pmap.c revision 1.68 1 /* $NetBSD: pmap.c,v 1.68 2002/03/24 21:32:18 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.68 2002/03/24 21:32:18 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static struct pmap_head pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 static void pmap_free_l1pt __P((struct l1pt *));
271 static int pmap_allocpagedir __P((struct pmap *));
272 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
273 static void pmap_remove_all __P((struct vm_page *));
274
275
276 vsize_t npages;
277
278 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
279 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
280 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
281
282 extern paddr_t physical_start;
283 extern paddr_t physical_freestart;
284 extern paddr_t physical_end;
285 extern paddr_t physical_freeend;
286 extern unsigned int free_pages;
287 extern int max_processes;
288
289 vaddr_t virtual_avail;
290 vaddr_t virtual_end;
291 vaddr_t pmap_curmaxkvaddr;
292
293 vaddr_t avail_start;
294 vaddr_t avail_end;
295
296 extern pv_addr_t systempage;
297
298 /* Variables used by the L1 page table queue code */
299 SIMPLEQ_HEAD(l1pt_queue, l1pt);
300 struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
301 int l1pt_static_queue_count; /* items in the static l1 queue */
302 int l1pt_static_create_count; /* static l1 items created */
303 struct l1pt_queue l1pt_queue; /* head of our l1 queue */
304 int l1pt_queue_count; /* items in the l1 queue */
305 int l1pt_create_count; /* stat - L1's create count */
306 int l1pt_reuse_count; /* stat - L1's reused count */
307
308 /* Local function prototypes (not used outside this file) */
309 void pmap_copy_on_write __P((struct vm_page *));
310 void pmap_pinit __P((struct pmap *));
311 void pmap_freepagedir __P((struct pmap *));
312
313 /* Other function prototypes */
314 extern void bzero_page __P((vaddr_t));
315 extern void bcopy_page __P((vaddr_t, vaddr_t));
316
317 struct l1pt *pmap_alloc_l1pt __P((void));
318 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
319 vaddr_t l2pa, boolean_t));
320
321 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
322 static void pmap_unmap_ptes __P((struct pmap *));
323
324 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
325 pt_entry_t *, boolean_t));
326 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
327 pt_entry_t *, boolean_t));
328 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
329 pt_entry_t *, boolean_t));
330
331 /*
332 * Cache enable bits in PTE to use on pages that are cacheable.
333 * On most machines this is cacheable/bufferable, but on some, eg arm10, we
334 * can chose between write-through and write-back cacheing.
335 */
336 pt_entry_t pte_cache_mode = (PT_C | PT_B);
337
338 /*
339 * real definition of pv_entry.
340 */
341
342 struct pv_entry {
343 struct pv_entry *pv_next; /* next pv_entry */
344 struct pmap *pv_pmap; /* pmap where mapping lies */
345 vaddr_t pv_va; /* virtual address for mapping */
346 int pv_flags; /* flags */
347 struct vm_page *pv_ptp; /* vm_page for the ptp */
348 };
349
350 /*
351 * pv_entrys are dynamically allocated in chunks from a single page.
352 * we keep track of how many pv_entrys are in use for each page and
353 * we can free pv_entry pages if needed. there is one lock for the
354 * entire allocation system.
355 */
356
357 struct pv_page_info {
358 TAILQ_ENTRY(pv_page) pvpi_list;
359 struct pv_entry *pvpi_pvfree;
360 int pvpi_nfree;
361 };
362
363 /*
364 * number of pv_entry's in a pv_page
365 * (note: won't work on systems where NPBG isn't a constant)
366 */
367
368 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
369 sizeof(struct pv_entry))
370
371 /*
372 * a pv_page: where pv_entrys are allocated from
373 */
374
375 struct pv_page {
376 struct pv_page_info pvinfo;
377 struct pv_entry pvents[PVE_PER_PVPAGE];
378 };
379
380 #ifdef MYCROFT_HACK
381 int mycroft_hack = 0;
382 #endif
383
384 /* Function to set the debug level of the pmap code */
385
386 #ifdef PMAP_DEBUG
387 void
388 pmap_debug(level)
389 int level;
390 {
391 pmap_debug_level = level;
392 printf("pmap_debug: level=%d\n", pmap_debug_level);
393 }
394 #endif /* PMAP_DEBUG */
395
396 __inline static boolean_t
397 pmap_is_curpmap(struct pmap *pmap)
398 {
399
400 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
401 pmap == pmap_kernel())
402 return (TRUE);
403
404 return (FALSE);
405 }
406
407 #include "isadma.h"
408
409 #if NISADMA > 0
410 /*
411 * Used to protect memory for ISA DMA bounce buffers. If, when loading
412 * pages into the system, memory intersects with any of these ranges,
413 * the intersecting memory will be loaded into a lower-priority free list.
414 */
415 bus_dma_segment_t *pmap_isa_dma_ranges;
416 int pmap_isa_dma_nranges;
417
418 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
419 paddr_t *, psize_t *));
420
421 /*
422 * Check if a memory range intersects with an ISA DMA range, and
423 * return the page-rounded intersection if it does. The intersection
424 * will be placed on a lower-priority free list.
425 */
426 boolean_t
427 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
428 paddr_t pa;
429 psize_t size;
430 paddr_t *pap;
431 psize_t *sizep;
432 {
433 bus_dma_segment_t *ds;
434 int i;
435
436 if (pmap_isa_dma_ranges == NULL)
437 return (FALSE);
438
439 for (i = 0, ds = pmap_isa_dma_ranges;
440 i < pmap_isa_dma_nranges; i++, ds++) {
441 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
442 /*
443 * Beginning of region intersects with this range.
444 */
445 *pap = trunc_page(pa);
446 *sizep = round_page(min(pa + size,
447 ds->ds_addr + ds->ds_len) - pa);
448 return (TRUE);
449 }
450 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
451 /*
452 * End of region intersects with this range.
453 */
454 *pap = trunc_page(ds->ds_addr);
455 *sizep = round_page(min((pa + size) - ds->ds_addr,
456 ds->ds_len));
457 return (TRUE);
458 }
459 }
460
461 /*
462 * No intersection found.
463 */
464 return (FALSE);
465 }
466 #endif /* NISADMA > 0 */
467
468 /*
469 * p v _ e n t r y f u n c t i o n s
470 */
471
472 /*
473 * pv_entry allocation functions:
474 * the main pv_entry allocation functions are:
475 * pmap_alloc_pv: allocate a pv_entry structure
476 * pmap_free_pv: free one pv_entry
477 * pmap_free_pvs: free a list of pv_entrys
478 *
479 * the rest are helper functions
480 */
481
482 /*
483 * pmap_alloc_pv: inline function to allocate a pv_entry structure
484 * => we lock pvalloc_lock
485 * => if we fail, we call out to pmap_alloc_pvpage
486 * => 3 modes:
487 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
488 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
489 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
490 * one now
491 *
492 * "try" is for optional functions like pmap_copy().
493 */
494
495 __inline static struct pv_entry *
496 pmap_alloc_pv(pmap, mode)
497 struct pmap *pmap;
498 int mode;
499 {
500 struct pv_page *pvpage;
501 struct pv_entry *pv;
502
503 simple_lock(&pvalloc_lock);
504
505 pvpage = TAILQ_FIRST(&pv_freepages);
506
507 if (pvpage != NULL) {
508 pvpage->pvinfo.pvpi_nfree--;
509 if (pvpage->pvinfo.pvpi_nfree == 0) {
510 /* nothing left in this one? */
511 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
512 }
513 pv = pvpage->pvinfo.pvpi_pvfree;
514 KASSERT(pv);
515 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
516 pv_nfpvents--; /* took one from pool */
517 } else {
518 pv = NULL; /* need more of them */
519 }
520
521 /*
522 * if below low water mark or we didn't get a pv_entry we try and
523 * create more pv_entrys ...
524 */
525
526 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
527 if (pv == NULL)
528 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
529 mode : ALLOCPV_NEED);
530 else
531 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
532 }
533
534 simple_unlock(&pvalloc_lock);
535 return(pv);
536 }
537
538 /*
539 * pmap_alloc_pvpage: maybe allocate a new pvpage
540 *
541 * if need_entry is false: try and allocate a new pv_page
542 * if need_entry is true: try and allocate a new pv_page and return a
543 * new pv_entry from it. if we are unable to allocate a pv_page
544 * we make a last ditch effort to steal a pv_page from some other
545 * mapping. if that fails, we panic...
546 *
547 * => we assume that the caller holds pvalloc_lock
548 */
549
550 static struct pv_entry *
551 pmap_alloc_pvpage(pmap, mode)
552 struct pmap *pmap;
553 int mode;
554 {
555 struct vm_page *pg;
556 struct pv_page *pvpage;
557 struct pv_entry *pv;
558 int s;
559
560 /*
561 * if we need_entry and we've got unused pv_pages, allocate from there
562 */
563
564 pvpage = TAILQ_FIRST(&pv_unusedpgs);
565 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
566
567 /* move it to pv_freepages list */
568 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
569 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
570
571 /* allocate a pv_entry */
572 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
573 pv = pvpage->pvinfo.pvpi_pvfree;
574 KASSERT(pv);
575 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
576
577 pv_nfpvents--; /* took one from pool */
578 return(pv);
579 }
580
581 /*
582 * see if we've got a cached unmapped VA that we can map a page in.
583 * if not, try to allocate one.
584 */
585
586
587 if (pv_cachedva == 0) {
588 s = splvm();
589 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
590 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
591 splx(s);
592 if (pv_cachedva == 0) {
593 return (NULL);
594 }
595 }
596
597 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
598 UVM_PGA_USERESERVE);
599
600 if (pg == NULL)
601 return (NULL);
602 pg->flags &= ~PG_BUSY; /* never busy */
603
604 /*
605 * add a mapping for our new pv_page and free its entrys (save one!)
606 *
607 * NOTE: If we are allocating a PV page for the kernel pmap, the
608 * pmap is already locked! (...but entering the mapping is safe...)
609 */
610
611 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
612 VM_PROT_READ|VM_PROT_WRITE);
613 pmap_update(pmap_kernel());
614 pvpage = (struct pv_page *) pv_cachedva;
615 pv_cachedva = 0;
616 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
617 }
618
619 /*
620 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
621 *
622 * => caller must hold pvalloc_lock
623 * => if need_entry is true, we allocate and return one pv_entry
624 */
625
626 static struct pv_entry *
627 pmap_add_pvpage(pvp, need_entry)
628 struct pv_page *pvp;
629 boolean_t need_entry;
630 {
631 int tofree, lcv;
632
633 /* do we need to return one? */
634 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
635
636 pvp->pvinfo.pvpi_pvfree = NULL;
637 pvp->pvinfo.pvpi_nfree = tofree;
638 for (lcv = 0 ; lcv < tofree ; lcv++) {
639 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
640 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
641 }
642 if (need_entry)
643 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
644 else
645 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
646 pv_nfpvents += tofree;
647 return((need_entry) ? &pvp->pvents[lcv] : NULL);
648 }
649
650 /*
651 * pmap_free_pv_doit: actually free a pv_entry
652 *
653 * => do not call this directly! instead use either
654 * 1. pmap_free_pv ==> free a single pv_entry
655 * 2. pmap_free_pvs => free a list of pv_entrys
656 * => we must be holding pvalloc_lock
657 */
658
659 __inline static void
660 pmap_free_pv_doit(pv)
661 struct pv_entry *pv;
662 {
663 struct pv_page *pvp;
664
665 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
666 pv_nfpvents++;
667 pvp->pvinfo.pvpi_nfree++;
668
669 /* nfree == 1 => fully allocated page just became partly allocated */
670 if (pvp->pvinfo.pvpi_nfree == 1) {
671 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
672 }
673
674 /* free it */
675 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
676 pvp->pvinfo.pvpi_pvfree = pv;
677
678 /*
679 * are all pv_page's pv_entry's free? move it to unused queue.
680 */
681
682 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
683 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
684 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
685 }
686 }
687
688 /*
689 * pmap_free_pv: free a single pv_entry
690 *
691 * => we gain the pvalloc_lock
692 */
693
694 __inline static void
695 pmap_free_pv(pmap, pv)
696 struct pmap *pmap;
697 struct pv_entry *pv;
698 {
699 simple_lock(&pvalloc_lock);
700 pmap_free_pv_doit(pv);
701
702 /*
703 * Can't free the PV page if the PV entries were associated with
704 * the kernel pmap; the pmap is already locked.
705 */
706 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
707 pmap != pmap_kernel())
708 pmap_free_pvpage();
709
710 simple_unlock(&pvalloc_lock);
711 }
712
713 /*
714 * pmap_free_pvs: free a list of pv_entrys
715 *
716 * => we gain the pvalloc_lock
717 */
718
719 __inline static void
720 pmap_free_pvs(pmap, pvs)
721 struct pmap *pmap;
722 struct pv_entry *pvs;
723 {
724 struct pv_entry *nextpv;
725
726 simple_lock(&pvalloc_lock);
727
728 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
729 nextpv = pvs->pv_next;
730 pmap_free_pv_doit(pvs);
731 }
732
733 /*
734 * Can't free the PV page if the PV entries were associated with
735 * the kernel pmap; the pmap is already locked.
