pmap.c revision 1.46 1 /* $NetBSD: pmap.c,v 1.46 2002/02/21 21:58:01 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Richard Earnshaw
5 * Copyright (c) 2001 Christopher Gilbert
6 * All rights reserved.
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the company nor the name of the author may be used to
14 * endorse or promote products derived from this software without specific
15 * prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
21 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*-
31 * Copyright (c) 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the NetBSD
48 * Foundation, Inc. and its contributors.
49 * 4. Neither the name of The NetBSD Foundation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66 /*
67 * Copyright (c) 1994-1998 Mark Brinicombe.
68 * Copyright (c) 1994 Brini.
69 * All rights reserved.
70 *
71 * This code is derived from software written for Brini by Mark Brinicombe
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by Mark Brinicombe.
84 * 4. The name of the author may not be used to endorse or promote products
85 * derived from this software without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
88 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
89 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
90 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
91 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
92 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
93 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
94 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
95 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
96 *
97 * RiscBSD kernel project
98 *
99 * pmap.c
100 *
101 * Machine dependant vm stuff
102 *
103 * Created : 20/09/94
104 */
105
106 /*
107 * Performance improvements, UVM changes, overhauls and part-rewrites
108 * were contributed by Neil A. Carson <neil (at) causality.com>.
109 */
110
111 /*
112 * The dram block info is currently referenced from the bootconfig.
113 * This should be placed in a separate structure.
114 */
115
116 /*
117 * Special compilation symbols
118 * PMAP_DEBUG - Build in pmap_debug_level code
119 */
120
121 /* Include header files */
122
123 #include "opt_pmap_debug.h"
124 #include "opt_ddb.h"
125
126 #include <sys/types.h>
127 #include <sys/param.h>
128 #include <sys/kernel.h>
129 #include <sys/systm.h>
130 #include <sys/proc.h>
131 #include <sys/malloc.h>
132 #include <sys/user.h>
133 #include <sys/pool.h>
134 #include <sys/cdefs.h>
135
136 #include <uvm/uvm.h>
137
138 #include <machine/bootconfig.h>
139 #include <machine/bus.h>
140 #include <machine/pmap.h>
141 #include <machine/pcb.h>
142 #include <machine/param.h>
143 #include <arm/arm32/katelib.h>
144
145 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.46 2002/02/21 21:58:01 thorpej Exp $");
146 #ifdef PMAP_DEBUG
147 #define PDEBUG(_lev_,_stat_) \
148 if (pmap_debug_level >= (_lev_)) \
149 ((_stat_))
150 int pmap_debug_level = -2;
151
152 /*
153 * for switching to potentially finer grained debugging
154 */
155 #define PDB_FOLLOW 0x0001
156 #define PDB_INIT 0x0002
157 #define PDB_ENTER 0x0004
158 #define PDB_REMOVE 0x0008
159 #define PDB_CREATE 0x0010
160 #define PDB_PTPAGE 0x0020
161 #define PDB_ASN 0x0040
162 #define PDB_BITS 0x0080
163 #define PDB_COLLECT 0x0100
164 #define PDB_PROTECT 0x0200
165 #define PDB_BOOTSTRAP 0x1000
166 #define PDB_PARANOIA 0x2000
167 #define PDB_WIRING 0x4000
168 #define PDB_PVDUMP 0x8000
169
170 int debugmap = 0;
171 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
172 #define NPDEBUG(_lev_,_stat_) \
173 if (pmapdebug & (_lev_)) \
174 ((_stat_))
175
176 #else /* PMAP_DEBUG */
177 #define PDEBUG(_lev_,_stat_) /* Nothing */
178 #define PDEBUG(_lev_,_stat_) /* Nothing */
179 #endif /* PMAP_DEBUG */
180
181 struct pmap kernel_pmap_store;
182
183 /*
184 * pool that pmap structures are allocated from
185 */
186
187 struct pool pmap_pmap_pool;
188
189 pagehook_t page_hook0;
190 pagehook_t page_hook1;
191 char *memhook;
192 pt_entry_t msgbufpte;
193 extern caddr_t msgbufaddr;
194
195 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
196 /*
197 * locking data structures
198 */
199
200 static struct lock pmap_main_lock;
201 static struct simplelock pvalloc_lock;
202 #ifdef LOCKDEBUG
203 #define PMAP_MAP_TO_HEAD_LOCK() \
204 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
205 #define PMAP_MAP_TO_HEAD_UNLOCK() \
206 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
207
208 #define PMAP_HEAD_TO_MAP_LOCK() \
209 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
210 #define PMAP_HEAD_TO_MAP_UNLOCK() \
211 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
212 #else
213 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
214 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
215 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
216 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
217 #endif /* LOCKDEBUG */
218
219 /*
220 * pv_page management structures: locked by pvalloc_lock
221 */
222
223 TAILQ_HEAD(pv_pagelist, pv_page);
224 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
225 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
226 static int pv_nfpvents; /* # of free pv entries */
227 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
228 static vaddr_t pv_cachedva; /* cached VA for later use */
229
230 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
231 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
232 /* high water mark */
233
234 /*
235 * local prototypes
236 */
237
238 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
239 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
240 #define ALLOCPV_NEED 0 /* need PV now */
241 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
242 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
243 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
244 static void pmap_enter_pv __P((struct pv_head *,
245 struct pv_entry *, struct pmap *,
246 vaddr_t, struct vm_page *, int));
247 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
248 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
249 static void pmap_free_pv_doit __P((struct pv_entry *));
250 static void pmap_free_pvpage __P((void));
251 static boolean_t pmap_is_curpmap __P((struct pmap *));
252 static struct pv_entry *pmap_remove_pv __P((struct pv_head *, struct pmap *,
253 vaddr_t));
254 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
255 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
256
257 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct pv_head *,
258 u_int, u_int));
259
260 static void pmap_free_l1pt __P((struct l1pt *));
261 static int pmap_allocpagedir __P((struct pmap *));
262 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
263 static struct pv_head *pmap_find_pvh __P((paddr_t));
264 static void pmap_remove_all __P((paddr_t));
265
266
267 vsize_t npages;
268
269 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
270 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
271 __inline static void pmap_clearbit __P((paddr_t, unsigned int));
272 __inline static boolean_t pmap_testbit __P((paddr_t, unsigned int));
273
274 extern paddr_t physical_start;
275 extern paddr_t physical_freestart;
276 extern paddr_t physical_end;
277 extern paddr_t physical_freeend;
278 extern unsigned int free_pages;
279 extern int max_processes;
280
281 vaddr_t virtual_start;
282 vaddr_t virtual_end;
283
284 vaddr_t avail_start;
285 vaddr_t avail_end;
286
287 extern pv_addr_t systempage;
288
289 #define ALLOC_PAGE_HOOK(x, s) \
290 x.va = virtual_start; \
291 x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
292 virtual_start += s;
293
294 /* Variables used by the L1 page table queue code */
295 SIMPLEQ_HEAD(l1pt_queue, l1pt);
296 struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
297 int l1pt_static_queue_count; /* items in the static l1 queue */
298 int l1pt_static_create_count; /* static l1 items created */
299 struct l1pt_queue l1pt_queue; /* head of our l1 queue */
300 int l1pt_queue_count; /* items in the l1 queue */
301 int l1pt_create_count; /* stat - L1's create count */
302 int l1pt_reuse_count; /* stat - L1's reused count */
303
304 /* Local function prototypes (not used outside this file) */
305 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
306 void pmap_copy_on_write __P((paddr_t pa));
307 void pmap_pinit __P((struct pmap *));
308 void pmap_freepagedir __P((struct pmap *));
309
310 /* Other function prototypes */
311 extern void bzero_page __P((vaddr_t));
312 extern void bcopy_page __P((vaddr_t, vaddr_t));
313
314 struct l1pt *pmap_alloc_l1pt __P((void));
315 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
316 vaddr_t l2pa, boolean_t));
317
318 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
319 static void pmap_unmap_ptes __P((struct pmap *));
320
321 __inline static void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
322 pt_entry_t *, boolean_t));
323 static void pmap_vac_me_kpmap __P((struct pmap *, struct pv_head *,
324 pt_entry_t *, boolean_t));
325 static void pmap_vac_me_user __P((struct pmap *, struct pv_head *,
326 pt_entry_t *, boolean_t));
327
328 /*
329 * Cache enable bits in PTE to use on pages that are cacheable.
330 * On most machines this is cacheable/bufferable, but on some, eg arm10, we
331 * can chose between write-through and write-back cacheing.
332 */
333 pt_entry_t pte_cache_mode = (PT_C | PT_B);
334
335 /*
336 * real definition of pv_entry.
337 */
338
339 struct pv_entry {
340 struct pv_entry *pv_next; /* next pv_entry */
341 struct pmap *pv_pmap; /* pmap where mapping lies */
342 vaddr_t pv_va; /* virtual address for mapping */
343 int pv_flags; /* flags */
344 struct vm_page *pv_ptp; /* vm_page for the ptp */
345 };
346
347 /*
348 * pv_entrys are dynamically allocated in chunks from a single page.
349 * we keep track of how many pv_entrys are in use for each page and
350 * we can free pv_entry pages if needed. there is one lock for the
351 * entire allocation system.
352 */
353
354 struct pv_page_info {
355 TAILQ_ENTRY(pv_page) pvpi_list;
356 struct pv_entry *pvpi_pvfree;
357 int pvpi_nfree;
358 };
359
360 /*
361 * number of pv_entry's in a pv_page
362 * (note: won't work on systems where NPBG isn't a constant)
363 */
364
365 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
366 sizeof(struct pv_entry))
367
368 /*
369 * a pv_page: where pv_entrys are allocated from
370 */
371
372 struct pv_page {
373 struct pv_page_info pvinfo;
374 struct pv_entry pvents[PVE_PER_PVPAGE];
375 };
376
377 #ifdef MYCROFT_HACK
378 int mycroft_hack = 0;
379 #endif
380
381 /* Function to set the debug level of the pmap code */
382
383 #ifdef PMAP_DEBUG
384 void
385 pmap_debug(level)
386 int level;
387 {
388 pmap_debug_level = level;
389 printf("pmap_debug: level=%d\n", pmap_debug_level);
390 }
391 #endif /* PMAP_DEBUG */
392
393 __inline static boolean_t
394 pmap_is_curpmap(struct pmap *pmap)
395 {
396 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
397 || (pmap == pmap_kernel()))
398 return (TRUE);
399 return (FALSE);
400 }
401 #include "isadma.h"
402
403 #if NISADMA > 0
404 /*
405 * Used to protect memory for ISA DMA bounce buffers. If, when loading
406 * pages into the system, memory intersects with any of these ranges,
407 * the intersecting memory will be loaded into a lower-priority free list.
408 */
409 bus_dma_segment_t *pmap_isa_dma_ranges;
410 int pmap_isa_dma_nranges;
411
412 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
413 paddr_t *, psize_t *));
414
415 /*
416 * Check if a memory range intersects with an ISA DMA range, and
417 * return the page-rounded intersection if it does. The intersection
418 * will be placed on a lower-priority free list.
419 */
420 boolean_t
421 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
422 paddr_t pa;
423 psize_t size;
424 paddr_t *pap;
425 psize_t *sizep;
426 {
427 bus_dma_segment_t *ds;
428 int i;
429
430 if (pmap_isa_dma_ranges == NULL)
431 return (FALSE);
432
433 for (i = 0, ds = pmap_isa_dma_ranges;
434 i < pmap_isa_dma_nranges; i++, ds++) {
435 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
436 /*
437 * Beginning of region intersects with this range.
438 */
439 *pap = trunc_page(pa);
440 *sizep = round_page(min(pa + size,
441 ds->ds_addr + ds->ds_len) - pa);
442 return (TRUE);
443 }
444 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
445 /*
446 * End of region intersects with this range.
447 */
448 *pap = trunc_page(ds->ds_addr);
449 *sizep = round_page(min((pa + size) - ds->ds_addr,
450 ds->ds_len));
451 return (TRUE);
452 }
453 }
454
455 /*
456 * No intersection found.
457 */
458 return (FALSE);
459 }
460 #endif /* NISADMA > 0 */
461
462 /*
463 * p v _ e n t r y f u n c t i o n s
464 */
465
466 /*
467 * pv_entry allocation functions:
468 * the main pv_entry allocation functions are:
469 * pmap_alloc_pv: allocate a pv_entry structure
470 * pmap_free_pv: free one pv_entry
471 * pmap_free_pvs: free a list of pv_entrys
472 *
473 * the rest are helper functions
474 */
475
476 /*
477 * pmap_alloc_pv: inline function to allocate a pv_entry structure
478 * => we lock pvalloc_lock
479 * => if we fail, we call out to pmap_alloc_pvpage
480 * => 3 modes:
481 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
482 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
483 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
484 * one now
485 *
486 * "try" is for optional functions like pmap_copy().
487 */
488
489 __inline static struct pv_entry *
490 pmap_alloc_pv(pmap, mode)
491 struct pmap *pmap;
492 int mode;
493 {
494 struct pv_page *pvpage;
495 struct pv_entry *pv;
496
497 simple_lock(&pvalloc_lock);
498
499 if (pv_freepages.tqh_first != NULL) {
500 pvpage = pv_freepages.tqh_first;
501 pvpage->pvinfo.pvpi_nfree--;
502 if (pvpage->pvinfo.pvpi_nfree == 0) {
503 /* nothing left in this one? */
504 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
505 }
506 pv = pvpage->pvinfo.pvpi_pvfree;
507 #ifdef DIAGNOSTIC
508 if (pv == NULL)
509 panic("pmap_alloc_pv: pvpi_nfree off");
510 #endif
511 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
512 pv_nfpvents--; /* took one from pool */
513 } else {
514 pv = NULL; /* need more of them */
515 }
516
517 /*
518 * if below low water mark or we didn't get a pv_entry we try and
519 * create more pv_entrys ...
