pmap.c revision 1.402.2.1
1/*	$NetBSD: pmap.c,v 1.402.2.1 2020/04/20 11:28:52 bouyer Exp $	*/
2
3/*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed for the NetBSD Project by
20 *      Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 *   endorse or promote products derived from this software without specific
51 *    prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66/*-
67 * Copyright (c) 1999, 2020 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 *    notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 *    notice, this list of conditions and the following disclaimer in the
80 *    documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95/*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 *    notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 *    notice, this list of conditions and the following disclaimer in the
109 *    documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 *    must display the following acknowledgement:
112 *	This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 *    derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created      : 20/09/94
133 */
134
135/*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140/*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil@causality.com>.
143 */
144
145/*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 *   - There are some unresolved issues for MP systems:
153 *
154 *     o The L1 metadata needs a lock, or more specifically, some places
155 *       need to acquire an exclusive lock when modifying L1 translation
156 *       table entries.
157 *
158 *     o When one cpu modifies an L1 entry, and that L1 table is also
159 *       being used by another cpu, then the latter will need to be told
160 *       that a tlb invalidation may be necessary. (But only if the old
161 *       domain number in the L1 entry being over-written is currently
162 *       the active domain on that cpu). I guess there are lots more tlb
163 *       shootdown issues too...
164 *
165 *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 *       then MP systems will lose big-time because of the MMU domain hack.
167 *       The only way this can be solved (apart from moving the vector
168 *       page to 0xffff0000) is to reserve the first 1MB of user address
169 *       space for kernel use only. This would require re-linking all
170 *       applications so that the text section starts above this 1MB
171 *       boundary.
172 *
173 *     o Tracking which VM space is resident in the cache/tlb has not yet
174 *       been implemented for MP systems.
175 *
176 *     o Finally, there is a pathological condition where two cpus running
177 *       two separate processes (not lwps) which happen to share an L1
178 *       can get into a fight over one or more L1 entries. This will result
179 *       in a significant slow-down if both processes are in tight loops.
180 */
181
182/* Include header files */
183
184#include "opt_arm_debug.h"
185#include "opt_cpuoptions.h"
186#include "opt_ddb.h"
187#include "opt_lockdebug.h"
188#include "opt_multiprocessor.h"
189
190#ifdef MULTIPROCESSOR
191#define _INTR_PRIVATE
192#endif
193
194#include <sys/cdefs.h>
195__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.402.2.1 2020/04/20 11:28:52 bouyer Exp $");
196
197#include <sys/atomic.h>
198#include <sys/param.h>
199#include <sys/types.h>
200#include <sys/atomic.h>
201#include <sys/bus.h>
202#include <sys/cpu.h>
203#include <sys/intr.h>
204#include <sys/kernel.h>
205#include <sys/kernhist.h>
206#include <sys/kmem.h>
207#include <sys/pool.h>
208#include <sys/proc.h>
209#include <sys/sysctl.h>
210#include <sys/systm.h>
211
212#include <uvm/uvm.h>
213#include <uvm/pmap/pmap_pvt.h>
214
215#include <arm/locore.h>
216
217#ifdef DDB
218#include <arm/db_machdep.h>
219#endif
220
221#ifdef VERBOSE_INIT_ARM
222#define VPRINTF(...)	printf(__VA_ARGS__)
223#else
224#define VPRINTF(...)	__nothing
225#endif
226
227/*
228 * pmap_kernel() points here
229 */
230static struct pmap	kernel_pmap_store = {
231#ifndef ARM_MMU_EXTENDED
232	.pm_activated = true,
233	.pm_domain = PMAP_DOMAIN_KERNEL,
234	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
235#endif
236};
237struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
238#undef pmap_kernel
239#define pmap_kernel()	(&kernel_pmap_store)
240#ifdef PMAP_NEED_ALLOC_POOLPAGE
241int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
242#endif
243
244/*
245 * Pool and cache that pmap structures are allocated from.
246 * We use a cache to avoid clearing the pm_l2[] array (1KB)
247 * in pmap_create().
248 */
249static struct pool_cache pmap_cache;
250
251/*
252 * Pool of PV structures
253 */
254static struct pool pmap_pv_pool;
255static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
256static void pmap_bootstrap_pv_page_free(struct pool *, void *);
257static struct pool_allocator pmap_bootstrap_pv_allocator = {
258	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
259};
260
261/*
262 * Pool and cache of l2_dtable structures.
263 * We use a cache to avoid clearing the structures when they're
264 * allocated. (196 bytes)
265 */
266static struct pool_cache pmap_l2dtable_cache;
267static vaddr_t pmap_kernel_l2dtable_kva;
268
269/*
270 * Pool and cache of L2 page descriptors.
271 * We use a cache to avoid clearing the descriptor table
272 * when they're allocated. (1KB)
273 */
274static struct pool_cache pmap_l2ptp_cache;
275static vaddr_t pmap_kernel_l2ptp_kva;
276static paddr_t pmap_kernel_l2ptp_phys;
277
278#ifdef PMAPCOUNTERS
279#define	PMAP_EVCNT_INITIALIZER(name) \
280	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
281
282#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
283static struct evcnt pmap_ev_vac_clean_one =
284   PMAP_EVCNT_INITIALIZER("clean page (1 color)");
285static struct evcnt pmap_ev_vac_flush_one =
286   PMAP_EVCNT_INITIALIZER("flush page (1 color)");
287static struct evcnt pmap_ev_vac_flush_lots =
288   PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
289static struct evcnt pmap_ev_vac_flush_lots2 =
290   PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
291EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
292EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
293EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
294EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
295
296static struct evcnt pmap_ev_vac_color_new =
297   PMAP_EVCNT_INITIALIZER("new page color");
298static struct evcnt pmap_ev_vac_color_reuse =
299   PMAP_EVCNT_INITIALIZER("ok first page color");
300static struct evcnt pmap_ev_vac_color_ok =
301   PMAP_EVCNT_INITIALIZER("ok page color");
302static struct evcnt pmap_ev_vac_color_blind =
303   PMAP_EVCNT_INITIALIZER("blind page color");
304static struct evcnt pmap_ev_vac_color_change =
305   PMAP_EVCNT_INITIALIZER("change page color");
306static struct evcnt pmap_ev_vac_color_erase =
307   PMAP_EVCNT_INITIALIZER("erase page color");
308static struct evcnt pmap_ev_vac_color_none =
309   PMAP_EVCNT_INITIALIZER("no page color");
310static struct evcnt pmap_ev_vac_color_restore =
311   PMAP_EVCNT_INITIALIZER("restore page color");
312
313EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
314EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
315EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
316EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
317EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
318EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
319EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
320EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
321#endif
322
323static struct evcnt pmap_ev_mappings =
324   PMAP_EVCNT_INITIALIZER("pages mapped");
325static struct evcnt pmap_ev_unmappings =
326   PMAP_EVCNT_INITIALIZER("pages unmapped");
327static struct evcnt pmap_ev_remappings =
328   PMAP_EVCNT_INITIALIZER("pages remapped");
329
330EVCNT_ATTACH_STATIC(pmap_ev_mappings);
331EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
332EVCNT_ATTACH_STATIC(pmap_ev_remappings);
333
334static struct evcnt pmap_ev_kernel_mappings =
335   PMAP_EVCNT_INITIALIZER("kernel pages mapped");
336static struct evcnt pmap_ev_kernel_unmappings =
337   PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
338static struct evcnt pmap_ev_kernel_remappings =
339   PMAP_EVCNT_INITIALIZER("kernel pages remapped");
340
341EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
342EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
343EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
344
345static struct evcnt pmap_ev_kenter_mappings =
346   PMAP_EVCNT_INITIALIZER("kenter pages mapped");
347static struct evcnt pmap_ev_kenter_unmappings =
348   PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
349static struct evcnt pmap_ev_kenter_remappings =
350   PMAP_EVCNT_INITIALIZER("kenter pages remapped");
351static struct evcnt pmap_ev_pt_mappings =
352   PMAP_EVCNT_INITIALIZER("page table pages mapped");
353
354EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
355EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
356EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
357EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
358
359static struct evcnt pmap_ev_fixup_mod =
360   PMAP_EVCNT_INITIALIZER("page modification emulations");
361static struct evcnt pmap_ev_fixup_ref =
362   PMAP_EVCNT_INITIALIZER("page reference emulations");
363static struct evcnt pmap_ev_fixup_exec =
364   PMAP_EVCNT_INITIALIZER("exec pages fixed up");
365static struct evcnt pmap_ev_fixup_pdes =
366   PMAP_EVCNT_INITIALIZER("pdes fixed up");
367#ifndef ARM_MMU_EXTENDED
368static struct evcnt pmap_ev_fixup_ptesync =
369   PMAP_EVCNT_INITIALIZER("ptesync fixed");
370#endif
371
372EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
373EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
374EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
375EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
376#ifndef ARM_MMU_EXTENDED
377EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
378#endif
379
380#ifdef PMAP_CACHE_VIPT
381static struct evcnt pmap_ev_exec_mappings =
382   PMAP_EVCNT_INITIALIZER("exec pages mapped");
383static struct evcnt pmap_ev_exec_cached =
384   PMAP_EVCNT_INITIALIZER("exec pages cached");
385
386EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
387EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
388
389static struct evcnt pmap_ev_exec_synced =
390   PMAP_EVCNT_INITIALIZER("exec pages synced");
391static struct evcnt pmap_ev_exec_synced_map =
392   PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
393static struct evcnt pmap_ev_exec_synced_unmap =
394   PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
395static struct evcnt pmap_ev_exec_synced_remap =
396   PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
397static struct evcnt pmap_ev_exec_synced_clearbit =
398   PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
399#ifndef ARM_MMU_EXTENDED
400static struct evcnt pmap_ev_exec_synced_kremove =
401   PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
402#endif
403
404EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
405EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
406#ifndef ARM_MMU_EXTENDED
407EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
408EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
409EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
410EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
411#endif
412
413static struct evcnt pmap_ev_exec_discarded_unmap =
414   PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
415static struct evcnt pmap_ev_exec_discarded_zero =
416   PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
417static struct evcnt pmap_ev_exec_discarded_copy =
418   PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
419static struct evcnt pmap_ev_exec_discarded_page_protect =
420   PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
421static struct evcnt pmap_ev_exec_discarded_clearbit =
422   PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
423static struct evcnt pmap_ev_exec_discarded_kremove =
424   PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
425#ifdef ARM_MMU_EXTENDED
426static struct evcnt pmap_ev_exec_discarded_modfixup =
427   PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
428#endif
429
430EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
431EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
432EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
433EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
434EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
435EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
436#ifdef ARM_MMU_EXTENDED
437EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
438#endif
439#endif /* PMAP_CACHE_VIPT */
440
441static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
442static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
443static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
444
445EVCNT_ATTACH_STATIC(pmap_ev_updates);
446EVCNT_ATTACH_STATIC(pmap_ev_collects);
447EVCNT_ATTACH_STATIC(pmap_ev_activations);
448
449#define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
450#else
451#define	PMAPCOUNT(x)	((void)0)
452#endif
453
454#ifdef ARM_MMU_EXTENDED
455void pmap_md_pdetab_activate(pmap_t, struct lwp *);
456void pmap_md_pdetab_deactivate(pmap_t pm);
457#endif
458
459/*
460 * pmap copy/zero page, and mem(5) hook point
461 */
462static pt_entry_t *csrc_pte, *cdst_pte;
463static vaddr_t csrcp, cdstp;
464#ifdef MULTIPROCESSOR
465static size_t cnptes;
466#define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
467#define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
468#define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
469#define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
470#else
471#define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
472#define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
473#define	cpu_csrcp(o)	(csrcp + (o))
474#define	cpu_cdstp(o)	(cdstp + (o))
475#endif
476vaddr_t memhook;			/* used by mem.c & others */
477kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
478kmutex_t pmap_lock __cacheline_aligned;
479kmutex_t kpm_lock __cacheline_aligned;
480extern void *msgbufaddr;
481int pmap_kmpages;
482/*
483 * Flag to indicate if pmap_init() has done its thing
484 */
485bool pmap_initialized;
486
487#if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
488/*
489 * Virtual end of direct-mapped memory
490 */
491vaddr_t pmap_directlimit;
492#endif
493
494/*
495 * Misc. locking data structures
496 */
497
498static inline void
499pmap_acquire_pmap_lock(pmap_t pm)
500{
501#if defined(MULTIPROCESSOR) && defined(DDB)
502	if (__predict_false(db_onproc != NULL))
503		return;
504#endif
505
506	mutex_enter(&pm->pm_lock);
507}
508
509static inline void
510pmap_release_pmap_lock(pmap_t pm)
511{
512#if defined(MULTIPROCESSOR) && defined(DDB)
513	if (__predict_false(db_onproc != NULL))
514		return;
515#endif
516	mutex_exit(&pm->pm_lock);
517}
518
519static inline void
520pmap_acquire_page_lock(struct vm_page_md *md)
521{
522	mutex_enter(&pmap_lock);
523}
524
525static inline void
526pmap_release_page_lock(struct vm_page_md *md)
527{
528	mutex_exit(&pmap_lock);
529}
530
531#ifdef DIAGNOSTIC
532static inline int
533pmap_page_locked_p(struct vm_page_md *md)
534{
535	return mutex_owned(&pmap_lock);
536}
537#endif
538
539
540/*
541 * Metadata for L1 translation tables.
542 */
543#ifndef ARM_MMU_EXTENDED
544struct l1_ttable {
545	/* Entry on the L1 Table list */
546	SLIST_ENTRY(l1_ttable) l1_link;
547
548	/* Entry on the L1 Least Recently Used list */
549	TAILQ_ENTRY(l1_ttable) l1_lru;
550
551	/* Track how many domains are allocated from this L1 */
552	volatile u_int l1_domain_use_count;
553
554	/*
555	 * A free-list of domain numbers for this L1.
556	 * We avoid using ffs() and a bitmap to track domains since ffs()
557	 * is slow on ARM.
558	 */
559	uint8_t l1_domain_first;
560	uint8_t l1_domain_free[PMAP_DOMAINS];
561
562	/* Physical address of this L1 page table */
563	paddr_t l1_physaddr;
564
565	/* KVA of this L1 page table */
566	pd_entry_t *l1_kva;
567};
568
569/*
570 * L1 Page Tables are tracked using a Least Recently Used list.
571 *  - New L1s are allocated from the HEAD.
572 *  - Freed L1s are added to the TAIL.
573 *  - Recently accessed L1s (where an 'access' is some change to one of
574 *    the userland pmaps which owns this L1) are moved to the TAIL.
575 */
576static TAILQ_HEAD(, l1_ttable) l1_lru_list;
577static kmutex_t l1_lru_lock __cacheline_aligned;
578
579/*
580 * A list of all L1 tables
581 */
582static SLIST_HEAD(, l1_ttable) l1_list;
583#endif /* ARM_MMU_EXTENDED */
584
585/*
586 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
587 *
588 * This is normally 16MB worth L2 page descriptors for any given pmap.
589 * Reference counts are maintained for L2 descriptors so they can be
590 * freed when empty.
591 */
592struct l2_bucket {
593	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
594	paddr_t l2b_pa;			/* Physical address of same */
595	u_short l2b_l1slot;		/* This L2 table's L1 index */
596	u_short l2b_occupancy;		/* How many active descriptors */
597};
598
599struct l2_dtable {
600	/* The number of L2 page descriptors allocated to this l2_dtable */
601	u_int l2_occupancy;
602
603	/* List of L2 page descriptors */
604	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
605};
606
607/*
608 * Given an L1 table index, calculate the corresponding l2_dtable index
609 * and bucket index within the l2_dtable.
610 */
611#define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
612#define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
613#define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
614#define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
615#define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
616
617__CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
618__CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
619
620/*
621 * Given a virtual address, this macro returns the
622 * virtual address required to drop into the next L2 bucket.
623 */
624#define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
625
626/*
627 * L2 allocation.
628 */
629#define	pmap_alloc_l2_dtable()		\
630	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
631#define	pmap_free_l2_dtable(l2)		\
632	    pool_cache_put(&pmap_l2dtable_cache, (l2))
633#define pmap_alloc_l2_ptp(pap)		\
634	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
635	    PR_NOWAIT, (pap)))
636
637/*
638 * We try to map the page tables write-through, if possible.  However, not
639 * all CPUs have a write-through cache mode, so on those we have to sync
640 * the cache when we frob page tables.
641 *
642 * We try to evaluate this at compile time, if possible.  However, it's
643 * not always possible to do that, hence this run-time var.
644 */
645int	pmap_needs_pte_sync;
646
647/*
648 * Real definition of pv_entry.
649 */
650struct pv_entry {
651	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
652	pmap_t		pv_pmap;        /* pmap where mapping lies */
653	vaddr_t		pv_va;          /* virtual address for mapping */
654	u_int		pv_flags;       /* flags */
655};
656
657/*
658 * Macros to determine if a mapping might be resident in the
659 * instruction/data cache and/or TLB
660 */
661#if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
662/*
663 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
664 * there are no explicit accesses, so there may be always be TLB entries to
665 * flush.  If we used ASIDs then this would not be a problem.
666 */
667#define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
668#define	PV_BEEN_REFD(f)   (true)
669#else
670#define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
671#define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
672#endif
673#define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
674#define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
675#define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
676
677/*
678 * Local prototypes
679 */
680static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
681static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
682			    pt_entry_t **);
683static bool		pmap_is_current(pmap_t) __unused;
684static bool		pmap_is_cached(pmap_t);
685static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
686			    pmap_t, vaddr_t, u_int);
687static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
688static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
689static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
690			    u_int, u_int);
691
692static void		pmap_pinit(pmap_t);
693static int		pmap_pmap_ctor(void *, void *, int);
694
695static void		pmap_alloc_l1(pmap_t);
696static void		pmap_free_l1(pmap_t);
697#ifndef ARM_MMU_EXTENDED
698static void		pmap_use_l1(pmap_t);
699#endif
700
701static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
702static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
703static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
704static int		pmap_l2ptp_ctor(void *, void *, int);
705static int		pmap_l2dtable_ctor(void *, void *, int);
706
707static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
708#ifdef PMAP_CACHE_VIVT
709static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
710static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
711#endif
712
713static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
714#ifdef PMAP_CACHE_VIVT
715static bool		pmap_clean_page(struct vm_page_md *, bool);
716#endif
717#ifdef PMAP_CACHE_VIPT
718static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
719enum pmap_flush_op {
720	PMAP_FLUSH_PRIMARY,
721	PMAP_FLUSH_SECONDARY,
722	PMAP_CLEAN_PRIMARY
723};
724#ifndef ARM_MMU_EXTENDED
725static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
726#endif
727#endif
728static void		pmap_page_remove(struct vm_page_md *, paddr_t);
729static void		pmap_pv_remove(paddr_t);
730
731#ifndef ARM_MMU_EXTENDED
732static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
733#endif
734static vaddr_t		kernel_pt_lookup(paddr_t);
735
736#ifdef ARM_MMU_EXTENDED
737static struct pool_cache pmap_l1tt_cache;
738
739static int		pmap_l1tt_ctor(void *, void *, int);
740static void *		pmap_l1tt_alloc(struct pool *, int);
741static void		pmap_l1tt_free(struct pool *, void *);
742
743static struct pool_allocator pmap_l1tt_allocator = {
744	.pa_alloc = pmap_l1tt_alloc,
745	.pa_free = pmap_l1tt_free,
746	.pa_pagesz = L1TT_SIZE,
747};
748#endif
749
750/*
751 * Misc variables
752 */
753vaddr_t virtual_avail;
754vaddr_t virtual_end;
755vaddr_t pmap_curmaxkvaddr;
756
757paddr_t avail_start;
758paddr_t avail_end;
759
760pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
761pv_addr_t kernelpages;
762pv_addr_t kernel_l1pt;
763pv_addr_t systempage;
764
765#ifdef PMAP_CACHE_VIPT
766#define PMAP_VALIDATE_MD_PAGE(md)	\
767	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
768	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
769	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
770#endif /* PMAP_CACHE_VIPT */
771/*
772 * A bunch of routines to conditionally flush the caches/TLB depending
773 * on whether the specified pmap actually needs to be flushed at any
774 * given time.
775 */
776static inline void
777pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
778{
779#ifdef ARM_MMU_EXTENDED
780	pmap_tlb_invalidate_addr(pm, va);
781#else
782	if (pm->pm_cstate.cs_tlb_id != 0) {
783		if (PV_BEEN_EXECD(flags)) {
784			cpu_tlb_flushID_SE(va);
785		} else if (PV_BEEN_REFD(flags)) {
786			cpu_tlb_flushD_SE(va);
787		}
788	}
789#endif /* ARM_MMU_EXTENDED */
790}
791
792#ifndef ARM_MMU_EXTENDED
793static inline void
794pmap_tlb_flushID(pmap_t pm)
795{
796	if (pm->pm_cstate.cs_tlb_id) {
797		cpu_tlb_flushID();
798#if ARM_MMU_V7 == 0
799		/*
800		 * Speculative loads by Cortex cores can cause TLB entries to
801		 * be filled even if there are no explicit accesses, so there
802		 * may be always be TLB entries to flush.  If we used ASIDs
803		 * then it would not be a problem.
804		 * This is not true for other CPUs.
805		 */
806		pm->pm_cstate.cs_tlb = 0;
807#endif /* ARM_MMU_V7 */
808	}
809}
810
811static inline void
812pmap_tlb_flushD(pmap_t pm)
813{
814	if (pm->pm_cstate.cs_tlb_d) {
815		cpu_tlb_flushD();
816#if ARM_MMU_V7 == 0
817		/*
818		 * Speculative loads by Cortex cores can cause TLB entries to
819		 * be filled even if there are no explicit accesses, so there
820		 * may be always be TLB entries to flush.  If we used ASIDs
821		 * then it would not be a problem.
822		 * This is not true for other CPUs.
823		 */
824		pm->pm_cstate.cs_tlb_d = 0;
825#endif /* ARM_MMU_V7 */
826	}
827}
828#endif /* ARM_MMU_EXTENDED */
829
830#ifdef PMAP_CACHE_VIVT
831static inline void
832pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
833{
834	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
835		cpu_idcache_wbinv_range(va, PAGE_SIZE);
836	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
837		if (do_inv) {
838			if (flags & PVF_WRITE)
839				cpu_dcache_wbinv_range(va, PAGE_SIZE);
840			else
841				cpu_dcache_inv_range(va, PAGE_SIZE);
842		} else if (flags & PVF_WRITE) {
843			cpu_dcache_wb_range(va, PAGE_SIZE);
844		}
845	}
846}
847
848static inline void
849pmap_cache_wbinv_all(pmap_t pm, u_int flags)
850{
851	if (PV_BEEN_EXECD(flags)) {
852		if (pm->pm_cstate.cs_cache_id) {
853			cpu_idcache_wbinv_all();
854			pm->pm_cstate.cs_cache = 0;
855		}
856	} else if (pm->pm_cstate.cs_cache_d) {
857		cpu_dcache_wbinv_all();
858		pm->pm_cstate.cs_cache_d = 0;
859	}
860}
861#endif /* PMAP_CACHE_VIVT */
862
863static inline uint8_t
864pmap_domain(pmap_t pm)
865{
866#ifdef ARM_MMU_EXTENDED
867	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
868#else
869	return pm->pm_domain;
870#endif
871}
872
873static inline pd_entry_t *
874pmap_l1_kva(pmap_t pm)
875{
876#ifdef ARM_MMU_EXTENDED
877	return pm->pm_l1;
878#else
879	return pm->pm_l1->l1_kva;
880#endif
881}
882
883static inline bool
884pmap_is_current(pmap_t pm)
885{
886	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
887		return true;
888
889	return false;
890}
891
892static inline bool
893pmap_is_cached(pmap_t pm)
894{
895#ifdef ARM_MMU_EXTENDED
896	if (pm == pmap_kernel())
897		return true;
898#ifdef MULTIPROCESSOR
899	// Is this pmap active on any CPU?
900	if (!kcpuset_iszero(pm->pm_active))
901		return true;
902#else
903	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
904	// Is this pmap active?
905	if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
906		return true;
907#endif
908#else
909	struct cpu_info * const ci = curcpu();
910	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
911	    || ci->ci_pmap_lastuser == pm)
912		return true;
913#endif /* ARM_MMU_EXTENDED */
914
915	return false;
916}
917
918/*
919 * PTE_SYNC_CURRENT:
920 *
921 *     Make sure the pte is written out to RAM.
922 *     We need to do this for one of two cases:
923 *       - We're dealing with the kernel pmap
924 *       - There is no pmap active in the cache/tlb.
925 *       - The specified pmap is 'active' in the cache/tlb.
926 */
927
928#ifdef PMAP_INCLUDE_PTE_SYNC
929static inline void
930pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
931{
932	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
933		PTE_SYNC(ptep);
934	arm_dsb();
935}
936
937# define PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
938#else
939# define PTE_SYNC_CURRENT(pm, ptep)	__nothing
940#endif
941
942/*
943 * main pv_entry manipulation functions:
944 *   pmap_enter_pv: enter a mapping onto a vm_page list
945 *   pmap_remove_pv: remove a mapping from a vm_page list
946 *
947 * NOTE: pmap_enter_pv expects to lock the pvh itself
948 *       pmap_remove_pv expects the caller to lock the pvh before calling
949 */
950
951/*
952 * pmap_enter_pv: enter a mapping onto a vm_page lst
953 *
954 * => caller should hold the proper lock on pmap_main_lock
955 * => caller should have pmap locked
956 * => we will gain the lock on the vm_page and allocate the new pv_entry
957 * => caller should adjust ptp's wire_count before calling
958 * => caller should not adjust pmap's wire_count
959 */
960static void
961pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
962    vaddr_t va, u_int flags)
963{
964	UVMHIST_FUNC(__func__);
965	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
966	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
967	UVMHIST_LOG(maphist, "...pv %#jx flags %#jx",
968	    (uintptr_t)pv, flags, 0, 0);
969
970	struct pv_entry **pvp;
971
972	pv->pv_pmap = pm;
973	pv->pv_va = va;
974	pv->pv_flags = flags;
975
976	pvp = &SLIST_FIRST(&md->pvh_list);
977#ifdef PMAP_CACHE_VIPT
978	/*
979	 * Insert unmanaged entries, writeable first, at the head of
980	 * the pv list.
981	 */
982	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
983		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
984			pvp = &SLIST_NEXT(*pvp, pv_link);
985	}
986	if (!PV_IS_WRITE_P(flags)) {
987		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
988			pvp = &SLIST_NEXT(*pvp, pv_link);
989	}
990#endif
991	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
992	*pvp = pv;				/* ... locked list */
993	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
994#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
995	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
996		md->pvh_attrs |= PVF_KMOD;
997	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
998		md->pvh_attrs |= PVF_DIRTY;
999	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1000#endif
1001	if (pm == pmap_kernel()) {
1002		PMAPCOUNT(kernel_mappings);
1003		if (flags & PVF_WRITE)
1004			md->krw_mappings++;
1005		else
1006			md->kro_mappings++;
1007	} else {
1008		if (flags & PVF_WRITE)
1009			md->urw_mappings++;
1010		else
1011			md->uro_mappings++;
1012	}
1013
1014#ifdef PMAP_CACHE_VIPT
1015#ifndef ARM_MMU_EXTENDED
1016	/*
1017	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1018	 * do it here as well to keep the mappings & KVF_WRITE consistent.
1019	 */
1020	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1021		md->pvh_attrs |= PVF_WRITE;
1022	}
1023#endif
1024	/*
1025	 * If this is an exec mapping and its the first exec mapping
1026	 * for this page, make sure to sync the I-cache.
1027	 */
1028	if (PV_IS_EXEC_P(flags)) {
1029		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1030			pmap_syncicache_page(md, pa);
1031			PMAPCOUNT(exec_synced_map);
1032		}
1033		PMAPCOUNT(exec_mappings);
1034	}
1035#endif
1036
1037	PMAPCOUNT(mappings);
1038
1039	if (pv->pv_flags & PVF_WIRED)
1040		++pm->pm_stats.wired_count;
1041}
1042
1043/*
1044 *
1045 * pmap_find_pv: Find a pv entry
1046 *
1047 * => caller should hold lock on vm_page
1048 */
1049static inline struct pv_entry *
1050pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1051{
1052	struct pv_entry *pv;
1053
1054	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1055		if (pm == pv->pv_pmap && va == pv->pv_va)
1056			break;
1057	}
1058
1059	return pv;
1060}
1061
1062/*
1063 * pmap_remove_pv: try to remove a mapping from a pv_list
1064 *
1065 * => caller should hold proper lock on pmap_main_lock
1066 * => pmap should be locked
1067 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1068 * => caller should adjust ptp's wire_count and free PTP if needed
1069 * => caller should NOT adjust pmap's wire_count
1070 * => we return the removed pv
1071 */
1072static struct pv_entry *
1073pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1074{
1075	UVMHIST_FUNC(__func__);
1076	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1077	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1078
1079	struct pv_entry *pv, **prevptr;
1080
1081	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1082	pv = *prevptr;
1083
1084	while (pv) {
1085		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
1086			UVMHIST_LOG(maphist, "pm %#jx md %#jx flags %#jx",
1087			    (uintptr_t)pm, (uintptr_t)md, pv->pv_flags, 0);
1088			if (pv->pv_flags & PVF_WIRED) {
1089				--pm->pm_stats.wired_count;
1090			}
1091			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
1092			if (pm == pmap_kernel()) {
1093				PMAPCOUNT(kernel_unmappings);
1094				if (pv->pv_flags & PVF_WRITE)
1095					md->krw_mappings--;
1096				else
1097					md->kro_mappings--;
1098			} else {
1099				if (pv->pv_flags & PVF_WRITE)
1100					md->urw_mappings--;
1101				else
1102					md->uro_mappings--;
1103			}
1104
1105			PMAPCOUNT(unmappings);
1106#ifdef PMAP_CACHE_VIPT
1107			/*
1108			 * If this page has had an exec mapping, then if
1109			 * this was the last mapping, discard the contents,
1110			 * otherwise sync the i-cache for this page.
1111			 */
1112			if (PV_IS_EXEC_P(md->pvh_attrs)) {
1113				if (SLIST_EMPTY(&md->pvh_list)) {
1114					md->pvh_attrs &= ~PVF_EXEC;
1115					PMAPCOUNT(exec_discarded_unmap);
1116				} else if (pv->pv_flags & PVF_WRITE) {
1117					pmap_syncicache_page(md, pa);
1118					PMAPCOUNT(exec_synced_unmap);
1119				}
1120			}
1121#endif /* PMAP_CACHE_VIPT */
1122			break;
1123		}
1124		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
1125		pv = *prevptr;				/* advance */
1126	}
1127
1128#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1129	/*
1130	 * If we no longer have a WRITEABLE KENTRY at the head of list,
1131	 * clear the KMOD attribute from the page.
