Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.56
      1 /*	$NetBSD: pmap.c,v 1.56 2002/03/24 03:37:21 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * Copyright (c) 2001 Richard Earnshaw
      6  * Copyright (c) 2001 Christopher Gilbert
      7  * All rights reserved.
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the company nor the name of the author may be used to
     15  *    endorse or promote products derived from this software without specific
     16  *    prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*-
     32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to The NetBSD Foundation
     36  * by Charles M. Hannum.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *        This product includes software developed by the NetBSD
     49  *        Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64  * POSSIBILITY OF SUCH DAMAGE.
     65  */
     66 
     67 /*
     68  * Copyright (c) 1994-1998 Mark Brinicombe.
     69  * Copyright (c) 1994 Brini.
     70  * All rights reserved.
     71  *
     72  * This code is derived from software written for Brini by Mark Brinicombe
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by Mark Brinicombe.
     85  * 4. The name of the author may not be used to endorse or promote products
     86  *    derived from this software without specific prior written permission.
     87  *
     88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97  *
     98  * RiscBSD kernel project
     99  *
    100  * pmap.c
    101  *
    102  * Machine dependant vm stuff
    103  *
    104  * Created      : 20/09/94
    105  */
    106 
    107 /*
    108  * Performance improvements, UVM changes, overhauls and part-rewrites
    109  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110  */
    111 
    112 /*
    113  * The dram block info is currently referenced from the bootconfig.
    114  * This should be placed in a separate structure.
    115  */
    116 
    117 /*
    118  * Special compilation symbols
    119  * PMAP_DEBUG		- Build in pmap_debug_level code
    120  */
    121 
    122 /* Include header files */
    123 
    124 #include "opt_pmap_debug.h"
    125 #include "opt_ddb.h"
    126 
    127 #include <sys/types.h>
    128 #include <sys/param.h>
    129 #include <sys/kernel.h>
    130 #include <sys/systm.h>
    131 #include <sys/proc.h>
    132 #include <sys/malloc.h>
    133 #include <sys/user.h>
    134 #include <sys/pool.h>
    135 #include <sys/cdefs.h>
    136 
    137 #include <uvm/uvm.h>
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/pmap.h>
    142 #include <machine/pcb.h>
    143 #include <machine/param.h>
    144 #include <arm/arm32/katelib.h>
    145 
    146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.56 2002/03/24 03:37:21 thorpej Exp $");
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 void pmap_dump_pvlist(vaddr_t phys, char *m);
    153 
    154 /*
    155  * for switching to potentially finer grained debugging
    156  */
    157 #define	PDB_FOLLOW	0x0001
    158 #define	PDB_INIT	0x0002
    159 #define	PDB_ENTER	0x0004
    160 #define	PDB_REMOVE	0x0008
    161 #define	PDB_CREATE	0x0010
    162 #define	PDB_PTPAGE	0x0020
    163 #define	PDB_GROWKERN	0x0040
    164 #define	PDB_BITS	0x0080
    165 #define	PDB_COLLECT	0x0100
    166 #define	PDB_PROTECT	0x0200
    167 #define	PDB_MAP_L1	0x0400
    168 #define	PDB_BOOTSTRAP	0x1000
    169 #define	PDB_PARANOIA	0x2000
    170 #define	PDB_WIRING	0x4000
    171 #define	PDB_PVDUMP	0x8000
    172 
    173 int debugmap = 0;
    174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175 #define	NPDEBUG(_lev_,_stat_) \
    176 	if (pmapdebug & (_lev_)) \
    177         	((_stat_))
    178 
    179 #else	/* PMAP_DEBUG */
    180 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182 #endif	/* PMAP_DEBUG */
    183 
    184 struct pmap     kernel_pmap_store;
    185 
    186 /*
    187  * linked list of all non-kernel pmaps
    188  */
    189 
    190 static struct pmap_head pmaps;
    191 
    192 /*
    193  * pool that pmap structures are allocated from
    194  */
    195 
    196 struct pool pmap_pmap_pool;
    197 
    198 static pt_entry_t *csrc_pte, *cdst_pte;
    199 static vaddr_t csrcp, cdstp;
    200 
    201 char *memhook;
    202 extern caddr_t msgbufaddr;
    203 
    204 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    205 /*
    206  * locking data structures
    207  */
    208 
    209 static struct lock pmap_main_lock;
    210 static struct simplelock pvalloc_lock;
    211 static struct simplelock pmaps_lock;
    212 #ifdef LOCKDEBUG
    213 #define PMAP_MAP_TO_HEAD_LOCK() \
    214      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    216      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    217 
    218 #define PMAP_HEAD_TO_MAP_LOCK() \
    219      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    221      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    222 #else
    223 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    224 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    225 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    226 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    227 #endif /* LOCKDEBUG */
    228 
    229 /*
    230  * pv_page management structures: locked by pvalloc_lock
    231  */
    232 
    233 TAILQ_HEAD(pv_pagelist, pv_page);
    234 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    236 static int pv_nfpvents;			/* # of free pv entries */
    237 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    238 static vaddr_t pv_cachedva;		/* cached VA for later use */
    239 
    240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    242 					/* high water mark */
    243 
    244 /*
    245  * local prototypes
    246  */
    247 
    248 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    249 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    250 #define ALLOCPV_NEED	0	/* need PV now */
    251 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    252 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    253 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    254 static void		 pmap_enter_pv __P((struct vm_page *,
    255 					    struct pv_entry *, struct pmap *,
    256 					    vaddr_t, struct vm_page *, int));
    257 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    258 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    259 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    260 static void		 pmap_free_pvpage __P((void));
    261 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    262 static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    263 			vaddr_t));
    264 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    265 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    266 
    267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    268 	u_int, u_int));
    269 
    270 static void pmap_free_l1pt __P((struct l1pt *));
    271 static int pmap_allocpagedir __P((struct pmap *));
    272 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    273 static void pmap_remove_all __P((struct vm_page *));
    274 
    275 
    276 vsize_t npages;
    277 
    278 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
    279 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
    280 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    281 
    282 extern paddr_t physical_start;
    283 extern paddr_t physical_freestart;
    284 extern paddr_t physical_end;
    285 extern paddr_t physical_freeend;
    286 extern unsigned int free_pages;
    287 extern int max_processes;
    288 
    289 vaddr_t virtual_avail;
    290 vaddr_t virtual_end;
    291 vaddr_t pmap_curmaxkvaddr;
    292 
    293 vaddr_t avail_start;
    294 vaddr_t avail_end;
    295 
    296 extern pv_addr_t systempage;
    297 
    298 /* Variables used by the L1 page table queue code */
    299 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    300 struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    301 int l1pt_static_queue_count;		/* items in the static l1 queue */
    302 int l1pt_static_create_count;		/* static l1 items created */
    303 struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    304 int l1pt_queue_count;			/* items in the l1 queue */
    305 int l1pt_create_count;			/* stat - L1's create count */
    306 int l1pt_reuse_count;			/* stat - L1's reused count */
    307 
    308 /* Local function prototypes (not used outside this file) */
    309 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
    310 void pmap_copy_on_write __P((struct vm_page *));
    311 void pmap_pinit __P((struct pmap *));
    312 void pmap_freepagedir __P((struct pmap *));
    313 
    314 /* Other function prototypes */
    315 extern void bzero_page __P((vaddr_t));
    316 extern void bcopy_page __P((vaddr_t, vaddr_t));
    317 
    318 struct l1pt *pmap_alloc_l1pt __P((void));
    319 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    320      vaddr_t l2pa, boolean_t));
    321 
    322 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    323 static void pmap_unmap_ptes __P((struct pmap *));
    324 
    325 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    326     pt_entry_t *, boolean_t));
    327 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    328     pt_entry_t *, boolean_t));
    329 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    330     pt_entry_t *, boolean_t));
    331 
    332 /*
    333  * Cache enable bits in PTE to use on pages that are cacheable.
    334  * On most machines this is cacheable/bufferable, but on some, eg arm10, we
    335  * can chose between write-through and write-back cacheing.
    336  */
    337 pt_entry_t pte_cache_mode = (PT_C | PT_B);
    338 
    339 /*
    340  * real definition of pv_entry.
    341  */
    342 
    343 struct pv_entry {
    344 	struct pv_entry *pv_next;       /* next pv_entry */
    345 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    346 	vaddr_t         pv_va;          /* virtual address for mapping */
    347 	int             pv_flags;       /* flags */
    348 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    349 };
    350 
    351 /*
    352  * pv_entrys are dynamically allocated in chunks from a single page.
    353  * we keep track of how many pv_entrys are in use for each page and
    354  * we can free pv_entry pages if needed.  there is one lock for the
    355  * entire allocation system.
    356  */
    357 
    358 struct pv_page_info {
    359 	TAILQ_ENTRY(pv_page) pvpi_list;
    360 	struct pv_entry *pvpi_pvfree;
    361 	int pvpi_nfree;
    362 };
    363 
    364 /*
    365  * number of pv_entry's in a pv_page
    366  * (note: won't work on systems where NPBG isn't a constant)
    367  */
    368 
    369 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    370 			sizeof(struct pv_entry))
    371 
    372 /*
    373  * a pv_page: where pv_entrys are allocated from
    374  */
    375 
    376 struct pv_page {
    377 	struct pv_page_info pvinfo;
    378 	struct pv_entry pvents[PVE_PER_PVPAGE];
    379 };
    380 
    381 #ifdef MYCROFT_HACK
    382 int mycroft_hack = 0;
    383 #endif
    384 
    385 /* Function to set the debug level of the pmap code */
    386 
    387 #ifdef PMAP_DEBUG
    388 void
    389 pmap_debug(level)
    390 	int level;
    391 {
    392 	pmap_debug_level = level;
    393 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    394 }
    395 #endif	/* PMAP_DEBUG */
    396 
    397 __inline static boolean_t
    398 pmap_is_curpmap(struct pmap *pmap)
    399 {
    400     if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
    401 	    || (pmap == pmap_kernel()))
    402 	return (TRUE);
    403     return (FALSE);
    404 }
    405 #include "isadma.h"
    406 
    407 #if NISADMA > 0
    408 /*
    409  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    410  * pages into the system, memory intersects with any of these ranges,
    411  * the intersecting memory will be loaded into a lower-priority free list.
    412  */
    413 bus_dma_segment_t *pmap_isa_dma_ranges;
    414 int pmap_isa_dma_nranges;
    415 
    416 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    417 	    paddr_t *, psize_t *));
    418 
    419 /*
    420  * Check if a memory range intersects with an ISA DMA range, and
    421  * return the page-rounded intersection if it does.  The intersection
    422  * will be placed on a lower-priority free list.
    423  */
    424 boolean_t
    425 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    426 	paddr_t pa;
    427 	psize_t size;
    428 	paddr_t *pap;
    429 	psize_t *sizep;
    430 {
    431 	bus_dma_segment_t *ds;
    432 	int i;
    433 
    434 	if (pmap_isa_dma_ranges == NULL)
    435 		return (FALSE);
    436 
    437 	for (i = 0, ds = pmap_isa_dma_ranges;
    438 	     i < pmap_isa_dma_nranges; i++, ds++) {
    439 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    440 			/*
    441 			 * Beginning of region intersects with this range.
    442 			 */
    443 			*pap = trunc_page(pa);
    444 			*sizep = round_page(min(pa + size,
    445 			    ds->ds_addr + ds->ds_len) - pa);
    446 			return (TRUE);
    447 		}
    448 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    449 			/*
    450 			 * End of region intersects with this range.
    451 			 */
    452 			*pap = trunc_page(ds->ds_addr);
    453 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    454 			    ds->ds_len));
    455 			return (TRUE);
    456 		}
    457 	}
    458 
    459 	/*
    460 	 * No intersection found.
    461 	 */
    462 	return (FALSE);
    463 }
    464 #endif /* NISADMA > 0 */
    465 
    466 /*
    467  * p v _ e n t r y   f u n c t i o n s
    468  */
    469 
    470 /*
    471  * pv_entry allocation functions:
    472  *   the main pv_entry allocation functions are:
    473  *     pmap_alloc_pv: allocate a pv_entry structure
    474  *     pmap_free_pv: free one pv_entry
    475  *     pmap_free_pvs: free a list of pv_entrys
    476  *
    477  * the rest are helper functions
    478  */
    479 
    480 /*
    481  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    482  * => we lock pvalloc_lock
    483  * => if we fail, we call out to pmap_alloc_pvpage
    484  * => 3 modes:
    485  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    486  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    487  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    488  *			one now
    489  *
    490  * "try" is for optional functions like pmap_copy().
    491  */
    492 
    493 __inline static struct pv_entry *
    494 pmap_alloc_pv(pmap, mode)
    495 	struct pmap *pmap;
    496 	int mode;
    497 {
    498 	struct pv_page *pvpage;
    499 	struct pv_entry *pv;
    500 
    501 	simple_lock(&pvalloc_lock);
    502 
    503 	pvpage = TAILQ_FIRST(&pv_freepages);
    504 
    505 	if (pvpage != NULL) {
    506 		pvpage->pvinfo.pvpi_nfree--;
    507 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    508 			/* nothing left in this one? */
    509 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    510 		}
    511 		pv = pvpage->pvinfo.pvpi_pvfree;
    512 		KASSERT(pv);
    513 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    514 		pv_nfpvents--;  /* took one from pool */
    515 	} else {
    516 		pv = NULL;		/* need more of them */
    517 	}
    518 
    519 	/*
    520 	 * if below low water mark or we didn't get a pv_entry we try and
    521 	 * create more pv_entrys ...
    522 	 */
    523 
    524 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    525 		if (pv == NULL)
    526 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    527 					       mode : ALLOCPV_NEED);
    528 		else
    529 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    530 	}
    531 
    532 	simple_unlock(&pvalloc_lock);
    533 	return(pv);
    534 }
    535 
    536 /*
    537  * pmap_alloc_pvpage: maybe allocate a new pvpage
    538  *
    539  * if need_entry is false: try and allocate a new pv_page
    540  * if need_entry is true: try and allocate a new pv_page and return a
    541  *	new pv_entry from it.   if we are unable to allocate a pv_page
    542  *	we make a last ditch effort to steal a pv_page from some other
    543  *	mapping.    if that fails, we panic...
    544  *
    545  * => we assume that the caller holds pvalloc_lock
    546  */
    547 
    548 static struct pv_entry *
    549 pmap_alloc_pvpage(pmap, mode)
    550 	struct pmap *pmap;
    551 	int mode;
    552 {
    553 	struct vm_page *pg;
    554 	struct pv_page *pvpage;
    555 	struct pv_entry *pv;
    556 	int s;
    557 
    558 	/*
    559 	 * if we need_entry and we've got unused pv_pages, allocate from there
    560 	 */
    561 
    562 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    563 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    564 
    565 		/* move it to pv_freepages list */
    566 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    567 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    568 
    569 		/* allocate a pv_entry */
    570 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    571 		pv = pvpage->pvinfo.pvpi_pvfree;
    572 		KASSERT(pv);
    573 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    574 
    575 		pv_nfpvents--;  /* took one from pool */
    576 		return(pv);
    577 	}
    578 
    579 	/*
    580 	 *  see if we've got a cached unmapped VA that we can map a page in.
    581 	 * if not, try to allocate one.
