Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.65
      1 /*	$NetBSD: pmap.c,v 1.65 2002/03/24 18:05:45 chris Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * Copyright (c) 2001 Richard Earnshaw
      6  * Copyright (c) 2001 Christopher Gilbert
      7  * All rights reserved.
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the company nor the name of the author may be used to
     15  *    endorse or promote products derived from this software without specific
     16  *    prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*-
     32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to The NetBSD Foundation
     36  * by Charles M. Hannum.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *        This product includes software developed by the NetBSD
     49  *        Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64  * POSSIBILITY OF SUCH DAMAGE.
     65  */
     66 
     67 /*
     68  * Copyright (c) 1994-1998 Mark Brinicombe.
     69  * Copyright (c) 1994 Brini.
     70  * All rights reserved.
     71  *
     72  * This code is derived from software written for Brini by Mark Brinicombe
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by Mark Brinicombe.
     85  * 4. The name of the author may not be used to endorse or promote products
     86  *    derived from this software without specific prior written permission.
     87  *
     88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97  *
     98  * RiscBSD kernel project
     99  *
    100  * pmap.c
    101  *
    102  * Machine dependant vm stuff
    103  *
    104  * Created      : 20/09/94
    105  */
    106 
    107 /*
    108  * Performance improvements, UVM changes, overhauls and part-rewrites
    109  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110  */
    111 
    112 /*
    113  * The dram block info is currently referenced from the bootconfig.
    114  * This should be placed in a separate structure.
    115  */
    116 
    117 /*
    118  * Special compilation symbols
    119  * PMAP_DEBUG		- Build in pmap_debug_level code
    120  */
    121 
    122 /* Include header files */
    123 
    124 #include "opt_pmap_debug.h"
    125 #include "opt_ddb.h"
    126 
    127 #include <sys/types.h>
    128 #include <sys/param.h>
    129 #include <sys/kernel.h>
    130 #include <sys/systm.h>
    131 #include <sys/proc.h>
    132 #include <sys/malloc.h>
    133 #include <sys/user.h>
    134 #include <sys/pool.h>
    135 #include <sys/cdefs.h>
    136 
    137 #include <uvm/uvm.h>
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/pmap.h>
    142 #include <machine/pcb.h>
    143 #include <machine/param.h>
    144 #include <arm/arm32/katelib.h>
    145 
    146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.65 2002/03/24 18:05:45 chris Exp $");
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 void pmap_dump_pvlist(vaddr_t phys, char *m);
    153 
    154 /*
    155  * for switching to potentially finer grained debugging
    156  */
    157 #define	PDB_FOLLOW	0x0001
    158 #define	PDB_INIT	0x0002
    159 #define	PDB_ENTER	0x0004
    160 #define	PDB_REMOVE	0x0008
    161 #define	PDB_CREATE	0x0010
    162 #define	PDB_PTPAGE	0x0020
    163 #define	PDB_GROWKERN	0x0040
    164 #define	PDB_BITS	0x0080
    165 #define	PDB_COLLECT	0x0100
    166 #define	PDB_PROTECT	0x0200
    167 #define	PDB_MAP_L1	0x0400
    168 #define	PDB_BOOTSTRAP	0x1000
    169 #define	PDB_PARANOIA	0x2000
    170 #define	PDB_WIRING	0x4000
    171 #define	PDB_PVDUMP	0x8000
    172 
    173 int debugmap = 0;
    174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175 #define	NPDEBUG(_lev_,_stat_) \
    176 	if (pmapdebug & (_lev_)) \
    177         	((_stat_))
    178 
    179 #else	/* PMAP_DEBUG */
    180 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182 #endif	/* PMAP_DEBUG */
    183 
    184 struct pmap     kernel_pmap_store;
    185 
    186 /*
    187  * linked list of all non-kernel pmaps
    188  */
    189 
    190 static struct pmap_head pmaps;
    191 
    192 /*
    193  * pool that pmap structures are allocated from
    194  */
    195 
    196 struct pool pmap_pmap_pool;
    197 
    198 static pt_entry_t *csrc_pte, *cdst_pte;
    199 static vaddr_t csrcp, cdstp;
    200 
    201 char *memhook;
    202 extern caddr_t msgbufaddr;
    203 
    204 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    205 /*
    206  * locking data structures
    207  */
    208 
    209 static struct lock pmap_main_lock;
    210 static struct simplelock pvalloc_lock;
    211 static struct simplelock pmaps_lock;
    212 #ifdef LOCKDEBUG
    213 #define PMAP_MAP_TO_HEAD_LOCK() \
    214      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    216      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    217 
    218 #define PMAP_HEAD_TO_MAP_LOCK() \
    219      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    221      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    222 #else
    223 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    224 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    225 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    226 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    227 #endif /* LOCKDEBUG */
    228 
    229 /*
    230  * pv_page management structures: locked by pvalloc_lock
    231  */
    232 
    233 TAILQ_HEAD(pv_pagelist, pv_page);
    234 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    236 static int pv_nfpvents;			/* # of free pv entries */
    237 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    238 static vaddr_t pv_cachedva;		/* cached VA for later use */
    239 
    240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    242 					/* high water mark */
    243 
    244 /*
    245  * local prototypes
    246  */
    247 
    248 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    249 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    250 #define ALLOCPV_NEED	0	/* need PV now */
    251 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    252 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    253 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    254 static void		 pmap_enter_pv __P((struct vm_page *,
    255 					    struct pv_entry *, struct pmap *,
    256 					    vaddr_t, struct vm_page *, int));
    257 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    258 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    259 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    260 static void		 pmap_free_pvpage __P((void));
    261 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    262 static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    263 			vaddr_t));
    264 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    265 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    266 
    267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    268 	u_int, u_int));
    269 
    270 static void pmap_free_l1pt __P((struct l1pt *));
    271 static int pmap_allocpagedir __P((struct pmap *));
    272 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    273 static void pmap_remove_all __P((struct vm_page *));
    274 
    275 
    276 vsize_t npages;
    277 
    278 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    279 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    280 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    281 
    282 extern paddr_t physical_start;
    283 extern paddr_t physical_freestart;
    284 extern paddr_t physical_end;
    285 extern paddr_t physical_freeend;
    286 extern unsigned int free_pages;
    287 extern int max_processes;
    288 
    289 vaddr_t virtual_avail;
    290 vaddr_t virtual_end;
    291 vaddr_t pmap_curmaxkvaddr;
    292 
    293 vaddr_t avail_start;
    294 vaddr_t avail_end;
    295 
    296 extern pv_addr_t systempage;
    297 
    298 /* Variables used by the L1 page table queue code */
    299 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    300 struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    301 int l1pt_static_queue_count;		/* items in the static l1 queue */
    302 int l1pt_static_create_count;		/* static l1 items created */
    303 struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    304 int l1pt_queue_count;			/* items in the l1 queue */
    305 int l1pt_create_count;			/* stat - L1's create count */
    306 int l1pt_reuse_count;			/* stat - L1's reused count */
    307 
    308 /* Local function prototypes (not used outside this file) */
    309 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
    310 void pmap_copy_on_write __P((struct vm_page *));
    311 void pmap_pinit __P((struct pmap *));
    312 void pmap_freepagedir __P((struct pmap *));
    313 
    314 /* Other function prototypes */
    315 extern void bzero_page __P((vaddr_t));
    316 extern void bcopy_page __P((vaddr_t, vaddr_t));
    317 
    318 struct l1pt *pmap_alloc_l1pt __P((void));
    319 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    320      vaddr_t l2pa, boolean_t));
    321 
    322 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    323 static void pmap_unmap_ptes __P((struct pmap *));
    324 
    325 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    326     pt_entry_t *, boolean_t));
    327 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    328     pt_entry_t *, boolean_t));
    329 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    330     pt_entry_t *, boolean_t));
    331 
    332 /*
    333  * Cache enable bits in PTE to use on pages that are cacheable.
    334  * On most machines this is cacheable/bufferable, but on some, eg arm10, we
    335  * can chose between write-through and write-back cacheing.
    336  */
    337 pt_entry_t pte_cache_mode = (PT_C | PT_B);
    338 
    339 /*
    340  * real definition of pv_entry.
    341  */
    342 
    343 struct pv_entry {
    344 	struct pv_entry *pv_next;       /* next pv_entry */
    345 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    346 	vaddr_t         pv_va;          /* virtual address for mapping */
    347 	int             pv_flags;       /* flags */
    348 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    349 };
    350 
    351 /*
    352  * pv_entrys are dynamically allocated in chunks from a single page.
    353  * we keep track of how many pv_entrys are in use for each page and
    354  * we can free pv_entry pages if needed.  there is one lock for the
    355  * entire allocation system.
    356  */
    357 
    358 struct pv_page_info {
    359 	TAILQ_ENTRY(pv_page) pvpi_list;
    360 	struct pv_entry *pvpi_pvfree;
    361 	int pvpi_nfree;
    362 };
    363 
    364 /*
    365  * number of pv_entry's in a pv_page
    366  * (note: won't work on systems where NPBG isn't a constant)
    367  */
    368 
    369 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    370 			sizeof(struct pv_entry))
    371 
    372 /*
    373  * a pv_page: where pv_entrys are allocated from
    374  */
    375 
    376 struct pv_page {
    377 	struct pv_page_info pvinfo;
    378 	struct pv_entry pvents[PVE_PER_PVPAGE];
    379 };
    380 
    381 #ifdef MYCROFT_HACK
    382 int mycroft_hack = 0;
    383 #endif
    384 
    385 /* Function to set the debug level of the pmap code */
    386 
    387 #ifdef PMAP_DEBUG
    388 void
    389 pmap_debug(level)
    390 	int level;
    391 {
    392 	pmap_debug_level = level;
    393 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    394 }
    395 #endif	/* PMAP_DEBUG */
    396 
    397 __inline static boolean_t
    398 pmap_is_curpmap(struct pmap *pmap)
    399 {
    400 
    401 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    402 	    pmap == pmap_kernel())
    403 		return (TRUE);
    404 
    405 	return (FALSE);
    406 }
    407 
    408 #include "isadma.h"
    409 
    410 #if NISADMA > 0
    411 /*
    412  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    413  * pages into the system, memory intersects with any of these ranges,
    414  * the intersecting memory will be loaded into a lower-priority free list.
    415  */
    416 bus_dma_segment_t *pmap_isa_dma_ranges;
    417 int pmap_isa_dma_nranges;
    418 
    419 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    420 	    paddr_t *, psize_t *));
    421 
    422 /*
    423  * Check if a memory range intersects with an ISA DMA range, and
    424  * return the page-rounded intersection if it does.  The intersection
    425  * will be placed on a lower-priority free list.
    426  */
    427 boolean_t
    428 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    429 	paddr_t pa;
    430 	psize_t size;
    431 	paddr_t *pap;
    432 	psize_t *sizep;
    433 {
    434 	bus_dma_segment_t *ds;
    435 	int i;
    436 
    437 	if (pmap_isa_dma_ranges == NULL)
    438 		return (FALSE);
    439 
    440 	for (i = 0, ds = pmap_isa_dma_ranges;
    441 	     i < pmap_isa_dma_nranges; i++, ds++) {
    442 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    443 			/*
    444 			 * Beginning of region intersects with this range.
    445 			 */
    446 			*pap = trunc_page(pa);
    447 			*sizep = round_page(min(pa + size,
    448 			    ds->ds_addr + ds->ds_len) - pa);
    449 			return (TRUE);
    450 		}
    451 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    452 			/*
    453 			 * End of region intersects with this range.
    454 			 */
    455 			*pap = trunc_page(ds->ds_addr);
    456 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    457 			    ds->ds_len));
    458 			return (TRUE);
    459 		}
    460 	}
    461 
    462 	/*
    463 	 * No intersection found.
    464 	 */
    465 	return (FALSE);
    466 }
    467 #endif /* NISADMA > 0 */
    468 
    469 /*
    470  * p v _ e n t r y   f u n c t i o n s
    471  */
    472 
    473 /*
    474  * pv_entry allocation functions:
    475  *   the main pv_entry allocation functions are:
    476  *     pmap_alloc_pv: allocate a pv_entry structure
    477  *     pmap_free_pv: free one pv_entry
    478  *     pmap_free_pvs: free a list of pv_entrys
    479  *
    480  * the rest are helper functions
    481  */
    482 
    483 /*
    484  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    485  * => we lock pvalloc_lock
    486  * => if we fail, we call out to pmap_alloc_pvpage
    487  * => 3 modes:
    488  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    489  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    490  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    491  *			one now
    492  *
    493  * "try" is for optional functions like pmap_copy().
    494  */
    495 
    496 __inline static struct pv_entry *
    497 pmap_alloc_pv(pmap, mode)
    498 	struct pmap *pmap;
    499 	int mode;
    500 {
    501 	struct pv_page *pvpage;
    502 	struct pv_entry *pv;
    503 
    504 	simple_lock(&pvalloc_lock);
    505 
    506 	pvpage = TAILQ_FIRST(&pv_freepages);
    507 
    508 	if (pvpage != NULL) {
    509 		pvpage->pvinfo.pvpi_nfree--;
    510 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    511 			/* nothing left in this one? */
    512 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    513 		}
    514 		pv = pvpage->pvinfo.pvpi_pvfree;
    515 		KASSERT(pv);
    516 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    517 		pv_nfpvents--;  /* took one from pool */
    518 	} else {
    519 		pv = NULL;		/* need more of them */
    520 	}
    521 
    522 	/*
    523 	 * if below low water mark or we didn't get a pv_entry we try and
    524 	 * create more pv_entrys ...
    525 	 */
    526 
    527 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    528 		if (pv == NULL)
    529 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    530 					       mode : ALLOCPV_NEED);
    531 		else
    532 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    533 	}
    534 
    535 	simple_unlock(&pvalloc_lock);
    536 	return(pv);
    537 }
    538 
    539 /*
    540  * pmap_alloc_pvpage: maybe allocate a new pvpage
    541  *
    542  * if need_entry is false: try and allocate a new pv_page
    543  * if need_entry is true: try and allocate a new pv_page and return a
    544  *	new pv_entry from it.   if we are unable to allocate a pv_page
    545  *	we make a last ditch effort to steal a pv_page from some other
    546  *	mapping.    if that fails, we panic...
    547  *
    548  * => we assume that the caller holds pvalloc_lock
    549  */
    550 
    551 static struct pv_entry *
    552 pmap_alloc_pvpage(pmap, mode)
    553 	struct pmap *pmap;
    554 	int mode;
    555 {
    556 	struct vm_page *pg;
    557 	struct pv_page *pvpage;
    558 	struct pv_entry *pv;
    559 	int s;
    560 
    561 	/*
    562 	 * if we need_entry and we've got unused pv_pages, allocate from there
    563 	 */
    564 
    565 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    566 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    567 
    568 		/* move it to pv_freepages list */
    569 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    570 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    571 
    572 		/* allocate a pv_entry */
    573 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    574 		pv = pvpage->pvinfo.pvpi_pvfree;
    575 		KASSERT(pv);
    576 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    577 
    578 		pv_nfpvents--;  /* took one from pool */
    579 		return(pv);
    580 	}
    581 
    582 	/*
    583 	 *  see if we've got a cached unmapped VA that we can map a page in.
    584 	 * if not, try to allocate one.