1132	 */
1133	if (SLIST_FIRST(&md->pvh_list) == NULL
1134	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1135		md->pvh_attrs &= ~PVF_KMOD;
1136
1137	/*
1138	 * If this was a writeable page and there are no more writeable
1139	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1140	 * the contents to memory.
1141	 */
1142	if (arm_cache_prefer_mask != 0) {
1143		if (md->krw_mappings + md->urw_mappings == 0)
1144			md->pvh_attrs &= ~PVF_WRITE;
1145		PMAP_VALIDATE_MD_PAGE(md);
1146	}
1147	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1148#endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1149
1150	/* return removed pv */
1151	return pv;
1152}
1153
1154/*
1155 *
1156 * pmap_modify_pv: Update pv flags
1157 *
1158 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1159 * => caller should NOT adjust pmap's wire_count
1160 * => caller must call pmap_vac_me_harder() if writable status of a page
1161 *    may have changed.
1162 * => we return the old flags
1163 *
1164 * Modify a physical-virtual mapping in the pv table
1165 */
1166static u_int
1167pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1168    u_int clr_mask, u_int set_mask)
1169{
1170	struct pv_entry *npv;
1171	u_int flags, oflags;
1172	UVMHIST_FUNC(__func__);
1173	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1174	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1175	UVMHIST_LOG(maphist, "... clr %#jx set %#jx", clr_mask, set_mask, 0, 0);
1176
1177	KASSERT(!PV_IS_KENTRY_P(clr_mask));
1178	KASSERT(!PV_IS_KENTRY_P(set_mask));
1179
1180	if ((npv = pmap_find_pv(md, pm, va)) == NULL) {
1181		UVMHIST_LOG(maphist, "<--- done (not found)", 0, 0, 0, 0);
1182		return 0;
1183	}
1184
1185	/*
1186	 * There is at least one VA mapping this page.
1187	 */
1188
1189	if (clr_mask & (PVF_REF | PVF_MOD)) {
1190		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1191#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1192		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1193			md->pvh_attrs |= PVF_DIRTY;
1194		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1195#endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1196	}
1197
1198	oflags = npv->pv_flags;
1199	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1200
1201	if ((flags ^ oflags) & PVF_WIRED) {
1202		if (flags & PVF_WIRED)
1203			++pm->pm_stats.wired_count;
1204		else
1205			--pm->pm_stats.wired_count;
1206	}
1207
1208	if ((flags ^ oflags) & PVF_WRITE) {
1209		if (pm == pmap_kernel()) {
1210			if (flags & PVF_WRITE) {
1211				md->krw_mappings++;
1212				md->kro_mappings--;
1213			} else {
1214				md->kro_mappings++;
1215				md->krw_mappings--;
1216			}
1217		} else {
1218			if (flags & PVF_WRITE) {
1219				md->urw_mappings++;
1220				md->uro_mappings--;
1221			} else {
1222				md->uro_mappings++;
1223				md->urw_mappings--;
1224			}
1225		}
1226	}
1227#ifdef PMAP_CACHE_VIPT
1228	if (arm_cache_prefer_mask != 0) {
1229		if (md->urw_mappings + md->krw_mappings == 0) {
1230			md->pvh_attrs &= ~PVF_WRITE;
1231		} else {
1232			md->pvh_attrs |= PVF_WRITE;
1233		}
1234	}
1235	/*
1236	 * We have two cases here: the first is from enter_pv (new exec
1237	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1238	 * Since in latter, pmap_enter_pv won't do anything, we just have
1239	 * to do what pmap_remove_pv would do.
1240	 */
1241	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1242	    || (PV_IS_EXEC_P(md->pvh_attrs)
1243		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1244		pmap_syncicache_page(md, pa);
1245		PMAPCOUNT(exec_synced_remap);
1246	}
1247#ifndef ARM_MMU_EXTENDED
1248	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1249#endif /* !ARM_MMU_EXTENDED */
1250#endif /* PMAP_CACHE_VIPT */
1251
1252	PMAPCOUNT(remappings);
1253
1254	UVMHIST_LOG(maphist, "<--- done", 0, 0, 0, 0);
1255
1256	return oflags;
1257}
1258
1259
1260#if defined(ARM_MMU_EXTENDED)
1261int
1262pmap_maxproc_set(int nmaxproc)
1263{
1264	static const char pmap_l1ttpool_warnmsg[] =
1265	    "WARNING: l1ttpool limit reached; increase kern.maxproc";
1266
1267	pool_cache_prime(&pmap_l1tt_cache, nmaxproc);
1268
1269	/*
1270	 * Set the hard limit on the pmap_l1tt_cache to the number
1271	 * of processes the kernel is to support.  Log the limit
1272	 * reached message max once a minute.
1273	 */
1274	pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
1275	    pmap_l1ttpool_warnmsg, 60);
1276
1277	return 0;
1278}
1279
1280#endif
1281
1282/*
1283 * Allocate an L1 translation table for the specified pmap.
1284 * This is called at pmap creation time.
1285 */
1286static void
1287pmap_alloc_l1(pmap_t pm)
1288{
1289#ifdef ARM_MMU_EXTENDED
1290	vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
1291	    &pm->pm_l1_pa);
1292
1293	pm->pm_l1 = (pd_entry_t *)va;
1294	PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
1295#else
1296	struct l1_ttable *l1;
1297	uint8_t domain;
1298
1299	/*
1300	 * Remove the L1 at the head of the LRU list
1301	 */
1302	mutex_spin_enter(&l1_lru_lock);
1303	l1 = TAILQ_FIRST(&l1_lru_list);
1304	KDASSERT(l1 != NULL);
1305	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1306
1307	/*
1308	 * Pick the first available domain number, and update
1309	 * the link to the next number.
1310	 */
1311	domain = l1->l1_domain_first;
1312	l1->l1_domain_first = l1->l1_domain_free[domain];
1313
1314	/*
1315	 * If there are still free domain numbers in this L1,
1316	 * put it back on the TAIL of the LRU list.
1317	 */
1318	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1319		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1320
1321	mutex_spin_exit(&l1_lru_lock);
1322
1323	/*
1324	 * Fix up the relevant bits in the pmap structure
1325	 */
1326	pm->pm_l1 = l1;
1327	pm->pm_domain = domain + 1;
1328#endif
1329}
1330
1331/*
1332 * Free an L1 translation table.
1333 * This is called at pmap destruction time.
1334 */
1335static void
1336pmap_free_l1(pmap_t pm)
1337{
1338#ifdef ARM_MMU_EXTENDED
1339	pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
1340
1341	pm->pm_l1 = NULL;
1342	pm->pm_l1_pa = 0;
1343#else
1344	struct l1_ttable *l1 = pm->pm_l1;
1345
1346	mutex_spin_enter(&l1_lru_lock);
1347
1348	/*
1349	 * If this L1 is currently on the LRU list, remove it.
1350	 */
1351	if (l1->l1_domain_use_count < PMAP_DOMAINS)
1352		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1353
1354	/*
1355	 * Free up the domain number which was allocated to the pmap
1356	 */
1357	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1358	l1->l1_domain_first = pmap_domain(pm) - 1;
1359	l1->l1_domain_use_count--;
1360
1361	/*
1362	 * The L1 now must have at least 1 free domain, so add
1363	 * it back to the LRU list. If the use count is zero,
1364	 * put it at the head of the list, otherwise it goes
1365	 * to the tail.
1366	 */
1367	if (l1->l1_domain_use_count == 0)
1368		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1369	else
1370		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1371
1372	mutex_spin_exit(&l1_lru_lock);
1373#endif /* ARM_MMU_EXTENDED */
1374}
1375
1376#ifndef ARM_MMU_EXTENDED
1377static inline void
1378pmap_use_l1(pmap_t pm)
1379{
1380	struct l1_ttable *l1;
1381
1382	/*
1383	 * Do nothing if we're in interrupt context.
1384	 * Access to an L1 by the kernel pmap must not affect
1385	 * the LRU list.
1386	 */
1387	if (cpu_intr_p() || pm == pmap_kernel())
1388		return;
1389
1390	l1 = pm->pm_l1;
1391
1392	/*
1393	 * If the L1 is not currently on the LRU list, just return
1394	 */
1395	if (l1->l1_domain_use_count == PMAP_DOMAINS)
1396		return;
1397
1398	mutex_spin_enter(&l1_lru_lock);
1399
1400	/*
1401	 * Check the use count again, now that we've acquired the lock
1402	 */
1403	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1404		mutex_spin_exit(&l1_lru_lock);
1405		return;
1406	}
1407
1408	/*
1409	 * Move the L1 to the back of the LRU list
1410	 */
1411	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1412	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1413
1414	mutex_spin_exit(&l1_lru_lock);
1415}
1416#endif /* !ARM_MMU_EXTENDED */
1417
1418/*
1419 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1420 *
1421 * Free an L2 descriptor table.
1422 */
1423static inline void
1424#if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1425pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1426#else
1427pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1428#endif
1429{
1430#if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1431	/*
1432	 * Note: With a write-back cache, we may need to sync this
1433	 * L2 table before re-using it.
1434	 * This is because it may have belonged to a non-current
1435	 * pmap, in which case the cache syncs would have been
1436	 * skipped for the pages that were being unmapped. If the
1437	 * L2 table were then to be immediately re-allocated to
1438	 * the *current* pmap, it may well contain stale mappings
1439	 * which have not yet been cleared by a cache write-back
1440	 * and so would still be visible to the mmu.
1441	 */
1442	if (need_sync)
1443		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1444#endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1445	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1446}
1447
1448/*
1449 * Returns a pointer to the L2 bucket associated with the specified pmap
1450 * and VA, or NULL if no L2 bucket exists for the address.
1451 */
1452static inline struct l2_bucket *
1453pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1454{
1455	const size_t l1slot = l1pte_index(va);
1456	struct l2_dtable *l2;
1457	struct l2_bucket *l2b;
1458
1459	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1460	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1461		return NULL;
1462
1463	return l2b;
1464}
1465
1466/*
1467 * Returns a pointer to the L2 bucket associated with the specified pmap
1468 * and VA.
1469 *
1470 * If no L2 bucket exists, perform the necessary allocations to put an L2
1471 * bucket/page table in place.
1472 *
1473 * Note that if a new L2 bucket/page was allocated, the caller *must*
1474 * increment the bucket occupancy counter appropriately *before*
1475 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1476 * the bucket/page in the meantime.
1477 */
1478static struct l2_bucket *
1479pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1480{
1481	const size_t l1slot = l1pte_index(va);
1482	struct l2_dtable *l2;
1483
1484	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1485		/*
1486		 * No mapping at this address, as there is
1487		 * no entry in the L1 table.
1488		 * Need to allocate a new l2_dtable.
1489		 */
1490		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1491			return NULL;
1492
1493		/*
1494		 * Link it into the parent pmap
1495		 */
1496		pm->pm_l2[L2_IDX(l1slot)] = l2;
1497	}
1498
1499	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1500
1501	/*
1502	 * Fetch pointer to the L2 page table associated with the address.
1503	 */
1504	if (l2b->l2b_kva == NULL) {
1505		pt_entry_t *ptep;
1506
1507		/*
1508		 * No L2 page table has been allocated. Chances are, this
1509		 * is because we just allocated the l2_dtable, above.
1510		 */
1511		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1512			/*
1513			 * Oops, no more L2 page tables available at this
1514			 * time. We may need to deallocate the l2_dtable
1515			 * if we allocated a new one above.
1516			 */
1517			if (l2->l2_occupancy == 0) {
1518				pm->pm_l2[L2_IDX(l1slot)] = NULL;
1519				pmap_free_l2_dtable(l2);
1520			}
1521			return NULL;
1522		}
1523
1524		l2->l2_occupancy++;
1525		l2b->l2b_kva = ptep;
1526		l2b->l2b_l1slot = l1slot;
1527
1528#ifdef ARM_MMU_EXTENDED
1529		/*
1530		 * We know there will be a mapping here, so simply
1531		 * enter this PTP into the L1 now.
1532		 */
1533		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1534		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1535		    | L1_C_DOM(pmap_domain(pm));
1536		KASSERT(*pdep == 0);
1537		l1pte_setone(pdep, npde);
1538		PDE_SYNC(pdep);
1539#endif
1540	}
1541
1542	return l2b;
1543}
1544
1545/*
1546 * One or more mappings in the specified L2 descriptor table have just been
1547 * invalidated.
1548 *
1549 * Garbage collect the metadata and descriptor table itself if necessary.
1550 *
1551 * The pmap lock must be acquired when this is called (not necessary
1552 * for the kernel pmap).
1553 */
1554static void
1555pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1556{
1557	KDASSERT(count <= l2b->l2b_occupancy);
1558
1559	/*
1560	 * Update the bucket's reference count according to how many
1561	 * PTEs the caller has just invalidated.
1562	 */
1563	l2b->l2b_occupancy -= count;
1564
1565	/*
1566	 * Note:
1567	 *
1568	 * Level 2 page tables allocated to the kernel pmap are never freed
1569	 * as that would require checking all Level 1 page tables and
1570	 * removing any references to the Level 2 page table. See also the
1571	 * comment elsewhere about never freeing bootstrap L2 descriptors.
1572	 *
1573	 * We make do with just invalidating the mapping in the L2 table.
1574	 *
1575	 * This isn't really a big deal in practice and, in fact, leads
1576	 * to a performance win over time as we don't need to continually
1577	 * alloc/free.
1578	 */
1579	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1580		return;
1581
1582	/*
1583	 * There are no more valid mappings in this level 2 page table.
1584	 * Go ahead and NULL-out the pointer in the bucket, then
1585	 * free the page table.
1586	 */
1587	const size_t l1slot = l2b->l2b_l1slot;
1588	pt_entry_t * const ptep = l2b->l2b_kva;
1589	l2b->l2b_kva = NULL;
1590
1591	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1592	pd_entry_t pde __diagused = *pdep;
1593
1594#ifdef ARM_MMU_EXTENDED
1595	/*
1596	 * Invalidate the L1 slot.
1597	 */
1598	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1599#else
1600	/*
1601	 * If the L1 slot matches the pmap's domain number, then invalidate it.
1602	 */
1603	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1604	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1605#endif
1606		l1pte_setone(pdep, 0);
1607		PDE_SYNC(pdep);
1608#ifndef ARM_MMU_EXTENDED
1609	}
1610#endif
1611
1612	/*
1613	 * Release the L2 descriptor table back to the pool cache.
1614	 */
1615#if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1616	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1617#else
1618	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1619#endif
1620
1621	/*
1622	 * Update the reference count in the associated l2_dtable
1623	 */
1624	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1625	if (--l2->l2_occupancy > 0)
1626		return;
1627
1628	/*
1629	 * There are no more valid mappings in any of the Level 1
1630	 * slots managed by this l2_dtable. Go ahead and NULL-out
1631	 * the pointer in the parent pmap and free the l2_dtable.
1632	 */
1633	pm->pm_l2[L2_IDX(l1slot)] = NULL;
1634	pmap_free_l2_dtable(l2);
1635}
1636
1637#if defined(ARM_MMU_EXTENDED)
1638/*
1639 * Pool cache constructors for L1 translation tables
1640 */
1641
1642static int
1643pmap_l1tt_ctor(void *arg, void *v, int flags)
1644{
1645#ifndef PMAP_INCLUDE_PTE_SYNC
1646#error not supported
1647#endif
1648
1649	memset(v, 0, L1TT_SIZE);
1650	PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
1651	return 0;
1652}
1653#endif
1654
1655/*
1656 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1657 * structures.
1658 */
1659static int
1660pmap_l2ptp_ctor(void *arg, void *v, int flags)
1661{
1662#ifndef PMAP_INCLUDE_PTE_SYNC
1663	vaddr_t va = (vaddr_t)v & ~PGOFSET;
1664
1665	/*
1666	 * The mappings for these page tables were initially made using
1667	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1668	 * mode will not be right for page table mappings. To avoid
1669	 * polluting the pmap_kenter_pa() code with a special case for
1670	 * page tables, we simply fix up the cache-mode here if it's not
1671	 * correct.
1672	 */
1673	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1674		const struct l2_bucket * const l2b =
1675		    pmap_get_l2_bucket(pmap_kernel(), va);
1676		KASSERTMSG(l2b != NULL, "%#lx", va);
1677		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1678		const pt_entry_t opte = *ptep;
1679
1680		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1681			/*
1682			 * Page tables must have the cache-mode set correctly.
1683			 */
1684			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1685			    | pte_l2_s_cache_mode_pt;
1686			l2pte_set(ptep, npte, opte);
1687			PTE_SYNC(ptep);
1688			cpu_tlb_flushD_SE(va);
1689			cpu_cpwait();
1690		}
1691	}
1692#endif
1693
1694	memset(v, 0, L2_TABLE_SIZE_REAL);
1695	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1696	return 0;
1697}
1698
1699static int
1700pmap_l2dtable_ctor(void *arg, void *v, int flags)
1701{
1702
1703	memset(v, 0, sizeof(struct l2_dtable));
1704	return 0;
1705}
1706
1707static int
1708pmap_pmap_ctor(void *arg, void *v, int flags)
1709{
1710
1711	memset(v, 0, sizeof(struct pmap));
1712	return 0;
1713}
1714
1715static void
1716pmap_pinit(pmap_t pm)
1717{
1718#ifndef ARM_HAS_VBAR
1719	struct l2_bucket *l2b;
1720
1721	if (vector_page < KERNEL_BASE) {
1722		/*
1723		 * Map the vector page.
1724		 */
1725		pmap_enter(pm, vector_page, systempage.pv_pa,
1726		    VM_PROT_READ | VM_PROT_EXECUTE,
1727		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1728		pmap_update(pm);
1729
1730		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1731		l2b = pmap_get_l2_bucket(pm, vector_page);
1732		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1733		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1734		    L1_C_DOM(pmap_domain(pm));
1735	} else
1736		pm->pm_pl1vec = NULL;
1737#endif
1738}
1739
1740#ifdef PMAP_CACHE_VIVT
1741/*
1742 * Since we have a virtually indexed cache, we may need to inhibit caching if
1743 * there is more than one mapping and at least one of them is writable.
1744 * Since we purge the cache on every context switch, we only need to check for
1745 * other mappings within the same pmap, or kernel_pmap.
1746 * This function is also called when a page is unmapped, to possibly reenable
1747 * caching on any remaining mappings.
1748 *
1749 * The code implements the following logic, where:
1750 *
1751 * KW = # of kernel read/write pages
1752 * KR = # of kernel read only pages
1753 * UW = # of user read/write pages
1754 * UR = # of user read only pages
1755 *
1756 * KC = kernel mapping is cacheable
1757 * UC = user mapping is cacheable
1758 *
1759 *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
1760 *             +---------------------------------------------
1761 * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
1762 * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
1763 * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1764 * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1765 */
1766
1767static const int pmap_vac_flags[4][4] = {
1768	{-1,		0,		0,		PVF_KNC},
1769	{0,		0,		PVF_NC,		PVF_NC},
1770	{0,		PVF_NC,		PVF_NC,		PVF_NC},
1771	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
1772};
1773
1774static inline int
1775pmap_get_vac_flags(const struct vm_page_md *md)
1776{
1777	int kidx, uidx;
1778
1779	kidx = 0;
1780	if (md->kro_mappings || md->krw_mappings > 1)
1781		kidx |= 1;
1782	if (md->krw_mappings)
1783		kidx |= 2;
1784
1785	uidx = 0;
1786	if (md->uro_mappings || md->urw_mappings > 1)
1787		uidx |= 1;
1788	if (md->urw_mappings)
1789		uidx |= 2;
1790
1791	return pmap_vac_flags[uidx][kidx];
1792}
1793
1794static inline void
1795pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1796{
1797	int nattr;
1798
1799	nattr = pmap_get_vac_flags(md);
1800
1801	if (nattr < 0) {
1802		md->pvh_attrs &= ~PVF_NC;
1803		return;
1804	}
1805
1806	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1807		return;
1808
1809	if (pm == pmap_kernel())
1810		pmap_vac_me_kpmap(md, pa, pm, va);
1811	else
1812		pmap_vac_me_user(md, pa, pm, va);
1813
1814	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1815}
1816
1817static void
1818pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1819{
1820	u_int u_cacheable, u_entries;
1821	struct pv_entry *pv;
1822	pmap_t last_pmap = pm;
1823
1824	/*
1825	 * Pass one, see if there are both kernel and user pmaps for
1826	 * this page.  Calculate whether there are user-writable or
1827	 * kernel-writable pages.
1828	 */
1829	u_cacheable = 0;
1830	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1831		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1832			u_cacheable++;
1833	}
1834
1835	u_entries = md->urw_mappings + md->uro_mappings;
1836
1837	/*
1838	 * We know we have just been updating a kernel entry, so if
1839	 * all user pages are already cacheable, then there is nothing
1840	 * further to do.
1841	 */
1842	if (md->k_mappings == 0 && u_cacheable == u_entries)
1843		return;
1844
1845	if (u_entries) {
1846		/*
1847		 * Scan over the list again, for each entry, if it
1848		 * might not be set correctly, call pmap_vac_me_user
1849		 * to recalculate the settings.
1850		 */
1851		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1852			/*
1853			 * We know kernel mappings will get set
1854			 * correctly in other calls.  We also know
1855			 * that if the pmap is the same as last_pmap
1856			 * then we've just handled this entry.
1857			 */
1858			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1859				continue;
1860
1861			/*
1862			 * If there are kernel entries and this page
1863			 * is writable but non-cacheable, then we can
1864			 * skip this entry also.
1865			 */
1866			if (md->k_mappings &&
1867			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1868			    (PVF_NC | PVF_WRITE))
1869				continue;
1870
1871			/*
1872			 * Similarly if there are no kernel-writable
1873			 * entries and the page is already
1874			 * read-only/cacheable.
1875			 */
1876			if (md->krw_mappings == 0 &&
1877			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1878				continue;
1879
1880			/*
1881			 * For some of the remaining cases, we know
1882			 * that we must recalculate, but for others we
1883			 * can't tell if they are correct or not, so
1884			 * we recalculate anyway.
1885			 */
1886			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1887		}
1888
1889		if (md->k_mappings == 0)
1890			return;
1891	}
1892
1893	pmap_vac_me_user(md, pa, pm, va);
1894}
1895
1896static void
1897pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1898{
1899	pmap_t kpmap = pmap_kernel();
1900	struct pv_entry *pv, *npv = NULL;
1901	u_int entries = 0;
1902	u_int writable = 0;
1903	u_int cacheable_entries = 0;
1904	u_int kern_cacheable = 0;
1905	u_int other_writable = 0;
1906
1907	/*
1908	 * Count mappings and writable mappings in this pmap.
1909	 * Include kernel mappings as part of our own.
1910	 * Keep a pointer to the first one.
1911	 */
1912	npv = NULL;
1913	KASSERT(pmap_page_locked_p(md));
1914	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1915		/* Count mappings in the same pmap */
1916		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1917			if (entries++ == 0)
1918				npv = pv;
1919
1920			/* Cacheable mappings */
1921			if ((pv->pv_flags & PVF_NC) == 0) {
1922				cacheable_entries++;
1923				if (kpmap == pv->pv_pmap)
1924					kern_cacheable++;
1925			}
1926
1927			/* Writable mappings */
1928			if (pv->pv_flags & PVF_WRITE)
1929				++writable;
1930		} else if (pv->pv_flags & PVF_WRITE)
1931			other_writable = 1;
1932	}
1933
1934	/*
1935	 * Enable or disable caching as necessary.
1936	 * Note: the first entry might be part of the kernel pmap,
1937	 * so we can't assume this is indicative of the state of the
1938	 * other (maybe non-kpmap) entries.
1939	 */
1940	if ((entries > 1 && writable) ||
1941	    (entries > 0 && pm == kpmap && other_writable)) {
1942		if (cacheable_entries == 0) {
1943			return;
1944		}
1945
1946		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1947			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1948			    (pv->pv_flags & PVF_NC))
1949				continue;
1950
1951			pv->pv_flags |= PVF_NC;
1952
1953			struct l2_bucket * const l2b
1954			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1955			KASSERTMSG(l2b != NULL, "%#lx", va);
1956			pt_entry_t * const ptep
1957			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1958			const pt_entry_t opte = *ptep;
1959			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1960
1961			if ((va != pv->pv_va || pm != pv->pv_pmap)
1962			    && l2pte_valid_p(opte)) {
1963				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1964				    true, pv->pv_flags);
1965				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1966				    pv->pv_flags);
1967			}
1968
1969			l2pte_set(ptep, npte, opte);
1970			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1971		}
1972		cpu_cpwait();
1973	} else if (entries > cacheable_entries) {
1974		/*
1975		 * Turn cacheing back on for some pages.  If it is a kernel
1976		 * page, only do so if there are no other writable pages.
1977		 */
1978		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1979			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1980			    (kpmap != pv->pv_pmap || other_writable)))
1981				continue;
1982
1983			pv->pv_flags &= ~PVF_NC;
1984
1985			struct l2_bucket * const l2b
1986			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1987			KASSERTMSG(l2b != NULL, "%#lx", va);
1988			pt_entry_t * const ptep
1989			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1990			const pt_entry_t opte = *ptep;
1991			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1992			    | pte_l2_s_cache_mode;
1993
1994			if (l2pte_valid_p(opte)) {
1995				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1996				    pv->pv_flags);
1997			}
1998
1999			l2pte_set(ptep, npte, opte);
2000			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2001		}
2002	}
2003}
2004#endif
2005
2006#ifdef PMAP_CACHE_VIPT
2007static void
2008pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2009{
2010
2011#ifndef ARM_MMU_EXTENDED
2012	struct pv_entry *pv;
2013	vaddr_t tst_mask;
2014	bool bad_alias;
2015	const u_int
2016	    rw_mappings = md->urw_mappings + md->krw_mappings,
2017	    ro_mappings = md->uro_mappings + md->kro_mappings;
2018
2019	/* do we need to do anything? */
2020	if (arm_cache_prefer_mask == 0)
2021		return;
2022
2023	UVMHIST_FUNC(__func__);
2024	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
2025	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
2026
2027	KASSERT(!va || pm);
2028	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2029
2030	/* Already a conflict? */
2031	if (__predict_false(md->pvh_attrs & PVF_NC)) {
2032		/* just an add, things are already non-cached */
2033		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2034		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2035		bad_alias = false;
2036		if (va) {
2037			PMAPCOUNT(vac_color_none);
2038			bad_alias = true;
2039			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2040			goto fixup;
2041		}
2042		pv = SLIST_FIRST(&md->pvh_list);
2043		/* the list can't be empty because it would be cachable */
2044		if (md->pvh_attrs & PVF_KMPAGE) {
2045			tst_mask = md->pvh_attrs;
2046		} else {
2047			KASSERT(pv);
2048			tst_mask = pv->pv_va;
2049			pv = SLIST_NEXT(pv, pv_link);
2050		}
2051		/*
2052		 * Only check for a bad alias if we have writable mappings.
2053		 */
2054		tst_mask &= arm_cache_prefer_mask;
2055		if (rw_mappings > 0) {
2056			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2057				/* if there's a bad alias, stop checking. */
2058				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2059					bad_alias = true;
2060			}
2061			md->pvh_attrs |= PVF_WRITE;
2062			if (!bad_alias)
2063				md->pvh_attrs |= PVF_DIRTY;
2064		} else {
2065			/*
2066			 * We have only read-only mappings.  Let's see if there
2067			 * are multiple colors in use or if we mapped a KMPAGE.
2068			 * If the latter, we have a bad alias.  If the former,
2069			 * we need to remember that.
2070			 */
2071			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2072				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2073					if (md->pvh_attrs & PVF_KMPAGE)
2074						bad_alias = true;
2075					break;
2076				}
2077			}
2078			md->pvh_attrs &= ~PVF_WRITE;
2079			/*
2080			 * No KMPAGE and we exited early, so we must have
2081			 * multiple color mappings.
2082			 */
2083			if (!bad_alias && pv != NULL)
2084				md->pvh_attrs |= PVF_MULTCLR;
2085		}
2086
2087		/* If no conflicting colors, set everything back to cached */
2088		if (!bad_alias) {
2089#ifdef DEBUG
2090			if ((md->pvh_attrs & PVF_WRITE)
2091			    || ro_mappings < 2) {
2092				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2093					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2094			}
2095#endif
2096			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2097			md->pvh_attrs |= tst_mask | PVF_COLORED;
2098			/*
2099			 * Restore DIRTY bit if page is modified
2100			 */
2101			if (md->pvh_attrs & PVF_DMOD)
2102				md->pvh_attrs |= PVF_DIRTY;
2103			PMAPCOUNT(vac_color_restore);
2104		} else {
2105			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2106			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2107		}
2108		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2109		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2110	} else if (!va) {
2111		KASSERT(pmap_is_page_colored_p(md));
2112		KASSERT(!(md->pvh_attrs & PVF_WRITE)
2113		    || (md->pvh_attrs & PVF_DIRTY));
2114		if (rw_mappings == 0) {
2115			md->pvh_attrs &= ~PVF_WRITE;
2116			if (ro_mappings == 1
2117			    && (md->pvh_attrs & PVF_MULTCLR)) {
2118				/*
2119				 * If this is the last readonly mapping
2120				 * but it doesn't match the current color
2121				 * for the page, change the current color
2122				 * to match this last readonly mapping.
2123				 */
2124				pv = SLIST_FIRST(&md->pvh_list);
2125				tst_mask = (md->pvh_attrs ^ pv->pv_va)
2126				    & arm_cache_prefer_mask;
2127				if (tst_mask) {
2128					md->pvh_attrs ^= tst_mask;
2129					PMAPCOUNT(vac_color_change);
2130				}
2131			}
2132		}
2133		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2134		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2135		return;
2136	} else if (!pmap_is_page_colored_p(md)) {
2137		/* not colored so we just use its color */
2138		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2139		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2140		PMAPCOUNT(vac_color_new);
2141		md->pvh_attrs &= PAGE_SIZE - 1;
2142		md->pvh_attrs |= PVF_COLORED
2143		    | (va & arm_cache_prefer_mask)
2144		    | (rw_mappings > 0 ? PVF_WRITE : 0);
2145		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2146		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2147		return;
2148	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2149		bad_alias = false;
2150		if (rw_mappings > 0) {
2151			/*
2152			 * We now have writeable mappings and if we have
2153			 * readonly mappings in more than once color, we have
2154			 * an aliasing problem.  Regardless mark the page as
2155			 * writeable.