    582 	 */
    583 
    584 
    585 	if (pv_cachedva == 0) {
    586 		s = splvm();
    587 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    588 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    589 		splx(s);
    590 		if (pv_cachedva == 0) {
    591 			return (NULL);
    592 		}
    593 	}
    594 
    595 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    596 	    UVM_PGA_USERESERVE);
    597 
    598 	if (pg == NULL)
    599 		return (NULL);
    600 	pg->flags &= ~PG_BUSY;	/* never busy */
    601 
    602 	/*
    603 	 * add a mapping for our new pv_page and free its entrys (save one!)
    604 	 *
    605 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    606 	 * pmap is already locked!  (...but entering the mapping is safe...)
    607 	 */
    608 
    609 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    610 		VM_PROT_READ|VM_PROT_WRITE);
    611 	pmap_update(pmap_kernel());
    612 	pvpage = (struct pv_page *) pv_cachedva;
    613 	pv_cachedva = 0;
    614 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    615 }
    616 
    617 /*
    618  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    619  *
    620  * => caller must hold pvalloc_lock
    621  * => if need_entry is true, we allocate and return one pv_entry
    622  */
    623 
    624 static struct pv_entry *
    625 pmap_add_pvpage(pvp, need_entry)
    626 	struct pv_page *pvp;
    627 	boolean_t need_entry;
    628 {
    629 	int tofree, lcv;
    630 
    631 	/* do we need to return one? */
    632 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    633 
    634 	pvp->pvinfo.pvpi_pvfree = NULL;
    635 	pvp->pvinfo.pvpi_nfree = tofree;
    636 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    637 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    638 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    639 	}
    640 	if (need_entry)
    641 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    642 	else
    643 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    644 	pv_nfpvents += tofree;
    645 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    646 }
    647 
    648 /*
    649  * pmap_free_pv_doit: actually free a pv_entry
    650  *
    651  * => do not call this directly!  instead use either
    652  *    1. pmap_free_pv ==> free a single pv_entry
    653  *    2. pmap_free_pvs => free a list of pv_entrys
    654  * => we must be holding pvalloc_lock
    655  */
    656 
    657 __inline static void
    658 pmap_free_pv_doit(pv)
    659 	struct pv_entry *pv;
    660 {
    661 	struct pv_page *pvp;
    662 
    663 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    664 	pv_nfpvents++;
    665 	pvp->pvinfo.pvpi_nfree++;
    666 
    667 	/* nfree == 1 => fully allocated page just became partly allocated */
    668 	if (pvp->pvinfo.pvpi_nfree == 1) {
    669 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    670 	}
    671 
    672 	/* free it */
    673 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    674 	pvp->pvinfo.pvpi_pvfree = pv;
    675 
    676 	/*
    677 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    678 	 */
    679 
    680 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    681 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    682 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    683 	}
    684 }
    685 
    686 /*
    687  * pmap_free_pv: free a single pv_entry
    688  *
    689  * => we gain the pvalloc_lock
    690  */
    691 
    692 __inline static void
    693 pmap_free_pv(pmap, pv)
    694 	struct pmap *pmap;
    695 	struct pv_entry *pv;
    696 {
    697 	simple_lock(&pvalloc_lock);
    698 	pmap_free_pv_doit(pv);
    699 
    700 	/*
    701 	 * Can't free the PV page if the PV entries were associated with
    702 	 * the kernel pmap; the pmap is already locked.
    703 	 */
    704 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    705 	    pmap != pmap_kernel())
    706 		pmap_free_pvpage();
    707 
    708 	simple_unlock(&pvalloc_lock);
    709 }
    710 
    711 /*
    712  * pmap_free_pvs: free a list of pv_entrys
    713  *
    714  * => we gain the pvalloc_lock
    715  */
    716 
    717 __inline static void
    718 pmap_free_pvs(pmap, pvs)
    719 	struct pmap *pmap;
    720 	struct pv_entry *pvs;
    721 {
    722 	struct pv_entry *nextpv;
    723 
    724 	simple_lock(&pvalloc_lock);
    725 
    726 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    727 		nextpv = pvs->pv_next;
    728 		pmap_free_pv_doit(pvs);
    729 	}
    730 
    731 	/*
    732 	 * Can't free the PV page if the PV entries were associated with
    733 	 * the kernel pmap; the pmap is already locked.
    734 	 */
    735 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    736 	    pmap != pmap_kernel())
    737 		pmap_free_pvpage();
    738 
    739 	simple_unlock(&pvalloc_lock);
    740 }
    741 
    742 
    743 /*
    744  * pmap_free_pvpage: try and free an unused pv_page structure
    745  *
    746  * => assume caller is holding the pvalloc_lock and that
    747  *	there is a page on the pv_unusedpgs list
    748  * => if we can't get a lock on the kmem_map we try again later
    749  */
    750 
    751 static void
    752 pmap_free_pvpage()
    753 {
    754 	int s;
    755 	struct vm_map *map;
    756 	struct vm_map_entry *dead_entries;
    757 	struct pv_page *pvp;
    758 
    759 	s = splvm(); /* protect kmem_map */
    760 
    761 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    762 
    763 	/*
    764 	 * note: watch out for pv_initpage which is allocated out of
    765 	 * kernel_map rather than kmem_map.
    766 	 */
    767 	if (pvp == pv_initpage)
    768 		map = kernel_map;
    769 	else
    770 		map = kmem_map;
    771 	if (vm_map_lock_try(map)) {
    772 
    773 		/* remove pvp from pv_unusedpgs */
    774 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    775 
    776 		/* unmap the page */
    777 		dead_entries = NULL;
    778 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    779 		    &dead_entries);
    780 		vm_map_unlock(map);
    781 
    782 		if (dead_entries != NULL)
    783 			uvm_unmap_detach(dead_entries, 0);
    784 
    785 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    786 	}
    787 	if (pvp == pv_initpage)
    788 		/* no more initpage, we've freed it */
    789 		pv_initpage = NULL;
    790 
    791 	splx(s);
    792 }
    793 
    794 /*
    795  * main pv_entry manipulation functions:
    796  *   pmap_enter_pv: enter a mapping onto a vm_page list
    797  *   pmap_remove_pv: remove a mappiing from a vm_page list
    798  *
    799  * NOTE: pmap_enter_pv expects to lock the pvh itself
    800  *       pmap_remove_pv expects te caller to lock the pvh before calling
    801  */
    802 
    803 /*
    804  * pmap_enter_pv: enter a mapping onto a vm_page lst
    805  *
    806  * => caller should hold the proper lock on pmap_main_lock
    807  * => caller should have pmap locked
    808  * => we will gain the lock on the vm_page and allocate the new pv_entry
    809  * => caller should adjust ptp's wire_count before calling
    810  * => caller should not adjust pmap's wire_count
    811  */
    812 
    813 __inline static void
    814 pmap_enter_pv(pg, pve, pmap, va, ptp, flags)
    815 	struct vm_page *pg;
    816 	struct pv_entry *pve;	/* preallocated pve for us to use */
    817 	struct pmap *pmap;
    818 	vaddr_t va;
    819 	struct vm_page *ptp;	/* PTP in pmap that maps this VA */
    820 	int flags;
    821 {
    822 	pve->pv_pmap = pmap;
    823 	pve->pv_va = va;
    824 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    825 	pve->pv_flags = flags;
    826 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    827 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    828 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    829 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    830 	if (pve->pv_flags & PT_W)
    831 		++pmap->pm_stats.wired_count;
    832 }
    833 
    834 /*
    835  * pmap_remove_pv: try to remove a mapping from a pv_list
    836  *
    837  * => caller should hold proper lock on pmap_main_lock
    838  * => pmap should be locked
    839  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    840  * => caller should adjust ptp's wire_count and free PTP if needed
    841  * => caller should NOT adjust pmap's wire_count
    842  * => we return the removed pve
    843  */
    844 
    845 __inline static struct pv_entry *
    846 pmap_remove_pv(pg, pmap, va)
    847 	struct vm_page *pg;
    848 	struct pmap *pmap;
    849 	vaddr_t va;
    850 {
    851 	struct pv_entry *pve, **prevptr;
    852 
    853 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    854 	pve = *prevptr;
    855 	while (pve) {
    856 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    857 			*prevptr = pve->pv_next;		/* remove it! */
    858 			if (pve->pv_flags & PT_W)
    859 			    --pmap->pm_stats.wired_count;
    860 			break;
    861 		}
    862 		prevptr = &pve->pv_next;		/* previous pointer */
    863 		pve = pve->pv_next;			/* advance */
    864 	}
    865 	return(pve);				/* return removed pve */
    866 }
    867 
    868 /*
    869  *
    870  * pmap_modify_pv: Update pv flags
    871  *
    872  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    873  * => caller should NOT adjust pmap's wire_count
    874  * => caller must call pmap_vac_me_harder() if writable status of a page
    875  *    may have changed.
    876  * => we return the old flags
    877  *
    878  * Modify a physical-virtual mapping in the pv table
    879  */
    880 
    881 /*__inline */
    882 static u_int
    883 pmap_modify_pv(pmap, va, pg, bic_mask, eor_mask)
    884 	struct pmap *pmap;
    885 	vaddr_t va;
    886 	struct vm_page *pg;
    887 	u_int bic_mask;
    888 	u_int eor_mask;
    889 {
    890 	struct pv_entry *npv;
    891 	u_int flags, oflags;
    892 
    893 	/*
    894 	 * There is at least one VA mapping this page.
    895 	 */
    896 
    897 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    898 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    899 			oflags = npv->pv_flags;
    900 			npv->pv_flags = flags =
    901 			    ((oflags & ~bic_mask) ^ eor_mask);
    902 			if ((flags ^ oflags) & PT_W) {
    903 				if (flags & PT_W)
    904 					++pmap->pm_stats.wired_count;
    905 				else
    906 					--pmap->pm_stats.wired_count;
    907 			}
    908 			return (oflags);
    909 		}
    910 	}
    911 	return (0);
    912 }
    913 
    914 /*
    915  * Map the specified level 2 pagetable into the level 1 page table for
    916  * the given pmap to cover a chunk of virtual address space starting from the
    917  * address specified.
    918  */
    919 static /*__inline*/ void
    920 pmap_map_in_l1(pmap, va, l2pa, selfref)
    921 	struct pmap *pmap;
    922 	vaddr_t va, l2pa;
    923 	boolean_t selfref;
    924 {
    925 	vaddr_t ptva;
    926 
    927 	/* Calculate the index into the L1 page table. */
    928 	ptva = (va >> PDSHIFT) & ~3;
    929 
    930 	NPDEBUG(PDB_MAP_L1, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    931 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    932 
    933 	/* Map page table into the L1. */
    934 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    935 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    936 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    937 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    938 
    939 	/* Map the page table into the page table area. */
    940 	if (selfref) {
    941 	    NPDEBUG(PDB_MAP_L1, printf("pt self reference %lx in %lx\n",
    942 			L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    943 	    *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    944 		L2_PTE_NC_NB(l2pa, AP_KRW);
    945 	}
    946 	/* XXX should be a purge */
    947 /*	cpu_tlb_flushD();*/
    948 }
    949 
    950 #if 0
    951 static /*__inline*/ void
    952 pmap_unmap_in_l1(pmap, va)
    953 	struct pmap *pmap;
    954 	vaddr_t va;
    955 {
    956 	vaddr_t ptva;
    957 
    958 	/* Calculate the index into the L1 page table. */
    959 	ptva = (va >> PDSHIFT) & ~3;
    960 
    961 	/* Unmap page table from the L1. */
    962 	pmap->pm_pdir[ptva + 0] = 0;
    963 	pmap->pm_pdir[ptva + 1] = 0;
    964 	pmap->pm_pdir[ptva + 2] = 0;
    965 	pmap->pm_pdir[ptva + 3] = 0;
    966 
    967 	/* Unmap the page table from the page table area. */
    968 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    969 
    970 	/* XXX should be a purge */
    971 /*	cpu_tlb_flushD();*/
    972 }
    973 #endif
    974 
    975 /*
    976  *	Used to map a range of physical addresses into kernel
    977  *	virtual address space.
    978  *
    979  *	For now, VM is already on, we only need to map the
    980  *	specified memory.
    981  */
    982 vaddr_t
    983 pmap_map(va, spa, epa, prot)
    984 	vaddr_t va, spa, epa;
    985 	int prot;
    986 {
    987 	while (spa < epa) {
    988 		pmap_kenter_pa(va, spa, prot);
    989 		va += NBPG;
    990 		spa += NBPG;
    991 	}
    992 	pmap_update(pmap_kernel());
    993 	return(va);
    994 }
    995 
    996 
    997 /*
    998  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    999  *
   1000  * bootstrap the pmap system. This is called from initarm and allows
   1001  * the pmap system to initailise any structures it requires.
   1002  *
   1003  * Currently this sets up the kernel_pmap that is statically allocated
   1004  * and also allocated virtual addresses for certain page hooks.
   1005  * Currently the only one page hook is allocated that is used
   1006  * to zero physical pages of memory.
   1007  * It also initialises the start and end address of the kernel data space.
   1008  */
   1009 extern paddr_t physical_freestart;
   1010 extern paddr_t physical_freeend;
   1011 
   1012 char *boot_head;
   1013 
   1014 void
   1015 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
   1016 	pd_entry_t *kernel_l1pt;
   1017 	pv_addr_t kernel_ptpt;
   1018 {
   1019 	pt_entry_t *pte;
   1020 	int loop;
   1021 	paddr_t start, end;
   1022 #if NISADMA > 0
   1023 	paddr_t istart;
   1024 	psize_t isize;
   1025 #endif
   1026 
   1027 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1028 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1029 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1030 	simple_lock_init(&pmap_kernel()->pm_lock);
   1031 	pmap_kernel()->pm_obj.pgops = NULL;
   1032 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1033 	pmap_kernel()->pm_obj.uo_npages = 0;
   1034 	pmap_kernel()->pm_obj.uo_refs = 1;
   1035 
   1036 	/*
   1037 	 * Initialize PAGE_SIZE-dependent variables.
   1038 	 */
   1039 	uvm_setpagesize();
   1040 
   1041 	npages = 0;
   1042 	loop = 0;
   1043 	while (loop < bootconfig.dramblocks) {
   1044 		start = (paddr_t)bootconfig.dram[loop].address;
   1045 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1046 		if (start < physical_freestart)
   1047 			start = physical_freestart;
   1048 		if (end > physical_freeend)
   1049 			end = physical_freeend;
   1050 #if 0
   1051 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1052 #endif
   1053 #if NISADMA > 0
   1054 		if (pmap_isa_dma_range_intersect(start, end - start,
   1055 		    &istart, &isize)) {
   1056 			/*
   1057 			 * Place the pages that intersect with the
   1058 			 * ISA DMA range onto the ISA DMA free list.
   1059 			 */
   1060 #if 0
   1061 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1062 			    istart + isize - 1);
   1063 #endif
   1064 			uvm_page_physload(atop(istart),
   1065 			    atop(istart + isize), atop(istart),
   1066 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1067 			npages += atop(istart + isize) - atop(istart);
   1068 
   1069 			/*
   1070 			 * Load the pieces that come before
   1071 			 * the intersection into the default
   1072 			 * free list.
   1073 			 */
   1074 			if (start < istart) {
   1075 #if 0
   1076 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1077 				    start, istart - 1);
   1078 #endif
   1079 				uvm_page_physload(atop(start),
   1080 				    atop(istart), atop(start),
   1081 				    atop(istart), VM_FREELIST_DEFAULT);
   1082 				npages += atop(istart) - atop(start);
   1083 			}
   1084 
   1085 			/*
   1086 			 * Load the pieces that come after
   1087 			 * the intersection into the default
   1088 			 * free list.