520 */
521
522 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
523 if (pv == NULL)
524 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
525 mode : ALLOCPV_NEED);
526 else
527 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
528 }
529
530 simple_unlock(&pvalloc_lock);
531 return(pv);
532 }
533
534 /*
535 * pmap_alloc_pvpage: maybe allocate a new pvpage
536 *
537 * if need_entry is false: try and allocate a new pv_page
538 * if need_entry is true: try and allocate a new pv_page and return a
539 * new pv_entry from it. if we are unable to allocate a pv_page
540 * we make a last ditch effort to steal a pv_page from some other
541 * mapping. if that fails, we panic...
542 *
543 * => we assume that the caller holds pvalloc_lock
544 */
545
546 static struct pv_entry *
547 pmap_alloc_pvpage(pmap, mode)
548 struct pmap *pmap;
549 int mode;
550 {
551 struct vm_page *pg;
552 struct pv_page *pvpage;
553 struct pv_entry *pv;
554 int s;
555
556 /*
557 * if we need_entry and we've got unused pv_pages, allocate from there
558 */
559
560 if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
561
562 /* move it to pv_freepages list */
563 pvpage = pv_unusedpgs.tqh_first;
564 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
565 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
566
567 /* allocate a pv_entry */
568 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
569 pv = pvpage->pvinfo.pvpi_pvfree;
570 #ifdef DIAGNOSTIC
571 if (pv == NULL)
572 panic("pmap_alloc_pvpage: pvpi_nfree off");
573 #endif
574 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
575
576 pv_nfpvents--; /* took one from pool */
577 return(pv);
578 }
579
580 /*
581 * see if we've got a cached unmapped VA that we can map a page in.
582 * if not, try to allocate one.
583 */
584
585
586 if (pv_cachedva == 0) {
587 s = splvm();
588 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
589 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
590 splx(s);
591 if (pv_cachedva == 0) {
592 return (NULL);
593 }
594 }
595
596 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
597 UVM_PGA_USERESERVE);
598 if (pg)
599 pg->flags &= ~PG_BUSY; /* never busy */
600
601 if (pg == NULL)
602 return (NULL);
603
604 /*
605 * add a mapping for our new pv_page and free its entrys (save one!)
606 *
607 * NOTE: If we are allocating a PV page for the kernel pmap, the
608 * pmap is already locked! (...but entering the mapping is safe...)
609 */
610
611 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
612 pmap_update(pmap_kernel());
613 pvpage = (struct pv_page *) pv_cachedva;
614 pv_cachedva = 0;
615 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
616 }
617
618 /*
619 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
620 *
621 * => caller must hold pvalloc_lock
622 * => if need_entry is true, we allocate and return one pv_entry
623 */
624
625 static struct pv_entry *
626 pmap_add_pvpage(pvp, need_entry)
627 struct pv_page *pvp;
628 boolean_t need_entry;
629 {
630 int tofree, lcv;
631
632 /* do we need to return one? */
633 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
634
635 pvp->pvinfo.pvpi_pvfree = NULL;
636 pvp->pvinfo.pvpi_nfree = tofree;
637 for (lcv = 0 ; lcv < tofree ; lcv++) {
638 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
639 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
640 }
641 if (need_entry)
642 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
643 else
644 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
645 pv_nfpvents += tofree;
646 return((need_entry) ? &pvp->pvents[lcv] : NULL);
647 }
648
649 /*
650 * pmap_free_pv_doit: actually free a pv_entry
651 *
652 * => do not call this directly! instead use either
653 * 1. pmap_free_pv ==> free a single pv_entry
654 * 2. pmap_free_pvs => free a list of pv_entrys
655 * => we must be holding pvalloc_lock
656 */
657
658 __inline static void
659 pmap_free_pv_doit(pv)
660 struct pv_entry *pv;
661 {
662 struct pv_page *pvp;
663
664 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
665 pv_nfpvents++;
666 pvp->pvinfo.pvpi_nfree++;
667
668 /* nfree == 1 => fully allocated page just became partly allocated */
669 if (pvp->pvinfo.pvpi_nfree == 1) {
670 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
671 }
672
673 /* free it */
674 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
675 pvp->pvinfo.pvpi_pvfree = pv;
676
677 /*
678 * are all pv_page's pv_entry's free? move it to unused queue.
679 */
680
681 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
682 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
683 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
684 }
685 }
686
687 /*
688 * pmap_free_pv: free a single pv_entry
689 *
690 * => we gain the pvalloc_lock
691 */
692
693 __inline static void
694 pmap_free_pv(pmap, pv)
695 struct pmap *pmap;
696 struct pv_entry *pv;
697 {
698 simple_lock(&pvalloc_lock);
699 pmap_free_pv_doit(pv);
700
701 /*
702 * Can't free the PV page if the PV entries were associated with
703 * the kernel pmap; the pmap is already locked.
704 */
705 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
706 pmap != pmap_kernel())
707 pmap_free_pvpage();
708
709 simple_unlock(&pvalloc_lock);
710 }
711
712 /*
713 * pmap_free_pvs: free a list of pv_entrys
714 *
715 * => we gain the pvalloc_lock
716 */
717
718 __inline static void
719 pmap_free_pvs(pmap, pvs)
720 struct pmap *pmap;
721 struct pv_entry *pvs;
722 {
723 struct pv_entry *nextpv;
724
725 simple_lock(&pvalloc_lock);
726
727 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
728 nextpv = pvs->pv_next;
729 pmap_free_pv_doit(pvs);
730 }
731
732 /*
733 * Can't free the PV page if the PV entries were associated with
734 * the kernel pmap; the pmap is already locked.
735 */
736 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
737 pmap != pmap_kernel())
738 pmap_free_pvpage();
739
740 simple_unlock(&pvalloc_lock);
741 }
742
743
744 /*
745 * pmap_free_pvpage: try and free an unused pv_page structure
746 *
747 * => assume caller is holding the pvalloc_lock and that
748 * there is a page on the pv_unusedpgs list
749 * => if we can't get a lock on the kmem_map we try again later
750 * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
751 * that if we can lock the kmem_map then we are not already
752 * holding kmem_object's lock.
753 */
754
755 static void
756 pmap_free_pvpage()
757 {
758 int s;
759 struct vm_map *map;
760 struct vm_map_entry *dead_entries;
761 struct pv_page *pvp;
762
763 s = splvm(); /* protect kmem_map */
764
765 pvp = pv_unusedpgs.tqh_first;
766
767 /*
768 * note: watch out for pv_initpage which is allocated out of
769 * kernel_map rather than kmem_map.
770 */
771 if (pvp == pv_initpage)
772 map = kernel_map;
773 else
774 map = kmem_map;
775
776 if (vm_map_lock_try(map)) {
777
778 /* remove pvp from pv_unusedpgs */
779 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
780
781 /* unmap the page */
782 dead_entries = NULL;
783 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
784 &dead_entries);
785 vm_map_unlock(map);
786
787 if (dead_entries != NULL)
788 uvm_unmap_detach(dead_entries, 0);
789
790 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
791 }
792
793 if (pvp == pv_initpage)
794 /* no more initpage, we've freed it */
795 pv_initpage = NULL;
796
797 splx(s);
798 }
799
800 /*
801 * main pv_entry manipulation functions:
802 * pmap_enter_pv: enter a mapping onto a pv_head list
803 * pmap_remove_pv: remove a mappiing from a pv_head list
804 *
805 * NOTE: pmap_enter_pv expects to lock the pvh itself
806 * pmap_remove_pv expects te caller to lock the pvh before calling
807 */
808
809 /*
810 * pmap_enter_pv: enter a mapping onto a pv_head lst
811 *
812 * => caller should hold the proper lock on pmap_main_lock
813 * => caller should have pmap locked
814 * => we will gain the lock on the pv_head and allocate the new pv_entry
815 * => caller should adjust ptp's wire_count before calling
816 * => caller should not adjust pmap's wire_count
817 */
818
819 __inline static void
820 pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
821 struct pv_head *pvh;
822 struct pv_entry *pve; /* preallocated pve for us to use */
823 struct pmap *pmap;
824 vaddr_t va;
825 struct vm_page *ptp; /* PTP in pmap that maps this VA */
826 int flags;
827 {
828 pve->pv_pmap = pmap;
829 pve->pv_va = va;
830 pve->pv_ptp = ptp; /* NULL for kernel pmap */
831 pve->pv_flags = flags;
832 simple_lock(&pvh->pvh_lock); /* lock pv_head */
833 pve->pv_next = pvh->pvh_list; /* add to ... */
834 pvh->pvh_list = pve; /* ... locked list */
835 simple_unlock(&pvh->pvh_lock); /* unlock, done! */
836 if (pve->pv_flags & PT_W)
837 ++pmap->pm_stats.wired_count;
838 }
839
840 /*
841 * pmap_remove_pv: try to remove a mapping from a pv_list
842 *
843 * => caller should hold proper lock on pmap_main_lock
844 * => pmap should be locked
845 * => caller should hold lock on pv_head [so that attrs can be adjusted]
846 * => caller should adjust ptp's wire_count and free PTP if needed
847 * => caller should NOT adjust pmap's wire_count
848 * => we return the removed pve
849 */
850
851 __inline static struct pv_entry *
852 pmap_remove_pv(pvh, pmap, va)
853 struct pv_head *pvh;
854 struct pmap *pmap;
855 vaddr_t va;
856 {
857 struct pv_entry *pve, **prevptr;
858
859 prevptr = &pvh->pvh_list; /* previous pv_entry pointer */
860 pve = *prevptr;
861 while (pve) {
862 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
863 *prevptr = pve->pv_next; /* remove it! */
864 if (pve->pv_flags & PT_W)
865 --pmap->pm_stats.wired_count;
866 break;
867 }
868 prevptr = &pve->pv_next; /* previous pointer */
869 pve = pve->pv_next; /* advance */
870 }
871 return(pve); /* return removed pve */
872 }
873
874 /*
875 *
876 * pmap_modify_pv: Update pv flags
877 *
878 * => caller should hold lock on pv_head [so that attrs can be adjusted]
879 * => caller should NOT adjust pmap's wire_count
880 * => caller must call pmap_vac_me_harder() if writable status of a page
881 * may have changed.
882 * => we return the old flags
883 *
884 * Modify a physical-virtual mapping in the pv table
885 */
886
887 /*__inline */
888 static u_int
889 pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
890 struct pmap *pmap;
891 vaddr_t va;
892 struct pv_head *pvh;
893 u_int bic_mask;
894 u_int eor_mask;
895 {
896 struct pv_entry *npv;
897 u_int flags, oflags;
898
899 /*
900 * There is at least one VA mapping this page.
901 */
902
903 for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
904 if (pmap == npv->pv_pmap && va == npv->pv_va) {
905 oflags = npv->pv_flags;
906 npv->pv_flags = flags =
907 ((oflags & ~bic_mask) ^ eor_mask);
908 if ((flags ^ oflags) & PT_W) {
909 if (flags & PT_W)
910 ++pmap->pm_stats.wired_count;
911 else
912 --pmap->pm_stats.wired_count;
913 }
914 return (oflags);
915 }
916 }
917 return (0);
918 }
919
920 /*
921 * Map the specified level 2 pagetable into the level 1 page table for
922 * the given pmap to cover a chunk of virtual address space starting from the
923 * address specified.
924 */
925 static /*__inline*/ void
926 pmap_map_in_l1(pmap, va, l2pa, selfref)
927 struct pmap *pmap;
928 vaddr_t va, l2pa;
929 boolean_t selfref;
930 {
931 vaddr_t ptva;
932
933 /* Calculate the index into the L1 page table. */
934 ptva = (va >> PDSHIFT) & ~3;
935
936 PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
937 pmap->pm_pdir, L1_PTE(l2pa), ptva));
938
939 /* Map page table into the L1. */
940 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
941 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
942 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
943 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
944
945 PDEBUG(0, printf("pt self reference %lx in %lx\n",
946 L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
947
948 /* Map the page table into the page table area. */
949 if (selfref) {
950 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
951 L2_PTE_NC_NB(l2pa, AP_KRW);
952 }
953 /* XXX should be a purge */
954 /* cpu_tlb_flushD();*/
955 }
956
957 #if 0
958 static /*__inline*/ void
959 pmap_unmap_in_l1(pmap, va)
960 struct pmap *pmap;
961 vaddr_t va;
962 {
963 vaddr_t ptva;
964
965 /* Calculate the index into the L1 page table. */
966 ptva = (va >> PDSHIFT) & ~3;
967
968 /* Unmap page table from the L1. */
969 pmap->pm_pdir[ptva + 0] = 0;
970 pmap->pm_pdir[ptva + 1] = 0;
971 pmap->pm_pdir[ptva + 2] = 0;
972 pmap->pm_pdir[ptva + 3] = 0;
973
974 /* Unmap the page table from the page table area. */
975 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
976
977 /* XXX should be a purge */
978 /* cpu_tlb_flushD();*/
979 }
980 #endif
981
982 /*
983 * Used to map a range of physical addresses into kernel
984 * virtual address space.
985 *
986 * For now, VM is already on, we only need to map the
987 * specified memory.
988 */
989 vaddr_t
990 pmap_map(va, spa, epa, prot)
991 vaddr_t va, spa, epa;
992 int prot;
993 {
994 while (spa < epa) {
995 pmap_kenter_pa(va, spa, prot);
996 va += NBPG;
997 spa += NBPG;
998 }
999 pmap_update(pmap_kernel());
1000 return(va);
1001 }
1002
1003
1004 /*
1005 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1006 *
1007 * bootstrap the pmap system. This is called from initarm and allows
1008 * the pmap system to initailise any structures it requires.
1009 *
1010 * Currently this sets up the kernel_pmap that is statically allocated
1011 * and also allocated virtual addresses for certain page hooks.
1012 * Currently the only one page hook is allocated that is used
1013 * to zero physical pages of memory.
1014 * It also initialises the start and end address of the kernel data space.
1015 */
1016 extern paddr_t physical_freestart;
1017 extern paddr_t physical_freeend;
1018
1019 char *boot_head;
1020
1021 void
1022 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
1023 pd_entry_t *kernel_l1pt;
1024 pv_addr_t kernel_ptpt;
1025 {
1026 int loop;
1027 paddr_t start, end;
1028 #if NISADMA > 0
1029 paddr_t istart;
1030 psize_t isize;
1031 #endif
1032
1033 pmap_kernel()->pm_pdir = kernel_l1pt;
1034 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1035 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1036 simple_lock_init(&pmap_kernel()->pm_lock);
1037 pmap_kernel()->pm_obj.pgops = NULL;
1038 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1039 pmap_kernel()->pm_obj.uo_npages = 0;
1040 pmap_kernel()->pm_obj.uo_refs = 1;
1041
1042 /*
1043 * Initialize PAGE_SIZE-dependent variables.
