pmap.c revision 1.402 1 /* $NetBSD: pmap.c,v 1.402 2020/03/29 09:20:43 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_arm_debug.h"
190 #include "opt_cpuoptions.h"
191 #include "opt_pmap_debug.h"
192 #include "opt_ddb.h"
193 #include "opt_lockdebug.h"
194 #include "opt_multiprocessor.h"
195
196 #ifdef MULTIPROCESSOR
197 #define _INTR_PRIVATE
198 #endif
199
200 #include <sys/cdefs.h>
201 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.402 2020/03/29 09:20:43 skrll Exp $");
202
203 #include <sys/atomic.h>
204 #include <sys/param.h>
205 #include <sys/types.h>
206 #include <sys/atomic.h>
207 #include <sys/bus.h>
208 #include <sys/cpu.h>
209 #include <sys/intr.h>
210 #include <sys/kernel.h>
211 #include <sys/kernhist.h>
212 #include <sys/kmem.h>
213 #include <sys/pool.h>
214 #include <sys/proc.h>
215 #include <sys/sysctl.h>
216 #include <sys/systm.h>
217
218 #include <uvm/uvm.h>
219 #include <uvm/pmap/pmap_pvt.h>
220
221 #include <arm/locore.h>
222
223 #ifdef DDB
224 #include <arm/db_machdep.h>
225 #endif
226
227 //#define PMAP_DEBUG
228 #ifdef PMAP_DEBUG
229
230 /* XXX need to get rid of all refs to this */
231 int pmap_debug_level = 0;
232
233 /*
234 * for switching to potentially finer grained debugging
235 */
236 #define PDB_FOLLOW 0x0001
237 #define PDB_INIT 0x0002
238 #define PDB_ENTER 0x0004
239 #define PDB_REMOVE 0x0008
240 #define PDB_CREATE 0x0010
241 #define PDB_PTPAGE 0x0020
242 #define PDB_GROWKERN 0x0040
243 #define PDB_BITS 0x0080
244 #define PDB_COLLECT 0x0100
245 #define PDB_PROTECT 0x0200
246 #define PDB_MAP_L1 0x0400
247 #define PDB_BOOTSTRAP 0x1000
248 #define PDB_PARANOIA 0x2000
249 #define PDB_WIRING 0x4000
250 #define PDB_PVDUMP 0x8000
251 #define PDB_VAC 0x10000
252 #define PDB_KENTER 0x20000
253 #define PDB_KREMOVE 0x40000
254 #define PDB_EXEC 0x80000
255
256 int debugmap = 1;
257 int pmapdebug = 0;
258 #define NPDEBUG(_lev_,_stat_) \
259 if (pmapdebug & (_lev_)) \
260 ((_stat_))
261
262 #else /* PMAP_DEBUG */
263 #define NPDEBUG(_lev_,_stat_) /* Nothing */
264 #endif /* PMAP_DEBUG */
265
266
267 #ifdef VERBOSE_INIT_ARM
268 #define VPRINTF(...) printf(__VA_ARGS__)
269 #else
270 #define VPRINTF(...) __nothing
271 #endif
272
273 /*
274 * pmap_kernel() points here
275 */
276 static struct pmap kernel_pmap_store = {
277 #ifndef ARM_MMU_EXTENDED
278 .pm_activated = true,
279 .pm_domain = PMAP_DOMAIN_KERNEL,
280 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
281 #endif
282 };
283 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
284 #undef pmap_kernel
285 #define pmap_kernel() (&kernel_pmap_store)
286 #ifdef PMAP_NEED_ALLOC_POOLPAGE
287 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
288 #endif
289
290 /*
291 * Pool and cache that pmap structures are allocated from.
292 * We use a cache to avoid clearing the pm_l2[] array (1KB)
293 * in pmap_create().
294 */
295 static struct pool_cache pmap_cache;
296
297 /*
298 * Pool of PV structures
299 */
300 static struct pool pmap_pv_pool;
301 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
302 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
303 static struct pool_allocator pmap_bootstrap_pv_allocator = {
304 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
305 };
306
307 /*
308 * Pool and cache of l2_dtable structures.
309 * We use a cache to avoid clearing the structures when they're
310 * allocated. (196 bytes)
311 */
312 static struct pool_cache pmap_l2dtable_cache;
313 static vaddr_t pmap_kernel_l2dtable_kva;
314
315 /*
316 * Pool and cache of L2 page descriptors.
317 * We use a cache to avoid clearing the descriptor table
318 * when they're allocated. (1KB)
319 */
320 static struct pool_cache pmap_l2ptp_cache;
321 static vaddr_t pmap_kernel_l2ptp_kva;
322 static paddr_t pmap_kernel_l2ptp_phys;
323
324 #ifdef PMAPCOUNTERS
325 #define PMAP_EVCNT_INITIALIZER(name) \
326 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
327
328 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
329 static struct evcnt pmap_ev_vac_clean_one =
330 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
331 static struct evcnt pmap_ev_vac_flush_one =
332 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
333 static struct evcnt pmap_ev_vac_flush_lots =
334 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
335 static struct evcnt pmap_ev_vac_flush_lots2 =
336 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
337 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
338 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
339 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
340 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
341
342 static struct evcnt pmap_ev_vac_color_new =
343 PMAP_EVCNT_INITIALIZER("new page color");
344 static struct evcnt pmap_ev_vac_color_reuse =
345 PMAP_EVCNT_INITIALIZER("ok first page color");
346 static struct evcnt pmap_ev_vac_color_ok =
347 PMAP_EVCNT_INITIALIZER("ok page color");
348 static struct evcnt pmap_ev_vac_color_blind =
349 PMAP_EVCNT_INITIALIZER("blind page color");
350 static struct evcnt pmap_ev_vac_color_change =
351 PMAP_EVCNT_INITIALIZER("change page color");
352 static struct evcnt pmap_ev_vac_color_erase =
353 PMAP_EVCNT_INITIALIZER("erase page color");
354 static struct evcnt pmap_ev_vac_color_none =
355 PMAP_EVCNT_INITIALIZER("no page color");
356 static struct evcnt pmap_ev_vac_color_restore =
357 PMAP_EVCNT_INITIALIZER("restore page color");
358
359 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
360 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
361 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
362 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
363 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
364 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
365 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
366 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
367 #endif
368
369 static struct evcnt pmap_ev_mappings =
370 PMAP_EVCNT_INITIALIZER("pages mapped");
371 static struct evcnt pmap_ev_unmappings =
372 PMAP_EVCNT_INITIALIZER("pages unmapped");
373 static struct evcnt pmap_ev_remappings =
374 PMAP_EVCNT_INITIALIZER("pages remapped");
375
376 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
377 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
378 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
379
380 static struct evcnt pmap_ev_kernel_mappings =
381 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
382 static struct evcnt pmap_ev_kernel_unmappings =
383 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
384 static struct evcnt pmap_ev_kernel_remappings =
385 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
390
391 static struct evcnt pmap_ev_kenter_mappings =
392 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
393 static struct evcnt pmap_ev_kenter_unmappings =
394 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
395 static struct evcnt pmap_ev_kenter_remappings =
396 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
397 static struct evcnt pmap_ev_pt_mappings =
398 PMAP_EVCNT_INITIALIZER("page table pages mapped");
399
400 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
401 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
402 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
403 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
404
405 static struct evcnt pmap_ev_fixup_mod =
406 PMAP_EVCNT_INITIALIZER("page modification emulations");
407 static struct evcnt pmap_ev_fixup_ref =
408 PMAP_EVCNT_INITIALIZER("page reference emulations");
409 static struct evcnt pmap_ev_fixup_exec =
410 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
411 static struct evcnt pmap_ev_fixup_pdes =
412 PMAP_EVCNT_INITIALIZER("pdes fixed up");
413 #ifndef ARM_MMU_EXTENDED
414 static struct evcnt pmap_ev_fixup_ptesync =
415 PMAP_EVCNT_INITIALIZER("ptesync fixed");
416 #endif
417
418 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
419 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
420 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
421 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
422 #ifndef ARM_MMU_EXTENDED
423 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
424 #endif
425
426 #ifdef PMAP_CACHE_VIPT
427 static struct evcnt pmap_ev_exec_mappings =
428 PMAP_EVCNT_INITIALIZER("exec pages mapped");
429 static struct evcnt pmap_ev_exec_cached =
430 PMAP_EVCNT_INITIALIZER("exec pages cached");
431
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
434
435 static struct evcnt pmap_ev_exec_synced =
436 PMAP_EVCNT_INITIALIZER("exec pages synced");
437 static struct evcnt pmap_ev_exec_synced_map =
438 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
439 static struct evcnt pmap_ev_exec_synced_unmap =
440 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
441 static struct evcnt pmap_ev_exec_synced_remap =
442 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
443 static struct evcnt pmap_ev_exec_synced_clearbit =
444 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
445 #ifndef ARM_MMU_EXTENDED
446 static struct evcnt pmap_ev_exec_synced_kremove =
447 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
448 #endif
449
450 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
451 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
452 #ifndef ARM_MMU_EXTENDED
453 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
454 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
455 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
456 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
457 #endif
458
459 static struct evcnt pmap_ev_exec_discarded_unmap =
460 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
461 static struct evcnt pmap_ev_exec_discarded_zero =
462 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
463 static struct evcnt pmap_ev_exec_discarded_copy =
464 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
465 static struct evcnt pmap_ev_exec_discarded_page_protect =
466 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
467 static struct evcnt pmap_ev_exec_discarded_clearbit =
468 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
469 static struct evcnt pmap_ev_exec_discarded_kremove =
470 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
471 #ifdef ARM_MMU_EXTENDED
472 static struct evcnt pmap_ev_exec_discarded_modfixup =
473 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
474 #endif
475
476 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
477 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
478 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
479 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
480 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
481 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
482 #ifdef ARM_MMU_EXTENDED
483 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
484 #endif
485 #endif /* PMAP_CACHE_VIPT */
486
487 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
488 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
489 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
490
491 EVCNT_ATTACH_STATIC(pmap_ev_updates);
492 EVCNT_ATTACH_STATIC(pmap_ev_collects);
493 EVCNT_ATTACH_STATIC(pmap_ev_activations);
494
495 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
496 #else
497 #define PMAPCOUNT(x) ((void)0)
498 #endif
499
500 #ifdef ARM_MMU_EXTENDED
501 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
502 void pmap_md_pdetab_deactivate(pmap_t pm);
503 #endif
504
505 /*
506 * pmap copy/zero page, and mem(5) hook point
507 */
508 static pt_entry_t *csrc_pte, *cdst_pte;
509 static vaddr_t csrcp, cdstp;
510 #ifdef MULTIPROCESSOR
511 static size_t cnptes;
512 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
513 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
514 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
515 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
516 #else
517 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
518 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
519 #define cpu_csrcp(o) (csrcp + (o))
520 #define cpu_cdstp(o) (cdstp + (o))
521 #endif
522 vaddr_t memhook; /* used by mem.c & others */
523 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
524 kmutex_t pmap_lock __cacheline_aligned;
525 kmutex_t kpm_lock __cacheline_aligned;
526 extern void *msgbufaddr;
527 int pmap_kmpages;
528 /*
529 * Flag to indicate if pmap_init() has done its thing
530 */
531 bool pmap_initialized;
532
533 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
534 /*
535 * Virtual end of direct-mapped memory
536 */
537 vaddr_t pmap_directlimit;
538 #endif
539
540 /*
541 * Misc. locking data structures
542 */
543
544 static inline void
545 pmap_acquire_pmap_lock(pmap_t pm)
546 {
547 #if defined(MULTIPROCESSOR) && defined(DDB)
548 if (__predict_false(db_onproc != NULL))
549 return;
550 #endif
551
552 mutex_enter(&pm->pm_lock);
553 }
554
555 static inline void
556 pmap_release_pmap_lock(pmap_t pm)
557 {
558 #if defined(MULTIPROCESSOR) && defined(DDB)
559 if (__predict_false(db_onproc != NULL))
560 return;
561 #endif
562 mutex_exit(&pm->pm_lock);
563 }
564
565 static inline void
566 pmap_acquire_page_lock(struct vm_page_md *md)
567 {
568 mutex_enter(&pmap_lock);
569 }
570
571 static inline void
572 pmap_release_page_lock(struct vm_page_md *md)
573 {
574 mutex_exit(&pmap_lock);
575 }
576
577 #ifdef DIAGNOSTIC
578 static inline int
579 pmap_page_locked_p(struct vm_page_md *md)
580 {
581 return mutex_owned(&pmap_lock);
582 }
583 #endif
584
585
586 /*
587 * Metadata for L1 translation tables.
588 */
589 #ifndef ARM_MMU_EXTENDED
590 struct l1_ttable {
591 /* Entry on the L1 Table list */
592 SLIST_ENTRY(l1_ttable) l1_link;
593
594 /* Entry on the L1 Least Recently Used list */
595 TAILQ_ENTRY(l1_ttable) l1_lru;
596
597 /* Track how many domains are allocated from this L1 */
598 volatile u_int l1_domain_use_count;
599
600 /*
601 * A free-list of domain numbers for this L1.
602 * We avoid using ffs() and a bitmap to track domains since ffs()
603 * is slow on ARM.
604 */
605 uint8_t l1_domain_first;
606 uint8_t l1_domain_free[PMAP_DOMAINS];
607
608 /* Physical address of this L1 page table */
609 paddr_t l1_physaddr;
610
611 /* KVA of this L1 page table */
612 pd_entry_t *l1_kva;
613 };
614
615 /*
616 * L1 Page Tables are tracked using a Least Recently Used list.
617 * - New L1s are allocated from the HEAD.
618 * - Freed L1s are added to the TAIL.
619 * - Recently accessed L1s (where an 'access' is some change to one of
620 * the userland pmaps which owns this L1) are moved to the TAIL.
621 */
622 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
623 static kmutex_t l1_lru_lock __cacheline_aligned;
624
625 /*
626 * A list of all L1 tables
627 */
628 static SLIST_HEAD(, l1_ttable) l1_list;
629 #endif /* ARM_MMU_EXTENDED */
630
631 /*
632 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
633 *
634 * This is normally 16MB worth L2 page descriptors for any given pmap.
635 * Reference counts are maintained for L2 descriptors so they can be
636 * freed when empty.
637 */
638 struct l2_bucket {
639 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
640 paddr_t l2b_pa; /* Physical address of same */
641 u_short l2b_l1slot; /* This L2 table's L1 index */
642 u_short l2b_occupancy; /* How many active descriptors */
643 };
644
645 struct l2_dtable {
646 /* The number of L2 page descriptors allocated to this l2_dtable */
647 u_int l2_occupancy;
648
649 /* List of L2 page descriptors */
650 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
651 };
652
653 /*
654 * Given an L1 table index, calculate the corresponding l2_dtable index
655 * and bucket index within the l2_dtable.
656 */
657 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
658 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
659 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
660 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
661 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
662
663 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
664 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
665
666 /*
667 * Given a virtual address, this macro returns the
668 * virtual address required to drop into the next L2 bucket.
669 */
670 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
671
672 /*
673 * L2 allocation.
674 */
675 #define pmap_alloc_l2_dtable() \
676 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
677 #define pmap_free_l2_dtable(l2) \
678 pool_cache_put(&pmap_l2dtable_cache, (l2))
679 #define pmap_alloc_l2_ptp(pap) \
680 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
681 PR_NOWAIT, (pap)))
682
683 /*
684 * We try to map the page tables write-through, if possible. However, not
685 * all CPUs have a write-through cache mode, so on those we have to sync
686 * the cache when we frob page tables.
687 *
688 * We try to evaluate this at compile time, if possible. However, it's
689 * not always possible to do that, hence this run-time var.
690 */
691 int pmap_needs_pte_sync;
692
693 /*
694 * Real definition of pv_entry.
695 */
696 struct pv_entry {
697 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
698 pmap_t pv_pmap; /* pmap where mapping lies */
699 vaddr_t pv_va; /* virtual address for mapping */
700 u_int pv_flags; /* flags */
701 };
702
703 /*
704 * Macros to determine if a mapping might be resident in the
705 * instruction/data cache and/or TLB
706 */
707 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
708 /*
709 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
710 * there are no explicit accesses, so there may be always be TLB entries to
711 * flush. If we used ASIDs then this would not be a problem.
712 */
713 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
714 #define PV_BEEN_REFD(f) (true)
715 #else
716 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
717 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
718 #endif
719 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
720 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
721 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
722
723 /*
724 * Local prototypes
725 */
726 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
727 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
728 pt_entry_t **);
729 static bool pmap_is_current(pmap_t) __unused;
730 static bool pmap_is_cached(pmap_t);
731 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
732 pmap_t, vaddr_t, u_int);
733 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
734 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
735 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
736 u_int, u_int);
737
738 static void pmap_pinit(pmap_t);
739 static int pmap_pmap_ctor(void *, void *, int);
740
741 static void pmap_alloc_l1(pmap_t);
742 static void pmap_free_l1(pmap_t);
743 #ifndef ARM_MMU_EXTENDED
744 static void pmap_use_l1(pmap_t);
745 #endif
746
747 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
748 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
749 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
750 static int pmap_l2ptp_ctor(void *, void *, int);
751 static int pmap_l2dtable_ctor(void *, void *, int);
752
753 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
754 #ifdef PMAP_CACHE_VIVT
755 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
756 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
757 #endif
758
759 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
760 #ifdef PMAP_CACHE_VIVT
761 static bool pmap_clean_page(struct vm_page_md *, bool);
762 #endif
763 #ifdef PMAP_CACHE_VIPT
764 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
765 enum pmap_flush_op {
766 PMAP_FLUSH_PRIMARY,
767 PMAP_FLUSH_SECONDARY,
768 PMAP_CLEAN_PRIMARY
769 };
770 #ifndef ARM_MMU_EXTENDED
771 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
772 #endif
773 #endif
774 static void pmap_page_remove(struct vm_page_md *, paddr_t);
775 static void pmap_pv_remove(paddr_t);
776
777 #ifndef ARM_MMU_EXTENDED
778 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
779 #endif
780 static vaddr_t kernel_pt_lookup(paddr_t);
781
782 #ifdef ARM_MMU_EXTENDED
783 static struct pool_cache pmap_l1tt_cache;
784
785 static int pmap_l1tt_ctor(void *, void *, int);
786 static void * pmap_l1tt_alloc(struct pool *, int);
787 static void pmap_l1tt_free(struct pool *, void *);
788
789 static struct pool_allocator pmap_l1tt_allocator = {
790 .pa_alloc = pmap_l1tt_alloc,
791 .pa_free = pmap_l1tt_free,
792 .pa_pagesz = L1TT_SIZE,
793 };
794 #endif
795
796 /*
797 * Misc variables
798 */
799 vaddr_t virtual_avail;
800 vaddr_t virtual_end;
801 vaddr_t pmap_curmaxkvaddr;
802
803 paddr_t avail_start;
804 paddr_t avail_end;
805
806 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
807 pv_addr_t kernelpages;
808 pv_addr_t kernel_l1pt;
809 pv_addr_t systempage;
810
811 /* Function to set the debug level of the pmap code */
812
813 #ifdef PMAP_DEBUG
814 void
815 pmap_debug(int level)
816 {
817 pmap_debug_level = level;
818 printf("pmap_debug: level=%d\n", pmap_debug_level);
819 }
820 #endif /* PMAP_DEBUG */
821
822 #ifdef PMAP_CACHE_VIPT
823 #define PMAP_VALIDATE_MD_PAGE(md) \
824 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
825 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
826 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
827 #endif /* PMAP_CACHE_VIPT */
828 /*
829 * A bunch of routines to conditionally flush the caches/TLB depending
830 * on whether the specified pmap actually needs to be flushed at any
831 * given time.
832 */
833 static inline void
834 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
835 {
836 #ifdef ARM_MMU_EXTENDED
837 pmap_tlb_invalidate_addr(pm, va);
838 #else
839 if (pm->pm_cstate.cs_tlb_id != 0) {
840 if (PV_BEEN_EXECD(flags)) {
841 cpu_tlb_flushID_SE(va);
842 } else if (PV_BEEN_REFD(flags)) {
843 cpu_tlb_flushD_SE(va);
844 }
845 }
846 #endif /* ARM_MMU_EXTENDED */
847 }
848
849 #ifndef ARM_MMU_EXTENDED
850 static inline void
851 pmap_tlb_flushID(pmap_t pm)
852 {
853 if (pm->pm_cstate.cs_tlb_id) {
854 cpu_tlb_flushID();
855 #if ARM_MMU_V7 == 0
856 /*
857 * Speculative loads by Cortex cores can cause TLB entries to
858 * be filled even if there are no explicit accesses, so there
859 * may be always be TLB entries to flush. If we used ASIDs
860 * then it would not be a problem.
861 * This is not true for other CPUs.
862 */
863 pm->pm_cstate.cs_tlb = 0;
864 #endif /* ARM_MMU_V7 */
865 }
866 }
867
868 static inline void
869 pmap_tlb_flushD(pmap_t pm)
870 {
871 if (pm->pm_cstate.cs_tlb_d) {
872 cpu_tlb_flushD();
873 #if ARM_MMU_V7 == 0
874 /*
875 * Speculative loads by Cortex cores can cause TLB entries to
876 * be filled even if there are no explicit accesses, so there
877 * may be always be TLB entries to flush. If we used ASIDs
878 * then it would not be a problem.
879 * This is not true for other CPUs.
880 */
881 pm->pm_cstate.cs_tlb_d = 0;
882 #endif /* ARM_MMU_V7 */
883 }
884 }
885 #endif /* ARM_MMU_EXTENDED */
886
887 #ifdef PMAP_CACHE_VIVT
888 static inline void
889 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
890 {
891 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
892 cpu_idcache_wbinv_range(va, PAGE_SIZE);
893 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
894 if (do_inv) {
895 if (flags & PVF_WRITE)
896 cpu_dcache_wbinv_range(va, PAGE_SIZE);
897 else
898 cpu_dcache_inv_range(va, PAGE_SIZE);
899 } else if (flags & PVF_WRITE) {
900 cpu_dcache_wb_range(va, PAGE_SIZE);
901 }
902 }
903 }
904
905 static inline void
906 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
907 {
908 if (PV_BEEN_EXECD(flags)) {
909 if (pm->pm_cstate.cs_cache_id) {
910 cpu_idcache_wbinv_all();
911 pm->pm_cstate.cs_cache = 0;
912 }
913 } else if (pm->pm_cstate.cs_cache_d) {
914 cpu_dcache_wbinv_all();
915 pm->pm_cstate.cs_cache_d = 0;
916 }
917 }
918 #endif /* PMAP_CACHE_VIVT */
919
920 static inline uint8_t
921 pmap_domain(pmap_t pm)
922 {
923 #ifdef ARM_MMU_EXTENDED
924 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
925 #else
926 return pm->pm_domain;
927 #endif
928 }
929
930 static inline pd_entry_t *
931 pmap_l1_kva(pmap_t pm)
932 {
933 #ifdef ARM_MMU_EXTENDED
934 return pm->pm_l1;
935 #else
936 return pm->pm_l1->l1_kva;
937 #endif
938 }
939
940 static inline bool
941 pmap_is_current(pmap_t pm)
942 {
943 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
944 return true;
945
946 return false;
947 }
948
949 static inline bool
950 pmap_is_cached(pmap_t pm)
951 {
952 #ifdef ARM_MMU_EXTENDED
953 if (pm == pmap_kernel())
954 return true;
955 #ifdef MULTIPROCESSOR
956 // Is this pmap active on any CPU?
957 if (!kcpuset_iszero(pm->pm_active))
958 return true;
959 #else
960 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
961 // Is this pmap active?
962 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
963 return true;
964 #endif
965 #else
966 struct cpu_info * const ci = curcpu();
967 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
968 || ci->ci_pmap_lastuser == pm)
969 return true;
970 #endif /* ARM_MMU_EXTENDED */
971
972 return false;
973 }
974
975 /*
976 * PTE_SYNC_CURRENT:
977 *
978 * Make sure the pte is written out to RAM.
979 * We need to do this for one of two cases:
980 * - We're dealing with the kernel pmap
981 * - There is no pmap active in the cache/tlb.
982 * - The specified pmap is 'active' in the cache/tlb.
983 */
984
985 #ifdef PMAP_INCLUDE_PTE_SYNC
986 static inline void
987 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
988 {
989 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
990 PTE_SYNC(ptep);
991 arm_dsb();
992 }
993
994 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
995 #else
996 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
997 #endif
998
999 /*
1000 * main pv_entry manipulation functions:
1001 * pmap_enter_pv: enter a mapping onto a vm_page list
1002 * pmap_remove_pv: remove a mapping from a vm_page list
1003 *
1004 * NOTE: pmap_enter_pv expects to lock the pvh itself
1005 * pmap_remove_pv expects the caller to lock the pvh before calling
1006 */
1007
1008 /*
1009 * pmap_enter_pv: enter a mapping onto a vm_page lst
1010 *
1011 * => caller should hold the proper lock on pmap_main_lock
1012 * => caller should have pmap locked
1013 * => we will gain the lock on the vm_page and allocate the new pv_entry
1014 * => caller should adjust ptp's wire_count before calling
1015 * => caller should not adjust pmap's wire_count
1016 */
1017 static void
1018 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
1019 vaddr_t va, u_int flags)
1020 {
1021 struct pv_entry **pvp;
1022
1023 NPDEBUG(PDB_PVDUMP,
1024 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
1025
1026 pv->pv_pmap = pm;
1027 pv->pv_va = va;
1028 pv->pv_flags = flags;
1029
1030 pvp = &SLIST_FIRST(&md->pvh_list);
1031 #ifdef PMAP_CACHE_VIPT
1032 /*
1033 * Insert unmanaged entries, writeable first, at the head of
1034 * the pv list.
1035 */
1036 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1037 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1038 pvp = &SLIST_NEXT(*pvp, pv_link);
1039 }
1040 if (!PV_IS_WRITE_P(flags)) {
1041 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1042 pvp = &SLIST_NEXT(*pvp, pv_link);
1043 }
1044 #endif
1045 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
1046 *pvp = pv; /* ... locked list */
1047 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1048 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1049 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1050 md->pvh_attrs |= PVF_KMOD;
1051 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1052 md->pvh_attrs |= PVF_DIRTY;
1053 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1054 #endif
1055 if (pm == pmap_kernel()) {
1056 PMAPCOUNT(kernel_mappings);
1057 if (flags & PVF_WRITE)
1058 md->krw_mappings++;
1059 else
1060 md->kro_mappings++;
1061 } else {
1062 if (flags & PVF_WRITE)
1063 md->urw_mappings++;
1064 else
1065 md->uro_mappings++;
1066 }
1067
1068 #ifdef PMAP_CACHE_VIPT
1069 #ifndef ARM_MMU_EXTENDED
1070 /*
1071 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1072 * do it here as well to keep the mappings & KVF_WRITE consistent.
1073 */
1074 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1075 md->pvh_attrs |= PVF_WRITE;
1076 }
1077 #endif
1078 /*
1079 * If this is an exec mapping and its the first exec mapping
1080 * for this page, make sure to sync the I-cache.
1081 */
1082 if (PV_IS_EXEC_P(flags)) {
1083 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1084 pmap_syncicache_page(md, pa);
1085 PMAPCOUNT(exec_synced_map);
1086 }
1087 PMAPCOUNT(exec_mappings);
1088 }
1089 #endif
1090
1091 PMAPCOUNT(mappings);
1092
1093 if (pv->pv_flags & PVF_WIRED)
1094 ++pm->pm_stats.wired_count;
1095 }
1096
1097 /*
1098 *
1099 * pmap_find_pv: Find a pv entry
1100 *
1101 * => caller should hold lock on vm_page
1102 */
1103 static inline struct pv_entry *
1104 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1105 {
1106 struct pv_entry *pv;
1107
1108 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1109 if (pm == pv->pv_pmap && va == pv->pv_va)
1110 break;
1111 }
1112
1113 return pv;
1114 }
1115
1116 /*
1117 * pmap_remove_pv: try to remove a mapping from a pv_list
1118 *
1119 * => caller should hold proper lock on pmap_main_lock
1120 * => pmap should be locked
1121 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1122 * => caller should adjust ptp's wire_count and free PTP if needed
1123 * => caller should NOT adjust pmap's wire_count
1124 * => we return the removed pv
1125 */
1126 static struct pv_entry *
1127 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1128 {
1129 struct pv_entry *pv, **prevptr;
1130
1131 NPDEBUG(PDB_PVDUMP,
1132 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
1133
1134 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1135 pv = *prevptr;
1136
1137 while (pv) {
1138 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1139 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1140 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1141 if (pv->pv_flags & PVF_WIRED) {
1142 --pm->pm_stats.wired_count;
1143 }
1144 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1145 if (pm == pmap_kernel()) {
1146 PMAPCOUNT(kernel_unmappings);
1147 if (pv->pv_flags & PVF_WRITE)
1148 md->krw_mappings--;
1149 else
1150 md->kro_mappings--;
1151 } else {
1152 if (pv->pv_flags & PVF_WRITE)
1153 md->urw_mappings--;
1154 else
1155 md->uro_mappings--;
1156 }
1157
1158 PMAPCOUNT(unmappings);
1159 #ifdef PMAP_CACHE_VIPT
1160 /*
1161 * If this page has had an exec mapping, then if
1162 * this was the last mapping, discard the contents,
1163 * otherwise sync the i-cache for this page.