    585 	 */
    586 
    587 
    588 	if (pv_cachedva == 0) {
    589 		s = splvm();
    590 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    591 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    592 		splx(s);
    593 		if (pv_cachedva == 0) {
    594 			return (NULL);
    595 		}
    596 	}
    597 
    598 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    599 	    UVM_PGA_USERESERVE);
    600 
    601 	if (pg == NULL)
    602 		return (NULL);
    603 	pg->flags &= ~PG_BUSY;	/* never busy */
    604 
    605 	/*
    606 	 * add a mapping for our new pv_page and free its entrys (save one!)
    607 	 *
    608 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    609 	 * pmap is already locked!  (...but entering the mapping is safe...)
    610 	 */
    611 
    612 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    613 		VM_PROT_READ|VM_PROT_WRITE);
    614 	pmap_update(pmap_kernel());
    615 	pvpage = (struct pv_page *) pv_cachedva;
    616 	pv_cachedva = 0;
    617 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    618 }
    619 
    620 /*
    621  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    622  *
    623  * => caller must hold pvalloc_lock
    624  * => if need_entry is true, we allocate and return one pv_entry
    625  */
    626 
    627 static struct pv_entry *
    628 pmap_add_pvpage(pvp, need_entry)
    629 	struct pv_page *pvp;
    630 	boolean_t need_entry;
    631 {
    632 	int tofree, lcv;
    633 
    634 	/* do we need to return one? */
    635 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    636 
    637 	pvp->pvinfo.pvpi_pvfree = NULL;
    638 	pvp->pvinfo.pvpi_nfree = tofree;
    639 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    640 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    641 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    642 	}
    643 	if (need_entry)
    644 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    645 	else
    646 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    647 	pv_nfpvents += tofree;
    648 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    649 }
    650 
    651 /*
    652  * pmap_free_pv_doit: actually free a pv_entry
    653  *
    654  * => do not call this directly!  instead use either
    655  *    1. pmap_free_pv ==> free a single pv_entry
    656  *    2. pmap_free_pvs => free a list of pv_entrys
    657  * => we must be holding pvalloc_lock
    658  */
    659 
    660 __inline static void
    661 pmap_free_pv_doit(pv)
    662 	struct pv_entry *pv;
    663 {
    664 	struct pv_page *pvp;
    665 
    666 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    667 	pv_nfpvents++;
    668 	pvp->pvinfo.pvpi_nfree++;
    669 
    670 	/* nfree == 1 => fully allocated page just became partly allocated */
    671 	if (pvp->pvinfo.pvpi_nfree == 1) {
    672 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    673 	}
    674 
    675 	/* free it */
    676 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    677 	pvp->pvinfo.pvpi_pvfree = pv;
    678 
    679 	/*
    680 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    681 	 */
    682 
    683 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    684 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    685 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    686 	}
    687 }
    688 
    689 /*
    690  * pmap_free_pv: free a single pv_entry
    691  *
    692  * => we gain the pvalloc_lock
    693  */
    694 
    695 __inline static void
    696 pmap_free_pv(pmap, pv)
    697 	struct pmap *pmap;
    698 	struct pv_entry *pv;
    699 {
    700 	simple_lock(&pvalloc_lock);
    701 	pmap_free_pv_doit(pv);
    702 
    703 	/*
    704 	 * Can't free the PV page if the PV entries were associated with
    705 	 * the kernel pmap; the pmap is already locked.
    706 	 */
    707 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    708 	    pmap != pmap_kernel())
    709 		pmap_free_pvpage();
    710 
    711 	simple_unlock(&pvalloc_lock);
    712 }
    713 
    714 /*
    715  * pmap_free_pvs: free a list of pv_entrys
    716  *
    717  * => we gain the pvalloc_lock
    718  */
    719 
    720 __inline static void
    721 pmap_free_pvs(pmap, pvs)
    722 	struct pmap *pmap;
    723 	struct pv_entry *pvs;
    724 {
    725 	struct pv_entry *nextpv;
    726 
    727 	simple_lock(&pvalloc_lock);
    728 
    729 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    730 		nextpv = pvs->pv_next;
    731 		pmap_free_pv_doit(pvs);
    732 	}
    733 
    734 	/*
    735 	 * Can't free the PV page if the PV entries were associated with
    736 	 * the kernel pmap; the pmap is already locked.
    737 	 */
    738 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    739 	    pmap != pmap_kernel())
    740 		pmap_free_pvpage();
    741 
    742 	simple_unlock(&pvalloc_lock);
    743 }
    744 
    745 
    746 /*
    747  * pmap_free_pvpage: try and free an unused pv_page structure
    748  *
    749  * => assume caller is holding the pvalloc_lock and that
    750  *	there is a page on the pv_unusedpgs list
    751  * => if we can't get a lock on the kmem_map we try again later
    752  */
    753 
    754 static void
    755 pmap_free_pvpage()
    756 {
    757 	int s;
    758 	struct vm_map *map;
    759 	struct vm_map_entry *dead_entries;
    760 	struct pv_page *pvp;
    761 
    762 	s = splvm(); /* protect kmem_map */
    763 
    764 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    765 
    766 	/*
    767 	 * note: watch out for pv_initpage which is allocated out of
    768 	 * kernel_map rather than kmem_map.
    769 	 */
    770 	if (pvp == pv_initpage)
    771 		map = kernel_map;
    772 	else
    773 		map = kmem_map;
    774 	if (vm_map_lock_try(map)) {
    775 
    776 		/* remove pvp from pv_unusedpgs */
    777 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    778 
    779 		/* unmap the page */
    780 		dead_entries = NULL;
    781 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    782 		    &dead_entries);
    783 		vm_map_unlock(map);
    784 
    785 		if (dead_entries != NULL)
    786 			uvm_unmap_detach(dead_entries, 0);
    787 
    788 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    789 	}
    790 	if (pvp == pv_initpage)
    791 		/* no more initpage, we've freed it */
    792 		pv_initpage = NULL;
    793 
    794 	splx(s);
    795 }
    796 
    797 /*
    798  * main pv_entry manipulation functions:
    799  *   pmap_enter_pv: enter a mapping onto a vm_page list
    800  *   pmap_remove_pv: remove a mappiing from a vm_page list
    801  *
    802  * NOTE: pmap_enter_pv expects to lock the pvh itself
    803  *       pmap_remove_pv expects te caller to lock the pvh before calling
    804  */
    805 
    806 /*
    807  * pmap_enter_pv: enter a mapping onto a vm_page lst
    808  *
    809  * => caller should hold the proper lock on pmap_main_lock
    810  * => caller should have pmap locked
    811  * => we will gain the lock on the vm_page and allocate the new pv_entry
    812  * => caller should adjust ptp's wire_count before calling
    813  * => caller should not adjust pmap's wire_count
    814  */
    815 
    816 __inline static void
    817 pmap_enter_pv(pg, pve, pmap, va, ptp, flags)
    818 	struct vm_page *pg;
    819 	struct pv_entry *pve;	/* preallocated pve for us to use */
    820 	struct pmap *pmap;
    821 	vaddr_t va;
    822 	struct vm_page *ptp;	/* PTP in pmap that maps this VA */
    823 	int flags;
    824 {
    825 	pve->pv_pmap = pmap;
    826 	pve->pv_va = va;
    827 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    828 	pve->pv_flags = flags;
    829 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    830 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    831 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    832 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    833 	if (pve->pv_flags & PT_W)
    834 		++pmap->pm_stats.wired_count;
    835 }
    836 
    837 /*
    838  * pmap_remove_pv: try to remove a mapping from a pv_list
    839  *
    840  * => caller should hold proper lock on pmap_main_lock
    841  * => pmap should be locked
    842  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    843  * => caller should adjust ptp's wire_count and free PTP if needed
    844  * => caller should NOT adjust pmap's wire_count
    845  * => we return the removed pve
    846  */
    847 
    848 __inline static struct pv_entry *
    849 pmap_remove_pv(pg, pmap, va)
    850 	struct vm_page *pg;
    851 	struct pmap *pmap;
    852 	vaddr_t va;
    853 {
    854 	struct pv_entry *pve, **prevptr;
    855 
    856 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    857 	pve = *prevptr;
    858 	while (pve) {
    859 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    860 			*prevptr = pve->pv_next;		/* remove it! */
    861 			if (pve->pv_flags & PT_W)
    862 			    --pmap->pm_stats.wired_count;
    863 			break;
    864 		}
    865 		prevptr = &pve->pv_next;		/* previous pointer */
    866 		pve = pve->pv_next;			/* advance */
    867 	}
    868 	return(pve);				/* return removed pve */
    869 }
    870 
    871 /*
    872  *
    873  * pmap_modify_pv: Update pv flags
    874  *
    875  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    876  * => caller should NOT adjust pmap's wire_count
    877  * => caller must call pmap_vac_me_harder() if writable status of a page
    878  *    may have changed.
    879  * => we return the old flags
    880  *
    881  * Modify a physical-virtual mapping in the pv table
    882  */
    883 
    884 /*__inline */
    885 static u_int
    886 pmap_modify_pv(pmap, va, pg, bic_mask, eor_mask)
    887 	struct pmap *pmap;
    888 	vaddr_t va;
    889 	struct vm_page *pg;
    890 	u_int bic_mask;
    891 	u_int eor_mask;
    892 {
    893 	struct pv_entry *npv;
    894 	u_int flags, oflags;
    895 
    896 	/*
    897 	 * There is at least one VA mapping this page.
    898 	 */
    899 
    900 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    901 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    902 			oflags = npv->pv_flags;
    903 			npv->pv_flags = flags =
    904 			    ((oflags & ~bic_mask) ^ eor_mask);
    905 			if ((flags ^ oflags) & PT_W) {
    906 				if (flags & PT_W)
    907 					++pmap->pm_stats.wired_count;
    908 				else
    909 					--pmap->pm_stats.wired_count;
    910 			}
    911 			return (oflags);
    912 		}
    913 	}
    914 	return (0);
    915 }
    916 
    917 /*
    918  * Map the specified level 2 pagetable into the level 1 page table for
    919  * the given pmap to cover a chunk of virtual address space starting from the
    920  * address specified.
    921  */
    922 static /*__inline*/ void
    923 pmap_map_in_l1(pmap, va, l2pa, selfref)
    924 	struct pmap *pmap;
    925 	vaddr_t va, l2pa;
    926 	boolean_t selfref;
    927 {
    928 	vaddr_t ptva;
    929 
    930 	/* Calculate the index into the L1 page table. */
    931 	ptva = (va >> PDSHIFT) & ~3;
    932 
    933 	NPDEBUG(PDB_MAP_L1, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    934 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    935 
    936 	/* Map page table into the L1. */
    937 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    938 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    939 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    940 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    941 
    942 	/* Map the page table into the page table area. */
    943 	if (selfref) {
    944 	    NPDEBUG(PDB_MAP_L1, printf("pt self reference %lx in %lx\n",
    945 			L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    946 	    *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    947 		L2_PTE_NC_NB(l2pa, AP_KRW);
    948 	}
    949 	/* XXX should be a purge */
    950 /*	cpu_tlb_flushD();*/
    951 }
    952 
    953 #if 0
    954 static /*__inline*/ void
    955 pmap_unmap_in_l1(pmap, va)
    956 	struct pmap *pmap;
    957 	vaddr_t va;
    958 {
    959 	vaddr_t ptva;
    960 
    961 	/* Calculate the index into the L1 page table. */
    962 	ptva = (va >> PDSHIFT) & ~3;
    963 
    964 	/* Unmap page table from the L1. */
    965 	pmap->pm_pdir[ptva + 0] = 0;
    966 	pmap->pm_pdir[ptva + 1] = 0;
    967 	pmap->pm_pdir[ptva + 2] = 0;
    968 	pmap->pm_pdir[ptva + 3] = 0;
    969 
    970 	/* Unmap the page table from the page table area. */
    971 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    972 
    973 	/* XXX should be a purge */
    974 /*	cpu_tlb_flushD();*/
    975 }
    976 #endif
    977 
    978 /*
    979  *	Used to map a range of physical addresses into kernel
    980  *	virtual address space.
    981  *
    982  *	For now, VM is already on, we only need to map the
    983  *	specified memory.
    984  */
    985 vaddr_t
    986 pmap_map(va, spa, epa, prot)
    987 	vaddr_t va, spa, epa;
    988 	int prot;
    989 {
    990 	while (spa < epa) {
    991 		pmap_kenter_pa(va, spa, prot);
    992 		va += NBPG;
    993 		spa += NBPG;
    994 	}
    995 	pmap_update(pmap_kernel());
    996 	return(va);
    997 }
    998 
    999 
   1000 /*
   1001  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
   1002  *
   1003  * bootstrap the pmap system. This is called from initarm and allows
   1004  * the pmap system to initailise any structures it requires.
   1005  *
   1006  * Currently this sets up the kernel_pmap that is statically allocated
   1007  * and also allocated virtual addresses for certain page hooks.
   1008  * Currently the only one page hook is allocated that is used
   1009  * to zero physical pages of memory.
   1010  * It also initialises the start and end address of the kernel data space.
   1011  */
   1012 extern paddr_t physical_freestart;
   1013 extern paddr_t physical_freeend;
   1014 
   1015 char *boot_head;
   1016 
   1017 void
   1018 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
   1019 	pd_entry_t *kernel_l1pt;
   1020 	pv_addr_t kernel_ptpt;
   1021 {
   1022 	pt_entry_t *pte;
   1023 	int loop;
   1024 	paddr_t start, end;
   1025 #if NISADMA > 0
   1026 	paddr_t istart;
   1027 	psize_t isize;
   1028 #endif
   1029 
   1030 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1031 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1032 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1033 	simple_lock_init(&pmap_kernel()->pm_lock);
   1034 	pmap_kernel()->pm_obj.pgops = NULL;
   1035 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1036 	pmap_kernel()->pm_obj.uo_npages = 0;
   1037 	pmap_kernel()->pm_obj.uo_refs = 1;
   1038 
   1039 	/*
   1040 	 * Initialize PAGE_SIZE-dependent variables.
   1041 	 */
   1042 	uvm_setpagesize();
   1043 
   1044 	npages = 0;
   1045 	loop = 0;
   1046 	while (loop < bootconfig.dramblocks) {
   1047 		start = (paddr_t)bootconfig.dram[loop].address;
   1048 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1049 		if (start < physical_freestart)
   1050 			start = physical_freestart;
   1051 		if (end > physical_freeend)
   1052 			end = physical_freeend;
   1053 #if 0
   1054 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1055 #endif
   1056 #if NISADMA > 0
   1057 		if (pmap_isa_dma_range_intersect(start, end - start,
   1058 		    &istart, &isize)) {
   1059 			/*
   1060 			 * Place the pages that intersect with the
   1061 			 * ISA DMA range onto the ISA DMA free list.
   1062 			 */
   1063 #if 0
   1064 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1065 			    istart + isize - 1);
   1066 #endif
   1067 			uvm_page_physload(atop(istart),
   1068 			    atop(istart + isize), atop(istart),
   1069 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1070 			npages += atop(istart + isize) - atop(istart);
   1071 
   1072 			/*
   1073 			 * Load the pieces that come before
   1074 			 * the intersection into the default
   1075 			 * free list.