1044 */
1045 uvm_setpagesize();
1046
1047 npages = 0;
1048 loop = 0;
1049 while (loop < bootconfig.dramblocks) {
1050 start = (paddr_t)bootconfig.dram[loop].address;
1051 end = start + (bootconfig.dram[loop].pages * NBPG);
1052 if (start < physical_freestart)
1053 start = physical_freestart;
1054 if (end > physical_freeend)
1055 end = physical_freeend;
1056 #if 0
1057 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1058 #endif
1059 #if NISADMA > 0
1060 if (pmap_isa_dma_range_intersect(start, end - start,
1061 &istart, &isize)) {
1062 /*
1063 * Place the pages that intersect with the
1064 * ISA DMA range onto the ISA DMA free list.
1065 */
1066 #if 0
1067 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1068 istart + isize - 1);
1069 #endif
1070 uvm_page_physload(atop(istart),
1071 atop(istart + isize), atop(istart),
1072 atop(istart + isize), VM_FREELIST_ISADMA);
1073 npages += atop(istart + isize) - atop(istart);
1074
1075 /*
1076 * Load the pieces that come before
1077 * the intersection into the default
1078 * free list.
1079 */
1080 if (start < istart) {
1081 #if 0
1082 printf(" BEFORE 0x%lx -> 0x%lx\n",
1083 start, istart - 1);
1084 #endif
1085 uvm_page_physload(atop(start),
1086 atop(istart), atop(start),
1087 atop(istart), VM_FREELIST_DEFAULT);
1088 npages += atop(istart) - atop(start);
1089 }
1090
1091 /*
1092 * Load the pieces that come after
1093 * the intersection into the default
1094 * free list.
1095 */
1096 if ((istart + isize) < end) {
1097 #if 0
1098 printf(" AFTER 0x%lx -> 0x%lx\n",
1099 (istart + isize), end - 1);
1100 #endif
1101 uvm_page_physload(atop(istart + isize),
1102 atop(end), atop(istart + isize),
1103 atop(end), VM_FREELIST_DEFAULT);
1104 npages += atop(end) - atop(istart + isize);
1105 }
1106 } else {
1107 uvm_page_physload(atop(start), atop(end),
1108 atop(start), atop(end), VM_FREELIST_DEFAULT);
1109 npages += atop(end) - atop(start);
1110 }
1111 #else /* NISADMA > 0 */
1112 uvm_page_physload(atop(start), atop(end),
1113 atop(start), atop(end), VM_FREELIST_DEFAULT);
1114 npages += atop(end) - atop(start);
1115 #endif /* NISADMA > 0 */
1116 ++loop;
1117 }
1118
1119 #ifdef MYCROFT_HACK
1120 printf("npages = %ld\n", npages);
1121 #endif
1122
1123 virtual_start = KERNEL_VM_BASE;
1124 virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
1125
1126 ALLOC_PAGE_HOOK(page_hook0, NBPG);
1127 ALLOC_PAGE_HOOK(page_hook1, NBPG);
1128
1129 /*
1130 * The mem special device needs a virtual hook but we don't
1131 * need a pte
1132 */
1133 memhook = (char *)virtual_start;
1134 virtual_start += NBPG;
1135
1136 msgbufaddr = (caddr_t)virtual_start;
1137 msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
1138 virtual_start += round_page(MSGBUFSIZE);
1139
1140 /*
1141 * init the static-global locks and global lists.
1142 */
1143 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1144 simple_lock_init(&pvalloc_lock);
1145 TAILQ_INIT(&pv_freepages);
1146 TAILQ_INIT(&pv_unusedpgs);
1147
1148 /*
1149 * compute the number of pages we have and then allocate RAM
1150 * for each pages' pv_head and saved attributes.
1151 */
1152 {
1153 int npages, lcv;
1154 vsize_t s;
1155
1156 npages = 0;
1157 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
1158 npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
1159 s = (vsize_t) (sizeof(struct pv_head) * npages +
1160 sizeof(char) * npages);
1161 s = round_page(s); /* round up */
1162 boot_head = (char *)uvm_pageboot_alloc(s);
1163 bzero((char *)boot_head, s);
1164 if (boot_head == 0)
1165 panic("pmap_init: unable to allocate pv_heads");
1166 }
1167
1168 /*
1169 * initialize the pmap pool.
1170 */
1171
1172 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1173 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
1174
1175 cpu_dcache_wbinv_all();
1176 }
1177
1178 /*
1179 * void pmap_init(void)
1180 *
1181 * Initialize the pmap module.
1182 * Called by vm_init() in vm/vm_init.c in order to initialise
1183 * any structures that the pmap system needs to map virtual memory.
1184 */
1185
1186 extern int physmem;
1187
1188 void
1189 pmap_init()
1190 {
1191 int lcv, i;
1192
1193 #ifdef MYCROFT_HACK
1194 printf("physmem = %d\n", physmem);
1195 #endif
1196
1197 /*
1198 * Set the available memory vars - These do not map to real memory
1199 * addresses and cannot as the physical memory is fragmented.
1200 * They are used by ps for %mem calculations.
1201 * One could argue whether this should be the entire memory or just
1202 * the memory that is useable in a user process.
1203 */
1204 avail_start = 0;
1205 avail_end = physmem * NBPG;
1206
1207 /* allocate pv_head stuff first */
1208 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1209 vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
1210 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
1211 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1212 for (i = 0;
1213 i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
1214 simple_lock_init(
1215 &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
1216 }
1217 }
1218
1219 /* now allocate attrs */
1220 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1221 vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
1222 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
1223 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1224 }
1225
1226 /*
1227 * now we need to free enough pv_entry structures to allow us to get
1228 * the kmem_map/kmem_object allocated and inited (done after this
1229 * function is finished). to do this we allocate one bootstrap page out
1230 * of kernel_map and use it to provide an initial pool of pv_entry
1231 * structures. we never free this page.
1232 */
1233
1234 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1235 if (pv_initpage == NULL)
1236 panic("pmap_init: pv_initpage");
1237 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1238 pv_nfpvents = 0;
1239 (void) pmap_add_pvpage(pv_initpage, FALSE);
1240
1241 #ifdef MYCROFT_HACK
1242 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1243 printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
1244 lcv,
1245 vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
1246 vm_physmem[lcv].start, vm_physmem[lcv].end);
1247 }
1248 #endif
1249 pmap_initialized = TRUE;
1250
1251 /* Initialise our L1 page table queues and counters */
1252 SIMPLEQ_INIT(&l1pt_static_queue);
1253 l1pt_static_queue_count = 0;
1254 l1pt_static_create_count = 0;
1255 SIMPLEQ_INIT(&l1pt_queue);
1256 l1pt_queue_count = 0;
1257 l1pt_create_count = 0;
1258 l1pt_reuse_count = 0;
1259 }
1260
1261 /*
1262 * pmap_postinit()
1263 *
1264 * This routine is called after the vm and kmem subsystems have been
1265 * initialised. This allows the pmap code to perform any initialisation
1266 * that can only be done one the memory allocation is in place.
1267 */
1268
1269 void
1270 pmap_postinit()
1271 {
1272 int loop;
1273 struct l1pt *pt;
1274
1275 #ifdef PMAP_STATIC_L1S
1276 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1277 #else /* PMAP_STATIC_L1S */
1278 for (loop = 0; loop < max_processes; ++loop) {
1279 #endif /* PMAP_STATIC_L1S */
1280 /* Allocate a L1 page table */
1281 pt = pmap_alloc_l1pt();
1282 if (!pt)
1283 panic("Cannot allocate static L1 page tables\n");
1284
1285 /* Clean it */
1286 bzero((void *)pt->pt_va, PD_SIZE);
1287 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1288 /* Add the page table to the queue */
1289 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1290 ++l1pt_static_queue_count;
1291 ++l1pt_static_create_count;
1292 }
1293 }
1294
1295
1296 /*
1297 * Create and return a physical map.
1298 *
1299 * If the size specified for the map is zero, the map is an actual physical
1300 * map, and may be referenced by the hardware.
1301 *
1302 * If the size specified is non-zero, the map will be used in software only,
1303 * and is bounded by that size.
1304 */
1305
1306 pmap_t
1307 pmap_create()
1308 {
1309 struct pmap *pmap;
1310
1311 /*
1312 * Fetch pmap entry from the pool
1313 */
1314
1315 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1316 /* XXX is this really needed! */
1317 memset(pmap, 0, sizeof(*pmap));
1318
1319 simple_lock_init(&pmap->pm_obj.vmobjlock);
1320 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1321 TAILQ_INIT(&pmap->pm_obj.memq);
1322 pmap->pm_obj.uo_npages = 0;
1323 pmap->pm_obj.uo_refs = 1;
1324 pmap->pm_stats.wired_count = 0;
1325 pmap->pm_stats.resident_count = 1;
1326
1327 /* Now init the machine part of the pmap */
1328 pmap_pinit(pmap);
1329 return(pmap);
1330 }
1331
1332 /*
1333 * pmap_alloc_l1pt()
1334 *
1335 * This routine allocates physical and virtual memory for a L1 page table
1336 * and wires it.
1337 * A l1pt structure is returned to describe the allocated page table.
1338 *
1339 * This routine is allowed to fail if the required memory cannot be allocated.
1340 * In this case NULL is returned.
1341 */
1342
1343 struct l1pt *
1344 pmap_alloc_l1pt(void)
1345 {
1346 paddr_t pa;
1347 vaddr_t va;
1348 struct l1pt *pt;
1349 int error;
1350 struct vm_page *m;
1351 pt_entry_t *ptes;
1352
1353 /* Allocate virtual address space for the L1 page table */
1354 va = uvm_km_valloc(kernel_map, PD_SIZE);
1355 if (va == 0) {
1356 #ifdef DIAGNOSTIC
1357 PDEBUG(0,
1358 printf("pmap: Cannot allocate pageable memory for L1\n"));
1359 #endif /* DIAGNOSTIC */
1360 return(NULL);
1361 }
1362
1363 /* Allocate memory for the l1pt structure */
1364 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1365
1366 /*
1367 * Allocate pages from the VM system.
1368 */
1369 TAILQ_INIT(&pt->pt_plist);
1370 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1371 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1372 if (error) {
1373 #ifdef DIAGNOSTIC
1374 PDEBUG(0,
1375 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1376 error));
1377 #endif /* DIAGNOSTIC */
1378 /* Release the resources we already have claimed */
1379 free(pt, M_VMPMAP);
1380 uvm_km_free(kernel_map, va, PD_SIZE);
1381 return(NULL);
1382 }
1383
1384 /* Map our physical pages into our virtual space */
1385 pt->pt_va = va;
1386 m = pt->pt_plist.tqh_first;
1387 ptes = pmap_map_ptes(pmap_kernel());
1388 while (m && va < (pt->pt_va + PD_SIZE)) {
1389 pa = VM_PAGE_TO_PHYS(m);
1390
1391 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1392
1393 /* Revoke cacheability and bufferability */
1394 /* XXX should be done better than this */
1395 ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
1396
1397 va += NBPG;
1398 m = m->pageq.tqe_next;
1399 }
1400 pmap_unmap_ptes(pmap_kernel());
1401 pmap_update(pmap_kernel());
1402
1403 #ifdef DIAGNOSTIC
1404 if (m)
1405 panic("pmap_alloc_l1pt: pglist not empty\n");
1406 #endif /* DIAGNOSTIC */
1407
1408 pt->pt_flags = 0;
1409 return(pt);
1410 }
1411
1412 /*
1413 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1414 */
1415 static void
1416 pmap_free_l1pt(pt)
1417 struct l1pt *pt;
1418 {
1419 /* Separate the physical memory for the virtual space */
1420 pmap_kremove(pt->pt_va, PD_SIZE);
1421 pmap_update(pmap_kernel());
1422
1423 /* Return the physical memory */
1424 uvm_pglistfree(&pt->pt_plist);
1425
1426 /* Free the virtual space */
1427 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1428
1429 /* Free the l1pt structure */
1430 free(pt, M_VMPMAP);
1431 }
1432
1433 /*
1434 * Allocate a page directory.
1435 * This routine will either allocate a new page directory from the pool
1436 * of L1 page tables currently held by the kernel or it will allocate
1437 * a new one via pmap_alloc_l1pt().
1438 * It will then initialise the l1 page table for use.
1439 */
1440 static int
1441 pmap_allocpagedir(pmap)
1442 struct pmap *pmap;
1443 {
1444 paddr_t pa;
1445 struct l1pt *pt;
1446 pt_entry_t *pte;
1447
1448 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1449
1450 /* Do we have any spare L1's lying around ? */
1451 if (l1pt_static_queue_count) {
1452 --l1pt_static_queue_count;
1453 pt = l1pt_static_queue.sqh_first;
1454 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1455 } else if (l1pt_queue_count) {
1456 --l1pt_queue_count;
1457 pt = l1pt_queue.sqh_first;
1458 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1459 ++l1pt_reuse_count;
1460 } else {
1461 pt = pmap_alloc_l1pt();
1462 if (!pt)
1463 return(ENOMEM);
1464 ++l1pt_create_count;
1465 }
1466
1467 /* Store the pointer to the l1 descriptor in the pmap. */
1468 pmap->pm_l1pt = pt;
1469
1470 /* Get the physical address of the start of the l1 */
1471 pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
1472
1473 /* Store the virtual address of the l1 in the pmap. */
1474 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1475
1476 /* Clean the L1 if it is dirty */
1477 if (!(pt->pt_flags & PTFLAG_CLEAN))
1478 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1479
1480 /* Do we already have the kernel mappings ? */
1481 if (!(pt->pt_flags & PTFLAG_KPT)) {
1482 /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1483
1484 bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1485 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1486 KERNEL_PD_SIZE);
1487 pt->pt_flags |= PTFLAG_KPT;
1488 }
1489
1490 /* Allocate a page table to map all the page tables for this pmap */
1491
1492 #ifdef DIAGNOSTIC
1493 if (pmap->pm_vptpt) {
1494 /* XXX What if we have one already ? */
1495 panic("pmap_allocpagedir: have pt already\n");
1496 }
1497 #endif /* DIAGNOSTIC */
1498 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1499 if (pmap->pm_vptpt == 0) {
1500 pmap_freepagedir(pmap);
1501 return(ENOMEM);
1502 }
1503
1504 (void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
1505 pmap->pm_pptpt &= PG_FRAME;
1506 /* Revoke cacheability and bufferability */
1507 /* XXX should be done better than this */
1508 pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
1509 *pte = *pte & ~(PT_C | PT_B);
1510
1511 /* Wire in this page table */
1512 pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
1513
1514 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1515
1516 /*
1517 * Map the kernel page tables for 0xf0000000 +
1518 * into the page table used to map the
1519 * pmap's page tables
1520 */
1521 bcopy((char *)(PROCESS_PAGE_TBLS_BASE
1522 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
1523 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1524 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1525 (KERNEL_PD_SIZE >> 2));
1526
1527 return(0);
1528 }
1529
1530
1531 /*
1532 * Initialize a preallocated and zeroed pmap structure,
1533 * such as one in a vmspace structure.
