pmap.c revision 1.48 1 /* $NetBSD: pmap.c,v 1.48 2002/03/03 11:22:59 chris Exp $ */
2
3 /*
4 * Copyright (c) 2001 Richard Earnshaw
5 * Copyright (c) 2001 Christopher Gilbert
6 * All rights reserved.
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the company nor the name of the author may be used to
14 * endorse or promote products derived from this software without specific
15 * prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
21 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*-
31 * Copyright (c) 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the NetBSD
48 * Foundation, Inc. and its contributors.
49 * 4. Neither the name of The NetBSD Foundation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66 /*
67 * Copyright (c) 1994-1998 Mark Brinicombe.
68 * Copyright (c) 1994 Brini.
69 * All rights reserved.
70 *
71 * This code is derived from software written for Brini by Mark Brinicombe
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by Mark Brinicombe.
84 * 4. The name of the author may not be used to endorse or promote products
85 * derived from this software without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
88 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
89 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
90 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
91 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
92 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
93 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
94 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
95 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
96 *
97 * RiscBSD kernel project
98 *
99 * pmap.c
100 *
101 * Machine dependant vm stuff
102 *
103 * Created : 20/09/94
104 */
105
106 /*
107 * Performance improvements, UVM changes, overhauls and part-rewrites
108 * were contributed by Neil A. Carson <neil (at) causality.com>.
109 */
110
111 /*
112 * The dram block info is currently referenced from the bootconfig.
113 * This should be placed in a separate structure.
114 */
115
116 /*
117 * Special compilation symbols
118 * PMAP_DEBUG - Build in pmap_debug_level code
119 */
120
121 /* Include header files */
122
123 #include "opt_pmap_debug.h"
124 #include "opt_ddb.h"
125
126 #include <sys/types.h>
127 #include <sys/param.h>
128 #include <sys/kernel.h>
129 #include <sys/systm.h>
130 #include <sys/proc.h>
131 #include <sys/malloc.h>
132 #include <sys/user.h>
133 #include <sys/pool.h>
134 #include <sys/cdefs.h>
135
136 #include <uvm/uvm.h>
137
138 #include <machine/bootconfig.h>
139 #include <machine/bus.h>
140 #include <machine/pmap.h>
141 #include <machine/pcb.h>
142 #include <machine/param.h>
143 #include <arm/arm32/katelib.h>
144
145 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.48 2002/03/03 11:22:59 chris Exp $");
146 #ifdef PMAP_DEBUG
147 #define PDEBUG(_lev_,_stat_) \
148 if (pmap_debug_level >= (_lev_)) \
149 ((_stat_))
150 int pmap_debug_level = -2;
151 void pmap_dump_pvlist(vaddr_t phys, char *m);
152
153 /*
154 * for switching to potentially finer grained debugging
155 */
156 #define PDB_FOLLOW 0x0001
157 #define PDB_INIT 0x0002
158 #define PDB_ENTER 0x0004
159 #define PDB_REMOVE 0x0008
160 #define PDB_CREATE 0x0010
161 #define PDB_PTPAGE 0x0020
162 #define PDB_GROWKERN 0x0040
163 #define PDB_BITS 0x0080
164 #define PDB_COLLECT 0x0100
165 #define PDB_PROTECT 0x0200
166 #define PDB_MAP_L1 0x0400
167 #define PDB_BOOTSTRAP 0x1000
168 #define PDB_PARANOIA 0x2000
169 #define PDB_WIRING 0x4000
170 #define PDB_PVDUMP 0x8000
171
172 int debugmap = 0;
173 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
174 #define NPDEBUG(_lev_,_stat_) \
175 if (pmapdebug & (_lev_)) \
176 ((_stat_))
177
178 #else /* PMAP_DEBUG */
179 #define PDEBUG(_lev_,_stat_) /* Nothing */
180 #define NPDEBUG(_lev_,_stat_) /* Nothing */
181 #endif /* PMAP_DEBUG */
182
183 struct pmap kernel_pmap_store;
184
185 /*
186 * linked list of all non-kernel pmaps
187 */
188
189 static struct pmap_head pmaps;
190
191 /*
192 * pool that pmap structures are allocated from
193 */
194
195 struct pool pmap_pmap_pool;
196
197 pagehook_t page_hook0;
198 pagehook_t page_hook1;
199 char *memhook;
200 pt_entry_t msgbufpte;
201 extern caddr_t msgbufaddr;
202
203 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
204 /*
205 * locking data structures
206 */
207
208 static struct lock pmap_main_lock;
209 static struct simplelock pvalloc_lock;
210 static struct simplelock pmaps_lock;
211 #ifdef LOCKDEBUG
212 #define PMAP_MAP_TO_HEAD_LOCK() \
213 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
214 #define PMAP_MAP_TO_HEAD_UNLOCK() \
215 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
216
217 #define PMAP_HEAD_TO_MAP_LOCK() \
218 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
219 #define PMAP_HEAD_TO_MAP_UNLOCK() \
220 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
221 #else
222 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
223 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
224 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
226 #endif /* LOCKDEBUG */
227
228 /*
229 * pv_page management structures: locked by pvalloc_lock
230 */
231
232 TAILQ_HEAD(pv_pagelist, pv_page);
233 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
234 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
235 static int pv_nfpvents; /* # of free pv entries */
236 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
237 static vaddr_t pv_cachedva; /* cached VA for later use */
238
239 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
240 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
241 /* high water mark */
242
243 /*
244 * local prototypes
245 */
246
247 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
248 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
249 #define ALLOCPV_NEED 0 /* need PV now */
250 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
251 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
252 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
253 static void pmap_enter_pv __P((struct pv_head *,
254 struct pv_entry *, struct pmap *,
255 vaddr_t, struct vm_page *, int));
256 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
257 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pv_doit __P((struct pv_entry *));
259 static void pmap_free_pvpage __P((void));
260 static boolean_t pmap_is_curpmap __P((struct pmap *));
261 static struct pv_entry *pmap_remove_pv __P((struct pv_head *, struct pmap *,
262 vaddr_t));
263 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
264 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
265
266 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct pv_head *,
267 u_int, u_int));
268
269 static void pmap_free_l1pt __P((struct l1pt *));
270 static int pmap_allocpagedir __P((struct pmap *));
271 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
272 static struct pv_head *pmap_find_pvh __P((paddr_t));
273 static void pmap_remove_all __P((paddr_t));
274
275
276 vsize_t npages;
277
278 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
279 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
280 __inline static void pmap_clearbit __P((paddr_t, unsigned int));
281 __inline static boolean_t pmap_testbit __P((paddr_t, unsigned int));
282
283 extern paddr_t physical_start;
284 extern paddr_t physical_freestart;
285 extern paddr_t physical_end;
286 extern paddr_t physical_freeend;
287 extern unsigned int free_pages;
288 extern int max_processes;
289
290 vaddr_t virtual_start;
291 vaddr_t virtual_end;
292 vaddr_t pmap_curmaxkvaddr;
293
294 vaddr_t avail_start;
295 vaddr_t avail_end;
296
297 extern pv_addr_t systempage;
298
299 #define ALLOC_PAGE_HOOK(x, s) \
300 x.va = virtual_start; \
301 x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
302 virtual_start += s;
303
304 /* Variables used by the L1 page table queue code */
305 SIMPLEQ_HEAD(l1pt_queue, l1pt);
306 struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
307 int l1pt_static_queue_count; /* items in the static l1 queue */
308 int l1pt_static_create_count; /* static l1 items created */
309 struct l1pt_queue l1pt_queue; /* head of our l1 queue */
310 int l1pt_queue_count; /* items in the l1 queue */
311 int l1pt_create_count; /* stat - L1's create count */
312 int l1pt_reuse_count; /* stat - L1's reused count */
313
314 /* Local function prototypes (not used outside this file) */
315 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
316 void pmap_copy_on_write __P((paddr_t pa));
317 void pmap_pinit __P((struct pmap *));
318 void pmap_freepagedir __P((struct pmap *));
319
320 /* Other function prototypes */
321 extern void bzero_page __P((vaddr_t));
322 extern void bcopy_page __P((vaddr_t, vaddr_t));
323
324 struct l1pt *pmap_alloc_l1pt __P((void));
325 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
326 vaddr_t l2pa, boolean_t));
327
328 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
329 static void pmap_unmap_ptes __P((struct pmap *));
330
331 __inline static void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
332 pt_entry_t *, boolean_t));
333 static void pmap_vac_me_kpmap __P((struct pmap *, struct pv_head *,
334 pt_entry_t *, boolean_t));
335 static void pmap_vac_me_user __P((struct pmap *, struct pv_head *,
336 pt_entry_t *, boolean_t));
337
338 /*
339 * Cache enable bits in PTE to use on pages that are cacheable.
340 * On most machines this is cacheable/bufferable, but on some, eg arm10, we
341 * can chose between write-through and write-back cacheing.
342 */
343 pt_entry_t pte_cache_mode = (PT_C | PT_B);
344
345 /*
346 * real definition of pv_entry.
347 */
348
349 struct pv_entry {
350 struct pv_entry *pv_next; /* next pv_entry */
351 struct pmap *pv_pmap; /* pmap where mapping lies */
352 vaddr_t pv_va; /* virtual address for mapping */
353 int pv_flags; /* flags */
354 struct vm_page *pv_ptp; /* vm_page for the ptp */
355 };
356
357 /*
358 * pv_entrys are dynamically allocated in chunks from a single page.
359 * we keep track of how many pv_entrys are in use for each page and
360 * we can free pv_entry pages if needed. there is one lock for the
361 * entire allocation system.
362 */
363
364 struct pv_page_info {
365 TAILQ_ENTRY(pv_page) pvpi_list;
366 struct pv_entry *pvpi_pvfree;
367 int pvpi_nfree;
368 };
369
370 /*
371 * number of pv_entry's in a pv_page
372 * (note: won't work on systems where NPBG isn't a constant)
373 */
374
375 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
376 sizeof(struct pv_entry))
377
378 /*
379 * a pv_page: where pv_entrys are allocated from
380 */
381
382 struct pv_page {
383 struct pv_page_info pvinfo;
384 struct pv_entry pvents[PVE_PER_PVPAGE];
385 };
386
387 #ifdef MYCROFT_HACK
388 int mycroft_hack = 0;
389 #endif
390
391 /* Function to set the debug level of the pmap code */
392
393 #ifdef PMAP_DEBUG
394 void
395 pmap_debug(level)
396 int level;
397 {
398 pmap_debug_level = level;
399 printf("pmap_debug: level=%d\n", pmap_debug_level);
400 }
401 #endif /* PMAP_DEBUG */
402
403 __inline static boolean_t
404 pmap_is_curpmap(struct pmap *pmap)
405 {
406 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
407 || (pmap == pmap_kernel()))
408 return (TRUE);
409 return (FALSE);
410 }
411 #include "isadma.h"
412
413 #if NISADMA > 0
414 /*
415 * Used to protect memory for ISA DMA bounce buffers. If, when loading
416 * pages into the system, memory intersects with any of these ranges,
417 * the intersecting memory will be loaded into a lower-priority free list.
418 */
419 bus_dma_segment_t *pmap_isa_dma_ranges;
420 int pmap_isa_dma_nranges;
421
422 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
423 paddr_t *, psize_t *));
424
425 /*
426 * Check if a memory range intersects with an ISA DMA range, and
427 * return the page-rounded intersection if it does. The intersection
428 * will be placed on a lower-priority free list.
429 */
430 boolean_t
431 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
432 paddr_t pa;
433 psize_t size;
434 paddr_t *pap;
435 psize_t *sizep;
436 {
437 bus_dma_segment_t *ds;
438 int i;
439
440 if (pmap_isa_dma_ranges == NULL)
441 return (FALSE);
442
443 for (i = 0, ds = pmap_isa_dma_ranges;
444 i < pmap_isa_dma_nranges; i++, ds++) {
445 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
446 /*
447 * Beginning of region intersects with this range.
448 */
449 *pap = trunc_page(pa);
450 *sizep = round_page(min(pa + size,
451 ds->ds_addr + ds->ds_len) - pa);
452 return (TRUE);
453 }
454 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
455 /*
456 * End of region intersects with this range.
457 */
458 *pap = trunc_page(ds->ds_addr);
459 *sizep = round_page(min((pa + size) - ds->ds_addr,
460 ds->ds_len));
461 return (TRUE);
462 }
463 }
464
465 /*
466 * No intersection found.
467 */
468 return (FALSE);
469 }
470 #endif /* NISADMA > 0 */
471
472 /*
473 * p v _ e n t r y f u n c t i o n s
474 */
475
476 /*
477 * pv_entry allocation functions:
478 * the main pv_entry allocation functions are:
479 * pmap_alloc_pv: allocate a pv_entry structure
480 * pmap_free_pv: free one pv_entry
481 * pmap_free_pvs: free a list of pv_entrys
482 *
483 * the rest are helper functions
484 */
485
486 /*
487 * pmap_alloc_pv: inline function to allocate a pv_entry structure
488 * => we lock pvalloc_lock
489 * => if we fail, we call out to pmap_alloc_pvpage
490 * => 3 modes:
491 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
492 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
493 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
494 * one now
495 *
496 * "try" is for optional functions like pmap_copy().
497 */
498
499 __inline static struct pv_entry *
500 pmap_alloc_pv(pmap, mode)
501 struct pmap *pmap;
502 int mode;
503 {
504 struct pv_page *pvpage;
505 struct pv_entry *pv;
506
507 simple_lock(&pvalloc_lock);
508
509 if (pv_freepages.tqh_first != NULL) {
510 pvpage = pv_freepages.tqh_first;
511 pvpage->pvinfo.pvpi_nfree--;
512 if (pvpage->pvinfo.pvpi_nfree == 0) {
513 /* nothing left in this one? */
514 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
515 }
516 pv = pvpage->pvinfo.pvpi_pvfree;
517 #ifdef DIAGNOSTIC
518 if (pv == NULL)
519 panic("pmap_alloc_pv: pvpi_nfree off");
520 #endif
521 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
522 pv_nfpvents--; /* took one from pool */
523 } else {
524 pv = NULL; /* need more of them */
525 }
526
527 /*
528 * if below low water mark or we didn't get a pv_entry we try and
529 * create more pv_entrys ...
