pmap.c revision 1.413 1 /* $NetBSD: pmap.c,v 1.413 2020/05/27 06:41:58 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999, 2020 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /* Include header files */
183
184 #include "opt_arm_debug.h"
185 #include "opt_cpuoptions.h"
186 #include "opt_ddb.h"
187 #include "opt_lockdebug.h"
188 #include "opt_multiprocessor.h"
189
190 #ifdef MULTIPROCESSOR
191 #define _INTR_PRIVATE
192 #endif
193
194 #include <sys/cdefs.h>
195 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.413 2020/05/27 06:41:58 skrll Exp $");
196
197 #include <sys/atomic.h>
198 #include <sys/param.h>
199 #include <sys/types.h>
200 #include <sys/bus.h>
201 #include <sys/cpu.h>
202 #include <sys/intr.h>
203 #include <sys/kernel.h>
204 #include <sys/kernhist.h>
205 #include <sys/kmem.h>
206 #include <sys/pool.h>
207 #include <sys/proc.h>
208 #include <sys/sysctl.h>
209 #include <sys/systm.h>
210
211 #include <uvm/uvm.h>
212 #include <uvm/pmap/pmap_pvt.h>
213
214 #include <arm/locore.h>
215
216 #ifdef DDB
217 #include <arm/db_machdep.h>
218 #endif
219
220 #ifdef VERBOSE_INIT_ARM
221 #define VPRINTF(...) printf(__VA_ARGS__)
222 #else
223 #define VPRINTF(...) __nothing
224 #endif
225
226 /*
227 * pmap_kernel() points here
228 */
229 static struct pmap kernel_pmap_store = {
230 #ifndef ARM_MMU_EXTENDED
231 .pm_activated = true,
232 .pm_domain = PMAP_DOMAIN_KERNEL,
233 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
234 #endif
235 };
236 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
237 #undef pmap_kernel
238 #define pmap_kernel() (&kernel_pmap_store)
239 #ifdef PMAP_NEED_ALLOC_POOLPAGE
240 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
241 #endif
242
243 /*
244 * Pool and cache that pmap structures are allocated from.
245 * We use a cache to avoid clearing the pm_l2[] array (1KB)
246 * in pmap_create().
247 */
248 static struct pool_cache pmap_cache;
249
250 /*
251 * Pool of PV structures
252 */
253 static struct pool pmap_pv_pool;
254 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
255 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
256 static struct pool_allocator pmap_bootstrap_pv_allocator = {
257 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
258 };
259
260 /*
261 * Pool and cache of l2_dtable structures.
262 * We use a cache to avoid clearing the structures when they're
263 * allocated. (196 bytes)
264 */
265 static struct pool_cache pmap_l2dtable_cache;
266 static vaddr_t pmap_kernel_l2dtable_kva;
267
268 /*
269 * Pool and cache of L2 page descriptors.
270 * We use a cache to avoid clearing the descriptor table
271 * when they're allocated. (1KB)
272 */
273 static struct pool_cache pmap_l2ptp_cache;
274 static vaddr_t pmap_kernel_l2ptp_kva;
275 static paddr_t pmap_kernel_l2ptp_phys;
276
277 #ifdef PMAPCOUNTERS
278 #define PMAP_EVCNT_INITIALIZER(name) \
279 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
280
281 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
282 static struct evcnt pmap_ev_vac_clean_one =
283 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
284 static struct evcnt pmap_ev_vac_flush_one =
285 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
286 static struct evcnt pmap_ev_vac_flush_lots =
287 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
288 static struct evcnt pmap_ev_vac_flush_lots2 =
289 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
290 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
291 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
292 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
293 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
294
295 static struct evcnt pmap_ev_vac_color_new =
296 PMAP_EVCNT_INITIALIZER("new page color");
297 static struct evcnt pmap_ev_vac_color_reuse =
298 PMAP_EVCNT_INITIALIZER("ok first page color");
299 static struct evcnt pmap_ev_vac_color_ok =
300 PMAP_EVCNT_INITIALIZER("ok page color");
301 static struct evcnt pmap_ev_vac_color_blind =
302 PMAP_EVCNT_INITIALIZER("blind page color");
303 static struct evcnt pmap_ev_vac_color_change =
304 PMAP_EVCNT_INITIALIZER("change page color");
305 static struct evcnt pmap_ev_vac_color_erase =
306 PMAP_EVCNT_INITIALIZER("erase page color");
307 static struct evcnt pmap_ev_vac_color_none =
308 PMAP_EVCNT_INITIALIZER("no page color");
309 static struct evcnt pmap_ev_vac_color_restore =
310 PMAP_EVCNT_INITIALIZER("restore page color");
311
312 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
313 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
314 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
315 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
316 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
317 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
318 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
319 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
320 #endif
321
322 static struct evcnt pmap_ev_mappings =
323 PMAP_EVCNT_INITIALIZER("pages mapped");
324 static struct evcnt pmap_ev_unmappings =
325 PMAP_EVCNT_INITIALIZER("pages unmapped");
326 static struct evcnt pmap_ev_remappings =
327 PMAP_EVCNT_INITIALIZER("pages remapped");
328
329 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
330 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
331 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
332
333 static struct evcnt pmap_ev_kernel_mappings =
334 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
335 static struct evcnt pmap_ev_kernel_unmappings =
336 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
337 static struct evcnt pmap_ev_kernel_remappings =
338 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
339
340 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
341 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
342 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
343
344 static struct evcnt pmap_ev_kenter_mappings =
345 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
346 static struct evcnt pmap_ev_kenter_unmappings =
347 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
348 static struct evcnt pmap_ev_kenter_remappings =
349 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
350 static struct evcnt pmap_ev_pt_mappings =
351 PMAP_EVCNT_INITIALIZER("page table pages mapped");
352
353 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
354 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
355 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
356 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
357
358 static struct evcnt pmap_ev_fixup_mod =
359 PMAP_EVCNT_INITIALIZER("page modification emulations");
360 static struct evcnt pmap_ev_fixup_ref =
361 PMAP_EVCNT_INITIALIZER("page reference emulations");
362 static struct evcnt pmap_ev_fixup_exec =
363 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
364 static struct evcnt pmap_ev_fixup_pdes =
365 PMAP_EVCNT_INITIALIZER("pdes fixed up");
366 #ifndef ARM_MMU_EXTENDED
367 static struct evcnt pmap_ev_fixup_ptesync =
368 PMAP_EVCNT_INITIALIZER("ptesync fixed");
369 #endif
370
371 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
372 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
373 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
374 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
375 #ifndef ARM_MMU_EXTENDED
376 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
377 #endif
378
379 #ifdef PMAP_CACHE_VIPT
380 static struct evcnt pmap_ev_exec_mappings =
381 PMAP_EVCNT_INITIALIZER("exec pages mapped");
382 static struct evcnt pmap_ev_exec_cached =
383 PMAP_EVCNT_INITIALIZER("exec pages cached");
384
385 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
386 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
387
388 static struct evcnt pmap_ev_exec_synced =
389 PMAP_EVCNT_INITIALIZER("exec pages synced");
390 static struct evcnt pmap_ev_exec_synced_map =
391 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
392 static struct evcnt pmap_ev_exec_synced_unmap =
393 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
394 static struct evcnt pmap_ev_exec_synced_remap =
395 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
396 static struct evcnt pmap_ev_exec_synced_clearbit =
397 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
398 #ifndef ARM_MMU_EXTENDED
399 static struct evcnt pmap_ev_exec_synced_kremove =
400 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
401 #endif
402
403 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
404 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
405 #ifndef ARM_MMU_EXTENDED
406 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
407 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
408 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
409 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
410 #endif
411
412 static struct evcnt pmap_ev_exec_discarded_unmap =
413 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
414 static struct evcnt pmap_ev_exec_discarded_zero =
415 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
416 static struct evcnt pmap_ev_exec_discarded_copy =
417 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
418 static struct evcnt pmap_ev_exec_discarded_page_protect =
419 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
420 static struct evcnt pmap_ev_exec_discarded_clearbit =
421 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
422 static struct evcnt pmap_ev_exec_discarded_kremove =
423 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
424 #ifdef ARM_MMU_EXTENDED
425 static struct evcnt pmap_ev_exec_discarded_modfixup =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
427 #endif
428
429 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
430 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
435 #ifdef ARM_MMU_EXTENDED
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
437 #endif
438 #endif /* PMAP_CACHE_VIPT */
439
440 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
441 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
442 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
443
444 EVCNT_ATTACH_STATIC(pmap_ev_updates);
445 EVCNT_ATTACH_STATIC(pmap_ev_collects);
446 EVCNT_ATTACH_STATIC(pmap_ev_activations);
447
448 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
449 #else
450 #define PMAPCOUNT(x) ((void)0)
451 #endif
452
453 #ifdef ARM_MMU_EXTENDED
454 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
455 void pmap_md_pdetab_deactivate(pmap_t pm);
456 #endif
457
458 /*
459 * pmap copy/zero page, and mem(5) hook point
460 */
461 static pt_entry_t *csrc_pte, *cdst_pte;
462 static vaddr_t csrcp, cdstp;
463 #ifdef MULTIPROCESSOR
464 static size_t cnptes;
465 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
466 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
467 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
468 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
469 #else
470 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
471 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
472 #define cpu_csrcp(o) (csrcp + (o))
473 #define cpu_cdstp(o) (cdstp + (o))
474 #endif
475 vaddr_t memhook; /* used by mem.c & others */
476 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
477 kmutex_t pmap_lock __cacheline_aligned;
478 kmutex_t kpm_lock __cacheline_aligned;
479 extern void *msgbufaddr;
480 int pmap_kmpages;
481 /*
482 * Flag to indicate if pmap_init() has done its thing
483 */
484 bool pmap_initialized;
485
486 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
487 /*
488 * Virtual end of direct-mapped memory
489 */
490 vaddr_t pmap_directlimit;
491 #endif
492
493 /*
494 * Misc. locking data structures
495 */
496
497 static inline void
498 pmap_acquire_pmap_lock(pmap_t pm)
499 {
500 #if defined(MULTIPROCESSOR) && defined(DDB)
501 if (__predict_false(db_onproc != NULL))
502 return;
503 #endif
504
505 mutex_enter(&pm->pm_lock);
506 }
507
508 static inline void
509 pmap_release_pmap_lock(pmap_t pm)
510 {
511 #if defined(MULTIPROCESSOR) && defined(DDB)
512 if (__predict_false(db_onproc != NULL))
513 return;
514 #endif
515 mutex_exit(&pm->pm_lock);
516 }
517
518 static inline void
519 pmap_acquire_page_lock(struct vm_page_md *md)
520 {
521 mutex_enter(&pmap_lock);
522 }
523
524 static inline void
525 pmap_release_page_lock(struct vm_page_md *md)
526 {
527 mutex_exit(&pmap_lock);
528 }
529
530 #ifdef DIAGNOSTIC
531 static inline int
532 pmap_page_locked_p(struct vm_page_md *md)
533 {
534 return mutex_owned(&pmap_lock);
535 }
536 #endif
537
538
539 /*
540 * Metadata for L1 translation tables.
541 */
542 #ifndef ARM_MMU_EXTENDED
543 struct l1_ttable {
544 /* Entry on the L1 Table list */
545 SLIST_ENTRY(l1_ttable) l1_link;
546
547 /* Entry on the L1 Least Recently Used list */
548 TAILQ_ENTRY(l1_ttable) l1_lru;
549
550 /* Track how many domains are allocated from this L1 */
551 volatile u_int l1_domain_use_count;
552
553 /*
554 * A free-list of domain numbers for this L1.
555 * We avoid using ffs() and a bitmap to track domains since ffs()
556 * is slow on ARM.
557 */
558 uint8_t l1_domain_first;
559 uint8_t l1_domain_free[PMAP_DOMAINS];
560
561 /* Physical address of this L1 page table */
562 paddr_t l1_physaddr;
563
564 /* KVA of this L1 page table */
565 pd_entry_t *l1_kva;
566 };
567
568 /*
569 * L1 Page Tables are tracked using a Least Recently Used list.
570 * - New L1s are allocated from the HEAD.
571 * - Freed L1s are added to the TAIL.
572 * - Recently accessed L1s (where an 'access' is some change to one of
573 * the userland pmaps which owns this L1) are moved to the TAIL.
574 */
575 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
576 static kmutex_t l1_lru_lock __cacheline_aligned;
577
578 /*
579 * A list of all L1 tables
580 */
581 static SLIST_HEAD(, l1_ttable) l1_list;
582 #endif /* ARM_MMU_EXTENDED */
583
584 /*
585 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
586 *
587 * This is normally 16MB worth L2 page descriptors for any given pmap.
588 * Reference counts are maintained for L2 descriptors so they can be
589 * freed when empty.
590 */
591 struct l2_bucket {
592 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
593 paddr_t l2b_pa; /* Physical address of same */
594 u_short l2b_l1slot; /* This L2 table's L1 index */
595 u_short l2b_occupancy; /* How many active descriptors */
596 };
597
598 struct l2_dtable {
599 /* The number of L2 page descriptors allocated to this l2_dtable */
600 u_int l2_occupancy;
601
602 /* List of L2 page descriptors */
603 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
604 };
605
606 /*
607 * Given an L1 table index, calculate the corresponding l2_dtable index
608 * and bucket index within the l2_dtable.
609 */
610 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
611 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
612 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
613 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
614 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
615
616 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
617 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
618
619 /*
620 * Given a virtual address, this macro returns the
621 * virtual address required to drop into the next L2 bucket.
622 */
623 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
624
625 /*
626 * L2 allocation.
627 */
628 #define pmap_alloc_l2_dtable() \
629 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
630 #define pmap_free_l2_dtable(l2) \
631 pool_cache_put(&pmap_l2dtable_cache, (l2))
632 #define pmap_alloc_l2_ptp(pap) \
633 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
634 PR_NOWAIT, (pap)))
635
636 /*
637 * We try to map the page tables write-through, if possible. However, not
638 * all CPUs have a write-through cache mode, so on those we have to sync
639 * the cache when we frob page tables.
640 *
641 * We try to evaluate this at compile time, if possible. However, it's
642 * not always possible to do that, hence this run-time var.
643 */
644 int pmap_needs_pte_sync;
645
646 /*
647 * Real definition of pv_entry.
648 */
649 struct pv_entry {
650 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
651 pmap_t pv_pmap; /* pmap where mapping lies */
652 vaddr_t pv_va; /* virtual address for mapping */
653 u_int pv_flags; /* flags */
654 };
655
656 /*
657 * Macros to determine if a mapping might be resident in the
658 * instruction/data cache and/or TLB
659 */
660 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
661 /*
662 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
663 * there are no explicit accesses, so there may be always be TLB entries to
664 * flush. If we used ASIDs then this would not be a problem.
665 */
666 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
667 #define PV_BEEN_REFD(f) (true)
668 #else
669 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
670 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
671 #endif
672 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
673 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
674 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
675
676 /*
677 * Local prototypes
678 */
679 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
680 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
681 pt_entry_t **);
682 static bool pmap_is_current(pmap_t) __unused;
683 static bool pmap_is_cached(pmap_t);
684 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
685 pmap_t, vaddr_t, u_int);
686 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
687 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
688 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
689 u_int, u_int);
690
691 static void pmap_pinit(pmap_t);
692 static int pmap_pmap_ctor(void *, void *, int);
693
694 static void pmap_alloc_l1(pmap_t);
695 static void pmap_free_l1(pmap_t);
696 #ifndef ARM_MMU_EXTENDED
697 static void pmap_use_l1(pmap_t);
698 #endif
699
700 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
701 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
702 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
703 static int pmap_l2ptp_ctor(void *, void *, int);
704 static int pmap_l2dtable_ctor(void *, void *, int);
705
706 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
707 #ifdef PMAP_CACHE_VIVT
708 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
709 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
710 #endif
711
712 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
713 #ifdef PMAP_CACHE_VIVT
714 static bool pmap_clean_page(struct vm_page_md *, bool);
715 #endif
716 #ifdef PMAP_CACHE_VIPT
717 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
718 enum pmap_flush_op {
719 PMAP_FLUSH_PRIMARY,
720 PMAP_FLUSH_SECONDARY,
721 PMAP_CLEAN_PRIMARY
722 };
723 #ifndef ARM_MMU_EXTENDED
724 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
725 #endif
726 #endif
727 static void pmap_page_remove(struct vm_page_md *, paddr_t);
728 static void pmap_pv_remove(paddr_t);
729
730 #ifndef ARM_MMU_EXTENDED
731 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
732 #endif
733 static vaddr_t kernel_pt_lookup(paddr_t);
734
735 #ifdef ARM_MMU_EXTENDED
736 static struct pool_cache pmap_l1tt_cache;
737
738 static int pmap_l1tt_ctor(void *, void *, int);
739 static void * pmap_l1tt_alloc(struct pool *, int);
740 static void pmap_l1tt_free(struct pool *, void *);
741
742 static struct pool_allocator pmap_l1tt_allocator = {
743 .pa_alloc = pmap_l1tt_alloc,
744 .pa_free = pmap_l1tt_free,
745 .pa_pagesz = L1TT_SIZE,
746 };
747 #endif
748
749 /*
750 * Misc variables
751 */
752 vaddr_t virtual_avail;
753 vaddr_t virtual_end;
754 vaddr_t pmap_curmaxkvaddr;
755
756 paddr_t avail_start;
757 paddr_t avail_end;
758
759 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
760 pv_addr_t kernelpages;
761 pv_addr_t kernel_l1pt;
762 pv_addr_t systempage;
763
764 #ifdef PMAP_CACHE_VIPT
765 #define PMAP_VALIDATE_MD_PAGE(md) \
766 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
767 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
768 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
769 #endif /* PMAP_CACHE_VIPT */
770 /*
771 * A bunch of routines to conditionally flush the caches/TLB depending
772 * on whether the specified pmap actually needs to be flushed at any
773 * given time.
774 */
775 static inline void
776 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
777 {
778 #ifdef ARM_MMU_EXTENDED
779 pmap_tlb_invalidate_addr(pm, va);
780 #else
781 if (pm->pm_cstate.cs_tlb_id != 0) {
782 if (PV_BEEN_EXECD(flags)) {
783 cpu_tlb_flushID_SE(va);
784 } else if (PV_BEEN_REFD(flags)) {
785 cpu_tlb_flushD_SE(va);
786 }
787 }
788 #endif /* ARM_MMU_EXTENDED */
789 }
790
791 #ifndef ARM_MMU_EXTENDED
792 static inline void
793 pmap_tlb_flushID(pmap_t pm)
794 {
795 if (pm->pm_cstate.cs_tlb_id) {
796 cpu_tlb_flushID();
797 #if ARM_MMU_V7 == 0
798 /*
799 * Speculative loads by Cortex cores can cause TLB entries to
800 * be filled even if there are no explicit accesses, so there
801 * may be always be TLB entries to flush. If we used ASIDs
802 * then it would not be a problem.
803 * This is not true for other CPUs.
804 */
805 pm->pm_cstate.cs_tlb = 0;
806 #endif /* ARM_MMU_V7 */
807 }
808 }
809
810 static inline void
811 pmap_tlb_flushD(pmap_t pm)
812 {
813 if (pm->pm_cstate.cs_tlb_d) {
814 cpu_tlb_flushD();
815 #if ARM_MMU_V7 == 0
816 /*
817 * Speculative loads by Cortex cores can cause TLB entries to
818 * be filled even if there are no explicit accesses, so there
819 * may be always be TLB entries to flush. If we used ASIDs
820 * then it would not be a problem.
821 * This is not true for other CPUs.
822 */
823 pm->pm_cstate.cs_tlb_d = 0;
824 #endif /* ARM_MMU_V7 */
825 }
826 }
827 #endif /* ARM_MMU_EXTENDED */
828
829 #ifdef PMAP_CACHE_VIVT
830 static inline void
831 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
832 {
833 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
834 cpu_idcache_wbinv_range(va, PAGE_SIZE);
835 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
836 if (do_inv) {
837 if (flags & PVF_WRITE)
838 cpu_dcache_wbinv_range(va, PAGE_SIZE);
839 else
840 cpu_dcache_inv_range(va, PAGE_SIZE);
841 } else if (flags & PVF_WRITE) {
842 cpu_dcache_wb_range(va, PAGE_SIZE);
843 }
844 }
845 }
846
847 static inline void
848 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
849 {
850 if (PV_BEEN_EXECD(flags)) {
851 if (pm->pm_cstate.cs_cache_id) {
852 cpu_idcache_wbinv_all();
853 pm->pm_cstate.cs_cache = 0;
854 }
855 } else if (pm->pm_cstate.cs_cache_d) {
856 cpu_dcache_wbinv_all();
857 pm->pm_cstate.cs_cache_d = 0;
858 }
859 }
860 #endif /* PMAP_CACHE_VIVT */
861
862 static inline uint8_t
863 pmap_domain(pmap_t pm)
864 {
865 #ifdef ARM_MMU_EXTENDED
866 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
867 #else
868 return pm->pm_domain;
869 #endif
870 }
871
872 static inline pd_entry_t *
873 pmap_l1_kva(pmap_t pm)
874 {
875 #ifdef ARM_MMU_EXTENDED
876 return pm->pm_l1;
877 #else
878 return pm->pm_l1->l1_kva;
879 #endif
880 }
881
882 static inline bool
883 pmap_is_current(pmap_t pm)
884 {
885 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
886 return true;
887
888 return false;
889 }
890
891 static inline bool
892 pmap_is_cached(pmap_t pm)
893 {
894 #ifdef ARM_MMU_EXTENDED
895 if (pm == pmap_kernel())
896 return true;
897 #ifdef MULTIPROCESSOR
898 // Is this pmap active on any CPU?
899 if (!kcpuset_iszero(pm->pm_active))
900 return true;
901 #else
902 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
903 // Is this pmap active?
904 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
905 return true;
906 #endif
907 #else
908 struct cpu_info * const ci = curcpu();
909 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
910 || ci->ci_pmap_lastuser == pm)
911 return true;
912 #endif /* ARM_MMU_EXTENDED */
913
914 return false;
915 }
916
917 /*
918 * PTE_SYNC_CURRENT:
919 *
920 * Make sure the pte is written out to RAM.
921 * We need to do this for one of two cases:
922 * - We're dealing with the kernel pmap
923 * - There is no pmap active in the cache/tlb.
924 * - The specified pmap is 'active' in the cache/tlb.
925 */
926
927 #ifdef PMAP_INCLUDE_PTE_SYNC
928 static inline void
929 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
930 {
931 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
932 PTE_SYNC(ptep);
933 arm_dsb();
934 }
935
936 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
937 #else
938 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
939 #endif
940
941 /*
942 * main pv_entry manipulation functions:
943 * pmap_enter_pv: enter a mapping onto a vm_page list
944 * pmap_remove_pv: remove a mapping from a vm_page list
945 *
946 * NOTE: pmap_enter_pv expects to lock the pvh itself
947 * pmap_remove_pv expects the caller to lock the pvh before calling
948 */
949
950 /*
951 * pmap_enter_pv: enter a mapping onto a vm_page lst
952 *
953 * => caller should hold the proper lock on pmap_main_lock
954 * => caller should have pmap locked
955 * => we will gain the lock on the vm_page and allocate the new pv_entry
956 * => caller should adjust ptp's wire_count before calling
957 * => caller should not adjust pmap's wire_count
958 */
959 static void
960 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
961 vaddr_t va, u_int flags)
962 {
963 UVMHIST_FUNC(__func__);
964 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
965 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
966 UVMHIST_LOG(maphist, "...pv %#jx flags %#jx",
967 (uintptr_t)pv, flags, 0, 0);
968
969 struct pv_entry **pvp;
970
971 pv->pv_pmap = pm;
972 pv->pv_va = va;
973 pv->pv_flags = flags;
974
975 pvp = &SLIST_FIRST(&md->pvh_list);
976 #ifdef PMAP_CACHE_VIPT
977 /*
978 * Insert unmanaged entries, writeable first, at the head of
979 * the pv list.
980 */
981 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
982 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
983 pvp = &SLIST_NEXT(*pvp, pv_link);
984 }
985 if (!PV_IS_WRITE_P(flags)) {
986 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
987 pvp = &SLIST_NEXT(*pvp, pv_link);
988 }
989 #endif
990 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
991 *pvp = pv; /* ... locked list */
992 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
993 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
994 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
995 md->pvh_attrs |= PVF_KMOD;
996 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
997 md->pvh_attrs |= PVF_DIRTY;
998 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
999 #endif
1000 if (pm == pmap_kernel()) {
1001 PMAPCOUNT(kernel_mappings);
1002 if (flags & PVF_WRITE)
1003 md->krw_mappings++;
1004 else
1005 md->kro_mappings++;
1006 } else {
1007 if (flags & PVF_WRITE)
1008 md->urw_mappings++;
1009 else
1010 md->uro_mappings++;
1011 }
1012
1013 #ifdef PMAP_CACHE_VIPT
1014 #ifndef ARM_MMU_EXTENDED
1015 /*
1016 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1017 * do it here as well to keep the mappings & KVF_WRITE consistent.
1018 */
1019 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1020 md->pvh_attrs |= PVF_WRITE;
1021 }
1022 #endif
1023 /*
1024 * If this is an exec mapping and its the first exec mapping
1025 * for this page, make sure to sync the I-cache.
1026 */
1027 if (PV_IS_EXEC_P(flags)) {
1028 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1029 pmap_syncicache_page(md, pa);
1030 PMAPCOUNT(exec_synced_map);
1031 }
1032 PMAPCOUNT(exec_mappings);
1033 }
1034 #endif
1035
1036 PMAPCOUNT(mappings);
1037
1038 if (pv->pv_flags & PVF_WIRED)
1039 ++pm->pm_stats.wired_count;
1040 }
1041
1042 /*
1043 *
1044 * pmap_find_pv: Find a pv entry
1045 *
1046 * => caller should hold lock on vm_page
1047 */
1048 static inline struct pv_entry *
1049 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1050 {
1051 struct pv_entry *pv;
1052
1053 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1054 if (pm == pv->pv_pmap && va == pv->pv_va)
1055 break;
1056 }
1057
1058 return pv;
1059 }
1060
1061 /*
1062 * pmap_remove_pv: try to remove a mapping from a pv_list
1063 *
1064 * => caller should hold proper lock on pmap_main_lock
1065 * => pmap should be locked
1066 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1067 * => caller should adjust ptp's wire_count and free PTP if needed
1068 * => caller should NOT adjust pmap's wire_count
1069 * => we return the removed pv
1070 */
1071 static struct pv_entry *
1072 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1073 {
1074 UVMHIST_FUNC(__func__);
1075 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1076 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1077
1078 struct pv_entry *pv, **prevptr;
1079
1080 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1081 pv = *prevptr;
1082
1083 while (pv) {
1084 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1085 UVMHIST_LOG(maphist, "pm %#jx md %#jx flags %#jx",
1086 (uintptr_t)pm, (uintptr_t)md, pv->pv_flags, 0);
1087 if (pv->pv_flags & PVF_WIRED) {
1088 --pm->pm_stats.wired_count;
1089 }
1090 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1091 if (pm == pmap_kernel()) {
1092 PMAPCOUNT(kernel_unmappings);
1093 if (pv->pv_flags & PVF_WRITE)
1094 md->krw_mappings--;
1095 else
1096 md->kro_mappings--;
1097 } else {
1098 if (pv->pv_flags & PVF_WRITE)
1099 md->urw_mappings--;
1100 else
1101 md->uro_mappings--;
1102 }
1103
1104 PMAPCOUNT(unmappings);
1105 #ifdef PMAP_CACHE_VIPT
1106 /*
1107 * If this page has had an exec mapping, then if
1108 * this was the last mapping, discard the contents,
1109 * otherwise sync the i-cache for this page.
1110 */
1111 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1112 if (SLIST_EMPTY(&md->pvh_list)) {
1113 md->pvh_attrs &= ~PVF_EXEC;
1114 PMAPCOUNT(exec_discarded_unmap);
1115 } else if (pv->pv_flags & PVF_WRITE) {
1116 pmap_syncicache_page(md, pa);
1117 PMAPCOUNT(exec_synced_unmap);
1118 }
1119 }
1120 #endif /* PMAP_CACHE_VIPT */
1121 break;
1122 }
1123 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1124 pv = *prevptr; /* advance */
1125 }
1126
1127 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1128 /*
1129 * If we no longer have a WRITEABLE KENTRY at the head of list,
1130 * clear the KMOD attribute from the page.
1131 */
1132 if (SLIST_FIRST(&md->pvh_list) == NULL
1133 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1134 md->pvh_attrs &= ~PVF_KMOD;
1135
1136 /*
1137 * If this was a writeable page and there are no more writeable
1138 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1139 * the contents to memory.
1140 */
1141 if (arm_cache_prefer_mask != 0) {
1142 if (md->krw_mappings + md->urw_mappings == 0)
1143 md->pvh_attrs &= ~PVF_WRITE;
1144 PMAP_VALIDATE_MD_PAGE(md);
1145 }
1146 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1147 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1148
1149 /* return removed pv */
1150 return pv;
1151 }
1152
1153 /*
1154 *
1155 * pmap_modify_pv: Update pv flags
1156 *
1157 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1158 * => caller should NOT adjust pmap's wire_count
1159 * => caller must call pmap_vac_me_harder() if writable status of a page
1160 * may have changed.
