pmap.c revision 1.426 1 /* $NetBSD: pmap.c,v 1.426 2021/03/14 10:36:46 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999, 2020 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /* Include header files */
183
184 #include "opt_arm_debug.h"
185 #include "opt_cpuoptions.h"
186 #include "opt_ddb.h"
187 #include "opt_lockdebug.h"
188 #include "opt_multiprocessor.h"
189
190 #ifdef MULTIPROCESSOR
191 #define _INTR_PRIVATE
192 #endif
193
194 #include <sys/cdefs.h>
195 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.426 2021/03/14 10:36:46 skrll Exp $");
196
197 #include <sys/param.h>
198 #include <sys/types.h>
199
200 #include <sys/asan.h>
201 #include <sys/atomic.h>
202 #include <sys/bus.h>
203 #include <sys/cpu.h>
204 #include <sys/intr.h>
205 #include <sys/kernel.h>
206 #include <sys/kernhist.h>
207 #include <sys/kmem.h>
208 #include <sys/pool.h>
209 #include <sys/proc.h>
210 #include <sys/sysctl.h>
211 #include <sys/systm.h>
212
213 #include <uvm/uvm.h>
214 #include <uvm/pmap/pmap_pvt.h>
215
216 #include <arm/locore.h>
217
218 #ifdef DDB
219 #include <arm/db_machdep.h>
220 #endif
221
222 #ifdef VERBOSE_INIT_ARM
223 #define VPRINTF(...) printf(__VA_ARGS__)
224 #else
225 #define VPRINTF(...) __nothing
226 #endif
227
228 /*
229 * pmap_kernel() points here
230 */
231 static struct pmap kernel_pmap_store = {
232 #ifndef ARM_MMU_EXTENDED
233 .pm_activated = true,
234 .pm_domain = PMAP_DOMAIN_KERNEL,
235 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
236 #endif
237 };
238 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
239 #undef pmap_kernel
240 #define pmap_kernel() (&kernel_pmap_store)
241 #ifdef PMAP_NEED_ALLOC_POOLPAGE
242 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
243 #endif
244
245 /*
246 * Pool and cache that pmap structures are allocated from.
247 * We use a cache to avoid clearing the pm_l2[] array (1KB)
248 * in pmap_create().
249 */
250 static struct pool_cache pmap_cache;
251
252 /*
253 * Pool of PV structures
254 */
255 static struct pool pmap_pv_pool;
256 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
257 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
258 static struct pool_allocator pmap_bootstrap_pv_allocator = {
259 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
260 };
261
262 /*
263 * Pool and cache of l2_dtable structures.
264 * We use a cache to avoid clearing the structures when they're
265 * allocated. (196 bytes)
266 */
267 static struct pool_cache pmap_l2dtable_cache;
268 static vaddr_t pmap_kernel_l2dtable_kva;
269
270 /*
271 * Pool and cache of L2 page descriptors.
272 * We use a cache to avoid clearing the descriptor table
273 * when they're allocated. (1KB)
274 */
275 static struct pool_cache pmap_l2ptp_cache;
276 static vaddr_t pmap_kernel_l2ptp_kva;
277 static paddr_t pmap_kernel_l2ptp_phys;
278
279 #ifdef PMAPCOUNTERS
280 #define PMAP_EVCNT_INITIALIZER(name) \
281 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
282
283 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
284 static struct evcnt pmap_ev_vac_clean_one =
285 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
286 static struct evcnt pmap_ev_vac_flush_one =
287 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
288 static struct evcnt pmap_ev_vac_flush_lots =
289 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
290 static struct evcnt pmap_ev_vac_flush_lots2 =
291 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
292 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
293 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
294 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
295 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
296
297 static struct evcnt pmap_ev_vac_color_new =
298 PMAP_EVCNT_INITIALIZER("new page color");
299 static struct evcnt pmap_ev_vac_color_reuse =
300 PMAP_EVCNT_INITIALIZER("ok first page color");
301 static struct evcnt pmap_ev_vac_color_ok =
302 PMAP_EVCNT_INITIALIZER("ok page color");
303 static struct evcnt pmap_ev_vac_color_blind =
304 PMAP_EVCNT_INITIALIZER("blind page color");
305 static struct evcnt pmap_ev_vac_color_change =
306 PMAP_EVCNT_INITIALIZER("change page color");
307 static struct evcnt pmap_ev_vac_color_erase =
308 PMAP_EVCNT_INITIALIZER("erase page color");
309 static struct evcnt pmap_ev_vac_color_none =
310 PMAP_EVCNT_INITIALIZER("no page color");
311 static struct evcnt pmap_ev_vac_color_restore =
312 PMAP_EVCNT_INITIALIZER("restore page color");
313
314 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
315 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
316 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
317 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
318 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
319 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
320 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
322 #endif
323
324 static struct evcnt pmap_ev_mappings =
325 PMAP_EVCNT_INITIALIZER("pages mapped");
326 static struct evcnt pmap_ev_unmappings =
327 PMAP_EVCNT_INITIALIZER("pages unmapped");
328 static struct evcnt pmap_ev_remappings =
329 PMAP_EVCNT_INITIALIZER("pages remapped");
330
331 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
332 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
333 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
334
335 static struct evcnt pmap_ev_kernel_mappings =
336 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
337 static struct evcnt pmap_ev_kernel_unmappings =
338 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
339 static struct evcnt pmap_ev_kernel_remappings =
340 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
341
342 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
343 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
344 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
345
346 static struct evcnt pmap_ev_kenter_mappings =
347 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
348 static struct evcnt pmap_ev_kenter_unmappings =
349 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
350 static struct evcnt pmap_ev_kenter_remappings =
351 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
352 static struct evcnt pmap_ev_pt_mappings =
353 PMAP_EVCNT_INITIALIZER("page table pages mapped");
354
355 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
356 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
357 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
358 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
359
360 static struct evcnt pmap_ev_fixup_mod =
361 PMAP_EVCNT_INITIALIZER("page modification emulations");
362 static struct evcnt pmap_ev_fixup_ref =
363 PMAP_EVCNT_INITIALIZER("page reference emulations");
364 static struct evcnt pmap_ev_fixup_exec =
365 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
366 static struct evcnt pmap_ev_fixup_pdes =
367 PMAP_EVCNT_INITIALIZER("pdes fixed up");
368 #ifndef ARM_MMU_EXTENDED
369 static struct evcnt pmap_ev_fixup_ptesync =
370 PMAP_EVCNT_INITIALIZER("ptesync fixed");
371 #endif
372
373 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
374 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
375 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
376 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
377 #ifndef ARM_MMU_EXTENDED
378 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
379 #endif
380
381 #ifdef PMAP_CACHE_VIPT
382 static struct evcnt pmap_ev_exec_mappings =
383 PMAP_EVCNT_INITIALIZER("exec pages mapped");
384 static struct evcnt pmap_ev_exec_cached =
385 PMAP_EVCNT_INITIALIZER("exec pages cached");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
389
390 static struct evcnt pmap_ev_exec_synced =
391 PMAP_EVCNT_INITIALIZER("exec pages synced");
392 static struct evcnt pmap_ev_exec_synced_map =
393 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
394 static struct evcnt pmap_ev_exec_synced_unmap =
395 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
396 static struct evcnt pmap_ev_exec_synced_remap =
397 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
398 static struct evcnt pmap_ev_exec_synced_clearbit =
399 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
400 #ifndef ARM_MMU_EXTENDED
401 static struct evcnt pmap_ev_exec_synced_kremove =
402 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
403 #endif
404
405 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
406 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
407 #ifndef ARM_MMU_EXTENDED
408 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
409 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
412 #endif
413
414 static struct evcnt pmap_ev_exec_discarded_unmap =
415 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
416 static struct evcnt pmap_ev_exec_discarded_zero =
417 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
418 static struct evcnt pmap_ev_exec_discarded_copy =
419 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
420 static struct evcnt pmap_ev_exec_discarded_page_protect =
421 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
422 static struct evcnt pmap_ev_exec_discarded_clearbit =
423 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
424 static struct evcnt pmap_ev_exec_discarded_kremove =
425 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
426 #ifdef ARM_MMU_EXTENDED
427 static struct evcnt pmap_ev_exec_discarded_modfixup =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
429 #endif
430
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
437 #ifdef ARM_MMU_EXTENDED
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
439 #endif
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 #ifdef ARM_MMU_EXTENDED
456 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
457 void pmap_md_pdetab_deactivate(pmap_t pm);
458 #endif
459
460 /*
461 * pmap copy/zero page, and mem(5) hook point
462 */
463 static pt_entry_t *csrc_pte, *cdst_pte;
464 static vaddr_t csrcp, cdstp;
465 #ifdef MULTIPROCESSOR
466 static size_t cnptes;
467 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
468 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
469 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
470 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
471 #else
472 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
473 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
474 #define cpu_csrcp(o) (csrcp + (o))
475 #define cpu_cdstp(o) (cdstp + (o))
476 #endif
477 vaddr_t memhook; /* used by mem.c & others */
478 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
479 kmutex_t pmap_lock __cacheline_aligned;
480 kmutex_t kpm_lock __cacheline_aligned;
481 extern void *msgbufaddr;
482 int pmap_kmpages;
483 /*
484 * Flag to indicate if pmap_init() has done its thing
485 */
486 bool pmap_initialized;
487
488 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
489 /*
490 * Virtual end of direct-mapped memory
491 */
492 vaddr_t pmap_directlimit;
493 #endif
494
495 /*
496 * Misc. locking data structures
497 */
498
499 static inline void
500 pmap_acquire_pmap_lock(pmap_t pm)
501 {
502 #if defined(MULTIPROCESSOR) && defined(DDB)
503 if (__predict_false(db_onproc != NULL))
504 return;
505 #endif
506
507 mutex_enter(&pm->pm_lock);
508 }
509
510 static inline void
511 pmap_release_pmap_lock(pmap_t pm)
512 {
513 #if defined(MULTIPROCESSOR) && defined(DDB)
514 if (__predict_false(db_onproc != NULL))
515 return;
516 #endif
517 mutex_exit(&pm->pm_lock);
518 }
519
520 static inline void
521 pmap_acquire_page_lock(struct vm_page_md *md)
522 {
523 mutex_enter(&pmap_lock);
524 }
525
526 static inline void
527 pmap_release_page_lock(struct vm_page_md *md)
528 {
529 mutex_exit(&pmap_lock);
530 }
531
532 #ifdef DIAGNOSTIC
533 static inline int
534 pmap_page_locked_p(struct vm_page_md *md)
535 {
536 return mutex_owned(&pmap_lock);
537 }
538 #endif
539
540
541 /*
542 * Metadata for L1 translation tables.
543 */
544 #ifndef ARM_MMU_EXTENDED
545 struct l1_ttable {
546 /* Entry on the L1 Table list */
547 SLIST_ENTRY(l1_ttable) l1_link;
548
549 /* Entry on the L1 Least Recently Used list */
550 TAILQ_ENTRY(l1_ttable) l1_lru;
551
552 /* Track how many domains are allocated from this L1 */
553 volatile u_int l1_domain_use_count;
554
555 /*
556 * A free-list of domain numbers for this L1.
557 * We avoid using ffs() and a bitmap to track domains since ffs()
558 * is slow on ARM.
559 */
560 uint8_t l1_domain_first;
561 uint8_t l1_domain_free[PMAP_DOMAINS];
562
563 /* Physical address of this L1 page table */
564 paddr_t l1_physaddr;
565
566 /* KVA of this L1 page table */
567 pd_entry_t *l1_kva;
568 };
569
570 /*
571 * L1 Page Tables are tracked using a Least Recently Used list.
572 * - New L1s are allocated from the HEAD.
573 * - Freed L1s are added to the TAIL.
574 * - Recently accessed L1s (where an 'access' is some change to one of
575 * the userland pmaps which owns this L1) are moved to the TAIL.
576 */
577 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
578 static kmutex_t l1_lru_lock __cacheline_aligned;
579
580 /*
581 * A list of all L1 tables
582 */
583 static SLIST_HEAD(, l1_ttable) l1_list;
584 #endif /* ARM_MMU_EXTENDED */
585
586 /*
587 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
588 *
589 * This is normally 16MB worth L2 page descriptors for any given pmap.
590 * Reference counts are maintained for L2 descriptors so they can be
591 * freed when empty.
592 */
593 struct l2_bucket {
594 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
595 paddr_t l2b_pa; /* Physical address of same */
596 u_short l2b_l1slot; /* This L2 table's L1 index */
597 u_short l2b_occupancy; /* How many active descriptors */
598 };
599
600 struct l2_dtable {
601 /* The number of L2 page descriptors allocated to this l2_dtable */
602 u_int l2_occupancy;
603
604 /* List of L2 page descriptors */
605 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
606 };
607
608 /*
609 * Given an L1 table index, calculate the corresponding l2_dtable index
610 * and bucket index within the l2_dtable.
611 */
612 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
613 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
614 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
615 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
616 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
617
618 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
619 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
620
621 /*
622 * Given a virtual address, this macro returns the
623 * virtual address required to drop into the next L2 bucket.
624 */
625 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
626
627 /*
628 * L2 allocation.
629 */
630 #define pmap_alloc_l2_dtable() \
631 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
632 #define pmap_free_l2_dtable(l2) \
633 pool_cache_put(&pmap_l2dtable_cache, (l2))
634 #define pmap_alloc_l2_ptp(pap) \
635 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
636 PR_NOWAIT, (pap)))
637
638 /*
639 * We try to map the page tables write-through, if possible. However, not
640 * all CPUs have a write-through cache mode, so on those we have to sync
641 * the cache when we frob page tables.
642 *
643 * We try to evaluate this at compile time, if possible. However, it's
644 * not always possible to do that, hence this run-time var.
645 */
646 int pmap_needs_pte_sync;
647
648 /*
649 * Real definition of pv_entry.
650 */
651 struct pv_entry {
652 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
653 pmap_t pv_pmap; /* pmap where mapping lies */
654 vaddr_t pv_va; /* virtual address for mapping */
655 u_int pv_flags; /* flags */
656 };
657
658 /*
659 * Macros to determine if a mapping might be resident in the
660 * instruction/data cache and/or TLB
661 */
662 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
663 /*
664 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
665 * there are no explicit accesses, so there may be always be TLB entries to
666 * flush. If we used ASIDs then this would not be a problem.
667 */
668 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
669 #define PV_BEEN_REFD(f) (true)
670 #else
671 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
672 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
673 #endif
674 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
675 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
676 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
677
678 /*
679 * Local prototypes
680 */
681 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
682 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
683 pt_entry_t **);
684 static bool pmap_is_current(pmap_t) __unused;
685 static bool pmap_is_cached(pmap_t);
686 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
687 pmap_t, vaddr_t, u_int);
688 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
689 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
690 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
691 u_int, u_int);
692
693 static void pmap_pinit(pmap_t);
694 static int pmap_pmap_ctor(void *, void *, int);
695
696 static void pmap_alloc_l1(pmap_t);
697 static void pmap_free_l1(pmap_t);
698 #ifndef ARM_MMU_EXTENDED
699 static void pmap_use_l1(pmap_t);
700 #endif
701
702 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
703 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
704 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
705 static int pmap_l2ptp_ctor(void *, void *, int);
706 static int pmap_l2dtable_ctor(void *, void *, int);
707
708 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
709 #ifdef PMAP_CACHE_VIVT
710 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
711 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
712 #endif
713
714 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
715 #ifdef PMAP_CACHE_VIVT
716 static bool pmap_clean_page(struct vm_page_md *, bool);
717 #endif
718 #ifdef PMAP_CACHE_VIPT
719 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
720 enum pmap_flush_op {
721 PMAP_FLUSH_PRIMARY,
722 PMAP_FLUSH_SECONDARY,
723 PMAP_CLEAN_PRIMARY
724 };
725 #ifndef ARM_MMU_EXTENDED
726 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
727 #endif
728 #endif
729 static void pmap_page_remove(struct vm_page_md *, paddr_t);
730 static void pmap_pv_remove(paddr_t);
731
732 #ifndef ARM_MMU_EXTENDED
733 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
734 #endif
735 static vaddr_t kernel_pt_lookup(paddr_t);
736
737 #ifdef ARM_MMU_EXTENDED
738 static struct pool_cache pmap_l1tt_cache;
739
740 static int pmap_l1tt_ctor(void *, void *, int);
741 static void * pmap_l1tt_alloc(struct pool *, int);
742 static void pmap_l1tt_free(struct pool *, void *);
743
744 static struct pool_allocator pmap_l1tt_allocator = {
745 .pa_alloc = pmap_l1tt_alloc,
746 .pa_free = pmap_l1tt_free,
747 .pa_pagesz = L1TT_SIZE,
748 };
749 #endif
750
751 /*
752 * Misc variables
753 */
754 vaddr_t virtual_avail;
755 vaddr_t virtual_end;
756 vaddr_t pmap_curmaxkvaddr;
757
758 paddr_t avail_start;
759 paddr_t avail_end;
760
761 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
762 pv_addr_t kernelpages;
763 pv_addr_t kernel_l1pt;
764 pv_addr_t systempage;
765
766 #ifdef PMAP_CACHE_VIPT
767 #define PMAP_VALIDATE_MD_PAGE(md) \
768 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
769 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
770 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
771 #endif /* PMAP_CACHE_VIPT */
772 /*
773 * A bunch of routines to conditionally flush the caches/TLB depending
774 * on whether the specified pmap actually needs to be flushed at any
775 * given time.
776 */
777 static inline void
778 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
779 {
780 #ifdef ARM_MMU_EXTENDED
781 pmap_tlb_invalidate_addr(pm, va);
782 #else
783 if (pm->pm_cstate.cs_tlb_id != 0) {
784 if (PV_BEEN_EXECD(flags)) {
785 cpu_tlb_flushID_SE(va);
786 } else if (PV_BEEN_REFD(flags)) {
787 cpu_tlb_flushD_SE(va);
788 }
789 }
790 #endif /* ARM_MMU_EXTENDED */
791 }
792
793 #ifndef ARM_MMU_EXTENDED
794 static inline void
795 pmap_tlb_flushID(pmap_t pm)
796 {
797 if (pm->pm_cstate.cs_tlb_id) {
798 cpu_tlb_flushID();
799 #if ARM_MMU_V7 == 0
800 /*
801 * Speculative loads by Cortex cores can cause TLB entries to
802 * be filled even if there are no explicit accesses, so there
803 * may be always be TLB entries to flush. If we used ASIDs
804 * then it would not be a problem.
805 * This is not true for other CPUs.
806 */
807 pm->pm_cstate.cs_tlb = 0;
808 #endif /* ARM_MMU_V7 */
809 }
810 }
811
812 static inline void
813 pmap_tlb_flushD(pmap_t pm)
814 {
815 if (pm->pm_cstate.cs_tlb_d) {
816 cpu_tlb_flushD();
817 #if ARM_MMU_V7 == 0
818 /*
819 * Speculative loads by Cortex cores can cause TLB entries to
820 * be filled even if there are no explicit accesses, so there
821 * may be always be TLB entries to flush. If we used ASIDs
822 * then it would not be a problem.
823 * This is not true for other CPUs.
824 */
825 pm->pm_cstate.cs_tlb_d = 0;
826 #endif /* ARM_MMU_V7 */
827 }
828 }
829 #endif /* ARM_MMU_EXTENDED */
830
831 #ifdef PMAP_CACHE_VIVT
832 static inline void
833 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
834 {
835 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
836 cpu_idcache_wbinv_range(va, PAGE_SIZE);
837 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
838 if (do_inv) {
839 if (flags & PVF_WRITE)
840 cpu_dcache_wbinv_range(va, PAGE_SIZE);
841 else
842 cpu_dcache_inv_range(va, PAGE_SIZE);
843 } else if (flags & PVF_WRITE) {
844 cpu_dcache_wb_range(va, PAGE_SIZE);
845 }
846 }
847 }
848
849 static inline void
850 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
851 {
852 if (PV_BEEN_EXECD(flags)) {
853 if (pm->pm_cstate.cs_cache_id) {
854 cpu_idcache_wbinv_all();
855 pm->pm_cstate.cs_cache = 0;
856 }
857 } else if (pm->pm_cstate.cs_cache_d) {
858 cpu_dcache_wbinv_all();
859 pm->pm_cstate.cs_cache_d = 0;
860 }
861 }
862 #endif /* PMAP_CACHE_VIVT */
863
864 static inline uint8_t
865 pmap_domain(pmap_t pm)
866 {
867 #ifdef ARM_MMU_EXTENDED
868 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
869 #else
870 return pm->pm_domain;
871 #endif
872 }
873
874 static inline pd_entry_t *
875 pmap_l1_kva(pmap_t pm)
876 {
877 #ifdef ARM_MMU_EXTENDED
878 return pm->pm_l1;
879 #else
880 return pm->pm_l1->l1_kva;
881 #endif
882 }
883
884 static inline bool
885 pmap_is_current(pmap_t pm)
886 {
887 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
888 return true;
889
890 return false;
891 }
892
893 static inline bool
894 pmap_is_cached(pmap_t pm)
895 {
896 #ifdef ARM_MMU_EXTENDED
897 if (pm == pmap_kernel())
898 return true;
899 #ifdef MULTIPROCESSOR
900 // Is this pmap active on any CPU?
901 if (!kcpuset_iszero(pm->pm_active))
902 return true;
903 #else
904 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
905 // Is this pmap active?
906 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
907 return true;
908 #endif
909 #else
910 struct cpu_info * const ci = curcpu();
911 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
912 || ci->ci_pmap_lastuser == pm)
913 return true;
914 #endif /* ARM_MMU_EXTENDED */
915
916 return false;
917 }
918
919 /*
920 * PTE_SYNC_CURRENT:
921 *
922 * Make sure the pte is written out to RAM.
923 * We need to do this for one of two cases:
924 * - We're dealing with the kernel pmap
925 * - There is no pmap active in the cache/tlb.
926 * - The specified pmap is 'active' in the cache/tlb.
927 */
928
929 #ifdef PMAP_INCLUDE_PTE_SYNC
930 static inline void
931 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
932 {
933 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
934 PTE_SYNC(ptep);
935 dsb(sy);
936 }
937
938 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
939 #else
940 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
941 #endif
942
943 /*
944 * main pv_entry manipulation functions:
945 * pmap_enter_pv: enter a mapping onto a vm_page list
946 * pmap_remove_pv: remove a mapping from a vm_page list
947 *
948 * NOTE: pmap_enter_pv expects to lock the pvh itself
949 * pmap_remove_pv expects the caller to lock the pvh before calling
950 */
951
952 /*
953 * pmap_enter_pv: enter a mapping onto a vm_page lst
954 *
955 * => caller should hold the proper lock on pmap_main_lock
956 * => caller should have pmap locked
957 * => we will gain the lock on the vm_page and allocate the new pv_entry
958 * => caller should adjust ptp's wire_count before calling
959 * => caller should not adjust pmap's wire_count
960 */
961 static void
962 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
963 vaddr_t va, u_int flags)
964 {
965 UVMHIST_FUNC(__func__);
966 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
967 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
968 UVMHIST_LOG(maphist, "...pv %#jx flags %#jx",
969 (uintptr_t)pv, flags, 0, 0);
970
971 struct pv_entry **pvp;
972
973 pv->pv_pmap = pm;
974 pv->pv_va = va;
975 pv->pv_flags = flags;
976
977 pvp = &SLIST_FIRST(&md->pvh_list);
978 #ifdef PMAP_CACHE_VIPT
979 /*
980 * Insert unmanaged entries, writeable first, at the head of
981 * the pv list.
982 */
983 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
984 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
985 pvp = &SLIST_NEXT(*pvp, pv_link);
986 }
987 if (!PV_IS_WRITE_P(flags)) {
988 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
989 pvp = &SLIST_NEXT(*pvp, pv_link);
990 }
991 #endif
992 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
993 *pvp = pv; /* ... locked list */
994 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
995 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
996 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
997 md->pvh_attrs |= PVF_KMOD;
998 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
999 md->pvh_attrs |= PVF_DIRTY;
1000 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1001 #endif
1002 if (pm == pmap_kernel()) {
1003 PMAPCOUNT(kernel_mappings);
1004 if (flags & PVF_WRITE)
1005 md->krw_mappings++;
1006 else
1007 md->kro_mappings++;
1008 } else {
1009 if (flags & PVF_WRITE)
1010 md->urw_mappings++;
1011 else
1012 md->uro_mappings++;
1013 }
1014
1015 #ifdef PMAP_CACHE_VIPT
1016 #ifndef ARM_MMU_EXTENDED
1017 /*
1018 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1019 * do it here as well to keep the mappings & KVF_WRITE consistent.
1020 */
1021 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1022 md->pvh_attrs |= PVF_WRITE;
1023 }
1024 #endif
1025 /*
1026 * If this is an exec mapping and its the first exec mapping
1027 * for this page, make sure to sync the I-cache.
1028 */
1029 if (PV_IS_EXEC_P(flags)) {
1030 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1031 pmap_syncicache_page(md, pa);
1032 PMAPCOUNT(exec_synced_map);
1033 }
1034 PMAPCOUNT(exec_mappings);
1035 }
1036 #endif
1037
1038 PMAPCOUNT(mappings);
1039
1040 if (pv->pv_flags & PVF_WIRED)
1041 ++pm->pm_stats.wired_count;
1042 }
1043
1044 /*
1045 *
1046 * pmap_find_pv: Find a pv entry
1047 *
1048 * => caller should hold lock on vm_page
1049 */
1050 static inline struct pv_entry *
1051 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1052 {
1053 struct pv_entry *pv;
1054
1055 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1056 if (pm == pv->pv_pmap && va == pv->pv_va)
1057 break;
1058 }
1059
1060 return pv;
1061 }
1062
1063 /*
1064 * pmap_remove_pv: try to remove a mapping from a pv_list
1065 *
1066 * => caller should hold proper lock on pmap_main_lock
1067 * => pmap should be locked
1068 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1069 * => caller should adjust ptp's wire_count and free PTP if needed
1070 * => caller should NOT adjust pmap's wire_count
1071 * => we return the removed pv
1072 */
1073 static struct pv_entry *
1074 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1075 {
1076 UVMHIST_FUNC(__func__);
1077 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1078 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1079
1080 struct pv_entry *pv, **prevptr;
1081
1082 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1083 pv = *prevptr;
1084
1085 while (pv) {
1086 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1087 UVMHIST_LOG(maphist, "pm %#jx md %#jx flags %#jx",
1088 (uintptr_t)pm, (uintptr_t)md, pv->pv_flags, 0);
1089 if (pv->pv_flags & PVF_WIRED) {
1090 --pm->pm_stats.wired_count;
1091 }
1092 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1093 if (pm == pmap_kernel()) {
1094 PMAPCOUNT(kernel_unmappings);
1095 if (pv->pv_flags & PVF_WRITE)
1096 md->krw_mappings--;
1097 else
1098 md->kro_mappings--;
1099 } else {
1100 if (pv->pv_flags & PVF_WRITE)
1101 md->urw_mappings--;
1102 else
1103 md->uro_mappings--;
1104 }
1105
1106 PMAPCOUNT(unmappings);
1107 #ifdef PMAP_CACHE_VIPT
1108 /*
1109 * If this page has had an exec mapping, then if
1110 * this was the last mapping, discard the contents,
1111 * otherwise sync the i-cache for this page.
1112 */
1113 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1114 if (SLIST_EMPTY(&md->pvh_list)) {
1115 md->pvh_attrs &= ~PVF_EXEC;
1116 PMAPCOUNT(exec_discarded_unmap);
1117 } else if (pv->pv_flags & PVF_WRITE) {
1118 pmap_syncicache_page(md, pa);
1119 PMAPCOUNT(exec_synced_unmap);
1120 }
1121 }
1122 #endif /* PMAP_CACHE_VIPT */
1123 break;
1124 }
1125 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1126 pv = *prevptr; /* advance */
1127 }
1128
1129 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1130 /*
1131 * If we no longer have a WRITEABLE KENTRY at the head of list,
1132 * clear the KMOD attribute from the page.
1133 */
1134 if (SLIST_FIRST(&md->pvh_list) == NULL
1135 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1136 md->pvh_attrs &= ~PVF_KMOD;
1137
1138 /*
1139 * If this was a writeable page and there are no more writeable
1140 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1141 * the contents to memory.
1142 */
1143 if (arm_cache_prefer_mask != 0) {
1144 if (md->krw_mappings + md->urw_mappings == 0)
1145 md->pvh_attrs &= ~PVF_WRITE;
1146 PMAP_VALIDATE_MD_PAGE(md);
1147 }
1148 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1149 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1150
1151 /* return removed pv */
1152 return pv;
1153 }
1154
1155 /*
1156 *
1157 * pmap_modify_pv: Update pv flags
1158 *
1159 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1160 * => caller should NOT adjust pmap's wire_count
1161 * => caller must call pmap_vac_me_harder() if writable status of a page
1162 * may have changed.
1163 * => we return the old flags
1164 *
1165 * Modify a physical-virtual mapping in the pv table
1166 */
1167 static u_int
1168 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1169 u_int clr_mask, u_int set_mask)
1170 {
1171 struct pv_entry *npv;
1172 u_int flags, oflags;
1173 UVMHIST_FUNC(__func__);
1174 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1175 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1176 UVMHIST_LOG(maphist, "... clr %#jx set %#jx", clr_mask, set_mask, 0, 0);
1177
1178 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1179 KASSERT(!PV_IS_KENTRY_P(set_mask));
1180
1181 if ((npv = pmap_find_pv(md, pm, va)) == NULL) {
1182 UVMHIST_LOG(maphist, "<--- done (not found)", 0, 0, 0, 0);
1183 return 0;
1184 }
1185
1186 /*
1187 * There is at least one VA mapping this page.