2156			 */
2157			if (md->pvh_attrs & PVF_MULTCLR) {
2158				if (ro_mappings < 2) {
2159					/*
2160					 * If we only have less than two
2161					 * read-only mappings, just flush the
2162					 * non-primary colors from the cache.
2163					 */
2164					pmap_flush_page(md, pa,
2165					    PMAP_FLUSH_SECONDARY);
2166				} else {
2167					bad_alias = true;
2168				}
2169			}
2170			md->pvh_attrs |= PVF_WRITE;
2171		}
2172		/* If no conflicting colors, set everything back to cached */
2173		if (!bad_alias) {
2174#ifdef DEBUG
2175			if (rw_mappings > 0
2176			    || (md->pvh_attrs & PMAP_KMPAGE)) {
2177				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2178				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2179					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2180			}
2181#endif
2182			if (SLIST_EMPTY(&md->pvh_list))
2183				PMAPCOUNT(vac_color_reuse);
2184			else
2185				PMAPCOUNT(vac_color_ok);
2186
2187			/* matching color, just return */
2188			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2189			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2190			return;
2191		}
2192		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2193		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2194
2195		/* color conflict.  evict from cache. */
2196
2197		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2198		md->pvh_attrs &= ~PVF_COLORED;
2199		md->pvh_attrs |= PVF_NC;
2200		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2201		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2202		PMAPCOUNT(vac_color_erase);
2203	} else if (rw_mappings == 0
2204		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2205		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2206
2207		/*
2208		 * If the page has dirty cache lines, clean it.
2209		 */
2210		if (md->pvh_attrs & PVF_DIRTY)
2211			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2212
2213		/*
2214		 * If this is the first remapping (we know that there are no
2215		 * writeable mappings), then this is a simple color change.
2216		 * Otherwise this is a seconary r/o mapping, which means
2217		 * we don't have to do anything.
2218		 */
2219		if (ro_mappings == 1) {
2220			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2221			md->pvh_attrs &= PAGE_SIZE - 1;
2222			md->pvh_attrs |= (va & arm_cache_prefer_mask);
2223			PMAPCOUNT(vac_color_change);
2224		} else {
2225			PMAPCOUNT(vac_color_blind);
2226		}
2227		md->pvh_attrs |= PVF_MULTCLR;
2228		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2229		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2230		return;
2231	} else {
2232		if (rw_mappings > 0)
2233			md->pvh_attrs |= PVF_WRITE;
2234
2235		/* color conflict.  evict from cache. */
2236		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2237
2238		/* the list can't be empty because this was a enter/modify */
2239		pv = SLIST_FIRST(&md->pvh_list);
2240		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2241			KASSERT(pv);
2242			/*
2243			 * If there's only one mapped page, change color to the
2244			 * page's new color and return.  Restore the DIRTY bit
2245			 * that was erased by pmap_flush_page.
2246			 */
2247			if (SLIST_NEXT(pv, pv_link) == NULL) {
2248				md->pvh_attrs &= PAGE_SIZE - 1;
2249				md->pvh_attrs |= (va & arm_cache_prefer_mask);
2250				if (md->pvh_attrs & PVF_DMOD)
2251					md->pvh_attrs |= PVF_DIRTY;
2252				PMAPCOUNT(vac_color_change);
2253				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2254				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2255				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2256				return;
2257			}
2258		}
2259		bad_alias = true;
2260		md->pvh_attrs &= ~PVF_COLORED;
2261		md->pvh_attrs |= PVF_NC;
2262		PMAPCOUNT(vac_color_erase);
2263		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2264	}
2265
2266  fixup:
2267	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2268
2269	/*
2270	 * Turn cacheing on/off for all pages.
2271	 */
2272	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2273		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2274		    pv->pv_va);
2275		KASSERTMSG(l2b != NULL, "%#lx", va);
2276		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2277		const pt_entry_t opte = *ptep;
2278		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2279		if (bad_alias) {
2280			pv->pv_flags |= PVF_NC;
2281		} else {
2282			pv->pv_flags &= ~PVF_NC;
2283			npte |= pte_l2_s_cache_mode;
2284		}
2285
2286		if (opte == npte)	/* only update is there's a change */
2287			continue;
2288
2289		if (l2pte_valid_p(opte)) {
2290			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2291		}
2292
2293		l2pte_set(ptep, npte, opte);
2294		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2295	}
2296#endif /* !ARM_MMU_EXTENDED */
2297}
2298#endif	/* PMAP_CACHE_VIPT */
2299
2300
2301/*
2302 * Modify pte bits for all ptes corresponding to the given physical address.
2303 * We use `maskbits' rather than `clearbits' because we're always passing
2304 * constants and the latter would require an extra inversion at run-time.
2305 */
2306static void
2307pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2308{
2309	struct pv_entry *pv;
2310#ifdef PMAP_CACHE_VIPT
2311	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2312	bool need_syncicache = false;
2313#ifdef ARM_MMU_EXTENDED
2314	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2315#else
2316	const u_int execbits = 0;
2317	bool need_vac_me_harder = false;
2318#endif
2319#else
2320	const u_int execbits = 0;
2321#endif
2322
2323	UVMHIST_FUNC(__func__);
2324	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx maskbits %#jx",
2325	    (uintptr_t)md, pa, maskbits, 0);
2326
2327#ifdef PMAP_CACHE_VIPT
2328	/*
2329	 * If we might want to sync the I-cache and we've modified it,
2330	 * then we know we definitely need to sync or discard it.
2331	 */
2332	if (want_syncicache) {
2333		if (md->pvh_attrs & PVF_MOD) {
2334			need_syncicache = true;
2335		}
2336	}
2337#endif
2338	KASSERT(pmap_page_locked_p(md));
2339
2340	/*
2341	 * Clear saved attributes (modify, reference)
2342	 */
2343	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2344
2345	if (SLIST_EMPTY(&md->pvh_list)) {
2346#if defined(PMAP_CACHE_VIPT)
2347		if (need_syncicache) {
2348			/*
2349			 * No one has it mapped, so just discard it.  The next
2350			 * exec remapping will cause it to be synced.
2351			 */
2352			md->pvh_attrs &= ~PVF_EXEC;
2353			PMAPCOUNT(exec_discarded_clearbit);
2354		}
2355#endif
2356		return;
2357	}
2358
2359	/*
2360	 * Loop over all current mappings setting/clearing as appropos
2361	 */
2362	for (pv = SLIST_FIRST(&md->pvh_list); pv != NULL;) {
2363		pmap_t pm = pv->pv_pmap;
2364		const vaddr_t va = pv->pv_va;
2365		const u_int oflags = pv->pv_flags;
2366#ifndef ARM_MMU_EXTENDED
2367		/*
2368		 * Kernel entries are unmanaged and as such not to be changed.
2369		 */
2370		if (PV_IS_KENTRY_P(oflags)) {
2371			pv = SLIST_NEXT(pv, pv_link);
2372			continue;
2373		}
2374#endif
2375
2376		/*
2377		 * Anything to do?
2378		 */
2379		if ((oflags & maskbits) == 0 && execbits == 0) {
2380			pv = SLIST_NEXT(pv, pv_link);
2381			continue;
2382		}
2383
2384		/*
2385		 * Try to get a hold on the pmap's lock.  We must do this
2386		 * while still holding the page locked, to know that the
2387		 * page is still associated with the pmap and the mapping is
2388		 * in place.  If a hold can't be had, unlock and wait for
2389		 * the pmap's lock to become available and retry.  The pmap
2390		 * must be ref'd over this dance to stop it disappearing
2391		 * behind us.
2392		 */
2393		if (!mutex_tryenter(&pm->pm_lock)) {
2394			pmap_reference(pm);
2395			pmap_release_page_lock(md);
2396			pmap_acquire_pmap_lock(pm);
2397			/* nothing, just wait for it */
2398			pmap_release_pmap_lock(pm);
2399			pmap_destroy(pm);
2400			/* Restart from the beginning. */
2401			pmap_acquire_page_lock(md);
2402			pv = SLIST_FIRST(&md->pvh_list);
2403			continue;
2404		}
2405		pv->pv_flags &= ~maskbits;
2406
2407		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2408		KASSERTMSG(l2b != NULL, "%#lx", va);
2409
2410		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2411		const pt_entry_t opte = *ptep;
2412		pt_entry_t npte = opte | execbits;
2413
2414#ifdef ARM_MMU_EXTENDED
2415		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2416#endif
2417
2418		UVMHIST_LOG(maphist, "pv %#jx pm %#jx va %#jx flag %#jx",
2419		    (uintptr_t)pv, (uintptr_t)pm, va, oflags);
2420
2421		if (maskbits & (PVF_WRITE|PVF_MOD)) {
2422#ifdef PMAP_CACHE_VIVT
2423			if ((oflags & PVF_NC)) {
2424				/*
2425				 * Entry is not cacheable:
2426				 *
2427				 * Don't turn caching on again if this is a
2428				 * modified emulation. This would be
2429				 * inconsitent with the settings created by
2430				 * pmap_vac_me_harder(). Otherwise, it's safe
2431				 * to re-enable cacheing.
2432				 *
2433				 * There's no need to call pmap_vac_me_harder()
2434				 * here: all pages are losing their write
2435				 * permission.
2436				 */
2437				if (maskbits & PVF_WRITE) {
2438					npte |= pte_l2_s_cache_mode;
2439					pv->pv_flags &= ~PVF_NC;
2440				}
2441			} else if (l2pte_writable_p(opte)) {
2442				/*
2443				 * Entry is writable/cacheable: check if pmap
2444				 * is current if it is flush it, otherwise it
2445				 * won't be in the cache
2446				 */
2447				pmap_cache_wbinv_page(pm, va,
2448				    (maskbits & PVF_REF) != 0,
2449				    oflags|PVF_WRITE);
2450			}
2451#endif
2452
2453			/* make the pte read only */
2454			npte = l2pte_set_readonly(npte);
2455
2456			if ((maskbits & oflags & PVF_WRITE)) {
2457				/*
2458				 * Keep alias accounting up to date
2459				 */
2460				if (pm == pmap_kernel()) {
2461					md->krw_mappings--;
2462					md->kro_mappings++;
2463				} else {
2464					md->urw_mappings--;
2465					md->uro_mappings++;
2466				}
2467#ifdef PMAP_CACHE_VIPT
2468				if (arm_cache_prefer_mask != 0) {
2469					if (md->urw_mappings + md->krw_mappings == 0) {
2470						md->pvh_attrs &= ~PVF_WRITE;
2471					} else {
2472						PMAP_VALIDATE_MD_PAGE(md);
2473					}
2474				}
2475				if (want_syncicache)
2476					need_syncicache = true;
2477#ifndef ARM_MMU_EXTENDED
2478				need_vac_me_harder = true;
2479#endif
2480#endif /* PMAP_CACHE_VIPT */
2481			}
2482		}
2483
2484		if (maskbits & PVF_REF) {
2485			if (true
2486#ifndef ARM_MMU_EXTENDED
2487			    && (oflags & PVF_NC) == 0
2488#endif
2489			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2490			    && l2pte_valid_p(npte)) {
2491#ifdef PMAP_CACHE_VIVT
2492				/*
2493				 * Check npte here; we may have already
2494				 * done the wbinv above, and the validity
2495				 * of the PTE is the same for opte and
2496				 * npte.
2497				 */
2498				pmap_cache_wbinv_page(pm, va, true, oflags);
2499#endif
2500			}
2501
2502			/*
2503			 * Make the PTE invalid so that we will take a
2504			 * page fault the next time the mapping is
2505			 * referenced.
2506			 */
2507			npte &= ~L2_TYPE_MASK;
2508			npte |= L2_TYPE_INV;
2509		}
2510
2511		if (npte != opte) {
2512			l2pte_reset(ptep);
2513			PTE_SYNC(ptep);
2514
2515			/* Flush the TLB entry if a current pmap. */
2516			pmap_tlb_flush_SE(pm, va, oflags);
2517
2518			l2pte_set(ptep, npte, 0);
2519			PTE_SYNC(ptep);
2520		}
2521
2522		pmap_release_pmap_lock(pm);
2523
2524		UVMHIST_LOG(maphist, "pm %#jx va %#jx opte %#jx npte %#jx",
2525		    (uintptr_t)pm, va, opte, npte);
2526
2527		/* Move to next entry. */
2528		pv = SLIST_NEXT(pv, pv_link);
2529	}
2530
2531#if defined(PMAP_CACHE_VIPT)
2532	/*
2533	 * If we need to sync the I-cache and we haven't done it yet, do it.
2534	 */
2535	if (need_syncicache) {
2536		pmap_syncicache_page(md, pa);
2537		PMAPCOUNT(exec_synced_clearbit);
2538	}
2539#ifndef ARM_MMU_EXTENDED
2540	/*
2541	 * If we are changing this to read-only, we need to call vac_me_harder
2542	 * so we can change all the read-only pages to cacheable.  We pretend
2543	 * this as a page deletion.
2544	 */
2545	if (need_vac_me_harder) {
2546		if (md->pvh_attrs & PVF_NC)
2547			pmap_vac_me_harder(md, pa, NULL, 0);
2548	}
2549#endif /* !ARM_MMU_EXTENDED */
2550#endif /* PMAP_CACHE_VIPT */
2551}
2552
2553/*
2554 * pmap_clean_page()
2555 *
2556 * This is a local function used to work out the best strategy to clean
2557 * a single page referenced by its entry in the PV table. It's used by
2558 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2559 *
2560 * Its policy is effectively:
2561 *  o If there are no mappings, we don't bother doing anything with the cache.
2562 *  o If there is one mapping, we clean just that page.
2563 *  o If there are multiple mappings, we clean the entire cache.
2564 *
2565 * So that some functions can be further optimised, it returns 0 if it didn't
2566 * clean the entire cache, or 1 if it did.
2567 *
2568 * XXX One bug in this routine is that if the pv_entry has a single page
2569 * mapped at 0x00000000 a whole cache clean will be performed rather than
2570 * just the 1 page. Since this should not occur in everyday use and if it does
2571 * it will just result in not the most efficient clean for the page.
2572 */
2573#ifdef PMAP_CACHE_VIVT
2574static bool
2575pmap_clean_page(struct vm_page_md *md, bool is_src)
2576{
2577	struct pv_entry *pv;
2578	pmap_t pm_to_clean = NULL;
2579	bool cache_needs_cleaning = false;
2580	vaddr_t page_to_clean = 0;
2581	u_int flags = 0;
2582
2583	/*
2584	 * Since we flush the cache each time we change to a different
2585	 * user vmspace, we only need to flush the page if it is in the
2586	 * current pmap.
2587	 */
2588	KASSERT(pmap_page_locked_p(md));
2589	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2590		if (pmap_is_current(pv->pv_pmap)) {
2591			flags |= pv->pv_flags;
2592			/*
2593			 * The page is mapped non-cacheable in
2594			 * this map.  No need to flush the cache.
2595			 */
2596			if (pv->pv_flags & PVF_NC) {
2597#ifdef DIAGNOSTIC
2598				KASSERT(!cache_needs_cleaning);
2599#endif
2600				break;
2601			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2602				continue;
2603			if (cache_needs_cleaning) {
2604				page_to_clean = 0;
2605				break;
2606			} else {
2607				page_to_clean = pv->pv_va;
2608				pm_to_clean = pv->pv_pmap;
2609			}
2610			cache_needs_cleaning = true;
2611		}
2612	}
2613
2614	if (page_to_clean) {
2615		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2616		    !is_src, flags | PVF_REF);
2617	} else if (cache_needs_cleaning) {
2618		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2619
2620		pmap_cache_wbinv_all(pm, flags);
2621		return true;
2622	}
2623	return false;
2624}
2625#endif
2626
2627#ifdef PMAP_CACHE_VIPT
2628/*
2629 * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
2630 * right cache alias to make sure we flush the right stuff.
2631 */
2632void
2633pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2634{
2635	pmap_t kpm = pmap_kernel();
2636	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2637	    ? PAGE_SIZE
2638	    : arm_pcache.icache_way_size;
2639
2640	UVMHIST_FUNC(__func__);
2641	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx (attrs=%#jx)",
2642	    (uintptr_t)md, pa, md->pvh_attrs, 0);
2643
2644	/*
2645	 * No need to clean the page if it's non-cached.
2646	 */
2647#ifndef ARM_MMU_EXTENDED
2648	if (md->pvh_attrs & PVF_NC)
2649		return;
2650	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2651#endif
2652
2653	pt_entry_t * const ptep = cpu_cdst_pte(0);
2654	const vaddr_t dstp = cpu_cdstp(0);
2655#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2656	if (way_size <= PAGE_SIZE) {
2657		bool ok = false;
2658		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2659		if (ok) {
2660			cpu_icache_sync_range(vdstp, way_size);
2661			return;
2662		}
2663	}
2664#endif
2665
2666	/*
2667	 * We don't worry about the color of the exec page, we map the
2668	 * same page to pages in the way and then do the icache_sync on
2669	 * the entire way making sure we are cleaned.
2670	 */
2671	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2672	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2673
2674	for (size_t i = 0, j = 0; i < way_size;
2675	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2676		l2pte_reset(ptep + j);
2677		PTE_SYNC(ptep + j);
2678
2679		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2680		/*
2681		 * Set up a PTE with to flush these cache lines.
2682		 */
2683		l2pte_set(ptep + j, npte, 0);
2684	}
2685	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2686
2687	/*
2688	 * Flush it.
2689	 */
2690	cpu_icache_sync_range(dstp, way_size);
2691
2692	for (size_t i = 0, j = 0; i < way_size;
2693	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2694		/*
2695		 * Unmap the page(s).
2696		 */
2697		l2pte_reset(ptep + j);
2698		PTE_SYNC(ptep + j);
2699
2700		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2701	}
2702
2703	md->pvh_attrs |= PVF_EXEC;
2704	PMAPCOUNT(exec_synced);
2705}
2706
2707#ifndef ARM_MMU_EXTENDED
2708void
2709pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2710{
2711	vsize_t va_offset, end_va;
2712	bool wbinv_p;
2713
2714	if (arm_cache_prefer_mask == 0)
2715		return;
2716
2717	UVMHIST_FUNC(__func__);
2718	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx op %#jx",
2719	    (uintptr_t)md, pa, op, 0);
2720
2721	switch (flush) {
2722	case PMAP_FLUSH_PRIMARY:
2723		if (md->pvh_attrs & PVF_MULTCLR) {
2724			va_offset = 0;
2725			end_va = arm_cache_prefer_mask;
2726			md->pvh_attrs &= ~PVF_MULTCLR;
2727			PMAPCOUNT(vac_flush_lots);
2728		} else {
2729			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2730			end_va = va_offset;
2731			PMAPCOUNT(vac_flush_one);
2732		}
2733		/*
2734		 * Mark that the page is no longer dirty.
2735		 */
2736		md->pvh_attrs &= ~PVF_DIRTY;
2737		wbinv_p = true;
2738		break;
2739	case PMAP_FLUSH_SECONDARY:
2740		va_offset = 0;
2741		end_va = arm_cache_prefer_mask;
2742		wbinv_p = true;
2743		md->pvh_attrs &= ~PVF_MULTCLR;
2744		PMAPCOUNT(vac_flush_lots);
2745		break;
2746	case PMAP_CLEAN_PRIMARY:
2747		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2748		end_va = va_offset;
2749		wbinv_p = false;
2750		/*
2751		 * Mark that the page is no longer dirty.
2752		 */
2753		if ((md->pvh_attrs & PVF_DMOD) == 0)
2754			md->pvh_attrs &= ~PVF_DIRTY;
2755		PMAPCOUNT(vac_clean_one);
2756		break;
2757	default:
2758		return;
2759	}
2760
2761	KASSERT(!(md->pvh_attrs & PVF_NC));
2762
2763	UVMHIST_LOG(maphist, "md %#jx (attrs=%#jx)", (uintptr_t)md,
2764	    md->pvh_attrs, 0, 0);
2765
2766	const size_t scache_line_size = arm_scache.dcache_line_size;
2767
2768	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2769		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2770		const vaddr_t dstp = cpu_cdstp(va_offset);
2771		const pt_entry_t opte = *ptep;
2772
2773		if (flush == PMAP_FLUSH_SECONDARY
2774		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2775			continue;
2776
2777		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2778		/*
2779		 * Set up a PTE with the right coloring to flush
2780		 * existing cache entries.
2781		 */
2782		const pt_entry_t npte = L2_S_PROTO
2783		    | pa
2784		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2785		    | pte_l2_s_cache_mode;
2786		l2pte_set(ptep, npte, opte);
2787		PTE_SYNC(ptep);
2788
2789		/*
2790		 * Flush it.  Make sure to flush secondary cache too since
2791		 * bus_dma will ignore uncached pages.
2792		 */
2793		if (scache_line_size != 0) {
2794			cpu_dcache_wb_range(dstp, PAGE_SIZE);
2795			if (wbinv_p) {
2796				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2797				cpu_dcache_inv_range(dstp, PAGE_SIZE);
2798			} else {
2799				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2800			}
2801		} else {
2802			if (wbinv_p) {
2803				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2804			} else {
2805				cpu_dcache_wb_range(dstp, PAGE_SIZE);
2806			}
2807		}
2808
2809		/*
2810		 * Restore the page table entry since we might have interrupted
2811		 * pmap_zero_page or pmap_copy_page which was already using
2812		 * this pte.
2813		 */
2814		if (opte) {
2815			l2pte_set(ptep, opte, npte);
2816		} else {
2817			l2pte_reset(ptep);
2818		}
2819		PTE_SYNC(ptep);
2820		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2821	}
2822}
2823#endif /* ARM_MMU_EXTENDED */
2824#endif /* PMAP_CACHE_VIPT */
2825
2826/*
2827 * Routine:	pmap_page_remove
2828 * Function:
2829 *		Removes this physical page from
2830 *		all physical maps in which it resides.
2831 *		Reflects back modify bits to the pager.
2832 */
2833static void
2834pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2835{
2836	struct l2_bucket *l2b;
2837	struct pv_entry *pv;
2838	pt_entry_t *ptep;
2839#ifndef ARM_MMU_EXTENDED
2840	bool flush = false;
2841#endif
2842	u_int flags = 0;
2843
2844	UVMHIST_FUNC(__func__);
2845	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx", (uintptr_t)md, pa, 0, 0);
2846
2847	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2848	pmap_acquire_page_lock(md);
2849	if (*pvp == NULL) {
2850#ifdef PMAP_CACHE_VIPT
2851		/*
2852		 * We *know* the page contents are about to be replaced.
2853		 * Discard the exec contents
2854		 */
2855		if (PV_IS_EXEC_P(md->pvh_attrs))
2856			PMAPCOUNT(exec_discarded_page_protect);
2857		md->pvh_attrs &= ~PVF_EXEC;
2858		PMAP_VALIDATE_MD_PAGE(md);
2859#endif
2860		pmap_release_page_lock(md);
2861		return;
2862	}
2863#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2864	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2865#endif
2866
2867	/*
2868	 * Clear alias counts
2869	 */
2870#ifdef PMAP_CACHE_VIVT
2871	md->k_mappings = 0;
2872#endif
2873	md->urw_mappings = md->uro_mappings = 0;
2874
2875#ifdef PMAP_CACHE_VIVT
2876	pmap_clean_page(md, false);
2877#endif
2878
2879	for (pv = *pvp; pv != NULL;) {
2880		pmap_t pm = pv->pv_pmap;
2881#ifndef ARM_MMU_EXTENDED
2882		if (flush == false && pmap_is_current(pm))
2883			flush = true;
2884#endif
2885
2886#ifdef PMAP_CACHE_VIPT
2887		if (pm == pmap_kernel() && PV_IS_KENTRY_P(pv->pv_flags)) {
2888			/* If this was unmanaged mapping, it must be ignored. */
2889			pvp = &SLIST_NEXT(pv, pv_link);
2890			pv = *pvp;
2891			continue;
2892		}
2893#endif
2894
2895		/*
2896		 * Try to get a hold on the pmap's lock.  We must do this
2897		 * while still holding the page locked, to know that the
2898		 * page is still associated with the pmap and the mapping is
2899		 * in place.  If a hold can't be had, unlock and wait for
2900		 * the pmap's lock to become available and retry.  The pmap
2901		 * must be ref'd over this dance to stop it disappearing
2902		 * behind us.
2903		 */
2904		if (!mutex_tryenter(&pm->pm_lock)) {
2905			pmap_reference(pm);
2906			pmap_release_page_lock(md);
2907			pmap_acquire_pmap_lock(pm);
2908			/* nothing, just wait for it */
2909			pmap_release_pmap_lock(pm);
2910			pmap_destroy(pm);
2911			/* Restart from the beginning. */
2912			pmap_acquire_page_lock(md);
2913			pvp = &SLIST_FIRST(&md->pvh_list);
2914			pv = *pvp;
2915			continue;
2916		}
2917
2918		if (pm == pmap_kernel()) {
2919#ifdef PMAP_CACHE_VIPT
2920			if (pv->pv_flags & PVF_WRITE)
2921				md->krw_mappings--;
2922			else
2923				md->kro_mappings--;
2924#endif
2925			PMAPCOUNT(kernel_unmappings);
2926		}
2927		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2928		PMAPCOUNT(unmappings);
2929
2930		pmap_release_page_lock(md);
2931
2932		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2933		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2934
2935		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2936
2937		/*
2938		 * Update statistics
2939		 */
2940		--pm->pm_stats.resident_count;
2941
2942		/* Wired bit */
2943		if (pv->pv_flags & PVF_WIRED)
2944			--pm->pm_stats.wired_count;
2945
2946		flags |= pv->pv_flags;
2947
2948		/*
2949		 * Invalidate the PTEs.
2950		 */
2951		l2pte_reset(ptep);
2952		PTE_SYNC_CURRENT(pm, ptep);
2953
2954#ifdef ARM_MMU_EXTENDED
2955		pmap_tlb_invalidate_addr(pm, pv->pv_va);
2956#endif
2957
2958		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2959
2960		pmap_release_pmap_lock(pm);
2961
2962		pool_put(&pmap_pv_pool, pv);
2963		pmap_acquire_page_lock(md);
2964
2965		/*
2966		 * Restart at the beginning of the list.
2967		 */
2968		pvp = &SLIST_FIRST(&md->pvh_list);
2969		pv = *pvp;
2970	}
2971	/*
2972	 * if we reach the end of the list and there are still mappings, they
2973	 * might be able to be cached now.  And they must be kernel mappings.
2974	 */
2975	if (!SLIST_EMPTY(&md->pvh_list)) {
2976		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2977	}
2978
2979#ifdef PMAP_CACHE_VIPT
2980	/*
2981	 * Its EXEC cache is now gone.
2982	 */
2983	if (PV_IS_EXEC_P(md->pvh_attrs))
2984		PMAPCOUNT(exec_discarded_page_protect);
2985	md->pvh_attrs &= ~PVF_EXEC;
2986	KASSERT(md->urw_mappings == 0);
2987	KASSERT(md->uro_mappings == 0);
2988#ifndef ARM_MMU_EXTENDED
2989	if (arm_cache_prefer_mask != 0) {
2990		if (md->krw_mappings == 0)
2991			md->pvh_attrs &= ~PVF_WRITE;
2992		PMAP_VALIDATE_MD_PAGE(md);
2993	}
2994#endif /* ARM_MMU_EXTENDED */
2995#endif /* PMAP_CACHE_VIPT */
2996	pmap_release_page_lock(md);
2997
2998#ifndef ARM_MMU_EXTENDED
2999	if (flush) {
3000		/*
3001		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
3002		 * would need a subsequent call to pmap_update() to ensure
3003		 * curpm->pm_cstate.cs_all is reset. Our callers are not
3004		 * required to do that (see pmap(9)), so we can't modify
3005		 * the current pmap's state.
3006		 */
3007		if (PV_BEEN_EXECD(flags))
3008			cpu_tlb_flushID();
3009		else
3010			cpu_tlb_flushD();
3011	}
3012	cpu_cpwait();
3013#endif /* ARM_MMU_EXTENDED */
3014}
3015
3016/*
3017 * pmap_t pmap_create(void)
3018 *
3019 *      Create a new pmap structure from scratch.
3020 */
3021pmap_t
3022pmap_create(void)
3023{
3024	pmap_t pm;
3025
3026	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3027
3028	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
3029
3030	pm->pm_refs = 1;
3031	pm->pm_stats.wired_count = 0;
3032	pm->pm_stats.resident_count = 1;
3033#ifdef ARM_MMU_EXTENDED
3034#ifdef MULTIPROCESSOR
3035	kcpuset_create(&pm->pm_active, true);
3036	kcpuset_create(&pm->pm_onproc, true);
3037#endif
3038#else
3039	pm->pm_cstate.cs_all = 0;
3040#endif
3041	pmap_alloc_l1(pm);
3042
3043	/*
3044	 * Note: The pool cache ensures that the pm_l2[] array is already
3045	 * initialised to zero.
3046	 */
3047
3048	pmap_pinit(pm);
3049
3050	return pm;
3051}
3052
3053u_int
3054arm32_mmap_flags(paddr_t pa)
3055{
3056	/*
3057	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3058	 * and we're using the upper bits in page numbers to pass flags around
3059	 * so we might as well use the same bits
3060	 */
3061	return (u_int)pa & PMAP_MD_MASK;
3062}
3063/*
3064 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3065 *      u_int flags)
3066 *
3067 *      Insert the given physical page (p) at
3068 *      the specified virtual address (v) in the
3069 *      target physical map with the protection requested.
3070 *
3071 *      NB:  This is the only routine which MAY NOT lazy-evaluate
3072 *      or lose information.  That is, this routine must actually
3073 *      insert this page into the given map NOW.
3074 */
3075int
3076pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3077{
3078	struct l2_bucket *l2b;
3079	struct vm_page *pg, *opg;
3080	u_int nflags;
3081	u_int oflags;
3082	const bool kpm_p = (pm == pmap_kernel());
3083#ifdef ARM_HAS_VBAR
3084	const bool vector_page_p = false;
3085#else
3086	const bool vector_page_p = (va == vector_page);
3087#endif
3088	struct pmap_page *pp = pmap_pv_tracked(pa);
3089	struct pv_entry *new_pv = NULL;
3090	struct pv_entry *old_pv = NULL;
3091	int error = 0;
3092
3093	UVMHIST_FUNC(__func__);
3094	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx pa %#jx prot %#jx",
3095	    (uintptr_t)pm, va, pa, prot);
3096	UVMHIST_LOG(maphist, "  flag %#jx", flags, 0, 0, 0);
3097
3098	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3099	KDASSERT(((va | pa) & PGOFSET) == 0);
3100
3101	/*
3102	 * Get a pointer to the page.  Later on in this function, we
3103	 * test for a managed page by checking pg != NULL.