1534 */
1535
1536 void
1537 pmap_pinit(pmap)
1538 struct pmap *pmap;
1539 {
1540 int backoff = 6;
1541 int retry = 10;
1542
1543 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1544
1545 /* Keep looping until we succeed in allocating a page directory */
1546 while (pmap_allocpagedir(pmap) != 0) {
1547 /*
1548 * Ok we failed to allocate a suitable block of memory for an
1549 * L1 page table. This means that either:
1550 * 1. 16KB of virtual address space could not be allocated
1551 * 2. 16KB of physically contiguous memory on a 16KB boundary
1552 * could not be allocated.
1553 *
1554 * Since we cannot fail we will sleep for a while and try
1555 * again.
1556 *
1557 * Searching for a suitable L1 PT is expensive:
1558 * to avoid hogging the system when memory is really
1559 * scarce, use an exponential back-off so that
1560 * eventually we won't retry more than once every 8
1561 * seconds. This should allow other processes to run
1562 * to completion and free up resources.
1563 */
1564 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1565 NULL);
1566 if (--retry == 0) {
1567 retry = 10;
1568 if (backoff)
1569 --backoff;
1570 }
1571 }
1572
1573 /* Map zero page for the pmap. This will also map the L2 for it */
1574 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1575 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1576 pmap_update(pmap);
1577 }
1578
1579
1580 void
1581 pmap_freepagedir(pmap)
1582 struct pmap *pmap;
1583 {
1584 /* Free the memory used for the page table mapping */
1585 if (pmap->pm_vptpt != 0)
1586 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1587
1588 /* junk the L1 page table */
1589 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1590 /* Add the page table to the queue */
1591 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1592 ++l1pt_static_queue_count;
1593 } else if (l1pt_queue_count < 8) {
1594 /* Add the page table to the queue */
1595 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1596 ++l1pt_queue_count;
1597 } else
1598 pmap_free_l1pt(pmap->pm_l1pt);
1599 }
1600
1601
1602 /*
1603 * Retire the given physical map from service.
1604 * Should only be called if the map contains no valid mappings.
1605 */
1606
1607 void
1608 pmap_destroy(pmap)
1609 struct pmap *pmap;
1610 {
1611 struct vm_page *page;
1612 int count;
1613
1614 if (pmap == NULL)
1615 return;
1616
1617 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1618
1619 /*
1620 * Drop reference count
1621 */
1622 simple_lock(&pmap->pm_obj.vmobjlock);
1623 count = --pmap->pm_obj.uo_refs;
1624 simple_unlock(&pmap->pm_obj.vmobjlock);
1625 if (count > 0) {
1626 return;
1627 }
1628
1629 /*
1630 * reference count is zero, free pmap resources and then free pmap.
1631 */
1632
1633 /* Remove the zero page mapping */
1634 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1635 pmap_update(pmap);
1636
1637 /*
1638 * Free any page tables still mapped
1639 * This is only temporay until pmap_enter can count the number
1640 * of mappings made in a page table. Then pmap_remove() can
1641 * reduce the count and free the pagetable when the count
1642 * reaches zero. Note that entries in this list should match the
1643 * contents of the ptpt, however this is faster than walking a 1024
1644 * entries looking for pt's
1645 * taken from i386 pmap.c
1646 */
1647 while (pmap->pm_obj.memq.tqh_first != NULL) {
1648 page = pmap->pm_obj.memq.tqh_first;
1649 #ifdef DIAGNOSTIC
1650 if (page->flags & PG_BUSY)
1651 panic("pmap_release: busy page table page");
1652 #endif
1653 /* pmap_page_protect? currently no need for it. */
1654
1655 page->wire_count = 0;
1656 uvm_pagefree(page);
1657 }
1658
1659 /* Free the page dir */
1660 pmap_freepagedir(pmap);
1661
1662 /* return the pmap to the pool */
1663 pool_put(&pmap_pmap_pool, pmap);
1664 }
1665
1666
1667 /*
1668 * void pmap_reference(struct pmap *pmap)
1669 *
1670 * Add a reference to the specified pmap.
1671 */
1672
1673 void
1674 pmap_reference(pmap)
1675 struct pmap *pmap;
1676 {
1677 if (pmap == NULL)
1678 return;
1679
1680 simple_lock(&pmap->pm_lock);
1681 pmap->pm_obj.uo_refs++;
1682 simple_unlock(&pmap->pm_lock);
1683 }
1684
1685 /*
1686 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1687 *
1688 * Return the start and end addresses of the kernel's virtual space.
1689 * These values are setup in pmap_bootstrap and are updated as pages
1690 * are allocated.
1691 */
1692
1693 void
1694 pmap_virtual_space(start, end)
1695 vaddr_t *start;
1696 vaddr_t *end;
1697 {
1698 *start = virtual_start;
1699 *end = virtual_end;
1700 }
1701
1702
1703 /*
1704 * Activate the address space for the specified process. If the process
1705 * is the current process, load the new MMU context.
1706 */
1707 void
1708 pmap_activate(p)
1709 struct proc *p;
1710 {
1711 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1712 struct pcb *pcb = &p->p_addr->u_pcb;
1713
1714 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1715 (paddr_t *)&pcb->pcb_pagedir);
1716
1717 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1718 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1719
1720 if (p == curproc) {
1721 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1722 setttb((u_int)pcb->pcb_pagedir);
1723 }
1724 #if 0
1725 pmap->pm_pdchanged = FALSE;
1726 #endif
1727 }
1728
1729
1730 /*
1731 * Deactivate the address space of the specified process.
1732 */
1733 void
1734 pmap_deactivate(p)
1735 struct proc *p;
1736 {
1737 }
1738
1739 /*
1740 * Perform any deferred pmap operations.
1741 */
1742 void
1743 pmap_update(struct pmap *pmap)
1744 {
1745
1746 /*
1747 * We haven't deferred any pmap operations, but we do need to
1748 * make sure TLB/cache operations have completed.
1749 */
1750 cpu_cpwait();
1751 }
1752
1753 /*
1754 * pmap_clean_page()
1755 *
1756 * This is a local function used to work out the best strategy to clean
1757 * a single page referenced by its entry in the PV table. It's used by
1758 * pmap_copy_page, pmap_zero page and maybe some others later on.
1759 *
1760 * Its policy is effectively:
1761 * o If there are no mappings, we don't bother doing anything with the cache.
1762 * o If there is one mapping, we clean just that page.
1763 * o If there are multiple mappings, we clean the entire cache.
1764 *
1765 * So that some functions can be further optimised, it returns 0 if it didn't
1766 * clean the entire cache, or 1 if it did.
1767 *
1768 * XXX One bug in this routine is that if the pv_entry has a single page
1769 * mapped at 0x00000000 a whole cache clean will be performed rather than
1770 * just the 1 page. Since this should not occur in everyday use and if it does
1771 * it will just result in not the most efficient clean for the page.
1772 */
1773 static int
1774 pmap_clean_page(pv, is_src)
1775 struct pv_entry *pv;
1776 boolean_t is_src;
1777 {
1778 struct pmap *pmap;
1779 struct pv_entry *npv;
1780 int cache_needs_cleaning = 0;
1781 vaddr_t page_to_clean = 0;
1782
1783 if (pv == NULL)
1784 /* nothing mapped in so nothing to flush */
1785 return (0);
1786
1787 /* Since we flush the cache each time we change curproc, we
1788 * only need to flush the page if it is in the current pmap.
1789 */
1790 if (curproc)
1791 pmap = curproc->p_vmspace->vm_map.pmap;
1792 else
1793 pmap = pmap_kernel();
1794
1795 for (npv = pv; npv; npv = npv->pv_next) {
1796 if (npv->pv_pmap == pmap) {
1797 /* The page is mapped non-cacheable in
1798 * this map. No need to flush the cache.
1799 */
1800 if (npv->pv_flags & PT_NC) {
1801 #ifdef DIAGNOSTIC
1802 if (cache_needs_cleaning)
1803 panic("pmap_clean_page: "
1804 "cache inconsistency");
1805 #endif
1806 break;
1807 }
1808 #if 0
1809 /* This doesn't work, because pmap_protect
1810 doesn't flush changes on pages that it
1811 has write-protected. */
1812
1813 /* If the page is not writable and this
1814 is the source, then there is no need
1815 to flush it from the cache. */
1816 else if (is_src && ! (npv->pv_flags & PT_Wr))
1817 continue;
1818 #endif
1819 if (cache_needs_cleaning){
1820 page_to_clean = 0;
1821 break;
1822 }
1823 else
1824 page_to_clean = npv->pv_va;
1825 cache_needs_cleaning = 1;
1826 }
1827 }
1828
1829 if (page_to_clean)
1830 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1831 else if (cache_needs_cleaning) {
1832 cpu_idcache_wbinv_all();
1833 return (1);
1834 }
1835 return (0);
1836 }
1837
1838 /*
1839 * pmap_find_pv()
1840 *
1841 * This is a local function that finds a PV head for a given physical page.
1842 * This is a common op, and this function removes loads of ifdefs in the code.
1843 */
1844 static __inline struct pv_head *
1845 pmap_find_pvh(phys)
1846 paddr_t phys;
1847 {
1848 int bank, off;
1849 struct pv_head *pvh;
1850
1851 if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
1852 panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
1853 pvh = &vm_physmem[bank].pmseg.pvhead[off];
1854 return (pvh);
1855 }
1856
1857 /*
1858 * pmap_zero_page()
1859 *
1860 * Zero a given physical page by mapping it at a page hook point.
1861 * In doing the zero page op, the page we zero is mapped cachable, as with
1862 * StrongARM accesses to non-cached pages are non-burst making writing
1863 * _any_ bulk data very slow.
1864 */
1865 void
1866 pmap_zero_page(phys)
1867 paddr_t phys;
1868 {
1869 struct pv_head *pvh;
1870
1871 /* Get an entry for this page, and clean it it. */
1872 pvh = pmap_find_pvh(phys);
1873 simple_lock(&pvh->pvh_lock);
1874 pmap_clean_page(pvh->pvh_list, FALSE);
1875 simple_unlock(&pvh->pvh_lock);
1876
1877 /*
1878 * Hook in the page, zero it, and purge the cache for that
1879 * zeroed page. Invalidate the TLB as needed.
1880 */
1881 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1882 cpu_tlb_flushD_SE(page_hook0.va);
1883 cpu_cpwait();
1884 bzero_page(page_hook0.va);
1885 cpu_dcache_wbinv_range(page_hook0.va, NBPG);
1886 }
1887
1888 /* pmap_pageidlezero()
1889 *
1890 * The same as above, except that we assume that the page is not
1891 * mapped. This means we never have to flush the cache first. Called
1892 * from the idle loop.
1893 */
1894 boolean_t
1895 pmap_pageidlezero(phys)
1896 paddr_t phys;
1897 {
1898 int i, *ptr;
1899 boolean_t rv = TRUE;
1900
1901 #ifdef DIAGNOSTIC
1902 struct pv_head *pvh;
1903
1904 pvh = pmap_find_pvh(phys);
1905 if (pvh->pvh_list != NULL)
1906 panic("pmap_pageidlezero: zeroing mapped page\n");
1907 #endif
1908
1909 /*
1910 * Hook in the page, zero it, and purge the cache for that
1911 * zeroed page. Invalidate the TLB as needed.
1912 */
1913 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1914 cpu_tlb_flushD_SE(page_hook0.va);
1915 cpu_cpwait();
1916
1917 for (i = 0, ptr = (int *)page_hook0.va;
1918 i < (NBPG / sizeof(int)); i++) {
1919 if (sched_whichqs != 0) {
1920 /*
1921 * A process has become ready. Abort now,
1922 * so we don't keep it waiting while we
1923 * do slow memory access to finish this
1924 * page.
1925 */
1926 rv = FALSE;
1927 break;
1928 }
1929 *ptr++ = 0;
1930 }
1931
1932 if (rv)
1933 /*
1934 * if we aborted we'll rezero this page again later so don't
1935 * purge it unless we finished it
1936 */
1937 cpu_dcache_wbinv_range(page_hook0.va, NBPG);
1938 return (rv);
1939 }
1940
1941 /*
1942 * pmap_copy_page()
1943 *
1944 * Copy one physical page into another, by mapping the pages into
1945 * hook points. The same comment regarding cachability as in
1946 * pmap_zero_page also applies here.
1947 */
1948 void
1949 pmap_copy_page(src, dest)
1950 paddr_t src;
1951 paddr_t dest;
1952 {
1953 struct pv_head *src_pvh, *dest_pvh;
1954 boolean_t cleanedcache;
1955
1956 /* Get PV entries for the pages, and clean them if needed. */
1957 src_pvh = pmap_find_pvh(src);
1958
1959 simple_lock(&src_pvh->pvh_lock);
1960 cleanedcache = pmap_clean_page(src_pvh->pvh_list, TRUE);
1961 simple_unlock(&src_pvh->pvh_lock);
1962
1963 if (cleanedcache == 0) {
1964 dest_pvh = pmap_find_pvh(dest);
1965 simple_lock(&dest_pvh->pvh_lock);
1966 pmap_clean_page(dest_pvh->pvh_list, FALSE);
1967 simple_unlock(&dest_pvh->pvh_lock);
1968 }
1969 /*
1970 * Map the pages into the page hook points, copy them, and purge
1971 * the cache for the appropriate page. Invalidate the TLB
1972 * as required.