1164 */
1165 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1166 if (SLIST_EMPTY(&md->pvh_list)) {
1167 md->pvh_attrs &= ~PVF_EXEC;
1168 PMAPCOUNT(exec_discarded_unmap);
1169 } else if (pv->pv_flags & PVF_WRITE) {
1170 pmap_syncicache_page(md, pa);
1171 PMAPCOUNT(exec_synced_unmap);
1172 }
1173 }
1174 #endif /* PMAP_CACHE_VIPT */
1175 break;
1176 }
1177 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1178 pv = *prevptr; /* advance */
1179 }
1180
1181 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1182 /*
1183 * If we no longer have a WRITEABLE KENTRY at the head of list,
1184 * clear the KMOD attribute from the page.
1185 */
1186 if (SLIST_FIRST(&md->pvh_list) == NULL
1187 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1188 md->pvh_attrs &= ~PVF_KMOD;
1189
1190 /*
1191 * If this was a writeable page and there are no more writeable
1192 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1193 * the contents to memory.
1194 */
1195 if (arm_cache_prefer_mask != 0) {
1196 if (md->krw_mappings + md->urw_mappings == 0)
1197 md->pvh_attrs &= ~PVF_WRITE;
1198 PMAP_VALIDATE_MD_PAGE(md);
1199 }
1200 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1201 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1202
1203 /* return removed pv */
1204 return pv;
1205 }
1206
1207 /*
1208 *
1209 * pmap_modify_pv: Update pv flags
1210 *
1211 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1212 * => caller should NOT adjust pmap's wire_count
1213 * => caller must call pmap_vac_me_harder() if writable status of a page
1214 * may have changed.
1215 * => we return the old flags
1216 *
1217 * Modify a physical-virtual mapping in the pv table
1218 */
1219 static u_int
1220 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1221 u_int clr_mask, u_int set_mask)
1222 {
1223 struct pv_entry *npv;
1224 u_int flags, oflags;
1225
1226 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1227 KASSERT(!PV_IS_KENTRY_P(set_mask));
1228
1229 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1230 return 0;
1231
1232 NPDEBUG(PDB_PVDUMP,
1233 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1234
1235 /*
1236 * There is at least one VA mapping this page.
1237 */
1238
1239 if (clr_mask & (PVF_REF | PVF_MOD)) {
1240 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1241 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1242 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1243 md->pvh_attrs |= PVF_DIRTY;
1244 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1245 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1246 }
1247
1248 oflags = npv->pv_flags;
1249 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1250
1251 if ((flags ^ oflags) & PVF_WIRED) {
1252 if (flags & PVF_WIRED)
1253 ++pm->pm_stats.wired_count;
1254 else
1255 --pm->pm_stats.wired_count;
1256 }
1257
1258 if ((flags ^ oflags) & PVF_WRITE) {
1259 if (pm == pmap_kernel()) {
1260 if (flags & PVF_WRITE) {
1261 md->krw_mappings++;
1262 md->kro_mappings--;
1263 } else {
1264 md->kro_mappings++;
1265 md->krw_mappings--;
1266 }
1267 } else {
1268 if (flags & PVF_WRITE) {
1269 md->urw_mappings++;
1270 md->uro_mappings--;
1271 } else {
1272 md->uro_mappings++;
1273 md->urw_mappings--;
1274 }
1275 }
1276 }
1277 #ifdef PMAP_CACHE_VIPT
1278 if (arm_cache_prefer_mask != 0) {
1279 if (md->urw_mappings + md->krw_mappings == 0) {
1280 md->pvh_attrs &= ~PVF_WRITE;
1281 } else {
1282 md->pvh_attrs |= PVF_WRITE;
1283 }
1284 }
1285 /*
1286 * We have two cases here: the first is from enter_pv (new exec
1287 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1288 * Since in latter, pmap_enter_pv won't do anything, we just have
1289 * to do what pmap_remove_pv would do.
1290 */
1291 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1292 || (PV_IS_EXEC_P(md->pvh_attrs)
1293 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1294 pmap_syncicache_page(md, pa);
1295 PMAPCOUNT(exec_synced_remap);
1296 }
1297 #ifndef ARM_MMU_EXTENDED
1298 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1299 #endif /* !ARM_MMU_EXTENDED */
1300 #endif /* PMAP_CACHE_VIPT */
1301
1302 PMAPCOUNT(remappings);
1303
1304 return oflags;
1305 }
1306
1307
1308 #if defined(ARM_MMU_EXTENDED)
1309 int
1310 pmap_maxproc_set(int nmaxproc)
1311 {
1312 static const char pmap_l1ttpool_warnmsg[] =
1313 "WARNING: l1ttpool limit reached; increase kern.maxproc";
1314
1315 // pool_cache_setlowat(&pmap_l1tt_cache, nmaxproc);
1316
1317 /*
1318 * Set the hard limit on the pmap_l1tt_cache to the number
1319 * of processes the kernel is to support. Log the limit
1320 * reached message max once a minute.
1321 */
1322 pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
1323 pmap_l1ttpool_warnmsg, 60);
1324
1325 return 0;
1326 }
1327
1328 #endif
1329
1330 /*
1331 * Allocate an L1 translation table for the specified pmap.
1332 * This is called at pmap creation time.
1333 */
1334 static void
1335 pmap_alloc_l1(pmap_t pm)
1336 {
1337 #ifdef ARM_MMU_EXTENDED
1338 vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
1339 &pm->pm_l1_pa);
1340
1341 pm->pm_l1 = (pd_entry_t *)va;
1342 PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
1343 #else
1344 struct l1_ttable *l1;
1345 uint8_t domain;
1346
1347 /*
1348 * Remove the L1 at the head of the LRU list
1349 */
1350 mutex_spin_enter(&l1_lru_lock);
1351 l1 = TAILQ_FIRST(&l1_lru_list);
1352 KDASSERT(l1 != NULL);
1353 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1354
1355 /*
1356 * Pick the first available domain number, and update
1357 * the link to the next number.
1358 */
1359 domain = l1->l1_domain_first;
1360 l1->l1_domain_first = l1->l1_domain_free[domain];
1361
1362 /*
1363 * If there are still free domain numbers in this L1,
1364 * put it back on the TAIL of the LRU list.
1365 */
1366 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1367 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1368
1369 mutex_spin_exit(&l1_lru_lock);
1370
1371 /*
1372 * Fix up the relevant bits in the pmap structure
1373 */
1374 pm->pm_l1 = l1;
1375 pm->pm_domain = domain + 1;
1376 #endif
1377 }
1378
1379 /*
1380 * Free an L1 translation table.
1381 * This is called at pmap destruction time.
1382 */
1383 static void
1384 pmap_free_l1(pmap_t pm)
1385 {
1386 #ifdef ARM_MMU_EXTENDED
1387 pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
1388
1389 pm->pm_l1 = NULL;
1390 pm->pm_l1_pa = 0;
1391 #else
1392 struct l1_ttable *l1 = pm->pm_l1;
1393
1394 mutex_spin_enter(&l1_lru_lock);
1395
1396 /*
1397 * If this L1 is currently on the LRU list, remove it.
1398 */
1399 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1400 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1401
1402 /*
1403 * Free up the domain number which was allocated to the pmap
1404 */
1405 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1406 l1->l1_domain_first = pmap_domain(pm) - 1;
1407 l1->l1_domain_use_count--;
1408
1409 /*
1410 * The L1 now must have at least 1 free domain, so add
1411 * it back to the LRU list. If the use count is zero,
1412 * put it at the head of the list, otherwise it goes
1413 * to the tail.
1414 */
1415 if (l1->l1_domain_use_count == 0)
1416 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1417 else
1418 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1419
1420 mutex_spin_exit(&l1_lru_lock);
1421 #endif /* ARM_MMU_EXTENDED */
1422 }
1423
1424 #ifndef ARM_MMU_EXTENDED
1425 static inline void
1426 pmap_use_l1(pmap_t pm)
1427 {
1428 struct l1_ttable *l1;
1429
1430 /*
1431 * Do nothing if we're in interrupt context.
1432 * Access to an L1 by the kernel pmap must not affect
1433 * the LRU list.
1434 */
1435 if (cpu_intr_p() || pm == pmap_kernel())
1436 return;
1437
1438 l1 = pm->pm_l1;
1439
1440 /*
1441 * If the L1 is not currently on the LRU list, just return
1442 */
1443 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1444 return;
1445
1446 mutex_spin_enter(&l1_lru_lock);
1447
1448 /*
1449 * Check the use count again, now that we've acquired the lock
1450 */
1451 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1452 mutex_spin_exit(&l1_lru_lock);
1453 return;
1454 }
1455
1456 /*
1457 * Move the L1 to the back of the LRU list
1458 */
1459 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1460 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1461
1462 mutex_spin_exit(&l1_lru_lock);
1463 }
1464 #endif /* !ARM_MMU_EXTENDED */
1465
1466 /*
1467 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1468 *
1469 * Free an L2 descriptor table.
1470 */
1471 static inline void
1472 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1473 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1474 #else
1475 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1476 #endif
1477 {
1478 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1479 /*
1480 * Note: With a write-back cache, we may need to sync this
1481 * L2 table before re-using it.
1482 * This is because it may have belonged to a non-current
1483 * pmap, in which case the cache syncs would have been
1484 * skipped for the pages that were being unmapped. If the
1485 * L2 table were then to be immediately re-allocated to
1486 * the *current* pmap, it may well contain stale mappings
1487 * which have not yet been cleared by a cache write-back
1488 * and so would still be visible to the mmu.
1489 */
1490 if (need_sync)
1491 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1492 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1493 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1494 }
1495
1496 /*
1497 * Returns a pointer to the L2 bucket associated with the specified pmap
1498 * and VA, or NULL if no L2 bucket exists for the address.
1499 */
1500 static inline struct l2_bucket *
1501 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1502 {
1503 const size_t l1slot = l1pte_index(va);
1504 struct l2_dtable *l2;
1505 struct l2_bucket *l2b;
1506
1507 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1508 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1509 return NULL;
1510
1511 return l2b;
1512 }
1513
1514 /*
1515 * Returns a pointer to the L2 bucket associated with the specified pmap
1516 * and VA.
1517 *
1518 * If no L2 bucket exists, perform the necessary allocations to put an L2
1519 * bucket/page table in place.
1520 *
1521 * Note that if a new L2 bucket/page was allocated, the caller *must*
1522 * increment the bucket occupancy counter appropriately *before*
1523 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1524 * the bucket/page in the meantime.
1525 */
1526 static struct l2_bucket *
1527 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1528 {
1529 const size_t l1slot = l1pte_index(va);
1530 struct l2_dtable *l2;
1531
1532 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1533 /*
1534 * No mapping at this address, as there is
1535 * no entry in the L1 table.
1536 * Need to allocate a new l2_dtable.
1537 */
1538 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1539 return NULL;
1540
1541 /*
1542 * Link it into the parent pmap
1543 */
1544 pm->pm_l2[L2_IDX(l1slot)] = l2;
1545 }
1546
1547 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1548
1549 /*
1550 * Fetch pointer to the L2 page table associated with the address.
1551 */
1552 if (l2b->l2b_kva == NULL) {
1553 pt_entry_t *ptep;
1554
1555 /*
1556 * No L2 page table has been allocated. Chances are, this
1557 * is because we just allocated the l2_dtable, above.
1558 */
1559 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1560 /*
1561 * Oops, no more L2 page tables available at this
1562 * time. We may need to deallocate the l2_dtable
1563 * if we allocated a new one above.
1564 */
1565 if (l2->l2_occupancy == 0) {
1566 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1567 pmap_free_l2_dtable(l2);
1568 }
1569 return NULL;
1570 }
1571
1572 l2->l2_occupancy++;
1573 l2b->l2b_kva = ptep;
1574 l2b->l2b_l1slot = l1slot;
1575
1576 #ifdef ARM_MMU_EXTENDED
1577 /*
1578 * We know there will be a mapping here, so simply
1579 * enter this PTP into the L1 now.
1580 */
1581 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1582 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1583 | L1_C_DOM(pmap_domain(pm));
1584 KASSERT(*pdep == 0);
1585 l1pte_setone(pdep, npde);
1586 PDE_SYNC(pdep);
1587 #endif
1588 }
1589
1590 return l2b;
1591 }
1592
1593 /*
1594 * One or more mappings in the specified L2 descriptor table have just been
1595 * invalidated.
1596 *
1597 * Garbage collect the metadata and descriptor table itself if necessary.
1598 *
1599 * The pmap lock must be acquired when this is called (not necessary
1600 * for the kernel pmap).
1601 */
1602 static void
1603 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1604 {
1605 KDASSERT(count <= l2b->l2b_occupancy);
1606
1607 /*
1608 * Update the bucket's reference count according to how many
1609 * PTEs the caller has just invalidated.
1610 */
1611 l2b->l2b_occupancy -= count;
1612
1613 /*
1614 * Note:
1615 *
1616 * Level 2 page tables allocated to the kernel pmap are never freed
1617 * as that would require checking all Level 1 page tables and
1618 * removing any references to the Level 2 page table. See also the
1619 * comment elsewhere about never freeing bootstrap L2 descriptors.
1620 *
1621 * We make do with just invalidating the mapping in the L2 table.
1622 *
1623 * This isn't really a big deal in practice and, in fact, leads
1624 * to a performance win over time as we don't need to continually
1625 * alloc/free.
1626 */
1627 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1628 return;
1629
1630 /*
1631 * There are no more valid mappings in this level 2 page table.
1632 * Go ahead and NULL-out the pointer in the bucket, then
1633 * free the page table.
1634 */
1635 const size_t l1slot = l2b->l2b_l1slot;
1636 pt_entry_t * const ptep = l2b->l2b_kva;
1637 l2b->l2b_kva = NULL;
1638
1639 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1640 pd_entry_t pde __diagused = *pdep;
1641
1642 #ifdef ARM_MMU_EXTENDED
1643 /*
1644 * Invalidate the L1 slot.
1645 */
1646 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1647 #else
1648 /*
1649 * If the L1 slot matches the pmap's domain number, then invalidate it.
1650 */
1651 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1652 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1653 #endif
1654 l1pte_setone(pdep, 0);
1655 PDE_SYNC(pdep);
1656 #ifndef ARM_MMU_EXTENDED
1657 }
1658 #endif
1659
1660 /*
1661 * Release the L2 descriptor table back to the pool cache.
1662 */
1663 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1664 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1665 #else
1666 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1667 #endif
1668
1669 /*
1670 * Update the reference count in the associated l2_dtable
1671 */
1672 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1673 if (--l2->l2_occupancy > 0)
1674 return;
1675
1676 /*
1677 * There are no more valid mappings in any of the Level 1
1678 * slots managed by this l2_dtable. Go ahead and NULL-out
1679 * the pointer in the parent pmap and free the l2_dtable.
1680 */
1681 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1682 pmap_free_l2_dtable(l2);
1683 }
1684
1685 #if defined(ARM_MMU_EXTENDED)
1686 /*
1687 * Pool cache constructors for L1 translation tables
1688 */
1689
1690 static int
1691 pmap_l1tt_ctor(void *arg, void *v, int flags)
1692 {
1693 #ifndef PMAP_INCLUDE_PTE_SYNC
1694 #error not supported
1695 #endif
1696
1697 memset(v, 0, L1TT_SIZE);
1698 PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
1699 return 0;
1700 }
1701 #endif
1702
1703 /*
1704 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1705 * structures.
1706 */
1707 static int
1708 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1709 {
1710 #ifndef PMAP_INCLUDE_PTE_SYNC
1711 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1712
1713 /*
1714 * The mappings for these page tables were initially made using
1715 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1716 * mode will not be right for page table mappings. To avoid
1717 * polluting the pmap_kenter_pa() code with a special case for
1718 * page tables, we simply fix up the cache-mode here if it's not
1719 * correct.
1720 */
1721 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1722 const struct l2_bucket * const l2b =
1723 pmap_get_l2_bucket(pmap_kernel(), va);
1724 KASSERTMSG(l2b != NULL, "%#lx", va);
1725 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1726 const pt_entry_t opte = *ptep;
1727
1728 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1729 /*
1730 * Page tables must have the cache-mode set correctly.
1731 */
1732 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1733 | pte_l2_s_cache_mode_pt;
1734 l2pte_set(ptep, npte, opte);
1735 PTE_SYNC(ptep);
1736 cpu_tlb_flushD_SE(va);
1737 cpu_cpwait();
1738 }
1739 }
1740 #endif
1741
1742 memset(v, 0, L2_TABLE_SIZE_REAL);
1743 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1744 return 0;
1745 }
1746
1747 static int
1748 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1749 {
1750
1751 memset(v, 0, sizeof(struct l2_dtable));
1752 return 0;
1753 }
1754
1755 static int
1756 pmap_pmap_ctor(void *arg, void *v, int flags)
1757 {
1758
1759 memset(v, 0, sizeof(struct pmap));
1760 return 0;
1761 }
1762
1763 static void
1764 pmap_pinit(pmap_t pm)
1765 {
1766 #ifndef ARM_HAS_VBAR
1767 struct l2_bucket *l2b;
1768
1769 if (vector_page < KERNEL_BASE) {
1770 /*
1771 * Map the vector page.
1772 */
1773 pmap_enter(pm, vector_page, systempage.pv_pa,
1774 VM_PROT_READ | VM_PROT_EXECUTE,
1775 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1776 pmap_update(pm);
1777
1778 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1779 l2b = pmap_get_l2_bucket(pm, vector_page);
1780 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1781 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1782 L1_C_DOM(pmap_domain(pm));
1783 } else
1784 pm->pm_pl1vec = NULL;
1785 #endif
1786 }
1787
1788 #ifdef PMAP_CACHE_VIVT
1789 /*
1790 * Since we have a virtually indexed cache, we may need to inhibit caching if
1791 * there is more than one mapping and at least one of them is writable.
1792 * Since we purge the cache on every context switch, we only need to check for
1793 * other mappings within the same pmap, or kernel_pmap.
1794 * This function is also called when a page is unmapped, to possibly reenable
1795 * caching on any remaining mappings.
1796 *
1797 * The code implements the following logic, where:
1798 *
1799 * KW = # of kernel read/write pages
1800 * KR = # of kernel read only pages
1801 * UW = # of user read/write pages
1802 * UR = # of user read only pages
1803 *
1804 * KC = kernel mapping is cacheable
1805 * UC = user mapping is cacheable
1806 *
1807 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1808 * +---------------------------------------------
1809 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1810 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1811 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1812 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1813 */
1814
1815 static const int pmap_vac_flags[4][4] = {
1816 {-1, 0, 0, PVF_KNC},
1817 {0, 0, PVF_NC, PVF_NC},
1818 {0, PVF_NC, PVF_NC, PVF_NC},
1819 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1820 };
1821
1822 static inline int
1823 pmap_get_vac_flags(const struct vm_page_md *md)
1824 {
1825 int kidx, uidx;
1826
1827 kidx = 0;
1828 if (md->kro_mappings || md->krw_mappings > 1)
1829 kidx |= 1;
1830 if (md->krw_mappings)
1831 kidx |= 2;
1832
1833 uidx = 0;
1834 if (md->uro_mappings || md->urw_mappings > 1)
1835 uidx |= 1;
1836 if (md->urw_mappings)
1837 uidx |= 2;
1838
1839 return pmap_vac_flags[uidx][kidx];
1840 }
1841
1842 static inline void
1843 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1844 {
1845 int nattr;
1846
1847 nattr = pmap_get_vac_flags(md);
1848
1849 if (nattr < 0) {
1850 md->pvh_attrs &= ~PVF_NC;
1851 return;
1852 }
1853
1854 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1855 return;
1856
1857 if (pm == pmap_kernel())
1858 pmap_vac_me_kpmap(md, pa, pm, va);
1859 else
1860 pmap_vac_me_user(md, pa, pm, va);
1861
1862 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1863 }
1864
1865 static void
1866 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1867 {
1868 u_int u_cacheable, u_entries;
1869 struct pv_entry *pv;
1870 pmap_t last_pmap = pm;
1871
1872 /*
1873 * Pass one, see if there are both kernel and user pmaps for
1874 * this page. Calculate whether there are user-writable or
1875 * kernel-writable pages.
1876 */
1877 u_cacheable = 0;
1878 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1879 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1880 u_cacheable++;
1881 }
1882
1883 u_entries = md->urw_mappings + md->uro_mappings;
1884
1885 /*
1886 * We know we have just been updating a kernel entry, so if
1887 * all user pages are already cacheable, then there is nothing
1888 * further to do.
1889 */
1890 if (md->k_mappings == 0 && u_cacheable == u_entries)
1891 return;
1892
1893 if (u_entries) {
1894 /*
1895 * Scan over the list again, for each entry, if it
1896 * might not be set correctly, call pmap_vac_me_user
1897 * to recalculate the settings.
1898 */
1899 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1900 /*
1901 * We know kernel mappings will get set
1902 * correctly in other calls. We also know
1903 * that if the pmap is the same as last_pmap
1904 * then we've just handled this entry.
1905 */
1906 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1907 continue;
1908
1909 /*
1910 * If there are kernel entries and this page
1911 * is writable but non-cacheable, then we can
1912 * skip this entry also.
1913 */
1914 if (md->k_mappings &&
1915 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1916 (PVF_NC | PVF_WRITE))
1917 continue;
1918
1919 /*
1920 * Similarly if there are no kernel-writable
1921 * entries and the page is already
1922 * read-only/cacheable.
1923 */
1924 if (md->krw_mappings == 0 &&
1925 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1926 continue;
1927
1928 /*
1929 * For some of the remaining cases, we know
1930 * that we must recalculate, but for others we
1931 * can't tell if they are correct or not, so
1932 * we recalculate anyway.
1933 */
1934 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1935 }
1936
1937 if (md->k_mappings == 0)
1938 return;
1939 }
1940
1941 pmap_vac_me_user(md, pa, pm, va);
1942 }
1943
1944 static void
1945 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1946 {
1947 pmap_t kpmap = pmap_kernel();
1948 struct pv_entry *pv, *npv = NULL;
1949 u_int entries = 0;
1950 u_int writable = 0;
1951 u_int cacheable_entries = 0;
1952 u_int kern_cacheable = 0;
1953 u_int other_writable = 0;
1954
1955 /*
1956 * Count mappings and writable mappings in this pmap.
1957 * Include kernel mappings as part of our own.
1958 * Keep a pointer to the first one.
1959 */
1960 npv = NULL;
1961 KASSERT(pmap_page_locked_p(md));
1962 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1963 /* Count mappings in the same pmap */
1964 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1965 if (entries++ == 0)
1966 npv = pv;
1967
1968 /* Cacheable mappings */
1969 if ((pv->pv_flags & PVF_NC) == 0) {
1970 cacheable_entries++;
1971 if (kpmap == pv->pv_pmap)
1972 kern_cacheable++;
1973 }
1974
1975 /* Writable mappings */
1976 if (pv->pv_flags & PVF_WRITE)
1977 ++writable;
1978 } else if (pv->pv_flags & PVF_WRITE)
1979 other_writable = 1;
1980 }
1981
1982 /*
1983 * Enable or disable caching as necessary.
1984 * Note: the first entry might be part of the kernel pmap,
1985 * so we can't assume this is indicative of the state of the
1986 * other (maybe non-kpmap) entries.
1987 */
1988 if ((entries > 1 && writable) ||
1989 (entries > 0 && pm == kpmap && other_writable)) {
1990 if (cacheable_entries == 0) {
1991 return;
1992 }
1993
1994 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1995 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1996 (pv->pv_flags & PVF_NC))
1997 continue;
1998
1999 pv->pv_flags |= PVF_NC;
2000
2001 struct l2_bucket * const l2b
2002 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2003 KASSERTMSG(l2b != NULL, "%#lx", va);
2004 pt_entry_t * const ptep
2005 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2006 const pt_entry_t opte = *ptep;
2007 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2008
2009 if ((va != pv->pv_va || pm != pv->pv_pmap)
2010 && l2pte_valid_p(opte)) {
2011 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
2012 true, pv->pv_flags);
2013 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2014 pv->pv_flags);
2015 }
2016
2017 l2pte_set(ptep, npte, opte);
2018 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2019 }
2020 cpu_cpwait();
2021 } else if (entries > cacheable_entries) {
2022 /*
2023 * Turn cacheing back on for some pages. If it is a kernel
2024 * page, only do so if there are no other writable pages.
2025 */
2026 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
2027 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
2028 (kpmap != pv->pv_pmap || other_writable)))
2029 continue;
2030
2031 pv->pv_flags &= ~PVF_NC;
2032
2033 struct l2_bucket * const l2b
2034 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2035 KASSERTMSG(l2b != NULL, "%#lx", va);
2036 pt_entry_t * const ptep
2037 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2038 const pt_entry_t opte = *ptep;
2039 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2040 | pte_l2_s_cache_mode;
2041
2042 if (l2pte_valid_p(opte)) {
2043 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2044 pv->pv_flags);
2045 }
2046
2047 l2pte_set(ptep, npte, opte);
2048 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2049 }
2050 }
2051 }
2052 #endif
2053
2054 #ifdef PMAP_CACHE_VIPT
2055 static void
2056 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2057 {
2058 #ifndef ARM_MMU_EXTENDED
2059 struct pv_entry *pv;
2060 vaddr_t tst_mask;
2061 bool bad_alias;
2062 const u_int
2063 rw_mappings = md->urw_mappings + md->krw_mappings,
2064 ro_mappings = md->uro_mappings + md->kro_mappings;
2065
2066 /* do we need to do anything? */
2067 if (arm_cache_prefer_mask == 0)
2068 return;
2069
2070 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
2071 md, pm, va));
2072
2073 KASSERT(!va || pm);
2074 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2075
2076 /* Already a conflict? */
2077 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2078 /* just an add, things are already non-cached */
2079 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2080 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2081 bad_alias = false;
2082 if (va) {
2083 PMAPCOUNT(vac_color_none);
2084 bad_alias = true;
2085 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2086 goto fixup;
2087 }
2088 pv = SLIST_FIRST(&md->pvh_list);
2089 /* the list can't be empty because it would be cachable */
2090 if (md->pvh_attrs & PVF_KMPAGE) {
2091 tst_mask = md->pvh_attrs;
2092 } else {
2093 KASSERT(pv);
2094 tst_mask = pv->pv_va;
2095 pv = SLIST_NEXT(pv, pv_link);
2096 }
2097 /*
2098 * Only check for a bad alias if we have writable mappings.
2099 */
2100 tst_mask &= arm_cache_prefer_mask;
2101 if (rw_mappings > 0) {
2102 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2103 /* if there's a bad alias, stop checking. */
2104 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2105 bad_alias = true;
2106 }
2107 md->pvh_attrs |= PVF_WRITE;
2108 if (!bad_alias)
2109 md->pvh_attrs |= PVF_DIRTY;
2110 } else {
2111 /*
2112 * We have only read-only mappings. Let's see if there
2113 * are multiple colors in use or if we mapped a KMPAGE.
2114 * If the latter, we have a bad alias. If the former,
2115 * we need to remember that.
2116 */
2117 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2118 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2119 if (md->pvh_attrs & PVF_KMPAGE)
2120 bad_alias = true;
2121 break;
2122 }
2123 }
2124 md->pvh_attrs &= ~PVF_WRITE;
2125 /*
2126 * No KMPAGE and we exited early, so we must have
2127 * multiple color mappings.
2128 */
2129 if (!bad_alias && pv != NULL)
2130 md->pvh_attrs |= PVF_MULTCLR;
2131 }
2132
2133 /* If no conflicting colors, set everything back to cached */
2134 if (!bad_alias) {
2135 #ifdef DEBUG
2136 if ((md->pvh_attrs & PVF_WRITE)
2137 || ro_mappings < 2) {
2138 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2139 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2140 }
2141 #endif
2142 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2143 md->pvh_attrs |= tst_mask | PVF_COLORED;
2144 /*
2145 * Restore DIRTY bit if page is modified
2146 */
2147 if (md->pvh_attrs & PVF_DMOD)
2148 md->pvh_attrs |= PVF_DIRTY;
2149 PMAPCOUNT(vac_color_restore);
2150 } else {
2151 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2152 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2153 }
2154 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2155 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2156 } else if (!va) {
2157 KASSERT(pmap_is_page_colored_p(md));
2158 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2159 || (md->pvh_attrs & PVF_DIRTY));
2160 if (rw_mappings == 0) {
2161 md->pvh_attrs &= ~PVF_WRITE;
2162 if (ro_mappings == 1
2163 && (md->pvh_attrs & PVF_MULTCLR)) {
2164 /*
2165 * If this is the last readonly mapping
2166 * but it doesn't match the current color
2167 * for the page, change the current color
2168 * to match this last readonly mapping.