1161 * => we return the old flags
1162 *
1163 * Modify a physical-virtual mapping in the pv table
1164 */
1165 static u_int
1166 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1167 u_int clr_mask, u_int set_mask)
1168 {
1169 struct pv_entry *npv;
1170 u_int flags, oflags;
1171 UVMHIST_FUNC(__func__);
1172 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1173 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1174 UVMHIST_LOG(maphist, "... clr %#jx set %#jx", clr_mask, set_mask, 0, 0);
1175
1176 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1177 KASSERT(!PV_IS_KENTRY_P(set_mask));
1178
1179 if ((npv = pmap_find_pv(md, pm, va)) == NULL) {
1180 UVMHIST_LOG(maphist, "<--- done (not found)", 0, 0, 0, 0);
1181 return 0;
1182 }
1183
1184 /*
1185 * There is at least one VA mapping this page.
1186 */
1187
1188 if (clr_mask & (PVF_REF | PVF_MOD)) {
1189 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1190 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1191 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1192 md->pvh_attrs |= PVF_DIRTY;
1193 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1194 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1195 }
1196
1197 oflags = npv->pv_flags;
1198 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1199
1200 if ((flags ^ oflags) & PVF_WIRED) {
1201 if (flags & PVF_WIRED)
1202 ++pm->pm_stats.wired_count;
1203 else
1204 --pm->pm_stats.wired_count;
1205 }
1206
1207 if ((flags ^ oflags) & PVF_WRITE) {
1208 if (pm == pmap_kernel()) {
1209 if (flags & PVF_WRITE) {
1210 md->krw_mappings++;
1211 md->kro_mappings--;
1212 } else {
1213 md->kro_mappings++;
1214 md->krw_mappings--;
1215 }
1216 } else {
1217 if (flags & PVF_WRITE) {
1218 md->urw_mappings++;
1219 md->uro_mappings--;
1220 } else {
1221 md->uro_mappings++;
1222 md->urw_mappings--;
1223 }
1224 }
1225 }
1226 #ifdef PMAP_CACHE_VIPT
1227 if (arm_cache_prefer_mask != 0) {
1228 if (md->urw_mappings + md->krw_mappings == 0) {
1229 md->pvh_attrs &= ~PVF_WRITE;
1230 } else {
1231 md->pvh_attrs |= PVF_WRITE;
1232 }
1233 }
1234 /*
1235 * We have two cases here: the first is from enter_pv (new exec
1236 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1237 * Since in latter, pmap_enter_pv won't do anything, we just have
1238 * to do what pmap_remove_pv would do.
1239 */
1240 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1241 || (PV_IS_EXEC_P(md->pvh_attrs)
1242 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1243 pmap_syncicache_page(md, pa);
1244 PMAPCOUNT(exec_synced_remap);
1245 }
1246 #ifndef ARM_MMU_EXTENDED
1247 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1248 #endif /* !ARM_MMU_EXTENDED */
1249 #endif /* PMAP_CACHE_VIPT */
1250
1251 PMAPCOUNT(remappings);
1252
1253 UVMHIST_LOG(maphist, "<--- done", 0, 0, 0, 0);
1254
1255 return oflags;
1256 }
1257
1258
1259 #if defined(ARM_MMU_EXTENDED)
1260 int
1261 pmap_maxproc_set(int nmaxproc)
1262 {
1263 static const char pmap_l1ttpool_warnmsg[] =
1264 "WARNING: l1ttpool limit reached; increase kern.maxproc";
1265
1266 pool_cache_prime(&pmap_l1tt_cache, nmaxproc);
1267
1268 /*
1269 * Set the hard limit on the pmap_l1tt_cache to the number
1270 * of processes the kernel is to support. Log the limit
1271 * reached message max once a minute.
1272 */
1273 pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
1274 pmap_l1ttpool_warnmsg, 60);
1275
1276 return 0;
1277 }
1278
1279 #endif
1280
1281 /*
1282 * Allocate an L1 translation table for the specified pmap.
1283 * This is called at pmap creation time.
1284 */
1285 static void
1286 pmap_alloc_l1(pmap_t pm)
1287 {
1288 #ifdef ARM_MMU_EXTENDED
1289 vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
1290 &pm->pm_l1_pa);
1291
1292 pm->pm_l1 = (pd_entry_t *)va;
1293 PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
1294 #else
1295 struct l1_ttable *l1;
1296 uint8_t domain;
1297
1298 /*
1299 * Remove the L1 at the head of the LRU list
1300 */
1301 mutex_spin_enter(&l1_lru_lock);
1302 l1 = TAILQ_FIRST(&l1_lru_list);
1303 KDASSERT(l1 != NULL);
1304 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1305
1306 /*
1307 * Pick the first available domain number, and update
1308 * the link to the next number.
1309 */
1310 domain = l1->l1_domain_first;
1311 l1->l1_domain_first = l1->l1_domain_free[domain];
1312
1313 /*
1314 * If there are still free domain numbers in this L1,
1315 * put it back on the TAIL of the LRU list.
1316 */
1317 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1318 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1319
1320 mutex_spin_exit(&l1_lru_lock);
1321
1322 /*
1323 * Fix up the relevant bits in the pmap structure
1324 */
1325 pm->pm_l1 = l1;
1326 pm->pm_domain = domain + 1;
1327 #endif
1328 }
1329
1330 /*
1331 * Free an L1 translation table.
1332 * This is called at pmap destruction time.
1333 */
1334 static void
1335 pmap_free_l1(pmap_t pm)
1336 {
1337 #ifdef ARM_MMU_EXTENDED
1338 pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
1339
1340 pm->pm_l1 = NULL;
1341 pm->pm_l1_pa = 0;
1342 #else
1343 struct l1_ttable *l1 = pm->pm_l1;
1344
1345 mutex_spin_enter(&l1_lru_lock);
1346
1347 /*
1348 * If this L1 is currently on the LRU list, remove it.
1349 */
1350 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1351 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1352
1353 /*
1354 * Free up the domain number which was allocated to the pmap
1355 */
1356 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1357 l1->l1_domain_first = pmap_domain(pm) - 1;
1358 l1->l1_domain_use_count--;
1359
1360 /*
1361 * The L1 now must have at least 1 free domain, so add
1362 * it back to the LRU list. If the use count is zero,
1363 * put it at the head of the list, otherwise it goes
1364 * to the tail.
1365 */
1366 if (l1->l1_domain_use_count == 0)
1367 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1368 else
1369 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1370
1371 mutex_spin_exit(&l1_lru_lock);
1372 #endif /* ARM_MMU_EXTENDED */
1373 }
1374
1375 #ifndef ARM_MMU_EXTENDED
1376 static inline void
1377 pmap_use_l1(pmap_t pm)
1378 {
1379 struct l1_ttable *l1;
1380
1381 /*
1382 * Do nothing if we're in interrupt context.
1383 * Access to an L1 by the kernel pmap must not affect
1384 * the LRU list.
1385 */
1386 if (cpu_intr_p() || pm == pmap_kernel())
1387 return;
1388
1389 l1 = pm->pm_l1;
1390
1391 /*
1392 * If the L1 is not currently on the LRU list, just return
1393 */
1394 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1395 return;
1396
1397 mutex_spin_enter(&l1_lru_lock);
1398
1399 /*
1400 * Check the use count again, now that we've acquired the lock
1401 */
1402 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1403 mutex_spin_exit(&l1_lru_lock);
1404 return;
1405 }
1406
1407 /*
1408 * Move the L1 to the back of the LRU list
1409 */
1410 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1411 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1412
1413 mutex_spin_exit(&l1_lru_lock);
1414 }
1415 #endif /* !ARM_MMU_EXTENDED */
1416
1417 /*
1418 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1419 *
1420 * Free an L2 descriptor table.
1421 */
1422 static inline void
1423 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1424 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1425 #else
1426 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1427 #endif
1428 {
1429 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1430 /*
1431 * Note: With a write-back cache, we may need to sync this
1432 * L2 table before re-using it.
1433 * This is because it may have belonged to a non-current
1434 * pmap, in which case the cache syncs would have been
1435 * skipped for the pages that were being unmapped. If the
1436 * L2 table were then to be immediately re-allocated to
1437 * the *current* pmap, it may well contain stale mappings
1438 * which have not yet been cleared by a cache write-back
1439 * and so would still be visible to the mmu.
1440 */
1441 if (need_sync)
1442 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1443 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1444 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1445 }
1446
1447 /*
1448 * Returns a pointer to the L2 bucket associated with the specified pmap
1449 * and VA, or NULL if no L2 bucket exists for the address.
1450 */
1451 static inline struct l2_bucket *
1452 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1453 {
1454 const size_t l1slot = l1pte_index(va);
1455 struct l2_dtable *l2;
1456 struct l2_bucket *l2b;
1457
1458 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1459 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1460 return NULL;
1461
1462 return l2b;
1463 }
1464
1465 /*
1466 * Returns a pointer to the L2 bucket associated with the specified pmap
1467 * and VA.
1468 *
1469 * If no L2 bucket exists, perform the necessary allocations to put an L2
1470 * bucket/page table in place.
1471 *
1472 * Note that if a new L2 bucket/page was allocated, the caller *must*
1473 * increment the bucket occupancy counter appropriately *before*
1474 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1475 * the bucket/page in the meantime.
1476 */
1477 static struct l2_bucket *
1478 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1479 {
1480 const size_t l1slot = l1pte_index(va);
1481 struct l2_dtable *l2;
1482
1483 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1484 /*
1485 * No mapping at this address, as there is
1486 * no entry in the L1 table.
1487 * Need to allocate a new l2_dtable.
1488 */
1489 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1490 return NULL;
1491
1492 /*
1493 * Link it into the parent pmap
1494 */
1495 pm->pm_l2[L2_IDX(l1slot)] = l2;
1496 }
1497
1498 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1499
1500 /*
1501 * Fetch pointer to the L2 page table associated with the address.
1502 */
1503 if (l2b->l2b_kva == NULL) {
1504 pt_entry_t *ptep;
1505
1506 /*
1507 * No L2 page table has been allocated. Chances are, this
1508 * is because we just allocated the l2_dtable, above.
1509 */
1510 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1511 /*
1512 * Oops, no more L2 page tables available at this
1513 * time. We may need to deallocate the l2_dtable
1514 * if we allocated a new one above.
1515 */
1516 if (l2->l2_occupancy == 0) {
1517 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1518 pmap_free_l2_dtable(l2);
1519 }
1520 return NULL;
1521 }
1522
1523 l2->l2_occupancy++;
1524 l2b->l2b_kva = ptep;
1525 l2b->l2b_l1slot = l1slot;
1526
1527 #ifdef ARM_MMU_EXTENDED
1528 /*
1529 * We know there will be a mapping here, so simply
1530 * enter this PTP into the L1 now.
1531 */
1532 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1533 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1534 | L1_C_DOM(pmap_domain(pm));
1535 KASSERT(*pdep == 0);
1536 l1pte_setone(pdep, npde);
1537 PDE_SYNC(pdep);
1538 #endif
1539 }
1540
1541 return l2b;
1542 }
1543
1544 /*
1545 * One or more mappings in the specified L2 descriptor table have just been
1546 * invalidated.
1547 *
1548 * Garbage collect the metadata and descriptor table itself if necessary.
1549 *
1550 * The pmap lock must be acquired when this is called (not necessary
1551 * for the kernel pmap).
1552 */
1553 static void
1554 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1555 {
1556 KDASSERT(count <= l2b->l2b_occupancy);
1557
1558 /*
1559 * Update the bucket's reference count according to how many
1560 * PTEs the caller has just invalidated.
1561 */
1562 l2b->l2b_occupancy -= count;
1563
1564 /*
1565 * Note:
1566 *
1567 * Level 2 page tables allocated to the kernel pmap are never freed
1568 * as that would require checking all Level 1 page tables and
1569 * removing any references to the Level 2 page table. See also the
1570 * comment elsewhere about never freeing bootstrap L2 descriptors.
1571 *
1572 * We make do with just invalidating the mapping in the L2 table.
1573 *
1574 * This isn't really a big deal in practice and, in fact, leads
1575 * to a performance win over time as we don't need to continually
1576 * alloc/free.
1577 */
1578 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1579 return;
1580
1581 /*
1582 * There are no more valid mappings in this level 2 page table.
1583 * Go ahead and NULL-out the pointer in the bucket, then
1584 * free the page table.
1585 */
1586 const size_t l1slot = l2b->l2b_l1slot;
1587 pt_entry_t * const ptep = l2b->l2b_kva;
1588 l2b->l2b_kva = NULL;
1589
1590 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1591 pd_entry_t pde __diagused = *pdep;
1592
1593 #ifdef ARM_MMU_EXTENDED
1594 /*
1595 * Invalidate the L1 slot.
1596 */
1597 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1598 #else
1599 /*
1600 * If the L1 slot matches the pmap's domain number, then invalidate it.
1601 */
1602 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1603 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1604 #endif
1605 l1pte_setone(pdep, 0);
1606 PDE_SYNC(pdep);
1607 #ifndef ARM_MMU_EXTENDED
1608 }
1609 #endif
1610
1611 /*
1612 * Release the L2 descriptor table back to the pool cache.
1613 */
1614 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1615 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1616 #else
1617 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1618 #endif
1619
1620 /*
1621 * Update the reference count in the associated l2_dtable
1622 */
1623 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1624 if (--l2->l2_occupancy > 0)
1625 return;
1626
1627 /*
1628 * There are no more valid mappings in any of the Level 1
1629 * slots managed by this l2_dtable. Go ahead and NULL-out
1630 * the pointer in the parent pmap and free the l2_dtable.
1631 */
1632 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1633 pmap_free_l2_dtable(l2);
1634 }
1635
1636 #if defined(ARM_MMU_EXTENDED)
1637 /*
1638 * Pool cache constructors for L1 translation tables
1639 */
1640
1641 static int
1642 pmap_l1tt_ctor(void *arg, void *v, int flags)
1643 {
1644 #ifndef PMAP_INCLUDE_PTE_SYNC
1645 #error not supported
1646 #endif
1647
1648 memset(v, 0, L1TT_SIZE);
1649 PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
1650 return 0;
1651 }
1652 #endif
1653
1654 /*
1655 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1656 * structures.
1657 */
1658 static int
1659 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1660 {
1661 #ifndef PMAP_INCLUDE_PTE_SYNC
1662 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1663
1664 /*
1665 * The mappings for these page tables were initially made using
1666 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1667 * mode will not be right for page table mappings. To avoid
1668 * polluting the pmap_kenter_pa() code with a special case for
1669 * page tables, we simply fix up the cache-mode here if it's not
1670 * correct.
1671 */
1672 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1673 const struct l2_bucket * const l2b =
1674 pmap_get_l2_bucket(pmap_kernel(), va);
1675 KASSERTMSG(l2b != NULL, "%#lx", va);
1676 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1677 const pt_entry_t opte = *ptep;
1678
1679 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1680 /*
1681 * Page tables must have the cache-mode set correctly.
1682 */
1683 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1684 | pte_l2_s_cache_mode_pt;
1685 l2pte_set(ptep, npte, opte);
1686 PTE_SYNC(ptep);
1687 cpu_tlb_flushD_SE(va);
1688 cpu_cpwait();
1689 }
1690 }
1691 #endif
1692
1693 memset(v, 0, L2_TABLE_SIZE_REAL);
1694 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1695 return 0;
1696 }
1697
1698 static int
1699 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1700 {
1701
1702 memset(v, 0, sizeof(struct l2_dtable));
1703 return 0;
1704 }
1705
1706 static int
1707 pmap_pmap_ctor(void *arg, void *v, int flags)
1708 {
1709
1710 memset(v, 0, sizeof(struct pmap));
1711 return 0;
1712 }
1713
1714 static void
1715 pmap_pinit(pmap_t pm)
1716 {
1717 #ifndef ARM_HAS_VBAR
1718 struct l2_bucket *l2b;
1719
1720 if (vector_page < KERNEL_BASE) {
1721 /*
1722 * Map the vector page.
1723 */
1724 pmap_enter(pm, vector_page, systempage.pv_pa,
1725 VM_PROT_READ | VM_PROT_EXECUTE,
1726 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1727 pmap_update(pm);
1728
1729 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1730 l2b = pmap_get_l2_bucket(pm, vector_page);
1731 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1732 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1733 L1_C_DOM(pmap_domain(pm));
1734 } else
1735 pm->pm_pl1vec = NULL;
1736 #endif
1737 }
1738
1739 #ifdef PMAP_CACHE_VIVT
1740 /*
1741 * Since we have a virtually indexed cache, we may need to inhibit caching if
1742 * there is more than one mapping and at least one of them is writable.
1743 * Since we purge the cache on every context switch, we only need to check for
1744 * other mappings within the same pmap, or kernel_pmap.
1745 * This function is also called when a page is unmapped, to possibly reenable
1746 * caching on any remaining mappings.
1747 *
1748 * The code implements the following logic, where:
1749 *
1750 * KW = # of kernel read/write pages
1751 * KR = # of kernel read only pages
1752 * UW = # of user read/write pages
1753 * UR = # of user read only pages
1754 *
1755 * KC = kernel mapping is cacheable
1756 * UC = user mapping is cacheable
1757 *
1758 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1759 * +---------------------------------------------
1760 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1761 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1762 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1763 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1764 */
1765
1766 static const int pmap_vac_flags[4][4] = {
1767 {-1, 0, 0, PVF_KNC},
1768 {0, 0, PVF_NC, PVF_NC},
1769 {0, PVF_NC, PVF_NC, PVF_NC},
1770 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1771 };
1772
1773 static inline int
1774 pmap_get_vac_flags(const struct vm_page_md *md)
1775 {
1776 int kidx, uidx;
1777
1778 kidx = 0;
1779 if (md->kro_mappings || md->krw_mappings > 1)
1780 kidx |= 1;
1781 if (md->krw_mappings)
1782 kidx |= 2;
1783
1784 uidx = 0;
1785 if (md->uro_mappings || md->urw_mappings > 1)
1786 uidx |= 1;
1787 if (md->urw_mappings)
1788 uidx |= 2;
1789
1790 return pmap_vac_flags[uidx][kidx];
1791 }
1792
1793 static inline void
1794 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1795 {
1796 int nattr;
1797
1798 nattr = pmap_get_vac_flags(md);
1799
1800 if (nattr < 0) {
1801 md->pvh_attrs &= ~PVF_NC;
1802 return;
1803 }
1804
1805 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1806 return;
1807
1808 if (pm == pmap_kernel())
1809 pmap_vac_me_kpmap(md, pa, pm, va);
1810 else
1811 pmap_vac_me_user(md, pa, pm, va);
1812
1813 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1814 }
1815
1816 static void
1817 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1818 {
1819 u_int u_cacheable, u_entries;
1820 struct pv_entry *pv;
1821 pmap_t last_pmap = pm;
1822
1823 /*
1824 * Pass one, see if there are both kernel and user pmaps for
1825 * this page. Calculate whether there are user-writable or
1826 * kernel-writable pages.
1827 */
1828 u_cacheable = 0;
1829 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1830 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1831 u_cacheable++;
1832 }
1833
1834 u_entries = md->urw_mappings + md->uro_mappings;
1835
1836 /*
1837 * We know we have just been updating a kernel entry, so if
1838 * all user pages are already cacheable, then there is nothing
1839 * further to do.
1840 */
1841 if (md->k_mappings == 0 && u_cacheable == u_entries)
1842 return;
1843
1844 if (u_entries) {
1845 /*
1846 * Scan over the list again, for each entry, if it
1847 * might not be set correctly, call pmap_vac_me_user
1848 * to recalculate the settings.
1849 */
1850 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1851 /*
1852 * We know kernel mappings will get set
1853 * correctly in other calls. We also know
1854 * that if the pmap is the same as last_pmap
1855 * then we've just handled this entry.
1856 */
1857 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1858 continue;
1859
1860 /*
1861 * If there are kernel entries and this page
1862 * is writable but non-cacheable, then we can
1863 * skip this entry also.
1864 */
1865 if (md->k_mappings &&
1866 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1867 (PVF_NC | PVF_WRITE))
1868 continue;
1869
1870 /*
1871 * Similarly if there are no kernel-writable
1872 * entries and the page is already
1873 * read-only/cacheable.
1874 */
1875 if (md->krw_mappings == 0 &&
1876 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1877 continue;
1878
1879 /*
1880 * For some of the remaining cases, we know
1881 * that we must recalculate, but for others we
1882 * can't tell if they are correct or not, so
1883 * we recalculate anyway.
1884 */
1885 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1886 }
1887
1888 if (md->k_mappings == 0)
1889 return;
1890 }
1891
1892 pmap_vac_me_user(md, pa, pm, va);
1893 }
1894
1895 static void
1896 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1897 {
1898 pmap_t kpmap = pmap_kernel();
1899 struct pv_entry *pv, *npv = NULL;
1900 u_int entries = 0;
1901 u_int writable = 0;
1902 u_int cacheable_entries = 0;
1903 u_int kern_cacheable = 0;
1904 u_int other_writable = 0;
1905
1906 /*
1907 * Count mappings and writable mappings in this pmap.
1908 * Include kernel mappings as part of our own.
1909 * Keep a pointer to the first one.
1910 */
1911 npv = NULL;
1912 KASSERT(pmap_page_locked_p(md));
1913 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1914 /* Count mappings in the same pmap */
1915 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1916 if (entries++ == 0)
1917 npv = pv;
1918
1919 /* Cacheable mappings */
1920 if ((pv->pv_flags & PVF_NC) == 0) {
1921 cacheable_entries++;
1922 if (kpmap == pv->pv_pmap)
1923 kern_cacheable++;
1924 }
1925
1926 /* Writable mappings */
1927 if (pv->pv_flags & PVF_WRITE)
1928 ++writable;
1929 } else if (pv->pv_flags & PVF_WRITE)
1930 other_writable = 1;
1931 }
1932
1933 /*
1934 * Enable or disable caching as necessary.
1935 * Note: the first entry might be part of the kernel pmap,
1936 * so we can't assume this is indicative of the state of the
1937 * other (maybe non-kpmap) entries.
1938 */
1939 if ((entries > 1 && writable) ||
1940 (entries > 0 && pm == kpmap && other_writable)) {
1941 if (cacheable_entries == 0) {
1942 return;
1943 }
1944
1945 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1946 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1947 (pv->pv_flags & PVF_NC))
1948 continue;
1949
1950 pv->pv_flags |= PVF_NC;
1951
1952 struct l2_bucket * const l2b
1953 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1954 KASSERTMSG(l2b != NULL, "%#lx", va);
1955 pt_entry_t * const ptep
1956 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1957 const pt_entry_t opte = *ptep;
1958 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1959
1960 if ((va != pv->pv_va || pm != pv->pv_pmap)
1961 && l2pte_valid_p(opte)) {
1962 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1963 true, pv->pv_flags);
1964 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1965 pv->pv_flags);
1966 }
1967
1968 l2pte_set(ptep, npte, opte);
1969 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1970 }
1971 cpu_cpwait();
1972 } else if (entries > cacheable_entries) {
1973 /*
1974 * Turn cacheing back on for some pages. If it is a kernel
1975 * page, only do so if there are no other writable pages.
1976 */
1977 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1978 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1979 (kpmap != pv->pv_pmap || other_writable)))
1980 continue;
1981
1982 pv->pv_flags &= ~PVF_NC;
1983
1984 struct l2_bucket * const l2b
1985 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1986 KASSERTMSG(l2b != NULL, "%#lx", va);
1987 pt_entry_t * const ptep
1988 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1989 const pt_entry_t opte = *ptep;
1990 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1991 | pte_l2_s_cache_mode;
1992
1993 if (l2pte_valid_p(opte)) {
1994 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1995 pv->pv_flags);
1996 }
1997
1998 l2pte_set(ptep, npte, opte);
1999 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2000 }
2001 }
2002 }
2003 #endif
2004
2005 #ifdef PMAP_CACHE_VIPT
2006 static void
2007 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2008 {
2009
2010 #ifndef ARM_MMU_EXTENDED
2011 struct pv_entry *pv;
2012 vaddr_t tst_mask;
2013 bool bad_alias;
2014 const u_int
2015 rw_mappings = md->urw_mappings + md->krw_mappings,
2016 ro_mappings = md->uro_mappings + md->kro_mappings;
2017
2018 /* do we need to do anything? */
2019 if (arm_cache_prefer_mask == 0)
2020 return;
2021
2022 UVMHIST_FUNC(__func__);
2023 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
2024 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
2025
2026 KASSERT(!va || pm);
2027 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2028
2029 /* Already a conflict? */
2030 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2031 /* just an add, things are already non-cached */
2032 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2033 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2034 bad_alias = false;
2035 if (va) {
2036 PMAPCOUNT(vac_color_none);
2037 bad_alias = true;
2038 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2039 goto fixup;
2040 }
2041 pv = SLIST_FIRST(&md->pvh_list);
2042 /* the list can't be empty because it would be cachable */
2043 if (md->pvh_attrs & PVF_KMPAGE) {
2044 tst_mask = md->pvh_attrs;
2045 } else {
2046 KASSERT(pv);
2047 tst_mask = pv->pv_va;
2048 pv = SLIST_NEXT(pv, pv_link);
2049 }
2050 /*
2051 * Only check for a bad alias if we have writable mappings.
2052 */
2053 tst_mask &= arm_cache_prefer_mask;
2054 if (rw_mappings > 0) {
2055 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2056 /* if there's a bad alias, stop checking. */
2057 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2058 bad_alias = true;
2059 }
2060 md->pvh_attrs |= PVF_WRITE;
2061 if (!bad_alias)
2062 md->pvh_attrs |= PVF_DIRTY;
2063 } else {
2064 /*
2065 * We have only read-only mappings. Let's see if there
2066 * are multiple colors in use or if we mapped a KMPAGE.
2067 * If the latter, we have a bad alias. If the former,
2068 * we need to remember that.
2069 */
2070 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2071 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2072 if (md->pvh_attrs & PVF_KMPAGE)
2073 bad_alias = true;
2074 break;
2075 }
2076 }
2077 md->pvh_attrs &= ~PVF_WRITE;
2078 /*
2079 * No KMPAGE and we exited early, so we must have
2080 * multiple color mappings.
2081 */
2082 if (!bad_alias && pv != NULL)
2083 md->pvh_attrs |= PVF_MULTCLR;
2084 }
2085
2086 /* If no conflicting colors, set everything back to cached */
2087 if (!bad_alias) {
2088 #ifdef DEBUG
2089 if ((md->pvh_attrs & PVF_WRITE)
2090 || ro_mappings < 2) {
2091 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2092 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2093 }
2094 #endif
2095 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2096 md->pvh_attrs |= tst_mask | PVF_COLORED;
2097 /*
2098 * Restore DIRTY bit if page is modified
2099 */
2100 if (md->pvh_attrs & PVF_DMOD)
2101 md->pvh_attrs |= PVF_DIRTY;
2102 PMAPCOUNT(vac_color_restore);
2103 } else {
2104 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2105 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2106 }
2107 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2108 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2109 } else if (!va) {
2110 KASSERT(pmap_is_page_colored_p(md));
2111 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2112 || (md->pvh_attrs & PVF_DIRTY));
2113 if (rw_mappings == 0) {
2114 md->pvh_attrs &= ~PVF_WRITE;
2115 if (ro_mappings == 1
2116 && (md->pvh_attrs & PVF_MULTCLR)) {
2117 /*
2118 * If this is the last readonly mapping
2119 * but it doesn't match the current color
2120 * for the page, change the current color
2121 * to match this last readonly mapping.
2122 */
2123 pv = SLIST_FIRST(&md->pvh_list);
2124 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2125 & arm_cache_prefer_mask;
2126 if (tst_mask) {
2127 md->pvh_attrs ^= tst_mask;
2128 PMAPCOUNT(vac_color_change);
2129 }
2130 }
2131 }
2132 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2133 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2134 return;
2135 } else if (!pmap_is_page_colored_p(md)) {
2136 /* not colored so we just use its color */
2137 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2138 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2139 PMAPCOUNT(vac_color_new);
2140 md->pvh_attrs &= PAGE_SIZE - 1;
2141 md->pvh_attrs |= PVF_COLORED
2142 | (va & arm_cache_prefer_mask)
2143 | (rw_mappings > 0 ? PVF_WRITE : 0);
2144 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2145 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2146 return;
2147 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2148 bad_alias = false;
2149 if (rw_mappings > 0) {
2150 /*
2151 * We now have writeable mappings and if we have
2152 * readonly mappings in more than once color, we have
2153 * an aliasing problem. Regardless mark the page as
2154 * writeable.
2155 */
2156 if (md->pvh_attrs & PVF_MULTCLR) {
2157 if (ro_mappings < 2) {
2158 /*
2159 * If we only have less than two
2160 * read-only mappings, just flush the
2161 * non-primary colors from the cache.
2162 */
2163 pmap_flush_page(md, pa,
2164 PMAP_FLUSH_SECONDARY);
2165 } else {
2166 bad_alias = true;
2167 }
2168 }
2169 md->pvh_attrs |= PVF_WRITE;
2170 }
2171 /* If no conflicting colors, set everything back to cached */
2172 if (!bad_alias) {
2173 #ifdef DEBUG
2174 if (rw_mappings > 0
2175 || (md->pvh_attrs & PMAP_KMPAGE)) {
2176 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2177 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2178 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2179 }
2180 #endif
2181 if (SLIST_EMPTY(&md->pvh_list))
2182 PMAPCOUNT(vac_color_reuse);
2183 else
2184 PMAPCOUNT(vac_color_ok);
2185
2186 /* matching color, just return */
2187 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2188 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2189 return;
2190 }
2191 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2192 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2193
2194 /* color conflict. evict from cache. */
2195
2196 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2197 md->pvh_attrs &= ~PVF_COLORED;
2198 md->pvh_attrs |= PVF_NC;
2199 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2200 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2201 PMAPCOUNT(vac_color_erase);
2202 } else if (rw_mappings == 0
2203 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2204 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2205
2206 /*
2207 * If the page has dirty cache lines, clean it.