1973 */
1974 *page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
1975 *page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1976 cpu_tlb_flushD_SE(page_hook0.va);
1977 cpu_tlb_flushD_SE(page_hook1.va);
1978 cpu_cpwait();
1979 bcopy_page(page_hook0.va, page_hook1.va);
1980 cpu_dcache_wbinv_range(page_hook0.va, NBPG);
1981 cpu_dcache_wbinv_range(page_hook1.va, NBPG);
1982 }
1983
1984 #if 0
1985 void
1986 pmap_pte_addref(pmap, va)
1987 struct pmap *pmap;
1988 vaddr_t va;
1989 {
1990 pd_entry_t *pde;
1991 paddr_t pa;
1992 struct vm_page *m;
1993
1994 if (pmap == pmap_kernel())
1995 return;
1996
1997 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1998 pa = pmap_pte_pa(pde);
1999 m = PHYS_TO_VM_PAGE(pa);
2000 ++m->wire_count;
2001 #ifdef MYCROFT_HACK
2002 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2003 pmap, va, pde, pa, m, m->wire_count);
2004 #endif
2005 }
2006
2007 void
2008 pmap_pte_delref(pmap, va)
2009 struct pmap *pmap;
2010 vaddr_t va;
2011 {
2012 pd_entry_t *pde;
2013 paddr_t pa;
2014 struct vm_page *m;
2015
2016 if (pmap == pmap_kernel())
2017 return;
2018
2019 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
2020 pa = pmap_pte_pa(pde);
2021 m = PHYS_TO_VM_PAGE(pa);
2022 --m->wire_count;
2023 #ifdef MYCROFT_HACK
2024 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2025 pmap, va, pde, pa, m, m->wire_count);
2026 #endif
2027 if (m->wire_count == 0) {
2028 #ifdef MYCROFT_HACK
2029 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2030 pmap, va, pde, pa, m);
2031 #endif
2032 pmap_unmap_in_l1(pmap, va);
2033 uvm_pagefree(m);
2034 --pmap->pm_stats.resident_count;
2035 }
2036 }
2037 #else
2038 #define pmap_pte_addref(pmap, va)
2039 #define pmap_pte_delref(pmap, va)
2040 #endif
2041
2042 /*
2043 * Since we have a virtually indexed cache, we may need to inhibit caching if
2044 * there is more than one mapping and at least one of them is writable.
2045 * Since we purge the cache on every context switch, we only need to check for
2046 * other mappings within the same pmap, or kernel_pmap.
2047 * This function is also called when a page is unmapped, to possibly reenable
2048 * caching on any remaining mappings.
2049 *
2050 * The code implements the following logic, where:
2051 *
2052 * KW = # of kernel read/write pages
2053 * KR = # of kernel read only pages
2054 * UW = # of user read/write pages
2055 * UR = # of user read only pages
2056 * OW = # of user read/write pages in another pmap, then
2057 *
2058 * KC = kernel mapping is cacheable
2059 * UC = user mapping is cacheable
2060 *
2061 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2062 * +---------------------------------------------
2063 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2064 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2065 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2066 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2067 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2068 *
2069 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2070 */
2071 __inline static void
2072 pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2073 boolean_t clear_cache)
2074 {
2075 if (pmap == pmap_kernel())
2076 pmap_vac_me_kpmap(pmap, pvh, ptes, clear_cache);
2077 else
2078 pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2079 }
2080
2081 static void
2082 pmap_vac_me_kpmap(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2083 boolean_t clear_cache)
2084 {
2085 int user_entries = 0;
2086 int user_writable = 0;
2087 int user_cacheable = 0;
2088 int kernel_entries = 0;
2089 int kernel_writable = 0;
2090 int kernel_cacheable = 0;
2091 struct pv_entry *pv;
2092 struct pmap *last_pmap = pmap;
2093
2094 #ifdef DIAGNOSTIC
2095 if (pmap != pmap_kernel())
2096 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2097 #endif
2098
2099 /*
2100 * Pass one, see if there are both kernel and user pmaps for
2101 * this page. Calculate whether there are user-writable or
2102 * kernel-writable pages.
2103 */
2104 for (pv = pvh->pvh_list; pv != NULL; pv = pv->pv_next) {
2105 if (pv->pv_pmap != pmap) {
2106 user_entries++;
2107 if (pv->pv_flags & PT_Wr)
2108 user_writable++;
2109 if ((pv->pv_flags & PT_NC) == 0)
2110 user_cacheable++;
2111 } else {
2112 kernel_entries++;
2113 if (pv->pv_flags & PT_Wr)
2114 kernel_writable++;
2115 if ((pv->pv_flags & PT_NC) == 0)
2116 kernel_cacheable++;
2117 }
2118 }
2119
2120 /*
2121 * We know we have just been updating a kernel entry, so if
2122 * all user pages are already cacheable, then there is nothing
2123 * further to do.
2124 */
2125 if (kernel_entries == 0 &&
2126 user_cacheable == user_entries)
2127 return;
2128
2129 if (user_entries) {
2130 /*
2131 * Scan over the list again, for each entry, if it
2132 * might not be set correctly, call pmap_vac_me_user
2133 * to recalculate the settings.
2134 */
2135 for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
2136 /*
2137 * We know kernel mappings will get set
2138 * correctly in other calls. We also know
2139 * that if the pmap is the same as last_pmap
2140 * then we've just handled this entry.
2141 */
2142 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2143 continue;
2144 /*
2145 * If there are kernel entries and this page
2146 * is writable but non-cacheable, then we can
2147 * skip this entry also.
2148 */
2149 if (kernel_entries > 0 &&
2150 (pv->pv_flags & (PT_NC | PT_Wr)) ==
2151 (PT_NC | PT_Wr))
2152 continue;
2153 /*
2154 * Similarly if there are no kernel-writable
2155 * entries and the page is already
2156 * read-only/cacheable.
2157 */
2158 if (kernel_writable == 0 &&
2159 (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
2160 continue;
2161 /*
2162 * For some of the remaining cases, we know
2163 * that we must recalculate, but for others we
2164 * can't tell if they are correct or not, so
2165 * we recalculate anyway.
2166 */
2167 pmap_unmap_ptes(last_pmap);
2168 last_pmap = pv->pv_pmap;
2169 ptes = pmap_map_ptes(last_pmap);
2170 pmap_vac_me_user(last_pmap, pvh, ptes,
2171 pmap_is_curpmap(last_pmap));
2172 }
2173 /* Restore the pte mapping that was passed to us. */
2174 if (last_pmap != pmap) {
2175 pmap_unmap_ptes(last_pmap);
2176 ptes = pmap_map_ptes(pmap);
2177 }
2178 if (kernel_entries == 0)
2179 return;
2180 }
2181
2182 pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2183 return;
2184 }
2185
2186 static void
2187 pmap_vac_me_user(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2188 boolean_t clear_cache)
2189 {
2190 struct pmap *kpmap = pmap_kernel();
2191 struct pv_entry *pv, *npv;
2192 int entries = 0;
2193 int writable = 0;
2194 int cacheable_entries = 0;
2195 int kern_cacheable = 0;
2196 int other_writable = 0;
2197
2198 pv = pvh->pvh_list;
2199 KASSERT(ptes != NULL);
2200
2201 /*
2202 * Count mappings and writable mappings in this pmap.
2203 * Include kernel mappings as part of our own.
2204 * Keep a pointer to the first one.
2205 */
2206 for (npv = pv; npv; npv = npv->pv_next) {
2207 /* Count mappings in the same pmap */
2208 if (pmap == npv->pv_pmap ||
2209 kpmap == npv->pv_pmap) {
2210 if (entries++ == 0)
2211 pv = npv;
2212 /* Cacheable mappings */
2213 if ((npv->pv_flags & PT_NC) == 0) {
2214 cacheable_entries++;
2215 if (kpmap == npv->pv_pmap)
2216 kern_cacheable++;
2217 }
2218 /* Writable mappings */
2219 if (npv->pv_flags & PT_Wr)
2220 ++writable;
2221 } else if (npv->pv_flags & PT_Wr)
2222 other_writable = 1;
2223 }
2224
2225 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2226 "writable %d cacheable %d %s\n", pmap, entries, writable,
2227 cacheable_entries, clear_cache ? "clean" : "no clean"));
2228
2229 /*
2230 * Enable or disable caching as necessary.
2231 * Note: the first entry might be part of the kernel pmap,
2232 * so we can't assume this is indicative of the state of the
2233 * other (maybe non-kpmap) entries.
2234 */
2235 if ((entries > 1 && writable) ||
2236 (entries > 0 && pmap == kpmap && other_writable)) {
2237 if (cacheable_entries == 0)
2238 return;
2239 for (npv = pv; npv; npv = npv->pv_next) {
2240 if ((pmap == npv->pv_pmap
2241 || kpmap == npv->pv_pmap) &&
2242 (npv->pv_flags & PT_NC) == 0) {
2243 ptes[arm_byte_to_page(npv->pv_va)] &=
2244 ~(PT_C | PT_B);
2245 npv->pv_flags |= PT_NC;
2246 /*
2247 * If this page needs flushing from the
2248 * cache, and we aren't going to do it
2249 * below, do it now.
2250 */
2251 if ((cacheable_entries < 4 &&
2252 (clear_cache || npv->pv_pmap == kpmap)) ||
2253 (npv->pv_pmap == kpmap &&
2254 !clear_cache && kern_cacheable < 4)) {
2255 cpu_idcache_wbinv_range(npv->pv_va,
2256 NBPG);
2257 cpu_tlb_flushID_SE(npv->pv_va);
2258 }
2259 }
2260 }
2261 if ((clear_cache && cacheable_entries >= 4) ||
2262 kern_cacheable >= 4) {
2263 cpu_idcache_wbinv_all();
2264 cpu_tlb_flushID();
2265 }
2266 cpu_cpwait();
2267 } else if (entries > 0) {
2268 /*
2269 * Turn cacheing back on for some pages. If it is a kernel
2270 * page, only do so if there are no other writable pages.
2271 */
2272 for (npv = pv; npv; npv = npv->pv_next) {
2273 if ((pmap == npv->pv_pmap ||
2274 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2275 (npv->pv_flags & PT_NC)) {
2276 ptes[arm_byte_to_page(npv->pv_va)] |=
2277 pte_cache_mode;
2278 npv->pv_flags &= ~PT_NC;
2279 }
2280 }
2281 }
2282 }
2283
2284 /*
2285 * pmap_remove()
2286 *
2287 * pmap_remove is responsible for nuking a number of mappings for a range
2288 * of virtual address space in the current pmap. To do this efficiently
2289 * is interesting, because in a number of cases a wide virtual address
2290 * range may be supplied that contains few actual mappings. So, the
2291 * optimisations are:
2292 * 1. Try and skip over hunks of address space for which an L1 entry
2293 * does not exist.
2294 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2295 * maybe do just a partial cache clean. This path of execution is
2296 * complicated by the fact that the cache must be flushed _before_
2297 * the PTE is nuked, being a VAC :-)
2298 * 3. Maybe later fast-case a single page, but I don't think this is
2299 * going to make _that_ much difference overall.
2300 */
2301
2302 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2303
2304 void
2305 pmap_remove(pmap, sva, eva)
2306 struct pmap *pmap;
2307 vaddr_t sva;
2308 vaddr_t eva;
2309 {
2310 int cleanlist_idx = 0;
2311 struct pagelist {
2312 vaddr_t va;
2313 pt_entry_t *pte;
2314 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2315 pt_entry_t *pte = 0, *ptes;
2316 paddr_t pa;
2317 int pmap_active;
2318 struct pv_head *pvh;
2319
2320 /* Exit quick if there is no pmap */
2321 if (!pmap)
2322 return;
2323
2324 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2325
2326 sva &= PG_FRAME;
2327 eva &= PG_FRAME;
2328
2329 /*
2330 * we lock in the pmap => pv_head direction
2331 */
2332 PMAP_MAP_TO_HEAD_LOCK();
2333
2334 ptes = pmap_map_ptes(pmap);
2335 /* Get a page table pointer */
2336 while (sva < eva) {
2337 if (pmap_pde_page(pmap_pde(pmap, sva)))
2338 break;
2339 sva = (sva & PD_MASK) + NBPD;
2340 }
2341
2342 pte = &ptes[arm_byte_to_page(sva)];
2343 /* Note if the pmap is active thus require cache and tlb cleans */
2344 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2345 || (pmap == pmap_kernel()))
2346 pmap_active = 1;
2347 else
2348 pmap_active = 0;
2349
2350 /* Now loop along */
2351 while (sva < eva) {
2352 /* Check if we can move to the next PDE (l1 chunk) */
2353 if (!(sva & PT_MASK))
2354 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2355 sva += NBPD;
2356 pte += arm_byte_to_page(NBPD);
2357 continue;
2358 }
2359
2360 /* We've found a valid PTE, so this page of PTEs has to go. */
2361 if (pmap_pte_v(pte)) {
2362 int bank, off;
2363
2364 /* Update statistics */
2365 --pmap->pm_stats.resident_count;
2366
2367 /*
2368 * Add this page to our cache remove list, if we can.
2369 * If, however the cache remove list is totally full,
2370 * then do a complete cache invalidation taking note
2371 * to backtrack the PTE table beforehand, and ignore
2372 * the lists in future because there's no longer any
2373 * point in bothering with them (we've paid the
2374 * penalty, so will carry on unhindered). Otherwise,
2375 * when we fall out, we just clean the list.