   1089 			 */
   1090 			if ((istart + isize) < end) {
   1091 #if 0
   1092 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1093 				    (istart + isize), end - 1);
   1094 #endif
   1095 				uvm_page_physload(atop(istart + isize),
   1096 				    atop(end), atop(istart + isize),
   1097 				    atop(end), VM_FREELIST_DEFAULT);
   1098 				npages += atop(end) - atop(istart + isize);
   1099 			}
   1100 		} else {
   1101 			uvm_page_physload(atop(start), atop(end),
   1102 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1103 			npages += atop(end) - atop(start);
   1104 		}
   1105 #else	/* NISADMA > 0 */
   1106 		uvm_page_physload(atop(start), atop(end),
   1107 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1108 		npages += atop(end) - atop(start);
   1109 #endif /* NISADMA > 0 */
   1110 		++loop;
   1111 	}
   1112 
   1113 #ifdef MYCROFT_HACK
   1114 	printf("npages = %ld\n", npages);
   1115 #endif
   1116 
   1117 	virtual_avail = KERNEL_VM_BASE;
   1118 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE - 1;
   1119 
   1120 	/*
   1121 	 * now we allocate the "special" VAs which are used for tmp mappings
   1122 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1123 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1124 	 * we find the PTE that maps the allocated VA via the linear PTE
   1125 	 * mapping.
   1126 	 */
   1127 
   1128 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1129 
   1130 	csrcp = virtual_avail; csrc_pte = pte;
   1131 	virtual_avail += PAGE_SIZE; pte++;
   1132 
   1133 	cdstp = virtual_avail; cdst_pte = pte;
   1134 	virtual_avail += PAGE_SIZE; pte++;
   1135 
   1136 	memhook = (char *) virtual_avail;	/* don't need pte */
   1137 	virtual_avail += PAGE_SIZE; pte++;
   1138 
   1139 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1140 	virtual_avail += round_page(MSGBUFSIZE);
   1141 	pte += atop(round_page(MSGBUFSIZE));
   1142 
   1143 	/*
   1144 	 * init the static-global locks and global lists.
   1145 	 */
   1146 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1147 	simple_lock_init(&pvalloc_lock);
   1148 	simple_lock_init(&pmaps_lock);
   1149 	LIST_INIT(&pmaps);
   1150 	TAILQ_INIT(&pv_freepages);
   1151 	TAILQ_INIT(&pv_unusedpgs);
   1152 
   1153 	/*
   1154 	 * initialize the pmap pool.
   1155 	 */
   1156 
   1157 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1158 		  &pool_allocator_nointr);
   1159 
   1160 	cpu_dcache_wbinv_all();
   1161 }
   1162 
   1163 /*
   1164  * void pmap_init(void)
   1165  *
   1166  * Initialize the pmap module.
   1167  * Called by vm_init() in vm/vm_init.c in order to initialise
   1168  * any structures that the pmap system needs to map virtual memory.
   1169  */
   1170 
   1171 extern int physmem;
   1172 
   1173 void
   1174 pmap_init()
   1175 {
   1176 
   1177 	/*
   1178 	 * Set the available memory vars - These do not map to real memory
   1179 	 * addresses and cannot as the physical memory is fragmented.
   1180 	 * They are used by ps for %mem calculations.
   1181 	 * One could argue whether this should be the entire memory or just
   1182 	 * the memory that is useable in a user process.
   1183 	 */
   1184 	avail_start = 0;
   1185 	avail_end = physmem * NBPG;
   1186 
   1187 	/*
   1188 	 * now we need to free enough pv_entry structures to allow us to get
   1189 	 * the kmem_map/kmem_object allocated and inited (done after this
   1190 	 * function is finished).  to do this we allocate one bootstrap page out
   1191 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1192 	 * structures.   we never free this page.
   1193 	 */
   1194 
   1195 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1196 	if (pv_initpage == NULL)
   1197 		panic("pmap_init: pv_initpage");
   1198 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1199 	pv_nfpvents = 0;
   1200 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1201 
   1202 	pmap_initialized = TRUE;
   1203 
   1204 	/* Initialise our L1 page table queues and counters */
   1205 	SIMPLEQ_INIT(&l1pt_static_queue);
   1206 	l1pt_static_queue_count = 0;
   1207 	l1pt_static_create_count = 0;
   1208 	SIMPLEQ_INIT(&l1pt_queue);
   1209 	l1pt_queue_count = 0;
   1210 	l1pt_create_count = 0;
   1211 	l1pt_reuse_count = 0;
   1212 }
   1213 
   1214 /*
   1215  * pmap_postinit()
   1216  *
   1217  * This routine is called after the vm and kmem subsystems have been
   1218  * initialised. This allows the pmap code to perform any initialisation
   1219  * that can only be done one the memory allocation is in place.
   1220  */
   1221 
   1222 void
   1223 pmap_postinit()
   1224 {
   1225 	int loop;
   1226 	struct l1pt *pt;
   1227 
   1228 #ifdef PMAP_STATIC_L1S
   1229 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1230 #else	/* PMAP_STATIC_L1S */
   1231 	for (loop = 0; loop < max_processes; ++loop) {
   1232 #endif	/* PMAP_STATIC_L1S */
   1233 		/* Allocate a L1 page table */
   1234 		pt = pmap_alloc_l1pt();
   1235 		if (!pt)
   1236 			panic("Cannot allocate static L1 page tables\n");
   1237 
   1238 		/* Clean it */
   1239 		bzero((void *)pt->pt_va, PD_SIZE);
   1240 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1241 		/* Add the page table to the queue */
   1242 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1243 		++l1pt_static_queue_count;
   1244 		++l1pt_static_create_count;
   1245 	}
   1246 }
   1247 
   1248 
   1249 /*
   1250  * Create and return a physical map.
   1251  *
   1252  * If the size specified for the map is zero, the map is an actual physical
   1253  * map, and may be referenced by the hardware.
   1254  *
   1255  * If the size specified is non-zero, the map will be used in software only,
   1256  * and is bounded by that size.
   1257  */
   1258 
   1259 pmap_t
   1260 pmap_create()
   1261 {
   1262 	struct pmap *pmap;
   1263 
   1264 	/*
   1265 	 * Fetch pmap entry from the pool
   1266 	 */
   1267 
   1268 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1269 	/* XXX is this really needed! */
   1270 	memset(pmap, 0, sizeof(*pmap));
   1271 
   1272 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1273 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1274 	TAILQ_INIT(&pmap->pm_obj.memq);
   1275 	pmap->pm_obj.uo_npages = 0;
   1276 	pmap->pm_obj.uo_refs = 1;
   1277 	pmap->pm_stats.wired_count = 0;
   1278 	pmap->pm_stats.resident_count = 1;
   1279 
   1280 	/* Now init the machine part of the pmap */
   1281 	pmap_pinit(pmap);
   1282 	return(pmap);
   1283 }
   1284 
   1285 /*
   1286  * pmap_alloc_l1pt()
   1287  *
   1288  * This routine allocates physical and virtual memory for a L1 page table
   1289  * and wires it.
   1290  * A l1pt structure is returned to describe the allocated page table.
   1291  *
   1292  * This routine is allowed to fail if the required memory cannot be allocated.
   1293  * In this case NULL is returned.
   1294  */
   1295 
   1296 struct l1pt *
   1297 pmap_alloc_l1pt(void)
   1298 {
   1299 	paddr_t pa;
   1300 	vaddr_t va;
   1301 	struct l1pt *pt;
   1302 	int error;
   1303 	struct vm_page *m;
   1304 	pt_entry_t *ptes;
   1305 
   1306 	/* Allocate virtual address space for the L1 page table */
   1307 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1308 	if (va == 0) {
   1309 #ifdef DIAGNOSTIC
   1310 		PDEBUG(0,
   1311 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1312 #endif	/* DIAGNOSTIC */
   1313 		return(NULL);
   1314 	}
   1315 
   1316 	/* Allocate memory for the l1pt structure */
   1317 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1318 
   1319 	/*
   1320 	 * Allocate pages from the VM system.
   1321 	 */
   1322 	TAILQ_INIT(&pt->pt_plist);
   1323 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1324 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1325 	if (error) {
   1326 #ifdef DIAGNOSTIC
   1327 		PDEBUG(0,
   1328 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1329 		    error));
   1330 #endif	/* DIAGNOSTIC */
   1331 		/* Release the resources we already have claimed */
   1332 		free(pt, M_VMPMAP);
   1333 		uvm_km_free(kernel_map, va, PD_SIZE);
   1334 		return(NULL);
   1335 	}
   1336 
   1337 	/* Map our physical pages into our virtual space */
   1338 	pt->pt_va = va;
   1339 	m = TAILQ_FIRST(&pt->pt_plist);
   1340 	ptes = pmap_map_ptes(pmap_kernel());
   1341 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1342 		pa = VM_PAGE_TO_PHYS(m);
   1343 
   1344 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1345 
   1346 		/* Revoke cacheability and bufferability */
   1347 		/* XXX should be done better than this */
   1348 		ptes[arm_btop(va)] &= ~(PT_C | PT_B);
   1349 
   1350 		va += NBPG;
   1351 		m = m->pageq.tqe_next;
   1352 	}
   1353 	pmap_unmap_ptes(pmap_kernel());
   1354 	pmap_update(pmap_kernel());
   1355 
   1356 #ifdef DIAGNOSTIC
   1357 	if (m)
   1358 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1359 #endif	/* DIAGNOSTIC */
   1360 
   1361 	pt->pt_flags = 0;
   1362 	return(pt);
   1363 }
   1364 
   1365 /*
   1366  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1367  */
   1368 static void
   1369 pmap_free_l1pt(pt)
   1370 	struct l1pt *pt;
   1371 {
   1372 	/* Separate the physical memory for the virtual space */
   1373 	pmap_kremove(pt->pt_va, PD_SIZE);
   1374 	pmap_update(pmap_kernel());
   1375 
   1376 	/* Return the physical memory */
   1377 	uvm_pglistfree(&pt->pt_plist);
   1378 
   1379 	/* Free the virtual space */
   1380 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1381 
   1382 	/* Free the l1pt structure */
   1383 	free(pt, M_VMPMAP);
   1384 }
   1385 
   1386 /*
   1387  * Allocate a page directory.
   1388  * This routine will either allocate a new page directory from the pool
   1389  * of L1 page tables currently held by the kernel or it will allocate
   1390  * a new one via pmap_alloc_l1pt().
   1391  * It will then initialise the l1 page table for use.
   1392  *
   1393  * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
   1394  */
   1395 static int
   1396 pmap_allocpagedir(pmap)
   1397 	struct pmap *pmap;
   1398 {
   1399 	paddr_t pa;
   1400 	struct l1pt *pt;
   1401 	pt_entry_t *pte;
   1402 
   1403 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1404 
   1405 	/* Do we have any spare L1's lying around ? */
   1406 	if (l1pt_static_queue_count) {
   1407 		--l1pt_static_queue_count;
   1408 		pt = l1pt_static_queue.sqh_first;
   1409 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1410 	} else if (l1pt_queue_count) {
   1411 		--l1pt_queue_count;
   1412 		pt = l1pt_queue.sqh_first;
   1413 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1414 		++l1pt_reuse_count;
   1415 	} else {
   1416 		pt = pmap_alloc_l1pt();
   1417 		if (!pt)
   1418 			return(ENOMEM);
   1419 		++l1pt_create_count;
   1420 	}
   1421 
   1422 	/* Store the pointer to the l1 descriptor in the pmap. */
   1423 	pmap->pm_l1pt = pt;
   1424 
   1425 	/* Get the physical address of the start of the l1 */
   1426 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1427 
   1428 	/* Store the virtual address of the l1 in the pmap. */
   1429 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1430 
   1431 	/* Clean the L1 if it is dirty */
   1432 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1433 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1434 
   1435 	/* Allocate a page table to map all the page tables for this pmap */
   1436 
   1437 #ifdef DIAGNOSTIC
   1438 	if (pmap->pm_vptpt) {
   1439 		/* XXX What if we have one already ? */
   1440 		panic("pmap_allocpagedir: have pt already\n");
   1441 	}
   1442 #endif	/* DIAGNOSTIC */
   1443 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1444 	if (pmap->pm_vptpt == 0) {
   1445 	    pmap_freepagedir(pmap);
   1446     	    return(ENOMEM);
   1447 	}
   1448 
   1449 	/* need to lock this all up  for growkernel */
   1450 	simple_lock(&pmaps_lock);
   1451 	/* wish we didn't have to keep this locked... */
   1452 
   1453 	/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
   1454 	bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1455 		(char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1456 		KERNEL_PD_SIZE);
   1457 
   1458 	(void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
   1459 	pmap->pm_pptpt &= PG_FRAME;
   1460 	/* Revoke cacheability and bufferability */
   1461 	/* XXX should be done better than this */
   1462 	pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
   1463 	*pte = *pte & ~(PT_C | PT_B);
   1464 
   1465 	/* Wire in this page table */
   1466 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1467 
   1468 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1469 
   1470 	/*
   1471 	 * Map the kernel page tables for 0xf0000000 +
   1472 	 * into the page table used to map the
   1473 	 * pmap's page tables
   1474 	 */
   1475 	bcopy((char *)(PTE_BASE
   1476 	    + (PTE_BASE >> (PGSHIFT - 2))
   1477 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1478 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1479 	    (KERNEL_PD_SIZE >> 2));
   1480 
   1481 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1482 	simple_unlock(&pmaps_lock);
   1483 
   1484 	return(0);
   1485 }
   1486 
   1487 
   1488 /*
   1489  * Initialize a preallocated and zeroed pmap structure,
   1490  * such as one in a vmspace structure.
   1491  */
   1492 
   1493 void
   1494 pmap_pinit(pmap)
   1495 	struct pmap *pmap;
   1496 {
   1497 	int backoff = 6;
   1498 	int retry = 10;
   1499 
   1500 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1501 
   1502 	/* Keep looping until we succeed in allocating a page directory */
   1503 	while (pmap_allocpagedir(pmap) != 0) {
   1504 		/*
   1505 		 * Ok we failed to allocate a suitable block of memory for an
   1506 		 * L1 page table. This means that either:
   1507 		 * 1. 16KB of virtual address space could not be allocated
   1508 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1509 		 *    could not be allocated.
   1510 		 *
   1511 		 * Since we cannot fail we will sleep for a while and try
   1512 		 * again.
   1513 		 *
   1514 		 * Searching for a suitable L1 PT is expensive:
   1515 		 * to avoid hogging the system when memory is really
   1516 		 * scarce, use an exponential back-off so that
   1517 		 * eventually we won't retry more than once every 8
   1518 		 * seconds.  This should allow other processes to run
   1519 		 * to completion and free up resources.