2208 */
2209 if (md->pvh_attrs & PVF_DIRTY)
2210 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2211
2212 /*
2213 * If this is the first remapping (we know that there are no
2214 * writeable mappings), then this is a simple color change.
2215 * Otherwise this is a seconary r/o mapping, which means
2216 * we don't have to do anything.
2217 */
2218 if (ro_mappings == 1) {
2219 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2220 md->pvh_attrs &= PAGE_SIZE - 1;
2221 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2222 PMAPCOUNT(vac_color_change);
2223 } else {
2224 PMAPCOUNT(vac_color_blind);
2225 }
2226 md->pvh_attrs |= PVF_MULTCLR;
2227 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2228 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2229 return;
2230 } else {
2231 if (rw_mappings > 0)
2232 md->pvh_attrs |= PVF_WRITE;
2233
2234 /* color conflict. evict from cache. */
2235 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2236
2237 /* the list can't be empty because this was a enter/modify */
2238 pv = SLIST_FIRST(&md->pvh_list);
2239 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2240 KASSERT(pv);
2241 /*
2242 * If there's only one mapped page, change color to the
2243 * page's new color and return. Restore the DIRTY bit
2244 * that was erased by pmap_flush_page.
2245 */
2246 if (SLIST_NEXT(pv, pv_link) == NULL) {
2247 md->pvh_attrs &= PAGE_SIZE - 1;
2248 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2249 if (md->pvh_attrs & PVF_DMOD)
2250 md->pvh_attrs |= PVF_DIRTY;
2251 PMAPCOUNT(vac_color_change);
2252 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2253 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2254 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2255 return;
2256 }
2257 }
2258 bad_alias = true;
2259 md->pvh_attrs &= ~PVF_COLORED;
2260 md->pvh_attrs |= PVF_NC;
2261 PMAPCOUNT(vac_color_erase);
2262 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2263 }
2264
2265 fixup:
2266 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2267
2268 /*
2269 * Turn cacheing on/off for all pages.
2270 */
2271 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2272 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2273 pv->pv_va);
2274 KASSERTMSG(l2b != NULL, "%#lx", va);
2275 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2276 const pt_entry_t opte = *ptep;
2277 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2278 if (bad_alias) {
2279 pv->pv_flags |= PVF_NC;
2280 } else {
2281 pv->pv_flags &= ~PVF_NC;
2282 npte |= pte_l2_s_cache_mode;
2283 }
2284
2285 if (opte == npte) /* only update is there's a change */
2286 continue;
2287
2288 if (l2pte_valid_p(opte)) {
2289 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2290 }
2291
2292 l2pte_set(ptep, npte, opte);
2293 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2294 }
2295 #endif /* !ARM_MMU_EXTENDED */
2296 }
2297 #endif /* PMAP_CACHE_VIPT */
2298
2299
2300 /*
2301 * Modify pte bits for all ptes corresponding to the given physical address.
2302 * We use `maskbits' rather than `clearbits' because we're always passing
2303 * constants and the latter would require an extra inversion at run-time.
2304 */
2305 static void
2306 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2307 {
2308 struct pv_entry *pv;
2309 #ifdef PMAP_CACHE_VIPT
2310 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2311 bool need_syncicache = false;
2312 #ifdef ARM_MMU_EXTENDED
2313 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2314 #else
2315 const u_int execbits = 0;
2316 bool need_vac_me_harder = false;
2317 #endif
2318 #else
2319 const u_int execbits = 0;
2320 #endif
2321
2322 UVMHIST_FUNC(__func__);
2323 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx maskbits %#jx",
2324 (uintptr_t)md, pa, maskbits, 0);
2325
2326 #ifdef PMAP_CACHE_VIPT
2327 /*
2328 * If we might want to sync the I-cache and we've modified it,
2329 * then we know we definitely need to sync or discard it.
2330 */
2331 if (want_syncicache) {
2332 if (md->pvh_attrs & PVF_MOD) {
2333 need_syncicache = true;
2334 }
2335 }
2336 #endif
2337 KASSERT(pmap_page_locked_p(md));
2338
2339 /*
2340 * Clear saved attributes (modify, reference)
2341 */
2342 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2343
2344 if (SLIST_EMPTY(&md->pvh_list)) {
2345 #if defined(PMAP_CACHE_VIPT)
2346 if (need_syncicache) {
2347 /*
2348 * No one has it mapped, so just discard it. The next
2349 * exec remapping will cause it to be synced.
2350 */
2351 md->pvh_attrs &= ~PVF_EXEC;
2352 PMAPCOUNT(exec_discarded_clearbit);
2353 }
2354 #endif
2355 return;
2356 }
2357
2358 /*
2359 * Loop over all current mappings setting/clearing as appropos
2360 */
2361 for (pv = SLIST_FIRST(&md->pvh_list); pv != NULL;) {
2362 pmap_t pm = pv->pv_pmap;
2363 const vaddr_t va = pv->pv_va;
2364 const u_int oflags = pv->pv_flags;
2365 #ifndef ARM_MMU_EXTENDED
2366 /*
2367 * Kernel entries are unmanaged and as such not to be changed.
2368 */
2369 if (PV_IS_KENTRY_P(oflags)) {
2370 pv = SLIST_NEXT(pv, pv_link);
2371 continue;
2372 }
2373 #endif
2374
2375 /*
2376 * Try to get a hold on the pmap's lock. We must do this
2377 * while still holding the page locked, to know that the
2378 * page is still associated with the pmap and the mapping is
2379 * in place. If a hold can't be had, unlock and wait for
2380 * the pmap's lock to become available and retry. The pmap
2381 * must be ref'd over this dance to stop it disappearing
2382 * behind us.
2383 */
2384 if (!mutex_tryenter(&pm->pm_lock)) {
2385 pmap_reference(pm);
2386 pmap_release_page_lock(md);
2387 pmap_acquire_pmap_lock(pm);
2388 /* nothing, just wait for it */
2389 pmap_release_pmap_lock(pm);
2390 pmap_destroy(pm);
2391 /* Restart from the beginning. */
2392 pmap_acquire_page_lock(md);
2393 pv = SLIST_FIRST(&md->pvh_list);
2394 continue;
2395 }
2396 pv->pv_flags &= ~maskbits;
2397
2398 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2399 KASSERTMSG(l2b != NULL, "%#lx", va);
2400
2401 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2402 const pt_entry_t opte = *ptep;
2403 pt_entry_t npte = opte | execbits;
2404
2405 #ifdef ARM_MMU_EXTENDED
2406 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2407 #endif
2408
2409 UVMHIST_LOG(maphist, "pv %#jx pm %#jx va %#jx flag %#jx",
2410 (uintptr_t)pv, (uintptr_t)pm, va, oflags);
2411
2412 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2413 #ifdef PMAP_CACHE_VIVT
2414 if ((oflags & PVF_NC)) {
2415 /*
2416 * Entry is not cacheable:
2417 *
2418 * Don't turn caching on again if this is a
2419 * modified emulation. This would be
2420 * inconsitent with the settings created by
2421 * pmap_vac_me_harder(). Otherwise, it's safe
2422 * to re-enable cacheing.
2423 *
2424 * There's no need to call pmap_vac_me_harder()
2425 * here: all pages are losing their write
2426 * permission.
2427 */
2428 if (maskbits & PVF_WRITE) {
2429 npte |= pte_l2_s_cache_mode;
2430 pv->pv_flags &= ~PVF_NC;
2431 }
2432 } else if (l2pte_writable_p(opte)) {
2433 /*
2434 * Entry is writable/cacheable: check if pmap
2435 * is current if it is flush it, otherwise it
2436 * won't be in the cache
2437 */
2438 pmap_cache_wbinv_page(pm, va,
2439 (maskbits & PVF_REF) != 0,
2440 oflags|PVF_WRITE);
2441 }
2442 #endif
2443
2444 /* make the pte read only */
2445 npte = l2pte_set_readonly(npte);
2446
2447 if ((maskbits & oflags & PVF_WRITE)) {
2448 /*
2449 * Keep alias accounting up to date
2450 */
2451 if (pm == pmap_kernel()) {
2452 md->krw_mappings--;
2453 md->kro_mappings++;
2454 } else {
2455 md->urw_mappings--;
2456 md->uro_mappings++;
2457 }
2458 #ifdef PMAP_CACHE_VIPT
2459 if (arm_cache_prefer_mask != 0) {
2460 if (md->urw_mappings + md->krw_mappings == 0) {
2461 md->pvh_attrs &= ~PVF_WRITE;
2462 } else {
2463 PMAP_VALIDATE_MD_PAGE(md);
2464 }
2465 }
2466 if (want_syncicache)
2467 need_syncicache = true;
2468 #ifndef ARM_MMU_EXTENDED
2469 need_vac_me_harder = true;
2470 #endif
2471 #endif /* PMAP_CACHE_VIPT */
2472 }
2473 }
2474
2475 if (maskbits & PVF_REF) {
2476 if (true
2477 #ifndef ARM_MMU_EXTENDED
2478 && (oflags & PVF_NC) == 0
2479 #endif
2480 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2481 && l2pte_valid_p(npte)) {
2482 #ifdef PMAP_CACHE_VIVT
2483 /*
2484 * Check npte here; we may have already
2485 * done the wbinv above, and the validity
2486 * of the PTE is the same for opte and
2487 * npte.
2488 */
2489 pmap_cache_wbinv_page(pm, va, true, oflags);
2490 #endif
2491 }
2492
2493 /*
2494 * Make the PTE invalid so that we will take a
2495 * page fault the next time the mapping is
2496 * referenced.
2497 */
2498 npte &= ~L2_TYPE_MASK;
2499 npte |= L2_TYPE_INV;
2500 }
2501
2502 if (npte != opte) {
2503 l2pte_reset(ptep);
2504 PTE_SYNC(ptep);
2505
2506 /* Flush the TLB entry if a current pmap. */
2507 pmap_tlb_flush_SE(pm, va, oflags);
2508
2509 l2pte_set(ptep, npte, 0);
2510 PTE_SYNC(ptep);
2511 }
2512
2513 pmap_release_pmap_lock(pm);
2514
2515 UVMHIST_LOG(maphist, "pm %#jx va %#jx opte %#jx npte %#jx",
2516 (uintptr_t)pm, va, opte, npte);
2517
2518 /* Move to next entry. */
2519 pv = SLIST_NEXT(pv, pv_link);
2520 }
2521
2522 #if defined(PMAP_CACHE_VIPT)
2523 /*
2524 * If we need to sync the I-cache and we haven't done it yet, do it.
2525 */
2526 if (need_syncicache) {
2527 pmap_syncicache_page(md, pa);
2528 PMAPCOUNT(exec_synced_clearbit);
2529 }
2530 #ifndef ARM_MMU_EXTENDED
2531 /*
2532 * If we are changing this to read-only, we need to call vac_me_harder
2533 * so we can change all the read-only pages to cacheable. We pretend
2534 * this as a page deletion.
2535 */
2536 if (need_vac_me_harder) {
2537 if (md->pvh_attrs & PVF_NC)
2538 pmap_vac_me_harder(md, pa, NULL, 0);
2539 }
2540 #endif /* !ARM_MMU_EXTENDED */
2541 #endif /* PMAP_CACHE_VIPT */
2542 }
2543
2544 /*
2545 * pmap_clean_page()
2546 *
2547 * This is a local function used to work out the best strategy to clean
2548 * a single page referenced by its entry in the PV table. It's used by
2549 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2550 *
2551 * Its policy is effectively:
2552 * o If there are no mappings, we don't bother doing anything with the cache.
2553 * o If there is one mapping, we clean just that page.
2554 * o If there are multiple mappings, we clean the entire cache.
2555 *
2556 * So that some functions can be further optimised, it returns 0 if it didn't
2557 * clean the entire cache, or 1 if it did.
2558 *
2559 * XXX One bug in this routine is that if the pv_entry has a single page
2560 * mapped at 0x00000000 a whole cache clean will be performed rather than
2561 * just the 1 page. Since this should not occur in everyday use and if it does
2562 * it will just result in not the most efficient clean for the page.
2563 */
2564 #ifdef PMAP_CACHE_VIVT
2565 static bool
2566 pmap_clean_page(struct vm_page_md *md, bool is_src)
2567 {
2568 struct pv_entry *pv;
2569 pmap_t pm_to_clean = NULL;
2570 bool cache_needs_cleaning = false;
2571 vaddr_t page_to_clean = 0;
2572 u_int flags = 0;
2573
2574 /*
2575 * Since we flush the cache each time we change to a different
2576 * user vmspace, we only need to flush the page if it is in the
2577 * current pmap.
2578 */
2579 KASSERT(pmap_page_locked_p(md));
2580 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2581 if (pmap_is_current(pv->pv_pmap)) {
2582 flags |= pv->pv_flags;
2583 /*
2584 * The page is mapped non-cacheable in
2585 * this map. No need to flush the cache.
2586 */
2587 if (pv->pv_flags & PVF_NC) {
2588 #ifdef DIAGNOSTIC
2589 KASSERT(!cache_needs_cleaning);
2590 #endif
2591 break;
2592 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2593 continue;
2594 if (cache_needs_cleaning) {
2595 page_to_clean = 0;
2596 break;
2597 } else {
2598 page_to_clean = pv->pv_va;
2599 pm_to_clean = pv->pv_pmap;
2600 }
2601 cache_needs_cleaning = true;
2602 }
2603 }
2604
2605 if (page_to_clean) {
2606 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2607 !is_src, flags | PVF_REF);
2608 } else if (cache_needs_cleaning) {
2609 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2610
2611 pmap_cache_wbinv_all(pm, flags);
2612 return true;
2613 }
2614 return false;
2615 }
2616 #endif
2617
2618 #ifdef PMAP_CACHE_VIPT
2619 /*
2620 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2621 * right cache alias to make sure we flush the right stuff.
2622 */
2623 void
2624 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2625 {
2626 pmap_t kpm = pmap_kernel();
2627 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2628 ? PAGE_SIZE
2629 : arm_pcache.icache_way_size;
2630
2631 UVMHIST_FUNC(__func__);
2632 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx (attrs=%#jx)",
2633 (uintptr_t)md, pa, md->pvh_attrs, 0);
2634
2635 /*
2636 * No need to clean the page if it's non-cached.
2637 */
2638 #ifndef ARM_MMU_EXTENDED
2639 if (md->pvh_attrs & PVF_NC)
2640 return;
2641 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2642 #endif
2643
2644 pt_entry_t * const ptep = cpu_cdst_pte(0);
2645 const vaddr_t dstp = cpu_cdstp(0);
2646 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2647 if (way_size <= PAGE_SIZE) {
2648 bool ok = false;
2649 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2650 if (ok) {
2651 cpu_icache_sync_range(vdstp, way_size);
2652 return;
2653 }
2654 }
2655 #endif
2656
2657 /*
2658 * We don't worry about the color of the exec page, we map the
2659 * same page to pages in the way and then do the icache_sync on
2660 * the entire way making sure we are cleaned.
2661 */
2662 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2663 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2664
2665 for (size_t i = 0, j = 0; i < way_size;
2666 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2667 l2pte_reset(ptep + j);
2668 PTE_SYNC(ptep + j);
2669
2670 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2671 /*
2672 * Set up a PTE with to flush these cache lines.
2673 */
2674 l2pte_set(ptep + j, npte, 0);
2675 }
2676 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2677
2678 /*
2679 * Flush it.
2680 */
2681 cpu_icache_sync_range(dstp, way_size);
2682
2683 for (size_t i = 0, j = 0; i < way_size;
2684 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2685 /*
2686 * Unmap the page(s).
2687 */
2688 l2pte_reset(ptep + j);
2689 PTE_SYNC(ptep + j);
2690
2691 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2692 }
2693
2694 md->pvh_attrs |= PVF_EXEC;
2695 PMAPCOUNT(exec_synced);
2696 }
2697
2698 #ifndef ARM_MMU_EXTENDED
2699 void
2700 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2701 {
2702 vsize_t va_offset, end_va;
2703 bool wbinv_p;
2704
2705 if (arm_cache_prefer_mask == 0)
2706 return;
2707
2708 UVMHIST_FUNC(__func__);
2709 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx op %#jx",
2710 (uintptr_t)md, pa, op, 0);
2711
2712 switch (flush) {
2713 case PMAP_FLUSH_PRIMARY:
2714 if (md->pvh_attrs & PVF_MULTCLR) {
2715 va_offset = 0;
2716 end_va = arm_cache_prefer_mask;
2717 md->pvh_attrs &= ~PVF_MULTCLR;
2718 PMAPCOUNT(vac_flush_lots);
2719 } else {
2720 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2721 end_va = va_offset;
2722 PMAPCOUNT(vac_flush_one);
2723 }
2724 /*
2725 * Mark that the page is no longer dirty.
2726 */
2727 md->pvh_attrs &= ~PVF_DIRTY;
2728 wbinv_p = true;
2729 break;
2730 case PMAP_FLUSH_SECONDARY:
2731 va_offset = 0;
2732 end_va = arm_cache_prefer_mask;
2733 wbinv_p = true;
2734 md->pvh_attrs &= ~PVF_MULTCLR;
2735 PMAPCOUNT(vac_flush_lots);
2736 break;
2737 case PMAP_CLEAN_PRIMARY:
2738 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2739 end_va = va_offset;
2740 wbinv_p = false;
2741 /*
2742 * Mark that the page is no longer dirty.
2743 */
2744 if ((md->pvh_attrs & PVF_DMOD) == 0)
2745 md->pvh_attrs &= ~PVF_DIRTY;
2746 PMAPCOUNT(vac_clean_one);
2747 break;
2748 default:
2749 return;
2750 }
2751
2752 KASSERT(!(md->pvh_attrs & PVF_NC));
2753
2754 UVMHIST_LOG(maphist, "md %#jx (attrs=%#jx)", (uintptr_t)md,
2755 md->pvh_attrs, 0, 0);
2756
2757 const size_t scache_line_size = arm_scache.dcache_line_size;
2758
2759 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2760 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2761 const vaddr_t dstp = cpu_cdstp(va_offset);
2762 const pt_entry_t opte = *ptep;
2763
2764 if (flush == PMAP_FLUSH_SECONDARY
2765 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2766 continue;
2767
2768 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2769 /*
2770 * Set up a PTE with the right coloring to flush
2771 * existing cache entries.
2772 */
2773 const pt_entry_t npte = L2_S_PROTO
2774 | pa
2775 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2776 | pte_l2_s_cache_mode;
2777 l2pte_set(ptep, npte, opte);
2778 PTE_SYNC(ptep);
2779
2780 /*
2781 * Flush it. Make sure to flush secondary cache too since
2782 * bus_dma will ignore uncached pages.
2783 */
2784 if (scache_line_size != 0) {
2785 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2786 if (wbinv_p) {
2787 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2788 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2789 } else {
2790 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2791 }
2792 } else {
2793 if (wbinv_p) {
2794 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2795 } else {
2796 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2797 }
2798 }
2799
2800 /*
2801 * Restore the page table entry since we might have interrupted
2802 * pmap_zero_page or pmap_copy_page which was already using
2803 * this pte.
2804 */
2805 if (opte) {
2806 l2pte_set(ptep, opte, npte);
2807 } else {
2808 l2pte_reset(ptep);
2809 }
2810 PTE_SYNC(ptep);
2811 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2812 }
2813 }
2814 #endif /* ARM_MMU_EXTENDED */
2815 #endif /* PMAP_CACHE_VIPT */
2816
2817 /*
2818 * Routine: pmap_page_remove
2819 * Function:
2820 * Removes this physical page from
2821 * all physical maps in which it resides.
2822 * Reflects back modify bits to the pager.
2823 */
2824 static void
2825 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2826 {
2827 struct l2_bucket *l2b;
2828 struct pv_entry *pv;
2829 pt_entry_t *ptep;
2830 #ifndef ARM_MMU_EXTENDED
2831 bool flush = false;
2832 #endif
2833 u_int flags = 0;
2834
2835 UVMHIST_FUNC(__func__);
2836 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx", (uintptr_t)md, pa, 0, 0);
2837
2838 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2839 pmap_acquire_page_lock(md);
2840 if (*pvp == NULL) {
2841 #ifdef PMAP_CACHE_VIPT
2842 /*
2843 * We *know* the page contents are about to be replaced.
2844 * Discard the exec contents
2845 */
2846 if (PV_IS_EXEC_P(md->pvh_attrs))
2847 PMAPCOUNT(exec_discarded_page_protect);
2848 md->pvh_attrs &= ~PVF_EXEC;
2849 PMAP_VALIDATE_MD_PAGE(md);
2850 #endif
2851 pmap_release_page_lock(md);
2852 return;
2853 }
2854 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2855 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2856 #endif
2857
2858 /*
2859 * Clear alias counts
2860 */
2861 #ifdef PMAP_CACHE_VIVT
2862 md->k_mappings = 0;
2863 #endif
2864 md->urw_mappings = md->uro_mappings = 0;
2865
2866 #ifdef PMAP_CACHE_VIVT
2867 pmap_clean_page(md, false);
2868 #endif
2869
2870 for (pv = *pvp; pv != NULL;) {
2871 pmap_t pm = pv->pv_pmap;
2872 #ifndef ARM_MMU_EXTENDED
2873 if (flush == false && pmap_is_current(pm))
2874 flush = true;
2875 #endif
2876
2877 #ifdef PMAP_CACHE_VIPT
2878 if (pm == pmap_kernel() && PV_IS_KENTRY_P(pv->pv_flags)) {
2879 /* If this was unmanaged mapping, it must be ignored. */
2880 pvp = &SLIST_NEXT(pv, pv_link);
2881 pv = *pvp;
2882 continue;
2883 }
2884 #endif
2885
2886 /*
2887 * Try to get a hold on the pmap's lock. We must do this
2888 * while still holding the page locked, to know that the
2889 * page is still associated with the pmap and the mapping is
2890 * in place. If a hold can't be had, unlock and wait for
2891 * the pmap's lock to become available and retry. The pmap
2892 * must be ref'd over this dance to stop it disappearing
2893 * behind us.
2894 */
2895 if (!mutex_tryenter(&pm->pm_lock)) {
2896 pmap_reference(pm);
2897 pmap_release_page_lock(md);
2898 pmap_acquire_pmap_lock(pm);
2899 /* nothing, just wait for it */
2900 pmap_release_pmap_lock(pm);
2901 pmap_destroy(pm);
2902 /* Restart from the beginning. */
2903 pmap_acquire_page_lock(md);
2904 pvp = &SLIST_FIRST(&md->pvh_list);
2905 pv = *pvp;
2906 continue;
2907 }
2908
2909 if (pm == pmap_kernel()) {
2910 #ifdef PMAP_CACHE_VIPT
2911 if (pv->pv_flags & PVF_WRITE)
2912 md->krw_mappings--;
2913 else
2914 md->kro_mappings--;
2915 #endif
2916 PMAPCOUNT(kernel_unmappings);
2917 }
2918 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2919 PMAPCOUNT(unmappings);
2920
2921 pmap_release_page_lock(md);
2922
2923 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2924 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2925
2926 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2927
2928 /*
2929 * Update statistics
2930 */
2931 --pm->pm_stats.resident_count;
2932
2933 /* Wired bit */
2934 if (pv->pv_flags & PVF_WIRED)
2935 --pm->pm_stats.wired_count;
2936
2937 flags |= pv->pv_flags;
2938
2939 /*
2940 * Invalidate the PTEs.
2941 */
2942 l2pte_reset(ptep);
2943 PTE_SYNC_CURRENT(pm, ptep);
2944
2945 #ifdef ARM_MMU_EXTENDED
2946 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2947 #endif
2948
2949 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2950
2951 pmap_release_pmap_lock(pm);
2952
2953 pool_put(&pmap_pv_pool, pv);
2954 pmap_acquire_page_lock(md);
2955
2956 /*
2957 * Restart at the beginning of the list.
2958 */
2959 pvp = &SLIST_FIRST(&md->pvh_list);
2960 pv = *pvp;
2961 }
2962 /*
2963 * if we reach the end of the list and there are still mappings, they
2964 * might be able to be cached now. And they must be kernel mappings.
2965 */
2966 if (!SLIST_EMPTY(&md->pvh_list)) {
2967 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2968 }
2969
2970 #ifdef PMAP_CACHE_VIPT
2971 /*
2972 * Its EXEC cache is now gone.
2973 */
2974 if (PV_IS_EXEC_P(md->pvh_attrs))
2975 PMAPCOUNT(exec_discarded_page_protect);
2976 md->pvh_attrs &= ~PVF_EXEC;
2977 KASSERT(md->urw_mappings == 0);
2978 KASSERT(md->uro_mappings == 0);
2979 #ifndef ARM_MMU_EXTENDED
2980 if (arm_cache_prefer_mask != 0) {
2981 if (md->krw_mappings == 0)
2982 md->pvh_attrs &= ~PVF_WRITE;
2983 PMAP_VALIDATE_MD_PAGE(md);
2984 }
2985 #endif /* ARM_MMU_EXTENDED */
2986 #endif /* PMAP_CACHE_VIPT */
2987 pmap_release_page_lock(md);
2988
2989 #ifndef ARM_MMU_EXTENDED
2990 if (flush) {
2991 /*
2992 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2993 * would need a subsequent call to pmap_update() to ensure
2994 * curpm->pm_cstate.cs_all is reset. Our callers are not
2995 * required to do that (see pmap(9)), so we can't modify
2996 * the current pmap's state.
2997 */
2998 if (PV_BEEN_EXECD(flags))
2999 cpu_tlb_flushID();
3000 else
3001 cpu_tlb_flushD();
3002 }
3003 cpu_cpwait();
3004 #endif /* ARM_MMU_EXTENDED */
3005 }
3006
3007 /*
3008 * pmap_t pmap_create(void)
3009 *
3010 * Create a new pmap structure from scratch.
3011 */
3012 pmap_t
3013 pmap_create(void)
3014 {
3015 pmap_t pm;
3016
3017 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3018
3019 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
3020
3021 pm->pm_refs = 1;
3022 pm->pm_stats.wired_count = 0;
3023 pm->pm_stats.resident_count = 1;
3024 #ifdef ARM_MMU_EXTENDED
3025 #ifdef MULTIPROCESSOR
3026 kcpuset_create(&pm->pm_active, true);
3027 kcpuset_create(&pm->pm_onproc, true);
3028 #endif
3029 #else
3030 pm->pm_cstate.cs_all = 0;
3031 #endif
3032 pmap_alloc_l1(pm);
3033
3034 /*
3035 * Note: The pool cache ensures that the pm_l2[] array is already
3036 * initialised to zero.
3037 */
3038
3039 pmap_pinit(pm);
3040
3041 return pm;
3042 }
3043
3044 u_int
3045 arm32_mmap_flags(paddr_t pa)
3046 {
3047 /*
3048 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3049 * and we're using the upper bits in page numbers to pass flags around
3050 * so we might as well use the same bits
3051 */
3052 return (u_int)pa & PMAP_MD_MASK;
3053 }
3054 /*
3055 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3056 * u_int flags)
3057 *
3058 * Insert the given physical page (p) at
3059 * the specified virtual address (v) in the
3060 * target physical map with the protection requested.
3061 *
3062 * NB: This is the only routine which MAY NOT lazy-evaluate
3063 * or lose information. That is, this routine must actually
3064 * insert this page into the given map NOW.
3065 */
3066 int
3067 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3068 {
3069 struct l2_bucket *l2b;
3070 struct vm_page *pg, *opg;
3071 u_int nflags;
3072 u_int oflags;
3073 const bool kpm_p = (pm == pmap_kernel());
3074 #ifdef ARM_HAS_VBAR
3075 const bool vector_page_p = false;
3076 #else
3077 const bool vector_page_p = (va == vector_page);
3078 #endif
3079 struct pmap_page *pp = pmap_pv_tracked(pa);
3080 struct pv_entry *new_pv = NULL;
3081 struct pv_entry *old_pv = NULL;
3082 int error = 0;
3083
3084 UVMHIST_FUNC(__func__);
3085 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx pa %#jx prot %#jx",
3086 (uintptr_t)pm, va, pa, prot);
3087 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0);
3088
3089 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3090 KDASSERT(((va | pa) & PGOFSET) == 0);
3091
3092 /*
3093 * Get a pointer to the page. Later on in this function, we
3094 * test for a managed page by checking pg != NULL.
3095 */
3096 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3097 /*
3098 * if we may need a new pv entry allocate if now, as we can't do it
3099 * with the kernel_pmap locked
3100 */
3101 if (pg || pp)
3102 new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3103
3104 nflags = 0;
3105 if (prot & VM_PROT_WRITE)
3106 nflags |= PVF_WRITE;
3107 if (prot & VM_PROT_EXECUTE)
3108 nflags |= PVF_EXEC;
3109 if (flags & PMAP_WIRED)
3110 nflags |= PVF_WIRED;
3111
3112 pmap_acquire_pmap_lock(pm);
3113
3114 /*
3115 * Fetch the L2 bucket which maps this page, allocating one if
3116 * necessary for user pmaps.
