Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.52
      1 /*	$NetBSD: pmap.c,v 1.52 2002/03/08 20:48:29 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * Copyright (c) 2001 Richard Earnshaw
      6  * Copyright (c) 2001 Christopher Gilbert
      7  * All rights reserved.
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the company nor the name of the author may be used to
     15  *    endorse or promote products derived from this software without specific
     16  *    prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*-
     32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to The NetBSD Foundation
     36  * by Charles M. Hannum.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *        This product includes software developed by the NetBSD
     49  *        Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64  * POSSIBILITY OF SUCH DAMAGE.
     65  */
     66 
     67 /*
     68  * Copyright (c) 1994-1998 Mark Brinicombe.
     69  * Copyright (c) 1994 Brini.
     70  * All rights reserved.
     71  *
     72  * This code is derived from software written for Brini by Mark Brinicombe
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by Mark Brinicombe.
     85  * 4. The name of the author may not be used to endorse or promote products
     86  *    derived from this software without specific prior written permission.
     87  *
     88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97  *
     98  * RiscBSD kernel project
     99  *
    100  * pmap.c
    101  *
    102  * Machine dependant vm stuff
    103  *
    104  * Created      : 20/09/94
    105  */
    106 
    107 /*
    108  * Performance improvements, UVM changes, overhauls and part-rewrites
    109  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110  */
    111 
    112 /*
    113  * The dram block info is currently referenced from the bootconfig.
    114  * This should be placed in a separate structure.
    115  */
    116 
    117 /*
    118  * Special compilation symbols
    119  * PMAP_DEBUG		- Build in pmap_debug_level code
    120  */
    121 
    122 /* Include header files */
    123 
    124 #include "opt_pmap_debug.h"
    125 #include "opt_ddb.h"
    126 
    127 #include <sys/types.h>
    128 #include <sys/param.h>
    129 #include <sys/kernel.h>
    130 #include <sys/systm.h>
    131 #include <sys/proc.h>
    132 #include <sys/malloc.h>
    133 #include <sys/user.h>
    134 #include <sys/pool.h>
    135 #include <sys/cdefs.h>
    136 
    137 #include <uvm/uvm.h>
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/pmap.h>
    142 #include <machine/pcb.h>
    143 #include <machine/param.h>
    144 #include <arm/arm32/katelib.h>
    145 
    146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.52 2002/03/08 20:48:29 thorpej Exp $");
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 void pmap_dump_pvlist(vaddr_t phys, char *m);
    153 
    154 /*
    155  * for switching to potentially finer grained debugging
    156  */
    157 #define	PDB_FOLLOW	0x0001
    158 #define	PDB_INIT	0x0002
    159 #define	PDB_ENTER	0x0004
    160 #define	PDB_REMOVE	0x0008
    161 #define	PDB_CREATE	0x0010
    162 #define	PDB_PTPAGE	0x0020
    163 #define	PDB_GROWKERN	0x0040
    164 #define	PDB_BITS	0x0080
    165 #define	PDB_COLLECT	0x0100
    166 #define	PDB_PROTECT	0x0200
    167 #define	PDB_MAP_L1	0x0400
    168 #define	PDB_BOOTSTRAP	0x1000
    169 #define	PDB_PARANOIA	0x2000
    170 #define	PDB_WIRING	0x4000
    171 #define	PDB_PVDUMP	0x8000
    172 
    173 int debugmap = 0;
    174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175 #define	NPDEBUG(_lev_,_stat_) \
    176 	if (pmapdebug & (_lev_)) \
    177         	((_stat_))
    178 
    179 #else	/* PMAP_DEBUG */
    180 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182 #endif	/* PMAP_DEBUG */
    183 
    184 struct pmap     kernel_pmap_store;
    185 
    186 /*
    187  * linked list of all non-kernel pmaps
    188  */
    189 
    190 static struct pmap_head pmaps;
    191 
    192 /*
    193  * pool that pmap structures are allocated from
    194  */
    195 
    196 struct pool pmap_pmap_pool;
    197 
    198 pagehook_t page_hook0;
    199 pagehook_t page_hook1;
    200 char *memhook;
    201 pt_entry_t msgbufpte;
    202 extern caddr_t msgbufaddr;
    203 
    204 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    205 /*
    206  * locking data structures
    207  */
    208 
    209 static struct lock pmap_main_lock;
    210 static struct simplelock pvalloc_lock;
    211 static struct simplelock pmaps_lock;
    212 #ifdef LOCKDEBUG
    213 #define PMAP_MAP_TO_HEAD_LOCK() \
    214      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    216      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    217 
    218 #define PMAP_HEAD_TO_MAP_LOCK() \
    219      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    221      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    222 #else
    223 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    224 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    225 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    226 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    227 #endif /* LOCKDEBUG */
    228 
    229 /*
    230  * pv_page management structures: locked by pvalloc_lock
    231  */
    232 
    233 TAILQ_HEAD(pv_pagelist, pv_page);
    234 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    236 static int pv_nfpvents;			/* # of free pv entries */
    237 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    238 static vaddr_t pv_cachedva;		/* cached VA for later use */
    239 
    240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    242 					/* high water mark */
    243 
    244 /*
    245  * local prototypes
    246  */
    247 
    248 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    249 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    250 #define ALLOCPV_NEED	0	/* need PV now */
    251 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    252 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    253 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    254 static void		 pmap_enter_pv __P((struct vm_page *,
    255 					    struct pv_entry *, struct pmap *,
    256 					    vaddr_t, struct vm_page *, int));
    257 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    258 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    259 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    260 static void		 pmap_free_pvpage __P((void));
    261 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    262 static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    263 			vaddr_t));
    264 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    265 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    266 
    267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    268 	u_int, u_int));
    269 
    270 static void pmap_free_l1pt __P((struct l1pt *));
    271 static int pmap_allocpagedir __P((struct pmap *));
    272 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    273 static void pmap_remove_all __P((struct vm_page *));
    274 
    275 
    276 vsize_t npages;
    277 
    278 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
    279 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
    280 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    281 
    282 extern paddr_t physical_start;
    283 extern paddr_t physical_freestart;
    284 extern paddr_t physical_end;
    285 extern paddr_t physical_freeend;
    286 extern unsigned int free_pages;
    287 extern int max_processes;
    288 
    289 vaddr_t virtual_start;
    290 vaddr_t virtual_end;
    291 vaddr_t pmap_curmaxkvaddr;
    292 
    293 vaddr_t avail_start;
    294 vaddr_t avail_end;
    295 
    296 extern pv_addr_t systempage;
    297 
    298 #define ALLOC_PAGE_HOOK(x, s) \
    299 	x.va = virtual_start; \
    300 	x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
    301 	virtual_start += s;
    302 
    303 /* Variables used by the L1 page table queue code */
    304 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    305 struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    306 int l1pt_static_queue_count;		/* items in the static l1 queue */
    307 int l1pt_static_create_count;		/* static l1 items created */
    308 struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    309 int l1pt_queue_count;			/* items in the l1 queue */
    310 int l1pt_create_count;			/* stat - L1's create count */
    311 int l1pt_reuse_count;			/* stat - L1's reused count */
    312 
    313 /* Local function prototypes (not used outside this file) */
    314 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
    315 void pmap_copy_on_write __P((struct vm_page *));
    316 void pmap_pinit __P((struct pmap *));
    317 void pmap_freepagedir __P((struct pmap *));
    318 
    319 /* Other function prototypes */
    320 extern void bzero_page __P((vaddr_t));
    321 extern void bcopy_page __P((vaddr_t, vaddr_t));
    322 
    323 struct l1pt *pmap_alloc_l1pt __P((void));
    324 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    325      vaddr_t l2pa, boolean_t));
    326 
    327 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    328 static void pmap_unmap_ptes __P((struct pmap *));
    329 
    330 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    331     pt_entry_t *, boolean_t));
    332 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    333     pt_entry_t *, boolean_t));
    334 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    335     pt_entry_t *, boolean_t));
    336 
    337 /*
    338  * Cache enable bits in PTE to use on pages that are cacheable.
    339  * On most machines this is cacheable/bufferable, but on some, eg arm10, we
    340  * can chose between write-through and write-back cacheing.
    341  */
    342 pt_entry_t pte_cache_mode = (PT_C | PT_B);
    343 
    344 /*
    345  * real definition of pv_entry.
    346  */
    347 
    348 struct pv_entry {
    349 	struct pv_entry *pv_next;       /* next pv_entry */
    350 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    351 	vaddr_t         pv_va;          /* virtual address for mapping */
    352 	int             pv_flags;       /* flags */
    353 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    354 };
    355 
    356 /*
    357  * pv_entrys are dynamically allocated in chunks from a single page.
    358  * we keep track of how many pv_entrys are in use for each page and
    359  * we can free pv_entry pages if needed.  there is one lock for the
    360  * entire allocation system.
    361  */
    362 
    363 struct pv_page_info {
    364 	TAILQ_ENTRY(pv_page) pvpi_list;
    365 	struct pv_entry *pvpi_pvfree;
    366 	int pvpi_nfree;
    367 };
    368 
    369 /*
    370  * number of pv_entry's in a pv_page
    371  * (note: won't work on systems where NPBG isn't a constant)
    372  */
    373 
    374 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    375 			sizeof(struct pv_entry))
    376 
    377 /*
    378  * a pv_page: where pv_entrys are allocated from
    379  */
    380 
    381 struct pv_page {
    382 	struct pv_page_info pvinfo;
    383 	struct pv_entry pvents[PVE_PER_PVPAGE];
    384 };
    385 
    386 #ifdef MYCROFT_HACK
    387 int mycroft_hack = 0;
    388 #endif
    389 
    390 /* Function to set the debug level of the pmap code */
    391 
    392 #ifdef PMAP_DEBUG
    393 void
    394 pmap_debug(level)
    395 	int level;
    396 {
    397 	pmap_debug_level = level;
    398 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    399 }
    400 #endif	/* PMAP_DEBUG */
    401 
    402 __inline static boolean_t
    403 pmap_is_curpmap(struct pmap *pmap)
    404 {
    405     if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
    406 	    || (pmap == pmap_kernel()))
    407 	return (TRUE);
    408     return (FALSE);
    409 }
    410 #include "isadma.h"
    411 
    412 #if NISADMA > 0
    413 /*
    414  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    415  * pages into the system, memory intersects with any of these ranges,
    416  * the intersecting memory will be loaded into a lower-priority free list.
    417  */
    418 bus_dma_segment_t *pmap_isa_dma_ranges;
    419 int pmap_isa_dma_nranges;
    420 
    421 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    422 	    paddr_t *, psize_t *));
    423 
    424 /*
    425  * Check if a memory range intersects with an ISA DMA range, and
    426  * return the page-rounded intersection if it does.  The intersection
    427  * will be placed on a lower-priority free list.
    428  */
    429 boolean_t
    430 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    431 	paddr_t pa;
    432 	psize_t size;
    433 	paddr_t *pap;
    434 	psize_t *sizep;
    435 {
    436 	bus_dma_segment_t *ds;
    437 	int i;
    438 
    439 	if (pmap_isa_dma_ranges == NULL)
    440 		return (FALSE);
    441 
    442 	for (i = 0, ds = pmap_isa_dma_ranges;
    443 	     i < pmap_isa_dma_nranges; i++, ds++) {
    444 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    445 			/*
    446 			 * Beginning of region intersects with this range.
    447 			 */
    448 			*pap = trunc_page(pa);
    449 			*sizep = round_page(min(pa + size,
    450 			    ds->ds_addr + ds->ds_len) - pa);
    451 			return (TRUE);
    452 		}
    453 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    454 			/*
    455 			 * End of region intersects with this range.
    456 			 */
    457 			*pap = trunc_page(ds->ds_addr);
    458 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    459 			    ds->ds_len));
    460 			return (TRUE);
    461 		}
    462 	}
    463 
    464 	/*
    465 	 * No intersection found.
    466 	 */
    467 	return (FALSE);
    468 }
    469 #endif /* NISADMA > 0 */
    470 
    471 /*
    472  * p v _ e n t r y   f u n c t i o n s
    473  */
    474 
    475 /*
    476  * pv_entry allocation functions:
    477  *   the main pv_entry allocation functions are:
    478  *     pmap_alloc_pv: allocate a pv_entry structure
    479  *     pmap_free_pv: free one pv_entry
    480  *     pmap_free_pvs: free a list of pv_entrys
    481  *
    482  * the rest are helper functions
    483  */
    484 
    485 /*
    486  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    487  * => we lock pvalloc_lock
    488  * => if we fail, we call out to pmap_alloc_pvpage
    489  * => 3 modes:
    490  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    491  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    492  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    493  *			one now
    494  *
    495  * "try" is for optional functions like pmap_copy().
    496  */
    497 
    498 __inline static struct pv_entry *
    499 pmap_alloc_pv(pmap, mode)
    500 	struct pmap *pmap;
    501 	int mode;
    502 {
    503 	struct pv_page *pvpage;
    504 	struct pv_entry *pv;
    505 
    506 	simple_lock(&pvalloc_lock);
    507 
    508 	pvpage = TAILQ_FIRST(&pv_freepages);
    509 
    510 	if (pvpage != NULL) {
    511 		pvpage->pvinfo.pvpi_nfree--;
    512 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    513 			/* nothing left in this one? */
    514 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    515 		}
    516 		pv = pvpage->pvinfo.pvpi_pvfree;
    517 		KASSERT(pv);
    518 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    519 		pv_nfpvents--;  /* took one from pool */
    520 	} else {
    521 		pv = NULL;		/* need more of them */
    522 	}
    523 
    524 	/*
    525 	 * if below low water mark or we didn't get a pv_entry we try and
    526 	 * create more pv_entrys ...
    527 	 */
    528 
    529 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    530 		if (pv == NULL)
    531 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    532 					       mode : ALLOCPV_NEED);
    533 		else
    534 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    535 	}
    536 
    537 	simple_unlock(&pvalloc_lock);
    538 	return(pv);
    539 }
    540 
    541 /*
    542  * pmap_alloc_pvpage: maybe allocate a new pvpage
    543  *
    544  * if need_entry is false: try and allocate a new pv_page
    545  * if need_entry is true: try and allocate a new pv_page and return a
    546  *	new pv_entry from it.   if we are unable to allocate a pv_page
    547  *	we make a last ditch effort to steal a pv_page from some other
    548  *	mapping.    if that fails, we panic...
    549  *
    550  * => we assume that the caller holds pvalloc_lock
    551  */
    552 
    553 static struct pv_entry *
    554 pmap_alloc_pvpage(pmap, mode)
    555 	struct pmap *pmap;
    556 	int mode;
    557 {
    558 	struct vm_page *pg;
    559 	struct pv_page *pvpage;
    560 	struct pv_entry *pv;
    561 	int s;
    562 
    563 	/*
    564 	 * if we need_entry and we've got unused pv_pages, allocate from there
    565 	 */
    566 
    567 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    568 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    569 
    570 		/* move it to pv_freepages list */
    571 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    572 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    573 
    574 		/* allocate a pv_entry */
    575 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    576 		pv = pvpage->pvinfo.pvpi_pvfree;
    577 		KASSERT(pv);
    578 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    579 
    580 		pv_nfpvents--;  /* took one from pool */
    581 		return(pv);
    582 	}
    583 
    584 	/*
    585 	 *  see if we've got a cached unmapped VA that we can map a page in.