2169 */
2170 pv = SLIST_FIRST(&md->pvh_list);
2171 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2172 & arm_cache_prefer_mask;
2173 if (tst_mask) {
2174 md->pvh_attrs ^= tst_mask;
2175 PMAPCOUNT(vac_color_change);
2176 }
2177 }
2178 }
2179 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2180 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2181 return;
2182 } else if (!pmap_is_page_colored_p(md)) {
2183 /* not colored so we just use its color */
2184 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2185 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2186 PMAPCOUNT(vac_color_new);
2187 md->pvh_attrs &= PAGE_SIZE - 1;
2188 md->pvh_attrs |= PVF_COLORED
2189 | (va & arm_cache_prefer_mask)
2190 | (rw_mappings > 0 ? PVF_WRITE : 0);
2191 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2192 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2193 return;
2194 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2195 bad_alias = false;
2196 if (rw_mappings > 0) {
2197 /*
2198 * We now have writeable mappings and if we have
2199 * readonly mappings in more than once color, we have
2200 * an aliasing problem. Regardless mark the page as
2201 * writeable.
2202 */
2203 if (md->pvh_attrs & PVF_MULTCLR) {
2204 if (ro_mappings < 2) {
2205 /*
2206 * If we only have less than two
2207 * read-only mappings, just flush the
2208 * non-primary colors from the cache.
2209 */
2210 pmap_flush_page(md, pa,
2211 PMAP_FLUSH_SECONDARY);
2212 } else {
2213 bad_alias = true;
2214 }
2215 }
2216 md->pvh_attrs |= PVF_WRITE;
2217 }
2218 /* If no conflicting colors, set everything back to cached */
2219 if (!bad_alias) {
2220 #ifdef DEBUG
2221 if (rw_mappings > 0
2222 || (md->pvh_attrs & PMAP_KMPAGE)) {
2223 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2224 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2225 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2226 }
2227 #endif
2228 if (SLIST_EMPTY(&md->pvh_list))
2229 PMAPCOUNT(vac_color_reuse);
2230 else
2231 PMAPCOUNT(vac_color_ok);
2232
2233 /* matching color, just return */
2234 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2235 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2236 return;
2237 }
2238 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2239 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2240
2241 /* color conflict. evict from cache. */
2242
2243 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2244 md->pvh_attrs &= ~PVF_COLORED;
2245 md->pvh_attrs |= PVF_NC;
2246 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2247 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2248 PMAPCOUNT(vac_color_erase);
2249 } else if (rw_mappings == 0
2250 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2251 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2252
2253 /*
2254 * If the page has dirty cache lines, clean it.
2255 */
2256 if (md->pvh_attrs & PVF_DIRTY)
2257 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2258
2259 /*
2260 * If this is the first remapping (we know that there are no
2261 * writeable mappings), then this is a simple color change.
2262 * Otherwise this is a seconary r/o mapping, which means
2263 * we don't have to do anything.
2264 */
2265 if (ro_mappings == 1) {
2266 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2267 md->pvh_attrs &= PAGE_SIZE - 1;
2268 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2269 PMAPCOUNT(vac_color_change);
2270 } else {
2271 PMAPCOUNT(vac_color_blind);
2272 }
2273 md->pvh_attrs |= PVF_MULTCLR;
2274 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2275 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2276 return;
2277 } else {
2278 if (rw_mappings > 0)
2279 md->pvh_attrs |= PVF_WRITE;
2280
2281 /* color conflict. evict from cache. */
2282 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2283
2284 /* the list can't be empty because this was a enter/modify */
2285 pv = SLIST_FIRST(&md->pvh_list);
2286 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2287 KASSERT(pv);
2288 /*
2289 * If there's only one mapped page, change color to the
2290 * page's new color and return. Restore the DIRTY bit
2291 * that was erased by pmap_flush_page.
2292 */
2293 if (SLIST_NEXT(pv, pv_link) == NULL) {
2294 md->pvh_attrs &= PAGE_SIZE - 1;
2295 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2296 if (md->pvh_attrs & PVF_DMOD)
2297 md->pvh_attrs |= PVF_DIRTY;
2298 PMAPCOUNT(vac_color_change);
2299 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2300 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2301 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2302 return;
2303 }
2304 }
2305 bad_alias = true;
2306 md->pvh_attrs &= ~PVF_COLORED;
2307 md->pvh_attrs |= PVF_NC;
2308 PMAPCOUNT(vac_color_erase);
2309 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2310 }
2311
2312 fixup:
2313 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2314
2315 /*
2316 * Turn cacheing on/off for all pages.
2317 */
2318 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2319 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2320 pv->pv_va);
2321 KASSERTMSG(l2b != NULL, "%#lx", va);
2322 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2323 const pt_entry_t opte = *ptep;
2324 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2325 if (bad_alias) {
2326 pv->pv_flags |= PVF_NC;
2327 } else {
2328 pv->pv_flags &= ~PVF_NC;
2329 npte |= pte_l2_s_cache_mode;
2330 }
2331
2332 if (opte == npte) /* only update is there's a change */
2333 continue;
2334
2335 if (l2pte_valid_p(opte)) {
2336 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2337 }
2338
2339 l2pte_set(ptep, npte, opte);
2340 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2341 }
2342 #endif /* !ARM_MMU_EXTENDED */
2343 }
2344 #endif /* PMAP_CACHE_VIPT */
2345
2346
2347 /*
2348 * Modify pte bits for all ptes corresponding to the given physical address.
2349 * We use `maskbits' rather than `clearbits' because we're always passing
2350 * constants and the latter would require an extra inversion at run-time.
2351 */
2352 static void
2353 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2354 {
2355 struct pv_entry *pv;
2356 #ifdef PMAP_CACHE_VIPT
2357 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2358 bool need_syncicache = false;
2359 #ifdef ARM_MMU_EXTENDED
2360 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2361 #else
2362 const u_int execbits = 0;
2363 bool need_vac_me_harder = false;
2364 #endif
2365 #else
2366 const u_int execbits = 0;
2367 #endif
2368
2369 NPDEBUG(PDB_BITS,
2370 printf("pmap_clearbit: md %p mask 0x%x\n",
2371 md, maskbits));
2372
2373 #ifdef PMAP_CACHE_VIPT
2374 /*
2375 * If we might want to sync the I-cache and we've modified it,
2376 * then we know we definitely need to sync or discard it.
2377 */
2378 if (want_syncicache) {
2379 if (md->pvh_attrs & PVF_MOD) {
2380 need_syncicache = true;
2381 }
2382 }
2383 #endif
2384 KASSERT(pmap_page_locked_p(md));
2385
2386 /*
2387 * Clear saved attributes (modify, reference)
2388 */
2389 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2390
2391 if (SLIST_EMPTY(&md->pvh_list)) {
2392 #if defined(PMAP_CACHE_VIPT)
2393 if (need_syncicache) {
2394 /*
2395 * No one has it mapped, so just discard it. The next
2396 * exec remapping will cause it to be synced.
2397 */
2398 md->pvh_attrs &= ~PVF_EXEC;
2399 PMAPCOUNT(exec_discarded_clearbit);
2400 }
2401 #endif
2402 return;
2403 }
2404
2405 /*
2406 * Loop over all current mappings setting/clearing as appropos
2407 */
2408 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2409 pmap_t pm = pv->pv_pmap;
2410 const vaddr_t va = pv->pv_va;
2411 const u_int oflags = pv->pv_flags;
2412 #ifndef ARM_MMU_EXTENDED
2413 /*
2414 * Kernel entries are unmanaged and as such not to be changed.
2415 */
2416 if (PV_IS_KENTRY_P(oflags))
2417 continue;
2418 #endif
2419 pv->pv_flags &= ~maskbits;
2420
2421 pmap_release_page_lock(md);
2422 pmap_acquire_pmap_lock(pm);
2423
2424 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2425 if (l2b == NULL) {
2426 pmap_release_pmap_lock(pm);
2427 pmap_acquire_page_lock(md);
2428 continue;
2429 }
2430 KASSERTMSG(l2b != NULL, "%#lx", va);
2431
2432 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2433 const pt_entry_t opte = *ptep;
2434 pt_entry_t npte = opte | execbits;
2435
2436 #ifdef ARM_MMU_EXTENDED
2437 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2438 #endif
2439
2440 NPDEBUG(PDB_BITS,
2441 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2442 __func__, pv, pm, va, oflags));
2443
2444 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2445 #ifdef PMAP_CACHE_VIVT
2446 if ((oflags & PVF_NC)) {
2447 /*
2448 * Entry is not cacheable:
2449 *
2450 * Don't turn caching on again if this is a
2451 * modified emulation. This would be
2452 * inconsitent with the settings created by
2453 * pmap_vac_me_harder(). Otherwise, it's safe
2454 * to re-enable cacheing.
2455 *
2456 * There's no need to call pmap_vac_me_harder()
2457 * here: all pages are losing their write
2458 * permission.
2459 */
2460 if (maskbits & PVF_WRITE) {
2461 npte |= pte_l2_s_cache_mode;
2462 pv->pv_flags &= ~PVF_NC;
2463 }
2464 } else if (l2pte_writable_p(opte)) {
2465 /*
2466 * Entry is writable/cacheable: check if pmap
2467 * is current if it is flush it, otherwise it
2468 * won't be in the cache
2469 */
2470 pmap_cache_wbinv_page(pm, va,
2471 (maskbits & PVF_REF) != 0,
2472 oflags|PVF_WRITE);
2473 }
2474 #endif
2475
2476 /* make the pte read only */
2477 npte = l2pte_set_readonly(npte);
2478
2479 pmap_acquire_page_lock(md);
2480 #ifdef MULTIPROCESSOR
2481 pv = pmap_find_pv(md, pm, va);
2482 #endif
2483 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) {
2484 /*
2485 * Keep alias accounting up to date
2486 */
2487 if (pm == pmap_kernel()) {
2488 md->krw_mappings--;
2489 md->kro_mappings++;
2490 } else {
2491 md->urw_mappings--;
2492 md->uro_mappings++;
2493 }
2494 #ifdef PMAP_CACHE_VIPT
2495 if (arm_cache_prefer_mask != 0) {
2496 if (md->urw_mappings + md->krw_mappings == 0) {
2497 md->pvh_attrs &= ~PVF_WRITE;
2498 } else {
2499 PMAP_VALIDATE_MD_PAGE(md);
2500 }
2501 }
2502 if (want_syncicache)
2503 need_syncicache = true;
2504 #ifndef ARM_MMU_EXTENDED
2505 need_vac_me_harder = true;
2506 #endif
2507 #endif /* PMAP_CACHE_VIPT */
2508 }
2509 pmap_release_page_lock(md);
2510 }
2511
2512 if (maskbits & PVF_REF) {
2513 if (true
2514 #ifndef ARM_MMU_EXTENDED
2515 && (oflags & PVF_NC) == 0
2516 #endif
2517 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2518 && l2pte_valid_p(npte)) {
2519 #ifdef PMAP_CACHE_VIVT
2520 /*
2521 * Check npte here; we may have already
2522 * done the wbinv above, and the validity
2523 * of the PTE is the same for opte and
2524 * npte.
2525 */
2526 pmap_cache_wbinv_page(pm, va, true, oflags);
2527 #endif
2528 }
2529
2530 /*
2531 * Make the PTE invalid so that we will take a
2532 * page fault the next time the mapping is
2533 * referenced.
2534 */
2535 npte &= ~L2_TYPE_MASK;
2536 npte |= L2_TYPE_INV;
2537 }
2538
2539 if (npte != opte) {
2540 l2pte_reset(ptep);
2541 PTE_SYNC(ptep);
2542
2543 /* Flush the TLB entry if a current pmap. */
2544 pmap_tlb_flush_SE(pm, va, oflags);
2545
2546 l2pte_set(ptep, npte, 0);
2547 PTE_SYNC(ptep);
2548 }
2549
2550 pmap_release_pmap_lock(pm);
2551 pmap_acquire_page_lock(md);
2552
2553 NPDEBUG(PDB_BITS,
2554 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2555 pm, va, opte, npte));
2556 }
2557
2558 #if defined(PMAP_CACHE_VIPT)
2559 /*
2560 * If we need to sync the I-cache and we haven't done it yet, do it.
2561 */
2562 if (need_syncicache) {
2563 pmap_release_page_lock(md);
2564 pmap_syncicache_page(md, pa);
2565 pmap_acquire_page_lock(md);
2566 PMAPCOUNT(exec_synced_clearbit);
2567 }
2568 #ifndef ARM_MMU_EXTENDED
2569 /*
2570 * If we are changing this to read-only, we need to call vac_me_harder
2571 * so we can change all the read-only pages to cacheable. We pretend
2572 * this as a page deletion.
2573 */
2574 if (need_vac_me_harder) {
2575 if (md->pvh_attrs & PVF_NC)
2576 pmap_vac_me_harder(md, pa, NULL, 0);
2577 }
2578 #endif /* !ARM_MMU_EXTENDED */
2579 #endif /* PMAP_CACHE_VIPT */
2580 }
2581
2582 /*
2583 * pmap_clean_page()
2584 *
2585 * This is a local function used to work out the best strategy to clean
2586 * a single page referenced by its entry in the PV table. It's used by
2587 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2588 *
2589 * Its policy is effectively:
2590 * o If there are no mappings, we don't bother doing anything with the cache.
2591 * o If there is one mapping, we clean just that page.
2592 * o If there are multiple mappings, we clean the entire cache.
2593 *
2594 * So that some functions can be further optimised, it returns 0 if it didn't
2595 * clean the entire cache, or 1 if it did.
2596 *
2597 * XXX One bug in this routine is that if the pv_entry has a single page
2598 * mapped at 0x00000000 a whole cache clean will be performed rather than
2599 * just the 1 page. Since this should not occur in everyday use and if it does
2600 * it will just result in not the most efficient clean for the page.
2601 */
2602 #ifdef PMAP_CACHE_VIVT
2603 static bool
2604 pmap_clean_page(struct vm_page_md *md, bool is_src)
2605 {
2606 struct pv_entry *pv;
2607 pmap_t pm_to_clean = NULL;
2608 bool cache_needs_cleaning = false;
2609 vaddr_t page_to_clean = 0;
2610 u_int flags = 0;
2611
2612 /*
2613 * Since we flush the cache each time we change to a different
2614 * user vmspace, we only need to flush the page if it is in the
2615 * current pmap.
2616 */
2617 KASSERT(pmap_page_locked_p(md));
2618 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2619 if (pmap_is_current(pv->pv_pmap)) {
2620 flags |= pv->pv_flags;
2621 /*
2622 * The page is mapped non-cacheable in
2623 * this map. No need to flush the cache.
2624 */
2625 if (pv->pv_flags & PVF_NC) {
2626 #ifdef DIAGNOSTIC
2627 KASSERT(!cache_needs_cleaning);
2628 #endif
2629 break;
2630 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2631 continue;
2632 if (cache_needs_cleaning) {
2633 page_to_clean = 0;
2634 break;
2635 } else {
2636 page_to_clean = pv->pv_va;
2637 pm_to_clean = pv->pv_pmap;
2638 }
2639 cache_needs_cleaning = true;
2640 }
2641 }
2642
2643 if (page_to_clean) {
2644 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2645 !is_src, flags | PVF_REF);
2646 } else if (cache_needs_cleaning) {
2647 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2648
2649 pmap_cache_wbinv_all(pm, flags);
2650 return true;
2651 }
2652 return false;
2653 }
2654 #endif
2655
2656 #ifdef PMAP_CACHE_VIPT
2657 /*
2658 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2659 * right cache alias to make sure we flush the right stuff.
2660 */
2661 void
2662 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2663 {
2664 pmap_t kpm = pmap_kernel();
2665 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2666 ? PAGE_SIZE
2667 : arm_pcache.icache_way_size;
2668
2669 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2670 md, md->pvh_attrs));
2671 /*
2672 * No need to clean the page if it's non-cached.
2673 */
2674 #ifndef ARM_MMU_EXTENDED
2675 if (md->pvh_attrs & PVF_NC)
2676 return;
2677 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2678 #endif
2679
2680 pt_entry_t * const ptep = cpu_cdst_pte(0);
2681 const vaddr_t dstp = cpu_cdstp(0);
2682 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2683 if (way_size <= PAGE_SIZE) {
2684 bool ok = false;
2685 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2686 if (ok) {
2687 cpu_icache_sync_range(vdstp, way_size);
2688 return;
2689 }
2690 }
2691 #endif
2692
2693 /*
2694 * We don't worry about the color of the exec page, we map the
2695 * same page to pages in the way and then do the icache_sync on
2696 * the entire way making sure we are cleaned.
2697 */
2698 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2699 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2700
2701 for (size_t i = 0, j = 0; i < way_size;
2702 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2703 l2pte_reset(ptep + j);
2704 PTE_SYNC(ptep + j);
2705
2706 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2707 /*
2708 * Set up a PTE with to flush these cache lines.
2709 */
2710 l2pte_set(ptep + j, npte, 0);
2711 }
2712 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2713
2714 /*
2715 * Flush it.
2716 */
2717 cpu_icache_sync_range(dstp, way_size);
2718
2719 for (size_t i = 0, j = 0; i < way_size;
2720 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2721 /*
2722 * Unmap the page(s).
2723 */
2724 l2pte_reset(ptep + j);
2725 PTE_SYNC(ptep + j);
2726
2727 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2728 }
2729
2730 md->pvh_attrs |= PVF_EXEC;
2731 PMAPCOUNT(exec_synced);
2732 }
2733
2734 #ifndef ARM_MMU_EXTENDED
2735 void
2736 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2737 {
2738 vsize_t va_offset, end_va;
2739 bool wbinv_p;
2740
2741 if (arm_cache_prefer_mask == 0)
2742 return;
2743
2744 switch (flush) {
2745 case PMAP_FLUSH_PRIMARY:
2746 if (md->pvh_attrs & PVF_MULTCLR) {
2747 va_offset = 0;
2748 end_va = arm_cache_prefer_mask;
2749 md->pvh_attrs &= ~PVF_MULTCLR;
2750 PMAPCOUNT(vac_flush_lots);
2751 } else {
2752 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2753 end_va = va_offset;
2754 PMAPCOUNT(vac_flush_one);
2755 }
2756 /*
2757 * Mark that the page is no longer dirty.
2758 */
2759 md->pvh_attrs &= ~PVF_DIRTY;
2760 wbinv_p = true;
2761 break;
2762 case PMAP_FLUSH_SECONDARY:
2763 va_offset = 0;
2764 end_va = arm_cache_prefer_mask;
2765 wbinv_p = true;
2766 md->pvh_attrs &= ~PVF_MULTCLR;
2767 PMAPCOUNT(vac_flush_lots);
2768 break;
2769 case PMAP_CLEAN_PRIMARY:
2770 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2771 end_va = va_offset;
2772 wbinv_p = false;
2773 /*
2774 * Mark that the page is no longer dirty.
2775 */
2776 if ((md->pvh_attrs & PVF_DMOD) == 0)
2777 md->pvh_attrs &= ~PVF_DIRTY;
2778 PMAPCOUNT(vac_clean_one);
2779 break;
2780 default:
2781 return;
2782 }
2783
2784 KASSERT(!(md->pvh_attrs & PVF_NC));
2785
2786 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2787 md, md->pvh_attrs));
2788
2789 const size_t scache_line_size = arm_scache.dcache_line_size;
2790
2791 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2792 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2793 const vaddr_t dstp = cpu_cdstp(va_offset);
2794 const pt_entry_t opte = *ptep;
2795
2796 if (flush == PMAP_FLUSH_SECONDARY
2797 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2798 continue;
2799
2800 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2801 /*
2802 * Set up a PTE with the right coloring to flush
2803 * existing cache entries.
2804 */
2805 const pt_entry_t npte = L2_S_PROTO
2806 | pa
2807 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2808 | pte_l2_s_cache_mode;
2809 l2pte_set(ptep, npte, opte);
2810 PTE_SYNC(ptep);
2811
2812 /*
2813 * Flush it. Make sure to flush secondary cache too since
2814 * bus_dma will ignore uncached pages.
2815 */
2816 if (scache_line_size != 0) {
2817 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2818 if (wbinv_p) {
2819 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2820 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2821 } else {
2822 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2823 }
2824 } else {
2825 if (wbinv_p) {
2826 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2827 } else {
2828 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2829 }
2830 }
2831
2832 /*
2833 * Restore the page table entry since we might have interrupted
2834 * pmap_zero_page or pmap_copy_page which was already using
2835 * this pte.
2836 */
2837 if (opte) {
2838 l2pte_set(ptep, opte, npte);
2839 } else {
2840 l2pte_reset(ptep);
2841 }
2842 PTE_SYNC(ptep);
2843 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2844 }
2845 }
2846 #endif /* ARM_MMU_EXTENDED */
2847 #endif /* PMAP_CACHE_VIPT */
2848
2849 /*
2850 * Routine: pmap_page_remove
2851 * Function:
2852 * Removes this physical page from
2853 * all physical maps in which it resides.
2854 * Reflects back modify bits to the pager.
2855 */
2856 static void
2857 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2858 {
2859 struct l2_bucket *l2b;
2860 struct pv_entry *pv;
2861 pt_entry_t *ptep;
2862 #ifndef ARM_MMU_EXTENDED
2863 bool flush = false;
2864 #endif
2865 u_int flags = 0;
2866
2867 NPDEBUG(PDB_FOLLOW,
2868 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2869 pa));
2870
2871 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2872 pmap_acquire_page_lock(md);
2873 if (*pvp == NULL) {
2874 #ifdef PMAP_CACHE_VIPT
2875 /*
2876 * We *know* the page contents are about to be replaced.
2877 * Discard the exec contents
2878 */
2879 if (PV_IS_EXEC_P(md->pvh_attrs))
2880 PMAPCOUNT(exec_discarded_page_protect);
2881 md->pvh_attrs &= ~PVF_EXEC;
2882 PMAP_VALIDATE_MD_PAGE(md);
2883 #endif
2884 pmap_release_page_lock(md);
2885 return;
2886 }
2887 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2888 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2889 #endif
2890
2891 /*
2892 * Clear alias counts
2893 */
2894 #ifdef PMAP_CACHE_VIVT
2895 md->k_mappings = 0;
2896 #endif
2897 md->urw_mappings = md->uro_mappings = 0;
2898
2899 #ifdef PMAP_CACHE_VIVT
2900 pmap_clean_page(md, false);
2901 #endif
2902
2903 while ((pv = *pvp) != NULL) {
2904 pmap_t pm = pv->pv_pmap;
2905 #ifndef ARM_MMU_EXTENDED
2906 if (flush == false && pmap_is_current(pm))
2907 flush = true;
2908 #endif
2909
2910 if (pm == pmap_kernel()) {
2911 #ifdef PMAP_CACHE_VIPT
2912 /*
2913 * If this was unmanaged mapping, it must be preserved.
2914 * Move it back on the list and advance the end-of-list
2915 * pointer.
2916 */
2917 if (PV_IS_KENTRY_P(pv->pv_flags)) {
2918 *pvp = pv;
2919 pvp = &SLIST_NEXT(pv, pv_link);
2920 continue;
2921 }
2922 if (pv->pv_flags & PVF_WRITE)
2923 md->krw_mappings--;
2924 else
2925 md->kro_mappings--;
2926 #endif
2927 PMAPCOUNT(kernel_unmappings);
2928 }
2929 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2930 PMAPCOUNT(unmappings);
2931
2932 pmap_release_page_lock(md);
2933 pmap_acquire_pmap_lock(pm);
2934
2935 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2936 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2937
2938 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2939
2940 /*
2941 * Update statistics
2942 */
2943 --pm->pm_stats.resident_count;
2944
2945 /* Wired bit */
2946 if (pv->pv_flags & PVF_WIRED)
2947 --pm->pm_stats.wired_count;
2948
2949 flags |= pv->pv_flags;
2950
2951 /*
2952 * Invalidate the PTEs.
2953 */
2954 l2pte_reset(ptep);
2955 PTE_SYNC_CURRENT(pm, ptep);
2956
2957 #ifdef ARM_MMU_EXTENDED
2958 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2959 #endif
2960
2961 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2962
2963 pmap_release_pmap_lock(pm);
2964
2965 pool_put(&pmap_pv_pool, pv);
2966 pmap_acquire_page_lock(md);
2967 #ifdef MULTIPROCESSOR
2968 /*
2969 * Restart of the beginning of the list.
2970 */
2971 pvp = &SLIST_FIRST(&md->pvh_list);
2972 #endif
2973 }
2974 /*
2975 * if we reach the end of the list and there are still mappings, they
2976 * might be able to be cached now. And they must be kernel mappings.
2977 */
2978 if (!SLIST_EMPTY(&md->pvh_list)) {
2979 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2980 }
2981
2982 #ifdef PMAP_CACHE_VIPT
2983 /*
2984 * Its EXEC cache is now gone.
2985 */
2986 if (PV_IS_EXEC_P(md->pvh_attrs))
2987 PMAPCOUNT(exec_discarded_page_protect);
2988 md->pvh_attrs &= ~PVF_EXEC;
2989 KASSERT(md->urw_mappings == 0);
2990 KASSERT(md->uro_mappings == 0);
2991 #ifndef ARM_MMU_EXTENDED
2992 if (arm_cache_prefer_mask != 0) {
2993 if (md->krw_mappings == 0)
2994 md->pvh_attrs &= ~PVF_WRITE;
2995 PMAP_VALIDATE_MD_PAGE(md);
2996 }
2997 #endif /* ARM_MMU_EXTENDED */
2998 #endif /* PMAP_CACHE_VIPT */
2999 pmap_release_page_lock(md);
3000
3001 #ifndef ARM_MMU_EXTENDED
3002 if (flush) {
3003 /*
3004 * Note: We can't use pmap_tlb_flush{I,D}() here since that
3005 * would need a subsequent call to pmap_update() to ensure
3006 * curpm->pm_cstate.cs_all is reset. Our callers are not
3007 * required to do that (see pmap(9)), so we can't modify
3008 * the current pmap's state.
3009 */
3010 if (PV_BEEN_EXECD(flags))
3011 cpu_tlb_flushID();
3012 else
3013 cpu_tlb_flushD();
3014 }
3015 cpu_cpwait();
3016 #endif /* ARM_MMU_EXTENDED */
3017 }
3018
3019 /*
3020 * pmap_t pmap_create(void)
3021 *
3022 * Create a new pmap structure from scratch.
3023 */
3024 pmap_t
3025 pmap_create(void)
3026 {
3027 pmap_t pm;
3028
3029 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3030
3031 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
3032
3033 pm->pm_refs = 1;
3034 pm->pm_stats.wired_count = 0;
3035 pm->pm_stats.resident_count = 1;
3036 #ifdef ARM_MMU_EXTENDED
3037 #ifdef MULTIPROCESSOR
3038 kcpuset_create(&pm->pm_active, true);
3039 kcpuset_create(&pm->pm_onproc, true);
3040 #endif
3041 #else
3042 pm->pm_cstate.cs_all = 0;
3043 #endif
3044 pmap_alloc_l1(pm);
3045
3046 /*
3047 * Note: The pool cache ensures that the pm_l2[] array is already
3048 * initialised to zero.
3049 */
3050
3051 pmap_pinit(pm);
3052
3053 return pm;
3054 }
3055
3056 u_int
3057 arm32_mmap_flags(paddr_t pa)
3058 {
3059 /*
3060 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3061 * and we're using the upper bits in page numbers to pass flags around
3062 * so we might as well use the same bits
3063 */
3064 return (u_int)pa & PMAP_MD_MASK;
3065 }
3066 /*
3067 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3068 * u_int flags)
3069 *
3070 * Insert the given physical page (p) at
3071 * the specified virtual address (v) in the
3072 * target physical map with the protection requested.
3073 *
3074 * NB: This is the only routine which MAY NOT lazy-evaluate
3075 * or lose information. That is, this routine must actually
3076 * insert this page into the given map NOW.
3077 */
3078 int
3079 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3080 {
3081 struct l2_bucket *l2b;
3082 struct vm_page *pg, *opg;
3083 u_int nflags;
3084 u_int oflags;
3085 const bool kpm_p = (pm == pmap_kernel());
3086 #ifdef ARM_HAS_VBAR
3087 const bool vector_page_p = false;
3088 #else
3089 const bool vector_page_p = (va == vector_page);
3090 #endif
3091 struct pmap_page *pp = pmap_pv_tracked(pa);
3092 struct pv_entry *new_pv = NULL;
3093 struct pv_entry *old_pv = NULL;
3094 int error = 0;
3095
3096 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3097
3098 UVMHIST_LOG(maphist, " (pm %#jx va %#jx pa %#jx prot %#jx",
3099 (uintptr_t)pm, va, pa, prot);
3100 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0);
3101
3102 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3103 KDASSERT(((va | pa) & PGOFSET) == 0);
3104
3105 /*
3106 * Get a pointer to the page. Later on in this function, we
3107 * test for a managed page by checking pg != NULL.
3108 */
3109 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3110 /*
3111 * if we may need a new pv entry allocate if now, as we can't do it
3112 * with the kernel_pmap locked
3113 */
3114 if (pg || pp)
3115 new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3116
3117 nflags = 0;
3118 if (prot & VM_PROT_WRITE)
3119 nflags |= PVF_WRITE;
3120 if (prot & VM_PROT_EXECUTE)
3121 nflags |= PVF_EXEC;
3122 if (flags & PMAP_WIRED)
3123 nflags |= PVF_WIRED;
3124
3125 pmap_acquire_pmap_lock(pm);
3126
3127 /*
3128 * Fetch the L2 bucket which maps this page, allocating one if
3129 * necessary for user pmaps.
