pmap.c revision 1.73 1 /* $NetBSD: pmap.c,v 1.73 2002/03/25 19:53:38 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.73 2002/03/25 19:53:38 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 /*
271 * Structure that describes and L1 table.
272 */
273 struct l1pt {
274 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
275 struct pglist pt_plist; /* Allocated page list */
276 vaddr_t pt_va; /* Allocated virtual address */
277 int pt_flags; /* Flags */
278 };
279 #define PTFLAG_STATIC 0x01 /* Statically allocated */
280 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
281 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
282
283 static void pmap_free_l1pt __P((struct l1pt *));
284 static int pmap_allocpagedir __P((struct pmap *));
285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
286 static void pmap_remove_all __P((struct vm_page *));
287
288 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
289 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
290 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
291
292 extern paddr_t physical_start;
293 extern paddr_t physical_freestart;
294 extern paddr_t physical_end;
295 extern paddr_t physical_freeend;
296 extern unsigned int free_pages;
297 extern int max_processes;
298
299 vaddr_t virtual_avail;
300 vaddr_t virtual_end;
301 vaddr_t pmap_curmaxkvaddr;
302
303 vaddr_t avail_start;
304 vaddr_t avail_end;
305
306 extern pv_addr_t systempage;
307
308 /* Variables used by the L1 page table queue code */
309 SIMPLEQ_HEAD(l1pt_queue, l1pt);
310 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
311 static int l1pt_static_queue_count; /* items in the static l1 queue */
312 static int l1pt_static_create_count; /* static l1 items created */
313 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
314 static int l1pt_queue_count; /* items in the l1 queue */
315 static int l1pt_create_count; /* stat - L1's create count */
316 static int l1pt_reuse_count; /* stat - L1's reused count */
317
318 /* Local function prototypes (not used outside this file) */
319 void pmap_pinit __P((struct pmap *));
320 void pmap_freepagedir __P((struct pmap *));
321
322 /* Other function prototypes */
323 extern void bzero_page __P((vaddr_t));
324 extern void bcopy_page __P((vaddr_t, vaddr_t));
325
326 struct l1pt *pmap_alloc_l1pt __P((void));
327 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
328 vaddr_t l2pa, boolean_t));
329
330 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
331 static void pmap_unmap_ptes __P((struct pmap *));
332
333 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
334 pt_entry_t *, boolean_t));
335 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
336 pt_entry_t *, boolean_t));
337 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
338 pt_entry_t *, boolean_t));
339
340 /*
341 * Cache enable bits in PTE to use on pages that are cacheable.
342 * On most machines this is cacheable/bufferable, but on some, eg arm10, we
343 * can chose between write-through and write-back cacheing.
344 */
345 pt_entry_t pte_cache_mode = (PT_C | PT_B);
346
347 /*
348 * real definition of pv_entry.
349 */
350
351 struct pv_entry {
352 struct pv_entry *pv_next; /* next pv_entry */
353 struct pmap *pv_pmap; /* pmap where mapping lies */
354 vaddr_t pv_va; /* virtual address for mapping */
355 int pv_flags; /* flags */
356 struct vm_page *pv_ptp; /* vm_page for the ptp */
357 };
358
359 /*
360 * pv_entrys are dynamically allocated in chunks from a single page.
361 * we keep track of how many pv_entrys are in use for each page and
362 * we can free pv_entry pages if needed. there is one lock for the
363 * entire allocation system.
364 */
365
366 struct pv_page_info {
367 TAILQ_ENTRY(pv_page) pvpi_list;
368 struct pv_entry *pvpi_pvfree;
369 int pvpi_nfree;
370 };
371
372 /*
373 * number of pv_entry's in a pv_page
374 * (note: won't work on systems where NPBG isn't a constant)
375 */
376
377 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
378 sizeof(struct pv_entry))
379
380 /*
381 * a pv_page: where pv_entrys are allocated from
382 */
383
384 struct pv_page {
385 struct pv_page_info pvinfo;
386 struct pv_entry pvents[PVE_PER_PVPAGE];
387 };
388
389 #ifdef MYCROFT_HACK
390 int mycroft_hack = 0;
391 #endif
392
393 /* Function to set the debug level of the pmap code */
394
395 #ifdef PMAP_DEBUG
396 void
397 pmap_debug(int level)
398 {
399 pmap_debug_level = level;
400 printf("pmap_debug: level=%d\n", pmap_debug_level);
401 }
402 #endif /* PMAP_DEBUG */
403
404 __inline static boolean_t
405 pmap_is_curpmap(struct pmap *pmap)
406 {
407
408 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
409 pmap == pmap_kernel())
410 return (TRUE);
411
412 return (FALSE);
413 }
414
415 #include "isadma.h"
416
417 #if NISADMA > 0
418 /*
419 * Used to protect memory for ISA DMA bounce buffers. If, when loading
420 * pages into the system, memory intersects with any of these ranges,
421 * the intersecting memory will be loaded into a lower-priority free list.
422 */
423 bus_dma_segment_t *pmap_isa_dma_ranges;
424 int pmap_isa_dma_nranges;
425
426 /*
427 * Check if a memory range intersects with an ISA DMA range, and
428 * return the page-rounded intersection if it does. The intersection
429 * will be placed on a lower-priority free list.
430 */
431 static boolean_t
432 pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
433 psize_t *sizep)
434 {
435 bus_dma_segment_t *ds;
436 int i;
437
438 if (pmap_isa_dma_ranges == NULL)
439 return (FALSE);
440
441 for (i = 0, ds = pmap_isa_dma_ranges;
442 i < pmap_isa_dma_nranges; i++, ds++) {
443 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
444 /*
445 * Beginning of region intersects with this range.
446 */
447 *pap = trunc_page(pa);
448 *sizep = round_page(min(pa + size,
449 ds->ds_addr + ds->ds_len) - pa);
450 return (TRUE);
451 }
452 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
453 /*
454 * End of region intersects with this range.
455 */
456 *pap = trunc_page(ds->ds_addr);
457 *sizep = round_page(min((pa + size) - ds->ds_addr,
458 ds->ds_len));
459 return (TRUE);
460 }
461 }
462
463 /*
464 * No intersection found.
465 */
466 return (FALSE);
467 }
468 #endif /* NISADMA > 0 */
469
470 /*
471 * p v _ e n t r y f u n c t i o n s
472 */
473
474 /*
475 * pv_entry allocation functions:
476 * the main pv_entry allocation functions are:
477 * pmap_alloc_pv: allocate a pv_entry structure
478 * pmap_free_pv: free one pv_entry
479 * pmap_free_pvs: free a list of pv_entrys
480 *
481 * the rest are helper functions
482 */
483
484 /*
485 * pmap_alloc_pv: inline function to allocate a pv_entry structure
486 * => we lock pvalloc_lock
487 * => if we fail, we call out to pmap_alloc_pvpage
488 * => 3 modes:
489 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
490 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
491 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
492 * one now
493 *
494 * "try" is for optional functions like pmap_copy().
495 */
496
497 __inline static struct pv_entry *
498 pmap_alloc_pv(struct pmap *pmap, int mode)
499 {
500 struct pv_page *pvpage;
501 struct pv_entry *pv;
502
503 simple_lock(&pvalloc_lock);
504
505 pvpage = TAILQ_FIRST(&pv_freepages);
506
507 if (pvpage != NULL) {
508 pvpage->pvinfo.pvpi_nfree--;
509 if (pvpage->pvinfo.pvpi_nfree == 0) {
510 /* nothing left in this one? */
511 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
512 }
513 pv = pvpage->pvinfo.pvpi_pvfree;
514 KASSERT(pv);
515 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
516 pv_nfpvents--; /* took one from pool */
517 } else {
518 pv = NULL; /* need more of them */
519 }
520
521 /*
522 * if below low water mark or we didn't get a pv_entry we try and
523 * create more pv_entrys ...
524 */
525
526 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
527 if (pv == NULL)
528 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
529 mode : ALLOCPV_NEED);
530 else
531 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
532 }
533
534 simple_unlock(&pvalloc_lock);
535 return(pv);
536 }
537
538 /*
539 * pmap_alloc_pvpage: maybe allocate a new pvpage
540 *
541 * if need_entry is false: try and allocate a new pv_page
542 * if need_entry is true: try and allocate a new pv_page and return a
543 * new pv_entry from it. if we are unable to allocate a pv_page
544 * we make a last ditch effort to steal a pv_page from some other
545 * mapping. if that fails, we panic...
546 *
547 * => we assume that the caller holds pvalloc_lock
548 */
549
550 static struct pv_entry *
551 pmap_alloc_pvpage(struct pmap *pmap, int mode)
552 {
553 struct vm_page *pg;
554 struct pv_page *pvpage;
555 struct pv_entry *pv;
556 int s;
557
558 /*
559 * if we need_entry and we've got unused pv_pages, allocate from there
560 */
561
562 pvpage = TAILQ_FIRST(&pv_unusedpgs);
563 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
564
565 /* move it to pv_freepages list */
566 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
567 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
568
569 /* allocate a pv_entry */
570 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
571 pv = pvpage->pvinfo.pvpi_pvfree;
572 KASSERT(pv);
573 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
574
575 pv_nfpvents--; /* took one from pool */
576 return(pv);
577 }
578
579 /*
580 * see if we've got a cached unmapped VA that we can map a page in.
581 * if not, try to allocate one.
582 */
583
584
585 if (pv_cachedva == 0) {
586 s = splvm();
587 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
588 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
589 splx(s);
590 if (pv_cachedva == 0) {
591 return (NULL);
592 }
593 }
594
595 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
596 UVM_PGA_USERESERVE);
597
598 if (pg == NULL)
599 return (NULL);
600 pg->flags &= ~PG_BUSY; /* never busy */
601
602 /*
603 * add a mapping for our new pv_page and free its entrys (save one!)
604 *
605 * NOTE: If we are allocating a PV page for the kernel pmap, the
606 * pmap is already locked! (...but entering the mapping is safe...)
607 */
608
609 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
610 VM_PROT_READ|VM_PROT_WRITE);
611 pmap_update(pmap_kernel());
612 pvpage = (struct pv_page *) pv_cachedva;
613 pv_cachedva = 0;
614 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
615 }
616
617 /*
618 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
619 *
620 * => caller must hold pvalloc_lock
621 * => if need_entry is true, we allocate and return one pv_entry
622 */
623
624 static struct pv_entry *
625 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
626 {
627 int tofree, lcv;
628
629 /* do we need to return one? */
630 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
631
632 pvp->pvinfo.pvpi_pvfree = NULL;
633 pvp->pvinfo.pvpi_nfree = tofree;
634 for (lcv = 0 ; lcv < tofree ; lcv++) {
635 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
636 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
637 }
638 if (need_entry)
639 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
640 else
641 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
642 pv_nfpvents += tofree;
643 return((need_entry) ? &pvp->pvents[lcv] : NULL);
644 }
645
646 /*
647 * pmap_free_pv_doit: actually free a pv_entry
648 *
649 * => do not call this directly! instead use either
650 * 1. pmap_free_pv ==> free a single pv_entry
651 * 2. pmap_free_pvs => free a list of pv_entrys
652 * => we must be holding pvalloc_lock
653 */
654
655 __inline static void
656 pmap_free_pv_doit(struct pv_entry *pv)
657 {
658 struct pv_page *pvp;
659
660 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
661 pv_nfpvents++;
662 pvp->pvinfo.pvpi_nfree++;
663
664 /* nfree == 1 => fully allocated page just became partly allocated */
665 if (pvp->pvinfo.pvpi_nfree == 1) {
666 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
667 }
668
669 /* free it */
670 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
671 pvp->pvinfo.pvpi_pvfree = pv;
672
673 /*
674 * are all pv_page's pv_entry's free? move it to unused queue.
675 */
676
677 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
678 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
679 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
680 }
681 }
682
683 /*
684 * pmap_free_pv: free a single pv_entry
685 *
686 * => we gain the pvalloc_lock
687 */
688
689 __inline static void
690 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
691 {
692 simple_lock(&pvalloc_lock);
693 pmap_free_pv_doit(pv);
694
695 /*
696 * Can't free the PV page if the PV entries were associated with
697 * the kernel pmap; the pmap is already locked.