736 */
737 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
738 pmap != pmap_kernel())
739 pmap_free_pvpage();
740
741 simple_unlock(&pvalloc_lock);
742 }
743
744
745 /*
746 * pmap_free_pvpage: try and free an unused pv_page structure
747 *
748 * => assume caller is holding the pvalloc_lock and that
749 * there is a page on the pv_unusedpgs list
750 * => if we can't get a lock on the kmem_map we try again later
751 */
752
753 static void
754 pmap_free_pvpage()
755 {
756 int s;
757 struct vm_map *map;
758 struct vm_map_entry *dead_entries;
759 struct pv_page *pvp;
760
761 s = splvm(); /* protect kmem_map */
762
763 pvp = TAILQ_FIRST(&pv_unusedpgs);
764
765 /*
766 * note: watch out for pv_initpage which is allocated out of
767 * kernel_map rather than kmem_map.
768 */
769 if (pvp == pv_initpage)
770 map = kernel_map;
771 else
772 map = kmem_map;
773 if (vm_map_lock_try(map)) {
774
775 /* remove pvp from pv_unusedpgs */
776 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
777
778 /* unmap the page */
779 dead_entries = NULL;
780 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
781 &dead_entries);
782 vm_map_unlock(map);
783
784 if (dead_entries != NULL)
785 uvm_unmap_detach(dead_entries, 0);
786
787 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
788 }
789 if (pvp == pv_initpage)
790 /* no more initpage, we've freed it */
791 pv_initpage = NULL;
792
793 splx(s);
794 }
795
796 /*
797 * main pv_entry manipulation functions:
798 * pmap_enter_pv: enter a mapping onto a vm_page list
799 * pmap_remove_pv: remove a mappiing from a vm_page list
800 *
801 * NOTE: pmap_enter_pv expects to lock the pvh itself
802 * pmap_remove_pv expects te caller to lock the pvh before calling
803 */
804
805 /*
806 * pmap_enter_pv: enter a mapping onto a vm_page lst
807 *
808 * => caller should hold the proper lock on pmap_main_lock
809 * => caller should have pmap locked
810 * => we will gain the lock on the vm_page and allocate the new pv_entry
811 * => caller should adjust ptp's wire_count before calling
812 * => caller should not adjust pmap's wire_count
813 */
814
815 __inline static void
816 pmap_enter_pv(pg, pve, pmap, va, ptp, flags)
817 struct vm_page *pg;
818 struct pv_entry *pve; /* preallocated pve for us to use */
819 struct pmap *pmap;
820 vaddr_t va;
821 struct vm_page *ptp; /* PTP in pmap that maps this VA */
822 int flags;
823 {
824 pve->pv_pmap = pmap;
825 pve->pv_va = va;
826 pve->pv_ptp = ptp; /* NULL for kernel pmap */
827 pve->pv_flags = flags;
828 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
829 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
830 pg->mdpage.pvh_list = pve; /* ... locked list */
831 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
832 if (pve->pv_flags & PT_W)
833 ++pmap->pm_stats.wired_count;
834 }
835
836 /*
837 * pmap_remove_pv: try to remove a mapping from a pv_list
838 *
839 * => caller should hold proper lock on pmap_main_lock
840 * => pmap should be locked
841 * => caller should hold lock on vm_page [so that attrs can be adjusted]
842 * => caller should adjust ptp's wire_count and free PTP if needed
843 * => caller should NOT adjust pmap's wire_count
844 * => we return the removed pve
845 */
846
847 __inline static struct pv_entry *
848 pmap_remove_pv(pg, pmap, va)
849 struct vm_page *pg;
850 struct pmap *pmap;
851 vaddr_t va;
852 {
853 struct pv_entry *pve, **prevptr;
854
855 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
856 pve = *prevptr;
857 while (pve) {
858 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
859 *prevptr = pve->pv_next; /* remove it! */
860 if (pve->pv_flags & PT_W)
861 --pmap->pm_stats.wired_count;
862 break;
863 }
864 prevptr = &pve->pv_next; /* previous pointer */
865 pve = pve->pv_next; /* advance */
866 }
867 return(pve); /* return removed pve */
868 }
869
870 /*
871 *
872 * pmap_modify_pv: Update pv flags
873 *
874 * => caller should hold lock on vm_page [so that attrs can be adjusted]
875 * => caller should NOT adjust pmap's wire_count
876 * => caller must call pmap_vac_me_harder() if writable status of a page
877 * may have changed.
878 * => we return the old flags
879 *
880 * Modify a physical-virtual mapping in the pv table
881 */
882
883 /*__inline */
884 static u_int
885 pmap_modify_pv(pmap, va, pg, bic_mask, eor_mask)
886 struct pmap *pmap;
887 vaddr_t va;
888 struct vm_page *pg;
889 u_int bic_mask;
890 u_int eor_mask;
891 {
892 struct pv_entry *npv;
893 u_int flags, oflags;
894
895 /*
896 * There is at least one VA mapping this page.
897 */
898
899 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
900 if (pmap == npv->pv_pmap && va == npv->pv_va) {
901 oflags = npv->pv_flags;
902 npv->pv_flags = flags =
903 ((oflags & ~bic_mask) ^ eor_mask);
904 if ((flags ^ oflags) & PT_W) {
905 if (flags & PT_W)
906 ++pmap->pm_stats.wired_count;
907 else
908 --pmap->pm_stats.wired_count;
909 }
910 return (oflags);
911 }
912 }
913 return (0);
914 }
915
916 /*
917 * Map the specified level 2 pagetable into the level 1 page table for
918 * the given pmap to cover a chunk of virtual address space starting from the
919 * address specified.
920 */
921 static /*__inline*/ void
922 pmap_map_in_l1(pmap, va, l2pa, selfref)
923 struct pmap *pmap;
924 vaddr_t va, l2pa;
925 boolean_t selfref;
926 {
927 vaddr_t ptva;
928
929 /* Calculate the index into the L1 page table. */
930 ptva = (va >> PDSHIFT) & ~3;
931
932 NPDEBUG(PDB_MAP_L1, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
933 pmap->pm_pdir, L1_PTE(l2pa), ptva));
934
935 /* Map page table into the L1. */
936 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
937 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
938 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
939 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
940
941 /* Map the page table into the page table area. */
942 if (selfref) {
943 NPDEBUG(PDB_MAP_L1, printf("pt self reference %lx in %lx\n",
944 L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
945 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
946 L2_PTE_NC_NB(l2pa, AP_KRW);
947 }
948 /* XXX should be a purge */
949 /* cpu_tlb_flushD();*/
950 }
951
952 #if 0
953 static /*__inline*/ void
954 pmap_unmap_in_l1(pmap, va)
955 struct pmap *pmap;
956 vaddr_t va;
957 {
958 vaddr_t ptva;
959
960 /* Calculate the index into the L1 page table. */
961 ptva = (va >> PDSHIFT) & ~3;
962
963 /* Unmap page table from the L1. */
964 pmap->pm_pdir[ptva + 0] = 0;
965 pmap->pm_pdir[ptva + 1] = 0;
966 pmap->pm_pdir[ptva + 2] = 0;
967 pmap->pm_pdir[ptva + 3] = 0;
968
969 /* Unmap the page table from the page table area. */
970 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
971
972 /* XXX should be a purge */
973 /* cpu_tlb_flushD();*/
974 }
975 #endif
976
977 /*
978 * Used to map a range of physical addresses into kernel
979 * virtual address space.
980 *
981 * For now, VM is already on, we only need to map the
982 * specified memory.
983 */
984 vaddr_t
985 pmap_map(va, spa, epa, prot)
986 vaddr_t va, spa, epa;
987 int prot;
988 {
989 while (spa < epa) {
990 pmap_kenter_pa(va, spa, prot);
991 va += NBPG;
992 spa += NBPG;
993 }
994 pmap_update(pmap_kernel());
995 return(va);
996 }
997
998
999 /*
1000 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1001 *
1002 * bootstrap the pmap system. This is called from initarm and allows
1003 * the pmap system to initailise any structures it requires.
1004 *
1005 * Currently this sets up the kernel_pmap that is statically allocated
1006 * and also allocated virtual addresses for certain page hooks.
1007 * Currently the only one page hook is allocated that is used
1008 * to zero physical pages of memory.
1009 * It also initialises the start and end address of the kernel data space.
1010 */
1011 extern paddr_t physical_freestart;
1012 extern paddr_t physical_freeend;
1013
1014 char *boot_head;
1015
1016 void
1017 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
1018 pd_entry_t *kernel_l1pt;
1019 pv_addr_t kernel_ptpt;
1020 {
1021 pt_entry_t *pte;
1022 int loop;
1023 paddr_t start, end;
1024 #if NISADMA > 0
1025 paddr_t istart;
1026 psize_t isize;
1027 #endif
1028
1029 pmap_kernel()->pm_pdir = kernel_l1pt;
1030 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1031 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1032 simple_lock_init(&pmap_kernel()->pm_lock);
1033 pmap_kernel()->pm_obj.pgops = NULL;
1034 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1035 pmap_kernel()->pm_obj.uo_npages = 0;
1036 pmap_kernel()->pm_obj.uo_refs = 1;
1037
1038 /*
1039 * Initialize PAGE_SIZE-dependent variables.
1040 */
1041 uvm_setpagesize();
1042
1043 npages = 0;
1044 loop = 0;
1045 while (loop < bootconfig.dramblocks) {
1046 start = (paddr_t)bootconfig.dram[loop].address;
1047 end = start + (bootconfig.dram[loop].pages * NBPG);
1048 if (start < physical_freestart)
1049 start = physical_freestart;
1050 if (end > physical_freeend)
1051 end = physical_freeend;
1052 #if 0
1053 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1054 #endif
1055 #if NISADMA > 0
1056 if (pmap_isa_dma_range_intersect(start, end - start,
1057 &istart, &isize)) {
1058 /*
1059 * Place the pages that intersect with the
1060 * ISA DMA range onto the ISA DMA free list.
1061 */
1062 #if 0
1063 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1064 istart + isize - 1);
1065 #endif
1066 uvm_page_physload(atop(istart),
1067 atop(istart + isize), atop(istart),
1068 atop(istart + isize), VM_FREELIST_ISADMA);
1069 npages += atop(istart + isize) - atop(istart);
1070
1071 /*
1072 * Load the pieces that come before
1073 * the intersection into the default
1074 * free list.
1075 */
1076 if (start < istart) {
1077 #if 0
1078 printf(" BEFORE 0x%lx -> 0x%lx\n",
1079 start, istart - 1);
1080 #endif
1081 uvm_page_physload(atop(start),
1082 atop(istart), atop(start),
1083 atop(istart), VM_FREELIST_DEFAULT);
1084 npages += atop(istart) - atop(start);
1085 }
1086
1087 /*
1088 * Load the pieces that come after
1089 * the intersection into the default
1090 * free list.
1091 */
1092 if ((istart + isize) < end) {
1093 #if 0
1094 printf(" AFTER 0x%lx -> 0x%lx\n",
1095 (istart + isize), end - 1);
1096 #endif
1097 uvm_page_physload(atop(istart + isize),
1098 atop(end), atop(istart + isize),
1099 atop(end), VM_FREELIST_DEFAULT);
1100 npages += atop(end) - atop(istart + isize);
1101 }
1102 } else {
1103 uvm_page_physload(atop(start), atop(end),
1104 atop(start), atop(end), VM_FREELIST_DEFAULT);
1105 npages += atop(end) - atop(start);
1106 }
1107 #else /* NISADMA > 0 */
1108 uvm_page_physload(atop(start), atop(end),
1109 atop(start), atop(end), VM_FREELIST_DEFAULT);
1110 npages += atop(end) - atop(start);
1111 #endif /* NISADMA > 0 */
1112 ++loop;
1113 }
1114
1115 #ifdef MYCROFT_HACK
1116 printf("npages = %ld\n", npages);
1117 #endif
1118
1119 virtual_avail = KERNEL_VM_BASE;
1120 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE - 1;
1121
1122 /*
1123 * now we allocate the "special" VAs which are used for tmp mappings
1124 * by the pmap (and other modules). we allocate the VAs by advancing
1125 * virtual_avail (note that there are no pages mapped at these VAs).
1126 * we find the PTE that maps the allocated VA via the linear PTE
1127 * mapping.
1128 */
1129
1130 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1131
1132 csrcp = virtual_avail; csrc_pte = pte;
1133 virtual_avail += PAGE_SIZE; pte++;
1134
1135 cdstp = virtual_avail; cdst_pte = pte;
1136 virtual_avail += PAGE_SIZE; pte++;
1137
1138 memhook = (char *) virtual_avail; /* don't need pte */
1139 virtual_avail += PAGE_SIZE; pte++;
1140
1141 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1142 virtual_avail += round_page(MSGBUFSIZE);
1143 pte += atop(round_page(MSGBUFSIZE));
1144
1145 /*
1146 * init the static-global locks and global lists.