   1076 			 */
   1077 			if (start < istart) {
   1078 #if 0
   1079 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1080 				    start, istart - 1);
   1081 #endif
   1082 				uvm_page_physload(atop(start),
   1083 				    atop(istart), atop(start),
   1084 				    atop(istart), VM_FREELIST_DEFAULT);
   1085 				npages += atop(istart) - atop(start);
   1086 			}
   1087 
   1088 			/*
   1089 			 * Load the pieces that come after
   1090 			 * the intersection into the default
   1091 			 * free list.
   1092 			 */
   1093 			if ((istart + isize) < end) {
   1094 #if 0
   1095 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1096 				    (istart + isize), end - 1);
   1097 #endif
   1098 				uvm_page_physload(atop(istart + isize),
   1099 				    atop(end), atop(istart + isize),
   1100 				    atop(end), VM_FREELIST_DEFAULT);
   1101 				npages += atop(end) - atop(istart + isize);
   1102 			}
   1103 		} else {
   1104 			uvm_page_physload(atop(start), atop(end),
   1105 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1106 			npages += atop(end) - atop(start);
   1107 		}
   1108 #else	/* NISADMA > 0 */
   1109 		uvm_page_physload(atop(start), atop(end),
   1110 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1111 		npages += atop(end) - atop(start);
   1112 #endif /* NISADMA > 0 */
   1113 		++loop;
   1114 	}
   1115 
   1116 #ifdef MYCROFT_HACK
   1117 	printf("npages = %ld\n", npages);
   1118 #endif
   1119 
   1120 	virtual_avail = KERNEL_VM_BASE;
   1121 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE - 1;
   1122 
   1123 	/*
   1124 	 * now we allocate the "special" VAs which are used for tmp mappings
   1125 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1126 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1127 	 * we find the PTE that maps the allocated VA via the linear PTE
   1128 	 * mapping.
   1129 	 */
   1130 
   1131 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1132 
   1133 	csrcp = virtual_avail; csrc_pte = pte;
   1134 	virtual_avail += PAGE_SIZE; pte++;
   1135 
   1136 	cdstp = virtual_avail; cdst_pte = pte;
   1137 	virtual_avail += PAGE_SIZE; pte++;
   1138 
   1139 	memhook = (char *) virtual_avail;	/* don't need pte */
   1140 	virtual_avail += PAGE_SIZE; pte++;
   1141 
   1142 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1143 	virtual_avail += round_page(MSGBUFSIZE);
   1144 	pte += atop(round_page(MSGBUFSIZE));
   1145 
   1146 	/*
   1147 	 * init the static-global locks and global lists.
   1148 	 */
   1149 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1150 	simple_lock_init(&pvalloc_lock);
   1151 	simple_lock_init(&pmaps_lock);
   1152 	LIST_INIT(&pmaps);
   1153 	TAILQ_INIT(&pv_freepages);
   1154 	TAILQ_INIT(&pv_unusedpgs);
   1155 
   1156 	/*
   1157 	 * initialize the pmap pool.
   1158 	 */
   1159 
   1160 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1161 		  &pool_allocator_nointr);
   1162 
   1163 	cpu_dcache_wbinv_all();
   1164 }
   1165 
   1166 /*
   1167  * void pmap_init(void)
   1168  *
   1169  * Initialize the pmap module.
   1170  * Called by vm_init() in vm/vm_init.c in order to initialise
   1171  * any structures that the pmap system needs to map virtual memory.
   1172  */
   1173 
   1174 extern int physmem;
   1175 
   1176 void
   1177 pmap_init()
   1178 {
   1179 
   1180 	/*
   1181 	 * Set the available memory vars - These do not map to real memory
   1182 	 * addresses and cannot as the physical memory is fragmented.
   1183 	 * They are used by ps for %mem calculations.
   1184 	 * One could argue whether this should be the entire memory or just
   1185 	 * the memory that is useable in a user process.
   1186 	 */
   1187 	avail_start = 0;
   1188 	avail_end = physmem * NBPG;
   1189 
   1190 	/*
   1191 	 * now we need to free enough pv_entry structures to allow us to get
   1192 	 * the kmem_map/kmem_object allocated and inited (done after this
   1193 	 * function is finished).  to do this we allocate one bootstrap page out
   1194 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1195 	 * structures.   we never free this page.
   1196 	 */
   1197 
   1198 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1199 	if (pv_initpage == NULL)
   1200 		panic("pmap_init: pv_initpage");
   1201 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1202 	pv_nfpvents = 0;
   1203 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1204 
   1205 	pmap_initialized = TRUE;
   1206 
   1207 	/* Initialise our L1 page table queues and counters */
   1208 	SIMPLEQ_INIT(&l1pt_static_queue);
   1209 	l1pt_static_queue_count = 0;
   1210 	l1pt_static_create_count = 0;
   1211 	SIMPLEQ_INIT(&l1pt_queue);
   1212 	l1pt_queue_count = 0;
   1213 	l1pt_create_count = 0;
   1214 	l1pt_reuse_count = 0;
   1215 }
   1216 
   1217 /*
   1218  * pmap_postinit()
   1219  *
   1220  * This routine is called after the vm and kmem subsystems have been
   1221  * initialised. This allows the pmap code to perform any initialisation
   1222  * that can only be done one the memory allocation is in place.
   1223  */
   1224 
   1225 void
   1226 pmap_postinit()
   1227 {
   1228 	int loop;
   1229 	struct l1pt *pt;
   1230 
   1231 #ifdef PMAP_STATIC_L1S
   1232 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1233 #else	/* PMAP_STATIC_L1S */
   1234 	for (loop = 0; loop < max_processes; ++loop) {
   1235 #endif	/* PMAP_STATIC_L1S */
   1236 		/* Allocate a L1 page table */
   1237 		pt = pmap_alloc_l1pt();
   1238 		if (!pt)
   1239 			panic("Cannot allocate static L1 page tables\n");
   1240 
   1241 		/* Clean it */
   1242 		bzero((void *)pt->pt_va, PD_SIZE);
   1243 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1244 		/* Add the page table to the queue */
   1245 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1246 		++l1pt_static_queue_count;
   1247 		++l1pt_static_create_count;
   1248 	}
   1249 }
   1250 
   1251 
   1252 /*
   1253  * Create and return a physical map.
   1254  *
   1255  * If the size specified for the map is zero, the map is an actual physical
   1256  * map, and may be referenced by the hardware.
   1257  *
   1258  * If the size specified is non-zero, the map will be used in software only,
   1259  * and is bounded by that size.
   1260  */
   1261 
   1262 pmap_t
   1263 pmap_create()
   1264 {
   1265 	struct pmap *pmap;
   1266 
   1267 	/*
   1268 	 * Fetch pmap entry from the pool
   1269 	 */
   1270 
   1271 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1272 	/* XXX is this really needed! */
   1273 	memset(pmap, 0, sizeof(*pmap));
   1274 
   1275 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1276 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1277 	TAILQ_INIT(&pmap->pm_obj.memq);
   1278 	pmap->pm_obj.uo_npages = 0;
   1279 	pmap->pm_obj.uo_refs = 1;
   1280 	pmap->pm_stats.wired_count = 0;
   1281 	pmap->pm_stats.resident_count = 1;
   1282 
   1283 	/* Now init the machine part of the pmap */
   1284 	pmap_pinit(pmap);
   1285 	return(pmap);
   1286 }
   1287 
   1288 /*
   1289  * pmap_alloc_l1pt()
   1290  *
   1291  * This routine allocates physical and virtual memory for a L1 page table
   1292  * and wires it.
   1293  * A l1pt structure is returned to describe the allocated page table.
   1294  *
   1295  * This routine is allowed to fail if the required memory cannot be allocated.
   1296  * In this case NULL is returned.
   1297  */
   1298 
   1299 struct l1pt *
   1300 pmap_alloc_l1pt(void)
   1301 {
   1302 	paddr_t pa;
   1303 	vaddr_t va;
   1304 	struct l1pt *pt;
   1305 	int error;
   1306 	struct vm_page *m;
   1307 	pt_entry_t *ptes;
   1308 
   1309 	/* Allocate virtual address space for the L1 page table */
   1310 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1311 	if (va == 0) {
   1312 #ifdef DIAGNOSTIC
   1313 		PDEBUG(0,
   1314 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1315 #endif	/* DIAGNOSTIC */
   1316 		return(NULL);
   1317 	}
   1318 
   1319 	/* Allocate memory for the l1pt structure */
   1320 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1321 
   1322 	/*
   1323 	 * Allocate pages from the VM system.
   1324 	 */
   1325 	TAILQ_INIT(&pt->pt_plist);
   1326 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1327 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1328 	if (error) {
   1329 #ifdef DIAGNOSTIC
   1330 		PDEBUG(0,
   1331 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1332 		    error));
   1333 #endif	/* DIAGNOSTIC */
   1334 		/* Release the resources we already have claimed */
   1335 		free(pt, M_VMPMAP);
   1336 		uvm_km_free(kernel_map, va, PD_SIZE);
   1337 		return(NULL);
   1338 	}
   1339 
   1340 	/* Map our physical pages into our virtual space */
   1341 	pt->pt_va = va;
   1342 	m = TAILQ_FIRST(&pt->pt_plist);
   1343 	ptes = pmap_map_ptes(pmap_kernel());
   1344 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1345 		pa = VM_PAGE_TO_PHYS(m);
   1346 
   1347 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1348 
   1349 		/* Revoke cacheability and bufferability */
   1350 		/* XXX should be done better than this */
   1351 		ptes[arm_btop(va)] &= ~(PT_C | PT_B);
   1352 
   1353 		va += NBPG;
   1354 		m = m->pageq.tqe_next;
   1355 	}
   1356 	pmap_unmap_ptes(pmap_kernel());
   1357 	pmap_update(pmap_kernel());
   1358 
   1359 #ifdef DIAGNOSTIC
   1360 	if (m)
   1361 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1362 #endif	/* DIAGNOSTIC */
   1363 
   1364 	pt->pt_flags = 0;
   1365 	return(pt);
   1366 }
   1367 
   1368 /*
   1369  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1370  */
   1371 static void
   1372 pmap_free_l1pt(pt)
   1373 	struct l1pt *pt;
   1374 {
   1375 	/* Separate the physical memory for the virtual space */
   1376 	pmap_kremove(pt->pt_va, PD_SIZE);
   1377 	pmap_update(pmap_kernel());
   1378 
   1379 	/* Return the physical memory */
   1380 	uvm_pglistfree(&pt->pt_plist);
   1381 
   1382 	/* Free the virtual space */
   1383 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1384 
   1385 	/* Free the l1pt structure */
   1386 	free(pt, M_VMPMAP);
   1387 }
   1388 
   1389 /*
   1390  * Allocate a page directory.
   1391  * This routine will either allocate a new page directory from the pool
   1392  * of L1 page tables currently held by the kernel or it will allocate
   1393  * a new one via pmap_alloc_l1pt().
   1394  * It will then initialise the l1 page table for use.
   1395  *
   1396  * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
   1397  */
   1398 static int
   1399 pmap_allocpagedir(pmap)
   1400 	struct pmap *pmap;
   1401 {
   1402 	paddr_t pa;
   1403 	struct l1pt *pt;
   1404 	pt_entry_t *pte;
   1405 
   1406 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1407 
   1408 	/* Do we have any spare L1's lying around ? */
   1409 	if (l1pt_static_queue_count) {
   1410 		--l1pt_static_queue_count;
   1411 		pt = l1pt_static_queue.sqh_first;
   1412 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1413 	} else if (l1pt_queue_count) {
   1414 		--l1pt_queue_count;
   1415 		pt = l1pt_queue.sqh_first;
   1416 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1417 		++l1pt_reuse_count;
   1418 	} else {
   1419 		pt = pmap_alloc_l1pt();
   1420 		if (!pt)
   1421 			return(ENOMEM);
   1422 		++l1pt_create_count;
   1423 	}
   1424 
   1425 	/* Store the pointer to the l1 descriptor in the pmap. */
   1426 	pmap->pm_l1pt = pt;
   1427 
   1428 	/* Get the physical address of the start of the l1 */
   1429 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1430 
   1431 	/* Store the virtual address of the l1 in the pmap. */
   1432 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1433 
   1434 	/* Clean the L1 if it is dirty */
   1435 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1436 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1437 
   1438 	/* Allocate a page table to map all the page tables for this pmap */
   1439 
   1440 #ifdef DIAGNOSTIC
   1441 	if (pmap->pm_vptpt) {
   1442 		/* XXX What if we have one already ? */
   1443 		panic("pmap_allocpagedir: have pt already\n");
   1444 	}
   1445 #endif	/* DIAGNOSTIC */
   1446 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1447 	if (pmap->pm_vptpt == 0) {
   1448 	    pmap_freepagedir(pmap);
   1449     	    return(ENOMEM);
   1450 	}
   1451 
   1452 	/* need to lock this all up  for growkernel */
   1453 	simple_lock(&pmaps_lock);
   1454 	/* wish we didn't have to keep this locked... */
   1455 
   1456 	/* Duplicate the kernel mappings. */
   1457 	bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1458 		(char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1459 		KERNEL_PD_SIZE);
   1460 
   1461 	pte = vtopte(pmap->pm_vptpt);
   1462 	pmap->pm_pptpt = l2pte_pa(*pte);
   1463 
   1464 	/* Revoke cacheability and bufferability */
   1465 	/* XXX should be done better than this */
   1466 	*pte &= ~(PT_C | PT_B);
   1467 
   1468 	/* Wire in this page table */
   1469 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1470 
   1471 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1472 
   1473 	/*
   1474 	 * Map the kernel page tables into the new PT map.
   1475 	 */
   1476 	bcopy((char *)(PTE_BASE
   1477 	    + (PTE_BASE >> (PGSHIFT - 2))
   1478 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1479 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1480 	    (KERNEL_PD_SIZE >> 2));
   1481 
   1482 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1483 	simple_unlock(&pmaps_lock);
   1484 
   1485 	return(0);
   1486 }
   1487 
   1488 
   1489 /*
   1490  * Initialize a preallocated and zeroed pmap structure,
   1491  * such as one in a vmspace structure.
   1492  */
   1493 
   1494 void
   1495 pmap_pinit(pmap)
   1496 	struct pmap *pmap;
   1497 {
   1498 	int backoff = 6;
   1499 	int retry = 10;
   1500 
   1501 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1502 
   1503 	/* Keep looping until we succeed in allocating a page directory */
   1504 	while (pmap_allocpagedir(pmap) != 0) {
   1505 		/*
   1506 		 * Ok we failed to allocate a suitable block of memory for an
   1507 		 * L1 page table. This means that either:
   1508 		 * 1. 16KB of virtual address space could not be allocated
   1509 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1510 		 *    could not be allocated.
   1511 		 *
   1512 		 * Since we cannot fail we will sleep for a while and try
   1513 		 * again.
   1514 		 *
   1515 		 * Searching for a suitable L1 PT is expensive:
   1516 		 * to avoid hogging the system when memory is really
   1517 		 * scarce, use an exponential back-off so that
   1518 		 * eventually we won't retry more than once every 8
   1519 		 * seconds.  This should allow other processes to run
   1520 		 * to completion and free up resources.
