pmap.c revision 1.56 1 /* $NetBSD: pmap.c,v 1.56 2002/03/24 03:37:21 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.56 2002/03/24 03:37:21 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static struct pmap_head pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 static void pmap_free_l1pt __P((struct l1pt *));
271 static int pmap_allocpagedir __P((struct pmap *));
272 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
273 static void pmap_remove_all __P((struct vm_page *));
274
275
276 vsize_t npages;
277
278 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
279 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
280 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
281
282 extern paddr_t physical_start;
283 extern paddr_t physical_freestart;
284 extern paddr_t physical_end;
285 extern paddr_t physical_freeend;
286 extern unsigned int free_pages;
287 extern int max_processes;
288
289 vaddr_t virtual_avail;
290 vaddr_t virtual_end;
291 vaddr_t pmap_curmaxkvaddr;
292
293 vaddr_t avail_start;
294 vaddr_t avail_end;
295
296 extern pv_addr_t systempage;
297
298 /* Variables used by the L1 page table queue code */
299 SIMPLEQ_HEAD(l1pt_queue, l1pt);
300 struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
301 int l1pt_static_queue_count; /* items in the static l1 queue */
302 int l1pt_static_create_count; /* static l1 items created */
303 struct l1pt_queue l1pt_queue; /* head of our l1 queue */
304 int l1pt_queue_count; /* items in the l1 queue */
305 int l1pt_create_count; /* stat - L1's create count */
306 int l1pt_reuse_count; /* stat - L1's reused count */
307
308 /* Local function prototypes (not used outside this file) */
309 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
310 void pmap_copy_on_write __P((struct vm_page *));
311 void pmap_pinit __P((struct pmap *));
312 void pmap_freepagedir __P((struct pmap *));
313
314 /* Other function prototypes */
315 extern void bzero_page __P((vaddr_t));
316 extern void bcopy_page __P((vaddr_t, vaddr_t));
317
318 struct l1pt *pmap_alloc_l1pt __P((void));
319 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
320 vaddr_t l2pa, boolean_t));
321
322 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
323 static void pmap_unmap_ptes __P((struct pmap *));
324
325 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
326 pt_entry_t *, boolean_t));
327 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
328 pt_entry_t *, boolean_t));
329 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
330 pt_entry_t *, boolean_t));
331
332 /*
333 * Cache enable bits in PTE to use on pages that are cacheable.
334 * On most machines this is cacheable/bufferable, but on some, eg arm10, we
335 * can chose between write-through and write-back cacheing.
336 */
337 pt_entry_t pte_cache_mode = (PT_C | PT_B);
338
339 /*
340 * real definition of pv_entry.
341 */
342
343 struct pv_entry {
344 struct pv_entry *pv_next; /* next pv_entry */
345 struct pmap *pv_pmap; /* pmap where mapping lies */
346 vaddr_t pv_va; /* virtual address for mapping */
347 int pv_flags; /* flags */
348 struct vm_page *pv_ptp; /* vm_page for the ptp */
349 };
350
351 /*
352 * pv_entrys are dynamically allocated in chunks from a single page.
353 * we keep track of how many pv_entrys are in use for each page and
354 * we can free pv_entry pages if needed. there is one lock for the
355 * entire allocation system.
356 */
357
358 struct pv_page_info {
359 TAILQ_ENTRY(pv_page) pvpi_list;
360 struct pv_entry *pvpi_pvfree;
361 int pvpi_nfree;
362 };
363
364 /*
365 * number of pv_entry's in a pv_page
366 * (note: won't work on systems where NPBG isn't a constant)
367 */
368
369 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
370 sizeof(struct pv_entry))
371
372 /*
373 * a pv_page: where pv_entrys are allocated from
374 */
375
376 struct pv_page {
377 struct pv_page_info pvinfo;
378 struct pv_entry pvents[PVE_PER_PVPAGE];
379 };
380
381 #ifdef MYCROFT_HACK
382 int mycroft_hack = 0;
383 #endif
384
385 /* Function to set the debug level of the pmap code */
386
387 #ifdef PMAP_DEBUG
388 void
389 pmap_debug(level)
390 int level;
391 {
392 pmap_debug_level = level;
393 printf("pmap_debug: level=%d\n", pmap_debug_level);
394 }
395 #endif /* PMAP_DEBUG */
396
397 __inline static boolean_t
398 pmap_is_curpmap(struct pmap *pmap)
399 {
400 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
401 || (pmap == pmap_kernel()))
402 return (TRUE);
403 return (FALSE);
404 }
405 #include "isadma.h"
406
407 #if NISADMA > 0
408 /*
409 * Used to protect memory for ISA DMA bounce buffers. If, when loading
410 * pages into the system, memory intersects with any of these ranges,
411 * the intersecting memory will be loaded into a lower-priority free list.
412 */
413 bus_dma_segment_t *pmap_isa_dma_ranges;
414 int pmap_isa_dma_nranges;
415
416 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
417 paddr_t *, psize_t *));
418
419 /*
420 * Check if a memory range intersects with an ISA DMA range, and
421 * return the page-rounded intersection if it does. The intersection
422 * will be placed on a lower-priority free list.
423 */
424 boolean_t
425 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
426 paddr_t pa;
427 psize_t size;
428 paddr_t *pap;
429 psize_t *sizep;
430 {
431 bus_dma_segment_t *ds;
432 int i;
433
434 if (pmap_isa_dma_ranges == NULL)
435 return (FALSE);
436
437 for (i = 0, ds = pmap_isa_dma_ranges;
438 i < pmap_isa_dma_nranges; i++, ds++) {
439 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
440 /*
441 * Beginning of region intersects with this range.
442 */
443 *pap = trunc_page(pa);
444 *sizep = round_page(min(pa + size,
445 ds->ds_addr + ds->ds_len) - pa);
446 return (TRUE);
447 }
448 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
449 /*
450 * End of region intersects with this range.
451 */
452 *pap = trunc_page(ds->ds_addr);
453 *sizep = round_page(min((pa + size) - ds->ds_addr,
454 ds->ds_len));
455 return (TRUE);
456 }
457 }
458
459 /*
460 * No intersection found.
461 */
462 return (FALSE);
463 }
464 #endif /* NISADMA > 0 */
465
466 /*
467 * p v _ e n t r y f u n c t i o n s
468 */
469
470 /*
471 * pv_entry allocation functions:
472 * the main pv_entry allocation functions are:
473 * pmap_alloc_pv: allocate a pv_entry structure
474 * pmap_free_pv: free one pv_entry
475 * pmap_free_pvs: free a list of pv_entrys
476 *
477 * the rest are helper functions
478 */
479
480 /*
481 * pmap_alloc_pv: inline function to allocate a pv_entry structure
482 * => we lock pvalloc_lock
483 * => if we fail, we call out to pmap_alloc_pvpage
484 * => 3 modes:
485 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
486 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
487 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
488 * one now
489 *
490 * "try" is for optional functions like pmap_copy().
491 */
492
493 __inline static struct pv_entry *
494 pmap_alloc_pv(pmap, mode)
495 struct pmap *pmap;
496 int mode;
497 {
498 struct pv_page *pvpage;
499 struct pv_entry *pv;
500
501 simple_lock(&pvalloc_lock);
502
503 pvpage = TAILQ_FIRST(&pv_freepages);
504
505 if (pvpage != NULL) {
506 pvpage->pvinfo.pvpi_nfree--;
507 if (pvpage->pvinfo.pvpi_nfree == 0) {
508 /* nothing left in this one? */
509 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
510 }
511 pv = pvpage->pvinfo.pvpi_pvfree;
512 KASSERT(pv);
513 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
514 pv_nfpvents--; /* took one from pool */
515 } else {
516 pv = NULL; /* need more of them */
517 }
518
519 /*
520 * if below low water mark or we didn't get a pv_entry we try and
521 * create more pv_entrys ...
522 */
523
524 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
525 if (pv == NULL)
526 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
527 mode : ALLOCPV_NEED);
528 else
529 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
530 }
531
532 simple_unlock(&pvalloc_lock);
533 return(pv);
534 }
535
536 /*
537 * pmap_alloc_pvpage: maybe allocate a new pvpage
538 *
539 * if need_entry is false: try and allocate a new pv_page
540 * if need_entry is true: try and allocate a new pv_page and return a
541 * new pv_entry from it. if we are unable to allocate a pv_page
542 * we make a last ditch effort to steal a pv_page from some other
543 * mapping. if that fails, we panic...
544 *
545 * => we assume that the caller holds pvalloc_lock
546 */
547
548 static struct pv_entry *
549 pmap_alloc_pvpage(pmap, mode)
550 struct pmap *pmap;
551 int mode;
552 {
553 struct vm_page *pg;
554 struct pv_page *pvpage;
555 struct pv_entry *pv;
556 int s;
557
558 /*
559 * if we need_entry and we've got unused pv_pages, allocate from there
560 */
561
562 pvpage = TAILQ_FIRST(&pv_unusedpgs);
563 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
564
565 /* move it to pv_freepages list */
566 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
567 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
568
569 /* allocate a pv_entry */
570 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
571 pv = pvpage->pvinfo.pvpi_pvfree;
572 KASSERT(pv);
573 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
574
575 pv_nfpvents--; /* took one from pool */
576 return(pv);
577 }
578
579 /*
580 * see if we've got a cached unmapped VA that we can map a page in.
581 * if not, try to allocate one.
582 */
583
584
585 if (pv_cachedva == 0) {
586 s = splvm();
587 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
588 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
589 splx(s);
590 if (pv_cachedva == 0) {
591 return (NULL);
592 }
593 }
594
595 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
596 UVM_PGA_USERESERVE);
597
598 if (pg == NULL)
599 return (NULL);
600 pg->flags &= ~PG_BUSY; /* never busy */
601
602 /*
603 * add a mapping for our new pv_page and free its entrys (save one!)
604 *
605 * NOTE: If we are allocating a PV page for the kernel pmap, the
606 * pmap is already locked! (...but entering the mapping is safe...)
607 */
608
609 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
610 VM_PROT_READ|VM_PROT_WRITE);
611 pmap_update(pmap_kernel());
612 pvpage = (struct pv_page *) pv_cachedva;
613 pv_cachedva = 0;
614 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
615 }
616
617 /*
618 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
619 *
620 * => caller must hold pvalloc_lock
621 * => if need_entry is true, we allocate and return one pv_entry
622 */
623
624 static struct pv_entry *
625 pmap_add_pvpage(pvp, need_entry)
626 struct pv_page *pvp;
627 boolean_t need_entry;
628 {
629 int tofree, lcv;
630
631 /* do we need to return one? */
632 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
633
634 pvp->pvinfo.pvpi_pvfree = NULL;
635 pvp->pvinfo.pvpi_nfree = tofree;
636 for (lcv = 0 ; lcv < tofree ; lcv++) {
637 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
638 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
639 }
640 if (need_entry)
641 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
642 else
643 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
644 pv_nfpvents += tofree;
645 return((need_entry) ? &pvp->pvents[lcv] : NULL);
646 }
647
648 /*
649 * pmap_free_pv_doit: actually free a pv_entry
650 *
651 * => do not call this directly! instead use either
652 * 1. pmap_free_pv ==> free a single pv_entry
653 * 2. pmap_free_pvs => free a list of pv_entrys
654 * => we must be holding pvalloc_lock
655 */
656
657 __inline static void
658 pmap_free_pv_doit(pv)
659 struct pv_entry *pv;
660 {
661 struct pv_page *pvp;
662
663 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
664 pv_nfpvents++;
665 pvp->pvinfo.pvpi_nfree++;
666
667 /* nfree == 1 => fully allocated page just became partly allocated */
668 if (pvp->pvinfo.pvpi_nfree == 1) {
669 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
670 }
671
672 /* free it */
673 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
674 pvp->pvinfo.pvpi_pvfree = pv;
675
676 /*
677 * are all pv_page's pv_entry's free? move it to unused queue.
678 */
679
680 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
681 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
682 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
683 }
684 }
685
686 /*
687 * pmap_free_pv: free a single pv_entry
688 *
689 * => we gain the pvalloc_lock
690 */
691
692 __inline static void
693 pmap_free_pv(pmap, pv)
694 struct pmap *pmap;
695 struct pv_entry *pv;
696 {
697 simple_lock(&pvalloc_lock);
698 pmap_free_pv_doit(pv);
699
700 /*
701 * Can't free the PV page if the PV entries were associated with
702 * the kernel pmap; the pmap is already locked.
703 */
704 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
705 pmap != pmap_kernel())
706 pmap_free_pvpage();
707
708 simple_unlock(&pvalloc_lock);
709 }
710
711 /*
712 * pmap_free_pvs: free a list of pv_entrys
713 *
714 * => we gain the pvalloc_lock
715 */
716
717 __inline static void
718 pmap_free_pvs(pmap, pvs)
719 struct pmap *pmap;
720 struct pv_entry *pvs;
721 {
722 struct pv_entry *nextpv;
723
724 simple_lock(&pvalloc_lock);
725
726 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
727 nextpv = pvs->pv_next;
728 pmap_free_pv_doit(pvs);
729 }
730
731 /*
732 * Can't free the PV page if the PV entries were associated with
733 * the kernel pmap; the pmap is already locked.