    586 	 * if not, try to allocate one.
    587 	 */
    588 
    589 
    590 	if (pv_cachedva == 0) {
    591 		s = splvm();
    592 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    593 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    594 		splx(s);
    595 		if (pv_cachedva == 0) {
    596 			return (NULL);
    597 		}
    598 	}
    599 
    600 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    601 	    UVM_PGA_USERESERVE);
    602 
    603 	if (pg == NULL)
    604 		return (NULL);
    605 	pg->flags &= ~PG_BUSY;	/* never busy */
    606 
    607 	/*
    608 	 * add a mapping for our new pv_page and free its entrys (save one!)
    609 	 *
    610 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    611 	 * pmap is already locked!  (...but entering the mapping is safe...)
    612 	 */
    613 
    614 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    615 		VM_PROT_READ|VM_PROT_WRITE);
    616 	pmap_update(pmap_kernel());
    617 	pvpage = (struct pv_page *) pv_cachedva;
    618 	pv_cachedva = 0;
    619 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    620 }
    621 
    622 /*
    623  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    624  *
    625  * => caller must hold pvalloc_lock
    626  * => if need_entry is true, we allocate and return one pv_entry
    627  */
    628 
    629 static struct pv_entry *
    630 pmap_add_pvpage(pvp, need_entry)
    631 	struct pv_page *pvp;
    632 	boolean_t need_entry;
    633 {
    634 	int tofree, lcv;
    635 
    636 	/* do we need to return one? */
    637 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    638 
    639 	pvp->pvinfo.pvpi_pvfree = NULL;
    640 	pvp->pvinfo.pvpi_nfree = tofree;
    641 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    642 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    643 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    644 	}
    645 	if (need_entry)
    646 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    647 	else
    648 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    649 	pv_nfpvents += tofree;
    650 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    651 }
    652 
    653 /*
    654  * pmap_free_pv_doit: actually free a pv_entry
    655  *
    656  * => do not call this directly!  instead use either
    657  *    1. pmap_free_pv ==> free a single pv_entry
    658  *    2. pmap_free_pvs => free a list of pv_entrys
    659  * => we must be holding pvalloc_lock
    660  */
    661 
    662 __inline static void
    663 pmap_free_pv_doit(pv)
    664 	struct pv_entry *pv;
    665 {
    666 	struct pv_page *pvp;
    667 
    668 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    669 	pv_nfpvents++;
    670 	pvp->pvinfo.pvpi_nfree++;
    671 
    672 	/* nfree == 1 => fully allocated page just became partly allocated */
    673 	if (pvp->pvinfo.pvpi_nfree == 1) {
    674 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    675 	}
    676 
    677 	/* free it */
    678 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    679 	pvp->pvinfo.pvpi_pvfree = pv;
    680 
    681 	/*
    682 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    683 	 */
    684 
    685 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    686 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    687 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    688 	}
    689 }
    690 
    691 /*
    692  * pmap_free_pv: free a single pv_entry
    693  *
    694  * => we gain the pvalloc_lock
    695  */
    696 
    697 __inline static void
    698 pmap_free_pv(pmap, pv)
    699 	struct pmap *pmap;
    700 	struct pv_entry *pv;
    701 {
    702 	simple_lock(&pvalloc_lock);
    703 	pmap_free_pv_doit(pv);
    704 
    705 	/*
    706 	 * Can't free the PV page if the PV entries were associated with
    707 	 * the kernel pmap; the pmap is already locked.
    708 	 */
    709 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    710 	    pmap != pmap_kernel())
    711 		pmap_free_pvpage();
    712 
    713 	simple_unlock(&pvalloc_lock);
    714 }
    715 
    716 /*
    717  * pmap_free_pvs: free a list of pv_entrys
    718  *
    719  * => we gain the pvalloc_lock
    720  */
    721 
    722 __inline static void
    723 pmap_free_pvs(pmap, pvs)
    724 	struct pmap *pmap;
    725 	struct pv_entry *pvs;
    726 {
    727 	struct pv_entry *nextpv;
    728 
    729 	simple_lock(&pvalloc_lock);
    730 
    731 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    732 		nextpv = pvs->pv_next;
    733 		pmap_free_pv_doit(pvs);
    734 	}
    735 
    736 	/*
    737 	 * Can't free the PV page if the PV entries were associated with
    738 	 * the kernel pmap; the pmap is already locked.
    739 	 */
    740 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    741 	    pmap != pmap_kernel())
    742 		pmap_free_pvpage();
    743 
    744 	simple_unlock(&pvalloc_lock);
    745 }
    746 
    747 
    748 /*
    749  * pmap_free_pvpage: try and free an unused pv_page structure
    750  *
    751  * => assume caller is holding the pvalloc_lock and that
    752  *	there is a page on the pv_unusedpgs list
    753  * => if we can't get a lock on the kmem_map we try again later
    754  */
    755 
    756 static void
    757 pmap_free_pvpage()
    758 {
    759 	int s;
    760 	struct vm_map *map;
    761 	struct vm_map_entry *dead_entries;
    762 	struct pv_page *pvp;
    763 
    764 	s = splvm(); /* protect kmem_map */
    765 
    766 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    767 
    768 	/*
    769 	 * note: watch out for pv_initpage which is allocated out of
    770 	 * kernel_map rather than kmem_map.
    771 	 */
    772 	if (pvp == pv_initpage)
    773 		map = kernel_map;
    774 	else
    775 		map = kmem_map;
    776 	if (vm_map_lock_try(map)) {
    777 
    778 		/* remove pvp from pv_unusedpgs */
    779 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    780 
    781 		/* unmap the page */
    782 		dead_entries = NULL;
    783 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    784 		    &dead_entries);
    785 		vm_map_unlock(map);
    786 
    787 		if (dead_entries != NULL)
    788 			uvm_unmap_detach(dead_entries, 0);
    789 
    790 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    791 	}
    792 	if (pvp == pv_initpage)
    793 		/* no more initpage, we've freed it */
    794 		pv_initpage = NULL;
    795 
    796 	splx(s);
    797 }
    798 
    799 /*
    800  * main pv_entry manipulation functions:
    801  *   pmap_enter_pv: enter a mapping onto a vm_page list
    802  *   pmap_remove_pv: remove a mappiing from a vm_page list
    803  *
    804  * NOTE: pmap_enter_pv expects to lock the pvh itself
    805  *       pmap_remove_pv expects te caller to lock the pvh before calling
    806  */
    807 
    808 /*
    809  * pmap_enter_pv: enter a mapping onto a vm_page lst
    810  *
    811  * => caller should hold the proper lock on pmap_main_lock
    812  * => caller should have pmap locked
    813  * => we will gain the lock on the vm_page and allocate the new pv_entry
    814  * => caller should adjust ptp's wire_count before calling
    815  * => caller should not adjust pmap's wire_count
    816  */
    817 
    818 __inline static void
    819 pmap_enter_pv(pg, pve, pmap, va, ptp, flags)
    820 	struct vm_page *pg;
    821 	struct pv_entry *pve;	/* preallocated pve for us to use */
    822 	struct pmap *pmap;
    823 	vaddr_t va;
    824 	struct vm_page *ptp;	/* PTP in pmap that maps this VA */
    825 	int flags;
    826 {
    827 	pve->pv_pmap = pmap;
    828 	pve->pv_va = va;
    829 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    830 	pve->pv_flags = flags;
    831 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    832 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    833 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    834 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    835 	if (pve->pv_flags & PT_W)
    836 		++pmap->pm_stats.wired_count;
    837 }
    838 
    839 /*
    840  * pmap_remove_pv: try to remove a mapping from a pv_list
    841  *
    842  * => caller should hold proper lock on pmap_main_lock
    843  * => pmap should be locked
    844  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    845  * => caller should adjust ptp's wire_count and free PTP if needed
    846  * => caller should NOT adjust pmap's wire_count
    847  * => we return the removed pve
    848  */
    849 
    850 __inline static struct pv_entry *
    851 pmap_remove_pv(pg, pmap, va)
    852 	struct vm_page *pg;
    853 	struct pmap *pmap;
    854 	vaddr_t va;
    855 {
    856 	struct pv_entry *pve, **prevptr;
    857 
    858 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    859 	pve = *prevptr;
    860 	while (pve) {
    861 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    862 			*prevptr = pve->pv_next;		/* remove it! */
    863 			if (pve->pv_flags & PT_W)
    864 			    --pmap->pm_stats.wired_count;
    865 			break;
    866 		}
    867 		prevptr = &pve->pv_next;		/* previous pointer */
    868 		pve = pve->pv_next;			/* advance */
    869 	}
    870 	return(pve);				/* return removed pve */
    871 }
    872 
    873 /*
    874  *
    875  * pmap_modify_pv: Update pv flags
    876  *
    877  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    878  * => caller should NOT adjust pmap's wire_count
    879  * => caller must call pmap_vac_me_harder() if writable status of a page
    880  *    may have changed.
    881  * => we return the old flags
    882  *
    883  * Modify a physical-virtual mapping in the pv table
    884  */
    885 
    886 /*__inline */
    887 static u_int
    888 pmap_modify_pv(pmap, va, pg, bic_mask, eor_mask)
    889 	struct pmap *pmap;
    890 	vaddr_t va;
    891 	struct vm_page *pg;
    892 	u_int bic_mask;
    893 	u_int eor_mask;
    894 {
    895 	struct pv_entry *npv;
    896 	u_int flags, oflags;
    897 
    898 	/*
    899 	 * There is at least one VA mapping this page.
    900 	 */
    901 
    902 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    903 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    904 			oflags = npv->pv_flags;
    905 			npv->pv_flags = flags =
    906 			    ((oflags & ~bic_mask) ^ eor_mask);
    907 			if ((flags ^ oflags) & PT_W) {
    908 				if (flags & PT_W)
    909 					++pmap->pm_stats.wired_count;
    910 				else
    911 					--pmap->pm_stats.wired_count;
    912 			}
    913 			return (oflags);
    914 		}
    915 	}
    916 	return (0);
    917 }
    918 
    919 /*
    920  * Map the specified level 2 pagetable into the level 1 page table for
    921  * the given pmap to cover a chunk of virtual address space starting from the
    922  * address specified.
    923  */
    924 static /*__inline*/ void
    925 pmap_map_in_l1(pmap, va, l2pa, selfref)
    926 	struct pmap *pmap;
    927 	vaddr_t va, l2pa;
    928 	boolean_t selfref;
    929 {
    930 	vaddr_t ptva;
    931 
    932 	/* Calculate the index into the L1 page table. */
    933 	ptva = (va >> PDSHIFT) & ~3;
    934 
    935 	NPDEBUG(PDB_MAP_L1, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    936 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    937 
    938 	/* Map page table into the L1. */
    939 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    940 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    941 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    942 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    943 
    944 	/* Map the page table into the page table area. */
    945 	if (selfref) {
    946 	    NPDEBUG(PDB_MAP_L1, printf("pt self reference %lx in %lx\n",
    947 			L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    948 	    *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    949 		L2_PTE_NC_NB(l2pa, AP_KRW);
    950 	}
    951 	/* XXX should be a purge */
    952 /*	cpu_tlb_flushD();*/
    953 }
    954 
    955 #if 0
    956 static /*__inline*/ void
    957 pmap_unmap_in_l1(pmap, va)
    958 	struct pmap *pmap;
    959 	vaddr_t va;
    960 {
    961 	vaddr_t ptva;
    962 
    963 	/* Calculate the index into the L1 page table. */
    964 	ptva = (va >> PDSHIFT) & ~3;
    965 
    966 	/* Unmap page table from the L1. */
    967 	pmap->pm_pdir[ptva + 0] = 0;
    968 	pmap->pm_pdir[ptva + 1] = 0;
    969 	pmap->pm_pdir[ptva + 2] = 0;
    970 	pmap->pm_pdir[ptva + 3] = 0;
    971 
    972 	/* Unmap the page table from the page table area. */
    973 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    974 
    975 	/* XXX should be a purge */
    976 /*	cpu_tlb_flushD();*/
    977 }
    978 #endif
    979 
    980 /*
    981  *	Used to map a range of physical addresses into kernel
    982  *	virtual address space.
    983  *
    984  *	For now, VM is already on, we only need to map the
    985  *	specified memory.
    986  */
    987 vaddr_t
    988 pmap_map(va, spa, epa, prot)
    989 	vaddr_t va, spa, epa;
    990 	int prot;
    991 {
    992 	while (spa < epa) {
    993 		pmap_kenter_pa(va, spa, prot);
    994 		va += NBPG;
    995 		spa += NBPG;
    996 	}
    997 	pmap_update(pmap_kernel());
    998 	return(va);
    999 }
   1000 
   1001 
   1002 /*
   1003  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
   1004  *
   1005  * bootstrap the pmap system. This is called from initarm and allows
   1006  * the pmap system to initailise any structures it requires.
   1007  *
   1008  * Currently this sets up the kernel_pmap that is statically allocated
   1009  * and also allocated virtual addresses for certain page hooks.
   1010  * Currently the only one page hook is allocated that is used
   1011  * to zero physical pages of memory.
   1012  * It also initialises the start and end address of the kernel data space.
   1013  */
   1014 extern paddr_t physical_freestart;
   1015 extern paddr_t physical_freeend;
   1016 
   1017 char *boot_head;
   1018 
   1019 void
   1020 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
   1021 	pd_entry_t *kernel_l1pt;
   1022 	pv_addr_t kernel_ptpt;
   1023 {
   1024 	int loop;
   1025 	paddr_t start, end;
   1026 #if NISADMA > 0
   1027 	paddr_t istart;
   1028 	psize_t isize;
   1029 #endif
   1030 
   1031 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1032 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1033 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1034 	simple_lock_init(&pmap_kernel()->pm_lock);
   1035 	pmap_kernel()->pm_obj.pgops = NULL;
   1036 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1037 	pmap_kernel()->pm_obj.uo_npages = 0;
   1038 	pmap_kernel()->pm_obj.uo_refs = 1;
   1039 
   1040 	/*
   1041 	 * Initialize PAGE_SIZE-dependent variables.
   1042 	 */
   1043 	uvm_setpagesize();
   1044 
   1045 	npages = 0;
   1046 	loop = 0;
   1047 	while (loop < bootconfig.dramblocks) {
   1048 		start = (paddr_t)bootconfig.dram[loop].address;
   1049 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1050 		if (start < physical_freestart)
   1051 			start = physical_freestart;
   1052 		if (end > physical_freeend)
   1053 			end = physical_freeend;
   1054 #if 0
   1055 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1056 #endif
   1057 #if NISADMA > 0
   1058 		if (pmap_isa_dma_range_intersect(start, end - start,
   1059 		    &istart, &isize)) {
   1060 			/*
   1061 			 * Place the pages that intersect with the
   1062 			 * ISA DMA range onto the ISA DMA free list.
   1063 			 */
   1064 #if 0
   1065 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1066 			    istart + isize - 1);
   1067 #endif
   1068 			uvm_page_physload(atop(istart),
   1069 			    atop(istart + isize), atop(istart),
   1070 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1071 			npages += atop(istart + isize) - atop(istart);
   1072 
   1073 			/*
   1074 			 * Load the pieces that come before
   1075 			 * the intersection into the default
   1076 			 * free list.
