pmap.c revision 1.418 1 /* $NetBSD: pmap.c,v 1.418 2020/08/10 05:38:43 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999, 2020 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /* Include header files */
183
184 #include "opt_arm_debug.h"
185 #include "opt_cpuoptions.h"
186 #include "opt_ddb.h"
187 #include "opt_lockdebug.h"
188 #include "opt_multiprocessor.h"
189
190 #ifdef MULTIPROCESSOR
191 #define _INTR_PRIVATE
192 #endif
193
194 #include <sys/cdefs.h>
195 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.418 2020/08/10 05:38:43 skrll Exp $");
196
197 #include <sys/param.h>
198 #include <sys/types.h>
199
200 #include <sys/asan.h>
201 #include <sys/atomic.h>
202 #include <sys/bus.h>
203 #include <sys/cpu.h>
204 #include <sys/intr.h>
205 #include <sys/kernel.h>
206 #include <sys/kernhist.h>
207 #include <sys/kmem.h>
208 #include <sys/pool.h>
209 #include <sys/proc.h>
210 #include <sys/sysctl.h>
211 #include <sys/systm.h>
212
213 #include <uvm/uvm.h>
214 #include <uvm/pmap/pmap_pvt.h>
215
216 #include <arm/locore.h>
217
218 #ifdef DDB
219 #include <arm/db_machdep.h>
220 #endif
221
222 #ifdef VERBOSE_INIT_ARM
223 #define VPRINTF(...) printf(__VA_ARGS__)
224 #else
225 #define VPRINTF(...) __nothing
226 #endif
227
228 /*
229 * pmap_kernel() points here
230 */
231 static struct pmap kernel_pmap_store = {
232 #ifndef ARM_MMU_EXTENDED
233 .pm_activated = true,
234 .pm_domain = PMAP_DOMAIN_KERNEL,
235 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
236 #endif
237 };
238 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
239 #undef pmap_kernel
240 #define pmap_kernel() (&kernel_pmap_store)
241 #ifdef PMAP_NEED_ALLOC_POOLPAGE
242 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
243 #endif
244
245 /*
246 * Pool and cache that pmap structures are allocated from.
247 * We use a cache to avoid clearing the pm_l2[] array (1KB)
248 * in pmap_create().
249 */
250 static struct pool_cache pmap_cache;
251
252 /*
253 * Pool of PV structures
254 */
255 static struct pool pmap_pv_pool;
256 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
257 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
258 static struct pool_allocator pmap_bootstrap_pv_allocator = {
259 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
260 };
261
262 /*
263 * Pool and cache of l2_dtable structures.
264 * We use a cache to avoid clearing the structures when they're
265 * allocated. (196 bytes)
266 */
267 static struct pool_cache pmap_l2dtable_cache;
268 static vaddr_t pmap_kernel_l2dtable_kva;
269
270 /*
271 * Pool and cache of L2 page descriptors.
272 * We use a cache to avoid clearing the descriptor table
273 * when they're allocated. (1KB)
274 */
275 static struct pool_cache pmap_l2ptp_cache;
276 static vaddr_t pmap_kernel_l2ptp_kva;
277 static paddr_t pmap_kernel_l2ptp_phys;
278
279 #ifdef PMAPCOUNTERS
280 #define PMAP_EVCNT_INITIALIZER(name) \
281 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
282
283 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
284 static struct evcnt pmap_ev_vac_clean_one =
285 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
286 static struct evcnt pmap_ev_vac_flush_one =
287 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
288 static struct evcnt pmap_ev_vac_flush_lots =
289 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
290 static struct evcnt pmap_ev_vac_flush_lots2 =
291 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
292 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
293 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
294 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
295 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
296
297 static struct evcnt pmap_ev_vac_color_new =
298 PMAP_EVCNT_INITIALIZER("new page color");
299 static struct evcnt pmap_ev_vac_color_reuse =
300 PMAP_EVCNT_INITIALIZER("ok first page color");
301 static struct evcnt pmap_ev_vac_color_ok =
302 PMAP_EVCNT_INITIALIZER("ok page color");
303 static struct evcnt pmap_ev_vac_color_blind =
304 PMAP_EVCNT_INITIALIZER("blind page color");
305 static struct evcnt pmap_ev_vac_color_change =
306 PMAP_EVCNT_INITIALIZER("change page color");
307 static struct evcnt pmap_ev_vac_color_erase =
308 PMAP_EVCNT_INITIALIZER("erase page color");
309 static struct evcnt pmap_ev_vac_color_none =
310 PMAP_EVCNT_INITIALIZER("no page color");
311 static struct evcnt pmap_ev_vac_color_restore =
312 PMAP_EVCNT_INITIALIZER("restore page color");
313
314 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
315 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
316 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
317 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
318 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
319 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
320 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
322 #endif
323
324 static struct evcnt pmap_ev_mappings =
325 PMAP_EVCNT_INITIALIZER("pages mapped");
326 static struct evcnt pmap_ev_unmappings =
327 PMAP_EVCNT_INITIALIZER("pages unmapped");
328 static struct evcnt pmap_ev_remappings =
329 PMAP_EVCNT_INITIALIZER("pages remapped");
330
331 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
332 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
333 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
334
335 static struct evcnt pmap_ev_kernel_mappings =
336 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
337 static struct evcnt pmap_ev_kernel_unmappings =
338 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
339 static struct evcnt pmap_ev_kernel_remappings =
340 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
341
342 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
343 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
344 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
345
346 static struct evcnt pmap_ev_kenter_mappings =
347 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
348 static struct evcnt pmap_ev_kenter_unmappings =
349 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
350 static struct evcnt pmap_ev_kenter_remappings =
351 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
352 static struct evcnt pmap_ev_pt_mappings =
353 PMAP_EVCNT_INITIALIZER("page table pages mapped");
354
355 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
356 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
357 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
358 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
359
360 static struct evcnt pmap_ev_fixup_mod =
361 PMAP_EVCNT_INITIALIZER("page modification emulations");
362 static struct evcnt pmap_ev_fixup_ref =
363 PMAP_EVCNT_INITIALIZER("page reference emulations");
364 static struct evcnt pmap_ev_fixup_exec =
365 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
366 static struct evcnt pmap_ev_fixup_pdes =
367 PMAP_EVCNT_INITIALIZER("pdes fixed up");
368 #ifndef ARM_MMU_EXTENDED
369 static struct evcnt pmap_ev_fixup_ptesync =
370 PMAP_EVCNT_INITIALIZER("ptesync fixed");
371 #endif
372
373 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
374 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
375 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
376 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
377 #ifndef ARM_MMU_EXTENDED
378 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
379 #endif
380
381 #ifdef PMAP_CACHE_VIPT
382 static struct evcnt pmap_ev_exec_mappings =
383 PMAP_EVCNT_INITIALIZER("exec pages mapped");
384 static struct evcnt pmap_ev_exec_cached =
385 PMAP_EVCNT_INITIALIZER("exec pages cached");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
389
390 static struct evcnt pmap_ev_exec_synced =
391 PMAP_EVCNT_INITIALIZER("exec pages synced");
392 static struct evcnt pmap_ev_exec_synced_map =
393 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
394 static struct evcnt pmap_ev_exec_synced_unmap =
395 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
396 static struct evcnt pmap_ev_exec_synced_remap =
397 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
398 static struct evcnt pmap_ev_exec_synced_clearbit =
399 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
400 #ifndef ARM_MMU_EXTENDED
401 static struct evcnt pmap_ev_exec_synced_kremove =
402 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
403 #endif
404
405 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
406 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
407 #ifndef ARM_MMU_EXTENDED
408 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
409 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
412 #endif
413
414 static struct evcnt pmap_ev_exec_discarded_unmap =
415 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
416 static struct evcnt pmap_ev_exec_discarded_zero =
417 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
418 static struct evcnt pmap_ev_exec_discarded_copy =
419 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
420 static struct evcnt pmap_ev_exec_discarded_page_protect =
421 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
422 static struct evcnt pmap_ev_exec_discarded_clearbit =
423 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
424 static struct evcnt pmap_ev_exec_discarded_kremove =
425 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
426 #ifdef ARM_MMU_EXTENDED
427 static struct evcnt pmap_ev_exec_discarded_modfixup =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
429 #endif
430
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
437 #ifdef ARM_MMU_EXTENDED
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
439 #endif
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 #ifdef ARM_MMU_EXTENDED
456 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
457 void pmap_md_pdetab_deactivate(pmap_t pm);
458 #endif
459
460 /*
461 * pmap copy/zero page, and mem(5) hook point
462 */
463 static pt_entry_t *csrc_pte, *cdst_pte;
464 static vaddr_t csrcp, cdstp;
465 #ifdef MULTIPROCESSOR
466 static size_t cnptes;
467 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
468 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
469 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
470 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
471 #else
472 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
473 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
474 #define cpu_csrcp(o) (csrcp + (o))
475 #define cpu_cdstp(o) (cdstp + (o))
476 #endif
477 vaddr_t memhook; /* used by mem.c & others */
478 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
479 kmutex_t pmap_lock __cacheline_aligned;
480 kmutex_t kpm_lock __cacheline_aligned;
481 extern void *msgbufaddr;
482 int pmap_kmpages;
483 /*
484 * Flag to indicate if pmap_init() has done its thing
485 */
486 bool pmap_initialized;
487
488 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
489 /*
490 * Virtual end of direct-mapped memory
491 */
492 vaddr_t pmap_directlimit;
493 #endif
494
495 /*
496 * Misc. locking data structures
497 */
498
499 static inline void
500 pmap_acquire_pmap_lock(pmap_t pm)
501 {
502 #if defined(MULTIPROCESSOR) && defined(DDB)
503 if (__predict_false(db_onproc != NULL))
504 return;
505 #endif
506
507 mutex_enter(&pm->pm_lock);
508 }
509
510 static inline void
511 pmap_release_pmap_lock(pmap_t pm)
512 {
513 #if defined(MULTIPROCESSOR) && defined(DDB)
514 if (__predict_false(db_onproc != NULL))
515 return;
516 #endif
517 mutex_exit(&pm->pm_lock);
518 }
519
520 static inline void
521 pmap_acquire_page_lock(struct vm_page_md *md)
522 {
523 mutex_enter(&pmap_lock);
524 }
525
526 static inline void
527 pmap_release_page_lock(struct vm_page_md *md)
528 {
529 mutex_exit(&pmap_lock);
530 }
531
532 #ifdef DIAGNOSTIC
533 static inline int
534 pmap_page_locked_p(struct vm_page_md *md)
535 {
536 return mutex_owned(&pmap_lock);
537 }
538 #endif
539
540
541 /*
542 * Metadata for L1 translation tables.
543 */
544 #ifndef ARM_MMU_EXTENDED
545 struct l1_ttable {
546 /* Entry on the L1 Table list */
547 SLIST_ENTRY(l1_ttable) l1_link;
548
549 /* Entry on the L1 Least Recently Used list */
550 TAILQ_ENTRY(l1_ttable) l1_lru;
551
552 /* Track how many domains are allocated from this L1 */
553 volatile u_int l1_domain_use_count;
554
555 /*
556 * A free-list of domain numbers for this L1.
557 * We avoid using ffs() and a bitmap to track domains since ffs()
558 * is slow on ARM.
559 */
560 uint8_t l1_domain_first;
561 uint8_t l1_domain_free[PMAP_DOMAINS];
562
563 /* Physical address of this L1 page table */
564 paddr_t l1_physaddr;
565
566 /* KVA of this L1 page table */
567 pd_entry_t *l1_kva;
568 };
569
570 /*
571 * L1 Page Tables are tracked using a Least Recently Used list.
572 * - New L1s are allocated from the HEAD.
573 * - Freed L1s are added to the TAIL.
574 * - Recently accessed L1s (where an 'access' is some change to one of
575 * the userland pmaps which owns this L1) are moved to the TAIL.
576 */
577 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
578 static kmutex_t l1_lru_lock __cacheline_aligned;
579
580 /*
581 * A list of all L1 tables
582 */
583 static SLIST_HEAD(, l1_ttable) l1_list;
584 #endif /* ARM_MMU_EXTENDED */
585
586 /*
587 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
588 *
589 * This is normally 16MB worth L2 page descriptors for any given pmap.
590 * Reference counts are maintained for L2 descriptors so they can be
591 * freed when empty.
592 */
593 struct l2_bucket {
594 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
595 paddr_t l2b_pa; /* Physical address of same */
596 u_short l2b_l1slot; /* This L2 table's L1 index */
597 u_short l2b_occupancy; /* How many active descriptors */
598 };
599
600 struct l2_dtable {
601 /* The number of L2 page descriptors allocated to this l2_dtable */
602 u_int l2_occupancy;
603
604 /* List of L2 page descriptors */
605 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
606 };
607
608 /*
609 * Given an L1 table index, calculate the corresponding l2_dtable index
610 * and bucket index within the l2_dtable.
611 */
612 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
613 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
614 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
615 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
616 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
617
618 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
619 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
620
621 /*
622 * Given a virtual address, this macro returns the
623 * virtual address required to drop into the next L2 bucket.
624 */
625 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
626
627 /*
628 * L2 allocation.
629 */
630 #define pmap_alloc_l2_dtable() \
631 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
632 #define pmap_free_l2_dtable(l2) \
633 pool_cache_put(&pmap_l2dtable_cache, (l2))
634 #define pmap_alloc_l2_ptp(pap) \
635 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
636 PR_NOWAIT, (pap)))
637
638 /*
639 * We try to map the page tables write-through, if possible. However, not
640 * all CPUs have a write-through cache mode, so on those we have to sync
641 * the cache when we frob page tables.
642 *
643 * We try to evaluate this at compile time, if possible. However, it's
644 * not always possible to do that, hence this run-time var.
645 */
646 int pmap_needs_pte_sync;
647
648 /*
649 * Real definition of pv_entry.
650 */
651 struct pv_entry {
652 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
653 pmap_t pv_pmap; /* pmap where mapping lies */
654 vaddr_t pv_va; /* virtual address for mapping */
655 u_int pv_flags; /* flags */
656 };
657
658 /*
659 * Macros to determine if a mapping might be resident in the
660 * instruction/data cache and/or TLB
661 */
662 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
663 /*
664 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
665 * there are no explicit accesses, so there may be always be TLB entries to
666 * flush. If we used ASIDs then this would not be a problem.
667 */
668 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
669 #define PV_BEEN_REFD(f) (true)
670 #else
671 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
672 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
673 #endif
674 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
675 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
676 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
677
678 /*
679 * Local prototypes
680 */
681 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
682 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
683 pt_entry_t **);
684 static bool pmap_is_current(pmap_t) __unused;
685 static bool pmap_is_cached(pmap_t);
686 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
687 pmap_t, vaddr_t, u_int);
688 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
689 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
690 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
691 u_int, u_int);
692
693 static void pmap_pinit(pmap_t);
694 static int pmap_pmap_ctor(void *, void *, int);
695
696 static void pmap_alloc_l1(pmap_t);
697 static void pmap_free_l1(pmap_t);
698 #ifndef ARM_MMU_EXTENDED
699 static void pmap_use_l1(pmap_t);
700 #endif
701
702 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
703 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
704 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
705 static int pmap_l2ptp_ctor(void *, void *, int);
706 static int pmap_l2dtable_ctor(void *, void *, int);
707
708 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
709 #ifdef PMAP_CACHE_VIVT
710 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
711 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
712 #endif
713
714 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
715 #ifdef PMAP_CACHE_VIVT
716 static bool pmap_clean_page(struct vm_page_md *, bool);
717 #endif
718 #ifdef PMAP_CACHE_VIPT
719 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
720 enum pmap_flush_op {
721 PMAP_FLUSH_PRIMARY,
722 PMAP_FLUSH_SECONDARY,
723 PMAP_CLEAN_PRIMARY
724 };
725 #ifndef ARM_MMU_EXTENDED
726 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
727 #endif
728 #endif
729 static void pmap_page_remove(struct vm_page_md *, paddr_t);
730 static void pmap_pv_remove(paddr_t);
731
732 #ifndef ARM_MMU_EXTENDED
733 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
734 #endif
735 static vaddr_t kernel_pt_lookup(paddr_t);
736
737 #ifdef ARM_MMU_EXTENDED
738 static struct pool_cache pmap_l1tt_cache;
739
740 static int pmap_l1tt_ctor(void *, void *, int);
741 static void * pmap_l1tt_alloc(struct pool *, int);
742 static void pmap_l1tt_free(struct pool *, void *);
743
744 static struct pool_allocator pmap_l1tt_allocator = {
745 .pa_alloc = pmap_l1tt_alloc,
746 .pa_free = pmap_l1tt_free,
747 .pa_pagesz = L1TT_SIZE,
748 };
749 #endif
750
751 /*
752 * Misc variables
753 */
754 vaddr_t virtual_avail;
755 vaddr_t virtual_end;
756 vaddr_t pmap_curmaxkvaddr;
757
758 paddr_t avail_start;
759 paddr_t avail_end;
760
761 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
762 pv_addr_t kernelpages;
763 pv_addr_t kernel_l1pt;
764 pv_addr_t systempage;
765
766 #ifdef PMAP_CACHE_VIPT
767 #define PMAP_VALIDATE_MD_PAGE(md) \
768 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
769 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
770 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
771 #endif /* PMAP_CACHE_VIPT */
772 /*
773 * A bunch of routines to conditionally flush the caches/TLB depending
774 * on whether the specified pmap actually needs to be flushed at any
775 * given time.
776 */
777 static inline void
778 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
779 {
780 #ifdef ARM_MMU_EXTENDED
781 pmap_tlb_invalidate_addr(pm, va);
782 #else
783 if (pm->pm_cstate.cs_tlb_id != 0) {
784 if (PV_BEEN_EXECD(flags)) {
785 cpu_tlb_flushID_SE(va);
786 } else if (PV_BEEN_REFD(flags)) {
787 cpu_tlb_flushD_SE(va);
788 }
789 }
790 #endif /* ARM_MMU_EXTENDED */
791 }
792
793 #ifndef ARM_MMU_EXTENDED
794 static inline void
795 pmap_tlb_flushID(pmap_t pm)
796 {
797 if (pm->pm_cstate.cs_tlb_id) {
798 cpu_tlb_flushID();
799 #if ARM_MMU_V7 == 0
800 /*
801 * Speculative loads by Cortex cores can cause TLB entries to
802 * be filled even if there are no explicit accesses, so there
803 * may be always be TLB entries to flush. If we used ASIDs
804 * then it would not be a problem.
805 * This is not true for other CPUs.
806 */
807 pm->pm_cstate.cs_tlb = 0;
808 #endif /* ARM_MMU_V7 */
809 }
810 }
811
812 static inline void
813 pmap_tlb_flushD(pmap_t pm)
814 {
815 if (pm->pm_cstate.cs_tlb_d) {
816 cpu_tlb_flushD();
817 #if ARM_MMU_V7 == 0
818 /*
819 * Speculative loads by Cortex cores can cause TLB entries to
820 * be filled even if there are no explicit accesses, so there
821 * may be always be TLB entries to flush. If we used ASIDs
822 * then it would not be a problem.
823 * This is not true for other CPUs.
824 */
825 pm->pm_cstate.cs_tlb_d = 0;
826 #endif /* ARM_MMU_V7 */
827 }
828 }
829 #endif /* ARM_MMU_EXTENDED */
830
831 #ifdef PMAP_CACHE_VIVT
832 static inline void
833 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
834 {
835 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
836 cpu_idcache_wbinv_range(va, PAGE_SIZE);
837 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
838 if (do_inv) {
839 if (flags & PVF_WRITE)
840 cpu_dcache_wbinv_range(va, PAGE_SIZE);
841 else
842 cpu_dcache_inv_range(va, PAGE_SIZE);
843 } else if (flags & PVF_WRITE) {
844 cpu_dcache_wb_range(va, PAGE_SIZE);
845 }
846 }
847 }
848
849 static inline void
850 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
851 {
852 if (PV_BEEN_EXECD(flags)) {
853 if (pm->pm_cstate.cs_cache_id) {
854 cpu_idcache_wbinv_all();
855 pm->pm_cstate.cs_cache = 0;
856 }
857 } else if (pm->pm_cstate.cs_cache_d) {
858 cpu_dcache_wbinv_all();
859 pm->pm_cstate.cs_cache_d = 0;
860 }
861 }
862 #endif /* PMAP_CACHE_VIVT */
863
864 static inline uint8_t
865 pmap_domain(pmap_t pm)
866 {
867 #ifdef ARM_MMU_EXTENDED
868 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
869 #else
870 return pm->pm_domain;
871 #endif
872 }
873
874 static inline pd_entry_t *
875 pmap_l1_kva(pmap_t pm)
876 {
877 #ifdef ARM_MMU_EXTENDED
878 return pm->pm_l1;
879 #else
880 return pm->pm_l1->l1_kva;
881 #endif
882 }
883
884 static inline bool
885 pmap_is_current(pmap_t pm)
886 {
887 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
888 return true;
889
890 return false;
891 }
892
893 static inline bool
894 pmap_is_cached(pmap_t pm)
895 {
896 #ifdef ARM_MMU_EXTENDED
897 if (pm == pmap_kernel())
898 return true;
899 #ifdef MULTIPROCESSOR
900 // Is this pmap active on any CPU?
901 if (!kcpuset_iszero(pm->pm_active))
902 return true;
903 #else
904 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
905 // Is this pmap active?
906 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
907 return true;
908 #endif
909 #else
910 struct cpu_info * const ci = curcpu();
911 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
912 || ci->ci_pmap_lastuser == pm)
913 return true;
914 #endif /* ARM_MMU_EXTENDED */
915
916 return false;
917 }
918
919 /*
920 * PTE_SYNC_CURRENT:
921 *
922 * Make sure the pte is written out to RAM.
923 * We need to do this for one of two cases:
924 * - We're dealing with the kernel pmap
925 * - There is no pmap active in the cache/tlb.
926 * - The specified pmap is 'active' in the cache/tlb.
927 */
928
929 #ifdef PMAP_INCLUDE_PTE_SYNC
930 static inline void
931 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
932 {
933 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
934 PTE_SYNC(ptep);
935 arm_dsb();
936 }
937
938 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
939 #else
940 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
941 #endif
942
943 /*
944 * main pv_entry manipulation functions:
945 * pmap_enter_pv: enter a mapping onto a vm_page list
946 * pmap_remove_pv: remove a mapping from a vm_page list
947 *
948 * NOTE: pmap_enter_pv expects to lock the pvh itself
949 * pmap_remove_pv expects the caller to lock the pvh before calling
950 */
951
952 /*
953 * pmap_enter_pv: enter a mapping onto a vm_page lst
954 *
955 * => caller should hold the proper lock on pmap_main_lock
956 * => caller should have pmap locked
957 * => we will gain the lock on the vm_page and allocate the new pv_entry
958 * => caller should adjust ptp's wire_count before calling
959 * => caller should not adjust pmap's wire_count
960 */
961 static void
962 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
963 vaddr_t va, u_int flags)
964 {
965 UVMHIST_FUNC(__func__);
966 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
967 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
968 UVMHIST_LOG(maphist, "...pv %#jx flags %#jx",
969 (uintptr_t)pv, flags, 0, 0);
970
971 struct pv_entry **pvp;
972
973 pv->pv_pmap = pm;
974 pv->pv_va = va;
975 pv->pv_flags = flags;
976
977 pvp = &SLIST_FIRST(&md->pvh_list);
978 #ifdef PMAP_CACHE_VIPT
979 /*
980 * Insert unmanaged entries, writeable first, at the head of
981 * the pv list.
982 */
983 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
984 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
985 pvp = &SLIST_NEXT(*pvp, pv_link);
986 }
987 if (!PV_IS_WRITE_P(flags)) {
988 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
989 pvp = &SLIST_NEXT(*pvp, pv_link);
990 }
991 #endif
992 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
993 *pvp = pv; /* ... locked list */
994 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
995 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
996 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
997 md->pvh_attrs |= PVF_KMOD;
998 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
999 md->pvh_attrs |= PVF_DIRTY;
1000 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1001 #endif
1002 if (pm == pmap_kernel()) {
1003 PMAPCOUNT(kernel_mappings);
1004 if (flags & PVF_WRITE)
1005 md->krw_mappings++;
1006 else
1007 md->kro_mappings++;
1008 } else {
1009 if (flags & PVF_WRITE)
1010 md->urw_mappings++;
1011 else
1012 md->uro_mappings++;
1013 }
1014
1015 #ifdef PMAP_CACHE_VIPT
1016 #ifndef ARM_MMU_EXTENDED
1017 /*
1018 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1019 * do it here as well to keep the mappings & KVF_WRITE consistent.
1020 */
1021 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1022 md->pvh_attrs |= PVF_WRITE;
1023 }
1024 #endif
1025 /*
1026 * If this is an exec mapping and its the first exec mapping
1027 * for this page, make sure to sync the I-cache.
1028 */
1029 if (PV_IS_EXEC_P(flags)) {
1030 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1031 pmap_syncicache_page(md, pa);
1032 PMAPCOUNT(exec_synced_map);
1033 }
1034 PMAPCOUNT(exec_mappings);
1035 }
1036 #endif
1037
1038 PMAPCOUNT(mappings);
1039
1040 if (pv->pv_flags & PVF_WIRED)
1041 ++pm->pm_stats.wired_count;
1042 }
1043
1044 /*
1045 *
1046 * pmap_find_pv: Find a pv entry
1047 *
1048 * => caller should hold lock on vm_page
1049 */
1050 static inline struct pv_entry *
1051 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1052 {
1053 struct pv_entry *pv;
1054
1055 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1056 if (pm == pv->pv_pmap && va == pv->pv_va)
1057 break;
1058 }
1059
1060 return pv;
1061 }
1062
1063 /*
1064 * pmap_remove_pv: try to remove a mapping from a pv_list
1065 *
1066 * => caller should hold proper lock on pmap_main_lock
1067 * => pmap should be locked
1068 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1069 * => caller should adjust ptp's wire_count and free PTP if needed
1070 * => caller should NOT adjust pmap's wire_count
1071 * => we return the removed pv
1072 */
1073 static struct pv_entry *
1074 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1075 {
1076 UVMHIST_FUNC(__func__);
1077 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1078 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1079
1080 struct pv_entry *pv, **prevptr;
1081
1082 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1083 pv = *prevptr;
1084
1085 while (pv) {
1086 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1087 UVMHIST_LOG(maphist, "pm %#jx md %#jx flags %#jx",
1088 (uintptr_t)pm, (uintptr_t)md, pv->pv_flags, 0);
1089 if (pv->pv_flags & PVF_WIRED) {
1090 --pm->pm_stats.wired_count;
1091 }
1092 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1093 if (pm == pmap_kernel()) {
1094 PMAPCOUNT(kernel_unmappings);
1095 if (pv->pv_flags & PVF_WRITE)
1096 md->krw_mappings--;
1097 else
1098 md->kro_mappings--;
1099 } else {
1100 if (pv->pv_flags & PVF_WRITE)
1101 md->urw_mappings--;
1102 else
1103 md->uro_mappings--;
1104 }
1105
1106 PMAPCOUNT(unmappings);
1107 #ifdef PMAP_CACHE_VIPT
1108 /*
1109 * If this page has had an exec mapping, then if
1110 * this was the last mapping, discard the contents,
1111 * otherwise sync the i-cache for this page.
1112 */
1113 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1114 if (SLIST_EMPTY(&md->pvh_list)) {
1115 md->pvh_attrs &= ~PVF_EXEC;
1116 PMAPCOUNT(exec_discarded_unmap);
1117 } else if (pv->pv_flags & PVF_WRITE) {
1118 pmap_syncicache_page(md, pa);
1119 PMAPCOUNT(exec_synced_unmap);
1120 }
1121 }
1122 #endif /* PMAP_CACHE_VIPT */
1123 break;
1124 }
1125 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1126 pv = *prevptr; /* advance */
1127 }
1128
1129 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1130 /*
1131 * If we no longer have a WRITEABLE KENTRY at the head of list,
1132 * clear the KMOD attribute from the page.
1133 */
1134 if (SLIST_FIRST(&md->pvh_list) == NULL
1135 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1136 md->pvh_attrs &= ~PVF_KMOD;
1137
1138 /*
1139 * If this was a writeable page and there are no more writeable
1140 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1141 * the contents to memory.
1142 */
1143 if (arm_cache_prefer_mask != 0) {
1144 if (md->krw_mappings + md->urw_mappings == 0)
1145 md->pvh_attrs &= ~PVF_WRITE;
1146 PMAP_VALIDATE_MD_PAGE(md);
1147 }
1148 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1149 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1150
1151 /* return removed pv */
1152 return pv;
1153 }
1154
1155 /*
1156 *
1157 * pmap_modify_pv: Update pv flags
1158 *
1159 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1160 * => caller should NOT adjust pmap's wire_count
1161 * => caller must call pmap_vac_me_harder() if writable status of a page
1162 * may have changed.
1163 * => we return the old flags
1164 *
1165 * Modify a physical-virtual mapping in the pv table
1166 */
1167 static u_int
1168 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1169 u_int clr_mask, u_int set_mask)
1170 {
1171 struct pv_entry *npv;
1172 u_int flags, oflags;
1173 UVMHIST_FUNC(__func__);
1174 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1175 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1176 UVMHIST_LOG(maphist, "... clr %#jx set %#jx", clr_mask, set_mask, 0, 0);
1177
1178 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1179 KASSERT(!PV_IS_KENTRY_P(set_mask));
1180
1181 if ((npv = pmap_find_pv(md, pm, va)) == NULL) {
1182 UVMHIST_LOG(maphist, "<--- done (not found)", 0, 0, 0, 0);
1183 return 0;
1184 }
1185
1186 /*
1187 * There is at least one VA mapping this page.