734 */
735 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
736 pmap != pmap_kernel())
737 pmap_free_pvpage();
738
739 simple_unlock(&pvalloc_lock);
740 }
741
742
743 /*
744 * pmap_free_pvpage: try and free an unused pv_page structure
745 *
746 * => assume caller is holding the pvalloc_lock and that
747 * there is a page on the pv_unusedpgs list
748 * => if we can't get a lock on the kmem_map we try again later
749 */
750
751 static void
752 pmap_free_pvpage()
753 {
754 int s;
755 struct vm_map *map;
756 struct vm_map_entry *dead_entries;
757 struct pv_page *pvp;
758
759 s = splvm(); /* protect kmem_map */
760
761 pvp = TAILQ_FIRST(&pv_unusedpgs);
762
763 /*
764 * note: watch out for pv_initpage which is allocated out of
765 * kernel_map rather than kmem_map.
766 */
767 if (pvp == pv_initpage)
768 map = kernel_map;
769 else
770 map = kmem_map;
771 if (vm_map_lock_try(map)) {
772
773 /* remove pvp from pv_unusedpgs */
774 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
775
776 /* unmap the page */
777 dead_entries = NULL;
778 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
779 &dead_entries);
780 vm_map_unlock(map);
781
782 if (dead_entries != NULL)
783 uvm_unmap_detach(dead_entries, 0);
784
785 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
786 }
787 if (pvp == pv_initpage)
788 /* no more initpage, we've freed it */
789 pv_initpage = NULL;
790
791 splx(s);
792 }
793
794 /*
795 * main pv_entry manipulation functions:
796 * pmap_enter_pv: enter a mapping onto a vm_page list
797 * pmap_remove_pv: remove a mappiing from a vm_page list
798 *
799 * NOTE: pmap_enter_pv expects to lock the pvh itself
800 * pmap_remove_pv expects te caller to lock the pvh before calling
801 */
802
803 /*
804 * pmap_enter_pv: enter a mapping onto a vm_page lst
805 *
806 * => caller should hold the proper lock on pmap_main_lock
807 * => caller should have pmap locked
808 * => we will gain the lock on the vm_page and allocate the new pv_entry
809 * => caller should adjust ptp's wire_count before calling
810 * => caller should not adjust pmap's wire_count
811 */
812
813 __inline static void
814 pmap_enter_pv(pg, pve, pmap, va, ptp, flags)
815 struct vm_page *pg;
816 struct pv_entry *pve; /* preallocated pve for us to use */
817 struct pmap *pmap;
818 vaddr_t va;
819 struct vm_page *ptp; /* PTP in pmap that maps this VA */
820 int flags;
821 {
822 pve->pv_pmap = pmap;
823 pve->pv_va = va;
824 pve->pv_ptp = ptp; /* NULL for kernel pmap */
825 pve->pv_flags = flags;
826 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
827 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
828 pg->mdpage.pvh_list = pve; /* ... locked list */
829 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
830 if (pve->pv_flags & PT_W)
831 ++pmap->pm_stats.wired_count;
832 }
833
834 /*
835 * pmap_remove_pv: try to remove a mapping from a pv_list
836 *
837 * => caller should hold proper lock on pmap_main_lock
838 * => pmap should be locked
839 * => caller should hold lock on vm_page [so that attrs can be adjusted]
840 * => caller should adjust ptp's wire_count and free PTP if needed
841 * => caller should NOT adjust pmap's wire_count
842 * => we return the removed pve
843 */
844
845 __inline static struct pv_entry *
846 pmap_remove_pv(pg, pmap, va)
847 struct vm_page *pg;
848 struct pmap *pmap;
849 vaddr_t va;
850 {
851 struct pv_entry *pve, **prevptr;
852
853 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
854 pve = *prevptr;
855 while (pve) {
856 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
857 *prevptr = pve->pv_next; /* remove it! */
858 if (pve->pv_flags & PT_W)
859 --pmap->pm_stats.wired_count;
860 break;
861 }
862 prevptr = &pve->pv_next; /* previous pointer */
863 pve = pve->pv_next; /* advance */
864 }
865 return(pve); /* return removed pve */
866 }
867
868 /*
869 *
870 * pmap_modify_pv: Update pv flags
871 *
872 * => caller should hold lock on vm_page [so that attrs can be adjusted]
873 * => caller should NOT adjust pmap's wire_count
874 * => caller must call pmap_vac_me_harder() if writable status of a page
875 * may have changed.
876 * => we return the old flags
877 *
878 * Modify a physical-virtual mapping in the pv table
879 */
880
881 /*__inline */
882 static u_int
883 pmap_modify_pv(pmap, va, pg, bic_mask, eor_mask)
884 struct pmap *pmap;
885 vaddr_t va;
886 struct vm_page *pg;
887 u_int bic_mask;
888 u_int eor_mask;
889 {
890 struct pv_entry *npv;
891 u_int flags, oflags;
892
893 /*
894 * There is at least one VA mapping this page.
895 */
896
897 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
898 if (pmap == npv->pv_pmap && va == npv->pv_va) {
899 oflags = npv->pv_flags;
900 npv->pv_flags = flags =
901 ((oflags & ~bic_mask) ^ eor_mask);
902 if ((flags ^ oflags) & PT_W) {
903 if (flags & PT_W)
904 ++pmap->pm_stats.wired_count;
905 else
906 --pmap->pm_stats.wired_count;
907 }
908 return (oflags);
909 }
910 }
911 return (0);
912 }
913
914 /*
915 * Map the specified level 2 pagetable into the level 1 page table for
916 * the given pmap to cover a chunk of virtual address space starting from the
917 * address specified.
918 */
919 static /*__inline*/ void
920 pmap_map_in_l1(pmap, va, l2pa, selfref)
921 struct pmap *pmap;
922 vaddr_t va, l2pa;
923 boolean_t selfref;
924 {
925 vaddr_t ptva;
926
927 /* Calculate the index into the L1 page table. */
928 ptva = (va >> PDSHIFT) & ~3;
929
930 NPDEBUG(PDB_MAP_L1, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
931 pmap->pm_pdir, L1_PTE(l2pa), ptva));
932
933 /* Map page table into the L1. */
934 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
935 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
936 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
937 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
938
939 /* Map the page table into the page table area. */
940 if (selfref) {
941 NPDEBUG(PDB_MAP_L1, printf("pt self reference %lx in %lx\n",
942 L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
943 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
944 L2_PTE_NC_NB(l2pa, AP_KRW);
945 }
946 /* XXX should be a purge */
947 /* cpu_tlb_flushD();*/
948 }
949
950 #if 0
951 static /*__inline*/ void
952 pmap_unmap_in_l1(pmap, va)
953 struct pmap *pmap;
954 vaddr_t va;
955 {
956 vaddr_t ptva;
957
958 /* Calculate the index into the L1 page table. */
959 ptva = (va >> PDSHIFT) & ~3;
960
961 /* Unmap page table from the L1. */
962 pmap->pm_pdir[ptva + 0] = 0;
963 pmap->pm_pdir[ptva + 1] = 0;
964 pmap->pm_pdir[ptva + 2] = 0;
965 pmap->pm_pdir[ptva + 3] = 0;
966
967 /* Unmap the page table from the page table area. */
968 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
969
970 /* XXX should be a purge */
971 /* cpu_tlb_flushD();*/
972 }
973 #endif
974
975 /*
976 * Used to map a range of physical addresses into kernel
977 * virtual address space.
978 *
979 * For now, VM is already on, we only need to map the
980 * specified memory.
981 */
982 vaddr_t
983 pmap_map(va, spa, epa, prot)
984 vaddr_t va, spa, epa;
985 int prot;
986 {
987 while (spa < epa) {
988 pmap_kenter_pa(va, spa, prot);
989 va += NBPG;
990 spa += NBPG;
991 }
992 pmap_update(pmap_kernel());
993 return(va);
994 }
995
996
997 /*
998 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
999 *
1000 * bootstrap the pmap system. This is called from initarm and allows
1001 * the pmap system to initailise any structures it requires.
1002 *
1003 * Currently this sets up the kernel_pmap that is statically allocated
1004 * and also allocated virtual addresses for certain page hooks.
1005 * Currently the only one page hook is allocated that is used
1006 * to zero physical pages of memory.
1007 * It also initialises the start and end address of the kernel data space.
1008 */
1009 extern paddr_t physical_freestart;
1010 extern paddr_t physical_freeend;
1011
1012 char *boot_head;
1013
1014 void
1015 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
1016 pd_entry_t *kernel_l1pt;
1017 pv_addr_t kernel_ptpt;
1018 {
1019 pt_entry_t *pte;
1020 int loop;
1021 paddr_t start, end;
1022 #if NISADMA > 0
1023 paddr_t istart;
1024 psize_t isize;
1025 #endif
1026
1027 pmap_kernel()->pm_pdir = kernel_l1pt;
1028 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1029 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1030 simple_lock_init(&pmap_kernel()->pm_lock);
1031 pmap_kernel()->pm_obj.pgops = NULL;
1032 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1033 pmap_kernel()->pm_obj.uo_npages = 0;
1034 pmap_kernel()->pm_obj.uo_refs = 1;
1035
1036 /*
1037 * Initialize PAGE_SIZE-dependent variables.
1038 */
1039 uvm_setpagesize();
1040
1041 npages = 0;
1042 loop = 0;
1043 while (loop < bootconfig.dramblocks) {
1044 start = (paddr_t)bootconfig.dram[loop].address;
1045 end = start + (bootconfig.dram[loop].pages * NBPG);
1046 if (start < physical_freestart)
1047 start = physical_freestart;
1048 if (end > physical_freeend)
1049 end = physical_freeend;
1050 #if 0
1051 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1052 #endif
1053 #if NISADMA > 0
1054 if (pmap_isa_dma_range_intersect(start, end - start,
1055 &istart, &isize)) {
1056 /*
1057 * Place the pages that intersect with the
1058 * ISA DMA range onto the ISA DMA free list.
1059 */
1060 #if 0
1061 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1062 istart + isize - 1);
1063 #endif
1064 uvm_page_physload(atop(istart),
1065 atop(istart + isize), atop(istart),
1066 atop(istart + isize), VM_FREELIST_ISADMA);
1067 npages += atop(istart + isize) - atop(istart);
1068
1069 /*
1070 * Load the pieces that come before
1071 * the intersection into the default
1072 * free list.
1073 */
1074 if (start < istart) {
1075 #if 0
1076 printf(" BEFORE 0x%lx -> 0x%lx\n",
1077 start, istart - 1);
1078 #endif
1079 uvm_page_physload(atop(start),
1080 atop(istart), atop(start),
1081 atop(istart), VM_FREELIST_DEFAULT);
1082 npages += atop(istart) - atop(start);
1083 }
1084
1085 /*
1086 * Load the pieces that come after
1087 * the intersection into the default
1088 * free list.
1089 */
1090 if ((istart + isize) < end) {
1091 #if 0
1092 printf(" AFTER 0x%lx -> 0x%lx\n",
1093 (istart + isize), end - 1);
1094 #endif
1095 uvm_page_physload(atop(istart + isize),
1096 atop(end), atop(istart + isize),
1097 atop(end), VM_FREELIST_DEFAULT);
1098 npages += atop(end) - atop(istart + isize);
1099 }
1100 } else {
1101 uvm_page_physload(atop(start), atop(end),
1102 atop(start), atop(end), VM_FREELIST_DEFAULT);
1103 npages += atop(end) - atop(start);
1104 }
1105 #else /* NISADMA > 0 */
1106 uvm_page_physload(atop(start), atop(end),
1107 atop(start), atop(end), VM_FREELIST_DEFAULT);
1108 npages += atop(end) - atop(start);
1109 #endif /* NISADMA > 0 */
1110 ++loop;
1111 }
1112
1113 #ifdef MYCROFT_HACK
1114 printf("npages = %ld\n", npages);
1115 #endif
1116
1117 virtual_avail = KERNEL_VM_BASE;
1118 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE - 1;
1119
1120 /*
1121 * now we allocate the "special" VAs which are used for tmp mappings
1122 * by the pmap (and other modules). we allocate the VAs by advancing
1123 * virtual_avail (note that there are no pages mapped at these VAs).
1124 * we find the PTE that maps the allocated VA via the linear PTE
1125 * mapping.
1126 */
1127
1128 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1129
1130 csrcp = virtual_avail; csrc_pte = pte;
1131 virtual_avail += PAGE_SIZE; pte++;
1132
1133 cdstp = virtual_avail; cdst_pte = pte;
1134 virtual_avail += PAGE_SIZE; pte++;
1135
1136 memhook = (char *) virtual_avail; /* don't need pte */
1137 virtual_avail += PAGE_SIZE; pte++;
1138
1139 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1140 virtual_avail += round_page(MSGBUFSIZE);
1141 pte += atop(round_page(MSGBUFSIZE));
1142
1143 /*
1144 * init the static-global locks and global lists.
1145 */
1146 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1147 simple_lock_init(&pvalloc_lock);
1148 simple_lock_init(&pmaps_lock);
1149 LIST_INIT(&pmaps);
1150 TAILQ_INIT(&pv_freepages);
1151 TAILQ_INIT(&pv_unusedpgs);
1152
1153 /*
1154 * initialize the pmap pool.
1155 */
1156
1157 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1158 &pool_allocator_nointr);
1159
1160 cpu_dcache_wbinv_all();
1161 }
1162
1163 /*
1164 * void pmap_init(void)
1165 *
1166 * Initialize the pmap module.
1167 * Called by vm_init() in vm/vm_init.c in order to initialise
1168 * any structures that the pmap system needs to map virtual memory.
1169 */
1170
1171 extern int physmem;
1172
1173 void
1174 pmap_init()
1175 {
1176
1177 /*
1178 * Set the available memory vars - These do not map to real memory
1179 * addresses and cannot as the physical memory is fragmented.
1180 * They are used by ps for %mem calculations.