698 */
699 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
700 pmap != pmap_kernel())
701 pmap_free_pvpage();
702
703 simple_unlock(&pvalloc_lock);
704 }
705
706 /*
707 * pmap_free_pvs: free a list of pv_entrys
708 *
709 * => we gain the pvalloc_lock
710 */
711
712 __inline static void
713 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
714 {
715 struct pv_entry *nextpv;
716
717 simple_lock(&pvalloc_lock);
718
719 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
720 nextpv = pvs->pv_next;
721 pmap_free_pv_doit(pvs);
722 }
723
724 /*
725 * Can't free the PV page if the PV entries were associated with
726 * the kernel pmap; the pmap is already locked.
727 */
728 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
729 pmap != pmap_kernel())
730 pmap_free_pvpage();
731
732 simple_unlock(&pvalloc_lock);
733 }
734
735
736 /*
737 * pmap_free_pvpage: try and free an unused pv_page structure
738 *
739 * => assume caller is holding the pvalloc_lock and that
740 * there is a page on the pv_unusedpgs list
741 * => if we can't get a lock on the kmem_map we try again later
742 */
743
744 static void
745 pmap_free_pvpage(void)
746 {
747 int s;
748 struct vm_map *map;
749 struct vm_map_entry *dead_entries;
750 struct pv_page *pvp;
751
752 s = splvm(); /* protect kmem_map */
753
754 pvp = TAILQ_FIRST(&pv_unusedpgs);
755
756 /*
757 * note: watch out for pv_initpage which is allocated out of
758 * kernel_map rather than kmem_map.
759 */
760 if (pvp == pv_initpage)
761 map = kernel_map;
762 else
763 map = kmem_map;
764 if (vm_map_lock_try(map)) {
765
766 /* remove pvp from pv_unusedpgs */
767 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
768
769 /* unmap the page */
770 dead_entries = NULL;
771 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
772 &dead_entries);
773 vm_map_unlock(map);
774
775 if (dead_entries != NULL)
776 uvm_unmap_detach(dead_entries, 0);
777
778 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
779 }
780 if (pvp == pv_initpage)
781 /* no more initpage, we've freed it */
782 pv_initpage = NULL;
783
784 splx(s);
785 }
786
787 /*
788 * main pv_entry manipulation functions:
789 * pmap_enter_pv: enter a mapping onto a vm_page list
790 * pmap_remove_pv: remove a mappiing from a vm_page list
791 *
792 * NOTE: pmap_enter_pv expects to lock the pvh itself
793 * pmap_remove_pv expects te caller to lock the pvh before calling
794 */
795
796 /*
797 * pmap_enter_pv: enter a mapping onto a vm_page lst
798 *
799 * => caller should hold the proper lock on pmap_main_lock
800 * => caller should have pmap locked
801 * => we will gain the lock on the vm_page and allocate the new pv_entry
802 * => caller should adjust ptp's wire_count before calling
803 * => caller should not adjust pmap's wire_count
804 */
805
806 __inline static void
807 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
808 vaddr_t va, struct vm_page *ptp, int flags)
809 {
810 pve->pv_pmap = pmap;
811 pve->pv_va = va;
812 pve->pv_ptp = ptp; /* NULL for kernel pmap */
813 pve->pv_flags = flags;
814 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
815 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
816 pg->mdpage.pvh_list = pve; /* ... locked list */
817 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
818 if (pve->pv_flags & PT_W)
819 ++pmap->pm_stats.wired_count;
820 }
821
822 /*
823 * pmap_remove_pv: try to remove a mapping from a pv_list
824 *
825 * => caller should hold proper lock on pmap_main_lock
826 * => pmap should be locked
827 * => caller should hold lock on vm_page [so that attrs can be adjusted]
828 * => caller should adjust ptp's wire_count and free PTP if needed
829 * => caller should NOT adjust pmap's wire_count
830 * => we return the removed pve
831 */
832
833 __inline static struct pv_entry *
834 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
835 {
836 struct pv_entry *pve, **prevptr;
837
838 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
839 pve = *prevptr;
840 while (pve) {
841 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
842 *prevptr = pve->pv_next; /* remove it! */
843 if (pve->pv_flags & PT_W)
844 --pmap->pm_stats.wired_count;
845 break;
846 }
847 prevptr = &pve->pv_next; /* previous pointer */
848 pve = pve->pv_next; /* advance */
849 }
850 return(pve); /* return removed pve */
851 }
852
853 /*
854 *
855 * pmap_modify_pv: Update pv flags
856 *
857 * => caller should hold lock on vm_page [so that attrs can be adjusted]
858 * => caller should NOT adjust pmap's wire_count
859 * => caller must call pmap_vac_me_harder() if writable status of a page
860 * may have changed.
861 * => we return the old flags
862 *
863 * Modify a physical-virtual mapping in the pv table
864 */
865
866 static /* __inline */ u_int
867 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
868 u_int bic_mask, u_int eor_mask)
869 {
870 struct pv_entry *npv;
871 u_int flags, oflags;
872
873 /*
874 * There is at least one VA mapping this page.
875 */
876
877 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
878 if (pmap == npv->pv_pmap && va == npv->pv_va) {
879 oflags = npv->pv_flags;
880 npv->pv_flags = flags =
881 ((oflags & ~bic_mask) ^ eor_mask);
882 if ((flags ^ oflags) & PT_W) {
883 if (flags & PT_W)
884 ++pmap->pm_stats.wired_count;
885 else
886 --pmap->pm_stats.wired_count;
887 }
888 return (oflags);
889 }
890 }
891 return (0);
892 }
893
894 /*
895 * Map the specified level 2 pagetable into the level 1 page table for
896 * the given pmap to cover a chunk of virtual address space starting from the
897 * address specified.
898 */
899 static __inline void
900 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
901 {
902 vaddr_t ptva;
903
904 /* Calculate the index into the L1 page table. */
905 ptva = (va >> PDSHIFT) & ~3;
906
907 /* Map page table into the L1. */
908 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
909 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
910 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
911 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
912
913 /* Map the page table into the page table area. */
914 if (selfref)
915 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
916 L2_PTE_NC_NB(l2pa, AP_KRW);
917 }
918
919 #if 0
920 static __inline void
921 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
922 {
923 vaddr_t ptva;
924
925 /* Calculate the index into the L1 page table. */
926 ptva = (va >> PDSHIFT) & ~3;
927
928 /* Unmap page table from the L1. */
929 pmap->pm_pdir[ptva + 0] = 0;
930 pmap->pm_pdir[ptva + 1] = 0;
931 pmap->pm_pdir[ptva + 2] = 0;
932 pmap->pm_pdir[ptva + 3] = 0;
933
934 /* Unmap the page table from the page table area. */
935 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
936 }
937 #endif
938
939 /*
940 * Used to map a range of physical addresses into kernel
941 * virtual address space.
942 *
943 * For now, VM is already on, we only need to map the
944 * specified memory.
945 */
946 vaddr_t
947 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
948 {
949 while (spa < epa) {
950 pmap_kenter_pa(va, spa, prot);
951 va += NBPG;
952 spa += NBPG;
953 }
954 pmap_update(pmap_kernel());
955 return(va);
956 }
957
958
959 /*
960 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
961 *
962 * bootstrap the pmap system. This is called from initarm and allows
963 * the pmap system to initailise any structures it requires.
964 *
965 * Currently this sets up the kernel_pmap that is statically allocated
966 * and also allocated virtual addresses for certain page hooks.
967 * Currently the only one page hook is allocated that is used
968 * to zero physical pages of memory.
969 * It also initialises the start and end address of the kernel data space.
970 */
971 extern paddr_t physical_freestart;
972 extern paddr_t physical_freeend;
973
974 char *boot_head;
975
976 void
977 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
978 {
979 pt_entry_t *pte;
980 int loop;
981 paddr_t start, end;
982 #if NISADMA > 0
983 paddr_t istart;
984 psize_t isize;
985 #endif
986
987 pmap_kernel()->pm_pdir = kernel_l1pt;
988 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
989 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
990 simple_lock_init(&pmap_kernel()->pm_lock);
991 pmap_kernel()->pm_obj.pgops = NULL;
992 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
993 pmap_kernel()->pm_obj.uo_npages = 0;
994 pmap_kernel()->pm_obj.uo_refs = 1;
995
996 /*
997 * Initialize PAGE_SIZE-dependent variables.
998 */
999 uvm_setpagesize();
1000
1001 loop = 0;
1002 while (loop < bootconfig.dramblocks) {
1003 start = (paddr_t)bootconfig.dram[loop].address;
1004 end = start + (bootconfig.dram[loop].pages * NBPG);
1005 if (start < physical_freestart)
1006 start = physical_freestart;
1007 if (end > physical_freeend)
1008 end = physical_freeend;
1009 #if 0
1010 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1011 #endif
1012 #if NISADMA > 0
1013 if (pmap_isa_dma_range_intersect(start, end - start,
1014 &istart, &isize)) {
1015 /*
1016 * Place the pages that intersect with the
1017 * ISA DMA range onto the ISA DMA free list.
1018 */
1019 #if 0
1020 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1021 istart + isize - 1);
1022 #endif
1023 uvm_page_physload(atop(istart),
1024 atop(istart + isize), atop(istart),
1025 atop(istart + isize), VM_FREELIST_ISADMA);
1026
1027 /*
1028 * Load the pieces that come before
1029 * the intersection into the default
1030 * free list.
1031 */
1032 if (start < istart) {
1033 #if 0
1034 printf(" BEFORE 0x%lx -> 0x%lx\n",
1035 start, istart - 1);
1036 #endif
1037 uvm_page_physload(atop(start),
1038 atop(istart), atop(start),
1039 atop(istart), VM_FREELIST_DEFAULT);
1040 }
1041
1042 /*
1043 * Load the pieces that come after
1044 * the intersection into the default
1045 * free list.
1046 */
1047 if ((istart + isize) < end) {
1048 #if 0
1049 printf(" AFTER 0x%lx -> 0x%lx\n",
1050 (istart + isize), end - 1);
1051 #endif
1052 uvm_page_physload(atop(istart + isize),
1053 atop(end), atop(istart + isize),
1054 atop(end), VM_FREELIST_DEFAULT);
1055 }
1056 } else {
1057 uvm_page_physload(atop(start), atop(end),
1058 atop(start), atop(end), VM_FREELIST_DEFAULT);
1059 }
1060 #else /* NISADMA > 0 */
1061 uvm_page_physload(atop(start), atop(end),
1062 atop(start), atop(end), VM_FREELIST_DEFAULT);
1063 #endif /* NISADMA > 0 */
1064 ++loop;
1065 }
1066
1067 virtual_avail = KERNEL_VM_BASE;
1068 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE - 1;
1069
1070 /*
1071 * now we allocate the "special" VAs which are used for tmp mappings
1072 * by the pmap (and other modules). we allocate the VAs by advancing
1073 * virtual_avail (note that there are no pages mapped at these VAs).
1074 * we find the PTE that maps the allocated VA via the linear PTE
1075 * mapping.
1076 */
1077
1078 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1079
1080 csrcp = virtual_avail; csrc_pte = pte;
1081 virtual_avail += PAGE_SIZE; pte++;
1082
1083 cdstp = virtual_avail; cdst_pte = pte;
1084 virtual_avail += PAGE_SIZE; pte++;
1085
1086 memhook = (char *) virtual_avail; /* don't need pte */
1087 virtual_avail += PAGE_SIZE; pte++;
1088
1089 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1090 virtual_avail += round_page(MSGBUFSIZE);
1091 pte += atop(round_page(MSGBUFSIZE));
1092
1093 /*
1094 * init the static-global locks and global lists.
1095 */
1096 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1097 simple_lock_init(&pvalloc_lock);
1098 simple_lock_init(&pmaps_lock);
1099 LIST_INIT(&pmaps);
1100 TAILQ_INIT(&pv_freepages);
1101 TAILQ_INIT(&pv_unusedpgs);
1102
1103 /*
1104 * initialize the pmap pool.
1105 */
1106
1107 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1108 &pool_allocator_nointr);
1109
1110 cpu_dcache_wbinv_all();
1111 }
1112
1113 /*
1114 * void pmap_init(void)
1115 *
1116 * Initialize the pmap module.
1117 * Called by vm_init() in vm/vm_init.c in order to initialise
1118 * any structures that the pmap system needs to map virtual memory.