1188 */
1189
1190 if (clr_mask & (PVF_REF | PVF_MOD)) {
1191 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1192 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1193 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1194 md->pvh_attrs |= PVF_DIRTY;
1195 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1196 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1197 }
1198
1199 oflags = npv->pv_flags;
1200 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1201
1202 if ((flags ^ oflags) & PVF_WIRED) {
1203 if (flags & PVF_WIRED)
1204 ++pm->pm_stats.wired_count;
1205 else
1206 --pm->pm_stats.wired_count;
1207 }
1208
1209 if ((flags ^ oflags) & PVF_WRITE) {
1210 if (pm == pmap_kernel()) {
1211 if (flags & PVF_WRITE) {
1212 md->krw_mappings++;
1213 md->kro_mappings--;
1214 } else {
1215 md->kro_mappings++;
1216 md->krw_mappings--;
1217 }
1218 } else {
1219 if (flags & PVF_WRITE) {
1220 md->urw_mappings++;
1221 md->uro_mappings--;
1222 } else {
1223 md->uro_mappings++;
1224 md->urw_mappings--;
1225 }
1226 }
1227 }
1228 #ifdef PMAP_CACHE_VIPT
1229 if (arm_cache_prefer_mask != 0) {
1230 if (md->urw_mappings + md->krw_mappings == 0) {
1231 md->pvh_attrs &= ~PVF_WRITE;
1232 } else {
1233 md->pvh_attrs |= PVF_WRITE;
1234 }
1235 }
1236 /*
1237 * We have two cases here: the first is from enter_pv (new exec
1238 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1239 * Since in latter, pmap_enter_pv won't do anything, we just have
1240 * to do what pmap_remove_pv would do.
1241 */
1242 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1243 || (PV_IS_EXEC_P(md->pvh_attrs)
1244 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1245 pmap_syncicache_page(md, pa);
1246 PMAPCOUNT(exec_synced_remap);
1247 }
1248 #ifndef ARM_MMU_EXTENDED
1249 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1250 #endif /* !ARM_MMU_EXTENDED */
1251 #endif /* PMAP_CACHE_VIPT */
1252
1253 PMAPCOUNT(remappings);
1254
1255 UVMHIST_LOG(maphist, "<--- done", 0, 0, 0, 0);
1256
1257 return oflags;
1258 }
1259
1260
1261 #if defined(ARM_MMU_EXTENDED)
1262 int
1263 pmap_maxproc_set(int nmaxproc)
1264 {
1265 static const char pmap_l1ttpool_warnmsg[] =
1266 "WARNING: l1ttpool limit reached; increase kern.maxproc";
1267
1268 pool_cache_prime(&pmap_l1tt_cache, nmaxproc);
1269
1270 /*
1271 * Set the hard limit on the pmap_l1tt_cache to the number
1272 * of processes the kernel is to support. Log the limit
1273 * reached message max once a minute.
1274 */
1275 pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
1276 pmap_l1ttpool_warnmsg, 60);
1277
1278 return 0;
1279 }
1280
1281 #endif
1282
1283 /*
1284 * Allocate an L1 translation table for the specified pmap.
1285 * This is called at pmap creation time.
1286 */
1287 static void
1288 pmap_alloc_l1(pmap_t pm)
1289 {
1290 #ifdef ARM_MMU_EXTENDED
1291 vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
1292 &pm->pm_l1_pa);
1293
1294 pm->pm_l1 = (pd_entry_t *)va;
1295 PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
1296 #else
1297 struct l1_ttable *l1;
1298 uint8_t domain;
1299
1300 /*
1301 * Remove the L1 at the head of the LRU list
1302 */
1303 mutex_spin_enter(&l1_lru_lock);
1304 l1 = TAILQ_FIRST(&l1_lru_list);
1305 KDASSERT(l1 != NULL);
1306 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1307
1308 /*
1309 * Pick the first available domain number, and update
1310 * the link to the next number.
1311 */
1312 domain = l1->l1_domain_first;
1313 l1->l1_domain_first = l1->l1_domain_free[domain];
1314
1315 /*
1316 * If there are still free domain numbers in this L1,
1317 * put it back on the TAIL of the LRU list.
1318 */
1319 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1320 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1321
1322 mutex_spin_exit(&l1_lru_lock);
1323
1324 /*
1325 * Fix up the relevant bits in the pmap structure
1326 */
1327 pm->pm_l1 = l1;
1328 pm->pm_domain = domain + 1;
1329 #endif
1330 }
1331
1332 /*
1333 * Free an L1 translation table.
1334 * This is called at pmap destruction time.
1335 */
1336 static void
1337 pmap_free_l1(pmap_t pm)
1338 {
1339 #ifdef ARM_MMU_EXTENDED
1340 pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
1341
1342 pm->pm_l1 = NULL;
1343 pm->pm_l1_pa = 0;
1344 #else
1345 struct l1_ttable *l1 = pm->pm_l1;
1346
1347 mutex_spin_enter(&l1_lru_lock);
1348
1349 /*
1350 * If this L1 is currently on the LRU list, remove it.
1351 */
1352 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1353 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1354
1355 /*
1356 * Free up the domain number which was allocated to the pmap
1357 */
1358 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1359 l1->l1_domain_first = pmap_domain(pm) - 1;
1360 l1->l1_domain_use_count--;
1361
1362 /*
1363 * The L1 now must have at least 1 free domain, so add
1364 * it back to the LRU list. If the use count is zero,
1365 * put it at the head of the list, otherwise it goes
1366 * to the tail.
1367 */
1368 if (l1->l1_domain_use_count == 0)
1369 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1370 else
1371 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1372
1373 mutex_spin_exit(&l1_lru_lock);
1374 #endif /* ARM_MMU_EXTENDED */
1375 }
1376
1377 #ifndef ARM_MMU_EXTENDED
1378 static inline void
1379 pmap_use_l1(pmap_t pm)
1380 {
1381 struct l1_ttable *l1;
1382
1383 /*
1384 * Do nothing if we're in interrupt context.
1385 * Access to an L1 by the kernel pmap must not affect
1386 * the LRU list.
1387 */
1388 if (cpu_intr_p() || pm == pmap_kernel())
1389 return;
1390
1391 l1 = pm->pm_l1;
1392
1393 /*
1394 * If the L1 is not currently on the LRU list, just return
1395 */
1396 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1397 return;
1398
1399 mutex_spin_enter(&l1_lru_lock);
1400
1401 /*
1402 * Check the use count again, now that we've acquired the lock
1403 */
1404 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1405 mutex_spin_exit(&l1_lru_lock);
1406 return;
1407 }
1408
1409 /*
1410 * Move the L1 to the back of the LRU list
1411 */
1412 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1413 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1414
1415 mutex_spin_exit(&l1_lru_lock);
1416 }
1417 #endif /* !ARM_MMU_EXTENDED */
1418
1419 /*
1420 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1421 *
1422 * Free an L2 descriptor table.
1423 */
1424 static inline void
1425 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1426 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1427 #else
1428 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1429 #endif
1430 {
1431 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1432 /*
1433 * Note: With a write-back cache, we may need to sync this
1434 * L2 table before re-using it.
1435 * This is because it may have belonged to a non-current
1436 * pmap, in which case the cache syncs would have been
1437 * skipped for the pages that were being unmapped. If the
1438 * L2 table were then to be immediately re-allocated to
1439 * the *current* pmap, it may well contain stale mappings
1440 * which have not yet been cleared by a cache write-back
1441 * and so would still be visible to the mmu.
1442 */
1443 if (need_sync)
1444 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1445 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1446 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1447 }
1448
1449 /*
1450 * Returns a pointer to the L2 bucket associated with the specified pmap
1451 * and VA, or NULL if no L2 bucket exists for the address.
1452 */
1453 static inline struct l2_bucket *
1454 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1455 {
1456 const size_t l1slot = l1pte_index(va);
1457 struct l2_dtable *l2;
1458 struct l2_bucket *l2b;
1459
1460 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1461 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1462 return NULL;
1463
1464 return l2b;
1465 }
1466
1467 /*
1468 * Returns a pointer to the L2 bucket associated with the specified pmap
1469 * and VA.
1470 *
1471 * If no L2 bucket exists, perform the necessary allocations to put an L2
1472 * bucket/page table in place.
1473 *
1474 * Note that if a new L2 bucket/page was allocated, the caller *must*
1475 * increment the bucket occupancy counter appropriately *before*
1476 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1477 * the bucket/page in the meantime.
1478 */
1479 static struct l2_bucket *
1480 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1481 {
1482 const size_t l1slot = l1pte_index(va);
1483 struct l2_dtable *l2;
1484
1485 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1486 /*
1487 * No mapping at this address, as there is
1488 * no entry in the L1 table.
1489 * Need to allocate a new l2_dtable.
1490 */
1491 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1492 return NULL;
1493
1494 /*
1495 * Link it into the parent pmap
1496 */
1497 pm->pm_l2[L2_IDX(l1slot)] = l2;
1498 }
1499
1500 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1501
1502 /*
1503 * Fetch pointer to the L2 page table associated with the address.
1504 */
1505 if (l2b->l2b_kva == NULL) {
1506 pt_entry_t *ptep;
1507
1508 /*
1509 * No L2 page table has been allocated. Chances are, this
1510 * is because we just allocated the l2_dtable, above.
1511 */
1512 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1513 /*
1514 * Oops, no more L2 page tables available at this
1515 * time. We may need to deallocate the l2_dtable
1516 * if we allocated a new one above.
1517 */
1518 if (l2->l2_occupancy == 0) {
1519 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1520 pmap_free_l2_dtable(l2);
1521 }
1522 return NULL;
1523 }
1524
1525 l2->l2_occupancy++;
1526 l2b->l2b_kva = ptep;
1527 l2b->l2b_l1slot = l1slot;
1528
1529 #ifdef ARM_MMU_EXTENDED
1530 /*
1531 * We know there will be a mapping here, so simply
1532 * enter this PTP into the L1 now.
1533 */
1534 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1535 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1536 | L1_C_DOM(pmap_domain(pm));
1537 KASSERT(*pdep == 0);
1538 l1pte_setone(pdep, npde);
1539 PDE_SYNC(pdep);
1540 #endif
1541 }
1542
1543 return l2b;
1544 }
1545
1546 /*
1547 * One or more mappings in the specified L2 descriptor table have just been
1548 * invalidated.
1549 *
1550 * Garbage collect the metadata and descriptor table itself if necessary.
1551 *
1552 * The pmap lock must be acquired when this is called (not necessary
1553 * for the kernel pmap).
1554 */
1555 static void
1556 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1557 {
1558 KDASSERT(count <= l2b->l2b_occupancy);
1559
1560 /*
1561 * Update the bucket's reference count according to how many
1562 * PTEs the caller has just invalidated.
1563 */
1564 l2b->l2b_occupancy -= count;
1565
1566 /*
1567 * Note:
1568 *
1569 * Level 2 page tables allocated to the kernel pmap are never freed
1570 * as that would require checking all Level 1 page tables and
1571 * removing any references to the Level 2 page table. See also the
1572 * comment elsewhere about never freeing bootstrap L2 descriptors.
1573 *
1574 * We make do with just invalidating the mapping in the L2 table.
1575 *
1576 * This isn't really a big deal in practice and, in fact, leads
1577 * to a performance win over time as we don't need to continually
1578 * alloc/free.
1579 */
1580 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1581 return;
1582
1583 /*
1584 * There are no more valid mappings in this level 2 page table.
1585 * Go ahead and NULL-out the pointer in the bucket, then
1586 * free the page table.
1587 */
1588 const size_t l1slot = l2b->l2b_l1slot;
1589 pt_entry_t * const ptep = l2b->l2b_kva;
1590 l2b->l2b_kva = NULL;
1591
1592 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1593 pd_entry_t pde __diagused = *pdep;
1594
1595 #ifdef ARM_MMU_EXTENDED
1596 /*
1597 * Invalidate the L1 slot.
1598 */
1599 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1600 #else
1601 /*
1602 * If the L1 slot matches the pmap's domain number, then invalidate it.
1603 */
1604 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1605 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1606 #endif
1607 l1pte_setone(pdep, 0);
1608 PDE_SYNC(pdep);
1609 #ifndef ARM_MMU_EXTENDED
1610 }
1611 #endif
1612
1613 /*
1614 * Release the L2 descriptor table back to the pool cache.
1615 */
1616 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1617 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1618 #else
1619 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1620 #endif
1621
1622 /*
1623 * Update the reference count in the associated l2_dtable
1624 */
1625 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1626 if (--l2->l2_occupancy > 0)
1627 return;
1628
1629 /*
1630 * There are no more valid mappings in any of the Level 1
1631 * slots managed by this l2_dtable. Go ahead and NULL-out
1632 * the pointer in the parent pmap and free the l2_dtable.
1633 */
1634 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1635 pmap_free_l2_dtable(l2);
1636 }
1637
1638 #if defined(ARM_MMU_EXTENDED)
1639 /*
1640 * Pool cache constructors for L1 translation tables
1641 */
1642
1643 static int
1644 pmap_l1tt_ctor(void *arg, void *v, int flags)
1645 {
1646 #ifndef PMAP_INCLUDE_PTE_SYNC
1647 #error not supported
1648 #endif
1649
1650 memset(v, 0, L1TT_SIZE);
1651 PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
1652 return 0;
1653 }
1654 #endif
1655
1656 /*
1657 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1658 * structures.
1659 */
1660 static int
1661 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1662 {
1663 #ifndef PMAP_INCLUDE_PTE_SYNC
1664 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1665
1666 /*
1667 * The mappings for these page tables were initially made using
1668 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1669 * mode will not be right for page table mappings. To avoid
1670 * polluting the pmap_kenter_pa() code with a special case for
1671 * page tables, we simply fix up the cache-mode here if it's not
1672 * correct.
1673 */
1674 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1675 const struct l2_bucket * const l2b =
1676 pmap_get_l2_bucket(pmap_kernel(), va);
1677 KASSERTMSG(l2b != NULL, "%#lx", va);
1678 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1679 const pt_entry_t opte = *ptep;
1680
1681 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1682 /*
1683 * Page tables must have the cache-mode set correctly.
1684 */
1685 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1686 | pte_l2_s_cache_mode_pt;
1687 l2pte_set(ptep, npte, opte);
1688 PTE_SYNC(ptep);
1689 cpu_tlb_flushD_SE(va);
1690 cpu_cpwait();
1691 }
1692 }
1693 #endif
1694
1695 memset(v, 0, L2_TABLE_SIZE_REAL);
1696 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1697 return 0;
1698 }
1699
1700 static int
1701 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1702 {
1703
1704 memset(v, 0, sizeof(struct l2_dtable));
1705 return 0;
1706 }
1707
1708 static int
1709 pmap_pmap_ctor(void *arg, void *v, int flags)
1710 {
1711
1712 memset(v, 0, sizeof(struct pmap));
1713 return 0;
1714 }
1715
1716 static void
1717 pmap_pinit(pmap_t pm)
1718 {
1719 #ifndef ARM_HAS_VBAR
1720 struct l2_bucket *l2b;
1721
1722 if (vector_page < KERNEL_BASE) {
1723 /*
1724 * Map the vector page.
1725 */
1726 pmap_enter(pm, vector_page, systempage.pv_pa,
1727 VM_PROT_READ | VM_PROT_EXECUTE,
1728 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1729 pmap_update(pm);
1730
1731 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1732 l2b = pmap_get_l2_bucket(pm, vector_page);
1733 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1734 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1735 L1_C_DOM(pmap_domain(pm));
1736 } else
1737 pm->pm_pl1vec = NULL;
1738 #endif
1739 }
1740
1741 #ifdef PMAP_CACHE_VIVT
1742 /*
1743 * Since we have a virtually indexed cache, we may need to inhibit caching if
1744 * there is more than one mapping and at least one of them is writable.
1745 * Since we purge the cache on every context switch, we only need to check for
1746 * other mappings within the same pmap, or kernel_pmap.
1747 * This function is also called when a page is unmapped, to possibly reenable
1748 * caching on any remaining mappings.
1749 *
1750 * The code implements the following logic, where:
1751 *
1752 * KW = # of kernel read/write pages
1753 * KR = # of kernel read only pages
1754 * UW = # of user read/write pages
1755 * UR = # of user read only pages
1756 *
1757 * KC = kernel mapping is cacheable
1758 * UC = user mapping is cacheable
1759 *
1760 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1761 * +---------------------------------------------
1762 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1763 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1764 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1765 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1766 */
1767
1768 static const int pmap_vac_flags[4][4] = {
1769 {-1, 0, 0, PVF_KNC},
1770 {0, 0, PVF_NC, PVF_NC},
1771 {0, PVF_NC, PVF_NC, PVF_NC},
1772 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1773 };
1774
1775 static inline int
1776 pmap_get_vac_flags(const struct vm_page_md *md)
1777 {
1778 int kidx, uidx;
1779
1780 kidx = 0;
1781 if (md->kro_mappings || md->krw_mappings > 1)
1782 kidx |= 1;
1783 if (md->krw_mappings)
1784 kidx |= 2;
1785
1786 uidx = 0;
1787 if (md->uro_mappings || md->urw_mappings > 1)
1788 uidx |= 1;
1789 if (md->urw_mappings)
1790 uidx |= 2;
1791
1792 return pmap_vac_flags[uidx][kidx];
1793 }
1794
1795 static inline void
1796 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1797 {
1798 int nattr;
1799
1800 nattr = pmap_get_vac_flags(md);
1801
1802 if (nattr < 0) {
1803 md->pvh_attrs &= ~PVF_NC;
1804 return;
1805 }
1806
1807 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1808 return;
1809
1810 if (pm == pmap_kernel())
1811 pmap_vac_me_kpmap(md, pa, pm, va);
1812 else
1813 pmap_vac_me_user(md, pa, pm, va);
1814
1815 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1816 }
1817
1818 static void
1819 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1820 {
1821 u_int u_cacheable, u_entries;
1822 struct pv_entry *pv;
1823 pmap_t last_pmap = pm;
1824
1825 /*
1826 * Pass one, see if there are both kernel and user pmaps for
1827 * this page. Calculate whether there are user-writable or
1828 * kernel-writable pages.
1829 */
1830 u_cacheable = 0;
1831 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1832 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1833 u_cacheable++;
1834 }
1835
1836 u_entries = md->urw_mappings + md->uro_mappings;
1837
1838 /*
1839 * We know we have just been updating a kernel entry, so if
1840 * all user pages are already cacheable, then there is nothing
1841 * further to do.
1842 */
1843 if (md->k_mappings == 0 && u_cacheable == u_entries)
1844 return;
1845
1846 if (u_entries) {
1847 /*
1848 * Scan over the list again, for each entry, if it
1849 * might not be set correctly, call pmap_vac_me_user
1850 * to recalculate the settings.
1851 */
1852 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1853 /*
1854 * We know kernel mappings will get set
1855 * correctly in other calls. We also know
1856 * that if the pmap is the same as last_pmap
1857 * then we've just handled this entry.
1858 */
1859 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1860 continue;
1861
1862 /*
1863 * If there are kernel entries and this page
1864 * is writable but non-cacheable, then we can
1865 * skip this entry also.
1866 */
1867 if (md->k_mappings &&
1868 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1869 (PVF_NC | PVF_WRITE))
1870 continue;
1871
1872 /*
1873 * Similarly if there are no kernel-writable
1874 * entries and the page is already
1875 * read-only/cacheable.
1876 */
1877 if (md->krw_mappings == 0 &&
1878 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1879 continue;
1880
1881 /*
1882 * For some of the remaining cases, we know
1883 * that we must recalculate, but for others we
1884 * can't tell if they are correct or not, so
1885 * we recalculate anyway.
1886 */
1887 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1888 }
1889
1890 if (md->k_mappings == 0)
1891 return;
1892 }
1893
1894 pmap_vac_me_user(md, pa, pm, va);
1895 }
1896
1897 static void
1898 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1899 {
1900 pmap_t kpmap = pmap_kernel();
1901 struct pv_entry *pv, *npv = NULL;
1902 u_int entries = 0;
1903 u_int writable = 0;
1904 u_int cacheable_entries = 0;
1905 u_int kern_cacheable = 0;
1906 u_int other_writable = 0;
1907
1908 /*
1909 * Count mappings and writable mappings in this pmap.
1910 * Include kernel mappings as part of our own.
1911 * Keep a pointer to the first one.
1912 */
1913 npv = NULL;
1914 KASSERT(pmap_page_locked_p(md));
1915 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1916 /* Count mappings in the same pmap */
1917 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1918 if (entries++ == 0)
1919 npv = pv;
1920
1921 /* Cacheable mappings */
1922 if ((pv->pv_flags & PVF_NC) == 0) {
1923 cacheable_entries++;
1924 if (kpmap == pv->pv_pmap)
1925 kern_cacheable++;
1926 }
1927
1928 /* Writable mappings */
1929 if (pv->pv_flags & PVF_WRITE)
1930 ++writable;
1931 } else if (pv->pv_flags & PVF_WRITE)
1932 other_writable = 1;
1933 }
1934
1935 /*
1936 * Enable or disable caching as necessary.
1937 * Note: the first entry might be part of the kernel pmap,
1938 * so we can't assume this is indicative of the state of the
1939 * other (maybe non-kpmap) entries.
1940 */
1941 if ((entries > 1 && writable) ||
1942 (entries > 0 && pm == kpmap && other_writable)) {
1943 if (cacheable_entries == 0) {
1944 return;
1945 }
1946
1947 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1948 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1949 (pv->pv_flags & PVF_NC))
1950 continue;
1951
1952 pv->pv_flags |= PVF_NC;
1953
1954 struct l2_bucket * const l2b
1955 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1956 KASSERTMSG(l2b != NULL, "%#lx", va);
1957 pt_entry_t * const ptep
1958 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1959 const pt_entry_t opte = *ptep;
1960 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1961
1962 if ((va != pv->pv_va || pm != pv->pv_pmap)
1963 && l2pte_valid_p(opte)) {
1964 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1965 true, pv->pv_flags);
1966 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1967 pv->pv_flags);
1968 }
1969
1970 l2pte_set(ptep, npte, opte);
1971 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1972 }
1973 cpu_cpwait();
1974 } else if (entries > cacheable_entries) {
1975 /*
1976 * Turn cacheing back on for some pages. If it is a kernel
1977 * page, only do so if there are no other writable pages.
1978 */
1979 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1980 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1981 (kpmap != pv->pv_pmap || other_writable)))
1982 continue;
1983
1984 pv->pv_flags &= ~PVF_NC;
1985
1986 struct l2_bucket * const l2b
1987 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1988 KASSERTMSG(l2b != NULL, "%#lx", va);
1989 pt_entry_t * const ptep
1990 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1991 const pt_entry_t opte = *ptep;
1992 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1993 | pte_l2_s_cache_mode;
1994
1995 if (l2pte_valid_p(opte)) {
1996 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1997 pv->pv_flags);
1998 }
1999
2000 l2pte_set(ptep, npte, opte);
2001 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2002 }
2003 }
2004 }
2005 #endif
2006
2007 #ifdef PMAP_CACHE_VIPT
2008 static void
2009 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2010 {
2011
2012 #ifndef ARM_MMU_EXTENDED
2013 struct pv_entry *pv;
2014 vaddr_t tst_mask;
2015 bool bad_alias;
2016 const u_int
2017 rw_mappings = md->urw_mappings + md->krw_mappings,
2018 ro_mappings = md->uro_mappings + md->kro_mappings;
2019
2020 /* do we need to do anything? */
2021 if (arm_cache_prefer_mask == 0)
2022 return;
2023
2024 UVMHIST_FUNC(__func__);
2025 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
2026 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
2027
2028 KASSERT(!va || pm);
2029 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2030
2031 /* Already a conflict? */
2032 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2033 /* just an add, things are already non-cached */
2034 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2035 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2036 bad_alias = false;
2037 if (va) {
2038 PMAPCOUNT(vac_color_none);
2039 bad_alias = true;
2040 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2041 goto fixup;
2042 }
2043 pv = SLIST_FIRST(&md->pvh_list);
2044 /* the list can't be empty because it would be cachable */
2045 if (md->pvh_attrs & PVF_KMPAGE) {
2046 tst_mask = md->pvh_attrs;
2047 } else {
2048 KASSERT(pv);
2049 tst_mask = pv->pv_va;
2050 pv = SLIST_NEXT(pv, pv_link);
2051 }
2052 /*
2053 * Only check for a bad alias if we have writable mappings.
2054 */
2055 tst_mask &= arm_cache_prefer_mask;
2056 if (rw_mappings > 0) {
2057 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2058 /* if there's a bad alias, stop checking. */
2059 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2060 bad_alias = true;
2061 }
2062 md->pvh_attrs |= PVF_WRITE;
2063 if (!bad_alias)
2064 md->pvh_attrs |= PVF_DIRTY;
2065 } else {
2066 /*
2067 * We have only read-only mappings. Let's see if there
2068 * are multiple colors in use or if we mapped a KMPAGE.
2069 * If the latter, we have a bad alias. If the former,
2070 * we need to remember that.
2071 */
2072 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2073 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2074 if (md->pvh_attrs & PVF_KMPAGE)
2075 bad_alias = true;
2076 break;
2077 }
2078 }
2079 md->pvh_attrs &= ~PVF_WRITE;
2080 /*
2081 * No KMPAGE and we exited early, so we must have
2082 * multiple color mappings.
2083 */
2084 if (!bad_alias && pv != NULL)
2085 md->pvh_attrs |= PVF_MULTCLR;
2086 }
2087
2088 /* If no conflicting colors, set everything back to cached */
2089 if (!bad_alias) {
2090 #ifdef DEBUG
2091 if ((md->pvh_attrs & PVF_WRITE)
2092 || ro_mappings < 2) {
2093 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2094 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2095 }
2096 #endif
2097 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2098 md->pvh_attrs |= tst_mask | PVF_COLORED;
2099 /*
2100 * Restore DIRTY bit if page is modified
2101 */
2102 if (md->pvh_attrs & PVF_DMOD)
2103 md->pvh_attrs |= PVF_DIRTY;
2104 PMAPCOUNT(vac_color_restore);
2105 } else {
2106 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2107 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2108 }
2109 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2110 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2111 } else if (!va) {
2112 KASSERT(pmap_is_page_colored_p(md));
2113 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2114 || (md->pvh_attrs & PVF_DIRTY));
2115 if (rw_mappings == 0) {
2116 md->pvh_attrs &= ~PVF_WRITE;
2117 if (ro_mappings == 1
2118 && (md->pvh_attrs & PVF_MULTCLR)) {
2119 /*
2120 * If this is the last readonly mapping
2121 * but it doesn't match the current color
2122 * for the page, change the current color
2123 * to match this last readonly mapping.
2124 */
2125 pv = SLIST_FIRST(&md->pvh_list);
2126 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2127 & arm_cache_prefer_mask;
2128 if (tst_mask) {
2129 md->pvh_attrs ^= tst_mask;
2130 PMAPCOUNT(vac_color_change);
2131 }
2132 }
2133 }
2134 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2135 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2136 return;
2137 } else if (!pmap_is_page_colored_p(md)) {
2138 /* not colored so we just use its color */
2139 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2140 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2141 PMAPCOUNT(vac_color_new);
2142 md->pvh_attrs &= PAGE_SIZE - 1;
2143 md->pvh_attrs |= PVF_COLORED
2144 | (va & arm_cache_prefer_mask)
2145 | (rw_mappings > 0 ? PVF_WRITE : 0);
2146 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2147 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2148 return;
2149 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2150 bad_alias = false;
2151 if (rw_mappings > 0) {
2152 /*
2153 * We now have writeable mappings and if we have
2154 * readonly mappings in more than once color, we have
2155 * an aliasing problem. Regardless mark the page as
2156 * writeable.
2157 */
2158 if (md->pvh_attrs & PVF_MULTCLR) {
2159 if (ro_mappings < 2) {
2160 /*
2161 * If we only have less than two
2162 * read-only mappings, just flush the
2163 * non-primary colors from the cache.
2164 */
2165 pmap_flush_page(md, pa,
2166 PMAP_FLUSH_SECONDARY);
2167 } else {
2168 bad_alias = true;
2169 }
2170 }
2171 md->pvh_attrs |= PVF_WRITE;
2172 }
2173 /* If no conflicting colors, set everything back to cached */
2174 if (!bad_alias) {
2175 #ifdef DEBUG
2176 if (rw_mappings > 0
2177 || (md->pvh_attrs & PMAP_KMPAGE)) {
2178 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2179 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2180 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2181 }
2182 #endif
2183 if (SLIST_EMPTY(&md->pvh_list))
2184 PMAPCOUNT(vac_color_reuse);
2185 else
2186 PMAPCOUNT(vac_color_ok);
2187
2188 /* matching color, just return */
2189 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2190 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2191 return;
2192 }
2193 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2194 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2195
2196 /* color conflict. evict from cache. */
2197
2198 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2199 md->pvh_attrs &= ~PVF_COLORED;
2200 md->pvh_attrs |= PVF_NC;
2201 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2202 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2203 PMAPCOUNT(vac_color_erase);
2204 } else if (rw_mappings == 0
2205 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2206 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2207
2208 /*
2209 * If the page has dirty cache lines, clean it.
