, this
   1556 		 * is because we just allocated the l2_dtable, above.
   1557 		 */
   1558 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1559 			/*
   1560 			 * Oops, no more L2 page tables available at this
   1561 			 * time. We may need to deallocate the l2_dtable
   1562 			 * if we allocated a new one above.
   1563 			 */
   1564 			if (l2->l2_occupancy == 0) {
   1565 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1566 				pmap_free_l2_dtable(l2);
   1567 			}
   1568 			return (NULL);
   1569 		}
   1570 
   1571 		l2->l2_occupancy++;
   1572 		l2b->l2b_kva = ptep;
   1573 		l2b->l2b_l1slot = l1slot;
   1574 
   1575 #ifdef ARM_MMU_EXTENDED
   1576 		/*
   1577 		 * We know there will be a mapping here, so simply
   1578 		 * enter this PTP into the L1 now.
   1579 		 */
   1580 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1581 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1582 		    | L1_C_DOM(pmap_domain(pm));
   1583 		KASSERT(*pdep == 0);
   1584 		l1pte_setone(pdep, npde);
   1585 		PDE_SYNC(pdep);
   1586 #endif
   1587 	}
   1588 
   1589 	return (l2b);
   1590 }
   1591 
   1592 /*
   1593  * One or more mappings in the specified L2 descriptor table have just been
   1594  * invalidated.
   1595  *
   1596  * Garbage collect the metadata and descriptor table itself if necessary.
   1597  *
   1598  * The pmap lock must be acquired when this is called (not necessary
   1599  * for the kernel pmap).
   1600  */
   1601 static void
   1602 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1603 {
   1604 	KDASSERT(count <= l2b->l2b_occupancy);
   1605 
   1606 	/*
   1607 	 * Update the bucket's reference count according to how many
   1608 	 * PTEs the caller has just invalidated.
   1609 	 */
   1610 	l2b->l2b_occupancy -= count;
   1611 
   1612 	/*
   1613 	 * Note:
   1614 	 *
   1615 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1616 	 * as that would require checking all Level 1 page tables and
   1617 	 * removing any references to the Level 2 page table. See also the
   1618 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1619 	 *
   1620 	 * We make do with just invalidating the mapping in the L2 table.
   1621 	 *
   1622 	 * This isn't really a big deal in practice and, in fact, leads
   1623 	 * to a performance win over time as we don't need to continually
   1624 	 * alloc/free.
   1625 	 */
   1626 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1627 		return;
   1628 
   1629 	/*
   1630 	 * There are no more valid mappings in this level 2 page table.
   1631 	 * Go ahead and NULL-out the pointer in the bucket, then
   1632 	 * free the page table.
   1633 	 */
   1634 	const size_t l1slot = l2b->l2b_l1slot;
   1635 	pt_entry_t * const ptep = l2b->l2b_kva;
   1636 	l2b->l2b_kva = NULL;
   1637 
   1638 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1639 	pd_entry_t pde __diagused = *pdep;
   1640 
   1641 #ifdef ARM_MMU_EXTENDED
   1642 	/*
   1643 	 * Invalidate the L1 slot.
   1644 	 */
   1645 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1646 #else
   1647 	/*
   1648 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1649 	 */
   1650 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1651 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1652 #endif
   1653 		l1pte_setone(pdep, 0);
   1654 		PDE_SYNC(pdep);
   1655 #ifndef ARM_MMU_EXTENDED
   1656 	}
   1657 #endif
   1658 
   1659 	/*
   1660 	 * Release the L2 descriptor table back to the pool cache.
   1661 	 */
   1662 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1663 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1664 #else
   1665 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1666 #endif
   1667 
   1668 	/*
   1669 	 * Update the reference count in the associated l2_dtable
   1670 	 */
   1671 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1672 	if (--l2->l2_occupancy > 0)
   1673 		return;
   1674 
   1675 	/*
   1676 	 * There are no more valid mappings in any of the Level 1
   1677 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1678 	 * the pointer in the parent pmap and free the l2_dtable.
   1679 	 */
   1680 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1681 	pmap_free_l2_dtable(l2);
   1682 }
   1683 
   1684 #if defined(ARM_MMU_EXTENDED)
   1685 /*
   1686  * Pool cache constructors for L1 translation tables
   1687  */
   1688 
   1689 static int
   1690 pmap_l1tt_ctor(void *arg, void *v, int flags)
   1691 {
   1692 #ifndef PMAP_INCLUDE_PTE_SYNC
   1693 #error not supported
   1694 #endif
   1695 
   1696 	memset(v, 0, L1TT_SIZE);
   1697 	PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
   1698 	return 0;
   1699 }
   1700 #endif
   1701 
   1702 /*
   1703  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1704  * structures.
   1705  */
   1706 static int
   1707 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1708 {
   1709 #ifndef PMAP_INCLUDE_PTE_SYNC
   1710 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1711 
   1712 	/*
   1713 	 * The mappings for these page tables were initially made using
   1714 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1715 	 * mode will not be right for page table mappings. To avoid
   1716 	 * polluting the pmap_kenter_pa() code with a special case for
   1717 	 * page tables, we simply fix up the cache-mode here if it's not
   1718 	 * correct.
   1719 	 */
   1720 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1721 		const struct l2_bucket * const l2b =
   1722 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1723 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1724 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1725 		const pt_entry_t opte = *ptep;
   1726 
   1727 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1728 			/*
   1729 			 * Page tables must have the cache-mode set correctly.
   1730 			 */
   1731 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   1732 			    | pte_l2_s_cache_mode_pt;
   1733 			l2pte_set(ptep, npte, opte);
   1734 			PTE_SYNC(ptep);
   1735 			cpu_tlb_flushD_SE(va);
   1736 			cpu_cpwait();
   1737 		}
   1738 	}
   1739 #endif
   1740 
   1741 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1742 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1743 	return (0);
   1744 }
   1745 
   1746 static int
   1747 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1748 {
   1749 
   1750 	memset(v, 0, sizeof(struct l2_dtable));
   1751 	return (0);
   1752 }
   1753 
   1754 static int
   1755 pmap_pmap_ctor(void *arg, void *v, int flags)
   1756 {
   1757 
   1758 	memset(v, 0, sizeof(struct pmap));
   1759 	return (0);
   1760 }
   1761 
   1762 static void
   1763 pmap_pinit(pmap_t pm)
   1764 {
   1765 #ifndef ARM_HAS_VBAR
   1766 	struct l2_bucket *l2b;
   1767 
   1768 	if (vector_page < KERNEL_BASE) {
   1769 		/*
   1770 		 * Map the vector page.
   1771 		 */
   1772 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1773 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1774 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1775 		pmap_update(pm);
   1776 
   1777 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1778 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1779 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1780 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1781 		    L1_C_DOM(pmap_domain(pm));
   1782 	} else
   1783 		pm->pm_pl1vec = NULL;
   1784 #endif
   1785 }
   1786 
   1787 #ifdef PMAP_CACHE_VIVT
   1788 /*
   1789  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1790  * there is more than one mapping and at least one of them is writable.
   1791  * Since we purge the cache on every context switch, we only need to check for
   1792  * other mappings within the same pmap, or kernel_pmap.
   1793  * This function is also called when a page is unmapped, to possibly reenable
   1794  * caching on any remaining mappings.
   1795  *
   1796  * The code implements the following logic, where:
   1797  *
   1798  * KW = # of kernel read/write pages
   1799  * KR = # of kernel read only pages
   1800  * UW = # of user read/write pages
   1801  * UR = # of user read only pages
   1802  *
   1803  * KC = kernel mapping is cacheable
   1804  * UC = user mapping is cacheable
   1805  *
   1806  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1807  *             +---------------------------------------------
   1808  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1809  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1810  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1811  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1812  */
   1813 
   1814 static const int pmap_vac_flags[4][4] = {
   1815 	{-1,		0,		0,		PVF_KNC},
   1816 	{0,		0,		PVF_NC,		PVF_NC},
   1817 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1818 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1819 };
   1820 
   1821 static inline int
   1822 pmap_get_vac_flags(const struct vm_page_md *md)
   1823 {
   1824 	int kidx, uidx;
   1825 
   1826 	kidx = 0;
   1827 	if (md->kro_mappings || md->krw_mappings > 1)
   1828 		kidx |= 1;
   1829 	if (md->krw_mappings)
   1830 		kidx |= 2;
   1831 
   1832 	uidx = 0;
   1833 	if (md->uro_mappings || md->urw_mappings > 1)
   1834 		uidx |= 1;
   1835 	if (md->urw_mappings)
   1836 		uidx |= 2;
   1837 
   1838 	return (pmap_vac_flags[uidx][kidx]);
   1839 }
   1840 
   1841 static inline void
   1842 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1843 {
   1844 	int nattr;
   1845 
   1846 	nattr = pmap_get_vac_flags(md);
   1847 
   1848 	if (nattr < 0) {
   1849 		md->pvh_attrs &= ~PVF_NC;
   1850 		return;
   1851 	}
   1852 
   1853 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1854 		return;
   1855 
   1856 	if (pm == pmap_kernel())
   1857 		pmap_vac_me_kpmap(md, pa, pm, va);
   1858 	else
   1859 		pmap_vac_me_user(md, pa, pm, va);
   1860 
   1861 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1862 }
   1863 
   1864 static void
   1865 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1866 {
   1867 	u_int u_cacheable, u_entries;
   1868 	struct pv_entry *pv;
   1869 	pmap_t last_pmap = pm;
   1870 
   1871 	/*
   1872 	 * Pass one, see if there are both kernel and user pmaps for
   1873 	 * this page.  Calculate whether there are user-writable or
   1874 	 * kernel-writable pages.
   1875 	 */
   1876 	u_cacheable = 0;
   1877 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1878 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1879 			u_cacheable++;
   1880 	}
   1881 
   1882 	u_entries = md->urw_mappings + md->uro_mappings;
   1883 
   1884 	/*
   1885 	 * We know we have just been updating a kernel entry, so if
   1886 	 * all user pages are already cacheable, then there is nothing
   1887 	 * further to do.
   1888 	 */
   1889 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1890 		return;
   1891 
   1892 	if (u_entries) {
   1893 		/*
   1894 		 * Scan over the list again, for each entry, if it
   1895 		 * might not be set correctly, call pmap_vac_me_user
   1896 		 * to recalculate the settings.
   1897 		 */
   1898 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1899 			/*
   1900 			 * We know kernel mappings will get set
   1901 			 * correctly in other calls.  We also know
   1902 			 * that if the pmap is the same as last_pmap
   1903 			 * then we've just handled this entry.
   1904 			 */
   1905 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1906 				continue;
   1907 
   1908 			/*
   1909 			 * If there are kernel entries and this page
   1910 			 * is writable but non-cacheable, then we can
   1911 			 * skip this entry also.
   1912 			 */
   1913 			if (md->k_mappings &&
   1914 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1915 			    (PVF_NC | PVF_WRITE))
   1916 				continue;
   1917 
   1918 			/*
   1919 			 * Similarly if there are no kernel-writable
   1920 			 * entries and the page is already
   1921 			 * read-only/cacheable.
   1922 			 */
   1923 			if (md->krw_mappings == 0 &&
   1924 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1925 				continue;
   1926 
   1927 			/*
   1928 			 * For some of the remaining cases, we know
   1929 			 * that we must recalculate, but for others we
   1930 			 * can't tell if they are correct or not, so
   1931 			 * we recalculate anyway.
   1932 			 */
   1933 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1934 		}
   1935 
   1936 		if (md->k_mappings == 0)
   1937 			return;
   1938 	}
   1939 
   1940 	pmap_vac_me_user(md, pa, pm, va);
   1941 }
   1942 
   1943 static void
   1944 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1945 {
   1946 	pmap_t kpmap = pmap_kernel();
   1947 	struct pv_entry *pv, *npv = NULL;
   1948 	u_int entries = 0;
   1949 	u_int writable = 0;
   1950 	u_int cacheable_entries = 0;
   1951 	u_int kern_cacheable = 0;
   1952 	u_int other_writable = 0;
   1953 
   1954 	/*
   1955 	 * Count mappings and writable mappings in this pmap.
   1956 	 * Include kernel mappings as part of our own.
   1957 	 * Keep a pointer to the first one.
   1958 	 */
   1959 	npv = NULL;
   1960 	KASSERT(pmap_page_locked_p(md));
   1961 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1962 		/* Count mappings in the same pmap */
   1963 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1964 			if (entries++ == 0)
   1965 				npv = pv;
   1966 
   1967 			/* Cacheable mappings */
   1968 			if ((pv->pv_flags & PVF_NC) == 0) {
   1969 				cacheable_entries++;
   1970 				if (kpmap == pv->pv_pmap)
   1971 					kern_cacheable++;
   1972 			}
   1973 
   1974 			/* Writable mappings */
   1975 			if (pv->pv_flags & PVF_WRITE)
   1976 				++writable;
   1977 		} else if (pv->pv_flags & PVF_WRITE)
   1978 			other_writable = 1;
   1979 	}
   1980 
   1981 	/*
   1982 	 * Enable or disable caching as necessary.
   1983 	 * Note: the first entry might be part of the kernel pmap,
   1984 	 * so we can't assume this is indicative of the state of the
   1985 	 * other (maybe non-kpmap) entries.
   1986 	 */
   1987 	if ((entries > 1 && writable) ||
   1988 	    (entries > 0 && pm == kpmap && other_writable)) {
   1989 		if (cacheable_entries == 0) {
   1990 			return;
   1991 		}
   1992 
   1993 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1994 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1995 			    (pv->pv_flags & PVF_NC))
   1996 				continue;
   1997 
   1998 			pv->pv_flags |= PVF_NC;
   1999 
   2000 			struct l2_bucket * const l2b
   2001 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2002 			KASSERTMSG(l2b != NULL, "%#lx", va);
   2003 			pt_entry_t * const ptep
   2004 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2005 			const pt_entry_t opte = *ptep;
   2006 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2007 
   2008 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   2009 			    && l2pte_valid_p(opte)) {
   2010 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   2011 				    true, pv->pv_flags);
   2012 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2013 				    pv->pv_flags);
   2014 			}
   2015 
   2016 			l2pte_set(ptep, npte, opte);
   2017 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2018 		}
   2019 		cpu_cpwait();
   2020 	} else if (entries > cacheable_entries) {
   2021 		/*
   2022 		 * Turn cacheing back on for some pages.  If it is a kernel
   2023 		 * page, only do so if there are no other writable pages.
   2024 		 */
   2025 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2026 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   2027 			    (kpmap != pv->pv_pmap || other_writable)))
   2028 				continue;
   2029 
   2030 			pv->pv_flags &= ~PVF_NC;
   2031 
   2032 			struct l2_bucket * const l2b
   2033 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2034 			KASSERTMSG(l2b != NULL, "%#lx", va);
   2035 			pt_entry_t * const ptep
   2036 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2037 			const pt_entry_t opte = *ptep;
   2038 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   2039 			    | pte_l2_s_cache_mode;
   2040 
   2041 			if (l2pte_valid_p(opte)) {
   2042 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2043 				    pv->pv_flags);
   2044 			}
   2045 
   2046 			l2pte_set(ptep, npte, opte);
   2047 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2048 		}
   2049 	}
   2050 }
   2051 #endif
   2052 
   2053 #ifdef PMAP_CACHE_VIPT
   2054 static void
   2055 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2056 {
   2057 #ifndef ARM_MMU_EXTENDED
   2058 	struct pv_entry *pv;
   2059 	vaddr_t tst_mask;
   2060 	bool bad_alias;
   2061 	const u_int
   2062 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2063 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2064 
   2065 	/* do we need to do anything? */
   2066 	if (arm_cache_prefer_mask == 0)
   2067 		return;
   2068 
   2069 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   2070 	    md, pm, va));
   2071 
   2072 	KASSERT(!va || pm);
   2073 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2074 
   2075 	/* Already a conflict? */
   2076 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2077 		/* just an add, things are already non-cached */
   2078 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2079 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2080 		bad_alias = false;
   2081 		if (va) {
   2082 			PMAPCOUNT(vac_color_none);
   2083 			bad_alias = true;
   2084 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2085 			goto fixup;
   2086 		}
   2087 		pv = SLIST_FIRST(&md->pvh_list);
   2088 		/* the list can't be empty because it would be cachable */
   2089 		if (md->pvh_attrs & PVF_KMPAGE) {
   2090 			tst_mask = md->pvh_attrs;
   2091 		} else {
   2092 			KASSERT(pv);
   2093 			tst_mask = pv->pv_va;
   2094 			pv = SLIST_NEXT(pv, pv_link);
   2095 		}
   2096 		/*
   2097 		 * Only check for a bad alias if we have writable mappings.
   2098 		 */
   2099 		tst_mask &= arm_cache_prefer_mask;
   2100 		if (rw_mappings > 0) {
   2101 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2102 				/* if there's a bad alias, stop checking. */
   2103 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2104 					bad_alias = true;
   2105 			}
   2106 			md->pvh_attrs |= PVF_WRITE;
   2107 			if (!bad_alias)
   2108 				md->pvh_attrs |= PVF_DIRTY;
   2109 		} else {
   2110 			/*
   2111 			 * We have only read-only mappings.  Let's see if there
   2112 			 * are multiple colors in use or if we mapped a KMPAGE.
   2113 			 * If the latter, we have a bad alias.  If the former,
   2114 			 * we need to remember that.
   2115 			 */
   2116 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2117 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2118 					if (md->pvh_attrs & PVF_KMPAGE)
   2119 						bad_alias = true;
   2120 					break;
   2121 				}
   2122 			}
   2123 			md->pvh_attrs &= ~PVF_WRITE;
   2124 			/*
   2125 			 * No KMPAGE and we exited early, so we must have
   2126 			 * multiple color mappings.
   2127 			 */
   2128 			if (!bad_alias && pv != NULL)
   2129 				md->pvh_attrs |= PVF_MULTCLR;
   2130 		}
   2131 
   2132 		/* If no conflicting colors, set everything back to cached */
   2133 		if (!bad_alias) {
   2134 #ifdef DEBUG
   2135 			if ((md->pvh_attrs & PVF_WRITE)
   2136 			    || ro_mappings < 2) {
   2137 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2138 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2139 			}
   2140 #endif
   2141 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2142 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2143 			/*
   2144 			 * Restore DIRTY bit if page is modified
   2145 			 */
   2146 			if (md->pvh_attrs & PVF_DMOD)
   2147 				md->pvh_attrs |= PVF_DIRTY;
   2148 			PMAPCOUNT(vac_color_restore);
   2149 		} else {
   2150 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2151 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2152 		}
   2153 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2154 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2155 	} else if (!va) {
   2156 		KASSERT(pmap_is_page_colored_p(md));
   2157 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2158 		    || (md->pvh_attrs & PVF_DIRTY));
   2159 		if (rw_mappings == 0) {
   2160 			md->pvh_attrs &= ~PVF_WRITE;
   2161 			if (ro_mappings == 1
   2162 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2163 				/*
   2164 				 * If this is the last readonly mapping
   2165 				 * but it doesn't match the current color
   2166 				 * for the page, change the current color
   2167 				 * to match this last readonly mapping.
   2168 				 */
   2169 				pv = SLIST_FIRST(&md->pvh_list);
   2170 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2171 				    & arm_cache_prefer_mask;
   2172 				if (tst_mask) {
   2173 					md->pvh_attrs ^= tst_mask;
   2174 					PMAPCOUNT(vac_color_change);
   2175 				}
   2176 			}
   2177 		}
   2178 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2179 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2180 		return;
   2181 	} else if (!pmap_is_page_colored_p(md)) {
   2182 		/* not colored so we just use its color */
   2183 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2184 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2185 		PMAPCOUNT(vac_color_new);
   2186 		md->pvh_attrs &= PAGE_SIZE - 1;
   2187 		md->pvh_attrs |= PVF_COLORED
   2188 		    | (va & arm_cache_prefer_mask)
   2189 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2190 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2191 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2192 		return;
   2193 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2194 		bad_alias = false;
   2195 		if (rw_mappings > 0) {
   2196 			/*
   2197 			 * We now have writeable mappings and if we have
   2198 			 * readonly mappings in more than once color, we have
   2199 			 * an aliasing problem.  Regardless mark the page as
   2200 			 * writeable.
   2201 			 */
   2202 			if (md->pvh_attrs & PVF_MULTCLR) {
   2203 				if (ro_mappings < 2) {
   2204 					/*
   2205 					 * If we only have less than two
   2206 					 * read-only mappings, just flush the
   2207 					 * non-primary colors from the cache.
   2208 					 */
   2209 					pmap_flush_page(md, pa,
   2210 					    PMAP_FLUSH_SECONDARY);
   2211 				} else {
   2212 					bad_alias = true;
   2213 				}
   2214 			}
   2215 			md->pvh_attrs |= PVF_WRITE;
   2216 		}
   2217 		/* If no conflicting colors, set everything back to cached */
   2218 		if (!bad_alias) {
   2219 #ifdef DEBUG
   2220 			if (rw_mappings > 0
   2221 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2222 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2223 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2224 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2225 			}
   2226 #endif
   2227 			if (SLIST_EMPTY(&md->pvh_list))
   2228 				PMAPCOUNT(vac_color_reuse);
   2229 			else
   2230 				PMAPCOUNT(vac_color_ok);
   2231 
   2232 			/* matching color, just return */
   2233 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2234 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2235 			return;
   2236 		}
   2237 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2238 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2239 
   2240 		/* color conflict.  evict from cache. */
   2241 
   2242 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2243 		md->pvh_attrs &= ~PVF_COLORED;
   2244 		md->pvh_attrs |= PVF_NC;
   2245 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2246 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2247 		PMAPCOUNT(vac_color_erase);
   2248 	} else if (rw_mappings == 0
   2249 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2250 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2251 
   2252 		/*
   2253 		 * If the page has dirty cache lines, clean it.
   2254 		 */
   2255 		if (md->pvh_attrs & PVF_DIRTY)
   2256 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2257 
   2258 		/*
   2259 		 * If this is the first remapping (we know that there are no
   2260 		 * writeable mappings), then this is a simple color change.
   2261 		 * Otherwise this is a seconary r/o mapping, which means
   2262 		 * we don't have to do anything.
   2263 		 */
   2264 		if (ro_mappings == 1) {
   2265 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2266 			md->pvh_attrs &= PAGE_SIZE - 1;
   2267 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2268 			PMAPCOUNT(vac_color_change);
   2269 		} else {
   2270 			PMAPCOUNT(vac_color_blind);
   2271 		}
   2272 		md->pvh_attrs |= PVF_MULTCLR;
   2273 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2274 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2275 		return;
   2276 	} else {
   2277 		if (rw_mappings > 0)
   2278 			md->pvh_attrs |= PVF_WRITE;
   2279 
   2280 		/* color conflict.  evict from cache. */
   2281 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2282 
   2283 		/* the list can't be empty because this was a enter/modify */
   2284 		pv = SLIST_FIRST(&md->pvh_list);
   2285 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2286 			KASSERT(pv);
   2287 			/*
   2288 			 * If there's only one mapped page, change color to the
   2289 			 * page's new color and return.  Restore the DIRTY bit
   2290 			 * that was erased by pmap_flush_page.
   2291 			 */
   2292 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2293 				md->pvh_attrs &= PAGE_SIZE - 1;
   2294 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2295 				if (md->pvh_attrs & PVF_DMOD)
   2296 					md->pvh_attrs |= PVF_DIRTY;
   2297 				PMAPCOUNT(vac_color_change);
   2298 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2299 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2300 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2301 				return;
   2302 			}
   2303 		}
   2304 		bad_alias = true;
   2305 		md->pvh_attrs &= ~PVF_COLORED;
   2306 		md->pvh_attrs |= PVF_NC;
   2307 		PMAPCOUNT(vac_color_erase);
   2308 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2309 	}
   2310 
   2311   fixup:
   2312 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2313 
   2314 	/*
   2315 	 * Turn cacheing on/off for all pages.
   2316 	 */
   2317 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2318 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2319 		    pv->pv_va);
   2320 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2321 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2322 		const pt_entry_t opte = *ptep;
   2323 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2324 		if (bad_alias) {
   2325 			pv->pv_flags |= PVF_NC;
   2326 		} else {
   2327 			pv->pv_flags &= ~PVF_NC;
   2328 			npte |= pte_l2_s_cache_mode;
   2329 		}
   2330 
   2331 		if (opte == npte)	/* only update is there's a change */
   2332 			continue;
   2333 
   2334 		if (l2pte_valid_p(opte)) {
   2335 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2336 		}
   2337 
   2338 		l2pte_set(ptep, npte, opte);
   2339 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2340 	}
   2341 #endif /* !ARM_MMU_EXTENDED */
   2342 }
   2343 #endif	/* PMAP_CACHE_VIPT */
   2344 
   2345 
   2346 /*
   2347  * Modify pte bits for all ptes corresponding to the given physical address.
   2348  * We use `maskbits' rather than `clearbits' because we're always passing
   2349  * constants and the latter would require an extra inversion at run-time.
   2350  */
   2351 static void
   2352 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2353 {
   2354 	struct pv_entry *pv;
   2355 #ifdef PMAP_CACHE_VIPT
   2356 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2357 	bool need_syncicache = false;
   2358 #ifdef ARM_MMU_EXTENDED
   2359 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
   2360 #else
   2361 	const u_int execbits = 0;
   2362 	bool need_vac_me_harder = false;
   2363 #endif
   2364 #else
   2365 	const u_int execbits = 0;
   2366 #endif
   2367 
   2368 	NPDEBUG(PDB_BITS,
   2369 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2370 	    md, maskbits));
   2371 
   2372 #ifdef PMAP_CACHE_VIPT
   2373 	/*
   2374 	 * If we might want to sync the I-cache and we've modified it,
   2375 	 * then we know we definitely need to sync or discard it.
   2376 	 */
   2377 	if (want_syncicache) {
   2378 		if (md->pvh_attrs & PVF_MOD) {
   2379 			need_syncicache = true;
   2380 		}
   2381 	}
   2382 #endif
   2383 	KASSERT(pmap_page_locked_p(md));
   2384 
   2385 	/*
   2386 	 * Clear saved attributes (modify, reference)
   2387 	 */
   2388 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2389 
   2390 	if (SLIST_EMPTY(&md->pvh_list)) {
   2391 #if defined(PMAP_CACHE_VIPT)
   2392 		if (need_syncicache) {
   2393 			/*
   2394 			 * No one has it mapped, so just discard it.  The next
   2395 			 * exec remapping will cause it to be synced.