1188 */
1189
1190 if (clr_mask & (PVF_REF | PVF_MOD)) {
1191 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1192 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1193 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1194 md->pvh_attrs |= PVF_DIRTY;
1195 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1196 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1197 }
1198
1199 oflags = npv->pv_flags;
1200 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1201
1202 if ((flags ^ oflags) & PVF_WIRED) {
1203 if (flags & PVF_WIRED)
1204 ++pm->pm_stats.wired_count;
1205 else
1206 --pm->pm_stats.wired_count;
1207 }
1208
1209 if ((flags ^ oflags) & PVF_WRITE) {
1210 if (pm == pmap_kernel()) {
1211 if (flags & PVF_WRITE) {
1212 md->krw_mappings++;
1213 md->kro_mappings--;
1214 } else {
1215 md->kro_mappings++;
1216 md->krw_mappings--;
1217 }
1218 } else {
1219 if (flags & PVF_WRITE) {
1220 md->urw_mappings++;
1221 md->uro_mappings--;
1222 } else {
1223 md->uro_mappings++;
1224 md->urw_mappings--;
1225 }
1226 }
1227 }
1228 #ifdef PMAP_CACHE_VIPT
1229 if (arm_cache_prefer_mask != 0) {
1230 if (md->urw_mappings + md->krw_mappings == 0) {
1231 md->pvh_attrs &= ~PVF_WRITE;
1232 } else {
1233 md->pvh_attrs |= PVF_WRITE;
1234 }
1235 }
1236 /*
1237 * We have two cases here: the first is from enter_pv (new exec
1238 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1239 * Since in latter, pmap_enter_pv won't do anything, we just have
1240 * to do what pmap_remove_pv would do.
1241 */
1242 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1243 || (PV_IS_EXEC_P(md->pvh_attrs)
1244 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1245 pmap_syncicache_page(md, pa);
1246 PMAPCOUNT(exec_synced_remap);
1247 }
1248 #ifndef ARM_MMU_EXTENDED
1249 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1250 #endif /* !ARM_MMU_EXTENDED */
1251 #endif /* PMAP_CACHE_VIPT */
1252
1253 PMAPCOUNT(remappings);
1254
1255 UVMHIST_LOG(maphist, "<--- done", 0, 0, 0, 0);
1256
1257 return oflags;
1258 }
1259
1260
1261 #if defined(ARM_MMU_EXTENDED)
1262 int
1263 pmap_maxproc_set(int nmaxproc)
1264 {
1265 static const char pmap_l1ttpool_warnmsg[] =
1266 "WARNING: l1ttpool limit reached; increase kern.maxproc";
1267
1268 pool_cache_prime(&pmap_l1tt_cache, nmaxproc);
1269
1270 /*
1271 * Set the hard limit on the pmap_l1tt_cache to the number
1272 * of processes the kernel is to support. Log the limit
1273 * reached message max once a minute.
1274 */
1275 pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
1276 pmap_l1ttpool_warnmsg, 60);
1277
1278 return 0;
1279 }
1280
1281 #endif
1282
1283 /*
1284 * Allocate an L1 translation table for the specified pmap.
1285 * This is called at pmap creation time.
1286 */
1287 static void
1288 pmap_alloc_l1(pmap_t pm)
1289 {
1290 #ifdef ARM_MMU_EXTENDED
1291 vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
1292 &pm->pm_l1_pa);
1293
1294 pm->pm_l1 = (pd_entry_t *)va;
1295 PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
1296 #else
1297 struct l1_ttable *l1;
1298 uint8_t domain;
1299
1300 /*
1301 * Remove the L1 at the head of the LRU list
1302 */
1303 mutex_spin_enter(&l1_lru_lock);
1304 l1 = TAILQ_FIRST(&l1_lru_list);
1305 KDASSERT(l1 != NULL);
1306 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1307
1308 /*
1309 * Pick the first available domain number, and update
1310 * the link to the next number.
1311 */
1312 domain = l1->l1_domain_first;
1313 l1->l1_domain_first = l1->l1_domain_free[domain];
1314
1315 /*
1316 * If there are still free domain numbers in this L1,
1317 * put it back on the TAIL of the LRU list.
1318 */
1319 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1320 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1321
1322 mutex_spin_exit(&l1_lru_lock);
1323
1324 /*
1325 * Fix up the relevant bits in the pmap structure
1326 */
1327 pm->pm_l1 = l1;
1328 pm->pm_domain = domain + 1;
1329 #endif
1330 }
1331
1332 /*
1333 * Free an L1 translation table.
1334 * This is called at pmap destruction time.
1335 */
1336 static void
1337 pmap_free_l1(pmap_t pm)
1338 {
1339 #ifdef ARM_MMU_EXTENDED
1340 pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
1341
1342 pm->pm_l1 = NULL;
1343 pm->pm_l1_pa = 0;
1344 #else
1345 struct l1_ttable *l1 = pm->pm_l1;
1346
1347 mutex_spin_enter(&l1_lru_lock);
1348
1349 /*
1350 * If this L1 is currently on the LRU list, remove it.
1351 */
1352 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1353 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1354
1355 /*
1356 * Free up the domain number which was allocated to the pmap
1357 */
1358 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1359 l1->l1_domain_first = pmap_domain(pm) - 1;
1360 l1->l1_domain_use_count--;
1361
1362 /*
1363 * The L1 now must have at least 1 free domain, so add
1364 * it back to the LRU list. If the use count is zero,
1365 * put it at the head of the list, otherwise it goes
1366 * to the tail.
1367 */
1368 if (l1->l1_domain_use_count == 0)
1369 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1370 else
1371 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1372
1373 mutex_spin_exit(&l1_lru_lock);
1374 #endif /* ARM_MMU_EXTENDED */
1375 }
1376
1377 #ifndef ARM_MMU_EXTENDED
1378 static inline void
1379 pmap_use_l1(pmap_t pm)
1380 {
1381 struct l1_ttable *l1;
1382
1383 /*
1384 * Do nothing if we're in interrupt context.
1385 * Access to an L1 by the kernel pmap must not affect
1386 * the LRU list.
1387 */
1388 if (cpu_intr_p() || pm == pmap_kernel())
1389 return;
1390
1391 l1 = pm->pm_l1;
1392
1393 /*
1394 * If the L1 is not currently on the LRU list, just return
1395 */
1396 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1397 return;
1398
1399 mutex_spin_enter(&l1_lru_lock);
1400
1401 /*
1402 * Check the use count again, now that we've acquired the lock
1403 */
1404 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1405 mutex_spin_exit(&l1_lru_lock);
1406 return;
1407 }
1408
1409 /*
1410 * Move the L1 to the back of the LRU list
1411 */
1412 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1413 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1414
1415 mutex_spin_exit(&l1_lru_lock);
1416 }
1417 #endif /* !ARM_MMU_EXTENDED */
1418
1419 /*
1420 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1421 *
1422 * Free an L2 descriptor table.
1423 */
1424 static inline void
1425 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1426 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1427 #else
1428 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1429 #endif
1430 {
1431 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1432 /*
1433 * Note: With a write-back cache, we may need to sync this
1434 * L2 table before re-using it.
1435 * This is because it may have belonged to a non-current
1436 * pmap, in which case the cache syncs would have been
1437 * skipped for the pages that were being unmapped. If the
1438 * L2 table were then to be immediately re-allocated to
1439 * the *current* pmap, it may well contain stale mappings
1440 * which have not yet been cleared by a cache write-back
1441 * and so would still be visible to the mmu.
1442 */
1443 if (need_sync)
1444 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1445 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1446 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1447 }
1448
1449 /*
1450 * Returns a pointer to the L2 bucket associated with the specified pmap
1451 * and VA, or NULL if no L2 bucket exists for the address.
1452 */
1453 static inline struct l2_bucket *
1454 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1455 {
1456 const size_t l1slot = l1pte_index(va);
1457 struct l2_dtable *l2;
1458 struct l2_bucket *l2b;
1459
1460 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1461 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1462 return NULL;
1463
1464 return l2b;
1465 }
1466
1467 /*
1468 * Returns a pointer to the L2 bucket associated with the specified pmap
1469 * and VA.
1470 *
1471 * If no L2 bucket exists, perform the necessary allocations to put an L2
1472 * bucket/page table in place.
1473 *
1474 * Note that if a new L2 bucket/page was allocated, the caller *must*
1475 * increment the bucket occupancy counter appropriately *before*
1476 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1477 * the bucket/page in the meantime.
1478 */
1479 static struct l2_bucket *
1480 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1481 {
1482 const size_t l1slot = l1pte_index(va);
1483 struct l2_dtable *l2;
1484
1485 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1486 /*
1487 * No mapping at this address, as there is
1488 * no entry in the L1 table.
1489 * Need to allocate a new l2_dtable.
1490 */
1491 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1492 return NULL;
1493
1494 /*
1495 * Link it into the parent pmap
1496 */
1497 pm->pm_l2[L2_IDX(l1slot)] = l2;
1498 }
1499
1500 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1501
1502 /*
1503 * Fetch pointer to the L2 page table associated with the address.
1504 */
1505 if (l2b->l2b_kva == NULL) {
1506 pt_entry_t *ptep;
1507
1508 /*
1509 * No L2 page table has been allocated. Chances are, this
1510 * is because we just allocated the l2_dtable, above.
1511 */
1512 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1513 /*
1514 * Oops, no more L2 page tables available at this
1515 * time. We may need to deallocate the l2_dtable
1516 * if we allocated a new one above.
1517 */
1518 if (l2->l2_occupancy == 0) {
1519 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1520 pmap_free_l2_dtable(l2);
1521 }
1522 return NULL;
1523 }
1524
1525 l2->l2_occupancy++;
1526 l2b->l2b_kva = ptep;
1527 l2b->l2b_l1slot = l1slot;
1528
1529 #ifdef ARM_MMU_EXTENDED
1530 /*
1531 * We know there will be a mapping here, so simply
1532 * enter this PTP into the L1 now.
1533 */
1534 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1535 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1536 | L1_C_DOM(pmap_domain(pm));
1537 KASSERT(*pdep == 0);
1538 l1pte_setone(pdep, npde);
1539 PDE_SYNC(pdep);
1540 #endif
1541 }
1542
1543 return l2b;
1544 }
1545
1546 /*
1547 * One or more mappings in the specified L2 descriptor table have just been
1548 * invalidated.
1549 *
1550 * Garbage collect the metadata and descriptor table itself if necessary.
1551 *
1552 * The pmap lock must be acquired when this is called (not necessary
1553 * for the kernel pmap).
1554 */
1555 static void
1556 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1557 {
1558 KDASSERT(count <= l2b->l2b_occupancy);
1559
1560 /*
1561 * Update the bucket's reference count according to how many
1562 * PTEs the caller has just invalidated.
1563 */
1564 l2b->l2b_occupancy -= count;
1565
1566 /*
1567 * Note:
1568 *
1569 * Level 2 page tables allocated to the kernel pmap are never freed
1570 * as that would require checking all Level 1 page tables and
1571 * removing any references to the Level 2 page table. See also the
1572 * comment elsewhere about never freeing bootstrap L2 descriptors.
1573 *
1574 * We make do with just invalidating the mapping in the L2 table.
1575 *
1576 * This isn't really a big deal in practice and, in fact, leads
1577 * to a performance win over time as we don't need to continually
1578 * alloc/free.
1579 */
1580 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1581 return;
1582
1583 /*
1584 * There are no more valid mappings in this level 2 page table.
1585 * Go ahead and NULL-out the pointer in the bucket, then
1586 * free the page table.
1587 */
1588 const size_t l1slot = l2b->l2b_l1slot;
1589 pt_entry_t * const ptep = l2b->l2b_kva;
1590 l2b->l2b_kva = NULL;
1591
1592 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1593 pd_entry_t pde __diagused = *pdep;
1594
1595 #ifdef ARM_MMU_EXTENDED
1596 /*
1597 * Invalidate the L1 slot.
1598 */
1599 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1600 #else
1601 /*
1602 * If the L1 slot matches the pmap's domain number, then invalidate it.
1603 */
1604 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1605 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1606 #endif
1607 l1pte_setone(pdep, 0);
1608 PDE_SYNC(pdep);
1609 #ifndef ARM_MMU_EXTENDED
1610 }
1611 #endif
1612
1613 /*
1614 * Release the L2 descriptor table back to the pool cache.
1615 */
1616 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1617 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1618 #else
1619 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1620 #endif
1621
1622 /*
1623 * Update the reference count in the associated l2_dtable
1624 */
1625 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1626 if (--l2->l2_occupancy > 0)
1627 return;
1628
1629 /*
1630 * There are no more valid mappings in any of the Level 1
1631 * slots managed by this l2_dtable. Go ahead and NULL-out
1632 * the pointer in the parent pmap and free the l2_dtable.
1633 */
1634 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1635 pmap_free_l2_dtable(l2);
1636 }
1637
1638 #if defined(ARM_MMU_EXTENDED)
1639 /*
1640 * Pool cache constructors for L1 translation tables
1641 */
1642
1643 static int
1644 pmap_l1tt_ctor(void *arg, void *v, int flags)
1645 {
1646 #ifndef PMAP_INCLUDE_PTE_SYNC
1647 #error not supported
1648 #endif
1649
1650 memset(v, 0, L1TT_SIZE);
1651 PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
1652 return 0;
1653 }
1654 #endif
1655
1656 /*
1657 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1658 * structures.
1659 */
1660 static int
1661 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1662 {
1663 #ifndef PMAP_INCLUDE_PTE_SYNC
1664 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1665
1666 /*
1667 * The mappings for these page tables were initially made using
1668 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1669 * mode will not be right for page table mappings. To avoid
1670 * polluting the pmap_kenter_pa() code with a special case for
1671 * page tables, we simply fix up the cache-mode here if it's not
1672 * correct.
1673 */
1674 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1675 const struct l2_bucket * const l2b =
1676 pmap_get_l2_bucket(pmap_kernel(), va);
1677 KASSERTMSG(l2b != NULL, "%#lx", va);
1678 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1679 const pt_entry_t opte = *ptep;
1680
1681 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1682 /*
1683 * Page tables must have the cache-mode set correctly.
1684 */
1685 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1686 | pte_l2_s_cache_mode_pt;
1687 l2pte_set(ptep, npte, opte);
1688 PTE_SYNC(ptep);
1689 cpu_tlb_flushD_SE(va);
1690 cpu_cpwait();
1691 }
1692 }
1693 #endif
1694
1695 memset(v, 0, L2_TABLE_SIZE_REAL);
1696 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1697 return 0;
1698 }
1699
1700 static int
1701 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1702 {
1703
1704 memset(v, 0, sizeof(struct l2_dtable));
1705 return 0;
1706 }
1707
1708 static int
1709 pmap_pmap_ctor(void *arg, void *v, int flags)
1710 {
1711
1712 memset(v, 0, sizeof(struct pmap));
1713 return 0;
1714 }
1715
1716 static void
1717 pmap_pinit(pmap_t pm)
1718 {
1719 #ifndef ARM_HAS_VBAR
1720 struct l2_bucket *l2b;
1721
1722 if (vector_page < KERNEL_BASE) {
1723 /*
1724 * Map the vector page.
1725 */
1726 pmap_enter(pm, vector_page, systempage.pv_pa,
1727 VM_PROT_READ | VM_PROT_EXECUTE,
1728 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1729 pmap_update(pm);
1730
1731 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1732 l2b = pmap_get_l2_bucket(pm, vector_page);
1733 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1734 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1735 L1_C_DOM(pmap_domain(pm));
1736 } else
1737 pm->pm_pl1vec = NULL;
1738 #endif
1739 }
1740
1741 #ifdef PMAP_CACHE_VIVT
1742 /*
1743 * Since we have a virtually indexed cache, we may need to inhibit caching if
1744 * there is more than one mapping and at least one of them is writable.
1745 * Since we purge the cache on every context switch, we only need to check for
1746 * other mappings within the same pmap, or kernel_pmap.
1747 * This function is also called when a page is unmapped, to possibly reenable
1748 * caching on any remaining mappings.
1749 *
1750 * The code implements the following logic, where:
1751 *
1752 * KW = # of kernel read/write pages
1753 * KR = # of kernel read only pages
1754 * UW = # of user read/write pages
1755 * UR = # of user read only pages
1756 *
1757 * KC = kernel mapping is cacheable
1758 * UC = user mapping is cacheable
1759 *
1760 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1761 * +---------------------------------------------
1762 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1763 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1764 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1765 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1766 */
1767
1768 static const int pmap_vac_flags[4][4] = {
1769 {-1, 0, 0, PVF_KNC},
1770 {0, 0, PVF_NC, PVF_NC},
1771 {0, PVF_NC, PVF_NC, PVF_NC},
1772 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1773 };
1774
1775 static inline int
1776 pmap_get_vac_flags(const struct vm_page_md *md)
1777 {
1778 int kidx, uidx;
1779
1780 kidx = 0;
1781 if (md->kro_mappings || md->krw_mappings > 1)
1782 kidx |= 1;
1783 if (md->krw_mappings)
1784 kidx |= 2;
1785
1786 uidx = 0;
1787 if (md->uro_mappings || md->urw_mappings > 1)
1788 uidx |= 1;
1789 if (md->urw_mappings)
1790 uidx |= 2;
1791
1792 return pmap_vac_flags[uidx][kidx];
1793 }
1794
1795 static inline void
1796 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1797 {
1798 int nattr;
1799
1800 nattr = pmap_get_vac_flags(md);
1801
1802 if (nattr < 0) {
1803 md->pvh_attrs &= ~PVF_NC;
1804 return;
1805 }
1806
1807 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1808 return;
1809
1810 if (pm == pmap_kernel())
1811 pmap_vac_me_kpmap(md, pa, pm, va);
1812 else
1813 pmap_vac_me_user(md, pa, pm, va);
1814
1815 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1816 }
1817
1818 static void
1819 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1820 {
1821 u_int u_cacheable, u_entries;
1822 struct pv_entry *pv;
1823 pmap_t last_pmap = pm;
1824
1825 /*
1826 * Pass one, see if there are both kernel and user pmaps for
1827 * this page. Calculate whether there are user-writable or
1828 * kernel-writable pages.
1829 */
1830 u_cacheable = 0;
1831 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1832 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1833 u_cacheable++;
1834 }
1835
1836 u_entries = md->urw_mappings + md->uro_mappings;
1837
1838 /*
1839 * We know we have just been updating a kernel entry, so if
1840 * all user pages are already cacheable, then there is nothing
1841 * further to do.
1842 */
1843 if (md->k_mappings == 0 && u_cacheable == u_entries)
1844 return;
1845
1846 if (u_entries) {
1847 /*
1848 * Scan over the list again, for each entry, if it
1849 * might not be set correctly, call pmap_vac_me_user
1850 * to recalculate the settings.
1851 */
1852 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1853 /*
1854 * We know kernel mappings will get set
1855 * correctly in other calls. We also know
1856 * that if the pmap is the same as last_pmap
1857 * then we've just handled this entry.
1858 */
1859 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1860 continue;
1861
1862 /*
1863 * If there are kernel entries and this page
1864 * is writable but non-cacheable, then we can
1865 * skip this entry also.
1866 */
1867 if (md->k_mappings &&
1868 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1869 (PVF_NC | PVF_WRITE))
1870 continue;
1871
1872 /*
1873 * Similarly if there are no kernel-writable
1874 * entries and the page is already
1875 * read-only/cacheable.
1876 */
1877 if (md->krw_mappings == 0 &&
1878 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1879 continue;
1880
1881 /*
1882 * For some of the remaining cases, we know
1883 * that we must recalculate, but for others we
1884 * can't tell if they are correct or not, so
1885 * we recalculate anyway.
1886 */
1887 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1888 }
1889
1890 if (md->k_mappings == 0)
1891 return;
1892 }
1893
1894 pmap_vac_me_user(md, pa, pm, va);
1895 }
1896
1897 static void
1898 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1899 {
1900 pmap_t kpmap = pmap_kernel();
1901 struct pv_entry *pv, *npv = NULL;
1902 u_int entries = 0;
1903 u_int writable = 0;
1904 u_int cacheable_entries = 0;
1905 u_int kern_cacheable = 0;
1906 u_int other_writable = 0;
1907
1908 /*
1909 * Count mappings and writable mappings in this pmap.
1910 * Include kernel mappings as part of our own.
1911 * Keep a pointer to the first one.
1912 */
1913 npv = NULL;
1914 KASSERT(pmap_page_locked_p(md));
1915 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1916 /* Count mappings in the same pmap */
1917 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1918 if (entries++ == 0)
1919 npv = pv;
1920
1921 /* Cacheable mappings */
1922 if ((pv->pv_flags & PVF_NC) == 0) {
1923 cacheable_entries++;
1924 if (kpmap == pv->pv_pmap)
1925 kern_cacheable++;
1926 }
1927
1928 /* Writable mappings */
1929 if (pv->pv_flags & PVF_WRITE)
1930 ++writable;
1931 } else if (pv->pv_flags & PVF_WRITE)
1932 other_writable = 1;
1933 }
1934
1935 /*
1936 * Enable or disable caching as necessary.
1937 * Note: the first entry might be part of the kernel pmap,
1938 * so we can't assume this is indicative of the state of the
1939 * other (maybe non-kpmap) entries.
1940 */
1941 if ((entries > 1 && writable) ||
1942 (entries > 0 && pm == kpmap && other_writable)) {
1943 if (cacheable_entries == 0) {
1944 return;
1945 }
1946
1947 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1948 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1949 (pv->pv_flags & PVF_NC))
1950 continue;
1951
1952 pv->pv_flags |= PVF_NC;
1953
1954 struct l2_bucket * const l2b
1955 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1956 KASSERTMSG(l2b != NULL, "%#lx", va);
1957 pt_entry_t * const ptep
1958 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1959 const pt_entry_t opte = *ptep;
1960 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1961
1962 if ((va != pv->pv_va || pm != pv->pv_pmap)
1963 && l2pte_valid_p(opte)) {
1964 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1965 true, pv->pv_flags);
1966 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1967 pv->pv_flags);
1968 }
1969
1970 l2pte_set(ptep, npte, opte);
1971 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1972 }
1973 cpu_cpwait();
1974 } else if (entries > cacheable_entries) {
1975 /*
1976 * Turn cacheing back on for some pages. If it is a kernel
1977 * page, only do so if there are no other writable pages.
1978 */
1979 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1980 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1981 (kpmap != pv->pv_pmap || other_writable)))
1982 continue;
1983
1984 pv->pv_flags &= ~PVF_NC;
1985
1986 struct l2_bucket * const l2b
1987 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1988 KASSERTMSG(l2b != NULL, "%#lx", va);
1989 pt_entry_t * const ptep
1990 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1991 const pt_entry_t opte = *ptep;
1992 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1993 | pte_l2_s_cache_mode;
1994
1995 if (l2pte_valid_p(opte)) {
1996 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1997 pv->pv_flags);
1998 }
1999
2000 l2pte_set(ptep, npte, opte);
2001 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2002 }
2003 }
2004 }
2005 #endif
2006
2007 #ifdef PMAP_CACHE_VIPT
2008 static void
2009 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2010 {
2011
2012 #ifndef ARM_MMU_EXTENDED
2013 struct pv_entry *pv;
2014 vaddr_t tst_mask;
2015 bool bad_alias;
2016 const u_int
2017 rw_mappings = md->urw_mappings + md->krw_mappings,
2018 ro_mappings = md->uro_mappings + md->kro_mappings;
2019
2020 /* do we need to do anything? */
2021 if (arm_cache_prefer_mask == 0)
2022 return;
2023
2024 UVMHIST_FUNC(__func__);
2025 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
2026 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
2027
2028 KASSERT(!va || pm);
2029 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2030
2031 /* Already a conflict? */
2032 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2033 /* just an add, things are already non-cached */
2034 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2035 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2036 bad_alias = false;
2037 if (va) {
2038 PMAPCOUNT(vac_color_none);
2039 bad_alias = true;
2040 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2041 goto fixup;
2042 }
2043 pv = SLIST_FIRST(&md->pvh_list);
2044 /* the list can't be empty because it would be cachable */
2045 if (md->pvh_attrs & PVF_KMPAGE) {
2046 tst_mask = md->pvh_attrs;
2047 } else {
2048 KASSERT(pv);
2049 tst_mask = pv->pv_va;
2050 pv = SLIST_NEXT(pv, pv_link);
2051 }
2052 /*
2053 * Only check for a bad alias if we have writable mappings.
2054 */
2055 tst_mask &= arm_cache_prefer_mask;
2056 if (rw_mappings > 0) {
2057 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2058 /* if there's a bad alias, stop checking. */
2059 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2060 bad_alias = true;
2061 }
2062 md->pvh_attrs |= PVF_WRITE;
2063 if (!bad_alias)
2064 md->pvh_attrs |= PVF_DIRTY;
2065 } else {
2066 /*
2067 * We have only read-only mappings. Let's see if there
2068 * are multiple colors in use or if we mapped a KMPAGE.
2069 * If the latter, we have a bad alias. If the former,
2070 * we need to remember that.
2071 */
2072 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2073 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2074 if (md->pvh_attrs & PVF_KMPAGE)
2075 bad_alias = true;
2076 break;
2077 }
2078 }
2079 md->pvh_attrs &= ~PVF_WRITE;
2080 /*
2081 * No KMPAGE and we exited early, so we must have
2082 * multiple color mappings.
2083 */
2084 if (!bad_alias && pv != NULL)
2085 md->pvh_attrs |= PVF_MULTCLR;
2086 }
2087
2088 /* If no conflicting colors, set everything back to cached */
2089 if (!bad_alias) {
2090 #ifdef DEBUG
2091 if ((md->pvh_attrs & PVF_WRITE)
2092 || ro_mappings < 2) {
2093 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2094 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2095 }
2096 #endif
2097 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2098 md->pvh_attrs |= tst_mask | PVF_COLORED;
2099 /*
2100 * Restore DIRTY bit if page is modified
2101 */
2102 if (md->pvh_attrs & PVF_DMOD)
2103 md->pvh_attrs |= PVF_DIRTY;
2104 PMAPCOUNT(vac_color_restore);
2105 } else {
2106 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2107 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2108 }
2109 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2110 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2111 } else if (!va) {
2112 KASSERT(pmap_is_page_colored_p(md));
2113 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2114 || (md->pvh_attrs & PVF_DIRTY));
2115 if (rw_mappings == 0) {
2116 md->pvh_attrs &= ~PVF_WRITE;
2117 if (ro_mappings == 1
2118 && (md->pvh_attrs & PVF_MULTCLR)) {
2119 /*
2120 * If this is the last readonly mapping
2121 * but it doesn't match the current color
2122 * for the page, change the current color
2123 * to match this last readonly mapping.
2124 */
2125 pv = SLIST_FIRST(&md->pvh_list);
2126 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2127 & arm_cache_prefer_mask;
2128 if (tst_mask) {
2129 md->pvh_attrs ^= tst_mask;
2130 PMAPCOUNT(vac_color_change);
2131 }
2132 }
2133 }
2134 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2135 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2136 return;
2137 } else if (!pmap_is_page_colored_p(md)) {
2138 /* not colored so we just use its color */
2139 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2140 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2141 PMAPCOUNT(vac_color_new);
2142 md->pvh_attrs &= PAGE_SIZE - 1;
2143 md->pvh_attrs |= PVF_COLORED
2144 | (va & arm_cache_prefer_mask)
2145 | (rw_mappings > 0 ? PVF_WRITE : 0);
2146 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2147 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2148 return;
2149 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2150 bad_alias = false;
2151 if (rw_mappings > 0) {
2152 /*
2153 * We now have writeable mappings and if we have
2154 * readonly mappings in more than once color, we have
2155 * an aliasing problem. Regardless mark the page as
2156 * writeable.
2157 */
2158 if (md->pvh_attrs & PVF_MULTCLR) {
2159 if (ro_mappings < 2) {
2160 /*
2161 * If we only have less than two
2162 * read-only mappings, just flush the
2163 * non-primary colors from the cache.
2164 */
2165 pmap_flush_page(md, pa,
2166 PMAP_FLUSH_SECONDARY);
2167 } else {
2168 bad_alias = true;
2169 }
2170 }
2171 md->pvh_attrs |= PVF_WRITE;
2172 }
2173 /* If no conflicting colors, set everything back to cached */
2174 if (!bad_alias) {
2175 #ifdef DEBUG
2176 if (rw_mappings > 0
2177 || (md->pvh_attrs & PMAP_KMPAGE)) {
2178 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2179 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2180 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2181 }
2182 #endif
2183 if (SLIST_EMPTY(&md->pvh_list))
2184 PMAPCOUNT(vac_color_reuse);
2185 else
2186 PMAPCOUNT(vac_color_ok);
2187
2188 /* matching color, just return */
2189 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2190 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2191 return;
2192 }
2193 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2194 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2195
2196 /* color conflict. evict from cache. */
2197
2198 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2199 md->pvh_attrs &= ~PVF_COLORED;
2200 md->pvh_attrs |= PVF_NC;
2201 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2202 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2203 PMAPCOUNT(vac_color_erase);
2204 } else if (rw_mappings == 0
2205 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2206 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2207
2208 /*
2209 * If the page has dirty cache lines, clean it.
2210 */
2211 if (md->pvh_attrs & PVF_DIRTY)
2212 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2213
2214 /*
2215 * If this is the first remapping (we know that there are no
2216 * writeable mappings), then this is a simple color change.
2217 * Otherwise this is a seconary r/o mapping, which means
2218 * we don't have to do anything.