   1520 		 */
   1521 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1522 		    NULL);
   1523 		if (--retry == 0) {
   1524 			retry = 10;
   1525 			if (backoff)
   1526 				--backoff;
   1527 		}
   1528 	}
   1529 
   1530 	/* Map zero page for the pmap. This will also map the L2 for it */
   1531 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1532 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1533 	pmap_update(pmap);
   1534 }
   1535 
   1536 
   1537 void
   1538 pmap_freepagedir(pmap)
   1539 	struct pmap *pmap;
   1540 {
   1541 	/* Free the memory used for the page table mapping */
   1542 	if (pmap->pm_vptpt != 0)
   1543 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1544 
   1545 	/* junk the L1 page table */
   1546 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1547 		/* Add the page table to the queue */
   1548 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1549 		++l1pt_static_queue_count;
   1550 	} else if (l1pt_queue_count < 8) {
   1551 		/* Add the page table to the queue */
   1552 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1553 		++l1pt_queue_count;
   1554 	} else
   1555 		pmap_free_l1pt(pmap->pm_l1pt);
   1556 }
   1557 
   1558 
   1559 /*
   1560  * Retire the given physical map from service.
   1561  * Should only be called if the map contains no valid mappings.
   1562  */
   1563 
   1564 void
   1565 pmap_destroy(pmap)
   1566 	struct pmap *pmap;
   1567 {
   1568 	struct vm_page *page;
   1569 	int count;
   1570 
   1571 	if (pmap == NULL)
   1572 		return;
   1573 
   1574 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1575 
   1576 	/*
   1577 	 * Drop reference count
   1578 	 */
   1579 	simple_lock(&pmap->pm_obj.vmobjlock);
   1580 	count = --pmap->pm_obj.uo_refs;
   1581 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1582 	if (count > 0) {
   1583 		return;
   1584 	}
   1585 
   1586 	/*
   1587 	 * reference count is zero, free pmap resources and then free pmap.
   1588 	 */
   1589 
   1590 	/*
   1591 	 * remove it from global list of pmaps
   1592 	 */
   1593 
   1594 	simple_lock(&pmaps_lock);
   1595 	LIST_REMOVE(pmap, pm_list);
   1596 	simple_unlock(&pmaps_lock);
   1597 
   1598 	/* Remove the zero page mapping */
   1599 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1600 	pmap_update(pmap);
   1601 
   1602 	/*
   1603 	 * Free any page tables still mapped
   1604 	 * This is only temporay until pmap_enter can count the number
   1605 	 * of mappings made in a page table. Then pmap_remove() can
   1606 	 * reduce the count and free the pagetable when the count
   1607 	 * reaches zero.  Note that entries in this list should match the
   1608 	 * contents of the ptpt, however this is faster than walking a 1024
   1609 	 * entries looking for pt's
   1610 	 * taken from i386 pmap.c
   1611 	 */
   1612 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1613 		KASSERT((page->flags & PG_BUSY) == 0);
   1614 		page->wire_count = 0;
   1615 		uvm_pagefree(page);
   1616 	}
   1617 
   1618 	/* Free the page dir */
   1619 	pmap_freepagedir(pmap);
   1620 
   1621 	/* return the pmap to the pool */
   1622 	pool_put(&pmap_pmap_pool, pmap);
   1623 }
   1624 
   1625 
   1626 /*
   1627  * void pmap_reference(struct pmap *pmap)
   1628  *
   1629  * Add a reference to the specified pmap.
   1630  */
   1631 
   1632 void
   1633 pmap_reference(pmap)
   1634 	struct pmap *pmap;
   1635 {
   1636 	if (pmap == NULL)
   1637 		return;
   1638 
   1639 	simple_lock(&pmap->pm_lock);
   1640 	pmap->pm_obj.uo_refs++;
   1641 	simple_unlock(&pmap->pm_lock);
   1642 }
   1643 
   1644 /*
   1645  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1646  *
   1647  * Return the start and end addresses of the kernel's virtual space.
   1648  * These values are setup in pmap_bootstrap and are updated as pages
   1649  * are allocated.
   1650  */
   1651 
   1652 void
   1653 pmap_virtual_space(start, end)
   1654 	vaddr_t *start;
   1655 	vaddr_t *end;
   1656 {
   1657 	*start = virtual_avail;
   1658 	*end = virtual_end;
   1659 }
   1660 
   1661 
   1662 /*
   1663  * Activate the address space for the specified process.  If the process
   1664  * is the current process, load the new MMU context.
   1665  */
   1666 void
   1667 pmap_activate(p)
   1668 	struct proc *p;
   1669 {
   1670 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1671 	struct pcb *pcb = &p->p_addr->u_pcb;
   1672 
   1673 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1674 	    (paddr_t *)&pcb->pcb_pagedir);
   1675 
   1676 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1677 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1678 
   1679 	if (p == curproc) {
   1680 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1681 		setttb((u_int)pcb->pcb_pagedir);
   1682 	}
   1683 #if 0
   1684 	pmap->pm_pdchanged = FALSE;
   1685 #endif
   1686 }
   1687 
   1688 
   1689 /*
   1690  * Deactivate the address space of the specified process.
   1691  */
   1692 void
   1693 pmap_deactivate(p)
   1694 	struct proc *p;
   1695 {
   1696 }
   1697 
   1698 /*
   1699  * Perform any deferred pmap operations.
   1700  */
   1701 void
   1702 pmap_update(struct pmap *pmap)
   1703 {
   1704 
   1705 	/*
   1706 	 * We haven't deferred any pmap operations, but we do need to
   1707 	 * make sure TLB/cache operations have completed.
   1708 	 */
   1709 	cpu_cpwait();
   1710 }
   1711 
   1712 /*
   1713  * pmap_clean_page()
   1714  *
   1715  * This is a local function used to work out the best strategy to clean
   1716  * a single page referenced by its entry in the PV table. It's used by
   1717  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1718  *
   1719  * Its policy is effectively:
   1720  *  o If there are no mappings, we don't bother doing anything with the cache.
   1721  *  o If there is one mapping, we clean just that page.
   1722  *  o If there are multiple mappings, we clean the entire cache.
   1723  *
   1724  * So that some functions can be further optimised, it returns 0 if it didn't
   1725  * clean the entire cache, or 1 if it did.
   1726  *
   1727  * XXX One bug in this routine is that if the pv_entry has a single page
   1728  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1729  * just the 1 page. Since this should not occur in everyday use and if it does
   1730  * it will just result in not the most efficient clean for the page.
   1731  */
   1732 static int
   1733 pmap_clean_page(pv, is_src)
   1734 	struct pv_entry *pv;
   1735 	boolean_t is_src;
   1736 {
   1737 	struct pmap *pmap;
   1738 	struct pv_entry *npv;
   1739 	int cache_needs_cleaning = 0;
   1740 	vaddr_t page_to_clean = 0;
   1741 
   1742 	if (pv == NULL)
   1743 		/* nothing mapped in so nothing to flush */
   1744 		return (0);
   1745 
   1746 	/* Since we flush the cache each time we change curproc, we
   1747 	 * only need to flush the page if it is in the current pmap.
   1748 	 */
   1749 	if (curproc)
   1750 		pmap = curproc->p_vmspace->vm_map.pmap;
   1751 	else
   1752 		pmap = pmap_kernel();
   1753 
   1754 	for (npv = pv; npv; npv = npv->pv_next) {
   1755 		if (npv->pv_pmap == pmap) {
   1756 			/* The page is mapped non-cacheable in
   1757 			 * this map.  No need to flush the cache.
   1758 			 */
   1759 			if (npv->pv_flags & PT_NC) {
   1760 #ifdef DIAGNOSTIC
   1761 				if (cache_needs_cleaning)
   1762 					panic("pmap_clean_page: "
   1763 							"cache inconsistency");
   1764 #endif
   1765 				break;
   1766 			}
   1767 #if 0
   1768 			/* This doesn't work, because pmap_protect
   1769 			   doesn't flush changes on pages that it
   1770 			   has write-protected.  */
   1771 
   1772 			/* If the page is not writable and this
   1773 			   is the source, then there is no need
   1774 			   to flush it from the cache.  */
   1775 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1776 				continue;
   1777 #endif
   1778 			if (cache_needs_cleaning){
   1779 				page_to_clean = 0;
   1780 				break;
   1781 			}
   1782 			else
   1783 				page_to_clean = npv->pv_va;
   1784 			cache_needs_cleaning = 1;
   1785 		}
   1786 	}
   1787 
   1788 	if (page_to_clean)
   1789 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1790 	else if (cache_needs_cleaning) {
   1791 		cpu_idcache_wbinv_all();
   1792 		return (1);
   1793 	}
   1794 	return (0);
   1795 }
   1796 
   1797 /*
   1798  * pmap_zero_page()
   1799  *
   1800  * Zero a given physical page by mapping it at a page hook point.
   1801  * In doing the zero page op, the page we zero is mapped cachable, as with
   1802  * StrongARM accesses to non-cached pages are non-burst making writing
   1803  * _any_ bulk data very slow.
   1804  */
   1805 void
   1806 pmap_zero_page(phys)
   1807 	paddr_t phys;
   1808 {
   1809 	struct vm_page *pg;
   1810 
   1811 	/* Get an entry for this page, and clean it it. */
   1812 	pg = PHYS_TO_VM_PAGE(phys);
   1813 	simple_lock(&pg->mdpage.pvh_slock);
   1814 	pmap_clean_page(pg->mdpage.pvh_list, FALSE);
   1815 	simple_unlock(&pg->mdpage.pvh_slock);
   1816 
   1817 	/*
   1818 	 * Hook in the page, zero it, and purge the cache for that
   1819 	 * zeroed page. Invalidate the TLB as needed.
   1820 	 */
   1821 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1822 	cpu_tlb_flushD_SE(cdstp);
   1823 	cpu_cpwait();
   1824 	bzero_page(cdstp);
   1825 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1826 }
   1827 
   1828 /* pmap_pageidlezero()
   1829  *
   1830  * The same as above, except that we assume that the page is not
   1831  * mapped.  This means we never have to flush the cache first.  Called
   1832  * from the idle loop.
   1833  */
   1834 boolean_t
   1835 pmap_pageidlezero(phys)
   1836     paddr_t phys;
   1837 {
   1838 	int i, *ptr;
   1839 	boolean_t rv = TRUE;
   1840 
   1841 #ifdef DIAGNOSTIC
   1842 	struct vm_page *pg;
   1843 
   1844 	pg = PHYS_TO_VM_PAGE(phys);
   1845 	if (pg->mdpage.pvh_list != NULL)
   1846 		panic("pmap_pageidlezero: zeroing mapped page\n");
   1847 #endif
   1848 
   1849 	/*
   1850 	 * Hook in the page, zero it, and purge the cache for that
   1851 	 * zeroed page. Invalidate the TLB as needed.
   1852 	 */
   1853 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1854 	cpu_tlb_flushD_SE(cdstp);
   1855 	cpu_cpwait();
   1856 
   1857 	for (i = 0, ptr = (int *)cdstp;
   1858 			i < (NBPG / sizeof(int)); i++) {
   1859 		if (sched_whichqs != 0) {
   1860 			/*
   1861 			 * A process has become ready.  Abort now,
   1862 			 * so we don't keep it waiting while we
   1863 			 * do slow memory access to finish this
   1864 			 * page.
   1865 			 */
   1866 			rv = FALSE;
   1867 			break;
   1868 		}
   1869 		*ptr++ = 0;
   1870 	}
   1871 
   1872 	if (rv)
   1873 		/*
   1874 		 * if we aborted we'll rezero this page again later so don't
   1875 		 * purge it unless we finished it
   1876 		 */
   1877 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1878 	return (rv);
   1879 }
   1880 
   1881 /*
   1882  * pmap_copy_page()
   1883  *
   1884  * Copy one physical page into another, by mapping the pages into
   1885  * hook points. The same comment regarding cachability as in
   1886  * pmap_zero_page also applies here.
   1887  */
   1888 void
   1889 pmap_copy_page(src, dest)
   1890 	paddr_t src;
   1891 	paddr_t dest;
   1892 {
   1893 	struct vm_page *src_pg, *dest_pg;
   1894 	boolean_t cleanedcache;
   1895 
   1896 	/* Get PV entries for the pages, and clean them if needed. */
   1897 	src_pg = PHYS_TO_VM_PAGE(src);
   1898 
   1899 	simple_lock(&src_pg->mdpage.pvh_slock);
   1900 	cleanedcache = pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1901 	simple_unlock(&src_pg->mdpage.pvh_slock);
   1902 
   1903 	if (cleanedcache == 0) {
   1904 		dest_pg = PHYS_TO_VM_PAGE(dest);
   1905 		simple_lock(&dest_pg->mdpage.pvh_slock);
   1906 		pmap_clean_page(dest_pg->mdpage.pvh_list, FALSE);
   1907 		simple_unlock(&dest_pg->mdpage.pvh_slock);
   1908 	}
   1909 	/*
   1910 	 * Map the pages into the page hook points, copy them, and purge
   1911 	 * the cache for the appropriate page. Invalidate the TLB
   1912 	 * as required.
   1913 	 */
   1914 	*csrc_pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1915 	*cdst_pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1916 	cpu_tlb_flushD_SE(csrcp);
   1917 	cpu_tlb_flushD_SE(cdstp);
   1918 	cpu_cpwait();
   1919 	bcopy_page(csrcp, cdstp);
   1920 	cpu_dcache_wbinv_range(csrcp, NBPG);
   1921 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1922 }
   1923 
   1924 #if 0
   1925 void
   1926 pmap_pte_addref(pmap, va)
   1927 	struct pmap *pmap;
   1928 	vaddr_t va;
   1929 {
   1930 	pd_entry_t *pde;
   1931 	paddr_t pa;
   1932 	struct vm_page *m;
   1933 
   1934 	if (pmap == pmap_kernel())
   1935 		return;
   1936 
   1937 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1938 	pa = pmap_pte_pa(pde);
   1939 	m = PHYS_TO_VM_PAGE(pa);
   1940 	++m->wire_count;
   1941 #ifdef MYCROFT_HACK
   1942 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1943 	    pmap, va, pde, pa, m, m->wire_count);
   1944 #endif
   1945 }
   1946 
   1947 void
   1948 pmap_pte_delref(pmap, va)
   1949 	struct pmap *pmap;
   1950 	vaddr_t va;
   1951 {
   1952 	pd_entry_t *pde;
   1953 	paddr_t pa;
   1954 	struct vm_page *m;
   1955 
   1956 	if (pmap == pmap_kernel())
   1957 		return;
   1958 
   1959 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1960 	pa = pmap_pte_pa(pde);
   1961 	m = PHYS_TO_VM_PAGE(pa);
   1962 	--m->wire_count;
   1963 #ifdef MYCROFT_HACK
   1964 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1965 	    pmap, va, pde, pa, m, m->wire_count);
   1966 #endif
   1967 	if (m->wire_count == 0) {
   1968 #ifdef MYCROFT_HACK
   1969 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1970 		    pmap, va, pde, pa, m);
   1971 #endif
   1972 		pmap_unmap_in_l1(pmap, va);
   1973 		uvm_pagefree(m);
   1974 		--pmap->pm_stats.resident_count;
   1975 	}
   1976 }
   1977 #else
   1978 #define	pmap_pte_addref(pmap, va)
   1979 #define	pmap_pte_delref(pmap, va)
   1980 #endif
   1981 
   1982 /*
   1983  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1984  * there is more than one mapping and at least one of them is writable.
   1985  * Since we purge the cache on every context switch, we only need to check for
   1986  * other mappings within the same pmap, or kernel_pmap.
   1987  * This function is also called when a page is unmapped, to possibly reenable
   1988  * caching on any remaining mappings.