3104	 */
3105	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3106	/*
3107	 * if we may need a new pv entry allocate if now, as we can't do it
3108	 * with the kernel_pmap locked
3109	 */
3110	if (pg || pp)
3111		new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3112
3113	nflags = 0;
3114	if (prot & VM_PROT_WRITE)
3115		nflags |= PVF_WRITE;
3116	if (prot & VM_PROT_EXECUTE)
3117		nflags |= PVF_EXEC;
3118	if (flags & PMAP_WIRED)
3119		nflags |= PVF_WIRED;
3120
3121	pmap_acquire_pmap_lock(pm);
3122
3123	/*
3124	 * Fetch the L2 bucket which maps this page, allocating one if
3125	 * necessary for user pmaps.
3126	 */
3127	if (kpm_p) {
3128		l2b = pmap_get_l2_bucket(pm, va);
3129	} else {
3130		l2b = pmap_alloc_l2_bucket(pm, va);
3131	}
3132	if (l2b == NULL) {
3133		if (flags & PMAP_CANFAIL) {
3134			pmap_release_pmap_lock(pm);
3135			error = ENOMEM;
3136			goto free_pv;
3137		}
3138		panic("pmap_enter: failed to allocate L2 bucket");
3139	}
3140	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3141	const pt_entry_t opte = *ptep;
3142	pt_entry_t npte = pa;
3143	oflags = 0;
3144
3145	if (opte) {
3146		/*
3147		 * There is already a mapping at this address.
3148		 * If the physical address is different, lookup the
3149		 * vm_page.
3150		 */
3151		if (l2pte_pa(opte) != pa) {
3152			KASSERT(!pmap_pv_tracked(pa));
3153			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3154		} else
3155			opg = pg;
3156	} else
3157		opg = NULL;
3158
3159	if (pg || pp) {
3160		KASSERT((pg != NULL) != (pp != NULL));
3161		struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3162		    PMAP_PAGE_TO_MD(pp);
3163
3164		/*
3165		 * This is to be a managed mapping.
3166		 */
3167		pmap_acquire_page_lock(md);
3168		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3169			/*
3170			 * - The access type indicates that we don't need
3171			 *   to do referenced emulation.
3172			 * OR
3173			 * - The physical page has already been referenced
3174			 *   so no need to re-do referenced emulation here.
3175			 */
3176			npte |= l2pte_set_readonly(L2_S_PROTO);
3177
3178			nflags |= PVF_REF;
3179
3180			if ((prot & VM_PROT_WRITE) != 0 &&
3181			    ((flags & VM_PROT_WRITE) != 0 ||
3182			     (md->pvh_attrs & PVF_MOD) != 0)) {
3183				/*
3184				 * This is a writable mapping, and the
3185				 * page's mod state indicates it has
3186				 * already been modified. Make it
3187				 * writable from the outset.
3188				 */
3189				npte = l2pte_set_writable(npte);
3190				nflags |= PVF_MOD;
3191			}
3192
3193#ifdef ARM_MMU_EXTENDED
3194			/*
3195			 * If the page has been cleaned, then the pvh_attrs
3196			 * will have PVF_EXEC set, so mark it execute so we
3197			 * don't get an access fault when trying to execute
3198			 * from it.
3199			 */
3200			if (md->pvh_attrs & nflags & PVF_EXEC) {
3201				npte &= ~L2_XS_XN;
3202			}
3203#endif
3204		} else {
3205			/*
3206			 * Need to do page referenced emulation.
3207			 */
3208			npte |= L2_TYPE_INV;
3209		}
3210
3211		if (flags & ARM32_MMAP_WRITECOMBINE) {
3212			npte |= pte_l2_s_wc_mode;
3213		} else
3214			npte |= pte_l2_s_cache_mode;
3215
3216		if (pg != NULL && pg == opg) {
3217			/*
3218			 * We're changing the attrs of an existing mapping.
3219			 */
3220			oflags = pmap_modify_pv(md, pa, pm, va,
3221			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
3222			    PVF_MOD | PVF_REF, nflags);
3223
3224#ifdef PMAP_CACHE_VIVT
3225			/*
3226			 * We may need to flush the cache if we're
3227			 * doing rw-ro...
3228			 */
3229			if (pm->pm_cstate.cs_cache_d &&
3230			    (oflags & PVF_NC) == 0 &&
3231			    l2pte_writable_p(opte) &&
3232			    (prot & VM_PROT_WRITE) == 0)
3233				cpu_dcache_wb_range(va, PAGE_SIZE);
3234#endif
3235		} else {
3236			struct pv_entry *pv;
3237			/*
3238			 * New mapping, or changing the backing page
3239			 * of an existing mapping.
3240			 */
3241			if (opg) {
3242				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3243				paddr_t opa = VM_PAGE_TO_PHYS(opg);
3244
3245				/*
3246				 * Replacing an existing mapping with a new one.
3247				 * It is part of our managed memory so we
3248				 * must remove it from the PV list
3249				 */
3250				pv = pmap_remove_pv(omd, opa, pm, va);
3251				pmap_vac_me_harder(omd, opa, pm, 0);
3252				oflags = pv->pv_flags;
3253
3254#ifdef PMAP_CACHE_VIVT
3255				/*
3256				 * If the old mapping was valid (ref/mod
3257				 * emulation creates 'invalid' mappings
3258				 * initially) then make sure to frob
3259				 * the cache.
3260				 */
3261				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3262					pmap_cache_wbinv_page(pm, va, true,
3263					    oflags);
3264				}
3265#endif
3266			} else {
3267				pv = new_pv;
3268				new_pv = NULL;
3269				if (pv == NULL) {
3270					pmap_release_page_lock(md);
3271					pmap_release_pmap_lock(pm);
3272					if ((flags & PMAP_CANFAIL) == 0)
3273						panic("pmap_enter: "
3274						    "no pv entries");
3275
3276					pmap_free_l2_bucket(pm, l2b, 0);
3277					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
3278					    0, 0, 0, 0);
3279					return ENOMEM;
3280				}
3281			}
3282
3283			pmap_enter_pv(md, pa, pv, pm, va, nflags);
3284		}
3285		pmap_release_page_lock(md);
3286	} else {
3287		/*
3288		 * We're mapping an unmanaged page.
3289		 * These are always readable, and possibly writable, from
3290		 * the get go as we don't need to track ref/mod status.
3291		 */
3292		npte |= l2pte_set_readonly(L2_S_PROTO);
3293		if (prot & VM_PROT_WRITE)
3294			npte = l2pte_set_writable(npte);
3295
3296		/*
3297		 * Make sure the vector table is mapped cacheable
3298		 */
3299		if ((vector_page_p && !kpm_p)
3300		    || (flags & ARM32_MMAP_CACHEABLE)) {
3301			npte |= pte_l2_s_cache_mode;
3302#ifdef ARM_MMU_EXTENDED
3303			npte &= ~L2_XS_XN;	/* and executable */
3304#endif
3305		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
3306			npte |= pte_l2_s_wc_mode;
3307		}
3308		if (opg) {
3309			/*
3310			 * Looks like there's an existing 'managed' mapping
3311			 * at this address.
3312			 */
3313			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3314			paddr_t opa = VM_PAGE_TO_PHYS(opg);
3315
3316			pmap_acquire_page_lock(omd);
3317			old_pv = pmap_remove_pv(omd, opa, pm, va);
3318			pmap_vac_me_harder(omd, opa, pm, 0);
3319			oflags = old_pv->pv_flags;
3320			pmap_release_page_lock(omd);
3321
3322#ifdef PMAP_CACHE_VIVT
3323			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3324				pmap_cache_wbinv_page(pm, va, true, oflags);
3325			}
3326#endif
3327		}
3328	}
3329
3330	/*
3331	 * Make sure userland mappings get the right permissions
3332	 */
3333	if (!vector_page_p && !kpm_p) {
3334		npte |= L2_S_PROT_U;
3335#ifdef ARM_MMU_EXTENDED
3336		npte |= L2_XS_nG;	/* user pages are not global */
3337#endif
3338	}
3339
3340	/*
3341	 * Keep the stats up to date
3342	 */
3343	if (opte == 0) {
3344		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3345		pm->pm_stats.resident_count++;
3346	}
3347
3348	UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3349
3350#if defined(ARM_MMU_EXTENDED)
3351	/*
3352	 * If exec protection was requested but the page hasn't been synced,
3353	 * sync it now and allow execution from it.
3354	 */
3355	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3356		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3357		npte &= ~L2_XS_XN;
3358		pmap_syncicache_page(md, pa);
3359		PMAPCOUNT(exec_synced_map);
3360	}
3361#endif
3362	/*
3363	 * If this is just a wiring change, the two PTEs will be
3364	 * identical, so there's no need to update the page table.
3365	 */
3366	if (npte != opte) {
3367		l2pte_reset(ptep);
3368		PTE_SYNC(ptep);
3369		if (l2pte_valid_p(opte)) {
3370			pmap_tlb_flush_SE(pm, va, oflags);
3371		}
3372		l2pte_set(ptep, npte, 0);
3373		PTE_SYNC(ptep);
3374#ifndef ARM_MMU_EXTENDED
3375		bool is_cached = pmap_is_cached(pm);
3376		if (is_cached) {
3377			/*
3378			 * We only need to frob the cache/tlb if this pmap
3379			 * is current
3380			 */
3381			if (!vector_page_p && l2pte_valid_p(npte)) {
3382				/*
3383				 * This mapping is likely to be accessed as
3384				 * soon as we return to userland. Fix up the
3385				 * L1 entry to avoid taking another
3386				 * page/domain fault.
3387				 */
3388				pd_entry_t *pdep = pmap_l1_kva(pm)
3389				     + l1pte_index(va);
3390				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3391				    | L1_C_DOM(pmap_domain(pm));
3392				if (*pdep != pde) {
3393					l1pte_setone(pdep, pde);
3394					PDE_SYNC(pdep);
3395				}
3396			}
3397		}
3398
3399		UVMHIST_LOG(maphist, "  is_cached %jd cs 0x%08jx",
3400		    is_cached, pm->pm_cstate.cs_all, 0, 0);
3401
3402		if (pg != NULL) {
3403			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3404
3405			pmap_acquire_page_lock(md);
3406			pmap_vac_me_harder(md, pa, pm, va);
3407			pmap_release_page_lock(md);
3408		}
3409#endif
3410	}
3411#if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3412	if (pg) {
3413		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3414
3415		pmap_acquire_page_lock(md);
3416#ifndef ARM_MMU_EXTENDED
3417		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3418#endif
3419		PMAP_VALIDATE_MD_PAGE(md);
3420		pmap_release_page_lock(md);
3421	}
3422#endif
3423
3424	pmap_release_pmap_lock(pm);
3425
3426
3427	if (old_pv)
3428		pool_put(&pmap_pv_pool, old_pv);
3429free_pv:
3430	if (new_pv)
3431		pool_put(&pmap_pv_pool, new_pv);
3432	return error;
3433}
3434
3435/*
3436 * pmap_remove()
3437 *
3438 * pmap_remove is responsible for nuking a number of mappings for a range
3439 * of virtual address space in the current pmap. To do this efficiently
3440 * is interesting, because in a number of cases a wide virtual address
3441 * range may be supplied that contains few actual mappings. So, the
3442 * optimisations are:
3443 *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
3444 *  2. Build up a list of pages we've hit, up to a maximum, so we can
3445 *     maybe do just a partial cache clean. This path of execution is
3446 *     complicated by the fact that the cache must be flushed _before_
3447 *     the PTE is nuked, being a VAC :-)
3448 *  3. If we're called after UVM calls pmap_remove_all(), we can defer
3449 *     all invalidations until pmap_update(), since pmap_remove_all() has
3450 *     already flushed the cache.
3451 *  4. Maybe later fast-case a single page, but I don't think this is
3452 *     going to make _that_ much difference overall.
3453 */
3454
3455#define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
3456
3457void
3458pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3459{
3460	SLIST_HEAD(,pv_entry) opv_list;
3461	struct pv_entry *pv, *npv;
3462	UVMHIST_FUNC(__func__);
3463	UVMHIST_CALLARGS(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3464	    (uintptr_t)pm, sva, eva, 0);
3465
3466#ifdef PMAP_FAULTINFO
3467	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
3468	curpcb->pcb_faultinfo.pfi_repeats = 0;
3469	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
3470#endif
3471
3472	SLIST_INIT(&opv_list);
3473	/*
3474	 * we lock in the pmap => pv_head direction
3475	 */
3476	pmap_acquire_pmap_lock(pm);
3477
3478#ifndef ARM_MMU_EXTENDED
3479	u_int cleanlist_idx, total, cnt;
3480	struct {
3481		vaddr_t va;
3482		pt_entry_t *ptep;
3483	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3484
3485	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3486		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3487		if (pm->pm_cstate.cs_tlb == 0)
3488			pm->pm_remove_all = true;
3489	} else
3490		cleanlist_idx = 0;
3491	total = 0;
3492#endif
3493
3494	while (sva < eva) {
3495		/*
3496		 * Do one L2 bucket's worth at a time.
3497		 */
3498		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3499		if (next_bucket > eva)
3500			next_bucket = eva;
3501
3502		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3503		if (l2b == NULL) {
3504			sva = next_bucket;
3505			continue;
3506		}
3507
3508		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3509		u_int mappings = 0;
3510
3511		for (;sva < next_bucket;
3512		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3513			pt_entry_t opte = *ptep;
3514
3515			if (opte == 0) {
3516				/* Nothing here, move along */
3517				continue;
3518			}
3519
3520			u_int flags = PVF_REF;
3521			paddr_t pa = l2pte_pa(opte);
3522			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3523
3524			/*
3525			 * Update flags. In a number of circumstances,
3526			 * we could cluster a lot of these and do a
3527			 * number of sequential pages in one go.
3528			 */
3529			if (pg != NULL) {
3530				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3531
3532				pmap_acquire_page_lock(md);
3533				pv = pmap_remove_pv(md, pa, pm, sva);
3534				pmap_vac_me_harder(md, pa, pm, 0);
3535				pmap_release_page_lock(md);
3536				if (pv != NULL) {
3537					if (pm->pm_remove_all == false) {
3538						flags = pv->pv_flags;
3539					}
3540					SLIST_INSERT_HEAD(&opv_list,
3541					    pv, pv_link);
3542				}
3543			}
3544			mappings += PAGE_SIZE / L2_S_SIZE;
3545
3546			if (!l2pte_valid_p(opte)) {
3547				/*
3548				 * Ref/Mod emulation is still active for this
3549				 * mapping, therefore it is has not yet been
3550				 * accessed. No need to frob the cache/tlb.
3551				 */
3552				l2pte_reset(ptep);
3553				PTE_SYNC_CURRENT(pm, ptep);
3554				continue;
3555			}
3556
3557#ifdef ARM_MMU_EXTENDED
3558			l2pte_reset(ptep);
3559			PTE_SYNC(ptep);
3560			if (__predict_false(pm->pm_remove_all == false)) {
3561				pmap_tlb_flush_SE(pm, sva, flags);
3562			}
3563#else
3564			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3565				/* Add to the clean list. */
3566				cleanlist[cleanlist_idx].ptep = ptep;
3567				cleanlist[cleanlist_idx].va =
3568				    sva | (flags & PVF_EXEC);
3569				cleanlist_idx++;
3570			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3571				/* Nuke everything if needed. */
3572#ifdef PMAP_CACHE_VIVT
3573				pmap_cache_wbinv_all(pm, PVF_EXEC);
3574#endif
3575				/*
3576				 * Roll back the previous PTE list,
3577				 * and zero out the current PTE.
3578				 */
3579				for (cnt = 0;
3580				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3581					l2pte_reset(cleanlist[cnt].ptep);
3582					PTE_SYNC(cleanlist[cnt].ptep);
3583				}
3584				l2pte_reset(ptep);
3585				PTE_SYNC(ptep);
3586				cleanlist_idx++;
3587				pm->pm_remove_all = true;
3588			} else {
3589				l2pte_reset(ptep);
3590				PTE_SYNC(ptep);
3591				if (pm->pm_remove_all == false) {
3592					pmap_tlb_flush_SE(pm, sva, flags);
3593				}
3594			}
3595#endif
3596		}
3597
3598#ifndef ARM_MMU_EXTENDED
3599		/*
3600		 * Deal with any left overs
3601		 */
3602		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3603			total += cleanlist_idx;
3604			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3605				l2pte_reset(cleanlist[cnt].ptep);
3606				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3607				vaddr_t va = cleanlist[cnt].va;
3608				if (pm->pm_cstate.cs_all != 0) {
3609					vaddr_t clva = va & ~PAGE_MASK;
3610					u_int flags = va & PVF_EXEC;
3611#ifdef PMAP_CACHE_VIVT
3612					pmap_cache_wbinv_page(pm, clva, true,
3613					    PVF_REF | PVF_WRITE | flags);
3614#endif
3615					pmap_tlb_flush_SE(pm, clva,
3616					    PVF_REF | flags);
3617				}
3618			}
3619
3620			/*
3621			 * If it looks like we're removing a whole bunch
3622			 * of mappings, it's faster to just write-back
3623			 * the whole cache now and defer TLB flushes until
3624			 * pmap_update() is called.
3625			 */
3626			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3627				cleanlist_idx = 0;
3628			else {
3629				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3630#ifdef PMAP_CACHE_VIVT
3631				pmap_cache_wbinv_all(pm, PVF_EXEC);
3632#endif
3633				pm->pm_remove_all = true;
3634			}
3635		}
3636#endif /* ARM_MMU_EXTENDED */
3637
3638		pmap_free_l2_bucket(pm, l2b, mappings);
3639		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3640	}
3641
3642	pmap_release_pmap_lock(pm);
3643	SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3644		pool_put(&pmap_pv_pool, pv);
3645	}
3646}
3647
3648#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3649static struct pv_entry *
3650pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3651{
3652	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3653	paddr_t pa = VM_PAGE_TO_PHYS(pg);
3654	struct pv_entry *pv;
3655
3656	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3657	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3658	KASSERT(pmap_page_locked_p(md));
3659
3660	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3661	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3662	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3663
3664	/*
3665	 * We are removing a writeable mapping to a cached exec page, if
3666	 * it's the last mapping then clear its execness otherwise sync
3667	 * the page to the icache.
3668	 */
3669	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3670	    && (pv->pv_flags & PVF_WRITE) != 0) {
3671		if (SLIST_EMPTY(&md->pvh_list)) {
3672			md->pvh_attrs &= ~PVF_EXEC;
3673			PMAPCOUNT(exec_discarded_kremove);
3674		} else {
3675			pmap_syncicache_page(md, pa);
3676			PMAPCOUNT(exec_synced_kremove);
3677		}
3678	}
3679	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3680
3681	return pv;
3682}
3683#endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3684
3685/*
3686 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3687 *
3688 * We assume there is already sufficient KVM space available
3689 * to do this, as we can't allocate L2 descriptor tables/metadata
3690 * from here.
3691 */
3692void
3693pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3694{
3695#ifdef PMAP_CACHE_VIVT
3696	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3697#endif
3698#ifdef PMAP_CACHE_VIPT
3699	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3700	struct vm_page *opg;
3701#ifndef ARM_MMU_EXTENDED
3702	struct pv_entry *pv = NULL;
3703#endif
3704#endif
3705	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3706
3707	UVMHIST_FUNC(__func__);
3708
3709	if (pmap_initialized) {
3710		UVMHIST_CALLARGS(maphist,
3711		    "va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", va, pa, prot,
3712		     flags);
3713	}
3714
3715	pmap_t kpm = pmap_kernel();
3716	pmap_acquire_pmap_lock(kpm);
3717	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3718	const size_t l1slot __diagused = l1pte_index(va);
3719	KASSERTMSG(l2b != NULL,
3720	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3721	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3722	    kpm->pm_l2[L2_IDX(l1slot)]
3723		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3724		: NULL,
3725	    kpm->pm_l2[L2_IDX(l1slot)]
3726		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3727		: NULL);
3728	KASSERT(l2b->l2b_kva != NULL);
3729
3730	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3731	const pt_entry_t opte = *ptep;
3732
3733	if (opte == 0) {
3734		PMAPCOUNT(kenter_mappings);
3735		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3736	} else {
3737		PMAPCOUNT(kenter_remappings);
3738#ifdef PMAP_CACHE_VIPT
3739		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3740#if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3741		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3742#endif
3743		if (opg && arm_cache_prefer_mask != 0) {
3744			KASSERT(opg != pg);
3745			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3746			KASSERT((flags & PMAP_KMPAGE) == 0);
3747#ifndef ARM_MMU_EXTENDED
3748			pmap_acquire_page_lock(omd);
3749			pv = pmap_kremove_pg(opg, va);
3750			pmap_release_page_lock(omd);
3751#endif
3752		}
3753#endif
3754		if (l2pte_valid_p(opte)) {
3755			l2pte_reset(ptep);
3756			PTE_SYNC(ptep);
3757#ifdef PMAP_CACHE_VIVT
3758			cpu_dcache_wbinv_range(va, PAGE_SIZE);
3759#endif
3760			cpu_tlb_flushD_SE(va);
3761			cpu_cpwait();
3762		}
3763	}
3764	pmap_release_pmap_lock(kpm);
3765	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3766
3767	if (flags & PMAP_PTE) {
3768		KASSERT((flags & PMAP_CACHE_MASK) == 0);
3769		if (!(flags & PMAP_NOCACHE))
3770			npte |= pte_l2_s_cache_mode_pt;
3771	} else {
3772		switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
3773		case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
3774			break;
3775		case PMAP_NOCACHE:
3776			npte |= pte_l2_s_nocache_mode;
3777			break;
3778		case PMAP_WRITE_COMBINE:
3779			npte |= pte_l2_s_wc_mode;
3780			break;
3781		default:
3782			npte |= pte_l2_s_cache_mode;
3783			break;
3784		}
3785	}
3786#ifdef ARM_MMU_EXTENDED
3787	if (prot & VM_PROT_EXECUTE)
3788		npte &= ~L2_XS_XN;
3789#endif
3790	l2pte_set(ptep, npte, 0);
3791	PTE_SYNC(ptep);
3792
3793	if (pg) {
3794		if (flags & PMAP_KMPAGE) {
3795			KASSERT(md->urw_mappings == 0);
3796			KASSERT(md->uro_mappings == 0);
3797			KASSERT(md->krw_mappings == 0);
3798			KASSERT(md->kro_mappings == 0);
3799#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3800			KASSERT(pv == NULL);
3801			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3802			KASSERT((md->pvh_attrs & PVF_NC) == 0);
3803			/* if there is a color conflict, evict from cache. */
3804			if (pmap_is_page_colored_p(md)
3805			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3806				PMAPCOUNT(vac_color_change);
3807				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3808			} else if (md->pvh_attrs & PVF_MULTCLR) {
3809				/*
3810				 * If this page has multiple colors, expunge
3811				 * them.
3812				 */
3813				PMAPCOUNT(vac_flush_lots2);
3814				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3815			}
3816			/*
3817			 * Since this is a KMPAGE, there can be no contention
3818			 * for this page so don't lock it.
3819			 */
3820			md->pvh_attrs &= PAGE_SIZE - 1;
3821			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3822			    | (va & arm_cache_prefer_mask);
3823#else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3824			md->pvh_attrs |= PVF_KMPAGE;
3825#endif
3826			atomic_inc_32(&pmap_kmpages);
3827#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3828		} else if (arm_cache_prefer_mask != 0) {
3829			if (pv == NULL) {
3830				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3831				KASSERT(pv != NULL);
3832			}
3833			pmap_acquire_page_lock(md);
3834			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3835			    PVF_WIRED | PVF_KENTRY
3836			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3837			if ((prot & VM_PROT_WRITE)
3838			    && !(md->pvh_attrs & PVF_NC))
3839				md->pvh_attrs |= PVF_DIRTY;
3840			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3841			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3842			pmap_release_page_lock(md);
3843#endif
3844		}
3845#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3846	} else {
3847		if (pv != NULL)
3848			pool_put(&pmap_pv_pool, pv);
3849#endif
3850	}
3851	if (pmap_initialized) {
3852		UVMHIST_LOG(maphist, "  <-- done (ptep %#jx: %#jx -> %#jx)",
3853		    (uintptr_t)ptep, opte, npte, 0);
3854	}
3855
3856}
3857
3858void
3859pmap_kremove(vaddr_t va, vsize_t len)
3860{
3861#ifdef UVMHIST
3862	u_int total_mappings = 0;
3863#endif
3864
3865	PMAPCOUNT(kenter_unmappings);
3866
3867	UVMHIST_FUNC(__func__);
3868	UVMHIST_CALLARGS(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3869
3870	const vaddr_t eva = va + len;
3871	pmap_t kpm = pmap_kernel();
3872
3873	pmap_acquire_pmap_lock(kpm);
3874
3875	while (va < eva) {
3876		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3877		if (next_bucket > eva)
3878			next_bucket = eva;
3879
3880		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3881		KDASSERT(l2b != NULL);
3882
3883		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3884		pt_entry_t *ptep = sptep;
3885		u_int mappings = 0;
3886
3887		while (va < next_bucket) {
3888			const pt_entry_t opte = *ptep;
3889			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3890			if (opg != NULL) {
3891				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3892
3893				if (omd->pvh_attrs & PVF_KMPAGE) {
3894					KASSERT(omd->urw_mappings == 0);
3895					KASSERT(omd->uro_mappings == 0);
3896					KASSERT(omd->krw_mappings == 0);
3897					KASSERT(omd->kro_mappings == 0);
3898					omd->pvh_attrs &= ~PVF_KMPAGE;
3899#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3900					if (arm_cache_prefer_mask != 0) {
3901						omd->pvh_attrs &= ~PVF_WRITE;
3902					}
3903#endif
3904					atomic_dec_32(&pmap_kmpages);
3905#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3906				} else if (arm_cache_prefer_mask != 0) {
3907					pmap_acquire_page_lock(omd);
3908					pool_put(&pmap_pv_pool,
3909					    pmap_kremove_pg(opg, va));
3910					pmap_release_page_lock(omd);
3911#endif
3912				}
3913			}
3914			if (l2pte_valid_p(opte)) {
3915				l2pte_reset(ptep);
3916				PTE_SYNC(ptep);
3917#ifdef PMAP_CACHE_VIVT
3918				cpu_dcache_wbinv_range(va, PAGE_SIZE);
3919#endif
3920				cpu_tlb_flushD_SE(va);
3921
3922				mappings += PAGE_SIZE / L2_S_SIZE;
3923			}
3924			va += PAGE_SIZE;
3925			ptep += PAGE_SIZE / L2_S_SIZE;
3926		}
3927		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3928		    mappings, l2b->l2b_occupancy);
3929		l2b->l2b_occupancy -= mappings;
3930		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3931#ifdef UVMHIST
3932		total_mappings += mappings;
3933#endif
3934	}
3935	pmap_release_pmap_lock(kpm);
3936	cpu_cpwait();
3937	UVMHIST_LOG(maphist, "  <--- done (%ju mappings removed)",
3938	    total_mappings, 0, 0, 0);
3939}
3940
3941bool
3942pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3943{
3944
3945	return pmap_extract_coherency(pm, va, pap, NULL);
3946}
3947
3948bool
3949pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3950{
3951	struct l2_dtable *l2;
3952	pd_entry_t *pdep, pde;
3953	pt_entry_t *ptep, pte;
3954	paddr_t pa;
3955	u_int l1slot;
3956	bool coherent;
3957
3958	pmap_acquire_pmap_lock(pm);
3959
3960	l1slot = l1pte_index(va);
3961	pdep = pmap_l1_kva(pm) + l1slot;
3962	pde = *pdep;
3963
3964	if (l1pte_section_p(pde)) {
3965		/*
3966		 * These should only happen for pmap_kernel()
3967		 */
3968		KDASSERT(pm == pmap_kernel());
3969		pmap_release_pmap_lock(pm);
3970#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3971		if (l1pte_supersection_p(pde)) {
3972			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3973		} else
3974#endif
3975			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3976		coherent = (pde & L1_S_CACHE_MASK) == 0;
3977	} else {
3978		/*
3979		 * Note that we can't rely on the validity of the L1
3980		 * descriptor as an indication that a mapping exists.
3981		 * We have to look it up in the L2 dtable.
3982		 */
3983		l2 = pm->pm_l2[L2_IDX(l1slot)];
3984
3985		if (l2 == NULL ||
3986		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3987			pmap_release_pmap_lock(pm);
3988			return false;
3989		}
3990
3991		pte = ptep[l2pte_index(va)];
3992		pmap_release_pmap_lock(pm);
3993
3994		if (pte == 0)
3995			return false;
3996
3997		switch (pte & L2_TYPE_MASK) {
3998		case L2_TYPE_L:
3999			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
4000			coherent = (pte & L2_L_CACHE_MASK) == 0;
4001			break;
4002
4003		default:
4004			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
4005			coherent = (pte & L2_S_CACHE_MASK) == 0;
4006			break;
4007		}
4008	}
4009
4010	if (pap != NULL)
4011		*pap = pa;
4012
4013	if (coherentp != NULL)
4014		*coherentp = (pm == pmap_kernel() && coherent);
4015
4016	return true;
4017}
4018
4019/*
4020 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
4021 *	that map it
4022 */
4023
4024static void
4025pmap_pv_remove(paddr_t pa)
4026{
4027	struct pmap_page *pp;
4028
4029	pp = pmap_pv_tracked(pa);
4030	if (pp == NULL)
4031		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4032		    pa);
4033
4034	struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4035	pmap_page_remove(md, pa);
4036}
4037
4038void
4039pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4040{
4041
4042	/* the only case is remove at the moment */
4043	KASSERT(prot == VM_PROT_NONE);
4044	pmap_pv_remove(pa);
4045}
4046
4047void
4048pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4049{
4050	struct l2_bucket *l2b;
4051	vaddr_t next_bucket;
4052
4053	UVMHIST_FUNC(__func__);
4054	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx prot %#jx",
4055	    (uintptr_t)pm, sva, eva, prot);
4056
4057	if ((prot & VM_PROT_READ) == 0) {
4058		pmap_remove(pm, sva, eva);
4059		return;
4060	}
4061
4062	if (prot & VM_PROT_WRITE) {
4063		/*
4064		 * If this is a read->write transition, just ignore it and let
4065		 * uvm_fault() take care of it later.