   1521 		 */
   1522 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1523 		    NULL);
   1524 		if (--retry == 0) {
   1525 			retry = 10;
   1526 			if (backoff)
   1527 				--backoff;
   1528 		}
   1529 	}
   1530 
   1531 	/* Map zero page for the pmap. This will also map the L2 for it */
   1532 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1533 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1534 	pmap_update(pmap);
   1535 }
   1536 
   1537 
   1538 void
   1539 pmap_freepagedir(pmap)
   1540 	struct pmap *pmap;
   1541 {
   1542 	/* Free the memory used for the page table mapping */
   1543 	if (pmap->pm_vptpt != 0)
   1544 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1545 
   1546 	/* junk the L1 page table */
   1547 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1548 		/* Add the page table to the queue */
   1549 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1550 		++l1pt_static_queue_count;
   1551 	} else if (l1pt_queue_count < 8) {
   1552 		/* Add the page table to the queue */
   1553 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1554 		++l1pt_queue_count;
   1555 	} else
   1556 		pmap_free_l1pt(pmap->pm_l1pt);
   1557 }
   1558 
   1559 
   1560 /*
   1561  * Retire the given physical map from service.
   1562  * Should only be called if the map contains no valid mappings.
   1563  */
   1564 
   1565 void
   1566 pmap_destroy(pmap)
   1567 	struct pmap *pmap;
   1568 {
   1569 	struct vm_page *page;
   1570 	int count;
   1571 
   1572 	if (pmap == NULL)
   1573 		return;
   1574 
   1575 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1576 
   1577 	/*
   1578 	 * Drop reference count
   1579 	 */
   1580 	simple_lock(&pmap->pm_obj.vmobjlock);
   1581 	count = --pmap->pm_obj.uo_refs;
   1582 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1583 	if (count > 0) {
   1584 		return;
   1585 	}
   1586 
   1587 	/*
   1588 	 * reference count is zero, free pmap resources and then free pmap.
   1589 	 */
   1590 
   1591 	/*
   1592 	 * remove it from global list of pmaps
   1593 	 */
   1594 
   1595 	simple_lock(&pmaps_lock);
   1596 	LIST_REMOVE(pmap, pm_list);
   1597 	simple_unlock(&pmaps_lock);
   1598 
   1599 	/* Remove the zero page mapping */
   1600 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1601 	pmap_update(pmap);
   1602 
   1603 	/*
   1604 	 * Free any page tables still mapped
   1605 	 * This is only temporay until pmap_enter can count the number
   1606 	 * of mappings made in a page table. Then pmap_remove() can
   1607 	 * reduce the count and free the pagetable when the count
   1608 	 * reaches zero.  Note that entries in this list should match the
   1609 	 * contents of the ptpt, however this is faster than walking a 1024
   1610 	 * entries looking for pt's
   1611 	 * taken from i386 pmap.c
   1612 	 */
   1613 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1614 		KASSERT((page->flags & PG_BUSY) == 0);
   1615 		page->wire_count = 0;
   1616 		uvm_pagefree(page);
   1617 	}
   1618 
   1619 	/* Free the page dir */
   1620 	pmap_freepagedir(pmap);
   1621 
   1622 	/* return the pmap to the pool */
   1623 	pool_put(&pmap_pmap_pool, pmap);
   1624 }
   1625 
   1626 
   1627 /*
   1628  * void pmap_reference(struct pmap *pmap)
   1629  *
   1630  * Add a reference to the specified pmap.
   1631  */
   1632 
   1633 void
   1634 pmap_reference(pmap)
   1635 	struct pmap *pmap;
   1636 {
   1637 	if (pmap == NULL)
   1638 		return;
   1639 
   1640 	simple_lock(&pmap->pm_lock);
   1641 	pmap->pm_obj.uo_refs++;
   1642 	simple_unlock(&pmap->pm_lock);
   1643 }
   1644 
   1645 /*
   1646  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1647  *
   1648  * Return the start and end addresses of the kernel's virtual space.
   1649  * These values are setup in pmap_bootstrap and are updated as pages
   1650  * are allocated.
   1651  */
   1652 
   1653 void
   1654 pmap_virtual_space(start, end)
   1655 	vaddr_t *start;
   1656 	vaddr_t *end;
   1657 {
   1658 	*start = virtual_avail;
   1659 	*end = virtual_end;
   1660 }
   1661 
   1662 
   1663 /*
   1664  * Activate the address space for the specified process.  If the process
   1665  * is the current process, load the new MMU context.
   1666  */
   1667 void
   1668 pmap_activate(p)
   1669 	struct proc *p;
   1670 {
   1671 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1672 	struct pcb *pcb = &p->p_addr->u_pcb;
   1673 
   1674 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1675 	    (paddr_t *)&pcb->pcb_pagedir);
   1676 
   1677 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1678 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1679 
   1680 	if (p == curproc) {
   1681 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1682 		setttb((u_int)pcb->pcb_pagedir);
   1683 	}
   1684 #if 0
   1685 	pmap->pm_pdchanged = FALSE;
   1686 #endif
   1687 }
   1688 
   1689 
   1690 /*
   1691  * Deactivate the address space of the specified process.
   1692  */
   1693 void
   1694 pmap_deactivate(p)
   1695 	struct proc *p;
   1696 {
   1697 }
   1698 
   1699 /*
   1700  * Perform any deferred pmap operations.
   1701  */
   1702 void
   1703 pmap_update(struct pmap *pmap)
   1704 {
   1705 
   1706 	/*
   1707 	 * We haven't deferred any pmap operations, but we do need to
   1708 	 * make sure TLB/cache operations have completed.
   1709 	 */
   1710 	cpu_cpwait();
   1711 }
   1712 
   1713 /*
   1714  * pmap_clean_page()
   1715  *
   1716  * This is a local function used to work out the best strategy to clean
   1717  * a single page referenced by its entry in the PV table. It's used by
   1718  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1719  *
   1720  * Its policy is effectively:
   1721  *  o If there are no mappings, we don't bother doing anything with the cache.
   1722  *  o If there is one mapping, we clean just that page.
   1723  *  o If there are multiple mappings, we clean the entire cache.
   1724  *
   1725  * So that some functions can be further optimised, it returns 0 if it didn't
   1726  * clean the entire cache, or 1 if it did.
   1727  *
   1728  * XXX One bug in this routine is that if the pv_entry has a single page
   1729  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1730  * just the 1 page. Since this should not occur in everyday use and if it does
   1731  * it will just result in not the most efficient clean for the page.
   1732  */
   1733 static int
   1734 pmap_clean_page(pv, is_src)
   1735 	struct pv_entry *pv;
   1736 	boolean_t is_src;
   1737 {
   1738 	struct pmap *pmap;
   1739 	struct pv_entry *npv;
   1740 	int cache_needs_cleaning = 0;
   1741 	vaddr_t page_to_clean = 0;
   1742 
   1743 	if (pv == NULL)
   1744 		/* nothing mapped in so nothing to flush */
   1745 		return (0);
   1746 
   1747 	/* Since we flush the cache each time we change curproc, we
   1748 	 * only need to flush the page if it is in the current pmap.
   1749 	 */
   1750 	if (curproc)
   1751 		pmap = curproc->p_vmspace->vm_map.pmap;
   1752 	else
   1753 		pmap = pmap_kernel();
   1754 
   1755 	for (npv = pv; npv; npv = npv->pv_next) {
   1756 		if (npv->pv_pmap == pmap) {
   1757 			/* The page is mapped non-cacheable in
   1758 			 * this map.  No need to flush the cache.
   1759 			 */
   1760 			if (npv->pv_flags & PT_NC) {
   1761 #ifdef DIAGNOSTIC
   1762 				if (cache_needs_cleaning)
   1763 					panic("pmap_clean_page: "
   1764 							"cache inconsistency");
   1765 #endif
   1766 				break;
   1767 			}
   1768 #if 0
   1769 			/* This doesn't work, because pmap_protect
   1770 			   doesn't flush changes on pages that it
   1771 			   has write-protected.  */
   1772 
   1773 			/* If the page is not writable and this
   1774 			   is the source, then there is no need
   1775 			   to flush it from the cache.  */
   1776 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1777 				continue;
   1778 #endif
   1779 			if (cache_needs_cleaning){
   1780 				page_to_clean = 0;
   1781 				break;
   1782 			}
   1783 			else
   1784 				page_to_clean = npv->pv_va;
   1785 			cache_needs_cleaning = 1;
   1786 		}
   1787 	}
   1788 
   1789 	if (page_to_clean)
   1790 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1791 	else if (cache_needs_cleaning) {
   1792 		cpu_idcache_wbinv_all();
   1793 		return (1);
   1794 	}
   1795 	return (0);
   1796 }
   1797 
   1798 /*
   1799  * pmap_zero_page()
   1800  *
   1801  * Zero a given physical page by mapping it at a page hook point.
   1802  * In doing the zero page op, the page we zero is mapped cachable, as with
   1803  * StrongARM accesses to non-cached pages are non-burst making writing
   1804  * _any_ bulk data very slow.
   1805  */
   1806 void
   1807 pmap_zero_page(phys)
   1808 	paddr_t phys;
   1809 {
   1810 	struct vm_page *pg;
   1811 
   1812 	/* Get an entry for this page, and clean it it. */
   1813 	pg = PHYS_TO_VM_PAGE(phys);
   1814 	simple_lock(&pg->mdpage.pvh_slock);
   1815 	pmap_clean_page(pg->mdpage.pvh_list, FALSE);
   1816 	simple_unlock(&pg->mdpage.pvh_slock);
   1817 
   1818 	/*
   1819 	 * Hook in the page, zero it, and purge the cache for that
   1820 	 * zeroed page. Invalidate the TLB as needed.
   1821 	 */
   1822 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1823 	cpu_tlb_flushD_SE(cdstp);
   1824 	cpu_cpwait();
   1825 	bzero_page(cdstp);
   1826 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1827 }
   1828 
   1829 /* pmap_pageidlezero()
   1830  *
   1831  * The same as above, except that we assume that the page is not
   1832  * mapped.  This means we never have to flush the cache first.  Called
   1833  * from the idle loop.
   1834  */
   1835 boolean_t
   1836 pmap_pageidlezero(phys)
   1837     paddr_t phys;
   1838 {
   1839 	int i, *ptr;
   1840 	boolean_t rv = TRUE;
   1841 
   1842 #ifdef DIAGNOSTIC
   1843 	struct vm_page *pg;
   1844 
   1845 	pg = PHYS_TO_VM_PAGE(phys);
   1846 	if (pg->mdpage.pvh_list != NULL)
   1847 		panic("pmap_pageidlezero: zeroing mapped page\n");
   1848 #endif
   1849 
   1850 	/*
   1851 	 * Hook in the page, zero it, and purge the cache for that
   1852 	 * zeroed page. Invalidate the TLB as needed.
   1853 	 */
   1854 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1855 	cpu_tlb_flushD_SE(cdstp);
   1856 	cpu_cpwait();
   1857 
   1858 	for (i = 0, ptr = (int *)cdstp;
   1859 			i < (NBPG / sizeof(int)); i++) {
   1860 		if (sched_whichqs != 0) {
   1861 			/*
   1862 			 * A process has become ready.  Abort now,
   1863 			 * so we don't keep it waiting while we
   1864 			 * do slow memory access to finish this
   1865 			 * page.
   1866 			 */
   1867 			rv = FALSE;
   1868 			break;
   1869 		}
   1870 		*ptr++ = 0;
   1871 	}
   1872 
   1873 	if (rv)
   1874 		/*
   1875 		 * if we aborted we'll rezero this page again later so don't
   1876 		 * purge it unless we finished it
   1877 		 */
   1878 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1879 	return (rv);
   1880 }
   1881 
   1882 /*
   1883  * pmap_copy_page()
   1884  *
   1885  * Copy one physical page into another, by mapping the pages into
   1886  * hook points. The same comment regarding cachability as in
   1887  * pmap_zero_page also applies here.
   1888  */
   1889 void
   1890 pmap_copy_page(src, dest)
   1891 	paddr_t src;
   1892 	paddr_t dest;
   1893 {
   1894 	struct vm_page *src_pg, *dest_pg;
   1895 	boolean_t cleanedcache;
   1896 
   1897 	/* Get PV entries for the pages, and clean them if needed. */
   1898 	src_pg = PHYS_TO_VM_PAGE(src);
   1899 
   1900 	simple_lock(&src_pg->mdpage.pvh_slock);
   1901 	cleanedcache = pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1902 	simple_unlock(&src_pg->mdpage.pvh_slock);
   1903 
   1904 	if (cleanedcache == 0) {
   1905 		dest_pg = PHYS_TO_VM_PAGE(dest);
   1906 		simple_lock(&dest_pg->mdpage.pvh_slock);
   1907 		pmap_clean_page(dest_pg->mdpage.pvh_list, FALSE);
   1908 		simple_unlock(&dest_pg->mdpage.pvh_slock);
   1909 	}
   1910 	/*
   1911 	 * Map the pages into the page hook points, copy them, and purge
   1912 	 * the cache for the appropriate page. Invalidate the TLB
   1913 	 * as required.
   1914 	 */
   1915 	*csrc_pte = L2_PTE(src & PG_FRAME, AP_KR);
   1916 	*cdst_pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1917 	cpu_tlb_flushD_SE(csrcp);
   1918 	cpu_tlb_flushD_SE(cdstp);
   1919 	cpu_cpwait();
   1920 	bcopy_page(csrcp, cdstp);
   1921 	cpu_dcache_inv_range(csrcp, NBPG);
   1922 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1923 }
   1924 
   1925 #if 0
   1926 void
   1927 pmap_pte_addref(pmap, va)
   1928 	struct pmap *pmap;
   1929 	vaddr_t va;
   1930 {
   1931 	pd_entry_t *pde;
   1932 	paddr_t pa;
   1933 	struct vm_page *m;
   1934 
   1935 	if (pmap == pmap_kernel())
   1936 		return;
   1937 
   1938 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1939 	pa = pmap_pte_pa(pde);
   1940 	m = PHYS_TO_VM_PAGE(pa);
   1941 	++m->wire_count;
   1942 #ifdef MYCROFT_HACK
   1943 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1944 	    pmap, va, pde, pa, m, m->wire_count);
   1945 #endif
   1946 }
   1947 
   1948 void
   1949 pmap_pte_delref(pmap, va)
   1950 	struct pmap *pmap;
   1951 	vaddr_t va;
   1952 {
   1953 	pd_entry_t *pde;
   1954 	paddr_t pa;
   1955 	struct vm_page *m;
   1956 
   1957 	if (pmap == pmap_kernel())
   1958 		return;
   1959 
   1960 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1961 	pa = pmap_pte_pa(pde);
   1962 	m = PHYS_TO_VM_PAGE(pa);
   1963 	--m->wire_count;
   1964 #ifdef MYCROFT_HACK
   1965 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1966 	    pmap, va, pde, pa, m, m->wire_count);
   1967 #endif
   1968 	if (m->wire_count == 0) {
   1969 #ifdef MYCROFT_HACK
   1970 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1971 		    pmap, va, pde, pa, m);
   1972 #endif
   1973 		pmap_unmap_in_l1(pmap, va);
   1974 		uvm_pagefree(m);
   1975 		--pmap->pm_stats.resident_count;
   1976 	}
   1977 }
   1978 #else
   1979 #define	pmap_pte_addref(pmap, va)
   1980 #define	pmap_pte_delref(pmap, va)
   1981 #endif
   1982 
   1983 /*
   1984  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1985  * there is more than one mapping and at least one of them is writable.
   1986  * Since we purge the cache on every context switch, we only need to check for
   1987  * other mappings within the same pmap, or kernel_pmap.