530 */
531
532 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
533 if (pv == NULL)
534 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
535 mode : ALLOCPV_NEED);
536 else
537 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
538 }
539
540 simple_unlock(&pvalloc_lock);
541 return(pv);
542 }
543
544 /*
545 * pmap_alloc_pvpage: maybe allocate a new pvpage
546 *
547 * if need_entry is false: try and allocate a new pv_page
548 * if need_entry is true: try and allocate a new pv_page and return a
549 * new pv_entry from it. if we are unable to allocate a pv_page
550 * we make a last ditch effort to steal a pv_page from some other
551 * mapping. if that fails, we panic...
552 *
553 * => we assume that the caller holds pvalloc_lock
554 */
555
556 static struct pv_entry *
557 pmap_alloc_pvpage(pmap, mode)
558 struct pmap *pmap;
559 int mode;
560 {
561 struct vm_page *pg;
562 struct pv_page *pvpage;
563 struct pv_entry *pv;
564 int s;
565
566 /*
567 * if we need_entry and we've got unused pv_pages, allocate from there
568 */
569
570 if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
571
572 /* move it to pv_freepages list */
573 pvpage = pv_unusedpgs.tqh_first;
574 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
575 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
576
577 /* allocate a pv_entry */
578 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
579 pv = pvpage->pvinfo.pvpi_pvfree;
580 #ifdef DIAGNOSTIC
581 if (pv == NULL)
582 panic("pmap_alloc_pvpage: pvpi_nfree off");
583 #endif
584 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
585
586 pv_nfpvents--; /* took one from pool */
587 return(pv);
588 }
589
590 /*
591 * see if we've got a cached unmapped VA that we can map a page in.
592 * if not, try to allocate one.
593 */
594
595
596 if (pv_cachedva == 0) {
597 s = splvm();
598 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
599 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
600 splx(s);
601 if (pv_cachedva == 0) {
602 return (NULL);
603 }
604 }
605
606 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
607 UVM_PGA_USERESERVE);
608 if (pg)
609 pg->flags &= ~PG_BUSY; /* never busy */
610
611 if (pg == NULL)
612 return (NULL);
613
614 /*
615 * add a mapping for our new pv_page and free its entrys (save one!)
616 *
617 * NOTE: If we are allocating a PV page for the kernel pmap, the
618 * pmap is already locked! (...but entering the mapping is safe...)
619 */
620
621 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
622 pmap_update(pmap_kernel());
623 pvpage = (struct pv_page *) pv_cachedva;
624 pv_cachedva = 0;
625 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
626 }
627
628 /*
629 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
630 *
631 * => caller must hold pvalloc_lock
632 * => if need_entry is true, we allocate and return one pv_entry
633 */
634
635 static struct pv_entry *
636 pmap_add_pvpage(pvp, need_entry)
637 struct pv_page *pvp;
638 boolean_t need_entry;
639 {
640 int tofree, lcv;
641
642 /* do we need to return one? */
643 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
644
645 pvp->pvinfo.pvpi_pvfree = NULL;
646 pvp->pvinfo.pvpi_nfree = tofree;
647 for (lcv = 0 ; lcv < tofree ; lcv++) {
648 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
649 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
650 }
651 if (need_entry)
652 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
653 else
654 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
655 pv_nfpvents += tofree;
656 return((need_entry) ? &pvp->pvents[lcv] : NULL);
657 }
658
659 /*
660 * pmap_free_pv_doit: actually free a pv_entry
661 *
662 * => do not call this directly! instead use either
663 * 1. pmap_free_pv ==> free a single pv_entry
664 * 2. pmap_free_pvs => free a list of pv_entrys
665 * => we must be holding pvalloc_lock
666 */
667
668 __inline static void
669 pmap_free_pv_doit(pv)
670 struct pv_entry *pv;
671 {
672 struct pv_page *pvp;
673
674 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
675 pv_nfpvents++;
676 pvp->pvinfo.pvpi_nfree++;
677
678 /* nfree == 1 => fully allocated page just became partly allocated */
679 if (pvp->pvinfo.pvpi_nfree == 1) {
680 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
681 }
682
683 /* free it */
684 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
685 pvp->pvinfo.pvpi_pvfree = pv;
686
687 /*
688 * are all pv_page's pv_entry's free? move it to unused queue.
689 */
690
691 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
692 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
693 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
694 }
695 }
696
697 /*
698 * pmap_free_pv: free a single pv_entry
699 *
700 * => we gain the pvalloc_lock
701 */
702
703 __inline static void
704 pmap_free_pv(pmap, pv)
705 struct pmap *pmap;
706 struct pv_entry *pv;
707 {
708 simple_lock(&pvalloc_lock);
709 pmap_free_pv_doit(pv);
710
711 /*
712 * Can't free the PV page if the PV entries were associated with
713 * the kernel pmap; the pmap is already locked.
714 */
715 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
716 pmap != pmap_kernel())
717 pmap_free_pvpage();
718
719 simple_unlock(&pvalloc_lock);
720 }
721
722 /*
723 * pmap_free_pvs: free a list of pv_entrys
724 *
725 * => we gain the pvalloc_lock
726 */
727
728 __inline static void
729 pmap_free_pvs(pmap, pvs)
730 struct pmap *pmap;
731 struct pv_entry *pvs;
732 {
733 struct pv_entry *nextpv;
734
735 simple_lock(&pvalloc_lock);
736
737 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
738 nextpv = pvs->pv_next;
739 pmap_free_pv_doit(pvs);
740 }
741
742 /*
743 * Can't free the PV page if the PV entries were associated with
744 * the kernel pmap; the pmap is already locked.
745 */
746 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
747 pmap != pmap_kernel())
748 pmap_free_pvpage();
749
750 simple_unlock(&pvalloc_lock);
751 }
752
753
754 /*
755 * pmap_free_pvpage: try and free an unused pv_page structure
756 *
757 * => assume caller is holding the pvalloc_lock and that
758 * there is a page on the pv_unusedpgs list
759 * => if we can't get a lock on the kmem_map we try again later
760 * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
761 * that if we can lock the kmem_map then we are not already
762 * holding kmem_object's lock.
763 */
764
765 static void
766 pmap_free_pvpage()
767 {
768 int s;
769 struct vm_map *map;
770 struct vm_map_entry *dead_entries;
771 struct pv_page *pvp;
772
773 s = splvm(); /* protect kmem_map */
774
775 pvp = pv_unusedpgs.tqh_first;
776
777 /*
778 * note: watch out for pv_initpage which is allocated out of
779 * kernel_map rather than kmem_map.
780 */
781 if (pvp == pv_initpage)
782 map = kernel_map;
783 else
784 map = kmem_map;
785
786 if (vm_map_lock_try(map)) {
787
788 /* remove pvp from pv_unusedpgs */
789 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
790
791 /* unmap the page */
792 dead_entries = NULL;
793 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
794 &dead_entries);
795 vm_map_unlock(map);
796
797 if (dead_entries != NULL)
798 uvm_unmap_detach(dead_entries, 0);
799
800 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
801 }
802
803 if (pvp == pv_initpage)
804 /* no more initpage, we've freed it */
805 pv_initpage = NULL;
806
807 splx(s);
808 }
809
810 /*
811 * main pv_entry manipulation functions:
812 * pmap_enter_pv: enter a mapping onto a pv_head list
813 * pmap_remove_pv: remove a mappiing from a pv_head list
814 *
815 * NOTE: pmap_enter_pv expects to lock the pvh itself
816 * pmap_remove_pv expects te caller to lock the pvh before calling
817 */
818
819 /*
820 * pmap_enter_pv: enter a mapping onto a pv_head lst
821 *
822 * => caller should hold the proper lock on pmap_main_lock
823 * => caller should have pmap locked
824 * => we will gain the lock on the pv_head and allocate the new pv_entry
825 * => caller should adjust ptp's wire_count before calling
826 * => caller should not adjust pmap's wire_count
827 */
828
829 __inline static void
830 pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
831 struct pv_head *pvh;
832 struct pv_entry *pve; /* preallocated pve for us to use */
833 struct pmap *pmap;
834 vaddr_t va;
835 struct vm_page *ptp; /* PTP in pmap that maps this VA */
836 int flags;
837 {
838 pve->pv_pmap = pmap;
839 pve->pv_va = va;
840 pve->pv_ptp = ptp; /* NULL for kernel pmap */
841 pve->pv_flags = flags;
842 simple_lock(&pvh->pvh_lock); /* lock pv_head */
843 pve->pv_next = pvh->pvh_list; /* add to ... */
844 pvh->pvh_list = pve; /* ... locked list */
845 simple_unlock(&pvh->pvh_lock); /* unlock, done! */
846 if (pve->pv_flags & PT_W)
847 ++pmap->pm_stats.wired_count;
848 }
849
850 /*
851 * pmap_remove_pv: try to remove a mapping from a pv_list
852 *
853 * => caller should hold proper lock on pmap_main_lock
854 * => pmap should be locked
855 * => caller should hold lock on pv_head [so that attrs can be adjusted]
856 * => caller should adjust ptp's wire_count and free PTP if needed
857 * => caller should NOT adjust pmap's wire_count
858 * => we return the removed pve
859 */
860
861 __inline static struct pv_entry *
862 pmap_remove_pv(pvh, pmap, va)
863 struct pv_head *pvh;
864 struct pmap *pmap;
865 vaddr_t va;
866 {
867 struct pv_entry *pve, **prevptr;
868
869 prevptr = &pvh->pvh_list; /* previous pv_entry pointer */
870 pve = *prevptr;
871 while (pve) {
872 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
873 *prevptr = pve->pv_next; /* remove it! */
874 if (pve->pv_flags & PT_W)
875 --pmap->pm_stats.wired_count;
876 break;
877 }
878 prevptr = &pve->pv_next; /* previous pointer */
879 pve = pve->pv_next; /* advance */
880 }
881 return(pve); /* return removed pve */
882 }
883
884 /*
885 *
886 * pmap_modify_pv: Update pv flags
887 *
888 * => caller should hold lock on pv_head [so that attrs can be adjusted]
889 * => caller should NOT adjust pmap's wire_count
890 * => caller must call pmap_vac_me_harder() if writable status of a page
891 * may have changed.
892 * => we return the old flags
893 *
894 * Modify a physical-virtual mapping in the pv table
895 */
896
897 /*__inline */
898 static u_int
899 pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
900 struct pmap *pmap;
901 vaddr_t va;
902 struct pv_head *pvh;
903 u_int bic_mask;
904 u_int eor_mask;
905 {
906 struct pv_entry *npv;
907 u_int flags, oflags;
908
909 /*
910 * There is at least one VA mapping this page.
911 */
912
913 for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
914 if (pmap == npv->pv_pmap && va == npv->pv_va) {
915 oflags = npv->pv_flags;
916 npv->pv_flags = flags =
917 ((oflags & ~bic_mask) ^ eor_mask);
918 if ((flags ^ oflags) & PT_W) {
919 if (flags & PT_W)
920 ++pmap->pm_stats.wired_count;
921 else
922 --pmap->pm_stats.wired_count;
923 }
924 return (oflags);
925 }
926 }
927 return (0);
928 }
929
930 /*
931 * Map the specified level 2 pagetable into the level 1 page table for
932 * the given pmap to cover a chunk of virtual address space starting from the
933 * address specified.
934 */
935 static /*__inline*/ void
936 pmap_map_in_l1(pmap, va, l2pa, selfref)
937 struct pmap *pmap;
938 vaddr_t va, l2pa;
939 boolean_t selfref;
940 {
941 vaddr_t ptva;
942
943 /* Calculate the index into the L1 page table. */
944 ptva = (va >> PDSHIFT) & ~3;
945
946 NPDEBUG(PDB_MAP_L1, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
947 pmap->pm_pdir, L1_PTE(l2pa), ptva));
948
949 /* Map page table into the L1. */
950 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
951 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
952 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
953 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
954
955 /* Map the page table into the page table area. */
956 if (selfref) {
957 NPDEBUG(PDB_MAP_L1, printf("pt self reference %lx in %lx\n",
958 L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
959 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
960 L2_PTE_NC_NB(l2pa, AP_KRW);
961 }
962 /* XXX should be a purge */
963 /* cpu_tlb_flushD();*/
964 }
965
966 #if 0
967 static /*__inline*/ void
968 pmap_unmap_in_l1(pmap, va)
969 struct pmap *pmap;
970 vaddr_t va;
971 {
972 vaddr_t ptva;
973
974 /* Calculate the index into the L1 page table. */
975 ptva = (va >> PDSHIFT) & ~3;
976
977 /* Unmap page table from the L1. */
978 pmap->pm_pdir[ptva + 0] = 0;
979 pmap->pm_pdir[ptva + 1] = 0;
980 pmap->pm_pdir[ptva + 2] = 0;
981 pmap->pm_pdir[ptva + 3] = 0;
982
983 /* Unmap the page table from the page table area. */
984 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
985
986 /* XXX should be a purge */
987 /* cpu_tlb_flushD();*/
988 }
989 #endif
990
991 /*
992 * Used to map a range of physical addresses into kernel
993 * virtual address space.
994 *
995 * For now, VM is already on, we only need to map the
996 * specified memory.
997 */
998 vaddr_t
999 pmap_map(va, spa, epa, prot)
1000 vaddr_t va, spa, epa;
1001 int prot;
1002 {
1003 while (spa < epa) {
1004 pmap_kenter_pa(va, spa, prot);
1005 va += NBPG;
1006 spa += NBPG;
1007 }
1008 pmap_update(pmap_kernel());
1009 return(va);
1010 }
1011
1012
1013 /*
1014 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1015 *
1016 * bootstrap the pmap system. This is called from initarm and allows
1017 * the pmap system to initailise any structures it requires.
1018 *
1019 * Currently this sets up the kernel_pmap that is statically allocated
1020 * and also allocated virtual addresses for certain page hooks.
1021 * Currently the only one page hook is allocated that is used
1022 * to zero physical pages of memory.
1023 * It also initialises the start and end address of the kernel data space.
1024 */
1025 extern paddr_t physical_freestart;
1026 extern paddr_t physical_freeend;
1027
1028 char *boot_head;
1029
1030 void
1031 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
1032 pd_entry_t *kernel_l1pt;
1033 pv_addr_t kernel_ptpt;
1034 {
1035 int loop;
1036 paddr_t start, end;
1037 #if NISADMA > 0
1038 paddr_t istart;
1039 psize_t isize;
1040 #endif
1041
1042 pmap_kernel()->pm_pdir = kernel_l1pt;
1043 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1044 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1045 simple_lock_init(&pmap_kernel()->pm_lock);
1046 pmap_kernel()->pm_obj.pgops = NULL;
1047 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1048 pmap_kernel()->pm_obj.uo_npages = 0;
1049 pmap_kernel()->pm_obj.uo_refs = 1;
1050
1051 /*
1052 * Initialize PAGE_SIZE-dependent variables.