2219 */
2220 if (ro_mappings == 1) {
2221 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2222 md->pvh_attrs &= PAGE_SIZE - 1;
2223 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2224 PMAPCOUNT(vac_color_change);
2225 } else {
2226 PMAPCOUNT(vac_color_blind);
2227 }
2228 md->pvh_attrs |= PVF_MULTCLR;
2229 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2230 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2231 return;
2232 } else {
2233 if (rw_mappings > 0)
2234 md->pvh_attrs |= PVF_WRITE;
2235
2236 /* color conflict. evict from cache. */
2237 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2238
2239 /* the list can't be empty because this was a enter/modify */
2240 pv = SLIST_FIRST(&md->pvh_list);
2241 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2242 KASSERT(pv);
2243 /*
2244 * If there's only one mapped page, change color to the
2245 * page's new color and return. Restore the DIRTY bit
2246 * that was erased by pmap_flush_page.
2247 */
2248 if (SLIST_NEXT(pv, pv_link) == NULL) {
2249 md->pvh_attrs &= PAGE_SIZE - 1;
2250 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2251 if (md->pvh_attrs & PVF_DMOD)
2252 md->pvh_attrs |= PVF_DIRTY;
2253 PMAPCOUNT(vac_color_change);
2254 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2255 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2256 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2257 return;
2258 }
2259 }
2260 bad_alias = true;
2261 md->pvh_attrs &= ~PVF_COLORED;
2262 md->pvh_attrs |= PVF_NC;
2263 PMAPCOUNT(vac_color_erase);
2264 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2265 }
2266
2267 fixup:
2268 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2269
2270 /*
2271 * Turn cacheing on/off for all pages.
2272 */
2273 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2274 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2275 pv->pv_va);
2276 KASSERTMSG(l2b != NULL, "%#lx", va);
2277 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2278 const pt_entry_t opte = *ptep;
2279 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2280 if (bad_alias) {
2281 pv->pv_flags |= PVF_NC;
2282 } else {
2283 pv->pv_flags &= ~PVF_NC;
2284 npte |= pte_l2_s_cache_mode;
2285 }
2286
2287 if (opte == npte) /* only update is there's a change */
2288 continue;
2289
2290 if (l2pte_valid_p(opte)) {
2291 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2292 }
2293
2294 l2pte_set(ptep, npte, opte);
2295 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2296 }
2297 #endif /* !ARM_MMU_EXTENDED */
2298 }
2299 #endif /* PMAP_CACHE_VIPT */
2300
2301
2302 /*
2303 * Modify pte bits for all ptes corresponding to the given physical address.
2304 * We use `maskbits' rather than `clearbits' because we're always passing
2305 * constants and the latter would require an extra inversion at run-time.
2306 */
2307 static void
2308 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2309 {
2310 struct pv_entry *pv;
2311 #ifdef PMAP_CACHE_VIPT
2312 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2313 bool need_syncicache = false;
2314 #ifdef ARM_MMU_EXTENDED
2315 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2316 #else
2317 const u_int execbits = 0;
2318 bool need_vac_me_harder = false;
2319 #endif
2320 #else
2321 const u_int execbits = 0;
2322 #endif
2323
2324 UVMHIST_FUNC(__func__);
2325 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx maskbits %#jx",
2326 (uintptr_t)md, pa, maskbits, 0);
2327
2328 #ifdef PMAP_CACHE_VIPT
2329 /*
2330 * If we might want to sync the I-cache and we've modified it,
2331 * then we know we definitely need to sync or discard it.
2332 */
2333 if (want_syncicache) {
2334 if (md->pvh_attrs & PVF_MOD) {
2335 need_syncicache = true;
2336 }
2337 }
2338 #endif
2339 KASSERT(pmap_page_locked_p(md));
2340
2341 /*
2342 * Clear saved attributes (modify, reference)
2343 */
2344 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2345
2346 if (SLIST_EMPTY(&md->pvh_list)) {
2347 #if defined(PMAP_CACHE_VIPT)
2348 if (need_syncicache) {
2349 /*
2350 * No one has it mapped, so just discard it. The next
2351 * exec remapping will cause it to be synced.
2352 */
2353 md->pvh_attrs &= ~PVF_EXEC;
2354 PMAPCOUNT(exec_discarded_clearbit);
2355 }
2356 #endif
2357 return;
2358 }
2359
2360 /*
2361 * Loop over all current mappings setting/clearing as appropriate
2362 */
2363 for (pv = SLIST_FIRST(&md->pvh_list); pv != NULL;) {
2364 pmap_t pm = pv->pv_pmap;
2365 const vaddr_t va = pv->pv_va;
2366 const u_int oflags = pv->pv_flags;
2367 #ifndef ARM_MMU_EXTENDED
2368 /*
2369 * Kernel entries are unmanaged and as such not to be changed.
2370 */
2371 if (PV_IS_KENTRY_P(oflags)) {
2372 pv = SLIST_NEXT(pv, pv_link);
2373 continue;
2374 }
2375 #endif
2376
2377 /*
2378 * Try to get a hold on the pmap's lock. We must do this
2379 * while still holding the page locked, to know that the
2380 * page is still associated with the pmap and the mapping is
2381 * in place. If a hold can't be had, unlock and wait for
2382 * the pmap's lock to become available and retry. The pmap
2383 * must be ref'd over this dance to stop it disappearing
2384 * behind us.
2385 */
2386 if (!mutex_tryenter(&pm->pm_lock)) {
2387 pmap_reference(pm);
2388 pmap_release_page_lock(md);
2389 pmap_acquire_pmap_lock(pm);
2390 /* nothing, just wait for it */
2391 pmap_release_pmap_lock(pm);
2392 pmap_destroy(pm);
2393 /* Restart from the beginning. */
2394 pmap_acquire_page_lock(md);
2395 pv = SLIST_FIRST(&md->pvh_list);
2396 continue;
2397 }
2398 pv->pv_flags &= ~maskbits;
2399
2400 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2401 KASSERTMSG(l2b != NULL, "%#lx", va);
2402
2403 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2404 const pt_entry_t opte = *ptep;
2405 pt_entry_t npte = opte | execbits;
2406
2407 #ifdef ARM_MMU_EXTENDED
2408 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2409 #endif
2410
2411 UVMHIST_LOG(maphist, "pv %#jx pm %#jx va %#jx flag %#jx",
2412 (uintptr_t)pv, (uintptr_t)pm, va, oflags);
2413
2414 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2415 #ifdef PMAP_CACHE_VIVT
2416 if ((oflags & PVF_NC)) {
2417 /*
2418 * Entry is not cacheable:
2419 *
2420 * Don't turn caching on again if this is a
2421 * modified emulation. This would be
2422 * inconsitent with the settings created by
2423 * pmap_vac_me_harder(). Otherwise, it's safe
2424 * to re-enable cacheing.
2425 *
2426 * There's no need to call pmap_vac_me_harder()
2427 * here: all pages are losing their write
2428 * permission.
2429 */
2430 if (maskbits & PVF_WRITE) {
2431 npte |= pte_l2_s_cache_mode;
2432 pv->pv_flags &= ~PVF_NC;
2433 }
2434 } else if (l2pte_writable_p(opte)) {
2435 /*
2436 * Entry is writable/cacheable: check if pmap
2437 * is current if it is flush it, otherwise it
2438 * won't be in the cache
2439 */
2440 pmap_cache_wbinv_page(pm, va,
2441 (maskbits & PVF_REF) != 0,
2442 oflags|PVF_WRITE);
2443 }
2444 #endif
2445
2446 /* make the pte read only */
2447 npte = l2pte_set_readonly(npte);
2448
2449 if ((maskbits & oflags & PVF_WRITE)) {
2450 /*
2451 * Keep alias accounting up to date
2452 */
2453 if (pm == pmap_kernel()) {
2454 md->krw_mappings--;
2455 md->kro_mappings++;
2456 } else {
2457 md->urw_mappings--;
2458 md->uro_mappings++;
2459 }
2460 #ifdef PMAP_CACHE_VIPT
2461 if (arm_cache_prefer_mask != 0) {
2462 if (md->urw_mappings + md->krw_mappings == 0) {
2463 md->pvh_attrs &= ~PVF_WRITE;
2464 } else {
2465 PMAP_VALIDATE_MD_PAGE(md);
2466 }
2467 }
2468 if (want_syncicache)
2469 need_syncicache = true;
2470 #ifndef ARM_MMU_EXTENDED
2471 need_vac_me_harder = true;
2472 #endif
2473 #endif /* PMAP_CACHE_VIPT */
2474 }
2475 }
2476
2477 if (maskbits & PVF_REF) {
2478 if (true
2479 #ifndef ARM_MMU_EXTENDED
2480 && (oflags & PVF_NC) == 0
2481 #endif
2482 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2483 && l2pte_valid_p(npte)) {
2484 #ifdef PMAP_CACHE_VIVT
2485 /*
2486 * Check npte here; we may have already
2487 * done the wbinv above, and the validity
2488 * of the PTE is the same for opte and
2489 * npte.
2490 */
2491 pmap_cache_wbinv_page(pm, va, true, oflags);
2492 #endif
2493 }
2494
2495 /*
2496 * Make the PTE invalid so that we will take a
2497 * page fault the next time the mapping is
2498 * referenced.
2499 */
2500 npte &= ~L2_TYPE_MASK;
2501 npte |= L2_TYPE_INV;
2502 }
2503
2504 if (npte != opte) {
2505 l2pte_reset(ptep);
2506 PTE_SYNC(ptep);
2507
2508 /* Flush the TLB entry if a current pmap. */
2509 pmap_tlb_flush_SE(pm, va, oflags);
2510
2511 l2pte_set(ptep, npte, 0);
2512 PTE_SYNC(ptep);
2513 }
2514
2515 pmap_release_pmap_lock(pm);
2516
2517 UVMHIST_LOG(maphist, "pm %#jx va %#jx opte %#jx npte %#jx",
2518 (uintptr_t)pm, va, opte, npte);
2519
2520 /* Move to next entry. */
2521 pv = SLIST_NEXT(pv, pv_link);
2522 }
2523
2524 #if defined(PMAP_CACHE_VIPT)
2525 /*
2526 * If we need to sync the I-cache and we haven't done it yet, do it.
2527 */
2528 if (need_syncicache) {
2529 pmap_syncicache_page(md, pa);
2530 PMAPCOUNT(exec_synced_clearbit);
2531 }
2532 #ifndef ARM_MMU_EXTENDED
2533 /*
2534 * If we are changing this to read-only, we need to call vac_me_harder
2535 * so we can change all the read-only pages to cacheable. We pretend
2536 * this as a page deletion.
2537 */
2538 if (need_vac_me_harder) {
2539 if (md->pvh_attrs & PVF_NC)
2540 pmap_vac_me_harder(md, pa, NULL, 0);
2541 }
2542 #endif /* !ARM_MMU_EXTENDED */
2543 #endif /* PMAP_CACHE_VIPT */
2544 }
2545
2546 /*
2547 * pmap_clean_page()
2548 *
2549 * This is a local function used to work out the best strategy to clean
2550 * a single page referenced by its entry in the PV table. It's used by
2551 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2552 *
2553 * Its policy is effectively:
2554 * o If there are no mappings, we don't bother doing anything with the cache.
2555 * o If there is one mapping, we clean just that page.
2556 * o If there are multiple mappings, we clean the entire cache.
2557 *
2558 * So that some functions can be further optimised, it returns 0 if it didn't
2559 * clean the entire cache, or 1 if it did.
2560 *
2561 * XXX One bug in this routine is that if the pv_entry has a single page
2562 * mapped at 0x00000000 a whole cache clean will be performed rather than
2563 * just the 1 page. Since this should not occur in everyday use and if it does
2564 * it will just result in not the most efficient clean for the page.
2565 */
2566 #ifdef PMAP_CACHE_VIVT
2567 static bool
2568 pmap_clean_page(struct vm_page_md *md, bool is_src)
2569 {
2570 struct pv_entry *pv;
2571 pmap_t pm_to_clean = NULL;
2572 bool cache_needs_cleaning = false;
2573 vaddr_t page_to_clean = 0;
2574 u_int flags = 0;
2575
2576 /*
2577 * Since we flush the cache each time we change to a different
2578 * user vmspace, we only need to flush the page if it is in the
2579 * current pmap.
2580 */
2581 KASSERT(pmap_page_locked_p(md));
2582 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2583 if (pmap_is_current(pv->pv_pmap)) {
2584 flags |= pv->pv_flags;
2585 /*
2586 * The page is mapped non-cacheable in
2587 * this map. No need to flush the cache.
2588 */
2589 if (pv->pv_flags & PVF_NC) {
2590 #ifdef DIAGNOSTIC
2591 KASSERT(!cache_needs_cleaning);
2592 #endif
2593 break;
2594 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2595 continue;
2596 if (cache_needs_cleaning) {
2597 page_to_clean = 0;
2598 break;
2599 } else {
2600 page_to_clean = pv->pv_va;
2601 pm_to_clean = pv->pv_pmap;
2602 }
2603 cache_needs_cleaning = true;
2604 }
2605 }
2606
2607 if (page_to_clean) {
2608 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2609 !is_src, flags | PVF_REF);
2610 } else if (cache_needs_cleaning) {
2611 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2612
2613 pmap_cache_wbinv_all(pm, flags);
2614 return true;
2615 }
2616 return false;
2617 }
2618 #endif
2619
2620 #ifdef PMAP_CACHE_VIPT
2621 /*
2622 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2623 * right cache alias to make sure we flush the right stuff.
2624 */
2625 void
2626 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2627 {
2628 pmap_t kpm = pmap_kernel();
2629 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2630 ? PAGE_SIZE
2631 : arm_pcache.icache_way_size;
2632
2633 UVMHIST_FUNC(__func__);
2634 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx (attrs=%#jx)",
2635 (uintptr_t)md, pa, md->pvh_attrs, 0);
2636
2637 /*
2638 * No need to clean the page if it's non-cached.
2639 */
2640 #ifndef ARM_MMU_EXTENDED
2641 if (md->pvh_attrs & PVF_NC)
2642 return;
2643 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2644 #endif
2645
2646 pt_entry_t * const ptep = cpu_cdst_pte(0);
2647 const vaddr_t dstp = cpu_cdstp(0);
2648 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2649 if (way_size <= PAGE_SIZE) {
2650 bool ok = false;
2651 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2652 if (ok) {
2653 cpu_icache_sync_range(vdstp, way_size);
2654 return;
2655 }
2656 }
2657 #endif
2658
2659 /*
2660 * We don't worry about the color of the exec page, we map the
2661 * same page to pages in the way and then do the icache_sync on
2662 * the entire way making sure we are cleaned.
2663 */
2664 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2665 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2666
2667 for (size_t i = 0, j = 0; i < way_size;
2668 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2669 l2pte_reset(ptep + j);
2670 PTE_SYNC(ptep + j);
2671
2672 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2673 /*
2674 * Set up a PTE with to flush these cache lines.
2675 */
2676 l2pte_set(ptep + j, npte, 0);
2677 }
2678 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2679
2680 /*
2681 * Flush it.
2682 */
2683 cpu_icache_sync_range(dstp, way_size);
2684
2685 for (size_t i = 0, j = 0; i < way_size;
2686 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2687 /*
2688 * Unmap the page(s).
2689 */
2690 l2pte_reset(ptep + j);
2691 PTE_SYNC(ptep + j);
2692
2693 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2694 }
2695
2696 md->pvh_attrs |= PVF_EXEC;
2697 PMAPCOUNT(exec_synced);
2698 }
2699
2700 #ifndef ARM_MMU_EXTENDED
2701 void
2702 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2703 {
2704 vsize_t va_offset, end_va;
2705 bool wbinv_p;
2706
2707 if (arm_cache_prefer_mask == 0)
2708 return;
2709
2710 UVMHIST_FUNC(__func__);
2711 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx op %#jx",
2712 (uintptr_t)md, pa, op, 0);
2713
2714 switch (flush) {
2715 case PMAP_FLUSH_PRIMARY:
2716 if (md->pvh_attrs & PVF_MULTCLR) {
2717 va_offset = 0;
2718 end_va = arm_cache_prefer_mask;
2719 md->pvh_attrs &= ~PVF_MULTCLR;
2720 PMAPCOUNT(vac_flush_lots);
2721 } else {
2722 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2723 end_va = va_offset;
2724 PMAPCOUNT(vac_flush_one);
2725 }
2726 /*
2727 * Mark that the page is no longer dirty.
2728 */
2729 md->pvh_attrs &= ~PVF_DIRTY;
2730 wbinv_p = true;
2731 break;
2732 case PMAP_FLUSH_SECONDARY:
2733 va_offset = 0;
2734 end_va = arm_cache_prefer_mask;
2735 wbinv_p = true;
2736 md->pvh_attrs &= ~PVF_MULTCLR;
2737 PMAPCOUNT(vac_flush_lots);
2738 break;
2739 case PMAP_CLEAN_PRIMARY:
2740 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2741 end_va = va_offset;
2742 wbinv_p = false;
2743 /*
2744 * Mark that the page is no longer dirty.
2745 */
2746 if ((md->pvh_attrs & PVF_DMOD) == 0)
2747 md->pvh_attrs &= ~PVF_DIRTY;
2748 PMAPCOUNT(vac_clean_one);
2749 break;
2750 default:
2751 return;
2752 }
2753
2754 KASSERT(!(md->pvh_attrs & PVF_NC));
2755
2756 UVMHIST_LOG(maphist, "md %#jx (attrs=%#jx)", (uintptr_t)md,
2757 md->pvh_attrs, 0, 0);
2758
2759 const size_t scache_line_size = arm_scache.dcache_line_size;
2760
2761 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2762 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2763 const vaddr_t dstp = cpu_cdstp(va_offset);
2764 const pt_entry_t opte = *ptep;
2765
2766 if (flush == PMAP_FLUSH_SECONDARY
2767 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2768 continue;
2769
2770 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2771 /*
2772 * Set up a PTE with the right coloring to flush
2773 * existing cache entries.
2774 */
2775 const pt_entry_t npte = L2_S_PROTO
2776 | pa
2777 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2778 | pte_l2_s_cache_mode;
2779 l2pte_set(ptep, npte, opte);
2780 PTE_SYNC(ptep);
2781
2782 /*
2783 * Flush it. Make sure to flush secondary cache too since
2784 * bus_dma will ignore uncached pages.
2785 */
2786 if (scache_line_size != 0) {
2787 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2788 if (wbinv_p) {
2789 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2790 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2791 } else {
2792 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2793 }
2794 } else {
2795 if (wbinv_p) {
2796 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2797 } else {
2798 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2799 }
2800 }
2801
2802 /*
2803 * Restore the page table entry since we might have interrupted
2804 * pmap_zero_page or pmap_copy_page which was already using
2805 * this pte.
2806 */
2807 if (opte) {
2808 l2pte_set(ptep, opte, npte);
2809 } else {
2810 l2pte_reset(ptep);
2811 }
2812 PTE_SYNC(ptep);
2813 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2814 }
2815 }
2816 #endif /* ARM_MMU_EXTENDED */
2817 #endif /* PMAP_CACHE_VIPT */
2818
2819 /*
2820 * Routine: pmap_page_remove
2821 * Function:
2822 * Removes this physical page from
2823 * all physical maps in which it resides.
2824 * Reflects back modify bits to the pager.
2825 */
2826 static void
2827 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2828 {
2829 struct l2_bucket *l2b;
2830 struct pv_entry *pv;
2831 pt_entry_t *ptep;
2832 #ifndef ARM_MMU_EXTENDED
2833 bool flush = false;
2834 #endif
2835 u_int flags = 0;
2836
2837 UVMHIST_FUNC(__func__);
2838 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx", (uintptr_t)md, pa, 0, 0);
2839
2840 kpreempt_disable();
2841 pmap_acquire_page_lock(md);
2842 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2843 if (*pvp == NULL) {
2844 #ifdef PMAP_CACHE_VIPT
2845 /*
2846 * We *know* the page contents are about to be replaced.
2847 * Discard the exec contents
2848 */
2849 if (PV_IS_EXEC_P(md->pvh_attrs))
2850 PMAPCOUNT(exec_discarded_page_protect);
2851 md->pvh_attrs &= ~PVF_EXEC;
2852 PMAP_VALIDATE_MD_PAGE(md);
2853 #endif
2854 pmap_release_page_lock(md);
2855 kpreempt_enable();
2856
2857 return;
2858 }
2859 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2860 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2861 #endif
2862
2863 /*
2864 * Clear alias counts
2865 */
2866 #ifdef PMAP_CACHE_VIVT
2867 md->k_mappings = 0;
2868 #endif
2869 md->urw_mappings = md->uro_mappings = 0;
2870
2871 #ifdef PMAP_CACHE_VIVT
2872 pmap_clean_page(md, false);
2873 #endif
2874
2875 for (pv = *pvp; pv != NULL;) {
2876 pmap_t pm = pv->pv_pmap;
2877 #ifndef ARM_MMU_EXTENDED
2878 if (flush == false && pmap_is_current(pm))
2879 flush = true;
2880 #endif
2881
2882 #ifdef PMAP_CACHE_VIPT
2883 if (pm == pmap_kernel() && PV_IS_KENTRY_P(pv->pv_flags)) {
2884 /* If this was unmanaged mapping, it must be ignored. */
2885 pvp = &SLIST_NEXT(pv, pv_link);
2886 pv = *pvp;
2887 continue;
2888 }
2889 #endif
2890
2891 /*
2892 * Try to get a hold on the pmap's lock. We must do this
2893 * while still holding the page locked, to know that the
2894 * page is still associated with the pmap and the mapping is
2895 * in place. If a hold can't be had, unlock and wait for
2896 * the pmap's lock to become available and retry. The pmap
2897 * must be ref'd over this dance to stop it disappearing
2898 * behind us.
2899 */
2900 if (!mutex_tryenter(&pm->pm_lock)) {
2901 pmap_reference(pm);
2902 pmap_release_page_lock(md);
2903 pmap_acquire_pmap_lock(pm);
2904 /* nothing, just wait for it */
2905 pmap_release_pmap_lock(pm);
2906 pmap_destroy(pm);
2907 /* Restart from the beginning. */
2908 pmap_acquire_page_lock(md);
2909 pvp = &SLIST_FIRST(&md->pvh_list);
2910 pv = *pvp;
2911 continue;
2912 }
2913
2914 if (pm == pmap_kernel()) {
2915 #ifdef PMAP_CACHE_VIPT
2916 if (pv->pv_flags & PVF_WRITE)
2917 md->krw_mappings--;
2918 else
2919 md->kro_mappings--;
2920 #endif
2921 PMAPCOUNT(kernel_unmappings);
2922 }
2923 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2924 PMAPCOUNT(unmappings);
2925
2926 pmap_release_page_lock(md);
2927
2928 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2929 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2930
2931 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2932
2933 /*
2934 * Update statistics
2935 */
2936 --pm->pm_stats.resident_count;
2937
2938 /* Wired bit */
2939 if (pv->pv_flags & PVF_WIRED)
2940 --pm->pm_stats.wired_count;
2941
2942 flags |= pv->pv_flags;
2943
2944 /*
2945 * Invalidate the PTEs.
2946 */
2947 l2pte_reset(ptep);
2948 PTE_SYNC_CURRENT(pm, ptep);
2949
2950 #ifdef ARM_MMU_EXTENDED
2951 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2952 #endif
2953
2954 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2955
2956 pmap_release_pmap_lock(pm);
2957
2958 pool_put(&pmap_pv_pool, pv);
2959 pmap_acquire_page_lock(md);
2960
2961 /*
2962 * Restart at the beginning of the list.
2963 */
2964 pvp = &SLIST_FIRST(&md->pvh_list);
2965 pv = *pvp;
2966 }
2967 /*
2968 * if we reach the end of the list and there are still mappings, they
2969 * might be able to be cached now. And they must be kernel mappings.
2970 */
2971 if (!SLIST_EMPTY(&md->pvh_list)) {
2972 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2973 }
2974
2975 #ifdef PMAP_CACHE_VIPT
2976 /*
2977 * Its EXEC cache is now gone.
2978 */
2979 if (PV_IS_EXEC_P(md->pvh_attrs))
2980 PMAPCOUNT(exec_discarded_page_protect);
2981 md->pvh_attrs &= ~PVF_EXEC;
2982 KASSERT(md->urw_mappings == 0);
2983 KASSERT(md->uro_mappings == 0);
2984 #ifndef ARM_MMU_EXTENDED
2985 if (arm_cache_prefer_mask != 0) {
2986 if (md->krw_mappings == 0)
2987 md->pvh_attrs &= ~PVF_WRITE;
2988 PMAP_VALIDATE_MD_PAGE(md);
2989 }
2990 #endif /* ARM_MMU_EXTENDED */
2991 #endif /* PMAP_CACHE_VIPT */
2992 pmap_release_page_lock(md);
2993
2994 #ifndef ARM_MMU_EXTENDED
2995 if (flush) {
2996 /*
2997 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2998 * would need a subsequent call to pmap_update() to ensure
2999 * curpm->pm_cstate.cs_all is reset. Our callers are not
3000 * required to do that (see pmap(9)), so we can't modify
3001 * the current pmap's state.
3002 */
3003 if (PV_BEEN_EXECD(flags))
3004 cpu_tlb_flushID();
3005 else
3006 cpu_tlb_flushD();
3007 }
3008 cpu_cpwait();
3009 #endif /* ARM_MMU_EXTENDED */
3010
3011 kpreempt_enable();
3012 }
3013
3014 /*
3015 * pmap_t pmap_create(void)
3016 *
3017 * Create a new pmap structure from scratch.
3018 */
3019 pmap_t
3020 pmap_create(void)
3021 {
3022 pmap_t pm;
3023
3024 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3025
3026 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
3027
3028 pm->pm_refs = 1;
3029 pm->pm_stats.wired_count = 0;
3030 pm->pm_stats.resident_count = 1;
3031 #ifdef ARM_MMU_EXTENDED
3032 #ifdef MULTIPROCESSOR
3033 kcpuset_create(&pm->pm_active, true);
3034 kcpuset_create(&pm->pm_onproc, true);
3035 #endif
3036 #else
3037 pm->pm_cstate.cs_all = 0;
3038 #endif
3039 pmap_alloc_l1(pm);
3040
3041 /*
3042 * Note: The pool cache ensures that the pm_l2[] array is already
3043 * initialised to zero.
3044 */
3045
3046 pmap_pinit(pm);
3047
3048 return pm;
3049 }
3050
3051 u_int
3052 arm32_mmap_flags(paddr_t pa)
3053 {
3054 /*
3055 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3056 * and we're using the upper bits in page numbers to pass flags around
3057 * so we might as well use the same bits
3058 */
3059 return (u_int)pa & PMAP_MD_MASK;
3060 }
3061 /*
3062 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3063 * u_int flags)
3064 *
3065 * Insert the given physical page (p) at
3066 * the specified virtual address (v) in the
3067 * target physical map with the protection requested.
3068 *
3069 * NB: This is the only routine which MAY NOT lazy-evaluate
3070 * or lose information. That is, this routine must actually
3071 * insert this page into the given map NOW.
3072 */
3073 int
3074 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3075 {
3076 struct l2_bucket *l2b;
3077 struct vm_page *pg, *opg;
3078 u_int nflags;
3079 u_int oflags;
3080 const bool kpm_p = (pm == pmap_kernel());
3081 #ifdef ARM_HAS_VBAR
3082 const bool vector_page_p = false;
3083 #else
3084 const bool vector_page_p = (va == vector_page);
3085 #endif
3086 struct pmap_page *pp = pmap_pv_tracked(pa);
3087 struct pv_entry *new_pv = NULL;
3088 struct pv_entry *old_pv = NULL;
3089 int error = 0;
3090
3091 UVMHIST_FUNC(__func__);
3092 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx pa %#jx prot %#jx",
3093 (uintptr_t)pm, va, pa, prot);
3094 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0);
3095
3096 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3097 KDASSERT(((va | pa) & PGOFSET) == 0);
3098
3099 /*
3100 * Get a pointer to the page. Later on in this function, we
3101 * test for a managed page by checking pg != NULL.
3102 */
3103 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3104 /*
3105 * if we may need a new pv entry allocate if now, as we can't do it
3106 * with the kernel_pmap locked
3107 */
3108 if (pg || pp)
3109 new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3110
3111 nflags = 0;
3112 if (prot & VM_PROT_WRITE)
3113 nflags |= PVF_WRITE;
3114 if (prot & VM_PROT_EXECUTE)
3115 nflags |= PVF_EXEC;
3116 if (flags & PMAP_WIRED)
3117 nflags |= PVF_WIRED;
3118
3119 kpreempt_disable();
3120 pmap_acquire_pmap_lock(pm);
3121
3122 /*
3123 * Fetch the L2 bucket which maps this page, allocating one if
3124 * necessary for user pmaps.
3125 */
3126 if (kpm_p) {
3127 l2b = pmap_get_l2_bucket(pm, va);
3128 } else {
3129 l2b = pmap_alloc_l2_bucket(pm, va);
3130 }
3131 if (l2b == NULL) {
3132 if (flags & PMAP_CANFAIL) {
3133 pmap_release_pmap_lock(pm);
3134 kpreempt_enable();
3135
3136 error = ENOMEM;
3137 goto free_pv;
3138 }
3139 panic("pmap_enter: failed to allocate L2 bucket");
3140 }
3141 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3142 const pt_entry_t opte = *ptep;
3143 pt_entry_t npte = pa;
3144 oflags = 0;
3145
3146 if (opte) {
3147 /*
3148 * There is already a mapping at this address.
3149 * If the physical address is different, lookup the
3150 * vm_page.
