Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.75
      1 /*	$NetBSD: pmap.c,v 1.75 2002/04/03 15:59:58 reinoud Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * Copyright (c) 2001 Richard Earnshaw
      6  * Copyright (c) 2001 Christopher Gilbert
      7  * All rights reserved.
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the company nor the name of the author may be used to
     15  *    endorse or promote products derived from this software without specific
     16  *    prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*-
     32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to The NetBSD Foundation
     36  * by Charles M. Hannum.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *        This product includes software developed by the NetBSD
     49  *        Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64  * POSSIBILITY OF SUCH DAMAGE.
     65  */
     66 
     67 /*
     68  * Copyright (c) 1994-1998 Mark Brinicombe.
     69  * Copyright (c) 1994 Brini.
     70  * All rights reserved.
     71  *
     72  * This code is derived from software written for Brini by Mark Brinicombe
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by Mark Brinicombe.
     85  * 4. The name of the author may not be used to endorse or promote products
     86  *    derived from this software without specific prior written permission.
     87  *
     88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97  *
     98  * RiscBSD kernel project
     99  *
    100  * pmap.c
    101  *
    102  * Machine dependant vm stuff
    103  *
    104  * Created      : 20/09/94
    105  */
    106 
    107 /*
    108  * Performance improvements, UVM changes, overhauls and part-rewrites
    109  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110  */
    111 
    112 /*
    113  * The dram block info is currently referenced from the bootconfig.
    114  * This should be placed in a separate structure.
    115  */
    116 
    117 /*
    118  * Special compilation symbols
    119  * PMAP_DEBUG		- Build in pmap_debug_level code
    120  */
    121 
    122 /* Include header files */
    123 
    124 #include "opt_pmap_debug.h"
    125 #include "opt_ddb.h"
    126 
    127 #include <sys/types.h>
    128 #include <sys/param.h>
    129 #include <sys/kernel.h>
    130 #include <sys/systm.h>
    131 #include <sys/proc.h>
    132 #include <sys/malloc.h>
    133 #include <sys/user.h>
    134 #include <sys/pool.h>
    135 #include <sys/cdefs.h>
    136 
    137 #include <uvm/uvm.h>
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/pmap.h>
    142 #include <machine/pcb.h>
    143 #include <machine/param.h>
    144 #include <arm/arm32/katelib.h>
    145 
    146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.75 2002/04/03 15:59:58 reinoud Exp $");
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 void pmap_dump_pvlist(vaddr_t phys, char *m);
    153 
    154 /*
    155  * for switching to potentially finer grained debugging
    156  */
    157 #define	PDB_FOLLOW	0x0001
    158 #define	PDB_INIT	0x0002
    159 #define	PDB_ENTER	0x0004
    160 #define	PDB_REMOVE	0x0008
    161 #define	PDB_CREATE	0x0010
    162 #define	PDB_PTPAGE	0x0020
    163 #define	PDB_GROWKERN	0x0040
    164 #define	PDB_BITS	0x0080
    165 #define	PDB_COLLECT	0x0100
    166 #define	PDB_PROTECT	0x0200
    167 #define	PDB_MAP_L1	0x0400
    168 #define	PDB_BOOTSTRAP	0x1000
    169 #define	PDB_PARANOIA	0x2000
    170 #define	PDB_WIRING	0x4000
    171 #define	PDB_PVDUMP	0x8000
    172 
    173 int debugmap = 0;
    174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175 #define	NPDEBUG(_lev_,_stat_) \
    176 	if (pmapdebug & (_lev_)) \
    177         	((_stat_))
    178 
    179 #else	/* PMAP_DEBUG */
    180 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182 #endif	/* PMAP_DEBUG */
    183 
    184 struct pmap     kernel_pmap_store;
    185 
    186 /*
    187  * linked list of all non-kernel pmaps
    188  */
    189 
    190 static LIST_HEAD(, pmap) pmaps;
    191 
    192 /*
    193  * pool that pmap structures are allocated from
    194  */
    195 
    196 struct pool pmap_pmap_pool;
    197 
    198 static pt_entry_t *csrc_pte, *cdst_pte;
    199 static vaddr_t csrcp, cdstp;
    200 
    201 char *memhook;
    202 extern caddr_t msgbufaddr;
    203 
    204 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    205 /*
    206  * locking data structures
    207  */
    208 
    209 static struct lock pmap_main_lock;
    210 static struct simplelock pvalloc_lock;
    211 static struct simplelock pmaps_lock;
    212 #ifdef LOCKDEBUG
    213 #define PMAP_MAP_TO_HEAD_LOCK() \
    214      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    216      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    217 
    218 #define PMAP_HEAD_TO_MAP_LOCK() \
    219      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    221      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    222 #else
    223 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    224 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    225 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    226 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    227 #endif /* LOCKDEBUG */
    228 
    229 /*
    230  * pv_page management structures: locked by pvalloc_lock
    231  */
    232 
    233 TAILQ_HEAD(pv_pagelist, pv_page);
    234 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    236 static int pv_nfpvents;			/* # of free pv entries */
    237 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    238 static vaddr_t pv_cachedva;		/* cached VA for later use */
    239 
    240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    242 					/* high water mark */
    243 
    244 /*
    245  * local prototypes
    246  */
    247 
    248 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    249 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    250 #define ALLOCPV_NEED	0	/* need PV now */
    251 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    252 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    253 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    254 static void		 pmap_enter_pv __P((struct vm_page *,
    255 					    struct pv_entry *, struct pmap *,
    256 					    vaddr_t, struct vm_page *, int));
    257 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    258 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    259 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    260 static void		 pmap_free_pvpage __P((void));
    261 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    262 static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    263 			vaddr_t));
    264 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    265 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    266 
    267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    268 	u_int, u_int));
    269 
    270 /*
    271  * Structure that describes and L1 table.
    272  */
    273 struct l1pt {
    274 	SIMPLEQ_ENTRY(l1pt)	pt_queue;	/* Queue pointers */
    275 	struct pglist		pt_plist;	/* Allocated page list */
    276 	vaddr_t			pt_va;		/* Allocated virtual address */
    277 	int			pt_flags;	/* Flags */
    278 };
    279 #define	PTFLAG_STATIC		0x01		/* Statically allocated */
    280 #define	PTFLAG_KPT		0x02		/* Kernel pt's are mapped */
    281 #define	PTFLAG_CLEAN		0x04		/* L1 is clean */
    282 
    283 static void pmap_free_l1pt __P((struct l1pt *));
    284 static int pmap_allocpagedir __P((struct pmap *));
    285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    286 static void pmap_remove_all __P((struct vm_page *));
    287 
    288 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    289 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    290 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    291 
    292 extern paddr_t physical_start;
    293 extern paddr_t physical_freestart;
    294 extern paddr_t physical_end;
    295 extern paddr_t physical_freeend;
    296 extern unsigned int free_pages;
    297 extern int max_processes;
    298 
    299 vaddr_t virtual_avail;
    300 vaddr_t virtual_end;
    301 vaddr_t pmap_curmaxkvaddr;
    302 
    303 vaddr_t avail_start;
    304 vaddr_t avail_end;
    305 
    306 extern pv_addr_t systempage;
    307 
    308 /* Variables used by the L1 page table queue code */
    309 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    310 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
    311 static int l1pt_static_queue_count;	    /* items in the static l1 queue */
    312 static int l1pt_static_create_count;	    /* static l1 items created */
    313 static struct l1pt_queue l1pt_queue;	    /* head of our l1 queue */
    314 static int l1pt_queue_count;		    /* items in the l1 queue */
    315 static int l1pt_create_count;		    /* stat - L1's create count */
    316 static int l1pt_reuse_count;		    /* stat - L1's reused count */
    317 
    318 /* Local function prototypes (not used outside this file) */
    319 void pmap_pinit __P((struct pmap *));
    320 void pmap_freepagedir __P((struct pmap *));
    321 
    322 /* Other function prototypes */
    323 extern void bzero_page __P((vaddr_t));
    324 extern void bcopy_page __P((vaddr_t, vaddr_t));
    325 
    326 struct l1pt *pmap_alloc_l1pt __P((void));
    327 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    328      vaddr_t l2pa, boolean_t));
    329 
    330 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    331 static void pmap_unmap_ptes __P((struct pmap *));
    332 
    333 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    334     pt_entry_t *, boolean_t));
    335 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    336     pt_entry_t *, boolean_t));
    337 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    338     pt_entry_t *, boolean_t));
    339 
    340 /*
    341  * Cache enable bits in PTE to use on pages that are cacheable.
    342  * On most machines this is cacheable/bufferable, but on some, eg arm10, we
    343  * can chose between write-through and write-back cacheing.
    344  */
    345 pt_entry_t pte_cache_mode = (PT_C | PT_B);
    346 
    347 /*
    348  * real definition of pv_entry.
    349  */
    350 
    351 struct pv_entry {
    352 	struct pv_entry *pv_next;       /* next pv_entry */
    353 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    354 	vaddr_t         pv_va;          /* virtual address for mapping */
    355 	int             pv_flags;       /* flags */
    356 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    357 };
    358 
    359 /*
    360  * pv_entrys are dynamically allocated in chunks from a single page.
    361  * we keep track of how many pv_entrys are in use for each page and
    362  * we can free pv_entry pages if needed.  there is one lock for the
    363  * entire allocation system.
    364  */
    365 
    366 struct pv_page_info {
    367 	TAILQ_ENTRY(pv_page) pvpi_list;
    368 	struct pv_entry *pvpi_pvfree;
    369 	int pvpi_nfree;
    370 };
    371 
    372 /*
    373  * number of pv_entry's in a pv_page
    374  * (note: won't work on systems where NPBG isn't a constant)
    375  */
    376 
    377 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    378 			sizeof(struct pv_entry))
    379 
    380 /*
    381  * a pv_page: where pv_entrys are allocated from
    382  */
    383 
    384 struct pv_page {
    385 	struct pv_page_info pvinfo;
    386 	struct pv_entry pvents[PVE_PER_PVPAGE];
    387 };
    388 
    389 #ifdef MYCROFT_HACK
    390 int mycroft_hack = 0;
    391 #endif
    392 
    393 /* Function to set the debug level of the pmap code */
    394 
    395 #ifdef PMAP_DEBUG
    396 void
    397 pmap_debug(int level)
    398 {
    399 	pmap_debug_level = level;
    400 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    401 }
    402 #endif	/* PMAP_DEBUG */
    403 
    404 __inline static boolean_t
    405 pmap_is_curpmap(struct pmap *pmap)
    406 {
    407 
    408 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    409 	    pmap == pmap_kernel())
    410 		return (TRUE);
    411 
    412 	return (FALSE);
    413 }
    414 
    415 #include "isadma.h"
    416 
    417 #if NISADMA > 0
    418 /*
    419  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    420  * pages into the system, memory intersects with any of these ranges,
    421  * the intersecting memory will be loaded into a lower-priority free list.
    422  */
    423 bus_dma_segment_t *pmap_isa_dma_ranges;
    424 int pmap_isa_dma_nranges;
    425 
    426 /*
    427  * Check if a memory range intersects with an ISA DMA range, and
    428  * return the page-rounded intersection if it does.  The intersection
    429  * will be placed on a lower-priority free list.
    430  */
    431 static boolean_t
    432 pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
    433     psize_t *sizep)
    434 {
    435 	bus_dma_segment_t *ds;
    436 	int i;
    437 
    438 	if (pmap_isa_dma_ranges == NULL)
    439 		return (FALSE);
    440 
    441 	for (i = 0, ds = pmap_isa_dma_ranges;
    442 	     i < pmap_isa_dma_nranges; i++, ds++) {
    443 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    444 			/*
    445 			 * Beginning of region intersects with this range.
    446 			 */
    447 			*pap = trunc_page(pa);
    448 			*sizep = round_page(min(pa + size,
    449 			    ds->ds_addr + ds->ds_len) - pa);
    450 			return (TRUE);
    451 		}
    452 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    453 			/*
    454 			 * End of region intersects with this range.
    455 			 */
    456 			*pap = trunc_page(ds->ds_addr);
    457 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    458 			    ds->ds_len));
    459 			return (TRUE);
    460 		}
    461 	}
    462 
    463 	/*
    464 	 * No intersection found.
    465 	 */
    466 	return (FALSE);
    467 }
    468 #endif /* NISADMA > 0 */
    469 
    470 /*
    471  * p v _ e n t r y   f u n c t i o n s
    472  */
    473 
    474 /*
    475  * pv_entry allocation functions:
    476  *   the main pv_entry allocation functions are:
    477  *     pmap_alloc_pv: allocate a pv_entry structure
    478  *     pmap_free_pv: free one pv_entry
    479  *     pmap_free_pvs: free a list of pv_entrys
    480  *
    481  * the rest are helper functions
    482  */
    483 
    484 /*
    485  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    486  * => we lock pvalloc_lock
    487  * => if we fail, we call out to pmap_alloc_pvpage
    488  * => 3 modes:
    489  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    490  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    491  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    492  *			one now
    493  *
    494  * "try" is for optional functions like pmap_copy().
    495  */
    496 
    497 __inline static struct pv_entry *
    498 pmap_alloc_pv(struct pmap *pmap, int mode)
    499 {
    500 	struct pv_page *pvpage;
    501 	struct pv_entry *pv;
    502 
    503 	simple_lock(&pvalloc_lock);
    504 
    505 	pvpage = TAILQ_FIRST(&pv_freepages);
    506 
    507 	if (pvpage != NULL) {
    508 		pvpage->pvinfo.pvpi_nfree--;
    509 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    510 			/* nothing left in this one? */
    511 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    512 		}
    513 		pv = pvpage->pvinfo.pvpi_pvfree;
    514 		KASSERT(pv);
    515 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    516 		pv_nfpvents--;  /* took one from pool */
    517 	} else {
    518 		pv = NULL;		/* need more of them */
    519 	}
    520 
    521 	/*
    522 	 * if below low water mark or we didn't get a pv_entry we try and
    523 	 * create more pv_entrys ...