3130 */
3131 if (kpm_p) {
3132 l2b = pmap_get_l2_bucket(pm, va);
3133 } else {
3134 l2b = pmap_alloc_l2_bucket(pm, va);
3135 }
3136 if (l2b == NULL) {
3137 if (flags & PMAP_CANFAIL) {
3138 pmap_release_pmap_lock(pm);
3139 error = ENOMEM;
3140 goto free_pv;
3141 }
3142 panic("pmap_enter: failed to allocate L2 bucket");
3143 }
3144 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3145 const pt_entry_t opte = *ptep;
3146 pt_entry_t npte = pa;
3147 oflags = 0;
3148
3149 if (opte) {
3150 /*
3151 * There is already a mapping at this address.
3152 * If the physical address is different, lookup the
3153 * vm_page.
3154 */
3155 if (l2pte_pa(opte) != pa) {
3156 KASSERT(!pmap_pv_tracked(pa));
3157 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3158 } else
3159 opg = pg;
3160 } else
3161 opg = NULL;
3162
3163 if (pg || pp) {
3164 KASSERT((pg != NULL) != (pp != NULL));
3165 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3166 PMAP_PAGE_TO_MD(pp);
3167
3168 /*
3169 * This is to be a managed mapping.
3170 */
3171 pmap_acquire_page_lock(md);
3172 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3173 /*
3174 * - The access type indicates that we don't need
3175 * to do referenced emulation.
3176 * OR
3177 * - The physical page has already been referenced
3178 * so no need to re-do referenced emulation here.
3179 */
3180 npte |= l2pte_set_readonly(L2_S_PROTO);
3181
3182 nflags |= PVF_REF;
3183
3184 if ((prot & VM_PROT_WRITE) != 0 &&
3185 ((flags & VM_PROT_WRITE) != 0 ||
3186 (md->pvh_attrs & PVF_MOD) != 0)) {
3187 /*
3188 * This is a writable mapping, and the
3189 * page's mod state indicates it has
3190 * already been modified. Make it
3191 * writable from the outset.
3192 */
3193 npte = l2pte_set_writable(npte);
3194 nflags |= PVF_MOD;
3195 }
3196
3197 #ifdef ARM_MMU_EXTENDED
3198 /*
3199 * If the page has been cleaned, then the pvh_attrs
3200 * will have PVF_EXEC set, so mark it execute so we
3201 * don't get an access fault when trying to execute
3202 * from it.
3203 */
3204 if (md->pvh_attrs & nflags & PVF_EXEC) {
3205 npte &= ~L2_XS_XN;
3206 }
3207 #endif
3208 } else {
3209 /*
3210 * Need to do page referenced emulation.
3211 */
3212 npte |= L2_TYPE_INV;
3213 }
3214
3215 if (flags & ARM32_MMAP_WRITECOMBINE) {
3216 npte |= pte_l2_s_wc_mode;
3217 } else
3218 npte |= pte_l2_s_cache_mode;
3219
3220 if (pg != NULL && pg == opg) {
3221 /*
3222 * We're changing the attrs of an existing mapping.
3223 */
3224 oflags = pmap_modify_pv(md, pa, pm, va,
3225 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3226 PVF_MOD | PVF_REF, nflags);
3227
3228 #ifdef PMAP_CACHE_VIVT
3229 /*
3230 * We may need to flush the cache if we're
3231 * doing rw-ro...
3232 */
3233 if (pm->pm_cstate.cs_cache_d &&
3234 (oflags & PVF_NC) == 0 &&
3235 l2pte_writable_p(opte) &&
3236 (prot & VM_PROT_WRITE) == 0)
3237 cpu_dcache_wb_range(va, PAGE_SIZE);
3238 #endif
3239 } else {
3240 struct pv_entry *pv;
3241 /*
3242 * New mapping, or changing the backing page
3243 * of an existing mapping.
3244 */
3245 if (opg) {
3246 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3247 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3248
3249 /*
3250 * Replacing an existing mapping with a new one.
3251 * It is part of our managed memory so we
3252 * must remove it from the PV list
3253 */
3254 pv = pmap_remove_pv(omd, opa, pm, va);
3255 pmap_vac_me_harder(omd, opa, pm, 0);
3256 oflags = pv->pv_flags;
3257
3258 #ifdef PMAP_CACHE_VIVT
3259 /*
3260 * If the old mapping was valid (ref/mod
3261 * emulation creates 'invalid' mappings
3262 * initially) then make sure to frob
3263 * the cache.
3264 */
3265 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3266 pmap_cache_wbinv_page(pm, va, true,
3267 oflags);
3268 }
3269 #endif
3270 } else {
3271 pv = new_pv;
3272 new_pv = NULL;
3273 if (pv == NULL) {
3274 pmap_release_page_lock(md);
3275 pmap_release_pmap_lock(pm);
3276 if ((flags & PMAP_CANFAIL) == 0)
3277 panic("pmap_enter: "
3278 "no pv entries");
3279
3280 pmap_free_l2_bucket(pm, l2b, 0);
3281 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3282 0, 0, 0, 0);
3283 return ENOMEM;
3284 }
3285 }
3286
3287 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3288 }
3289 pmap_release_page_lock(md);
3290 } else {
3291 /*
3292 * We're mapping an unmanaged page.
3293 * These are always readable, and possibly writable, from
3294 * the get go as we don't need to track ref/mod status.
3295 */
3296 npte |= l2pte_set_readonly(L2_S_PROTO);
3297 if (prot & VM_PROT_WRITE)
3298 npte = l2pte_set_writable(npte);
3299
3300 /*
3301 * Make sure the vector table is mapped cacheable
3302 */
3303 if ((vector_page_p && !kpm_p)
3304 || (flags & ARM32_MMAP_CACHEABLE)) {
3305 npte |= pte_l2_s_cache_mode;
3306 #ifdef ARM_MMU_EXTENDED
3307 npte &= ~L2_XS_XN; /* and executable */
3308 #endif
3309 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3310 npte |= pte_l2_s_wc_mode;
3311 }
3312 if (opg) {
3313 /*
3314 * Looks like there's an existing 'managed' mapping
3315 * at this address.
3316 */
3317 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3318 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3319
3320 pmap_acquire_page_lock(omd);
3321 old_pv = pmap_remove_pv(omd, opa, pm, va);
3322 pmap_vac_me_harder(omd, opa, pm, 0);
3323 oflags = old_pv->pv_flags;
3324 pmap_release_page_lock(omd);
3325
3326 #ifdef PMAP_CACHE_VIVT
3327 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3328 pmap_cache_wbinv_page(pm, va, true, oflags);
3329 }
3330 #endif
3331 }
3332 }
3333
3334 /*
3335 * Make sure userland mappings get the right permissions
3336 */
3337 if (!vector_page_p && !kpm_p) {
3338 npte |= L2_S_PROT_U;
3339 #ifdef ARM_MMU_EXTENDED
3340 npte |= L2_XS_nG; /* user pages are not global */
3341 #endif
3342 }
3343
3344 /*
3345 * Keep the stats up to date
3346 */
3347 if (opte == 0) {
3348 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3349 pm->pm_stats.resident_count++;
3350 }
3351
3352 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3353
3354 #if defined(ARM_MMU_EXTENDED)
3355 /*
3356 * If exec protection was requested but the page hasn't been synced,
3357 * sync it now and allow execution from it.
3358 */
3359 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3360 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3361 npte &= ~L2_XS_XN;
3362 pmap_syncicache_page(md, pa);
3363 PMAPCOUNT(exec_synced_map);
3364 }
3365 #endif
3366 /*
3367 * If this is just a wiring change, the two PTEs will be
3368 * identical, so there's no need to update the page table.
3369 */
3370 if (npte != opte) {
3371 l2pte_reset(ptep);
3372 PTE_SYNC(ptep);
3373 if (l2pte_valid_p(opte)) {
3374 pmap_tlb_flush_SE(pm, va, oflags);
3375 }
3376 l2pte_set(ptep, npte, 0);
3377 PTE_SYNC(ptep);
3378 #ifndef ARM_MMU_EXTENDED
3379 bool is_cached = pmap_is_cached(pm);
3380 if (is_cached) {
3381 /*
3382 * We only need to frob the cache/tlb if this pmap
3383 * is current
3384 */
3385 if (!vector_page_p && l2pte_valid_p(npte)) {
3386 /*
3387 * This mapping is likely to be accessed as
3388 * soon as we return to userland. Fix up the
3389 * L1 entry to avoid taking another
3390 * page/domain fault.
3391 */
3392 pd_entry_t *pdep = pmap_l1_kva(pm)
3393 + l1pte_index(va);
3394 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3395 | L1_C_DOM(pmap_domain(pm));
3396 if (*pdep != pde) {
3397 l1pte_setone(pdep, pde);
3398 PDE_SYNC(pdep);
3399 }
3400 }
3401 }
3402
3403 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx",
3404 is_cached, pm->pm_cstate.cs_all, 0, 0);
3405
3406 if (pg != NULL) {
3407 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3408
3409 pmap_acquire_page_lock(md);
3410 pmap_vac_me_harder(md, pa, pm, va);
3411 pmap_release_page_lock(md);
3412 }
3413 #endif
3414 }
3415 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3416 if (pg) {
3417 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3418
3419 pmap_acquire_page_lock(md);
3420 #ifndef ARM_MMU_EXTENDED
3421 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3422 #endif
3423 PMAP_VALIDATE_MD_PAGE(md);
3424 pmap_release_page_lock(md);
3425 }
3426 #endif
3427
3428 pmap_release_pmap_lock(pm);
3429
3430
3431 if (old_pv)
3432 pool_put(&pmap_pv_pool, old_pv);
3433 free_pv:
3434 if (new_pv)
3435 pool_put(&pmap_pv_pool, new_pv);
3436 return error;
3437 }
3438
3439 /*
3440 * pmap_remove()
3441 *
3442 * pmap_remove is responsible for nuking a number of mappings for a range
3443 * of virtual address space in the current pmap. To do this efficiently
3444 * is interesting, because in a number of cases a wide virtual address
3445 * range may be supplied that contains few actual mappings. So, the
3446 * optimisations are:
3447 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3448 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3449 * maybe do just a partial cache clean. This path of execution is
3450 * complicated by the fact that the cache must be flushed _before_
3451 * the PTE is nuked, being a VAC :-)
3452 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3453 * all invalidations until pmap_update(), since pmap_remove_all() has
3454 * already flushed the cache.
3455 * 4. Maybe later fast-case a single page, but I don't think this is
3456 * going to make _that_ much difference overall.
3457 */
3458
3459 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3460
3461 void
3462 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3463 {
3464 SLIST_HEAD(,pv_entry) opv_list;
3465 struct pv_entry *pv, *npv;
3466 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3467 UVMHIST_LOG(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3468 (uintptr_t)pm, sva, eva, 0);
3469
3470 #ifdef PMAP_FAULTINFO
3471 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
3472 curpcb->pcb_faultinfo.pfi_repeats = 0;
3473 curpcb->pcb_faultinfo.pfi_faultptep = NULL;
3474 #endif
3475
3476 SLIST_INIT(&opv_list);
3477 /*
3478 * we lock in the pmap => pv_head direction
3479 */
3480 pmap_acquire_pmap_lock(pm);
3481
3482 #ifndef ARM_MMU_EXTENDED
3483 u_int cleanlist_idx, total, cnt;
3484 struct {
3485 vaddr_t va;
3486 pt_entry_t *ptep;
3487 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3488
3489 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3490 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3491 if (pm->pm_cstate.cs_tlb == 0)
3492 pm->pm_remove_all = true;
3493 } else
3494 cleanlist_idx = 0;
3495 total = 0;
3496 #endif
3497
3498 while (sva < eva) {
3499 /*
3500 * Do one L2 bucket's worth at a time.
3501 */
3502 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3503 if (next_bucket > eva)
3504 next_bucket = eva;
3505
3506 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3507 if (l2b == NULL) {
3508 sva = next_bucket;
3509 continue;
3510 }
3511
3512 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3513 u_int mappings = 0;
3514
3515 for (;sva < next_bucket;
3516 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3517 pt_entry_t opte = *ptep;
3518
3519 if (opte == 0) {
3520 /* Nothing here, move along */
3521 continue;
3522 }
3523
3524 u_int flags = PVF_REF;
3525 paddr_t pa = l2pte_pa(opte);
3526 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3527
3528 /*
3529 * Update flags. In a number of circumstances,
3530 * we could cluster a lot of these and do a
3531 * number of sequential pages in one go.
3532 */
3533 if (pg != NULL) {
3534 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3535
3536 pmap_acquire_page_lock(md);
3537 pv = pmap_remove_pv(md, pa, pm, sva);
3538 pmap_vac_me_harder(md, pa, pm, 0);
3539 pmap_release_page_lock(md);
3540 if (pv != NULL) {
3541 if (pm->pm_remove_all == false) {
3542 flags = pv->pv_flags;
3543 }
3544 SLIST_INSERT_HEAD(&opv_list,
3545 pv, pv_link);
3546 }
3547 }
3548 mappings += PAGE_SIZE / L2_S_SIZE;
3549
3550 if (!l2pte_valid_p(opte)) {
3551 /*
3552 * Ref/Mod emulation is still active for this
3553 * mapping, therefore it is has not yet been
3554 * accessed. No need to frob the cache/tlb.
3555 */
3556 l2pte_reset(ptep);
3557 PTE_SYNC_CURRENT(pm, ptep);
3558 continue;
3559 }
3560
3561 #ifdef ARM_MMU_EXTENDED
3562 l2pte_reset(ptep);
3563 PTE_SYNC(ptep);
3564 if (__predict_false(pm->pm_remove_all == false)) {
3565 pmap_tlb_flush_SE(pm, sva, flags);
3566 }
3567 #else
3568 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3569 /* Add to the clean list. */
3570 cleanlist[cleanlist_idx].ptep = ptep;
3571 cleanlist[cleanlist_idx].va =
3572 sva | (flags & PVF_EXEC);
3573 cleanlist_idx++;
3574 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3575 /* Nuke everything if needed. */
3576 #ifdef PMAP_CACHE_VIVT
3577 pmap_cache_wbinv_all(pm, PVF_EXEC);
3578 #endif
3579 /*
3580 * Roll back the previous PTE list,
3581 * and zero out the current PTE.
3582 */
3583 for (cnt = 0;
3584 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3585 l2pte_reset(cleanlist[cnt].ptep);
3586 PTE_SYNC(cleanlist[cnt].ptep);
3587 }
3588 l2pte_reset(ptep);
3589 PTE_SYNC(ptep);
3590 cleanlist_idx++;
3591 pm->pm_remove_all = true;
3592 } else {
3593 l2pte_reset(ptep);
3594 PTE_SYNC(ptep);
3595 if (pm->pm_remove_all == false) {
3596 pmap_tlb_flush_SE(pm, sva, flags);
3597 }
3598 }
3599 #endif
3600 }
3601
3602 #ifndef ARM_MMU_EXTENDED
3603 /*
3604 * Deal with any left overs
3605 */
3606 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3607 total += cleanlist_idx;
3608 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3609 l2pte_reset(cleanlist[cnt].ptep);
3610 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3611 vaddr_t va = cleanlist[cnt].va;
3612 if (pm->pm_cstate.cs_all != 0) {
3613 vaddr_t clva = va & ~PAGE_MASK;
3614 u_int flags = va & PVF_EXEC;
3615 #ifdef PMAP_CACHE_VIVT
3616 pmap_cache_wbinv_page(pm, clva, true,
3617 PVF_REF | PVF_WRITE | flags);
3618 #endif
3619 pmap_tlb_flush_SE(pm, clva,
3620 PVF_REF | flags);
3621 }
3622 }
3623
3624 /*
3625 * If it looks like we're removing a whole bunch
3626 * of mappings, it's faster to just write-back
3627 * the whole cache now and defer TLB flushes until
3628 * pmap_update() is called.
3629 */
3630 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3631 cleanlist_idx = 0;
3632 else {
3633 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3634 #ifdef PMAP_CACHE_VIVT
3635 pmap_cache_wbinv_all(pm, PVF_EXEC);
3636 #endif
3637 pm->pm_remove_all = true;
3638 }
3639 }
3640 #endif /* ARM_MMU_EXTENDED */
3641
3642 pmap_free_l2_bucket(pm, l2b, mappings);
3643 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3644 }
3645
3646 pmap_release_pmap_lock(pm);
3647 SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3648 pool_put(&pmap_pv_pool, pv);
3649 }
3650 }
3651
3652 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3653 static struct pv_entry *
3654 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3655 {
3656 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3657 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3658 struct pv_entry *pv;
3659
3660 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3661 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3662 KASSERT(pmap_page_locked_p(md));
3663
3664 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3665 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3666 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3667
3668 /*
3669 * We are removing a writeable mapping to a cached exec page, if
3670 * it's the last mapping then clear its execness otherwise sync
3671 * the page to the icache.
3672 */
3673 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3674 && (pv->pv_flags & PVF_WRITE) != 0) {
3675 if (SLIST_EMPTY(&md->pvh_list)) {
3676 md->pvh_attrs &= ~PVF_EXEC;
3677 PMAPCOUNT(exec_discarded_kremove);
3678 } else {
3679 pmap_syncicache_page(md, pa);
3680 PMAPCOUNT(exec_synced_kremove);
3681 }
3682 }
3683 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3684
3685 return pv;
3686 }
3687 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3688
3689 /*
3690 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3691 *
3692 * We assume there is already sufficient KVM space available
3693 * to do this, as we can't allocate L2 descriptor tables/metadata
3694 * from here.
3695 */
3696 void
3697 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3698 {
3699 #ifdef PMAP_CACHE_VIVT
3700 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3701 #endif
3702 #ifdef PMAP_CACHE_VIPT
3703 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3704 struct vm_page *opg;
3705 #ifndef ARM_MMU_EXTENDED
3706 struct pv_entry *pv = NULL;
3707 #endif
3708 #endif
3709 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3710
3711 UVMHIST_FUNC(__func__);
3712
3713 if (pmap_initialized) {
3714 UVMHIST_CALLED(maphist);
3715 UVMHIST_LOG(maphist, " (va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx",
3716 va, pa, prot, flags);
3717 }
3718
3719 pmap_t kpm = pmap_kernel();
3720 pmap_acquire_pmap_lock(kpm);
3721 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3722 const size_t l1slot __diagused = l1pte_index(va);
3723 KASSERTMSG(l2b != NULL,
3724 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3725 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3726 kpm->pm_l2[L2_IDX(l1slot)]
3727 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3728 : NULL,
3729 kpm->pm_l2[L2_IDX(l1slot)]
3730 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3731 : NULL);
3732 KASSERT(l2b->l2b_kva != NULL);
3733
3734 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3735 const pt_entry_t opte = *ptep;
3736
3737 if (opte == 0) {
3738 PMAPCOUNT(kenter_mappings);
3739 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3740 } else {
3741 PMAPCOUNT(kenter_remappings);
3742 #ifdef PMAP_CACHE_VIPT
3743 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3744 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3745 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3746 #endif
3747 if (opg && arm_cache_prefer_mask != 0) {
3748 KASSERT(opg != pg);
3749 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3750 KASSERT((flags & PMAP_KMPAGE) == 0);
3751 #ifndef ARM_MMU_EXTENDED
3752 pmap_acquire_page_lock(omd);
3753 pv = pmap_kremove_pg(opg, va);
3754 pmap_release_page_lock(omd);
3755 #endif
3756 }
3757 #endif
3758 if (l2pte_valid_p(opte)) {
3759 l2pte_reset(ptep);
3760 PTE_SYNC(ptep);
3761 #ifdef PMAP_CACHE_VIVT
3762 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3763 #endif
3764 cpu_tlb_flushD_SE(va);
3765 cpu_cpwait();
3766 }
3767 }
3768 pmap_release_pmap_lock(kpm);
3769 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3770
3771 if (flags & PMAP_PTE) {
3772 KASSERT((flags & PMAP_CACHE_MASK) == 0);
3773 if (!(flags & PMAP_NOCACHE))
3774 npte |= pte_l2_s_cache_mode_pt;
3775 } else {
3776 switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
3777 case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
3778 break;
3779 case PMAP_NOCACHE:
3780 npte |= pte_l2_s_nocache_mode;
3781 break;
3782 case PMAP_WRITE_COMBINE:
3783 npte |= pte_l2_s_wc_mode;
3784 break;
3785 default:
3786 npte |= pte_l2_s_cache_mode;
3787 break;
3788 }
3789 }
3790 #ifdef ARM_MMU_EXTENDED
3791 if (prot & VM_PROT_EXECUTE)
3792 npte &= ~L2_XS_XN;
3793 #endif
3794 l2pte_set(ptep, npte, 0);
3795 PTE_SYNC(ptep);
3796
3797 if (pg) {
3798 if (flags & PMAP_KMPAGE) {
3799 KASSERT(md->urw_mappings == 0);
3800 KASSERT(md->uro_mappings == 0);
3801 KASSERT(md->krw_mappings == 0);
3802 KASSERT(md->kro_mappings == 0);
3803 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3804 KASSERT(pv == NULL);
3805 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3806 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3807 /* if there is a color conflict, evict from cache. */
3808 if (pmap_is_page_colored_p(md)
3809 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3810 PMAPCOUNT(vac_color_change);
3811 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3812 } else if (md->pvh_attrs & PVF_MULTCLR) {
3813 /*
3814 * If this page has multiple colors, expunge
3815 * them.
3816 */
3817 PMAPCOUNT(vac_flush_lots2);
3818 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3819 }
3820 /*
3821 * Since this is a KMPAGE, there can be no contention
3822 * for this page so don't lock it.
3823 */
3824 md->pvh_attrs &= PAGE_SIZE - 1;
3825 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3826 | (va & arm_cache_prefer_mask);
3827 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3828 md->pvh_attrs |= PVF_KMPAGE;
3829 #endif
3830 atomic_inc_32(&pmap_kmpages);
3831 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3832 } else if (arm_cache_prefer_mask != 0) {
3833 if (pv == NULL) {
3834 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3835 KASSERT(pv != NULL);
3836 }
3837 pmap_acquire_page_lock(md);
3838 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3839 PVF_WIRED | PVF_KENTRY
3840 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3841 if ((prot & VM_PROT_WRITE)
3842 && !(md->pvh_attrs & PVF_NC))
3843 md->pvh_attrs |= PVF_DIRTY;
3844 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3845 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3846 pmap_release_page_lock(md);
3847 #endif
3848 }
3849 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3850 } else {
3851 if (pv != NULL)
3852 pool_put(&pmap_pv_pool, pv);
3853 #endif
3854 }
3855 if (pmap_initialized) {
3856 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)",
3857 (uintptr_t)ptep, opte, npte, 0);
3858 }
3859
3860 }
3861
3862 void
3863 pmap_kremove(vaddr_t va, vsize_t len)
3864 {
3865 #ifdef UVMHIST
3866 u_int total_mappings = 0;
3867 #endif
3868
3869 PMAPCOUNT(kenter_unmappings);
3870
3871 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
3872
3873 UVMHIST_LOG(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3874
3875 const vaddr_t eva = va + len;
3876 pmap_t kpm = pmap_kernel();
3877
3878 pmap_acquire_pmap_lock(kpm);
3879
3880 while (va < eva) {
3881 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3882 if (next_bucket > eva)
3883 next_bucket = eva;
3884
3885 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3886 KDASSERT(l2b != NULL);
3887
3888 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3889 pt_entry_t *ptep = sptep;
3890 u_int mappings = 0;
3891
3892 while (va < next_bucket) {
3893 const pt_entry_t opte = *ptep;
3894 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3895 if (opg != NULL) {
3896 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3897
3898 if (omd->pvh_attrs & PVF_KMPAGE) {
3899 KASSERT(omd->urw_mappings == 0);
3900 KASSERT(omd->uro_mappings == 0);
3901 KASSERT(omd->krw_mappings == 0);
3902 KASSERT(omd->kro_mappings == 0);
3903 omd->pvh_attrs &= ~PVF_KMPAGE;
3904 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3905 if (arm_cache_prefer_mask != 0) {
3906 omd->pvh_attrs &= ~PVF_WRITE;
3907 }
3908 #endif
3909 atomic_dec_32(&pmap_kmpages);
3910 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3911 } else if (arm_cache_prefer_mask != 0) {
3912 pmap_acquire_page_lock(omd);
3913 pool_put(&pmap_pv_pool,
3914 pmap_kremove_pg(opg, va));
3915 pmap_release_page_lock(omd);
3916 #endif
3917 }
3918 }
3919 if (l2pte_valid_p(opte)) {
3920 l2pte_reset(ptep);
3921 PTE_SYNC(ptep);
3922 #ifdef PMAP_CACHE_VIVT
3923 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3924 #endif
3925 cpu_tlb_flushD_SE(va);
3926
3927 mappings += PAGE_SIZE / L2_S_SIZE;
3928 }
3929 va += PAGE_SIZE;
3930 ptep += PAGE_SIZE / L2_S_SIZE;
3931 }
3932 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3933 mappings, l2b->l2b_occupancy);
3934 l2b->l2b_occupancy -= mappings;
3935 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3936 #ifdef UVMHIST
3937 total_mappings += mappings;
3938 #endif
3939 }
3940 pmap_release_pmap_lock(kpm);
3941 cpu_cpwait();
3942 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)",
3943 total_mappings, 0, 0, 0);
3944 }
3945
3946 bool
3947 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3948 {
3949
3950 return pmap_extract_coherency(pm, va, pap, NULL);
3951 }
3952
3953 bool
3954 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3955 {
3956 struct l2_dtable *l2;
3957 pd_entry_t *pdep, pde;
3958 pt_entry_t *ptep, pte;
3959 paddr_t pa;
3960 u_int l1slot;
3961 bool coherent;
3962
3963 pmap_acquire_pmap_lock(pm);
3964
3965 l1slot = l1pte_index(va);
3966 pdep = pmap_l1_kva(pm) + l1slot;
3967 pde = *pdep;
3968
3969 if (l1pte_section_p(pde)) {
3970 /*
3971 * These should only happen for pmap_kernel()
3972 */
3973 KDASSERT(pm == pmap_kernel());
3974 pmap_release_pmap_lock(pm);
3975 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3976 if (l1pte_supersection_p(pde)) {
3977 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3978 } else
3979 #endif
3980 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3981 coherent = (pde & L1_S_CACHE_MASK) == 0;
3982 } else {
3983 /*
3984 * Note that we can't rely on the validity of the L1
3985 * descriptor as an indication that a mapping exists.
3986 * We have to look it up in the L2 dtable.
3987 */
3988 l2 = pm->pm_l2[L2_IDX(l1slot)];
3989
3990 if (l2 == NULL ||
3991 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3992 pmap_release_pmap_lock(pm);
3993 return false;
3994 }
3995
3996 pte = ptep[l2pte_index(va)];
3997 pmap_release_pmap_lock(pm);
3998
3999 if (pte == 0)
4000 return false;
4001
4002 switch (pte & L2_TYPE_MASK) {
4003 case L2_TYPE_L:
4004 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
4005 coherent = (pte & L2_L_CACHE_MASK) == 0;
4006 break;
4007
4008 default:
4009 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
4010 coherent = (pte & L2_S_CACHE_MASK) == 0;
4011 break;
4012 }
4013 }
4014
4015 if (pap != NULL)
4016 *pap = pa;
4017
4018 if (coherentp != NULL)
4019 *coherentp = (pm == pmap_kernel() && coherent);
4020
4021 return true;
4022 }
4023
4024 /*
4025 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
4026 * that map it
4027 */
4028
4029 static void
4030 pmap_pv_remove(paddr_t pa)
4031 {
4032 struct pmap_page *pp;
4033
4034 pp = pmap_pv_tracked(pa);
4035 if (pp == NULL)
4036 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4037 pa);
4038
4039 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4040 pmap_page_remove(md, pa);
4041 }
4042
4043 void
4044 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4045 {
4046
4047 /* the only case is remove at the moment */
4048 KASSERT(prot == VM_PROT_NONE);
4049 pmap_pv_remove(pa);
4050 }
4051
4052 void
4053 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4054 {
4055 struct l2_bucket *l2b;
4056 vaddr_t next_bucket;
4057
4058 NPDEBUG(PDB_PROTECT,
4059 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
4060 pm, sva, eva, prot));
4061
4062 if ((prot & VM_PROT_READ) == 0) {
4063 pmap_remove(pm, sva, eva);
4064 return;
4065 }
4066
4067 if (prot & VM_PROT_WRITE) {
4068 /*
4069 * If this is a read->write transition, just ignore it and let
4070 * uvm_fault() take care of it later.
4071 */
4072 return;
4073 }
4074
4075 pmap_acquire_pmap_lock(pm);
4076
4077 #ifndef ARM_MMU_EXTENDED
4078 const bool flush = eva - sva >= PAGE_SIZE * 4;
4079 u_int flags = 0;
4080 #endif
4081 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4082
4083 while (sva < eva) {
4084 next_bucket = L2_NEXT_BUCKET_VA(sva);
4085 if (next_bucket > eva)
4086 next_bucket = eva;
4087
4088 l2b = pmap_get_l2_bucket(pm, sva);
4089 if (l2b == NULL) {
4090 sva = next_bucket;
4091 continue;
4092 }
4093
4094 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4095
4096 while (sva < next_bucket) {
4097 const pt_entry_t opte = *ptep;
4098 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4099 struct vm_page *pg;
4100 #ifndef ARM_MMU_EXTENDED
4101 u_int f;
4102 #endif
4103
4104 #ifdef PMAP_CACHE_VIVT
4105 /*
4106 * OK, at this point, we know we're doing
4107 * write-protect operation. If the pmap is
4108 * active, write-back the page.