2210 */
2211 if (md->pvh_attrs & PVF_DIRTY)
2212 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2213
2214 /*
2215 * If this is the first remapping (we know that there are no
2216 * writeable mappings), then this is a simple color change.
2217 * Otherwise this is a seconary r/o mapping, which means
2218 * we don't have to do anything.
2219 */
2220 if (ro_mappings == 1) {
2221 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2222 md->pvh_attrs &= PAGE_SIZE - 1;
2223 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2224 PMAPCOUNT(vac_color_change);
2225 } else {
2226 PMAPCOUNT(vac_color_blind);
2227 }
2228 md->pvh_attrs |= PVF_MULTCLR;
2229 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2230 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2231 return;
2232 } else {
2233 if (rw_mappings > 0)
2234 md->pvh_attrs |= PVF_WRITE;
2235
2236 /* color conflict. evict from cache. */
2237 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2238
2239 /* the list can't be empty because this was a enter/modify */
2240 pv = SLIST_FIRST(&md->pvh_list);
2241 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2242 KASSERT(pv);
2243 /*
2244 * If there's only one mapped page, change color to the
2245 * page's new color and return. Restore the DIRTY bit
2246 * that was erased by pmap_flush_page.
2247 */
2248 if (SLIST_NEXT(pv, pv_link) == NULL) {
2249 md->pvh_attrs &= PAGE_SIZE - 1;
2250 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2251 if (md->pvh_attrs & PVF_DMOD)
2252 md->pvh_attrs |= PVF_DIRTY;
2253 PMAPCOUNT(vac_color_change);
2254 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2255 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2256 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2257 return;
2258 }
2259 }
2260 bad_alias = true;
2261 md->pvh_attrs &= ~PVF_COLORED;
2262 md->pvh_attrs |= PVF_NC;
2263 PMAPCOUNT(vac_color_erase);
2264 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2265 }
2266
2267 fixup:
2268 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2269
2270 /*
2271 * Turn cacheing on/off for all pages.
2272 */
2273 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2274 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2275 pv->pv_va);
2276 KASSERTMSG(l2b != NULL, "%#lx", va);
2277 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2278 const pt_entry_t opte = *ptep;
2279 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2280 if (bad_alias) {
2281 pv->pv_flags |= PVF_NC;
2282 } else {
2283 pv->pv_flags &= ~PVF_NC;
2284 npte |= pte_l2_s_cache_mode;
2285 }
2286
2287 if (opte == npte) /* only update is there's a change */
2288 continue;
2289
2290 if (l2pte_valid_p(opte)) {
2291 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2292 }
2293
2294 l2pte_set(ptep, npte, opte);
2295 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2296 }
2297 #endif /* !ARM_MMU_EXTENDED */
2298 }
2299 #endif /* PMAP_CACHE_VIPT */
2300
2301
2302 /*
2303 * Modify pte bits for all ptes corresponding to the given physical address.
2304 * We use `maskbits' rather than `clearbits' because we're always passing
2305 * constants and the latter would require an extra inversion at run-time.
2306 */
2307 static void
2308 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2309 {
2310 struct pv_entry *pv;
2311 #ifdef PMAP_CACHE_VIPT
2312 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2313 bool need_syncicache = false;
2314 #ifdef ARM_MMU_EXTENDED
2315 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2316 #else
2317 const u_int execbits = 0;
2318 bool need_vac_me_harder = false;
2319 #endif
2320 #else
2321 const u_int execbits = 0;
2322 #endif
2323
2324 UVMHIST_FUNC(__func__);
2325 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx maskbits %#jx",
2326 (uintptr_t)md, pa, maskbits, 0);
2327
2328 #ifdef PMAP_CACHE_VIPT
2329 /*
2330 * If we might want to sync the I-cache and we've modified it,
2331 * then we know we definitely need to sync or discard it.
2332 */
2333 if (want_syncicache) {
2334 if (md->pvh_attrs & PVF_MOD) {
2335 need_syncicache = true;
2336 }
2337 }
2338 #endif
2339 KASSERT(pmap_page_locked_p(md));
2340
2341 /*
2342 * Clear saved attributes (modify, reference)
2343 */
2344 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2345
2346 if (SLIST_EMPTY(&md->pvh_list)) {
2347 #if defined(PMAP_CACHE_VIPT)
2348 if (need_syncicache) {
2349 /*
2350 * No one has it mapped, so just discard it. The next
2351 * exec remapping will cause it to be synced.
2352 */
2353 md->pvh_attrs &= ~PVF_EXEC;
2354 PMAPCOUNT(exec_discarded_clearbit);
2355 }
2356 #endif
2357 return;
2358 }
2359
2360 /*
2361 * Loop over all current mappings setting/clearing as appropos
2362 */
2363 for (pv = SLIST_FIRST(&md->pvh_list); pv != NULL;) {
2364 pmap_t pm = pv->pv_pmap;
2365 const vaddr_t va = pv->pv_va;
2366 const u_int oflags = pv->pv_flags;
2367 #ifndef ARM_MMU_EXTENDED
2368 /*
2369 * Kernel entries are unmanaged and as such not to be changed.
2370 */
2371 if (PV_IS_KENTRY_P(oflags)) {
2372 pv = SLIST_NEXT(pv, pv_link);
2373 continue;
2374 }
2375 #endif
2376
2377 /*
2378 * Try to get a hold on the pmap's lock. We must do this
2379 * while still holding the page locked, to know that the
2380 * page is still associated with the pmap and the mapping is
2381 * in place. If a hold can't be had, unlock and wait for
2382 * the pmap's lock to become available and retry. The pmap
2383 * must be ref'd over this dance to stop it disappearing
2384 * behind us.
2385 */
2386 if (!mutex_tryenter(&pm->pm_lock)) {
2387 pmap_reference(pm);
2388 pmap_release_page_lock(md);
2389 pmap_acquire_pmap_lock(pm);
2390 /* nothing, just wait for it */
2391 pmap_release_pmap_lock(pm);
2392 pmap_destroy(pm);
2393 /* Restart from the beginning. */
2394 pmap_acquire_page_lock(md);
2395 pv = SLIST_FIRST(&md->pvh_list);
2396 continue;
2397 }
2398 pv->pv_flags &= ~maskbits;
2399
2400 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2401 KASSERTMSG(l2b != NULL, "%#lx", va);
2402
2403 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2404 const pt_entry_t opte = *ptep;
2405 pt_entry_t npte = opte | execbits;
2406
2407 #ifdef ARM_MMU_EXTENDED
2408 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2409 #endif
2410
2411 UVMHIST_LOG(maphist, "pv %#jx pm %#jx va %#jx flag %#jx",
2412 (uintptr_t)pv, (uintptr_t)pm, va, oflags);
2413
2414 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2415 #ifdef PMAP_CACHE_VIVT
2416 if ((oflags & PVF_NC)) {
2417 /*
2418 * Entry is not cacheable:
2419 *
2420 * Don't turn caching on again if this is a
2421 * modified emulation. This would be
2422 * inconsitent with the settings created by
2423 * pmap_vac_me_harder(). Otherwise, it's safe
2424 * to re-enable cacheing.
2425 *
2426 * There's no need to call pmap_vac_me_harder()
2427 * here: all pages are losing their write
2428 * permission.
2429 */
2430 if (maskbits & PVF_WRITE) {
2431 npte |= pte_l2_s_cache_mode;
2432 pv->pv_flags &= ~PVF_NC;
2433 }
2434 } else if (l2pte_writable_p(opte)) {
2435 /*
2436 * Entry is writable/cacheable: check if pmap
2437 * is current if it is flush it, otherwise it
2438 * won't be in the cache
2439 */
2440 pmap_cache_wbinv_page(pm, va,
2441 (maskbits & PVF_REF) != 0,
2442 oflags|PVF_WRITE);
2443 }
2444 #endif
2445
2446 /* make the pte read only */
2447 npte = l2pte_set_readonly(npte);
2448
2449 if ((maskbits & oflags & PVF_WRITE)) {
2450 /*
2451 * Keep alias accounting up to date
2452 */
2453 if (pm == pmap_kernel()) {
2454 md->krw_mappings--;
2455 md->kro_mappings++;
2456 } else {
2457 md->urw_mappings--;
2458 md->uro_mappings++;
2459 }
2460 #ifdef PMAP_CACHE_VIPT
2461 if (arm_cache_prefer_mask != 0) {
2462 if (md->urw_mappings + md->krw_mappings == 0) {
2463 md->pvh_attrs &= ~PVF_WRITE;
2464 } else {
2465 PMAP_VALIDATE_MD_PAGE(md);
2466 }
2467 }
2468 if (want_syncicache)
2469 need_syncicache = true;
2470 #ifndef ARM_MMU_EXTENDED
2471 need_vac_me_harder = true;
2472 #endif
2473 #endif /* PMAP_CACHE_VIPT */
2474 }
2475 }
2476
2477 if (maskbits & PVF_REF) {
2478 if (true
2479 #ifndef ARM_MMU_EXTENDED
2480 && (oflags & PVF_NC) == 0
2481 #endif
2482 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2483 && l2pte_valid_p(npte)) {
2484 #ifdef PMAP_CACHE_VIVT
2485 /*
2486 * Check npte here; we may have already
2487 * done the wbinv above, and the validity
2488 * of the PTE is the same for opte and
2489 * npte.
2490 */
2491 pmap_cache_wbinv_page(pm, va, true, oflags);
2492 #endif
2493 }
2494
2495 /*
2496 * Make the PTE invalid so that we will take a
2497 * page fault the next time the mapping is
2498 * referenced.
2499 */
2500 npte &= ~L2_TYPE_MASK;
2501 npte |= L2_TYPE_INV;
2502 }
2503
2504 if (npte != opte) {
2505 l2pte_reset(ptep);
2506 PTE_SYNC(ptep);
2507
2508 /* Flush the TLB entry if a current pmap. */
2509 pmap_tlb_flush_SE(pm, va, oflags);
2510
2511 l2pte_set(ptep, npte, 0);
2512 PTE_SYNC(ptep);
2513 }
2514
2515 pmap_release_pmap_lock(pm);
2516
2517 UVMHIST_LOG(maphist, "pm %#jx va %#jx opte %#jx npte %#jx",
2518 (uintptr_t)pm, va, opte, npte);
2519
2520 /* Move to next entry. */
2521 pv = SLIST_NEXT(pv, pv_link);
2522 }
2523
2524 #if defined(PMAP_CACHE_VIPT)
2525 /*
2526 * If we need to sync the I-cache and we haven't done it yet, do it.
2527 */
2528 if (need_syncicache) {
2529 pmap_syncicache_page(md, pa);
2530 PMAPCOUNT(exec_synced_clearbit);
2531 }
2532 #ifndef ARM_MMU_EXTENDED
2533 /*
2534 * If we are changing this to read-only, we need to call vac_me_harder
2535 * so we can change all the read-only pages to cacheable. We pretend
2536 * this as a page deletion.
2537 */
2538 if (need_vac_me_harder) {
2539 if (md->pvh_attrs & PVF_NC)
2540 pmap_vac_me_harder(md, pa, NULL, 0);
2541 }
2542 #endif /* !ARM_MMU_EXTENDED */
2543 #endif /* PMAP_CACHE_VIPT */
2544 }
2545
2546 /*
2547 * pmap_clean_page()
2548 *
2549 * This is a local function used to work out the best strategy to clean
2550 * a single page referenced by its entry in the PV table. It's used by
2551 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2552 *
2553 * Its policy is effectively:
2554 * o If there are no mappings, we don't bother doing anything with the cache.
2555 * o If there is one mapping, we clean just that page.
2556 * o If there are multiple mappings, we clean the entire cache.
2557 *
2558 * So that some functions can be further optimised, it returns 0 if it didn't
2559 * clean the entire cache, or 1 if it did.
2560 *
2561 * XXX One bug in this routine is that if the pv_entry has a single page
2562 * mapped at 0x00000000 a whole cache clean will be performed rather than
2563 * just the 1 page. Since this should not occur in everyday use and if it does
2564 * it will just result in not the most efficient clean for the page.
2565 */
2566 #ifdef PMAP_CACHE_VIVT
2567 static bool
2568 pmap_clean_page(struct vm_page_md *md, bool is_src)
2569 {
2570 struct pv_entry *pv;
2571 pmap_t pm_to_clean = NULL;
2572 bool cache_needs_cleaning = false;
2573 vaddr_t page_to_clean = 0;
2574 u_int flags = 0;
2575
2576 /*
2577 * Since we flush the cache each time we change to a different
2578 * user vmspace, we only need to flush the page if it is in the
2579 * current pmap.
2580 */
2581 KASSERT(pmap_page_locked_p(md));
2582 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2583 if (pmap_is_current(pv->pv_pmap)) {
2584 flags |= pv->pv_flags;
2585 /*
2586 * The page is mapped non-cacheable in
2587 * this map. No need to flush the cache.
2588 */
2589 if (pv->pv_flags & PVF_NC) {
2590 #ifdef DIAGNOSTIC
2591 KASSERT(!cache_needs_cleaning);
2592 #endif
2593 break;
2594 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2595 continue;
2596 if (cache_needs_cleaning) {
2597 page_to_clean = 0;
2598 break;
2599 } else {
2600 page_to_clean = pv->pv_va;
2601 pm_to_clean = pv->pv_pmap;
2602 }
2603 cache_needs_cleaning = true;
2604 }
2605 }
2606
2607 if (page_to_clean) {
2608 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2609 !is_src, flags | PVF_REF);
2610 } else if (cache_needs_cleaning) {
2611 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2612
2613 pmap_cache_wbinv_all(pm, flags);
2614 return true;
2615 }
2616 return false;
2617 }
2618 #endif
2619
2620 #ifdef PMAP_CACHE_VIPT
2621 /*
2622 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2623 * right cache alias to make sure we flush the right stuff.
2624 */
2625 void
2626 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2627 {
2628 pmap_t kpm = pmap_kernel();
2629 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2630 ? PAGE_SIZE
2631 : arm_pcache.icache_way_size;
2632
2633 UVMHIST_FUNC(__func__);
2634 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx (attrs=%#jx)",
2635 (uintptr_t)md, pa, md->pvh_attrs, 0);
2636
2637 /*
2638 * No need to clean the page if it's non-cached.
2639 */
2640 #ifndef ARM_MMU_EXTENDED
2641 if (md->pvh_attrs & PVF_NC)
2642 return;
2643 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2644 #endif
2645
2646 pt_entry_t * const ptep = cpu_cdst_pte(0);
2647 const vaddr_t dstp = cpu_cdstp(0);
2648 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2649 if (way_size <= PAGE_SIZE) {
2650 bool ok = false;
2651 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2652 if (ok) {
2653 cpu_icache_sync_range(vdstp, way_size);
2654 return;
2655 }
2656 }
2657 #endif
2658
2659 /*
2660 * We don't worry about the color of the exec page, we map the
2661 * same page to pages in the way and then do the icache_sync on
2662 * the entire way making sure we are cleaned.
2663 */
2664 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2665 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2666
2667 for (size_t i = 0, j = 0; i < way_size;
2668 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2669 l2pte_reset(ptep + j);
2670 PTE_SYNC(ptep + j);
2671
2672 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2673 /*
2674 * Set up a PTE with to flush these cache lines.
2675 */
2676 l2pte_set(ptep + j, npte, 0);
2677 }
2678 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2679
2680 /*
2681 * Flush it.
2682 */
2683 cpu_icache_sync_range(dstp, way_size);
2684
2685 for (size_t i = 0, j = 0; i < way_size;
2686 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2687 /*
2688 * Unmap the page(s).
2689 */
2690 l2pte_reset(ptep + j);
2691 PTE_SYNC(ptep + j);
2692
2693 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2694 }
2695
2696 md->pvh_attrs |= PVF_EXEC;
2697 PMAPCOUNT(exec_synced);
2698 }
2699
2700 #ifndef ARM_MMU_EXTENDED
2701 void
2702 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2703 {
2704 vsize_t va_offset, end_va;
2705 bool wbinv_p;
2706
2707 if (arm_cache_prefer_mask == 0)
2708 return;
2709
2710 UVMHIST_FUNC(__func__);
2711 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx op %#jx",
2712 (uintptr_t)md, pa, op, 0);
2713
2714 switch (flush) {
2715 case PMAP_FLUSH_PRIMARY:
2716 if (md->pvh_attrs & PVF_MULTCLR) {
2717 va_offset = 0;
2718 end_va = arm_cache_prefer_mask;
2719 md->pvh_attrs &= ~PVF_MULTCLR;
2720 PMAPCOUNT(vac_flush_lots);
2721 } else {
2722 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2723 end_va = va_offset;
2724 PMAPCOUNT(vac_flush_one);
2725 }
2726 /*
2727 * Mark that the page is no longer dirty.
2728 */
2729 md->pvh_attrs &= ~PVF_DIRTY;
2730 wbinv_p = true;
2731 break;
2732 case PMAP_FLUSH_SECONDARY:
2733 va_offset = 0;
2734 end_va = arm_cache_prefer_mask;
2735 wbinv_p = true;
2736 md->pvh_attrs &= ~PVF_MULTCLR;
2737 PMAPCOUNT(vac_flush_lots);
2738 break;
2739 case PMAP_CLEAN_PRIMARY:
2740 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2741 end_va = va_offset;
2742 wbinv_p = false;
2743 /*
2744 * Mark that the page is no longer dirty.
2745 */
2746 if ((md->pvh_attrs & PVF_DMOD) == 0)
2747 md->pvh_attrs &= ~PVF_DIRTY;
2748 PMAPCOUNT(vac_clean_one);
2749 break;
2750 default:
2751 return;
2752 }
2753
2754 KASSERT(!(md->pvh_attrs & PVF_NC));
2755
2756 UVMHIST_LOG(maphist, "md %#jx (attrs=%#jx)", (uintptr_t)md,
2757 md->pvh_attrs, 0, 0);
2758
2759 const size_t scache_line_size = arm_scache.dcache_line_size;
2760
2761 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2762 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2763 const vaddr_t dstp = cpu_cdstp(va_offset);
2764 const pt_entry_t opte = *ptep;
2765
2766 if (flush == PMAP_FLUSH_SECONDARY
2767 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2768 continue;
2769
2770 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2771 /*
2772 * Set up a PTE with the right coloring to flush
2773 * existing cache entries.
2774 */
2775 const pt_entry_t npte = L2_S_PROTO
2776 | pa
2777 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2778 | pte_l2_s_cache_mode;
2779 l2pte_set(ptep, npte, opte);
2780 PTE_SYNC(ptep);
2781
2782 /*
2783 * Flush it. Make sure to flush secondary cache too since
2784 * bus_dma will ignore uncached pages.
2785 */
2786 if (scache_line_size != 0) {
2787 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2788 if (wbinv_p) {
2789 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2790 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2791 } else {
2792 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2793 }
2794 } else {
2795 if (wbinv_p) {
2796 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2797 } else {
2798 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2799 }
2800 }
2801
2802 /*
2803 * Restore the page table entry since we might have interrupted
2804 * pmap_zero_page or pmap_copy_page which was already using
2805 * this pte.
2806 */
2807 if (opte) {
2808 l2pte_set(ptep, opte, npte);
2809 } else {
2810 l2pte_reset(ptep);
2811 }
2812 PTE_SYNC(ptep);
2813 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2814 }
2815 }
2816 #endif /* ARM_MMU_EXTENDED */
2817 #endif /* PMAP_CACHE_VIPT */
2818
2819 /*
2820 * Routine: pmap_page_remove
2821 * Function:
2822 * Removes this physical page from
2823 * all physical maps in which it resides.
2824 * Reflects back modify bits to the pager.
2825 */
2826 static void
2827 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2828 {
2829 struct l2_bucket *l2b;
2830 struct pv_entry *pv;
2831 pt_entry_t *ptep;
2832 #ifndef ARM_MMU_EXTENDED
2833 bool flush = false;
2834 #endif
2835 u_int flags = 0;
2836
2837 UVMHIST_FUNC(__func__);
2838 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx", (uintptr_t)md, pa, 0, 0);
2839
2840 pmap_acquire_page_lock(md);
2841 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2842 if (*pvp == NULL) {
2843 #ifdef PMAP_CACHE_VIPT
2844 /*
2845 * We *know* the page contents are about to be replaced.
2846 * Discard the exec contents
2847 */
2848 if (PV_IS_EXEC_P(md->pvh_attrs))
2849 PMAPCOUNT(exec_discarded_page_protect);
2850 md->pvh_attrs &= ~PVF_EXEC;
2851 PMAP_VALIDATE_MD_PAGE(md);
2852 #endif
2853 pmap_release_page_lock(md);
2854 return;
2855 }
2856 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2857 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2858 #endif
2859
2860 /*
2861 * Clear alias counts
2862 */
2863 #ifdef PMAP_CACHE_VIVT
2864 md->k_mappings = 0;
2865 #endif
2866 md->urw_mappings = md->uro_mappings = 0;
2867
2868 #ifdef PMAP_CACHE_VIVT
2869 pmap_clean_page(md, false);
2870 #endif
2871
2872 for (pv = *pvp; pv != NULL;) {
2873 pmap_t pm = pv->pv_pmap;
2874 #ifndef ARM_MMU_EXTENDED
2875 if (flush == false && pmap_is_current(pm))
2876 flush = true;
2877 #endif
2878
2879 #ifdef PMAP_CACHE_VIPT
2880 if (pm == pmap_kernel() && PV_IS_KENTRY_P(pv->pv_flags)) {
2881 /* If this was unmanaged mapping, it must be ignored. */
2882 pvp = &SLIST_NEXT(pv, pv_link);
2883 pv = *pvp;
2884 continue;
2885 }
2886 #endif
2887
2888 /*
2889 * Try to get a hold on the pmap's lock. We must do this
2890 * while still holding the page locked, to know that the
2891 * page is still associated with the pmap and the mapping is
2892 * in place. If a hold can't be had, unlock and wait for
2893 * the pmap's lock to become available and retry. The pmap
2894 * must be ref'd over this dance to stop it disappearing
2895 * behind us.
2896 */
2897 if (!mutex_tryenter(&pm->pm_lock)) {
2898 pmap_reference(pm);
2899 pmap_release_page_lock(md);
2900 pmap_acquire_pmap_lock(pm);
2901 /* nothing, just wait for it */
2902 pmap_release_pmap_lock(pm);
2903 pmap_destroy(pm);
2904 /* Restart from the beginning. */
2905 pmap_acquire_page_lock(md);
2906 pvp = &SLIST_FIRST(&md->pvh_list);
2907 pv = *pvp;
2908 continue;
2909 }
2910
2911 if (pm == pmap_kernel()) {
2912 #ifdef PMAP_CACHE_VIPT
2913 if (pv->pv_flags & PVF_WRITE)
2914 md->krw_mappings--;
2915 else
2916 md->kro_mappings--;
2917 #endif
2918 PMAPCOUNT(kernel_unmappings);
2919 }
2920 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2921 PMAPCOUNT(unmappings);
2922
2923 pmap_release_page_lock(md);
2924
2925 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2926 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2927
2928 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2929
2930 /*
2931 * Update statistics
2932 */
2933 --pm->pm_stats.resident_count;
2934
2935 /* Wired bit */
2936 if (pv->pv_flags & PVF_WIRED)
2937 --pm->pm_stats.wired_count;
2938
2939 flags |= pv->pv_flags;
2940
2941 /*
2942 * Invalidate the PTEs.
2943 */
2944 l2pte_reset(ptep);
2945 PTE_SYNC_CURRENT(pm, ptep);
2946
2947 #ifdef ARM_MMU_EXTENDED
2948 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2949 #endif
2950
2951 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2952
2953 pmap_release_pmap_lock(pm);
2954
2955 pool_put(&pmap_pv_pool, pv);
2956 pmap_acquire_page_lock(md);
2957
2958 /*
2959 * Restart at the beginning of the list.
2960 */
2961 pvp = &SLIST_FIRST(&md->pvh_list);
2962 pv = *pvp;
2963 }
2964 /*
2965 * if we reach the end of the list and there are still mappings, they
2966 * might be able to be cached now. And they must be kernel mappings.
2967 */
2968 if (!SLIST_EMPTY(&md->pvh_list)) {
2969 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2970 }
2971
2972 #ifdef PMAP_CACHE_VIPT
2973 /*
2974 * Its EXEC cache is now gone.
2975 */
2976 if (PV_IS_EXEC_P(md->pvh_attrs))
2977 PMAPCOUNT(exec_discarded_page_protect);
2978 md->pvh_attrs &= ~PVF_EXEC;
2979 KASSERT(md->urw_mappings == 0);
2980 KASSERT(md->uro_mappings == 0);
2981 #ifndef ARM_MMU_EXTENDED
2982 if (arm_cache_prefer_mask != 0) {
2983 if (md->krw_mappings == 0)
2984 md->pvh_attrs &= ~PVF_WRITE;
2985 PMAP_VALIDATE_MD_PAGE(md);
2986 }
2987 #endif /* ARM_MMU_EXTENDED */
2988 #endif /* PMAP_CACHE_VIPT */
2989 pmap_release_page_lock(md);
2990
2991 #ifndef ARM_MMU_EXTENDED
2992 if (flush) {
2993 /*
2994 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2995 * would need a subsequent call to pmap_update() to ensure
2996 * curpm->pm_cstate.cs_all is reset. Our callers are not
2997 * required to do that (see pmap(9)), so we can't modify
2998 * the current pmap's state.
2999 */
3000 if (PV_BEEN_EXECD(flags))
3001 cpu_tlb_flushID();
3002 else
3003 cpu_tlb_flushD();
3004 }
3005 cpu_cpwait();
3006 #endif /* ARM_MMU_EXTENDED */
3007 }
3008
3009 /*
3010 * pmap_t pmap_create(void)
3011 *
3012 * Create a new pmap structure from scratch.
3013 */
3014 pmap_t
3015 pmap_create(void)
3016 {
3017 pmap_t pm;
3018
3019 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3020
3021 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
3022
3023 pm->pm_refs = 1;
3024 pm->pm_stats.wired_count = 0;
3025 pm->pm_stats.resident_count = 1;
3026 #ifdef ARM_MMU_EXTENDED
3027 #ifdef MULTIPROCESSOR
3028 kcpuset_create(&pm->pm_active, true);
3029 kcpuset_create(&pm->pm_onproc, true);
3030 #endif
3031 #else
3032 pm->pm_cstate.cs_all = 0;
3033 #endif
3034 pmap_alloc_l1(pm);
3035
3036 /*
3037 * Note: The pool cache ensures that the pm_l2[] array is already
3038 * initialised to zero.
3039 */
3040
3041 pmap_pinit(pm);
3042
3043 return pm;
3044 }
3045
3046 u_int
3047 arm32_mmap_flags(paddr_t pa)
3048 {
3049 /*
3050 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3051 * and we're using the upper bits in page numbers to pass flags around
3052 * so we might as well use the same bits
3053 */
3054 return (u_int)pa & PMAP_MD_MASK;
3055 }
3056 /*
3057 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3058 * u_int flags)
3059 *
3060 * Insert the given physical page (p) at
3061 * the specified virtual address (v) in the
3062 * target physical map with the protection requested.
3063 *
3064 * NB: This is the only routine which MAY NOT lazy-evaluate
3065 * or lose information. That is, this routine must actually
3066 * insert this page into the given map NOW.
3067 */
3068 int
3069 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3070 {
3071 struct l2_bucket *l2b;
3072 struct vm_page *pg, *opg;
3073 u_int nflags;
3074 u_int oflags;
3075 const bool kpm_p = (pm == pmap_kernel());
3076 #ifdef ARM_HAS_VBAR
3077 const bool vector_page_p = false;
3078 #else
3079 const bool vector_page_p = (va == vector_page);
3080 #endif
3081 struct pmap_page *pp = pmap_pv_tracked(pa);
3082 struct pv_entry *new_pv = NULL;
3083 struct pv_entry *old_pv = NULL;
3084 int error = 0;
3085
3086 UVMHIST_FUNC(__func__);
3087 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx pa %#jx prot %#jx",
3088 (uintptr_t)pm, va, pa, prot);
3089 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0);
3090
3091 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3092 KDASSERT(((va | pa) & PGOFSET) == 0);
3093
3094 /*
3095 * Get a pointer to the page. Later on in this function, we
3096 * test for a managed page by checking pg != NULL.
3097 */
3098 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3099 /*
3100 * if we may need a new pv entry allocate if now, as we can't do it
3101 * with the kernel_pmap locked
3102 */
3103 if (pg || pp)
3104 new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3105
3106 nflags = 0;
3107 if (prot & VM_PROT_WRITE)
3108 nflags |= PVF_WRITE;
3109 if (prot & VM_PROT_EXECUTE)
3110 nflags |= PVF_EXEC;
3111 if (flags & PMAP_WIRED)
3112 nflags |= PVF_WIRED;
3113
3114 pmap_acquire_pmap_lock(pm);
3115
3116 /*
3117 * Fetch the L2 bucket which maps this page, allocating one if
3118 * necessary for user pmaps.
3119 */
3120 if (kpm_p) {
3121 l2b = pmap_get_l2_bucket(pm, va);
3122 } else {
3123 l2b = pmap_alloc_l2_bucket(pm, va);
3124 }
3125 if (l2b == NULL) {
3126 if (flags & PMAP_CANFAIL) {
3127 pmap_release_pmap_lock(pm);
3128 error = ENOMEM;
3129 goto free_pv;
3130 }
3131 panic("pmap_enter: failed to allocate L2 bucket");
3132 }
3133 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3134 const pt_entry_t opte = *ptep;
3135 pt_entry_t npte = pa;
3136 oflags = 0;
3137
3138 if (opte) {
3139 /*
3140 * There is already a mapping at this address.