1147 */
1148 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1149 simple_lock_init(&pvalloc_lock);
1150 simple_lock_init(&pmaps_lock);
1151 LIST_INIT(&pmaps);
1152 TAILQ_INIT(&pv_freepages);
1153 TAILQ_INIT(&pv_unusedpgs);
1154
1155 /*
1156 * initialize the pmap pool.
1157 */
1158
1159 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1160 &pool_allocator_nointr);
1161
1162 cpu_dcache_wbinv_all();
1163 }
1164
1165 /*
1166 * void pmap_init(void)
1167 *
1168 * Initialize the pmap module.
1169 * Called by vm_init() in vm/vm_init.c in order to initialise
1170 * any structures that the pmap system needs to map virtual memory.
1171 */
1172
1173 extern int physmem;
1174
1175 void
1176 pmap_init()
1177 {
1178
1179 /*
1180 * Set the available memory vars - These do not map to real memory
1181 * addresses and cannot as the physical memory is fragmented.
1182 * They are used by ps for %mem calculations.
1183 * One could argue whether this should be the entire memory or just
1184 * the memory that is useable in a user process.
1185 */
1186 avail_start = 0;
1187 avail_end = physmem * NBPG;
1188
1189 /*
1190 * now we need to free enough pv_entry structures to allow us to get
1191 * the kmem_map/kmem_object allocated and inited (done after this
1192 * function is finished). to do this we allocate one bootstrap page out
1193 * of kernel_map and use it to provide an initial pool of pv_entry
1194 * structures. we never free this page.
1195 */
1196
1197 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1198 if (pv_initpage == NULL)
1199 panic("pmap_init: pv_initpage");
1200 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1201 pv_nfpvents = 0;
1202 (void) pmap_add_pvpage(pv_initpage, FALSE);
1203
1204 pmap_initialized = TRUE;
1205
1206 /* Initialise our L1 page table queues and counters */
1207 SIMPLEQ_INIT(&l1pt_static_queue);
1208 l1pt_static_queue_count = 0;
1209 l1pt_static_create_count = 0;
1210 SIMPLEQ_INIT(&l1pt_queue);
1211 l1pt_queue_count = 0;
1212 l1pt_create_count = 0;
1213 l1pt_reuse_count = 0;
1214 }
1215
1216 /*
1217 * pmap_postinit()
1218 *
1219 * This routine is called after the vm and kmem subsystems have been
1220 * initialised. This allows the pmap code to perform any initialisation
1221 * that can only be done one the memory allocation is in place.
1222 */
1223
1224 void
1225 pmap_postinit()
1226 {
1227 int loop;
1228 struct l1pt *pt;
1229
1230 #ifdef PMAP_STATIC_L1S
1231 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1232 #else /* PMAP_STATIC_L1S */
1233 for (loop = 0; loop < max_processes; ++loop) {
1234 #endif /* PMAP_STATIC_L1S */
1235 /* Allocate a L1 page table */
1236 pt = pmap_alloc_l1pt();
1237 if (!pt)
1238 panic("Cannot allocate static L1 page tables\n");
1239
1240 /* Clean it */
1241 bzero((void *)pt->pt_va, PD_SIZE);
1242 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1243 /* Add the page table to the queue */
1244 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1245 ++l1pt_static_queue_count;
1246 ++l1pt_static_create_count;
1247 }
1248 }
1249
1250
1251 /*
1252 * Create and return a physical map.
1253 *
1254 * If the size specified for the map is zero, the map is an actual physical
1255 * map, and may be referenced by the hardware.
1256 *
1257 * If the size specified is non-zero, the map will be used in software only,
1258 * and is bounded by that size.
1259 */
1260
1261 pmap_t
1262 pmap_create()
1263 {
1264 struct pmap *pmap;
1265
1266 /*
1267 * Fetch pmap entry from the pool
1268 */
1269
1270 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1271 /* XXX is this really needed! */
1272 memset(pmap, 0, sizeof(*pmap));
1273
1274 simple_lock_init(&pmap->pm_obj.vmobjlock);
1275 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1276 TAILQ_INIT(&pmap->pm_obj.memq);
1277 pmap->pm_obj.uo_npages = 0;
1278 pmap->pm_obj.uo_refs = 1;
1279 pmap->pm_stats.wired_count = 0;
1280 pmap->pm_stats.resident_count = 1;
1281
1282 /* Now init the machine part of the pmap */
1283 pmap_pinit(pmap);
1284 return(pmap);
1285 }
1286
1287 /*
1288 * pmap_alloc_l1pt()
1289 *
1290 * This routine allocates physical and virtual memory for a L1 page table
1291 * and wires it.
1292 * A l1pt structure is returned to describe the allocated page table.
1293 *
1294 * This routine is allowed to fail if the required memory cannot be allocated.
1295 * In this case NULL is returned.
1296 */
1297
1298 struct l1pt *
1299 pmap_alloc_l1pt(void)
1300 {
1301 paddr_t pa;
1302 vaddr_t va;
1303 struct l1pt *pt;
1304 int error;
1305 struct vm_page *m;
1306 pt_entry_t *ptes;
1307
1308 /* Allocate virtual address space for the L1 page table */
1309 va = uvm_km_valloc(kernel_map, PD_SIZE);
1310 if (va == 0) {
1311 #ifdef DIAGNOSTIC
1312 PDEBUG(0,
1313 printf("pmap: Cannot allocate pageable memory for L1\n"));
1314 #endif /* DIAGNOSTIC */
1315 return(NULL);
1316 }
1317
1318 /* Allocate memory for the l1pt structure */
1319 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1320
1321 /*
1322 * Allocate pages from the VM system.
1323 */
1324 TAILQ_INIT(&pt->pt_plist);
1325 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1326 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1327 if (error) {
1328 #ifdef DIAGNOSTIC
1329 PDEBUG(0,
1330 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1331 error));
1332 #endif /* DIAGNOSTIC */
1333 /* Release the resources we already have claimed */
1334 free(pt, M_VMPMAP);
1335 uvm_km_free(kernel_map, va, PD_SIZE);
1336 return(NULL);
1337 }
1338
1339 /* Map our physical pages into our virtual space */
1340 pt->pt_va = va;
1341 m = TAILQ_FIRST(&pt->pt_plist);
1342 ptes = pmap_map_ptes(pmap_kernel());
1343 while (m && va < (pt->pt_va + PD_SIZE)) {
1344 pa = VM_PAGE_TO_PHYS(m);
1345
1346 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1347
1348 /* Revoke cacheability and bufferability */
1349 /* XXX should be done better than this */
1350 ptes[arm_btop(va)] &= ~(PT_C | PT_B);
1351
1352 va += NBPG;
1353 m = m->pageq.tqe_next;
1354 }
1355 pmap_unmap_ptes(pmap_kernel());
1356 pmap_update(pmap_kernel());
1357
1358 #ifdef DIAGNOSTIC
1359 if (m)
1360 panic("pmap_alloc_l1pt: pglist not empty\n");
1361 #endif /* DIAGNOSTIC */
1362
1363 pt->pt_flags = 0;
1364 return(pt);
1365 }
1366
1367 /*
1368 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1369 */
1370 static void
1371 pmap_free_l1pt(pt)
1372 struct l1pt *pt;
1373 {
1374 /* Separate the physical memory for the virtual space */
1375 pmap_kremove(pt->pt_va, PD_SIZE);
1376 pmap_update(pmap_kernel());
1377
1378 /* Return the physical memory */
1379 uvm_pglistfree(&pt->pt_plist);
1380
1381 /* Free the virtual space */
1382 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1383
1384 /* Free the l1pt structure */
1385 free(pt, M_VMPMAP);
1386 }
1387
1388 /*
1389 * Allocate a page directory.
1390 * This routine will either allocate a new page directory from the pool
1391 * of L1 page tables currently held by the kernel or it will allocate
1392 * a new one via pmap_alloc_l1pt().
1393 * It will then initialise the l1 page table for use.
1394 *
1395 * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
1396 */
1397 static int
1398 pmap_allocpagedir(pmap)
1399 struct pmap *pmap;
1400 {
1401 paddr_t pa;
1402 struct l1pt *pt;
1403 pt_entry_t *pte;
1404
1405 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1406
1407 /* Do we have any spare L1's lying around ? */
1408 if (l1pt_static_queue_count) {
1409 --l1pt_static_queue_count;
1410 pt = l1pt_static_queue.sqh_first;
1411 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1412 } else if (l1pt_queue_count) {
1413 --l1pt_queue_count;
1414 pt = l1pt_queue.sqh_first;
1415 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1416 ++l1pt_reuse_count;
1417 } else {
1418 pt = pmap_alloc_l1pt();
1419 if (!pt)
1420 return(ENOMEM);
1421 ++l1pt_create_count;
1422 }
1423
1424 /* Store the pointer to the l1 descriptor in the pmap. */
1425 pmap->pm_l1pt = pt;
1426
1427 /* Get the physical address of the start of the l1 */
1428 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1429
1430 /* Store the virtual address of the l1 in the pmap. */
1431 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1432
1433 /* Clean the L1 if it is dirty */
1434 if (!(pt->pt_flags & PTFLAG_CLEAN))
1435 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1436
1437 /* Allocate a page table to map all the page tables for this pmap */
1438
1439 #ifdef DIAGNOSTIC
1440 if (pmap->pm_vptpt) {
1441 /* XXX What if we have one already ? */
1442 panic("pmap_allocpagedir: have pt already\n");
1443 }
1444 #endif /* DIAGNOSTIC */
1445 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1446 if (pmap->pm_vptpt == 0) {
1447 pmap_freepagedir(pmap);
1448 return(ENOMEM);
1449 }
1450
1451 /* need to lock this all up for growkernel */
1452 simple_lock(&pmaps_lock);
1453 /* wish we didn't have to keep this locked... */
1454
1455 /* Duplicate the kernel mappings. */
1456 bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1457 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1458 KERNEL_PD_SIZE);
1459
1460 pte = vtopte(pmap->pm_vptpt);
1461 pmap->pm_pptpt = l2pte_pa(*pte);
1462
1463 /* Revoke cacheability and bufferability */
1464 /* XXX should be done better than this */
1465 *pte &= ~(PT_C | PT_B);
1466
1467 /* Wire in this page table */
1468 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1469
1470 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1471
1472 /*
1473 * Map the kernel page tables into the new PT map.
1474 */
1475 bcopy((char *)(PTE_BASE
1476 + (PTE_BASE >> (PGSHIFT - 2))
1477 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1478 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1479 (KERNEL_PD_SIZE >> 2));
1480
1481 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1482 simple_unlock(&pmaps_lock);
1483
1484 return(0);
1485 }
1486
1487
1488 /*
1489 * Initialize a preallocated and zeroed pmap structure,
1490 * such as one in a vmspace structure.
1491 */
1492
1493 void
1494 pmap_pinit(pmap)
1495 struct pmap *pmap;
1496 {
1497 int backoff = 6;
1498 int retry = 10;
1499
1500 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1501
1502 /* Keep looping until we succeed in allocating a page directory */
1503 while (pmap_allocpagedir(pmap) != 0) {
1504 /*
1505 * Ok we failed to allocate a suitable block of memory for an
1506 * L1 page table. This means that either:
1507 * 1. 16KB of virtual address space could not be allocated
1508 * 2. 16KB of physically contiguous memory on a 16KB boundary
1509 * could not be allocated.
1510 *
1511 * Since we cannot fail we will sleep for a while and try
1512 * again.
1513 *
1514 * Searching for a suitable L1 PT is expensive:
1515 * to avoid hogging the system when memory is really
1516 * scarce, use an exponential back-off so that
1517 * eventually we won't retry more than once every 8
1518 * seconds. This should allow other processes to run
1519 * to completion and free up resources.
1520 */
1521 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1522 NULL);
1523 if (--retry == 0) {
1524 retry = 10;
1525 if (backoff)
1526 --backoff;
1527 }
1528 }
1529
1530 /* Map zero page for the pmap. This will also map the L2 for it */
1531 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1532 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1533 pmap_update(pmap);
1534 }
1535
1536
1537 void
1538 pmap_freepagedir(pmap)
1539 struct pmap *pmap;
1540 {
1541 /* Free the memory used for the page table mapping */
1542 if (pmap->pm_vptpt != 0)
1543 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1544
1545 /* junk the L1 page table */
1546 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1547 /* Add the page table to the queue */
1548 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1549 ++l1pt_static_queue_count;
1550 } else if (l1pt_queue_count < 8) {
1551 /* Add the page table to the queue */
1552 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1553 ++l1pt_queue_count;
1554 } else
1555 pmap_free_l1pt(pmap->pm_l1pt);
1556 }
1557
1558
1559 /*
1560 * Retire the given physical map from service.
1561 * Should only be called if the map contains no valid mappings.