   2396 			 */
   2397 			md->pvh_attrs &= ~PVF_EXEC;
   2398 			PMAPCOUNT(exec_discarded_clearbit);
   2399 		}
   2400 #endif
   2401 		return;
   2402 	}
   2403 
   2404 	/*
   2405 	 * Loop over all current mappings setting/clearing as appropos
   2406 	 */
   2407 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2408 		pmap_t pm = pv->pv_pmap;
   2409 		const vaddr_t va = pv->pv_va;
   2410 		const u_int oflags = pv->pv_flags;
   2411 #ifndef ARM_MMU_EXTENDED
   2412 		/*
   2413 		 * Kernel entries are unmanaged and as such not to be changed.
   2414 		 */
   2415 		if (PV_IS_KENTRY_P(oflags))
   2416 			continue;
   2417 #endif
   2418 		pv->pv_flags &= ~maskbits;
   2419 
   2420 		pmap_release_page_lock(md);
   2421 		pmap_acquire_pmap_lock(pm);
   2422 
   2423 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2424 		if (l2b == NULL) {
   2425 			pmap_release_pmap_lock(pm);
   2426 			pmap_acquire_page_lock(md);
   2427 			continue;
   2428 		}
   2429 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2430 
   2431 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2432 		const pt_entry_t opte = *ptep;
   2433 		pt_entry_t npte = opte | execbits;
   2434 
   2435 #ifdef ARM_MMU_EXTENDED
   2436 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2437 #endif
   2438 
   2439 		NPDEBUG(PDB_BITS,
   2440 		    printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2441 			__func__, pv, pm, va, oflags));
   2442 
   2443 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2444 #ifdef PMAP_CACHE_VIVT
   2445 			if ((oflags & PVF_NC)) {
   2446 				/*
   2447 				 * Entry is not cacheable:
   2448 				 *
   2449 				 * Don't turn caching on again if this is a
   2450 				 * modified emulation. This would be
   2451 				 * inconsitent with the settings created by
   2452 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2453 				 * to re-enable cacheing.
   2454 				 *
   2455 				 * There's no need to call pmap_vac_me_harder()
   2456 				 * here: all pages are losing their write
   2457 				 * permission.
   2458 				 */
   2459 				if (maskbits & PVF_WRITE) {
   2460 					npte |= pte_l2_s_cache_mode;
   2461 					pv->pv_flags &= ~PVF_NC;
   2462 				}
   2463 			} else if (l2pte_writable_p(opte)) {
   2464 				/*
   2465 				 * Entry is writable/cacheable: check if pmap
   2466 				 * is current if it is flush it, otherwise it
   2467 				 * won't be in the cache
   2468 				 */
   2469 				pmap_cache_wbinv_page(pm, va,
   2470 				    (maskbits & PVF_REF) != 0,
   2471 				    oflags|PVF_WRITE);
   2472 			}
   2473 #endif
   2474 
   2475 			/* make the pte read only */
   2476 			npte = l2pte_set_readonly(npte);
   2477 
   2478 			pmap_acquire_page_lock(md);
   2479 #ifdef MULTIPROCESSOR
   2480 			pv = pmap_find_pv(md, pm, va);
   2481 #endif
   2482 			if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
   2483 				/*
   2484 				 * Keep alias accounting up to date
   2485 				 */
   2486 				if (pm == pmap_kernel()) {
   2487 					md->krw_mappings--;
   2488 					md->kro_mappings++;
   2489 				} else {
   2490 					md->urw_mappings--;
   2491 					md->uro_mappings++;
   2492 				}
   2493 #ifdef PMAP_CACHE_VIPT
   2494 				if (arm_cache_prefer_mask != 0) {
   2495 					if (md->urw_mappings + md->krw_mappings == 0) {
   2496 						md->pvh_attrs &= ~PVF_WRITE;
   2497 					} else {
   2498 						PMAP_VALIDATE_MD_PAGE(md);
   2499 					}
   2500 				}
   2501 				if (want_syncicache)
   2502 					need_syncicache = true;
   2503 #ifndef ARM_MMU_EXTENDED
   2504 				need_vac_me_harder = true;
   2505 #endif
   2506 #endif /* PMAP_CACHE_VIPT */
   2507 			}
   2508 			pmap_release_page_lock(md);
   2509 		}
   2510 
   2511 		if (maskbits & PVF_REF) {
   2512 			if (true
   2513 #ifndef ARM_MMU_EXTENDED
   2514 			    && (oflags & PVF_NC) == 0
   2515 #endif
   2516 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2517 			    && l2pte_valid_p(npte)) {
   2518 #ifdef PMAP_CACHE_VIVT
   2519 				/*
   2520 				 * Check npte here; we may have already
   2521 				 * done the wbinv above, and the validity
   2522 				 * of the PTE is the same for opte and
   2523 				 * npte.
   2524 				 */
   2525 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2526 #endif
   2527 			}
   2528 
   2529 			/*
   2530 			 * Make the PTE invalid so that we will take a
   2531 			 * page fault the next time the mapping is
   2532 			 * referenced.
   2533 			 */
   2534 			npte &= ~L2_TYPE_MASK;
   2535 			npte |= L2_TYPE_INV;
   2536 		}
   2537 
   2538 		if (npte != opte) {
   2539 			l2pte_reset(ptep);
   2540 			PTE_SYNC(ptep);
   2541 
   2542 			/* Flush the TLB entry if a current pmap. */
   2543 			pmap_tlb_flush_SE(pm, va, oflags);
   2544 
   2545 			l2pte_set(ptep, npte, 0);
   2546 			PTE_SYNC(ptep);
   2547 		}
   2548 
   2549 		pmap_release_pmap_lock(pm);
   2550 		pmap_acquire_page_lock(md);
   2551 
   2552 		NPDEBUG(PDB_BITS,
   2553 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2554 		    pm, va, opte, npte));
   2555 	}
   2556 
   2557 #if defined(PMAP_CACHE_VIPT)
   2558 	/*
   2559 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2560 	 */
   2561 	if (need_syncicache) {
   2562 		pmap_release_page_lock(md);
   2563 		pmap_syncicache_page(md, pa);
   2564 		pmap_acquire_page_lock(md);
   2565 		PMAPCOUNT(exec_synced_clearbit);
   2566 	}
   2567 #ifndef ARM_MMU_EXTENDED
   2568 	/*
   2569 	 * If we are changing this to read-only, we need to call vac_me_harder
   2570 	 * so we can change all the read-only pages to cacheable.  We pretend
   2571 	 * this as a page deletion.
   2572 	 */
   2573 	if (need_vac_me_harder) {
   2574 		if (md->pvh_attrs & PVF_NC)
   2575 			pmap_vac_me_harder(md, pa, NULL, 0);
   2576 	}
   2577 #endif /* !ARM_MMU_EXTENDED */
   2578 #endif /* PMAP_CACHE_VIPT */
   2579 }
   2580 
   2581 /*
   2582  * pmap_clean_page()
   2583  *
   2584  * This is a local function used to work out the best strategy to clean
   2585  * a single page referenced by its entry in the PV table. It's used by
   2586  * pmap_copy_page, pmap_zero_page and maybe some others later on.
   2587  *
   2588  * Its policy is effectively:
   2589  *  o If there are no mappings, we don't bother doing anything with the cache.
   2590  *  o If there is one mapping, we clean just that page.
   2591  *  o If there are multiple mappings, we clean the entire cache.
   2592  *
   2593  * So that some functions can be further optimised, it returns 0 if it didn't
   2594  * clean the entire cache, or 1 if it did.
   2595  *
   2596  * XXX One bug in this routine is that if the pv_entry has a single page
   2597  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2598  * just the 1 page. Since this should not occur in everyday use and if it does
   2599  * it will just result in not the most efficient clean for the page.
   2600  */
   2601 #ifdef PMAP_CACHE_VIVT
   2602 static bool
   2603 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2604 {
   2605 	struct pv_entry *pv;
   2606 	pmap_t pm_to_clean = NULL;
   2607 	bool cache_needs_cleaning = false;
   2608 	vaddr_t page_to_clean = 0;
   2609 	u_int flags = 0;
   2610 
   2611 	/*
   2612 	 * Since we flush the cache each time we change to a different
   2613 	 * user vmspace, we only need to flush the page if it is in the
   2614 	 * current pmap.
   2615 	 */
   2616 	KASSERT(pmap_page_locked_p(md));
   2617 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2618 		if (pmap_is_current(pv->pv_pmap)) {
   2619 			flags |= pv->pv_flags;
   2620 			/*
   2621 			 * The page is mapped non-cacheable in
   2622 			 * this map.  No need to flush the cache.
   2623 			 */
   2624 			if (pv->pv_flags & PVF_NC) {
   2625 #ifdef DIAGNOSTIC
   2626 				KASSERT(!cache_needs_cleaning);
   2627 #endif
   2628 				break;
   2629 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2630 				continue;
   2631 			if (cache_needs_cleaning) {
   2632 				page_to_clean = 0;
   2633 				break;
   2634 			} else {
   2635 				page_to_clean = pv->pv_va;
   2636 				pm_to_clean = pv->pv_pmap;
   2637 			}
   2638 			cache_needs_cleaning = true;
   2639 		}
   2640 	}
   2641 
   2642 	if (page_to_clean) {
   2643 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2644 		    !is_src, flags | PVF_REF);
   2645 	} else if (cache_needs_cleaning) {
   2646 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2647 
   2648 		pmap_cache_wbinv_all(pm, flags);
   2649 		return true;
   2650 	}
   2651 	return false;
   2652 }
   2653 #endif
   2654 
   2655 #ifdef PMAP_CACHE_VIPT
   2656 /*
   2657  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2658  * right cache alias to make sure we flush the right stuff.
   2659  */
   2660 void
   2661 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2662 {
   2663 	pmap_t kpm = pmap_kernel();
   2664 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2665 	    ? PAGE_SIZE
   2666 	    : arm_pcache.icache_way_size;
   2667 
   2668 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2669 	    md, md->pvh_attrs));
   2670 	/*
   2671 	 * No need to clean the page if it's non-cached.
   2672 	 */
   2673 #ifndef ARM_MMU_EXTENDED
   2674 	if (md->pvh_attrs & PVF_NC)
   2675 		return;
   2676 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2677 #endif
   2678 
   2679 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2680 	const vaddr_t dstp = cpu_cdstp(0);
   2681 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2682 	if (way_size <= PAGE_SIZE) {
   2683 		bool ok = false;
   2684 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2685 		if (ok) {
   2686 			cpu_icache_sync_range(vdstp, way_size);
   2687 			return;
   2688 		}
   2689 	}
   2690 #endif
   2691 
   2692 	/*
   2693 	 * We don't worry about the color of the exec page, we map the
   2694 	 * same page to pages in the way and then do the icache_sync on
   2695 	 * the entire way making sure we are cleaned.
   2696 	 */
   2697 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2698 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2699 
   2700 	for (size_t i = 0, j = 0; i < way_size;
   2701 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2702 		l2pte_reset(ptep + j);
   2703 		PTE_SYNC(ptep + j);
   2704 
   2705 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2706 		/*
   2707 		 * Set up a PTE with to flush these cache lines.
   2708 		 */
   2709 		l2pte_set(ptep + j, npte, 0);
   2710 	}
   2711 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2712 
   2713 	/*
   2714 	 * Flush it.
   2715 	 */
   2716 	cpu_icache_sync_range(dstp, way_size);
   2717 
   2718 	for (size_t i = 0, j = 0; i < way_size;
   2719 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2720 		/*
   2721 		 * Unmap the page(s).
   2722 		 */
   2723 		l2pte_reset(ptep + j);
   2724 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2725 	}
   2726 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2727 
   2728 	md->pvh_attrs |= PVF_EXEC;
   2729 	PMAPCOUNT(exec_synced);
   2730 }
   2731 
   2732 #ifndef ARM_MMU_EXTENDED
   2733 void
   2734 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2735 {
   2736 	vsize_t va_offset, end_va;
   2737 	bool wbinv_p;
   2738 
   2739 	if (arm_cache_prefer_mask == 0)
   2740 		return;
   2741 
   2742 	switch (flush) {
   2743 	case PMAP_FLUSH_PRIMARY:
   2744 		if (md->pvh_attrs & PVF_MULTCLR) {
   2745 			va_offset = 0;
   2746 			end_va = arm_cache_prefer_mask;
   2747 			md->pvh_attrs &= ~PVF_MULTCLR;
   2748 			PMAPCOUNT(vac_flush_lots);
   2749 		} else {
   2750 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2751 			end_va = va_offset;
   2752 			PMAPCOUNT(vac_flush_one);
   2753 		}
   2754 		/*
   2755 		 * Mark that the page is no longer dirty.
   2756 		 */
   2757 		md->pvh_attrs &= ~PVF_DIRTY;
   2758 		wbinv_p = true;
   2759 		break;
   2760 	case PMAP_FLUSH_SECONDARY:
   2761 		va_offset = 0;
   2762 		end_va = arm_cache_prefer_mask;
   2763 		wbinv_p = true;
   2764 		md->pvh_attrs &= ~PVF_MULTCLR;
   2765 		PMAPCOUNT(vac_flush_lots);
   2766 		break;
   2767 	case PMAP_CLEAN_PRIMARY:
   2768 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2769 		end_va = va_offset;
   2770 		wbinv_p = false;
   2771 		/*
   2772 		 * Mark that the page is no longer dirty.
   2773 		 */
   2774 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2775 			md->pvh_attrs &= ~PVF_DIRTY;
   2776 		PMAPCOUNT(vac_clean_one);
   2777 		break;
   2778 	default:
   2779 		return;
   2780 	}
   2781 
   2782 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2783 
   2784 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2785 	    md, md->pvh_attrs));
   2786 
   2787 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2788 
   2789 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2790 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2791 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2792 		const pt_entry_t opte = *ptep;
   2793 
   2794 		if (flush == PMAP_FLUSH_SECONDARY
   2795 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2796 			continue;
   2797 
   2798 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2799 		/*
   2800 		 * Set up a PTE with the right coloring to flush
   2801 		 * existing cache entries.
   2802 		 */
   2803 		const pt_entry_t npte = L2_S_PROTO
   2804 		    | pa
   2805 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2806 		    | pte_l2_s_cache_mode;
   2807 		l2pte_set(ptep, npte, opte);
   2808 		PTE_SYNC(ptep);
   2809 
   2810 		/*
   2811 		 * Flush it.  Make sure to flush secondary cache too since
   2812 		 * bus_dma will ignore uncached pages.
   2813 		 */
   2814 		if (scache_line_size != 0) {
   2815 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2816 			if (wbinv_p) {
   2817 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2818 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2819 			} else {
   2820 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2821 			}
   2822 		} else {
   2823 			if (wbinv_p) {
   2824 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2825 			} else {
   2826 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2827 			}
   2828 		}
   2829 
   2830 		/*
   2831 		 * Restore the page table entry since we might have interrupted
   2832 		 * pmap_zero_page or pmap_copy_page which was already using
   2833 		 * this pte.
   2834 		 */
   2835 		if (opte) {
   2836 			l2pte_set(ptep, opte, npte);
   2837 		} else {
   2838 			l2pte_reset(ptep);
   2839 		}
   2840 		PTE_SYNC(ptep);
   2841 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2842 	}
   2843 }
   2844 #endif /* ARM_MMU_EXTENDED */
   2845 #endif /* PMAP_CACHE_VIPT */
   2846 
   2847 /*
   2848  * Routine:	pmap_page_remove
   2849  * Function:
   2850  *		Removes this physical page from
   2851  *		all physical maps in which it resides.
   2852  *		Reflects back modify bits to the pager.
   2853  */
   2854 static void
   2855 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2856 {
   2857 	struct l2_bucket *l2b;
   2858 	struct pv_entry *pv;
   2859 	pt_entry_t *ptep;
   2860 #ifndef ARM_MMU_EXTENDED
   2861 	bool flush = false;
   2862 #endif
   2863 	u_int flags = 0;
   2864 
   2865 	NPDEBUG(PDB_FOLLOW,
   2866 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2867 	    pa));
   2868 
   2869 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2870 	pmap_acquire_page_lock(md);
   2871 	if (*pvp == NULL) {
   2872 #ifdef PMAP_CACHE_VIPT
   2873 		/*
   2874 		 * We *know* the page contents are about to be replaced.
   2875 		 * Discard the exec contents
   2876 		 */
   2877 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2878 			PMAPCOUNT(exec_discarded_page_protect);
   2879 		md->pvh_attrs &= ~PVF_EXEC;
   2880 		PMAP_VALIDATE_MD_PAGE(md);
   2881 #endif
   2882 		pmap_release_page_lock(md);
   2883 		return;
   2884 	}
   2885 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2886 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2887 #endif
   2888 
   2889 	/*
   2890 	 * Clear alias counts
   2891 	 */
   2892 #ifdef PMAP_CACHE_VIVT
   2893 	md->k_mappings = 0;
   2894 #endif
   2895 	md->urw_mappings = md->uro_mappings = 0;
   2896 
   2897 #ifdef PMAP_CACHE_VIVT
   2898 	pmap_clean_page(md, false);
   2899 #endif
   2900 
   2901 	while ((pv = *pvp) != NULL) {
   2902 		pmap_t pm = pv->pv_pmap;
   2903 #ifndef ARM_MMU_EXTENDED
   2904 		if (flush == false && pmap_is_current(pm))
   2905 			flush = true;
   2906 #endif
   2907 
   2908 		if (pm == pmap_kernel()) {
   2909 #ifdef PMAP_CACHE_VIPT
   2910 			/*
   2911 			 * If this was unmanaged mapping, it must be preserved.
   2912 			 * Move it back on the list and advance the end-of-list
   2913 			 * pointer.
   2914 			 */
   2915 			if (PV_IS_KENTRY_P(pv->pv_flags)) {
   2916 				*pvp = pv;
   2917 				pvp = &SLIST_NEXT(pv, pv_link);
   2918 				continue;
   2919 			}
   2920 			if (pv->pv_flags & PVF_WRITE)
   2921 				md->krw_mappings--;
   2922 			else
   2923 				md->kro_mappings--;
   2924 #endif
   2925 			PMAPCOUNT(kernel_unmappings);
   2926 		}
   2927 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2928 		PMAPCOUNT(unmappings);
   2929 
   2930 		pmap_release_page_lock(md);
   2931 		pmap_acquire_pmap_lock(pm);
   2932 
   2933 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2934 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2935 
   2936 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2937 
   2938 		/*
   2939 		 * Update statistics
   2940 		 */
   2941 		--pm->pm_stats.resident_count;
   2942 
   2943 		/* Wired bit */
   2944 		if (pv->pv_flags & PVF_WIRED)
   2945 			--pm->pm_stats.wired_count;
   2946 
   2947 		flags |= pv->pv_flags;
   2948 
   2949 		/*
   2950 		 * Invalidate the PTEs.
   2951 		 */
   2952 		l2pte_reset(ptep);
   2953 		PTE_SYNC_CURRENT(pm, ptep);
   2954 
   2955 #ifdef ARM_MMU_EXTENDED
   2956 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2957 #endif
   2958 
   2959 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2960 
   2961 		pmap_release_pmap_lock(pm);
   2962 
   2963 		pool_put(&pmap_pv_pool, pv);
   2964 		pmap_acquire_page_lock(md);
   2965 #ifdef MULTIPROCESSOR
   2966 		/*
   2967 		 * Restart of the beginning of the list.
   2968 		 */
   2969 		pvp = &SLIST_FIRST(&md->pvh_list);
   2970 #endif
   2971 	}
   2972 	/*
   2973 	 * if we reach the end of the list and there are still mappings, they
   2974 	 * might be able to be cached now.  And they must be kernel mappings.
   2975 	 */
   2976 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2977 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2978 	}
   2979 
   2980 #ifdef PMAP_CACHE_VIPT
   2981 	/*
   2982 	 * Its EXEC cache is now gone.
   2983 	 */
   2984 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2985 		PMAPCOUNT(exec_discarded_page_protect);
   2986 	md->pvh_attrs &= ~PVF_EXEC;
   2987 	KASSERT(md->urw_mappings == 0);
   2988 	KASSERT(md->uro_mappings == 0);
   2989 #ifndef ARM_MMU_EXTENDED
   2990 	if (arm_cache_prefer_mask != 0) {
   2991 		if (md->krw_mappings == 0)
   2992 			md->pvh_attrs &= ~PVF_WRITE;
   2993 		PMAP_VALIDATE_MD_PAGE(md);
   2994 	}
   2995 #endif /* ARM_MMU_EXTENDED */
   2996 #endif /* PMAP_CACHE_VIPT */
   2997 	pmap_release_page_lock(md);
   2998 
   2999 #ifndef ARM_MMU_EXTENDED
   3000 	if (flush) {
   3001 		/*
   3002 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   3003 		 * would need a subsequent call to pmap_update() to ensure
   3004 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   3005 		 * required to do that (see pmap(9)), so we can't modify
   3006 		 * the current pmap's state.
   3007 		 */
   3008 		if (PV_BEEN_EXECD(flags))
   3009 			cpu_tlb_flushID();
   3010 		else
   3011 			cpu_tlb_flushD();
   3012 	}
   3013 	cpu_cpwait();
   3014 #endif /* ARM_MMU_EXTENDED */
   3015 }
   3016 
   3017 /*
   3018  * pmap_t pmap_create(void)
   3019  *
   3020  *      Create a new pmap structure from scratch.
   3021  */
   3022 pmap_t
   3023 pmap_create(void)
   3024 {
   3025 	pmap_t pm;
   3026 
   3027 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   3028 
   3029 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   3030 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   3031 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   3032 
   3033 	pm->pm_stats.wired_count = 0;
   3034 	pm->pm_stats.resident_count = 1;
   3035 #ifdef ARM_MMU_EXTENDED
   3036 #ifdef MULTIPROCESSOR
   3037 	kcpuset_create(&pm->pm_active, true);
   3038 	kcpuset_create(&pm->pm_onproc, true);
   3039 #endif
   3040 #else
   3041 	pm->pm_cstate.cs_all = 0;
   3042 #endif
   3043 	pmap_alloc_l1(pm);
   3044 
   3045 	/*
   3046 	 * Note: The pool cache ensures that the pm_l2[] array is already
   3047 	 * initialised to zero.
   3048 	 */
   3049 
   3050 	pmap_pinit(pm);
   3051 
   3052 	return (pm);
   3053 }
   3054 
   3055 u_int
   3056 arm32_mmap_flags(paddr_t pa)
   3057 {
   3058 	/*
   3059 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3060 	 * and we're using the upper bits in page numbers to pass flags around
   3061 	 * so we might as well use the same bits
   3062 	 */
   3063 	return (u_int)pa & PMAP_MD_MASK;
   3064 }
   3065 /*
   3066  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3067  *      u_int flags)
   3068  *
   3069  *      Insert the given physical page (p) at
   3070  *      the specified virtual address (v) in the
   3071  *      target physical map with the protection requested.
   3072  *
   3073  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3074  *      or lose information.  That is, this routine must actually
   3075  *      insert this page into the given map NOW.
   3076  */
   3077 int
   3078 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3079 {
   3080 	struct l2_bucket *l2b;
   3081 	struct vm_page *pg, *opg;
   3082 	u_int nflags;
   3083 	u_int oflags;
   3084 	const bool kpm_p = (pm == pmap_kernel());
   3085 #ifdef ARM_HAS_VBAR
   3086 	const bool vector_page_p = false;
   3087 #else
   3088 	const bool vector_page_p = (va == vector_page);
   3089 #endif
   3090 	struct pmap_page *pp = pmap_pv_tracked(pa);
   3091 	struct pv_entry *new_pv = NULL;
   3092 	struct pv_entry *old_pv = NULL;
   3093 	int error = 0;
   3094 
   3095 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3096 
   3097 	UVMHIST_LOG(maphist, " (pm %#jx va %#jx pa %#jx prot %#jx",
   3098 	    (uintptr_t)pm, va, pa, prot);
   3099 	UVMHIST_LOG(maphist, "  flag %#jx", flags, 0, 0, 0);
   3100 
   3101 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3102 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3103 
   3104 	/*
   3105 	 * Get a pointer to the page.  Later on in this function, we
   3106 	 * test for a managed page by checking pg != NULL.
   3107 	 */
   3108 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3109 	/*
   3110 	 * if we may need a new pv entry allocate if now, as we can't do it
   3111 	 * with the kernel_pmap locked
   3112 	 */
   3113 	if (pg || pp)
   3114 		new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3115 
   3116 	nflags = 0;
   3117 	if (prot & VM_PROT_WRITE)
   3118 		nflags |= PVF_WRITE;
   3119 	if (prot & VM_PROT_EXECUTE)
   3120 		nflags |= PVF_EXEC;
   3121 	if (flags & PMAP_WIRED)
   3122 		nflags |= PVF_WIRED;
   3123 
   3124 	pmap_acquire_pmap_lock(pm);
   3125 
   3126 	/*
   3127 	 * Fetch the L2 bucket which maps this page, allocating one if
   3128 	 * necessary for user pmaps.
   3129 	 */
   3130 	if (kpm_p) {
   3131 		l2b = pmap_get_l2_bucket(pm, va);
   3132 	} else {
   3133 		l2b = pmap_alloc_l2_bucket(pm, va);
   3134 	}
   3135 	if (l2b == NULL) {
   3136 		if (flags & PMAP_CANFAIL) {
   3137 			pmap_release_pmap_lock(pm);
   3138 			error = ENOMEM;
   3139 			goto free_pv;
   3140 		}
   3141 		panic("pmap_enter: failed to allocate L2 bucket");
   3142 	}
   3143 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3144 	const pt_entry_t opte = *ptep;
   3145 	pt_entry_t npte = pa;
   3146 	oflags = 0;
   3147 
   3148 	if (opte) {
   3149 		/*
   3150 		 * There is already a mapping at this address.
   3151 		 * If the physical address is different, lookup the
   3152 		 * vm_page.