1119 */
1120
1121 extern int physmem;
1122
1123 void
1124 pmap_init(void)
1125 {
1126
1127 /*
1128 * Set the available memory vars - These do not map to real memory
1129 * addresses and cannot as the physical memory is fragmented.
1130 * They are used by ps for %mem calculations.
1131 * One could argue whether this should be the entire memory or just
1132 * the memory that is useable in a user process.
1133 */
1134 avail_start = 0;
1135 avail_end = physmem * NBPG;
1136
1137 /*
1138 * now we need to free enough pv_entry structures to allow us to get
1139 * the kmem_map/kmem_object allocated and inited (done after this
1140 * function is finished). to do this we allocate one bootstrap page out
1141 * of kernel_map and use it to provide an initial pool of pv_entry
1142 * structures. we never free this page.
1143 */
1144
1145 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1146 if (pv_initpage == NULL)
1147 panic("pmap_init: pv_initpage");
1148 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1149 pv_nfpvents = 0;
1150 (void) pmap_add_pvpage(pv_initpage, FALSE);
1151
1152 pmap_initialized = TRUE;
1153
1154 /* Initialise our L1 page table queues and counters */
1155 SIMPLEQ_INIT(&l1pt_static_queue);
1156 l1pt_static_queue_count = 0;
1157 l1pt_static_create_count = 0;
1158 SIMPLEQ_INIT(&l1pt_queue);
1159 l1pt_queue_count = 0;
1160 l1pt_create_count = 0;
1161 l1pt_reuse_count = 0;
1162 }
1163
1164 /*
1165 * pmap_postinit()
1166 *
1167 * This routine is called after the vm and kmem subsystems have been
1168 * initialised. This allows the pmap code to perform any initialisation
1169 * that can only be done one the memory allocation is in place.
1170 */
1171
1172 void
1173 pmap_postinit(void)
1174 {
1175 int loop;
1176 struct l1pt *pt;
1177
1178 #ifdef PMAP_STATIC_L1S
1179 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1180 #else /* PMAP_STATIC_L1S */
1181 for (loop = 0; loop < max_processes; ++loop) {
1182 #endif /* PMAP_STATIC_L1S */
1183 /* Allocate a L1 page table */
1184 pt = pmap_alloc_l1pt();
1185 if (!pt)
1186 panic("Cannot allocate static L1 page tables\n");
1187
1188 /* Clean it */
1189 bzero((void *)pt->pt_va, PD_SIZE);
1190 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1191 /* Add the page table to the queue */
1192 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1193 ++l1pt_static_queue_count;
1194 ++l1pt_static_create_count;
1195 }
1196 }
1197
1198
1199 /*
1200 * Create and return a physical map.
1201 *
1202 * If the size specified for the map is zero, the map is an actual physical
1203 * map, and may be referenced by the hardware.
1204 *
1205 * If the size specified is non-zero, the map will be used in software only,
1206 * and is bounded by that size.
1207 */
1208
1209 pmap_t
1210 pmap_create(void)
1211 {
1212 struct pmap *pmap;
1213
1214 /*
1215 * Fetch pmap entry from the pool
1216 */
1217
1218 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1219 /* XXX is this really needed! */
1220 memset(pmap, 0, sizeof(*pmap));
1221
1222 simple_lock_init(&pmap->pm_obj.vmobjlock);
1223 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1224 TAILQ_INIT(&pmap->pm_obj.memq);
1225 pmap->pm_obj.uo_npages = 0;
1226 pmap->pm_obj.uo_refs = 1;
1227 pmap->pm_stats.wired_count = 0;
1228 pmap->pm_stats.resident_count = 1;
1229 pmap->pm_ptphint = NULL;
1230
1231 /* Now init the machine part of the pmap */
1232 pmap_pinit(pmap);
1233 return(pmap);
1234 }
1235
1236 /*
1237 * pmap_alloc_l1pt()
1238 *
1239 * This routine allocates physical and virtual memory for a L1 page table
1240 * and wires it.
1241 * A l1pt structure is returned to describe the allocated page table.
1242 *
1243 * This routine is allowed to fail if the required memory cannot be allocated.
1244 * In this case NULL is returned.
1245 */
1246
1247 struct l1pt *
1248 pmap_alloc_l1pt(void)
1249 {
1250 paddr_t pa;
1251 vaddr_t va;
1252 struct l1pt *pt;
1253 int error;
1254 struct vm_page *m;
1255 pt_entry_t *ptes;
1256
1257 /* Allocate virtual address space for the L1 page table */
1258 va = uvm_km_valloc(kernel_map, PD_SIZE);
1259 if (va == 0) {
1260 #ifdef DIAGNOSTIC
1261 PDEBUG(0,
1262 printf("pmap: Cannot allocate pageable memory for L1\n"));
1263 #endif /* DIAGNOSTIC */
1264 return(NULL);
1265 }
1266
1267 /* Allocate memory for the l1pt structure */
1268 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1269
1270 /*
1271 * Allocate pages from the VM system.
1272 */
1273 TAILQ_INIT(&pt->pt_plist);
1274 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1275 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1276 if (error) {
1277 #ifdef DIAGNOSTIC
1278 PDEBUG(0,
1279 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1280 error));
1281 #endif /* DIAGNOSTIC */
1282 /* Release the resources we already have claimed */
1283 free(pt, M_VMPMAP);
1284 uvm_km_free(kernel_map, va, PD_SIZE);
1285 return(NULL);
1286 }
1287
1288 /* Map our physical pages into our virtual space */
1289 pt->pt_va = va;
1290 m = TAILQ_FIRST(&pt->pt_plist);
1291 ptes = pmap_map_ptes(pmap_kernel());
1292 while (m && va < (pt->pt_va + PD_SIZE)) {
1293 pa = VM_PAGE_TO_PHYS(m);
1294
1295 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1296
1297 /* Revoke cacheability and bufferability */
1298 /* XXX should be done better than this */
1299 ptes[arm_btop(va)] &= ~(PT_C | PT_B);
1300
1301 va += NBPG;
1302 m = m->pageq.tqe_next;
1303 }
1304 pmap_unmap_ptes(pmap_kernel());
1305 pmap_update(pmap_kernel());
1306
1307 #ifdef DIAGNOSTIC
1308 if (m)
1309 panic("pmap_alloc_l1pt: pglist not empty\n");
1310 #endif /* DIAGNOSTIC */
1311
1312 pt->pt_flags = 0;
1313 return(pt);
1314 }
1315
1316 /*
1317 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1318 */
1319 static void
1320 pmap_free_l1pt(struct l1pt *pt)
1321 {
1322 /* Separate the physical memory for the virtual space */
1323 pmap_kremove(pt->pt_va, PD_SIZE);
1324 pmap_update(pmap_kernel());
1325
1326 /* Return the physical memory */
1327 uvm_pglistfree(&pt->pt_plist);
1328
1329 /* Free the virtual space */
1330 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1331
1332 /* Free the l1pt structure */
1333 free(pt, M_VMPMAP);
1334 }
1335
1336 /*
1337 * Allocate a page directory.
1338 * This routine will either allocate a new page directory from the pool
1339 * of L1 page tables currently held by the kernel or it will allocate
1340 * a new one via pmap_alloc_l1pt().
1341 * It will then initialise the l1 page table for use.
1342 *
1343 * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
1344 */
1345 static int
1346 pmap_allocpagedir(struct pmap *pmap)
1347 {
1348 paddr_t pa;
1349 struct l1pt *pt;
1350 pt_entry_t *pte;
1351
1352 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1353
1354 /* Do we have any spare L1's lying around ? */
1355 if (l1pt_static_queue_count) {
1356 --l1pt_static_queue_count;
1357 pt = l1pt_static_queue.sqh_first;
1358 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1359 } else if (l1pt_queue_count) {
1360 --l1pt_queue_count;
1361 pt = l1pt_queue.sqh_first;
1362 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1363 ++l1pt_reuse_count;
1364 } else {
1365 pt = pmap_alloc_l1pt();
1366 if (!pt)
1367 return(ENOMEM);
1368 ++l1pt_create_count;
1369 }
1370
1371 /* Store the pointer to the l1 descriptor in the pmap. */
1372 pmap->pm_l1pt = pt;
1373
1374 /* Get the physical address of the start of the l1 */
1375 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1376
1377 /* Store the virtual address of the l1 in the pmap. */
1378 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1379
1380 /* Clean the L1 if it is dirty */
1381 if (!(pt->pt_flags & PTFLAG_CLEAN))
1382 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1383
1384 /* Allocate a page table to map all the page tables for this pmap */
1385
1386 #ifdef DIAGNOSTIC
1387 if (pmap->pm_vptpt) {
1388 /* XXX What if we have one already ? */
1389 panic("pmap_allocpagedir: have pt already\n");
1390 }
1391 #endif /* DIAGNOSTIC */
1392 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1393 if (pmap->pm_vptpt == 0) {
1394 pmap_freepagedir(pmap);
1395 return(ENOMEM);
1396 }
1397
1398 /* need to lock this all up for growkernel */
1399 simple_lock(&pmaps_lock);
1400 /* wish we didn't have to keep this locked... */
1401
1402 /* Duplicate the kernel mappings. */
1403 bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1404 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1405 KERNEL_PD_SIZE);
1406
1407 pte = vtopte(pmap->pm_vptpt);
1408 pmap->pm_pptpt = l2pte_pa(*pte);
1409
1410 /* Revoke cacheability and bufferability */
1411 /* XXX should be done better than this */
1412 *pte &= ~(PT_C | PT_B);
1413
1414 /* Wire in this page table */
1415 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1416
1417 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1418
1419 /*
1420 * Map the kernel page tables into the new PT map.
1421 */
1422 bcopy((char *)(PTE_BASE
1423 + (PTE_BASE >> (PGSHIFT - 2))
1424 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1425 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1426 (KERNEL_PD_SIZE >> 2));
1427
1428 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1429 simple_unlock(&pmaps_lock);
1430
1431 return(0);
1432 }
1433
1434
1435 /*
1436 * Initialize a preallocated and zeroed pmap structure,
1437 * such as one in a vmspace structure.
1438 */
1439
1440 void
1441 pmap_pinit(struct pmap *pmap)
1442 {
1443 int backoff = 6;
1444 int retry = 10;
1445
1446 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1447
1448 /* Keep looping until we succeed in allocating a page directory */
1449 while (pmap_allocpagedir(pmap) != 0) {
1450 /*
1451 * Ok we failed to allocate a suitable block of memory for an
1452 * L1 page table. This means that either:
1453 * 1. 16KB of virtual address space could not be allocated
1454 * 2. 16KB of physically contiguous memory on a 16KB boundary
1455 * could not be allocated.
1456 *
1457 * Since we cannot fail we will sleep for a while and try
1458 * again.
1459 *
1460 * Searching for a suitable L1 PT is expensive:
1461 * to avoid hogging the system when memory is really
1462 * scarce, use an exponential back-off so that
1463 * eventually we won't retry more than once every 8
1464 * seconds. This should allow other processes to run
1465 * to completion and free up resources.
1466 */
1467 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1468 NULL);
1469 if (--retry == 0) {
1470 retry = 10;
1471 if (backoff)
1472 --backoff;
1473 }
1474 }
1475
1476 /* Map zero page for the pmap. This will also map the L2 for it */
1477 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1478 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1479 pmap_update(pmap);
1480 }
1481
1482
1483 void
1484 pmap_freepagedir(struct pmap *pmap)
1485 {
1486 /* Free the memory used for the page table mapping */
1487 if (pmap->pm_vptpt != 0)
1488 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1489
1490 /* junk the L1 page table */
1491 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1492 /* Add the page table to the queue */
1493 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1494 ++l1pt_static_queue_count;
1495 } else if (l1pt_queue_count < 8) {
1496 /* Add the page table to the queue */
1497 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1498 ++l1pt_queue_count;
1499 } else
1500 pmap_free_l1pt(pmap->pm_l1pt);
1501 }
1502
1503
1504 /*
1505 * Retire the given physical map from service.
1506 * Should only be called if the map contains no valid mappings.