1053 */
1054 uvm_setpagesize();
1055
1056 npages = 0;
1057 loop = 0;
1058 while (loop < bootconfig.dramblocks) {
1059 start = (paddr_t)bootconfig.dram[loop].address;
1060 end = start + (bootconfig.dram[loop].pages * NBPG);
1061 if (start < physical_freestart)
1062 start = physical_freestart;
1063 if (end > physical_freeend)
1064 end = physical_freeend;
1065 #if 0
1066 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1067 #endif
1068 #if NISADMA > 0
1069 if (pmap_isa_dma_range_intersect(start, end - start,
1070 &istart, &isize)) {
1071 /*
1072 * Place the pages that intersect with the
1073 * ISA DMA range onto the ISA DMA free list.
1074 */
1075 #if 0
1076 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1077 istart + isize - 1);
1078 #endif
1079 uvm_page_physload(atop(istart),
1080 atop(istart + isize), atop(istart),
1081 atop(istart + isize), VM_FREELIST_ISADMA);
1082 npages += atop(istart + isize) - atop(istart);
1083
1084 /*
1085 * Load the pieces that come before
1086 * the intersection into the default
1087 * free list.
1088 */
1089 if (start < istart) {
1090 #if 0
1091 printf(" BEFORE 0x%lx -> 0x%lx\n",
1092 start, istart - 1);
1093 #endif
1094 uvm_page_physload(atop(start),
1095 atop(istart), atop(start),
1096 atop(istart), VM_FREELIST_DEFAULT);
1097 npages += atop(istart) - atop(start);
1098 }
1099
1100 /*
1101 * Load the pieces that come after
1102 * the intersection into the default
1103 * free list.
1104 */
1105 if ((istart + isize) < end) {
1106 #if 0
1107 printf(" AFTER 0x%lx -> 0x%lx\n",
1108 (istart + isize), end - 1);
1109 #endif
1110 uvm_page_physload(atop(istart + isize),
1111 atop(end), atop(istart + isize),
1112 atop(end), VM_FREELIST_DEFAULT);
1113 npages += atop(end) - atop(istart + isize);
1114 }
1115 } else {
1116 uvm_page_physload(atop(start), atop(end),
1117 atop(start), atop(end), VM_FREELIST_DEFAULT);
1118 npages += atop(end) - atop(start);
1119 }
1120 #else /* NISADMA > 0 */
1121 uvm_page_physload(atop(start), atop(end),
1122 atop(start), atop(end), VM_FREELIST_DEFAULT);
1123 npages += atop(end) - atop(start);
1124 #endif /* NISADMA > 0 */
1125 ++loop;
1126 }
1127
1128 #ifdef MYCROFT_HACK
1129 printf("npages = %ld\n", npages);
1130 #endif
1131
1132 virtual_start = KERNEL_VM_BASE;
1133 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE - 1;
1134
1135 ALLOC_PAGE_HOOK(page_hook0, NBPG);
1136 ALLOC_PAGE_HOOK(page_hook1, NBPG);
1137
1138 /*
1139 * The mem special device needs a virtual hook but we don't
1140 * need a pte
1141 */
1142 memhook = (char *)virtual_start;
1143 virtual_start += NBPG;
1144
1145 msgbufaddr = (caddr_t)virtual_start;
1146 msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
1147 virtual_start += round_page(MSGBUFSIZE);
1148
1149 /*
1150 * init the static-global locks and global lists.
1151 */
1152 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1153 simple_lock_init(&pvalloc_lock);
1154 simple_lock_init(&pmaps_lock);
1155 LIST_INIT(&pmaps);
1156 TAILQ_INIT(&pv_freepages);
1157 TAILQ_INIT(&pv_unusedpgs);
1158
1159 /*
1160 * compute the number of pages we have and then allocate RAM
1161 * for each pages' pv_head and saved attributes.
1162 */
1163 {
1164 int npages, lcv;
1165 vsize_t s;
1166
1167 npages = 0;
1168 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
1169 npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
1170 s = (vsize_t) (sizeof(struct pv_head) * npages +
1171 sizeof(char) * npages);
1172 s = round_page(s); /* round up */
1173 boot_head = (char *)uvm_pageboot_alloc(s);
1174 bzero((char *)boot_head, s);
1175 if (boot_head == 0)
1176 panic("pmap_init: unable to allocate pv_heads");
1177 }
1178
1179 /*
1180 * initialize the pmap pool.
1181 */
1182
1183 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1184 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
1185
1186 cpu_dcache_wbinv_all();
1187 }
1188
1189 /*
1190 * void pmap_init(void)
1191 *
1192 * Initialize the pmap module.
1193 * Called by vm_init() in vm/vm_init.c in order to initialise
1194 * any structures that the pmap system needs to map virtual memory.
1195 */
1196
1197 extern int physmem;
1198
1199 void
1200 pmap_init()
1201 {
1202 int lcv, i;
1203
1204 #ifdef MYCROFT_HACK
1205 printf("physmem = %d\n", physmem);
1206 #endif
1207
1208 /*
1209 * Set the available memory vars - These do not map to real memory
1210 * addresses and cannot as the physical memory is fragmented.
1211 * They are used by ps for %mem calculations.
1212 * One could argue whether this should be the entire memory or just
1213 * the memory that is useable in a user process.
1214 */
1215 avail_start = 0;
1216 avail_end = physmem * NBPG;
1217
1218 /* allocate pv_head stuff first */
1219 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1220 vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
1221 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
1222 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1223 for (i = 0;
1224 i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
1225 simple_lock_init(
1226 &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
1227 }
1228 }
1229
1230 /* now allocate attrs */
1231 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1232 vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
1233 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
1234 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1235 }
1236
1237 /*
1238 * now we need to free enough pv_entry structures to allow us to get
1239 * the kmem_map/kmem_object allocated and inited (done after this
1240 * function is finished). to do this we allocate one bootstrap page out
1241 * of kernel_map and use it to provide an initial pool of pv_entry
1242 * structures. we never free this page.
1243 */
1244
1245 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1246 if (pv_initpage == NULL)
1247 panic("pmap_init: pv_initpage");
1248 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1249 pv_nfpvents = 0;
1250 (void) pmap_add_pvpage(pv_initpage, FALSE);
1251
1252 #ifdef MYCROFT_HACK
1253 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1254 printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
1255 lcv,
1256 vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
1257 vm_physmem[lcv].start, vm_physmem[lcv].end);
1258 }
1259 #endif
1260 pmap_initialized = TRUE;
1261
1262 /* Initialise our L1 page table queues and counters */
1263 SIMPLEQ_INIT(&l1pt_static_queue);
1264 l1pt_static_queue_count = 0;
1265 l1pt_static_create_count = 0;
1266 SIMPLEQ_INIT(&l1pt_queue);
1267 l1pt_queue_count = 0;
1268 l1pt_create_count = 0;
1269 l1pt_reuse_count = 0;
1270 }
1271
1272 /*
1273 * pmap_postinit()
1274 *
1275 * This routine is called after the vm and kmem subsystems have been
1276 * initialised. This allows the pmap code to perform any initialisation
1277 * that can only be done one the memory allocation is in place.
1278 */
1279
1280 void
1281 pmap_postinit()
1282 {
1283 int loop;
1284 struct l1pt *pt;
1285
1286 #ifdef PMAP_STATIC_L1S
1287 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1288 #else /* PMAP_STATIC_L1S */
1289 for (loop = 0; loop < max_processes; ++loop) {
1290 #endif /* PMAP_STATIC_L1S */
1291 /* Allocate a L1 page table */
1292 pt = pmap_alloc_l1pt();
1293 if (!pt)
1294 panic("Cannot allocate static L1 page tables\n");
1295
1296 /* Clean it */
1297 bzero((void *)pt->pt_va, PD_SIZE);
1298 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1299 /* Add the page table to the queue */
1300 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1301 ++l1pt_static_queue_count;
1302 ++l1pt_static_create_count;
1303 }
1304 }
1305
1306
1307 /*
1308 * Create and return a physical map.
1309 *
1310 * If the size specified for the map is zero, the map is an actual physical
1311 * map, and may be referenced by the hardware.
1312 *
1313 * If the size specified is non-zero, the map will be used in software only,
1314 * and is bounded by that size.
1315 */
1316
1317 pmap_t
1318 pmap_create()
1319 {
1320 struct pmap *pmap;
1321
1322 /*
1323 * Fetch pmap entry from the pool
1324 */
1325
1326 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1327 /* XXX is this really needed! */
1328 memset(pmap, 0, sizeof(*pmap));
1329
1330 simple_lock_init(&pmap->pm_obj.vmobjlock);
1331 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1332 TAILQ_INIT(&pmap->pm_obj.memq);
1333 pmap->pm_obj.uo_npages = 0;
1334 pmap->pm_obj.uo_refs = 1;
1335 pmap->pm_stats.wired_count = 0;
1336 pmap->pm_stats.resident_count = 1;
1337
1338 /* Now init the machine part of the pmap */
1339 pmap_pinit(pmap);
1340 return(pmap);
1341 }
1342
1343 /*
1344 * pmap_alloc_l1pt()
1345 *
1346 * This routine allocates physical and virtual memory for a L1 page table
1347 * and wires it.
1348 * A l1pt structure is returned to describe the allocated page table.
1349 *
1350 * This routine is allowed to fail if the required memory cannot be allocated.
1351 * In this case NULL is returned.
1352 */
1353
1354 struct l1pt *
1355 pmap_alloc_l1pt(void)
1356 {
1357 paddr_t pa;
1358 vaddr_t va;
1359 struct l1pt *pt;
1360 int error;
1361 struct vm_page *m;
1362 pt_entry_t *ptes;
1363
1364 /* Allocate virtual address space for the L1 page table */
1365 va = uvm_km_valloc(kernel_map, PD_SIZE);
1366 if (va == 0) {
1367 #ifdef DIAGNOSTIC
1368 PDEBUG(0,
1369 printf("pmap: Cannot allocate pageable memory for L1\n"));
1370 #endif /* DIAGNOSTIC */
1371 return(NULL);
1372 }
1373
1374 /* Allocate memory for the l1pt structure */
1375 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1376
1377 /*
1378 * Allocate pages from the VM system.
1379 */
1380 TAILQ_INIT(&pt->pt_plist);
1381 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1382 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1383 if (error) {
1384 #ifdef DIAGNOSTIC
1385 PDEBUG(0,
1386 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1387 error));
1388 #endif /* DIAGNOSTIC */
1389 /* Release the resources we already have claimed */
1390 free(pt, M_VMPMAP);
1391 uvm_km_free(kernel_map, va, PD_SIZE);
1392 return(NULL);
1393 }
1394
1395 /* Map our physical pages into our virtual space */
1396 pt->pt_va = va;
1397 m = pt->pt_plist.tqh_first;
1398 ptes = pmap_map_ptes(pmap_kernel());
1399 while (m && va < (pt->pt_va + PD_SIZE)) {
1400 pa = VM_PAGE_TO_PHYS(m);
1401
1402 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1403
1404 /* Revoke cacheability and bufferability */
1405 /* XXX should be done better than this */
1406 ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
1407
1408 va += NBPG;
1409 m = m->pageq.tqe_next;
1410 }
1411 pmap_unmap_ptes(pmap_kernel());
1412 pmap_update(pmap_kernel());
1413
1414 #ifdef DIAGNOSTIC
1415 if (m)
1416 panic("pmap_alloc_l1pt: pglist not empty\n");
1417 #endif /* DIAGNOSTIC */
1418
1419 pt->pt_flags = 0;
1420 return(pt);
1421 }
1422
1423 /*
1424 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1425 */
1426 static void
1427 pmap_free_l1pt(pt)
1428 struct l1pt *pt;
1429 {
1430 /* Separate the physical memory for the virtual space */
1431 pmap_kremove(pt->pt_va, PD_SIZE);
1432 pmap_update(pmap_kernel());
1433
1434 /* Return the physical memory */
1435 uvm_pglistfree(&pt->pt_plist);
1436
1437 /* Free the virtual space */
1438 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1439
1440 /* Free the l1pt structure */
1441 free(pt, M_VMPMAP);
1442 }
1443
1444 /*
1445 * Allocate a page directory.
1446 * This routine will either allocate a new page directory from the pool
1447 * of L1 page tables currently held by the kernel or it will allocate
1448 * a new one via pmap_alloc_l1pt().
1449 * It will then initialise the l1 page table for use.
1450 *
1451 * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
1452 */
1453 static int
1454 pmap_allocpagedir(pmap)
1455 struct pmap *pmap;
1456 {
1457 paddr_t pa;
1458 struct l1pt *pt;
1459 pt_entry_t *pte;
1460
1461 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1462
1463 /* Do we have any spare L1's lying around ? */
1464 if (l1pt_static_queue_count) {
1465 --l1pt_static_queue_count;
1466 pt = l1pt_static_queue.sqh_first;
1467 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1468 } else if (l1pt_queue_count) {
1469 --l1pt_queue_count;
1470 pt = l1pt_queue.sqh_first;
1471 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1472 ++l1pt_reuse_count;
1473 } else {
1474 pt = pmap_alloc_l1pt();
1475 if (!pt)
1476 return(ENOMEM);
1477 ++l1pt_create_count;
1478 }
1479
1480 /* Store the pointer to the l1 descriptor in the pmap. */
1481 pmap->pm_l1pt = pt;
1482
1483 /* Get the physical address of the start of the l1 */
1484 pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
1485
1486 /* Store the virtual address of the l1 in the pmap. */
1487 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1488
1489 /* Clean the L1 if it is dirty */
1490 if (!(pt->pt_flags & PTFLAG_CLEAN))
1491 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1492
1493 /* Allocate a page table to map all the page tables for this pmap */
1494
1495 #ifdef DIAGNOSTIC
1496 if (pmap->pm_vptpt) {
1497 /* XXX What if we have one already ? */
1498 panic("pmap_allocpagedir: have pt already\n");
1499 }
1500 #endif /* DIAGNOSTIC */
1501 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1502 if (pmap->pm_vptpt == 0) {
1503 pmap_freepagedir(pmap);
1504 return(ENOMEM);
1505 }
1506
1507 /* need to lock this all up for growkernel */
1508 simple_lock(&pmaps_lock);
1509 /* wish we didn't have to keep this locked... */
1510
1511 /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1512 bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1513 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1514 KERNEL_PD_SIZE);
1515
1516 (void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
1517 pmap->pm_pptpt &= PG_FRAME;
1518 /* Revoke cacheability and bufferability */
1519 /* XXX should be done better than this */
1520 pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
1521 *pte = *pte & ~(PT_C | PT_B);
1522
1523 /* Wire in this page table */
1524 pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
1525
1526 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1527
1528 /*
1529 * Map the kernel page tables for 0xf0000000 +
1530 * into the page table used to map the
1531 * pmap's page tables
1532 */
1533 bcopy((char *)(PROCESS_PAGE_TBLS_BASE
1534 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
1535 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1536 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1537 (KERNEL_PD_SIZE >> 2));
1538
1539 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1540 simple_unlock(&pmaps_lock);
1541
1542 return(0);
1543 }
1544
1545
1546 /*
1547 * Initialize a preallocated and zeroed pmap structure,
1548 * such as one in a vmspace structure.