1181 * One could argue whether this should be the entire memory or just
1182 * the memory that is useable in a user process.
1183 */
1184 avail_start = 0;
1185 avail_end = physmem * NBPG;
1186
1187 /*
1188 * now we need to free enough pv_entry structures to allow us to get
1189 * the kmem_map/kmem_object allocated and inited (done after this
1190 * function is finished). to do this we allocate one bootstrap page out
1191 * of kernel_map and use it to provide an initial pool of pv_entry
1192 * structures. we never free this page.
1193 */
1194
1195 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1196 if (pv_initpage == NULL)
1197 panic("pmap_init: pv_initpage");
1198 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1199 pv_nfpvents = 0;
1200 (void) pmap_add_pvpage(pv_initpage, FALSE);
1201
1202 pmap_initialized = TRUE;
1203
1204 /* Initialise our L1 page table queues and counters */
1205 SIMPLEQ_INIT(&l1pt_static_queue);
1206 l1pt_static_queue_count = 0;
1207 l1pt_static_create_count = 0;
1208 SIMPLEQ_INIT(&l1pt_queue);
1209 l1pt_queue_count = 0;
1210 l1pt_create_count = 0;
1211 l1pt_reuse_count = 0;
1212 }
1213
1214 /*
1215 * pmap_postinit()
1216 *
1217 * This routine is called after the vm and kmem subsystems have been
1218 * initialised. This allows the pmap code to perform any initialisation
1219 * that can only be done one the memory allocation is in place.
1220 */
1221
1222 void
1223 pmap_postinit()
1224 {
1225 int loop;
1226 struct l1pt *pt;
1227
1228 #ifdef PMAP_STATIC_L1S
1229 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1230 #else /* PMAP_STATIC_L1S */
1231 for (loop = 0; loop < max_processes; ++loop) {
1232 #endif /* PMAP_STATIC_L1S */
1233 /* Allocate a L1 page table */
1234 pt = pmap_alloc_l1pt();
1235 if (!pt)
1236 panic("Cannot allocate static L1 page tables\n");
1237
1238 /* Clean it */
1239 bzero((void *)pt->pt_va, PD_SIZE);
1240 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1241 /* Add the page table to the queue */
1242 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1243 ++l1pt_static_queue_count;
1244 ++l1pt_static_create_count;
1245 }
1246 }
1247
1248
1249 /*
1250 * Create and return a physical map.
1251 *
1252 * If the size specified for the map is zero, the map is an actual physical
1253 * map, and may be referenced by the hardware.
1254 *
1255 * If the size specified is non-zero, the map will be used in software only,
1256 * and is bounded by that size.
1257 */
1258
1259 pmap_t
1260 pmap_create()
1261 {
1262 struct pmap *pmap;
1263
1264 /*
1265 * Fetch pmap entry from the pool
1266 */
1267
1268 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1269 /* XXX is this really needed! */
1270 memset(pmap, 0, sizeof(*pmap));
1271
1272 simple_lock_init(&pmap->pm_obj.vmobjlock);
1273 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1274 TAILQ_INIT(&pmap->pm_obj.memq);
1275 pmap->pm_obj.uo_npages = 0;
1276 pmap->pm_obj.uo_refs = 1;
1277 pmap->pm_stats.wired_count = 0;
1278 pmap->pm_stats.resident_count = 1;
1279
1280 /* Now init the machine part of the pmap */
1281 pmap_pinit(pmap);
1282 return(pmap);
1283 }
1284
1285 /*
1286 * pmap_alloc_l1pt()
1287 *
1288 * This routine allocates physical and virtual memory for a L1 page table
1289 * and wires it.
1290 * A l1pt structure is returned to describe the allocated page table.
1291 *
1292 * This routine is allowed to fail if the required memory cannot be allocated.
1293 * In this case NULL is returned.
1294 */
1295
1296 struct l1pt *
1297 pmap_alloc_l1pt(void)
1298 {
1299 paddr_t pa;
1300 vaddr_t va;
1301 struct l1pt *pt;
1302 int error;
1303 struct vm_page *m;
1304 pt_entry_t *ptes;
1305
1306 /* Allocate virtual address space for the L1 page table */
1307 va = uvm_km_valloc(kernel_map, PD_SIZE);
1308 if (va == 0) {
1309 #ifdef DIAGNOSTIC
1310 PDEBUG(0,
1311 printf("pmap: Cannot allocate pageable memory for L1\n"));
1312 #endif /* DIAGNOSTIC */
1313 return(NULL);
1314 }
1315
1316 /* Allocate memory for the l1pt structure */
1317 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1318
1319 /*
1320 * Allocate pages from the VM system.
1321 */
1322 TAILQ_INIT(&pt->pt_plist);
1323 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1324 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1325 if (error) {
1326 #ifdef DIAGNOSTIC
1327 PDEBUG(0,
1328 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1329 error));
1330 #endif /* DIAGNOSTIC */
1331 /* Release the resources we already have claimed */
1332 free(pt, M_VMPMAP);
1333 uvm_km_free(kernel_map, va, PD_SIZE);
1334 return(NULL);
1335 }
1336
1337 /* Map our physical pages into our virtual space */
1338 pt->pt_va = va;
1339 m = TAILQ_FIRST(&pt->pt_plist);
1340 ptes = pmap_map_ptes(pmap_kernel());
1341 while (m && va < (pt->pt_va + PD_SIZE)) {
1342 pa = VM_PAGE_TO_PHYS(m);
1343
1344 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1345
1346 /* Revoke cacheability and bufferability */
1347 /* XXX should be done better than this */
1348 ptes[arm_btop(va)] &= ~(PT_C | PT_B);
1349
1350 va += NBPG;
1351 m = m->pageq.tqe_next;
1352 }
1353 pmap_unmap_ptes(pmap_kernel());
1354 pmap_update(pmap_kernel());
1355
1356 #ifdef DIAGNOSTIC
1357 if (m)
1358 panic("pmap_alloc_l1pt: pglist not empty\n");
1359 #endif /* DIAGNOSTIC */
1360
1361 pt->pt_flags = 0;
1362 return(pt);
1363 }
1364
1365 /*
1366 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1367 */
1368 static void
1369 pmap_free_l1pt(pt)
1370 struct l1pt *pt;
1371 {
1372 /* Separate the physical memory for the virtual space */
1373 pmap_kremove(pt->pt_va, PD_SIZE);
1374 pmap_update(pmap_kernel());
1375
1376 /* Return the physical memory */
1377 uvm_pglistfree(&pt->pt_plist);
1378
1379 /* Free the virtual space */
1380 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1381
1382 /* Free the l1pt structure */
1383 free(pt, M_VMPMAP);
1384 }
1385
1386 /*
1387 * Allocate a page directory.
1388 * This routine will either allocate a new page directory from the pool
1389 * of L1 page tables currently held by the kernel or it will allocate
1390 * a new one via pmap_alloc_l1pt().
1391 * It will then initialise the l1 page table for use.
1392 *
1393 * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
1394 */
1395 static int
1396 pmap_allocpagedir(pmap)
1397 struct pmap *pmap;
1398 {
1399 paddr_t pa;
1400 struct l1pt *pt;
1401 pt_entry_t *pte;
1402
1403 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1404
1405 /* Do we have any spare L1's lying around ? */
1406 if (l1pt_static_queue_count) {
1407 --l1pt_static_queue_count;
1408 pt = l1pt_static_queue.sqh_first;
1409 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1410 } else if (l1pt_queue_count) {
1411 --l1pt_queue_count;
1412 pt = l1pt_queue.sqh_first;
1413 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1414 ++l1pt_reuse_count;
1415 } else {
1416 pt = pmap_alloc_l1pt();
1417 if (!pt)
1418 return(ENOMEM);
1419 ++l1pt_create_count;
1420 }
1421
1422 /* Store the pointer to the l1 descriptor in the pmap. */
1423 pmap->pm_l1pt = pt;
1424
1425 /* Get the physical address of the start of the l1 */
1426 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1427
1428 /* Store the virtual address of the l1 in the pmap. */
1429 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1430
1431 /* Clean the L1 if it is dirty */
1432 if (!(pt->pt_flags & PTFLAG_CLEAN))
1433 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1434
1435 /* Allocate a page table to map all the page tables for this pmap */
1436
1437 #ifdef DIAGNOSTIC
1438 if (pmap->pm_vptpt) {
1439 /* XXX What if we have one already ? */
1440 panic("pmap_allocpagedir: have pt already\n");
1441 }
1442 #endif /* DIAGNOSTIC */
1443 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1444 if (pmap->pm_vptpt == 0) {
1445 pmap_freepagedir(pmap);
1446 return(ENOMEM);
1447 }
1448
1449 /* need to lock this all up for growkernel */
1450 simple_lock(&pmaps_lock);
1451 /* wish we didn't have to keep this locked... */
1452
1453 /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1454 bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1455 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1456 KERNEL_PD_SIZE);
1457
1458 (void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
1459 pmap->pm_pptpt &= PG_FRAME;
1460 /* Revoke cacheability and bufferability */
1461 /* XXX should be done better than this */
1462 pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
1463 *pte = *pte & ~(PT_C | PT_B);
1464
1465 /* Wire in this page table */
1466 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1467
1468 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1469
1470 /*
1471 * Map the kernel page tables for 0xf0000000 +
1472 * into the page table used to map the
1473 * pmap's page tables
1474 */
1475 bcopy((char *)(PTE_BASE
1476 + (PTE_BASE >> (PGSHIFT - 2))
1477 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1478 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1479 (KERNEL_PD_SIZE >> 2));
1480
1481 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1482 simple_unlock(&pmaps_lock);
1483
1484 return(0);
1485 }
1486
1487
1488 /*
1489 * Initialize a preallocated and zeroed pmap structure,
1490 * such as one in a vmspace structure.
1491 */
1492
1493 void
1494 pmap_pinit(pmap)
1495 struct pmap *pmap;
1496 {
1497 int backoff = 6;
1498 int retry = 10;
1499
1500 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1501
1502 /* Keep looping until we succeed in allocating a page directory */
1503 while (pmap_allocpagedir(pmap) != 0) {
1504 /*
1505 * Ok we failed to allocate a suitable block of memory for an
1506 * L1 page table. This means that either:
1507 * 1. 16KB of virtual address space could not be allocated
1508 * 2. 16KB of physically contiguous memory on a 16KB boundary
1509 * could not be allocated.
1510 *
1511 * Since we cannot fail we will sleep for a while and try
1512 * again.
1513 *
1514 * Searching for a suitable L1 PT is expensive:
1515 * to avoid hogging the system when memory is really
1516 * scarce, use an exponential back-off so that
1517 * eventually we won't retry more than once every 8
1518 * seconds. This should allow other processes to run
1519 * to completion and free up resources.
1520 */
1521 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1522 NULL);
1523 if (--retry == 0) {
1524 retry = 10;
1525 if (backoff)
1526 --backoff;
1527 }
1528 }
1529
1530 /* Map zero page for the pmap. This will also map the L2 for it */
1531 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1532 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1533 pmap_update(pmap);
1534 }
1535
1536
1537 void
1538 pmap_freepagedir(pmap)
1539 struct pmap *pmap;
1540 {
1541 /* Free the memory used for the page table mapping */
1542 if (pmap->pm_vptpt != 0)
1543 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1544
1545 /* junk the L1 page table */
1546 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1547 /* Add the page table to the queue */
1548 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1549 ++l1pt_static_queue_count;
1550 } else if (l1pt_queue_count < 8) {
1551 /* Add the page table to the queue */
1552 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1553 ++l1pt_queue_count;
1554 } else
1555 pmap_free_l1pt(pmap->pm_l1pt);
1556 }
1557
1558
1559 /*
1560 * Retire the given physical map from service.
1561 * Should only be called if the map contains no valid mappings.
1562 */
1563
1564 void
1565 pmap_destroy(pmap)
1566 struct pmap *pmap;
1567 {
1568 struct vm_page *page;
1569 int count;
1570
1571 if (pmap == NULL)
1572 return;
1573
1574 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1575
1576 /*
1577 * Drop reference count
1578 */
1579 simple_lock(&pmap->pm_obj.vmobjlock);
1580 count = --pmap->pm_obj.uo_refs;
1581 simple_unlock(&pmap->pm_obj.vmobjlock);
1582 if (count > 0) {
1583 return;
1584 }
1585
1586 /*
1587 * reference count is zero, free pmap resources and then free pmap.
1588 */
1589
1590 /*
1591 * remove it from global list of pmaps
1592 */
1593
1594 simple_lock(&pmaps_lock);
1595 LIST_REMOVE(pmap, pm_list);
1596 simple_unlock(&pmaps_lock);
1597
1598 /* Remove the zero page mapping */
1599 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1600 pmap_update(pmap);
1601
1602 /*
1603 * Free any page tables still mapped
1604 * This is only temporay until pmap_enter can count the number
1605 * of mappings made in a page table. Then pmap_remove() can
1606 * reduce the count and free the pagetable when the count
1607 * reaches zero. Note that entries in this list should match the
1608 * contents of the ptpt, however this is faster than walking a 1024
1609 * entries looking for pt's
1610 * taken from i386 pmap.c
1611 */
1612 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1613 KASSERT((page->flags & PG_BUSY) == 0);
1614 page->wire_count = 0;
1615 uvm_pagefree(page);
1616 }
1617
1618 /* Free the page dir */
1619 pmap_freepagedir(pmap);
1620
1621 /* return the pmap to the pool */
1622 pool_put(&pmap_pmap_pool, pmap);
1623 }
1624
1625
1626 /*
1627 * void pmap_reference(struct pmap *pmap)
1628 *
1629 * Add a reference to the specified pmap.