   3153 		 */
   3154 		if (l2pte_pa(opte) != pa) {
   3155 			KASSERT(!pmap_pv_tracked(pa));
   3156 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3157 		} else
   3158 			opg = pg;
   3159 	} else
   3160 		opg = NULL;
   3161 
   3162 	if (pg || pp) {
   3163 		KASSERT((pg != NULL) != (pp != NULL));
   3164 		struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
   3165 		    PMAP_PAGE_TO_MD(pp);
   3166 
   3167 		/*
   3168 		 * This is to be a managed mapping.
   3169 		 */
   3170 		pmap_acquire_page_lock(md);
   3171 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3172 			/*
   3173 			 * - The access type indicates that we don't need
   3174 			 *   to do referenced emulation.
   3175 			 * OR
   3176 			 * - The physical page has already been referenced
   3177 			 *   so no need to re-do referenced emulation here.
   3178 			 */
   3179 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3180 
   3181 			nflags |= PVF_REF;
   3182 
   3183 			if ((prot & VM_PROT_WRITE) != 0 &&
   3184 			    ((flags & VM_PROT_WRITE) != 0 ||
   3185 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3186 				/*
   3187 				 * This is a writable mapping, and the
   3188 				 * page's mod state indicates it has
   3189 				 * already been modified. Make it
   3190 				 * writable from the outset.
   3191 				 */
   3192 				npte = l2pte_set_writable(npte);
   3193 				nflags |= PVF_MOD;
   3194 			}
   3195 
   3196 #ifdef ARM_MMU_EXTENDED
   3197 			/*
   3198 			 * If the page has been cleaned, then the pvh_attrs
   3199 			 * will have PVF_EXEC set, so mark it execute so we
   3200 			 * don't get an access fault when trying to execute
   3201 			 * from it.
   3202 			 */
   3203 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3204 				npte &= ~L2_XS_XN;
   3205 			}
   3206 #endif
   3207 		} else {
   3208 			/*
   3209 			 * Need to do page referenced emulation.
   3210 			 */
   3211 			npte |= L2_TYPE_INV;
   3212 		}
   3213 
   3214 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3215 			npte |= pte_l2_s_wc_mode;
   3216 		} else
   3217 			npte |= pte_l2_s_cache_mode;
   3218 
   3219 		if (pg != NULL && pg == opg) {
   3220 			/*
   3221 			 * We're changing the attrs of an existing mapping.
   3222 			 */
   3223 			oflags = pmap_modify_pv(md, pa, pm, va,
   3224 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3225 			    PVF_MOD | PVF_REF, nflags);
   3226 
   3227 #ifdef PMAP_CACHE_VIVT
   3228 			/*
   3229 			 * We may need to flush the cache if we're
   3230 			 * doing rw-ro...
   3231 			 */
   3232 			if (pm->pm_cstate.cs_cache_d &&
   3233 			    (oflags & PVF_NC) == 0 &&
   3234 			    l2pte_writable_p(opte) &&
   3235 			    (prot & VM_PROT_WRITE) == 0)
   3236 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3237 #endif
   3238 		} else {
   3239 			struct pv_entry *pv;
   3240 			/*
   3241 			 * New mapping, or changing the backing page
   3242 			 * of an existing mapping.
   3243 			 */
   3244 			if (opg) {
   3245 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3246 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3247 
   3248 				/*
   3249 				 * Replacing an existing mapping with a new one.
   3250 				 * It is part of our managed memory so we
   3251 				 * must remove it from the PV list
   3252 				 */
   3253 				pv = pmap_remove_pv(omd, opa, pm, va);
   3254 				pmap_vac_me_harder(omd, opa, pm, 0);
   3255 				oflags = pv->pv_flags;
   3256 
   3257 #ifdef PMAP_CACHE_VIVT
   3258 				/*
   3259 				 * If the old mapping was valid (ref/mod
   3260 				 * emulation creates 'invalid' mappings
   3261 				 * initially) then make sure to frob
   3262 				 * the cache.
   3263 				 */
   3264 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3265 					pmap_cache_wbinv_page(pm, va, true,
   3266 					    oflags);
   3267 				}
   3268 #endif
   3269 			} else {
   3270 				pv = new_pv;
   3271 				new_pv = NULL;
   3272 				if (pv == NULL) {
   3273 					pmap_release_page_lock(md);
   3274 					pmap_release_pmap_lock(pm);
   3275 					if ((flags & PMAP_CANFAIL) == 0)
   3276 						panic("pmap_enter: "
   3277 						    "no pv entries");
   3278 
   3279 					pmap_free_l2_bucket(pm, l2b, 0);
   3280 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3281 					    0, 0, 0, 0);
   3282 					return (ENOMEM);
   3283 				}
   3284 			}
   3285 
   3286 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3287 		}
   3288 		pmap_release_page_lock(md);
   3289 	} else {
   3290 		/*
   3291 		 * We're mapping an unmanaged page.
   3292 		 * These are always readable, and possibly writable, from
   3293 		 * the get go as we don't need to track ref/mod status.
   3294 		 */
   3295 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3296 		if (prot & VM_PROT_WRITE)
   3297 			npte = l2pte_set_writable(npte);
   3298 
   3299 		/*
   3300 		 * Make sure the vector table is mapped cacheable
   3301 		 */
   3302 		if ((vector_page_p && !kpm_p)
   3303 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3304 			npte |= pte_l2_s_cache_mode;
   3305 #ifdef ARM_MMU_EXTENDED
   3306 			npte &= ~L2_XS_XN;	/* and executable */
   3307 #endif
   3308 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3309 			npte |= pte_l2_s_wc_mode;
   3310 		}
   3311 		if (opg) {
   3312 			/*
   3313 			 * Looks like there's an existing 'managed' mapping
   3314 			 * at this address.
   3315 			 */
   3316 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3317 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3318 
   3319 			pmap_acquire_page_lock(omd);
   3320 			old_pv = pmap_remove_pv(omd, opa, pm, va);
   3321 			pmap_vac_me_harder(omd, opa, pm, 0);
   3322 			oflags = old_pv->pv_flags;
   3323 			pmap_release_page_lock(omd);
   3324 
   3325 #ifdef PMAP_CACHE_VIVT
   3326 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3327 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3328 			}
   3329 #endif
   3330 		}
   3331 	}
   3332 
   3333 	/*
   3334 	 * Make sure userland mappings get the right permissions
   3335 	 */
   3336 	if (!vector_page_p && !kpm_p) {
   3337 		npte |= L2_S_PROT_U;
   3338 #ifdef ARM_MMU_EXTENDED
   3339 		npte |= L2_XS_nG;	/* user pages are not global */
   3340 #endif
   3341 	}
   3342 
   3343 	/*
   3344 	 * Keep the stats up to date
   3345 	 */
   3346 	if (opte == 0) {
   3347 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3348 		pm->pm_stats.resident_count++;
   3349 	}
   3350 
   3351 	UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
   3352 
   3353 #if defined(ARM_MMU_EXTENDED)
   3354 	/*
   3355 	 * If exec protection was requested but the page hasn't been synced,
   3356 	 * sync it now and allow execution from it.
   3357 	 */
   3358 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3359 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3360 		npte &= ~L2_XS_XN;
   3361 		pmap_syncicache_page(md, pa);
   3362 		PMAPCOUNT(exec_synced_map);
   3363 	}
   3364 #endif
   3365 	/*
   3366 	 * If this is just a wiring change, the two PTEs will be
   3367 	 * identical, so there's no need to update the page table.
   3368 	 */
   3369 	if (npte != opte) {
   3370 		l2pte_reset(ptep);
   3371 		PTE_SYNC(ptep);
   3372 		if (l2pte_valid_p(opte)) {
   3373 			pmap_tlb_flush_SE(pm, va, oflags);
   3374 		}
   3375 		l2pte_set(ptep, npte, 0);
   3376 		PTE_SYNC(ptep);
   3377 #ifndef ARM_MMU_EXTENDED
   3378 		bool is_cached = pmap_is_cached(pm);
   3379 		if (is_cached) {
   3380 			/*
   3381 			 * We only need to frob the cache/tlb if this pmap
   3382 			 * is current
   3383 			 */
   3384 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3385 				/*
   3386 				 * This mapping is likely to be accessed as
   3387 				 * soon as we return to userland. Fix up the
   3388 				 * L1 entry to avoid taking another
   3389 				 * page/domain fault.
   3390 				 */
   3391 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3392 				     + l1pte_index(va);
   3393 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3394 				    | L1_C_DOM(pmap_domain(pm));
   3395 				if (*pdep != pde) {
   3396 					l1pte_setone(pdep, pde);
   3397 					PDE_SYNC(pdep);
   3398 				}
   3399 			}
   3400 		}
   3401 #endif /* !ARM_MMU_EXTENDED */
   3402 
   3403 #ifndef ARM_MMU_EXTENDED
   3404 		UVMHIST_LOG(maphist, "  is_cached %jd cs 0x%08jx",
   3405 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3406 
   3407 		if (pg != NULL) {
   3408 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3409 
   3410 			pmap_acquire_page_lock(md);
   3411 			pmap_vac_me_harder(md, pa, pm, va);
   3412 			pmap_release_page_lock(md);
   3413 		}
   3414 #endif
   3415 	}
   3416 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3417 	if (pg) {
   3418 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3419 
   3420 		pmap_acquire_page_lock(md);
   3421 #ifndef ARM_MMU_EXTENDED
   3422 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3423 #endif
   3424 		PMAP_VALIDATE_MD_PAGE(md);
   3425 		pmap_release_page_lock(md);
   3426 	}
   3427 #endif
   3428 
   3429 	pmap_release_pmap_lock(pm);
   3430 
   3431 
   3432 	if (old_pv)
   3433 		pool_put(&pmap_pv_pool, old_pv);
   3434 free_pv:
   3435 	if (new_pv)
   3436 		pool_put(&pmap_pv_pool, new_pv);
   3437 	return (error);
   3438 }
   3439 
   3440 /*
   3441  * pmap_remove()
   3442  *
   3443  * pmap_remove is responsible for nuking a number of mappings for a range
   3444  * of virtual address space in the current pmap. To do this efficiently
   3445  * is interesting, because in a number of cases a wide virtual address
   3446  * range may be supplied that contains few actual mappings. So, the
   3447  * optimisations are:
   3448  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3449  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3450  *     maybe do just a partial cache clean. This path of execution is
   3451  *     complicated by the fact that the cache must be flushed _before_
   3452  *     the PTE is nuked, being a VAC :-)
   3453  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3454  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3455  *     already flushed the cache.
   3456  *  4. Maybe later fast-case a single page, but I don't think this is
   3457  *     going to make _that_ much difference overall.
   3458  */
   3459 
   3460 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3461 
   3462 void
   3463 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3464 {
   3465 	SLIST_HEAD(,pv_entry) opv_list;
   3466 	struct pv_entry *pv, *npv;
   3467 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3468 	UVMHIST_LOG(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
   3469 	    (uintptr_t)pm, sva, eva, 0);
   3470 
   3471 	SLIST_INIT(&opv_list);
   3472 	/*
   3473 	 * we lock in the pmap => pv_head direction
   3474 	 */
   3475 	pmap_acquire_pmap_lock(pm);
   3476 
   3477 #ifndef ARM_MMU_EXTENDED
   3478 	u_int cleanlist_idx, total, cnt;
   3479 	struct {
   3480 		vaddr_t va;
   3481 		pt_entry_t *ptep;
   3482 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3483 
   3484 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3485 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3486 		if (pm->pm_cstate.cs_tlb == 0)
   3487 			pm->pm_remove_all = true;
   3488 	} else
   3489 		cleanlist_idx = 0;
   3490 	total = 0;
   3491 #endif
   3492 
   3493 	while (sva < eva) {
   3494 		/*
   3495 		 * Do one L2 bucket's worth at a time.
   3496 		 */
   3497 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
   3498 		if (next_bucket > eva)
   3499 			next_bucket = eva;
   3500 
   3501 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3502 		if (l2b == NULL) {
   3503 			sva = next_bucket;
   3504 			continue;
   3505 		}
   3506 
   3507 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3508 		u_int mappings = 0;
   3509 
   3510 		for (;sva < next_bucket;
   3511 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3512 			pt_entry_t opte = *ptep;
   3513 
   3514 			if (opte == 0) {
   3515 				/* Nothing here, move along */
   3516 				continue;
   3517 			}
   3518 
   3519 			u_int flags = PVF_REF;
   3520 			paddr_t pa = l2pte_pa(opte);
   3521 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3522 
   3523 			/*
   3524 			 * Update flags. In a number of circumstances,
   3525 			 * we could cluster a lot of these and do a
   3526 			 * number of sequential pages in one go.
   3527 			 */
   3528 			if (pg != NULL) {
   3529 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3530 
   3531 				pmap_acquire_page_lock(md);
   3532 				pv = pmap_remove_pv(md, pa, pm, sva);
   3533 				pmap_vac_me_harder(md, pa, pm, 0);
   3534 				pmap_release_page_lock(md);
   3535 				if (pv != NULL) {
   3536 					if (pm->pm_remove_all == false) {
   3537 						flags = pv->pv_flags;
   3538 					}
   3539 					SLIST_INSERT_HEAD(&opv_list,
   3540 					    pv, pv_link);
   3541 				}
   3542 			}
   3543 			mappings += PAGE_SIZE / L2_S_SIZE;
   3544 
   3545 			if (!l2pte_valid_p(opte)) {
   3546 				/*
   3547 				 * Ref/Mod emulation is still active for this
   3548 				 * mapping, therefore it is has not yet been
   3549 				 * accessed. No need to frob the cache/tlb.
   3550 				 */
   3551 				l2pte_reset(ptep);
   3552 				PTE_SYNC_CURRENT(pm, ptep);
   3553 				continue;
   3554 			}
   3555 
   3556 #ifdef ARM_MMU_EXTENDED
   3557 			l2pte_reset(ptep);
   3558 			PTE_SYNC(ptep);
   3559 			if (__predict_false(pm->pm_remove_all == false)) {
   3560 				pmap_tlb_flush_SE(pm, sva, flags);
   3561 			}
   3562 #else
   3563 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3564 				/* Add to the clean list. */
   3565 				cleanlist[cleanlist_idx].ptep = ptep;
   3566 				cleanlist[cleanlist_idx].va =
   3567 				    sva | (flags & PVF_EXEC);
   3568 				cleanlist_idx++;
   3569 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3570 				/* Nuke everything if needed. */
   3571 #ifdef PMAP_CACHE_VIVT
   3572 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3573 #endif
   3574 				/*
   3575 				 * Roll back the previous PTE list,
   3576 				 * and zero out the current PTE.
   3577 				 */
   3578 				for (cnt = 0;
   3579 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3580 					l2pte_reset(cleanlist[cnt].ptep);
   3581 					PTE_SYNC(cleanlist[cnt].ptep);
   3582 				}
   3583 				l2pte_reset(ptep);
   3584 				PTE_SYNC(ptep);
   3585 				cleanlist_idx++;
   3586 				pm->pm_remove_all = true;
   3587 			} else {
   3588 				l2pte_reset(ptep);
   3589 				PTE_SYNC(ptep);
   3590 				if (pm->pm_remove_all == false) {
   3591 					pmap_tlb_flush_SE(pm, sva, flags);
   3592 				}
   3593 			}
   3594 #endif
   3595 		}
   3596 
   3597 #ifndef ARM_MMU_EXTENDED
   3598 		/*
   3599 		 * Deal with any left overs
   3600 		 */
   3601 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3602 			total += cleanlist_idx;
   3603 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3604 				l2pte_reset(cleanlist[cnt].ptep);
   3605 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3606 				vaddr_t va = cleanlist[cnt].va;
   3607 				if (pm->pm_cstate.cs_all != 0) {
   3608 					vaddr_t clva = va & ~PAGE_MASK;
   3609 					u_int flags = va & PVF_EXEC;
   3610 #ifdef PMAP_CACHE_VIVT
   3611 					pmap_cache_wbinv_page(pm, clva, true,
   3612 					    PVF_REF | PVF_WRITE | flags);
   3613 #endif
   3614 					pmap_tlb_flush_SE(pm, clva,
   3615 					    PVF_REF | flags);
   3616 				}
   3617 			}
   3618 
   3619 			/*
   3620 			 * If it looks like we're removing a whole bunch
   3621 			 * of mappings, it's faster to just write-back
   3622 			 * the whole cache now and defer TLB flushes until
   3623 			 * pmap_update() is called.
   3624 			 */
   3625 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3626 				cleanlist_idx = 0;
   3627 			else {
   3628 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3629 #ifdef PMAP_CACHE_VIVT
   3630 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3631 #endif
   3632 				pm->pm_remove_all = true;
   3633 			}
   3634 		}
   3635 #endif /* ARM_MMU_EXTENDED */
   3636 
   3637 		pmap_free_l2_bucket(pm, l2b, mappings);
   3638 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3639 	}
   3640 
   3641 	pmap_release_pmap_lock(pm);
   3642 	SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
   3643 		pool_put(&pmap_pv_pool, pv);
   3644 	}
   3645 }
   3646 
   3647 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3648 static struct pv_entry *
   3649 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3650 {
   3651 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3652 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3653 	struct pv_entry *pv;
   3654 
   3655 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3656 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3657 	KASSERT(pmap_page_locked_p(md));
   3658 
   3659 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3660 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3661 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3662 
   3663 	/*
   3664 	 * We are removing a writeable mapping to a cached exec page, if
   3665 	 * it's the last mapping then clear its execness otherwise sync
   3666 	 * the page to the icache.
   3667 	 */
   3668 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3669 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3670 		if (SLIST_EMPTY(&md->pvh_list)) {
   3671 			md->pvh_attrs &= ~PVF_EXEC;
   3672 			PMAPCOUNT(exec_discarded_kremove);
   3673 		} else {
   3674 			pmap_syncicache_page(md, pa);
   3675 			PMAPCOUNT(exec_synced_kremove);
   3676 		}
   3677 	}
   3678 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3679 
   3680 	return pv;
   3681 }
   3682 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3683 
   3684 /*
   3685  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3686  *
   3687  * We assume there is already sufficient KVM space available
   3688  * to do this, as we can't allocate L2 descriptor tables/metadata
   3689  * from here.
   3690  */
   3691 void
   3692 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3693 {
   3694 #ifdef PMAP_CACHE_VIVT
   3695 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3696 #endif
   3697 #ifdef PMAP_CACHE_VIPT
   3698 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3699 	struct vm_page *opg;
   3700 #ifndef ARM_MMU_EXTENDED
   3701 	struct pv_entry *pv = NULL;
   3702 #endif
   3703 #endif
   3704 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3705 
   3706 	UVMHIST_FUNC(__func__);
   3707 
   3708 	if (pmap_initialized) {
   3709 		UVMHIST_CALLED(maphist);
   3710 		UVMHIST_LOG(maphist, " (va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx",
   3711 		    va, pa, prot, flags);
   3712 	}
   3713 
   3714 	pmap_t kpm = pmap_kernel();
   3715 	pmap_acquire_pmap_lock(kpm);
   3716 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3717 	const size_t l1slot __diagused = l1pte_index(va);
   3718 	KASSERTMSG(l2b != NULL,
   3719 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3720 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3721 	    kpm->pm_l2[L2_IDX(l1slot)]
   3722 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3723 		: NULL,
   3724 	    kpm->pm_l2[L2_IDX(l1slot)]
   3725 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3726 		: NULL);
   3727 	KASSERT(l2b->l2b_kva != NULL);
   3728 
   3729 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3730 	const pt_entry_t opte = *ptep;
   3731 
   3732 	if (opte == 0) {
   3733 		PMAPCOUNT(kenter_mappings);
   3734 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3735 	} else {
   3736 		PMAPCOUNT(kenter_remappings);
   3737 #ifdef PMAP_CACHE_VIPT
   3738 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3739 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
   3740 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
   3741 #endif
   3742 		if (opg && arm_cache_prefer_mask != 0) {
   3743 			KASSERT(opg != pg);
   3744 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3745 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3746 #ifndef ARM_MMU_EXTENDED
   3747 			pmap_acquire_page_lock(omd);
   3748 			pv = pmap_kremove_pg(opg, va);
   3749 			pmap_release_page_lock(omd);
   3750 #endif
   3751 		}
   3752 #endif
   3753 		if (l2pte_valid_p(opte)) {
   3754 			l2pte_reset(ptep);
   3755 			PTE_SYNC(ptep);
   3756 #ifdef PMAP_CACHE_VIVT
   3757 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3758 #endif
   3759 			cpu_tlb_flushD_SE(va);
   3760 			cpu_cpwait();
   3761 		}
   3762 	}
   3763 	pmap_release_pmap_lock(kpm);
   3764 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   3765 
   3766 	if (flags & PMAP_PTE) {
   3767 		KASSERT((flags & PMAP_CACHE_MASK) == 0);
   3768 		if (!(flags & PMAP_NOCACHE))
   3769 			npte |= pte_l2_s_cache_mode_pt;
   3770 	} else {
   3771 		switch (flags & PMAP_CACHE_MASK) {
   3772 		case PMAP_NOCACHE:
   3773 			break;
   3774 		case PMAP_WRITE_COMBINE:
   3775 			npte |= pte_l2_s_wc_mode;
   3776 			break;
   3777 		default:
   3778 			npte |= pte_l2_s_cache_mode;
   3779 			break;
   3780 		}
   3781 	}
   3782 #ifdef ARM_MMU_EXTENDED
   3783 	if (prot & VM_PROT_EXECUTE)
   3784 		npte &= ~L2_XS_XN;
   3785 #endif
   3786 	l2pte_set(ptep, npte, 0);
   3787 	PTE_SYNC(ptep);
   3788 
   3789 	if (pg) {
   3790 		if (flags & PMAP_KMPAGE) {
   3791 			KASSERT(md->urw_mappings == 0);
   3792 			KASSERT(md->uro_mappings == 0);
   3793 			KASSERT(md->krw_mappings == 0);
   3794 			KASSERT(md->kro_mappings == 0);
   3795 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3796 			KASSERT(pv == NULL);
   3797 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3798 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3799 			/* if there is a color conflict, evict from cache. */
   3800 			if (pmap_is_page_colored_p(md)
   3801 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3802 				PMAPCOUNT(vac_color_change);
   3803 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3804 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3805 				/*
   3806 				 * If this page has multiple colors, expunge
   3807 				 * them.
   3808 				 */
   3809 				PMAPCOUNT(vac_flush_lots2);
   3810 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3811 			}
   3812 			/*
   3813 			 * Since this is a KMPAGE, there can be no contention
   3814 			 * for this page so don't lock it.
   3815 			 */
   3816 			md->pvh_attrs &= PAGE_SIZE - 1;
   3817 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3818 			    | (va & arm_cache_prefer_mask);
   3819 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3820 			md->pvh_attrs |= PVF_KMPAGE;
   3821 #endif
   3822 			atomic_inc_32(&pmap_kmpages);
   3823 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3824 		} else if (arm_cache_prefer_mask != 0) {
   3825 			if (pv == NULL) {
   3826 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3827 				KASSERT(pv != NULL);
   3828 			}
   3829 			pmap_acquire_page_lock(md);
   3830 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3831 			    PVF_WIRED | PVF_KENTRY
   3832 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3833 			if ((prot & VM_PROT_WRITE)
   3834 			    && !(md->pvh_attrs & PVF_NC))
   3835 				md->pvh_attrs |= PVF_DIRTY;
   3836 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3837 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3838 			pmap_release_page_lock(md);
   3839 #endif
   3840 		}
   3841 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3842 	} else {
   3843 		if (pv != NULL)
   3844 			pool_put(&pmap_pv_pool, pv);
   3845 #endif
   3846 	}
   3847 	if (pmap_initialized) {
   3848 		UVMHIST_LOG(maphist, "  <-- done (ptep %#jx: %#jx -> %#jx)",
   3849 		    (uintptr_t)ptep, opte, npte, 0);
   3850 	}
   3851 
   3852 }
   3853 
   3854 void
   3855 pmap_kremove(vaddr_t va, vsize_t len)
   3856 {
   3857 #ifdef UVMHIST
   3858 	u_int total_mappings = 0;
   3859 #endif
   3860 
   3861 	PMAPCOUNT(kenter_unmappings);
   3862 
   3863 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   3864 
   3865 	UVMHIST_LOG(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
   3866 
   3867 	const vaddr_t eva = va + len;
   3868 	pmap_t kpm = pmap_kernel();
   3869 
   3870 	pmap_acquire_pmap_lock(kpm);
   3871 
   3872 	while (va < eva) {
   3873 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3874 		if (next_bucket > eva)
   3875 			next_bucket = eva;
   3876 
   3877 		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3878 		KDASSERT(l2b != NULL);
   3879 
   3880 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3881 		pt_entry_t *ptep = sptep;
   3882 		u_int mappings = 0;
   3883 
   3884 		while (va < next_bucket) {
   3885 			const pt_entry_t opte = *ptep;
   3886 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3887 			if (opg != NULL) {
   3888 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3889 
   3890 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3891 					KASSERT(omd->urw_mappings == 0);
   3892 					KASSERT(omd->uro_mappings == 0);
   3893 					KASSERT(omd->krw_mappings == 0);
   3894 					KASSERT(omd->kro_mappings == 0);
   3895 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3896 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3897 					if (arm_cache_prefer_mask != 0) {
   3898 						omd->pvh_attrs &= ~PVF_WRITE;
   3899 					}
   3900 #endif
   3901 					atomic_dec_32(&pmap_kmpages);
   3902 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3903 				} else if (arm_cache_prefer_mask != 0) {
   3904 					pmap_acquire_page_lock(omd);
   3905 					pool_put(&pmap_pv_pool,
   3906 					    pmap_kremove_pg(opg, va));
   3907 					pmap_release_page_lock(omd);
   3908 #endif
   3909 				}
   3910 			}
   3911 			if (l2pte_valid_p(opte)) {
   3912 				l2pte_reset(ptep);
   3913 				PTE_SYNC(ptep);
   3914 #ifdef PMAP_CACHE_VIVT
   3915 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3916 #endif
   3917 				cpu_tlb_flushD_SE(va);
   3918 
   3919 				mappings += PAGE_SIZE / L2_S_SIZE;
   3920 			}
   3921 			va += PAGE_SIZE;
   3922 			ptep += PAGE_SIZE / L2_S_SIZE;
   3923 		}
   3924 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3925 		    mappings, l2b->l2b_occupancy);
   3926 		l2b->l2b_occupancy -= mappings;
   3927 		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3928 #ifdef UVMHIST
   3929 		total_mappings += mappings;
   3930 #endif
   3931 	}
   3932 	pmap_release_pmap_lock(kpm);
   3933 	cpu_cpwait();
   3934 	UVMHIST_LOG(maphist, "  <--- done (%ju mappings removed)",
   3935 	    total_mappings, 0, 0, 0);
   3936 }
   3937 
   3938 bool
   3939 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3940 {
   3941 
   3942 	return pmap_extract_coherency(pm, va, pap, NULL);
   3943 }
   3944 
   3945 bool
   3946 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
   3947 {
   3948 	struct l2_dtable *l2;
   3949 	pd_entry_t *pdep, pde;
   3950 	pt_entry_t *ptep, pte;
   3951 	paddr_t pa;
   3952 	u_int l1slot;
   3953 	bool coherent;
   3954 
   3955 	pmap_acquire_pmap_lock(pm);
   3956 
   3957 	l1slot = l1pte_index(va);
   3958 	pdep = pmap_l1_kva(pm) + l1slot;
   3959 	pde = *pdep;
   3960 
   3961 	if (l1pte_section_p(pde)) {
   3962 		/*
   3963 		 * These should only happen for pmap_kernel()
   3964 		 */
   3965 		KDASSERT(pm == pmap_kernel());
   3966 		pmap_release_pmap_lock(pm);
   3967 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3968 		if (l1pte_supersection_p(pde)) {
   3969 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3970 		} else
   3971 #endif
   3972 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3973 		coherent = (pde & L1_S_CACHE_MASK) == 0;
   3974 	} else {
   3975 		/*
   3976 		 * Note that we can't rely on the validity of the L1
   3977 		 * descriptor as an indication that a mapping exists.