    524 	 */
    525 
    526 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    527 		if (pv == NULL)
    528 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    529 					       mode : ALLOCPV_NEED);
    530 		else
    531 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    532 	}
    533 
    534 	simple_unlock(&pvalloc_lock);
    535 	return(pv);
    536 }
    537 
    538 /*
    539  * pmap_alloc_pvpage: maybe allocate a new pvpage
    540  *
    541  * if need_entry is false: try and allocate a new pv_page
    542  * if need_entry is true: try and allocate a new pv_page and return a
    543  *	new pv_entry from it.   if we are unable to allocate a pv_page
    544  *	we make a last ditch effort to steal a pv_page from some other
    545  *	mapping.    if that fails, we panic...
    546  *
    547  * => we assume that the caller holds pvalloc_lock
    548  */
    549 
    550 static struct pv_entry *
    551 pmap_alloc_pvpage(struct pmap *pmap, int mode)
    552 {
    553 	struct vm_page *pg;
    554 	struct pv_page *pvpage;
    555 	struct pv_entry *pv;
    556 	int s;
    557 
    558 	/*
    559 	 * if we need_entry and we've got unused pv_pages, allocate from there
    560 	 */
    561 
    562 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    563 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    564 
    565 		/* move it to pv_freepages list */
    566 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    567 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    568 
    569 		/* allocate a pv_entry */
    570 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    571 		pv = pvpage->pvinfo.pvpi_pvfree;
    572 		KASSERT(pv);
    573 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    574 
    575 		pv_nfpvents--;  /* took one from pool */
    576 		return(pv);
    577 	}
    578 
    579 	/*
    580 	 *  see if we've got a cached unmapped VA that we can map a page in.
    581 	 * if not, try to allocate one.
    582 	 */
    583 
    584 
    585 	if (pv_cachedva == 0) {
    586 		s = splvm();
    587 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    588 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    589 		splx(s);
    590 		if (pv_cachedva == 0) {
    591 			return (NULL);
    592 		}
    593 	}
    594 
    595 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    596 	    UVM_PGA_USERESERVE);
    597 
    598 	if (pg == NULL)
    599 		return (NULL);
    600 	pg->flags &= ~PG_BUSY;	/* never busy */
    601 
    602 	/*
    603 	 * add a mapping for our new pv_page and free its entrys (save one!)
    604 	 *
    605 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    606 	 * pmap is already locked!  (...but entering the mapping is safe...)
    607 	 */
    608 
    609 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    610 		VM_PROT_READ|VM_PROT_WRITE);
    611 	pmap_update(pmap_kernel());
    612 	pvpage = (struct pv_page *) pv_cachedva;
    613 	pv_cachedva = 0;
    614 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    615 }
    616 
    617 /*
    618  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    619  *
    620  * => caller must hold pvalloc_lock
    621  * => if need_entry is true, we allocate and return one pv_entry
    622  */
    623 
    624 static struct pv_entry *
    625 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
    626 {
    627 	int tofree, lcv;
    628 
    629 	/* do we need to return one? */
    630 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    631 
    632 	pvp->pvinfo.pvpi_pvfree = NULL;
    633 	pvp->pvinfo.pvpi_nfree = tofree;
    634 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    635 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    636 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    637 	}
    638 	if (need_entry)
    639 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    640 	else
    641 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    642 	pv_nfpvents += tofree;
    643 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    644 }
    645 
    646 /*
    647  * pmap_free_pv_doit: actually free a pv_entry
    648  *
    649  * => do not call this directly!  instead use either
    650  *    1. pmap_free_pv ==> free a single pv_entry
    651  *    2. pmap_free_pvs => free a list of pv_entrys
    652  * => we must be holding pvalloc_lock
    653  */
    654 
    655 __inline static void
    656 pmap_free_pv_doit(struct pv_entry *pv)
    657 {
    658 	struct pv_page *pvp;
    659 
    660 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    661 	pv_nfpvents++;
    662 	pvp->pvinfo.pvpi_nfree++;
    663 
    664 	/* nfree == 1 => fully allocated page just became partly allocated */
    665 	if (pvp->pvinfo.pvpi_nfree == 1) {
    666 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    667 	}
    668 
    669 	/* free it */
    670 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    671 	pvp->pvinfo.pvpi_pvfree = pv;
    672 
    673 	/*
    674 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    675 	 */
    676 
    677 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    678 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    679 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    680 	}
    681 }
    682 
    683 /*
    684  * pmap_free_pv: free a single pv_entry
    685  *
    686  * => we gain the pvalloc_lock
    687  */
    688 
    689 __inline static void
    690 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
    691 {
    692 	simple_lock(&pvalloc_lock);
    693 	pmap_free_pv_doit(pv);
    694 
    695 	/*
    696 	 * Can't free the PV page if the PV entries were associated with
    697 	 * the kernel pmap; the pmap is already locked.
    698 	 */
    699 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    700 	    pmap != pmap_kernel())
    701 		pmap_free_pvpage();
    702 
    703 	simple_unlock(&pvalloc_lock);
    704 }
    705 
    706 /*
    707  * pmap_free_pvs: free a list of pv_entrys
    708  *
    709  * => we gain the pvalloc_lock
    710  */
    711 
    712 __inline static void
    713 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
    714 {
    715 	struct pv_entry *nextpv;
    716 
    717 	simple_lock(&pvalloc_lock);
    718 
    719 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    720 		nextpv = pvs->pv_next;
    721 		pmap_free_pv_doit(pvs);
    722 	}
    723 
    724 	/*
    725 	 * Can't free the PV page if the PV entries were associated with
    726 	 * the kernel pmap; the pmap is already locked.
    727 	 */
    728 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    729 	    pmap != pmap_kernel())
    730 		pmap_free_pvpage();
    731 
    732 	simple_unlock(&pvalloc_lock);
    733 }
    734 
    735 
    736 /*
    737  * pmap_free_pvpage: try and free an unused pv_page structure
    738  *
    739  * => assume caller is holding the pvalloc_lock and that
    740  *	there is a page on the pv_unusedpgs list
    741  * => if we can't get a lock on the kmem_map we try again later
    742  */
    743 
    744 static void
    745 pmap_free_pvpage(void)
    746 {
    747 	int s;
    748 	struct vm_map *map;
    749 	struct vm_map_entry *dead_entries;
    750 	struct pv_page *pvp;
    751 
    752 	s = splvm(); /* protect kmem_map */
    753 
    754 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    755 
    756 	/*
    757 	 * note: watch out for pv_initpage which is allocated out of
    758 	 * kernel_map rather than kmem_map.
    759 	 */
    760 	if (pvp == pv_initpage)
    761 		map = kernel_map;
    762 	else
    763 		map = kmem_map;
    764 	if (vm_map_lock_try(map)) {
    765 
    766 		/* remove pvp from pv_unusedpgs */
    767 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    768 
    769 		/* unmap the page */
    770 		dead_entries = NULL;
    771 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    772 		    &dead_entries);
    773 		vm_map_unlock(map);
    774 
    775 		if (dead_entries != NULL)
    776 			uvm_unmap_detach(dead_entries, 0);
    777 
    778 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    779 	}
    780 	if (pvp == pv_initpage)
    781 		/* no more initpage, we've freed it */
    782 		pv_initpage = NULL;
    783 
    784 	splx(s);
    785 }
    786 
    787 /*
    788  * main pv_entry manipulation functions:
    789  *   pmap_enter_pv: enter a mapping onto a vm_page list
    790  *   pmap_remove_pv: remove a mappiing from a vm_page list
    791  *
    792  * NOTE: pmap_enter_pv expects to lock the pvh itself
    793  *       pmap_remove_pv expects te caller to lock the pvh before calling
    794  */
    795 
    796 /*
    797  * pmap_enter_pv: enter a mapping onto a vm_page lst
    798  *
    799  * => caller should hold the proper lock on pmap_main_lock
    800  * => caller should have pmap locked
    801  * => we will gain the lock on the vm_page and allocate the new pv_entry
    802  * => caller should adjust ptp's wire_count before calling
    803  * => caller should not adjust pmap's wire_count
    804  */
    805 
    806 __inline static void
    807 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
    808     vaddr_t va, struct vm_page *ptp, int flags)
    809 {
    810 	pve->pv_pmap = pmap;
    811 	pve->pv_va = va;
    812 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    813 	pve->pv_flags = flags;
    814 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    815 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    816 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    817 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    818 	if (pve->pv_flags & PT_W)
    819 		++pmap->pm_stats.wired_count;
    820 }
    821 
    822 /*
    823  * pmap_remove_pv: try to remove a mapping from a pv_list
    824  *
    825  * => caller should hold proper lock on pmap_main_lock
    826  * => pmap should be locked
    827  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    828  * => caller should adjust ptp's wire_count and free PTP if needed
    829  * => caller should NOT adjust pmap's wire_count
    830  * => we return the removed pve
    831  */
    832 
    833 __inline static struct pv_entry *
    834 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
    835 {
    836 	struct pv_entry *pve, **prevptr;
    837 
    838 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    839 	pve = *prevptr;
    840 	while (pve) {
    841 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    842 			*prevptr = pve->pv_next;		/* remove it! */
    843 			if (pve->pv_flags & PT_W)
    844 			    --pmap->pm_stats.wired_count;
    845 			break;
    846 		}
    847 		prevptr = &pve->pv_next;		/* previous pointer */
    848 		pve = pve->pv_next;			/* advance */
    849 	}
    850 	return(pve);				/* return removed pve */
    851 }
    852 
    853 /*
    854  *
    855  * pmap_modify_pv: Update pv flags
    856  *
    857  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    858  * => caller should NOT adjust pmap's wire_count
    859  * => caller must call pmap_vac_me_harder() if writable status of a page
    860  *    may have changed.
    861  * => we return the old flags
    862  *
    863  * Modify a physical-virtual mapping in the pv table
    864  */
    865 
    866 static /* __inline */ u_int
    867 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
    868     u_int bic_mask, u_int eor_mask)
    869 {
    870 	struct pv_entry *npv;
    871 	u_int flags, oflags;
    872 
    873 	/*
    874 	 * There is at least one VA mapping this page.
    875 	 */
    876 
    877 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    878 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    879 			oflags = npv->pv_flags;
    880 			npv->pv_flags = flags =
    881 			    ((oflags & ~bic_mask) ^ eor_mask);
    882 			if ((flags ^ oflags) & PT_W) {
    883 				if (flags & PT_W)
    884 					++pmap->pm_stats.wired_count;
    885 				else
    886 					--pmap->pm_stats.wired_count;
    887 			}
    888 			return (oflags);
    889 		}
    890 	}
    891 	return (0);
    892 }
    893 
    894 /*
    895  * Map the specified level 2 pagetable into the level 1 page table for
    896  * the given pmap to cover a chunk of virtual address space starting from the
    897  * address specified.
    898  */
    899 static __inline void
    900 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
    901 {
    902 	vaddr_t ptva;
    903 
    904 	/* Calculate the index into the L1 page table. */
    905 	ptva = (va >> PDSHIFT) & ~3;
    906 
    907 	/* Map page table into the L1. */
    908 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    909 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    910 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    911 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    912 
    913 	/* Map the page table into the page table area. */
    914 	if (selfref)
    915 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    916 		    L2_PTE_NC_NB(l2pa, AP_KRW);
    917 }
    918 
    919 #if 0
    920 static __inline void
    921 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
    922 {
    923 	vaddr_t ptva;
    924 
    925 	/* Calculate the index into the L1 page table. */
    926 	ptva = (va >> PDSHIFT) & ~3;
    927 
    928 	/* Unmap page table from the L1. */
    929 	pmap->pm_pdir[ptva + 0] = 0;
    930 	pmap->pm_pdir[ptva + 1] = 0;
    931 	pmap->pm_pdir[ptva + 2] = 0;
    932 	pmap->pm_pdir[ptva + 3] = 0;
    933 
    934 	/* Unmap the page table from the page table area. */
    935 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    936 }
    937 #endif
    938 
    939 /*
    940  *	Used to map a range of physical addresses into kernel
    941  *	virtual address space.
    942  *
    943  *	For now, VM is already on, we only need to map the
    944  *	specified memory.
    945  */
    946 vaddr_t
    947 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
    948 {
    949 	while (spa < epa) {
    950 		pmap_kenter_pa(va, spa, prot);
    951 		va += NBPG;
    952 		spa += NBPG;
    953 	}
    954 	pmap_update(pmap_kernel());
    955 	return(va);
    956 }
    957 
    958 
    959 /*
    960  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    961  *
    962  * bootstrap the pmap system. This is called from initarm and allows
    963  * the pmap system to initailise any structures it requires.
    964  *
    965  * Currently this sets up the kernel_pmap that is statically allocated
    966  * and also allocated virtual addresses for certain page hooks.
    967  * Currently the only one page hook is allocated that is used
    968  * to zero physical pages of memory.
    969  * It also initialises the start and end address of the kernel data space.
    970  */
    971 extern paddr_t physical_freestart;
    972 extern paddr_t physical_freeend;
    973 
    974 char *boot_head;
    975 
    976 void
    977 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    978 {
    979 	pt_entry_t *pte;
    980 	int loop;
    981 	paddr_t start, end;
    982 #if NISADMA > 0
    983 	paddr_t istart;
    984 	psize_t isize;
    985 #endif
    986 
    987 	pmap_kernel()->pm_pdir = kernel_l1pt;
    988 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
    989 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
    990 	simple_lock_init(&pmap_kernel()->pm_lock);
    991 	pmap_kernel()->pm_obj.pgops = NULL;
    992 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
    993 	pmap_kernel()->pm_obj.uo_npages = 0;
    994 	pmap_kernel()->pm_obj.uo_refs = 1;
    995 
    996 	/*
    997 	 * Initialize PAGE_SIZE-dependent variables.
    998 	 */
    999 	uvm_setpagesize();
   1000 
   1001 	loop = 0;
   1002 	while (loop < bootconfig.dramblocks) {
   1003 		start = (paddr_t)bootconfig.dram[loop].address;
   1004 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1005 		if (start < physical_freestart)
   1006 			start = physical_freestart;
   1007 		if (end > physical_freeend)
   1008 			end = physical_freeend;
   1009 #if 0
   1010 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1011 #endif
   1012 #if NISADMA > 0
   1013 		if (pmap_isa_dma_range_intersect(start, end - start,
   1014 		    &istart, &isize)) {
   1015 			/*
   1016 			 * Place the pages that intersect with the
   1017 			 * ISA DMA range onto the ISA DMA free list.