   1988  * This function is also called when a page is unmapped, to possibly reenable
   1989  * caching on any remaining mappings.
   1990  *
   1991  * The code implements the following logic, where:
   1992  *
   1993  * KW = # of kernel read/write pages
   1994  * KR = # of kernel read only pages
   1995  * UW = # of user read/write pages
   1996  * UR = # of user read only pages
   1997  * OW = # of user read/write pages in another pmap, then
   1998  *
   1999  * KC = kernel mapping is cacheable
   2000  * UC = user mapping is cacheable
   2001  *
   2002  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2003  *                   +---------------------------------------------
   2004  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2005  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2006  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2007  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2008  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2009  *
   2010  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2011  */
   2012 __inline static void
   2013 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2014 	boolean_t clear_cache)
   2015 {
   2016 	if (pmap == pmap_kernel())
   2017 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2018 	else
   2019 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2020 }
   2021 
   2022 static void
   2023 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2024 	boolean_t clear_cache)
   2025 {
   2026 	int user_entries = 0;
   2027 	int user_writable = 0;
   2028 	int user_cacheable = 0;
   2029 	int kernel_entries = 0;
   2030 	int kernel_writable = 0;
   2031 	int kernel_cacheable = 0;
   2032 	struct pv_entry *pv;
   2033 	struct pmap *last_pmap = pmap;
   2034 
   2035 #ifdef DIAGNOSTIC
   2036 	if (pmap != pmap_kernel())
   2037 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2038 #endif
   2039 
   2040 	/*
   2041 	 * Pass one, see if there are both kernel and user pmaps for
   2042 	 * this page.  Calculate whether there are user-writable or
   2043 	 * kernel-writable pages.
   2044 	 */
   2045 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2046 		if (pv->pv_pmap != pmap) {
   2047 			user_entries++;
   2048 			if (pv->pv_flags & PT_Wr)
   2049 				user_writable++;
   2050 			if ((pv->pv_flags & PT_NC) == 0)
   2051 				user_cacheable++;
   2052 		} else {
   2053 			kernel_entries++;
   2054 			if (pv->pv_flags & PT_Wr)
   2055 				kernel_writable++;
   2056 			if ((pv->pv_flags & PT_NC) == 0)
   2057 				kernel_cacheable++;
   2058 		}
   2059 	}
   2060 
   2061 	/*
   2062 	 * We know we have just been updating a kernel entry, so if
   2063 	 * all user pages are already cacheable, then there is nothing
   2064 	 * further to do.
   2065 	 */
   2066 	if (kernel_entries == 0 &&
   2067 	    user_cacheable == user_entries)
   2068 		return;
   2069 
   2070 	if (user_entries) {
   2071 		/*
   2072 		 * Scan over the list again, for each entry, if it
   2073 		 * might not be set correctly, call pmap_vac_me_user
   2074 		 * to recalculate the settings.
   2075 		 */
   2076 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2077 			/*
   2078 			 * We know kernel mappings will get set
   2079 			 * correctly in other calls.  We also know
   2080 			 * that if the pmap is the same as last_pmap
   2081 			 * then we've just handled this entry.
   2082 			 */
   2083 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2084 				continue;
   2085 			/*
   2086 			 * If there are kernel entries and this page
   2087 			 * is writable but non-cacheable, then we can
   2088 			 * skip this entry also.
   2089 			 */
   2090 			if (kernel_entries > 0 &&
   2091 			    (pv->pv_flags & (PT_NC | PT_Wr)) ==
   2092 			    (PT_NC | PT_Wr))
   2093 				continue;
   2094 			/*
   2095 			 * Similarly if there are no kernel-writable
   2096 			 * entries and the page is already
   2097 			 * read-only/cacheable.
   2098 			 */
   2099 			if (kernel_writable == 0 &&
   2100 			    (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
   2101 				continue;
   2102 			/*
   2103 			 * For some of the remaining cases, we know
   2104 			 * that we must recalculate, but for others we
   2105 			 * can't tell if they are correct or not, so
   2106 			 * we recalculate anyway.
   2107 			 */
   2108 			pmap_unmap_ptes(last_pmap);
   2109 			last_pmap = pv->pv_pmap;
   2110 			ptes = pmap_map_ptes(last_pmap);
   2111 			pmap_vac_me_user(last_pmap, pg, ptes,
   2112 			    pmap_is_curpmap(last_pmap));
   2113 		}
   2114 		/* Restore the pte mapping that was passed to us.  */
   2115 		if (last_pmap != pmap) {
   2116 			pmap_unmap_ptes(last_pmap);
   2117 			ptes = pmap_map_ptes(pmap);
   2118 		}
   2119 		if (kernel_entries == 0)
   2120 			return;
   2121 	}
   2122 
   2123 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2124 	return;
   2125 }
   2126 
   2127 static void
   2128 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2129 	boolean_t clear_cache)
   2130 {
   2131 	struct pmap *kpmap = pmap_kernel();
   2132 	struct pv_entry *pv, *npv;
   2133 	int entries = 0;
   2134 	int writable = 0;
   2135 	int cacheable_entries = 0;
   2136 	int kern_cacheable = 0;
   2137 	int other_writable = 0;
   2138 
   2139 	pv = pg->mdpage.pvh_list;
   2140 	KASSERT(ptes != NULL);
   2141 
   2142 	/*
   2143 	 * Count mappings and writable mappings in this pmap.
   2144 	 * Include kernel mappings as part of our own.
   2145 	 * Keep a pointer to the first one.
   2146 	 */
   2147 	for (npv = pv; npv; npv = npv->pv_next) {
   2148 		/* Count mappings in the same pmap */
   2149 		if (pmap == npv->pv_pmap ||
   2150 		    kpmap == npv->pv_pmap) {
   2151 			if (entries++ == 0)
   2152 				pv = npv;
   2153 			/* Cacheable mappings */
   2154 			if ((npv->pv_flags & PT_NC) == 0) {
   2155 				cacheable_entries++;
   2156 				if (kpmap == npv->pv_pmap)
   2157 					kern_cacheable++;
   2158 			}
   2159 			/* Writable mappings */
   2160 			if (npv->pv_flags & PT_Wr)
   2161 				++writable;
   2162 		} else if (npv->pv_flags & PT_Wr)
   2163 			other_writable = 1;
   2164 	}
   2165 
   2166 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2167 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2168 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2169 
   2170 	/*
   2171 	 * Enable or disable caching as necessary.
   2172 	 * Note: the first entry might be part of the kernel pmap,
   2173 	 * so we can't assume this is indicative of the state of the
   2174 	 * other (maybe non-kpmap) entries.
   2175 	 */
   2176 	if ((entries > 1 && writable) ||
   2177 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2178 		if (cacheable_entries == 0)
   2179 		    return;
   2180 		for (npv = pv; npv; npv = npv->pv_next) {
   2181 			if ((pmap == npv->pv_pmap
   2182 			    || kpmap == npv->pv_pmap) &&
   2183 			    (npv->pv_flags & PT_NC) == 0) {
   2184 				ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
   2185  				npv->pv_flags |= PT_NC;
   2186 				/*
   2187 				 * If this page needs flushing from the
   2188 				 * cache, and we aren't going to do it
   2189 				 * below, do it now.
   2190 				 */
   2191 				if ((cacheable_entries < 4 &&
   2192 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2193 				    (npv->pv_pmap == kpmap &&
   2194 				    !clear_cache && kern_cacheable < 4)) {
   2195 					cpu_idcache_wbinv_range(npv->pv_va,
   2196 					    NBPG);
   2197 					cpu_tlb_flushID_SE(npv->pv_va);
   2198 				}
   2199 			}
   2200 		}
   2201 		if ((clear_cache && cacheable_entries >= 4) ||
   2202 		    kern_cacheable >= 4) {
   2203 			cpu_idcache_wbinv_all();
   2204 			cpu_tlb_flushID();
   2205 		}
   2206 		cpu_cpwait();
   2207 	} else if (entries > 0) {
   2208 		/*
   2209 		 * Turn cacheing back on for some pages.  If it is a kernel
   2210 		 * page, only do so if there are no other writable pages.
   2211 		 */
   2212 		for (npv = pv; npv; npv = npv->pv_next) {
   2213 			if ((pmap == npv->pv_pmap ||
   2214 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2215 			    (npv->pv_flags & PT_NC)) {
   2216 				ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
   2217 				npv->pv_flags &= ~PT_NC;
   2218 			}
   2219 		}
   2220 	}
   2221 }
   2222 
   2223 /*
   2224  * pmap_remove()
   2225  *
   2226  * pmap_remove is responsible for nuking a number of mappings for a range
   2227  * of virtual address space in the current pmap. To do this efficiently
   2228  * is interesting, because in a number of cases a wide virtual address
   2229  * range may be supplied that contains few actual mappings. So, the
   2230  * optimisations are:
   2231  *  1. Try and skip over hunks of address space for which an L1 entry
   2232  *     does not exist.
   2233  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2234  *     maybe do just a partial cache clean. This path of execution is
   2235  *     complicated by the fact that the cache must be flushed _before_
   2236  *     the PTE is nuked, being a VAC :-)
   2237  *  3. Maybe later fast-case a single page, but I don't think this is
   2238  *     going to make _that_ much difference overall.
   2239  */
   2240 
   2241 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2242 
   2243 void
   2244 pmap_remove(pmap, sva, eva)
   2245 	struct pmap *pmap;
   2246 	vaddr_t sva;
   2247 	vaddr_t eva;
   2248 {
   2249 	int cleanlist_idx = 0;
   2250 	struct pagelist {
   2251 		vaddr_t va;
   2252 		pt_entry_t *pte;
   2253 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2254 	pt_entry_t *pte = 0, *ptes;
   2255 	paddr_t pa;
   2256 	int pmap_active;
   2257 	struct vm_page *pg;
   2258 
   2259 	/* Exit quick if there is no pmap */
   2260 	if (!pmap)
   2261 		return;
   2262 
   2263 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2264 
   2265 	sva &= PG_FRAME;
   2266 	eva &= PG_FRAME;
   2267 
   2268 	/*
   2269 	 * we lock in the pmap => vm_page direction
   2270 	 */
   2271 	PMAP_MAP_TO_HEAD_LOCK();
   2272 
   2273 	ptes = pmap_map_ptes(pmap);
   2274 	/* Get a page table pointer */
   2275 	while (sva < eva) {
   2276 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2277 			break;
   2278 		sva = (sva & PD_MASK) + NBPD;
   2279 	}
   2280 
   2281 	pte = &ptes[arm_btop(sva)];
   2282 	/* Note if the pmap is active thus require cache and tlb cleans */
   2283 	pmap_active = pmap_is_curpmap(pmap);
   2284 
   2285 	/* Now loop along */
   2286 	while (sva < eva) {
   2287 		/* Check if we can move to the next PDE (l1 chunk) */
   2288 		if (!(sva & PT_MASK))
   2289 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2290 				sva += NBPD;
   2291 				pte += arm_btop(NBPD);
   2292 				continue;
   2293 			}
   2294 
   2295 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2296 		if (pmap_pte_v(pte)) {
   2297 			/* Update statistics */
   2298 			--pmap->pm_stats.resident_count;
   2299 
   2300 			/*
   2301 			 * Add this page to our cache remove list, if we can.
   2302 			 * If, however the cache remove list is totally full,
   2303 			 * then do a complete cache invalidation taking note
   2304 			 * to backtrack the PTE table beforehand, and ignore
   2305 			 * the lists in future because there's no longer any
   2306 			 * point in bothering with them (we've paid the
   2307 			 * penalty, so will carry on unhindered). Otherwise,
   2308 			 * when we fall out, we just clean the list.
   2309 			 */
   2310 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2311 			pa = pmap_pte_pa(pte);
   2312 
   2313 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2314 				/* Add to the clean list. */
   2315 				cleanlist[cleanlist_idx].pte = pte;
   2316 				cleanlist[cleanlist_idx].va = sva;
   2317 				cleanlist_idx++;
   2318 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2319 				int cnt;
   2320 
   2321 				/* Nuke everything if needed. */
   2322 				if (pmap_active) {
   2323 					cpu_idcache_wbinv_all();
   2324 					cpu_tlb_flushID();
   2325 				}
   2326 
   2327 				/*
   2328 				 * Roll back the previous PTE list,
   2329 				 * and zero out the current PTE.
   2330 				 */
   2331 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2332 					*cleanlist[cnt].pte = 0;
   2333 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2334 				}
   2335 				*pte = 0;
   2336 				pmap_pte_delref(pmap, sva);
   2337 				cleanlist_idx++;
   2338 			} else {
   2339 				/*
   2340 				 * We've already nuked the cache and
   2341 				 * TLB, so just carry on regardless,
   2342 				 * and we won't need to do it again
   2343 				 */
   2344 				*pte = 0;
   2345 				pmap_pte_delref(pmap, sva);
   2346 			}
   2347 
   2348 			/*
   2349 			 * Update flags. In a number of circumstances,
   2350 			 * we could cluster a lot of these and do a
   2351 			 * number of sequential pages in one go.
   2352 			 */
   2353 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2354 				struct pv_entry *pve;
   2355 				simple_lock(&pg->mdpage.pvh_slock);
   2356 				pve = pmap_remove_pv(pg, pmap, sva);
   2357 				pmap_free_pv(pmap, pve);
   2358 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2359 				simple_unlock(&pg->mdpage.pvh_slock);
   2360 			}
   2361 		}
   2362 		sva += NBPG;
   2363 		pte++;
   2364 	}
   2365 
   2366 	pmap_unmap_ptes(pmap);
   2367 	/*
   2368 	 * Now, if we've fallen through down to here, chances are that there
   2369 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2370 	 */
   2371 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2372 		u_int cnt;
   2373 
   2374 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2375 			if (pmap_active) {
   2376 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2377 				    NBPG);
   2378 				*cleanlist[cnt].pte = 0;
   2379 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2380 			} else
   2381 				*cleanlist[cnt].pte = 0;
   2382 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2383 		}
   2384 	}
   2385 	PMAP_MAP_TO_HEAD_UNLOCK();
   2386 }
   2387 
   2388 /*
   2389  * Routine:	pmap_remove_all
   2390  * Function:
   2391  *		Removes this physical page from
   2392  *		all physical maps in which it resides.
   2393  *		Reflects back modify bits to the pager.
   2394  */
   2395 
   2396 static void
   2397 pmap_remove_all(pg)
   2398 	struct vm_page *pg;
   2399 {
   2400 	struct pv_entry *pv, *npv;
   2401 	struct pmap *pmap;
   2402 	pt_entry_t *pte, *ptes;
   2403 
   2404 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2405 
   2406 	/* set vm_page => pmap locking */
   2407 	PMAP_HEAD_TO_MAP_LOCK();
   2408 
   2409 	simple_lock(&pg->mdpage.pvh_slock);
   2410 
   2411 	pv = pg->mdpage.pvh_list;
   2412 	if (pv == NULL) {
   2413 		PDEBUG(0, printf("free page\n"));
   2414 		simple_unlock(&pg->mdpage.pvh_slock);
   2415 		PMAP_HEAD_TO_MAP_UNLOCK();
   2416 		return;
   2417 	}
   2418 	pmap_clean_page(pv, FALSE);
   2419 
   2420 	while (pv) {
   2421 		pmap = pv->pv_pmap;
   2422 		ptes = pmap_map_ptes(pmap);
   2423 		pte = &ptes[arm_btop(pv->pv_va)];
   2424 
   2425 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2426 		    pv->pv_va, pv->pv_flags));
   2427 #ifdef DEBUG
   2428 		if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
   2429 		    !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   2430 			panic("pmap_remove_all: bad mapping");
   2431 #endif	/* DEBUG */
   2432 
   2433 		/*
   2434 		 * Update statistics
   2435 		 */
   2436 		--pmap->pm_stats.resident_count;
   2437 
   2438 		/* Wired bit */
   2439 		if (pv->pv_flags & PT_W)
   2440 			--pmap->pm_stats.wired_count;
   2441 
   2442 		/*
   2443 		 * Invalidate the PTEs.