   1077 			 */
   1078 			if (start < istart) {
   1079 #if 0
   1080 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1081 				    start, istart - 1);
   1082 #endif
   1083 				uvm_page_physload(atop(start),
   1084 				    atop(istart), atop(start),
   1085 				    atop(istart), VM_FREELIST_DEFAULT);
   1086 				npages += atop(istart) - atop(start);
   1087 			}
   1088 
   1089 			/*
   1090 			 * Load the pieces that come after
   1091 			 * the intersection into the default
   1092 			 * free list.
   1093 			 */
   1094 			if ((istart + isize) < end) {
   1095 #if 0
   1096 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1097 				    (istart + isize), end - 1);
   1098 #endif
   1099 				uvm_page_physload(atop(istart + isize),
   1100 				    atop(end), atop(istart + isize),
   1101 				    atop(end), VM_FREELIST_DEFAULT);
   1102 				npages += atop(end) - atop(istart + isize);
   1103 			}
   1104 		} else {
   1105 			uvm_page_physload(atop(start), atop(end),
   1106 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1107 			npages += atop(end) - atop(start);
   1108 		}
   1109 #else	/* NISADMA > 0 */
   1110 		uvm_page_physload(atop(start), atop(end),
   1111 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1112 		npages += atop(end) - atop(start);
   1113 #endif /* NISADMA > 0 */
   1114 		++loop;
   1115 	}
   1116 
   1117 #ifdef MYCROFT_HACK
   1118 	printf("npages = %ld\n", npages);
   1119 #endif
   1120 
   1121 	virtual_start = KERNEL_VM_BASE;
   1122 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE - 1;
   1123 
   1124 	ALLOC_PAGE_HOOK(page_hook0, NBPG);
   1125 	ALLOC_PAGE_HOOK(page_hook1, NBPG);
   1126 
   1127 	/*
   1128 	 * The mem special device needs a virtual hook but we don't
   1129 	 * need a pte
   1130 	 */
   1131 	memhook = (char *)virtual_start;
   1132 	virtual_start += NBPG;
   1133 
   1134 	msgbufaddr = (caddr_t)virtual_start;
   1135 	msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
   1136 	virtual_start += round_page(MSGBUFSIZE);
   1137 
   1138 	/*
   1139 	 * init the static-global locks and global lists.
   1140 	 */
   1141 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1142 	simple_lock_init(&pvalloc_lock);
   1143 	simple_lock_init(&pmaps_lock);
   1144 	LIST_INIT(&pmaps);
   1145 	TAILQ_INIT(&pv_freepages);
   1146 	TAILQ_INIT(&pv_unusedpgs);
   1147 
   1148 	/*
   1149 	 * initialize the pmap pool.
   1150 	 */
   1151 
   1152 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1153 		  &pool_allocator_nointr);
   1154 
   1155 	cpu_dcache_wbinv_all();
   1156 }
   1157 
   1158 /*
   1159  * void pmap_init(void)
   1160  *
   1161  * Initialize the pmap module.
   1162  * Called by vm_init() in vm/vm_init.c in order to initialise
   1163  * any structures that the pmap system needs to map virtual memory.
   1164  */
   1165 
   1166 extern int physmem;
   1167 
   1168 void
   1169 pmap_init()
   1170 {
   1171 
   1172 	/*
   1173 	 * Set the available memory vars - These do not map to real memory
   1174 	 * addresses and cannot as the physical memory is fragmented.
   1175 	 * They are used by ps for %mem calculations.
   1176 	 * One could argue whether this should be the entire memory or just
   1177 	 * the memory that is useable in a user process.
   1178 	 */
   1179 	avail_start = 0;
   1180 	avail_end = physmem * NBPG;
   1181 
   1182 	/*
   1183 	 * now we need to free enough pv_entry structures to allow us to get
   1184 	 * the kmem_map/kmem_object allocated and inited (done after this
   1185 	 * function is finished).  to do this we allocate one bootstrap page out
   1186 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1187 	 * structures.   we never free this page.
   1188 	 */
   1189 
   1190 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1191 	if (pv_initpage == NULL)
   1192 		panic("pmap_init: pv_initpage");
   1193 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1194 	pv_nfpvents = 0;
   1195 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1196 
   1197 	pmap_initialized = TRUE;
   1198 
   1199 	/* Initialise our L1 page table queues and counters */
   1200 	SIMPLEQ_INIT(&l1pt_static_queue);
   1201 	l1pt_static_queue_count = 0;
   1202 	l1pt_static_create_count = 0;
   1203 	SIMPLEQ_INIT(&l1pt_queue);
   1204 	l1pt_queue_count = 0;
   1205 	l1pt_create_count = 0;
   1206 	l1pt_reuse_count = 0;
   1207 }
   1208 
   1209 /*
   1210  * pmap_postinit()
   1211  *
   1212  * This routine is called after the vm and kmem subsystems have been
   1213  * initialised. This allows the pmap code to perform any initialisation
   1214  * that can only be done one the memory allocation is in place.
   1215  */
   1216 
   1217 void
   1218 pmap_postinit()
   1219 {
   1220 	int loop;
   1221 	struct l1pt *pt;
   1222 
   1223 #ifdef PMAP_STATIC_L1S
   1224 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1225 #else	/* PMAP_STATIC_L1S */
   1226 	for (loop = 0; loop < max_processes; ++loop) {
   1227 #endif	/* PMAP_STATIC_L1S */
   1228 		/* Allocate a L1 page table */
   1229 		pt = pmap_alloc_l1pt();
   1230 		if (!pt)
   1231 			panic("Cannot allocate static L1 page tables\n");
   1232 
   1233 		/* Clean it */
   1234 		bzero((void *)pt->pt_va, PD_SIZE);
   1235 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1236 		/* Add the page table to the queue */
   1237 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1238 		++l1pt_static_queue_count;
   1239 		++l1pt_static_create_count;
   1240 	}
   1241 }
   1242 
   1243 
   1244 /*
   1245  * Create and return a physical map.
   1246  *
   1247  * If the size specified for the map is zero, the map is an actual physical
   1248  * map, and may be referenced by the hardware.
   1249  *
   1250  * If the size specified is non-zero, the map will be used in software only,
   1251  * and is bounded by that size.
   1252  */
   1253 
   1254 pmap_t
   1255 pmap_create()
   1256 {
   1257 	struct pmap *pmap;
   1258 
   1259 	/*
   1260 	 * Fetch pmap entry from the pool
   1261 	 */
   1262 
   1263 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1264 	/* XXX is this really needed! */
   1265 	memset(pmap, 0, sizeof(*pmap));
   1266 
   1267 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1268 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1269 	TAILQ_INIT(&pmap->pm_obj.memq);
   1270 	pmap->pm_obj.uo_npages = 0;
   1271 	pmap->pm_obj.uo_refs = 1;
   1272 	pmap->pm_stats.wired_count = 0;
   1273 	pmap->pm_stats.resident_count = 1;
   1274 
   1275 	/* Now init the machine part of the pmap */
   1276 	pmap_pinit(pmap);
   1277 	return(pmap);
   1278 }
   1279 
   1280 /*
   1281  * pmap_alloc_l1pt()
   1282  *
   1283  * This routine allocates physical and virtual memory for a L1 page table
   1284  * and wires it.
   1285  * A l1pt structure is returned to describe the allocated page table.
   1286  *
   1287  * This routine is allowed to fail if the required memory cannot be allocated.
   1288  * In this case NULL is returned.
   1289  */
   1290 
   1291 struct l1pt *
   1292 pmap_alloc_l1pt(void)
   1293 {
   1294 	paddr_t pa;
   1295 	vaddr_t va;
   1296 	struct l1pt *pt;
   1297 	int error;
   1298 	struct vm_page *m;
   1299 	pt_entry_t *ptes;
   1300 
   1301 	/* Allocate virtual address space for the L1 page table */
   1302 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1303 	if (va == 0) {
   1304 #ifdef DIAGNOSTIC
   1305 		PDEBUG(0,
   1306 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1307 #endif	/* DIAGNOSTIC */
   1308 		return(NULL);
   1309 	}
   1310 
   1311 	/* Allocate memory for the l1pt structure */
   1312 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1313 
   1314 	/*
   1315 	 * Allocate pages from the VM system.
   1316 	 */
   1317 	TAILQ_INIT(&pt->pt_plist);
   1318 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1319 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1320 	if (error) {
   1321 #ifdef DIAGNOSTIC
   1322 		PDEBUG(0,
   1323 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1324 		    error));
   1325 #endif	/* DIAGNOSTIC */
   1326 		/* Release the resources we already have claimed */
   1327 		free(pt, M_VMPMAP);
   1328 		uvm_km_free(kernel_map, va, PD_SIZE);
   1329 		return(NULL);
   1330 	}
   1331 
   1332 	/* Map our physical pages into our virtual space */
   1333 	pt->pt_va = va;
   1334 	m = TAILQ_FIRST(&pt->pt_plist);
   1335 	ptes = pmap_map_ptes(pmap_kernel());
   1336 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1337 		pa = VM_PAGE_TO_PHYS(m);
   1338 
   1339 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1340 
   1341 		/* Revoke cacheability and bufferability */
   1342 		/* XXX should be done better than this */
   1343 		ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
   1344 
   1345 		va += NBPG;
   1346 		m = m->pageq.tqe_next;
   1347 	}
   1348 	pmap_unmap_ptes(pmap_kernel());
   1349 	pmap_update(pmap_kernel());
   1350 
   1351 #ifdef DIAGNOSTIC
   1352 	if (m)
   1353 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1354 #endif	/* DIAGNOSTIC */
   1355 
   1356 	pt->pt_flags = 0;
   1357 	return(pt);
   1358 }
   1359 
   1360 /*
   1361  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1362  */
   1363 static void
   1364 pmap_free_l1pt(pt)
   1365 	struct l1pt *pt;
   1366 {
   1367 	/* Separate the physical memory for the virtual space */
   1368 	pmap_kremove(pt->pt_va, PD_SIZE);
   1369 	pmap_update(pmap_kernel());
   1370 
   1371 	/* Return the physical memory */
   1372 	uvm_pglistfree(&pt->pt_plist);
   1373 
   1374 	/* Free the virtual space */
   1375 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1376 
   1377 	/* Free the l1pt structure */
   1378 	free(pt, M_VMPMAP);
   1379 }
   1380 
   1381 /*
   1382  * Allocate a page directory.
   1383  * This routine will either allocate a new page directory from the pool
   1384  * of L1 page tables currently held by the kernel or it will allocate
   1385  * a new one via pmap_alloc_l1pt().
   1386  * It will then initialise the l1 page table for use.
   1387  *
   1388  * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
   1389  */
   1390 static int
   1391 pmap_allocpagedir(pmap)
   1392 	struct pmap *pmap;
   1393 {
   1394 	paddr_t pa;
   1395 	struct l1pt *pt;
   1396 	pt_entry_t *pte;
   1397 
   1398 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1399 
   1400 	/* Do we have any spare L1's lying around ? */
   1401 	if (l1pt_static_queue_count) {
   1402 		--l1pt_static_queue_count;
   1403 		pt = l1pt_static_queue.sqh_first;
   1404 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1405 	} else if (l1pt_queue_count) {
   1406 		--l1pt_queue_count;
   1407 		pt = l1pt_queue.sqh_first;
   1408 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1409 		++l1pt_reuse_count;
   1410 	} else {
   1411 		pt = pmap_alloc_l1pt();
   1412 		if (!pt)
   1413 			return(ENOMEM);
   1414 		++l1pt_create_count;
   1415 	}
   1416 
   1417 	/* Store the pointer to the l1 descriptor in the pmap. */
   1418 	pmap->pm_l1pt = pt;
   1419 
   1420 	/* Get the physical address of the start of the l1 */
   1421 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1422 
   1423 	/* Store the virtual address of the l1 in the pmap. */
   1424 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1425 
   1426 	/* Clean the L1 if it is dirty */
   1427 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1428 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1429 
   1430 	/* Allocate a page table to map all the page tables for this pmap */
   1431 
   1432 #ifdef DIAGNOSTIC
   1433 	if (pmap->pm_vptpt) {
   1434 		/* XXX What if we have one already ? */
   1435 		panic("pmap_allocpagedir: have pt already\n");
   1436 	}
   1437 #endif	/* DIAGNOSTIC */
   1438 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1439 	if (pmap->pm_vptpt == 0) {
   1440 	    pmap_freepagedir(pmap);
   1441     	    return(ENOMEM);
   1442 	}
   1443 
   1444 	/* need to lock this all up  for growkernel */
   1445 	simple_lock(&pmaps_lock);
   1446 	/* wish we didn't have to keep this locked... */
   1447 
   1448 	/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
   1449 	bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1450 		(char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1451 		KERNEL_PD_SIZE);
   1452 
   1453 	(void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
   1454 	pmap->pm_pptpt &= PG_FRAME;
   1455 	/* Revoke cacheability and bufferability */
   1456 	/* XXX should be done better than this */
   1457 	pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
   1458 	*pte = *pte & ~(PT_C | PT_B);
   1459 
   1460 	/* Wire in this page table */
   1461 	pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
   1462 
   1463 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1464 
   1465 	/*
   1466 	 * Map the kernel page tables for 0xf0000000 +
   1467 	 * into the page table used to map the
   1468 	 * pmap's page tables
   1469 	 */
   1470 	bcopy((char *)(PROCESS_PAGE_TBLS_BASE
   1471 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
   1472 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1473 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1474 	    (KERNEL_PD_SIZE >> 2));
   1475 
   1476 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1477 	simple_unlock(&pmaps_lock);
   1478 
   1479 	return(0);
   1480 }
   1481 
   1482 
   1483 /*
   1484  * Initialize a preallocated and zeroed pmap structure,
   1485  * such as one in a vmspace structure.
   1486  */
   1487 
   1488 void
   1489 pmap_pinit(pmap)
   1490 	struct pmap *pmap;
   1491 {
   1492 	int backoff = 6;
   1493 	int retry = 10;
   1494 
   1495 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1496 
   1497 	/* Keep looping until we succeed in allocating a page directory */
   1498 	while (pmap_allocpagedir(pmap) != 0) {
   1499 		/*
   1500 		 * Ok we failed to allocate a suitable block of memory for an
   1501 		 * L1 page table. This means that either:
   1502 		 * 1. 16KB of virtual address space could not be allocated
   1503 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1504 		 *    could not be allocated.
   1505 		 *
   1506 		 * Since we cannot fail we will sleep for a while and try
   1507 		 * again.
   1508 		 *
   1509 		 * Searching for a suitable L1 PT is expensive:
   1510 		 * to avoid hogging the system when memory is really
   1511 		 * scarce, use an exponential back-off so that
   1512 		 * eventually we won't retry more than once every 8
   1513 		 * seconds.  This should allow other processes to run
   1514 		 * to completion and free up resources.