   3978 		 * We have to look it up in the L2 dtable.
   3979 		 */
   3980 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   3981 
   3982 		if (l2 == NULL ||
   3983 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   3984 			pmap_release_pmap_lock(pm);
   3985 			return false;
   3986 		}
   3987 
   3988 		pte = ptep[l2pte_index(va)];
   3989 		pmap_release_pmap_lock(pm);
   3990 
   3991 		if (pte == 0)
   3992 			return false;
   3993 
   3994 		switch (pte & L2_TYPE_MASK) {
   3995 		case L2_TYPE_L:
   3996 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3997 			coherent = (pte & L2_L_CACHE_MASK) == 0;
   3998 			break;
   3999 
   4000 		default:
   4001 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   4002 			coherent = (pte & L2_S_CACHE_MASK) == 0;
   4003 			break;
   4004 		}
   4005 	}
   4006 
   4007 	if (pap != NULL)
   4008 		*pap = pa;
   4009 
   4010 	if (coherentp != NULL)
   4011 		*coherentp = (pm == pmap_kernel() && coherent);
   4012 
   4013 	return true;
   4014 }
   4015 
   4016 /*
   4017  * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
   4018  *	that map it
   4019  */
   4020 
   4021 static void
   4022 pmap_pv_remove(paddr_t pa)
   4023 {
   4024 	struct pmap_page *pp;
   4025 
   4026 	pp = pmap_pv_tracked(pa);
   4027 	if (pp == NULL)
   4028 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
   4029 		    pa);
   4030 
   4031 	struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
   4032 	pmap_page_remove(md, pa);
   4033 }
   4034 
   4035 void
   4036 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
   4037 {
   4038 
   4039 	/* the only case is remove at the moment */
   4040 	KASSERT(prot == VM_PROT_NONE);
   4041 	pmap_pv_remove(pa);
   4042 }
   4043 
   4044 void
   4045 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   4046 {
   4047 	struct l2_bucket *l2b;
   4048 	vaddr_t next_bucket;
   4049 
   4050 	NPDEBUG(PDB_PROTECT,
   4051 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   4052 	    pm, sva, eva, prot));
   4053 
   4054 	if ((prot & VM_PROT_READ) == 0) {
   4055 		pmap_remove(pm, sva, eva);
   4056 		return;
   4057 	}
   4058 
   4059 	if (prot & VM_PROT_WRITE) {
   4060 		/*
   4061 		 * If this is a read->write transition, just ignore it and let
   4062 		 * uvm_fault() take care of it later.
   4063 		 */
   4064 		return;
   4065 	}
   4066 
   4067 	pmap_acquire_pmap_lock(pm);
   4068 
   4069 #ifndef ARM_MMU_EXTENDED
   4070 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   4071 	u_int flags = 0;
   4072 #endif
   4073 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   4074 
   4075 	while (sva < eva) {
   4076 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4077 		if (next_bucket > eva)
   4078 			next_bucket = eva;
   4079 
   4080 		l2b = pmap_get_l2_bucket(pm, sva);
   4081 		if (l2b == NULL) {
   4082 			sva = next_bucket;
   4083 			continue;
   4084 		}
   4085 
   4086 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4087 
   4088 		while (sva < next_bucket) {
   4089 			const pt_entry_t opte = *ptep;
   4090 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   4091 				struct vm_page *pg;
   4092 #ifndef ARM_MMU_EXTENDED
   4093 				u_int f;
   4094 #endif
   4095 
   4096 #ifdef PMAP_CACHE_VIVT
   4097 				/*
   4098 				 * OK, at this point, we know we're doing
   4099 				 * write-protect operation.  If the pmap is
   4100 				 * active, write-back the page.
   4101 				 */
   4102 				pmap_cache_wbinv_page(pm, sva, false,
   4103 				    PVF_REF | PVF_WRITE);
   4104 #endif
   4105 
   4106 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   4107 				pt_entry_t npte = l2pte_set_readonly(opte);
   4108 				l2pte_reset(ptep);
   4109 				PTE_SYNC(ptep);
   4110 #ifdef ARM_MMU_EXTENDED
   4111 				pmap_tlb_flush_SE(pm, sva, PVF_REF);
   4112 #endif
   4113 				l2pte_set(ptep, npte, 0);
   4114 				PTE_SYNC(ptep);
   4115 
   4116 				if (pg != NULL) {
   4117 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4118 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4119 
   4120 					pmap_acquire_page_lock(md);
   4121 #ifndef ARM_MMU_EXTENDED
   4122 					f =
   4123 #endif
   4124 					    pmap_modify_pv(md, pa, pm, sva,
   4125 					       clr_mask, 0);
   4126 					pmap_vac_me_harder(md, pa, pm, sva);
   4127 					pmap_release_page_lock(md);
   4128 #ifndef ARM_MMU_EXTENDED
   4129 				} else {
   4130 					f = PVF_REF | PVF_EXEC;
   4131 				}
   4132 
   4133 				if (flush) {
   4134 					flags |= f;
   4135 				} else {
   4136 					pmap_tlb_flush_SE(pm, sva, f);
   4137 #endif
   4138 				}
   4139 			}
   4140 
   4141 			sva += PAGE_SIZE;
   4142 			ptep += PAGE_SIZE / L2_S_SIZE;
   4143 		}
   4144 	}
   4145 
   4146 #ifndef ARM_MMU_EXTENDED
   4147 	if (flush) {
   4148 		if (PV_BEEN_EXECD(flags)) {
   4149 			pmap_tlb_flushID(pm);
   4150 		} else if (PV_BEEN_REFD(flags)) {
   4151 			pmap_tlb_flushD(pm);
   4152 		}
   4153 	}
   4154 #endif
   4155 
   4156 	pmap_release_pmap_lock(pm);
   4157 }
   4158 
   4159 void
   4160 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4161 {
   4162 	struct l2_bucket *l2b;
   4163 	pt_entry_t *ptep;
   4164 	vaddr_t next_bucket;
   4165 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4166 
   4167 	NPDEBUG(PDB_EXEC,
   4168 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   4169 	    pm, sva, eva));
   4170 
   4171 	pmap_acquire_pmap_lock(pm);
   4172 
   4173 	while (sva < eva) {
   4174 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4175 		if (next_bucket > eva)
   4176 			next_bucket = eva;
   4177 
   4178 		l2b = pmap_get_l2_bucket(pm, sva);
   4179 		if (l2b == NULL) {
   4180 			sva = next_bucket;
   4181 			continue;
   4182 		}
   4183 
   4184 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4185 		     sva < next_bucket;
   4186 		     sva += page_size,
   4187 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4188 		     page_size = PAGE_SIZE) {
   4189 			if (l2pte_valid_p(*ptep)) {
   4190 				cpu_icache_sync_range(sva,
   4191 				    uimin(page_size, eva - sva));
   4192 			}
   4193 		}
   4194 	}
   4195 
   4196 	pmap_release_pmap_lock(pm);
   4197 }
   4198 
   4199 void
   4200 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4201 {
   4202 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4203 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4204 
   4205 	NPDEBUG(PDB_PROTECT,
   4206 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   4207 	    md, pa, prot));
   4208 
   4209 	switch(prot) {
   4210 	case VM_PROT_READ|VM_PROT_WRITE:
   4211 #if defined(ARM_MMU_EXTENDED)
   4212 		pmap_acquire_page_lock(md);
   4213 		pmap_clearbit(md, pa, PVF_EXEC);
   4214 		pmap_release_page_lock(md);
   4215 		break;
   4216 #endif
   4217 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4218 		break;
   4219 
   4220 	case VM_PROT_READ:
   4221 #if defined(ARM_MMU_EXTENDED)
   4222 		pmap_acquire_page_lock(md);
   4223 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4224 		pmap_release_page_lock(md);
   4225 		break;
   4226 #endif
   4227 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4228 		pmap_acquire_page_lock(md);
   4229 		pmap_clearbit(md, pa, PVF_WRITE);
   4230 		pmap_release_page_lock(md);
   4231 		break;
   4232 
   4233 	default:
   4234 		pmap_page_remove(md, pa);
   4235 		break;
   4236 	}
   4237 }
   4238 
   4239 /*
   4240  * pmap_clear_modify:
   4241  *
   4242  *	Clear the "modified" attribute for a page.
   4243  */
   4244 bool
   4245 pmap_clear_modify(struct vm_page *pg)
   4246 {
   4247 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4248 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4249 	bool rv;
   4250 
   4251 	pmap_acquire_page_lock(md);
   4252 
   4253 	if (md->pvh_attrs & PVF_MOD) {
   4254 		rv = true;
   4255 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4256 		/*
   4257 		 * If we are going to clear the modified bit and there are
   4258 		 * no other modified bits set, flush the page to memory and
   4259 		 * mark it clean.
   4260 		 */
   4261 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4262 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4263 #endif
   4264 		pmap_clearbit(md, pa, PVF_MOD);
   4265 	} else {
   4266 		rv = false;
   4267 	}
   4268 	pmap_release_page_lock(md);
   4269 
   4270 	return rv;
   4271 }
   4272 
   4273 /*
   4274  * pmap_clear_reference:
   4275  *
   4276  *	Clear the "referenced" attribute for a page.
   4277  */
   4278 bool
   4279 pmap_clear_reference(struct vm_page *pg)
   4280 {
   4281 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4282 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4283 	bool rv;
   4284 
   4285 	pmap_acquire_page_lock(md);
   4286 
   4287 	if (md->pvh_attrs & PVF_REF) {
   4288 		rv = true;
   4289 		pmap_clearbit(md, pa, PVF_REF);
   4290 	} else {
   4291 		rv = false;
   4292 	}
   4293 	pmap_release_page_lock(md);
   4294 
   4295 	return rv;
   4296 }
   4297 
   4298 /*
   4299  * pmap_is_modified:
   4300  *
   4301  *	Test if a page has the "modified" attribute.
   4302  */
   4303 /* See <arm/arm32/pmap.h> */
   4304 
   4305 /*
   4306  * pmap_is_referenced:
   4307  *
   4308  *	Test if a page has the "referenced" attribute.
   4309  */
   4310 /* See <arm/arm32/pmap.h> */
   4311 
   4312 #if defined(ARM_MMU_EXTENDED) && 0
   4313 int
   4314 pmap_prefetchabt_fixup(void *v)
   4315 {
   4316 	struct trapframe * const tf = v;
   4317 	vaddr_t va = trunc_page(tf->tf_pc);
   4318 	int rv = ABORT_FIXUP_FAILED;
   4319 
   4320 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4321 		return rv;
   4322 
   4323 	kpreempt_disable();
   4324 	pmap_t pm = curcpu()->ci_pmap_cur;
   4325 	const size_t l1slot = l1pte_index(va);
   4326 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4327 	if (l2 == NULL)
   4328 		goto out;
   4329 
   4330 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4331 	if (l2b->l2b_kva == NULL)
   4332 		goto out;
   4333 
   4334 	/*
   4335 	 * Check the PTE itself.
   4336 	 */
   4337 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4338 	const pt_entry_t opte = *ptep;
   4339 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4340 		goto out;
   4341 
   4342 	paddr_t pa = l2pte_pa(opte);
   4343 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4344 	KASSERT(pg != NULL);
   4345 
   4346 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4347 
   4348 	pmap_acquire_page_lock(md);
   4349 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4350 	KASSERT(pv != NULL);
   4351 
   4352 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4353 		l2pte_reset(ptep);
   4354 		PTE_SYNC(ptep);
   4355 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4356 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4357 			pmap_syncicache_page(md, pa);
   4358 		}
   4359 		rv = ABORT_FIXUP_RETURN;
   4360 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4361 		PTE_SYNC(ptep);
   4362 	}
   4363 	pmap_release_page_lock(md);
   4364 
   4365   out:
   4366 	kpreempt_enable();
   4367 	return rv;
   4368 }
   4369 #endif
   4370 
   4371 int
   4372 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4373 {
   4374 	struct l2_dtable *l2;
   4375 	struct l2_bucket *l2b;
   4376 	paddr_t pa;
   4377 	const size_t l1slot = l1pte_index(va);
   4378 	int rv = 0;
   4379 
   4380 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4381 
   4382 	va = trunc_page(va);
   4383 
   4384 	KASSERT(!user || (pm != pmap_kernel()));
   4385 
   4386 	UVMHIST_LOG(maphist, " (pm=%#jx, va=%#jx, ftype=%#jx, user=%jd)",
   4387 	    (uintptr_t)pm, va, ftype, user);
   4388 #ifdef ARM_MMU_EXTENDED
   4389 	UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
   4390 	    (uintptr_t)cpu_tlb_info(curcpu()),
   4391 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4392 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4393 #endif
   4394 
   4395 	pmap_acquire_pmap_lock(pm);
   4396 
   4397 	/*
   4398 	 * If there is no l2_dtable for this address, then the process
   4399 	 * has no business accessing it.
   4400 	 *
   4401 	 * Note: This will catch userland processes trying to access
   4402 	 * kernel addresses.
   4403 	 */
   4404 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4405 	if (l2 == NULL) {
   4406 		UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
   4407 		goto out;
   4408 	}
   4409 
   4410 	/*
   4411 	 * Likewise if there is no L2 descriptor table
   4412 	 */
   4413 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4414 	if (l2b->l2b_kva == NULL) {
   4415 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
   4416 		    l1slot, 0, 0, 0);
   4417 		goto out;
   4418 	}
   4419 
   4420 	/*
   4421 	 * Check the PTE itself.
   4422 	 */
   4423 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4424 	pt_entry_t const opte = *ptep;
   4425 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4426 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
   4427 		    l1slot, 0, 0, 0);
   4428 		goto out;
   4429 	}
   4430 
   4431 #ifndef ARM_HAS_VBAR
   4432 	/*
   4433 	 * Catch a userland access to the vector page mapped at 0x0
   4434 	 */
   4435 	if (user && (opte & L2_S_PROT_U) == 0) {
   4436 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4437 		goto out;
   4438 	}
   4439 #endif
   4440 
   4441 	pa = l2pte_pa(opte);
   4442 
   4443 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4444 		/*
   4445 		 * This looks like a good candidate for "page modified"
   4446 		 * emulation...
   4447 		 */
   4448 		struct pv_entry *pv;
   4449 		struct vm_page *pg;
   4450 
   4451 		/* Extract the physical address of the page */
   4452 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4453 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4454 			goto out;
   4455 		}
   4456 
   4457 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4458 
   4459 		/* Get the current flags for this page. */
   4460 		pmap_acquire_page_lock(md);
   4461 		pv = pmap_find_pv(md, pm, va);
   4462 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4463 			pmap_release_page_lock(md);
   4464 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4465 			goto out;
   4466 		}
   4467 
   4468 		/*
   4469 		 * Do the flags say this page is writable? If not then it
   4470 		 * is a genuine write fault. If yes then the write fault is
   4471 		 * our fault as we did not reflect the write access in the
   4472 		 * PTE. Now we know a write has occurred we can correct this
   4473 		 * and also set the modified bit
   4474 		 */
   4475 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4476 			pmap_release_page_lock(md);
   4477 			goto out;
   4478 		}
   4479 
   4480 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4481 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4482 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4483 		/*
   4484 		 * If there are cacheable mappings for this page, mark it dirty.
   4485 		 */
   4486 		if ((md->pvh_attrs & PVF_NC) == 0)
   4487 			md->pvh_attrs |= PVF_DIRTY;
   4488 #endif
   4489 #ifdef ARM_MMU_EXTENDED
   4490 		if (md->pvh_attrs & PVF_EXEC) {
   4491 			md->pvh_attrs &= ~PVF_EXEC;
   4492 			PMAPCOUNT(exec_discarded_modfixup);
   4493 		}
   4494 #endif
   4495 		pmap_release_page_lock(md);
   4496 
   4497 		/*
   4498 		 * Re-enable write permissions for the page.  No need to call
   4499 		 * pmap_vac_me_harder(), since this is just a
   4500 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4501 		 * changing. We've already set the cacheable bits based on
   4502 		 * the assumption that we can write to this page.
   4503 		 */
   4504 		const pt_entry_t npte =
   4505 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4506 #ifdef ARM_MMU_EXTENDED
   4507 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4508 #endif
   4509 		    | 0;
   4510 		l2pte_reset(ptep);
   4511 		PTE_SYNC(ptep);
   4512 		pmap_tlb_flush_SE(pm, va,
   4513 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4514 		l2pte_set(ptep, npte, 0);
   4515 		PTE_SYNC(ptep);
   4516 		PMAPCOUNT(fixup_mod);
   4517 		rv = 1;
   4518 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
   4519 		    "from %#jx to %#jx)", opte, npte, 0, 0);
   4520 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4521 		/*
   4522 		 * This looks like a good candidate for "page referenced"
   4523 		 * emulation.
   4524 		 */
   4525 		struct vm_page *pg;
   4526 
   4527 		/* Extract the physical address of the page */
   4528 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4529 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4530 			goto out;
   4531 		}
   4532 
   4533 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4534 
   4535 		/* Get the current flags for this page. */
   4536 		pmap_acquire_page_lock(md);
   4537 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4538 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4539 			pmap_release_page_lock(md);
   4540 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4541 			goto out;
   4542 		}
   4543 
   4544 		md->pvh_attrs |= PVF_REF;
   4545 		pv->pv_flags |= PVF_REF;
   4546 
   4547 		pt_entry_t npte =
   4548 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4549 #ifdef ARM_MMU_EXTENDED
   4550 		if (pm != pmap_kernel()) {
   4551 			npte |= L2_XS_nG;
   4552 		}
   4553 		/*
   4554 		 * If we got called from prefetch abort, then ftype will have
   4555 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4556 		 * the PTE.
   4557 		 */
   4558 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4559 			/*
   4560 			 * Is this a mapping of an executable page?
   4561 			 */
   4562 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4563 				pmap_release_page_lock(md);
   4564 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4565 				    0, 0, 0, 0);
   4566 				goto out;
   4567 			}
   4568 			/*
   4569 			 * If we haven't synced the page, do so now.
   4570 			 */
   4571 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4572 				UVMHIST_LOG(maphist, " ref emul: syncicache "
   4573 				    "page #%#jx", pa, 0, 0, 0);
   4574 				pmap_syncicache_page(md, pa);
   4575 				PMAPCOUNT(fixup_exec);
   4576 			}
   4577 			npte &= ~L2_XS_XN;
   4578 		}
   4579 #endif /* ARM_MMU_EXTENDED */
   4580 		pmap_release_page_lock(md);
   4581 		l2pte_reset(ptep);
   4582 		PTE_SYNC(ptep);
   4583 		pmap_tlb_flush_SE(pm, va,
   4584 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4585 		l2pte_set(ptep, npte, 0);
   4586 		PTE_SYNC(ptep);
   4587 		PMAPCOUNT(fixup_ref);
   4588 		rv = 1;
   4589 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
   4590 		    "%#jx to %#jx)", opte, npte, 0, 0);
   4591 #ifdef ARM_MMU_EXTENDED
   4592 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4593 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4594 		if (pg == NULL) {
   4595 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4596 			goto out;
   4597 		}
   4598 
   4599 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4600 
   4601 		/* Get the current flags for this page. */
   4602 		pmap_acquire_page_lock(md);
   4603 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4604 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4605 			pmap_release_page_lock(md);
   4606 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4607 			goto out;
   4608 		}
   4609 
   4610 		/*
   4611 		 * If we haven't synced the page, do so now.
   4612 		 */
   4613 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4614 			UVMHIST_LOG(maphist, "syncicache page #%#jx",
   4615 			    pa, 0, 0, 0);
   4616 			pmap_syncicache_page(md, pa);
   4617 		}
   4618 		pmap_release_page_lock(md);
   4619 		/*
   4620 		 * Turn off no-execute.
   4621 		 */
   4622 		KASSERT(opte & L2_XS_nG);
   4623 		l2pte_reset(ptep);
   4624 		PTE_SYNC(ptep);
   4625 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4626 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4627 		PTE_SYNC(ptep);
   4628 		rv = 1;
   4629 		PMAPCOUNT(fixup_exec);
   4630 		UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
   4631 		    opte, opte & ~L2_XS_XN, 0, 0);
   4632 #endif
   4633 	}
   4634 
   4635 #ifndef ARM_MMU_EXTENDED
   4636 	/*
   4637 	 * We know there is a valid mapping here, so simply
   4638 	 * fix up the L1 if necessary.
   4639 	 */
   4640 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4641 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4642 	if (*pdep != pde) {
   4643 		l1pte_setone(pdep, pde);
   4644 		PDE_SYNC(pdep);
   4645 		rv = 1;
   4646 		PMAPCOUNT(fixup_pdes);
   4647 	}
   4648 #endif
   4649 
   4650 #ifdef CPU_SA110
   4651 	/*
   4652 	 * There are bugs in the rev K SA110.  This is a check for one
   4653 	 * of them.
   4654 	 */
   4655 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4656 	    curcpu()->ci_arm_cpurev < 3) {
   4657 		/* Always current pmap */
   4658 		if (l2pte_valid_p(opte)) {
   4659 			extern int kernel_debug;
   4660 			if (kernel_debug & 1) {
   4661 				struct proc *p = curlwp->l_proc;
   4662 				printf("prefetch_abort: page is already "
   4663 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4664 				printf("prefetch_abort: pc=%08lx proc=%p "
   4665 				    "process=%s\n", va, p, p->p_comm);
   4666 				printf("prefetch_abort: far=%08x fs=%x\n",
   4667 				    cpu_faultaddress(), cpu_faultstatus());
   4668 			}
   4669 #ifdef DDB
   4670 			if (kernel_debug & 2)
   4671 				Debugger();
   4672 #endif
   4673 			rv = 1;
   4674 		}
   4675 	}
   4676 #endif /* CPU_SA110 */
   4677 
   4678 #ifndef ARM_MMU_EXTENDED
   4679 	/*
   4680 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4681 	 * stale TLB entry for the faulting address.  That might be due to a
   4682 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4683 	 */
   4684 	if (rv == 0
   4685 	    && pm->pm_l1->l1_domain_use_count == 1
   4686 	    && pmap_needs_pte_sync == 0) {
   4687 		pmap_needs_pte_sync = 1;
   4688 		PTE_SYNC(ptep);
   4689 		PMAPCOUNT(fixup_ptesync);
   4690 		rv = 1;
   4691 	}
   4692 #endif
   4693 
   4694 #ifndef MULTIPROCESSOR
   4695 #if defined(DEBUG) || 1
   4696 	/*
   4697 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4698 	 * stale TLB entry for the faulting address. This happens when two or
   4699 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4700 	 * a context switch between such processes, we can take domain faults
   4701 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4702 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4703 	 * example.
   4704 	 *
   4705 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4706 	 * entry for a recently entered mapping. In this case, the TLB is
   4707 	 * flushed for the new mapping, but there may still be TLB entries for
   4708 	 * other mappings belonging to other processes in the 1MB range
   4709 	 * covered by the L1 entry.
   4710 	 *
   4711 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4712 	 * value, so the fault must be due to a stale TLB entry.
   4713 	 *
   4714 	 * Since we always need to flush the TLB anyway in the case where we
   4715 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4716 	 * stale TLB entries dynamically.
   4717 	 *
   4718 	 * However, the above condition can ONLY happen if the current L1 is
   4719 	 * being shared. If it happens when the L1 is unshared, it indicates
   4720 	 * that other parts of the pmap are not doing their job WRT managing
   4721 	 * the TLB.
