pmap.c revision 1.416 1 /* $NetBSD: pmap.c,v 1.416 2020/07/03 17:14:23 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999, 2020 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /* Include header files */
183
184 #include "opt_arm_debug.h"
185 #include "opt_cpuoptions.h"
186 #include "opt_ddb.h"
187 #include "opt_lockdebug.h"
188 #include "opt_multiprocessor.h"
189
190 #ifdef MULTIPROCESSOR
191 #define _INTR_PRIVATE
192 #endif
193
194 #include <sys/cdefs.h>
195 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.416 2020/07/03 17:14:23 skrll Exp $");
196
197 #include <sys/param.h>
198 #include <sys/types.h>
199
200 #include <sys/atomic.h>
201 #include <sys/bus.h>
202 #include <sys/cpu.h>
203 #include <sys/intr.h>
204 #include <sys/kernel.h>
205 #include <sys/kernhist.h>
206 #include <sys/kmem.h>
207 #include <sys/pool.h>
208 #include <sys/proc.h>
209 #include <sys/sysctl.h>
210 #include <sys/systm.h>
211
212 #include <uvm/uvm.h>
213 #include <uvm/pmap/pmap_pvt.h>
214
215 #include <arm/locore.h>
216
217 #ifdef DDB
218 #include <arm/db_machdep.h>
219 #endif
220
221 #ifdef VERBOSE_INIT_ARM
222 #define VPRINTF(...) printf(__VA_ARGS__)
223 #else
224 #define VPRINTF(...) __nothing
225 #endif
226
227 /*
228 * pmap_kernel() points here
229 */
230 static struct pmap kernel_pmap_store = {
231 #ifndef ARM_MMU_EXTENDED
232 .pm_activated = true,
233 .pm_domain = PMAP_DOMAIN_KERNEL,
234 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
235 #endif
236 };
237 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
238 #undef pmap_kernel
239 #define pmap_kernel() (&kernel_pmap_store)
240 #ifdef PMAP_NEED_ALLOC_POOLPAGE
241 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
242 #endif
243
244 /*
245 * Pool and cache that pmap structures are allocated from.
246 * We use a cache to avoid clearing the pm_l2[] array (1KB)
247 * in pmap_create().
248 */
249 static struct pool_cache pmap_cache;
250
251 /*
252 * Pool of PV structures
253 */
254 static struct pool pmap_pv_pool;
255 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
256 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
257 static struct pool_allocator pmap_bootstrap_pv_allocator = {
258 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
259 };
260
261 /*
262 * Pool and cache of l2_dtable structures.
263 * We use a cache to avoid clearing the structures when they're
264 * allocated. (196 bytes)
265 */
266 static struct pool_cache pmap_l2dtable_cache;
267 static vaddr_t pmap_kernel_l2dtable_kva;
268
269 /*
270 * Pool and cache of L2 page descriptors.
271 * We use a cache to avoid clearing the descriptor table
272 * when they're allocated. (1KB)
273 */
274 static struct pool_cache pmap_l2ptp_cache;
275 static vaddr_t pmap_kernel_l2ptp_kva;
276 static paddr_t pmap_kernel_l2ptp_phys;
277
278 #ifdef PMAPCOUNTERS
279 #define PMAP_EVCNT_INITIALIZER(name) \
280 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
281
282 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
283 static struct evcnt pmap_ev_vac_clean_one =
284 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
285 static struct evcnt pmap_ev_vac_flush_one =
286 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
287 static struct evcnt pmap_ev_vac_flush_lots =
288 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
289 static struct evcnt pmap_ev_vac_flush_lots2 =
290 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
291 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
292 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
293 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
294 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
295
296 static struct evcnt pmap_ev_vac_color_new =
297 PMAP_EVCNT_INITIALIZER("new page color");
298 static struct evcnt pmap_ev_vac_color_reuse =
299 PMAP_EVCNT_INITIALIZER("ok first page color");
300 static struct evcnt pmap_ev_vac_color_ok =
301 PMAP_EVCNT_INITIALIZER("ok page color");
302 static struct evcnt pmap_ev_vac_color_blind =
303 PMAP_EVCNT_INITIALIZER("blind page color");
304 static struct evcnt pmap_ev_vac_color_change =
305 PMAP_EVCNT_INITIALIZER("change page color");
306 static struct evcnt pmap_ev_vac_color_erase =
307 PMAP_EVCNT_INITIALIZER("erase page color");
308 static struct evcnt pmap_ev_vac_color_none =
309 PMAP_EVCNT_INITIALIZER("no page color");
310 static struct evcnt pmap_ev_vac_color_restore =
311 PMAP_EVCNT_INITIALIZER("restore page color");
312
313 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
314 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
315 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
316 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
317 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
318 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
319 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
320 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
321 #endif
322
323 static struct evcnt pmap_ev_mappings =
324 PMAP_EVCNT_INITIALIZER("pages mapped");
325 static struct evcnt pmap_ev_unmappings =
326 PMAP_EVCNT_INITIALIZER("pages unmapped");
327 static struct evcnt pmap_ev_remappings =
328 PMAP_EVCNT_INITIALIZER("pages remapped");
329
330 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
331 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
332 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
333
334 static struct evcnt pmap_ev_kernel_mappings =
335 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
336 static struct evcnt pmap_ev_kernel_unmappings =
337 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
338 static struct evcnt pmap_ev_kernel_remappings =
339 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
340
341 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
342 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
343 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
344
345 static struct evcnt pmap_ev_kenter_mappings =
346 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
347 static struct evcnt pmap_ev_kenter_unmappings =
348 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
349 static struct evcnt pmap_ev_kenter_remappings =
350 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
351 static struct evcnt pmap_ev_pt_mappings =
352 PMAP_EVCNT_INITIALIZER("page table pages mapped");
353
354 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
355 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
356 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
357 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
358
359 static struct evcnt pmap_ev_fixup_mod =
360 PMAP_EVCNT_INITIALIZER("page modification emulations");
361 static struct evcnt pmap_ev_fixup_ref =
362 PMAP_EVCNT_INITIALIZER("page reference emulations");
363 static struct evcnt pmap_ev_fixup_exec =
364 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
365 static struct evcnt pmap_ev_fixup_pdes =
366 PMAP_EVCNT_INITIALIZER("pdes fixed up");
367 #ifndef ARM_MMU_EXTENDED
368 static struct evcnt pmap_ev_fixup_ptesync =
369 PMAP_EVCNT_INITIALIZER("ptesync fixed");
370 #endif
371
372 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
373 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
374 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
375 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
376 #ifndef ARM_MMU_EXTENDED
377 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
378 #endif
379
380 #ifdef PMAP_CACHE_VIPT
381 static struct evcnt pmap_ev_exec_mappings =
382 PMAP_EVCNT_INITIALIZER("exec pages mapped");
383 static struct evcnt pmap_ev_exec_cached =
384 PMAP_EVCNT_INITIALIZER("exec pages cached");
385
386 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
387 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
388
389 static struct evcnt pmap_ev_exec_synced =
390 PMAP_EVCNT_INITIALIZER("exec pages synced");
391 static struct evcnt pmap_ev_exec_synced_map =
392 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
393 static struct evcnt pmap_ev_exec_synced_unmap =
394 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
395 static struct evcnt pmap_ev_exec_synced_remap =
396 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
397 static struct evcnt pmap_ev_exec_synced_clearbit =
398 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
399 #ifndef ARM_MMU_EXTENDED
400 static struct evcnt pmap_ev_exec_synced_kremove =
401 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
402 #endif
403
404 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
405 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
406 #ifndef ARM_MMU_EXTENDED
407 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
408 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
409 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
411 #endif
412
413 static struct evcnt pmap_ev_exec_discarded_unmap =
414 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
415 static struct evcnt pmap_ev_exec_discarded_zero =
416 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
417 static struct evcnt pmap_ev_exec_discarded_copy =
418 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
419 static struct evcnt pmap_ev_exec_discarded_page_protect =
420 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
421 static struct evcnt pmap_ev_exec_discarded_clearbit =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
423 static struct evcnt pmap_ev_exec_discarded_kremove =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
425 #ifdef ARM_MMU_EXTENDED
426 static struct evcnt pmap_ev_exec_discarded_modfixup =
427 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
428 #endif
429
430 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
436 #ifdef ARM_MMU_EXTENDED
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
438 #endif
439 #endif /* PMAP_CACHE_VIPT */
440
441 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
442 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
443 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
444
445 EVCNT_ATTACH_STATIC(pmap_ev_updates);
446 EVCNT_ATTACH_STATIC(pmap_ev_collects);
447 EVCNT_ATTACH_STATIC(pmap_ev_activations);
448
449 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
450 #else
451 #define PMAPCOUNT(x) ((void)0)
452 #endif
453
454 #ifdef ARM_MMU_EXTENDED
455 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
456 void pmap_md_pdetab_deactivate(pmap_t pm);
457 #endif
458
459 /*
460 * pmap copy/zero page, and mem(5) hook point
461 */
462 static pt_entry_t *csrc_pte, *cdst_pte;
463 static vaddr_t csrcp, cdstp;
464 #ifdef MULTIPROCESSOR
465 static size_t cnptes;
466 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
467 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
468 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
469 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
470 #else
471 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
472 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
473 #define cpu_csrcp(o) (csrcp + (o))
474 #define cpu_cdstp(o) (cdstp + (o))
475 #endif
476 vaddr_t memhook; /* used by mem.c & others */
477 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
478 kmutex_t pmap_lock __cacheline_aligned;
479 kmutex_t kpm_lock __cacheline_aligned;
480 extern void *msgbufaddr;
481 int pmap_kmpages;
482 /*
483 * Flag to indicate if pmap_init() has done its thing
484 */
485 bool pmap_initialized;
486
487 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
488 /*
489 * Virtual end of direct-mapped memory
490 */
491 vaddr_t pmap_directlimit;
492 #endif
493
494 /*
495 * Misc. locking data structures
496 */
497
498 static inline void
499 pmap_acquire_pmap_lock(pmap_t pm)
500 {
501 #if defined(MULTIPROCESSOR) && defined(DDB)
502 if (__predict_false(db_onproc != NULL))
503 return;
504 #endif
505
506 mutex_enter(&pm->pm_lock);
507 }
508
509 static inline void
510 pmap_release_pmap_lock(pmap_t pm)
511 {
512 #if defined(MULTIPROCESSOR) && defined(DDB)
513 if (__predict_false(db_onproc != NULL))
514 return;
515 #endif
516 mutex_exit(&pm->pm_lock);
517 }
518
519 static inline void
520 pmap_acquire_page_lock(struct vm_page_md *md)
521 {
522 mutex_enter(&pmap_lock);
523 }
524
525 static inline void
526 pmap_release_page_lock(struct vm_page_md *md)
527 {
528 mutex_exit(&pmap_lock);
529 }
530
531 #ifdef DIAGNOSTIC
532 static inline int
533 pmap_page_locked_p(struct vm_page_md *md)
534 {
535 return mutex_owned(&pmap_lock);
536 }
537 #endif
538
539
540 /*
541 * Metadata for L1 translation tables.
542 */
543 #ifndef ARM_MMU_EXTENDED
544 struct l1_ttable {
545 /* Entry on the L1 Table list */
546 SLIST_ENTRY(l1_ttable) l1_link;
547
548 /* Entry on the L1 Least Recently Used list */
549 TAILQ_ENTRY(l1_ttable) l1_lru;
550
551 /* Track how many domains are allocated from this L1 */
552 volatile u_int l1_domain_use_count;
553
554 /*
555 * A free-list of domain numbers for this L1.
556 * We avoid using ffs() and a bitmap to track domains since ffs()
557 * is slow on ARM.
558 */
559 uint8_t l1_domain_first;
560 uint8_t l1_domain_free[PMAP_DOMAINS];
561
562 /* Physical address of this L1 page table */
563 paddr_t l1_physaddr;
564
565 /* KVA of this L1 page table */
566 pd_entry_t *l1_kva;
567 };
568
569 /*
570 * L1 Page Tables are tracked using a Least Recently Used list.
571 * - New L1s are allocated from the HEAD.
572 * - Freed L1s are added to the TAIL.
573 * - Recently accessed L1s (where an 'access' is some change to one of
574 * the userland pmaps which owns this L1) are moved to the TAIL.
575 */
576 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
577 static kmutex_t l1_lru_lock __cacheline_aligned;
578
579 /*
580 * A list of all L1 tables
581 */
582 static SLIST_HEAD(, l1_ttable) l1_list;
583 #endif /* ARM_MMU_EXTENDED */
584
585 /*
586 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
587 *
588 * This is normally 16MB worth L2 page descriptors for any given pmap.
589 * Reference counts are maintained for L2 descriptors so they can be
590 * freed when empty.
591 */
592 struct l2_bucket {
593 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
594 paddr_t l2b_pa; /* Physical address of same */
595 u_short l2b_l1slot; /* This L2 table's L1 index */
596 u_short l2b_occupancy; /* How many active descriptors */
597 };
598
599 struct l2_dtable {
600 /* The number of L2 page descriptors allocated to this l2_dtable */
601 u_int l2_occupancy;
602
603 /* List of L2 page descriptors */
604 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
605 };
606
607 /*
608 * Given an L1 table index, calculate the corresponding l2_dtable index
609 * and bucket index within the l2_dtable.
610 */
611 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
612 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
613 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
614 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
615 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
616
617 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
618 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
619
620 /*
621 * Given a virtual address, this macro returns the
622 * virtual address required to drop into the next L2 bucket.
623 */
624 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
625
626 /*
627 * L2 allocation.
628 */
629 #define pmap_alloc_l2_dtable() \
630 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
631 #define pmap_free_l2_dtable(l2) \
632 pool_cache_put(&pmap_l2dtable_cache, (l2))
633 #define pmap_alloc_l2_ptp(pap) \
634 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
635 PR_NOWAIT, (pap)))
636
637 /*
638 * We try to map the page tables write-through, if possible. However, not
639 * all CPUs have a write-through cache mode, so on those we have to sync
640 * the cache when we frob page tables.
641 *
642 * We try to evaluate this at compile time, if possible. However, it's
643 * not always possible to do that, hence this run-time var.
644 */
645 int pmap_needs_pte_sync;
646
647 /*
648 * Real definition of pv_entry.
649 */
650 struct pv_entry {
651 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
652 pmap_t pv_pmap; /* pmap where mapping lies */
653 vaddr_t pv_va; /* virtual address for mapping */
654 u_int pv_flags; /* flags */
655 };
656
657 /*
658 * Macros to determine if a mapping might be resident in the
659 * instruction/data cache and/or TLB
660 */
661 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
662 /*
663 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
664 * there are no explicit accesses, so there may be always be TLB entries to
665 * flush. If we used ASIDs then this would not be a problem.
666 */
667 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
668 #define PV_BEEN_REFD(f) (true)
669 #else
670 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
671 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
672 #endif
673 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
674 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
675 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
676
677 /*
678 * Local prototypes
679 */
680 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
681 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
682 pt_entry_t **);
683 static bool pmap_is_current(pmap_t) __unused;
684 static bool pmap_is_cached(pmap_t);
685 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
686 pmap_t, vaddr_t, u_int);
687 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
688 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
689 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
690 u_int, u_int);
691
692 static void pmap_pinit(pmap_t);
693 static int pmap_pmap_ctor(void *, void *, int);
694
695 static void pmap_alloc_l1(pmap_t);
696 static void pmap_free_l1(pmap_t);
697 #ifndef ARM_MMU_EXTENDED
698 static void pmap_use_l1(pmap_t);
699 #endif
700
701 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
702 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
703 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
704 static int pmap_l2ptp_ctor(void *, void *, int);
705 static int pmap_l2dtable_ctor(void *, void *, int);
706
707 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
708 #ifdef PMAP_CACHE_VIVT
709 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
710 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
711 #endif
712
713 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
714 #ifdef PMAP_CACHE_VIVT
715 static bool pmap_clean_page(struct vm_page_md *, bool);
716 #endif
717 #ifdef PMAP_CACHE_VIPT
718 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
719 enum pmap_flush_op {
720 PMAP_FLUSH_PRIMARY,
721 PMAP_FLUSH_SECONDARY,
722 PMAP_CLEAN_PRIMARY
723 };
724 #ifndef ARM_MMU_EXTENDED
725 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
726 #endif
727 #endif
728 static void pmap_page_remove(struct vm_page_md *, paddr_t);
729 static void pmap_pv_remove(paddr_t);
730
731 #ifndef ARM_MMU_EXTENDED
732 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
733 #endif
734 static vaddr_t kernel_pt_lookup(paddr_t);
735
736 #ifdef ARM_MMU_EXTENDED
737 static struct pool_cache pmap_l1tt_cache;
738
739 static int pmap_l1tt_ctor(void *, void *, int);
740 static void * pmap_l1tt_alloc(struct pool *, int);
741 static void pmap_l1tt_free(struct pool *, void *);
742
743 static struct pool_allocator pmap_l1tt_allocator = {
744 .pa_alloc = pmap_l1tt_alloc,
745 .pa_free = pmap_l1tt_free,
746 .pa_pagesz = L1TT_SIZE,
747 };
748 #endif
749
750 /*
751 * Misc variables
752 */
753 vaddr_t virtual_avail;
754 vaddr_t virtual_end;
755 vaddr_t pmap_curmaxkvaddr;
756
757 paddr_t avail_start;
758 paddr_t avail_end;
759
760 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
761 pv_addr_t kernelpages;
762 pv_addr_t kernel_l1pt;
763 pv_addr_t systempage;
764
765 #ifdef PMAP_CACHE_VIPT
766 #define PMAP_VALIDATE_MD_PAGE(md) \
767 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
768 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
769 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
770 #endif /* PMAP_CACHE_VIPT */
771 /*
772 * A bunch of routines to conditionally flush the caches/TLB depending
773 * on whether the specified pmap actually needs to be flushed at any
774 * given time.
775 */
776 static inline void
777 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
778 {
779 #ifdef ARM_MMU_EXTENDED
780 pmap_tlb_invalidate_addr(pm, va);
781 #else
782 if (pm->pm_cstate.cs_tlb_id != 0) {
783 if (PV_BEEN_EXECD(flags)) {
784 cpu_tlb_flushID_SE(va);
785 } else if (PV_BEEN_REFD(flags)) {
786 cpu_tlb_flushD_SE(va);
787 }
788 }
789 #endif /* ARM_MMU_EXTENDED */
790 }
791
792 #ifndef ARM_MMU_EXTENDED
793 static inline void
794 pmap_tlb_flushID(pmap_t pm)
795 {
796 if (pm->pm_cstate.cs_tlb_id) {
797 cpu_tlb_flushID();
798 #if ARM_MMU_V7 == 0
799 /*
800 * Speculative loads by Cortex cores can cause TLB entries to
801 * be filled even if there are no explicit accesses, so there
802 * may be always be TLB entries to flush. If we used ASIDs
803 * then it would not be a problem.
804 * This is not true for other CPUs.
805 */
806 pm->pm_cstate.cs_tlb = 0;
807 #endif /* ARM_MMU_V7 */
808 }
809 }
810
811 static inline void
812 pmap_tlb_flushD(pmap_t pm)
813 {
814 if (pm->pm_cstate.cs_tlb_d) {
815 cpu_tlb_flushD();
816 #if ARM_MMU_V7 == 0
817 /*
818 * Speculative loads by Cortex cores can cause TLB entries to
819 * be filled even if there are no explicit accesses, so there
820 * may be always be TLB entries to flush. If we used ASIDs
821 * then it would not be a problem.
822 * This is not true for other CPUs.
823 */
824 pm->pm_cstate.cs_tlb_d = 0;
825 #endif /* ARM_MMU_V7 */
826 }
827 }
828 #endif /* ARM_MMU_EXTENDED */
829
830 #ifdef PMAP_CACHE_VIVT
831 static inline void
832 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
833 {
834 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
835 cpu_idcache_wbinv_range(va, PAGE_SIZE);
836 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
837 if (do_inv) {
838 if (flags & PVF_WRITE)
839 cpu_dcache_wbinv_range(va, PAGE_SIZE);
840 else
841 cpu_dcache_inv_range(va, PAGE_SIZE);
842 } else if (flags & PVF_WRITE) {
843 cpu_dcache_wb_range(va, PAGE_SIZE);
844 }
845 }
846 }
847
848 static inline void
849 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
850 {
851 if (PV_BEEN_EXECD(flags)) {
852 if (pm->pm_cstate.cs_cache_id) {
853 cpu_idcache_wbinv_all();
854 pm->pm_cstate.cs_cache = 0;
855 }
856 } else if (pm->pm_cstate.cs_cache_d) {
857 cpu_dcache_wbinv_all();
858 pm->pm_cstate.cs_cache_d = 0;
859 }
860 }
861 #endif /* PMAP_CACHE_VIVT */
862
863 static inline uint8_t
864 pmap_domain(pmap_t pm)
865 {
866 #ifdef ARM_MMU_EXTENDED
867 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
868 #else
869 return pm->pm_domain;
870 #endif
871 }
872
873 static inline pd_entry_t *
874 pmap_l1_kva(pmap_t pm)
875 {
876 #ifdef ARM_MMU_EXTENDED
877 return pm->pm_l1;
878 #else
879 return pm->pm_l1->l1_kva;
880 #endif
881 }
882
883 static inline bool
884 pmap_is_current(pmap_t pm)
885 {
886 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
887 return true;
888
889 return false;
890 }
891
892 static inline bool
893 pmap_is_cached(pmap_t pm)
894 {
895 #ifdef ARM_MMU_EXTENDED
896 if (pm == pmap_kernel())
897 return true;
898 #ifdef MULTIPROCESSOR
899 // Is this pmap active on any CPU?
900 if (!kcpuset_iszero(pm->pm_active))
901 return true;
902 #else
903 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
904 // Is this pmap active?
905 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
906 return true;
907 #endif
908 #else
909 struct cpu_info * const ci = curcpu();
910 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
911 || ci->ci_pmap_lastuser == pm)
912 return true;
913 #endif /* ARM_MMU_EXTENDED */
914
915 return false;
916 }
917
918 /*
919 * PTE_SYNC_CURRENT:
920 *
921 * Make sure the pte is written out to RAM.
922 * We need to do this for one of two cases:
923 * - We're dealing with the kernel pmap
924 * - There is no pmap active in the cache/tlb.
925 * - The specified pmap is 'active' in the cache/tlb.
926 */
927
928 #ifdef PMAP_INCLUDE_PTE_SYNC
929 static inline void
930 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
931 {
932 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
933 PTE_SYNC(ptep);
934 arm_dsb();
935 }
936
937 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
938 #else
939 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
940 #endif
941
942 /*
943 * main pv_entry manipulation functions:
944 * pmap_enter_pv: enter a mapping onto a vm_page list
945 * pmap_remove_pv: remove a mapping from a vm_page list
946 *
947 * NOTE: pmap_enter_pv expects to lock the pvh itself
948 * pmap_remove_pv expects the caller to lock the pvh before calling
949 */
950
951 /*
952 * pmap_enter_pv: enter a mapping onto a vm_page lst
953 *
954 * => caller should hold the proper lock on pmap_main_lock
955 * => caller should have pmap locked
956 * => we will gain the lock on the vm_page and allocate the new pv_entry
957 * => caller should adjust ptp's wire_count before calling
958 * => caller should not adjust pmap's wire_count
959 */
960 static void
961 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
962 vaddr_t va, u_int flags)
963 {
964 UVMHIST_FUNC(__func__);
965 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
966 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
967 UVMHIST_LOG(maphist, "...pv %#jx flags %#jx",
968 (uintptr_t)pv, flags, 0, 0);
969
970 struct pv_entry **pvp;
971
972 pv->pv_pmap = pm;
973 pv->pv_va = va;
974 pv->pv_flags = flags;
975
976 pvp = &SLIST_FIRST(&md->pvh_list);
977 #ifdef PMAP_CACHE_VIPT
978 /*
979 * Insert unmanaged entries, writeable first, at the head of
980 * the pv list.
981 */
982 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
983 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
984 pvp = &SLIST_NEXT(*pvp, pv_link);
985 }
986 if (!PV_IS_WRITE_P(flags)) {
987 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
988 pvp = &SLIST_NEXT(*pvp, pv_link);
989 }
990 #endif
991 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
992 *pvp = pv; /* ... locked list */
993 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
994 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
995 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
996 md->pvh_attrs |= PVF_KMOD;
997 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
998 md->pvh_attrs |= PVF_DIRTY;
999 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1000 #endif
1001 if (pm == pmap_kernel()) {
1002 PMAPCOUNT(kernel_mappings);
1003 if (flags & PVF_WRITE)
1004 md->krw_mappings++;
1005 else
1006 md->kro_mappings++;
1007 } else {
1008 if (flags & PVF_WRITE)
1009 md->urw_mappings++;
1010 else
1011 md->uro_mappings++;
1012 }
1013
1014 #ifdef PMAP_CACHE_VIPT
1015 #ifndef ARM_MMU_EXTENDED
1016 /*
1017 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1018 * do it here as well to keep the mappings & KVF_WRITE consistent.
1019 */
1020 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1021 md->pvh_attrs |= PVF_WRITE;
1022 }
1023 #endif
1024 /*
1025 * If this is an exec mapping and its the first exec mapping
1026 * for this page, make sure to sync the I-cache.
1027 */
1028 if (PV_IS_EXEC_P(flags)) {
1029 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1030 pmap_syncicache_page(md, pa);
1031 PMAPCOUNT(exec_synced_map);
1032 }
1033 PMAPCOUNT(exec_mappings);
1034 }
1035 #endif
1036
1037 PMAPCOUNT(mappings);
1038
1039 if (pv->pv_flags & PVF_WIRED)
1040 ++pm->pm_stats.wired_count;
1041 }
1042
1043 /*
1044 *
1045 * pmap_find_pv: Find a pv entry
1046 *
1047 * => caller should hold lock on vm_page
1048 */
1049 static inline struct pv_entry *
1050 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1051 {
1052 struct pv_entry *pv;
1053
1054 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1055 if (pm == pv->pv_pmap && va == pv->pv_va)
1056 break;
1057 }
1058
1059 return pv;
1060 }
1061
1062 /*
1063 * pmap_remove_pv: try to remove a mapping from a pv_list
1064 *
1065 * => caller should hold proper lock on pmap_main_lock
1066 * => pmap should be locked
1067 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1068 * => caller should adjust ptp's wire_count and free PTP if needed
1069 * => caller should NOT adjust pmap's wire_count
1070 * => we return the removed pv
1071 */
1072 static struct pv_entry *
1073 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1074 {
1075 UVMHIST_FUNC(__func__);
1076 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1077 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1078
1079 struct pv_entry *pv, **prevptr;
1080
1081 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1082 pv = *prevptr;
1083
1084 while (pv) {
1085 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1086 UVMHIST_LOG(maphist, "pm %#jx md %#jx flags %#jx",
1087 (uintptr_t)pm, (uintptr_t)md, pv->pv_flags, 0);
1088 if (pv->pv_flags & PVF_WIRED) {
1089 --pm->pm_stats.wired_count;
1090 }
1091 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1092 if (pm == pmap_kernel()) {
1093 PMAPCOUNT(kernel_unmappings);
1094 if (pv->pv_flags & PVF_WRITE)
1095 md->krw_mappings--;
1096 else
1097 md->kro_mappings--;
1098 } else {
1099 if (pv->pv_flags & PVF_WRITE)
1100 md->urw_mappings--;
1101 else
1102 md->uro_mappings--;
1103 }
1104
1105 PMAPCOUNT(unmappings);
1106 #ifdef PMAP_CACHE_VIPT
1107 /*
1108 * If this page has had an exec mapping, then if
1109 * this was the last mapping, discard the contents,
1110 * otherwise sync the i-cache for this page.
1111 */
1112 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1113 if (SLIST_EMPTY(&md->pvh_list)) {
1114 md->pvh_attrs &= ~PVF_EXEC;
1115 PMAPCOUNT(exec_discarded_unmap);
1116 } else if (pv->pv_flags & PVF_WRITE) {
1117 pmap_syncicache_page(md, pa);
1118 PMAPCOUNT(exec_synced_unmap);
1119 }
1120 }
1121 #endif /* PMAP_CACHE_VIPT */
1122 break;
1123 }
1124 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1125 pv = *prevptr; /* advance */
1126 }
1127
1128 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1129 /*
1130 * If we no longer have a WRITEABLE KENTRY at the head of list,
1131 * clear the KMOD attribute from the page.
1132 */
1133 if (SLIST_FIRST(&md->pvh_list) == NULL
1134 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1135 md->pvh_attrs &= ~PVF_KMOD;
1136
1137 /*
1138 * If this was a writeable page and there are no more writeable
1139 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1140 * the contents to memory.
1141 */
1142 if (arm_cache_prefer_mask != 0) {
1143 if (md->krw_mappings + md->urw_mappings == 0)
1144 md->pvh_attrs &= ~PVF_WRITE;
1145 PMAP_VALIDATE_MD_PAGE(md);
1146 }
1147 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1148 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1149
1150 /* return removed pv */
1151 return pv;
1152 }
1153
1154 /*
1155 *
1156 * pmap_modify_pv: Update pv flags
1157 *
1158 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1159 * => caller should NOT adjust pmap's wire_count
1160 * => caller must call pmap_vac_me_harder() if writable status of a page
1161 * may have changed.
