pmap.c revision 1.78 1 /* $NetBSD: pmap.c,v 1.78 2002/04/04 04:25:44 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.78 2002/04/04 04:25:44 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 /*
271 * Structure that describes and L1 table.
272 */
273 struct l1pt {
274 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
275 struct pglist pt_plist; /* Allocated page list */
276 vaddr_t pt_va; /* Allocated virtual address */
277 int pt_flags; /* Flags */
278 };
279 #define PTFLAG_STATIC 0x01 /* Statically allocated */
280 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
281 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
282
283 static void pmap_free_l1pt __P((struct l1pt *));
284 static int pmap_allocpagedir __P((struct pmap *));
285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
286 static void pmap_remove_all __P((struct vm_page *));
287
288 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
289 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
290 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
291
292 extern paddr_t physical_start;
293 extern paddr_t physical_freestart;
294 extern paddr_t physical_end;
295 extern paddr_t physical_freeend;
296 extern unsigned int free_pages;
297 extern int max_processes;
298
299 vaddr_t virtual_avail;
300 vaddr_t virtual_end;
301 vaddr_t pmap_curmaxkvaddr;
302
303 vaddr_t avail_start;
304 vaddr_t avail_end;
305
306 extern pv_addr_t systempage;
307
308 /* Variables used by the L1 page table queue code */
309 SIMPLEQ_HEAD(l1pt_queue, l1pt);
310 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
311 static int l1pt_static_queue_count; /* items in the static l1 queue */
312 static int l1pt_static_create_count; /* static l1 items created */
313 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
314 static int l1pt_queue_count; /* items in the l1 queue */
315 static int l1pt_create_count; /* stat - L1's create count */
316 static int l1pt_reuse_count; /* stat - L1's reused count */
317
318 /* Local function prototypes (not used outside this file) */
319 void pmap_pinit __P((struct pmap *));
320 void pmap_freepagedir __P((struct pmap *));
321
322 /* Other function prototypes */
323 extern void bzero_page __P((vaddr_t));
324 extern void bcopy_page __P((vaddr_t, vaddr_t));
325
326 struct l1pt *pmap_alloc_l1pt __P((void));
327 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
328 vaddr_t l2pa, boolean_t));
329
330 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
331 static void pmap_unmap_ptes __P((struct pmap *));
332
333 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
334 pt_entry_t *, boolean_t));
335 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
336 pt_entry_t *, boolean_t));
337 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
338 pt_entry_t *, boolean_t));
339
340 /*
341 * Cache enable bits in PTE to use on pages that are cacheable.
342 * On most machines this is cacheable/bufferable, but on some, eg arm10, we
343 * can chose between write-through and write-back cacheing.
344 */
345 pt_entry_t pte_cache_mode = (PT_C | PT_B);
346
347 /*
348 * real definition of pv_entry.
349 */
350
351 struct pv_entry {
352 struct pv_entry *pv_next; /* next pv_entry */
353 struct pmap *pv_pmap; /* pmap where mapping lies */
354 vaddr_t pv_va; /* virtual address for mapping */
355 int pv_flags; /* flags */
356 struct vm_page *pv_ptp; /* vm_page for the ptp */
357 };
358
359 /*
360 * pv_entrys are dynamically allocated in chunks from a single page.
361 * we keep track of how many pv_entrys are in use for each page and
362 * we can free pv_entry pages if needed. there is one lock for the
363 * entire allocation system.
364 */
365
366 struct pv_page_info {
367 TAILQ_ENTRY(pv_page) pvpi_list;
368 struct pv_entry *pvpi_pvfree;
369 int pvpi_nfree;
370 };
371
372 /*
373 * number of pv_entry's in a pv_page
374 * (note: won't work on systems where NPBG isn't a constant)
375 */
376
377 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
378 sizeof(struct pv_entry))
379
380 /*
381 * a pv_page: where pv_entrys are allocated from
382 */
383
384 struct pv_page {
385 struct pv_page_info pvinfo;
386 struct pv_entry pvents[PVE_PER_PVPAGE];
387 };
388
389 #ifdef MYCROFT_HACK
390 int mycroft_hack = 0;
391 #endif
392
393 /* Function to set the debug level of the pmap code */
394
395 #ifdef PMAP_DEBUG
396 void
397 pmap_debug(int level)
398 {
399 pmap_debug_level = level;
400 printf("pmap_debug: level=%d\n", pmap_debug_level);
401 }
402 #endif /* PMAP_DEBUG */
403
404 __inline static boolean_t
405 pmap_is_curpmap(struct pmap *pmap)
406 {
407
408 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
409 pmap == pmap_kernel())
410 return (TRUE);
411
412 return (FALSE);
413 }
414
415 #include "isadma.h"
416
417 #if NISADMA > 0
418 /*
419 * Used to protect memory for ISA DMA bounce buffers. If, when loading
420 * pages into the system, memory intersects with any of these ranges,
421 * the intersecting memory will be loaded into a lower-priority free list.
422 */
423 bus_dma_segment_t *pmap_isa_dma_ranges;
424 int pmap_isa_dma_nranges;
425
426 /*
427 * Check if a memory range intersects with an ISA DMA range, and
428 * return the page-rounded intersection if it does. The intersection
429 * will be placed on a lower-priority free list.
430 */
431 static boolean_t
432 pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
433 psize_t *sizep)
434 {
435 bus_dma_segment_t *ds;
436 int i;
437
438 if (pmap_isa_dma_ranges == NULL)
439 return (FALSE);
440
441 for (i = 0, ds = pmap_isa_dma_ranges;
442 i < pmap_isa_dma_nranges; i++, ds++) {
443 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
444 /*
445 * Beginning of region intersects with this range.
446 */
447 *pap = trunc_page(pa);
448 *sizep = round_page(min(pa + size,
449 ds->ds_addr + ds->ds_len) - pa);
450 return (TRUE);
451 }
452 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
453 /*
454 * End of region intersects with this range.
455 */
456 *pap = trunc_page(ds->ds_addr);
457 *sizep = round_page(min((pa + size) - ds->ds_addr,
458 ds->ds_len));
459 return (TRUE);
460 }
461 }
462
463 /*
464 * No intersection found.
465 */
466 return (FALSE);
467 }
468 #endif /* NISADMA > 0 */
469
470 /*
471 * p v _ e n t r y f u n c t i o n s
472 */
473
474 /*
475 * pv_entry allocation functions:
476 * the main pv_entry allocation functions are:
477 * pmap_alloc_pv: allocate a pv_entry structure
478 * pmap_free_pv: free one pv_entry
479 * pmap_free_pvs: free a list of pv_entrys
480 *
481 * the rest are helper functions
482 */
483
484 /*
485 * pmap_alloc_pv: inline function to allocate a pv_entry structure
486 * => we lock pvalloc_lock
487 * => if we fail, we call out to pmap_alloc_pvpage
488 * => 3 modes:
489 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
490 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
491 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
492 * one now
493 *
494 * "try" is for optional functions like pmap_copy().
495 */
496
497 __inline static struct pv_entry *
498 pmap_alloc_pv(struct pmap *pmap, int mode)
499 {
500 struct pv_page *pvpage;
501 struct pv_entry *pv;
502
503 simple_lock(&pvalloc_lock);
504
505 pvpage = TAILQ_FIRST(&pv_freepages);
506
507 if (pvpage != NULL) {
508 pvpage->pvinfo.pvpi_nfree--;
509 if (pvpage->pvinfo.pvpi_nfree == 0) {
510 /* nothing left in this one? */
511 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
512 }
513 pv = pvpage->pvinfo.pvpi_pvfree;
514 KASSERT(pv);
515 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
516 pv_nfpvents--; /* took one from pool */
517 } else {
518 pv = NULL; /* need more of them */
519 }
520
521 /*
522 * if below low water mark or we didn't get a pv_entry we try and
523 * create more pv_entrys ...
524 */
525
526 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
527 if (pv == NULL)
528 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
529 mode : ALLOCPV_NEED);
530 else
531 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
532 }
533
534 simple_unlock(&pvalloc_lock);
535 return(pv);
536 }
537
538 /*
539 * pmap_alloc_pvpage: maybe allocate a new pvpage
540 *
541 * if need_entry is false: try and allocate a new pv_page
542 * if need_entry is true: try and allocate a new pv_page and return a
543 * new pv_entry from it. if we are unable to allocate a pv_page
544 * we make a last ditch effort to steal a pv_page from some other
545 * mapping. if that fails, we panic...