1507 */
1508
1509 void
1510 pmap_destroy(struct pmap *pmap)
1511 {
1512 struct vm_page *page;
1513 int count;
1514
1515 if (pmap == NULL)
1516 return;
1517
1518 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1519
1520 /*
1521 * Drop reference count
1522 */
1523 simple_lock(&pmap->pm_obj.vmobjlock);
1524 count = --pmap->pm_obj.uo_refs;
1525 simple_unlock(&pmap->pm_obj.vmobjlock);
1526 if (count > 0) {
1527 return;
1528 }
1529
1530 /*
1531 * reference count is zero, free pmap resources and then free pmap.
1532 */
1533
1534 /*
1535 * remove it from global list of pmaps
1536 */
1537
1538 simple_lock(&pmaps_lock);
1539 LIST_REMOVE(pmap, pm_list);
1540 simple_unlock(&pmaps_lock);
1541
1542 /* Remove the zero page mapping */
1543 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1544 pmap_update(pmap);
1545
1546 /*
1547 * Free any page tables still mapped
1548 * This is only temporay until pmap_enter can count the number
1549 * of mappings made in a page table. Then pmap_remove() can
1550 * reduce the count and free the pagetable when the count
1551 * reaches zero. Note that entries in this list should match the
1552 * contents of the ptpt, however this is faster than walking a 1024
1553 * entries looking for pt's
1554 * taken from i386 pmap.c
1555 */
1556 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1557 KASSERT((page->flags & PG_BUSY) == 0);
1558 page->wire_count = 0;
1559 uvm_pagefree(page);
1560 }
1561
1562 /* Free the page dir */
1563 pmap_freepagedir(pmap);
1564
1565 /* return the pmap to the pool */
1566 pool_put(&pmap_pmap_pool, pmap);
1567 }
1568
1569
1570 /*
1571 * void pmap_reference(struct pmap *pmap)
1572 *
1573 * Add a reference to the specified pmap.
1574 */
1575
1576 void
1577 pmap_reference(struct pmap *pmap)
1578 {
1579 if (pmap == NULL)
1580 return;
1581
1582 simple_lock(&pmap->pm_lock);
1583 pmap->pm_obj.uo_refs++;
1584 simple_unlock(&pmap->pm_lock);
1585 }
1586
1587 /*
1588 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1589 *
1590 * Return the start and end addresses of the kernel's virtual space.
1591 * These values are setup in pmap_bootstrap and are updated as pages
1592 * are allocated.
1593 */
1594
1595 void
1596 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1597 {
1598 *start = virtual_avail;
1599 *end = virtual_end;
1600 }
1601
1602
1603 /*
1604 * Activate the address space for the specified process. If the process
1605 * is the current process, load the new MMU context.
1606 */
1607 void
1608 pmap_activate(struct proc *p)
1609 {
1610 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1611 struct pcb *pcb = &p->p_addr->u_pcb;
1612
1613 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1614 (paddr_t *)&pcb->pcb_pagedir);
1615
1616 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1617 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1618
1619 if (p == curproc) {
1620 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1621 setttb((u_int)pcb->pcb_pagedir);
1622 }
1623 }
1624
1625 /*
1626 * Deactivate the address space of the specified process.
1627 */
1628 void
1629 pmap_deactivate(struct proc *p)
1630 {
1631 }
1632
1633 /*
1634 * Perform any deferred pmap operations.
1635 */
1636 void
1637 pmap_update(struct pmap *pmap)
1638 {
1639
1640 /*
1641 * We haven't deferred any pmap operations, but we do need to
1642 * make sure TLB/cache operations have completed.
1643 */
1644 cpu_cpwait();
1645 }
1646
1647 /*
1648 * pmap_clean_page()
1649 *
1650 * This is a local function used to work out the best strategy to clean
1651 * a single page referenced by its entry in the PV table. It's used by
1652 * pmap_copy_page, pmap_zero page and maybe some others later on.
1653 *
1654 * Its policy is effectively:
1655 * o If there are no mappings, we don't bother doing anything with the cache.
1656 * o If there is one mapping, we clean just that page.
1657 * o If there are multiple mappings, we clean the entire cache.
1658 *
1659 * So that some functions can be further optimised, it returns 0 if it didn't
1660 * clean the entire cache, or 1 if it did.
1661 *
1662 * XXX One bug in this routine is that if the pv_entry has a single page
1663 * mapped at 0x00000000 a whole cache clean will be performed rather than
1664 * just the 1 page. Since this should not occur in everyday use and if it does
1665 * it will just result in not the most efficient clean for the page.
1666 */
1667 static int
1668 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1669 {
1670 struct pmap *pmap;
1671 struct pv_entry *npv;
1672 int cache_needs_cleaning = 0;
1673 vaddr_t page_to_clean = 0;
1674
1675 if (pv == NULL)
1676 /* nothing mapped in so nothing to flush */
1677 return (0);
1678
1679 /* Since we flush the cache each time we change curproc, we
1680 * only need to flush the page if it is in the current pmap.
1681 */
1682 if (curproc)
1683 pmap = curproc->p_vmspace->vm_map.pmap;
1684 else
1685 pmap = pmap_kernel();
1686
1687 for (npv = pv; npv; npv = npv->pv_next) {
1688 if (npv->pv_pmap == pmap) {
1689 /* The page is mapped non-cacheable in
1690 * this map. No need to flush the cache.
1691 */
1692 if (npv->pv_flags & PT_NC) {
1693 #ifdef DIAGNOSTIC
1694 if (cache_needs_cleaning)
1695 panic("pmap_clean_page: "
1696 "cache inconsistency");
1697 #endif
1698 break;
1699 }
1700 #if 0
1701 /* This doesn't work, because pmap_protect
1702 doesn't flush changes on pages that it
1703 has write-protected. */
1704
1705 /* If the page is not writable and this
1706 is the source, then there is no need
1707 to flush it from the cache. */
1708 else if (is_src && ! (npv->pv_flags & PT_Wr))
1709 continue;
1710 #endif
1711 if (cache_needs_cleaning){
1712 page_to_clean = 0;
1713 break;
1714 }
1715 else
1716 page_to_clean = npv->pv_va;
1717 cache_needs_cleaning = 1;
1718 }
1719 }
1720
1721 if (page_to_clean)
1722 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1723 else if (cache_needs_cleaning) {
1724 cpu_idcache_wbinv_all();
1725 return (1);
1726 }
1727 return (0);
1728 }
1729
1730 /*
1731 * pmap_zero_page()
1732 *
1733 * Zero a given physical page by mapping it at a page hook point.
1734 * In doing the zero page op, the page we zero is mapped cachable, as with
1735 * StrongARM accesses to non-cached pages are non-burst making writing
1736 * _any_ bulk data very slow.
1737 */
1738 void
1739 pmap_zero_page(paddr_t phys)
1740 {
1741 #ifdef DEBUG
1742 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1743
1744 if (pg->mdpage.pvh_list != NULL)
1745 panic("pmap_zero_page: page has mappings");
1746 #endif
1747
1748 /*
1749 * Hook in the page, zero it, and purge the cache for that
1750 * zeroed page. Invalidate the TLB as needed.
1751 */
1752 *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1753 cpu_tlb_flushD_SE(cdstp);
1754 cpu_cpwait();
1755 bzero_page(cdstp);
1756 cpu_dcache_wbinv_range(cdstp, NBPG);
1757 }
1758
1759 /* pmap_pageidlezero()
1760 *
1761 * The same as above, except that we assume that the page is not
1762 * mapped. This means we never have to flush the cache first. Called
1763 * from the idle loop.
1764 */
1765 boolean_t
1766 pmap_pageidlezero(paddr_t phys)
1767 {
1768 int i, *ptr;
1769 boolean_t rv = TRUE;
1770 #ifdef DEBUG
1771 struct vm_page *pg;
1772
1773 pg = PHYS_TO_VM_PAGE(phys);
1774 if (pg->mdpage.pvh_list != NULL)
1775 panic("pmap_pageidlezero: page has mappings");
1776 #endif
1777
1778 /*
1779 * Hook in the page, zero it, and purge the cache for that
1780 * zeroed page. Invalidate the TLB as needed.
1781 */
1782 *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1783 cpu_tlb_flushD_SE(cdstp);
1784 cpu_cpwait();
1785
1786 for (i = 0, ptr = (int *)cdstp;
1787 i < (NBPG / sizeof(int)); i++) {
1788 if (sched_whichqs != 0) {
1789 /*
1790 * A process has become ready. Abort now,
1791 * so we don't keep it waiting while we
1792 * do slow memory access to finish this
1793 * page.
1794 */
1795 rv = FALSE;
1796 break;
1797 }
1798 *ptr++ = 0;
1799 }
1800
1801 if (rv)
1802 /*
1803 * if we aborted we'll rezero this page again later so don't
1804 * purge it unless we finished it
1805 */
1806 cpu_dcache_wbinv_range(cdstp, NBPG);
1807 return (rv);
1808 }
1809
1810 /*
1811 * pmap_copy_page()
1812 *
1813 * Copy one physical page into another, by mapping the pages into
1814 * hook points. The same comment regarding cachability as in
1815 * pmap_zero_page also applies here.
1816 */
1817 void
1818 pmap_copy_page(paddr_t src, paddr_t dst)
1819 {
1820 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1821 #ifdef DEBUG
1822 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1823
1824 if (dst_pg->mdpage.pvh_list != NULL)
1825 panic("pmap_copy_page: dst page has mappings");
1826 #endif
1827
1828 /*
1829 * Clean the source page. Hold the source page's lock for
1830 * the duration of the copy so that no other mappings can
1831 * be created while we have a potentially aliased mapping.
1832 */
1833 simple_lock(&src_pg->mdpage.pvh_slock);
1834 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1835
1836 /*
1837 * Map the pages into the page hook points, copy them, and purge
1838 * the cache for the appropriate page. Invalidate the TLB
1839 * as required.
1840 */
1841 *csrc_pte = L2_PTE(src & PG_FRAME, AP_KR);
1842 *cdst_pte = L2_PTE(dst & PG_FRAME, AP_KRW);
1843 cpu_tlb_flushD_SE(csrcp);
1844 cpu_tlb_flushD_SE(cdstp);
1845 cpu_cpwait();
1846 bcopy_page(csrcp, cdstp);
1847 cpu_dcache_inv_range(csrcp, NBPG);
1848 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1849 cpu_dcache_wbinv_range(cdstp, NBPG);
1850 }
1851
1852 #if 0
1853 void
1854 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1855 {
1856 pd_entry_t *pde;
1857 paddr_t pa;
1858 struct vm_page *m;
1859
1860 if (pmap == pmap_kernel())
1861 return;
1862
1863 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1864 pa = pmap_pte_pa(pde);
1865 m = PHYS_TO_VM_PAGE(pa);
1866 ++m->wire_count;
1867 #ifdef MYCROFT_HACK
1868 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1869 pmap, va, pde, pa, m, m->wire_count);
1870 #endif
1871 }
1872
1873 void
1874 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
1875 {
1876 pd_entry_t *pde;
1877 paddr_t pa;
1878 struct vm_page *m;
1879
1880 if (pmap == pmap_kernel())
1881 return;
1882
1883 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1884 pa = pmap_pte_pa(pde);
1885 m = PHYS_TO_VM_PAGE(pa);
1886 --m->wire_count;
1887 #ifdef MYCROFT_HACK
1888 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1889 pmap, va, pde, pa, m, m->wire_count);
1890 #endif
1891 if (m->wire_count == 0) {
1892 #ifdef MYCROFT_HACK
1893 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1894 pmap, va, pde, pa, m);
1895 #endif
1896 pmap_unmap_in_l1(pmap, va);
1897 uvm_pagefree(m);
1898 --pmap->pm_stats.resident_count;
1899 }
1900 }
1901 #else
1902 #define pmap_pte_addref(pmap, va)
1903 #define pmap_pte_delref(pmap, va)
1904 #endif
1905
1906 /*
1907 * Since we have a virtually indexed cache, we may need to inhibit caching if
1908 * there is more than one mapping and at least one of them is writable.
1909 * Since we purge the cache on every context switch, we only need to check for
1910 * other mappings within the same pmap, or kernel_pmap.
1911 * This function is also called when a page is unmapped, to possibly reenable
1912 * caching on any remaining mappings.