4109 */
4110 pmap_cache_wbinv_page(pm, sva, false,
4111 PVF_REF | PVF_WRITE);
4112 #endif
4113
4114 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4115 pt_entry_t npte = l2pte_set_readonly(opte);
4116 l2pte_reset(ptep);
4117 PTE_SYNC(ptep);
4118 #ifdef ARM_MMU_EXTENDED
4119 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4120 #endif
4121 l2pte_set(ptep, npte, 0);
4122 PTE_SYNC(ptep);
4123
4124 if (pg != NULL) {
4125 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4126 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4127
4128 pmap_acquire_page_lock(md);
4129 #ifndef ARM_MMU_EXTENDED
4130 f =
4131 #endif
4132 pmap_modify_pv(md, pa, pm, sva,
4133 clr_mask, 0);
4134 pmap_vac_me_harder(md, pa, pm, sva);
4135 pmap_release_page_lock(md);
4136 #ifndef ARM_MMU_EXTENDED
4137 } else {
4138 f = PVF_REF | PVF_EXEC;
4139 }
4140
4141 if (flush) {
4142 flags |= f;
4143 } else {
4144 pmap_tlb_flush_SE(pm, sva, f);
4145 #endif
4146 }
4147 }
4148
4149 sva += PAGE_SIZE;
4150 ptep += PAGE_SIZE / L2_S_SIZE;
4151 }
4152 }
4153
4154 #ifndef ARM_MMU_EXTENDED
4155 if (flush) {
4156 if (PV_BEEN_EXECD(flags)) {
4157 pmap_tlb_flushID(pm);
4158 } else if (PV_BEEN_REFD(flags)) {
4159 pmap_tlb_flushD(pm);
4160 }
4161 }
4162 #endif
4163
4164 pmap_release_pmap_lock(pm);
4165 }
4166
4167 void
4168 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4169 {
4170 struct l2_bucket *l2b;
4171 pt_entry_t *ptep;
4172 vaddr_t next_bucket;
4173 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4174
4175 NPDEBUG(PDB_EXEC,
4176 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
4177 pm, sva, eva));
4178
4179 pmap_acquire_pmap_lock(pm);
4180
4181 while (sva < eva) {
4182 next_bucket = L2_NEXT_BUCKET_VA(sva);
4183 if (next_bucket > eva)
4184 next_bucket = eva;
4185
4186 l2b = pmap_get_l2_bucket(pm, sva);
4187 if (l2b == NULL) {
4188 sva = next_bucket;
4189 continue;
4190 }
4191
4192 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4193 sva < next_bucket;
4194 sva += page_size,
4195 ptep += PAGE_SIZE / L2_S_SIZE,
4196 page_size = PAGE_SIZE) {
4197 if (l2pte_valid_p(*ptep)) {
4198 cpu_icache_sync_range(sva,
4199 uimin(page_size, eva - sva));
4200 }
4201 }
4202 }
4203
4204 pmap_release_pmap_lock(pm);
4205 }
4206
4207 void
4208 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4209 {
4210 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4211 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4212
4213 NPDEBUG(PDB_PROTECT,
4214 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
4215 md, pa, prot));
4216
4217 switch(prot) {
4218 case VM_PROT_READ|VM_PROT_WRITE:
4219 #if defined(ARM_MMU_EXTENDED)
4220 pmap_acquire_page_lock(md);
4221 pmap_clearbit(md, pa, PVF_EXEC);
4222 pmap_release_page_lock(md);
4223 break;
4224 #endif
4225 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4226 break;
4227
4228 case VM_PROT_READ:
4229 #if defined(ARM_MMU_EXTENDED)
4230 pmap_acquire_page_lock(md);
4231 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4232 pmap_release_page_lock(md);
4233 break;
4234 #endif
4235 case VM_PROT_READ|VM_PROT_EXECUTE:
4236 pmap_acquire_page_lock(md);
4237 pmap_clearbit(md, pa, PVF_WRITE);
4238 pmap_release_page_lock(md);
4239 break;
4240
4241 default:
4242 pmap_page_remove(md, pa);
4243 break;
4244 }
4245 }
4246
4247 /*
4248 * pmap_clear_modify:
4249 *
4250 * Clear the "modified" attribute for a page.
4251 */
4252 bool
4253 pmap_clear_modify(struct vm_page *pg)
4254 {
4255 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4256 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4257 bool rv;
4258
4259 pmap_acquire_page_lock(md);
4260
4261 if (md->pvh_attrs & PVF_MOD) {
4262 rv = true;
4263 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4264 /*
4265 * If we are going to clear the modified bit and there are
4266 * no other modified bits set, flush the page to memory and
4267 * mark it clean.
4268 */
4269 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4270 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4271 #endif
4272 pmap_clearbit(md, pa, PVF_MOD);
4273 } else {
4274 rv = false;
4275 }
4276 pmap_release_page_lock(md);
4277
4278 return rv;
4279 }
4280
4281 /*
4282 * pmap_clear_reference:
4283 *
4284 * Clear the "referenced" attribute for a page.
4285 */
4286 bool
4287 pmap_clear_reference(struct vm_page *pg)
4288 {
4289 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4290 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4291 bool rv;
4292
4293 pmap_acquire_page_lock(md);
4294
4295 if (md->pvh_attrs & PVF_REF) {
4296 rv = true;
4297 pmap_clearbit(md, pa, PVF_REF);
4298 } else {
4299 rv = false;
4300 }
4301 pmap_release_page_lock(md);
4302
4303 return rv;
4304 }
4305
4306 /*
4307 * pmap_is_modified:
4308 *
4309 * Test if a page has the "modified" attribute.
4310 */
4311 /* See <arm/arm32/pmap.h> */
4312
4313 /*
4314 * pmap_is_referenced:
4315 *
4316 * Test if a page has the "referenced" attribute.
4317 */
4318 /* See <arm/arm32/pmap.h> */
4319
4320 #if defined(ARM_MMU_EXTENDED) && 0
4321 int
4322 pmap_prefetchabt_fixup(void *v)
4323 {
4324 struct trapframe * const tf = v;
4325 vaddr_t va = trunc_page(tf->tf_pc);
4326 int rv = ABORT_FIXUP_FAILED;
4327
4328 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4329 return rv;
4330
4331 kpreempt_disable();
4332 pmap_t pm = curcpu()->ci_pmap_cur;
4333 const size_t l1slot = l1pte_index(va);
4334 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4335 if (l2 == NULL)
4336 goto out;
4337
4338 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4339 if (l2b->l2b_kva == NULL)
4340 goto out;
4341
4342 /*
4343 * Check the PTE itself.
4344 */
4345 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4346 const pt_entry_t opte = *ptep;
4347 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4348 goto out;
4349
4350 paddr_t pa = l2pte_pa(opte);
4351 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4352 KASSERT(pg != NULL);
4353
4354 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4355
4356 pmap_acquire_page_lock(md);
4357 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4358 KASSERT(pv != NULL);
4359
4360 if (PV_IS_EXEC_P(pv->pv_flags)) {
4361 l2pte_reset(ptep);
4362 PTE_SYNC(ptep);
4363 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4364 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4365 pmap_syncicache_page(md, pa);
4366 }
4367 rv = ABORT_FIXUP_RETURN;
4368 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4369 PTE_SYNC(ptep);
4370 }
4371 pmap_release_page_lock(md);
4372
4373 out:
4374 kpreempt_enable();
4375 return rv;
4376 }
4377 #endif
4378
4379 int
4380 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4381 {
4382 struct l2_dtable *l2;
4383 struct l2_bucket *l2b;
4384 paddr_t pa;
4385 const size_t l1slot = l1pte_index(va);
4386 int rv = 0;
4387
4388 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4389
4390 va = trunc_page(va);
4391
4392 KASSERT(!user || (pm != pmap_kernel()));
4393
4394 UVMHIST_LOG(maphist, " (pm=%#jx, va=%#jx, ftype=%#jx, user=%jd)",
4395 (uintptr_t)pm, va, ftype, user);
4396 #ifdef ARM_MMU_EXTENDED
4397 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4398 (uintptr_t)cpu_tlb_info(curcpu()),
4399 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4400 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4401 #endif
4402
4403 pmap_acquire_pmap_lock(pm);
4404
4405 /*
4406 * If there is no l2_dtable for this address, then the process
4407 * has no business accessing it.
4408 *
4409 * Note: This will catch userland processes trying to access
4410 * kernel addresses.
4411 */
4412 l2 = pm->pm_l2[L2_IDX(l1slot)];
4413 if (l2 == NULL) {
4414 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4415 goto out;
4416 }
4417
4418 /*
4419 * Likewise if there is no L2 descriptor table
4420 */
4421 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4422 if (l2b->l2b_kva == NULL) {
4423 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4424 l1slot, 0, 0, 0);
4425 goto out;
4426 }
4427
4428 /*
4429 * Check the PTE itself.
4430 */
4431 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4432 pt_entry_t const opte = *ptep;
4433 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4434 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
4435 l1slot, 0, 0, 0);
4436 goto out;
4437 }
4438
4439 #ifndef ARM_HAS_VBAR
4440 /*
4441 * Catch a userland access to the vector page mapped at 0x0
4442 */
4443 if (user && (opte & L2_S_PROT_U) == 0) {
4444 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4445 goto out;
4446 }
4447 #endif
4448
4449 pa = l2pte_pa(opte);
4450
4451 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4452 /*
4453 * This looks like a good candidate for "page modified"
4454 * emulation...
4455 */
4456 struct pv_entry *pv;
4457 struct vm_page *pg;
4458
4459 /* Extract the physical address of the page */
4460 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4461 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4462 goto out;
4463 }
4464
4465 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4466
4467 /* Get the current flags for this page. */
4468 pmap_acquire_page_lock(md);
4469 pv = pmap_find_pv(md, pm, va);
4470 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4471 pmap_release_page_lock(md);
4472 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4473 goto out;
4474 }
4475
4476 /*
4477 * Do the flags say this page is writable? If not then it
4478 * is a genuine write fault. If yes then the write fault is
4479 * our fault as we did not reflect the write access in the
4480 * PTE. Now we know a write has occurred we can correct this
4481 * and also set the modified bit
4482 */
4483 if ((pv->pv_flags & PVF_WRITE) == 0) {
4484 pmap_release_page_lock(md);
4485 goto out;
4486 }
4487
4488 md->pvh_attrs |= PVF_REF | PVF_MOD;
4489 pv->pv_flags |= PVF_REF | PVF_MOD;
4490 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4491 /*
4492 * If there are cacheable mappings for this page, mark it dirty.
4493 */
4494 if ((md->pvh_attrs & PVF_NC) == 0)
4495 md->pvh_attrs |= PVF_DIRTY;
4496 #endif
4497 #ifdef ARM_MMU_EXTENDED
4498 if (md->pvh_attrs & PVF_EXEC) {
4499 md->pvh_attrs &= ~PVF_EXEC;
4500 PMAPCOUNT(exec_discarded_modfixup);
4501 }
4502 #endif
4503 pmap_release_page_lock(md);
4504
4505 /*
4506 * Re-enable write permissions for the page. No need to call
4507 * pmap_vac_me_harder(), since this is just a
4508 * modified-emulation fault, and the PVF_WRITE bit isn't
4509 * changing. We've already set the cacheable bits based on
4510 * the assumption that we can write to this page.
4511 */
4512 const pt_entry_t npte =
4513 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4514 #ifdef ARM_MMU_EXTENDED
4515 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4516 #endif
4517 | 0;
4518 l2pte_reset(ptep);
4519 PTE_SYNC(ptep);
4520 pmap_tlb_flush_SE(pm, va,
4521 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4522 l2pte_set(ptep, npte, 0);
4523 PTE_SYNC(ptep);
4524 PMAPCOUNT(fixup_mod);
4525 rv = 1;
4526 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4527 "from %#jx to %#jx)", opte, npte, 0, 0);
4528 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4529 /*
4530 * This looks like a good candidate for "page referenced"
4531 * emulation.
4532 */
4533 struct vm_page *pg;
4534
4535 /* Extract the physical address of the page */
4536 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4537 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4538 goto out;
4539 }
4540
4541 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4542
4543 /* Get the current flags for this page. */
4544 pmap_acquire_page_lock(md);
4545 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4546 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4547 pmap_release_page_lock(md);
4548 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4549 goto out;
4550 }
4551
4552 md->pvh_attrs |= PVF_REF;
4553 pv->pv_flags |= PVF_REF;
4554
4555 pt_entry_t npte =
4556 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4557 #ifdef ARM_MMU_EXTENDED
4558 if (pm != pmap_kernel()) {
4559 npte |= L2_XS_nG;
4560 }
4561 /*
4562 * If we got called from prefetch abort, then ftype will have
4563 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4564 * the PTE.
4565 */
4566 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4567 /*
4568 * Is this a mapping of an executable page?
4569 */
4570 if ((pv->pv_flags & PVF_EXEC) == 0) {
4571 pmap_release_page_lock(md);
4572 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4573 0, 0, 0, 0);
4574 goto out;
4575 }
4576 /*
4577 * If we haven't synced the page, do so now.
4578 */
4579 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4580 UVMHIST_LOG(maphist, " ref emul: syncicache "
4581 "page #%#jx", pa, 0, 0, 0);
4582 pmap_syncicache_page(md, pa);
4583 PMAPCOUNT(fixup_exec);
4584 }
4585 npte &= ~L2_XS_XN;
4586 }
4587 #endif /* ARM_MMU_EXTENDED */
4588 pmap_release_page_lock(md);
4589 l2pte_reset(ptep);
4590 PTE_SYNC(ptep);
4591 pmap_tlb_flush_SE(pm, va,
4592 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4593 l2pte_set(ptep, npte, 0);
4594 PTE_SYNC(ptep);
4595 PMAPCOUNT(fixup_ref);
4596 rv = 1;
4597 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4598 "%#jx to %#jx)", opte, npte, 0, 0);
4599 #ifdef ARM_MMU_EXTENDED
4600 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4601 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4602 if (pg == NULL) {
4603 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4604 goto out;
4605 }
4606
4607 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4608
4609 /* Get the current flags for this page. */
4610 pmap_acquire_page_lock(md);
4611 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4612 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4613 pmap_release_page_lock(md);
4614 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4615 goto out;
4616 }
4617
4618 /*
4619 * If we haven't synced the page, do so now.
4620 */
4621 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4622 UVMHIST_LOG(maphist, "syncicache page #%#jx",
4623 pa, 0, 0, 0);
4624 pmap_syncicache_page(md, pa);
4625 }
4626 pmap_release_page_lock(md);
4627 /*
4628 * Turn off no-execute.
4629 */
4630 KASSERT(opte & L2_XS_nG);
4631 l2pte_reset(ptep);
4632 PTE_SYNC(ptep);
4633 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4634 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4635 PTE_SYNC(ptep);
4636 rv = 1;
4637 PMAPCOUNT(fixup_exec);
4638 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4639 opte, opte & ~L2_XS_XN, 0, 0);
4640 #endif
4641 }
4642
4643 #ifndef ARM_MMU_EXTENDED
4644 /*
4645 * We know there is a valid mapping here, so simply
4646 * fix up the L1 if necessary.
4647 */
4648 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4649 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4650 if (*pdep != pde) {
4651 l1pte_setone(pdep, pde);
4652 PDE_SYNC(pdep);
4653 rv = 1;
4654 PMAPCOUNT(fixup_pdes);
4655 }
4656 #endif
4657
4658 #ifdef CPU_SA110
4659 /*
4660 * There are bugs in the rev K SA110. This is a check for one
4661 * of them.
4662 */
4663 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4664 curcpu()->ci_arm_cpurev < 3) {
4665 /* Always current pmap */
4666 if (l2pte_valid_p(opte)) {
4667 extern int kernel_debug;
4668 if (kernel_debug & 1) {
4669 struct proc *p = curlwp->l_proc;
4670 printf("prefetch_abort: page is already "
4671 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4672 printf("prefetch_abort: pc=%08lx proc=%p "
4673 "process=%s\n", va, p, p->p_comm);
4674 printf("prefetch_abort: far=%08x fs=%x\n",
4675 cpu_faultaddress(), cpu_faultstatus());
4676 }
4677 #ifdef DDB
4678 if (kernel_debug & 2)
4679 Debugger();
4680 #endif
4681 rv = 1;
4682 }
4683 }
4684 #endif /* CPU_SA110 */
4685
4686 #ifndef ARM_MMU_EXTENDED
4687 /*
4688 * If 'rv == 0' at this point, it generally indicates that there is a
4689 * stale TLB entry for the faulting address. That might be due to a
4690 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4691 */
4692 if (rv == 0
4693 && pm->pm_l1->l1_domain_use_count == 1
4694 && pmap_needs_pte_sync == 0) {
4695 pmap_needs_pte_sync = 1;
4696 PTE_SYNC(ptep);
4697 PMAPCOUNT(fixup_ptesync);
4698 rv = 1;
4699 }
4700 #endif
4701
4702 #ifndef MULTIPROCESSOR
4703 #if defined(DEBUG) || 1
4704 /*
4705 * If 'rv == 0' at this point, it generally indicates that there is a
4706 * stale TLB entry for the faulting address. This happens when two or
4707 * more processes are sharing an L1. Since we don't flush the TLB on
4708 * a context switch between such processes, we can take domain faults
4709 * for mappings which exist at the same VA in both processes. EVEN IF
4710 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4711 * example.
4712 *
4713 * This is extremely likely to happen if pmap_enter() updated the L1
4714 * entry for a recently entered mapping. In this case, the TLB is
4715 * flushed for the new mapping, but there may still be TLB entries for
4716 * other mappings belonging to other processes in the 1MB range
4717 * covered by the L1 entry.
4718 *
4719 * Since 'rv == 0', we know that the L1 already contains the correct
4720 * value, so the fault must be due to a stale TLB entry.
4721 *
4722 * Since we always need to flush the TLB anyway in the case where we
4723 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4724 * stale TLB entries dynamically.
4725 *
4726 * However, the above condition can ONLY happen if the current L1 is
4727 * being shared. If it happens when the L1 is unshared, it indicates
4728 * that other parts of the pmap are not doing their job WRT managing
4729 * the TLB.
4730 */
4731 if (rv == 0
4732 #ifndef ARM_MMU_EXTENDED
4733 && pm->pm_l1->l1_domain_use_count == 1
4734 #endif
4735 && true) {
4736 #ifdef DEBUG
4737 extern int last_fault_code;
4738 #else
4739 int last_fault_code = ftype & VM_PROT_EXECUTE
4740 ? armreg_ifsr_read()
4741 : armreg_dfsr_read();
4742 #endif
4743 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4744 pm, va, ftype);
4745 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4746 l2, l2b, ptep, opte);
4747
4748 #ifndef ARM_MMU_EXTENDED
4749 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4750 pdep, pde, last_fault_code);
4751 #else
4752 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4753 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4754 armreg_ttbcr_read());
4755 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4756 last_fault_code, curcpu()->ci_pmap_cur,
4757 curcpu()->ci_pmap_asid_cur,
4758 armreg_contextidr_read(), armreg_dacr_read());
4759 #ifdef _ARM_ARCH_7
4760 if (ftype & VM_PROT_WRITE)
4761 armreg_ats1cuw_write(va);
4762 else
4763 armreg_ats1cur_write(va);
4764 arm_isb();
4765 printf("fixup: par %#x\n", armreg_par_read());
4766 #endif
4767 #endif
4768 #ifdef DDB
4769 extern int kernel_debug;
4770
4771 if (kernel_debug & 2) {
4772 pmap_release_pmap_lock(pm);
4773 #ifdef UVMHIST
4774 KERNHIST_DUMP(maphist);
4775 #endif
4776 cpu_Debugger();
4777 pmap_acquire_pmap_lock(pm);
4778 }
4779 #endif
4780 }
4781 #endif
4782 #endif
4783
4784 #ifndef ARM_MMU_EXTENDED
4785 /* Flush the TLB in the shared L1 case - see comment above */
4786 pmap_tlb_flush_SE(pm, va,
4787 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4788 #endif
4789
4790 rv = 1;
4791
4792 out:
4793 pmap_release_pmap_lock(pm);
4794
4795 return rv;
4796 }
4797
4798 /*
4799 * Routine: pmap_procwr
4800 *
4801 * Function:
4802 * Synchronize caches corresponding to [addr, addr+len) in p.
4803 *
4804 */
4805 void
4806 pmap_procwr(struct proc *p, vaddr_t va, int len)
4807 {
4808 #ifndef ARM_MMU_EXTENDED
4809
4810 /* We only need to do anything if it is the current process. */
4811 if (p == curproc)
4812 cpu_icache_sync_range(va, len);
4813 #endif
4814 }
4815
4816 /*
4817 * Routine: pmap_unwire
4818 * Function: Clear the wired attribute for a map/virtual-address pair.
4819 *
4820 * In/out conditions:
4821 * The mapping must already exist in the pmap.
4822 */
4823 void
4824 pmap_unwire(pmap_t pm, vaddr_t va)
4825 {
4826 struct l2_bucket *l2b;
4827 pt_entry_t *ptep, pte;
4828 struct vm_page *pg;
4829 paddr_t pa;
4830
4831 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4832
4833 pmap_acquire_pmap_lock(pm);
4834
4835 l2b = pmap_get_l2_bucket(pm, va);
4836 KDASSERT(l2b != NULL);
4837
4838 ptep = &l2b->l2b_kva[l2pte_index(va)];
4839 pte = *ptep;
4840
4841 /* Extract the physical address of the page */
4842 pa = l2pte_pa(pte);
4843
4844 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4845 /* Update the wired bit in the pv entry for this page. */
4846 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4847
4848 pmap_acquire_page_lock(md);
4849 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4850 pmap_release_page_lock(md);
4851 }
4852
4853 pmap_release_pmap_lock(pm);
4854 }
4855
4856 #ifdef ARM_MMU_EXTENDED
4857 void
4858 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4859 {
4860 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4861
4862 /*
4863 * Assume that TTBR1 has only global mappings and TTBR0 only
4864 * has non-global mappings. To prevent speculation from doing
4865 * evil things we disable translation table walks using TTBR0
4866 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4867 * Once both are set, table walks are reenabled.
4868 */
4869 const uint32_t old_ttbcr = armreg_ttbcr_read();
4870 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4871 arm_isb();
4872
4873 pmap_tlb_asid_acquire(pm, l);
4874
4875 struct cpu_info * const ci = curcpu();
4876 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4877
4878 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4879 /*
4880 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4881 * have been updated.
4882 */
4883 arm_isb();
4884
4885 if (pm != pmap_kernel()) {
4886 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4887 }
4888 cpu_cpwait();
4889
4890 UVMHIST_LOG(maphist, " pm %#jx pm->pm_l1_pa %08jx asid %ju... done",
4891 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4892
4893 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4894 ci->ci_pmap_asid_cur, pai->pai_asid);
4895 ci->ci_pmap_cur = pm;
4896 }
4897
4898 void
4899 pmap_md_pdetab_deactivate(pmap_t pm)
4900 {
4901
4902 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4903
4904 kpreempt_disable();
4905 struct cpu_info * const ci = curcpu();
4906 /*
4907 * Disable translation table walks from TTBR0 while no pmap has been
4908 * activated.
4909 */
4910 const uint32_t old_ttbcr = armreg_ttbcr_read();
4911 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4912 arm_isb();
4913 pmap_tlb_asid_deactivate(pm);
4914 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4915 arm_isb();
4916
4917 ci->ci_pmap_cur = pmap_kernel();
4918 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4919 ci->ci_pmap_asid_cur);
4920 kpreempt_enable();
4921 }
4922 #endif
4923
4924 void
4925 pmap_activate(struct lwp *l)
4926 {
4927 extern int block_userspace_access;
4928 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4929
4930 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
4931
4932 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)npm,
4933 0, 0);
4934
4935 struct cpu_info * const ci = curcpu();
4936
4937 /*
4938 * If activating a non-current lwp or the current lwp is
4939 * already active, just return.
4940 */
4941 if (false
4942 || l != curlwp
4943 #ifdef ARM_MMU_EXTENDED
4944 || (ci->ci_pmap_cur == npm &&
4945 (npm == pmap_kernel()
4946 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4947 #else
4948 || npm->pm_activated == true
4949 #endif
4950 || false) {
4951 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4952 (uintptr_t)l, 0, 0);
4953 return;
4954 }
4955
4956 #ifndef ARM_MMU_EXTENDED
4957 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4958 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4959
4960 /*
4961 * If TTB and DACR are unchanged, short-circuit all the
4962 * TLB/cache management stuff.
4963 */
4964 pmap_t opm = ci->ci_lastlwp
4965 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4966 : NULL;
4967 if (opm != NULL) {
4968 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4969 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4970
4971 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4972 goto all_done;
4973 }
4974 #endif /* !ARM_MMU_EXTENDED */
4975
4976 PMAPCOUNT(activations);
4977 block_userspace_access = 1;
4978
4979 #ifndef ARM_MMU_EXTENDED
4980 /*
4981 * If switching to a user vmspace which is different to the
4982 * most recent one, and the most recent one is potentially
4983 * live in the cache, we must write-back and invalidate the
4984 * entire cache.
4985 */
4986 pmap_t rpm = ci->ci_pmap_lastuser;
4987
4988 /*
4989 * XXXSCW: There's a corner case here which can leave turds in the
4990 * cache as reported in kern/41058. They're probably left over during
4991 * tear-down and switching away from an exiting process. Until the root
4992 * cause is identified and fixed, zap the cache when switching pmaps.
4993 * This will result in a few unnecessary cache flushes, but that's
4994 * better than silently corrupting data.
4995 */
4996 #if 0
4997 if (npm != pmap_kernel() && rpm && npm != rpm &&
4998 rpm->pm_cstate.cs_cache) {
4999 rpm->pm_cstate.cs_cache = 0;
5000 #ifdef PMAP_CACHE_VIVT
5001 cpu_idcache_wbinv_all();
5002 #endif
5003 }
5004 #else
5005 if (rpm) {
5006 rpm->pm_cstate.cs_cache = 0;
5007 if (npm == pmap_kernel())
5008 ci->ci_pmap_lastuser = NULL;
5009 #ifdef PMAP_CACHE_VIVT
5010 cpu_idcache_wbinv_all();
5011 #endif
5012 }
5013 #endif
5014
5015 /* No interrupts while we frob the TTB/DACR */
5016 uint32_t oldirqstate = disable_interrupts(IF32_bits);
5017 #endif /* !ARM_MMU_EXTENDED */
5018
5019 #ifndef ARM_HAS_VBAR
5020 /*
5021 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
5022 * entry corresponding to 'vector_page' in the incoming L1 table
5023 * before switching to it otherwise subsequent interrupts/exceptions
5024 * (including domain faults!) will jump into hyperspace.
5025 */
5026 if (npm->pm_pl1vec != NULL) {
5027 cpu_tlb_flushID_SE((u_int)vector_page);
5028 cpu_cpwait();
5029 *npm->pm_pl1vec = npm->pm_l1vec;
5030 PTE_SYNC(npm->pm_pl1vec);
5031 }
5032 #endif
5033
5034 #ifdef ARM_MMU_EXTENDED
5035 pmap_md_pdetab_activate(npm, l);
5036 #else
5037 cpu_domains(ndacr);
5038 if (npm == pmap_kernel() || npm == rpm) {
5039 /*
5040 * Switching to a kernel thread, or back to the
5041 * same user vmspace as before... Simply update
5042 * the TTB (no TLB flush required)
5043 */
5044 cpu_setttb(npm->pm_l1->l1_physaddr, false);
5045 cpu_cpwait();
5046 } else {
5047 /*
5048 * Otherwise, update TTB and flush TLB
5049 */
5050 cpu_context_switch(npm->pm_l1->l1_physaddr);
5051 if (rpm != NULL)
5052 rpm->pm_cstate.cs_tlb = 0;
5053 }
5054
5055 restore_interrupts(oldirqstate);
5056 #endif /* ARM_MMU_EXTENDED */
5057
5058 block_userspace_access = 0;
5059
5060 #ifndef ARM_MMU_EXTENDED
5061 all_done:
5062 /*
5063 * The new pmap is resident. Make sure it's marked
5064 * as resident in the cache/TLB.
5065 */
5066 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5067 if (npm != pmap_kernel())
5068 ci->ci_pmap_lastuser = npm;
5069
5070 /* The old pmap is not longer active */
5071 if (opm != npm) {
5072 if (opm != NULL)
5073 opm->pm_activated = false;
5074
5075 /* But the new one is */
5076 npm->pm_activated = true;
5077 }
5078 ci->ci_pmap_cur = npm;
5079 #endif
5080 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5081 }
5082
5083 void
5084 pmap_deactivate(struct lwp *l)
5085 {
5086 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5087
5088 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5089
5090 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)pm,
5091 0, 0);
5092
5093 #ifdef ARM_MMU_EXTENDED
5094 pmap_md_pdetab_deactivate(pm);
5095 #else
5096 /*
5097 * If the process is exiting, make sure pmap_activate() does
5098 * a full MMU context-switch and cache flush, which we might
5099 * otherwise skip. See PR port-arm/38950.