   4722 	 */
   4723 	if (rv == 0
   4724 #ifndef ARM_MMU_EXTENDED
   4725 	    && pm->pm_l1->l1_domain_use_count == 1
   4726 #endif
   4727 	    && true) {
   4728 #ifdef DEBUG
   4729 		extern int last_fault_code;
   4730 #else
   4731 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4732 		    ? armreg_ifsr_read()
   4733 		    : armreg_dfsr_read();
   4734 #endif
   4735 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4736 		    pm, va, ftype);
   4737 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4738 		    l2, l2b, ptep, opte);
   4739 
   4740 #ifndef ARM_MMU_EXTENDED
   4741 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4742 		    pdep, pde, last_fault_code);
   4743 #else
   4744 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4745 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4746 		   armreg_ttbcr_read());
   4747 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4748 		    last_fault_code, curcpu()->ci_pmap_cur,
   4749 		    curcpu()->ci_pmap_asid_cur,
   4750 		    armreg_contextidr_read(), armreg_dacr_read());
   4751 #ifdef _ARM_ARCH_7
   4752 		if (ftype & VM_PROT_WRITE)
   4753 			armreg_ats1cuw_write(va);
   4754 		else
   4755 			armreg_ats1cur_write(va);
   4756 		arm_isb();
   4757 		printf("fixup: par %#x\n", armreg_par_read());
   4758 #endif
   4759 #endif
   4760 #ifdef DDB
   4761 		extern int kernel_debug;
   4762 
   4763 		if (kernel_debug & 2) {
   4764 			pmap_release_pmap_lock(pm);
   4765 #ifdef UVMHIST
   4766 			KERNHIST_DUMP(maphist);
   4767 #endif
   4768 			cpu_Debugger();
   4769 			pmap_acquire_pmap_lock(pm);
   4770 		}
   4771 #endif
   4772 	}
   4773 #endif
   4774 #endif
   4775 
   4776 #ifndef ARM_MMU_EXTENDED
   4777 	/* Flush the TLB in the shared L1 case - see comment above */
   4778 	pmap_tlb_flush_SE(pm, va,
   4779 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4780 #endif
   4781 
   4782 	rv = 1;
   4783 
   4784 out:
   4785 	pmap_release_pmap_lock(pm);
   4786 
   4787 	return (rv);
   4788 }
   4789 
   4790 /*
   4791  * Routine:	pmap_procwr
   4792  *
   4793  * Function:
   4794  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4795  *
   4796  */
   4797 void
   4798 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4799 {
   4800 #ifndef ARM_MMU_EXTENDED
   4801 
   4802 	/* We only need to do anything if it is the current process. */
   4803 	if (p == curproc)
   4804 		cpu_icache_sync_range(va, len);
   4805 #endif
   4806 }
   4807 
   4808 /*
   4809  * Routine:	pmap_unwire
   4810  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4811  *
   4812  * In/out conditions:
   4813  *		The mapping must already exist in the pmap.
   4814  */
   4815 void
   4816 pmap_unwire(pmap_t pm, vaddr_t va)
   4817 {
   4818 	struct l2_bucket *l2b;
   4819 	pt_entry_t *ptep, pte;
   4820 	struct vm_page *pg;
   4821 	paddr_t pa;
   4822 
   4823 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4824 
   4825 	pmap_acquire_pmap_lock(pm);
   4826 
   4827 	l2b = pmap_get_l2_bucket(pm, va);
   4828 	KDASSERT(l2b != NULL);
   4829 
   4830 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4831 	pte = *ptep;
   4832 
   4833 	/* Extract the physical address of the page */
   4834 	pa = l2pte_pa(pte);
   4835 
   4836 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4837 		/* Update the wired bit in the pv entry for this page. */
   4838 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4839 
   4840 		pmap_acquire_page_lock(md);
   4841 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4842 		pmap_release_page_lock(md);
   4843 	}
   4844 
   4845 	pmap_release_pmap_lock(pm);
   4846 }
   4847 
   4848 #ifdef ARM_MMU_EXTENDED
   4849 void
   4850 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
   4851 {
   4852 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4853 
   4854 	/*
   4855 	 * Assume that TTBR1 has only global mappings and TTBR0 only
   4856 	 * has non-global mappings.  To prevent speculation from doing
   4857 	 * evil things we disable translation table walks using TTBR0
   4858 	 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
   4859 	 * Once both are set, table walks are reenabled.
   4860 	 */
   4861 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4862 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4863 	arm_isb();
   4864 
   4865 	pmap_tlb_asid_acquire(pm, l);
   4866 
   4867 	struct cpu_info * const ci = curcpu();
   4868 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
   4869 
   4870 	cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
   4871 	/*
   4872 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
   4873 	 * have been updated.
   4874 	 */
   4875 	arm_isb();
   4876 
   4877 	if (pm != pmap_kernel()) {
   4878 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4879 	}
   4880 	cpu_cpwait();
   4881 
   4882 	UVMHIST_LOG(maphist, " pm %#jx pm->pm_l1_pa %08jx asid %ju... done",
   4883 	    (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
   4884 
   4885 	KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
   4886 	    ci->ci_pmap_asid_cur, pai->pai_asid);
   4887 	ci->ci_pmap_cur = pm;
   4888 }
   4889 
   4890 void
   4891 pmap_md_pdetab_deactivate(pmap_t pm)
   4892 {
   4893 
   4894 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4895 
   4896 	kpreempt_disable();
   4897 	struct cpu_info * const ci = curcpu();
   4898 	/*
   4899 	 * Disable translation table walks from TTBR0 while no pmap has been
   4900 	 * activated.
   4901 	 */
   4902 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4903 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4904 	arm_isb();
   4905 	pmap_tlb_asid_deactivate(pm);
   4906 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
   4907 	arm_isb();
   4908 
   4909 	ci->ci_pmap_cur = pmap_kernel();
   4910 	KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
   4911 	    ci->ci_pmap_asid_cur);
   4912 	kpreempt_enable();
   4913 }
   4914 #endif
   4915 
   4916 void
   4917 pmap_activate(struct lwp *l)
   4918 {
   4919 	extern int block_userspace_access;
   4920 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   4921 
   4922 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   4923 
   4924 	UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)npm,
   4925 	    0, 0);
   4926 
   4927 	struct cpu_info * const ci = curcpu();
   4928 
   4929 	/*
   4930 	 * If activating a non-current lwp or the current lwp is
   4931 	 * already active, just return.
   4932 	 */
   4933 	if (false
   4934 	    || l != curlwp
   4935 #ifdef ARM_MMU_EXTENDED
   4936 	    || (ci->ci_pmap_cur == npm &&
   4937 		(npm == pmap_kernel()
   4938 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   4939 #else
   4940 	    || npm->pm_activated == true
   4941 #endif
   4942 	    || false) {
   4943 		UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
   4944 		    (uintptr_t)l, 0, 0);
   4945 		return;
   4946 	}
   4947 
   4948 #ifndef ARM_MMU_EXTENDED
   4949 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4950 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   4951 
   4952 	/*
   4953 	 * If TTB and DACR are unchanged, short-circuit all the
   4954 	 * TLB/cache management stuff.
   4955 	 */
   4956 	pmap_t opm = ci->ci_lastlwp
   4957 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   4958 	    : NULL;
   4959 	if (opm != NULL) {
   4960 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   4961 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   4962 
   4963 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4964 			goto all_done;
   4965 	}
   4966 #endif /* !ARM_MMU_EXTENDED */
   4967 
   4968 	PMAPCOUNT(activations);
   4969 	block_userspace_access = 1;
   4970 
   4971 #ifndef ARM_MMU_EXTENDED
   4972 	/*
   4973 	 * If switching to a user vmspace which is different to the
   4974 	 * most recent one, and the most recent one is potentially
   4975 	 * live in the cache, we must write-back and invalidate the
   4976 	 * entire cache.
   4977 	 */
   4978 	pmap_t rpm = ci->ci_pmap_lastuser;
   4979 
   4980 	/*
   4981 	 * XXXSCW: There's a corner case here which can leave turds in the
   4982 	 * cache as reported in kern/41058. They're probably left over during
   4983 	 * tear-down and switching away from an exiting process. Until the root
   4984 	 * cause is identified and fixed, zap the cache when switching pmaps.
   4985 	 * This will result in a few unnecessary cache flushes, but that's
   4986 	 * better than silently corrupting data.
   4987 	 */
   4988 #if 0
   4989 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4990 	    rpm->pm_cstate.cs_cache) {
   4991 		rpm->pm_cstate.cs_cache = 0;
   4992 #ifdef PMAP_CACHE_VIVT
   4993 		cpu_idcache_wbinv_all();
   4994 #endif
   4995 	}
   4996 #else
   4997 	if (rpm) {
   4998 		rpm->pm_cstate.cs_cache = 0;
   4999 		if (npm == pmap_kernel())
   5000 			ci->ci_pmap_lastuser = NULL;
   5001 #ifdef PMAP_CACHE_VIVT
   5002 		cpu_idcache_wbinv_all();
   5003 #endif
   5004 	}
   5005 #endif
   5006 
   5007 	/* No interrupts while we frob the TTB/DACR */
   5008 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   5009 #endif /* !ARM_MMU_EXTENDED */
   5010 
   5011 #ifndef ARM_HAS_VBAR
   5012 	/*
   5013 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   5014 	 * entry corresponding to 'vector_page' in the incoming L1 table
   5015 	 * before switching to it otherwise subsequent interrupts/exceptions
   5016 	 * (including domain faults!) will jump into hyperspace.
   5017 	 */
   5018 	if (npm->pm_pl1vec != NULL) {
   5019 		cpu_tlb_flushID_SE((u_int)vector_page);
   5020 		cpu_cpwait();
   5021 		*npm->pm_pl1vec = npm->pm_l1vec;
   5022 		PTE_SYNC(npm->pm_pl1vec);
   5023 	}
   5024 #endif
   5025 
   5026 #ifdef ARM_MMU_EXTENDED
   5027 	pmap_md_pdetab_activate(npm, l);
   5028 #else
   5029 	cpu_domains(ndacr);
   5030 	if (npm == pmap_kernel() || npm == rpm) {
   5031 		/*
   5032 		 * Switching to a kernel thread, or back to the
   5033 		 * same user vmspace as before... Simply update
   5034 		 * the TTB (no TLB flush required)
   5035 		 */
   5036 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   5037 		cpu_cpwait();
   5038 	} else {
   5039 		/*
   5040 		 * Otherwise, update TTB and flush TLB
   5041 		 */
   5042 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   5043 		if (rpm != NULL)
   5044 			rpm->pm_cstate.cs_tlb = 0;
   5045 	}
   5046 
   5047 	restore_interrupts(oldirqstate);
   5048 #endif /* ARM_MMU_EXTENDED */
   5049 
   5050 	block_userspace_access = 0;
   5051 
   5052 #ifndef ARM_MMU_EXTENDED
   5053  all_done:
   5054 	/*
   5055 	 * The new pmap is resident. Make sure it's marked
   5056 	 * as resident in the cache/TLB.
   5057 	 */
   5058 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5059 	if (npm != pmap_kernel())
   5060 		ci->ci_pmap_lastuser = npm;
   5061 
   5062 	/* The old pmap is not longer active */
   5063 	if (opm != npm) {
   5064 		if (opm != NULL)
   5065 			opm->pm_activated = false;
   5066 
   5067 		/* But the new one is */
   5068 		npm->pm_activated = true;
   5069 	}
   5070 	ci->ci_pmap_cur = npm;
   5071 #endif
   5072 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   5073 }
   5074 
   5075 void
   5076 pmap_deactivate(struct lwp *l)
   5077 {
   5078 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   5079 
   5080 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5081 
   5082 	UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)pm,
   5083 	    0, 0);
   5084 
   5085 #ifdef ARM_MMU_EXTENDED
   5086 	pmap_md_pdetab_deactivate(pm);
   5087 #else
   5088 	/*
   5089 	 * If the process is exiting, make sure pmap_activate() does
   5090 	 * a full MMU context-switch and cache flush, which we might
   5091 	 * otherwise skip. See PR port-arm/38950.
   5092 	 */
   5093 	if (l->l_proc->p_sflag & PS_WEXIT)
   5094 		curcpu()->ci_lastlwp = NULL;
   5095 
   5096 	pm->pm_activated = false;
   5097 #endif
   5098 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5099 }
   5100 
   5101 void
   5102 pmap_update(pmap_t pm)
   5103 {
   5104 
   5105 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5106 
   5107 	UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
   5108 	    pm->pm_remove_all, 0, 0);
   5109 
   5110 #ifndef ARM_MMU_EXTENDED
   5111 	if (pm->pm_remove_all) {
   5112 		/*
   5113 		 * Finish up the pmap_remove_all() optimisation by flushing
   5114 		 * the TLB.
   5115 		 */
   5116 		pmap_tlb_flushID(pm);
   5117 		pm->pm_remove_all = false;
   5118 	}
   5119 
   5120 	if (pmap_is_current(pm)) {
   5121 		/*
   5122 		 * If we're dealing with a current userland pmap, move its L1
   5123 		 * to the end of the LRU.
   5124 		 */
   5125 		if (pm != pmap_kernel())
   5126 			pmap_use_l1(pm);
   5127 
   5128 		/*
   5129 		 * We can assume we're done with frobbing the cache/tlb for
   5130 		 * now. Make sure any future pmap ops don't skip cache/tlb
   5131 		 * flushes.
   5132 		 */
   5133 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5134 	}
   5135 #else
   5136 
   5137 	kpreempt_disable();
   5138 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
   5139 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   5140 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   5141 		PMAP_COUNT(shootdown_ipis);
   5142 	}
   5143 #endif
   5144 
   5145 	/*
   5146 	 * If pmap_remove_all was called, we deactivated ourselves and released
   5147 	 * our ASID.  Now we have to reactivate ourselves.
   5148 	 */
   5149 	if (__predict_false(pm->pm_remove_all)) {
   5150 		pm->pm_remove_all = false;
   5151 
   5152 		KASSERT(pm != pmap_kernel());
   5153 		pmap_md_pdetab_activate(pm, curlwp);
   5154 	}
   5155 
   5156 	if (arm_has_mpext_p)
   5157 		armreg_bpiallis_write(0);
   5158 	else
   5159 		armreg_bpiall_write(0);
   5160 
   5161 	kpreempt_enable();
   5162 
   5163 	KASSERTMSG(pm == pmap_kernel()
   5164 	    || curcpu()->ci_pmap_cur != pm
   5165 	    || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
   5166 	    "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
   5167 	    pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
   5168 	    curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   5169 #endif
   5170 
   5171 	PMAPCOUNT(updates);
   5172 
   5173 	/*
   5174 	 * make sure TLB/cache operations have completed.
   5175 	 */
   5176 	cpu_cpwait();
   5177 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5178 }
   5179 
   5180 void
   5181 pmap_remove_all(pmap_t pm)
   5182 {
   5183 
   5184 	/*
   5185 	 * The vmspace described by this pmap is about to be torn down.
   5186 	 * Until pmap_update() is called, UVM will only make calls
   5187 	 * to pmap_remove(). We can make life much simpler by flushing
   5188 	 * the cache now, and deferring TLB invalidation to pmap_update().
   5189 	 */
   5190 #ifdef PMAP_CACHE_VIVT
   5191 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   5192 #endif
   5193 #ifdef ARM_MMU_EXTENDED
   5194 #ifdef MULTIPROCESSOR
   5195 	struct cpu_info * const ci = curcpu();
   5196 	// This should be the last CPU with this pmap onproc
   5197 	KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
   5198 	if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
   5199 #endif
   5200 		pmap_tlb_asid_deactivate(pm);
   5201 #ifdef MULTIPROCESSOR
   5202 	KASSERT(kcpuset_iszero(pm->pm_onproc));
   5203 #endif
   5204 
   5205 	pmap_tlb_asid_release_all(pm);
   5206 #endif
   5207 	pm->pm_remove_all = true;
   5208 }
   5209 
   5210 /*
   5211  * Retire the given physical map from service.
   5212  * Should only be called if the map contains no valid mappings.
   5213  */
   5214 void
   5215 pmap_destroy(pmap_t pm)
   5216 {
   5217 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5218 
   5219 	u_int count;
   5220 
   5221 	if (pm == NULL)
   5222 		return;
   5223 
   5224 	UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
   5225 	    pm->pm_remove_all, 0, 0);
   5226 
   5227 	if (pm->pm_remove_all) {
   5228 #ifdef ARM_MMU_EXTENDED
   5229  		pmap_tlb_asid_release_all(pm);
   5230 #else
   5231 		pmap_tlb_flushID(pm);
   5232 #endif
   5233 		pm->pm_remove_all = false;
   5234 	}
   5235 
   5236 	/*
   5237 	 * Drop reference count
   5238 	 */
   5239 	mutex_enter(pm->pm_lock);
   5240 	count = --pm->pm_obj.uo_refs;
   5241 	mutex_exit(pm->pm_lock);
   5242 	if (count > 0) {
   5243 #ifndef ARM_MMU_EXTENDED
   5244 		if (pmap_is_current(pm)) {
   5245 			if (pm != pmap_kernel())
   5246 				pmap_use_l1(pm);
   5247 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5248 		}
   5249 #endif
   5250 		return;
   5251 	}
   5252 
   5253 	/*
   5254 	 * reference count is zero, free pmap resources and then free pmap.
   5255 	 */
   5256 
   5257 #ifndef ARM_HAS_VBAR
   5258 	if (vector_page < KERNEL_BASE) {
   5259 		KDASSERT(!pmap_is_current(pm));
   5260 
   5261 		/* Remove the vector page mapping */
   5262 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5263 		pmap_update(pm);
   5264 	}
   5265 #endif
   5266 
   5267 	pmap_free_l1(pm);
   5268 
   5269 #ifdef ARM_MMU_EXTENDED
   5270 #ifdef MULTIPROCESSOR
   5271 	kcpuset_destroy(pm->pm_active);
   5272 	kcpuset_destroy(pm->pm_onproc);
   5273 #endif
   5274 #else
   5275 	struct cpu_info * const ci = curcpu();
   5276 	if (ci->ci_pmap_lastuser == pm)
   5277 		ci->ci_pmap_lastuser = NULL;
   5278 #endif
   5279 
   5280 	uvm_obj_destroy(&pm->pm_obj, false);
   5281 	mutex_destroy(&pm->pm_obj_lock);
   5282 	pool_cache_put(&pmap_cache, pm);
   5283 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5284 }
   5285 
   5286 
   5287 /*
   5288  * void pmap_reference(pmap_t pm)
   5289  *
   5290  * Add a reference to the specified pmap.
   5291  */
   5292 void
   5293 pmap_reference(pmap_t pm)
   5294 {
   5295 
   5296 	if (pm == NULL)
   5297 		return;
   5298 
   5299 #ifndef ARM_MMU_EXTENDED
   5300 	pmap_use_l1(pm);
   5301 #endif
   5302 
   5303 	mutex_enter(pm->pm_lock);
   5304 	pm->pm_obj.uo_refs++;
   5305 	mutex_exit(pm->pm_lock);
   5306 }
   5307 
   5308 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5309 
   5310 static struct evcnt pmap_prefer_nochange_ev =
   5311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5312 static struct evcnt pmap_prefer_change_ev =
   5313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5314 
   5315 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5316 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5317 
   5318 void
   5319 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5320 {
   5321 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5322 	vaddr_t va = *vap;
   5323 	vaddr_t diff = (hint - va) & mask;
   5324 	if (diff == 0) {
   5325 		pmap_prefer_nochange_ev.ev_count++;
   5326 	} else {
   5327 		pmap_prefer_change_ev.ev_count++;
   5328 		if (__predict_false(td))
   5329 			va -= mask + 1;
   5330 		*vap = va + diff;
   5331 	}
   5332 }
   5333 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5334 
   5335 /*
   5336  * pmap_zero_page()
   5337  *
   5338  * Zero a given physical page by mapping it at a page hook point.
   5339  * In doing the zero page op, the page we zero is mapped cachable, as with
   5340  * StrongARM accesses to non-cached pages are non-burst making writing
   5341  * _any_ bulk data very slow.
   5342  */
   5343 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5344 void
   5345 pmap_zero_page_generic(paddr_t pa)
   5346 {
   5347 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5348 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5349 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5350 #endif
   5351 #if defined(PMAP_CACHE_VIPT)
   5352 	/* Choose the last page color it had, if any */
   5353 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5354 #else
   5355 	const vsize_t va_offset = 0;
   5356 #endif
   5357 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5358 	/*
   5359 	 * Is this page mapped at its natural color?
   5360 	 * If we have all of memory mapped, then just convert PA to VA.
   5361 	 */
   5362 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5363 	   || va_offset == (pa & arm_cache_prefer_mask);
   5364 	const vaddr_t vdstp = okcolor
   5365 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5366 	    : cpu_cdstp(va_offset);
   5367 #else
   5368 	const bool okcolor = false;
   5369 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5370 #endif
   5371 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5372 
   5373 
   5374 #ifdef DEBUG
   5375 	if (!SLIST_EMPTY(&md->pvh_list))
   5376 		panic("pmap_zero_page: page has mappings");
   5377 #endif
   5378 
   5379 	KDASSERT((pa & PGOFSET) == 0);
   5380 
   5381 	if (!okcolor) {
   5382 		/*
   5383 		 * Hook in the page, zero it, and purge the cache for that
   5384 		 * zeroed page. Invalidate the TLB as needed.
   5385 		 */
   5386 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5387 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5388 		l2pte_set(ptep, npte, 0);
   5389 		PTE_SYNC(ptep);
   5390 		cpu_tlb_flushD_SE(vdstp);
   5391 		cpu_cpwait();
   5392 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5393     && !defined(ARM_MMU_EXTENDED)
   5394 		/*
   5395 		 * If we are direct-mapped and our color isn't ok, then before
   5396 		 * we bzero the page invalidate its contents from the cache and
   5397 		 * reset the color to its natural color.
   5398 		 */
   5399 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5400 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5401 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5402 #endif
   5403 	}
   5404 	bzero_page(vdstp);
   5405 	if (!okcolor) {
   5406 		/*
   5407 		 * Unmap the page.
   5408 		 */
   5409 		l2pte_reset(ptep);
   5410 		PTE_SYNC(ptep);
   5411 		cpu_tlb_flushD_SE(vdstp);
   5412 #ifdef PMAP_CACHE_VIVT
   5413 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5414 #endif
   5415 	}
   5416 #ifdef PMAP_CACHE_VIPT
   5417 	/*
   5418 	 * This page is now cache resident so it now has a page color.
   5419 	 * Any contents have been obliterated so clear the EXEC flag.
   5420 	 */
   5421 #ifndef ARM_MMU_EXTENDED
   5422 	if (!pmap_is_page_colored_p(md)) {
   5423 		PMAPCOUNT(vac_color_new);
   5424 		md->pvh_attrs |= PVF_COLORED;
   5425 	}
   5426 	md->pvh_attrs |= PVF_DIRTY;
   5427 #endif
   5428 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5429 		md->pvh_attrs &= ~PVF_EXEC;
   5430 		PMAPCOUNT(exec_discarded_zero);
   5431 	}
   5432 #endif
   5433 }
   5434 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5435 
   5436 #if ARM_MMU_XSCALE == 1
   5437 void
   5438 pmap_zero_page_xscale(paddr_t pa)
   5439 {
   5440 #ifdef DEBUG
   5441 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5442 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5443 
   5444 	if (!SLIST_EMPTY(&md->pvh_list))
   5445 		panic("pmap_zero_page: page has mappings");
   5446 #endif
   5447 
   5448 	KDASSERT((pa & PGOFSET) == 0);
   5449 
   5450 	/*
   5451 	 * Hook in the page, zero it, and purge the cache for that
   5452 	 * zeroed page. Invalidate the TLB as needed.
   5453 	 */
   5454 
   5455 	pt_entry_t npte = L2_S_PROTO | pa |
   5456 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5457 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5458 	l2pte_set(cdst_pte, npte, 0);
   5459 	PTE_SYNC(cdst_pte);
   5460 	cpu_tlb_flushD_SE(cdstp);
   5461 	cpu_cpwait();
   5462 	bzero_page(cdstp);
   5463 	xscale_cache_clean_minidata();
   5464 	l2pte_reset(cdst_pte);
   5465 	PTE_SYNC(cdst_pte);
   5466 }
   5467 #endif /* ARM_MMU_XSCALE == 1 */
   5468 
   5469 /* pmap_pageidlezero()
   5470  *
   5471  * The same as above, except that we assume that the page is not
   5472  * mapped.  This means we never have to flush the cache first.  Called
   5473  * from the idle loop.
   5474  */
   5475 bool
   5476 pmap_pageidlezero(paddr_t pa)
   5477 {
   5478 	bool rv = true;
   5479 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5480 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5481 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5482 #endif
   5483 #ifdef PMAP_CACHE_VIPT
   5484 	/* Choose the last page color it had, if any */
   5485 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5486 #else
   5487 	const vsize_t va_offset = 0;
   5488 #endif
   5489 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5490 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5491 	   || va_offset == (pa & arm_cache_prefer_mask);
   5492 	const vaddr_t vdstp = okcolor
   5493 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5494 	    : cpu_cdstp(va_offset);
   5495 #else
   5496 	const bool okcolor = false;
   5497 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5498 #endif
   5499 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5500 
   5501 
   5502 #ifdef DEBUG
   5503 	if (!SLIST_EMPTY(&md->pvh_list))
   5504 		panic("pmap_pageidlezero: page has mappings");
   5505 #endif
   5506 
   5507 	KDASSERT((pa & PGOFSET) == 0);
   5508 
   5509 	if (!okcolor) {
   5510 		/*
   5511 		 * Hook in the page, zero it, and purge the cache for that
   5512 		 * zeroed page. Invalidate the TLB as needed.
   5513 		 */
   5514 		const pt_entry_t npte = L2_S_PROTO | pa |
   5515 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5516 		l2pte_set(ptep, npte, 0);
   5517 		PTE_SYNC(ptep);
   5518 		cpu_tlb_flushD_SE(vdstp);
   5519 		cpu_cpwait();
   5520 	}
   5521 
   5522 	uint64_t *ptr = (uint64_t *)vdstp;
   5523 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5524 		if (sched_curcpu_runnable_p() != 0) {
   5525 			/*
   5526 			 * A process has become ready.  Abort now,
   5527 			 * so we don't keep it waiting while we
   5528 			 * do slow memory access to finish this
   5529 			 * page.
   5530 			 */
   5531 			rv = false;
   5532 			break;
   5533 		}
   5534 		*ptr++ = 0;
   5535 	}
   5536 
   5537 #ifdef PMAP_CACHE_VIVT
   5538 	if (rv)
   5539 		/*
   5540 		 * if we aborted we'll rezero this page again later so don't
   5541 		 * purge it unless we finished it
   5542 		 */
   5543 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5544 #elif defined(PMAP_CACHE_VIPT)
   5545 	/*
   5546 	 * This page is now cache resident so it now has a page color.
   5547 	 * Any contents have been obliterated so clear the EXEC flag.