1630 */
1631
1632 void
1633 pmap_reference(pmap)
1634 struct pmap *pmap;
1635 {
1636 if (pmap == NULL)
1637 return;
1638
1639 simple_lock(&pmap->pm_lock);
1640 pmap->pm_obj.uo_refs++;
1641 simple_unlock(&pmap->pm_lock);
1642 }
1643
1644 /*
1645 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1646 *
1647 * Return the start and end addresses of the kernel's virtual space.
1648 * These values are setup in pmap_bootstrap and are updated as pages
1649 * are allocated.
1650 */
1651
1652 void
1653 pmap_virtual_space(start, end)
1654 vaddr_t *start;
1655 vaddr_t *end;
1656 {
1657 *start = virtual_avail;
1658 *end = virtual_end;
1659 }
1660
1661
1662 /*
1663 * Activate the address space for the specified process. If the process
1664 * is the current process, load the new MMU context.
1665 */
1666 void
1667 pmap_activate(p)
1668 struct proc *p;
1669 {
1670 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1671 struct pcb *pcb = &p->p_addr->u_pcb;
1672
1673 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1674 (paddr_t *)&pcb->pcb_pagedir);
1675
1676 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1677 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1678
1679 if (p == curproc) {
1680 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1681 setttb((u_int)pcb->pcb_pagedir);
1682 }
1683 #if 0
1684 pmap->pm_pdchanged = FALSE;
1685 #endif
1686 }
1687
1688
1689 /*
1690 * Deactivate the address space of the specified process.
1691 */
1692 void
1693 pmap_deactivate(p)
1694 struct proc *p;
1695 {
1696 }
1697
1698 /*
1699 * Perform any deferred pmap operations.
1700 */
1701 void
1702 pmap_update(struct pmap *pmap)
1703 {
1704
1705 /*
1706 * We haven't deferred any pmap operations, but we do need to
1707 * make sure TLB/cache operations have completed.
1708 */
1709 cpu_cpwait();
1710 }
1711
1712 /*
1713 * pmap_clean_page()
1714 *
1715 * This is a local function used to work out the best strategy to clean
1716 * a single page referenced by its entry in the PV table. It's used by
1717 * pmap_copy_page, pmap_zero page and maybe some others later on.
1718 *
1719 * Its policy is effectively:
1720 * o If there are no mappings, we don't bother doing anything with the cache.
1721 * o If there is one mapping, we clean just that page.
1722 * o If there are multiple mappings, we clean the entire cache.
1723 *
1724 * So that some functions can be further optimised, it returns 0 if it didn't
1725 * clean the entire cache, or 1 if it did.
1726 *
1727 * XXX One bug in this routine is that if the pv_entry has a single page
1728 * mapped at 0x00000000 a whole cache clean will be performed rather than
1729 * just the 1 page. Since this should not occur in everyday use and if it does
1730 * it will just result in not the most efficient clean for the page.
1731 */
1732 static int
1733 pmap_clean_page(pv, is_src)
1734 struct pv_entry *pv;
1735 boolean_t is_src;
1736 {
1737 struct pmap *pmap;
1738 struct pv_entry *npv;
1739 int cache_needs_cleaning = 0;
1740 vaddr_t page_to_clean = 0;
1741
1742 if (pv == NULL)
1743 /* nothing mapped in so nothing to flush */
1744 return (0);
1745
1746 /* Since we flush the cache each time we change curproc, we
1747 * only need to flush the page if it is in the current pmap.
1748 */
1749 if (curproc)
1750 pmap = curproc->p_vmspace->vm_map.pmap;
1751 else
1752 pmap = pmap_kernel();
1753
1754 for (npv = pv; npv; npv = npv->pv_next) {
1755 if (npv->pv_pmap == pmap) {
1756 /* The page is mapped non-cacheable in
1757 * this map. No need to flush the cache.
1758 */
1759 if (npv->pv_flags & PT_NC) {
1760 #ifdef DIAGNOSTIC
1761 if (cache_needs_cleaning)
1762 panic("pmap_clean_page: "
1763 "cache inconsistency");
1764 #endif
1765 break;
1766 }
1767 #if 0
1768 /* This doesn't work, because pmap_protect
1769 doesn't flush changes on pages that it
1770 has write-protected. */
1771
1772 /* If the page is not writable and this
1773 is the source, then there is no need
1774 to flush it from the cache. */
1775 else if (is_src && ! (npv->pv_flags & PT_Wr))
1776 continue;
1777 #endif
1778 if (cache_needs_cleaning){
1779 page_to_clean = 0;
1780 break;
1781 }
1782 else
1783 page_to_clean = npv->pv_va;
1784 cache_needs_cleaning = 1;
1785 }
1786 }
1787
1788 if (page_to_clean)
1789 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1790 else if (cache_needs_cleaning) {
1791 cpu_idcache_wbinv_all();
1792 return (1);
1793 }
1794 return (0);
1795 }
1796
1797 /*
1798 * pmap_zero_page()
1799 *
1800 * Zero a given physical page by mapping it at a page hook point.
1801 * In doing the zero page op, the page we zero is mapped cachable, as with
1802 * StrongARM accesses to non-cached pages are non-burst making writing
1803 * _any_ bulk data very slow.
1804 */
1805 void
1806 pmap_zero_page(phys)
1807 paddr_t phys;
1808 {
1809 struct vm_page *pg;
1810
1811 /* Get an entry for this page, and clean it it. */
1812 pg = PHYS_TO_VM_PAGE(phys);
1813 simple_lock(&pg->mdpage.pvh_slock);
1814 pmap_clean_page(pg->mdpage.pvh_list, FALSE);
1815 simple_unlock(&pg->mdpage.pvh_slock);
1816
1817 /*
1818 * Hook in the page, zero it, and purge the cache for that
1819 * zeroed page. Invalidate the TLB as needed.
1820 */
1821 *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1822 cpu_tlb_flushD_SE(cdstp);
1823 cpu_cpwait();
1824 bzero_page(cdstp);
1825 cpu_dcache_wbinv_range(cdstp, NBPG);
1826 }
1827
1828 /* pmap_pageidlezero()
1829 *
1830 * The same as above, except that we assume that the page is not
1831 * mapped. This means we never have to flush the cache first. Called
1832 * from the idle loop.
1833 */
1834 boolean_t
1835 pmap_pageidlezero(phys)
1836 paddr_t phys;
1837 {
1838 int i, *ptr;
1839 boolean_t rv = TRUE;
1840
1841 #ifdef DIAGNOSTIC
1842 struct vm_page *pg;
1843
1844 pg = PHYS_TO_VM_PAGE(phys);
1845 if (pg->mdpage.pvh_list != NULL)
1846 panic("pmap_pageidlezero: zeroing mapped page\n");
1847 #endif
1848
1849 /*
1850 * Hook in the page, zero it, and purge the cache for that
1851 * zeroed page. Invalidate the TLB as needed.
1852 */
1853 *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1854 cpu_tlb_flushD_SE(cdstp);
1855 cpu_cpwait();
1856
1857 for (i = 0, ptr = (int *)cdstp;
1858 i < (NBPG / sizeof(int)); i++) {
1859 if (sched_whichqs != 0) {
1860 /*
1861 * A process has become ready. Abort now,
1862 * so we don't keep it waiting while we
1863 * do slow memory access to finish this
1864 * page.
1865 */
1866 rv = FALSE;
1867 break;
1868 }
1869 *ptr++ = 0;
1870 }
1871
1872 if (rv)
1873 /*
1874 * if we aborted we'll rezero this page again later so don't
1875 * purge it unless we finished it
1876 */
1877 cpu_dcache_wbinv_range(cdstp, NBPG);
1878 return (rv);
1879 }
1880
1881 /*
1882 * pmap_copy_page()
1883 *
1884 * Copy one physical page into another, by mapping the pages into
1885 * hook points. The same comment regarding cachability as in
1886 * pmap_zero_page also applies here.
1887 */
1888 void
1889 pmap_copy_page(src, dest)
1890 paddr_t src;
1891 paddr_t dest;
1892 {
1893 struct vm_page *src_pg, *dest_pg;
1894 boolean_t cleanedcache;
1895
1896 /* Get PV entries for the pages, and clean them if needed. */
1897 src_pg = PHYS_TO_VM_PAGE(src);
1898
1899 simple_lock(&src_pg->mdpage.pvh_slock);
1900 cleanedcache = pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1901 simple_unlock(&src_pg->mdpage.pvh_slock);
1902
1903 if (cleanedcache == 0) {
1904 dest_pg = PHYS_TO_VM_PAGE(dest);
1905 simple_lock(&dest_pg->mdpage.pvh_slock);
1906 pmap_clean_page(dest_pg->mdpage.pvh_list, FALSE);
1907 simple_unlock(&dest_pg->mdpage.pvh_slock);
1908 }
1909 /*
1910 * Map the pages into the page hook points, copy them, and purge
1911 * the cache for the appropriate page. Invalidate the TLB
1912 * as required.
1913 */
1914 *csrc_pte = L2_PTE(src & PG_FRAME, AP_KRW);
1915 *cdst_pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1916 cpu_tlb_flushD_SE(csrcp);
1917 cpu_tlb_flushD_SE(cdstp);
1918 cpu_cpwait();
1919 bcopy_page(csrcp, cdstp);
1920 cpu_dcache_wbinv_range(csrcp, NBPG);
1921 cpu_dcache_wbinv_range(cdstp, NBPG);
1922 }
1923
1924 #if 0
1925 void
1926 pmap_pte_addref(pmap, va)
1927 struct pmap *pmap;
1928 vaddr_t va;
1929 {
1930 pd_entry_t *pde;
1931 paddr_t pa;
1932 struct vm_page *m;
1933
1934 if (pmap == pmap_kernel())
1935 return;
1936
1937 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1938 pa = pmap_pte_pa(pde);
1939 m = PHYS_TO_VM_PAGE(pa);
1940 ++m->wire_count;
1941 #ifdef MYCROFT_HACK
1942 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1943 pmap, va, pde, pa, m, m->wire_count);
1944 #endif
1945 }
1946
1947 void
1948 pmap_pte_delref(pmap, va)
1949 struct pmap *pmap;
1950 vaddr_t va;
1951 {
1952 pd_entry_t *pde;
1953 paddr_t pa;
1954 struct vm_page *m;
1955
1956 if (pmap == pmap_kernel())
1957 return;
1958
1959 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1960 pa = pmap_pte_pa(pde);
1961 m = PHYS_TO_VM_PAGE(pa);
1962 --m->wire_count;
1963 #ifdef MYCROFT_HACK
1964 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1965 pmap, va, pde, pa, m, m->wire_count);
1966 #endif
1967 if (m->wire_count == 0) {
1968 #ifdef MYCROFT_HACK
1969 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1970 pmap, va, pde, pa, m);
1971 #endif
1972 pmap_unmap_in_l1(pmap, va);
1973 uvm_pagefree(m);
1974 --pmap->pm_stats.resident_count;
1975 }
1976 }
1977 #else
1978 #define pmap_pte_addref(pmap, va)
1979 #define pmap_pte_delref(pmap, va)
1980 #endif
1981
1982 /*
1983 * Since we have a virtually indexed cache, we may need to inhibit caching if
1984 * there is more than one mapping and at least one of them is writable.
1985 * Since we purge the cache on every context switch, we only need to check for
1986 * other mappings within the same pmap, or kernel_pmap.
1987 * This function is also called when a page is unmapped, to possibly reenable
1988 * caching on any remaining mappings.
1989 *
1990 * The code implements the following logic, where:
1991 *
1992 * KW = # of kernel read/write pages
1993 * KR = # of kernel read only pages
1994 * UW = # of user read/write pages
1995 * UR = # of user read only pages
1996 * OW = # of user read/write pages in another pmap, then
1997 *
1998 * KC = kernel mapping is cacheable
1999 * UC = user mapping is cacheable
2000 *
2001 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2002 * +---------------------------------------------
2003 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2004 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2005 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2006 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2007 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2008 *
2009 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2010 */
2011 __inline static void
2012 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2013 boolean_t clear_cache)
2014 {
2015 if (pmap == pmap_kernel())
2016 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2017 else
2018 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2019 }
2020
2021 static void
2022 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2023 boolean_t clear_cache)
2024 {
2025 int user_entries = 0;
2026 int user_writable = 0;
2027 int user_cacheable = 0;
2028 int kernel_entries = 0;
2029 int kernel_writable = 0;
2030 int kernel_cacheable = 0;
2031 struct pv_entry *pv;
2032 struct pmap *last_pmap = pmap;
2033
2034 #ifdef DIAGNOSTIC
2035 if (pmap != pmap_kernel())
2036 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2037 #endif
2038
2039 /*
2040 * Pass one, see if there are both kernel and user pmaps for
2041 * this page. Calculate whether there are user-writable or
2042 * kernel-writable pages.
2043 */
2044 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2045 if (pv->pv_pmap != pmap) {
2046 user_entries++;
2047 if (pv->pv_flags & PT_Wr)
2048 user_writable++;
2049 if ((pv->pv_flags & PT_NC) == 0)
2050 user_cacheable++;
2051 } else {
2052 kernel_entries++;
2053 if (pv->pv_flags & PT_Wr)
2054 kernel_writable++;
2055 if ((pv->pv_flags & PT_NC) == 0)
2056 kernel_cacheable++;
2057 }
2058 }
2059
2060 /*
2061 * We know we have just been updating a kernel entry, so if
2062 * all user pages are already cacheable, then there is nothing
2063 * further to do.