1562 */
1563
1564 void
1565 pmap_destroy(pmap)
1566 struct pmap *pmap;
1567 {
1568 struct vm_page *page;
1569 int count;
1570
1571 if (pmap == NULL)
1572 return;
1573
1574 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1575
1576 /*
1577 * Drop reference count
1578 */
1579 simple_lock(&pmap->pm_obj.vmobjlock);
1580 count = --pmap->pm_obj.uo_refs;
1581 simple_unlock(&pmap->pm_obj.vmobjlock);
1582 if (count > 0) {
1583 return;
1584 }
1585
1586 /*
1587 * reference count is zero, free pmap resources and then free pmap.
1588 */
1589
1590 /*
1591 * remove it from global list of pmaps
1592 */
1593
1594 simple_lock(&pmaps_lock);
1595 LIST_REMOVE(pmap, pm_list);
1596 simple_unlock(&pmaps_lock);
1597
1598 /* Remove the zero page mapping */
1599 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1600 pmap_update(pmap);
1601
1602 /*
1603 * Free any page tables still mapped
1604 * This is only temporay until pmap_enter can count the number
1605 * of mappings made in a page table. Then pmap_remove() can
1606 * reduce the count and free the pagetable when the count
1607 * reaches zero. Note that entries in this list should match the
1608 * contents of the ptpt, however this is faster than walking a 1024
1609 * entries looking for pt's
1610 * taken from i386 pmap.c
1611 */
1612 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1613 KASSERT((page->flags & PG_BUSY) == 0);
1614 page->wire_count = 0;
1615 uvm_pagefree(page);
1616 }
1617
1618 /* Free the page dir */
1619 pmap_freepagedir(pmap);
1620
1621 /* return the pmap to the pool */
1622 pool_put(&pmap_pmap_pool, pmap);
1623 }
1624
1625
1626 /*
1627 * void pmap_reference(struct pmap *pmap)
1628 *
1629 * Add a reference to the specified pmap.
1630 */
1631
1632 void
1633 pmap_reference(pmap)
1634 struct pmap *pmap;
1635 {
1636 if (pmap == NULL)
1637 return;
1638
1639 simple_lock(&pmap->pm_lock);
1640 pmap->pm_obj.uo_refs++;
1641 simple_unlock(&pmap->pm_lock);
1642 }
1643
1644 /*
1645 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1646 *
1647 * Return the start and end addresses of the kernel's virtual space.
1648 * These values are setup in pmap_bootstrap and are updated as pages
1649 * are allocated.
1650 */
1651
1652 void
1653 pmap_virtual_space(start, end)
1654 vaddr_t *start;
1655 vaddr_t *end;
1656 {
1657 *start = virtual_avail;
1658 *end = virtual_end;
1659 }
1660
1661
1662 /*
1663 * Activate the address space for the specified process. If the process
1664 * is the current process, load the new MMU context.
1665 */
1666 void
1667 pmap_activate(p)
1668 struct proc *p;
1669 {
1670 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1671 struct pcb *pcb = &p->p_addr->u_pcb;
1672
1673 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1674 (paddr_t *)&pcb->pcb_pagedir);
1675
1676 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1677 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1678
1679 if (p == curproc) {
1680 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1681 setttb((u_int)pcb->pcb_pagedir);
1682 }
1683 #if 0
1684 pmap->pm_pdchanged = FALSE;
1685 #endif
1686 }
1687
1688
1689 /*
1690 * Deactivate the address space of the specified process.
1691 */
1692 void
1693 pmap_deactivate(p)
1694 struct proc *p;
1695 {
1696 }
1697
1698 /*
1699 * Perform any deferred pmap operations.
1700 */
1701 void
1702 pmap_update(struct pmap *pmap)
1703 {
1704
1705 /*
1706 * We haven't deferred any pmap operations, but we do need to
1707 * make sure TLB/cache operations have completed.
1708 */
1709 cpu_cpwait();
1710 }
1711
1712 /*
1713 * pmap_clean_page()
1714 *
1715 * This is a local function used to work out the best strategy to clean
1716 * a single page referenced by its entry in the PV table. It's used by
1717 * pmap_copy_page, pmap_zero page and maybe some others later on.
1718 *
1719 * Its policy is effectively:
1720 * o If there are no mappings, we don't bother doing anything with the cache.
1721 * o If there is one mapping, we clean just that page.
1722 * o If there are multiple mappings, we clean the entire cache.
1723 *
1724 * So that some functions can be further optimised, it returns 0 if it didn't
1725 * clean the entire cache, or 1 if it did.
1726 *
1727 * XXX One bug in this routine is that if the pv_entry has a single page
1728 * mapped at 0x00000000 a whole cache clean will be performed rather than
1729 * just the 1 page. Since this should not occur in everyday use and if it does
1730 * it will just result in not the most efficient clean for the page.
1731 */
1732 static int
1733 pmap_clean_page(pv, is_src)
1734 struct pv_entry *pv;
1735 boolean_t is_src;
1736 {
1737 struct pmap *pmap;
1738 struct pv_entry *npv;
1739 int cache_needs_cleaning = 0;
1740 vaddr_t page_to_clean = 0;
1741
1742 if (pv == NULL)
1743 /* nothing mapped in so nothing to flush */
1744 return (0);
1745
1746 /* Since we flush the cache each time we change curproc, we
1747 * only need to flush the page if it is in the current pmap.
1748 */
1749 if (curproc)
1750 pmap = curproc->p_vmspace->vm_map.pmap;
1751 else
1752 pmap = pmap_kernel();
1753
1754 for (npv = pv; npv; npv = npv->pv_next) {
1755 if (npv->pv_pmap == pmap) {
1756 /* The page is mapped non-cacheable in
1757 * this map. No need to flush the cache.
1758 */
1759 if (npv->pv_flags & PT_NC) {
1760 #ifdef DIAGNOSTIC
1761 if (cache_needs_cleaning)
1762 panic("pmap_clean_page: "
1763 "cache inconsistency");
1764 #endif
1765 break;
1766 }
1767 #if 0
1768 /* This doesn't work, because pmap_protect
1769 doesn't flush changes on pages that it
1770 has write-protected. */
1771
1772 /* If the page is not writable and this
1773 is the source, then there is no need
1774 to flush it from the cache. */
1775 else if (is_src && ! (npv->pv_flags & PT_Wr))
1776 continue;
1777 #endif
1778 if (cache_needs_cleaning){
1779 page_to_clean = 0;
1780 break;
1781 }
1782 else
1783 page_to_clean = npv->pv_va;
1784 cache_needs_cleaning = 1;
1785 }
1786 }
1787
1788 if (page_to_clean)
1789 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1790 else if (cache_needs_cleaning) {
1791 cpu_idcache_wbinv_all();
1792 return (1);
1793 }
1794 return (0);
1795 }
1796
1797 /*
1798 * pmap_zero_page()
1799 *
1800 * Zero a given physical page by mapping it at a page hook point.
1801 * In doing the zero page op, the page we zero is mapped cachable, as with
1802 * StrongARM accesses to non-cached pages are non-burst making writing
1803 * _any_ bulk data very slow.
1804 */
1805 void
1806 pmap_zero_page(phys)
1807 paddr_t phys;
1808 {
1809 struct vm_page *pg;
1810
1811 /* Get an entry for this page, and clean it it. */
1812 pg = PHYS_TO_VM_PAGE(phys);
1813 simple_lock(&pg->mdpage.pvh_slock);
1814 pmap_clean_page(pg->mdpage.pvh_list, FALSE);
1815 simple_unlock(&pg->mdpage.pvh_slock);
1816
1817 /*
1818 * Hook in the page, zero it, and purge the cache for that
1819 * zeroed page. Invalidate the TLB as needed.
1820 */
1821 *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1822 cpu_tlb_flushD_SE(cdstp);
1823 cpu_cpwait();
1824 bzero_page(cdstp);
1825 cpu_dcache_wbinv_range(cdstp, NBPG);
1826 }
1827
1828 /* pmap_pageidlezero()
1829 *
1830 * The same as above, except that we assume that the page is not
1831 * mapped. This means we never have to flush the cache first. Called
1832 * from the idle loop.
1833 */
1834 boolean_t
1835 pmap_pageidlezero(phys)
1836 paddr_t phys;
1837 {
1838 int i, *ptr;
1839 boolean_t rv = TRUE;
1840
1841 #ifdef DIAGNOSTIC
1842 struct vm_page *pg;
1843
1844 pg = PHYS_TO_VM_PAGE(phys);
1845 if (pg->mdpage.pvh_list != NULL)
1846 panic("pmap_pageidlezero: zeroing mapped page\n");
1847 #endif
1848
1849 /*
1850 * Hook in the page, zero it, and purge the cache for that
1851 * zeroed page. Invalidate the TLB as needed.
1852 */
1853 *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1854 cpu_tlb_flushD_SE(cdstp);
1855 cpu_cpwait();
1856
1857 for (i = 0, ptr = (int *)cdstp;
1858 i < (NBPG / sizeof(int)); i++) {
1859 if (sched_whichqs != 0) {
1860 /*
1861 * A process has become ready. Abort now,
1862 * so we don't keep it waiting while we
1863 * do slow memory access to finish this
1864 * page.
1865 */
1866 rv = FALSE;
1867 break;
1868 }
1869 *ptr++ = 0;
1870 }
1871
1872 if (rv)
1873 /*
1874 * if we aborted we'll rezero this page again later so don't
1875 * purge it unless we finished it
1876 */
1877 cpu_dcache_wbinv_range(cdstp, NBPG);
1878 return (rv);
1879 }
1880
1881 /*
1882 * pmap_copy_page()
1883 *
1884 * Copy one physical page into another, by mapping the pages into
1885 * hook points. The same comment regarding cachability as in
1886 * pmap_zero_page also applies here.
1887 */
1888 void
1889 pmap_copy_page(src, dest)
1890 paddr_t src;
1891 paddr_t dest;
1892 {
1893 struct vm_page *src_pg, *dest_pg;
1894 boolean_t cleanedcache;
1895
1896 /* Get PV entries for the pages, and clean them if needed. */
1897 src_pg = PHYS_TO_VM_PAGE(src);
1898
1899 simple_lock(&src_pg->mdpage.pvh_slock);
1900 cleanedcache = pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1901 simple_unlock(&src_pg->mdpage.pvh_slock);
1902
1903 if (cleanedcache == 0) {
1904 dest_pg = PHYS_TO_VM_PAGE(dest);
1905 simple_lock(&dest_pg->mdpage.pvh_slock);
1906 pmap_clean_page(dest_pg->mdpage.pvh_list, FALSE);
1907 simple_unlock(&dest_pg->mdpage.pvh_slock);
1908 }
1909 /*
1910 * Map the pages into the page hook points, copy them, and purge
1911 * the cache for the appropriate page. Invalidate the TLB
1912 * as required.
1913 */
1914 *csrc_pte = L2_PTE(src & PG_FRAME, AP_KR);
1915 *cdst_pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1916 cpu_tlb_flushD_SE(csrcp);
1917 cpu_tlb_flushD_SE(cdstp);
1918 cpu_cpwait();
1919 bcopy_page(csrcp, cdstp);
1920 cpu_dcache_inv_range(csrcp, NBPG);
1921 cpu_dcache_wbinv_range(cdstp, NBPG);
1922 }
1923
1924 #if 0
1925 void
1926 pmap_pte_addref(pmap, va)
1927 struct pmap *pmap;
1928 vaddr_t va;
1929 {
1930 pd_entry_t *pde;
1931 paddr_t pa;
1932 struct vm_page *m;
1933
1934 if (pmap == pmap_kernel())
1935 return;
1936
1937 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1938 pa = pmap_pte_pa(pde);
1939 m = PHYS_TO_VM_PAGE(pa);
1940 ++m->wire_count;
1941 #ifdef MYCROFT_HACK
1942 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1943 pmap, va, pde, pa, m, m->wire_count);
1944 #endif
1945 }
1946
1947 void
1948 pmap_pte_delref(pmap, va)
1949 struct pmap *pmap;
1950 vaddr_t va;
1951 {
1952 pd_entry_t *pde;
1953 paddr_t pa;
1954 struct vm_page *m;
1955
1956 if (pmap == pmap_kernel())
1957 return;
1958
1959 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1960 pa = pmap_pte_pa(pde);
1961 m = PHYS_TO_VM_PAGE(pa);
1962 --m->wire_count;
1963 #ifdef MYCROFT_HACK
1964 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1965 pmap, va, pde, pa, m, m->wire_count);
1966 #endif
1967 if (m->wire_count == 0) {
1968 #ifdef MYCROFT_HACK
1969 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1970 pmap, va, pde, pa, m);
1971 #endif
1972 pmap_unmap_in_l1(pmap, va);
1973 uvm_pagefree(m);
1974 --pmap->pm_stats.resident_count;
1975 }
1976 }
1977 #else
1978 #define pmap_pte_addref(pmap, va)
1979 #define pmap_pte_delref(pmap, va)
1980 #endif
1981
1982 /*
1983 * Since we have a virtually indexed cache, we may need to inhibit caching if
1984 * there is more than one mapping and at least one of them is writable.