3117 */
3118 if (kpm_p) {
3119 l2b = pmap_get_l2_bucket(pm, va);
3120 } else {
3121 l2b = pmap_alloc_l2_bucket(pm, va);
3122 }
3123 if (l2b == NULL) {
3124 if (flags & PMAP_CANFAIL) {
3125 pmap_release_pmap_lock(pm);
3126 error = ENOMEM;
3127 goto free_pv;
3128 }
3129 panic("pmap_enter: failed to allocate L2 bucket");
3130 }
3131 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3132 const pt_entry_t opte = *ptep;
3133 pt_entry_t npte = pa;
3134 oflags = 0;
3135
3136 if (opte) {
3137 /*
3138 * There is already a mapping at this address.
3139 * If the physical address is different, lookup the
3140 * vm_page.
3141 */
3142 if (l2pte_pa(opte) != pa) {
3143 KASSERT(!pmap_pv_tracked(pa));
3144 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3145 } else
3146 opg = pg;
3147 } else
3148 opg = NULL;
3149
3150 if (pg || pp) {
3151 KASSERT((pg != NULL) != (pp != NULL));
3152 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3153 PMAP_PAGE_TO_MD(pp);
3154
3155 /*
3156 * This is to be a managed mapping.
3157 */
3158 pmap_acquire_page_lock(md);
3159 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3160 /*
3161 * - The access type indicates that we don't need
3162 * to do referenced emulation.
3163 * OR
3164 * - The physical page has already been referenced
3165 * so no need to re-do referenced emulation here.
3166 */
3167 npte |= l2pte_set_readonly(L2_S_PROTO);
3168
3169 nflags |= PVF_REF;
3170
3171 if ((prot & VM_PROT_WRITE) != 0 &&
3172 ((flags & VM_PROT_WRITE) != 0 ||
3173 (md->pvh_attrs & PVF_MOD) != 0)) {
3174 /*
3175 * This is a writable mapping, and the
3176 * page's mod state indicates it has
3177 * already been modified. Make it
3178 * writable from the outset.
3179 */
3180 npte = l2pte_set_writable(npte);
3181 nflags |= PVF_MOD;
3182 }
3183
3184 #ifdef ARM_MMU_EXTENDED
3185 /*
3186 * If the page has been cleaned, then the pvh_attrs
3187 * will have PVF_EXEC set, so mark it execute so we
3188 * don't get an access fault when trying to execute
3189 * from it.
3190 */
3191 if (md->pvh_attrs & nflags & PVF_EXEC) {
3192 npte &= ~L2_XS_XN;
3193 }
3194 #endif
3195 } else {
3196 /*
3197 * Need to do page referenced emulation.
3198 */
3199 npte |= L2_TYPE_INV;
3200 }
3201
3202 if (flags & ARM32_MMAP_WRITECOMBINE) {
3203 npte |= pte_l2_s_wc_mode;
3204 } else
3205 npte |= pte_l2_s_cache_mode;
3206
3207 if (pg != NULL && pg == opg) {
3208 /*
3209 * We're changing the attrs of an existing mapping.
3210 */
3211 oflags = pmap_modify_pv(md, pa, pm, va,
3212 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3213 PVF_MOD | PVF_REF, nflags);
3214
3215 #ifdef PMAP_CACHE_VIVT
3216 /*
3217 * We may need to flush the cache if we're
3218 * doing rw-ro...
3219 */
3220 if (pm->pm_cstate.cs_cache_d &&
3221 (oflags & PVF_NC) == 0 &&
3222 l2pte_writable_p(opte) &&
3223 (prot & VM_PROT_WRITE) == 0)
3224 cpu_dcache_wb_range(va, PAGE_SIZE);
3225 #endif
3226 } else {
3227 struct pv_entry *pv;
3228 /*
3229 * New mapping, or changing the backing page
3230 * of an existing mapping.
3231 */
3232 if (opg) {
3233 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3234 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3235
3236 /*
3237 * Replacing an existing mapping with a new one.
3238 * It is part of our managed memory so we
3239 * must remove it from the PV list
3240 */
3241 pv = pmap_remove_pv(omd, opa, pm, va);
3242 pmap_vac_me_harder(omd, opa, pm, 0);
3243 oflags = pv->pv_flags;
3244
3245 #ifdef PMAP_CACHE_VIVT
3246 /*
3247 * If the old mapping was valid (ref/mod
3248 * emulation creates 'invalid' mappings
3249 * initially) then make sure to frob
3250 * the cache.
3251 */
3252 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3253 pmap_cache_wbinv_page(pm, va, true,
3254 oflags);
3255 }
3256 #endif
3257 } else {
3258 pv = new_pv;
3259 new_pv = NULL;
3260 if (pv == NULL) {
3261 pmap_release_page_lock(md);
3262 pmap_release_pmap_lock(pm);
3263 if ((flags & PMAP_CANFAIL) == 0)
3264 panic("pmap_enter: "
3265 "no pv entries");
3266
3267 pmap_free_l2_bucket(pm, l2b, 0);
3268 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3269 0, 0, 0, 0);
3270 return ENOMEM;
3271 }
3272 }
3273
3274 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3275 }
3276 pmap_release_page_lock(md);
3277 } else {
3278 /*
3279 * We're mapping an unmanaged page.
3280 * These are always readable, and possibly writable, from
3281 * the get go as we don't need to track ref/mod status.
3282 */
3283 npte |= l2pte_set_readonly(L2_S_PROTO);
3284 if (prot & VM_PROT_WRITE)
3285 npte = l2pte_set_writable(npte);
3286
3287 /*
3288 * Make sure the vector table is mapped cacheable
3289 */
3290 if ((vector_page_p && !kpm_p)
3291 || (flags & ARM32_MMAP_CACHEABLE)) {
3292 npte |= pte_l2_s_cache_mode;
3293 #ifdef ARM_MMU_EXTENDED
3294 npte &= ~L2_XS_XN; /* and executable */
3295 #endif
3296 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3297 npte |= pte_l2_s_wc_mode;
3298 }
3299 if (opg) {
3300 /*
3301 * Looks like there's an existing 'managed' mapping
3302 * at this address.
3303 */
3304 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3305 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3306
3307 pmap_acquire_page_lock(omd);
3308 old_pv = pmap_remove_pv(omd, opa, pm, va);
3309 pmap_vac_me_harder(omd, opa, pm, 0);
3310 oflags = old_pv->pv_flags;
3311 pmap_release_page_lock(omd);
3312
3313 #ifdef PMAP_CACHE_VIVT
3314 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3315 pmap_cache_wbinv_page(pm, va, true, oflags);
3316 }
3317 #endif
3318 }
3319 }
3320
3321 /*
3322 * Make sure userland mappings get the right permissions
3323 */
3324 if (!vector_page_p && !kpm_p) {
3325 npte |= L2_S_PROT_U;
3326 #ifdef ARM_MMU_EXTENDED
3327 npte |= L2_XS_nG; /* user pages are not global */
3328 #endif
3329 }
3330
3331 /*
3332 * Keep the stats up to date
3333 */
3334 if (opte == 0) {
3335 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3336 pm->pm_stats.resident_count++;
3337 }
3338
3339 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3340
3341 #if defined(ARM_MMU_EXTENDED)
3342 /*
3343 * If exec protection was requested but the page hasn't been synced,
3344 * sync it now and allow execution from it.
3345 */
3346 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3347 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3348 npte &= ~L2_XS_XN;
3349 pmap_syncicache_page(md, pa);
3350 PMAPCOUNT(exec_synced_map);
3351 }
3352 #endif
3353 /*
3354 * If this is just a wiring change, the two PTEs will be
3355 * identical, so there's no need to update the page table.
3356 */
3357 if (npte != opte) {
3358 l2pte_reset(ptep);
3359 PTE_SYNC(ptep);
3360 if (l2pte_valid_p(opte)) {
3361 pmap_tlb_flush_SE(pm, va, oflags);
3362 }
3363 l2pte_set(ptep, npte, 0);
3364 PTE_SYNC(ptep);
3365 #ifndef ARM_MMU_EXTENDED
3366 bool is_cached = pmap_is_cached(pm);
3367 if (is_cached) {
3368 /*
3369 * We only need to frob the cache/tlb if this pmap
3370 * is current
3371 */
3372 if (!vector_page_p && l2pte_valid_p(npte)) {
3373 /*
3374 * This mapping is likely to be accessed as
3375 * soon as we return to userland. Fix up the
3376 * L1 entry to avoid taking another
3377 * page/domain fault.
3378 */
3379 pd_entry_t *pdep = pmap_l1_kva(pm)
3380 + l1pte_index(va);
3381 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3382 | L1_C_DOM(pmap_domain(pm));
3383 if (*pdep != pde) {
3384 l1pte_setone(pdep, pde);
3385 PDE_SYNC(pdep);
3386 }
3387 }
3388 }
3389
3390 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx",
3391 is_cached, pm->pm_cstate.cs_all, 0, 0);
3392
3393 if (pg != NULL) {
3394 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3395
3396 pmap_acquire_page_lock(md);
3397 pmap_vac_me_harder(md, pa, pm, va);
3398 pmap_release_page_lock(md);
3399 }
3400 #endif
3401 }
3402 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3403 if (pg) {
3404 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3405
3406 pmap_acquire_page_lock(md);
3407 #ifndef ARM_MMU_EXTENDED
3408 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3409 #endif
3410 PMAP_VALIDATE_MD_PAGE(md);
3411 pmap_release_page_lock(md);
3412 }
3413 #endif
3414
3415 pmap_release_pmap_lock(pm);
3416
3417
3418 if (old_pv)
3419 pool_put(&pmap_pv_pool, old_pv);
3420 free_pv:
3421 if (new_pv)
3422 pool_put(&pmap_pv_pool, new_pv);
3423 return error;
3424 }
3425
3426 /*
3427 * pmap_remove()
3428 *
3429 * pmap_remove is responsible for nuking a number of mappings for a range
3430 * of virtual address space in the current pmap. To do this efficiently
3431 * is interesting, because in a number of cases a wide virtual address
3432 * range may be supplied that contains few actual mappings. So, the
3433 * optimisations are:
3434 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3435 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3436 * maybe do just a partial cache clean. This path of execution is
3437 * complicated by the fact that the cache must be flushed _before_
3438 * the PTE is nuked, being a VAC :-)
3439 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3440 * all invalidations until pmap_update(), since pmap_remove_all() has
3441 * already flushed the cache.
3442 * 4. Maybe later fast-case a single page, but I don't think this is
3443 * going to make _that_ much difference overall.
3444 */
3445
3446 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3447
3448 void
3449 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3450 {
3451 SLIST_HEAD(,pv_entry) opv_list;
3452 struct pv_entry *pv, *npv;
3453 UVMHIST_FUNC(__func__);
3454 UVMHIST_CALLARGS(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3455 (uintptr_t)pm, sva, eva, 0);
3456
3457 #ifdef PMAP_FAULTINFO
3458 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
3459 curpcb->pcb_faultinfo.pfi_repeats = 0;
3460 curpcb->pcb_faultinfo.pfi_faultptep = NULL;
3461 #endif
3462
3463 SLIST_INIT(&opv_list);
3464 /*
3465 * we lock in the pmap => pv_head direction
3466 */
3467 pmap_acquire_pmap_lock(pm);
3468
3469 #ifndef ARM_MMU_EXTENDED
3470 u_int cleanlist_idx, total, cnt;
3471 struct {
3472 vaddr_t va;
3473 pt_entry_t *ptep;
3474 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3475
3476 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3477 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3478 if (pm->pm_cstate.cs_tlb == 0)
3479 pm->pm_remove_all = true;
3480 } else
3481 cleanlist_idx = 0;
3482 total = 0;
3483 #endif
3484
3485 while (sva < eva) {
3486 /*
3487 * Do one L2 bucket's worth at a time.
3488 */
3489 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3490 if (next_bucket > eva)
3491 next_bucket = eva;
3492
3493 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3494 if (l2b == NULL) {
3495 sva = next_bucket;
3496 continue;
3497 }
3498
3499 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3500 u_int mappings = 0;
3501
3502 for (;sva < next_bucket;
3503 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3504 pt_entry_t opte = *ptep;
3505
3506 if (opte == 0) {
3507 /* Nothing here, move along */
3508 continue;
3509 }
3510
3511 u_int flags = PVF_REF;
3512 paddr_t pa = l2pte_pa(opte);
3513 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3514
3515 /*
3516 * Update flags. In a number of circumstances,
3517 * we could cluster a lot of these and do a
3518 * number of sequential pages in one go.
3519 */
3520 if (pg != NULL) {
3521 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3522
3523 pmap_acquire_page_lock(md);
3524 pv = pmap_remove_pv(md, pa, pm, sva);
3525 pmap_vac_me_harder(md, pa, pm, 0);
3526 pmap_release_page_lock(md);
3527 if (pv != NULL) {
3528 if (pm->pm_remove_all == false) {
3529 flags = pv->pv_flags;
3530 }
3531 SLIST_INSERT_HEAD(&opv_list,
3532 pv, pv_link);
3533 }
3534 }
3535 mappings += PAGE_SIZE / L2_S_SIZE;
3536
3537 if (!l2pte_valid_p(opte)) {
3538 /*
3539 * Ref/Mod emulation is still active for this
3540 * mapping, therefore it is has not yet been
3541 * accessed. No need to frob the cache/tlb.
3542 */
3543 l2pte_reset(ptep);
3544 PTE_SYNC_CURRENT(pm, ptep);
3545 continue;
3546 }
3547
3548 #ifdef ARM_MMU_EXTENDED
3549 l2pte_reset(ptep);
3550 PTE_SYNC(ptep);
3551 if (__predict_false(pm->pm_remove_all == false)) {
3552 pmap_tlb_flush_SE(pm, sva, flags);
3553 }
3554 #else
3555 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3556 /* Add to the clean list. */
3557 cleanlist[cleanlist_idx].ptep = ptep;
3558 cleanlist[cleanlist_idx].va =
3559 sva | (flags & PVF_EXEC);
3560 cleanlist_idx++;
3561 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3562 /* Nuke everything if needed. */
3563 #ifdef PMAP_CACHE_VIVT
3564 pmap_cache_wbinv_all(pm, PVF_EXEC);
3565 #endif
3566 /*
3567 * Roll back the previous PTE list,
3568 * and zero out the current PTE.
3569 */
3570 for (cnt = 0;
3571 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3572 l2pte_reset(cleanlist[cnt].ptep);
3573 PTE_SYNC(cleanlist[cnt].ptep);
3574 }
3575 l2pte_reset(ptep);
3576 PTE_SYNC(ptep);
3577 cleanlist_idx++;
3578 pm->pm_remove_all = true;
3579 } else {
3580 l2pte_reset(ptep);
3581 PTE_SYNC(ptep);
3582 if (pm->pm_remove_all == false) {
3583 pmap_tlb_flush_SE(pm, sva, flags);
3584 }
3585 }
3586 #endif
3587 }
3588
3589 #ifndef ARM_MMU_EXTENDED
3590 /*
3591 * Deal with any left overs
3592 */
3593 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3594 total += cleanlist_idx;
3595 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3596 l2pte_reset(cleanlist[cnt].ptep);
3597 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3598 vaddr_t va = cleanlist[cnt].va;
3599 if (pm->pm_cstate.cs_all != 0) {
3600 vaddr_t clva = va & ~PAGE_MASK;
3601 u_int flags = va & PVF_EXEC;
3602 #ifdef PMAP_CACHE_VIVT
3603 pmap_cache_wbinv_page(pm, clva, true,
3604 PVF_REF | PVF_WRITE | flags);
3605 #endif
3606 pmap_tlb_flush_SE(pm, clva,
3607 PVF_REF | flags);
3608 }
3609 }
3610
3611 /*
3612 * If it looks like we're removing a whole bunch
3613 * of mappings, it's faster to just write-back
3614 * the whole cache now and defer TLB flushes until
3615 * pmap_update() is called.
3616 */
3617 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3618 cleanlist_idx = 0;
3619 else {
3620 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3621 #ifdef PMAP_CACHE_VIVT
3622 pmap_cache_wbinv_all(pm, PVF_EXEC);
3623 #endif
3624 pm->pm_remove_all = true;
3625 }
3626 }
3627 #endif /* ARM_MMU_EXTENDED */
3628
3629 pmap_free_l2_bucket(pm, l2b, mappings);
3630 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3631 }
3632
3633 pmap_release_pmap_lock(pm);
3634 SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3635 pool_put(&pmap_pv_pool, pv);
3636 }
3637 }
3638
3639 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3640 static struct pv_entry *
3641 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3642 {
3643 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3644 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3645 struct pv_entry *pv;
3646
3647 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3648 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3649 KASSERT(pmap_page_locked_p(md));
3650
3651 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3652 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3653 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3654
3655 /*
3656 * We are removing a writeable mapping to a cached exec page, if
3657 * it's the last mapping then clear its execness otherwise sync
3658 * the page to the icache.
3659 */
3660 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3661 && (pv->pv_flags & PVF_WRITE) != 0) {
3662 if (SLIST_EMPTY(&md->pvh_list)) {
3663 md->pvh_attrs &= ~PVF_EXEC;
3664 PMAPCOUNT(exec_discarded_kremove);
3665 } else {
3666 pmap_syncicache_page(md, pa);
3667 PMAPCOUNT(exec_synced_kremove);
3668 }
3669 }
3670 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3671
3672 return pv;
3673 }
3674 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3675
3676 /*
3677 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3678 *
3679 * We assume there is already sufficient KVM space available
3680 * to do this, as we can't allocate L2 descriptor tables/metadata
3681 * from here.
3682 */
3683 void
3684 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3685 {
3686 #ifdef PMAP_CACHE_VIVT
3687 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3688 #endif
3689 #ifdef PMAP_CACHE_VIPT
3690 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3691 struct vm_page *opg;
3692 #ifndef ARM_MMU_EXTENDED
3693 struct pv_entry *pv = NULL;
3694 #endif
3695 #endif
3696 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3697
3698 UVMHIST_FUNC(__func__);
3699
3700 if (pmap_initialized) {
3701 UVMHIST_CALLARGS(maphist,
3702 "va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", va, pa, prot,
3703 flags);
3704 }
3705
3706 pmap_t kpm = pmap_kernel();
3707 pmap_acquire_pmap_lock(kpm);
3708 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3709 const size_t l1slot __diagused = l1pte_index(va);
3710 KASSERTMSG(l2b != NULL,
3711 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3712 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3713 kpm->pm_l2[L2_IDX(l1slot)]
3714 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3715 : NULL,
3716 kpm->pm_l2[L2_IDX(l1slot)]
3717 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3718 : NULL);
3719 KASSERT(l2b->l2b_kva != NULL);
3720
3721 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3722 const pt_entry_t opte = *ptep;
3723
3724 if (opte == 0) {
3725 PMAPCOUNT(kenter_mappings);
3726 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3727 } else {
3728 PMAPCOUNT(kenter_remappings);
3729 #ifdef PMAP_CACHE_VIPT
3730 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3731 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3732 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3733 #endif
3734 if (opg && arm_cache_prefer_mask != 0) {
3735 KASSERT(opg != pg);
3736 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3737 KASSERT((flags & PMAP_KMPAGE) == 0);
3738 #ifndef ARM_MMU_EXTENDED
3739 pmap_acquire_page_lock(omd);
3740 pv = pmap_kremove_pg(opg, va);
3741 pmap_release_page_lock(omd);
3742 #endif
3743 }
3744 #endif
3745 if (l2pte_valid_p(opte)) {
3746 l2pte_reset(ptep);
3747 PTE_SYNC(ptep);
3748 #ifdef PMAP_CACHE_VIVT
3749 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3750 #endif
3751 cpu_tlb_flushD_SE(va);
3752 cpu_cpwait();
3753 }
3754 }
3755 pmap_release_pmap_lock(kpm);
3756 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3757
3758 if (flags & PMAP_PTE) {
3759 KASSERT((flags & PMAP_CACHE_MASK) == 0);
3760 if (!(flags & PMAP_NOCACHE))
3761 npte |= pte_l2_s_cache_mode_pt;
3762 } else {
3763 switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
3764 case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
3765 break;
3766 case PMAP_NOCACHE:
3767 npte |= pte_l2_s_nocache_mode;
3768 break;
3769 case PMAP_WRITE_COMBINE:
3770 npte |= pte_l2_s_wc_mode;
3771 break;
3772 default:
3773 npte |= pte_l2_s_cache_mode;
3774 break;
3775 }
3776 }
3777 #ifdef ARM_MMU_EXTENDED
3778 if (prot & VM_PROT_EXECUTE)
3779 npte &= ~L2_XS_XN;
3780 #endif
3781 l2pte_set(ptep, npte, 0);
3782 PTE_SYNC(ptep);
3783
3784 if (pg) {
3785 if (flags & PMAP_KMPAGE) {
3786 KASSERT(md->urw_mappings == 0);
3787 KASSERT(md->uro_mappings == 0);
3788 KASSERT(md->krw_mappings == 0);
3789 KASSERT(md->kro_mappings == 0);
3790 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3791 KASSERT(pv == NULL);
3792 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3793 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3794 /* if there is a color conflict, evict from cache. */
3795 if (pmap_is_page_colored_p(md)
3796 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3797 PMAPCOUNT(vac_color_change);
3798 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3799 } else if (md->pvh_attrs & PVF_MULTCLR) {
3800 /*
3801 * If this page has multiple colors, expunge
3802 * them.
3803 */
3804 PMAPCOUNT(vac_flush_lots2);
3805 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3806 }
3807 /*
3808 * Since this is a KMPAGE, there can be no contention
3809 * for this page so don't lock it.
3810 */
3811 md->pvh_attrs &= PAGE_SIZE - 1;
3812 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3813 | (va & arm_cache_prefer_mask);
3814 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3815 md->pvh_attrs |= PVF_KMPAGE;
3816 #endif
3817 atomic_inc_32(&pmap_kmpages);
3818 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3819 } else if (arm_cache_prefer_mask != 0) {
3820 if (pv == NULL) {
3821 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3822 KASSERT(pv != NULL);
3823 }
3824 pmap_acquire_page_lock(md);
3825 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3826 PVF_WIRED | PVF_KENTRY
3827 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3828 if ((prot & VM_PROT_WRITE)
3829 && !(md->pvh_attrs & PVF_NC))
3830 md->pvh_attrs |= PVF_DIRTY;
3831 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3832 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3833 pmap_release_page_lock(md);
3834 #endif
3835 }
3836 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3837 } else {
3838 if (pv != NULL)
3839 pool_put(&pmap_pv_pool, pv);
3840 #endif
3841 }
3842 if (pmap_initialized) {
3843 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)",
3844 (uintptr_t)ptep, opte, npte, 0);
3845 }
3846
3847 }
3848
3849 void
3850 pmap_kremove(vaddr_t va, vsize_t len)
3851 {
3852 #ifdef UVMHIST
3853 u_int total_mappings = 0;
3854 #endif
3855
3856 PMAPCOUNT(kenter_unmappings);
3857
3858 UVMHIST_FUNC(__func__);
3859 UVMHIST_CALLARGS(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3860
3861 const vaddr_t eva = va + len;
3862 pmap_t kpm = pmap_kernel();
3863
3864 pmap_acquire_pmap_lock(kpm);
3865
3866 while (va < eva) {
3867 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3868 if (next_bucket > eva)
3869 next_bucket = eva;
3870
3871 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3872 KDASSERT(l2b != NULL);
3873
3874 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3875 pt_entry_t *ptep = sptep;
3876 u_int mappings = 0;
3877
3878 while (va < next_bucket) {
3879 const pt_entry_t opte = *ptep;
3880 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3881 if (opg != NULL) {
3882 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3883
3884 if (omd->pvh_attrs & PVF_KMPAGE) {
3885 KASSERT(omd->urw_mappings == 0);
3886 KASSERT(omd->uro_mappings == 0);
3887 KASSERT(omd->krw_mappings == 0);
3888 KASSERT(omd->kro_mappings == 0);
3889 omd->pvh_attrs &= ~PVF_KMPAGE;
3890 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3891 if (arm_cache_prefer_mask != 0) {
3892 omd->pvh_attrs &= ~PVF_WRITE;
3893 }
3894 #endif
3895 atomic_dec_32(&pmap_kmpages);
3896 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3897 } else if (arm_cache_prefer_mask != 0) {
3898 pmap_acquire_page_lock(omd);
3899 pool_put(&pmap_pv_pool,
3900 pmap_kremove_pg(opg, va));
3901 pmap_release_page_lock(omd);
3902 #endif
3903 }
3904 }
3905 if (l2pte_valid_p(opte)) {
3906 l2pte_reset(ptep);
3907 PTE_SYNC(ptep);
3908 #ifdef PMAP_CACHE_VIVT
3909 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3910 #endif
3911 cpu_tlb_flushD_SE(va);
3912
3913 mappings += PAGE_SIZE / L2_S_SIZE;
3914 }
3915 va += PAGE_SIZE;
3916 ptep += PAGE_SIZE / L2_S_SIZE;
3917 }
3918 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3919 mappings, l2b->l2b_occupancy);
3920 l2b->l2b_occupancy -= mappings;
3921 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3922 #ifdef UVMHIST
3923 total_mappings += mappings;
3924 #endif
3925 }
3926 pmap_release_pmap_lock(kpm);
3927 cpu_cpwait();
3928 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)",
3929 total_mappings, 0, 0, 0);
3930 }
3931
3932 bool
3933 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3934 {
3935
3936 return pmap_extract_coherency(pm, va, pap, NULL);
3937 }
3938
3939 bool
3940 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3941 {
3942 struct l2_dtable *l2;
3943 pd_entry_t *pdep, pde;
3944 pt_entry_t *ptep, pte;
3945 paddr_t pa;
3946 u_int l1slot;
3947 bool coherent;
3948
3949 pmap_acquire_pmap_lock(pm);
3950
3951 l1slot = l1pte_index(va);
3952 pdep = pmap_l1_kva(pm) + l1slot;
3953 pde = *pdep;
3954
3955 if (l1pte_section_p(pde)) {
3956 /*
3957 * These should only happen for pmap_kernel()
3958 */
3959 KDASSERT(pm == pmap_kernel());
3960 pmap_release_pmap_lock(pm);
3961 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3962 if (l1pte_supersection_p(pde)) {
3963 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3964 } else
3965 #endif
3966 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3967 coherent = (pde & L1_S_CACHE_MASK) == 0;
3968 } else {
3969 /*
3970 * Note that we can't rely on the validity of the L1
3971 * descriptor as an indication that a mapping exists.
3972 * We have to look it up in the L2 dtable.
3973 */
3974 l2 = pm->pm_l2[L2_IDX(l1slot)];
3975
3976 if (l2 == NULL ||
3977 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3978 pmap_release_pmap_lock(pm);
3979 return false;
3980 }
3981
3982 pte = ptep[l2pte_index(va)];
3983 pmap_release_pmap_lock(pm);
3984
3985 if (pte == 0)
3986 return false;
3987
3988 switch (pte & L2_TYPE_MASK) {
3989 case L2_TYPE_L:
3990 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3991 coherent = (pte & L2_L_CACHE_MASK) == 0;
3992 break;
3993
3994 default:
3995 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3996 coherent = (pte & L2_S_CACHE_MASK) == 0;
3997 break;
3998 }
3999 }
4000
4001 if (pap != NULL)
4002 *pap = pa;
4003
4004 if (coherentp != NULL)
4005 *coherentp = (pm == pmap_kernel() && coherent);
4006
4007 return true;
4008 }
4009
4010 /*
4011 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
4012 * that map it
4013 */
4014
4015 static void
4016 pmap_pv_remove(paddr_t pa)
4017 {
4018 struct pmap_page *pp;
4019
4020 pp = pmap_pv_tracked(pa);
4021 if (pp == NULL)
4022 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4023 pa);
4024
4025 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4026 pmap_page_remove(md, pa);
4027 }
4028
4029 void
4030 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4031 {
4032
4033 /* the only case is remove at the moment */
4034 KASSERT(prot == VM_PROT_NONE);
4035 pmap_pv_remove(pa);
4036 }
4037
4038 void
4039 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4040 {
4041 struct l2_bucket *l2b;
4042 vaddr_t next_bucket;
4043
4044 UVMHIST_FUNC(__func__);
4045 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx prot %#jx",
4046 (uintptr_t)pm, sva, eva, prot);
4047
4048 if ((prot & VM_PROT_READ) == 0) {
4049 pmap_remove(pm, sva, eva);
4050 return;
4051 }
4052
4053 if (prot & VM_PROT_WRITE) {
4054 /*
4055 * If this is a read->write transition, just ignore it and let
4056 * uvm_fault() take care of it later.
4057 */
4058 return;
4059 }
4060
4061 pmap_acquire_pmap_lock(pm);
4062
4063 #ifndef ARM_MMU_EXTENDED
4064 const bool flush = eva - sva >= PAGE_SIZE * 4;
4065 u_int flags = 0;
4066 #endif
4067 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4068
4069 while (sva < eva) {
4070 next_bucket = L2_NEXT_BUCKET_VA(sva);
4071 if (next_bucket > eva)
4072 next_bucket = eva;
4073
4074 l2b = pmap_get_l2_bucket(pm, sva);
4075 if (l2b == NULL) {
4076 sva = next_bucket;
4077 continue;
4078 }
4079
4080 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4081
4082 while (sva < next_bucket) {
4083 const pt_entry_t opte = *ptep;
4084 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4085 struct vm_page *pg;
4086 #ifndef ARM_MMU_EXTENDED
4087 u_int f;
4088 #endif
4089
4090 #ifdef PMAP_CACHE_VIVT
4091 /*
4092 * OK, at this point, we know we're doing
4093 * write-protect operation. If the pmap is
4094 * active, write-back the page.