1913 *
1914 * The code implements the following logic, where:
1915 *
1916 * KW = # of kernel read/write pages
1917 * KR = # of kernel read only pages
1918 * UW = # of user read/write pages
1919 * UR = # of user read only pages
1920 * OW = # of user read/write pages in another pmap, then
1921 *
1922 * KC = kernel mapping is cacheable
1923 * UC = user mapping is cacheable
1924 *
1925 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1926 * +---------------------------------------------
1927 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
1928 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1929 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
1930 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1931 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1932 *
1933 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
1934 */
1935 __inline static void
1936 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
1937 boolean_t clear_cache)
1938 {
1939 if (pmap == pmap_kernel())
1940 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
1941 else
1942 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
1943 }
1944
1945 static void
1946 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
1947 boolean_t clear_cache)
1948 {
1949 int user_entries = 0;
1950 int user_writable = 0;
1951 int user_cacheable = 0;
1952 int kernel_entries = 0;
1953 int kernel_writable = 0;
1954 int kernel_cacheable = 0;
1955 struct pv_entry *pv;
1956 struct pmap *last_pmap = pmap;
1957
1958 #ifdef DIAGNOSTIC
1959 if (pmap != pmap_kernel())
1960 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
1961 #endif
1962
1963 /*
1964 * Pass one, see if there are both kernel and user pmaps for
1965 * this page. Calculate whether there are user-writable or
1966 * kernel-writable pages.
1967 */
1968 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
1969 if (pv->pv_pmap != pmap) {
1970 user_entries++;
1971 if (pv->pv_flags & PT_Wr)
1972 user_writable++;
1973 if ((pv->pv_flags & PT_NC) == 0)
1974 user_cacheable++;
1975 } else {
1976 kernel_entries++;
1977 if (pv->pv_flags & PT_Wr)
1978 kernel_writable++;
1979 if ((pv->pv_flags & PT_NC) == 0)
1980 kernel_cacheable++;
1981 }
1982 }
1983
1984 /*
1985 * We know we have just been updating a kernel entry, so if
1986 * all user pages are already cacheable, then there is nothing
1987 * further to do.
1988 */
1989 if (kernel_entries == 0 &&
1990 user_cacheable == user_entries)
1991 return;
1992
1993 if (user_entries) {
1994 /*
1995 * Scan over the list again, for each entry, if it
1996 * might not be set correctly, call pmap_vac_me_user
1997 * to recalculate the settings.
1998 */
1999 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2000 /*
2001 * We know kernel mappings will get set
2002 * correctly in other calls. We also know
2003 * that if the pmap is the same as last_pmap
2004 * then we've just handled this entry.
2005 */
2006 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2007 continue;
2008 /*
2009 * If there are kernel entries and this page
2010 * is writable but non-cacheable, then we can
2011 * skip this entry also.
2012 */
2013 if (kernel_entries > 0 &&
2014 (pv->pv_flags & (PT_NC | PT_Wr)) ==
2015 (PT_NC | PT_Wr))
2016 continue;
2017 /*
2018 * Similarly if there are no kernel-writable
2019 * entries and the page is already
2020 * read-only/cacheable.
2021 */
2022 if (kernel_writable == 0 &&
2023 (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
2024 continue;
2025 /*
2026 * For some of the remaining cases, we know
2027 * that we must recalculate, but for others we
2028 * can't tell if they are correct or not, so
2029 * we recalculate anyway.
2030 */
2031 pmap_unmap_ptes(last_pmap);
2032 last_pmap = pv->pv_pmap;
2033 ptes = pmap_map_ptes(last_pmap);
2034 pmap_vac_me_user(last_pmap, pg, ptes,
2035 pmap_is_curpmap(last_pmap));
2036 }
2037 /* Restore the pte mapping that was passed to us. */
2038 if (last_pmap != pmap) {
2039 pmap_unmap_ptes(last_pmap);
2040 ptes = pmap_map_ptes(pmap);
2041 }
2042 if (kernel_entries == 0)
2043 return;
2044 }
2045
2046 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2047 return;
2048 }
2049
2050 static void
2051 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2052 boolean_t clear_cache)
2053 {
2054 struct pmap *kpmap = pmap_kernel();
2055 struct pv_entry *pv, *npv;
2056 int entries = 0;
2057 int writable = 0;
2058 int cacheable_entries = 0;
2059 int kern_cacheable = 0;
2060 int other_writable = 0;
2061
2062 pv = pg->mdpage.pvh_list;
2063 KASSERT(ptes != NULL);
2064
2065 /*
2066 * Count mappings and writable mappings in this pmap.
2067 * Include kernel mappings as part of our own.
2068 * Keep a pointer to the first one.
2069 */
2070 for (npv = pv; npv; npv = npv->pv_next) {
2071 /* Count mappings in the same pmap */
2072 if (pmap == npv->pv_pmap ||
2073 kpmap == npv->pv_pmap) {
2074 if (entries++ == 0)
2075 pv = npv;
2076 /* Cacheable mappings */
2077 if ((npv->pv_flags & PT_NC) == 0) {
2078 cacheable_entries++;
2079 if (kpmap == npv->pv_pmap)
2080 kern_cacheable++;
2081 }
2082 /* Writable mappings */
2083 if (npv->pv_flags & PT_Wr)
2084 ++writable;
2085 } else if (npv->pv_flags & PT_Wr)
2086 other_writable = 1;
2087 }
2088
2089 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2090 "writable %d cacheable %d %s\n", pmap, entries, writable,
2091 cacheable_entries, clear_cache ? "clean" : "no clean"));
2092
2093 /*
2094 * Enable or disable caching as necessary.
2095 * Note: the first entry might be part of the kernel pmap,
2096 * so we can't assume this is indicative of the state of the
2097 * other (maybe non-kpmap) entries.
2098 */
2099 if ((entries > 1 && writable) ||
2100 (entries > 0 && pmap == kpmap && other_writable)) {
2101 if (cacheable_entries == 0)
2102 return;
2103 for (npv = pv; npv; npv = npv->pv_next) {
2104 if ((pmap == npv->pv_pmap
2105 || kpmap == npv->pv_pmap) &&
2106 (npv->pv_flags & PT_NC) == 0) {
2107 ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
2108 npv->pv_flags |= PT_NC;
2109 /*
2110 * If this page needs flushing from the
2111 * cache, and we aren't going to do it
2112 * below, do it now.
2113 */
2114 if ((cacheable_entries < 4 &&
2115 (clear_cache || npv->pv_pmap == kpmap)) ||
2116 (npv->pv_pmap == kpmap &&
2117 !clear_cache && kern_cacheable < 4)) {
2118 cpu_idcache_wbinv_range(npv->pv_va,
2119 NBPG);
2120 cpu_tlb_flushID_SE(npv->pv_va);
2121 }
2122 }
2123 }
2124 if ((clear_cache && cacheable_entries >= 4) ||
2125 kern_cacheable >= 4) {
2126 cpu_idcache_wbinv_all();
2127 cpu_tlb_flushID();
2128 }
2129 cpu_cpwait();
2130 } else if (entries > 0) {
2131 /*
2132 * Turn cacheing back on for some pages. If it is a kernel
2133 * page, only do so if there are no other writable pages.
2134 */
2135 for (npv = pv; npv; npv = npv->pv_next) {
2136 if ((pmap == npv->pv_pmap ||
2137 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2138 (npv->pv_flags & PT_NC)) {
2139 ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
2140 npv->pv_flags &= ~PT_NC;
2141 }
2142 }
2143 }
2144 }
2145
2146 /*
2147 * pmap_remove()
2148 *
2149 * pmap_remove is responsible for nuking a number of mappings for a range
2150 * of virtual address space in the current pmap. To do this efficiently
2151 * is interesting, because in a number of cases a wide virtual address
2152 * range may be supplied that contains few actual mappings. So, the
2153 * optimisations are:
2154 * 1. Try and skip over hunks of address space for which an L1 entry
2155 * does not exist.
2156 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2157 * maybe do just a partial cache clean. This path of execution is
2158 * complicated by the fact that the cache must be flushed _before_
2159 * the PTE is nuked, being a VAC :-)
2160 * 3. Maybe later fast-case a single page, but I don't think this is
2161 * going to make _that_ much difference overall.
2162 */
2163
2164 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2165
2166 void
2167 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2168 {
2169 int cleanlist_idx = 0;
2170 struct pagelist {
2171 vaddr_t va;
2172 pt_entry_t *pte;
2173 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2174 pt_entry_t *pte = 0, *ptes;
2175 paddr_t pa;
2176 int pmap_active;
2177 struct vm_page *pg;
2178
2179 /* Exit quick if there is no pmap */
2180 if (!pmap)
2181 return;
2182
2183 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2184
2185 sva &= PG_FRAME;
2186 eva &= PG_FRAME;
2187
2188 /*
2189 * we lock in the pmap => vm_page direction
2190 */
2191 PMAP_MAP_TO_HEAD_LOCK();
2192
2193 ptes = pmap_map_ptes(pmap);
2194 /* Get a page table pointer */
2195 while (sva < eva) {
2196 if (pmap_pde_page(pmap_pde(pmap, sva)))
2197 break;
2198 sva = (sva & PD_MASK) + NBPD;
2199 }
2200
2201 pte = &ptes[arm_btop(sva)];
2202 /* Note if the pmap is active thus require cache and tlb cleans */
2203 pmap_active = pmap_is_curpmap(pmap);
2204
2205 /* Now loop along */
2206 while (sva < eva) {
2207 /* Check if we can move to the next PDE (l1 chunk) */
2208 if (!(sva & PT_MASK))
2209 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2210 sva += NBPD;
2211 pte += arm_btop(NBPD);
2212 continue;
2213 }
2214
2215 /* We've found a valid PTE, so this page of PTEs has to go. */
2216 if (pmap_pte_v(pte)) {
2217 /* Update statistics */
2218 --pmap->pm_stats.resident_count;
2219
2220 /*
2221 * Add this page to our cache remove list, if we can.
2222 * If, however the cache remove list is totally full,
2223 * then do a complete cache invalidation taking note
2224 * to backtrack the PTE table beforehand, and ignore
2225 * the lists in future because there's no longer any
2226 * point in bothering with them (we've paid the
2227 * penalty, so will carry on unhindered). Otherwise,
2228 * when we fall out, we just clean the list.
2229 */
2230 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2231 pa = pmap_pte_pa(pte);
2232
2233 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2234 /* Add to the clean list. */
2235 cleanlist[cleanlist_idx].pte = pte;
2236 cleanlist[cleanlist_idx].va = sva;
2237 cleanlist_idx++;
2238 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2239 int cnt;
2240
2241 /* Nuke everything if needed. */
2242 if (pmap_active) {
2243 cpu_idcache_wbinv_all();
2244 cpu_tlb_flushID();
2245 }
2246
2247 /*
2248 * Roll back the previous PTE list,
2249 * and zero out the current PTE.
2250 */
2251 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2252 *cleanlist[cnt].pte = 0;
2253 pmap_pte_delref(pmap, cleanlist[cnt].va);
2254 }
2255 *pte = 0;
2256 pmap_pte_delref(pmap, sva);
2257 cleanlist_idx++;
2258 } else {
2259 /*
2260 * We've already nuked the cache and
2261 * TLB, so just carry on regardless,
2262 * and we won't need to do it again
2263 */
2264 *pte = 0;
2265 pmap_pte_delref(pmap, sva);
2266 }
2267
2268 /*
2269 * Update flags. In a number of circumstances,
2270 * we could cluster a lot of these and do a
2271 * number of sequential pages in one go.
2272 */
2273 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2274 struct pv_entry *pve;
2275 simple_lock(&pg->mdpage.pvh_slock);
2276 pve = pmap_remove_pv(pg, pmap, sva);
2277 pmap_free_pv(pmap, pve);
2278 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2279 simple_unlock(&pg->mdpage.pvh_slock);
2280 }
2281 }
2282 sva += NBPG;
2283 pte++;
2284 }
2285
2286 pmap_unmap_ptes(pmap);
2287 /*
2288 * Now, if we've fallen through down to here, chances are that there
2289 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2290 */
2291 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2292 u_int cnt;
2293
2294 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2295 if (pmap_active) {
2296 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2297 NBPG);
2298 *cleanlist[cnt].pte = 0;
2299 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2300 } else
2301 *cleanlist[cnt].pte = 0;
2302 pmap_pte_delref(pmap, cleanlist[cnt].va);
2303 }
2304 }
2305 PMAP_MAP_TO_HEAD_UNLOCK();
2306 }
2307
2308 /*
2309 * Routine: pmap_remove_all
2310 * Function:
2311 * Removes this physical page from
2312 * all physical maps in which it resides.