1162 * => we return the old flags
1163 *
1164 * Modify a physical-virtual mapping in the pv table
1165 */
1166 static u_int
1167 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1168 u_int clr_mask, u_int set_mask)
1169 {
1170 struct pv_entry *npv;
1171 u_int flags, oflags;
1172 UVMHIST_FUNC(__func__);
1173 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1174 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1175 UVMHIST_LOG(maphist, "... clr %#jx set %#jx", clr_mask, set_mask, 0, 0);
1176
1177 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1178 KASSERT(!PV_IS_KENTRY_P(set_mask));
1179
1180 if ((npv = pmap_find_pv(md, pm, va)) == NULL) {
1181 UVMHIST_LOG(maphist, "<--- done (not found)", 0, 0, 0, 0);
1182 return 0;
1183 }
1184
1185 /*
1186 * There is at least one VA mapping this page.
1187 */
1188
1189 if (clr_mask & (PVF_REF | PVF_MOD)) {
1190 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1191 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1192 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1193 md->pvh_attrs |= PVF_DIRTY;
1194 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1195 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1196 }
1197
1198 oflags = npv->pv_flags;
1199 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1200
1201 if ((flags ^ oflags) & PVF_WIRED) {
1202 if (flags & PVF_WIRED)
1203 ++pm->pm_stats.wired_count;
1204 else
1205 --pm->pm_stats.wired_count;
1206 }
1207
1208 if ((flags ^ oflags) & PVF_WRITE) {
1209 if (pm == pmap_kernel()) {
1210 if (flags & PVF_WRITE) {
1211 md->krw_mappings++;
1212 md->kro_mappings--;
1213 } else {
1214 md->kro_mappings++;
1215 md->krw_mappings--;
1216 }
1217 } else {
1218 if (flags & PVF_WRITE) {
1219 md->urw_mappings++;
1220 md->uro_mappings--;
1221 } else {
1222 md->uro_mappings++;
1223 md->urw_mappings--;
1224 }
1225 }
1226 }
1227 #ifdef PMAP_CACHE_VIPT
1228 if (arm_cache_prefer_mask != 0) {
1229 if (md->urw_mappings + md->krw_mappings == 0) {
1230 md->pvh_attrs &= ~PVF_WRITE;
1231 } else {
1232 md->pvh_attrs |= PVF_WRITE;
1233 }
1234 }
1235 /*
1236 * We have two cases here: the first is from enter_pv (new exec
1237 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1238 * Since in latter, pmap_enter_pv won't do anything, we just have
1239 * to do what pmap_remove_pv would do.
1240 */
1241 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1242 || (PV_IS_EXEC_P(md->pvh_attrs)
1243 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1244 pmap_syncicache_page(md, pa);
1245 PMAPCOUNT(exec_synced_remap);
1246 }
1247 #ifndef ARM_MMU_EXTENDED
1248 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1249 #endif /* !ARM_MMU_EXTENDED */
1250 #endif /* PMAP_CACHE_VIPT */
1251
1252 PMAPCOUNT(remappings);
1253
1254 UVMHIST_LOG(maphist, "<--- done", 0, 0, 0, 0);
1255
1256 return oflags;
1257 }
1258
1259
1260 #if defined(ARM_MMU_EXTENDED)
1261 int
1262 pmap_maxproc_set(int nmaxproc)
1263 {
1264 static const char pmap_l1ttpool_warnmsg[] =
1265 "WARNING: l1ttpool limit reached; increase kern.maxproc";
1266
1267 pool_cache_prime(&pmap_l1tt_cache, nmaxproc);
1268
1269 /*
1270 * Set the hard limit on the pmap_l1tt_cache to the number
1271 * of processes the kernel is to support. Log the limit
1272 * reached message max once a minute.
1273 */
1274 pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
1275 pmap_l1ttpool_warnmsg, 60);
1276
1277 return 0;
1278 }
1279
1280 #endif
1281
1282 /*
1283 * Allocate an L1 translation table for the specified pmap.
1284 * This is called at pmap creation time.
1285 */
1286 static void
1287 pmap_alloc_l1(pmap_t pm)
1288 {
1289 #ifdef ARM_MMU_EXTENDED
1290 vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
1291 &pm->pm_l1_pa);
1292
1293 pm->pm_l1 = (pd_entry_t *)va;
1294 PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
1295 #else
1296 struct l1_ttable *l1;
1297 uint8_t domain;
1298
1299 /*
1300 * Remove the L1 at the head of the LRU list
1301 */
1302 mutex_spin_enter(&l1_lru_lock);
1303 l1 = TAILQ_FIRST(&l1_lru_list);
1304 KDASSERT(l1 != NULL);
1305 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1306
1307 /*
1308 * Pick the first available domain number, and update
1309 * the link to the next number.
1310 */
1311 domain = l1->l1_domain_first;
1312 l1->l1_domain_first = l1->l1_domain_free[domain];
1313
1314 /*
1315 * If there are still free domain numbers in this L1,
1316 * put it back on the TAIL of the LRU list.
1317 */
1318 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1319 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1320
1321 mutex_spin_exit(&l1_lru_lock);
1322
1323 /*
1324 * Fix up the relevant bits in the pmap structure
1325 */
1326 pm->pm_l1 = l1;
1327 pm->pm_domain = domain + 1;
1328 #endif
1329 }
1330
1331 /*
1332 * Free an L1 translation table.
1333 * This is called at pmap destruction time.
1334 */
1335 static void
1336 pmap_free_l1(pmap_t pm)
1337 {
1338 #ifdef ARM_MMU_EXTENDED
1339 pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
1340
1341 pm->pm_l1 = NULL;
1342 pm->pm_l1_pa = 0;
1343 #else
1344 struct l1_ttable *l1 = pm->pm_l1;
1345
1346 mutex_spin_enter(&l1_lru_lock);
1347
1348 /*
1349 * If this L1 is currently on the LRU list, remove it.
1350 */
1351 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1352 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1353
1354 /*
1355 * Free up the domain number which was allocated to the pmap
1356 */
1357 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1358 l1->l1_domain_first = pmap_domain(pm) - 1;
1359 l1->l1_domain_use_count--;
1360
1361 /*
1362 * The L1 now must have at least 1 free domain, so add
1363 * it back to the LRU list. If the use count is zero,
1364 * put it at the head of the list, otherwise it goes
1365 * to the tail.
1366 */
1367 if (l1->l1_domain_use_count == 0)
1368 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1369 else
1370 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1371
1372 mutex_spin_exit(&l1_lru_lock);
1373 #endif /* ARM_MMU_EXTENDED */
1374 }
1375
1376 #ifndef ARM_MMU_EXTENDED
1377 static inline void
1378 pmap_use_l1(pmap_t pm)
1379 {
1380 struct l1_ttable *l1;
1381
1382 /*
1383 * Do nothing if we're in interrupt context.
1384 * Access to an L1 by the kernel pmap must not affect
1385 * the LRU list.
1386 */
1387 if (cpu_intr_p() || pm == pmap_kernel())
1388 return;
1389
1390 l1 = pm->pm_l1;
1391
1392 /*
1393 * If the L1 is not currently on the LRU list, just return
1394 */
1395 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1396 return;
1397
1398 mutex_spin_enter(&l1_lru_lock);
1399
1400 /*
1401 * Check the use count again, now that we've acquired the lock
1402 */
1403 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1404 mutex_spin_exit(&l1_lru_lock);
1405 return;
1406 }
1407
1408 /*
1409 * Move the L1 to the back of the LRU list
1410 */
1411 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1412 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1413
1414 mutex_spin_exit(&l1_lru_lock);
1415 }
1416 #endif /* !ARM_MMU_EXTENDED */
1417
1418 /*
1419 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1420 *
1421 * Free an L2 descriptor table.
1422 */
1423 static inline void
1424 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1425 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1426 #else
1427 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1428 #endif
1429 {
1430 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1431 /*
1432 * Note: With a write-back cache, we may need to sync this
1433 * L2 table before re-using it.
1434 * This is because it may have belonged to a non-current
1435 * pmap, in which case the cache syncs would have been
1436 * skipped for the pages that were being unmapped. If the
1437 * L2 table were then to be immediately re-allocated to
1438 * the *current* pmap, it may well contain stale mappings
1439 * which have not yet been cleared by a cache write-back
1440 * and so would still be visible to the mmu.
1441 */
1442 if (need_sync)
1443 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1444 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1445 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1446 }
1447
1448 /*
1449 * Returns a pointer to the L2 bucket associated with the specified pmap
1450 * and VA, or NULL if no L2 bucket exists for the address.
1451 */
1452 static inline struct l2_bucket *
1453 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1454 {
1455 const size_t l1slot = l1pte_index(va);
1456 struct l2_dtable *l2;
1457 struct l2_bucket *l2b;
1458
1459 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1460 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1461 return NULL;
1462
1463 return l2b;
1464 }
1465
1466 /*
1467 * Returns a pointer to the L2 bucket associated with the specified pmap
1468 * and VA.
1469 *
1470 * If no L2 bucket exists, perform the necessary allocations to put an L2
1471 * bucket/page table in place.
1472 *
1473 * Note that if a new L2 bucket/page was allocated, the caller *must*
1474 * increment the bucket occupancy counter appropriately *before*
1475 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1476 * the bucket/page in the meantime.
1477 */
1478 static struct l2_bucket *
1479 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1480 {
1481 const size_t l1slot = l1pte_index(va);
1482 struct l2_dtable *l2;
1483
1484 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1485 /*
1486 * No mapping at this address, as there is
1487 * no entry in the L1 table.
1488 * Need to allocate a new l2_dtable.
1489 */
1490 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1491 return NULL;
1492
1493 /*
1494 * Link it into the parent pmap
1495 */
1496 pm->pm_l2[L2_IDX(l1slot)] = l2;
1497 }
1498
1499 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1500
1501 /*
1502 * Fetch pointer to the L2 page table associated with the address.
1503 */
1504 if (l2b->l2b_kva == NULL) {
1505 pt_entry_t *ptep;
1506
1507 /*
1508 * No L2 page table has been allocated. Chances are, this
1509 * is because we just allocated the l2_dtable, above.
1510 */
1511 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1512 /*
1513 * Oops, no more L2 page tables available at this
1514 * time. We may need to deallocate the l2_dtable
1515 * if we allocated a new one above.
1516 */
1517 if (l2->l2_occupancy == 0) {
1518 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1519 pmap_free_l2_dtable(l2);
1520 }
1521 return NULL;
1522 }
1523
1524 l2->l2_occupancy++;
1525 l2b->l2b_kva = ptep;
1526 l2b->l2b_l1slot = l1slot;
1527
1528 #ifdef ARM_MMU_EXTENDED
1529 /*
1530 * We know there will be a mapping here, so simply
1531 * enter this PTP into the L1 now.
1532 */
1533 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1534 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1535 | L1_C_DOM(pmap_domain(pm));
1536 KASSERT(*pdep == 0);
1537 l1pte_setone(pdep, npde);
1538 PDE_SYNC(pdep);
1539 #endif
1540 }
1541
1542 return l2b;
1543 }
1544
1545 /*
1546 * One or more mappings in the specified L2 descriptor table have just been
1547 * invalidated.
1548 *
1549 * Garbage collect the metadata and descriptor table itself if necessary.
1550 *
1551 * The pmap lock must be acquired when this is called (not necessary
1552 * for the kernel pmap).
1553 */
1554 static void
1555 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1556 {
1557 KDASSERT(count <= l2b->l2b_occupancy);
1558
1559 /*
1560 * Update the bucket's reference count according to how many
1561 * PTEs the caller has just invalidated.
1562 */
1563 l2b->l2b_occupancy -= count;
1564
1565 /*
1566 * Note:
1567 *
1568 * Level 2 page tables allocated to the kernel pmap are never freed
1569 * as that would require checking all Level 1 page tables and
1570 * removing any references to the Level 2 page table. See also the
1571 * comment elsewhere about never freeing bootstrap L2 descriptors.
1572 *
1573 * We make do with just invalidating the mapping in the L2 table.
1574 *
1575 * This isn't really a big deal in practice and, in fact, leads
1576 * to a performance win over time as we don't need to continually
1577 * alloc/free.
1578 */
1579 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1580 return;
1581
1582 /*
1583 * There are no more valid mappings in this level 2 page table.
1584 * Go ahead and NULL-out the pointer in the bucket, then
1585 * free the page table.
1586 */
1587 const size_t l1slot = l2b->l2b_l1slot;
1588 pt_entry_t * const ptep = l2b->l2b_kva;
1589 l2b->l2b_kva = NULL;
1590
1591 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1592 pd_entry_t pde __diagused = *pdep;
1593
1594 #ifdef ARM_MMU_EXTENDED
1595 /*
1596 * Invalidate the L1 slot.
1597 */
1598 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1599 #else
1600 /*
1601 * If the L1 slot matches the pmap's domain number, then invalidate it.
1602 */
1603 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1604 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1605 #endif
1606 l1pte_setone(pdep, 0);
1607 PDE_SYNC(pdep);
1608 #ifndef ARM_MMU_EXTENDED
1609 }
1610 #endif
1611
1612 /*
1613 * Release the L2 descriptor table back to the pool cache.
1614 */
1615 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1616 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1617 #else
1618 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1619 #endif
1620
1621 /*
1622 * Update the reference count in the associated l2_dtable
1623 */
1624 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1625 if (--l2->l2_occupancy > 0)
1626 return;
1627
1628 /*
1629 * There are no more valid mappings in any of the Level 1
1630 * slots managed by this l2_dtable. Go ahead and NULL-out
1631 * the pointer in the parent pmap and free the l2_dtable.
1632 */
1633 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1634 pmap_free_l2_dtable(l2);
1635 }
1636
1637 #if defined(ARM_MMU_EXTENDED)
1638 /*
1639 * Pool cache constructors for L1 translation tables
1640 */
1641
1642 static int
1643 pmap_l1tt_ctor(void *arg, void *v, int flags)
1644 {
1645 #ifndef PMAP_INCLUDE_PTE_SYNC
1646 #error not supported
1647 #endif
1648
1649 memset(v, 0, L1TT_SIZE);
1650 PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
1651 return 0;
1652 }
1653 #endif
1654
1655 /*
1656 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1657 * structures.
1658 */
1659 static int
1660 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1661 {
1662 #ifndef PMAP_INCLUDE_PTE_SYNC
1663 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1664
1665 /*
1666 * The mappings for these page tables were initially made using
1667 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1668 * mode will not be right for page table mappings. To avoid
1669 * polluting the pmap_kenter_pa() code with a special case for
1670 * page tables, we simply fix up the cache-mode here if it's not
1671 * correct.
1672 */
1673 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1674 const struct l2_bucket * const l2b =
1675 pmap_get_l2_bucket(pmap_kernel(), va);
1676 KASSERTMSG(l2b != NULL, "%#lx", va);
1677 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1678 const pt_entry_t opte = *ptep;
1679
1680 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1681 /*
1682 * Page tables must have the cache-mode set correctly.
1683 */
1684 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1685 | pte_l2_s_cache_mode_pt;
1686 l2pte_set(ptep, npte, opte);
1687 PTE_SYNC(ptep);
1688 cpu_tlb_flushD_SE(va);
1689 cpu_cpwait();
1690 }
1691 }
1692 #endif
1693
1694 memset(v, 0, L2_TABLE_SIZE_REAL);
1695 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1696 return 0;
1697 }
1698
1699 static int
1700 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1701 {
1702
1703 memset(v, 0, sizeof(struct l2_dtable));
1704 return 0;
1705 }
1706
1707 static int
1708 pmap_pmap_ctor(void *arg, void *v, int flags)
1709 {
1710
1711 memset(v, 0, sizeof(struct pmap));
1712 return 0;
1713 }
1714
1715 static void
1716 pmap_pinit(pmap_t pm)
1717 {
1718 #ifndef ARM_HAS_VBAR
1719 struct l2_bucket *l2b;
1720
1721 if (vector_page < KERNEL_BASE) {
1722 /*
1723 * Map the vector page.
1724 */
1725 pmap_enter(pm, vector_page, systempage.pv_pa,
1726 VM_PROT_READ | VM_PROT_EXECUTE,
1727 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1728 pmap_update(pm);
1729
1730 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1731 l2b = pmap_get_l2_bucket(pm, vector_page);
1732 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1733 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1734 L1_C_DOM(pmap_domain(pm));
1735 } else
1736 pm->pm_pl1vec = NULL;
1737 #endif
1738 }
1739
1740 #ifdef PMAP_CACHE_VIVT
1741 /*
1742 * Since we have a virtually indexed cache, we may need to inhibit caching if
1743 * there is more than one mapping and at least one of them is writable.
1744 * Since we purge the cache on every context switch, we only need to check for
1745 * other mappings within the same pmap, or kernel_pmap.
1746 * This function is also called when a page is unmapped, to possibly reenable
1747 * caching on any remaining mappings.
1748 *
1749 * The code implements the following logic, where:
1750 *
1751 * KW = # of kernel read/write pages
1752 * KR = # of kernel read only pages
1753 * UW = # of user read/write pages
1754 * UR = # of user read only pages
1755 *
1756 * KC = kernel mapping is cacheable
1757 * UC = user mapping is cacheable
1758 *
1759 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1760 * +---------------------------------------------
1761 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1762 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1763 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1764 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1765 */
1766
1767 static const int pmap_vac_flags[4][4] = {
1768 {-1, 0, 0, PVF_KNC},
1769 {0, 0, PVF_NC, PVF_NC},
1770 {0, PVF_NC, PVF_NC, PVF_NC},
1771 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1772 };
1773
1774 static inline int
1775 pmap_get_vac_flags(const struct vm_page_md *md)
1776 {
1777 int kidx, uidx;
1778
1779 kidx = 0;
1780 if (md->kro_mappings || md->krw_mappings > 1)
1781 kidx |= 1;
1782 if (md->krw_mappings)
1783 kidx |= 2;
1784
1785 uidx = 0;
1786 if (md->uro_mappings || md->urw_mappings > 1)
1787 uidx |= 1;
1788 if (md->urw_mappings)
1789 uidx |= 2;
1790
1791 return pmap_vac_flags[uidx][kidx];
1792 }
1793
1794 static inline void
1795 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1796 {
1797 int nattr;
1798
1799 nattr = pmap_get_vac_flags(md);
1800
1801 if (nattr < 0) {
1802 md->pvh_attrs &= ~PVF_NC;
1803 return;
1804 }
1805
1806 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1807 return;
1808
1809 if (pm == pmap_kernel())
1810 pmap_vac_me_kpmap(md, pa, pm, va);
1811 else
1812 pmap_vac_me_user(md, pa, pm, va);
1813
1814 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1815 }
1816
1817 static void
1818 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1819 {
1820 u_int u_cacheable, u_entries;
1821 struct pv_entry *pv;
1822 pmap_t last_pmap = pm;
1823
1824 /*
1825 * Pass one, see if there are both kernel and user pmaps for
1826 * this page. Calculate whether there are user-writable or
1827 * kernel-writable pages.
1828 */
1829 u_cacheable = 0;
1830 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1831 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1832 u_cacheable++;
1833 }
1834
1835 u_entries = md->urw_mappings + md->uro_mappings;
1836
1837 /*
1838 * We know we have just been updating a kernel entry, so if
1839 * all user pages are already cacheable, then there is nothing
1840 * further to do.
1841 */
1842 if (md->k_mappings == 0 && u_cacheable == u_entries)
1843 return;
1844
1845 if (u_entries) {
1846 /*
1847 * Scan over the list again, for each entry, if it
1848 * might not be set correctly, call pmap_vac_me_user
1849 * to recalculate the settings.
1850 */
1851 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1852 /*
1853 * We know kernel mappings will get set
1854 * correctly in other calls. We also know
1855 * that if the pmap is the same as last_pmap
1856 * then we've just handled this entry.
1857 */
1858 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1859 continue;
1860
1861 /*
1862 * If there are kernel entries and this page
1863 * is writable but non-cacheable, then we can
1864 * skip this entry also.
1865 */
1866 if (md->k_mappings &&
1867 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1868 (PVF_NC | PVF_WRITE))
1869 continue;
1870
1871 /*
1872 * Similarly if there are no kernel-writable
1873 * entries and the page is already
1874 * read-only/cacheable.
1875 */
1876 if (md->krw_mappings == 0 &&
1877 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1878 continue;
1879
1880 /*
1881 * For some of the remaining cases, we know
1882 * that we must recalculate, but for others we
1883 * can't tell if they are correct or not, so
1884 * we recalculate anyway.
1885 */
1886 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1887 }
1888
1889 if (md->k_mappings == 0)
1890 return;
1891 }
1892
1893 pmap_vac_me_user(md, pa, pm, va);
1894 }
1895
1896 static void
1897 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1898 {
1899 pmap_t kpmap = pmap_kernel();
1900 struct pv_entry *pv, *npv = NULL;
1901 u_int entries = 0;
1902 u_int writable = 0;
1903 u_int cacheable_entries = 0;
1904 u_int kern_cacheable = 0;
1905 u_int other_writable = 0;
1906
1907 /*
1908 * Count mappings and writable mappings in this pmap.
1909 * Include kernel mappings as part of our own.
1910 * Keep a pointer to the first one.
1911 */
1912 npv = NULL;
1913 KASSERT(pmap_page_locked_p(md));
1914 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1915 /* Count mappings in the same pmap */
1916 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1917 if (entries++ == 0)
1918 npv = pv;
1919
1920 /* Cacheable mappings */
1921 if ((pv->pv_flags & PVF_NC) == 0) {
1922 cacheable_entries++;
1923 if (kpmap == pv->pv_pmap)
1924 kern_cacheable++;
1925 }
1926
1927 /* Writable mappings */
1928 if (pv->pv_flags & PVF_WRITE)
1929 ++writable;
1930 } else if (pv->pv_flags & PVF_WRITE)
1931 other_writable = 1;
1932 }
1933
1934 /*
1935 * Enable or disable caching as necessary.
1936 * Note: the first entry might be part of the kernel pmap,
1937 * so we can't assume this is indicative of the state of the
1938 * other (maybe non-kpmap) entries.
1939 */
1940 if ((entries > 1 && writable) ||
1941 (entries > 0 && pm == kpmap && other_writable)) {
1942 if (cacheable_entries == 0) {
1943 return;
1944 }
1945
1946 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1947 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1948 (pv->pv_flags & PVF_NC))
1949 continue;
1950
1951 pv->pv_flags |= PVF_NC;
1952
1953 struct l2_bucket * const l2b
1954 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1955 KASSERTMSG(l2b != NULL, "%#lx", va);
1956 pt_entry_t * const ptep
1957 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1958 const pt_entry_t opte = *ptep;
1959 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1960
1961 if ((va != pv->pv_va || pm != pv->pv_pmap)
1962 && l2pte_valid_p(opte)) {
1963 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1964 true, pv->pv_flags);
1965 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1966 pv->pv_flags);
1967 }
1968
1969 l2pte_set(ptep, npte, opte);
1970 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1971 }
1972 cpu_cpwait();
1973 } else if (entries > cacheable_entries) {
1974 /*
1975 * Turn cacheing back on for some pages. If it is a kernel
1976 * page, only do so if there are no other writable pages.
1977 */
1978 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1979 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1980 (kpmap != pv->pv_pmap || other_writable)))
1981 continue;
1982
1983 pv->pv_flags &= ~PVF_NC;
1984
1985 struct l2_bucket * const l2b
1986 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1987 KASSERTMSG(l2b != NULL, "%#lx", va);
1988 pt_entry_t * const ptep
1989 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1990 const pt_entry_t opte = *ptep;
1991 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1992 | pte_l2_s_cache_mode;
1993
1994 if (l2pte_valid_p(opte)) {
1995 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1996 pv->pv_flags);
1997 }
1998
1999 l2pte_set(ptep, npte, opte);
2000 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2001 }
2002 }
2003 }
2004 #endif
2005
2006 #ifdef PMAP_CACHE_VIPT
2007 static void
2008 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2009 {
2010
2011 #ifndef ARM_MMU_EXTENDED
2012 struct pv_entry *pv;
2013 vaddr_t tst_mask;
2014 bool bad_alias;
2015 const u_int
2016 rw_mappings = md->urw_mappings + md->krw_mappings,
2017 ro_mappings = md->uro_mappings + md->kro_mappings;
2018
2019 /* do we need to do anything? */
2020 if (arm_cache_prefer_mask == 0)
2021 return;
2022
2023 UVMHIST_FUNC(__func__);
2024 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
2025 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
2026
2027 KASSERT(!va || pm);
2028 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2029
2030 /* Already a conflict? */
2031 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2032 /* just an add, things are already non-cached */
2033 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2034 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2035 bad_alias = false;
2036 if (va) {
2037 PMAPCOUNT(vac_color_none);
2038 bad_alias = true;
2039 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2040 goto fixup;
2041 }
2042 pv = SLIST_FIRST(&md->pvh_list);
2043 /* the list can't be empty because it would be cachable */
2044 if (md->pvh_attrs & PVF_KMPAGE) {
2045 tst_mask = md->pvh_attrs;
2046 } else {
2047 KASSERT(pv);
2048 tst_mask = pv->pv_va;
2049 pv = SLIST_NEXT(pv, pv_link);
2050 }
2051 /*
2052 * Only check for a bad alias if we have writable mappings.
2053 */
2054 tst_mask &= arm_cache_prefer_mask;
2055 if (rw_mappings > 0) {
2056 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2057 /* if there's a bad alias, stop checking. */
2058 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2059 bad_alias = true;
2060 }
2061 md->pvh_attrs |= PVF_WRITE;
2062 if (!bad_alias)
2063 md->pvh_attrs |= PVF_DIRTY;
2064 } else {
2065 /*
2066 * We have only read-only mappings. Let's see if there
2067 * are multiple colors in use or if we mapped a KMPAGE.
2068 * If the latter, we have a bad alias. If the former,
2069 * we need to remember that.
2070 */
2071 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2072 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2073 if (md->pvh_attrs & PVF_KMPAGE)
2074 bad_alias = true;
2075 break;
2076 }
2077 }
2078 md->pvh_attrs &= ~PVF_WRITE;
2079 /*
2080 * No KMPAGE and we exited early, so we must have
2081 * multiple color mappings.
2082 */
2083 if (!bad_alias && pv != NULL)
2084 md->pvh_attrs |= PVF_MULTCLR;
2085 }
2086
2087 /* If no conflicting colors, set everything back to cached */
2088 if (!bad_alias) {
2089 #ifdef DEBUG
2090 if ((md->pvh_attrs & PVF_WRITE)
2091 || ro_mappings < 2) {
2092 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2093 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2094 }
2095 #endif
2096 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2097 md->pvh_attrs |= tst_mask | PVF_COLORED;
2098 /*
2099 * Restore DIRTY bit if page is modified
2100 */
2101 if (md->pvh_attrs & PVF_DMOD)
2102 md->pvh_attrs |= PVF_DIRTY;
2103 PMAPCOUNT(vac_color_restore);
2104 } else {
2105 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2106 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2107 }
2108 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2109 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2110 } else if (!va) {
2111 KASSERT(pmap_is_page_colored_p(md));
2112 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2113 || (md->pvh_attrs & PVF_DIRTY));
2114 if (rw_mappings == 0) {
2115 md->pvh_attrs &= ~PVF_WRITE;
2116 if (ro_mappings == 1
2117 && (md->pvh_attrs & PVF_MULTCLR)) {
2118 /*
2119 * If this is the last readonly mapping
2120 * but it doesn't match the current color
2121 * for the page, change the current color
2122 * to match this last readonly mapping.
2123 */
2124 pv = SLIST_FIRST(&md->pvh_list);
2125 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2126 & arm_cache_prefer_mask;
2127 if (tst_mask) {
2128 md->pvh_attrs ^= tst_mask;
2129 PMAPCOUNT(vac_color_change);
2130 }
2131 }
2132 }
2133 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2134 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2135 return;
2136 } else if (!pmap_is_page_colored_p(md)) {
2137 /* not colored so we just use its color */
2138 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2139 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2140 PMAPCOUNT(vac_color_new);
2141 md->pvh_attrs &= PAGE_SIZE - 1;
2142 md->pvh_attrs |= PVF_COLORED
2143 | (va & arm_cache_prefer_mask)
2144 | (rw_mappings > 0 ? PVF_WRITE : 0);
2145 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2146 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2147 return;
2148 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2149 bad_alias = false;
2150 if (rw_mappings > 0) {
2151 /*
2152 * We now have writeable mappings and if we have
2153 * readonly mappings in more than once color, we have
2154 * an aliasing problem. Regardless mark the page as
2155 * writeable.
2156 */
2157 if (md->pvh_attrs & PVF_MULTCLR) {
2158 if (ro_mappings < 2) {
2159 /*
2160 * If we only have less than two
2161 * read-only mappings, just flush the
2162 * non-primary colors from the cache.
2163 */
2164 pmap_flush_page(md, pa,
2165 PMAP_FLUSH_SECONDARY);
2166 } else {
2167 bad_alias = true;
2168 }
2169 }
2170 md->pvh_attrs |= PVF_WRITE;
2171 }
2172 /* If no conflicting colors, set everything back to cached */
2173 if (!bad_alias) {
2174 #ifdef DEBUG
2175 if (rw_mappings > 0
2176 || (md->pvh_attrs & PMAP_KMPAGE)) {
2177 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2178 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2179 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2180 }
2181 #endif
2182 if (SLIST_EMPTY(&md->pvh_list))
2183 PMAPCOUNT(vac_color_reuse);
2184 else
2185 PMAPCOUNT(vac_color_ok);
2186
2187 /* matching color, just return */
2188 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2189 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2190 return;
2191 }
2192 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2193 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2194
2195 /* color conflict. evict from cache. */
2196
2197 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2198 md->pvh_attrs &= ~PVF_COLORED;
2199 md->pvh_attrs |= PVF_NC;
2200 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2201 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2202 PMAPCOUNT(vac_color_erase);
2203 } else if (rw_mappings == 0
2204 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2205 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2206
2207 /*
2208 * If the page has dirty cache lines, clean it.