4095 */
4096 pmap_cache_wbinv_page(pm, sva, false,
4097 PVF_REF | PVF_WRITE);
4098 #endif
4099
4100 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4101 pt_entry_t npte = l2pte_set_readonly(opte);
4102 l2pte_reset(ptep);
4103 PTE_SYNC(ptep);
4104 #ifdef ARM_MMU_EXTENDED
4105 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4106 #endif
4107 l2pte_set(ptep, npte, 0);
4108 PTE_SYNC(ptep);
4109
4110 if (pg != NULL) {
4111 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4112 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4113
4114 pmap_acquire_page_lock(md);
4115 #ifndef ARM_MMU_EXTENDED
4116 f =
4117 #endif
4118 pmap_modify_pv(md, pa, pm, sva,
4119 clr_mask, 0);
4120 pmap_vac_me_harder(md, pa, pm, sva);
4121 pmap_release_page_lock(md);
4122 #ifndef ARM_MMU_EXTENDED
4123 } else {
4124 f = PVF_REF | PVF_EXEC;
4125 }
4126
4127 if (flush) {
4128 flags |= f;
4129 } else {
4130 pmap_tlb_flush_SE(pm, sva, f);
4131 #endif
4132 }
4133 }
4134
4135 sva += PAGE_SIZE;
4136 ptep += PAGE_SIZE / L2_S_SIZE;
4137 }
4138 }
4139
4140 #ifndef ARM_MMU_EXTENDED
4141 if (flush) {
4142 if (PV_BEEN_EXECD(flags)) {
4143 pmap_tlb_flushID(pm);
4144 } else if (PV_BEEN_REFD(flags)) {
4145 pmap_tlb_flushD(pm);
4146 }
4147 }
4148 #endif
4149
4150 pmap_release_pmap_lock(pm);
4151 }
4152
4153 void
4154 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4155 {
4156 struct l2_bucket *l2b;
4157 pt_entry_t *ptep;
4158 vaddr_t next_bucket;
4159 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4160
4161 UVMHIST_FUNC(__func__);
4162 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx",
4163 (uintptr_t)pm, sva, eva, 0);
4164
4165 pmap_acquire_pmap_lock(pm);
4166
4167 while (sva < eva) {
4168 next_bucket = L2_NEXT_BUCKET_VA(sva);
4169 if (next_bucket > eva)
4170 next_bucket = eva;
4171
4172 l2b = pmap_get_l2_bucket(pm, sva);
4173 if (l2b == NULL) {
4174 sva = next_bucket;
4175 continue;
4176 }
4177
4178 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4179 sva < next_bucket;
4180 sva += page_size,
4181 ptep += PAGE_SIZE / L2_S_SIZE,
4182 page_size = PAGE_SIZE) {
4183 if (l2pte_valid_p(*ptep)) {
4184 cpu_icache_sync_range(sva,
4185 uimin(page_size, eva - sva));
4186 }
4187 }
4188 }
4189
4190 pmap_release_pmap_lock(pm);
4191 }
4192
4193 void
4194 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4195 {
4196 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4197 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4198
4199 UVMHIST_FUNC(__func__);
4200 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx prot %#jx",
4201 (uintptr_t)md, pa, prot, 0);
4202
4203 switch(prot) {
4204 case VM_PROT_READ|VM_PROT_WRITE:
4205 #if defined(ARM_MMU_EXTENDED)
4206 pmap_acquire_page_lock(md);
4207 pmap_clearbit(md, pa, PVF_EXEC);
4208 pmap_release_page_lock(md);
4209 break;
4210 #endif
4211 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4212 break;
4213
4214 case VM_PROT_READ:
4215 #if defined(ARM_MMU_EXTENDED)
4216 pmap_acquire_page_lock(md);
4217 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4218 pmap_release_page_lock(md);
4219 break;
4220 #endif
4221 case VM_PROT_READ|VM_PROT_EXECUTE:
4222 pmap_acquire_page_lock(md);
4223 pmap_clearbit(md, pa, PVF_WRITE);
4224 pmap_release_page_lock(md);
4225 break;
4226
4227 default:
4228 pmap_page_remove(md, pa);
4229 break;
4230 }
4231 }
4232
4233 /*
4234 * pmap_clear_modify:
4235 *
4236 * Clear the "modified" attribute for a page.
4237 */
4238 bool
4239 pmap_clear_modify(struct vm_page *pg)
4240 {
4241 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4242 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4243 bool rv;
4244
4245 pmap_acquire_page_lock(md);
4246
4247 if (md->pvh_attrs & PVF_MOD) {
4248 rv = true;
4249 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4250 /*
4251 * If we are going to clear the modified bit and there are
4252 * no other modified bits set, flush the page to memory and
4253 * mark it clean.
4254 */
4255 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4256 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4257 #endif
4258 pmap_clearbit(md, pa, PVF_MOD);
4259 } else {
4260 rv = false;
4261 }
4262 pmap_release_page_lock(md);
4263
4264 return rv;
4265 }
4266
4267 /*
4268 * pmap_clear_reference:
4269 *
4270 * Clear the "referenced" attribute for a page.
4271 */
4272 bool
4273 pmap_clear_reference(struct vm_page *pg)
4274 {
4275 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4276 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4277 bool rv;
4278
4279 pmap_acquire_page_lock(md);
4280
4281 if (md->pvh_attrs & PVF_REF) {
4282 rv = true;
4283 pmap_clearbit(md, pa, PVF_REF);
4284 } else {
4285 rv = false;
4286 }
4287 pmap_release_page_lock(md);
4288
4289 return rv;
4290 }
4291
4292 /*
4293 * pmap_is_modified:
4294 *
4295 * Test if a page has the "modified" attribute.
4296 */
4297 /* See <arm/arm32/pmap.h> */
4298
4299 /*
4300 * pmap_is_referenced:
4301 *
4302 * Test if a page has the "referenced" attribute.
4303 */
4304 /* See <arm/arm32/pmap.h> */
4305
4306 #if defined(ARM_MMU_EXTENDED) && 0
4307 int
4308 pmap_prefetchabt_fixup(void *v)
4309 {
4310 struct trapframe * const tf = v;
4311 vaddr_t va = trunc_page(tf->tf_pc);
4312 int rv = ABORT_FIXUP_FAILED;
4313
4314 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4315 return rv;
4316
4317 kpreempt_disable();
4318 pmap_t pm = curcpu()->ci_pmap_cur;
4319 const size_t l1slot = l1pte_index(va);
4320 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4321 if (l2 == NULL)
4322 goto out;
4323
4324 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4325 if (l2b->l2b_kva == NULL)
4326 goto out;
4327
4328 /*
4329 * Check the PTE itself.
4330 */
4331 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4332 const pt_entry_t opte = *ptep;
4333 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4334 goto out;
4335
4336 paddr_t pa = l2pte_pa(opte);
4337 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4338 KASSERT(pg != NULL);
4339
4340 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4341
4342 pmap_acquire_page_lock(md);
4343 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4344 KASSERT(pv != NULL);
4345
4346 if (PV_IS_EXEC_P(pv->pv_flags)) {
4347 l2pte_reset(ptep);
4348 PTE_SYNC(ptep);
4349 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4350 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4351 pmap_syncicache_page(md, pa);
4352 }
4353 rv = ABORT_FIXUP_RETURN;
4354 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4355 PTE_SYNC(ptep);
4356 }
4357 pmap_release_page_lock(md);
4358
4359 out:
4360 kpreempt_enable();
4361 return rv;
4362 }
4363 #endif
4364
4365 int
4366 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4367 {
4368 struct l2_dtable *l2;
4369 struct l2_bucket *l2b;
4370 paddr_t pa;
4371 const size_t l1slot = l1pte_index(va);
4372 int rv = 0;
4373
4374 UVMHIST_FUNC(__func__);
4375 UVMHIST_CALLARGS(maphist, "pm=%#jx, va=%#jx, ftype=%#jx, user=%jd",
4376 (uintptr_t)pm, va, ftype, user);
4377
4378 va = trunc_page(va);
4379
4380 KASSERT(!user || (pm != pmap_kernel()));
4381
4382 #ifdef ARM_MMU_EXTENDED
4383 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4384 (uintptr_t)cpu_tlb_info(curcpu()),
4385 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4386 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4387 #endif
4388
4389 pmap_acquire_pmap_lock(pm);
4390
4391 /*
4392 * If there is no l2_dtable for this address, then the process
4393 * has no business accessing it.
4394 *
4395 * Note: This will catch userland processes trying to access
4396 * kernel addresses.
4397 */
4398 l2 = pm->pm_l2[L2_IDX(l1slot)];
4399 if (l2 == NULL) {
4400 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4401 goto out;
4402 }
4403
4404 /*
4405 * Likewise if there is no L2 descriptor table
4406 */
4407 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4408 if (l2b->l2b_kva == NULL) {
4409 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4410 l1slot, 0, 0, 0);
4411 goto out;
4412 }
4413
4414 /*
4415 * Check the PTE itself.
4416 */
4417 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4418 pt_entry_t const opte = *ptep;
4419 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4420 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
4421 l1slot, 0, 0, 0);
4422 goto out;
4423 }
4424
4425 #ifndef ARM_HAS_VBAR
4426 /*
4427 * Catch a userland access to the vector page mapped at 0x0
4428 */
4429 if (user && (opte & L2_S_PROT_U) == 0) {
4430 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4431 goto out;
4432 }
4433 #endif
4434
4435 pa = l2pte_pa(opte);
4436
4437 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4438 /*
4439 * This looks like a good candidate for "page modified"
4440 * emulation...
4441 */
4442 struct pv_entry *pv;
4443 struct vm_page *pg;
4444
4445 /* Extract the physical address of the page */
4446 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4447 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4448 goto out;
4449 }
4450
4451 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4452
4453 /* Get the current flags for this page. */
4454 pmap_acquire_page_lock(md);
4455 pv = pmap_find_pv(md, pm, va);
4456 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4457 pmap_release_page_lock(md);
4458 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4459 goto out;
4460 }
4461
4462 /*
4463 * Do the flags say this page is writable? If not then it
4464 * is a genuine write fault. If yes then the write fault is
4465 * our fault as we did not reflect the write access in the
4466 * PTE. Now we know a write has occurred we can correct this
4467 * and also set the modified bit
4468 */
4469 if ((pv->pv_flags & PVF_WRITE) == 0) {
4470 pmap_release_page_lock(md);
4471 goto out;
4472 }
4473
4474 md->pvh_attrs |= PVF_REF | PVF_MOD;
4475 pv->pv_flags |= PVF_REF | PVF_MOD;
4476 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4477 /*
4478 * If there are cacheable mappings for this page, mark it dirty.
4479 */
4480 if ((md->pvh_attrs & PVF_NC) == 0)
4481 md->pvh_attrs |= PVF_DIRTY;
4482 #endif
4483 #ifdef ARM_MMU_EXTENDED
4484 if (md->pvh_attrs & PVF_EXEC) {
4485 md->pvh_attrs &= ~PVF_EXEC;
4486 PMAPCOUNT(exec_discarded_modfixup);
4487 }
4488 #endif
4489 pmap_release_page_lock(md);
4490
4491 /*
4492 * Re-enable write permissions for the page. No need to call
4493 * pmap_vac_me_harder(), since this is just a
4494 * modified-emulation fault, and the PVF_WRITE bit isn't
4495 * changing. We've already set the cacheable bits based on
4496 * the assumption that we can write to this page.
4497 */
4498 const pt_entry_t npte =
4499 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4500 #ifdef ARM_MMU_EXTENDED
4501 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4502 #endif
4503 | 0;
4504 l2pte_reset(ptep);
4505 PTE_SYNC(ptep);
4506 pmap_tlb_flush_SE(pm, va,
4507 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4508 l2pte_set(ptep, npte, 0);
4509 PTE_SYNC(ptep);
4510 PMAPCOUNT(fixup_mod);
4511 rv = 1;
4512 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4513 "from %#jx to %#jx)", opte, npte, 0, 0);
4514 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4515 /*
4516 * This looks like a good candidate for "page referenced"
4517 * emulation.
4518 */
4519 struct vm_page *pg;
4520
4521 /* Extract the physical address of the page */
4522 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4523 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4524 goto out;
4525 }
4526
4527 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4528
4529 /* Get the current flags for this page. */
4530 pmap_acquire_page_lock(md);
4531 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4532 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4533 pmap_release_page_lock(md);
4534 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4535 goto out;
4536 }
4537
4538 md->pvh_attrs |= PVF_REF;
4539 pv->pv_flags |= PVF_REF;
4540
4541 pt_entry_t npte =
4542 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4543 #ifdef ARM_MMU_EXTENDED
4544 if (pm != pmap_kernel()) {
4545 npte |= L2_XS_nG;
4546 }
4547 /*
4548 * If we got called from prefetch abort, then ftype will have
4549 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4550 * the PTE.
4551 */
4552 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4553 /*
4554 * Is this a mapping of an executable page?
4555 */
4556 if ((pv->pv_flags & PVF_EXEC) == 0) {
4557 pmap_release_page_lock(md);
4558 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4559 0, 0, 0, 0);
4560 goto out;
4561 }
4562 /*
4563 * If we haven't synced the page, do so now.
4564 */
4565 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4566 UVMHIST_LOG(maphist, " ref emul: syncicache "
4567 "page #%#jx", pa, 0, 0, 0);
4568 pmap_syncicache_page(md, pa);
4569 PMAPCOUNT(fixup_exec);
4570 }
4571 npte &= ~L2_XS_XN;
4572 }
4573 #endif /* ARM_MMU_EXTENDED */
4574 pmap_release_page_lock(md);
4575 l2pte_reset(ptep);
4576 PTE_SYNC(ptep);
4577 pmap_tlb_flush_SE(pm, va,
4578 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4579 l2pte_set(ptep, npte, 0);
4580 PTE_SYNC(ptep);
4581 PMAPCOUNT(fixup_ref);
4582 rv = 1;
4583 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4584 "%#jx to %#jx)", opte, npte, 0, 0);
4585 #ifdef ARM_MMU_EXTENDED
4586 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4587 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4588 if (pg == NULL) {
4589 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4590 goto out;
4591 }
4592
4593 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4594
4595 /* Get the current flags for this page. */
4596 pmap_acquire_page_lock(md);
4597 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4598 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4599 pmap_release_page_lock(md);
4600 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4601 goto out;
4602 }
4603
4604 /*
4605 * If we haven't synced the page, do so now.
4606 */
4607 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4608 UVMHIST_LOG(maphist, "syncicache page #%#jx",
4609 pa, 0, 0, 0);
4610 pmap_syncicache_page(md, pa);
4611 }
4612 pmap_release_page_lock(md);
4613 /*
4614 * Turn off no-execute.
4615 */
4616 KASSERT(opte & L2_XS_nG);
4617 l2pte_reset(ptep);
4618 PTE_SYNC(ptep);
4619 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4620 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4621 PTE_SYNC(ptep);
4622 rv = 1;
4623 PMAPCOUNT(fixup_exec);
4624 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4625 opte, opte & ~L2_XS_XN, 0, 0);
4626 #endif
4627 }
4628
4629 #ifndef ARM_MMU_EXTENDED
4630 /*
4631 * We know there is a valid mapping here, so simply
4632 * fix up the L1 if necessary.
4633 */
4634 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4635 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4636 if (*pdep != pde) {
4637 l1pte_setone(pdep, pde);
4638 PDE_SYNC(pdep);
4639 rv = 1;
4640 PMAPCOUNT(fixup_pdes);
4641 }
4642 #endif
4643
4644 #ifdef CPU_SA110
4645 /*
4646 * There are bugs in the rev K SA110. This is a check for one
4647 * of them.
4648 */
4649 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4650 curcpu()->ci_arm_cpurev < 3) {
4651 /* Always current pmap */
4652 if (l2pte_valid_p(opte)) {
4653 extern int kernel_debug;
4654 if (kernel_debug & 1) {
4655 struct proc *p = curlwp->l_proc;
4656 printf("prefetch_abort: page is already "
4657 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4658 printf("prefetch_abort: pc=%08lx proc=%p "
4659 "process=%s\n", va, p, p->p_comm);
4660 printf("prefetch_abort: far=%08x fs=%x\n",
4661 cpu_faultaddress(), cpu_faultstatus());
4662 }
4663 #ifdef DDB
4664 if (kernel_debug & 2)
4665 Debugger();
4666 #endif
4667 rv = 1;
4668 }
4669 }
4670 #endif /* CPU_SA110 */
4671
4672 #ifndef ARM_MMU_EXTENDED
4673 /*
4674 * If 'rv == 0' at this point, it generally indicates that there is a
4675 * stale TLB entry for the faulting address. That might be due to a
4676 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4677 */
4678 if (rv == 0
4679 && pm->pm_l1->l1_domain_use_count == 1
4680 && pmap_needs_pte_sync == 0) {
4681 pmap_needs_pte_sync = 1;
4682 PTE_SYNC(ptep);
4683 PMAPCOUNT(fixup_ptesync);
4684 rv = 1;
4685 }
4686 #endif
4687
4688 #ifndef MULTIPROCESSOR
4689 #if defined(DEBUG) || 1
4690 /*
4691 * If 'rv == 0' at this point, it generally indicates that there is a
4692 * stale TLB entry for the faulting address. This happens when two or
4693 * more processes are sharing an L1. Since we don't flush the TLB on
4694 * a context switch between such processes, we can take domain faults
4695 * for mappings which exist at the same VA in both processes. EVEN IF
4696 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4697 * example.
4698 *
4699 * This is extremely likely to happen if pmap_enter() updated the L1
4700 * entry for a recently entered mapping. In this case, the TLB is
4701 * flushed for the new mapping, but there may still be TLB entries for
4702 * other mappings belonging to other processes in the 1MB range
4703 * covered by the L1 entry.
4704 *
4705 * Since 'rv == 0', we know that the L1 already contains the correct
4706 * value, so the fault must be due to a stale TLB entry.
4707 *
4708 * Since we always need to flush the TLB anyway in the case where we
4709 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4710 * stale TLB entries dynamically.
4711 *
4712 * However, the above condition can ONLY happen if the current L1 is
4713 * being shared. If it happens when the L1 is unshared, it indicates
4714 * that other parts of the pmap are not doing their job WRT managing
4715 * the TLB.
4716 */
4717 if (rv == 0
4718 #ifndef ARM_MMU_EXTENDED
4719 && pm->pm_l1->l1_domain_use_count == 1
4720 #endif
4721 && true) {
4722 #ifdef DEBUG
4723 extern int last_fault_code;
4724 #else
4725 int last_fault_code = ftype & VM_PROT_EXECUTE
4726 ? armreg_ifsr_read()
4727 : armreg_dfsr_read();
4728 #endif
4729 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4730 pm, va, ftype);
4731 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4732 l2, l2b, ptep, opte);
4733
4734 #ifndef ARM_MMU_EXTENDED
4735 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4736 pdep, pde, last_fault_code);
4737 #else
4738 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4739 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4740 armreg_ttbcr_read());
4741 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4742 last_fault_code, curcpu()->ci_pmap_cur,
4743 curcpu()->ci_pmap_asid_cur,
4744 armreg_contextidr_read(), armreg_dacr_read());
4745 #ifdef _ARM_ARCH_7
4746 if (ftype & VM_PROT_WRITE)
4747 armreg_ats1cuw_write(va);
4748 else
4749 armreg_ats1cur_write(va);
4750 arm_isb();
4751 printf("fixup: par %#x\n", armreg_par_read());
4752 #endif
4753 #endif
4754 #ifdef DDB
4755 extern int kernel_debug;
4756
4757 if (kernel_debug & 2) {
4758 pmap_release_pmap_lock(pm);
4759 #ifdef UVMHIST
4760 KERNHIST_DUMP(maphist);
4761 #endif
4762 cpu_Debugger();
4763 pmap_acquire_pmap_lock(pm);
4764 }
4765 #endif
4766 }
4767 #endif
4768 #endif
4769
4770 #ifndef ARM_MMU_EXTENDED
4771 /* Flush the TLB in the shared L1 case - see comment above */
4772 pmap_tlb_flush_SE(pm, va,
4773 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4774 #endif
4775
4776 rv = 1;
4777
4778 out:
4779 pmap_release_pmap_lock(pm);
4780
4781 return rv;
4782 }
4783
4784 /*
4785 * Routine: pmap_procwr
4786 *
4787 * Function:
4788 * Synchronize caches corresponding to [addr, addr+len) in p.
4789 *
4790 */
4791 void
4792 pmap_procwr(struct proc *p, vaddr_t va, int len)
4793 {
4794 #ifndef ARM_MMU_EXTENDED
4795
4796 /* We only need to do anything if it is the current process. */
4797 if (p == curproc)
4798 cpu_icache_sync_range(va, len);
4799 #endif
4800 }
4801
4802 /*
4803 * Routine: pmap_unwire
4804 * Function: Clear the wired attribute for a map/virtual-address pair.
4805 *
4806 * In/out conditions:
4807 * The mapping must already exist in the pmap.
4808 */
4809 void
4810 pmap_unwire(pmap_t pm, vaddr_t va)
4811 {
4812 struct l2_bucket *l2b;
4813 pt_entry_t *ptep, pte;
4814 struct vm_page *pg;
4815 paddr_t pa;
4816
4817 UVMHIST_FUNC(__func__);
4818 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx", (uintptr_t)pm, va, 0, 0);
4819
4820 pmap_acquire_pmap_lock(pm);
4821
4822 l2b = pmap_get_l2_bucket(pm, va);
4823 KDASSERT(l2b != NULL);
4824
4825 ptep = &l2b->l2b_kva[l2pte_index(va)];
4826 pte = *ptep;
4827
4828 /* Extract the physical address of the page */
4829 pa = l2pte_pa(pte);
4830
4831 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4832 /* Update the wired bit in the pv entry for this page. */
4833 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4834
4835 pmap_acquire_page_lock(md);
4836 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4837 pmap_release_page_lock(md);
4838 }
4839
4840 pmap_release_pmap_lock(pm);
4841 }
4842
4843 #ifdef ARM_MMU_EXTENDED
4844 void
4845 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4846 {
4847 UVMHIST_FUNC(__func__);
4848 struct cpu_info * const ci = curcpu();
4849 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4850
4851 UVMHIST_CALLARGS(maphist, "pm %#jx (pm->pm_l1_pa %08jx asid %ju)",
4852 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4853
4854 /*
4855 * Assume that TTBR1 has only global mappings and TTBR0 only
4856 * has non-global mappings. To prevent speculation from doing
4857 * evil things we disable translation table walks using TTBR0
4858 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4859 * Once both are set, table walks are reenabled.
4860 */
4861 const uint32_t old_ttbcr = armreg_ttbcr_read();
4862 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4863 arm_isb();
4864
4865 pmap_tlb_asid_acquire(pm, l);
4866
4867 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4868 /*
4869 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4870 * have been updated.
4871 */
4872 arm_isb();
4873
4874 if (pm != pmap_kernel()) {
4875 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4876 }
4877 cpu_cpwait();
4878
4879 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4880 ci->ci_pmap_asid_cur, pai->pai_asid);
4881 ci->ci_pmap_cur = pm;
4882 }
4883
4884 void
4885 pmap_md_pdetab_deactivate(pmap_t pm)
4886 {
4887
4888 UVMHIST_FUNC(__func__);
4889 UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0);
4890
4891 kpreempt_disable();
4892 struct cpu_info * const ci = curcpu();
4893 /*
4894 * Disable translation table walks from TTBR0 while no pmap has been
4895 * activated.
4896 */
4897 const uint32_t old_ttbcr = armreg_ttbcr_read();
4898 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4899 arm_isb();
4900 pmap_tlb_asid_deactivate(pm);
4901 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4902 arm_isb();
4903
4904 ci->ci_pmap_cur = pmap_kernel();
4905 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4906 ci->ci_pmap_asid_cur);
4907 kpreempt_enable();
4908 }
4909 #endif
4910
4911 void
4912 pmap_activate(struct lwp *l)
4913 {
4914 extern int block_userspace_access;
4915 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4916
4917 UVMHIST_FUNC(__func__);
4918 UVMHIST_CALLARGS(maphist, "l=%#jx pm=%#jx", (uintptr_t)l,
4919 (uintptr_t)npm, 0, 0);
4920
4921 struct cpu_info * const ci = curcpu();
4922
4923 /*
4924 * If activating a non-current lwp or the current lwp is
4925 * already active, just return.
4926 */
4927 if (false
4928 || l != curlwp
4929 #ifdef ARM_MMU_EXTENDED
4930 || (ci->ci_pmap_cur == npm &&
4931 (npm == pmap_kernel()
4932 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4933 #else
4934 || npm->pm_activated == true
4935 #endif
4936 || false) {
4937 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4938 (uintptr_t)l, 0, 0);
4939 return;
4940 }
4941
4942 #ifndef ARM_MMU_EXTENDED
4943 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4944 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4945
4946 /*
4947 * If TTB and DACR are unchanged, short-circuit all the
4948 * TLB/cache management stuff.
4949 */
4950 pmap_t opm = ci->ci_lastlwp
4951 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4952 : NULL;
4953 if (opm != NULL) {
4954 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4955 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4956
4957 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4958 goto all_done;
4959 }
4960 #endif /* !ARM_MMU_EXTENDED */
4961
4962 PMAPCOUNT(activations);
4963 block_userspace_access = 1;
4964
4965 #ifndef ARM_MMU_EXTENDED
4966 /*
4967 * If switching to a user vmspace which is different to the
4968 * most recent one, and the most recent one is potentially
4969 * live in the cache, we must write-back and invalidate the
4970 * entire cache.
4971 */
4972 pmap_t rpm = ci->ci_pmap_lastuser;
4973
4974 /*
4975 * XXXSCW: There's a corner case here which can leave turds in the
4976 * cache as reported in kern/41058. They're probably left over during
4977 * tear-down and switching away from an exiting process. Until the root
4978 * cause is identified and fixed, zap the cache when switching pmaps.
4979 * This will result in a few unnecessary cache flushes, but that's
4980 * better than silently corrupting data.
4981 */
4982 #if 0
4983 if (npm != pmap_kernel() && rpm && npm != rpm &&
4984 rpm->pm_cstate.cs_cache) {
4985 rpm->pm_cstate.cs_cache = 0;
4986 #ifdef PMAP_CACHE_VIVT
4987 cpu_idcache_wbinv_all();
4988 #endif
4989 }
4990 #else
4991 if (rpm) {
4992 rpm->pm_cstate.cs_cache = 0;
4993 if (npm == pmap_kernel())
4994 ci->ci_pmap_lastuser = NULL;
4995 #ifdef PMAP_CACHE_VIVT
4996 cpu_idcache_wbinv_all();
4997 #endif
4998 }
4999 #endif
5000
5001 /* No interrupts while we frob the TTB/DACR */
5002 uint32_t oldirqstate = disable_interrupts(IF32_bits);
5003 #endif /* !ARM_MMU_EXTENDED */
5004
5005 #ifndef ARM_HAS_VBAR
5006 /*
5007 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
5008 * entry corresponding to 'vector_page' in the incoming L1 table
5009 * before switching to it otherwise subsequent interrupts/exceptions
5010 * (including domain faults!) will jump into hyperspace.
5011 */
5012 if (npm->pm_pl1vec != NULL) {
5013 cpu_tlb_flushID_SE((u_int)vector_page);
5014 cpu_cpwait();
5015 *npm->pm_pl1vec = npm->pm_l1vec;
5016 PTE_SYNC(npm->pm_pl1vec);
5017 }
5018 #endif
5019
5020 #ifdef ARM_MMU_EXTENDED
5021 pmap_md_pdetab_activate(npm, l);
5022 #else
5023 cpu_domains(ndacr);
5024 if (npm == pmap_kernel() || npm == rpm) {
5025 /*
5026 * Switching to a kernel thread, or back to the
5027 * same user vmspace as before... Simply update
5028 * the TTB (no TLB flush required)
5029 */
5030 cpu_setttb(npm->pm_l1->l1_physaddr, false);
5031 cpu_cpwait();
5032 } else {
5033 /*
5034 * Otherwise, update TTB and flush TLB
5035 */
5036 cpu_context_switch(npm->pm_l1->l1_physaddr);
5037 if (rpm != NULL)
5038 rpm->pm_cstate.cs_tlb = 0;
5039 }
5040
5041 restore_interrupts(oldirqstate);
5042 #endif /* ARM_MMU_EXTENDED */
5043
5044 block_userspace_access = 0;
5045
5046 #ifndef ARM_MMU_EXTENDED
5047 all_done:
5048 /*
5049 * The new pmap is resident. Make sure it's marked
5050 * as resident in the cache/TLB.
5051 */
5052 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5053 if (npm != pmap_kernel())
5054 ci->ci_pmap_lastuser = npm;
5055
5056 /* The old pmap is not longer active */
5057 if (opm != npm) {
5058 if (opm != NULL)
5059 opm->pm_activated = false;
5060
5061 /* But the new one is */
5062 npm->pm_activated = true;
5063 }
5064 ci->ci_pmap_cur = npm;
5065 #endif
5066 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5067 }
5068
5069 void
5070 pmap_deactivate(struct lwp *l)
5071 {
5072 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5073
5074 UVMHIST_FUNC(__func__);
5075 UVMHIST_CALLARGS(maphist, "l=%#jx (pm=%#jx)", (uintptr_t)l,
5076 (uintptr_t)pm, 0, 0);
5077
5078 #ifdef ARM_MMU_EXTENDED
5079 pmap_md_pdetab_deactivate(pm);
5080 #else
5081 /*
5082 * If the process is exiting, make sure pmap_activate() does
5083 * a full MMU context-switch and cache flush, which we might
5084 * otherwise skip. See PR port-arm/38950.