   1989  *
   1990  * The code implements the following logic, where:
   1991  *
   1992  * KW = # of kernel read/write pages
   1993  * KR = # of kernel read only pages
   1994  * UW = # of user read/write pages
   1995  * UR = # of user read only pages
   1996  * OW = # of user read/write pages in another pmap, then
   1997  *
   1998  * KC = kernel mapping is cacheable
   1999  * UC = user mapping is cacheable
   2000  *
   2001  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2002  *                   +---------------------------------------------
   2003  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2004  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2005  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2006  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2007  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2008  *
   2009  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2010  */
   2011 __inline static void
   2012 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2013 	boolean_t clear_cache)
   2014 {
   2015 	if (pmap == pmap_kernel())
   2016 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2017 	else
   2018 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2019 }
   2020 
   2021 static void
   2022 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2023 	boolean_t clear_cache)
   2024 {
   2025 	int user_entries = 0;
   2026 	int user_writable = 0;
   2027 	int user_cacheable = 0;
   2028 	int kernel_entries = 0;
   2029 	int kernel_writable = 0;
   2030 	int kernel_cacheable = 0;
   2031 	struct pv_entry *pv;
   2032 	struct pmap *last_pmap = pmap;
   2033 
   2034 #ifdef DIAGNOSTIC
   2035 	if (pmap != pmap_kernel())
   2036 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2037 #endif
   2038 
   2039 	/*
   2040 	 * Pass one, see if there are both kernel and user pmaps for
   2041 	 * this page.  Calculate whether there are user-writable or
   2042 	 * kernel-writable pages.
   2043 	 */
   2044 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2045 		if (pv->pv_pmap != pmap) {
   2046 			user_entries++;
   2047 			if (pv->pv_flags & PT_Wr)
   2048 				user_writable++;
   2049 			if ((pv->pv_flags & PT_NC) == 0)
   2050 				user_cacheable++;
   2051 		} else {
   2052 			kernel_entries++;
   2053 			if (pv->pv_flags & PT_Wr)
   2054 				kernel_writable++;
   2055 			if ((pv->pv_flags & PT_NC) == 0)
   2056 				kernel_cacheable++;
   2057 		}
   2058 	}
   2059 
   2060 	/*
   2061 	 * We know we have just been updating a kernel entry, so if
   2062 	 * all user pages are already cacheable, then there is nothing
   2063 	 * further to do.
   2064 	 */
   2065 	if (kernel_entries == 0 &&
   2066 	    user_cacheable == user_entries)
   2067 		return;
   2068 
   2069 	if (user_entries) {
   2070 		/*
   2071 		 * Scan over the list again, for each entry, if it
   2072 		 * might not be set correctly, call pmap_vac_me_user
   2073 		 * to recalculate the settings.
   2074 		 */
   2075 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2076 			/*
   2077 			 * We know kernel mappings will get set
   2078 			 * correctly in other calls.  We also know
   2079 			 * that if the pmap is the same as last_pmap
   2080 			 * then we've just handled this entry.
   2081 			 */
   2082 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2083 				continue;
   2084 			/*
   2085 			 * If there are kernel entries and this page
   2086 			 * is writable but non-cacheable, then we can
   2087 			 * skip this entry also.
   2088 			 */
   2089 			if (kernel_entries > 0 &&
   2090 			    (pv->pv_flags & (PT_NC | PT_Wr)) ==
   2091 			    (PT_NC | PT_Wr))
   2092 				continue;
   2093 			/*
   2094 			 * Similarly if there are no kernel-writable
   2095 			 * entries and the page is already
   2096 			 * read-only/cacheable.
   2097 			 */
   2098 			if (kernel_writable == 0 &&
   2099 			    (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
   2100 				continue;
   2101 			/*
   2102 			 * For some of the remaining cases, we know
   2103 			 * that we must recalculate, but for others we
   2104 			 * can't tell if they are correct or not, so
   2105 			 * we recalculate anyway.
   2106 			 */
   2107 			pmap_unmap_ptes(last_pmap);
   2108 			last_pmap = pv->pv_pmap;
   2109 			ptes = pmap_map_ptes(last_pmap);
   2110 			pmap_vac_me_user(last_pmap, pg, ptes,
   2111 			    pmap_is_curpmap(last_pmap));
   2112 		}
   2113 		/* Restore the pte mapping that was passed to us.  */
   2114 		if (last_pmap != pmap) {
   2115 			pmap_unmap_ptes(last_pmap);
   2116 			ptes = pmap_map_ptes(pmap);
   2117 		}
   2118 		if (kernel_entries == 0)
   2119 			return;
   2120 	}
   2121 
   2122 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2123 	return;
   2124 }
   2125 
   2126 static void
   2127 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2128 	boolean_t clear_cache)
   2129 {
   2130 	struct pmap *kpmap = pmap_kernel();
   2131 	struct pv_entry *pv, *npv;
   2132 	int entries = 0;
   2133 	int writable = 0;
   2134 	int cacheable_entries = 0;
   2135 	int kern_cacheable = 0;
   2136 	int other_writable = 0;
   2137 
   2138 	pv = pg->mdpage.pvh_list;
   2139 	KASSERT(ptes != NULL);
   2140 
   2141 	/*
   2142 	 * Count mappings and writable mappings in this pmap.
   2143 	 * Include kernel mappings as part of our own.
   2144 	 * Keep a pointer to the first one.
   2145 	 */
   2146 	for (npv = pv; npv; npv = npv->pv_next) {
   2147 		/* Count mappings in the same pmap */
   2148 		if (pmap == npv->pv_pmap ||
   2149 		    kpmap == npv->pv_pmap) {
   2150 			if (entries++ == 0)
   2151 				pv = npv;
   2152 			/* Cacheable mappings */
   2153 			if ((npv->pv_flags & PT_NC) == 0) {
   2154 				cacheable_entries++;
   2155 				if (kpmap == npv->pv_pmap)
   2156 					kern_cacheable++;
   2157 			}
   2158 			/* Writable mappings */
   2159 			if (npv->pv_flags & PT_Wr)
   2160 				++writable;
   2161 		} else if (npv->pv_flags & PT_Wr)
   2162 			other_writable = 1;
   2163 	}
   2164 
   2165 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2166 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2167 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2168 
   2169 	/*
   2170 	 * Enable or disable caching as necessary.
   2171 	 * Note: the first entry might be part of the kernel pmap,
   2172 	 * so we can't assume this is indicative of the state of the
   2173 	 * other (maybe non-kpmap) entries.
   2174 	 */
   2175 	if ((entries > 1 && writable) ||
   2176 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2177 		if (cacheable_entries == 0)
   2178 		    return;
   2179 		for (npv = pv; npv; npv = npv->pv_next) {
   2180 			if ((pmap == npv->pv_pmap
   2181 			    || kpmap == npv->pv_pmap) &&
   2182 			    (npv->pv_flags & PT_NC) == 0) {
   2183 				ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
   2184  				npv->pv_flags |= PT_NC;
   2185 				/*
   2186 				 * If this page needs flushing from the
   2187 				 * cache, and we aren't going to do it
   2188 				 * below, do it now.
   2189 				 */
   2190 				if ((cacheable_entries < 4 &&
   2191 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2192 				    (npv->pv_pmap == kpmap &&
   2193 				    !clear_cache && kern_cacheable < 4)) {
   2194 					cpu_idcache_wbinv_range(npv->pv_va,
   2195 					    NBPG);
   2196 					cpu_tlb_flushID_SE(npv->pv_va);
   2197 				}
   2198 			}
   2199 		}
   2200 		if ((clear_cache && cacheable_entries >= 4) ||
   2201 		    kern_cacheable >= 4) {
   2202 			cpu_idcache_wbinv_all();
   2203 			cpu_tlb_flushID();
   2204 		}
   2205 		cpu_cpwait();
   2206 	} else if (entries > 0) {
   2207 		/*
   2208 		 * Turn cacheing back on for some pages.  If it is a kernel
   2209 		 * page, only do so if there are no other writable pages.
   2210 		 */
   2211 		for (npv = pv; npv; npv = npv->pv_next) {
   2212 			if ((pmap == npv->pv_pmap ||
   2213 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2214 			    (npv->pv_flags & PT_NC)) {
   2215 				ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
   2216 				npv->pv_flags &= ~PT_NC;
   2217 			}
   2218 		}
   2219 	}
   2220 }
   2221 
   2222 /*
   2223  * pmap_remove()
   2224  *
   2225  * pmap_remove is responsible for nuking a number of mappings for a range
   2226  * of virtual address space in the current pmap. To do this efficiently
   2227  * is interesting, because in a number of cases a wide virtual address
   2228  * range may be supplied that contains few actual mappings. So, the
   2229  * optimisations are:
   2230  *  1. Try and skip over hunks of address space for which an L1 entry
   2231  *     does not exist.
   2232  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2233  *     maybe do just a partial cache clean. This path of execution is
   2234  *     complicated by the fact that the cache must be flushed _before_
   2235  *     the PTE is nuked, being a VAC :-)
   2236  *  3. Maybe later fast-case a single page, but I don't think this is
   2237  *     going to make _that_ much difference overall.
   2238  */
   2239 
   2240 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2241 
   2242 void
   2243 pmap_remove(pmap, sva, eva)
   2244 	struct pmap *pmap;
   2245 	vaddr_t sva;
   2246 	vaddr_t eva;
   2247 {
   2248 	int cleanlist_idx = 0;
   2249 	struct pagelist {
   2250 		vaddr_t va;
   2251 		pt_entry_t *pte;
   2252 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2253 	pt_entry_t *pte = 0, *ptes;
   2254 	paddr_t pa;
   2255 	int pmap_active;
   2256 	struct vm_page *pg;
   2257 
   2258 	/* Exit quick if there is no pmap */
   2259 	if (!pmap)
   2260 		return;
   2261 
   2262 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2263 
   2264 	sva &= PG_FRAME;
   2265 	eva &= PG_FRAME;
   2266 
   2267 	/*
   2268 	 * we lock in the pmap => vm_page direction
   2269 	 */
   2270 	PMAP_MAP_TO_HEAD_LOCK();
   2271 
   2272 	ptes = pmap_map_ptes(pmap);
   2273 	/* Get a page table pointer */
   2274 	while (sva < eva) {
   2275 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2276 			break;
   2277 		sva = (sva & PD_MASK) + NBPD;
   2278 	}
   2279 
   2280 	pte = &ptes[arm_btop(sva)];
   2281 	/* Note if the pmap is active thus require cache and tlb cleans */
   2282 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2283 	    || (pmap == pmap_kernel()))
   2284 		pmap_active = 1;
   2285 	else
   2286 		pmap_active = 0;
   2287 
   2288 	/* Now loop along */
   2289 	while (sva < eva) {
   2290 		/* Check if we can move to the next PDE (l1 chunk) */
   2291 		if (!(sva & PT_MASK))
   2292 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2293 				sva += NBPD;
   2294 				pte += arm_btop(NBPD);
   2295 				continue;
   2296 			}
   2297 
   2298 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2299 		if (pmap_pte_v(pte)) {
   2300 			/* Update statistics */
   2301 			--pmap->pm_stats.resident_count;
   2302 
   2303 			/*
   2304 			 * Add this page to our cache remove list, if we can.
   2305 			 * If, however the cache remove list is totally full,
   2306 			 * then do a complete cache invalidation taking note
   2307 			 * to backtrack the PTE table beforehand, and ignore
   2308 			 * the lists in future because there's no longer any
   2309 			 * point in bothering with them (we've paid the
   2310 			 * penalty, so will carry on unhindered). Otherwise,
   2311 			 * when we fall out, we just clean the list.
   2312 			 */
   2313 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2314 			pa = pmap_pte_pa(pte);
   2315 
   2316 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2317 				/* Add to the clean list. */
   2318 				cleanlist[cleanlist_idx].pte = pte;
   2319 				cleanlist[cleanlist_idx].va = sva;
   2320 				cleanlist_idx++;
   2321 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2322 				int cnt;
   2323 
   2324 				/* Nuke everything if needed. */
   2325 				if (pmap_active) {
   2326 					cpu_idcache_wbinv_all();
   2327 					cpu_tlb_flushID();
   2328 				}
   2329 
   2330 				/*
   2331 				 * Roll back the previous PTE list,
   2332 				 * and zero out the current PTE.
   2333 				 */
   2334 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2335 					*cleanlist[cnt].pte = 0;
   2336 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2337 				}
   2338 				*pte = 0;
   2339 				pmap_pte_delref(pmap, sva);
   2340 				cleanlist_idx++;
   2341 			} else {
   2342 				/*
   2343 				 * We've already nuked the cache and
   2344 				 * TLB, so just carry on regardless,
   2345 				 * and we won't need to do it again
   2346 				 */
   2347 				*pte = 0;
   2348 				pmap_pte_delref(pmap, sva);
   2349 			}
   2350 
   2351 			/*
   2352 			 * Update flags. In a number of circumstances,
   2353 			 * we could cluster a lot of these and do a
   2354 			 * number of sequential pages in one go.
   2355 			 */
   2356 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2357 				struct pv_entry *pve;
   2358 				simple_lock(&pg->mdpage.pvh_slock);
   2359 				pve = pmap_remove_pv(pg, pmap, sva);
   2360 				pmap_free_pv(pmap, pve);
   2361 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2362 				simple_unlock(&pg->mdpage.pvh_slock);
   2363 			}
   2364 		}
   2365 		sva += NBPG;
   2366 		pte++;
   2367 	}
   2368 
   2369 	pmap_unmap_ptes(pmap);
   2370 	/*
   2371 	 * Now, if we've fallen through down to here, chances are that there
   2372 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2373 	 */
   2374 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2375 		u_int cnt;
   2376 
   2377 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2378 			if (pmap_active) {
   2379 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2380 				    NBPG);
   2381 				*cleanlist[cnt].pte = 0;
   2382 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2383 			} else
   2384 				*cleanlist[cnt].pte = 0;
   2385 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2386 		}
   2387 	}
   2388 	PMAP_MAP_TO_HEAD_UNLOCK();
   2389 }
   2390 
   2391 /*
   2392  * Routine:	pmap_remove_all
   2393  * Function:
   2394  *		Removes this physical page from
   2395  *		all physical maps in which it resides.
   2396  *		Reflects back modify bits to the pager.
   2397  */
   2398 
   2399 static void
   2400 pmap_remove_all(pg)
   2401 	struct vm_page *pg;
   2402 {
   2403 	struct pv_entry *pv, *npv;
   2404 	struct pmap *pmap;
   2405 	pt_entry_t *pte, *ptes;
   2406 
   2407 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2408 
   2409 	/* set vm_page => pmap locking */
   2410 	PMAP_HEAD_TO_MAP_LOCK();
   2411 
   2412 	simple_lock(&pg->mdpage.pvh_slock);
   2413 
   2414 	pv = pg->mdpage.pvh_list;
   2415 	if (pv == NULL) {
   2416 		PDEBUG(0, printf("free page\n"));
   2417 		simple_unlock(&pg->mdpage.pvh_slock);
   2418 		PMAP_HEAD_TO_MAP_UNLOCK();
   2419 		return;
   2420 	}
   2421 	pmap_clean_page(pv, FALSE);
   2422 
   2423 	while (pv) {
   2424 		pmap = pv->pv_pmap;
   2425 		ptes = pmap_map_ptes(pmap);
   2426 		pte = &ptes[arm_btop(pv->pv_va)];
   2427 
   2428 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2429 		    pv->pv_va, pv->pv_flags));
   2430 #ifdef DEBUG
   2431 		if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
   2432 		    !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   2433 			panic("pmap_remove_all: bad mapping");
   2434 #endif	/* DEBUG */
   2435 
   2436 		/*
   2437 		 * Update statistics
   2438 		 */
   2439 		--pmap->pm_stats.resident_count;
   2440 
   2441 		/* Wired bit */
   2442 		if (pv->pv_flags & PT_W)
   2443 			--pmap->pm_stats.wired_count;
   2444 
   2445 		/*
   2446 		 * Invalidate the PTEs.