546 *
547 * => we assume that the caller holds pvalloc_lock
548 */
549
550 static struct pv_entry *
551 pmap_alloc_pvpage(struct pmap *pmap, int mode)
552 {
553 struct vm_page *pg;
554 struct pv_page *pvpage;
555 struct pv_entry *pv;
556 int s;
557
558 /*
559 * if we need_entry and we've got unused pv_pages, allocate from there
560 */
561
562 pvpage = TAILQ_FIRST(&pv_unusedpgs);
563 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
564
565 /* move it to pv_freepages list */
566 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
567 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
568
569 /* allocate a pv_entry */
570 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
571 pv = pvpage->pvinfo.pvpi_pvfree;
572 KASSERT(pv);
573 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
574
575 pv_nfpvents--; /* took one from pool */
576 return(pv);
577 }
578
579 /*
580 * see if we've got a cached unmapped VA that we can map a page in.
581 * if not, try to allocate one.
582 */
583
584
585 if (pv_cachedva == 0) {
586 s = splvm();
587 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
588 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
589 splx(s);
590 if (pv_cachedva == 0) {
591 return (NULL);
592 }
593 }
594
595 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
596 UVM_PGA_USERESERVE);
597
598 if (pg == NULL)
599 return (NULL);
600 pg->flags &= ~PG_BUSY; /* never busy */
601
602 /*
603 * add a mapping for our new pv_page and free its entrys (save one!)
604 *
605 * NOTE: If we are allocating a PV page for the kernel pmap, the
606 * pmap is already locked! (...but entering the mapping is safe...)
607 */
608
609 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
610 VM_PROT_READ|VM_PROT_WRITE);
611 pmap_update(pmap_kernel());
612 pvpage = (struct pv_page *) pv_cachedva;
613 pv_cachedva = 0;
614 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
615 }
616
617 /*
618 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
619 *
620 * => caller must hold pvalloc_lock
621 * => if need_entry is true, we allocate and return one pv_entry
622 */
623
624 static struct pv_entry *
625 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
626 {
627 int tofree, lcv;
628
629 /* do we need to return one? */
630 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
631
632 pvp->pvinfo.pvpi_pvfree = NULL;
633 pvp->pvinfo.pvpi_nfree = tofree;
634 for (lcv = 0 ; lcv < tofree ; lcv++) {
635 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
636 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
637 }
638 if (need_entry)
639 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
640 else
641 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
642 pv_nfpvents += tofree;
643 return((need_entry) ? &pvp->pvents[lcv] : NULL);
644 }
645
646 /*
647 * pmap_free_pv_doit: actually free a pv_entry
648 *
649 * => do not call this directly! instead use either
650 * 1. pmap_free_pv ==> free a single pv_entry
651 * 2. pmap_free_pvs => free a list of pv_entrys
652 * => we must be holding pvalloc_lock
653 */
654
655 __inline static void
656 pmap_free_pv_doit(struct pv_entry *pv)
657 {
658 struct pv_page *pvp;
659
660 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
661 pv_nfpvents++;
662 pvp->pvinfo.pvpi_nfree++;
663
664 /* nfree == 1 => fully allocated page just became partly allocated */
665 if (pvp->pvinfo.pvpi_nfree == 1) {
666 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
667 }
668
669 /* free it */
670 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
671 pvp->pvinfo.pvpi_pvfree = pv;
672
673 /*
674 * are all pv_page's pv_entry's free? move it to unused queue.
675 */
676
677 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
678 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
679 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
680 }
681 }
682
683 /*
684 * pmap_free_pv: free a single pv_entry
685 *
686 * => we gain the pvalloc_lock
687 */
688
689 __inline static void
690 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
691 {
692 simple_lock(&pvalloc_lock);
693 pmap_free_pv_doit(pv);
694
695 /*
696 * Can't free the PV page if the PV entries were associated with
697 * the kernel pmap; the pmap is already locked.
698 */
699 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
700 pmap != pmap_kernel())
701 pmap_free_pvpage();
702
703 simple_unlock(&pvalloc_lock);
704 }
705
706 /*
707 * pmap_free_pvs: free a list of pv_entrys
708 *
709 * => we gain the pvalloc_lock
710 */
711
712 __inline static void
713 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
714 {
715 struct pv_entry *nextpv;
716
717 simple_lock(&pvalloc_lock);
718
719 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
720 nextpv = pvs->pv_next;
721 pmap_free_pv_doit(pvs);
722 }
723
724 /*
725 * Can't free the PV page if the PV entries were associated with
726 * the kernel pmap; the pmap is already locked.
727 */
728 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
729 pmap != pmap_kernel())
730 pmap_free_pvpage();
731
732 simple_unlock(&pvalloc_lock);
733 }
734
735
736 /*
737 * pmap_free_pvpage: try and free an unused pv_page structure
738 *
739 * => assume caller is holding the pvalloc_lock and that
740 * there is a page on the pv_unusedpgs list
741 * => if we can't get a lock on the kmem_map we try again later
742 */
743
744 static void
745 pmap_free_pvpage(void)
746 {
747 int s;
748 struct vm_map *map;
749 struct vm_map_entry *dead_entries;
750 struct pv_page *pvp;
751
752 s = splvm(); /* protect kmem_map */
753
754 pvp = TAILQ_FIRST(&pv_unusedpgs);
755
756 /*
757 * note: watch out for pv_initpage which is allocated out of
758 * kernel_map rather than kmem_map.
759 */
760 if (pvp == pv_initpage)
761 map = kernel_map;
762 else
763 map = kmem_map;
764 if (vm_map_lock_try(map)) {
765
766 /* remove pvp from pv_unusedpgs */
767 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
768
769 /* unmap the page */
770 dead_entries = NULL;
771 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
772 &dead_entries);
773 vm_map_unlock(map);
774
775 if (dead_entries != NULL)
776 uvm_unmap_detach(dead_entries, 0);
777
778 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
779 }
780 if (pvp == pv_initpage)
781 /* no more initpage, we've freed it */
782 pv_initpage = NULL;
783
784 splx(s);
785 }
786
787 /*
788 * main pv_entry manipulation functions:
789 * pmap_enter_pv: enter a mapping onto a vm_page list
790 * pmap_remove_pv: remove a mappiing from a vm_page list
791 *
792 * NOTE: pmap_enter_pv expects to lock the pvh itself
793 * pmap_remove_pv expects te caller to lock the pvh before calling
794 */
795
796 /*
797 * pmap_enter_pv: enter a mapping onto a vm_page lst
798 *
799 * => caller should hold the proper lock on pmap_main_lock
800 * => caller should have pmap locked
801 * => we will gain the lock on the vm_page and allocate the new pv_entry
802 * => caller should adjust ptp's wire_count before calling
803 * => caller should not adjust pmap's wire_count
804 */
805
806 __inline static void
807 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
808 vaddr_t va, struct vm_page *ptp, int flags)
809 {
810 pve->pv_pmap = pmap;
811 pve->pv_va = va;
812 pve->pv_ptp = ptp; /* NULL for kernel pmap */
813 pve->pv_flags = flags;
814 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
815 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
816 pg->mdpage.pvh_list = pve; /* ... locked list */
817 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
818 if (pve->pv_flags & PVF_WIRED)
819 ++pmap->pm_stats.wired_count;
820 }
821
822 /*
823 * pmap_remove_pv: try to remove a mapping from a pv_list
824 *
825 * => caller should hold proper lock on pmap_main_lock
826 * => pmap should be locked
827 * => caller should hold lock on vm_page [so that attrs can be adjusted]
828 * => caller should adjust ptp's wire_count and free PTP if needed
829 * => caller should NOT adjust pmap's wire_count
830 * => we return the removed pve
831 */
832
833 __inline static struct pv_entry *
834 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
835 {
836 struct pv_entry *pve, **prevptr;
837
838 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
839 pve = *prevptr;
840 while (pve) {
841 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
842 *prevptr = pve->pv_next; /* remove it! */
843 if (pve->pv_flags & PVF_WIRED)
844 --pmap->pm_stats.wired_count;
845 break;
846 }
847 prevptr = &pve->pv_next; /* previous pointer */
848 pve = pve->pv_next; /* advance */
849 }
850 return(pve); /* return removed pve */
851 }
852
853 /*
854 *
855 * pmap_modify_pv: Update pv flags
856 *
857 * => caller should hold lock on vm_page [so that attrs can be adjusted]
858 * => caller should NOT adjust pmap's wire_count
859 * => caller must call pmap_vac_me_harder() if writable status of a page
860 * may have changed.
861 * => we return the old flags
862 *
863 * Modify a physical-virtual mapping in the pv table
864 */
865
866 static /* __inline */ u_int
867 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
868 u_int bic_mask, u_int eor_mask)
869 {
870 struct pv_entry *npv;
871 u_int flags, oflags;
872
873 /*
874 * There is at least one VA mapping this page.