   1018 			 */
   1019 #if 0
   1020 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1021 			    istart + isize - 1);
   1022 #endif
   1023 			uvm_page_physload(atop(istart),
   1024 			    atop(istart + isize), atop(istart),
   1025 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1026 
   1027 			/*
   1028 			 * Load the pieces that come before
   1029 			 * the intersection into the default
   1030 			 * free list.
   1031 			 */
   1032 			if (start < istart) {
   1033 #if 0
   1034 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1035 				    start, istart - 1);
   1036 #endif
   1037 				uvm_page_physload(atop(start),
   1038 				    atop(istart), atop(start),
   1039 				    atop(istart), VM_FREELIST_DEFAULT);
   1040 			}
   1041 
   1042 			/*
   1043 			 * Load the pieces that come after
   1044 			 * the intersection into the default
   1045 			 * free list.
   1046 			 */
   1047 			if ((istart + isize) < end) {
   1048 #if 0
   1049 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1050 				    (istart + isize), end - 1);
   1051 #endif
   1052 				uvm_page_physload(atop(istart + isize),
   1053 				    atop(end), atop(istart + isize),
   1054 				    atop(end), VM_FREELIST_DEFAULT);
   1055 			}
   1056 		} else {
   1057 			uvm_page_physload(atop(start), atop(end),
   1058 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1059 		}
   1060 #else	/* NISADMA > 0 */
   1061 		uvm_page_physload(atop(start), atop(end),
   1062 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1063 #endif /* NISADMA > 0 */
   1064 		++loop;
   1065 	}
   1066 
   1067 	virtual_avail = KERNEL_VM_BASE;
   1068 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
   1069 
   1070 	/*
   1071 	 * now we allocate the "special" VAs which are used for tmp mappings
   1072 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1073 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1074 	 * we find the PTE that maps the allocated VA via the linear PTE
   1075 	 * mapping.
   1076 	 */
   1077 
   1078 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1079 
   1080 	csrcp = virtual_avail; csrc_pte = pte;
   1081 	virtual_avail += PAGE_SIZE; pte++;
   1082 
   1083 	cdstp = virtual_avail; cdst_pte = pte;
   1084 	virtual_avail += PAGE_SIZE; pte++;
   1085 
   1086 	memhook = (char *) virtual_avail;	/* don't need pte */
   1087 	virtual_avail += PAGE_SIZE; pte++;
   1088 
   1089 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1090 	virtual_avail += round_page(MSGBUFSIZE);
   1091 	pte += atop(round_page(MSGBUFSIZE));
   1092 
   1093 	/*
   1094 	 * init the static-global locks and global lists.
   1095 	 */
   1096 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1097 	simple_lock_init(&pvalloc_lock);
   1098 	simple_lock_init(&pmaps_lock);
   1099 	LIST_INIT(&pmaps);
   1100 	TAILQ_INIT(&pv_freepages);
   1101 	TAILQ_INIT(&pv_unusedpgs);
   1102 
   1103 	/*
   1104 	 * initialize the pmap pool.
   1105 	 */
   1106 
   1107 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1108 		  &pool_allocator_nointr);
   1109 
   1110 	cpu_dcache_wbinv_all();
   1111 }
   1112 
   1113 /*
   1114  * void pmap_init(void)
   1115  *
   1116  * Initialize the pmap module.
   1117  * Called by vm_init() in vm/vm_init.c in order to initialise
   1118  * any structures that the pmap system needs to map virtual memory.
   1119  */
   1120 
   1121 extern int physmem;
   1122 
   1123 void
   1124 pmap_init(void)
   1125 {
   1126 
   1127 	/*
   1128 	 * Set the available memory vars - These do not map to real memory
   1129 	 * addresses and cannot as the physical memory is fragmented.
   1130 	 * They are used by ps for %mem calculations.
   1131 	 * One could argue whether this should be the entire memory or just
   1132 	 * the memory that is useable in a user process.
   1133 	 */
   1134 	avail_start = 0;
   1135 	avail_end = physmem * NBPG;
   1136 
   1137 	/*
   1138 	 * now we need to free enough pv_entry structures to allow us to get
   1139 	 * the kmem_map/kmem_object allocated and inited (done after this
   1140 	 * function is finished).  to do this we allocate one bootstrap page out
   1141 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1142 	 * structures.   we never free this page.
   1143 	 */
   1144 
   1145 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1146 	if (pv_initpage == NULL)
   1147 		panic("pmap_init: pv_initpage");
   1148 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1149 	pv_nfpvents = 0;
   1150 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1151 
   1152 	pmap_initialized = TRUE;
   1153 
   1154 	/* Initialise our L1 page table queues and counters */
   1155 	SIMPLEQ_INIT(&l1pt_static_queue);
   1156 	l1pt_static_queue_count = 0;
   1157 	l1pt_static_create_count = 0;
   1158 	SIMPLEQ_INIT(&l1pt_queue);
   1159 	l1pt_queue_count = 0;
   1160 	l1pt_create_count = 0;
   1161 	l1pt_reuse_count = 0;
   1162 }
   1163 
   1164 /*
   1165  * pmap_postinit()
   1166  *
   1167  * This routine is called after the vm and kmem subsystems have been
   1168  * initialised. This allows the pmap code to perform any initialisation
   1169  * that can only be done one the memory allocation is in place.
   1170  */
   1171 
   1172 void
   1173 pmap_postinit(void)
   1174 {
   1175 	int loop;
   1176 	struct l1pt *pt;
   1177 
   1178 #ifdef PMAP_STATIC_L1S
   1179 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1180 #else	/* PMAP_STATIC_L1S */
   1181 	for (loop = 0; loop < max_processes; ++loop) {
   1182 #endif	/* PMAP_STATIC_L1S */
   1183 		/* Allocate a L1 page table */
   1184 		pt = pmap_alloc_l1pt();
   1185 		if (!pt)
   1186 			panic("Cannot allocate static L1 page tables\n");
   1187 
   1188 		/* Clean it */
   1189 		bzero((void *)pt->pt_va, PD_SIZE);
   1190 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1191 		/* Add the page table to the queue */
   1192 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1193 		++l1pt_static_queue_count;
   1194 		++l1pt_static_create_count;
   1195 	}
   1196 }
   1197 
   1198 
   1199 /*
   1200  * Create and return a physical map.
   1201  *
   1202  * If the size specified for the map is zero, the map is an actual physical
   1203  * map, and may be referenced by the hardware.
   1204  *
   1205  * If the size specified is non-zero, the map will be used in software only,
   1206  * and is bounded by that size.
   1207  */
   1208 
   1209 pmap_t
   1210 pmap_create(void)
   1211 {
   1212 	struct pmap *pmap;
   1213 
   1214 	/*
   1215 	 * Fetch pmap entry from the pool
   1216 	 */
   1217 
   1218 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1219 	/* XXX is this really needed! */
   1220 	memset(pmap, 0, sizeof(*pmap));
   1221 
   1222 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1223 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1224 	TAILQ_INIT(&pmap->pm_obj.memq);
   1225 	pmap->pm_obj.uo_npages = 0;
   1226 	pmap->pm_obj.uo_refs = 1;
   1227 	pmap->pm_stats.wired_count = 0;
   1228 	pmap->pm_stats.resident_count = 1;
   1229 	pmap->pm_ptphint = NULL;
   1230 
   1231 	/* Now init the machine part of the pmap */
   1232 	pmap_pinit(pmap);
   1233 	return(pmap);
   1234 }
   1235 
   1236 /*
   1237  * pmap_alloc_l1pt()
   1238  *
   1239  * This routine allocates physical and virtual memory for a L1 page table
   1240  * and wires it.
   1241  * A l1pt structure is returned to describe the allocated page table.
   1242  *
   1243  * This routine is allowed to fail if the required memory cannot be allocated.
   1244  * In this case NULL is returned.
   1245  */
   1246 
   1247 struct l1pt *
   1248 pmap_alloc_l1pt(void)
   1249 {
   1250 	paddr_t pa;
   1251 	vaddr_t va;
   1252 	struct l1pt *pt;
   1253 	int error;
   1254 	struct vm_page *m;
   1255 	pt_entry_t *ptes;
   1256 
   1257 	/* Allocate virtual address space for the L1 page table */
   1258 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1259 	if (va == 0) {
   1260 #ifdef DIAGNOSTIC
   1261 		PDEBUG(0,
   1262 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1263 #endif	/* DIAGNOSTIC */
   1264 		return(NULL);
   1265 	}
   1266 
   1267 	/* Allocate memory for the l1pt structure */
   1268 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1269 
   1270 	/*
   1271 	 * Allocate pages from the VM system.
   1272 	 */
   1273 	TAILQ_INIT(&pt->pt_plist);
   1274 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1275 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1276 	if (error) {
   1277 #ifdef DIAGNOSTIC
   1278 		PDEBUG(0,
   1279 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1280 		    error));
   1281 #endif	/* DIAGNOSTIC */
   1282 		/* Release the resources we already have claimed */
   1283 		free(pt, M_VMPMAP);
   1284 		uvm_km_free(kernel_map, va, PD_SIZE);
   1285 		return(NULL);
   1286 	}
   1287 
   1288 	/* Map our physical pages into our virtual space */
   1289 	pt->pt_va = va;
   1290 	m = TAILQ_FIRST(&pt->pt_plist);
   1291 	ptes = pmap_map_ptes(pmap_kernel());
   1292 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1293 		pa = VM_PAGE_TO_PHYS(m);
   1294 
   1295 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1296 
   1297 		/* Revoke cacheability and bufferability */
   1298 		/* XXX should be done better than this */
   1299 		ptes[arm_btop(va)] &= ~(PT_C | PT_B);
   1300 
   1301 		va += NBPG;
   1302 		m = m->pageq.tqe_next;
   1303 	}
   1304 	pmap_unmap_ptes(pmap_kernel());
   1305 	pmap_update(pmap_kernel());
   1306 
   1307 #ifdef DIAGNOSTIC
   1308 	if (m)
   1309 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1310 #endif	/* DIAGNOSTIC */
   1311 
   1312 	pt->pt_flags = 0;
   1313 	return(pt);
   1314 }
   1315 
   1316 /*
   1317  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1318  */
   1319 static void
   1320 pmap_free_l1pt(struct l1pt *pt)
   1321 {
   1322 	/* Separate the physical memory for the virtual space */
   1323 	pmap_kremove(pt->pt_va, PD_SIZE);
   1324 	pmap_update(pmap_kernel());
   1325 
   1326 	/* Return the physical memory */
   1327 	uvm_pglistfree(&pt->pt_plist);
   1328 
   1329 	/* Free the virtual space */
   1330 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1331 
   1332 	/* Free the l1pt structure */
   1333 	free(pt, M_VMPMAP);
   1334 }
   1335 
   1336 /*
   1337  * Allocate a page directory.
   1338  * This routine will either allocate a new page directory from the pool
   1339  * of L1 page tables currently held by the kernel or it will allocate
   1340  * a new one via pmap_alloc_l1pt().
   1341  * It will then initialise the l1 page table for use.
   1342  *
   1343  * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
   1344  */
   1345 static int
   1346 pmap_allocpagedir(struct pmap *pmap)
   1347 {
   1348 	paddr_t pa;
   1349 	struct l1pt *pt;
   1350 	pt_entry_t *pte;
   1351 
   1352 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1353 
   1354 	/* Do we have any spare L1's lying around ? */
   1355 	if (l1pt_static_queue_count) {
   1356 		--l1pt_static_queue_count;
   1357 		pt = l1pt_static_queue.sqh_first;
   1358 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1359 	} else if (l1pt_queue_count) {
   1360 		--l1pt_queue_count;
   1361 		pt = l1pt_queue.sqh_first;
   1362 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1363 		++l1pt_reuse_count;
   1364 	} else {
   1365 		pt = pmap_alloc_l1pt();
   1366 		if (!pt)
   1367 			return(ENOMEM);
   1368 		++l1pt_create_count;
   1369 	}
   1370 
   1371 	/* Store the pointer to the l1 descriptor in the pmap. */
   1372 	pmap->pm_l1pt = pt;
   1373 
   1374 	/* Get the physical address of the start of the l1 */
   1375 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1376 
   1377 	/* Store the virtual address of the l1 in the pmap. */
   1378 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1379 
   1380 	/* Clean the L1 if it is dirty */
   1381 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1382 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1383 
   1384 	/* Allocate a page table to map all the page tables for this pmap */
   1385 
   1386 #ifdef DIAGNOSTIC
   1387 	if (pmap->pm_vptpt) {
   1388 		/* XXX What if we have one already ? */
   1389 		panic("pmap_allocpagedir: have pt already\n");
   1390 	}
   1391 #endif	/* DIAGNOSTIC */
   1392 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1393 	if (pmap->pm_vptpt == 0) {
   1394 	    pmap_freepagedir(pmap);
   1395     	    return(ENOMEM);
   1396 	}
   1397 
   1398 	/* need to lock this all up  for growkernel */
   1399 	simple_lock(&pmaps_lock);
   1400 	/* wish we didn't have to keep this locked... */
   1401 
   1402 	/* Duplicate the kernel mappings. */
   1403 	bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1404 		(char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1405 		KERNEL_PD_SIZE);
   1406 
   1407 	pte = vtopte(pmap->pm_vptpt);
   1408 	pmap->pm_pptpt = l2pte_pa(*pte);
   1409 
   1410 	/* Revoke cacheability and bufferability */
   1411 	/* XXX should be done better than this */
   1412 	*pte &= ~(PT_C | PT_B);
   1413 
   1414 	/* Wire in this page table */
   1415 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1416 
   1417 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1418 
   1419 	/*
   1420 	 * Map the kernel page tables into the new PT map.