1549 */
1550
1551 void
1552 pmap_pinit(pmap)
1553 struct pmap *pmap;
1554 {
1555 int backoff = 6;
1556 int retry = 10;
1557
1558 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1559
1560 /* Keep looping until we succeed in allocating a page directory */
1561 while (pmap_allocpagedir(pmap) != 0) {
1562 /*
1563 * Ok we failed to allocate a suitable block of memory for an
1564 * L1 page table. This means that either:
1565 * 1. 16KB of virtual address space could not be allocated
1566 * 2. 16KB of physically contiguous memory on a 16KB boundary
1567 * could not be allocated.
1568 *
1569 * Since we cannot fail we will sleep for a while and try
1570 * again.
1571 *
1572 * Searching for a suitable L1 PT is expensive:
1573 * to avoid hogging the system when memory is really
1574 * scarce, use an exponential back-off so that
1575 * eventually we won't retry more than once every 8
1576 * seconds. This should allow other processes to run
1577 * to completion and free up resources.
1578 */
1579 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1580 NULL);
1581 if (--retry == 0) {
1582 retry = 10;
1583 if (backoff)
1584 --backoff;
1585 }
1586 }
1587
1588 /* Map zero page for the pmap. This will also map the L2 for it */
1589 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1590 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1591 pmap_update(pmap);
1592 }
1593
1594
1595 void
1596 pmap_freepagedir(pmap)
1597 struct pmap *pmap;
1598 {
1599 /* Free the memory used for the page table mapping */
1600 if (pmap->pm_vptpt != 0)
1601 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1602
1603 /* junk the L1 page table */
1604 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1605 /* Add the page table to the queue */
1606 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1607 ++l1pt_static_queue_count;
1608 } else if (l1pt_queue_count < 8) {
1609 /* Add the page table to the queue */
1610 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1611 ++l1pt_queue_count;
1612 } else
1613 pmap_free_l1pt(pmap->pm_l1pt);
1614 }
1615
1616
1617 /*
1618 * Retire the given physical map from service.
1619 * Should only be called if the map contains no valid mappings.
1620 */
1621
1622 void
1623 pmap_destroy(pmap)
1624 struct pmap *pmap;
1625 {
1626 struct vm_page *page;
1627 int count;
1628
1629 if (pmap == NULL)
1630 return;
1631
1632 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1633
1634 /*
1635 * Drop reference count
1636 */
1637 simple_lock(&pmap->pm_obj.vmobjlock);
1638 count = --pmap->pm_obj.uo_refs;
1639 simple_unlock(&pmap->pm_obj.vmobjlock);
1640 if (count > 0) {
1641 return;
1642 }
1643
1644 /*
1645 * reference count is zero, free pmap resources and then free pmap.
1646 */
1647
1648 /*
1649 * remove it from global list of pmaps
1650 */
1651
1652 simple_lock(&pmaps_lock);
1653 LIST_REMOVE(pmap, pm_list);
1654 simple_unlock(&pmaps_lock);
1655
1656 /* Remove the zero page mapping */
1657 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1658 pmap_update(pmap);
1659
1660 /*
1661 * Free any page tables still mapped
1662 * This is only temporay until pmap_enter can count the number
1663 * of mappings made in a page table. Then pmap_remove() can
1664 * reduce the count and free the pagetable when the count
1665 * reaches zero. Note that entries in this list should match the
1666 * contents of the ptpt, however this is faster than walking a 1024
1667 * entries looking for pt's
1668 * taken from i386 pmap.c
1669 */
1670 while (pmap->pm_obj.memq.tqh_first != NULL) {
1671 page = pmap->pm_obj.memq.tqh_first;
1672 #ifdef DIAGNOSTIC
1673 if (page->flags & PG_BUSY)
1674 panic("pmap_release: busy page table page");
1675 #endif
1676 /* pmap_page_protect? currently no need for it. */
1677
1678 page->wire_count = 0;
1679 uvm_pagefree(page);
1680 }
1681
1682 /* Free the page dir */
1683 pmap_freepagedir(pmap);
1684
1685 /* return the pmap to the pool */
1686 pool_put(&pmap_pmap_pool, pmap);
1687 }
1688
1689
1690 /*
1691 * void pmap_reference(struct pmap *pmap)
1692 *
1693 * Add a reference to the specified pmap.
1694 */
1695
1696 void
1697 pmap_reference(pmap)
1698 struct pmap *pmap;
1699 {
1700 if (pmap == NULL)
1701 return;
1702
1703 simple_lock(&pmap->pm_lock);
1704 pmap->pm_obj.uo_refs++;
1705 simple_unlock(&pmap->pm_lock);
1706 }
1707
1708 /*
1709 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1710 *
1711 * Return the start and end addresses of the kernel's virtual space.
1712 * These values are setup in pmap_bootstrap and are updated as pages
1713 * are allocated.
1714 */
1715
1716 void
1717 pmap_virtual_space(start, end)
1718 vaddr_t *start;
1719 vaddr_t *end;
1720 {
1721 *start = virtual_start;
1722 *end = virtual_end;
1723 }
1724
1725
1726 /*
1727 * Activate the address space for the specified process. If the process
1728 * is the current process, load the new MMU context.
1729 */
1730 void
1731 pmap_activate(p)
1732 struct proc *p;
1733 {
1734 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1735 struct pcb *pcb = &p->p_addr->u_pcb;
1736
1737 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1738 (paddr_t *)&pcb->pcb_pagedir);
1739
1740 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1741 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1742
1743 if (p == curproc) {
1744 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1745 setttb((u_int)pcb->pcb_pagedir);
1746 }
1747 #if 0
1748 pmap->pm_pdchanged = FALSE;
1749 #endif
1750 }
1751
1752
1753 /*
1754 * Deactivate the address space of the specified process.
1755 */
1756 void
1757 pmap_deactivate(p)
1758 struct proc *p;
1759 {
1760 }
1761
1762 /*
1763 * Perform any deferred pmap operations.
1764 */
1765 void
1766 pmap_update(struct pmap *pmap)
1767 {
1768
1769 /*
1770 * We haven't deferred any pmap operations, but we do need to
1771 * make sure TLB/cache operations have completed.
1772 */
1773 cpu_cpwait();
1774 }
1775
1776 /*
1777 * pmap_clean_page()
1778 *
1779 * This is a local function used to work out the best strategy to clean
1780 * a single page referenced by its entry in the PV table. It's used by
1781 * pmap_copy_page, pmap_zero page and maybe some others later on.
1782 *
1783 * Its policy is effectively:
1784 * o If there are no mappings, we don't bother doing anything with the cache.
1785 * o If there is one mapping, we clean just that page.
1786 * o If there are multiple mappings, we clean the entire cache.
1787 *
1788 * So that some functions can be further optimised, it returns 0 if it didn't
1789 * clean the entire cache, or 1 if it did.
1790 *
1791 * XXX One bug in this routine is that if the pv_entry has a single page
1792 * mapped at 0x00000000 a whole cache clean will be performed rather than
1793 * just the 1 page. Since this should not occur in everyday use and if it does
1794 * it will just result in not the most efficient clean for the page.
1795 */
1796 static int
1797 pmap_clean_page(pv, is_src)
1798 struct pv_entry *pv;
1799 boolean_t is_src;
1800 {
1801 struct pmap *pmap;
1802 struct pv_entry *npv;
1803 int cache_needs_cleaning = 0;
1804 vaddr_t page_to_clean = 0;
1805
1806 if (pv == NULL)
1807 /* nothing mapped in so nothing to flush */
1808 return (0);
1809
1810 /* Since we flush the cache each time we change curproc, we
1811 * only need to flush the page if it is in the current pmap.
1812 */
1813 if (curproc)
1814 pmap = curproc->p_vmspace->vm_map.pmap;
1815 else
1816 pmap = pmap_kernel();
1817
1818 for (npv = pv; npv; npv = npv->pv_next) {
1819 if (npv->pv_pmap == pmap) {
1820 /* The page is mapped non-cacheable in
1821 * this map. No need to flush the cache.
1822 */
1823 if (npv->pv_flags & PT_NC) {
1824 #ifdef DIAGNOSTIC
1825 if (cache_needs_cleaning)
1826 panic("pmap_clean_page: "
1827 "cache inconsistency");
1828 #endif
1829 break;
1830 }
1831 #if 0
1832 /* This doesn't work, because pmap_protect
1833 doesn't flush changes on pages that it
1834 has write-protected. */
1835
1836 /* If the page is not writable and this
1837 is the source, then there is no need
1838 to flush it from the cache. */
1839 else if (is_src && ! (npv->pv_flags & PT_Wr))
1840 continue;
1841 #endif
1842 if (cache_needs_cleaning){
1843 page_to_clean = 0;
1844 break;
1845 }
1846 else
1847 page_to_clean = npv->pv_va;
1848 cache_needs_cleaning = 1;
1849 }
1850 }
1851
1852 if (page_to_clean)
1853 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1854 else if (cache_needs_cleaning) {
1855 cpu_idcache_wbinv_all();
1856 return (1);
1857 }
1858 return (0);
1859 }
1860
1861 /*
1862 * pmap_find_pv()
1863 *
1864 * This is a local function that finds a PV head for a given physical page.
1865 * This is a common op, and this function removes loads of ifdefs in the code.
1866 */
1867 static __inline struct pv_head *
1868 pmap_find_pvh(phys)
1869 paddr_t phys;
1870 {
1871 int bank, off;
1872 struct pv_head *pvh;
1873
1874 if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
1875 panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
1876 pvh = &vm_physmem[bank].pmseg.pvhead[off];
1877 return (pvh);
1878 }
1879
1880 /*
1881 * pmap_zero_page()
1882 *
1883 * Zero a given physical page by mapping it at a page hook point.
1884 * In doing the zero page op, the page we zero is mapped cachable, as with
1885 * StrongARM accesses to non-cached pages are non-burst making writing
1886 * _any_ bulk data very slow.
1887 */
1888 void
1889 pmap_zero_page(phys)
1890 paddr_t phys;
1891 {
1892 struct pv_head *pvh;
1893
1894 /* Get an entry for this page, and clean it it. */
1895 pvh = pmap_find_pvh(phys);
1896 simple_lock(&pvh->pvh_lock);
1897 pmap_clean_page(pvh->pvh_list, FALSE);
1898 simple_unlock(&pvh->pvh_lock);
1899
1900 /*
1901 * Hook in the page, zero it, and purge the cache for that
1902 * zeroed page. Invalidate the TLB as needed.
1903 */
1904 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1905 cpu_tlb_flushD_SE(page_hook0.va);
1906 cpu_cpwait();
1907 bzero_page(page_hook0.va);
1908 cpu_dcache_wbinv_range(page_hook0.va, NBPG);
1909 }
1910
1911 /* pmap_pageidlezero()
1912 *
1913 * The same as above, except that we assume that the page is not
1914 * mapped. This means we never have to flush the cache first. Called
1915 * from the idle loop.
1916 */
1917 boolean_t
1918 pmap_pageidlezero(phys)
1919 paddr_t phys;
1920 {
1921 int i, *ptr;
1922 boolean_t rv = TRUE;
1923
1924 #ifdef DIAGNOSTIC
1925 struct pv_head *pvh;
1926
1927 pvh = pmap_find_pvh(phys);
1928 if (pvh->pvh_list != NULL)
1929 panic("pmap_pageidlezero: zeroing mapped page\n");
1930 #endif
1931
1932 /*
1933 * Hook in the page, zero it, and purge the cache for that
1934 * zeroed page. Invalidate the TLB as needed.
1935 */
1936 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1937 cpu_tlb_flushD_SE(page_hook0.va);
1938 cpu_cpwait();
1939
1940 for (i = 0, ptr = (int *)page_hook0.va;
1941 i < (NBPG / sizeof(int)); i++) {
1942 if (sched_whichqs != 0) {
1943 /*
1944 * A process has become ready. Abort now,
1945 * so we don't keep it waiting while we
1946 * do slow memory access to finish this
1947 * page.
1948 */
1949 rv = FALSE;
1950 break;
1951 }
1952 *ptr++ = 0;
1953 }
1954
1955 if (rv)
1956 /*
1957 * if we aborted we'll rezero this page again later so don't
1958 * purge it unless we finished it
1959 */
1960 cpu_dcache_wbinv_range(page_hook0.va, NBPG);
1961 return (rv);
1962 }
1963
1964 /*
1965 * pmap_copy_page()
1966 *
1967 * Copy one physical page into another, by mapping the pages into
1968 * hook points. The same comment regarding cachability as in
1969 * pmap_zero_page also applies here.
1970 */
1971 void
1972 pmap_copy_page(src, dest)
1973 paddr_t src;
1974 paddr_t dest;
1975 {
1976 struct pv_head *src_pvh, *dest_pvh;
1977 boolean_t cleanedcache;
1978
1979 /* Get PV entries for the pages, and clean them if needed. */
1980 src_pvh = pmap_find_pvh(src);
1981
1982 simple_lock(&src_pvh->pvh_lock);
1983 cleanedcache = pmap_clean_page(src_pvh->pvh_list, TRUE);
1984 simple_unlock(&src_pvh->pvh_lock);
1985
1986 if (cleanedcache == 0) {
1987 dest_pvh = pmap_find_pvh(dest);
1988 simple_lock(&dest_pvh->pvh_lock);
1989 pmap_clean_page(dest_pvh->pvh_list, FALSE);
1990 simple_unlock(&dest_pvh->pvh_lock);
1991 }
1992 /*
1993 * Map the pages into the page hook points, copy them, and purge
1994 * the cache for the appropriate page. Invalidate the TLB
1995 * as required.
