pmap.c revision 1.427 1 /* $NetBSD: pmap.c,v 1.427 2021/03/23 06:35:24 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999, 2020 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /* Include header files */
183
184 #include "opt_arm_debug.h"
185 #include "opt_cpuoptions.h"
186 #include "opt_ddb.h"
187 #include "opt_lockdebug.h"
188 #include "opt_multiprocessor.h"
189
190 #ifdef MULTIPROCESSOR
191 #define _INTR_PRIVATE
192 #endif
193
194 #include <sys/cdefs.h>
195 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.427 2021/03/23 06:35:24 skrll Exp $");
196
197 #include <sys/param.h>
198 #include <sys/types.h>
199
200 #include <sys/asan.h>
201 #include <sys/atomic.h>
202 #include <sys/bus.h>
203 #include <sys/cpu.h>
204 #include <sys/intr.h>
205 #include <sys/kernel.h>
206 #include <sys/kernhist.h>
207 #include <sys/kmem.h>
208 #include <sys/pool.h>
209 #include <sys/proc.h>
210 #include <sys/sysctl.h>
211 #include <sys/systm.h>
212
213 #include <uvm/uvm.h>
214 #include <uvm/pmap/pmap_pvt.h>
215
216 #include <arm/locore.h>
217
218 #ifdef DDB
219 #include <arm/db_machdep.h>
220 #endif
221
222 #ifdef VERBOSE_INIT_ARM
223 #define VPRINTF(...) printf(__VA_ARGS__)
224 #else
225 #define VPRINTF(...) __nothing
226 #endif
227
228 /*
229 * pmap_kernel() points here
230 */
231 static struct pmap kernel_pmap_store = {
232 #ifndef ARM_MMU_EXTENDED
233 .pm_activated = true,
234 .pm_domain = PMAP_DOMAIN_KERNEL,
235 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
236 #endif
237 };
238 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store;
239 #undef pmap_kernel
240 #define pmap_kernel() (&kernel_pmap_store)
241 #ifdef PMAP_NEED_ALLOC_POOLPAGE
242 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
243 #endif
244
245 /*
246 * Pool and cache that pmap structures are allocated from.
247 * We use a cache to avoid clearing the pm_l2[] array (1KB)
248 * in pmap_create().
249 */
250 static struct pool_cache pmap_cache;
251
252 /*
253 * Pool of PV structures
254 */
255 static struct pool pmap_pv_pool;
256 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
257 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
258 static struct pool_allocator pmap_bootstrap_pv_allocator = {
259 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
260 };
261
262 /*
263 * Pool and cache of l2_dtable structures.
264 * We use a cache to avoid clearing the structures when they're
265 * allocated. (196 bytes)
266 */
267 static struct pool_cache pmap_l2dtable_cache;
268 static vaddr_t pmap_kernel_l2dtable_kva;
269
270 /*
271 * Pool and cache of L2 page descriptors.
272 * We use a cache to avoid clearing the descriptor table
273 * when they're allocated. (1KB)
274 */
275 static struct pool_cache pmap_l2ptp_cache;
276 static vaddr_t pmap_kernel_l2ptp_kva;
277 static paddr_t pmap_kernel_l2ptp_phys;
278
279 #ifdef PMAPCOUNTERS
280 #define PMAP_EVCNT_INITIALIZER(name) \
281 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
282
283 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
284 static struct evcnt pmap_ev_vac_clean_one =
285 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
286 static struct evcnt pmap_ev_vac_flush_one =
287 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
288 static struct evcnt pmap_ev_vac_flush_lots =
289 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
290 static struct evcnt pmap_ev_vac_flush_lots2 =
291 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
292 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
293 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
294 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
295 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
296
297 static struct evcnt pmap_ev_vac_color_new =
298 PMAP_EVCNT_INITIALIZER("new page color");
299 static struct evcnt pmap_ev_vac_color_reuse =
300 PMAP_EVCNT_INITIALIZER("ok first page color");
301 static struct evcnt pmap_ev_vac_color_ok =
302 PMAP_EVCNT_INITIALIZER("ok page color");
303 static struct evcnt pmap_ev_vac_color_blind =
304 PMAP_EVCNT_INITIALIZER("blind page color");
305 static struct evcnt pmap_ev_vac_color_change =
306 PMAP_EVCNT_INITIALIZER("change page color");
307 static struct evcnt pmap_ev_vac_color_erase =
308 PMAP_EVCNT_INITIALIZER("erase page color");
309 static struct evcnt pmap_ev_vac_color_none =
310 PMAP_EVCNT_INITIALIZER("no page color");
311 static struct evcnt pmap_ev_vac_color_restore =
312 PMAP_EVCNT_INITIALIZER("restore page color");
313
314 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
315 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
316 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
317 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
318 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
319 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
320 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
322 #endif
323
324 static struct evcnt pmap_ev_mappings =
325 PMAP_EVCNT_INITIALIZER("pages mapped");
326 static struct evcnt pmap_ev_unmappings =
327 PMAP_EVCNT_INITIALIZER("pages unmapped");
328 static struct evcnt pmap_ev_remappings =
329 PMAP_EVCNT_INITIALIZER("pages remapped");
330
331 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
332 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
333 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
334
335 static struct evcnt pmap_ev_kernel_mappings =
336 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
337 static struct evcnt pmap_ev_kernel_unmappings =
338 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
339 static struct evcnt pmap_ev_kernel_remappings =
340 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
341
342 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
343 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
344 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
345
346 static struct evcnt pmap_ev_kenter_mappings =
347 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
348 static struct evcnt pmap_ev_kenter_unmappings =
349 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
350 static struct evcnt pmap_ev_kenter_remappings =
351 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
352 static struct evcnt pmap_ev_pt_mappings =
353 PMAP_EVCNT_INITIALIZER("page table pages mapped");
354
355 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
356 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
357 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
358 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
359
360 static struct evcnt pmap_ev_fixup_mod =
361 PMAP_EVCNT_INITIALIZER("page modification emulations");
362 static struct evcnt pmap_ev_fixup_ref =
363 PMAP_EVCNT_INITIALIZER("page reference emulations");
364 static struct evcnt pmap_ev_fixup_exec =
365 PMAP_EVCNT_INITIALIZER("exec pages fixed up");
366 static struct evcnt pmap_ev_fixup_pdes =
367 PMAP_EVCNT_INITIALIZER("pdes fixed up");
368 #ifndef ARM_MMU_EXTENDED
369 static struct evcnt pmap_ev_fixup_ptesync =
370 PMAP_EVCNT_INITIALIZER("ptesync fixed");
371 #endif
372
373 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
374 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
375 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
376 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
377 #ifndef ARM_MMU_EXTENDED
378 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
379 #endif
380
381 #ifdef PMAP_CACHE_VIPT
382 static struct evcnt pmap_ev_exec_mappings =
383 PMAP_EVCNT_INITIALIZER("exec pages mapped");
384 static struct evcnt pmap_ev_exec_cached =
385 PMAP_EVCNT_INITIALIZER("exec pages cached");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
389
390 static struct evcnt pmap_ev_exec_synced =
391 PMAP_EVCNT_INITIALIZER("exec pages synced");
392 static struct evcnt pmap_ev_exec_synced_map =
393 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
394 static struct evcnt pmap_ev_exec_synced_unmap =
395 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
396 static struct evcnt pmap_ev_exec_synced_remap =
397 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
398 static struct evcnt pmap_ev_exec_synced_clearbit =
399 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
400 #ifndef ARM_MMU_EXTENDED
401 static struct evcnt pmap_ev_exec_synced_kremove =
402 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
403 #endif
404
405 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
406 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
407 #ifndef ARM_MMU_EXTENDED
408 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
409 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
412 #endif
413
414 static struct evcnt pmap_ev_exec_discarded_unmap =
415 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
416 static struct evcnt pmap_ev_exec_discarded_zero =
417 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
418 static struct evcnt pmap_ev_exec_discarded_copy =
419 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
420 static struct evcnt pmap_ev_exec_discarded_page_protect =
421 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
422 static struct evcnt pmap_ev_exec_discarded_clearbit =
423 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
424 static struct evcnt pmap_ev_exec_discarded_kremove =
425 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
426 #ifdef ARM_MMU_EXTENDED
427 static struct evcnt pmap_ev_exec_discarded_modfixup =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
429 #endif
430
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
437 #ifdef ARM_MMU_EXTENDED
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
439 #endif
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 #ifdef ARM_MMU_EXTENDED
456 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
457 void pmap_md_pdetab_deactivate(pmap_t pm);
458 #endif
459
460 /*
461 * pmap copy/zero page, and mem(5) hook point
462 */
463 static pt_entry_t *csrc_pte, *cdst_pte;
464 static vaddr_t csrcp, cdstp;
465 #ifdef MULTIPROCESSOR
466 static size_t cnptes;
467 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
468 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
469 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
470 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
471 #else
472 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT))
473 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT))
474 #define cpu_csrcp(o) (csrcp + (o))
475 #define cpu_cdstp(o) (cdstp + (o))
476 #endif
477 vaddr_t memhook; /* used by mem.c & others */
478 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */
479 kmutex_t pmap_lock __cacheline_aligned;
480 kmutex_t kpm_lock __cacheline_aligned;
481 extern void *msgbufaddr;
482 int pmap_kmpages;
483 /*
484 * Flag to indicate if pmap_init() has done its thing
485 */
486 bool pmap_initialized;
487
488 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
489 /*
490 * Virtual end of direct-mapped memory
491 */
492 vaddr_t pmap_directlimit;
493 #endif
494
495 /*
496 * Misc. locking data structures
497 */
498
499 static inline void
500 pmap_acquire_pmap_lock(pmap_t pm)
501 {
502 #if defined(MULTIPROCESSOR) && defined(DDB)
503 if (__predict_false(db_onproc != NULL))
504 return;
505 #endif
506
507 mutex_enter(&pm->pm_lock);
508 }
509
510 static inline void
511 pmap_release_pmap_lock(pmap_t pm)
512 {
513 #if defined(MULTIPROCESSOR) && defined(DDB)
514 if (__predict_false(db_onproc != NULL))
515 return;
516 #endif
517 mutex_exit(&pm->pm_lock);
518 }
519
520 static inline void
521 pmap_acquire_page_lock(struct vm_page_md *md)
522 {
523 mutex_enter(&pmap_lock);
524 }
525
526 static inline void
527 pmap_release_page_lock(struct vm_page_md *md)
528 {
529 mutex_exit(&pmap_lock);
530 }
531
532 #ifdef DIAGNOSTIC
533 static inline int
534 pmap_page_locked_p(struct vm_page_md *md)
535 {
536 return mutex_owned(&pmap_lock);
537 }
538 #endif
539
540
541 /*
542 * Metadata for L1 translation tables.
543 */
544 #ifndef ARM_MMU_EXTENDED
545 struct l1_ttable {
546 /* Entry on the L1 Table list */
547 SLIST_ENTRY(l1_ttable) l1_link;
548
549 /* Entry on the L1 Least Recently Used list */
550 TAILQ_ENTRY(l1_ttable) l1_lru;
551
552 /* Track how many domains are allocated from this L1 */
553 volatile u_int l1_domain_use_count;
554
555 /*
556 * A free-list of domain numbers for this L1.
557 * We avoid using ffs() and a bitmap to track domains since ffs()
558 * is slow on ARM.
559 */
560 uint8_t l1_domain_first;
561 uint8_t l1_domain_free[PMAP_DOMAINS];
562
563 /* Physical address of this L1 page table */
564 paddr_t l1_physaddr;
565
566 /* KVA of this L1 page table */
567 pd_entry_t *l1_kva;
568 };
569
570 /*
571 * L1 Page Tables are tracked using a Least Recently Used list.
572 * - New L1s are allocated from the HEAD.
573 * - Freed L1s are added to the TAIL.
574 * - Recently accessed L1s (where an 'access' is some change to one of
575 * the userland pmaps which owns this L1) are moved to the TAIL.
576 */
577 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
578 static kmutex_t l1_lru_lock __cacheline_aligned;
579
580 /*
581 * A list of all L1 tables
582 */
583 static SLIST_HEAD(, l1_ttable) l1_list;
584 #endif /* ARM_MMU_EXTENDED */
585
586 /*
587 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
588 *
589 * This is normally 16MB worth L2 page descriptors for any given pmap.
590 * Reference counts are maintained for L2 descriptors so they can be
591 * freed when empty.
592 */
593 struct l2_bucket {
594 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
595 paddr_t l2b_pa; /* Physical address of same */
596 u_short l2b_l1slot; /* This L2 table's L1 index */
597 u_short l2b_occupancy; /* How many active descriptors */
598 };
599
600 struct l2_dtable {
601 /* The number of L2 page descriptors allocated to this l2_dtable */
602 u_int l2_occupancy;
603
604 /* List of L2 page descriptors */
605 struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
606 };
607
608 /*
609 * Given an L1 table index, calculate the corresponding l2_dtable index
610 * and bucket index within the l2_dtable.
611 */
612 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT)
613 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2)
614 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT)
615 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
616 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
617
618 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
619 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
620
621 /*
622 * Given a virtual address, this macro returns the
623 * virtual address required to drop into the next L2 bucket.
624 */
625 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
626
627 /*
628 * L2 allocation.
629 */
630 #define pmap_alloc_l2_dtable() \
631 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
632 #define pmap_free_l2_dtable(l2) \
633 pool_cache_put(&pmap_l2dtable_cache, (l2))
634 #define pmap_alloc_l2_ptp(pap) \
635 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
636 PR_NOWAIT, (pap)))
637
638 /*
639 * We try to map the page tables write-through, if possible. However, not
640 * all CPUs have a write-through cache mode, so on those we have to sync
641 * the cache when we frob page tables.
642 *
643 * We try to evaluate this at compile time, if possible. However, it's
644 * not always possible to do that, hence this run-time var.
645 */
646 int pmap_needs_pte_sync;
647
648 /*
649 * Real definition of pv_entry.
650 */
651 struct pv_entry {
652 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
653 pmap_t pv_pmap; /* pmap where mapping lies */
654 vaddr_t pv_va; /* virtual address for mapping */
655 u_int pv_flags; /* flags */
656 };
657
658 /*
659 * Macros to determine if a mapping might be resident in the
660 * instruction/data cache and/or TLB
661 */
662 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
663 /*
664 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
665 * there are no explicit accesses, so there may be always be TLB entries to
666 * flush. If we used ASIDs then this would not be a problem.
667 */
668 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
669 #define PV_BEEN_REFD(f) (true)
670 #else
671 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
672 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
673 #endif
674 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
675 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
676 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0)
677
678 /*
679 * Local prototypes
680 */
681 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
682 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
683 pt_entry_t **);
684 static bool pmap_is_current(pmap_t) __unused;
685 static bool pmap_is_cached(pmap_t);
686 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
687 pmap_t, vaddr_t, u_int);
688 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
689 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
690 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
691 u_int, u_int);
692
693 static void pmap_pinit(pmap_t);
694 static int pmap_pmap_ctor(void *, void *, int);
695
696 static void pmap_alloc_l1(pmap_t);
697 static void pmap_free_l1(pmap_t);
698 #ifndef ARM_MMU_EXTENDED
699 static void pmap_use_l1(pmap_t);
700 #endif
701
702 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
703 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
704 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
705 static int pmap_l2ptp_ctor(void *, void *, int);
706 static int pmap_l2dtable_ctor(void *, void *, int);
707
708 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
709 #ifdef PMAP_CACHE_VIVT
710 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
711 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
712 #endif
713
714 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
715 #ifdef PMAP_CACHE_VIVT
716 static bool pmap_clean_page(struct vm_page_md *, bool);
717 #endif
718 #ifdef PMAP_CACHE_VIPT
719 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
720 enum pmap_flush_op {
721 PMAP_FLUSH_PRIMARY,
722 PMAP_FLUSH_SECONDARY,
723 PMAP_CLEAN_PRIMARY
724 };
725 #ifndef ARM_MMU_EXTENDED
726 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
727 #endif
728 #endif
729 static void pmap_page_remove(struct vm_page_md *, paddr_t);
730 static void pmap_pv_remove(paddr_t);
731
732 #ifndef ARM_MMU_EXTENDED
733 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
734 #endif
735 static vaddr_t kernel_pt_lookup(paddr_t);
736
737 #ifdef ARM_MMU_EXTENDED
738 static struct pool_cache pmap_l1tt_cache;
739
740 static int pmap_l1tt_ctor(void *, void *, int);
741 static void * pmap_l1tt_alloc(struct pool *, int);
742 static void pmap_l1tt_free(struct pool *, void *);
743
744 static struct pool_allocator pmap_l1tt_allocator = {
745 .pa_alloc = pmap_l1tt_alloc,
746 .pa_free = pmap_l1tt_free,
747 .pa_pagesz = L1TT_SIZE,
748 };
749 #endif
750
751 /*
752 * Misc variables
753 */
754 vaddr_t virtual_avail;
755 vaddr_t virtual_end;
756 vaddr_t pmap_curmaxkvaddr;
757
758 paddr_t avail_start;
759 paddr_t avail_end;
760
761 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
762 pv_addr_t kernelpages;
763 pv_addr_t kernel_l1pt;
764 pv_addr_t systempage;
765
766 #ifdef PMAP_CACHE_VIPT
767 #define PMAP_VALIDATE_MD_PAGE(md) \
768 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
769 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
770 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
771 #endif /* PMAP_CACHE_VIPT */
772 /*
773 * A bunch of routines to conditionally flush the caches/TLB depending
774 * on whether the specified pmap actually needs to be flushed at any
775 * given time.
776 */
777 static inline void
778 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
779 {
780 #ifdef ARM_MMU_EXTENDED
781 pmap_tlb_invalidate_addr(pm, va);
782 #else
783 if (pm->pm_cstate.cs_tlb_id != 0) {
784 if (PV_BEEN_EXECD(flags)) {
785 cpu_tlb_flushID_SE(va);
786 } else if (PV_BEEN_REFD(flags)) {
787 cpu_tlb_flushD_SE(va);
788 }
789 }
790 #endif /* ARM_MMU_EXTENDED */
791 }
792
793 #ifndef ARM_MMU_EXTENDED
794 static inline void
795 pmap_tlb_flushID(pmap_t pm)
796 {
797 if (pm->pm_cstate.cs_tlb_id) {
798 cpu_tlb_flushID();
799 #if ARM_MMU_V7 == 0
800 /*
801 * Speculative loads by Cortex cores can cause TLB entries to
802 * be filled even if there are no explicit accesses, so there
803 * may be always be TLB entries to flush. If we used ASIDs
804 * then it would not be a problem.
805 * This is not true for other CPUs.
806 */
807 pm->pm_cstate.cs_tlb = 0;
808 #endif /* ARM_MMU_V7 */
809 }
810 }
811
812 static inline void
813 pmap_tlb_flushD(pmap_t pm)
814 {
815 if (pm->pm_cstate.cs_tlb_d) {
816 cpu_tlb_flushD();
817 #if ARM_MMU_V7 == 0
818 /*
819 * Speculative loads by Cortex cores can cause TLB entries to
820 * be filled even if there are no explicit accesses, so there
821 * may be always be TLB entries to flush. If we used ASIDs
822 * then it would not be a problem.
823 * This is not true for other CPUs.
824 */
825 pm->pm_cstate.cs_tlb_d = 0;
826 #endif /* ARM_MMU_V7 */
827 }
828 }
829 #endif /* ARM_MMU_EXTENDED */
830
831 #ifdef PMAP_CACHE_VIVT
832 static inline void
833 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
834 {
835 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
836 cpu_idcache_wbinv_range(va, PAGE_SIZE);
837 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
838 if (do_inv) {
839 if (flags & PVF_WRITE)
840 cpu_dcache_wbinv_range(va, PAGE_SIZE);
841 else
842 cpu_dcache_inv_range(va, PAGE_SIZE);
843 } else if (flags & PVF_WRITE) {
844 cpu_dcache_wb_range(va, PAGE_SIZE);
845 }
846 }
847 }
848
849 static inline void
850 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
851 {
852 if (PV_BEEN_EXECD(flags)) {
853 if (pm->pm_cstate.cs_cache_id) {
854 cpu_idcache_wbinv_all();
855 pm->pm_cstate.cs_cache = 0;
856 }
857 } else if (pm->pm_cstate.cs_cache_d) {
858 cpu_dcache_wbinv_all();
859 pm->pm_cstate.cs_cache_d = 0;
860 }
861 }
862 #endif /* PMAP_CACHE_VIVT */
863
864 static inline uint8_t
865 pmap_domain(pmap_t pm)
866 {
867 #ifdef ARM_MMU_EXTENDED
868 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
869 #else
870 return pm->pm_domain;
871 #endif
872 }
873
874 static inline pd_entry_t *
875 pmap_l1_kva(pmap_t pm)
876 {
877 #ifdef ARM_MMU_EXTENDED
878 return pm->pm_l1;
879 #else
880 return pm->pm_l1->l1_kva;
881 #endif
882 }
883
884 static inline bool
885 pmap_is_current(pmap_t pm)
886 {
887 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
888 return true;
889
890 return false;
891 }
892
893 static inline bool
894 pmap_is_cached(pmap_t pm)
895 {
896 #ifdef ARM_MMU_EXTENDED
897 if (pm == pmap_kernel())
898 return true;
899 #ifdef MULTIPROCESSOR
900 // Is this pmap active on any CPU?
901 if (!kcpuset_iszero(pm->pm_active))
902 return true;
903 #else
904 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
905 // Is this pmap active?
906 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
907 return true;
908 #endif
909 #else
910 struct cpu_info * const ci = curcpu();
911 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
912 || ci->ci_pmap_lastuser == pm)
913 return true;
914 #endif /* ARM_MMU_EXTENDED */
915
916 return false;
917 }
918
919 /*
920 * PTE_SYNC_CURRENT:
921 *
922 * Make sure the pte is written out to RAM.
923 * We need to do this for one of two cases:
924 * - We're dealing with the kernel pmap
925 * - There is no pmap active in the cache/tlb.
926 * - The specified pmap is 'active' in the cache/tlb.
927 */
928
929 #ifdef PMAP_INCLUDE_PTE_SYNC
930 static inline void
931 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
932 {
933 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
934 PTE_SYNC(ptep);
935 dsb(sy);
936 }
937
938 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep)
939 #else
940 # define PTE_SYNC_CURRENT(pm, ptep) __nothing
941 #endif
942
943 /*
944 * main pv_entry manipulation functions:
945 * pmap_enter_pv: enter a mapping onto a vm_page list
946 * pmap_remove_pv: remove a mapping from a vm_page list
947 *
948 * NOTE: pmap_enter_pv expects to lock the pvh itself
949 * pmap_remove_pv expects the caller to lock the pvh before calling
950 */
951
952 /*
953 * pmap_enter_pv: enter a mapping onto a vm_page lst
954 *
955 * => caller should hold the proper lock on pmap_main_lock
956 * => caller should have pmap locked
957 * => we will gain the lock on the vm_page and allocate the new pv_entry
958 * => caller should adjust ptp's wire_count before calling
959 * => caller should not adjust pmap's wire_count
960 */
961 static void
962 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
963 vaddr_t va, u_int flags)
964 {
965 UVMHIST_FUNC(__func__);
966 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
967 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
968 UVMHIST_LOG(maphist, "...pv %#jx flags %#jx",
969 (uintptr_t)pv, flags, 0, 0);
970
971 struct pv_entry **pvp;
972
973 pv->pv_pmap = pm;
974 pv->pv_va = va;
975 pv->pv_flags = flags;
976
977 pvp = &SLIST_FIRST(&md->pvh_list);
978 #ifdef PMAP_CACHE_VIPT
979 /*
980 * Insert unmanaged entries, writeable first, at the head of
981 * the pv list.
982 */
983 if (__predict_true(!PV_IS_KENTRY_P(flags))) {
984 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
985 pvp = &SLIST_NEXT(*pvp, pv_link);
986 }
987 if (!PV_IS_WRITE_P(flags)) {
988 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
989 pvp = &SLIST_NEXT(*pvp, pv_link);
990 }
991 #endif
992 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
993 *pvp = pv; /* ... locked list */
994 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
995 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
996 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
997 md->pvh_attrs |= PVF_KMOD;
998 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
999 md->pvh_attrs |= PVF_DIRTY;
1000 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1001 #endif
1002 if (pm == pmap_kernel()) {
1003 PMAPCOUNT(kernel_mappings);
1004 if (flags & PVF_WRITE)
1005 md->krw_mappings++;
1006 else
1007 md->kro_mappings++;
1008 } else {
1009 if (flags & PVF_WRITE)
1010 md->urw_mappings++;
1011 else
1012 md->uro_mappings++;
1013 }
1014
1015 #ifdef PMAP_CACHE_VIPT
1016 #ifndef ARM_MMU_EXTENDED
1017 /*
1018 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1019 * do it here as well to keep the mappings & KVF_WRITE consistent.
1020 */
1021 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1022 md->pvh_attrs |= PVF_WRITE;
1023 }
1024 #endif
1025 /*
1026 * If this is an exec mapping and its the first exec mapping
1027 * for this page, make sure to sync the I-cache.
1028 */
1029 if (PV_IS_EXEC_P(flags)) {
1030 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1031 pmap_syncicache_page(md, pa);
1032 PMAPCOUNT(exec_synced_map);
1033 }
1034 PMAPCOUNT(exec_mappings);
1035 }
1036 #endif
1037
1038 PMAPCOUNT(mappings);
1039
1040 if (pv->pv_flags & PVF_WIRED)
1041 ++pm->pm_stats.wired_count;
1042 }
1043
1044 /*
1045 *
1046 * pmap_find_pv: Find a pv entry
1047 *
1048 * => caller should hold lock on vm_page
1049 */
1050 static inline struct pv_entry *
1051 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1052 {
1053 struct pv_entry *pv;
1054
1055 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1056 if (pm == pv->pv_pmap && va == pv->pv_va)
1057 break;
1058 }
1059
1060 return pv;
1061 }
1062
1063 /*
1064 * pmap_remove_pv: try to remove a mapping from a pv_list
1065 *
1066 * => caller should hold proper lock on pmap_main_lock
1067 * => pmap should be locked
1068 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1069 * => caller should adjust ptp's wire_count and free PTP if needed
1070 * => caller should NOT adjust pmap's wire_count
1071 * => we return the removed pv
1072 */
1073 static struct pv_entry *
1074 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1075 {
1076 UVMHIST_FUNC(__func__);
1077 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1078 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1079
1080 struct pv_entry *pv, **prevptr;
1081
1082 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1083 pv = *prevptr;
1084
1085 while (pv) {
1086 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1087 UVMHIST_LOG(maphist, "pm %#jx md %#jx flags %#jx",
1088 (uintptr_t)pm, (uintptr_t)md, pv->pv_flags, 0);
1089 if (pv->pv_flags & PVF_WIRED) {
1090 --pm->pm_stats.wired_count;
1091 }
1092 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1093 if (pm == pmap_kernel()) {
1094 PMAPCOUNT(kernel_unmappings);
1095 if (pv->pv_flags & PVF_WRITE)
1096 md->krw_mappings--;
1097 else
1098 md->kro_mappings--;
1099 } else {
1100 if (pv->pv_flags & PVF_WRITE)
1101 md->urw_mappings--;
1102 else
1103 md->uro_mappings--;
1104 }
1105
1106 PMAPCOUNT(unmappings);
1107 #ifdef PMAP_CACHE_VIPT
1108 /*
1109 * If this page has had an exec mapping, then if
1110 * this was the last mapping, discard the contents,
1111 * otherwise sync the i-cache for this page.
1112 */
1113 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1114 if (SLIST_EMPTY(&md->pvh_list)) {
1115 md->pvh_attrs &= ~PVF_EXEC;
1116 PMAPCOUNT(exec_discarded_unmap);
1117 } else if (pv->pv_flags & PVF_WRITE) {
1118 pmap_syncicache_page(md, pa);
1119 PMAPCOUNT(exec_synced_unmap);
1120 }
1121 }
1122 #endif /* PMAP_CACHE_VIPT */
1123 break;
1124 }
1125 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1126 pv = *prevptr; /* advance */
1127 }
1128
1129 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1130 /*
1131 * If we no longer have a WRITEABLE KENTRY at the head of list,
1132 * clear the KMOD attribute from the page.
1133 */
1134 if (SLIST_FIRST(&md->pvh_list) == NULL
1135 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1136 md->pvh_attrs &= ~PVF_KMOD;
1137
1138 /*
1139 * If this was a writeable page and there are no more writeable
1140 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1141 * the contents to memory.
1142 */
1143 if (arm_cache_prefer_mask != 0) {
1144 if (md->krw_mappings + md->urw_mappings == 0)
1145 md->pvh_attrs &= ~PVF_WRITE;
1146 PMAP_VALIDATE_MD_PAGE(md);
1147 }
1148 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1149 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1150
1151 /* return removed pv */
1152 return pv;
1153 }
1154
1155 /*
1156 *
1157 * pmap_modify_pv: Update pv flags
1158 *
1159 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1160 * => caller should NOT adjust pmap's wire_count
1161 * => caller must call pmap_vac_me_harder() if writable status of a page
1162 * may have changed.
1163 * => we return the old flags
1164 *
1165 * Modify a physical-virtual mapping in the pv table
1166 */
1167 static u_int
1168 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1169 u_int clr_mask, u_int set_mask)
1170 {
1171 struct pv_entry *npv;
1172 u_int flags, oflags;
1173 UVMHIST_FUNC(__func__);
1174 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1175 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1176 UVMHIST_LOG(maphist, "... clr %#jx set %#jx", clr_mask, set_mask, 0, 0);
1177
1178 KASSERT(!PV_IS_KENTRY_P(clr_mask));
1179 KASSERT(!PV_IS_KENTRY_P(set_mask));
1180
1181 if ((npv = pmap_find_pv(md, pm, va)) == NULL) {
1182 UVMHIST_LOG(maphist, "<--- done (not found)", 0, 0, 0, 0);
1183 return 0;
1184 }
1185
1186 /*
1187 * There is at least one VA mapping this page.