2064 */
2065 if (kernel_entries == 0 &&
2066 user_cacheable == user_entries)
2067 return;
2068
2069 if (user_entries) {
2070 /*
2071 * Scan over the list again, for each entry, if it
2072 * might not be set correctly, call pmap_vac_me_user
2073 * to recalculate the settings.
2074 */
2075 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2076 /*
2077 * We know kernel mappings will get set
2078 * correctly in other calls. We also know
2079 * that if the pmap is the same as last_pmap
2080 * then we've just handled this entry.
2081 */
2082 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2083 continue;
2084 /*
2085 * If there are kernel entries and this page
2086 * is writable but non-cacheable, then we can
2087 * skip this entry also.
2088 */
2089 if (kernel_entries > 0 &&
2090 (pv->pv_flags & (PT_NC | PT_Wr)) ==
2091 (PT_NC | PT_Wr))
2092 continue;
2093 /*
2094 * Similarly if there are no kernel-writable
2095 * entries and the page is already
2096 * read-only/cacheable.
2097 */
2098 if (kernel_writable == 0 &&
2099 (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
2100 continue;
2101 /*
2102 * For some of the remaining cases, we know
2103 * that we must recalculate, but for others we
2104 * can't tell if they are correct or not, so
2105 * we recalculate anyway.
2106 */
2107 pmap_unmap_ptes(last_pmap);
2108 last_pmap = pv->pv_pmap;
2109 ptes = pmap_map_ptes(last_pmap);
2110 pmap_vac_me_user(last_pmap, pg, ptes,
2111 pmap_is_curpmap(last_pmap));
2112 }
2113 /* Restore the pte mapping that was passed to us. */
2114 if (last_pmap != pmap) {
2115 pmap_unmap_ptes(last_pmap);
2116 ptes = pmap_map_ptes(pmap);
2117 }
2118 if (kernel_entries == 0)
2119 return;
2120 }
2121
2122 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2123 return;
2124 }
2125
2126 static void
2127 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2128 boolean_t clear_cache)
2129 {
2130 struct pmap *kpmap = pmap_kernel();
2131 struct pv_entry *pv, *npv;
2132 int entries = 0;
2133 int writable = 0;
2134 int cacheable_entries = 0;
2135 int kern_cacheable = 0;
2136 int other_writable = 0;
2137
2138 pv = pg->mdpage.pvh_list;
2139 KASSERT(ptes != NULL);
2140
2141 /*
2142 * Count mappings and writable mappings in this pmap.
2143 * Include kernel mappings as part of our own.
2144 * Keep a pointer to the first one.
2145 */
2146 for (npv = pv; npv; npv = npv->pv_next) {
2147 /* Count mappings in the same pmap */
2148 if (pmap == npv->pv_pmap ||
2149 kpmap == npv->pv_pmap) {
2150 if (entries++ == 0)
2151 pv = npv;
2152 /* Cacheable mappings */
2153 if ((npv->pv_flags & PT_NC) == 0) {
2154 cacheable_entries++;
2155 if (kpmap == npv->pv_pmap)
2156 kern_cacheable++;
2157 }
2158 /* Writable mappings */
2159 if (npv->pv_flags & PT_Wr)
2160 ++writable;
2161 } else if (npv->pv_flags & PT_Wr)
2162 other_writable = 1;
2163 }
2164
2165 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2166 "writable %d cacheable %d %s\n", pmap, entries, writable,
2167 cacheable_entries, clear_cache ? "clean" : "no clean"));
2168
2169 /*
2170 * Enable or disable caching as necessary.
2171 * Note: the first entry might be part of the kernel pmap,
2172 * so we can't assume this is indicative of the state of the
2173 * other (maybe non-kpmap) entries.
2174 */
2175 if ((entries > 1 && writable) ||
2176 (entries > 0 && pmap == kpmap && other_writable)) {
2177 if (cacheable_entries == 0)
2178 return;
2179 for (npv = pv; npv; npv = npv->pv_next) {
2180 if ((pmap == npv->pv_pmap
2181 || kpmap == npv->pv_pmap) &&
2182 (npv->pv_flags & PT_NC) == 0) {
2183 ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
2184 npv->pv_flags |= PT_NC;
2185 /*
2186 * If this page needs flushing from the
2187 * cache, and we aren't going to do it
2188 * below, do it now.
2189 */
2190 if ((cacheable_entries < 4 &&
2191 (clear_cache || npv->pv_pmap == kpmap)) ||
2192 (npv->pv_pmap == kpmap &&
2193 !clear_cache && kern_cacheable < 4)) {
2194 cpu_idcache_wbinv_range(npv->pv_va,
2195 NBPG);
2196 cpu_tlb_flushID_SE(npv->pv_va);
2197 }
2198 }
2199 }
2200 if ((clear_cache && cacheable_entries >= 4) ||
2201 kern_cacheable >= 4) {
2202 cpu_idcache_wbinv_all();
2203 cpu_tlb_flushID();
2204 }
2205 cpu_cpwait();
2206 } else if (entries > 0) {
2207 /*
2208 * Turn cacheing back on for some pages. If it is a kernel
2209 * page, only do so if there are no other writable pages.
2210 */
2211 for (npv = pv; npv; npv = npv->pv_next) {
2212 if ((pmap == npv->pv_pmap ||
2213 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2214 (npv->pv_flags & PT_NC)) {
2215 ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
2216 npv->pv_flags &= ~PT_NC;
2217 }
2218 }
2219 }
2220 }
2221
2222 /*
2223 * pmap_remove()
2224 *
2225 * pmap_remove is responsible for nuking a number of mappings for a range
2226 * of virtual address space in the current pmap. To do this efficiently
2227 * is interesting, because in a number of cases a wide virtual address
2228 * range may be supplied that contains few actual mappings. So, the
2229 * optimisations are:
2230 * 1. Try and skip over hunks of address space for which an L1 entry
2231 * does not exist.
2232 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2233 * maybe do just a partial cache clean. This path of execution is
2234 * complicated by the fact that the cache must be flushed _before_
2235 * the PTE is nuked, being a VAC :-)
2236 * 3. Maybe later fast-case a single page, but I don't think this is
2237 * going to make _that_ much difference overall.
2238 */
2239
2240 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2241
2242 void
2243 pmap_remove(pmap, sva, eva)
2244 struct pmap *pmap;
2245 vaddr_t sva;
2246 vaddr_t eva;
2247 {
2248 int cleanlist_idx = 0;
2249 struct pagelist {
2250 vaddr_t va;
2251 pt_entry_t *pte;
2252 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2253 pt_entry_t *pte = 0, *ptes;
2254 paddr_t pa;
2255 int pmap_active;
2256 struct vm_page *pg;
2257
2258 /* Exit quick if there is no pmap */
2259 if (!pmap)
2260 return;
2261
2262 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2263
2264 sva &= PG_FRAME;
2265 eva &= PG_FRAME;
2266
2267 /*
2268 * we lock in the pmap => vm_page direction
2269 */
2270 PMAP_MAP_TO_HEAD_LOCK();
2271
2272 ptes = pmap_map_ptes(pmap);
2273 /* Get a page table pointer */
2274 while (sva < eva) {
2275 if (pmap_pde_page(pmap_pde(pmap, sva)))
2276 break;
2277 sva = (sva & PD_MASK) + NBPD;
2278 }
2279
2280 pte = &ptes[arm_btop(sva)];
2281 /* Note if the pmap is active thus require cache and tlb cleans */
2282 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2283 || (pmap == pmap_kernel()))
2284 pmap_active = 1;
2285 else
2286 pmap_active = 0;
2287
2288 /* Now loop along */
2289 while (sva < eva) {
2290 /* Check if we can move to the next PDE (l1 chunk) */
2291 if (!(sva & PT_MASK))
2292 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2293 sva += NBPD;
2294 pte += arm_btop(NBPD);
2295 continue;
2296 }
2297
2298 /* We've found a valid PTE, so this page of PTEs has to go. */
2299 if (pmap_pte_v(pte)) {
2300 /* Update statistics */
2301 --pmap->pm_stats.resident_count;
2302
2303 /*
2304 * Add this page to our cache remove list, if we can.
2305 * If, however the cache remove list is totally full,
2306 * then do a complete cache invalidation taking note
2307 * to backtrack the PTE table beforehand, and ignore
2308 * the lists in future because there's no longer any
2309 * point in bothering with them (we've paid the
2310 * penalty, so will carry on unhindered). Otherwise,
2311 * when we fall out, we just clean the list.
2312 */
2313 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2314 pa = pmap_pte_pa(pte);
2315
2316 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2317 /* Add to the clean list. */
2318 cleanlist[cleanlist_idx].pte = pte;
2319 cleanlist[cleanlist_idx].va = sva;
2320 cleanlist_idx++;
2321 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2322 int cnt;
2323
2324 /* Nuke everything if needed. */
2325 if (pmap_active) {
2326 cpu_idcache_wbinv_all();
2327 cpu_tlb_flushID();
2328 }
2329
2330 /*
2331 * Roll back the previous PTE list,
2332 * and zero out the current PTE.
2333 */
2334 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2335 *cleanlist[cnt].pte = 0;
2336 pmap_pte_delref(pmap, cleanlist[cnt].va);
2337 }
2338 *pte = 0;
2339 pmap_pte_delref(pmap, sva);
2340 cleanlist_idx++;
2341 } else {
2342 /*
2343 * We've already nuked the cache and
2344 * TLB, so just carry on regardless,
2345 * and we won't need to do it again
2346 */
2347 *pte = 0;
2348 pmap_pte_delref(pmap, sva);
2349 }
2350
2351 /*
2352 * Update flags. In a number of circumstances,
2353 * we could cluster a lot of these and do a
2354 * number of sequential pages in one go.
2355 */
2356 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2357 struct pv_entry *pve;
2358 simple_lock(&pg->mdpage.pvh_slock);
2359 pve = pmap_remove_pv(pg, pmap, sva);
2360 pmap_free_pv(pmap, pve);
2361 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2362 simple_unlock(&pg->mdpage.pvh_slock);
2363 }
2364 }
2365 sva += NBPG;
2366 pte++;
2367 }
2368
2369 pmap_unmap_ptes(pmap);
2370 /*
2371 * Now, if we've fallen through down to here, chances are that there
2372 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2373 */
2374 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2375 u_int cnt;
2376
2377 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2378 if (pmap_active) {
2379 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2380 NBPG);
2381 *cleanlist[cnt].pte = 0;
2382 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2383 } else
2384 *cleanlist[cnt].pte = 0;
2385 pmap_pte_delref(pmap, cleanlist[cnt].va);
2386 }
2387 }
2388 PMAP_MAP_TO_HEAD_UNLOCK();
2389 }
2390
2391 /*
2392 * Routine: pmap_remove_all
2393 * Function:
2394 * Removes this physical page from
2395 * all physical maps in which it resides.
2396 * Reflects back modify bits to the pager.
2397 */
2398
2399 static void
2400 pmap_remove_all(pg)
2401 struct vm_page *pg;
2402 {
2403 struct pv_entry *pv, *npv;
2404 struct pmap *pmap;
2405 pt_entry_t *pte, *ptes;
2406
2407 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2408
2409 /* set vm_page => pmap locking */
2410 PMAP_HEAD_TO_MAP_LOCK();
2411
2412 simple_lock(&pg->mdpage.pvh_slock);
2413
2414 pv = pg->mdpage.pvh_list;
2415 if (pv == NULL) {
2416 PDEBUG(0, printf("free page\n"));
2417 simple_unlock(&pg->mdpage.pvh_slock);
2418 PMAP_HEAD_TO_MAP_UNLOCK();
2419 return;
2420 }
2421 pmap_clean_page(pv, FALSE);
2422
2423 while (pv) {
2424 pmap = pv->pv_pmap;
2425 ptes = pmap_map_ptes(pmap);
2426 pte = &ptes[arm_btop(pv->pv_va)];
2427
2428 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2429 pv->pv_va, pv->pv_flags));
2430 #ifdef DEBUG
2431 if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
2432 !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
2433 panic("pmap_remove_all: bad mapping");
2434 #endif /* DEBUG */
2435
2436 /*
2437 * Update statistics
2438 */
2439 --pmap->pm_stats.resident_count;
2440
2441 /* Wired bit */
2442 if (pv->pv_flags & PT_W)
2443 --pmap->pm_stats.wired_count;
2444
2445 /*
2446 * Invalidate the PTEs.
2447 * XXX: should cluster them up and invalidate as many
2448 * as possible at once.
2449 */
2450
2451 #ifdef needednotdone
2452 reduce wiring count on page table pages as references drop
2453 #endif
2454
2455 *pte = 0;
2456 pmap_pte_delref(pmap, pv->pv_va);
2457
2458 npv = pv->pv_next;
2459 pmap_free_pv(pmap, pv);
2460 pv = npv;
2461 pmap_unmap_ptes(pmap);
2462 }
2463 pg->mdpage.pvh_list = NULL;
2464 simple_unlock(&pg->mdpage.pvh_slock);
2465 PMAP_HEAD_TO_MAP_UNLOCK();
2466
2467 PDEBUG(0, printf("done\n"));
2468 cpu_tlb_flushID();
2469 cpu_cpwait();
2470 }
2471
2472
2473 /*
2474 * Set the physical protection on the specified range of this map as requested.