   1515 		 */
   1516 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1517 		    NULL);
   1518 		if (--retry == 0) {
   1519 			retry = 10;
   1520 			if (backoff)
   1521 				--backoff;
   1522 		}
   1523 	}
   1524 
   1525 	/* Map zero page for the pmap. This will also map the L2 for it */
   1526 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1527 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1528 	pmap_update(pmap);
   1529 }
   1530 
   1531 
   1532 void
   1533 pmap_freepagedir(pmap)
   1534 	struct pmap *pmap;
   1535 {
   1536 	/* Free the memory used for the page table mapping */
   1537 	if (pmap->pm_vptpt != 0)
   1538 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1539 
   1540 	/* junk the L1 page table */
   1541 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1542 		/* Add the page table to the queue */
   1543 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1544 		++l1pt_static_queue_count;
   1545 	} else if (l1pt_queue_count < 8) {
   1546 		/* Add the page table to the queue */
   1547 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1548 		++l1pt_queue_count;
   1549 	} else
   1550 		pmap_free_l1pt(pmap->pm_l1pt);
   1551 }
   1552 
   1553 
   1554 /*
   1555  * Retire the given physical map from service.
   1556  * Should only be called if the map contains no valid mappings.
   1557  */
   1558 
   1559 void
   1560 pmap_destroy(pmap)
   1561 	struct pmap *pmap;
   1562 {
   1563 	struct vm_page *page;
   1564 	int count;
   1565 
   1566 	if (pmap == NULL)
   1567 		return;
   1568 
   1569 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1570 
   1571 	/*
   1572 	 * Drop reference count
   1573 	 */
   1574 	simple_lock(&pmap->pm_obj.vmobjlock);
   1575 	count = --pmap->pm_obj.uo_refs;
   1576 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1577 	if (count > 0) {
   1578 		return;
   1579 	}
   1580 
   1581 	/*
   1582 	 * reference count is zero, free pmap resources and then free pmap.
   1583 	 */
   1584 
   1585 	/*
   1586 	 * remove it from global list of pmaps
   1587 	 */
   1588 
   1589 	simple_lock(&pmaps_lock);
   1590 	LIST_REMOVE(pmap, pm_list);
   1591 	simple_unlock(&pmaps_lock);
   1592 
   1593 	/* Remove the zero page mapping */
   1594 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1595 	pmap_update(pmap);
   1596 
   1597 	/*
   1598 	 * Free any page tables still mapped
   1599 	 * This is only temporay until pmap_enter can count the number
   1600 	 * of mappings made in a page table. Then pmap_remove() can
   1601 	 * reduce the count and free the pagetable when the count
   1602 	 * reaches zero.  Note that entries in this list should match the
   1603 	 * contents of the ptpt, however this is faster than walking a 1024
   1604 	 * entries looking for pt's
   1605 	 * taken from i386 pmap.c
   1606 	 */
   1607 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1608 		KASSERT((page->flags & PG_BUSY) == 0);
   1609 		page->wire_count = 0;
   1610 		uvm_pagefree(page);
   1611 	}
   1612 
   1613 	/* Free the page dir */
   1614 	pmap_freepagedir(pmap);
   1615 
   1616 	/* return the pmap to the pool */
   1617 	pool_put(&pmap_pmap_pool, pmap);
   1618 }
   1619 
   1620 
   1621 /*
   1622  * void pmap_reference(struct pmap *pmap)
   1623  *
   1624  * Add a reference to the specified pmap.
   1625  */
   1626 
   1627 void
   1628 pmap_reference(pmap)
   1629 	struct pmap *pmap;
   1630 {
   1631 	if (pmap == NULL)
   1632 		return;
   1633 
   1634 	simple_lock(&pmap->pm_lock);
   1635 	pmap->pm_obj.uo_refs++;
   1636 	simple_unlock(&pmap->pm_lock);
   1637 }
   1638 
   1639 /*
   1640  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1641  *
   1642  * Return the start and end addresses of the kernel's virtual space.
   1643  * These values are setup in pmap_bootstrap and are updated as pages
   1644  * are allocated.
   1645  */
   1646 
   1647 void
   1648 pmap_virtual_space(start, end)
   1649 	vaddr_t *start;
   1650 	vaddr_t *end;
   1651 {
   1652 	*start = virtual_start;
   1653 	*end = virtual_end;
   1654 }
   1655 
   1656 
   1657 /*
   1658  * Activate the address space for the specified process.  If the process
   1659  * is the current process, load the new MMU context.
   1660  */
   1661 void
   1662 pmap_activate(p)
   1663 	struct proc *p;
   1664 {
   1665 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1666 	struct pcb *pcb = &p->p_addr->u_pcb;
   1667 
   1668 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1669 	    (paddr_t *)&pcb->pcb_pagedir);
   1670 
   1671 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1672 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1673 
   1674 	if (p == curproc) {
   1675 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1676 		setttb((u_int)pcb->pcb_pagedir);
   1677 	}
   1678 #if 0
   1679 	pmap->pm_pdchanged = FALSE;
   1680 #endif
   1681 }
   1682 
   1683 
   1684 /*
   1685  * Deactivate the address space of the specified process.
   1686  */
   1687 void
   1688 pmap_deactivate(p)
   1689 	struct proc *p;
   1690 {
   1691 }
   1692 
   1693 /*
   1694  * Perform any deferred pmap operations.
   1695  */
   1696 void
   1697 pmap_update(struct pmap *pmap)
   1698 {
   1699 
   1700 	/*
   1701 	 * We haven't deferred any pmap operations, but we do need to
   1702 	 * make sure TLB/cache operations have completed.
   1703 	 */
   1704 	cpu_cpwait();
   1705 }
   1706 
   1707 /*
   1708  * pmap_clean_page()
   1709  *
   1710  * This is a local function used to work out the best strategy to clean
   1711  * a single page referenced by its entry in the PV table. It's used by
   1712  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1713  *
   1714  * Its policy is effectively:
   1715  *  o If there are no mappings, we don't bother doing anything with the cache.
   1716  *  o If there is one mapping, we clean just that page.
   1717  *  o If there are multiple mappings, we clean the entire cache.
   1718  *
   1719  * So that some functions can be further optimised, it returns 0 if it didn't
   1720  * clean the entire cache, or 1 if it did.
   1721  *
   1722  * XXX One bug in this routine is that if the pv_entry has a single page
   1723  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1724  * just the 1 page. Since this should not occur in everyday use and if it does
   1725  * it will just result in not the most efficient clean for the page.
   1726  */
   1727 static int
   1728 pmap_clean_page(pv, is_src)
   1729 	struct pv_entry *pv;
   1730 	boolean_t is_src;
   1731 {
   1732 	struct pmap *pmap;
   1733 	struct pv_entry *npv;
   1734 	int cache_needs_cleaning = 0;
   1735 	vaddr_t page_to_clean = 0;
   1736 
   1737 	if (pv == NULL)
   1738 		/* nothing mapped in so nothing to flush */
   1739 		return (0);
   1740 
   1741 	/* Since we flush the cache each time we change curproc, we
   1742 	 * only need to flush the page if it is in the current pmap.
   1743 	 */
   1744 	if (curproc)
   1745 		pmap = curproc->p_vmspace->vm_map.pmap;
   1746 	else
   1747 		pmap = pmap_kernel();
   1748 
   1749 	for (npv = pv; npv; npv = npv->pv_next) {
   1750 		if (npv->pv_pmap == pmap) {
   1751 			/* The page is mapped non-cacheable in
   1752 			 * this map.  No need to flush the cache.
   1753 			 */
   1754 			if (npv->pv_flags & PT_NC) {
   1755 #ifdef DIAGNOSTIC
   1756 				if (cache_needs_cleaning)
   1757 					panic("pmap_clean_page: "
   1758 							"cache inconsistency");
   1759 #endif
   1760 				break;
   1761 			}
   1762 #if 0
   1763 			/* This doesn't work, because pmap_protect
   1764 			   doesn't flush changes on pages that it
   1765 			   has write-protected.  */
   1766 
   1767 			/* If the page is not writable and this
   1768 			   is the source, then there is no need
   1769 			   to flush it from the cache.  */
   1770 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1771 				continue;
   1772 #endif
   1773 			if (cache_needs_cleaning){
   1774 				page_to_clean = 0;
   1775 				break;
   1776 			}
   1777 			else
   1778 				page_to_clean = npv->pv_va;
   1779 			cache_needs_cleaning = 1;
   1780 		}
   1781 	}
   1782 
   1783 	if (page_to_clean)
   1784 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1785 	else if (cache_needs_cleaning) {
   1786 		cpu_idcache_wbinv_all();
   1787 		return (1);
   1788 	}
   1789 	return (0);
   1790 }
   1791 
   1792 /*
   1793  * pmap_zero_page()
   1794  *
   1795  * Zero a given physical page by mapping it at a page hook point.
   1796  * In doing the zero page op, the page we zero is mapped cachable, as with
   1797  * StrongARM accesses to non-cached pages are non-burst making writing
   1798  * _any_ bulk data very slow.
   1799  */
   1800 void
   1801 pmap_zero_page(phys)
   1802 	paddr_t phys;
   1803 {
   1804 	struct vm_page *pg;
   1805 
   1806 	/* Get an entry for this page, and clean it it. */
   1807 	pg = PHYS_TO_VM_PAGE(phys);
   1808 	simple_lock(&pg->mdpage.pvh_slock);
   1809 	pmap_clean_page(pg->mdpage.pvh_list, FALSE);
   1810 	simple_unlock(&pg->mdpage.pvh_slock);
   1811 
   1812 	/*
   1813 	 * Hook in the page, zero it, and purge the cache for that
   1814 	 * zeroed page. Invalidate the TLB as needed.
   1815 	 */
   1816 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1817 	cpu_tlb_flushD_SE(page_hook0.va);
   1818 	cpu_cpwait();
   1819 	bzero_page(page_hook0.va);
   1820 	cpu_dcache_wbinv_range(page_hook0.va, NBPG);
   1821 }
   1822 
   1823 /* pmap_pageidlezero()
   1824  *
   1825  * The same as above, except that we assume that the page is not
   1826  * mapped.  This means we never have to flush the cache first.  Called
   1827  * from the idle loop.
   1828  */
   1829 boolean_t
   1830 pmap_pageidlezero(phys)
   1831     paddr_t phys;
   1832 {
   1833 	int i, *ptr;
   1834 	boolean_t rv = TRUE;
   1835 
   1836 #ifdef DIAGNOSTIC
   1837 	struct vm_page *pg;
   1838 
   1839 	pg = PHYS_TO_VM_PAGE(phys);
   1840 	if (pg->mdpage.pvh_list != NULL)
   1841 		panic("pmap_pageidlezero: zeroing mapped page\n");
   1842 #endif
   1843 
   1844 	/*
   1845 	 * Hook in the page, zero it, and purge the cache for that
   1846 	 * zeroed page. Invalidate the TLB as needed.
   1847 	 */
   1848 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1849 	cpu_tlb_flushD_SE(page_hook0.va);
   1850 	cpu_cpwait();
   1851 
   1852 	for (i = 0, ptr = (int *)page_hook0.va;
   1853 			i < (NBPG / sizeof(int)); i++) {
   1854 		if (sched_whichqs != 0) {
   1855 			/*
   1856 			 * A process has become ready.  Abort now,
   1857 			 * so we don't keep it waiting while we
   1858 			 * do slow memory access to finish this
   1859 			 * page.
   1860 			 */
   1861 			rv = FALSE;
   1862 			break;
   1863 		}
   1864 		*ptr++ = 0;
   1865 	}
   1866 
   1867 	if (rv)
   1868 		/*
   1869 		 * if we aborted we'll rezero this page again later so don't
   1870 		 * purge it unless we finished it
   1871 		 */
   1872 		cpu_dcache_wbinv_range(page_hook0.va, NBPG);
   1873 	return (rv);
   1874 }
   1875 
   1876 /*
   1877  * pmap_copy_page()
   1878  *
   1879  * Copy one physical page into another, by mapping the pages into
   1880  * hook points. The same comment regarding cachability as in
   1881  * pmap_zero_page also applies here.
   1882  */
   1883 void
   1884 pmap_copy_page(src, dest)
   1885 	paddr_t src;
   1886 	paddr_t dest;
   1887 {
   1888 	struct vm_page *src_pg, *dest_pg;
   1889 	boolean_t cleanedcache;
   1890 
   1891 	/* Get PV entries for the pages, and clean them if needed. */
   1892 	src_pg = PHYS_TO_VM_PAGE(src);
   1893 
   1894 	simple_lock(&src_pg->mdpage.pvh_slock);
   1895 	cleanedcache = pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1896 	simple_unlock(&src_pg->mdpage.pvh_slock);
   1897 
   1898 	if (cleanedcache == 0) {
   1899 		dest_pg = PHYS_TO_VM_PAGE(dest);
   1900 		simple_lock(&dest_pg->mdpage.pvh_slock);
   1901 		pmap_clean_page(dest_pg->mdpage.pvh_list, FALSE);
   1902 		simple_unlock(&dest_pg->mdpage.pvh_slock);
   1903 	}
   1904 	/*
   1905 	 * Map the pages into the page hook points, copy them, and purge
   1906 	 * the cache for the appropriate page. Invalidate the TLB
   1907 	 * as required.
   1908 	 */
   1909 	*page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1910 	*page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1911 	cpu_tlb_flushD_SE(page_hook0.va);
   1912 	cpu_tlb_flushD_SE(page_hook1.va);
   1913 	cpu_cpwait();
   1914 	bcopy_page(page_hook0.va, page_hook1.va);
   1915 	cpu_dcache_wbinv_range(page_hook0.va, NBPG);
   1916 	cpu_dcache_wbinv_range(page_hook1.va, NBPG);
   1917 }
   1918 
   1919 #if 0
   1920 void
   1921 pmap_pte_addref(pmap, va)
   1922 	struct pmap *pmap;
   1923 	vaddr_t va;
   1924 {
   1925 	pd_entry_t *pde;
   1926 	paddr_t pa;
   1927 	struct vm_page *m;
   1928 
   1929 	if (pmap == pmap_kernel())
   1930 		return;
   1931 
   1932 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1933 	pa = pmap_pte_pa(pde);
   1934 	m = PHYS_TO_VM_PAGE(pa);
   1935 	++m->wire_count;
   1936 #ifdef MYCROFT_HACK
   1937 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1938 	    pmap, va, pde, pa, m, m->wire_count);
   1939 #endif
   1940 }
   1941 
   1942 void
   1943 pmap_pte_delref(pmap, va)
   1944 	struct pmap *pmap;
   1945 	vaddr_t va;
   1946 {
   1947 	pd_entry_t *pde;
   1948 	paddr_t pa;
   1949 	struct vm_page *m;
   1950 
   1951 	if (pmap == pmap_kernel())
   1952 		return;
   1953 
   1954 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1955 	pa = pmap_pte_pa(pde);
   1956 	m = PHYS_TO_VM_PAGE(pa);
   1957 	--m->wire_count;
   1958 #ifdef MYCROFT_HACK
   1959 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1960 	    pmap, va, pde, pa, m, m->wire_count);
   1961 #endif
   1962 	if (m->wire_count == 0) {
   1963 #ifdef MYCROFT_HACK
   1964 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1965 		    pmap, va, pde, pa, m);
   1966 #endif
   1967 		pmap_unmap_in_l1(pmap, va);
   1968 		uvm_pagefree(m);
   1969 		--pmap->pm_stats.resident_count;
   1970 	}
   1971 }
   1972 #else
   1973 #define	pmap_pte_addref(pmap, va)
   1974 #define	pmap_pte_delref(pmap, va)
   1975 #endif
   1976 
   1977 /*
   1978  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1979  * there is more than one mapping and at least one of them is writable.
   1980  * Since we purge the cache on every context switch, we only need to check for
   1981  * other mappings within the same pmap, or kernel_pmap.