3151 */
3152 if (l2pte_pa(opte) != pa) {
3153 KASSERT(!pmap_pv_tracked(pa));
3154 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3155 } else
3156 opg = pg;
3157 } else
3158 opg = NULL;
3159
3160 if (pg || pp) {
3161 KASSERT((pg != NULL) != (pp != NULL));
3162 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3163 PMAP_PAGE_TO_MD(pp);
3164
3165 UVMHIST_LOG(maphist, " pg %#jx pp %#jx pvh_attrs %#jx "
3166 "nflags %#jx", (uintptr_t)pg, (uintptr_t)pp,
3167 md->pvh_attrs, nflags);
3168
3169 /*
3170 * This is to be a managed mapping.
3171 */
3172 pmap_acquire_page_lock(md);
3173 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3174 /*
3175 * - The access type indicates that we don't need
3176 * to do referenced emulation.
3177 * OR
3178 * - The physical page has already been referenced
3179 * so no need to re-do referenced emulation here.
3180 */
3181 npte |= l2pte_set_readonly(L2_S_PROTO);
3182
3183 nflags |= PVF_REF;
3184
3185 if ((prot & VM_PROT_WRITE) != 0 &&
3186 ((flags & VM_PROT_WRITE) != 0 ||
3187 (md->pvh_attrs & PVF_MOD) != 0)) {
3188 /*
3189 * This is a writable mapping, and the
3190 * page's mod state indicates it has
3191 * already been modified. Make it
3192 * writable from the outset.
3193 */
3194 npte = l2pte_set_writable(npte);
3195 nflags |= PVF_MOD;
3196 }
3197
3198 #ifdef ARM_MMU_EXTENDED
3199 /*
3200 * If the page has been cleaned, then the pvh_attrs
3201 * will have PVF_EXEC set, so mark it execute so we
3202 * don't get an access fault when trying to execute
3203 * from it.
3204 */
3205 if (md->pvh_attrs & nflags & PVF_EXEC) {
3206 npte &= ~L2_XS_XN;
3207 }
3208 #endif
3209 } else {
3210 /*
3211 * Need to do page referenced emulation.
3212 */
3213 npte |= L2_TYPE_INV;
3214 }
3215
3216 if (flags & ARM32_MMAP_WRITECOMBINE) {
3217 npte |= pte_l2_s_wc_mode;
3218 } else
3219 npte |= pte_l2_s_cache_mode;
3220
3221 if (pg != NULL && pg == opg) {
3222 /*
3223 * We're changing the attrs of an existing mapping.
3224 */
3225 oflags = pmap_modify_pv(md, pa, pm, va,
3226 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3227 PVF_MOD | PVF_REF, nflags);
3228
3229 #ifdef PMAP_CACHE_VIVT
3230 /*
3231 * We may need to flush the cache if we're
3232 * doing rw-ro...
3233 */
3234 if (pm->pm_cstate.cs_cache_d &&
3235 (oflags & PVF_NC) == 0 &&
3236 l2pte_writable_p(opte) &&
3237 (prot & VM_PROT_WRITE) == 0)
3238 cpu_dcache_wb_range(va, PAGE_SIZE);
3239 #endif
3240 } else {
3241 struct pv_entry *pv;
3242 /*
3243 * New mapping, or changing the backing page
3244 * of an existing mapping.
3245 */
3246 if (opg) {
3247 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3248 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3249
3250 /*
3251 * Replacing an existing mapping with a new one.
3252 * It is part of our managed memory so we
3253 * must remove it from the PV list
3254 */
3255 pv = pmap_remove_pv(omd, opa, pm, va);
3256 pmap_vac_me_harder(omd, opa, pm, 0);
3257 oflags = pv->pv_flags;
3258
3259 #ifdef PMAP_CACHE_VIVT
3260 /*
3261 * If the old mapping was valid (ref/mod
3262 * emulation creates 'invalid' mappings
3263 * initially) then make sure to frob
3264 * the cache.
3265 */
3266 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3267 pmap_cache_wbinv_page(pm, va, true,
3268 oflags);
3269 }
3270 #endif
3271 } else {
3272 pv = new_pv;
3273 new_pv = NULL;
3274 if (pv == NULL) {
3275 pmap_release_page_lock(md);
3276 pmap_release_pmap_lock(pm);
3277 if ((flags & PMAP_CANFAIL) == 0)
3278 panic("pmap_enter: "
3279 "no pv entries");
3280
3281 pmap_free_l2_bucket(pm, l2b, 0);
3282 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3283 0, 0, 0, 0);
3284 return ENOMEM;
3285 }
3286 }
3287
3288 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3289 }
3290 pmap_release_page_lock(md);
3291 } else {
3292 /*
3293 * We're mapping an unmanaged page.
3294 * These are always readable, and possibly writable, from
3295 * the get go as we don't need to track ref/mod status.
3296 */
3297 npte |= l2pte_set_readonly(L2_S_PROTO);
3298 if (prot & VM_PROT_WRITE)
3299 npte = l2pte_set_writable(npte);
3300
3301 /*
3302 * Make sure the vector table is mapped cacheable
3303 */
3304 if ((vector_page_p && !kpm_p)
3305 || (flags & ARM32_MMAP_CACHEABLE)) {
3306 npte |= pte_l2_s_cache_mode;
3307 #ifdef ARM_MMU_EXTENDED
3308 npte &= ~L2_XS_XN; /* and executable */
3309 #endif
3310 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3311 npte |= pte_l2_s_wc_mode;
3312 }
3313 if (opg) {
3314 /*
3315 * Looks like there's an existing 'managed' mapping
3316 * at this address.
3317 */
3318 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3319 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3320
3321 pmap_acquire_page_lock(omd);
3322 old_pv = pmap_remove_pv(omd, opa, pm, va);
3323 pmap_vac_me_harder(omd, opa, pm, 0);
3324 oflags = old_pv->pv_flags;
3325 pmap_release_page_lock(omd);
3326
3327 #ifdef PMAP_CACHE_VIVT
3328 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3329 pmap_cache_wbinv_page(pm, va, true, oflags);
3330 }
3331 #endif
3332 }
3333 }
3334
3335 /*
3336 * Make sure userland mappings get the right permissions
3337 */
3338 if (!vector_page_p && !kpm_p) {
3339 npte |= L2_S_PROT_U;
3340 #ifdef ARM_MMU_EXTENDED
3341 npte |= L2_XS_nG; /* user pages are not global */
3342 #endif
3343 }
3344
3345 /*
3346 * Keep the stats up to date
3347 */
3348 if (opte == 0) {
3349 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3350 pm->pm_stats.resident_count++;
3351 }
3352
3353 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3354
3355 #if defined(ARM_MMU_EXTENDED)
3356 /*
3357 * If exec protection was requested but the page hasn't been synced,
3358 * sync it now and allow execution from it.
3359 */
3360 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3361 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3362 npte &= ~L2_XS_XN;
3363 pmap_syncicache_page(md, pa);
3364 PMAPCOUNT(exec_synced_map);
3365 }
3366 #endif
3367 /*
3368 * If this is just a wiring change, the two PTEs will be
3369 * identical, so there's no need to update the page table.
3370 */
3371 if (npte != opte) {
3372 l2pte_reset(ptep);
3373 PTE_SYNC(ptep);
3374 if (l2pte_valid_p(opte)) {
3375 pmap_tlb_flush_SE(pm, va, oflags);
3376 }
3377 l2pte_set(ptep, npte, 0);
3378 PTE_SYNC(ptep);
3379 #ifndef ARM_MMU_EXTENDED
3380 bool is_cached = pmap_is_cached(pm);
3381 if (is_cached) {
3382 /*
3383 * We only need to frob the cache/tlb if this pmap
3384 * is current
3385 */
3386 if (!vector_page_p && l2pte_valid_p(npte)) {
3387 /*
3388 * This mapping is likely to be accessed as
3389 * soon as we return to userland. Fix up the
3390 * L1 entry to avoid taking another
3391 * page/domain fault.
3392 */
3393 pd_entry_t *pdep = pmap_l1_kva(pm)
3394 + l1pte_index(va);
3395 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3396 | L1_C_DOM(pmap_domain(pm));
3397 if (*pdep != pde) {
3398 l1pte_setone(pdep, pde);
3399 PDE_SYNC(pdep);
3400 }
3401 }
3402 }
3403
3404 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx",
3405 is_cached, pm->pm_cstate.cs_all, 0, 0);
3406
3407 if (pg != NULL) {
3408 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3409
3410 pmap_acquire_page_lock(md);
3411 pmap_vac_me_harder(md, pa, pm, va);
3412 pmap_release_page_lock(md);
3413 }
3414 #endif
3415 }
3416 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3417 if (pg) {
3418 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3419
3420 pmap_acquire_page_lock(md);
3421 #ifndef ARM_MMU_EXTENDED
3422 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3423 #endif
3424 PMAP_VALIDATE_MD_PAGE(md);
3425 pmap_release_page_lock(md);
3426 }
3427 #endif
3428
3429 pmap_release_pmap_lock(pm);
3430 kpreempt_enable();
3431
3432 if (old_pv)
3433 pool_put(&pmap_pv_pool, old_pv);
3434 free_pv:
3435 if (new_pv)
3436 pool_put(&pmap_pv_pool, new_pv);
3437
3438 return error;
3439 }
3440
3441 /*
3442 * pmap_remove()
3443 *
3444 * pmap_remove is responsible for nuking a number of mappings for a range
3445 * of virtual address space in the current pmap. To do this efficiently
3446 * is interesting, because in a number of cases a wide virtual address
3447 * range may be supplied that contains few actual mappings. So, the
3448 * optimisations are:
3449 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3450 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3451 * maybe do just a partial cache clean. This path of execution is
3452 * complicated by the fact that the cache must be flushed _before_
3453 * the PTE is nuked, being a VAC :-)
3454 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3455 * all invalidations until pmap_update(), since pmap_remove_all() has
3456 * already flushed the cache.
3457 * 4. Maybe later fast-case a single page, but I don't think this is
3458 * going to make _that_ much difference overall.
3459 */
3460
3461 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3462
3463 void
3464 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3465 {
3466 SLIST_HEAD(,pv_entry) opv_list;
3467 struct pv_entry *pv, *npv;
3468 UVMHIST_FUNC(__func__);
3469 UVMHIST_CALLARGS(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3470 (uintptr_t)pm, sva, eva, 0);
3471
3472 #ifdef PMAP_FAULTINFO
3473 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
3474 curpcb->pcb_faultinfo.pfi_repeats = 0;
3475 curpcb->pcb_faultinfo.pfi_faultptep = NULL;
3476 #endif
3477
3478 SLIST_INIT(&opv_list);
3479 /*
3480 * we lock in the pmap => pv_head direction
3481 */
3482 kpreempt_disable();
3483 pmap_acquire_pmap_lock(pm);
3484
3485 #ifndef ARM_MMU_EXTENDED
3486 u_int cleanlist_idx, total, cnt;
3487 struct {
3488 vaddr_t va;
3489 pt_entry_t *ptep;
3490 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3491
3492 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3493 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3494 if (pm->pm_cstate.cs_tlb == 0)
3495 pm->pm_remove_all = true;
3496 } else
3497 cleanlist_idx = 0;
3498 total = 0;
3499 #endif
3500
3501 while (sva < eva) {
3502 /*
3503 * Do one L2 bucket's worth at a time.
3504 */
3505 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3506 if (next_bucket > eva)
3507 next_bucket = eva;
3508
3509 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3510 if (l2b == NULL) {
3511 sva = next_bucket;
3512 continue;
3513 }
3514
3515 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3516 u_int mappings = 0;
3517
3518 for (;sva < next_bucket;
3519 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3520 pt_entry_t opte = *ptep;
3521
3522 if (opte == 0) {
3523 /* Nothing here, move along */
3524 continue;
3525 }
3526
3527 u_int flags = PVF_REF;
3528 paddr_t pa = l2pte_pa(opte);
3529 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3530
3531 /*
3532 * Update flags. In a number of circumstances,
3533 * we could cluster a lot of these and do a
3534 * number of sequential pages in one go.
3535 */
3536 if (pg != NULL) {
3537 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3538
3539 pmap_acquire_page_lock(md);
3540 pv = pmap_remove_pv(md, pa, pm, sva);
3541 pmap_vac_me_harder(md, pa, pm, 0);
3542 pmap_release_page_lock(md);
3543 if (pv != NULL) {
3544 if (pm->pm_remove_all == false) {
3545 flags = pv->pv_flags;
3546 }
3547 SLIST_INSERT_HEAD(&opv_list,
3548 pv, pv_link);
3549 }
3550 }
3551 mappings += PAGE_SIZE / L2_S_SIZE;
3552
3553 if (!l2pte_valid_p(opte)) {
3554 /*
3555 * Ref/Mod emulation is still active for this
3556 * mapping, therefore it is has not yet been
3557 * accessed. No need to frob the cache/tlb.
3558 */
3559 l2pte_reset(ptep);
3560 PTE_SYNC_CURRENT(pm, ptep);
3561 continue;
3562 }
3563
3564 #ifdef ARM_MMU_EXTENDED
3565 l2pte_reset(ptep);
3566 PTE_SYNC(ptep);
3567 if (__predict_false(pm->pm_remove_all == false)) {
3568 pmap_tlb_flush_SE(pm, sva, flags);
3569 }
3570 #else
3571 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3572 /* Add to the clean list. */
3573 cleanlist[cleanlist_idx].ptep = ptep;
3574 cleanlist[cleanlist_idx].va =
3575 sva | (flags & PVF_EXEC);
3576 cleanlist_idx++;
3577 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3578 /* Nuke everything if needed. */
3579 #ifdef PMAP_CACHE_VIVT
3580 pmap_cache_wbinv_all(pm, PVF_EXEC);
3581 #endif
3582 /*
3583 * Roll back the previous PTE list,
3584 * and zero out the current PTE.
3585 */
3586 for (cnt = 0;
3587 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3588 l2pte_reset(cleanlist[cnt].ptep);
3589 PTE_SYNC(cleanlist[cnt].ptep);
3590 }
3591 l2pte_reset(ptep);
3592 PTE_SYNC(ptep);
3593 cleanlist_idx++;
3594 pm->pm_remove_all = true;
3595 } else {
3596 l2pte_reset(ptep);
3597 PTE_SYNC(ptep);
3598 if (pm->pm_remove_all == false) {
3599 pmap_tlb_flush_SE(pm, sva, flags);
3600 }
3601 }
3602 #endif
3603 }
3604
3605 #ifndef ARM_MMU_EXTENDED
3606 /*
3607 * Deal with any left overs
3608 */
3609 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3610 total += cleanlist_idx;
3611 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3612 l2pte_reset(cleanlist[cnt].ptep);
3613 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3614 vaddr_t va = cleanlist[cnt].va;
3615 if (pm->pm_cstate.cs_all != 0) {
3616 vaddr_t clva = va & ~PAGE_MASK;
3617 u_int flags = va & PVF_EXEC;
3618 #ifdef PMAP_CACHE_VIVT
3619 pmap_cache_wbinv_page(pm, clva, true,
3620 PVF_REF | PVF_WRITE | flags);
3621 #endif
3622 pmap_tlb_flush_SE(pm, clva,
3623 PVF_REF | flags);
3624 }
3625 }
3626
3627 /*
3628 * If it looks like we're removing a whole bunch
3629 * of mappings, it's faster to just write-back
3630 * the whole cache now and defer TLB flushes until
3631 * pmap_update() is called.
3632 */
3633 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3634 cleanlist_idx = 0;
3635 else {
3636 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3637 #ifdef PMAP_CACHE_VIVT
3638 pmap_cache_wbinv_all(pm, PVF_EXEC);
3639 #endif
3640 pm->pm_remove_all = true;
3641 }
3642 }
3643 #endif /* ARM_MMU_EXTENDED */
3644
3645 pmap_free_l2_bucket(pm, l2b, mappings);
3646 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3647 }
3648
3649 pmap_release_pmap_lock(pm);
3650 kpreempt_enable();
3651
3652 SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3653 pool_put(&pmap_pv_pool, pv);
3654 }
3655 }
3656
3657 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3658 static struct pv_entry *
3659 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3660 {
3661 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3662 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3663 struct pv_entry *pv;
3664
3665 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3666 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3667 KASSERT(pmap_page_locked_p(md));
3668
3669 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3670 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3671 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3672
3673 /*
3674 * We are removing a writeable mapping to a cached exec page, if
3675 * it's the last mapping then clear its execness otherwise sync
3676 * the page to the icache.
3677 */
3678 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3679 && (pv->pv_flags & PVF_WRITE) != 0) {
3680 if (SLIST_EMPTY(&md->pvh_list)) {
3681 md->pvh_attrs &= ~PVF_EXEC;
3682 PMAPCOUNT(exec_discarded_kremove);
3683 } else {
3684 pmap_syncicache_page(md, pa);
3685 PMAPCOUNT(exec_synced_kremove);
3686 }
3687 }
3688 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3689
3690 return pv;
3691 }
3692 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3693
3694 /*
3695 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3696 *
3697 * We assume there is already sufficient KVM space available
3698 * to do this, as we can't allocate L2 descriptor tables/metadata
3699 * from here.
3700 */
3701 void
3702 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3703 {
3704 #ifdef PMAP_CACHE_VIVT
3705 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3706 #endif
3707 #ifdef PMAP_CACHE_VIPT
3708 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3709 struct vm_page *opg;
3710 #ifndef ARM_MMU_EXTENDED
3711 struct pv_entry *pv = NULL;
3712 #endif
3713 #endif
3714 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3715
3716 UVMHIST_FUNC(__func__);
3717
3718 if (pmap_initialized) {
3719 UVMHIST_CALLARGS(maphist,
3720 "va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", va, pa, prot,
3721 flags);
3722 }
3723
3724 kpreempt_disable();
3725 pmap_t kpm = pmap_kernel();
3726 pmap_acquire_pmap_lock(kpm);
3727 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3728 const size_t l1slot __diagused = l1pte_index(va);
3729 KASSERTMSG(l2b != NULL,
3730 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3731 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3732 kpm->pm_l2[L2_IDX(l1slot)]
3733 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3734 : NULL,
3735 kpm->pm_l2[L2_IDX(l1slot)]
3736 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3737 : NULL);
3738 KASSERT(l2b->l2b_kva != NULL);
3739
3740 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3741 const pt_entry_t opte = *ptep;
3742
3743 if (opte == 0) {
3744 PMAPCOUNT(kenter_mappings);
3745 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3746 } else {
3747 PMAPCOUNT(kenter_remappings);
3748 #ifdef PMAP_CACHE_VIPT
3749 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3750 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3751 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3752 #endif
3753 if (opg && arm_cache_prefer_mask != 0) {
3754 KASSERT(opg != pg);
3755 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3756 KASSERT((flags & PMAP_KMPAGE) == 0);
3757 #ifndef ARM_MMU_EXTENDED
3758 pmap_acquire_page_lock(omd);
3759 pv = pmap_kremove_pg(opg, va);
3760 pmap_release_page_lock(omd);
3761 #endif
3762 }
3763 #endif
3764 if (l2pte_valid_p(opte)) {
3765 l2pte_reset(ptep);
3766 PTE_SYNC(ptep);
3767 #ifdef PMAP_CACHE_VIVT
3768 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3769 #endif
3770 cpu_tlb_flushD_SE(va);
3771 cpu_cpwait();
3772 }
3773 }
3774 pmap_release_pmap_lock(kpm);
3775 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3776
3777 if (flags & PMAP_PTE) {
3778 KASSERT((flags & PMAP_CACHE_MASK) == 0);
3779 if (!(flags & PMAP_NOCACHE))
3780 npte |= pte_l2_s_cache_mode_pt;
3781 } else {
3782 switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
3783 case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
3784 break;
3785 case PMAP_NOCACHE:
3786 npte |= pte_l2_s_nocache_mode;
3787 break;
3788 case PMAP_WRITE_COMBINE:
3789 npte |= pte_l2_s_wc_mode;
3790 break;
3791 default:
3792 npte |= pte_l2_s_cache_mode;
3793 break;
3794 }
3795 }
3796 #ifdef ARM_MMU_EXTENDED
3797 if (prot & VM_PROT_EXECUTE)
3798 npte &= ~L2_XS_XN;
3799 #endif
3800 l2pte_set(ptep, npte, 0);
3801 PTE_SYNC(ptep);
3802
3803 if (pg) {
3804 if (flags & PMAP_KMPAGE) {
3805 KASSERT(md->urw_mappings == 0);
3806 KASSERT(md->uro_mappings == 0);
3807 KASSERT(md->krw_mappings == 0);
3808 KASSERT(md->kro_mappings == 0);
3809 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3810 KASSERT(pv == NULL);
3811 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3812 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3813 /* if there is a color conflict, evict from cache. */
3814 if (pmap_is_page_colored_p(md)
3815 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3816 PMAPCOUNT(vac_color_change);
3817 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3818 } else if (md->pvh_attrs & PVF_MULTCLR) {
3819 /*
3820 * If this page has multiple colors, expunge
3821 * them.
3822 */
3823 PMAPCOUNT(vac_flush_lots2);
3824 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3825 }
3826 /*
3827 * Since this is a KMPAGE, there can be no contention
3828 * for this page so don't lock it.
3829 */
3830 md->pvh_attrs &= PAGE_SIZE - 1;
3831 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3832 | (va & arm_cache_prefer_mask);
3833 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3834 md->pvh_attrs |= PVF_KMPAGE;
3835 #endif
3836 atomic_inc_32(&pmap_kmpages);
3837 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3838 } else if (arm_cache_prefer_mask != 0) {
3839 if (pv == NULL) {
3840 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3841 KASSERT(pv != NULL);
3842 }
3843 pmap_acquire_page_lock(md);
3844 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3845 PVF_WIRED | PVF_KENTRY
3846 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3847 if ((prot & VM_PROT_WRITE)
3848 && !(md->pvh_attrs & PVF_NC))
3849 md->pvh_attrs |= PVF_DIRTY;
3850 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3851 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3852 pmap_release_page_lock(md);
3853 #endif
3854 }
3855 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3856 } else {
3857 if (pv != NULL)
3858 pool_put(&pmap_pv_pool, pv);
3859 #endif
3860 }
3861 kpreempt_enable();
3862
3863 if (pmap_initialized) {
3864 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)",
3865 (uintptr_t)ptep, opte, npte, 0);
3866 }
3867
3868 }
3869
3870 void
3871 pmap_kremove(vaddr_t va, vsize_t len)
3872 {
3873 #ifdef UVMHIST
3874 u_int total_mappings = 0;
3875 #endif
3876
3877 PMAPCOUNT(kenter_unmappings);
3878
3879 UVMHIST_FUNC(__func__);
3880 UVMHIST_CALLARGS(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3881
3882 const vaddr_t eva = va + len;
3883 pmap_t kpm = pmap_kernel();
3884
3885 kpreempt_disable();
3886 pmap_acquire_pmap_lock(kpm);
3887
3888 while (va < eva) {
3889 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3890 if (next_bucket > eva)
3891 next_bucket = eva;
3892
3893 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3894 KDASSERT(l2b != NULL);
3895
3896 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3897 pt_entry_t *ptep = sptep;
3898 u_int mappings = 0;
3899
3900 while (va < next_bucket) {
3901 const pt_entry_t opte = *ptep;
3902 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3903 if (opg != NULL) {
3904 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3905
3906 if (omd->pvh_attrs & PVF_KMPAGE) {
3907 KASSERT(omd->urw_mappings == 0);
3908 KASSERT(omd->uro_mappings == 0);
3909 KASSERT(omd->krw_mappings == 0);
3910 KASSERT(omd->kro_mappings == 0);
3911 omd->pvh_attrs &= ~PVF_KMPAGE;
3912 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3913 if (arm_cache_prefer_mask != 0) {
3914 omd->pvh_attrs &= ~PVF_WRITE;
3915 }
3916 #endif
3917 atomic_dec_32(&pmap_kmpages);
3918 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3919 } else if (arm_cache_prefer_mask != 0) {
3920 pmap_acquire_page_lock(omd);
3921 pool_put(&pmap_pv_pool,
3922 pmap_kremove_pg(opg, va));
3923 pmap_release_page_lock(omd);
3924 #endif
3925 }
3926 }
3927 if (l2pte_valid_p(opte)) {
3928 l2pte_reset(ptep);
3929 PTE_SYNC(ptep);
3930 #ifdef PMAP_CACHE_VIVT
3931 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3932 #endif
3933 cpu_tlb_flushD_SE(va);
3934
3935 mappings += PAGE_SIZE / L2_S_SIZE;
3936 }
3937 va += PAGE_SIZE;
3938 ptep += PAGE_SIZE / L2_S_SIZE;
3939 }
3940 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3941 mappings, l2b->l2b_occupancy);
3942 l2b->l2b_occupancy -= mappings;
3943 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3944 #ifdef UVMHIST
3945 total_mappings += mappings;
3946 #endif
3947 }
3948 pmap_release_pmap_lock(kpm);
3949 cpu_cpwait();
3950 kpreempt_enable();
3951
3952 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)",
3953 total_mappings, 0, 0, 0);
3954 }
3955
3956 bool
3957 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3958 {
3959
3960 return pmap_extract_coherency(pm, va, pap, NULL);
3961 }
3962
3963 bool
3964 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3965 {
3966 struct l2_dtable *l2;
3967 pd_entry_t *pdep, pde;
3968 pt_entry_t *ptep, pte;
3969 paddr_t pa;
3970 u_int l1slot;
3971 bool coherent;
3972
3973 kpreempt_disable();
3974 pmap_acquire_pmap_lock(pm);
3975
3976 l1slot = l1pte_index(va);
3977 pdep = pmap_l1_kva(pm) + l1slot;
3978 pde = *pdep;
3979
3980 if (l1pte_section_p(pde)) {
3981 /*
3982 * These should only happen for pmap_kernel()
3983 */
3984 KDASSERT(pm == pmap_kernel());
3985 pmap_release_pmap_lock(pm);
3986 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3987 if (l1pte_supersection_p(pde)) {
3988 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3989 } else
3990 #endif
3991 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3992 coherent = (pde & L1_S_CACHE_MASK) == 0;
3993 } else {
3994 /*
3995 * Note that we can't rely on the validity of the L1
3996 * descriptor as an indication that a mapping exists.
3997 * We have to look it up in the L2 dtable.
3998 */
3999 l2 = pm->pm_l2[L2_IDX(l1slot)];
4000
4001 if (l2 == NULL ||
4002 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
4003 pmap_release_pmap_lock(pm);
4004 kpreempt_enable();
4005
4006 return false;
4007 }
4008
4009 pte = ptep[l2pte_index(va)];
4010 pmap_release_pmap_lock(pm);
4011 kpreempt_enable();
4012
4013 if (pte == 0)
4014 return false;
4015
4016 switch (pte & L2_TYPE_MASK) {
4017 case L2_TYPE_L:
4018 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
4019 coherent = (pte & L2_L_CACHE_MASK) == 0;
4020 break;
4021
4022 default:
4023 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
4024 coherent = (pte & L2_S_CACHE_MASK) == 0;
4025 break;
4026 }
4027 }
4028
4029 if (pap != NULL)
4030 *pap = pa;
4031
4032 if (coherentp != NULL)
4033 *coherentp = (pm == pmap_kernel() && coherent);
4034
4035 return true;
4036 }
4037
4038 /*
4039 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
4040 * that map it
4041 */
4042
4043 static void
4044 pmap_pv_remove(paddr_t pa)
4045 {
4046 struct pmap_page *pp;
4047
4048 KASSERT(kpreempt_disabled());
4049 pp = pmap_pv_tracked(pa);
4050 if (pp == NULL)
4051 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4052 pa);
4053
4054 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4055 pmap_page_remove(md, pa);
4056 }
4057
4058 void
4059 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4060 {
4061
4062 /* the only case is remove at the moment */
4063 KASSERT(prot == VM_PROT_NONE);
4064 pmap_pv_remove(pa);
4065 }
4066
4067 void
4068 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4069 {
4070 struct l2_bucket *l2b;
4071 vaddr_t next_bucket;
4072
4073 UVMHIST_FUNC(__func__);
4074 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx prot %#jx",
4075 (uintptr_t)pm, sva, eva, prot);
4076
4077 if ((prot & VM_PROT_READ) == 0) {
4078 pmap_remove(pm, sva, eva);
4079 return;
4080 }
4081
4082 if (prot & VM_PROT_WRITE) {
4083 /*
4084 * If this is a read->write transition, just ignore it and let
4085 * uvm_fault() take care of it later.
4086 */
4087 return;
4088 }
4089
4090 kpreempt_disable();
4091 pmap_acquire_pmap_lock(pm);
4092
4093 #ifndef ARM_MMU_EXTENDED
4094 const bool flush = eva - sva >= PAGE_SIZE * 4;
4095 u_int flags = 0;
4096 #endif
4097 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4098
4099 while (sva < eva) {
4100 next_bucket = L2_NEXT_BUCKET_VA(sva);
4101 if (next_bucket > eva)
4102 next_bucket = eva;
4103
4104 l2b = pmap_get_l2_bucket(pm, sva);
4105 if (l2b == NULL) {
4106 sva = next_bucket;
4107 continue;
4108 }
4109
4110 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4111
4112 while (sva < next_bucket) {
4113 const pt_entry_t opte = *ptep;
4114 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4115 struct vm_page *pg;
4116 #ifndef ARM_MMU_EXTENDED
4117 u_int f;
4118 #endif
4119
4120 #ifdef PMAP_CACHE_VIVT
4121 /*
4122 * OK, at this point, we know we're doing
4123 * write-protect operation. If the pmap is
4124 * active, write-back the page.