2475 */
2476
2477 void
2478 pmap_protect(pmap, sva, eva, prot)
2479 struct pmap *pmap;
2480 vaddr_t sva;
2481 vaddr_t eva;
2482 vm_prot_t prot;
2483 {
2484 pt_entry_t *pte = NULL, *ptes;
2485 struct vm_page *pg;
2486 int armprot;
2487 int flush = 0;
2488 paddr_t pa;
2489
2490 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2491 pmap, sva, eva, prot));
2492
2493 if (~prot & VM_PROT_READ) {
2494 /* Just remove the mappings. */
2495 pmap_remove(pmap, sva, eva);
2496 /* pmap_update not needed as it should be called by the caller
2497 * of pmap_protect */
2498 return;
2499 }
2500 if (prot & VM_PROT_WRITE) {
2501 /*
2502 * If this is a read->write transition, just ignore it and let
2503 * uvm_fault() take care of it later.
2504 */
2505 return;
2506 }
2507
2508 sva &= PG_FRAME;
2509 eva &= PG_FRAME;
2510
2511 /* Need to lock map->head */
2512 PMAP_MAP_TO_HEAD_LOCK();
2513
2514 ptes = pmap_map_ptes(pmap);
2515 /*
2516 * We need to acquire a pointer to a page table page before entering
2517 * the following loop.
2518 */
2519 while (sva < eva) {
2520 if (pmap_pde_page(pmap_pde(pmap, sva)))
2521 break;
2522 sva = (sva & PD_MASK) + NBPD;
2523 }
2524
2525 pte = &ptes[arm_btop(sva)];
2526
2527 while (sva < eva) {
2528 /* only check once in a while */
2529 if ((sva & PT_MASK) == 0) {
2530 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2531 /* We can race ahead here, to the next pde. */
2532 sva += NBPD;
2533 pte += arm_btop(NBPD);
2534 continue;
2535 }
2536 }
2537
2538 if (!pmap_pte_v(pte))
2539 goto next;
2540
2541 flush = 1;
2542
2543 armprot = 0;
2544 if (sva < VM_MAXUSER_ADDRESS)
2545 armprot |= PT_AP(AP_U);
2546 else if (sva < VM_MAX_ADDRESS)
2547 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2548 *pte = (*pte & 0xfffff00f) | armprot;
2549
2550 pa = pmap_pte_pa(pte);
2551
2552 /* Get the physical page index */
2553
2554 /* Clear write flag */
2555 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2556 simple_lock(&pg->mdpage.pvh_slock);
2557 (void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
2558 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2559 simple_unlock(&pg->mdpage.pvh_slock);
2560 }
2561
2562 next:
2563 sva += NBPG;
2564 pte++;
2565 }
2566 pmap_unmap_ptes(pmap);
2567 PMAP_MAP_TO_HEAD_UNLOCK();
2568 if (flush)
2569 cpu_tlb_flushID();
2570 }
2571
2572 /*
2573 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2574 * int flags)
2575 *
2576 * Insert the given physical page (p) at
2577 * the specified virtual address (v) in the
2578 * target physical map with the protection requested.
2579 *
2580 * If specified, the page will be wired down, meaning
2581 * that the related pte can not be reclaimed.
2582 *
2583 * NB: This is the only routine which MAY NOT lazy-evaluate
2584 * or lose information. That is, this routine must actually
2585 * insert this page into the given map NOW.
2586 */
2587
2588 int
2589 pmap_enter(pmap, va, pa, prot, flags)
2590 struct pmap *pmap;
2591 vaddr_t va;
2592 paddr_t pa;
2593 vm_prot_t prot;
2594 int flags;
2595 {
2596 pt_entry_t *pte, *ptes;
2597 u_int npte;
2598 paddr_t opa;
2599 int nflags;
2600 boolean_t wired = (flags & PMAP_WIRED) != 0;
2601 struct vm_page *pg;
2602 struct pv_entry *pve;
2603 int error;
2604
2605 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2606 va, pa, pmap, prot, wired));
2607
2608 #ifdef DIAGNOSTIC
2609 /* Valid address ? */
2610 if (va >= (pmap_curmaxkvaddr))
2611 panic("pmap_enter: too big");
2612 if (pmap != pmap_kernel() && va != 0) {
2613 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2614 panic("pmap_enter: kernel page in user map");
2615 } else {
2616 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2617 panic("pmap_enter: user page in kernel map");
2618 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2619 panic("pmap_enter: entering PT page");
2620 }
2621 #endif
2622 /*
2623 * Get a pointer to the page. Later on in this function, we
2624 * test for a managed page by checking pg != NULL.
2625 */
2626 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2627
2628 /* get lock */
2629 PMAP_MAP_TO_HEAD_LOCK();
2630 /*
2631 * Get a pointer to the pte for this virtual address. If the
2632 * pte pointer is NULL then we are missing the L2 page table
2633 * so we need to create one.
2634 */
2635 /* XXX horrible hack to get us working with lockdebug */
2636 simple_lock(&pmap->pm_obj.vmobjlock);
2637 pte = pmap_pte(pmap, va);
2638 if (!pte) {
2639 struct vm_page *ptp;
2640 KASSERT(pmap != pmap_kernel()); /* kernel should have pre-grown */
2641
2642 /* if failure is allowed then don't try too hard */
2643 ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
2644 if (ptp == NULL) {
2645 if (flags & PMAP_CANFAIL) {
2646 error = ENOMEM;
2647 goto out;
2648 }
2649 panic("pmap_enter: get ptp failed");
2650 }
2651
2652 pte = pmap_pte(pmap, va);
2653 #ifdef DIAGNOSTIC
2654 if (!pte)
2655 panic("pmap_enter: no pte");
2656 #endif
2657 }
2658
2659 nflags = 0;
2660 if (prot & VM_PROT_WRITE)
2661 nflags |= PT_Wr;
2662 if (wired)
2663 nflags |= PT_W;
2664
2665 /* More debugging info */
2666 PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2667 *pte));
2668
2669 /* Is the pte valid ? If so then this page is already mapped */
2670 if (pmap_pte_v(pte)) {
2671 /* Get the physical address of the current page mapped */
2672 opa = pmap_pte_pa(pte);
2673
2674 #ifdef MYCROFT_HACK
2675 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2676 #endif
2677
2678 /* Are we mapping the same page ? */
2679 if (opa == pa) {
2680 /* All we must be doing is changing the protection */
2681 PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2682 va, pa));
2683
2684 /* Has the wiring changed ? */
2685 if (pg != NULL) {
2686 simple_lock(&pg->mdpage.pvh_slock);
2687 (void) pmap_modify_pv(pmap, va, pg,
2688 PT_Wr | PT_W, nflags);
2689 simple_unlock(&pg->mdpage.pvh_slock);
2690 }
2691 } else {
2692 struct vm_page *opg;
2693
2694 /* We are replacing the page with a new one. */
2695 cpu_idcache_wbinv_range(va, NBPG);
2696
2697 PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2698 va, pa, opa));
2699
2700 /*
2701 * If it is part of our managed memory then we
2702 * must remove it from the PV list
2703 */
2704 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2705 simple_lock(&opg->mdpage.pvh_slock);
2706 pve = pmap_remove_pv(opg, pmap, va);
2707 simple_unlock(&opg->mdpage.pvh_slock);
2708 } else {
2709 pve = NULL;
2710 }
2711
2712 goto enter;
2713 }
2714 } else {
2715 opa = 0;
2716 pve = NULL;
2717 pmap_pte_addref(pmap, va);
2718
2719 /* pte is not valid so we must be hooking in a new page */
2720 ++pmap->pm_stats.resident_count;
2721
2722 enter:
2723 /*
2724 * Enter on the PV list if part of our managed memory
2725 */
2726 if (pg != NULL) {
2727 if (pve == NULL) {
2728 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2729 if (pve == NULL) {
2730 if (flags & PMAP_CANFAIL) {
2731 error = ENOMEM;
2732 goto out;
2733 }
2734 panic("pmap_enter: no pv entries available");
2735 }
2736 }
2737 /* enter_pv locks pvh when adding */
2738 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2739 } else {
2740 pg = NULL;
2741 if (pve != NULL)
2742 pmap_free_pv(pmap, pve);
2743 }
2744 }
2745
2746 #ifdef MYCROFT_HACK
2747 if (mycroft_hack)
2748 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2749 #endif
2750
2751 /* Construct the pte, giving the correct access. */
2752 npte = (pa & PG_FRAME);
2753
2754 /* VA 0 is magic. */
2755 if (pmap != pmap_kernel() && va != 0)
2756 npte |= PT_AP(AP_U);
2757
2758 if (pg != NULL) {
2759 #ifdef DIAGNOSTIC
2760 if ((flags & VM_PROT_ALL) & ~prot)
2761 panic("pmap_enter: access_type exceeds prot");
2762 #endif
2763 npte |= pte_cache_mode;
2764 if (flags & VM_PROT_WRITE) {
2765 npte |= L2_SPAGE | PT_AP(AP_W);
2766 pg->mdpage.pvh_attrs |= PT_H | PT_M;
2767 } else if (flags & VM_PROT_ALL) {
2768 npte |= L2_SPAGE;
2769 pg->mdpage.pvh_attrs |= PT_H;
2770 } else
2771 npte |= L2_INVAL;
2772 } else {
2773 if (prot & VM_PROT_WRITE)
2774 npte |= L2_SPAGE | PT_AP(AP_W);
2775 else if (prot & VM_PROT_ALL)
2776 npte |= L2_SPAGE;
2777 else
2778 npte |= L2_INVAL;
2779 }
2780
2781 #ifdef MYCROFT_HACK
2782 if (mycroft_hack)
2783 printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2784 #endif
2785
2786 *pte = npte;
2787
2788 if (pg != NULL) {
2789 boolean_t pmap_active = FALSE;
2790 /* XXX this will change once the whole of pmap_enter uses
2791 * map_ptes
2792 */
2793 ptes = pmap_map_ptes(pmap);
2794 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2795 || (pmap == pmap_kernel()))
2796 pmap_active = TRUE;
2797 simple_lock(&pg->mdpage.pvh_slock);
2798 pmap_vac_me_harder(pmap, pg, ptes, pmap_active);
2799 simple_unlock(&pg->mdpage.pvh_slock);
2800 pmap_unmap_ptes(pmap);
2801 }
2802
2803 /* Better flush the TLB ... */
2804 cpu_tlb_flushID_SE(va);
2805 error = 0;
2806 out:
2807 simple_unlock(&pmap->pm_obj.vmobjlock);
2808 PMAP_MAP_TO_HEAD_UNLOCK();
2809 PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2810
2811 return error;
2812 }
2813
2814 /*
2815 * pmap_kenter_pa: enter a kernel mapping
2816 *
2817 * => no need to lock anything assume va is already allocated
2818 * => should be faster than normal pmap enter function
2819 */
2820 void
2821 pmap_kenter_pa(va, pa, prot)
2822 vaddr_t va;
2823 paddr_t pa;
2824 vm_prot_t prot;
2825 {
2826 pt_entry_t *pte;
2827
2828 pte = vtopte(va);
2829 KASSERT(!pmap_pte_v(pte));
2830 *pte = L2_PTE(pa, AP_KRW);
2831 }
2832
2833 void
2834 pmap_kremove(va, len)
2835 vaddr_t va;
2836 vsize_t len;
2837 {
2838 pt_entry_t *pte;
2839
2840 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2841
2842 /*
2843 * We assume that we will only be called with small
2844 * regions of memory.
2845 */
2846
2847 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2848 pte = vtopte(va);
2849 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2850 *pte = 0;
2851 cpu_tlb_flushID_SE(va);
2852 }
2853 }
2854
2855 /*
2856 * pmap_page_protect:
2857 *
2858 * Lower the permission for all mappings to a given page.
2859 */
2860
2861 void
2862 pmap_page_protect(pg, prot)
2863 struct vm_page *pg;
2864 vm_prot_t prot;
2865 {
2866
2867 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2868 VM_PAGE_TO_PHYS(pg), prot));
2869
2870 switch(prot) {
2871 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2872 case VM_PROT_READ|VM_PROT_WRITE:
2873 return;
2874
2875 case VM_PROT_READ:
2876 case VM_PROT_READ|VM_PROT_EXECUTE:
2877 pmap_copy_on_write(pg);
2878 break;
2879
2880 default:
2881 pmap_remove_all(pg);
2882 break;
2883 }
2884 }
2885
2886
2887 /*
2888 * Routine: pmap_unwire
2889 * Function: Clear the wired attribute for a map/virtual-address
2890 * pair.
2891 * In/out conditions:
2892 * The mapping must already exist in the pmap.
2893 */
2894
2895 void
2896 pmap_unwire(pmap, va)
2897 struct pmap *pmap;
2898 vaddr_t va;
2899 {
2900 pt_entry_t *pte;
2901 paddr_t pa;
2902 struct vm_page *pg;
2903
2904 /*
2905 * Make sure pmap is valid. -dct
2906 */
2907 if (pmap == NULL)
2908 return;
2909
2910 /* Get the pte */
2911 pte = pmap_pte(pmap, va);
2912 if (!pte)
2913 return;
2914
2915 /* Extract the physical address of the page */
2916 pa = pmap_pte_pa(pte);
2917
2918 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2919 return;
2920
2921 simple_lock(&pg->mdpage.pvh_slock);
2922 /* Update the wired bit in the pv entry for this page. */
2923 (void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
2924 simple_unlock(&pg->mdpage.pvh_slock);
2925 }
2926
2927 /*
2928 * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
2929 *
2930 * Return the pointer to a page table entry corresponding to the supplied
2931 * virtual address.
2932 *
2933 * The page directory is first checked to make sure that a page table
2934 * for the address in question exists and if it does a pointer to the
2935 * entry is returned.