   1982  * This function is also called when a page is unmapped, to possibly reenable
   1983  * caching on any remaining mappings.
   1984  *
   1985  * The code implements the following logic, where:
   1986  *
   1987  * KW = # of kernel read/write pages
   1988  * KR = # of kernel read only pages
   1989  * UW = # of user read/write pages
   1990  * UR = # of user read only pages
   1991  * OW = # of user read/write pages in another pmap, then
   1992  *
   1993  * KC = kernel mapping is cacheable
   1994  * UC = user mapping is cacheable
   1995  *
   1996  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1997  *                   +---------------------------------------------
   1998  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   1999  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2000  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2001  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2002  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2003  *
   2004  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2005  */
   2006 __inline static void
   2007 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2008 	boolean_t clear_cache)
   2009 {
   2010 	if (pmap == pmap_kernel())
   2011 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2012 	else
   2013 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2014 }
   2015 
   2016 static void
   2017 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2018 	boolean_t clear_cache)
   2019 {
   2020 	int user_entries = 0;
   2021 	int user_writable = 0;
   2022 	int user_cacheable = 0;
   2023 	int kernel_entries = 0;
   2024 	int kernel_writable = 0;
   2025 	int kernel_cacheable = 0;
   2026 	struct pv_entry *pv;
   2027 	struct pmap *last_pmap = pmap;
   2028 
   2029 #ifdef DIAGNOSTIC
   2030 	if (pmap != pmap_kernel())
   2031 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2032 #endif
   2033 
   2034 	/*
   2035 	 * Pass one, see if there are both kernel and user pmaps for
   2036 	 * this page.  Calculate whether there are user-writable or
   2037 	 * kernel-writable pages.
   2038 	 */
   2039 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2040 		if (pv->pv_pmap != pmap) {
   2041 			user_entries++;
   2042 			if (pv->pv_flags & PT_Wr)
   2043 				user_writable++;
   2044 			if ((pv->pv_flags & PT_NC) == 0)
   2045 				user_cacheable++;
   2046 		} else {
   2047 			kernel_entries++;
   2048 			if (pv->pv_flags & PT_Wr)
   2049 				kernel_writable++;
   2050 			if ((pv->pv_flags & PT_NC) == 0)
   2051 				kernel_cacheable++;
   2052 		}
   2053 	}
   2054 
   2055 	/*
   2056 	 * We know we have just been updating a kernel entry, so if
   2057 	 * all user pages are already cacheable, then there is nothing
   2058 	 * further to do.
   2059 	 */
   2060 	if (kernel_entries == 0 &&
   2061 	    user_cacheable == user_entries)
   2062 		return;
   2063 
   2064 	if (user_entries) {
   2065 		/*
   2066 		 * Scan over the list again, for each entry, if it
   2067 		 * might not be set correctly, call pmap_vac_me_user
   2068 		 * to recalculate the settings.
   2069 		 */
   2070 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2071 			/*
   2072 			 * We know kernel mappings will get set
   2073 			 * correctly in other calls.  We also know
   2074 			 * that if the pmap is the same as last_pmap
   2075 			 * then we've just handled this entry.
   2076 			 */
   2077 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2078 				continue;
   2079 			/*
   2080 			 * If there are kernel entries and this page
   2081 			 * is writable but non-cacheable, then we can
   2082 			 * skip this entry also.
   2083 			 */
   2084 			if (kernel_entries > 0 &&
   2085 			    (pv->pv_flags & (PT_NC | PT_Wr)) ==
   2086 			    (PT_NC | PT_Wr))
   2087 				continue;
   2088 			/*
   2089 			 * Similarly if there are no kernel-writable
   2090 			 * entries and the page is already
   2091 			 * read-only/cacheable.
   2092 			 */
   2093 			if (kernel_writable == 0 &&
   2094 			    (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
   2095 				continue;
   2096 			/*
   2097 			 * For some of the remaining cases, we know
   2098 			 * that we must recalculate, but for others we
   2099 			 * can't tell if they are correct or not, so
   2100 			 * we recalculate anyway.
   2101 			 */
   2102 			pmap_unmap_ptes(last_pmap);
   2103 			last_pmap = pv->pv_pmap;
   2104 			ptes = pmap_map_ptes(last_pmap);
   2105 			pmap_vac_me_user(last_pmap, pg, ptes,
   2106 			    pmap_is_curpmap(last_pmap));
   2107 		}
   2108 		/* Restore the pte mapping that was passed to us.  */
   2109 		if (last_pmap != pmap) {
   2110 			pmap_unmap_ptes(last_pmap);
   2111 			ptes = pmap_map_ptes(pmap);
   2112 		}
   2113 		if (kernel_entries == 0)
   2114 			return;
   2115 	}
   2116 
   2117 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2118 	return;
   2119 }
   2120 
   2121 static void
   2122 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2123 	boolean_t clear_cache)
   2124 {
   2125 	struct pmap *kpmap = pmap_kernel();
   2126 	struct pv_entry *pv, *npv;
   2127 	int entries = 0;
   2128 	int writable = 0;
   2129 	int cacheable_entries = 0;
   2130 	int kern_cacheable = 0;
   2131 	int other_writable = 0;
   2132 
   2133 	pv = pg->mdpage.pvh_list;
   2134 	KASSERT(ptes != NULL);
   2135 
   2136 	/*
   2137 	 * Count mappings and writable mappings in this pmap.
   2138 	 * Include kernel mappings as part of our own.
   2139 	 * Keep a pointer to the first one.
   2140 	 */
   2141 	for (npv = pv; npv; npv = npv->pv_next) {
   2142 		/* Count mappings in the same pmap */
   2143 		if (pmap == npv->pv_pmap ||
   2144 		    kpmap == npv->pv_pmap) {
   2145 			if (entries++ == 0)
   2146 				pv = npv;
   2147 			/* Cacheable mappings */
   2148 			if ((npv->pv_flags & PT_NC) == 0) {
   2149 				cacheable_entries++;
   2150 				if (kpmap == npv->pv_pmap)
   2151 					kern_cacheable++;
   2152 			}
   2153 			/* Writable mappings */
   2154 			if (npv->pv_flags & PT_Wr)
   2155 				++writable;
   2156 		} else if (npv->pv_flags & PT_Wr)
   2157 			other_writable = 1;
   2158 	}
   2159 
   2160 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2161 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2162 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2163 
   2164 	/*
   2165 	 * Enable or disable caching as necessary.
   2166 	 * Note: the first entry might be part of the kernel pmap,
   2167 	 * so we can't assume this is indicative of the state of the
   2168 	 * other (maybe non-kpmap) entries.
   2169 	 */
   2170 	if ((entries > 1 && writable) ||
   2171 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2172 		if (cacheable_entries == 0)
   2173 		    return;
   2174 		for (npv = pv; npv; npv = npv->pv_next) {
   2175 			if ((pmap == npv->pv_pmap
   2176 			    || kpmap == npv->pv_pmap) &&
   2177 			    (npv->pv_flags & PT_NC) == 0) {
   2178 				ptes[arm_byte_to_page(npv->pv_va)] &=
   2179 				    ~(PT_C | PT_B);
   2180  				npv->pv_flags |= PT_NC;
   2181 				/*
   2182 				 * If this page needs flushing from the
   2183 				 * cache, and we aren't going to do it
   2184 				 * below, do it now.
   2185 				 */
   2186 				if ((cacheable_entries < 4 &&
   2187 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2188 				    (npv->pv_pmap == kpmap &&
   2189 				    !clear_cache && kern_cacheable < 4)) {
   2190 					cpu_idcache_wbinv_range(npv->pv_va,
   2191 					    NBPG);
   2192 					cpu_tlb_flushID_SE(npv->pv_va);
   2193 				}
   2194 			}
   2195 		}
   2196 		if ((clear_cache && cacheable_entries >= 4) ||
   2197 		    kern_cacheable >= 4) {
   2198 			cpu_idcache_wbinv_all();
   2199 			cpu_tlb_flushID();
   2200 		}
   2201 		cpu_cpwait();
   2202 	} else if (entries > 0) {
   2203 		/*
   2204 		 * Turn cacheing back on for some pages.  If it is a kernel
   2205 		 * page, only do so if there are no other writable pages.
   2206 		 */
   2207 		for (npv = pv; npv; npv = npv->pv_next) {
   2208 			if ((pmap == npv->pv_pmap ||
   2209 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2210 			    (npv->pv_flags & PT_NC)) {
   2211 				ptes[arm_byte_to_page(npv->pv_va)] |=
   2212 				    pte_cache_mode;
   2213 				npv->pv_flags &= ~PT_NC;
   2214 			}
   2215 		}
   2216 	}
   2217 }
   2218 
   2219 /*
   2220  * pmap_remove()
   2221  *
   2222  * pmap_remove is responsible for nuking a number of mappings for a range
   2223  * of virtual address space in the current pmap. To do this efficiently
   2224  * is interesting, because in a number of cases a wide virtual address
   2225  * range may be supplied that contains few actual mappings. So, the
   2226  * optimisations are:
   2227  *  1. Try and skip over hunks of address space for which an L1 entry
   2228  *     does not exist.
   2229  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2230  *     maybe do just a partial cache clean. This path of execution is
   2231  *     complicated by the fact that the cache must be flushed _before_
   2232  *     the PTE is nuked, being a VAC :-)
   2233  *  3. Maybe later fast-case a single page, but I don't think this is
   2234  *     going to make _that_ much difference overall.
   2235  */
   2236 
   2237 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2238 
   2239 void
   2240 pmap_remove(pmap, sva, eva)
   2241 	struct pmap *pmap;
   2242 	vaddr_t sva;
   2243 	vaddr_t eva;
   2244 {
   2245 	int cleanlist_idx = 0;
   2246 	struct pagelist {
   2247 		vaddr_t va;
   2248 		pt_entry_t *pte;
   2249 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2250 	pt_entry_t *pte = 0, *ptes;
   2251 	paddr_t pa;
   2252 	int pmap_active;
   2253 	struct vm_page *pg;
   2254 
   2255 	/* Exit quick if there is no pmap */
   2256 	if (!pmap)
   2257 		return;
   2258 
   2259 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2260 
   2261 	sva &= PG_FRAME;
   2262 	eva &= PG_FRAME;
   2263 
   2264 	/*
   2265 	 * we lock in the pmap => vm_page direction
   2266 	 */
   2267 	PMAP_MAP_TO_HEAD_LOCK();
   2268 
   2269 	ptes = pmap_map_ptes(pmap);
   2270 	/* Get a page table pointer */
   2271 	while (sva < eva) {
   2272 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2273 			break;
   2274 		sva = (sva & PD_MASK) + NBPD;
   2275 	}
   2276 
   2277 	pte = &ptes[arm_byte_to_page(sva)];
   2278 	/* Note if the pmap is active thus require cache and tlb cleans */
   2279 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2280 	    || (pmap == pmap_kernel()))
   2281 		pmap_active = 1;
   2282 	else
   2283 		pmap_active = 0;
   2284 
   2285 	/* Now loop along */
   2286 	while (sva < eva) {
   2287 		/* Check if we can move to the next PDE (l1 chunk) */
   2288 		if (!(sva & PT_MASK))
   2289 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2290 				sva += NBPD;
   2291 				pte += arm_byte_to_page(NBPD);
   2292 				continue;
   2293 			}
   2294 
   2295 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2296 		if (pmap_pte_v(pte)) {
   2297 			/* Update statistics */
   2298 			--pmap->pm_stats.resident_count;
   2299 
   2300 			/*
   2301 			 * Add this page to our cache remove list, if we can.
   2302 			 * If, however the cache remove list is totally full,
   2303 			 * then do a complete cache invalidation taking note
   2304 			 * to backtrack the PTE table beforehand, and ignore
   2305 			 * the lists in future because there's no longer any
   2306 			 * point in bothering with them (we've paid the
   2307 			 * penalty, so will carry on unhindered). Otherwise,
   2308 			 * when we fall out, we just clean the list.
   2309 			 */
   2310 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2311 			pa = pmap_pte_pa(pte);
   2312 
   2313 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2314 				/* Add to the clean list. */
   2315 				cleanlist[cleanlist_idx].pte = pte;
   2316 				cleanlist[cleanlist_idx].va = sva;
   2317 				cleanlist_idx++;
   2318 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2319 				int cnt;
   2320 
   2321 				/* Nuke everything if needed. */
   2322 				if (pmap_active) {
   2323 					cpu_idcache_wbinv_all();
   2324 					cpu_tlb_flushID();
   2325 				}
   2326 
   2327 				/*
   2328 				 * Roll back the previous PTE list,
   2329 				 * and zero out the current PTE.
   2330 				 */
   2331 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2332 					*cleanlist[cnt].pte = 0;
   2333 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2334 				}
   2335 				*pte = 0;
   2336 				pmap_pte_delref(pmap, sva);
   2337 				cleanlist_idx++;
   2338 			} else {
   2339 				/*
   2340 				 * We've already nuked the cache and
   2341 				 * TLB, so just carry on regardless,
   2342 				 * and we won't need to do it again
   2343 				 */
   2344 				*pte = 0;
   2345 				pmap_pte_delref(pmap, sva);
   2346 			}
   2347 
   2348 			/*
   2349 			 * Update flags. In a number of circumstances,
   2350 			 * we could cluster a lot of these and do a
   2351 			 * number of sequential pages in one go.
   2352 			 */
   2353 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2354 				struct pv_entry *pve;
   2355 				simple_lock(&pg->mdpage.pvh_slock);
   2356 				pve = pmap_remove_pv(pg, pmap, sva);
   2357 				pmap_free_pv(pmap, pve);
   2358 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2359 				simple_unlock(&pg->mdpage.pvh_slock);
   2360 			}
   2361 		}
   2362 		sva += NBPG;
   2363 		pte++;
   2364 	}
   2365 
   2366 	pmap_unmap_ptes(pmap);
   2367 	/*
   2368 	 * Now, if we've fallen through down to here, chances are that there
   2369 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2370 	 */
   2371 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2372 		u_int cnt;
   2373 
   2374 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2375 			if (pmap_active) {
   2376 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2377 				    NBPG);
   2378 				*cleanlist[cnt].pte = 0;
   2379 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2380 			} else
   2381 				*cleanlist[cnt].pte = 0;
   2382 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2383 		}
   2384 	}
   2385 	PMAP_MAP_TO_HEAD_UNLOCK();
   2386 }
   2387 
   2388 /*
   2389  * Routine:	pmap_remove_all
   2390  * Function:
   2391  *		Removes this physical page from
   2392  *		all physical maps in which it resides.
   2393  *		Reflects back modify bits to the pager.