   2447 		 * XXX: should cluster them up and invalidate as many
   2448 		 * as possible at once.
   2449 		 */
   2450 
   2451 #ifdef needednotdone
   2452 reduce wiring count on page table pages as references drop
   2453 #endif
   2454 
   2455 		*pte = 0;
   2456 		pmap_pte_delref(pmap, pv->pv_va);
   2457 
   2458 		npv = pv->pv_next;
   2459 		pmap_free_pv(pmap, pv);
   2460 		pv = npv;
   2461 		pmap_unmap_ptes(pmap);
   2462 	}
   2463 	pg->mdpage.pvh_list = NULL;
   2464 	simple_unlock(&pg->mdpage.pvh_slock);
   2465 	PMAP_HEAD_TO_MAP_UNLOCK();
   2466 
   2467 	PDEBUG(0, printf("done\n"));
   2468 	cpu_tlb_flushID();
   2469 	cpu_cpwait();
   2470 }
   2471 
   2472 
   2473 /*
   2474  * Set the physical protection on the specified range of this map as requested.
   2475  */
   2476 
   2477 void
   2478 pmap_protect(pmap, sva, eva, prot)
   2479 	struct pmap *pmap;
   2480 	vaddr_t sva;
   2481 	vaddr_t eva;
   2482 	vm_prot_t prot;
   2483 {
   2484 	pt_entry_t *pte = NULL, *ptes;
   2485 	struct vm_page *pg;
   2486 	int armprot;
   2487 	int flush = 0;
   2488 	paddr_t pa;
   2489 
   2490 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2491 	    pmap, sva, eva, prot));
   2492 
   2493 	if (~prot & VM_PROT_READ) {
   2494 		/* Just remove the mappings. */
   2495 		pmap_remove(pmap, sva, eva);
   2496 		/* pmap_update not needed as it should be called by the caller
   2497 		 * of pmap_protect */
   2498 		return;
   2499 	}
   2500 	if (prot & VM_PROT_WRITE) {
   2501 		/*
   2502 		 * If this is a read->write transition, just ignore it and let
   2503 		 * uvm_fault() take care of it later.
   2504 		 */
   2505 		return;
   2506 	}
   2507 
   2508 	sva &= PG_FRAME;
   2509 	eva &= PG_FRAME;
   2510 
   2511 	/* Need to lock map->head */
   2512 	PMAP_MAP_TO_HEAD_LOCK();
   2513 
   2514 	ptes = pmap_map_ptes(pmap);
   2515 	/*
   2516 	 * We need to acquire a pointer to a page table page before entering
   2517 	 * the following loop.
   2518 	 */
   2519 	while (sva < eva) {
   2520 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2521 			break;
   2522 		sva = (sva & PD_MASK) + NBPD;
   2523 	}
   2524 
   2525 	pte = &ptes[arm_btop(sva)];
   2526 
   2527 	while (sva < eva) {
   2528 		/* only check once in a while */
   2529 		if ((sva & PT_MASK) == 0) {
   2530 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2531 				/* We can race ahead here, to the next pde. */
   2532 				sva += NBPD;
   2533 				pte += arm_btop(NBPD);
   2534 				continue;
   2535 			}
   2536 		}
   2537 
   2538 		if (!pmap_pte_v(pte))
   2539 			goto next;
   2540 
   2541 		flush = 1;
   2542 
   2543 		armprot = 0;
   2544 		if (sva < VM_MAXUSER_ADDRESS)
   2545 			armprot |= PT_AP(AP_U);
   2546 		else if (sva < VM_MAX_ADDRESS)
   2547 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2548 		*pte = (*pte & 0xfffff00f) | armprot;
   2549 
   2550 		pa = pmap_pte_pa(pte);
   2551 
   2552 		/* Get the physical page index */
   2553 
   2554 		/* Clear write flag */
   2555 		if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2556 			simple_lock(&pg->mdpage.pvh_slock);
   2557 			(void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
   2558 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2559 			simple_unlock(&pg->mdpage.pvh_slock);
   2560 		}
   2561 
   2562 next:
   2563 		sva += NBPG;
   2564 		pte++;
   2565 	}
   2566 	pmap_unmap_ptes(pmap);
   2567 	PMAP_MAP_TO_HEAD_UNLOCK();
   2568 	if (flush)
   2569 		cpu_tlb_flushID();
   2570 }
   2571 
   2572 /*
   2573  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2574  * int flags)
   2575  *
   2576  *      Insert the given physical page (p) at
   2577  *      the specified virtual address (v) in the
   2578  *      target physical map with the protection requested.
   2579  *
   2580  *      If specified, the page will be wired down, meaning
   2581  *      that the related pte can not be reclaimed.
   2582  *
   2583  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2584  *      or lose information.  That is, this routine must actually
   2585  *      insert this page into the given map NOW.
   2586  */
   2587 
   2588 int
   2589 pmap_enter(pmap, va, pa, prot, flags)
   2590 	struct pmap *pmap;
   2591 	vaddr_t va;
   2592 	paddr_t pa;
   2593 	vm_prot_t prot;
   2594 	int flags;
   2595 {
   2596 	pt_entry_t *pte, *ptes;
   2597 	u_int npte;
   2598 	paddr_t opa;
   2599 	int nflags;
   2600 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2601 	struct vm_page *pg;
   2602 	struct pv_entry *pve;
   2603 	int error;
   2604 
   2605 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2606 	    va, pa, pmap, prot, wired));
   2607 
   2608 #ifdef DIAGNOSTIC
   2609 	/* Valid address ? */
   2610 	if (va >= (pmap_curmaxkvaddr))
   2611 		panic("pmap_enter: too big");
   2612 	if (pmap != pmap_kernel() && va != 0) {
   2613 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2614 			panic("pmap_enter: kernel page in user map");
   2615 	} else {
   2616 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2617 			panic("pmap_enter: user page in kernel map");
   2618 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2619 			panic("pmap_enter: entering PT page");
   2620 	}
   2621 #endif
   2622 	/*
   2623 	 * Get a pointer to the page.  Later on in this function, we
   2624 	 * test for a managed page by checking pg != NULL.
   2625 	 */
   2626 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2627 
   2628 	/* get lock */
   2629 	PMAP_MAP_TO_HEAD_LOCK();
   2630 	/*
   2631 	 * Get a pointer to the pte for this virtual address. If the
   2632 	 * pte pointer is NULL then we are missing the L2 page table
   2633 	 * so we need to create one.
   2634 	 */
   2635 	/* XXX horrible hack to get us working with lockdebug */
   2636 	simple_lock(&pmap->pm_obj.vmobjlock);
   2637 	pte = pmap_pte(pmap, va);
   2638 	if (!pte) {
   2639 		struct vm_page *ptp;
   2640 		KASSERT(pmap != pmap_kernel()); /* kernel should have pre-grown */
   2641 
   2642 		/* if failure is allowed then don't try too hard */
   2643 		ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
   2644 		if (ptp == NULL) {
   2645 			if (flags & PMAP_CANFAIL) {
   2646 				error = ENOMEM;
   2647 				goto out;
   2648 			}
   2649 			panic("pmap_enter: get ptp failed");
   2650 		}
   2651 
   2652 		pte = pmap_pte(pmap, va);
   2653 #ifdef DIAGNOSTIC
   2654 		if (!pte)
   2655 			panic("pmap_enter: no pte");
   2656 #endif
   2657 	}
   2658 
   2659 	nflags = 0;
   2660 	if (prot & VM_PROT_WRITE)
   2661 		nflags |= PT_Wr;
   2662 	if (wired)
   2663 		nflags |= PT_W;
   2664 
   2665 	/* More debugging info */
   2666 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2667 	    *pte));
   2668 
   2669 	/* Is the pte valid ? If so then this page is already mapped */
   2670 	if (pmap_pte_v(pte)) {
   2671 		/* Get the physical address of the current page mapped */
   2672 		opa = pmap_pte_pa(pte);
   2673 
   2674 #ifdef MYCROFT_HACK
   2675 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2676 #endif
   2677 
   2678 		/* Are we mapping the same page ? */
   2679 		if (opa == pa) {
   2680 			/* All we must be doing is changing the protection */
   2681 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2682 			    va, pa));
   2683 
   2684 			/* Has the wiring changed ? */
   2685 			if (pg != NULL) {
   2686 				simple_lock(&pg->mdpage.pvh_slock);
   2687 				(void) pmap_modify_pv(pmap, va, pg,
   2688 				    PT_Wr | PT_W, nflags);
   2689 				simple_unlock(&pg->mdpage.pvh_slock);
   2690  			}
   2691 		} else {
   2692 			struct vm_page *opg;
   2693 
   2694 			/* We are replacing the page with a new one. */
   2695 			cpu_idcache_wbinv_range(va, NBPG);
   2696 
   2697 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2698 			    va, pa, opa));
   2699 
   2700 			/*
   2701 			 * If it is part of our managed memory then we
   2702 			 * must remove it from the PV list
   2703 			 */
   2704 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2705 				simple_lock(&opg->mdpage.pvh_slock);
   2706 				pve = pmap_remove_pv(opg, pmap, va);
   2707 				simple_unlock(&opg->mdpage.pvh_slock);
   2708 			} else {
   2709 				pve = NULL;
   2710 			}
   2711 
   2712 			goto enter;
   2713 		}
   2714 	} else {
   2715 		opa = 0;
   2716 		pve = NULL;
   2717 		pmap_pte_addref(pmap, va);
   2718 
   2719 		/* pte is not valid so we must be hooking in a new page */
   2720 		++pmap->pm_stats.resident_count;
   2721 
   2722 	enter:
   2723 		/*
   2724 		 * Enter on the PV list if part of our managed memory
   2725 		 */
   2726 		if (pg != NULL) {
   2727 			if (pve == NULL) {
   2728 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2729 				if (pve == NULL) {
   2730 					if (flags & PMAP_CANFAIL) {
   2731 						error = ENOMEM;
   2732 						goto out;
   2733 					}
   2734 					panic("pmap_enter: no pv entries available");
   2735 				}
   2736 			}
   2737 			/* enter_pv locks pvh when adding */
   2738 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2739 		} else {
   2740 			pg = NULL;
   2741 			if (pve != NULL)
   2742 				pmap_free_pv(pmap, pve);
   2743 		}
   2744 	}
   2745 
   2746 #ifdef MYCROFT_HACK
   2747 	if (mycroft_hack)
   2748 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2749 #endif
   2750 
   2751 	/* Construct the pte, giving the correct access. */
   2752 	npte = (pa & PG_FRAME);
   2753 
   2754 	/* VA 0 is magic. */
   2755 	if (pmap != pmap_kernel() && va != 0)
   2756 		npte |= PT_AP(AP_U);
   2757 
   2758 	if (pg != NULL) {
   2759 #ifdef DIAGNOSTIC
   2760 		if ((flags & VM_PROT_ALL) & ~prot)
   2761 			panic("pmap_enter: access_type exceeds prot");
   2762 #endif
   2763 		npte |= pte_cache_mode;
   2764 		if (flags & VM_PROT_WRITE) {
   2765 			npte |= L2_SPAGE | PT_AP(AP_W);
   2766 			pg->mdpage.pvh_attrs |= PT_H | PT_M;
   2767 		} else if (flags & VM_PROT_ALL) {
   2768 			npte |= L2_SPAGE;
   2769 			pg->mdpage.pvh_attrs |= PT_H;
   2770 		} else
   2771 			npte |= L2_INVAL;
   2772 	} else {
   2773 		if (prot & VM_PROT_WRITE)
   2774 			npte |= L2_SPAGE | PT_AP(AP_W);
   2775 		else if (prot & VM_PROT_ALL)
   2776 			npte |= L2_SPAGE;
   2777 		else
   2778 			npte |= L2_INVAL;
   2779 	}
   2780 
   2781 #ifdef MYCROFT_HACK
   2782 	if (mycroft_hack)
   2783 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2784 #endif
   2785 
   2786 	*pte = npte;
   2787 
   2788 	if (pg != NULL) {
   2789 		boolean_t pmap_active = FALSE;
   2790 		/* XXX this will change once the whole of pmap_enter uses
   2791 		 * map_ptes
   2792 		 */
   2793 		ptes = pmap_map_ptes(pmap);
   2794 		if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2795 		    || (pmap == pmap_kernel()))
   2796 			pmap_active = TRUE;
   2797 		simple_lock(&pg->mdpage.pvh_slock);
   2798  		pmap_vac_me_harder(pmap, pg, ptes, pmap_active);
   2799 		simple_unlock(&pg->mdpage.pvh_slock);
   2800 		pmap_unmap_ptes(pmap);
   2801 	}
   2802 
   2803 	/* Better flush the TLB ... */
   2804 	cpu_tlb_flushID_SE(va);
   2805 	error = 0;
   2806 out:
   2807 	simple_unlock(&pmap->pm_obj.vmobjlock);
   2808 	PMAP_MAP_TO_HEAD_UNLOCK();
   2809 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2810 
   2811 	return error;
   2812 }
   2813 
   2814 /*
   2815  * pmap_kenter_pa: enter a kernel mapping
   2816  *
   2817  * => no need to lock anything assume va is already allocated
   2818  * => should be faster than normal pmap enter function
   2819  */
   2820 void
   2821 pmap_kenter_pa(va, pa, prot)
   2822 	vaddr_t va;
   2823 	paddr_t pa;
   2824 	vm_prot_t prot;
   2825 {
   2826 	pt_entry_t *pte;
   2827 
   2828 	pte = vtopte(va);
   2829 	KASSERT(!pmap_pte_v(pte));
   2830 	*pte = L2_PTE(pa, AP_KRW);
   2831 }
   2832 
   2833 void
   2834 pmap_kremove(va, len)
   2835 	vaddr_t va;
   2836 	vsize_t len;
   2837 {
   2838 	pt_entry_t *pte;
   2839 
   2840 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2841 
   2842 		/*
   2843 		 * We assume that we will only be called with small
   2844 		 * regions of memory.
   2845 		 */
   2846 
   2847 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2848 		pte = vtopte(va);
   2849 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2850 		*pte = 0;
   2851 		cpu_tlb_flushID_SE(va);
   2852 	}
   2853 }
   2854 
   2855 /*
   2856  * pmap_page_protect:
   2857  *
   2858  * Lower the permission for all mappings to a given page.
   2859  */
   2860 
   2861 void
   2862 pmap_page_protect(pg, prot)
   2863 	struct vm_page *pg;
   2864 	vm_prot_t prot;
   2865 {
   2866 
   2867 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2868 	    VM_PAGE_TO_PHYS(pg), prot));
   2869 
   2870 	switch(prot) {
   2871 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2872 	case VM_PROT_READ|VM_PROT_WRITE:
   2873 		return;
   2874 
   2875 	case VM_PROT_READ:
   2876 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2877 		pmap_copy_on_write(pg);
   2878 		break;
   2879 
   2880 	default:
   2881 		pmap_remove_all(pg);
   2882 		break;
   2883 	}
   2884 }
   2885 
   2886 
   2887 /*
   2888  * Routine:	pmap_unwire
   2889  * Function:	Clear the wired attribute for a map/virtual-address
   2890  *		pair.