2313 * Reflects back modify bits to the pager.
2314 */
2315
2316 static void
2317 pmap_remove_all(struct vm_page *pg)
2318 {
2319 struct pv_entry *pv, *npv;
2320 struct pmap *pmap;
2321 pt_entry_t *pte, *ptes;
2322
2323 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2324
2325 /* set vm_page => pmap locking */
2326 PMAP_HEAD_TO_MAP_LOCK();
2327
2328 simple_lock(&pg->mdpage.pvh_slock);
2329
2330 pv = pg->mdpage.pvh_list;
2331 if (pv == NULL) {
2332 PDEBUG(0, printf("free page\n"));
2333 simple_unlock(&pg->mdpage.pvh_slock);
2334 PMAP_HEAD_TO_MAP_UNLOCK();
2335 return;
2336 }
2337 pmap_clean_page(pv, FALSE);
2338
2339 while (pv) {
2340 pmap = pv->pv_pmap;
2341 ptes = pmap_map_ptes(pmap);
2342 pte = &ptes[arm_btop(pv->pv_va)];
2343
2344 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2345 pv->pv_va, pv->pv_flags));
2346 #ifdef DEBUG
2347 if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
2348 !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
2349 panic("pmap_remove_all: bad mapping");
2350 #endif /* DEBUG */
2351
2352 /*
2353 * Update statistics
2354 */
2355 --pmap->pm_stats.resident_count;
2356
2357 /* Wired bit */
2358 if (pv->pv_flags & PT_W)
2359 --pmap->pm_stats.wired_count;
2360
2361 /*
2362 * Invalidate the PTEs.
2363 * XXX: should cluster them up and invalidate as many
2364 * as possible at once.
2365 */
2366
2367 #ifdef needednotdone
2368 reduce wiring count on page table pages as references drop
2369 #endif
2370
2371 *pte = 0;
2372 pmap_pte_delref(pmap, pv->pv_va);
2373
2374 npv = pv->pv_next;
2375 pmap_free_pv(pmap, pv);
2376 pv = npv;
2377 pmap_unmap_ptes(pmap);
2378 }
2379 pg->mdpage.pvh_list = NULL;
2380 simple_unlock(&pg->mdpage.pvh_slock);
2381 PMAP_HEAD_TO_MAP_UNLOCK();
2382
2383 PDEBUG(0, printf("done\n"));
2384 cpu_tlb_flushID();
2385 cpu_cpwait();
2386 }
2387
2388
2389 /*
2390 * Set the physical protection on the specified range of this map as requested.
2391 */
2392
2393 void
2394 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2395 {
2396 pt_entry_t *pte = NULL, *ptes;
2397 struct vm_page *pg;
2398 int armprot;
2399 int flush = 0;
2400 paddr_t pa;
2401
2402 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2403 pmap, sva, eva, prot));
2404
2405 if (~prot & VM_PROT_READ) {
2406 /* Just remove the mappings. */
2407 pmap_remove(pmap, sva, eva);
2408 /* pmap_update not needed as it should be called by the caller
2409 * of pmap_protect */
2410 return;
2411 }
2412 if (prot & VM_PROT_WRITE) {
2413 /*
2414 * If this is a read->write transition, just ignore it and let
2415 * uvm_fault() take care of it later.
2416 */
2417 return;
2418 }
2419
2420 sva &= PG_FRAME;
2421 eva &= PG_FRAME;
2422
2423 /* Need to lock map->head */
2424 PMAP_MAP_TO_HEAD_LOCK();
2425
2426 ptes = pmap_map_ptes(pmap);
2427 /*
2428 * We need to acquire a pointer to a page table page before entering
2429 * the following loop.
2430 */
2431 while (sva < eva) {
2432 if (pmap_pde_page(pmap_pde(pmap, sva)))
2433 break;
2434 sva = (sva & PD_MASK) + NBPD;
2435 }
2436
2437 pte = &ptes[arm_btop(sva)];
2438
2439 while (sva < eva) {
2440 /* only check once in a while */
2441 if ((sva & PT_MASK) == 0) {
2442 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2443 /* We can race ahead here, to the next pde. */
2444 sva += NBPD;
2445 pte += arm_btop(NBPD);
2446 continue;
2447 }
2448 }
2449
2450 if (!pmap_pte_v(pte))
2451 goto next;
2452
2453 flush = 1;
2454
2455 armprot = 0;
2456 if (sva < VM_MAXUSER_ADDRESS)
2457 armprot |= PT_AP(AP_U);
2458 else if (sva < VM_MAX_ADDRESS)
2459 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2460 *pte = (*pte & 0xfffff00f) | armprot;
2461
2462 pa = pmap_pte_pa(pte);
2463
2464 /* Get the physical page index */
2465
2466 /* Clear write flag */
2467 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2468 simple_lock(&pg->mdpage.pvh_slock);
2469 (void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
2470 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2471 simple_unlock(&pg->mdpage.pvh_slock);
2472 }
2473
2474 next:
2475 sva += NBPG;
2476 pte++;
2477 }
2478 pmap_unmap_ptes(pmap);
2479 PMAP_MAP_TO_HEAD_UNLOCK();
2480 if (flush)
2481 cpu_tlb_flushID();
2482 }
2483
2484 /*
2485 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2486 * int flags)
2487 *
2488 * Insert the given physical page (p) at
2489 * the specified virtual address (v) in the
2490 * target physical map with the protection requested.
2491 *
2492 * If specified, the page will be wired down, meaning
2493 * that the related pte can not be reclaimed.
2494 *
2495 * NB: This is the only routine which MAY NOT lazy-evaluate
2496 * or lose information. That is, this routine must actually
2497 * insert this page into the given map NOW.
2498 */
2499
2500 int
2501 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2502 int flags)
2503 {
2504 pt_entry_t *ptes, opte, npte;
2505 paddr_t opa;
2506 boolean_t wired = (flags & PMAP_WIRED) != 0;
2507 struct vm_page *pg;
2508 struct pv_entry *pve;
2509 int error, nflags;
2510
2511 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2512 va, pa, pmap, prot, wired));
2513
2514 #ifdef DIAGNOSTIC
2515 /* Valid address ? */
2516 if (va >= (pmap_curmaxkvaddr))
2517 panic("pmap_enter: too big");
2518 if (pmap != pmap_kernel() && va != 0) {
2519 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2520 panic("pmap_enter: kernel page in user map");
2521 } else {
2522 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2523 panic("pmap_enter: user page in kernel map");
2524 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2525 panic("pmap_enter: entering PT page");
2526 }
2527 #endif
2528 /*
2529 * Get a pointer to the page. Later on in this function, we
2530 * test for a managed page by checking pg != NULL.
2531 */
2532 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2533
2534 /* get lock */
2535 PMAP_MAP_TO_HEAD_LOCK();
2536
2537 /*
2538 * map the ptes. If there's not already an L2 table for this
2539 * address, allocate one.
2540 */
2541 ptes = pmap_map_ptes(pmap); /* locks pmap */
2542 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2543 struct vm_page *ptp;
2544
2545 /* kernel should be pre-grown */
2546 KASSERT(pmap != pmap_kernel());
2547
2548 /* if failure is allowed then don't try too hard */
2549 ptp = pmap_get_ptp(pmap, va & PD_MASK);
2550 if (ptp == NULL) {
2551 if (flags & PMAP_CANFAIL) {
2552 error = ENOMEM;
2553 goto out;
2554 }
2555 panic("pmap_enter: get ptp failed");
2556 }
2557 }
2558 opte = ptes[arm_btop(va)];
2559
2560 nflags = 0;
2561 if (prot & VM_PROT_WRITE)
2562 nflags |= PT_Wr;
2563 if (wired)
2564 nflags |= PT_W;
2565
2566 /* Is the pte valid ? If so then this page is already mapped */
2567 if (l2pte_valid(opte)) {
2568 /* Get the physical address of the current page mapped */
2569 opa = l2pte_pa(opte);
2570
2571 /* Are we mapping the same page ? */
2572 if (opa == pa) {
2573 /* Has the wiring changed ? */
2574 if (pg != NULL) {
2575 simple_lock(&pg->mdpage.pvh_slock);
2576 (void) pmap_modify_pv(pmap, va, pg,
2577 PT_Wr | PT_W, nflags);
2578 simple_unlock(&pg->mdpage.pvh_slock);
2579 }
2580 } else {
2581 struct vm_page *opg;
2582
2583 /* We are replacing the page with a new one. */
2584 cpu_idcache_wbinv_range(va, NBPG);
2585
2586 /*
2587 * If it is part of our managed memory then we
2588 * must remove it from the PV list
2589 */
2590 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2591 simple_lock(&opg->mdpage.pvh_slock);
2592 pve = pmap_remove_pv(opg, pmap, va);
2593 simple_unlock(&opg->mdpage.pvh_slock);
2594 } else {
2595 pve = NULL;
2596 }
2597
2598 goto enter;
2599 }
2600 } else {
2601 opa = 0;
2602 pve = NULL;
2603 pmap_pte_addref(pmap, va);
2604
2605 /* pte is not valid so we must be hooking in a new page */
2606 ++pmap->pm_stats.resident_count;
2607
2608 enter:
2609 /*
2610 * Enter on the PV list if part of our managed memory
2611 */
2612 if (pg != NULL) {
2613 if (pve == NULL) {
2614 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2615 if (pve == NULL) {
2616 if (flags & PMAP_CANFAIL) {
2617 error = ENOMEM;
2618 goto out;
2619 }
2620 panic("pmap_enter: no pv entries "
2621 "available");
2622 }
2623 }
2624 /* enter_pv locks pvh when adding */
2625 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2626 } else {
2627 if (pve != NULL)
2628 pmap_free_pv(pmap, pve);
2629 }
2630 }
2631
2632 /* Construct the pte, giving the correct access. */
2633 npte = (pa & PG_FRAME);
2634
2635 /* VA 0 is magic. */
2636 if (pmap != pmap_kernel() && va != 0)
2637 npte |= PT_AP(AP_U);
2638
2639 if (pg != NULL) {
2640 #ifdef DIAGNOSTIC
2641 if ((flags & VM_PROT_ALL) & ~prot)
2642 panic("pmap_enter: access_type exceeds prot");
2643 #endif
2644 npte |= pte_cache_mode;
2645 if (flags & VM_PROT_WRITE) {
2646 npte |= L2_SPAGE | PT_AP(AP_W);
2647 pg->mdpage.pvh_attrs |= PT_H | PT_M;
2648 } else if (flags & VM_PROT_ALL) {
2649 npte |= L2_SPAGE;
2650 pg->mdpage.pvh_attrs |= PT_H;
2651 } else
2652 npte |= L2_INVAL;
2653 } else {
2654 if (prot & VM_PROT_WRITE)
2655 npte |= L2_SPAGE | PT_AP(AP_W);
2656 else if (prot & VM_PROT_ALL)
2657 npte |= L2_SPAGE;
2658 else
2659 npte |= L2_INVAL;
2660 }
2661
2662 ptes[arm_btop(va)] = npte;
2663
2664 if (pg != NULL) {
2665 simple_lock(&pg->mdpage.pvh_slock);
2666 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2667 simple_unlock(&pg->mdpage.pvh_slock);
2668 }
2669
2670 /* Better flush the TLB ... */
2671 cpu_tlb_flushID_SE(va);
2672 error = 0;
2673 out:
2674 pmap_unmap_ptes(pmap); /* unlocks pmap */
2675 PMAP_MAP_TO_HEAD_UNLOCK();
2676
2677 return error;
2678 }
2679
2680 /*
2681 * pmap_kenter_pa: enter a kernel mapping
2682 *
2683 * => no need to lock anything assume va is already allocated
2684 * => should be faster than normal pmap enter function
2685 */
2686 void
2687 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2688 {
2689 pt_entry_t *pte;
2690
2691 pte = vtopte(va);
2692 KASSERT(!pmap_pte_v(pte));
2693 *pte = L2_PTE(pa, AP_KRW);
2694 }
2695
2696 void
2697 pmap_kremove(vaddr_t va, vsize_t len)
2698 {
2699 pt_entry_t *pte;
2700
2701 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2702
2703 /*
2704 * We assume that we will only be called with small
2705 * regions of memory.