3141 * If the physical address is different, lookup the
3142 * vm_page.
3143 */
3144 if (l2pte_pa(opte) != pa) {
3145 KASSERT(!pmap_pv_tracked(pa));
3146 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3147 } else
3148 opg = pg;
3149 } else
3150 opg = NULL;
3151
3152 if (pg || pp) {
3153 KASSERT((pg != NULL) != (pp != NULL));
3154 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3155 PMAP_PAGE_TO_MD(pp);
3156
3157 /*
3158 * This is to be a managed mapping.
3159 */
3160 pmap_acquire_page_lock(md);
3161 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3162 /*
3163 * - The access type indicates that we don't need
3164 * to do referenced emulation.
3165 * OR
3166 * - The physical page has already been referenced
3167 * so no need to re-do referenced emulation here.
3168 */
3169 npte |= l2pte_set_readonly(L2_S_PROTO);
3170
3171 nflags |= PVF_REF;
3172
3173 if ((prot & VM_PROT_WRITE) != 0 &&
3174 ((flags & VM_PROT_WRITE) != 0 ||
3175 (md->pvh_attrs & PVF_MOD) != 0)) {
3176 /*
3177 * This is a writable mapping, and the
3178 * page's mod state indicates it has
3179 * already been modified. Make it
3180 * writable from the outset.
3181 */
3182 npte = l2pte_set_writable(npte);
3183 nflags |= PVF_MOD;
3184 }
3185
3186 #ifdef ARM_MMU_EXTENDED
3187 /*
3188 * If the page has been cleaned, then the pvh_attrs
3189 * will have PVF_EXEC set, so mark it execute so we
3190 * don't get an access fault when trying to execute
3191 * from it.
3192 */
3193 if (md->pvh_attrs & nflags & PVF_EXEC) {
3194 npte &= ~L2_XS_XN;
3195 }
3196 #endif
3197 } else {
3198 /*
3199 * Need to do page referenced emulation.
3200 */
3201 npte |= L2_TYPE_INV;
3202 }
3203
3204 if (flags & ARM32_MMAP_WRITECOMBINE) {
3205 npte |= pte_l2_s_wc_mode;
3206 } else
3207 npte |= pte_l2_s_cache_mode;
3208
3209 if (pg != NULL && pg == opg) {
3210 /*
3211 * We're changing the attrs of an existing mapping.
3212 */
3213 oflags = pmap_modify_pv(md, pa, pm, va,
3214 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3215 PVF_MOD | PVF_REF, nflags);
3216
3217 #ifdef PMAP_CACHE_VIVT
3218 /*
3219 * We may need to flush the cache if we're
3220 * doing rw-ro...
3221 */
3222 if (pm->pm_cstate.cs_cache_d &&
3223 (oflags & PVF_NC) == 0 &&
3224 l2pte_writable_p(opte) &&
3225 (prot & VM_PROT_WRITE) == 0)
3226 cpu_dcache_wb_range(va, PAGE_SIZE);
3227 #endif
3228 } else {
3229 struct pv_entry *pv;
3230 /*
3231 * New mapping, or changing the backing page
3232 * of an existing mapping.
3233 */
3234 if (opg) {
3235 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3236 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3237
3238 /*
3239 * Replacing an existing mapping with a new one.
3240 * It is part of our managed memory so we
3241 * must remove it from the PV list
3242 */
3243 pv = pmap_remove_pv(omd, opa, pm, va);
3244 pmap_vac_me_harder(omd, opa, pm, 0);
3245 oflags = pv->pv_flags;
3246
3247 #ifdef PMAP_CACHE_VIVT
3248 /*
3249 * If the old mapping was valid (ref/mod
3250 * emulation creates 'invalid' mappings
3251 * initially) then make sure to frob
3252 * the cache.
3253 */
3254 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3255 pmap_cache_wbinv_page(pm, va, true,
3256 oflags);
3257 }
3258 #endif
3259 } else {
3260 pv = new_pv;
3261 new_pv = NULL;
3262 if (pv == NULL) {
3263 pmap_release_page_lock(md);
3264 pmap_release_pmap_lock(pm);
3265 if ((flags & PMAP_CANFAIL) == 0)
3266 panic("pmap_enter: "
3267 "no pv entries");
3268
3269 pmap_free_l2_bucket(pm, l2b, 0);
3270 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3271 0, 0, 0, 0);
3272 return ENOMEM;
3273 }
3274 }
3275
3276 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3277 }
3278 pmap_release_page_lock(md);
3279 } else {
3280 /*
3281 * We're mapping an unmanaged page.
3282 * These are always readable, and possibly writable, from
3283 * the get go as we don't need to track ref/mod status.
3284 */
3285 npte |= l2pte_set_readonly(L2_S_PROTO);
3286 if (prot & VM_PROT_WRITE)
3287 npte = l2pte_set_writable(npte);
3288
3289 /*
3290 * Make sure the vector table is mapped cacheable
3291 */
3292 if ((vector_page_p && !kpm_p)
3293 || (flags & ARM32_MMAP_CACHEABLE)) {
3294 npte |= pte_l2_s_cache_mode;
3295 #ifdef ARM_MMU_EXTENDED
3296 npte &= ~L2_XS_XN; /* and executable */
3297 #endif
3298 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3299 npte |= pte_l2_s_wc_mode;
3300 }
3301 if (opg) {
3302 /*
3303 * Looks like there's an existing 'managed' mapping
3304 * at this address.
3305 */
3306 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3307 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3308
3309 pmap_acquire_page_lock(omd);
3310 old_pv = pmap_remove_pv(omd, opa, pm, va);
3311 pmap_vac_me_harder(omd, opa, pm, 0);
3312 oflags = old_pv->pv_flags;
3313 pmap_release_page_lock(omd);
3314
3315 #ifdef PMAP_CACHE_VIVT
3316 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3317 pmap_cache_wbinv_page(pm, va, true, oflags);
3318 }
3319 #endif
3320 }
3321 }
3322
3323 /*
3324 * Make sure userland mappings get the right permissions
3325 */
3326 if (!vector_page_p && !kpm_p) {
3327 npte |= L2_S_PROT_U;
3328 #ifdef ARM_MMU_EXTENDED
3329 npte |= L2_XS_nG; /* user pages are not global */
3330 #endif
3331 }
3332
3333 /*
3334 * Keep the stats up to date
3335 */
3336 if (opte == 0) {
3337 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3338 pm->pm_stats.resident_count++;
3339 }
3340
3341 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3342
3343 #if defined(ARM_MMU_EXTENDED)
3344 /*
3345 * If exec protection was requested but the page hasn't been synced,
3346 * sync it now and allow execution from it.
3347 */
3348 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3349 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3350 npte &= ~L2_XS_XN;
3351 pmap_syncicache_page(md, pa);
3352 PMAPCOUNT(exec_synced_map);
3353 }
3354 #endif
3355 /*
3356 * If this is just a wiring change, the two PTEs will be
3357 * identical, so there's no need to update the page table.
3358 */
3359 if (npte != opte) {
3360 l2pte_reset(ptep);
3361 PTE_SYNC(ptep);
3362 if (l2pte_valid_p(opte)) {
3363 pmap_tlb_flush_SE(pm, va, oflags);
3364 }
3365 l2pte_set(ptep, npte, 0);
3366 PTE_SYNC(ptep);
3367 #ifndef ARM_MMU_EXTENDED
3368 bool is_cached = pmap_is_cached(pm);
3369 if (is_cached) {
3370 /*
3371 * We only need to frob the cache/tlb if this pmap
3372 * is current
3373 */
3374 if (!vector_page_p && l2pte_valid_p(npte)) {
3375 /*
3376 * This mapping is likely to be accessed as
3377 * soon as we return to userland. Fix up the
3378 * L1 entry to avoid taking another
3379 * page/domain fault.
3380 */
3381 pd_entry_t *pdep = pmap_l1_kva(pm)
3382 + l1pte_index(va);
3383 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3384 | L1_C_DOM(pmap_domain(pm));
3385 if (*pdep != pde) {
3386 l1pte_setone(pdep, pde);
3387 PDE_SYNC(pdep);
3388 }
3389 }
3390 }
3391
3392 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx",
3393 is_cached, pm->pm_cstate.cs_all, 0, 0);
3394
3395 if (pg != NULL) {
3396 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3397
3398 pmap_acquire_page_lock(md);
3399 pmap_vac_me_harder(md, pa, pm, va);
3400 pmap_release_page_lock(md);
3401 }
3402 #endif
3403 }
3404 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3405 if (pg) {
3406 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3407
3408 pmap_acquire_page_lock(md);
3409 #ifndef ARM_MMU_EXTENDED
3410 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3411 #endif
3412 PMAP_VALIDATE_MD_PAGE(md);
3413 pmap_release_page_lock(md);
3414 }
3415 #endif
3416
3417 pmap_release_pmap_lock(pm);
3418
3419
3420 if (old_pv)
3421 pool_put(&pmap_pv_pool, old_pv);
3422 free_pv:
3423 if (new_pv)
3424 pool_put(&pmap_pv_pool, new_pv);
3425 return error;
3426 }
3427
3428 /*
3429 * pmap_remove()
3430 *
3431 * pmap_remove is responsible for nuking a number of mappings for a range
3432 * of virtual address space in the current pmap. To do this efficiently
3433 * is interesting, because in a number of cases a wide virtual address
3434 * range may be supplied that contains few actual mappings. So, the
3435 * optimisations are:
3436 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3437 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3438 * maybe do just a partial cache clean. This path of execution is
3439 * complicated by the fact that the cache must be flushed _before_
3440 * the PTE is nuked, being a VAC :-)
3441 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3442 * all invalidations until pmap_update(), since pmap_remove_all() has
3443 * already flushed the cache.
3444 * 4. Maybe later fast-case a single page, but I don't think this is
3445 * going to make _that_ much difference overall.
3446 */
3447
3448 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3449
3450 void
3451 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3452 {
3453 SLIST_HEAD(,pv_entry) opv_list;
3454 struct pv_entry *pv, *npv;
3455 UVMHIST_FUNC(__func__);
3456 UVMHIST_CALLARGS(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3457 (uintptr_t)pm, sva, eva, 0);
3458
3459 #ifdef PMAP_FAULTINFO
3460 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
3461 curpcb->pcb_faultinfo.pfi_repeats = 0;
3462 curpcb->pcb_faultinfo.pfi_faultptep = NULL;
3463 #endif
3464
3465 SLIST_INIT(&opv_list);
3466 /*
3467 * we lock in the pmap => pv_head direction
3468 */
3469 pmap_acquire_pmap_lock(pm);
3470
3471 #ifndef ARM_MMU_EXTENDED
3472 u_int cleanlist_idx, total, cnt;
3473 struct {
3474 vaddr_t va;
3475 pt_entry_t *ptep;
3476 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3477
3478 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3479 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3480 if (pm->pm_cstate.cs_tlb == 0)
3481 pm->pm_remove_all = true;
3482 } else
3483 cleanlist_idx = 0;
3484 total = 0;
3485 #endif
3486
3487 while (sva < eva) {
3488 /*
3489 * Do one L2 bucket's worth at a time.
3490 */
3491 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3492 if (next_bucket > eva)
3493 next_bucket = eva;
3494
3495 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3496 if (l2b == NULL) {
3497 sva = next_bucket;
3498 continue;
3499 }
3500
3501 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3502 u_int mappings = 0;
3503
3504 for (;sva < next_bucket;
3505 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3506 pt_entry_t opte = *ptep;
3507
3508 if (opte == 0) {
3509 /* Nothing here, move along */
3510 continue;
3511 }
3512
3513 u_int flags = PVF_REF;
3514 paddr_t pa = l2pte_pa(opte);
3515 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3516
3517 /*
3518 * Update flags. In a number of circumstances,
3519 * we could cluster a lot of these and do a
3520 * number of sequential pages in one go.
3521 */
3522 if (pg != NULL) {
3523 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3524
3525 pmap_acquire_page_lock(md);
3526 pv = pmap_remove_pv(md, pa, pm, sva);
3527 pmap_vac_me_harder(md, pa, pm, 0);
3528 pmap_release_page_lock(md);
3529 if (pv != NULL) {
3530 if (pm->pm_remove_all == false) {
3531 flags = pv->pv_flags;
3532 }
3533 SLIST_INSERT_HEAD(&opv_list,
3534 pv, pv_link);
3535 }
3536 }
3537 mappings += PAGE_SIZE / L2_S_SIZE;
3538
3539 if (!l2pte_valid_p(opte)) {
3540 /*
3541 * Ref/Mod emulation is still active for this
3542 * mapping, therefore it is has not yet been
3543 * accessed. No need to frob the cache/tlb.
3544 */
3545 l2pte_reset(ptep);
3546 PTE_SYNC_CURRENT(pm, ptep);
3547 continue;
3548 }
3549
3550 #ifdef ARM_MMU_EXTENDED
3551 l2pte_reset(ptep);
3552 PTE_SYNC(ptep);
3553 if (__predict_false(pm->pm_remove_all == false)) {
3554 pmap_tlb_flush_SE(pm, sva, flags);
3555 }
3556 #else
3557 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3558 /* Add to the clean list. */
3559 cleanlist[cleanlist_idx].ptep = ptep;
3560 cleanlist[cleanlist_idx].va =
3561 sva | (flags & PVF_EXEC);
3562 cleanlist_idx++;
3563 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3564 /* Nuke everything if needed. */
3565 #ifdef PMAP_CACHE_VIVT
3566 pmap_cache_wbinv_all(pm, PVF_EXEC);
3567 #endif
3568 /*
3569 * Roll back the previous PTE list,
3570 * and zero out the current PTE.
3571 */
3572 for (cnt = 0;
3573 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3574 l2pte_reset(cleanlist[cnt].ptep);
3575 PTE_SYNC(cleanlist[cnt].ptep);
3576 }
3577 l2pte_reset(ptep);
3578 PTE_SYNC(ptep);
3579 cleanlist_idx++;
3580 pm->pm_remove_all = true;
3581 } else {
3582 l2pte_reset(ptep);
3583 PTE_SYNC(ptep);
3584 if (pm->pm_remove_all == false) {
3585 pmap_tlb_flush_SE(pm, sva, flags);
3586 }
3587 }
3588 #endif
3589 }
3590
3591 #ifndef ARM_MMU_EXTENDED
3592 /*
3593 * Deal with any left overs
3594 */
3595 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3596 total += cleanlist_idx;
3597 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3598 l2pte_reset(cleanlist[cnt].ptep);
3599 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3600 vaddr_t va = cleanlist[cnt].va;
3601 if (pm->pm_cstate.cs_all != 0) {
3602 vaddr_t clva = va & ~PAGE_MASK;
3603 u_int flags = va & PVF_EXEC;
3604 #ifdef PMAP_CACHE_VIVT
3605 pmap_cache_wbinv_page(pm, clva, true,
3606 PVF_REF | PVF_WRITE | flags);
3607 #endif
3608 pmap_tlb_flush_SE(pm, clva,
3609 PVF_REF | flags);
3610 }
3611 }
3612
3613 /*
3614 * If it looks like we're removing a whole bunch
3615 * of mappings, it's faster to just write-back
3616 * the whole cache now and defer TLB flushes until
3617 * pmap_update() is called.
3618 */
3619 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3620 cleanlist_idx = 0;
3621 else {
3622 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3623 #ifdef PMAP_CACHE_VIVT
3624 pmap_cache_wbinv_all(pm, PVF_EXEC);
3625 #endif
3626 pm->pm_remove_all = true;
3627 }
3628 }
3629 #endif /* ARM_MMU_EXTENDED */
3630
3631 pmap_free_l2_bucket(pm, l2b, mappings);
3632 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3633 }
3634
3635 pmap_release_pmap_lock(pm);
3636 SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3637 pool_put(&pmap_pv_pool, pv);
3638 }
3639 }
3640
3641 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3642 static struct pv_entry *
3643 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3644 {
3645 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3646 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3647 struct pv_entry *pv;
3648
3649 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3650 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3651 KASSERT(pmap_page_locked_p(md));
3652
3653 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3654 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3655 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3656
3657 /*
3658 * We are removing a writeable mapping to a cached exec page, if
3659 * it's the last mapping then clear its execness otherwise sync
3660 * the page to the icache.
3661 */
3662 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3663 && (pv->pv_flags & PVF_WRITE) != 0) {
3664 if (SLIST_EMPTY(&md->pvh_list)) {
3665 md->pvh_attrs &= ~PVF_EXEC;
3666 PMAPCOUNT(exec_discarded_kremove);
3667 } else {
3668 pmap_syncicache_page(md, pa);
3669 PMAPCOUNT(exec_synced_kremove);
3670 }
3671 }
3672 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3673
3674 return pv;
3675 }
3676 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3677
3678 /*
3679 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3680 *
3681 * We assume there is already sufficient KVM space available
3682 * to do this, as we can't allocate L2 descriptor tables/metadata
3683 * from here.
3684 */
3685 void
3686 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3687 {
3688 #ifdef PMAP_CACHE_VIVT
3689 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3690 #endif
3691 #ifdef PMAP_CACHE_VIPT
3692 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3693 struct vm_page *opg;
3694 #ifndef ARM_MMU_EXTENDED
3695 struct pv_entry *pv = NULL;
3696 #endif
3697 #endif
3698 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3699
3700 UVMHIST_FUNC(__func__);
3701
3702 if (pmap_initialized) {
3703 UVMHIST_CALLARGS(maphist,
3704 "va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", va, pa, prot,
3705 flags);
3706 }
3707
3708 pmap_t kpm = pmap_kernel();
3709 pmap_acquire_pmap_lock(kpm);
3710 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3711 const size_t l1slot __diagused = l1pte_index(va);
3712 KASSERTMSG(l2b != NULL,
3713 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3714 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3715 kpm->pm_l2[L2_IDX(l1slot)]
3716 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3717 : NULL,
3718 kpm->pm_l2[L2_IDX(l1slot)]
3719 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3720 : NULL);
3721 KASSERT(l2b->l2b_kva != NULL);
3722
3723 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3724 const pt_entry_t opte = *ptep;
3725
3726 if (opte == 0) {
3727 PMAPCOUNT(kenter_mappings);
3728 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3729 } else {
3730 PMAPCOUNT(kenter_remappings);
3731 #ifdef PMAP_CACHE_VIPT
3732 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3733 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3734 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3735 #endif
3736 if (opg && arm_cache_prefer_mask != 0) {
3737 KASSERT(opg != pg);
3738 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3739 KASSERT((flags & PMAP_KMPAGE) == 0);
3740 #ifndef ARM_MMU_EXTENDED
3741 pmap_acquire_page_lock(omd);
3742 pv = pmap_kremove_pg(opg, va);
3743 pmap_release_page_lock(omd);
3744 #endif
3745 }
3746 #endif
3747 if (l2pte_valid_p(opte)) {
3748 l2pte_reset(ptep);
3749 PTE_SYNC(ptep);
3750 #ifdef PMAP_CACHE_VIVT
3751 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3752 #endif
3753 cpu_tlb_flushD_SE(va);
3754 cpu_cpwait();
3755 }
3756 }
3757 pmap_release_pmap_lock(kpm);
3758 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3759
3760 if (flags & PMAP_PTE) {
3761 KASSERT((flags & PMAP_CACHE_MASK) == 0);
3762 if (!(flags & PMAP_NOCACHE))
3763 npte |= pte_l2_s_cache_mode_pt;
3764 } else {
3765 switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
3766 case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
3767 break;
3768 case PMAP_NOCACHE:
3769 npte |= pte_l2_s_nocache_mode;
3770 break;
3771 case PMAP_WRITE_COMBINE:
3772 npte |= pte_l2_s_wc_mode;
3773 break;
3774 default:
3775 npte |= pte_l2_s_cache_mode;
3776 break;
3777 }
3778 }
3779 #ifdef ARM_MMU_EXTENDED
3780 if (prot & VM_PROT_EXECUTE)
3781 npte &= ~L2_XS_XN;
3782 #endif
3783 l2pte_set(ptep, npte, 0);
3784 PTE_SYNC(ptep);
3785
3786 if (pg) {
3787 if (flags & PMAP_KMPAGE) {
3788 KASSERT(md->urw_mappings == 0);
3789 KASSERT(md->uro_mappings == 0);
3790 KASSERT(md->krw_mappings == 0);
3791 KASSERT(md->kro_mappings == 0);
3792 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3793 KASSERT(pv == NULL);
3794 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3795 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3796 /* if there is a color conflict, evict from cache. */
3797 if (pmap_is_page_colored_p(md)
3798 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3799 PMAPCOUNT(vac_color_change);
3800 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3801 } else if (md->pvh_attrs & PVF_MULTCLR) {
3802 /*
3803 * If this page has multiple colors, expunge
3804 * them.
3805 */
3806 PMAPCOUNT(vac_flush_lots2);
3807 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3808 }
3809 /*
3810 * Since this is a KMPAGE, there can be no contention
3811 * for this page so don't lock it.
3812 */
3813 md->pvh_attrs &= PAGE_SIZE - 1;
3814 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3815 | (va & arm_cache_prefer_mask);
3816 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3817 md->pvh_attrs |= PVF_KMPAGE;
3818 #endif
3819 atomic_inc_32(&pmap_kmpages);
3820 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3821 } else if (arm_cache_prefer_mask != 0) {
3822 if (pv == NULL) {
3823 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3824 KASSERT(pv != NULL);
3825 }
3826 pmap_acquire_page_lock(md);
3827 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3828 PVF_WIRED | PVF_KENTRY
3829 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3830 if ((prot & VM_PROT_WRITE)
3831 && !(md->pvh_attrs & PVF_NC))
3832 md->pvh_attrs |= PVF_DIRTY;
3833 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3834 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3835 pmap_release_page_lock(md);
3836 #endif
3837 }
3838 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3839 } else {
3840 if (pv != NULL)
3841 pool_put(&pmap_pv_pool, pv);
3842 #endif
3843 }
3844 if (pmap_initialized) {
3845 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)",
3846 (uintptr_t)ptep, opte, npte, 0);
3847 }
3848
3849 }
3850
3851 void
3852 pmap_kremove(vaddr_t va, vsize_t len)
3853 {
3854 #ifdef UVMHIST
3855 u_int total_mappings = 0;
3856 #endif
3857
3858 PMAPCOUNT(kenter_unmappings);
3859
3860 UVMHIST_FUNC(__func__);
3861 UVMHIST_CALLARGS(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3862
3863 const vaddr_t eva = va + len;
3864 pmap_t kpm = pmap_kernel();
3865
3866 pmap_acquire_pmap_lock(kpm);
3867
3868 while (va < eva) {
3869 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3870 if (next_bucket > eva)
3871 next_bucket = eva;
3872
3873 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3874 KDASSERT(l2b != NULL);
3875
3876 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3877 pt_entry_t *ptep = sptep;
3878 u_int mappings = 0;
3879
3880 while (va < next_bucket) {
3881 const pt_entry_t opte = *ptep;
3882 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3883 if (opg != NULL) {
3884 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3885
3886 if (omd->pvh_attrs & PVF_KMPAGE) {
3887 KASSERT(omd->urw_mappings == 0);
3888 KASSERT(omd->uro_mappings == 0);
3889 KASSERT(omd->krw_mappings == 0);
3890 KASSERT(omd->kro_mappings == 0);
3891 omd->pvh_attrs &= ~PVF_KMPAGE;
3892 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3893 if (arm_cache_prefer_mask != 0) {
3894 omd->pvh_attrs &= ~PVF_WRITE;
3895 }
3896 #endif
3897 atomic_dec_32(&pmap_kmpages);
3898 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3899 } else if (arm_cache_prefer_mask != 0) {
3900 pmap_acquire_page_lock(omd);
3901 pool_put(&pmap_pv_pool,
3902 pmap_kremove_pg(opg, va));
3903 pmap_release_page_lock(omd);
3904 #endif
3905 }
3906 }
3907 if (l2pte_valid_p(opte)) {
3908 l2pte_reset(ptep);
3909 PTE_SYNC(ptep);
3910 #ifdef PMAP_CACHE_VIVT
3911 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3912 #endif
3913 cpu_tlb_flushD_SE(va);
3914
3915 mappings += PAGE_SIZE / L2_S_SIZE;
3916 }
3917 va += PAGE_SIZE;
3918 ptep += PAGE_SIZE / L2_S_SIZE;
3919 }
3920 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3921 mappings, l2b->l2b_occupancy);
3922 l2b->l2b_occupancy -= mappings;
3923 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3924 #ifdef UVMHIST
3925 total_mappings += mappings;
3926 #endif
3927 }
3928 pmap_release_pmap_lock(kpm);
3929 cpu_cpwait();
3930 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)",
3931 total_mappings, 0, 0, 0);
3932 }
3933
3934 bool
3935 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3936 {
3937
3938 return pmap_extract_coherency(pm, va, pap, NULL);
3939 }
3940
3941 bool
3942 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3943 {
3944 struct l2_dtable *l2;
3945 pd_entry_t *pdep, pde;
3946 pt_entry_t *ptep, pte;
3947 paddr_t pa;
3948 u_int l1slot;
3949 bool coherent;
3950
3951 pmap_acquire_pmap_lock(pm);
3952
3953 l1slot = l1pte_index(va);
3954 pdep = pmap_l1_kva(pm) + l1slot;
3955 pde = *pdep;
3956
3957 if (l1pte_section_p(pde)) {
3958 /*
3959 * These should only happen for pmap_kernel()
3960 */
3961 KDASSERT(pm == pmap_kernel());
3962 pmap_release_pmap_lock(pm);
3963 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3964 if (l1pte_supersection_p(pde)) {
3965 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3966 } else
3967 #endif
3968 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3969 coherent = (pde & L1_S_CACHE_MASK) == 0;
3970 } else {
3971 /*
3972 * Note that we can't rely on the validity of the L1
3973 * descriptor as an indication that a mapping exists.
3974 * We have to look it up in the L2 dtable.
3975 */
3976 l2 = pm->pm_l2[L2_IDX(l1slot)];
3977
3978 if (l2 == NULL ||
3979 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3980 pmap_release_pmap_lock(pm);
3981 return false;
3982 }
3983
3984 pte = ptep[l2pte_index(va)];
3985 pmap_release_pmap_lock(pm);
3986
3987 if (pte == 0)
3988 return false;
3989
3990 switch (pte & L2_TYPE_MASK) {
3991 case L2_TYPE_L:
3992 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3993 coherent = (pte & L2_L_CACHE_MASK) == 0;
3994 break;
3995
3996 default:
3997 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3998 coherent = (pte & L2_S_CACHE_MASK) == 0;
3999 break;
4000 }
4001 }
4002
4003 if (pap != NULL)
4004 *pap = pa;
4005
4006 if (coherentp != NULL)
4007 *coherentp = (pm == pmap_kernel() && coherent);
4008
4009 return true;
4010 }
4011
4012 /*
4013 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
4014 * that map it
4015 */
4016
4017 static void
4018 pmap_pv_remove(paddr_t pa)
4019 {
4020 struct pmap_page *pp;
4021
4022 pp = pmap_pv_tracked(pa);
4023 if (pp == NULL)
4024 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4025 pa);
4026
4027 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4028 pmap_page_remove(md, pa);
4029 }
4030
4031 void
4032 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4033 {
4034
4035 /* the only case is remove at the moment */
4036 KASSERT(prot == VM_PROT_NONE);
4037 pmap_pv_remove(pa);
4038 }
4039
4040 void
4041 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4042 {
4043 struct l2_bucket *l2b;
4044 vaddr_t next_bucket;
4045
4046 UVMHIST_FUNC(__func__);
4047 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx prot %#jx",
4048 (uintptr_t)pm, sva, eva, prot);
4049
4050 if ((prot & VM_PROT_READ) == 0) {
4051 pmap_remove(pm, sva, eva);
4052 return;
4053 }
4054
4055 if (prot & VM_PROT_WRITE) {
4056 /*
4057 * If this is a read->write transition, just ignore it and let
4058 * uvm_fault() take care of it later.
4059 */
4060 return;
4061 }
4062
4063 pmap_acquire_pmap_lock(pm);
4064
4065 #ifndef ARM_MMU_EXTENDED
4066 const bool flush = eva - sva >= PAGE_SIZE * 4;
4067 u_int flags = 0;
4068 #endif
4069 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4070
4071 while (sva < eva) {
4072 next_bucket = L2_NEXT_BUCKET_VA(sva);
4073 if (next_bucket > eva)
4074 next_bucket = eva;
4075
4076 l2b = pmap_get_l2_bucket(pm, sva);
4077 if (l2b == NULL) {
4078 sva = next_bucket;
4079 continue;
4080 }
4081
4082 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4083
4084 while (sva < next_bucket) {
4085 const pt_entry_t opte = *ptep;
4086 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4087 struct vm_page *pg;
4088 #ifndef ARM_MMU_EXTENDED
4089 u_int f;
4090 #endif
4091
4092 #ifdef PMAP_CACHE_VIVT
4093 /*
4094 * OK, at this point, we know we're doing
4095 * write-protect operation. If the pmap is
4096 * active, write-back the page.