   5548 	 */
   5549 #ifndef ARM_MMU_EXTENDED
   5550 	if (!pmap_is_page_colored_p(md)) {
   5551 		PMAPCOUNT(vac_color_new);
   5552 		md->pvh_attrs |= PVF_COLORED;
   5553 	}
   5554 #endif
   5555 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5556 		md->pvh_attrs &= ~PVF_EXEC;
   5557 		PMAPCOUNT(exec_discarded_zero);
   5558 	}
   5559 #endif
   5560 	/*
   5561 	 * Unmap the page.
   5562 	 */
   5563 	if (!okcolor) {
   5564 		l2pte_reset(ptep);
   5565 		PTE_SYNC(ptep);
   5566 		cpu_tlb_flushD_SE(vdstp);
   5567 	}
   5568 
   5569 	return rv;
   5570 }
   5571 
   5572 /*
   5573  * pmap_copy_page()
   5574  *
   5575  * Copy one physical page into another, by mapping the pages into
   5576  * hook points. The same comment regarding cachability as in
   5577  * pmap_zero_page also applies here.
   5578  */
   5579 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5580 void
   5581 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5582 {
   5583 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5584 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5585 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5586 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5587 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5588 #endif
   5589 #ifdef PMAP_CACHE_VIPT
   5590 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5591 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5592 #else
   5593 	const vsize_t src_va_offset = 0;
   5594 	const vsize_t dst_va_offset = 0;
   5595 #endif
   5596 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5597 	/*
   5598 	 * Is this page mapped at its natural color?
   5599 	 * If we have all of memory mapped, then just convert PA to VA.
   5600 	 */
   5601 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5602 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5603 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5604 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5605 	const vaddr_t vsrcp = src_okcolor
   5606 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5607 		cpu_csrcp(src_va_offset))
   5608 	    : cpu_csrcp(src_va_offset);
   5609 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5610 	    cpu_cdstp(dst_va_offset));
   5611 #else
   5612 	const bool src_okcolor = false;
   5613 	const bool dst_okcolor = false;
   5614 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5615 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5616 #endif
   5617 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5618 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5619 
   5620 #ifdef DEBUG
   5621 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5622 		panic("pmap_copy_page: dst page has mappings");
   5623 #endif
   5624 
   5625 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5626 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5627 #endif
   5628 	KDASSERT((src & PGOFSET) == 0);
   5629 	KDASSERT((dst & PGOFSET) == 0);
   5630 
   5631 	/*
   5632 	 * Clean the source page.  Hold the source page's lock for
   5633 	 * the duration of the copy so that no other mappings can
   5634 	 * be created while we have a potentially aliased mapping.
   5635 	 */
   5636 #ifdef PMAP_CACHE_VIVT
   5637 	pmap_acquire_page_lock(src_md);
   5638 	(void) pmap_clean_page(src_md, true);
   5639 	pmap_release_page_lock(src_md);
   5640 #endif
   5641 
   5642 	/*
   5643 	 * Map the pages into the page hook points, copy them, and purge
   5644 	 * the cache for the appropriate page. Invalidate the TLB
   5645 	 * as required.
   5646 	 */
   5647 	if (!src_okcolor) {
   5648 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5649 		    | src
   5650 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5651 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5652 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5653 		    | pte_l2_s_cache_mode
   5654 #endif
   5655 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5656 		l2pte_set(src_ptep, nsrc_pte, 0);
   5657 		PTE_SYNC(src_ptep);
   5658 		cpu_tlb_flushD_SE(vsrcp);
   5659 		cpu_cpwait();
   5660 	}
   5661 	if (!dst_okcolor) {
   5662 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5663 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5664 		l2pte_set(dst_ptep, ndst_pte, 0);
   5665 		PTE_SYNC(dst_ptep);
   5666 		cpu_tlb_flushD_SE(vdstp);
   5667 		cpu_cpwait();
   5668 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5669 		/*
   5670 		 * If we are direct-mapped and our color isn't ok, then before
   5671 		 * we bcopy to the new page invalidate its contents from the
   5672 		 * cache and reset its color to its natural color.
   5673 		 */
   5674 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5675 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5676 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5677 #endif
   5678 	}
   5679 	bcopy_page(vsrcp, vdstp);
   5680 #ifdef PMAP_CACHE_VIVT
   5681 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5682 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5683 #endif
   5684 	/*
   5685 	 * Unmap the pages.
   5686 	 */
   5687 	if (!src_okcolor) {
   5688 		l2pte_reset(src_ptep);
   5689 		PTE_SYNC(src_ptep);
   5690 		cpu_tlb_flushD_SE(vsrcp);
   5691 		cpu_cpwait();
   5692 	}
   5693 	if (!dst_okcolor) {
   5694 		l2pte_reset(dst_ptep);
   5695 		PTE_SYNC(dst_ptep);
   5696 		cpu_tlb_flushD_SE(vdstp);
   5697 		cpu_cpwait();
   5698 	}
   5699 #ifdef PMAP_CACHE_VIPT
   5700 	/*
   5701 	 * Now that the destination page is in the cache, mark it as colored.
   5702 	 * If this was an exec page, discard it.
   5703 	 */
   5704 	pmap_acquire_page_lock(dst_md);
   5705 #ifndef ARM_MMU_EXTENDED
   5706 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5707 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5708 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5709 	}
   5710 	if (!pmap_is_page_colored_p(dst_md)) {
   5711 		PMAPCOUNT(vac_color_new);
   5712 		dst_md->pvh_attrs |= PVF_COLORED;
   5713 	}
   5714 	dst_md->pvh_attrs |= PVF_DIRTY;
   5715 #endif
   5716 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5717 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5718 		PMAPCOUNT(exec_discarded_copy);
   5719 	}
   5720 	pmap_release_page_lock(dst_md);
   5721 #endif
   5722 }
   5723 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5724 
   5725 #if ARM_MMU_XSCALE == 1
   5726 void
   5727 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5728 {
   5729 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5730 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5731 #ifdef DEBUG
   5732 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5733 
   5734 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5735 		panic("pmap_copy_page: dst page has mappings");
   5736 #endif
   5737 
   5738 	KDASSERT((src & PGOFSET) == 0);
   5739 	KDASSERT((dst & PGOFSET) == 0);
   5740 
   5741 	/*
   5742 	 * Clean the source page.  Hold the source page's lock for
   5743 	 * the duration of the copy so that no other mappings can
   5744 	 * be created while we have a potentially aliased mapping.
   5745 	 */
   5746 #ifdef PMAP_CACHE_VIVT
   5747 	pmap_acquire_page_lock(src_md);
   5748 	(void) pmap_clean_page(src_md, true);
   5749 	pmap_release_page_lock(src_md);
   5750 #endif
   5751 
   5752 	/*
   5753 	 * Map the pages into the page hook points, copy them, and purge
   5754 	 * the cache for the appropriate page. Invalidate the TLB
   5755 	 * as required.
   5756 	 */
   5757 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
   5758 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   5759 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5760 	l2pte_set(csrc_pte, nsrc_pte, 0);
   5761 	PTE_SYNC(csrc_pte);
   5762 
   5763 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
   5764 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
   5765 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5766 	l2pte_set(cdst_pte, ndst_pte, 0);
   5767 	PTE_SYNC(cdst_pte);
   5768 
   5769 	cpu_tlb_flushD_SE(csrcp);
   5770 	cpu_tlb_flushD_SE(cdstp);
   5771 	cpu_cpwait();
   5772 	bcopy_page(csrcp, cdstp);
   5773 	xscale_cache_clean_minidata();
   5774 	l2pte_reset(csrc_pte);
   5775 	l2pte_reset(cdst_pte);
   5776 	PTE_SYNC(csrc_pte);
   5777 	PTE_SYNC(cdst_pte);
   5778 }
   5779 #endif /* ARM_MMU_XSCALE == 1 */
   5780 
   5781 /*
   5782  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5783  *
   5784  * Return the start and end addresses of the kernel's virtual space.
   5785  * These values are setup in pmap_bootstrap and are updated as pages
   5786  * are allocated.
   5787  */
   5788 void
   5789 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5790 {
   5791 	*start = virtual_avail;
   5792 	*end = virtual_end;
   5793 }
   5794 
   5795 /*
   5796  * Helper function for pmap_grow_l2_bucket()
   5797  */
   5798 static inline int
   5799 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5800 {
   5801 	paddr_t pa;
   5802 
   5803 	if (uvm.page_init_done == false) {
   5804 #ifdef PMAP_STEAL_MEMORY
   5805 		pv_addr_t pv;
   5806 		pmap_boot_pagealloc(PAGE_SIZE,
   5807 #ifdef PMAP_CACHE_VIPT
   5808 		    arm_cache_prefer_mask,
   5809 		    va & arm_cache_prefer_mask,
   5810 #else
   5811 		    0, 0,
   5812 #endif
   5813 		    &pv);
   5814 		pa = pv.pv_pa;
   5815 #else
   5816 		if (uvm_page_physget(&pa) == false)
   5817 			return (1);
   5818 #endif	/* PMAP_STEAL_MEMORY */
   5819 	} else {
   5820 		struct vm_page *pg;
   5821 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5822 		if (pg == NULL)
   5823 			return (1);
   5824 		pa = VM_PAGE_TO_PHYS(pg);
   5825 		/*
   5826 		 * This new page must not have any mappings.  Enter it via
   5827 		 * pmap_kenter_pa and let that routine do the hard work.
   5828 		 */
   5829 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5830 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5831 	}
   5832 
   5833 	pmap_kenter_pa(va, pa,
   5834 	    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   5835 
   5836 	if (pap)
   5837 		*pap = pa;
   5838 
   5839 	PMAPCOUNT(pt_mappings);
   5840 #ifdef DEBUG
   5841 	struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5842 	KDASSERT(l2b != NULL);
   5843 
   5844 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   5845 	const pt_entry_t opte = *ptep;
   5846 	KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   5847 #endif
   5848 	memset((void *)va, 0, PAGE_SIZE);
   5849 	return (0);
   5850 }
   5851 
   5852 /*
   5853  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   5854  * used by pmap_growkernel().
   5855  */
   5856 static inline struct l2_bucket *
   5857 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   5858 {
   5859 	struct l2_dtable *l2;
   5860 	struct l2_bucket *l2b;
   5861 	u_short l1slot;
   5862 	vaddr_t nva;
   5863 
   5864 	l1slot = l1pte_index(va);
   5865 
   5866 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   5867 		/*
   5868 		 * No mapping at this address, as there is
   5869 		 * no entry in the L1 table.
   5870 		 * Need to allocate a new l2_dtable.
   5871 		 */
   5872 		nva = pmap_kernel_l2dtable_kva;
   5873 		if ((nva & PGOFSET) == 0) {
   5874 			/*
   5875 			 * Need to allocate a backing page
   5876 			 */
   5877 			if (pmap_grow_map(nva, NULL))
   5878 				return (NULL);
   5879 		}
   5880 
   5881 		l2 = (struct l2_dtable *)nva;
   5882 		nva += sizeof(struct l2_dtable);
   5883 
   5884 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   5885 			/*
   5886 			 * The new l2_dtable straddles a page boundary.
   5887 			 * Map in another page to cover it.
   5888 			 */
   5889 			if (pmap_grow_map(nva, NULL))
   5890 				return (NULL);
   5891 		}
   5892 
   5893 		pmap_kernel_l2dtable_kva = nva;
   5894 
   5895 		/*
   5896 		 * Link it into the parent pmap
   5897 		 */
   5898 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   5899 	}
   5900 
   5901 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   5902 
   5903 	/*
   5904 	 * Fetch pointer to the L2 page table associated with the address.
   5905 	 */
   5906 	if (l2b->l2b_kva == NULL) {
   5907 		pt_entry_t *ptep;
   5908 
   5909 		/*
   5910 		 * No L2 page table has been allocated. Chances are, this
   5911 		 * is because we just allocated the l2_dtable, above.
   5912 		 */
   5913 		nva = pmap_kernel_l2ptp_kva;
   5914 		ptep = (pt_entry_t *)nva;
   5915 		if ((nva & PGOFSET) == 0) {
   5916 			/*
   5917 			 * Need to allocate a backing page
   5918 			 */
   5919 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   5920 				return (NULL);
   5921 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   5922 		}
   5923 
   5924 		l2->l2_occupancy++;
   5925 		l2b->l2b_kva = ptep;
   5926 		l2b->l2b_l1slot = l1slot;
   5927 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   5928 
   5929 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   5930 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   5931 	}
   5932 
   5933 	return (l2b);
   5934 }
   5935 
   5936 vaddr_t
   5937 pmap_growkernel(vaddr_t maxkvaddr)
   5938 {
   5939 	pmap_t kpm = pmap_kernel();
   5940 #ifndef ARM_MMU_EXTENDED
   5941 	struct l1_ttable *l1;
   5942 #endif
   5943 	int s;
   5944 
   5945 	if (maxkvaddr <= pmap_curmaxkvaddr)
   5946 		goto out;		/* we are OK */
   5947 
   5948 	NPDEBUG(PDB_GROWKERN,
   5949 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   5950 	    pmap_curmaxkvaddr, maxkvaddr));
   5951 
   5952 	KDASSERT(maxkvaddr <= virtual_end);
   5953 
   5954 	/*
   5955 	 * whoops!   we need to add kernel PTPs
   5956 	 */
   5957 
   5958 	s = splvm();	/* to be safe */
   5959 	mutex_enter(&kpm_lock);
   5960 
   5961 	/* Map 1MB at a time */
   5962 	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
   5963 #ifdef ARM_MMU_EXTENDED
   5964 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   5965 	pd_entry_t *pdep = spdep;
   5966 #endif
   5967 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   5968 #ifdef ARM_MMU_EXTENDED
   5969 	     pdep++,
   5970 #endif
   5971 	     l1slot++) {
   5972 		struct l2_bucket *l2b =
   5973 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5974 		KASSERT(l2b != NULL);
   5975 
   5976 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   5977 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   5978 #ifdef ARM_MMU_EXTENDED
   5979 		l1pte_setone(pdep, npde);
   5980 #else
   5981 		/* Distribute new L1 entry to all other L1s */
   5982 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5983 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   5984 			l1pte_setone(pdep, npde);
   5985 			PDE_SYNC(pdep);
   5986 		}
   5987 #endif
   5988 	}
   5989 #ifdef ARM_MMU_EXTENDED
   5990 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   5991 #endif
   5992 
   5993 #ifdef PMAP_CACHE_VIVT
   5994 	/*
   5995 	 * flush out the cache, expensive but growkernel will happen so
   5996 	 * rarely
   5997 	 */
   5998 	cpu_dcache_wbinv_all();
   5999 	cpu_tlb_flushD();
   6000 	cpu_cpwait();
   6001 #endif
   6002 
   6003 	mutex_exit(&kpm_lock);
   6004 	splx(s);
   6005 
   6006 out:
   6007 	return (pmap_curmaxkvaddr);
   6008 }
   6009 
   6010 /************************ Utility routines ****************************/
   6011 
   6012 #ifndef ARM_HAS_VBAR
   6013 /*
   6014  * vector_page_setprot:
   6015  *
   6016  *	Manipulate the protection of the vector page.
   6017  */
   6018 void
   6019 vector_page_setprot(int prot)
   6020 {
   6021 	struct l2_bucket *l2b;
   6022 	pt_entry_t *ptep;
   6023 
   6024 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   6025 	/*
   6026 	 * If we are using VBAR to use the vectors in the kernel, then it's
   6027 	 * already mapped in the kernel text so no need to anything here.
   6028 	 */
   6029 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   6030 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   6031 		return;
   6032 	}
   6033 #endif
   6034 
   6035 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   6036 	KASSERT(l2b != NULL);
   6037 
   6038 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   6039 
   6040 	const pt_entry_t opte = *ptep;
   6041 #ifdef ARM_MMU_EXTENDED
   6042 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   6043 	    | L2_S_PROT(PTE_KERNEL, prot);
   6044 #else
   6045 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   6046 	    | L2_S_PROT(PTE_KERNEL, prot);
   6047 #endif
   6048 	l2pte_set(ptep, npte, opte);
   6049 	PTE_SYNC(ptep);
   6050 	cpu_tlb_flushD_SE(vector_page);
   6051 	cpu_cpwait();
   6052 }
   6053 #endif
   6054 
   6055 /*
   6056  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   6057  * Returns true if the mapping exists, else false.
   6058  *
   6059  * NOTE: This function is only used by a couple of arm-specific modules.
   6060  * It is not safe to take any pmap locks here, since we could be right
   6061  * in the middle of debugging the pmap anyway...
   6062  *
   6063  * It is possible for this routine to return false even though a valid
   6064  * mapping does exist. This is because we don't lock, so the metadata
   6065  * state may be inconsistent.
   6066  *
   6067  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   6068  * a "section" mapping.
   6069  */
   6070 bool
   6071 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   6072 {
   6073 	struct l2_dtable *l2;
   6074 	pd_entry_t *pdep, pde;
   6075 	pt_entry_t *ptep;
   6076 	u_short l1slot;
   6077 
   6078 	if (pm->pm_l1 == NULL)
   6079 		return false;
   6080 
   6081 	l1slot = l1pte_index(va);
   6082 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   6083 	pde = *pdep;
   6084 
   6085 	if (l1pte_section_p(pde)) {
   6086 		*ptp = NULL;
   6087 		return true;
   6088 	}
   6089 
   6090 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   6091 	if (l2 == NULL ||
   6092 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   6093 		return false;
   6094 	}
   6095 
   6096 	*ptp = &ptep[l2pte_index(va)];
   6097 	return true;
   6098 }
   6099 
   6100 bool
   6101 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   6102 {
   6103 
   6104 	if (pm->pm_l1 == NULL)
   6105 		return false;
   6106 
   6107 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   6108 
   6109 	return true;
   6110 }
   6111 
   6112 /************************ Bootstrapping routines ****************************/
   6113 
   6114 #ifndef ARM_MMU_EXTENDED
   6115 static void
   6116 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   6117 {
   6118 	int i;
   6119 
   6120 	l1->l1_kva = l1pt;
   6121 	l1->l1_domain_use_count = 0;
   6122 	l1->l1_domain_first = 0;
   6123 
   6124 	for (i = 0; i < PMAP_DOMAINS; i++)
   6125 		l1->l1_domain_free[i] = i + 1;
   6126 
   6127 	/*
   6128 	 * Copy the kernel's L1 entries to each new L1.
   6129 	 */
   6130 	if (pmap_initialized)
   6131 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   6132 
   6133 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   6134 	    &l1->l1_physaddr) == false)
   6135 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   6136 
   6137 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   6138 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   6139 }
   6140 #endif /* !ARM_MMU_EXTENDED */
   6141 
   6142 /*
   6143  * pmap_bootstrap() is called from the board-specific initarm() routine
   6144  * once the kernel L1/L2 descriptors tables have been set up.
   6145  *
   6146  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   6147  * spread over a number of disparate files/functions.
   6148  *
   6149  * We are passed the following parameters
   6150  *  - vstart
   6151  *    1MB-aligned start of managed kernel virtual memory.
   6152  *  - vend
   6153  *    1MB-aligned end of managed kernel virtual memory.
   6154  *
   6155  * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
   6156  * struct l2_dtable) necessary to track kernel mappings.
   6157  */
   6158 #define	PMAP_STATIC_L2_SIZE 16
   6159 void
   6160 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   6161 {
   6162 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   6163 #ifndef ARM_MMU_EXTENDED
   6164 	static struct l1_ttable static_l1;
   6165 	struct l1_ttable *l1 = &static_l1;
   6166 #endif
   6167 	struct l2_dtable *l2;
   6168 	struct l2_bucket *l2b;
   6169 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   6170 	pmap_t pm = pmap_kernel();
   6171 	pt_entry_t *ptep;
   6172 	paddr_t pa;
   6173 	vsize_t size;
   6174 	int nptes, l2idx, l2next = 0;
   6175 
   6176 #ifdef ARM_MMU_EXTENDED
   6177 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   6178 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   6179 #endif
   6180 
   6181 	VPRINTF("kpm ");
   6182 	/*
   6183 	 * Initialise the kernel pmap object
   6184 	 */
   6185 	curcpu()->ci_pmap_cur = pm;
   6186 #ifdef ARM_MMU_EXTENDED
   6187 	pm->pm_l1 = l1pt;
   6188 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   6189 	VPRINTF("tlb0 ");
   6190 	pmap_tlb_info_init(&pmap_tlb0_info);
   6191 #ifdef MULTIPROCESSOR
   6192 	VPRINTF("kcpusets ");
   6193 	pm->pm_onproc = kcpuset_running;
   6194 	pm->pm_active = kcpuset_running;
   6195 #endif
   6196 #else
   6197 	pm->pm_l1 = l1;
   6198 #endif
   6199 
   6200 	VPRINTF("locks ");
   6201 	/*
   6202 	 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
   6203 	 * context, so its locks have to be at IPL_VM
   6204 	 */
   6205 	mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   6206 	mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
   6207 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_VM);
   6208 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   6209 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   6210 
   6211 	VPRINTF("l1pt ");
   6212 	/*
   6213 	 * Scan the L1 translation table created by initarm() and create
   6214 	 * the required metadata for all valid mappings found in it.
   6215 	 */
   6216 	for (size_t l1slot = 0;
   6217 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   6218 	     l1slot++) {
   6219 		pd_entry_t pde = l1pt[l1slot];
   6220 
   6221 		/*
   6222 		 * We're only interested in Coarse mappings.
   6223 		 * pmap_extract() can deal with section mappings without
   6224 		 * recourse to checking L2 metadata.
   6225 		 */
   6226 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   6227 			continue;
   6228 
   6229 		/*
   6230 		 * Lookup the KVA of this L2 descriptor table
   6231 		 */
   6232 		pa = l1pte_pa(pde);
   6233 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6234 		if (ptep == NULL) {
   6235 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6236 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6237 		}
   6238 
   6239 		/*
   6240 		 * Fetch the associated L2 metadata structure.
   6241 		 * Allocate a new one if necessary.
   6242 		 */
   6243 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6244 			if (l2next == PMAP_STATIC_L2_SIZE)
   6245 				panic("pmap_bootstrap: out of static L2s");
   6246 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6247 		}
   6248 
   6249 		/*
   6250 		 * One more L1 slot tracked...
   6251 		 */
   6252 		l2->l2_occupancy++;
   6253 
   6254 		/*
   6255 		 * Fill in the details of the L2 descriptor in the
   6256 		 * appropriate bucket.
   6257 		 */
   6258 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6259 		l2b->l2b_kva = ptep;
   6260 		l2b->l2b_pa = pa;
   6261 		l2b->l2b_l1slot = l1slot;
   6262 
   6263 		/*
   6264 		 * Establish an initial occupancy count for this descriptor
   6265 		 */
   6266 		for (l2idx = 0;
   6267 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6268 		    l2idx++) {
   6269 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6270 				l2b->l2b_occupancy++;
   6271 			}
   6272 		}
   6273 
   6274 		/*
   6275 		 * Make sure the descriptor itself has the correct cache mode.
   6276 		 * If not, fix it, but whine about the problem. Port-meisters
   6277 		 * should consider this a clue to fix up their initarm()
   6278 		 * function. :)
   6279 		 */
   6280 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6281 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6282 			    "L2 pte @ %p\n", ptep);
   6283 		}
   6284 	}
   6285 
   6286 	VPRINTF("cache(l1pt) ");
   6287 	/*
   6288 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6289 	 * a page table. Bitch if it is not correctly set.
   6290 	 */
   6291 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6292 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6293 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6294 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6295 	}
   6296 
   6297 #ifdef PMAP_CACHE_VIVT
   6298 	cpu_dcache_wbinv_all();
   6299 	cpu_tlb_flushID();
   6300 	cpu_cpwait();
   6301 #endif
   6302 
   6303 	/*
   6304 	 * now we allocate the "special" VAs which are used for tmp mappings
   6305 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6306 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6307 	 *
   6308 	 * Managed KVM space start from wherever initarm() tells us.
   6309 	 */
   6310 	virtual_avail = vstart;
   6311 	virtual_end = vend;
   6312 
   6313 	VPRINTF("specials ");
   6314 #ifdef PMAP_CACHE_VIPT
   6315 	/*
   6316 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6317 	 * page so we won't violate cache aliasing rules.
   6318 	 */
   6319 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6320 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6321 	nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6322 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6323 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6324 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6325 		nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6326 	}
   6327 #else
   6328 	nptes = PAGE_SIZE / L2_S_SIZE;
   6329 #endif
   6330 #ifdef MULTIPROCESSOR
   6331 	cnptes = nptes;
   6332 	nptes *= arm_cpu_max;
   6333 #endif
   6334 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6335 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6336 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6337 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6338 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   6339 	if (msgbufaddr == NULL) {
   6340 		pmap_alloc_specials(&virtual_avail,
   6341 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6342 		    (void *)&msgbufaddr, NULL);
   6343 	}
   6344 
   6345 	/*
   6346 	 * Allocate a range of kernel virtual address space to be used
   6347 	 * for L2 descriptor tables and metadata allocation in
   6348 	 * pmap_growkernel().
   6349 	 */
   6350 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   6351 	pmap_alloc_specials(&virtual_avail,
   6352 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6353 	    &pmap_kernel_l2ptp_kva, NULL);
   6354 
   6355 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   6356 	pmap_alloc_specials(&virtual_avail,
   6357 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6358 	    &pmap_kernel_l2dtable_kva, NULL);
   6359 
   6360 #ifndef ARM_MMU_EXTENDED
   6361 	/*
   6362 	 * init the static-global locks and global pmap list.
   6363 	 */
   6364 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6365 
   6366 	/*
   6367 	 * We can now initialise the first L1's metadata.
   6368 	 */
   6369 	SLIST_INIT(&l1_list);
   6370 	TAILQ_INIT(&l1_lru_list);
   6371 	pmap_init_l1(l1, l1pt);
   6372 #endif /* ARM_MMU_EXTENDED */
   6373 
   6374 #ifndef ARM_HAS_VBAR
   6375 	/* Set up vector page L1 details, if necessary */
   6376 	if (vector_page < KERNEL_BASE) {
   6377 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6378 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6379 		KDASSERT(l2b != NULL);
   6380 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6381 		    L1_C_DOM(pmap_domain(pm));
   6382 	} else
   6383 		pm->pm_pl1vec = NULL;
   6384 #endif
   6385 
   6386 	VPRINTF("pools ");
   6387 	/*
   6388 	 * Initialize the pmap cache
   6389 	 */
   6390 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6391 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6392 
   6393 	/*
   6394 	 * Initialize the pv pool.