2706 */
2707
2708 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2709 pte = vtopte(va);
2710 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2711 *pte = 0;
2712 cpu_tlb_flushID_SE(va);
2713 }
2714 }
2715
2716 /*
2717 * pmap_page_protect:
2718 *
2719 * Lower the permission for all mappings to a given page.
2720 */
2721
2722 void
2723 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2724 {
2725
2726 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2727 VM_PAGE_TO_PHYS(pg), prot));
2728
2729 switch(prot) {
2730 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2731 case VM_PROT_READ|VM_PROT_WRITE:
2732 return;
2733
2734 case VM_PROT_READ:
2735 case VM_PROT_READ|VM_PROT_EXECUTE:
2736 pmap_clearbit(pg, PT_Wr);
2737 break;
2738
2739 default:
2740 pmap_remove_all(pg);
2741 break;
2742 }
2743 }
2744
2745
2746 /*
2747 * Routine: pmap_unwire
2748 * Function: Clear the wired attribute for a map/virtual-address
2749 * pair.
2750 * In/out conditions:
2751 * The mapping must already exist in the pmap.
2752 */
2753
2754 void
2755 pmap_unwire(struct pmap *pmap, vaddr_t va)
2756 {
2757 pt_entry_t *ptes;
2758 struct vm_page *pg;
2759 paddr_t pa;
2760
2761 PMAP_MAP_TO_HEAD_LOCK();
2762 ptes = pmap_map_ptes(pmap); /* locks pmap */
2763
2764 if (pmap_pde_v(pmap_pde(pmap, va))) {
2765 #ifdef DIAGNOSTIC
2766 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2767 panic("pmap_unwire: invalid L2 PTE");
2768 #endif
2769 /* Extract the physical address of the page */
2770 pa = l2pte_pa(ptes[arm_btop(va)]);
2771
2772 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2773 goto out;
2774
2775 /* Update the wired bit in the pv entry for this page. */
2776 simple_lock(&pg->mdpage.pvh_slock);
2777 (void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
2778 simple_unlock(&pg->mdpage.pvh_slock);
2779 }
2780 #ifdef DIAGNOSTIC
2781 else {
2782 panic("pmap_unwire: invalid L1 PTE");
2783 }
2784 #endif
2785 out:
2786 pmap_unmap_ptes(pmap); /* unlocks pmap */
2787 PMAP_MAP_TO_HEAD_UNLOCK();
2788 }
2789
2790 /*
2791 * Routine: pmap_extract
2792 * Function:
2793 * Extract the physical page address associated
2794 * with the given map/virtual_address pair.
2795 */
2796 boolean_t
2797 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2798 {
2799 pd_entry_t *pde;
2800 pt_entry_t *pte, *ptes;
2801 paddr_t pa;
2802 boolean_t rv = TRUE;
2803
2804 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
2805
2806 /*
2807 * Get the pte for this virtual address.
2808 */
2809 pde = pmap_pde(pmap, va);
2810 ptes = pmap_map_ptes(pmap);
2811 pte = &ptes[arm_btop(va)];
2812
2813 if (pmap_pde_section(pde)) {
2814 pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
2815 goto out;
2816 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
2817 rv = FALSE;
2818 goto out;
2819 }
2820
2821 if ((*pte & L2_MASK) == L2_LPAGE) {
2822 /* Extract the physical address from the pte */
2823 pa = *pte & ~(L2_LPAGE_SIZE - 1);
2824
2825 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
2826 (pa | (va & (L2_LPAGE_SIZE - 1)))));
2827
2828 if (pap != NULL)
2829 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
2830 goto out;
2831 }
2832
2833 /* Extract the physical address from the pte */
2834 pa = pmap_pte_pa(pte);
2835
2836 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
2837 (pa | (va & ~PG_FRAME))));
2838
2839 if (pap != NULL)
2840 *pap = pa | (va & ~PG_FRAME);
2841 out:
2842 pmap_unmap_ptes(pmap);
2843 return (rv);
2844 }
2845
2846
2847 /*
2848 * pmap_copy:
2849 *
2850 * Copy the range specified by src_addr/len from the source map to the
2851 * range dst_addr/len in the destination map.
2852 *
2853 * This routine is only advisory and need not do anything.
2854 */
2855 /* Call deleted in <arm/arm32/pmap.h> */
2856
2857 #if defined(PMAP_DEBUG)
2858 void
2859 pmap_dump_pvlist(phys, m)
2860 vaddr_t phys;
2861 char *m;
2862 {
2863 struct vm_page *pg;
2864 struct pv_entry *pv;
2865
2866 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
2867 printf("INVALID PA\n");
2868 return;
2869 }
2870 simple_lock(&pg->mdpage.pvh_slock);
2871 printf("%s %08lx:", m, phys);
2872 if (pg->mdpage.pvh_list == NULL) {
2873 printf(" no mappings\n");
2874 return;
2875 }
2876
2877 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
2878 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
2879 pv->pv_va, pv->pv_flags);
2880
2881 printf("\n");
2882 simple_unlock(&pg->mdpage.pvh_slock);
2883 }
2884
2885 #endif /* PMAP_DEBUG */
2886
2887 static pt_entry_t *
2888 pmap_map_ptes(struct pmap *pmap)
2889 {
2890 struct proc *p;
2891
2892 /* the kernel's pmap is always accessible */
2893 if (pmap == pmap_kernel()) {
2894 return (pt_entry_t *)PTE_BASE;
2895 }
2896
2897 if (pmap_is_curpmap(pmap)) {
2898 simple_lock(&pmap->pm_obj.vmobjlock);
2899 return (pt_entry_t *)PTE_BASE;
2900 }
2901
2902 p = curproc;
2903 KDASSERT(p != NULL);
2904
2905 /* need to lock both curpmap and pmap: use ordered locking */
2906 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
2907 simple_lock(&pmap->pm_obj.vmobjlock);
2908 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2909 } else {
2910 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2911 simple_lock(&pmap->pm_obj.vmobjlock);
2912 }
2913
2914 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
2915 FALSE);
2916 cpu_tlb_flushD();
2917 cpu_cpwait();
2918 return (pt_entry_t *)APTE_BASE;
2919 }
2920
2921 /*
2922 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
2923 */
2924
2925 static void
2926 pmap_unmap_ptes(struct pmap *pmap)
2927 {
2928
2929 if (pmap == pmap_kernel()) {
2930 return;
2931 }
2932 if (pmap_is_curpmap(pmap)) {
2933 simple_unlock(&pmap->pm_obj.vmobjlock);
2934 } else {
2935 KDASSERT(curproc != NULL);
2936 simple_unlock(&pmap->pm_obj.vmobjlock);
2937 simple_unlock(
2938 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2939 }
2940 }
2941
2942 /*
2943 * Modify pte bits for all ptes corresponding to the given physical address.
2944 * We use `maskbits' rather than `clearbits' because we're always passing
2945 * constants and the latter would require an extra inversion at run-time.
2946 */
2947
2948 static void
2949 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2950 {
2951 struct pv_entry *pv;
2952 pt_entry_t *ptes;
2953 vaddr_t va;
2954 int tlbentry;
2955
2956 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
2957 VM_PAGE_TO_PHYS(pg), maskbits));
2958
2959 tlbentry = 0;
2960
2961 PMAP_HEAD_TO_MAP_LOCK();
2962 simple_lock(&pg->mdpage.pvh_slock);
2963
2964 /*
2965 * Clear saved attributes (modify, reference)
2966 */
2967 pg->mdpage.pvh_attrs &= ~maskbits;
2968
2969 if (pg->mdpage.pvh_list == NULL) {
2970 simple_unlock(&pg->mdpage.pvh_slock);
2971 PMAP_HEAD_TO_MAP_UNLOCK();
2972 return;
2973 }
2974
2975 /*
2976 * Loop over all current mappings setting/clearing as appropos
2977 */
2978 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2979 va = pv->pv_va;
2980 pv->pv_flags &= ~maskbits;
2981 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
2982 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
2983 if (maskbits & (PT_Wr|PT_M)) {
2984 if ((pv->pv_flags & PT_NC)) {
2985 /*
2986 * Entry is not cacheable: reenable
2987 * the cache, nothing to flush
2988 *
2989 * Don't turn caching on again if this
2990 * is a modified emulation. This
2991 * would be inconsitent with the
2992 * settings created by
2993 * pmap_vac_me_harder().
2994 *
2995 * There's no need to call
2996 * pmap_vac_me_harder() here: all
2997 * pages are loosing their write
2998 * permission.
2999 *
3000 */
3001 if (maskbits & PT_Wr) {
3002 ptes[arm_btop(va)] |= pte_cache_mode;
3003 pv->pv_flags &= ~PT_NC;
3004 }
3005 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3006 /*
3007 * Entry is cacheable: check if pmap is
3008 * current if it is flush it,
3009 * otherwise it won't be in the cache
3010 */
3011 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3012 }
3013
3014 /* make the pte read only */
3015 ptes[arm_btop(va)] &= ~PT_AP(AP_W);
3016 }
3017
3018 if (maskbits & PT_H)
3019 ptes[arm_btop(va)] =
3020 (ptes[arm_btop(va)] & ~L2_MASK) | L2_INVAL;
3021
3022 if (pmap_is_curpmap(pv->pv_pmap)) {
3023 /*
3024 * if we had cacheable pte's we'd clean the
3025 * pte out to memory here
3026 *
3027 * flush tlb entry as it's in the current pmap
3028 */
3029 cpu_tlb_flushID_SE(pv->pv_va);
3030 }
3031 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3032 }
3033 cpu_cpwait();
3034
3035 simple_unlock(&pg->mdpage.pvh_slock);
3036 PMAP_HEAD_TO_MAP_UNLOCK();
3037 }
3038
3039 /*
3040 * pmap_clear_modify:
3041 *
3042 * Clear the "modified" attribute for a page.
3043 */
3044 boolean_t
3045 pmap_clear_modify(struct vm_page *pg)
3046 {
3047 boolean_t rv;
3048
3049 if (pg->mdpage.pvh_attrs & PT_M) {
3050 rv = TRUE;
3051 pmap_clearbit(pg, PT_M);
3052 } else
3053 rv = FALSE;
3054
3055 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3056 VM_PAGE_TO_PHYS(pg), rv));
3057
3058 return (rv);
3059 }
3060
3061 /*
3062 * pmap_clear_reference:
3063 *
3064 * Clear the "referenced" attribute for a page.
3065 */
3066 boolean_t
3067 pmap_clear_reference(struct vm_page *pg)
3068 {
3069 boolean_t rv;
3070
3071 if (pg->mdpage.pvh_attrs & PT_H) {
3072 rv = TRUE;
3073 pmap_clearbit(pg, PT_H);
3074 } else
3075 rv = FALSE;
3076
3077 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3078 VM_PAGE_TO_PHYS(pg), rv));
3079
3080 return (rv);
3081 }
3082
3083 /*
3084 * pmap_is_modified:
3085 *
3086 * Test if a page has the "modified" attribute.
3087 */
3088 /* See <arm/arm32/pmap.h> */
3089
3090 /*
3091 * pmap_is_referenced:
3092 *
3093 * Test if a page has the "referenced" attribute.
3094 */
3095 /* See <arm/arm32/pmap.h> */
3096
3097 int
3098 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3099 {
3100 pt_entry_t *ptes;
3101 struct vm_page *pg;
3102 paddr_t pa;
3103 u_int flags;
3104 int rv = 0;
3105
3106 PDEBUG(2, printf("pmap_modified_emulation\n"));
3107
3108 PMAP_MAP_TO_HEAD_LOCK();
3109 ptes = pmap_map_ptes(pmap); /* locks pmap */
3110
3111 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3112 PDEBUG(2, printf("L1 PTE invalid\n"));
3113 goto out;
3114 }
3115
3116 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3117
3118 /* Check for a invalid pte */
3119 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3120 goto out;
3121
3122 /* This can happen if user code tries to access kernel memory. */
3123 if ((ptes[arm_btop(va)] & PT_AP(AP_W)) != 0)
3124 goto out;
3125
3126 /* Extract the physical address of the page */
3127 pa = l2pte_pa(ptes[arm_btop(va)]);
3128 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3129 goto out;
3130
3131 /* Get the current flags for this page. */
3132 simple_lock(&pg->mdpage.pvh_slock);
3133
3134 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3135 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3136
3137 /*
3138 * Do the flags say this page is writable ? If not then it is a
3139 * genuine write fault. If yes then the write fault is our fault
3140 * as we did not reflect the write access in the PTE. Now we know
3141 * a write has occurred we can correct this and also set the
3142 * modified bit
3143 */
3144 if (~flags & PT_Wr) {
3145 simple_unlock(&pg->mdpage.pvh_slock);
3146 goto out;
3147 }
3148
3149 PDEBUG(0,
3150 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3151 va, ptes[arm_btop(va)]));
3152 pg->mdpage.pvh_attrs |= PT_H | PT_M;
3153
3154 /*
3155 * Re-enable write permissions for the page. No need to call
3156 * pmap_vac_me_harder(), since this is just a
3157 * modified-emulation fault, and the PT_Wr bit isn't changing. We've
3158 * already set the cacheable bits based on the assumption that we
3159 * can write to this page.