1188 */
1189
1190 if (clr_mask & (PVF_REF | PVF_MOD)) {
1191 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1192 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1193 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1194 md->pvh_attrs |= PVF_DIRTY;
1195 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1196 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1197 }
1198
1199 oflags = npv->pv_flags;
1200 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1201
1202 if ((flags ^ oflags) & PVF_WIRED) {
1203 if (flags & PVF_WIRED)
1204 ++pm->pm_stats.wired_count;
1205 else
1206 --pm->pm_stats.wired_count;
1207 }
1208
1209 if ((flags ^ oflags) & PVF_WRITE) {
1210 if (pm == pmap_kernel()) {
1211 if (flags & PVF_WRITE) {
1212 md->krw_mappings++;
1213 md->kro_mappings--;
1214 } else {
1215 md->kro_mappings++;
1216 md->krw_mappings--;
1217 }
1218 } else {
1219 if (flags & PVF_WRITE) {
1220 md->urw_mappings++;
1221 md->uro_mappings--;
1222 } else {
1223 md->uro_mappings++;
1224 md->urw_mappings--;
1225 }
1226 }
1227 }
1228 #ifdef PMAP_CACHE_VIPT
1229 if (arm_cache_prefer_mask != 0) {
1230 if (md->urw_mappings + md->krw_mappings == 0) {
1231 md->pvh_attrs &= ~PVF_WRITE;
1232 } else {
1233 md->pvh_attrs |= PVF_WRITE;
1234 }
1235 }
1236 /*
1237 * We have two cases here: the first is from enter_pv (new exec
1238 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1239 * Since in latter, pmap_enter_pv won't do anything, we just have
1240 * to do what pmap_remove_pv would do.
1241 */
1242 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1243 || (PV_IS_EXEC_P(md->pvh_attrs)
1244 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1245 pmap_syncicache_page(md, pa);
1246 PMAPCOUNT(exec_synced_remap);
1247 }
1248 #ifndef ARM_MMU_EXTENDED
1249 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1250 #endif /* !ARM_MMU_EXTENDED */
1251 #endif /* PMAP_CACHE_VIPT */
1252
1253 PMAPCOUNT(remappings);
1254
1255 UVMHIST_LOG(maphist, "<--- done", 0, 0, 0, 0);
1256
1257 return oflags;
1258 }
1259
1260
1261 #if defined(ARM_MMU_EXTENDED)
1262 int
1263 pmap_maxproc_set(int nmaxproc)
1264 {
1265 static const char pmap_l1ttpool_warnmsg[] =
1266 "WARNING: l1ttpool limit reached; increase kern.maxproc";
1267
1268 pool_cache_prime(&pmap_l1tt_cache, nmaxproc);
1269
1270 /*
1271 * Set the hard limit on the pmap_l1tt_cache to the number
1272 * of processes the kernel is to support. Log the limit
1273 * reached message max once a minute.
1274 */
1275 pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
1276 pmap_l1ttpool_warnmsg, 60);
1277
1278 return 0;
1279 }
1280
1281 #endif
1282
1283 /*
1284 * Allocate an L1 translation table for the specified pmap.
1285 * This is called at pmap creation time.
1286 */
1287 static void
1288 pmap_alloc_l1(pmap_t pm)
1289 {
1290 #ifdef ARM_MMU_EXTENDED
1291 vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
1292 &pm->pm_l1_pa);
1293
1294 pm->pm_l1 = (pd_entry_t *)va;
1295 PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
1296 #else
1297 struct l1_ttable *l1;
1298 uint8_t domain;
1299
1300 /*
1301 * Remove the L1 at the head of the LRU list
1302 */
1303 mutex_spin_enter(&l1_lru_lock);
1304 l1 = TAILQ_FIRST(&l1_lru_list);
1305 KDASSERT(l1 != NULL);
1306 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1307
1308 /*
1309 * Pick the first available domain number, and update
1310 * the link to the next number.
1311 */
1312 domain = l1->l1_domain_first;
1313 l1->l1_domain_first = l1->l1_domain_free[domain];
1314
1315 /*
1316 * If there are still free domain numbers in this L1,
1317 * put it back on the TAIL of the LRU list.
1318 */
1319 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1320 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1321
1322 mutex_spin_exit(&l1_lru_lock);
1323
1324 /*
1325 * Fix up the relevant bits in the pmap structure
1326 */
1327 pm->pm_l1 = l1;
1328 pm->pm_domain = domain + 1;
1329 #endif
1330 }
1331
1332 /*
1333 * Free an L1 translation table.
1334 * This is called at pmap destruction time.
1335 */
1336 static void
1337 pmap_free_l1(pmap_t pm)
1338 {
1339 #ifdef ARM_MMU_EXTENDED
1340 pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
1341
1342 pm->pm_l1 = NULL;
1343 pm->pm_l1_pa = 0;
1344 #else
1345 struct l1_ttable *l1 = pm->pm_l1;
1346
1347 mutex_spin_enter(&l1_lru_lock);
1348
1349 /*
1350 * If this L1 is currently on the LRU list, remove it.
1351 */
1352 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1353 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1354
1355 /*
1356 * Free up the domain number which was allocated to the pmap
1357 */
1358 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1359 l1->l1_domain_first = pmap_domain(pm) - 1;
1360 l1->l1_domain_use_count--;
1361
1362 /*
1363 * The L1 now must have at least 1 free domain, so add
1364 * it back to the LRU list. If the use count is zero,
1365 * put it at the head of the list, otherwise it goes
1366 * to the tail.
1367 */
1368 if (l1->l1_domain_use_count == 0)
1369 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1370 else
1371 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1372
1373 mutex_spin_exit(&l1_lru_lock);
1374 #endif /* ARM_MMU_EXTENDED */
1375 }
1376
1377 #ifndef ARM_MMU_EXTENDED
1378 static inline void
1379 pmap_use_l1(pmap_t pm)
1380 {
1381 struct l1_ttable *l1;
1382
1383 /*
1384 * Do nothing if we're in interrupt context.
1385 * Access to an L1 by the kernel pmap must not affect
1386 * the LRU list.
1387 */
1388 if (cpu_intr_p() || pm == pmap_kernel())
1389 return;
1390
1391 l1 = pm->pm_l1;
1392
1393 /*
1394 * If the L1 is not currently on the LRU list, just return
1395 */
1396 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1397 return;
1398
1399 mutex_spin_enter(&l1_lru_lock);
1400
1401 /*
1402 * Check the use count again, now that we've acquired the lock
1403 */
1404 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1405 mutex_spin_exit(&l1_lru_lock);
1406 return;
1407 }
1408
1409 /*
1410 * Move the L1 to the back of the LRU list
1411 */
1412 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1413 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1414
1415 mutex_spin_exit(&l1_lru_lock);
1416 }
1417 #endif /* !ARM_MMU_EXTENDED */
1418
1419 /*
1420 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1421 *
1422 * Free an L2 descriptor table.
1423 */
1424 static inline void
1425 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1426 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1427 #else
1428 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1429 #endif
1430 {
1431 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1432 /*
1433 * Note: With a write-back cache, we may need to sync this
1434 * L2 table before re-using it.
1435 * This is because it may have belonged to a non-current
1436 * pmap, in which case the cache syncs would have been
1437 * skipped for the pages that were being unmapped. If the
1438 * L2 table were then to be immediately re-allocated to
1439 * the *current* pmap, it may well contain stale mappings
1440 * which have not yet been cleared by a cache write-back
1441 * and so would still be visible to the mmu.
1442 */
1443 if (need_sync)
1444 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1445 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1446 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1447 }
1448
1449 /*
1450 * Returns a pointer to the L2 bucket associated with the specified pmap
1451 * and VA, or NULL if no L2 bucket exists for the address.
1452 */
1453 static inline struct l2_bucket *
1454 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1455 {
1456 const size_t l1slot = l1pte_index(va);
1457 struct l2_dtable *l2;
1458 struct l2_bucket *l2b;
1459
1460 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1461 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1462 return NULL;
1463
1464 return l2b;
1465 }
1466
1467 /*
1468 * Returns a pointer to the L2 bucket associated with the specified pmap
1469 * and VA.
1470 *
1471 * If no L2 bucket exists, perform the necessary allocations to put an L2
1472 * bucket/page table in place.
1473 *
1474 * Note that if a new L2 bucket/page was allocated, the caller *must*
1475 * increment the bucket occupancy counter appropriately *before*
1476 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1477 * the bucket/page in the meantime.
1478 */
1479 static struct l2_bucket *
1480 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1481 {
1482 const size_t l1slot = l1pte_index(va);
1483 struct l2_dtable *l2;
1484
1485 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1486 /*
1487 * No mapping at this address, as there is
1488 * no entry in the L1 table.
1489 * Need to allocate a new l2_dtable.
1490 */
1491 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1492 return NULL;
1493
1494 /*
1495 * Link it into the parent pmap
1496 */
1497 pm->pm_l2[L2_IDX(l1slot)] = l2;
1498 }
1499
1500 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1501
1502 /*
1503 * Fetch pointer to the L2 page table associated with the address.
1504 */
1505 if (l2b->l2b_kva == NULL) {
1506 pt_entry_t *ptep;
1507
1508 /*
1509 * No L2 page table has been allocated. Chances are, this
1510 * is because we just allocated the l2_dtable, above.
1511 */
1512 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1513 /*
1514 * Oops, no more L2 page tables available at this
1515 * time. We may need to deallocate the l2_dtable
1516 * if we allocated a new one above.
1517 */
1518 if (l2->l2_occupancy == 0) {
1519 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1520 pmap_free_l2_dtable(l2);
1521 }
1522 return NULL;
1523 }
1524
1525 l2->l2_occupancy++;
1526 l2b->l2b_kva = ptep;
1527 l2b->l2b_l1slot = l1slot;
1528
1529 #ifdef ARM_MMU_EXTENDED
1530 /*
1531 * We know there will be a mapping here, so simply
1532 * enter this PTP into the L1 now.
1533 */
1534 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1535 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1536 | L1_C_DOM(pmap_domain(pm));
1537 KASSERT(*pdep == 0);
1538 l1pte_setone(pdep, npde);
1539 PDE_SYNC(pdep);
1540 #endif
1541 }
1542
1543 return l2b;
1544 }
1545
1546 /*
1547 * One or more mappings in the specified L2 descriptor table have just been
1548 * invalidated.
1549 *
1550 * Garbage collect the metadata and descriptor table itself if necessary.
1551 *
1552 * The pmap lock must be acquired when this is called (not necessary
1553 * for the kernel pmap).
1554 */
1555 static void
1556 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1557 {
1558 KDASSERT(count <= l2b->l2b_occupancy);
1559
1560 /*
1561 * Update the bucket's reference count according to how many
1562 * PTEs the caller has just invalidated.
1563 */
1564 l2b->l2b_occupancy -= count;
1565
1566 /*
1567 * Note:
1568 *
1569 * Level 2 page tables allocated to the kernel pmap are never freed
1570 * as that would require checking all Level 1 page tables and
1571 * removing any references to the Level 2 page table. See also the
1572 * comment elsewhere about never freeing bootstrap L2 descriptors.
1573 *
1574 * We make do with just invalidating the mapping in the L2 table.
1575 *
1576 * This isn't really a big deal in practice and, in fact, leads
1577 * to a performance win over time as we don't need to continually
1578 * alloc/free.
1579 */
1580 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1581 return;
1582
1583 /*
1584 * There are no more valid mappings in this level 2 page table.
1585 * Go ahead and NULL-out the pointer in the bucket, then
1586 * free the page table.
1587 */
1588 const size_t l1slot = l2b->l2b_l1slot;
1589 pt_entry_t * const ptep = l2b->l2b_kva;
1590 l2b->l2b_kva = NULL;
1591
1592 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1593 pd_entry_t pde __diagused = *pdep;
1594
1595 #ifdef ARM_MMU_EXTENDED
1596 /*
1597 * Invalidate the L1 slot.
1598 */
1599 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1600 #else
1601 /*
1602 * If the L1 slot matches the pmap's domain number, then invalidate it.
1603 */
1604 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1605 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1606 #endif
1607 l1pte_setone(pdep, 0);
1608 PDE_SYNC(pdep);
1609 #ifndef ARM_MMU_EXTENDED
1610 }
1611 #endif
1612
1613 /*
1614 * Release the L2 descriptor table back to the pool cache.
1615 */
1616 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1617 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1618 #else
1619 pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1620 #endif
1621
1622 /*
1623 * Update the reference count in the associated l2_dtable
1624 */
1625 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1626 if (--l2->l2_occupancy > 0)
1627 return;
1628
1629 /*
1630 * There are no more valid mappings in any of the Level 1
1631 * slots managed by this l2_dtable. Go ahead and NULL-out
1632 * the pointer in the parent pmap and free the l2_dtable.
1633 */
1634 pm->pm_l2[L2_IDX(l1slot)] = NULL;
1635 pmap_free_l2_dtable(l2);
1636 }
1637
1638 #if defined(ARM_MMU_EXTENDED)
1639 /*
1640 * Pool cache constructors for L1 translation tables
1641 */
1642
1643 static int
1644 pmap_l1tt_ctor(void *arg, void *v, int flags)
1645 {
1646 #ifndef PMAP_INCLUDE_PTE_SYNC
1647 #error not supported
1648 #endif
1649
1650 memset(v, 0, L1TT_SIZE);
1651 PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
1652 return 0;
1653 }
1654 #endif
1655
1656 /*
1657 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1658 * structures.
1659 */
1660 static int
1661 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1662 {
1663 #ifndef PMAP_INCLUDE_PTE_SYNC
1664 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1665
1666 /*
1667 * The mappings for these page tables were initially made using
1668 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1669 * mode will not be right for page table mappings. To avoid
1670 * polluting the pmap_kenter_pa() code with a special case for
1671 * page tables, we simply fix up the cache-mode here if it's not
1672 * correct.
1673 */
1674 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1675 const struct l2_bucket * const l2b =
1676 pmap_get_l2_bucket(pmap_kernel(), va);
1677 KASSERTMSG(l2b != NULL, "%#lx", va);
1678 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1679 const pt_entry_t opte = *ptep;
1680
1681 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1682 /*
1683 * Page tables must have the cache-mode set correctly.
1684 */
1685 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1686 | pte_l2_s_cache_mode_pt;
1687 l2pte_set(ptep, npte, opte);
1688 PTE_SYNC(ptep);
1689 cpu_tlb_flushD_SE(va);
1690 cpu_cpwait();
1691 }
1692 }
1693 #endif
1694
1695 memset(v, 0, L2_TABLE_SIZE_REAL);
1696 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1697 return 0;
1698 }
1699
1700 static int
1701 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1702 {
1703
1704 memset(v, 0, sizeof(struct l2_dtable));
1705 return 0;
1706 }
1707
1708 static int
1709 pmap_pmap_ctor(void *arg, void *v, int flags)
1710 {
1711
1712 memset(v, 0, sizeof(struct pmap));
1713 return 0;
1714 }
1715
1716 static void
1717 pmap_pinit(pmap_t pm)
1718 {
1719 #ifndef ARM_HAS_VBAR
1720 struct l2_bucket *l2b;
1721
1722 if (vector_page < KERNEL_BASE) {
1723 /*
1724 * Map the vector page.
1725 */
1726 pmap_enter(pm, vector_page, systempage.pv_pa,
1727 VM_PROT_READ | VM_PROT_EXECUTE,
1728 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1729 pmap_update(pm);
1730
1731 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1732 l2b = pmap_get_l2_bucket(pm, vector_page);
1733 KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1734 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1735 L1_C_DOM(pmap_domain(pm));
1736 } else
1737 pm->pm_pl1vec = NULL;
1738 #endif
1739 }
1740
1741 #ifdef PMAP_CACHE_VIVT
1742 /*
1743 * Since we have a virtually indexed cache, we may need to inhibit caching if
1744 * there is more than one mapping and at least one of them is writable.
1745 * Since we purge the cache on every context switch, we only need to check for
1746 * other mappings within the same pmap, or kernel_pmap.
1747 * This function is also called when a page is unmapped, to possibly reenable
1748 * caching on any remaining mappings.
1749 *
1750 * The code implements the following logic, where:
1751 *
1752 * KW = # of kernel read/write pages
1753 * KR = # of kernel read only pages
1754 * UW = # of user read/write pages
1755 * UR = # of user read only pages
1756 *
1757 * KC = kernel mapping is cacheable
1758 * UC = user mapping is cacheable
1759 *
1760 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1761 * +---------------------------------------------
1762 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1763 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1764 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1765 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1766 */
1767
1768 static const int pmap_vac_flags[4][4] = {
1769 {-1, 0, 0, PVF_KNC},
1770 {0, 0, PVF_NC, PVF_NC},
1771 {0, PVF_NC, PVF_NC, PVF_NC},
1772 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1773 };
1774
1775 static inline int
1776 pmap_get_vac_flags(const struct vm_page_md *md)
1777 {
1778 int kidx, uidx;
1779
1780 kidx = 0;
1781 if (md->kro_mappings || md->krw_mappings > 1)
1782 kidx |= 1;
1783 if (md->krw_mappings)
1784 kidx |= 2;
1785
1786 uidx = 0;
1787 if (md->uro_mappings || md->urw_mappings > 1)
1788 uidx |= 1;
1789 if (md->urw_mappings)
1790 uidx |= 2;
1791
1792 return pmap_vac_flags[uidx][kidx];
1793 }
1794
1795 static inline void
1796 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1797 {
1798 int nattr;
1799
1800 nattr = pmap_get_vac_flags(md);
1801
1802 if (nattr < 0) {
1803 md->pvh_attrs &= ~PVF_NC;
1804 return;
1805 }
1806
1807 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1808 return;
1809
1810 if (pm == pmap_kernel())
1811 pmap_vac_me_kpmap(md, pa, pm, va);
1812 else
1813 pmap_vac_me_user(md, pa, pm, va);
1814
1815 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1816 }
1817
1818 static void
1819 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1820 {
1821 u_int u_cacheable, u_entries;
1822 struct pv_entry *pv;
1823 pmap_t last_pmap = pm;
1824
1825 /*
1826 * Pass one, see if there are both kernel and user pmaps for
1827 * this page. Calculate whether there are user-writable or
1828 * kernel-writable pages.
1829 */
1830 u_cacheable = 0;
1831 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1832 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1833 u_cacheable++;
1834 }
1835
1836 u_entries = md->urw_mappings + md->uro_mappings;
1837
1838 /*
1839 * We know we have just been updating a kernel entry, so if
1840 * all user pages are already cacheable, then there is nothing
1841 * further to do.
1842 */
1843 if (md->k_mappings == 0 && u_cacheable == u_entries)
1844 return;
1845
1846 if (u_entries) {
1847 /*
1848 * Scan over the list again, for each entry, if it
1849 * might not be set correctly, call pmap_vac_me_user
1850 * to recalculate the settings.
1851 */
1852 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1853 /*
1854 * We know kernel mappings will get set
1855 * correctly in other calls. We also know
1856 * that if the pmap is the same as last_pmap
1857 * then we've just handled this entry.
1858 */
1859 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1860 continue;
1861
1862 /*
1863 * If there are kernel entries and this page
1864 * is writable but non-cacheable, then we can
1865 * skip this entry also.
1866 */
1867 if (md->k_mappings &&
1868 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1869 (PVF_NC | PVF_WRITE))
1870 continue;
1871
1872 /*
1873 * Similarly if there are no kernel-writable
1874 * entries and the page is already
1875 * read-only/cacheable.
1876 */
1877 if (md->krw_mappings == 0 &&
1878 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1879 continue;
1880
1881 /*
1882 * For some of the remaining cases, we know
1883 * that we must recalculate, but for others we
1884 * can't tell if they are correct or not, so
1885 * we recalculate anyway.
1886 */
1887 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1888 }
1889
1890 if (md->k_mappings == 0)
1891 return;
1892 }
1893
1894 pmap_vac_me_user(md, pa, pm, va);
1895 }
1896
1897 static void
1898 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1899 {
1900 pmap_t kpmap = pmap_kernel();
1901 struct pv_entry *pv, *npv = NULL;
1902 u_int entries = 0;
1903 u_int writable = 0;
1904 u_int cacheable_entries = 0;
1905 u_int kern_cacheable = 0;
1906 u_int other_writable = 0;
1907
1908 /*
1909 * Count mappings and writable mappings in this pmap.
1910 * Include kernel mappings as part of our own.
1911 * Keep a pointer to the first one.
1912 */
1913 npv = NULL;
1914 KASSERT(pmap_page_locked_p(md));
1915 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1916 /* Count mappings in the same pmap */
1917 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1918 if (entries++ == 0)
1919 npv = pv;
1920
1921 /* Cacheable mappings */
1922 if ((pv->pv_flags & PVF_NC) == 0) {
1923 cacheable_entries++;
1924 if (kpmap == pv->pv_pmap)
1925 kern_cacheable++;
1926 }
1927
1928 /* Writable mappings */
1929 if (pv->pv_flags & PVF_WRITE)
1930 ++writable;
1931 } else if (pv->pv_flags & PVF_WRITE)
1932 other_writable = 1;
1933 }
1934
1935 /*
1936 * Enable or disable caching as necessary.
1937 * Note: the first entry might be part of the kernel pmap,
1938 * so we can't assume this is indicative of the state of the
1939 * other (maybe non-kpmap) entries.
1940 */
1941 if ((entries > 1 && writable) ||
1942 (entries > 0 && pm == kpmap && other_writable)) {
1943 if (cacheable_entries == 0) {
1944 return;
1945 }
1946
1947 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1948 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1949 (pv->pv_flags & PVF_NC))
1950 continue;
1951
1952 pv->pv_flags |= PVF_NC;
1953
1954 struct l2_bucket * const l2b
1955 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1956 KASSERTMSG(l2b != NULL, "%#lx", va);
1957 pt_entry_t * const ptep
1958 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1959 const pt_entry_t opte = *ptep;
1960 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1961
1962 if ((va != pv->pv_va || pm != pv->pv_pmap)
1963 && l2pte_valid_p(opte)) {
1964 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1965 true, pv->pv_flags);
1966 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1967 pv->pv_flags);
1968 }
1969
1970 l2pte_set(ptep, npte, opte);
1971 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1972 }
1973 cpu_cpwait();
1974 } else if (entries > cacheable_entries) {
1975 /*
1976 * Turn cacheing back on for some pages. If it is a kernel
1977 * page, only do so if there are no other writable pages.
1978 */
1979 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1980 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1981 (kpmap != pv->pv_pmap || other_writable)))
1982 continue;
1983
1984 pv->pv_flags &= ~PVF_NC;
1985
1986 struct l2_bucket * const l2b
1987 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1988 KASSERTMSG(l2b != NULL, "%#lx", va);
1989 pt_entry_t * const ptep
1990 = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1991 const pt_entry_t opte = *ptep;
1992 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1993 | pte_l2_s_cache_mode;
1994
1995 if (l2pte_valid_p(opte)) {
1996 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1997 pv->pv_flags);
1998 }
1999
2000 l2pte_set(ptep, npte, opte);
2001 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2002 }
2003 }
2004 }
2005 #endif
2006
2007 #ifdef PMAP_CACHE_VIPT
2008 static void
2009 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2010 {
2011
2012 #ifndef ARM_MMU_EXTENDED
2013 struct pv_entry *pv;
2014 vaddr_t tst_mask;
2015 bool bad_alias;
2016 const u_int
2017 rw_mappings = md->urw_mappings + md->krw_mappings,
2018 ro_mappings = md->uro_mappings + md->kro_mappings;
2019
2020 /* do we need to do anything? */
2021 if (arm_cache_prefer_mask == 0)
2022 return;
2023
2024 UVMHIST_FUNC(__func__);
2025 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
2026 (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
2027
2028 KASSERT(!va || pm);
2029 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2030
2031 /* Already a conflict? */
2032 if (__predict_false(md->pvh_attrs & PVF_NC)) {
2033 /* just an add, things are already non-cached */
2034 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2035 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2036 bad_alias = false;
2037 if (va) {
2038 PMAPCOUNT(vac_color_none);
2039 bad_alias = true;
2040 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2041 goto fixup;
2042 }
2043 pv = SLIST_FIRST(&md->pvh_list);
2044 /* the list can't be empty because it would be cachable */
2045 if (md->pvh_attrs & PVF_KMPAGE) {
2046 tst_mask = md->pvh_attrs;
2047 } else {
2048 KASSERT(pv);
2049 tst_mask = pv->pv_va;
2050 pv = SLIST_NEXT(pv, pv_link);
2051 }
2052 /*
2053 * Only check for a bad alias if we have writable mappings.
2054 */
2055 tst_mask &= arm_cache_prefer_mask;
2056 if (rw_mappings > 0) {
2057 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2058 /* if there's a bad alias, stop checking. */
2059 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2060 bad_alias = true;
2061 }
2062 md->pvh_attrs |= PVF_WRITE;
2063 if (!bad_alias)
2064 md->pvh_attrs |= PVF_DIRTY;
2065 } else {
2066 /*
2067 * We have only read-only mappings. Let's see if there
2068 * are multiple colors in use or if we mapped a KMPAGE.
2069 * If the latter, we have a bad alias. If the former,
2070 * we need to remember that.
2071 */
2072 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2073 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2074 if (md->pvh_attrs & PVF_KMPAGE)
2075 bad_alias = true;
2076 break;
2077 }
2078 }
2079 md->pvh_attrs &= ~PVF_WRITE;
2080 /*
2081 * No KMPAGE and we exited early, so we must have
2082 * multiple color mappings.
2083 */
2084 if (!bad_alias && pv != NULL)
2085 md->pvh_attrs |= PVF_MULTCLR;
2086 }
2087
2088 /* If no conflicting colors, set everything back to cached */
2089 if (!bad_alias) {
2090 #ifdef DEBUG
2091 if ((md->pvh_attrs & PVF_WRITE)
2092 || ro_mappings < 2) {
2093 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2094 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2095 }
2096 #endif
2097 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2098 md->pvh_attrs |= tst_mask | PVF_COLORED;
2099 /*
2100 * Restore DIRTY bit if page is modified
2101 */
2102 if (md->pvh_attrs & PVF_DMOD)
2103 md->pvh_attrs |= PVF_DIRTY;
2104 PMAPCOUNT(vac_color_restore);
2105 } else {
2106 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2107 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2108 }
2109 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2110 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2111 } else if (!va) {
2112 KASSERT(pmap_is_page_colored_p(md));
2113 KASSERT(!(md->pvh_attrs & PVF_WRITE)
2114 || (md->pvh_attrs & PVF_DIRTY));
2115 if (rw_mappings == 0) {
2116 md->pvh_attrs &= ~PVF_WRITE;
2117 if (ro_mappings == 1
2118 && (md->pvh_attrs & PVF_MULTCLR)) {
2119 /*
2120 * If this is the last readonly mapping
2121 * but it doesn't match the current color
2122 * for the page, change the current color
2123 * to match this last readonly mapping.
2124 */
2125 pv = SLIST_FIRST(&md->pvh_list);
2126 tst_mask = (md->pvh_attrs ^ pv->pv_va)
2127 & arm_cache_prefer_mask;
2128 if (tst_mask) {
2129 md->pvh_attrs ^= tst_mask;
2130 PMAPCOUNT(vac_color_change);
2131 }
2132 }
2133 }
2134 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2135 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2136 return;
2137 } else if (!pmap_is_page_colored_p(md)) {
2138 /* not colored so we just use its color */
2139 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2140 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2141 PMAPCOUNT(vac_color_new);
2142 md->pvh_attrs &= PAGE_SIZE - 1;
2143 md->pvh_attrs |= PVF_COLORED
2144 | (va & arm_cache_prefer_mask)
2145 | (rw_mappings > 0 ? PVF_WRITE : 0);
2146 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2147 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2148 return;
2149 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2150 bad_alias = false;
2151 if (rw_mappings > 0) {
2152 /*
2153 * We now have writeable mappings and if we have
2154 * readonly mappings in more than once color, we have
2155 * an aliasing problem. Regardless mark the page as
2156 * writeable.
2157 */
2158 if (md->pvh_attrs & PVF_MULTCLR) {
2159 if (ro_mappings < 2) {
2160 /*
2161 * If we only have less than two
2162 * read-only mappings, just flush the
2163 * non-primary colors from the cache.
2164 */
2165 pmap_flush_page(md, pa,
2166 PMAP_FLUSH_SECONDARY);
2167 } else {
2168 bad_alias = true;
2169 }
2170 }
2171 md->pvh_attrs |= PVF_WRITE;
2172 }
2173 /* If no conflicting colors, set everything back to cached */
2174 if (!bad_alias) {
2175 #ifdef DEBUG
2176 if (rw_mappings > 0
2177 || (md->pvh_attrs & PMAP_KMPAGE)) {
2178 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2179 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2180 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2181 }
2182 #endif
2183 if (SLIST_EMPTY(&md->pvh_list))
2184 PMAPCOUNT(vac_color_reuse);
2185 else
2186 PMAPCOUNT(vac_color_ok);
2187
2188 /* matching color, just return */
2189 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2190 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2191 return;
2192 }
2193 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2194 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2195
2196 /* color conflict. evict from cache. */
2197
2198 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2199 md->pvh_attrs &= ~PVF_COLORED;
2200 md->pvh_attrs |= PVF_NC;
2201 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2202 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2203 PMAPCOUNT(vac_color_erase);
2204 } else if (rw_mappings == 0
2205 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2206 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2207
2208 /*
2209 * If the page has dirty cache lines, clean it.
2210 */
2211 if (md->pvh_attrs & PVF_DIRTY)
2212 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2213
2214 /*
2215 * If this is the first remapping (we know that there are no
2216 * writeable mappings), then this is a simple color change.
2217 * Otherwise this is a seconary r/o mapping, which means
2218 * we don't have to do anything.
2219 */
2220 if (ro_mappings == 1) {
2221 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2222 md->pvh_attrs &= PAGE_SIZE - 1;
2223 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2224 PMAPCOUNT(vac_color_change);
2225 } else {
2226 PMAPCOUNT(vac_color_blind);
2227 }
2228 md->pvh_attrs |= PVF_MULTCLR;
2229 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2230 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2231 return;
2232 } else {
2233 if (rw_mappings > 0)
2234 md->pvh_attrs |= PVF_WRITE;
2235
2236 /* color conflict. evict from cache. */
2237 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2238
2239 /* the list can't be empty because this was a enter/modify */
2240 pv = SLIST_FIRST(&md->pvh_list);
2241 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2242 KASSERT(pv);
2243 /*
2244 * If there's only one mapped page, change color to the
2245 * page's new color and return. Restore the DIRTY bit
2246 * that was erased by pmap_flush_page.