2376 */
2377 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2378 pa = pmap_pte_pa(pte);
2379
2380 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2381 /* Add to the clean list. */
2382 cleanlist[cleanlist_idx].pte = pte;
2383 cleanlist[cleanlist_idx].va = sva;
2384 cleanlist_idx++;
2385 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2386 int cnt;
2387
2388 /* Nuke everything if needed. */
2389 if (pmap_active) {
2390 cpu_idcache_wbinv_all();
2391 cpu_tlb_flushID();
2392 }
2393
2394 /*
2395 * Roll back the previous PTE list,
2396 * and zero out the current PTE.
2397 */
2398 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2399 *cleanlist[cnt].pte = 0;
2400 pmap_pte_delref(pmap, cleanlist[cnt].va);
2401 }
2402 *pte = 0;
2403 pmap_pte_delref(pmap, sva);
2404 cleanlist_idx++;
2405 } else {
2406 /*
2407 * We've already nuked the cache and
2408 * TLB, so just carry on regardless,
2409 * and we won't need to do it again
2410 */
2411 *pte = 0;
2412 pmap_pte_delref(pmap, sva);
2413 }
2414
2415 /*
2416 * Update flags. In a number of circumstances,
2417 * we could cluster a lot of these and do a
2418 * number of sequential pages in one go.
2419 */
2420 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2421 struct pv_entry *pve;
2422 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2423 simple_lock(&pvh->pvh_lock);
2424 pve = pmap_remove_pv(pvh, pmap, sva);
2425 pmap_free_pv(pmap, pve);
2426 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2427 simple_unlock(&pvh->pvh_lock);
2428 }
2429 }
2430 sva += NBPG;
2431 pte++;
2432 }
2433
2434 pmap_unmap_ptes(pmap);
2435 /*
2436 * Now, if we've fallen through down to here, chances are that there
2437 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2438 */
2439 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2440 u_int cnt;
2441
2442 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2443 if (pmap_active) {
2444 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2445 NBPG);
2446 *cleanlist[cnt].pte = 0;
2447 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2448 } else
2449 *cleanlist[cnt].pte = 0;
2450 pmap_pte_delref(pmap, cleanlist[cnt].va);
2451 }
2452 }
2453 PMAP_MAP_TO_HEAD_UNLOCK();
2454 }
2455
2456 /*
2457 * Routine: pmap_remove_all
2458 * Function:
2459 * Removes this physical page from
2460 * all physical maps in which it resides.
2461 * Reflects back modify bits to the pager.
2462 */
2463
2464 static void
2465 pmap_remove_all(pa)
2466 paddr_t pa;
2467 {
2468 struct pv_entry *pv, *npv;
2469 struct pv_head *pvh;
2470 struct pmap *pmap;
2471 pt_entry_t *pte, *ptes;
2472
2473 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
2474
2475 /* set pv_head => pmap locking */
2476 PMAP_HEAD_TO_MAP_LOCK();
2477
2478 pvh = pmap_find_pvh(pa);
2479 simple_lock(&pvh->pvh_lock);
2480
2481 pv = pvh->pvh_list;
2482 if (pv == NULL)
2483 {
2484 PDEBUG(0, printf("free page\n"));
2485 simple_unlock(&pvh->pvh_lock);
2486 PMAP_HEAD_TO_MAP_UNLOCK();
2487 return;
2488 }
2489 pmap_clean_page(pv, FALSE);
2490
2491 while (pv) {
2492 pmap = pv->pv_pmap;
2493 ptes = pmap_map_ptes(pmap);
2494 pte = &ptes[arm_byte_to_page(pv->pv_va)];
2495
2496 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2497 pv->pv_va, pv->pv_flags));
2498 #ifdef DEBUG
2499 if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
2500 !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
2501 panic("pmap_remove_all: bad mapping");
2502 #endif /* DEBUG */
2503
2504 /*
2505 * Update statistics
2506 */
2507 --pmap->pm_stats.resident_count;
2508
2509 /* Wired bit */
2510 if (pv->pv_flags & PT_W)
2511 --pmap->pm_stats.wired_count;
2512
2513 /*
2514 * Invalidate the PTEs.
2515 * XXX: should cluster them up and invalidate as many
2516 * as possible at once.
2517 */
2518
2519 #ifdef needednotdone
2520 reduce wiring count on page table pages as references drop
2521 #endif
2522
2523 *pte = 0;
2524 pmap_pte_delref(pmap, pv->pv_va);
2525
2526 npv = pv->pv_next;
2527 pmap_free_pv(pmap, pv);
2528 pv = npv;
2529 pmap_unmap_ptes(pmap);
2530 }
2531 pvh->pvh_list = NULL;
2532 simple_unlock(&pvh->pvh_lock);
2533 PMAP_HEAD_TO_MAP_UNLOCK();
2534
2535 PDEBUG(0, printf("done\n"));
2536 cpu_tlb_flushID();
2537 cpu_cpwait();
2538 }
2539
2540
2541 /*
2542 * Set the physical protection on the specified range of this map as requested.
2543 */
2544
2545 void
2546 pmap_protect(pmap, sva, eva, prot)
2547 struct pmap *pmap;
2548 vaddr_t sva;
2549 vaddr_t eva;
2550 vm_prot_t prot;
2551 {
2552 pt_entry_t *pte = NULL, *ptes;
2553 int armprot;
2554 int flush = 0;
2555 paddr_t pa;
2556 int bank, off;
2557 struct pv_head *pvh;
2558
2559 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2560 pmap, sva, eva, prot));
2561
2562 if (~prot & VM_PROT_READ) {
2563 /* Just remove the mappings. */
2564 pmap_remove(pmap, sva, eva);
2565 /* pmap_update not needed as it should be called by the caller
2566 * of pmap_protect */
2567 return;
2568 }
2569 if (prot & VM_PROT_WRITE) {
2570 /*
2571 * If this is a read->write transition, just ignore it and let
2572 * uvm_fault() take care of it later.
2573 */
2574 return;
2575 }
2576
2577 sva &= PG_FRAME;
2578 eva &= PG_FRAME;
2579
2580 /* Need to lock map->head */
2581 PMAP_MAP_TO_HEAD_LOCK();
2582
2583 ptes = pmap_map_ptes(pmap);
2584 /*
2585 * We need to acquire a pointer to a page table page before entering
2586 * the following loop.
2587 */
2588 while (sva < eva) {
2589 if (pmap_pde_page(pmap_pde(pmap, sva)))
2590 break;
2591 sva = (sva & PD_MASK) + NBPD;
2592 }
2593
2594 pte = &ptes[arm_byte_to_page(sva)];
2595
2596 while (sva < eva) {
2597 /* only check once in a while */
2598 if ((sva & PT_MASK) == 0) {
2599 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2600 /* We can race ahead here, to the next pde. */
2601 sva += NBPD;
2602 pte += arm_byte_to_page(NBPD);
2603 continue;
2604 }
2605 }
2606
2607 if (!pmap_pte_v(pte))
2608 goto next;
2609
2610 flush = 1;
2611
2612 armprot = 0;
2613 if (sva < VM_MAXUSER_ADDRESS)
2614 armprot |= PT_AP(AP_U);
2615 else if (sva < VM_MAX_ADDRESS)
2616 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2617 *pte = (*pte & 0xfffff00f) | armprot;
2618
2619 pa = pmap_pte_pa(pte);
2620
2621 /* Get the physical page index */
2622
2623 /* Clear write flag */
2624 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2625 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2626 simple_lock(&pvh->pvh_lock);
2627 (void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
2628 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2629 simple_unlock(&pvh->pvh_lock);
2630 }
2631
2632 next:
2633 sva += NBPG;
2634 pte++;
2635 }
2636 pmap_unmap_ptes(pmap);
2637 PMAP_MAP_TO_HEAD_UNLOCK();
2638 if (flush)
2639 cpu_tlb_flushID();
2640 }
2641
2642 /*
2643 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2644 * int flags)
2645 *
2646 * Insert the given physical page (p) at
2647 * the specified virtual address (v) in the
2648 * target physical map with the protection requested.
2649 *
2650 * If specified, the page will be wired down, meaning
2651 * that the related pte can not be reclaimed.
2652 *
2653 * NB: This is the only routine which MAY NOT lazy-evaluate
2654 * or lose information. That is, this routine must actually
2655 * insert this page into the given map NOW.
2656 */
2657
2658 int
2659 pmap_enter(pmap, va, pa, prot, flags)
2660 struct pmap *pmap;
2661 vaddr_t va;
2662 paddr_t pa;
2663 vm_prot_t prot;
2664 int flags;
2665 {
2666 pt_entry_t *pte, *ptes;
2667 u_int npte;
2668 int bank, off;
2669 paddr_t opa;
2670 int nflags;
2671 boolean_t wired = (flags & PMAP_WIRED) != 0;
2672 struct pv_entry *pve;
2673 struct pv_head *pvh;
2674 int error;
2675
2676 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2677 va, pa, pmap, prot, wired));
2678
2679 #ifdef DIAGNOSTIC
2680 /* Valid address ? */
2681 if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
2682 panic("pmap_enter: too big");
2683 if (pmap != pmap_kernel() && va != 0) {
2684 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2685 panic("pmap_enter: kernel page in user map");
2686 } else {
2687 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2688 panic("pmap_enter: user page in kernel map");
2689 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2690 panic("pmap_enter: entering PT page");
2691 }
2692 #endif
2693 /* get lock */
2694 PMAP_MAP_TO_HEAD_LOCK();
2695 /*
2696 * Get a pointer to the pte for this virtual address. If the
2697 * pte pointer is NULL then we are missing the L2 page table
2698 * so we need to create one.
2699 */
2700 /* XXX horrible hack to get us working with lockdebug */
2701 simple_lock(&pmap->pm_obj.vmobjlock);
2702 pte = pmap_pte(pmap, va);
2703 if (!pte) {
2704 struct vm_page *ptp;
2705
2706 /* if failure is allowed then don't try too hard */
2707 ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
2708 if (ptp == NULL) {
2709 if (flags & PMAP_CANFAIL) {
2710 error = ENOMEM;
2711 goto out;
2712 }
2713 panic("pmap_enter: get ptp failed");
2714 }
2715
2716 pte = pmap_pte(pmap, va);
2717 #ifdef DIAGNOSTIC
2718 if (!pte)
2719 panic("pmap_enter: no pte");
2720 #endif
2721 }
2722
2723 nflags = 0;
2724 if (prot & VM_PROT_WRITE)
2725 nflags |= PT_Wr;
2726 if (wired)
2727 nflags |= PT_W;
2728
2729 /* More debugging info */
2730 PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2731 *pte));
2732
2733 /* Is the pte valid ? If so then this page is already mapped */
2734 if (pmap_pte_v(pte)) {
2735 /* Get the physical address of the current page mapped */
2736 opa = pmap_pte_pa(pte);
2737
2738 #ifdef MYCROFT_HACK
2739 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2740 #endif
2741
2742 /* Are we mapping the same page ? */
2743 if (opa == pa) {
2744 /* All we must be doing is changing the protection */
2745 PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2746 va, pa));
2747
2748 /* Has the wiring changed ? */
2749 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2750 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2751 simple_lock(&pvh->pvh_lock);
2752 (void) pmap_modify_pv(pmap, va, pvh,
2753 PT_Wr | PT_W, nflags);
2754 simple_unlock(&pvh->pvh_lock);
2755 } else {
2756 pvh = NULL;
2757 }
2758 } else {
2759 /* We are replacing the page with a new one. */
2760 cpu_idcache_wbinv_range(va, NBPG);
2761
2762 PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2763 va, pa, opa));
2764
2765 /*
2766 * If it is part of our managed memory then we
2767 * must remove it from the PV list
2768 */
2769 if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
2770 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2771 simple_lock(&pvh->pvh_lock);
2772 pve = pmap_remove_pv(pvh, pmap, va);
2773 simple_unlock(&pvh->pvh_lock);
2774 } else {
2775 pve = NULL;
2776 }
2777
2778 goto enter;
2779 }
2780 } else {
2781 opa = 0;
2782 pve = NULL;
2783 pmap_pte_addref(pmap, va);
2784
2785 /* pte is not valid so we must be hooking in a new page */
2786 ++pmap->pm_stats.resident_count;
2787
2788 enter:
2789 /*
2790 * Enter on the PV list if part of our managed memory
2791 */
2792 bank = vm_physseg_find(atop(pa), &off);
2793
2794 if (pmap_initialized && (bank != -1)) {
2795 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2796 if (pve == NULL) {
2797 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2798 if (pve == NULL) {
2799 if (flags & PMAP_CANFAIL) {
2800 error = ENOMEM;
2801 goto out;
2802 }
2803 panic("pmap_enter: no pv entries available");
2804 }
2805 }
2806 /* enter_pv locks pvh when adding */
2807 pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
2808 } else {
2809 pvh = NULL;
2810 if (pve != NULL)
2811 pmap_free_pv(pmap, pve);
2812 }
2813 }
2814
2815 #ifdef MYCROFT_HACK
2816 if (mycroft_hack)
2817 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2818 #endif
2819
2820 /* Construct the pte, giving the correct access. */
2821 npte = (pa & PG_FRAME);
2822
2823 /* VA 0 is magic. */
2824 if (pmap != pmap_kernel() && va != 0)
2825 npte |= PT_AP(AP_U);
2826
2827 if (pmap_initialized && bank != -1) {
2828 #ifdef DIAGNOSTIC
2829 if ((flags & VM_PROT_ALL) & ~prot)
2830 panic("pmap_enter: access_type exceeds prot");
2831 #endif
2832 npte |= pte_cache_mode;
2833 if (flags & VM_PROT_WRITE) {
2834 npte |= L2_SPAGE | PT_AP(AP_W);
2835 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2836 } else if (flags & VM_PROT_ALL) {
2837 npte |= L2_SPAGE;
2838 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2839 } else
2840 npte |= L2_INVAL;
2841 } else {
2842 if (prot & VM_PROT_WRITE)
2843 npte |= L2_SPAGE | PT_AP(AP_W);
2844 else if (prot & VM_PROT_ALL)
2845 npte |= L2_SPAGE;
2846 else
2847 npte |= L2_INVAL;
2848 }
2849
2850 #ifdef MYCROFT_HACK
2851 if (mycroft_hack)
2852 printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2853 #endif
2854
2855 *pte = npte;
2856
2857 if (pmap_initialized && bank != -1)
2858 {
2859 boolean_t pmap_active = FALSE;
2860 /* XXX this will change once the whole of pmap_enter uses
2861 * map_ptes
2862 */
2863 ptes = pmap_map_ptes(pmap);
2864 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2865 || (pmap == pmap_kernel()))
2866 pmap_active = TRUE;
2867 simple_lock(&pvh->pvh_lock);
2868 pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
2869 simple_unlock(&pvh->pvh_lock);
2870 pmap_unmap_ptes(pmap);
2871 }
2872
2873 /* Better flush the TLB ... */
2874 cpu_tlb_flushID_SE(va);
2875 error = 0;
2876 out:
2877 simple_unlock(&pmap->pm_obj.vmobjlock);
2878 PMAP_MAP_TO_HEAD_UNLOCK();
2879 PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2880
2881 return error;
2882 }
2883
2884 void
2885 pmap_kenter_pa(va, pa, prot)
2886 vaddr_t va;
2887 paddr_t pa;
2888 vm_prot_t prot;
2889 {
2890 struct pmap *pmap = pmap_kernel();
2891 pt_entry_t *pte;
2892 struct vm_page *pg;
2893
2894 if (!pmap_pde_page(pmap_pde(pmap, va))) {
2895
2896 #ifdef DIAGNOSTIC
2897 if (pmap_pde_v(pmap_pde(pmap, va)))
2898 panic("Trying to map kernel page into section mapping"
2899 " VA=%lx PA=%lx", va, pa);
2900 #endif
2901 /*
2902 * For the kernel pmaps it would be better to ensure
2903 * that they are always present, and to grow the
2904 * kernel as required.