3160 */
3161 ptes[arm_btop(va)] =
3162 (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3163 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3164
3165 simple_unlock(&pg->mdpage.pvh_slock);
3166
3167 cpu_tlb_flushID_SE(va);
3168 cpu_cpwait();
3169 rv = 1;
3170 out:
3171 pmap_unmap_ptes(pmap); /* unlocks pmap */
3172 PMAP_MAP_TO_HEAD_UNLOCK();
3173 return (rv);
3174 }
3175
3176 int
3177 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3178 {
3179 pt_entry_t *ptes;
3180 struct vm_page *pg;
3181 paddr_t pa;
3182 int rv = 0;
3183
3184 PDEBUG(2, printf("pmap_handled_emulation\n"));
3185
3186 PMAP_MAP_TO_HEAD_LOCK();
3187 ptes = pmap_map_ptes(pmap); /* locks pmap */
3188
3189 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3190 PDEBUG(2, printf("L1 PTE invalid\n"));
3191 goto out;
3192 }
3193
3194 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3195
3196 /* Check for invalid pte */
3197 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3198 goto out;
3199
3200 /* This can happen if user code tries to access kernel memory. */
3201 if ((ptes[arm_btop(va)] & L2_MASK) != L2_INVAL)
3202 goto out;
3203
3204 /* Extract the physical address of the page */
3205 pa = l2pte_pa(ptes[arm_btop(va)]);
3206 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3207 goto out;
3208
3209 simple_lock(&pg->mdpage.pvh_slock);
3210
3211 /*
3212 * Ok we just enable the pte and mark the attibs as handled
3213 * XXX Should we traverse the PV list and enable all PTEs?
3214 */
3215 PDEBUG(0,
3216 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3217 va, ptes[arm_btop(va)]));
3218 pg->mdpage.pvh_attrs |= PT_H;
3219
3220 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE;
3221 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3222
3223 simple_unlock(&pg->mdpage.pvh_slock);
3224
3225 cpu_tlb_flushID_SE(va);
3226 cpu_cpwait();
3227 rv = 1;
3228 out:
3229 pmap_unmap_ptes(pmap); /* unlocks pmap */
3230 PMAP_MAP_TO_HEAD_UNLOCK();
3231 return (rv);
3232 }
3233
3234 /*
3235 * pmap_collect: free resources held by a pmap
3236 *
3237 * => optional function.
3238 * => called when a process is swapped out to free memory.
3239 */
3240
3241 void
3242 pmap_collect(struct pmap *pmap)
3243 {
3244 }
3245
3246 /*
3247 * Routine: pmap_procwr
3248 *
3249 * Function:
3250 * Synchronize caches corresponding to [addr, addr+len) in p.
3251 *
3252 */
3253 void
3254 pmap_procwr(struct proc *p, vaddr_t va, int len)
3255 {
3256 /* We only need to do anything if it is the current process. */
3257 if (p == curproc)
3258 cpu_icache_sync_range(va, len);
3259 }
3260 /*
3261 * PTP functions
3262 */
3263
3264 /*
3265 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3266 *
3267 * => pmap should NOT be pmap_kernel()
3268 * => pmap should be locked
3269 */
3270
3271 static struct vm_page *
3272 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3273 {
3274 struct vm_page *ptp;
3275
3276 if (pmap_pde_page(pmap_pde(pmap, va))) {
3277
3278 /* valid... check hint (saves us a PA->PG lookup) */
3279 if (pmap->pm_ptphint &&
3280 (pmap->pm_pdir[pmap_pdei(va)] & PG_FRAME) ==
3281 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3282 return (pmap->pm_ptphint);
3283 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3284 #ifdef DIAGNOSTIC
3285 if (ptp == NULL)
3286 panic("pmap_get_ptp: unmanaged user PTP");
3287 #endif
3288 pmap->pm_ptphint = ptp;
3289 return(ptp);
3290 }
3291
3292 /* allocate a new PTP (updates ptphint) */
3293 return(pmap_alloc_ptp(pmap, va));
3294 }
3295
3296 /*
3297 * pmap_alloc_ptp: allocate a PTP for a PMAP
3298 *
3299 * => pmap should already be locked by caller
3300 * => we use the ptp's wire_count to count the number of active mappings
3301 * in the PTP (we start it at one to prevent any chance this PTP
3302 * will ever leak onto the active/inactive queues)
3303 */
3304
3305 /*__inline */ static struct vm_page *
3306 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3307 {
3308 struct vm_page *ptp;
3309
3310 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3311 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3312 if (ptp == NULL)
3313 return (NULL);
3314
3315 /* got one! */
3316 ptp->flags &= ~PG_BUSY; /* never busy */
3317 ptp->wire_count = 1; /* no mappings yet */
3318 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3319 pmap->pm_stats.resident_count++; /* count PTP as resident */
3320 pmap->pm_ptphint = ptp;
3321 return (ptp);
3322 }
3323
3324 vaddr_t
3325 pmap_growkernel(vaddr_t maxkvaddr)
3326 {
3327 struct pmap *kpm = pmap_kernel(), *pm;
3328 int s;
3329 paddr_t ptaddr;
3330 struct vm_page *ptp;
3331
3332 if (maxkvaddr <= pmap_curmaxkvaddr)
3333 goto out; /* we are OK */
3334 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3335 pmap_curmaxkvaddr, maxkvaddr));
3336
3337 /*
3338 * whoops! we need to add kernel PTPs
3339 */
3340
3341 s = splhigh(); /* to be safe */
3342 simple_lock(&kpm->pm_obj.vmobjlock);
3343 /* due to the way the arm pmap works we map 4MB at a time */
3344 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3345 pmap_curmaxkvaddr += 4 * NBPD) {
3346
3347 if (uvm.page_init_done == FALSE) {
3348
3349 /*
3350 * we're growing the kernel pmap early (from
3351 * uvm_pageboot_alloc()). this case must be
3352 * handled a little differently.
3353 */
3354
3355 if (uvm_page_physget(&ptaddr) == FALSE)
3356 panic("pmap_growkernel: out of memory");
3357 pmap_zero_page(ptaddr);
3358
3359 /* map this page in */
3360 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3361
3362 /* count PTP as resident */
3363 kpm->pm_stats.resident_count++;
3364 continue;
3365 }
3366
3367 /*
3368 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3369 * pmap_initialized == FALSE CASE! WE MAY BE
3370 * INVOKED WHILE pmap_init() IS RUNNING!
3371 */
3372
3373 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3374 panic("pmap_growkernel: alloc ptp failed");
3375
3376 /* distribute new kernel PTP to all active pmaps */
3377 simple_lock(&pmaps_lock);
3378 LIST_FOREACH(pm, &pmaps, pm_list) {
3379 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3380 VM_PAGE_TO_PHYS(ptp), TRUE);
3381 }
3382
3383 simple_unlock(&pmaps_lock);
3384 }
3385
3386 /*
3387 * flush out the cache, expensive but growkernel will happen so
3388 * rarely
3389 */
3390 cpu_tlb_flushD();
3391 cpu_cpwait();
3392
3393 simple_unlock(&kpm->pm_obj.vmobjlock);
3394 splx(s);
3395
3396 out:
3397 return (pmap_curmaxkvaddr);
3398 }
3399
3400
3401
3402 /************************ Bootstrapping routines ****************************/
3403
3404 /*
3405 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3406 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3407 * find them as necessary.
3408 *
3409 * Note that the data on this list is not valid after initarm() returns.
3410 */
3411 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3412
3413 static vaddr_t
3414 kernel_pt_lookup(paddr_t pa)
3415 {
3416 pv_addr_t *pv;
3417
3418 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3419 if (pv->pv_pa == pa)
3420 return (pv->pv_va);
3421 }
3422 return (0);
3423 }
3424
3425 /*
3426 * pmap_map_section:
3427 *
3428 * Create a single section mapping.
3429 */
3430 void
3431 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3432 {
3433 pd_entry_t *pde = (pd_entry_t *) l1pt;
3434 pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3435 pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3436
3437 KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
3438
3439 pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
3440 }
3441
3442 /*
3443 * pmap_map_entry:
3444 *
3445 * Create a single page mapping.
3446 */
3447 void
3448 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3449 {
3450 pd_entry_t *pde = (pd_entry_t *) l1pt;
3451 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3452 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3453 pt_entry_t *pte;
3454
3455 KASSERT(((va | pa) & PGOFSET) == 0);
3456
3457 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3458 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3459
3460 pte = (pt_entry_t *)
3461 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3462 if (pte == NULL)
3463 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3464
3465 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
3466 }
3467
3468 /*
3469 * pmap_link_l2pt:
3470 *
3471 * Link the L2 page table specified by "pa" into the L1
3472 * page table at the slot for "va".
3473 */
3474 void
3475 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3476 {
3477 pd_entry_t *pde = (pd_entry_t *) l1pt;
3478 u_int slot = va >> PDSHIFT;
3479
3480 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3481
3482 pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
3483 pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
3484 pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
3485 pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
3486
3487 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3488 }
3489
3490 /*
3491 * pmap_map_chunk:
3492 *
3493 * Map a chunk of memory using the most efficient mappings
3494 * possible (section, large page, small page) into the
3495 * provided L1 and L2 tables at the specified virtual address.
3496 */
3497 vsize_t
3498 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3499 int prot, int cache)
3500 {
3501 pd_entry_t *pde = (pd_entry_t *) l1pt;
3502 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3503 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3504 pt_entry_t *pte;
3505 vsize_t resid;
3506 int i;
3507
3508 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3509
3510 if (l1pt == 0)
3511 panic("pmap_map_chunk: no L1 table provided");
3512
3513 #ifdef VERBOSE_INIT_ARM
3514 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3515 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3516 #endif
3517
3518 size = resid;
3519
3520 while (resid > 0) {
3521 /* See if we can use a section mapping. */
3522 if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
3523 resid >= L1_SEC_SIZE) {
3524 #ifdef VERBOSE_INIT_ARM
3525 printf("S");
3526 #endif
3527 pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
3528 va += L1_SEC_SIZE;
3529 pa += L1_SEC_SIZE;
3530 resid -= L1_SEC_SIZE;
3531 continue;
3532 }
3533
3534 /*
3535 * Ok, we're going to use an L2 table. Make sure
3536 * one is actually in the corresponding L1 slot
3537 * for the current VA.
3538 */
3539 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3540 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3541
3542 pte = (pt_entry_t *)
3543 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3544 if (pte == NULL)
3545 panic("pmap_map_chunk: can't find L2 table for VA"
3546 "0x%08lx", va);
3547
3548 /* See if we can use a L2 large page mapping. */
3549 if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
3550 resid >= L2_LPAGE_SIZE) {
3551 #ifdef VERBOSE_INIT_ARM
3552 printf("L");
3553 #endif
3554 for (i = 0; i < 16; i++) {
3555 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3556 L2_LPTE(pa, ap, fl);
3557 }
3558 va += L2_LPAGE_SIZE;
3559 pa += L2_LPAGE_SIZE;
3560 resid -= L2_LPAGE_SIZE;
3561 continue;
3562 }
3563
3564 /* Use a small page mapping. */
3565 #ifdef VERBOSE_INIT_ARM
3566 printf("P");
3567 #endif
3568 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
3569 va += NBPG;
3570 pa += NBPG;
3571 resid -= NBPG;
3572 }
3573 #ifdef VERBOSE_INIT_ARM
3574 printf("\n");
3575 #endif
3576 return (size);
3577 }
3578