4066		 */
4067		return;
4068	}
4069
4070	pmap_acquire_pmap_lock(pm);
4071
4072#ifndef ARM_MMU_EXTENDED
4073	const bool flush = eva - sva >= PAGE_SIZE * 4;
4074	u_int flags = 0;
4075#endif
4076	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4077
4078	while (sva < eva) {
4079		next_bucket = L2_NEXT_BUCKET_VA(sva);
4080		if (next_bucket > eva)
4081			next_bucket = eva;
4082
4083		l2b = pmap_get_l2_bucket(pm, sva);
4084		if (l2b == NULL) {
4085			sva = next_bucket;
4086			continue;
4087		}
4088
4089		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4090
4091		while (sva < next_bucket) {
4092			const pt_entry_t opte = *ptep;
4093			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4094				struct vm_page *pg;
4095#ifndef ARM_MMU_EXTENDED
4096				u_int f;
4097#endif
4098
4099#ifdef PMAP_CACHE_VIVT
4100				/*
4101				 * OK, at this point, we know we're doing
4102				 * write-protect operation.  If the pmap is
4103				 * active, write-back the page.
4104				 */
4105				pmap_cache_wbinv_page(pm, sva, false,
4106				    PVF_REF | PVF_WRITE);
4107#endif
4108
4109				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4110				pt_entry_t npte = l2pte_set_readonly(opte);
4111				l2pte_reset(ptep);
4112				PTE_SYNC(ptep);
4113#ifdef ARM_MMU_EXTENDED
4114				pmap_tlb_flush_SE(pm, sva, PVF_REF);
4115#endif
4116				l2pte_set(ptep, npte, 0);
4117				PTE_SYNC(ptep);
4118
4119				if (pg != NULL) {
4120					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4121					paddr_t pa = VM_PAGE_TO_PHYS(pg);
4122
4123					pmap_acquire_page_lock(md);
4124#ifndef ARM_MMU_EXTENDED
4125					f =
4126#endif
4127					    pmap_modify_pv(md, pa, pm, sva,
4128					       clr_mask, 0);
4129					pmap_vac_me_harder(md, pa, pm, sva);
4130					pmap_release_page_lock(md);
4131#ifndef ARM_MMU_EXTENDED
4132				} else {
4133					f = PVF_REF | PVF_EXEC;
4134				}
4135
4136				if (flush) {
4137					flags |= f;
4138				} else {
4139					pmap_tlb_flush_SE(pm, sva, f);
4140#endif
4141				}
4142			}
4143
4144			sva += PAGE_SIZE;
4145			ptep += PAGE_SIZE / L2_S_SIZE;
4146		}
4147	}
4148
4149#ifndef ARM_MMU_EXTENDED
4150	if (flush) {
4151		if (PV_BEEN_EXECD(flags)) {
4152			pmap_tlb_flushID(pm);
4153		} else if (PV_BEEN_REFD(flags)) {
4154			pmap_tlb_flushD(pm);
4155		}
4156	}
4157#endif
4158
4159	pmap_release_pmap_lock(pm);
4160}
4161
4162void
4163pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4164{
4165	struct l2_bucket *l2b;
4166	pt_entry_t *ptep;
4167	vaddr_t next_bucket;
4168	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4169
4170	UVMHIST_FUNC(__func__);
4171	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx",
4172	    (uintptr_t)pm, sva, eva, 0);
4173
4174	pmap_acquire_pmap_lock(pm);
4175
4176	while (sva < eva) {
4177		next_bucket = L2_NEXT_BUCKET_VA(sva);
4178		if (next_bucket > eva)
4179			next_bucket = eva;
4180
4181		l2b = pmap_get_l2_bucket(pm, sva);
4182		if (l2b == NULL) {
4183			sva = next_bucket;
4184			continue;
4185		}
4186
4187		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4188		     sva < next_bucket;
4189		     sva += page_size,
4190		     ptep += PAGE_SIZE / L2_S_SIZE,
4191		     page_size = PAGE_SIZE) {
4192			if (l2pte_valid_p(*ptep)) {
4193				cpu_icache_sync_range(sva,
4194				    uimin(page_size, eva - sva));
4195			}
4196		}
4197	}
4198
4199	pmap_release_pmap_lock(pm);
4200}
4201
4202void
4203pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4204{
4205	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4206	paddr_t pa = VM_PAGE_TO_PHYS(pg);
4207
4208	UVMHIST_FUNC(__func__);
4209	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx prot %#jx",
4210	    (uintptr_t)md, pa, prot, 0);
4211
4212	switch(prot) {
4213	case VM_PROT_READ|VM_PROT_WRITE:
4214#if defined(ARM_MMU_EXTENDED)
4215		pmap_acquire_page_lock(md);
4216		pmap_clearbit(md, pa, PVF_EXEC);
4217		pmap_release_page_lock(md);
4218		break;
4219#endif
4220	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4221		break;
4222
4223	case VM_PROT_READ:
4224#if defined(ARM_MMU_EXTENDED)
4225		pmap_acquire_page_lock(md);
4226		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4227		pmap_release_page_lock(md);
4228		break;
4229#endif
4230	case VM_PROT_READ|VM_PROT_EXECUTE:
4231		pmap_acquire_page_lock(md);
4232		pmap_clearbit(md, pa, PVF_WRITE);
4233		pmap_release_page_lock(md);
4234		break;
4235
4236	default:
4237		pmap_page_remove(md, pa);
4238		break;
4239	}
4240}
4241
4242/*
4243 * pmap_clear_modify:
4244 *
4245 *	Clear the "modified" attribute for a page.
4246 */
4247bool
4248pmap_clear_modify(struct vm_page *pg)
4249{
4250	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4251	paddr_t pa = VM_PAGE_TO_PHYS(pg);
4252	bool rv;
4253
4254	pmap_acquire_page_lock(md);
4255
4256	if (md->pvh_attrs & PVF_MOD) {
4257		rv = true;
4258#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4259		/*
4260		 * If we are going to clear the modified bit and there are
4261		 * no other modified bits set, flush the page to memory and
4262		 * mark it clean.
4263		 */
4264		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4265			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4266#endif
4267		pmap_clearbit(md, pa, PVF_MOD);
4268	} else {
4269		rv = false;
4270	}
4271	pmap_release_page_lock(md);
4272
4273	return rv;
4274}
4275
4276/*
4277 * pmap_clear_reference:
4278 *
4279 *	Clear the "referenced" attribute for a page.
4280 */
4281bool
4282pmap_clear_reference(struct vm_page *pg)
4283{
4284	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4285	paddr_t pa = VM_PAGE_TO_PHYS(pg);
4286	bool rv;
4287
4288	pmap_acquire_page_lock(md);
4289
4290	if (md->pvh_attrs & PVF_REF) {
4291		rv = true;
4292		pmap_clearbit(md, pa, PVF_REF);
4293	} else {
4294		rv = false;
4295	}
4296	pmap_release_page_lock(md);
4297
4298	return rv;
4299}
4300
4301/*
4302 * pmap_is_modified:
4303 *
4304 *	Test if a page has the "modified" attribute.
4305 */
4306/* See <arm/arm32/pmap.h> */
4307
4308/*
4309 * pmap_is_referenced:
4310 *
4311 *	Test if a page has the "referenced" attribute.
4312 */
4313/* See <arm/arm32/pmap.h> */
4314
4315#if defined(ARM_MMU_EXTENDED) && 0
4316int
4317pmap_prefetchabt_fixup(void *v)
4318{
4319	struct trapframe * const tf = v;
4320	vaddr_t va = trunc_page(tf->tf_pc);
4321	int rv = ABORT_FIXUP_FAILED;
4322
4323	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4324		return rv;
4325
4326	kpreempt_disable();
4327	pmap_t pm = curcpu()->ci_pmap_cur;
4328	const size_t l1slot = l1pte_index(va);
4329	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4330	if (l2 == NULL)
4331		goto out;
4332
4333	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4334	if (l2b->l2b_kva == NULL)
4335		goto out;
4336
4337	/*
4338	 * Check the PTE itself.
4339	 */
4340	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4341	const pt_entry_t opte = *ptep;
4342	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4343		goto out;
4344
4345	paddr_t pa = l2pte_pa(opte);
4346	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4347	KASSERT(pg != NULL);
4348
4349	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4350
4351	pmap_acquire_page_lock(md);
4352	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4353	KASSERT(pv != NULL);
4354
4355	if (PV_IS_EXEC_P(pv->pv_flags)) {
4356		l2pte_reset(ptep);
4357		PTE_SYNC(ptep);
4358		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4359		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4360			pmap_syncicache_page(md, pa);
4361		}
4362		rv = ABORT_FIXUP_RETURN;
4363		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4364		PTE_SYNC(ptep);
4365	}
4366	pmap_release_page_lock(md);
4367
4368  out:
4369	kpreempt_enable();
4370	return rv;
4371}
4372#endif
4373
4374int
4375pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4376{
4377	struct l2_dtable *l2;
4378	struct l2_bucket *l2b;
4379	paddr_t pa;
4380	const size_t l1slot = l1pte_index(va);
4381	int rv = 0;
4382
4383	UVMHIST_FUNC(__func__);
4384	UVMHIST_CALLARGS(maphist, "pm=%#jx, va=%#jx, ftype=%#jx, user=%jd",
4385	    (uintptr_t)pm, va, ftype, user);
4386
4387	va = trunc_page(va);
4388
4389	KASSERT(!user || (pm != pmap_kernel()));
4390
4391#ifdef ARM_MMU_EXTENDED
4392	UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4393	    (uintptr_t)cpu_tlb_info(curcpu()),
4394	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4395	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4396#endif
4397
4398	pmap_acquire_pmap_lock(pm);
4399
4400	/*
4401	 * If there is no l2_dtable for this address, then the process
4402	 * has no business accessing it.
4403	 *
4404	 * Note: This will catch userland processes trying to access
4405	 * kernel addresses.
4406	 */
4407	l2 = pm->pm_l2[L2_IDX(l1slot)];
4408	if (l2 == NULL) {
4409		UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4410		goto out;
4411	}
4412
4413	/*
4414	 * Likewise if there is no L2 descriptor table
4415	 */
4416	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4417	if (l2b->l2b_kva == NULL) {
4418		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4419		    l1slot, 0, 0, 0);
4420		goto out;
4421	}
4422
4423	/*
4424	 * Check the PTE itself.
4425	 */
4426	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4427	pt_entry_t const opte = *ptep;
4428	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4429		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
4430		    l1slot, 0, 0, 0);
4431		goto out;
4432	}
4433
4434#ifndef ARM_HAS_VBAR
4435	/*
4436	 * Catch a userland access to the vector page mapped at 0x0
4437	 */
4438	if (user && (opte & L2_S_PROT_U) == 0) {
4439		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4440		goto out;
4441	}
4442#endif
4443
4444	pa = l2pte_pa(opte);
4445
4446	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4447		/*
4448		 * This looks like a good candidate for "page modified"
4449		 * emulation...
4450		 */
4451		struct pv_entry *pv;
4452		struct vm_page *pg;
4453
4454		/* Extract the physical address of the page */
4455		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4456			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4457			goto out;
4458		}
4459
4460		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4461
4462		/* Get the current flags for this page. */
4463		pmap_acquire_page_lock(md);
4464		pv = pmap_find_pv(md, pm, va);
4465		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4466			pmap_release_page_lock(md);
4467			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4468			goto out;
4469		}
4470
4471		/*
4472		 * Do the flags say this page is writable? If not then it
4473		 * is a genuine write fault. If yes then the write fault is
4474		 * our fault as we did not reflect the write access in the
4475		 * PTE. Now we know a write has occurred we can correct this
4476		 * and also set the modified bit
4477		 */
4478		if ((pv->pv_flags & PVF_WRITE) == 0) {
4479			pmap_release_page_lock(md);
4480			goto out;
4481		}
4482
4483		md->pvh_attrs |= PVF_REF | PVF_MOD;
4484		pv->pv_flags |= PVF_REF | PVF_MOD;
4485#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4486		/*
4487		 * If there are cacheable mappings for this page, mark it dirty.
4488		 */
4489		if ((md->pvh_attrs & PVF_NC) == 0)
4490			md->pvh_attrs |= PVF_DIRTY;
4491#endif
4492#ifdef ARM_MMU_EXTENDED
4493		if (md->pvh_attrs & PVF_EXEC) {
4494			md->pvh_attrs &= ~PVF_EXEC;
4495			PMAPCOUNT(exec_discarded_modfixup);
4496		}
4497#endif
4498		pmap_release_page_lock(md);
4499
4500		/*
4501		 * Re-enable write permissions for the page.  No need to call
4502		 * pmap_vac_me_harder(), since this is just a
4503		 * modified-emulation fault, and the PVF_WRITE bit isn't
4504		 * changing. We've already set the cacheable bits based on
4505		 * the assumption that we can write to this page.
4506		 */
4507		const pt_entry_t npte =
4508		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4509#ifdef ARM_MMU_EXTENDED
4510		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
4511#endif
4512		    | 0;
4513		l2pte_reset(ptep);
4514		PTE_SYNC(ptep);
4515		pmap_tlb_flush_SE(pm, va,
4516		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4517		l2pte_set(ptep, npte, 0);
4518		PTE_SYNC(ptep);
4519		PMAPCOUNT(fixup_mod);
4520		rv = 1;
4521		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4522		    "from %#jx to %#jx)", opte, npte, 0, 0);
4523	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4524		/*
4525		 * This looks like a good candidate for "page referenced"
4526		 * emulation.
4527		 */
4528		struct vm_page *pg;
4529
4530		/* Extract the physical address of the page */
4531		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4532			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4533			goto out;
4534		}
4535
4536		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4537
4538		/* Get the current flags for this page. */
4539		pmap_acquire_page_lock(md);
4540		struct pv_entry *pv = pmap_find_pv(md, pm, va);
4541		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4542			pmap_release_page_lock(md);
4543			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4544			goto out;
4545		}
4546
4547		md->pvh_attrs |= PVF_REF;
4548		pv->pv_flags |= PVF_REF;
4549
4550		pt_entry_t npte =
4551		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4552#ifdef ARM_MMU_EXTENDED
4553		if (pm != pmap_kernel()) {
4554			npte |= L2_XS_nG;
4555		}
4556		/*
4557		 * If we got called from prefetch abort, then ftype will have
4558		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
4559		 * the PTE.
4560		 */
4561		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4562			/*
4563			 * Is this a mapping of an executable page?
4564			 */
4565			if ((pv->pv_flags & PVF_EXEC) == 0) {
4566				pmap_release_page_lock(md);
4567				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4568				    0, 0, 0, 0);
4569				goto out;
4570			}
4571			/*
4572			 * If we haven't synced the page, do so now.
4573			 */
4574			if ((md->pvh_attrs & PVF_EXEC) == 0) {
4575				UVMHIST_LOG(maphist, " ref emul: syncicache "
4576				    "page #%#jx", pa, 0, 0, 0);
4577				pmap_syncicache_page(md, pa);
4578				PMAPCOUNT(fixup_exec);
4579			}
4580			npte &= ~L2_XS_XN;
4581		}
4582#endif /* ARM_MMU_EXTENDED */
4583		pmap_release_page_lock(md);
4584		l2pte_reset(ptep);
4585		PTE_SYNC(ptep);
4586		pmap_tlb_flush_SE(pm, va,
4587		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4588		l2pte_set(ptep, npte, 0);
4589		PTE_SYNC(ptep);
4590		PMAPCOUNT(fixup_ref);
4591		rv = 1;
4592		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4593		    "%#jx to %#jx)", opte, npte, 0, 0);
4594#ifdef ARM_MMU_EXTENDED
4595	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4596		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4597		if (pg == NULL) {
4598			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4599			goto out;
4600		}
4601
4602		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4603
4604		/* Get the current flags for this page. */
4605		pmap_acquire_page_lock(md);
4606		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4607		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4608			pmap_release_page_lock(md);
4609			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4610			goto out;
4611		}
4612
4613		/*
4614		 * If we haven't synced the page, do so now.
4615		 */
4616		if ((md->pvh_attrs & PVF_EXEC) == 0) {
4617			UVMHIST_LOG(maphist, "syncicache page #%#jx",
4618			    pa, 0, 0, 0);
4619			pmap_syncicache_page(md, pa);
4620		}
4621		pmap_release_page_lock(md);
4622		/*
4623		 * Turn off no-execute.
4624		 */
4625		KASSERT(opte & L2_XS_nG);
4626		l2pte_reset(ptep);
4627		PTE_SYNC(ptep);
4628		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4629		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4630		PTE_SYNC(ptep);
4631		rv = 1;
4632		PMAPCOUNT(fixup_exec);
4633		UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4634		    opte, opte & ~L2_XS_XN, 0, 0);
4635#endif
4636	}
4637
4638#ifndef ARM_MMU_EXTENDED
4639	/*
4640	 * We know there is a valid mapping here, so simply
4641	 * fix up the L1 if necessary.
4642	 */
4643	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4644	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4645	if (*pdep != pde) {
4646		l1pte_setone(pdep, pde);
4647		PDE_SYNC(pdep);
4648		rv = 1;
4649		PMAPCOUNT(fixup_pdes);
4650	}
4651#endif
4652
4653#ifdef CPU_SA110
4654	/*
4655	 * There are bugs in the rev K SA110.  This is a check for one
4656	 * of them.
4657	 */
4658	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4659	    curcpu()->ci_arm_cpurev < 3) {
4660		/* Always current pmap */
4661		if (l2pte_valid_p(opte)) {
4662			extern int kernel_debug;
4663			if (kernel_debug & 1) {
4664				struct proc *p = curlwp->l_proc;
4665				printf("prefetch_abort: page is already "
4666				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
4667				printf("prefetch_abort: pc=%08lx proc=%p "
4668				    "process=%s\n", va, p, p->p_comm);
4669				printf("prefetch_abort: far=%08x fs=%x\n",
4670				    cpu_faultaddress(), cpu_faultstatus());
4671			}
4672#ifdef DDB
4673			if (kernel_debug & 2)
4674				Debugger();
4675#endif
4676			rv = 1;
4677		}
4678	}
4679#endif /* CPU_SA110 */
4680
4681#ifndef ARM_MMU_EXTENDED
4682	/*
4683	 * If 'rv == 0' at this point, it generally indicates that there is a
4684	 * stale TLB entry for the faulting address.  That might be due to a
4685	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
4686	 */
4687	if (rv == 0
4688	    && pm->pm_l1->l1_domain_use_count == 1
4689	    && pmap_needs_pte_sync == 0) {
4690		pmap_needs_pte_sync = 1;
4691		PTE_SYNC(ptep);
4692		PMAPCOUNT(fixup_ptesync);
4693		rv = 1;
4694	}
4695#endif
4696
4697#ifndef MULTIPROCESSOR
4698#if defined(DEBUG) || 1
4699	/*
4700	 * If 'rv == 0' at this point, it generally indicates that there is a
4701	 * stale TLB entry for the faulting address. This happens when two or
4702	 * more processes are sharing an L1. Since we don't flush the TLB on
4703	 * a context switch between such processes, we can take domain faults
4704	 * for mappings which exist at the same VA in both processes. EVEN IF
4705	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4706	 * example.
4707	 *
4708	 * This is extremely likely to happen if pmap_enter() updated the L1
4709	 * entry for a recently entered mapping. In this case, the TLB is
4710	 * flushed for the new mapping, but there may still be TLB entries for
4711	 * other mappings belonging to other processes in the 1MB range
4712	 * covered by the L1 entry.
4713	 *
4714	 * Since 'rv == 0', we know that the L1 already contains the correct
4715	 * value, so the fault must be due to a stale TLB entry.
4716	 *
4717	 * Since we always need to flush the TLB anyway in the case where we
4718	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4719	 * stale TLB entries dynamically.
4720	 *
4721	 * However, the above condition can ONLY happen if the current L1 is
4722	 * being shared. If it happens when the L1 is unshared, it indicates
4723	 * that other parts of the pmap are not doing their job WRT managing
4724	 * the TLB.
4725	 */
4726	if (rv == 0
4727#ifndef ARM_MMU_EXTENDED
4728	    && pm->pm_l1->l1_domain_use_count == 1
4729#endif
4730	    && true) {
4731#ifdef DEBUG
4732		extern int last_fault_code;
4733#else
4734		int last_fault_code = ftype & VM_PROT_EXECUTE
4735		    ? armreg_ifsr_read()
4736		    : armreg_dfsr_read();
4737#endif
4738		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4739		    pm, va, ftype);
4740		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4741		    l2, l2b, ptep, opte);
4742
4743#ifndef ARM_MMU_EXTENDED
4744		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4745		    pdep, pde, last_fault_code);
4746#else
4747		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4748		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4749		   armreg_ttbcr_read());
4750		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4751		    last_fault_code, curcpu()->ci_pmap_cur,
4752		    curcpu()->ci_pmap_asid_cur,
4753		    armreg_contextidr_read(), armreg_dacr_read());
4754#ifdef _ARM_ARCH_7
4755		if (ftype & VM_PROT_WRITE)
4756			armreg_ats1cuw_write(va);
4757		else
4758			armreg_ats1cur_write(va);
4759		arm_isb();
4760		printf("fixup: par %#x\n", armreg_par_read());
4761#endif
4762#endif
4763#ifdef DDB
4764		extern int kernel_debug;
4765
4766		if (kernel_debug & 2) {
4767			pmap_release_pmap_lock(pm);
4768#ifdef UVMHIST
4769			KERNHIST_DUMP(maphist);
4770#endif
4771			cpu_Debugger();
4772			pmap_acquire_pmap_lock(pm);
4773		}
4774#endif
4775	}
4776#endif
4777#endif
4778
4779#ifndef ARM_MMU_EXTENDED
4780	/* Flush the TLB in the shared L1 case - see comment above */
4781	pmap_tlb_flush_SE(pm, va,
4782	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4783#endif
4784
4785	rv = 1;
4786
4787out:
4788	pmap_release_pmap_lock(pm);
4789
4790	return rv;
4791}
4792
4793/*
4794 * Routine:	pmap_procwr
4795 *
4796 * Function:
4797 *	Synchronize caches corresponding to [addr, addr+len) in p.
4798 *
4799 */
4800void
4801pmap_procwr(struct proc *p, vaddr_t va, int len)
4802{
4803#ifndef ARM_MMU_EXTENDED
4804
4805	/* We only need to do anything if it is the current process. */
4806	if (p == curproc)
4807		cpu_icache_sync_range(va, len);
4808#endif
4809}
4810
4811/*
4812 * Routine:	pmap_unwire
4813 * Function:	Clear the wired attribute for a map/virtual-address pair.
4814 *
4815 * In/out conditions:
4816 *		The mapping must already exist in the pmap.
4817 */
4818void
4819pmap_unwire(pmap_t pm, vaddr_t va)
4820{
4821	struct l2_bucket *l2b;
4822	pt_entry_t *ptep, pte;
4823	struct vm_page *pg;
4824	paddr_t pa;
4825
4826	UVMHIST_FUNC(__func__);
4827	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx", (uintptr_t)pm, va, 0, 0);
4828
4829	pmap_acquire_pmap_lock(pm);
4830
4831	l2b = pmap_get_l2_bucket(pm, va);
4832	KDASSERT(l2b != NULL);
4833
4834	ptep = &l2b->l2b_kva[l2pte_index(va)];
4835	pte = *ptep;
4836
4837	/* Extract the physical address of the page */
4838	pa = l2pte_pa(pte);
4839
4840	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4841		/* Update the wired bit in the pv entry for this page. */
4842		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4843
4844		pmap_acquire_page_lock(md);
4845		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4846		pmap_release_page_lock(md);
4847	}
4848
4849	pmap_release_pmap_lock(pm);
4850}
4851
4852#ifdef ARM_MMU_EXTENDED
4853void
4854pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4855{
4856	UVMHIST_FUNC(__func__);
4857	struct cpu_info * const ci = curcpu();
4858	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4859
4860	UVMHIST_CALLARGS(maphist, "pm %#jx (pm->pm_l1_pa %08jx asid %ju)",
4861	    (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4862
4863	/*
4864	 * Assume that TTBR1 has only global mappings and TTBR0 only
4865	 * has non-global mappings.  To prevent speculation from doing
4866	 * evil things we disable translation table walks using TTBR0
4867	 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4868	 * Once both are set, table walks are reenabled.
4869	 */
4870	const uint32_t old_ttbcr = armreg_ttbcr_read();
4871	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4872	arm_isb();
4873
4874	pmap_tlb_asid_acquire(pm, l);
4875
4876	cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4877	/*
4878	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4879	 * have been updated.
4880	 */
4881	arm_isb();
4882
4883	if (pm != pmap_kernel()) {
4884		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4885	}
4886	cpu_cpwait();
4887
4888	KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4889	    ci->ci_pmap_asid_cur, pai->pai_asid);
4890	ci->ci_pmap_cur = pm;
4891}
4892
4893void
4894pmap_md_pdetab_deactivate(pmap_t pm)
4895{
4896
4897	UVMHIST_FUNC(__func__);
4898	UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0);
4899
4900	kpreempt_disable();
4901	struct cpu_info * const ci = curcpu();
4902	/*
4903	 * Disable translation table walks from TTBR0 while no pmap has been
4904	 * activated.
4905	 */
4906	const uint32_t old_ttbcr = armreg_ttbcr_read();
4907	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4908	arm_isb();
4909	pmap_tlb_asid_deactivate(pm);
4910	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4911	arm_isb();
4912
4913	ci->ci_pmap_cur = pmap_kernel();
4914	KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4915	    ci->ci_pmap_asid_cur);
4916	kpreempt_enable();
4917}
4918#endif
4919
4920void
4921pmap_activate(struct lwp *l)
4922{
4923	extern int block_userspace_access;
4924	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4925
4926	UVMHIST_FUNC(__func__);
4927	UVMHIST_CALLARGS(maphist, "l=%#jx pm=%#jx", (uintptr_t)l,
4928	    (uintptr_t)npm, 0, 0);
4929
4930	struct cpu_info * const ci = curcpu();
4931
4932	/*
4933	 * If activating a non-current lwp or the current lwp is
4934	 * already active, just return.
4935	 */
4936	if (false
4937	    || l != curlwp
4938#ifdef ARM_MMU_EXTENDED
4939	    || (ci->ci_pmap_cur == npm &&
4940		(npm == pmap_kernel()
4941		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4942#else
4943	    || npm->pm_activated == true
4944#endif
4945	    || false) {
4946		UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4947		    (uintptr_t)l, 0, 0);
4948		return;
4949	}
4950
4951#ifndef ARM_MMU_EXTENDED
4952	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4953	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4954
4955	/*
4956	 * If TTB and DACR are unchanged, short-circuit all the
4957	 * TLB/cache management stuff.
4958	 */
4959	pmap_t opm = ci->ci_lastlwp
4960	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4961	    : NULL;
4962	if (opm != NULL) {
4963		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4964		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4965
4966		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4967			goto all_done;
4968	}
4969#endif /* !ARM_MMU_EXTENDED */
4970
4971	PMAPCOUNT(activations);
4972	block_userspace_access = 1;
4973
4974#ifndef ARM_MMU_EXTENDED
4975	/*
4976	 * If switching to a user vmspace which is different to the
4977	 * most recent one, and the most recent one is potentially
4978	 * live in the cache, we must write-back and invalidate the
4979	 * entire cache.
4980	 */
4981	pmap_t rpm = ci->ci_pmap_lastuser;
4982
4983	/*
4984	 * XXXSCW: There's a corner case here which can leave turds in the
4985	 * cache as reported in kern/41058. They're probably left over during
4986	 * tear-down and switching away from an exiting process. Until the root
4987	 * cause is identified and fixed, zap the cache when switching pmaps.
4988	 * This will result in a few unnecessary cache flushes, but that's
4989	 * better than silently corrupting data.
4990	 */
4991#if 0
4992	if (npm != pmap_kernel() && rpm && npm != rpm &&
4993	    rpm->pm_cstate.cs_cache) {
4994		rpm->pm_cstate.cs_cache = 0;
4995#ifdef PMAP_CACHE_VIVT
4996		cpu_idcache_wbinv_all();
4997#endif
4998	}
4999#else
5000	if (rpm) {
5001		rpm->pm_cstate.cs_cache = 0;
5002		if (npm == pmap_kernel())
5003			ci->ci_pmap_lastuser = NULL;
5004#ifdef PMAP_CACHE_VIVT
5005		cpu_idcache_wbinv_all();
5006#endif
5007	}
5008#endif
5009
5010	/* No interrupts while we frob the TTB/DACR */
5011	uint32_t oldirqstate = disable_interrupts(IF32_bits);
5012#endif /* !ARM_MMU_EXTENDED */
5013
5014#ifndef ARM_HAS_VBAR
5015	/*
5016	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
5017	 * entry corresponding to 'vector_page' in the incoming L1 table
5018	 * before switching to it otherwise subsequent interrupts/exceptions
5019	 * (including domain faults!) will jump into hyperspace.
5020	 */
5021	if (npm->pm_pl1vec != NULL) {
5022		cpu_tlb_flushID_SE((u_int)vector_page);
5023		cpu_cpwait();
5024		*npm->pm_pl1vec = npm->pm_l1vec;
5025		PTE_SYNC(npm->pm_pl1vec);
5026	}
5027#endif
5028
5029#ifdef ARM_MMU_EXTENDED
5030	pmap_md_pdetab_activate(npm, l);
5031#else
5032	cpu_domains(ndacr);
5033	if (npm == pmap_kernel() || npm == rpm) {
5034		/*
5035		 * Switching to a kernel thread, or back to the
5036		 * same user vmspace as before... Simply update
5037		 * the TTB (no TLB flush required)
5038		 */
5039		cpu_setttb(npm->pm_l1->l1_physaddr, false);
5040		cpu_cpwait();
5041	} else {
5042		/*
5043		 * Otherwise, update TTB and flush TLB
5044		 */
5045		cpu_context_switch(npm->pm_l1->l1_physaddr);
5046		if (rpm != NULL)
5047			rpm->pm_cstate.cs_tlb = 0;
5048	}
5049
5050	restore_interrupts(oldirqstate);
5051#endif /* ARM_MMU_EXTENDED */
5052
5053	block_userspace_access = 0;
5054
5055#ifndef ARM_MMU_EXTENDED
5056 all_done:
5057	/*
5058	 * The new pmap is resident. Make sure it's marked
5059	 * as resident in the cache/TLB.