2247 */
2248 if (SLIST_NEXT(pv, pv_link) == NULL) {
2249 md->pvh_attrs &= PAGE_SIZE - 1;
2250 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2251 if (md->pvh_attrs & PVF_DMOD)
2252 md->pvh_attrs |= PVF_DIRTY;
2253 PMAPCOUNT(vac_color_change);
2254 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2255 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2256 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2257 return;
2258 }
2259 }
2260 bad_alias = true;
2261 md->pvh_attrs &= ~PVF_COLORED;
2262 md->pvh_attrs |= PVF_NC;
2263 PMAPCOUNT(vac_color_erase);
2264 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2265 }
2266
2267 fixup:
2268 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2269
2270 /*
2271 * Turn cacheing on/off for all pages.
2272 */
2273 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2274 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2275 pv->pv_va);
2276 KASSERTMSG(l2b != NULL, "%#lx", va);
2277 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2278 const pt_entry_t opte = *ptep;
2279 pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2280 if (bad_alias) {
2281 pv->pv_flags |= PVF_NC;
2282 } else {
2283 pv->pv_flags &= ~PVF_NC;
2284 npte |= pte_l2_s_cache_mode;
2285 }
2286
2287 if (opte == npte) /* only update is there's a change */
2288 continue;
2289
2290 if (l2pte_valid_p(opte)) {
2291 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2292 }
2293
2294 l2pte_set(ptep, npte, opte);
2295 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2296 }
2297 #endif /* !ARM_MMU_EXTENDED */
2298 }
2299 #endif /* PMAP_CACHE_VIPT */
2300
2301
2302 /*
2303 * Modify pte bits for all ptes corresponding to the given physical address.
2304 * We use `maskbits' rather than `clearbits' because we're always passing
2305 * constants and the latter would require an extra inversion at run-time.
2306 */
2307 static void
2308 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2309 {
2310 struct pv_entry *pv;
2311 #ifdef PMAP_CACHE_VIPT
2312 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2313 bool need_syncicache = false;
2314 #ifdef ARM_MMU_EXTENDED
2315 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2316 #else
2317 const u_int execbits = 0;
2318 bool need_vac_me_harder = false;
2319 #endif
2320 #else
2321 const u_int execbits = 0;
2322 #endif
2323
2324 UVMHIST_FUNC(__func__);
2325 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx maskbits %#jx",
2326 (uintptr_t)md, pa, maskbits, 0);
2327
2328 #ifdef PMAP_CACHE_VIPT
2329 /*
2330 * If we might want to sync the I-cache and we've modified it,
2331 * then we know we definitely need to sync or discard it.
2332 */
2333 if (want_syncicache) {
2334 if (md->pvh_attrs & PVF_MOD) {
2335 need_syncicache = true;
2336 }
2337 }
2338 #endif
2339 KASSERT(pmap_page_locked_p(md));
2340
2341 /*
2342 * Clear saved attributes (modify, reference)
2343 */
2344 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2345
2346 if (SLIST_EMPTY(&md->pvh_list)) {
2347 #if defined(PMAP_CACHE_VIPT)
2348 if (need_syncicache) {
2349 /*
2350 * No one has it mapped, so just discard it. The next
2351 * exec remapping will cause it to be synced.
2352 */
2353 md->pvh_attrs &= ~PVF_EXEC;
2354 PMAPCOUNT(exec_discarded_clearbit);
2355 }
2356 #endif
2357 return;
2358 }
2359
2360 /*
2361 * Loop over all current mappings setting/clearing as appropriate
2362 */
2363 for (pv = SLIST_FIRST(&md->pvh_list); pv != NULL;) {
2364 pmap_t pm = pv->pv_pmap;
2365 const vaddr_t va = pv->pv_va;
2366 const u_int oflags = pv->pv_flags;
2367 #ifndef ARM_MMU_EXTENDED
2368 /*
2369 * Kernel entries are unmanaged and as such not to be changed.
2370 */
2371 if (PV_IS_KENTRY_P(oflags)) {
2372 pv = SLIST_NEXT(pv, pv_link);
2373 continue;
2374 }
2375 #endif
2376
2377 /*
2378 * Try to get a hold on the pmap's lock. We must do this
2379 * while still holding the page locked, to know that the
2380 * page is still associated with the pmap and the mapping is
2381 * in place. If a hold can't be had, unlock and wait for
2382 * the pmap's lock to become available and retry. The pmap
2383 * must be ref'd over this dance to stop it disappearing
2384 * behind us.
2385 */
2386 if (!mutex_tryenter(&pm->pm_lock)) {
2387 pmap_reference(pm);
2388 pmap_release_page_lock(md);
2389 pmap_acquire_pmap_lock(pm);
2390 /* nothing, just wait for it */
2391 pmap_release_pmap_lock(pm);
2392 pmap_destroy(pm);
2393 /* Restart from the beginning. */
2394 pmap_acquire_page_lock(md);
2395 pv = SLIST_FIRST(&md->pvh_list);
2396 continue;
2397 }
2398 pv->pv_flags &= ~maskbits;
2399
2400 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2401 KASSERTMSG(l2b != NULL, "%#lx", va);
2402
2403 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2404 const pt_entry_t opte = *ptep;
2405 pt_entry_t npte = opte | execbits;
2406
2407 #ifdef ARM_MMU_EXTENDED
2408 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2409 #endif
2410
2411 UVMHIST_LOG(maphist, "pv %#jx pm %#jx va %#jx flag %#jx",
2412 (uintptr_t)pv, (uintptr_t)pm, va, oflags);
2413
2414 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2415 #ifdef PMAP_CACHE_VIVT
2416 if ((oflags & PVF_NC)) {
2417 /*
2418 * Entry is not cacheable:
2419 *
2420 * Don't turn caching on again if this is a
2421 * modified emulation. This would be
2422 * inconsitent with the settings created by
2423 * pmap_vac_me_harder(). Otherwise, it's safe
2424 * to re-enable cacheing.
2425 *
2426 * There's no need to call pmap_vac_me_harder()
2427 * here: all pages are losing their write
2428 * permission.
2429 */
2430 if (maskbits & PVF_WRITE) {
2431 npte |= pte_l2_s_cache_mode;
2432 pv->pv_flags &= ~PVF_NC;
2433 }
2434 } else if (l2pte_writable_p(opte)) {
2435 /*
2436 * Entry is writable/cacheable: check if pmap
2437 * is current if it is flush it, otherwise it
2438 * won't be in the cache
2439 */
2440 pmap_cache_wbinv_page(pm, va,
2441 (maskbits & PVF_REF) != 0,
2442 oflags|PVF_WRITE);
2443 }
2444 #endif
2445
2446 /* make the pte read only */
2447 npte = l2pte_set_readonly(npte);
2448
2449 if ((maskbits & oflags & PVF_WRITE)) {
2450 /*
2451 * Keep alias accounting up to date
2452 */
2453 if (pm == pmap_kernel()) {
2454 md->krw_mappings--;
2455 md->kro_mappings++;
2456 } else {
2457 md->urw_mappings--;
2458 md->uro_mappings++;
2459 }
2460 #ifdef PMAP_CACHE_VIPT
2461 if (arm_cache_prefer_mask != 0) {
2462 if (md->urw_mappings + md->krw_mappings == 0) {
2463 md->pvh_attrs &= ~PVF_WRITE;
2464 } else {
2465 PMAP_VALIDATE_MD_PAGE(md);
2466 }
2467 }
2468 if (want_syncicache)
2469 need_syncicache = true;
2470 #ifndef ARM_MMU_EXTENDED
2471 need_vac_me_harder = true;
2472 #endif
2473 #endif /* PMAP_CACHE_VIPT */
2474 }
2475 }
2476
2477 if (maskbits & PVF_REF) {
2478 if (true
2479 #ifndef ARM_MMU_EXTENDED
2480 && (oflags & PVF_NC) == 0
2481 #endif
2482 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2483 && l2pte_valid_p(npte)) {
2484 #ifdef PMAP_CACHE_VIVT
2485 /*
2486 * Check npte here; we may have already
2487 * done the wbinv above, and the validity
2488 * of the PTE is the same for opte and
2489 * npte.
2490 */
2491 pmap_cache_wbinv_page(pm, va, true, oflags);
2492 #endif
2493 }
2494
2495 /*
2496 * Make the PTE invalid so that we will take a
2497 * page fault the next time the mapping is
2498 * referenced.
2499 */
2500 npte &= ~L2_TYPE_MASK;
2501 npte |= L2_TYPE_INV;
2502 }
2503
2504 if (npte != opte) {
2505 l2pte_reset(ptep);
2506 PTE_SYNC(ptep);
2507
2508 /* Flush the TLB entry if a current pmap. */
2509 pmap_tlb_flush_SE(pm, va, oflags);
2510
2511 l2pte_set(ptep, npte, 0);
2512 PTE_SYNC(ptep);
2513 }
2514
2515 pmap_release_pmap_lock(pm);
2516
2517 UVMHIST_LOG(maphist, "pm %#jx va %#jx opte %#jx npte %#jx",
2518 (uintptr_t)pm, va, opte, npte);
2519
2520 /* Move to next entry. */
2521 pv = SLIST_NEXT(pv, pv_link);
2522 }
2523
2524 #if defined(PMAP_CACHE_VIPT)
2525 /*
2526 * If we need to sync the I-cache and we haven't done it yet, do it.
2527 */
2528 if (need_syncicache) {
2529 pmap_syncicache_page(md, pa);
2530 PMAPCOUNT(exec_synced_clearbit);
2531 }
2532 #ifndef ARM_MMU_EXTENDED
2533 /*
2534 * If we are changing this to read-only, we need to call vac_me_harder
2535 * so we can change all the read-only pages to cacheable. We pretend
2536 * this as a page deletion.
2537 */
2538 if (need_vac_me_harder) {
2539 if (md->pvh_attrs & PVF_NC)
2540 pmap_vac_me_harder(md, pa, NULL, 0);
2541 }
2542 #endif /* !ARM_MMU_EXTENDED */
2543 #endif /* PMAP_CACHE_VIPT */
2544 }
2545
2546 /*
2547 * pmap_clean_page()
2548 *
2549 * This is a local function used to work out the best strategy to clean
2550 * a single page referenced by its entry in the PV table. It's used by
2551 * pmap_copy_page, pmap_zero_page and maybe some others later on.
2552 *
2553 * Its policy is effectively:
2554 * o If there are no mappings, we don't bother doing anything with the cache.
2555 * o If there is one mapping, we clean just that page.
2556 * o If there are multiple mappings, we clean the entire cache.
2557 *
2558 * So that some functions can be further optimised, it returns 0 if it didn't
2559 * clean the entire cache, or 1 if it did.
2560 *
2561 * XXX One bug in this routine is that if the pv_entry has a single page
2562 * mapped at 0x00000000 a whole cache clean will be performed rather than
2563 * just the 1 page. Since this should not occur in everyday use and if it does
2564 * it will just result in not the most efficient clean for the page.
2565 */
2566 #ifdef PMAP_CACHE_VIVT
2567 static bool
2568 pmap_clean_page(struct vm_page_md *md, bool is_src)
2569 {
2570 struct pv_entry *pv;
2571 pmap_t pm_to_clean = NULL;
2572 bool cache_needs_cleaning = false;
2573 vaddr_t page_to_clean = 0;
2574 u_int flags = 0;
2575
2576 /*
2577 * Since we flush the cache each time we change to a different
2578 * user vmspace, we only need to flush the page if it is in the
2579 * current pmap.
2580 */
2581 KASSERT(pmap_page_locked_p(md));
2582 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2583 if (pmap_is_current(pv->pv_pmap)) {
2584 flags |= pv->pv_flags;
2585 /*
2586 * The page is mapped non-cacheable in
2587 * this map. No need to flush the cache.
2588 */
2589 if (pv->pv_flags & PVF_NC) {
2590 #ifdef DIAGNOSTIC
2591 KASSERT(!cache_needs_cleaning);
2592 #endif
2593 break;
2594 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2595 continue;
2596 if (cache_needs_cleaning) {
2597 page_to_clean = 0;
2598 break;
2599 } else {
2600 page_to_clean = pv->pv_va;
2601 pm_to_clean = pv->pv_pmap;
2602 }
2603 cache_needs_cleaning = true;
2604 }
2605 }
2606
2607 if (page_to_clean) {
2608 pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2609 !is_src, flags | PVF_REF);
2610 } else if (cache_needs_cleaning) {
2611 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2612
2613 pmap_cache_wbinv_all(pm, flags);
2614 return true;
2615 }
2616 return false;
2617 }
2618 #endif
2619
2620 #ifdef PMAP_CACHE_VIPT
2621 /*
2622 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2623 * right cache alias to make sure we flush the right stuff.
2624 */
2625 void
2626 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2627 {
2628 pmap_t kpm = pmap_kernel();
2629 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2630 ? PAGE_SIZE
2631 : arm_pcache.icache_way_size;
2632
2633 UVMHIST_FUNC(__func__);
2634 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx (attrs=%#jx)",
2635 (uintptr_t)md, pa, md->pvh_attrs, 0);
2636
2637 /*
2638 * No need to clean the page if it's non-cached.
2639 */
2640 #ifndef ARM_MMU_EXTENDED
2641 if (md->pvh_attrs & PVF_NC)
2642 return;
2643 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2644 #endif
2645
2646 pt_entry_t * const ptep = cpu_cdst_pte(0);
2647 const vaddr_t dstp = cpu_cdstp(0);
2648 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2649 if (way_size <= PAGE_SIZE) {
2650 bool ok = false;
2651 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2652 if (ok) {
2653 cpu_icache_sync_range(vdstp, way_size);
2654 return;
2655 }
2656 }
2657 #endif
2658
2659 /*
2660 * We don't worry about the color of the exec page, we map the
2661 * same page to pages in the way and then do the icache_sync on
2662 * the entire way making sure we are cleaned.
2663 */
2664 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2665 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2666
2667 for (size_t i = 0, j = 0; i < way_size;
2668 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2669 l2pte_reset(ptep + j);
2670 PTE_SYNC(ptep + j);
2671
2672 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2673 /*
2674 * Set up a PTE with to flush these cache lines.
2675 */
2676 l2pte_set(ptep + j, npte, 0);
2677 }
2678 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2679
2680 /*
2681 * Flush it.
2682 */
2683 cpu_icache_sync_range(dstp, way_size);
2684
2685 for (size_t i = 0, j = 0; i < way_size;
2686 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2687 /*
2688 * Unmap the page(s).
2689 */
2690 l2pte_reset(ptep + j);
2691 PTE_SYNC(ptep + j);
2692
2693 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2694 }
2695
2696 md->pvh_attrs |= PVF_EXEC;
2697 PMAPCOUNT(exec_synced);
2698 }
2699
2700 #ifndef ARM_MMU_EXTENDED
2701 void
2702 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2703 {
2704 vsize_t va_offset, end_va;
2705 bool wbinv_p;
2706
2707 if (arm_cache_prefer_mask == 0)
2708 return;
2709
2710 UVMHIST_FUNC(__func__);
2711 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx op %#jx",
2712 (uintptr_t)md, pa, op, 0);
2713
2714 switch (flush) {
2715 case PMAP_FLUSH_PRIMARY:
2716 if (md->pvh_attrs & PVF_MULTCLR) {
2717 va_offset = 0;
2718 end_va = arm_cache_prefer_mask;
2719 md->pvh_attrs &= ~PVF_MULTCLR;
2720 PMAPCOUNT(vac_flush_lots);
2721 } else {
2722 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2723 end_va = va_offset;
2724 PMAPCOUNT(vac_flush_one);
2725 }
2726 /*
2727 * Mark that the page is no longer dirty.
2728 */
2729 md->pvh_attrs &= ~PVF_DIRTY;
2730 wbinv_p = true;
2731 break;
2732 case PMAP_FLUSH_SECONDARY:
2733 va_offset = 0;
2734 end_va = arm_cache_prefer_mask;
2735 wbinv_p = true;
2736 md->pvh_attrs &= ~PVF_MULTCLR;
2737 PMAPCOUNT(vac_flush_lots);
2738 break;
2739 case PMAP_CLEAN_PRIMARY:
2740 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2741 end_va = va_offset;
2742 wbinv_p = false;
2743 /*
2744 * Mark that the page is no longer dirty.
2745 */
2746 if ((md->pvh_attrs & PVF_DMOD) == 0)
2747 md->pvh_attrs &= ~PVF_DIRTY;
2748 PMAPCOUNT(vac_clean_one);
2749 break;
2750 default:
2751 return;
2752 }
2753
2754 KASSERT(!(md->pvh_attrs & PVF_NC));
2755
2756 UVMHIST_LOG(maphist, "md %#jx (attrs=%#jx)", (uintptr_t)md,
2757 md->pvh_attrs, 0, 0);
2758
2759 const size_t scache_line_size = arm_scache.dcache_line_size;
2760
2761 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2762 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2763 const vaddr_t dstp = cpu_cdstp(va_offset);
2764 const pt_entry_t opte = *ptep;
2765
2766 if (flush == PMAP_FLUSH_SECONDARY
2767 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2768 continue;
2769
2770 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2771 /*
2772 * Set up a PTE with the right coloring to flush
2773 * existing cache entries.
2774 */
2775 const pt_entry_t npte = L2_S_PROTO
2776 | pa
2777 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2778 | pte_l2_s_cache_mode;
2779 l2pte_set(ptep, npte, opte);
2780 PTE_SYNC(ptep);
2781
2782 /*
2783 * Flush it. Make sure to flush secondary cache too since
2784 * bus_dma will ignore uncached pages.
2785 */
2786 if (scache_line_size != 0) {
2787 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2788 if (wbinv_p) {
2789 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2790 cpu_dcache_inv_range(dstp, PAGE_SIZE);
2791 } else {
2792 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2793 }
2794 } else {
2795 if (wbinv_p) {
2796 cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2797 } else {
2798 cpu_dcache_wb_range(dstp, PAGE_SIZE);
2799 }
2800 }
2801
2802 /*
2803 * Restore the page table entry since we might have interrupted
2804 * pmap_zero_page or pmap_copy_page which was already using
2805 * this pte.
2806 */
2807 if (opte) {
2808 l2pte_set(ptep, opte, npte);
2809 } else {
2810 l2pte_reset(ptep);
2811 }
2812 PTE_SYNC(ptep);
2813 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2814 }
2815 }
2816 #endif /* ARM_MMU_EXTENDED */
2817 #endif /* PMAP_CACHE_VIPT */
2818
2819 /*
2820 * Routine: pmap_page_remove
2821 * Function:
2822 * Removes this physical page from
2823 * all physical maps in which it resides.
2824 * Reflects back modify bits to the pager.
2825 */
2826 static void
2827 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2828 {
2829 struct l2_bucket *l2b;
2830 struct pv_entry *pv;
2831 pt_entry_t *ptep;
2832 #ifndef ARM_MMU_EXTENDED
2833 bool flush = false;
2834 #endif
2835 u_int flags = 0;
2836
2837 UVMHIST_FUNC(__func__);
2838 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx", (uintptr_t)md, pa, 0, 0);
2839
2840 kpreempt_disable();
2841 pmap_acquire_page_lock(md);
2842 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2843 if (*pvp == NULL) {
2844 #ifdef PMAP_CACHE_VIPT
2845 /*
2846 * We *know* the page contents are about to be replaced.
2847 * Discard the exec contents
2848 */
2849 if (PV_IS_EXEC_P(md->pvh_attrs))
2850 PMAPCOUNT(exec_discarded_page_protect);
2851 md->pvh_attrs &= ~PVF_EXEC;
2852 PMAP_VALIDATE_MD_PAGE(md);
2853 #endif
2854 pmap_release_page_lock(md);
2855 kpreempt_enable();
2856
2857 return;
2858 }
2859 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2860 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2861 #endif
2862
2863 /*
2864 * Clear alias counts
2865 */
2866 #ifdef PMAP_CACHE_VIVT
2867 md->k_mappings = 0;
2868 #endif
2869 md->urw_mappings = md->uro_mappings = 0;
2870
2871 #ifdef PMAP_CACHE_VIVT
2872 pmap_clean_page(md, false);
2873 #endif
2874
2875 for (pv = *pvp; pv != NULL;) {
2876 pmap_t pm = pv->pv_pmap;
2877 #ifndef ARM_MMU_EXTENDED
2878 if (flush == false && pmap_is_current(pm))
2879 flush = true;
2880 #endif
2881
2882 #ifdef PMAP_CACHE_VIPT
2883 if (pm == pmap_kernel() && PV_IS_KENTRY_P(pv->pv_flags)) {
2884 /* If this was unmanaged mapping, it must be ignored. */
2885 pvp = &SLIST_NEXT(pv, pv_link);
2886 pv = *pvp;
2887 continue;
2888 }
2889 #endif
2890
2891 /*
2892 * Try to get a hold on the pmap's lock. We must do this
2893 * while still holding the page locked, to know that the
2894 * page is still associated with the pmap and the mapping is
2895 * in place. If a hold can't be had, unlock and wait for
2896 * the pmap's lock to become available and retry. The pmap
2897 * must be ref'd over this dance to stop it disappearing
2898 * behind us.
2899 */
2900 if (!mutex_tryenter(&pm->pm_lock)) {
2901 pmap_reference(pm);
2902 pmap_release_page_lock(md);
2903 pmap_acquire_pmap_lock(pm);
2904 /* nothing, just wait for it */
2905 pmap_release_pmap_lock(pm);
2906 pmap_destroy(pm);
2907 /* Restart from the beginning. */
2908 pmap_acquire_page_lock(md);
2909 pvp = &SLIST_FIRST(&md->pvh_list);
2910 pv = *pvp;
2911 continue;
2912 }
2913
2914 if (pm == pmap_kernel()) {
2915 #ifdef PMAP_CACHE_VIPT
2916 if (pv->pv_flags & PVF_WRITE)
2917 md->krw_mappings--;
2918 else
2919 md->kro_mappings--;
2920 #endif
2921 PMAPCOUNT(kernel_unmappings);
2922 }
2923 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2924 PMAPCOUNT(unmappings);
2925
2926 pmap_release_page_lock(md);
2927
2928 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2929 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2930
2931 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2932
2933 /*
2934 * Update statistics
2935 */
2936 --pm->pm_stats.resident_count;
2937
2938 /* Wired bit */
2939 if (pv->pv_flags & PVF_WIRED)
2940 --pm->pm_stats.wired_count;
2941
2942 flags |= pv->pv_flags;
2943
2944 /*
2945 * Invalidate the PTEs.
2946 */
2947 l2pte_reset(ptep);
2948 PTE_SYNC_CURRENT(pm, ptep);
2949
2950 #ifdef ARM_MMU_EXTENDED
2951 pmap_tlb_invalidate_addr(pm, pv->pv_va);
2952 #endif
2953
2954 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2955
2956 pmap_release_pmap_lock(pm);
2957
2958 pool_put(&pmap_pv_pool, pv);
2959 pmap_acquire_page_lock(md);
2960
2961 /*
2962 * Restart at the beginning of the list.
2963 */
2964 pvp = &SLIST_FIRST(&md->pvh_list);
2965 pv = *pvp;
2966 }
2967 /*
2968 * if we reach the end of the list and there are still mappings, they
2969 * might be able to be cached now. And they must be kernel mappings.
2970 */
2971 if (!SLIST_EMPTY(&md->pvh_list)) {
2972 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2973 }
2974
2975 #ifdef PMAP_CACHE_VIPT
2976 /*
2977 * Its EXEC cache is now gone.
2978 */
2979 if (PV_IS_EXEC_P(md->pvh_attrs))
2980 PMAPCOUNT(exec_discarded_page_protect);
2981 md->pvh_attrs &= ~PVF_EXEC;
2982 KASSERT(md->urw_mappings == 0);
2983 KASSERT(md->uro_mappings == 0);
2984 #ifndef ARM_MMU_EXTENDED
2985 if (arm_cache_prefer_mask != 0) {
2986 if (md->krw_mappings == 0)
2987 md->pvh_attrs &= ~PVF_WRITE;
2988 PMAP_VALIDATE_MD_PAGE(md);
2989 }
2990 #endif /* ARM_MMU_EXTENDED */
2991 #endif /* PMAP_CACHE_VIPT */
2992 pmap_release_page_lock(md);
2993
2994 #ifndef ARM_MMU_EXTENDED
2995 if (flush) {
2996 /*
2997 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2998 * would need a subsequent call to pmap_update() to ensure
2999 * curpm->pm_cstate.cs_all is reset. Our callers are not
3000 * required to do that (see pmap(9)), so we can't modify
3001 * the current pmap's state.
3002 */
3003 if (PV_BEEN_EXECD(flags))
3004 cpu_tlb_flushID();
3005 else
3006 cpu_tlb_flushD();
3007 }
3008 cpu_cpwait();
3009 #endif /* ARM_MMU_EXTENDED */
3010
3011 kpreempt_enable();
3012 }
3013
3014 /*
3015 * pmap_t pmap_create(void)
3016 *
3017 * Create a new pmap structure from scratch.
3018 */
3019 pmap_t
3020 pmap_create(void)
3021 {
3022 pmap_t pm;
3023
3024 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3025
3026 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
3027
3028 pm->pm_refs = 1;
3029 pm->pm_stats.wired_count = 0;
3030 pm->pm_stats.resident_count = 1;
3031 #ifdef ARM_MMU_EXTENDED
3032 #ifdef MULTIPROCESSOR
3033 kcpuset_create(&pm->pm_active, true);
3034 kcpuset_create(&pm->pm_onproc, true);
3035 #endif
3036 #else
3037 pm->pm_cstate.cs_all = 0;
3038 #endif
3039 pmap_alloc_l1(pm);
3040
3041 /*
3042 * Note: The pool cache ensures that the pm_l2[] array is already
3043 * initialised to zero.
3044 */
3045
3046 pmap_pinit(pm);
3047
3048 return pm;
3049 }
3050
3051 u_int
3052 arm32_mmap_flags(paddr_t pa)
3053 {
3054 /*
3055 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3056 * and we're using the upper bits in page numbers to pass flags around
3057 * so we might as well use the same bits
3058 */
3059 return (u_int)pa & PMAP_MD_MASK;
3060 }
3061 /*
3062 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3063 * u_int flags)
3064 *
3065 * Insert the given physical page (p) at
3066 * the specified virtual address (v) in the
3067 * target physical map with the protection requested.
3068 *
3069 * NB: This is the only routine which MAY NOT lazy-evaluate
3070 * or lose information. That is, this routine must actually
3071 * insert this page into the given map NOW.
3072 */
3073 int
3074 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3075 {
3076 struct l2_bucket *l2b;
3077 struct vm_page *pg, *opg;
3078 u_int nflags;
3079 u_int oflags;
3080 const bool kpm_p = (pm == pmap_kernel());
3081 #ifdef ARM_HAS_VBAR
3082 const bool vector_page_p = false;
3083 #else
3084 const bool vector_page_p = (va == vector_page);
3085 #endif
3086 struct pmap_page *pp = pmap_pv_tracked(pa);
3087 struct pv_entry *new_pv = NULL;
3088 struct pv_entry *old_pv = NULL;
3089 int error = 0;
3090
3091 UVMHIST_FUNC(__func__);
3092 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx pa %#jx prot %#jx",
3093 (uintptr_t)pm, va, pa, prot);
3094 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0);
3095
3096 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3097 KDASSERT(((va | pa) & PGOFSET) == 0);
3098
3099 /*
3100 * Get a pointer to the page. Later on in this function, we
3101 * test for a managed page by checking pg != NULL.
3102 */
3103 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3104 /*
3105 * if we may need a new pv entry allocate if now, as we can't do it
3106 * with the kernel_pmap locked
3107 */
3108 if (pg || pp)
3109 new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3110
3111 nflags = 0;
3112 if (prot & VM_PROT_WRITE)
3113 nflags |= PVF_WRITE;
3114 if (prot & VM_PROT_EXECUTE)
3115 nflags |= PVF_EXEC;
3116 if (flags & PMAP_WIRED)
3117 nflags |= PVF_WIRED;
3118
3119 kpreempt_disable();
3120 pmap_acquire_pmap_lock(pm);
3121
3122 /*
3123 * Fetch the L2 bucket which maps this page, allocating one if
3124 * necessary for user pmaps.
3125 */
3126 if (kpm_p) {
3127 l2b = pmap_get_l2_bucket(pm, va);
3128 } else {
3129 l2b = pmap_alloc_l2_bucket(pm, va);
3130 }
3131 if (l2b == NULL) {
3132 if (flags & PMAP_CANFAIL) {
3133 pmap_release_pmap_lock(pm);
3134 kpreempt_enable();
3135
3136 error = ENOMEM;
3137 goto free_pv;
3138 }
3139 panic("pmap_enter: failed to allocate L2 bucket");
3140 }
3141 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3142 const pt_entry_t opte = *ptep;
3143 pt_entry_t npte = pa;
3144 oflags = 0;
3145
3146 if (opte) {
3147 /*
3148 * There is already a mapping at this address.
3149 * If the physical address is different, lookup the
3150 * vm_page.
3151 */
3152 if (l2pte_pa(opte) != pa) {
3153 KASSERT(!pmap_pv_tracked(pa));
3154 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3155 } else
3156 opg = pg;
3157 } else
3158 opg = NULL;
3159
3160 if (pg || pp) {
3161 KASSERT((pg != NULL) != (pp != NULL));
3162 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3163 PMAP_PAGE_TO_MD(pp);
3164
3165 UVMHIST_LOG(maphist, " pg %#jx pp %#jx pvh_attrs %#jx "
3166 "nflags %#jx", (uintptr_t)pg, (uintptr_t)pp,
3167 md->pvh_attrs, nflags);
3168
3169 /*
3170 * This is to be a managed mapping.
3171 */
3172 pmap_acquire_page_lock(md);
3173 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3174 /*
3175 * - The access type indicates that we don't need
3176 * to do referenced emulation.