   2444 		 * XXX: should cluster them up and invalidate as many
   2445 		 * as possible at once.
   2446 		 */
   2447 
   2448 #ifdef needednotdone
   2449 reduce wiring count on page table pages as references drop
   2450 #endif
   2451 
   2452 		*pte = 0;
   2453 		pmap_pte_delref(pmap, pv->pv_va);
   2454 
   2455 		npv = pv->pv_next;
   2456 		pmap_free_pv(pmap, pv);
   2457 		pv = npv;
   2458 		pmap_unmap_ptes(pmap);
   2459 	}
   2460 	pg->mdpage.pvh_list = NULL;
   2461 	simple_unlock(&pg->mdpage.pvh_slock);
   2462 	PMAP_HEAD_TO_MAP_UNLOCK();
   2463 
   2464 	PDEBUG(0, printf("done\n"));
   2465 	cpu_tlb_flushID();
   2466 	cpu_cpwait();
   2467 }
   2468 
   2469 
   2470 /*
   2471  * Set the physical protection on the specified range of this map as requested.
   2472  */
   2473 
   2474 void
   2475 pmap_protect(pmap, sva, eva, prot)
   2476 	struct pmap *pmap;
   2477 	vaddr_t sva;
   2478 	vaddr_t eva;
   2479 	vm_prot_t prot;
   2480 {
   2481 	pt_entry_t *pte = NULL, *ptes;
   2482 	struct vm_page *pg;
   2483 	int armprot;
   2484 	int flush = 0;
   2485 	paddr_t pa;
   2486 
   2487 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2488 	    pmap, sva, eva, prot));
   2489 
   2490 	if (~prot & VM_PROT_READ) {
   2491 		/* Just remove the mappings. */
   2492 		pmap_remove(pmap, sva, eva);
   2493 		/* pmap_update not needed as it should be called by the caller
   2494 		 * of pmap_protect */
   2495 		return;
   2496 	}
   2497 	if (prot & VM_PROT_WRITE) {
   2498 		/*
   2499 		 * If this is a read->write transition, just ignore it and let
   2500 		 * uvm_fault() take care of it later.
   2501 		 */
   2502 		return;
   2503 	}
   2504 
   2505 	sva &= PG_FRAME;
   2506 	eva &= PG_FRAME;
   2507 
   2508 	/* Need to lock map->head */
   2509 	PMAP_MAP_TO_HEAD_LOCK();
   2510 
   2511 	ptes = pmap_map_ptes(pmap);
   2512 	/*
   2513 	 * We need to acquire a pointer to a page table page before entering
   2514 	 * the following loop.
   2515 	 */
   2516 	while (sva < eva) {
   2517 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2518 			break;
   2519 		sva = (sva & PD_MASK) + NBPD;
   2520 	}
   2521 
   2522 	pte = &ptes[arm_btop(sva)];
   2523 
   2524 	while (sva < eva) {
   2525 		/* only check once in a while */
   2526 		if ((sva & PT_MASK) == 0) {
   2527 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2528 				/* We can race ahead here, to the next pde. */
   2529 				sva += NBPD;
   2530 				pte += arm_btop(NBPD);
   2531 				continue;
   2532 			}
   2533 		}
   2534 
   2535 		if (!pmap_pte_v(pte))
   2536 			goto next;
   2537 
   2538 		flush = 1;
   2539 
   2540 		armprot = 0;
   2541 		if (sva < VM_MAXUSER_ADDRESS)
   2542 			armprot |= PT_AP(AP_U);
   2543 		else if (sva < VM_MAX_ADDRESS)
   2544 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2545 		*pte = (*pte & 0xfffff00f) | armprot;
   2546 
   2547 		pa = pmap_pte_pa(pte);
   2548 
   2549 		/* Get the physical page index */
   2550 
   2551 		/* Clear write flag */
   2552 		if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2553 			simple_lock(&pg->mdpage.pvh_slock);
   2554 			(void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
   2555 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2556 			simple_unlock(&pg->mdpage.pvh_slock);
   2557 		}
   2558 
   2559 next:
   2560 		sva += NBPG;
   2561 		pte++;
   2562 	}
   2563 	pmap_unmap_ptes(pmap);
   2564 	PMAP_MAP_TO_HEAD_UNLOCK();
   2565 	if (flush)
   2566 		cpu_tlb_flushID();
   2567 }
   2568 
   2569 /*
   2570  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2571  * int flags)
   2572  *
   2573  *      Insert the given physical page (p) at
   2574  *      the specified virtual address (v) in the
   2575  *      target physical map with the protection requested.
   2576  *
   2577  *      If specified, the page will be wired down, meaning
   2578  *      that the related pte can not be reclaimed.
   2579  *
   2580  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2581  *      or lose information.  That is, this routine must actually
   2582  *      insert this page into the given map NOW.
   2583  */
   2584 
   2585 int
   2586 pmap_enter(pmap, va, pa, prot, flags)
   2587 	struct pmap *pmap;
   2588 	vaddr_t va;
   2589 	paddr_t pa;
   2590 	vm_prot_t prot;
   2591 	int flags;
   2592 {
   2593 	pt_entry_t *pte, *ptes;
   2594 	u_int npte;
   2595 	paddr_t opa;
   2596 	int nflags;
   2597 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2598 	struct vm_page *pg;
   2599 	struct pv_entry *pve;
   2600 	int error;
   2601 
   2602 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2603 	    va, pa, pmap, prot, wired));
   2604 
   2605 #ifdef DIAGNOSTIC
   2606 	/* Valid address ? */
   2607 	if (va >= (pmap_curmaxkvaddr))
   2608 		panic("pmap_enter: too big");
   2609 	if (pmap != pmap_kernel() && va != 0) {
   2610 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2611 			panic("pmap_enter: kernel page in user map");
   2612 	} else {
   2613 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2614 			panic("pmap_enter: user page in kernel map");
   2615 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2616 			panic("pmap_enter: entering PT page");
   2617 	}
   2618 #endif
   2619 	/*
   2620 	 * Get a pointer to the page.  Later on in this function, we
   2621 	 * test for a managed page by checking pg != NULL.
   2622 	 */
   2623 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2624 
   2625 	/* get lock */
   2626 	PMAP_MAP_TO_HEAD_LOCK();
   2627 	/*
   2628 	 * Get a pointer to the pte for this virtual address. If the
   2629 	 * pte pointer is NULL then we are missing the L2 page table
   2630 	 * so we need to create one.
   2631 	 */
   2632 	/* XXX horrible hack to get us working with lockdebug */
   2633 	simple_lock(&pmap->pm_obj.vmobjlock);
   2634 	pte = pmap_pte(pmap, va);
   2635 	if (!pte) {
   2636 		struct vm_page *ptp;
   2637 
   2638 		/* kernel should be pre-grown */
   2639 		KASSERT(pmap != pmap_kernel());
   2640 
   2641 		/* if failure is allowed then don't try too hard */
   2642 		ptp = pmap_get_ptp(pmap, va);
   2643 		if (ptp == NULL) {
   2644 			if (flags & PMAP_CANFAIL) {
   2645 				error = ENOMEM;
   2646 				goto out;
   2647 			}
   2648 			panic("pmap_enter: get ptp failed");
   2649 		}
   2650 
   2651 		pte = pmap_pte(pmap, va);
   2652 #ifdef DIAGNOSTIC
   2653 		if (!pte)
   2654 			panic("pmap_enter: no pte");
   2655 #endif
   2656 	}
   2657 
   2658 	nflags = 0;
   2659 	if (prot & VM_PROT_WRITE)
   2660 		nflags |= PT_Wr;
   2661 	if (wired)
   2662 		nflags |= PT_W;
   2663 
   2664 	/* More debugging info */
   2665 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2666 	    *pte));
   2667 
   2668 	/* Is the pte valid ? If so then this page is already mapped */
   2669 	if (pmap_pte_v(pte)) {
   2670 		/* Get the physical address of the current page mapped */
   2671 		opa = pmap_pte_pa(pte);
   2672 
   2673 #ifdef MYCROFT_HACK
   2674 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2675 #endif
   2676 
   2677 		/* Are we mapping the same page ? */
   2678 		if (opa == pa) {
   2679 			/* All we must be doing is changing the protection */
   2680 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2681 			    va, pa));
   2682 
   2683 			/* Has the wiring changed ? */
   2684 			if (pg != NULL) {
   2685 				simple_lock(&pg->mdpage.pvh_slock);
   2686 				(void) pmap_modify_pv(pmap, va, pg,
   2687 				    PT_Wr | PT_W, nflags);
   2688 				simple_unlock(&pg->mdpage.pvh_slock);
   2689  			}
   2690 		} else {
   2691 			struct vm_page *opg;
   2692 
   2693 			/* We are replacing the page with a new one. */
   2694 			cpu_idcache_wbinv_range(va, NBPG);
   2695 
   2696 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2697 			    va, pa, opa));
   2698 
   2699 			/*
   2700 			 * If it is part of our managed memory then we
   2701 			 * must remove it from the PV list
   2702 			 */
   2703 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2704 				simple_lock(&opg->mdpage.pvh_slock);
   2705 				pve = pmap_remove_pv(opg, pmap, va);
   2706 				simple_unlock(&opg->mdpage.pvh_slock);
   2707 			} else {
   2708 				pve = NULL;
   2709 			}
   2710 
   2711 			goto enter;
   2712 		}
   2713 	} else {
   2714 		opa = 0;
   2715 		pve = NULL;
   2716 		pmap_pte_addref(pmap, va);
   2717 
   2718 		/* pte is not valid so we must be hooking in a new page */
   2719 		++pmap->pm_stats.resident_count;
   2720 
   2721 	enter:
   2722 		/*
   2723 		 * Enter on the PV list if part of our managed memory
   2724 		 */
   2725 		if (pg != NULL) {
   2726 			if (pve == NULL) {
   2727 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2728 				if (pve == NULL) {
   2729 					if (flags & PMAP_CANFAIL) {
   2730 						error = ENOMEM;
   2731 						goto out;
   2732 					}
   2733 					panic("pmap_enter: no pv entries available");
   2734 				}
   2735 			}
   2736 			/* enter_pv locks pvh when adding */
   2737 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2738 		} else {
   2739 			pg = NULL;
   2740 			if (pve != NULL)
   2741 				pmap_free_pv(pmap, pve);
   2742 		}
   2743 	}
   2744 
   2745 #ifdef MYCROFT_HACK
   2746 	if (mycroft_hack)
   2747 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2748 #endif
   2749 
   2750 	/* Construct the pte, giving the correct access. */
   2751 	npte = (pa & PG_FRAME);
   2752 
   2753 	/* VA 0 is magic. */
   2754 	if (pmap != pmap_kernel() && va != 0)
   2755 		npte |= PT_AP(AP_U);
   2756 
   2757 	if (pg != NULL) {
   2758 #ifdef DIAGNOSTIC
   2759 		if ((flags & VM_PROT_ALL) & ~prot)
   2760 			panic("pmap_enter: access_type exceeds prot");
   2761 #endif
   2762 		npte |= pte_cache_mode;
   2763 		if (flags & VM_PROT_WRITE) {
   2764 			npte |= L2_SPAGE | PT_AP(AP_W);
   2765 			pg->mdpage.pvh_attrs |= PT_H | PT_M;
   2766 		} else if (flags & VM_PROT_ALL) {
   2767 			npte |= L2_SPAGE;
   2768 			pg->mdpage.pvh_attrs |= PT_H;
   2769 		} else
   2770 			npte |= L2_INVAL;
   2771 	} else {
   2772 		if (prot & VM_PROT_WRITE)
   2773 			npte |= L2_SPAGE | PT_AP(AP_W);
   2774 		else if (prot & VM_PROT_ALL)
   2775 			npte |= L2_SPAGE;
   2776 		else
   2777 			npte |= L2_INVAL;
   2778 	}
   2779 
   2780 #ifdef MYCROFT_HACK
   2781 	if (mycroft_hack)
   2782 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2783 #endif
   2784 
   2785 	*pte = npte;
   2786 
   2787 	if (pg != NULL) {
   2788 		/* XXX this will change once the whole of pmap_enter uses
   2789 		 * map_ptes
   2790 		 */
   2791 		ptes = pmap_map_ptes(pmap);
   2792 		simple_lock(&pg->mdpage.pvh_slock);
   2793  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2794 		simple_unlock(&pg->mdpage.pvh_slock);
   2795 		pmap_unmap_ptes(pmap);
   2796 	}
   2797 
   2798 	/* Better flush the TLB ... */
   2799 	cpu_tlb_flushID_SE(va);
   2800 	error = 0;
   2801 out:
   2802 	simple_unlock(&pmap->pm_obj.vmobjlock);
   2803 	PMAP_MAP_TO_HEAD_UNLOCK();
   2804 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2805 
   2806 	return error;
   2807 }
   2808 
   2809 /*
   2810  * pmap_kenter_pa: enter a kernel mapping
   2811  *
   2812  * => no need to lock anything assume va is already allocated
   2813  * => should be faster than normal pmap enter function
   2814  */
   2815 void
   2816 pmap_kenter_pa(va, pa, prot)
   2817 	vaddr_t va;
   2818 	paddr_t pa;
   2819 	vm_prot_t prot;
   2820 {
   2821 	pt_entry_t *pte;
   2822 
   2823 	pte = vtopte(va);
   2824 	KASSERT(!pmap_pte_v(pte));
   2825 	*pte = L2_PTE(pa, AP_KRW);
   2826 }
   2827 
   2828 void
   2829 pmap_kremove(va, len)
   2830 	vaddr_t va;
   2831 	vsize_t len;
   2832 {
   2833 	pt_entry_t *pte;
   2834 
   2835 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2836 
   2837 		/*
   2838 		 * We assume that we will only be called with small
   2839 		 * regions of memory.
   2840 		 */
   2841 
   2842 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2843 		pte = vtopte(va);
   2844 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2845 		*pte = 0;
   2846 		cpu_tlb_flushID_SE(va);
   2847 	}
   2848 }
   2849 
   2850 /*
   2851  * pmap_page_protect:
   2852  *
   2853  * Lower the permission for all mappings to a given page.
   2854  */
   2855 
   2856 void
   2857 pmap_page_protect(pg, prot)
   2858 	struct vm_page *pg;
   2859 	vm_prot_t prot;
   2860 {
   2861 
   2862 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2863 	    VM_PAGE_TO_PHYS(pg), prot));
   2864 
   2865 	switch(prot) {
   2866 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2867 	case VM_PROT_READ|VM_PROT_WRITE:
   2868 		return;
   2869 
   2870 	case VM_PROT_READ:
   2871 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2872 		pmap_copy_on_write(pg);
   2873 		break;
   2874 
   2875 	default:
   2876 		pmap_remove_all(pg);
   2877 		break;
   2878 	}
   2879 }
   2880 
   2881 
   2882 /*
   2883  * Routine:	pmap_unwire
   2884  * Function:	Clear the wired attribute for a map/virtual-address
   2885  *		pair.