875 */
876
877 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
878 if (pmap == npv->pv_pmap && va == npv->pv_va) {
879 oflags = npv->pv_flags;
880 npv->pv_flags = flags =
881 ((oflags & ~bic_mask) ^ eor_mask);
882 if ((flags ^ oflags) & PVF_WIRED) {
883 if (flags & PVF_WIRED)
884 ++pmap->pm_stats.wired_count;
885 else
886 --pmap->pm_stats.wired_count;
887 }
888 return (oflags);
889 }
890 }
891 return (0);
892 }
893
894 /*
895 * Map the specified level 2 pagetable into the level 1 page table for
896 * the given pmap to cover a chunk of virtual address space starting from the
897 * address specified.
898 */
899 static __inline void
900 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
901 {
902 vaddr_t ptva;
903
904 /* Calculate the index into the L1 page table. */
905 ptva = (va >> PDSHIFT) & ~3;
906
907 /* Map page table into the L1. */
908 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
909 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
910 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
911 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
912
913 /* Map the page table into the page table area. */
914 if (selfref)
915 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
916 L2_PTE_NC_NB(l2pa, AP_KRW);
917 }
918
919 #if 0
920 static __inline void
921 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
922 {
923 vaddr_t ptva;
924
925 /* Calculate the index into the L1 page table. */
926 ptva = (va >> PDSHIFT) & ~3;
927
928 /* Unmap page table from the L1. */
929 pmap->pm_pdir[ptva + 0] = 0;
930 pmap->pm_pdir[ptva + 1] = 0;
931 pmap->pm_pdir[ptva + 2] = 0;
932 pmap->pm_pdir[ptva + 3] = 0;
933
934 /* Unmap the page table from the page table area. */
935 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
936 }
937 #endif
938
939 /*
940 * Used to map a range of physical addresses into kernel
941 * virtual address space.
942 *
943 * For now, VM is already on, we only need to map the
944 * specified memory.
945 */
946 vaddr_t
947 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
948 {
949 while (spa < epa) {
950 pmap_kenter_pa(va, spa, prot);
951 va += NBPG;
952 spa += NBPG;
953 }
954 pmap_update(pmap_kernel());
955 return(va);
956 }
957
958
959 /*
960 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
961 *
962 * bootstrap the pmap system. This is called from initarm and allows
963 * the pmap system to initailise any structures it requires.
964 *
965 * Currently this sets up the kernel_pmap that is statically allocated
966 * and also allocated virtual addresses for certain page hooks.
967 * Currently the only one page hook is allocated that is used
968 * to zero physical pages of memory.
969 * It also initialises the start and end address of the kernel data space.
970 */
971 extern paddr_t physical_freestart;
972 extern paddr_t physical_freeend;
973
974 char *boot_head;
975
976 void
977 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
978 {
979 pt_entry_t *pte;
980 int loop;
981 paddr_t start, end;
982 #if NISADMA > 0
983 paddr_t istart;
984 psize_t isize;
985 #endif
986
987 pmap_kernel()->pm_pdir = kernel_l1pt;
988 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
989 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
990 simple_lock_init(&pmap_kernel()->pm_lock);
991 pmap_kernel()->pm_obj.pgops = NULL;
992 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
993 pmap_kernel()->pm_obj.uo_npages = 0;
994 pmap_kernel()->pm_obj.uo_refs = 1;
995
996 /*
997 * Initialize PAGE_SIZE-dependent variables.
998 */
999 uvm_setpagesize();
1000
1001 loop = 0;
1002 while (loop < bootconfig.dramblocks) {
1003 start = (paddr_t)bootconfig.dram[loop].address;
1004 end = start + (bootconfig.dram[loop].pages * NBPG);
1005 if (start < physical_freestart)
1006 start = physical_freestart;
1007 if (end > physical_freeend)
1008 end = physical_freeend;
1009 #if 0
1010 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1011 #endif
1012 #if NISADMA > 0
1013 if (pmap_isa_dma_range_intersect(start, end - start,
1014 &istart, &isize)) {
1015 /*
1016 * Place the pages that intersect with the
1017 * ISA DMA range onto the ISA DMA free list.
1018 */
1019 #if 0
1020 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1021 istart + isize - 1);
1022 #endif
1023 uvm_page_physload(atop(istart),
1024 atop(istart + isize), atop(istart),
1025 atop(istart + isize), VM_FREELIST_ISADMA);
1026
1027 /*
1028 * Load the pieces that come before
1029 * the intersection into the default
1030 * free list.
1031 */
1032 if (start < istart) {
1033 #if 0
1034 printf(" BEFORE 0x%lx -> 0x%lx\n",
1035 start, istart - 1);
1036 #endif
1037 uvm_page_physload(atop(start),
1038 atop(istart), atop(start),
1039 atop(istart), VM_FREELIST_DEFAULT);
1040 }
1041
1042 /*
1043 * Load the pieces that come after
1044 * the intersection into the default
1045 * free list.
1046 */
1047 if ((istart + isize) < end) {
1048 #if 0
1049 printf(" AFTER 0x%lx -> 0x%lx\n",
1050 (istart + isize), end - 1);
1051 #endif
1052 uvm_page_physload(atop(istart + isize),
1053 atop(end), atop(istart + isize),
1054 atop(end), VM_FREELIST_DEFAULT);
1055 }
1056 } else {
1057 uvm_page_physload(atop(start), atop(end),
1058 atop(start), atop(end), VM_FREELIST_DEFAULT);
1059 }
1060 #else /* NISADMA > 0 */
1061 uvm_page_physload(atop(start), atop(end),
1062 atop(start), atop(end), VM_FREELIST_DEFAULT);
1063 #endif /* NISADMA > 0 */
1064 ++loop;
1065 }
1066
1067 virtual_avail = KERNEL_VM_BASE;
1068 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1069
1070 /*
1071 * now we allocate the "special" VAs which are used for tmp mappings
1072 * by the pmap (and other modules). we allocate the VAs by advancing
1073 * virtual_avail (note that there are no pages mapped at these VAs).
1074 * we find the PTE that maps the allocated VA via the linear PTE
1075 * mapping.
1076 */
1077
1078 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1079
1080 csrcp = virtual_avail; csrc_pte = pte;
1081 virtual_avail += PAGE_SIZE; pte++;
1082
1083 cdstp = virtual_avail; cdst_pte = pte;
1084 virtual_avail += PAGE_SIZE; pte++;
1085
1086 memhook = (char *) virtual_avail; /* don't need pte */
1087 virtual_avail += PAGE_SIZE; pte++;
1088
1089 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1090 virtual_avail += round_page(MSGBUFSIZE);
1091 pte += atop(round_page(MSGBUFSIZE));
1092
1093 /*
1094 * init the static-global locks and global lists.
1095 */
1096 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1097 simple_lock_init(&pvalloc_lock);
1098 simple_lock_init(&pmaps_lock);
1099 LIST_INIT(&pmaps);
1100 TAILQ_INIT(&pv_freepages);
1101 TAILQ_INIT(&pv_unusedpgs);
1102
1103 /*
1104 * initialize the pmap pool.
1105 */
1106
1107 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1108 &pool_allocator_nointr);
1109
1110 cpu_dcache_wbinv_all();
1111 }
1112
1113 /*
1114 * void pmap_init(void)
1115 *
1116 * Initialize the pmap module.
1117 * Called by vm_init() in vm/vm_init.c in order to initialise
1118 * any structures that the pmap system needs to map virtual memory.
1119 */
1120
1121 extern int physmem;
1122
1123 void
1124 pmap_init(void)
1125 {
1126
1127 /*
1128 * Set the available memory vars - These do not map to real memory
1129 * addresses and cannot as the physical memory is fragmented.
1130 * They are used by ps for %mem calculations.
1131 * One could argue whether this should be the entire memory or just
1132 * the memory that is useable in a user process.
1133 */
1134 avail_start = 0;
1135 avail_end = physmem * NBPG;
1136
1137 /*
1138 * now we need to free enough pv_entry structures to allow us to get
1139 * the kmem_map/kmem_object allocated and inited (done after this
1140 * function is finished). to do this we allocate one bootstrap page out
1141 * of kernel_map and use it to provide an initial pool of pv_entry
1142 * structures. we never free this page.