4097 */
4098 pmap_cache_wbinv_page(pm, sva, false,
4099 PVF_REF | PVF_WRITE);
4100 #endif
4101
4102 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4103 pt_entry_t npte = l2pte_set_readonly(opte);
4104 l2pte_reset(ptep);
4105 PTE_SYNC(ptep);
4106 #ifdef ARM_MMU_EXTENDED
4107 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4108 #endif
4109 l2pte_set(ptep, npte, 0);
4110 PTE_SYNC(ptep);
4111
4112 if (pg != NULL) {
4113 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4114 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4115
4116 pmap_acquire_page_lock(md);
4117 #ifndef ARM_MMU_EXTENDED
4118 f =
4119 #endif
4120 pmap_modify_pv(md, pa, pm, sva,
4121 clr_mask, 0);
4122 pmap_vac_me_harder(md, pa, pm, sva);
4123 pmap_release_page_lock(md);
4124 #ifndef ARM_MMU_EXTENDED
4125 } else {
4126 f = PVF_REF | PVF_EXEC;
4127 }
4128
4129 if (flush) {
4130 flags |= f;
4131 } else {
4132 pmap_tlb_flush_SE(pm, sva, f);
4133 #endif
4134 }
4135 }
4136
4137 sva += PAGE_SIZE;
4138 ptep += PAGE_SIZE / L2_S_SIZE;
4139 }
4140 }
4141
4142 #ifndef ARM_MMU_EXTENDED
4143 if (flush) {
4144 if (PV_BEEN_EXECD(flags)) {
4145 pmap_tlb_flushID(pm);
4146 } else if (PV_BEEN_REFD(flags)) {
4147 pmap_tlb_flushD(pm);
4148 }
4149 }
4150 #endif
4151
4152 pmap_release_pmap_lock(pm);
4153 }
4154
4155 void
4156 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4157 {
4158 struct l2_bucket *l2b;
4159 pt_entry_t *ptep;
4160 vaddr_t next_bucket;
4161 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4162
4163 UVMHIST_FUNC(__func__);
4164 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx",
4165 (uintptr_t)pm, sva, eva, 0);
4166
4167 pmap_acquire_pmap_lock(pm);
4168
4169 while (sva < eva) {
4170 next_bucket = L2_NEXT_BUCKET_VA(sva);
4171 if (next_bucket > eva)
4172 next_bucket = eva;
4173
4174 l2b = pmap_get_l2_bucket(pm, sva);
4175 if (l2b == NULL) {
4176 sva = next_bucket;
4177 continue;
4178 }
4179
4180 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4181 sva < next_bucket;
4182 sva += page_size,
4183 ptep += PAGE_SIZE / L2_S_SIZE,
4184 page_size = PAGE_SIZE) {
4185 if (l2pte_valid_p(*ptep)) {
4186 cpu_icache_sync_range(sva,
4187 uimin(page_size, eva - sva));
4188 }
4189 }
4190 }
4191
4192 pmap_release_pmap_lock(pm);
4193 }
4194
4195 void
4196 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4197 {
4198 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4199 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4200
4201 UVMHIST_FUNC(__func__);
4202 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx prot %#jx",
4203 (uintptr_t)md, pa, prot, 0);
4204
4205 switch(prot) {
4206 case VM_PROT_READ|VM_PROT_WRITE:
4207 #if defined(ARM_MMU_EXTENDED)
4208 pmap_acquire_page_lock(md);
4209 pmap_clearbit(md, pa, PVF_EXEC);
4210 pmap_release_page_lock(md);
4211 break;
4212 #endif
4213 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4214 break;
4215
4216 case VM_PROT_READ:
4217 #if defined(ARM_MMU_EXTENDED)
4218 pmap_acquire_page_lock(md);
4219 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4220 pmap_release_page_lock(md);
4221 break;
4222 #endif
4223 case VM_PROT_READ|VM_PROT_EXECUTE:
4224 pmap_acquire_page_lock(md);
4225 pmap_clearbit(md, pa, PVF_WRITE);
4226 pmap_release_page_lock(md);
4227 break;
4228
4229 default:
4230 pmap_page_remove(md, pa);
4231 break;
4232 }
4233 }
4234
4235 /*
4236 * pmap_clear_modify:
4237 *
4238 * Clear the "modified" attribute for a page.
4239 */
4240 bool
4241 pmap_clear_modify(struct vm_page *pg)
4242 {
4243 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4244 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4245 bool rv;
4246
4247 pmap_acquire_page_lock(md);
4248
4249 if (md->pvh_attrs & PVF_MOD) {
4250 rv = true;
4251 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4252 /*
4253 * If we are going to clear the modified bit and there are
4254 * no other modified bits set, flush the page to memory and
4255 * mark it clean.
4256 */
4257 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4258 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4259 #endif
4260 pmap_clearbit(md, pa, PVF_MOD);
4261 } else {
4262 rv = false;
4263 }
4264 pmap_release_page_lock(md);
4265
4266 return rv;
4267 }
4268
4269 /*
4270 * pmap_clear_reference:
4271 *
4272 * Clear the "referenced" attribute for a page.
4273 */
4274 bool
4275 pmap_clear_reference(struct vm_page *pg)
4276 {
4277 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4278 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4279 bool rv;
4280
4281 pmap_acquire_page_lock(md);
4282
4283 if (md->pvh_attrs & PVF_REF) {
4284 rv = true;
4285 pmap_clearbit(md, pa, PVF_REF);
4286 } else {
4287 rv = false;
4288 }
4289 pmap_release_page_lock(md);
4290
4291 return rv;
4292 }
4293
4294 /*
4295 * pmap_is_modified:
4296 *
4297 * Test if a page has the "modified" attribute.
4298 */
4299 /* See <arm/arm32/pmap.h> */
4300
4301 /*
4302 * pmap_is_referenced:
4303 *
4304 * Test if a page has the "referenced" attribute.
4305 */
4306 /* See <arm/arm32/pmap.h> */
4307
4308 #if defined(ARM_MMU_EXTENDED) && 0
4309 int
4310 pmap_prefetchabt_fixup(void *v)
4311 {
4312 struct trapframe * const tf = v;
4313 vaddr_t va = trunc_page(tf->tf_pc);
4314 int rv = ABORT_FIXUP_FAILED;
4315
4316 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4317 return rv;
4318
4319 kpreempt_disable();
4320 pmap_t pm = curcpu()->ci_pmap_cur;
4321 const size_t l1slot = l1pte_index(va);
4322 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4323 if (l2 == NULL)
4324 goto out;
4325
4326 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4327 if (l2b->l2b_kva == NULL)
4328 goto out;
4329
4330 /*
4331 * Check the PTE itself.
4332 */
4333 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4334 const pt_entry_t opte = *ptep;
4335 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4336 goto out;
4337
4338 paddr_t pa = l2pte_pa(opte);
4339 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4340 KASSERT(pg != NULL);
4341
4342 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4343
4344 pmap_acquire_page_lock(md);
4345 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4346 KASSERT(pv != NULL);
4347
4348 if (PV_IS_EXEC_P(pv->pv_flags)) {
4349 l2pte_reset(ptep);
4350 PTE_SYNC(ptep);
4351 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4352 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4353 pmap_syncicache_page(md, pa);
4354 }
4355 rv = ABORT_FIXUP_RETURN;
4356 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4357 PTE_SYNC(ptep);
4358 }
4359 pmap_release_page_lock(md);
4360
4361 out:
4362 kpreempt_enable();
4363 return rv;
4364 }
4365 #endif
4366
4367 int
4368 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4369 {
4370 struct l2_dtable *l2;
4371 struct l2_bucket *l2b;
4372 paddr_t pa;
4373 const size_t l1slot = l1pte_index(va);
4374 int rv = 0;
4375
4376 UVMHIST_FUNC(__func__);
4377 UVMHIST_CALLARGS(maphist, "pm=%#jx, va=%#jx, ftype=%#jx, user=%jd",
4378 (uintptr_t)pm, va, ftype, user);
4379
4380 va = trunc_page(va);
4381
4382 KASSERT(!user || (pm != pmap_kernel()));
4383
4384 #ifdef ARM_MMU_EXTENDED
4385 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4386 (uintptr_t)cpu_tlb_info(curcpu()),
4387 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4388 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4389 #endif
4390
4391 pmap_acquire_pmap_lock(pm);
4392
4393 /*
4394 * If there is no l2_dtable for this address, then the process
4395 * has no business accessing it.
4396 *
4397 * Note: This will catch userland processes trying to access
4398 * kernel addresses.
4399 */
4400 l2 = pm->pm_l2[L2_IDX(l1slot)];
4401 if (l2 == NULL) {
4402 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4403 goto out;
4404 }
4405
4406 /*
4407 * Likewise if there is no L2 descriptor table
4408 */
4409 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4410 if (l2b->l2b_kva == NULL) {
4411 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4412 l1slot, 0, 0, 0);
4413 goto out;
4414 }
4415
4416 /*
4417 * Check the PTE itself.
4418 */
4419 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4420 pt_entry_t const opte = *ptep;
4421 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4422 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
4423 l1slot, 0, 0, 0);
4424 goto out;
4425 }
4426
4427 #ifndef ARM_HAS_VBAR
4428 /*
4429 * Catch a userland access to the vector page mapped at 0x0
4430 */
4431 if (user && (opte & L2_S_PROT_U) == 0) {
4432 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4433 goto out;
4434 }
4435 #endif
4436
4437 pa = l2pte_pa(opte);
4438
4439 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4440 /*
4441 * This looks like a good candidate for "page modified"
4442 * emulation...
4443 */
4444 struct pv_entry *pv;
4445 struct vm_page *pg;
4446
4447 /* Extract the physical address of the page */
4448 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4449 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4450 goto out;
4451 }
4452
4453 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4454
4455 /* Get the current flags for this page. */
4456 pmap_acquire_page_lock(md);
4457 pv = pmap_find_pv(md, pm, va);
4458 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4459 pmap_release_page_lock(md);
4460 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4461 goto out;
4462 }
4463
4464 /*
4465 * Do the flags say this page is writable? If not then it
4466 * is a genuine write fault. If yes then the write fault is
4467 * our fault as we did not reflect the write access in the
4468 * PTE. Now we know a write has occurred we can correct this
4469 * and also set the modified bit
4470 */
4471 if ((pv->pv_flags & PVF_WRITE) == 0) {
4472 pmap_release_page_lock(md);
4473 goto out;
4474 }
4475
4476 md->pvh_attrs |= PVF_REF | PVF_MOD;
4477 pv->pv_flags |= PVF_REF | PVF_MOD;
4478 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4479 /*
4480 * If there are cacheable mappings for this page, mark it dirty.
4481 */
4482 if ((md->pvh_attrs & PVF_NC) == 0)
4483 md->pvh_attrs |= PVF_DIRTY;
4484 #endif
4485 #ifdef ARM_MMU_EXTENDED
4486 if (md->pvh_attrs & PVF_EXEC) {
4487 md->pvh_attrs &= ~PVF_EXEC;
4488 PMAPCOUNT(exec_discarded_modfixup);
4489 }
4490 #endif
4491 pmap_release_page_lock(md);
4492
4493 /*
4494 * Re-enable write permissions for the page. No need to call
4495 * pmap_vac_me_harder(), since this is just a
4496 * modified-emulation fault, and the PVF_WRITE bit isn't
4497 * changing. We've already set the cacheable bits based on
4498 * the assumption that we can write to this page.
4499 */
4500 const pt_entry_t npte =
4501 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4502 #ifdef ARM_MMU_EXTENDED
4503 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4504 #endif
4505 | 0;
4506 l2pte_reset(ptep);
4507 PTE_SYNC(ptep);
4508 pmap_tlb_flush_SE(pm, va,
4509 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4510 l2pte_set(ptep, npte, 0);
4511 PTE_SYNC(ptep);
4512 PMAPCOUNT(fixup_mod);
4513 rv = 1;
4514 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4515 "from %#jx to %#jx)", opte, npte, 0, 0);
4516 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4517 /*
4518 * This looks like a good candidate for "page referenced"
4519 * emulation.
4520 */
4521 struct vm_page *pg;
4522
4523 /* Extract the physical address of the page */
4524 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4525 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4526 goto out;
4527 }
4528
4529 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4530
4531 /* Get the current flags for this page. */
4532 pmap_acquire_page_lock(md);
4533 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4534 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4535 pmap_release_page_lock(md);
4536 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4537 goto out;
4538 }
4539
4540 md->pvh_attrs |= PVF_REF;
4541 pv->pv_flags |= PVF_REF;
4542
4543 pt_entry_t npte =
4544 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4545 #ifdef ARM_MMU_EXTENDED
4546 if (pm != pmap_kernel()) {
4547 npte |= L2_XS_nG;
4548 }
4549 /*
4550 * If we got called from prefetch abort, then ftype will have
4551 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4552 * the PTE.
4553 */
4554 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4555 /*
4556 * Is this a mapping of an executable page?
4557 */
4558 if ((pv->pv_flags & PVF_EXEC) == 0) {
4559 pmap_release_page_lock(md);
4560 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4561 0, 0, 0, 0);
4562 goto out;
4563 }
4564 /*
4565 * If we haven't synced the page, do so now.
4566 */
4567 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4568 UVMHIST_LOG(maphist, " ref emul: syncicache "
4569 "page #%#jx", pa, 0, 0, 0);
4570 pmap_syncicache_page(md, pa);
4571 PMAPCOUNT(fixup_exec);
4572 }
4573 npte &= ~L2_XS_XN;
4574 }
4575 #endif /* ARM_MMU_EXTENDED */
4576 pmap_release_page_lock(md);
4577 l2pte_reset(ptep);
4578 PTE_SYNC(ptep);
4579 pmap_tlb_flush_SE(pm, va,
4580 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4581 l2pte_set(ptep, npte, 0);
4582 PTE_SYNC(ptep);
4583 PMAPCOUNT(fixup_ref);
4584 rv = 1;
4585 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4586 "%#jx to %#jx)", opte, npte, 0, 0);
4587 #ifdef ARM_MMU_EXTENDED
4588 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4589 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4590 if (pg == NULL) {
4591 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4592 goto out;
4593 }
4594
4595 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4596
4597 /* Get the current flags for this page. */
4598 pmap_acquire_page_lock(md);
4599 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4600 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4601 pmap_release_page_lock(md);
4602 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4603 goto out;
4604 }
4605
4606 /*
4607 * If we haven't synced the page, do so now.
4608 */
4609 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4610 UVMHIST_LOG(maphist, "syncicache page #%#jx",
4611 pa, 0, 0, 0);
4612 pmap_syncicache_page(md, pa);
4613 }
4614 pmap_release_page_lock(md);
4615 /*
4616 * Turn off no-execute.
4617 */
4618 KASSERT(opte & L2_XS_nG);
4619 l2pte_reset(ptep);
4620 PTE_SYNC(ptep);
4621 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4622 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4623 PTE_SYNC(ptep);
4624 rv = 1;
4625 PMAPCOUNT(fixup_exec);
4626 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4627 opte, opte & ~L2_XS_XN, 0, 0);
4628 #endif
4629 }
4630
4631 #ifndef ARM_MMU_EXTENDED
4632 /*
4633 * We know there is a valid mapping here, so simply
4634 * fix up the L1 if necessary.
4635 */
4636 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4637 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4638 if (*pdep != pde) {
4639 l1pte_setone(pdep, pde);
4640 PDE_SYNC(pdep);
4641 rv = 1;
4642 PMAPCOUNT(fixup_pdes);
4643 }
4644 #endif
4645
4646 #ifdef CPU_SA110
4647 /*
4648 * There are bugs in the rev K SA110. This is a check for one
4649 * of them.
4650 */
4651 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4652 curcpu()->ci_arm_cpurev < 3) {
4653 /* Always current pmap */
4654 if (l2pte_valid_p(opte)) {
4655 extern int kernel_debug;
4656 if (kernel_debug & 1) {
4657 struct proc *p = curlwp->l_proc;
4658 printf("prefetch_abort: page is already "
4659 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4660 printf("prefetch_abort: pc=%08lx proc=%p "
4661 "process=%s\n", va, p, p->p_comm);
4662 printf("prefetch_abort: far=%08x fs=%x\n",
4663 cpu_faultaddress(), cpu_faultstatus());
4664 }
4665 #ifdef DDB
4666 if (kernel_debug & 2)
4667 Debugger();
4668 #endif
4669 rv = 1;
4670 }
4671 }
4672 #endif /* CPU_SA110 */
4673
4674 #ifndef ARM_MMU_EXTENDED
4675 /*
4676 * If 'rv == 0' at this point, it generally indicates that there is a
4677 * stale TLB entry for the faulting address. That might be due to a
4678 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4679 */
4680 if (rv == 0
4681 && pm->pm_l1->l1_domain_use_count == 1
4682 && pmap_needs_pte_sync == 0) {
4683 pmap_needs_pte_sync = 1;
4684 PTE_SYNC(ptep);
4685 PMAPCOUNT(fixup_ptesync);
4686 rv = 1;
4687 }
4688 #endif
4689
4690 #ifndef MULTIPROCESSOR
4691 #if defined(DEBUG) || 1
4692 /*
4693 * If 'rv == 0' at this point, it generally indicates that there is a
4694 * stale TLB entry for the faulting address. This happens when two or
4695 * more processes are sharing an L1. Since we don't flush the TLB on
4696 * a context switch between such processes, we can take domain faults
4697 * for mappings which exist at the same VA in both processes. EVEN IF
4698 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4699 * example.
4700 *
4701 * This is extremely likely to happen if pmap_enter() updated the L1
4702 * entry for a recently entered mapping. In this case, the TLB is
4703 * flushed for the new mapping, but there may still be TLB entries for
4704 * other mappings belonging to other processes in the 1MB range
4705 * covered by the L1 entry.
4706 *
4707 * Since 'rv == 0', we know that the L1 already contains the correct
4708 * value, so the fault must be due to a stale TLB entry.
4709 *
4710 * Since we always need to flush the TLB anyway in the case where we
4711 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4712 * stale TLB entries dynamically.
4713 *
4714 * However, the above condition can ONLY happen if the current L1 is
4715 * being shared. If it happens when the L1 is unshared, it indicates
4716 * that other parts of the pmap are not doing their job WRT managing
4717 * the TLB.
4718 */
4719 if (rv == 0
4720 #ifndef ARM_MMU_EXTENDED
4721 && pm->pm_l1->l1_domain_use_count == 1
4722 #endif
4723 && true) {
4724 #ifdef DEBUG
4725 extern int last_fault_code;
4726 #else
4727 int last_fault_code = ftype & VM_PROT_EXECUTE
4728 ? armreg_ifsr_read()
4729 : armreg_dfsr_read();
4730 #endif
4731 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4732 pm, va, ftype);
4733 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4734 l2, l2b, ptep, opte);
4735
4736 #ifndef ARM_MMU_EXTENDED
4737 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4738 pdep, pde, last_fault_code);
4739 #else
4740 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4741 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4742 armreg_ttbcr_read());
4743 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4744 last_fault_code, curcpu()->ci_pmap_cur,
4745 curcpu()->ci_pmap_asid_cur,
4746 armreg_contextidr_read(), armreg_dacr_read());
4747 #ifdef _ARM_ARCH_7
4748 if (ftype & VM_PROT_WRITE)
4749 armreg_ats1cuw_write(va);
4750 else
4751 armreg_ats1cur_write(va);
4752 arm_isb();
4753 printf("fixup: par %#x\n", armreg_par_read());
4754 #endif
4755 #endif
4756 #ifdef DDB
4757 extern int kernel_debug;
4758
4759 if (kernel_debug & 2) {
4760 pmap_release_pmap_lock(pm);
4761 #ifdef UVMHIST
4762 KERNHIST_DUMP(maphist);
4763 #endif
4764 cpu_Debugger();
4765 pmap_acquire_pmap_lock(pm);
4766 }
4767 #endif
4768 }
4769 #endif
4770 #endif
4771
4772 #ifndef ARM_MMU_EXTENDED
4773 /* Flush the TLB in the shared L1 case - see comment above */
4774 pmap_tlb_flush_SE(pm, va,
4775 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4776 #endif
4777
4778 rv = 1;
4779
4780 out:
4781 pmap_release_pmap_lock(pm);
4782
4783 return rv;
4784 }
4785
4786 /*
4787 * Routine: pmap_procwr
4788 *
4789 * Function:
4790 * Synchronize caches corresponding to [addr, addr+len) in p.
4791 *
4792 */
4793 void
4794 pmap_procwr(struct proc *p, vaddr_t va, int len)
4795 {
4796 #ifndef ARM_MMU_EXTENDED
4797
4798 /* We only need to do anything if it is the current process. */
4799 if (p == curproc)
4800 cpu_icache_sync_range(va, len);
4801 #endif
4802 }
4803
4804 /*
4805 * Routine: pmap_unwire
4806 * Function: Clear the wired attribute for a map/virtual-address pair.
4807 *
4808 * In/out conditions:
4809 * The mapping must already exist in the pmap.
4810 */
4811 void
4812 pmap_unwire(pmap_t pm, vaddr_t va)
4813 {
4814 struct l2_bucket *l2b;
4815 pt_entry_t *ptep, pte;
4816 struct vm_page *pg;
4817 paddr_t pa;
4818
4819 UVMHIST_FUNC(__func__);
4820 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx", (uintptr_t)pm, va, 0, 0);
4821
4822 pmap_acquire_pmap_lock(pm);
4823
4824 l2b = pmap_get_l2_bucket(pm, va);
4825 KDASSERT(l2b != NULL);
4826
4827 ptep = &l2b->l2b_kva[l2pte_index(va)];
4828 pte = *ptep;
4829
4830 /* Extract the physical address of the page */
4831 pa = l2pte_pa(pte);
4832
4833 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4834 /* Update the wired bit in the pv entry for this page. */
4835 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4836
4837 pmap_acquire_page_lock(md);
4838 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4839 pmap_release_page_lock(md);
4840 }
4841
4842 pmap_release_pmap_lock(pm);
4843 }
4844
4845 #ifdef ARM_MMU_EXTENDED
4846 void
4847 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4848 {
4849 UVMHIST_FUNC(__func__);
4850 struct cpu_info * const ci = curcpu();
4851 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4852
4853 UVMHIST_CALLARGS(maphist, "pm %#jx (pm->pm_l1_pa %08jx asid %ju)",
4854 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4855
4856 /*
4857 * Assume that TTBR1 has only global mappings and TTBR0 only
4858 * has non-global mappings. To prevent speculation from doing
4859 * evil things we disable translation table walks using TTBR0
4860 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4861 * Once both are set, table walks are reenabled.
4862 */
4863 const uint32_t old_ttbcr = armreg_ttbcr_read();
4864 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4865 arm_isb();
4866
4867 pmap_tlb_asid_acquire(pm, l);
4868
4869 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4870 /*
4871 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4872 * have been updated.
4873 */
4874 arm_isb();
4875
4876 if (pm != pmap_kernel()) {
4877 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4878 }
4879 cpu_cpwait();
4880
4881 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4882 ci->ci_pmap_asid_cur, pai->pai_asid);
4883 ci->ci_pmap_cur = pm;
4884 }
4885
4886 void
4887 pmap_md_pdetab_deactivate(pmap_t pm)
4888 {
4889
4890 UVMHIST_FUNC(__func__);
4891 UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0);
4892
4893 kpreempt_disable();
4894 struct cpu_info * const ci = curcpu();
4895 /*
4896 * Disable translation table walks from TTBR0 while no pmap has been
4897 * activated.
4898 */
4899 const uint32_t old_ttbcr = armreg_ttbcr_read();
4900 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4901 arm_isb();
4902 pmap_tlb_asid_deactivate(pm);
4903 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4904 arm_isb();
4905
4906 ci->ci_pmap_cur = pmap_kernel();
4907 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4908 ci->ci_pmap_asid_cur);
4909 kpreempt_enable();
4910 }
4911 #endif
4912
4913 void
4914 pmap_activate(struct lwp *l)
4915 {
4916 extern int block_userspace_access;
4917 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4918
4919 UVMHIST_FUNC(__func__);
4920 UVMHIST_CALLARGS(maphist, "l=%#jx pm=%#jx", (uintptr_t)l,
4921 (uintptr_t)npm, 0, 0);
4922
4923 struct cpu_info * const ci = curcpu();
4924
4925 /*
4926 * If activating a non-current lwp or the current lwp is
4927 * already active, just return.
4928 */
4929 if (false
4930 || l != curlwp
4931 #ifdef ARM_MMU_EXTENDED
4932 || (ci->ci_pmap_cur == npm &&
4933 (npm == pmap_kernel()
4934 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4935 #else
4936 || npm->pm_activated == true
4937 #endif
4938 || false) {
4939 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4940 (uintptr_t)l, 0, 0);
4941 return;
4942 }
4943
4944 #ifndef ARM_MMU_EXTENDED
4945 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4946 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4947
4948 /*
4949 * If TTB and DACR are unchanged, short-circuit all the
4950 * TLB/cache management stuff.
4951 */
4952 pmap_t opm = ci->ci_lastlwp
4953 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4954 : NULL;
4955 if (opm != NULL) {
4956 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4957 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4958
4959 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4960 goto all_done;
4961 }
4962 #endif /* !ARM_MMU_EXTENDED */
4963
4964 PMAPCOUNT(activations);
4965 block_userspace_access = 1;
4966
4967 #ifndef ARM_MMU_EXTENDED
4968 /*
4969 * If switching to a user vmspace which is different to the
4970 * most recent one, and the most recent one is potentially
4971 * live in the cache, we must write-back and invalidate the
4972 * entire cache.
4973 */
4974 pmap_t rpm = ci->ci_pmap_lastuser;
4975
4976 /*
4977 * XXXSCW: There's a corner case here which can leave turds in the
4978 * cache as reported in kern/41058. They're probably left over during
4979 * tear-down and switching away from an exiting process. Until the root
4980 * cause is identified and fixed, zap the cache when switching pmaps.
4981 * This will result in a few unnecessary cache flushes, but that's
4982 * better than silently corrupting data.
4983 */
4984 #if 0
4985 if (npm != pmap_kernel() && rpm && npm != rpm &&
4986 rpm->pm_cstate.cs_cache) {
4987 rpm->pm_cstate.cs_cache = 0;
4988 #ifdef PMAP_CACHE_VIVT
4989 cpu_idcache_wbinv_all();
4990 #endif
4991 }
4992 #else
4993 if (rpm) {
4994 rpm->pm_cstate.cs_cache = 0;
4995 if (npm == pmap_kernel())
4996 ci->ci_pmap_lastuser = NULL;
4997 #ifdef PMAP_CACHE_VIVT
4998 cpu_idcache_wbinv_all();
4999 #endif
5000 }
5001 #endif
5002
5003 /* No interrupts while we frob the TTB/DACR */
5004 uint32_t oldirqstate = disable_interrupts(IF32_bits);
5005 #endif /* !ARM_MMU_EXTENDED */
5006
5007 #ifndef ARM_HAS_VBAR
5008 /*
5009 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
5010 * entry corresponding to 'vector_page' in the incoming L1 table
5011 * before switching to it otherwise subsequent interrupts/exceptions
5012 * (including domain faults!) will jump into hyperspace.
5013 */
5014 if (npm->pm_pl1vec != NULL) {
5015 cpu_tlb_flushID_SE((u_int)vector_page);
5016 cpu_cpwait();
5017 *npm->pm_pl1vec = npm->pm_l1vec;
5018 PTE_SYNC(npm->pm_pl1vec);
5019 }
5020 #endif
5021
5022 #ifdef ARM_MMU_EXTENDED
5023 pmap_md_pdetab_activate(npm, l);
5024 #else
5025 cpu_domains(ndacr);
5026 if (npm == pmap_kernel() || npm == rpm) {
5027 /*
5028 * Switching to a kernel thread, or back to the
5029 * same user vmspace as before... Simply update
5030 * the TTB (no TLB flush required)
5031 */
5032 cpu_setttb(npm->pm_l1->l1_physaddr, false);
5033 cpu_cpwait();
5034 } else {
5035 /*
5036 * Otherwise, update TTB and flush TLB
5037 */
5038 cpu_context_switch(npm->pm_l1->l1_physaddr);
5039 if (rpm != NULL)
5040 rpm->pm_cstate.cs_tlb = 0;
5041 }
5042
5043 restore_interrupts(oldirqstate);
5044 #endif /* ARM_MMU_EXTENDED */
5045
5046 block_userspace_access = 0;
5047
5048 #ifndef ARM_MMU_EXTENDED
5049 all_done:
5050 /*
5051 * The new pmap is resident. Make sure it's marked
5052 * as resident in the cache/TLB.
5053 */
5054 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5055 if (npm != pmap_kernel())
5056 ci->ci_pmap_lastuser = npm;
5057
5058 /* The old pmap is not longer active */
5059 if (opm != npm) {
5060 if (opm != NULL)
5061 opm->pm_activated = false;
5062
5063 /* But the new one is */
5064 npm->pm_activated = true;
5065 }
5066 ci->ci_pmap_cur = npm;
5067 #endif
5068 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5069 }
5070
5071 void
5072 pmap_deactivate(struct lwp *l)
5073 {
5074 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5075
5076 UVMHIST_FUNC(__func__);
5077 UVMHIST_CALLARGS(maphist, "l=%#jx (pm=%#jx)", (uintptr_t)l,
5078 (uintptr_t)pm, 0, 0);
5079
5080 #ifdef ARM_MMU_EXTENDED
5081 pmap_md_pdetab_deactivate(pm);
5082 #else
5083 /*
5084 * If the process is exiting, make sure pmap_activate() does
5085 * a full MMU context-switch and cache flush, which we might
5086 * otherwise skip. See PR port-arm/38950.