3177 * OR
3178 * - The physical page has already been referenced
3179 * so no need to re-do referenced emulation here.
3180 */
3181 npte |= l2pte_set_readonly(L2_S_PROTO);
3182
3183 nflags |= PVF_REF;
3184
3185 if ((prot & VM_PROT_WRITE) != 0 &&
3186 ((flags & VM_PROT_WRITE) != 0 ||
3187 (md->pvh_attrs & PVF_MOD) != 0)) {
3188 /*
3189 * This is a writable mapping, and the
3190 * page's mod state indicates it has
3191 * already been modified. Make it
3192 * writable from the outset.
3193 */
3194 npte = l2pte_set_writable(npte);
3195 nflags |= PVF_MOD;
3196 }
3197
3198 #ifdef ARM_MMU_EXTENDED
3199 /*
3200 * If the page has been cleaned, then the pvh_attrs
3201 * will have PVF_EXEC set, so mark it execute so we
3202 * don't get an access fault when trying to execute
3203 * from it.
3204 */
3205 if (md->pvh_attrs & nflags & PVF_EXEC) {
3206 npte &= ~L2_XS_XN;
3207 }
3208 #endif
3209 } else {
3210 /*
3211 * Need to do page referenced emulation.
3212 */
3213 npte |= L2_TYPE_INV;
3214 }
3215
3216 if (flags & ARM32_MMAP_WRITECOMBINE) {
3217 npte |= pte_l2_s_wc_mode;
3218 } else
3219 npte |= pte_l2_s_cache_mode;
3220
3221 if (pg != NULL && pg == opg) {
3222 /*
3223 * We're changing the attrs of an existing mapping.
3224 */
3225 oflags = pmap_modify_pv(md, pa, pm, va,
3226 PVF_WRITE | PVF_EXEC | PVF_WIRED |
3227 PVF_MOD | PVF_REF, nflags);
3228
3229 #ifdef PMAP_CACHE_VIVT
3230 /*
3231 * We may need to flush the cache if we're
3232 * doing rw-ro...
3233 */
3234 if (pm->pm_cstate.cs_cache_d &&
3235 (oflags & PVF_NC) == 0 &&
3236 l2pte_writable_p(opte) &&
3237 (prot & VM_PROT_WRITE) == 0)
3238 cpu_dcache_wb_range(va, PAGE_SIZE);
3239 #endif
3240 } else {
3241 struct pv_entry *pv;
3242 /*
3243 * New mapping, or changing the backing page
3244 * of an existing mapping.
3245 */
3246 if (opg) {
3247 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3248 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3249
3250 /*
3251 * Replacing an existing mapping with a new one.
3252 * It is part of our managed memory so we
3253 * must remove it from the PV list
3254 */
3255 pv = pmap_remove_pv(omd, opa, pm, va);
3256 pmap_vac_me_harder(omd, opa, pm, 0);
3257 oflags = pv->pv_flags;
3258
3259 #ifdef PMAP_CACHE_VIVT
3260 /*
3261 * If the old mapping was valid (ref/mod
3262 * emulation creates 'invalid' mappings
3263 * initially) then make sure to frob
3264 * the cache.
3265 */
3266 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3267 pmap_cache_wbinv_page(pm, va, true,
3268 oflags);
3269 }
3270 #endif
3271 } else {
3272 pv = new_pv;
3273 new_pv = NULL;
3274 if (pv == NULL) {
3275 pmap_release_page_lock(md);
3276 pmap_release_pmap_lock(pm);
3277 if ((flags & PMAP_CANFAIL) == 0)
3278 panic("pmap_enter: "
3279 "no pv entries");
3280
3281 pmap_free_l2_bucket(pm, l2b, 0);
3282 UVMHIST_LOG(maphist, " <-- done (ENOMEM)",
3283 0, 0, 0, 0);
3284 kpreempt_enable();
3285
3286 return ENOMEM;
3287 }
3288 }
3289
3290 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3291 }
3292 pmap_release_page_lock(md);
3293 } else {
3294 /*
3295 * We're mapping an unmanaged page.
3296 * These are always readable, and possibly writable, from
3297 * the get go as we don't need to track ref/mod status.
3298 */
3299 npte |= l2pte_set_readonly(L2_S_PROTO);
3300 if (prot & VM_PROT_WRITE)
3301 npte = l2pte_set_writable(npte);
3302
3303 /*
3304 * Make sure the vector table is mapped cacheable
3305 */
3306 if ((vector_page_p && !kpm_p)
3307 || (flags & ARM32_MMAP_CACHEABLE)) {
3308 npte |= pte_l2_s_cache_mode;
3309 #ifdef ARM_MMU_EXTENDED
3310 npte &= ~L2_XS_XN; /* and executable */
3311 #endif
3312 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3313 npte |= pte_l2_s_wc_mode;
3314 }
3315 if (opg) {
3316 /*
3317 * Looks like there's an existing 'managed' mapping
3318 * at this address.
3319 */
3320 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3321 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3322
3323 pmap_acquire_page_lock(omd);
3324 old_pv = pmap_remove_pv(omd, opa, pm, va);
3325 pmap_vac_me_harder(omd, opa, pm, 0);
3326 oflags = old_pv->pv_flags;
3327 pmap_release_page_lock(omd);
3328
3329 #ifdef PMAP_CACHE_VIVT
3330 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3331 pmap_cache_wbinv_page(pm, va, true, oflags);
3332 }
3333 #endif
3334 }
3335 }
3336
3337 /*
3338 * Make sure userland mappings get the right permissions
3339 */
3340 if (!vector_page_p && !kpm_p) {
3341 npte |= L2_S_PROT_U;
3342 #ifdef ARM_MMU_EXTENDED
3343 npte |= L2_XS_nG; /* user pages are not global */
3344 #endif
3345 }
3346
3347 /*
3348 * Keep the stats up to date
3349 */
3350 if (opte == 0) {
3351 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3352 pm->pm_stats.resident_count++;
3353 }
3354
3355 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3356
3357 #if defined(ARM_MMU_EXTENDED)
3358 /*
3359 * If exec protection was requested but the page hasn't been synced,
3360 * sync it now and allow execution from it.
3361 */
3362 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3363 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3364 npte &= ~L2_XS_XN;
3365 pmap_syncicache_page(md, pa);
3366 PMAPCOUNT(exec_synced_map);
3367 }
3368 #endif
3369 /*
3370 * If this is just a wiring change, the two PTEs will be
3371 * identical, so there's no need to update the page table.
3372 */
3373 if (npte != opte) {
3374 l2pte_reset(ptep);
3375 PTE_SYNC(ptep);
3376 if (l2pte_valid_p(opte)) {
3377 pmap_tlb_flush_SE(pm, va, oflags);
3378 }
3379 l2pte_set(ptep, npte, 0);
3380 PTE_SYNC(ptep);
3381 #ifndef ARM_MMU_EXTENDED
3382 bool is_cached = pmap_is_cached(pm);
3383 if (is_cached) {
3384 /*
3385 * We only need to frob the cache/tlb if this pmap
3386 * is current
3387 */
3388 if (!vector_page_p && l2pte_valid_p(npte)) {
3389 /*
3390 * This mapping is likely to be accessed as
3391 * soon as we return to userland. Fix up the
3392 * L1 entry to avoid taking another
3393 * page/domain fault.
3394 */
3395 pd_entry_t *pdep = pmap_l1_kva(pm)
3396 + l1pte_index(va);
3397 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3398 | L1_C_DOM(pmap_domain(pm));
3399 if (*pdep != pde) {
3400 l1pte_setone(pdep, pde);
3401 PDE_SYNC(pdep);
3402 }
3403 }
3404 }
3405
3406 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx",
3407 is_cached, pm->pm_cstate.cs_all, 0, 0);
3408
3409 if (pg != NULL) {
3410 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3411
3412 pmap_acquire_page_lock(md);
3413 pmap_vac_me_harder(md, pa, pm, va);
3414 pmap_release_page_lock(md);
3415 }
3416 #endif
3417 }
3418 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3419 if (pg) {
3420 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3421
3422 pmap_acquire_page_lock(md);
3423 #ifndef ARM_MMU_EXTENDED
3424 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3425 #endif
3426 PMAP_VALIDATE_MD_PAGE(md);
3427 pmap_release_page_lock(md);
3428 }
3429 #endif
3430
3431 pmap_release_pmap_lock(pm);
3432 kpreempt_enable();
3433
3434 if (old_pv)
3435 pool_put(&pmap_pv_pool, old_pv);
3436 free_pv:
3437 if (new_pv)
3438 pool_put(&pmap_pv_pool, new_pv);
3439
3440 return error;
3441 }
3442
3443 /*
3444 * pmap_remove()
3445 *
3446 * pmap_remove is responsible for nuking a number of mappings for a range
3447 * of virtual address space in the current pmap. To do this efficiently
3448 * is interesting, because in a number of cases a wide virtual address
3449 * range may be supplied that contains few actual mappings. So, the
3450 * optimisations are:
3451 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3452 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3453 * maybe do just a partial cache clean. This path of execution is
3454 * complicated by the fact that the cache must be flushed _before_
3455 * the PTE is nuked, being a VAC :-)
3456 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3457 * all invalidations until pmap_update(), since pmap_remove_all() has
3458 * already flushed the cache.
3459 * 4. Maybe later fast-case a single page, but I don't think this is
3460 * going to make _that_ much difference overall.
3461 */
3462
3463 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3464
3465 void
3466 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3467 {
3468 SLIST_HEAD(,pv_entry) opv_list;
3469 struct pv_entry *pv, *npv;
3470 UVMHIST_FUNC(__func__);
3471 UVMHIST_CALLARGS(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3472 (uintptr_t)pm, sva, eva, 0);
3473
3474 #ifdef PMAP_FAULTINFO
3475 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
3476 curpcb->pcb_faultinfo.pfi_repeats = 0;
3477 curpcb->pcb_faultinfo.pfi_faultptep = NULL;
3478 #endif
3479
3480 SLIST_INIT(&opv_list);
3481 /*
3482 * we lock in the pmap => pv_head direction
3483 */
3484 kpreempt_disable();
3485 pmap_acquire_pmap_lock(pm);
3486
3487 #ifndef ARM_MMU_EXTENDED
3488 u_int cleanlist_idx, total, cnt;
3489 struct {
3490 vaddr_t va;
3491 pt_entry_t *ptep;
3492 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3493
3494 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3495 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3496 if (pm->pm_cstate.cs_tlb == 0)
3497 pm->pm_remove_all = true;
3498 } else
3499 cleanlist_idx = 0;
3500 total = 0;
3501 #endif
3502
3503 while (sva < eva) {
3504 /*
3505 * Do one L2 bucket's worth at a time.
3506 */
3507 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3508 if (next_bucket > eva)
3509 next_bucket = eva;
3510
3511 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3512 if (l2b == NULL) {
3513 sva = next_bucket;
3514 continue;
3515 }
3516
3517 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3518 u_int mappings = 0;
3519
3520 for (;sva < next_bucket;
3521 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3522 pt_entry_t opte = *ptep;
3523
3524 if (opte == 0) {
3525 /* Nothing here, move along */
3526 continue;
3527 }
3528
3529 u_int flags = PVF_REF;
3530 paddr_t pa = l2pte_pa(opte);
3531 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3532
3533 /*
3534 * Update flags. In a number of circumstances,
3535 * we could cluster a lot of these and do a
3536 * number of sequential pages in one go.
3537 */
3538 if (pg != NULL) {
3539 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3540
3541 pmap_acquire_page_lock(md);
3542 pv = pmap_remove_pv(md, pa, pm, sva);
3543 pmap_vac_me_harder(md, pa, pm, 0);
3544 pmap_release_page_lock(md);
3545 if (pv != NULL) {
3546 if (pm->pm_remove_all == false) {
3547 flags = pv->pv_flags;
3548 }
3549 SLIST_INSERT_HEAD(&opv_list,
3550 pv, pv_link);
3551 }
3552 }
3553 mappings += PAGE_SIZE / L2_S_SIZE;
3554
3555 if (!l2pte_valid_p(opte)) {
3556 /*
3557 * Ref/Mod emulation is still active for this
3558 * mapping, therefore it is has not yet been
3559 * accessed. No need to frob the cache/tlb.
3560 */
3561 l2pte_reset(ptep);
3562 PTE_SYNC_CURRENT(pm, ptep);
3563 continue;
3564 }
3565
3566 #ifdef ARM_MMU_EXTENDED
3567 l2pte_reset(ptep);
3568 PTE_SYNC(ptep);
3569 if (__predict_false(pm->pm_remove_all == false)) {
3570 pmap_tlb_flush_SE(pm, sva, flags);
3571 }
3572 #else
3573 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3574 /* Add to the clean list. */
3575 cleanlist[cleanlist_idx].ptep = ptep;
3576 cleanlist[cleanlist_idx].va =
3577 sva | (flags & PVF_EXEC);
3578 cleanlist_idx++;
3579 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3580 /* Nuke everything if needed. */
3581 #ifdef PMAP_CACHE_VIVT
3582 pmap_cache_wbinv_all(pm, PVF_EXEC);
3583 #endif
3584 /*
3585 * Roll back the previous PTE list,
3586 * and zero out the current PTE.
3587 */
3588 for (cnt = 0;
3589 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3590 l2pte_reset(cleanlist[cnt].ptep);
3591 PTE_SYNC(cleanlist[cnt].ptep);
3592 }
3593 l2pte_reset(ptep);
3594 PTE_SYNC(ptep);
3595 cleanlist_idx++;
3596 pm->pm_remove_all = true;
3597 } else {
3598 l2pte_reset(ptep);
3599 PTE_SYNC(ptep);
3600 if (pm->pm_remove_all == false) {
3601 pmap_tlb_flush_SE(pm, sva, flags);
3602 }
3603 }
3604 #endif
3605 }
3606
3607 #ifndef ARM_MMU_EXTENDED
3608 /*
3609 * Deal with any left overs
3610 */
3611 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3612 total += cleanlist_idx;
3613 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3614 l2pte_reset(cleanlist[cnt].ptep);
3615 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3616 vaddr_t va = cleanlist[cnt].va;
3617 if (pm->pm_cstate.cs_all != 0) {
3618 vaddr_t clva = va & ~PAGE_MASK;
3619 u_int flags = va & PVF_EXEC;
3620 #ifdef PMAP_CACHE_VIVT
3621 pmap_cache_wbinv_page(pm, clva, true,
3622 PVF_REF | PVF_WRITE | flags);
3623 #endif
3624 pmap_tlb_flush_SE(pm, clva,
3625 PVF_REF | flags);
3626 }
3627 }
3628
3629 /*
3630 * If it looks like we're removing a whole bunch
3631 * of mappings, it's faster to just write-back
3632 * the whole cache now and defer TLB flushes until
3633 * pmap_update() is called.
3634 */
3635 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3636 cleanlist_idx = 0;
3637 else {
3638 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3639 #ifdef PMAP_CACHE_VIVT
3640 pmap_cache_wbinv_all(pm, PVF_EXEC);
3641 #endif
3642 pm->pm_remove_all = true;
3643 }
3644 }
3645 #endif /* ARM_MMU_EXTENDED */
3646
3647 pmap_free_l2_bucket(pm, l2b, mappings);
3648 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3649 }
3650
3651 pmap_release_pmap_lock(pm);
3652 kpreempt_enable();
3653
3654 SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3655 pool_put(&pmap_pv_pool, pv);
3656 }
3657 }
3658
3659 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3660 static struct pv_entry *
3661 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3662 {
3663 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3664 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3665 struct pv_entry *pv;
3666
3667 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3668 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3669 KASSERT(pmap_page_locked_p(md));
3670
3671 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3672 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3673 KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3674
3675 /*
3676 * We are removing a writeable mapping to a cached exec page, if
3677 * it's the last mapping then clear its execness otherwise sync
3678 * the page to the icache.
3679 */
3680 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3681 && (pv->pv_flags & PVF_WRITE) != 0) {
3682 if (SLIST_EMPTY(&md->pvh_list)) {
3683 md->pvh_attrs &= ~PVF_EXEC;
3684 PMAPCOUNT(exec_discarded_kremove);
3685 } else {
3686 pmap_syncicache_page(md, pa);
3687 PMAPCOUNT(exec_synced_kremove);
3688 }
3689 }
3690 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3691
3692 return pv;
3693 }
3694 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3695
3696 /*
3697 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3698 *
3699 * We assume there is already sufficient KVM space available
3700 * to do this, as we can't allocate L2 descriptor tables/metadata
3701 * from here.
3702 */
3703 void
3704 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3705 {
3706 #ifdef PMAP_CACHE_VIVT
3707 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3708 #endif
3709 #ifdef PMAP_CACHE_VIPT
3710 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3711 struct vm_page *opg;
3712 #ifndef ARM_MMU_EXTENDED
3713 struct pv_entry *pv = NULL;
3714 #endif
3715 #endif
3716 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3717
3718 UVMHIST_FUNC(__func__);
3719
3720 if (pmap_initialized) {
3721 UVMHIST_CALLARGS(maphist,
3722 "va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", va, pa, prot,
3723 flags);
3724 }
3725
3726 kpreempt_disable();
3727 pmap_t kpm = pmap_kernel();
3728 pmap_acquire_pmap_lock(kpm);
3729 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3730 const size_t l1slot __diagused = l1pte_index(va);
3731 KASSERTMSG(l2b != NULL,
3732 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3733 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3734 kpm->pm_l2[L2_IDX(l1slot)]
3735 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3736 : NULL,
3737 kpm->pm_l2[L2_IDX(l1slot)]
3738 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3739 : NULL);
3740 KASSERT(l2b->l2b_kva != NULL);
3741
3742 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3743 const pt_entry_t opte = *ptep;
3744
3745 if (opte == 0) {
3746 PMAPCOUNT(kenter_mappings);
3747 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3748 } else {
3749 PMAPCOUNT(kenter_remappings);
3750 #ifdef PMAP_CACHE_VIPT
3751 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3752 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3753 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3754 #endif
3755 if (opg && arm_cache_prefer_mask != 0) {
3756 KASSERT(opg != pg);
3757 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3758 KASSERT((flags & PMAP_KMPAGE) == 0);
3759 #ifndef ARM_MMU_EXTENDED
3760 pmap_acquire_page_lock(omd);
3761 pv = pmap_kremove_pg(opg, va);
3762 pmap_release_page_lock(omd);
3763 #endif
3764 }
3765 #endif
3766 if (l2pte_valid_p(opte)) {
3767 l2pte_reset(ptep);
3768 PTE_SYNC(ptep);
3769 #ifdef PMAP_CACHE_VIVT
3770 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3771 #endif
3772 cpu_tlb_flushD_SE(va);
3773 cpu_cpwait();
3774 }
3775 }
3776 pmap_release_pmap_lock(kpm);
3777 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3778
3779 if (flags & PMAP_PTE) {
3780 KASSERT((flags & PMAP_CACHE_MASK) == 0);
3781 if (!(flags & PMAP_NOCACHE))
3782 npte |= pte_l2_s_cache_mode_pt;
3783 } else {
3784 switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
3785 case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
3786 break;
3787 case PMAP_NOCACHE:
3788 npte |= pte_l2_s_nocache_mode;
3789 break;
3790 case PMAP_WRITE_COMBINE:
3791 npte |= pte_l2_s_wc_mode;
3792 break;
3793 default:
3794 npte |= pte_l2_s_cache_mode;
3795 break;
3796 }
3797 }
3798 #ifdef ARM_MMU_EXTENDED
3799 if (prot & VM_PROT_EXECUTE)
3800 npte &= ~L2_XS_XN;
3801 #endif
3802 l2pte_set(ptep, npte, 0);
3803 PTE_SYNC(ptep);
3804
3805 if (pg) {
3806 if (flags & PMAP_KMPAGE) {
3807 KASSERT(md->urw_mappings == 0);
3808 KASSERT(md->uro_mappings == 0);
3809 KASSERT(md->krw_mappings == 0);
3810 KASSERT(md->kro_mappings == 0);
3811 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3812 KASSERT(pv == NULL);
3813 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3814 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3815 /* if there is a color conflict, evict from cache. */
3816 if (pmap_is_page_colored_p(md)
3817 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3818 PMAPCOUNT(vac_color_change);
3819 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3820 } else if (md->pvh_attrs & PVF_MULTCLR) {
3821 /*
3822 * If this page has multiple colors, expunge
3823 * them.
3824 */
3825 PMAPCOUNT(vac_flush_lots2);
3826 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3827 }
3828 /*
3829 * Since this is a KMPAGE, there can be no contention
3830 * for this page so don't lock it.
3831 */
3832 md->pvh_attrs &= PAGE_SIZE - 1;
3833 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3834 | (va & arm_cache_prefer_mask);
3835 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3836 md->pvh_attrs |= PVF_KMPAGE;
3837 #endif
3838 atomic_inc_32(&pmap_kmpages);
3839 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3840 } else if (arm_cache_prefer_mask != 0) {
3841 if (pv == NULL) {
3842 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3843 KASSERT(pv != NULL);
3844 }
3845 pmap_acquire_page_lock(md);
3846 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3847 PVF_WIRED | PVF_KENTRY
3848 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3849 if ((prot & VM_PROT_WRITE)
3850 && !(md->pvh_attrs & PVF_NC))
3851 md->pvh_attrs |= PVF_DIRTY;
3852 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3853 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3854 pmap_release_page_lock(md);
3855 #endif
3856 }
3857 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3858 } else {
3859 if (pv != NULL)
3860 pool_put(&pmap_pv_pool, pv);
3861 #endif
3862 }
3863 kpreempt_enable();
3864
3865 if (pmap_initialized) {
3866 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)",
3867 (uintptr_t)ptep, opte, npte, 0);
3868 }
3869
3870 }
3871
3872 void
3873 pmap_kremove(vaddr_t va, vsize_t len)
3874 {
3875 #ifdef UVMHIST
3876 u_int total_mappings = 0;
3877 #endif
3878
3879 PMAPCOUNT(kenter_unmappings);
3880
3881 UVMHIST_FUNC(__func__);
3882 UVMHIST_CALLARGS(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3883
3884 const vaddr_t eva = va + len;
3885 pmap_t kpm = pmap_kernel();
3886
3887 kpreempt_disable();
3888 pmap_acquire_pmap_lock(kpm);
3889
3890 while (va < eva) {
3891 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3892 if (next_bucket > eva)
3893 next_bucket = eva;
3894
3895 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3896 KDASSERT(l2b != NULL);
3897
3898 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3899 pt_entry_t *ptep = sptep;
3900 u_int mappings = 0;
3901
3902 while (va < next_bucket) {
3903 const pt_entry_t opte = *ptep;
3904 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3905 if (opg != NULL) {
3906 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3907
3908 if (omd->pvh_attrs & PVF_KMPAGE) {
3909 KASSERT(omd->urw_mappings == 0);
3910 KASSERT(omd->uro_mappings == 0);
3911 KASSERT(omd->krw_mappings == 0);
3912 KASSERT(omd->kro_mappings == 0);
3913 omd->pvh_attrs &= ~PVF_KMPAGE;
3914 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3915 if (arm_cache_prefer_mask != 0) {
3916 omd->pvh_attrs &= ~PVF_WRITE;
3917 }
3918 #endif
3919 atomic_dec_32(&pmap_kmpages);
3920 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3921 } else if (arm_cache_prefer_mask != 0) {
3922 pmap_acquire_page_lock(omd);
3923 pool_put(&pmap_pv_pool,
3924 pmap_kremove_pg(opg, va));
3925 pmap_release_page_lock(omd);
3926 #endif
3927 }
3928 }
3929 if (l2pte_valid_p(opte)) {
3930 l2pte_reset(ptep);
3931 PTE_SYNC(ptep);
3932 #ifdef PMAP_CACHE_VIVT
3933 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3934 #endif
3935 cpu_tlb_flushD_SE(va);
3936
3937 mappings += PAGE_SIZE / L2_S_SIZE;
3938 }
3939 va += PAGE_SIZE;
3940 ptep += PAGE_SIZE / L2_S_SIZE;
3941 }
3942 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3943 mappings, l2b->l2b_occupancy);
3944 l2b->l2b_occupancy -= mappings;
3945 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3946 #ifdef UVMHIST
3947 total_mappings += mappings;
3948 #endif
3949 }
3950 pmap_release_pmap_lock(kpm);
3951 cpu_cpwait();
3952 kpreempt_enable();
3953
3954 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)",
3955 total_mappings, 0, 0, 0);
3956 }
3957
3958 bool
3959 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3960 {
3961
3962 return pmap_extract_coherency(pm, va, pap, NULL);
3963 }
3964
3965 bool
3966 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3967 {
3968 struct l2_dtable *l2;
3969 pd_entry_t *pdep, pde;
3970 pt_entry_t *ptep, pte;
3971 paddr_t pa;
3972 u_int l1slot;
3973 bool coherent;
3974
3975 kpreempt_disable();
3976 pmap_acquire_pmap_lock(pm);
3977
3978 l1slot = l1pte_index(va);
3979 pdep = pmap_l1_kva(pm) + l1slot;
3980 pde = *pdep;
3981
3982 if (l1pte_section_p(pde)) {
3983 /*
3984 * These should only happen for pmap_kernel()
3985 */
3986 KDASSERT(pm == pmap_kernel());
3987 pmap_release_pmap_lock(pm);
3988 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3989 if (l1pte_supersection_p(pde)) {
3990 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3991 } else
3992 #endif
3993 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3994 coherent = (pde & L1_S_CACHE_MASK) == 0;
3995 } else {
3996 /*
3997 * Note that we can't rely on the validity of the L1
3998 * descriptor as an indication that a mapping exists.
3999 * We have to look it up in the L2 dtable.
4000 */
4001 l2 = pm->pm_l2[L2_IDX(l1slot)];
4002
4003 if (l2 == NULL ||
4004 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
4005 pmap_release_pmap_lock(pm);
4006 kpreempt_enable();
4007
4008 return false;
4009 }
4010
4011 pte = ptep[l2pte_index(va)];
4012 pmap_release_pmap_lock(pm);
4013 kpreempt_enable();
4014
4015 if (pte == 0)
4016 return false;
4017
4018 switch (pte & L2_TYPE_MASK) {
4019 case L2_TYPE_L:
4020 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
4021 coherent = (pte & L2_L_CACHE_MASK) == 0;
4022 break;
4023
4024 default:
4025 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
4026 coherent = (pte & L2_S_CACHE_MASK) == 0;
4027 break;
4028 }
4029 }
4030
4031 if (pap != NULL)
4032 *pap = pa;
4033
4034 if (coherentp != NULL)
4035 *coherentp = (pm == pmap_kernel() && coherent);
4036
4037 return true;
4038 }
4039
4040 /*
4041 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
4042 * that map it
4043 */
4044
4045 static void
4046 pmap_pv_remove(paddr_t pa)
4047 {
4048 struct pmap_page *pp;
4049
4050 KASSERT(kpreempt_disabled());
4051 pp = pmap_pv_tracked(pa);
4052 if (pp == NULL)
4053 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4054 pa);
4055
4056 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4057 pmap_page_remove(md, pa);
4058 }
4059
4060 void
4061 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4062 {
4063
4064 /* the only case is remove at the moment */
4065 KASSERT(prot == VM_PROT_NONE);
4066 pmap_pv_remove(pa);
4067 }
4068
4069 void
4070 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4071 {
4072 struct l2_bucket *l2b;
4073 vaddr_t next_bucket;
4074
4075 UVMHIST_FUNC(__func__);
4076 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx prot %#jx",
4077 (uintptr_t)pm, sva, eva, prot);
4078
4079 if ((prot & VM_PROT_READ) == 0) {
4080 pmap_remove(pm, sva, eva);
4081 return;
4082 }
4083
4084 if (prot & VM_PROT_WRITE) {
4085 /*
4086 * If this is a read->write transition, just ignore it and let
4087 * uvm_fault() take care of it later.
4088 */
4089 return;
4090 }
4091
4092 kpreempt_disable();
4093 pmap_acquire_pmap_lock(pm);
4094
4095 #ifndef ARM_MMU_EXTENDED
4096 const bool flush = eva - sva >= PAGE_SIZE * 4;
4097 u_int flags = 0;
4098 #endif
4099 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4100
4101 while (sva < eva) {
4102 next_bucket = L2_NEXT_BUCKET_VA(sva);
4103 if (next_bucket > eva)
4104 next_bucket = eva;
4105
4106 l2b = pmap_get_l2_bucket(pm, sva);
4107 if (l2b == NULL) {
4108 sva = next_bucket;
4109 continue;
4110 }
4111
4112 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4113
4114 while (sva < next_bucket) {
4115 const pt_entry_t opte = *ptep;
4116 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4117 struct vm_page *pg;
4118 #ifndef ARM_MMU_EXTENDED
4119 u_int f;
4120 #endif
4121
4122 #ifdef PMAP_CACHE_VIVT
4123 /*
4124 * OK, at this point, we know we're doing
4125 * write-protect operation. If the pmap is
4126 * active, write-back the page.