1985 * Since we purge the cache on every context switch, we only need to check for
1986 * other mappings within the same pmap, or kernel_pmap.
1987 * This function is also called when a page is unmapped, to possibly reenable
1988 * caching on any remaining mappings.
1989 *
1990 * The code implements the following logic, where:
1991 *
1992 * KW = # of kernel read/write pages
1993 * KR = # of kernel read only pages
1994 * UW = # of user read/write pages
1995 * UR = # of user read only pages
1996 * OW = # of user read/write pages in another pmap, then
1997 *
1998 * KC = kernel mapping is cacheable
1999 * UC = user mapping is cacheable
2000 *
2001 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2002 * +---------------------------------------------
2003 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2004 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2005 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2006 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2007 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2008 *
2009 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2010 */
2011 __inline static void
2012 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2013 boolean_t clear_cache)
2014 {
2015 if (pmap == pmap_kernel())
2016 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2017 else
2018 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2019 }
2020
2021 static void
2022 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2023 boolean_t clear_cache)
2024 {
2025 int user_entries = 0;
2026 int user_writable = 0;
2027 int user_cacheable = 0;
2028 int kernel_entries = 0;
2029 int kernel_writable = 0;
2030 int kernel_cacheable = 0;
2031 struct pv_entry *pv;
2032 struct pmap *last_pmap = pmap;
2033
2034 #ifdef DIAGNOSTIC
2035 if (pmap != pmap_kernel())
2036 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2037 #endif
2038
2039 /*
2040 * Pass one, see if there are both kernel and user pmaps for
2041 * this page. Calculate whether there are user-writable or
2042 * kernel-writable pages.
2043 */
2044 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2045 if (pv->pv_pmap != pmap) {
2046 user_entries++;
2047 if (pv->pv_flags & PT_Wr)
2048 user_writable++;
2049 if ((pv->pv_flags & PT_NC) == 0)
2050 user_cacheable++;
2051 } else {
2052 kernel_entries++;
2053 if (pv->pv_flags & PT_Wr)
2054 kernel_writable++;
2055 if ((pv->pv_flags & PT_NC) == 0)
2056 kernel_cacheable++;
2057 }
2058 }
2059
2060 /*
2061 * We know we have just been updating a kernel entry, so if
2062 * all user pages are already cacheable, then there is nothing
2063 * further to do.
2064 */
2065 if (kernel_entries == 0 &&
2066 user_cacheable == user_entries)
2067 return;
2068
2069 if (user_entries) {
2070 /*
2071 * Scan over the list again, for each entry, if it
2072 * might not be set correctly, call pmap_vac_me_user
2073 * to recalculate the settings.
2074 */
2075 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2076 /*
2077 * We know kernel mappings will get set
2078 * correctly in other calls. We also know
2079 * that if the pmap is the same as last_pmap
2080 * then we've just handled this entry.
2081 */
2082 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2083 continue;
2084 /*
2085 * If there are kernel entries and this page
2086 * is writable but non-cacheable, then we can
2087 * skip this entry also.
2088 */
2089 if (kernel_entries > 0 &&
2090 (pv->pv_flags & (PT_NC | PT_Wr)) ==
2091 (PT_NC | PT_Wr))
2092 continue;
2093 /*
2094 * Similarly if there are no kernel-writable
2095 * entries and the page is already
2096 * read-only/cacheable.
2097 */
2098 if (kernel_writable == 0 &&
2099 (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
2100 continue;
2101 /*
2102 * For some of the remaining cases, we know
2103 * that we must recalculate, but for others we
2104 * can't tell if they are correct or not, so
2105 * we recalculate anyway.
2106 */
2107 pmap_unmap_ptes(last_pmap);
2108 last_pmap = pv->pv_pmap;
2109 ptes = pmap_map_ptes(last_pmap);
2110 pmap_vac_me_user(last_pmap, pg, ptes,
2111 pmap_is_curpmap(last_pmap));
2112 }
2113 /* Restore the pte mapping that was passed to us. */
2114 if (last_pmap != pmap) {
2115 pmap_unmap_ptes(last_pmap);
2116 ptes = pmap_map_ptes(pmap);
2117 }
2118 if (kernel_entries == 0)
2119 return;
2120 }
2121
2122 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2123 return;
2124 }
2125
2126 static void
2127 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2128 boolean_t clear_cache)
2129 {
2130 struct pmap *kpmap = pmap_kernel();
2131 struct pv_entry *pv, *npv;
2132 int entries = 0;
2133 int writable = 0;
2134 int cacheable_entries = 0;
2135 int kern_cacheable = 0;
2136 int other_writable = 0;
2137
2138 pv = pg->mdpage.pvh_list;
2139 KASSERT(ptes != NULL);
2140
2141 /*
2142 * Count mappings and writable mappings in this pmap.
2143 * Include kernel mappings as part of our own.
2144 * Keep a pointer to the first one.
2145 */
2146 for (npv = pv; npv; npv = npv->pv_next) {
2147 /* Count mappings in the same pmap */
2148 if (pmap == npv->pv_pmap ||
2149 kpmap == npv->pv_pmap) {
2150 if (entries++ == 0)
2151 pv = npv;
2152 /* Cacheable mappings */
2153 if ((npv->pv_flags & PT_NC) == 0) {
2154 cacheable_entries++;
2155 if (kpmap == npv->pv_pmap)
2156 kern_cacheable++;
2157 }
2158 /* Writable mappings */
2159 if (npv->pv_flags & PT_Wr)
2160 ++writable;
2161 } else if (npv->pv_flags & PT_Wr)
2162 other_writable = 1;
2163 }
2164
2165 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2166 "writable %d cacheable %d %s\n", pmap, entries, writable,
2167 cacheable_entries, clear_cache ? "clean" : "no clean"));
2168
2169 /*
2170 * Enable or disable caching as necessary.
2171 * Note: the first entry might be part of the kernel pmap,
2172 * so we can't assume this is indicative of the state of the
2173 * other (maybe non-kpmap) entries.
2174 */
2175 if ((entries > 1 && writable) ||
2176 (entries > 0 && pmap == kpmap && other_writable)) {
2177 if (cacheable_entries == 0)
2178 return;
2179 for (npv = pv; npv; npv = npv->pv_next) {
2180 if ((pmap == npv->pv_pmap
2181 || kpmap == npv->pv_pmap) &&
2182 (npv->pv_flags & PT_NC) == 0) {
2183 ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
2184 npv->pv_flags |= PT_NC;
2185 /*
2186 * If this page needs flushing from the
2187 * cache, and we aren't going to do it
2188 * below, do it now.
2189 */
2190 if ((cacheable_entries < 4 &&
2191 (clear_cache || npv->pv_pmap == kpmap)) ||
2192 (npv->pv_pmap == kpmap &&
2193 !clear_cache && kern_cacheable < 4)) {
2194 cpu_idcache_wbinv_range(npv->pv_va,
2195 NBPG);
2196 cpu_tlb_flushID_SE(npv->pv_va);
2197 }
2198 }
2199 }
2200 if ((clear_cache && cacheable_entries >= 4) ||
2201 kern_cacheable >= 4) {
2202 cpu_idcache_wbinv_all();
2203 cpu_tlb_flushID();
2204 }
2205 cpu_cpwait();
2206 } else if (entries > 0) {
2207 /*
2208 * Turn cacheing back on for some pages. If it is a kernel
2209 * page, only do so if there are no other writable pages.
2210 */
2211 for (npv = pv; npv; npv = npv->pv_next) {
2212 if ((pmap == npv->pv_pmap ||
2213 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2214 (npv->pv_flags & PT_NC)) {
2215 ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
2216 npv->pv_flags &= ~PT_NC;
2217 }
2218 }
2219 }
2220 }
2221
2222 /*
2223 * pmap_remove()
2224 *
2225 * pmap_remove is responsible for nuking a number of mappings for a range
2226 * of virtual address space in the current pmap. To do this efficiently
2227 * is interesting, because in a number of cases a wide virtual address
2228 * range may be supplied that contains few actual mappings. So, the
2229 * optimisations are:
2230 * 1. Try and skip over hunks of address space for which an L1 entry
2231 * does not exist.
2232 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2233 * maybe do just a partial cache clean. This path of execution is
2234 * complicated by the fact that the cache must be flushed _before_
2235 * the PTE is nuked, being a VAC :-)
2236 * 3. Maybe later fast-case a single page, but I don't think this is
2237 * going to make _that_ much difference overall.
2238 */
2239
2240 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2241
2242 void
2243 pmap_remove(pmap, sva, eva)
2244 struct pmap *pmap;
2245 vaddr_t sva;
2246 vaddr_t eva;
2247 {
2248 int cleanlist_idx = 0;
2249 struct pagelist {
2250 vaddr_t va;
2251 pt_entry_t *pte;
2252 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2253 pt_entry_t *pte = 0, *ptes;
2254 paddr_t pa;
2255 int pmap_active;
2256 struct vm_page *pg;
2257
2258 /* Exit quick if there is no pmap */
2259 if (!pmap)
2260 return;
2261
2262 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2263
2264 sva &= PG_FRAME;
2265 eva &= PG_FRAME;
2266
2267 /*
2268 * we lock in the pmap => vm_page direction
2269 */
2270 PMAP_MAP_TO_HEAD_LOCK();
2271
2272 ptes = pmap_map_ptes(pmap);
2273 /* Get a page table pointer */
2274 while (sva < eva) {
2275 if (pmap_pde_page(pmap_pde(pmap, sva)))
2276 break;
2277 sva = (sva & PD_MASK) + NBPD;
2278 }
2279
2280 pte = &ptes[arm_btop(sva)];
2281 /* Note if the pmap is active thus require cache and tlb cleans */
2282 pmap_active = pmap_is_curpmap(pmap);
2283
2284 /* Now loop along */
2285 while (sva < eva) {
2286 /* Check if we can move to the next PDE (l1 chunk) */
2287 if (!(sva & PT_MASK))
2288 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2289 sva += NBPD;
2290 pte += arm_btop(NBPD);
2291 continue;
2292 }
2293
2294 /* We've found a valid PTE, so this page of PTEs has to go. */
2295 if (pmap_pte_v(pte)) {
2296 /* Update statistics */
2297 --pmap->pm_stats.resident_count;
2298
2299 /*
2300 * Add this page to our cache remove list, if we can.
2301 * If, however the cache remove list is totally full,
2302 * then do a complete cache invalidation taking note
2303 * to backtrack the PTE table beforehand, and ignore
2304 * the lists in future because there's no longer any
2305 * point in bothering with them (we've paid the
2306 * penalty, so will carry on unhindered). Otherwise,
2307 * when we fall out, we just clean the list.
2308 */
2309 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2310 pa = pmap_pte_pa(pte);
2311
2312 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2313 /* Add to the clean list. */
2314 cleanlist[cleanlist_idx].pte = pte;
2315 cleanlist[cleanlist_idx].va = sva;
2316 cleanlist_idx++;
2317 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2318 int cnt;
2319
2320 /* Nuke everything if needed. */
2321 if (pmap_active) {
2322 cpu_idcache_wbinv_all();
2323 cpu_tlb_flushID();
2324 }
2325
2326 /*
2327 * Roll back the previous PTE list,
2328 * and zero out the current PTE.
2329 */
2330 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2331 *cleanlist[cnt].pte = 0;
2332 pmap_pte_delref(pmap, cleanlist[cnt].va);
2333 }
2334 *pte = 0;
2335 pmap_pte_delref(pmap, sva);
2336 cleanlist_idx++;
2337 } else {
2338 /*
2339 * We've already nuked the cache and
2340 * TLB, so just carry on regardless,
2341 * and we won't need to do it again
2342 */
2343 *pte = 0;
2344 pmap_pte_delref(pmap, sva);
2345 }
2346
2347 /*
2348 * Update flags. In a number of circumstances,
2349 * we could cluster a lot of these and do a
2350 * number of sequential pages in one go.
2351 */
2352 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2353 struct pv_entry *pve;
2354 simple_lock(&pg->mdpage.pvh_slock);
2355 pve = pmap_remove_pv(pg, pmap, sva);
2356 pmap_free_pv(pmap, pve);
2357 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2358 simple_unlock(&pg->mdpage.pvh_slock);
2359 }
2360 }
2361 sva += NBPG;
2362 pte++;
2363 }
2364
2365 pmap_unmap_ptes(pmap);
2366 /*
2367 * Now, if we've fallen through down to here, chances are that there
2368 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2369 */
2370 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2371 u_int cnt;
2372
2373 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2374 if (pmap_active) {
2375 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2376 NBPG);
2377 *cleanlist[cnt].pte = 0;
2378 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2379 } else
2380 *cleanlist[cnt].pte = 0;
2381 pmap_pte_delref(pmap, cleanlist[cnt].va);
2382 }
2383 }
2384 PMAP_MAP_TO_HEAD_UNLOCK();
2385 }
2386
2387 /*
2388 * Routine: pmap_remove_all
2389 * Function:
2390 * Removes this physical page from
2391 * all physical maps in which it resides.