2905 */
2906
2907 /* must lock the pmap */
2908 simple_lock(&(pmap_kernel()->pm_obj.vmobjlock));
2909 /* Allocate a page table */
2910 pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
2911 UVM_PGA_USERESERVE | UVM_PGA_ZERO);
2912 if (pg == NULL) {
2913 panic("pmap_kenter_pa: no free pages");
2914 }
2915 pg->flags &= ~PG_BUSY; /* never busy */
2916
2917 /* Wire this page table into the L1. */
2918 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
2919 simple_unlock(&(pmap_kernel()->pm_obj.vmobjlock));
2920 }
2921 pte = vtopte(va);
2922 KASSERT(!pmap_pte_v(pte));
2923 *pte = L2_PTE(pa, AP_KRW);
2924 }
2925
2926 void
2927 pmap_kremove(va, len)
2928 vaddr_t va;
2929 vsize_t len;
2930 {
2931 pt_entry_t *pte;
2932
2933 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2934
2935 /*
2936 * We assume that we will only be called with small
2937 * regions of memory.
2938 */
2939
2940 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2941 pte = vtopte(va);
2942 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2943 *pte = 0;
2944 cpu_tlb_flushID_SE(va);
2945 }
2946 }
2947
2948 /*
2949 * pmap_page_protect:
2950 *
2951 * Lower the permission for all mappings to a given page.
2952 */
2953
2954 void
2955 pmap_page_protect(pg, prot)
2956 struct vm_page *pg;
2957 vm_prot_t prot;
2958 {
2959 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2960
2961 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
2962
2963 switch(prot) {
2964 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2965 case VM_PROT_READ|VM_PROT_WRITE:
2966 return;
2967
2968 case VM_PROT_READ:
2969 case VM_PROT_READ|VM_PROT_EXECUTE:
2970 pmap_copy_on_write(pa);
2971 break;
2972
2973 default:
2974 pmap_remove_all(pa);
2975 break;
2976 }
2977 }
2978
2979
2980 /*
2981 * Routine: pmap_unwire
2982 * Function: Clear the wired attribute for a map/virtual-address
2983 * pair.
2984 * In/out conditions:
2985 * The mapping must already exist in the pmap.
2986 */
2987
2988 void
2989 pmap_unwire(pmap, va)
2990 struct pmap *pmap;
2991 vaddr_t va;
2992 {
2993 pt_entry_t *pte;
2994 paddr_t pa;
2995 int bank, off;
2996 struct pv_head *pvh;
2997
2998 /*
2999 * Make sure pmap is valid. -dct
3000 */
3001 if (pmap == NULL)
3002 return;
3003
3004 /* Get the pte */
3005 pte = pmap_pte(pmap, va);
3006 if (!pte)
3007 return;
3008
3009 /* Extract the physical address of the page */
3010 pa = pmap_pte_pa(pte);
3011
3012 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3013 return;
3014 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3015 simple_lock(&pvh->pvh_lock);
3016 /* Update the wired bit in the pv entry for this page. */
3017 (void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
3018 simple_unlock(&pvh->pvh_lock);
3019 }
3020
3021 /*
3022 * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
3023 *
3024 * Return the pointer to a page table entry corresponding to the supplied
3025 * virtual address.
3026 *
3027 * The page directory is first checked to make sure that a page table
3028 * for the address in question exists and if it does a pointer to the
3029 * entry is returned.
3030 *
3031 * The way this works is that that the kernel page tables are mapped
3032 * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
3033 * This allows page tables to be located quickly.
3034 */
3035 pt_entry_t *
3036 pmap_pte(pmap, va)
3037 struct pmap *pmap;
3038 vaddr_t va;
3039 {
3040 pt_entry_t *ptp;
3041 pt_entry_t *result;
3042
3043 /* The pmap must be valid */
3044 if (!pmap)
3045 return(NULL);
3046
3047 /* Return the address of the pte */
3048 PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
3049 pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
3050
3051 /* Do we have a valid pde ? If not we don't have a page table */
3052 if (!pmap_pde_page(pmap_pde(pmap, va))) {
3053 PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
3054 pmap_pde(pmap, va)));
3055 return(NULL);
3056 }
3057
3058 PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
3059 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3060 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3061 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
3062
3063 /*
3064 * If the pmap is the kernel pmap or the pmap is the active one
3065 * then we can just return a pointer to entry relative to
3066 * PROCESS_PAGE_TBLS_BASE.
3067 * Otherwise we need to map the page tables to an alternative
3068 * address and reference them there.
3069 */
3070 if (pmap == pmap_kernel() || pmap->pm_pptpt
3071 == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3072 + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
3073 ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3074 ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3075 } else {
3076 struct proc *p = curproc;
3077
3078 /* If we don't have a valid curproc use proc0 */
3079 /* Perhaps we should just use kernel_pmap instead */
3080 if (p == NULL)
3081 p = &proc0;
3082 #ifdef DIAGNOSTIC
3083 /*
3084 * The pmap should always be valid for the process so
3085 * panic if it is not.
3086 */
3087 if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
3088 printf("pmap_pte: va=%08lx p=%p vm=%p\n",
3089 va, p, p->p_vmspace);
3090 console_debugger();
3091 }
3092 /*
3093 * The pmap for the current process should be mapped. If it
3094 * is not then we have a problem.
3095 */
3096 if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
3097 (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3098 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3099 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3100 printf("pmap pagetable = P%08lx current = P%08x ",
3101 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3102 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3103 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
3104 PG_FRAME));
3105 printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
3106 panic("pmap_pte: current and pmap mismatch\n");
3107 }
3108 #endif
3109
3110 ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3111 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3112 pmap->pm_pptpt, FALSE);
3113 cpu_tlb_flushD();
3114 cpu_cpwait();
3115 }
3116 PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
3117 ((va >> (PGSHIFT-2)) & ~3)));
3118 result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
3119 return(result);
3120 }
3121
3122 /*
3123 * Routine: pmap_extract
3124 * Function:
3125 * Extract the physical page address associated
3126 * with the given map/virtual_address pair.
3127 */
3128 boolean_t
3129 pmap_extract(pmap, va, pap)
3130 struct pmap *pmap;
3131 vaddr_t va;
3132 paddr_t *pap;
3133 {
3134 pd_entry_t *pde;
3135 pt_entry_t *pte, *ptes;
3136 paddr_t pa;
3137 boolean_t rv = TRUE;
3138
3139 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
3140
3141 /*
3142 * Get the pte for this virtual address.
3143 */
3144 pde = pmap_pde(pmap, va);
3145 ptes = pmap_map_ptes(pmap);
3146 pte = &ptes[arm_byte_to_page(va)];
3147
3148 if (pmap_pde_section(pde)) {
3149 pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
3150 goto out;
3151 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3152 rv = FALSE;
3153 goto out;
3154 }
3155
3156 if ((*pte & L2_MASK) == L2_LPAGE) {
3157 /* Extract the physical address from the pte */
3158 pa = *pte & ~(L2_LPAGE_SIZE - 1);
3159
3160 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
3161 (pa | (va & (L2_LPAGE_SIZE - 1)))));
3162
3163 if (pap != NULL)
3164 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
3165 goto out;
3166 }
3167
3168 /* Extract the physical address from the pte */
3169 pa = pmap_pte_pa(pte);
3170
3171 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
3172 (pa | (va & ~PG_FRAME))));
3173
3174 if (pap != NULL)
3175 *pap = pa | (va & ~PG_FRAME);
3176 out:
3177 pmap_unmap_ptes(pmap);
3178 return (rv);
3179 }
3180
3181
3182 /*
3183 * Copy the range specified by src_addr/len from the source map to the
3184 * range dst_addr/len in the destination map.
3185 *
3186 * This routine is only advisory and need not do anything.
3187 */
3188
3189 void
3190 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
3191 struct pmap *dst_pmap;
3192 struct pmap *src_pmap;
3193 vaddr_t dst_addr;
3194 vsize_t len;
3195 vaddr_t src_addr;
3196 {
3197 PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
3198 dst_pmap, src_pmap, dst_addr, len, src_addr));
3199 }
3200
3201 #if defined(PMAP_DEBUG)
3202 void
3203 pmap_dump_pvlist(phys, m)
3204 vaddr_t phys;
3205 char *m;
3206 {
3207 struct pv_head *pvh;
3208 struct pv_entry *pv;
3209 int bank, off;
3210
3211 if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
3212 printf("INVALID PA\n");
3213 return;
3214 }
3215 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3216 simple_lock(&pvh->pvh_lock);
3217 printf("%s %08lx:", m, phys);
3218 if (pvh->pvh_list == NULL) {
3219 printf(" no mappings\n");
3220 return;
3221 }
3222
3223 for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
3224 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3225 pv->pv_va, pv->pv_flags);
3226
3227 printf("\n");
3228 simple_unlock(&pvh->pvh_lock);
3229 }
3230
3231 #endif /* PMAP_DEBUG */
3232
3233 __inline static boolean_t
3234 pmap_testbit(pa, setbits)
3235 paddr_t pa;
3236 unsigned int setbits;
3237 {
3238 int bank, off;
3239
3240 PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
3241
3242 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3243 return(FALSE);
3244
3245 /*
3246 * Check saved info only
3247 */
3248 if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
3249 PDEBUG(0, printf("pmap_attributes = %02x\n",
3250 vm_physmem[bank].pmseg.attrs[off]));
3251 return(TRUE);
3252 }
3253
3254 return(FALSE);
3255 }
3256
3257 static pt_entry_t *
3258 pmap_map_ptes(struct pmap *pmap)
3259 {
3260 struct proc *p;
3261
3262 /* the kernel's pmap is always accessible */
3263 if (pmap == pmap_kernel()) {
3264 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
3265 }
3266
3267 if (pmap_is_curpmap(pmap)) {
3268 simple_lock(&pmap->pm_obj.vmobjlock);
3269 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3270 }
3271
3272 p = curproc;
3273
3274 if (p == NULL)
3275 p = &proc0;
3276
3277 /* need to lock both curpmap and pmap: use ordered locking */
3278 if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
3279 simple_lock(&pmap->pm_obj.vmobjlock);
3280 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3281 } else {
3282 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3283 simple_lock(&pmap->pm_obj.vmobjlock);
3284 }
3285
3286 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3287 pmap->pm_pptpt, FALSE);
3288 cpu_tlb_flushD();
3289 cpu_cpwait();
3290 return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3291 }
3292
3293 /*
3294 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3295 */
3296
3297 static void
3298 pmap_unmap_ptes(pmap)
3299 struct pmap *pmap;
3300 {
3301 if (pmap == pmap_kernel()) {
3302 return;
3303 }
3304 if (pmap_is_curpmap(pmap)) {
3305 simple_unlock(&pmap->pm_obj.vmobjlock);
3306 } else {
3307 simple_unlock(&pmap->pm_obj.vmobjlock);
3308 simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3309 }
3310 }
3311
3312 /*
3313 * Modify pte bits for all ptes corresponding to the given physical address.
3314 * We use `maskbits' rather than `clearbits' because we're always passing
3315 * constants and the latter would require an extra inversion at run-time.
3316 */
3317
3318 static void
3319 pmap_clearbit(pa, maskbits)
3320 paddr_t pa;
3321 unsigned int maskbits;
3322 {
3323 struct pv_entry *pv;
3324 struct pv_head *pvh;
3325 pt_entry_t *pte;
3326 vaddr_t va;
3327 int bank, off, tlbentry;
3328
3329 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3330 pa, maskbits));
3331
3332 tlbentry = 0;
3333
3334 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3335 return;
3336 PMAP_HEAD_TO_MAP_LOCK();
3337 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3338 simple_lock(&pvh->pvh_lock);
3339
3340 /*
3341 * Clear saved attributes (modify, reference)
3342 */
3343 vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
3344
3345 if (pvh->pvh_list == NULL) {
3346 simple_unlock(&pvh->pvh_lock);
3347 PMAP_HEAD_TO_MAP_UNLOCK();
3348 return;
3349 }
3350
3351 /*
3352 * Loop over all current mappings setting/clearing as appropos
3353 */
3354 for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
3355 va = pv->pv_va;
3356 pv->pv_flags &= ~maskbits;
3357 pte = pmap_pte(pv->pv_pmap, va);
3358 KASSERT(pte != NULL);
3359 if (maskbits & (PT_Wr|PT_M)) {
3360 if ((pv->pv_flags & PT_NC)) {
3361 /*
3362 * Entry is not cacheable: reenable
3363 * the cache, nothing to flush
3364 *
3365 * Don't turn caching on again if this
3366 * is a modified emulation. This
3367 * would be inconsitent with the
3368 * settings created by
3369 * pmap_vac_me_harder().