5100 */
5101 if (l->l_proc->p_sflag & PS_WEXIT)
5102 curcpu()->ci_lastlwp = NULL;
5103
5104 pm->pm_activated = false;
5105 #endif
5106 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5107 }
5108
5109 void
5110 pmap_update(pmap_t pm)
5111 {
5112
5113 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5114
5115 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5116 pm->pm_remove_all, 0, 0);
5117
5118 #ifndef ARM_MMU_EXTENDED
5119 if (pm->pm_remove_all) {
5120 /*
5121 * Finish up the pmap_remove_all() optimisation by flushing
5122 * the TLB.
5123 */
5124 pmap_tlb_flushID(pm);
5125 pm->pm_remove_all = false;
5126 }
5127
5128 if (pmap_is_current(pm)) {
5129 /*
5130 * If we're dealing with a current userland pmap, move its L1
5131 * to the end of the LRU.
5132 */
5133 if (pm != pmap_kernel())
5134 pmap_use_l1(pm);
5135
5136 /*
5137 * We can assume we're done with frobbing the cache/tlb for
5138 * now. Make sure any future pmap ops don't skip cache/tlb
5139 * flushes.
5140 */
5141 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5142 }
5143 #else
5144
5145 kpreempt_disable();
5146 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5147 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5148 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5149 PMAP_COUNT(shootdown_ipis);
5150 }
5151 #endif
5152
5153 /*
5154 * If pmap_remove_all was called, we deactivated ourselves and released
5155 * our ASID. Now we have to reactivate ourselves.
5156 */
5157 if (__predict_false(pm->pm_remove_all)) {
5158 pm->pm_remove_all = false;
5159
5160 KASSERT(pm != pmap_kernel());
5161 pmap_md_pdetab_activate(pm, curlwp);
5162 }
5163
5164 if (arm_has_mpext_p)
5165 armreg_bpiallis_write(0);
5166 else
5167 armreg_bpiall_write(0);
5168
5169 kpreempt_enable();
5170
5171 KASSERTMSG(pm == pmap_kernel()
5172 || curcpu()->ci_pmap_cur != pm
5173 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5174 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5175 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5176 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5177 #endif
5178
5179 PMAPCOUNT(updates);
5180
5181 /*
5182 * make sure TLB/cache operations have completed.
5183 */
5184 cpu_cpwait();
5185 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5186 }
5187
5188 bool
5189 pmap_remove_all(pmap_t pm)
5190 {
5191
5192 /*
5193 * The vmspace described by this pmap is about to be torn down.
5194 * Until pmap_update() is called, UVM will only make calls
5195 * to pmap_remove(). We can make life much simpler by flushing
5196 * the cache now, and deferring TLB invalidation to pmap_update().
5197 */
5198 #ifdef PMAP_CACHE_VIVT
5199 pmap_cache_wbinv_all(pm, PVF_EXEC);
5200 #endif
5201 #ifdef ARM_MMU_EXTENDED
5202 #ifdef MULTIPROCESSOR
5203 struct cpu_info * const ci = curcpu();
5204 // This should be the last CPU with this pmap onproc
5205 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5206 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5207 #endif
5208 pmap_tlb_asid_deactivate(pm);
5209 #ifdef MULTIPROCESSOR
5210 KASSERT(kcpuset_iszero(pm->pm_onproc));
5211 #endif
5212
5213 pmap_tlb_asid_release_all(pm);
5214 #endif
5215 pm->pm_remove_all = true;
5216 return false;
5217 }
5218
5219 /*
5220 * Retire the given physical map from service.
5221 * Should only be called if the map contains no valid mappings.
5222 */
5223 void
5224 pmap_destroy(pmap_t pm)
5225 {
5226 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5227
5228 if (pm == NULL)
5229 return;
5230
5231 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5232 pm->pm_remove_all, 0, 0);
5233
5234 if (pm->pm_remove_all) {
5235 #ifdef ARM_MMU_EXTENDED
5236 pmap_tlb_asid_release_all(pm);
5237 #else
5238 pmap_tlb_flushID(pm);
5239 #endif
5240 pm->pm_remove_all = false;
5241 }
5242
5243 /*
5244 * Drop reference count
5245 */
5246 if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
5247 #ifndef ARM_MMU_EXTENDED
5248 if (pmap_is_current(pm)) {
5249 if (pm != pmap_kernel())
5250 pmap_use_l1(pm);
5251 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5252 }
5253 #endif
5254 return;
5255 }
5256
5257 /*
5258 * reference count is zero, free pmap resources and then free pmap.
5259 */
5260
5261 #ifndef ARM_HAS_VBAR
5262 if (vector_page < KERNEL_BASE) {
5263 KDASSERT(!pmap_is_current(pm));
5264
5265 /* Remove the vector page mapping */
5266 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5267 pmap_update(pm);
5268 }
5269 #endif
5270
5271 pmap_free_l1(pm);
5272
5273 #ifdef ARM_MMU_EXTENDED
5274 #ifdef MULTIPROCESSOR
5275 kcpuset_destroy(pm->pm_active);
5276 kcpuset_destroy(pm->pm_onproc);
5277 #endif
5278 #else
5279 struct cpu_info * const ci = curcpu();
5280 if (ci->ci_pmap_lastuser == pm)
5281 ci->ci_pmap_lastuser = NULL;
5282 #endif
5283
5284 mutex_destroy(&pm->pm_lock);
5285 pool_cache_put(&pmap_cache, pm);
5286 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5287 }
5288
5289
5290 /*
5291 * void pmap_reference(pmap_t pm)
5292 *
5293 * Add a reference to the specified pmap.
5294 */
5295 void
5296 pmap_reference(pmap_t pm)
5297 {
5298
5299 if (pm == NULL)
5300 return;
5301
5302 #ifndef ARM_MMU_EXTENDED
5303 pmap_use_l1(pm);
5304 #endif
5305
5306 atomic_inc_uint(&pm->pm_refs);
5307 }
5308
5309 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5310
5311 static struct evcnt pmap_prefer_nochange_ev =
5312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5313 static struct evcnt pmap_prefer_change_ev =
5314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5315
5316 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5317 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5318
5319 void
5320 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5321 {
5322 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5323 vaddr_t va = *vap;
5324 vaddr_t diff = (hint - va) & mask;
5325 if (diff == 0) {
5326 pmap_prefer_nochange_ev.ev_count++;
5327 } else {
5328 pmap_prefer_change_ev.ev_count++;
5329 if (__predict_false(td))
5330 va -= mask + 1;
5331 *vap = va + diff;
5332 }
5333 }
5334 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5335
5336 /*
5337 * pmap_zero_page()
5338 *
5339 * Zero a given physical page by mapping it at a page hook point.
5340 * In doing the zero page op, the page we zero is mapped cachable, as with
5341 * StrongARM accesses to non-cached pages are non-burst making writing
5342 * _any_ bulk data very slow.
5343 */
5344 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5345 void
5346 pmap_zero_page_generic(paddr_t pa)
5347 {
5348 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5349 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5350 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5351 #endif
5352 #if defined(PMAP_CACHE_VIPT)
5353 /* Choose the last page color it had, if any */
5354 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5355 #else
5356 const vsize_t va_offset = 0;
5357 #endif
5358 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5359 /*
5360 * Is this page mapped at its natural color?
5361 * If we have all of memory mapped, then just convert PA to VA.
5362 */
5363 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5364 || va_offset == (pa & arm_cache_prefer_mask);
5365 const vaddr_t vdstp = okcolor
5366 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5367 : cpu_cdstp(va_offset);
5368 #else
5369 const bool okcolor = false;
5370 const vaddr_t vdstp = cpu_cdstp(va_offset);
5371 #endif
5372 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5373
5374
5375 #ifdef DEBUG
5376 if (!SLIST_EMPTY(&md->pvh_list))
5377 panic("pmap_zero_page: page has mappings");
5378 #endif
5379
5380 KDASSERT((pa & PGOFSET) == 0);
5381
5382 if (!okcolor) {
5383 /*
5384 * Hook in the page, zero it, and purge the cache for that
5385 * zeroed page. Invalidate the TLB as needed.
5386 */
5387 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5388 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5389 l2pte_set(ptep, npte, 0);
5390 PTE_SYNC(ptep);
5391 cpu_tlb_flushD_SE(vdstp);
5392 cpu_cpwait();
5393 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5394 && !defined(ARM_MMU_EXTENDED)
5395 /*
5396 * If we are direct-mapped and our color isn't ok, then before
5397 * we bzero the page invalidate its contents from the cache and
5398 * reset the color to its natural color.
5399 */
5400 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5401 md->pvh_attrs &= ~arm_cache_prefer_mask;
5402 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5403 #endif
5404 }
5405 bzero_page(vdstp);
5406 if (!okcolor) {
5407 /*
5408 * Unmap the page.
5409 */
5410 l2pte_reset(ptep);
5411 PTE_SYNC(ptep);
5412 cpu_tlb_flushD_SE(vdstp);
5413 #ifdef PMAP_CACHE_VIVT
5414 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5415 #endif
5416 }
5417 #ifdef PMAP_CACHE_VIPT
5418 /*
5419 * This page is now cache resident so it now has a page color.
5420 * Any contents have been obliterated so clear the EXEC flag.
5421 */
5422 #ifndef ARM_MMU_EXTENDED
5423 if (!pmap_is_page_colored_p(md)) {
5424 PMAPCOUNT(vac_color_new);
5425 md->pvh_attrs |= PVF_COLORED;
5426 }
5427 md->pvh_attrs |= PVF_DIRTY;
5428 #endif
5429 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5430 md->pvh_attrs &= ~PVF_EXEC;
5431 PMAPCOUNT(exec_discarded_zero);
5432 }
5433 #endif
5434 }
5435 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5436
5437 #if ARM_MMU_XSCALE == 1
5438 void
5439 pmap_zero_page_xscale(paddr_t pa)
5440 {
5441 #ifdef DEBUG
5442 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5443 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5444
5445 if (!SLIST_EMPTY(&md->pvh_list))
5446 panic("pmap_zero_page: page has mappings");
5447 #endif
5448
5449 KDASSERT((pa & PGOFSET) == 0);
5450
5451 /*
5452 * Hook in the page, zero it, and purge the cache for that
5453 * zeroed page. Invalidate the TLB as needed.
5454 */
5455
5456 pt_entry_t npte = L2_S_PROTO | pa |
5457 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5458 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5459 l2pte_set(cdst_pte, npte, 0);
5460 PTE_SYNC(cdst_pte);
5461 cpu_tlb_flushD_SE(cdstp);
5462 cpu_cpwait();
5463 bzero_page(cdstp);
5464 xscale_cache_clean_minidata();
5465 l2pte_reset(cdst_pte);
5466 PTE_SYNC(cdst_pte);
5467 }
5468 #endif /* ARM_MMU_XSCALE == 1 */
5469
5470 /* pmap_pageidlezero()
5471 *
5472 * The same as above, except that we assume that the page is not
5473 * mapped. This means we never have to flush the cache first. Called
5474 * from the idle loop.
5475 */
5476 bool
5477 pmap_pageidlezero(paddr_t pa)
5478 {
5479 bool rv = true;
5480 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5481 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5482 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5483 #endif
5484 #ifdef PMAP_CACHE_VIPT
5485 /* Choose the last page color it had, if any */
5486 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5487 #else
5488 const vsize_t va_offset = 0;
5489 #endif
5490 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5491 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5492 || va_offset == (pa & arm_cache_prefer_mask);
5493 const vaddr_t vdstp = okcolor
5494 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5495 : cpu_cdstp(va_offset);
5496 #else
5497 const bool okcolor = false;
5498 const vaddr_t vdstp = cpu_cdstp(va_offset);
5499 #endif
5500 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5501
5502
5503 #ifdef DEBUG
5504 if (!SLIST_EMPTY(&md->pvh_list))
5505 panic("pmap_pageidlezero: page has mappings");
5506 #endif
5507
5508 KDASSERT((pa & PGOFSET) == 0);
5509
5510 if (!okcolor) {
5511 /*
5512 * Hook in the page, zero it, and purge the cache for that
5513 * zeroed page. Invalidate the TLB as needed.
5514 */
5515 const pt_entry_t npte = L2_S_PROTO | pa |
5516 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5517 l2pte_set(ptep, npte, 0);
5518 PTE_SYNC(ptep);
5519 cpu_tlb_flushD_SE(vdstp);
5520 cpu_cpwait();
5521 }
5522
5523 uint64_t *ptr = (uint64_t *)vdstp;
5524 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5525 if (sched_curcpu_runnable_p() != 0) {
5526 /*
5527 * A process has become ready. Abort now,
5528 * so we don't keep it waiting while we
5529 * do slow memory access to finish this
5530 * page.
5531 */
5532 rv = false;
5533 break;
5534 }
5535 *ptr++ = 0;
5536 }
5537
5538 #ifdef PMAP_CACHE_VIVT
5539 if (rv)
5540 /*
5541 * if we aborted we'll rezero this page again later so don't
5542 * purge it unless we finished it
5543 */
5544 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5545 #elif defined(PMAP_CACHE_VIPT)
5546 /*
5547 * This page is now cache resident so it now has a page color.
5548 * Any contents have been obliterated so clear the EXEC flag.
5549 */
5550 #ifndef ARM_MMU_EXTENDED
5551 if (!pmap_is_page_colored_p(md)) {
5552 PMAPCOUNT(vac_color_new);
5553 md->pvh_attrs |= PVF_COLORED;
5554 }
5555 #endif
5556 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5557 md->pvh_attrs &= ~PVF_EXEC;
5558 PMAPCOUNT(exec_discarded_zero);
5559 }
5560 #endif
5561 /*
5562 * Unmap the page.
5563 */
5564 if (!okcolor) {
5565 l2pte_reset(ptep);
5566 PTE_SYNC(ptep);
5567 cpu_tlb_flushD_SE(vdstp);
5568 }
5569
5570 return rv;
5571 }
5572
5573 /*
5574 * pmap_copy_page()
5575 *
5576 * Copy one physical page into another, by mapping the pages into
5577 * hook points. The same comment regarding cachability as in
5578 * pmap_zero_page also applies here.
5579 */
5580 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5581 void
5582 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5583 {
5584 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5585 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5586 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5587 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5588 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5589 #endif
5590 #ifdef PMAP_CACHE_VIPT
5591 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5592 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5593 #else
5594 const vsize_t src_va_offset = 0;
5595 const vsize_t dst_va_offset = 0;
5596 #endif
5597 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5598 /*
5599 * Is this page mapped at its natural color?
5600 * If we have all of memory mapped, then just convert PA to VA.
5601 */
5602 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5603 || src_va_offset == (src & arm_cache_prefer_mask);
5604 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5605 || dst_va_offset == (dst & arm_cache_prefer_mask);
5606 const vaddr_t vsrcp = src_okcolor
5607 ? pmap_direct_mapped_phys(src, &src_okcolor,
5608 cpu_csrcp(src_va_offset))
5609 : cpu_csrcp(src_va_offset);
5610 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5611 cpu_cdstp(dst_va_offset));
5612 #else
5613 const bool src_okcolor = false;
5614 const bool dst_okcolor = false;
5615 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5616 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5617 #endif
5618 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5619 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5620
5621 #ifdef DEBUG
5622 if (!SLIST_EMPTY(&dst_md->pvh_list))
5623 panic("pmap_copy_page: dst page has mappings");
5624 #endif
5625
5626 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5627 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5628 #endif
5629 KDASSERT((src & PGOFSET) == 0);
5630 KDASSERT((dst & PGOFSET) == 0);
5631
5632 /*
5633 * Clean the source page. Hold the source page's lock for
5634 * the duration of the copy so that no other mappings can
5635 * be created while we have a potentially aliased mapping.
5636 */
5637 #ifdef PMAP_CACHE_VIVT
5638 pmap_acquire_page_lock(src_md);
5639 (void) pmap_clean_page(src_md, true);
5640 pmap_release_page_lock(src_md);
5641 #endif
5642
5643 /*
5644 * Map the pages into the page hook points, copy them, and purge
5645 * the cache for the appropriate page. Invalidate the TLB
5646 * as required.
5647 */
5648 if (!src_okcolor) {
5649 const pt_entry_t nsrc_pte = L2_S_PROTO
5650 | src
5651 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5652 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5653 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5654 | pte_l2_s_cache_mode
5655 #endif
5656 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5657 l2pte_set(src_ptep, nsrc_pte, 0);
5658 PTE_SYNC(src_ptep);
5659 cpu_tlb_flushD_SE(vsrcp);
5660 cpu_cpwait();
5661 }
5662 if (!dst_okcolor) {
5663 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5664 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5665 l2pte_set(dst_ptep, ndst_pte, 0);
5666 PTE_SYNC(dst_ptep);
5667 cpu_tlb_flushD_SE(vdstp);
5668 cpu_cpwait();
5669 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5670 /*
5671 * If we are direct-mapped and our color isn't ok, then before
5672 * we bcopy to the new page invalidate its contents from the
5673 * cache and reset its color to its natural color.
5674 */
5675 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5676 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5677 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5678 #endif
5679 }
5680 bcopy_page(vsrcp, vdstp);
5681 #ifdef PMAP_CACHE_VIVT
5682 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5683 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5684 #endif
5685 /*
5686 * Unmap the pages.
5687 */
5688 if (!src_okcolor) {
5689 l2pte_reset(src_ptep);
5690 PTE_SYNC(src_ptep);
5691 cpu_tlb_flushD_SE(vsrcp);
5692 cpu_cpwait();
5693 }
5694 if (!dst_okcolor) {
5695 l2pte_reset(dst_ptep);
5696 PTE_SYNC(dst_ptep);
5697 cpu_tlb_flushD_SE(vdstp);
5698 cpu_cpwait();
5699 }
5700 #ifdef PMAP_CACHE_VIPT
5701 /*
5702 * Now that the destination page is in the cache, mark it as colored.
5703 * If this was an exec page, discard it.
5704 */
5705 pmap_acquire_page_lock(dst_md);
5706 #ifndef ARM_MMU_EXTENDED
5707 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5708 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5709 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5710 }
5711 if (!pmap_is_page_colored_p(dst_md)) {
5712 PMAPCOUNT(vac_color_new);
5713 dst_md->pvh_attrs |= PVF_COLORED;
5714 }
5715 dst_md->pvh_attrs |= PVF_DIRTY;
5716 #endif
5717 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5718 dst_md->pvh_attrs &= ~PVF_EXEC;
5719 PMAPCOUNT(exec_discarded_copy);
5720 }
5721 pmap_release_page_lock(dst_md);
5722 #endif
5723 }
5724 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5725
5726 #if ARM_MMU_XSCALE == 1
5727 void
5728 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5729 {
5730 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5731 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5732 #ifdef DEBUG
5733 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5734
5735 if (!SLIST_EMPTY(&dst_md->pvh_list))
5736 panic("pmap_copy_page: dst page has mappings");
5737 #endif
5738
5739 KDASSERT((src & PGOFSET) == 0);
5740 KDASSERT((dst & PGOFSET) == 0);
5741
5742 /*
5743 * Clean the source page. Hold the source page's lock for
5744 * the duration of the copy so that no other mappings can
5745 * be created while we have a potentially aliased mapping.
5746 */
5747 #ifdef PMAP_CACHE_VIVT
5748 pmap_acquire_page_lock(src_md);
5749 (void) pmap_clean_page(src_md, true);
5750 pmap_release_page_lock(src_md);
5751 #endif
5752
5753 /*
5754 * Map the pages into the page hook points, copy them, and purge
5755 * the cache for the appropriate page. Invalidate the TLB
5756 * as required.
5757 */
5758 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5759 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5760 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5761 l2pte_set(csrc_pte, nsrc_pte, 0);
5762 PTE_SYNC(csrc_pte);
5763
5764 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5765 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5766 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5767 l2pte_set(cdst_pte, ndst_pte, 0);
5768 PTE_SYNC(cdst_pte);
5769
5770 cpu_tlb_flushD_SE(csrcp);
5771 cpu_tlb_flushD_SE(cdstp);
5772 cpu_cpwait();
5773 bcopy_page(csrcp, cdstp);
5774 xscale_cache_clean_minidata();
5775 l2pte_reset(csrc_pte);
5776 l2pte_reset(cdst_pte);
5777 PTE_SYNC(csrc_pte);
5778 PTE_SYNC(cdst_pte);
5779 }
5780 #endif /* ARM_MMU_XSCALE == 1 */
5781
5782 /*
5783 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5784 *
5785 * Return the start and end addresses of the kernel's virtual space.
5786 * These values are setup in pmap_bootstrap and are updated as pages
5787 * are allocated.
5788 */
5789 void
5790 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5791 {
5792 *start = virtual_avail;
5793 *end = virtual_end;
5794 }
5795
5796 /*
5797 * Helper function for pmap_grow_l2_bucket()
5798 */
5799 static inline int
5800 pmap_grow_map(vaddr_t va, paddr_t *pap)
5801 {
5802 paddr_t pa;
5803
5804 KASSERT((va & PGOFSET) == 0);
5805
5806 if (uvm.page_init_done == false) {
5807 #ifdef PMAP_STEAL_MEMORY
5808 pv_addr_t pv;
5809 pmap_boot_pagealloc(PAGE_SIZE,
5810 #ifdef PMAP_CACHE_VIPT
5811 arm_cache_prefer_mask,
5812 va & arm_cache_prefer_mask,
5813 #else
5814 0, 0,
5815 #endif
5816 &pv);
5817 pa = pv.pv_pa;
5818 #else
5819 if (uvm_page_physget(&pa) == false)
5820 return 1;
5821 #endif /* PMAP_STEAL_MEMORY */
5822 } else {
5823 struct vm_page *pg;
5824 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5825 if (pg == NULL)
5826 return 1;
5827 pa = VM_PAGE_TO_PHYS(pg);
5828 /*
5829 * This new page must not have any mappings.
5830 */
5831 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5832 KASSERT(SLIST_EMPTY(&md->pvh_list));
5833 }
5834
5835 /*
5836 * Enter it via pmap_kenter_pa and let that routine do the hard work.
5837 */
5838 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
5839 PMAP_KMPAGE | PMAP_PTE);
5840
5841 if (pap)
5842 *pap = pa;
5843
5844 PMAPCOUNT(pt_mappings);
5845
5846 const pmap_t kpm __diagused = pmap_kernel();
5847 struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
5848 KASSERT(l2b != NULL);
5849
5850 pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
5851 const pt_entry_t pte __diagused = *ptep;
5852 KASSERT(l2pte_valid_p(pte));
5853 KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5854
5855 memset((void *)va, 0, PAGE_SIZE);
5856
5857 return 0;
5858 }
5859
5860 /*
5861 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5862 * used by pmap_growkernel().
5863 */
5864 static inline struct l2_bucket *
5865 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5866 {
5867 const size_t l1slot = l1pte_index(va);
5868 struct l2_dtable *l2;
5869 vaddr_t nva;
5870
5871 CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
5872 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5873 /*
5874 * No mapping at this address, as there is
5875 * no entry in the L1 table.
5876 * Need to allocate a new l2_dtable.
5877 */
5878 nva = pmap_kernel_l2dtable_kva;
5879 if ((nva & PGOFSET) == 0) {
5880 /*
5881 * Need to allocate a backing page
5882 */
5883 if (pmap_grow_map(nva, NULL))
5884 return NULL;
5885 }
5886
5887 l2 = (struct l2_dtable *)nva;
5888 nva += sizeof(struct l2_dtable);
5889
5890 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5891 /*
5892 * The new l2_dtable straddles a page boundary.
5893 * Map in another page to cover it.
5894 */
5895 if (pmap_grow_map(nva & ~PGOFSET, NULL))
5896 return NULL;
5897 }
5898
5899 pmap_kernel_l2dtable_kva = nva;
5900
5901 /*
5902 * Link it into the parent pmap
5903 */
5904 pm->pm_l2[L2_IDX(l1slot)] = l2;
5905 }
5906
5907 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5908
5909 /*
5910 * Fetch pointer to the L2 page table associated with the address.
5911 */
5912 if (l2b->l2b_kva == NULL) {
5913 pt_entry_t *ptep;
5914
5915 /*
5916 * No L2 page table has been allocated. Chances are, this
5917 * is because we just allocated the l2_dtable, above.
5918 */
5919 nva = pmap_kernel_l2ptp_kva;
5920 ptep = (pt_entry_t *)nva;
5921 if ((nva & PGOFSET) == 0) {
5922 /*
5923 * Need to allocate a backing page
5924 */
5925 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5926 return NULL;
5927 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5928 }
5929
5930 l2->l2_occupancy++;
5931 l2b->l2b_kva = ptep;
5932 l2b->l2b_l1slot = l1slot;
5933 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5934
5935 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5936 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5937 }
5938
5939 return l2b;
5940 }
5941
5942 vaddr_t
5943 pmap_growkernel(vaddr_t maxkvaddr)
5944 {
5945 pmap_t kpm = pmap_kernel();
5946 #ifndef ARM_MMU_EXTENDED
5947 struct l1_ttable *l1;
5948 #endif
5949 int s;
5950
5951 if (maxkvaddr <= pmap_curmaxkvaddr)
5952 goto out; /* we are OK */
5953
5954 NPDEBUG(PDB_GROWKERN,
5955 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5956 pmap_curmaxkvaddr, maxkvaddr));
5957
5958 KDASSERT(maxkvaddr <= virtual_end);
5959
5960 /*
5961 * whoops! we need to add kernel PTPs
5962 */
5963
5964 s = splvm(); /* to be safe */
5965 mutex_enter(&kpm_lock);
5966
5967 /* Map 1MB at a time */
5968 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5969 #ifdef ARM_MMU_EXTENDED
5970 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5971 pd_entry_t *pdep = spdep;
5972 #endif
5973 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5974 #ifdef ARM_MMU_EXTENDED
5975 pdep++,
5976 #endif
5977 l1slot++) {
5978 struct l2_bucket *l2b =
5979 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5980 KASSERT(l2b != NULL);
5981
5982 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5983 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5984 #ifdef ARM_MMU_EXTENDED
5985 KASSERT(*pdep == 0);
5986 l1pte_setone(pdep, npde);
5987 #else
5988 /* Distribute new L1 entry to all other L1s */
5989 SLIST_FOREACH(l1, &l1_list, l1_link) {
5990 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5991 l1pte_setone(pdep, npde);
5992 PDE_SYNC(pdep);
5993 }
5994 #endif
5995 }
5996 #ifdef ARM_MMU_EXTENDED
5997 PDE_SYNC_RANGE(spdep, pdep - spdep);
5998 #endif
5999
6000 #ifdef PMAP_CACHE_VIVT
6001 /*
6002 * flush out the cache, expensive but growkernel will happen so
6003 * rarely
6004 */
6005 cpu_dcache_wbinv_all();
6006 cpu_tlb_flushD();
6007 cpu_cpwait();
6008 #endif
6009
6010 mutex_exit(&kpm_lock);
6011 splx(s);
6012
6013 out:
6014 return pmap_curmaxkvaddr;
6015 }
6016
6017 /************************ Utility routines ****************************/
6018
6019 #ifndef ARM_HAS_VBAR
6020 /*
6021 * vector_page_setprot:
6022 *
6023 * Manipulate the protection of the vector page.
6024 */
6025 void
6026 vector_page_setprot(int prot)
6027 {
6028 struct l2_bucket *l2b;
6029 pt_entry_t *ptep;
6030
6031 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
6032 /*
6033 * If we are using VBAR to use the vectors in the kernel, then it's
6034 * already mapped in the kernel text so no need to anything here.
6035 */
6036 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6037 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6038 return;
6039 }
6040 #endif
6041
6042 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6043 KASSERT(l2b != NULL);
6044
6045 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6046
6047 const pt_entry_t opte = *ptep;
6048 #ifdef ARM_MMU_EXTENDED
6049 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6050 | L2_S_PROT(PTE_KERNEL, prot);
6051 #else
6052 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6053 | L2_S_PROT(PTE_KERNEL, prot);
6054 #endif
6055 l2pte_set(ptep, npte, opte);
6056 PTE_SYNC(ptep);
6057 cpu_tlb_flushD_SE(vector_page);
6058 cpu_cpwait();
6059 }
6060 #endif
6061
6062 /*
6063 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6064 * Returns true if the mapping exists, else false.
6065 *
6066 * NOTE: This function is only used by a couple of arm-specific modules.
6067 * It is not safe to take any pmap locks here, since we could be right
6068 * in the middle of debugging the pmap anyway...
6069 *
6070 * It is possible for this routine to return false even though a valid
6071 * mapping does exist. This is because we don't lock, so the metadata
6072 * state may be inconsistent.
6073 *
6074 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6075 * a "section" mapping.