   2886  * In/out conditions:
   2887  *		The mapping must already exist in the pmap.
   2888  */
   2889 
   2890 void
   2891 pmap_unwire(pmap, va)
   2892 	struct pmap *pmap;
   2893 	vaddr_t va;
   2894 {
   2895 	pt_entry_t *ptes;
   2896 	struct vm_page *pg;
   2897 	paddr_t pa;
   2898 
   2899 	PMAP_MAP_TO_HEAD_LOCK();
   2900 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2901 
   2902 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   2903 #ifdef DIAGNOSTIC
   2904 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   2905 			panic("pmap_unwire: invalid L2 PTE");
   2906 #endif
   2907 		/* Extract the physical address of the page */
   2908 		pa = l2pte_pa(ptes[arm_btop(va)]);
   2909 
   2910 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2911 			goto out;
   2912 
   2913 		/* Update the wired bit in the pv entry for this page. */
   2914 		simple_lock(&pg->mdpage.pvh_slock);
   2915 		(void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
   2916 		simple_unlock(&pg->mdpage.pvh_slock);
   2917 	}
   2918 #ifdef DIAGNOSTIC
   2919 	else {
   2920 		panic("pmap_unwire: invalid L1 PTE");
   2921 	}
   2922 #endif
   2923  out:
   2924 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2925 	PMAP_MAP_TO_HEAD_UNLOCK();
   2926 }
   2927 
   2928 /*
   2929  * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
   2930  *
   2931  * Return the pointer to a page table entry corresponding to the supplied
   2932  * virtual address.
   2933  *
   2934  * The page directory is first checked to make sure that a page table
   2935  * for the address in question exists and if it does a pointer to the
   2936  * entry is returned.
   2937  *
   2938  * The way this works is that that the kernel page tables are mapped
   2939  * into the memory map at APTE_BASE to APTE_BASE+4MB.  This allows
   2940  * page tables to be located quickly.
   2941  */
   2942 pt_entry_t *
   2943 pmap_pte(pmap, va)
   2944 	struct pmap *pmap;
   2945 	vaddr_t va;
   2946 {
   2947 	pt_entry_t *ptp;
   2948 	pt_entry_t *result;
   2949 
   2950 	/* The pmap must be valid */
   2951 	if (!pmap)
   2952 		return(NULL);
   2953 
   2954 	/* Return the address of the pte */
   2955 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   2956 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   2957 
   2958 	/* Do we have a valid pde ? If not we don't have a page table */
   2959 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   2960 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   2961 		    pmap_pde(pmap, va)));
   2962 		return(NULL);
   2963 	}
   2964 
   2965 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   2966 	    pmap->pm_pptpt, (*((pt_entry_t *)(PTE_BASE
   2967 	    + (PTE_BASE >> (PGSHIFT - 2)) +
   2968 	    (PTE_BASE >> PDSHIFT))) & PG_FRAME)));
   2969 
   2970 	/*
   2971 	 * If the pmap is the kernel pmap or the pmap is the active one
   2972 	 * then we can just return a pointer to entry relative to
   2973 	 * PTE_BASE.
   2974 	 * Otherwise we need to map the page tables to an alternative
   2975 	 * address and reference them there.
   2976 	 */
   2977 	if (pmap == pmap_kernel() || pmap->pm_pptpt
   2978 	    == (*((pt_entry_t *)(PTE_BASE
   2979 	    + ((PTE_BASE >> (PGSHIFT - 2)) &
   2980 	    ~3) + (PTE_BASE >> PDSHIFT))) & PG_FRAME)) {
   2981 		ptp = (pt_entry_t *)PTE_BASE;
   2982 	} else {
   2983 		struct proc *p = curproc;
   2984 
   2985 		/* If we don't have a valid curproc use proc0 */
   2986 		/* Perhaps we should just use kernel_pmap instead */
   2987 		if (p == NULL)
   2988 			p = &proc0;
   2989 #ifdef DIAGNOSTIC
   2990 		/*
   2991 		 * The pmap should always be valid for the process so
   2992 		 * panic if it is not.
   2993 		 */
   2994 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   2995 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   2996 			    va, p, p->p_vmspace);
   2997 			console_debugger();
   2998 		}
   2999 		/*
   3000 		 * The pmap for the current process should be mapped. If it
   3001 		 * is not then we have a problem.
   3002 		 */
   3003 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   3004 		    (*((pt_entry_t *)(PTE_BASE
   3005 		    + (PTE_BASE >> (PGSHIFT - 2)) +
   3006 		    (PTE_BASE >> PDSHIFT))) & PG_FRAME)) {
   3007 			printf("pmap pagetable = P%08lx current = P%08x ",
   3008 			    pmap->pm_pptpt, (*((pt_entry_t *)(PTE_BASE
   3009 			    + (PTE_BASE >> (PGSHIFT - 2)) +
   3010 			    (PTE_BASE >> PDSHIFT))) &
   3011 			    PG_FRAME));
   3012 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   3013 			panic("pmap_pte: current and pmap mismatch\n");
   3014 		}
   3015 #endif
   3016 
   3017 		ptp = (pt_entry_t *)APTE_BASE;
   3018 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
   3019 		    pmap->pm_pptpt, FALSE);
   3020 		cpu_tlb_flushD();
   3021 		cpu_cpwait();
   3022 	}
   3023 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   3024 	    ((va >> (PGSHIFT-2)) & ~3)));
   3025 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   3026 	return(result);
   3027 }
   3028 
   3029 /*
   3030  * Routine:  pmap_extract
   3031  * Function:
   3032  *           Extract the physical page address associated
   3033  *           with the given map/virtual_address pair.
   3034  */
   3035 boolean_t
   3036 pmap_extract(pmap, va, pap)
   3037 	struct pmap *pmap;
   3038 	vaddr_t va;
   3039 	paddr_t *pap;
   3040 {
   3041 	pd_entry_t *pde;
   3042 	pt_entry_t *pte, *ptes;
   3043 	paddr_t pa;
   3044 	boolean_t rv = TRUE;
   3045 
   3046 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   3047 
   3048 	/*
   3049 	 * Get the pte for this virtual address.
   3050 	 */
   3051 	pde = pmap_pde(pmap, va);
   3052 	ptes = pmap_map_ptes(pmap);
   3053 	pte = &ptes[arm_btop(va)];
   3054 
   3055 	if (pmap_pde_section(pde)) {
   3056 		pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
   3057 		goto out;
   3058 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   3059 		rv = FALSE;
   3060 		goto out;
   3061 	}
   3062 
   3063 	if ((*pte & L2_MASK) == L2_LPAGE) {
   3064 		/* Extract the physical address from the pte */
   3065 		pa = *pte & ~(L2_LPAGE_SIZE - 1);
   3066 
   3067 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   3068 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   3069 
   3070 		if (pap != NULL)
   3071 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   3072 		goto out;
   3073 	}
   3074 
   3075 	/* Extract the physical address from the pte */
   3076 	pa = pmap_pte_pa(pte);
   3077 
   3078 	PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   3079 	    (pa | (va & ~PG_FRAME))));
   3080 
   3081 	if (pap != NULL)
   3082 		*pap = pa | (va & ~PG_FRAME);
   3083  out:
   3084 	pmap_unmap_ptes(pmap);
   3085 	return (rv);
   3086 }
   3087 
   3088 
   3089 /*
   3090  * Copy the range specified by src_addr/len from the source map to the
   3091  * range dst_addr/len in the destination map.
   3092  *
   3093  * This routine is only advisory and need not do anything.
   3094  */
   3095 
   3096 void
   3097 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   3098 	struct pmap *dst_pmap;
   3099 	struct pmap *src_pmap;
   3100 	vaddr_t dst_addr;
   3101 	vsize_t len;
   3102 	vaddr_t src_addr;
   3103 {
   3104 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   3105 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   3106 }
   3107 
   3108 #if defined(PMAP_DEBUG)
   3109 void
   3110 pmap_dump_pvlist(phys, m)
   3111 	vaddr_t phys;
   3112 	char *m;
   3113 {
   3114 	struct vm_page *pg;
   3115 	struct pv_entry *pv;
   3116 
   3117 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   3118 		printf("INVALID PA\n");
   3119 		return;
   3120 	}
   3121 	simple_lock(&pg->mdpage.pvh_slock);
   3122 	printf("%s %08lx:", m, phys);
   3123 	if (pg->mdpage.pvh_list == NULL) {
   3124 		printf(" no mappings\n");
   3125 		return;
   3126 	}
   3127 
   3128 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3129 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3130 		    pv->pv_va, pv->pv_flags);
   3131 
   3132 	printf("\n");
   3133 	simple_unlock(&pg->mdpage.pvh_slock);
   3134 }
   3135 
   3136 #endif	/* PMAP_DEBUG */
   3137 
   3138 static pt_entry_t *
   3139 pmap_map_ptes(struct pmap *pmap)
   3140 {
   3141     	struct proc *p;
   3142 
   3143     	/* the kernel's pmap is always accessible */
   3144 	if (pmap == pmap_kernel()) {
   3145 		return (pt_entry_t *)PTE_BASE ;
   3146 	}
   3147 
   3148 	if (pmap_is_curpmap(pmap)) {
   3149 		simple_lock(&pmap->pm_obj.vmobjlock);
   3150 		return (pt_entry_t *)PTE_BASE;
   3151 	}
   3152 
   3153 	p = curproc;
   3154 
   3155 	if (p == NULL)
   3156 		p = &proc0;
   3157 
   3158 	/* need to lock both curpmap and pmap: use ordered locking */
   3159 	if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
   3160 		simple_lock(&pmap->pm_obj.vmobjlock);
   3161 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3162 	} else {
   3163 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3164 		simple_lock(&pmap->pm_obj.vmobjlock);
   3165 	}
   3166 
   3167 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
   3168 			pmap->pm_pptpt, FALSE);
   3169 	cpu_tlb_flushD();
   3170 	cpu_cpwait();
   3171 	return (pt_entry_t *)APTE_BASE;
   3172 }
   3173 
   3174 /*
   3175  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3176  */
   3177 
   3178 static void
   3179 pmap_unmap_ptes(pmap)
   3180 	struct pmap *pmap;
   3181 {
   3182 	if (pmap == pmap_kernel()) {
   3183 		return;
   3184 	}
   3185 	if (pmap_is_curpmap(pmap)) {
   3186 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3187 	} else {
   3188 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3189 		simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3190 	}
   3191 }
   3192 
   3193 /*
   3194  * Modify pte bits for all ptes corresponding to the given physical address.
   3195  * We use `maskbits' rather than `clearbits' because we're always passing
   3196  * constants and the latter would require an extra inversion at run-time.
   3197  */
   3198 
   3199 static void
   3200 pmap_clearbit(pg, maskbits)
   3201 	struct vm_page *pg;
   3202 	unsigned int maskbits;
   3203 {
   3204 	struct pv_entry *pv;
   3205 	pt_entry_t *ptes;
   3206 	vaddr_t va;
   3207 	int tlbentry;
   3208 
   3209 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3210 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3211 
   3212 	tlbentry = 0;
   3213 
   3214 	PMAP_HEAD_TO_MAP_LOCK();
   3215 	simple_lock(&pg->mdpage.pvh_slock);
   3216 
   3217 	/*
   3218 	 * Clear saved attributes (modify, reference)
   3219 	 */
   3220 	pg->mdpage.pvh_attrs &= ~maskbits;
   3221 
   3222 	if (pg->mdpage.pvh_list == NULL) {
   3223 		simple_unlock(&pg->mdpage.pvh_slock);
   3224 		PMAP_HEAD_TO_MAP_UNLOCK();
   3225 		return;
   3226 	}
   3227 
   3228 	/*
   3229 	 * Loop over all current mappings setting/clearing as appropos
   3230 	 */
   3231 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3232 		va = pv->pv_va;
   3233 		pv->pv_flags &= ~maskbits;
   3234 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   3235 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   3236 		if (maskbits & (PT_Wr|PT_M)) {
   3237 			if ((pv->pv_flags & PT_NC)) {
   3238 				/*
   3239 				 * Entry is not cacheable: reenable
   3240 				 * the cache, nothing to flush
   3241 				 *
   3242 				 * Don't turn caching on again if this
   3243 				 * is a modified emulation.  This
   3244 				 * would be inconsitent with the
   3245 				 * settings created by
   3246 				 * pmap_vac_me_harder().
   3247 				 *
   3248 				 * There's no need to call
   3249 				 * pmap_vac_me_harder() here: all
   3250 				 * pages are loosing their write
   3251 				 * permission.
   3252 				 *
   3253 				 */
   3254 				if (maskbits & PT_Wr) {
   3255 					ptes[arm_btop(va)] |= pte_cache_mode;
   3256 					pv->pv_flags &= ~PT_NC;
   3257 				}
   3258 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3259 				/*
   3260 				 * Entry is cacheable: check if pmap is
   3261 				 * current if it is flush it,
   3262 				 * otherwise it won't be in the cache
   3263 				 */
   3264 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3265 			}
   3266 
   3267 			/* make the pte read only */
   3268 			ptes[arm_btop(va)] &= ~PT_AP(AP_W);
   3269 		}
   3270 
   3271 		if (maskbits & PT_H)
   3272 			ptes[arm_btop(va)] =
   3273 			    (ptes[arm_btop(va)] & ~L2_MASK) | L2_INVAL;
   3274 
   3275 		if (pmap_is_curpmap(pv->pv_pmap)) {
   3276 			/*
   3277 			 * if we had cacheable pte's we'd clean the
   3278 			 * pte out to memory here
   3279 			 *
   3280 			 * flush tlb entry as it's in the current pmap
   3281 			 */
   3282 			cpu_tlb_flushID_SE(pv->pv_va);
   3283 		}
   3284 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3285 	}
   3286 	cpu_cpwait();
   3287 
   3288 	simple_unlock(&pg->mdpage.pvh_slock);
   3289 	PMAP_HEAD_TO_MAP_UNLOCK();
   3290 }
   3291 
   3292 /*
   3293  * pmap_clear_modify:
   3294  *
   3295  *	Clear the "modified" attribute for a page.
   3296  */
   3297 boolean_t
   3298 pmap_clear_modify(pg)
   3299 	struct vm_page *pg;
   3300 {
   3301 	boolean_t rv;
   3302 
   3303 	if (pg->mdpage.pvh_attrs & PT_M) {
   3304 		rv = TRUE;
   3305 		pmap_clearbit(pg, PT_M);
   3306 	} else
   3307 		rv = FALSE;
   3308 
   3309 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3310 	    VM_PAGE_TO_PHYS(pg), rv));
   3311 
   3312 	return (rv);
   3313 }
   3314 
   3315 /*
   3316  * pmap_clear_reference:
   3317  *
   3318  *	Clear the "referenced" attribute for a page.