   6395 	 */
   6396 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6397 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6398 
   6399 	/*
   6400 	 * Initialize the L2 dtable pool and cache.
   6401 	 */
   6402 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6403 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6404 
   6405 	/*
   6406 	 * Initialise the L2 descriptor table pool and cache
   6407 	 */
   6408 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
   6409 	    L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
   6410 	    pmap_l2ptp_ctor, NULL, NULL);
   6411 
   6412 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6413 
   6414 	cpu_dcache_wbinv_all();
   6415 }
   6416 
   6417 static bool
   6418 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6419 {
   6420 #ifdef ARM_MMU_EXTENDED
   6421 	return false;
   6422 #else
   6423 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6424 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6425 		return false;
   6426 
   6427 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6428 	int rv = 0;
   6429 
   6430 	while (va < eva) {
   6431 		/*
   6432 		 * Make sure the descriptor itself has the correct cache mode
   6433 		 */
   6434 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6435 		pd_entry_t pde = *pdep;
   6436 
   6437 		if (l1pte_section_p(pde)) {
   6438 			KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6439 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6440 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6441 				    pte_l1_s_cache_mode_pt;
   6442 				PDE_SYNC(pdep);
   6443 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6444 				    sizeof(*pdep));
   6445 				rv = 1;
   6446 			}
   6447 			return rv;
   6448 		}
   6449 		vaddr_t pa = l1pte_pa(pde);
   6450 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6451 		if (ptep == NULL)
   6452 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6453 
   6454 		ptep += l2pte_index(va);
   6455 		const pt_entry_t opte = *ptep;
   6456 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6457 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6458 			    | pte_l2_s_cache_mode_pt;
   6459 			l2pte_set(ptep, npte, opte);
   6460 			PTE_SYNC(ptep);
   6461 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6462 			rv = 1;
   6463 		}
   6464 		va += PAGE_SIZE;
   6465 	}
   6466 
   6467 	return (rv);
   6468 #endif
   6469 }
   6470 
   6471 static void
   6472 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6473 {
   6474 	vaddr_t va = *availp;
   6475 	struct l2_bucket *l2b;
   6476 
   6477 	if (ptep) {
   6478 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6479 		if (l2b == NULL)
   6480 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6481 
   6482 		*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6483 	}
   6484 
   6485 	*vap = va;
   6486 	*availp = va + (PAGE_SIZE * pages);
   6487 }
   6488 
   6489 void
   6490 pmap_init(void)
   6491 {
   6492 
   6493 	/*
   6494 	 * Set the available memory vars - These do not map to real memory
   6495 	 * addresses and cannot as the physical memory is fragmented.
   6496 	 * They are used by ps for %mem calculations.
   6497 	 * One could argue whether this should be the entire memory or just
   6498 	 * the memory that is useable in a user process.
   6499 	 */
   6500 	avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
   6501 	avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
   6502 
   6503 	/*
   6504 	 * Now we need to free enough pv_entry structures to allow us to get
   6505 	 * the kmem_map/kmem_object allocated and inited (done after this
   6506 	 * function is finished).  to do this we allocate one bootstrap page out
   6507 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6508 	 * structures.   we never free this page.
   6509 	 */
   6510 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6511 
   6512 #ifdef ARM_MMU_EXTENDED
   6513 	/*
   6514 	 * Initialise the L1 pool and cache.
   6515 	 */
   6516 
   6517 	pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
   6518 	    0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
   6519 	     NULL, NULL);
   6520 
   6521 	int error __diagused = pmap_maxproc_set(maxproc);
   6522 	KASSERT(error == 0);
   6523 
   6524 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6525 #endif
   6526 
   6527 	pmap_initialized = true;
   6528 }
   6529 
   6530 static vaddr_t last_bootstrap_page = 0;
   6531 static void *free_bootstrap_pages = NULL;
   6532 
   6533 static void *
   6534 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6535 {
   6536 	extern void *pool_page_alloc(struct pool *, int);
   6537 	vaddr_t new_page;
   6538 	void *rv;
   6539 
   6540 	if (pmap_initialized)
   6541 		return (pool_page_alloc(pp, flags));
   6542 
   6543 	if (free_bootstrap_pages) {
   6544 		rv = free_bootstrap_pages;
   6545 		free_bootstrap_pages = *((void **)rv);
   6546 		return (rv);
   6547 	}
   6548 
   6549 	KASSERT(kernel_map != NULL);
   6550 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6551 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6552 
   6553 	KASSERT(new_page > last_bootstrap_page);
   6554 	last_bootstrap_page = new_page;
   6555 	return ((void *)new_page);
   6556 }
   6557 
   6558 static void
   6559 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6560 {
   6561 	extern void pool_page_free(struct pool *, void *);
   6562 
   6563 	if ((vaddr_t)v <= last_bootstrap_page) {
   6564 		*((void **)v) = free_bootstrap_pages;
   6565 		free_bootstrap_pages = v;
   6566 		return;
   6567 	}
   6568 
   6569 	if (pmap_initialized) {
   6570 		pool_page_free(pp, v);
   6571 		return;
   6572 	}
   6573 }
   6574 
   6575 
   6576 #if defined(ARM_MMU_EXTENDED)
   6577 static void *
   6578 pmap_l1tt_alloc(struct pool *pp, int flags)
   6579 {
   6580 	struct pglist plist;
   6581 	vaddr_t va;
   6582 
   6583 	const int waitok = flags & PR_WAITOK;
   6584 
   6585 	int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
   6586 	    waitok);
   6587 	if (error)
   6588 		panic("Cannot allocate L1TT physical pages, %d", error);
   6589 
   6590 	struct vm_page *pg = TAILQ_FIRST(&plist);
   6591 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   6592 
   6593 	/* Allocate a L1 translation table VA */
   6594 	va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
   6595 	if (va == 0)
   6596 		panic("Cannot allocate L1TT KVA");
   6597 
   6598 	const vaddr_t eva = va + L1TT_SIZE;
   6599 	vaddr_t mva = va;
   6600 	while (pg && mva < eva) {
   6601 		paddr_t pa = VM_PAGE_TO_PHYS(pg);
   6602 
   6603 		pmap_kenter_pa(mva, pa,
   6604 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6605 
   6606 		mva += PAGE_SIZE;
   6607 		pg = TAILQ_NEXT(pg, pageq.queue);
   6608 	}
   6609 	KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
   6610 	    " eva %" PRIxVADDR, pg, mva, eva);
   6611 #else
   6612 	bool ok;
   6613 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   6614 	va = pmap_direct_mapped_phys(pa, &ok, 0);
   6615 	KASSERT(ok);
   6616 	KASSERT(va >= KERNEL_BASE);
   6617 #endif
   6618 
   6619 	return (void *)va;
   6620 }
   6621 
   6622 static void
   6623 pmap_l1tt_free(struct pool *pp, void *v)
   6624 {
   6625 	vaddr_t va = (vaddr_t)v;
   6626 
   6627 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   6628 	uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
   6629 #else
   6630 #if defined(KERNEL_BASE_VOFFSET)
   6631 	paddr_t pa = va - KERNEL_BASE_VOFFSET;
   6632 #else
   6633 	paddr_t pa = va - KERNEL_BASE + physical_start;
   6634 #endif
   6635 	const paddr_t epa = pa + L1TT_SIZE;
   6636 
   6637 	for (; pa < epa; pa += PAGE_SIZE) {
   6638 		struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   6639 		uvm_pagefree(pg);
   6640 	}
   6641 #endif
   6642 }
   6643 #endif
   6644 
   6645 /*
   6646  * pmap_postinit()
   6647  *
   6648  * This routine is called after the vm and kmem subsystems have been
   6649  * initialised. This allows the pmap code to perform any initialisation
   6650  * that can only be done once the memory allocation is in place.
   6651  */
   6652 void
   6653 pmap_postinit(void)
   6654 {
   6655 #ifndef ARM_MMU_EXTENDED
   6656 	extern paddr_t physical_start, physical_end;
   6657 	struct l1_ttable *l1;
   6658 	struct pglist plist;
   6659 	struct vm_page *m;
   6660 	pd_entry_t *pdep;
   6661 	vaddr_t va, eva;
   6662 	u_int loop, needed;
   6663 	int error;
   6664 #endif
   6665 
   6666 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6667 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6668 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6669 
   6670 #ifndef ARM_MMU_EXTENDED
   6671 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6672 	needed -= 1;
   6673 
   6674 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6675 
   6676 	for (loop = 0; loop < needed; loop++, l1++) {
   6677 		/* Allocate a L1 page table */
   6678 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6679 		if (va == 0)
   6680 			panic("Cannot allocate L1 KVM");
   6681 
   6682 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6683 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6684 		if (error)
   6685 			panic("Cannot allocate L1 physical pages");
   6686 
   6687 		m = TAILQ_FIRST(&plist);
   6688 		eva = va + L1_TABLE_SIZE;
   6689 		pdep = (pd_entry_t *)va;
   6690 
   6691 		while (m && va < eva) {
   6692 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6693 
   6694 			pmap_kenter_pa(va, pa,
   6695 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6696 
   6697 			va += PAGE_SIZE;
   6698 			m = TAILQ_NEXT(m, pageq.queue);
   6699 		}
   6700 
   6701 #ifdef DIAGNOSTIC
   6702 		if (m)
   6703 			panic("pmap_alloc_l1pt: pglist not empty");
   6704 #endif	/* DIAGNOSTIC */
   6705 
   6706 		pmap_init_l1(l1, pdep);
   6707 	}
   6708 
   6709 #ifdef DEBUG
   6710 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6711 	    needed);
   6712 #endif
   6713 #endif /* !ARM_MMU_EXTENDED */
   6714 }
   6715 
   6716 /*
   6717  * Note that the following routines are used by board-specific initialisation
   6718  * code to configure the initial kernel page tables.
   6719  *
   6720  */
   6721 
   6722 /*
   6723  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6724  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6725  * find them as necessary.
   6726  *
   6727  * Note that the data on this list MUST remain valid after initarm() returns,
   6728  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   6729  */
   6730 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6731 
   6732 static vaddr_t
   6733 kernel_pt_lookup(paddr_t pa)
   6734 {
   6735 	pv_addr_t *pv;
   6736 
   6737 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6738 		if (pv->pv_pa == (pa & ~PGOFSET))
   6739 			return (pv->pv_va | (pa & PGOFSET));
   6740 	}
   6741 	return (0);
   6742 }
   6743 
   6744 /*
   6745  * pmap_map_section:
   6746  *
   6747  *	Create a single section mapping.
   6748  */
   6749 void
   6750 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6751 {
   6752 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6753 	const size_t l1slot = l1pte_index(va);
   6754 	pd_entry_t fl;
   6755 
   6756 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6757 
   6758 	switch (cache) {
   6759 	case PTE_NOCACHE:
   6760 	default:
   6761 		fl = 0;
   6762 		break;
   6763 
   6764 	case PTE_CACHE:
   6765 		fl = pte_l1_s_cache_mode;
   6766 		break;
   6767 
   6768 	case PTE_PAGETABLE:
   6769 		fl = pte_l1_s_cache_mode_pt;
   6770 		break;
   6771 	}
   6772 
   6773 	const pd_entry_t npde = L1_S_PROTO | pa |
   6774 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6775 	l1pte_setone(pdep + l1slot, npde);
   6776 	PDE_SYNC(pdep + l1slot);
   6777 }
   6778 
   6779 /*
   6780  * pmap_map_entry:
   6781  *
   6782  *	Create a single page mapping.
   6783  */
   6784 void
   6785 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6786 {
   6787 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6788 	const size_t l1slot = l1pte_index(va);
   6789 	pt_entry_t npte;
   6790 	pt_entry_t *ptep;
   6791 
   6792 	KASSERT(((va | pa) & PGOFSET) == 0);
   6793 
   6794 	switch (cache) {
   6795 	case PTE_NOCACHE:
   6796 	default:
   6797 		npte = 0;
   6798 		break;
   6799 
   6800 	case PTE_CACHE:
   6801 		npte = pte_l2_s_cache_mode;
   6802 		break;
   6803 
   6804 	case PTE_PAGETABLE:
   6805 		npte = pte_l2_s_cache_mode_pt;
   6806 		break;
   6807 	}
   6808 
   6809 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6810 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   6811 
   6812 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6813 	if (ptep == NULL)
   6814 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   6815 
   6816 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   6817 #ifdef ARM_MMU_EXTENDED
   6818 	if (prot & VM_PROT_EXECUTE) {
   6819 		npte &= ~L2_XS_XN;
   6820 	}
   6821 #endif
   6822 	ptep += l2pte_index(va);
   6823 	l2pte_set(ptep, npte, 0);
   6824 	PTE_SYNC(ptep);
   6825 }
   6826 
   6827 /*
   6828  * pmap_link_l2pt:
   6829  *
   6830  *	Link the L2 page table specified by "l2pv" into the L1
   6831  *	page table at the slot for "va".
   6832  */
   6833 void
   6834 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   6835 {
   6836 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   6837 
   6838 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   6839 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   6840 
   6841 	const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   6842 	    | l2pv->pv_pa;
   6843 
   6844 	l1pte_set(pdep, npde);
   6845 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   6846 
   6847 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   6848 }
   6849 
   6850 /*
   6851  * pmap_map_chunk:
   6852  *
   6853  *	Map a chunk of memory using the most efficient mappings
   6854  *	possible (section, large page, small page) into the
   6855  *	provided L1 and L2 tables at the specified virtual address.
   6856  */
   6857 vsize_t
   6858 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   6859     int prot, int cache)
   6860 {
   6861 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6862 	pt_entry_t f1, f2s, f2l;
   6863 	vsize_t resid;
   6864 
   6865 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   6866 
   6867 	if (l1pt == 0)
   6868 		panic("pmap_map_chunk: no L1 table provided");
   6869 
   6870 // 	VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   6871 // 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   6872 
   6873 	switch (cache) {
   6874 	case PTE_NOCACHE:
   6875 	default:
   6876 		f1 = 0;
   6877 		f2l = 0;
   6878 		f2s = 0;
   6879 		break;
   6880 
   6881 	case PTE_CACHE:
   6882 		f1 = pte_l1_s_cache_mode;
   6883 		f2l = pte_l2_l_cache_mode;
   6884 		f2s = pte_l2_s_cache_mode;
   6885 		break;
   6886 
   6887 	case PTE_PAGETABLE:
   6888 		f1 = pte_l1_s_cache_mode_pt;
   6889 		f2l = pte_l2_l_cache_mode_pt;
   6890 		f2s = pte_l2_s_cache_mode_pt;
   6891 		break;
   6892 	}
   6893 
   6894 	size = resid;
   6895 
   6896 	while (resid > 0) {
   6897 		const size_t l1slot = l1pte_index(va);
   6898 #ifdef ARM_MMU_EXTENDED
   6899 		/* See if we can use a supersection mapping. */
   6900 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   6901 			/* Supersection are always domain 0 */
   6902 			const pd_entry_t npde = L1_SS_PROTO | pa
   6903 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6904 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6905 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   6906 			VPRINTF("sS");
   6907 			l1pte_set(&pdep[l1slot], npde);
   6908 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   6909 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
   6910 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
   6911 			va += L1_SS_SIZE;
   6912 			pa += L1_SS_SIZE;
   6913 			resid -= L1_SS_SIZE;
   6914 			continue;
   6915 		}
   6916 #endif
   6917 		/* See if we can use a section mapping. */
   6918 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   6919 			const pd_entry_t npde = L1_S_PROTO | pa
   6920 #ifdef ARM_MMU_EXTENDED
   6921 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   6922 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   6923 #endif
   6924 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   6925 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6926 			VPRINTF("S");
   6927 			l1pte_set(&pdep[l1slot], npde);
   6928 			PDE_SYNC(&pdep[l1slot]);
   6929 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
   6930 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
   6931 			va += L1_S_SIZE;
   6932 			pa += L1_S_SIZE;
   6933 			resid -= L1_S_SIZE;
   6934 			continue;
   6935 		}
   6936 
   6937 		/*
   6938 		 * Ok, we're going to use an L2 table.  Make sure
   6939 		 * one is actually in the corresponding L1 slot
   6940 		 * for the current VA.
   6941 		 */
   6942 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   6943 			panic("%s: no L2 table for VA %#lx", __func__, va);
   6944 
   6945 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   6946 		if (ptep == NULL)
   6947 			panic("%s: can't find L2 table for VA %#lx", __func__,
   6948 			    va);
   6949 
   6950 		ptep += l2pte_index(va);
   6951 
   6952 		/* See if we can use a L2 large page mapping. */
   6953 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   6954 			const pt_entry_t npte = L2_L_PROTO | pa
   6955 #ifdef ARM_MMU_EXTENDED
   6956 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   6957 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6958 #endif
   6959 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   6960 			VPRINTF("L");
   6961 			l2pte_set(ptep, npte, 0);
   6962 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   6963 			va += L2_L_SIZE;
   6964 			pa += L2_L_SIZE;
   6965 			resid -= L2_L_SIZE;
   6966 			continue;
   6967 		}
   6968 
   6969 		VPRINTF("P");
   6970 		/* Use a small page mapping. */
   6971 		pt_entry_t npte = L2_S_PROTO | pa
   6972 #ifdef ARM_MMU_EXTENDED
   6973 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   6974 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   6975 #endif
   6976 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   6977 #ifdef ARM_MMU_EXTENDED
   6978 		npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
   6979 #endif
   6980 		l2pte_set(ptep, npte, 0);
   6981 		PTE_SYNC(ptep);
   6982 		va += PAGE_SIZE;
   6983 		pa += PAGE_SIZE;
   6984 		resid -= PAGE_SIZE;
   6985 	}
   6986 	VPRINTF("\n");
   6987 	return (size);
   6988 }
   6989 
   6990 /*
   6991  * pmap_unmap_chunk:
   6992  *
   6993  *	Unmap a chunk of memory that was previously pmap_map_chunk
   6994  */
   6995 void
   6996 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
   6997 {
   6998 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6999 	const size_t l1slot = l1pte_index(va);
   7000 
   7001 	KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
   7002 
   7003 	l1pte_set(&pdep[l1slot], 0);
   7004 	PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
   7005 
   7006 	pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
   7007 }
   7008 
   7009 
   7010 
   7011 /********************** Static device map routines ***************************/
   7012 
   7013 static const struct pmap_devmap *pmap_devmap_table;
   7014 
   7015 /*
   7016  * Register the devmap table.  This is provided in case early console
   7017  * initialization needs to register mappings created by bootstrap code
   7018  * before pmap_devmap_bootstrap() is called.
   7019  */
   7020 void
   7021 pmap_devmap_register(const struct pmap_devmap *table)
   7022 {
   7023 
   7024 	pmap_devmap_table = table;
   7025 }
   7026 
   7027 /*
   7028  * Map all of the static regions in the devmap table, and remember
   7029  * the devmap table so other parts of the kernel can look up entries
   7030  * later.
   7031  */
   7032 void
   7033 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   7034 {
   7035 	int i;
   7036 
   7037 	pmap_devmap_table = table;
   7038 
   7039 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   7040 		const struct pmap_devmap *pdp = &pmap_devmap_table[i];
   7041 
   7042 		KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
   7043 		    " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
   7044 		KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
   7045 		    " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
   7046 		VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
   7047 		    pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
   7048 
   7049 		pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
   7050 		    pdp->pd_prot, pdp->pd_cache);
   7051 	}
   7052 }
   7053 
   7054 const struct pmap_devmap *
   7055 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   7056 {
   7057 	uint64_t endpa;
   7058 	int i;
   7059 
   7060 	if (pmap_devmap_table == NULL)
   7061 		return (NULL);
   7062 
   7063 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   7064 
   7065 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   7066 		if (pa >= pmap_devmap_table[i].pd_pa &&
   7067 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   7068 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   7069 			return (&pmap_devmap_table[i]);
   7070 	}
   7071 
   7072 	return (NULL);
   7073 }
   7074 
   7075 const struct pmap_devmap *
   7076 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   7077 {
   7078 	int i;
   7079 
   7080 	if (pmap_devmap_table == NULL)
   7081 		return (NULL);
   7082 
   7083 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   7084 		if (va >= pmap_devmap_table[i].pd_va &&
   7085 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   7086 				     pmap_devmap_table[i].pd_size - 1)
   7087 			return (&pmap_devmap_table[i]);
   7088 	}
   7089 
   7090 	return (NULL);
   7091 }
   7092 
   7093 /********************** PTE initialization routines **************************/
   7094 
   7095 /*
   7096  * These routines are called when the CPU type is identified to set up
   7097  * the PTE prototypes, cache modes, etc.
   7098  *
   7099  * The variables are always here, just in case modules need to reference
   7100  * them (though, they shouldn't).
   7101  */
   7102 
   7103 pt_entry_t	pte_l1_s_cache_mode;
   7104 pt_entry_t	pte_l1_s_wc_mode;
   7105 pt_entry_t	pte_l1_s_cache_mode_pt;
   7106 pt_entry_t	pte_l1_s_cache_mask;
   7107 
   7108 pt_entry_t	pte_l2_l_cache_mode;
   7109 pt_entry_t	pte_l2_l_wc_mode;
   7110 pt_entry_t	pte_l2_l_cache_mode_pt;
   7111 pt_entry_t	pte_l2_l_cache_mask;
   7112 
   7113 pt_entry_t	pte_l2_s_cache_mode;
   7114 pt_entry_t	pte_l2_s_wc_mode;
   7115 pt_entry_t	pte_l2_s_cache_mode_pt;
   7116 pt_entry_t	pte_l2_s_cache_mask;
   7117 
   7118 pt_entry_t	pte_l1_s_prot_u;
   7119 pt_entry_t	pte_l1_s_prot_w;
   7120 pt_entry_t	pte_l1_s_prot_ro;
   7121 pt_entry_t	pte_l1_s_prot_mask;
   7122 
   7123 pt_entry_t	pte_l2_s_prot_u;
   7124 pt_entry_t	pte_l2_s_prot_w;
   7125 pt_entry_t	pte_l2_s_prot_ro;
   7126 pt_entry_t	pte_l2_s_prot_mask;
   7127 
   7128 pt_entry_t	pte_l2_l_prot_u;
   7129 pt_entry_t	pte_l2_l_prot_w;
   7130 pt_entry_t	pte_l2_l_prot_ro;
   7131 pt_entry_t	pte_l2_l_prot_mask;
   7132 
   7133 pt_entry_t	pte_l1_ss_proto;
   7134 pt_entry_t	pte_l1_s_proto;
   7135 pt_entry_t	pte_l1_c_proto;
   7136 pt_entry_t	pte_l2_s_proto;
   7137 
   7138 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   7139 void		(*pmap_zero_page_func)(paddr_t);
   7140 
   7141 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   7142 void
   7143 pmap_pte_init_generic(void)
   7144 {
   7145 
   7146 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7147 	pte_l1_s_wc_mode = L1_S_B;
   7148 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   7149 
   7150 	pte_l2_l_cache_mode = L2_B|L2_C;
   7151 	pte_l2_l_wc_mode = L2_B;
   7152 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   7153 
   7154 	pte_l2_s_cache_mode = L2_B|L2_C;
   7155 	pte_l2_s_wc_mode = L2_B;
   7156 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   7157 
   7158 	/*
   7159 	 * If we have a write-through cache, set B and C.  If
   7160 	 * we have a write-back cache, then we assume setting
   7161 	 * only C will make those pages write-through (except for those
   7162 	 * Cortex CPUs which can read the L1 caches).
   7163 	 */
   7164 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   7165 #if ARM_MMU_V7 > 0
   7166 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   7167 #endif
   7168 #if ARM_MMU_V6 > 0
   7169 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   7170 #endif
   7171 	    || false) {
   7172 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7173 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7174 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7175 	} else {
   7176 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   7177 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   7178 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   7179 	}
   7180 
   7181 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   7182 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   7183 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   7184 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   7185 
   7186 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7187 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7188 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7189 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7190 
   7191 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7192 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7193 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7194 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7195 
   7196 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   7197 	pte_l1_s_proto = L1_S_PROTO_generic;
   7198 	pte_l1_c_proto = L1_C_PROTO_generic;
   7199 	pte_l2_s_proto = L2_S_PROTO_generic;
   7200 
   7201 	pmap_copy_page_func = pmap_copy_page_generic;
   7202 	pmap_zero_page_func = pmap_zero_page_generic;
   7203 }
   7204 
   7205 #if defined(CPU_ARM8)
   7206 void
   7207 pmap_pte_init_arm8(void)
   7208 {
   7209 
   7210 	/*
   7211 	 * ARM8 is compatible with generic, but we need to use
   7212 	 * the page tables uncached.
   7213 	 */
   7214 	pmap_pte_init_generic();
   7215 
   7216 	pte_l1_s_cache_mode_pt = 0;
   7217 	pte_l2_l_cache_mode_pt = 0;
   7218 	pte_l2_s_cache_mode_pt = 0;
   7219 }
   7220 #endif /* CPU_ARM8 */
   7221 
   7222 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   7223 void
   7224 pmap_pte_init_arm9(void)
   7225 {
   7226 
   7227 	/*
   7228 	 * ARM9 is compatible with generic, but we want to use
   7229 	 * write-through caching for now.
   7230 	 */
   7231 	pmap_pte_init_generic();
   7232 
   7233 	pte_l1_s_cache_mode = L1_S_C;
   7234 	pte_l2_l_cache_mode = L2_C;
   7235 	pte_l2_s_cache_mode = L2_C;
   7236 
   7237 	pte_l1_s_wc_mode = L1_S_B;
   7238 	pte_l2_l_wc_mode = L2_B;
   7239 	pte_l2_s_wc_mode = L2_B;
   7240 
   7241 	pte_l1_s_cache_mode_pt = L1_S_C;
   7242 	pte_l2_l_cache_mode_pt = L2_C;
   7243 	pte_l2_s_cache_mode_pt = L2_C;
   7244 }
   7245 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   7246 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   7247 
   7248 #if defined(CPU_ARM10)
   7249 void
   7250 pmap_pte_init_arm10(void)
   7251 {
   7252 
   7253 	/*
   7254 	 * ARM10 is compatible with generic, but we want to use
   7255 	 * write-through caching for now.