1143 */
1144
1145 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1146 if (pv_initpage == NULL)
1147 panic("pmap_init: pv_initpage");
1148 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1149 pv_nfpvents = 0;
1150 (void) pmap_add_pvpage(pv_initpage, FALSE);
1151
1152 pmap_initialized = TRUE;
1153
1154 /* Initialise our L1 page table queues and counters */
1155 SIMPLEQ_INIT(&l1pt_static_queue);
1156 l1pt_static_queue_count = 0;
1157 l1pt_static_create_count = 0;
1158 SIMPLEQ_INIT(&l1pt_queue);
1159 l1pt_queue_count = 0;
1160 l1pt_create_count = 0;
1161 l1pt_reuse_count = 0;
1162 }
1163
1164 /*
1165 * pmap_postinit()
1166 *
1167 * This routine is called after the vm and kmem subsystems have been
1168 * initialised. This allows the pmap code to perform any initialisation
1169 * that can only be done one the memory allocation is in place.
1170 */
1171
1172 void
1173 pmap_postinit(void)
1174 {
1175 int loop;
1176 struct l1pt *pt;
1177
1178 #ifdef PMAP_STATIC_L1S
1179 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1180 #else /* PMAP_STATIC_L1S */
1181 for (loop = 0; loop < max_processes; ++loop) {
1182 #endif /* PMAP_STATIC_L1S */
1183 /* Allocate a L1 page table */
1184 pt = pmap_alloc_l1pt();
1185 if (!pt)
1186 panic("Cannot allocate static L1 page tables\n");
1187
1188 /* Clean it */
1189 bzero((void *)pt->pt_va, PD_SIZE);
1190 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1191 /* Add the page table to the queue */
1192 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1193 ++l1pt_static_queue_count;
1194 ++l1pt_static_create_count;
1195 }
1196 }
1197
1198
1199 /*
1200 * Create and return a physical map.
1201 *
1202 * If the size specified for the map is zero, the map is an actual physical
1203 * map, and may be referenced by the hardware.
1204 *
1205 * If the size specified is non-zero, the map will be used in software only,
1206 * and is bounded by that size.
1207 */
1208
1209 pmap_t
1210 pmap_create(void)
1211 {
1212 struct pmap *pmap;
1213
1214 /*
1215 * Fetch pmap entry from the pool
1216 */
1217
1218 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1219 /* XXX is this really needed! */
1220 memset(pmap, 0, sizeof(*pmap));
1221
1222 simple_lock_init(&pmap->pm_obj.vmobjlock);
1223 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1224 TAILQ_INIT(&pmap->pm_obj.memq);
1225 pmap->pm_obj.uo_npages = 0;
1226 pmap->pm_obj.uo_refs = 1;
1227 pmap->pm_stats.wired_count = 0;
1228 pmap->pm_stats.resident_count = 1;
1229 pmap->pm_ptphint = NULL;
1230
1231 /* Now init the machine part of the pmap */
1232 pmap_pinit(pmap);
1233 return(pmap);
1234 }
1235
1236 /*
1237 * pmap_alloc_l1pt()
1238 *
1239 * This routine allocates physical and virtual memory for a L1 page table
1240 * and wires it.
1241 * A l1pt structure is returned to describe the allocated page table.
1242 *
1243 * This routine is allowed to fail if the required memory cannot be allocated.
1244 * In this case NULL is returned.
1245 */
1246
1247 struct l1pt *
1248 pmap_alloc_l1pt(void)
1249 {
1250 paddr_t pa;
1251 vaddr_t va;
1252 struct l1pt *pt;
1253 int error;
1254 struct vm_page *m;
1255 pt_entry_t *ptes;
1256
1257 /* Allocate virtual address space for the L1 page table */
1258 va = uvm_km_valloc(kernel_map, PD_SIZE);
1259 if (va == 0) {
1260 #ifdef DIAGNOSTIC
1261 PDEBUG(0,
1262 printf("pmap: Cannot allocate pageable memory for L1\n"));
1263 #endif /* DIAGNOSTIC */
1264 return(NULL);
1265 }
1266
1267 /* Allocate memory for the l1pt structure */
1268 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1269
1270 /*
1271 * Allocate pages from the VM system.
1272 */
1273 TAILQ_INIT(&pt->pt_plist);
1274 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1275 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1276 if (error) {
1277 #ifdef DIAGNOSTIC
1278 PDEBUG(0,
1279 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1280 error));
1281 #endif /* DIAGNOSTIC */
1282 /* Release the resources we already have claimed */
1283 free(pt, M_VMPMAP);
1284 uvm_km_free(kernel_map, va, PD_SIZE);
1285 return(NULL);
1286 }
1287
1288 /* Map our physical pages into our virtual space */
1289 pt->pt_va = va;
1290 m = TAILQ_FIRST(&pt->pt_plist);
1291 ptes = pmap_map_ptes(pmap_kernel());
1292 while (m && va < (pt->pt_va + PD_SIZE)) {
1293 pa = VM_PAGE_TO_PHYS(m);
1294
1295 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1296
1297 /* Revoke cacheability and bufferability */
1298 /* XXX should be done better than this */
1299 ptes[arm_btop(va)] &= ~(PT_C | PT_B);
1300
1301 va += NBPG;
1302 m = m->pageq.tqe_next;
1303 }
1304 pmap_unmap_ptes(pmap_kernel());
1305 pmap_update(pmap_kernel());
1306
1307 #ifdef DIAGNOSTIC
1308 if (m)
1309 panic("pmap_alloc_l1pt: pglist not empty\n");
1310 #endif /* DIAGNOSTIC */
1311
1312 pt->pt_flags = 0;
1313 return(pt);
1314 }
1315
1316 /*
1317 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1318 */
1319 static void
1320 pmap_free_l1pt(struct l1pt *pt)
1321 {
1322 /* Separate the physical memory for the virtual space */
1323 pmap_kremove(pt->pt_va, PD_SIZE);
1324 pmap_update(pmap_kernel());
1325
1326 /* Return the physical memory */
1327 uvm_pglistfree(&pt->pt_plist);
1328
1329 /* Free the virtual space */
1330 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1331
1332 /* Free the l1pt structure */
1333 free(pt, M_VMPMAP);
1334 }
1335
1336 /*
1337 * Allocate a page directory.
1338 * This routine will either allocate a new page directory from the pool
1339 * of L1 page tables currently held by the kernel or it will allocate
1340 * a new one via pmap_alloc_l1pt().
1341 * It will then initialise the l1 page table for use.
1342 *
1343 * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
1344 */
1345 static int
1346 pmap_allocpagedir(struct pmap *pmap)
1347 {
1348 paddr_t pa;
1349 struct l1pt *pt;
1350 pt_entry_t *pte;
1351
1352 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1353
1354 /* Do we have any spare L1's lying around ? */
1355 if (l1pt_static_queue_count) {
1356 --l1pt_static_queue_count;
1357 pt = l1pt_static_queue.sqh_first;
1358 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1359 } else if (l1pt_queue_count) {
1360 --l1pt_queue_count;
1361 pt = l1pt_queue.sqh_first;
1362 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1363 ++l1pt_reuse_count;
1364 } else {
1365 pt = pmap_alloc_l1pt();
1366 if (!pt)
1367 return(ENOMEM);
1368 ++l1pt_create_count;
1369 }
1370
1371 /* Store the pointer to the l1 descriptor in the pmap. */
1372 pmap->pm_l1pt = pt;
1373
1374 /* Get the physical address of the start of the l1 */
1375 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1376
1377 /* Store the virtual address of the l1 in the pmap. */
1378 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1379
1380 /* Clean the L1 if it is dirty */
1381 if (!(pt->pt_flags & PTFLAG_CLEAN))
1382 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1383
1384 /* Allocate a page table to map all the page tables for this pmap */
1385
1386 #ifdef DIAGNOSTIC
1387 if (pmap->pm_vptpt) {
1388 /* XXX What if we have one already ? */
1389 panic("pmap_allocpagedir: have pt already\n");
1390 }
1391 #endif /* DIAGNOSTIC */
1392 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1393 if (pmap->pm_vptpt == 0) {
1394 pmap_freepagedir(pmap);
1395 return(ENOMEM);
1396 }
1397
1398 /* need to lock this all up for growkernel */
1399 simple_lock(&pmaps_lock);
1400 /* wish we didn't have to keep this locked... */
1401
1402 /* Duplicate the kernel mappings. */
1403 bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1404 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1405 KERNEL_PD_SIZE);
1406
1407 pte = vtopte(pmap->pm_vptpt);
1408 pmap->pm_pptpt = l2pte_pa(*pte);
1409
1410 /* Revoke cacheability and bufferability */
1411 /* XXX should be done better than this */
1412 *pte &= ~(PT_C | PT_B);
1413
1414 /* Wire in this page table */
1415 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1416
1417 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1418
1419 /*
1420 * Map the kernel page tables into the new PT map.