5085 */
5086 if (l->l_proc->p_sflag & PS_WEXIT)
5087 curcpu()->ci_lastlwp = NULL;
5088
5089 pm->pm_activated = false;
5090 #endif
5091 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5092 }
5093
5094 void
5095 pmap_update(pmap_t pm)
5096 {
5097
5098 UVMHIST_FUNC(__func__);
5099 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5100 pm->pm_remove_all, 0, 0);
5101
5102 #ifndef ARM_MMU_EXTENDED
5103 if (pm->pm_remove_all) {
5104 /*
5105 * Finish up the pmap_remove_all() optimisation by flushing
5106 * the TLB.
5107 */
5108 pmap_tlb_flushID(pm);
5109 pm->pm_remove_all = false;
5110 }
5111
5112 if (pmap_is_current(pm)) {
5113 /*
5114 * If we're dealing with a current userland pmap, move its L1
5115 * to the end of the LRU.
5116 */
5117 if (pm != pmap_kernel())
5118 pmap_use_l1(pm);
5119
5120 /*
5121 * We can assume we're done with frobbing the cache/tlb for
5122 * now. Make sure any future pmap ops don't skip cache/tlb
5123 * flushes.
5124 */
5125 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5126 }
5127 #else
5128
5129 kpreempt_disable();
5130 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5131 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5132 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5133 PMAP_COUNT(shootdown_ipis);
5134 }
5135 #endif
5136
5137 /*
5138 * If pmap_remove_all was called, we deactivated ourselves and released
5139 * our ASID. Now we have to reactivate ourselves.
5140 */
5141 if (__predict_false(pm->pm_remove_all)) {
5142 pm->pm_remove_all = false;
5143
5144 KASSERT(pm != pmap_kernel());
5145 pmap_md_pdetab_activate(pm, curlwp);
5146 }
5147
5148 if (arm_has_mpext_p)
5149 armreg_bpiallis_write(0);
5150 else
5151 armreg_bpiall_write(0);
5152
5153 kpreempt_enable();
5154
5155 KASSERTMSG(pm == pmap_kernel()
5156 || curcpu()->ci_pmap_cur != pm
5157 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5158 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5159 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5160 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5161 #endif
5162
5163 PMAPCOUNT(updates);
5164
5165 /*
5166 * make sure TLB/cache operations have completed.
5167 */
5168 cpu_cpwait();
5169 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5170 }
5171
5172 bool
5173 pmap_remove_all(pmap_t pm)
5174 {
5175
5176 /*
5177 * The vmspace described by this pmap is about to be torn down.
5178 * Until pmap_update() is called, UVM will only make calls
5179 * to pmap_remove(). We can make life much simpler by flushing
5180 * the cache now, and deferring TLB invalidation to pmap_update().
5181 */
5182 #ifdef PMAP_CACHE_VIVT
5183 pmap_cache_wbinv_all(pm, PVF_EXEC);
5184 #endif
5185 #ifdef ARM_MMU_EXTENDED
5186 #ifdef MULTIPROCESSOR
5187 struct cpu_info * const ci = curcpu();
5188 // This should be the last CPU with this pmap onproc
5189 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5190 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5191 #endif
5192 pmap_tlb_asid_deactivate(pm);
5193 #ifdef MULTIPROCESSOR
5194 KASSERT(kcpuset_iszero(pm->pm_onproc));
5195 #endif
5196
5197 pmap_tlb_asid_release_all(pm);
5198 #endif
5199 pm->pm_remove_all = true;
5200 return false;
5201 }
5202
5203 /*
5204 * Retire the given physical map from service.
5205 * Should only be called if the map contains no valid mappings.
5206 */
5207 void
5208 pmap_destroy(pmap_t pm)
5209 {
5210 UVMHIST_FUNC(__func__);
5211 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5212 pm ? pm->pm_remove_all : 0, 0, 0);
5213
5214 if (pm == NULL)
5215 return;
5216
5217 if (pm->pm_remove_all) {
5218 #ifdef ARM_MMU_EXTENDED
5219 pmap_tlb_asid_release_all(pm);
5220 #else
5221 pmap_tlb_flushID(pm);
5222 #endif
5223 pm->pm_remove_all = false;
5224 }
5225
5226 /*
5227 * Drop reference count
5228 */
5229 if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
5230 #ifndef ARM_MMU_EXTENDED
5231 if (pmap_is_current(pm)) {
5232 if (pm != pmap_kernel())
5233 pmap_use_l1(pm);
5234 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5235 }
5236 #endif
5237 return;
5238 }
5239
5240 /*
5241 * reference count is zero, free pmap resources and then free pmap.
5242 */
5243
5244 #ifndef ARM_HAS_VBAR
5245 if (vector_page < KERNEL_BASE) {
5246 KDASSERT(!pmap_is_current(pm));
5247
5248 /* Remove the vector page mapping */
5249 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5250 pmap_update(pm);
5251 }
5252 #endif
5253
5254 pmap_free_l1(pm);
5255
5256 #ifdef ARM_MMU_EXTENDED
5257 #ifdef MULTIPROCESSOR
5258 kcpuset_destroy(pm->pm_active);
5259 kcpuset_destroy(pm->pm_onproc);
5260 #endif
5261 #else
5262 struct cpu_info * const ci = curcpu();
5263 if (ci->ci_pmap_lastuser == pm)
5264 ci->ci_pmap_lastuser = NULL;
5265 #endif
5266
5267 mutex_destroy(&pm->pm_lock);
5268 pool_cache_put(&pmap_cache, pm);
5269 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5270 }
5271
5272
5273 /*
5274 * void pmap_reference(pmap_t pm)
5275 *
5276 * Add a reference to the specified pmap.
5277 */
5278 void
5279 pmap_reference(pmap_t pm)
5280 {
5281
5282 if (pm == NULL)
5283 return;
5284
5285 #ifndef ARM_MMU_EXTENDED
5286 pmap_use_l1(pm);
5287 #endif
5288
5289 atomic_inc_uint(&pm->pm_refs);
5290 }
5291
5292 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5293
5294 static struct evcnt pmap_prefer_nochange_ev =
5295 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5296 static struct evcnt pmap_prefer_change_ev =
5297 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5298
5299 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5300 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5301
5302 void
5303 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5304 {
5305 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5306 vaddr_t va = *vap;
5307 vaddr_t diff = (hint - va) & mask;
5308 if (diff == 0) {
5309 pmap_prefer_nochange_ev.ev_count++;
5310 } else {
5311 pmap_prefer_change_ev.ev_count++;
5312 if (__predict_false(td))
5313 va -= mask + 1;
5314 *vap = va + diff;
5315 }
5316 }
5317 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5318
5319 /*
5320 * pmap_zero_page()
5321 *
5322 * Zero a given physical page by mapping it at a page hook point.
5323 * In doing the zero page op, the page we zero is mapped cachable, as with
5324 * StrongARM accesses to non-cached pages are non-burst making writing
5325 * _any_ bulk data very slow.
5326 */
5327 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5328 void
5329 pmap_zero_page_generic(paddr_t pa)
5330 {
5331 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5332 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5333 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5334 #endif
5335 #if defined(PMAP_CACHE_VIPT)
5336 /* Choose the last page color it had, if any */
5337 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5338 #else
5339 const vsize_t va_offset = 0;
5340 #endif
5341 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5342 /*
5343 * Is this page mapped at its natural color?
5344 * If we have all of memory mapped, then just convert PA to VA.
5345 */
5346 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5347 || va_offset == (pa & arm_cache_prefer_mask);
5348 const vaddr_t vdstp = okcolor
5349 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5350 : cpu_cdstp(va_offset);
5351 #else
5352 const bool okcolor = false;
5353 const vaddr_t vdstp = cpu_cdstp(va_offset);
5354 #endif
5355 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5356
5357
5358 #ifdef DEBUG
5359 if (!SLIST_EMPTY(&md->pvh_list))
5360 panic("pmap_zero_page: page has mappings");
5361 #endif
5362
5363 KDASSERT((pa & PGOFSET) == 0);
5364
5365 if (!okcolor) {
5366 /*
5367 * Hook in the page, zero it, and purge the cache for that
5368 * zeroed page. Invalidate the TLB as needed.
5369 */
5370 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5371 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5372 l2pte_set(ptep, npte, 0);
5373 PTE_SYNC(ptep);
5374 cpu_tlb_flushD_SE(vdstp);
5375 cpu_cpwait();
5376 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5377 && !defined(ARM_MMU_EXTENDED)
5378 /*
5379 * If we are direct-mapped and our color isn't ok, then before
5380 * we bzero the page invalidate its contents from the cache and
5381 * reset the color to its natural color.
5382 */
5383 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5384 md->pvh_attrs &= ~arm_cache_prefer_mask;
5385 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5386 #endif
5387 }
5388 bzero_page(vdstp);
5389 if (!okcolor) {
5390 /*
5391 * Unmap the page.
5392 */
5393 l2pte_reset(ptep);
5394 PTE_SYNC(ptep);
5395 cpu_tlb_flushD_SE(vdstp);
5396 #ifdef PMAP_CACHE_VIVT
5397 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5398 #endif
5399 }
5400 #ifdef PMAP_CACHE_VIPT
5401 /*
5402 * This page is now cache resident so it now has a page color.
5403 * Any contents have been obliterated so clear the EXEC flag.
5404 */
5405 #ifndef ARM_MMU_EXTENDED
5406 if (!pmap_is_page_colored_p(md)) {
5407 PMAPCOUNT(vac_color_new);
5408 md->pvh_attrs |= PVF_COLORED;
5409 }
5410 md->pvh_attrs |= PVF_DIRTY;
5411 #endif
5412 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5413 md->pvh_attrs &= ~PVF_EXEC;
5414 PMAPCOUNT(exec_discarded_zero);
5415 }
5416 #endif
5417 }
5418 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5419
5420 #if ARM_MMU_XSCALE == 1
5421 void
5422 pmap_zero_page_xscale(paddr_t pa)
5423 {
5424 #ifdef DEBUG
5425 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5426 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5427
5428 if (!SLIST_EMPTY(&md->pvh_list))
5429 panic("pmap_zero_page: page has mappings");
5430 #endif
5431
5432 KDASSERT((pa & PGOFSET) == 0);
5433
5434 /*
5435 * Hook in the page, zero it, and purge the cache for that
5436 * zeroed page. Invalidate the TLB as needed.
5437 */
5438
5439 pt_entry_t npte = L2_S_PROTO | pa |
5440 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5441 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5442 l2pte_set(cdst_pte, npte, 0);
5443 PTE_SYNC(cdst_pte);
5444 cpu_tlb_flushD_SE(cdstp);
5445 cpu_cpwait();
5446 bzero_page(cdstp);
5447 xscale_cache_clean_minidata();
5448 l2pte_reset(cdst_pte);
5449 PTE_SYNC(cdst_pte);
5450 }
5451 #endif /* ARM_MMU_XSCALE == 1 */
5452
5453 /* pmap_pageidlezero()
5454 *
5455 * The same as above, except that we assume that the page is not
5456 * mapped. This means we never have to flush the cache first. Called
5457 * from the idle loop.
5458 */
5459 bool
5460 pmap_pageidlezero(paddr_t pa)
5461 {
5462 bool rv = true;
5463 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5464 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5465 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5466 #endif
5467 #ifdef PMAP_CACHE_VIPT
5468 /* Choose the last page color it had, if any */
5469 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5470 #else
5471 const vsize_t va_offset = 0;
5472 #endif
5473 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5474 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5475 || va_offset == (pa & arm_cache_prefer_mask);
5476 const vaddr_t vdstp = okcolor
5477 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5478 : cpu_cdstp(va_offset);
5479 #else
5480 const bool okcolor = false;
5481 const vaddr_t vdstp = cpu_cdstp(va_offset);
5482 #endif
5483 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5484
5485
5486 #ifdef DEBUG
5487 if (!SLIST_EMPTY(&md->pvh_list))
5488 panic("pmap_pageidlezero: page has mappings");
5489 #endif
5490
5491 KDASSERT((pa & PGOFSET) == 0);
5492
5493 if (!okcolor) {
5494 /*
5495 * Hook in the page, zero it, and purge the cache for that
5496 * zeroed page. Invalidate the TLB as needed.
5497 */
5498 const pt_entry_t npte = L2_S_PROTO | pa |
5499 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5500 l2pte_set(ptep, npte, 0);
5501 PTE_SYNC(ptep);
5502 cpu_tlb_flushD_SE(vdstp);
5503 cpu_cpwait();
5504 }
5505
5506 uint64_t *ptr = (uint64_t *)vdstp;
5507 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5508 if (sched_curcpu_runnable_p() != 0) {
5509 /*
5510 * A process has become ready. Abort now,
5511 * so we don't keep it waiting while we
5512 * do slow memory access to finish this
5513 * page.
5514 */
5515 rv = false;
5516 break;
5517 }
5518 *ptr++ = 0;
5519 }
5520
5521 #ifdef PMAP_CACHE_VIVT
5522 if (rv)
5523 /*
5524 * if we aborted we'll rezero this page again later so don't
5525 * purge it unless we finished it
5526 */
5527 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5528 #elif defined(PMAP_CACHE_VIPT)
5529 /*
5530 * This page is now cache resident so it now has a page color.
5531 * Any contents have been obliterated so clear the EXEC flag.
5532 */
5533 #ifndef ARM_MMU_EXTENDED
5534 if (!pmap_is_page_colored_p(md)) {
5535 PMAPCOUNT(vac_color_new);
5536 md->pvh_attrs |= PVF_COLORED;
5537 }
5538 #endif
5539 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5540 md->pvh_attrs &= ~PVF_EXEC;
5541 PMAPCOUNT(exec_discarded_zero);
5542 }
5543 #endif
5544 /*
5545 * Unmap the page.
5546 */
5547 if (!okcolor) {
5548 l2pte_reset(ptep);
5549 PTE_SYNC(ptep);
5550 cpu_tlb_flushD_SE(vdstp);
5551 }
5552
5553 return rv;
5554 }
5555
5556 /*
5557 * pmap_copy_page()
5558 *
5559 * Copy one physical page into another, by mapping the pages into
5560 * hook points. The same comment regarding cachability as in
5561 * pmap_zero_page also applies here.
5562 */
5563 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5564 void
5565 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5566 {
5567 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5568 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5569 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5570 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5571 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5572 #endif
5573 #ifdef PMAP_CACHE_VIPT
5574 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5575 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5576 #else
5577 const vsize_t src_va_offset = 0;
5578 const vsize_t dst_va_offset = 0;
5579 #endif
5580 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5581 /*
5582 * Is this page mapped at its natural color?
5583 * If we have all of memory mapped, then just convert PA to VA.
5584 */
5585 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5586 || src_va_offset == (src & arm_cache_prefer_mask);
5587 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5588 || dst_va_offset == (dst & arm_cache_prefer_mask);
5589 const vaddr_t vsrcp = src_okcolor
5590 ? pmap_direct_mapped_phys(src, &src_okcolor,
5591 cpu_csrcp(src_va_offset))
5592 : cpu_csrcp(src_va_offset);
5593 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5594 cpu_cdstp(dst_va_offset));
5595 #else
5596 const bool src_okcolor = false;
5597 const bool dst_okcolor = false;
5598 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5599 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5600 #endif
5601 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5602 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5603
5604 #ifdef DEBUG
5605 if (!SLIST_EMPTY(&dst_md->pvh_list))
5606 panic("pmap_copy_page: dst page has mappings");
5607 #endif
5608
5609 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5610 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5611 #endif
5612 KDASSERT((src & PGOFSET) == 0);
5613 KDASSERT((dst & PGOFSET) == 0);
5614
5615 /*
5616 * Clean the source page. Hold the source page's lock for
5617 * the duration of the copy so that no other mappings can
5618 * be created while we have a potentially aliased mapping.
5619 */
5620 #ifdef PMAP_CACHE_VIVT
5621 pmap_acquire_page_lock(src_md);
5622 (void) pmap_clean_page(src_md, true);
5623 pmap_release_page_lock(src_md);
5624 #endif
5625
5626 /*
5627 * Map the pages into the page hook points, copy them, and purge
5628 * the cache for the appropriate page. Invalidate the TLB
5629 * as required.
5630 */
5631 if (!src_okcolor) {
5632 const pt_entry_t nsrc_pte = L2_S_PROTO
5633 | src
5634 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5635 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5636 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5637 | pte_l2_s_cache_mode
5638 #endif
5639 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5640 l2pte_set(src_ptep, nsrc_pte, 0);
5641 PTE_SYNC(src_ptep);
5642 cpu_tlb_flushD_SE(vsrcp);
5643 cpu_cpwait();
5644 }
5645 if (!dst_okcolor) {
5646 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5647 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5648 l2pte_set(dst_ptep, ndst_pte, 0);
5649 PTE_SYNC(dst_ptep);
5650 cpu_tlb_flushD_SE(vdstp);
5651 cpu_cpwait();
5652 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5653 /*
5654 * If we are direct-mapped and our color isn't ok, then before
5655 * we bcopy to the new page invalidate its contents from the
5656 * cache and reset its color to its natural color.
5657 */
5658 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5659 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5660 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5661 #endif
5662 }
5663 bcopy_page(vsrcp, vdstp);
5664 #ifdef PMAP_CACHE_VIVT
5665 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5666 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5667 #endif
5668 /*
5669 * Unmap the pages.
5670 */
5671 if (!src_okcolor) {
5672 l2pte_reset(src_ptep);
5673 PTE_SYNC(src_ptep);
5674 cpu_tlb_flushD_SE(vsrcp);
5675 cpu_cpwait();
5676 }
5677 if (!dst_okcolor) {
5678 l2pte_reset(dst_ptep);
5679 PTE_SYNC(dst_ptep);
5680 cpu_tlb_flushD_SE(vdstp);
5681 cpu_cpwait();
5682 }
5683 #ifdef PMAP_CACHE_VIPT
5684 /*
5685 * Now that the destination page is in the cache, mark it as colored.
5686 * If this was an exec page, discard it.
5687 */
5688 pmap_acquire_page_lock(dst_md);
5689 #ifndef ARM_MMU_EXTENDED
5690 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5691 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5692 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5693 }
5694 if (!pmap_is_page_colored_p(dst_md)) {
5695 PMAPCOUNT(vac_color_new);
5696 dst_md->pvh_attrs |= PVF_COLORED;
5697 }
5698 dst_md->pvh_attrs |= PVF_DIRTY;
5699 #endif
5700 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5701 dst_md->pvh_attrs &= ~PVF_EXEC;
5702 PMAPCOUNT(exec_discarded_copy);
5703 }
5704 pmap_release_page_lock(dst_md);
5705 #endif
5706 }
5707 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5708
5709 #if ARM_MMU_XSCALE == 1
5710 void
5711 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5712 {
5713 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5714 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5715 #ifdef DEBUG
5716 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5717
5718 if (!SLIST_EMPTY(&dst_md->pvh_list))
5719 panic("pmap_copy_page: dst page has mappings");
5720 #endif
5721
5722 KDASSERT((src & PGOFSET) == 0);
5723 KDASSERT((dst & PGOFSET) == 0);
5724
5725 /*
5726 * Clean the source page. Hold the source page's lock for
5727 * the duration of the copy so that no other mappings can
5728 * be created while we have a potentially aliased mapping.
5729 */
5730 #ifdef PMAP_CACHE_VIVT
5731 pmap_acquire_page_lock(src_md);
5732 (void) pmap_clean_page(src_md, true);
5733 pmap_release_page_lock(src_md);
5734 #endif
5735
5736 /*
5737 * Map the pages into the page hook points, copy them, and purge
5738 * the cache for the appropriate page. Invalidate the TLB
5739 * as required.
5740 */
5741 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5742 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5743 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5744 l2pte_set(csrc_pte, nsrc_pte, 0);
5745 PTE_SYNC(csrc_pte);
5746
5747 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5748 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5749 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5750 l2pte_set(cdst_pte, ndst_pte, 0);
5751 PTE_SYNC(cdst_pte);
5752
5753 cpu_tlb_flushD_SE(csrcp);
5754 cpu_tlb_flushD_SE(cdstp);
5755 cpu_cpwait();
5756 bcopy_page(csrcp, cdstp);
5757 xscale_cache_clean_minidata();
5758 l2pte_reset(csrc_pte);
5759 l2pte_reset(cdst_pte);
5760 PTE_SYNC(csrc_pte);
5761 PTE_SYNC(cdst_pte);
5762 }
5763 #endif /* ARM_MMU_XSCALE == 1 */
5764
5765 /*
5766 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5767 *
5768 * Return the start and end addresses of the kernel's virtual space.
5769 * These values are setup in pmap_bootstrap and are updated as pages
5770 * are allocated.
5771 */
5772 void
5773 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5774 {
5775 *start = virtual_avail;
5776 *end = virtual_end;
5777 }
5778
5779 /*
5780 * Helper function for pmap_grow_l2_bucket()
5781 */
5782 static inline int
5783 pmap_grow_map(vaddr_t va, paddr_t *pap)
5784 {
5785 paddr_t pa;
5786
5787 KASSERT((va & PGOFSET) == 0);
5788
5789 if (uvm.page_init_done == false) {
5790 #ifdef PMAP_STEAL_MEMORY
5791 pv_addr_t pv;
5792 pmap_boot_pagealloc(PAGE_SIZE,
5793 #ifdef PMAP_CACHE_VIPT
5794 arm_cache_prefer_mask,
5795 va & arm_cache_prefer_mask,
5796 #else
5797 0, 0,
5798 #endif
5799 &pv);
5800 pa = pv.pv_pa;
5801 #else
5802 if (uvm_page_physget(&pa) == false)
5803 return 1;
5804 #endif /* PMAP_STEAL_MEMORY */
5805 } else {
5806 struct vm_page *pg;
5807 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5808 if (pg == NULL)
5809 return 1;
5810 pa = VM_PAGE_TO_PHYS(pg);
5811 /*
5812 * This new page must not have any mappings.
5813 */
5814 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5815 KASSERT(SLIST_EMPTY(&md->pvh_list));
5816 }
5817
5818 /*
5819 * Enter it via pmap_kenter_pa and let that routine do the hard work.
5820 */
5821 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
5822 PMAP_KMPAGE | PMAP_PTE);
5823
5824 if (pap)
5825 *pap = pa;
5826
5827 PMAPCOUNT(pt_mappings);
5828
5829 const pmap_t kpm __diagused = pmap_kernel();
5830 struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
5831 KASSERT(l2b != NULL);
5832
5833 pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
5834 const pt_entry_t pte __diagused = *ptep;
5835 KASSERT(l2pte_valid_p(pte));
5836 KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5837
5838 memset((void *)va, 0, PAGE_SIZE);
5839
5840 return 0;
5841 }
5842
5843 /*
5844 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5845 * used by pmap_growkernel().
5846 */
5847 static inline struct l2_bucket *
5848 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5849 {
5850 const size_t l1slot = l1pte_index(va);
5851 struct l2_dtable *l2;
5852 vaddr_t nva;
5853
5854 CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
5855 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5856 /*
5857 * No mapping at this address, as there is
5858 * no entry in the L1 table.
5859 * Need to allocate a new l2_dtable.
5860 */
5861 nva = pmap_kernel_l2dtable_kva;
5862 if ((nva & PGOFSET) == 0) {
5863 /*
5864 * Need to allocate a backing page
5865 */
5866 if (pmap_grow_map(nva, NULL))
5867 return NULL;
5868 }
5869
5870 l2 = (struct l2_dtable *)nva;
5871 nva += sizeof(struct l2_dtable);
5872
5873 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5874 /*
5875 * The new l2_dtable straddles a page boundary.
5876 * Map in another page to cover it.
5877 */
5878 if (pmap_grow_map(nva & ~PGOFSET, NULL))
5879 return NULL;
5880 }
5881
5882 pmap_kernel_l2dtable_kva = nva;
5883
5884 /*
5885 * Link it into the parent pmap
5886 */
5887 pm->pm_l2[L2_IDX(l1slot)] = l2;
5888 }
5889
5890 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5891
5892 /*
5893 * Fetch pointer to the L2 page table associated with the address.
5894 */
5895 if (l2b->l2b_kva == NULL) {
5896 pt_entry_t *ptep;
5897
5898 /*
5899 * No L2 page table has been allocated. Chances are, this
5900 * is because we just allocated the l2_dtable, above.
5901 */
5902 nva = pmap_kernel_l2ptp_kva;
5903 ptep = (pt_entry_t *)nva;
5904 if ((nva & PGOFSET) == 0) {
5905 /*
5906 * Need to allocate a backing page
5907 */
5908 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5909 return NULL;
5910 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5911 }
5912
5913 l2->l2_occupancy++;
5914 l2b->l2b_kva = ptep;
5915 l2b->l2b_l1slot = l1slot;
5916 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5917
5918 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5919 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5920 }
5921
5922 return l2b;
5923 }
5924
5925 vaddr_t
5926 pmap_growkernel(vaddr_t maxkvaddr)
5927 {
5928 UVMHIST_FUNC(__func__);
5929 UVMHIST_CALLARGS(maphist, "growing kernel from %#jx to %#jx\n",
5930 pmap_curmaxkvaddr, maxkvaddr, 0, 0);
5931
5932 pmap_t kpm = pmap_kernel();
5933 #ifndef ARM_MMU_EXTENDED
5934 struct l1_ttable *l1;
5935 #endif
5936 int s;
5937
5938 if (maxkvaddr <= pmap_curmaxkvaddr)
5939 goto out; /* we are OK */
5940
5941 KDASSERT(maxkvaddr <= virtual_end);
5942
5943 /*
5944 * whoops! we need to add kernel PTPs
5945 */
5946
5947 s = splvm(); /* to be safe */
5948 mutex_enter(&kpm_lock);
5949
5950 /* Map 1MB at a time */
5951 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5952 #ifdef ARM_MMU_EXTENDED
5953 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5954 pd_entry_t *pdep = spdep;
5955 #endif
5956 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5957 #ifdef ARM_MMU_EXTENDED
5958 pdep++,
5959 #endif
5960 l1slot++) {
5961 struct l2_bucket *l2b =
5962 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5963 KASSERT(l2b != NULL);
5964
5965 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5966 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5967 #ifdef ARM_MMU_EXTENDED
5968 KASSERT(*pdep == 0);
5969 l1pte_setone(pdep, npde);
5970 #else
5971 /* Distribute new L1 entry to all other L1s */
5972 SLIST_FOREACH(l1, &l1_list, l1_link) {
5973 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5974 l1pte_setone(pdep, npde);
5975 PDE_SYNC(pdep);
5976 }
5977 #endif
5978 }
5979 #ifdef ARM_MMU_EXTENDED
5980 PDE_SYNC_RANGE(spdep, pdep - spdep);
5981 #endif
5982
5983 #ifdef PMAP_CACHE_VIVT
5984 /*
5985 * flush out the cache, expensive but growkernel will happen so
5986 * rarely
5987 */
5988 cpu_dcache_wbinv_all();
5989 cpu_tlb_flushD();
5990 cpu_cpwait();
5991 #endif
5992
5993 mutex_exit(&kpm_lock);
5994 splx(s);
5995
5996 out:
5997 return pmap_curmaxkvaddr;
5998 }
5999
6000 /************************ Utility routines ****************************/
6001
6002 #ifndef ARM_HAS_VBAR
6003 /*
6004 * vector_page_setprot:
6005 *
6006 * Manipulate the protection of the vector page.
6007 */
6008 void
6009 vector_page_setprot(int prot)
6010 {
6011 struct l2_bucket *l2b;
6012 pt_entry_t *ptep;
6013
6014 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
6015 /*
6016 * If we are using VBAR to use the vectors in the kernel, then it's
6017 * already mapped in the kernel text so no need to anything here.
6018 */
6019 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6020 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6021 return;
6022 }
6023 #endif
6024
6025 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6026 KASSERT(l2b != NULL);
6027
6028 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6029
6030 const pt_entry_t opte = *ptep;
6031 #ifdef ARM_MMU_EXTENDED
6032 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6033 | L2_S_PROT(PTE_KERNEL, prot);
6034 #else
6035 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6036 | L2_S_PROT(PTE_KERNEL, prot);
6037 #endif
6038 l2pte_set(ptep, npte, opte);
6039 PTE_SYNC(ptep);
6040 cpu_tlb_flushD_SE(vector_page);
6041 cpu_cpwait();
6042 }
6043 #endif
6044
6045 /*
6046 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6047 * Returns true if the mapping exists, else false.
6048 *
6049 * NOTE: This function is only used by a couple of arm-specific modules.
6050 * It is not safe to take any pmap locks here, since we could be right
6051 * in the middle of debugging the pmap anyway...
6052 *
6053 * It is possible for this routine to return false even though a valid
6054 * mapping does exist. This is because we don't lock, so the metadata
6055 * state may be inconsistent.
6056 *
6057 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6058 * a "section" mapping.