   1421 	 */
   1422 	bcopy((char *)(PTE_BASE
   1423 	    + (PTE_BASE >> (PGSHIFT - 2))
   1424 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1425 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1426 	    (KERNEL_PD_SIZE >> 2));
   1427 
   1428 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1429 	simple_unlock(&pmaps_lock);
   1430 
   1431 	return(0);
   1432 }
   1433 
   1434 
   1435 /*
   1436  * Initialize a preallocated and zeroed pmap structure,
   1437  * such as one in a vmspace structure.
   1438  */
   1439 
   1440 void
   1441 pmap_pinit(struct pmap *pmap)
   1442 {
   1443 	int backoff = 6;
   1444 	int retry = 10;
   1445 
   1446 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1447 
   1448 	/* Keep looping until we succeed in allocating a page directory */
   1449 	while (pmap_allocpagedir(pmap) != 0) {
   1450 		/*
   1451 		 * Ok we failed to allocate a suitable block of memory for an
   1452 		 * L1 page table. This means that either:
   1453 		 * 1. 16KB of virtual address space could not be allocated
   1454 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1455 		 *    could not be allocated.
   1456 		 *
   1457 		 * Since we cannot fail we will sleep for a while and try
   1458 		 * again.
   1459 		 *
   1460 		 * Searching for a suitable L1 PT is expensive:
   1461 		 * to avoid hogging the system when memory is really
   1462 		 * scarce, use an exponential back-off so that
   1463 		 * eventually we won't retry more than once every 8
   1464 		 * seconds.  This should allow other processes to run
   1465 		 * to completion and free up resources.
   1466 		 */
   1467 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1468 		    NULL);
   1469 		if (--retry == 0) {
   1470 			retry = 10;
   1471 			if (backoff)
   1472 				--backoff;
   1473 		}
   1474 	}
   1475 
   1476 	/* Map zero page for the pmap. This will also map the L2 for it */
   1477 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1478 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1479 	pmap_update(pmap);
   1480 }
   1481 
   1482 
   1483 void
   1484 pmap_freepagedir(struct pmap *pmap)
   1485 {
   1486 	/* Free the memory used for the page table mapping */
   1487 	if (pmap->pm_vptpt != 0)
   1488 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1489 
   1490 	/* junk the L1 page table */
   1491 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1492 		/* Add the page table to the queue */
   1493 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1494 		++l1pt_static_queue_count;
   1495 	} else if (l1pt_queue_count < 8) {
   1496 		/* Add the page table to the queue */
   1497 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1498 		++l1pt_queue_count;
   1499 	} else
   1500 		pmap_free_l1pt(pmap->pm_l1pt);
   1501 }
   1502 
   1503 
   1504 /*
   1505  * Retire the given physical map from service.
   1506  * Should only be called if the map contains no valid mappings.
   1507  */
   1508 
   1509 void
   1510 pmap_destroy(struct pmap *pmap)
   1511 {
   1512 	struct vm_page *page;
   1513 	int count;
   1514 
   1515 	if (pmap == NULL)
   1516 		return;
   1517 
   1518 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1519 
   1520 	/*
   1521 	 * Drop reference count
   1522 	 */
   1523 	simple_lock(&pmap->pm_obj.vmobjlock);
   1524 	count = --pmap->pm_obj.uo_refs;
   1525 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1526 	if (count > 0) {
   1527 		return;
   1528 	}
   1529 
   1530 	/*
   1531 	 * reference count is zero, free pmap resources and then free pmap.
   1532 	 */
   1533 
   1534 	/*
   1535 	 * remove it from global list of pmaps
   1536 	 */
   1537 
   1538 	simple_lock(&pmaps_lock);
   1539 	LIST_REMOVE(pmap, pm_list);
   1540 	simple_unlock(&pmaps_lock);
   1541 
   1542 	/* Remove the zero page mapping */
   1543 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1544 	pmap_update(pmap);
   1545 
   1546 	/*
   1547 	 * Free any page tables still mapped
   1548 	 * This is only temporay until pmap_enter can count the number
   1549 	 * of mappings made in a page table. Then pmap_remove() can
   1550 	 * reduce the count and free the pagetable when the count
   1551 	 * reaches zero.  Note that entries in this list should match the
   1552 	 * contents of the ptpt, however this is faster than walking a 1024
   1553 	 * entries looking for pt's
   1554 	 * taken from i386 pmap.c
   1555 	 */
   1556 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1557 		KASSERT((page->flags & PG_BUSY) == 0);
   1558 		page->wire_count = 0;
   1559 		uvm_pagefree(page);
   1560 	}
   1561 
   1562 	/* Free the page dir */
   1563 	pmap_freepagedir(pmap);
   1564 
   1565 	/* return the pmap to the pool */
   1566 	pool_put(&pmap_pmap_pool, pmap);
   1567 }
   1568 
   1569 
   1570 /*
   1571  * void pmap_reference(struct pmap *pmap)
   1572  *
   1573  * Add a reference to the specified pmap.
   1574  */
   1575 
   1576 void
   1577 pmap_reference(struct pmap *pmap)
   1578 {
   1579 	if (pmap == NULL)
   1580 		return;
   1581 
   1582 	simple_lock(&pmap->pm_lock);
   1583 	pmap->pm_obj.uo_refs++;
   1584 	simple_unlock(&pmap->pm_lock);
   1585 }
   1586 
   1587 /*
   1588  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1589  *
   1590  * Return the start and end addresses of the kernel's virtual space.
   1591  * These values are setup in pmap_bootstrap and are updated as pages
   1592  * are allocated.
   1593  */
   1594 
   1595 void
   1596 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1597 {
   1598 	*start = virtual_avail;
   1599 	*end = virtual_end;
   1600 }
   1601 
   1602 /*
   1603  * Activate the address space for the specified process.  If the process
   1604  * is the current process, load the new MMU context.
   1605  */
   1606 void
   1607 pmap_activate(struct proc *p)
   1608 {
   1609 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1610 	struct pcb *pcb = &p->p_addr->u_pcb;
   1611 
   1612 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1613 	    (paddr_t *)&pcb->pcb_pagedir);
   1614 
   1615 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1616 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1617 
   1618 	if (p == curproc) {
   1619 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1620 		setttb((u_int)pcb->pcb_pagedir);
   1621 	}
   1622 }
   1623 
   1624 /*
   1625  * Deactivate the address space of the specified process.
   1626  */
   1627 void
   1628 pmap_deactivate(struct proc *p)
   1629 {
   1630 }
   1631 
   1632 /*
   1633  * Perform any deferred pmap operations.
   1634  */
   1635 void
   1636 pmap_update(struct pmap *pmap)
   1637 {
   1638 
   1639 	/*
   1640 	 * We haven't deferred any pmap operations, but we do need to
   1641 	 * make sure TLB/cache operations have completed.
   1642 	 */
   1643 	cpu_cpwait();
   1644 }
   1645 
   1646 /*
   1647  * pmap_clean_page()
   1648  *
   1649  * This is a local function used to work out the best strategy to clean
   1650  * a single page referenced by its entry in the PV table. It's used by
   1651  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1652  *
   1653  * Its policy is effectively:
   1654  *  o If there are no mappings, we don't bother doing anything with the cache.
   1655  *  o If there is one mapping, we clean just that page.
   1656  *  o If there are multiple mappings, we clean the entire cache.
   1657  *
   1658  * So that some functions can be further optimised, it returns 0 if it didn't
   1659  * clean the entire cache, or 1 if it did.
   1660  *
   1661  * XXX One bug in this routine is that if the pv_entry has a single page
   1662  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1663  * just the 1 page. Since this should not occur in everyday use and if it does
   1664  * it will just result in not the most efficient clean for the page.
   1665  */
   1666 static int
   1667 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
   1668 {
   1669 	struct pmap *pmap;
   1670 	struct pv_entry *npv;
   1671 	int cache_needs_cleaning = 0;
   1672 	vaddr_t page_to_clean = 0;
   1673 
   1674 	if (pv == NULL)
   1675 		/* nothing mapped in so nothing to flush */
   1676 		return (0);
   1677 
   1678 	/* Since we flush the cache each time we change curproc, we
   1679 	 * only need to flush the page if it is in the current pmap.
   1680 	 */
   1681 	if (curproc)
   1682 		pmap = curproc->p_vmspace->vm_map.pmap;
   1683 	else
   1684 		pmap = pmap_kernel();
   1685 
   1686 	for (npv = pv; npv; npv = npv->pv_next) {
   1687 		if (npv->pv_pmap == pmap) {
   1688 			/* The page is mapped non-cacheable in
   1689 			 * this map.  No need to flush the cache.
   1690 			 */
   1691 			if (npv->pv_flags & PT_NC) {
   1692 #ifdef DIAGNOSTIC
   1693 				if (cache_needs_cleaning)
   1694 					panic("pmap_clean_page: "
   1695 							"cache inconsistency");
   1696 #endif
   1697 				break;
   1698 			}
   1699 #if 0
   1700 			/* This doesn't work, because pmap_protect
   1701 			   doesn't flush changes on pages that it
   1702 			   has write-protected.  */
   1703 
   1704 			/* If the page is not writable and this
   1705 			   is the source, then there is no need
   1706 			   to flush it from the cache.  */
   1707 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1708 				continue;
   1709 #endif
   1710 			if (cache_needs_cleaning){
   1711 				page_to_clean = 0;
   1712 				break;
   1713 			}
   1714 			else
   1715 				page_to_clean = npv->pv_va;
   1716 			cache_needs_cleaning = 1;
   1717 		}
   1718 	}
   1719 
   1720 	if (page_to_clean)
   1721 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1722 	else if (cache_needs_cleaning) {
   1723 		cpu_idcache_wbinv_all();
   1724 		return (1);
   1725 	}
   1726 	return (0);
   1727 }
   1728 
   1729 /*
   1730  * pmap_zero_page()
   1731  *
   1732  * Zero a given physical page by mapping it at a page hook point.
   1733  * In doing the zero page op, the page we zero is mapped cachable, as with
   1734  * StrongARM accesses to non-cached pages are non-burst making writing
   1735  * _any_ bulk data very slow.
   1736  */
   1737 void
   1738 pmap_zero_page(paddr_t phys)
   1739 {
   1740 #ifdef DEBUG
   1741 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1742 
   1743 	if (pg->mdpage.pvh_list != NULL)
   1744 		panic("pmap_zero_page: page has mappings");
   1745 #endif
   1746 
   1747 	/*
   1748 	 * Hook in the page, zero it, and purge the cache for that
   1749 	 * zeroed page. Invalidate the TLB as needed.
   1750 	 */
   1751 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1752 	cpu_tlb_flushD_SE(cdstp);
   1753 	cpu_cpwait();
   1754 	bzero_page(cdstp);
   1755 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1756 }
   1757 
   1758 /* pmap_pageidlezero()
   1759  *
   1760  * The same as above, except that we assume that the page is not
   1761  * mapped.  This means we never have to flush the cache first.  Called
   1762  * from the idle loop.
   1763  */
   1764 boolean_t
   1765 pmap_pageidlezero(paddr_t phys)
   1766 {
   1767 	int i, *ptr;
   1768 	boolean_t rv = TRUE;
   1769 #ifdef DEBUG
   1770 	struct vm_page *pg;
   1771 
   1772 	pg = PHYS_TO_VM_PAGE(phys);
   1773 	if (pg->mdpage.pvh_list != NULL)
   1774 		panic("pmap_pageidlezero: page has mappings");
   1775 #endif
   1776 
   1777 	/*
   1778 	 * Hook in the page, zero it, and purge the cache for that
   1779 	 * zeroed page. Invalidate the TLB as needed.
   1780 	 */
   1781 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1782 	cpu_tlb_flushD_SE(cdstp);
   1783 	cpu_cpwait();
   1784 
   1785 	for (i = 0, ptr = (int *)cdstp;
   1786 			i < (NBPG / sizeof(int)); i++) {
   1787 		if (sched_whichqs != 0) {
   1788 			/*
   1789 			 * A process has become ready.  Abort now,
   1790 			 * so we don't keep it waiting while we
   1791 			 * do slow memory access to finish this
   1792 			 * page.
   1793 			 */
   1794 			rv = FALSE;
   1795 			break;
   1796 		}
   1797 		*ptr++ = 0;
   1798 	}
   1799 
   1800 	if (rv)
   1801 		/*
   1802 		 * if we aborted we'll rezero this page again later so don't
   1803 		 * purge it unless we finished it
   1804 		 */
   1805 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1806 	return (rv);
   1807 }
   1808 
   1809 /*
   1810  * pmap_copy_page()
   1811  *
   1812  * Copy one physical page into another, by mapping the pages into
   1813  * hook points. The same comment regarding cachability as in
   1814  * pmap_zero_page also applies here.
   1815  */
   1816 void
   1817 pmap_copy_page(paddr_t src, paddr_t dst)
   1818 {
   1819 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1820 #ifdef DEBUG
   1821 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1822 
   1823 	if (dst_pg->mdpage.pvh_list != NULL)
   1824 		panic("pmap_copy_page: dst page has mappings");
   1825 #endif
   1826 
   1827 	/*
   1828 	 * Clean the source page.  Hold the source page's lock for
   1829 	 * the duration of the copy so that no other mappings can
   1830 	 * be created while we have a potentially aliased mapping.
   1831 	 */
   1832 	simple_lock(&src_pg->mdpage.pvh_slock);
   1833 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1834 
   1835 	/*
   1836 	 * Map the pages into the page hook points, copy them, and purge
   1837 	 * the cache for the appropriate page. Invalidate the TLB
   1838 	 * as required.