5087 */
5088 if (l->l_proc->p_sflag & PS_WEXIT)
5089 curcpu()->ci_lastlwp = NULL;
5090
5091 pm->pm_activated = false;
5092 #endif
5093 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5094 }
5095
5096 void
5097 pmap_update(pmap_t pm)
5098 {
5099
5100 UVMHIST_FUNC(__func__);
5101 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5102 pm->pm_remove_all, 0, 0);
5103
5104 #ifndef ARM_MMU_EXTENDED
5105 if (pm->pm_remove_all) {
5106 /*
5107 * Finish up the pmap_remove_all() optimisation by flushing
5108 * the TLB.
5109 */
5110 pmap_tlb_flushID(pm);
5111 pm->pm_remove_all = false;
5112 }
5113
5114 if (pmap_is_current(pm)) {
5115 /*
5116 * If we're dealing with a current userland pmap, move its L1
5117 * to the end of the LRU.
5118 */
5119 if (pm != pmap_kernel())
5120 pmap_use_l1(pm);
5121
5122 /*
5123 * We can assume we're done with frobbing the cache/tlb for
5124 * now. Make sure any future pmap ops don't skip cache/tlb
5125 * flushes.
5126 */
5127 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5128 }
5129 #else
5130
5131 kpreempt_disable();
5132 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5133 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5134 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5135 PMAP_COUNT(shootdown_ipis);
5136 }
5137 #endif
5138
5139 /*
5140 * If pmap_remove_all was called, we deactivated ourselves and released
5141 * our ASID. Now we have to reactivate ourselves.
5142 */
5143 if (__predict_false(pm->pm_remove_all)) {
5144 pm->pm_remove_all = false;
5145
5146 KASSERT(pm != pmap_kernel());
5147 pmap_md_pdetab_activate(pm, curlwp);
5148 }
5149
5150 if (arm_has_mpext_p)
5151 armreg_bpiallis_write(0);
5152 else
5153 armreg_bpiall_write(0);
5154
5155 kpreempt_enable();
5156
5157 KASSERTMSG(pm == pmap_kernel()
5158 || curcpu()->ci_pmap_cur != pm
5159 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5160 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5161 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5162 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5163 #endif
5164
5165 PMAPCOUNT(updates);
5166
5167 /*
5168 * make sure TLB/cache operations have completed.
5169 */
5170 cpu_cpwait();
5171 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5172 }
5173
5174 bool
5175 pmap_remove_all(pmap_t pm)
5176 {
5177
5178 /*
5179 * The vmspace described by this pmap is about to be torn down.
5180 * Until pmap_update() is called, UVM will only make calls
5181 * to pmap_remove(). We can make life much simpler by flushing
5182 * the cache now, and deferring TLB invalidation to pmap_update().
5183 */
5184 #ifdef PMAP_CACHE_VIVT
5185 pmap_cache_wbinv_all(pm, PVF_EXEC);
5186 #endif
5187 #ifdef ARM_MMU_EXTENDED
5188 #ifdef MULTIPROCESSOR
5189 struct cpu_info * const ci = curcpu();
5190 // This should be the last CPU with this pmap onproc
5191 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5192 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5193 #endif
5194 pmap_tlb_asid_deactivate(pm);
5195 #ifdef MULTIPROCESSOR
5196 KASSERT(kcpuset_iszero(pm->pm_onproc));
5197 #endif
5198
5199 pmap_tlb_asid_release_all(pm);
5200 #endif
5201 pm->pm_remove_all = true;
5202 return false;
5203 }
5204
5205 /*
5206 * Retire the given physical map from service.
5207 * Should only be called if the map contains no valid mappings.
5208 */
5209 void
5210 pmap_destroy(pmap_t pm)
5211 {
5212 UVMHIST_FUNC(__func__);
5213 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5214 pm ? pm->pm_remove_all : 0, 0, 0);
5215
5216 if (pm == NULL)
5217 return;
5218
5219 if (pm->pm_remove_all) {
5220 #ifdef ARM_MMU_EXTENDED
5221 pmap_tlb_asid_release_all(pm);
5222 #else
5223 pmap_tlb_flushID(pm);
5224 #endif
5225 pm->pm_remove_all = false;
5226 }
5227
5228 /*
5229 * Drop reference count
5230 */
5231 if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
5232 #ifndef ARM_MMU_EXTENDED
5233 if (pmap_is_current(pm)) {
5234 if (pm != pmap_kernel())
5235 pmap_use_l1(pm);
5236 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5237 }
5238 #endif
5239 return;
5240 }
5241
5242 /*
5243 * reference count is zero, free pmap resources and then free pmap.
5244 */
5245
5246 #ifndef ARM_HAS_VBAR
5247 if (vector_page < KERNEL_BASE) {
5248 KDASSERT(!pmap_is_current(pm));
5249
5250 /* Remove the vector page mapping */
5251 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5252 pmap_update(pm);
5253 }
5254 #endif
5255
5256 pmap_free_l1(pm);
5257
5258 #ifdef ARM_MMU_EXTENDED
5259 #ifdef MULTIPROCESSOR
5260 kcpuset_destroy(pm->pm_active);
5261 kcpuset_destroy(pm->pm_onproc);
5262 #endif
5263 #else
5264 struct cpu_info * const ci = curcpu();
5265 if (ci->ci_pmap_lastuser == pm)
5266 ci->ci_pmap_lastuser = NULL;
5267 #endif
5268
5269 mutex_destroy(&pm->pm_lock);
5270 pool_cache_put(&pmap_cache, pm);
5271 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5272 }
5273
5274
5275 /*
5276 * void pmap_reference(pmap_t pm)
5277 *
5278 * Add a reference to the specified pmap.
5279 */
5280 void
5281 pmap_reference(pmap_t pm)
5282 {
5283
5284 if (pm == NULL)
5285 return;
5286
5287 #ifndef ARM_MMU_EXTENDED
5288 pmap_use_l1(pm);
5289 #endif
5290
5291 atomic_inc_uint(&pm->pm_refs);
5292 }
5293
5294 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5295
5296 static struct evcnt pmap_prefer_nochange_ev =
5297 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5298 static struct evcnt pmap_prefer_change_ev =
5299 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5300
5301 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5302 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5303
5304 void
5305 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5306 {
5307 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5308 vaddr_t va = *vap;
5309 vaddr_t diff = (hint - va) & mask;
5310 if (diff == 0) {
5311 pmap_prefer_nochange_ev.ev_count++;
5312 } else {
5313 pmap_prefer_change_ev.ev_count++;
5314 if (__predict_false(td))
5315 va -= mask + 1;
5316 *vap = va + diff;
5317 }
5318 }
5319 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5320
5321 /*
5322 * pmap_zero_page()
5323 *
5324 * Zero a given physical page by mapping it at a page hook point.
5325 * In doing the zero page op, the page we zero is mapped cachable, as with
5326 * StrongARM accesses to non-cached pages are non-burst making writing
5327 * _any_ bulk data very slow.
5328 */
5329 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5330 void
5331 pmap_zero_page_generic(paddr_t pa)
5332 {
5333 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5334 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5335 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5336 #endif
5337 #if defined(PMAP_CACHE_VIPT)
5338 /* Choose the last page color it had, if any */
5339 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5340 #else
5341 const vsize_t va_offset = 0;
5342 #endif
5343 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5344 /*
5345 * Is this page mapped at its natural color?
5346 * If we have all of memory mapped, then just convert PA to VA.
5347 */
5348 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5349 || va_offset == (pa & arm_cache_prefer_mask);
5350 const vaddr_t vdstp = okcolor
5351 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5352 : cpu_cdstp(va_offset);
5353 #else
5354 const bool okcolor = false;
5355 const vaddr_t vdstp = cpu_cdstp(va_offset);
5356 #endif
5357 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5358
5359
5360 #ifdef DEBUG
5361 if (!SLIST_EMPTY(&md->pvh_list))
5362 panic("pmap_zero_page: page has mappings");
5363 #endif
5364
5365 KDASSERT((pa & PGOFSET) == 0);
5366
5367 if (!okcolor) {
5368 /*
5369 * Hook in the page, zero it, and purge the cache for that
5370 * zeroed page. Invalidate the TLB as needed.
5371 */
5372 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5373 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5374 l2pte_set(ptep, npte, 0);
5375 PTE_SYNC(ptep);
5376 cpu_tlb_flushD_SE(vdstp);
5377 cpu_cpwait();
5378 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5379 && !defined(ARM_MMU_EXTENDED)
5380 /*
5381 * If we are direct-mapped and our color isn't ok, then before
5382 * we bzero the page invalidate its contents from the cache and
5383 * reset the color to its natural color.
5384 */
5385 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5386 md->pvh_attrs &= ~arm_cache_prefer_mask;
5387 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5388 #endif
5389 }
5390 bzero_page(vdstp);
5391 if (!okcolor) {
5392 /*
5393 * Unmap the page.
5394 */
5395 l2pte_reset(ptep);
5396 PTE_SYNC(ptep);
5397 cpu_tlb_flushD_SE(vdstp);
5398 #ifdef PMAP_CACHE_VIVT
5399 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5400 #endif
5401 }
5402 #ifdef PMAP_CACHE_VIPT
5403 /*
5404 * This page is now cache resident so it now has a page color.
5405 * Any contents have been obliterated so clear the EXEC flag.
5406 */
5407 #ifndef ARM_MMU_EXTENDED
5408 if (!pmap_is_page_colored_p(md)) {
5409 PMAPCOUNT(vac_color_new);
5410 md->pvh_attrs |= PVF_COLORED;
5411 }
5412 md->pvh_attrs |= PVF_DIRTY;
5413 #endif
5414 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5415 md->pvh_attrs &= ~PVF_EXEC;
5416 PMAPCOUNT(exec_discarded_zero);
5417 }
5418 #endif
5419 }
5420 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5421
5422 #if ARM_MMU_XSCALE == 1
5423 void
5424 pmap_zero_page_xscale(paddr_t pa)
5425 {
5426 #ifdef DEBUG
5427 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5428 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5429
5430 if (!SLIST_EMPTY(&md->pvh_list))
5431 panic("pmap_zero_page: page has mappings");
5432 #endif
5433
5434 KDASSERT((pa & PGOFSET) == 0);
5435
5436 /*
5437 * Hook in the page, zero it, and purge the cache for that
5438 * zeroed page. Invalidate the TLB as needed.
5439 */
5440
5441 pt_entry_t npte = L2_S_PROTO | pa |
5442 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5443 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5444 l2pte_set(cdst_pte, npte, 0);
5445 PTE_SYNC(cdst_pte);
5446 cpu_tlb_flushD_SE(cdstp);
5447 cpu_cpwait();
5448 bzero_page(cdstp);
5449 xscale_cache_clean_minidata();
5450 l2pte_reset(cdst_pte);
5451 PTE_SYNC(cdst_pte);
5452 }
5453 #endif /* ARM_MMU_XSCALE == 1 */
5454
5455 /* pmap_pageidlezero()
5456 *
5457 * The same as above, except that we assume that the page is not
5458 * mapped. This means we never have to flush the cache first. Called
5459 * from the idle loop.
5460 */
5461 bool
5462 pmap_pageidlezero(paddr_t pa)
5463 {
5464 bool rv = true;
5465 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5466 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5467 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5468 #endif
5469 #ifdef PMAP_CACHE_VIPT
5470 /* Choose the last page color it had, if any */
5471 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5472 #else
5473 const vsize_t va_offset = 0;
5474 #endif
5475 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5476 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5477 || va_offset == (pa & arm_cache_prefer_mask);
5478 const vaddr_t vdstp = okcolor
5479 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5480 : cpu_cdstp(va_offset);
5481 #else
5482 const bool okcolor = false;
5483 const vaddr_t vdstp = cpu_cdstp(va_offset);
5484 #endif
5485 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5486
5487
5488 #ifdef DEBUG
5489 if (!SLIST_EMPTY(&md->pvh_list))
5490 panic("pmap_pageidlezero: page has mappings");
5491 #endif
5492
5493 KDASSERT((pa & PGOFSET) == 0);
5494
5495 if (!okcolor) {
5496 /*
5497 * Hook in the page, zero it, and purge the cache for that
5498 * zeroed page. Invalidate the TLB as needed.
5499 */
5500 const pt_entry_t npte = L2_S_PROTO | pa |
5501 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5502 l2pte_set(ptep, npte, 0);
5503 PTE_SYNC(ptep);
5504 cpu_tlb_flushD_SE(vdstp);
5505 cpu_cpwait();
5506 }
5507
5508 uint64_t *ptr = (uint64_t *)vdstp;
5509 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5510 if (sched_curcpu_runnable_p() != 0) {
5511 /*
5512 * A process has become ready. Abort now,
5513 * so we don't keep it waiting while we
5514 * do slow memory access to finish this
5515 * page.
5516 */
5517 rv = false;
5518 break;
5519 }
5520 *ptr++ = 0;
5521 }
5522
5523 #ifdef PMAP_CACHE_VIVT
5524 if (rv)
5525 /*
5526 * if we aborted we'll rezero this page again later so don't
5527 * purge it unless we finished it
5528 */
5529 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5530 #elif defined(PMAP_CACHE_VIPT)
5531 /*
5532 * This page is now cache resident so it now has a page color.
5533 * Any contents have been obliterated so clear the EXEC flag.
5534 */
5535 #ifndef ARM_MMU_EXTENDED
5536 if (!pmap_is_page_colored_p(md)) {
5537 PMAPCOUNT(vac_color_new);
5538 md->pvh_attrs |= PVF_COLORED;
5539 }
5540 #endif
5541 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5542 md->pvh_attrs &= ~PVF_EXEC;
5543 PMAPCOUNT(exec_discarded_zero);
5544 }
5545 #endif
5546 /*
5547 * Unmap the page.
5548 */
5549 if (!okcolor) {
5550 l2pte_reset(ptep);
5551 PTE_SYNC(ptep);
5552 cpu_tlb_flushD_SE(vdstp);
5553 }
5554
5555 return rv;
5556 }
5557
5558 /*
5559 * pmap_copy_page()
5560 *
5561 * Copy one physical page into another, by mapping the pages into
5562 * hook points. The same comment regarding cachability as in
5563 * pmap_zero_page also applies here.
5564 */
5565 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5566 void
5567 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5568 {
5569 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5570 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5571 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5572 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5573 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5574 #endif
5575 #ifdef PMAP_CACHE_VIPT
5576 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5577 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5578 #else
5579 const vsize_t src_va_offset = 0;
5580 const vsize_t dst_va_offset = 0;
5581 #endif
5582 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5583 /*
5584 * Is this page mapped at its natural color?
5585 * If we have all of memory mapped, then just convert PA to VA.
5586 */
5587 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5588 || src_va_offset == (src & arm_cache_prefer_mask);
5589 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5590 || dst_va_offset == (dst & arm_cache_prefer_mask);
5591 const vaddr_t vsrcp = src_okcolor
5592 ? pmap_direct_mapped_phys(src, &src_okcolor,
5593 cpu_csrcp(src_va_offset))
5594 : cpu_csrcp(src_va_offset);
5595 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5596 cpu_cdstp(dst_va_offset));
5597 #else
5598 const bool src_okcolor = false;
5599 const bool dst_okcolor = false;
5600 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5601 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5602 #endif
5603 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5604 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5605
5606 #ifdef DEBUG
5607 if (!SLIST_EMPTY(&dst_md->pvh_list))
5608 panic("pmap_copy_page: dst page has mappings");
5609 #endif
5610
5611 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5612 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5613 #endif
5614 KDASSERT((src & PGOFSET) == 0);
5615 KDASSERT((dst & PGOFSET) == 0);
5616
5617 /*
5618 * Clean the source page. Hold the source page's lock for
5619 * the duration of the copy so that no other mappings can
5620 * be created while we have a potentially aliased mapping.
5621 */
5622 #ifdef PMAP_CACHE_VIVT
5623 pmap_acquire_page_lock(src_md);
5624 (void) pmap_clean_page(src_md, true);
5625 pmap_release_page_lock(src_md);
5626 #endif
5627
5628 /*
5629 * Map the pages into the page hook points, copy them, and purge
5630 * the cache for the appropriate page. Invalidate the TLB
5631 * as required.
5632 */
5633 if (!src_okcolor) {
5634 const pt_entry_t nsrc_pte = L2_S_PROTO
5635 | src
5636 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5637 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5638 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5639 | pte_l2_s_cache_mode
5640 #endif
5641 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5642 l2pte_set(src_ptep, nsrc_pte, 0);
5643 PTE_SYNC(src_ptep);
5644 cpu_tlb_flushD_SE(vsrcp);
5645 cpu_cpwait();
5646 }
5647 if (!dst_okcolor) {
5648 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5649 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5650 l2pte_set(dst_ptep, ndst_pte, 0);
5651 PTE_SYNC(dst_ptep);
5652 cpu_tlb_flushD_SE(vdstp);
5653 cpu_cpwait();
5654 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5655 /*
5656 * If we are direct-mapped and our color isn't ok, then before
5657 * we bcopy to the new page invalidate its contents from the
5658 * cache and reset its color to its natural color.
5659 */
5660 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5661 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5662 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5663 #endif
5664 }
5665 bcopy_page(vsrcp, vdstp);
5666 #ifdef PMAP_CACHE_VIVT
5667 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5668 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5669 #endif
5670 /*
5671 * Unmap the pages.
5672 */
5673 if (!src_okcolor) {
5674 l2pte_reset(src_ptep);
5675 PTE_SYNC(src_ptep);
5676 cpu_tlb_flushD_SE(vsrcp);
5677 cpu_cpwait();
5678 }
5679 if (!dst_okcolor) {
5680 l2pte_reset(dst_ptep);
5681 PTE_SYNC(dst_ptep);
5682 cpu_tlb_flushD_SE(vdstp);
5683 cpu_cpwait();
5684 }
5685 #ifdef PMAP_CACHE_VIPT
5686 /*
5687 * Now that the destination page is in the cache, mark it as colored.
5688 * If this was an exec page, discard it.
5689 */
5690 pmap_acquire_page_lock(dst_md);
5691 #ifndef ARM_MMU_EXTENDED
5692 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5693 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5694 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5695 }
5696 if (!pmap_is_page_colored_p(dst_md)) {
5697 PMAPCOUNT(vac_color_new);
5698 dst_md->pvh_attrs |= PVF_COLORED;
5699 }
5700 dst_md->pvh_attrs |= PVF_DIRTY;
5701 #endif
5702 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5703 dst_md->pvh_attrs &= ~PVF_EXEC;
5704 PMAPCOUNT(exec_discarded_copy);
5705 }
5706 pmap_release_page_lock(dst_md);
5707 #endif
5708 }
5709 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5710
5711 #if ARM_MMU_XSCALE == 1
5712 void
5713 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5714 {
5715 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5716 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5717 #ifdef DEBUG
5718 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5719
5720 if (!SLIST_EMPTY(&dst_md->pvh_list))
5721 panic("pmap_copy_page: dst page has mappings");
5722 #endif
5723
5724 KDASSERT((src & PGOFSET) == 0);
5725 KDASSERT((dst & PGOFSET) == 0);
5726
5727 /*
5728 * Clean the source page. Hold the source page's lock for
5729 * the duration of the copy so that no other mappings can
5730 * be created while we have a potentially aliased mapping.
5731 */
5732 #ifdef PMAP_CACHE_VIVT
5733 pmap_acquire_page_lock(src_md);
5734 (void) pmap_clean_page(src_md, true);
5735 pmap_release_page_lock(src_md);
5736 #endif
5737
5738 /*
5739 * Map the pages into the page hook points, copy them, and purge
5740 * the cache for the appropriate page. Invalidate the TLB
5741 * as required.
5742 */
5743 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5744 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5745 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5746 l2pte_set(csrc_pte, nsrc_pte, 0);
5747 PTE_SYNC(csrc_pte);
5748
5749 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5750 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5751 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5752 l2pte_set(cdst_pte, ndst_pte, 0);
5753 PTE_SYNC(cdst_pte);
5754
5755 cpu_tlb_flushD_SE(csrcp);
5756 cpu_tlb_flushD_SE(cdstp);
5757 cpu_cpwait();
5758 bcopy_page(csrcp, cdstp);
5759 xscale_cache_clean_minidata();
5760 l2pte_reset(csrc_pte);
5761 l2pte_reset(cdst_pte);
5762 PTE_SYNC(csrc_pte);
5763 PTE_SYNC(cdst_pte);
5764 }
5765 #endif /* ARM_MMU_XSCALE == 1 */
5766
5767 /*
5768 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5769 *
5770 * Return the start and end addresses of the kernel's virtual space.
5771 * These values are setup in pmap_bootstrap and are updated as pages
5772 * are allocated.
5773 */
5774 void
5775 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5776 {
5777 *start = virtual_avail;
5778 *end = virtual_end;
5779 }
5780
5781 /*
5782 * Helper function for pmap_grow_l2_bucket()
5783 */
5784 static inline int
5785 pmap_grow_map(vaddr_t va, paddr_t *pap)
5786 {
5787 paddr_t pa;
5788
5789 KASSERT((va & PGOFSET) == 0);
5790
5791 if (uvm.page_init_done == false) {
5792 #ifdef PMAP_STEAL_MEMORY
5793 pv_addr_t pv;
5794 pmap_boot_pagealloc(PAGE_SIZE,
5795 #ifdef PMAP_CACHE_VIPT
5796 arm_cache_prefer_mask,
5797 va & arm_cache_prefer_mask,
5798 #else
5799 0, 0,
5800 #endif
5801 &pv);
5802 pa = pv.pv_pa;
5803 #else
5804 if (uvm_page_physget(&pa) == false)
5805 return 1;
5806 #endif /* PMAP_STEAL_MEMORY */
5807 } else {
5808 struct vm_page *pg;
5809 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5810 if (pg == NULL)
5811 return 1;
5812 pa = VM_PAGE_TO_PHYS(pg);
5813 /*
5814 * This new page must not have any mappings.
5815 */
5816 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5817 KASSERT(SLIST_EMPTY(&md->pvh_list));
5818 }
5819
5820 /*
5821 * Enter it via pmap_kenter_pa and let that routine do the hard work.
5822 */
5823 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
5824 PMAP_KMPAGE | PMAP_PTE);
5825
5826 if (pap)
5827 *pap = pa;
5828
5829 PMAPCOUNT(pt_mappings);
5830
5831 const pmap_t kpm __diagused = pmap_kernel();
5832 struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
5833 KASSERT(l2b != NULL);
5834
5835 pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
5836 const pt_entry_t pte __diagused = *ptep;
5837 KASSERT(l2pte_valid_p(pte));
5838 KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5839
5840 memset((void *)va, 0, PAGE_SIZE);
5841
5842 return 0;
5843 }
5844
5845 /*
5846 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5847 * used by pmap_growkernel().
5848 */
5849 static inline struct l2_bucket *
5850 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5851 {
5852 const size_t l1slot = l1pte_index(va);
5853 struct l2_dtable *l2;
5854 vaddr_t nva;
5855
5856 CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
5857 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5858 /*
5859 * No mapping at this address, as there is
5860 * no entry in the L1 table.
5861 * Need to allocate a new l2_dtable.
5862 */
5863 nva = pmap_kernel_l2dtable_kva;
5864 if ((nva & PGOFSET) == 0) {
5865 /*
5866 * Need to allocate a backing page
5867 */
5868 if (pmap_grow_map(nva, NULL))
5869 return NULL;
5870 }
5871
5872 l2 = (struct l2_dtable *)nva;
5873 nva += sizeof(struct l2_dtable);
5874
5875 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5876 /*
5877 * The new l2_dtable straddles a page boundary.
5878 * Map in another page to cover it.
5879 */
5880 if (pmap_grow_map(nva & ~PGOFSET, NULL))
5881 return NULL;
5882 }
5883
5884 pmap_kernel_l2dtable_kva = nva;
5885
5886 /*
5887 * Link it into the parent pmap
5888 */
5889 pm->pm_l2[L2_IDX(l1slot)] = l2;
5890 }
5891
5892 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5893
5894 /*
5895 * Fetch pointer to the L2 page table associated with the address.
5896 */
5897 if (l2b->l2b_kva == NULL) {
5898 pt_entry_t *ptep;
5899
5900 /*
5901 * No L2 page table has been allocated. Chances are, this
5902 * is because we just allocated the l2_dtable, above.
5903 */
5904 nva = pmap_kernel_l2ptp_kva;
5905 ptep = (pt_entry_t *)nva;
5906 if ((nva & PGOFSET) == 0) {
5907 /*
5908 * Need to allocate a backing page
5909 */
5910 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5911 return NULL;
5912 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5913 }
5914
5915 l2->l2_occupancy++;
5916 l2b->l2b_kva = ptep;
5917 l2b->l2b_l1slot = l1slot;
5918 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5919
5920 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5921 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5922 }
5923
5924 return l2b;
5925 }
5926
5927 vaddr_t
5928 pmap_growkernel(vaddr_t maxkvaddr)
5929 {
5930 UVMHIST_FUNC(__func__);
5931 UVMHIST_CALLARGS(maphist, "growing kernel from %#jx to %#jx\n",
5932 pmap_curmaxkvaddr, maxkvaddr, 0, 0);
5933
5934 pmap_t kpm = pmap_kernel();
5935 #ifndef ARM_MMU_EXTENDED
5936 struct l1_ttable *l1;
5937 #endif
5938 int s;
5939
5940 if (maxkvaddr <= pmap_curmaxkvaddr)
5941 goto out; /* we are OK */
5942
5943 KDASSERT(maxkvaddr <= virtual_end);
5944
5945 /*
5946 * whoops! we need to add kernel PTPs
5947 */
5948
5949 vaddr_t pmap_maxkvaddr = pmap_curmaxkvaddr;
5950
5951 s = splvm(); /* to be safe */
5952 mutex_enter(&kpm_lock);
5953
5954 /* Map 1MB at a time */
5955 size_t l1slot = l1pte_index(pmap_maxkvaddr);
5956 #ifdef ARM_MMU_EXTENDED
5957 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5958 pd_entry_t *pdep = spdep;
5959 #endif
5960 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5961 #ifdef ARM_MMU_EXTENDED
5962 pdep++,
5963 #endif
5964 l1slot++) {
5965 struct l2_bucket *l2b =
5966 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5967 KASSERT(l2b != NULL);
5968
5969 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5970 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5971 #ifdef ARM_MMU_EXTENDED
5972 KASSERT(*pdep == 0);
5973 l1pte_setone(pdep, npde);
5974 #else
5975 /* Distribute new L1 entry to all other L1s */
5976 SLIST_FOREACH(l1, &l1_list, l1_link) {
5977 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5978 l1pte_setone(pdep, npde);
5979 PDE_SYNC(pdep);
5980 }
5981 #endif
5982 }
5983 #ifdef ARM_MMU_EXTENDED
5984 PDE_SYNC_RANGE(spdep, pdep - spdep);
5985 #endif
5986
5987 #ifdef PMAP_CACHE_VIVT
5988 /*
5989 * flush out the cache, expensive but growkernel will happen so
5990 * rarely
5991 */
5992 cpu_dcache_wbinv_all();
5993 cpu_tlb_flushD();
5994 cpu_cpwait();
5995 #endif
5996
5997 mutex_exit(&kpm_lock);
5998 splx(s);
5999
6000 kasan_shadow_map((void *)pmap_maxkvaddr,
6001 (size_t)(pmap_curmaxkvaddr - pmap_maxkvaddr));
6002
6003 out:
6004 return pmap_curmaxkvaddr;
6005 }
6006
6007 /************************ Utility routines ****************************/
6008
6009 #ifndef ARM_HAS_VBAR
6010 /*
6011 * vector_page_setprot:
6012 *
6013 * Manipulate the protection of the vector page.
6014 */
6015 void
6016 vector_page_setprot(int prot)
6017 {
6018 struct l2_bucket *l2b;
6019 pt_entry_t *ptep;
6020
6021 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
6022 /*
6023 * If we are using VBAR to use the vectors in the kernel, then it's
6024 * already mapped in the kernel text so no need to anything here.
6025 */
6026 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6027 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6028 return;
6029 }
6030 #endif
6031
6032 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6033 KASSERT(l2b != NULL);
6034
6035 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6036
6037 const pt_entry_t opte = *ptep;
6038 #ifdef ARM_MMU_EXTENDED
6039 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6040 | L2_S_PROT(PTE_KERNEL, prot);
6041 #else
6042 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6043 | L2_S_PROT(PTE_KERNEL, prot);
6044 #endif
6045 l2pte_set(ptep, npte, opte);
6046 PTE_SYNC(ptep);
6047 cpu_tlb_flushD_SE(vector_page);
6048 cpu_cpwait();
6049 }
6050 #endif
6051
6052 /*
6053 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6054 * Returns true if the mapping exists, else false.
6055 *
6056 * NOTE: This function is only used by a couple of arm-specific modules.
6057 * It is not safe to take any pmap locks here, since we could be right
6058 * in the middle of debugging the pmap anyway...
6059 *
6060 * It is possible for this routine to return false even though a valid
6061 * mapping does exist. This is because we don't lock, so the metadata
6062 * state may be inconsistent.
6063 *
6064 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6065 * a "section" mapping.