1996 */
1997 *page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
1998 *page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1999 cpu_tlb_flushD_SE(page_hook0.va);
2000 cpu_tlb_flushD_SE(page_hook1.va);
2001 cpu_cpwait();
2002 bcopy_page(page_hook0.va, page_hook1.va);
2003 cpu_dcache_wbinv_range(page_hook0.va, NBPG);
2004 cpu_dcache_wbinv_range(page_hook1.va, NBPG);
2005 }
2006
2007 #if 0
2008 void
2009 pmap_pte_addref(pmap, va)
2010 struct pmap *pmap;
2011 vaddr_t va;
2012 {
2013 pd_entry_t *pde;
2014 paddr_t pa;
2015 struct vm_page *m;
2016
2017 if (pmap == pmap_kernel())
2018 return;
2019
2020 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
2021 pa = pmap_pte_pa(pde);
2022 m = PHYS_TO_VM_PAGE(pa);
2023 ++m->wire_count;
2024 #ifdef MYCROFT_HACK
2025 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2026 pmap, va, pde, pa, m, m->wire_count);
2027 #endif
2028 }
2029
2030 void
2031 pmap_pte_delref(pmap, va)
2032 struct pmap *pmap;
2033 vaddr_t va;
2034 {
2035 pd_entry_t *pde;
2036 paddr_t pa;
2037 struct vm_page *m;
2038
2039 if (pmap == pmap_kernel())
2040 return;
2041
2042 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
2043 pa = pmap_pte_pa(pde);
2044 m = PHYS_TO_VM_PAGE(pa);
2045 --m->wire_count;
2046 #ifdef MYCROFT_HACK
2047 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2048 pmap, va, pde, pa, m, m->wire_count);
2049 #endif
2050 if (m->wire_count == 0) {
2051 #ifdef MYCROFT_HACK
2052 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2053 pmap, va, pde, pa, m);
2054 #endif
2055 pmap_unmap_in_l1(pmap, va);
2056 uvm_pagefree(m);
2057 --pmap->pm_stats.resident_count;
2058 }
2059 }
2060 #else
2061 #define pmap_pte_addref(pmap, va)
2062 #define pmap_pte_delref(pmap, va)
2063 #endif
2064
2065 /*
2066 * Since we have a virtually indexed cache, we may need to inhibit caching if
2067 * there is more than one mapping and at least one of them is writable.
2068 * Since we purge the cache on every context switch, we only need to check for
2069 * other mappings within the same pmap, or kernel_pmap.
2070 * This function is also called when a page is unmapped, to possibly reenable
2071 * caching on any remaining mappings.
2072 *
2073 * The code implements the following logic, where:
2074 *
2075 * KW = # of kernel read/write pages
2076 * KR = # of kernel read only pages
2077 * UW = # of user read/write pages
2078 * UR = # of user read only pages
2079 * OW = # of user read/write pages in another pmap, then
2080 *
2081 * KC = kernel mapping is cacheable
2082 * UC = user mapping is cacheable
2083 *
2084 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2085 * +---------------------------------------------
2086 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2087 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2088 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2089 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2090 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2091 *
2092 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2093 */
2094 __inline static void
2095 pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2096 boolean_t clear_cache)
2097 {
2098 if (pmap == pmap_kernel())
2099 pmap_vac_me_kpmap(pmap, pvh, ptes, clear_cache);
2100 else
2101 pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2102 }
2103
2104 static void
2105 pmap_vac_me_kpmap(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2106 boolean_t clear_cache)
2107 {
2108 int user_entries = 0;
2109 int user_writable = 0;
2110 int user_cacheable = 0;
2111 int kernel_entries = 0;
2112 int kernel_writable = 0;
2113 int kernel_cacheable = 0;
2114 struct pv_entry *pv;
2115 struct pmap *last_pmap = pmap;
2116
2117 #ifdef DIAGNOSTIC
2118 if (pmap != pmap_kernel())
2119 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2120 #endif
2121
2122 /*
2123 * Pass one, see if there are both kernel and user pmaps for
2124 * this page. Calculate whether there are user-writable or
2125 * kernel-writable pages.
2126 */
2127 for (pv = pvh->pvh_list; pv != NULL; pv = pv->pv_next) {
2128 if (pv->pv_pmap != pmap) {
2129 user_entries++;
2130 if (pv->pv_flags & PT_Wr)
2131 user_writable++;
2132 if ((pv->pv_flags & PT_NC) == 0)
2133 user_cacheable++;
2134 } else {
2135 kernel_entries++;
2136 if (pv->pv_flags & PT_Wr)
2137 kernel_writable++;
2138 if ((pv->pv_flags & PT_NC) == 0)
2139 kernel_cacheable++;
2140 }
2141 }
2142
2143 /*
2144 * We know we have just been updating a kernel entry, so if
2145 * all user pages are already cacheable, then there is nothing
2146 * further to do.
2147 */
2148 if (kernel_entries == 0 &&
2149 user_cacheable == user_entries)
2150 return;
2151
2152 if (user_entries) {
2153 /*
2154 * Scan over the list again, for each entry, if it
2155 * might not be set correctly, call pmap_vac_me_user
2156 * to recalculate the settings.
2157 */
2158 for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
2159 /*
2160 * We know kernel mappings will get set
2161 * correctly in other calls. We also know
2162 * that if the pmap is the same as last_pmap
2163 * then we've just handled this entry.
2164 */
2165 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2166 continue;
2167 /*
2168 * If there are kernel entries and this page
2169 * is writable but non-cacheable, then we can
2170 * skip this entry also.
2171 */
2172 if (kernel_entries > 0 &&
2173 (pv->pv_flags & (PT_NC | PT_Wr)) ==
2174 (PT_NC | PT_Wr))
2175 continue;
2176 /*
2177 * Similarly if there are no kernel-writable
2178 * entries and the page is already
2179 * read-only/cacheable.
2180 */
2181 if (kernel_writable == 0 &&
2182 (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
2183 continue;
2184 /*
2185 * For some of the remaining cases, we know
2186 * that we must recalculate, but for others we
2187 * can't tell if they are correct or not, so
2188 * we recalculate anyway.
2189 */
2190 pmap_unmap_ptes(last_pmap);
2191 last_pmap = pv->pv_pmap;
2192 ptes = pmap_map_ptes(last_pmap);
2193 pmap_vac_me_user(last_pmap, pvh, ptes,
2194 pmap_is_curpmap(last_pmap));
2195 }
2196 /* Restore the pte mapping that was passed to us. */
2197 if (last_pmap != pmap) {
2198 pmap_unmap_ptes(last_pmap);
2199 ptes = pmap_map_ptes(pmap);
2200 }
2201 if (kernel_entries == 0)
2202 return;
2203 }
2204
2205 pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2206 return;
2207 }
2208
2209 static void
2210 pmap_vac_me_user(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2211 boolean_t clear_cache)
2212 {
2213 struct pmap *kpmap = pmap_kernel();
2214 struct pv_entry *pv, *npv;
2215 int entries = 0;
2216 int writable = 0;
2217 int cacheable_entries = 0;
2218 int kern_cacheable = 0;
2219 int other_writable = 0;
2220
2221 pv = pvh->pvh_list;
2222 KASSERT(ptes != NULL);
2223
2224 /*
2225 * Count mappings and writable mappings in this pmap.
2226 * Include kernel mappings as part of our own.
2227 * Keep a pointer to the first one.
2228 */
2229 for (npv = pv; npv; npv = npv->pv_next) {
2230 /* Count mappings in the same pmap */
2231 if (pmap == npv->pv_pmap ||
2232 kpmap == npv->pv_pmap) {
2233 if (entries++ == 0)
2234 pv = npv;
2235 /* Cacheable mappings */
2236 if ((npv->pv_flags & PT_NC) == 0) {
2237 cacheable_entries++;
2238 if (kpmap == npv->pv_pmap)
2239 kern_cacheable++;
2240 }
2241 /* Writable mappings */
2242 if (npv->pv_flags & PT_Wr)
2243 ++writable;
2244 } else if (npv->pv_flags & PT_Wr)
2245 other_writable = 1;
2246 }
2247
2248 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2249 "writable %d cacheable %d %s\n", pmap, entries, writable,
2250 cacheable_entries, clear_cache ? "clean" : "no clean"));
2251
2252 /*
2253 * Enable or disable caching as necessary.
2254 * Note: the first entry might be part of the kernel pmap,
2255 * so we can't assume this is indicative of the state of the
2256 * other (maybe non-kpmap) entries.
2257 */
2258 if ((entries > 1 && writable) ||
2259 (entries > 0 && pmap == kpmap && other_writable)) {
2260 if (cacheable_entries == 0)
2261 return;
2262 for (npv = pv; npv; npv = npv->pv_next) {
2263 if ((pmap == npv->pv_pmap
2264 || kpmap == npv->pv_pmap) &&
2265 (npv->pv_flags & PT_NC) == 0) {
2266 ptes[arm_byte_to_page(npv->pv_va)] &=
2267 ~(PT_C | PT_B);
2268 npv->pv_flags |= PT_NC;
2269 /*
2270 * If this page needs flushing from the
2271 * cache, and we aren't going to do it
2272 * below, do it now.
2273 */
2274 if ((cacheable_entries < 4 &&
2275 (clear_cache || npv->pv_pmap == kpmap)) ||
2276 (npv->pv_pmap == kpmap &&
2277 !clear_cache && kern_cacheable < 4)) {
2278 cpu_idcache_wbinv_range(npv->pv_va,
2279 NBPG);
2280 cpu_tlb_flushID_SE(npv->pv_va);
2281 }
2282 }
2283 }
2284 if ((clear_cache && cacheable_entries >= 4) ||
2285 kern_cacheable >= 4) {
2286 cpu_idcache_wbinv_all();
2287 cpu_tlb_flushID();
2288 }
2289 cpu_cpwait();
2290 } else if (entries > 0) {
2291 /*
2292 * Turn cacheing back on for some pages. If it is a kernel
2293 * page, only do so if there are no other writable pages.
2294 */
2295 for (npv = pv; npv; npv = npv->pv_next) {
2296 if ((pmap == npv->pv_pmap ||
2297 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2298 (npv->pv_flags & PT_NC)) {
2299 ptes[arm_byte_to_page(npv->pv_va)] |=
2300 pte_cache_mode;
2301 npv->pv_flags &= ~PT_NC;
2302 }
2303 }
2304 }
2305 }
2306
2307 /*
2308 * pmap_remove()
2309 *
2310 * pmap_remove is responsible for nuking a number of mappings for a range
2311 * of virtual address space in the current pmap. To do this efficiently
2312 * is interesting, because in a number of cases a wide virtual address
2313 * range may be supplied that contains few actual mappings. So, the
2314 * optimisations are:
2315 * 1. Try and skip over hunks of address space for which an L1 entry
2316 * does not exist.
2317 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2318 * maybe do just a partial cache clean. This path of execution is
2319 * complicated by the fact that the cache must be flushed _before_
2320 * the PTE is nuked, being a VAC :-)
2321 * 3. Maybe later fast-case a single page, but I don't think this is
2322 * going to make _that_ much difference overall.
2323 */
2324
2325 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2326
2327 void
2328 pmap_remove(pmap, sva, eva)
2329 struct pmap *pmap;
2330 vaddr_t sva;
2331 vaddr_t eva;
2332 {
2333 int cleanlist_idx = 0;
2334 struct pagelist {
2335 vaddr_t va;
2336 pt_entry_t *pte;
2337 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2338 pt_entry_t *pte = 0, *ptes;
2339 paddr_t pa;
2340 int pmap_active;
2341 struct pv_head *pvh;
2342
2343 /* Exit quick if there is no pmap */
2344 if (!pmap)
2345 return;
2346
2347 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2348
2349 sva &= PG_FRAME;
2350 eva &= PG_FRAME;
2351
2352 /*
2353 * we lock in the pmap => pv_head direction
2354 */
2355 PMAP_MAP_TO_HEAD_LOCK();
2356
2357 ptes = pmap_map_ptes(pmap);
2358 /* Get a page table pointer */
2359 while (sva < eva) {
2360 if (pmap_pde_page(pmap_pde(pmap, sva)))
2361 break;
2362 sva = (sva & PD_MASK) + NBPD;
2363 }
2364
2365 pte = &ptes[arm_byte_to_page(sva)];
2366 /* Note if the pmap is active thus require cache and tlb cleans */
2367 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2368 || (pmap == pmap_kernel()))
2369 pmap_active = 1;
2370 else
2371 pmap_active = 0;
2372
2373 /* Now loop along */
2374 while (sva < eva) {
2375 /* Check if we can move to the next PDE (l1 chunk) */
2376 if (!(sva & PT_MASK))
2377 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2378 sva += NBPD;
2379 pte += arm_byte_to_page(NBPD);
2380 continue;
2381 }
2382
2383 /* We've found a valid PTE, so this page of PTEs has to go. */
2384 if (pmap_pte_v(pte)) {
2385 int bank, off;
2386
2387 /* Update statistics */
2388 --pmap->pm_stats.resident_count;
2389
2390 /*
2391 * Add this page to our cache remove list, if we can.
2392 * If, however the cache remove list is totally full,
2393 * then do a complete cache invalidation taking note
2394 * to backtrack the PTE table beforehand, and ignore
2395 * the lists in future because there's no longer any
2396 * point in bothering with them (we've paid the
2397 * penalty, so will carry on unhindered). Otherwise,
2398 * when we fall out, we just clean the list.
2399 */
2400 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2401 pa = pmap_pte_pa(pte);
2402
2403 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2404 /* Add to the clean list. */
2405 cleanlist[cleanlist_idx].pte = pte;
2406 cleanlist[cleanlist_idx].va = sva;
2407 cleanlist_idx++;
2408 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2409 int cnt;
2410
2411 /* Nuke everything if needed. */
2412 if (pmap_active) {
2413 cpu_idcache_wbinv_all();
2414 cpu_tlb_flushID();
2415 }
2416
2417 /*
2418 * Roll back the previous PTE list,
2419 * and zero out the current PTE.
2420 */
2421 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2422 *cleanlist[cnt].pte = 0;
2423 pmap_pte_delref(pmap, cleanlist[cnt].va);
2424 }
2425 *pte = 0;
2426 pmap_pte_delref(pmap, sva);
2427 cleanlist_idx++;
2428 } else {
2429 /*
2430 * We've already nuked the cache and
2431 * TLB, so just carry on regardless,
2432 * and we won't need to do it again
2433 */
2434 *pte = 0;
2435 pmap_pte_delref(pmap, sva);
2436 }
2437
2438 /*
2439 * Update flags. In a number of circumstances,
2440 * we could cluster a lot of these and do a
2441 * number of sequential pages in one go.