6059 */
6060 bool
6061 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6062 {
6063 struct l2_dtable *l2;
6064 pd_entry_t *pdep, pde;
6065 pt_entry_t *ptep;
6066 u_short l1slot;
6067
6068 if (pm->pm_l1 == NULL)
6069 return false;
6070
6071 l1slot = l1pte_index(va);
6072 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6073 pde = *pdep;
6074
6075 if (l1pte_section_p(pde)) {
6076 *ptp = NULL;
6077 return true;
6078 }
6079
6080 l2 = pm->pm_l2[L2_IDX(l1slot)];
6081 if (l2 == NULL ||
6082 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6083 return false;
6084 }
6085
6086 *ptp = &ptep[l2pte_index(va)];
6087 return true;
6088 }
6089
6090 bool
6091 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6092 {
6093
6094 if (pm->pm_l1 == NULL)
6095 return false;
6096
6097 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6098
6099 return true;
6100 }
6101
6102 /************************ Bootstrapping routines ****************************/
6103
6104 #ifndef ARM_MMU_EXTENDED
6105 static void
6106 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6107 {
6108 int i;
6109
6110 l1->l1_kva = l1pt;
6111 l1->l1_domain_use_count = 0;
6112 l1->l1_domain_first = 0;
6113
6114 for (i = 0; i < PMAP_DOMAINS; i++)
6115 l1->l1_domain_free[i] = i + 1;
6116
6117 /*
6118 * Copy the kernel's L1 entries to each new L1.
6119 */
6120 if (pmap_initialized)
6121 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6122
6123 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6124 &l1->l1_physaddr) == false)
6125 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6126
6127 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6128 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6129 }
6130 #endif /* !ARM_MMU_EXTENDED */
6131
6132 /*
6133 * pmap_bootstrap() is called from the board-specific initarm() routine
6134 * once the kernel L1/L2 descriptors tables have been set up.
6135 *
6136 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6137 * spread over a number of disparate files/functions.
6138 *
6139 * We are passed the following parameters
6140 * - vstart
6141 * 1MB-aligned start of managed kernel virtual memory.
6142 * - vend
6143 * 1MB-aligned end of managed kernel virtual memory.
6144 *
6145 * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6146 * struct l2_dtable) necessary to track kernel mappings.
6147 */
6148 #define PMAP_STATIC_L2_SIZE 16
6149 void
6150 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6151 {
6152 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6153 #ifndef ARM_MMU_EXTENDED
6154 static struct l1_ttable static_l1;
6155 struct l1_ttable *l1 = &static_l1;
6156 #endif
6157 struct l2_dtable *l2;
6158 struct l2_bucket *l2b;
6159 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6160 pmap_t pm = pmap_kernel();
6161 pt_entry_t *ptep;
6162 paddr_t pa;
6163 vsize_t size;
6164 int nptes, l2idx, l2next = 0;
6165
6166 #ifdef ARM_MMU_EXTENDED
6167 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6168 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6169 #endif
6170
6171 VPRINTF("kpm ");
6172 /*
6173 * Initialise the kernel pmap object
6174 */
6175 curcpu()->ci_pmap_cur = pm;
6176 #ifdef ARM_MMU_EXTENDED
6177 pm->pm_l1 = l1pt;
6178 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6179 VPRINTF("tlb0 ");
6180 pmap_tlb_info_init(&pmap_tlb0_info);
6181 #ifdef MULTIPROCESSOR
6182 VPRINTF("kcpusets ");
6183 pm->pm_onproc = kcpuset_running;
6184 pm->pm_active = kcpuset_running;
6185 #endif
6186 #else
6187 pm->pm_l1 = l1;
6188 #endif
6189
6190 VPRINTF("locks ");
6191 /*
6192 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6193 * context, so its locks have to be at IPL_VM
6194 */
6195 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6196 mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6197 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
6198 pm->pm_refs = 1;
6199
6200 VPRINTF("l1pt ");
6201 /*
6202 * Scan the L1 translation table created by initarm() and create
6203 * the required metadata for all valid mappings found in it.
6204 */
6205 for (size_t l1slot = 0;
6206 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6207 l1slot++) {
6208 pd_entry_t pde = l1pt[l1slot];
6209
6210 /*
6211 * We're only interested in Coarse mappings.
6212 * pmap_extract() can deal with section mappings without
6213 * recourse to checking L2 metadata.
6214 */
6215 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6216 continue;
6217
6218 /*
6219 * Lookup the KVA of this L2 descriptor table
6220 */
6221 pa = l1pte_pa(pde);
6222 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6223 if (ptep == NULL) {
6224 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6225 (u_int)l1slot << L1_S_SHIFT, pa);
6226 }
6227
6228 /*
6229 * Fetch the associated L2 metadata structure.
6230 * Allocate a new one if necessary.
6231 */
6232 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6233 if (l2next == PMAP_STATIC_L2_SIZE)
6234 panic("pmap_bootstrap: out of static L2s");
6235 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6236 }
6237
6238 /*
6239 * One more L1 slot tracked...
6240 */
6241 l2->l2_occupancy++;
6242
6243 /*
6244 * Fill in the details of the L2 descriptor in the
6245 * appropriate bucket.
6246 */
6247 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6248 l2b->l2b_kva = ptep;
6249 l2b->l2b_pa = pa;
6250 l2b->l2b_l1slot = l1slot;
6251
6252 /*
6253 * Establish an initial occupancy count for this descriptor
6254 */
6255 for (l2idx = 0;
6256 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6257 l2idx++) {
6258 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6259 l2b->l2b_occupancy++;
6260 }
6261 }
6262
6263 /*
6264 * Make sure the descriptor itself has the correct cache mode.
6265 * If not, fix it, but whine about the problem. Port-meisters
6266 * should consider this a clue to fix up their initarm()
6267 * function. :)
6268 */
6269 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6270 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6271 "L2 pte @ %p\n", ptep);
6272 }
6273 }
6274
6275 VPRINTF("cache(l1pt) ");
6276 /*
6277 * Ensure the primary (kernel) L1 has the correct cache mode for
6278 * a page table. Bitch if it is not correctly set.
6279 */
6280 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6281 L1_TABLE_SIZE / L2_S_SIZE)) {
6282 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6283 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6284 }
6285
6286 #ifdef PMAP_CACHE_VIVT
6287 cpu_dcache_wbinv_all();
6288 cpu_tlb_flushID();
6289 cpu_cpwait();
6290 #endif
6291
6292 /*
6293 * now we allocate the "special" VAs which are used for tmp mappings
6294 * by the pmap (and other modules). we allocate the VAs by advancing
6295 * virtual_avail (note that there are no pages mapped at these VAs).
6296 *
6297 * Managed KVM space start from wherever initarm() tells us.
6298 */
6299 virtual_avail = vstart;
6300 virtual_end = vend;
6301
6302 VPRINTF("specials ");
6303 #ifdef PMAP_CACHE_VIPT
6304 /*
6305 * If we have a VIPT cache, we need one page/pte per possible alias
6306 * page so we won't violate cache aliasing rules.
6307 */
6308 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6309 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6310 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6311 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6312 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6313 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6314 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6315 }
6316 #else
6317 nptes = PAGE_SIZE / L2_S_SIZE;
6318 #endif
6319 #ifdef MULTIPROCESSOR
6320 cnptes = nptes;
6321 nptes *= arm_cpu_max;
6322 #endif
6323 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6324 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6325 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6326 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6327 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
6328 if (msgbufaddr == NULL) {
6329 pmap_alloc_specials(&virtual_avail,
6330 round_page(MSGBUFSIZE) / PAGE_SIZE,
6331 (void *)&msgbufaddr, NULL);
6332 }
6333
6334 /*
6335 * Allocate a range of kernel virtual address space to be used
6336 * for L2 descriptor tables and metadata allocation in
6337 * pmap_growkernel().
6338 */
6339 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
6340 pmap_alloc_specials(&virtual_avail,
6341 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6342 &pmap_kernel_l2ptp_kva, NULL);
6343
6344 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
6345 pmap_alloc_specials(&virtual_avail,
6346 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6347 &pmap_kernel_l2dtable_kva, NULL);
6348
6349 #ifndef ARM_MMU_EXTENDED
6350 /*
6351 * init the static-global locks and global pmap list.
6352 */
6353 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6354
6355 /*
6356 * We can now initialise the first L1's metadata.
6357 */
6358 SLIST_INIT(&l1_list);
6359 TAILQ_INIT(&l1_lru_list);
6360 pmap_init_l1(l1, l1pt);
6361 #endif /* ARM_MMU_EXTENDED */
6362
6363 #ifndef ARM_HAS_VBAR
6364 /* Set up vector page L1 details, if necessary */
6365 if (vector_page < KERNEL_BASE) {
6366 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6367 l2b = pmap_get_l2_bucket(pm, vector_page);
6368 KDASSERT(l2b != NULL);
6369 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6370 L1_C_DOM(pmap_domain(pm));
6371 } else
6372 pm->pm_pl1vec = NULL;
6373 #endif
6374
6375 VPRINTF("pools ");
6376 /*
6377 * Initialize the pmap cache
6378 */
6379 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6380 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6381
6382 /*
6383 * Initialize the pv pool.
6384 */
6385 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6386 &pmap_bootstrap_pv_allocator, IPL_NONE);
6387
6388 /*
6389 * Initialize the L2 dtable pool and cache.
6390 */
6391 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6392 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6393
6394 /*
6395 * Initialise the L2 descriptor table pool and cache
6396 */
6397 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6398 L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6399 pmap_l2ptp_ctor, NULL, NULL);
6400
6401 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6402
6403 cpu_dcache_wbinv_all();
6404 }
6405
6406 static bool
6407 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6408 {
6409 #ifdef ARM_MMU_EXTENDED
6410 return false;
6411 #else
6412 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6413 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6414 return false;
6415
6416 const vaddr_t eva = va + nptes * PAGE_SIZE;
6417 int rv = 0;
6418
6419 while (va < eva) {
6420 /*
6421 * Make sure the descriptor itself has the correct cache mode
6422 */
6423 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6424 pd_entry_t pde = *pdep;
6425
6426 if (l1pte_section_p(pde)) {
6427 KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6428 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6429 *pdep = (pde & ~L1_S_CACHE_MASK) |
6430 pte_l1_s_cache_mode_pt;
6431 PDE_SYNC(pdep);
6432 cpu_dcache_wbinv_range((vaddr_t)pdep,
6433 sizeof(*pdep));
6434 rv = 1;
6435 }
6436 return rv;
6437 }
6438 vaddr_t pa = l1pte_pa(pde);
6439 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6440 if (ptep == NULL)
6441 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6442
6443 ptep += l2pte_index(va);
6444 const pt_entry_t opte = *ptep;
6445 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6446 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6447 | pte_l2_s_cache_mode_pt;
6448 l2pte_set(ptep, npte, opte);
6449 PTE_SYNC(ptep);
6450 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6451 rv = 1;
6452 }
6453 va += PAGE_SIZE;
6454 }
6455
6456 return rv;
6457 #endif
6458 }
6459
6460 static void
6461 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6462 {
6463 vaddr_t va = *availp;
6464 struct l2_bucket *l2b;
6465
6466 if (ptep) {
6467 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6468 if (l2b == NULL)
6469 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6470
6471 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6472 }
6473
6474 *vap = va;
6475 *availp = va + (PAGE_SIZE * pages);
6476 }
6477
6478 void
6479 pmap_init(void)
6480 {
6481
6482 /*
6483 * Set the available memory vars - These do not map to real memory
6484 * addresses and cannot as the physical memory is fragmented.
6485 * They are used by ps for %mem calculations.
6486 * One could argue whether this should be the entire memory or just
6487 * the memory that is useable in a user process.
6488 */
6489 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6490 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6491
6492 /*
6493 * Now we need to free enough pv_entry structures to allow us to get
6494 * the kmem_map/kmem_object allocated and inited (done after this
6495 * function is finished). to do this we allocate one bootstrap page out
6496 * of kernel_map and use it to provide an initial pool of pv_entry
6497 * structures. we never free this page.
6498 */
6499 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6500
6501 #ifdef ARM_MMU_EXTENDED
6502 /*
6503 * Initialise the L1 pool and cache.
6504 */
6505
6506 pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
6507 0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
6508 NULL, NULL);
6509
6510 int error __diagused = pmap_maxproc_set(maxproc);
6511 KASSERT(error == 0);
6512
6513 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6514 #endif
6515
6516 pmap_initialized = true;
6517 }
6518
6519 static vaddr_t last_bootstrap_page = 0;
6520 static void *free_bootstrap_pages = NULL;
6521
6522 static void *
6523 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6524 {
6525 extern void *pool_page_alloc(struct pool *, int);
6526 vaddr_t new_page;
6527 void *rv;
6528
6529 if (pmap_initialized)
6530 return pool_page_alloc(pp, flags);
6531
6532 if (free_bootstrap_pages) {
6533 rv = free_bootstrap_pages;
6534 free_bootstrap_pages = *((void **)rv);
6535 return rv;
6536 }
6537
6538 KASSERT(kernel_map != NULL);
6539 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6540 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6541
6542 KASSERT(new_page > last_bootstrap_page);
6543 last_bootstrap_page = new_page;
6544 return (void *)new_page;
6545 }
6546
6547 static void
6548 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6549 {
6550 extern void pool_page_free(struct pool *, void *);
6551
6552 if ((vaddr_t)v <= last_bootstrap_page) {
6553 *((void **)v) = free_bootstrap_pages;
6554 free_bootstrap_pages = v;
6555 return;
6556 }
6557
6558 if (pmap_initialized) {
6559 pool_page_free(pp, v);
6560 return;
6561 }
6562 }
6563
6564
6565 #if defined(ARM_MMU_EXTENDED)
6566 static void *
6567 pmap_l1tt_alloc(struct pool *pp, int flags)
6568 {
6569 struct pglist plist;
6570 vaddr_t va;
6571
6572 const int waitok = flags & PR_WAITOK;
6573
6574 int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
6575 waitok);
6576 if (error)
6577 panic("Cannot allocate L1TT physical pages, %d", error);
6578
6579 struct vm_page *pg = TAILQ_FIRST(&plist);
6580 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6581
6582 /* Allocate a L1 translation table VA */
6583 va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
6584 if (va == 0)
6585 panic("Cannot allocate L1TT KVA");
6586
6587 const vaddr_t eva = va + L1TT_SIZE;
6588 vaddr_t mva = va;
6589 while (pg && mva < eva) {
6590 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6591
6592 pmap_kenter_pa(mva, pa,
6593 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6594
6595 mva += PAGE_SIZE;
6596 pg = TAILQ_NEXT(pg, pageq.queue);
6597 }
6598 KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
6599 " eva %" PRIxVADDR, pg, mva, eva);
6600 #else
6601 bool ok;
6602 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6603 va = pmap_direct_mapped_phys(pa, &ok, 0);
6604 KASSERT(ok);
6605 KASSERT(va >= KERNEL_BASE);
6606 #endif
6607
6608 return (void *)va;
6609 }
6610
6611 static void
6612 pmap_l1tt_free(struct pool *pp, void *v)
6613 {
6614 vaddr_t va = (vaddr_t)v;
6615
6616 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6617 uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
6618 #else
6619 #if defined(KERNEL_BASE_VOFFSET)
6620 paddr_t pa = va - KERNEL_BASE_VOFFSET;
6621 #else
6622 paddr_t pa = va - KERNEL_BASE + physical_start;
6623 #endif
6624 const paddr_t epa = pa + L1TT_SIZE;
6625
6626 for (; pa < epa; pa += PAGE_SIZE) {
6627 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
6628 uvm_pagefree(pg);
6629 }
6630 #endif
6631 }
6632 #endif
6633
6634 /*
6635 * pmap_postinit()
6636 *
6637 * This routine is called after the vm and kmem subsystems have been
6638 * initialised. This allows the pmap code to perform any initialisation
6639 * that can only be done once the memory allocation is in place.
6640 */
6641 void
6642 pmap_postinit(void)
6643 {
6644 #ifndef ARM_MMU_EXTENDED
6645 extern paddr_t physical_start, physical_end;
6646 struct l1_ttable *l1;
6647 struct pglist plist;
6648 struct vm_page *m;
6649 pd_entry_t *pdep;
6650 vaddr_t va, eva;
6651 u_int loop, needed;
6652 int error;
6653 #endif
6654
6655 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6656 pool_cache_setlowat(&pmap_l2dtable_cache,
6657 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6658
6659 #ifndef ARM_MMU_EXTENDED
6660 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6661 needed -= 1;
6662
6663 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6664
6665 for (loop = 0; loop < needed; loop++, l1++) {
6666 /* Allocate a L1 page table */
6667 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6668 if (va == 0)
6669 panic("Cannot allocate L1 KVM");
6670
6671 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6672 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6673 if (error)
6674 panic("Cannot allocate L1 physical pages");
6675
6676 m = TAILQ_FIRST(&plist);
6677 eva = va + L1_TABLE_SIZE;
6678 pdep = (pd_entry_t *)va;
6679
6680 while (m && va < eva) {
6681 paddr_t pa = VM_PAGE_TO_PHYS(m);
6682
6683 pmap_kenter_pa(va, pa,
6684 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6685
6686 va += PAGE_SIZE;
6687 m = TAILQ_NEXT(m, pageq.queue);
6688 }
6689
6690 #ifdef DIAGNOSTIC
6691 if (m)
6692 panic("pmap_alloc_l1pt: pglist not empty");
6693 #endif /* DIAGNOSTIC */
6694
6695 pmap_init_l1(l1, pdep);
6696 }
6697
6698 #ifdef DEBUG
6699 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6700 needed);
6701 #endif
6702 #endif /* !ARM_MMU_EXTENDED */
6703 }
6704
6705 /*
6706 * Note that the following routines are used by board-specific initialisation
6707 * code to configure the initial kernel page tables.
6708 *
6709 */
6710
6711 /*
6712 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6713 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6714 * find them as necessary.
6715 *
6716 * Note that the data on this list MUST remain valid after initarm() returns,
6717 * as pmap_bootstrap() uses it to construct L2 table metadata.
6718 */
6719 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6720
6721 static vaddr_t
6722 kernel_pt_lookup(paddr_t pa)
6723 {
6724 pv_addr_t *pv;
6725
6726 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6727 if (pv->pv_pa == (pa & ~PGOFSET))
6728 return pv->pv_va | (pa & PGOFSET);
6729 }
6730 return 0;
6731 }
6732
6733 /*
6734 * pmap_map_section:
6735 *
6736 * Create a single section mapping.
6737 */
6738 void
6739 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6740 {
6741 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6742 const size_t l1slot = l1pte_index(va);
6743 pd_entry_t fl;
6744
6745 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6746
6747 switch (cache) {
6748 case PTE_NOCACHE:
6749 fl = pte_l1_s_nocache_mode;
6750 break;
6751
6752 case PTE_CACHE:
6753 fl = pte_l1_s_cache_mode;
6754 break;
6755
6756 case PTE_PAGETABLE:
6757 fl = pte_l1_s_cache_mode_pt;
6758 break;
6759
6760 case PTE_DEV:
6761 default:
6762 fl = 0;
6763 break;
6764 }
6765
6766 const pd_entry_t npde = L1_S_PROTO | pa |
6767 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6768 l1pte_setone(pdep + l1slot, npde);
6769 PDE_SYNC(pdep + l1slot);
6770 }
6771
6772 /*
6773 * pmap_map_entry:
6774 *
6775 * Create a single page mapping.
6776 */
6777 void
6778 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6779 {
6780 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6781 const size_t l1slot = l1pte_index(va);
6782 pt_entry_t npte;
6783 pt_entry_t *ptep;
6784
6785 KASSERT(((va | pa) & PGOFSET) == 0);
6786
6787 switch (cache) {
6788 case PTE_NOCACHE:
6789 npte = pte_l2_s_nocache_mode;
6790 break;
6791
6792 case PTE_CACHE:
6793 npte = pte_l2_s_cache_mode;
6794 break;
6795
6796 case PTE_PAGETABLE:
6797 npte = pte_l2_s_cache_mode_pt;
6798 break;
6799
6800 default:
6801 npte = 0;
6802 break;
6803 }
6804
6805 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6806 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6807
6808 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6809 if (ptep == NULL)
6810 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6811
6812 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6813 #ifdef ARM_MMU_EXTENDED
6814 if (prot & VM_PROT_EXECUTE) {
6815 npte &= ~L2_XS_XN;
6816 }
6817 #endif
6818 ptep += l2pte_index(va);
6819 l2pte_set(ptep, npte, 0);
6820 PTE_SYNC(ptep);
6821 }
6822
6823 /*
6824 * pmap_link_l2pt:
6825 *
6826 * Link the L2 page table specified by "l2pv" into the L1
6827 * page table at the slot for "va".
6828 */
6829 void
6830 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6831 {
6832 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6833
6834 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6835 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6836
6837 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6838 | l2pv->pv_pa;
6839
6840 l1pte_set(pdep, npde);
6841 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6842
6843 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6844 }
6845
6846 /*
6847 * pmap_map_chunk:
6848 *
6849 * Map a chunk of memory using the most efficient mappings
6850 * possible (section, large page, small page) into the
6851 * provided L1 and L2 tables at the specified virtual address.
6852 */
6853 vsize_t
6854 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6855 int prot, int cache)
6856 {
6857 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6858 pt_entry_t f1, f2s, f2l;
6859 vsize_t resid;
6860
6861 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6862
6863 if (l1pt == 0)
6864 panic("pmap_map_chunk: no L1 table provided");
6865
6866 // VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6867 // "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6868
6869 switch (cache) {
6870 case PTE_NOCACHE:
6871 f1 = pte_l1_s_nocache_mode;
6872 f2l = pte_l2_l_nocache_mode;
6873 f2s = pte_l2_s_nocache_mode;
6874 break;
6875
6876 case PTE_CACHE:
6877 f1 = pte_l1_s_cache_mode;
6878 f2l = pte_l2_l_cache_mode;
6879 f2s = pte_l2_s_cache_mode;
6880 break;
6881
6882 case PTE_PAGETABLE:
6883 f1 = pte_l1_s_cache_mode_pt;
6884 f2l = pte_l2_l_cache_mode_pt;
6885 f2s = pte_l2_s_cache_mode_pt;
6886 break;
6887
6888 case PTE_DEV:
6889 default:
6890 f1 = 0;
6891 f2l = 0;
6892 f2s = 0;
6893 break;
6894 }
6895
6896 size = resid;
6897
6898 while (resid > 0) {
6899 const size_t l1slot = l1pte_index(va);
6900 #ifdef ARM_MMU_EXTENDED
6901 /* See if we can use a supersection mapping. */
6902 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6903 /* Supersection are always domain 0 */
6904 const pd_entry_t npde = L1_SS_PROTO | pa
6905 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6906 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6907 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6908 VPRINTF("sS");
6909 l1pte_set(&pdep[l1slot], npde);
6910 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6911 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6912 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6913 va += L1_SS_SIZE;
6914 pa += L1_SS_SIZE;
6915 resid -= L1_SS_SIZE;
6916 continue;
6917 }
6918 #endif
6919 /* See if we can use a section mapping. */
6920 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6921 const pd_entry_t npde = L1_S_PROTO | pa
6922 #ifdef ARM_MMU_EXTENDED
6923 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6924 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6925 #endif
6926 | L1_S_PROT(PTE_KERNEL, prot) | f1
6927 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6928 VPRINTF("S");
6929 l1pte_set(&pdep[l1slot], npde);
6930 PDE_SYNC(&pdep[l1slot]);
6931 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6932 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6933 va += L1_S_SIZE;
6934 pa += L1_S_SIZE;
6935 resid -= L1_S_SIZE;
6936 continue;
6937 }
6938
6939 /*
6940 * Ok, we're going to use an L2 table. Make sure
6941 * one is actually in the corresponding L1 slot
6942 * for the current VA.
6943 */
6944 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6945 panic("%s: no L2 table for VA %#lx", __func__, va);
6946
6947 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6948 if (ptep == NULL)
6949 panic("%s: can't find L2 table for VA %#lx", __func__,
6950 va);
6951
6952 ptep += l2pte_index(va);
6953
6954 /* See if we can use a L2 large page mapping. */
6955 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6956 const pt_entry_t npte = L2_L_PROTO | pa
6957 #ifdef ARM_MMU_EXTENDED
6958 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6959 | (va & 0x80000000 ? 0 : L2_XS_nG)
6960 #endif
6961 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6962 VPRINTF("L");
6963 l2pte_set(ptep, npte, 0);
6964 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6965 va += L2_L_SIZE;
6966 pa += L2_L_SIZE;
6967 resid -= L2_L_SIZE;
6968 continue;
6969 }
6970
6971 VPRINTF("P");
6972 /* Use a small page mapping. */
6973 pt_entry_t npte = L2_S_PROTO | pa
6974 #ifdef ARM_MMU_EXTENDED
6975 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6976 | (va & 0x80000000 ? 0 : L2_XS_nG)
6977 #endif
6978 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6979 #ifdef ARM_MMU_EXTENDED
6980 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6981 #endif
6982 l2pte_set(ptep, npte, 0);
6983 PTE_SYNC(ptep);
6984 va += PAGE_SIZE;
6985 pa += PAGE_SIZE;
6986 resid -= PAGE_SIZE;
6987 }
6988 VPRINTF("\n");
6989 return size;
6990 }
6991
6992 /*
6993 * pmap_unmap_chunk:
6994 *
6995 * Unmap a chunk of memory that was previously pmap_map_chunk
6996 */
6997 void
6998 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
6999 {
7000 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7001 const size_t l1slot = l1pte_index(va);
7002
7003 KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
7004
7005 l1pte_set(&pdep[l1slot], 0);
7006 PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
7007
7008 pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
7009 }
7010
7011
7012
7013 /********************** Static device map routines ***************************/
7014
7015 static const struct pmap_devmap *pmap_devmap_table;
7016
7017 /*
7018 * Register the devmap table. This is provided in case early console
7019 * initialization needs to register mappings created by bootstrap code
7020 * before pmap_devmap_bootstrap() is called.
7021 */
7022 void
7023 pmap_devmap_register(const struct pmap_devmap *table)
7024 {
7025
7026 pmap_devmap_table = table;
7027 }
7028
7029 /*
7030 * Map all of the static regions in the devmap table, and remember
7031 * the devmap table so other parts of the kernel can look up entries
7032 * later.
7033 */
7034 void
7035 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
7036 {
7037 int i;
7038
7039 pmap_devmap_table = table;
7040
7041 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7042 const struct pmap_devmap *pdp = &pmap_devmap_table[i];
7043
7044 KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
7045 " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
7046 KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
7047 " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
7048 VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
7049 pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
7050
7051 pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
7052 pdp->pd_prot, pdp->pd_cache);
7053 }
7054 }
7055
7056 const struct pmap_devmap *
7057 pmap_devmap_find_pa(paddr_t pa, psize_t size)
7058 {
7059 uint64_t endpa;
7060 int i;
7061
7062 if (pmap_devmap_table == NULL)
7063 return NULL;
7064
7065 endpa = (uint64_t)pa + (uint64_t)(size - 1);
7066
7067 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7068 if (pa >= pmap_devmap_table[i].pd_pa &&
7069 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
7070 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
7071 return &pmap_devmap_table[i];
7072 }
7073
7074 return NULL;
7075 }
7076
7077 const struct pmap_devmap *
7078 pmap_devmap_find_va(vaddr_t va, vsize_t size)
7079 {
7080 int i;
7081
7082 if (pmap_devmap_table == NULL)
7083 return NULL;
7084
7085 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7086 if (va >= pmap_devmap_table[i].pd_va &&
7087 va + size - 1 <= pmap_devmap_table[i].pd_va +
7088 pmap_devmap_table[i].pd_size - 1)
7089 return &pmap_devmap_table[i];
7090 }
7091
7092 return NULL;
7093 }
7094
7095 /********************** PTE initialization routines **************************/
7096
7097 /*
7098 * These routines are called when the CPU type is identified to set up
7099 * the PTE prototypes, cache modes, etc.
7100 *
7101 * The variables are always here, just in case modules need to reference
7102 * them (though, they shouldn't).
7103 */
7104
7105 pt_entry_t pte_l1_s_nocache_mode;
7106 pt_entry_t pte_l1_s_cache_mode;
7107 pt_entry_t pte_l1_s_wc_mode;
7108 pt_entry_t pte_l1_s_cache_mode_pt;
7109 pt_entry_t pte_l1_s_cache_mask;
7110
7111 pt_entry_t pte_l2_l_nocache_mode;
7112 pt_entry_t pte_l2_l_cache_mode;
7113 pt_entry_t pte_l2_l_wc_mode;
7114 pt_entry_t pte_l2_l_cache_mode_pt;
7115 pt_entry_t pte_l2_l_cache_mask;
7116
7117 pt_entry_t pte_l2_s_nocache_mode;
7118 pt_entry_t pte_l2_s_cache_mode;
7119 pt_entry_t pte_l2_s_wc_mode;
7120 pt_entry_t pte_l2_s_cache_mode_pt;
7121 pt_entry_t pte_l2_s_cache_mask;
7122
7123 pt_entry_t pte_l1_s_prot_u;
7124 pt_entry_t pte_l1_s_prot_w;
7125 pt_entry_t pte_l1_s_prot_ro;
7126 pt_entry_t pte_l1_s_prot_mask;
7127
7128 pt_entry_t pte_l2_s_prot_u;
7129 pt_entry_t pte_l2_s_prot_w;
7130 pt_entry_t pte_l2_s_prot_ro;
7131 pt_entry_t pte_l2_s_prot_mask;
7132
7133 pt_entry_t pte_l2_l_prot_u;
7134 pt_entry_t pte_l2_l_prot_w;
7135 pt_entry_t pte_l2_l_prot_ro;
7136 pt_entry_t pte_l2_l_prot_mask;
7137
7138 pt_entry_t pte_l1_ss_proto;
7139 pt_entry_t pte_l1_s_proto;
7140 pt_entry_t pte_l1_c_proto;
7141 pt_entry_t pte_l2_s_proto;
7142
7143 void (*pmap_copy_page_func)(paddr_t, paddr_t);
7144 void (*pmap_zero_page_func)(paddr_t);
7145
7146 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7147 void
7148 pmap_pte_init_generic(void)
7149 {
7150
7151 pte_l1_s_nocache_mode = 0;
7152 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7153 pte_l1_s_wc_mode = L1_S_B;
7154 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7155
7156 pte_l2_l_nocache_mode = 0;
7157 pte_l2_l_cache_mode = L2_B|L2_C;
7158 pte_l2_l_wc_mode = L2_B;
7159 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7160
7161 pte_l2_s_nocache_mode = 0;
7162 pte_l2_s_cache_mode = L2_B|L2_C;
7163 pte_l2_s_wc_mode = L2_B;
7164 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7165
7166 /*
7167 * If we have a write-through cache, set B and C. If
7168 * we have a write-back cache, then we assume setting
7169 * only C will make those pages write-through (except for those
7170 * Cortex CPUs which can read the L1 caches).