   1839 	 */
   1840 	*csrc_pte = L2_PTE(src & PG_FRAME, AP_KR);
   1841 	*cdst_pte = L2_PTE(dst & PG_FRAME, AP_KRW);
   1842 	cpu_tlb_flushD_SE(csrcp);
   1843 	cpu_tlb_flushD_SE(cdstp);
   1844 	cpu_cpwait();
   1845 	bcopy_page(csrcp, cdstp);
   1846 	cpu_dcache_inv_range(csrcp, NBPG);
   1847 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1848 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1849 }
   1850 
   1851 #if 0
   1852 void
   1853 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
   1854 {
   1855 	pd_entry_t *pde;
   1856 	paddr_t pa;
   1857 	struct vm_page *m;
   1858 
   1859 	if (pmap == pmap_kernel())
   1860 		return;
   1861 
   1862 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1863 	pa = pmap_pte_pa(pde);
   1864 	m = PHYS_TO_VM_PAGE(pa);
   1865 	++m->wire_count;
   1866 #ifdef MYCROFT_HACK
   1867 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1868 	    pmap, va, pde, pa, m, m->wire_count);
   1869 #endif
   1870 }
   1871 
   1872 void
   1873 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
   1874 {
   1875 	pd_entry_t *pde;
   1876 	paddr_t pa;
   1877 	struct vm_page *m;
   1878 
   1879 	if (pmap == pmap_kernel())
   1880 		return;
   1881 
   1882 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1883 	pa = pmap_pte_pa(pde);
   1884 	m = PHYS_TO_VM_PAGE(pa);
   1885 	--m->wire_count;
   1886 #ifdef MYCROFT_HACK
   1887 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1888 	    pmap, va, pde, pa, m, m->wire_count);
   1889 #endif
   1890 	if (m->wire_count == 0) {
   1891 #ifdef MYCROFT_HACK
   1892 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1893 		    pmap, va, pde, pa, m);
   1894 #endif
   1895 		pmap_unmap_in_l1(pmap, va);
   1896 		uvm_pagefree(m);
   1897 		--pmap->pm_stats.resident_count;
   1898 	}
   1899 }
   1900 #else
   1901 #define	pmap_pte_addref(pmap, va)
   1902 #define	pmap_pte_delref(pmap, va)
   1903 #endif
   1904 
   1905 /*
   1906  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1907  * there is more than one mapping and at least one of them is writable.
   1908  * Since we purge the cache on every context switch, we only need to check for
   1909  * other mappings within the same pmap, or kernel_pmap.
   1910  * This function is also called when a page is unmapped, to possibly reenable
   1911  * caching on any remaining mappings.
   1912  *
   1913  * The code implements the following logic, where:
   1914  *
   1915  * KW = # of kernel read/write pages
   1916  * KR = # of kernel read only pages
   1917  * UW = # of user read/write pages
   1918  * UR = # of user read only pages
   1919  * OW = # of user read/write pages in another pmap, then
   1920  *
   1921  * KC = kernel mapping is cacheable
   1922  * UC = user mapping is cacheable
   1923  *
   1924  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1925  *                   +---------------------------------------------
   1926  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   1927  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1928  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   1929  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1930  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1931  *
   1932  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   1933  */
   1934 __inline static void
   1935 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   1936 	boolean_t clear_cache)
   1937 {
   1938 	if (pmap == pmap_kernel())
   1939 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   1940 	else
   1941 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   1942 }
   1943 
   1944 static void
   1945 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   1946 	boolean_t clear_cache)
   1947 {
   1948 	int user_entries = 0;
   1949 	int user_writable = 0;
   1950 	int user_cacheable = 0;
   1951 	int kernel_entries = 0;
   1952 	int kernel_writable = 0;
   1953 	int kernel_cacheable = 0;
   1954 	struct pv_entry *pv;
   1955 	struct pmap *last_pmap = pmap;
   1956 
   1957 #ifdef DIAGNOSTIC
   1958 	if (pmap != pmap_kernel())
   1959 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   1960 #endif
   1961 
   1962 	/*
   1963 	 * Pass one, see if there are both kernel and user pmaps for
   1964 	 * this page.  Calculate whether there are user-writable or
   1965 	 * kernel-writable pages.
   1966 	 */
   1967 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   1968 		if (pv->pv_pmap != pmap) {
   1969 			user_entries++;
   1970 			if (pv->pv_flags & PT_Wr)
   1971 				user_writable++;
   1972 			if ((pv->pv_flags & PT_NC) == 0)
   1973 				user_cacheable++;
   1974 		} else {
   1975 			kernel_entries++;
   1976 			if (pv->pv_flags & PT_Wr)
   1977 				kernel_writable++;
   1978 			if ((pv->pv_flags & PT_NC) == 0)
   1979 				kernel_cacheable++;
   1980 		}
   1981 	}
   1982 
   1983 	/*
   1984 	 * We know we have just been updating a kernel entry, so if
   1985 	 * all user pages are already cacheable, then there is nothing
   1986 	 * further to do.
   1987 	 */
   1988 	if (kernel_entries == 0 &&
   1989 	    user_cacheable == user_entries)
   1990 		return;
   1991 
   1992 	if (user_entries) {
   1993 		/*
   1994 		 * Scan over the list again, for each entry, if it
   1995 		 * might not be set correctly, call pmap_vac_me_user
   1996 		 * to recalculate the settings.
   1997 		 */
   1998 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1999 			/*
   2000 			 * We know kernel mappings will get set
   2001 			 * correctly in other calls.  We also know
   2002 			 * that if the pmap is the same as last_pmap
   2003 			 * then we've just handled this entry.
   2004 			 */
   2005 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2006 				continue;
   2007 			/*
   2008 			 * If there are kernel entries and this page
   2009 			 * is writable but non-cacheable, then we can
   2010 			 * skip this entry also.
   2011 			 */
   2012 			if (kernel_entries > 0 &&
   2013 			    (pv->pv_flags & (PT_NC | PT_Wr)) ==
   2014 			    (PT_NC | PT_Wr))
   2015 				continue;
   2016 			/*
   2017 			 * Similarly if there are no kernel-writable
   2018 			 * entries and the page is already
   2019 			 * read-only/cacheable.
   2020 			 */
   2021 			if (kernel_writable == 0 &&
   2022 			    (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
   2023 				continue;
   2024 			/*
   2025 			 * For some of the remaining cases, we know
   2026 			 * that we must recalculate, but for others we
   2027 			 * can't tell if they are correct or not, so
   2028 			 * we recalculate anyway.
   2029 			 */
   2030 			pmap_unmap_ptes(last_pmap);
   2031 			last_pmap = pv->pv_pmap;
   2032 			ptes = pmap_map_ptes(last_pmap);
   2033 			pmap_vac_me_user(last_pmap, pg, ptes,
   2034 			    pmap_is_curpmap(last_pmap));
   2035 		}
   2036 		/* Restore the pte mapping that was passed to us.  */
   2037 		if (last_pmap != pmap) {
   2038 			pmap_unmap_ptes(last_pmap);
   2039 			ptes = pmap_map_ptes(pmap);
   2040 		}
   2041 		if (kernel_entries == 0)
   2042 			return;
   2043 	}
   2044 
   2045 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2046 	return;
   2047 }
   2048 
   2049 static void
   2050 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2051 	boolean_t clear_cache)
   2052 {
   2053 	struct pmap *kpmap = pmap_kernel();
   2054 	struct pv_entry *pv, *npv;
   2055 	int entries = 0;
   2056 	int writable = 0;
   2057 	int cacheable_entries = 0;
   2058 	int kern_cacheable = 0;
   2059 	int other_writable = 0;
   2060 
   2061 	pv = pg->mdpage.pvh_list;
   2062 	KASSERT(ptes != NULL);
   2063 
   2064 	/*
   2065 	 * Count mappings and writable mappings in this pmap.
   2066 	 * Include kernel mappings as part of our own.
   2067 	 * Keep a pointer to the first one.
   2068 	 */
   2069 	for (npv = pv; npv; npv = npv->pv_next) {
   2070 		/* Count mappings in the same pmap */
   2071 		if (pmap == npv->pv_pmap ||
   2072 		    kpmap == npv->pv_pmap) {
   2073 			if (entries++ == 0)
   2074 				pv = npv;
   2075 			/* Cacheable mappings */
   2076 			if ((npv->pv_flags & PT_NC) == 0) {
   2077 				cacheable_entries++;
   2078 				if (kpmap == npv->pv_pmap)
   2079 					kern_cacheable++;
   2080 			}
   2081 			/* Writable mappings */
   2082 			if (npv->pv_flags & PT_Wr)
   2083 				++writable;
   2084 		} else if (npv->pv_flags & PT_Wr)
   2085 			other_writable = 1;
   2086 	}
   2087 
   2088 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2089 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2090 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2091 
   2092 	/*
   2093 	 * Enable or disable caching as necessary.
   2094 	 * Note: the first entry might be part of the kernel pmap,
   2095 	 * so we can't assume this is indicative of the state of the
   2096 	 * other (maybe non-kpmap) entries.
   2097 	 */
   2098 	if ((entries > 1 && writable) ||
   2099 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2100 		if (cacheable_entries == 0)
   2101 		    return;
   2102 		for (npv = pv; npv; npv = npv->pv_next) {
   2103 			if ((pmap == npv->pv_pmap
   2104 			    || kpmap == npv->pv_pmap) &&
   2105 			    (npv->pv_flags & PT_NC) == 0) {
   2106 				ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
   2107  				npv->pv_flags |= PT_NC;
   2108 				/*
   2109 				 * If this page needs flushing from the
   2110 				 * cache, and we aren't going to do it
   2111 				 * below, do it now.
   2112 				 */
   2113 				if ((cacheable_entries < 4 &&
   2114 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2115 				    (npv->pv_pmap == kpmap &&
   2116 				    !clear_cache && kern_cacheable < 4)) {
   2117 					cpu_idcache_wbinv_range(npv->pv_va,
   2118 					    NBPG);
   2119 					cpu_tlb_flushID_SE(npv->pv_va);
   2120 				}
   2121 			}
   2122 		}
   2123 		if ((clear_cache && cacheable_entries >= 4) ||
   2124 		    kern_cacheable >= 4) {
   2125 			cpu_idcache_wbinv_all();
   2126 			cpu_tlb_flushID();
   2127 		}
   2128 		cpu_cpwait();
   2129 	} else if (entries > 0) {
   2130 		/*
   2131 		 * Turn cacheing back on for some pages.  If it is a kernel
   2132 		 * page, only do so if there are no other writable pages.
   2133 		 */
   2134 		for (npv = pv; npv; npv = npv->pv_next) {
   2135 			if ((pmap == npv->pv_pmap ||
   2136 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2137 			    (npv->pv_flags & PT_NC)) {
   2138 				ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
   2139 				npv->pv_flags &= ~PT_NC;
   2140 			}
   2141 		}
   2142 	}
   2143 }
   2144 
   2145 /*
   2146  * pmap_remove()
   2147  *
   2148  * pmap_remove is responsible for nuking a number of mappings for a range
   2149  * of virtual address space in the current pmap. To do this efficiently
   2150  * is interesting, because in a number of cases a wide virtual address
   2151  * range may be supplied that contains few actual mappings. So, the
   2152  * optimisations are:
   2153  *  1. Try and skip over hunks of address space for which an L1 entry
   2154  *     does not exist.
   2155  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2156  *     maybe do just a partial cache clean. This path of execution is
   2157  *     complicated by the fact that the cache must be flushed _before_
   2158  *     the PTE is nuked, being a VAC :-)
   2159  *  3. Maybe later fast-case a single page, but I don't think this is
   2160  *     going to make _that_ much difference overall.
   2161  */
   2162 
   2163 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2164 
   2165 void
   2166 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
   2167 {
   2168 	int cleanlist_idx = 0;
   2169 	struct pagelist {
   2170 		vaddr_t va;
   2171 		pt_entry_t *pte;
   2172 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2173 	pt_entry_t *pte = 0, *ptes;
   2174 	paddr_t pa;
   2175 	int pmap_active;
   2176 	struct vm_page *pg;
   2177 
   2178 	/* Exit quick if there is no pmap */
   2179 	if (!pmap)
   2180 		return;
   2181 
   2182 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2183 
   2184 	sva &= PG_FRAME;
   2185 	eva &= PG_FRAME;
   2186 
   2187 	/*
   2188 	 * we lock in the pmap => vm_page direction
   2189 	 */
   2190 	PMAP_MAP_TO_HEAD_LOCK();
   2191 
   2192 	ptes = pmap_map_ptes(pmap);
   2193 	/* Get a page table pointer */
   2194 	while (sva < eva) {
   2195 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2196 			break;
   2197 		sva = (sva & PD_MASK) + NBPD;
   2198 	}
   2199 
   2200 	pte = &ptes[arm_btop(sva)];
   2201 	/* Note if the pmap is active thus require cache and tlb cleans */
   2202 	pmap_active = pmap_is_curpmap(pmap);
   2203 
   2204 	/* Now loop along */
   2205 	while (sva < eva) {
   2206 		/* Check if we can move to the next PDE (l1 chunk) */
   2207 		if (!(sva & PT_MASK))
   2208 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2209 				sva += NBPD;
   2210 				pte += arm_btop(NBPD);
   2211 				continue;
   2212 			}
   2213 
   2214 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2215 		if (pmap_pte_v(pte)) {
   2216 			/* Update statistics */
   2217 			--pmap->pm_stats.resident_count;
   2218 
   2219 			/*
   2220 			 * Add this page to our cache remove list, if we can.
   2221 			 * If, however the cache remove list is totally full,
   2222 			 * then do a complete cache invalidation taking note
   2223 			 * to backtrack the PTE table beforehand, and ignore
   2224 			 * the lists in future because there's no longer any
   2225 			 * point in bothering with them (we've paid the
   2226 			 * penalty, so will carry on unhindered). Otherwise,
   2227 			 * when we fall out, we just clean the list.
   2228 			 */
   2229 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2230 			pa = pmap_pte_pa(pte);
   2231 
   2232 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2233 				/* Add to the clean list. */
   2234 				cleanlist[cleanlist_idx].pte = pte;
   2235 				cleanlist[cleanlist_idx].va = sva;
   2236 				cleanlist_idx++;
   2237 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2238 				int cnt;
   2239 
   2240 				/* Nuke everything if needed. */
   2241 				if (pmap_active) {
   2242 					cpu_idcache_wbinv_all();
   2243 					cpu_tlb_flushID();
   2244 				}
   2245 
   2246 				/*
   2247 				 * Roll back the previous PTE list,
   2248 				 * and zero out the current PTE.