2442 */
2443 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2444 struct pv_entry *pve;
2445 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2446 simple_lock(&pvh->pvh_lock);
2447 pve = pmap_remove_pv(pvh, pmap, sva);
2448 pmap_free_pv(pmap, pve);
2449 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2450 simple_unlock(&pvh->pvh_lock);
2451 }
2452 }
2453 sva += NBPG;
2454 pte++;
2455 }
2456
2457 pmap_unmap_ptes(pmap);
2458 /*
2459 * Now, if we've fallen through down to here, chances are that there
2460 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2461 */
2462 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2463 u_int cnt;
2464
2465 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2466 if (pmap_active) {
2467 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2468 NBPG);
2469 *cleanlist[cnt].pte = 0;
2470 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2471 } else
2472 *cleanlist[cnt].pte = 0;
2473 pmap_pte_delref(pmap, cleanlist[cnt].va);
2474 }
2475 }
2476 PMAP_MAP_TO_HEAD_UNLOCK();
2477 }
2478
2479 /*
2480 * Routine: pmap_remove_all
2481 * Function:
2482 * Removes this physical page from
2483 * all physical maps in which it resides.
2484 * Reflects back modify bits to the pager.
2485 */
2486
2487 static void
2488 pmap_remove_all(pa)
2489 paddr_t pa;
2490 {
2491 struct pv_entry *pv, *npv;
2492 struct pv_head *pvh;
2493 struct pmap *pmap;
2494 pt_entry_t *pte, *ptes;
2495
2496 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
2497
2498 /* set pv_head => pmap locking */
2499 PMAP_HEAD_TO_MAP_LOCK();
2500
2501 pvh = pmap_find_pvh(pa);
2502 simple_lock(&pvh->pvh_lock);
2503
2504 pv = pvh->pvh_list;
2505 if (pv == NULL)
2506 {
2507 PDEBUG(0, printf("free page\n"));
2508 simple_unlock(&pvh->pvh_lock);
2509 PMAP_HEAD_TO_MAP_UNLOCK();
2510 return;
2511 }
2512 pmap_clean_page(pv, FALSE);
2513
2514 while (pv) {
2515 pmap = pv->pv_pmap;
2516 ptes = pmap_map_ptes(pmap);
2517 pte = &ptes[arm_byte_to_page(pv->pv_va)];
2518
2519 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2520 pv->pv_va, pv->pv_flags));
2521 #ifdef DEBUG
2522 if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
2523 !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
2524 panic("pmap_remove_all: bad mapping");
2525 #endif /* DEBUG */
2526
2527 /*
2528 * Update statistics
2529 */
2530 --pmap->pm_stats.resident_count;
2531
2532 /* Wired bit */
2533 if (pv->pv_flags & PT_W)
2534 --pmap->pm_stats.wired_count;
2535
2536 /*
2537 * Invalidate the PTEs.
2538 * XXX: should cluster them up and invalidate as many
2539 * as possible at once.
2540 */
2541
2542 #ifdef needednotdone
2543 reduce wiring count on page table pages as references drop
2544 #endif
2545
2546 *pte = 0;
2547 pmap_pte_delref(pmap, pv->pv_va);
2548
2549 npv = pv->pv_next;
2550 pmap_free_pv(pmap, pv);
2551 pv = npv;
2552 pmap_unmap_ptes(pmap);
2553 }
2554 pvh->pvh_list = NULL;
2555 simple_unlock(&pvh->pvh_lock);
2556 PMAP_HEAD_TO_MAP_UNLOCK();
2557
2558 PDEBUG(0, printf("done\n"));
2559 cpu_tlb_flushID();
2560 cpu_cpwait();
2561 }
2562
2563
2564 /*
2565 * Set the physical protection on the specified range of this map as requested.
2566 */
2567
2568 void
2569 pmap_protect(pmap, sva, eva, prot)
2570 struct pmap *pmap;
2571 vaddr_t sva;
2572 vaddr_t eva;
2573 vm_prot_t prot;
2574 {
2575 pt_entry_t *pte = NULL, *ptes;
2576 int armprot;
2577 int flush = 0;
2578 paddr_t pa;
2579 int bank, off;
2580 struct pv_head *pvh;
2581
2582 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2583 pmap, sva, eva, prot));
2584
2585 if (~prot & VM_PROT_READ) {
2586 /* Just remove the mappings. */
2587 pmap_remove(pmap, sva, eva);
2588 /* pmap_update not needed as it should be called by the caller
2589 * of pmap_protect */
2590 return;
2591 }
2592 if (prot & VM_PROT_WRITE) {
2593 /*
2594 * If this is a read->write transition, just ignore it and let
2595 * uvm_fault() take care of it later.
2596 */
2597 return;
2598 }
2599
2600 sva &= PG_FRAME;
2601 eva &= PG_FRAME;
2602
2603 /* Need to lock map->head */
2604 PMAP_MAP_TO_HEAD_LOCK();
2605
2606 ptes = pmap_map_ptes(pmap);
2607 /*
2608 * We need to acquire a pointer to a page table page before entering
2609 * the following loop.
2610 */
2611 while (sva < eva) {
2612 if (pmap_pde_page(pmap_pde(pmap, sva)))
2613 break;
2614 sva = (sva & PD_MASK) + NBPD;
2615 }
2616
2617 pte = &ptes[arm_byte_to_page(sva)];
2618
2619 while (sva < eva) {
2620 /* only check once in a while */
2621 if ((sva & PT_MASK) == 0) {
2622 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2623 /* We can race ahead here, to the next pde. */
2624 sva += NBPD;
2625 pte += arm_byte_to_page(NBPD);
2626 continue;
2627 }
2628 }
2629
2630 if (!pmap_pte_v(pte))
2631 goto next;
2632
2633 flush = 1;
2634
2635 armprot = 0;
2636 if (sva < VM_MAXUSER_ADDRESS)
2637 armprot |= PT_AP(AP_U);
2638 else if (sva < VM_MAX_ADDRESS)
2639 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2640 *pte = (*pte & 0xfffff00f) | armprot;
2641
2642 pa = pmap_pte_pa(pte);
2643
2644 /* Get the physical page index */
2645
2646 /* Clear write flag */
2647 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2648 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2649 simple_lock(&pvh->pvh_lock);
2650 (void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
2651 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2652 simple_unlock(&pvh->pvh_lock);
2653 }
2654
2655 next:
2656 sva += NBPG;
2657 pte++;
2658 }
2659 pmap_unmap_ptes(pmap);
2660 PMAP_MAP_TO_HEAD_UNLOCK();
2661 if (flush)
2662 cpu_tlb_flushID();
2663 }
2664
2665 /*
2666 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2667 * int flags)
2668 *
2669 * Insert the given physical page (p) at
2670 * the specified virtual address (v) in the
2671 * target physical map with the protection requested.
2672 *
2673 * If specified, the page will be wired down, meaning
2674 * that the related pte can not be reclaimed.
2675 *
2676 * NB: This is the only routine which MAY NOT lazy-evaluate
2677 * or lose information. That is, this routine must actually
2678 * insert this page into the given map NOW.
2679 */
2680
2681 int
2682 pmap_enter(pmap, va, pa, prot, flags)
2683 struct pmap *pmap;
2684 vaddr_t va;
2685 paddr_t pa;
2686 vm_prot_t prot;
2687 int flags;
2688 {
2689 pt_entry_t *pte, *ptes;
2690 u_int npte;
2691 int bank, off;
2692 paddr_t opa;
2693 int nflags;
2694 boolean_t wired = (flags & PMAP_WIRED) != 0;
2695 struct pv_entry *pve;
2696 struct pv_head *pvh;
2697 int error;
2698
2699 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2700 va, pa, pmap, prot, wired));
2701
2702 #ifdef DIAGNOSTIC
2703 /* Valid address ? */
2704 if (va >= (pmap_curmaxkvaddr))
2705 panic("pmap_enter: too big");
2706 if (pmap != pmap_kernel() && va != 0) {
2707 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2708 panic("pmap_enter: kernel page in user map");
2709 } else {
2710 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2711 panic("pmap_enter: user page in kernel map");
2712 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2713 panic("pmap_enter: entering PT page");
2714 }
2715 #endif
2716 /* get lock */
2717 PMAP_MAP_TO_HEAD_LOCK();
2718 /*
2719 * Get a pointer to the pte for this virtual address. If the
2720 * pte pointer is NULL then we are missing the L2 page table
2721 * so we need to create one.
2722 */
2723 /* XXX horrible hack to get us working with lockdebug */
2724 simple_lock(&pmap->pm_obj.vmobjlock);
2725 pte = pmap_pte(pmap, va);
2726 if (!pte) {
2727 struct vm_page *ptp;
2728 KASSERT(pmap != pmap_kernel()); /* kernel should have pre-grown */
2729
2730 /* if failure is allowed then don't try too hard */
2731 ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
2732 if (ptp == NULL) {
2733 if (flags & PMAP_CANFAIL) {
2734 error = ENOMEM;
2735 goto out;
2736 }
2737 panic("pmap_enter: get ptp failed");
2738 }
2739
2740 pte = pmap_pte(pmap, va);
2741 #ifdef DIAGNOSTIC
2742 if (!pte)
2743 panic("pmap_enter: no pte");
2744 #endif
2745 }
2746
2747 nflags = 0;
2748 if (prot & VM_PROT_WRITE)
2749 nflags |= PT_Wr;
2750 if (wired)
2751 nflags |= PT_W;
2752
2753 /* More debugging info */
2754 PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2755 *pte));
2756
2757 /* Is the pte valid ? If so then this page is already mapped */
2758 if (pmap_pte_v(pte)) {
2759 /* Get the physical address of the current page mapped */
2760 opa = pmap_pte_pa(pte);
2761
2762 #ifdef MYCROFT_HACK
2763 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2764 #endif
2765
2766 /* Are we mapping the same page ? */
2767 if (opa == pa) {
2768 /* All we must be doing is changing the protection */
2769 PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2770 va, pa));
2771
2772 /* Has the wiring changed ? */
2773 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2774 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2775 simple_lock(&pvh->pvh_lock);
2776 (void) pmap_modify_pv(pmap, va, pvh,
2777 PT_Wr | PT_W, nflags);
2778 simple_unlock(&pvh->pvh_lock);
2779 } else {
2780 pvh = NULL;
2781 }
2782 } else {
2783 /* We are replacing the page with a new one. */
2784 cpu_idcache_wbinv_range(va, NBPG);
2785
2786 PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2787 va, pa, opa));
2788
2789 /*
2790 * If it is part of our managed memory then we
2791 * must remove it from the PV list
2792 */
2793 if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
2794 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2795 simple_lock(&pvh->pvh_lock);
2796 pve = pmap_remove_pv(pvh, pmap, va);
2797 simple_unlock(&pvh->pvh_lock);
2798 } else {
2799 pve = NULL;
2800 }
2801
2802 goto enter;
2803 }
2804 } else {
2805 opa = 0;
2806 pve = NULL;
2807 pmap_pte_addref(pmap, va);
2808
2809 /* pte is not valid so we must be hooking in a new page */
2810 ++pmap->pm_stats.resident_count;
2811
2812 enter:
2813 /*
2814 * Enter on the PV list if part of our managed memory
2815 */
2816 bank = vm_physseg_find(atop(pa), &off);
2817
2818 if (pmap_initialized && (bank != -1)) {
2819 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2820 if (pve == NULL) {
2821 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2822 if (pve == NULL) {
2823 if (flags & PMAP_CANFAIL) {
2824 error = ENOMEM;
2825 goto out;
2826 }
2827 panic("pmap_enter: no pv entries available");
2828 }
2829 }
2830 /* enter_pv locks pvh when adding */
2831 pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
2832 } else {
2833 pvh = NULL;
2834 if (pve != NULL)
2835 pmap_free_pv(pmap, pve);
2836 }
2837 }
2838
2839 #ifdef MYCROFT_HACK
2840 if (mycroft_hack)
2841 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2842 #endif
2843
2844 /* Construct the pte, giving the correct access. */
2845 npte = (pa & PG_FRAME);
2846
2847 /* VA 0 is magic. */
2848 if (pmap != pmap_kernel() && va != 0)
2849 npte |= PT_AP(AP_U);
2850
2851 if (pmap_initialized && bank != -1) {
2852 #ifdef DIAGNOSTIC
2853 if ((flags & VM_PROT_ALL) & ~prot)
2854 panic("pmap_enter: access_type exceeds prot");
2855 #endif
2856 npte |= pte_cache_mode;
2857 if (flags & VM_PROT_WRITE) {
2858 npte |= L2_SPAGE | PT_AP(AP_W);
2859 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2860 } else if (flags & VM_PROT_ALL) {
2861 npte |= L2_SPAGE;
2862 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2863 } else
2864 npte |= L2_INVAL;
2865 } else {
2866 if (prot & VM_PROT_WRITE)
2867 npte |= L2_SPAGE | PT_AP(AP_W);
2868 else if (prot & VM_PROT_ALL)
2869 npte |= L2_SPAGE;
2870 else
2871 npte |= L2_INVAL;
2872 }
2873
2874 #ifdef MYCROFT_HACK
2875 if (mycroft_hack)
2876 printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2877 #endif
2878
2879 *pte = npte;
2880
2881 if (pmap_initialized && bank != -1)
2882 {
2883 boolean_t pmap_active = FALSE;
2884 /* XXX this will change once the whole of pmap_enter uses
2885 * map_ptes
2886 */
2887 ptes = pmap_map_ptes(pmap);
2888 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2889 || (pmap == pmap_kernel()))
2890 pmap_active = TRUE;
2891 simple_lock(&pvh->pvh_lock);
2892 pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
2893 simple_unlock(&pvh->pvh_lock);
2894 pmap_unmap_ptes(pmap);
2895 }
2896
2897 /* Better flush the TLB ... */
2898 cpu_tlb_flushID_SE(va);
2899 error = 0;
2900 out:
2901 simple_unlock(&pmap->pm_obj.vmobjlock);
2902 PMAP_MAP_TO_HEAD_UNLOCK();
2903 PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2904
2905 return error;
2906 }
2907
2908 /*
2909 * pmap_kenter_pa: enter a kernel mapping
2910 *
2911 * => no need to lock anything assume va is already allocated
2912 * => should be faster than normal pmap enter function
2913 */
2914 void
2915 pmap_kenter_pa(va, pa, prot)
2916 vaddr_t va;
2917 paddr_t pa;
2918 vm_prot_t prot;
2919 {
2920 pt_entry_t *pte;
2921
2922 pte = vtopte(va);
2923 KASSERT(!pmap_pte_v(pte));
2924 *pte = L2_PTE(pa, AP_KRW);
2925 }
2926
2927 void
2928 pmap_kremove(va, len)
2929 vaddr_t va;
2930 vsize_t len;
2931 {
2932 pt_entry_t *pte;
2933
2934 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2935
2936 /*
2937 * We assume that we will only be called with small
2938 * regions of memory.