4127 */
4128 pmap_cache_wbinv_page(pm, sva, false,
4129 PVF_REF | PVF_WRITE);
4130 #endif
4131
4132 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4133 pt_entry_t npte = l2pte_set_readonly(opte);
4134 l2pte_reset(ptep);
4135 PTE_SYNC(ptep);
4136 #ifdef ARM_MMU_EXTENDED
4137 pmap_tlb_flush_SE(pm, sva, PVF_REF);
4138 #endif
4139 l2pte_set(ptep, npte, 0);
4140 PTE_SYNC(ptep);
4141
4142 if (pg != NULL) {
4143 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4144 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4145
4146 pmap_acquire_page_lock(md);
4147 #ifndef ARM_MMU_EXTENDED
4148 f =
4149 #endif
4150 pmap_modify_pv(md, pa, pm, sva,
4151 clr_mask, 0);
4152 pmap_vac_me_harder(md, pa, pm, sva);
4153 pmap_release_page_lock(md);
4154 #ifndef ARM_MMU_EXTENDED
4155 } else {
4156 f = PVF_REF | PVF_EXEC;
4157 }
4158
4159 if (flush) {
4160 flags |= f;
4161 } else {
4162 pmap_tlb_flush_SE(pm, sva, f);
4163 #endif
4164 }
4165 }
4166
4167 sva += PAGE_SIZE;
4168 ptep += PAGE_SIZE / L2_S_SIZE;
4169 }
4170 }
4171
4172 #ifndef ARM_MMU_EXTENDED
4173 if (flush) {
4174 if (PV_BEEN_EXECD(flags)) {
4175 pmap_tlb_flushID(pm);
4176 } else if (PV_BEEN_REFD(flags)) {
4177 pmap_tlb_flushD(pm);
4178 }
4179 }
4180 #endif
4181
4182 pmap_release_pmap_lock(pm);
4183 kpreempt_enable();
4184 }
4185
4186 void
4187 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4188 {
4189 struct l2_bucket *l2b;
4190 pt_entry_t *ptep;
4191 vaddr_t next_bucket;
4192 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4193
4194 UVMHIST_FUNC(__func__);
4195 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx",
4196 (uintptr_t)pm, sva, eva, 0);
4197
4198 pmap_acquire_pmap_lock(pm);
4199
4200 while (sva < eva) {
4201 next_bucket = L2_NEXT_BUCKET_VA(sva);
4202 if (next_bucket > eva)
4203 next_bucket = eva;
4204
4205 l2b = pmap_get_l2_bucket(pm, sva);
4206 if (l2b == NULL) {
4207 sva = next_bucket;
4208 continue;
4209 }
4210
4211 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4212 sva < next_bucket;
4213 sva += page_size,
4214 ptep += PAGE_SIZE / L2_S_SIZE,
4215 page_size = PAGE_SIZE) {
4216 if (l2pte_valid_p(*ptep)) {
4217 cpu_icache_sync_range(sva,
4218 uimin(page_size, eva - sva));
4219 }
4220 }
4221 }
4222
4223 pmap_release_pmap_lock(pm);
4224 }
4225
4226 void
4227 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4228 {
4229 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4230 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4231
4232 UVMHIST_FUNC(__func__);
4233 UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx prot %#jx",
4234 (uintptr_t)md, pa, prot, 0);
4235
4236 switch(prot) {
4237 case VM_PROT_READ|VM_PROT_WRITE:
4238 #if defined(ARM_MMU_EXTENDED)
4239 pmap_acquire_page_lock(md);
4240 pmap_clearbit(md, pa, PVF_EXEC);
4241 pmap_release_page_lock(md);
4242 break;
4243 #endif
4244 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4245 break;
4246
4247 case VM_PROT_READ:
4248 #if defined(ARM_MMU_EXTENDED)
4249 pmap_acquire_page_lock(md);
4250 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4251 pmap_release_page_lock(md);
4252 break;
4253 #endif
4254 case VM_PROT_READ|VM_PROT_EXECUTE:
4255 pmap_acquire_page_lock(md);
4256 pmap_clearbit(md, pa, PVF_WRITE);
4257 pmap_release_page_lock(md);
4258 break;
4259
4260 default:
4261 pmap_page_remove(md, pa);
4262 break;
4263 }
4264 }
4265
4266 /*
4267 * pmap_clear_modify:
4268 *
4269 * Clear the "modified" attribute for a page.
4270 */
4271 bool
4272 pmap_clear_modify(struct vm_page *pg)
4273 {
4274 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4275 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4276 bool rv;
4277
4278 pmap_acquire_page_lock(md);
4279
4280 if (md->pvh_attrs & PVF_MOD) {
4281 rv = true;
4282 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4283 /*
4284 * If we are going to clear the modified bit and there are
4285 * no other modified bits set, flush the page to memory and
4286 * mark it clean.
4287 */
4288 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4289 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4290 #endif
4291 pmap_clearbit(md, pa, PVF_MOD);
4292 } else {
4293 rv = false;
4294 }
4295 pmap_release_page_lock(md);
4296
4297 return rv;
4298 }
4299
4300 /*
4301 * pmap_clear_reference:
4302 *
4303 * Clear the "referenced" attribute for a page.
4304 */
4305 bool
4306 pmap_clear_reference(struct vm_page *pg)
4307 {
4308 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4309 paddr_t pa = VM_PAGE_TO_PHYS(pg);
4310 bool rv;
4311
4312 pmap_acquire_page_lock(md);
4313
4314 if (md->pvh_attrs & PVF_REF) {
4315 rv = true;
4316 pmap_clearbit(md, pa, PVF_REF);
4317 } else {
4318 rv = false;
4319 }
4320 pmap_release_page_lock(md);
4321
4322 return rv;
4323 }
4324
4325 /*
4326 * pmap_is_modified:
4327 *
4328 * Test if a page has the "modified" attribute.
4329 */
4330 /* See <arm/arm32/pmap.h> */
4331
4332 /*
4333 * pmap_is_referenced:
4334 *
4335 * Test if a page has the "referenced" attribute.
4336 */
4337 /* See <arm/arm32/pmap.h> */
4338
4339 #if defined(ARM_MMU_EXTENDED) && 0
4340 int
4341 pmap_prefetchabt_fixup(void *v)
4342 {
4343 struct trapframe * const tf = v;
4344 vaddr_t va = trunc_page(tf->tf_pc);
4345 int rv = ABORT_FIXUP_FAILED;
4346
4347 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4348 return rv;
4349
4350 kpreempt_disable();
4351 pmap_t pm = curcpu()->ci_pmap_cur;
4352 const size_t l1slot = l1pte_index(va);
4353 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4354 if (l2 == NULL)
4355 goto out;
4356
4357 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4358 if (l2b->l2b_kva == NULL)
4359 goto out;
4360
4361 /*
4362 * Check the PTE itself.
4363 */
4364 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4365 const pt_entry_t opte = *ptep;
4366 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4367 goto out;
4368
4369 paddr_t pa = l2pte_pa(opte);
4370 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4371 KASSERT(pg != NULL);
4372
4373 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4374
4375 pmap_acquire_page_lock(md);
4376 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4377 KASSERT(pv != NULL);
4378
4379 if (PV_IS_EXEC_P(pv->pv_flags)) {
4380 l2pte_reset(ptep);
4381 PTE_SYNC(ptep);
4382 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4383 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4384 pmap_syncicache_page(md, pa);
4385 }
4386 rv = ABORT_FIXUP_RETURN;
4387 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4388 PTE_SYNC(ptep);
4389 }
4390 pmap_release_page_lock(md);
4391
4392 out:
4393 kpreempt_enable();
4394
4395 return rv;
4396 }
4397 #endif
4398
4399 int
4400 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4401 {
4402 struct l2_dtable *l2;
4403 struct l2_bucket *l2b;
4404 paddr_t pa;
4405 const size_t l1slot = l1pte_index(va);
4406 int rv = 0;
4407
4408 UVMHIST_FUNC(__func__);
4409 UVMHIST_CALLARGS(maphist, "pm=%#jx, va=%#jx, ftype=%#jx, user=%jd",
4410 (uintptr_t)pm, va, ftype, user);
4411
4412 va = trunc_page(va);
4413
4414 KASSERT(!user || (pm != pmap_kernel()));
4415
4416 #ifdef ARM_MMU_EXTENDED
4417 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4418 (uintptr_t)cpu_tlb_info(curcpu()),
4419 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4420 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4421 #endif
4422
4423 kpreempt_disable();
4424 pmap_acquire_pmap_lock(pm);
4425
4426 /*
4427 * If there is no l2_dtable for this address, then the process
4428 * has no business accessing it.
4429 *
4430 * Note: This will catch userland processes trying to access
4431 * kernel addresses.
4432 */
4433 l2 = pm->pm_l2[L2_IDX(l1slot)];
4434 if (l2 == NULL) {
4435 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4436 goto out;
4437 }
4438
4439 /*
4440 * Likewise if there is no L2 descriptor table
4441 */
4442 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4443 if (l2b->l2b_kva == NULL) {
4444 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4445 l1slot, 0, 0, 0);
4446 goto out;
4447 }
4448
4449 /*
4450 * Check the PTE itself.
4451 */
4452 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4453 pt_entry_t const opte = *ptep;
4454 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4455 UVMHIST_LOG(maphist, " <-- done (empty pte)",
4456 0, 0, 0, 0);
4457 goto out;
4458 }
4459
4460 #ifndef ARM_HAS_VBAR
4461 /*
4462 * Catch a userland access to the vector page mapped at 0x0
4463 */
4464 if (user && (opte & L2_S_PROT_U) == 0) {
4465 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4466 goto out;
4467 }
4468 #endif
4469
4470 pa = l2pte_pa(opte);
4471 UVMHIST_LOG(maphist, " pa %#jx opte %#jx ", pa, opte, 0, 0);
4472
4473 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4474 /*
4475 * This looks like a good candidate for "page modified"
4476 * emulation...
4477 */
4478 struct pv_entry *pv;
4479 struct vm_page *pg;
4480
4481 /* Extract the physical address of the page */
4482 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4483 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4484 goto out;
4485 }
4486
4487 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4488
4489 /* Get the current flags for this page. */
4490 pmap_acquire_page_lock(md);
4491 pv = pmap_find_pv(md, pm, va);
4492 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4493 pmap_release_page_lock(md);
4494 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4495 goto out;
4496 }
4497
4498 /*
4499 * Do the flags say this page is writable? If not then it
4500 * is a genuine write fault. If yes then the write fault is
4501 * our fault as we did not reflect the write access in the
4502 * PTE. Now we know a write has occurred we can correct this
4503 * and also set the modified bit
4504 */
4505 if ((pv->pv_flags & PVF_WRITE) == 0) {
4506 pmap_release_page_lock(md);
4507 UVMHIST_LOG(maphist, " <-- done (write fault)", 0, 0, 0, 0);
4508 goto out;
4509 }
4510
4511 md->pvh_attrs |= PVF_REF | PVF_MOD;
4512 pv->pv_flags |= PVF_REF | PVF_MOD;
4513 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4514 /*
4515 * If there are cacheable mappings for this page, mark it dirty.
4516 */
4517 if ((md->pvh_attrs & PVF_NC) == 0)
4518 md->pvh_attrs |= PVF_DIRTY;
4519 #endif
4520 #ifdef ARM_MMU_EXTENDED
4521 if (md->pvh_attrs & PVF_EXEC) {
4522 md->pvh_attrs &= ~PVF_EXEC;
4523 PMAPCOUNT(exec_discarded_modfixup);
4524 }
4525 #endif
4526 pmap_release_page_lock(md);
4527
4528 /*
4529 * Re-enable write permissions for the page. No need to call
4530 * pmap_vac_me_harder(), since this is just a
4531 * modified-emulation fault, and the PVF_WRITE bit isn't
4532 * changing. We've already set the cacheable bits based on
4533 * the assumption that we can write to this page.
4534 */
4535 const pt_entry_t npte =
4536 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4537 #ifdef ARM_MMU_EXTENDED
4538 | (pm != pmap_kernel() ? L2_XS_nG : 0)
4539 #endif
4540 | 0;
4541 l2pte_reset(ptep);
4542 PTE_SYNC(ptep);
4543 pmap_tlb_flush_SE(pm, va,
4544 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4545 l2pte_set(ptep, npte, 0);
4546 PTE_SYNC(ptep);
4547 PMAPCOUNT(fixup_mod);
4548 rv = 1;
4549 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4550 "from %#jx to %#jx)", opte, npte, 0, 0);
4551 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4552 /*
4553 * This looks like a good candidate for "page referenced"
4554 * emulation.
4555 */
4556 struct vm_page *pg;
4557
4558 /* Extract the physical address of the page */
4559 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4560 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4561 goto out;
4562 }
4563
4564 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4565
4566 /* Get the current flags for this page. */
4567 pmap_acquire_page_lock(md);
4568 struct pv_entry *pv = pmap_find_pv(md, pm, va);
4569 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4570 pmap_release_page_lock(md);
4571 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4572 goto out;
4573 }
4574
4575 md->pvh_attrs |= PVF_REF;
4576 pv->pv_flags |= PVF_REF;
4577
4578 pt_entry_t npte =
4579 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4580 #ifdef ARM_MMU_EXTENDED
4581 if (pm != pmap_kernel()) {
4582 npte |= L2_XS_nG;
4583 }
4584 /*
4585 * If we got called from prefetch abort, then ftype will have
4586 * VM_PROT_EXECUTE set. Now see if we have no-execute set in
4587 * the PTE.
4588 */
4589 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4590 /*
4591 * Is this a mapping of an executable page?
4592 */
4593 if ((pv->pv_flags & PVF_EXEC) == 0) {
4594 pmap_release_page_lock(md);
4595 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4596 0, 0, 0, 0);
4597 goto out;
4598 }
4599 /*
4600 * If we haven't synced the page, do so now.
4601 */
4602 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4603 UVMHIST_LOG(maphist, " ref emul: syncicache "
4604 "page #%#jx", pa, 0, 0, 0);
4605 pmap_syncicache_page(md, pa);
4606 PMAPCOUNT(fixup_exec);
4607 }
4608 npte &= ~L2_XS_XN;
4609 }
4610 #endif /* ARM_MMU_EXTENDED */
4611 pmap_release_page_lock(md);
4612 l2pte_reset(ptep);
4613 PTE_SYNC(ptep);
4614 pmap_tlb_flush_SE(pm, va,
4615 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4616 l2pte_set(ptep, npte, 0);
4617 PTE_SYNC(ptep);
4618 PMAPCOUNT(fixup_ref);
4619 rv = 1;
4620 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4621 "%#jx to %#jx)", opte, npte, 0, 0);
4622 #ifdef ARM_MMU_EXTENDED
4623 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4624 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4625 if (pg == NULL) {
4626 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4627 goto out;
4628 }
4629
4630 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4631
4632 /* Get the current flags for this page. */
4633 pmap_acquire_page_lock(md);
4634 struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4635 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4636 pmap_release_page_lock(md);
4637 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4638 goto out;
4639 }
4640
4641 /*
4642 * If we haven't synced the page, do so now.
4643 */
4644 if ((md->pvh_attrs & PVF_EXEC) == 0) {
4645 UVMHIST_LOG(maphist, "syncicache page #%#jx",
4646 pa, 0, 0, 0);
4647 pmap_syncicache_page(md, pa);
4648 }
4649 pmap_release_page_lock(md);
4650 /*
4651 * Turn off no-execute.
4652 */
4653 KASSERT(opte & L2_XS_nG);
4654 l2pte_reset(ptep);
4655 PTE_SYNC(ptep);
4656 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4657 l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4658 PTE_SYNC(ptep);
4659 rv = 1;
4660 PMAPCOUNT(fixup_exec);
4661 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4662 opte, opte & ~L2_XS_XN, 0, 0);
4663 #endif
4664 }
4665
4666 #ifndef ARM_MMU_EXTENDED
4667 /*
4668 * We know there is a valid mapping here, so simply
4669 * fix up the L1 if necessary.
4670 */
4671 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4672 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4673 if (*pdep != pde) {
4674 l1pte_setone(pdep, pde);
4675 PDE_SYNC(pdep);
4676 rv = 1;
4677 PMAPCOUNT(fixup_pdes);
4678 }
4679 #endif
4680
4681 #ifdef CPU_SA110
4682 /*
4683 * There are bugs in the rev K SA110. This is a check for one
4684 * of them.
4685 */
4686 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4687 curcpu()->ci_arm_cpurev < 3) {
4688 /* Always current pmap */
4689 if (l2pte_valid_p(opte)) {
4690 extern int kernel_debug;
4691 if (kernel_debug & 1) {
4692 struct proc *p = curlwp->l_proc;
4693 printf("prefetch_abort: page is already "
4694 "mapped - pte=%p *pte=%08x\n", ptep, opte);
4695 printf("prefetch_abort: pc=%08lx proc=%p "
4696 "process=%s\n", va, p, p->p_comm);
4697 printf("prefetch_abort: far=%08x fs=%x\n",
4698 cpu_faultaddress(), cpu_faultstatus());
4699 }
4700 #ifdef DDB
4701 if (kernel_debug & 2)
4702 Debugger();
4703 #endif
4704 rv = 1;
4705 }
4706 }
4707 #endif /* CPU_SA110 */
4708
4709 #ifndef ARM_MMU_EXTENDED
4710 /*
4711 * If 'rv == 0' at this point, it generally indicates that there is a
4712 * stale TLB entry for the faulting address. That might be due to a
4713 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4714 */
4715 if (rv == 0
4716 && pm->pm_l1->l1_domain_use_count == 1
4717 && pmap_needs_pte_sync == 0) {
4718 pmap_needs_pte_sync = 1;
4719 PTE_SYNC(ptep);
4720 PMAPCOUNT(fixup_ptesync);
4721 rv = 1;
4722 }
4723 #endif
4724
4725 #ifndef MULTIPROCESSOR
4726 #if defined(DEBUG) || 1
4727 /*
4728 * If 'rv == 0' at this point, it generally indicates that there is a
4729 * stale TLB entry for the faulting address. This happens when two or
4730 * more processes are sharing an L1. Since we don't flush the TLB on
4731 * a context switch between such processes, we can take domain faults
4732 * for mappings which exist at the same VA in both processes. EVEN IF
4733 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4734 * example.
4735 *
4736 * This is extremely likely to happen if pmap_enter() updated the L1
4737 * entry for a recently entered mapping. In this case, the TLB is
4738 * flushed for the new mapping, but there may still be TLB entries for
4739 * other mappings belonging to other processes in the 1MB range
4740 * covered by the L1 entry.
4741 *
4742 * Since 'rv == 0', we know that the L1 already contains the correct
4743 * value, so the fault must be due to a stale TLB entry.
4744 *
4745 * Since we always need to flush the TLB anyway in the case where we
4746 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4747 * stale TLB entries dynamically.
4748 *
4749 * However, the above condition can ONLY happen if the current L1 is
4750 * being shared. If it happens when the L1 is unshared, it indicates
4751 * that other parts of the pmap are not doing their job WRT managing
4752 * the TLB.
4753 */
4754 if (rv == 0
4755 #ifndef ARM_MMU_EXTENDED
4756 && pm->pm_l1->l1_domain_use_count == 1
4757 #endif
4758 && true) {
4759 #ifdef DEBUG
4760 extern int last_fault_code;
4761 #else
4762 int last_fault_code = ftype & VM_PROT_EXECUTE
4763 ? armreg_ifsr_read()
4764 : armreg_dfsr_read();
4765 #endif
4766 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4767 pm, va, ftype);
4768 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4769 l2, l2b, ptep, opte);
4770
4771 #ifndef ARM_MMU_EXTENDED
4772 printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4773 pdep, pde, last_fault_code);
4774 #else
4775 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4776 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4777 armreg_ttbcr_read());
4778 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4779 last_fault_code, curcpu()->ci_pmap_cur,
4780 curcpu()->ci_pmap_asid_cur,
4781 armreg_contextidr_read(), armreg_dacr_read());
4782 #ifdef _ARM_ARCH_7
4783 if (ftype & VM_PROT_WRITE)
4784 armreg_ats1cuw_write(va);
4785 else
4786 armreg_ats1cur_write(va);
4787 isb();
4788 printf("fixup: par %#x\n", armreg_par_read());
4789 #endif
4790 #endif
4791 #ifdef DDB
4792 extern int kernel_debug;
4793
4794 if (kernel_debug & 2) {
4795 pmap_release_pmap_lock(pm);
4796 #ifdef UVMHIST
4797 KERNHIST_DUMP(maphist);
4798 #endif
4799 cpu_Debugger();
4800 pmap_acquire_pmap_lock(pm);
4801 }
4802 #endif
4803 }
4804 #endif
4805 #endif
4806
4807 #ifndef ARM_MMU_EXTENDED
4808 /* Flush the TLB in the shared L1 case - see comment above */
4809 pmap_tlb_flush_SE(pm, va,
4810 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4811 #endif
4812
4813 rv = 1;
4814
4815 out:
4816 pmap_release_pmap_lock(pm);
4817 kpreempt_enable();
4818
4819 return rv;
4820 }
4821
4822 /*
4823 * Routine: pmap_procwr
4824 *
4825 * Function:
4826 * Synchronize caches corresponding to [addr, addr+len) in p.
4827 *
4828 */
4829 void
4830 pmap_procwr(struct proc *p, vaddr_t va, int len)
4831 {
4832 #ifndef ARM_MMU_EXTENDED
4833
4834 /* We only need to do anything if it is the current process. */
4835 if (p == curproc)
4836 cpu_icache_sync_range(va, len);
4837 #endif
4838 }
4839
4840 /*
4841 * Routine: pmap_unwire
4842 * Function: Clear the wired attribute for a map/virtual-address pair.
4843 *
4844 * In/out conditions:
4845 * The mapping must already exist in the pmap.
4846 */
4847 void
4848 pmap_unwire(pmap_t pm, vaddr_t va)
4849 {
4850 struct l2_bucket *l2b;
4851 pt_entry_t *ptep, pte;
4852 struct vm_page *pg;
4853 paddr_t pa;
4854
4855 UVMHIST_FUNC(__func__);
4856 UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx", (uintptr_t)pm, va, 0, 0);
4857
4858 kpreempt_disable();
4859 pmap_acquire_pmap_lock(pm);
4860
4861 l2b = pmap_get_l2_bucket(pm, va);
4862 KDASSERT(l2b != NULL);
4863
4864 ptep = &l2b->l2b_kva[l2pte_index(va)];
4865 pte = *ptep;
4866
4867 /* Extract the physical address of the page */
4868 pa = l2pte_pa(pte);
4869
4870 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4871 /* Update the wired bit in the pv entry for this page. */
4872 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4873
4874 pmap_acquire_page_lock(md);
4875 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4876 pmap_release_page_lock(md);
4877 }
4878
4879 pmap_release_pmap_lock(pm);
4880 kpreempt_enable();
4881
4882 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4883 }
4884
4885 #ifdef ARM_MMU_EXTENDED
4886 void
4887 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4888 {
4889 UVMHIST_FUNC(__func__);
4890 struct cpu_info * const ci = curcpu();
4891 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4892
4893 UVMHIST_CALLARGS(maphist, "pm %#jx (pm->pm_l1_pa %08jx asid %ju)",
4894 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4895
4896 /*
4897 * Assume that TTBR1 has only global mappings and TTBR0 only
4898 * has non-global mappings. To prevent speculation from doing
4899 * evil things we disable translation table walks using TTBR0
4900 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4901 * Once both are set, table walks are reenabled.
4902 */
4903 const uint32_t old_ttbcr = armreg_ttbcr_read();
4904 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4905 isb();
4906
4907 pmap_tlb_asid_acquire(pm, l);
4908
4909 cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4910 /*
4911 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4912 * have been updated.
4913 */
4914 isb();
4915
4916 if (pm != pmap_kernel()) {
4917 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4918 }
4919 cpu_cpwait();
4920
4921 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4922 ci->ci_pmap_asid_cur, pai->pai_asid);
4923 ci->ci_pmap_cur = pm;
4924 }
4925
4926 void
4927 pmap_md_pdetab_deactivate(pmap_t pm)
4928 {
4929
4930 UVMHIST_FUNC(__func__);
4931 UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0);
4932
4933 kpreempt_disable();
4934 struct cpu_info * const ci = curcpu();
4935 /*
4936 * Disable translation table walks from TTBR0 while no pmap has been
4937 * activated.
4938 */
4939 const uint32_t old_ttbcr = armreg_ttbcr_read();
4940 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4941 isb();
4942 pmap_tlb_asid_deactivate(pm);
4943 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4944 isb();
4945
4946 ci->ci_pmap_cur = pmap_kernel();
4947 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4948 ci->ci_pmap_asid_cur);
4949 kpreempt_enable();
4950 }
4951 #endif
4952
4953 void
4954 pmap_activate(struct lwp *l)
4955 {
4956 extern int block_userspace_access;
4957 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4958
4959 UVMHIST_FUNC(__func__);
4960 UVMHIST_CALLARGS(maphist, "l=%#jx pm=%#jx", (uintptr_t)l,
4961 (uintptr_t)npm, 0, 0);
4962
4963 struct cpu_info * const ci = curcpu();
4964
4965 /*
4966 * If activating a non-current lwp or the current lwp is
4967 * already active, just return.
4968 */
4969 if (false
4970 || l != curlwp
4971 #ifdef ARM_MMU_EXTENDED
4972 || (ci->ci_pmap_cur == npm &&
4973 (npm == pmap_kernel()
4974 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4975 #else
4976 || npm->pm_activated == true
4977 #endif
4978 || false) {
4979 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4980 (uintptr_t)l, 0, 0);
4981 return;
4982 }
4983
4984 #ifndef ARM_MMU_EXTENDED
4985 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4986 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4987
4988 /*
4989 * If TTB and DACR are unchanged, short-circuit all the
4990 * TLB/cache management stuff.
4991 */
4992 pmap_t opm = ci->ci_lastlwp
4993 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4994 : NULL;
4995 if (opm != NULL) {
4996 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4997 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4998
4999 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
5000 goto all_done;
5001 }
5002 #endif /* !ARM_MMU_EXTENDED */
5003
5004 PMAPCOUNT(activations);
5005 block_userspace_access = 1;
5006
5007 #ifndef ARM_MMU_EXTENDED
5008 /*
5009 * If switching to a user vmspace which is different to the
5010 * most recent one, and the most recent one is potentially
5011 * live in the cache, we must write-back and invalidate the
5012 * entire cache.
5013 */
5014 pmap_t rpm = ci->ci_pmap_lastuser;
5015
5016 /*
5017 * XXXSCW: There's a corner case here which can leave turds in the
5018 * cache as reported in kern/41058. They're probably left over during
5019 * tear-down and switching away from an exiting process. Until the root
5020 * cause is identified and fixed, zap the cache when switching pmaps.
5021 * This will result in a few unnecessary cache flushes, but that's
5022 * better than silently corrupting data.
5023 */
5024 #if 0
5025 if (npm != pmap_kernel() && rpm && npm != rpm &&
5026 rpm->pm_cstate.cs_cache) {
5027 rpm->pm_cstate.cs_cache = 0;
5028 #ifdef PMAP_CACHE_VIVT
5029 cpu_idcache_wbinv_all();
5030 #endif
5031 }
5032 #else
5033 if (rpm) {
5034 rpm->pm_cstate.cs_cache = 0;
5035 if (npm == pmap_kernel())
5036 ci->ci_pmap_lastuser = NULL;
5037 #ifdef PMAP_CACHE_VIVT
5038 cpu_idcache_wbinv_all();
5039 #endif
5040 }
5041 #endif
5042
5043 /* No interrupts while we frob the TTB/DACR */
5044 uint32_t oldirqstate = disable_interrupts(IF32_bits);
5045 #endif /* !ARM_MMU_EXTENDED */
5046
5047 #ifndef ARM_HAS_VBAR
5048 /*
5049 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
5050 * entry corresponding to 'vector_page' in the incoming L1 table
5051 * before switching to it otherwise subsequent interrupts/exceptions
5052 * (including domain faults!) will jump into hyperspace.
5053 */
5054 if (npm->pm_pl1vec != NULL) {
5055 cpu_tlb_flushID_SE((u_int)vector_page);
5056 cpu_cpwait();
5057 *npm->pm_pl1vec = npm->pm_l1vec;
5058 PTE_SYNC(npm->pm_pl1vec);
5059 }
5060 #endif
5061
5062 #ifdef ARM_MMU_EXTENDED
5063 pmap_md_pdetab_activate(npm, l);
5064 #else
5065 cpu_domains(ndacr);
5066 if (npm == pmap_kernel() || npm == rpm) {
5067 /*
5068 * Switching to a kernel thread, or back to the
5069 * same user vmspace as before... Simply update
5070 * the TTB (no TLB flush required)
5071 */
5072 cpu_setttb(npm->pm_l1->l1_physaddr, false);
5073 cpu_cpwait();
5074 } else {
5075 /*
5076 * Otherwise, update TTB and flush TLB
5077 */
5078 cpu_context_switch(npm->pm_l1->l1_physaddr);
5079 if (rpm != NULL)
5080 rpm->pm_cstate.cs_tlb = 0;
5081 }
5082
5083 restore_interrupts(oldirqstate);
5084 #endif /* ARM_MMU_EXTENDED */
5085
5086 block_userspace_access = 0;
5087
5088 #ifndef ARM_MMU_EXTENDED
5089 all_done:
5090 /*
5091 * The new pmap is resident. Make sure it's marked
5092 * as resident in the cache/TLB.
5093 */
5094 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5095 if (npm != pmap_kernel())
5096 ci->ci_pmap_lastuser = npm;
5097
5098 /* The old pmap is not longer active */
5099 if (opm != npm) {
5100 if (opm != NULL)
5101 opm->pm_activated = false;
5102
5103 /* But the new one is */
5104 npm->pm_activated = true;
5105 }
5106 ci->ci_pmap_cur = npm;
5107 #endif
5108 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5109 }
5110
5111 void
5112 pmap_deactivate(struct lwp *l)
5113 {
5114 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5115
5116 UVMHIST_FUNC(__func__);
5117 UVMHIST_CALLARGS(maphist, "l=%#jx (pm=%#jx)", (uintptr_t)l,
5118 (uintptr_t)pm, 0, 0);
5119
5120 #ifdef ARM_MMU_EXTENDED
5121 pmap_md_pdetab_deactivate(pm);
5122 #else
5123 /*
5124 * If the process is exiting, make sure pmap_activate() does
5125 * a full MMU context-switch and cache flush, which we might
5126 * otherwise skip. See PR port-arm/38950.
5127 */
5128 if (l->l_proc->p_sflag & PS_WEXIT)
5129 curcpu()->ci_lastlwp = NULL;
5130
5131 pm->pm_activated = false;
5132 #endif
5133 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5134 }
5135
5136 void
5137 pmap_update(pmap_t pm)
5138 {
5139
5140 UVMHIST_FUNC(__func__);
5141 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5142 pm->pm_remove_all, 0, 0);
5143
5144 #ifndef ARM_MMU_EXTENDED
5145 if (pm->pm_remove_all) {
5146 /*
5147 * Finish up the pmap_remove_all() optimisation by flushing
5148 * the TLB.
5149 */
5150 pmap_tlb_flushID(pm);
5151 pm->pm_remove_all = false;
5152 }
5153
5154 if (pmap_is_current(pm)) {
5155 /*
5156 * If we're dealing with a current userland pmap, move its L1
5157 * to the end of the LRU.