1421 */
1422 bcopy((char *)(PTE_BASE
1423 + (PTE_BASE >> (PGSHIFT - 2))
1424 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1425 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1426 (KERNEL_PD_SIZE >> 2));
1427
1428 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1429 simple_unlock(&pmaps_lock);
1430
1431 return(0);
1432 }
1433
1434
1435 /*
1436 * Initialize a preallocated and zeroed pmap structure,
1437 * such as one in a vmspace structure.
1438 */
1439
1440 void
1441 pmap_pinit(struct pmap *pmap)
1442 {
1443 int backoff = 6;
1444 int retry = 10;
1445
1446 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1447
1448 /* Keep looping until we succeed in allocating a page directory */
1449 while (pmap_allocpagedir(pmap) != 0) {
1450 /*
1451 * Ok we failed to allocate a suitable block of memory for an
1452 * L1 page table. This means that either:
1453 * 1. 16KB of virtual address space could not be allocated
1454 * 2. 16KB of physically contiguous memory on a 16KB boundary
1455 * could not be allocated.
1456 *
1457 * Since we cannot fail we will sleep for a while and try
1458 * again.
1459 *
1460 * Searching for a suitable L1 PT is expensive:
1461 * to avoid hogging the system when memory is really
1462 * scarce, use an exponential back-off so that
1463 * eventually we won't retry more than once every 8
1464 * seconds. This should allow other processes to run
1465 * to completion and free up resources.
1466 */
1467 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1468 NULL);
1469 if (--retry == 0) {
1470 retry = 10;
1471 if (backoff)
1472 --backoff;
1473 }
1474 }
1475
1476 if (vector_page < KERNEL_BASE) {
1477 /*
1478 * Map the vector page. This will also allocate and map
1479 * an L2 table for it.
1480 */
1481 pmap_enter(pmap, vector_page, systempage.pv_pa,
1482 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1483 pmap_update(pmap);
1484 }
1485 }
1486
1487
1488 void
1489 pmap_freepagedir(struct pmap *pmap)
1490 {
1491 /* Free the memory used for the page table mapping */
1492 if (pmap->pm_vptpt != 0)
1493 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1494
1495 /* junk the L1 page table */
1496 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1497 /* Add the page table to the queue */
1498 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1499 ++l1pt_static_queue_count;
1500 } else if (l1pt_queue_count < 8) {
1501 /* Add the page table to the queue */
1502 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1503 ++l1pt_queue_count;
1504 } else
1505 pmap_free_l1pt(pmap->pm_l1pt);
1506 }
1507
1508
1509 /*
1510 * Retire the given physical map from service.
1511 * Should only be called if the map contains no valid mappings.
1512 */
1513
1514 void
1515 pmap_destroy(struct pmap *pmap)
1516 {
1517 struct vm_page *page;
1518 int count;
1519
1520 if (pmap == NULL)
1521 return;
1522
1523 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1524
1525 /*
1526 * Drop reference count
1527 */
1528 simple_lock(&pmap->pm_obj.vmobjlock);
1529 count = --pmap->pm_obj.uo_refs;
1530 simple_unlock(&pmap->pm_obj.vmobjlock);
1531 if (count > 0) {
1532 return;
1533 }
1534
1535 /*
1536 * reference count is zero, free pmap resources and then free pmap.
1537 */
1538
1539 /*
1540 * remove it from global list of pmaps
1541 */
1542
1543 simple_lock(&pmaps_lock);
1544 LIST_REMOVE(pmap, pm_list);
1545 simple_unlock(&pmaps_lock);
1546
1547 if (vector_page < KERNEL_BASE) {
1548 /* Remove the vector page mapping */
1549 pmap_remove(pmap, vector_page, vector_page + NBPG);
1550 pmap_update(pmap);
1551 }
1552
1553 /*
1554 * Free any page tables still mapped
1555 * This is only temporay until pmap_enter can count the number
1556 * of mappings made in a page table. Then pmap_remove() can
1557 * reduce the count and free the pagetable when the count
1558 * reaches zero. Note that entries in this list should match the
1559 * contents of the ptpt, however this is faster than walking a 1024
1560 * entries looking for pt's
1561 * taken from i386 pmap.c
1562 */
1563 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1564 KASSERT((page->flags & PG_BUSY) == 0);
1565 page->wire_count = 0;
1566 uvm_pagefree(page);
1567 }
1568
1569 /* Free the page dir */
1570 pmap_freepagedir(pmap);
1571
1572 /* return the pmap to the pool */
1573 pool_put(&pmap_pmap_pool, pmap);
1574 }
1575
1576
1577 /*
1578 * void pmap_reference(struct pmap *pmap)
1579 *
1580 * Add a reference to the specified pmap.
1581 */
1582
1583 void
1584 pmap_reference(struct pmap *pmap)
1585 {
1586 if (pmap == NULL)
1587 return;
1588
1589 simple_lock(&pmap->pm_lock);
1590 pmap->pm_obj.uo_refs++;
1591 simple_unlock(&pmap->pm_lock);
1592 }
1593
1594 /*
1595 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1596 *
1597 * Return the start and end addresses of the kernel's virtual space.
1598 * These values are setup in pmap_bootstrap and are updated as pages
1599 * are allocated.
1600 */
1601
1602 void
1603 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1604 {
1605 *start = virtual_avail;
1606 *end = virtual_end;
1607 }
1608
1609 /*
1610 * Activate the address space for the specified process. If the process
1611 * is the current process, load the new MMU context.
1612 */
1613 void
1614 pmap_activate(struct proc *p)
1615 {
1616 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1617 struct pcb *pcb = &p->p_addr->u_pcb;
1618
1619 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1620 (paddr_t *)&pcb->pcb_pagedir);
1621
1622 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1623 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1624
1625 if (p == curproc) {
1626 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1627 setttb((u_int)pcb->pcb_pagedir);
1628 }
1629 }
1630
1631 /*
1632 * Deactivate the address space of the specified process.
1633 */
1634 void
1635 pmap_deactivate(struct proc *p)
1636 {
1637 }
1638
1639 /*
1640 * Perform any deferred pmap operations.
1641 */
1642 void
1643 pmap_update(struct pmap *pmap)
1644 {
1645
1646 /*
1647 * We haven't deferred any pmap operations, but we do need to
1648 * make sure TLB/cache operations have completed.
1649 */
1650 cpu_cpwait();
1651 }
1652
1653 /*
1654 * pmap_clean_page()
1655 *
1656 * This is a local function used to work out the best strategy to clean
1657 * a single page referenced by its entry in the PV table. It's used by
1658 * pmap_copy_page, pmap_zero page and maybe some others later on.
1659 *
1660 * Its policy is effectively:
1661 * o If there are no mappings, we don't bother doing anything with the cache.
1662 * o If there is one mapping, we clean just that page.
1663 * o If there are multiple mappings, we clean the entire cache.
1664 *
1665 * So that some functions can be further optimised, it returns 0 if it didn't
1666 * clean the entire cache, or 1 if it did.
1667 *
1668 * XXX One bug in this routine is that if the pv_entry has a single page
1669 * mapped at 0x00000000 a whole cache clean will be performed rather than
1670 * just the 1 page. Since this should not occur in everyday use and if it does
1671 * it will just result in not the most efficient clean for the page.
1672 */
1673 static int
1674 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1675 {
1676 struct pmap *pmap;
1677 struct pv_entry *npv;
1678 int cache_needs_cleaning = 0;
1679 vaddr_t page_to_clean = 0;
1680
1681 if (pv == NULL)
1682 /* nothing mapped in so nothing to flush */
1683 return (0);
1684
1685 /* Since we flush the cache each time we change curproc, we
1686 * only need to flush the page if it is in the current pmap.
1687 */
1688 if (curproc)
1689 pmap = curproc->p_vmspace->vm_map.pmap;
1690 else
1691 pmap = pmap_kernel();
1692
1693 for (npv = pv; npv; npv = npv->pv_next) {
1694 if (npv->pv_pmap == pmap) {
1695 /* The page is mapped non-cacheable in
1696 * this map. No need to flush the cache.