5060	 */
5061	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5062	if (npm != pmap_kernel())
5063		ci->ci_pmap_lastuser = npm;
5064
5065	/* The old pmap is not longer active */
5066	if (opm != npm) {
5067		if (opm != NULL)
5068			opm->pm_activated = false;
5069
5070		/* But the new one is */
5071		npm->pm_activated = true;
5072	}
5073	ci->ci_pmap_cur = npm;
5074#endif
5075	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5076}
5077
5078void
5079pmap_deactivate(struct lwp *l)
5080{
5081	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5082
5083	UVMHIST_FUNC(__func__);
5084	UVMHIST_CALLARGS(maphist, "l=%#jx (pm=%#jx)", (uintptr_t)l,
5085		(uintptr_t)pm, 0, 0);
5086
5087#ifdef ARM_MMU_EXTENDED
5088	pmap_md_pdetab_deactivate(pm);
5089#else
5090	/*
5091	 * If the process is exiting, make sure pmap_activate() does
5092	 * a full MMU context-switch and cache flush, which we might
5093	 * otherwise skip. See PR port-arm/38950.
5094	 */
5095	if (l->l_proc->p_sflag & PS_WEXIT)
5096		curcpu()->ci_lastlwp = NULL;
5097
5098	pm->pm_activated = false;
5099#endif
5100	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
5101}
5102
5103void
5104pmap_update(pmap_t pm)
5105{
5106
5107	UVMHIST_FUNC(__func__);
5108	UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5109	    pm->pm_remove_all, 0, 0);
5110
5111#ifndef ARM_MMU_EXTENDED
5112	if (pm->pm_remove_all) {
5113		/*
5114		 * Finish up the pmap_remove_all() optimisation by flushing
5115		 * the TLB.
5116		 */
5117		pmap_tlb_flushID(pm);
5118		pm->pm_remove_all = false;
5119	}
5120
5121	if (pmap_is_current(pm)) {
5122		/*
5123		 * If we're dealing with a current userland pmap, move its L1
5124		 * to the end of the LRU.
5125		 */
5126		if (pm != pmap_kernel())
5127			pmap_use_l1(pm);
5128
5129		/*
5130		 * We can assume we're done with frobbing the cache/tlb for
5131		 * now. Make sure any future pmap ops don't skip cache/tlb
5132		 * flushes.
5133		 */
5134		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5135	}
5136#else
5137
5138	kpreempt_disable();
5139#if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5140	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5141	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5142		PMAP_COUNT(shootdown_ipis);
5143	}
5144#endif
5145
5146	/*
5147	 * If pmap_remove_all was called, we deactivated ourselves and released
5148	 * our ASID.  Now we have to reactivate ourselves.
5149	 */
5150	if (__predict_false(pm->pm_remove_all)) {
5151		pm->pm_remove_all = false;
5152
5153		KASSERT(pm != pmap_kernel());
5154		pmap_md_pdetab_activate(pm, curlwp);
5155	}
5156
5157	if (arm_has_mpext_p)
5158		armreg_bpiallis_write(0);
5159	else
5160		armreg_bpiall_write(0);
5161
5162	kpreempt_enable();
5163
5164	KASSERTMSG(pm == pmap_kernel()
5165	    || curcpu()->ci_pmap_cur != pm
5166	    || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5167	    "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5168	    pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5169	    curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5170#endif
5171
5172	PMAPCOUNT(updates);
5173
5174	/*
5175	 * make sure TLB/cache operations have completed.
5176	 */
5177	cpu_cpwait();
5178	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
5179}
5180
5181bool
5182pmap_remove_all(pmap_t pm)
5183{
5184
5185	/*
5186	 * The vmspace described by this pmap is about to be torn down.
5187	 * Until pmap_update() is called, UVM will only make calls
5188	 * to pmap_remove(). We can make life much simpler by flushing
5189	 * the cache now, and deferring TLB invalidation to pmap_update().
5190	 */
5191#ifdef PMAP_CACHE_VIVT
5192	pmap_cache_wbinv_all(pm, PVF_EXEC);
5193#endif
5194#ifdef ARM_MMU_EXTENDED
5195#ifdef MULTIPROCESSOR
5196	struct cpu_info * const ci = curcpu();
5197	// This should be the last CPU with this pmap onproc
5198	KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5199	if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5200#endif
5201		pmap_tlb_asid_deactivate(pm);
5202#ifdef MULTIPROCESSOR
5203	KASSERT(kcpuset_iszero(pm->pm_onproc));
5204#endif
5205
5206	pmap_tlb_asid_release_all(pm);
5207#endif
5208	pm->pm_remove_all = true;
5209	return false;
5210}
5211
5212/*
5213 * Retire the given physical map from service.
5214 * Should only be called if the map contains no valid mappings.
5215 */
5216void
5217pmap_destroy(pmap_t pm)
5218{
5219	UVMHIST_FUNC(__func__);
5220	UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5221	    pm ? pm->pm_remove_all : 0, 0, 0);
5222
5223	if (pm == NULL)
5224		return;
5225
5226	if (pm->pm_remove_all) {
5227#ifdef ARM_MMU_EXTENDED
5228 		pmap_tlb_asid_release_all(pm);
5229#else
5230		pmap_tlb_flushID(pm);
5231#endif
5232		pm->pm_remove_all = false;
5233	}
5234
5235	/*
5236	 * Drop reference count
5237	 */
5238	if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
5239#ifndef ARM_MMU_EXTENDED
5240		if (pmap_is_current(pm)) {
5241			if (pm != pmap_kernel())
5242				pmap_use_l1(pm);
5243			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5244		}
5245#endif
5246		return;
5247	}
5248
5249	/*
5250	 * reference count is zero, free pmap resources and then free pmap.
5251	 */
5252
5253#ifndef ARM_HAS_VBAR
5254	if (vector_page < KERNEL_BASE) {
5255		KDASSERT(!pmap_is_current(pm));
5256
5257		/* Remove the vector page mapping */
5258		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5259		pmap_update(pm);
5260	}
5261#endif
5262
5263	pmap_free_l1(pm);
5264
5265#ifdef ARM_MMU_EXTENDED
5266#ifdef MULTIPROCESSOR
5267	kcpuset_destroy(pm->pm_active);
5268	kcpuset_destroy(pm->pm_onproc);
5269#endif
5270#else
5271	struct cpu_info * const ci = curcpu();
5272	if (ci->ci_pmap_lastuser == pm)
5273		ci->ci_pmap_lastuser = NULL;
5274#endif
5275
5276	mutex_destroy(&pm->pm_lock);
5277	pool_cache_put(&pmap_cache, pm);
5278	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
5279}
5280
5281
5282/*
5283 * void pmap_reference(pmap_t pm)
5284 *
5285 * Add a reference to the specified pmap.
5286 */
5287void
5288pmap_reference(pmap_t pm)
5289{
5290
5291	if (pm == NULL)
5292		return;
5293
5294#ifndef ARM_MMU_EXTENDED
5295	pmap_use_l1(pm);
5296#endif
5297
5298	atomic_inc_uint(&pm->pm_refs);
5299}
5300
5301#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5302
5303static struct evcnt pmap_prefer_nochange_ev =
5304    EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5305static struct evcnt pmap_prefer_change_ev =
5306    EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5307
5308EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5309EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5310
5311void
5312pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5313{
5314	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5315	vaddr_t va = *vap;
5316	vaddr_t diff = (hint - va) & mask;
5317	if (diff == 0) {
5318		pmap_prefer_nochange_ev.ev_count++;
5319	} else {
5320		pmap_prefer_change_ev.ev_count++;
5321		if (__predict_false(td))
5322			va -= mask + 1;
5323		*vap = va + diff;
5324	}
5325}
5326#endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5327
5328/*
5329 * pmap_zero_page()
5330 *
5331 * Zero a given physical page by mapping it at a page hook point.
5332 * In doing the zero page op, the page we zero is mapped cachable, as with
5333 * StrongARM accesses to non-cached pages are non-burst making writing
5334 * _any_ bulk data very slow.
5335 */
5336#if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5337void
5338pmap_zero_page_generic(paddr_t pa)
5339{
5340#if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5341	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5342	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5343#endif
5344#if defined(PMAP_CACHE_VIPT)
5345	/* Choose the last page color it had, if any */
5346	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5347#else
5348	const vsize_t va_offset = 0;
5349#endif
5350#if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5351	/*
5352	 * Is this page mapped at its natural color?
5353	 * If we have all of memory mapped, then just convert PA to VA.
5354	 */
5355	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5356	   || va_offset == (pa & arm_cache_prefer_mask);
5357	const vaddr_t vdstp = okcolor
5358	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5359	    : cpu_cdstp(va_offset);
5360#else
5361	const bool okcolor = false;
5362	const vaddr_t vdstp = cpu_cdstp(va_offset);
5363#endif
5364	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5365
5366
5367#ifdef DEBUG
5368	if (!SLIST_EMPTY(&md->pvh_list))
5369		panic("pmap_zero_page: page has mappings");
5370#endif
5371
5372	KDASSERT((pa & PGOFSET) == 0);
5373
5374	if (!okcolor) {
5375		/*
5376		 * Hook in the page, zero it, and purge the cache for that
5377		 * zeroed page. Invalidate the TLB as needed.
5378		 */
5379		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5380		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5381		l2pte_set(ptep, npte, 0);
5382		PTE_SYNC(ptep);
5383		cpu_tlb_flushD_SE(vdstp);
5384		cpu_cpwait();
5385#if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5386    && !defined(ARM_MMU_EXTENDED)
5387		/*
5388		 * If we are direct-mapped and our color isn't ok, then before
5389		 * we bzero the page invalidate its contents from the cache and
5390		 * reset the color to its natural color.
5391		 */
5392		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5393		md->pvh_attrs &= ~arm_cache_prefer_mask;
5394		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5395#endif
5396	}
5397	bzero_page(vdstp);
5398	if (!okcolor) {
5399		/*
5400		 * Unmap the page.
5401		 */
5402		l2pte_reset(ptep);
5403		PTE_SYNC(ptep);
5404		cpu_tlb_flushD_SE(vdstp);
5405#ifdef PMAP_CACHE_VIVT
5406		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5407#endif
5408	}
5409#ifdef PMAP_CACHE_VIPT
5410	/*
5411	 * This page is now cache resident so it now has a page color.
5412	 * Any contents have been obliterated so clear the EXEC flag.
5413	 */
5414#ifndef ARM_MMU_EXTENDED
5415	if (!pmap_is_page_colored_p(md)) {
5416		PMAPCOUNT(vac_color_new);
5417		md->pvh_attrs |= PVF_COLORED;
5418	}
5419	md->pvh_attrs |= PVF_DIRTY;
5420#endif
5421	if (PV_IS_EXEC_P(md->pvh_attrs)) {
5422		md->pvh_attrs &= ~PVF_EXEC;
5423		PMAPCOUNT(exec_discarded_zero);
5424	}
5425#endif
5426}
5427#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5428
5429#if ARM_MMU_XSCALE == 1
5430void
5431pmap_zero_page_xscale(paddr_t pa)
5432{
5433#ifdef DEBUG
5434	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5435	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5436
5437	if (!SLIST_EMPTY(&md->pvh_list))
5438		panic("pmap_zero_page: page has mappings");
5439#endif
5440
5441	KDASSERT((pa & PGOFSET) == 0);
5442
5443	/*
5444	 * Hook in the page, zero it, and purge the cache for that
5445	 * zeroed page. Invalidate the TLB as needed.
5446	 */
5447
5448	pt_entry_t npte = L2_S_PROTO | pa |
5449	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5450	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
5451	l2pte_set(cdst_pte, npte, 0);
5452	PTE_SYNC(cdst_pte);
5453	cpu_tlb_flushD_SE(cdstp);
5454	cpu_cpwait();
5455	bzero_page(cdstp);
5456	xscale_cache_clean_minidata();
5457	l2pte_reset(cdst_pte);
5458	PTE_SYNC(cdst_pte);
5459}
5460#endif /* ARM_MMU_XSCALE == 1 */
5461
5462/* pmap_pageidlezero()
5463 *
5464 * The same as above, except that we assume that the page is not
5465 * mapped.  This means we never have to flush the cache first.  Called
5466 * from the idle loop.
5467 */
5468bool
5469pmap_pageidlezero(paddr_t pa)
5470{
5471	bool rv = true;
5472#if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5473	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5474	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5475#endif
5476#ifdef PMAP_CACHE_VIPT
5477	/* Choose the last page color it had, if any */
5478	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5479#else
5480	const vsize_t va_offset = 0;
5481#endif
5482#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5483	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5484	   || va_offset == (pa & arm_cache_prefer_mask);
5485	const vaddr_t vdstp = okcolor
5486	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5487	    : cpu_cdstp(va_offset);
5488#else
5489	const bool okcolor = false;
5490	const vaddr_t vdstp = cpu_cdstp(va_offset);
5491#endif
5492	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5493
5494
5495#ifdef DEBUG
5496	if (!SLIST_EMPTY(&md->pvh_list))
5497		panic("pmap_pageidlezero: page has mappings");
5498#endif
5499
5500	KDASSERT((pa & PGOFSET) == 0);
5501
5502	if (!okcolor) {
5503		/*
5504		 * Hook in the page, zero it, and purge the cache for that
5505		 * zeroed page. Invalidate the TLB as needed.
5506		 */
5507		const pt_entry_t npte = L2_S_PROTO | pa |
5508		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5509		l2pte_set(ptep, npte, 0);
5510		PTE_SYNC(ptep);
5511		cpu_tlb_flushD_SE(vdstp);
5512		cpu_cpwait();
5513	}
5514
5515	uint64_t *ptr = (uint64_t *)vdstp;
5516	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5517		if (sched_curcpu_runnable_p() != 0) {
5518			/*
5519			 * A process has become ready.  Abort now,
5520			 * so we don't keep it waiting while we
5521			 * do slow memory access to finish this
5522			 * page.
5523			 */
5524			rv = false;
5525			break;
5526		}
5527		*ptr++ = 0;
5528	}
5529
5530#ifdef PMAP_CACHE_VIVT
5531	if (rv)
5532		/*
5533		 * if we aborted we'll rezero this page again later so don't
5534		 * purge it unless we finished it
5535		 */
5536		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5537#elif defined(PMAP_CACHE_VIPT)
5538	/*
5539	 * This page is now cache resident so it now has a page color.
5540	 * Any contents have been obliterated so clear the EXEC flag.
5541	 */
5542#ifndef ARM_MMU_EXTENDED
5543	if (!pmap_is_page_colored_p(md)) {
5544		PMAPCOUNT(vac_color_new);
5545		md->pvh_attrs |= PVF_COLORED;
5546	}
5547#endif
5548	if (PV_IS_EXEC_P(md->pvh_attrs)) {
5549		md->pvh_attrs &= ~PVF_EXEC;
5550		PMAPCOUNT(exec_discarded_zero);
5551	}
5552#endif
5553	/*
5554	 * Unmap the page.
5555	 */
5556	if (!okcolor) {
5557		l2pte_reset(ptep);
5558		PTE_SYNC(ptep);
5559		cpu_tlb_flushD_SE(vdstp);
5560	}
5561
5562	return rv;
5563}
5564
5565/*
5566 * pmap_copy_page()
5567 *
5568 * Copy one physical page into another, by mapping the pages into
5569 * hook points. The same comment regarding cachability as in
5570 * pmap_zero_page also applies here.
5571 */
5572#if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5573void
5574pmap_copy_page_generic(paddr_t src, paddr_t dst)
5575{
5576	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5577	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5578#if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5579	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5580	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5581#endif
5582#ifdef PMAP_CACHE_VIPT
5583	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5584	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5585#else
5586	const vsize_t src_va_offset = 0;
5587	const vsize_t dst_va_offset = 0;
5588#endif
5589#if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5590	/*
5591	 * Is this page mapped at its natural color?
5592	 * If we have all of memory mapped, then just convert PA to VA.
5593	 */
5594	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5595	    || src_va_offset == (src & arm_cache_prefer_mask);
5596	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5597	    || dst_va_offset == (dst & arm_cache_prefer_mask);
5598	const vaddr_t vsrcp = src_okcolor
5599	    ? pmap_direct_mapped_phys(src, &src_okcolor,
5600		cpu_csrcp(src_va_offset))
5601	    : cpu_csrcp(src_va_offset);
5602	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5603	    cpu_cdstp(dst_va_offset));
5604#else
5605	const bool src_okcolor = false;
5606	const bool dst_okcolor = false;
5607	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5608	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5609#endif
5610	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5611	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5612
5613#ifdef DEBUG
5614	if (!SLIST_EMPTY(&dst_md->pvh_list))
5615		panic("pmap_copy_page: dst page has mappings");
5616#endif
5617
5618#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5619	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5620#endif
5621	KDASSERT((src & PGOFSET) == 0);
5622	KDASSERT((dst & PGOFSET) == 0);
5623
5624	/*
5625	 * Clean the source page.  Hold the source page's lock for
5626	 * the duration of the copy so that no other mappings can
5627	 * be created while we have a potentially aliased mapping.
5628	 */
5629#ifdef PMAP_CACHE_VIVT
5630	pmap_acquire_page_lock(src_md);
5631	(void) pmap_clean_page(src_md, true);
5632	pmap_release_page_lock(src_md);
5633#endif
5634
5635	/*
5636	 * Map the pages into the page hook points, copy them, and purge
5637	 * the cache for the appropriate page. Invalidate the TLB
5638	 * as required.
5639	 */
5640	if (!src_okcolor) {
5641		const pt_entry_t nsrc_pte = L2_S_PROTO
5642		    | src
5643#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5644		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5645#else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5646		    | pte_l2_s_cache_mode
5647#endif
5648		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5649		l2pte_set(src_ptep, nsrc_pte, 0);
5650		PTE_SYNC(src_ptep);
5651		cpu_tlb_flushD_SE(vsrcp);
5652		cpu_cpwait();
5653	}
5654	if (!dst_okcolor) {
5655		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5656		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5657		l2pte_set(dst_ptep, ndst_pte, 0);
5658		PTE_SYNC(dst_ptep);
5659		cpu_tlb_flushD_SE(vdstp);
5660		cpu_cpwait();
5661#if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5662		/*
5663		 * If we are direct-mapped and our color isn't ok, then before
5664		 * we bcopy to the new page invalidate its contents from the
5665		 * cache and reset its color to its natural color.
5666		 */
5667		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5668		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5669		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5670#endif
5671	}
5672	bcopy_page(vsrcp, vdstp);
5673#ifdef PMAP_CACHE_VIVT
5674	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5675	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5676#endif
5677	/*
5678	 * Unmap the pages.
5679	 */
5680	if (!src_okcolor) {
5681		l2pte_reset(src_ptep);
5682		PTE_SYNC(src_ptep);
5683		cpu_tlb_flushD_SE(vsrcp);
5684		cpu_cpwait();
5685	}
5686	if (!dst_okcolor) {
5687		l2pte_reset(dst_ptep);
5688		PTE_SYNC(dst_ptep);
5689		cpu_tlb_flushD_SE(vdstp);
5690		cpu_cpwait();
5691	}
5692#ifdef PMAP_CACHE_VIPT
5693	/*
5694	 * Now that the destination page is in the cache, mark it as colored.
5695	 * If this was an exec page, discard it.
5696	 */
5697	pmap_acquire_page_lock(dst_md);
5698#ifndef ARM_MMU_EXTENDED
5699	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5700		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5701		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5702	}
5703	if (!pmap_is_page_colored_p(dst_md)) {
5704		PMAPCOUNT(vac_color_new);
5705		dst_md->pvh_attrs |= PVF_COLORED;
5706	}
5707	dst_md->pvh_attrs |= PVF_DIRTY;
5708#endif
5709	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5710		dst_md->pvh_attrs &= ~PVF_EXEC;
5711		PMAPCOUNT(exec_discarded_copy);
5712	}
5713	pmap_release_page_lock(dst_md);
5714#endif
5715}
5716#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5717
5718#if ARM_MMU_XSCALE == 1
5719void
5720pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5721{
5722	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5723	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5724#ifdef DEBUG
5725	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5726
5727	if (!SLIST_EMPTY(&dst_md->pvh_list))
5728		panic("pmap_copy_page: dst page has mappings");
5729#endif
5730
5731	KDASSERT((src & PGOFSET) == 0);
5732	KDASSERT((dst & PGOFSET) == 0);
5733
5734	/*
5735	 * Clean the source page.  Hold the source page's lock for
5736	 * the duration of the copy so that no other mappings can
5737	 * be created while we have a potentially aliased mapping.
5738	 */
5739#ifdef PMAP_CACHE_VIVT
5740	pmap_acquire_page_lock(src_md);
5741	(void) pmap_clean_page(src_md, true);
5742	pmap_release_page_lock(src_md);
5743#endif
5744
5745	/*
5746	 * Map the pages into the page hook points, copy them, and purge
5747	 * the cache for the appropriate page. Invalidate the TLB
5748	 * as required.
5749	 */
5750	const pt_entry_t nsrc_pte = L2_S_PROTO | src
5751	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5752	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
5753	l2pte_set(csrc_pte, nsrc_pte, 0);
5754	PTE_SYNC(csrc_pte);
5755
5756	const pt_entry_t ndst_pte = L2_S_PROTO | dst
5757	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5758	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
5759	l2pte_set(cdst_pte, ndst_pte, 0);
5760	PTE_SYNC(cdst_pte);
5761
5762	cpu_tlb_flushD_SE(csrcp);
5763	cpu_tlb_flushD_SE(cdstp);
5764	cpu_cpwait();
5765	bcopy_page(csrcp, cdstp);
5766	xscale_cache_clean_minidata();
5767	l2pte_reset(csrc_pte);
5768	l2pte_reset(cdst_pte);
5769	PTE_SYNC(csrc_pte);
5770	PTE_SYNC(cdst_pte);
5771}
5772#endif /* ARM_MMU_XSCALE == 1 */
5773
5774/*
5775 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5776 *
5777 * Return the start and end addresses of the kernel's virtual space.
5778 * These values are setup in pmap_bootstrap and are updated as pages
5779 * are allocated.
5780 */
5781void
5782pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5783{
5784	*start = virtual_avail;
5785	*end = virtual_end;
5786}
5787
5788/*
5789 * Helper function for pmap_grow_l2_bucket()
5790 */
5791static inline int
5792pmap_grow_map(vaddr_t va, paddr_t *pap)
5793{
5794	paddr_t pa;
5795
5796	KASSERT((va & PGOFSET) == 0);
5797
5798	if (uvm.page_init_done == false) {
5799#ifdef PMAP_STEAL_MEMORY
5800		pv_addr_t pv;
5801		pmap_boot_pagealloc(PAGE_SIZE,
5802#ifdef PMAP_CACHE_VIPT
5803		    arm_cache_prefer_mask,
5804		    va & arm_cache_prefer_mask,
5805#else
5806		    0, 0,
5807#endif
5808		    &pv);
5809		pa = pv.pv_pa;
5810#else
5811		if (uvm_page_physget(&pa) == false)
5812			return 1;
5813#endif	/* PMAP_STEAL_MEMORY */
5814	} else {
5815		struct vm_page *pg;
5816		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5817		if (pg == NULL)
5818			return 1;
5819		pa = VM_PAGE_TO_PHYS(pg);
5820		/*
5821		 * This new page must not have any mappings.
5822		 */
5823		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5824		KASSERT(SLIST_EMPTY(&md->pvh_list));
5825	}
5826
5827	/*
5828	 * Enter it via pmap_kenter_pa and let that routine do the hard work.
5829	 */
5830	pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
5831	    PMAP_KMPAGE | PMAP_PTE);
5832
5833	if (pap)
5834		*pap = pa;
5835
5836	PMAPCOUNT(pt_mappings);
5837
5838	const pmap_t kpm __diagused = pmap_kernel();
5839	struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
5840	KASSERT(l2b != NULL);
5841
5842	pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
5843	const pt_entry_t pte __diagused = *ptep;
5844	KASSERT(l2pte_valid_p(pte));
5845	KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5846
5847	memset((void *)va, 0, PAGE_SIZE);
5848
5849	return 0;
5850}
5851
5852/*
5853 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5854 * used by pmap_growkernel().
5855 */
5856static inline struct l2_bucket *
5857pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5858{
5859	const size_t l1slot = l1pte_index(va);
5860	struct l2_dtable *l2;
5861	vaddr_t nva;
5862
5863	CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
5864	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5865		/*
5866		 * No mapping at this address, as there is
5867		 * no entry in the L1 table.
5868		 * Need to allocate a new l2_dtable.
5869		 */
5870		nva = pmap_kernel_l2dtable_kva;
5871		if ((nva & PGOFSET) == 0) {
5872			/*
5873			 * Need to allocate a backing page
5874			 */
5875			if (pmap_grow_map(nva, NULL))
5876				return NULL;
5877		}
5878
5879		l2 = (struct l2_dtable *)nva;
5880		nva += sizeof(struct l2_dtable);
5881
5882		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5883			/*
5884			 * The new l2_dtable straddles a page boundary.
5885			 * Map in another page to cover it.
5886			 */
5887			if (pmap_grow_map(nva & ~PGOFSET, NULL))
5888				return NULL;
5889		}
5890
5891		pmap_kernel_l2dtable_kva = nva;
5892
5893		/*
5894		 * Link it into the parent pmap
5895		 */
5896		pm->pm_l2[L2_IDX(l1slot)] = l2;
5897	}
5898
5899	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5900
5901	/*
5902	 * Fetch pointer to the L2 page table associated with the address.
5903	 */
5904	if (l2b->l2b_kva == NULL) {
5905		pt_entry_t *ptep;
5906
5907		/*
5908		 * No L2 page table has been allocated. Chances are, this
5909		 * is because we just allocated the l2_dtable, above.
5910		 */
5911		nva = pmap_kernel_l2ptp_kva;
5912		ptep = (pt_entry_t *)nva;
5913		if ((nva & PGOFSET) == 0) {
5914			/*
5915			 * Need to allocate a backing page
5916			 */
5917			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5918				return NULL;
5919			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5920		}
5921
5922		l2->l2_occupancy++;
5923		l2b->l2b_kva = ptep;
5924		l2b->l2b_l1slot = l1slot;
5925		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5926
5927		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5928		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5929	}
5930
5931	return l2b;
5932}
5933
5934vaddr_t
5935pmap_growkernel(vaddr_t maxkvaddr)
5936{
5937	UVMHIST_FUNC(__func__);
5938	UVMHIST_CALLARGS(maphist, "growing kernel from %#jx to %#jx\n",
5939	    pmap_curmaxkvaddr, maxkvaddr, 0, 0);
5940
5941	pmap_t kpm = pmap_kernel();
5942#ifndef ARM_MMU_EXTENDED
5943	struct l1_ttable *l1;
5944#endif
5945	int s;
5946
5947	if (maxkvaddr <= pmap_curmaxkvaddr)
5948		goto out;		/* we are OK */
5949
5950	KDASSERT(maxkvaddr <= virtual_end);
5951
5952	/*
5953	 * whoops!   we need to add kernel PTPs
5954	 */
5955
5956	s = splvm();	/* to be safe */
5957	mutex_enter(&kpm_lock);
5958
5959	/* Map 1MB at a time */
5960	size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5961#ifdef ARM_MMU_EXTENDED
5962	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5963	pd_entry_t *pdep = spdep;
5964#endif
5965	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5966#ifdef ARM_MMU_EXTENDED
5967	     pdep++,
5968#endif
5969	     l1slot++) {
5970		struct l2_bucket *l2b =
5971		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5972		KASSERT(l2b != NULL);
5973
5974		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5975		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5976#ifdef ARM_MMU_EXTENDED
5977		KASSERT(*pdep == 0);
5978		l1pte_setone(pdep, npde);
5979#else
5980		/* Distribute new L1 entry to all other L1s */
5981		SLIST_FOREACH(l1, &l1_list, l1_link) {
5982			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5983			l1pte_setone(pdep, npde);
5984			PDE_SYNC(pdep);
5985		}
5986#endif
5987	}
5988#ifdef ARM_MMU_EXTENDED
5989	PDE_SYNC_RANGE(spdep, pdep - spdep);
5990#endif
5991
5992#ifdef PMAP_CACHE_VIVT
5993	/*
5994	 * flush out the cache, expensive but growkernel will happen so
5995	 * rarely
5996	 */
5997	cpu_dcache_wbinv_all();
5998	cpu_tlb_flushD();
5999	cpu_cpwait();
6000#endif
6001
6002	mutex_exit(&kpm_lock);
6003	splx(s);
6004
6005out:
6006	return pmap_curmaxkvaddr;
6007}
6008
6009/************************ Utility routines ****************************/
6010
6011#ifndef ARM_HAS_VBAR
6012/*
6013 * vector_page_setprot:
6014 *
6015 *	Manipulate the protection of the vector page.
6016 */
6017void
6018vector_page_setprot(int prot)
6019{
6020	struct l2_bucket *l2b;
6021	pt_entry_t *ptep;
6022
6023#if defined(CPU_ARMV7) || defined(CPU_ARM11)
6024	/*
6025	 * If we are using VBAR to use the vectors in the kernel, then it's
6026	 * already mapped in the kernel text so no need to anything here.
6027	 */
6028	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6029		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6030		return;
6031	}
6032#endif
6033
6034	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6035	KASSERT(l2b != NULL);
6036
6037	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6038
6039	const pt_entry_t opte = *ptep;
6040#ifdef ARM_MMU_EXTENDED
6041	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6042	    | L2_S_PROT(PTE_KERNEL, prot);
6043#else
6044	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6045	    | L2_S_PROT(PTE_KERNEL, prot);
6046#endif
6047	l2pte_set(ptep, npte, opte);
6048	PTE_SYNC(ptep);
6049	cpu_tlb_flushD_SE(vector_page);
6050	cpu_cpwait();
6051}
6052#endif
6053
6054/*
6055 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6056 * Returns true if the mapping exists, else false.
6057 *
6058 * NOTE: This function is only used by a couple of arm-specific modules.
6059 * It is not safe to take any pmap locks here, since we could be right
6060 * in the middle of debugging the pmap anyway...
6061 *
6062 * It is possible for this routine to return false even though a valid
6063 * mapping does exist. This is because we don't lock, so the metadata
6064 * state may be inconsistent.
6065 *
6066 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6067 * a "section" mapping.