5158 */
5159 if (pm != pmap_kernel())
5160 pmap_use_l1(pm);
5161
5162 /*
5163 * We can assume we're done with frobbing the cache/tlb for
5164 * now. Make sure any future pmap ops don't skip cache/tlb
5165 * flushes.
5166 */
5167 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5168 }
5169 #else
5170
5171 kpreempt_disable();
5172 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5173 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5174 if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5175 PMAP_COUNT(shootdown_ipis);
5176 }
5177 #endif
5178
5179 /*
5180 * If pmap_remove_all was called, we deactivated ourselves and released
5181 * our ASID. Now we have to reactivate ourselves.
5182 */
5183 if (__predict_false(pm->pm_remove_all)) {
5184 pm->pm_remove_all = false;
5185
5186 KASSERT(pm != pmap_kernel());
5187 pmap_md_pdetab_activate(pm, curlwp);
5188 }
5189
5190 if (arm_has_mpext_p)
5191 armreg_bpiallis_write(0);
5192 else
5193 armreg_bpiall_write(0);
5194
5195 kpreempt_enable();
5196
5197 KASSERTMSG(pm == pmap_kernel()
5198 || curcpu()->ci_pmap_cur != pm
5199 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5200 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5201 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5202 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5203 #endif
5204
5205 PMAPCOUNT(updates);
5206
5207 /*
5208 * make sure TLB/cache operations have completed.
5209 */
5210 cpu_cpwait();
5211 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5212 }
5213
5214 bool
5215 pmap_remove_all(pmap_t pm)
5216 {
5217
5218 UVMHIST_FUNC(__func__);
5219 UVMHIST_CALLARGS(maphist, "(pm=%#jx)", (uintptr_t)pm, 0, 0, 0);
5220
5221 KASSERT(pm != pmap_kernel());
5222
5223 kpreempt_disable();
5224 /*
5225 * The vmspace described by this pmap is about to be torn down.
5226 * Until pmap_update() is called, UVM will only make calls
5227 * to pmap_remove(). We can make life much simpler by flushing
5228 * the cache now, and deferring TLB invalidation to pmap_update().
5229 */
5230 #ifdef PMAP_CACHE_VIVT
5231 pmap_cache_wbinv_all(pm, PVF_EXEC);
5232 #endif
5233 #ifdef ARM_MMU_EXTENDED
5234 #ifdef MULTIPROCESSOR
5235 struct cpu_info * const ci = curcpu();
5236 // This should be the last CPU with this pmap onproc
5237 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5238 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5239 #endif
5240 pmap_tlb_asid_deactivate(pm);
5241 #ifdef MULTIPROCESSOR
5242 KASSERT(kcpuset_iszero(pm->pm_onproc));
5243 #endif
5244
5245 pmap_tlb_asid_release_all(pm);
5246 #endif
5247 pm->pm_remove_all = true;
5248 kpreempt_enable();
5249
5250 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5251 return false;
5252 }
5253
5254 /*
5255 * Retire the given physical map from service.
5256 * Should only be called if the map contains no valid mappings.
5257 */
5258 void
5259 pmap_destroy(pmap_t pm)
5260 {
5261 UVMHIST_FUNC(__func__);
5262 UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5263 pm ? pm->pm_remove_all : 0, 0, 0);
5264
5265 if (pm == NULL)
5266 return;
5267
5268 if (pm->pm_remove_all) {
5269 #ifdef ARM_MMU_EXTENDED
5270 pmap_tlb_asid_release_all(pm);
5271 #else
5272 pmap_tlb_flushID(pm);
5273 #endif
5274 pm->pm_remove_all = false;
5275 }
5276
5277 /*
5278 * Drop reference count
5279 */
5280 if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
5281 #ifndef ARM_MMU_EXTENDED
5282 if (pmap_is_current(pm)) {
5283 if (pm != pmap_kernel())
5284 pmap_use_l1(pm);
5285 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5286 }
5287 #endif
5288 return;
5289 }
5290
5291 /*
5292 * reference count is zero, free pmap resources and then free pmap.
5293 */
5294
5295 #ifndef ARM_HAS_VBAR
5296 if (vector_page < KERNEL_BASE) {
5297 KDASSERT(!pmap_is_current(pm));
5298
5299 /* Remove the vector page mapping */
5300 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5301 pmap_update(pm);
5302 }
5303 #endif
5304
5305 pmap_free_l1(pm);
5306
5307 #ifdef ARM_MMU_EXTENDED
5308 #ifdef MULTIPROCESSOR
5309 kcpuset_destroy(pm->pm_active);
5310 kcpuset_destroy(pm->pm_onproc);
5311 #endif
5312 #else
5313 struct cpu_info * const ci = curcpu();
5314 if (ci->ci_pmap_lastuser == pm)
5315 ci->ci_pmap_lastuser = NULL;
5316 #endif
5317
5318 mutex_destroy(&pm->pm_lock);
5319 pool_cache_put(&pmap_cache, pm);
5320 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5321 }
5322
5323
5324 /*
5325 * void pmap_reference(pmap_t pm)
5326 *
5327 * Add a reference to the specified pmap.
5328 */
5329 void
5330 pmap_reference(pmap_t pm)
5331 {
5332
5333 if (pm == NULL)
5334 return;
5335
5336 #ifndef ARM_MMU_EXTENDED
5337 pmap_use_l1(pm);
5338 #endif
5339
5340 atomic_inc_uint(&pm->pm_refs);
5341 }
5342
5343 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5344
5345 static struct evcnt pmap_prefer_nochange_ev =
5346 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5347 static struct evcnt pmap_prefer_change_ev =
5348 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5349
5350 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5351 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5352
5353 void
5354 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5355 {
5356 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5357 vaddr_t va = *vap;
5358 vaddr_t diff = (hint - va) & mask;
5359 if (diff == 0) {
5360 pmap_prefer_nochange_ev.ev_count++;
5361 } else {
5362 pmap_prefer_change_ev.ev_count++;
5363 if (__predict_false(td))
5364 va -= mask + 1;
5365 *vap = va + diff;
5366 }
5367 }
5368 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5369
5370 /*
5371 * pmap_zero_page()
5372 *
5373 * Zero a given physical page by mapping it at a page hook point.
5374 * In doing the zero page op, the page we zero is mapped cachable, as with
5375 * StrongARM accesses to non-cached pages are non-burst making writing
5376 * _any_ bulk data very slow.
5377 */
5378 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5379 void
5380 pmap_zero_page_generic(paddr_t pa)
5381 {
5382 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5383 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5384 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5385 #endif
5386 #if defined(PMAP_CACHE_VIPT)
5387 /* Choose the last page color it had, if any */
5388 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5389 #else
5390 const vsize_t va_offset = 0;
5391 #endif
5392 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5393 /*
5394 * Is this page mapped at its natural color?
5395 * If we have all of memory mapped, then just convert PA to VA.
5396 */
5397 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5398 || va_offset == (pa & arm_cache_prefer_mask);
5399 const vaddr_t vdstp = okcolor
5400 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5401 : cpu_cdstp(va_offset);
5402 #else
5403 const bool okcolor = false;
5404 const vaddr_t vdstp = cpu_cdstp(va_offset);
5405 #endif
5406 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5407
5408
5409 #ifdef DEBUG
5410 if (!SLIST_EMPTY(&md->pvh_list))
5411 panic("pmap_zero_page: page has mappings");
5412 #endif
5413
5414 KDASSERT((pa & PGOFSET) == 0);
5415
5416 if (!okcolor) {
5417 /*
5418 * Hook in the page, zero it, and purge the cache for that
5419 * zeroed page. Invalidate the TLB as needed.
5420 */
5421 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5422 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5423 l2pte_set(ptep, npte, 0);
5424 PTE_SYNC(ptep);
5425 cpu_tlb_flushD_SE(vdstp);
5426 cpu_cpwait();
5427 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5428 && !defined(ARM_MMU_EXTENDED)
5429 /*
5430 * If we are direct-mapped and our color isn't ok, then before
5431 * we bzero the page invalidate its contents from the cache and
5432 * reset the color to its natural color.
5433 */
5434 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5435 md->pvh_attrs &= ~arm_cache_prefer_mask;
5436 md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5437 #endif
5438 }
5439 bzero_page(vdstp);
5440 if (!okcolor) {
5441 /*
5442 * Unmap the page.
5443 */
5444 l2pte_reset(ptep);
5445 PTE_SYNC(ptep);
5446 cpu_tlb_flushD_SE(vdstp);
5447 #ifdef PMAP_CACHE_VIVT
5448 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5449 #endif
5450 }
5451 #ifdef PMAP_CACHE_VIPT
5452 /*
5453 * This page is now cache resident so it now has a page color.
5454 * Any contents have been obliterated so clear the EXEC flag.
5455 */
5456 #ifndef ARM_MMU_EXTENDED
5457 if (!pmap_is_page_colored_p(md)) {
5458 PMAPCOUNT(vac_color_new);
5459 md->pvh_attrs |= PVF_COLORED;
5460 }
5461 md->pvh_attrs |= PVF_DIRTY;
5462 #endif
5463 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5464 md->pvh_attrs &= ~PVF_EXEC;
5465 PMAPCOUNT(exec_discarded_zero);
5466 }
5467 #endif
5468 }
5469 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5470
5471 #if ARM_MMU_XSCALE == 1
5472 void
5473 pmap_zero_page_xscale(paddr_t pa)
5474 {
5475 #ifdef DEBUG
5476 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5477 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5478
5479 if (!SLIST_EMPTY(&md->pvh_list))
5480 panic("pmap_zero_page: page has mappings");
5481 #endif
5482
5483 KDASSERT((pa & PGOFSET) == 0);
5484
5485 /*
5486 * Hook in the page, zero it, and purge the cache for that
5487 * zeroed page. Invalidate the TLB as needed.
5488 */
5489
5490 pt_entry_t npte = L2_S_PROTO | pa |
5491 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5492 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5493 l2pte_set(cdst_pte, npte, 0);
5494 PTE_SYNC(cdst_pte);
5495 cpu_tlb_flushD_SE(cdstp);
5496 cpu_cpwait();
5497 bzero_page(cdstp);
5498 xscale_cache_clean_minidata();
5499 l2pte_reset(cdst_pte);
5500 PTE_SYNC(cdst_pte);
5501 }
5502 #endif /* ARM_MMU_XSCALE == 1 */
5503
5504 /* pmap_pageidlezero()
5505 *
5506 * The same as above, except that we assume that the page is not
5507 * mapped. This means we never have to flush the cache first. Called
5508 * from the idle loop.
5509 */
5510 bool
5511 pmap_pageidlezero(paddr_t pa)
5512 {
5513 bool rv = true;
5514 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5515 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5516 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5517 #endif
5518 #ifdef PMAP_CACHE_VIPT
5519 /* Choose the last page color it had, if any */
5520 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5521 #else
5522 const vsize_t va_offset = 0;
5523 #endif
5524 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5525 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5526 || va_offset == (pa & arm_cache_prefer_mask);
5527 const vaddr_t vdstp = okcolor
5528 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5529 : cpu_cdstp(va_offset);
5530 #else
5531 const bool okcolor = false;
5532 const vaddr_t vdstp = cpu_cdstp(va_offset);
5533 #endif
5534 pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5535
5536
5537 #ifdef DEBUG
5538 if (!SLIST_EMPTY(&md->pvh_list))
5539 panic("pmap_pageidlezero: page has mappings");
5540 #endif
5541
5542 KDASSERT((pa & PGOFSET) == 0);
5543
5544 if (!okcolor) {
5545 /*
5546 * Hook in the page, zero it, and purge the cache for that
5547 * zeroed page. Invalidate the TLB as needed.
5548 */
5549 const pt_entry_t npte = L2_S_PROTO | pa |
5550 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5551 l2pte_set(ptep, npte, 0);
5552 PTE_SYNC(ptep);
5553 cpu_tlb_flushD_SE(vdstp);
5554 cpu_cpwait();
5555 }
5556
5557 uint64_t *ptr = (uint64_t *)vdstp;
5558 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5559 if (sched_curcpu_runnable_p() != 0) {
5560 /*
5561 * A process has become ready. Abort now,
5562 * so we don't keep it waiting while we
5563 * do slow memory access to finish this
5564 * page.
5565 */
5566 rv = false;
5567 break;
5568 }
5569 *ptr++ = 0;
5570 }
5571
5572 #ifdef PMAP_CACHE_VIVT
5573 if (rv)
5574 /*
5575 * if we aborted we'll rezero this page again later so don't
5576 * purge it unless we finished it
5577 */
5578 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5579 #elif defined(PMAP_CACHE_VIPT)
5580 /*
5581 * This page is now cache resident so it now has a page color.
5582 * Any contents have been obliterated so clear the EXEC flag.
5583 */
5584 #ifndef ARM_MMU_EXTENDED
5585 if (!pmap_is_page_colored_p(md)) {
5586 PMAPCOUNT(vac_color_new);
5587 md->pvh_attrs |= PVF_COLORED;
5588 }
5589 #endif
5590 if (PV_IS_EXEC_P(md->pvh_attrs)) {
5591 md->pvh_attrs &= ~PVF_EXEC;
5592 PMAPCOUNT(exec_discarded_zero);
5593 }
5594 #endif
5595 /*
5596 * Unmap the page.
5597 */
5598 if (!okcolor) {
5599 l2pte_reset(ptep);
5600 PTE_SYNC(ptep);
5601 cpu_tlb_flushD_SE(vdstp);
5602 }
5603
5604 return rv;
5605 }
5606
5607 /*
5608 * pmap_copy_page()
5609 *
5610 * Copy one physical page into another, by mapping the pages into
5611 * hook points. The same comment regarding cachability as in
5612 * pmap_zero_page also applies here.
5613 */
5614 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5615 void
5616 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5617 {
5618 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5619 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5620 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5621 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5622 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5623 #endif
5624 #ifdef PMAP_CACHE_VIPT
5625 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5626 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5627 #else
5628 const vsize_t src_va_offset = 0;
5629 const vsize_t dst_va_offset = 0;
5630 #endif
5631 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5632 /*
5633 * Is this page mapped at its natural color?
5634 * If we have all of memory mapped, then just convert PA to VA.
5635 */
5636 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5637 || src_va_offset == (src & arm_cache_prefer_mask);
5638 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5639 || dst_va_offset == (dst & arm_cache_prefer_mask);
5640 const vaddr_t vsrcp = src_okcolor
5641 ? pmap_direct_mapped_phys(src, &src_okcolor,
5642 cpu_csrcp(src_va_offset))
5643 : cpu_csrcp(src_va_offset);
5644 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5645 cpu_cdstp(dst_va_offset));
5646 #else
5647 const bool src_okcolor = false;
5648 const bool dst_okcolor = false;
5649 const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5650 const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5651 #endif
5652 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5653 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5654
5655 #ifdef DEBUG
5656 if (!SLIST_EMPTY(&dst_md->pvh_list))
5657 panic("pmap_copy_page: dst page has mappings");
5658 #endif
5659
5660 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5661 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5662 #endif
5663 KDASSERT((src & PGOFSET) == 0);
5664 KDASSERT((dst & PGOFSET) == 0);
5665
5666 /*
5667 * Clean the source page. Hold the source page's lock for
5668 * the duration of the copy so that no other mappings can
5669 * be created while we have a potentially aliased mapping.
5670 */
5671 #ifdef PMAP_CACHE_VIVT
5672 pmap_acquire_page_lock(src_md);
5673 (void) pmap_clean_page(src_md, true);
5674 pmap_release_page_lock(src_md);
5675 #endif
5676
5677 /*
5678 * Map the pages into the page hook points, copy them, and purge
5679 * the cache for the appropriate page. Invalidate the TLB
5680 * as required.
5681 */
5682 if (!src_okcolor) {
5683 const pt_entry_t nsrc_pte = L2_S_PROTO
5684 | src
5685 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5686 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5687 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5688 | pte_l2_s_cache_mode
5689 #endif
5690 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5691 l2pte_set(src_ptep, nsrc_pte, 0);
5692 PTE_SYNC(src_ptep);
5693 cpu_tlb_flushD_SE(vsrcp);
5694 cpu_cpwait();
5695 }
5696 if (!dst_okcolor) {
5697 const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5698 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5699 l2pte_set(dst_ptep, ndst_pte, 0);
5700 PTE_SYNC(dst_ptep);
5701 cpu_tlb_flushD_SE(vdstp);
5702 cpu_cpwait();
5703 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5704 /*
5705 * If we are direct-mapped and our color isn't ok, then before
5706 * we bcopy to the new page invalidate its contents from the
5707 * cache and reset its color to its natural color.
5708 */
5709 cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5710 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5711 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5712 #endif
5713 }
5714 bcopy_page(vsrcp, vdstp);
5715 #ifdef PMAP_CACHE_VIVT
5716 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5717 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5718 #endif
5719 /*
5720 * Unmap the pages.
5721 */
5722 if (!src_okcolor) {
5723 l2pte_reset(src_ptep);
5724 PTE_SYNC(src_ptep);
5725 cpu_tlb_flushD_SE(vsrcp);
5726 cpu_cpwait();
5727 }
5728 if (!dst_okcolor) {
5729 l2pte_reset(dst_ptep);
5730 PTE_SYNC(dst_ptep);
5731 cpu_tlb_flushD_SE(vdstp);
5732 cpu_cpwait();
5733 }
5734 #ifdef PMAP_CACHE_VIPT
5735 /*
5736 * Now that the destination page is in the cache, mark it as colored.
5737 * If this was an exec page, discard it.
5738 */
5739 pmap_acquire_page_lock(dst_md);
5740 #ifndef ARM_MMU_EXTENDED
5741 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5742 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5743 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5744 }
5745 if (!pmap_is_page_colored_p(dst_md)) {
5746 PMAPCOUNT(vac_color_new);
5747 dst_md->pvh_attrs |= PVF_COLORED;
5748 }
5749 dst_md->pvh_attrs |= PVF_DIRTY;
5750 #endif
5751 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5752 dst_md->pvh_attrs &= ~PVF_EXEC;
5753 PMAPCOUNT(exec_discarded_copy);
5754 }
5755 pmap_release_page_lock(dst_md);
5756 #endif
5757 }
5758 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5759
5760 #if ARM_MMU_XSCALE == 1
5761 void
5762 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5763 {
5764 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5765 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5766 #ifdef DEBUG
5767 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5768
5769 if (!SLIST_EMPTY(&dst_md->pvh_list))
5770 panic("pmap_copy_page: dst page has mappings");
5771 #endif
5772
5773 KDASSERT((src & PGOFSET) == 0);
5774 KDASSERT((dst & PGOFSET) == 0);
5775
5776 /*
5777 * Clean the source page. Hold the source page's lock for
5778 * the duration of the copy so that no other mappings can
5779 * be created while we have a potentially aliased mapping.
5780 */
5781 #ifdef PMAP_CACHE_VIVT
5782 pmap_acquire_page_lock(src_md);
5783 (void) pmap_clean_page(src_md, true);
5784 pmap_release_page_lock(src_md);
5785 #endif
5786
5787 /*
5788 * Map the pages into the page hook points, copy them, and purge
5789 * the cache for the appropriate page. Invalidate the TLB
5790 * as required.
5791 */
5792 const pt_entry_t nsrc_pte = L2_S_PROTO | src
5793 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5794 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5795 l2pte_set(csrc_pte, nsrc_pte, 0);
5796 PTE_SYNC(csrc_pte);
5797
5798 const pt_entry_t ndst_pte = L2_S_PROTO | dst
5799 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5800 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
5801 l2pte_set(cdst_pte, ndst_pte, 0);
5802 PTE_SYNC(cdst_pte);
5803
5804 cpu_tlb_flushD_SE(csrcp);
5805 cpu_tlb_flushD_SE(cdstp);
5806 cpu_cpwait();
5807 bcopy_page(csrcp, cdstp);
5808 xscale_cache_clean_minidata();
5809 l2pte_reset(csrc_pte);
5810 l2pte_reset(cdst_pte);
5811 PTE_SYNC(csrc_pte);
5812 PTE_SYNC(cdst_pte);
5813 }
5814 #endif /* ARM_MMU_XSCALE == 1 */
5815
5816 /*
5817 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5818 *
5819 * Return the start and end addresses of the kernel's virtual space.
5820 * These values are setup in pmap_bootstrap and are updated as pages
5821 * are allocated.
5822 */
5823 void
5824 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5825 {
5826 *start = virtual_avail;
5827 *end = virtual_end;
5828 }
5829
5830 /*
5831 * Helper function for pmap_grow_l2_bucket()
5832 */
5833 static inline int
5834 pmap_grow_map(vaddr_t va, paddr_t *pap)
5835 {
5836 paddr_t pa;
5837
5838 KASSERT((va & PGOFSET) == 0);
5839
5840 if (uvm.page_init_done == false) {
5841 #ifdef PMAP_STEAL_MEMORY
5842 pv_addr_t pv;
5843 pmap_boot_pagealloc(PAGE_SIZE,
5844 #ifdef PMAP_CACHE_VIPT
5845 arm_cache_prefer_mask,
5846 va & arm_cache_prefer_mask,
5847 #else
5848 0, 0,
5849 #endif
5850 &pv);
5851 pa = pv.pv_pa;
5852 #else
5853 if (uvm_page_physget(&pa) == false)
5854 return 1;
5855 #endif /* PMAP_STEAL_MEMORY */
5856 } else {
5857 struct vm_page *pg;
5858 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5859 if (pg == NULL)
5860 return 1;
5861 pa = VM_PAGE_TO_PHYS(pg);
5862 /*
5863 * This new page must not have any mappings.
5864 */
5865 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5866 KASSERT(SLIST_EMPTY(&md->pvh_list));
5867 }
5868
5869 /*
5870 * Enter it via pmap_kenter_pa and let that routine do the hard work.
5871 */
5872 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
5873 PMAP_KMPAGE | PMAP_PTE);
5874
5875 if (pap)
5876 *pap = pa;
5877
5878 PMAPCOUNT(pt_mappings);
5879
5880 const pmap_t kpm __diagused = pmap_kernel();
5881 struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
5882 KASSERT(l2b != NULL);
5883
5884 pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
5885 const pt_entry_t pte __diagused = *ptep;
5886 KASSERT(l2pte_valid_p(pte));
5887 KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5888
5889 memset((void *)va, 0, PAGE_SIZE);
5890
5891 return 0;
5892 }
5893
5894 /*
5895 * This is the same as pmap_alloc_l2_bucket(), except that it is only
5896 * used by pmap_growkernel().
5897 */
5898 static inline struct l2_bucket *
5899 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5900 {
5901 const size_t l1slot = l1pte_index(va);
5902 struct l2_dtable *l2;
5903 vaddr_t nva;
5904
5905 CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
5906 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5907 /*
5908 * No mapping at this address, as there is
5909 * no entry in the L1 table.
5910 * Need to allocate a new l2_dtable.
5911 */
5912 nva = pmap_kernel_l2dtable_kva;
5913 if ((nva & PGOFSET) == 0) {
5914 /*
5915 * Need to allocate a backing page
5916 */
5917 if (pmap_grow_map(nva, NULL))
5918 return NULL;
5919 }
5920
5921 l2 = (struct l2_dtable *)nva;
5922 nva += sizeof(struct l2_dtable);
5923
5924 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5925 /*
5926 * The new l2_dtable straddles a page boundary.
5927 * Map in another page to cover it.
5928 */
5929 if (pmap_grow_map(nva & ~PGOFSET, NULL))
5930 return NULL;
5931 }
5932
5933 pmap_kernel_l2dtable_kva = nva;
5934
5935 /*
5936 * Link it into the parent pmap
5937 */
5938 pm->pm_l2[L2_IDX(l1slot)] = l2;
5939 }
5940
5941 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5942
5943 /*
5944 * Fetch pointer to the L2 page table associated with the address.
5945 */
5946 if (l2b->l2b_kva == NULL) {
5947 pt_entry_t *ptep;
5948
5949 /*
5950 * No L2 page table has been allocated. Chances are, this
5951 * is because we just allocated the l2_dtable, above.
5952 */
5953 nva = pmap_kernel_l2ptp_kva;
5954 ptep = (pt_entry_t *)nva;
5955 if ((nva & PGOFSET) == 0) {
5956 /*
5957 * Need to allocate a backing page
5958 */
5959 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5960 return NULL;
5961 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5962 }
5963
5964 l2->l2_occupancy++;
5965 l2b->l2b_kva = ptep;
5966 l2b->l2b_l1slot = l1slot;
5967 l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5968
5969 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5970 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5971 }
5972
5973 return l2b;
5974 }
5975
5976 vaddr_t
5977 pmap_growkernel(vaddr_t maxkvaddr)
5978 {
5979 UVMHIST_FUNC(__func__);
5980 UVMHIST_CALLARGS(maphist, "growing kernel from %#jx to %#jx\n",
5981 pmap_curmaxkvaddr, maxkvaddr, 0, 0);
5982
5983 pmap_t kpm = pmap_kernel();
5984 #ifndef ARM_MMU_EXTENDED
5985 struct l1_ttable *l1;
5986 #endif
5987 int s;
5988
5989 if (maxkvaddr <= pmap_curmaxkvaddr)
5990 goto out; /* we are OK */
5991
5992 KDASSERT(maxkvaddr <= virtual_end);
5993
5994 /*
5995 * whoops! we need to add kernel PTPs
5996 */
5997
5998 vaddr_t pmap_maxkvaddr = pmap_curmaxkvaddr;
5999
6000 s = splvm(); /* to be safe */
6001 mutex_enter(&kpm_lock);
6002
6003 /* Map 1MB at a time */
6004 size_t l1slot = l1pte_index(pmap_maxkvaddr);
6005 #ifdef ARM_MMU_EXTENDED
6006 pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
6007 pd_entry_t *pdep = spdep;
6008 #endif
6009 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
6010 #ifdef ARM_MMU_EXTENDED
6011 pdep++,
6012 #endif
6013 l1slot++) {
6014 struct l2_bucket *l2b =
6015 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
6016 KASSERT(l2b != NULL);
6017
6018 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
6019 | L1_C_DOM(PMAP_DOMAIN_KERNEL);
6020 #ifdef ARM_MMU_EXTENDED
6021 KASSERT(*pdep == 0);
6022 l1pte_setone(pdep, npde);
6023 #else
6024 /* Distribute new L1 entry to all other L1s */
6025 SLIST_FOREACH(l1, &l1_list, l1_link) {
6026 pd_entry_t * const pdep = &l1->l1_kva[l1slot];
6027 l1pte_setone(pdep, npde);
6028 PDE_SYNC(pdep);
6029 }
6030 #endif
6031 }
6032 #ifdef ARM_MMU_EXTENDED
6033 PDE_SYNC_RANGE(spdep, pdep - spdep);
6034 #endif
6035
6036 #ifdef PMAP_CACHE_VIVT
6037 /*
6038 * flush out the cache, expensive but growkernel will happen so
6039 * rarely
6040 */
6041 cpu_dcache_wbinv_all();
6042 cpu_tlb_flushD();
6043 cpu_cpwait();
6044 #endif
6045
6046 mutex_exit(&kpm_lock);
6047 splx(s);
6048
6049 kasan_shadow_map((void *)pmap_maxkvaddr,
6050 (size_t)(pmap_curmaxkvaddr - pmap_maxkvaddr));
6051
6052 out:
6053 return pmap_curmaxkvaddr;
6054 }
6055
6056 /************************ Utility routines ****************************/
6057
6058 #ifndef ARM_HAS_VBAR
6059 /*
6060 * vector_page_setprot:
6061 *
6062 * Manipulate the protection of the vector page.
6063 */
6064 void
6065 vector_page_setprot(int prot)
6066 {
6067 struct l2_bucket *l2b;
6068 pt_entry_t *ptep;
6069
6070 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
6071 /*
6072 * If we are using VBAR to use the vectors in the kernel, then it's
6073 * already mapped in the kernel text so no need to anything here.
6074 */
6075 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6076 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6077 return;
6078 }
6079 #endif
6080
6081 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6082 KASSERT(l2b != NULL);
6083
6084 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6085
6086 const pt_entry_t opte = *ptep;
6087 #ifdef ARM_MMU_EXTENDED
6088 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6089 | L2_S_PROT(PTE_KERNEL, prot);
6090 #else
6091 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6092 | L2_S_PROT(PTE_KERNEL, prot);
6093 #endif
6094 l2pte_set(ptep, npte, opte);
6095 PTE_SYNC(ptep);
6096 cpu_tlb_flushD_SE(vector_page);
6097 cpu_cpwait();
6098 }
6099 #endif
6100
6101 /*
6102 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6103 * Returns true if the mapping exists, else false.
6104 *
6105 * NOTE: This function is only used by a couple of arm-specific modules.
6106 * It is not safe to take any pmap locks here, since we could be right
6107 * in the middle of debugging the pmap anyway...
6108 *
6109 * It is possible for this routine to return false even though a valid
6110 * mapping does exist. This is because we don't lock, so the metadata
6111 * state may be inconsistent.
6112 *
6113 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6114 * a "section" mapping.
6115 */
6116 bool
6117 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6118 {
6119 struct l2_dtable *l2;
6120 pd_entry_t *pdep, pde;
6121 pt_entry_t *ptep;
6122 u_short l1slot;
6123
6124 if (pm->pm_l1 == NULL)
6125 return false;
6126
6127 l1slot = l1pte_index(va);
6128 *pdp = pdep = pmap_l1_kva(pm) + l1slot;
6129 pde = *pdep;
6130
6131 if (l1pte_section_p(pde)) {
6132 *ptp = NULL;
6133 return true;
6134 }
6135
6136 l2 = pm->pm_l2[L2_IDX(l1slot)];
6137 if (l2 == NULL ||
6138 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6139 return false;
6140 }
6141
6142 *ptp = &ptep[l2pte_index(va)];
6143 return true;
6144 }
6145
6146 bool
6147 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6148 {
6149
6150 if (pm->pm_l1 == NULL)
6151 return false;
6152
6153 *pdp = pmap_l1_kva(pm) + l1pte_index(va);
6154
6155 return true;
6156 }
6157
6158 /************************ Bootstrapping routines ****************************/
6159
6160 #ifndef ARM_MMU_EXTENDED
6161 static void
6162 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6163 {
6164 int i;
6165
6166 l1->l1_kva = l1pt;
6167 l1->l1_domain_use_count = 0;
6168 l1->l1_domain_first = 0;
6169
6170 for (i = 0; i < PMAP_DOMAINS; i++)
6171 l1->l1_domain_free[i] = i + 1;
6172
6173 /*
6174 * Copy the kernel's L1 entries to each new L1.