   2891  * In/out conditions:
   2892  *		The mapping must already exist in the pmap.
   2893  */
   2894 
   2895 void
   2896 pmap_unwire(pmap, va)
   2897 	struct pmap *pmap;
   2898 	vaddr_t va;
   2899 {
   2900 	pt_entry_t *pte;
   2901 	paddr_t pa;
   2902 	struct vm_page *pg;
   2903 
   2904 	/*
   2905 	 * Make sure pmap is valid. -dct
   2906 	 */
   2907 	if (pmap == NULL)
   2908 		return;
   2909 
   2910 	/* Get the pte */
   2911 	pte = pmap_pte(pmap, va);
   2912 	if (!pte)
   2913 		return;
   2914 
   2915 	/* Extract the physical address of the page */
   2916 	pa = pmap_pte_pa(pte);
   2917 
   2918 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2919 		return;
   2920 
   2921 	simple_lock(&pg->mdpage.pvh_slock);
   2922 	/* Update the wired bit in the pv entry for this page. */
   2923 	(void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
   2924 	simple_unlock(&pg->mdpage.pvh_slock);
   2925 }
   2926 
   2927 /*
   2928  * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
   2929  *
   2930  * Return the pointer to a page table entry corresponding to the supplied
   2931  * virtual address.
   2932  *
   2933  * The page directory is first checked to make sure that a page table
   2934  * for the address in question exists and if it does a pointer to the
   2935  * entry is returned.
   2936  *
   2937  * The way this works is that that the kernel page tables are mapped
   2938  * into the memory map at APTE_BASE to APTE_BASE+4MB.  This allows
   2939  * page tables to be located quickly.
   2940  */
   2941 pt_entry_t *
   2942 pmap_pte(pmap, va)
   2943 	struct pmap *pmap;
   2944 	vaddr_t va;
   2945 {
   2946 	pt_entry_t *ptp;
   2947 	pt_entry_t *result;
   2948 
   2949 	/* The pmap must be valid */
   2950 	if (!pmap)
   2951 		return(NULL);
   2952 
   2953 	/* Return the address of the pte */
   2954 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   2955 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   2956 
   2957 	/* Do we have a valid pde ? If not we don't have a page table */
   2958 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   2959 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   2960 		    pmap_pde(pmap, va)));
   2961 		return(NULL);
   2962 	}
   2963 
   2964 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   2965 	    pmap->pm_pptpt, (*((pt_entry_t *)(PTE_BASE
   2966 	    + (PTE_BASE >> (PGSHIFT - 2)) +
   2967 	    (PTE_BASE >> PDSHIFT))) & PG_FRAME)));
   2968 
   2969 	/*
   2970 	 * If the pmap is the kernel pmap or the pmap is the active one
   2971 	 * then we can just return a pointer to entry relative to
   2972 	 * PTE_BASE.
   2973 	 * Otherwise we need to map the page tables to an alternative
   2974 	 * address and reference them there.
   2975 	 */
   2976 	if (pmap == pmap_kernel() || pmap->pm_pptpt
   2977 	    == (*((pt_entry_t *)(PTE_BASE
   2978 	    + ((PTE_BASE >> (PGSHIFT - 2)) &
   2979 	    ~3) + (PTE_BASE >> PDSHIFT))) & PG_FRAME)) {
   2980 		ptp = (pt_entry_t *)PTE_BASE;
   2981 	} else {
   2982 		struct proc *p = curproc;
   2983 
   2984 		/* If we don't have a valid curproc use proc0 */
   2985 		/* Perhaps we should just use kernel_pmap instead */
   2986 		if (p == NULL)
   2987 			p = &proc0;
   2988 #ifdef DIAGNOSTIC
   2989 		/*
   2990 		 * The pmap should always be valid for the process so
   2991 		 * panic if it is not.
   2992 		 */
   2993 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   2994 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   2995 			    va, p, p->p_vmspace);
   2996 			console_debugger();
   2997 		}
   2998 		/*
   2999 		 * The pmap for the current process should be mapped. If it
   3000 		 * is not then we have a problem.
   3001 		 */
   3002 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   3003 		    (*((pt_entry_t *)(PTE_BASE
   3004 		    + (PTE_BASE >> (PGSHIFT - 2)) +
   3005 		    (PTE_BASE >> PDSHIFT))) & PG_FRAME)) {
   3006 			printf("pmap pagetable = P%08lx current = P%08x ",
   3007 			    pmap->pm_pptpt, (*((pt_entry_t *)(PTE_BASE
   3008 			    + (PTE_BASE >> (PGSHIFT - 2)) +
   3009 			    (PTE_BASE >> PDSHIFT))) &
   3010 			    PG_FRAME));
   3011 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   3012 			panic("pmap_pte: current and pmap mismatch\n");
   3013 		}
   3014 #endif
   3015 
   3016 		ptp = (pt_entry_t *)APTE_BASE;
   3017 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
   3018 		    pmap->pm_pptpt, FALSE);
   3019 		cpu_tlb_flushD();
   3020 		cpu_cpwait();
   3021 	}
   3022 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   3023 	    ((va >> (PGSHIFT-2)) & ~3)));
   3024 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   3025 	return(result);
   3026 }
   3027 
   3028 /*
   3029  * Routine:  pmap_extract
   3030  * Function:
   3031  *           Extract the physical page address associated
   3032  *           with the given map/virtual_address pair.
   3033  */
   3034 boolean_t
   3035 pmap_extract(pmap, va, pap)
   3036 	struct pmap *pmap;
   3037 	vaddr_t va;
   3038 	paddr_t *pap;
   3039 {
   3040 	pd_entry_t *pde;
   3041 	pt_entry_t *pte, *ptes;
   3042 	paddr_t pa;
   3043 	boolean_t rv = TRUE;
   3044 
   3045 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   3046 
   3047 	/*
   3048 	 * Get the pte for this virtual address.
   3049 	 */
   3050 	pde = pmap_pde(pmap, va);
   3051 	ptes = pmap_map_ptes(pmap);
   3052 	pte = &ptes[arm_btop(va)];
   3053 
   3054 	if (pmap_pde_section(pde)) {
   3055 		pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
   3056 		goto out;
   3057 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   3058 		rv = FALSE;
   3059 		goto out;
   3060 	}
   3061 
   3062 	if ((*pte & L2_MASK) == L2_LPAGE) {
   3063 		/* Extract the physical address from the pte */
   3064 		pa = *pte & ~(L2_LPAGE_SIZE - 1);
   3065 
   3066 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   3067 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   3068 
   3069 		if (pap != NULL)
   3070 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   3071 		goto out;
   3072 	}
   3073 
   3074 	/* Extract the physical address from the pte */
   3075 	pa = pmap_pte_pa(pte);
   3076 
   3077 	PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   3078 	    (pa | (va & ~PG_FRAME))));
   3079 
   3080 	if (pap != NULL)
   3081 		*pap = pa | (va & ~PG_FRAME);
   3082  out:
   3083 	pmap_unmap_ptes(pmap);
   3084 	return (rv);
   3085 }
   3086 
   3087 
   3088 /*
   3089  * Copy the range specified by src_addr/len from the source map to the
   3090  * range dst_addr/len in the destination map.
   3091  *
   3092  * This routine is only advisory and need not do anything.
   3093  */
   3094 
   3095 void
   3096 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   3097 	struct pmap *dst_pmap;
   3098 	struct pmap *src_pmap;
   3099 	vaddr_t dst_addr;
   3100 	vsize_t len;
   3101 	vaddr_t src_addr;
   3102 {
   3103 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   3104 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   3105 }
   3106 
   3107 #if defined(PMAP_DEBUG)
   3108 void
   3109 pmap_dump_pvlist(phys, m)
   3110 	vaddr_t phys;
   3111 	char *m;
   3112 {
   3113 	struct vm_page *pg;
   3114 	struct pv_entry *pv;
   3115 
   3116 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   3117 		printf("INVALID PA\n");
   3118 		return;
   3119 	}
   3120 	simple_lock(&pg->mdpage.pvh_slock);
   3121 	printf("%s %08lx:", m, phys);
   3122 	if (pg->mdpage.pvh_list == NULL) {
   3123 		printf(" no mappings\n");
   3124 		return;
   3125 	}
   3126 
   3127 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3128 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3129 		    pv->pv_va, pv->pv_flags);
   3130 
   3131 	printf("\n");
   3132 	simple_unlock(&pg->mdpage.pvh_slock);
   3133 }
   3134 
   3135 #endif	/* PMAP_DEBUG */
   3136 
   3137 static pt_entry_t *
   3138 pmap_map_ptes(struct pmap *pmap)
   3139 {
   3140     	struct proc *p;
   3141 
   3142     	/* the kernel's pmap is always accessible */
   3143 	if (pmap == pmap_kernel()) {
   3144 		return (pt_entry_t *)PTE_BASE ;
   3145 	}
   3146 
   3147 	if (pmap_is_curpmap(pmap)) {
   3148 		simple_lock(&pmap->pm_obj.vmobjlock);
   3149 		return (pt_entry_t *)PTE_BASE;
   3150 	}
   3151 
   3152 	p = curproc;
   3153 
   3154 	if (p == NULL)
   3155 		p = &proc0;
   3156 
   3157 	/* need to lock both curpmap and pmap: use ordered locking */
   3158 	if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
   3159 		simple_lock(&pmap->pm_obj.vmobjlock);
   3160 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3161 	} else {
   3162 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3163 		simple_lock(&pmap->pm_obj.vmobjlock);
   3164 	}
   3165 
   3166 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
   3167 			pmap->pm_pptpt, FALSE);
   3168 	cpu_tlb_flushD();
   3169 	cpu_cpwait();
   3170 	return (pt_entry_t *)APTE_BASE;
   3171 }
   3172 
   3173 /*
   3174  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3175  */
   3176 
   3177 static void
   3178 pmap_unmap_ptes(pmap)
   3179 	struct pmap *pmap;
   3180 {
   3181 	if (pmap == pmap_kernel()) {
   3182 		return;
   3183 	}
   3184 	if (pmap_is_curpmap(pmap)) {
   3185 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3186 	} else {
   3187 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3188 		simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3189 	}
   3190 }
   3191 
   3192 /*
   3193  * Modify pte bits for all ptes corresponding to the given physical address.
   3194  * We use `maskbits' rather than `clearbits' because we're always passing
   3195  * constants and the latter would require an extra inversion at run-time.
   3196  */
   3197 
   3198 static void
   3199 pmap_clearbit(pg, maskbits)
   3200 	struct vm_page *pg;
   3201 	unsigned int maskbits;
   3202 {
   3203 	struct pv_entry *pv;
   3204 	pt_entry_t *pte;
   3205 	vaddr_t va;
   3206 	int tlbentry;
   3207 
   3208 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3209 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3210 
   3211 	tlbentry = 0;
   3212 
   3213 	PMAP_HEAD_TO_MAP_LOCK();
   3214 	simple_lock(&pg->mdpage.pvh_slock);
   3215 
   3216 	/*
   3217 	 * Clear saved attributes (modify, reference)
   3218 	 */
   3219 	pg->mdpage.pvh_attrs &= ~maskbits;
   3220 
   3221 	if (pg->mdpage.pvh_list == NULL) {
   3222 		simple_unlock(&pg->mdpage.pvh_slock);
   3223 		PMAP_HEAD_TO_MAP_UNLOCK();
   3224 		return;
   3225 	}
   3226 
   3227 	/*
   3228 	 * Loop over all current mappings setting/clearing as appropos
   3229 	 */
   3230 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3231 		va = pv->pv_va;
   3232 		pv->pv_flags &= ~maskbits;
   3233 		pte = pmap_pte(pv->pv_pmap, va);
   3234 		KASSERT(pte != NULL);
   3235 		if (maskbits & (PT_Wr|PT_M)) {
   3236 			if ((pv->pv_flags & PT_NC)) {
   3237 				/*
   3238 				 * Entry is not cacheable: reenable
   3239 				 * the cache, nothing to flush
   3240 				 *
   3241 				 * Don't turn caching on again if this
   3242 				 * is a modified emulation.  This
   3243 				 * would be inconsitent with the
   3244 				 * settings created by
   3245 				 * pmap_vac_me_harder().
   3246 				 *
   3247 				 * There's no need to call
   3248 				 * pmap_vac_me_harder() here: all
   3249 				 * pages are loosing their write
   3250 				 * permission.
   3251 				 *
   3252 				 */
   3253 				if (maskbits & PT_Wr) {
   3254 					*pte |= pte_cache_mode;
   3255 					pv->pv_flags &= ~PT_NC;
   3256 				}
   3257 			} else if (pmap_is_curpmap(pv->pv_pmap))
   3258 				/*
   3259 				 * Entry is cacheable: check if pmap is
   3260 				 * current if it is flush it,
   3261 				 * otherwise it won't be in the cache
   3262 				 */
   3263 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3264 
   3265 			/* make the pte read only */
   3266 			*pte &= ~PT_AP(AP_W);
   3267 		}
   3268 
   3269 		if (maskbits & PT_H)
   3270 			*pte = (*pte & ~L2_MASK) | L2_INVAL;
   3271 
   3272 		if (pmap_is_curpmap(pv->pv_pmap))
   3273 			/*
   3274 			 * if we had cacheable pte's we'd clean the
   3275 			 * pte out to memory here
   3276 			 *
   3277 			 * flush tlb entry as it's in the current pmap
   3278 			 */
   3279 			cpu_tlb_flushID_SE(pv->pv_va);
   3280 	}
   3281 	cpu_cpwait();
   3282 
   3283 	simple_unlock(&pg->mdpage.pvh_slock);
   3284 	PMAP_HEAD_TO_MAP_UNLOCK();
   3285 }
   3286 
   3287 /*
   3288  * pmap_clear_modify:
   3289  *
   3290  *	Clear the "modified" attribute for a page.
   3291  */
   3292 boolean_t
   3293 pmap_clear_modify(pg)
   3294 	struct vm_page *pg;
   3295 {
   3296 	boolean_t rv;
   3297 
   3298 	if (pg->mdpage.pvh_attrs & PT_M) {
   3299 		rv = TRUE;
   3300 		pmap_clearbit(pg, PT_M);
   3301 	} else
   3302 		rv = FALSE;
   3303 
   3304 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3305 	    VM_PAGE_TO_PHYS(pg), rv));
   3306 
   3307 	return (rv);
   3308 }
   3309 
   3310 /*
   3311  * pmap_clear_reference:
   3312  *
   3313  *	Clear the "referenced" attribute for a page.
   3314  */
   3315 boolean_t
   3316 pmap_clear_reference(pg)
   3317 	struct vm_page *pg;
   3318 {
   3319 	boolean_t rv;
   3320 
   3321 	if (pg->mdpage.pvh_attrs & PT_H) {
   3322 		rv = TRUE;
   3323 		pmap_clearbit(pg, PT_H);
   3324 	} else
   3325 		rv = FALSE;
   3326 
   3327 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3328 	    VM_PAGE_TO_PHYS(pg), rv));
   3329 
   3330 	return (rv);
   3331 }
   3332 
   3333 
   3334 void
   3335 pmap_copy_on_write(pg)
   3336 	struct vm_page *pg;
   3337 {
   3338 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", VM_PAGE_TO_PHYS(pg)));
   3339 	pmap_clearbit(pg, PT_Wr);
   3340 }
   3341 
   3342 /*
   3343  * pmap_is_modified:
   3344  *
   3345  *	Test if a page has the "modified" attribute.