2209 */
2210 if (md->pvh_attrs & PVF_DIRTY)
2211 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2212
2213 /*
2214 * If this is the first remapping (we know that there are no
2215 * writeable mappings), then this is a simple color change.
2216 * Otherwise this is a seconary r/o mapping, which means
2217 * we don't have to do anything.
2218 */
2219 if (ro_mappings == 1) {
2220 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2221 md->pvh_attrs &= PAGE_SIZE - 1;
2222 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2223 PMAPCOUNT(vac_color_change);
2224 } else {
2225 PMAPCOUNT(vac_color_blind);
2226 }
2227 md->pvh_attrs |= PVF_MULTCLR;
2228 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2229 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2230 return;
2231 } else {
2232 if (rw_mappings > 0)
2233 md->pvh_attrs |= PVF_WRITE;
2234
2235 /* color conflict. evict from cache. */
2236 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2237
2238 /* the list can't be empty because this was a enter/modify */
2239 pv = SLIST_FIRST(&md->pvh_list);
2240 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2241 KASSERT(pv);
2242 /*
2243 * If there's only one mapped page, change color to the
2244 * page's new color and return. Restore the DIRTY bit
2245 * that was erased by pmap_flush_page.
2246 */
2247 if (SLIST_NEXT(pv, pv_link) == NULL) {
2248 md->pvh_attrs &= PAGE_SIZE - 1;
2249 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2250 if (md->pvh_attrs & PVF_DMOD)
2251 md->pvh_attrs |= PVF_DIRTY;
2252 PMAPCOUNT(vac_color_change);
2253 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2254 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2255 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2256 return;
2257 }
2258 }
2259 bad_alias = true;
2260 md->pvh_attrs &= ~PVF_COLORED;
2261 md->pvh_attrs |= PVF_NC;
2262 PMAPCOUNT(vac_color_erase);
2263 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2264 }
2265
2266 fixup:
2267 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2268
2269 /*
2270 * Turn cacheing on/off for all pages.
2271 */
2272 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2273 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2274 pv->pv_va);
2275 KASSERTMSG(l2b != NULL, "%#lx", va);
2276 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2277 const pt_entry_t opte = *ptep;
2278 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2279 if (bad_alias) {
2280 pv->pv_flags |= PVF_NC;
2281 } else {
2282 pv->pv_flags &= ~PVF_NC;
2283 npte |= pte_l2_s_cache_mode;
2284 }
2285
2286 if (opte == npte) /* only update is there's a change */
2287 continue;
2288
2289 if (l2pte_valid_p(opte)) {
2290 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2291 }
2292
2293 l2pte_set(ptep, npte, opte);
2294 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2295 }
2296 #endif /* !ARM_MMU_EXTENDED */
2297 }
2298 #endif /* PMAP_CACHE_VIPT */
2299
2300
2301 /*
2302 * Modify pte bits for all ptes corresponding to the given physical address.
2303 * We use `maskbits' rather than `clearbits' because we're always passing
2304 * constants and the latter would require an extra inversion at run-time.
2305 */
2306 static void
2307 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2308 {
2309 struct pv_entry *pv;
2310 #ifdef PMAP_CACHE_VIPT
2311 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2312 bool need_syncicache = false;
2313 #ifdef ARM_MMU_EXTENDED
2314 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2315 #else
2316 const u_int execbits = 0;
2317 bool need_vac_me_harder = false;
2318 #endif
2319 #else
2320 const u_int execbits = 0;
2321 #endif
2322
2323 UVMHIST_FUNC(__func__);
2324 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx maskbits %#jx",
2325 (uintptr_t)md, pa, maskbits, 0);
2326
2327 #ifdef PMAP_CACHE_VIPT
2328 /*
2329 * If we might want to sync the I-cache and we've modified it,
2330 * then we know we definitely need to sync or discard it.
2331 */
2332 if (want_syncicache) {
2333 if (md->pvh_attrs & PVF_MOD) {
2334 need_syncicache = true;
2335 }
2336 }
2337 #endif
2338 KASSERT(pmap_page_locked_p(md));
2339
2340 /*
2341 * Clear saved attributes (modify, reference)
2342 */
2343 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2344
2345 if (SLIST_EMPTY(&md->pvh_list)) {
2346 #if defined(PMAP_CACHE_VIPT)
2347 if (need_syncicache) {
2348 /*
2349 * No one has it mapped, so just discard it. The next
2350 * exec remapping will cause it to be synced.
2351 */
2352 md->pvh_attrs &= ~PVF_EXEC;
2353 PMAPCOUNT(exec_discarded_clearbit);
2354 }
2355 #endif
2356 return;
2357 }
2358
2359 /*
2360 * Loop over all current mappings setting/clearing as appropos
2361 */
2362 for (pv = SLIST_FIRST(&md->pvh_list); pv != NULL;) {
2363 pmap_t pm = pv->pv_pmap;
2364 const vaddr_t va = pv->pv_va;
2365 const u_int oflags = pv->pv_flags;
2366 #ifndef ARM_MMU_EXTENDED
2367 /*
2368 * Kernel entries are unmanaged and as such not to be changed.
2369 */
2370 if (PV_IS_KENTRY_P(oflags)) {
2371 pv = SLIST_NEXT(pv, pv_link);
2372 continue;
2373 }
2374 #endif
2375
2376 /*
2377 * Try to get a hold on the pmap's lock. We must do this
2378 * while still holding the page locked, to know that the
2379 * page is still associated with the pmap and the mapping is
2380 * in place. If a hold can't be had, unlock and wait for
2381 * the pmap's lock to become available and retry. The pmap
2382 * must be ref'd over this dance to stop it disappearing
2383 * behind us.
2384 */
2385 if (!mutex_tryenter(&pm->pm_lock)) {
2386 pmap_reference(pm);
2387 pmap_release_page_lock(md);
2388 pmap_acquire_pmap_lock(pm);
2389 /* nothing, just wait for it */
2390 pmap_release_pmap_lock(pm);
2391 pmap_destroy(pm);
2392 /* Restart from the beginning. */
2393 pmap_acquire_page_lock(md);
2394 pv = SLIST_FIRST(&md->pvh_list);
2395 continue;
2396 }
2397 pv->pv_flags &= ~maskbits;
2398
2399 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2400 KASSERTMSG(l2b != NULL, "%#lx", va);
2401
2402 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2403 const pt_entry_t opte = *ptep;
2404 pt_entry_t npte = opte | execbits;
2405
2406 #ifdef ARM_MMU_EXTENDED
2407 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2408 #endif
2409
2410 UVMHIST_LOG(maphist, "pv %#jx pm %#jx va %#jx flag %#jx",
2411 (uintptr_t)pv, (uintptr_t)pm, va, oflags);
2412
2413 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2414 #ifdef PMAP_CACHE_VIVT
2415 if ((oflags & PVF_NC)) {
2416 /*
2417 * Entry is not cacheable:
2418 *
2419 * Don't turn caching on again if this is a
2420 * modified emulation. This would be
2421 * inconsitent with the settings created by
2422 * pmap_vac_me_harder(). Otherwise, it's safe
2423 * to re-enable cacheing.
2424 *
2425 * There's no need to call pmap_vac_me_harder()
2426 * here: all pages are losing their write
2427 * permission.
2428 */
2429 if (maskbits & PVF_WRITE) {
2430 npte |= pte_l2_s_cache_mode;
2431 pv->pv_flags &= ~PVF_NC;
2432 }
2433 } else if (l2pte_writable_p(opte)) {
2434 /*
2435 * Entry is writable/cacheable: check if pmap
2436 * is current if it is flush it, otherwise it
2437 * won't be in the cache
2438 */
2439 pmap_cache_wbinv_page(pm, va,
2440 (maskbits & PVF_REF) != 0,
2441 oflags|PVF_WRITE);
2442 }
2443 #endif
2444
2445 /* make the pte read only */
2446 npte = l2pte_set_readonly(npte);
2447
2448 if ((maskbits & oflags & PVF_WRITE)) {
2449 /*
2450 * Keep alias accounting up to date
2451 */
2452 if (pm == pmap_kernel()) {
2453 md->krw_mappings--;
2454 md->kro_mappings++;
2455 } else {
2456 md->urw_mappings--;
2457 md->uro_mappings++;
2458 }
2459 #ifdef PMAP_CACHE_VIPT
2460 if (arm_cache_prefer_mask != 0) {
2461 if (md->urw_mappings + md->krw_mappings == 0) {
2462 md->pvh_attrs &= ~PVF_WRITE;
2463 } else {
2464 PMAP_VALIDATE_MD_PAGE(md);
2465 }
2466 }
2467 if (want_syncicache)
2468 need_syncicache = true;
2469 #ifndef ARM_MMU_EXTENDED
2470 need_vac_me_harder = true;
2471 #endif
2472 #endif /* PMAP_CACHE_VIPT */
2473 }
2474 }
2475
2476 if (maskbits & PVF_REF) {
2477 if (true
2478 #ifndef ARM_MMU_EXTENDED
2479 && (oflags & PVF_NC) == 0
2480 #endif
2481 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2482 && l2pte_valid_p(npte)) {
2483 #ifdef PMAP_CACHE_VIVT
2484 /*
2485 * Check npte here; we may have already
2486 * done the wbinv above, and the validity
2487 * of the PTE is the same for opte and
2488 * npte.
2489 */
2490 pmap_cache_wbinv_page(pm, va, true, oflags);
2491 #endif
2492 }
2493
2494 /*
2495 * Make the PTE invalid so that we will take a
2496 * page fault the next time the mapping is
2497 * referenced.
2498 */
2499 npte &= ~L2_TYPE_MASK;
2500 npte |= L2_TYPE_INV;
2501 }
2502
2503 if (npte != opte) {
2504 l2pte_reset(ptep);
2505 PTE_SYNC(ptep);
2506
2507 /* Flush the TLB entry if a current pmap. */
2508 pmap_tlb_flush_SE(pm, va, oflags);
2509
2510 l2pte_set(ptep, npte, 0);
2511 PTE_SYNC(ptep);
2512 }
2513
2514 pmap_release_pmap_lock(pm);
2515
2516 UVMHIST_LOG(maphist, "pm %#jx va %#jx opte %#jx npte %#jx",
2517 (uintptr_t)pm, va, opte, npte);
2518
2519 /* Move to next entry. */
2520 pv = SLIST_NEXT(pv, pv_link);
2521 }
2522
2523 #if defined(PMAP_CACHE_VIPT)
2524 /*
2525 * If we need to sync the I-cache and we haven't done it yet, do it.
2526 */
2527 if (need_syncicache) {
2528 pmap_syncicache_page(md, pa);
2529 PMAPCOUNT(exec_synced_clearbit);
2530 }
2531 #ifndef ARM_MMU_EXTENDED
2532 /*
2533 * If we are changing this to read-only, we need to call vac_me_harder
2534 * so we can change all the read-only pages to cacheable. We pretend
2535 * this as a page deletion.
2536 */
2537 if (need_vac_me_harder) {
2538 if (md->pvh_attrs & PVF_NC)
2539 pmap_vac_me_harder(md, pa, NULL, 0);
2540 }
2541 #endif /* !ARM_MMU_EXTENDED */
2542 #endif /* PMAP_CACHE_VIPT */
2543 }
2544
2545 /*
2546 * pmap_clean_page()
2547 *
2548 * This is a local function used to work out the best strategy to clean
2549 * a single page referenced by its entry in the PV table. It's used by
2550 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2551 *
2552 * Its policy is effectively:
2553 * o If there are no mappings, we don't bother doing anything with the cache.
2554 * o If there is one mapping, we clean just that page.
2555 * o If there are multiple mappings, we clean the entire cache.
2556 *
2557 * So that some functions can be further optimised, it returns 0 if it didn't
2558 * clean the entire cache, or 1 if it did.
2559 *
2560 * XXX One bug in this routine is that if the pv_entry has a single page
2561 * mapped at 0x00000000 a whole cache clean will be performed rather than
2562 * just the 1 page. Since this should not occur in everyday use and if it does
2563 * it will just result in not the most efficient clean for the page.
2564 */
2565 #ifdef PMAP_CACHE_VIVT
2566 static bool
2567 pmap_clean_page(struct vm_page_md *md, bool is_src)
2568 {
2569 struct pv_entry *pv;
2570 pmap_t pm_to_clean = NULL;
2571 bool cache_needs_cleaning = false;
2572 vaddr_t page_to_clean = 0;
2573 u_int flags = 0;
2574
2575 /*
2576 * Since we flush the cache each time we change to a different
2577 * user vmspace, we only need to flush the page if it is in the
2578 * current pmap.
2579 */
2580 KASSERT(pmap_page_locked_p(md));
2581 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2582 if (pmap_is_current(pv->pv_pmap)) {
2583 flags |= pv->pv_flags;
2584 /*
2585 * The page is mapped non-cacheable in
2586 * this map. No need to flush the cache.
2587 */
2588 if (pv->pv_flags & PVF_NC) {
2589 #ifdef DIAGNOSTIC
2590 KASSERT(!cache_needs_cleaning);
2591 #endif
2592 break;
2593 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2594 continue;
2595 if (cache_needs_cleaning) {
2596 page_to_clean = 0;
2597 break;
2598 } else {
2599 page_to_clean = pv->pv_va;
2600 pm_to_clean = pv->pv_pmap;
2601 }
2602 cache_needs_cleaning = true;
2603 }
2604 }
2605
2606 if (page_to_clean) {
2607 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2608 !is_src, flags | PVF_REF);
2609 } else if (cache_needs_cleaning) {
2610 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2611
2612 pmap_cache_wbinv_all(pm, flags);
2613 return true;
2614 }
2615 return false;
2616 }
2617 #endif
2618
2619 #ifdef PMAP_CACHE_VIPT
2620 /*
2621 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2622 * right cache alias to make sure we flush the right stuff.
2623 */
2624 void
2625 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2626 {
2627 pmap_t kpm = pmap_kernel();
2628 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2629 ? PAGE_SIZE
2630 : arm_pcache.icache_way_size;
2631
2632 UVMHIST_FUNC(__func__);
2633 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx (attrs=%#jx)",
2634 (uintptr_t)md, pa, md->pvh_attrs, 0);
2635
2636 /*
2637 * No need to clean the page if it's non-cached.
2638 */
2639 #ifndef ARM_MMU_EXTENDED
2640 if (md->pvh_attrs & PVF_NC)
2641 return;
2642 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2643 #endif
2644
2645 pt_entry_t * const ptep = cpu_cdst_pte(0);
2646 const vaddr_t dstp = cpu_cdstp(0);
2647 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2648 if (way_size <= PAGE_SIZE) {
2649 bool ok = false;
2650 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2651 if (ok) {
2652 cpu_icache_sync_range(vdstp, way_size);
2653 return;
2654 }
2655 }
2656 #endif
2657
2658 /*
2659 * We don't worry about the color of the exec page, we map the
2660 * same page to pages in the way and then do the icache_sync on
2661 * the entire way making sure we are cleaned.
2662 */
2663 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2664 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2665
2666 for (size_t i = 0, j = 0; i < way_size;
2667 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2668 l2pte_reset(ptep + j);
2669 PTE_SYNC(ptep + j);
2670
2671 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2672 /*
2673 * Set up a PTE with to flush these cache lines.
2674 */
2675 l2pte_set(ptep + j, npte, 0);
2676 }
2677 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2678
2679 /*
2680 * Flush it.
2681 */
2682 cpu_icache_sync_range(dstp, way_size);
2683
2684 for (size_t i = 0, j = 0; i < way_size;
2685 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2686 /*
2687 * Unmap the page(s).
2688 */
2689 l2pte_reset(ptep + j);
2690 PTE_SYNC(ptep + j);
2691
2692 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2693 }
2694
2695 md->pvh_attrs |= PVF_EXEC;
2696 PMAPCOUNT(exec_synced);
2697 }
2698
2699 #ifndef ARM_MMU_EXTENDED
2700 void
2701 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2702 {
2703 vsize_t va_offset, end_va;
2704 bool wbinv_p;
2705
2706 if (arm_cache_prefer_mask == 0)
2707 return;
2708
2709 UVMHIST_FUNC(__func__);
2710 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx op %#jx",
2711 (uintptr_t)md, pa, op, 0);
2712
2713 switch (flush) {
2714 case PMAP_FLUSH_PRIMARY:
2715 if (md->pvh_attrs & PVF_MULTCLR) {
2716 va_offset = 0;
2717 end_va = arm_cache_prefer_mask;
2718 md->pvh_attrs &= ~PVF_MULTCLR;
2719 PMAPCOUNT(vac_flush_lots);
2720 } else {
2721 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2722 end_va = va_offset;
2723 PMAPCOUNT(vac_flush_one);
2724 }
2725 /*
2726 * Mark that the page is no longer dirty.
2727 */
2728 md->pvh_attrs &= ~PVF_DIRTY;
2729 wbinv_p = true;
2730 break;
2731 case PMAP_FLUSH_SECONDARY:
2732 va_offset = 0;
2733 end_va = arm_cache_prefer_mask;
2734 wbinv_p = true;
2735 md->pvh_attrs &= ~PVF_MULTCLR;
2736 PMAPCOUNT(vac_flush_lots);
2737 break;
2738 case PMAP_CLEAN_PRIMARY:
2739 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2740 end_va = va_offset;
2741 wbinv_p = false;
2742 /*
2743 * Mark that the page is no longer dirty.
2744 */
2745 if ((md->pvh_attrs & PVF_DMOD) == 0)
2746 md->pvh_attrs &= ~PVF_DIRTY;
2747 PMAPCOUNT(vac_clean_one);
2748 break;
2749 default:
2750 return;
2751 }
2752
2753 KASSERT(!(md->pvh_attrs & PVF_NC));
2754
2755 UVMHIST_LOG(maphist, "md %#jx (attrs=%#jx)", (uintptr_t)md,
2756 md->pvh_attrs, 0, 0);
2757
2758 const size_t scache_line_size = arm_scache.dcache_line_size;
2759
2760 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2761 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2762 const vaddr_t dstp = cpu_cdstp(va_offset);
2763 const pt_entry_t opte = *ptep;
2764
2765 if (flush == PMAP_FLUSH_SECONDARY
2766 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2767 continue;
2768
2769 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2770 /*
2771 * Set up a PTE with the right coloring to flush
2772 * existing cache entries.
2773 */
2774 const pt_entry_t npte = L2_S_PROTO
2775 | pa
2776 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2777 | pte_l2_s_cache_mode;
2778 l2pte_set(ptep, npte, opte);
2779 PTE_SYNC(ptep);
2780
2781 /*
2782 * Flush it. Make sure to flush secondary cache too since
2783 * bus_dma will ignore uncached pages.
2784 */
2785 if (scache_line_size != 0) {
2786 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2787 if (wbinv_p) {
2788 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2789 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2790 } else {
2791 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2792 }
2793 } else {
2794 if (wbinv_p) {
2795 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2796 } else {
2797 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2798 }
2799 }
2800
2801 /*
2802 * Restore the page table entry since we might have interrupted
2803 * pmap_zero_page or pmap_copy_page which was already using
2804 * this pte.
2805 */
2806 if (opte) {
2807 l2pte_set(ptep, opte, npte);
2808 } else {
2809 l2pte_reset(ptep);
2810 }
2811 PTE_SYNC(ptep);
2812 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2813 }
2814 }
2815 #endif /* ARM_MMU_EXTENDED */
2816 #endif /* PMAP_CACHE_VIPT */
2817
2818 /*
2819 * Routine: pmap_page_remove
2820 * Function:
2821 * Removes this physical page from
2822 * all physical maps in which it resides.
2823 * Reflects back modify bits to the pager.
2824 */
2825 static void
2826 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2827 {
2828 struct l2_bucket *l2b;
2829 struct pv_entry *pv;
2830 pt_entry_t *ptep;
2831 #ifndef ARM_MMU_EXTENDED
2832 bool flush = false;
2833 #endif
2834 u_int flags = 0;
2835
2836 UVMHIST_FUNC(__func__);
2837 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx", (uintptr_t)md, pa, 0, 0);
2838
2839 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2840 pmap_acquire_page_lock(md);
2841 if (*pvp == NULL) {
2842 #ifdef PMAP_CACHE_VIPT
2843 /*
2844 * We *know* the page contents are about to be replaced.
2845 * Discard the exec contents
2846 */
2847 if (PV_IS_EXEC_P(md->pvh_attrs))
2848 PMAPCOUNT(exec_discarded_page_protect);
2849 md->pvh_attrs &= ~PVF_EXEC;
2850 PMAP_VALIDATE_MD_PAGE(md);
2851 #endif
2852 pmap_release_page_lock(md);
2853 return;
2854 }
2855 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2856 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2857 #endif
2858
2859 /*
2860 * Clear alias counts
2861 */
2862 #ifdef PMAP_CACHE_VIVT
2863 md->k_mappings = 0;
2864 #endif
2865 md->urw_mappings = md->uro_mappings = 0;
2866
2867 #ifdef PMAP_CACHE_VIVT
2868 pmap_clean_page(md, false);
2869 #endif
2870
2871 for (pv = *pvp; pv != NULL;) {
2872 pmap_t pm = pv->pv_pmap;
2873 #ifndef ARM_MMU_EXTENDED
2874 if (flush == false && pmap_is_current(pm))
2875 flush = true;
2876 #endif
2877
2878 #ifdef PMAP_CACHE_VIPT
2879 if (pm == pmap_kernel() && PV_IS_KENTRY_P(pv->pv_flags)) {
2880 /* If this was unmanaged mapping, it must be ignored. */
2881 pvp = &SLIST_NEXT(pv, pv_link);
2882 pv = *pvp;
2883 continue;
2884 }
2885 #endif
2886
2887 /*
2888 * Try to get a hold on the pmap's lock. We must do this
2889 * while still holding the page locked, to know that the
2890 * page is still associated with the pmap and the mapping is
2891 * in place. If a hold can't be had, unlock and wait for
2892 * the pmap's lock to become available and retry. The pmap
2893 * must be ref'd over this dance to stop it disappearing
2894 * behind us.
2895 */
2896 if (!mutex_tryenter(&pm->pm_lock)) {
2897 pmap_reference(pm);
2898 pmap_release_page_lock(md);
2899 pmap_acquire_pmap_lock(pm);
2900 /* nothing, just wait for it */
2901 pmap_release_pmap_lock(pm);
2902 pmap_destroy(pm);
2903 /* Restart from the beginning. */
2904 pmap_acquire_page_lock(md);
2905 pvp = &SLIST_FIRST(&md->pvh_list);
2906 pv = *pvp;
2907 continue;
2908 }
2909
2910 if (pm == pmap_kernel()) {
2911 #ifdef PMAP_CACHE_VIPT
2912 if (pv->pv_flags & PVF_WRITE)
2913 md->krw_mappings--;
2914 else
2915 md->kro_mappings--;
2916 #endif
2917 PMAPCOUNT(kernel_unmappings);
2918 }
2919 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2920 PMAPCOUNT(unmappings);
2921
2922 pmap_release_page_lock(md);
2923
2924 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2925 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2926
2927 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2928
2929 /*
2930 * Update statistics
2931 */
2932 --pm->pm_stats.resident_count;
2933
2934 /* Wired bit */
2935 if (pv->pv_flags & PVF_WIRED)
2936 --pm->pm_stats.wired_count;
2937
2938 flags |= pv->pv_flags;
2939
2940 /*
2941 * Invalidate the PTEs.
2942 */
2943 l2pte_reset(ptep);
2944 PTE_SYNC_CURRENT(pm, ptep);
2945
2946 #ifdef ARM_MMU_EXTENDED
2947 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2948 #endif
2949
2950 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2951
2952 pmap_release_pmap_lock(pm);
2953
2954 pool_put(&pmap_pv_pool, pv);
2955 pmap_acquire_page_lock(md);
2956
2957 /*
2958 * Restart at the beginning of the list.
2959 */
2960 pvp = &SLIST_FIRST(&md->pvh_list);
2961 pv = *pvp;
2962 }
2963 /*
2964 * if we reach the end of the list and there are still mappings, they
2965 * might be able to be cached now. And they must be kernel mappings.
2966 */
2967 if (!SLIST_EMPTY(&md->pvh_list)) {
2968 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2969 }
2970
2971 #ifdef PMAP_CACHE_VIPT
2972 /*
2973 * Its EXEC cache is now gone.
2974 */
2975 if (PV_IS_EXEC_P(md->pvh_attrs))
2976 PMAPCOUNT(exec_discarded_page_protect);
2977 md->pvh_attrs &= ~PVF_EXEC;
2978 KASSERT(md->urw_mappings == 0);
2979 KASSERT(md->uro_mappings == 0);
2980 #ifndef ARM_MMU_EXTENDED
2981 if (arm_cache_prefer_mask != 0) {
2982 if (md->krw_mappings == 0)
2983 md->pvh_attrs &= ~PVF_WRITE;
2984 PMAP_VALIDATE_MD_PAGE(md);
2985 }
2986 #endif /* ARM_MMU_EXTENDED */
2987 #endif /* PMAP_CACHE_VIPT */
2988 pmap_release_page_lock(md);
2989
2990 #ifndef ARM_MMU_EXTENDED
2991 if (flush) {
2992 /*
2993 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2994 * would need a subsequent call to pmap_update() to ensure
2995 * curpm->pm_cstate.cs_all is reset. Our callers are not
2996 * required to do that (see pmap(9)), so we can't modify
2997 * the current pmap's state.
2998 */
2999 if (PV_BEEN_EXECD(flags))
3000 cpu_tlb_flushID();
3001 else
3002 cpu_tlb_flushD();
3003 }
3004 cpu_cpwait();
3005 #endif /* ARM_MMU_EXTENDED */
3006 }
3007
3008 /*
3009 * pmap_t pmap_create(void)
3010 *
3011 * Create a new pmap structure from scratch.
3012 */
3013 pmap_t
3014 pmap_create(void)
3015 {
3016 pmap_t pm;
3017
3018 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3019
3020 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
3021
3022 pm->pm_refs = 1;
3023 pm->pm_stats.wired_count = 0;
3024 pm->pm_stats.resident_count = 1;
3025 #ifdef ARM_MMU_EXTENDED
3026 #ifdef MULTIPROCESSOR
3027 kcpuset_create(&pm->pm_active, true);
3028 kcpuset_create(&pm->pm_onproc, true);
3029 #endif
3030 #else
3031 pm->pm_cstate.cs_all = 0;
3032 #endif
3033 pmap_alloc_l1(pm);
3034
3035 /*
3036 * Note: The pool cache ensures that the pm_l2[] array is already
3037 * initialised to zero.
3038 */
3039
3040 pmap_pinit(pm);
3041
3042 return pm;
3043 }
3044
3045 u_int
3046 arm32_mmap_flags(paddr_t pa)
3047 {
3048 /*
3049 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3050 * and we're using the upper bits in page numbers to pass flags around
3051 * so we might as well use the same bits
3052 */
3053 return (u_int)pa & PMAP_MD_MASK;
3054 }
3055 /*
3056 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3057 * u_int flags)
3058 *
3059 * Insert the given physical page (p) at
3060 * the specified virtual address (v) in the
3061 * target physical map with the protection requested.
3062 *
3063 * NB: This is the only routine which MAY NOT lazy-evaluate
3064 * or lose information. That is, this routine must actually
3065 * insert this page into the given map NOW.
3066 */
3067 int
3068 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3069 {
3070 struct l2_bucket *l2b;
3071 struct vm_page *pg, *opg;
3072 u_int nflags;
3073 u_int oflags;
3074 const bool kpm_p = (pm == pmap_kernel());
3075 #ifdef ARM_HAS_VBAR
3076 const bool vector_page_p = false;
3077 #else
3078 const bool vector_page_p = (va == vector_page);
3079 #endif
3080 struct pmap_page *pp = pmap_pv_tracked(pa);
3081 struct pv_entry *new_pv = NULL;
3082 struct pv_entry *old_pv = NULL;
3083 int error = 0;
3084
3085 UVMHIST_FUNC(__func__);
3086 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx pa %#jx prot %#jx",
3087 (uintptr_t)pm, va, pa, prot);
3088 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0);
3089
3090 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3091 KDASSERT(((va | pa) & PGOFSET) == 0);
3092
3093 /*
3094 * Get a pointer to the page. Later on in this function, we
3095 * test for a managed page by checking pg != NULL.
3096 */
3097 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3098 /*
3099 * if we may need a new pv entry allocate if now, as we can't do it
3100 * with the kernel_pmap locked
3101 */
3102 if (pg || pp)
3103 new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3104
3105 nflags = 0;
3106 if (prot & VM_PROT_WRITE)
3107 nflags |= PVF_WRITE;
3108 if (prot & VM_PROT_EXECUTE)
3109 nflags |= PVF_EXEC;
3110 if (flags & PMAP_WIRED)
3111 nflags |= PVF_WIRED;
3112
3113 pmap_acquire_pmap_lock(pm);
3114
3115 /*
3116 * Fetch the L2 bucket which maps this page, allocating one if
3117 * necessary for user pmaps.