3370 *
3371 * There's no need to call
3372 * pmap_vac_me_harder() here: all
3373 * pages are loosing their write
3374 * permission.
3375 *
3376 */
3377 if (maskbits & PT_Wr) {
3378 *pte |= pte_cache_mode;
3379 pv->pv_flags &= ~PT_NC;
3380 }
3381 } else if (pmap_is_curpmap(pv->pv_pmap))
3382 /*
3383 * Entry is cacheable: check if pmap is
3384 * current if it is flush it,
3385 * otherwise it won't be in the cache
3386 */
3387 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3388
3389 /* make the pte read only */
3390 *pte &= ~PT_AP(AP_W);
3391 }
3392
3393 if (maskbits & PT_H)
3394 *pte = (*pte & ~L2_MASK) | L2_INVAL;
3395
3396 if (pmap_is_curpmap(pv->pv_pmap))
3397 /*
3398 * if we had cacheable pte's we'd clean the
3399 * pte out to memory here
3400 *
3401 * flush tlb entry as it's in the current pmap
3402 */
3403 cpu_tlb_flushID_SE(pv->pv_va);
3404 }
3405 cpu_cpwait();
3406
3407 simple_unlock(&pvh->pvh_lock);
3408 PMAP_HEAD_TO_MAP_UNLOCK();
3409 }
3410
3411
3412 boolean_t
3413 pmap_clear_modify(pg)
3414 struct vm_page *pg;
3415 {
3416 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3417 boolean_t rv;
3418
3419 PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
3420 rv = pmap_testbit(pa, PT_M);
3421 pmap_clearbit(pa, PT_M);
3422 return rv;
3423 }
3424
3425
3426 boolean_t
3427 pmap_clear_reference(pg)
3428 struct vm_page *pg;
3429 {
3430 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3431 boolean_t rv;
3432
3433 PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
3434 rv = pmap_testbit(pa, PT_H);
3435 pmap_clearbit(pa, PT_H);
3436 return rv;
3437 }
3438
3439
3440 void
3441 pmap_copy_on_write(pa)
3442 paddr_t pa;
3443 {
3444 PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
3445 pmap_clearbit(pa, PT_Wr);
3446 }
3447
3448
3449 boolean_t
3450 pmap_is_modified(pg)
3451 struct vm_page *pg;
3452 {
3453 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3454 boolean_t result;
3455
3456 result = pmap_testbit(pa, PT_M);
3457 PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
3458 return (result);
3459 }
3460
3461
3462 boolean_t
3463 pmap_is_referenced(pg)
3464 struct vm_page *pg;
3465 {
3466 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3467 boolean_t result;
3468
3469 result = pmap_testbit(pa, PT_H);
3470 PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
3471 return (result);
3472 }
3473
3474
3475 int
3476 pmap_modified_emulation(pmap, va)
3477 struct pmap *pmap;
3478 vaddr_t va;
3479 {
3480 pt_entry_t *pte;
3481 paddr_t pa;
3482 int bank, off;
3483 struct pv_head *pvh;
3484 u_int flags;
3485
3486 PDEBUG(2, printf("pmap_modified_emulation\n"));
3487
3488 /* Get the pte */
3489 pte = pmap_pte(pmap, va);
3490 if (!pte) {
3491 PDEBUG(2, printf("no pte\n"));
3492 return(0);
3493 }
3494
3495 PDEBUG(1, printf("*pte=%08x\n", *pte));
3496
3497 /* Check for a zero pte */
3498 if (*pte == 0)
3499 return(0);
3500
3501 /* This can happen if user code tries to access kernel memory. */
3502 if ((*pte & PT_AP(AP_W)) != 0)
3503 return (0);
3504
3505 /* Extract the physical address of the page */
3506 pa = pmap_pte_pa(pte);
3507 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3508 return(0);
3509
3510 PMAP_HEAD_TO_MAP_LOCK();
3511 /* Get the current flags for this page. */
3512 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3513 /* XXX: needed if we hold head->map lock? */
3514 simple_lock(&pvh->pvh_lock);
3515
3516 flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
3517 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3518
3519 /*
3520 * Do the flags say this page is writable ? If not then it is a
3521 * genuine write fault. If yes then the write fault is our fault
3522 * as we did not reflect the write access in the PTE. Now we know
3523 * a write has occurred we can correct this and also set the
3524 * modified bit
3525 */
3526 if (~flags & PT_Wr) {
3527 simple_unlock(&pvh->pvh_lock);
3528 PMAP_HEAD_TO_MAP_UNLOCK();
3529 return(0);
3530 }
3531
3532 PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
3533 va, pte, *pte));
3534 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
3535
3536 /*
3537 * Re-enable write permissions for the page. No need to call
3538 * pmap_vac_me_harder(), since this is just a
3539 * modified-emulation fault, and the PT_Wr bit isn't changing. We've
3540 * already set the cacheable bits based on the assumption that we
3541 * can write to this page.
3542 */
3543 *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3544 PDEBUG(0, printf("->(%08x)\n", *pte));
3545
3546 simple_unlock(&pvh->pvh_lock);
3547 PMAP_HEAD_TO_MAP_UNLOCK();
3548 /* Return, indicating the problem has been dealt with */
3549 cpu_tlb_flushID_SE(va);
3550 cpu_cpwait();
3551 return(1);
3552 }
3553
3554
3555 int
3556 pmap_handled_emulation(pmap, va)
3557 struct pmap *pmap;
3558 vaddr_t va;
3559 {
3560 pt_entry_t *pte;
3561 paddr_t pa;
3562 int bank, off;
3563
3564 PDEBUG(2, printf("pmap_handled_emulation\n"));
3565
3566 /* Get the pte */
3567 pte = pmap_pte(pmap, va);
3568 if (!pte) {
3569 PDEBUG(2, printf("no pte\n"));
3570 return(0);
3571 }
3572
3573 PDEBUG(1, printf("*pte=%08x\n", *pte));
3574
3575 /* Check for a zero pte */
3576 if (*pte == 0)
3577 return(0);
3578
3579 /* This can happen if user code tries to access kernel memory. */
3580 if ((*pte & L2_MASK) != L2_INVAL)
3581 return (0);
3582
3583 /* Extract the physical address of the page */
3584 pa = pmap_pte_pa(pte);
3585 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3586 return(0);
3587
3588 /*
3589 * Ok we just enable the pte and mark the attibs as handled
3590 */
3591 PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
3592 va, pte, *pte));
3593 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
3594 *pte = (*pte & ~L2_MASK) | L2_SPAGE;
3595 PDEBUG(0, printf("->(%08x)\n", *pte));
3596
3597 /* Return, indicating the problem has been dealt with */
3598 cpu_tlb_flushID_SE(va);
3599 cpu_cpwait();
3600 return(1);
3601 }
3602
3603
3604
3605
3606 /*
3607 * pmap_collect: free resources held by a pmap
3608 *
3609 * => optional function.
3610 * => called when a process is swapped out to free memory.
3611 */
3612
3613 void
3614 pmap_collect(pmap)
3615 struct pmap *pmap;
3616 {
3617 }
3618
3619 /*
3620 * Routine: pmap_procwr
3621 *
3622 * Function:
3623 * Synchronize caches corresponding to [addr, addr+len) in p.
3624 *
3625 */
3626 void
3627 pmap_procwr(p, va, len)
3628 struct proc *p;
3629 vaddr_t va;
3630 int len;
3631 {
3632 /* We only need to do anything if it is the current process. */
3633 if (p == curproc)
3634 cpu_icache_sync_range(va, len);
3635 }
3636 /*
3637 * PTP functions
3638 */
3639
3640 /*
3641 * pmap_steal_ptp: Steal a PTP from somewhere else.
3642 *
3643 * This is just a placeholder, for now we never steal.
3644 */
3645
3646 static struct vm_page *
3647 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
3648 {
3649 return (NULL);
3650 }
3651
3652 /*
3653 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3654 *
3655 * => pmap should NOT be pmap_kernel()
3656 * => pmap should be locked
3657 */
3658
3659 static struct vm_page *
3660 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3661 {
3662 struct vm_page *ptp;
3663
3664 if (pmap_pde_page(pmap_pde(pmap, va))) {
3665
3666 /* valid... check hint (saves us a PA->PG lookup) */
3667 #if 0
3668 if (pmap->pm_ptphint &&
3669 ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
3670 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3671 return (pmap->pm_ptphint);
3672 #endif
3673 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3674 #ifdef DIAGNOSTIC
3675 if (ptp == NULL)
3676 panic("pmap_get_ptp: unmanaged user PTP");
3677 #endif
3678 // pmap->pm_ptphint = ptp;
3679 return(ptp);
3680 }
3681
3682 /* allocate a new PTP (updates ptphint) */
3683 return(pmap_alloc_ptp(pmap, va, just_try));
3684 }
3685
3686 /*
3687 * pmap_alloc_ptp: allocate a PTP for a PMAP
3688 *
3689 * => pmap should already be locked by caller
3690 * => we use the ptp's wire_count to count the number of active mappings
3691 * in the PTP (we start it at one to prevent any chance this PTP
3692 * will ever leak onto the active/inactive queues)
3693 */
3694
3695 /*__inline */ static struct vm_page *
3696 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3697 {
3698 struct vm_page *ptp;
3699
3700 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3701 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3702 if (ptp == NULL) {
3703 if (just_try)
3704 return (NULL);
3705
3706 ptp = pmap_steal_ptp(pmap, va);
3707
3708 if (ptp == NULL)
3709 return (NULL);
3710 /* Stole a page, zero it. */
3711 pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
3712 }
3713
3714 /* got one! */
3715 ptp->flags &= ~PG_BUSY; /* never busy */
3716 ptp->wire_count = 1; /* no mappings yet */
3717 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3718 pmap->pm_stats.resident_count++; /* count PTP as resident */
3719 // pmap->pm_ptphint = ptp;
3720 return (ptp);
3721 }
3722
3723 /************************ Bootstrapping routines ****************************/
3724
3725 /*
3726 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3727 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3728 * find them as necessary.
3729 *
3730 * Note that the data on this list is not valid after initarm() returns.
3731 */
3732 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3733
3734 static vaddr_t
3735 kernel_pt_lookup(paddr_t pa)
3736 {
3737 pv_addr_t *pv;
3738
3739 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3740 if (pv->pv_pa == pa)
3741 return (pv->pv_va);
3742 }
3743 return (0);
3744 }
3745
3746 /*
3747 * pmap_map_section:
3748 *
3749 * Create a single section mapping.
3750 */
3751 void
3752 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3753 {
3754 pd_entry_t *pde = (pd_entry_t *) l1pt;
3755 pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3756 pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3757
3758 KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
3759
3760 pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
3761 }
3762
3763 /*
3764 * pmap_map_entry:
3765 *
3766 * Create a single page mapping.
3767 */
3768 void
3769 pmap_map_entry(vaddr_t l2pt, vaddr_t va, paddr_t pa, int prot, int cache)
3770 {
3771 pt_entry_t *pte = (pt_entry_t *) l2pt;
3772 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3773 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3774
3775 KASSERT(((va | pa) & PGOFSET) == 0);
3776
3777 #ifdef cats /* XXXJRT */
3778 pte[(va >> PGSHIFT) & 0x7ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
3779 #else
3780 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
3781 #endif
3782 }
3783
3784 /*
3785 * pmap_link_l2pt:
3786 *
3787 * Link the L2 page table specified by "pa" into the L1
3788 * page table at the slot for "va".
3789 */
3790 void
3791 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3792 {
3793 pd_entry_t *pde = (pd_entry_t *) l1pt;
3794 u_int slot = va >> PDSHIFT;
3795
3796 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3797
3798 pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
3799 pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
3800 pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
3801 pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
3802
3803 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3804 }
3805
3806 /*
3807 * pmap_map_chunk:
3808 *
3809 * Map a chunk of memory using the most efficient mappings
3810 * possible (section, large page, small page) into the
3811 * provided L1 and L2 tables at the specified virtual address.
3812 */
3813 vsize_t
3814 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3815 int prot, int cache)
3816 {
3817 pd_entry_t *pde = (pd_entry_t *) l1pt;
3818 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3819 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3820 pt_entry_t *pte;
3821 vsize_t resid;
3822 int i;
3823
3824 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3825
3826 if (l1pt == 0)
3827 panic("pmap_map_chunk: no L1 table provided");
3828
3829 #ifdef VERBOSE_INIT_ARM
3830 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3831 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3832 #endif
3833
3834 size = resid;
3835
3836 while (resid > 0) {
3837 /* See if we can use a section mapping. */
3838 if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
3839 resid >= L1_SEC_SIZE) {
3840 #ifdef VERBOSE_INIT_ARM
3841 printf("S");
3842 #endif
3843 pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
3844 va += L1_SEC_SIZE;
3845 pa += L1_SEC_SIZE;
3846 resid -= L1_SEC_SIZE;
3847 continue;
3848 }
3849
3850 /*
3851 * Ok, we're going to use an L2 table. Make sure
3852 * one is actually in the corresponding L1 slot
3853 * for the current VA.
3854 */
3855 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3856 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3857
3858 pte = (pt_entry_t *)
3859 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3860 if (pte == NULL)
3861 panic("pmap_map_chunk: can't find L2 table for VA"
3862 "0x%08lx", va);
3863
3864 /* See if we can use a L2 large page mapping. */
3865 if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
3866 resid >= L2_LPAGE_SIZE) {
3867 #ifdef VERBOSE_INIT_ARM
3868 printf("L");
3869 #endif
3870 for (i = 0; i < 16; i++) {
3871 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3872 L2_LPTE(pa, ap, fl);
3873 }
3874 va += L2_LPAGE_SIZE;
3875 pa += L2_LPAGE_SIZE;
3876 resid -= L2_LPAGE_SIZE;
3877 continue;
3878 }
3879
3880 /* Use a small page mapping. */
3881 #ifdef VERBOSE_INIT_ARM
3882 printf("P");
3883 #endif
3884 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
3885 va += NBPG;
3886 pa += NBPG;
3887 resid -= NBPG;
3888 }
3889 #ifdef VERBOSE_INIT_ARM
3890 printf("\n");
3891 #endif
3892 return (size);
3893 }
3894