   3346  */
   3347 /* See <arm/arm32/pmap.h> */
   3348 
   3349 /*
   3350  * pmap_is_referenced:
   3351  *
   3352  *	Test if a page has the "referenced" attribute.
   3353  */
   3354 /* See <arm/arm32/pmap.h> */
   3355 
   3356 int
   3357 pmap_modified_emulation(pmap, va)
   3358 	struct pmap *pmap;
   3359 	vaddr_t va;
   3360 {
   3361 	pt_entry_t *pte;
   3362 	paddr_t pa;
   3363 	struct vm_page *pg;
   3364 	u_int flags;
   3365 
   3366 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3367 
   3368 	/* Get the pte */
   3369 	pte = pmap_pte(pmap, va);
   3370 	if (!pte) {
   3371 		PDEBUG(2, printf("no pte\n"));
   3372 		return(0);
   3373 	}
   3374 
   3375 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3376 
   3377 	/* Check for a zero pte */
   3378 	if (*pte == 0)
   3379 		return(0);
   3380 
   3381 	/* This can happen if user code tries to access kernel memory. */
   3382 	if ((*pte & PT_AP(AP_W)) != 0)
   3383 		return (0);
   3384 
   3385 	/* Extract the physical address of the page */
   3386 	pa = pmap_pte_pa(pte);
   3387 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3388 		return(0);
   3389 
   3390 	/* Get the current flags for this page. */
   3391 	PMAP_HEAD_TO_MAP_LOCK();
   3392 	simple_lock(&pg->mdpage.pvh_slock);
   3393 
   3394 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3395 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3396 
   3397 	/*
   3398 	 * Do the flags say this page is writable ? If not then it is a
   3399 	 * genuine write fault. If yes then the write fault is our fault
   3400 	 * as we did not reflect the write access in the PTE. Now we know
   3401 	 * a write has occurred we can correct this and also set the
   3402 	 * modified bit
   3403 	 */
   3404 	if (~flags & PT_Wr) {
   3405 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3406 		PMAP_HEAD_TO_MAP_UNLOCK();
   3407 		return(0);
   3408 	}
   3409 
   3410 	PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
   3411 	    va, pte, *pte));
   3412 	pg->mdpage.pvh_attrs |= PT_H | PT_M;
   3413 
   3414 	/*
   3415 	 * Re-enable write permissions for the page.  No need to call
   3416 	 * pmap_vac_me_harder(), since this is just a
   3417 	 * modified-emulation fault, and the PT_Wr bit isn't changing.  We've
   3418 	 * already set the cacheable bits based on the assumption that we
   3419 	 * can write to this page.
   3420 	 */
   3421 	*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3422 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3423 
   3424 	simple_unlock(&pg->mdpage.pvh_slock);
   3425 	PMAP_HEAD_TO_MAP_UNLOCK();
   3426 	/* Return, indicating the problem has been dealt with */
   3427 	cpu_tlb_flushID_SE(va);
   3428 	cpu_cpwait();
   3429 	return(1);
   3430 }
   3431 
   3432 
   3433 int
   3434 pmap_handled_emulation(pmap, va)
   3435 	struct pmap *pmap;
   3436 	vaddr_t va;
   3437 {
   3438 	pt_entry_t *pte;
   3439 	paddr_t pa;
   3440 	struct vm_page *pg;
   3441 
   3442 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3443 
   3444 	/* Get the pte */
   3445 	pte = pmap_pte(pmap, va);
   3446 	if (!pte) {
   3447 		PDEBUG(2, printf("no pte\n"));
   3448 		return(0);
   3449 	}
   3450 
   3451 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3452 
   3453 	/* Check for a zero pte */
   3454 	if (*pte == 0)
   3455 		return(0);
   3456 
   3457 	/* This can happen if user code tries to access kernel memory. */
   3458 	if ((*pte & L2_MASK) != L2_INVAL)
   3459 		return (0);
   3460 
   3461 	/* Extract the physical address of the page */
   3462 	pa = pmap_pte_pa(pte);
   3463 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3464 		return (0);
   3465 
   3466 	/*
   3467 	 * Ok we just enable the pte and mark the attibs as handled
   3468 	 */
   3469 	PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
   3470 	    va, pte, *pte));
   3471 	pg->mdpage.pvh_attrs |= PT_H;
   3472 	*pte = (*pte & ~L2_MASK) | L2_SPAGE;
   3473 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3474 
   3475 	/* Return, indicating the problem has been dealt with */
   3476 	cpu_tlb_flushID_SE(va);
   3477 	cpu_cpwait();
   3478 	return(1);
   3479 }
   3480 
   3481 
   3482 
   3483 
   3484 /*
   3485  * pmap_collect: free resources held by a pmap
   3486  *
   3487  * => optional function.
   3488  * => called when a process is swapped out to free memory.
   3489  */
   3490 
   3491 void
   3492 pmap_collect(pmap)
   3493 	struct pmap *pmap;
   3494 {
   3495 }
   3496 
   3497 /*
   3498  * Routine:	pmap_procwr
   3499  *
   3500  * Function:
   3501  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3502  *
   3503  */
   3504 void
   3505 pmap_procwr(p, va, len)
   3506 	struct proc	*p;
   3507 	vaddr_t		va;
   3508 	int		len;
   3509 {
   3510 	/* We only need to do anything if it is the current process. */
   3511 	if (p == curproc)
   3512 		cpu_icache_sync_range(va, len);
   3513 }
   3514 /*
   3515  * PTP functions
   3516  */
   3517 
   3518 /*
   3519  * pmap_steal_ptp: Steal a PTP from somewhere else.
   3520  *
   3521  * This is just a placeholder, for now we never steal.
   3522  */
   3523 
   3524 static struct vm_page *
   3525 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
   3526 {
   3527     return (NULL);
   3528 }
   3529 
   3530 /*
   3531  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3532  *
   3533  * => pmap should NOT be pmap_kernel()
   3534  * => pmap should be locked
   3535  */
   3536 
   3537 static struct vm_page *
   3538 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3539 {
   3540     struct vm_page *ptp;
   3541 
   3542     if (pmap_pde_page(pmap_pde(pmap, va))) {
   3543 
   3544 	/* valid... check hint (saves us a PA->PG lookup) */
   3545 #if 0
   3546 	if (pmap->pm_ptphint &&
   3547     		((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
   3548 		VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3549 	    return (pmap->pm_ptphint);
   3550 #endif
   3551 	ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3552 #ifdef DIAGNOSTIC
   3553 	if (ptp == NULL)
   3554     	    panic("pmap_get_ptp: unmanaged user PTP");
   3555 #endif
   3556 //	pmap->pm_ptphint = ptp;
   3557 	return(ptp);
   3558     }
   3559 
   3560     /* allocate a new PTP (updates ptphint) */
   3561     return(pmap_alloc_ptp(pmap, va, just_try));
   3562 }
   3563 
   3564 /*
   3565  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3566  *
   3567  * => pmap should already be locked by caller
   3568  * => we use the ptp's wire_count to count the number of active mappings
   3569  *	in the PTP (we start it at one to prevent any chance this PTP
   3570  *	will ever leak onto the active/inactive queues)
   3571  */
   3572 
   3573 /*__inline */ static struct vm_page *
   3574 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3575 {
   3576 	struct vm_page *ptp;
   3577 
   3578 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3579 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3580 	if (ptp == NULL) {
   3581 	    if (just_try)
   3582 		return (NULL);
   3583 
   3584 	    ptp = pmap_steal_ptp(pmap, va);
   3585 
   3586 	    if (ptp == NULL)
   3587 		return (NULL);
   3588 	    /* Stole a page, zero it.  */
   3589 	    pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
   3590 	}
   3591 
   3592 	/* got one! */
   3593 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3594 	ptp->wire_count = 1;	/* no mappings yet */
   3595 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3596 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3597 //	pmap->pm_ptphint = ptp;
   3598 	return (ptp);
   3599 }
   3600 
   3601 vaddr_t
   3602 pmap_growkernel(maxkvaddr)
   3603 	vaddr_t maxkvaddr;
   3604 {
   3605 	struct pmap *kpm = pmap_kernel(), *pm;
   3606 	int s;
   3607 	paddr_t ptaddr;
   3608 	struct vm_page *ptp;
   3609 
   3610 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3611 		goto out;		/* we are OK */
   3612 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3613 		    pmap_curmaxkvaddr, maxkvaddr));
   3614 
   3615 	/*
   3616 	 * whoops!   we need to add kernel PTPs
   3617 	 */
   3618 
   3619 	s = splhigh();	/* to be safe */
   3620 	simple_lock(&kpm->pm_obj.vmobjlock);
   3621 	/* due to the way the arm pmap works we map 4MB at a time */
   3622 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr ; pmap_curmaxkvaddr += 4 * NBPD) {
   3623 
   3624 		if (uvm.page_init_done == FALSE) {
   3625 
   3626 			/*
   3627 			 * we're growing the kernel pmap early (from
   3628 			 * uvm_pageboot_alloc()).  this case must be
   3629 			 * handled a little differently.
   3630 			 */
   3631 
   3632 			if (uvm_page_physget(&ptaddr) == FALSE)
   3633 				panic("pmap_growkernel: out of memory");
   3634 			pmap_zero_page(ptaddr);
   3635 
   3636 			/* map this page in */
   3637 			pmap_map_in_l1(kpm, (pmap_curmaxkvaddr + 1), ptaddr, TRUE);
   3638 
   3639 			/* count PTP as resident */
   3640 			kpm->pm_stats.resident_count++;
   3641 			continue;
   3642 		}
   3643 
   3644 		/*
   3645 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3646 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3647 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3648 		 */
   3649 
   3650 		if ((ptp = pmap_alloc_ptp(kpm, (pmap_curmaxkvaddr + 1), FALSE)) == NULL) {
   3651 			panic("pmap_growkernel: alloc ptp failed");
   3652 		}
   3653 
   3654 		/* distribute new kernel PTP to all active pmaps */
   3655 		simple_lock(&pmaps_lock);
   3656 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3657 		    pmap_map_in_l1(pm, (pmap_curmaxkvaddr + 1), VM_PAGE_TO_PHYS(ptp), TRUE);
   3658 		}
   3659 
   3660 		simple_unlock(&pmaps_lock);
   3661 	}
   3662 
   3663 	/*
   3664 	 * flush out the cache, expensive but growkernel will happen so
   3665 	 * rarely
   3666 	 */
   3667 	cpu_tlb_flushD();
   3668 	cpu_cpwait();
   3669 
   3670 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3671 	splx(s);
   3672 
   3673 out:
   3674 	return (pmap_curmaxkvaddr);
   3675 }
   3676 
   3677 
   3678 
   3679 /************************ Bootstrapping routines ****************************/
   3680 
   3681 /*
   3682  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3683  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3684  * find them as necessary.
   3685  *
   3686  * Note that the data on this list is not valid after initarm() returns.
   3687  */
   3688 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3689 
   3690 static vaddr_t
   3691 kernel_pt_lookup(paddr_t pa)
   3692 {
   3693 	pv_addr_t *pv;
   3694 
   3695 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3696 		if (pv->pv_pa == pa)
   3697 			return (pv->pv_va);
   3698 	}
   3699 	return (0);
   3700 }
   3701 
   3702 /*
   3703  * pmap_map_section:
   3704  *
   3705  *	Create a single section mapping.
   3706  */
   3707 void
   3708 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3709 {
   3710 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3711 	pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3712 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3713 
   3714 	KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
   3715 
   3716 	pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
   3717 }
   3718 
   3719 /*
   3720  * pmap_map_entry:
   3721  *
   3722  *	Create a single page mapping.
   3723  */
   3724 void
   3725 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3726 {
   3727 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3728 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3729 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3730 	pt_entry_t *pte;
   3731 
   3732 	KASSERT(((va | pa) & PGOFSET) == 0);
   3733 
   3734 	if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3735 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3736 
   3737 	pte = (pt_entry_t *)
   3738 	    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3739 	if (pte == NULL)
   3740 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3741 
   3742 	pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
   3743 }
   3744 
   3745 /*
   3746  * pmap_link_l2pt:
   3747  *
   3748  *	Link the L2 page table specified by "pa" into the L1
   3749  *	page table at the slot for "va".
   3750  */
   3751 void
   3752 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3753 {
   3754 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3755 	u_int slot = va >> PDSHIFT;
   3756 
   3757 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3758 
   3759 	pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
   3760 	pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
   3761 	pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
   3762 	pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
   3763 
   3764 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3765 }
   3766 
   3767 /*
   3768  * pmap_map_chunk:
   3769  *
   3770  *	Map a chunk of memory using the most efficient mappings
   3771  *	possible (section, large page, small page) into the
   3772  *	provided L1 and L2 tables at the specified virtual address.
   3773  */
   3774 vsize_t
   3775 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3776     int prot, int cache)
   3777 {
   3778 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3779 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3780 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3781 	pt_entry_t *pte;
   3782 	vsize_t resid;
   3783 	int i;
   3784 
   3785 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3786 
   3787 	if (l1pt == 0)
   3788 		panic("pmap_map_chunk: no L1 table provided");
   3789 
   3790 #ifdef VERBOSE_INIT_ARM
   3791 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3792 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3793 #endif
   3794 
   3795 	size = resid;
   3796 
   3797 	while (resid > 0) {
   3798 		/* See if we can use a section mapping. */
   3799 		if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
   3800 		    resid >= L1_SEC_SIZE) {
   3801 #ifdef VERBOSE_INIT_ARM
   3802 			printf("S");
   3803 #endif
   3804 			pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
   3805 			va += L1_SEC_SIZE;
   3806 			pa += L1_SEC_SIZE;
   3807 			resid -= L1_SEC_SIZE;
   3808 			continue;
   3809 		}
   3810 
   3811 		/*
   3812 		 * Ok, we're going to use an L2 table.  Make sure
   3813 		 * one is actually in the corresponding L1 slot
   3814 		 * for the current VA.
   3815 		 */
   3816 		if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3817 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3818 
   3819 		pte = (pt_entry_t *)
   3820 		    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3821 		if (pte == NULL)
   3822 			panic("pmap_map_chunk: can't find L2 table for VA"
   3823 			    "0x%08lx", va);
   3824 
   3825 		/* See if we can use a L2 large page mapping. */
   3826 		if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
   3827 		    resid >= L2_LPAGE_SIZE) {
   3828 #ifdef VERBOSE_INIT_ARM
   3829 			printf("L");
   3830 #endif
   3831 			for (i = 0; i < 16; i++) {
   3832 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3833 				    L2_LPTE(pa, ap, fl);
   3834 			}
   3835 			va += L2_LPAGE_SIZE;
   3836 			pa += L2_LPAGE_SIZE;
   3837 			resid -= L2_LPAGE_SIZE;
   3838 			continue;
   3839 		}
   3840 
   3841 		/* Use a small page mapping. */
   3842 #ifdef VERBOSE_INIT_ARM
   3843 		printf("P");
   3844 #endif
   3845 		pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
   3846 		va += NBPG;
   3847 		pa += NBPG;
   3848 		resid -= NBPG;
   3849 	}
   3850 #ifdef VERBOSE_INIT_ARM
   3851 	printf("\n");
   3852 #endif
   3853 	return (size);
   3854 }
   3855