3118 */
3119 if (kpm_p) {
3120 l2b = pmap_get_l2_bucket(pm, va);
3121 } else {
3122 l2b = pmap_alloc_l2_bucket(pm, va);
3123 }
3124 if (l2b == NULL) {
3125 if (flags & PMAP_CANFAIL) {
3126 pmap_release_pmap_lock(pm);
3127 error = ENOMEM;
3128 goto free_pv;
3129 }
3130 panic("pmap_enter: failed to allocate L2 bucket");
3131 }
3132 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3133 const pt_entry_t opte = *ptep;
3134 pt_entry_t npte = pa;
3135 oflags = 0;
3136
3137 if (opte) {
3138 /*
3139 * There is already a mapping at this address.
3140 * If the physical address is different, lookup the
3141 * vm_page.
3142 */
3143 if (l2pte_pa(opte) != pa) {
3144 KASSERT(!pmap_pv_tracked(pa));
3145 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3146 } else
3147 opg = pg;
3148 } else
3149 opg = NULL;
3150
3151 if (pg || pp) {
3152 KASSERT((pg != NULL) != (pp != NULL));
3153 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3154 PMAP_PAGE_TO_MD(pp);
3155
3156 /*
3157 * This is to be a managed mapping.
3158 */
3159 pmap_acquire_page_lock(md);
3160 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3161 /*
3162 * - The access type indicates that we don't need
3163 * to do referenced emulation.
3164 * OR
3165 * - The physical page has already been referenced
3166 * so no need to re-do referenced emulation here.
3167 */
3168 npte |= l2pte_set_readonly(L2_S_PROTO);
3169
3170 nflags |= PVF_REF;
3171
3172 if ((prot & VM_PROT_WRITE) != 0 &&
3173 ((flags & VM_PROT_WRITE) != 0 ||
3174 (md->pvh_attrs & PVF_MOD) != 0)) {
3175 /*
3176 * This is a writable mapping, and the
3177 * page's mod state indicates it has
3178 * already been modified. Make it
3179 * writable from the outset.
3180 */
3181 npte = l2pte_set_writable(npte);
3182 nflags |= PVF_MOD;
3183 }
3184
3185 #ifdef ARM_MMU_EXTENDED
3186 /*
3187 * If the page has been cleaned, then the pvh_attrs
3188 * will have PVF_EXEC set, so mark it execute so we
3189 * don't get an access fault when trying to execute
3190 * from it.
3191 */
3192 if (md->pvh_attrs & nflags & PVF_EXEC) {
3193 npte &= ~L2_XS_XN;
3194 }
3195 #endif
3196 } else {
3197 /*
3198 * Need to do page referenced emulation.
3199 */
3200 npte |= L2_TYPE_INV;
3201 }
3202
3203 if (flags & ARM32_MMAP_WRITECOMBINE) {
3204 npte |= pte_l2_s_wc_mode;
3205 } else
3206 npte |= pte_l2_s_cache_mode;
3207
3208 if (pg != NULL && pg == opg) {
3209 /*
3210 * We're changing the attrs of an existing mapping.
3211 */
3212 oflags = pmap_modify_pv(md, pa, pm, va,
3213 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3214 PVF_MOD | PVF_REF, nflags);
3215
3216 #ifdef PMAP_CACHE_VIVT
3217 /*
3218 * We may need to flush the cache if we're
3219 * doing rw-ro...
3220 */
3221 if (pm->pm_cstate.cs_cache_d &&
3222 (oflags & PVF_NC) == 0 &&
3223 l2pte_writable_p(opte) &&
3224 (prot & VM_PROT_WRITE) == 0)
3225 cpu_dcache_wb_range(va, PAGE_SIZE);
3226 #endif
3227 } else {
3228 struct pv_entry *pv;
3229 /*
3230 * New mapping, or changing the backing page
3231 * of an existing mapping.
3232 */
3233 if (opg) {
3234 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3235 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3236
3237 /*
3238 * Replacing an existing mapping with a new one.
3239 * It is part of our managed memory so we
3240 * must remove it from the PV list
3241 */
3242 pv = pmap_remove_pv(omd, opa, pm, va);
3243 pmap_vac_me_harder(omd, opa, pm, 0);
3244 oflags = pv->pv_flags;
3245
3246 #ifdef PMAP_CACHE_VIVT
3247 /*
3248 * If the old mapping was valid (ref/mod
3249 * emulation creates 'invalid' mappings
3250 * initially) then make sure to frob
3251 * the cache.
3252 */
3253 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3254 pmap_cache_wbinv_page(pm, va, true,
3255 oflags);
3256 }
3257 #endif
3258 } else {
3259 pv = new_pv;
3260 new_pv = NULL;
3261 if (pv == NULL) {
3262 pmap_release_page_lock(md);
3263 pmap_release_pmap_lock(pm);
3264 if ((flags & PMAP_CANFAIL) == 0)
3265 panic("pmap_enter: "
3266 "no pv entries");
3267
3268 pmap_free_l2_bucket(pm, l2b, 0);
3269 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3270 0, 0, 0, 0);
3271 return ENOMEM;
3272 }
3273 }
3274
3275 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3276 }
3277 pmap_release_page_lock(md);
3278 } else {
3279 /*
3280 * We're mapping an unmanaged page.
3281 * These are always readable, and possibly writable, from
3282 * the get go as we don't need to track ref/mod status.
3283 */
3284 npte |= l2pte_set_readonly(L2_S_PROTO);
3285 if (prot & VM_PROT_WRITE)
3286 npte = l2pte_set_writable(npte);
3287
3288 /*
3289 * Make sure the vector table is mapped cacheable
3290 */
3291 if ((vector_page_p && !kpm_p)
3292 || (flags & ARM32_MMAP_CACHEABLE)) {
3293 npte |= pte_l2_s_cache_mode;
3294 #ifdef ARM_MMU_EXTENDED
3295 npte &= ~L2_XS_XN; /* and executable */
3296 #endif
3297 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3298 npte |= pte_l2_s_wc_mode;
3299 }
3300 if (opg) {
3301 /*
3302 * Looks like there's an existing 'managed' mapping
3303 * at this address.
3304 */
3305 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3306 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3307
3308 pmap_acquire_page_lock(omd);
3309 old_pv = pmap_remove_pv(omd, opa, pm, va);
3310 pmap_vac_me_harder(omd, opa, pm, 0);
3311 oflags = old_pv->pv_flags;
3312 pmap_release_page_lock(omd);
3313
3314 #ifdef PMAP_CACHE_VIVT
3315 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3316 pmap_cache_wbinv_page(pm, va, true, oflags);
3317 }
3318 #endif
3319 }
3320 }
3321
3322 /*
3323 * Make sure userland mappings get the right permissions
3324 */
3325 if (!vector_page_p && !kpm_p) {
3326 npte |= L2_S_PROT_U;
3327 #ifdef ARM_MMU_EXTENDED
3328 npte |= L2_XS_nG; /* user pages are not global */
3329 #endif
3330 }
3331
3332 /*
3333 * Keep the stats up to date
3334 */
3335 if (opte == 0) {
3336 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3337 pm->pm_stats.resident_count++;
3338 }
3339
3340 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3341
3342 #if defined(ARM_MMU_EXTENDED)
3343 /*
3344 * If exec protection was requested but the page hasn't been synced,
3345 * sync it now and allow execution from it.
3346 */
3347 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3348 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3349 npte &= ~L2_XS_XN;
3350 pmap_syncicache_page(md, pa);
3351 PMAPCOUNT(exec_synced_map);
3352 }
3353 #endif
3354 /*
3355 * If this is just a wiring change, the two PTEs will be
3356 * identical, so there's no need to update the page table.
3357 */
3358 if (npte != opte) {
3359 l2pte_reset(ptep);
3360 PTE_SYNC(ptep);
3361 if (l2pte_valid_p(opte)) {
3362 pmap_tlb_flush_SE(pm, va, oflags);
3363 }
3364 l2pte_set(ptep, npte, 0);
3365 PTE_SYNC(ptep);
3366 #ifndef ARM_MMU_EXTENDED
3367 bool is_cached = pmap_is_cached(pm);
3368 if (is_cached) {
3369 /*
3370 * We only need to frob the cache/tlb if this pmap
3371 * is current
3372 */
3373 if (!vector_page_p && l2pte_valid_p(npte)) {
3374 /*
3375 * This mapping is likely to be accessed as
3376 * soon as we return to userland. Fix up the
3377 * L1 entry to avoid taking another
3378 * page/domain fault.
3379 */
3380 pd_entry_t *pdep = pmap_l1_kva(pm)
3381 + l1pte_index(va);
3382 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3383 | L1_C_DOM(pmap_domain(pm));
3384 if (*pdep != pde) {
3385 l1pte_setone(pdep, pde);
3386 PDE_SYNC(pdep);
3387 }
3388 }
3389 }
3390
3391 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx",
3392 is_cached, pm->pm_cstate.cs_all, 0, 0);
3393
3394 if (pg != NULL) {
3395 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3396
3397 pmap_acquire_page_lock(md);
3398 pmap_vac_me_harder(md, pa, pm, va);
3399 pmap_release_page_lock(md);
3400 }
3401 #endif
3402 }
3403 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3404 if (pg) {
3405 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3406
3407 pmap_acquire_page_lock(md);
3408 #ifndef ARM_MMU_EXTENDED
3409 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3410 #endif
3411 PMAP_VALIDATE_MD_PAGE(md);
3412 pmap_release_page_lock(md);
3413 }
3414 #endif
3415
3416 pmap_release_pmap_lock(pm);
3417
3418
3419 if (old_pv)
3420 pool_put(&pmap_pv_pool, old_pv);
3421 free_pv:
3422 if (new_pv)
3423 pool_put(&pmap_pv_pool, new_pv);
3424 return error;
3425 }
3426
3427 /*
3428 * pmap_remove()
3429 *
3430 * pmap_remove is responsible for nuking a number of mappings for a range
3431 * of virtual address space in the current pmap. To do this efficiently
3432 * is interesting, because in a number of cases a wide virtual address
3433 * range may be supplied that contains few actual mappings. So, the
3434 * optimisations are:
3435 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3436 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3437 * maybe do just a partial cache clean. This path of execution is
3438 * complicated by the fact that the cache must be flushed _before_
3439 * the PTE is nuked, being a VAC :-)
3440 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3441 * all invalidations until pmap_update(), since pmap_remove_all() has
3442 * already flushed the cache.
3443 * 4. Maybe later fast-case a single page, but I don't think this is
3444 * going to make _that_ much difference overall.
3445 */
3446
3447 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3448
3449 void
3450 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3451 {
3452 SLIST_HEAD(,pv_entry) opv_list;
3453 struct pv_entry *pv, *npv;
3454 UVMHIST_FUNC(__func__);
3455 UVMHIST_CALLARGS(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3456 (uintptr_t)pm, sva, eva, 0);
3457
3458 #ifdef PMAP_FAULTINFO
3459 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
3460 curpcb->pcb_faultinfo.pfi_repeats = 0;
3461 curpcb->pcb_faultinfo.pfi_faultptep = NULL;
3462 #endif
3463
3464 SLIST_INIT(&opv_list);
3465 /*
3466 * we lock in the pmap => pv_head direction
3467 */
3468 pmap_acquire_pmap_lock(pm);
3469
3470 #ifndef ARM_MMU_EXTENDED
3471 u_int cleanlist_idx, total, cnt;
3472 struct {
3473 vaddr_t va;
3474 pt_entry_t *ptep;
3475 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3476
3477 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3478 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3479 if (pm->pm_cstate.cs_tlb == 0)
3480 pm->pm_remove_all = true;
3481 } else
3482 cleanlist_idx = 0;
3483 total = 0;
3484 #endif
3485
3486 while (sva < eva) {
3487 /*
3488 * Do one L2 bucket's worth at a time.
3489 */
3490 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3491 if (next_bucket > eva)
3492 next_bucket = eva;
3493
3494 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3495 if (l2b == NULL) {
3496 sva = next_bucket;
3497 continue;
3498 }
3499
3500 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3501 u_int mappings = 0;
3502
3503 for (;sva < next_bucket;
3504 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3505 pt_entry_t opte = *ptep;
3506
3507 if (opte == 0) {
3508 /* Nothing here, move along */
3509 continue;
3510 }
3511
3512 u_int flags = PVF_REF;
3513 paddr_t pa = l2pte_pa(opte);
3514 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3515
3516 /*
3517 * Update flags. In a number of circumstances,
3518 * we could cluster a lot of these and do a
3519 * number of sequential pages in one go.
3520 */
3521 if (pg != NULL) {
3522 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3523
3524 pmap_acquire_page_lock(md);
3525 pv = pmap_remove_pv(md, pa, pm, sva);
3526 pmap_vac_me_harder(md, pa, pm, 0);
3527 pmap_release_page_lock(md);
3528 if (pv != NULL) {
3529 if (pm->pm_remove_all == false) {
3530 flags = pv->pv_flags;
3531 }
3532 SLIST_INSERT_HEAD(&opv_list,
3533 pv, pv_link);
3534 }
3535 }
3536 mappings += PAGE_SIZE / L2_S_SIZE;
3537
3538 if (!l2pte_valid_p(opte)) {
3539 /*
3540 * Ref/Mod emulation is still active for this
3541 * mapping, therefore it is has not yet been
3542 * accessed. No need to frob the cache/tlb.
3543 */
3544 l2pte_reset(ptep);
3545 PTE_SYNC_CURRENT(pm, ptep);
3546 continue;
3547 }
3548
3549 #ifdef ARM_MMU_EXTENDED
3550 l2pte_reset(ptep);
3551 PTE_SYNC(ptep);
3552 if (__predict_false(pm->pm_remove_all == false)) {
3553 pmap_tlb_flush_SE(pm, sva, flags);
3554 }
3555 #else
3556 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3557 /* Add to the clean list. */
3558 cleanlist[cleanlist_idx].ptep = ptep;
3559 cleanlist[cleanlist_idx].va =
3560 sva | (flags & PVF_EXEC);
3561 cleanlist_idx++;
3562 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3563 /* Nuke everything if needed. */
3564 #ifdef PMAP_CACHE_VIVT
3565 pmap_cache_wbinv_all(pm, PVF_EXEC);
3566 #endif
3567 /*
3568 * Roll back the previous PTE list,
3569 * and zero out the current PTE.
3570 */
3571 for (cnt = 0;
3572 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3573 l2pte_reset(cleanlist[cnt].ptep);
3574 PTE_SYNC(cleanlist[cnt].ptep);
3575 }
3576 l2pte_reset(ptep);
3577 PTE_SYNC(ptep);
3578 cleanlist_idx++;
3579 pm->pm_remove_all = true;
3580 } else {
3581 l2pte_reset(ptep);
3582 PTE_SYNC(ptep);
3583 if (pm->pm_remove_all == false) {
3584 pmap_tlb_flush_SE(pm, sva, flags);
3585 }
3586 }
3587 #endif
3588 }
3589
3590 #ifndef ARM_MMU_EXTENDED
3591 /*
3592 * Deal with any left overs
3593 */
3594 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3595 total += cleanlist_idx;
3596 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3597 l2pte_reset(cleanlist[cnt].ptep);
3598 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3599 vaddr_t va = cleanlist[cnt].va;
3600 if (pm->pm_cstate.cs_all != 0) {
3601 vaddr_t clva = va & ~PAGE_MASK;
3602 u_int flags = va & PVF_EXEC;
3603 #ifdef PMAP_CACHE_VIVT
3604 pmap_cache_wbinv_page(pm, clva, true,
3605 PVF_REF | PVF_WRITE | flags);
3606 #endif
3607 pmap_tlb_flush_SE(pm, clva,
3608 PVF_REF | flags);
3609 }
3610 }
3611
3612 /*
3613 * If it looks like we're removing a whole bunch
3614 * of mappings, it's faster to just write-back
3615 * the whole cache now and defer TLB flushes until
3616 * pmap_update() is called.
3617 */
3618 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3619 cleanlist_idx = 0;
3620 else {
3621 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3622 #ifdef PMAP_CACHE_VIVT
3623 pmap_cache_wbinv_all(pm, PVF_EXEC);
3624 #endif
3625 pm->pm_remove_all = true;
3626 }
3627 }
3628 #endif /* ARM_MMU_EXTENDED */
3629
3630 pmap_free_l2_bucket(pm, l2b, mappings);
3631 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3632 }
3633
3634 pmap_release_pmap_lock(pm);
3635 SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3636 pool_put(&pmap_pv_pool, pv);
3637 }
3638 }
3639
3640 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3641 static struct pv_entry *
3642 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3643 {
3644 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3645 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3646 struct pv_entry *pv;
3647
3648 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3649 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3650 KASSERT(pmap_page_locked_p(md));
3651
3652 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3653 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3654 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3655
3656 /*
3657 * We are removing a writeable mapping to a cached exec page, if
3658 * it's the last mapping then clear its execness otherwise sync
3659 * the page to the icache.
3660 */
3661 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3662 && (pv->pv_flags & PVF_WRITE) != 0) {
3663 if (SLIST_EMPTY(&md->pvh_list)) {
3664 md->pvh_attrs &= ~PVF_EXEC;
3665 PMAPCOUNT(exec_discarded_kremove);
3666 } else {
3667 pmap_syncicache_page(md, pa);
3668 PMAPCOUNT(exec_synced_kremove);
3669 }
3670 }
3671 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3672
3673 return pv;
3674 }
3675 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3676
3677 /*
3678 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3679 *
3680 * We assume there is already sufficient KVM space available
3681 * to do this, as we can't allocate L2 descriptor tables/metadata
3682 * from here.
3683 */
3684 void
3685 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3686 {
3687 #ifdef PMAP_CACHE_VIVT
3688 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3689 #endif
3690 #ifdef PMAP_CACHE_VIPT
3691 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3692 struct vm_page *opg;
3693 #ifndef ARM_MMU_EXTENDED
3694 struct pv_entry *pv = NULL;
3695 #endif
3696 #endif
3697 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3698
3699 UVMHIST_FUNC(__func__);
3700
3701 if (pmap_initialized) {
3702 UVMHIST_CALLARGS(maphist,
3703 "va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", va, pa, prot,
3704 flags);
3705 }
3706
3707 pmap_t kpm = pmap_kernel();
3708 pmap_acquire_pmap_lock(kpm);
3709 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3710 const size_t l1slot __diagused = l1pte_index(va);
3711 KASSERTMSG(l2b != NULL,
3712 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3713 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3714 kpm->pm_l2[L2_IDX(l1slot)]
3715 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3716 : NULL,
3717 kpm->pm_l2[L2_IDX(l1slot)]
3718 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3719 : NULL);
3720 KASSERT(l2b->l2b_kva != NULL);
3721
3722 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3723 const pt_entry_t opte = *ptep;
3724
3725 if (opte == 0) {
3726 PMAPCOUNT(kenter_mappings);
3727 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3728 } else {
3729 PMAPCOUNT(kenter_remappings);
3730 #ifdef PMAP_CACHE_VIPT
3731 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3732 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3733 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3734 #endif
3735 if (opg && arm_cache_prefer_mask != 0) {
3736 KASSERT(opg != pg);
3737 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3738 KASSERT((flags & PMAP_KMPAGE) == 0);
3739 #ifndef ARM_MMU_EXTENDED
3740 pmap_acquire_page_lock(omd);
3741 pv = pmap_kremove_pg(opg, va);
3742 pmap_release_page_lock(omd);
3743 #endif
3744 }
3745 #endif
3746 if (l2pte_valid_p(opte)) {
3747 l2pte_reset(ptep);
3748 PTE_SYNC(ptep);
3749 #ifdef PMAP_CACHE_VIVT
3750 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3751 #endif
3752 cpu_tlb_flushD_SE(va);
3753 cpu_cpwait();
3754 }
3755 }
3756 pmap_release_pmap_lock(kpm);
3757 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3758
3759 if (flags & PMAP_PTE) {
3760 KASSERT((flags & PMAP_CACHE_MASK) == 0);
3761 if (!(flags & PMAP_NOCACHE))
3762 npte |= pte_l2_s_cache_mode_pt;
3763 } else {
3764 switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
3765 case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
3766 break;
3767 case PMAP_NOCACHE:
3768 npte |= pte_l2_s_nocache_mode;
3769 break;
3770 case PMAP_WRITE_COMBINE:
3771 npte |= pte_l2_s_wc_mode;
3772 break;
3773 default:
3774 npte |= pte_l2_s_cache_mode;
3775 break;
3776 }
3777 }
3778 #ifdef ARM_MMU_EXTENDED
3779 if (prot & VM_PROT_EXECUTE)
3780 npte &= ~L2_XS_XN;
3781 #endif
3782 l2pte_set(ptep, npte, 0);
3783 PTE_SYNC(ptep);
3784
3785 if (pg) {
3786 if (flags & PMAP_KMPAGE) {
3787 KASSERT(md->urw_mappings == 0);
3788 KASSERT(md->uro_mappings == 0);
3789 KASSERT(md->krw_mappings == 0);
3790 KASSERT(md->kro_mappings == 0);
3791 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3792 KASSERT(pv == NULL);
3793 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3794 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3795 /* if there is a color conflict, evict from cache. */
3796 if (pmap_is_page_colored_p(md)
3797 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3798 PMAPCOUNT(vac_color_change);
3799 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3800 } else if (md->pvh_attrs & PVF_MULTCLR) {
3801 /*
3802 * If this page has multiple colors, expunge
3803 * them.
3804 */
3805 PMAPCOUNT(vac_flush_lots2);
3806 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3807 }
3808 /*
3809 * Since this is a KMPAGE, there can be no contention
3810 * for this page so don't lock it.
3811 */
3812 md->pvh_attrs &= PAGE_SIZE - 1;
3813 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3814 | (va & arm_cache_prefer_mask);
3815 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3816 md->pvh_attrs |= PVF_KMPAGE;
3817 #endif
3818 atomic_inc_32(&pmap_kmpages);
3819 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3820 } else if (arm_cache_prefer_mask != 0) {
3821 if (pv == NULL) {
3822 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3823 KASSERT(pv != NULL);
3824 }
3825 pmap_acquire_page_lock(md);
3826 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3827 PVF_WIRED | PVF_KENTRY
3828 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3829 if ((prot & VM_PROT_WRITE)
3830 && !(md->pvh_attrs & PVF_NC))
3831 md->pvh_attrs |= PVF_DIRTY;
3832 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3833 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3834 pmap_release_page_lock(md);
3835 #endif
3836 }
3837 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3838 } else {
3839 if (pv != NULL)
3840 pool_put(&pmap_pv_pool, pv);
3841 #endif
3842 }
3843 if (pmap_initialized) {
3844 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)",
3845 (uintptr_t)ptep, opte, npte, 0);
3846 }
3847
3848 }
3849
3850 void
3851 pmap_kremove(vaddr_t va, vsize_t len)
3852 {
3853 #ifdef UVMHIST
3854 u_int total_mappings = 0;
3855 #endif
3856
3857 PMAPCOUNT(kenter_unmappings);
3858
3859 UVMHIST_FUNC(__func__);
3860 UVMHIST_CALLARGS(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3861
3862 const vaddr_t eva = va + len;
3863 pmap_t kpm = pmap_kernel();
3864
3865 pmap_acquire_pmap_lock(kpm);
3866
3867 while (va < eva) {
3868 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3869 if (next_bucket > eva)
3870 next_bucket = eva;
3871
3872 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3873 KDASSERT(l2b != NULL);
3874
3875 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3876 pt_entry_t *ptep = sptep;
3877 u_int mappings = 0;
3878
3879 while (va < next_bucket) {
3880 const pt_entry_t opte = *ptep;
3881 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3882 if (opg != NULL) {
3883 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3884
3885 if (omd->pvh_attrs & PVF_KMPAGE) {
3886 KASSERT(omd->urw_mappings == 0);
3887 KASSERT(omd->uro_mappings == 0);
3888 KASSERT(omd->krw_mappings == 0);
3889 KASSERT(omd->kro_mappings == 0);
3890 omd->pvh_attrs &= ~PVF_KMPAGE;
3891 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3892 if (arm_cache_prefer_mask != 0) {
3893 omd->pvh_attrs &= ~PVF_WRITE;
3894 }
3895 #endif
3896 atomic_dec_32(&pmap_kmpages);
3897 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3898 } else if (arm_cache_prefer_mask != 0) {
3899 pmap_acquire_page_lock(omd);
3900 pool_put(&pmap_pv_pool,
3901 pmap_kremove_pg(opg, va));
3902 pmap_release_page_lock(omd);
3903 #endif
3904 }
3905 }
3906 if (l2pte_valid_p(opte)) {
3907 l2pte_reset(ptep);
3908 PTE_SYNC(ptep);
3909 #ifdef PMAP_CACHE_VIVT
3910 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3911 #endif
3912 cpu_tlb_flushD_SE(va);
3913
3914 mappings += PAGE_SIZE / L2_S_SIZE;
3915 }
3916 va += PAGE_SIZE;
3917 ptep += PAGE_SIZE / L2_S_SIZE;
3918 }
3919 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3920 mappings, l2b->l2b_occupancy);
3921 l2b->l2b_occupancy -= mappings;
3922 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3923 #ifdef UVMHIST
3924 total_mappings += mappings;
3925 #endif
3926 }
3927 pmap_release_pmap_lock(kpm);
3928 cpu_cpwait();
3929 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)",
3930 total_mappings, 0, 0, 0);
3931 }
3932
3933 bool
3934 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3935 {
3936
3937 return pmap_extract_coherency(pm, va, pap, NULL);
3938 }
3939
3940 bool
3941 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3942 {
3943 struct l2_dtable *l2;
3944 pd_entry_t *pdep, pde;
3945 pt_entry_t *ptep, pte;
3946 paddr_t pa;
3947 u_int l1slot;
3948 bool coherent;
3949
3950 pmap_acquire_pmap_lock(pm);
3951
3952 l1slot = l1pte_index(va);
3953 pdep = pmap_l1_kva(pm) + l1slot;
3954 pde = *pdep;
3955
3956 if (l1pte_section_p(pde)) {
3957 /*
3958 * These should only happen for pmap_kernel()
3959 */
3960 KDASSERT(pm == pmap_kernel());
3961 pmap_release_pmap_lock(pm);
3962 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3963 if (l1pte_supersection_p(pde)) {
3964 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3965 } else
3966 #endif
3967 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3968 coherent = (pde & L1_S_CACHE_MASK) == 0;
3969 } else {
3970 /*
3971 * Note that we can't rely on the validity of the L1
3972 * descriptor as an indication that a mapping exists.
3973 * We have to look it up in the L2 dtable.
3974 */
3975 l2 = pm->pm_l2[L2_IDX(l1slot)];
3976
3977 if (l2 == NULL ||
3978 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3979 pmap_release_pmap_lock(pm);
3980 return false;
3981 }
3982
3983 pte = ptep[l2pte_index(va)];
3984 pmap_release_pmap_lock(pm);
3985
3986 if (pte == 0)
3987 return false;
3988
3989 switch (pte & L2_TYPE_MASK) {
3990 case L2_TYPE_L:
3991 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3992 coherent = (pte & L2_L_CACHE_MASK) == 0;
3993 break;
3994
3995 default:
3996 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3997 coherent = (pte & L2_S_CACHE_MASK) == 0;
3998 break;
3999 }
4000 }
4001
4002 if (pap != NULL)
4003 *pap = pa;
4004
4005 if (coherentp != NULL)
4006 *coherentp = (pm == pmap_kernel() && coherent);
4007
4008 return true;
4009 }
4010
4011 /*
4012 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
4013 * that map it
4014 */
4015
4016 static void
4017 pmap_pv_remove(paddr_t pa)
4018 {
4019 struct pmap_page *pp;
4020
4021 pp = pmap_pv_tracked(pa);
4022 if (pp == NULL)
4023 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4024 pa);
4025
4026 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4027 pmap_page_remove(md, pa);
4028 }
4029
4030 void
4031 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4032 {
4033
4034 /* the only case is remove at the moment */
4035 KASSERT(prot == VM_PROT_NONE);
4036 pmap_pv_remove(pa);
4037 }
4038
4039 void
4040 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4041 {
4042 struct l2_bucket *l2b;
4043 vaddr_t next_bucket;
4044
4045 UVMHIST_FUNC(__func__);
4046 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx prot %#jx",
4047 (uintptr_t)pm, sva, eva, prot);
4048
4049 if ((prot & VM_PROT_READ) == 0) {
4050 pmap_remove(pm, sva, eva);
4051 return;
4052 }
4053
4054 if (prot & VM_PROT_WRITE) {
4055 /*
4056 * If this is a read->write transition, just ignore it and let
4057 * uvm_fault() take care of it later.
4058 */
4059 return;
4060 }
4061
4062 pmap_acquire_pmap_lock(pm);
4063
4064 #ifndef ARM_MMU_EXTENDED
4065 const bool flush = eva - sva >= PAGE_SIZE * 4;
4066 u_int flags = 0;
4067 #endif
4068 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4069
4070 while (sva < eva) {
4071 next_bucket = L2_NEXT_BUCKET_VA(sva);
4072 if (next_bucket > eva)
4073 next_bucket = eva;
4074
4075 l2b = pmap_get_l2_bucket(pm, sva);
4076 if (l2b == NULL) {
4077 sva = next_bucket;
4078 continue;
4079 }
4080
4081 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4082
4083 while (sva < next_bucket) {
4084 const pt_entry_t opte = *ptep;
4085 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4086 struct vm_page *pg;
4087 #ifndef ARM_MMU_EXTENDED
4088 u_int f;
4089 #endif
4090
4091 #ifdef PMAP_CACHE_VIVT
4092 /*
4093 * OK, at this point, we know we're doing
4094 * write-protect operation. If the pmap is
4095 * active, write-back the page.