   2249 				 */
   2250 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2251 					*cleanlist[cnt].pte = 0;
   2252 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2253 				}
   2254 				*pte = 0;
   2255 				pmap_pte_delref(pmap, sva);
   2256 				cleanlist_idx++;
   2257 			} else {
   2258 				/*
   2259 				 * We've already nuked the cache and
   2260 				 * TLB, so just carry on regardless,
   2261 				 * and we won't need to do it again
   2262 				 */
   2263 				*pte = 0;
   2264 				pmap_pte_delref(pmap, sva);
   2265 			}
   2266 
   2267 			/*
   2268 			 * Update flags. In a number of circumstances,
   2269 			 * we could cluster a lot of these and do a
   2270 			 * number of sequential pages in one go.
   2271 			 */
   2272 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2273 				struct pv_entry *pve;
   2274 				simple_lock(&pg->mdpage.pvh_slock);
   2275 				pve = pmap_remove_pv(pg, pmap, sva);
   2276 				pmap_free_pv(pmap, pve);
   2277 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2278 				simple_unlock(&pg->mdpage.pvh_slock);
   2279 			}
   2280 		}
   2281 		sva += NBPG;
   2282 		pte++;
   2283 	}
   2284 
   2285 	pmap_unmap_ptes(pmap);
   2286 	/*
   2287 	 * Now, if we've fallen through down to here, chances are that there
   2288 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2289 	 */
   2290 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2291 		u_int cnt;
   2292 
   2293 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2294 			if (pmap_active) {
   2295 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2296 				    NBPG);
   2297 				*cleanlist[cnt].pte = 0;
   2298 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2299 			} else
   2300 				*cleanlist[cnt].pte = 0;
   2301 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2302 		}
   2303 	}
   2304 	PMAP_MAP_TO_HEAD_UNLOCK();
   2305 }
   2306 
   2307 /*
   2308  * Routine:	pmap_remove_all
   2309  * Function:
   2310  *		Removes this physical page from
   2311  *		all physical maps in which it resides.
   2312  *		Reflects back modify bits to the pager.
   2313  */
   2314 
   2315 static void
   2316 pmap_remove_all(struct vm_page *pg)
   2317 {
   2318 	struct pv_entry *pv, *npv;
   2319 	struct pmap *pmap;
   2320 	pt_entry_t *pte, *ptes;
   2321 
   2322 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2323 
   2324 	/* set vm_page => pmap locking */
   2325 	PMAP_HEAD_TO_MAP_LOCK();
   2326 
   2327 	simple_lock(&pg->mdpage.pvh_slock);
   2328 
   2329 	pv = pg->mdpage.pvh_list;
   2330 	if (pv == NULL) {
   2331 		PDEBUG(0, printf("free page\n"));
   2332 		simple_unlock(&pg->mdpage.pvh_slock);
   2333 		PMAP_HEAD_TO_MAP_UNLOCK();
   2334 		return;
   2335 	}
   2336 	pmap_clean_page(pv, FALSE);
   2337 
   2338 	while (pv) {
   2339 		pmap = pv->pv_pmap;
   2340 		ptes = pmap_map_ptes(pmap);
   2341 		pte = &ptes[arm_btop(pv->pv_va)];
   2342 
   2343 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2344 		    pv->pv_va, pv->pv_flags));
   2345 #ifdef DEBUG
   2346 		if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
   2347 		    !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   2348 			panic("pmap_remove_all: bad mapping");
   2349 #endif	/* DEBUG */
   2350 
   2351 		/*
   2352 		 * Update statistics
   2353 		 */
   2354 		--pmap->pm_stats.resident_count;
   2355 
   2356 		/* Wired bit */
   2357 		if (pv->pv_flags & PT_W)
   2358 			--pmap->pm_stats.wired_count;
   2359 
   2360 		/*
   2361 		 * Invalidate the PTEs.
   2362 		 * XXX: should cluster them up and invalidate as many
   2363 		 * as possible at once.
   2364 		 */
   2365 
   2366 #ifdef needednotdone
   2367 reduce wiring count on page table pages as references drop
   2368 #endif
   2369 
   2370 		*pte = 0;
   2371 		pmap_pte_delref(pmap, pv->pv_va);
   2372 
   2373 		npv = pv->pv_next;
   2374 		pmap_free_pv(pmap, pv);
   2375 		pv = npv;
   2376 		pmap_unmap_ptes(pmap);
   2377 	}
   2378 	pg->mdpage.pvh_list = NULL;
   2379 	simple_unlock(&pg->mdpage.pvh_slock);
   2380 	PMAP_HEAD_TO_MAP_UNLOCK();
   2381 
   2382 	PDEBUG(0, printf("done\n"));
   2383 	cpu_tlb_flushID();
   2384 	cpu_cpwait();
   2385 }
   2386 
   2387 
   2388 /*
   2389  * Set the physical protection on the specified range of this map as requested.
   2390  */
   2391 
   2392 void
   2393 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   2394 {
   2395 	pt_entry_t *pte = NULL, *ptes;
   2396 	struct vm_page *pg;
   2397 	int armprot;
   2398 	int flush = 0;
   2399 	paddr_t pa;
   2400 
   2401 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2402 	    pmap, sva, eva, prot));
   2403 
   2404 	if (~prot & VM_PROT_READ) {
   2405 		/* Just remove the mappings. */
   2406 		pmap_remove(pmap, sva, eva);
   2407 		/* pmap_update not needed as it should be called by the caller
   2408 		 * of pmap_protect */
   2409 		return;
   2410 	}
   2411 	if (prot & VM_PROT_WRITE) {
   2412 		/*
   2413 		 * If this is a read->write transition, just ignore it and let
   2414 		 * uvm_fault() take care of it later.
   2415 		 */
   2416 		return;
   2417 	}
   2418 
   2419 	sva &= PG_FRAME;
   2420 	eva &= PG_FRAME;
   2421 
   2422 	/* Need to lock map->head */
   2423 	PMAP_MAP_TO_HEAD_LOCK();
   2424 
   2425 	ptes = pmap_map_ptes(pmap);
   2426 	/*
   2427 	 * We need to acquire a pointer to a page table page before entering
   2428 	 * the following loop.
   2429 	 */
   2430 	while (sva < eva) {
   2431 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2432 			break;
   2433 		sva = (sva & PD_MASK) + NBPD;
   2434 	}
   2435 
   2436 	pte = &ptes[arm_btop(sva)];
   2437 
   2438 	while (sva < eva) {
   2439 		/* only check once in a while */
   2440 		if ((sva & PT_MASK) == 0) {
   2441 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2442 				/* We can race ahead here, to the next pde. */
   2443 				sva += NBPD;
   2444 				pte += arm_btop(NBPD);
   2445 				continue;
   2446 			}
   2447 		}
   2448 
   2449 		if (!pmap_pte_v(pte))
   2450 			goto next;
   2451 
   2452 		flush = 1;
   2453 
   2454 		armprot = 0;
   2455 		if (sva < VM_MAXUSER_ADDRESS)
   2456 			armprot |= PT_AP(AP_U);
   2457 		else if (sva < VM_MAX_ADDRESS)
   2458 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2459 		*pte = (*pte & 0xfffff00f) | armprot;
   2460 
   2461 		pa = pmap_pte_pa(pte);
   2462 
   2463 		/* Get the physical page index */
   2464 
   2465 		/* Clear write flag */
   2466 		if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2467 			simple_lock(&pg->mdpage.pvh_slock);
   2468 			(void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
   2469 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2470 			simple_unlock(&pg->mdpage.pvh_slock);
   2471 		}
   2472 
   2473 next:
   2474 		sva += NBPG;
   2475 		pte++;
   2476 	}
   2477 	pmap_unmap_ptes(pmap);
   2478 	PMAP_MAP_TO_HEAD_UNLOCK();
   2479 	if (flush)
   2480 		cpu_tlb_flushID();
   2481 }
   2482 
   2483 /*
   2484  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2485  * int flags)
   2486  *
   2487  *      Insert the given physical page (p) at
   2488  *      the specified virtual address (v) in the
   2489  *      target physical map with the protection requested.
   2490  *
   2491  *      If specified, the page will be wired down, meaning
   2492  *      that the related pte can not be reclaimed.
   2493  *
   2494  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2495  *      or lose information.  That is, this routine must actually
   2496  *      insert this page into the given map NOW.
   2497  */
   2498 
   2499 int
   2500 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2501     int flags)
   2502 {
   2503 	pt_entry_t *ptes, opte, npte;
   2504 	paddr_t opa;
   2505 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2506 	struct vm_page *pg;
   2507 	struct pv_entry *pve;
   2508 	int error, nflags;
   2509 
   2510 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2511 	    va, pa, pmap, prot, wired));
   2512 
   2513 #ifdef DIAGNOSTIC
   2514 	/* Valid address ? */
   2515 	if (va >= (pmap_curmaxkvaddr))
   2516 		panic("pmap_enter: too big");
   2517 	if (pmap != pmap_kernel() && va != 0) {
   2518 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2519 			panic("pmap_enter: kernel page in user map");
   2520 	} else {
   2521 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2522 			panic("pmap_enter: user page in kernel map");
   2523 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2524 			panic("pmap_enter: entering PT page");
   2525 	}
   2526 #endif
   2527 	/*
   2528 	 * Get a pointer to the page.  Later on in this function, we
   2529 	 * test for a managed page by checking pg != NULL.
   2530 	 */
   2531 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2532 
   2533 	/* get lock */
   2534 	PMAP_MAP_TO_HEAD_LOCK();
   2535 
   2536 	/*
   2537 	 * map the ptes.  If there's not already an L2 table for this
   2538 	 * address, allocate one.
   2539 	 */
   2540 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2541 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   2542 		struct vm_page *ptp;
   2543 
   2544 		/* kernel should be pre-grown */
   2545 		KASSERT(pmap != pmap_kernel());
   2546 
   2547 		/* if failure is allowed then don't try too hard */
   2548 		ptp = pmap_get_ptp(pmap, va & PD_MASK);
   2549 		if (ptp == NULL) {
   2550 			if (flags & PMAP_CANFAIL) {
   2551 				error = ENOMEM;
   2552 				goto out;
   2553 			}
   2554 			panic("pmap_enter: get ptp failed");
   2555 		}
   2556 	}
   2557 	opte = ptes[arm_btop(va)];
   2558 
   2559 	nflags = 0;
   2560 	if (prot & VM_PROT_WRITE)
   2561 		nflags |= PT_Wr;
   2562 	if (wired)
   2563 		nflags |= PT_W;
   2564 
   2565 	/* Is the pte valid ? If so then this page is already mapped */
   2566 	if (l2pte_valid(opte)) {
   2567 		/* Get the physical address of the current page mapped */
   2568 		opa = l2pte_pa(opte);
   2569 
   2570 		/* Are we mapping the same page ? */
   2571 		if (opa == pa) {
   2572 			/* Has the wiring changed ? */
   2573 			if (pg != NULL) {
   2574 				simple_lock(&pg->mdpage.pvh_slock);
   2575 				(void) pmap_modify_pv(pmap, va, pg,
   2576 				    PT_Wr | PT_W, nflags);
   2577 				simple_unlock(&pg->mdpage.pvh_slock);
   2578  			}
   2579 		} else {
   2580 			struct vm_page *opg;
   2581 
   2582 			/* We are replacing the page with a new one. */
   2583 			cpu_idcache_wbinv_range(va, NBPG);
   2584 
   2585 			/*
   2586 			 * If it is part of our managed memory then we
   2587 			 * must remove it from the PV list
   2588 			 */
   2589 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2590 				simple_lock(&opg->mdpage.pvh_slock);
   2591 				pve = pmap_remove_pv(opg, pmap, va);
   2592 				simple_unlock(&opg->mdpage.pvh_slock);
   2593 			} else {
   2594 				pve = NULL;
   2595 			}
   2596 
   2597 			goto enter;
   2598 		}
   2599 	} else {
   2600 		opa = 0;
   2601 		pve = NULL;
   2602 		pmap_pte_addref(pmap, va);
   2603 
   2604 		/* pte is not valid so we must be hooking in a new page */
   2605 		++pmap->pm_stats.resident_count;
   2606 
   2607 	enter:
   2608 		/*
   2609 		 * Enter on the PV list if part of our managed memory
   2610 		 */
   2611 		if (pg != NULL) {
   2612 			if (pve == NULL) {
   2613 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2614 				if (pve == NULL) {
   2615 					if (flags & PMAP_CANFAIL) {
   2616 						error = ENOMEM;
   2617 						goto out;
   2618 					}
   2619 					panic("pmap_enter: no pv entries "
   2620 					    "available");
   2621 				}
   2622 			}
   2623 			/* enter_pv locks pvh when adding */
   2624 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2625 		} else {
   2626 			if (pve != NULL)
   2627 				pmap_free_pv(pmap, pve);
   2628 		}
   2629 	}
   2630 
   2631 	/* Construct the pte, giving the correct access. */
   2632 	npte = (pa & PG_FRAME);
   2633 
   2634 	/* VA 0 is magic. */
   2635 	if (pmap != pmap_kernel() && va != 0)
   2636 		npte |= PT_AP(AP_U);
   2637 
   2638 	if (pg != NULL) {
   2639 #ifdef DIAGNOSTIC
   2640 		if ((flags & VM_PROT_ALL) & ~prot)
   2641 			panic("pmap_enter: access_type exceeds prot");
   2642 #endif
   2643 		npte |= pte_cache_mode;
   2644 		if (flags & VM_PROT_WRITE) {
   2645 			npte |= L2_SPAGE | PT_AP(AP_W);
   2646 			pg->mdpage.pvh_attrs |= PT_H | PT_M;
   2647 		} else if (flags & VM_PROT_ALL) {
   2648 			npte |= L2_SPAGE;
   2649 			pg->mdpage.pvh_attrs |= PT_H;
   2650 		} else
   2651 			npte |= L2_INVAL;
   2652 	} else {
   2653 		if (prot & VM_PROT_WRITE)
   2654 			npte |= L2_SPAGE | PT_AP(AP_W);
   2655 		else if (prot & VM_PROT_ALL)
   2656 			npte |= L2_SPAGE;
   2657 		else
   2658 			npte |= L2_INVAL;
   2659 	}
   2660 
   2661 	ptes[arm_btop(va)] = npte;
   2662 
   2663 	if (pg != NULL) {
   2664 		simple_lock(&pg->mdpage.pvh_slock);
   2665  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2666 		simple_unlock(&pg->mdpage.pvh_slock);
   2667 	}
   2668 
   2669 	/* Better flush the TLB ... */
   2670 	cpu_tlb_flushID_SE(va);
   2671 	error = 0;
   2672 out:
   2673 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2674 	PMAP_MAP_TO_HEAD_UNLOCK();
   2675 
   2676 	return error;
   2677 }
   2678 
   2679 /*
   2680  * pmap_kenter_pa: enter a kernel mapping
   2681  *
   2682  * => no need to lock anything assume va is already allocated
   2683  * => should be faster than normal pmap enter function
   2684  */
   2685 void
   2686 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2687 {
   2688 	pt_entry_t *pte;
   2689 
   2690 	pte = vtopte(va);
   2691 	KASSERT(!pmap_pte_v(pte));
   2692 	*pte = L2_PTE(pa, AP_KRW);
   2693 }
   2694 
   2695 void
   2696 pmap_kremove(vaddr_t va, vsize_t len)
   2697 {
   2698 	pt_entry_t *pte;
   2699 
   2700 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2701 
   2702 		/*
   2703 		 * We assume that we will only be called with small
   2704 		 * regions of memory.