6175 */
6176 if (pmap_initialized)
6177 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6178
6179 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6180 &l1->l1_physaddr) == false)
6181 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6182
6183 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6184 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6185 }
6186 #endif /* !ARM_MMU_EXTENDED */
6187
6188 /*
6189 * pmap_bootstrap() is called from the board-specific initarm() routine
6190 * once the kernel L1/L2 descriptors tables have been set up.
6191 *
6192 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6193 * spread over a number of disparate files/functions.
6194 *
6195 * We are passed the following parameters
6196 * - vstart
6197 * 1MB-aligned start of managed kernel virtual memory.
6198 * - vend
6199 * 1MB-aligned end of managed kernel virtual memory.
6200 *
6201 * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6202 * struct l2_dtable) necessary to track kernel mappings.
6203 */
6204 #define PMAP_STATIC_L2_SIZE 16
6205 void
6206 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6207 {
6208 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6209 #ifndef ARM_MMU_EXTENDED
6210 static struct l1_ttable static_l1;
6211 struct l1_ttable *l1 = &static_l1;
6212 #endif
6213 struct l2_dtable *l2;
6214 struct l2_bucket *l2b;
6215 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6216 pmap_t pm = pmap_kernel();
6217 pt_entry_t *ptep;
6218 paddr_t pa;
6219 vsize_t size;
6220 int nptes, l2idx, l2next = 0;
6221
6222 #ifdef ARM_MMU_EXTENDED
6223 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6224 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6225 #endif
6226
6227 VPRINTF("kpm ");
6228 /*
6229 * Initialise the kernel pmap object
6230 */
6231 curcpu()->ci_pmap_cur = pm;
6232 #ifdef ARM_MMU_EXTENDED
6233 pm->pm_l1 = l1pt;
6234 pm->pm_l1_pa = kernel_l1pt.pv_pa;
6235 VPRINTF("tlb0 ");
6236 pmap_tlb_info_init(&pmap_tlb0_info);
6237 #ifdef MULTIPROCESSOR
6238 VPRINTF("kcpusets ");
6239 pm->pm_onproc = kcpuset_running;
6240 pm->pm_active = kcpuset_running;
6241 #endif
6242 #else
6243 pm->pm_l1 = l1;
6244 #endif
6245
6246 VPRINTF("locks ");
6247 /*
6248 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6249 * context, so its locks have to be at IPL_VM
6250 */
6251 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6252 mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6253 mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
6254 pm->pm_refs = 1;
6255
6256 VPRINTF("l1pt ");
6257 /*
6258 * Scan the L1 translation table created by initarm() and create
6259 * the required metadata for all valid mappings found in it.
6260 */
6261 for (size_t l1slot = 0;
6262 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6263 l1slot++) {
6264 pd_entry_t pde = l1pt[l1slot];
6265
6266 /*
6267 * We're only interested in Coarse mappings.
6268 * pmap_extract() can deal with section mappings without
6269 * recourse to checking L2 metadata.
6270 */
6271 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6272 continue;
6273
6274 /*
6275 * Lookup the KVA of this L2 descriptor table
6276 */
6277 pa = l1pte_pa(pde);
6278 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6279 if (ptep == NULL) {
6280 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6281 (u_int)l1slot << L1_S_SHIFT, pa);
6282 }
6283
6284 /*
6285 * Fetch the associated L2 metadata structure.
6286 * Allocate a new one if necessary.
6287 */
6288 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6289 if (l2next == PMAP_STATIC_L2_SIZE)
6290 panic("pmap_bootstrap: out of static L2s");
6291 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6292 }
6293
6294 /*
6295 * One more L1 slot tracked...
6296 */
6297 l2->l2_occupancy++;
6298
6299 /*
6300 * Fill in the details of the L2 descriptor in the
6301 * appropriate bucket.
6302 */
6303 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6304 l2b->l2b_kva = ptep;
6305 l2b->l2b_pa = pa;
6306 l2b->l2b_l1slot = l1slot;
6307
6308 /*
6309 * Establish an initial occupancy count for this descriptor
6310 */
6311 for (l2idx = 0;
6312 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6313 l2idx++) {
6314 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6315 l2b->l2b_occupancy++;
6316 }
6317 }
6318
6319 /*
6320 * Make sure the descriptor itself has the correct cache mode.
6321 * If not, fix it, but whine about the problem. Port-meisters
6322 * should consider this a clue to fix up their initarm()
6323 * function. :)
6324 */
6325 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6326 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6327 "L2 pte @ %p\n", ptep);
6328 }
6329 }
6330
6331 VPRINTF("cache(l1pt) ");
6332 /*
6333 * Ensure the primary (kernel) L1 has the correct cache mode for
6334 * a page table. Bitch if it is not correctly set.
6335 */
6336 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6337 L1_TABLE_SIZE / L2_S_SIZE)) {
6338 printf("pmap_bootstrap: WARNING! wrong cache mode for "
6339 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6340 }
6341
6342 #ifdef PMAP_CACHE_VIVT
6343 cpu_dcache_wbinv_all();
6344 cpu_tlb_flushID();
6345 cpu_cpwait();
6346 #endif
6347
6348 /*
6349 * now we allocate the "special" VAs which are used for tmp mappings
6350 * by the pmap (and other modules). we allocate the VAs by advancing
6351 * virtual_avail (note that there are no pages mapped at these VAs).
6352 *
6353 * Managed KVM space start from wherever initarm() tells us.
6354 */
6355 virtual_avail = vstart;
6356 virtual_end = vend;
6357
6358 VPRINTF("specials ");
6359
6360 pmap_alloc_specials(&virtual_avail, 1, &memhook, NULL);
6361
6362 #ifdef PMAP_CACHE_VIPT
6363 /*
6364 * If we have a VIPT cache, we need one page/pte per possible alias
6365 * page so we won't violate cache aliasing rules.
6366 */
6367 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6368 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6369 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6370 if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6371 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6372 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6373 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6374 }
6375 #else
6376 nptes = PAGE_SIZE / L2_S_SIZE;
6377 #endif
6378 #ifdef MULTIPROCESSOR
6379 cnptes = nptes;
6380 nptes *= arm_cpu_max;
6381 #endif
6382 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6383 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6384 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6385 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6386 if (msgbufaddr == NULL) {
6387 pmap_alloc_specials(&virtual_avail,
6388 round_page(MSGBUFSIZE) / PAGE_SIZE,
6389 (void *)&msgbufaddr, NULL);
6390 }
6391
6392 /*
6393 * Allocate a range of kernel virtual address space to be used
6394 * for L2 descriptor tables and metadata allocation in
6395 * pmap_growkernel().
6396 */
6397 size = howmany(virtual_end - pmap_curmaxkvaddr, L1_S_SIZE);
6398 pmap_alloc_specials(&virtual_avail,
6399 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6400 &pmap_kernel_l2ptp_kva, NULL);
6401
6402 size = howmany(size, L2_BUCKET_SIZE);
6403 pmap_alloc_specials(&virtual_avail,
6404 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6405 &pmap_kernel_l2dtable_kva, NULL);
6406
6407 #ifndef ARM_MMU_EXTENDED
6408 /*
6409 * init the static-global locks and global pmap list.
6410 */
6411 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6412
6413 /*
6414 * We can now initialise the first L1's metadata.
6415 */
6416 SLIST_INIT(&l1_list);
6417 TAILQ_INIT(&l1_lru_list);
6418 pmap_init_l1(l1, l1pt);
6419 #endif /* ARM_MMU_EXTENDED */
6420
6421 #ifndef ARM_HAS_VBAR
6422 /* Set up vector page L1 details, if necessary */
6423 if (vector_page < KERNEL_BASE) {
6424 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6425 l2b = pmap_get_l2_bucket(pm, vector_page);
6426 KDASSERT(l2b != NULL);
6427 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6428 L1_C_DOM(pmap_domain(pm));
6429 } else
6430 pm->pm_pl1vec = NULL;
6431 #endif
6432
6433 VPRINTF("pools ");
6434 /*
6435 * Initialize the pmap cache
6436 */
6437 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6438 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6439
6440 /*
6441 * Initialize the pv pool.
6442 */
6443 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6444 &pmap_bootstrap_pv_allocator, IPL_NONE);
6445
6446 /*
6447 * Initialize the L2 dtable pool and cache.
6448 */
6449 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6450 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6451
6452 /*
6453 * Initialise the L2 descriptor table pool and cache
6454 */
6455 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6456 L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6457 pmap_l2ptp_ctor, NULL, NULL);
6458
6459 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6460
6461 cpu_dcache_wbinv_all();
6462 }
6463
6464 static bool
6465 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6466 {
6467 #ifdef ARM_MMU_EXTENDED
6468 return false;
6469 #else
6470 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6471 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6472 return false;
6473
6474 const vaddr_t eva = va + nptes * PAGE_SIZE;
6475 int rv = 0;
6476
6477 while (va < eva) {
6478 /*
6479 * Make sure the descriptor itself has the correct cache mode
6480 */
6481 pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6482 pd_entry_t pde = *pdep;
6483
6484 if (l1pte_section_p(pde)) {
6485 KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6486 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6487 *pdep = (pde & ~L1_S_CACHE_MASK) |
6488 pte_l1_s_cache_mode_pt;
6489 PDE_SYNC(pdep);
6490 cpu_dcache_wbinv_range((vaddr_t)pdep,
6491 sizeof(*pdep));
6492 rv = 1;
6493 }
6494 return rv;
6495 }
6496 vaddr_t pa = l1pte_pa(pde);
6497 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6498 if (ptep == NULL)
6499 panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6500
6501 ptep += l2pte_index(va);
6502 const pt_entry_t opte = *ptep;
6503 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6504 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6505 | pte_l2_s_cache_mode_pt;
6506 l2pte_set(ptep, npte, opte);
6507 PTE_SYNC(ptep);
6508 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6509 rv = 1;
6510 }
6511 va += PAGE_SIZE;
6512 }
6513
6514 return rv;
6515 #endif
6516 }
6517
6518 static void
6519 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6520 {
6521 vaddr_t va = *availp;
6522 struct l2_bucket *l2b;
6523
6524 if (ptep) {
6525 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6526 if (l2b == NULL)
6527 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6528
6529 *ptep = &l2b->l2b_kva[l2pte_index(va)];
6530 }
6531
6532 *vap = va;
6533 *availp = va + (PAGE_SIZE * pages);
6534 }
6535
6536 void
6537 pmap_init(void)
6538 {
6539
6540 /*
6541 * Set the available memory vars - These do not map to real memory
6542 * addresses and cannot as the physical memory is fragmented.
6543 * They are used by ps for %mem calculations.
6544 * One could argue whether this should be the entire memory or just
6545 * the memory that is useable in a user process.
6546 */
6547 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6548 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6549
6550 /*
6551 * Now we need to free enough pv_entry structures to allow us to get
6552 * the kmem_map/kmem_object allocated and inited (done after this
6553 * function is finished). to do this we allocate one bootstrap page out
6554 * of kernel_map and use it to provide an initial pool of pv_entry
6555 * structures. we never free this page.
6556 */
6557 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6558
6559 #ifdef ARM_MMU_EXTENDED
6560 /*
6561 * Initialise the L1 pool and cache.
6562 */
6563
6564 pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
6565 0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
6566 NULL, NULL);
6567
6568 int error __diagused = pmap_maxproc_set(maxproc);
6569 KASSERT(error == 0);
6570
6571 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6572 #endif
6573
6574 pmap_initialized = true;
6575 }
6576
6577 static vaddr_t last_bootstrap_page = 0;
6578 static void *free_bootstrap_pages = NULL;
6579
6580 static void *
6581 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6582 {
6583 extern void *pool_page_alloc(struct pool *, int);
6584 vaddr_t new_page;
6585 void *rv;
6586
6587 if (pmap_initialized)
6588 return pool_page_alloc(pp, flags);
6589
6590 if (free_bootstrap_pages) {
6591 rv = free_bootstrap_pages;
6592 free_bootstrap_pages = *((void **)rv);
6593 return rv;
6594 }
6595
6596 KASSERT(kernel_map != NULL);
6597 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6598 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6599
6600 KASSERT(new_page > last_bootstrap_page);
6601 last_bootstrap_page = new_page;
6602 return (void *)new_page;
6603 }
6604
6605 static void
6606 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6607 {
6608 extern void pool_page_free(struct pool *, void *);
6609
6610 if ((vaddr_t)v <= last_bootstrap_page) {
6611 *((void **)v) = free_bootstrap_pages;
6612 free_bootstrap_pages = v;
6613 return;
6614 }
6615
6616 if (pmap_initialized) {
6617 pool_page_free(pp, v);
6618 return;
6619 }
6620 }
6621
6622
6623 #if defined(ARM_MMU_EXTENDED)
6624 static void *
6625 pmap_l1tt_alloc(struct pool *pp, int flags)
6626 {
6627 struct pglist plist;
6628 vaddr_t va;
6629
6630 const int waitok = flags & PR_WAITOK;
6631
6632 int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
6633 waitok);
6634 if (error)
6635 panic("Cannot allocate L1TT physical pages, %d", error);
6636
6637 struct vm_page *pg = TAILQ_FIRST(&plist);
6638 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6639
6640 /* Allocate a L1 translation table VA */
6641 va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
6642 if (va == 0)
6643 panic("Cannot allocate L1TT KVA");
6644
6645 const vaddr_t eva = va + L1TT_SIZE;
6646 vaddr_t mva = va;
6647 while (pg && mva < eva) {
6648 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6649
6650 pmap_kenter_pa(mva, pa,
6651 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6652
6653 mva += PAGE_SIZE;
6654 pg = TAILQ_NEXT(pg, pageq.queue);
6655 }
6656 KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
6657 " eva %" PRIxVADDR, pg, mva, eva);
6658 #else
6659 bool ok;
6660 paddr_t pa = VM_PAGE_TO_PHYS(pg);
6661 va = pmap_direct_mapped_phys(pa, &ok, 0);
6662 KASSERT(ok);
6663 KASSERT(va >= KERNEL_BASE);
6664 #endif
6665
6666 return (void *)va;
6667 }
6668
6669 static void
6670 pmap_l1tt_free(struct pool *pp, void *v)
6671 {
6672 vaddr_t va = (vaddr_t)v;
6673
6674 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6675 uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
6676 #else
6677 #if defined(KERNEL_BASE_VOFFSET)
6678 paddr_t pa = va - KERNEL_BASE_VOFFSET;
6679 #else
6680 paddr_t pa = va - KERNEL_BASE + physical_start;
6681 #endif
6682 const paddr_t epa = pa + L1TT_SIZE;
6683
6684 for (; pa < epa; pa += PAGE_SIZE) {
6685 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
6686 uvm_pagefree(pg);
6687 }
6688 #endif
6689 }
6690 #endif
6691
6692 /*
6693 * pmap_postinit()
6694 *
6695 * This routine is called after the vm and kmem subsystems have been
6696 * initialised. This allows the pmap code to perform any initialisation
6697 * that can only be done once the memory allocation is in place.
6698 */
6699 void
6700 pmap_postinit(void)
6701 {
6702 #ifndef ARM_MMU_EXTENDED
6703 extern paddr_t physical_start, physical_end;
6704 struct l1_ttable *l1;
6705 struct pglist plist;
6706 struct vm_page *m;
6707 pd_entry_t *pdep;
6708 vaddr_t va, eva;
6709 u_int loop, needed;
6710 int error;
6711 #endif
6712
6713 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6714 pool_cache_setlowat(&pmap_l2dtable_cache,
6715 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6716
6717 #ifndef ARM_MMU_EXTENDED
6718 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6719 needed -= 1;
6720
6721 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6722
6723 for (loop = 0; loop < needed; loop++, l1++) {
6724 /* Allocate a L1 page table */
6725 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6726 if (va == 0)
6727 panic("Cannot allocate L1 KVM");
6728
6729 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6730 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6731 if (error)
6732 panic("Cannot allocate L1 physical pages");
6733
6734 m = TAILQ_FIRST(&plist);
6735 eva = va + L1_TABLE_SIZE;
6736 pdep = (pd_entry_t *)va;
6737
6738 while (m && va < eva) {
6739 paddr_t pa = VM_PAGE_TO_PHYS(m);
6740
6741 pmap_kenter_pa(va, pa,
6742 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6743
6744 va += PAGE_SIZE;
6745 m = TAILQ_NEXT(m, pageq.queue);
6746 }
6747
6748 #ifdef DIAGNOSTIC
6749 if (m)
6750 panic("pmap_alloc_l1pt: pglist not empty");
6751 #endif /* DIAGNOSTIC */
6752
6753 pmap_init_l1(l1, pdep);
6754 }
6755
6756 #ifdef DEBUG
6757 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6758 needed);
6759 #endif
6760 #endif /* !ARM_MMU_EXTENDED */
6761 }
6762
6763 /*
6764 * Note that the following routines are used by board-specific initialisation
6765 * code to configure the initial kernel page tables.
6766 *
6767 */
6768
6769 /*
6770 * This list exists for the benefit of pmap_map_chunk(). It keeps track
6771 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6772 * find them as necessary.
6773 *
6774 * Note that the data on this list MUST remain valid after initarm() returns,
6775 * as pmap_bootstrap() uses it to construct L2 table metadata.
6776 */
6777 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6778
6779 static vaddr_t
6780 kernel_pt_lookup(paddr_t pa)
6781 {
6782 pv_addr_t *pv;
6783
6784 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6785 if (pv->pv_pa == (pa & ~PGOFSET))
6786 return pv->pv_va | (pa & PGOFSET);
6787 }
6788 return 0;
6789 }
6790
6791 /*
6792 * pmap_map_section:
6793 *
6794 * Create a single section mapping.
6795 */
6796 void
6797 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6798 {
6799 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6800 const size_t l1slot = l1pte_index(va);
6801 pd_entry_t fl;
6802
6803 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6804
6805 switch (cache) {
6806 case PTE_NOCACHE:
6807 fl = pte_l1_s_nocache_mode;
6808 break;
6809
6810 case PTE_CACHE:
6811 fl = pte_l1_s_cache_mode;
6812 break;
6813
6814 case PTE_PAGETABLE:
6815 fl = pte_l1_s_cache_mode_pt;
6816 break;
6817
6818 case PTE_DEV:
6819 default:
6820 fl = 0;
6821 break;
6822 }
6823
6824 const pd_entry_t npde = L1_S_PROTO | pa |
6825 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6826 l1pte_setone(pdep + l1slot, npde);
6827 PDE_SYNC(pdep + l1slot);
6828 }
6829
6830 /*
6831 * pmap_map_entry:
6832 *
6833 * Create a single page mapping.
6834 */
6835 void
6836 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6837 {
6838 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6839 const size_t l1slot = l1pte_index(va);
6840 pt_entry_t npte;
6841 pt_entry_t *ptep;
6842
6843 KASSERT(((va | pa) & PGOFSET) == 0);
6844
6845 switch (cache) {
6846 case PTE_NOCACHE:
6847 npte = pte_l2_s_nocache_mode;
6848 break;
6849
6850 case PTE_CACHE:
6851 npte = pte_l2_s_cache_mode;
6852 break;
6853
6854 case PTE_PAGETABLE:
6855 npte = pte_l2_s_cache_mode_pt;
6856 break;
6857
6858 default:
6859 npte = 0;
6860 break;
6861 }
6862
6863 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6864 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6865
6866 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6867 if (ptep == NULL)
6868 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6869
6870 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6871 #ifdef ARM_MMU_EXTENDED
6872 if (prot & VM_PROT_EXECUTE) {
6873 npte &= ~L2_XS_XN;
6874 }
6875 #endif
6876 ptep += l2pte_index(va);
6877 l2pte_set(ptep, npte, 0);
6878 PTE_SYNC(ptep);
6879 }
6880
6881 /*
6882 * pmap_link_l2pt:
6883 *
6884 * Link the L2 page table specified by "l2pv" into the L1
6885 * page table at the slot for "va".
6886 */
6887 void
6888 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6889 {
6890 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6891
6892 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6893 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6894
6895 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6896 | l2pv->pv_pa;
6897
6898 l1pte_set(pdep, npde);
6899 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6900
6901 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6902 }
6903
6904 /*
6905 * pmap_map_chunk:
6906 *
6907 * Map a chunk of memory using the most efficient mappings
6908 * possible (section, large page, small page) into the
6909 * provided L1 and L2 tables at the specified virtual address.
6910 */
6911 vsize_t
6912 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6913 int prot, int cache)
6914 {
6915 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6916 pt_entry_t f1, f2s, f2l;
6917 vsize_t resid;
6918
6919 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6920
6921 if (l1pt == 0)
6922 panic("pmap_map_chunk: no L1 table provided");
6923
6924 // VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6925 // "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6926
6927 switch (cache) {
6928 case PTE_NOCACHE:
6929 f1 = pte_l1_s_nocache_mode;
6930 f2l = pte_l2_l_nocache_mode;
6931 f2s = pte_l2_s_nocache_mode;
6932 break;
6933
6934 case PTE_CACHE:
6935 f1 = pte_l1_s_cache_mode;
6936 f2l = pte_l2_l_cache_mode;
6937 f2s = pte_l2_s_cache_mode;
6938 break;
6939
6940 case PTE_PAGETABLE:
6941 f1 = pte_l1_s_cache_mode_pt;
6942 f2l = pte_l2_l_cache_mode_pt;
6943 f2s = pte_l2_s_cache_mode_pt;
6944 break;
6945
6946 case PTE_DEV:
6947 default:
6948 f1 = 0;
6949 f2l = 0;
6950 f2s = 0;
6951 break;
6952 }
6953
6954 size = resid;
6955
6956 while (resid > 0) {
6957 const size_t l1slot = l1pte_index(va);
6958 #ifdef ARM_MMU_EXTENDED
6959 /* See if we can use a supersection mapping. */
6960 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6961 /* Supersection are always domain 0 */
6962 const pd_entry_t npde = L1_SS_PROTO | pa
6963 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6964 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6965 | L1_S_PROT(PTE_KERNEL, prot) | f1;
6966 VPRINTF("sS");
6967 l1pte_set(&pdep[l1slot], npde);
6968 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6969 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6970 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6971 va += L1_SS_SIZE;
6972 pa += L1_SS_SIZE;
6973 resid -= L1_SS_SIZE;
6974 continue;
6975 }
6976 #endif
6977 /* See if we can use a section mapping. */
6978 if (L1_S_MAPPABLE_P(va, pa, resid)) {
6979 const pd_entry_t npde = L1_S_PROTO | pa
6980 #ifdef ARM_MMU_EXTENDED
6981 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6982 | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6983 #endif
6984 | L1_S_PROT(PTE_KERNEL, prot) | f1
6985 | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6986 VPRINTF("S");
6987 l1pte_set(&pdep[l1slot], npde);
6988 PDE_SYNC(&pdep[l1slot]);
6989 // VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6990 // "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6991 va += L1_S_SIZE;
6992 pa += L1_S_SIZE;
6993 resid -= L1_S_SIZE;
6994 continue;
6995 }
6996
6997 /*
6998 * Ok, we're going to use an L2 table. Make sure
6999 * one is actually in the corresponding L1 slot
7000 * for the current VA.
7001 */
7002 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
7003 panic("%s: no L2 table for VA %#lx", __func__, va);
7004
7005 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
7006 if (ptep == NULL)
7007 panic("%s: can't find L2 table for VA %#lx", __func__,
7008 va);
7009
7010 ptep += l2pte_index(va);
7011
7012 /* See if we can use a L2 large page mapping. */
7013 if (L2_L_MAPPABLE_P(va, pa, resid)) {
7014 const pt_entry_t npte = L2_L_PROTO | pa
7015 #ifdef ARM_MMU_EXTENDED
7016 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
7017 | (va & 0x80000000 ? 0 : L2_XS_nG)
7018 #endif
7019 | L2_L_PROT(PTE_KERNEL, prot) | f2l;
7020 VPRINTF("L");
7021 l2pte_set(ptep, npte, 0);
7022 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
7023 va += L2_L_SIZE;
7024 pa += L2_L_SIZE;
7025 resid -= L2_L_SIZE;
7026 continue;
7027 }
7028
7029 VPRINTF("P");
7030 /* Use a small page mapping. */
7031 pt_entry_t npte = L2_S_PROTO | pa
7032 #ifdef ARM_MMU_EXTENDED
7033 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
7034 | (va & 0x80000000 ? 0 : L2_XS_nG)
7035 #endif
7036 | L2_S_PROT(PTE_KERNEL, prot) | f2s;
7037 #ifdef ARM_MMU_EXTENDED
7038 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
7039 #endif
7040 l2pte_set(ptep, npte, 0);
7041 PTE_SYNC(ptep);
7042 va += PAGE_SIZE;
7043 pa += PAGE_SIZE;
7044 resid -= PAGE_SIZE;
7045 }
7046 VPRINTF("\n");
7047 return size;
7048 }
7049
7050 /*
7051 * pmap_unmap_chunk:
7052 *
7053 * Unmap a chunk of memory that was previously pmap_map_chunk
7054 */
7055 void
7056 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
7057 {
7058 pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7059 const size_t l1slot = l1pte_index(va);
7060
7061 KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
7062
7063 l1pte_set(&pdep[l1slot], 0);
7064 PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
7065
7066 pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
7067 }
7068
7069
7070
7071 /********************** Static device map routines ***************************/
7072
7073 static const struct pmap_devmap *pmap_devmap_table;
7074
7075 /*
7076 * Register the devmap table. This is provided in case early console
7077 * initialization needs to register mappings created by bootstrap code
7078 * before pmap_devmap_bootstrap() is called.
7079 */
7080 void
7081 pmap_devmap_register(const struct pmap_devmap *table)
7082 {
7083
7084 pmap_devmap_table = table;
7085 }
7086
7087 /*
7088 * Map all of the static regions in the devmap table, and remember
7089 * the devmap table so other parts of the kernel can look up entries
7090 * later.
7091 */
7092 void
7093 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
7094 {
7095 int i;
7096
7097 pmap_devmap_table = table;
7098
7099 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7100 const struct pmap_devmap *pdp = &pmap_devmap_table[i];
7101
7102 KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
7103 " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
7104 KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
7105 " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
7106 VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
7107 pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
7108
7109 pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
7110 pdp->pd_prot, pdp->pd_cache);
7111 }
7112 }
7113
7114 const struct pmap_devmap *
7115 pmap_devmap_find_pa(paddr_t pa, psize_t size)
7116 {
7117 uint64_t endpa;
7118 int i;
7119
7120 if (pmap_devmap_table == NULL)
7121 return NULL;
7122
7123 endpa = (uint64_t)pa + (uint64_t)(size - 1);
7124
7125 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7126 if (pa >= pmap_devmap_table[i].pd_pa &&
7127 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
7128 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
7129 return &pmap_devmap_table[i];
7130 }
7131
7132 return NULL;
7133 }
7134
7135 const struct pmap_devmap *
7136 pmap_devmap_find_va(vaddr_t va, vsize_t size)
7137 {
7138 int i;
7139
7140 if (pmap_devmap_table == NULL)
7141 return NULL;
7142
7143 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7144 if (va >= pmap_devmap_table[i].pd_va &&
7145 va + size - 1 <= pmap_devmap_table[i].pd_va +
7146 pmap_devmap_table[i].pd_size - 1)
7147 return &pmap_devmap_table[i];
7148 }
7149
7150 return NULL;
7151 }
7152
7153 /********************** PTE initialization routines **************************/
7154
7155 /*
7156 * These routines are called when the CPU type is identified to set up
7157 * the PTE prototypes, cache modes, etc.
7158 *
7159 * The variables are always here, just in case modules need to reference
7160 * them (though, they shouldn't).
7161 */
7162
7163 pt_entry_t pte_l1_s_nocache_mode;
7164 pt_entry_t pte_l1_s_cache_mode;
7165 pt_entry_t pte_l1_s_wc_mode;
7166 pt_entry_t pte_l1_s_cache_mode_pt;
7167 pt_entry_t pte_l1_s_cache_mask;
7168
7169 pt_entry_t pte_l2_l_nocache_mode;
7170 pt_entry_t pte_l2_l_cache_mode;
7171 pt_entry_t pte_l2_l_wc_mode;
7172 pt_entry_t pte_l2_l_cache_mode_pt;
7173 pt_entry_t pte_l2_l_cache_mask;
7174
7175 pt_entry_t pte_l2_s_nocache_mode;
7176 pt_entry_t pte_l2_s_cache_mode;
7177 pt_entry_t pte_l2_s_wc_mode;
7178 pt_entry_t pte_l2_s_cache_mode_pt;
7179 pt_entry_t pte_l2_s_cache_mask;
7180
7181 pt_entry_t pte_l1_s_prot_u;
7182 pt_entry_t pte_l1_s_prot_w;
7183 pt_entry_t pte_l1_s_prot_ro;
7184 pt_entry_t pte_l1_s_prot_mask;
7185
7186 pt_entry_t pte_l2_s_prot_u;
7187 pt_entry_t pte_l2_s_prot_w;
7188 pt_entry_t pte_l2_s_prot_ro;
7189 pt_entry_t pte_l2_s_prot_mask;
7190
7191 pt_entry_t pte_l2_l_prot_u;
7192 pt_entry_t pte_l2_l_prot_w;
7193 pt_entry_t pte_l2_l_prot_ro;
7194 pt_entry_t pte_l2_l_prot_mask;
7195
7196 pt_entry_t pte_l1_ss_proto;
7197 pt_entry_t pte_l1_s_proto;
7198 pt_entry_t pte_l1_c_proto;
7199 pt_entry_t pte_l2_s_proto;
7200
7201 void (*pmap_copy_page_func)(paddr_t, paddr_t);
7202 void (*pmap_zero_page_func)(paddr_t);
7203
7204 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7205 void
7206 pmap_pte_init_generic(void)
7207 {
7208
7209 pte_l1_s_nocache_mode = 0;
7210 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7211 pte_l1_s_wc_mode = L1_S_B;
7212 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7213
7214 pte_l2_l_nocache_mode = 0;
7215 pte_l2_l_cache_mode = L2_B|L2_C;
7216 pte_l2_l_wc_mode = L2_B;
7217 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7218
7219 pte_l2_s_nocache_mode = 0;
7220 pte_l2_s_cache_mode = L2_B|L2_C;
7221 pte_l2_s_wc_mode = L2_B;
7222 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7223
7224 /*
7225 * If we have a write-through cache, set B and C. If
7226 * we have a write-back cache, then we assume setting
7227 * only C will make those pages write-through (except for those
7228 * Cortex CPUs which can read the L1 caches).