2936 *
2937 * The way this works is that that the kernel page tables are mapped
2938 * into the memory map at APTE_BASE to APTE_BASE+4MB. This allows
2939 * page tables to be located quickly.
2940 */
2941 pt_entry_t *
2942 pmap_pte(pmap, va)
2943 struct pmap *pmap;
2944 vaddr_t va;
2945 {
2946 pt_entry_t *ptp;
2947 pt_entry_t *result;
2948
2949 /* The pmap must be valid */
2950 if (!pmap)
2951 return(NULL);
2952
2953 /* Return the address of the pte */
2954 PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
2955 pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
2956
2957 /* Do we have a valid pde ? If not we don't have a page table */
2958 if (!pmap_pde_page(pmap_pde(pmap, va))) {
2959 PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
2960 pmap_pde(pmap, va)));
2961 return(NULL);
2962 }
2963
2964 PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
2965 pmap->pm_pptpt, (*((pt_entry_t *)(PTE_BASE
2966 + (PTE_BASE >> (PGSHIFT - 2)) +
2967 (PTE_BASE >> PDSHIFT))) & PG_FRAME)));
2968
2969 /*
2970 * If the pmap is the kernel pmap or the pmap is the active one
2971 * then we can just return a pointer to entry relative to
2972 * PTE_BASE.
2973 * Otherwise we need to map the page tables to an alternative
2974 * address and reference them there.
2975 */
2976 if (pmap == pmap_kernel() || pmap->pm_pptpt
2977 == (*((pt_entry_t *)(PTE_BASE
2978 + ((PTE_BASE >> (PGSHIFT - 2)) &
2979 ~3) + (PTE_BASE >> PDSHIFT))) & PG_FRAME)) {
2980 ptp = (pt_entry_t *)PTE_BASE;
2981 } else {
2982 struct proc *p = curproc;
2983
2984 /* If we don't have a valid curproc use proc0 */
2985 /* Perhaps we should just use kernel_pmap instead */
2986 if (p == NULL)
2987 p = &proc0;
2988 #ifdef DIAGNOSTIC
2989 /*
2990 * The pmap should always be valid for the process so
2991 * panic if it is not.
2992 */
2993 if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
2994 printf("pmap_pte: va=%08lx p=%p vm=%p\n",
2995 va, p, p->p_vmspace);
2996 console_debugger();
2997 }
2998 /*
2999 * The pmap for the current process should be mapped. If it
3000 * is not then we have a problem.
3001 */
3002 if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
3003 (*((pt_entry_t *)(PTE_BASE
3004 + (PTE_BASE >> (PGSHIFT - 2)) +
3005 (PTE_BASE >> PDSHIFT))) & PG_FRAME)) {
3006 printf("pmap pagetable = P%08lx current = P%08x ",
3007 pmap->pm_pptpt, (*((pt_entry_t *)(PTE_BASE
3008 + (PTE_BASE >> (PGSHIFT - 2)) +
3009 (PTE_BASE >> PDSHIFT))) &
3010 PG_FRAME));
3011 printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
3012 panic("pmap_pte: current and pmap mismatch\n");
3013 }
3014 #endif
3015
3016 ptp = (pt_entry_t *)APTE_BASE;
3017 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
3018 pmap->pm_pptpt, FALSE);
3019 cpu_tlb_flushD();
3020 cpu_cpwait();
3021 }
3022 PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
3023 ((va >> (PGSHIFT-2)) & ~3)));
3024 result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
3025 return(result);
3026 }
3027
3028 /*
3029 * Routine: pmap_extract
3030 * Function:
3031 * Extract the physical page address associated
3032 * with the given map/virtual_address pair.
3033 */
3034 boolean_t
3035 pmap_extract(pmap, va, pap)
3036 struct pmap *pmap;
3037 vaddr_t va;
3038 paddr_t *pap;
3039 {
3040 pd_entry_t *pde;
3041 pt_entry_t *pte, *ptes;
3042 paddr_t pa;
3043 boolean_t rv = TRUE;
3044
3045 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
3046
3047 /*
3048 * Get the pte for this virtual address.
3049 */
3050 pde = pmap_pde(pmap, va);
3051 ptes = pmap_map_ptes(pmap);
3052 pte = &ptes[arm_btop(va)];
3053
3054 if (pmap_pde_section(pde)) {
3055 pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
3056 goto out;
3057 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3058 rv = FALSE;
3059 goto out;
3060 }
3061
3062 if ((*pte & L2_MASK) == L2_LPAGE) {
3063 /* Extract the physical address from the pte */
3064 pa = *pte & ~(L2_LPAGE_SIZE - 1);
3065
3066 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
3067 (pa | (va & (L2_LPAGE_SIZE - 1)))));
3068
3069 if (pap != NULL)
3070 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
3071 goto out;
3072 }
3073
3074 /* Extract the physical address from the pte */
3075 pa = pmap_pte_pa(pte);
3076
3077 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
3078 (pa | (va & ~PG_FRAME))));
3079
3080 if (pap != NULL)
3081 *pap = pa | (va & ~PG_FRAME);
3082 out:
3083 pmap_unmap_ptes(pmap);
3084 return (rv);
3085 }
3086
3087
3088 /*
3089 * Copy the range specified by src_addr/len from the source map to the
3090 * range dst_addr/len in the destination map.
3091 *
3092 * This routine is only advisory and need not do anything.
3093 */
3094
3095 void
3096 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
3097 struct pmap *dst_pmap;
3098 struct pmap *src_pmap;
3099 vaddr_t dst_addr;
3100 vsize_t len;
3101 vaddr_t src_addr;
3102 {
3103 PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
3104 dst_pmap, src_pmap, dst_addr, len, src_addr));
3105 }
3106
3107 #if defined(PMAP_DEBUG)
3108 void
3109 pmap_dump_pvlist(phys, m)
3110 vaddr_t phys;
3111 char *m;
3112 {
3113 struct vm_page *pg;
3114 struct pv_entry *pv;
3115
3116 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3117 printf("INVALID PA\n");
3118 return;
3119 }
3120 simple_lock(&pg->mdpage.pvh_slock);
3121 printf("%s %08lx:", m, phys);
3122 if (pg->mdpage.pvh_list == NULL) {
3123 printf(" no mappings\n");
3124 return;
3125 }
3126
3127 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3128 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3129 pv->pv_va, pv->pv_flags);
3130
3131 printf("\n");
3132 simple_unlock(&pg->mdpage.pvh_slock);
3133 }
3134
3135 #endif /* PMAP_DEBUG */
3136
3137 static pt_entry_t *
3138 pmap_map_ptes(struct pmap *pmap)
3139 {
3140 struct proc *p;
3141
3142 /* the kernel's pmap is always accessible */
3143 if (pmap == pmap_kernel()) {
3144 return (pt_entry_t *)PTE_BASE ;
3145 }
3146
3147 if (pmap_is_curpmap(pmap)) {
3148 simple_lock(&pmap->pm_obj.vmobjlock);
3149 return (pt_entry_t *)PTE_BASE;
3150 }
3151
3152 p = curproc;
3153
3154 if (p == NULL)
3155 p = &proc0;
3156
3157 /* need to lock both curpmap and pmap: use ordered locking */
3158 if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
3159 simple_lock(&pmap->pm_obj.vmobjlock);
3160 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3161 } else {
3162 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3163 simple_lock(&pmap->pm_obj.vmobjlock);
3164 }
3165
3166 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
3167 pmap->pm_pptpt, FALSE);
3168 cpu_tlb_flushD();
3169 cpu_cpwait();
3170 return (pt_entry_t *)APTE_BASE;
3171 }
3172
3173 /*
3174 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3175 */
3176
3177 static void
3178 pmap_unmap_ptes(pmap)
3179 struct pmap *pmap;
3180 {
3181 if (pmap == pmap_kernel()) {
3182 return;
3183 }
3184 if (pmap_is_curpmap(pmap)) {
3185 simple_unlock(&pmap->pm_obj.vmobjlock);
3186 } else {
3187 simple_unlock(&pmap->pm_obj.vmobjlock);
3188 simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3189 }
3190 }
3191
3192 /*
3193 * Modify pte bits for all ptes corresponding to the given physical address.
3194 * We use `maskbits' rather than `clearbits' because we're always passing
3195 * constants and the latter would require an extra inversion at run-time.
3196 */
3197
3198 static void
3199 pmap_clearbit(pg, maskbits)
3200 struct vm_page *pg;
3201 unsigned int maskbits;
3202 {
3203 struct pv_entry *pv;
3204 pt_entry_t *pte;
3205 vaddr_t va;
3206 int tlbentry;
3207
3208 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3209 VM_PAGE_TO_PHYS(pg), maskbits));
3210
3211 tlbentry = 0;
3212
3213 PMAP_HEAD_TO_MAP_LOCK();
3214 simple_lock(&pg->mdpage.pvh_slock);
3215
3216 /*
3217 * Clear saved attributes (modify, reference)
3218 */
3219 pg->mdpage.pvh_attrs &= ~maskbits;
3220
3221 if (pg->mdpage.pvh_list == NULL) {
3222 simple_unlock(&pg->mdpage.pvh_slock);
3223 PMAP_HEAD_TO_MAP_UNLOCK();
3224 return;
3225 }
3226
3227 /*
3228 * Loop over all current mappings setting/clearing as appropos
3229 */
3230 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3231 va = pv->pv_va;
3232 pv->pv_flags &= ~maskbits;
3233 pte = pmap_pte(pv->pv_pmap, va);
3234 KASSERT(pte != NULL);
3235 if (maskbits & (PT_Wr|PT_M)) {
3236 if ((pv->pv_flags & PT_NC)) {
3237 /*
3238 * Entry is not cacheable: reenable
3239 * the cache, nothing to flush
3240 *
3241 * Don't turn caching on again if this
3242 * is a modified emulation. This
3243 * would be inconsitent with the
3244 * settings created by
3245 * pmap_vac_me_harder().
3246 *
3247 * There's no need to call
3248 * pmap_vac_me_harder() here: all
3249 * pages are loosing their write
3250 * permission.
3251 *
3252 */
3253 if (maskbits & PT_Wr) {
3254 *pte |= pte_cache_mode;
3255 pv->pv_flags &= ~PT_NC;
3256 }
3257 } else if (pmap_is_curpmap(pv->pv_pmap))
3258 /*
3259 * Entry is cacheable: check if pmap is
3260 * current if it is flush it,
3261 * otherwise it won't be in the cache
3262 */
3263 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3264
3265 /* make the pte read only */
3266 *pte &= ~PT_AP(AP_W);
3267 }
3268
3269 if (maskbits & PT_H)
3270 *pte = (*pte & ~L2_MASK) | L2_INVAL;
3271
3272 if (pmap_is_curpmap(pv->pv_pmap))
3273 /*
3274 * if we had cacheable pte's we'd clean the
3275 * pte out to memory here
3276 *
3277 * flush tlb entry as it's in the current pmap
3278 */
3279 cpu_tlb_flushID_SE(pv->pv_va);
3280 }
3281 cpu_cpwait();
3282
3283 simple_unlock(&pg->mdpage.pvh_slock);
3284 PMAP_HEAD_TO_MAP_UNLOCK();
3285 }
3286
3287 /*
3288 * pmap_clear_modify:
3289 *
3290 * Clear the "modified" attribute for a page.
3291 */
3292 boolean_t
3293 pmap_clear_modify(pg)
3294 struct vm_page *pg;
3295 {
3296 boolean_t rv;
3297
3298 if (pg->mdpage.pvh_attrs & PT_M) {
3299 rv = TRUE;
3300 pmap_clearbit(pg, PT_M);
3301 } else
3302 rv = FALSE;
3303
3304 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3305 VM_PAGE_TO_PHYS(pg), rv));
3306
3307 return (rv);
3308 }
3309
3310 /*
3311 * pmap_clear_reference:
3312 *
3313 * Clear the "referenced" attribute for a page.
3314 */
3315 boolean_t
3316 pmap_clear_reference(pg)
3317 struct vm_page *pg;
3318 {
3319 boolean_t rv;
3320
3321 if (pg->mdpage.pvh_attrs & PT_H) {
3322 rv = TRUE;
3323 pmap_clearbit(pg, PT_H);
3324 } else
3325 rv = FALSE;
3326
3327 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3328 VM_PAGE_TO_PHYS(pg), rv));
3329
3330 return (rv);
3331 }
3332
3333
3334 void
3335 pmap_copy_on_write(pg)
3336 struct vm_page *pg;
3337 {
3338 PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", VM_PAGE_TO_PHYS(pg)));
3339 pmap_clearbit(pg, PT_Wr);
3340 }
3341
3342 /*
3343 * pmap_is_modified:
3344 *
3345 * Test if a page has the "modified" attribute.
3346 */
3347 /* See <arm/arm32/pmap.h> */
3348
3349 /*
3350 * pmap_is_referenced:
3351 *
3352 * Test if a page has the "referenced" attribute.