   2394  */
   2395 
   2396 static void
   2397 pmap_remove_all(pg)
   2398 	struct vm_page *pg;
   2399 {
   2400 	struct pv_entry *pv, *npv;
   2401 	struct pmap *pmap;
   2402 	pt_entry_t *pte, *ptes;
   2403 
   2404 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2405 
   2406 	/* set vm_page => pmap locking */
   2407 	PMAP_HEAD_TO_MAP_LOCK();
   2408 
   2409 	simple_lock(&pg->mdpage.pvh_slock);
   2410 
   2411 	pv = pg->mdpage.pvh_list;
   2412 	if (pv == NULL) {
   2413 		PDEBUG(0, printf("free page\n"));
   2414 		simple_unlock(&pg->mdpage.pvh_slock);
   2415 		PMAP_HEAD_TO_MAP_UNLOCK();
   2416 		return;
   2417 	}
   2418 	pmap_clean_page(pv, FALSE);
   2419 
   2420 	while (pv) {
   2421 		pmap = pv->pv_pmap;
   2422 		ptes = pmap_map_ptes(pmap);
   2423 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   2424 
   2425 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2426 		    pv->pv_va, pv->pv_flags));
   2427 #ifdef DEBUG
   2428 		if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
   2429 		    !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   2430 			panic("pmap_remove_all: bad mapping");
   2431 #endif	/* DEBUG */
   2432 
   2433 		/*
   2434 		 * Update statistics
   2435 		 */
   2436 		--pmap->pm_stats.resident_count;
   2437 
   2438 		/* Wired bit */
   2439 		if (pv->pv_flags & PT_W)
   2440 			--pmap->pm_stats.wired_count;
   2441 
   2442 		/*
   2443 		 * Invalidate the PTEs.
   2444 		 * XXX: should cluster them up and invalidate as many
   2445 		 * as possible at once.
   2446 		 */
   2447 
   2448 #ifdef needednotdone
   2449 reduce wiring count on page table pages as references drop
   2450 #endif
   2451 
   2452 		*pte = 0;
   2453 		pmap_pte_delref(pmap, pv->pv_va);
   2454 
   2455 		npv = pv->pv_next;
   2456 		pmap_free_pv(pmap, pv);
   2457 		pv = npv;
   2458 		pmap_unmap_ptes(pmap);
   2459 	}
   2460 	pg->mdpage.pvh_list = NULL;
   2461 	simple_unlock(&pg->mdpage.pvh_slock);
   2462 	PMAP_HEAD_TO_MAP_UNLOCK();
   2463 
   2464 	PDEBUG(0, printf("done\n"));
   2465 	cpu_tlb_flushID();
   2466 	cpu_cpwait();
   2467 }
   2468 
   2469 
   2470 /*
   2471  * Set the physical protection on the specified range of this map as requested.
   2472  */
   2473 
   2474 void
   2475 pmap_protect(pmap, sva, eva, prot)
   2476 	struct pmap *pmap;
   2477 	vaddr_t sva;
   2478 	vaddr_t eva;
   2479 	vm_prot_t prot;
   2480 {
   2481 	pt_entry_t *pte = NULL, *ptes;
   2482 	struct vm_page *pg;
   2483 	int armprot;
   2484 	int flush = 0;
   2485 	paddr_t pa;
   2486 
   2487 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2488 	    pmap, sva, eva, prot));
   2489 
   2490 	if (~prot & VM_PROT_READ) {
   2491 		/* Just remove the mappings. */
   2492 		pmap_remove(pmap, sva, eva);
   2493 		/* pmap_update not needed as it should be called by the caller
   2494 		 * of pmap_protect */
   2495 		return;
   2496 	}
   2497 	if (prot & VM_PROT_WRITE) {
   2498 		/*
   2499 		 * If this is a read->write transition, just ignore it and let
   2500 		 * uvm_fault() take care of it later.
   2501 		 */
   2502 		return;
   2503 	}
   2504 
   2505 	sva &= PG_FRAME;
   2506 	eva &= PG_FRAME;
   2507 
   2508 	/* Need to lock map->head */
   2509 	PMAP_MAP_TO_HEAD_LOCK();
   2510 
   2511 	ptes = pmap_map_ptes(pmap);
   2512 	/*
   2513 	 * We need to acquire a pointer to a page table page before entering
   2514 	 * the following loop.
   2515 	 */
   2516 	while (sva < eva) {
   2517 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2518 			break;
   2519 		sva = (sva & PD_MASK) + NBPD;
   2520 	}
   2521 
   2522 	pte = &ptes[arm_byte_to_page(sva)];
   2523 
   2524 	while (sva < eva) {
   2525 		/* only check once in a while */
   2526 		if ((sva & PT_MASK) == 0) {
   2527 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2528 				/* We can race ahead here, to the next pde. */
   2529 				sva += NBPD;
   2530 				pte += arm_byte_to_page(NBPD);
   2531 				continue;
   2532 			}
   2533 		}
   2534 
   2535 		if (!pmap_pte_v(pte))
   2536 			goto next;
   2537 
   2538 		flush = 1;
   2539 
   2540 		armprot = 0;
   2541 		if (sva < VM_MAXUSER_ADDRESS)
   2542 			armprot |= PT_AP(AP_U);
   2543 		else if (sva < VM_MAX_ADDRESS)
   2544 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2545 		*pte = (*pte & 0xfffff00f) | armprot;
   2546 
   2547 		pa = pmap_pte_pa(pte);
   2548 
   2549 		/* Get the physical page index */
   2550 
   2551 		/* Clear write flag */
   2552 		if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2553 			simple_lock(&pg->mdpage.pvh_slock);
   2554 			(void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
   2555 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2556 			simple_unlock(&pg->mdpage.pvh_slock);
   2557 		}
   2558 
   2559 next:
   2560 		sva += NBPG;
   2561 		pte++;
   2562 	}
   2563 	pmap_unmap_ptes(pmap);
   2564 	PMAP_MAP_TO_HEAD_UNLOCK();
   2565 	if (flush)
   2566 		cpu_tlb_flushID();
   2567 }
   2568 
   2569 /*
   2570  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2571  * int flags)
   2572  *
   2573  *      Insert the given physical page (p) at
   2574  *      the specified virtual address (v) in the
   2575  *      target physical map with the protection requested.
   2576  *
   2577  *      If specified, the page will be wired down, meaning
   2578  *      that the related pte can not be reclaimed.
   2579  *
   2580  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2581  *      or lose information.  That is, this routine must actually
   2582  *      insert this page into the given map NOW.
   2583  */
   2584 
   2585 int
   2586 pmap_enter(pmap, va, pa, prot, flags)
   2587 	struct pmap *pmap;
   2588 	vaddr_t va;
   2589 	paddr_t pa;
   2590 	vm_prot_t prot;
   2591 	int flags;
   2592 {
   2593 	pt_entry_t *pte, *ptes;
   2594 	u_int npte;
   2595 	paddr_t opa;
   2596 	int nflags;
   2597 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2598 	struct vm_page *pg;
   2599 	struct pv_entry *pve;
   2600 	int error;
   2601 
   2602 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2603 	    va, pa, pmap, prot, wired));
   2604 
   2605 #ifdef DIAGNOSTIC
   2606 	/* Valid address ? */
   2607 	if (va >= (pmap_curmaxkvaddr))
   2608 		panic("pmap_enter: too big");
   2609 	if (pmap != pmap_kernel() && va != 0) {
   2610 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2611 			panic("pmap_enter: kernel page in user map");
   2612 	} else {
   2613 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2614 			panic("pmap_enter: user page in kernel map");
   2615 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2616 			panic("pmap_enter: entering PT page");
   2617 	}
   2618 #endif
   2619 	/*
   2620 	 * Get a pointer to the page.  Later on in this function, we
   2621 	 * test for a managed page by checking pg != NULL.
   2622 	 */
   2623 	pg = PHYS_TO_VM_PAGE(pa);
   2624 
   2625 	/* get lock */
   2626 	PMAP_MAP_TO_HEAD_LOCK();
   2627 	/*
   2628 	 * Get a pointer to the pte for this virtual address. If the
   2629 	 * pte pointer is NULL then we are missing the L2 page table
   2630 	 * so we need to create one.
   2631 	 */
   2632 	/* XXX horrible hack to get us working with lockdebug */
   2633 	simple_lock(&pmap->pm_obj.vmobjlock);
   2634 	pte = pmap_pte(pmap, va);
   2635 	if (!pte) {
   2636 		struct vm_page *ptp;
   2637 		KASSERT(pmap != pmap_kernel()); /* kernel should have pre-grown */
   2638 
   2639 		/* if failure is allowed then don't try too hard */
   2640 		ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
   2641 		if (ptp == NULL) {
   2642 			if (flags & PMAP_CANFAIL) {
   2643 				error = ENOMEM;
   2644 				goto out;
   2645 			}
   2646 			panic("pmap_enter: get ptp failed");
   2647 		}
   2648 
   2649 		pte = pmap_pte(pmap, va);
   2650 #ifdef DIAGNOSTIC
   2651 		if (!pte)
   2652 			panic("pmap_enter: no pte");
   2653 #endif
   2654 	}
   2655 
   2656 	nflags = 0;
   2657 	if (prot & VM_PROT_WRITE)
   2658 		nflags |= PT_Wr;
   2659 	if (wired)
   2660 		nflags |= PT_W;
   2661 
   2662 	/* More debugging info */
   2663 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2664 	    *pte));
   2665 
   2666 	/* Is the pte valid ? If so then this page is already mapped */
   2667 	if (pmap_pte_v(pte)) {
   2668 		/* Get the physical address of the current page mapped */
   2669 		opa = pmap_pte_pa(pte);
   2670 
   2671 #ifdef MYCROFT_HACK
   2672 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2673 #endif
   2674 
   2675 		/* Are we mapping the same page ? */
   2676 		if (opa == pa) {
   2677 			/* All we must be doing is changing the protection */
   2678 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2679 			    va, pa));
   2680 
   2681 			/* Has the wiring changed ? */
   2682 			if (pg != NULL) {
   2683 				simple_lock(&pg->mdpage.pvh_slock);
   2684 				(void) pmap_modify_pv(pmap, va, pg,
   2685 				    PT_Wr | PT_W, nflags);
   2686 				simple_unlock(&pg->mdpage.pvh_slock);
   2687  			}
   2688 		} else {
   2689 			struct vm_page *opg;
   2690 
   2691 			/* We are replacing the page with a new one. */
   2692 			cpu_idcache_wbinv_range(va, NBPG);
   2693 
   2694 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2695 			    va, pa, opa));
   2696 
   2697 			/*
   2698 			 * If it is part of our managed memory then we
   2699 			 * must remove it from the PV list
   2700 			 */
   2701 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2702 				simple_lock(&opg->mdpage.pvh_slock);
   2703 				pve = pmap_remove_pv(opg, pmap, va);
   2704 				simple_unlock(&opg->mdpage.pvh_slock);
   2705 			} else {
   2706 				pve = NULL;
   2707 			}
   2708 
   2709 			goto enter;
   2710 		}
   2711 	} else {
   2712 		opa = 0;
   2713 		pve = NULL;
   2714 		pmap_pte_addref(pmap, va);
   2715 
   2716 		/* pte is not valid so we must be hooking in a new page */
   2717 		++pmap->pm_stats.resident_count;
   2718 
   2719 	enter:
   2720 		/*
   2721 		 * Enter on the PV list if part of our managed memory
   2722 		 */
   2723 		if (pmap_initialized && pg != NULL) {
   2724 			if (pve == NULL) {
   2725 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2726 				if (pve == NULL) {
   2727 					if (flags & PMAP_CANFAIL) {
   2728 						error = ENOMEM;
   2729 						goto out;
   2730 					}
   2731 					panic("pmap_enter: no pv entries available");
   2732 				}
   2733 			}
   2734 			/* enter_pv locks pvh when adding */
   2735 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2736 		} else {
   2737 			pg = NULL;
   2738 			if (pve != NULL)
   2739 				pmap_free_pv(pmap, pve);
   2740 		}
   2741 	}
   2742 
   2743 #ifdef MYCROFT_HACK
   2744 	if (mycroft_hack)
   2745 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2746 #endif
   2747 
   2748 	/* Construct the pte, giving the correct access. */
   2749 	npte = (pa & PG_FRAME);
   2750 
   2751 	/* VA 0 is magic. */
   2752 	if (pmap != pmap_kernel() && va != 0)
   2753 		npte |= PT_AP(AP_U);
   2754 
   2755 	if (pmap_initialized && pg != NULL) {
   2756 #ifdef DIAGNOSTIC
   2757 		if ((flags & VM_PROT_ALL) & ~prot)
   2758 			panic("pmap_enter: access_type exceeds prot");
   2759 #endif
   2760 		npte |= pte_cache_mode;
   2761 		if (flags & VM_PROT_WRITE) {
   2762 			npte |= L2_SPAGE | PT_AP(AP_W);
   2763 			pg->mdpage.pvh_attrs |= PT_H | PT_M;
   2764 		} else if (flags & VM_PROT_ALL) {
   2765 			npte |= L2_SPAGE;
   2766 			pg->mdpage.pvh_attrs |= PT_H;
   2767 		} else
   2768 			npte |= L2_INVAL;
   2769 	} else {
   2770 		if (prot & VM_PROT_WRITE)
   2771 			npte |= L2_SPAGE | PT_AP(AP_W);
   2772 		else if (prot & VM_PROT_ALL)
   2773 			npte |= L2_SPAGE;
   2774 		else
   2775 			npte |= L2_INVAL;
   2776 	}
   2777 
   2778 #ifdef MYCROFT_HACK
   2779 	if (mycroft_hack)
   2780 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2781 #endif
   2782 
   2783 	*pte = npte;
   2784 
   2785 	if (pmap_initialized && pg != NULL) {
   2786 		boolean_t pmap_active = FALSE;
   2787 		/* XXX this will change once the whole of pmap_enter uses
   2788 		 * map_ptes
   2789 		 */
   2790 		ptes = pmap_map_ptes(pmap);
   2791 		if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2792 		    || (pmap == pmap_kernel()))
   2793 			pmap_active = TRUE;
   2794 		simple_lock(&pg->mdpage.pvh_slock);
   2795  		pmap_vac_me_harder(pmap, pg, ptes, pmap_active);
   2796 		simple_unlock(&pg->mdpage.pvh_slock);
   2797 		pmap_unmap_ptes(pmap);
   2798 	}
   2799 
   2800 	/* Better flush the TLB ... */
   2801 	cpu_tlb_flushID_SE(va);
   2802 	error = 0;
   2803 out:
   2804 	simple_unlock(&pmap->pm_obj.vmobjlock);
   2805 	PMAP_MAP_TO_HEAD_UNLOCK();
   2806 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2807 
   2808 	return error;
   2809 }
   2810 
   2811 /*
   2812  * pmap_kenter_pa: enter a kernel mapping
   2813  *
   2814  * => no need to lock anything assume va is already allocated
   2815  * => should be faster than normal pmap enter function
   2816  */
   2817 void
   2818 pmap_kenter_pa(va, pa, prot)
   2819 	vaddr_t va;
   2820 	paddr_t pa;
   2821 	vm_prot_t prot;
   2822 {
   2823 	pt_entry_t *pte;
   2824 
   2825 	pte = vtopte(va);
   2826 	KASSERT(!pmap_pte_v(pte));
   2827 	*pte = L2_PTE(pa, AP_KRW);
   2828 }
   2829 
   2830 void
   2831 pmap_kremove(va, len)
   2832 	vaddr_t va;
   2833 	vsize_t len;
   2834 {
   2835 	pt_entry_t *pte;
   2836 
   2837 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2838 
   2839 		/*
   2840 		 * We assume that we will only be called with small
   2841 		 * regions of memory.
   2842 		 */
   2843 
   2844 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2845 		pte = vtopte(va);
   2846 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2847 		*pte = 0;
   2848 		cpu_tlb_flushID_SE(va);
   2849 	}
   2850 }
   2851 
   2852 /*
   2853  * pmap_page_protect:
   2854  *
   2855  * Lower the permission for all mappings to a given page.