2939 */
2940
2941 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2942 pte = vtopte(va);
2943 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2944 *pte = 0;
2945 cpu_tlb_flushID_SE(va);
2946 }
2947 }
2948
2949 /*
2950 * pmap_page_protect:
2951 *
2952 * Lower the permission for all mappings to a given page.
2953 */
2954
2955 void
2956 pmap_page_protect(pg, prot)
2957 struct vm_page *pg;
2958 vm_prot_t prot;
2959 {
2960 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2961
2962 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
2963
2964 switch(prot) {
2965 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2966 case VM_PROT_READ|VM_PROT_WRITE:
2967 return;
2968
2969 case VM_PROT_READ:
2970 case VM_PROT_READ|VM_PROT_EXECUTE:
2971 pmap_copy_on_write(pa);
2972 break;
2973
2974 default:
2975 pmap_remove_all(pa);
2976 break;
2977 }
2978 }
2979
2980
2981 /*
2982 * Routine: pmap_unwire
2983 * Function: Clear the wired attribute for a map/virtual-address
2984 * pair.
2985 * In/out conditions:
2986 * The mapping must already exist in the pmap.
2987 */
2988
2989 void
2990 pmap_unwire(pmap, va)
2991 struct pmap *pmap;
2992 vaddr_t va;
2993 {
2994 pt_entry_t *pte;
2995 paddr_t pa;
2996 int bank, off;
2997 struct pv_head *pvh;
2998
2999 /*
3000 * Make sure pmap is valid. -dct
3001 */
3002 if (pmap == NULL)
3003 return;
3004
3005 /* Get the pte */
3006 pte = pmap_pte(pmap, va);
3007 if (!pte)
3008 return;
3009
3010 /* Extract the physical address of the page */
3011 pa = pmap_pte_pa(pte);
3012
3013 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3014 return;
3015 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3016 simple_lock(&pvh->pvh_lock);
3017 /* Update the wired bit in the pv entry for this page. */
3018 (void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
3019 simple_unlock(&pvh->pvh_lock);
3020 }
3021
3022 /*
3023 * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
3024 *
3025 * Return the pointer to a page table entry corresponding to the supplied
3026 * virtual address.
3027 *
3028 * The page directory is first checked to make sure that a page table
3029 * for the address in question exists and if it does a pointer to the
3030 * entry is returned.
3031 *
3032 * The way this works is that that the kernel page tables are mapped
3033 * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
3034 * This allows page tables to be located quickly.
3035 */
3036 pt_entry_t *
3037 pmap_pte(pmap, va)
3038 struct pmap *pmap;
3039 vaddr_t va;
3040 {
3041 pt_entry_t *ptp;
3042 pt_entry_t *result;
3043
3044 /* The pmap must be valid */
3045 if (!pmap)
3046 return(NULL);
3047
3048 /* Return the address of the pte */
3049 PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
3050 pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
3051
3052 /* Do we have a valid pde ? If not we don't have a page table */
3053 if (!pmap_pde_page(pmap_pde(pmap, va))) {
3054 PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
3055 pmap_pde(pmap, va)));
3056 return(NULL);
3057 }
3058
3059 PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
3060 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3061 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3062 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
3063
3064 /*
3065 * If the pmap is the kernel pmap or the pmap is the active one
3066 * then we can just return a pointer to entry relative to
3067 * PROCESS_PAGE_TBLS_BASE.
3068 * Otherwise we need to map the page tables to an alternative
3069 * address and reference them there.
3070 */
3071 if (pmap == pmap_kernel() || pmap->pm_pptpt
3072 == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3073 + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
3074 ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3075 ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3076 } else {
3077 struct proc *p = curproc;
3078
3079 /* If we don't have a valid curproc use proc0 */
3080 /* Perhaps we should just use kernel_pmap instead */
3081 if (p == NULL)
3082 p = &proc0;
3083 #ifdef DIAGNOSTIC
3084 /*
3085 * The pmap should always be valid for the process so
3086 * panic if it is not.
3087 */
3088 if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
3089 printf("pmap_pte: va=%08lx p=%p vm=%p\n",
3090 va, p, p->p_vmspace);
3091 console_debugger();
3092 }
3093 /*
3094 * The pmap for the current process should be mapped. If it
3095 * is not then we have a problem.
3096 */
3097 if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
3098 (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3099 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3100 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3101 printf("pmap pagetable = P%08lx current = P%08x ",
3102 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3103 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3104 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
3105 PG_FRAME));
3106 printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
3107 panic("pmap_pte: current and pmap mismatch\n");
3108 }
3109 #endif
3110
3111 ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3112 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3113 pmap->pm_pptpt, FALSE);
3114 cpu_tlb_flushD();
3115 cpu_cpwait();
3116 }
3117 PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
3118 ((va >> (PGSHIFT-2)) & ~3)));
3119 result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
3120 return(result);
3121 }
3122
3123 /*
3124 * Routine: pmap_extract
3125 * Function:
3126 * Extract the physical page address associated
3127 * with the given map/virtual_address pair.
3128 */
3129 boolean_t
3130 pmap_extract(pmap, va, pap)
3131 struct pmap *pmap;
3132 vaddr_t va;
3133 paddr_t *pap;
3134 {
3135 pd_entry_t *pde;
3136 pt_entry_t *pte, *ptes;
3137 paddr_t pa;
3138 boolean_t rv = TRUE;
3139
3140 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
3141
3142 /*
3143 * Get the pte for this virtual address.
3144 */
3145 pde = pmap_pde(pmap, va);
3146 ptes = pmap_map_ptes(pmap);
3147 pte = &ptes[arm_byte_to_page(va)];
3148
3149 if (pmap_pde_section(pde)) {
3150 pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
3151 goto out;
3152 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3153 rv = FALSE;
3154 goto out;
3155 }
3156
3157 if ((*pte & L2_MASK) == L2_LPAGE) {
3158 /* Extract the physical address from the pte */
3159 pa = *pte & ~(L2_LPAGE_SIZE - 1);
3160
3161 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
3162 (pa | (va & (L2_LPAGE_SIZE - 1)))));
3163
3164 if (pap != NULL)
3165 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
3166 goto out;
3167 }
3168
3169 /* Extract the physical address from the pte */
3170 pa = pmap_pte_pa(pte);
3171
3172 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
3173 (pa | (va & ~PG_FRAME))));
3174
3175 if (pap != NULL)
3176 *pap = pa | (va & ~PG_FRAME);
3177 out:
3178 pmap_unmap_ptes(pmap);
3179 return (rv);
3180 }
3181
3182
3183 /*
3184 * Copy the range specified by src_addr/len from the source map to the
3185 * range dst_addr/len in the destination map.
3186 *
3187 * This routine is only advisory and need not do anything.
3188 */
3189
3190 void
3191 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
3192 struct pmap *dst_pmap;
3193 struct pmap *src_pmap;
3194 vaddr_t dst_addr;
3195 vsize_t len;
3196 vaddr_t src_addr;
3197 {
3198 PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
3199 dst_pmap, src_pmap, dst_addr, len, src_addr));
3200 }
3201
3202 #if defined(PMAP_DEBUG)
3203 void
3204 pmap_dump_pvlist(phys, m)
3205 vaddr_t phys;
3206 char *m;
3207 {
3208 struct pv_head *pvh;
3209 struct pv_entry *pv;
3210 int bank, off;
3211
3212 if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
3213 printf("INVALID PA\n");
3214 return;
3215 }
3216 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3217 simple_lock(&pvh->pvh_lock);
3218 printf("%s %08lx:", m, phys);
3219 if (pvh->pvh_list == NULL) {
3220 printf(" no mappings\n");
3221 return;
3222 }
3223
3224 for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
3225 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3226 pv->pv_va, pv->pv_flags);
3227
3228 printf("\n");
3229 simple_unlock(&pvh->pvh_lock);
3230 }
3231
3232 #endif /* PMAP_DEBUG */
3233
3234 __inline static boolean_t
3235 pmap_testbit(pa, setbits)
3236 paddr_t pa;
3237 unsigned int setbits;
3238 {
3239 int bank, off;
3240
3241 PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
3242
3243 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3244 return(FALSE);
3245
3246 /*
3247 * Check saved info only
3248 */
3249 if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
3250 PDEBUG(0, printf("pmap_attributes = %02x\n",
3251 vm_physmem[bank].pmseg.attrs[off]));
3252 return(TRUE);
3253 }
3254
3255 return(FALSE);
3256 }
3257
3258 static pt_entry_t *
3259 pmap_map_ptes(struct pmap *pmap)
3260 {
3261 struct proc *p;
3262
3263 /* the kernel's pmap is always accessible */
3264 if (pmap == pmap_kernel()) {
3265 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
3266 }
3267
3268 if (pmap_is_curpmap(pmap)) {
3269 simple_lock(&pmap->pm_obj.vmobjlock);
3270 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3271 }
3272
3273 p = curproc;
3274
3275 if (p == NULL)
3276 p = &proc0;
3277
3278 /* need to lock both curpmap and pmap: use ordered locking */
3279 if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
3280 simple_lock(&pmap->pm_obj.vmobjlock);
3281 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3282 } else {
3283 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3284 simple_lock(&pmap->pm_obj.vmobjlock);
3285 }
3286
3287 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3288 pmap->pm_pptpt, FALSE);
3289 cpu_tlb_flushD();
3290 cpu_cpwait();
3291 return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3292 }
3293
3294 /*
3295 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3296 */
3297
3298 static void
3299 pmap_unmap_ptes(pmap)
3300 struct pmap *pmap;
3301 {
3302 if (pmap == pmap_kernel()) {
3303 return;
3304 }
3305 if (pmap_is_curpmap(pmap)) {
3306 simple_unlock(&pmap->pm_obj.vmobjlock);
3307 } else {
3308 simple_unlock(&pmap->pm_obj.vmobjlock);
3309 simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3310 }
3311 }
3312
3313 /*
3314 * Modify pte bits for all ptes corresponding to the given physical address.
3315 * We use `maskbits' rather than `clearbits' because we're always passing
3316 * constants and the latter would require an extra inversion at run-time.
3317 */
3318
3319 static void
3320 pmap_clearbit(pa, maskbits)
3321 paddr_t pa;
3322 unsigned int maskbits;
3323 {
3324 struct pv_entry *pv;
3325 struct pv_head *pvh;
3326 pt_entry_t *pte;
3327 vaddr_t va;
3328 int bank, off, tlbentry;
3329
3330 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3331 pa, maskbits));
3332
3333 tlbentry = 0;
3334
3335 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3336 return;
3337 PMAP_HEAD_TO_MAP_LOCK();
3338 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3339 simple_lock(&pvh->pvh_lock);
3340
3341 /*
3342 * Clear saved attributes (modify, reference)
3343 */
3344 vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
3345
3346 if (pvh->pvh_list == NULL) {
3347 simple_unlock(&pvh->pvh_lock);
3348 PMAP_HEAD_TO_MAP_UNLOCK();
3349 return;
3350 }
3351
3352 /*
3353 * Loop over all current mappings setting/clearing as appropos
3354 */
3355 for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
3356 va = pv->pv_va;
3357 pv->pv_flags &= ~maskbits;
3358 pte = pmap_pte(pv->pv_pmap, va);
3359 KASSERT(pte != NULL);
3360 if (maskbits & (PT_Wr|PT_M)) {
3361 if ((pv->pv_flags & PT_NC)) {
3362 /*
3363 * Entry is not cacheable: reenable
3364 * the cache, nothing to flush
3365 *
3366 * Don't turn caching on again if this
3367 * is a modified emulation. This
3368 * would be inconsitent with the
3369 * settings created by
3370 * pmap_vac_me_harder().
3371 *
3372 * There's no need to call
3373 * pmap_vac_me_harder() here: all
3374 * pages are loosing their write
3375 * permission.