4125 */
4126 pmap_cache_wbinv_page(pm, sva, false,
4127 PVF_REF | PVF_WRITE);
4128 #endif
4129
4130 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4131 pt_entry_t npte = l2pte_set_readonly(opte);
4132 l2pte_reset(ptep);
4133 PTE_SYNC(ptep);
4134 #ifdef ARM_MMU_EXTENDED
4135 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4136 #endif
4137 l2pte_set(ptep, npte, 0);
4138 PTE_SYNC(ptep);
4139
4140 if (pg != NULL) {
4141 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4142 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4143
4144 pmap_acquire_page_lock(md);
4145 #ifndef ARM_MMU_EXTENDED
4146 f =
4147 #endif
4148 pmap_modify_pv(md, pa, pm, sva,
4149 clr_mask, 0);
4150 pmap_vac_me_harder(md, pa, pm, sva);
4151 pmap_release_page_lock(md);
4152 #ifndef ARM_MMU_EXTENDED
4153 } else {
4154 f = PVF_REF | PVF_EXEC;
4155 }
4156
4157 if (flush) {
4158 flags |= f;
4159 } else {
4160 pmap_tlb_flush_SE(pm, sva, f);
4161 #endif
4162 }
4163 }
4164
4165 sva += PAGE_SIZE;
4166 ptep += PAGE_SIZE / L2_S_SIZE;
4167 }
4168 }
4169
4170 #ifndef ARM_MMU_EXTENDED
4171 if (flush) {
4172 if (PV_BEEN_EXECD(flags)) {
4173 pmap_tlb_flushID(pm);
4174 } else if (PV_BEEN_REFD(flags)) {
4175 pmap_tlb_flushD(pm);
4176 }
4177 }
4178 #endif
4179
4180 pmap_release_pmap_lock(pm);
4181 kpreempt_enable();
4182 }
4183
4184 void
4185 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4186 {
4187 struct l2_bucket *l2b;
4188 pt_entry_t *ptep;
4189 vaddr_t next_bucket;
4190 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4191
4192 UVMHIST_FUNC(__func__);
4193 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx",
4194 (uintptr_t)pm, sva, eva, 0);
4195
4196 pmap_acquire_pmap_lock(pm);
4197
4198 while (sva < eva) {
4199 next_bucket = L2_NEXT_BUCKET_VA(sva);
4200 if (next_bucket > eva)
4201 next_bucket = eva;
4202
4203 l2b = pmap_get_l2_bucket(pm, sva);
4204 if (l2b == NULL) {
4205 sva = next_bucket;
4206 continue;
4207 }
4208
4209 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4210 sva < next_bucket;
4211 sva += page_size,
4212 ptep += PAGE_SIZE / L2_S_SIZE,
4213 page_size = PAGE_SIZE) {
4214 if (l2pte_valid_p(*ptep)) {
4215 cpu_icache_sync_range(sva,
4216 uimin(page_size, eva - sva));
4217 }
4218 }
4219 }
4220
4221 pmap_release_pmap_lock(pm);
4222 }
4223
4224 void
4225 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4226 {
4227 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4228 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4229
4230 UVMHIST_FUNC(__func__);
4231 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx prot %#jx",
4232 (uintptr_t)md, pa, prot, 0);
4233
4234 switch(prot) {
4235 case VM_PROT_READ|VM_PROT_WRITE:
4236 #if defined(ARM_MMU_EXTENDED)
4237 pmap_acquire_page_lock(md);
4238 pmap_clearbit(md, pa, PVF_EXEC);
4239 pmap_release_page_lock(md);
4240 break;
4241 #endif
4242 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4243 break;
4244
4245 case VM_PROT_READ:
4246 #if defined(ARM_MMU_EXTENDED)
4247 pmap_acquire_page_lock(md);
4248 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4249 pmap_release_page_lock(md);
4250 break;
4251 #endif
4252 case VM_PROT_READ|VM_PROT_EXECUTE:
4253 pmap_acquire_page_lock(md);
4254 pmap_clearbit(md, pa, PVF_WRITE);
4255 pmap_release_page_lock(md);
4256 break;
4257
4258 default:
4259 pmap_page_remove(md, pa);
4260 break;
4261 }
4262 }
4263
4264 /*
4265 * pmap_clear_modify:
4266 *
4267 * Clear the "modified" attribute for a page.
4268 */
4269 bool
4270 pmap_clear_modify(struct vm_page *pg)
4271 {
4272 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4273 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4274 bool rv;
4275
4276 pmap_acquire_page_lock(md);
4277
4278 if (md->pvh_attrs & PVF_MOD) {
4279 rv = true;
4280 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4281 /*
4282 * If we are going to clear the modified bit and there are
4283 * no other modified bits set, flush the page to memory and
4284 * mark it clean.
4285 */
4286 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4287 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4288 #endif
4289 pmap_clearbit(md, pa, PVF_MOD);
4290 } else {
4291 rv = false;
4292 }
4293 pmap_release_page_lock(md);
4294
4295 return rv;
4296 }
4297
4298 /*
4299 * pmap_clear_reference:
4300 *
4301 * Clear the "referenced" attribute for a page.
4302 */
4303 bool
4304 pmap_clear_reference(struct vm_page *pg)
4305 {
4306 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4307 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4308 bool rv;
4309
4310 pmap_acquire_page_lock(md);
4311
4312 if (md->pvh_attrs & PVF_REF) {
4313 rv = true;
4314 pmap_clearbit(md, pa, PVF_REF);
4315 } else {
4316 rv = false;
4317 }
4318 pmap_release_page_lock(md);
4319
4320 return rv;
4321 }
4322
4323 /*
4324 * pmap_is_modified:
4325 *
4326 * Test if a page has the "modified" attribute.
4327 */
4328 /* See <arm/arm32/pmap.h> */
4329
4330 /*
4331 * pmap_is_referenced:
4332 *
4333 * Test if a page has the "referenced" attribute.
4334 */
4335 /* See <arm/arm32/pmap.h> */
4336
4337 #if defined(ARM_MMU_EXTENDED) && 0
4338 int
4339 pmap_prefetchabt_fixup(void *v)
4340 {
4341 struct trapframe * const tf = v;
4342 vaddr_t va = trunc_page(tf->tf_pc);
4343 int rv = ABORT_FIXUP_FAILED;
4344
4345 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4346 return rv;
4347
4348 kpreempt_disable();
4349 pmap_t pm = curcpu()->ci_pmap_cur;
4350 const size_t l1slot = l1pte_index(va);
4351 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4352 if (l2 == NULL)
4353 goto out;
4354
4355 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4356 if (l2b->l2b_kva == NULL)
4357 goto out;
4358
4359 /*
4360 * Check the PTE itself.
4361 */
4362 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4363 const pt_entry_t opte = *ptep;
4364 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4365 goto out;
4366
4367 paddr_t pa = l2pte_pa(opte);
4368 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4369 KASSERT(pg != NULL);
4370
4371 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4372
4373 pmap_acquire_page_lock(md);
4374 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4375 KASSERT(pv != NULL);
4376
4377 if (PV_IS_EXEC_P(pv->pv_flags)) {
4378 l2pte_reset(ptep);
4379 PTE_SYNC(ptep);
4380 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4381 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4382 pmap_syncicache_page(md, pa);
4383 }
4384 rv = ABORT_FIXUP_RETURN;
4385 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4386 PTE_SYNC(ptep);
4387 }
4388 pmap_release_page_lock(md);
4389
4390 out:
4391 kpreempt_enable();
4392
4393 return rv;
4394 }
4395 #endif
4396
4397 int
4398 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4399 {
4400 struct l2_dtable *l2;
4401 struct l2_bucket *l2b;
4402 paddr_t pa;
4403 const size_t l1slot = l1pte_index(va);
4404 int rv = 0;
4405
4406 UVMHIST_FUNC(__func__);
4407 UVMHIST_CALLARGS(maphist, "pm=%#jx, va=%#jx, ftype=%#jx, user=%jd",
4408 (uintptr_t)pm, va, ftype, user);
4409
4410 va = trunc_page(va);
4411
4412 KASSERT(!user || (pm != pmap_kernel()));
4413
4414 #ifdef ARM_MMU_EXTENDED
4415 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4416 (uintptr_t)cpu_tlb_info(curcpu()),
4417 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4418 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4419 #endif
4420
4421 kpreempt_disable();
4422 pmap_acquire_pmap_lock(pm);
4423
4424 /*
4425 * If there is no l2_dtable for this address, then the process
4426 * has no business accessing it.
4427 *
4428 * Note: This will catch userland processes trying to access
4429 * kernel addresses.
4430 */
4431 l2 = pm->pm_l2[L2_IDX(l1slot)];
4432 if (l2 == NULL) {
4433 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4434 goto out;
4435 }
4436
4437 /*
4438 * Likewise if there is no L2 descriptor table
4439 */
4440 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4441 if (l2b->l2b_kva == NULL) {
4442 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4443 l1slot, 0, 0, 0);
4444 goto out;
4445 }
4446
4447 /*
4448 * Check the PTE itself.
4449 */
4450 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4451 pt_entry_t const opte = *ptep;
4452 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4453 UVMHIST_LOG(maphist, " <-- done (empty pte)",
4454 0, 0, 0, 0);
4455 goto out;
4456 }
4457
4458 #ifndef ARM_HAS_VBAR
4459 /*
4460 * Catch a userland access to the vector page mapped at 0x0
4461 */
4462 if (user && (opte & L2_S_PROT_U) == 0) {
4463 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4464 goto out;
4465 }
4466 #endif
4467
4468 pa = l2pte_pa(opte);
4469 UVMHIST_LOG(maphist, " pa %#jx opte %#jx ", pa, opte, 0, 0);
4470
4471 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4472 /*
4473 * This looks like a good candidate for "page modified"
4474 * emulation...
4475 */
4476 struct pv_entry *pv;
4477 struct vm_page *pg;
4478
4479 /* Extract the physical address of the page */
4480 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4481 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4482 goto out;
4483 }
4484
4485 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4486
4487 /* Get the current flags for this page. */
4488 pmap_acquire_page_lock(md);
4489 pv = pmap_find_pv(md, pm, va);
4490 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4491 pmap_release_page_lock(md);
4492 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4493 goto out;
4494 }
4495
4496 /*
4497 * Do the flags say this page is writable? If not then it
4498 * is a genuine write fault. If yes then the write fault is
4499 * our fault as we did not reflect the write access in the
4500 * PTE. Now we know a write has occurred we can correct this
4501 * and also set the modified bit
4502 */
4503 if ((pv->pv_flags & PVF_WRITE) == 0) {
4504 pmap_release_page_lock(md);
4505 UVMHIST_LOG(maphist, " <-- done (write fault)", 0, 0, 0, 0);
4506 goto out;
4507 }
4508
4509 md->pvh_attrs |= PVF_REF | PVF_MOD;
4510 pv->pv_flags |= PVF_REF | PVF_MOD;
4511 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4512 /*
4513 * If there are cacheable mappings for this page, mark it dirty.
4514 */
4515 if ((md->pvh_attrs & PVF_NC) == 0)
4516 md->pvh_attrs |= PVF_DIRTY;
4517 #endif
4518 #ifdef ARM_MMU_EXTENDED
4519 if (md->pvh_attrs & PVF_EXEC) {
4520 md->pvh_attrs &= ~PVF_EXEC;
4521 PMAPCOUNT(exec_discarded_modfixup);
4522 }
4523 #endif
4524 pmap_release_page_lock(md);
4525
4526 /*
4527 * Re-enable write permissions for the page. No need to call
4528 * pmap_vac_me_harder(), since this is just a
4529 * modified-emulation fault, and the PVF_WRITE bit isn't
4530 * changing. We've already set the cacheable bits based on
4531 * the assumption that we can write to this page.
4532 */
4533 const pt_entry_t npte =
4534 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4535 #ifdef ARM_MMU_EXTENDED
4536 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4537 #endif
4538 | 0;
4539 l2pte_reset(ptep);
4540 PTE_SYNC(ptep);
4541 pmap_tlb_flush_SE(pm, va,
4542 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4543 l2pte_set(ptep, npte, 0);
4544 PTE_SYNC(ptep);
4545 PMAPCOUNT(fixup_mod);
4546 rv = 1;
4547 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4548 "from %#jx to %#jx)", opte, npte, 0, 0);
4549 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4550 /*
4551 * This looks like a good candidate for "page referenced"
4552 * emulation.
4553 */
4554 struct vm_page *pg;
4555
4556 /* Extract the physical address of the page */
4557 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4558 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4559 goto out;
4560 }
4561
4562 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4563
4564 /* Get the current flags for this page. */
4565 pmap_acquire_page_lock(md);
4566 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4567 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4568 pmap_release_page_lock(md);
4569 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4570 goto out;
4571 }
4572
4573 md->pvh_attrs |= PVF_REF;
4574 pv->pv_flags |= PVF_REF;
4575
4576 pt_entry_t npte =
4577 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4578 #ifdef ARM_MMU_EXTENDED
4579 if (pm != pmap_kernel()) {
4580 npte |= L2_XS_nG;
4581 }
4582 /*
4583 * If we got called from prefetch abort, then ftype will have
4584 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4585 * the PTE.
4586 */
4587 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4588 /*
4589 * Is this a mapping of an executable page?
4590 */
4591 if ((pv->pv_flags & PVF_EXEC) == 0) {
4592 pmap_release_page_lock(md);
4593 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4594 0, 0, 0, 0);
4595 goto out;
4596 }
4597 /*
4598 * If we haven't synced the page, do so now.
4599 */
4600 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4601 UVMHIST_LOG(maphist, " ref emul: syncicache "
4602 "page #%#jx", pa, 0, 0, 0);
4603 pmap_syncicache_page(md, pa);
4604 PMAPCOUNT(fixup_exec);
4605 }
4606 npte &= ~L2_XS_XN;
4607 }
4608 #endif /* ARM_MMU_EXTENDED */
4609 pmap_release_page_lock(md);
4610 l2pte_reset(ptep);
4611 PTE_SYNC(ptep);
4612 pmap_tlb_flush_SE(pm, va,
4613 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4614 l2pte_set(ptep, npte, 0);
4615 PTE_SYNC(ptep);
4616 PMAPCOUNT(fixup_ref);
4617 rv = 1;
4618 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4619 "%#jx to %#jx)", opte, npte, 0, 0);
4620 #ifdef ARM_MMU_EXTENDED
4621 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4622 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4623 if (pg == NULL) {
4624 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4625 goto out;
4626 }
4627
4628 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4629
4630 /* Get the current flags for this page. */
4631 pmap_acquire_page_lock(md);
4632 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4633 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4634 pmap_release_page_lock(md);
4635 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4636 goto out;
4637 }
4638
4639 /*
4640 * If we haven't synced the page, do so now.
4641 */
4642 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4643 UVMHIST_LOG(maphist, "syncicache page #%#jx",
4644 pa, 0, 0, 0);
4645 pmap_syncicache_page(md, pa);
4646 }
4647 pmap_release_page_lock(md);
4648 /*
4649 * Turn off no-execute.
4650 */
4651 KASSERT(opte & L2_XS_nG);
4652 l2pte_reset(ptep);
4653 PTE_SYNC(ptep);
4654 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4655 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4656 PTE_SYNC(ptep);
4657 rv = 1;
4658 PMAPCOUNT(fixup_exec);
4659 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4660 opte, opte & ~L2_XS_XN, 0, 0);
4661 #endif
4662 }
4663
4664 #ifndef ARM_MMU_EXTENDED
4665 /*
4666 * We know there is a valid mapping here, so simply
4667 * fix up the L1 if necessary.
4668 */
4669 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4670 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4671 if (*pdep != pde) {
4672 l1pte_setone(pdep, pde);
4673 PDE_SYNC(pdep);
4674 rv = 1;
4675 PMAPCOUNT(fixup_pdes);
4676 }
4677 #endif
4678
4679 #ifdef CPU_SA110
4680 /*
4681 * There are bugs in the rev K SA110. This is a check for one
4682 * of them.
4683 */
4684 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4685 curcpu()->ci_arm_cpurev < 3) {
4686 /* Always current pmap */
4687 if (l2pte_valid_p(opte)) {
4688 extern int kernel_debug;
4689 if (kernel_debug & 1) {
4690 struct proc *p = curlwp->l_proc;
4691 printf("prefetch_abort: page is already "
4692 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4693 printf("prefetch_abort: pc=%08lx proc=%p "
4694 "process=%s\n", va, p, p->p_comm);
4695 printf("prefetch_abort: far=%08x fs=%x\n",
4696 cpu_faultaddress(), cpu_faultstatus());
4697 }
4698 #ifdef DDB
4699 if (kernel_debug & 2)
4700 Debugger();
4701 #endif
4702 rv = 1;
4703 }
4704 }
4705 #endif /* CPU_SA110 */
4706
4707 #ifndef ARM_MMU_EXTENDED
4708 /*
4709 * If 'rv == 0' at this point, it generally indicates that there is a
4710 * stale TLB entry for the faulting address. That might be due to a
4711 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4712 */
4713 if (rv == 0
4714 && pm->pm_l1->l1_domain_use_count == 1
4715 && pmap_needs_pte_sync == 0) {
4716 pmap_needs_pte_sync = 1;
4717 PTE_SYNC(ptep);
4718 PMAPCOUNT(fixup_ptesync);
4719 rv = 1;
4720 }
4721 #endif
4722
4723 #ifndef MULTIPROCESSOR
4724 #if defined(DEBUG) || 1
4725 /*
4726 * If 'rv == 0' at this point, it generally indicates that there is a
4727 * stale TLB entry for the faulting address. This happens when two or
4728 * more processes are sharing an L1. Since we don't flush the TLB on
4729 * a context switch between such processes, we can take domain faults
4730 * for mappings which exist at the same VA in both processes. EVEN IF
4731 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4732 * example.
4733 *
4734 * This is extremely likely to happen if pmap_enter() updated the L1
4735 * entry for a recently entered mapping. In this case, the TLB is
4736 * flushed for the new mapping, but there may still be TLB entries for
4737 * other mappings belonging to other processes in the 1MB range
4738 * covered by the L1 entry.
4739 *
4740 * Since 'rv == 0', we know that the L1 already contains the correct
4741 * value, so the fault must be due to a stale TLB entry.
4742 *
4743 * Since we always need to flush the TLB anyway in the case where we
4744 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4745 * stale TLB entries dynamically.
4746 *
4747 * However, the above condition can ONLY happen if the current L1 is
4748 * being shared. If it happens when the L1 is unshared, it indicates
4749 * that other parts of the pmap are not doing their job WRT managing
4750 * the TLB.
4751 */
4752 if (rv == 0
4753 #ifndef ARM_MMU_EXTENDED
4754 && pm->pm_l1->l1_domain_use_count == 1
4755 #endif
4756 && true) {
4757 #ifdef DEBUG
4758 extern int last_fault_code;
4759 #else
4760 int last_fault_code = ftype & VM_PROT_EXECUTE
4761 ? armreg_ifsr_read()
4762 : armreg_dfsr_read();
4763 #endif
4764 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4765 pm, va, ftype);
4766 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4767 l2, l2b, ptep, opte);
4768
4769 #ifndef ARM_MMU_EXTENDED
4770 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4771 pdep, pde, last_fault_code);
4772 #else
4773 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4774 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4775 armreg_ttbcr_read());
4776 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4777 last_fault_code, curcpu()->ci_pmap_cur,
4778 curcpu()->ci_pmap_asid_cur,
4779 armreg_contextidr_read(), armreg_dacr_read());
4780 #ifdef _ARM_ARCH_7
4781 if (ftype & VM_PROT_WRITE)
4782 armreg_ats1cuw_write(va);
4783 else
4784 armreg_ats1cur_write(va);
4785 isb();
4786 printf("fixup: par %#x\n", armreg_par_read());
4787 #endif
4788 #endif
4789 #ifdef DDB
4790 extern int kernel_debug;
4791
4792 if (kernel_debug & 2) {
4793 pmap_release_pmap_lock(pm);
4794 #ifdef UVMHIST
4795 KERNHIST_DUMP(maphist);
4796 #endif
4797 cpu_Debugger();
4798 pmap_acquire_pmap_lock(pm);
4799 }
4800 #endif
4801 }
4802 #endif
4803 #endif
4804
4805 #ifndef ARM_MMU_EXTENDED
4806 /* Flush the TLB in the shared L1 case - see comment above */
4807 pmap_tlb_flush_SE(pm, va,
4808 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4809 #endif
4810
4811 rv = 1;
4812
4813 out:
4814 pmap_release_pmap_lock(pm);
4815 kpreempt_enable();
4816
4817 return rv;
4818 }
4819
4820 /*
4821 * Routine: pmap_procwr
4822 *
4823 * Function:
4824 * Synchronize caches corresponding to [addr, addr+len) in p.
4825 *
4826 */
4827 void
4828 pmap_procwr(struct proc *p, vaddr_t va, int len)
4829 {
4830 #ifndef ARM_MMU_EXTENDED
4831
4832 /* We only need to do anything if it is the current process. */
4833 if (p == curproc)
4834 cpu_icache_sync_range(va, len);
4835 #endif
4836 }
4837
4838 /*
4839 * Routine: pmap_unwire
4840 * Function: Clear the wired attribute for a map/virtual-address pair.
4841 *
4842 * In/out conditions:
4843 * The mapping must already exist in the pmap.
4844 */
4845 void
4846 pmap_unwire(pmap_t pm, vaddr_t va)
4847 {
4848 struct l2_bucket *l2b;
4849 pt_entry_t *ptep, pte;
4850 struct vm_page *pg;
4851 paddr_t pa;
4852
4853 UVMHIST_FUNC(__func__);
4854 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx", (uintptr_t)pm, va, 0, 0);
4855
4856 kpreempt_disable();
4857 pmap_acquire_pmap_lock(pm);
4858
4859 l2b = pmap_get_l2_bucket(pm, va);
4860 KDASSERT(l2b != NULL);
4861
4862 ptep = &l2b->l2b_kva[l2pte_index(va)];
4863 pte = *ptep;
4864
4865 /* Extract the physical address of the page */
4866 pa = l2pte_pa(pte);
4867
4868 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4869 /* Update the wired bit in the pv entry for this page. */
4870 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4871
4872 pmap_acquire_page_lock(md);
4873 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4874 pmap_release_page_lock(md);
4875 }
4876
4877 pmap_release_pmap_lock(pm);
4878 kpreempt_enable();
4879
4880 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4881 }
4882
4883 #ifdef ARM_MMU_EXTENDED
4884 void
4885 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4886 {
4887 UVMHIST_FUNC(__func__);
4888 struct cpu_info * const ci = curcpu();
4889 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4890
4891 UVMHIST_CALLARGS(maphist, "pm %#jx (pm->pm_l1_pa %08jx asid %ju)",
4892 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4893
4894 /*
4895 * Assume that TTBR1 has only global mappings and TTBR0 only
4896 * has non-global mappings. To prevent speculation from doing
4897 * evil things we disable translation table walks using TTBR0
4898 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4899 * Once both are set, table walks are reenabled.
4900 */
4901 const uint32_t old_ttbcr = armreg_ttbcr_read();
4902 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4903 isb();
4904
4905 pmap_tlb_asid_acquire(pm, l);
4906
4907 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4908 /*
4909 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4910 * have been updated.
4911 */
4912 isb();
4913
4914 if (pm != pmap_kernel()) {
4915 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4916 }
4917 cpu_cpwait();
4918
4919 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4920 ci->ci_pmap_asid_cur, pai->pai_asid);
4921 ci->ci_pmap_cur = pm;
4922 }
4923
4924 void
4925 pmap_md_pdetab_deactivate(pmap_t pm)
4926 {
4927
4928 UVMHIST_FUNC(__func__);
4929 UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0);
4930
4931 kpreempt_disable();
4932 struct cpu_info * const ci = curcpu();
4933 /*
4934 * Disable translation table walks from TTBR0 while no pmap has been
4935 * activated.
4936 */
4937 const uint32_t old_ttbcr = armreg_ttbcr_read();
4938 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4939 isb();
4940 pmap_tlb_asid_deactivate(pm);
4941 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4942 isb();
4943
4944 ci->ci_pmap_cur = pmap_kernel();
4945 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4946 ci->ci_pmap_asid_cur);
4947 kpreempt_enable();
4948 }
4949 #endif
4950
4951 void
4952 pmap_activate(struct lwp *l)
4953 {
4954 extern int block_userspace_access;
4955 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4956
4957 UVMHIST_FUNC(__func__);
4958 UVMHIST_CALLARGS(maphist, "l=%#jx pm=%#jx", (uintptr_t)l,
4959 (uintptr_t)npm, 0, 0);
4960
4961 struct cpu_info * const ci = curcpu();
4962
4963 /*
4964 * If activating a non-current lwp or the current lwp is
4965 * already active, just return.
4966 */
4967 if (false
4968 || l != curlwp
4969 #ifdef ARM_MMU_EXTENDED
4970 || (ci->ci_pmap_cur == npm &&
4971 (npm == pmap_kernel()
4972 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4973 #else
4974 || npm->pm_activated == true
4975 #endif
4976 || false) {
4977 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4978 (uintptr_t)l, 0, 0);
4979 return;
4980 }
4981
4982 #ifndef ARM_MMU_EXTENDED
4983 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4984 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4985
4986 /*
4987 * If TTB and DACR are unchanged, short-circuit all the
4988 * TLB/cache management stuff.
4989 */
4990 pmap_t opm = ci->ci_lastlwp
4991 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4992 : NULL;
4993 if (opm != NULL) {
4994 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4995 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4996
4997 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4998 goto all_done;
4999 }
5000 #endif /* !ARM_MMU_EXTENDED */
5001
5002 PMAPCOUNT(activations);
5003 block_userspace_access = 1;
5004
5005 #ifndef ARM_MMU_EXTENDED
5006 /*
5007 * If switching to a user vmspace which is different to the
5008 * most recent one, and the most recent one is potentially
5009 * live in the cache, we must write-back and invalidate the
5010 * entire cache.
5011 */
5012 pmap_t rpm = ci->ci_pmap_lastuser;
5013
5014 /*
5015 * XXXSCW: There's a corner case here which can leave turds in the
5016 * cache as reported in kern/41058. They're probably left over during
5017 * tear-down and switching away from an exiting process. Until the root
5018 * cause is identified and fixed, zap the cache when switching pmaps.
5019 * This will result in a few unnecessary cache flushes, but that's
5020 * better than silently corrupting data.
5021 */
5022 #if 0
5023 if (npm != pmap_kernel() && rpm && npm != rpm &&
5024 rpm->pm_cstate.cs_cache) {
5025 rpm->pm_cstate.cs_cache = 0;
5026 #ifdef PMAP_CACHE_VIVT
5027 cpu_idcache_wbinv_all();
5028 #endif
5029 }
5030 #else
5031 if (rpm) {
5032 rpm->pm_cstate.cs_cache = 0;
5033 if (npm == pmap_kernel())
5034 ci->ci_pmap_lastuser = NULL;
5035 #ifdef PMAP_CACHE_VIVT
5036 cpu_idcache_wbinv_all();
5037 #endif
5038 }
5039 #endif
5040
5041 /* No interrupts while we frob the TTB/DACR */
5042 uint32_t oldirqstate = disable_interrupts(IF32_bits);
5043 #endif /* !ARM_MMU_EXTENDED */
5044
5045 #ifndef ARM_HAS_VBAR
5046 /*
5047 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
5048 * entry corresponding to 'vector_page' in the incoming L1 table
5049 * before switching to it otherwise subsequent interrupts/exceptions
5050 * (including domain faults!) will jump into hyperspace.
5051 */
5052 if (npm->pm_pl1vec != NULL) {
5053 cpu_tlb_flushID_SE((u_int)vector_page);
5054 cpu_cpwait();
5055 *npm->pm_pl1vec = npm->pm_l1vec;
5056 PTE_SYNC(npm->pm_pl1vec);
5057 }
5058 #endif
5059
5060 #ifdef ARM_MMU_EXTENDED
5061 pmap_md_pdetab_activate(npm, l);
5062 #else
5063 cpu_domains(ndacr);
5064 if (npm == pmap_kernel() || npm == rpm) {
5065 /*
5066 * Switching to a kernel thread, or back to the
5067 * same user vmspace as before... Simply update
5068 * the TTB (no TLB flush required)
5069 */
5070 cpu_setttb(npm->pm_l1->l1_physaddr, false);
5071 cpu_cpwait();
5072 } else {
5073 /*
5074 * Otherwise, update TTB and flush TLB
5075 */
5076 cpu_context_switch(npm->pm_l1->l1_physaddr);
5077 if (rpm != NULL)
5078 rpm->pm_cstate.cs_tlb = 0;
5079 }
5080
5081 restore_interrupts(oldirqstate);
5082 #endif /* ARM_MMU_EXTENDED */
5083
5084 block_userspace_access = 0;
5085
5086 #ifndef ARM_MMU_EXTENDED
5087 all_done:
5088 /*
5089 * The new pmap is resident. Make sure it's marked
5090 * as resident in the cache/TLB.
5091 */
5092 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5093 if (npm != pmap_kernel())
5094 ci->ci_pmap_lastuser = npm;
5095
5096 /* The old pmap is not longer active */
5097 if (opm != npm) {
5098 if (opm != NULL)
5099 opm->pm_activated = false;
5100
5101 /* But the new one is */
5102 npm->pm_activated = true;
5103 }
5104 ci->ci_pmap_cur = npm;
5105 #endif
5106 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5107 }
5108
5109 void
5110 pmap_deactivate(struct lwp *l)
5111 {
5112 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5113
5114 UVMHIST_FUNC(__func__);
5115 UVMHIST_CALLARGS(maphist, "l=%#jx (pm=%#jx)", (uintptr_t)l,
5116 (uintptr_t)pm, 0, 0);
5117
5118 #ifdef ARM_MMU_EXTENDED
5119 pmap_md_pdetab_deactivate(pm);
5120 #else
5121 /*
5122 * If the process is exiting, make sure pmap_activate() does
5123 * a full MMU context-switch and cache flush, which we might
5124 * otherwise skip. See PR port-arm/38950.