4096 */
4097 pmap_cache_wbinv_page(pm, sva, false,
4098 PVF_REF | PVF_WRITE);
4099 #endif
4100
4101 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4102 pt_entry_t npte = l2pte_set_readonly(opte);
4103 l2pte_reset(ptep);
4104 PTE_SYNC(ptep);
4105 #ifdef ARM_MMU_EXTENDED
4106 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4107 #endif
4108 l2pte_set(ptep, npte, 0);
4109 PTE_SYNC(ptep);
4110
4111 if (pg != NULL) {
4112 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4113 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4114
4115 pmap_acquire_page_lock(md);
4116 #ifndef ARM_MMU_EXTENDED
4117 f =
4118 #endif
4119 pmap_modify_pv(md, pa, pm, sva,
4120 clr_mask, 0);
4121 pmap_vac_me_harder(md, pa, pm, sva);
4122 pmap_release_page_lock(md);
4123 #ifndef ARM_MMU_EXTENDED
4124 } else {
4125 f = PVF_REF | PVF_EXEC;
4126 }
4127
4128 if (flush) {
4129 flags |= f;
4130 } else {
4131 pmap_tlb_flush_SE(pm, sva, f);
4132 #endif
4133 }
4134 }
4135
4136 sva += PAGE_SIZE;
4137 ptep += PAGE_SIZE / L2_S_SIZE;
4138 }
4139 }
4140
4141 #ifndef ARM_MMU_EXTENDED
4142 if (flush) {
4143 if (PV_BEEN_EXECD(flags)) {
4144 pmap_tlb_flushID(pm);
4145 } else if (PV_BEEN_REFD(flags)) {
4146 pmap_tlb_flushD(pm);
4147 }
4148 }
4149 #endif
4150
4151 pmap_release_pmap_lock(pm);
4152 }
4153
4154 void
4155 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4156 {
4157 struct l2_bucket *l2b;
4158 pt_entry_t *ptep;
4159 vaddr_t next_bucket;
4160 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4161
4162 UVMHIST_FUNC(__func__);
4163 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx",
4164 (uintptr_t)pm, sva, eva, 0);
4165
4166 pmap_acquire_pmap_lock(pm);
4167
4168 while (sva < eva) {
4169 next_bucket = L2_NEXT_BUCKET_VA(sva);
4170 if (next_bucket > eva)
4171 next_bucket = eva;
4172
4173 l2b = pmap_get_l2_bucket(pm, sva);
4174 if (l2b == NULL) {
4175 sva = next_bucket;
4176 continue;
4177 }
4178
4179 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4180 sva < next_bucket;
4181 sva += page_size,
4182 ptep += PAGE_SIZE / L2_S_SIZE,
4183 page_size = PAGE_SIZE) {
4184 if (l2pte_valid_p(*ptep)) {
4185 cpu_icache_sync_range(sva,
4186 uimin(page_size, eva - sva));
4187 }
4188 }
4189 }
4190
4191 pmap_release_pmap_lock(pm);
4192 }
4193
4194 void
4195 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4196 {
4197 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4198 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4199
4200 UVMHIST_FUNC(__func__);
4201 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx prot %#jx",
4202 (uintptr_t)md, pa, prot, 0);
4203
4204 switch(prot) {
4205 case VM_PROT_READ|VM_PROT_WRITE:
4206 #if defined(ARM_MMU_EXTENDED)
4207 pmap_acquire_page_lock(md);
4208 pmap_clearbit(md, pa, PVF_EXEC);
4209 pmap_release_page_lock(md);
4210 break;
4211 #endif
4212 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4213 break;
4214
4215 case VM_PROT_READ:
4216 #if defined(ARM_MMU_EXTENDED)
4217 pmap_acquire_page_lock(md);
4218 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4219 pmap_release_page_lock(md);
4220 break;
4221 #endif
4222 case VM_PROT_READ|VM_PROT_EXECUTE:
4223 pmap_acquire_page_lock(md);
4224 pmap_clearbit(md, pa, PVF_WRITE);
4225 pmap_release_page_lock(md);
4226 break;
4227
4228 default:
4229 pmap_page_remove(md, pa);
4230 break;
4231 }
4232 }
4233
4234 /*
4235 * pmap_clear_modify:
4236 *
4237 * Clear the "modified" attribute for a page.
4238 */
4239 bool
4240 pmap_clear_modify(struct vm_page *pg)
4241 {
4242 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4243 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4244 bool rv;
4245
4246 pmap_acquire_page_lock(md);
4247
4248 if (md->pvh_attrs & PVF_MOD) {
4249 rv = true;
4250 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4251 /*
4252 * If we are going to clear the modified bit and there are
4253 * no other modified bits set, flush the page to memory and
4254 * mark it clean.
4255 */
4256 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4257 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4258 #endif
4259 pmap_clearbit(md, pa, PVF_MOD);
4260 } else {
4261 rv = false;
4262 }
4263 pmap_release_page_lock(md);
4264
4265 return rv;
4266 }
4267
4268 /*
4269 * pmap_clear_reference:
4270 *
4271 * Clear the "referenced" attribute for a page.
4272 */
4273 bool
4274 pmap_clear_reference(struct vm_page *pg)
4275 {
4276 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4277 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4278 bool rv;
4279
4280 pmap_acquire_page_lock(md);
4281
4282 if (md->pvh_attrs & PVF_REF) {
4283 rv = true;
4284 pmap_clearbit(md, pa, PVF_REF);
4285 } else {
4286 rv = false;
4287 }
4288 pmap_release_page_lock(md);
4289
4290 return rv;
4291 }
4292
4293 /*
4294 * pmap_is_modified:
4295 *
4296 * Test if a page has the "modified" attribute.
4297 */
4298 /* See <arm/arm32/pmap.h> */
4299
4300 /*
4301 * pmap_is_referenced:
4302 *
4303 * Test if a page has the "referenced" attribute.
4304 */
4305 /* See <arm/arm32/pmap.h> */
4306
4307 #if defined(ARM_MMU_EXTENDED) && 0
4308 int
4309 pmap_prefetchabt_fixup(void *v)
4310 {
4311 struct trapframe * const tf = v;
4312 vaddr_t va = trunc_page(tf->tf_pc);
4313 int rv = ABORT_FIXUP_FAILED;
4314
4315 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4316 return rv;
4317
4318 kpreempt_disable();
4319 pmap_t pm = curcpu()->ci_pmap_cur;
4320 const size_t l1slot = l1pte_index(va);
4321 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4322 if (l2 == NULL)
4323 goto out;
4324
4325 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4326 if (l2b->l2b_kva == NULL)
4327 goto out;
4328
4329 /*
4330 * Check the PTE itself.
4331 */
4332 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4333 const pt_entry_t opte = *ptep;
4334 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4335 goto out;
4336
4337 paddr_t pa = l2pte_pa(opte);
4338 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4339 KASSERT(pg != NULL);
4340
4341 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4342
4343 pmap_acquire_page_lock(md);
4344 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4345 KASSERT(pv != NULL);
4346
4347 if (PV_IS_EXEC_P(pv->pv_flags)) {
4348 l2pte_reset(ptep);
4349 PTE_SYNC(ptep);
4350 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4351 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4352 pmap_syncicache_page(md, pa);
4353 }
4354 rv = ABORT_FIXUP_RETURN;
4355 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4356 PTE_SYNC(ptep);
4357 }
4358 pmap_release_page_lock(md);
4359
4360 out:
4361 kpreempt_enable();
4362 return rv;
4363 }
4364 #endif
4365
4366 int
4367 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4368 {
4369 struct l2_dtable *l2;
4370 struct l2_bucket *l2b;
4371 paddr_t pa;
4372 const size_t l1slot = l1pte_index(va);
4373 int rv = 0;
4374
4375 UVMHIST_FUNC(__func__);
4376 UVMHIST_CALLARGS(maphist, "pm=%#jx, va=%#jx, ftype=%#jx, user=%jd",
4377 (uintptr_t)pm, va, ftype, user);
4378
4379 va = trunc_page(va);
4380
4381 KASSERT(!user || (pm != pmap_kernel()));
4382
4383 #ifdef ARM_MMU_EXTENDED
4384 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4385 (uintptr_t)cpu_tlb_info(curcpu()),
4386 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4387 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4388 #endif
4389
4390 pmap_acquire_pmap_lock(pm);
4391
4392 /*
4393 * If there is no l2_dtable for this address, then the process
4394 * has no business accessing it.
4395 *
4396 * Note: This will catch userland processes trying to access
4397 * kernel addresses.
4398 */
4399 l2 = pm->pm_l2[L2_IDX(l1slot)];
4400 if (l2 == NULL) {
4401 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4402 goto out;
4403 }
4404
4405 /*
4406 * Likewise if there is no L2 descriptor table
4407 */
4408 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4409 if (l2b->l2b_kva == NULL) {
4410 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4411 l1slot, 0, 0, 0);
4412 goto out;
4413 }
4414
4415 /*
4416 * Check the PTE itself.
4417 */
4418 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4419 pt_entry_t const opte = *ptep;
4420 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4421 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
4422 l1slot, 0, 0, 0);
4423 goto out;
4424 }
4425
4426 #ifndef ARM_HAS_VBAR
4427 /*
4428 * Catch a userland access to the vector page mapped at 0x0
4429 */
4430 if (user && (opte & L2_S_PROT_U) == 0) {
4431 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4432 goto out;
4433 }
4434 #endif
4435
4436 pa = l2pte_pa(opte);
4437
4438 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4439 /*
4440 * This looks like a good candidate for "page modified"
4441 * emulation...
4442 */
4443 struct pv_entry *pv;
4444 struct vm_page *pg;
4445
4446 /* Extract the physical address of the page */
4447 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4448 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4449 goto out;
4450 }
4451
4452 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4453
4454 /* Get the current flags for this page. */
4455 pmap_acquire_page_lock(md);
4456 pv = pmap_find_pv(md, pm, va);
4457 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4458 pmap_release_page_lock(md);
4459 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4460 goto out;
4461 }
4462
4463 /*
4464 * Do the flags say this page is writable? If not then it
4465 * is a genuine write fault. If yes then the write fault is
4466 * our fault as we did not reflect the write access in the
4467 * PTE. Now we know a write has occurred we can correct this
4468 * and also set the modified bit
4469 */
4470 if ((pv->pv_flags & PVF_WRITE) == 0) {
4471 pmap_release_page_lock(md);
4472 goto out;
4473 }
4474
4475 md->pvh_attrs |= PVF_REF | PVF_MOD;
4476 pv->pv_flags |= PVF_REF | PVF_MOD;
4477 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4478 /*
4479 * If there are cacheable mappings for this page, mark it dirty.
4480 */
4481 if ((md->pvh_attrs & PVF_NC) == 0)
4482 md->pvh_attrs |= PVF_DIRTY;
4483 #endif
4484 #ifdef ARM_MMU_EXTENDED
4485 if (md->pvh_attrs & PVF_EXEC) {
4486 md->pvh_attrs &= ~PVF_EXEC;
4487 PMAPCOUNT(exec_discarded_modfixup);
4488 }
4489 #endif
4490 pmap_release_page_lock(md);
4491
4492 /*
4493 * Re-enable write permissions for the page. No need to call
4494 * pmap_vac_me_harder(), since this is just a
4495 * modified-emulation fault, and the PVF_WRITE bit isn't
4496 * changing. We've already set the cacheable bits based on
4497 * the assumption that we can write to this page.
4498 */
4499 const pt_entry_t npte =
4500 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4501 #ifdef ARM_MMU_EXTENDED
4502 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4503 #endif
4504 | 0;
4505 l2pte_reset(ptep);
4506 PTE_SYNC(ptep);
4507 pmap_tlb_flush_SE(pm, va,
4508 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4509 l2pte_set(ptep, npte, 0);
4510 PTE_SYNC(ptep);
4511 PMAPCOUNT(fixup_mod);
4512 rv = 1;
4513 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4514 "from %#jx to %#jx)", opte, npte, 0, 0);
4515 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4516 /*
4517 * This looks like a good candidate for "page referenced"
4518 * emulation.
4519 */
4520 struct vm_page *pg;
4521
4522 /* Extract the physical address of the page */
4523 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4524 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4525 goto out;
4526 }
4527
4528 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4529
4530 /* Get the current flags for this page. */
4531 pmap_acquire_page_lock(md);
4532 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4533 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4534 pmap_release_page_lock(md);
4535 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4536 goto out;
4537 }
4538
4539 md->pvh_attrs |= PVF_REF;
4540 pv->pv_flags |= PVF_REF;
4541
4542 pt_entry_t npte =
4543 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4544 #ifdef ARM_MMU_EXTENDED
4545 if (pm != pmap_kernel()) {
4546 npte |= L2_XS_nG;
4547 }
4548 /*
4549 * If we got called from prefetch abort, then ftype will have
4550 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4551 * the PTE.
4552 */
4553 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4554 /*
4555 * Is this a mapping of an executable page?
4556 */
4557 if ((pv->pv_flags & PVF_EXEC) == 0) {
4558 pmap_release_page_lock(md);
4559 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4560 0, 0, 0, 0);
4561 goto out;
4562 }
4563 /*
4564 * If we haven't synced the page, do so now.
4565 */
4566 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4567 UVMHIST_LOG(maphist, " ref emul: syncicache "
4568 "page #%#jx", pa, 0, 0, 0);
4569 pmap_syncicache_page(md, pa);
4570 PMAPCOUNT(fixup_exec);
4571 }
4572 npte &= ~L2_XS_XN;
4573 }
4574 #endif /* ARM_MMU_EXTENDED */
4575 pmap_release_page_lock(md);
4576 l2pte_reset(ptep);
4577 PTE_SYNC(ptep);
4578 pmap_tlb_flush_SE(pm, va,
4579 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4580 l2pte_set(ptep, npte, 0);
4581 PTE_SYNC(ptep);
4582 PMAPCOUNT(fixup_ref);
4583 rv = 1;
4584 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4585 "%#jx to %#jx)", opte, npte, 0, 0);
4586 #ifdef ARM_MMU_EXTENDED
4587 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4588 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4589 if (pg == NULL) {
4590 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4591 goto out;
4592 }
4593
4594 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4595
4596 /* Get the current flags for this page. */
4597 pmap_acquire_page_lock(md);
4598 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4599 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4600 pmap_release_page_lock(md);
4601 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4602 goto out;
4603 }
4604
4605 /*
4606 * If we haven't synced the page, do so now.
4607 */
4608 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4609 UVMHIST_LOG(maphist, "syncicache page #%#jx",
4610 pa, 0, 0, 0);
4611 pmap_syncicache_page(md, pa);
4612 }
4613 pmap_release_page_lock(md);
4614 /*
4615 * Turn off no-execute.
4616 */
4617 KASSERT(opte & L2_XS_nG);
4618 l2pte_reset(ptep);
4619 PTE_SYNC(ptep);
4620 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4621 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4622 PTE_SYNC(ptep);
4623 rv = 1;
4624 PMAPCOUNT(fixup_exec);
4625 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4626 opte, opte & ~L2_XS_XN, 0, 0);
4627 #endif
4628 }
4629
4630 #ifndef ARM_MMU_EXTENDED
4631 /*
4632 * We know there is a valid mapping here, so simply
4633 * fix up the L1 if necessary.
4634 */
4635 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4636 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4637 if (*pdep != pde) {
4638 l1pte_setone(pdep, pde);
4639 PDE_SYNC(pdep);
4640 rv = 1;
4641 PMAPCOUNT(fixup_pdes);
4642 }
4643 #endif
4644
4645 #ifdef CPU_SA110
4646 /*
4647 * There are bugs in the rev K SA110. This is a check for one
4648 * of them.
4649 */
4650 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4651 curcpu()->ci_arm_cpurev < 3) {
4652 /* Always current pmap */
4653 if (l2pte_valid_p(opte)) {
4654 extern int kernel_debug;
4655 if (kernel_debug & 1) {
4656 struct proc *p = curlwp->l_proc;
4657 printf("prefetch_abort: page is already "
4658 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4659 printf("prefetch_abort: pc=%08lx proc=%p "
4660 "process=%s\n", va, p, p->p_comm);
4661 printf("prefetch_abort: far=%08x fs=%x\n",
4662 cpu_faultaddress(), cpu_faultstatus());
4663 }
4664 #ifdef DDB
4665 if (kernel_debug & 2)
4666 Debugger();
4667 #endif
4668 rv = 1;
4669 }
4670 }
4671 #endif /* CPU_SA110 */
4672
4673 #ifndef ARM_MMU_EXTENDED
4674 /*
4675 * If 'rv == 0' at this point, it generally indicates that there is a
4676 * stale TLB entry for the faulting address. That might be due to a
4677 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4678 */
4679 if (rv == 0
4680 && pm->pm_l1->l1_domain_use_count == 1
4681 && pmap_needs_pte_sync == 0) {
4682 pmap_needs_pte_sync = 1;
4683 PTE_SYNC(ptep);
4684 PMAPCOUNT(fixup_ptesync);
4685 rv = 1;
4686 }
4687 #endif
4688
4689 #ifndef MULTIPROCESSOR
4690 #if defined(DEBUG) || 1
4691 /*
4692 * If 'rv == 0' at this point, it generally indicates that there is a
4693 * stale TLB entry for the faulting address. This happens when two or
4694 * more processes are sharing an L1. Since we don't flush the TLB on
4695 * a context switch between such processes, we can take domain faults
4696 * for mappings which exist at the same VA in both processes. EVEN IF
4697 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4698 * example.
4699 *
4700 * This is extremely likely to happen if pmap_enter() updated the L1
4701 * entry for a recently entered mapping. In this case, the TLB is
4702 * flushed for the new mapping, but there may still be TLB entries for
4703 * other mappings belonging to other processes in the 1MB range
4704 * covered by the L1 entry.
4705 *
4706 * Since 'rv == 0', we know that the L1 already contains the correct
4707 * value, so the fault must be due to a stale TLB entry.
4708 *
4709 * Since we always need to flush the TLB anyway in the case where we
4710 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4711 * stale TLB entries dynamically.
4712 *
4713 * However, the above condition can ONLY happen if the current L1 is
4714 * being shared. If it happens when the L1 is unshared, it indicates
4715 * that other parts of the pmap are not doing their job WRT managing
4716 * the TLB.
4717 */
4718 if (rv == 0
4719 #ifndef ARM_MMU_EXTENDED
4720 && pm->pm_l1->l1_domain_use_count == 1
4721 #endif
4722 && true) {
4723 #ifdef DEBUG
4724 extern int last_fault_code;
4725 #else
4726 int last_fault_code = ftype & VM_PROT_EXECUTE
4727 ? armreg_ifsr_read()
4728 : armreg_dfsr_read();
4729 #endif
4730 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4731 pm, va, ftype);
4732 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4733 l2, l2b, ptep, opte);
4734
4735 #ifndef ARM_MMU_EXTENDED
4736 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4737 pdep, pde, last_fault_code);
4738 #else
4739 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4740 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4741 armreg_ttbcr_read());
4742 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4743 last_fault_code, curcpu()->ci_pmap_cur,
4744 curcpu()->ci_pmap_asid_cur,
4745 armreg_contextidr_read(), armreg_dacr_read());
4746 #ifdef _ARM_ARCH_7
4747 if (ftype & VM_PROT_WRITE)
4748 armreg_ats1cuw_write(va);
4749 else
4750 armreg_ats1cur_write(va);
4751 arm_isb();
4752 printf("fixup: par %#x\n", armreg_par_read());
4753 #endif
4754 #endif
4755 #ifdef DDB
4756 extern int kernel_debug;
4757
4758 if (kernel_debug & 2) {
4759 pmap_release_pmap_lock(pm);
4760 #ifdef UVMHIST
4761 KERNHIST_DUMP(maphist);
4762 #endif
4763 cpu_Debugger();
4764 pmap_acquire_pmap_lock(pm);
4765 }
4766 #endif
4767 }
4768 #endif
4769 #endif
4770
4771 #ifndef ARM_MMU_EXTENDED
4772 /* Flush the TLB in the shared L1 case - see comment above */
4773 pmap_tlb_flush_SE(pm, va,
4774 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4775 #endif
4776
4777 rv = 1;
4778
4779 out:
4780 pmap_release_pmap_lock(pm);
4781
4782 return rv;
4783 }
4784
4785 /*
4786 * Routine: pmap_procwr
4787 *
4788 * Function:
4789 * Synchronize caches corresponding to [addr, addr+len) in p.
4790 *
4791 */
4792 void
4793 pmap_procwr(struct proc *p, vaddr_t va, int len)
4794 {
4795 #ifndef ARM_MMU_EXTENDED
4796
4797 /* We only need to do anything if it is the current process. */
4798 if (p == curproc)
4799 cpu_icache_sync_range(va, len);
4800 #endif
4801 }
4802
4803 /*
4804 * Routine: pmap_unwire
4805 * Function: Clear the wired attribute for a map/virtual-address pair.
4806 *
4807 * In/out conditions:
4808 * The mapping must already exist in the pmap.
4809 */
4810 void
4811 pmap_unwire(pmap_t pm, vaddr_t va)
4812 {
4813 struct l2_bucket *l2b;
4814 pt_entry_t *ptep, pte;
4815 struct vm_page *pg;
4816 paddr_t pa;
4817
4818 UVMHIST_FUNC(__func__);
4819 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx", (uintptr_t)pm, va, 0, 0);
4820
4821 pmap_acquire_pmap_lock(pm);
4822
4823 l2b = pmap_get_l2_bucket(pm, va);
4824 KDASSERT(l2b != NULL);
4825
4826 ptep = &l2b->l2b_kva[l2pte_index(va)];
4827 pte = *ptep;
4828
4829 /* Extract the physical address of the page */
4830 pa = l2pte_pa(pte);
4831
4832 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4833 /* Update the wired bit in the pv entry for this page. */
4834 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4835
4836 pmap_acquire_page_lock(md);
4837 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4838 pmap_release_page_lock(md);
4839 }
4840
4841 pmap_release_pmap_lock(pm);
4842 }
4843
4844 #ifdef ARM_MMU_EXTENDED
4845 void
4846 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4847 {
4848 UVMHIST_FUNC(__func__);
4849 struct cpu_info * const ci = curcpu();
4850 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4851
4852 UVMHIST_CALLARGS(maphist, "pm %#jx (pm->pm_l1_pa %08jx asid %ju)",
4853 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4854
4855 /*
4856 * Assume that TTBR1 has only global mappings and TTBR0 only
4857 * has non-global mappings. To prevent speculation from doing
4858 * evil things we disable translation table walks using TTBR0
4859 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4860 * Once both are set, table walks are reenabled.
4861 */
4862 const uint32_t old_ttbcr = armreg_ttbcr_read();
4863 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4864 arm_isb();
4865
4866 pmap_tlb_asid_acquire(pm, l);
4867
4868 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4869 /*
4870 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4871 * have been updated.
4872 */
4873 arm_isb();
4874
4875 if (pm != pmap_kernel()) {
4876 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4877 }
4878 cpu_cpwait();
4879
4880 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4881 ci->ci_pmap_asid_cur, pai->pai_asid);
4882 ci->ci_pmap_cur = pm;
4883 }
4884
4885 void
4886 pmap_md_pdetab_deactivate(pmap_t pm)
4887 {
4888
4889 UVMHIST_FUNC(__func__);
4890 UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0);
4891
4892 kpreempt_disable();
4893 struct cpu_info * const ci = curcpu();
4894 /*
4895 * Disable translation table walks from TTBR0 while no pmap has been
4896 * activated.
4897 */
4898 const uint32_t old_ttbcr = armreg_ttbcr_read();
4899 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4900 arm_isb();
4901 pmap_tlb_asid_deactivate(pm);
4902 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4903 arm_isb();
4904
4905 ci->ci_pmap_cur = pmap_kernel();
4906 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4907 ci->ci_pmap_asid_cur);
4908 kpreempt_enable();
4909 }
4910 #endif
4911
4912 void
4913 pmap_activate(struct lwp *l)
4914 {
4915 extern int block_userspace_access;
4916 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4917
4918 UVMHIST_FUNC(__func__);
4919 UVMHIST_CALLARGS(maphist, "l=%#jx pm=%#jx", (uintptr_t)l,
4920 (uintptr_t)npm, 0, 0);
4921
4922 struct cpu_info * const ci = curcpu();
4923
4924 /*
4925 * If activating a non-current lwp or the current lwp is
4926 * already active, just return.
4927 */
4928 if (false
4929 || l != curlwp
4930 #ifdef ARM_MMU_EXTENDED
4931 || (ci->ci_pmap_cur == npm &&
4932 (npm == pmap_kernel()
4933 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4934 #else
4935 || npm->pm_activated == true
4936 #endif
4937 || false) {
4938 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4939 (uintptr_t)l, 0, 0);
4940 return;
4941 }
4942
4943 #ifndef ARM_MMU_EXTENDED
4944 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4945 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4946
4947 /*
4948 * If TTB and DACR are unchanged, short-circuit all the
4949 * TLB/cache management stuff.
4950 */
4951 pmap_t opm = ci->ci_lastlwp
4952 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4953 : NULL;
4954 if (opm != NULL) {
4955 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4956 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4957
4958 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4959 goto all_done;
4960 }
4961 #endif /* !ARM_MMU_EXTENDED */
4962
4963 PMAPCOUNT(activations);
4964 block_userspace_access = 1;
4965
4966 #ifndef ARM_MMU_EXTENDED
4967 /*
4968 * If switching to a user vmspace which is different to the
4969 * most recent one, and the most recent one is potentially
4970 * live in the cache, we must write-back and invalidate the
4971 * entire cache.
4972 */
4973 pmap_t rpm = ci->ci_pmap_lastuser;
4974
4975 /*
4976 * XXXSCW: There's a corner case here which can leave turds in the
4977 * cache as reported in kern/41058. They're probably left over during
4978 * tear-down and switching away from an exiting process. Until the root
4979 * cause is identified and fixed, zap the cache when switching pmaps.
4980 * This will result in a few unnecessary cache flushes, but that's
4981 * better than silently corrupting data.
4982 */
4983 #if 0
4984 if (npm != pmap_kernel() && rpm && npm != rpm &&
4985 rpm->pm_cstate.cs_cache) {
4986 rpm->pm_cstate.cs_cache = 0;
4987 #ifdef PMAP_CACHE_VIVT
4988 cpu_idcache_wbinv_all();
4989 #endif
4990 }
4991 #else
4992 if (rpm) {
4993 rpm->pm_cstate.cs_cache = 0;
4994 if (npm == pmap_kernel())
4995 ci->ci_pmap_lastuser = NULL;
4996 #ifdef PMAP_CACHE_VIVT
4997 cpu_idcache_wbinv_all();
4998 #endif
4999 }
5000 #endif
5001
5002 /* No interrupts while we frob the TTB/DACR */
5003 uint32_t oldirqstate = disable_interrupts(IF32_bits);
5004 #endif /* !ARM_MMU_EXTENDED */
5005
5006 #ifndef ARM_HAS_VBAR
5007 /*
5008 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
5009 * entry corresponding to 'vector_page' in the incoming L1 table
5010 * before switching to it otherwise subsequent interrupts/exceptions
5011 * (including domain faults!) will jump into hyperspace.
5012 */
5013 if (npm->pm_pl1vec != NULL) {
5014 cpu_tlb_flushID_SE((u_int)vector_page);
5015 cpu_cpwait();
5016 *npm->pm_pl1vec = npm->pm_l1vec;
5017 PTE_SYNC(npm->pm_pl1vec);
5018 }
5019 #endif
5020
5021 #ifdef ARM_MMU_EXTENDED
5022 pmap_md_pdetab_activate(npm, l);
5023 #else
5024 cpu_domains(ndacr);
5025 if (npm == pmap_kernel() || npm == rpm) {
5026 /*
5027 * Switching to a kernel thread, or back to the
5028 * same user vmspace as before... Simply update
5029 * the TTB (no TLB flush required)
5030 */
5031 cpu_setttb(npm->pm_l1->l1_physaddr, false);
5032 cpu_cpwait();
5033 } else {
5034 /*
5035 * Otherwise, update TTB and flush TLB
5036 */
5037 cpu_context_switch(npm->pm_l1->l1_physaddr);
5038 if (rpm != NULL)
5039 rpm->pm_cstate.cs_tlb = 0;
5040 }
5041
5042 restore_interrupts(oldirqstate);
5043 #endif /* ARM_MMU_EXTENDED */
5044
5045 block_userspace_access = 0;
5046
5047 #ifndef ARM_MMU_EXTENDED
5048 all_done:
5049 /*
5050 * The new pmap is resident. Make sure it's marked
5051 * as resident in the cache/TLB.
5052 */
5053 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5054 if (npm != pmap_kernel())
5055 ci->ci_pmap_lastuser = npm;
5056
5057 /* The old pmap is not longer active */
5058 if (opm != npm) {
5059 if (opm != NULL)
5060 opm->pm_activated = false;
5061
5062 /* But the new one is */
5063 npm->pm_activated = true;
5064 }
5065 ci->ci_pmap_cur = npm;
5066 #endif
5067 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5068 }
5069
5070 void
5071 pmap_deactivate(struct lwp *l)
5072 {
5073 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5074
5075 UVMHIST_FUNC(__func__);
5076 UVMHIST_CALLARGS(maphist, "l=%#jx (pm=%#jx)", (uintptr_t)l,
5077 (uintptr_t)pm, 0, 0);
5078
5079 #ifdef ARM_MMU_EXTENDED
5080 pmap_md_pdetab_deactivate(pm);
5081 #else
5082 /*
5083 * If the process is exiting, make sure pmap_activate() does
5084 * a full MMU context-switch and cache flush, which we might
5085 * otherwise skip. See PR port-arm/38950.