7171 */
7172 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7173 #if ARM_MMU_V7 > 0
7174 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7175 #endif
7176 #if ARM_MMU_V6 > 0
7177 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7178 #endif
7179 || false) {
7180 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7181 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7182 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7183 } else {
7184 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7185 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7186 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7187 }
7188
7189 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7190 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7191 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7192 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7193
7194 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7195 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7196 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7197 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7198
7199 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7200 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7201 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7202 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7203
7204 pte_l1_ss_proto = L1_SS_PROTO_generic;
7205 pte_l1_s_proto = L1_S_PROTO_generic;
7206 pte_l1_c_proto = L1_C_PROTO_generic;
7207 pte_l2_s_proto = L2_S_PROTO_generic;
7208
7209 pmap_copy_page_func = pmap_copy_page_generic;
7210 pmap_zero_page_func = pmap_zero_page_generic;
7211 }
7212
7213 #if defined(CPU_ARM8)
7214 void
7215 pmap_pte_init_arm8(void)
7216 {
7217
7218 /*
7219 * ARM8 is compatible with generic, but we need to use
7220 * the page tables uncached.
7221 */
7222 pmap_pte_init_generic();
7223
7224 pte_l1_s_cache_mode_pt = 0;
7225 pte_l2_l_cache_mode_pt = 0;
7226 pte_l2_s_cache_mode_pt = 0;
7227 }
7228 #endif /* CPU_ARM8 */
7229
7230 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7231 void
7232 pmap_pte_init_arm9(void)
7233 {
7234
7235 /*
7236 * ARM9 is compatible with generic, but we want to use
7237 * write-through caching for now.
7238 */
7239 pmap_pte_init_generic();
7240
7241 pte_l1_s_cache_mode = L1_S_C;
7242 pte_l2_l_cache_mode = L2_C;
7243 pte_l2_s_cache_mode = L2_C;
7244
7245 pte_l1_s_wc_mode = L1_S_B;
7246 pte_l2_l_wc_mode = L2_B;
7247 pte_l2_s_wc_mode = L2_B;
7248
7249 pte_l1_s_cache_mode_pt = L1_S_C;
7250 pte_l2_l_cache_mode_pt = L2_C;
7251 pte_l2_s_cache_mode_pt = L2_C;
7252 }
7253 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7254 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7255
7256 #if defined(CPU_ARM10)
7257 void
7258 pmap_pte_init_arm10(void)
7259 {
7260
7261 /*
7262 * ARM10 is compatible with generic, but we want to use
7263 * write-through caching for now.
7264 */
7265 pmap_pte_init_generic();
7266
7267 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7268 pte_l2_l_cache_mode = L2_B | L2_C;
7269 pte_l2_s_cache_mode = L2_B | L2_C;
7270
7271 pte_l1_s_cache_mode = L1_S_B;
7272 pte_l2_l_cache_mode = L2_B;
7273 pte_l2_s_cache_mode = L2_B;
7274
7275 pte_l1_s_cache_mode_pt = L1_S_C;
7276 pte_l2_l_cache_mode_pt = L2_C;
7277 pte_l2_s_cache_mode_pt = L2_C;
7278
7279 }
7280 #endif /* CPU_ARM10 */
7281
7282 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7283 void
7284 pmap_pte_init_arm11(void)
7285 {
7286
7287 /*
7288 * ARM11 is compatible with generic, but we want to use
7289 * write-through caching for now.
7290 */
7291 pmap_pte_init_generic();
7292
7293 pte_l1_s_cache_mode = L1_S_C;
7294 pte_l2_l_cache_mode = L2_C;
7295 pte_l2_s_cache_mode = L2_C;
7296
7297 pte_l1_s_wc_mode = L1_S_B;
7298 pte_l2_l_wc_mode = L2_B;
7299 pte_l2_s_wc_mode = L2_B;
7300
7301 pte_l1_s_cache_mode_pt = L1_S_C;
7302 pte_l2_l_cache_mode_pt = L2_C;
7303 pte_l2_s_cache_mode_pt = L2_C;
7304 }
7305 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7306
7307 #if ARM_MMU_SA1 == 1
7308 void
7309 pmap_pte_init_sa1(void)
7310 {
7311
7312 /*
7313 * The StrongARM SA-1 cache does not have a write-through
7314 * mode. So, do the generic initialization, then reset
7315 * the page table cache mode to B=1,C=1, and note that
7316 * the PTEs need to be sync'd.
7317 */
7318 pmap_pte_init_generic();
7319
7320 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7321 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7322 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7323
7324 pmap_needs_pte_sync = 1;
7325 }
7326 #endif /* ARM_MMU_SA1 == 1*/
7327
7328 #if ARM_MMU_XSCALE == 1
7329 #if (ARM_NMMUS > 1)
7330 static u_int xscale_use_minidata;
7331 #endif
7332
7333 void
7334 pmap_pte_init_xscale(void)
7335 {
7336 uint32_t auxctl;
7337 int write_through = 0;
7338
7339 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7340 pte_l1_s_wc_mode = L1_S_B;
7341 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7342
7343 pte_l2_l_cache_mode = L2_B|L2_C;
7344 pte_l2_l_wc_mode = L2_B;
7345 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7346
7347 pte_l2_s_cache_mode = L2_B|L2_C;
7348 pte_l2_s_wc_mode = L2_B;
7349 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7350
7351 pte_l1_s_cache_mode_pt = L1_S_C;
7352 pte_l2_l_cache_mode_pt = L2_C;
7353 pte_l2_s_cache_mode_pt = L2_C;
7354
7355 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7356 /*
7357 * The XScale core has an enhanced mode where writes that
7358 * miss the cache cause a cache line to be allocated. This
7359 * is significantly faster than the traditional, write-through
7360 * behavior of this case.
7361 */
7362 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7363 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7364 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7365 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7366
7367 #ifdef XSCALE_CACHE_WRITE_THROUGH
7368 /*
7369 * Some versions of the XScale core have various bugs in
7370 * their cache units, the work-around for which is to run
7371 * the cache in write-through mode. Unfortunately, this
7372 * has a major (negative) impact on performance. So, we
7373 * go ahead and run fast-and-loose, in the hopes that we
7374 * don't line up the planets in a way that will trip the
7375 * bugs.
7376 *
7377 * However, we give you the option to be slow-but-correct.
7378 */
7379 write_through = 1;
7380 #elif defined(XSCALE_CACHE_WRITE_BACK)
7381 /* force write back cache mode */
7382 write_through = 0;
7383 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7384 /*
7385 * Intel PXA2[15]0 processors are known to have a bug in
7386 * write-back cache on revision 4 and earlier (stepping
7387 * A[01] and B[012]). Fixed for C0 and later.
7388 */
7389 {
7390 uint32_t id, type;
7391
7392 id = cpufunc_id();
7393 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7394
7395 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7396 if ((id & CPU_ID_REVISION_MASK) < 5) {
7397 /* write through for stepping A0-1 and B0-2 */
7398 write_through = 1;
7399 }
7400 }
7401 }
7402 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7403
7404 if (write_through) {
7405 pte_l1_s_cache_mode = L1_S_C;
7406 pte_l2_l_cache_mode = L2_C;
7407 pte_l2_s_cache_mode = L2_C;
7408 }
7409
7410 #if (ARM_NMMUS > 1)
7411 xscale_use_minidata = 1;
7412 #endif
7413
7414 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7415 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7416 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7417 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7418
7419 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7420 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7421 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7422 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7423
7424 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7425 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7426 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7427 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7428
7429 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7430 pte_l1_s_proto = L1_S_PROTO_xscale;
7431 pte_l1_c_proto = L1_C_PROTO_xscale;
7432 pte_l2_s_proto = L2_S_PROTO_xscale;
7433
7434 pmap_copy_page_func = pmap_copy_page_xscale;
7435 pmap_zero_page_func = pmap_zero_page_xscale;
7436
7437 /*
7438 * Disable ECC protection of page table access, for now.
7439 */
7440 auxctl = armreg_auxctl_read();
7441 auxctl &= ~XSCALE_AUXCTL_P;
7442 armreg_auxctl_write(auxctl);
7443 }
7444
7445 /*
7446 * xscale_setup_minidata:
7447 *
7448 * Set up the mini-data cache clean area. We require the
7449 * caller to allocate the right amount of physically and
7450 * virtually contiguous space.
7451 */
7452 void
7453 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7454 {
7455 extern vaddr_t xscale_minidata_clean_addr;
7456 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7457 pd_entry_t *pde = (pd_entry_t *) l1pt;
7458 vsize_t size;
7459 uint32_t auxctl;
7460
7461 xscale_minidata_clean_addr = va;
7462
7463 /* Round it to page size. */
7464 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7465
7466 for (; size != 0;
7467 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7468 const size_t l1slot = l1pte_index(va);
7469 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7470 if (ptep == NULL)
7471 panic("xscale_setup_minidata: can't find L2 table for "
7472 "VA 0x%08lx", va);
7473
7474 ptep += l2pte_index(va);
7475 pt_entry_t opte = *ptep;
7476 l2pte_set(ptep,
7477 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7478 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7479 }
7480
7481 /*
7482 * Configure the mini-data cache for write-back with
7483 * read/write-allocate.
7484 *
7485 * NOTE: In order to reconfigure the mini-data cache, we must
7486 * make sure it contains no valid data! In order to do that,
7487 * we must issue a global data cache invalidate command!
7488 *
7489 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7490 * THIS IS VERY IMPORTANT!
7491 */
7492
7493 /* Invalidate data and mini-data. */
7494 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7495 auxctl = armreg_auxctl_read();
7496 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7497 armreg_auxctl_write(auxctl);
7498 }
7499
7500 /*
7501 * Change the PTEs for the specified kernel mappings such that they
7502 * will use the mini data cache instead of the main data cache.
7503 */
7504 void
7505 pmap_uarea(vaddr_t va)
7506 {
7507 vaddr_t next_bucket, eva;
7508
7509 #if (ARM_NMMUS > 1)
7510 if (xscale_use_minidata == 0)
7511 return;
7512 #endif
7513
7514 eva = va + USPACE;
7515
7516 while (va < eva) {
7517 next_bucket = L2_NEXT_BUCKET_VA(va);
7518 if (next_bucket > eva)
7519 next_bucket = eva;
7520
7521 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7522 KDASSERT(l2b != NULL);
7523
7524 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7525 pt_entry_t *ptep = sptep;
7526
7527 while (va < next_bucket) {
7528 const pt_entry_t opte = *ptep;
7529 if (!l2pte_minidata_p(opte)) {
7530 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7531 cpu_tlb_flushD_SE(va);
7532 l2pte_set(ptep, opte & ~L2_B, opte);
7533 }
7534 ptep += PAGE_SIZE / L2_S_SIZE;
7535 va += PAGE_SIZE;
7536 }
7537 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7538 }
7539 cpu_cpwait();
7540 }
7541 #endif /* ARM_MMU_XSCALE == 1 */
7542
7543
7544 #if defined(CPU_ARM11MPCORE)
7545 void
7546 pmap_pte_init_arm11mpcore(void)
7547 {
7548
7549 /* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
7550 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7551 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7552 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7553 /* use extended small page (without APn, with TEX) */
7554 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7555 #else
7556 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7557 #endif
7558
7559 /* write-back, write-allocate */
7560 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7561 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7562 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7563 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7564 #else
7565 /* no TEX. read-allocate */
7566 pte_l2_s_cache_mode = L2_C | L2_B;
7567 #endif
7568 /*
7569 * write-back, write-allocate for page tables.
7570 */
7571 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7572 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7573 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7574 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7575 #else
7576 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7577 #endif
7578
7579 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7580 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7581 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7582 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7583
7584 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7585 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7586 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7587 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7588 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7589
7590 #else
7591 /* with AP[0..3] */
7592 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7593 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7594 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7595 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7596 #endif
7597
7598 #ifdef ARM11MPCORE_COMPAT_MMU
7599 /* with AP[0..3] */
7600 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7601 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7602 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7603 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7604
7605 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7606 pte_l1_s_proto = L1_S_PROTO_armv6;
7607 pte_l1_c_proto = L1_C_PROTO_armv6;
7608 pte_l2_s_proto = L2_S_PROTO_armv6c;
7609 #else
7610 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7611 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7612 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7613 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7614
7615 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7616 pte_l1_s_proto = L1_S_PROTO_armv6;
7617 pte_l1_c_proto = L1_C_PROTO_armv6;
7618 pte_l2_s_proto = L2_S_PROTO_armv6n;
7619 #endif
7620
7621 pmap_copy_page_func = pmap_copy_page_generic;
7622 pmap_zero_page_func = pmap_zero_page_generic;
7623 pmap_needs_pte_sync = 1;
7624 }
7625 #endif /* CPU_ARM11MPCORE */
7626
7627
7628 #if ARM_MMU_V6 == 1
7629 void
7630 pmap_pte_init_armv6(void)
7631 {
7632 /*
7633 * The ARMv6-A MMU is mostly compatible with generic. If the
7634 * AP field is zero, that now means "no access" rather than
7635 * read-only. The prototypes are a little different because of
7636 * the XN bit.
7637 */
7638 pmap_pte_init_generic();
7639
7640 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7641 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7642 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7643
7644 #ifdef ARM11_COMPAT_MMU
7645 /* with AP[0..3] */
7646 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7647 #else
7648 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
7649 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
7650 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
7651
7652 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7653 pte_l1_s_proto = L1_S_PROTO_armv6;
7654 pte_l1_c_proto = L1_C_PROTO_armv6;
7655 pte_l2_s_proto = L2_S_PROTO_armv6n;
7656
7657 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7658 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7659 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7660 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7661
7662 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7663 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7664 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7665 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7666
7667 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7668 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7669 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7670 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7671
7672 #endif
7673 }
7674 #endif /* ARM_MMU_V6 */
7675
7676 #if ARM_MMU_V7 == 1
7677 void
7678 pmap_pte_init_armv7(void)
7679 {
7680 /*
7681 * The ARMv7-A MMU is mostly compatible with generic. If the
7682 * AP field is zero, that now means "no access" rather than
7683 * read-only. The prototypes are a little different because of
7684 * the XN bit.
7685 */
7686 pmap_pte_init_generic();
7687
7688 pmap_needs_pte_sync = 1;
7689
7690 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7691 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7692 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7693
7694 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7695 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7696 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7697
7698 /*
7699 * If the core support coherent walk then updates to translation tables
7700 * do not require a clean to the point of unification to ensure
7701 * visibility by subsequent translation table walks. That means we can
7702 * map everything shareable and cached and the right thing will happen.
7703 */
7704 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7705 pmap_needs_pte_sync = 0;
7706
7707 /*
7708 * write-back, no write-allocate, shareable for normal pages.
7709 */
7710 pte_l1_s_cache_mode |= L1_S_V6_S;
7711 pte_l2_l_cache_mode |= L2_XS_S;
7712 pte_l2_s_cache_mode |= L2_XS_S;
7713 }
7714
7715 /*
7716 * Page tables are just all other memory. We can use write-back since
7717 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7718 */
7719 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7720 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7721 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7722
7723 /*
7724 * Check the Memory Model Features to see if this CPU supports
7725 * the TLBIASID coproc op.
7726 */
7727 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7728 arm_has_tlbiasid_p = true;
7729 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7730 arm_has_tlbiasid_p = true;
7731 }
7732
7733 /*
7734 * Check the MPIDR to see if this CPU supports MP extensions.
7735 */
7736 #ifdef MULTIPROCESSOR
7737 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7738 #else
7739 arm_has_mpext_p = false;
7740 #endif
7741
7742 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7743 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7744 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7745 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7746
7747 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7748 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7749 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7750 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7751
7752 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7753 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7754 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7755 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7756
7757 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7758 pte_l1_s_proto = L1_S_PROTO_armv7;
7759 pte_l1_c_proto = L1_C_PROTO_armv7;
7760 pte_l2_s_proto = L2_S_PROTO_armv7;
7761
7762 }
7763 #endif /* ARM_MMU_V7 */
7764
7765 /*
7766 * return the PA of the current L1 table, for use when handling a crash dump
7767 */
7768 uint32_t
7769 pmap_kernel_L1_addr(void)
7770 {
7771 #ifdef ARM_MMU_EXTENDED
7772 return pmap_kernel()->pm_l1_pa;
7773 #else
7774 return pmap_kernel()->pm_l1->l1_physaddr;
7775 #endif
7776 }
7777
7778 #if defined(DDB)
7779 /*
7780 * A couple of ddb-callable functions for dumping pmaps
7781 */
7782 void pmap_dump(pmap_t);
7783
7784 static pt_entry_t ncptes[64];
7785 static void pmap_dump_ncpg(pmap_t);
7786
7787 void
7788 pmap_dump(pmap_t pm)
7789 {
7790 struct l2_dtable *l2;
7791 struct l2_bucket *l2b;
7792 pt_entry_t *ptep, pte;
7793 vaddr_t l2_va, l2b_va, va;
7794 int i, j, k, occ, rows = 0;
7795
7796 if (pm == pmap_kernel())
7797 printf("pmap_kernel (%p): ", pm);
7798 else
7799 printf("user pmap (%p): ", pm);
7800
7801 #ifdef ARM_MMU_EXTENDED
7802 printf("l1 at %p\n", pmap_l1_kva(pm));
7803 #else
7804 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7805 #endif
7806
7807 l2_va = 0;
7808 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7809 l2 = pm->pm_l2[i];
7810
7811 if (l2 == NULL || l2->l2_occupancy == 0)
7812 continue;
7813
7814 l2b_va = l2_va;
7815 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7816 l2b = &l2->l2_bucket[j];
7817
7818 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7819 continue;
7820
7821 ptep = l2b->l2b_kva;
7822
7823 for (k = 0; k < 256 && ptep[k] == 0; k++)
7824 ;
7825
7826 k &= ~63;
7827 occ = l2b->l2b_occupancy;
7828 va = l2b_va + (k * 4096);
7829 for (; k < 256; k++, va += 0x1000) {
7830 char ch = ' ';
7831 if ((k % 64) == 0) {
7832 if ((rows % 8) == 0) {
7833 printf(
7834 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7835 }
7836 printf("%08lx: ", va);
7837 }
7838
7839 ncptes[k & 63] = 0;
7840 pte = ptep[k];
7841 if (pte == 0) {
7842 ch = '.';
7843 } else {
7844 occ--;
7845 switch (pte & 0x4c) {
7846 case 0x00:
7847 ch = 'N'; /* No cache No buff */
7848 break;
7849 case 0x04:
7850 ch = 'B'; /* No cache buff */
7851 break;
7852 case 0x08:
7853 ch = 'C'; /* Cache No buff */
7854 break;
7855 case 0x0c:
7856 ch = 'F'; /* Cache Buff */
7857 break;
7858 case 0x40:
7859 ch = 'D';
7860 break;
7861 case 0x48:
7862 ch = 'm'; /* Xscale mini-data */
7863 break;
7864 default:
7865 ch = '?';
7866 break;
7867 }
7868
7869 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7870 ch += 0x20;
7871
7872 if ((pte & 0xc) == 0)
7873 ncptes[k & 63] = pte;
7874 }
7875
7876 if ((k % 64) == 63) {
7877 rows++;
7878 printf("%c\n", ch);
7879 pmap_dump_ncpg(pm);
7880 if (occ == 0)
7881 break;
7882 } else
7883 printf("%c", ch);
7884 }
7885 }
7886 }
7887 }
7888
7889 static void
7890 pmap_dump_ncpg(pmap_t pm)
7891 {
7892 struct vm_page *pg;
7893 struct vm_page_md *md;
7894 struct pv_entry *pv;
7895 int i;
7896
7897 for (i = 0; i < 63; i++) {
7898 if (ncptes[i] == 0)
7899 continue;
7900
7901 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7902 if (pg == NULL)
7903 continue;
7904 md = VM_PAGE_TO_MD(pg);
7905
7906 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7907 VM_PAGE_TO_PHYS(pg),
7908 md->krw_mappings, md->kro_mappings,
7909 md->urw_mappings, md->uro_mappings);
7910
7911 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7912 printf(" %c va 0x%08lx, flags 0x%x\n",
7913 (pm == pv->pv_pmap) ? '*' : ' ',
7914 pv->pv_va, pv->pv_flags);
7915 }
7916 }
7917 }
7918 #endif
7919
7920 #ifdef PMAP_STEAL_MEMORY
7921 void
7922 pmap_boot_pageadd(pv_addr_t *newpv)
7923 {
7924 pv_addr_t *pv, *npv;
7925
7926 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7927 if (newpv->pv_pa < pv->pv_va) {
7928 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7929 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7930 newpv->pv_size += pv->pv_size;
7931 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7932 }
7933 pv = NULL;
7934 } else {
7935 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7936 pv = npv) {
7937 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7938 KASSERT(pv->pv_pa < newpv->pv_pa);
7939 if (newpv->pv_pa > npv->pv_pa)
7940 continue;
7941 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7942 pv->pv_size += newpv->pv_size;
7943 return;
7944 }
7945 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7946 break;
7947 newpv->pv_size += npv->pv_size;
7948 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7949 SLIST_REMOVE_AFTER(newpv, pv_list);
7950 return;
7951 }
7952 }
7953 }
7954
7955 if (pv) {
7956 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7957 } else {
7958 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7959 }
7960 }
7961
7962 void
7963 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7964 pv_addr_t *rpv)
7965 {
7966 pv_addr_t *pv, **pvp;
7967
7968 KASSERT(amount & PGOFSET);
7969 KASSERT((mask & PGOFSET) == 0);
7970 KASSERT((match & PGOFSET) == 0);
7971 KASSERT(amount != 0);
7972
7973 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7974 (pv = *pvp) != NULL;
7975 pvp = &SLIST_NEXT(pv, pv_list)) {
7976 pv_addr_t *newpv;
7977 psize_t off;
7978 /*
7979 * If this entry is too small to satisfy the request...
7980 */
7981 KASSERT(pv->pv_size > 0);
7982 if (pv->pv_size < amount)
7983 continue;
7984
7985 for (off = 0; off <= mask; off += PAGE_SIZE) {
7986 if (((pv->pv_pa + off) & mask) == match
7987 && off + amount <= pv->pv_size)
7988 break;
7989 }
7990 if (off > mask)
7991 continue;
7992
7993 rpv->pv_va = pv->pv_va + off;
7994 rpv->pv_pa = pv->pv_pa + off;
7995 rpv->pv_size = amount;
7996 pv->pv_size -= amount;
7997 if (pv->pv_size == 0) {
7998 KASSERT(off == 0);
7999 KASSERT((vaddr_t) pv == rpv->pv_va);
8000 *pvp = SLIST_NEXT(pv, pv_list);
8001 } else if (off == 0) {
8002 KASSERT((vaddr_t) pv == rpv->pv_va);
8003 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8004 *newpv = *pv;
8005 newpv->pv_pa += amount;
8006 newpv->pv_va += amount;
8007 *pvp = newpv;
8008 } else if (off < pv->pv_size) {
8009 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8010 *newpv = *pv;
8011 newpv->pv_size -= off;
8012 newpv->pv_pa += off + amount;
8013 newpv->pv_va += off + amount;
8014
8015 SLIST_NEXT(pv, pv_list) = newpv;
8016 pv->pv_size = off;
8017 } else {
8018 KASSERT((vaddr_t) pv != rpv->pv_va);
8019 }
8020 memset((void *)rpv->pv_va, 0, amount);
8021 return;
8022 }
8023
8024 if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
8025 panic("pmap_boot_pagealloc: couldn't allocate memory");
8026
8027 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8028 (pv = *pvp) != NULL;
8029 pvp = &SLIST_NEXT(pv, pv_list)) {
8030 if (SLIST_NEXT(pv, pv_list) == NULL)
8031 break;
8032 }
8033 KASSERT(mask == 0);
8034
8035 for (uvm_physseg_t ups = uvm_physseg_get_first();
8036 uvm_physseg_valid_p(ups);
8037 ups = uvm_physseg_get_next(ups)) {
8038
8039 paddr_t spn = uvm_physseg_get_start(ups);
8040 paddr_t epn = uvm_physseg_get_end(ups);
8041 if (spn == atop(pv->pv_pa + pv->pv_size)
8042 && pv->pv_va + pv->pv_size <= ptoa(epn)) {
8043 rpv->pv_va = pv->pv_va;
8044 rpv->pv_pa = pv->pv_pa;
8045 rpv->pv_size = amount;
8046 *pvp = NULL;
8047 pmap_map_chunk(kernel_l1pt.pv_va,
8048 ptoa(spn) + (pv->pv_va - pv->pv_pa),
8049 ptoa(spn),
8050 amount - pv->pv_size,
8051 VM_PROT_READ|VM_PROT_WRITE,
8052 PTE_CACHE);
8053
8054 uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
8055 memset((void *)rpv->pv_va, 0, rpv->pv_size);
8056 return;
8057 }
8058 }
8059
8060 panic("pmap_boot_pagealloc: couldn't allocate memory");
8061 }
8062
8063 vaddr_t
8064 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
8065 {
8066 pv_addr_t pv;
8067
8068 pmap_boot_pagealloc(size, 0, 0, &pv);
8069
8070 return pv.pv_va;
8071 }
8072 #endif /* PMAP_STEAL_MEMORY */
8073
8074 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
8075 {
8076 sysctl_createv(clog, 0, NULL, NULL,
8077 CTLFLAG_PERMANENT,
8078 CTLTYPE_NODE, "machdep", NULL,
8079 NULL, 0, NULL, 0,
8080 CTL_MACHDEP, CTL_EOL);
8081
8082 sysctl_createv(clog, 0, NULL, NULL,
8083 CTLFLAG_PERMANENT,
8084 CTLTYPE_INT, "kmpages",
8085 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
8086 NULL, 0, &pmap_kmpages, 0,
8087 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
8088 }
8089
8090 #ifdef PMAP_NEED_ALLOC_POOLPAGE
8091 struct vm_page *
8092 arm_pmap_alloc_poolpage(int flags)
8093 {
8094 /*
8095 * On some systems, only some pages may be "coherent" for dma and we
8096 * want to prefer those for pool pages (think mbufs) but fallback to
8097 * any page if none is available.
8098 */
8099 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
8100 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
8101 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
8102 }
8103
8104 return uvm_pagealloc(NULL, 0, NULL, flags);
8105 }
8106 #endif
8107
8108 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
8109 void
8110 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
8111 {
8112 /* nothing */
8113 }
8114
8115 int
8116 pic_ipi_shootdown(void *arg)
8117 {
8118 #if PMAP_TLB_NEED_SHOOTDOWN
8119 pmap_tlb_shootdown_process();
8120 #endif
8121 return 1;
8122 }
8123 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
8124
8125
8126 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
8127 vaddr_t
8128 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
8129 {
8130 bool ok = false;
8131 if (physical_start <= pa && pa < physical_end) {
8132 #ifdef KERNEL_BASE_VOFFSET
8133 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
8134 #else
8135 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
8136 #endif
8137 #ifdef ARM_MMU_EXTENDED
8138 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
8139 #endif
8140 va = newva;
8141 ok = true;
8142 #ifdef ARM_MMU_EXTENDED
8143 }
8144 #endif
8145 }
8146 KASSERT(ok_p);
8147 *ok_p = ok;
8148 return va;
8149 }
8150
8151 vaddr_t
8152 pmap_map_poolpage(paddr_t pa)
8153 {
8154 bool ok __diagused;
8155 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
8156 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
8157 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
8158 if (arm_cache_prefer_mask != 0) {
8159 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
8160 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
8161 pmap_acquire_page_lock(md);
8162 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
8163 pmap_release_page_lock(md);
8164 }
8165 #endif
8166 return va;
8167 }
8168
8169 paddr_t
8170 pmap_unmap_poolpage(vaddr_t va)
8171 {
8172 KASSERT(va >= KERNEL_BASE);
8173 #ifdef PMAP_CACHE_VIVT
8174 cpu_idcache_wbinv_range(va, PAGE_SIZE);
8175 #endif
8176 #if defined(KERNEL_BASE_VOFFSET)
8177 return va - KERNEL_BASE_VOFFSET;
8178 #else
8179 return va - KERNEL_BASE + physical_start;
8180 #endif
8181 }
8182 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8183