   3319  */
   3320 boolean_t
   3321 pmap_clear_reference(pg)
   3322 	struct vm_page *pg;
   3323 {
   3324 	boolean_t rv;
   3325 
   3326 	if (pg->mdpage.pvh_attrs & PT_H) {
   3327 		rv = TRUE;
   3328 		pmap_clearbit(pg, PT_H);
   3329 	} else
   3330 		rv = FALSE;
   3331 
   3332 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3333 	    VM_PAGE_TO_PHYS(pg), rv));
   3334 
   3335 	return (rv);
   3336 }
   3337 
   3338 
   3339 void
   3340 pmap_copy_on_write(pg)
   3341 	struct vm_page *pg;
   3342 {
   3343 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", VM_PAGE_TO_PHYS(pg)));
   3344 	pmap_clearbit(pg, PT_Wr);
   3345 }
   3346 
   3347 /*
   3348  * pmap_is_modified:
   3349  *
   3350  *	Test if a page has the "modified" attribute.
   3351  */
   3352 /* See <arm/arm32/pmap.h> */
   3353 
   3354 /*
   3355  * pmap_is_referenced:
   3356  *
   3357  *	Test if a page has the "referenced" attribute.
   3358  */
   3359 /* See <arm/arm32/pmap.h> */
   3360 
   3361 int
   3362 pmap_modified_emulation(pmap, va)
   3363 	struct pmap *pmap;
   3364 	vaddr_t va;
   3365 {
   3366 	pt_entry_t *ptes;
   3367 	struct vm_page *pg;
   3368 	paddr_t pa;
   3369 	u_int flags;
   3370 	int rv = 0;
   3371 
   3372 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3373 
   3374 	PMAP_MAP_TO_HEAD_LOCK();
   3375 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3376 
   3377 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3378 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3379 		goto out;
   3380 	}
   3381 
   3382 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3383 
   3384 	/* Check for a invalid pte */
   3385 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3386 		goto out;
   3387 
   3388 	/* This can happen if user code tries to access kernel memory. */
   3389 	if ((ptes[arm_btop(va)] & PT_AP(AP_W)) != 0)
   3390 		goto out;
   3391 
   3392 	/* Extract the physical address of the page */
   3393 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3394 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3395 		goto out;
   3396 
   3397 	/* Get the current flags for this page. */
   3398 	simple_lock(&pg->mdpage.pvh_slock);
   3399 
   3400 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3401 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3402 
   3403 	/*
   3404 	 * Do the flags say this page is writable ? If not then it is a
   3405 	 * genuine write fault. If yes then the write fault is our fault
   3406 	 * as we did not reflect the write access in the PTE. Now we know
   3407 	 * a write has occurred we can correct this and also set the
   3408 	 * modified bit
   3409 	 */
   3410 	if (~flags & PT_Wr) {
   3411 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3412 		goto out;
   3413 	}
   3414 
   3415 	PDEBUG(0,
   3416 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3417 	    va, ptes[arm_btop(va)]));
   3418 	pg->mdpage.pvh_attrs |= PT_H | PT_M;
   3419 
   3420 	/*
   3421 	 * Re-enable write permissions for the page.  No need to call
   3422 	 * pmap_vac_me_harder(), since this is just a
   3423 	 * modified-emulation fault, and the PT_Wr bit isn't changing.  We've
   3424 	 * already set the cacheable bits based on the assumption that we
   3425 	 * can write to this page.
   3426 	 */
   3427 	ptes[arm_btop(va)] =
   3428 	    (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3429 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3430 
   3431 	simple_unlock(&pg->mdpage.pvh_slock);
   3432 
   3433 	cpu_tlb_flushID_SE(va);
   3434 	cpu_cpwait();
   3435 	rv = 1;
   3436  out:
   3437 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3438 	PMAP_MAP_TO_HEAD_UNLOCK();
   3439 	return (rv);
   3440 }
   3441 
   3442 int
   3443 pmap_handled_emulation(pmap, va)
   3444 	struct pmap *pmap;
   3445 	vaddr_t va;
   3446 {
   3447 	pt_entry_t *ptes;
   3448 	struct vm_page *pg;
   3449 	paddr_t pa;
   3450 	int rv = 0;
   3451 
   3452 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3453 
   3454 	PMAP_MAP_TO_HEAD_LOCK();
   3455 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3456 
   3457 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3458 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3459 		goto out;
   3460 	}
   3461 
   3462 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3463 
   3464 	/* Check for invalid pte */
   3465 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3466 		goto out;
   3467 
   3468 	/* This can happen if user code tries to access kernel memory. */
   3469 	if ((ptes[arm_btop(va)] & L2_MASK) != L2_INVAL)
   3470 		goto out;
   3471 
   3472 	/* Extract the physical address of the page */
   3473 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3474 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3475 		goto out;
   3476 
   3477 	simple_lock(&pg->mdpage.pvh_slock);
   3478 
   3479 	/*
   3480 	 * Ok we just enable the pte and mark the attibs as handled
   3481 	 * XXX Should we traverse the PV list and enable all PTEs?
   3482 	 */
   3483 	PDEBUG(0,
   3484 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3485 	    va, ptes[arm_btop(va)]));
   3486 	pg->mdpage.pvh_attrs |= PT_H;
   3487 
   3488 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE;
   3489 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3490 
   3491 	simple_unlock(&pg->mdpage.pvh_slock);
   3492 
   3493 	cpu_tlb_flushID_SE(va);
   3494 	cpu_cpwait();
   3495 	rv = 1;
   3496  out:
   3497 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3498 	PMAP_MAP_TO_HEAD_UNLOCK();
   3499 	return (rv);
   3500 }
   3501 
   3502 /*
   3503  * pmap_collect: free resources held by a pmap
   3504  *
   3505  * => optional function.
   3506  * => called when a process is swapped out to free memory.
   3507  */
   3508 
   3509 void
   3510 pmap_collect(pmap)
   3511 	struct pmap *pmap;
   3512 {
   3513 }
   3514 
   3515 /*
   3516  * Routine:	pmap_procwr
   3517  *
   3518  * Function:
   3519  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3520  *
   3521  */
   3522 void
   3523 pmap_procwr(p, va, len)
   3524 	struct proc	*p;
   3525 	vaddr_t		va;
   3526 	int		len;
   3527 {
   3528 	/* We only need to do anything if it is the current process. */
   3529 	if (p == curproc)
   3530 		cpu_icache_sync_range(va, len);
   3531 }
   3532 /*
   3533  * PTP functions
   3534  */
   3535 
   3536 /*
   3537  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3538  *
   3539  * => pmap should NOT be pmap_kernel()
   3540  * => pmap should be locked
   3541  */
   3542 
   3543 static struct vm_page *
   3544 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3545 {
   3546 	struct vm_page *ptp;
   3547 
   3548 	if (pmap_pde_page(pmap_pde(pmap, va))) {
   3549 
   3550 		/* valid... check hint (saves us a PA->PG lookup) */
   3551 #if 0
   3552 		if (pmap->pm_ptphint &&
   3553 		    ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
   3554 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3555 			return (pmap->pm_ptphint);
   3556 #endif
   3557 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3558 #ifdef DIAGNOSTIC
   3559 		if (ptp == NULL)
   3560 			panic("pmap_get_ptp: unmanaged user PTP");
   3561 #endif
   3562 //		pmap->pm_ptphint = ptp;
   3563 		return(ptp);
   3564 	}
   3565 
   3566 	/* allocate a new PTP (updates ptphint) */
   3567 	return(pmap_alloc_ptp(pmap, va));
   3568 }
   3569 
   3570 /*
   3571  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3572  *
   3573  * => pmap should already be locked by caller
   3574  * => we use the ptp's wire_count to count the number of active mappings
   3575  *	in the PTP (we start it at one to prevent any chance this PTP
   3576  *	will ever leak onto the active/inactive queues)
   3577  */
   3578 
   3579 /*__inline */ static struct vm_page *
   3580 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3581 {
   3582 	struct vm_page *ptp;
   3583 
   3584 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3585 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3586 	if (ptp == NULL)
   3587 		return (NULL);
   3588 
   3589 	/* got one! */
   3590 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3591 	ptp->wire_count = 1;	/* no mappings yet */
   3592 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3593 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3594 //	pmap->pm_ptphint = ptp;
   3595 	return (ptp);
   3596 }
   3597 
   3598 vaddr_t
   3599 pmap_growkernel(maxkvaddr)
   3600 	vaddr_t maxkvaddr;
   3601 {
   3602 	struct pmap *kpm = pmap_kernel(), *pm;
   3603 	int s;
   3604 	paddr_t ptaddr;
   3605 	struct vm_page *ptp;
   3606 
   3607 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3608 		goto out;		/* we are OK */
   3609 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3610 		    pmap_curmaxkvaddr, maxkvaddr));
   3611 
   3612 	/*
   3613 	 * whoops!   we need to add kernel PTPs
   3614 	 */
   3615 
   3616 	s = splhigh();	/* to be safe */
   3617 	simple_lock(&kpm->pm_obj.vmobjlock);
   3618 	/* due to the way the arm pmap works we map 4MB at a time */
   3619 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr ; pmap_curmaxkvaddr += 4 * NBPD) {
   3620 
   3621 		if (uvm.page_init_done == FALSE) {
   3622 
   3623 			/*
   3624 			 * we're growing the kernel pmap early (from
   3625 			 * uvm_pageboot_alloc()).  this case must be
   3626 			 * handled a little differently.
   3627 			 */
   3628 
   3629 			if (uvm_page_physget(&ptaddr) == FALSE)
   3630 				panic("pmap_growkernel: out of memory");
   3631 			pmap_zero_page(ptaddr);
   3632 
   3633 			/* map this page in */
   3634 			pmap_map_in_l1(kpm, (pmap_curmaxkvaddr + 1), ptaddr, TRUE);
   3635 
   3636 			/* count PTP as resident */
   3637 			kpm->pm_stats.resident_count++;
   3638 			continue;
   3639 		}
   3640 
   3641 		/*
   3642 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3643 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3644 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3645 		 */
   3646 
   3647 		if ((ptp = pmap_alloc_ptp(kpm, (pmap_curmaxkvaddr + 1))) == NULL) {
   3648 			panic("pmap_growkernel: alloc ptp failed");
   3649 		}
   3650 
   3651 		/* distribute new kernel PTP to all active pmaps */
   3652 		simple_lock(&pmaps_lock);
   3653 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3654 		    pmap_map_in_l1(pm, (pmap_curmaxkvaddr + 1), VM_PAGE_TO_PHYS(ptp), TRUE);
   3655 		}
   3656 
   3657 		simple_unlock(&pmaps_lock);
   3658 	}
   3659 
   3660 	/*
   3661 	 * flush out the cache, expensive but growkernel will happen so
   3662 	 * rarely
   3663 	 */
   3664 	cpu_tlb_flushD();
   3665 	cpu_cpwait();
   3666 
   3667 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3668 	splx(s);
   3669 
   3670 out:
   3671 	return (pmap_curmaxkvaddr);
   3672 }
   3673 
   3674 
   3675 
   3676 /************************ Bootstrapping routines ****************************/
   3677 
   3678 /*
   3679  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3680  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3681  * find them as necessary.
   3682  *
   3683  * Note that the data on this list is not valid after initarm() returns.
   3684  */
   3685 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3686 
   3687 static vaddr_t
   3688 kernel_pt_lookup(paddr_t pa)
   3689 {
   3690 	pv_addr_t *pv;
   3691 
   3692 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3693 		if (pv->pv_pa == pa)
   3694 			return (pv->pv_va);
   3695 	}
   3696 	return (0);
   3697 }
   3698 
   3699 /*
   3700  * pmap_map_section:
   3701  *
   3702  *	Create a single section mapping.
   3703  */
   3704 void
   3705 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3706 {
   3707 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3708 	pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3709 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3710 
   3711 	KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
   3712 
   3713 	pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
   3714 }
   3715 
   3716 /*
   3717  * pmap_map_entry:
   3718  *
   3719  *	Create a single page mapping.
   3720  */
   3721 void
   3722 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3723 {
   3724 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3725 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3726 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3727 	pt_entry_t *pte;
   3728 
   3729 	KASSERT(((va | pa) & PGOFSET) == 0);
   3730 
   3731 	if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3732 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3733 
   3734 	pte = (pt_entry_t *)
   3735 	    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3736 	if (pte == NULL)
   3737 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3738 
   3739 	pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
   3740 }
   3741 
   3742 /*
   3743  * pmap_link_l2pt:
   3744  *
   3745  *	Link the L2 page table specified by "pa" into the L1
   3746  *	page table at the slot for "va".
   3747  */
   3748 void
   3749 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3750 {
   3751 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3752 	u_int slot = va >> PDSHIFT;
   3753 
   3754 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3755 
   3756 	pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
   3757 	pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
   3758 	pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
   3759 	pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
   3760 
   3761 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3762 }
   3763 
   3764 /*
   3765  * pmap_map_chunk:
   3766  *
   3767  *	Map a chunk of memory using the most efficient mappings
   3768  *	possible (section, large page, small page) into the
   3769  *	provided L1 and L2 tables at the specified virtual address.
   3770  */
   3771 vsize_t
   3772 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3773     int prot, int cache)
   3774 {
   3775 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3776 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3777 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3778 	pt_entry_t *pte;
   3779 	vsize_t resid;
   3780 	int i;
   3781 
   3782 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3783 
   3784 	if (l1pt == 0)
   3785 		panic("pmap_map_chunk: no L1 table provided");
   3786 
   3787 #ifdef VERBOSE_INIT_ARM
   3788 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3789 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3790 #endif
   3791 
   3792 	size = resid;
   3793 
   3794 	while (resid > 0) {
   3795 		/* See if we can use a section mapping. */
   3796 		if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
   3797 		    resid >= L1_SEC_SIZE) {
   3798 #ifdef VERBOSE_INIT_ARM
   3799 			printf("S");
   3800 #endif
   3801 			pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
   3802 			va += L1_SEC_SIZE;
   3803 			pa += L1_SEC_SIZE;
   3804 			resid -= L1_SEC_SIZE;
   3805 			continue;
   3806 		}
   3807 
   3808 		/*
   3809 		 * Ok, we're going to use an L2 table.  Make sure
   3810 		 * one is actually in the corresponding L1 slot
   3811 		 * for the current VA.
   3812 		 */
   3813 		if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3814 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3815 
   3816 		pte = (pt_entry_t *)
   3817 		    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3818 		if (pte == NULL)
   3819 			panic("pmap_map_chunk: can't find L2 table for VA"
   3820 			    "0x%08lx", va);
   3821 
   3822 		/* See if we can use a L2 large page mapping. */
   3823 		if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
   3824 		    resid >= L2_LPAGE_SIZE) {
   3825 #ifdef VERBOSE_INIT_ARM
   3826 			printf("L");
   3827 #endif
   3828 			for (i = 0; i < 16; i++) {
   3829 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3830 				    L2_LPTE(pa, ap, fl);
   3831 			}
   3832 			va += L2_LPAGE_SIZE;
   3833 			pa += L2_LPAGE_SIZE;
   3834 			resid -= L2_LPAGE_SIZE;
   3835 			continue;
   3836 		}
   3837 
   3838 		/* Use a small page mapping. */
   3839 #ifdef VERBOSE_INIT_ARM
   3840 		printf("P");
   3841 #endif
   3842 		pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
   3843 		va += NBPG;
   3844 		pa += NBPG;
   3845 		resid -= NBPG;
   3846 	}
   3847 #ifdef VERBOSE_INIT_ARM
   3848 	printf("\n");
   3849 #endif
   3850 	return (size);
   3851 }
   3852