6066 */
6067 bool
6068 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6069 {
6070 struct l2_dtable *l2;
6071 pd_entry_t *pdep, pde;
6072 pt_entry_t *ptep;
6073 u_short l1slot;
6074
6075 if (pm->pm_l1 == NULL)
6076 return false;
6077
6078 l1slot = l1pte_index(va);
6079 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6080 pde = *pdep;
6081
6082 if (l1pte_section_p(pde)) {
6083 *ptp = NULL;
6084 return true;
6085 }
6086
6087 l2 = pm->pm_l2[L2_IDX(l1slot)];
6088 if (l2 == NULL ||
6089 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6090 return false;
6091 }
6092
6093 *ptp = &ptep[l2pte_index(va)];
6094 return true;
6095 }
6096
6097 bool
6098 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6099 {
6100
6101 if (pm->pm_l1 == NULL)
6102 return false;
6103
6104 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6105
6106 return true;
6107 }
6108
6109 /************************ Bootstrapping routines ****************************/
6110
6111 #ifndef ARM_MMU_EXTENDED
6112 static void
6113 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6114 {
6115 int i;
6116
6117 l1->l1_kva = l1pt;
6118 l1->l1_domain_use_count = 0;
6119 l1->l1_domain_first = 0;
6120
6121 for (i = 0; i < PMAP_DOMAINS; i++)
6122 l1->l1_domain_free[i] = i + 1;
6123
6124 /*
6125 * Copy the kernel's L1 entries to each new L1.
6126 */
6127 if (pmap_initialized)
6128 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6129
6130 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6131 &l1->l1_physaddr) == false)
6132 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6133
6134 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6135 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6136 }
6137 #endif /* !ARM_MMU_EXTENDED */
6138
6139 /*
6140 * pmap_bootstrap() is called from the board-specific initarm() routine
6141 * once the kernel L1/L2 descriptors tables have been set up.
6142 *
6143 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6144 * spread over a number of disparate files/functions.
6145 *
6146 * We are passed the following parameters
6147 * - vstart
6148 * 1MB-aligned start of managed kernel virtual memory.
6149 * - vend
6150 * 1MB-aligned end of managed kernel virtual memory.
6151 *
6152 * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6153 * struct l2_dtable) necessary to track kernel mappings.
6154 */
6155 #define PMAP_STATIC_L2_SIZE 16
6156 void
6157 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6158 {
6159 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6160 #ifndef ARM_MMU_EXTENDED
6161 static struct l1_ttable static_l1;
6162 struct l1_ttable *l1 = &static_l1;
6163 #endif
6164 struct l2_dtable *l2;
6165 struct l2_bucket *l2b;
6166 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6167 pmap_t pm = pmap_kernel();
6168 pt_entry_t *ptep;
6169 paddr_t pa;
6170 vsize_t size;
6171 int nptes, l2idx, l2next = 0;
6172
6173 #ifdef ARM_MMU_EXTENDED
6174 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6175 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6176 #endif
6177
6178 VPRINTF("kpm ");
6179 /*
6180 * Initialise the kernel pmap object
6181 */
6182 curcpu()->ci_pmap_cur = pm;
6183 #ifdef ARM_MMU_EXTENDED
6184 pm->pm_l1 = l1pt;
6185 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6186 VPRINTF("tlb0 ");
6187 pmap_tlb_info_init(&pmap_tlb0_info);
6188 #ifdef MULTIPROCESSOR
6189 VPRINTF("kcpusets ");
6190 pm->pm_onproc = kcpuset_running;
6191 pm->pm_active = kcpuset_running;
6192 #endif
6193 #else
6194 pm->pm_l1 = l1;
6195 #endif
6196
6197 VPRINTF("locks ");
6198 /*
6199 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6200 * context, so its locks have to be at IPL_VM
6201 */
6202 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6203 mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6204 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
6205 pm->pm_refs = 1;
6206
6207 VPRINTF("l1pt ");
6208 /*
6209 * Scan the L1 translation table created by initarm() and create
6210 * the required metadata for all valid mappings found in it.
6211 */
6212 for (size_t l1slot = 0;
6213 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6214 l1slot++) {
6215 pd_entry_t pde = l1pt[l1slot];
6216
6217 /*
6218 * We're only interested in Coarse mappings.
6219 * pmap_extract() can deal with section mappings without
6220 * recourse to checking L2 metadata.
6221 */
6222 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6223 continue;
6224
6225 /*
6226 * Lookup the KVA of this L2 descriptor table
6227 */
6228 pa = l1pte_pa(pde);
6229 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6230 if (ptep == NULL) {
6231 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6232 (u_int)l1slot << L1_S_SHIFT, pa);
6233 }
6234
6235 /*
6236 * Fetch the associated L2 metadata structure.
6237 * Allocate a new one if necessary.
6238 */
6239 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6240 if (l2next == PMAP_STATIC_L2_SIZE)
6241 panic("pmap_bootstrap: out of static L2s");
6242 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6243 }
6244
6245 /*
6246 * One more L1 slot tracked...
6247 */
6248 l2->l2_occupancy++;
6249
6250 /*
6251 * Fill in the details of the L2 descriptor in the
6252 * appropriate bucket.
6253 */
6254 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6255 l2b->l2b_kva = ptep;
6256 l2b->l2b_pa = pa;
6257 l2b->l2b_l1slot = l1slot;
6258
6259 /*
6260 * Establish an initial occupancy count for this descriptor
6261 */
6262 for (l2idx = 0;
6263 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6264 l2idx++) {
6265 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6266 l2b->l2b_occupancy++;
6267 }
6268 }
6269
6270 /*
6271 * Make sure the descriptor itself has the correct cache mode.
6272 * If not, fix it, but whine about the problem. Port-meisters
6273 * should consider this a clue to fix up their initarm()
6274 * function. :)
6275 */
6276 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6277 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6278 "L2 pte @ %p\n", ptep);
6279 }
6280 }
6281
6282 VPRINTF("cache(l1pt) ");
6283 /*
6284 * Ensure the primary (kernel) L1 has the correct cache mode for
6285 * a page table. Bitch if it is not correctly set.
6286 */
6287 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6288 L1_TABLE_SIZE / L2_S_SIZE)) {
6289 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6290 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6291 }
6292
6293 #ifdef PMAP_CACHE_VIVT
6294 cpu_dcache_wbinv_all();
6295 cpu_tlb_flushID();
6296 cpu_cpwait();
6297 #endif
6298
6299 /*
6300 * now we allocate the "special" VAs which are used for tmp mappings
6301 * by the pmap (and other modules). we allocate the VAs by advancing
6302 * virtual_avail (note that there are no pages mapped at these VAs).
6303 *
6304 * Managed KVM space start from wherever initarm() tells us.
6305 */
6306 virtual_avail = vstart;
6307 virtual_end = vend;
6308
6309 VPRINTF("specials ");
6310
6311 pmap_alloc_specials(&virtual_avail, 1, &memhook, NULL);
6312
6313 #ifdef PMAP_CACHE_VIPT
6314 /*
6315 * If we have a VIPT cache, we need one page/pte per possible alias
6316 * page so we won't violate cache aliasing rules.
6317 */
6318 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6319 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6320 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6321 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6322 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6323 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6324 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6325 }
6326 #else
6327 nptes = PAGE_SIZE / L2_S_SIZE;
6328 #endif
6329 #ifdef MULTIPROCESSOR
6330 cnptes = nptes;
6331 nptes *= arm_cpu_max;
6332 #endif
6333 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6334 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6335 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6336 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6337 if (msgbufaddr == NULL) {
6338 pmap_alloc_specials(&virtual_avail,
6339 round_page(MSGBUFSIZE) / PAGE_SIZE,
6340 (void *)&msgbufaddr, NULL);
6341 }
6342
6343 /*
6344 * Allocate a range of kernel virtual address space to be used
6345 * for L2 descriptor tables and metadata allocation in
6346 * pmap_growkernel().
6347 */
6348 size = howmany(virtual_end - pmap_curmaxkvaddr, L1_S_SIZE);
6349 pmap_alloc_specials(&virtual_avail,
6350 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6351 &pmap_kernel_l2ptp_kva, NULL);
6352
6353 size = howmany(size, L2_BUCKET_SIZE);
6354 pmap_alloc_specials(&virtual_avail,
6355 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6356 &pmap_kernel_l2dtable_kva, NULL);
6357
6358 #ifndef ARM_MMU_EXTENDED
6359 /*
6360 * init the static-global locks and global pmap list.
6361 */
6362 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6363
6364 /*
6365 * We can now initialise the first L1's metadata.
6366 */
6367 SLIST_INIT(&l1_list);
6368 TAILQ_INIT(&l1_lru_list);
6369 pmap_init_l1(l1, l1pt);
6370 #endif /* ARM_MMU_EXTENDED */
6371
6372 #ifndef ARM_HAS_VBAR
6373 /* Set up vector page L1 details, if necessary */
6374 if (vector_page < KERNEL_BASE) {
6375 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6376 l2b = pmap_get_l2_bucket(pm, vector_page);
6377 KDASSERT(l2b != NULL);
6378 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6379 L1_C_DOM(pmap_domain(pm));
6380 } else
6381 pm->pm_pl1vec = NULL;
6382 #endif
6383
6384 VPRINTF("pools ");
6385 /*
6386 * Initialize the pmap cache
6387 */
6388 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6389 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6390
6391 /*
6392 * Initialize the pv pool.
6393 */
6394 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6395 &pmap_bootstrap_pv_allocator, IPL_NONE);
6396
6397 /*
6398 * Initialize the L2 dtable pool and cache.
6399 */
6400 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6401 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6402
6403 /*
6404 * Initialise the L2 descriptor table pool and cache
6405 */
6406 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6407 L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6408 pmap_l2ptp_ctor, NULL, NULL);
6409
6410 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6411
6412 cpu_dcache_wbinv_all();
6413 }
6414
6415 static bool
6416 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6417 {
6418 #ifdef ARM_MMU_EXTENDED
6419 return false;
6420 #else
6421 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6422 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6423 return false;
6424
6425 const vaddr_t eva = va + nptes * PAGE_SIZE;
6426 int rv = 0;
6427
6428 while (va < eva) {
6429 /*
6430 * Make sure the descriptor itself has the correct cache mode
6431 */
6432 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6433 pd_entry_t pde = *pdep;
6434
6435 if (l1pte_section_p(pde)) {
6436 KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6437 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6438 *pdep = (pde & ~L1_S_CACHE_MASK) |
6439 pte_l1_s_cache_mode_pt;
6440 PDE_SYNC(pdep);
6441 cpu_dcache_wbinv_range((vaddr_t)pdep,
6442 sizeof(*pdep));
6443 rv = 1;
6444 }
6445 return rv;
6446 }
6447 vaddr_t pa = l1pte_pa(pde);
6448 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6449 if (ptep == NULL)
6450 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6451
6452 ptep += l2pte_index(va);
6453 const pt_entry_t opte = *ptep;
6454 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6455 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6456 | pte_l2_s_cache_mode_pt;
6457 l2pte_set(ptep, npte, opte);
6458 PTE_SYNC(ptep);
6459 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6460 rv = 1;
6461 }
6462 va += PAGE_SIZE;
6463 }
6464
6465 return rv;
6466 #endif
6467 }
6468
6469 static void
6470 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6471 {
6472 vaddr_t va = *availp;
6473 struct l2_bucket *l2b;
6474
6475 if (ptep) {
6476 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6477 if (l2b == NULL)
6478 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6479
6480 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6481 }
6482
6483 *vap = va;
6484 *availp = va + (PAGE_SIZE * pages);
6485 }
6486
6487 void
6488 pmap_init(void)
6489 {
6490
6491 /*
6492 * Set the available memory vars - These do not map to real memory
6493 * addresses and cannot as the physical memory is fragmented.
6494 * They are used by ps for %mem calculations.
6495 * One could argue whether this should be the entire memory or just
6496 * the memory that is useable in a user process.
6497 */
6498 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6499 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6500
6501 /*
6502 * Now we need to free enough pv_entry structures to allow us to get
6503 * the kmem_map/kmem_object allocated and inited (done after this
6504 * function is finished). to do this we allocate one bootstrap page out
6505 * of kernel_map and use it to provide an initial pool of pv_entry
6506 * structures. we never free this page.
6507 */
6508 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6509
6510 #ifdef ARM_MMU_EXTENDED
6511 /*
6512 * Initialise the L1 pool and cache.
6513 */
6514
6515 pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
6516 0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
6517 NULL, NULL);
6518
6519 int error __diagused = pmap_maxproc_set(maxproc);
6520 KASSERT(error == 0);
6521
6522 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6523 #endif
6524
6525 pmap_initialized = true;
6526 }
6527
6528 static vaddr_t last_bootstrap_page = 0;
6529 static void *free_bootstrap_pages = NULL;
6530
6531 static void *
6532 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6533 {
6534 extern void *pool_page_alloc(struct pool *, int);
6535 vaddr_t new_page;
6536 void *rv;
6537
6538 if (pmap_initialized)
6539 return pool_page_alloc(pp, flags);
6540
6541 if (free_bootstrap_pages) {
6542 rv = free_bootstrap_pages;
6543 free_bootstrap_pages = *((void **)rv);
6544 return rv;
6545 }
6546
6547 KASSERT(kernel_map != NULL);
6548 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6549 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6550
6551 KASSERT(new_page > last_bootstrap_page);
6552 last_bootstrap_page = new_page;
6553 return (void *)new_page;
6554 }
6555
6556 static void
6557 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6558 {
6559 extern void pool_page_free(struct pool *, void *);
6560
6561 if ((vaddr_t)v <= last_bootstrap_page) {
6562 *((void **)v) = free_bootstrap_pages;
6563 free_bootstrap_pages = v;
6564 return;
6565 }
6566
6567 if (pmap_initialized) {
6568 pool_page_free(pp, v);
6569 return;
6570 }
6571 }
6572
6573
6574 #if defined(ARM_MMU_EXTENDED)
6575 static void *
6576 pmap_l1tt_alloc(struct pool *pp, int flags)
6577 {
6578 struct pglist plist;
6579 vaddr_t va;
6580
6581 const int waitok = flags & PR_WAITOK;
6582
6583 int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
6584 waitok);
6585 if (error)
6586 panic("Cannot allocate L1TT physical pages, %d", error);
6587
6588 struct vm_page *pg = TAILQ_FIRST(&plist);
6589 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6590
6591 /* Allocate a L1 translation table VA */
6592 va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
6593 if (va == 0)
6594 panic("Cannot allocate L1TT KVA");
6595
6596 const vaddr_t eva = va + L1TT_SIZE;
6597 vaddr_t mva = va;
6598 while (pg && mva < eva) {
6599 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6600
6601 pmap_kenter_pa(mva, pa,
6602 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6603
6604 mva += PAGE_SIZE;
6605 pg = TAILQ_NEXT(pg, pageq.queue);
6606 }
6607 KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
6608 " eva %" PRIxVADDR, pg, mva, eva);
6609 #else
6610 bool ok;
6611 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6612 va = pmap_direct_mapped_phys(pa, &ok, 0);
6613 KASSERT(ok);
6614 KASSERT(va >= KERNEL_BASE);
6615 #endif
6616
6617 return (void *)va;
6618 }
6619
6620 static void
6621 pmap_l1tt_free(struct pool *pp, void *v)
6622 {
6623 vaddr_t va = (vaddr_t)v;
6624
6625 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6626 uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
6627 #else
6628 #if defined(KERNEL_BASE_VOFFSET)
6629 paddr_t pa = va - KERNEL_BASE_VOFFSET;
6630 #else
6631 paddr_t pa = va - KERNEL_BASE + physical_start;
6632 #endif
6633 const paddr_t epa = pa + L1TT_SIZE;
6634
6635 for (; pa < epa; pa += PAGE_SIZE) {
6636 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
6637 uvm_pagefree(pg);
6638 }
6639 #endif
6640 }
6641 #endif
6642
6643 /*
6644 * pmap_postinit()
6645 *
6646 * This routine is called after the vm and kmem subsystems have been
6647 * initialised. This allows the pmap code to perform any initialisation
6648 * that can only be done once the memory allocation is in place.
6649 */
6650 void
6651 pmap_postinit(void)
6652 {
6653 #ifndef ARM_MMU_EXTENDED
6654 extern paddr_t physical_start, physical_end;
6655 struct l1_ttable *l1;
6656 struct pglist plist;
6657 struct vm_page *m;
6658 pd_entry_t *pdep;
6659 vaddr_t va, eva;
6660 u_int loop, needed;
6661 int error;
6662 #endif
6663
6664 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6665 pool_cache_setlowat(&pmap_l2dtable_cache,
6666 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6667
6668 #ifndef ARM_MMU_EXTENDED
6669 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6670 needed -= 1;
6671
6672 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6673
6674 for (loop = 0; loop < needed; loop++, l1++) {
6675 /* Allocate a L1 page table */
6676 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6677 if (va == 0)
6678 panic("Cannot allocate L1 KVM");
6679
6680 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6681 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6682 if (error)
6683 panic("Cannot allocate L1 physical pages");
6684
6685 m = TAILQ_FIRST(&plist);
6686 eva = va + L1_TABLE_SIZE;
6687 pdep = (pd_entry_t *)va;
6688
6689 while (m && va < eva) {
6690 paddr_t pa = VM_PAGE_TO_PHYS(m);
6691
6692 pmap_kenter_pa(va, pa,
6693 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6694
6695 va += PAGE_SIZE;
6696 m = TAILQ_NEXT(m, pageq.queue);
6697 }
6698
6699 #ifdef DIAGNOSTIC
6700 if (m)
6701 panic("pmap_alloc_l1pt: pglist not empty");
6702 #endif /* DIAGNOSTIC */
6703
6704 pmap_init_l1(l1, pdep);
6705 }
6706
6707 #ifdef DEBUG
6708 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6709 needed);
6710 #endif
6711 #endif /* !ARM_MMU_EXTENDED */
6712 }
6713
6714 /*
6715 * Note that the following routines are used by board-specific initialisation
6716 * code to configure the initial kernel page tables.
6717 *
6718 */
6719
6720 /*
6721 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6722 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6723 * find them as necessary.
6724 *
6725 * Note that the data on this list MUST remain valid after initarm() returns,
6726 * as pmap_bootstrap() uses it to construct L2 table metadata.
6727 */
6728 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6729
6730 static vaddr_t
6731 kernel_pt_lookup(paddr_t pa)
6732 {
6733 pv_addr_t *pv;
6734
6735 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6736 if (pv->pv_pa == (pa & ~PGOFSET))
6737 return pv->pv_va | (pa & PGOFSET);
6738 }
6739 return 0;
6740 }
6741
6742 /*
6743 * pmap_map_section:
6744 *
6745 * Create a single section mapping.
6746 */
6747 void
6748 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6749 {
6750 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6751 const size_t l1slot = l1pte_index(va);
6752 pd_entry_t fl;
6753
6754 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6755
6756 switch (cache) {
6757 case PTE_NOCACHE:
6758 fl = pte_l1_s_nocache_mode;
6759 break;
6760
6761 case PTE_CACHE:
6762 fl = pte_l1_s_cache_mode;
6763 break;
6764
6765 case PTE_PAGETABLE:
6766 fl = pte_l1_s_cache_mode_pt;
6767 break;
6768
6769 case PTE_DEV:
6770 default:
6771 fl = 0;
6772 break;
6773 }
6774
6775 const pd_entry_t npde = L1_S_PROTO | pa |
6776 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6777 l1pte_setone(pdep + l1slot, npde);
6778 PDE_SYNC(pdep + l1slot);
6779 }
6780
6781 /*
6782 * pmap_map_entry:
6783 *
6784 * Create a single page mapping.
6785 */
6786 void
6787 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6788 {
6789 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6790 const size_t l1slot = l1pte_index(va);
6791 pt_entry_t npte;
6792 pt_entry_t *ptep;
6793
6794 KASSERT(((va | pa) & PGOFSET) == 0);
6795
6796 switch (cache) {
6797 case PTE_NOCACHE:
6798 npte = pte_l2_s_nocache_mode;
6799 break;
6800
6801 case PTE_CACHE:
6802 npte = pte_l2_s_cache_mode;
6803 break;
6804
6805 case PTE_PAGETABLE:
6806 npte = pte_l2_s_cache_mode_pt;
6807 break;
6808
6809 default:
6810 npte = 0;
6811 break;
6812 }
6813
6814 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6815 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6816
6817 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6818 if (ptep == NULL)
6819 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6820
6821 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6822 #ifdef ARM_MMU_EXTENDED
6823 if (prot & VM_PROT_EXECUTE) {
6824 npte &= ~L2_XS_XN;
6825 }
6826 #endif
6827 ptep += l2pte_index(va);
6828 l2pte_set(ptep, npte, 0);
6829 PTE_SYNC(ptep);
6830 }
6831
6832 /*
6833 * pmap_link_l2pt:
6834 *
6835 * Link the L2 page table specified by "l2pv" into the L1
6836 * page table at the slot for "va".
6837 */
6838 void
6839 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6840 {
6841 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6842
6843 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6844 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6845
6846 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6847 | l2pv->pv_pa;
6848
6849 l1pte_set(pdep, npde);
6850 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6851
6852 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6853 }
6854
6855 /*
6856 * pmap_map_chunk:
6857 *
6858 * Map a chunk of memory using the most efficient mappings
6859 * possible (section, large page, small page) into the
6860 * provided L1 and L2 tables at the specified virtual address.
6861 */
6862 vsize_t
6863 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6864 int prot, int cache)
6865 {
6866 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6867 pt_entry_t f1, f2s, f2l;
6868 vsize_t resid;
6869
6870 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6871
6872 if (l1pt == 0)
6873 panic("pmap_map_chunk: no L1 table provided");
6874
6875 // VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6876 // "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6877
6878 switch (cache) {
6879 case PTE_NOCACHE:
6880 f1 = pte_l1_s_nocache_mode;
6881 f2l = pte_l2_l_nocache_mode;
6882 f2s = pte_l2_s_nocache_mode;
6883 break;
6884
6885 case PTE_CACHE:
6886 f1 = pte_l1_s_cache_mode;
6887 f2l = pte_l2_l_cache_mode;
6888 f2s = pte_l2_s_cache_mode;
6889 break;
6890
6891 case PTE_PAGETABLE:
6892 f1 = pte_l1_s_cache_mode_pt;
6893 f2l = pte_l2_l_cache_mode_pt;
6894 f2s = pte_l2_s_cache_mode_pt;
6895 break;
6896
6897 case PTE_DEV:
6898 default:
6899 f1 = 0;
6900 f2l = 0;
6901 f2s = 0;
6902 break;
6903 }
6904
6905 size = resid;
6906
6907 while (resid > 0) {
6908 const size_t l1slot = l1pte_index(va);
6909 #ifdef ARM_MMU_EXTENDED
6910 /* See if we can use a supersection mapping. */
6911 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6912 /* Supersection are always domain 0 */
6913 const pd_entry_t npde = L1_SS_PROTO | pa
6914 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6915 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6916 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6917 VPRINTF("sS");
6918 l1pte_set(&pdep[l1slot], npde);
6919 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6920 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6921 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6922 va += L1_SS_SIZE;
6923 pa += L1_SS_SIZE;
6924 resid -= L1_SS_SIZE;
6925 continue;
6926 }
6927 #endif
6928 /* See if we can use a section mapping. */
6929 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6930 const pd_entry_t npde = L1_S_PROTO | pa
6931 #ifdef ARM_MMU_EXTENDED
6932 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6933 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6934 #endif
6935 | L1_S_PROT(PTE_KERNEL, prot) | f1
6936 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6937 VPRINTF("S");
6938 l1pte_set(&pdep[l1slot], npde);
6939 PDE_SYNC(&pdep[l1slot]);
6940 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6941 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6942 va += L1_S_SIZE;
6943 pa += L1_S_SIZE;
6944 resid -= L1_S_SIZE;
6945 continue;
6946 }
6947
6948 /*
6949 * Ok, we're going to use an L2 table. Make sure
6950 * one is actually in the corresponding L1 slot
6951 * for the current VA.
6952 */
6953 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6954 panic("%s: no L2 table for VA %#lx", __func__, va);
6955
6956 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6957 if (ptep == NULL)
6958 panic("%s: can't find L2 table for VA %#lx", __func__,
6959 va);
6960
6961 ptep += l2pte_index(va);
6962
6963 /* See if we can use a L2 large page mapping. */
6964 if (L2_L_MAPPABLE_P(va, pa, resid)) {
6965 const pt_entry_t npte = L2_L_PROTO | pa
6966 #ifdef ARM_MMU_EXTENDED
6967 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6968 | (va & 0x80000000 ? 0 : L2_XS_nG)
6969 #endif
6970 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6971 VPRINTF("L");
6972 l2pte_set(ptep, npte, 0);
6973 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6974 va += L2_L_SIZE;
6975 pa += L2_L_SIZE;
6976 resid -= L2_L_SIZE;
6977 continue;
6978 }
6979
6980 VPRINTF("P");
6981 /* Use a small page mapping. */
6982 pt_entry_t npte = L2_S_PROTO | pa
6983 #ifdef ARM_MMU_EXTENDED
6984 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6985 | (va & 0x80000000 ? 0 : L2_XS_nG)
6986 #endif
6987 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6988 #ifdef ARM_MMU_EXTENDED
6989 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6990 #endif
6991 l2pte_set(ptep, npte, 0);
6992 PTE_SYNC(ptep);
6993 va += PAGE_SIZE;
6994 pa += PAGE_SIZE;
6995 resid -= PAGE_SIZE;
6996 }
6997 VPRINTF("\n");
6998 return size;
6999 }
7000
7001 /*
7002 * pmap_unmap_chunk:
7003 *
7004 * Unmap a chunk of memory that was previously pmap_map_chunk
7005 */
7006 void
7007 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
7008 {
7009 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7010 const size_t l1slot = l1pte_index(va);
7011
7012 KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
7013
7014 l1pte_set(&pdep[l1slot], 0);
7015 PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
7016
7017 pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
7018 }
7019
7020
7021
7022 /********************** Static device map routines ***************************/
7023
7024 static const struct pmap_devmap *pmap_devmap_table;
7025
7026 /*
7027 * Register the devmap table. This is provided in case early console
7028 * initialization needs to register mappings created by bootstrap code
7029 * before pmap_devmap_bootstrap() is called.
7030 */
7031 void
7032 pmap_devmap_register(const struct pmap_devmap *table)
7033 {
7034
7035 pmap_devmap_table = table;
7036 }
7037
7038 /*
7039 * Map all of the static regions in the devmap table, and remember
7040 * the devmap table so other parts of the kernel can look up entries
7041 * later.
7042 */
7043 void
7044 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
7045 {
7046 int i;
7047
7048 pmap_devmap_table = table;
7049
7050 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7051 const struct pmap_devmap *pdp = &pmap_devmap_table[i];
7052
7053 KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
7054 " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
7055 KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
7056 " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
7057 VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
7058 pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
7059
7060 pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
7061 pdp->pd_prot, pdp->pd_cache);
7062 }
7063 }
7064
7065 const struct pmap_devmap *
7066 pmap_devmap_find_pa(paddr_t pa, psize_t size)
7067 {
7068 uint64_t endpa;
7069 int i;
7070
7071 if (pmap_devmap_table == NULL)
7072 return NULL;
7073
7074 endpa = (uint64_t)pa + (uint64_t)(size - 1);
7075
7076 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7077 if (pa >= pmap_devmap_table[i].pd_pa &&
7078 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
7079 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
7080 return &pmap_devmap_table[i];
7081 }
7082
7083 return NULL;
7084 }
7085
7086 const struct pmap_devmap *
7087 pmap_devmap_find_va(vaddr_t va, vsize_t size)
7088 {
7089 int i;
7090
7091 if (pmap_devmap_table == NULL)
7092 return NULL;
7093
7094 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7095 if (va >= pmap_devmap_table[i].pd_va &&
7096 va + size - 1 <= pmap_devmap_table[i].pd_va +
7097 pmap_devmap_table[i].pd_size - 1)
7098 return &pmap_devmap_table[i];
7099 }
7100
7101 return NULL;
7102 }
7103
7104 /********************** PTE initialization routines **************************/
7105
7106 /*
7107 * These routines are called when the CPU type is identified to set up
7108 * the PTE prototypes, cache modes, etc.
7109 *
7110 * The variables are always here, just in case modules need to reference
7111 * them (though, they shouldn't).
7112 */
7113
7114 pt_entry_t pte_l1_s_nocache_mode;
7115 pt_entry_t pte_l1_s_cache_mode;
7116 pt_entry_t pte_l1_s_wc_mode;
7117 pt_entry_t pte_l1_s_cache_mode_pt;
7118 pt_entry_t pte_l1_s_cache_mask;
7119
7120 pt_entry_t pte_l2_l_nocache_mode;
7121 pt_entry_t pte_l2_l_cache_mode;
7122 pt_entry_t pte_l2_l_wc_mode;
7123 pt_entry_t pte_l2_l_cache_mode_pt;
7124 pt_entry_t pte_l2_l_cache_mask;
7125
7126 pt_entry_t pte_l2_s_nocache_mode;
7127 pt_entry_t pte_l2_s_cache_mode;
7128 pt_entry_t pte_l2_s_wc_mode;
7129 pt_entry_t pte_l2_s_cache_mode_pt;
7130 pt_entry_t pte_l2_s_cache_mask;
7131
7132 pt_entry_t pte_l1_s_prot_u;
7133 pt_entry_t pte_l1_s_prot_w;
7134 pt_entry_t pte_l1_s_prot_ro;
7135 pt_entry_t pte_l1_s_prot_mask;
7136
7137 pt_entry_t pte_l2_s_prot_u;
7138 pt_entry_t pte_l2_s_prot_w;
7139 pt_entry_t pte_l2_s_prot_ro;
7140 pt_entry_t pte_l2_s_prot_mask;
7141
7142 pt_entry_t pte_l2_l_prot_u;
7143 pt_entry_t pte_l2_l_prot_w;
7144 pt_entry_t pte_l2_l_prot_ro;
7145 pt_entry_t pte_l2_l_prot_mask;
7146
7147 pt_entry_t pte_l1_ss_proto;
7148 pt_entry_t pte_l1_s_proto;
7149 pt_entry_t pte_l1_c_proto;
7150 pt_entry_t pte_l2_s_proto;
7151
7152 void (*pmap_copy_page_func)(paddr_t, paddr_t);
7153 void (*pmap_zero_page_func)(paddr_t);
7154
7155 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7156 void
7157 pmap_pte_init_generic(void)
7158 {
7159
7160 pte_l1_s_nocache_mode = 0;
7161 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7162 pte_l1_s_wc_mode = L1_S_B;
7163 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7164
7165 pte_l2_l_nocache_mode = 0;
7166 pte_l2_l_cache_mode = L2_B|L2_C;
7167 pte_l2_l_wc_mode = L2_B;
7168 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7169
7170 pte_l2_s_nocache_mode = 0;
7171 pte_l2_s_cache_mode = L2_B|L2_C;
7172 pte_l2_s_wc_mode = L2_B;
7173 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7174
7175 /*
7176 * If we have a write-through cache, set B and C. If
7177 * we have a write-back cache, then we assume setting
7178 * only C will make those pages write-through (except for those
7179 * Cortex CPUs which can read the L1 caches).