   2856  */
   2857 
   2858 void
   2859 pmap_page_protect(pg, prot)
   2860 	struct vm_page *pg;
   2861 	vm_prot_t prot;
   2862 {
   2863 
   2864 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2865 	    VM_PAGE_TO_PHYS(pg), prot));
   2866 
   2867 	switch(prot) {
   2868 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2869 	case VM_PROT_READ|VM_PROT_WRITE:
   2870 		return;
   2871 
   2872 	case VM_PROT_READ:
   2873 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2874 		pmap_copy_on_write(pg);
   2875 		break;
   2876 
   2877 	default:
   2878 		pmap_remove_all(pg);
   2879 		break;
   2880 	}
   2881 }
   2882 
   2883 
   2884 /*
   2885  * Routine:	pmap_unwire
   2886  * Function:	Clear the wired attribute for a map/virtual-address
   2887  *		pair.
   2888  * In/out conditions:
   2889  *		The mapping must already exist in the pmap.
   2890  */
   2891 
   2892 void
   2893 pmap_unwire(pmap, va)
   2894 	struct pmap *pmap;
   2895 	vaddr_t va;
   2896 {
   2897 	pt_entry_t *pte;
   2898 	paddr_t pa;
   2899 	struct vm_page *pg;
   2900 
   2901 	/*
   2902 	 * Make sure pmap is valid. -dct
   2903 	 */
   2904 	if (pmap == NULL)
   2905 		return;
   2906 
   2907 	/* Get the pte */
   2908 	pte = pmap_pte(pmap, va);
   2909 	if (!pte)
   2910 		return;
   2911 
   2912 	/* Extract the physical address of the page */
   2913 	pa = pmap_pte_pa(pte);
   2914 
   2915 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2916 		return;
   2917 
   2918 	simple_lock(&pg->mdpage.pvh_slock);
   2919 	/* Update the wired bit in the pv entry for this page. */
   2920 	(void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
   2921 	simple_unlock(&pg->mdpage.pvh_slock);
   2922 }
   2923 
   2924 /*
   2925  * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
   2926  *
   2927  * Return the pointer to a page table entry corresponding to the supplied
   2928  * virtual address.
   2929  *
   2930  * The page directory is first checked to make sure that a page table
   2931  * for the address in question exists and if it does a pointer to the
   2932  * entry is returned.
   2933  *
   2934  * The way this works is that that the kernel page tables are mapped
   2935  * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
   2936  * This allows page tables to be located quickly.
   2937  */
   2938 pt_entry_t *
   2939 pmap_pte(pmap, va)
   2940 	struct pmap *pmap;
   2941 	vaddr_t va;
   2942 {
   2943 	pt_entry_t *ptp;
   2944 	pt_entry_t *result;
   2945 
   2946 	/* The pmap must be valid */
   2947 	if (!pmap)
   2948 		return(NULL);
   2949 
   2950 	/* Return the address of the pte */
   2951 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   2952 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   2953 
   2954 	/* Do we have a valid pde ? If not we don't have a page table */
   2955 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   2956 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   2957 		    pmap_pde(pmap, va)));
   2958 		return(NULL);
   2959 	}
   2960 
   2961 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   2962 	    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2963 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2964 	    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
   2965 
   2966 	/*
   2967 	 * If the pmap is the kernel pmap or the pmap is the active one
   2968 	 * then we can just return a pointer to entry relative to
   2969 	 * PROCESS_PAGE_TBLS_BASE.
   2970 	 * Otherwise we need to map the page tables to an alternative
   2971 	 * address and reference them there.
   2972 	 */
   2973 	if (pmap == pmap_kernel() || pmap->pm_pptpt
   2974 	    == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2975 	    + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
   2976 	    ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   2977 		ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   2978 	} else {
   2979 		struct proc *p = curproc;
   2980 
   2981 		/* If we don't have a valid curproc use proc0 */
   2982 		/* Perhaps we should just use kernel_pmap instead */
   2983 		if (p == NULL)
   2984 			p = &proc0;
   2985 #ifdef DIAGNOSTIC
   2986 		/*
   2987 		 * The pmap should always be valid for the process so
   2988 		 * panic if it is not.
   2989 		 */
   2990 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   2991 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   2992 			    va, p, p->p_vmspace);
   2993 			console_debugger();
   2994 		}
   2995 		/*
   2996 		 * The pmap for the current process should be mapped. If it
   2997 		 * is not then we have a problem.
   2998 		 */
   2999 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   3000 		    (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3001 		    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3002 		    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   3003 			printf("pmap pagetable = P%08lx current = P%08x ",
   3004 			    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3005 			    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3006 			    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
   3007 			    PG_FRAME));
   3008 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   3009 			panic("pmap_pte: current and pmap mismatch\n");
   3010 		}
   3011 #endif
   3012 
   3013 		ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   3014 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   3015 		    pmap->pm_pptpt, FALSE);
   3016 		cpu_tlb_flushD();
   3017 		cpu_cpwait();
   3018 	}
   3019 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   3020 	    ((va >> (PGSHIFT-2)) & ~3)));
   3021 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   3022 	return(result);
   3023 }
   3024 
   3025 /*
   3026  * Routine:  pmap_extract
   3027  * Function:
   3028  *           Extract the physical page address associated
   3029  *           with the given map/virtual_address pair.
   3030  */
   3031 boolean_t
   3032 pmap_extract(pmap, va, pap)
   3033 	struct pmap *pmap;
   3034 	vaddr_t va;
   3035 	paddr_t *pap;
   3036 {
   3037 	pd_entry_t *pde;
   3038 	pt_entry_t *pte, *ptes;
   3039 	paddr_t pa;
   3040 	boolean_t rv = TRUE;
   3041 
   3042 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   3043 
   3044 	/*
   3045 	 * Get the pte for this virtual address.
   3046 	 */
   3047 	pde = pmap_pde(pmap, va);
   3048 	ptes = pmap_map_ptes(pmap);
   3049 	pte = &ptes[arm_byte_to_page(va)];
   3050 
   3051 	if (pmap_pde_section(pde)) {
   3052 		pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
   3053 		goto out;
   3054 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   3055 		rv = FALSE;
   3056 		goto out;
   3057 	}
   3058 
   3059 	if ((*pte & L2_MASK) == L2_LPAGE) {
   3060 		/* Extract the physical address from the pte */
   3061 		pa = *pte & ~(L2_LPAGE_SIZE - 1);
   3062 
   3063 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   3064 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   3065 
   3066 		if (pap != NULL)
   3067 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   3068 		goto out;
   3069 	}
   3070 
   3071 	/* Extract the physical address from the pte */
   3072 	pa = pmap_pte_pa(pte);
   3073 
   3074 	PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   3075 	    (pa | (va & ~PG_FRAME))));
   3076 
   3077 	if (pap != NULL)
   3078 		*pap = pa | (va & ~PG_FRAME);
   3079  out:
   3080 	pmap_unmap_ptes(pmap);
   3081 	return (rv);
   3082 }
   3083 
   3084 
   3085 /*
   3086  * Copy the range specified by src_addr/len from the source map to the
   3087  * range dst_addr/len in the destination map.
   3088  *
   3089  * This routine is only advisory and need not do anything.
   3090  */
   3091 
   3092 void
   3093 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   3094 	struct pmap *dst_pmap;
   3095 	struct pmap *src_pmap;
   3096 	vaddr_t dst_addr;
   3097 	vsize_t len;
   3098 	vaddr_t src_addr;
   3099 {
   3100 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   3101 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   3102 }
   3103 
   3104 #if defined(PMAP_DEBUG)
   3105 void
   3106 pmap_dump_pvlist(phys, m)
   3107 	vaddr_t phys;
   3108 	char *m;
   3109 {
   3110 	struct vm_page *pg;
   3111 	struct pv_entry *pv;
   3112 
   3113 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   3114 		printf("INVALID PA\n");
   3115 		return;
   3116 	}
   3117 	simple_lock(&pg->mdpage.pvh_slock);
   3118 	printf("%s %08lx:", m, phys);
   3119 	if (pg->mdpage.pvh_list == NULL) {
   3120 		printf(" no mappings\n");
   3121 		return;
   3122 	}
   3123 
   3124 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3125 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3126 		    pv->pv_va, pv->pv_flags);
   3127 
   3128 	printf("\n");
   3129 	simple_unlock(&pg->mdpage.pvh_slock);
   3130 }
   3131 
   3132 #endif	/* PMAP_DEBUG */
   3133 
   3134 static pt_entry_t *
   3135 pmap_map_ptes(struct pmap *pmap)
   3136 {
   3137     	struct proc *p;
   3138 
   3139     	/* the kernel's pmap is always accessible */
   3140 	if (pmap == pmap_kernel()) {
   3141 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
   3142 	}
   3143 
   3144 	if (pmap_is_curpmap(pmap)) {
   3145 		simple_lock(&pmap->pm_obj.vmobjlock);
   3146 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   3147 	}
   3148 
   3149 	p = curproc;
   3150 
   3151 	if (p == NULL)
   3152 		p = &proc0;
   3153 
   3154 	/* need to lock both curpmap and pmap: use ordered locking */
   3155 	if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
   3156 		simple_lock(&pmap->pm_obj.vmobjlock);
   3157 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3158 	} else {
   3159 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3160 		simple_lock(&pmap->pm_obj.vmobjlock);
   3161 	}
   3162 
   3163 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   3164 			pmap->pm_pptpt, FALSE);
   3165 	cpu_tlb_flushD();
   3166 	cpu_cpwait();
   3167 	return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   3168 }
   3169 
   3170 /*
   3171  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3172  */
   3173 
   3174 static void
   3175 pmap_unmap_ptes(pmap)
   3176 	struct pmap *pmap;
   3177 {
   3178 	if (pmap == pmap_kernel()) {
   3179 		return;
   3180 	}
   3181 	if (pmap_is_curpmap(pmap)) {
   3182 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3183 	} else {
   3184 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3185 		simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3186 	}
   3187 }
   3188 
   3189 /*
   3190  * Modify pte bits for all ptes corresponding to the given physical address.
   3191  * We use `maskbits' rather than `clearbits' because we're always passing
   3192  * constants and the latter would require an extra inversion at run-time.
   3193  */
   3194 
   3195 static void
   3196 pmap_clearbit(pg, maskbits)
   3197 	struct vm_page *pg;
   3198 	unsigned int maskbits;
   3199 {
   3200 	struct pv_entry *pv;
   3201 	pt_entry_t *pte;
   3202 	vaddr_t va;
   3203 	int tlbentry;
   3204 
   3205 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3206 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3207 
   3208 	tlbentry = 0;
   3209 
   3210 	PMAP_HEAD_TO_MAP_LOCK();
   3211 	simple_lock(&pg->mdpage.pvh_slock);
   3212 
   3213 	/*
   3214 	 * Clear saved attributes (modify, reference)
   3215 	 */
   3216 	pg->mdpage.pvh_attrs &= ~maskbits;
   3217 
   3218 	if (pg->mdpage.pvh_list == NULL) {
   3219 		simple_unlock(&pg->mdpage.pvh_slock);
   3220 		PMAP_HEAD_TO_MAP_UNLOCK();
   3221 		return;
   3222 	}
   3223 
   3224 	/*
   3225 	 * Loop over all current mappings setting/clearing as appropos
   3226 	 */
   3227 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3228 		va = pv->pv_va;
   3229 		pv->pv_flags &= ~maskbits;
   3230 		pte = pmap_pte(pv->pv_pmap, va);
   3231 		KASSERT(pte != NULL);
   3232 		if (maskbits & (PT_Wr|PT_M)) {
   3233 			if ((pv->pv_flags & PT_NC)) {
   3234 				/*
   3235 				 * Entry is not cacheable: reenable
   3236 				 * the cache, nothing to flush
   3237 				 *
   3238 				 * Don't turn caching on again if this
   3239 				 * is a modified emulation.  This
   3240 				 * would be inconsitent with the
   3241 				 * settings created by
   3242 				 * pmap_vac_me_harder().
   3243 				 *
   3244 				 * There's no need to call
   3245 				 * pmap_vac_me_harder() here: all
   3246 				 * pages are loosing their write
   3247 				 * permission.
   3248 				 *
   3249 				 */
   3250 				if (maskbits & PT_Wr) {
   3251 					*pte |= pte_cache_mode;
   3252 					pv->pv_flags &= ~PT_NC;
   3253 				}
   3254 			} else if (pmap_is_curpmap(pv->pv_pmap))
   3255 				/*
   3256 				 * Entry is cacheable: check if pmap is
   3257 				 * current if it is flush it,
   3258 				 * otherwise it won't be in the cache
   3259 				 */
   3260 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3261 
   3262 			/* make the pte read only */
   3263 			*pte &= ~PT_AP(AP_W);
   3264 		}
   3265 
   3266 		if (maskbits & PT_H)
   3267 			*pte = (*pte & ~L2_MASK) | L2_INVAL;
   3268 
   3269 		if (pmap_is_curpmap(pv->pv_pmap))
   3270 			/*
   3271 			 * if we had cacheable pte's we'd clean the
   3272 			 * pte out to memory here
   3273 			 *
   3274 			 * flush tlb entry as it's in the current pmap
   3275 			 */
   3276 			cpu_tlb_flushID_SE(pv->pv_va);
   3277 	}
   3278 	cpu_cpwait();
   3279 
   3280 	simple_unlock(&pg->mdpage.pvh_slock);
   3281 	PMAP_HEAD_TO_MAP_UNLOCK();
   3282 }
   3283 
   3284 /*
   3285  * pmap_clear_modify:
   3286  *
   3287  *	Clear the "modified" attribute for a page.
   3288  */
   3289 boolean_t
   3290 pmap_clear_modify(pg)
   3291 	struct vm_page *pg;
   3292 {
   3293 	boolean_t rv;
   3294 
   3295 	if (pg->mdpage.pvh_attrs & PT_M) {
   3296 		rv = TRUE;
   3297 		pmap_clearbit(pg, PT_M);
   3298 	} else
   3299 		rv = FALSE;
   3300 
   3301 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3302 	    VM_PAGE_TO_PHYS(pg), rv));
   3303 
   3304 	return (rv);
   3305 }
   3306 
   3307 /*
   3308  * pmap_clear_reference:
   3309  *
   3310  *	Clear the "referenced" attribute for a page.
   3311  */
   3312 boolean_t
   3313 pmap_clear_reference(pg)
   3314 	struct vm_page *pg;
   3315 {
   3316 	boolean_t rv;
   3317 
   3318 	if (pg->mdpage.pvh_attrs & PT_H) {
   3319 		rv = TRUE;
   3320 		pmap_clearbit(pg, PT_H);
   3321 	} else
   3322 		rv = FALSE;
   3323 
   3324 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3325 	    VM_PAGE_TO_PHYS(pg), rv));
   3326 
   3327 	return (rv);
   3328 }
   3329 
   3330 
   3331 void
   3332 pmap_copy_on_write(pg)
   3333 	struct vm_page *pg;
   3334 {
   3335 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", VM_PAGE_TO_PHYS(pg)));
   3336 	pmap_clearbit(pg, PT_Wr);
   3337 }
   3338 
   3339 /*
   3340  * pmap_is_modified:
   3341  *
   3342  *	Test if a page has the "modified" attribute.