5086 */
5087 if (l->l_proc->p_sflag & PS_WEXIT)
5088 curcpu()->ci_lastlwp = NULL;
5089
5090 pm->pm_activated = false;
5091 #endif
5092 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5093 }
5094
5095 void
5096 pmap_update(pmap_t pm)
5097 {
5098
5099 UVMHIST_FUNC(__func__);
5100 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5101 pm->pm_remove_all, 0, 0);
5102
5103 #ifndef ARM_MMU_EXTENDED
5104 if (pm->pm_remove_all) {
5105 /*
5106 * Finish up the pmap_remove_all() optimisation by flushing
5107 * the TLB.
5108 */
5109 pmap_tlb_flushID(pm);
5110 pm->pm_remove_all = false;
5111 }
5112
5113 if (pmap_is_current(pm)) {
5114 /*
5115 * If we're dealing with a current userland pmap, move its L1
5116 * to the end of the LRU.
5117 */
5118 if (pm != pmap_kernel())
5119 pmap_use_l1(pm);
5120
5121 /*
5122 * We can assume we're done with frobbing the cache/tlb for
5123 * now. Make sure any future pmap ops don't skip cache/tlb
5124 * flushes.
5125 */
5126 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5127 }
5128 #else
5129
5130 kpreempt_disable();
5131 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5132 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5133 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5134 PMAP_COUNT(shootdown_ipis);
5135 }
5136 #endif
5137
5138 /*
5139 * If pmap_remove_all was called, we deactivated ourselves and released
5140 * our ASID. Now we have to reactivate ourselves.
5141 */
5142 if (__predict_false(pm->pm_remove_all)) {
5143 pm->pm_remove_all = false;
5144
5145 KASSERT(pm != pmap_kernel());
5146 pmap_md_pdetab_activate(pm, curlwp);
5147 }
5148
5149 if (arm_has_mpext_p)
5150 armreg_bpiallis_write(0);
5151 else
5152 armreg_bpiall_write(0);
5153
5154 kpreempt_enable();
5155
5156 KASSERTMSG(pm == pmap_kernel()
5157 || curcpu()->ci_pmap_cur != pm
5158 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5159 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5160 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5161 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5162 #endif
5163
5164 PMAPCOUNT(updates);
5165
5166 /*
5167 * make sure TLB/cache operations have completed.
5168 */
5169 cpu_cpwait();
5170 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5171 }
5172
5173 bool
5174 pmap_remove_all(pmap_t pm)
5175 {
5176
5177 /*
5178 * The vmspace described by this pmap is about to be torn down.
5179 * Until pmap_update() is called, UVM will only make calls
5180 * to pmap_remove(). We can make life much simpler by flushing
5181 * the cache now, and deferring TLB invalidation to pmap_update().
5182 */
5183 #ifdef PMAP_CACHE_VIVT
5184 pmap_cache_wbinv_all(pm, PVF_EXEC);
5185 #endif
5186 #ifdef ARM_MMU_EXTENDED
5187 #ifdef MULTIPROCESSOR
5188 struct cpu_info * const ci = curcpu();
5189 // This should be the last CPU with this pmap onproc
5190 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5191 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5192 #endif
5193 pmap_tlb_asid_deactivate(pm);
5194 #ifdef MULTIPROCESSOR
5195 KASSERT(kcpuset_iszero(pm->pm_onproc));
5196 #endif
5197
5198 pmap_tlb_asid_release_all(pm);
5199 #endif
5200 pm->pm_remove_all = true;
5201 return false;
5202 }
5203
5204 /*
5205 * Retire the given physical map from service.
5206 * Should only be called if the map contains no valid mappings.
5207 */
5208 void
5209 pmap_destroy(pmap_t pm)
5210 {
5211 UVMHIST_FUNC(__func__);
5212 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5213 pm ? pm->pm_remove_all : 0, 0, 0);
5214
5215 if (pm == NULL)
5216 return;
5217
5218 if (pm->pm_remove_all) {
5219 #ifdef ARM_MMU_EXTENDED
5220 pmap_tlb_asid_release_all(pm);
5221 #else
5222 pmap_tlb_flushID(pm);
5223 #endif
5224 pm->pm_remove_all = false;
5225 }
5226
5227 /*
5228 * Drop reference count
5229 */
5230 if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
5231 #ifndef ARM_MMU_EXTENDED
5232 if (pmap_is_current(pm)) {
5233 if (pm != pmap_kernel())
5234 pmap_use_l1(pm);
5235 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5236 }
5237 #endif
5238 return;
5239 }
5240
5241 /*
5242 * reference count is zero, free pmap resources and then free pmap.
5243 */
5244
5245 #ifndef ARM_HAS_VBAR
5246 if (vector_page < KERNEL_BASE) {
5247 KDASSERT(!pmap_is_current(pm));
5248
5249 /* Remove the vector page mapping */
5250 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5251 pmap_update(pm);
5252 }
5253 #endif
5254
5255 pmap_free_l1(pm);
5256
5257 #ifdef ARM_MMU_EXTENDED
5258 #ifdef MULTIPROCESSOR
5259 kcpuset_destroy(pm->pm_active);
5260 kcpuset_destroy(pm->pm_onproc);
5261 #endif
5262 #else
5263 struct cpu_info * const ci = curcpu();
5264 if (ci->ci_pmap_lastuser == pm)
5265 ci->ci_pmap_lastuser = NULL;
5266 #endif
5267
5268 mutex_destroy(&pm->pm_lock);
5269 pool_cache_put(&pmap_cache, pm);
5270 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5271 }
5272
5273
5274 /*
5275 * void pmap_reference(pmap_t pm)
5276 *
5277 * Add a reference to the specified pmap.
5278 */
5279 void
5280 pmap_reference(pmap_t pm)
5281 {
5282
5283 if (pm == NULL)
5284 return;
5285
5286 #ifndef ARM_MMU_EXTENDED
5287 pmap_use_l1(pm);
5288 #endif
5289
5290 atomic_inc_uint(&pm->pm_refs);
5291 }
5292
5293 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5294
5295 static struct evcnt pmap_prefer_nochange_ev =
5296 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5297 static struct evcnt pmap_prefer_change_ev =
5298 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5299
5300 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5301 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5302
5303 void
5304 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5305 {
5306 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5307 vaddr_t va = *vap;
5308 vaddr_t diff = (hint - va) & mask;
5309 if (diff == 0) {
5310 pmap_prefer_nochange_ev.ev_count++;
5311 } else {
5312 pmap_prefer_change_ev.ev_count++;
5313 if (__predict_false(td))
5314 va -= mask + 1;
5315 *vap = va + diff;
5316 }
5317 }
5318 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5319
5320 /*
5321 * pmap_zero_page()
5322 *
5323 * Zero a given physical page by mapping it at a page hook point.
5324 * In doing the zero page op, the page we zero is mapped cachable, as with
5325 * StrongARM accesses to non-cached pages are non-burst making writing
5326 * _any_ bulk data very slow.
5327 */
5328 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5329 void
5330 pmap_zero_page_generic(paddr_t pa)
5331 {
5332 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5333 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5334 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5335 #endif
5336 #if defined(PMAP_CACHE_VIPT)
5337 /* Choose the last page color it had, if any */
5338 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5339 #else
5340 const vsize_t va_offset = 0;
5341 #endif
5342 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5343 /*
5344 * Is this page mapped at its natural color?
5345 * If we have all of memory mapped, then just convert PA to VA.
5346 */
5347 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5348 || va_offset == (pa & arm_cache_prefer_mask);
5349 const vaddr_t vdstp = okcolor
5350 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5351 : cpu_cdstp(va_offset);
5352 #else
5353 const bool okcolor = false;
5354 const vaddr_t vdstp = cpu_cdstp(va_offset);
5355 #endif
5356 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5357
5358
5359 #ifdef DEBUG
5360 if (!SLIST_EMPTY(&md->pvh_list))
5361 panic("pmap_zero_page: page has mappings");
5362 #endif
5363
5364 KDASSERT((pa & PGOFSET) == 0);
5365
5366 if (!okcolor) {
5367 /*
5368 * Hook in the page, zero it, and purge the cache for that
5369 * zeroed page. Invalidate the TLB as needed.
5370 */
5371 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5372 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5373 l2pte_set(ptep, npte, 0);
5374 PTE_SYNC(ptep);
5375 cpu_tlb_flushD_SE(vdstp);
5376 cpu_cpwait();
5377 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5378 && !defined(ARM_MMU_EXTENDED)
5379 /*
5380 * If we are direct-mapped and our color isn't ok, then before
5381 * we bzero the page invalidate its contents from the cache and
5382 * reset the color to its natural color.
5383 */
5384 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5385 md->pvh_attrs &= ~arm_cache_prefer_mask;
5386 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5387 #endif
5388 }
5389 bzero_page(vdstp);
5390 if (!okcolor) {
5391 /*
5392 * Unmap the page.
5393 */
5394 l2pte_reset(ptep);
5395 PTE_SYNC(ptep);
5396 cpu_tlb_flushD_SE(vdstp);
5397 #ifdef PMAP_CACHE_VIVT
5398 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5399 #endif
5400 }
5401 #ifdef PMAP_CACHE_VIPT
5402 /*
5403 * This page is now cache resident so it now has a page color.
5404 * Any contents have been obliterated so clear the EXEC flag.
5405 */
5406 #ifndef ARM_MMU_EXTENDED
5407 if (!pmap_is_page_colored_p(md)) {
5408 PMAPCOUNT(vac_color_new);
5409 md->pvh_attrs |= PVF_COLORED;
5410 }
5411 md->pvh_attrs |= PVF_DIRTY;
5412 #endif
5413 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5414 md->pvh_attrs &= ~PVF_EXEC;
5415 PMAPCOUNT(exec_discarded_zero);
5416 }
5417 #endif
5418 }
5419 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5420
5421 #if ARM_MMU_XSCALE == 1
5422 void
5423 pmap_zero_page_xscale(paddr_t pa)
5424 {
5425 #ifdef DEBUG
5426 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5427 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5428
5429 if (!SLIST_EMPTY(&md->pvh_list))
5430 panic("pmap_zero_page: page has mappings");
5431 #endif
5432
5433 KDASSERT((pa & PGOFSET) == 0);
5434
5435 /*
5436 * Hook in the page, zero it, and purge the cache for that
5437 * zeroed page. Invalidate the TLB as needed.
5438 */
5439
5440 pt_entry_t npte = L2_S_PROTO | pa |
5441 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5442 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5443 l2pte_set(cdst_pte, npte, 0);
5444 PTE_SYNC(cdst_pte);
5445 cpu_tlb_flushD_SE(cdstp);
5446 cpu_cpwait();
5447 bzero_page(cdstp);
5448 xscale_cache_clean_minidata();
5449 l2pte_reset(cdst_pte);
5450 PTE_SYNC(cdst_pte);
5451 }
5452 #endif /* ARM_MMU_XSCALE == 1 */
5453
5454 /* pmap_pageidlezero()
5455 *
5456 * The same as above, except that we assume that the page is not
5457 * mapped. This means we never have to flush the cache first. Called
5458 * from the idle loop.
5459 */
5460 bool
5461 pmap_pageidlezero(paddr_t pa)
5462 {
5463 bool rv = true;
5464 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5465 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5466 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5467 #endif
5468 #ifdef PMAP_CACHE_VIPT
5469 /* Choose the last page color it had, if any */
5470 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5471 #else
5472 const vsize_t va_offset = 0;
5473 #endif
5474 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5475 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5476 || va_offset == (pa & arm_cache_prefer_mask);
5477 const vaddr_t vdstp = okcolor
5478 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5479 : cpu_cdstp(va_offset);
5480 #else
5481 const bool okcolor = false;
5482 const vaddr_t vdstp = cpu_cdstp(va_offset);
5483 #endif
5484 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5485
5486
5487 #ifdef DEBUG
5488 if (!SLIST_EMPTY(&md->pvh_list))
5489 panic("pmap_pageidlezero: page has mappings");
5490 #endif
5491
5492 KDASSERT((pa & PGOFSET) == 0);
5493
5494 if (!okcolor) {
5495 /*
5496 * Hook in the page, zero it, and purge the cache for that
5497 * zeroed page. Invalidate the TLB as needed.
5498 */
5499 const pt_entry_t npte = L2_S_PROTO | pa |
5500 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5501 l2pte_set(ptep, npte, 0);
5502 PTE_SYNC(ptep);
5503 cpu_tlb_flushD_SE(vdstp);
5504 cpu_cpwait();
5505 }
5506
5507 uint64_t *ptr = (uint64_t *)vdstp;
5508 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5509 if (sched_curcpu_runnable_p() != 0) {
5510 /*
5511 * A process has become ready. Abort now,
5512 * so we don't keep it waiting while we
5513 * do slow memory access to finish this
5514 * page.
5515 */
5516 rv = false;
5517 break;
5518 }
5519 *ptr++ = 0;
5520 }
5521
5522 #ifdef PMAP_CACHE_VIVT
5523 if (rv)
5524 /*
5525 * if we aborted we'll rezero this page again later so don't
5526 * purge it unless we finished it
5527 */
5528 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5529 #elif defined(PMAP_CACHE_VIPT)
5530 /*
5531 * This page is now cache resident so it now has a page color.
5532 * Any contents have been obliterated so clear the EXEC flag.
5533 */
5534 #ifndef ARM_MMU_EXTENDED
5535 if (!pmap_is_page_colored_p(md)) {
5536 PMAPCOUNT(vac_color_new);
5537 md->pvh_attrs |= PVF_COLORED;
5538 }
5539 #endif
5540 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5541 md->pvh_attrs &= ~PVF_EXEC;
5542 PMAPCOUNT(exec_discarded_zero);
5543 }
5544 #endif
5545 /*
5546 * Unmap the page.
5547 */
5548 if (!okcolor) {
5549 l2pte_reset(ptep);
5550 PTE_SYNC(ptep);
5551 cpu_tlb_flushD_SE(vdstp);
5552 }
5553
5554 return rv;
5555 }
5556
5557 /*
5558 * pmap_copy_page()
5559 *
5560 * Copy one physical page into another, by mapping the pages into
5561 * hook points. The same comment regarding cachability as in
5562 * pmap_zero_page also applies here.
5563 */
5564 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5565 void
5566 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5567 {
5568 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5569 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5570 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5571 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5572 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5573 #endif
5574 #ifdef PMAP_CACHE_VIPT
5575 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5576 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5577 #else
5578 const vsize_t src_va_offset = 0;
5579 const vsize_t dst_va_offset = 0;
5580 #endif
5581 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5582 /*
5583 * Is this page mapped at its natural color?
5584 * If we have all of memory mapped, then just convert PA to VA.
5585 */
5586 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5587 || src_va_offset == (src & arm_cache_prefer_mask);
5588 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5589 || dst_va_offset == (dst & arm_cache_prefer_mask);
5590 const vaddr_t vsrcp = src_okcolor
5591 ? pmap_direct_mapped_phys(src, &src_okcolor,
5592 cpu_csrcp(src_va_offset))
5593 : cpu_csrcp(src_va_offset);
5594 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5595 cpu_cdstp(dst_va_offset));
5596 #else
5597 const bool src_okcolor = false;
5598 const bool dst_okcolor = false;
5599 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5600 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5601 #endif
5602 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5603 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5604
5605 #ifdef DEBUG
5606 if (!SLIST_EMPTY(&dst_md->pvh_list))
5607 panic("pmap_copy_page: dst page has mappings");
5608 #endif
5609
5610 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5611 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5612 #endif
5613 KDASSERT((src & PGOFSET) == 0);
5614 KDASSERT((dst & PGOFSET) == 0);
5615
5616 /*
5617 * Clean the source page. Hold the source page's lock for
5618 * the duration of the copy so that no other mappings can
5619 * be created while we have a potentially aliased mapping.
5620 */
5621 #ifdef PMAP_CACHE_VIVT
5622 pmap_acquire_page_lock(src_md);
5623 (void) pmap_clean_page(src_md, true);
5624 pmap_release_page_lock(src_md);
5625 #endif
5626
5627 /*
5628 * Map the pages into the page hook points, copy them, and purge
5629 * the cache for the appropriate page. Invalidate the TLB
5630 * as required.
5631 */
5632 if (!src_okcolor) {
5633 const pt_entry_t nsrc_pte = L2_S_PROTO
5634 | src
5635 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5636 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5637 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5638 | pte_l2_s_cache_mode
5639 #endif
5640 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5641 l2pte_set(src_ptep, nsrc_pte, 0);
5642 PTE_SYNC(src_ptep);
5643 cpu_tlb_flushD_SE(vsrcp);
5644 cpu_cpwait();
5645 }
5646 if (!dst_okcolor) {
5647 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5648 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5649 l2pte_set(dst_ptep, ndst_pte, 0);
5650 PTE_SYNC(dst_ptep);
5651 cpu_tlb_flushD_SE(vdstp);
5652 cpu_cpwait();
5653 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5654 /*
5655 * If we are direct-mapped and our color isn't ok, then before
5656 * we bcopy to the new page invalidate its contents from the
5657 * cache and reset its color to its natural color.
5658 */
5659 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5660 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5661 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5662 #endif
5663 }
5664 bcopy_page(vsrcp, vdstp);
5665 #ifdef PMAP_CACHE_VIVT
5666 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5667 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5668 #endif
5669 /*
5670 * Unmap the pages.
5671 */
5672 if (!src_okcolor) {
5673 l2pte_reset(src_ptep);
5674 PTE_SYNC(src_ptep);
5675 cpu_tlb_flushD_SE(vsrcp);
5676 cpu_cpwait();
5677 }
5678 if (!dst_okcolor) {
5679 l2pte_reset(dst_ptep);
5680 PTE_SYNC(dst_ptep);
5681 cpu_tlb_flushD_SE(vdstp);
5682 cpu_cpwait();
5683 }
5684 #ifdef PMAP_CACHE_VIPT
5685 /*
5686 * Now that the destination page is in the cache, mark it as colored.
5687 * If this was an exec page, discard it.
5688 */
5689 pmap_acquire_page_lock(dst_md);
5690 #ifndef ARM_MMU_EXTENDED
5691 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5692 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5693 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5694 }
5695 if (!pmap_is_page_colored_p(dst_md)) {
5696 PMAPCOUNT(vac_color_new);
5697 dst_md->pvh_attrs |= PVF_COLORED;
5698 }
5699 dst_md->pvh_attrs |= PVF_DIRTY;
5700 #endif
5701 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5702 dst_md->pvh_attrs &= ~PVF_EXEC;
5703 PMAPCOUNT(exec_discarded_copy);
5704 }
5705 pmap_release_page_lock(dst_md);
5706 #endif
5707 }
5708 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5709
5710 #if ARM_MMU_XSCALE == 1
5711 void
5712 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5713 {
5714 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5715 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5716 #ifdef DEBUG
5717 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5718
5719 if (!SLIST_EMPTY(&dst_md->pvh_list))
5720 panic("pmap_copy_page: dst page has mappings");
5721 #endif
5722
5723 KDASSERT((src & PGOFSET) == 0);
5724 KDASSERT((dst & PGOFSET) == 0);
5725
5726 /*
5727 * Clean the source page. Hold the source page's lock for
5728 * the duration of the copy so that no other mappings can
5729 * be created while we have a potentially aliased mapping.
5730 */
5731 #ifdef PMAP_CACHE_VIVT
5732 pmap_acquire_page_lock(src_md);
5733 (void) pmap_clean_page(src_md, true);
5734 pmap_release_page_lock(src_md);
5735 #endif
5736
5737 /*
5738 * Map the pages into the page hook points, copy them, and purge
5739 * the cache for the appropriate page. Invalidate the TLB
5740 * as required.
5741 */
5742 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5743 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5744 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5745 l2pte_set(csrc_pte, nsrc_pte, 0);
5746 PTE_SYNC(csrc_pte);
5747
5748 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5749 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5750 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5751 l2pte_set(cdst_pte, ndst_pte, 0);
5752 PTE_SYNC(cdst_pte);
5753
5754 cpu_tlb_flushD_SE(csrcp);
5755 cpu_tlb_flushD_SE(cdstp);
5756 cpu_cpwait();
5757 bcopy_page(csrcp, cdstp);
5758 xscale_cache_clean_minidata();
5759 l2pte_reset(csrc_pte);
5760 l2pte_reset(cdst_pte);
5761 PTE_SYNC(csrc_pte);
5762 PTE_SYNC(cdst_pte);
5763 }
5764 #endif /* ARM_MMU_XSCALE == 1 */
5765
5766 /*
5767 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5768 *
5769 * Return the start and end addresses of the kernel's virtual space.
5770 * These values are setup in pmap_bootstrap and are updated as pages
5771 * are allocated.
5772 */
5773 void
5774 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5775 {
5776 *start = virtual_avail;
5777 *end = virtual_end;
5778 }
5779
5780 /*
5781 * Helper function for pmap_grow_l2_bucket()
5782 */
5783 static inline int
5784 pmap_grow_map(vaddr_t va, paddr_t *pap)
5785 {
5786 paddr_t pa;
5787
5788 KASSERT((va & PGOFSET) == 0);
5789
5790 if (uvm.page_init_done == false) {
5791 #ifdef PMAP_STEAL_MEMORY
5792 pv_addr_t pv;
5793 pmap_boot_pagealloc(PAGE_SIZE,
5794 #ifdef PMAP_CACHE_VIPT
5795 arm_cache_prefer_mask,
5796 va & arm_cache_prefer_mask,
5797 #else
5798 0, 0,
5799 #endif
5800 &pv);
5801 pa = pv.pv_pa;
5802 #else
5803 if (uvm_page_physget(&pa) == false)
5804 return 1;
5805 #endif /* PMAP_STEAL_MEMORY */
5806 } else {
5807 struct vm_page *pg;
5808 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5809 if (pg == NULL)
5810 return 1;
5811 pa = VM_PAGE_TO_PHYS(pg);
5812 /*
5813 * This new page must not have any mappings.
5814 */
5815 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5816 KASSERT(SLIST_EMPTY(&md->pvh_list));
5817 }
5818
5819 /*
5820 * Enter it via pmap_kenter_pa and let that routine do the hard work.
5821 */
5822 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
5823 PMAP_KMPAGE | PMAP_PTE);
5824
5825 if (pap)
5826 *pap = pa;
5827
5828 PMAPCOUNT(pt_mappings);
5829
5830 const pmap_t kpm __diagused = pmap_kernel();
5831 struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
5832 KASSERT(l2b != NULL);
5833
5834 pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
5835 const pt_entry_t pte __diagused = *ptep;
5836 KASSERT(l2pte_valid_p(pte));
5837 KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5838
5839 memset((void *)va, 0, PAGE_SIZE);
5840
5841 return 0;
5842 }
5843
5844 /*
5845 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5846 * used by pmap_growkernel().
5847 */
5848 static inline struct l2_bucket *
5849 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5850 {
5851 const size_t l1slot = l1pte_index(va);
5852 struct l2_dtable *l2;
5853 vaddr_t nva;
5854
5855 CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
5856 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5857 /*
5858 * No mapping at this address, as there is
5859 * no entry in the L1 table.
5860 * Need to allocate a new l2_dtable.
5861 */
5862 nva = pmap_kernel_l2dtable_kva;
5863 if ((nva & PGOFSET) == 0) {
5864 /*
5865 * Need to allocate a backing page
5866 */
5867 if (pmap_grow_map(nva, NULL))
5868 return NULL;
5869 }
5870
5871 l2 = (struct l2_dtable *)nva;
5872 nva += sizeof(struct l2_dtable);
5873
5874 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5875 /*
5876 * The new l2_dtable straddles a page boundary.
5877 * Map in another page to cover it.
5878 */
5879 if (pmap_grow_map(nva & ~PGOFSET, NULL))
5880 return NULL;
5881 }
5882
5883 pmap_kernel_l2dtable_kva = nva;
5884
5885 /*
5886 * Link it into the parent pmap
5887 */
5888 pm->pm_l2[L2_IDX(l1slot)] = l2;
5889 }
5890
5891 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5892
5893 /*
5894 * Fetch pointer to the L2 page table associated with the address.
5895 */
5896 if (l2b->l2b_kva == NULL) {
5897 pt_entry_t *ptep;
5898
5899 /*
5900 * No L2 page table has been allocated. Chances are, this
5901 * is because we just allocated the l2_dtable, above.
5902 */
5903 nva = pmap_kernel_l2ptp_kva;
5904 ptep = (pt_entry_t *)nva;
5905 if ((nva & PGOFSET) == 0) {
5906 /*
5907 * Need to allocate a backing page
5908 */
5909 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5910 return NULL;
5911 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5912 }
5913
5914 l2->l2_occupancy++;
5915 l2b->l2b_kva = ptep;
5916 l2b->l2b_l1slot = l1slot;
5917 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5918
5919 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5920 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5921 }
5922
5923 return l2b;
5924 }
5925
5926 vaddr_t
5927 pmap_growkernel(vaddr_t maxkvaddr)
5928 {
5929 UVMHIST_FUNC(__func__);
5930 UVMHIST_CALLARGS(maphist, "growing kernel from %#jx to %#jx\n",
5931 pmap_curmaxkvaddr, maxkvaddr, 0, 0);
5932
5933 pmap_t kpm = pmap_kernel();
5934 #ifndef ARM_MMU_EXTENDED
5935 struct l1_ttable *l1;
5936 #endif
5937 int s;
5938
5939 if (maxkvaddr <= pmap_curmaxkvaddr)
5940 goto out; /* we are OK */
5941
5942 KDASSERT(maxkvaddr <= virtual_end);
5943
5944 /*
5945 * whoops! we need to add kernel PTPs
5946 */
5947
5948 s = splvm(); /* to be safe */
5949 mutex_enter(&kpm_lock);
5950
5951 /* Map 1MB at a time */
5952 size_t l1slot = l1pte_index(pmap_curmaxkvaddr);
5953 #ifdef ARM_MMU_EXTENDED
5954 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5955 pd_entry_t *pdep = spdep;
5956 #endif
5957 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5958 #ifdef ARM_MMU_EXTENDED
5959 pdep++,
5960 #endif
5961 l1slot++) {
5962 struct l2_bucket *l2b =
5963 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5964 KASSERT(l2b != NULL);
5965
5966 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5967 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5968 #ifdef ARM_MMU_EXTENDED
5969 KASSERT(*pdep == 0);
5970 l1pte_setone(pdep, npde);
5971 #else
5972 /* Distribute new L1 entry to all other L1s */
5973 SLIST_FOREACH(l1, &l1_list, l1_link) {
5974 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5975 l1pte_setone(pdep, npde);
5976 PDE_SYNC(pdep);
5977 }
5978 #endif
5979 }
5980 #ifdef ARM_MMU_EXTENDED
5981 PDE_SYNC_RANGE(spdep, pdep - spdep);
5982 #endif
5983
5984 #ifdef PMAP_CACHE_VIVT
5985 /*
5986 * flush out the cache, expensive but growkernel will happen so
5987 * rarely
5988 */
5989 cpu_dcache_wbinv_all();
5990 cpu_tlb_flushD();
5991 cpu_cpwait();
5992 #endif
5993
5994 mutex_exit(&kpm_lock);
5995 splx(s);
5996
5997 out:
5998 return pmap_curmaxkvaddr;
5999 }
6000
6001 /************************ Utility routines ****************************/
6002
6003 #ifndef ARM_HAS_VBAR
6004 /*
6005 * vector_page_setprot:
6006 *
6007 * Manipulate the protection of the vector page.
6008 */
6009 void
6010 vector_page_setprot(int prot)
6011 {
6012 struct l2_bucket *l2b;
6013 pt_entry_t *ptep;
6014
6015 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
6016 /*
6017 * If we are using VBAR to use the vectors in the kernel, then it's
6018 * already mapped in the kernel text so no need to anything here.
6019 */
6020 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6021 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6022 return;
6023 }
6024 #endif
6025
6026 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6027 KASSERT(l2b != NULL);
6028
6029 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6030
6031 const pt_entry_t opte = *ptep;
6032 #ifdef ARM_MMU_EXTENDED
6033 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6034 | L2_S_PROT(PTE_KERNEL, prot);
6035 #else
6036 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6037 | L2_S_PROT(PTE_KERNEL, prot);
6038 #endif
6039 l2pte_set(ptep, npte, opte);
6040 PTE_SYNC(ptep);
6041 cpu_tlb_flushD_SE(vector_page);
6042 cpu_cpwait();
6043 }
6044 #endif
6045
6046 /*
6047 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6048 * Returns true if the mapping exists, else false.
6049 *
6050 * NOTE: This function is only used by a couple of arm-specific modules.
6051 * It is not safe to take any pmap locks here, since we could be right
6052 * in the middle of debugging the pmap anyway...
6053 *
6054 * It is possible for this routine to return false even though a valid
6055 * mapping does exist. This is because we don't lock, so the metadata
6056 * state may be inconsistent.
6057 *
6058 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6059 * a "section" mapping.