1697 */
1698 if (npv->pv_flags & PVF_NC) {
1699 #ifdef DIAGNOSTIC
1700 if (cache_needs_cleaning)
1701 panic("pmap_clean_page: "
1702 "cache inconsistency");
1703 #endif
1704 break;
1705 }
1706 #if 0
1707 /* This doesn't work, because pmap_protect
1708 doesn't flush changes on pages that it
1709 has write-protected. */
1710
1711 /* If the page is not writable and this
1712 is the source, then there is no need
1713 to flush it from the cache. */
1714 else if (is_src && ! (npv->pv_flags & PVF_WRITE))
1715 continue;
1716 #endif
1717 if (cache_needs_cleaning){
1718 page_to_clean = 0;
1719 break;
1720 }
1721 else
1722 page_to_clean = npv->pv_va;
1723 cache_needs_cleaning = 1;
1724 }
1725 }
1726
1727 if (page_to_clean)
1728 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1729 else if (cache_needs_cleaning) {
1730 cpu_idcache_wbinv_all();
1731 return (1);
1732 }
1733 return (0);
1734 }
1735
1736 /*
1737 * pmap_zero_page()
1738 *
1739 * Zero a given physical page by mapping it at a page hook point.
1740 * In doing the zero page op, the page we zero is mapped cachable, as with
1741 * StrongARM accesses to non-cached pages are non-burst making writing
1742 * _any_ bulk data very slow.
1743 */
1744 void
1745 pmap_zero_page(paddr_t phys)
1746 {
1747 #ifdef DEBUG
1748 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1749
1750 if (pg->mdpage.pvh_list != NULL)
1751 panic("pmap_zero_page: page has mappings");
1752 #endif
1753
1754 /*
1755 * Hook in the page, zero it, and purge the cache for that
1756 * zeroed page. Invalidate the TLB as needed.
1757 */
1758 *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1759 cpu_tlb_flushD_SE(cdstp);
1760 cpu_cpwait();
1761 bzero_page(cdstp);
1762 cpu_dcache_wbinv_range(cdstp, NBPG);
1763 }
1764
1765 /* pmap_pageidlezero()
1766 *
1767 * The same as above, except that we assume that the page is not
1768 * mapped. This means we never have to flush the cache first. Called
1769 * from the idle loop.
1770 */
1771 boolean_t
1772 pmap_pageidlezero(paddr_t phys)
1773 {
1774 int i, *ptr;
1775 boolean_t rv = TRUE;
1776 #ifdef DEBUG
1777 struct vm_page *pg;
1778
1779 pg = PHYS_TO_VM_PAGE(phys);
1780 if (pg->mdpage.pvh_list != NULL)
1781 panic("pmap_pageidlezero: page has mappings");
1782 #endif
1783
1784 /*
1785 * Hook in the page, zero it, and purge the cache for that
1786 * zeroed page. Invalidate the TLB as needed.
1787 */
1788 *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1789 cpu_tlb_flushD_SE(cdstp);
1790 cpu_cpwait();
1791
1792 for (i = 0, ptr = (int *)cdstp;
1793 i < (NBPG / sizeof(int)); i++) {
1794 if (sched_whichqs != 0) {
1795 /*
1796 * A process has become ready. Abort now,
1797 * so we don't keep it waiting while we
1798 * do slow memory access to finish this
1799 * page.
1800 */
1801 rv = FALSE;
1802 break;
1803 }
1804 *ptr++ = 0;
1805 }
1806
1807 if (rv)
1808 /*
1809 * if we aborted we'll rezero this page again later so don't
1810 * purge it unless we finished it
1811 */
1812 cpu_dcache_wbinv_range(cdstp, NBPG);
1813 return (rv);
1814 }
1815
1816 /*
1817 * pmap_copy_page()
1818 *
1819 * Copy one physical page into another, by mapping the pages into
1820 * hook points. The same comment regarding cachability as in
1821 * pmap_zero_page also applies here.
1822 */
1823 void
1824 pmap_copy_page(paddr_t src, paddr_t dst)
1825 {
1826 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1827 #ifdef DEBUG
1828 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1829
1830 if (dst_pg->mdpage.pvh_list != NULL)
1831 panic("pmap_copy_page: dst page has mappings");
1832 #endif
1833
1834 /*
1835 * Clean the source page. Hold the source page's lock for
1836 * the duration of the copy so that no other mappings can
1837 * be created while we have a potentially aliased mapping.
1838 */
1839 simple_lock(&src_pg->mdpage.pvh_slock);
1840 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1841
1842 /*
1843 * Map the pages into the page hook points, copy them, and purge
1844 * the cache for the appropriate page. Invalidate the TLB
1845 * as required.
1846 */
1847 *csrc_pte = L2_PTE(src & PG_FRAME, AP_KR);
1848 *cdst_pte = L2_PTE(dst & PG_FRAME, AP_KRW);
1849 cpu_tlb_flushD_SE(csrcp);
1850 cpu_tlb_flushD_SE(cdstp);
1851 cpu_cpwait();
1852 bcopy_page(csrcp, cdstp);
1853 cpu_dcache_inv_range(csrcp, NBPG);
1854 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1855 cpu_dcache_wbinv_range(cdstp, NBPG);
1856 }
1857
1858 #if 0
1859 void
1860 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1861 {
1862 pd_entry_t *pde;
1863 paddr_t pa;
1864 struct vm_page *m;
1865
1866 if (pmap == pmap_kernel())
1867 return;
1868
1869 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1870 pa = pmap_pte_pa(pde);
1871 m = PHYS_TO_VM_PAGE(pa);
1872 ++m->wire_count;
1873 #ifdef MYCROFT_HACK
1874 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1875 pmap, va, pde, pa, m, m->wire_count);
1876 #endif
1877 }
1878
1879 void
1880 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
1881 {
1882 pd_entry_t *pde;
1883 paddr_t pa;
1884 struct vm_page *m;
1885
1886 if (pmap == pmap_kernel())
1887 return;
1888
1889 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1890 pa = pmap_pte_pa(pde);
1891 m = PHYS_TO_VM_PAGE(pa);
1892 --m->wire_count;
1893 #ifdef MYCROFT_HACK
1894 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1895 pmap, va, pde, pa, m, m->wire_count);
1896 #endif
1897 if (m->wire_count == 0) {
1898 #ifdef MYCROFT_HACK
1899 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1900 pmap, va, pde, pa, m);
1901 #endif
1902 pmap_unmap_in_l1(pmap, va);
1903 uvm_pagefree(m);
1904 --pmap->pm_stats.resident_count;
1905 }
1906 }
1907 #else
1908 #define pmap_pte_addref(pmap, va)
1909 #define pmap_pte_delref(pmap, va)
1910 #endif
1911
1912 /*
1913 * Since we have a virtually indexed cache, we may need to inhibit caching if
1914 * there is more than one mapping and at least one of them is writable.
1915 * Since we purge the cache on every context switch, we only need to check for
1916 * other mappings within the same pmap, or kernel_pmap.
1917 * This function is also called when a page is unmapped, to possibly reenable
1918 * caching on any remaining mappings.
1919 *
1920 * The code implements the following logic, where:
1921 *
1922 * KW = # of kernel read/write pages
1923 * KR = # of kernel read only pages
1924 * UW = # of user read/write pages
1925 * UR = # of user read only pages
1926 * OW = # of user read/write pages in another pmap, then
1927 *
1928 * KC = kernel mapping is cacheable
1929 * UC = user mapping is cacheable
1930 *
1931 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1932 * +---------------------------------------------
1933 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
1934 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1935 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
1936 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1937 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1938 *
1939 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
1940 */
1941 __inline static void
1942 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
1943 boolean_t clear_cache)
1944 {
1945 if (pmap == pmap_kernel())
1946 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
1947 else
1948 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
1949 }
1950
1951 static void
1952 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
1953 boolean_t clear_cache)
1954 {
1955 int user_entries = 0;
1956 int user_writable = 0;
1957 int user_cacheable = 0;
1958 int kernel_entries = 0;
1959 int kernel_writable = 0;
1960 int kernel_cacheable = 0;
1961 struct pv_entry *pv;
1962 struct pmap *last_pmap = pmap;
1963
1964 #ifdef DIAGNOSTIC
1965 if (pmap != pmap_kernel())
1966 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
1967 #endif
1968
1969 /*
1970 * Pass one, see if there are both kernel and user pmaps for
1971 * this page. Calculate whether there are user-writable or
1972 * kernel-writable pages.
1973 */
1974 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
1975 if (pv->pv_pmap != pmap) {
1976 user_entries++;
1977 if (pv->pv_flags & PVF_WRITE)
1978 user_writable++;
1979 if ((pv->pv_flags & PVF_NC) == 0)
1980 user_cacheable++;
1981 } else {
1982 kernel_entries++;
1983 if (pv->pv_flags & PVF_WRITE)
1984 kernel_writable++;
1985 if ((pv->pv_flags & PVF_NC) == 0)
1986 kernel_cacheable++;
1987 }
1988 }
1989
1990 /*
1991 * We know we have just been updating a kernel entry, so if
1992 * all user pages are already cacheable, then there is nothing
1993 * further to do.