6076 */
6077 bool
6078 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6079 {
6080 struct l2_dtable *l2;
6081 pd_entry_t *pdep, pde;
6082 pt_entry_t *ptep;
6083 u_short l1slot;
6084
6085 if (pm->pm_l1 == NULL)
6086 return false;
6087
6088 l1slot = l1pte_index(va);
6089 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6090 pde = *pdep;
6091
6092 if (l1pte_section_p(pde)) {
6093 *ptp = NULL;
6094 return true;
6095 }
6096
6097 l2 = pm->pm_l2[L2_IDX(l1slot)];
6098 if (l2 == NULL ||
6099 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6100 return false;
6101 }
6102
6103 *ptp = &ptep[l2pte_index(va)];
6104 return true;
6105 }
6106
6107 bool
6108 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6109 {
6110
6111 if (pm->pm_l1 == NULL)
6112 return false;
6113
6114 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6115
6116 return true;
6117 }
6118
6119 /************************ Bootstrapping routines ****************************/
6120
6121 #ifndef ARM_MMU_EXTENDED
6122 static void
6123 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6124 {
6125 int i;
6126
6127 l1->l1_kva = l1pt;
6128 l1->l1_domain_use_count = 0;
6129 l1->l1_domain_first = 0;
6130
6131 for (i = 0; i < PMAP_DOMAINS; i++)
6132 l1->l1_domain_free[i] = i + 1;
6133
6134 /*
6135 * Copy the kernel's L1 entries to each new L1.
6136 */
6137 if (pmap_initialized)
6138 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6139
6140 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6141 &l1->l1_physaddr) == false)
6142 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6143
6144 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6145 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6146 }
6147 #endif /* !ARM_MMU_EXTENDED */
6148
6149 /*
6150 * pmap_bootstrap() is called from the board-specific initarm() routine
6151 * once the kernel L1/L2 descriptors tables have been set up.
6152 *
6153 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6154 * spread over a number of disparate files/functions.
6155 *
6156 * We are passed the following parameters
6157 * - vstart
6158 * 1MB-aligned start of managed kernel virtual memory.
6159 * - vend
6160 * 1MB-aligned end of managed kernel virtual memory.
6161 *
6162 * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6163 * struct l2_dtable) necessary to track kernel mappings.
6164 */
6165 #define PMAP_STATIC_L2_SIZE 16
6166 void
6167 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6168 {
6169 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6170 #ifndef ARM_MMU_EXTENDED
6171 static struct l1_ttable static_l1;
6172 struct l1_ttable *l1 = &static_l1;
6173 #endif
6174 struct l2_dtable *l2;
6175 struct l2_bucket *l2b;
6176 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6177 pmap_t pm = pmap_kernel();
6178 pt_entry_t *ptep;
6179 paddr_t pa;
6180 vsize_t size;
6181 int nptes, l2idx, l2next = 0;
6182
6183 #ifdef ARM_MMU_EXTENDED
6184 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6185 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6186 #endif
6187
6188 VPRINTF("kpm ");
6189 /*
6190 * Initialise the kernel pmap object
6191 */
6192 curcpu()->ci_pmap_cur = pm;
6193 #ifdef ARM_MMU_EXTENDED
6194 pm->pm_l1 = l1pt;
6195 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6196 VPRINTF("tlb0 ");
6197 pmap_tlb_info_init(&pmap_tlb0_info);
6198 #ifdef MULTIPROCESSOR
6199 VPRINTF("kcpusets ");
6200 pm->pm_onproc = kcpuset_running;
6201 pm->pm_active = kcpuset_running;
6202 #endif
6203 #else
6204 pm->pm_l1 = l1;
6205 #endif
6206
6207 VPRINTF("locks ");
6208 /*
6209 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6210 * context, so its locks have to be at IPL_VM
6211 */
6212 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6213 mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6214 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
6215 pm->pm_refs = 1;
6216
6217 VPRINTF("l1pt ");
6218 /*
6219 * Scan the L1 translation table created by initarm() and create
6220 * the required metadata for all valid mappings found in it.
6221 */
6222 for (size_t l1slot = 0;
6223 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6224 l1slot++) {
6225 pd_entry_t pde = l1pt[l1slot];
6226
6227 /*
6228 * We're only interested in Coarse mappings.
6229 * pmap_extract() can deal with section mappings without
6230 * recourse to checking L2 metadata.
6231 */
6232 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6233 continue;
6234
6235 /*
6236 * Lookup the KVA of this L2 descriptor table
6237 */
6238 pa = l1pte_pa(pde);
6239 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6240 if (ptep == NULL) {
6241 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6242 (u_int)l1slot << L1_S_SHIFT, pa);
6243 }
6244
6245 /*
6246 * Fetch the associated L2 metadata structure.
6247 * Allocate a new one if necessary.
6248 */
6249 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6250 if (l2next == PMAP_STATIC_L2_SIZE)
6251 panic("pmap_bootstrap: out of static L2s");
6252 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6253 }
6254
6255 /*
6256 * One more L1 slot tracked...
6257 */
6258 l2->l2_occupancy++;
6259
6260 /*
6261 * Fill in the details of the L2 descriptor in the
6262 * appropriate bucket.
6263 */
6264 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6265 l2b->l2b_kva = ptep;
6266 l2b->l2b_pa = pa;
6267 l2b->l2b_l1slot = l1slot;
6268
6269 /*
6270 * Establish an initial occupancy count for this descriptor
6271 */
6272 for (l2idx = 0;
6273 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6274 l2idx++) {
6275 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6276 l2b->l2b_occupancy++;
6277 }
6278 }
6279
6280 /*
6281 * Make sure the descriptor itself has the correct cache mode.
6282 * If not, fix it, but whine about the problem. Port-meisters
6283 * should consider this a clue to fix up their initarm()
6284 * function. :)
6285 */
6286 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6287 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6288 "L2 pte @ %p\n", ptep);
6289 }
6290 }
6291
6292 VPRINTF("cache(l1pt) ");
6293 /*
6294 * Ensure the primary (kernel) L1 has the correct cache mode for
6295 * a page table. Bitch if it is not correctly set.
6296 */
6297 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6298 L1_TABLE_SIZE / L2_S_SIZE)) {
6299 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6300 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6301 }
6302
6303 #ifdef PMAP_CACHE_VIVT
6304 cpu_dcache_wbinv_all();
6305 cpu_tlb_flushID();
6306 cpu_cpwait();
6307 #endif
6308
6309 /*
6310 * now we allocate the "special" VAs which are used for tmp mappings
6311 * by the pmap (and other modules). we allocate the VAs by advancing
6312 * virtual_avail (note that there are no pages mapped at these VAs).
6313 *
6314 * Managed KVM space start from wherever initarm() tells us.
6315 */
6316 virtual_avail = vstart;
6317 virtual_end = vend;
6318
6319 VPRINTF("specials ");
6320 #ifdef PMAP_CACHE_VIPT
6321 /*
6322 * If we have a VIPT cache, we need one page/pte per possible alias
6323 * page so we won't violate cache aliasing rules.
6324 */
6325 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6326 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6327 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6328 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6329 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6330 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6331 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6332 }
6333 #else
6334 nptes = PAGE_SIZE / L2_S_SIZE;
6335 #endif
6336 #ifdef MULTIPROCESSOR
6337 cnptes = nptes;
6338 nptes *= arm_cpu_max;
6339 #endif
6340 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6341 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6342 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6343 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6344 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6345 if (msgbufaddr == NULL) {
6346 pmap_alloc_specials(&virtual_avail,
6347 round_page(MSGBUFSIZE) / PAGE_SIZE,
6348 (void *)&msgbufaddr, NULL);
6349 }
6350
6351 /*
6352 * Allocate a range of kernel virtual address space to be used
6353 * for L2 descriptor tables and metadata allocation in
6354 * pmap_growkernel().
6355 */
6356 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6357 pmap_alloc_specials(&virtual_avail,
6358 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6359 &pmap_kernel_l2ptp_kva, NULL);
6360
6361 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6362 pmap_alloc_specials(&virtual_avail,
6363 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6364 &pmap_kernel_l2dtable_kva, NULL);
6365
6366 #ifndef ARM_MMU_EXTENDED
6367 /*
6368 * init the static-global locks and global pmap list.
6369 */
6370 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6371
6372 /*
6373 * We can now initialise the first L1's metadata.
6374 */
6375 SLIST_INIT(&l1_list);
6376 TAILQ_INIT(&l1_lru_list);
6377 pmap_init_l1(l1, l1pt);
6378 #endif /* ARM_MMU_EXTENDED */
6379
6380 #ifndef ARM_HAS_VBAR
6381 /* Set up vector page L1 details, if necessary */
6382 if (vector_page < KERNEL_BASE) {
6383 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6384 l2b = pmap_get_l2_bucket(pm, vector_page);
6385 KDASSERT(l2b != NULL);
6386 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6387 L1_C_DOM(pmap_domain(pm));
6388 } else
6389 pm->pm_pl1vec = NULL;
6390 #endif
6391
6392 VPRINTF("pools ");
6393 /*
6394 * Initialize the pmap cache
6395 */
6396 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6397 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6398
6399 /*
6400 * Initialize the pv pool.
6401 */
6402 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6403 &pmap_bootstrap_pv_allocator, IPL_NONE);
6404
6405 /*
6406 * Initialize the L2 dtable pool and cache.
6407 */
6408 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6409 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6410
6411 /*
6412 * Initialise the L2 descriptor table pool and cache
6413 */
6414 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6415 L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6416 pmap_l2ptp_ctor, NULL, NULL);
6417
6418 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6419
6420 cpu_dcache_wbinv_all();
6421 }
6422
6423 static bool
6424 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6425 {
6426 #ifdef ARM_MMU_EXTENDED
6427 return false;
6428 #else
6429 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6430 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6431 return false;
6432
6433 const vaddr_t eva = va + nptes * PAGE_SIZE;
6434 int rv = 0;
6435
6436 while (va < eva) {
6437 /*
6438 * Make sure the descriptor itself has the correct cache mode
6439 */
6440 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6441 pd_entry_t pde = *pdep;
6442
6443 if (l1pte_section_p(pde)) {
6444 KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6445 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6446 *pdep = (pde & ~L1_S_CACHE_MASK) |
6447 pte_l1_s_cache_mode_pt;
6448 PDE_SYNC(pdep);
6449 cpu_dcache_wbinv_range((vaddr_t)pdep,
6450 sizeof(*pdep));
6451 rv = 1;
6452 }
6453 return rv;
6454 }
6455 vaddr_t pa = l1pte_pa(pde);
6456 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6457 if (ptep == NULL)
6458 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6459
6460 ptep += l2pte_index(va);
6461 const pt_entry_t opte = *ptep;
6462 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6463 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6464 | pte_l2_s_cache_mode_pt;
6465 l2pte_set(ptep, npte, opte);
6466 PTE_SYNC(ptep);
6467 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6468 rv = 1;
6469 }
6470 va += PAGE_SIZE;
6471 }
6472
6473 return rv;
6474 #endif
6475 }
6476
6477 static void
6478 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6479 {
6480 vaddr_t va = *availp;
6481 struct l2_bucket *l2b;
6482
6483 if (ptep) {
6484 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6485 if (l2b == NULL)
6486 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6487
6488 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6489 }
6490
6491 *vap = va;
6492 *availp = va + (PAGE_SIZE * pages);
6493 }
6494
6495 void
6496 pmap_init(void)
6497 {
6498
6499 /*
6500 * Set the available memory vars - These do not map to real memory
6501 * addresses and cannot as the physical memory is fragmented.
6502 * They are used by ps for %mem calculations.
6503 * One could argue whether this should be the entire memory or just
6504 * the memory that is useable in a user process.
6505 */
6506 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6507 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6508
6509 /*
6510 * Now we need to free enough pv_entry structures to allow us to get
6511 * the kmem_map/kmem_object allocated and inited (done after this
6512 * function is finished). to do this we allocate one bootstrap page out
6513 * of kernel_map and use it to provide an initial pool of pv_entry
6514 * structures. we never free this page.
6515 */
6516 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6517
6518 #ifdef ARM_MMU_EXTENDED
6519 /*
6520 * Initialise the L1 pool and cache.
6521 */
6522
6523 pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
6524 0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
6525 NULL, NULL);
6526
6527 int error __diagused = pmap_maxproc_set(maxproc);
6528 KASSERT(error == 0);
6529
6530 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6531 #endif
6532
6533 pmap_initialized = true;
6534 }
6535
6536 static vaddr_t last_bootstrap_page = 0;
6537 static void *free_bootstrap_pages = NULL;
6538
6539 static void *
6540 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6541 {
6542 extern void *pool_page_alloc(struct pool *, int);
6543 vaddr_t new_page;
6544 void *rv;
6545
6546 if (pmap_initialized)
6547 return pool_page_alloc(pp, flags);
6548
6549 if (free_bootstrap_pages) {
6550 rv = free_bootstrap_pages;
6551 free_bootstrap_pages = *((void **)rv);
6552 return rv;
6553 }
6554
6555 KASSERT(kernel_map != NULL);
6556 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6557 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6558
6559 KASSERT(new_page > last_bootstrap_page);
6560 last_bootstrap_page = new_page;
6561 return (void *)new_page;
6562 }
6563
6564 static void
6565 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6566 {
6567 extern void pool_page_free(struct pool *, void *);
6568
6569 if ((vaddr_t)v <= last_bootstrap_page) {
6570 *((void **)v) = free_bootstrap_pages;
6571 free_bootstrap_pages = v;
6572 return;
6573 }
6574
6575 if (pmap_initialized) {
6576 pool_page_free(pp, v);
6577 return;
6578 }
6579 }
6580
6581
6582 #if defined(ARM_MMU_EXTENDED)
6583 static void *
6584 pmap_l1tt_alloc(struct pool *pp, int flags)
6585 {
6586 struct pglist plist;
6587 vaddr_t va;
6588
6589 const int waitok = flags & PR_WAITOK;
6590
6591 int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
6592 waitok);
6593 if (error)
6594 panic("Cannot allocate L1TT physical pages, %d", error);
6595
6596 struct vm_page *pg = TAILQ_FIRST(&plist);
6597 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6598
6599 /* Allocate a L1 translation table VA */
6600 va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
6601 if (va == 0)
6602 panic("Cannot allocate L1TT KVA");
6603
6604 const vaddr_t eva = va + L1TT_SIZE;
6605 vaddr_t mva = va;
6606 while (pg && mva < eva) {
6607 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6608
6609 pmap_kenter_pa(mva, pa,
6610 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6611
6612 mva += PAGE_SIZE;
6613 pg = TAILQ_NEXT(pg, pageq.queue);
6614 }
6615 KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
6616 " eva %" PRIxVADDR, pg, mva, eva);
6617 #else
6618 bool ok;
6619 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6620 va = pmap_direct_mapped_phys(pa, &ok, 0);
6621 KASSERT(ok);
6622 KASSERT(va >= KERNEL_BASE);
6623 #endif
6624
6625 return (void *)va;
6626 }
6627
6628 static void
6629 pmap_l1tt_free(struct pool *pp, void *v)
6630 {
6631 vaddr_t va = (vaddr_t)v;
6632
6633 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6634 uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
6635 #else
6636 #if defined(KERNEL_BASE_VOFFSET)
6637 paddr_t pa = va - KERNEL_BASE_VOFFSET;
6638 #else
6639 paddr_t pa = va - KERNEL_BASE + physical_start;
6640 #endif
6641 const paddr_t epa = pa + L1TT_SIZE;
6642
6643 for (; pa < epa; pa += PAGE_SIZE) {
6644 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
6645 uvm_pagefree(pg);
6646 }
6647 #endif
6648 }
6649 #endif
6650
6651 /*
6652 * pmap_postinit()
6653 *
6654 * This routine is called after the vm and kmem subsystems have been
6655 * initialised. This allows the pmap code to perform any initialisation
6656 * that can only be done once the memory allocation is in place.
6657 */
6658 void
6659 pmap_postinit(void)
6660 {
6661 #ifndef ARM_MMU_EXTENDED
6662 extern paddr_t physical_start, physical_end;
6663 struct l1_ttable *l1;
6664 struct pglist plist;
6665 struct vm_page *m;
6666 pd_entry_t *pdep;
6667 vaddr_t va, eva;
6668 u_int loop, needed;
6669 int error;
6670 #endif
6671
6672 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6673 pool_cache_setlowat(&pmap_l2dtable_cache,
6674 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6675
6676 #ifndef ARM_MMU_EXTENDED
6677 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6678 needed -= 1;
6679
6680 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6681
6682 for (loop = 0; loop < needed; loop++, l1++) {
6683 /* Allocate a L1 page table */
6684 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6685 if (va == 0)
6686 panic("Cannot allocate L1 KVM");
6687
6688 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6689 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6690 if (error)
6691 panic("Cannot allocate L1 physical pages");
6692
6693 m = TAILQ_FIRST(&plist);
6694 eva = va + L1_TABLE_SIZE;
6695 pdep = (pd_entry_t *)va;
6696
6697 while (m && va < eva) {
6698 paddr_t pa = VM_PAGE_TO_PHYS(m);
6699
6700 pmap_kenter_pa(va, pa,
6701 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6702
6703 va += PAGE_SIZE;
6704 m = TAILQ_NEXT(m, pageq.queue);
6705 }
6706
6707 #ifdef DIAGNOSTIC
6708 if (m)
6709 panic("pmap_alloc_l1pt: pglist not empty");
6710 #endif /* DIAGNOSTIC */
6711
6712 pmap_init_l1(l1, pdep);
6713 }
6714
6715 #ifdef DEBUG
6716 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6717 needed);
6718 #endif
6719 #endif /* !ARM_MMU_EXTENDED */
6720 }
6721
6722 /*
6723 * Note that the following routines are used by board-specific initialisation
6724 * code to configure the initial kernel page tables.
6725 *
6726 */
6727
6728 /*
6729 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6730 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6731 * find them as necessary.
6732 *
6733 * Note that the data on this list MUST remain valid after initarm() returns,
6734 * as pmap_bootstrap() uses it to construct L2 table metadata.
6735 */
6736 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6737
6738 static vaddr_t
6739 kernel_pt_lookup(paddr_t pa)
6740 {
6741 pv_addr_t *pv;
6742
6743 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6744 if (pv->pv_pa == (pa & ~PGOFSET))
6745 return pv->pv_va | (pa & PGOFSET);
6746 }
6747 return 0;
6748 }
6749
6750 /*
6751 * pmap_map_section:
6752 *
6753 * Create a single section mapping.
6754 */
6755 void
6756 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6757 {
6758 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6759 const size_t l1slot = l1pte_index(va);
6760 pd_entry_t fl;
6761
6762 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6763
6764 switch (cache) {
6765 case PTE_NOCACHE:
6766 fl = pte_l1_s_nocache_mode;
6767 break;
6768
6769 case PTE_CACHE:
6770 fl = pte_l1_s_cache_mode;
6771 break;
6772
6773 case PTE_PAGETABLE:
6774 fl = pte_l1_s_cache_mode_pt;
6775 break;
6776
6777 case PTE_DEV:
6778 default:
6779 fl = 0;
6780 break;
6781 }
6782
6783 const pd_entry_t npde = L1_S_PROTO | pa |
6784 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6785 l1pte_setone(pdep + l1slot, npde);
6786 PDE_SYNC(pdep + l1slot);
6787 }
6788
6789 /*
6790 * pmap_map_entry:
6791 *
6792 * Create a single page mapping.
6793 */
6794 void
6795 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6796 {
6797 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6798 const size_t l1slot = l1pte_index(va);
6799 pt_entry_t npte;
6800 pt_entry_t *ptep;
6801
6802 KASSERT(((va | pa) & PGOFSET) == 0);
6803
6804 switch (cache) {
6805 case PTE_NOCACHE:
6806 npte = pte_l2_s_nocache_mode;
6807 break;
6808
6809 case PTE_CACHE:
6810 npte = pte_l2_s_cache_mode;
6811 break;
6812
6813 case PTE_PAGETABLE:
6814 npte = pte_l2_s_cache_mode_pt;
6815 break;
6816
6817 default:
6818 npte = 0;
6819 break;
6820 }
6821
6822 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6823 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6824
6825 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6826 if (ptep == NULL)
6827 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6828
6829 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6830 #ifdef ARM_MMU_EXTENDED
6831 if (prot & VM_PROT_EXECUTE) {
6832 npte &= ~L2_XS_XN;
6833 }
6834 #endif
6835 ptep += l2pte_index(va);
6836 l2pte_set(ptep, npte, 0);
6837 PTE_SYNC(ptep);
6838 }
6839
6840 /*
6841 * pmap_link_l2pt:
6842 *
6843 * Link the L2 page table specified by "l2pv" into the L1
6844 * page table at the slot for "va".
6845 */
6846 void
6847 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6848 {
6849 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6850
6851 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6852 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6853
6854 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6855 | l2pv->pv_pa;
6856
6857 l1pte_set(pdep, npde);
6858 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6859
6860 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6861 }
6862
6863 /*
6864 * pmap_map_chunk:
6865 *
6866 * Map a chunk of memory using the most efficient mappings
6867 * possible (section, large page, small page) into the
6868 * provided L1 and L2 tables at the specified virtual address.
6869 */
6870 vsize_t
6871 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6872 int prot, int cache)
6873 {
6874 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6875 pt_entry_t f1, f2s, f2l;
6876 vsize_t resid;
6877
6878 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6879
6880 if (l1pt == 0)
6881 panic("pmap_map_chunk: no L1 table provided");
6882
6883 // VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6884 // "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6885
6886 switch (cache) {
6887 case PTE_NOCACHE:
6888 f1 = pte_l1_s_nocache_mode;
6889 f2l = pte_l2_l_nocache_mode;
6890 f2s = pte_l2_s_nocache_mode;
6891 break;
6892
6893 case PTE_CACHE:
6894 f1 = pte_l1_s_cache_mode;
6895 f2l = pte_l2_l_cache_mode;
6896 f2s = pte_l2_s_cache_mode;
6897 break;
6898
6899 case PTE_PAGETABLE:
6900 f1 = pte_l1_s_cache_mode_pt;
6901 f2l = pte_l2_l_cache_mode_pt;
6902 f2s = pte_l2_s_cache_mode_pt;
6903 break;
6904
6905 case PTE_DEV:
6906 default:
6907 f1 = 0;
6908 f2l = 0;
6909 f2s = 0;
6910 break;
6911 }
6912
6913 size = resid;
6914
6915 while (resid > 0) {
6916 const size_t l1slot = l1pte_index(va);
6917 #ifdef ARM_MMU_EXTENDED
6918 /* See if we can use a supersection mapping. */
6919 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6920 /* Supersection are always domain 0 */
6921 const pd_entry_t npde = L1_SS_PROTO | pa
6922 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6923 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6924 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6925 VPRINTF("sS");
6926 l1pte_set(&pdep[l1slot], npde);
6927 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6928 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6929 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6930 va += L1_SS_SIZE;
6931 pa += L1_SS_SIZE;
6932 resid -= L1_SS_SIZE;
6933 continue;
6934 }
6935 #endif
6936 /* See if we can use a section mapping. */
6937 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6938 const pd_entry_t npde = L1_S_PROTO | pa
6939 #ifdef ARM_MMU_EXTENDED
6940 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6941 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6942 #endif
6943 | L1_S_PROT(PTE_KERNEL, prot) | f1
6944 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6945 VPRINTF("S");
6946 l1pte_set(&pdep[l1slot], npde);
6947 PDE_SYNC(&pdep[l1slot]);
6948 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6949 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6950 va += L1_S_SIZE;
6951 pa += L1_S_SIZE;
6952 resid -= L1_S_SIZE;
6953 continue;
6954 }
6955
6956 /*
6957 * Ok, we're going to use an L2 table. Make sure
6958 * one is actually in the corresponding L1 slot
6959 * for the current VA.
6960 */
6961 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6962 panic("%s: no L2 table for VA %#lx", __func__, va);
6963
6964 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6965 if (ptep == NULL)
6966 panic("%s: can't find L2 table for VA %#lx", __func__,
6967 va);
6968
6969 ptep += l2pte_index(va);
6970
6971 /* See if we can use a L2 large page mapping. */
6972 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6973 const pt_entry_t npte = L2_L_PROTO | pa
6974 #ifdef ARM_MMU_EXTENDED
6975 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6976 | (va & 0x80000000 ? 0 : L2_XS_nG)
6977 #endif
6978 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6979 VPRINTF("L");
6980 l2pte_set(ptep, npte, 0);
6981 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6982 va += L2_L_SIZE;
6983 pa += L2_L_SIZE;
6984 resid -= L2_L_SIZE;
6985 continue;
6986 }
6987
6988 VPRINTF("P");
6989 /* Use a small page mapping. */
6990 pt_entry_t npte = L2_S_PROTO | pa
6991 #ifdef ARM_MMU_EXTENDED
6992 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6993 | (va & 0x80000000 ? 0 : L2_XS_nG)
6994 #endif
6995 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6996 #ifdef ARM_MMU_EXTENDED
6997 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6998 #endif
6999 l2pte_set(ptep, npte, 0);
7000 PTE_SYNC(ptep);
7001 va += PAGE_SIZE;
7002 pa += PAGE_SIZE;
7003 resid -= PAGE_SIZE;
7004 }
7005 VPRINTF("\n");
7006 return size;
7007 }
7008
7009 /*
7010 * pmap_unmap_chunk:
7011 *
7012 * Unmap a chunk of memory that was previously pmap_map_chunk
7013 */
7014 void
7015 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
7016 {
7017 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7018 const size_t l1slot = l1pte_index(va);
7019
7020 KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
7021
7022 l1pte_set(&pdep[l1slot], 0);
7023 PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
7024
7025 pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
7026 }
7027
7028
7029
7030 /********************** Static device map routines ***************************/
7031
7032 static const struct pmap_devmap *pmap_devmap_table;
7033
7034 /*
7035 * Register the devmap table. This is provided in case early console
7036 * initialization needs to register mappings created by bootstrap code
7037 * before pmap_devmap_bootstrap() is called.
7038 */
7039 void
7040 pmap_devmap_register(const struct pmap_devmap *table)
7041 {
7042
7043 pmap_devmap_table = table;
7044 }
7045
7046 /*
7047 * Map all of the static regions in the devmap table, and remember
7048 * the devmap table so other parts of the kernel can look up entries
7049 * later.
7050 */
7051 void
7052 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
7053 {
7054 int i;
7055
7056 pmap_devmap_table = table;
7057
7058 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7059 const struct pmap_devmap *pdp = &pmap_devmap_table[i];
7060
7061 KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
7062 " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
7063 KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
7064 " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
7065 VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
7066 pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
7067
7068 pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
7069 pdp->pd_prot, pdp->pd_cache);
7070 }
7071 }
7072
7073 const struct pmap_devmap *
7074 pmap_devmap_find_pa(paddr_t pa, psize_t size)
7075 {
7076 uint64_t endpa;
7077 int i;
7078
7079 if (pmap_devmap_table == NULL)
7080 return NULL;
7081
7082 endpa = (uint64_t)pa + (uint64_t)(size - 1);
7083
7084 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7085 if (pa >= pmap_devmap_table[i].pd_pa &&
7086 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
7087 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
7088 return &pmap_devmap_table[i];
7089 }
7090
7091 return NULL;
7092 }
7093
7094 const struct pmap_devmap *
7095 pmap_devmap_find_va(vaddr_t va, vsize_t size)
7096 {
7097 int i;
7098
7099 if (pmap_devmap_table == NULL)
7100 return NULL;
7101
7102 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7103 if (va >= pmap_devmap_table[i].pd_va &&
7104 va + size - 1 <= pmap_devmap_table[i].pd_va +
7105 pmap_devmap_table[i].pd_size - 1)
7106 return &pmap_devmap_table[i];
7107 }
7108
7109 return NULL;
7110 }
7111
7112 /********************** PTE initialization routines **************************/
7113
7114 /*
7115 * These routines are called when the CPU type is identified to set up
7116 * the PTE prototypes, cache modes, etc.
7117 *
7118 * The variables are always here, just in case modules need to reference
7119 * them (though, they shouldn't).
7120 */
7121
7122 pt_entry_t pte_l1_s_nocache_mode;
7123 pt_entry_t pte_l1_s_cache_mode;
7124 pt_entry_t pte_l1_s_wc_mode;
7125 pt_entry_t pte_l1_s_cache_mode_pt;
7126 pt_entry_t pte_l1_s_cache_mask;
7127
7128 pt_entry_t pte_l2_l_nocache_mode;
7129 pt_entry_t pte_l2_l_cache_mode;
7130 pt_entry_t pte_l2_l_wc_mode;
7131 pt_entry_t pte_l2_l_cache_mode_pt;
7132 pt_entry_t pte_l2_l_cache_mask;
7133
7134 pt_entry_t pte_l2_s_nocache_mode;
7135 pt_entry_t pte_l2_s_cache_mode;
7136 pt_entry_t pte_l2_s_wc_mode;
7137 pt_entry_t pte_l2_s_cache_mode_pt;
7138 pt_entry_t pte_l2_s_cache_mask;
7139
7140 pt_entry_t pte_l1_s_prot_u;
7141 pt_entry_t pte_l1_s_prot_w;
7142 pt_entry_t pte_l1_s_prot_ro;
7143 pt_entry_t pte_l1_s_prot_mask;
7144
7145 pt_entry_t pte_l2_s_prot_u;
7146 pt_entry_t pte_l2_s_prot_w;
7147 pt_entry_t pte_l2_s_prot_ro;
7148 pt_entry_t pte_l2_s_prot_mask;
7149
7150 pt_entry_t pte_l2_l_prot_u;
7151 pt_entry_t pte_l2_l_prot_w;
7152 pt_entry_t pte_l2_l_prot_ro;
7153 pt_entry_t pte_l2_l_prot_mask;
7154
7155 pt_entry_t pte_l1_ss_proto;
7156 pt_entry_t pte_l1_s_proto;
7157 pt_entry_t pte_l1_c_proto;
7158 pt_entry_t pte_l2_s_proto;
7159
7160 void (*pmap_copy_page_func)(paddr_t, paddr_t);
7161 void (*pmap_zero_page_func)(paddr_t);
7162
7163 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7164 void
7165 pmap_pte_init_generic(void)
7166 {
7167
7168 pte_l1_s_nocache_mode = 0;
7169 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7170 pte_l1_s_wc_mode = L1_S_B;
7171 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7172
7173 pte_l2_l_nocache_mode = 0;
7174 pte_l2_l_cache_mode = L2_B|L2_C;
7175 pte_l2_l_wc_mode = L2_B;
7176 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7177
7178 pte_l2_s_nocache_mode = 0;
7179 pte_l2_s_cache_mode = L2_B|L2_C;
7180 pte_l2_s_wc_mode = L2_B;
7181 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7182
7183 /*
7184 * If we have a write-through cache, set B and C. If
7185 * we have a write-back cache, then we assume setting
7186 * only C will make those pages write-through (except for those
7187 * Cortex CPUs which can read the L1 caches).