5125 */
5126 if (l->l_proc->p_sflag & PS_WEXIT)
5127 curcpu()->ci_lastlwp = NULL;
5128
5129 pm->pm_activated = false;
5130 #endif
5131 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5132 }
5133
5134 void
5135 pmap_update(pmap_t pm)
5136 {
5137
5138 UVMHIST_FUNC(__func__);
5139 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5140 pm->pm_remove_all, 0, 0);
5141
5142 #ifndef ARM_MMU_EXTENDED
5143 if (pm->pm_remove_all) {
5144 /*
5145 * Finish up the pmap_remove_all() optimisation by flushing
5146 * the TLB.
5147 */
5148 pmap_tlb_flushID(pm);
5149 pm->pm_remove_all = false;
5150 }
5151
5152 if (pmap_is_current(pm)) {
5153 /*
5154 * If we're dealing with a current userland pmap, move its L1
5155 * to the end of the LRU.
5156 */
5157 if (pm != pmap_kernel())
5158 pmap_use_l1(pm);
5159
5160 /*
5161 * We can assume we're done with frobbing the cache/tlb for
5162 * now. Make sure any future pmap ops don't skip cache/tlb
5163 * flushes.
5164 */
5165 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5166 }
5167 #else
5168
5169 kpreempt_disable();
5170 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5171 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5172 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5173 PMAP_COUNT(shootdown_ipis);
5174 }
5175 #endif
5176
5177 /*
5178 * If pmap_remove_all was called, we deactivated ourselves and released
5179 * our ASID. Now we have to reactivate ourselves.
5180 */
5181 if (__predict_false(pm->pm_remove_all)) {
5182 pm->pm_remove_all = false;
5183
5184 KASSERT(pm != pmap_kernel());
5185 pmap_md_pdetab_activate(pm, curlwp);
5186 }
5187
5188 if (arm_has_mpext_p)
5189 armreg_bpiallis_write(0);
5190 else
5191 armreg_bpiall_write(0);
5192
5193 kpreempt_enable();
5194
5195 KASSERTMSG(pm == pmap_kernel()
5196 || curcpu()->ci_pmap_cur != pm
5197 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5198 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5199 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5200 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5201 #endif
5202
5203 PMAPCOUNT(updates);
5204
5205 /*
5206 * make sure TLB/cache operations have completed.
5207 */
5208 cpu_cpwait();
5209 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5210 }
5211
5212 bool
5213 pmap_remove_all(pmap_t pm)
5214 {
5215
5216 UVMHIST_FUNC(__func__);
5217 UVMHIST_CALLARGS(maphist, "(pm=%#jx)", (uintptr_t)pm, 0, 0, 0);
5218
5219 KASSERT(pm != pmap_kernel());
5220
5221 kpreempt_disable();
5222 /*
5223 * The vmspace described by this pmap is about to be torn down.
5224 * Until pmap_update() is called, UVM will only make calls
5225 * to pmap_remove(). We can make life much simpler by flushing
5226 * the cache now, and deferring TLB invalidation to pmap_update().
5227 */
5228 #ifdef PMAP_CACHE_VIVT
5229 pmap_cache_wbinv_all(pm, PVF_EXEC);
5230 #endif
5231 #ifdef ARM_MMU_EXTENDED
5232 #ifdef MULTIPROCESSOR
5233 struct cpu_info * const ci = curcpu();
5234 // This should be the last CPU with this pmap onproc
5235 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5236 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5237 #endif
5238 pmap_tlb_asid_deactivate(pm);
5239 #ifdef MULTIPROCESSOR
5240 KASSERT(kcpuset_iszero(pm->pm_onproc));
5241 #endif
5242
5243 pmap_tlb_asid_release_all(pm);
5244 #endif
5245 pm->pm_remove_all = true;
5246 kpreempt_enable();
5247
5248 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5249 return false;
5250 }
5251
5252 /*
5253 * Retire the given physical map from service.
5254 * Should only be called if the map contains no valid mappings.
5255 */
5256 void
5257 pmap_destroy(pmap_t pm)
5258 {
5259 UVMHIST_FUNC(__func__);
5260 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5261 pm ? pm->pm_remove_all : 0, 0, 0);
5262
5263 if (pm == NULL)
5264 return;
5265
5266 if (pm->pm_remove_all) {
5267 #ifdef ARM_MMU_EXTENDED
5268 pmap_tlb_asid_release_all(pm);
5269 #else
5270 pmap_tlb_flushID(pm);
5271 #endif
5272 pm->pm_remove_all = false;
5273 }
5274
5275 /*
5276 * Drop reference count
5277 */
5278 if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
5279 #ifndef ARM_MMU_EXTENDED
5280 if (pmap_is_current(pm)) {
5281 if (pm != pmap_kernel())
5282 pmap_use_l1(pm);
5283 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5284 }
5285 #endif
5286 return;
5287 }
5288
5289 /*
5290 * reference count is zero, free pmap resources and then free pmap.
5291 */
5292
5293 #ifndef ARM_HAS_VBAR
5294 if (vector_page < KERNEL_BASE) {
5295 KDASSERT(!pmap_is_current(pm));
5296
5297 /* Remove the vector page mapping */
5298 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5299 pmap_update(pm);
5300 }
5301 #endif
5302
5303 pmap_free_l1(pm);
5304
5305 #ifdef ARM_MMU_EXTENDED
5306 #ifdef MULTIPROCESSOR
5307 kcpuset_destroy(pm->pm_active);
5308 kcpuset_destroy(pm->pm_onproc);
5309 #endif
5310 #else
5311 struct cpu_info * const ci = curcpu();
5312 if (ci->ci_pmap_lastuser == pm)
5313 ci->ci_pmap_lastuser = NULL;
5314 #endif
5315
5316 mutex_destroy(&pm->pm_lock);
5317 pool_cache_put(&pmap_cache, pm);
5318 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5319 }
5320
5321
5322 /*
5323 * void pmap_reference(pmap_t pm)
5324 *
5325 * Add a reference to the specified pmap.
5326 */
5327 void
5328 pmap_reference(pmap_t pm)
5329 {
5330
5331 if (pm == NULL)
5332 return;
5333
5334 #ifndef ARM_MMU_EXTENDED
5335 pmap_use_l1(pm);
5336 #endif
5337
5338 atomic_inc_uint(&pm->pm_refs);
5339 }
5340
5341 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5342
5343 static struct evcnt pmap_prefer_nochange_ev =
5344 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5345 static struct evcnt pmap_prefer_change_ev =
5346 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5347
5348 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5349 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5350
5351 void
5352 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5353 {
5354 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5355 vaddr_t va = *vap;
5356 vaddr_t diff = (hint - va) & mask;
5357 if (diff == 0) {
5358 pmap_prefer_nochange_ev.ev_count++;
5359 } else {
5360 pmap_prefer_change_ev.ev_count++;
5361 if (__predict_false(td))
5362 va -= mask + 1;
5363 *vap = va + diff;
5364 }
5365 }
5366 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5367
5368 /*
5369 * pmap_zero_page()
5370 *
5371 * Zero a given physical page by mapping it at a page hook point.
5372 * In doing the zero page op, the page we zero is mapped cachable, as with
5373 * StrongARM accesses to non-cached pages are non-burst making writing
5374 * _any_ bulk data very slow.
5375 */
5376 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5377 void
5378 pmap_zero_page_generic(paddr_t pa)
5379 {
5380 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5381 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5382 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5383 #endif
5384 #if defined(PMAP_CACHE_VIPT)
5385 /* Choose the last page color it had, if any */
5386 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5387 #else
5388 const vsize_t va_offset = 0;
5389 #endif
5390 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5391 /*
5392 * Is this page mapped at its natural color?
5393 * If we have all of memory mapped, then just convert PA to VA.
5394 */
5395 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5396 || va_offset == (pa & arm_cache_prefer_mask);
5397 const vaddr_t vdstp = okcolor
5398 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5399 : cpu_cdstp(va_offset);
5400 #else
5401 const bool okcolor = false;
5402 const vaddr_t vdstp = cpu_cdstp(va_offset);
5403 #endif
5404 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5405
5406
5407 #ifdef DEBUG
5408 if (!SLIST_EMPTY(&md->pvh_list))
5409 panic("pmap_zero_page: page has mappings");
5410 #endif
5411
5412 KDASSERT((pa & PGOFSET) == 0);
5413
5414 if (!okcolor) {
5415 /*
5416 * Hook in the page, zero it, and purge the cache for that
5417 * zeroed page. Invalidate the TLB as needed.
5418 */
5419 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5420 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5421 l2pte_set(ptep, npte, 0);
5422 PTE_SYNC(ptep);
5423 cpu_tlb_flushD_SE(vdstp);
5424 cpu_cpwait();
5425 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5426 && !defined(ARM_MMU_EXTENDED)
5427 /*
5428 * If we are direct-mapped and our color isn't ok, then before
5429 * we bzero the page invalidate its contents from the cache and
5430 * reset the color to its natural color.
5431 */
5432 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5433 md->pvh_attrs &= ~arm_cache_prefer_mask;
5434 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5435 #endif
5436 }
5437 bzero_page(vdstp);
5438 if (!okcolor) {
5439 /*
5440 * Unmap the page.
5441 */
5442 l2pte_reset(ptep);
5443 PTE_SYNC(ptep);
5444 cpu_tlb_flushD_SE(vdstp);
5445 #ifdef PMAP_CACHE_VIVT
5446 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5447 #endif
5448 }
5449 #ifdef PMAP_CACHE_VIPT
5450 /*
5451 * This page is now cache resident so it now has a page color.
5452 * Any contents have been obliterated so clear the EXEC flag.
5453 */
5454 #ifndef ARM_MMU_EXTENDED
5455 if (!pmap_is_page_colored_p(md)) {
5456 PMAPCOUNT(vac_color_new);
5457 md->pvh_attrs |= PVF_COLORED;
5458 }
5459 md->pvh_attrs |= PVF_DIRTY;
5460 #endif
5461 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5462 md->pvh_attrs &= ~PVF_EXEC;
5463 PMAPCOUNT(exec_discarded_zero);
5464 }
5465 #endif
5466 }
5467 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5468
5469 #if ARM_MMU_XSCALE == 1
5470 void
5471 pmap_zero_page_xscale(paddr_t pa)
5472 {
5473 #ifdef DEBUG
5474 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5475 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5476
5477 if (!SLIST_EMPTY(&md->pvh_list))
5478 panic("pmap_zero_page: page has mappings");
5479 #endif
5480
5481 KDASSERT((pa & PGOFSET) == 0);
5482
5483 /*
5484 * Hook in the page, zero it, and purge the cache for that
5485 * zeroed page. Invalidate the TLB as needed.
5486 */
5487
5488 pt_entry_t npte = L2_S_PROTO | pa |
5489 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5490 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5491 l2pte_set(cdst_pte, npte, 0);
5492 PTE_SYNC(cdst_pte);
5493 cpu_tlb_flushD_SE(cdstp);
5494 cpu_cpwait();
5495 bzero_page(cdstp);
5496 xscale_cache_clean_minidata();
5497 l2pte_reset(cdst_pte);
5498 PTE_SYNC(cdst_pte);
5499 }
5500 #endif /* ARM_MMU_XSCALE == 1 */
5501
5502 /* pmap_pageidlezero()
5503 *
5504 * The same as above, except that we assume that the page is not
5505 * mapped. This means we never have to flush the cache first. Called
5506 * from the idle loop.
5507 */
5508 bool
5509 pmap_pageidlezero(paddr_t pa)
5510 {
5511 bool rv = true;
5512 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5513 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5514 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5515 #endif
5516 #ifdef PMAP_CACHE_VIPT
5517 /* Choose the last page color it had, if any */
5518 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5519 #else
5520 const vsize_t va_offset = 0;
5521 #endif
5522 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5523 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5524 || va_offset == (pa & arm_cache_prefer_mask);
5525 const vaddr_t vdstp = okcolor
5526 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5527 : cpu_cdstp(va_offset);
5528 #else
5529 const bool okcolor = false;
5530 const vaddr_t vdstp = cpu_cdstp(va_offset);
5531 #endif
5532 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5533
5534
5535 #ifdef DEBUG
5536 if (!SLIST_EMPTY(&md->pvh_list))
5537 panic("pmap_pageidlezero: page has mappings");
5538 #endif
5539
5540 KDASSERT((pa & PGOFSET) == 0);
5541
5542 if (!okcolor) {
5543 /*
5544 * Hook in the page, zero it, and purge the cache for that
5545 * zeroed page. Invalidate the TLB as needed.
5546 */
5547 const pt_entry_t npte = L2_S_PROTO | pa |
5548 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5549 l2pte_set(ptep, npte, 0);
5550 PTE_SYNC(ptep);
5551 cpu_tlb_flushD_SE(vdstp);
5552 cpu_cpwait();
5553 }
5554
5555 uint64_t *ptr = (uint64_t *)vdstp;
5556 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5557 if (sched_curcpu_runnable_p() != 0) {
5558 /*
5559 * A process has become ready. Abort now,
5560 * so we don't keep it waiting while we
5561 * do slow memory access to finish this
5562 * page.
5563 */
5564 rv = false;
5565 break;
5566 }
5567 *ptr++ = 0;
5568 }
5569
5570 #ifdef PMAP_CACHE_VIVT
5571 if (rv)
5572 /*
5573 * if we aborted we'll rezero this page again later so don't
5574 * purge it unless we finished it
5575 */
5576 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5577 #elif defined(PMAP_CACHE_VIPT)
5578 /*
5579 * This page is now cache resident so it now has a page color.
5580 * Any contents have been obliterated so clear the EXEC flag.
5581 */
5582 #ifndef ARM_MMU_EXTENDED
5583 if (!pmap_is_page_colored_p(md)) {
5584 PMAPCOUNT(vac_color_new);
5585 md->pvh_attrs |= PVF_COLORED;
5586 }
5587 #endif
5588 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5589 md->pvh_attrs &= ~PVF_EXEC;
5590 PMAPCOUNT(exec_discarded_zero);
5591 }
5592 #endif
5593 /*
5594 * Unmap the page.
5595 */
5596 if (!okcolor) {
5597 l2pte_reset(ptep);
5598 PTE_SYNC(ptep);
5599 cpu_tlb_flushD_SE(vdstp);
5600 }
5601
5602 return rv;
5603 }
5604
5605 /*
5606 * pmap_copy_page()
5607 *
5608 * Copy one physical page into another, by mapping the pages into
5609 * hook points. The same comment regarding cachability as in
5610 * pmap_zero_page also applies here.
5611 */
5612 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5613 void
5614 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5615 {
5616 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5617 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5618 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5619 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5620 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5621 #endif
5622 #ifdef PMAP_CACHE_VIPT
5623 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5624 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5625 #else
5626 const vsize_t src_va_offset = 0;
5627 const vsize_t dst_va_offset = 0;
5628 #endif
5629 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5630 /*
5631 * Is this page mapped at its natural color?
5632 * If we have all of memory mapped, then just convert PA to VA.
5633 */
5634 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5635 || src_va_offset == (src & arm_cache_prefer_mask);
5636 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5637 || dst_va_offset == (dst & arm_cache_prefer_mask);
5638 const vaddr_t vsrcp = src_okcolor
5639 ? pmap_direct_mapped_phys(src, &src_okcolor,
5640 cpu_csrcp(src_va_offset))
5641 : cpu_csrcp(src_va_offset);
5642 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5643 cpu_cdstp(dst_va_offset));
5644 #else
5645 const bool src_okcolor = false;
5646 const bool dst_okcolor = false;
5647 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5648 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5649 #endif
5650 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5651 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5652
5653 #ifdef DEBUG
5654 if (!SLIST_EMPTY(&dst_md->pvh_list))
5655 panic("pmap_copy_page: dst page has mappings");
5656 #endif
5657
5658 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5659 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5660 #endif
5661 KDASSERT((src & PGOFSET) == 0);
5662 KDASSERT((dst & PGOFSET) == 0);
5663
5664 /*
5665 * Clean the source page. Hold the source page's lock for
5666 * the duration of the copy so that no other mappings can
5667 * be created while we have a potentially aliased mapping.
5668 */
5669 #ifdef PMAP_CACHE_VIVT
5670 pmap_acquire_page_lock(src_md);
5671 (void) pmap_clean_page(src_md, true);
5672 pmap_release_page_lock(src_md);
5673 #endif
5674
5675 /*
5676 * Map the pages into the page hook points, copy them, and purge
5677 * the cache for the appropriate page. Invalidate the TLB
5678 * as required.
5679 */
5680 if (!src_okcolor) {
5681 const pt_entry_t nsrc_pte = L2_S_PROTO
5682 | src
5683 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5684 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5685 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5686 | pte_l2_s_cache_mode
5687 #endif
5688 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5689 l2pte_set(src_ptep, nsrc_pte, 0);
5690 PTE_SYNC(src_ptep);
5691 cpu_tlb_flushD_SE(vsrcp);
5692 cpu_cpwait();
5693 }
5694 if (!dst_okcolor) {
5695 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5696 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5697 l2pte_set(dst_ptep, ndst_pte, 0);
5698 PTE_SYNC(dst_ptep);
5699 cpu_tlb_flushD_SE(vdstp);
5700 cpu_cpwait();
5701 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5702 /*
5703 * If we are direct-mapped and our color isn't ok, then before
5704 * we bcopy to the new page invalidate its contents from the
5705 * cache and reset its color to its natural color.
5706 */
5707 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5708 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5709 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5710 #endif
5711 }
5712 bcopy_page(vsrcp, vdstp);
5713 #ifdef PMAP_CACHE_VIVT
5714 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5715 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5716 #endif
5717 /*
5718 * Unmap the pages.
5719 */
5720 if (!src_okcolor) {
5721 l2pte_reset(src_ptep);
5722 PTE_SYNC(src_ptep);
5723 cpu_tlb_flushD_SE(vsrcp);
5724 cpu_cpwait();
5725 }
5726 if (!dst_okcolor) {
5727 l2pte_reset(dst_ptep);
5728 PTE_SYNC(dst_ptep);
5729 cpu_tlb_flushD_SE(vdstp);
5730 cpu_cpwait();
5731 }
5732 #ifdef PMAP_CACHE_VIPT
5733 /*
5734 * Now that the destination page is in the cache, mark it as colored.
5735 * If this was an exec page, discard it.
5736 */
5737 pmap_acquire_page_lock(dst_md);
5738 #ifndef ARM_MMU_EXTENDED
5739 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5740 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5741 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5742 }
5743 if (!pmap_is_page_colored_p(dst_md)) {
5744 PMAPCOUNT(vac_color_new);
5745 dst_md->pvh_attrs |= PVF_COLORED;
5746 }
5747 dst_md->pvh_attrs |= PVF_DIRTY;
5748 #endif
5749 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5750 dst_md->pvh_attrs &= ~PVF_EXEC;
5751 PMAPCOUNT(exec_discarded_copy);
5752 }
5753 pmap_release_page_lock(dst_md);
5754 #endif
5755 }
5756 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5757
5758 #if ARM_MMU_XSCALE == 1
5759 void
5760 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5761 {
5762 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5763 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5764 #ifdef DEBUG
5765 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5766
5767 if (!SLIST_EMPTY(&dst_md->pvh_list))
5768 panic("pmap_copy_page: dst page has mappings");
5769 #endif
5770
5771 KDASSERT((src & PGOFSET) == 0);
5772 KDASSERT((dst & PGOFSET) == 0);
5773
5774 /*
5775 * Clean the source page. Hold the source page's lock for
5776 * the duration of the copy so that no other mappings can
5777 * be created while we have a potentially aliased mapping.
5778 */
5779 #ifdef PMAP_CACHE_VIVT
5780 pmap_acquire_page_lock(src_md);
5781 (void) pmap_clean_page(src_md, true);
5782 pmap_release_page_lock(src_md);
5783 #endif
5784
5785 /*
5786 * Map the pages into the page hook points, copy them, and purge
5787 * the cache for the appropriate page. Invalidate the TLB
5788 * as required.
5789 */
5790 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5791 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5792 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5793 l2pte_set(csrc_pte, nsrc_pte, 0);
5794 PTE_SYNC(csrc_pte);
5795
5796 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5797 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5798 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5799 l2pte_set(cdst_pte, ndst_pte, 0);
5800 PTE_SYNC(cdst_pte);
5801
5802 cpu_tlb_flushD_SE(csrcp);
5803 cpu_tlb_flushD_SE(cdstp);
5804 cpu_cpwait();
5805 bcopy_page(csrcp, cdstp);
5806 xscale_cache_clean_minidata();
5807 l2pte_reset(csrc_pte);
5808 l2pte_reset(cdst_pte);
5809 PTE_SYNC(csrc_pte);
5810 PTE_SYNC(cdst_pte);
5811 }
5812 #endif /* ARM_MMU_XSCALE == 1 */
5813
5814 /*
5815 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5816 *
5817 * Return the start and end addresses of the kernel's virtual space.
5818 * These values are setup in pmap_bootstrap and are updated as pages
5819 * are allocated.
5820 */
5821 void
5822 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5823 {
5824 *start = virtual_avail;
5825 *end = virtual_end;
5826 }
5827
5828 /*
5829 * Helper function for pmap_grow_l2_bucket()
5830 */
5831 static inline int
5832 pmap_grow_map(vaddr_t va, paddr_t *pap)
5833 {
5834 paddr_t pa;
5835
5836 KASSERT((va & PGOFSET) == 0);
5837
5838 if (uvm.page_init_done == false) {
5839 #ifdef PMAP_STEAL_MEMORY
5840 pv_addr_t pv;
5841 pmap_boot_pagealloc(PAGE_SIZE,
5842 #ifdef PMAP_CACHE_VIPT
5843 arm_cache_prefer_mask,
5844 va & arm_cache_prefer_mask,
5845 #else
5846 0, 0,
5847 #endif
5848 &pv);
5849 pa = pv.pv_pa;
5850 #else
5851 if (uvm_page_physget(&pa) == false)
5852 return 1;
5853 #endif /* PMAP_STEAL_MEMORY */
5854 } else {
5855 struct vm_page *pg;
5856 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5857 if (pg == NULL)
5858 return 1;
5859 pa = VM_PAGE_TO_PHYS(pg);
5860 /*
5861 * This new page must not have any mappings.
5862 */
5863 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5864 KASSERT(SLIST_EMPTY(&md->pvh_list));
5865 }
5866
5867 /*
5868 * Enter it via pmap_kenter_pa and let that routine do the hard work.
5869 */
5870 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
5871 PMAP_KMPAGE | PMAP_PTE);
5872
5873 if (pap)
5874 *pap = pa;
5875
5876 PMAPCOUNT(pt_mappings);
5877
5878 const pmap_t kpm __diagused = pmap_kernel();
5879 struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
5880 KASSERT(l2b != NULL);
5881
5882 pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
5883 const pt_entry_t pte __diagused = *ptep;
5884 KASSERT(l2pte_valid_p(pte));
5885 KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5886
5887 memset((void *)va, 0, PAGE_SIZE);
5888
5889 return 0;
5890 }
5891
5892 /*
5893 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5894 * used by pmap_growkernel().
5895 */
5896 static inline struct l2_bucket *
5897 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5898 {
5899 const size_t l1slot = l1pte_index(va);
5900 struct l2_dtable *l2;
5901 vaddr_t nva;
5902
5903 CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
5904 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5905 /*
5906 * No mapping at this address, as there is
5907 * no entry in the L1 table.
5908 * Need to allocate a new l2_dtable.
5909 */
5910 nva = pmap_kernel_l2dtable_kva;
5911 if ((nva & PGOFSET) == 0) {
5912 /*
5913 * Need to allocate a backing page
5914 */
5915 if (pmap_grow_map(nva, NULL))
5916 return NULL;
5917 }
5918
5919 l2 = (struct l2_dtable *)nva;
5920 nva += sizeof(struct l2_dtable);
5921
5922 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5923 /*
5924 * The new l2_dtable straddles a page boundary.
5925 * Map in another page to cover it.
5926 */
5927 if (pmap_grow_map(nva & ~PGOFSET, NULL))
5928 return NULL;
5929 }
5930
5931 pmap_kernel_l2dtable_kva = nva;
5932
5933 /*
5934 * Link it into the parent pmap
5935 */
5936 pm->pm_l2[L2_IDX(l1slot)] = l2;
5937 }
5938
5939 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5940
5941 /*
5942 * Fetch pointer to the L2 page table associated with the address.
5943 */
5944 if (l2b->l2b_kva == NULL) {
5945 pt_entry_t *ptep;
5946
5947 /*
5948 * No L2 page table has been allocated. Chances are, this
5949 * is because we just allocated the l2_dtable, above.
5950 */
5951 nva = pmap_kernel_l2ptp_kva;
5952 ptep = (pt_entry_t *)nva;
5953 if ((nva & PGOFSET) == 0) {
5954 /*
5955 * Need to allocate a backing page
5956 */
5957 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5958 return NULL;
5959 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5960 }
5961
5962 l2->l2_occupancy++;
5963 l2b->l2b_kva = ptep;
5964 l2b->l2b_l1slot = l1slot;
5965 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5966
5967 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5968 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5969 }
5970
5971 return l2b;
5972 }
5973
5974 vaddr_t
5975 pmap_growkernel(vaddr_t maxkvaddr)
5976 {
5977 UVMHIST_FUNC(__func__);
5978 UVMHIST_CALLARGS(maphist, "growing kernel from %#jx to %#jx\n",
5979 pmap_curmaxkvaddr, maxkvaddr, 0, 0);
5980
5981 pmap_t kpm = pmap_kernel();
5982 #ifndef ARM_MMU_EXTENDED
5983 struct l1_ttable *l1;
5984 #endif
5985 int s;
5986
5987 if (maxkvaddr <= pmap_curmaxkvaddr)
5988 goto out; /* we are OK */
5989
5990 KDASSERT(maxkvaddr <= virtual_end);
5991
5992 /*
5993 * whoops! we need to add kernel PTPs
5994 */
5995
5996 vaddr_t pmap_maxkvaddr = pmap_curmaxkvaddr;
5997
5998 s = splvm(); /* to be safe */
5999 mutex_enter(&kpm_lock);
6000
6001 /* Map 1MB at a time */
6002 size_t l1slot = l1pte_index(pmap_maxkvaddr);
6003 #ifdef ARM_MMU_EXTENDED
6004 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
6005 pd_entry_t *pdep = spdep;
6006 #endif
6007 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
6008 #ifdef ARM_MMU_EXTENDED
6009 pdep++,
6010 #endif
6011 l1slot++) {
6012 struct l2_bucket *l2b =
6013 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
6014 KASSERT(l2b != NULL);
6015
6016 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
6017 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
6018 #ifdef ARM_MMU_EXTENDED
6019 KASSERT(*pdep == 0);
6020 l1pte_setone(pdep, npde);
6021 #else
6022 /* Distribute new L1 entry to all other L1s */
6023 SLIST_FOREACH(l1, &l1_list, l1_link) {
6024 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
6025 l1pte_setone(pdep, npde);
6026 PDE_SYNC(pdep);
6027 }
6028 #endif
6029 }
6030 #ifdef ARM_MMU_EXTENDED
6031 PDE_SYNC_RANGE(spdep, pdep - spdep);
6032 #endif
6033
6034 #ifdef PMAP_CACHE_VIVT
6035 /*
6036 * flush out the cache, expensive but growkernel will happen so
6037 * rarely
6038 */
6039 cpu_dcache_wbinv_all();
6040 cpu_tlb_flushD();
6041 cpu_cpwait();
6042 #endif
6043
6044 mutex_exit(&kpm_lock);
6045 splx(s);
6046
6047 kasan_shadow_map((void *)pmap_maxkvaddr,
6048 (size_t)(pmap_curmaxkvaddr - pmap_maxkvaddr));
6049
6050 out:
6051 return pmap_curmaxkvaddr;
6052 }
6053
6054 /************************ Utility routines ****************************/
6055
6056 #ifndef ARM_HAS_VBAR
6057 /*
6058 * vector_page_setprot:
6059 *
6060 * Manipulate the protection of the vector page.
6061 */
6062 void
6063 vector_page_setprot(int prot)
6064 {
6065 struct l2_bucket *l2b;
6066 pt_entry_t *ptep;
6067
6068 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
6069 /*
6070 * If we are using VBAR to use the vectors in the kernel, then it's
6071 * already mapped in the kernel text so no need to anything here.
6072 */
6073 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6074 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6075 return;
6076 }
6077 #endif
6078
6079 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6080 KASSERT(l2b != NULL);
6081
6082 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6083
6084 const pt_entry_t opte = *ptep;
6085 #ifdef ARM_MMU_EXTENDED
6086 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6087 | L2_S_PROT(PTE_KERNEL, prot);
6088 #else
6089 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6090 | L2_S_PROT(PTE_KERNEL, prot);
6091 #endif
6092 l2pte_set(ptep, npte, opte);
6093 PTE_SYNC(ptep);
6094 cpu_tlb_flushD_SE(vector_page);
6095 cpu_cpwait();
6096 }
6097 #endif
6098
6099 /*
6100 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6101 * Returns true if the mapping exists, else false.
6102 *
6103 * NOTE: This function is only used by a couple of arm-specific modules.
6104 * It is not safe to take any pmap locks here, since we could be right
6105 * in the middle of debugging the pmap anyway...
6106 *
6107 * It is possible for this routine to return false even though a valid
6108 * mapping does exist. This is because we don't lock, so the metadata
6109 * state may be inconsistent.
6110 *
6111 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6112 * a "section" mapping.