2392 * Reflects back modify bits to the pager.
2393 */
2394
2395 static void
2396 pmap_remove_all(pg)
2397 struct vm_page *pg;
2398 {
2399 struct pv_entry *pv, *npv;
2400 struct pmap *pmap;
2401 pt_entry_t *pte, *ptes;
2402
2403 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2404
2405 /* set vm_page => pmap locking */
2406 PMAP_HEAD_TO_MAP_LOCK();
2407
2408 simple_lock(&pg->mdpage.pvh_slock);
2409
2410 pv = pg->mdpage.pvh_list;
2411 if (pv == NULL) {
2412 PDEBUG(0, printf("free page\n"));
2413 simple_unlock(&pg->mdpage.pvh_slock);
2414 PMAP_HEAD_TO_MAP_UNLOCK();
2415 return;
2416 }
2417 pmap_clean_page(pv, FALSE);
2418
2419 while (pv) {
2420 pmap = pv->pv_pmap;
2421 ptes = pmap_map_ptes(pmap);
2422 pte = &ptes[arm_btop(pv->pv_va)];
2423
2424 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2425 pv->pv_va, pv->pv_flags));
2426 #ifdef DEBUG
2427 if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
2428 !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
2429 panic("pmap_remove_all: bad mapping");
2430 #endif /* DEBUG */
2431
2432 /*
2433 * Update statistics
2434 */
2435 --pmap->pm_stats.resident_count;
2436
2437 /* Wired bit */
2438 if (pv->pv_flags & PT_W)
2439 --pmap->pm_stats.wired_count;
2440
2441 /*
2442 * Invalidate the PTEs.
2443 * XXX: should cluster them up and invalidate as many
2444 * as possible at once.
2445 */
2446
2447 #ifdef needednotdone
2448 reduce wiring count on page table pages as references drop
2449 #endif
2450
2451 *pte = 0;
2452 pmap_pte_delref(pmap, pv->pv_va);
2453
2454 npv = pv->pv_next;
2455 pmap_free_pv(pmap, pv);
2456 pv = npv;
2457 pmap_unmap_ptes(pmap);
2458 }
2459 pg->mdpage.pvh_list = NULL;
2460 simple_unlock(&pg->mdpage.pvh_slock);
2461 PMAP_HEAD_TO_MAP_UNLOCK();
2462
2463 PDEBUG(0, printf("done\n"));
2464 cpu_tlb_flushID();
2465 cpu_cpwait();
2466 }
2467
2468
2469 /*
2470 * Set the physical protection on the specified range of this map as requested.
2471 */
2472
2473 void
2474 pmap_protect(pmap, sva, eva, prot)
2475 struct pmap *pmap;
2476 vaddr_t sva;
2477 vaddr_t eva;
2478 vm_prot_t prot;
2479 {
2480 pt_entry_t *pte = NULL, *ptes;
2481 struct vm_page *pg;
2482 int armprot;
2483 int flush = 0;
2484 paddr_t pa;
2485
2486 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2487 pmap, sva, eva, prot));
2488
2489 if (~prot & VM_PROT_READ) {
2490 /* Just remove the mappings. */
2491 pmap_remove(pmap, sva, eva);
2492 /* pmap_update not needed as it should be called by the caller
2493 * of pmap_protect */
2494 return;
2495 }
2496 if (prot & VM_PROT_WRITE) {
2497 /*
2498 * If this is a read->write transition, just ignore it and let
2499 * uvm_fault() take care of it later.
2500 */
2501 return;
2502 }
2503
2504 sva &= PG_FRAME;
2505 eva &= PG_FRAME;
2506
2507 /* Need to lock map->head */
2508 PMAP_MAP_TO_HEAD_LOCK();
2509
2510 ptes = pmap_map_ptes(pmap);
2511 /*
2512 * We need to acquire a pointer to a page table page before entering
2513 * the following loop.
2514 */
2515 while (sva < eva) {
2516 if (pmap_pde_page(pmap_pde(pmap, sva)))
2517 break;
2518 sva = (sva & PD_MASK) + NBPD;
2519 }
2520
2521 pte = &ptes[arm_btop(sva)];
2522
2523 while (sva < eva) {
2524 /* only check once in a while */
2525 if ((sva & PT_MASK) == 0) {
2526 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2527 /* We can race ahead here, to the next pde. */
2528 sva += NBPD;
2529 pte += arm_btop(NBPD);
2530 continue;
2531 }
2532 }
2533
2534 if (!pmap_pte_v(pte))
2535 goto next;
2536
2537 flush = 1;
2538
2539 armprot = 0;
2540 if (sva < VM_MAXUSER_ADDRESS)
2541 armprot |= PT_AP(AP_U);
2542 else if (sva < VM_MAX_ADDRESS)
2543 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2544 *pte = (*pte & 0xfffff00f) | armprot;
2545
2546 pa = pmap_pte_pa(pte);
2547
2548 /* Get the physical page index */
2549
2550 /* Clear write flag */
2551 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2552 simple_lock(&pg->mdpage.pvh_slock);
2553 (void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
2554 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2555 simple_unlock(&pg->mdpage.pvh_slock);
2556 }
2557
2558 next:
2559 sva += NBPG;
2560 pte++;
2561 }
2562 pmap_unmap_ptes(pmap);
2563 PMAP_MAP_TO_HEAD_UNLOCK();
2564 if (flush)
2565 cpu_tlb_flushID();
2566 }
2567
2568 /*
2569 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2570 * int flags)
2571 *
2572 * Insert the given physical page (p) at
2573 * the specified virtual address (v) in the
2574 * target physical map with the protection requested.
2575 *
2576 * If specified, the page will be wired down, meaning
2577 * that the related pte can not be reclaimed.
2578 *
2579 * NB: This is the only routine which MAY NOT lazy-evaluate
2580 * or lose information. That is, this routine must actually
2581 * insert this page into the given map NOW.
2582 */
2583
2584 int
2585 pmap_enter(pmap, va, pa, prot, flags)
2586 struct pmap *pmap;
2587 vaddr_t va;
2588 paddr_t pa;
2589 vm_prot_t prot;
2590 int flags;
2591 {
2592 pt_entry_t *ptes, opte, npte;
2593 paddr_t opa;
2594 boolean_t wired = (flags & PMAP_WIRED) != 0;
2595 struct vm_page *pg;
2596 struct pv_entry *pve;
2597 int error, nflags;
2598
2599 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2600 va, pa, pmap, prot, wired));
2601
2602 #ifdef DIAGNOSTIC
2603 /* Valid address ? */
2604 if (va >= (pmap_curmaxkvaddr))
2605 panic("pmap_enter: too big");
2606 if (pmap != pmap_kernel() && va != 0) {
2607 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2608 panic("pmap_enter: kernel page in user map");
2609 } else {
2610 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2611 panic("pmap_enter: user page in kernel map");
2612 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2613 panic("pmap_enter: entering PT page");
2614 }
2615 #endif
2616 /*
2617 * Get a pointer to the page. Later on in this function, we
2618 * test for a managed page by checking pg != NULL.
2619 */
2620 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2621
2622 /* get lock */
2623 PMAP_MAP_TO_HEAD_LOCK();
2624
2625 /*
2626 * map the ptes. If there's not already an L2 table for this
2627 * address, allocate one.
2628 */
2629 ptes = pmap_map_ptes(pmap); /* locks pmap */
2630 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2631 struct vm_page *ptp;
2632
2633 /* kernel should be pre-grown */
2634 KASSERT(pmap != pmap_kernel());
2635
2636 /* if failure is allowed then don't try too hard */
2637 ptp = pmap_get_ptp(pmap, va);
2638 if (ptp == NULL) {
2639 if (flags & PMAP_CANFAIL) {
2640 error = ENOMEM;
2641 goto out;
2642 }
2643 panic("pmap_enter: get ptp failed");
2644 }
2645 }
2646 opte = ptes[arm_btop(va)];
2647
2648 nflags = 0;
2649 if (prot & VM_PROT_WRITE)
2650 nflags |= PT_Wr;
2651 if (wired)
2652 nflags |= PT_W;
2653
2654 /* Is the pte valid ? If so then this page is already mapped */
2655 if (l2pte_valid(opte)) {
2656 /* Get the physical address of the current page mapped */
2657 opa = l2pte_pa(opte);
2658
2659 /* Are we mapping the same page ? */
2660 if (opa == pa) {
2661 /* Has the wiring changed ? */
2662 if (pg != NULL) {
2663 simple_lock(&pg->mdpage.pvh_slock);
2664 (void) pmap_modify_pv(pmap, va, pg,
2665 PT_Wr | PT_W, nflags);
2666 simple_unlock(&pg->mdpage.pvh_slock);
2667 }
2668 } else {
2669 struct vm_page *opg;
2670
2671 /* We are replacing the page with a new one. */
2672 cpu_idcache_wbinv_range(va, NBPG);
2673
2674 /*
2675 * If it is part of our managed memory then we
2676 * must remove it from the PV list
2677 */
2678 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2679 simple_lock(&opg->mdpage.pvh_slock);
2680 pve = pmap_remove_pv(opg, pmap, va);
2681 simple_unlock(&opg->mdpage.pvh_slock);
2682 } else {
2683 pve = NULL;
2684 }
2685
2686 goto enter;
2687 }
2688 } else {
2689 opa = 0;
2690 pve = NULL;
2691 pmap_pte_addref(pmap, va);
2692
2693 /* pte is not valid so we must be hooking in a new page */
2694 ++pmap->pm_stats.resident_count;
2695
2696 enter:
2697 /*
2698 * Enter on the PV list if part of our managed memory
2699 */
2700 if (pg != NULL) {
2701 if (pve == NULL) {
2702 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2703 if (pve == NULL) {
2704 if (flags & PMAP_CANFAIL) {
2705 error = ENOMEM;
2706 goto out;
2707 }
2708 panic("pmap_enter: no pv entries "
2709 "available");
2710 }
2711 }
2712 /* enter_pv locks pvh when adding */
2713 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2714 } else {
2715 if (pve != NULL)
2716 pmap_free_pv(pmap, pve);
2717 }
2718 }
2719
2720 /* Construct the pte, giving the correct access. */
2721 npte = (pa & PG_FRAME);
2722
2723 /* VA 0 is magic. */
2724 if (pmap != pmap_kernel() && va != 0)
2725 npte |= PT_AP(AP_U);
2726
2727 if (pg != NULL) {
2728 #ifdef DIAGNOSTIC
2729 if ((flags & VM_PROT_ALL) & ~prot)
2730 panic("pmap_enter: access_type exceeds prot");
2731 #endif
2732 npte |= pte_cache_mode;
2733 if (flags & VM_PROT_WRITE) {
2734 npte |= L2_SPAGE | PT_AP(AP_W);
2735 pg->mdpage.pvh_attrs |= PT_H | PT_M;
2736 } else if (flags & VM_PROT_ALL) {
2737 npte |= L2_SPAGE;
2738 pg->mdpage.pvh_attrs |= PT_H;
2739 } else
2740 npte |= L2_INVAL;
2741 } else {
2742 if (prot & VM_PROT_WRITE)
2743 npte |= L2_SPAGE | PT_AP(AP_W);
2744 else if (prot & VM_PROT_ALL)
2745 npte |= L2_SPAGE;
2746 else
2747 npte |= L2_INVAL;
2748 }
2749
2750 ptes[arm_btop(va)] = npte;
2751
2752 if (pg != NULL) {
2753 simple_lock(&pg->mdpage.pvh_slock);
2754 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2755 simple_unlock(&pg->mdpage.pvh_slock);
2756 }
2757
2758 /* Better flush the TLB ... */
2759 cpu_tlb_flushID_SE(va);
2760 error = 0;
2761 out:
2762 pmap_unmap_ptes(pmap); /* unlocks pmap */
2763 PMAP_MAP_TO_HEAD_UNLOCK();
2764
2765 return error;
2766 }
2767
2768 /*
2769 * pmap_kenter_pa: enter a kernel mapping
2770 *
2771 * => no need to lock anything assume va is already allocated
2772 * => should be faster than normal pmap enter function
2773 */
2774 void
2775 pmap_kenter_pa(va, pa, prot)
2776 vaddr_t va;
2777 paddr_t pa;
2778 vm_prot_t prot;
2779 {
2780 pt_entry_t *pte;
2781
2782 pte = vtopte(va);
2783 KASSERT(!pmap_pte_v(pte));
2784 *pte = L2_PTE(pa, AP_KRW);
2785 }
2786
2787 void
2788 pmap_kremove(va, len)
2789 vaddr_t va;
2790 vsize_t len;
2791 {
2792 pt_entry_t *pte;
2793
2794 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2795
2796 /*
2797 * We assume that we will only be called with small
2798 * regions of memory.