7188 */
7189 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7190 #if ARM_MMU_V7 > 0
7191 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7192 #endif
7193 #if ARM_MMU_V6 > 0
7194 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7195 #endif
7196 || false) {
7197 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7198 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7199 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7200 } else {
7201 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7202 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7203 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7204 }
7205
7206 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7207 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7208 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7209 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7210
7211 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7212 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7213 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7214 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7215
7216 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7217 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7218 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7219 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7220
7221 pte_l1_ss_proto = L1_SS_PROTO_generic;
7222 pte_l1_s_proto = L1_S_PROTO_generic;
7223 pte_l1_c_proto = L1_C_PROTO_generic;
7224 pte_l2_s_proto = L2_S_PROTO_generic;
7225
7226 pmap_copy_page_func = pmap_copy_page_generic;
7227 pmap_zero_page_func = pmap_zero_page_generic;
7228 }
7229
7230 #if defined(CPU_ARM8)
7231 void
7232 pmap_pte_init_arm8(void)
7233 {
7234
7235 /*
7236 * ARM8 is compatible with generic, but we need to use
7237 * the page tables uncached.
7238 */
7239 pmap_pte_init_generic();
7240
7241 pte_l1_s_cache_mode_pt = 0;
7242 pte_l2_l_cache_mode_pt = 0;
7243 pte_l2_s_cache_mode_pt = 0;
7244 }
7245 #endif /* CPU_ARM8 */
7246
7247 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7248 void
7249 pmap_pte_init_arm9(void)
7250 {
7251
7252 /*
7253 * ARM9 is compatible with generic, but we want to use
7254 * write-through caching for now.
7255 */
7256 pmap_pte_init_generic();
7257
7258 pte_l1_s_cache_mode = L1_S_C;
7259 pte_l2_l_cache_mode = L2_C;
7260 pte_l2_s_cache_mode = L2_C;
7261
7262 pte_l1_s_wc_mode = L1_S_B;
7263 pte_l2_l_wc_mode = L2_B;
7264 pte_l2_s_wc_mode = L2_B;
7265
7266 pte_l1_s_cache_mode_pt = L1_S_C;
7267 pte_l2_l_cache_mode_pt = L2_C;
7268 pte_l2_s_cache_mode_pt = L2_C;
7269 }
7270 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7271 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7272
7273 #if defined(CPU_ARM10)
7274 void
7275 pmap_pte_init_arm10(void)
7276 {
7277
7278 /*
7279 * ARM10 is compatible with generic, but we want to use
7280 * write-through caching for now.
7281 */
7282 pmap_pte_init_generic();
7283
7284 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7285 pte_l2_l_cache_mode = L2_B | L2_C;
7286 pte_l2_s_cache_mode = L2_B | L2_C;
7287
7288 pte_l1_s_cache_mode = L1_S_B;
7289 pte_l2_l_cache_mode = L2_B;
7290 pte_l2_s_cache_mode = L2_B;
7291
7292 pte_l1_s_cache_mode_pt = L1_S_C;
7293 pte_l2_l_cache_mode_pt = L2_C;
7294 pte_l2_s_cache_mode_pt = L2_C;
7295
7296 }
7297 #endif /* CPU_ARM10 */
7298
7299 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7300 void
7301 pmap_pte_init_arm11(void)
7302 {
7303
7304 /*
7305 * ARM11 is compatible with generic, but we want to use
7306 * write-through caching for now.
7307 */
7308 pmap_pte_init_generic();
7309
7310 pte_l1_s_cache_mode = L1_S_C;
7311 pte_l2_l_cache_mode = L2_C;
7312 pte_l2_s_cache_mode = L2_C;
7313
7314 pte_l1_s_wc_mode = L1_S_B;
7315 pte_l2_l_wc_mode = L2_B;
7316 pte_l2_s_wc_mode = L2_B;
7317
7318 pte_l1_s_cache_mode_pt = L1_S_C;
7319 pte_l2_l_cache_mode_pt = L2_C;
7320 pte_l2_s_cache_mode_pt = L2_C;
7321 }
7322 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7323
7324 #if ARM_MMU_SA1 == 1
7325 void
7326 pmap_pte_init_sa1(void)
7327 {
7328
7329 /*
7330 * The StrongARM SA-1 cache does not have a write-through
7331 * mode. So, do the generic initialization, then reset
7332 * the page table cache mode to B=1,C=1, and note that
7333 * the PTEs need to be sync'd.
7334 */
7335 pmap_pte_init_generic();
7336
7337 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7338 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7339 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7340
7341 pmap_needs_pte_sync = 1;
7342 }
7343 #endif /* ARM_MMU_SA1 == 1*/
7344
7345 #if ARM_MMU_XSCALE == 1
7346 #if (ARM_NMMUS > 1)
7347 static u_int xscale_use_minidata;
7348 #endif
7349
7350 void
7351 pmap_pte_init_xscale(void)
7352 {
7353 uint32_t auxctl;
7354 int write_through = 0;
7355
7356 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7357 pte_l1_s_wc_mode = L1_S_B;
7358 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7359
7360 pte_l2_l_cache_mode = L2_B|L2_C;
7361 pte_l2_l_wc_mode = L2_B;
7362 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7363
7364 pte_l2_s_cache_mode = L2_B|L2_C;
7365 pte_l2_s_wc_mode = L2_B;
7366 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7367
7368 pte_l1_s_cache_mode_pt = L1_S_C;
7369 pte_l2_l_cache_mode_pt = L2_C;
7370 pte_l2_s_cache_mode_pt = L2_C;
7371
7372 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7373 /*
7374 * The XScale core has an enhanced mode where writes that
7375 * miss the cache cause a cache line to be allocated. This
7376 * is significantly faster than the traditional, write-through
7377 * behavior of this case.
7378 */
7379 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7380 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7381 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7382 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7383
7384 #ifdef XSCALE_CACHE_WRITE_THROUGH
7385 /*
7386 * Some versions of the XScale core have various bugs in
7387 * their cache units, the work-around for which is to run
7388 * the cache in write-through mode. Unfortunately, this
7389 * has a major (negative) impact on performance. So, we
7390 * go ahead and run fast-and-loose, in the hopes that we
7391 * don't line up the planets in a way that will trip the
7392 * bugs.
7393 *
7394 * However, we give you the option to be slow-but-correct.
7395 */
7396 write_through = 1;
7397 #elif defined(XSCALE_CACHE_WRITE_BACK)
7398 /* force write back cache mode */
7399 write_through = 0;
7400 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7401 /*
7402 * Intel PXA2[15]0 processors are known to have a bug in
7403 * write-back cache on revision 4 and earlier (stepping
7404 * A[01] and B[012]). Fixed for C0 and later.
7405 */
7406 {
7407 uint32_t id, type;
7408
7409 id = cpufunc_id();
7410 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7411
7412 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7413 if ((id & CPU_ID_REVISION_MASK) < 5) {
7414 /* write through for stepping A0-1 and B0-2 */
7415 write_through = 1;
7416 }
7417 }
7418 }
7419 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7420
7421 if (write_through) {
7422 pte_l1_s_cache_mode = L1_S_C;
7423 pte_l2_l_cache_mode = L2_C;
7424 pte_l2_s_cache_mode = L2_C;
7425 }
7426
7427 #if (ARM_NMMUS > 1)
7428 xscale_use_minidata = 1;
7429 #endif
7430
7431 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7432 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7433 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7434 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7435
7436 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7437 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7438 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7439 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7440
7441 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7442 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7443 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7444 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7445
7446 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7447 pte_l1_s_proto = L1_S_PROTO_xscale;
7448 pte_l1_c_proto = L1_C_PROTO_xscale;
7449 pte_l2_s_proto = L2_S_PROTO_xscale;
7450
7451 pmap_copy_page_func = pmap_copy_page_xscale;
7452 pmap_zero_page_func = pmap_zero_page_xscale;
7453
7454 /*
7455 * Disable ECC protection of page table access, for now.
7456 */
7457 auxctl = armreg_auxctl_read();
7458 auxctl &= ~XSCALE_AUXCTL_P;
7459 armreg_auxctl_write(auxctl);
7460 }
7461
7462 /*
7463 * xscale_setup_minidata:
7464 *
7465 * Set up the mini-data cache clean area. We require the
7466 * caller to allocate the right amount of physically and
7467 * virtually contiguous space.
7468 */
7469 void
7470 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7471 {
7472 extern vaddr_t xscale_minidata_clean_addr;
7473 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7474 pd_entry_t *pde = (pd_entry_t *) l1pt;
7475 vsize_t size;
7476 uint32_t auxctl;
7477
7478 xscale_minidata_clean_addr = va;
7479
7480 /* Round it to page size. */
7481 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7482
7483 for (; size != 0;
7484 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7485 const size_t l1slot = l1pte_index(va);
7486 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7487 if (ptep == NULL)
7488 panic("xscale_setup_minidata: can't find L2 table for "
7489 "VA 0x%08lx", va);
7490
7491 ptep += l2pte_index(va);
7492 pt_entry_t opte = *ptep;
7493 l2pte_set(ptep,
7494 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7495 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7496 }
7497
7498 /*
7499 * Configure the mini-data cache for write-back with
7500 * read/write-allocate.
7501 *
7502 * NOTE: In order to reconfigure the mini-data cache, we must
7503 * make sure it contains no valid data! In order to do that,
7504 * we must issue a global data cache invalidate command!
7505 *
7506 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7507 * THIS IS VERY IMPORTANT!
7508 */
7509
7510 /* Invalidate data and mini-data. */
7511 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7512 auxctl = armreg_auxctl_read();
7513 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7514 armreg_auxctl_write(auxctl);
7515 }
7516
7517 /*
7518 * Change the PTEs for the specified kernel mappings such that they
7519 * will use the mini data cache instead of the main data cache.
7520 */
7521 void
7522 pmap_uarea(vaddr_t va)
7523 {
7524 vaddr_t next_bucket, eva;
7525
7526 #if (ARM_NMMUS > 1)
7527 if (xscale_use_minidata == 0)
7528 return;
7529 #endif
7530
7531 eva = va + USPACE;
7532
7533 while (va < eva) {
7534 next_bucket = L2_NEXT_BUCKET_VA(va);
7535 if (next_bucket > eva)
7536 next_bucket = eva;
7537
7538 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7539 KDASSERT(l2b != NULL);
7540
7541 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7542 pt_entry_t *ptep = sptep;
7543
7544 while (va < next_bucket) {
7545 const pt_entry_t opte = *ptep;
7546 if (!l2pte_minidata_p(opte)) {
7547 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7548 cpu_tlb_flushD_SE(va);
7549 l2pte_set(ptep, opte & ~L2_B, opte);
7550 }
7551 ptep += PAGE_SIZE / L2_S_SIZE;
7552 va += PAGE_SIZE;
7553 }
7554 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7555 }
7556 cpu_cpwait();
7557 }
7558 #endif /* ARM_MMU_XSCALE == 1 */
7559
7560
7561 #if defined(CPU_ARM11MPCORE)
7562 void
7563 pmap_pte_init_arm11mpcore(void)
7564 {
7565
7566 /* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
7567 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7568 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7569 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7570 /* use extended small page (without APn, with TEX) */
7571 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7572 #else
7573 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7574 #endif
7575
7576 /* write-back, write-allocate */
7577 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7578 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7579 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7580 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7581 #else
7582 /* no TEX. read-allocate */
7583 pte_l2_s_cache_mode = L2_C | L2_B;
7584 #endif
7585 /*
7586 * write-back, write-allocate for page tables.
7587 */
7588 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7589 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7590 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7591 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7592 #else
7593 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7594 #endif
7595
7596 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7597 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7598 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7599 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7600
7601 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7602 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7603 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7604 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7605 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7606
7607 #else
7608 /* with AP[0..3] */
7609 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7610 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7611 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7612 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7613 #endif
7614
7615 #ifdef ARM11MPCORE_COMPAT_MMU
7616 /* with AP[0..3] */
7617 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7618 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7619 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7620 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7621
7622 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7623 pte_l1_s_proto = L1_S_PROTO_armv6;
7624 pte_l1_c_proto = L1_C_PROTO_armv6;
7625 pte_l2_s_proto = L2_S_PROTO_armv6c;
7626 #else
7627 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7628 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7629 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7630 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7631
7632 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7633 pte_l1_s_proto = L1_S_PROTO_armv6;
7634 pte_l1_c_proto = L1_C_PROTO_armv6;
7635 pte_l2_s_proto = L2_S_PROTO_armv6n;
7636 #endif
7637
7638 pmap_copy_page_func = pmap_copy_page_generic;
7639 pmap_zero_page_func = pmap_zero_page_generic;
7640 pmap_needs_pte_sync = 1;
7641 }
7642 #endif /* CPU_ARM11MPCORE */
7643
7644
7645 #if ARM_MMU_V6 == 1
7646 void
7647 pmap_pte_init_armv6(void)
7648 {
7649 /*
7650 * The ARMv6-A MMU is mostly compatible with generic. If the
7651 * AP field is zero, that now means "no access" rather than
7652 * read-only. The prototypes are a little different because of
7653 * the XN bit.
7654 */
7655 pmap_pte_init_generic();
7656
7657 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7658 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7659 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7660
7661 #ifdef ARM11_COMPAT_MMU
7662 /* with AP[0..3] */
7663 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7664 #else
7665 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
7666 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
7667 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
7668
7669 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7670 pte_l1_s_proto = L1_S_PROTO_armv6;
7671 pte_l1_c_proto = L1_C_PROTO_armv6;
7672 pte_l2_s_proto = L2_S_PROTO_armv6n;
7673
7674 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7675 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7676 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7677 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7678
7679 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7680 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7681 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7682 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7683
7684 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7685 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7686 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7687 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7688
7689 #endif
7690 }
7691 #endif /* ARM_MMU_V6 */
7692
7693 #if ARM_MMU_V7 == 1
7694 void
7695 pmap_pte_init_armv7(void)
7696 {
7697 /*
7698 * The ARMv7-A MMU is mostly compatible with generic. If the
7699 * AP field is zero, that now means "no access" rather than
7700 * read-only. The prototypes are a little different because of
7701 * the XN bit.
7702 */
7703 pmap_pte_init_generic();
7704
7705 pmap_needs_pte_sync = 1;
7706
7707 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7708 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7709 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7710
7711 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7712 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7713 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7714
7715 /*
7716 * If the core support coherent walk then updates to translation tables
7717 * do not require a clean to the point of unification to ensure
7718 * visibility by subsequent translation table walks. That means we can
7719 * map everything shareable and cached and the right thing will happen.
7720 */
7721 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7722 pmap_needs_pte_sync = 0;
7723
7724 /*
7725 * write-back, no write-allocate, shareable for normal pages.
7726 */
7727 pte_l1_s_cache_mode |= L1_S_V6_S;
7728 pte_l2_l_cache_mode |= L2_XS_S;
7729 pte_l2_s_cache_mode |= L2_XS_S;
7730 }
7731
7732 /*
7733 * Page tables are just all other memory. We can use write-back since
7734 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7735 */
7736 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7737 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7738 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7739
7740 /*
7741 * Check the Memory Model Features to see if this CPU supports
7742 * the TLBIASID coproc op.
7743 */
7744 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7745 arm_has_tlbiasid_p = true;
7746 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7747 arm_has_tlbiasid_p = true;
7748 }
7749
7750 /*
7751 * Check the MPIDR to see if this CPU supports MP extensions.
7752 */
7753 #ifdef MULTIPROCESSOR
7754 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7755 #else
7756 arm_has_mpext_p = false;
7757 #endif
7758
7759 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7760 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7761 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7762 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7763
7764 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7765 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7766 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7767 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7768
7769 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7770 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7771 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7772 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7773
7774 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7775 pte_l1_s_proto = L1_S_PROTO_armv7;
7776 pte_l1_c_proto = L1_C_PROTO_armv7;
7777 pte_l2_s_proto = L2_S_PROTO_armv7;
7778
7779 }
7780 #endif /* ARM_MMU_V7 */
7781
7782 /*
7783 * return the PA of the current L1 table, for use when handling a crash dump
7784 */
7785 uint32_t
7786 pmap_kernel_L1_addr(void)
7787 {
7788 #ifdef ARM_MMU_EXTENDED
7789 return pmap_kernel()->pm_l1_pa;
7790 #else
7791 return pmap_kernel()->pm_l1->l1_physaddr;
7792 #endif
7793 }
7794
7795 #if defined(DDB)
7796 /*
7797 * A couple of ddb-callable functions for dumping pmaps
7798 */
7799 void pmap_dump(pmap_t);
7800
7801 static pt_entry_t ncptes[64];
7802 static void pmap_dump_ncpg(pmap_t);
7803
7804 void
7805 pmap_dump(pmap_t pm)
7806 {
7807 struct l2_dtable *l2;
7808 struct l2_bucket *l2b;
7809 pt_entry_t *ptep, pte;
7810 vaddr_t l2_va, l2b_va, va;
7811 int i, j, k, occ, rows = 0;
7812
7813 if (pm == pmap_kernel())
7814 printf("pmap_kernel (%p): ", pm);
7815 else
7816 printf("user pmap (%p): ", pm);
7817
7818 #ifdef ARM_MMU_EXTENDED
7819 printf("l1 at %p\n", pmap_l1_kva(pm));
7820 #else
7821 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7822 #endif
7823
7824 l2_va = 0;
7825 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7826 l2 = pm->pm_l2[i];
7827
7828 if (l2 == NULL || l2->l2_occupancy == 0)
7829 continue;
7830
7831 l2b_va = l2_va;
7832 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7833 l2b = &l2->l2_bucket[j];
7834
7835 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7836 continue;
7837
7838 ptep = l2b->l2b_kva;
7839
7840 for (k = 0; k < 256 && ptep[k] == 0; k++)
7841 ;
7842
7843 k &= ~63;
7844 occ = l2b->l2b_occupancy;
7845 va = l2b_va + (k * 4096);
7846 for (; k < 256; k++, va += 0x1000) {
7847 char ch = ' ';
7848 if ((k % 64) == 0) {
7849 if ((rows % 8) == 0) {
7850 printf(
7851 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7852 }
7853 printf("%08lx: ", va);
7854 }
7855
7856 ncptes[k & 63] = 0;
7857 pte = ptep[k];
7858 if (pte == 0) {
7859 ch = '.';
7860 } else {
7861 occ--;
7862 switch (pte & 0x4c) {
7863 case 0x00:
7864 ch = 'N'; /* No cache No buff */
7865 break;
7866 case 0x04:
7867 ch = 'B'; /* No cache buff */
7868 break;
7869 case 0x08:
7870 ch = 'C'; /* Cache No buff */
7871 break;
7872 case 0x0c:
7873 ch = 'F'; /* Cache Buff */
7874 break;
7875 case 0x40:
7876 ch = 'D';
7877 break;
7878 case 0x48:
7879 ch = 'm'; /* Xscale mini-data */
7880 break;
7881 default:
7882 ch = '?';
7883 break;
7884 }
7885
7886 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7887 ch += 0x20;
7888
7889 if ((pte & 0xc) == 0)
7890 ncptes[k & 63] = pte;
7891 }
7892
7893 if ((k % 64) == 63) {
7894 rows++;
7895 printf("%c\n", ch);
7896 pmap_dump_ncpg(pm);
7897 if (occ == 0)
7898 break;
7899 } else
7900 printf("%c", ch);
7901 }
7902 }
7903 }
7904 }
7905
7906 static void
7907 pmap_dump_ncpg(pmap_t pm)
7908 {
7909 struct vm_page *pg;
7910 struct vm_page_md *md;
7911 struct pv_entry *pv;
7912 int i;
7913
7914 for (i = 0; i < 63; i++) {
7915 if (ncptes[i] == 0)
7916 continue;
7917
7918 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7919 if (pg == NULL)
7920 continue;
7921 md = VM_PAGE_TO_MD(pg);
7922
7923 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7924 VM_PAGE_TO_PHYS(pg),
7925 md->krw_mappings, md->kro_mappings,
7926 md->urw_mappings, md->uro_mappings);
7927
7928 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7929 printf(" %c va 0x%08lx, flags 0x%x\n",
7930 (pm == pv->pv_pmap) ? '*' : ' ',
7931 pv->pv_va, pv->pv_flags);
7932 }
7933 }
7934 }
7935 #endif
7936
7937 #ifdef PMAP_STEAL_MEMORY
7938 void
7939 pmap_boot_pageadd(pv_addr_t *newpv)
7940 {
7941 pv_addr_t *pv, *npv;
7942
7943 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7944 if (newpv->pv_pa < pv->pv_va) {
7945 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7946 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7947 newpv->pv_size += pv->pv_size;
7948 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7949 }
7950 pv = NULL;
7951 } else {
7952 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7953 pv = npv) {
7954 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7955 KASSERT(pv->pv_pa < newpv->pv_pa);
7956 if (newpv->pv_pa > npv->pv_pa)
7957 continue;
7958 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7959 pv->pv_size += newpv->pv_size;
7960 return;
7961 }
7962 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7963 break;
7964 newpv->pv_size += npv->pv_size;
7965 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7966 SLIST_REMOVE_AFTER(newpv, pv_list);
7967 return;
7968 }
7969 }
7970 }
7971
7972 if (pv) {
7973 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7974 } else {
7975 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7976 }
7977 }
7978
7979 void
7980 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7981 pv_addr_t *rpv)
7982 {
7983 pv_addr_t *pv, **pvp;
7984
7985 KASSERT(amount & PGOFSET);
7986 KASSERT((mask & PGOFSET) == 0);
7987 KASSERT((match & PGOFSET) == 0);
7988 KASSERT(amount != 0);
7989
7990 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7991 (pv = *pvp) != NULL;
7992 pvp = &SLIST_NEXT(pv, pv_list)) {
7993 pv_addr_t *newpv;
7994 psize_t off;
7995 /*
7996 * If this entry is too small to satisfy the request...
7997 */
7998 KASSERT(pv->pv_size > 0);
7999 if (pv->pv_size < amount)
8000 continue;
8001
8002 for (off = 0; off <= mask; off += PAGE_SIZE) {
8003 if (((pv->pv_pa + off) & mask) == match
8004 && off + amount <= pv->pv_size)
8005 break;
8006 }
8007 if (off > mask)
8008 continue;
8009
8010 rpv->pv_va = pv->pv_va + off;
8011 rpv->pv_pa = pv->pv_pa + off;
8012 rpv->pv_size = amount;
8013 pv->pv_size -= amount;
8014 if (pv->pv_size == 0) {
8015 KASSERT(off == 0);
8016 KASSERT((vaddr_t) pv == rpv->pv_va);
8017 *pvp = SLIST_NEXT(pv, pv_list);
8018 } else if (off == 0) {
8019 KASSERT((vaddr_t) pv == rpv->pv_va);
8020 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8021 *newpv = *pv;
8022 newpv->pv_pa += amount;
8023 newpv->pv_va += amount;
8024 *pvp = newpv;
8025 } else if (off < pv->pv_size) {
8026 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8027 *newpv = *pv;
8028 newpv->pv_size -= off;
8029 newpv->pv_pa += off + amount;
8030 newpv->pv_va += off + amount;
8031
8032 SLIST_NEXT(pv, pv_list) = newpv;
8033 pv->pv_size = off;
8034 } else {
8035 KASSERT((vaddr_t) pv != rpv->pv_va);
8036 }
8037 memset((void *)rpv->pv_va, 0, amount);
8038 return;
8039 }
8040
8041 if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
8042 panic("pmap_boot_pagealloc: couldn't allocate memory");
8043
8044 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8045 (pv = *pvp) != NULL;
8046 pvp = &SLIST_NEXT(pv, pv_list)) {
8047 if (SLIST_NEXT(pv, pv_list) == NULL)
8048 break;
8049 }
8050 KASSERT(mask == 0);
8051
8052 for (uvm_physseg_t ups = uvm_physseg_get_first();
8053 uvm_physseg_valid_p(ups);
8054 ups = uvm_physseg_get_next(ups)) {
8055
8056 paddr_t spn = uvm_physseg_get_start(ups);
8057 paddr_t epn = uvm_physseg_get_end(ups);
8058 if (spn == atop(pv->pv_pa + pv->pv_size)
8059 && pv->pv_va + pv->pv_size <= ptoa(epn)) {
8060 rpv->pv_va = pv->pv_va;
8061 rpv->pv_pa = pv->pv_pa;
8062 rpv->pv_size = amount;
8063 *pvp = NULL;
8064 pmap_map_chunk(kernel_l1pt.pv_va,
8065 ptoa(spn) + (pv->pv_va - pv->pv_pa),
8066 ptoa(spn),
8067 amount - pv->pv_size,
8068 VM_PROT_READ|VM_PROT_WRITE,
8069 PTE_CACHE);
8070
8071 uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
8072 memset((void *)rpv->pv_va, 0, rpv->pv_size);
8073 return;
8074 }
8075 }
8076
8077 panic("pmap_boot_pagealloc: couldn't allocate memory");
8078 }
8079
8080 vaddr_t
8081 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
8082 {
8083 pv_addr_t pv;
8084
8085 pmap_boot_pagealloc(size, 0, 0, &pv);
8086
8087 return pv.pv_va;
8088 }
8089 #endif /* PMAP_STEAL_MEMORY */
8090
8091 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
8092 {
8093 sysctl_createv(clog, 0, NULL, NULL,
8094 CTLFLAG_PERMANENT,
8095 CTLTYPE_NODE, "machdep", NULL,
8096 NULL, 0, NULL, 0,
8097 CTL_MACHDEP, CTL_EOL);
8098
8099 sysctl_createv(clog, 0, NULL, NULL,
8100 CTLFLAG_PERMANENT,
8101 CTLTYPE_INT, "kmpages",
8102 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
8103 NULL, 0, &pmap_kmpages, 0,
8104 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
8105 }
8106
8107 #ifdef PMAP_NEED_ALLOC_POOLPAGE
8108 struct vm_page *
8109 arm_pmap_alloc_poolpage(int flags)
8110 {
8111 /*
8112 * On some systems, only some pages may be "coherent" for dma and we
8113 * want to prefer those for pool pages (think mbufs) but fallback to
8114 * any page if none is available.
8115 */
8116 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
8117 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
8118 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
8119 }
8120
8121 return uvm_pagealloc(NULL, 0, NULL, flags);
8122 }
8123 #endif
8124
8125 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
8126 void
8127 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
8128 {
8129 /* nothing */
8130 }
8131
8132 int
8133 pic_ipi_shootdown(void *arg)
8134 {
8135 #if PMAP_TLB_NEED_SHOOTDOWN
8136 pmap_tlb_shootdown_process();
8137 #endif
8138 return 1;
8139 }
8140 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
8141
8142
8143 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
8144 vaddr_t
8145 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
8146 {
8147 bool ok = false;
8148 if (physical_start <= pa && pa < physical_end) {
8149 #ifdef KERNEL_BASE_VOFFSET
8150 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
8151 #else
8152 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
8153 #endif
8154 #ifdef ARM_MMU_EXTENDED
8155 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
8156 #endif
8157 va = newva;
8158 ok = true;
8159 #ifdef ARM_MMU_EXTENDED
8160 }
8161 #endif
8162 }
8163 KASSERT(ok_p);
8164 *ok_p = ok;
8165 return va;
8166 }
8167
8168 vaddr_t
8169 pmap_map_poolpage(paddr_t pa)
8170 {
8171 bool ok __diagused;
8172 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
8173 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
8174 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
8175 if (arm_cache_prefer_mask != 0) {
8176 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
8177 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
8178 pmap_acquire_page_lock(md);
8179 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
8180 pmap_release_page_lock(md);
8181 }
8182 #endif
8183 return va;
8184 }
8185
8186 paddr_t
8187 pmap_unmap_poolpage(vaddr_t va)
8188 {
8189 KASSERT(va >= KERNEL_BASE);
8190 #ifdef PMAP_CACHE_VIVT
8191 cpu_idcache_wbinv_range(va, PAGE_SIZE);
8192 #endif
8193 #if defined(KERNEL_BASE_VOFFSET)
8194 return va - KERNEL_BASE_VOFFSET;
8195 #else
8196 return va - KERNEL_BASE + physical_start;
8197 #endif
8198 }
8199 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8200