6068 */
6069bool
6070pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6071{
6072	struct l2_dtable *l2;
6073	pd_entry_t *pdep, pde;
6074	pt_entry_t *ptep;
6075	u_short l1slot;
6076
6077	if (pm->pm_l1 == NULL)
6078		return false;
6079
6080	l1slot = l1pte_index(va);
6081	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
6082	pde = *pdep;
6083
6084	if (l1pte_section_p(pde)) {
6085		*ptp = NULL;
6086		return true;
6087	}
6088
6089	l2 = pm->pm_l2[L2_IDX(l1slot)];
6090	if (l2 == NULL ||
6091	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6092		return false;
6093	}
6094
6095	*ptp = &ptep[l2pte_index(va)];
6096	return true;
6097}
6098
6099bool
6100pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6101{
6102
6103	if (pm->pm_l1 == NULL)
6104		return false;
6105
6106	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
6107
6108	return true;
6109}
6110
6111/************************ Bootstrapping routines ****************************/
6112
6113#ifndef ARM_MMU_EXTENDED
6114static void
6115pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6116{
6117	int i;
6118
6119	l1->l1_kva = l1pt;
6120	l1->l1_domain_use_count = 0;
6121	l1->l1_domain_first = 0;
6122
6123	for (i = 0; i < PMAP_DOMAINS; i++)
6124		l1->l1_domain_free[i] = i + 1;
6125
6126	/*
6127	 * Copy the kernel's L1 entries to each new L1.
6128	 */
6129	if (pmap_initialized)
6130		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6131
6132	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6133	    &l1->l1_physaddr) == false)
6134		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6135
6136	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6137	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6138}
6139#endif /* !ARM_MMU_EXTENDED */
6140
6141/*
6142 * pmap_bootstrap() is called from the board-specific initarm() routine
6143 * once the kernel L1/L2 descriptors tables have been set up.
6144 *
6145 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6146 * spread over a number of disparate files/functions.
6147 *
6148 * We are passed the following parameters
6149 *  - vstart
6150 *    1MB-aligned start of managed kernel virtual memory.
6151 *  - vend
6152 *    1MB-aligned end of managed kernel virtual memory.
6153 *
6154 * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6155 * struct l2_dtable) necessary to track kernel mappings.
6156 */
6157#define	PMAP_STATIC_L2_SIZE 16
6158void
6159pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6160{
6161	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6162#ifndef ARM_MMU_EXTENDED
6163	static struct l1_ttable static_l1;
6164	struct l1_ttable *l1 = &static_l1;
6165#endif
6166	struct l2_dtable *l2;
6167	struct l2_bucket *l2b;
6168	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6169	pmap_t pm = pmap_kernel();
6170	pt_entry_t *ptep;
6171	paddr_t pa;
6172	vsize_t size;
6173	int nptes, l2idx, l2next = 0;
6174
6175#ifdef ARM_MMU_EXTENDED
6176	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6177	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6178#endif
6179
6180	VPRINTF("kpm ");
6181	/*
6182	 * Initialise the kernel pmap object
6183	 */
6184	curcpu()->ci_pmap_cur = pm;
6185#ifdef ARM_MMU_EXTENDED
6186	pm->pm_l1 = l1pt;
6187	pm->pm_l1_pa = kernel_l1pt.pv_pa;
6188	VPRINTF("tlb0 ");
6189	pmap_tlb_info_init(&pmap_tlb0_info);
6190#ifdef MULTIPROCESSOR
6191	VPRINTF("kcpusets ");
6192	pm->pm_onproc = kcpuset_running;
6193	pm->pm_active = kcpuset_running;
6194#endif
6195#else
6196	pm->pm_l1 = l1;
6197#endif
6198
6199	VPRINTF("locks ");
6200	/*
6201	 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6202	 * context, so its locks have to be at IPL_VM
6203	 */
6204	mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6205	mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6206	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
6207	pm->pm_refs = 1;
6208
6209	VPRINTF("l1pt ");
6210	/*
6211	 * Scan the L1 translation table created by initarm() and create
6212	 * the required metadata for all valid mappings found in it.
6213	 */
6214	for (size_t l1slot = 0;
6215	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6216	     l1slot++) {
6217		pd_entry_t pde = l1pt[l1slot];
6218
6219		/*
6220		 * We're only interested in Coarse mappings.
6221		 * pmap_extract() can deal with section mappings without
6222		 * recourse to checking L2 metadata.
6223		 */
6224		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6225			continue;
6226
6227		/*
6228		 * Lookup the KVA of this L2 descriptor table
6229		 */
6230		pa = l1pte_pa(pde);
6231		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6232		if (ptep == NULL) {
6233			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6234			    (u_int)l1slot << L1_S_SHIFT, pa);
6235		}
6236
6237		/*
6238		 * Fetch the associated L2 metadata structure.
6239		 * Allocate a new one if necessary.
6240		 */
6241		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6242			if (l2next == PMAP_STATIC_L2_SIZE)
6243				panic("pmap_bootstrap: out of static L2s");
6244			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6245		}
6246
6247		/*
6248		 * One more L1 slot tracked...
6249		 */
6250		l2->l2_occupancy++;
6251
6252		/*
6253		 * Fill in the details of the L2 descriptor in the
6254		 * appropriate bucket.
6255		 */
6256		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6257		l2b->l2b_kva = ptep;
6258		l2b->l2b_pa = pa;
6259		l2b->l2b_l1slot = l1slot;
6260
6261		/*
6262		 * Establish an initial occupancy count for this descriptor
6263		 */
6264		for (l2idx = 0;
6265		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6266		    l2idx++) {
6267			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6268				l2b->l2b_occupancy++;
6269			}
6270		}
6271
6272		/*
6273		 * Make sure the descriptor itself has the correct cache mode.
6274		 * If not, fix it, but whine about the problem. Port-meisters
6275		 * should consider this a clue to fix up their initarm()
6276		 * function. :)
6277		 */
6278		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6279			printf("pmap_bootstrap: WARNING! wrong cache mode for "
6280			    "L2 pte @ %p\n", ptep);
6281		}
6282	}
6283
6284	VPRINTF("cache(l1pt) ");
6285	/*
6286	 * Ensure the primary (kernel) L1 has the correct cache mode for
6287	 * a page table. Bitch if it is not correctly set.
6288	 */
6289	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6290		    L1_TABLE_SIZE / L2_S_SIZE)) {
6291		printf("pmap_bootstrap: WARNING! wrong cache mode for "
6292		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6293	}
6294
6295#ifdef PMAP_CACHE_VIVT
6296	cpu_dcache_wbinv_all();
6297	cpu_tlb_flushID();
6298	cpu_cpwait();
6299#endif
6300
6301	/*
6302	 * now we allocate the "special" VAs which are used for tmp mappings
6303	 * by the pmap (and other modules).  we allocate the VAs by advancing
6304	 * virtual_avail (note that there are no pages mapped at these VAs).
6305	 *
6306	 * Managed KVM space start from wherever initarm() tells us.
6307	 */
6308	virtual_avail = vstart;
6309	virtual_end = vend;
6310
6311	VPRINTF("specials ");
6312#ifdef PMAP_CACHE_VIPT
6313	/*
6314	 * If we have a VIPT cache, we need one page/pte per possible alias
6315	 * page so we won't violate cache aliasing rules.
6316	 */
6317	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6318	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6319	nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6320	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6321	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6322		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6323		nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6324	}
6325#else
6326	nptes = PAGE_SIZE / L2_S_SIZE;
6327#endif
6328#ifdef MULTIPROCESSOR
6329	cnptes = nptes;
6330	nptes *= arm_cpu_max;
6331#endif
6332	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6333	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6334	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6335	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6336	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6337	if (msgbufaddr == NULL) {
6338		pmap_alloc_specials(&virtual_avail,
6339		    round_page(MSGBUFSIZE) / PAGE_SIZE,
6340		    (void *)&msgbufaddr, NULL);
6341	}
6342
6343	/*
6344	 * Allocate a range of kernel virtual address space to be used
6345	 * for L2 descriptor tables and metadata allocation in
6346	 * pmap_growkernel().
6347	 */
6348	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6349	pmap_alloc_specials(&virtual_avail,
6350	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6351	    &pmap_kernel_l2ptp_kva, NULL);
6352
6353	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6354	pmap_alloc_specials(&virtual_avail,
6355	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6356	    &pmap_kernel_l2dtable_kva, NULL);
6357
6358#ifndef ARM_MMU_EXTENDED
6359	/*
6360	 * init the static-global locks and global pmap list.
6361	 */
6362	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6363
6364	/*
6365	 * We can now initialise the first L1's metadata.
6366	 */
6367	SLIST_INIT(&l1_list);
6368	TAILQ_INIT(&l1_lru_list);
6369	pmap_init_l1(l1, l1pt);
6370#endif /* ARM_MMU_EXTENDED */
6371
6372#ifndef ARM_HAS_VBAR
6373	/* Set up vector page L1 details, if necessary */
6374	if (vector_page < KERNEL_BASE) {
6375		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6376		l2b = pmap_get_l2_bucket(pm, vector_page);
6377		KDASSERT(l2b != NULL);
6378		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6379		    L1_C_DOM(pmap_domain(pm));
6380	} else
6381		pm->pm_pl1vec = NULL;
6382#endif
6383
6384	VPRINTF("pools ");
6385	/*
6386	 * Initialize the pmap cache
6387	 */
6388	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6389	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6390
6391	/*
6392	 * Initialize the pv pool.
6393	 */
6394	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6395	    &pmap_bootstrap_pv_allocator, IPL_NONE);
6396
6397	/*
6398	 * Initialize the L2 dtable pool and cache.
6399	 */
6400	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6401	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6402
6403	/*
6404	 * Initialise the L2 descriptor table pool and cache
6405	 */
6406	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6407	    L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6408	    pmap_l2ptp_ctor, NULL, NULL);
6409
6410	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6411
6412	cpu_dcache_wbinv_all();
6413}
6414
6415static bool
6416pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6417{
6418#ifdef ARM_MMU_EXTENDED
6419	return false;
6420#else
6421	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6422	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6423		return false;
6424
6425	const vaddr_t eva = va + nptes * PAGE_SIZE;
6426	int rv = 0;
6427
6428	while (va < eva) {
6429		/*
6430		 * Make sure the descriptor itself has the correct cache mode
6431		 */
6432		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6433		pd_entry_t pde = *pdep;
6434
6435		if (l1pte_section_p(pde)) {
6436			KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6437			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6438				*pdep = (pde & ~L1_S_CACHE_MASK) |
6439				    pte_l1_s_cache_mode_pt;
6440				PDE_SYNC(pdep);
6441				cpu_dcache_wbinv_range((vaddr_t)pdep,
6442				    sizeof(*pdep));
6443				rv = 1;
6444			}
6445			return rv;
6446		}
6447		vaddr_t pa = l1pte_pa(pde);
6448		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6449		if (ptep == NULL)
6450			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6451
6452		ptep += l2pte_index(va);
6453		const pt_entry_t opte = *ptep;
6454		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6455			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6456			    | pte_l2_s_cache_mode_pt;
6457			l2pte_set(ptep, npte, opte);
6458			PTE_SYNC(ptep);
6459			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6460			rv = 1;
6461		}
6462		va += PAGE_SIZE;
6463	}
6464
6465	return rv;
6466#endif
6467}
6468
6469static void
6470pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6471{
6472	vaddr_t va = *availp;
6473	struct l2_bucket *l2b;
6474
6475	if (ptep) {
6476		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6477		if (l2b == NULL)
6478			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6479
6480		*ptep = &l2b->l2b_kva[l2pte_index(va)];
6481	}
6482
6483	*vap = va;
6484	*availp = va + (PAGE_SIZE * pages);
6485}
6486
6487void
6488pmap_init(void)
6489{
6490
6491	/*
6492	 * Set the available memory vars - These do not map to real memory
6493	 * addresses and cannot as the physical memory is fragmented.
6494	 * They are used by ps for %mem calculations.
6495	 * One could argue whether this should be the entire memory or just
6496	 * the memory that is useable in a user process.
6497	 */
6498	avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6499	avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6500
6501	/*
6502	 * Now we need to free enough pv_entry structures to allow us to get
6503	 * the kmem_map/kmem_object allocated and inited (done after this
6504	 * function is finished).  to do this we allocate one bootstrap page out
6505	 * of kernel_map and use it to provide an initial pool of pv_entry
6506	 * structures.   we never free this page.
6507	 */
6508	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6509
6510#ifdef ARM_MMU_EXTENDED
6511	/*
6512	 * Initialise the L1 pool and cache.
6513	 */
6514
6515	pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
6516	    0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
6517	     NULL, NULL);
6518
6519	int error __diagused = pmap_maxproc_set(maxproc);
6520	KASSERT(error == 0);
6521
6522	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6523#endif
6524
6525	pmap_initialized = true;
6526}
6527
6528static vaddr_t last_bootstrap_page = 0;
6529static void *free_bootstrap_pages = NULL;
6530
6531static void *
6532pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6533{
6534	extern void *pool_page_alloc(struct pool *, int);
6535	vaddr_t new_page;
6536	void *rv;
6537
6538	if (pmap_initialized)
6539		return pool_page_alloc(pp, flags);
6540
6541	if (free_bootstrap_pages) {
6542		rv = free_bootstrap_pages;
6543		free_bootstrap_pages = *((void **)rv);
6544		return rv;
6545	}
6546
6547	KASSERT(kernel_map != NULL);
6548	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6549	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6550
6551	KASSERT(new_page > last_bootstrap_page);
6552	last_bootstrap_page = new_page;
6553	return (void *)new_page;
6554}
6555
6556static void
6557pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6558{
6559	extern void pool_page_free(struct pool *, void *);
6560
6561	if ((vaddr_t)v <= last_bootstrap_page) {
6562		*((void **)v) = free_bootstrap_pages;
6563		free_bootstrap_pages = v;
6564		return;
6565	}
6566
6567	if (pmap_initialized) {
6568		pool_page_free(pp, v);
6569		return;
6570	}
6571}
6572
6573
6574#if defined(ARM_MMU_EXTENDED)
6575static void *
6576pmap_l1tt_alloc(struct pool *pp, int flags)
6577{
6578	struct pglist plist;
6579	vaddr_t va;
6580
6581	const int waitok = flags & PR_WAITOK;
6582
6583	int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
6584	    waitok);
6585	if (error)
6586		panic("Cannot allocate L1TT physical pages, %d", error);
6587
6588	struct vm_page *pg = TAILQ_FIRST(&plist);
6589#if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6590
6591	/* Allocate a L1 translation table VA */
6592	va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
6593	if (va == 0)
6594		panic("Cannot allocate L1TT KVA");
6595
6596	const vaddr_t eva = va + L1TT_SIZE;
6597	vaddr_t mva = va;
6598	while (pg && mva < eva) {
6599		paddr_t pa = VM_PAGE_TO_PHYS(pg);
6600
6601		pmap_kenter_pa(mva, pa,
6602		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6603
6604		mva += PAGE_SIZE;
6605		pg = TAILQ_NEXT(pg, pageq.queue);
6606	}
6607	KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
6608	    " eva %" PRIxVADDR, pg, mva, eva);
6609#else
6610	bool ok;
6611	paddr_t pa = VM_PAGE_TO_PHYS(pg);
6612	va = pmap_direct_mapped_phys(pa, &ok, 0);
6613	KASSERT(ok);
6614	KASSERT(va >= KERNEL_BASE);
6615#endif
6616
6617	return (void *)va;
6618}
6619
6620static void
6621pmap_l1tt_free(struct pool *pp, void *v)
6622{
6623	vaddr_t va = (vaddr_t)v;
6624
6625#if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6626	uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
6627#else
6628#if defined(KERNEL_BASE_VOFFSET)
6629	paddr_t pa = va - KERNEL_BASE_VOFFSET;
6630#else
6631	paddr_t pa = va - KERNEL_BASE + physical_start;
6632#endif
6633	const paddr_t epa = pa + L1TT_SIZE;
6634
6635	for (; pa < epa; pa += PAGE_SIZE) {
6636		struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
6637		uvm_pagefree(pg);
6638	}
6639#endif
6640}
6641#endif
6642
6643/*
6644 * pmap_postinit()
6645 *
6646 * This routine is called after the vm and kmem subsystems have been
6647 * initialised. This allows the pmap code to perform any initialisation
6648 * that can only be done once the memory allocation is in place.
6649 */
6650void
6651pmap_postinit(void)
6652{
6653#ifndef ARM_MMU_EXTENDED
6654	extern paddr_t physical_start, physical_end;
6655	struct l1_ttable *l1;
6656	struct pglist plist;
6657	struct vm_page *m;
6658	pd_entry_t *pdep;
6659	vaddr_t va, eva;
6660	u_int loop, needed;
6661	int error;
6662#endif
6663
6664	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6665	pool_cache_setlowat(&pmap_l2dtable_cache,
6666	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6667
6668#ifndef ARM_MMU_EXTENDED
6669	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6670	needed -= 1;
6671
6672	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6673
6674	for (loop = 0; loop < needed; loop++, l1++) {
6675		/* Allocate a L1 page table */
6676		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6677		if (va == 0)
6678			panic("Cannot allocate L1 KVM");
6679
6680		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6681		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6682		if (error)
6683			panic("Cannot allocate L1 physical pages");
6684
6685		m = TAILQ_FIRST(&plist);
6686		eva = va + L1_TABLE_SIZE;
6687		pdep = (pd_entry_t *)va;
6688
6689		while (m && va < eva) {
6690			paddr_t pa = VM_PAGE_TO_PHYS(m);
6691
6692			pmap_kenter_pa(va, pa,
6693			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6694
6695			va += PAGE_SIZE;
6696			m = TAILQ_NEXT(m, pageq.queue);
6697		}
6698
6699#ifdef DIAGNOSTIC
6700		if (m)
6701			panic("pmap_alloc_l1pt: pglist not empty");
6702#endif	/* DIAGNOSTIC */
6703
6704		pmap_init_l1(l1, pdep);
6705	}
6706
6707#ifdef DEBUG
6708	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6709	    needed);
6710#endif
6711#endif /* !ARM_MMU_EXTENDED */
6712}
6713
6714/*
6715 * Note that the following routines are used by board-specific initialisation
6716 * code to configure the initial kernel page tables.
6717 *
6718 */
6719
6720/*
6721 * This list exists for the benefit of pmap_map_chunk().  It keeps track
6722 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6723 * find them as necessary.
6724 *
6725 * Note that the data on this list MUST remain valid after initarm() returns,
6726 * as pmap_bootstrap() uses it to construct L2 table metadata.
6727 */
6728SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6729
6730static vaddr_t
6731kernel_pt_lookup(paddr_t pa)
6732{
6733	pv_addr_t *pv;
6734
6735	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6736		if (pv->pv_pa == (pa & ~PGOFSET))
6737			return pv->pv_va | (pa & PGOFSET);
6738	}
6739	return 0;
6740}
6741
6742/*
6743 * pmap_map_section:
6744 *
6745 *	Create a single section mapping.
6746 */
6747void
6748pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6749{
6750	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6751	const size_t l1slot = l1pte_index(va);
6752	pd_entry_t fl;
6753
6754	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6755
6756	switch (cache) {
6757	case PTE_NOCACHE:
6758		fl = pte_l1_s_nocache_mode;
6759		break;
6760
6761	case PTE_CACHE:
6762		fl = pte_l1_s_cache_mode;
6763		break;
6764
6765	case PTE_PAGETABLE:
6766		fl = pte_l1_s_cache_mode_pt;
6767		break;
6768
6769	case PTE_DEV:
6770	default:
6771		fl = 0;
6772		break;
6773	}
6774
6775	const pd_entry_t npde = L1_S_PROTO | pa |
6776	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6777	l1pte_setone(pdep + l1slot, npde);
6778	PDE_SYNC(pdep + l1slot);
6779}
6780
6781/*
6782 * pmap_map_entry:
6783 *
6784 *	Create a single page mapping.
6785 */
6786void
6787pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6788{
6789	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6790	const size_t l1slot = l1pte_index(va);
6791	pt_entry_t npte;
6792	pt_entry_t *ptep;
6793
6794	KASSERT(((va | pa) & PGOFSET) == 0);
6795
6796	switch (cache) {
6797	case PTE_NOCACHE:
6798		npte = pte_l2_s_nocache_mode;
6799		break;
6800
6801	case PTE_CACHE:
6802		npte = pte_l2_s_cache_mode;
6803		break;
6804
6805	case PTE_PAGETABLE:
6806		npte = pte_l2_s_cache_mode_pt;
6807		break;
6808
6809	default:
6810		npte = 0;
6811		break;
6812	}
6813
6814	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6815		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6816
6817	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6818	if (ptep == NULL)
6819		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6820
6821	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6822#ifdef ARM_MMU_EXTENDED
6823	if (prot & VM_PROT_EXECUTE) {
6824		npte &= ~L2_XS_XN;
6825	}
6826#endif
6827	ptep += l2pte_index(va);
6828	l2pte_set(ptep, npte, 0);
6829	PTE_SYNC(ptep);
6830}
6831
6832/*
6833 * pmap_link_l2pt:
6834 *
6835 *	Link the L2 page table specified by "l2pv" into the L1
6836 *	page table at the slot for "va".
6837 */
6838void
6839pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6840{
6841	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6842
6843	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6844	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6845
6846	const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6847	    | l2pv->pv_pa;
6848
6849	l1pte_set(pdep, npde);
6850	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6851
6852	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6853}
6854
6855/*
6856 * pmap_map_chunk:
6857 *
6858 *	Map a chunk of memory using the most efficient mappings
6859 *	possible (section, large page, small page) into the
6860 *	provided L1 and L2 tables at the specified virtual address.
6861 */
6862vsize_t
6863pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6864    int prot, int cache)
6865{
6866	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6867	pt_entry_t f1, f2s, f2l;
6868	vsize_t resid;
6869
6870	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6871
6872	if (l1pt == 0)
6873		panic("pmap_map_chunk: no L1 table provided");
6874
6875// 	VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6876// 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6877
6878	switch (cache) {
6879	case PTE_NOCACHE:
6880		f1 = pte_l1_s_nocache_mode;
6881		f2l = pte_l2_l_nocache_mode;
6882		f2s = pte_l2_s_nocache_mode;
6883		break;
6884
6885	case PTE_CACHE:
6886		f1 = pte_l1_s_cache_mode;
6887		f2l = pte_l2_l_cache_mode;
6888		f2s = pte_l2_s_cache_mode;
6889		break;
6890
6891	case PTE_PAGETABLE:
6892		f1 = pte_l1_s_cache_mode_pt;
6893		f2l = pte_l2_l_cache_mode_pt;
6894		f2s = pte_l2_s_cache_mode_pt;
6895		break;
6896
6897	case PTE_DEV:
6898	default:
6899		f1 = 0;
6900		f2l = 0;
6901		f2s = 0;
6902		break;
6903	}
6904
6905	size = resid;
6906
6907	while (resid > 0) {
6908		const size_t l1slot = l1pte_index(va);
6909#ifdef ARM_MMU_EXTENDED
6910		/* See if we can use a supersection mapping. */
6911		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6912			/* Supersection are always domain 0 */
6913			const pd_entry_t npde = L1_SS_PROTO | pa
6914			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6915			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6916			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
6917			VPRINTF("sS");
6918			l1pte_set(&pdep[l1slot], npde);
6919			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6920//			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6921//			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6922			va += L1_SS_SIZE;
6923			pa += L1_SS_SIZE;
6924			resid -= L1_SS_SIZE;
6925			continue;
6926		}
6927#endif
6928		/* See if we can use a section mapping. */
6929		if (L1_S_MAPPABLE_P(va, pa, resid)) {
6930			const pd_entry_t npde = L1_S_PROTO | pa
6931#ifdef ARM_MMU_EXTENDED
6932			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6933			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6934#endif
6935			    | L1_S_PROT(PTE_KERNEL, prot) | f1
6936			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6937			VPRINTF("S");
6938			l1pte_set(&pdep[l1slot], npde);
6939			PDE_SYNC(&pdep[l1slot]);
6940//			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6941//			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6942			va += L1_S_SIZE;
6943			pa += L1_S_SIZE;
6944			resid -= L1_S_SIZE;
6945			continue;
6946		}
6947
6948		/*
6949		 * Ok, we're going to use an L2 table.  Make sure
6950		 * one is actually in the corresponding L1 slot
6951		 * for the current VA.
6952		 */
6953		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6954			panic("%s: no L2 table for VA %#lx", __func__, va);
6955
6956		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6957		if (ptep == NULL)
6958			panic("%s: can't find L2 table for VA %#lx", __func__,
6959			    va);
6960
6961		ptep += l2pte_index(va);
6962
6963		/* See if we can use a L2 large page mapping. */
6964		if (L2_L_MAPPABLE_P(va, pa, resid)) {
6965			const pt_entry_t npte = L2_L_PROTO | pa
6966#ifdef ARM_MMU_EXTENDED
6967			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6968			    | (va & 0x80000000 ? 0 : L2_XS_nG)
6969#endif
6970			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6971			VPRINTF("L");
6972			l2pte_set(ptep, npte, 0);
6973			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6974			va += L2_L_SIZE;
6975			pa += L2_L_SIZE;
6976			resid -= L2_L_SIZE;
6977			continue;
6978		}
6979
6980		VPRINTF("P");
6981		/* Use a small page mapping. */
6982		pt_entry_t npte = L2_S_PROTO | pa
6983#ifdef ARM_MMU_EXTENDED
6984		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6985		    | (va & 0x80000000 ? 0 : L2_XS_nG)
6986#endif
6987		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6988#ifdef ARM_MMU_EXTENDED
6989		npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6990#endif
6991		l2pte_set(ptep, npte, 0);
6992		PTE_SYNC(ptep);
6993		va += PAGE_SIZE;
6994		pa += PAGE_SIZE;
6995		resid -= PAGE_SIZE;
6996	}
6997	VPRINTF("\n");
6998	return size;
6999}
7000
7001/*
7002 * pmap_unmap_chunk:
7003 *
7004 *	Unmap a chunk of memory that was previously pmap_map_chunk
7005 */
7006void
7007pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
7008{
7009	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7010	const size_t l1slot = l1pte_index(va);
7011
7012	KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
7013
7014	l1pte_set(&pdep[l1slot], 0);
7015	PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
7016
7017	pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
7018}
7019
7020
7021
7022/********************** Static device map routines ***************************/
7023
7024static const struct pmap_devmap *pmap_devmap_table;
7025
7026/*
7027 * Register the devmap table.  This is provided in case early console
7028 * initialization needs to register mappings created by bootstrap code
7029 * before pmap_devmap_bootstrap() is called.
7030 */
7031void
7032pmap_devmap_register(const struct pmap_devmap *table)
7033{
7034
7035	pmap_devmap_table = table;
7036}
7037
7038/*
7039 * Map all of the static regions in the devmap table, and remember
7040 * the devmap table so other parts of the kernel can look up entries
7041 * later.
7042 */
7043void
7044pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
7045{
7046	int i;
7047
7048	pmap_devmap_table = table;
7049
7050	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7051		const struct pmap_devmap *pdp = &pmap_devmap_table[i];
7052
7053		KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
7054		    " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
7055		KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
7056		    " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
7057		VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
7058		    pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
7059
7060		pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
7061		    pdp->pd_prot, pdp->pd_cache);
7062	}
7063}
7064
7065const struct pmap_devmap *
7066pmap_devmap_find_pa(paddr_t pa, psize_t size)
7067{
7068	uint64_t endpa;
7069	int i;
7070
7071	if (pmap_devmap_table == NULL)
7072		return NULL;
7073
7074	endpa = (uint64_t)pa + (uint64_t)(size - 1);
7075
7076	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7077		if (pa >= pmap_devmap_table[i].pd_pa &&
7078		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
7079			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
7080			return &pmap_devmap_table[i];
7081	}
7082
7083	return NULL;
7084}
7085
7086const struct pmap_devmap *
7087pmap_devmap_find_va(vaddr_t va, vsize_t size)
7088{
7089	int i;
7090
7091	if (pmap_devmap_table == NULL)
7092		return NULL;
7093
7094	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7095		if (va >= pmap_devmap_table[i].pd_va &&
7096		    va + size - 1 <= pmap_devmap_table[i].pd_va +
7097				     pmap_devmap_table[i].pd_size - 1)
7098			return &pmap_devmap_table[i];
7099	}
7100
7101	return NULL;
7102}
7103
7104/********************** PTE initialization routines **************************/
7105
7106/*
7107 * These routines are called when the CPU type is identified to set up
7108 * the PTE prototypes, cache modes, etc.
7109 *
7110 * The variables are always here, just in case modules need to reference
7111 * them (though, they shouldn't).
7112 */
7113
7114pt_entry_t	pte_l1_s_nocache_mode;
7115pt_entry_t	pte_l1_s_cache_mode;
7116pt_entry_t	pte_l1_s_wc_mode;
7117pt_entry_t	pte_l1_s_cache_mode_pt;
7118pt_entry_t	pte_l1_s_cache_mask;
7119
7120pt_entry_t	pte_l2_l_nocache_mode;
7121pt_entry_t	pte_l2_l_cache_mode;
7122pt_entry_t	pte_l2_l_wc_mode;
7123pt_entry_t	pte_l2_l_cache_mode_pt;
7124pt_entry_t	pte_l2_l_cache_mask;
7125
7126pt_entry_t	pte_l2_s_nocache_mode;
7127pt_entry_t	pte_l2_s_cache_mode;
7128pt_entry_t	pte_l2_s_wc_mode;
7129pt_entry_t	pte_l2_s_cache_mode_pt;
7130pt_entry_t	pte_l2_s_cache_mask;
7131
7132pt_entry_t	pte_l1_s_prot_u;
7133pt_entry_t	pte_l1_s_prot_w;
7134pt_entry_t	pte_l1_s_prot_ro;
7135pt_entry_t	pte_l1_s_prot_mask;
7136
7137pt_entry_t	pte_l2_s_prot_u;
7138pt_entry_t	pte_l2_s_prot_w;
7139pt_entry_t	pte_l2_s_prot_ro;
7140pt_entry_t	pte_l2_s_prot_mask;
7141
7142pt_entry_t	pte_l2_l_prot_u;
7143pt_entry_t	pte_l2_l_prot_w;
7144pt_entry_t	pte_l2_l_prot_ro;
7145pt_entry_t	pte_l2_l_prot_mask;
7146
7147pt_entry_t	pte_l1_ss_proto;
7148pt_entry_t	pte_l1_s_proto;
7149pt_entry_t	pte_l1_c_proto;
7150pt_entry_t	pte_l2_s_proto;
7151
7152void		(*pmap_copy_page_func)(paddr_t, paddr_t);
7153void		(*pmap_zero_page_func)(paddr_t);
7154
7155#if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7156void
7157pmap_pte_init_generic(void)
7158{
7159
7160	pte_l1_s_nocache_mode = 0;
7161	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7162	pte_l1_s_wc_mode = L1_S_B;
7163	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7164
7165	pte_l2_l_nocache_mode = 0;
7166	pte_l2_l_cache_mode = L2_B|L2_C;
7167	pte_l2_l_wc_mode = L2_B;
7168	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7169
7170	pte_l2_s_nocache_mode = 0;
7171	pte_l2_s_cache_mode = L2_B|L2_C;
7172	pte_l2_s_wc_mode = L2_B;
7173	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7174
7175	/*
7176	 * If we have a write-through cache, set B and C.  If
7177	 * we have a write-back cache, then we assume setting
7178	 * only C will make those pages write-through (except for those
7179	 * Cortex CPUs which can read the L1 caches).