7229 */
7230 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7231 #if ARM_MMU_V7 > 0
7232 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7233 #endif
7234 #if ARM_MMU_V6 > 0
7235 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7236 #endif
7237 || false) {
7238 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7239 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7240 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7241 } else {
7242 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
7243 pte_l2_l_cache_mode_pt = L2_C; /* write through */
7244 pte_l2_s_cache_mode_pt = L2_C; /* write through */
7245 }
7246
7247 pte_l1_s_prot_u = L1_S_PROT_U_generic;
7248 pte_l1_s_prot_w = L1_S_PROT_W_generic;
7249 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7250 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7251
7252 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7253 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7254 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7255 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7256
7257 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7258 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7259 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7260 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7261
7262 pte_l1_ss_proto = L1_SS_PROTO_generic;
7263 pte_l1_s_proto = L1_S_PROTO_generic;
7264 pte_l1_c_proto = L1_C_PROTO_generic;
7265 pte_l2_s_proto = L2_S_PROTO_generic;
7266
7267 pmap_copy_page_func = pmap_copy_page_generic;
7268 pmap_zero_page_func = pmap_zero_page_generic;
7269 }
7270
7271 #if defined(CPU_ARM8)
7272 void
7273 pmap_pte_init_arm8(void)
7274 {
7275
7276 /*
7277 * ARM8 is compatible with generic, but we need to use
7278 * the page tables uncached.
7279 */
7280 pmap_pte_init_generic();
7281
7282 pte_l1_s_cache_mode_pt = 0;
7283 pte_l2_l_cache_mode_pt = 0;
7284 pte_l2_s_cache_mode_pt = 0;
7285 }
7286 #endif /* CPU_ARM8 */
7287
7288 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7289 void
7290 pmap_pte_init_arm9(void)
7291 {
7292
7293 /*
7294 * ARM9 is compatible with generic, but we want to use
7295 * write-through caching for now.
7296 */
7297 pmap_pte_init_generic();
7298
7299 pte_l1_s_cache_mode = L1_S_C;
7300 pte_l2_l_cache_mode = L2_C;
7301 pte_l2_s_cache_mode = L2_C;
7302
7303 pte_l1_s_wc_mode = L1_S_B;
7304 pte_l2_l_wc_mode = L2_B;
7305 pte_l2_s_wc_mode = L2_B;
7306
7307 pte_l1_s_cache_mode_pt = L1_S_C;
7308 pte_l2_l_cache_mode_pt = L2_C;
7309 pte_l2_s_cache_mode_pt = L2_C;
7310 }
7311 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7312 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7313
7314 #if defined(CPU_ARM10)
7315 void
7316 pmap_pte_init_arm10(void)
7317 {
7318
7319 /*
7320 * ARM10 is compatible with generic, but we want to use
7321 * write-through caching for now.
7322 */
7323 pmap_pte_init_generic();
7324
7325 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7326 pte_l2_l_cache_mode = L2_B | L2_C;
7327 pte_l2_s_cache_mode = L2_B | L2_C;
7328
7329 pte_l1_s_cache_mode = L1_S_B;
7330 pte_l2_l_cache_mode = L2_B;
7331 pte_l2_s_cache_mode = L2_B;
7332
7333 pte_l1_s_cache_mode_pt = L1_S_C;
7334 pte_l2_l_cache_mode_pt = L2_C;
7335 pte_l2_s_cache_mode_pt = L2_C;
7336
7337 }
7338 #endif /* CPU_ARM10 */
7339
7340 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7341 void
7342 pmap_pte_init_arm11(void)
7343 {
7344
7345 /*
7346 * ARM11 is compatible with generic, but we want to use
7347 * write-through caching for now.
7348 */
7349 pmap_pte_init_generic();
7350
7351 pte_l1_s_cache_mode = L1_S_C;
7352 pte_l2_l_cache_mode = L2_C;
7353 pte_l2_s_cache_mode = L2_C;
7354
7355 pte_l1_s_wc_mode = L1_S_B;
7356 pte_l2_l_wc_mode = L2_B;
7357 pte_l2_s_wc_mode = L2_B;
7358
7359 pte_l1_s_cache_mode_pt = L1_S_C;
7360 pte_l2_l_cache_mode_pt = L2_C;
7361 pte_l2_s_cache_mode_pt = L2_C;
7362 }
7363 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7364
7365 #if ARM_MMU_SA1 == 1
7366 void
7367 pmap_pte_init_sa1(void)
7368 {
7369
7370 /*
7371 * The StrongARM SA-1 cache does not have a write-through
7372 * mode. So, do the generic initialization, then reset
7373 * the page table cache mode to B=1,C=1, and note that
7374 * the PTEs need to be sync'd.
7375 */
7376 pmap_pte_init_generic();
7377
7378 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7379 pte_l2_l_cache_mode_pt = L2_B|L2_C;
7380 pte_l2_s_cache_mode_pt = L2_B|L2_C;
7381
7382 pmap_needs_pte_sync = 1;
7383 }
7384 #endif /* ARM_MMU_SA1 == 1*/
7385
7386 #if ARM_MMU_XSCALE == 1
7387 #if (ARM_NMMUS > 1)
7388 static u_int xscale_use_minidata;
7389 #endif
7390
7391 void
7392 pmap_pte_init_xscale(void)
7393 {
7394 uint32_t auxctl;
7395 int write_through = 0;
7396
7397 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7398 pte_l1_s_wc_mode = L1_S_B;
7399 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7400
7401 pte_l2_l_cache_mode = L2_B|L2_C;
7402 pte_l2_l_wc_mode = L2_B;
7403 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7404
7405 pte_l2_s_cache_mode = L2_B|L2_C;
7406 pte_l2_s_wc_mode = L2_B;
7407 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7408
7409 pte_l1_s_cache_mode_pt = L1_S_C;
7410 pte_l2_l_cache_mode_pt = L2_C;
7411 pte_l2_s_cache_mode_pt = L2_C;
7412
7413 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7414 /*
7415 * The XScale core has an enhanced mode where writes that
7416 * miss the cache cause a cache line to be allocated. This
7417 * is significantly faster than the traditional, write-through
7418 * behavior of this case.
7419 */
7420 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7421 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7422 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7423 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7424
7425 #ifdef XSCALE_CACHE_WRITE_THROUGH
7426 /*
7427 * Some versions of the XScale core have various bugs in
7428 * their cache units, the work-around for which is to run
7429 * the cache in write-through mode. Unfortunately, this
7430 * has a major (negative) impact on performance. So, we
7431 * go ahead and run fast-and-loose, in the hopes that we
7432 * don't line up the planets in a way that will trip the
7433 * bugs.
7434 *
7435 * However, we give you the option to be slow-but-correct.
7436 */
7437 write_through = 1;
7438 #elif defined(XSCALE_CACHE_WRITE_BACK)
7439 /* force write back cache mode */
7440 write_through = 0;
7441 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7442 /*
7443 * Intel PXA2[15]0 processors are known to have a bug in
7444 * write-back cache on revision 4 and earlier (stepping
7445 * A[01] and B[012]). Fixed for C0 and later.
7446 */
7447 {
7448 uint32_t id, type;
7449
7450 id = cpufunc_id();
7451 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7452
7453 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7454 if ((id & CPU_ID_REVISION_MASK) < 5) {
7455 /* write through for stepping A0-1 and B0-2 */
7456 write_through = 1;
7457 }
7458 }
7459 }
7460 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7461
7462 if (write_through) {
7463 pte_l1_s_cache_mode = L1_S_C;
7464 pte_l2_l_cache_mode = L2_C;
7465 pte_l2_s_cache_mode = L2_C;
7466 }
7467
7468 #if (ARM_NMMUS > 1)
7469 xscale_use_minidata = 1;
7470 #endif
7471
7472 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7473 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7474 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7475 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7476
7477 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7478 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7479 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7480 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7481
7482 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7483 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7484 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7485 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7486
7487 pte_l1_ss_proto = L1_SS_PROTO_xscale;
7488 pte_l1_s_proto = L1_S_PROTO_xscale;
7489 pte_l1_c_proto = L1_C_PROTO_xscale;
7490 pte_l2_s_proto = L2_S_PROTO_xscale;
7491
7492 pmap_copy_page_func = pmap_copy_page_xscale;
7493 pmap_zero_page_func = pmap_zero_page_xscale;
7494
7495 /*
7496 * Disable ECC protection of page table access, for now.
7497 */
7498 auxctl = armreg_auxctl_read();
7499 auxctl &= ~XSCALE_AUXCTL_P;
7500 armreg_auxctl_write(auxctl);
7501 }
7502
7503 /*
7504 * xscale_setup_minidata:
7505 *
7506 * Set up the mini-data cache clean area. We require the
7507 * caller to allocate the right amount of physically and
7508 * virtually contiguous space.
7509 */
7510 void
7511 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7512 {
7513 extern vaddr_t xscale_minidata_clean_addr;
7514 extern vsize_t xscale_minidata_clean_size; /* already initialized */
7515 pd_entry_t *pde = (pd_entry_t *) l1pt;
7516 vsize_t size;
7517 uint32_t auxctl;
7518
7519 xscale_minidata_clean_addr = va;
7520
7521 /* Round it to page size. */
7522 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7523
7524 for (; size != 0;
7525 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7526 const size_t l1slot = l1pte_index(va);
7527 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7528 if (ptep == NULL)
7529 panic("xscale_setup_minidata: can't find L2 table for "
7530 "VA 0x%08lx", va);
7531
7532 ptep += l2pte_index(va);
7533 pt_entry_t opte = *ptep;
7534 l2pte_set(ptep,
7535 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7536 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7537 }
7538
7539 /*
7540 * Configure the mini-data cache for write-back with
7541 * read/write-allocate.
7542 *
7543 * NOTE: In order to reconfigure the mini-data cache, we must
7544 * make sure it contains no valid data! In order to do that,
7545 * we must issue a global data cache invalidate command!
7546 *
7547 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7548 * THIS IS VERY IMPORTANT!
7549 */
7550
7551 /* Invalidate data and mini-data. */
7552 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7553 auxctl = armreg_auxctl_read();
7554 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7555 armreg_auxctl_write(auxctl);
7556 }
7557
7558 /*
7559 * Change the PTEs for the specified kernel mappings such that they
7560 * will use the mini data cache instead of the main data cache.
7561 */
7562 void
7563 pmap_uarea(vaddr_t va)
7564 {
7565 vaddr_t next_bucket, eva;
7566
7567 #if (ARM_NMMUS > 1)
7568 if (xscale_use_minidata == 0)
7569 return;
7570 #endif
7571
7572 eva = va + USPACE;
7573
7574 while (va < eva) {
7575 next_bucket = L2_NEXT_BUCKET_VA(va);
7576 if (next_bucket > eva)
7577 next_bucket = eva;
7578
7579 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7580 KDASSERT(l2b != NULL);
7581
7582 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7583 pt_entry_t *ptep = sptep;
7584
7585 while (va < next_bucket) {
7586 const pt_entry_t opte = *ptep;
7587 if (!l2pte_minidata_p(opte)) {
7588 cpu_dcache_wbinv_range(va, PAGE_SIZE);
7589 cpu_tlb_flushD_SE(va);
7590 l2pte_set(ptep, opte & ~L2_B, opte);
7591 }
7592 ptep += PAGE_SIZE / L2_S_SIZE;
7593 va += PAGE_SIZE;
7594 }
7595 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7596 }
7597 cpu_cpwait();
7598 }
7599 #endif /* ARM_MMU_XSCALE == 1 */
7600
7601
7602 #if defined(CPU_ARM11MPCORE)
7603 void
7604 pmap_pte_init_arm11mpcore(void)
7605 {
7606
7607 /* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
7608 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7609 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7610 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7611 /* use extended small page (without APn, with TEX) */
7612 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7613 #else
7614 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7615 #endif
7616
7617 /* write-back, write-allocate */
7618 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7619 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7620 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7621 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7622 #else
7623 /* no TEX. read-allocate */
7624 pte_l2_s_cache_mode = L2_C | L2_B;
7625 #endif
7626 /*
7627 * write-back, write-allocate for page tables.
7628 */
7629 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7630 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7631 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7632 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7633 #else
7634 pte_l2_s_cache_mode_pt = L2_C | L2_B;
7635 #endif
7636
7637 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7638 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7639 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7640 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7641
7642 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7643 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7644 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7645 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7646 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7647
7648 #else
7649 /* with AP[0..3] */
7650 pte_l2_s_prot_u = L2_S_PROT_U_generic;
7651 pte_l2_s_prot_w = L2_S_PROT_W_generic;
7652 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7653 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7654 #endif
7655
7656 #ifdef ARM11MPCORE_COMPAT_MMU
7657 /* with AP[0..3] */
7658 pte_l2_l_prot_u = L2_L_PROT_U_generic;
7659 pte_l2_l_prot_w = L2_L_PROT_W_generic;
7660 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7661 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7662
7663 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7664 pte_l1_s_proto = L1_S_PROTO_armv6;
7665 pte_l1_c_proto = L1_C_PROTO_armv6;
7666 pte_l2_s_proto = L2_S_PROTO_armv6c;
7667 #else
7668 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7669 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7670 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7671 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7672
7673 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7674 pte_l1_s_proto = L1_S_PROTO_armv6;
7675 pte_l1_c_proto = L1_C_PROTO_armv6;
7676 pte_l2_s_proto = L2_S_PROTO_armv6n;
7677 #endif
7678
7679 pmap_copy_page_func = pmap_copy_page_generic;
7680 pmap_zero_page_func = pmap_zero_page_generic;
7681 pmap_needs_pte_sync = 1;
7682 }
7683 #endif /* CPU_ARM11MPCORE */
7684
7685
7686 #if ARM_MMU_V6 == 1
7687 void
7688 pmap_pte_init_armv6(void)
7689 {
7690 /*
7691 * The ARMv6-A MMU is mostly compatible with generic. If the
7692 * AP field is zero, that now means "no access" rather than
7693 * read-only. The prototypes are a little different because of
7694 * the XN bit.
7695 */
7696 pmap_pte_init_generic();
7697
7698 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7699 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7700 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7701
7702 #ifdef ARM11_COMPAT_MMU
7703 /* with AP[0..3] */
7704 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7705 #else
7706 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
7707 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
7708 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
7709
7710 pte_l1_ss_proto = L1_SS_PROTO_armv6;
7711 pte_l1_s_proto = L1_S_PROTO_armv6;
7712 pte_l1_c_proto = L1_C_PROTO_armv6;
7713 pte_l2_s_proto = L2_S_PROTO_armv6n;
7714
7715 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7716 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7717 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7718 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7719
7720 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7721 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7722 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7723 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7724
7725 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7726 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7727 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7728 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7729
7730 #endif
7731 }
7732 #endif /* ARM_MMU_V6 */
7733
7734 #if ARM_MMU_V7 == 1
7735 void
7736 pmap_pte_init_armv7(void)
7737 {
7738 /*
7739 * The ARMv7-A MMU is mostly compatible with generic. If the
7740 * AP field is zero, that now means "no access" rather than
7741 * read-only. The prototypes are a little different because of
7742 * the XN bit.
7743 */
7744 pmap_pte_init_generic();
7745
7746 pmap_needs_pte_sync = 1;
7747
7748 pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7749 pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7750 pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7751
7752 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7753 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7754 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7755
7756 /*
7757 * If the core support coherent walk then updates to translation tables
7758 * do not require a clean to the point of unification to ensure
7759 * visibility by subsequent translation table walks. That means we can
7760 * map everything shareable and cached and the right thing will happen.
7761 */
7762 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7763 pmap_needs_pte_sync = 0;
7764
7765 /*
7766 * write-back, no write-allocate, shareable for normal pages.
7767 */
7768 pte_l1_s_cache_mode |= L1_S_V6_S;
7769 pte_l2_l_cache_mode |= L2_XS_S;
7770 pte_l2_s_cache_mode |= L2_XS_S;
7771 }
7772
7773 /*
7774 * Page tables are just all other memory. We can use write-back since
7775 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7776 */
7777 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7778 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7779 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7780
7781 /*
7782 * Check the Memory Model Features to see if this CPU supports
7783 * the TLBIASID coproc op.
7784 */
7785 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7786 arm_has_tlbiasid_p = true;
7787 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7788 arm_has_tlbiasid_p = true;
7789 }
7790
7791 /*
7792 * Check the MPIDR to see if this CPU supports MP extensions.
7793 */
7794 #ifdef MULTIPROCESSOR
7795 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7796 #else
7797 arm_has_mpext_p = false;
7798 #endif
7799
7800 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7801 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7802 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7803 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7804
7805 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7806 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7807 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7808 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7809
7810 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7811 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7812 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7813 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7814
7815 pte_l1_ss_proto = L1_SS_PROTO_armv7;
7816 pte_l1_s_proto = L1_S_PROTO_armv7;
7817 pte_l1_c_proto = L1_C_PROTO_armv7;
7818 pte_l2_s_proto = L2_S_PROTO_armv7;
7819
7820 }
7821 #endif /* ARM_MMU_V7 */
7822
7823 /*
7824 * return the PA of the current L1 table, for use when handling a crash dump
7825 */
7826 uint32_t
7827 pmap_kernel_L1_addr(void)
7828 {
7829 #ifdef ARM_MMU_EXTENDED
7830 return pmap_kernel()->pm_l1_pa;
7831 #else
7832 return pmap_kernel()->pm_l1->l1_physaddr;
7833 #endif
7834 }
7835
7836 #if defined(DDB)
7837 /*
7838 * A couple of ddb-callable functions for dumping pmaps
7839 */
7840 void pmap_dump(pmap_t);
7841
7842 static pt_entry_t ncptes[64];
7843 static void pmap_dump_ncpg(pmap_t);
7844
7845 void
7846 pmap_dump(pmap_t pm)
7847 {
7848 struct l2_dtable *l2;
7849 struct l2_bucket *l2b;
7850 pt_entry_t *ptep, pte;
7851 vaddr_t l2_va, l2b_va, va;
7852 int i, j, k, occ, rows = 0;
7853
7854 if (pm == pmap_kernel())
7855 printf("pmap_kernel (%p): ", pm);
7856 else
7857 printf("user pmap (%p): ", pm);
7858
7859 #ifdef ARM_MMU_EXTENDED
7860 printf("l1 at %p\n", pmap_l1_kva(pm));
7861 #else
7862 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7863 #endif
7864
7865 l2_va = 0;
7866 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7867 l2 = pm->pm_l2[i];
7868
7869 if (l2 == NULL || l2->l2_occupancy == 0)
7870 continue;
7871
7872 l2b_va = l2_va;
7873 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7874 l2b = &l2->l2_bucket[j];
7875
7876 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7877 continue;
7878
7879 ptep = l2b->l2b_kva;
7880
7881 for (k = 0; k < 256 && ptep[k] == 0; k++)
7882 ;
7883
7884 k &= ~63;
7885 occ = l2b->l2b_occupancy;
7886 va = l2b_va + (k * 4096);
7887 for (; k < 256; k++, va += 0x1000) {
7888 char ch = ' ';
7889 if ((k % 64) == 0) {
7890 if ((rows % 8) == 0) {
7891 printf(
7892 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
7893 }
7894 printf("%08lx: ", va);
7895 }
7896
7897 ncptes[k & 63] = 0;
7898 pte = ptep[k];
7899 if (pte == 0) {
7900 ch = '.';
7901 } else {
7902 occ--;
7903 switch (pte & 0x4c) {
7904 case 0x00:
7905 ch = 'N'; /* No cache No buff */
7906 break;
7907 case 0x04:
7908 ch = 'B'; /* No cache buff */
7909 break;
7910 case 0x08:
7911 ch = 'C'; /* Cache No buff */
7912 break;
7913 case 0x0c:
7914 ch = 'F'; /* Cache Buff */
7915 break;
7916 case 0x40:
7917 ch = 'D';
7918 break;
7919 case 0x48:
7920 ch = 'm'; /* Xscale mini-data */
7921 break;
7922 default:
7923 ch = '?';
7924 break;
7925 }
7926
7927 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7928 ch += 0x20;
7929
7930 if ((pte & 0xc) == 0)
7931 ncptes[k & 63] = pte;
7932 }
7933
7934 if ((k % 64) == 63) {
7935 rows++;
7936 printf("%c\n", ch);
7937 pmap_dump_ncpg(pm);
7938 if (occ == 0)
7939 break;
7940 } else
7941 printf("%c", ch);
7942 }
7943 }
7944 }
7945 }
7946
7947 static void
7948 pmap_dump_ncpg(pmap_t pm)
7949 {
7950 struct vm_page *pg;
7951 struct vm_page_md *md;
7952 struct pv_entry *pv;
7953 int i;
7954
7955 for (i = 0; i < 63; i++) {
7956 if (ncptes[i] == 0)
7957 continue;
7958
7959 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7960 if (pg == NULL)
7961 continue;
7962 md = VM_PAGE_TO_MD(pg);
7963
7964 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7965 VM_PAGE_TO_PHYS(pg),
7966 md->krw_mappings, md->kro_mappings,
7967 md->urw_mappings, md->uro_mappings);
7968
7969 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7970 printf(" %c va 0x%08lx, flags 0x%x\n",
7971 (pm == pv->pv_pmap) ? '*' : ' ',
7972 pv->pv_va, pv->pv_flags);
7973 }
7974 }
7975 }
7976 #endif
7977
7978 #ifdef PMAP_STEAL_MEMORY
7979 void
7980 pmap_boot_pageadd(pv_addr_t *newpv)
7981 {
7982 pv_addr_t *pv, *npv;
7983
7984 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7985 if (newpv->pv_pa < pv->pv_va) {
7986 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7987 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7988 newpv->pv_size += pv->pv_size;
7989 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7990 }
7991 pv = NULL;
7992 } else {
7993 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7994 pv = npv) {
7995 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7996 KASSERT(pv->pv_pa < newpv->pv_pa);
7997 if (newpv->pv_pa > npv->pv_pa)
7998 continue;
7999 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
8000 pv->pv_size += newpv->pv_size;
8001 return;
8002 }
8003 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
8004 break;
8005 newpv->pv_size += npv->pv_size;
8006 SLIST_INSERT_AFTER(pv, newpv, pv_list);
8007 SLIST_REMOVE_AFTER(newpv, pv_list);
8008 return;
8009 }
8010 }
8011 }
8012
8013 if (pv) {
8014 SLIST_INSERT_AFTER(pv, newpv, pv_list);
8015 } else {
8016 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
8017 }
8018 }
8019
8020 void
8021 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
8022 pv_addr_t *rpv)
8023 {
8024 pv_addr_t *pv, **pvp;
8025
8026 KASSERT(amount & PGOFSET);
8027 KASSERT((mask & PGOFSET) == 0);
8028 KASSERT((match & PGOFSET) == 0);
8029 KASSERT(amount != 0);
8030
8031 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8032 (pv = *pvp) != NULL;
8033 pvp = &SLIST_NEXT(pv, pv_list)) {
8034 pv_addr_t *newpv;
8035 psize_t off;
8036 /*
8037 * If this entry is too small to satisfy the request...
8038 */
8039 KASSERT(pv->pv_size > 0);
8040 if (pv->pv_size < amount)
8041 continue;
8042
8043 for (off = 0; off <= mask; off += PAGE_SIZE) {
8044 if (((pv->pv_pa + off) & mask) == match
8045 && off + amount <= pv->pv_size)
8046 break;
8047 }
8048 if (off > mask)
8049 continue;
8050
8051 rpv->pv_va = pv->pv_va + off;
8052 rpv->pv_pa = pv->pv_pa + off;
8053 rpv->pv_size = amount;
8054 pv->pv_size -= amount;
8055 if (pv->pv_size == 0) {
8056 KASSERT(off == 0);
8057 KASSERT((vaddr_t) pv == rpv->pv_va);
8058 *pvp = SLIST_NEXT(pv, pv_list);
8059 } else if (off == 0) {
8060 KASSERT((vaddr_t) pv == rpv->pv_va);
8061 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8062 *newpv = *pv;
8063 newpv->pv_pa += amount;
8064 newpv->pv_va += amount;
8065 *pvp = newpv;
8066 } else if (off < pv->pv_size) {
8067 newpv = (pv_addr_t *) (rpv->pv_va + amount);
8068 *newpv = *pv;
8069 newpv->pv_size -= off;
8070 newpv->pv_pa += off + amount;
8071 newpv->pv_va += off + amount;
8072
8073 SLIST_NEXT(pv, pv_list) = newpv;
8074 pv->pv_size = off;
8075 } else {
8076 KASSERT((vaddr_t) pv != rpv->pv_va);
8077 }
8078 memset((void *)rpv->pv_va, 0, amount);
8079 return;
8080 }
8081
8082 if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
8083 panic("pmap_boot_pagealloc: couldn't allocate memory");
8084
8085 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8086 (pv = *pvp) != NULL;
8087 pvp = &SLIST_NEXT(pv, pv_list)) {
8088 if (SLIST_NEXT(pv, pv_list) == NULL)
8089 break;
8090 }
8091 KASSERT(mask == 0);
8092
8093 for (uvm_physseg_t ups = uvm_physseg_get_first();
8094 uvm_physseg_valid_p(ups);
8095 ups = uvm_physseg_get_next(ups)) {
8096
8097 paddr_t spn = uvm_physseg_get_start(ups);
8098 paddr_t epn = uvm_physseg_get_end(ups);
8099 if (spn == atop(pv->pv_pa + pv->pv_size)
8100 && pv->pv_va + pv->pv_size <= ptoa(epn)) {
8101 rpv->pv_va = pv->pv_va;
8102 rpv->pv_pa = pv->pv_pa;
8103 rpv->pv_size = amount;
8104 *pvp = NULL;
8105 pmap_map_chunk(kernel_l1pt.pv_va,
8106 ptoa(spn) + (pv->pv_va - pv->pv_pa),
8107 ptoa(spn),
8108 amount - pv->pv_size,
8109 VM_PROT_READ|VM_PROT_WRITE,
8110 PTE_CACHE);
8111
8112 uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
8113 memset((void *)rpv->pv_va, 0, rpv->pv_size);
8114 return;
8115 }
8116 }
8117
8118 panic("pmap_boot_pagealloc: couldn't allocate memory");
8119 }
8120
8121 vaddr_t
8122 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
8123 {
8124 pv_addr_t pv;
8125
8126 pmap_boot_pagealloc(size, 0, 0, &pv);
8127
8128 return pv.pv_va;
8129 }
8130 #endif /* PMAP_STEAL_MEMORY */
8131
8132 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
8133 {
8134 sysctl_createv(clog, 0, NULL, NULL,
8135 CTLFLAG_PERMANENT,
8136 CTLTYPE_NODE, "machdep", NULL,
8137 NULL, 0, NULL, 0,
8138 CTL_MACHDEP, CTL_EOL);
8139
8140 sysctl_createv(clog, 0, NULL, NULL,
8141 CTLFLAG_PERMANENT,
8142 CTLTYPE_INT, "kmpages",
8143 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
8144 NULL, 0, &pmap_kmpages, 0,
8145 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
8146 }
8147
8148 #ifdef PMAP_NEED_ALLOC_POOLPAGE
8149 struct vm_page *
8150 arm_pmap_alloc_poolpage(int flags)
8151 {
8152 /*
8153 * On some systems, only some pages may be "coherent" for dma and we
8154 * want to prefer those for pool pages (think mbufs) but fallback to
8155 * any page if none is available.
8156 */
8157 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
8158 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
8159 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
8160 }
8161
8162 return uvm_pagealloc(NULL, 0, NULL, flags);
8163 }
8164 #endif
8165
8166 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
8167 void
8168 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
8169 {
8170 /* nothing */
8171 }
8172
8173 int
8174 pic_ipi_shootdown(void *arg)
8175 {
8176 #if PMAP_TLB_NEED_SHOOTDOWN
8177 pmap_tlb_shootdown_process();
8178 #endif
8179 return 1;
8180 }
8181 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
8182
8183
8184 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
8185 vaddr_t
8186 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
8187 {
8188 bool ok = false;
8189 if (physical_start <= pa && pa < physical_end) {
8190 #ifdef KERNEL_BASE_VOFFSET
8191 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
8192 #else
8193 const vaddr_t newva = KERNEL_BASE + pa - physical_start;
8194 #endif
8195 #ifdef ARM_MMU_EXTENDED
8196 if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
8197 #endif
8198 va = newva;
8199 ok = true;
8200 #ifdef ARM_MMU_EXTENDED
8201 }
8202 #endif
8203 }
8204 KASSERT(ok_p);
8205 *ok_p = ok;
8206 return va;
8207 }
8208
8209 vaddr_t
8210 pmap_map_poolpage(paddr_t pa)
8211 {
8212 bool ok __diagused;
8213 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
8214 KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
8215 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
8216 if (arm_cache_prefer_mask != 0) {
8217 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
8218 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
8219 pmap_acquire_page_lock(md);
8220 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
8221 pmap_release_page_lock(md);
8222 }
8223 #endif
8224 return va;
8225 }
8226
8227 paddr_t
8228 pmap_unmap_poolpage(vaddr_t va)
8229 {
8230 KASSERT(va >= KERNEL_BASE);
8231 #ifdef PMAP_CACHE_VIVT
8232 cpu_idcache_wbinv_range(va, PAGE_SIZE);
8233 #endif
8234 #if defined(KERNEL_BASE_VOFFSET)
8235 return va - KERNEL_BASE_VOFFSET;
8236 #else
8237 return va - KERNEL_BASE + physical_start;
8238 #endif
8239 }
8240 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8241