   3343  */
   3344 /* See <arm/arm32/pmap.h> */
   3345 
   3346 /*
   3347  * pmap_is_referenced:
   3348  *
   3349  *	Test if a page has the "referenced" attribute.
   3350  */
   3351 /* See <arm/arm32/pmap.h> */
   3352 
   3353 int
   3354 pmap_modified_emulation(pmap, va)
   3355 	struct pmap *pmap;
   3356 	vaddr_t va;
   3357 {
   3358 	pt_entry_t *pte;
   3359 	paddr_t pa;
   3360 	struct vm_page *pg;
   3361 	u_int flags;
   3362 
   3363 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3364 
   3365 	/* Get the pte */
   3366 	pte = pmap_pte(pmap, va);
   3367 	if (!pte) {
   3368 		PDEBUG(2, printf("no pte\n"));
   3369 		return(0);
   3370 	}
   3371 
   3372 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3373 
   3374 	/* Check for a zero pte */
   3375 	if (*pte == 0)
   3376 		return(0);
   3377 
   3378 	/* This can happen if user code tries to access kernel memory. */
   3379 	if ((*pte & PT_AP(AP_W)) != 0)
   3380 		return (0);
   3381 
   3382 	/* Extract the physical address of the page */
   3383 	pa = pmap_pte_pa(pte);
   3384 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3385 		return(0);
   3386 
   3387 	/* Get the current flags for this page. */
   3388 	PMAP_HEAD_TO_MAP_LOCK();
   3389 	simple_lock(&pg->mdpage.pvh_slock);
   3390 
   3391 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3392 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3393 
   3394 	/*
   3395 	 * Do the flags say this page is writable ? If not then it is a
   3396 	 * genuine write fault. If yes then the write fault is our fault
   3397 	 * as we did not reflect the write access in the PTE. Now we know
   3398 	 * a write has occurred we can correct this and also set the
   3399 	 * modified bit
   3400 	 */
   3401 	if (~flags & PT_Wr) {
   3402 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3403 		PMAP_HEAD_TO_MAP_UNLOCK();
   3404 		return(0);
   3405 	}
   3406 
   3407 	PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
   3408 	    va, pte, *pte));
   3409 	pg->mdpage.pvh_attrs |= PT_H | PT_M;
   3410 
   3411 	/*
   3412 	 * Re-enable write permissions for the page.  No need to call
   3413 	 * pmap_vac_me_harder(), since this is just a
   3414 	 * modified-emulation fault, and the PT_Wr bit isn't changing.  We've
   3415 	 * already set the cacheable bits based on the assumption that we
   3416 	 * can write to this page.
   3417 	 */
   3418 	*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3419 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3420 
   3421 	simple_unlock(&pg->mdpage.pvh_slock);
   3422 	PMAP_HEAD_TO_MAP_UNLOCK();
   3423 	/* Return, indicating the problem has been dealt with */
   3424 	cpu_tlb_flushID_SE(va);
   3425 	cpu_cpwait();
   3426 	return(1);
   3427 }
   3428 
   3429 
   3430 int
   3431 pmap_handled_emulation(pmap, va)
   3432 	struct pmap *pmap;
   3433 	vaddr_t va;
   3434 {
   3435 	pt_entry_t *pte;
   3436 	paddr_t pa;
   3437 	struct vm_page *pg;
   3438 
   3439 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3440 
   3441 	/* Get the pte */
   3442 	pte = pmap_pte(pmap, va);
   3443 	if (!pte) {
   3444 		PDEBUG(2, printf("no pte\n"));
   3445 		return(0);
   3446 	}
   3447 
   3448 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3449 
   3450 	/* Check for a zero pte */
   3451 	if (*pte == 0)
   3452 		return(0);
   3453 
   3454 	/* This can happen if user code tries to access kernel memory. */
   3455 	if ((*pte & L2_MASK) != L2_INVAL)
   3456 		return (0);
   3457 
   3458 	/* Extract the physical address of the page */
   3459 	pa = pmap_pte_pa(pte);
   3460 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3461 		return (0);
   3462 
   3463 	/*
   3464 	 * Ok we just enable the pte and mark the attibs as handled
   3465 	 */
   3466 	PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
   3467 	    va, pte, *pte));
   3468 	pg->mdpage.pvh_attrs |= PT_H;
   3469 	*pte = (*pte & ~L2_MASK) | L2_SPAGE;
   3470 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3471 
   3472 	/* Return, indicating the problem has been dealt with */
   3473 	cpu_tlb_flushID_SE(va);
   3474 	cpu_cpwait();
   3475 	return(1);
   3476 }
   3477 
   3478 
   3479 
   3480 
   3481 /*
   3482  * pmap_collect: free resources held by a pmap
   3483  *
   3484  * => optional function.
   3485  * => called when a process is swapped out to free memory.
   3486  */
   3487 
   3488 void
   3489 pmap_collect(pmap)
   3490 	struct pmap *pmap;
   3491 {
   3492 }
   3493 
   3494 /*
   3495  * Routine:	pmap_procwr
   3496  *
   3497  * Function:
   3498  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3499  *
   3500  */
   3501 void
   3502 pmap_procwr(p, va, len)
   3503 	struct proc	*p;
   3504 	vaddr_t		va;
   3505 	int		len;
   3506 {
   3507 	/* We only need to do anything if it is the current process. */
   3508 	if (p == curproc)
   3509 		cpu_icache_sync_range(va, len);
   3510 }
   3511 /*
   3512  * PTP functions
   3513  */
   3514 
   3515 /*
   3516  * pmap_steal_ptp: Steal a PTP from somewhere else.
   3517  *
   3518  * This is just a placeholder, for now we never steal.
   3519  */
   3520 
   3521 static struct vm_page *
   3522 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
   3523 {
   3524     return (NULL);
   3525 }
   3526 
   3527 /*
   3528  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3529  *
   3530  * => pmap should NOT be pmap_kernel()
   3531  * => pmap should be locked
   3532  */
   3533 
   3534 static struct vm_page *
   3535 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3536 {
   3537     struct vm_page *ptp;
   3538 
   3539     if (pmap_pde_page(pmap_pde(pmap, va))) {
   3540 
   3541 	/* valid... check hint (saves us a PA->PG lookup) */
   3542 #if 0
   3543 	if (pmap->pm_ptphint &&
   3544     		((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
   3545 		VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3546 	    return (pmap->pm_ptphint);
   3547 #endif
   3548 	ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3549 #ifdef DIAGNOSTIC
   3550 	if (ptp == NULL)
   3551     	    panic("pmap_get_ptp: unmanaged user PTP");
   3552 #endif
   3553 //	pmap->pm_ptphint = ptp;
   3554 	return(ptp);
   3555     }
   3556 
   3557     /* allocate a new PTP (updates ptphint) */
   3558     return(pmap_alloc_ptp(pmap, va, just_try));
   3559 }
   3560 
   3561 /*
   3562  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3563  *
   3564  * => pmap should already be locked by caller
   3565  * => we use the ptp's wire_count to count the number of active mappings
   3566  *	in the PTP (we start it at one to prevent any chance this PTP
   3567  *	will ever leak onto the active/inactive queues)
   3568  */
   3569 
   3570 /*__inline */ static struct vm_page *
   3571 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3572 {
   3573 	struct vm_page *ptp;
   3574 
   3575 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3576 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3577 	if (ptp == NULL) {
   3578 	    if (just_try)
   3579 		return (NULL);
   3580 
   3581 	    ptp = pmap_steal_ptp(pmap, va);
   3582 
   3583 	    if (ptp == NULL)
   3584 		return (NULL);
   3585 	    /* Stole a page, zero it.  */
   3586 	    pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
   3587 	}
   3588 
   3589 	/* got one! */
   3590 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3591 	ptp->wire_count = 1;	/* no mappings yet */
   3592 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3593 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3594 //	pmap->pm_ptphint = ptp;
   3595 	return (ptp);
   3596 }
   3597 
   3598 vaddr_t
   3599 pmap_growkernel(maxkvaddr)
   3600 	vaddr_t maxkvaddr;
   3601 {
   3602 	struct pmap *kpm = pmap_kernel(), *pm;
   3603 	int s;
   3604 	paddr_t ptaddr;
   3605 	struct vm_page *ptp;
   3606 
   3607 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3608 		goto out;		/* we are OK */
   3609 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3610 		    pmap_curmaxkvaddr, maxkvaddr));
   3611 
   3612 	/*
   3613 	 * whoops!   we need to add kernel PTPs
   3614 	 */
   3615 
   3616 	s = splhigh();	/* to be safe */
   3617 	simple_lock(&kpm->pm_obj.vmobjlock);
   3618 	/* due to the way the arm pmap works we map 4MB at a time */
   3619 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr ; pmap_curmaxkvaddr += 4 * NBPD) {
   3620 
   3621 		if (uvm.page_init_done == FALSE) {
   3622 
   3623 			/*
   3624 			 * we're growing the kernel pmap early (from
   3625 			 * uvm_pageboot_alloc()).  this case must be
   3626 			 * handled a little differently.
   3627 			 */
   3628 
   3629 			if (uvm_page_physget(&ptaddr) == FALSE)
   3630 				panic("pmap_growkernel: out of memory");
   3631 			pmap_zero_page(ptaddr);
   3632 
   3633 			/* map this page in */
   3634 			pmap_map_in_l1(kpm, (pmap_curmaxkvaddr + 1), ptaddr, TRUE);
   3635 
   3636 			/* count PTP as resident */
   3637 			kpm->pm_stats.resident_count++;
   3638 			continue;
   3639 		}
   3640 
   3641 		/*
   3642 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3643 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3644 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3645 		 */
   3646 
   3647 		if ((ptp = pmap_alloc_ptp(kpm, (pmap_curmaxkvaddr + 1), FALSE)) == NULL) {
   3648 			panic("pmap_growkernel: alloc ptp failed");
   3649 		}
   3650 
   3651 		/* distribute new kernel PTP to all active pmaps */
   3652 		simple_lock(&pmaps_lock);
   3653 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3654 		    pmap_map_in_l1(pm, (pmap_curmaxkvaddr + 1), VM_PAGE_TO_PHYS(ptp), TRUE);
   3655 		}
   3656 
   3657 		simple_unlock(&pmaps_lock);
   3658 	}
   3659 
   3660 	/*
   3661 	 * flush out the cache, expensive but growkernel will happen so
   3662 	 * rarely
   3663 	 */
   3664 	cpu_tlb_flushD();
   3665 	cpu_cpwait();
   3666 
   3667 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3668 	splx(s);
   3669 
   3670 out:
   3671 	return (pmap_curmaxkvaddr);
   3672 }
   3673 
   3674 
   3675 
   3676 /************************ Bootstrapping routines ****************************/
   3677 
   3678 /*
   3679  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3680  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3681  * find them as necessary.
   3682  *
   3683  * Note that the data on this list is not valid after initarm() returns.
   3684  */
   3685 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3686 
   3687 static vaddr_t
   3688 kernel_pt_lookup(paddr_t pa)
   3689 {
   3690 	pv_addr_t *pv;
   3691 
   3692 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3693 		if (pv->pv_pa == pa)
   3694 			return (pv->pv_va);
   3695 	}
   3696 	return (0);
   3697 }
   3698 
   3699 /*
   3700  * pmap_map_section:
   3701  *
   3702  *	Create a single section mapping.
   3703  */
   3704 void
   3705 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3706 {
   3707 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3708 	pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3709 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3710 
   3711 	KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
   3712 
   3713 	pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
   3714 }
   3715 
   3716 /*
   3717  * pmap_map_entry:
   3718  *
   3719  *	Create a single page mapping.
   3720  */
   3721 void
   3722 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3723 {
   3724 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3725 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3726 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3727 	pt_entry_t *pte;
   3728 
   3729 	KASSERT(((va | pa) & PGOFSET) == 0);
   3730 
   3731 	if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3732 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3733 
   3734 	pte = (pt_entry_t *)
   3735 	    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3736 	if (pte == NULL)
   3737 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3738 
   3739 	pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
   3740 }
   3741 
   3742 /*
   3743  * pmap_link_l2pt:
   3744  *
   3745  *	Link the L2 page table specified by "pa" into the L1
   3746  *	page table at the slot for "va".
   3747  */
   3748 void
   3749 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3750 {
   3751 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3752 	u_int slot = va >> PDSHIFT;
   3753 
   3754 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3755 
   3756 	pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
   3757 	pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
   3758 	pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
   3759 	pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
   3760 
   3761 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3762 }
   3763 
   3764 /*
   3765  * pmap_map_chunk:
   3766  *
   3767  *	Map a chunk of memory using the most efficient mappings
   3768  *	possible (section, large page, small page) into the
   3769  *	provided L1 and L2 tables at the specified virtual address.
   3770  */
   3771 vsize_t
   3772 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3773     int prot, int cache)
   3774 {
   3775 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3776 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3777 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3778 	pt_entry_t *pte;
   3779 	vsize_t resid;
   3780 	int i;
   3781 
   3782 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3783 
   3784 	if (l1pt == 0)
   3785 		panic("pmap_map_chunk: no L1 table provided");
   3786 
   3787 #ifdef VERBOSE_INIT_ARM
   3788 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3789 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3790 #endif
   3791 
   3792 	size = resid;
   3793 
   3794 	while (resid > 0) {
   3795 		/* See if we can use a section mapping. */
   3796 		if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
   3797 		    resid >= L1_SEC_SIZE) {
   3798 #ifdef VERBOSE_INIT_ARM
   3799 			printf("S");
   3800 #endif
   3801 			pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
   3802 			va += L1_SEC_SIZE;
   3803 			pa += L1_SEC_SIZE;
   3804 			resid -= L1_SEC_SIZE;
   3805 			continue;
   3806 		}
   3807 
   3808 		/*
   3809 		 * Ok, we're going to use an L2 table.  Make sure
   3810 		 * one is actually in the corresponding L1 slot
   3811 		 * for the current VA.
   3812 		 */
   3813 		if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3814 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3815 
   3816 		pte = (pt_entry_t *)
   3817 		    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3818 		if (pte == NULL)
   3819 			panic("pmap_map_chunk: can't find L2 table for VA"
   3820 			    "0x%08lx", va);
   3821 
   3822 		/* See if we can use a L2 large page mapping. */
   3823 		if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
   3824 		    resid >= L2_LPAGE_SIZE) {
   3825 #ifdef VERBOSE_INIT_ARM
   3826 			printf("L");
   3827 #endif
   3828 			for (i = 0; i < 16; i++) {
   3829 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3830 				    L2_LPTE(pa, ap, fl);
   3831 			}
   3832 			va += L2_LPAGE_SIZE;
   3833 			pa += L2_LPAGE_SIZE;
   3834 			resid -= L2_LPAGE_SIZE;
   3835 			continue;
   3836 		}
   3837 
   3838 		/* Use a small page mapping. */
   3839 #ifdef VERBOSE_INIT_ARM
   3840 		printf("P");
   3841 #endif
   3842 		pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
   3843 		va += NBPG;
   3844 		pa += NBPG;
   3845 		resid -= NBPG;
   3846 	}
   3847 #ifdef VERBOSE_INIT_ARM
   3848 	printf("\n");
   3849 #endif
   3850 	return (size);
   3851 }
   3852