1994 */
1995 if (kernel_entries == 0 &&
1996 user_cacheable == user_entries)
1997 return;
1998
1999 if (user_entries) {
2000 /*
2001 * Scan over the list again, for each entry, if it
2002 * might not be set correctly, call pmap_vac_me_user
2003 * to recalculate the settings.
2004 */
2005 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2006 /*
2007 * We know kernel mappings will get set
2008 * correctly in other calls. We also know
2009 * that if the pmap is the same as last_pmap
2010 * then we've just handled this entry.
2011 */
2012 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2013 continue;
2014 /*
2015 * If there are kernel entries and this page
2016 * is writable but non-cacheable, then we can
2017 * skip this entry also.
2018 */
2019 if (kernel_entries > 0 &&
2020 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2021 (PVF_NC | PVF_WRITE))
2022 continue;
2023 /*
2024 * Similarly if there are no kernel-writable
2025 * entries and the page is already
2026 * read-only/cacheable.
2027 */
2028 if (kernel_writable == 0 &&
2029 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2030 continue;
2031 /*
2032 * For some of the remaining cases, we know
2033 * that we must recalculate, but for others we
2034 * can't tell if they are correct or not, so
2035 * we recalculate anyway.
2036 */
2037 pmap_unmap_ptes(last_pmap);
2038 last_pmap = pv->pv_pmap;
2039 ptes = pmap_map_ptes(last_pmap);
2040 pmap_vac_me_user(last_pmap, pg, ptes,
2041 pmap_is_curpmap(last_pmap));
2042 }
2043 /* Restore the pte mapping that was passed to us. */
2044 if (last_pmap != pmap) {
2045 pmap_unmap_ptes(last_pmap);
2046 ptes = pmap_map_ptes(pmap);
2047 }
2048 if (kernel_entries == 0)
2049 return;
2050 }
2051
2052 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2053 return;
2054 }
2055
2056 static void
2057 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2058 boolean_t clear_cache)
2059 {
2060 struct pmap *kpmap = pmap_kernel();
2061 struct pv_entry *pv, *npv;
2062 int entries = 0;
2063 int writable = 0;
2064 int cacheable_entries = 0;
2065 int kern_cacheable = 0;
2066 int other_writable = 0;
2067
2068 pv = pg->mdpage.pvh_list;
2069 KASSERT(ptes != NULL);
2070
2071 /*
2072 * Count mappings and writable mappings in this pmap.
2073 * Include kernel mappings as part of our own.
2074 * Keep a pointer to the first one.
2075 */
2076 for (npv = pv; npv; npv = npv->pv_next) {
2077 /* Count mappings in the same pmap */
2078 if (pmap == npv->pv_pmap ||
2079 kpmap == npv->pv_pmap) {
2080 if (entries++ == 0)
2081 pv = npv;
2082 /* Cacheable mappings */
2083 if ((npv->pv_flags & PVF_NC) == 0) {
2084 cacheable_entries++;
2085 if (kpmap == npv->pv_pmap)
2086 kern_cacheable++;
2087 }
2088 /* Writable mappings */
2089 if (npv->pv_flags & PVF_WRITE)
2090 ++writable;
2091 } else if (npv->pv_flags & PVF_WRITE)
2092 other_writable = 1;
2093 }
2094
2095 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2096 "writable %d cacheable %d %s\n", pmap, entries, writable,
2097 cacheable_entries, clear_cache ? "clean" : "no clean"));
2098
2099 /*
2100 * Enable or disable caching as necessary.
2101 * Note: the first entry might be part of the kernel pmap,
2102 * so we can't assume this is indicative of the state of the
2103 * other (maybe non-kpmap) entries.
2104 */
2105 if ((entries > 1 && writable) ||
2106 (entries > 0 && pmap == kpmap && other_writable)) {
2107 if (cacheable_entries == 0)
2108 return;
2109 for (npv = pv; npv; npv = npv->pv_next) {
2110 if ((pmap == npv->pv_pmap
2111 || kpmap == npv->pv_pmap) &&
2112 (npv->pv_flags & PVF_NC) == 0) {
2113 ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
2114 npv->pv_flags |= PVF_NC;
2115 /*
2116 * If this page needs flushing from the
2117 * cache, and we aren't going to do it
2118 * below, do it now.
2119 */
2120 if ((cacheable_entries < 4 &&
2121 (clear_cache || npv->pv_pmap == kpmap)) ||
2122 (npv->pv_pmap == kpmap &&
2123 !clear_cache && kern_cacheable < 4)) {
2124 cpu_idcache_wbinv_range(npv->pv_va,
2125 NBPG);
2126 cpu_tlb_flushID_SE(npv->pv_va);
2127 }
2128 }
2129 }
2130 if ((clear_cache && cacheable_entries >= 4) ||
2131 kern_cacheable >= 4) {
2132 cpu_idcache_wbinv_all();
2133 cpu_tlb_flushID();
2134 }
2135 cpu_cpwait();
2136 } else if (entries > 0) {
2137 /*
2138 * Turn cacheing back on for some pages. If it is a kernel
2139 * page, only do so if there are no other writable pages.
2140 */
2141 for (npv = pv; npv; npv = npv->pv_next) {
2142 if ((pmap == npv->pv_pmap ||
2143 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2144 (npv->pv_flags & PVF_NC)) {
2145 ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
2146 npv->pv_flags &= ~PVF_NC;
2147 }
2148 }
2149 }
2150 }
2151
2152 /*
2153 * pmap_remove()
2154 *
2155 * pmap_remove is responsible for nuking a number of mappings for a range
2156 * of virtual address space in the current pmap. To do this efficiently
2157 * is interesting, because in a number of cases a wide virtual address
2158 * range may be supplied that contains few actual mappings. So, the
2159 * optimisations are:
2160 * 1. Try and skip over hunks of address space for which an L1 entry
2161 * does not exist.
2162 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2163 * maybe do just a partial cache clean. This path of execution is
2164 * complicated by the fact that the cache must be flushed _before_
2165 * the PTE is nuked, being a VAC :-)
2166 * 3. Maybe later fast-case a single page, but I don't think this is
2167 * going to make _that_ much difference overall.
2168 */
2169
2170 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2171
2172 void
2173 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2174 {
2175 int cleanlist_idx = 0;
2176 struct pagelist {
2177 vaddr_t va;
2178 pt_entry_t *pte;
2179 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2180 pt_entry_t *pte = 0, *ptes;
2181 paddr_t pa;
2182 int pmap_active;
2183 struct vm_page *pg;
2184
2185 /* Exit quick if there is no pmap */
2186 if (!pmap)
2187 return;
2188
2189 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2190
2191 sva &= PG_FRAME;
2192 eva &= PG_FRAME;
2193
2194 /*
2195 * we lock in the pmap => vm_page direction
2196 */
2197 PMAP_MAP_TO_HEAD_LOCK();
2198
2199 ptes = pmap_map_ptes(pmap);
2200 /* Get a page table pointer */
2201 while (sva < eva) {
2202 if (pmap_pde_page(pmap_pde(pmap, sva)))
2203 break;
2204 sva = (sva & PD_MASK) + NBPD;
2205 }
2206
2207 pte = &ptes[arm_btop(sva)];
2208 /* Note if the pmap is active thus require cache and tlb cleans */
2209 pmap_active = pmap_is_curpmap(pmap);
2210
2211 /* Now loop along */
2212 while (sva < eva) {
2213 /* Check if we can move to the next PDE (l1 chunk) */
2214 if (!(sva & PT_MASK))
2215 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2216 sva += NBPD;
2217 pte += arm_btop(NBPD);
2218 continue;
2219 }
2220
2221 /* We've found a valid PTE, so this page of PTEs has to go. */
2222 if (pmap_pte_v(pte)) {
2223 /* Update statistics */
2224 --pmap->pm_stats.resident_count;
2225
2226 /*
2227 * Add this page to our cache remove list, if we can.
2228 * If, however the cache remove list is totally full,
2229 * then do a complete cache invalidation taking note
2230 * to backtrack the PTE table beforehand, and ignore
2231 * the lists in future because there's no longer any
2232 * point in bothering with them (we've paid the
2233 * penalty, so will carry on unhindered). Otherwise,
2234 * when we fall out, we just clean the list.
2235 */
2236 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2237 pa = pmap_pte_pa(pte);
2238
2239 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2240 /* Add to the clean list. */
2241 cleanlist[cleanlist_idx].pte = pte;
2242 cleanlist[cleanlist_idx].va = sva;
2243 cleanlist_idx++;
2244 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2245 int cnt;
2246
2247 /* Nuke everything if needed. */
2248 if (pmap_active) {
2249 cpu_idcache_wbinv_all();
2250 cpu_tlb_flushID();
2251 }
2252
2253 /*
2254 * Roll back the previous PTE list,
2255 * and zero out the current PTE.