6060 */
6061 bool
6062 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6063 {
6064 struct l2_dtable *l2;
6065 pd_entry_t *pdep, pde;
6066 pt_entry_t *ptep;
6067 u_short l1slot;
6068
6069 if (pm->pm_l1 == NULL)
6070 return false;
6071
6072 l1slot = l1pte_index(va);
6073 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6074 pde = *pdep;
6075
6076 if (l1pte_section_p(pde)) {
6077 *ptp = NULL;
6078 return true;
6079 }
6080
6081 l2 = pm->pm_l2[L2_IDX(l1slot)];
6082 if (l2 == NULL ||
6083 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6084 return false;
6085 }
6086
6087 *ptp = &ptep[l2pte_index(va)];
6088 return true;
6089 }
6090
6091 bool
6092 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6093 {
6094
6095 if (pm->pm_l1 == NULL)
6096 return false;
6097
6098 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6099
6100 return true;
6101 }
6102
6103 /************************ Bootstrapping routines ****************************/
6104
6105 #ifndef ARM_MMU_EXTENDED
6106 static void
6107 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6108 {
6109 int i;
6110
6111 l1->l1_kva = l1pt;
6112 l1->l1_domain_use_count = 0;
6113 l1->l1_domain_first = 0;
6114
6115 for (i = 0; i < PMAP_DOMAINS; i++)
6116 l1->l1_domain_free[i] = i + 1;
6117
6118 /*
6119 * Copy the kernel's L1 entries to each new L1.
6120 */
6121 if (pmap_initialized)
6122 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6123
6124 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6125 &l1->l1_physaddr) == false)
6126 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6127
6128 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6129 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6130 }
6131 #endif /* !ARM_MMU_EXTENDED */
6132
6133 /*
6134 * pmap_bootstrap() is called from the board-specific initarm() routine
6135 * once the kernel L1/L2 descriptors tables have been set up.
6136 *
6137 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6138 * spread over a number of disparate files/functions.
6139 *
6140 * We are passed the following parameters
6141 * - vstart
6142 * 1MB-aligned start of managed kernel virtual memory.
6143 * - vend
6144 * 1MB-aligned end of managed kernel virtual memory.
6145 *
6146 * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6147 * struct l2_dtable) necessary to track kernel mappings.
6148 */
6149 #define PMAP_STATIC_L2_SIZE 16
6150 void
6151 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6152 {
6153 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6154 #ifndef ARM_MMU_EXTENDED
6155 static struct l1_ttable static_l1;
6156 struct l1_ttable *l1 = &static_l1;
6157 #endif
6158 struct l2_dtable *l2;
6159 struct l2_bucket *l2b;
6160 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6161 pmap_t pm = pmap_kernel();
6162 pt_entry_t *ptep;
6163 paddr_t pa;
6164 vsize_t size;
6165 int nptes, l2idx, l2next = 0;
6166
6167 #ifdef ARM_MMU_EXTENDED
6168 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6169 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6170 #endif
6171
6172 VPRINTF("kpm ");
6173 /*
6174 * Initialise the kernel pmap object
6175 */
6176 curcpu()->ci_pmap_cur = pm;
6177 #ifdef ARM_MMU_EXTENDED
6178 pm->pm_l1 = l1pt;
6179 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6180 VPRINTF("tlb0 ");
6181 pmap_tlb_info_init(&pmap_tlb0_info);
6182 #ifdef MULTIPROCESSOR
6183 VPRINTF("kcpusets ");
6184 pm->pm_onproc = kcpuset_running;
6185 pm->pm_active = kcpuset_running;
6186 #endif
6187 #else
6188 pm->pm_l1 = l1;
6189 #endif
6190
6191 VPRINTF("locks ");
6192 /*
6193 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6194 * context, so its locks have to be at IPL_VM
6195 */
6196 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6197 mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6198 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
6199 pm->pm_refs = 1;
6200
6201 VPRINTF("l1pt ");
6202 /*
6203 * Scan the L1 translation table created by initarm() and create
6204 * the required metadata for all valid mappings found in it.
6205 */
6206 for (size_t l1slot = 0;
6207 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6208 l1slot++) {
6209 pd_entry_t pde = l1pt[l1slot];
6210
6211 /*
6212 * We're only interested in Coarse mappings.
6213 * pmap_extract() can deal with section mappings without
6214 * recourse to checking L2 metadata.
6215 */
6216 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6217 continue;
6218
6219 /*
6220 * Lookup the KVA of this L2 descriptor table
6221 */
6222 pa = l1pte_pa(pde);
6223 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6224 if (ptep == NULL) {
6225 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6226 (u_int)l1slot << L1_S_SHIFT, pa);
6227 }
6228
6229 /*
6230 * Fetch the associated L2 metadata structure.
6231 * Allocate a new one if necessary.
6232 */
6233 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6234 if (l2next == PMAP_STATIC_L2_SIZE)
6235 panic("pmap_bootstrap: out of static L2s");
6236 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6237 }
6238
6239 /*
6240 * One more L1 slot tracked...
6241 */
6242 l2->l2_occupancy++;
6243
6244 /*
6245 * Fill in the details of the L2 descriptor in the
6246 * appropriate bucket.
6247 */
6248 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6249 l2b->l2b_kva = ptep;
6250 l2b->l2b_pa = pa;
6251 l2b->l2b_l1slot = l1slot;
6252
6253 /*
6254 * Establish an initial occupancy count for this descriptor
6255 */
6256 for (l2idx = 0;
6257 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6258 l2idx++) {
6259 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6260 l2b->l2b_occupancy++;
6261 }
6262 }
6263
6264 /*
6265 * Make sure the descriptor itself has the correct cache mode.
6266 * If not, fix it, but whine about the problem. Port-meisters
6267 * should consider this a clue to fix up their initarm()
6268 * function. :)
6269 */
6270 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6271 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6272 "L2 pte @ %p\n", ptep);
6273 }
6274 }
6275
6276 VPRINTF("cache(l1pt) ");
6277 /*
6278 * Ensure the primary (kernel) L1 has the correct cache mode for
6279 * a page table. Bitch if it is not correctly set.
6280 */
6281 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6282 L1_TABLE_SIZE / L2_S_SIZE)) {
6283 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6284 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6285 }
6286
6287 #ifdef PMAP_CACHE_VIVT
6288 cpu_dcache_wbinv_all();
6289 cpu_tlb_flushID();
6290 cpu_cpwait();
6291 #endif
6292
6293 /*
6294 * now we allocate the "special" VAs which are used for tmp mappings
6295 * by the pmap (and other modules). we allocate the VAs by advancing
6296 * virtual_avail (note that there are no pages mapped at these VAs).
6297 *
6298 * Managed KVM space start from wherever initarm() tells us.
6299 */
6300 virtual_avail = vstart;
6301 virtual_end = vend;
6302
6303 VPRINTF("specials ");
6304
6305 pmap_alloc_specials(&virtual_avail, 1, &memhook, NULL);
6306
6307 #ifdef PMAP_CACHE_VIPT
6308 /*
6309 * If we have a VIPT cache, we need one page/pte per possible alias
6310 * page so we won't violate cache aliasing rules.
6311 */
6312 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6313 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6314 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6315 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6316 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6317 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6318 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6319 }
6320 #else
6321 nptes = PAGE_SIZE / L2_S_SIZE;
6322 #endif
6323 #ifdef MULTIPROCESSOR
6324 cnptes = nptes;
6325 nptes *= arm_cpu_max;
6326 #endif
6327 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6328 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6329 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6330 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6331 if (msgbufaddr == NULL) {
6332 pmap_alloc_specials(&virtual_avail,
6333 round_page(MSGBUFSIZE) / PAGE_SIZE,
6334 (void *)&msgbufaddr, NULL);
6335 }
6336
6337 /*
6338 * Allocate a range of kernel virtual address space to be used
6339 * for L2 descriptor tables and metadata allocation in
6340 * pmap_growkernel().
6341 */
6342 size = howmany(virtual_end - pmap_curmaxkvaddr, L1_S_SIZE);
6343 pmap_alloc_specials(&virtual_avail,
6344 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6345 &pmap_kernel_l2ptp_kva, NULL);
6346
6347 size = howmany(size, L2_BUCKET_SIZE);
6348 pmap_alloc_specials(&virtual_avail,
6349 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6350 &pmap_kernel_l2dtable_kva, NULL);
6351
6352 #ifndef ARM_MMU_EXTENDED
6353 /*
6354 * init the static-global locks and global pmap list.
6355 */
6356 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6357
6358 /*
6359 * We can now initialise the first L1's metadata.
6360 */
6361 SLIST_INIT(&l1_list);
6362 TAILQ_INIT(&l1_lru_list);
6363 pmap_init_l1(l1, l1pt);
6364 #endif /* ARM_MMU_EXTENDED */
6365
6366 #ifndef ARM_HAS_VBAR
6367 /* Set up vector page L1 details, if necessary */
6368 if (vector_page < KERNEL_BASE) {
6369 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6370 l2b = pmap_get_l2_bucket(pm, vector_page);
6371 KDASSERT(l2b != NULL);
6372 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6373 L1_C_DOM(pmap_domain(pm));
6374 } else
6375 pm->pm_pl1vec = NULL;
6376 #endif
6377
6378 VPRINTF("pools ");
6379 /*
6380 * Initialize the pmap cache
6381 */
6382 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6383 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6384
6385 /*
6386 * Initialize the pv pool.
6387 */
6388 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6389 &pmap_bootstrap_pv_allocator, IPL_NONE);
6390
6391 /*
6392 * Initialize the L2 dtable pool and cache.
6393 */
6394 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6395 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6396
6397 /*
6398 * Initialise the L2 descriptor table pool and cache
6399 */
6400 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6401 L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6402 pmap_l2ptp_ctor, NULL, NULL);
6403
6404 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6405
6406 cpu_dcache_wbinv_all();
6407 }
6408
6409 static bool
6410 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6411 {
6412 #ifdef ARM_MMU_EXTENDED
6413 return false;
6414 #else
6415 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6416 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6417 return false;
6418
6419 const vaddr_t eva = va + nptes * PAGE_SIZE;
6420 int rv = 0;
6421
6422 while (va < eva) {
6423 /*
6424 * Make sure the descriptor itself has the correct cache mode
6425 */
6426 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6427 pd_entry_t pde = *pdep;
6428
6429 if (l1pte_section_p(pde)) {
6430 KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6431 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6432 *pdep = (pde & ~L1_S_CACHE_MASK) |
6433 pte_l1_s_cache_mode_pt;
6434 PDE_SYNC(pdep);
6435 cpu_dcache_wbinv_range((vaddr_t)pdep,
6436 sizeof(*pdep));
6437 rv = 1;
6438 }
6439 return rv;
6440 }
6441 vaddr_t pa = l1pte_pa(pde);
6442 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6443 if (ptep == NULL)
6444 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6445
6446 ptep += l2pte_index(va);
6447 const pt_entry_t opte = *ptep;
6448 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6449 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6450 | pte_l2_s_cache_mode_pt;
6451 l2pte_set(ptep, npte, opte);
6452 PTE_SYNC(ptep);
6453 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6454 rv = 1;
6455 }
6456 va += PAGE_SIZE;
6457 }
6458
6459 return rv;
6460 #endif
6461 }
6462
6463 static void
6464 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6465 {
6466 vaddr_t va = *availp;
6467 struct l2_bucket *l2b;
6468
6469 if (ptep) {
6470 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6471 if (l2b == NULL)
6472 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6473
6474 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6475 }
6476
6477 *vap = va;
6478 *availp = va + (PAGE_SIZE * pages);
6479 }
6480
6481 void
6482 pmap_init(void)
6483 {
6484
6485 /*
6486 * Set the available memory vars - These do not map to real memory
6487 * addresses and cannot as the physical memory is fragmented.
6488 * They are used by ps for %mem calculations.
6489 * One could argue whether this should be the entire memory or just
6490 * the memory that is useable in a user process.
6491 */
6492 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6493 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6494
6495 /*
6496 * Now we need to free enough pv_entry structures to allow us to get
6497 * the kmem_map/kmem_object allocated and inited (done after this
6498 * function is finished). to do this we allocate one bootstrap page out
6499 * of kernel_map and use it to provide an initial pool of pv_entry
6500 * structures. we never free this page.
6501 */
6502 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6503
6504 #ifdef ARM_MMU_EXTENDED
6505 /*
6506 * Initialise the L1 pool and cache.
6507 */
6508
6509 pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
6510 0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
6511 NULL, NULL);
6512
6513 int error __diagused = pmap_maxproc_set(maxproc);
6514 KASSERT(error == 0);
6515
6516 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6517 #endif
6518
6519 pmap_initialized = true;
6520 }
6521
6522 static vaddr_t last_bootstrap_page = 0;
6523 static void *free_bootstrap_pages = NULL;
6524
6525 static void *
6526 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6527 {
6528 extern void *pool_page_alloc(struct pool *, int);
6529 vaddr_t new_page;
6530 void *rv;
6531
6532 if (pmap_initialized)
6533 return pool_page_alloc(pp, flags);
6534
6535 if (free_bootstrap_pages) {
6536 rv = free_bootstrap_pages;
6537 free_bootstrap_pages = *((void **)rv);
6538 return rv;
6539 }
6540
6541 KASSERT(kernel_map != NULL);
6542 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6543 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6544
6545 KASSERT(new_page > last_bootstrap_page);
6546 last_bootstrap_page = new_page;
6547 return (void *)new_page;
6548 }
6549
6550 static void
6551 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6552 {
6553 extern void pool_page_free(struct pool *, void *);
6554
6555 if ((vaddr_t)v <= last_bootstrap_page) {
6556 *((void **)v) = free_bootstrap_pages;
6557 free_bootstrap_pages = v;
6558 return;
6559 }
6560
6561 if (pmap_initialized) {
6562 pool_page_free(pp, v);
6563 return;
6564 }
6565 }
6566
6567
6568 #if defined(ARM_MMU_EXTENDED)
6569 static void *
6570 pmap_l1tt_alloc(struct pool *pp, int flags)
6571 {
6572 struct pglist plist;
6573 vaddr_t va;
6574
6575 const int waitok = flags & PR_WAITOK;
6576
6577 int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
6578 waitok);
6579 if (error)
6580 panic("Cannot allocate L1TT physical pages, %d", error);
6581
6582 struct vm_page *pg = TAILQ_FIRST(&plist);
6583 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6584
6585 /* Allocate a L1 translation table VA */
6586 va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
6587 if (va == 0)
6588 panic("Cannot allocate L1TT KVA");
6589
6590 const vaddr_t eva = va + L1TT_SIZE;
6591 vaddr_t mva = va;
6592 while (pg && mva < eva) {
6593 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6594
6595 pmap_kenter_pa(mva, pa,
6596 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6597
6598 mva += PAGE_SIZE;
6599 pg = TAILQ_NEXT(pg, pageq.queue);
6600 }
6601 KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
6602 " eva %" PRIxVADDR, pg, mva, eva);
6603 #else
6604 bool ok;
6605 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6606 va = pmap_direct_mapped_phys(pa, &ok, 0);
6607 KASSERT(ok);
6608 KASSERT(va >= KERNEL_BASE);
6609 #endif
6610
6611 return (void *)va;
6612 }
6613
6614 static void
6615 pmap_l1tt_free(struct pool *pp, void *v)
6616 {
6617 vaddr_t va = (vaddr_t)v;
6618
6619 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6620 uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
6621 #else
6622 #if defined(KERNEL_BASE_VOFFSET)
6623 paddr_t pa = va - KERNEL_BASE_VOFFSET;
6624 #else
6625 paddr_t pa = va - KERNEL_BASE + physical_start;
6626 #endif
6627 const paddr_t epa = pa + L1TT_SIZE;
6628
6629 for (; pa < epa; pa += PAGE_SIZE) {
6630 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
6631 uvm_pagefree(pg);
6632 }
6633 #endif
6634 }
6635 #endif
6636
6637 /*
6638 * pmap_postinit()
6639 *
6640 * This routine is called after the vm and kmem subsystems have been
6641 * initialised. This allows the pmap code to perform any initialisation
6642 * that can only be done once the memory allocation is in place.
6643 */
6644 void
6645 pmap_postinit(void)
6646 {
6647 #ifndef ARM_MMU_EXTENDED
6648 extern paddr_t physical_start, physical_end;
6649 struct l1_ttable *l1;
6650 struct pglist plist;
6651 struct vm_page *m;
6652 pd_entry_t *pdep;
6653 vaddr_t va, eva;
6654 u_int loop, needed;
6655 int error;
6656 #endif
6657
6658 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6659 pool_cache_setlowat(&pmap_l2dtable_cache,
6660 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6661
6662 #ifndef ARM_MMU_EXTENDED
6663 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6664 needed -= 1;
6665
6666 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6667
6668 for (loop = 0; loop < needed; loop++, l1++) {
6669 /* Allocate a L1 page table */
6670 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6671 if (va == 0)
6672 panic("Cannot allocate L1 KVM");
6673
6674 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6675 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6676 if (error)
6677 panic("Cannot allocate L1 physical pages");
6678
6679 m = TAILQ_FIRST(&plist);
6680 eva = va + L1_TABLE_SIZE;
6681 pdep = (pd_entry_t *)va;
6682
6683 while (m && va < eva) {
6684 paddr_t pa = VM_PAGE_TO_PHYS(m);
6685
6686 pmap_kenter_pa(va, pa,
6687 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6688
6689 va += PAGE_SIZE;
6690 m = TAILQ_NEXT(m, pageq.queue);
6691 }
6692
6693 #ifdef DIAGNOSTIC
6694 if (m)
6695 panic("pmap_alloc_l1pt: pglist not empty");
6696 #endif /* DIAGNOSTIC */
6697
6698 pmap_init_l1(l1, pdep);
6699 }
6700
6701 #ifdef DEBUG
6702 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6703 needed);
6704 #endif
6705 #endif /* !ARM_MMU_EXTENDED */
6706 }
6707
6708 /*
6709 * Note that the following routines are used by board-specific initialisation
6710 * code to configure the initial kernel page tables.
6711 *
6712 */
6713
6714 /*
6715 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6716 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6717 * find them as necessary.
6718 *
6719 * Note that the data on this list MUST remain valid after initarm() returns,
6720 * as pmap_bootstrap() uses it to construct L2 table metadata.
6721 */
6722 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6723
6724 static vaddr_t
6725 kernel_pt_lookup(paddr_t pa)
6726 {
6727 pv_addr_t *pv;
6728
6729 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6730 if (pv->pv_pa == (pa & ~PGOFSET))
6731 return pv->pv_va | (pa & PGOFSET);
6732 }
6733 return 0;
6734 }
6735
6736 /*
6737 * pmap_map_section:
6738 *
6739 * Create a single section mapping.
6740 */
6741 void
6742 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6743 {
6744 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6745 const size_t l1slot = l1pte_index(va);
6746 pd_entry_t fl;
6747
6748 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6749
6750 switch (cache) {
6751 case PTE_NOCACHE:
6752 fl = pte_l1_s_nocache_mode;
6753 break;
6754
6755 case PTE_CACHE:
6756 fl = pte_l1_s_cache_mode;
6757 break;
6758
6759 case PTE_PAGETABLE:
6760 fl = pte_l1_s_cache_mode_pt;
6761 break;
6762
6763 case PTE_DEV:
6764 default:
6765 fl = 0;
6766 break;
6767 }
6768
6769 const pd_entry_t npde = L1_S_PROTO | pa |
6770 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6771 l1pte_setone(pdep + l1slot, npde);
6772 PDE_SYNC(pdep + l1slot);
6773 }
6774
6775 /*
6776 * pmap_map_entry:
6777 *
6778 * Create a single page mapping.
6779 */
6780 void
6781 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6782 {
6783 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6784 const size_t l1slot = l1pte_index(va);
6785 pt_entry_t npte;
6786 pt_entry_t *ptep;
6787
6788 KASSERT(((va | pa) & PGOFSET) == 0);
6789
6790 switch (cache) {
6791 case PTE_NOCACHE:
6792 npte = pte_l2_s_nocache_mode;
6793 break;
6794
6795 case PTE_CACHE:
6796 npte = pte_l2_s_cache_mode;
6797 break;
6798
6799 case PTE_PAGETABLE:
6800 npte = pte_l2_s_cache_mode_pt;
6801 break;
6802
6803 default:
6804 npte = 0;
6805 break;
6806 }
6807
6808 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6809 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6810
6811 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6812 if (ptep == NULL)
6813 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6814
6815 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6816 #ifdef ARM_MMU_EXTENDED
6817 if (prot & VM_PROT_EXECUTE) {
6818 npte &= ~L2_XS_XN;
6819 }
6820 #endif
6821 ptep += l2pte_index(va);
6822 l2pte_set(ptep, npte, 0);
6823 PTE_SYNC(ptep);
6824 }
6825
6826 /*
6827 * pmap_link_l2pt:
6828 *
6829 * Link the L2 page table specified by "l2pv" into the L1
6830 * page table at the slot for "va".
6831 */
6832 void
6833 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6834 {
6835 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6836
6837 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6838 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6839
6840 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6841 | l2pv->pv_pa;
6842
6843 l1pte_set(pdep, npde);
6844 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6845
6846 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6847 }
6848
6849 /*
6850 * pmap_map_chunk:
6851 *
6852 * Map a chunk of memory using the most efficient mappings
6853 * possible (section, large page, small page) into the
6854 * provided L1 and L2 tables at the specified virtual address.
6855 */
6856 vsize_t
6857 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6858 int prot, int cache)
6859 {
6860 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6861 pt_entry_t f1, f2s, f2l;
6862 vsize_t resid;
6863
6864 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6865
6866 if (l1pt == 0)
6867 panic("pmap_map_chunk: no L1 table provided");
6868
6869 // VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6870 // "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6871
6872 switch (cache) {
6873 case PTE_NOCACHE:
6874 f1 = pte_l1_s_nocache_mode;
6875 f2l = pte_l2_l_nocache_mode;
6876 f2s = pte_l2_s_nocache_mode;
6877 break;
6878
6879 case PTE_CACHE:
6880 f1 = pte_l1_s_cache_mode;
6881 f2l = pte_l2_l_cache_mode;
6882 f2s = pte_l2_s_cache_mode;
6883 break;
6884
6885 case PTE_PAGETABLE:
6886 f1 = pte_l1_s_cache_mode_pt;
6887 f2l = pte_l2_l_cache_mode_pt;
6888 f2s = pte_l2_s_cache_mode_pt;
6889 break;
6890
6891 case PTE_DEV:
6892 default:
6893 f1 = 0;
6894 f2l = 0;
6895 f2s = 0;
6896 break;
6897 }
6898
6899 size = resid;
6900
6901 while (resid > 0) {
6902 const size_t l1slot = l1pte_index(va);
6903 #ifdef ARM_MMU_EXTENDED
6904 /* See if we can use a supersection mapping. */
6905 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6906 /* Supersection are always domain 0 */
6907 const pd_entry_t npde = L1_SS_PROTO | pa
6908 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6909 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6910 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6911 VPRINTF("sS");
6912 l1pte_set(&pdep[l1slot], npde);
6913 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6914 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6915 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6916 va += L1_SS_SIZE;
6917 pa += L1_SS_SIZE;
6918 resid -= L1_SS_SIZE;
6919 continue;
6920 }
6921 #endif
6922 /* See if we can use a section mapping. */
6923 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6924 const pd_entry_t npde = L1_S_PROTO | pa
6925 #ifdef ARM_MMU_EXTENDED
6926 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6927 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6928 #endif
6929 | L1_S_PROT(PTE_KERNEL, prot) | f1
6930 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6931 VPRINTF("S");
6932 l1pte_set(&pdep[l1slot], npde);
6933 PDE_SYNC(&pdep[l1slot]);
6934 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6935 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6936 va += L1_S_SIZE;
6937 pa += L1_S_SIZE;
6938 resid -= L1_S_SIZE;
6939 continue;
6940 }
6941
6942 /*
6943 * Ok, we're going to use an L2 table. Make sure
6944 * one is actually in the corresponding L1 slot
6945 * for the current VA.
6946 */
6947 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6948 panic("%s: no L2 table for VA %#lx", __func__, va);
6949
6950 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6951 if (ptep == NULL)
6952 panic("%s: can't find L2 table for VA %#lx", __func__,
6953 va);
6954
6955 ptep += l2pte_index(va);
6956
6957 /* See if we can use a L2 large page mapping. */
6958 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6959 const pt_entry_t npte = L2_L_PROTO | pa
6960 #ifdef ARM_MMU_EXTENDED
6961 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6962 | (va & 0x80000000 ? 0 : L2_XS_nG)
6963 #endif
6964 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6965 VPRINTF("L");
6966 l2pte_set(ptep, npte, 0);
6967 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6968 va += L2_L_SIZE;
6969 pa += L2_L_SIZE;
6970 resid -= L2_L_SIZE;
6971 continue;
6972 }
6973
6974 VPRINTF("P");
6975 /* Use a small page mapping. */
6976 pt_entry_t npte = L2_S_PROTO | pa
6977 #ifdef ARM_MMU_EXTENDED
6978 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6979 | (va & 0x80000000 ? 0 : L2_XS_nG)
6980 #endif
6981 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6982 #ifdef ARM_MMU_EXTENDED
6983 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6984 #endif
6985 l2pte_set(ptep, npte, 0);
6986 PTE_SYNC(ptep);
6987 va += PAGE_SIZE;
6988 pa += PAGE_SIZE;
6989 resid -= PAGE_SIZE;
6990 }
6991 VPRINTF("\n");
6992 return size;
6993 }
6994
6995 /*
6996 * pmap_unmap_chunk:
6997 *
6998 * Unmap a chunk of memory that was previously pmap_map_chunk
6999 */
7000 void
7001 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
7002 {
7003 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7004 const size_t l1slot = l1pte_index(va);
7005
7006 KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
7007
7008 l1pte_set(&pdep[l1slot], 0);
7009 PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
7010
7011 pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
7012 }
7013
7014
7015
7016 /********************** Static device map routines ***************************/
7017
7018 static const struct pmap_devmap *pmap_devmap_table;
7019
7020 /*
7021 * Register the devmap table. This is provided in case early console
7022 * initialization needs to register mappings created by bootstrap code
7023 * before pmap_devmap_bootstrap() is called.
7024 */
7025 void
7026 pmap_devmap_register(const struct pmap_devmap *table)
7027 {
7028
7029 pmap_devmap_table = table;
7030 }
7031
7032 /*
7033 * Map all of the static regions in the devmap table, and remember
7034 * the devmap table so other parts of the kernel can look up entries
7035 * later.
7036 */
7037 void
7038 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
7039 {
7040 int i;
7041
7042 pmap_devmap_table = table;
7043
7044 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7045 const struct pmap_devmap *pdp = &pmap_devmap_table[i];
7046
7047 KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
7048 " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
7049 KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
7050 " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
7051 VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
7052 pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
7053
7054 pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
7055 pdp->pd_prot, pdp->pd_cache);
7056 }
7057 }
7058
7059 const struct pmap_devmap *
7060 pmap_devmap_find_pa(paddr_t pa, psize_t size)
7061 {
7062 uint64_t endpa;
7063 int i;
7064
7065 if (pmap_devmap_table == NULL)
7066 return NULL;
7067
7068 endpa = (uint64_t)pa + (uint64_t)(size - 1);
7069
7070 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7071 if (pa >= pmap_devmap_table[i].pd_pa &&
7072 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
7073 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
7074 return &pmap_devmap_table[i];
7075 }
7076
7077 return NULL;
7078 }
7079
7080 const struct pmap_devmap *
7081 pmap_devmap_find_va(vaddr_t va, vsize_t size)
7082 {
7083 int i;
7084
7085 if (pmap_devmap_table == NULL)
7086 return NULL;
7087
7088 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7089 if (va >= pmap_devmap_table[i].pd_va &&
7090 va + size - 1 <= pmap_devmap_table[i].pd_va +
7091 pmap_devmap_table[i].pd_size - 1)
7092 return &pmap_devmap_table[i];
7093 }
7094
7095 return NULL;
7096 }
7097
7098 /********************** PTE initialization routines **************************/
7099
7100 /*
7101 * These routines are called when the CPU type is identified to set up
7102 * the PTE prototypes, cache modes, etc.
7103 *
7104 * The variables are always here, just in case modules need to reference
7105 * them (though, they shouldn't).
7106 */
7107
7108 pt_entry_t pte_l1_s_nocache_mode;
7109 pt_entry_t pte_l1_s_cache_mode;
7110 pt_entry_t pte_l1_s_wc_mode;
7111 pt_entry_t pte_l1_s_cache_mode_pt;
7112 pt_entry_t pte_l1_s_cache_mask;
7113
7114 pt_entry_t pte_l2_l_nocache_mode;
7115 pt_entry_t pte_l2_l_cache_mode;
7116 pt_entry_t pte_l2_l_wc_mode;
7117 pt_entry_t pte_l2_l_cache_mode_pt;
7118 pt_entry_t pte_l2_l_cache_mask;
7119
7120 pt_entry_t pte_l2_s_nocache_mode;
7121 pt_entry_t pte_l2_s_cache_mode;
7122 pt_entry_t pte_l2_s_wc_mode;
7123 pt_entry_t pte_l2_s_cache_mode_pt;
7124 pt_entry_t pte_l2_s_cache_mask;
7125
7126 pt_entry_t pte_l1_s_prot_u;
7127 pt_entry_t pte_l1_s_prot_w;
7128 pt_entry_t pte_l1_s_prot_ro;
7129 pt_entry_t pte_l1_s_prot_mask;
7130
7131 pt_entry_t pte_l2_s_prot_u;
7132 pt_entry_t pte_l2_s_prot_w;
7133 pt_entry_t pte_l2_s_prot_ro;
7134 pt_entry_t pte_l2_s_prot_mask;
7135
7136 pt_entry_t pte_l2_l_prot_u;
7137 pt_entry_t pte_l2_l_prot_w;
7138 pt_entry_t pte_l2_l_prot_ro;
7139 pt_entry_t pte_l2_l_prot_mask;
7140
7141 pt_entry_t pte_l1_ss_proto;
7142 pt_entry_t pte_l1_s_proto;
7143 pt_entry_t pte_l1_c_proto;
7144 pt_entry_t pte_l2_s_proto;
7145
7146 void (*pmap_copy_page_func)(paddr_t, paddr_t);
7147 void (*pmap_zero_page_func)(paddr_t);
7148
7149 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7150 void
7151 pmap_pte_init_generic(void)
7152 {
7153
7154 pte_l1_s_nocache_mode = 0;
7155 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7156 pte_l1_s_wc_mode = L1_S_B;
7157 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7158
7159 pte_l2_l_nocache_mode = 0;
7160 pte_l2_l_cache_mode = L2_B|L2_C;
7161 pte_l2_l_wc_mode = L2_B;
7162 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7163
7164 pte_l2_s_nocache_mode = 0;
7165 pte_l2_s_cache_mode = L2_B|L2_C;
7166 pte_l2_s_wc_mode = L2_B;
7167 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7168
7169 /*
7170 * If we have a write-through cache, set B and C. If
7171 * we have a write-back cache, then we assume setting
7172 * only C will make those pages write-through (except for those
7173 * Cortex CPUs which can read the L1 caches).