2799 */
2800
2801 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2802 pte = vtopte(va);
2803 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2804 *pte = 0;
2805 cpu_tlb_flushID_SE(va);
2806 }
2807 }
2808
2809 /*
2810 * pmap_page_protect:
2811 *
2812 * Lower the permission for all mappings to a given page.
2813 */
2814
2815 void
2816 pmap_page_protect(pg, prot)
2817 struct vm_page *pg;
2818 vm_prot_t prot;
2819 {
2820
2821 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2822 VM_PAGE_TO_PHYS(pg), prot));
2823
2824 switch(prot) {
2825 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2826 case VM_PROT_READ|VM_PROT_WRITE:
2827 return;
2828
2829 case VM_PROT_READ:
2830 case VM_PROT_READ|VM_PROT_EXECUTE:
2831 pmap_copy_on_write(pg);
2832 break;
2833
2834 default:
2835 pmap_remove_all(pg);
2836 break;
2837 }
2838 }
2839
2840
2841 /*
2842 * Routine: pmap_unwire
2843 * Function: Clear the wired attribute for a map/virtual-address
2844 * pair.
2845 * In/out conditions:
2846 * The mapping must already exist in the pmap.
2847 */
2848
2849 void
2850 pmap_unwire(pmap, va)
2851 struct pmap *pmap;
2852 vaddr_t va;
2853 {
2854 pt_entry_t *ptes;
2855 struct vm_page *pg;
2856 paddr_t pa;
2857
2858 PMAP_MAP_TO_HEAD_LOCK();
2859 ptes = pmap_map_ptes(pmap); /* locks pmap */
2860
2861 if (pmap_pde_v(pmap_pde(pmap, va))) {
2862 #ifdef DIAGNOSTIC
2863 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2864 panic("pmap_unwire: invalid L2 PTE");
2865 #endif
2866 /* Extract the physical address of the page */
2867 pa = l2pte_pa(ptes[arm_btop(va)]);
2868
2869 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2870 goto out;
2871
2872 /* Update the wired bit in the pv entry for this page. */
2873 simple_lock(&pg->mdpage.pvh_slock);
2874 (void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
2875 simple_unlock(&pg->mdpage.pvh_slock);
2876 }
2877 #ifdef DIAGNOSTIC
2878 else {
2879 panic("pmap_unwire: invalid L1 PTE");
2880 }
2881 #endif
2882 out:
2883 pmap_unmap_ptes(pmap); /* unlocks pmap */
2884 PMAP_MAP_TO_HEAD_UNLOCK();
2885 }
2886
2887 /*
2888 * Routine: pmap_extract
2889 * Function:
2890 * Extract the physical page address associated
2891 * with the given map/virtual_address pair.
2892 */
2893 boolean_t
2894 pmap_extract(pmap, va, pap)
2895 struct pmap *pmap;
2896 vaddr_t va;
2897 paddr_t *pap;
2898 {
2899 pd_entry_t *pde;
2900 pt_entry_t *pte, *ptes;
2901 paddr_t pa;
2902 boolean_t rv = TRUE;
2903
2904 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
2905
2906 /*
2907 * Get the pte for this virtual address.
2908 */
2909 pde = pmap_pde(pmap, va);
2910 ptes = pmap_map_ptes(pmap);
2911 pte = &ptes[arm_btop(va)];
2912
2913 if (pmap_pde_section(pde)) {
2914 pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
2915 goto out;
2916 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
2917 rv = FALSE;
2918 goto out;
2919 }
2920
2921 if ((*pte & L2_MASK) == L2_LPAGE) {
2922 /* Extract the physical address from the pte */
2923 pa = *pte & ~(L2_LPAGE_SIZE - 1);
2924
2925 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
2926 (pa | (va & (L2_LPAGE_SIZE - 1)))));
2927
2928 if (pap != NULL)
2929 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
2930 goto out;
2931 }
2932
2933 /* Extract the physical address from the pte */
2934 pa = pmap_pte_pa(pte);
2935
2936 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
2937 (pa | (va & ~PG_FRAME))));
2938
2939 if (pap != NULL)
2940 *pap = pa | (va & ~PG_FRAME);
2941 out:
2942 pmap_unmap_ptes(pmap);
2943 return (rv);
2944 }
2945
2946
2947 /*
2948 * Copy the range specified by src_addr/len from the source map to the
2949 * range dst_addr/len in the destination map.
2950 *
2951 * This routine is only advisory and need not do anything.
2952 */
2953
2954 void
2955 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2956 struct pmap *dst_pmap;
2957 struct pmap *src_pmap;
2958 vaddr_t dst_addr;
2959 vsize_t len;
2960 vaddr_t src_addr;
2961 {
2962 PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
2963 dst_pmap, src_pmap, dst_addr, len, src_addr));
2964 }
2965
2966 #if defined(PMAP_DEBUG)
2967 void
2968 pmap_dump_pvlist(phys, m)
2969 vaddr_t phys;
2970 char *m;
2971 {
2972 struct vm_page *pg;
2973 struct pv_entry *pv;
2974
2975 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
2976 printf("INVALID PA\n");
2977 return;
2978 }
2979 simple_lock(&pg->mdpage.pvh_slock);
2980 printf("%s %08lx:", m, phys);
2981 if (pg->mdpage.pvh_list == NULL) {
2982 printf(" no mappings\n");
2983 return;
2984 }
2985
2986 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
2987 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
2988 pv->pv_va, pv->pv_flags);
2989
2990 printf("\n");
2991 simple_unlock(&pg->mdpage.pvh_slock);
2992 }
2993
2994 #endif /* PMAP_DEBUG */
2995
2996 static pt_entry_t *
2997 pmap_map_ptes(struct pmap *pmap)
2998 {
2999 struct proc *p;
3000
3001 /* the kernel's pmap is always accessible */
3002 if (pmap == pmap_kernel()) {
3003 return (pt_entry_t *)PTE_BASE ;
3004 }
3005
3006 if (pmap_is_curpmap(pmap)) {
3007 simple_lock(&pmap->pm_obj.vmobjlock);
3008 return (pt_entry_t *)PTE_BASE;
3009 }
3010
3011 p = curproc;
3012
3013 if (p == NULL)
3014 p = &proc0;
3015
3016 /* need to lock both curpmap and pmap: use ordered locking */
3017 if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
3018 simple_lock(&pmap->pm_obj.vmobjlock);
3019 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3020 } else {
3021 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3022 simple_lock(&pmap->pm_obj.vmobjlock);
3023 }
3024
3025 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
3026 pmap->pm_pptpt, FALSE);
3027 cpu_tlb_flushD();
3028 cpu_cpwait();
3029 return (pt_entry_t *)APTE_BASE;
3030 }
3031
3032 /*
3033 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3034 */
3035
3036 static void
3037 pmap_unmap_ptes(pmap)
3038 struct pmap *pmap;
3039 {
3040 if (pmap == pmap_kernel()) {
3041 return;
3042 }
3043 if (pmap_is_curpmap(pmap)) {
3044 simple_unlock(&pmap->pm_obj.vmobjlock);
3045 } else {
3046 simple_unlock(&pmap->pm_obj.vmobjlock);
3047 simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3048 }
3049 }
3050
3051 /*
3052 * Modify pte bits for all ptes corresponding to the given physical address.
3053 * We use `maskbits' rather than `clearbits' because we're always passing
3054 * constants and the latter would require an extra inversion at run-time.
3055 */
3056
3057 static void
3058 pmap_clearbit(pg, maskbits)
3059 struct vm_page *pg;
3060 unsigned int maskbits;
3061 {
3062 struct pv_entry *pv;
3063 pt_entry_t *ptes;
3064 vaddr_t va;
3065 int tlbentry;
3066
3067 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3068 VM_PAGE_TO_PHYS(pg), maskbits));
3069
3070 tlbentry = 0;
3071
3072 PMAP_HEAD_TO_MAP_LOCK();
3073 simple_lock(&pg->mdpage.pvh_slock);
3074
3075 /*
3076 * Clear saved attributes (modify, reference)
3077 */
3078 pg->mdpage.pvh_attrs &= ~maskbits;
3079
3080 if (pg->mdpage.pvh_list == NULL) {
3081 simple_unlock(&pg->mdpage.pvh_slock);
3082 PMAP_HEAD_TO_MAP_UNLOCK();
3083 return;
3084 }
3085
3086 /*
3087 * Loop over all current mappings setting/clearing as appropos
3088 */
3089 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3090 va = pv->pv_va;
3091 pv->pv_flags &= ~maskbits;
3092 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3093 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3094 if (maskbits & (PT_Wr|PT_M)) {
3095 if ((pv->pv_flags & PT_NC)) {
3096 /*
3097 * Entry is not cacheable: reenable
3098 * the cache, nothing to flush
3099 *
3100 * Don't turn caching on again if this
3101 * is a modified emulation. This
3102 * would be inconsitent with the
3103 * settings created by
3104 * pmap_vac_me_harder().
3105 *
3106 * There's no need to call
3107 * pmap_vac_me_harder() here: all
3108 * pages are loosing their write
3109 * permission.
3110 *
3111 */
3112 if (maskbits & PT_Wr) {
3113 ptes[arm_btop(va)] |= pte_cache_mode;
3114 pv->pv_flags &= ~PT_NC;
3115 }
3116 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3117 /*
3118 * Entry is cacheable: check if pmap is
3119 * current if it is flush it,
3120 * otherwise it won't be in the cache
3121 */
3122 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3123 }
3124
3125 /* make the pte read only */
3126 ptes[arm_btop(va)] &= ~PT_AP(AP_W);
3127 }
3128
3129 if (maskbits & PT_H)
3130 ptes[arm_btop(va)] =
3131 (ptes[arm_btop(va)] & ~L2_MASK) | L2_INVAL;
3132
3133 if (pmap_is_curpmap(pv->pv_pmap)) {
3134 /*
3135 * if we had cacheable pte's we'd clean the
3136 * pte out to memory here
3137 *
3138 * flush tlb entry as it's in the current pmap
3139 */
3140 cpu_tlb_flushID_SE(pv->pv_va);
3141 }
3142 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3143 }
3144 cpu_cpwait();
3145
3146 simple_unlock(&pg->mdpage.pvh_slock);
3147 PMAP_HEAD_TO_MAP_UNLOCK();
3148 }
3149
3150 /*
3151 * pmap_clear_modify:
3152 *
3153 * Clear the "modified" attribute for a page.
3154 */
3155 boolean_t
3156 pmap_clear_modify(pg)
3157 struct vm_page *pg;
3158 {
3159 boolean_t rv;
3160
3161 if (pg->mdpage.pvh_attrs & PT_M) {
3162 rv = TRUE;
3163 pmap_clearbit(pg, PT_M);
3164 } else
3165 rv = FALSE;
3166
3167 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3168 VM_PAGE_TO_PHYS(pg), rv));
3169
3170 return (rv);
3171 }
3172
3173 /*
3174 * pmap_clear_reference:
3175 *
3176 * Clear the "referenced" attribute for a page.
3177 */
3178 boolean_t
3179 pmap_clear_reference(pg)
3180 struct vm_page *pg;
3181 {
3182 boolean_t rv;
3183
3184 if (pg->mdpage.pvh_attrs & PT_H) {
3185 rv = TRUE;
3186 pmap_clearbit(pg, PT_H);
3187 } else
3188 rv = FALSE;
3189
3190 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3191 VM_PAGE_TO_PHYS(pg), rv));
3192
3193 return (rv);
3194 }
3195
3196
3197 void
3198 pmap_copy_on_write(pg)
3199 struct vm_page *pg;
3200 {
3201 PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", VM_PAGE_TO_PHYS(pg)));
3202 pmap_clearbit(pg, PT_Wr);
3203 }
3204
3205 /*
3206 * pmap_is_modified:
3207 *
3208 * Test if a page has the "modified" attribute.
3209 */
3210 /* See <arm/arm32/pmap.h> */
3211
3212 /*
3213 * pmap_is_referenced:
3214 *
3215 * Test if a page has the "referenced" attribute.