   7256 	 */
   7257 	pmap_pte_init_generic();
   7258 
   7259 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   7260 	pte_l2_l_cache_mode = L2_B | L2_C;
   7261 	pte_l2_s_cache_mode = L2_B | L2_C;
   7262 
   7263 	pte_l1_s_cache_mode = L1_S_B;
   7264 	pte_l2_l_cache_mode = L2_B;
   7265 	pte_l2_s_cache_mode = L2_B;
   7266 
   7267 	pte_l1_s_cache_mode_pt = L1_S_C;
   7268 	pte_l2_l_cache_mode_pt = L2_C;
   7269 	pte_l2_s_cache_mode_pt = L2_C;
   7270 
   7271 }
   7272 #endif /* CPU_ARM10 */
   7273 
   7274 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   7275 void
   7276 pmap_pte_init_arm11(void)
   7277 {
   7278 
   7279 	/*
   7280 	 * ARM11 is compatible with generic, but we want to use
   7281 	 * write-through caching for now.
   7282 	 */
   7283 	pmap_pte_init_generic();
   7284 
   7285 	pte_l1_s_cache_mode = L1_S_C;
   7286 	pte_l2_l_cache_mode = L2_C;
   7287 	pte_l2_s_cache_mode = L2_C;
   7288 
   7289 	pte_l1_s_wc_mode = L1_S_B;
   7290 	pte_l2_l_wc_mode = L2_B;
   7291 	pte_l2_s_wc_mode = L2_B;
   7292 
   7293 	pte_l1_s_cache_mode_pt = L1_S_C;
   7294 	pte_l2_l_cache_mode_pt = L2_C;
   7295 	pte_l2_s_cache_mode_pt = L2_C;
   7296 }
   7297 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   7298 
   7299 #if ARM_MMU_SA1 == 1
   7300 void
   7301 pmap_pte_init_sa1(void)
   7302 {
   7303 
   7304 	/*
   7305 	 * The StrongARM SA-1 cache does not have a write-through
   7306 	 * mode.  So, do the generic initialization, then reset
   7307 	 * the page table cache mode to B=1,C=1, and note that
   7308 	 * the PTEs need to be sync'd.
   7309 	 */
   7310 	pmap_pte_init_generic();
   7311 
   7312 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7313 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7314 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7315 
   7316 	pmap_needs_pte_sync = 1;
   7317 }
   7318 #endif /* ARM_MMU_SA1 == 1*/
   7319 
   7320 #if ARM_MMU_XSCALE == 1
   7321 #if (ARM_NMMUS > 1)
   7322 static u_int xscale_use_minidata;
   7323 #endif
   7324 
   7325 void
   7326 pmap_pte_init_xscale(void)
   7327 {
   7328 	uint32_t auxctl;
   7329 	int write_through = 0;
   7330 
   7331 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7332 	pte_l1_s_wc_mode = L1_S_B;
   7333 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7334 
   7335 	pte_l2_l_cache_mode = L2_B|L2_C;
   7336 	pte_l2_l_wc_mode = L2_B;
   7337 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7338 
   7339 	pte_l2_s_cache_mode = L2_B|L2_C;
   7340 	pte_l2_s_wc_mode = L2_B;
   7341 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7342 
   7343 	pte_l1_s_cache_mode_pt = L1_S_C;
   7344 	pte_l2_l_cache_mode_pt = L2_C;
   7345 	pte_l2_s_cache_mode_pt = L2_C;
   7346 
   7347 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7348 	/*
   7349 	 * The XScale core has an enhanced mode where writes that
   7350 	 * miss the cache cause a cache line to be allocated.  This
   7351 	 * is significantly faster than the traditional, write-through
   7352 	 * behavior of this case.
   7353 	 */
   7354 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7355 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7356 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7357 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7358 
   7359 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7360 	/*
   7361 	 * Some versions of the XScale core have various bugs in
   7362 	 * their cache units, the work-around for which is to run
   7363 	 * the cache in write-through mode.  Unfortunately, this
   7364 	 * has a major (negative) impact on performance.  So, we
   7365 	 * go ahead and run fast-and-loose, in the hopes that we
   7366 	 * don't line up the planets in a way that will trip the
   7367 	 * bugs.
   7368 	 *
   7369 	 * However, we give you the option to be slow-but-correct.
   7370 	 */
   7371 	write_through = 1;
   7372 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7373 	/* force write back cache mode */
   7374 	write_through = 0;
   7375 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7376 	/*
   7377 	 * Intel PXA2[15]0 processors are known to have a bug in
   7378 	 * write-back cache on revision 4 and earlier (stepping
   7379 	 * A[01] and B[012]).  Fixed for C0 and later.
   7380 	 */
   7381 	{
   7382 		uint32_t id, type;
   7383 
   7384 		id = cpufunc_id();
   7385 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7386 
   7387 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7388 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7389 				/* write through for stepping A0-1 and B0-2 */
   7390 				write_through = 1;
   7391 			}
   7392 		}
   7393 	}
   7394 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7395 
   7396 	if (write_through) {
   7397 		pte_l1_s_cache_mode = L1_S_C;
   7398 		pte_l2_l_cache_mode = L2_C;
   7399 		pte_l2_s_cache_mode = L2_C;
   7400 	}
   7401 
   7402 #if (ARM_NMMUS > 1)
   7403 	xscale_use_minidata = 1;
   7404 #endif
   7405 
   7406 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7407 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7408 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7409 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7410 
   7411 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7412 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7413 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7414 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7415 
   7416 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7417 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7418 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7419 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7420 
   7421 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7422 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7423 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7424 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7425 
   7426 	pmap_copy_page_func = pmap_copy_page_xscale;
   7427 	pmap_zero_page_func = pmap_zero_page_xscale;
   7428 
   7429 	/*
   7430 	 * Disable ECC protection of page table access, for now.
   7431 	 */
   7432 	auxctl = armreg_auxctl_read();
   7433 	auxctl &= ~XSCALE_AUXCTL_P;
   7434 	armreg_auxctl_write(auxctl);
   7435 }
   7436 
   7437 /*
   7438  * xscale_setup_minidata:
   7439  *
   7440  *	Set up the mini-data cache clean area.  We require the
   7441  *	caller to allocate the right amount of physically and
   7442  *	virtually contiguous space.
   7443  */
   7444 void
   7445 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7446 {
   7447 	extern vaddr_t xscale_minidata_clean_addr;
   7448 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   7449 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7450 	vsize_t size;
   7451 	uint32_t auxctl;
   7452 
   7453 	xscale_minidata_clean_addr = va;
   7454 
   7455 	/* Round it to page size. */
   7456 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7457 
   7458 	for (; size != 0;
   7459 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7460 		const size_t l1slot = l1pte_index(va);
   7461 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7462 		if (ptep == NULL)
   7463 			panic("xscale_setup_minidata: can't find L2 table for "
   7464 			    "VA 0x%08lx", va);
   7465 
   7466 		ptep += l2pte_index(va);
   7467 		pt_entry_t opte = *ptep;
   7468 		l2pte_set(ptep,
   7469 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7470 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7471 	}
   7472 
   7473 	/*
   7474 	 * Configure the mini-data cache for write-back with
   7475 	 * read/write-allocate.
   7476 	 *
   7477 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7478 	 * make sure it contains no valid data!  In order to do that,
   7479 	 * we must issue a global data cache invalidate command!
   7480 	 *
   7481 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7482 	 * THIS IS VERY IMPORTANT!
   7483 	 */
   7484 
   7485 	/* Invalidate data and mini-data. */
   7486 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7487 	auxctl = armreg_auxctl_read();
   7488 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7489 	armreg_auxctl_write(auxctl);
   7490 }
   7491 
   7492 /*
   7493  * Change the PTEs for the specified kernel mappings such that they
   7494  * will use the mini data cache instead of the main data cache.
   7495  */
   7496 void
   7497 pmap_uarea(vaddr_t va)
   7498 {
   7499 	vaddr_t next_bucket, eva;
   7500 
   7501 #if (ARM_NMMUS > 1)
   7502 	if (xscale_use_minidata == 0)
   7503 		return;
   7504 #endif
   7505 
   7506 	eva = va + USPACE;
   7507 
   7508 	while (va < eva) {
   7509 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7510 		if (next_bucket > eva)
   7511 			next_bucket = eva;
   7512 
   7513 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7514 		KDASSERT(l2b != NULL);
   7515 
   7516 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7517 		pt_entry_t *ptep = sptep;
   7518 
   7519 		while (va < next_bucket) {
   7520 			const pt_entry_t opte = *ptep;
   7521 			if (!l2pte_minidata_p(opte)) {
   7522 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7523 				cpu_tlb_flushD_SE(va);
   7524 				l2pte_set(ptep, opte & ~L2_B, opte);
   7525 			}
   7526 			ptep += PAGE_SIZE / L2_S_SIZE;
   7527 			va += PAGE_SIZE;
   7528 		}
   7529 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7530 	}
   7531 	cpu_cpwait();
   7532 }
   7533 #endif /* ARM_MMU_XSCALE == 1 */
   7534 
   7535 
   7536 #if defined(CPU_ARM11MPCORE)
   7537 
   7538 void
   7539 pmap_pte_init_arm11mpcore(void)
   7540 {
   7541 
   7542 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   7543 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7544 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7545 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7546 	/* use extended small page (without APn, with TEX) */
   7547 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7548 #else
   7549 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7550 #endif
   7551 
   7552 	/* write-back, write-allocate */
   7553 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7554 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7555 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7556 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7557 #else
   7558 	/* no TEX. read-allocate */
   7559 	pte_l2_s_cache_mode = L2_C | L2_B;
   7560 #endif
   7561 	/*
   7562 	 * write-back, write-allocate for page tables.
   7563 	 */
   7564 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7565 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7566 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7567 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7568 #else
   7569 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7570 #endif
   7571 
   7572 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7573 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7574 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7575 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7576 
   7577 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7578 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7579 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7580 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7581 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7582 
   7583 #else
   7584 	/* with AP[0..3] */
   7585 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7586 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7587 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7588 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7589 #endif
   7590 
   7591 #ifdef	ARM11MPCORE_COMPAT_MMU
   7592 	/* with AP[0..3] */
   7593 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7594 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7595 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7596 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7597 
   7598 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7599 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7600 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7601 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7602 #else
   7603 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7604 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7605 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7606 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7607 
   7608 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7609 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7610 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7611 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7612 #endif
   7613 
   7614 	pmap_copy_page_func = pmap_copy_page_generic;
   7615 	pmap_zero_page_func = pmap_zero_page_generic;
   7616 	pmap_needs_pte_sync = 1;
   7617 }
   7618 #endif	/* CPU_ARM11MPCORE */
   7619 
   7620 
   7621 #if ARM_MMU_V7 == 1
   7622 void
   7623 pmap_pte_init_armv7(void)
   7624 {
   7625 	/*
   7626 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7627 	 * AP field is zero, that now means "no access" rather than
   7628 	 * read-only. The prototypes are a little different because of
   7629 	 * the XN bit.
   7630 	 */
   7631 	pmap_pte_init_generic();
   7632 
   7633 	pmap_needs_pte_sync = 1;
   7634 
   7635 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7636 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7637 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7638 
   7639 	/*
   7640 	 * If the core support coherent walk then updates to translation tables
   7641 	 * do not require a clean to the point of unification to ensure
   7642 	 * visibility by subsequent translation table walks.  That means we can
   7643 	 * map everything shareable and cached and the right thing will happen.
   7644 	 */
   7645         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7646 		pmap_needs_pte_sync = 0;
   7647 
   7648 		/*
   7649 		 * write-back, no write-allocate, shareable for normal pages.
   7650 		 */
   7651 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7652 		pte_l2_l_cache_mode |= L2_XS_S;
   7653 		pte_l2_s_cache_mode |= L2_XS_S;
   7654 	}
   7655 
   7656 	/*
   7657 	 * Page tables are just all other memory.  We can use write-back since
   7658 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7659 	 */
   7660 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7661 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7662 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7663 
   7664 	/*
   7665 	 * Check the Memory Model Features to see if this CPU supports
   7666 	 * the TLBIASID coproc op.
   7667 	 */
   7668 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7669 		arm_has_tlbiasid_p = true;
   7670 	} else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
   7671 		arm_has_tlbiasid_p = true;
   7672 	}
   7673 
   7674 	/*
   7675 	 * Check the MPIDR to see if this CPU supports MP extensions.
   7676 	 */
   7677 #ifdef MULTIPROCESSOR
   7678 	arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
   7679 #else
   7680 	arm_has_mpext_p = false;
   7681 #endif
   7682 
   7683 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7684 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7685 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7686 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7687 
   7688 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7689 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7690 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7691 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7692 
   7693 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7694 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7695 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7696 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7697 
   7698 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7699 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7700 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7701 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7702 
   7703 }
   7704 #endif /* ARM_MMU_V7 */
   7705 
   7706 /*
   7707  * return the PA of the current L1 table, for use when handling a crash dump
   7708  */
   7709 uint32_t
   7710 pmap_kernel_L1_addr(void)
   7711 {
   7712 #ifdef ARM_MMU_EXTENDED
   7713 	return pmap_kernel()->pm_l1_pa;
   7714 #else
   7715 	return pmap_kernel()->pm_l1->l1_physaddr;
   7716 #endif
   7717 }
   7718 
   7719 #if defined(DDB)
   7720 /*
   7721  * A couple of ddb-callable functions for dumping pmaps
   7722  */
   7723 void pmap_dump(pmap_t);
   7724 
   7725 static pt_entry_t ncptes[64];
   7726 static void pmap_dump_ncpg(pmap_t);
   7727 
   7728 void
   7729 pmap_dump(pmap_t pm)
   7730 {
   7731 	struct l2_dtable *l2;
   7732 	struct l2_bucket *l2b;
   7733 	pt_entry_t *ptep, pte;
   7734 	vaddr_t l2_va, l2b_va, va;
   7735 	int i, j, k, occ, rows = 0;
   7736 
   7737 	if (pm == pmap_kernel())
   7738 		printf("pmap_kernel (%p): ", pm);
   7739 	else
   7740 		printf("user pmap (%p): ", pm);
   7741 
   7742 #ifdef ARM_MMU_EXTENDED
   7743 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7744 #else
   7745 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7746 #endif
   7747 
   7748 	l2_va = 0;
   7749 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7750 		l2 = pm->pm_l2[i];
   7751 
   7752 		if (l2 == NULL || l2->l2_occupancy == 0)
   7753 			continue;
   7754 
   7755 		l2b_va = l2_va;
   7756 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7757 			l2b = &l2->l2_bucket[j];
   7758 
   7759 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7760 				continue;
   7761 
   7762 			ptep = l2b->l2b_kva;
   7763 
   7764 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7765 				;
   7766 
   7767 			k &= ~63;
   7768 			occ = l2b->l2b_occupancy;
   7769 			va = l2b_va + (k * 4096);
   7770 			for (; k < 256; k++, va += 0x1000) {
   7771 				char ch = ' ';
   7772 				if ((k % 64) == 0) {
   7773 					if ((rows % 8) == 0) {
   7774 						printf(
   7775 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7776 					}
   7777 					printf("%08lx: ", va);
   7778 				}
   7779 
   7780 				ncptes[k & 63] = 0;
   7781 				pte = ptep[k];
   7782 				if (pte == 0) {
   7783 					ch = '.';
   7784 				} else {
   7785 					occ--;
   7786 					switch (pte & 0x0c) {
   7787 					case 0x00:
   7788 						ch = 'D'; /* No cache No buff */
   7789 						break;
   7790 					case 0x04:
   7791 						ch = 'B'; /* No cache buff */
   7792 						break;
   7793 					case 0x08:
   7794 						if (pte & 0x40)
   7795 							ch = 'm';
   7796 						else
   7797 						   ch = 'C'; /* Cache No buff */
   7798 						break;
   7799 					case 0x0c:
   7800 						ch = 'F'; /* Cache Buff */
   7801 						break;
   7802 					}
   7803 
   7804 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   7805 						ch += 0x20;
   7806 
   7807 					if ((pte & 0xc) == 0)
   7808 						ncptes[k & 63] = pte;
   7809 				}
   7810 
   7811 				if ((k % 64) == 63) {
   7812 					rows++;
   7813 					printf("%c\n", ch);
   7814 					pmap_dump_ncpg(pm);
   7815 					if (occ == 0)
   7816 						break;
   7817 				} else
   7818 					printf("%c", ch);
   7819 			}
   7820 		}
   7821 	}
   7822 }
   7823 
   7824 static void
   7825 pmap_dump_ncpg(pmap_t pm)
   7826 {
   7827 	struct vm_page *pg;
   7828 	struct vm_page_md *md;
   7829 	struct pv_entry *pv;
   7830 	int i;
   7831 
   7832 	for (i = 0; i < 63; i++) {
   7833 		if (ncptes[i] == 0)
   7834 			continue;
   7835 
   7836 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   7837 		if (pg == NULL)
   7838 			continue;
   7839 		md = VM_PAGE_TO_MD(pg);
   7840 
   7841 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   7842 		    VM_PAGE_TO_PHYS(pg),
   7843 		    md->krw_mappings, md->kro_mappings,
   7844 		    md->urw_mappings, md->uro_mappings);
   7845 
   7846 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   7847 			printf("   %c va 0x%08lx, flags 0x%x\n",
   7848 			    (pm == pv->pv_pmap) ? '*' : ' ',
   7849 			    pv->pv_va, pv->pv_flags);
   7850 		}
   7851 	}
   7852 }
   7853 #endif
   7854 
   7855 #ifdef PMAP_STEAL_MEMORY
   7856 void
   7857 pmap_boot_pageadd(pv_addr_t *newpv)
   7858 {
   7859 	pv_addr_t *pv, *npv;
   7860 
   7861 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   7862 		if (newpv->pv_pa < pv->pv_va) {
   7863 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   7864 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   7865 				newpv->pv_size += pv->pv_size;
   7866 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   7867 			}
   7868 			pv = NULL;
   7869 		} else {
   7870 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   7871 			     pv = npv) {
   7872 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   7873 				KASSERT(pv->pv_pa < newpv->pv_pa);
   7874 				if (newpv->pv_pa > npv->pv_pa)
   7875 					continue;
   7876 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   7877 					pv->pv_size += newpv->pv_size;
   7878 					return;
   7879 				}
   7880 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   7881 					break;
   7882 				newpv->pv_size += npv->pv_size;
   7883 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7884 				SLIST_REMOVE_AFTER(newpv, pv_list);
   7885 				return;
   7886 			}
   7887 		}
   7888 	}
   7889 
   7890 	if (pv) {
   7891 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   7892 	} else {
   7893 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   7894 	}
   7895 }
   7896 
   7897 void
   7898 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   7899 	pv_addr_t *rpv)
   7900 {
   7901 	pv_addr_t *pv, **pvp;
   7902 
   7903 	KASSERT(amount & PGOFSET);
   7904 	KASSERT((mask & PGOFSET) == 0);
   7905 	KASSERT((match & PGOFSET) == 0);
   7906 	KASSERT(amount != 0);
   7907 
   7908 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7909 	     (pv = *pvp) != NULL;
   7910 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7911 		pv_addr_t *newpv;
   7912 		psize_t off;
   7913 		/*
   7914 		 * If this entry is too small to satisfy the request...
   7915 		 */
   7916 		KASSERT(pv->pv_size > 0);
   7917 		if (pv->pv_size < amount)
   7918 			continue;
   7919 
   7920 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   7921 			if (((pv->pv_pa + off) & mask) == match
   7922 			    && off + amount <= pv->pv_size)
   7923 				break;
   7924 		}
   7925 		if (off > mask)
   7926 			continue;
   7927 
   7928 		rpv->pv_va = pv->pv_va + off;
   7929 		rpv->pv_pa = pv->pv_pa + off;
   7930 		rpv->pv_size = amount;
   7931 		pv->pv_size -= amount;
   7932 		if (pv->pv_size == 0) {
   7933 			KASSERT(off == 0);
   7934 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7935 			*pvp = SLIST_NEXT(pv, pv_list);
   7936 		} else if (off == 0) {
   7937 			KASSERT((vaddr_t) pv == rpv->pv_va);
   7938 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7939 			*newpv = *pv;
   7940 			newpv->pv_pa += amount;
   7941 			newpv->pv_va += amount;
   7942 			*pvp = newpv;
   7943 		} else if (off < pv->pv_size) {
   7944 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   7945 			*newpv = *pv;
   7946 			newpv->pv_size -= off;
   7947 			newpv->pv_pa += off + amount;
   7948 			newpv->pv_va += off + amount;
   7949 
   7950 			SLIST_NEXT(pv, pv_list) = newpv;
   7951 			pv->pv_size = off;
   7952 		} else {
   7953 			KASSERT((vaddr_t) pv != rpv->pv_va);
   7954 		}
   7955 		memset((void *)rpv->pv_va, 0, amount);
   7956 		return;
   7957 	}
   7958 
   7959 	if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
   7960 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   7961 
   7962 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   7963 	     (pv = *pvp) != NULL;
   7964 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   7965 		if (SLIST_NEXT(pv, pv_list) == NULL)
   7966 			break;
   7967 	}
   7968 	KASSERT(mask == 0);
   7969 
   7970 	for (uvm_physseg_t ups = uvm_physseg_get_first();
   7971 	    uvm_physseg_valid_p(ups);
   7972 	    ups = uvm_physseg_get_next(ups)) {
   7973 
   7974 		paddr_t spn = uvm_physseg_get_start(ups);
   7975 		paddr_t epn = uvm_physseg_get_end(ups);
   7976 		if (spn == atop(pv->pv_pa + pv->pv_size)
   7977 		    && pv->pv_va + pv->pv_size <= ptoa(epn)) {
   7978 			rpv->pv_va = pv->pv_va;
   7979 			rpv->pv_pa = pv->pv_pa;
   7980 			rpv->pv_size = amount;
   7981 			*pvp = NULL;
   7982 			pmap_map_chunk(kernel_l1pt.pv_va,
   7983 			     ptoa(spn) + (pv->pv_va - pv->pv_pa),
   7984 			     ptoa(spn),
   7985 			     amount - pv->pv_size,
   7986 			     VM_PROT_READ|VM_PROT_WRITE,
   7987 			     PTE_CACHE);
   7988 
   7989 			uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
   7990 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   7991 			return;
   7992 		}
   7993 	}
   7994 
   7995 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   7996 }
   7997 
   7998 vaddr_t
   7999 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   8000 {
   8001 	pv_addr_t pv;
   8002 
   8003 	pmap_boot_pagealloc(size, 0, 0, &pv);
   8004 
   8005 	return pv.pv_va;
   8006 }
   8007 #endif /* PMAP_STEAL_MEMORY */
   8008 
   8009 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   8010 {
   8011 	sysctl_createv(clog, 0, NULL, NULL,
   8012 			CTLFLAG_PERMANENT,
   8013 			CTLTYPE_NODE, "machdep", NULL,
   8014 			NULL, 0, NULL, 0,
   8015 			CTL_MACHDEP, CTL_EOL);
   8016 
   8017 	sysctl_createv(clog, 0, NULL, NULL,
   8018 			CTLFLAG_PERMANENT,
   8019 			CTLTYPE_INT, "kmpages",
   8020 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   8021 			NULL, 0, &pmap_kmpages, 0,
   8022 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   8023 }
   8024 
   8025 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   8026 struct vm_page *
   8027 arm_pmap_alloc_poolpage(int flags)
   8028 {
   8029 	/*
   8030 	 * On some systems, only some pages may be "coherent" for dma and we
   8031 	 * want to prefer those for pool pages (think mbufs) but fallback to
   8032 	 * any page if none is available.
   8033 	 */
   8034 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   8035 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   8036 		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
   8037 	}
   8038 
   8039 	return uvm_pagealloc(NULL, 0, NULL, flags);
   8040 }
   8041 #endif
   8042 
   8043 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   8044 void
   8045 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   8046 {
   8047         /* nothing */
   8048 }
   8049 
   8050 int
   8051 pic_ipi_shootdown(void *arg)
   8052 {
   8053 #if PMAP_TLB_NEED_SHOOTDOWN
   8054 	pmap_tlb_shootdown_process();
   8055 #endif
   8056 	return 1;
   8057 }
   8058 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   8059 
   8060 
   8061 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   8062 vaddr_t
   8063 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   8064 {
   8065 	bool ok = false;
   8066 	if (physical_start <= pa && pa < physical_end) {
   8067 #ifdef KERNEL_BASE_VOFFSET
   8068 		const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
   8069 #else
   8070 		const vaddr_t newva = KERNEL_BASE + pa - physical_start;
   8071 #endif
   8072 #ifdef ARM_MMU_EXTENDED
   8073 		if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
   8074 #endif
   8075 			va = newva;
   8076 			ok = true;
   8077 #ifdef ARM_MMU_EXTENDED
   8078 		}
   8079 #endif
   8080 	}
   8081 	KASSERT(ok_p);
   8082 	*ok_p = ok;
   8083 	return va;
   8084 }
   8085 
   8086 vaddr_t
   8087 pmap_map_poolpage(paddr_t pa)
   8088 {
   8089 	bool ok __diagused;
   8090 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   8091 	KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
   8092 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   8093 	if (arm_cache_prefer_mask != 0) {
   8094 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   8095 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   8096 		pmap_acquire_page_lock(md);
   8097 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   8098 		pmap_release_page_lock(md);
   8099 	}
   8100 #endif
   8101 	return va;
   8102 }
   8103 
   8104 paddr_t
   8105 pmap_unmap_poolpage(vaddr_t va)
   8106 {
   8107 	KASSERT(va >= KERNEL_BASE);
   8108 #ifdef PMAP_CACHE_VIVT
   8109 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   8110 #endif
   8111 #if defined(KERNEL_BASE_VOFFSET)
   8112         return va - KERNEL_BASE_VOFFSET;
   8113 #else
   8114         return va - KERNEL_BASE + physical_start;
   8115 #endif
   8116 }
   8117 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   8118