6113 */
6114 bool
6115 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6116 {
6117 struct l2_dtable *l2;
6118 pd_entry_t *pdep, pde;
6119 pt_entry_t *ptep;
6120 u_short l1slot;
6121
6122 if (pm->pm_l1 == NULL)
6123 return false;
6124
6125 l1slot = l1pte_index(va);
6126 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6127 pde = *pdep;
6128
6129 if (l1pte_section_p(pde)) {
6130 *ptp = NULL;
6131 return true;
6132 }
6133
6134 l2 = pm->pm_l2[L2_IDX(l1slot)];
6135 if (l2 == NULL ||
6136 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6137 return false;
6138 }
6139
6140 *ptp = &ptep[l2pte_index(va)];
6141 return true;
6142 }
6143
6144 bool
6145 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6146 {
6147
6148 if (pm->pm_l1 == NULL)
6149 return false;
6150
6151 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6152
6153 return true;
6154 }
6155
6156 /************************ Bootstrapping routines ****************************/
6157
6158 #ifndef ARM_MMU_EXTENDED
6159 static void
6160 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6161 {
6162 int i;
6163
6164 l1->l1_kva = l1pt;
6165 l1->l1_domain_use_count = 0;
6166 l1->l1_domain_first = 0;
6167
6168 for (i = 0; i < PMAP_DOMAINS; i++)
6169 l1->l1_domain_free[i] = i + 1;
6170
6171 /*
6172 * Copy the kernel's L1 entries to each new L1.
6173 */
6174 if (pmap_initialized)
6175 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6176
6177 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6178 &l1->l1_physaddr) == false)
6179 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6180
6181 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6182 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6183 }
6184 #endif /* !ARM_MMU_EXTENDED */
6185
6186 /*
6187 * pmap_bootstrap() is called from the board-specific initarm() routine
6188 * once the kernel L1/L2 descriptors tables have been set up.
6189 *
6190 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6191 * spread over a number of disparate files/functions.
6192 *
6193 * We are passed the following parameters
6194 * - vstart
6195 * 1MB-aligned start of managed kernel virtual memory.
6196 * - vend
6197 * 1MB-aligned end of managed kernel virtual memory.
6198 *
6199 * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6200 * struct l2_dtable) necessary to track kernel mappings.
6201 */
6202 #define PMAP_STATIC_L2_SIZE 16
6203 void
6204 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6205 {
6206 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6207 #ifndef ARM_MMU_EXTENDED
6208 static struct l1_ttable static_l1;
6209 struct l1_ttable *l1 = &static_l1;
6210 #endif
6211 struct l2_dtable *l2;
6212 struct l2_bucket *l2b;
6213 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6214 pmap_t pm = pmap_kernel();
6215 pt_entry_t *ptep;
6216 paddr_t pa;
6217 vsize_t size;
6218 int nptes, l2idx, l2next = 0;
6219
6220 #ifdef ARM_MMU_EXTENDED
6221 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6222 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6223 #endif
6224
6225 VPRINTF("kpm ");
6226 /*
6227 * Initialise the kernel pmap object
6228 */
6229 curcpu()->ci_pmap_cur = pm;
6230 #ifdef ARM_MMU_EXTENDED
6231 pm->pm_l1 = l1pt;
6232 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6233 VPRINTF("tlb0 ");
6234 pmap_tlb_info_init(&pmap_tlb0_info);
6235 #ifdef MULTIPROCESSOR
6236 VPRINTF("kcpusets ");
6237 pm->pm_onproc = kcpuset_running;
6238 pm->pm_active = kcpuset_running;
6239 #endif
6240 #else
6241 pm->pm_l1 = l1;
6242 #endif
6243
6244 VPRINTF("locks ");
6245 /*
6246 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6247 * context, so its locks have to be at IPL_VM
6248 */
6249 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6250 mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6251 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
6252 pm->pm_refs = 1;
6253
6254 VPRINTF("l1pt ");
6255 /*
6256 * Scan the L1 translation table created by initarm() and create
6257 * the required metadata for all valid mappings found in it.
6258 */
6259 for (size_t l1slot = 0;
6260 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6261 l1slot++) {
6262 pd_entry_t pde = l1pt[l1slot];
6263
6264 /*
6265 * We're only interested in Coarse mappings.
6266 * pmap_extract() can deal with section mappings without
6267 * recourse to checking L2 metadata.
6268 */
6269 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6270 continue;
6271
6272 /*
6273 * Lookup the KVA of this L2 descriptor table
6274 */
6275 pa = l1pte_pa(pde);
6276 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6277 if (ptep == NULL) {
6278 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6279 (u_int)l1slot << L1_S_SHIFT, pa);
6280 }
6281
6282 /*
6283 * Fetch the associated L2 metadata structure.
6284 * Allocate a new one if necessary.
6285 */
6286 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6287 if (l2next == PMAP_STATIC_L2_SIZE)
6288 panic("pmap_bootstrap: out of static L2s");
6289 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6290 }
6291
6292 /*
6293 * One more L1 slot tracked...
6294 */
6295 l2->l2_occupancy++;
6296
6297 /*
6298 * Fill in the details of the L2 descriptor in the
6299 * appropriate bucket.
6300 */
6301 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6302 l2b->l2b_kva = ptep;
6303 l2b->l2b_pa = pa;
6304 l2b->l2b_l1slot = l1slot;
6305
6306 /*
6307 * Establish an initial occupancy count for this descriptor
6308 */
6309 for (l2idx = 0;
6310 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6311 l2idx++) {
6312 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6313 l2b->l2b_occupancy++;
6314 }
6315 }
6316
6317 /*
6318 * Make sure the descriptor itself has the correct cache mode.
6319 * If not, fix it, but whine about the problem. Port-meisters
6320 * should consider this a clue to fix up their initarm()
6321 * function. :)
6322 */
6323 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6324 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6325 "L2 pte @ %p\n", ptep);
6326 }
6327 }
6328
6329 VPRINTF("cache(l1pt) ");
6330 /*
6331 * Ensure the primary (kernel) L1 has the correct cache mode for
6332 * a page table. Bitch if it is not correctly set.
6333 */
6334 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6335 L1_TABLE_SIZE / L2_S_SIZE)) {
6336 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6337 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6338 }
6339
6340 #ifdef PMAP_CACHE_VIVT
6341 cpu_dcache_wbinv_all();
6342 cpu_tlb_flushID();
6343 cpu_cpwait();
6344 #endif
6345
6346 /*
6347 * now we allocate the "special" VAs which are used for tmp mappings
6348 * by the pmap (and other modules). we allocate the VAs by advancing
6349 * virtual_avail (note that there are no pages mapped at these VAs).
6350 *
6351 * Managed KVM space start from wherever initarm() tells us.
6352 */
6353 virtual_avail = vstart;
6354 virtual_end = vend;
6355
6356 VPRINTF("specials ");
6357
6358 pmap_alloc_specials(&virtual_avail, 1, &memhook, NULL);
6359
6360 #ifdef PMAP_CACHE_VIPT
6361 /*
6362 * If we have a VIPT cache, we need one page/pte per possible alias
6363 * page so we won't violate cache aliasing rules.
6364 */
6365 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6366 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6367 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6368 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6369 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6370 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6371 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6372 }
6373 #else
6374 nptes = PAGE_SIZE / L2_S_SIZE;
6375 #endif
6376 #ifdef MULTIPROCESSOR
6377 cnptes = nptes;
6378 nptes *= arm_cpu_max;
6379 #endif
6380 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6381 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6382 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6383 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6384 if (msgbufaddr == NULL) {
6385 pmap_alloc_specials(&virtual_avail,
6386 round_page(MSGBUFSIZE) / PAGE_SIZE,
6387 (void *)&msgbufaddr, NULL);
6388 }
6389
6390 /*
6391 * Allocate a range of kernel virtual address space to be used
6392 * for L2 descriptor tables and metadata allocation in
6393 * pmap_growkernel().
6394 */
6395 size = howmany(virtual_end - pmap_curmaxkvaddr, L1_S_SIZE);
6396 pmap_alloc_specials(&virtual_avail,
6397 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6398 &pmap_kernel_l2ptp_kva, NULL);
6399
6400 size = howmany(size, L2_BUCKET_SIZE);
6401 pmap_alloc_specials(&virtual_avail,
6402 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6403 &pmap_kernel_l2dtable_kva, NULL);
6404
6405 #ifndef ARM_MMU_EXTENDED
6406 /*
6407 * init the static-global locks and global pmap list.
6408 */
6409 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6410
6411 /*
6412 * We can now initialise the first L1's metadata.
6413 */
6414 SLIST_INIT(&l1_list);
6415 TAILQ_INIT(&l1_lru_list);
6416 pmap_init_l1(l1, l1pt);
6417 #endif /* ARM_MMU_EXTENDED */
6418
6419 #ifndef ARM_HAS_VBAR
6420 /* Set up vector page L1 details, if necessary */
6421 if (vector_page < KERNEL_BASE) {
6422 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6423 l2b = pmap_get_l2_bucket(pm, vector_page);
6424 KDASSERT(l2b != NULL);
6425 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6426 L1_C_DOM(pmap_domain(pm));
6427 } else
6428 pm->pm_pl1vec = NULL;
6429 #endif
6430
6431 VPRINTF("pools ");
6432 /*
6433 * Initialize the pmap cache
6434 */
6435 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6436 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6437
6438 /*
6439 * Initialize the pv pool.
6440 */
6441 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6442 &pmap_bootstrap_pv_allocator, IPL_NONE);
6443
6444 /*
6445 * Initialize the L2 dtable pool and cache.
6446 */
6447 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6448 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6449
6450 /*
6451 * Initialise the L2 descriptor table pool and cache
6452 */
6453 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6454 L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6455 pmap_l2ptp_ctor, NULL, NULL);
6456
6457 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6458
6459 cpu_dcache_wbinv_all();
6460 }
6461
6462 static bool
6463 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6464 {
6465 #ifdef ARM_MMU_EXTENDED
6466 return false;
6467 #else
6468 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6469 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6470 return false;
6471
6472 const vaddr_t eva = va + nptes * PAGE_SIZE;
6473 int rv = 0;
6474
6475 while (va < eva) {
6476 /*
6477 * Make sure the descriptor itself has the correct cache mode
6478 */
6479 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6480 pd_entry_t pde = *pdep;
6481
6482 if (l1pte_section_p(pde)) {
6483 KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6484 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6485 *pdep = (pde & ~L1_S_CACHE_MASK) |
6486 pte_l1_s_cache_mode_pt;
6487 PDE_SYNC(pdep);
6488 cpu_dcache_wbinv_range((vaddr_t)pdep,
6489 sizeof(*pdep));
6490 rv = 1;
6491 }
6492 return rv;
6493 }
6494 vaddr_t pa = l1pte_pa(pde);
6495 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6496 if (ptep == NULL)
6497 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6498
6499 ptep += l2pte_index(va);
6500 const pt_entry_t opte = *ptep;
6501 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6502 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6503 | pte_l2_s_cache_mode_pt;
6504 l2pte_set(ptep, npte, opte);
6505 PTE_SYNC(ptep);
6506 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6507 rv = 1;
6508 }
6509 va += PAGE_SIZE;
6510 }
6511
6512 return rv;
6513 #endif
6514 }
6515
6516 static void
6517 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6518 {
6519 vaddr_t va = *availp;
6520 struct l2_bucket *l2b;
6521
6522 if (ptep) {
6523 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6524 if (l2b == NULL)
6525 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6526
6527 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6528 }
6529
6530 *vap = va;
6531 *availp = va + (PAGE_SIZE * pages);
6532 }
6533
6534 void
6535 pmap_init(void)
6536 {
6537
6538 /*
6539 * Set the available memory vars - These do not map to real memory
6540 * addresses and cannot as the physical memory is fragmented.
6541 * They are used by ps for %mem calculations.
6542 * One could argue whether this should be the entire memory or just
6543 * the memory that is useable in a user process.
6544 */
6545 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6546 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6547
6548 /*
6549 * Now we need to free enough pv_entry structures to allow us to get
6550 * the kmem_map/kmem_object allocated and inited (done after this
6551 * function is finished). to do this we allocate one bootstrap page out
6552 * of kernel_map and use it to provide an initial pool of pv_entry
6553 * structures. we never free this page.
6554 */
6555 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6556
6557 #ifdef ARM_MMU_EXTENDED
6558 /*
6559 * Initialise the L1 pool and cache.
6560 */
6561
6562 pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
6563 0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
6564 NULL, NULL);
6565
6566 int error __diagused = pmap_maxproc_set(maxproc);
6567 KASSERT(error == 0);
6568
6569 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6570 #endif
6571
6572 pmap_initialized = true;
6573 }
6574
6575 static vaddr_t last_bootstrap_page = 0;
6576 static void *free_bootstrap_pages = NULL;
6577
6578 static void *
6579 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6580 {
6581 extern void *pool_page_alloc(struct pool *, int);
6582 vaddr_t new_page;
6583 void *rv;
6584
6585 if (pmap_initialized)
6586 return pool_page_alloc(pp, flags);
6587
6588 if (free_bootstrap_pages) {
6589 rv = free_bootstrap_pages;
6590 free_bootstrap_pages = *((void **)rv);
6591 return rv;
6592 }
6593
6594 KASSERT(kernel_map != NULL);
6595 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6596 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6597
6598 KASSERT(new_page > last_bootstrap_page);
6599 last_bootstrap_page = new_page;
6600 return (void *)new_page;
6601 }
6602
6603 static void
6604 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6605 {
6606 extern void pool_page_free(struct pool *, void *);
6607
6608 if ((vaddr_t)v <= last_bootstrap_page) {
6609 *((void **)v) = free_bootstrap_pages;
6610 free_bootstrap_pages = v;
6611 return;
6612 }
6613
6614 if (pmap_initialized) {
6615 pool_page_free(pp, v);
6616 return;
6617 }
6618 }
6619
6620
6621 #if defined(ARM_MMU_EXTENDED)
6622 static void *
6623 pmap_l1tt_alloc(struct pool *pp, int flags)
6624 {
6625 struct pglist plist;
6626 vaddr_t va;
6627
6628 const int waitok = flags & PR_WAITOK;
6629
6630 int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
6631 waitok);
6632 if (error)
6633 panic("Cannot allocate L1TT physical pages, %d", error);
6634
6635 struct vm_page *pg = TAILQ_FIRST(&plist);
6636 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6637
6638 /* Allocate a L1 translation table VA */
6639 va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
6640 if (va == 0)
6641 panic("Cannot allocate L1TT KVA");
6642
6643 const vaddr_t eva = va + L1TT_SIZE;
6644 vaddr_t mva = va;
6645 while (pg && mva < eva) {
6646 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6647
6648 pmap_kenter_pa(mva, pa,
6649 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6650
6651 mva += PAGE_SIZE;
6652 pg = TAILQ_NEXT(pg, pageq.queue);
6653 }
6654 KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
6655 " eva %" PRIxVADDR, pg, mva, eva);
6656 #else
6657 bool ok;
6658 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6659 va = pmap_direct_mapped_phys(pa, &ok, 0);
6660 KASSERT(ok);
6661 KASSERT(va >= KERNEL_BASE);
6662 #endif
6663
6664 return (void *)va;
6665 }
6666
6667 static void
6668 pmap_l1tt_free(struct pool *pp, void *v)
6669 {
6670 vaddr_t va = (vaddr_t)v;
6671
6672 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6673 uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
6674 #else
6675 #if defined(KERNEL_BASE_VOFFSET)
6676 paddr_t pa = va - KERNEL_BASE_VOFFSET;
6677 #else
6678 paddr_t pa = va - KERNEL_BASE + physical_start;
6679 #endif
6680 const paddr_t epa = pa + L1TT_SIZE;
6681
6682 for (; pa < epa; pa += PAGE_SIZE) {
6683 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
6684 uvm_pagefree(pg);
6685 }
6686 #endif
6687 }
6688 #endif
6689
6690 /*
6691 * pmap_postinit()
6692 *
6693 * This routine is called after the vm and kmem subsystems have been
6694 * initialised. This allows the pmap code to perform any initialisation
6695 * that can only be done once the memory allocation is in place.
6696 */
6697 void
6698 pmap_postinit(void)
6699 {
6700 #ifndef ARM_MMU_EXTENDED
6701 extern paddr_t physical_start, physical_end;
6702 struct l1_ttable *l1;
6703 struct pglist plist;
6704 struct vm_page *m;
6705 pd_entry_t *pdep;
6706 vaddr_t va, eva;
6707 u_int loop, needed;
6708 int error;
6709 #endif
6710
6711 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6712 pool_cache_setlowat(&pmap_l2dtable_cache,
6713 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6714
6715 #ifndef ARM_MMU_EXTENDED
6716 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6717 needed -= 1;
6718
6719 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6720
6721 for (loop = 0; loop < needed; loop++, l1++) {
6722 /* Allocate a L1 page table */
6723 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6724 if (va == 0)
6725 panic("Cannot allocate L1 KVM");
6726
6727 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6728 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6729 if (error)
6730 panic("Cannot allocate L1 physical pages");
6731
6732 m = TAILQ_FIRST(&plist);
6733 eva = va + L1_TABLE_SIZE;
6734 pdep = (pd_entry_t *)va;
6735
6736 while (m && va < eva) {
6737 paddr_t pa = VM_PAGE_TO_PHYS(m);
6738
6739 pmap_kenter_pa(va, pa,
6740 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6741
6742 va += PAGE_SIZE;
6743 m = TAILQ_NEXT(m, pageq.queue);
6744 }
6745
6746 #ifdef DIAGNOSTIC
6747 if (m)
6748 panic("pmap_alloc_l1pt: pglist not empty");
6749 #endif /* DIAGNOSTIC */
6750
6751 pmap_init_l1(l1, pdep);
6752 }
6753
6754 #ifdef DEBUG
6755 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6756 needed);
6757 #endif
6758 #endif /* !ARM_MMU_EXTENDED */
6759 }
6760
6761 /*
6762 * Note that the following routines are used by board-specific initialisation
6763 * code to configure the initial kernel page tables.
6764 *
6765 */
6766
6767 /*
6768 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6769 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6770 * find them as necessary.
6771 *
6772 * Note that the data on this list MUST remain valid after initarm() returns,
6773 * as pmap_bootstrap() uses it to construct L2 table metadata.
6774 */
6775 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6776
6777 static vaddr_t
6778 kernel_pt_lookup(paddr_t pa)
6779 {
6780 pv_addr_t *pv;
6781
6782 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6783 if (pv->pv_pa == (pa & ~PGOFSET))
6784 return pv->pv_va | (pa & PGOFSET);
6785 }
6786 return 0;
6787 }
6788
6789 /*
6790 * pmap_map_section:
6791 *
6792 * Create a single section mapping.
6793 */
6794 void
6795 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6796 {
6797 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6798 const size_t l1slot = l1pte_index(va);
6799 pd_entry_t fl;
6800
6801 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6802
6803 switch (cache) {
6804 case PTE_NOCACHE:
6805 fl = pte_l1_s_nocache_mode;
6806 break;
6807
6808 case PTE_CACHE:
6809 fl = pte_l1_s_cache_mode;
6810 break;
6811
6812 case PTE_PAGETABLE:
6813 fl = pte_l1_s_cache_mode_pt;
6814 break;
6815
6816 case PTE_DEV:
6817 default:
6818 fl = 0;
6819 break;
6820 }
6821
6822 const pd_entry_t npde = L1_S_PROTO | pa |
6823 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6824 l1pte_setone(pdep + l1slot, npde);
6825 PDE_SYNC(pdep + l1slot);
6826 }
6827
6828 /*
6829 * pmap_map_entry:
6830 *
6831 * Create a single page mapping.
6832 */
6833 void
6834 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6835 {
6836 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6837 const size_t l1slot = l1pte_index(va);
6838 pt_entry_t npte;
6839 pt_entry_t *ptep;
6840
6841 KASSERT(((va | pa) & PGOFSET) == 0);
6842
6843 switch (cache) {
6844 case PTE_NOCACHE:
6845 npte = pte_l2_s_nocache_mode;
6846 break;
6847
6848 case PTE_CACHE:
6849 npte = pte_l2_s_cache_mode;
6850 break;
6851
6852 case PTE_PAGETABLE:
6853 npte = pte_l2_s_cache_mode_pt;
6854 break;
6855
6856 default:
6857 npte = 0;
6858 break;
6859 }
6860
6861 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6862 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6863
6864 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6865 if (ptep == NULL)
6866 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6867
6868 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6869 #ifdef ARM_MMU_EXTENDED
6870 if (prot & VM_PROT_EXECUTE) {
6871 npte &= ~L2_XS_XN;
6872 }
6873 #endif
6874 ptep += l2pte_index(va);
6875 l2pte_set(ptep, npte, 0);
6876 PTE_SYNC(ptep);
6877 }
6878
6879 /*
6880 * pmap_link_l2pt:
6881 *
6882 * Link the L2 page table specified by "l2pv" into the L1
6883 * page table at the slot for "va".
6884 */
6885 void
6886 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6887 {
6888 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6889
6890 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6891 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6892
6893 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6894 | l2pv->pv_pa;
6895
6896 l1pte_set(pdep, npde);
6897 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6898
6899 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6900 }
6901
6902 /*
6903 * pmap_map_chunk:
6904 *
6905 * Map a chunk of memory using the most efficient mappings
6906 * possible (section, large page, small page) into the
6907 * provided L1 and L2 tables at the specified virtual address.
6908 */
6909 vsize_t
6910 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6911 int prot, int cache)
6912 {
6913 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6914 pt_entry_t f1, f2s, f2l;
6915 vsize_t resid;
6916
6917 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6918
6919 if (l1pt == 0)
6920 panic("pmap_map_chunk: no L1 table provided");
6921
6922 // VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6923 // "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6924
6925 switch (cache) {
6926 case PTE_NOCACHE:
6927 f1 = pte_l1_s_nocache_mode;
6928 f2l = pte_l2_l_nocache_mode;
6929 f2s = pte_l2_s_nocache_mode;
6930 break;
6931
6932 case PTE_CACHE:
6933 f1 = pte_l1_s_cache_mode;
6934 f2l = pte_l2_l_cache_mode;
6935 f2s = pte_l2_s_cache_mode;
6936 break;
6937
6938 case PTE_PAGETABLE:
6939 f1 = pte_l1_s_cache_mode_pt;
6940 f2l = pte_l2_l_cache_mode_pt;
6941 f2s = pte_l2_s_cache_mode_pt;
6942 break;
6943
6944 case PTE_DEV:
6945 default:
6946 f1 = 0;
6947 f2l = 0;
6948 f2s = 0;
6949 break;
6950 }
6951
6952 size = resid;
6953
6954 while (resid > 0) {
6955 const size_t l1slot = l1pte_index(va);
6956 #ifdef ARM_MMU_EXTENDED
6957 /* See if we can use a supersection mapping. */
6958 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6959 /* Supersection are always domain 0 */
6960 const pd_entry_t npde = L1_SS_PROTO | pa
6961 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6962 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6963 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6964 VPRINTF("sS");
6965 l1pte_set(&pdep[l1slot], npde);
6966 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6967 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6968 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6969 va += L1_SS_SIZE;
6970 pa += L1_SS_SIZE;
6971 resid -= L1_SS_SIZE;
6972 continue;
6973 }
6974 #endif
6975 /* See if we can use a section mapping. */
6976 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6977 const pd_entry_t npde = L1_S_PROTO | pa
6978 #ifdef ARM_MMU_EXTENDED
6979 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6980 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6981 #endif
6982 | L1_S_PROT(PTE_KERNEL, prot) | f1
6983 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6984 VPRINTF("S");
6985 l1pte_set(&pdep[l1slot], npde);
6986 PDE_SYNC(&pdep[l1slot]);
6987 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6988 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6989 va += L1_S_SIZE;
6990 pa += L1_S_SIZE;
6991 resid -= L1_S_SIZE;
6992 continue;
6993 }
6994
6995 /*
6996 * Ok, we're going to use an L2 table. Make sure
6997 * one is actually in the corresponding L1 slot
6998 * for the current VA.
6999 */
7000 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
7001 panic("%s: no L2 table for VA %#lx", __func__, va);
7002
7003 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
7004 if (ptep == NULL)
7005 panic("%s: can't find L2 table for VA %#lx", __func__,
7006 va);
7007
7008 ptep += l2pte_index(va);
7009
7010 /* See if we can use a L2 large page mapping. */
7011 if (L2_L_MAPPABLE_P(va, pa, resid)) {
7012 const pt_entry_t npte = L2_L_PROTO | pa
7013 #ifdef ARM_MMU_EXTENDED
7014 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
7015 | (va & 0x80000000 ? 0 : L2_XS_nG)
7016 #endif
7017 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
7018 VPRINTF("L");
7019 l2pte_set(ptep, npte, 0);
7020 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
7021 va += L2_L_SIZE;
7022 pa += L2_L_SIZE;
7023 resid -= L2_L_SIZE;
7024 continue;
7025 }
7026
7027 VPRINTF("P");
7028 /* Use a small page mapping. */
7029 pt_entry_t npte = L2_S_PROTO | pa
7030 #ifdef ARM_MMU_EXTENDED
7031 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
7032 | (va & 0x80000000 ? 0 : L2_XS_nG)
7033 #endif
7034 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
7035 #ifdef ARM_MMU_EXTENDED
7036 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
7037 #endif
7038 l2pte_set(ptep, npte, 0);
7039 PTE_SYNC(ptep);
7040 va += PAGE_SIZE;
7041 pa += PAGE_SIZE;
7042 resid -= PAGE_SIZE;
7043 }
7044 VPRINTF("\n");
7045 return size;
7046 }
7047
7048 /*
7049 * pmap_unmap_chunk:
7050 *
7051 * Unmap a chunk of memory that was previously pmap_map_chunk
7052 */
7053 void
7054 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
7055 {
7056 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7057 const size_t l1slot = l1pte_index(va);
7058
7059 KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
7060
7061 l1pte_set(&pdep[l1slot], 0);
7062 PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
7063
7064 pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
7065 }
7066
7067
7068
7069 /********************** Static device map routines ***************************/
7070
7071 static const struct pmap_devmap *pmap_devmap_table;
7072
7073 /*
7074 * Register the devmap table. This is provided in case early console
7075 * initialization needs to register mappings created by bootstrap code
7076 * before pmap_devmap_bootstrap() is called.
7077 */
7078 void
7079 pmap_devmap_register(const struct pmap_devmap *table)
7080 {
7081
7082 pmap_devmap_table = table;
7083 }
7084
7085 /*
7086 * Map all of the static regions in the devmap table, and remember
7087 * the devmap table so other parts of the kernel can look up entries
7088 * later.
7089 */
7090 void
7091 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
7092 {
7093 int i;
7094
7095 pmap_devmap_table = table;
7096
7097 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7098 const struct pmap_devmap *pdp = &pmap_devmap_table[i];
7099
7100 KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
7101 " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
7102 KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
7103 " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
7104 VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
7105 pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
7106
7107 pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
7108 pdp->pd_prot, pdp->pd_cache);
7109 }
7110 }
7111
7112 const struct pmap_devmap *
7113 pmap_devmap_find_pa(paddr_t pa, psize_t size)
7114 {
7115 uint64_t endpa;
7116 int i;
7117
7118 if (pmap_devmap_table == NULL)
7119 return NULL;
7120
7121 endpa = (uint64_t)pa + (uint64_t)(size - 1);
7122
7123 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7124 if (pa >= pmap_devmap_table[i].pd_pa &&
7125 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
7126 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
7127 return &pmap_devmap_table[i];
7128 }
7129
7130 return NULL;
7131 }
7132
7133 const struct pmap_devmap *
7134 pmap_devmap_find_va(vaddr_t va, vsize_t size)
7135 {
7136 int i;
7137
7138 if (pmap_devmap_table == NULL)
7139 return NULL;
7140
7141 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7142 if (va >= pmap_devmap_table[i].pd_va &&
7143 va + size - 1 <= pmap_devmap_table[i].pd_va +
7144 pmap_devmap_table[i].pd_size - 1)
7145 return &pmap_devmap_table[i];
7146 }
7147
7148 return NULL;
7149 }
7150
7151 /********************** PTE initialization routines **************************/
7152
7153 /*
7154 * These routines are called when the CPU type is identified to set up
7155 * the PTE prototypes, cache modes, etc.
7156 *
7157 * The variables are always here, just in case modules need to reference
7158 * them (though, they shouldn't).
7159 */
7160
7161 pt_entry_t pte_l1_s_nocache_mode;
7162 pt_entry_t pte_l1_s_cache_mode;
7163 pt_entry_t pte_l1_s_wc_mode;
7164 pt_entry_t pte_l1_s_cache_mode_pt;
7165 pt_entry_t pte_l1_s_cache_mask;
7166
7167 pt_entry_t pte_l2_l_nocache_mode;
7168 pt_entry_t pte_l2_l_cache_mode;
7169 pt_entry_t pte_l2_l_wc_mode;
7170 pt_entry_t pte_l2_l_cache_mode_pt;
7171 pt_entry_t pte_l2_l_cache_mask;
7172
7173 pt_entry_t pte_l2_s_nocache_mode;
7174 pt_entry_t pte_l2_s_cache_mode;
7175 pt_entry_t pte_l2_s_wc_mode;
7176 pt_entry_t pte_l2_s_cache_mode_pt;
7177 pt_entry_t pte_l2_s_cache_mask;
7178
7179 pt_entry_t pte_l1_s_prot_u;
7180 pt_entry_t pte_l1_s_prot_w;
7181 pt_entry_t pte_l1_s_prot_ro;
7182 pt_entry_t pte_l1_s_prot_mask;
7183
7184 pt_entry_t pte_l2_s_prot_u;
7185 pt_entry_t pte_l2_s_prot_w;
7186 pt_entry_t pte_l2_s_prot_ro;
7187 pt_entry_t pte_l2_s_prot_mask;
7188
7189 pt_entry_t pte_l2_l_prot_u;
7190 pt_entry_t pte_l2_l_prot_w;
7191 pt_entry_t pte_l2_l_prot_ro;
7192 pt_entry_t pte_l2_l_prot_mask;
7193
7194 pt_entry_t pte_l1_ss_proto;
7195 pt_entry_t pte_l1_s_proto;
7196 pt_entry_t pte_l1_c_proto;
7197 pt_entry_t pte_l2_s_proto;
7198
7199 void (*pmap_copy_page_func)(paddr_t, paddr_t);
7200 void (*pmap_zero_page_func)(paddr_t);
7201
7202 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7203 void
7204 pmap_pte_init_generic(void)
7205 {
7206
7207 pte_l1_s_nocache_mode = 0;
7208 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7209 pte_l1_s_wc_mode = L1_S_B;
7210 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7211
7212 pte_l2_l_nocache_mode = 0;
7213 pte_l2_l_cache_mode = L2_B|L2_C;
7214 pte_l2_l_wc_mode = L2_B;
7215 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7216
7217 pte_l2_s_nocache_mode = 0;
7218 pte_l2_s_cache_mode = L2_B|L2_C;
7219 pte_l2_s_wc_mode = L2_B;
7220 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7221
7222 /*
7223 * If we have a write-through cache, set B and C. If
7224 * we have a write-back cache, then we assume setting
7225 * only C will make those pages write-through (except for those
7226 * Cortex CPUs which can read the L1 caches).