7174 */
7175 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7176 #if ARM_MMU_V7 > 0
7177 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7178 #endif
7179 #if ARM_MMU_V6 > 0
7180 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7181 #endif
7182 || false) {
7183 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7184 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7185 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7186 } else {
7187 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7188 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7189 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7190 }
7191
7192 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7193 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7194 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7195 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7196
7197 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7198 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7199 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7200 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7201
7202 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7203 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7204 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7205 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7206
7207 pte_l1_ss_proto = L1_SS_PROTO_generic;
7208 pte_l1_s_proto = L1_S_PROTO_generic;
7209 pte_l1_c_proto = L1_C_PROTO_generic;
7210 pte_l2_s_proto = L2_S_PROTO_generic;
7211
7212 pmap_copy_page_func = pmap_copy_page_generic;
7213 pmap_zero_page_func = pmap_zero_page_generic;
7214 }
7215
7216 #if defined(CPU_ARM8)
7217 void
7218 pmap_pte_init_arm8(void)
7219 {
7220
7221 /*
7222 * ARM8 is compatible with generic, but we need to use
7223 * the page tables uncached.
7224 */
7225 pmap_pte_init_generic();
7226
7227 pte_l1_s_cache_mode_pt = 0;
7228 pte_l2_l_cache_mode_pt = 0;
7229 pte_l2_s_cache_mode_pt = 0;
7230 }
7231 #endif /* CPU_ARM8 */
7232
7233 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7234 void
7235 pmap_pte_init_arm9(void)
7236 {
7237
7238 /*
7239 * ARM9 is compatible with generic, but we want to use
7240 * write-through caching for now.
7241 */
7242 pmap_pte_init_generic();
7243
7244 pte_l1_s_cache_mode = L1_S_C;
7245 pte_l2_l_cache_mode = L2_C;
7246 pte_l2_s_cache_mode = L2_C;
7247
7248 pte_l1_s_wc_mode = L1_S_B;
7249 pte_l2_l_wc_mode = L2_B;
7250 pte_l2_s_wc_mode = L2_B;
7251
7252 pte_l1_s_cache_mode_pt = L1_S_C;
7253 pte_l2_l_cache_mode_pt = L2_C;
7254 pte_l2_s_cache_mode_pt = L2_C;
7255 }
7256 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7257 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7258
7259 #if defined(CPU_ARM10)
7260 void
7261 pmap_pte_init_arm10(void)
7262 {
7263
7264 /*
7265 * ARM10 is compatible with generic, but we want to use
7266 * write-through caching for now.
7267 */
7268 pmap_pte_init_generic();
7269
7270 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7271 pte_l2_l_cache_mode = L2_B | L2_C;
7272 pte_l2_s_cache_mode = L2_B | L2_C;
7273
7274 pte_l1_s_cache_mode = L1_S_B;
7275 pte_l2_l_cache_mode = L2_B;
7276 pte_l2_s_cache_mode = L2_B;
7277
7278 pte_l1_s_cache_mode_pt = L1_S_C;
7279 pte_l2_l_cache_mode_pt = L2_C;
7280 pte_l2_s_cache_mode_pt = L2_C;
7281
7282 }
7283 #endif /* CPU_ARM10 */
7284
7285 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7286 void
7287 pmap_pte_init_arm11(void)
7288 {
7289
7290 /*
7291 * ARM11 is compatible with generic, but we want to use
7292 * write-through caching for now.
7293 */
7294 pmap_pte_init_generic();
7295
7296 pte_l1_s_cache_mode = L1_S_C;
7297 pte_l2_l_cache_mode = L2_C;
7298 pte_l2_s_cache_mode = L2_C;
7299
7300 pte_l1_s_wc_mode = L1_S_B;
7301 pte_l2_l_wc_mode = L2_B;
7302 pte_l2_s_wc_mode = L2_B;
7303
7304 pte_l1_s_cache_mode_pt = L1_S_C;
7305 pte_l2_l_cache_mode_pt = L2_C;
7306 pte_l2_s_cache_mode_pt = L2_C;
7307 }
7308 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7309
7310 #if ARM_MMU_SA1 == 1
7311 void
7312 pmap_pte_init_sa1(void)
7313 {
7314
7315 /*
7316 * The StrongARM SA-1 cache does not have a write-through
7317 * mode. So, do the generic initialization, then reset
7318 * the page table cache mode to B=1,C=1, and note that
7319 * the PTEs need to be sync'd.
7320 */
7321 pmap_pte_init_generic();
7322
7323 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7324 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7325 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7326
7327 pmap_needs_pte_sync = 1;
7328 }
7329 #endif /* ARM_MMU_SA1 == 1*/
7330
7331 #if ARM_MMU_XSCALE == 1
7332 #if (ARM_NMMUS > 1)
7333 static u_int xscale_use_minidata;
7334 #endif
7335
7336 void
7337 pmap_pte_init_xscale(void)
7338 {
7339 uint32_t auxctl;
7340 int write_through = 0;
7341
7342 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7343 pte_l1_s_wc_mode = L1_S_B;
7344 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7345
7346 pte_l2_l_cache_mode = L2_B|L2_C;
7347 pte_l2_l_wc_mode = L2_B;
7348 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7349
7350 pte_l2_s_cache_mode = L2_B|L2_C;
7351 pte_l2_s_wc_mode = L2_B;
7352 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7353
7354 pte_l1_s_cache_mode_pt = L1_S_C;
7355 pte_l2_l_cache_mode_pt = L2_C;
7356 pte_l2_s_cache_mode_pt = L2_C;
7357
7358 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7359 /*
7360 * The XScale core has an enhanced mode where writes that
7361 * miss the cache cause a cache line to be allocated. This
7362 * is significantly faster than the traditional, write-through
7363 * behavior of this case.
7364 */
7365 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7366 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7367 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7368 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7369
7370 #ifdef XSCALE_CACHE_WRITE_THROUGH
7371 /*
7372 * Some versions of the XScale core have various bugs in
7373 * their cache units, the work-around for which is to run
7374 * the cache in write-through mode. Unfortunately, this
7375 * has a major (negative) impact on performance. So, we
7376 * go ahead and run fast-and-loose, in the hopes that we
7377 * don't line up the planets in a way that will trip the
7378 * bugs.
7379 *
7380 * However, we give you the option to be slow-but-correct.
7381 */
7382 write_through = 1;
7383 #elif defined(XSCALE_CACHE_WRITE_BACK)
7384 /* force write back cache mode */
7385 write_through = 0;
7386 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7387 /*
7388 * Intel PXA2[15]0 processors are known to have a bug in
7389 * write-back cache on revision 4 and earlier (stepping
7390 * A[01] and B[012]). Fixed for C0 and later.
7391 */
7392 {
7393 uint32_t id, type;
7394
7395 id = cpufunc_id();
7396 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7397
7398 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7399 if ((id & CPU_ID_REVISION_MASK) < 5) {
7400 /* write through for stepping A0-1 and B0-2 */
7401 write_through = 1;
7402 }
7403 }
7404 }
7405 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7406
7407 if (write_through) {
7408 pte_l1_s_cache_mode = L1_S_C;
7409 pte_l2_l_cache_mode = L2_C;
7410 pte_l2_s_cache_mode = L2_C;
7411 }
7412
7413 #if (ARM_NMMUS > 1)
7414 xscale_use_minidata = 1;
7415 #endif
7416
7417 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7418 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7419 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7420 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7421
7422 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7423 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7424 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7425 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7426
7427 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7428 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7429 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7430 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7431
7432 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7433 pte_l1_s_proto = L1_S_PROTO_xscale;
7434 pte_l1_c_proto = L1_C_PROTO_xscale;
7435 pte_l2_s_proto = L2_S_PROTO_xscale;
7436
7437 pmap_copy_page_func = pmap_copy_page_xscale;
7438 pmap_zero_page_func = pmap_zero_page_xscale;
7439
7440 /*
7441 * Disable ECC protection of page table access, for now.
7442 */
7443 auxctl = armreg_auxctl_read();
7444 auxctl &= ~XSCALE_AUXCTL_P;
7445 armreg_auxctl_write(auxctl);
7446 }
7447
7448 /*
7449 * xscale_setup_minidata:
7450 *
7451 * Set up the mini-data cache clean area. We require the
7452 * caller to allocate the right amount of physically and
7453 * virtually contiguous space.
7454 */
7455 void
7456 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7457 {
7458 extern vaddr_t xscale_minidata_clean_addr;
7459 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7460 pd_entry_t *pde = (pd_entry_t *) l1pt;
7461 vsize_t size;
7462 uint32_t auxctl;
7463
7464 xscale_minidata_clean_addr = va;
7465
7466 /* Round it to page size. */
7467 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7468
7469 for (; size != 0;
7470 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7471 const size_t l1slot = l1pte_index(va);
7472 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7473 if (ptep == NULL)
7474 panic("xscale_setup_minidata: can't find L2 table for "
7475 "VA 0x%08lx", va);
7476
7477 ptep += l2pte_index(va);
7478 pt_entry_t opte = *ptep;
7479 l2pte_set(ptep,
7480 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7481 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7482 }
7483
7484 /*
7485 * Configure the mini-data cache for write-back with
7486 * read/write-allocate.
7487 *
7488 * NOTE: In order to reconfigure the mini-data cache, we must
7489 * make sure it contains no valid data! In order to do that,
7490 * we must issue a global data cache invalidate command!
7491 *
7492 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7493 * THIS IS VERY IMPORTANT!
7494 */
7495
7496 /* Invalidate data and mini-data. */
7497 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7498 auxctl = armreg_auxctl_read();
7499 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7500 armreg_auxctl_write(auxctl);
7501 }
7502
7503 /*
7504 * Change the PTEs for the specified kernel mappings such that they
7505 * will use the mini data cache instead of the main data cache.
7506 */
7507 void
7508 pmap_uarea(vaddr_t va)
7509 {
7510 vaddr_t next_bucket, eva;
7511
7512 #if (ARM_NMMUS > 1)
7513 if (xscale_use_minidata == 0)
7514 return;
7515 #endif
7516
7517 eva = va + USPACE;
7518
7519 while (va < eva) {
7520 next_bucket = L2_NEXT_BUCKET_VA(va);
7521 if (next_bucket > eva)
7522 next_bucket = eva;
7523
7524 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7525 KDASSERT(l2b != NULL);
7526
7527 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7528 pt_entry_t *ptep = sptep;
7529
7530 while (va < next_bucket) {
7531 const pt_entry_t opte = *ptep;
7532 if (!l2pte_minidata_p(opte)) {
7533 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7534 cpu_tlb_flushD_SE(va);
7535 l2pte_set(ptep, opte & ~L2_B, opte);
7536 }
7537 ptep += PAGE_SIZE / L2_S_SIZE;
7538 va += PAGE_SIZE;
7539 }
7540 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7541 }
7542 cpu_cpwait();
7543 }
7544 #endif /* ARM_MMU_XSCALE == 1 */
7545
7546
7547 #if defined(CPU_ARM11MPCORE)
7548 void
7549 pmap_pte_init_arm11mpcore(void)
7550 {
7551
7552 /* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
7553 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7554 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7555 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7556 /* use extended small page (without APn, with TEX) */
7557 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7558 #else
7559 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7560 #endif
7561
7562 /* write-back, write-allocate */
7563 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7564 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7565 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7566 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7567 #else
7568 /* no TEX. read-allocate */
7569 pte_l2_s_cache_mode = L2_C | L2_B;
7570 #endif
7571 /*
7572 * write-back, write-allocate for page tables.
7573 */
7574 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7575 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7576 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7577 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7578 #else
7579 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7580 #endif
7581
7582 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7583 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7584 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7585 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7586
7587 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7588 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7589 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7590 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7591 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7592
7593 #else
7594 /* with AP[0..3] */
7595 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7596 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7597 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7598 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7599 #endif
7600
7601 #ifdef ARM11MPCORE_COMPAT_MMU
7602 /* with AP[0..3] */
7603 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7604 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7605 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7606 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7607
7608 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7609 pte_l1_s_proto = L1_S_PROTO_armv6;
7610 pte_l1_c_proto = L1_C_PROTO_armv6;
7611 pte_l2_s_proto = L2_S_PROTO_armv6c;
7612 #else
7613 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7614 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7615 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7616 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7617
7618 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7619 pte_l1_s_proto = L1_S_PROTO_armv6;
7620 pte_l1_c_proto = L1_C_PROTO_armv6;
7621 pte_l2_s_proto = L2_S_PROTO_armv6n;
7622 #endif
7623
7624 pmap_copy_page_func = pmap_copy_page_generic;
7625 pmap_zero_page_func = pmap_zero_page_generic;
7626 pmap_needs_pte_sync = 1;
7627 }
7628 #endif /* CPU_ARM11MPCORE */
7629
7630
7631 #if ARM_MMU_V6 == 1
7632 void
7633 pmap_pte_init_armv6(void)
7634 {
7635 /*
7636 * The ARMv6-A MMU is mostly compatible with generic. If the
7637 * AP field is zero, that now means "no access" rather than
7638 * read-only. The prototypes are a little different because of
7639 * the XN bit.
7640 */
7641 pmap_pte_init_generic();
7642
7643 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7644 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7645 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7646
7647 #ifdef ARM11_COMPAT_MMU
7648 /* with AP[0..3] */
7649 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7650 #else
7651 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
7652 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
7653 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
7654
7655 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7656 pte_l1_s_proto = L1_S_PROTO_armv6;
7657 pte_l1_c_proto = L1_C_PROTO_armv6;
7658 pte_l2_s_proto = L2_S_PROTO_armv6n;
7659
7660 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7661 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7662 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7663 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7664
7665 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7666 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7667 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7668 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7669
7670 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7671 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7672 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7673 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7674
7675 #endif
7676 }
7677 #endif /* ARM_MMU_V6 */
7678
7679 #if ARM_MMU_V7 == 1
7680 void
7681 pmap_pte_init_armv7(void)
7682 {
7683 /*
7684 * The ARMv7-A MMU is mostly compatible with generic. If the
7685 * AP field is zero, that now means "no access" rather than
7686 * read-only. The prototypes are a little different because of
7687 * the XN bit.
7688 */
7689 pmap_pte_init_generic();
7690
7691 pmap_needs_pte_sync = 1;
7692
7693 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7694 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7695 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7696
7697 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7698 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7699 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7700
7701 /*
7702 * If the core support coherent walk then updates to translation tables
7703 * do not require a clean to the point of unification to ensure
7704 * visibility by subsequent translation table walks. That means we can
7705 * map everything shareable and cached and the right thing will happen.
7706 */
7707 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7708 pmap_needs_pte_sync = 0;
7709
7710 /*
7711 * write-back, no write-allocate, shareable for normal pages.
7712 */
7713 pte_l1_s_cache_mode |= L1_S_V6_S;
7714 pte_l2_l_cache_mode |= L2_XS_S;
7715 pte_l2_s_cache_mode |= L2_XS_S;
7716 }
7717
7718 /*
7719 * Page tables are just all other memory. We can use write-back since
7720 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7721 */
7722 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7723 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7724 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7725
7726 /*
7727 * Check the Memory Model Features to see if this CPU supports
7728 * the TLBIASID coproc op.
7729 */
7730 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7731 arm_has_tlbiasid_p = true;
7732 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7733 arm_has_tlbiasid_p = true;
7734 }
7735
7736 /*
7737 * Check the MPIDR to see if this CPU supports MP extensions.
7738 */
7739 #ifdef MULTIPROCESSOR
7740 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7741 #else
7742 arm_has_mpext_p = false;
7743 #endif
7744
7745 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7746 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7747 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7748 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7749
7750 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7751 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7752 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7753 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7754
7755 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7756 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7757 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7758 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7759
7760 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7761 pte_l1_s_proto = L1_S_PROTO_armv7;
7762 pte_l1_c_proto = L1_C_PROTO_armv7;
7763 pte_l2_s_proto = L2_S_PROTO_armv7;
7764
7765 }
7766 #endif /* ARM_MMU_V7 */
7767
7768 /*
7769 * return the PA of the current L1 table, for use when handling a crash dump
7770 */
7771 uint32_t
7772 pmap_kernel_L1_addr(void)
7773 {
7774 #ifdef ARM_MMU_EXTENDED
7775 return pmap_kernel()->pm_l1_pa;
7776 #else
7777 return pmap_kernel()->pm_l1->l1_physaddr;
7778 #endif
7779 }
7780
7781 #if defined(DDB)
7782 /*
7783 * A couple of ddb-callable functions for dumping pmaps
7784 */
7785 void pmap_dump(pmap_t);
7786
7787 static pt_entry_t ncptes[64];
7788 static void pmap_dump_ncpg(pmap_t);
7789
7790 void
7791 pmap_dump(pmap_t pm)
7792 {
7793 struct l2_dtable *l2;
7794 struct l2_bucket *l2b;
7795 pt_entry_t *ptep, pte;
7796 vaddr_t l2_va, l2b_va, va;
7797 int i, j, k, occ, rows = 0;
7798
7799 if (pm == pmap_kernel())
7800 printf("pmap_kernel (%p): ", pm);
7801 else
7802 printf("user pmap (%p): ", pm);
7803
7804 #ifdef ARM_MMU_EXTENDED
7805 printf("l1 at %p\n", pmap_l1_kva(pm));
7806 #else
7807 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7808 #endif
7809
7810 l2_va = 0;
7811 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7812 l2 = pm->pm_l2[i];
7813
7814 if (l2 == NULL || l2->l2_occupancy == 0)
7815 continue;
7816
7817 l2b_va = l2_va;
7818 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7819 l2b = &l2->l2_bucket[j];
7820
7821 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7822 continue;
7823
7824 ptep = l2b->l2b_kva;
7825
7826 for (k = 0; k < 256 && ptep[k] == 0; k++)
7827 ;
7828
7829 k &= ~63;
7830 occ = l2b->l2b_occupancy;
7831 va = l2b_va + (k * 4096);
7832 for (; k < 256; k++, va += 0x1000) {
7833 char ch = ' ';
7834 if ((k % 64) == 0) {
7835 if ((rows % 8) == 0) {
7836 printf(
7837 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7838 }
7839 printf("%08lx: ", va);
7840 }
7841
7842 ncptes[k & 63] = 0;
7843 pte = ptep[k];
7844 if (pte == 0) {
7845 ch = '.';
7846 } else {
7847 occ--;
7848 switch (pte & 0x4c) {
7849 case 0x00:
7850 ch = 'N'; /* No cache No buff */
7851 break;
7852 case 0x04:
7853 ch = 'B'; /* No cache buff */
7854 break;
7855 case 0x08:
7856 ch = 'C'; /* Cache No buff */
7857 break;
7858 case 0x0c:
7859 ch = 'F'; /* Cache Buff */
7860 break;
7861 case 0x40:
7862 ch = 'D';
7863 break;
7864 case 0x48:
7865 ch = 'm'; /* Xscale mini-data */
7866 break;
7867 default:
7868 ch = '?';
7869 break;
7870 }
7871
7872 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7873 ch += 0x20;
7874
7875 if ((pte & 0xc) == 0)
7876 ncptes[k & 63] = pte;
7877 }
7878
7879 if ((k % 64) == 63) {
7880 rows++;
7881 printf("%c\n", ch);
7882 pmap_dump_ncpg(pm);
7883 if (occ == 0)
7884 break;
7885 } else
7886 printf("%c", ch);
7887 }
7888 }
7889 }
7890 }
7891
7892 static void
7893 pmap_dump_ncpg(pmap_t pm)
7894 {
7895 struct vm_page *pg;
7896 struct vm_page_md *md;
7897 struct pv_entry *pv;
7898 int i;
7899
7900 for (i = 0; i < 63; i++) {
7901 if (ncptes[i] == 0)
7902 continue;
7903
7904 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7905 if (pg == NULL)
7906 continue;
7907 md = VM_PAGE_TO_MD(pg);
7908
7909 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7910 VM_PAGE_TO_PHYS(pg),
7911 md->krw_mappings, md->kro_mappings,
7912 md->urw_mappings, md->uro_mappings);
7913
7914 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7915 printf(" %c va 0x%08lx, flags 0x%x\n",
7916 (pm == pv->pv_pmap) ? '*' : ' ',
7917 pv->pv_va, pv->pv_flags);
7918 }
7919 }
7920 }
7921 #endif
7922
7923 #ifdef PMAP_STEAL_MEMORY
7924 void
7925 pmap_boot_pageadd(pv_addr_t *newpv)
7926 {
7927 pv_addr_t *pv, *npv;
7928
7929 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7930 if (newpv->pv_pa < pv->pv_va) {
7931 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7932 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7933 newpv->pv_size += pv->pv_size;
7934 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7935 }
7936 pv = NULL;
7937 } else {
7938 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7939 pv = npv) {
7940 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7941 KASSERT(pv->pv_pa < newpv->pv_pa);
7942 if (newpv->pv_pa > npv->pv_pa)
7943 continue;
7944 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7945 pv->pv_size += newpv->pv_size;
7946 return;
7947 }
7948 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7949 break;
7950 newpv->pv_size += npv->pv_size;
7951 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7952 SLIST_REMOVE_AFTER(newpv, pv_list);
7953 return;
7954 }
7955 }
7956 }
7957
7958 if (pv) {
7959 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7960 } else {
7961 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7962 }
7963 }
7964
7965 void
7966 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7967 pv_addr_t *rpv)
7968 {
7969 pv_addr_t *pv, **pvp;
7970
7971 KASSERT(amount & PGOFSET);
7972 KASSERT((mask & PGOFSET) == 0);
7973 KASSERT((match & PGOFSET) == 0);
7974 KASSERT(amount != 0);
7975
7976 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7977 (pv = *pvp) != NULL;
7978 pvp = &SLIST_NEXT(pv, pv_list)) {
7979 pv_addr_t *newpv;
7980 psize_t off;
7981 /*
7982 * If this entry is too small to satisfy the request...
7983 */
7984 KASSERT(pv->pv_size > 0);
7985 if (pv->pv_size < amount)
7986 continue;
7987
7988 for (off = 0; off <= mask; off += PAGE_SIZE) {
7989 if (((pv->pv_pa + off) & mask) == match
7990 && off + amount <= pv->pv_size)
7991 break;
7992 }
7993 if (off > mask)
7994 continue;
7995
7996 rpv->pv_va = pv->pv_va + off;
7997 rpv->pv_pa = pv->pv_pa + off;
7998 rpv->pv_size = amount;
7999 pv->pv_size -= amount;
8000 if (pv->pv_size == 0) {
8001 KASSERT(off == 0);
8002 KASSERT((vaddr_t) pv == rpv->pv_va);
8003 *pvp = SLIST_NEXT(pv, pv_list);
8004 } else if (off == 0) {
8005 KASSERT((vaddr_t) pv == rpv->pv_va);
8006 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8007 *newpv = *pv;
8008 newpv->pv_pa += amount;
8009 newpv->pv_va += amount;
8010 *pvp = newpv;
8011 } else if (off < pv->pv_size) {
8012 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8013 *newpv = *pv;
8014 newpv->pv_size -= off;
8015 newpv->pv_pa += off + amount;
8016 newpv->pv_va += off + amount;
8017
8018 SLIST_NEXT(pv, pv_list) = newpv;
8019 pv->pv_size = off;
8020 } else {
8021 KASSERT((vaddr_t) pv != rpv->pv_va);
8022 }
8023 memset((void *)rpv->pv_va, 0, amount);
8024 return;
8025 }
8026
8027 if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
8028 panic("pmap_boot_pagealloc: couldn't allocate memory");
8029
8030 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8031 (pv = *pvp) != NULL;
8032 pvp = &SLIST_NEXT(pv, pv_list)) {
8033 if (SLIST_NEXT(pv, pv_list) == NULL)
8034 break;
8035 }
8036 KASSERT(mask == 0);
8037
8038 for (uvm_physseg_t ups = uvm_physseg_get_first();
8039 uvm_physseg_valid_p(ups);
8040 ups = uvm_physseg_get_next(ups)) {
8041
8042 paddr_t spn = uvm_physseg_get_start(ups);
8043 paddr_t epn = uvm_physseg_get_end(ups);
8044 if (spn == atop(pv->pv_pa + pv->pv_size)
8045 && pv->pv_va + pv->pv_size <= ptoa(epn)) {
8046 rpv->pv_va = pv->pv_va;
8047 rpv->pv_pa = pv->pv_pa;
8048 rpv->pv_size = amount;
8049 *pvp = NULL;
8050 pmap_map_chunk(kernel_l1pt.pv_va,
8051 ptoa(spn) + (pv->pv_va - pv->pv_pa),
8052 ptoa(spn),
8053 amount - pv->pv_size,
8054 VM_PROT_READ|VM_PROT_WRITE,
8055 PTE_CACHE);
8056
8057 uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
8058 memset((void *)rpv->pv_va, 0, rpv->pv_size);
8059 return;
8060 }
8061 }
8062
8063 panic("pmap_boot_pagealloc: couldn't allocate memory");
8064 }
8065
8066 vaddr_t
8067 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
8068 {
8069 pv_addr_t pv;
8070
8071 pmap_boot_pagealloc(size, 0, 0, &pv);
8072
8073 return pv.pv_va;
8074 }
8075 #endif /* PMAP_STEAL_MEMORY */
8076
8077 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
8078 {
8079 sysctl_createv(clog, 0, NULL, NULL,
8080 CTLFLAG_PERMANENT,
8081 CTLTYPE_NODE, "machdep", NULL,
8082 NULL, 0, NULL, 0,
8083 CTL_MACHDEP, CTL_EOL);
8084
8085 sysctl_createv(clog, 0, NULL, NULL,
8086 CTLFLAG_PERMANENT,
8087 CTLTYPE_INT, "kmpages",
8088 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
8089 NULL, 0, &pmap_kmpages, 0,
8090 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
8091 }
8092
8093 #ifdef PMAP_NEED_ALLOC_POOLPAGE
8094 struct vm_page *
8095 arm_pmap_alloc_poolpage(int flags)
8096 {
8097 /*
8098 * On some systems, only some pages may be "coherent" for dma and we
8099 * want to prefer those for pool pages (think mbufs) but fallback to
8100 * any page if none is available.
8101 */
8102 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
8103 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
8104 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
8105 }
8106
8107 return uvm_pagealloc(NULL, 0, NULL, flags);
8108 }
8109 #endif
8110
8111 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
8112 void
8113 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
8114 {
8115 /* nothing */
8116 }
8117
8118 int
8119 pic_ipi_shootdown(void *arg)
8120 {
8121 #if PMAP_TLB_NEED_SHOOTDOWN
8122 pmap_tlb_shootdown_process();
8123 #endif
8124 return 1;
8125 }
8126 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
8127
8128
8129 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
8130 vaddr_t
8131 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
8132 {
8133 bool ok = false;
8134 if (physical_start <= pa && pa < physical_end) {
8135 #ifdef KERNEL_BASE_VOFFSET
8136 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
8137 #else
8138 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
8139 #endif
8140 #ifdef ARM_MMU_EXTENDED
8141 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
8142 #endif
8143 va = newva;
8144 ok = true;
8145 #ifdef ARM_MMU_EXTENDED
8146 }
8147 #endif
8148 }
8149 KASSERT(ok_p);
8150 *ok_p = ok;
8151 return va;
8152 }
8153
8154 vaddr_t
8155 pmap_map_poolpage(paddr_t pa)
8156 {
8157 bool ok __diagused;
8158 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
8159 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
8160 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
8161 if (arm_cache_prefer_mask != 0) {
8162 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
8163 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
8164 pmap_acquire_page_lock(md);
8165 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
8166 pmap_release_page_lock(md);
8167 }
8168 #endif
8169 return va;
8170 }
8171
8172 paddr_t
8173 pmap_unmap_poolpage(vaddr_t va)
8174 {
8175 KASSERT(va >= KERNEL_BASE);
8176 #ifdef PMAP_CACHE_VIVT
8177 cpu_idcache_wbinv_range(va, PAGE_SIZE);
8178 #endif
8179 #if defined(KERNEL_BASE_VOFFSET)
8180 return va - KERNEL_BASE_VOFFSET;
8181 #else
8182 return va - KERNEL_BASE + physical_start;
8183 #endif
8184 }
8185 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8186