   2705 		 */
   2706 
   2707 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2708 		pte = vtopte(va);
   2709 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2710 		*pte = 0;
   2711 		cpu_tlb_flushID_SE(va);
   2712 	}
   2713 }
   2714 
   2715 /*
   2716  * pmap_page_protect:
   2717  *
   2718  * Lower the permission for all mappings to a given page.
   2719  */
   2720 
   2721 void
   2722 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2723 {
   2724 
   2725 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2726 	    VM_PAGE_TO_PHYS(pg), prot));
   2727 
   2728 	switch(prot) {
   2729 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2730 	case VM_PROT_READ|VM_PROT_WRITE:
   2731 		return;
   2732 
   2733 	case VM_PROT_READ:
   2734 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2735 		pmap_clearbit(pg, PT_Wr);
   2736 		break;
   2737 
   2738 	default:
   2739 		pmap_remove_all(pg);
   2740 		break;
   2741 	}
   2742 }
   2743 
   2744 
   2745 /*
   2746  * Routine:	pmap_unwire
   2747  * Function:	Clear the wired attribute for a map/virtual-address
   2748  *		pair.
   2749  * In/out conditions:
   2750  *		The mapping must already exist in the pmap.
   2751  */
   2752 
   2753 void
   2754 pmap_unwire(struct pmap *pmap, vaddr_t va)
   2755 {
   2756 	pt_entry_t *ptes;
   2757 	struct vm_page *pg;
   2758 	paddr_t pa;
   2759 
   2760 	PMAP_MAP_TO_HEAD_LOCK();
   2761 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2762 
   2763 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   2764 #ifdef DIAGNOSTIC
   2765 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   2766 			panic("pmap_unwire: invalid L2 PTE");
   2767 #endif
   2768 		/* Extract the physical address of the page */
   2769 		pa = l2pte_pa(ptes[arm_btop(va)]);
   2770 
   2771 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2772 			goto out;
   2773 
   2774 		/* Update the wired bit in the pv entry for this page. */
   2775 		simple_lock(&pg->mdpage.pvh_slock);
   2776 		(void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
   2777 		simple_unlock(&pg->mdpage.pvh_slock);
   2778 	}
   2779 #ifdef DIAGNOSTIC
   2780 	else {
   2781 		panic("pmap_unwire: invalid L1 PTE");
   2782 	}
   2783 #endif
   2784  out:
   2785 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2786 	PMAP_MAP_TO_HEAD_UNLOCK();
   2787 }
   2788 
   2789 /*
   2790  * Routine:  pmap_extract
   2791  * Function:
   2792  *           Extract the physical page address associated
   2793  *           with the given map/virtual_address pair.
   2794  */
   2795 boolean_t
   2796 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
   2797 {
   2798 	pd_entry_t *pde;
   2799 	pt_entry_t *pte, *ptes;
   2800 	paddr_t pa;
   2801 	boolean_t rv = FALSE;
   2802 	int l1_ptype, l2_ptype;
   2803 
   2804 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   2805 
   2806 	/*
   2807 	 * Get the pte for this virtual address.
   2808 	 */
   2809 	pde = pmap_pde(pmap, va);
   2810 	ptes = pmap_map_ptes(pmap);
   2811 	pte = &ptes[arm_btop(va)];
   2812 
   2813 	l1_ptype = *pde & L1_MASK;
   2814 
   2815 	if (l1_ptype == L1_SECTION) {
   2816 		/* Extract the physical address from the pde */
   2817 		pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
   2818 		rv = TRUE;
   2819 	} else if (l1_ptype == L1_PAGE) {
   2820 
   2821 		l2_ptype = *pte & L2_MASK;
   2822 
   2823 		if (l2_ptype == L2_LPAGE) {
   2824 			/* Extract the physical address from the pte */
   2825 			pa  = *pte & ~(L2_LPAGE_SIZE - 1);
   2826 			pa |=  va  &  (L2_LPAGE_SIZE - 1);
   2827 			rv = TRUE;
   2828 		} else if (l2_ptype == L2_SPAGE) {
   2829 			/* Extract the physical address from the pte */
   2830 			pa  = *pte & ~(L2_SPAGE_SIZE - 1);
   2831 			pa |=  va  &  (L2_SPAGE_SIZE - 1);
   2832 			rv = TRUE;
   2833 		};
   2834 	};
   2835 	/* if `rv' is still false then it wasnt meant to be .. and return FALSE */
   2836 
   2837 	if (rv && (pap != NULL)) *pap = pa;	/* only return when valid */
   2838 
   2839 	pmap_unmap_ptes(pmap);
   2840 	return (rv);
   2841 }
   2842 
   2843 
   2844 /*
   2845  * pmap_copy:
   2846  *
   2847  *	Copy the range specified by src_addr/len from the source map to the
   2848  *	range dst_addr/len in the destination map.
   2849  *
   2850  *	This routine is only advisory and need not do anything.
   2851  */
   2852 /* Call deleted in <arm/arm32/pmap.h> */
   2853 
   2854 #if defined(PMAP_DEBUG)
   2855 void
   2856 pmap_dump_pvlist(phys, m)
   2857 	vaddr_t phys;
   2858 	char *m;
   2859 {
   2860 	struct vm_page *pg;
   2861 	struct pv_entry *pv;
   2862 
   2863 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   2864 		printf("INVALID PA\n");
   2865 		return;
   2866 	}
   2867 	simple_lock(&pg->mdpage.pvh_slock);
   2868 	printf("%s %08lx:", m, phys);
   2869 	if (pg->mdpage.pvh_list == NULL) {
   2870 		printf(" no mappings\n");
   2871 		return;
   2872 	}
   2873 
   2874 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   2875 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   2876 		    pv->pv_va, pv->pv_flags);
   2877 
   2878 	printf("\n");
   2879 	simple_unlock(&pg->mdpage.pvh_slock);
   2880 }
   2881 
   2882 #endif	/* PMAP_DEBUG */
   2883 
   2884 static pt_entry_t *
   2885 pmap_map_ptes(struct pmap *pmap)
   2886 {
   2887 	struct proc *p;
   2888 
   2889     	/* the kernel's pmap is always accessible */
   2890 	if (pmap == pmap_kernel()) {
   2891 		return (pt_entry_t *)PTE_BASE;
   2892 	}
   2893 
   2894 	if (pmap_is_curpmap(pmap)) {
   2895 		simple_lock(&pmap->pm_obj.vmobjlock);
   2896 		return (pt_entry_t *)PTE_BASE;
   2897 	}
   2898 
   2899 	p = curproc;
   2900 	KDASSERT(p != NULL);
   2901 
   2902 	/* need to lock both curpmap and pmap: use ordered locking */
   2903 	if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
   2904 		simple_lock(&pmap->pm_obj.vmobjlock);
   2905 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   2906 	} else {
   2907 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   2908 		simple_lock(&pmap->pm_obj.vmobjlock);
   2909 	}
   2910 
   2911 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
   2912 	    FALSE);
   2913 	cpu_tlb_flushD();
   2914 	cpu_cpwait();
   2915 	return (pt_entry_t *)APTE_BASE;
   2916 }
   2917 
   2918 /*
   2919  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   2920  */
   2921 
   2922 static void
   2923 pmap_unmap_ptes(struct pmap *pmap)
   2924 {
   2925 
   2926 	if (pmap == pmap_kernel()) {
   2927 		return;
   2928 	}
   2929 	if (pmap_is_curpmap(pmap)) {
   2930 		simple_unlock(&pmap->pm_obj.vmobjlock);
   2931 	} else {
   2932 		KDASSERT(curproc != NULL);
   2933 		simple_unlock(&pmap->pm_obj.vmobjlock);
   2934 		simple_unlock(
   2935 		    &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   2936 	}
   2937 }
   2938 
   2939 /*
   2940  * Modify pte bits for all ptes corresponding to the given physical address.
   2941  * We use `maskbits' rather than `clearbits' because we're always passing
   2942  * constants and the latter would require an extra inversion at run-time.
   2943  */
   2944 
   2945 static void
   2946 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2947 {
   2948 	struct pv_entry *pv;
   2949 	pt_entry_t *ptes;
   2950 	vaddr_t va;
   2951 	int tlbentry;
   2952 
   2953 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   2954 	    VM_PAGE_TO_PHYS(pg), maskbits));
   2955 
   2956 	tlbentry = 0;
   2957 
   2958 	PMAP_HEAD_TO_MAP_LOCK();
   2959 	simple_lock(&pg->mdpage.pvh_slock);
   2960 
   2961 	/*
   2962 	 * Clear saved attributes (modify, reference)
   2963 	 */
   2964 	pg->mdpage.pvh_attrs &= ~maskbits;
   2965 
   2966 	if (pg->mdpage.pvh_list == NULL) {
   2967 		simple_unlock(&pg->mdpage.pvh_slock);
   2968 		PMAP_HEAD_TO_MAP_UNLOCK();
   2969 		return;
   2970 	}
   2971 
   2972 	/*
   2973 	 * Loop over all current mappings setting/clearing as appropos
   2974 	 */
   2975 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2976 		va = pv->pv_va;
   2977 		pv->pv_flags &= ~maskbits;
   2978 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   2979 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   2980 		if (maskbits & (PT_Wr|PT_M)) {
   2981 			if ((pv->pv_flags & PT_NC)) {
   2982 				/*
   2983 				 * Entry is not cacheable: reenable
   2984 				 * the cache, nothing to flush
   2985 				 *
   2986 				 * Don't turn caching on again if this
   2987 				 * is a modified emulation.  This
   2988 				 * would be inconsitent with the
   2989 				 * settings created by
   2990 				 * pmap_vac_me_harder().
   2991 				 *
   2992 				 * There's no need to call
   2993 				 * pmap_vac_me_harder() here: all
   2994 				 * pages are loosing their write
   2995 				 * permission.
   2996 				 *
   2997 				 */
   2998 				if (maskbits & PT_Wr) {
   2999 					ptes[arm_btop(va)] |= pte_cache_mode;
   3000 					pv->pv_flags &= ~PT_NC;
   3001 				}
   3002 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3003 				/*
   3004 				 * Entry is cacheable: check if pmap is
   3005 				 * current if it is flush it,
   3006 				 * otherwise it won't be in the cache
   3007 				 */
   3008 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3009 			}
   3010 
   3011 			/* make the pte read only */
   3012 			ptes[arm_btop(va)] &= ~PT_AP(AP_W);
   3013 		}
   3014 
   3015 		if (maskbits & PT_H)
   3016 			ptes[arm_btop(va)] =
   3017 			    (ptes[arm_btop(va)] & ~L2_MASK) | L2_INVAL;
   3018 
   3019 		if (pmap_is_curpmap(pv->pv_pmap)) {
   3020 			/*
   3021 			 * if we had cacheable pte's we'd clean the
   3022 			 * pte out to memory here
   3023 			 *
   3024 			 * flush tlb entry as it's in the current pmap
   3025 			 */
   3026 			cpu_tlb_flushID_SE(pv->pv_va);
   3027 		}
   3028 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3029 	}
   3030 	cpu_cpwait();
   3031 
   3032 	simple_unlock(&pg->mdpage.pvh_slock);
   3033 	PMAP_HEAD_TO_MAP_UNLOCK();
   3034 }
   3035 
   3036 /*
   3037  * pmap_clear_modify:
   3038  *
   3039  *	Clear the "modified" attribute for a page.
   3040  */
   3041 boolean_t
   3042 pmap_clear_modify(struct vm_page *pg)
   3043 {
   3044 	boolean_t rv;
   3045 
   3046 	if (pg->mdpage.pvh_attrs & PT_M) {
   3047 		rv = TRUE;
   3048 		pmap_clearbit(pg, PT_M);
   3049 	} else
   3050 		rv = FALSE;
   3051 
   3052 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3053 	    VM_PAGE_TO_PHYS(pg), rv));
   3054 
   3055 	return (rv);
   3056 }
   3057 
   3058 /*
   3059  * pmap_clear_reference:
   3060  *
   3061  *	Clear the "referenced" attribute for a page.
   3062  */
   3063 boolean_t
   3064 pmap_clear_reference(struct vm_page *pg)
   3065 {
   3066 	boolean_t rv;
   3067 
   3068 	if (pg->mdpage.pvh_attrs & PT_H) {
   3069 		rv = TRUE;
   3070 		pmap_clearbit(pg, PT_H);
   3071 	} else
   3072 		rv = FALSE;
   3073 
   3074 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3075 	    VM_PAGE_TO_PHYS(pg), rv));
   3076 
   3077 	return (rv);
   3078 }
   3079 
   3080 /*
   3081  * pmap_is_modified:
   3082  *
   3083  *	Test if a page has the "modified" attribute.