7227 */
7228 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7229 #if ARM_MMU_V7 > 0
7230 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7231 #endif
7232 #if ARM_MMU_V6 > 0
7233 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7234 #endif
7235 || false) {
7236 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7237 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7238 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7239 } else {
7240 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7241 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7242 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7243 }
7244
7245 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7246 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7247 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7248 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7249
7250 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7251 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7252 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7253 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7254
7255 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7256 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7257 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7258 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7259
7260 pte_l1_ss_proto = L1_SS_PROTO_generic;
7261 pte_l1_s_proto = L1_S_PROTO_generic;
7262 pte_l1_c_proto = L1_C_PROTO_generic;
7263 pte_l2_s_proto = L2_S_PROTO_generic;
7264
7265 pmap_copy_page_func = pmap_copy_page_generic;
7266 pmap_zero_page_func = pmap_zero_page_generic;
7267 }
7268
7269 #if defined(CPU_ARM8)
7270 void
7271 pmap_pte_init_arm8(void)
7272 {
7273
7274 /*
7275 * ARM8 is compatible with generic, but we need to use
7276 * the page tables uncached.
7277 */
7278 pmap_pte_init_generic();
7279
7280 pte_l1_s_cache_mode_pt = 0;
7281 pte_l2_l_cache_mode_pt = 0;
7282 pte_l2_s_cache_mode_pt = 0;
7283 }
7284 #endif /* CPU_ARM8 */
7285
7286 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7287 void
7288 pmap_pte_init_arm9(void)
7289 {
7290
7291 /*
7292 * ARM9 is compatible with generic, but we want to use
7293 * write-through caching for now.
7294 */
7295 pmap_pte_init_generic();
7296
7297 pte_l1_s_cache_mode = L1_S_C;
7298 pte_l2_l_cache_mode = L2_C;
7299 pte_l2_s_cache_mode = L2_C;
7300
7301 pte_l1_s_wc_mode = L1_S_B;
7302 pte_l2_l_wc_mode = L2_B;
7303 pte_l2_s_wc_mode = L2_B;
7304
7305 pte_l1_s_cache_mode_pt = L1_S_C;
7306 pte_l2_l_cache_mode_pt = L2_C;
7307 pte_l2_s_cache_mode_pt = L2_C;
7308 }
7309 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7310 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7311
7312 #if defined(CPU_ARM10)
7313 void
7314 pmap_pte_init_arm10(void)
7315 {
7316
7317 /*
7318 * ARM10 is compatible with generic, but we want to use
7319 * write-through caching for now.
7320 */
7321 pmap_pte_init_generic();
7322
7323 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7324 pte_l2_l_cache_mode = L2_B | L2_C;
7325 pte_l2_s_cache_mode = L2_B | L2_C;
7326
7327 pte_l1_s_cache_mode = L1_S_B;
7328 pte_l2_l_cache_mode = L2_B;
7329 pte_l2_s_cache_mode = L2_B;
7330
7331 pte_l1_s_cache_mode_pt = L1_S_C;
7332 pte_l2_l_cache_mode_pt = L2_C;
7333 pte_l2_s_cache_mode_pt = L2_C;
7334
7335 }
7336 #endif /* CPU_ARM10 */
7337
7338 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7339 void
7340 pmap_pte_init_arm11(void)
7341 {
7342
7343 /*
7344 * ARM11 is compatible with generic, but we want to use
7345 * write-through caching for now.
7346 */
7347 pmap_pte_init_generic();
7348
7349 pte_l1_s_cache_mode = L1_S_C;
7350 pte_l2_l_cache_mode = L2_C;
7351 pte_l2_s_cache_mode = L2_C;
7352
7353 pte_l1_s_wc_mode = L1_S_B;
7354 pte_l2_l_wc_mode = L2_B;
7355 pte_l2_s_wc_mode = L2_B;
7356
7357 pte_l1_s_cache_mode_pt = L1_S_C;
7358 pte_l2_l_cache_mode_pt = L2_C;
7359 pte_l2_s_cache_mode_pt = L2_C;
7360 }
7361 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7362
7363 #if ARM_MMU_SA1 == 1
7364 void
7365 pmap_pte_init_sa1(void)
7366 {
7367
7368 /*
7369 * The StrongARM SA-1 cache does not have a write-through
7370 * mode. So, do the generic initialization, then reset
7371 * the page table cache mode to B=1,C=1, and note that
7372 * the PTEs need to be sync'd.
7373 */
7374 pmap_pte_init_generic();
7375
7376 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7377 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7378 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7379
7380 pmap_needs_pte_sync = 1;
7381 }
7382 #endif /* ARM_MMU_SA1 == 1*/
7383
7384 #if ARM_MMU_XSCALE == 1
7385 #if (ARM_NMMUS > 1)
7386 static u_int xscale_use_minidata;
7387 #endif
7388
7389 void
7390 pmap_pte_init_xscale(void)
7391 {
7392 uint32_t auxctl;
7393 int write_through = 0;
7394
7395 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7396 pte_l1_s_wc_mode = L1_S_B;
7397 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7398
7399 pte_l2_l_cache_mode = L2_B|L2_C;
7400 pte_l2_l_wc_mode = L2_B;
7401 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7402
7403 pte_l2_s_cache_mode = L2_B|L2_C;
7404 pte_l2_s_wc_mode = L2_B;
7405 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7406
7407 pte_l1_s_cache_mode_pt = L1_S_C;
7408 pte_l2_l_cache_mode_pt = L2_C;
7409 pte_l2_s_cache_mode_pt = L2_C;
7410
7411 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7412 /*
7413 * The XScale core has an enhanced mode where writes that
7414 * miss the cache cause a cache line to be allocated. This
7415 * is significantly faster than the traditional, write-through
7416 * behavior of this case.
7417 */
7418 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7419 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7420 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7421 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7422
7423 #ifdef XSCALE_CACHE_WRITE_THROUGH
7424 /*
7425 * Some versions of the XScale core have various bugs in
7426 * their cache units, the work-around for which is to run
7427 * the cache in write-through mode. Unfortunately, this
7428 * has a major (negative) impact on performance. So, we
7429 * go ahead and run fast-and-loose, in the hopes that we
7430 * don't line up the planets in a way that will trip the
7431 * bugs.
7432 *
7433 * However, we give you the option to be slow-but-correct.
7434 */
7435 write_through = 1;
7436 #elif defined(XSCALE_CACHE_WRITE_BACK)
7437 /* force write back cache mode */
7438 write_through = 0;
7439 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7440 /*
7441 * Intel PXA2[15]0 processors are known to have a bug in
7442 * write-back cache on revision 4 and earlier (stepping
7443 * A[01] and B[012]). Fixed for C0 and later.
7444 */
7445 {
7446 uint32_t id, type;
7447
7448 id = cpufunc_id();
7449 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7450
7451 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7452 if ((id & CPU_ID_REVISION_MASK) < 5) {
7453 /* write through for stepping A0-1 and B0-2 */
7454 write_through = 1;
7455 }
7456 }
7457 }
7458 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7459
7460 if (write_through) {
7461 pte_l1_s_cache_mode = L1_S_C;
7462 pte_l2_l_cache_mode = L2_C;
7463 pte_l2_s_cache_mode = L2_C;
7464 }
7465
7466 #if (ARM_NMMUS > 1)
7467 xscale_use_minidata = 1;
7468 #endif
7469
7470 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7471 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7472 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7473 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7474
7475 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7476 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7477 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7478 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7479
7480 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7481 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7482 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7483 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7484
7485 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7486 pte_l1_s_proto = L1_S_PROTO_xscale;
7487 pte_l1_c_proto = L1_C_PROTO_xscale;
7488 pte_l2_s_proto = L2_S_PROTO_xscale;
7489
7490 pmap_copy_page_func = pmap_copy_page_xscale;
7491 pmap_zero_page_func = pmap_zero_page_xscale;
7492
7493 /*
7494 * Disable ECC protection of page table access, for now.
7495 */
7496 auxctl = armreg_auxctl_read();
7497 auxctl &= ~XSCALE_AUXCTL_P;
7498 armreg_auxctl_write(auxctl);
7499 }
7500
7501 /*
7502 * xscale_setup_minidata:
7503 *
7504 * Set up the mini-data cache clean area. We require the
7505 * caller to allocate the right amount of physically and
7506 * virtually contiguous space.
7507 */
7508 void
7509 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7510 {
7511 extern vaddr_t xscale_minidata_clean_addr;
7512 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7513 pd_entry_t *pde = (pd_entry_t *) l1pt;
7514 vsize_t size;
7515 uint32_t auxctl;
7516
7517 xscale_minidata_clean_addr = va;
7518
7519 /* Round it to page size. */
7520 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7521
7522 for (; size != 0;
7523 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7524 const size_t l1slot = l1pte_index(va);
7525 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7526 if (ptep == NULL)
7527 panic("xscale_setup_minidata: can't find L2 table for "
7528 "VA 0x%08lx", va);
7529
7530 ptep += l2pte_index(va);
7531 pt_entry_t opte = *ptep;
7532 l2pte_set(ptep,
7533 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7534 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7535 }
7536
7537 /*
7538 * Configure the mini-data cache for write-back with
7539 * read/write-allocate.
7540 *
7541 * NOTE: In order to reconfigure the mini-data cache, we must
7542 * make sure it contains no valid data! In order to do that,
7543 * we must issue a global data cache invalidate command!
7544 *
7545 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7546 * THIS IS VERY IMPORTANT!
7547 */
7548
7549 /* Invalidate data and mini-data. */
7550 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7551 auxctl = armreg_auxctl_read();
7552 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7553 armreg_auxctl_write(auxctl);
7554 }
7555
7556 /*
7557 * Change the PTEs for the specified kernel mappings such that they
7558 * will use the mini data cache instead of the main data cache.
7559 */
7560 void
7561 pmap_uarea(vaddr_t va)
7562 {
7563 vaddr_t next_bucket, eva;
7564
7565 #if (ARM_NMMUS > 1)
7566 if (xscale_use_minidata == 0)
7567 return;
7568 #endif
7569
7570 eva = va + USPACE;
7571
7572 while (va < eva) {
7573 next_bucket = L2_NEXT_BUCKET_VA(va);
7574 if (next_bucket > eva)
7575 next_bucket = eva;
7576
7577 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7578 KDASSERT(l2b != NULL);
7579
7580 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7581 pt_entry_t *ptep = sptep;
7582
7583 while (va < next_bucket) {
7584 const pt_entry_t opte = *ptep;
7585 if (!l2pte_minidata_p(opte)) {
7586 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7587 cpu_tlb_flushD_SE(va);
7588 l2pte_set(ptep, opte & ~L2_B, opte);
7589 }
7590 ptep += PAGE_SIZE / L2_S_SIZE;
7591 va += PAGE_SIZE;
7592 }
7593 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7594 }
7595 cpu_cpwait();
7596 }
7597 #endif /* ARM_MMU_XSCALE == 1 */
7598
7599
7600 #if defined(CPU_ARM11MPCORE)
7601 void
7602 pmap_pte_init_arm11mpcore(void)
7603 {
7604
7605 /* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
7606 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7607 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7608 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7609 /* use extended small page (without APn, with TEX) */
7610 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7611 #else
7612 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7613 #endif
7614
7615 /* write-back, write-allocate */
7616 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7617 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7618 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7619 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7620 #else
7621 /* no TEX. read-allocate */
7622 pte_l2_s_cache_mode = L2_C | L2_B;
7623 #endif
7624 /*
7625 * write-back, write-allocate for page tables.
7626 */
7627 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7628 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7629 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7630 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7631 #else
7632 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7633 #endif
7634
7635 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7636 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7637 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7638 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7639
7640 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7641 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7642 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7643 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7644 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7645
7646 #else
7647 /* with AP[0..3] */
7648 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7649 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7650 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7651 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7652 #endif
7653
7654 #ifdef ARM11MPCORE_COMPAT_MMU
7655 /* with AP[0..3] */
7656 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7657 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7658 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7659 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7660
7661 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7662 pte_l1_s_proto = L1_S_PROTO_armv6;
7663 pte_l1_c_proto = L1_C_PROTO_armv6;
7664 pte_l2_s_proto = L2_S_PROTO_armv6c;
7665 #else
7666 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7667 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7668 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7669 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7670
7671 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7672 pte_l1_s_proto = L1_S_PROTO_armv6;
7673 pte_l1_c_proto = L1_C_PROTO_armv6;
7674 pte_l2_s_proto = L2_S_PROTO_armv6n;
7675 #endif
7676
7677 pmap_copy_page_func = pmap_copy_page_generic;
7678 pmap_zero_page_func = pmap_zero_page_generic;
7679 pmap_needs_pte_sync = 1;
7680 }
7681 #endif /* CPU_ARM11MPCORE */
7682
7683
7684 #if ARM_MMU_V6 == 1
7685 void
7686 pmap_pte_init_armv6(void)
7687 {
7688 /*
7689 * The ARMv6-A MMU is mostly compatible with generic. If the
7690 * AP field is zero, that now means "no access" rather than
7691 * read-only. The prototypes are a little different because of
7692 * the XN bit.
7693 */
7694 pmap_pte_init_generic();
7695
7696 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7697 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7698 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7699
7700 #ifdef ARM11_COMPAT_MMU
7701 /* with AP[0..3] */
7702 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7703 #else
7704 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
7705 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
7706 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
7707
7708 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7709 pte_l1_s_proto = L1_S_PROTO_armv6;
7710 pte_l1_c_proto = L1_C_PROTO_armv6;
7711 pte_l2_s_proto = L2_S_PROTO_armv6n;
7712
7713 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7714 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7715 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7716 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7717
7718 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7719 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7720 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7721 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7722
7723 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7724 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7725 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7726 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7727
7728 #endif
7729 }
7730 #endif /* ARM_MMU_V6 */
7731
7732 #if ARM_MMU_V7 == 1
7733 void
7734 pmap_pte_init_armv7(void)
7735 {
7736 /*
7737 * The ARMv7-A MMU is mostly compatible with generic. If the
7738 * AP field is zero, that now means "no access" rather than
7739 * read-only. The prototypes are a little different because of
7740 * the XN bit.
7741 */
7742 pmap_pte_init_generic();
7743
7744 pmap_needs_pte_sync = 1;
7745
7746 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7747 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7748 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7749
7750 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7751 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7752 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7753
7754 /*
7755 * If the core support coherent walk then updates to translation tables
7756 * do not require a clean to the point of unification to ensure
7757 * visibility by subsequent translation table walks. That means we can
7758 * map everything shareable and cached and the right thing will happen.
7759 */
7760 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7761 pmap_needs_pte_sync = 0;
7762
7763 /*
7764 * write-back, no write-allocate, shareable for normal pages.
7765 */
7766 pte_l1_s_cache_mode |= L1_S_V6_S;
7767 pte_l2_l_cache_mode |= L2_XS_S;
7768 pte_l2_s_cache_mode |= L2_XS_S;
7769 }
7770
7771 /*
7772 * Page tables are just all other memory. We can use write-back since
7773 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7774 */
7775 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7776 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7777 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7778
7779 /*
7780 * Check the Memory Model Features to see if this CPU supports
7781 * the TLBIASID coproc op.
7782 */
7783 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7784 arm_has_tlbiasid_p = true;
7785 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7786 arm_has_tlbiasid_p = true;
7787 }
7788
7789 /*
7790 * Check the MPIDR to see if this CPU supports MP extensions.
7791 */
7792 #ifdef MULTIPROCESSOR
7793 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7794 #else
7795 arm_has_mpext_p = false;
7796 #endif
7797
7798 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7799 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7800 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7801 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7802
7803 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7804 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7805 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7806 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7807
7808 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7809 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7810 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7811 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7812
7813 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7814 pte_l1_s_proto = L1_S_PROTO_armv7;
7815 pte_l1_c_proto = L1_C_PROTO_armv7;
7816 pte_l2_s_proto = L2_S_PROTO_armv7;
7817
7818 }
7819 #endif /* ARM_MMU_V7 */
7820
7821 /*
7822 * return the PA of the current L1 table, for use when handling a crash dump
7823 */
7824 uint32_t
7825 pmap_kernel_L1_addr(void)
7826 {
7827 #ifdef ARM_MMU_EXTENDED
7828 return pmap_kernel()->pm_l1_pa;
7829 #else
7830 return pmap_kernel()->pm_l1->l1_physaddr;
7831 #endif
7832 }
7833
7834 #if defined(DDB)
7835 /*
7836 * A couple of ddb-callable functions for dumping pmaps
7837 */
7838 void pmap_dump(pmap_t);
7839
7840 static pt_entry_t ncptes[64];
7841 static void pmap_dump_ncpg(pmap_t);
7842
7843 void
7844 pmap_dump(pmap_t pm)
7845 {
7846 struct l2_dtable *l2;
7847 struct l2_bucket *l2b;
7848 pt_entry_t *ptep, pte;
7849 vaddr_t l2_va, l2b_va, va;
7850 int i, j, k, occ, rows = 0;
7851
7852 if (pm == pmap_kernel())
7853 printf("pmap_kernel (%p): ", pm);
7854 else
7855 printf("user pmap (%p): ", pm);
7856
7857 #ifdef ARM_MMU_EXTENDED
7858 printf("l1 at %p\n", pmap_l1_kva(pm));
7859 #else
7860 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7861 #endif
7862
7863 l2_va = 0;
7864 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7865 l2 = pm->pm_l2[i];
7866
7867 if (l2 == NULL || l2->l2_occupancy == 0)
7868 continue;
7869
7870 l2b_va = l2_va;
7871 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7872 l2b = &l2->l2_bucket[j];
7873
7874 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7875 continue;
7876
7877 ptep = l2b->l2b_kva;
7878
7879 for (k = 0; k < 256 && ptep[k] == 0; k++)
7880 ;
7881
7882 k &= ~63;
7883 occ = l2b->l2b_occupancy;
7884 va = l2b_va + (k * 4096);
7885 for (; k < 256; k++, va += 0x1000) {
7886 char ch = ' ';
7887 if ((k % 64) == 0) {
7888 if ((rows % 8) == 0) {
7889 printf(
7890 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7891 }
7892 printf("%08lx: ", va);
7893 }
7894
7895 ncptes[k & 63] = 0;
7896 pte = ptep[k];
7897 if (pte == 0) {
7898 ch = '.';
7899 } else {
7900 occ--;
7901 switch (pte & 0x4c) {
7902 case 0x00:
7903 ch = 'N'; /* No cache No buff */
7904 break;
7905 case 0x04:
7906 ch = 'B'; /* No cache buff */
7907 break;
7908 case 0x08:
7909 ch = 'C'; /* Cache No buff */
7910 break;
7911 case 0x0c:
7912 ch = 'F'; /* Cache Buff */
7913 break;
7914 case 0x40:
7915 ch = 'D';
7916 break;
7917 case 0x48:
7918 ch = 'm'; /* Xscale mini-data */
7919 break;
7920 default:
7921 ch = '?';
7922 break;
7923 }
7924
7925 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7926 ch += 0x20;
7927
7928 if ((pte & 0xc) == 0)
7929 ncptes[k & 63] = pte;
7930 }
7931
7932 if ((k % 64) == 63) {
7933 rows++;
7934 printf("%c\n", ch);
7935 pmap_dump_ncpg(pm);
7936 if (occ == 0)
7937 break;
7938 } else
7939 printf("%c", ch);
7940 }
7941 }
7942 }
7943 }
7944
7945 static void
7946 pmap_dump_ncpg(pmap_t pm)
7947 {
7948 struct vm_page *pg;
7949 struct vm_page_md *md;
7950 struct pv_entry *pv;
7951 int i;
7952
7953 for (i = 0; i < 63; i++) {
7954 if (ncptes[i] == 0)
7955 continue;
7956
7957 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7958 if (pg == NULL)
7959 continue;
7960 md = VM_PAGE_TO_MD(pg);
7961
7962 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7963 VM_PAGE_TO_PHYS(pg),
7964 md->krw_mappings, md->kro_mappings,
7965 md->urw_mappings, md->uro_mappings);
7966
7967 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7968 printf(" %c va 0x%08lx, flags 0x%x\n",
7969 (pm == pv->pv_pmap) ? '*' : ' ',
7970 pv->pv_va, pv->pv_flags);
7971 }
7972 }
7973 }
7974 #endif
7975
7976 #ifdef PMAP_STEAL_MEMORY
7977 void
7978 pmap_boot_pageadd(pv_addr_t *newpv)
7979 {
7980 pv_addr_t *pv, *npv;
7981
7982 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7983 if (newpv->pv_pa < pv->pv_va) {
7984 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7985 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7986 newpv->pv_size += pv->pv_size;
7987 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7988 }
7989 pv = NULL;
7990 } else {
7991 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7992 pv = npv) {
7993 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7994 KASSERT(pv->pv_pa < newpv->pv_pa);
7995 if (newpv->pv_pa > npv->pv_pa)
7996 continue;
7997 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7998 pv->pv_size += newpv->pv_size;
7999 return;
8000 }
8001 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
8002 break;
8003 newpv->pv_size += npv->pv_size;
8004 SLIST_INSERT_AFTER(pv, newpv, pv_list);
8005 SLIST_REMOVE_AFTER(newpv, pv_list);
8006 return;
8007 }
8008 }
8009 }
8010
8011 if (pv) {
8012 SLIST_INSERT_AFTER(pv, newpv, pv_list);
8013 } else {
8014 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
8015 }
8016 }
8017
8018 void
8019 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
8020 pv_addr_t *rpv)
8021 {
8022 pv_addr_t *pv, **pvp;
8023
8024 KASSERT(amount & PGOFSET);
8025 KASSERT((mask & PGOFSET) == 0);
8026 KASSERT((match & PGOFSET) == 0);
8027 KASSERT(amount != 0);
8028
8029 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8030 (pv = *pvp) != NULL;
8031 pvp = &SLIST_NEXT(pv, pv_list)) {
8032 pv_addr_t *newpv;
8033 psize_t off;
8034 /*
8035 * If this entry is too small to satisfy the request...
8036 */
8037 KASSERT(pv->pv_size > 0);
8038 if (pv->pv_size < amount)
8039 continue;
8040
8041 for (off = 0; off <= mask; off += PAGE_SIZE) {
8042 if (((pv->pv_pa + off) & mask) == match
8043 && off + amount <= pv->pv_size)
8044 break;
8045 }
8046 if (off > mask)
8047 continue;
8048
8049 rpv->pv_va = pv->pv_va + off;
8050 rpv->pv_pa = pv->pv_pa + off;
8051 rpv->pv_size = amount;
8052 pv->pv_size -= amount;
8053 if (pv->pv_size == 0) {
8054 KASSERT(off == 0);
8055 KASSERT((vaddr_t) pv == rpv->pv_va);
8056 *pvp = SLIST_NEXT(pv, pv_list);
8057 } else if (off == 0) {
8058 KASSERT((vaddr_t) pv == rpv->pv_va);
8059 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8060 *newpv = *pv;
8061 newpv->pv_pa += amount;
8062 newpv->pv_va += amount;
8063 *pvp = newpv;
8064 } else if (off < pv->pv_size) {
8065 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8066 *newpv = *pv;
8067 newpv->pv_size -= off;
8068 newpv->pv_pa += off + amount;
8069 newpv->pv_va += off + amount;
8070
8071 SLIST_NEXT(pv, pv_list) = newpv;
8072 pv->pv_size = off;
8073 } else {
8074 KASSERT((vaddr_t) pv != rpv->pv_va);
8075 }
8076 memset((void *)rpv->pv_va, 0, amount);
8077 return;
8078 }
8079
8080 if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
8081 panic("pmap_boot_pagealloc: couldn't allocate memory");
8082
8083 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8084 (pv = *pvp) != NULL;
8085 pvp = &SLIST_NEXT(pv, pv_list)) {
8086 if (SLIST_NEXT(pv, pv_list) == NULL)
8087 break;
8088 }
8089 KASSERT(mask == 0);
8090
8091 for (uvm_physseg_t ups = uvm_physseg_get_first();
8092 uvm_physseg_valid_p(ups);
8093 ups = uvm_physseg_get_next(ups)) {
8094
8095 paddr_t spn = uvm_physseg_get_start(ups);
8096 paddr_t epn = uvm_physseg_get_end(ups);
8097 if (spn == atop(pv->pv_pa + pv->pv_size)
8098 && pv->pv_va + pv->pv_size <= ptoa(epn)) {
8099 rpv->pv_va = pv->pv_va;
8100 rpv->pv_pa = pv->pv_pa;
8101 rpv->pv_size = amount;
8102 *pvp = NULL;
8103 pmap_map_chunk(kernel_l1pt.pv_va,
8104 ptoa(spn) + (pv->pv_va - pv->pv_pa),
8105 ptoa(spn),
8106 amount - pv->pv_size,
8107 VM_PROT_READ|VM_PROT_WRITE,
8108 PTE_CACHE);
8109
8110 uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
8111 memset((void *)rpv->pv_va, 0, rpv->pv_size);
8112 return;
8113 }
8114 }
8115
8116 panic("pmap_boot_pagealloc: couldn't allocate memory");
8117 }
8118
8119 vaddr_t
8120 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
8121 {
8122 pv_addr_t pv;
8123
8124 pmap_boot_pagealloc(size, 0, 0, &pv);
8125
8126 return pv.pv_va;
8127 }
8128 #endif /* PMAP_STEAL_MEMORY */
8129
8130 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
8131 {
8132 sysctl_createv(clog, 0, NULL, NULL,
8133 CTLFLAG_PERMANENT,
8134 CTLTYPE_NODE, "machdep", NULL,
8135 NULL, 0, NULL, 0,
8136 CTL_MACHDEP, CTL_EOL);
8137
8138 sysctl_createv(clog, 0, NULL, NULL,
8139 CTLFLAG_PERMANENT,
8140 CTLTYPE_INT, "kmpages",
8141 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
8142 NULL, 0, &pmap_kmpages, 0,
8143 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
8144 }
8145
8146 #ifdef PMAP_NEED_ALLOC_POOLPAGE
8147 struct vm_page *
8148 arm_pmap_alloc_poolpage(int flags)
8149 {
8150 /*
8151 * On some systems, only some pages may be "coherent" for dma and we
8152 * want to prefer those for pool pages (think mbufs) but fallback to
8153 * any page if none is available.
8154 */
8155 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
8156 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
8157 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
8158 }
8159
8160 return uvm_pagealloc(NULL, 0, NULL, flags);
8161 }
8162 #endif
8163
8164 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
8165 void
8166 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
8167 {
8168 /* nothing */
8169 }
8170
8171 int
8172 pic_ipi_shootdown(void *arg)
8173 {
8174 #if PMAP_TLB_NEED_SHOOTDOWN
8175 pmap_tlb_shootdown_process();
8176 #endif
8177 return 1;
8178 }
8179 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
8180
8181
8182 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
8183 vaddr_t
8184 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
8185 {
8186 bool ok = false;
8187 if (physical_start <= pa && pa < physical_end) {
8188 #ifdef KERNEL_BASE_VOFFSET
8189 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
8190 #else
8191 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
8192 #endif
8193 #ifdef ARM_MMU_EXTENDED
8194 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
8195 #endif
8196 va = newva;
8197 ok = true;
8198 #ifdef ARM_MMU_EXTENDED
8199 }
8200 #endif
8201 }
8202 KASSERT(ok_p);
8203 *ok_p = ok;
8204 return va;
8205 }
8206
8207 vaddr_t
8208 pmap_map_poolpage(paddr_t pa)
8209 {
8210 bool ok __diagused;
8211 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
8212 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
8213 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
8214 if (arm_cache_prefer_mask != 0) {
8215 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
8216 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
8217 pmap_acquire_page_lock(md);
8218 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
8219 pmap_release_page_lock(md);
8220 }
8221 #endif
8222 return va;
8223 }
8224
8225 paddr_t
8226 pmap_unmap_poolpage(vaddr_t va)
8227 {
8228 KASSERT(va >= KERNEL_BASE);
8229 #ifdef PMAP_CACHE_VIVT
8230 cpu_idcache_wbinv_range(va, PAGE_SIZE);
8231 #endif
8232 #if defined(KERNEL_BASE_VOFFSET)
8233 return va - KERNEL_BASE_VOFFSET;
8234 #else
8235 return va - KERNEL_BASE + physical_start;
8236 #endif
8237 }
8238 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8239