3376 *
3377 */
3378 if (maskbits & PT_Wr) {
3379 *pte |= pte_cache_mode;
3380 pv->pv_flags &= ~PT_NC;
3381 }
3382 } else if (pmap_is_curpmap(pv->pv_pmap))
3383 /*
3384 * Entry is cacheable: check if pmap is
3385 * current if it is flush it,
3386 * otherwise it won't be in the cache
3387 */
3388 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3389
3390 /* make the pte read only */
3391 *pte &= ~PT_AP(AP_W);
3392 }
3393
3394 if (maskbits & PT_H)
3395 *pte = (*pte & ~L2_MASK) | L2_INVAL;
3396
3397 if (pmap_is_curpmap(pv->pv_pmap))
3398 /*
3399 * if we had cacheable pte's we'd clean the
3400 * pte out to memory here
3401 *
3402 * flush tlb entry as it's in the current pmap
3403 */
3404 cpu_tlb_flushID_SE(pv->pv_va);
3405 }
3406 cpu_cpwait();
3407
3408 simple_unlock(&pvh->pvh_lock);
3409 PMAP_HEAD_TO_MAP_UNLOCK();
3410 }
3411
3412
3413 boolean_t
3414 pmap_clear_modify(pg)
3415 struct vm_page *pg;
3416 {
3417 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3418 boolean_t rv;
3419
3420 PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
3421 rv = pmap_testbit(pa, PT_M);
3422 pmap_clearbit(pa, PT_M);
3423 return rv;
3424 }
3425
3426
3427 boolean_t
3428 pmap_clear_reference(pg)
3429 struct vm_page *pg;
3430 {
3431 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3432 boolean_t rv;
3433
3434 PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
3435 rv = pmap_testbit(pa, PT_H);
3436 pmap_clearbit(pa, PT_H);
3437 return rv;
3438 }
3439
3440
3441 void
3442 pmap_copy_on_write(pa)
3443 paddr_t pa;
3444 {
3445 PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
3446 pmap_clearbit(pa, PT_Wr);
3447 }
3448
3449
3450 boolean_t
3451 pmap_is_modified(pg)
3452 struct vm_page *pg;
3453 {
3454 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3455 boolean_t result;
3456
3457 result = pmap_testbit(pa, PT_M);
3458 PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
3459 return (result);
3460 }
3461
3462
3463 boolean_t
3464 pmap_is_referenced(pg)
3465 struct vm_page *pg;
3466 {
3467 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3468 boolean_t result;
3469
3470 result = pmap_testbit(pa, PT_H);
3471 PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
3472 return (result);
3473 }
3474
3475
3476 int
3477 pmap_modified_emulation(pmap, va)
3478 struct pmap *pmap;
3479 vaddr_t va;
3480 {
3481 pt_entry_t *pte;
3482 paddr_t pa;
3483 int bank, off;
3484 struct pv_head *pvh;
3485 u_int flags;
3486
3487 PDEBUG(2, printf("pmap_modified_emulation\n"));
3488
3489 /* Get the pte */
3490 pte = pmap_pte(pmap, va);
3491 if (!pte) {
3492 PDEBUG(2, printf("no pte\n"));
3493 return(0);
3494 }
3495
3496 PDEBUG(1, printf("*pte=%08x\n", *pte));
3497
3498 /* Check for a zero pte */
3499 if (*pte == 0)
3500 return(0);
3501
3502 /* This can happen if user code tries to access kernel memory. */
3503 if ((*pte & PT_AP(AP_W)) != 0)
3504 return (0);
3505
3506 /* Extract the physical address of the page */
3507 pa = pmap_pte_pa(pte);
3508 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3509 return(0);
3510
3511 PMAP_HEAD_TO_MAP_LOCK();
3512 /* Get the current flags for this page. */
3513 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3514 /* XXX: needed if we hold head->map lock? */
3515 simple_lock(&pvh->pvh_lock);
3516
3517 flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
3518 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3519
3520 /*
3521 * Do the flags say this page is writable ? If not then it is a
3522 * genuine write fault. If yes then the write fault is our fault
3523 * as we did not reflect the write access in the PTE. Now we know
3524 * a write has occurred we can correct this and also set the
3525 * modified bit
3526 */
3527 if (~flags & PT_Wr) {
3528 simple_unlock(&pvh->pvh_lock);
3529 PMAP_HEAD_TO_MAP_UNLOCK();
3530 return(0);
3531 }
3532
3533 PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
3534 va, pte, *pte));
3535 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
3536
3537 /*
3538 * Re-enable write permissions for the page. No need to call
3539 * pmap_vac_me_harder(), since this is just a
3540 * modified-emulation fault, and the PT_Wr bit isn't changing. We've
3541 * already set the cacheable bits based on the assumption that we
3542 * can write to this page.
3543 */
3544 *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3545 PDEBUG(0, printf("->(%08x)\n", *pte));
3546
3547 simple_unlock(&pvh->pvh_lock);
3548 PMAP_HEAD_TO_MAP_UNLOCK();
3549 /* Return, indicating the problem has been dealt with */
3550 cpu_tlb_flushID_SE(va);
3551 cpu_cpwait();
3552 return(1);
3553 }
3554
3555
3556 int
3557 pmap_handled_emulation(pmap, va)
3558 struct pmap *pmap;
3559 vaddr_t va;
3560 {
3561 pt_entry_t *pte;
3562 paddr_t pa;
3563 int bank, off;
3564
3565 PDEBUG(2, printf("pmap_handled_emulation\n"));
3566
3567 /* Get the pte */
3568 pte = pmap_pte(pmap, va);
3569 if (!pte) {
3570 PDEBUG(2, printf("no pte\n"));
3571 return(0);
3572 }
3573
3574 PDEBUG(1, printf("*pte=%08x\n", *pte));
3575
3576 /* Check for a zero pte */
3577 if (*pte == 0)
3578 return(0);
3579
3580 /* This can happen if user code tries to access kernel memory. */
3581 if ((*pte & L2_MASK) != L2_INVAL)
3582 return (0);
3583
3584 /* Extract the physical address of the page */
3585 pa = pmap_pte_pa(pte);
3586 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3587 return(0);
3588
3589 /*
3590 * Ok we just enable the pte and mark the attibs as handled
3591 */
3592 PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
3593 va, pte, *pte));
3594 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
3595 *pte = (*pte & ~L2_MASK) | L2_SPAGE;
3596 PDEBUG(0, printf("->(%08x)\n", *pte));
3597
3598 /* Return, indicating the problem has been dealt with */
3599 cpu_tlb_flushID_SE(va);
3600 cpu_cpwait();
3601 return(1);
3602 }
3603
3604
3605
3606
3607 /*
3608 * pmap_collect: free resources held by a pmap
3609 *
3610 * => optional function.
3611 * => called when a process is swapped out to free memory.
3612 */
3613
3614 void
3615 pmap_collect(pmap)
3616 struct pmap *pmap;
3617 {
3618 }
3619
3620 /*
3621 * Routine: pmap_procwr
3622 *
3623 * Function:
3624 * Synchronize caches corresponding to [addr, addr+len) in p.
3625 *
3626 */
3627 void
3628 pmap_procwr(p, va, len)
3629 struct proc *p;
3630 vaddr_t va;
3631 int len;
3632 {
3633 /* We only need to do anything if it is the current process. */
3634 if (p == curproc)
3635 cpu_icache_sync_range(va, len);
3636 }
3637 /*
3638 * PTP functions
3639 */
3640
3641 /*
3642 * pmap_steal_ptp: Steal a PTP from somewhere else.
3643 *
3644 * This is just a placeholder, for now we never steal.
3645 */
3646
3647 static struct vm_page *
3648 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
3649 {
3650 return (NULL);
3651 }
3652
3653 /*
3654 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3655 *
3656 * => pmap should NOT be pmap_kernel()
3657 * => pmap should be locked
3658 */
3659
3660 static struct vm_page *
3661 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3662 {
3663 struct vm_page *ptp;
3664
3665 if (pmap_pde_page(pmap_pde(pmap, va))) {
3666
3667 /* valid... check hint (saves us a PA->PG lookup) */
3668 #if 0
3669 if (pmap->pm_ptphint &&
3670 ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
3671 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3672 return (pmap->pm_ptphint);
3673 #endif
3674 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3675 #ifdef DIAGNOSTIC
3676 if (ptp == NULL)
3677 panic("pmap_get_ptp: unmanaged user PTP");
3678 #endif
3679 // pmap->pm_ptphint = ptp;
3680 return(ptp);
3681 }
3682
3683 /* allocate a new PTP (updates ptphint) */
3684 return(pmap_alloc_ptp(pmap, va, just_try));
3685 }
3686
3687 /*
3688 * pmap_alloc_ptp: allocate a PTP for a PMAP
3689 *
3690 * => pmap should already be locked by caller
3691 * => we use the ptp's wire_count to count the number of active mappings
3692 * in the PTP (we start it at one to prevent any chance this PTP
3693 * will ever leak onto the active/inactive queues)
3694 */
3695
3696 /*__inline */ static struct vm_page *
3697 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3698 {
3699 struct vm_page *ptp;
3700
3701 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3702 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3703 if (ptp == NULL) {
3704 if (just_try)
3705 return (NULL);
3706
3707 ptp = pmap_steal_ptp(pmap, va);
3708
3709 if (ptp == NULL)
3710 return (NULL);
3711 /* Stole a page, zero it. */
3712 pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
3713 }
3714
3715 /* got one! */
3716 ptp->flags &= ~PG_BUSY; /* never busy */
3717 ptp->wire_count = 1; /* no mappings yet */
3718 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3719 pmap->pm_stats.resident_count++; /* count PTP as resident */
3720 // pmap->pm_ptphint = ptp;
3721 return (ptp);
3722 }
3723
3724 vaddr_t
3725 pmap_growkernel(maxkvaddr)
3726 vaddr_t maxkvaddr;
3727 {
3728 struct pmap *kpm = pmap_kernel(), *pm;
3729 int s;
3730 paddr_t ptaddr;
3731 struct vm_page *ptp;
3732
3733 if (maxkvaddr <= pmap_curmaxkvaddr)
3734 goto out; /* we are OK */
3735 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3736 pmap_curmaxkvaddr, maxkvaddr));
3737
3738 /*
3739 * whoops! we need to add kernel PTPs
3740 */
3741
3742 s = splhigh(); /* to be safe */
3743 simple_lock(&kpm->pm_obj.vmobjlock);
3744 /* due to the way the arm pmap works we map 4MB at a time */
3745 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr ; pmap_curmaxkvaddr += 4 * NBPD) {
3746
3747 if (uvm.page_init_done == FALSE) {
3748
3749 /*
3750 * we're growing the kernel pmap early (from
3751 * uvm_pageboot_alloc()). this case must be
3752 * handled a little differently.
3753 */
3754
3755 if (uvm_page_physget(&ptaddr) == FALSE)
3756 panic("pmap_growkernel: out of memory");
3757 pmap_zero_page(ptaddr);
3758
3759 /* map this page in */
3760 pmap_map_in_l1(kpm, (pmap_curmaxkvaddr + 1), ptaddr, TRUE);
3761
3762 /* count PTP as resident */
3763 kpm->pm_stats.resident_count++;
3764 continue;
3765 }
3766
3767 /*
3768 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3769 * pmap_initialized == FALSE CASE! WE MAY BE
3770 * INVOKED WHILE pmap_init() IS RUNNING!
3771 */
3772
3773 if ((ptp = pmap_alloc_ptp(kpm, (pmap_curmaxkvaddr + 1), FALSE)) == NULL) {
3774 panic("pmap_growkernel: alloc ptp failed");
3775 }
3776
3777 /* distribute new kernel PTP to all active pmaps */
3778 simple_lock(&pmaps_lock);
3779 LIST_FOREACH(pm, &pmaps, pm_list) {
3780 pmap_map_in_l1(pm, (pmap_curmaxkvaddr + 1), VM_PAGE_TO_PHYS(ptp), TRUE);
3781 }
3782
3783 simple_unlock(&pmaps_lock);
3784 }
3785
3786 /*
3787 * flush out the cache, expensive but growkernel will happen so
3788 * rarely
3789 */
3790 cpu_tlb_flushD();
3791 cpu_cpwait();
3792
3793 simple_unlock(&kpm->pm_obj.vmobjlock);
3794 splx(s);
3795
3796 out:
3797 return (pmap_curmaxkvaddr);
3798 }
3799
3800
3801
3802 /************************ Bootstrapping routines ****************************/
3803
3804 /*
3805 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3806 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3807 * find them as necessary.
3808 *
3809 * Note that the data on this list is not valid after initarm() returns.
3810 */
3811 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3812
3813 static vaddr_t
3814 kernel_pt_lookup(paddr_t pa)
3815 {
3816 pv_addr_t *pv;
3817
3818 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3819 if (pv->pv_pa == pa)
3820 return (pv->pv_va);
3821 }
3822 return (0);
3823 }
3824
3825 /*
3826 * pmap_map_section:
3827 *
3828 * Create a single section mapping.
3829 */
3830 void
3831 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3832 {
3833 pd_entry_t *pde = (pd_entry_t *) l1pt;
3834 pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3835 pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3836
3837 KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
3838
3839 pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
3840 }
3841
3842 /*
3843 * pmap_map_entry:
3844 *
3845 * Create a single page mapping.
3846 */
3847 void
3848 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3849 {
3850 pd_entry_t *pde = (pd_entry_t *) l1pt;
3851 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3852 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3853 pt_entry_t *pte;
3854
3855 KASSERT(((va | pa) & PGOFSET) == 0);
3856
3857 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3858 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3859
3860 pte = (pt_entry_t *)
3861 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3862 if (pte == NULL)
3863 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3864
3865 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
3866 }
3867
3868 /*
3869 * pmap_link_l2pt:
3870 *
3871 * Link the L2 page table specified by "pa" into the L1
3872 * page table at the slot for "va".
3873 */
3874 void
3875 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3876 {
3877 pd_entry_t *pde = (pd_entry_t *) l1pt;
3878 u_int slot = va >> PDSHIFT;
3879
3880 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3881
3882 pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
3883 pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
3884 pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
3885 pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
3886
3887 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3888 }
3889
3890 /*
3891 * pmap_map_chunk:
3892 *
3893 * Map a chunk of memory using the most efficient mappings
3894 * possible (section, large page, small page) into the
3895 * provided L1 and L2 tables at the specified virtual address.
3896 */
3897 vsize_t
3898 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3899 int prot, int cache)
3900 {
3901 pd_entry_t *pde = (pd_entry_t *) l1pt;
3902 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3903 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3904 pt_entry_t *pte;
3905 vsize_t resid;
3906 int i;
3907
3908 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3909
3910 if (l1pt == 0)
3911 panic("pmap_map_chunk: no L1 table provided");
3912
3913 #ifdef VERBOSE_INIT_ARM
3914 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3915 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3916 #endif
3917
3918 size = resid;
3919
3920 while (resid > 0) {
3921 /* See if we can use a section mapping. */
3922 if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
3923 resid >= L1_SEC_SIZE) {
3924 #ifdef VERBOSE_INIT_ARM
3925 printf("S");
3926 #endif
3927 pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
3928 va += L1_SEC_SIZE;
3929 pa += L1_SEC_SIZE;
3930 resid -= L1_SEC_SIZE;
3931 continue;
3932 }
3933
3934 /*
3935 * Ok, we're going to use an L2 table. Make sure
3936 * one is actually in the corresponding L1 slot
3937 * for the current VA.
3938 */
3939 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3940 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3941
3942 pte = (pt_entry_t *)
3943 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3944 if (pte == NULL)
3945 panic("pmap_map_chunk: can't find L2 table for VA"
3946 "0x%08lx", va);
3947
3948 /* See if we can use a L2 large page mapping. */
3949 if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
3950 resid >= L2_LPAGE_SIZE) {
3951 #ifdef VERBOSE_INIT_ARM
3952 printf("L");
3953 #endif
3954 for (i = 0; i < 16; i++) {
3955 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3956 L2_LPTE(pa, ap, fl);
3957 }
3958 va += L2_LPAGE_SIZE;
3959 pa += L2_LPAGE_SIZE;
3960 resid -= L2_LPAGE_SIZE;
3961 continue;
3962 }
3963
3964 /* Use a small page mapping. */
3965 #ifdef VERBOSE_INIT_ARM
3966 printf("P");
3967 #endif
3968 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
3969 va += NBPG;
3970 pa += NBPG;
3971 resid -= NBPG;
3972 }
3973 #ifdef VERBOSE_INIT_ARM
3974 printf("\n");
3975 #endif
3976 return (size);
3977 }
3978