   3084  */
   3085 /* See <arm/arm32/pmap.h> */
   3086 
   3087 /*
   3088  * pmap_is_referenced:
   3089  *
   3090  *	Test if a page has the "referenced" attribute.
   3091  */
   3092 /* See <arm/arm32/pmap.h> */
   3093 
   3094 int
   3095 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
   3096 {
   3097 	pt_entry_t *ptes;
   3098 	struct vm_page *pg;
   3099 	paddr_t pa;
   3100 	u_int flags;
   3101 	int rv = 0;
   3102 
   3103 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3104 
   3105 	PMAP_MAP_TO_HEAD_LOCK();
   3106 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3107 
   3108 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3109 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3110 		goto out;
   3111 	}
   3112 
   3113 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3114 
   3115 	/* Check for a invalid pte */
   3116 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3117 		goto out;
   3118 
   3119 	/* This can happen if user code tries to access kernel memory. */
   3120 	if ((ptes[arm_btop(va)] & PT_AP(AP_W)) != 0)
   3121 		goto out;
   3122 
   3123 	/* Extract the physical address of the page */
   3124 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3125 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3126 		goto out;
   3127 
   3128 	/* Get the current flags for this page. */
   3129 	simple_lock(&pg->mdpage.pvh_slock);
   3130 
   3131 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3132 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3133 
   3134 	/*
   3135 	 * Do the flags say this page is writable ? If not then it is a
   3136 	 * genuine write fault. If yes then the write fault is our fault
   3137 	 * as we did not reflect the write access in the PTE. Now we know
   3138 	 * a write has occurred we can correct this and also set the
   3139 	 * modified bit
   3140 	 */
   3141 	if (~flags & PT_Wr) {
   3142 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3143 		goto out;
   3144 	}
   3145 
   3146 	PDEBUG(0,
   3147 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3148 	    va, ptes[arm_btop(va)]));
   3149 	pg->mdpage.pvh_attrs |= PT_H | PT_M;
   3150 
   3151 	/*
   3152 	 * Re-enable write permissions for the page.  No need to call
   3153 	 * pmap_vac_me_harder(), since this is just a
   3154 	 * modified-emulation fault, and the PT_Wr bit isn't changing.  We've
   3155 	 * already set the cacheable bits based on the assumption that we
   3156 	 * can write to this page.
   3157 	 */
   3158 	ptes[arm_btop(va)] =
   3159 	    (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3160 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3161 
   3162 	simple_unlock(&pg->mdpage.pvh_slock);
   3163 
   3164 	cpu_tlb_flushID_SE(va);
   3165 	cpu_cpwait();
   3166 	rv = 1;
   3167  out:
   3168 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3169 	PMAP_MAP_TO_HEAD_UNLOCK();
   3170 	return (rv);
   3171 }
   3172 
   3173 int
   3174 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
   3175 {
   3176 	pt_entry_t *ptes;
   3177 	struct vm_page *pg;
   3178 	paddr_t pa;
   3179 	int rv = 0;
   3180 
   3181 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3182 
   3183 	PMAP_MAP_TO_HEAD_LOCK();
   3184 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3185 
   3186 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3187 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3188 		goto out;
   3189 	}
   3190 
   3191 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3192 
   3193 	/* Check for invalid pte */
   3194 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3195 		goto out;
   3196 
   3197 	/* This can happen if user code tries to access kernel memory. */
   3198 	if ((ptes[arm_btop(va)] & L2_MASK) != L2_INVAL)
   3199 		goto out;
   3200 
   3201 	/* Extract the physical address of the page */
   3202 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3203 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3204 		goto out;
   3205 
   3206 	simple_lock(&pg->mdpage.pvh_slock);
   3207 
   3208 	/*
   3209 	 * Ok we just enable the pte and mark the attibs as handled
   3210 	 * XXX Should we traverse the PV list and enable all PTEs?
   3211 	 */
   3212 	PDEBUG(0,
   3213 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3214 	    va, ptes[arm_btop(va)]));
   3215 	pg->mdpage.pvh_attrs |= PT_H;
   3216 
   3217 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE;
   3218 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3219 
   3220 	simple_unlock(&pg->mdpage.pvh_slock);
   3221 
   3222 	cpu_tlb_flushID_SE(va);
   3223 	cpu_cpwait();
   3224 	rv = 1;
   3225  out:
   3226 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3227 	PMAP_MAP_TO_HEAD_UNLOCK();
   3228 	return (rv);
   3229 }
   3230 
   3231 /*
   3232  * pmap_collect: free resources held by a pmap
   3233  *
   3234  * => optional function.
   3235  * => called when a process is swapped out to free memory.
   3236  */
   3237 
   3238 void
   3239 pmap_collect(struct pmap *pmap)
   3240 {
   3241 }
   3242 
   3243 /*
   3244  * Routine:	pmap_procwr
   3245  *
   3246  * Function:
   3247  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3248  *
   3249  */
   3250 void
   3251 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3252 {
   3253 	/* We only need to do anything if it is the current process. */
   3254 	if (p == curproc)
   3255 		cpu_icache_sync_range(va, len);
   3256 }
   3257 /*
   3258  * PTP functions
   3259  */
   3260 
   3261 /*
   3262  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3263  *
   3264  * => pmap should NOT be pmap_kernel()
   3265  * => pmap should be locked
   3266  */
   3267 
   3268 static struct vm_page *
   3269 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3270 {
   3271 	struct vm_page *ptp;
   3272 
   3273 	if (pmap_pde_page(pmap_pde(pmap, va))) {
   3274 
   3275 		/* valid... check hint (saves us a PA->PG lookup) */
   3276 		if (pmap->pm_ptphint &&
   3277 		    (pmap->pm_pdir[pmap_pdei(va)] & PG_FRAME) ==
   3278 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3279 			return (pmap->pm_ptphint);
   3280 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3281 #ifdef DIAGNOSTIC
   3282 		if (ptp == NULL)
   3283 			panic("pmap_get_ptp: unmanaged user PTP");
   3284 #endif
   3285 		pmap->pm_ptphint = ptp;
   3286 		return(ptp);
   3287 	}
   3288 
   3289 	/* allocate a new PTP (updates ptphint) */
   3290 	return(pmap_alloc_ptp(pmap, va));
   3291 }
   3292 
   3293 /*
   3294  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3295  *
   3296  * => pmap should already be locked by caller
   3297  * => we use the ptp's wire_count to count the number of active mappings
   3298  *	in the PTP (we start it at one to prevent any chance this PTP
   3299  *	will ever leak onto the active/inactive queues)
   3300  */
   3301 
   3302 /*__inline */ static struct vm_page *
   3303 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3304 {
   3305 	struct vm_page *ptp;
   3306 
   3307 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3308 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3309 	if (ptp == NULL)
   3310 		return (NULL);
   3311 
   3312 	/* got one! */
   3313 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3314 	ptp->wire_count = 1;	/* no mappings yet */
   3315 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3316 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3317 	pmap->pm_ptphint = ptp;
   3318 	return (ptp);
   3319 }
   3320 
   3321 vaddr_t
   3322 pmap_growkernel(vaddr_t maxkvaddr)
   3323 {
   3324 	struct pmap *kpm = pmap_kernel(), *pm;
   3325 	int s;
   3326 	paddr_t ptaddr;
   3327 	struct vm_page *ptp;
   3328 
   3329 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3330 		goto out;		/* we are OK */
   3331 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3332 		    pmap_curmaxkvaddr, maxkvaddr));
   3333 
   3334 	/*
   3335 	 * whoops!   we need to add kernel PTPs
   3336 	 */
   3337 
   3338 	s = splhigh();	/* to be safe */
   3339 	simple_lock(&kpm->pm_obj.vmobjlock);
   3340 	/* due to the way the arm pmap works we map 4MB at a time */
   3341 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
   3342 	     pmap_curmaxkvaddr += 4 * NBPD) {
   3343 
   3344 		if (uvm.page_init_done == FALSE) {
   3345 
   3346 			/*
   3347 			 * we're growing the kernel pmap early (from
   3348 			 * uvm_pageboot_alloc()).  this case must be
   3349 			 * handled a little differently.
   3350 			 */
   3351 
   3352 			if (uvm_page_physget(&ptaddr) == FALSE)
   3353 				panic("pmap_growkernel: out of memory");
   3354 			pmap_zero_page(ptaddr);
   3355 
   3356 			/* map this page in */
   3357 			pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
   3358 
   3359 			/* count PTP as resident */
   3360 			kpm->pm_stats.resident_count++;
   3361 			continue;
   3362 		}
   3363 
   3364 		/*
   3365 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3366 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3367 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3368 		 */
   3369 
   3370 		if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
   3371 			panic("pmap_growkernel: alloc ptp failed");
   3372 
   3373 		/* distribute new kernel PTP to all active pmaps */
   3374 		simple_lock(&pmaps_lock);
   3375 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3376 			pmap_map_in_l1(pm, pmap_curmaxkvaddr,
   3377 			    VM_PAGE_TO_PHYS(ptp), TRUE);
   3378 		}
   3379 
   3380 		simple_unlock(&pmaps_lock);
   3381 	}
   3382 
   3383 	/*
   3384 	 * flush out the cache, expensive but growkernel will happen so
   3385 	 * rarely
   3386 	 */
   3387 	cpu_tlb_flushD();
   3388 	cpu_cpwait();
   3389 
   3390 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3391 	splx(s);
   3392 
   3393 out:
   3394 	return (pmap_curmaxkvaddr);
   3395 }
   3396 
   3397 
   3398 
   3399 /************************ Bootstrapping routines ****************************/
   3400 
   3401 /*
   3402  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3403  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3404  * find them as necessary.
   3405  *
   3406  * Note that the data on this list is not valid after initarm() returns.
   3407  */
   3408 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3409 
   3410 static vaddr_t
   3411 kernel_pt_lookup(paddr_t pa)
   3412 {
   3413 	pv_addr_t *pv;
   3414 
   3415 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3416 		if (pv->pv_pa == pa)
   3417 			return (pv->pv_va);
   3418 	}
   3419 	return (0);
   3420 }
   3421 
   3422 /*
   3423  * pmap_map_section:
   3424  *
   3425  *	Create a single section mapping.
   3426  */
   3427 void
   3428 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3429 {
   3430 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3431 	pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3432 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3433 
   3434 	KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
   3435 
   3436 	pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
   3437 }
   3438 
   3439 /*
   3440  * pmap_map_entry:
   3441  *
   3442  *	Create a single page mapping.
   3443  */
   3444 void
   3445 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3446 {
   3447 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3448 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3449 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3450 	pt_entry_t *pte;
   3451 
   3452 	KASSERT(((va | pa) & PGOFSET) == 0);
   3453 
   3454 	if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3455 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3456 
   3457 	pte = (pt_entry_t *)
   3458 	    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3459 	if (pte == NULL)
   3460 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3461 
   3462 	pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
   3463 }
   3464 
   3465 /*
   3466  * pmap_link_l2pt:
   3467  *
   3468  *	Link the L2 page table specified by "pa" into the L1
   3469  *	page table at the slot for "va".
   3470  */
   3471 void
   3472 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3473 {
   3474 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3475 	u_int slot = va >> PDSHIFT;
   3476 
   3477 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3478 
   3479 	pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
   3480 	pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
   3481 	pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
   3482 	pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
   3483 
   3484 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3485 }
   3486 
   3487 /*
   3488  * pmap_map_chunk:
   3489  *
   3490  *	Map a chunk of memory using the most efficient mappings
   3491  *	possible (section, large page, small page) into the
   3492  *	provided L1 and L2 tables at the specified virtual address.
   3493  */
   3494 vsize_t
   3495 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3496     int prot, int cache)
   3497 {
   3498 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3499 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3500 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3501 	pt_entry_t *pte;
   3502 	vsize_t resid;
   3503 	int i;
   3504 
   3505 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3506 
   3507 	if (l1pt == 0)
   3508 		panic("pmap_map_chunk: no L1 table provided");
   3509 
   3510 #ifdef VERBOSE_INIT_ARM
   3511 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3512 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3513 #endif
   3514 
   3515 	size = resid;
   3516 
   3517 	while (resid > 0) {
   3518 		/* See if we can use a section mapping. */
   3519 		if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
   3520 		    resid >= L1_SEC_SIZE) {
   3521 #ifdef VERBOSE_INIT_ARM
   3522 			printf("S");
   3523 #endif
   3524 			pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
   3525 			va += L1_SEC_SIZE;
   3526 			pa += L1_SEC_SIZE;
   3527 			resid -= L1_SEC_SIZE;
   3528 			continue;
   3529 		}
   3530 
   3531 		/*
   3532 		 * Ok, we're going to use an L2 table.  Make sure
   3533 		 * one is actually in the corresponding L1 slot
   3534 		 * for the current VA.
   3535 		 */
   3536 		if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3537 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3538 
   3539 		pte = (pt_entry_t *)
   3540 		    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3541 		if (pte == NULL)
   3542 			panic("pmap_map_chunk: can't find L2 table for VA"
   3543 			    "0x%08lx", va);
   3544 
   3545 		/* See if we can use a L2 large page mapping. */
   3546 		if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
   3547 		    resid >= L2_LPAGE_SIZE) {
   3548 #ifdef VERBOSE_INIT_ARM
   3549 			printf("L");
   3550 #endif
   3551 			for (i = 0; i < 16; i++) {
   3552 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3553 				    L2_LPTE(pa, ap, fl);
   3554 			}
   3555 			va += L2_LPAGE_SIZE;
   3556 			pa += L2_LPAGE_SIZE;
   3557 			resid -= L2_LPAGE_SIZE;
   3558 			continue;
   3559 		}
   3560 
   3561 		/* Use a small page mapping. */
   3562 #ifdef VERBOSE_INIT_ARM
   3563 		printf("P");
   3564 #endif
   3565 		pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
   3566 		va += NBPG;
   3567 		pa += NBPG;
   3568 		resid -= NBPG;
   3569 	}
   3570 #ifdef VERBOSE_INIT_ARM
   3571 	printf("\n");
   3572 #endif
   3573 	return (size);
   3574 }
   3575