3216 */
3217 /* See <arm/arm32/pmap.h> */
3218
3219 int
3220 pmap_modified_emulation(pmap, va)
3221 struct pmap *pmap;
3222 vaddr_t va;
3223 {
3224 pt_entry_t *ptes;
3225 struct vm_page *pg;
3226 paddr_t pa;
3227 u_int flags;
3228 int rv = 0;
3229
3230 PDEBUG(2, printf("pmap_modified_emulation\n"));
3231
3232 PMAP_MAP_TO_HEAD_LOCK();
3233 ptes = pmap_map_ptes(pmap); /* locks pmap */
3234
3235 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3236 PDEBUG(2, printf("L1 PTE invalid\n"));
3237 goto out;
3238 }
3239
3240 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3241
3242 /* Check for a invalid pte */
3243 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3244 goto out;
3245
3246 /* This can happen if user code tries to access kernel memory. */
3247 if ((ptes[arm_btop(va)] & PT_AP(AP_W)) != 0)
3248 goto out;
3249
3250 /* Extract the physical address of the page */
3251 pa = l2pte_pa(ptes[arm_btop(va)]);
3252 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3253 goto out;
3254
3255 /* Get the current flags for this page. */
3256 simple_lock(&pg->mdpage.pvh_slock);
3257
3258 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3259 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3260
3261 /*
3262 * Do the flags say this page is writable ? If not then it is a
3263 * genuine write fault. If yes then the write fault is our fault
3264 * as we did not reflect the write access in the PTE. Now we know
3265 * a write has occurred we can correct this and also set the
3266 * modified bit
3267 */
3268 if (~flags & PT_Wr) {
3269 simple_unlock(&pg->mdpage.pvh_slock);
3270 goto out;
3271 }
3272
3273 PDEBUG(0,
3274 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3275 va, ptes[arm_btop(va)]));
3276 pg->mdpage.pvh_attrs |= PT_H | PT_M;
3277
3278 /*
3279 * Re-enable write permissions for the page. No need to call
3280 * pmap_vac_me_harder(), since this is just a
3281 * modified-emulation fault, and the PT_Wr bit isn't changing. We've
3282 * already set the cacheable bits based on the assumption that we
3283 * can write to this page.
3284 */
3285 ptes[arm_btop(va)] =
3286 (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3287 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3288
3289 simple_unlock(&pg->mdpage.pvh_slock);
3290
3291 cpu_tlb_flushID_SE(va);
3292 cpu_cpwait();
3293 rv = 1;
3294 out:
3295 pmap_unmap_ptes(pmap); /* unlocks pmap */
3296 PMAP_MAP_TO_HEAD_UNLOCK();
3297 return (rv);
3298 }
3299
3300 int
3301 pmap_handled_emulation(pmap, va)
3302 struct pmap *pmap;
3303 vaddr_t va;
3304 {
3305 pt_entry_t *ptes;
3306 struct vm_page *pg;
3307 paddr_t pa;
3308 int rv = 0;
3309
3310 PDEBUG(2, printf("pmap_handled_emulation\n"));
3311
3312 PMAP_MAP_TO_HEAD_LOCK();
3313 ptes = pmap_map_ptes(pmap); /* locks pmap */
3314
3315 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3316 PDEBUG(2, printf("L1 PTE invalid\n"));
3317 goto out;
3318 }
3319
3320 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3321
3322 /* Check for invalid pte */
3323 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3324 goto out;
3325
3326 /* This can happen if user code tries to access kernel memory. */
3327 if ((ptes[arm_btop(va)] & L2_MASK) != L2_INVAL)
3328 goto out;
3329
3330 /* Extract the physical address of the page */
3331 pa = l2pte_pa(ptes[arm_btop(va)]);
3332 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3333 goto out;
3334
3335 simple_lock(&pg->mdpage.pvh_slock);
3336
3337 /*
3338 * Ok we just enable the pte and mark the attibs as handled
3339 * XXX Should we traverse the PV list and enable all PTEs?
3340 */
3341 PDEBUG(0,
3342 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3343 va, ptes[arm_btop(va)]));
3344 pg->mdpage.pvh_attrs |= PT_H;
3345
3346 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE;
3347 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3348
3349 simple_unlock(&pg->mdpage.pvh_slock);
3350
3351 cpu_tlb_flushID_SE(va);
3352 cpu_cpwait();
3353 rv = 1;
3354 out:
3355 pmap_unmap_ptes(pmap); /* unlocks pmap */
3356 PMAP_MAP_TO_HEAD_UNLOCK();
3357 return (rv);
3358 }
3359
3360 /*
3361 * pmap_collect: free resources held by a pmap
3362 *
3363 * => optional function.
3364 * => called when a process is swapped out to free memory.
3365 */
3366
3367 void
3368 pmap_collect(pmap)
3369 struct pmap *pmap;
3370 {
3371 }
3372
3373 /*
3374 * Routine: pmap_procwr
3375 *
3376 * Function:
3377 * Synchronize caches corresponding to [addr, addr+len) in p.
3378 *
3379 */
3380 void
3381 pmap_procwr(p, va, len)
3382 struct proc *p;
3383 vaddr_t va;
3384 int len;
3385 {
3386 /* We only need to do anything if it is the current process. */
3387 if (p == curproc)
3388 cpu_icache_sync_range(va, len);
3389 }
3390 /*
3391 * PTP functions
3392 */
3393
3394 /*
3395 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3396 *
3397 * => pmap should NOT be pmap_kernel()
3398 * => pmap should be locked
3399 */
3400
3401 static struct vm_page *
3402 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3403 {
3404 struct vm_page *ptp;
3405
3406 if (pmap_pde_page(pmap_pde(pmap, va))) {
3407
3408 /* valid... check hint (saves us a PA->PG lookup) */
3409 #if 0
3410 if (pmap->pm_ptphint &&
3411 ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
3412 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3413 return (pmap->pm_ptphint);
3414 #endif
3415 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3416 #ifdef DIAGNOSTIC
3417 if (ptp == NULL)
3418 panic("pmap_get_ptp: unmanaged user PTP");
3419 #endif
3420 // pmap->pm_ptphint = ptp;
3421 return(ptp);
3422 }
3423
3424 /* allocate a new PTP (updates ptphint) */
3425 return(pmap_alloc_ptp(pmap, va));
3426 }
3427
3428 /*
3429 * pmap_alloc_ptp: allocate a PTP for a PMAP
3430 *
3431 * => pmap should already be locked by caller
3432 * => we use the ptp's wire_count to count the number of active mappings
3433 * in the PTP (we start it at one to prevent any chance this PTP
3434 * will ever leak onto the active/inactive queues)
3435 */
3436
3437 /*__inline */ static struct vm_page *
3438 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3439 {
3440 struct vm_page *ptp;
3441
3442 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3443 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3444 if (ptp == NULL)
3445 return (NULL);
3446
3447 /* got one! */
3448 ptp->flags &= ~PG_BUSY; /* never busy */
3449 ptp->wire_count = 1; /* no mappings yet */
3450 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3451 pmap->pm_stats.resident_count++; /* count PTP as resident */
3452 // pmap->pm_ptphint = ptp;
3453 return (ptp);
3454 }
3455
3456 vaddr_t
3457 pmap_growkernel(maxkvaddr)
3458 vaddr_t maxkvaddr;
3459 {
3460 struct pmap *kpm = pmap_kernel(), *pm;
3461 int s;
3462 paddr_t ptaddr;
3463 struct vm_page *ptp;
3464
3465 if (maxkvaddr <= pmap_curmaxkvaddr)
3466 goto out; /* we are OK */
3467 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3468 pmap_curmaxkvaddr, maxkvaddr));
3469
3470 /*
3471 * whoops! we need to add kernel PTPs
3472 */
3473
3474 s = splhigh(); /* to be safe */
3475 simple_lock(&kpm->pm_obj.vmobjlock);
3476 /* due to the way the arm pmap works we map 4MB at a time */
3477 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr ; pmap_curmaxkvaddr += 4 * NBPD) {
3478
3479 if (uvm.page_init_done == FALSE) {
3480
3481 /*
3482 * we're growing the kernel pmap early (from
3483 * uvm_pageboot_alloc()). this case must be
3484 * handled a little differently.
3485 */
3486
3487 if (uvm_page_physget(&ptaddr) == FALSE)
3488 panic("pmap_growkernel: out of memory");
3489 pmap_zero_page(ptaddr);
3490
3491 /* map this page in */
3492 pmap_map_in_l1(kpm, (pmap_curmaxkvaddr + 1), ptaddr, TRUE);
3493
3494 /* count PTP as resident */
3495 kpm->pm_stats.resident_count++;
3496 continue;
3497 }
3498
3499 /*
3500 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3501 * pmap_initialized == FALSE CASE! WE MAY BE
3502 * INVOKED WHILE pmap_init() IS RUNNING!
3503 */
3504
3505 if ((ptp = pmap_alloc_ptp(kpm, (pmap_curmaxkvaddr + 1))) == NULL) {
3506 panic("pmap_growkernel: alloc ptp failed");
3507 }
3508
3509 /* distribute new kernel PTP to all active pmaps */
3510 simple_lock(&pmaps_lock);
3511 LIST_FOREACH(pm, &pmaps, pm_list) {
3512 pmap_map_in_l1(pm, (pmap_curmaxkvaddr + 1), VM_PAGE_TO_PHYS(ptp), TRUE);
3513 }
3514
3515 simple_unlock(&pmaps_lock);
3516 }
3517
3518 /*
3519 * flush out the cache, expensive but growkernel will happen so
3520 * rarely
3521 */
3522 cpu_tlb_flushD();
3523 cpu_cpwait();
3524
3525 simple_unlock(&kpm->pm_obj.vmobjlock);
3526 splx(s);
3527
3528 out:
3529 return (pmap_curmaxkvaddr);
3530 }
3531
3532
3533
3534 /************************ Bootstrapping routines ****************************/
3535
3536 /*
3537 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3538 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3539 * find them as necessary.
3540 *
3541 * Note that the data on this list is not valid after initarm() returns.
3542 */
3543 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3544
3545 static vaddr_t
3546 kernel_pt_lookup(paddr_t pa)
3547 {
3548 pv_addr_t *pv;
3549
3550 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3551 if (pv->pv_pa == pa)
3552 return (pv->pv_va);
3553 }
3554 return (0);
3555 }
3556
3557 /*
3558 * pmap_map_section:
3559 *
3560 * Create a single section mapping.
3561 */
3562 void
3563 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3564 {
3565 pd_entry_t *pde = (pd_entry_t *) l1pt;
3566 pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3567 pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3568
3569 KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
3570
3571 pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
3572 }
3573
3574 /*
3575 * pmap_map_entry:
3576 *
3577 * Create a single page mapping.
3578 */
3579 void
3580 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3581 {
3582 pd_entry_t *pde = (pd_entry_t *) l1pt;
3583 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3584 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3585 pt_entry_t *pte;
3586
3587 KASSERT(((va | pa) & PGOFSET) == 0);
3588
3589 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3590 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3591
3592 pte = (pt_entry_t *)
3593 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3594 if (pte == NULL)
3595 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3596
3597 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
3598 }
3599
3600 /*
3601 * pmap_link_l2pt:
3602 *
3603 * Link the L2 page table specified by "pa" into the L1
3604 * page table at the slot for "va".
3605 */
3606 void
3607 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3608 {
3609 pd_entry_t *pde = (pd_entry_t *) l1pt;
3610 u_int slot = va >> PDSHIFT;
3611
3612 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3613
3614 pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
3615 pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
3616 pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
3617 pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
3618
3619 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3620 }
3621
3622 /*
3623 * pmap_map_chunk:
3624 *
3625 * Map a chunk of memory using the most efficient mappings
3626 * possible (section, large page, small page) into the
3627 * provided L1 and L2 tables at the specified virtual address.
3628 */
3629 vsize_t
3630 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3631 int prot, int cache)
3632 {
3633 pd_entry_t *pde = (pd_entry_t *) l1pt;
3634 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3635 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3636 pt_entry_t *pte;
3637 vsize_t resid;
3638 int i;
3639
3640 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3641
3642 if (l1pt == 0)
3643 panic("pmap_map_chunk: no L1 table provided");
3644
3645 #ifdef VERBOSE_INIT_ARM
3646 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3647 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3648 #endif
3649
3650 size = resid;
3651
3652 while (resid > 0) {
3653 /* See if we can use a section mapping. */
3654 if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
3655 resid >= L1_SEC_SIZE) {
3656 #ifdef VERBOSE_INIT_ARM
3657 printf("S");
3658 #endif
3659 pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
3660 va += L1_SEC_SIZE;
3661 pa += L1_SEC_SIZE;
3662 resid -= L1_SEC_SIZE;
3663 continue;
3664 }
3665
3666 /*
3667 * Ok, we're going to use an L2 table. Make sure
3668 * one is actually in the corresponding L1 slot
3669 * for the current VA.
3670 */
3671 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3672 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3673
3674 pte = (pt_entry_t *)
3675 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3676 if (pte == NULL)
3677 panic("pmap_map_chunk: can't find L2 table for VA"
3678 "0x%08lx", va);
3679
3680 /* See if we can use a L2 large page mapping. */
3681 if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
3682 resid >= L2_LPAGE_SIZE) {
3683 #ifdef VERBOSE_INIT_ARM
3684 printf("L");
3685 #endif
3686 for (i = 0; i < 16; i++) {
3687 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3688 L2_LPTE(pa, ap, fl);
3689 }
3690 va += L2_LPAGE_SIZE;
3691 pa += L2_LPAGE_SIZE;
3692 resid -= L2_LPAGE_SIZE;
3693 continue;
3694 }
3695
3696 /* Use a small page mapping. */
3697 #ifdef VERBOSE_INIT_ARM
3698 printf("P");
3699 #endif
3700 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
3701 va += NBPG;
3702 pa += NBPG;
3703 resid -= NBPG;
3704 }
3705 #ifdef VERBOSE_INIT_ARM
3706 printf("\n");
3707 #endif
3708 return (size);
3709 }
3710