7180 */
7181 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7182 #if ARM_MMU_V7 > 0
7183 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7184 #endif
7185 #if ARM_MMU_V6 > 0
7186 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7187 #endif
7188 || false) {
7189 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7190 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7191 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7192 } else {
7193 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7194 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7195 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7196 }
7197
7198 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7199 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7200 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7201 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7202
7203 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7204 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7205 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7206 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7207
7208 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7209 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7210 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7211 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7212
7213 pte_l1_ss_proto = L1_SS_PROTO_generic;
7214 pte_l1_s_proto = L1_S_PROTO_generic;
7215 pte_l1_c_proto = L1_C_PROTO_generic;
7216 pte_l2_s_proto = L2_S_PROTO_generic;
7217
7218 pmap_copy_page_func = pmap_copy_page_generic;
7219 pmap_zero_page_func = pmap_zero_page_generic;
7220 }
7221
7222 #if defined(CPU_ARM8)
7223 void
7224 pmap_pte_init_arm8(void)
7225 {
7226
7227 /*
7228 * ARM8 is compatible with generic, but we need to use
7229 * the page tables uncached.
7230 */
7231 pmap_pte_init_generic();
7232
7233 pte_l1_s_cache_mode_pt = 0;
7234 pte_l2_l_cache_mode_pt = 0;
7235 pte_l2_s_cache_mode_pt = 0;
7236 }
7237 #endif /* CPU_ARM8 */
7238
7239 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7240 void
7241 pmap_pte_init_arm9(void)
7242 {
7243
7244 /*
7245 * ARM9 is compatible with generic, but we want to use
7246 * write-through caching for now.
7247 */
7248 pmap_pte_init_generic();
7249
7250 pte_l1_s_cache_mode = L1_S_C;
7251 pte_l2_l_cache_mode = L2_C;
7252 pte_l2_s_cache_mode = L2_C;
7253
7254 pte_l1_s_wc_mode = L1_S_B;
7255 pte_l2_l_wc_mode = L2_B;
7256 pte_l2_s_wc_mode = L2_B;
7257
7258 pte_l1_s_cache_mode_pt = L1_S_C;
7259 pte_l2_l_cache_mode_pt = L2_C;
7260 pte_l2_s_cache_mode_pt = L2_C;
7261 }
7262 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7263 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7264
7265 #if defined(CPU_ARM10)
7266 void
7267 pmap_pte_init_arm10(void)
7268 {
7269
7270 /*
7271 * ARM10 is compatible with generic, but we want to use
7272 * write-through caching for now.
7273 */
7274 pmap_pte_init_generic();
7275
7276 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7277 pte_l2_l_cache_mode = L2_B | L2_C;
7278 pte_l2_s_cache_mode = L2_B | L2_C;
7279
7280 pte_l1_s_cache_mode = L1_S_B;
7281 pte_l2_l_cache_mode = L2_B;
7282 pte_l2_s_cache_mode = L2_B;
7283
7284 pte_l1_s_cache_mode_pt = L1_S_C;
7285 pte_l2_l_cache_mode_pt = L2_C;
7286 pte_l2_s_cache_mode_pt = L2_C;
7287
7288 }
7289 #endif /* CPU_ARM10 */
7290
7291 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7292 void
7293 pmap_pte_init_arm11(void)
7294 {
7295
7296 /*
7297 * ARM11 is compatible with generic, but we want to use
7298 * write-through caching for now.
7299 */
7300 pmap_pte_init_generic();
7301
7302 pte_l1_s_cache_mode = L1_S_C;
7303 pte_l2_l_cache_mode = L2_C;
7304 pte_l2_s_cache_mode = L2_C;
7305
7306 pte_l1_s_wc_mode = L1_S_B;
7307 pte_l2_l_wc_mode = L2_B;
7308 pte_l2_s_wc_mode = L2_B;
7309
7310 pte_l1_s_cache_mode_pt = L1_S_C;
7311 pte_l2_l_cache_mode_pt = L2_C;
7312 pte_l2_s_cache_mode_pt = L2_C;
7313 }
7314 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7315
7316 #if ARM_MMU_SA1 == 1
7317 void
7318 pmap_pte_init_sa1(void)
7319 {
7320
7321 /*
7322 * The StrongARM SA-1 cache does not have a write-through
7323 * mode. So, do the generic initialization, then reset
7324 * the page table cache mode to B=1,C=1, and note that
7325 * the PTEs need to be sync'd.
7326 */
7327 pmap_pte_init_generic();
7328
7329 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7330 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7331 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7332
7333 pmap_needs_pte_sync = 1;
7334 }
7335 #endif /* ARM_MMU_SA1 == 1*/
7336
7337 #if ARM_MMU_XSCALE == 1
7338 #if (ARM_NMMUS > 1)
7339 static u_int xscale_use_minidata;
7340 #endif
7341
7342 void
7343 pmap_pte_init_xscale(void)
7344 {
7345 uint32_t auxctl;
7346 int write_through = 0;
7347
7348 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7349 pte_l1_s_wc_mode = L1_S_B;
7350 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7351
7352 pte_l2_l_cache_mode = L2_B|L2_C;
7353 pte_l2_l_wc_mode = L2_B;
7354 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7355
7356 pte_l2_s_cache_mode = L2_B|L2_C;
7357 pte_l2_s_wc_mode = L2_B;
7358 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7359
7360 pte_l1_s_cache_mode_pt = L1_S_C;
7361 pte_l2_l_cache_mode_pt = L2_C;
7362 pte_l2_s_cache_mode_pt = L2_C;
7363
7364 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7365 /*
7366 * The XScale core has an enhanced mode where writes that
7367 * miss the cache cause a cache line to be allocated. This
7368 * is significantly faster than the traditional, write-through
7369 * behavior of this case.
7370 */
7371 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7372 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7373 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7374 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7375
7376 #ifdef XSCALE_CACHE_WRITE_THROUGH
7377 /*
7378 * Some versions of the XScale core have various bugs in
7379 * their cache units, the work-around for which is to run
7380 * the cache in write-through mode. Unfortunately, this
7381 * has a major (negative) impact on performance. So, we
7382 * go ahead and run fast-and-loose, in the hopes that we
7383 * don't line up the planets in a way that will trip the
7384 * bugs.
7385 *
7386 * However, we give you the option to be slow-but-correct.
7387 */
7388 write_through = 1;
7389 #elif defined(XSCALE_CACHE_WRITE_BACK)
7390 /* force write back cache mode */
7391 write_through = 0;
7392 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7393 /*
7394 * Intel PXA2[15]0 processors are known to have a bug in
7395 * write-back cache on revision 4 and earlier (stepping
7396 * A[01] and B[012]). Fixed for C0 and later.
7397 */
7398 {
7399 uint32_t id, type;
7400
7401 id = cpufunc_id();
7402 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7403
7404 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7405 if ((id & CPU_ID_REVISION_MASK) < 5) {
7406 /* write through for stepping A0-1 and B0-2 */
7407 write_through = 1;
7408 }
7409 }
7410 }
7411 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7412
7413 if (write_through) {
7414 pte_l1_s_cache_mode = L1_S_C;
7415 pte_l2_l_cache_mode = L2_C;
7416 pte_l2_s_cache_mode = L2_C;
7417 }
7418
7419 #if (ARM_NMMUS > 1)
7420 xscale_use_minidata = 1;
7421 #endif
7422
7423 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7424 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7425 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7426 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7427
7428 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7429 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7430 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7431 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7432
7433 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7434 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7435 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7436 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7437
7438 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7439 pte_l1_s_proto = L1_S_PROTO_xscale;
7440 pte_l1_c_proto = L1_C_PROTO_xscale;
7441 pte_l2_s_proto = L2_S_PROTO_xscale;
7442
7443 pmap_copy_page_func = pmap_copy_page_xscale;
7444 pmap_zero_page_func = pmap_zero_page_xscale;
7445
7446 /*
7447 * Disable ECC protection of page table access, for now.
7448 */
7449 auxctl = armreg_auxctl_read();
7450 auxctl &= ~XSCALE_AUXCTL_P;
7451 armreg_auxctl_write(auxctl);
7452 }
7453
7454 /*
7455 * xscale_setup_minidata:
7456 *
7457 * Set up the mini-data cache clean area. We require the
7458 * caller to allocate the right amount of physically and
7459 * virtually contiguous space.
7460 */
7461 void
7462 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7463 {
7464 extern vaddr_t xscale_minidata_clean_addr;
7465 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7466 pd_entry_t *pde = (pd_entry_t *) l1pt;
7467 vsize_t size;
7468 uint32_t auxctl;
7469
7470 xscale_minidata_clean_addr = va;
7471
7472 /* Round it to page size. */
7473 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7474
7475 for (; size != 0;
7476 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7477 const size_t l1slot = l1pte_index(va);
7478 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7479 if (ptep == NULL)
7480 panic("xscale_setup_minidata: can't find L2 table for "
7481 "VA 0x%08lx", va);
7482
7483 ptep += l2pte_index(va);
7484 pt_entry_t opte = *ptep;
7485 l2pte_set(ptep,
7486 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7487 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7488 }
7489
7490 /*
7491 * Configure the mini-data cache for write-back with
7492 * read/write-allocate.
7493 *
7494 * NOTE: In order to reconfigure the mini-data cache, we must
7495 * make sure it contains no valid data! In order to do that,
7496 * we must issue a global data cache invalidate command!
7497 *
7498 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7499 * THIS IS VERY IMPORTANT!
7500 */
7501
7502 /* Invalidate data and mini-data. */
7503 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7504 auxctl = armreg_auxctl_read();
7505 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7506 armreg_auxctl_write(auxctl);
7507 }
7508
7509 /*
7510 * Change the PTEs for the specified kernel mappings such that they
7511 * will use the mini data cache instead of the main data cache.
7512 */
7513 void
7514 pmap_uarea(vaddr_t va)
7515 {
7516 vaddr_t next_bucket, eva;
7517
7518 #if (ARM_NMMUS > 1)
7519 if (xscale_use_minidata == 0)
7520 return;
7521 #endif
7522
7523 eva = va + USPACE;
7524
7525 while (va < eva) {
7526 next_bucket = L2_NEXT_BUCKET_VA(va);
7527 if (next_bucket > eva)
7528 next_bucket = eva;
7529
7530 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7531 KDASSERT(l2b != NULL);
7532
7533 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7534 pt_entry_t *ptep = sptep;
7535
7536 while (va < next_bucket) {
7537 const pt_entry_t opte = *ptep;
7538 if (!l2pte_minidata_p(opte)) {
7539 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7540 cpu_tlb_flushD_SE(va);
7541 l2pte_set(ptep, opte & ~L2_B, opte);
7542 }
7543 ptep += PAGE_SIZE / L2_S_SIZE;
7544 va += PAGE_SIZE;
7545 }
7546 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7547 }
7548 cpu_cpwait();
7549 }
7550 #endif /* ARM_MMU_XSCALE == 1 */
7551
7552
7553 #if defined(CPU_ARM11MPCORE)
7554 void
7555 pmap_pte_init_arm11mpcore(void)
7556 {
7557
7558 /* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
7559 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7560 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7561 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7562 /* use extended small page (without APn, with TEX) */
7563 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7564 #else
7565 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7566 #endif
7567
7568 /* write-back, write-allocate */
7569 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7570 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7571 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7572 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7573 #else
7574 /* no TEX. read-allocate */
7575 pte_l2_s_cache_mode = L2_C | L2_B;
7576 #endif
7577 /*
7578 * write-back, write-allocate for page tables.
7579 */
7580 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7581 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7582 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7583 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7584 #else
7585 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7586 #endif
7587
7588 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7589 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7590 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7591 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7592
7593 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7594 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7595 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7596 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7597 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7598
7599 #else
7600 /* with AP[0..3] */
7601 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7602 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7603 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7604 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7605 #endif
7606
7607 #ifdef ARM11MPCORE_COMPAT_MMU
7608 /* with AP[0..3] */
7609 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7610 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7611 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7612 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7613
7614 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7615 pte_l1_s_proto = L1_S_PROTO_armv6;
7616 pte_l1_c_proto = L1_C_PROTO_armv6;
7617 pte_l2_s_proto = L2_S_PROTO_armv6c;
7618 #else
7619 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7620 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7621 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7622 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7623
7624 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7625 pte_l1_s_proto = L1_S_PROTO_armv6;
7626 pte_l1_c_proto = L1_C_PROTO_armv6;
7627 pte_l2_s_proto = L2_S_PROTO_armv6n;
7628 #endif
7629
7630 pmap_copy_page_func = pmap_copy_page_generic;
7631 pmap_zero_page_func = pmap_zero_page_generic;
7632 pmap_needs_pte_sync = 1;
7633 }
7634 #endif /* CPU_ARM11MPCORE */
7635
7636
7637 #if ARM_MMU_V6 == 1
7638 void
7639 pmap_pte_init_armv6(void)
7640 {
7641 /*
7642 * The ARMv6-A MMU is mostly compatible with generic. If the
7643 * AP field is zero, that now means "no access" rather than
7644 * read-only. The prototypes are a little different because of
7645 * the XN bit.
7646 */
7647 pmap_pte_init_generic();
7648
7649 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7650 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7651 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7652
7653 #ifdef ARM11_COMPAT_MMU
7654 /* with AP[0..3] */
7655 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7656 #else
7657 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
7658 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
7659 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
7660
7661 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7662 pte_l1_s_proto = L1_S_PROTO_armv6;
7663 pte_l1_c_proto = L1_C_PROTO_armv6;
7664 pte_l2_s_proto = L2_S_PROTO_armv6n;
7665
7666 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7667 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7668 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7669 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7670
7671 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7672 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7673 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7674 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7675
7676 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7677 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7678 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7679 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7680
7681 #endif
7682 }
7683 #endif /* ARM_MMU_V6 */
7684
7685 #if ARM_MMU_V7 == 1
7686 void
7687 pmap_pte_init_armv7(void)
7688 {
7689 /*
7690 * The ARMv7-A MMU is mostly compatible with generic. If the
7691 * AP field is zero, that now means "no access" rather than
7692 * read-only. The prototypes are a little different because of
7693 * the XN bit.
7694 */
7695 pmap_pte_init_generic();
7696
7697 pmap_needs_pte_sync = 1;
7698
7699 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7700 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7701 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7702
7703 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7704 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7705 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7706
7707 /*
7708 * If the core support coherent walk then updates to translation tables
7709 * do not require a clean to the point of unification to ensure
7710 * visibility by subsequent translation table walks. That means we can
7711 * map everything shareable and cached and the right thing will happen.
7712 */
7713 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7714 pmap_needs_pte_sync = 0;
7715
7716 /*
7717 * write-back, no write-allocate, shareable for normal pages.
7718 */
7719 pte_l1_s_cache_mode |= L1_S_V6_S;
7720 pte_l2_l_cache_mode |= L2_XS_S;
7721 pte_l2_s_cache_mode |= L2_XS_S;
7722 }
7723
7724 /*
7725 * Page tables are just all other memory. We can use write-back since
7726 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7727 */
7728 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7729 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7730 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7731
7732 /*
7733 * Check the Memory Model Features to see if this CPU supports
7734 * the TLBIASID coproc op.
7735 */
7736 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7737 arm_has_tlbiasid_p = true;
7738 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7739 arm_has_tlbiasid_p = true;
7740 }
7741
7742 /*
7743 * Check the MPIDR to see if this CPU supports MP extensions.
7744 */
7745 #ifdef MULTIPROCESSOR
7746 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7747 #else
7748 arm_has_mpext_p = false;
7749 #endif
7750
7751 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7752 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7753 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7754 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7755
7756 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7757 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7758 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7759 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7760
7761 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7762 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7763 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7764 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7765
7766 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7767 pte_l1_s_proto = L1_S_PROTO_armv7;
7768 pte_l1_c_proto = L1_C_PROTO_armv7;
7769 pte_l2_s_proto = L2_S_PROTO_armv7;
7770
7771 }
7772 #endif /* ARM_MMU_V7 */
7773
7774 /*
7775 * return the PA of the current L1 table, for use when handling a crash dump
7776 */
7777 uint32_t
7778 pmap_kernel_L1_addr(void)
7779 {
7780 #ifdef ARM_MMU_EXTENDED
7781 return pmap_kernel()->pm_l1_pa;
7782 #else
7783 return pmap_kernel()->pm_l1->l1_physaddr;
7784 #endif
7785 }
7786
7787 #if defined(DDB)
7788 /*
7789 * A couple of ddb-callable functions for dumping pmaps
7790 */
7791 void pmap_dump(pmap_t);
7792
7793 static pt_entry_t ncptes[64];
7794 static void pmap_dump_ncpg(pmap_t);
7795
7796 void
7797 pmap_dump(pmap_t pm)
7798 {
7799 struct l2_dtable *l2;
7800 struct l2_bucket *l2b;
7801 pt_entry_t *ptep, pte;
7802 vaddr_t l2_va, l2b_va, va;
7803 int i, j, k, occ, rows = 0;
7804
7805 if (pm == pmap_kernel())
7806 printf("pmap_kernel (%p): ", pm);
7807 else
7808 printf("user pmap (%p): ", pm);
7809
7810 #ifdef ARM_MMU_EXTENDED
7811 printf("l1 at %p\n", pmap_l1_kva(pm));
7812 #else
7813 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7814 #endif
7815
7816 l2_va = 0;
7817 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7818 l2 = pm->pm_l2[i];
7819
7820 if (l2 == NULL || l2->l2_occupancy == 0)
7821 continue;
7822
7823 l2b_va = l2_va;
7824 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7825 l2b = &l2->l2_bucket[j];
7826
7827 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7828 continue;
7829
7830 ptep = l2b->l2b_kva;
7831
7832 for (k = 0; k < 256 && ptep[k] == 0; k++)
7833 ;
7834
7835 k &= ~63;
7836 occ = l2b->l2b_occupancy;
7837 va = l2b_va + (k * 4096);
7838 for (; k < 256; k++, va += 0x1000) {
7839 char ch = ' ';
7840 if ((k % 64) == 0) {
7841 if ((rows % 8) == 0) {
7842 printf(
7843 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7844 }
7845 printf("%08lx: ", va);
7846 }
7847
7848 ncptes[k & 63] = 0;
7849 pte = ptep[k];
7850 if (pte == 0) {
7851 ch = '.';
7852 } else {
7853 occ--;
7854 switch (pte & 0x4c) {
7855 case 0x00:
7856 ch = 'N'; /* No cache No buff */
7857 break;
7858 case 0x04:
7859 ch = 'B'; /* No cache buff */
7860 break;
7861 case 0x08:
7862 ch = 'C'; /* Cache No buff */
7863 break;
7864 case 0x0c:
7865 ch = 'F'; /* Cache Buff */
7866 break;
7867 case 0x40:
7868 ch = 'D';
7869 break;
7870 case 0x48:
7871 ch = 'm'; /* Xscale mini-data */
7872 break;
7873 default:
7874 ch = '?';
7875 break;
7876 }
7877
7878 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7879 ch += 0x20;
7880
7881 if ((pte & 0xc) == 0)
7882 ncptes[k & 63] = pte;
7883 }
7884
7885 if ((k % 64) == 63) {
7886 rows++;
7887 printf("%c\n", ch);
7888 pmap_dump_ncpg(pm);
7889 if (occ == 0)
7890 break;
7891 } else
7892 printf("%c", ch);
7893 }
7894 }
7895 }
7896 }
7897
7898 static void
7899 pmap_dump_ncpg(pmap_t pm)
7900 {
7901 struct vm_page *pg;
7902 struct vm_page_md *md;
7903 struct pv_entry *pv;
7904 int i;
7905
7906 for (i = 0; i < 63; i++) {
7907 if (ncptes[i] == 0)
7908 continue;
7909
7910 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7911 if (pg == NULL)
7912 continue;
7913 md = VM_PAGE_TO_MD(pg);
7914
7915 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7916 VM_PAGE_TO_PHYS(pg),
7917 md->krw_mappings, md->kro_mappings,
7918 md->urw_mappings, md->uro_mappings);
7919
7920 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7921 printf(" %c va 0x%08lx, flags 0x%x\n",
7922 (pm == pv->pv_pmap) ? '*' : ' ',
7923 pv->pv_va, pv->pv_flags);
7924 }
7925 }
7926 }
7927 #endif
7928
7929 #ifdef PMAP_STEAL_MEMORY
7930 void
7931 pmap_boot_pageadd(pv_addr_t *newpv)
7932 {
7933 pv_addr_t *pv, *npv;
7934
7935 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7936 if (newpv->pv_pa < pv->pv_va) {
7937 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7938 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7939 newpv->pv_size += pv->pv_size;
7940 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7941 }
7942 pv = NULL;
7943 } else {
7944 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7945 pv = npv) {
7946 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7947 KASSERT(pv->pv_pa < newpv->pv_pa);
7948 if (newpv->pv_pa > npv->pv_pa)
7949 continue;
7950 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7951 pv->pv_size += newpv->pv_size;
7952 return;
7953 }
7954 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7955 break;
7956 newpv->pv_size += npv->pv_size;
7957 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7958 SLIST_REMOVE_AFTER(newpv, pv_list);
7959 return;
7960 }
7961 }
7962 }
7963
7964 if (pv) {
7965 SLIST_INSERT_AFTER(pv, newpv, pv_list);
7966 } else {
7967 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7968 }
7969 }
7970
7971 void
7972 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7973 pv_addr_t *rpv)
7974 {
7975 pv_addr_t *pv, **pvp;
7976
7977 KASSERT(amount & PGOFSET);
7978 KASSERT((mask & PGOFSET) == 0);
7979 KASSERT((match & PGOFSET) == 0);
7980 KASSERT(amount != 0);
7981
7982 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7983 (pv = *pvp) != NULL;
7984 pvp = &SLIST_NEXT(pv, pv_list)) {
7985 pv_addr_t *newpv;
7986 psize_t off;
7987 /*
7988 * If this entry is too small to satisfy the request...
7989 */
7990 KASSERT(pv->pv_size > 0);
7991 if (pv->pv_size < amount)
7992 continue;
7993
7994 for (off = 0; off <= mask; off += PAGE_SIZE) {
7995 if (((pv->pv_pa + off) & mask) == match
7996 && off + amount <= pv->pv_size)
7997 break;
7998 }
7999 if (off > mask)
8000 continue;
8001
8002 rpv->pv_va = pv->pv_va + off;
8003 rpv->pv_pa = pv->pv_pa + off;
8004 rpv->pv_size = amount;
8005 pv->pv_size -= amount;
8006 if (pv->pv_size == 0) {
8007 KASSERT(off == 0);
8008 KASSERT((vaddr_t) pv == rpv->pv_va);
8009 *pvp = SLIST_NEXT(pv, pv_list);
8010 } else if (off == 0) {
8011 KASSERT((vaddr_t) pv == rpv->pv_va);
8012 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8013 *newpv = *pv;
8014 newpv->pv_pa += amount;
8015 newpv->pv_va += amount;
8016 *pvp = newpv;
8017 } else if (off < pv->pv_size) {
8018 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8019 *newpv = *pv;
8020 newpv->pv_size -= off;
8021 newpv->pv_pa += off + amount;
8022 newpv->pv_va += off + amount;
8023
8024 SLIST_NEXT(pv, pv_list) = newpv;
8025 pv->pv_size = off;
8026 } else {
8027 KASSERT((vaddr_t) pv != rpv->pv_va);
8028 }
8029 memset((void *)rpv->pv_va, 0, amount);
8030 return;
8031 }
8032
8033 if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
8034 panic("pmap_boot_pagealloc: couldn't allocate memory");
8035
8036 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8037 (pv = *pvp) != NULL;
8038 pvp = &SLIST_NEXT(pv, pv_list)) {
8039 if (SLIST_NEXT(pv, pv_list) == NULL)
8040 break;
8041 }
8042 KASSERT(mask == 0);
8043
8044 for (uvm_physseg_t ups = uvm_physseg_get_first();
8045 uvm_physseg_valid_p(ups);
8046 ups = uvm_physseg_get_next(ups)) {
8047
8048 paddr_t spn = uvm_physseg_get_start(ups);
8049 paddr_t epn = uvm_physseg_get_end(ups);
8050 if (spn == atop(pv->pv_pa + pv->pv_size)
8051 && pv->pv_va + pv->pv_size <= ptoa(epn)) {
8052 rpv->pv_va = pv->pv_va;
8053 rpv->pv_pa = pv->pv_pa;
8054 rpv->pv_size = amount;
8055 *pvp = NULL;
8056 pmap_map_chunk(kernel_l1pt.pv_va,
8057 ptoa(spn) + (pv->pv_va - pv->pv_pa),
8058 ptoa(spn),
8059 amount - pv->pv_size,
8060 VM_PROT_READ|VM_PROT_WRITE,
8061 PTE_CACHE);
8062
8063 uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
8064 memset((void *)rpv->pv_va, 0, rpv->pv_size);
8065 return;
8066 }
8067 }
8068
8069 panic("pmap_boot_pagealloc: couldn't allocate memory");
8070 }
8071
8072 vaddr_t
8073 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
8074 {
8075 pv_addr_t pv;
8076
8077 pmap_boot_pagealloc(size, 0, 0, &pv);
8078
8079 return pv.pv_va;
8080 }
8081 #endif /* PMAP_STEAL_MEMORY */
8082
8083 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
8084 {
8085 sysctl_createv(clog, 0, NULL, NULL,
8086 CTLFLAG_PERMANENT,
8087 CTLTYPE_NODE, "machdep", NULL,
8088 NULL, 0, NULL, 0,
8089 CTL_MACHDEP, CTL_EOL);
8090
8091 sysctl_createv(clog, 0, NULL, NULL,
8092 CTLFLAG_PERMANENT,
8093 CTLTYPE_INT, "kmpages",
8094 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
8095 NULL, 0, &pmap_kmpages, 0,
8096 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
8097 }
8098
8099 #ifdef PMAP_NEED_ALLOC_POOLPAGE
8100 struct vm_page *
8101 arm_pmap_alloc_poolpage(int flags)
8102 {
8103 /*
8104 * On some systems, only some pages may be "coherent" for dma and we
8105 * want to prefer those for pool pages (think mbufs) but fallback to
8106 * any page if none is available.
8107 */
8108 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
8109 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
8110 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
8111 }
8112
8113 return uvm_pagealloc(NULL, 0, NULL, flags);
8114 }
8115 #endif
8116
8117 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
8118 void
8119 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
8120 {
8121 /* nothing */
8122 }
8123
8124 int
8125 pic_ipi_shootdown(void *arg)
8126 {
8127 #if PMAP_TLB_NEED_SHOOTDOWN
8128 pmap_tlb_shootdown_process();
8129 #endif
8130 return 1;
8131 }
8132 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
8133
8134
8135 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
8136 vaddr_t
8137 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
8138 {
8139 bool ok = false;
8140 if (physical_start <= pa && pa < physical_end) {
8141 #ifdef KERNEL_BASE_VOFFSET
8142 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
8143 #else
8144 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
8145 #endif
8146 #ifdef ARM_MMU_EXTENDED
8147 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
8148 #endif
8149 va = newva;
8150 ok = true;
8151 #ifdef ARM_MMU_EXTENDED
8152 }
8153 #endif
8154 }
8155 KASSERT(ok_p);
8156 *ok_p = ok;
8157 return va;
8158 }
8159
8160 vaddr_t
8161 pmap_map_poolpage(paddr_t pa)
8162 {
8163 bool ok __diagused;
8164 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
8165 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
8166 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
8167 if (arm_cache_prefer_mask != 0) {
8168 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
8169 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
8170 pmap_acquire_page_lock(md);
8171 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
8172 pmap_release_page_lock(md);
8173 }
8174 #endif
8175 return va;
8176 }
8177
8178 paddr_t
8179 pmap_unmap_poolpage(vaddr_t va)
8180 {
8181 KASSERT(va >= KERNEL_BASE);
8182 #ifdef PMAP_CACHE_VIVT
8183 cpu_idcache_wbinv_range(va, PAGE_SIZE);
8184 #endif
8185 #if defined(KERNEL_BASE_VOFFSET)
8186 return va - KERNEL_BASE_VOFFSET;
8187 #else
8188 return va - KERNEL_BASE + physical_start;
8189 #endif
8190 }
8191 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8192