3353 */
3354 /* See <arm/arm32/pmap.h> */
3355
3356 int
3357 pmap_modified_emulation(pmap, va)
3358 struct pmap *pmap;
3359 vaddr_t va;
3360 {
3361 pt_entry_t *pte;
3362 paddr_t pa;
3363 struct vm_page *pg;
3364 u_int flags;
3365
3366 PDEBUG(2, printf("pmap_modified_emulation\n"));
3367
3368 /* Get the pte */
3369 pte = pmap_pte(pmap, va);
3370 if (!pte) {
3371 PDEBUG(2, printf("no pte\n"));
3372 return(0);
3373 }
3374
3375 PDEBUG(1, printf("*pte=%08x\n", *pte));
3376
3377 /* Check for a zero pte */
3378 if (*pte == 0)
3379 return(0);
3380
3381 /* This can happen if user code tries to access kernel memory. */
3382 if ((*pte & PT_AP(AP_W)) != 0)
3383 return (0);
3384
3385 /* Extract the physical address of the page */
3386 pa = pmap_pte_pa(pte);
3387 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3388 return(0);
3389
3390 /* Get the current flags for this page. */
3391 PMAP_HEAD_TO_MAP_LOCK();
3392 simple_lock(&pg->mdpage.pvh_slock);
3393
3394 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3395 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3396
3397 /*
3398 * Do the flags say this page is writable ? If not then it is a
3399 * genuine write fault. If yes then the write fault is our fault
3400 * as we did not reflect the write access in the PTE. Now we know
3401 * a write has occurred we can correct this and also set the
3402 * modified bit
3403 */
3404 if (~flags & PT_Wr) {
3405 simple_unlock(&pg->mdpage.pvh_slock);
3406 PMAP_HEAD_TO_MAP_UNLOCK();
3407 return(0);
3408 }
3409
3410 PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
3411 va, pte, *pte));
3412 pg->mdpage.pvh_attrs |= PT_H | PT_M;
3413
3414 /*
3415 * Re-enable write permissions for the page. No need to call
3416 * pmap_vac_me_harder(), since this is just a
3417 * modified-emulation fault, and the PT_Wr bit isn't changing. We've
3418 * already set the cacheable bits based on the assumption that we
3419 * can write to this page.
3420 */
3421 *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3422 PDEBUG(0, printf("->(%08x)\n", *pte));
3423
3424 simple_unlock(&pg->mdpage.pvh_slock);
3425 PMAP_HEAD_TO_MAP_UNLOCK();
3426 /* Return, indicating the problem has been dealt with */
3427 cpu_tlb_flushID_SE(va);
3428 cpu_cpwait();
3429 return(1);
3430 }
3431
3432
3433 int
3434 pmap_handled_emulation(pmap, va)
3435 struct pmap *pmap;
3436 vaddr_t va;
3437 {
3438 pt_entry_t *pte;
3439 paddr_t pa;
3440 struct vm_page *pg;
3441
3442 PDEBUG(2, printf("pmap_handled_emulation\n"));
3443
3444 /* Get the pte */
3445 pte = pmap_pte(pmap, va);
3446 if (!pte) {
3447 PDEBUG(2, printf("no pte\n"));
3448 return(0);
3449 }
3450
3451 PDEBUG(1, printf("*pte=%08x\n", *pte));
3452
3453 /* Check for a zero pte */
3454 if (*pte == 0)
3455 return(0);
3456
3457 /* This can happen if user code tries to access kernel memory. */
3458 if ((*pte & L2_MASK) != L2_INVAL)
3459 return (0);
3460
3461 /* Extract the physical address of the page */
3462 pa = pmap_pte_pa(pte);
3463 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3464 return (0);
3465
3466 /*
3467 * Ok we just enable the pte and mark the attibs as handled
3468 */
3469 PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
3470 va, pte, *pte));
3471 pg->mdpage.pvh_attrs |= PT_H;
3472 *pte = (*pte & ~L2_MASK) | L2_SPAGE;
3473 PDEBUG(0, printf("->(%08x)\n", *pte));
3474
3475 /* Return, indicating the problem has been dealt with */
3476 cpu_tlb_flushID_SE(va);
3477 cpu_cpwait();
3478 return(1);
3479 }
3480
3481
3482
3483
3484 /*
3485 * pmap_collect: free resources held by a pmap
3486 *
3487 * => optional function.
3488 * => called when a process is swapped out to free memory.
3489 */
3490
3491 void
3492 pmap_collect(pmap)
3493 struct pmap *pmap;
3494 {
3495 }
3496
3497 /*
3498 * Routine: pmap_procwr
3499 *
3500 * Function:
3501 * Synchronize caches corresponding to [addr, addr+len) in p.
3502 *
3503 */
3504 void
3505 pmap_procwr(p, va, len)
3506 struct proc *p;
3507 vaddr_t va;
3508 int len;
3509 {
3510 /* We only need to do anything if it is the current process. */
3511 if (p == curproc)
3512 cpu_icache_sync_range(va, len);
3513 }
3514 /*
3515 * PTP functions
3516 */
3517
3518 /*
3519 * pmap_steal_ptp: Steal a PTP from somewhere else.
3520 *
3521 * This is just a placeholder, for now we never steal.
3522 */
3523
3524 static struct vm_page *
3525 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
3526 {
3527 return (NULL);
3528 }
3529
3530 /*
3531 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3532 *
3533 * => pmap should NOT be pmap_kernel()
3534 * => pmap should be locked
3535 */
3536
3537 static struct vm_page *
3538 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3539 {
3540 struct vm_page *ptp;
3541
3542 if (pmap_pde_page(pmap_pde(pmap, va))) {
3543
3544 /* valid... check hint (saves us a PA->PG lookup) */
3545 #if 0
3546 if (pmap->pm_ptphint &&
3547 ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
3548 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3549 return (pmap->pm_ptphint);
3550 #endif
3551 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3552 #ifdef DIAGNOSTIC
3553 if (ptp == NULL)
3554 panic("pmap_get_ptp: unmanaged user PTP");
3555 #endif
3556 // pmap->pm_ptphint = ptp;
3557 return(ptp);
3558 }
3559
3560 /* allocate a new PTP (updates ptphint) */
3561 return(pmap_alloc_ptp(pmap, va, just_try));
3562 }
3563
3564 /*
3565 * pmap_alloc_ptp: allocate a PTP for a PMAP
3566 *
3567 * => pmap should already be locked by caller
3568 * => we use the ptp's wire_count to count the number of active mappings
3569 * in the PTP (we start it at one to prevent any chance this PTP
3570 * will ever leak onto the active/inactive queues)
3571 */
3572
3573 /*__inline */ static struct vm_page *
3574 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3575 {
3576 struct vm_page *ptp;
3577
3578 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3579 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3580 if (ptp == NULL) {
3581 if (just_try)
3582 return (NULL);
3583
3584 ptp = pmap_steal_ptp(pmap, va);
3585
3586 if (ptp == NULL)
3587 return (NULL);
3588 /* Stole a page, zero it. */
3589 pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
3590 }
3591
3592 /* got one! */
3593 ptp->flags &= ~PG_BUSY; /* never busy */
3594 ptp->wire_count = 1; /* no mappings yet */
3595 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3596 pmap->pm_stats.resident_count++; /* count PTP as resident */
3597 // pmap->pm_ptphint = ptp;
3598 return (ptp);
3599 }
3600
3601 vaddr_t
3602 pmap_growkernel(maxkvaddr)
3603 vaddr_t maxkvaddr;
3604 {
3605 struct pmap *kpm = pmap_kernel(), *pm;
3606 int s;
3607 paddr_t ptaddr;
3608 struct vm_page *ptp;
3609
3610 if (maxkvaddr <= pmap_curmaxkvaddr)
3611 goto out; /* we are OK */
3612 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3613 pmap_curmaxkvaddr, maxkvaddr));
3614
3615 /*
3616 * whoops! we need to add kernel PTPs
3617 */
3618
3619 s = splhigh(); /* to be safe */
3620 simple_lock(&kpm->pm_obj.vmobjlock);
3621 /* due to the way the arm pmap works we map 4MB at a time */
3622 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr ; pmap_curmaxkvaddr += 4 * NBPD) {
3623
3624 if (uvm.page_init_done == FALSE) {
3625
3626 /*
3627 * we're growing the kernel pmap early (from
3628 * uvm_pageboot_alloc()). this case must be
3629 * handled a little differently.
3630 */
3631
3632 if (uvm_page_physget(&ptaddr) == FALSE)
3633 panic("pmap_growkernel: out of memory");
3634 pmap_zero_page(ptaddr);
3635
3636 /* map this page in */
3637 pmap_map_in_l1(kpm, (pmap_curmaxkvaddr + 1), ptaddr, TRUE);
3638
3639 /* count PTP as resident */
3640 kpm->pm_stats.resident_count++;
3641 continue;
3642 }
3643
3644 /*
3645 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3646 * pmap_initialized == FALSE CASE! WE MAY BE
3647 * INVOKED WHILE pmap_init() IS RUNNING!
3648 */
3649
3650 if ((ptp = pmap_alloc_ptp(kpm, (pmap_curmaxkvaddr + 1), FALSE)) == NULL) {
3651 panic("pmap_growkernel: alloc ptp failed");
3652 }
3653
3654 /* distribute new kernel PTP to all active pmaps */
3655 simple_lock(&pmaps_lock);
3656 LIST_FOREACH(pm, &pmaps, pm_list) {
3657 pmap_map_in_l1(pm, (pmap_curmaxkvaddr + 1), VM_PAGE_TO_PHYS(ptp), TRUE);
3658 }
3659
3660 simple_unlock(&pmaps_lock);
3661 }
3662
3663 /*
3664 * flush out the cache, expensive but growkernel will happen so
3665 * rarely
3666 */
3667 cpu_tlb_flushD();
3668 cpu_cpwait();
3669
3670 simple_unlock(&kpm->pm_obj.vmobjlock);
3671 splx(s);
3672
3673 out:
3674 return (pmap_curmaxkvaddr);
3675 }
3676
3677
3678
3679 /************************ Bootstrapping routines ****************************/
3680
3681 /*
3682 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3683 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3684 * find them as necessary.
3685 *
3686 * Note that the data on this list is not valid after initarm() returns.
3687 */
3688 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3689
3690 static vaddr_t
3691 kernel_pt_lookup(paddr_t pa)
3692 {
3693 pv_addr_t *pv;
3694
3695 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3696 if (pv->pv_pa == pa)
3697 return (pv->pv_va);
3698 }
3699 return (0);
3700 }
3701
3702 /*
3703 * pmap_map_section:
3704 *
3705 * Create a single section mapping.
3706 */
3707 void
3708 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3709 {
3710 pd_entry_t *pde = (pd_entry_t *) l1pt;
3711 pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3712 pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3713
3714 KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
3715
3716 pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
3717 }
3718
3719 /*
3720 * pmap_map_entry:
3721 *
3722 * Create a single page mapping.
3723 */
3724 void
3725 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3726 {
3727 pd_entry_t *pde = (pd_entry_t *) l1pt;
3728 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3729 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3730 pt_entry_t *pte;
3731
3732 KASSERT(((va | pa) & PGOFSET) == 0);
3733
3734 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3735 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3736
3737 pte = (pt_entry_t *)
3738 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3739 if (pte == NULL)
3740 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3741
3742 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
3743 }
3744
3745 /*
3746 * pmap_link_l2pt:
3747 *
3748 * Link the L2 page table specified by "pa" into the L1
3749 * page table at the slot for "va".
3750 */
3751 void
3752 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3753 {
3754 pd_entry_t *pde = (pd_entry_t *) l1pt;
3755 u_int slot = va >> PDSHIFT;
3756
3757 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3758
3759 pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
3760 pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
3761 pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
3762 pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
3763
3764 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3765 }
3766
3767 /*
3768 * pmap_map_chunk:
3769 *
3770 * Map a chunk of memory using the most efficient mappings
3771 * possible (section, large page, small page) into the
3772 * provided L1 and L2 tables at the specified virtual address.
3773 */
3774 vsize_t
3775 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3776 int prot, int cache)
3777 {
3778 pd_entry_t *pde = (pd_entry_t *) l1pt;
3779 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3780 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3781 pt_entry_t *pte;
3782 vsize_t resid;
3783 int i;
3784
3785 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3786
3787 if (l1pt == 0)
3788 panic("pmap_map_chunk: no L1 table provided");
3789
3790 #ifdef VERBOSE_INIT_ARM
3791 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3792 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3793 #endif
3794
3795 size = resid;
3796
3797 while (resid > 0) {
3798 /* See if we can use a section mapping. */
3799 if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
3800 resid >= L1_SEC_SIZE) {
3801 #ifdef VERBOSE_INIT_ARM
3802 printf("S");
3803 #endif
3804 pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
3805 va += L1_SEC_SIZE;
3806 pa += L1_SEC_SIZE;
3807 resid -= L1_SEC_SIZE;
3808 continue;
3809 }
3810
3811 /*
3812 * Ok, we're going to use an L2 table. Make sure
3813 * one is actually in the corresponding L1 slot
3814 * for the current VA.
3815 */
3816 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3817 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3818
3819 pte = (pt_entry_t *)
3820 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3821 if (pte == NULL)
3822 panic("pmap_map_chunk: can't find L2 table for VA"
3823 "0x%08lx", va);
3824
3825 /* See if we can use a L2 large page mapping. */
3826 if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
3827 resid >= L2_LPAGE_SIZE) {
3828 #ifdef VERBOSE_INIT_ARM
3829 printf("L");
3830 #endif
3831 for (i = 0; i < 16; i++) {
3832 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3833 L2_LPTE(pa, ap, fl);
3834 }
3835 va += L2_LPAGE_SIZE;
3836 pa += L2_LPAGE_SIZE;
3837 resid -= L2_LPAGE_SIZE;
3838 continue;
3839 }
3840
3841 /* Use a small page mapping. */
3842 #ifdef VERBOSE_INIT_ARM
3843 printf("P");
3844 #endif
3845 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
3846 va += NBPG;
3847 pa += NBPG;
3848 resid -= NBPG;
3849 }
3850 #ifdef VERBOSE_INIT_ARM
3851 printf("\n");
3852 #endif
3853 return (size);
3854 }
3855