7180	 */
7181	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7182#if ARM_MMU_V7 > 0
7183	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7184#endif
7185#if ARM_MMU_V6 > 0
7186	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7187#endif
7188	    || false) {
7189		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7190		pte_l2_l_cache_mode_pt = L2_B|L2_C;
7191		pte_l2_s_cache_mode_pt = L2_B|L2_C;
7192	} else {
7193		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
7194		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
7195		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
7196	}
7197
7198	pte_l1_s_prot_u = L1_S_PROT_U_generic;
7199	pte_l1_s_prot_w = L1_S_PROT_W_generic;
7200	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7201	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7202
7203	pte_l2_s_prot_u = L2_S_PROT_U_generic;
7204	pte_l2_s_prot_w = L2_S_PROT_W_generic;
7205	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7206	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7207
7208	pte_l2_l_prot_u = L2_L_PROT_U_generic;
7209	pte_l2_l_prot_w = L2_L_PROT_W_generic;
7210	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7211	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7212
7213	pte_l1_ss_proto = L1_SS_PROTO_generic;
7214	pte_l1_s_proto = L1_S_PROTO_generic;
7215	pte_l1_c_proto = L1_C_PROTO_generic;
7216	pte_l2_s_proto = L2_S_PROTO_generic;
7217
7218	pmap_copy_page_func = pmap_copy_page_generic;
7219	pmap_zero_page_func = pmap_zero_page_generic;
7220}
7221
7222#if defined(CPU_ARM8)
7223void
7224pmap_pte_init_arm8(void)
7225{
7226
7227	/*
7228	 * ARM8 is compatible with generic, but we need to use
7229	 * the page tables uncached.
7230	 */
7231	pmap_pte_init_generic();
7232
7233	pte_l1_s_cache_mode_pt = 0;
7234	pte_l2_l_cache_mode_pt = 0;
7235	pte_l2_s_cache_mode_pt = 0;
7236}
7237#endif /* CPU_ARM8 */
7238
7239#if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7240void
7241pmap_pte_init_arm9(void)
7242{
7243
7244	/*
7245	 * ARM9 is compatible with generic, but we want to use
7246	 * write-through caching for now.
7247	 */
7248	pmap_pte_init_generic();
7249
7250	pte_l1_s_cache_mode = L1_S_C;
7251	pte_l2_l_cache_mode = L2_C;
7252	pte_l2_s_cache_mode = L2_C;
7253
7254	pte_l1_s_wc_mode = L1_S_B;
7255	pte_l2_l_wc_mode = L2_B;
7256	pte_l2_s_wc_mode = L2_B;
7257
7258	pte_l1_s_cache_mode_pt = L1_S_C;
7259	pte_l2_l_cache_mode_pt = L2_C;
7260	pte_l2_s_cache_mode_pt = L2_C;
7261}
7262#endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7263#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7264
7265#if defined(CPU_ARM10)
7266void
7267pmap_pte_init_arm10(void)
7268{
7269
7270	/*
7271	 * ARM10 is compatible with generic, but we want to use
7272	 * write-through caching for now.
7273	 */
7274	pmap_pte_init_generic();
7275
7276	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7277	pte_l2_l_cache_mode = L2_B | L2_C;
7278	pte_l2_s_cache_mode = L2_B | L2_C;
7279
7280	pte_l1_s_cache_mode = L1_S_B;
7281	pte_l2_l_cache_mode = L2_B;
7282	pte_l2_s_cache_mode = L2_B;
7283
7284	pte_l1_s_cache_mode_pt = L1_S_C;
7285	pte_l2_l_cache_mode_pt = L2_C;
7286	pte_l2_s_cache_mode_pt = L2_C;
7287
7288}
7289#endif /* CPU_ARM10 */
7290
7291#if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7292void
7293pmap_pte_init_arm11(void)
7294{
7295
7296	/*
7297	 * ARM11 is compatible with generic, but we want to use
7298	 * write-through caching for now.
7299	 */
7300	pmap_pte_init_generic();
7301
7302	pte_l1_s_cache_mode = L1_S_C;
7303	pte_l2_l_cache_mode = L2_C;
7304	pte_l2_s_cache_mode = L2_C;
7305
7306	pte_l1_s_wc_mode = L1_S_B;
7307	pte_l2_l_wc_mode = L2_B;
7308	pte_l2_s_wc_mode = L2_B;
7309
7310	pte_l1_s_cache_mode_pt = L1_S_C;
7311	pte_l2_l_cache_mode_pt = L2_C;
7312	pte_l2_s_cache_mode_pt = L2_C;
7313}
7314#endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7315
7316#if ARM_MMU_SA1 == 1
7317void
7318pmap_pte_init_sa1(void)
7319{
7320
7321	/*
7322	 * The StrongARM SA-1 cache does not have a write-through
7323	 * mode.  So, do the generic initialization, then reset
7324	 * the page table cache mode to B=1,C=1, and note that
7325	 * the PTEs need to be sync'd.
7326	 */
7327	pmap_pte_init_generic();
7328
7329	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7330	pte_l2_l_cache_mode_pt = L2_B|L2_C;
7331	pte_l2_s_cache_mode_pt = L2_B|L2_C;
7332
7333	pmap_needs_pte_sync = 1;
7334}
7335#endif /* ARM_MMU_SA1 == 1*/
7336
7337#if ARM_MMU_XSCALE == 1
7338#if (ARM_NMMUS > 1)
7339static u_int xscale_use_minidata;
7340#endif
7341
7342void
7343pmap_pte_init_xscale(void)
7344{
7345	uint32_t auxctl;
7346	int write_through = 0;
7347
7348	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7349	pte_l1_s_wc_mode = L1_S_B;
7350	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7351
7352	pte_l2_l_cache_mode = L2_B|L2_C;
7353	pte_l2_l_wc_mode = L2_B;
7354	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7355
7356	pte_l2_s_cache_mode = L2_B|L2_C;
7357	pte_l2_s_wc_mode = L2_B;
7358	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7359
7360	pte_l1_s_cache_mode_pt = L1_S_C;
7361	pte_l2_l_cache_mode_pt = L2_C;
7362	pte_l2_s_cache_mode_pt = L2_C;
7363
7364#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7365	/*
7366	 * The XScale core has an enhanced mode where writes that
7367	 * miss the cache cause a cache line to be allocated.  This
7368	 * is significantly faster than the traditional, write-through
7369	 * behavior of this case.
7370	 */
7371	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7372	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7373	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7374#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7375
7376#ifdef XSCALE_CACHE_WRITE_THROUGH
7377	/*
7378	 * Some versions of the XScale core have various bugs in
7379	 * their cache units, the work-around for which is to run
7380	 * the cache in write-through mode.  Unfortunately, this
7381	 * has a major (negative) impact on performance.  So, we
7382	 * go ahead and run fast-and-loose, in the hopes that we
7383	 * don't line up the planets in a way that will trip the
7384	 * bugs.
7385	 *
7386	 * However, we give you the option to be slow-but-correct.
7387	 */
7388	write_through = 1;
7389#elif defined(XSCALE_CACHE_WRITE_BACK)
7390	/* force write back cache mode */
7391	write_through = 0;
7392#elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7393	/*
7394	 * Intel PXA2[15]0 processors are known to have a bug in
7395	 * write-back cache on revision 4 and earlier (stepping
7396	 * A[01] and B[012]).  Fixed for C0 and later.
7397	 */
7398	{
7399		uint32_t id, type;
7400
7401		id = cpufunc_id();
7402		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7403
7404		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7405			if ((id & CPU_ID_REVISION_MASK) < 5) {
7406				/* write through for stepping A0-1 and B0-2 */
7407				write_through = 1;
7408			}
7409		}
7410	}
7411#endif /* XSCALE_CACHE_WRITE_THROUGH */
7412
7413	if (write_through) {
7414		pte_l1_s_cache_mode = L1_S_C;
7415		pte_l2_l_cache_mode = L2_C;
7416		pte_l2_s_cache_mode = L2_C;
7417	}
7418
7419#if (ARM_NMMUS > 1)
7420	xscale_use_minidata = 1;
7421#endif
7422
7423	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7424	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7425	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7426	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7427
7428	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7429	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7430	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7431	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7432
7433	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7434	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7435	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7436	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7437
7438	pte_l1_ss_proto = L1_SS_PROTO_xscale;
7439	pte_l1_s_proto = L1_S_PROTO_xscale;
7440	pte_l1_c_proto = L1_C_PROTO_xscale;
7441	pte_l2_s_proto = L2_S_PROTO_xscale;
7442
7443	pmap_copy_page_func = pmap_copy_page_xscale;
7444	pmap_zero_page_func = pmap_zero_page_xscale;
7445
7446	/*
7447	 * Disable ECC protection of page table access, for now.
7448	 */
7449	auxctl = armreg_auxctl_read();
7450	auxctl &= ~XSCALE_AUXCTL_P;
7451	armreg_auxctl_write(auxctl);
7452}
7453
7454/*
7455 * xscale_setup_minidata:
7456 *
7457 *	Set up the mini-data cache clean area.  We require the
7458 *	caller to allocate the right amount of physically and
7459 *	virtually contiguous space.
7460 */
7461void
7462xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7463{
7464	extern vaddr_t xscale_minidata_clean_addr;
7465	extern vsize_t xscale_minidata_clean_size; /* already initialized */
7466	pd_entry_t *pde = (pd_entry_t *) l1pt;
7467	vsize_t size;
7468	uint32_t auxctl;
7469
7470	xscale_minidata_clean_addr = va;
7471
7472	/* Round it to page size. */
7473	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7474
7475	for (; size != 0;
7476	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7477		const size_t l1slot = l1pte_index(va);
7478		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7479		if (ptep == NULL)
7480			panic("xscale_setup_minidata: can't find L2 table for "
7481			    "VA 0x%08lx", va);
7482
7483		ptep += l2pte_index(va);
7484		pt_entry_t opte = *ptep;
7485		l2pte_set(ptep,
7486		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7487		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7488	}
7489
7490	/*
7491	 * Configure the mini-data cache for write-back with
7492	 * read/write-allocate.
7493	 *
7494	 * NOTE: In order to reconfigure the mini-data cache, we must
7495	 * make sure it contains no valid data!  In order to do that,
7496	 * we must issue a global data cache invalidate command!
7497	 *
7498	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7499	 * THIS IS VERY IMPORTANT!
7500	 */
7501
7502	/* Invalidate data and mini-data. */
7503	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7504	auxctl = armreg_auxctl_read();
7505	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7506	armreg_auxctl_write(auxctl);
7507}
7508
7509/*
7510 * Change the PTEs for the specified kernel mappings such that they
7511 * will use the mini data cache instead of the main data cache.
7512 */
7513void
7514pmap_uarea(vaddr_t va)
7515{
7516	vaddr_t next_bucket, eva;
7517
7518#if (ARM_NMMUS > 1)
7519	if (xscale_use_minidata == 0)
7520		return;
7521#endif
7522
7523	eva = va + USPACE;
7524
7525	while (va < eva) {
7526		next_bucket = L2_NEXT_BUCKET_VA(va);
7527		if (next_bucket > eva)
7528			next_bucket = eva;
7529
7530		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7531		KDASSERT(l2b != NULL);
7532
7533		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7534		pt_entry_t *ptep = sptep;
7535
7536		while (va < next_bucket) {
7537			const pt_entry_t opte = *ptep;
7538			if (!l2pte_minidata_p(opte)) {
7539				cpu_dcache_wbinv_range(va, PAGE_SIZE);
7540				cpu_tlb_flushD_SE(va);
7541				l2pte_set(ptep, opte & ~L2_B, opte);
7542			}
7543			ptep += PAGE_SIZE / L2_S_SIZE;
7544			va += PAGE_SIZE;
7545		}
7546		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7547	}
7548	cpu_cpwait();
7549}
7550#endif /* ARM_MMU_XSCALE == 1 */
7551
7552
7553#if defined(CPU_ARM11MPCORE)
7554void
7555pmap_pte_init_arm11mpcore(void)
7556{
7557
7558	/* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
7559	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7560	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7561#if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7562	/* use extended small page (without APn, with TEX) */
7563	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7564#else
7565	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7566#endif
7567
7568	/* write-back, write-allocate */
7569	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7570	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7571#if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7572	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7573#else
7574	/* no TEX. read-allocate */
7575	pte_l2_s_cache_mode = L2_C | L2_B;
7576#endif
7577	/*
7578	 * write-back, write-allocate for page tables.
7579	 */
7580	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7581	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7582#if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7583	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7584#else
7585	pte_l2_s_cache_mode_pt = L2_C | L2_B;
7586#endif
7587
7588	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7589	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7590	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7591	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7592
7593#if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7594	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7595	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7596	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7597	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7598
7599#else
7600	/* with AP[0..3] */
7601	pte_l2_s_prot_u = L2_S_PROT_U_generic;
7602	pte_l2_s_prot_w = L2_S_PROT_W_generic;
7603	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7604	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7605#endif
7606
7607#ifdef	ARM11MPCORE_COMPAT_MMU
7608	/* with AP[0..3] */
7609	pte_l2_l_prot_u = L2_L_PROT_U_generic;
7610	pte_l2_l_prot_w = L2_L_PROT_W_generic;
7611	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7612	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7613
7614	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7615	pte_l1_s_proto = L1_S_PROTO_armv6;
7616	pte_l1_c_proto = L1_C_PROTO_armv6;
7617	pte_l2_s_proto = L2_S_PROTO_armv6c;
7618#else
7619	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7620	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7621	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7622	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7623
7624	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7625	pte_l1_s_proto = L1_S_PROTO_armv6;
7626	pte_l1_c_proto = L1_C_PROTO_armv6;
7627	pte_l2_s_proto = L2_S_PROTO_armv6n;
7628#endif
7629
7630	pmap_copy_page_func = pmap_copy_page_generic;
7631	pmap_zero_page_func = pmap_zero_page_generic;
7632	pmap_needs_pte_sync = 1;
7633}
7634#endif	/* CPU_ARM11MPCORE */
7635
7636
7637#if ARM_MMU_V6 == 1
7638void
7639pmap_pte_init_armv6(void)
7640{
7641	/*
7642	 * The ARMv6-A MMU is mostly compatible with generic. If the
7643	 * AP field is zero, that now means "no access" rather than
7644	 * read-only. The prototypes are a little different because of
7645	 * the XN bit.
7646	 */
7647	pmap_pte_init_generic();
7648
7649	pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7650	pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7651	pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7652
7653#ifdef ARM11_COMPAT_MMU
7654	/* with AP[0..3] */
7655	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7656#else
7657	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
7658	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
7659	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
7660
7661	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7662	pte_l1_s_proto = L1_S_PROTO_armv6;
7663	pte_l1_c_proto = L1_C_PROTO_armv6;
7664	pte_l2_s_proto = L2_S_PROTO_armv6n;
7665
7666	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7667	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7668	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7669	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7670
7671	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7672	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7673	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7674	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7675
7676	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7677	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7678	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7679	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7680
7681#endif
7682}
7683#endif /* ARM_MMU_V6 */
7684
7685#if ARM_MMU_V7 == 1
7686void
7687pmap_pte_init_armv7(void)
7688{
7689	/*
7690	 * The ARMv7-A MMU is mostly compatible with generic. If the
7691	 * AP field is zero, that now means "no access" rather than
7692	 * read-only. The prototypes are a little different because of
7693	 * the XN bit.
7694	 */
7695	pmap_pte_init_generic();
7696
7697	pmap_needs_pte_sync = 1;
7698
7699	pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7700	pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7701	pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7702
7703	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7704	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7705	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7706
7707	/*
7708	 * If the core support coherent walk then updates to translation tables
7709	 * do not require a clean to the point of unification to ensure
7710	 * visibility by subsequent translation table walks.  That means we can
7711	 * map everything shareable and cached and the right thing will happen.
7712	 */
7713        if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7714		pmap_needs_pte_sync = 0;
7715
7716		/*
7717		 * write-back, no write-allocate, shareable for normal pages.
7718		 */
7719		pte_l1_s_cache_mode |= L1_S_V6_S;
7720		pte_l2_l_cache_mode |= L2_XS_S;
7721		pte_l2_s_cache_mode |= L2_XS_S;
7722	}
7723
7724	/*
7725	 * Page tables are just all other memory.  We can use write-back since
7726	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7727	 */
7728	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7729	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7730	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7731
7732	/*
7733	 * Check the Memory Model Features to see if this CPU supports
7734	 * the TLBIASID coproc op.
7735	 */
7736	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7737		arm_has_tlbiasid_p = true;
7738	} else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7739		arm_has_tlbiasid_p = true;
7740	}
7741
7742	/*
7743	 * Check the MPIDR to see if this CPU supports MP extensions.
7744	 */
7745#ifdef MULTIPROCESSOR
7746	arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7747#else
7748	arm_has_mpext_p = false;
7749#endif
7750
7751	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7752	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7753	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7754	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7755
7756	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7757	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7758	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7759	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7760
7761	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7762	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7763	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7764	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7765
7766	pte_l1_ss_proto = L1_SS_PROTO_armv7;
7767	pte_l1_s_proto = L1_S_PROTO_armv7;
7768	pte_l1_c_proto = L1_C_PROTO_armv7;
7769	pte_l2_s_proto = L2_S_PROTO_armv7;
7770
7771}
7772#endif /* ARM_MMU_V7 */
7773
7774/*
7775 * return the PA of the current L1 table, for use when handling a crash dump
7776 */
7777uint32_t
7778pmap_kernel_L1_addr(void)
7779{
7780#ifdef ARM_MMU_EXTENDED
7781	return pmap_kernel()->pm_l1_pa;
7782#else
7783	return pmap_kernel()->pm_l1->l1_physaddr;
7784#endif
7785}
7786
7787#if defined(DDB)
7788/*
7789 * A couple of ddb-callable functions for dumping pmaps
7790 */
7791void pmap_dump(pmap_t);
7792
7793static pt_entry_t ncptes[64];
7794static void pmap_dump_ncpg(pmap_t);
7795
7796void
7797pmap_dump(pmap_t pm)
7798{
7799	struct l2_dtable *l2;
7800	struct l2_bucket *l2b;
7801	pt_entry_t *ptep, pte;
7802	vaddr_t l2_va, l2b_va, va;
7803	int i, j, k, occ, rows = 0;
7804
7805	if (pm == pmap_kernel())
7806		printf("pmap_kernel (%p): ", pm);
7807	else
7808		printf("user pmap (%p): ", pm);
7809
7810#ifdef ARM_MMU_EXTENDED
7811	printf("l1 at %p\n", pmap_l1_kva(pm));
7812#else
7813	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7814#endif
7815
7816	l2_va = 0;
7817	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7818		l2 = pm->pm_l2[i];
7819
7820		if (l2 == NULL || l2->l2_occupancy == 0)
7821			continue;
7822
7823		l2b_va = l2_va;
7824		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7825			l2b = &l2->l2_bucket[j];
7826
7827			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7828				continue;
7829
7830			ptep = l2b->l2b_kva;
7831
7832			for (k = 0; k < 256 && ptep[k] == 0; k++)
7833				;
7834
7835			k &= ~63;
7836			occ = l2b->l2b_occupancy;
7837			va = l2b_va + (k * 4096);
7838			for (; k < 256; k++, va += 0x1000) {
7839				char ch = ' ';
7840				if ((k % 64) == 0) {
7841					if ((rows % 8) == 0) {
7842						printf(
7843"          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
7844					}
7845					printf("%08lx: ", va);
7846				}
7847
7848				ncptes[k & 63] = 0;
7849				pte = ptep[k];
7850				if (pte == 0) {
7851					ch = '.';
7852				} else {
7853					occ--;
7854					switch (pte & 0x4c) {
7855					case 0x00:
7856						ch = 'N'; /* No cache No buff */
7857						break;
7858					case 0x04:
7859						ch = 'B'; /* No cache buff */
7860						break;
7861					case 0x08:
7862						ch = 'C'; /* Cache No buff */
7863						break;
7864					case 0x0c:
7865						ch = 'F'; /* Cache Buff */
7866						break;
7867					case 0x40:
7868						ch = 'D';
7869						break;
7870					case 0x48:
7871						ch = 'm'; /* Xscale mini-data */
7872						break;
7873					default:
7874						ch = '?';
7875						break;
7876					}
7877
7878					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7879						ch += 0x20;
7880
7881					if ((pte & 0xc) == 0)
7882						ncptes[k & 63] = pte;
7883				}
7884
7885				if ((k % 64) == 63) {
7886					rows++;
7887					printf("%c\n", ch);
7888					pmap_dump_ncpg(pm);
7889					if (occ == 0)
7890						break;
7891				} else
7892					printf("%c", ch);
7893			}
7894		}
7895	}
7896}
7897
7898static void
7899pmap_dump_ncpg(pmap_t pm)
7900{
7901	struct vm_page *pg;
7902	struct vm_page_md *md;
7903	struct pv_entry *pv;
7904	int i;
7905
7906	for (i = 0; i < 63; i++) {
7907		if (ncptes[i] == 0)
7908			continue;
7909
7910		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7911		if (pg == NULL)
7912			continue;
7913		md = VM_PAGE_TO_MD(pg);
7914
7915		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7916		    VM_PAGE_TO_PHYS(pg),
7917		    md->krw_mappings, md->kro_mappings,
7918		    md->urw_mappings, md->uro_mappings);
7919
7920		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7921			printf("   %c va 0x%08lx, flags 0x%x\n",
7922			    (pm == pv->pv_pmap) ? '*' : ' ',
7923			    pv->pv_va, pv->pv_flags);
7924		}
7925	}
7926}
7927#endif
7928
7929#ifdef PMAP_STEAL_MEMORY
7930void
7931pmap_boot_pageadd(pv_addr_t *newpv)
7932{
7933	pv_addr_t *pv, *npv;
7934
7935	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7936		if (newpv->pv_pa < pv->pv_va) {
7937			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7938			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7939				newpv->pv_size += pv->pv_size;
7940				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7941			}
7942			pv = NULL;
7943		} else {
7944			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7945			     pv = npv) {
7946				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7947				KASSERT(pv->pv_pa < newpv->pv_pa);
7948				if (newpv->pv_pa > npv->pv_pa)
7949					continue;
7950				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7951					pv->pv_size += newpv->pv_size;
7952					return;
7953				}
7954				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7955					break;
7956				newpv->pv_size += npv->pv_size;
7957				SLIST_INSERT_AFTER(pv, newpv, pv_list);
7958				SLIST_REMOVE_AFTER(newpv, pv_list);
7959				return;
7960			}
7961		}
7962	}
7963
7964	if (pv) {
7965		SLIST_INSERT_AFTER(pv, newpv, pv_list);
7966	} else {
7967		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7968	}
7969}
7970
7971void
7972pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7973	pv_addr_t *rpv)
7974{
7975	pv_addr_t *pv, **pvp;
7976
7977	KASSERT(amount & PGOFSET);
7978	KASSERT((mask & PGOFSET) == 0);
7979	KASSERT((match & PGOFSET) == 0);
7980	KASSERT(amount != 0);
7981
7982	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7983	     (pv = *pvp) != NULL;
7984	     pvp = &SLIST_NEXT(pv, pv_list)) {
7985		pv_addr_t *newpv;
7986		psize_t off;
7987		/*
7988		 * If this entry is too small to satisfy the request...
7989		 */
7990		KASSERT(pv->pv_size > 0);
7991		if (pv->pv_size < amount)
7992			continue;
7993
7994		for (off = 0; off <= mask; off += PAGE_SIZE) {
7995			if (((pv->pv_pa + off) & mask) == match
7996			    && off + amount <= pv->pv_size)
7997				break;
7998		}
7999		if (off > mask)
8000			continue;
8001
8002		rpv->pv_va = pv->pv_va + off;
8003		rpv->pv_pa = pv->pv_pa + off;
8004		rpv->pv_size = amount;
8005		pv->pv_size -= amount;
8006		if (pv->pv_size == 0) {
8007			KASSERT(off == 0);
8008			KASSERT((vaddr_t) pv == rpv->pv_va);
8009			*pvp = SLIST_NEXT(pv, pv_list);
8010		} else if (off == 0) {
8011			KASSERT((vaddr_t) pv == rpv->pv_va);
8012			newpv = (pv_addr_t *) (rpv->pv_va + amount);
8013			*newpv = *pv;
8014			newpv->pv_pa += amount;
8015			newpv->pv_va += amount;
8016			*pvp = newpv;
8017		} else if (off < pv->pv_size) {
8018			newpv = (pv_addr_t *) (rpv->pv_va + amount);
8019			*newpv = *pv;
8020			newpv->pv_size -= off;
8021			newpv->pv_pa += off + amount;
8022			newpv->pv_va += off + amount;
8023
8024			SLIST_NEXT(pv, pv_list) = newpv;
8025			pv->pv_size = off;
8026		} else {
8027			KASSERT((vaddr_t) pv != rpv->pv_va);
8028		}
8029		memset((void *)rpv->pv_va, 0, amount);
8030		return;
8031	}
8032
8033	if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
8034		panic("pmap_boot_pagealloc: couldn't allocate memory");
8035
8036	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8037	     (pv = *pvp) != NULL;
8038	     pvp = &SLIST_NEXT(pv, pv_list)) {
8039		if (SLIST_NEXT(pv, pv_list) == NULL)
8040			break;
8041	}
8042	KASSERT(mask == 0);
8043
8044	for (uvm_physseg_t ups = uvm_physseg_get_first();
8045	    uvm_physseg_valid_p(ups);
8046	    ups = uvm_physseg_get_next(ups)) {
8047
8048		paddr_t spn = uvm_physseg_get_start(ups);
8049		paddr_t epn = uvm_physseg_get_end(ups);
8050		if (spn == atop(pv->pv_pa + pv->pv_size)
8051		    && pv->pv_va + pv->pv_size <= ptoa(epn)) {
8052			rpv->pv_va = pv->pv_va;
8053			rpv->pv_pa = pv->pv_pa;
8054			rpv->pv_size = amount;
8055			*pvp = NULL;
8056			pmap_map_chunk(kernel_l1pt.pv_va,
8057			     ptoa(spn) + (pv->pv_va - pv->pv_pa),
8058			     ptoa(spn),
8059			     amount - pv->pv_size,
8060			     VM_PROT_READ|VM_PROT_WRITE,
8061			     PTE_CACHE);
8062
8063			uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
8064			memset((void *)rpv->pv_va, 0, rpv->pv_size);
8065			return;
8066		}
8067	}
8068
8069	panic("pmap_boot_pagealloc: couldn't allocate memory");
8070}
8071
8072vaddr_t
8073pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
8074{
8075	pv_addr_t pv;
8076
8077	pmap_boot_pagealloc(size, 0, 0, &pv);
8078
8079	return pv.pv_va;
8080}
8081#endif /* PMAP_STEAL_MEMORY */
8082
8083SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
8084{
8085	sysctl_createv(clog, 0, NULL, NULL,
8086			CTLFLAG_PERMANENT,
8087			CTLTYPE_NODE, "machdep", NULL,
8088			NULL, 0, NULL, 0,
8089			CTL_MACHDEP, CTL_EOL);
8090
8091	sysctl_createv(clog, 0, NULL, NULL,
8092			CTLFLAG_PERMANENT,
8093			CTLTYPE_INT, "kmpages",
8094			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
8095			NULL, 0, &pmap_kmpages, 0,
8096			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
8097}
8098
8099#ifdef PMAP_NEED_ALLOC_POOLPAGE
8100struct vm_page *
8101arm_pmap_alloc_poolpage(int flags)
8102{
8103	/*
8104	 * On some systems, only some pages may be "coherent" for dma and we
8105	 * want to prefer those for pool pages (think mbufs) but fallback to
8106	 * any page if none is available.
8107	 */
8108	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
8109		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
8110		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
8111	}
8112
8113	return uvm_pagealloc(NULL, 0, NULL, flags);
8114}
8115#endif
8116
8117#if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
8118void
8119pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
8120{
8121        /* nothing */
8122}
8123
8124int
8125pic_ipi_shootdown(void *arg)
8126{
8127#if PMAP_TLB_NEED_SHOOTDOWN
8128	pmap_tlb_shootdown_process();
8129#endif
8130	return 1;
8131}
8132#endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
8133
8134
8135#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
8136vaddr_t
8137pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
8138{
8139	bool ok = false;
8140	if (physical_start <= pa && pa < physical_end) {
8141#ifdef KERNEL_BASE_VOFFSET
8142		const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
8143#else
8144		const vaddr_t newva = KERNEL_BASE + pa - physical_start;
8145#endif
8146#ifdef ARM_MMU_EXTENDED
8147		if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
8148#endif
8149			va = newva;
8150			ok = true;
8151#ifdef ARM_MMU_EXTENDED
8152		}
8153#endif
8154	}
8155	KASSERT(ok_p);
8156	*ok_p = ok;
8157	return va;
8158}
8159
8160vaddr_t
8161pmap_map_poolpage(paddr_t pa)
8162{
8163	bool ok __diagused;
8164	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
8165	KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
8166#if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
8167	if (arm_cache_prefer_mask != 0) {
8168		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
8169		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
8170		pmap_acquire_page_lock(md);
8171		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
8172		pmap_release_page_lock(md);
8173	}
8174#endif
8175	return va;
8176}
8177
8178paddr_t
8179pmap_unmap_poolpage(vaddr_t va)
8180{
8181	KASSERT(va >= KERNEL_BASE);
8182#ifdef PMAP_CACHE_VIVT
8183	cpu_idcache_wbinv_range(va, PAGE_SIZE);
8184#endif
8185#if defined(KERNEL_BASE_VOFFSET)
8186        return va - KERNEL_BASE_VOFFSET;
8187#else
8188        return va - KERNEL_BASE + physical_start;
8189#endif
8190}
8191#endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8192