2256 */
2257 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2258 *cleanlist[cnt].pte = 0;
2259 pmap_pte_delref(pmap, cleanlist[cnt].va);
2260 }
2261 *pte = 0;
2262 pmap_pte_delref(pmap, sva);
2263 cleanlist_idx++;
2264 } else {
2265 /*
2266 * We've already nuked the cache and
2267 * TLB, so just carry on regardless,
2268 * and we won't need to do it again
2269 */
2270 *pte = 0;
2271 pmap_pte_delref(pmap, sva);
2272 }
2273
2274 /*
2275 * Update flags. In a number of circumstances,
2276 * we could cluster a lot of these and do a
2277 * number of sequential pages in one go.
2278 */
2279 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2280 struct pv_entry *pve;
2281 simple_lock(&pg->mdpage.pvh_slock);
2282 pve = pmap_remove_pv(pg, pmap, sva);
2283 pmap_free_pv(pmap, pve);
2284 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2285 simple_unlock(&pg->mdpage.pvh_slock);
2286 }
2287 }
2288 sva += NBPG;
2289 pte++;
2290 }
2291
2292 pmap_unmap_ptes(pmap);
2293 /*
2294 * Now, if we've fallen through down to here, chances are that there
2295 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2296 */
2297 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2298 u_int cnt;
2299
2300 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2301 if (pmap_active) {
2302 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2303 NBPG);
2304 *cleanlist[cnt].pte = 0;
2305 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2306 } else
2307 *cleanlist[cnt].pte = 0;
2308 pmap_pte_delref(pmap, cleanlist[cnt].va);
2309 }
2310 }
2311 PMAP_MAP_TO_HEAD_UNLOCK();
2312 }
2313
2314 /*
2315 * Routine: pmap_remove_all
2316 * Function:
2317 * Removes this physical page from
2318 * all physical maps in which it resides.
2319 * Reflects back modify bits to the pager.
2320 */
2321
2322 static void
2323 pmap_remove_all(struct vm_page *pg)
2324 {
2325 struct pv_entry *pv, *npv;
2326 struct pmap *pmap;
2327 pt_entry_t *pte, *ptes;
2328
2329 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2330
2331 /* set vm_page => pmap locking */
2332 PMAP_HEAD_TO_MAP_LOCK();
2333
2334 simple_lock(&pg->mdpage.pvh_slock);
2335
2336 pv = pg->mdpage.pvh_list;
2337 if (pv == NULL) {
2338 PDEBUG(0, printf("free page\n"));
2339 simple_unlock(&pg->mdpage.pvh_slock);
2340 PMAP_HEAD_TO_MAP_UNLOCK();
2341 return;
2342 }
2343 pmap_clean_page(pv, FALSE);
2344
2345 while (pv) {
2346 pmap = pv->pv_pmap;
2347 ptes = pmap_map_ptes(pmap);
2348 pte = &ptes[arm_btop(pv->pv_va)];
2349
2350 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2351 pv->pv_va, pv->pv_flags));
2352 #ifdef DEBUG
2353 if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
2354 !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
2355 panic("pmap_remove_all: bad mapping");
2356 #endif /* DEBUG */
2357
2358 /*
2359 * Update statistics
2360 */
2361 --pmap->pm_stats.resident_count;
2362
2363 /* Wired bit */
2364 if (pv->pv_flags & PVF_WIRED)
2365 --pmap->pm_stats.wired_count;
2366
2367 /*
2368 * Invalidate the PTEs.
2369 * XXX: should cluster them up and invalidate as many
2370 * as possible at once.
2371 */
2372
2373 #ifdef needednotdone
2374 reduce wiring count on page table pages as references drop
2375 #endif
2376
2377 *pte = 0;
2378 pmap_pte_delref(pmap, pv->pv_va);
2379
2380 npv = pv->pv_next;
2381 pmap_free_pv(pmap, pv);
2382 pv = npv;
2383 pmap_unmap_ptes(pmap);
2384 }
2385 pg->mdpage.pvh_list = NULL;
2386 simple_unlock(&pg->mdpage.pvh_slock);
2387 PMAP_HEAD_TO_MAP_UNLOCK();
2388
2389 PDEBUG(0, printf("done\n"));
2390 cpu_tlb_flushID();
2391 cpu_cpwait();
2392 }
2393
2394
2395 /*
2396 * Set the physical protection on the specified range of this map as requested.
2397 */
2398
2399 void
2400 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2401 {
2402 pt_entry_t *pte = NULL, *ptes;
2403 struct vm_page *pg;
2404 int armprot;
2405 int flush = 0;
2406 paddr_t pa;
2407
2408 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2409 pmap, sva, eva, prot));
2410
2411 if (~prot & VM_PROT_READ) {
2412 /* Just remove the mappings. */
2413 pmap_remove(pmap, sva, eva);
2414 /* pmap_update not needed as it should be called by the caller
2415 * of pmap_protect */
2416 return;
2417 }
2418 if (prot & VM_PROT_WRITE) {
2419 /*
2420 * If this is a read->write transition, just ignore it and let
2421 * uvm_fault() take care of it later.
2422 */
2423 return;
2424 }
2425
2426 sva &= PG_FRAME;
2427 eva &= PG_FRAME;
2428
2429 /* Need to lock map->head */
2430 PMAP_MAP_TO_HEAD_LOCK();
2431
2432 ptes = pmap_map_ptes(pmap);
2433 /*
2434 * We need to acquire a pointer to a page table page before entering
2435 * the following loop.
2436 */
2437 while (sva < eva) {
2438 if (pmap_pde_page(pmap_pde(pmap, sva)))
2439 break;
2440 sva = (sva & PD_MASK) + NBPD;
2441 }
2442
2443 pte = &ptes[arm_btop(sva)];
2444
2445 while (sva < eva) {
2446 /* only check once in a while */
2447 if ((sva & PT_MASK) == 0) {
2448 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2449 /* We can race ahead here, to the next pde. */
2450 sva += NBPD;
2451 pte += arm_btop(NBPD);
2452 continue;
2453 }
2454 }
2455
2456 if (!pmap_pte_v(pte))
2457 goto next;
2458
2459 flush = 1;
2460
2461 armprot = 0;
2462 if (sva < VM_MAXUSER_ADDRESS)
2463 armprot |= PT_AP(AP_U);
2464 else if (sva < VM_MAX_ADDRESS)
2465 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2466 *pte = (*pte & 0xfffff00f) | armprot;
2467
2468 pa = pmap_pte_pa(pte);
2469
2470 /* Get the physical page index */
2471
2472 /* Clear write flag */
2473 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2474 simple_lock(&pg->mdpage.pvh_slock);
2475 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2476 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2477 simple_unlock(&pg->mdpage.pvh_slock);
2478 }
2479
2480 next:
2481 sva += NBPG;
2482 pte++;
2483 }
2484 pmap_unmap_ptes(pmap);
2485 PMAP_MAP_TO_HEAD_UNLOCK();
2486 if (flush)
2487 cpu_tlb_flushID();
2488 }
2489
2490 /*
2491 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2492 * int flags)
2493 *
2494 * Insert the given physical page (p) at
2495 * the specified virtual address (v) in the
2496 * target physical map with the protection requested.
2497 *
2498 * If specified, the page will be wired down, meaning
2499 * that the related pte can not be reclaimed.
2500 *
2501 * NB: This is the only routine which MAY NOT lazy-evaluate
2502 * or lose information. That is, this routine must actually
2503 * insert this page into the given map NOW.
2504 */
2505
2506 int
2507 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2508 int flags)
2509 {
2510 pt_entry_t *ptes, opte, npte;
2511 paddr_t opa;
2512 boolean_t wired = (flags & PMAP_WIRED) != 0;
2513 struct vm_page *pg;
2514 struct pv_entry *pve;
2515 int error, nflags;
2516
2517 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2518 va, pa, pmap, prot, wired));
2519
2520 #ifdef DIAGNOSTIC
2521 /* Valid address ? */
2522 if (va >= (pmap_curmaxkvaddr))
2523 panic("pmap_enter: too big");
2524 if (pmap != pmap_kernel() && va != 0) {
2525 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2526 panic("pmap_enter: kernel page in user map");
2527 } else {
2528 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2529 panic("pmap_enter: user page in kernel map");
2530 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2531 panic("pmap_enter: entering PT page");
2532 }
2533 #endif
2534 /*
2535 * Get a pointer to the page. Later on in this function, we
2536 * test for a managed page by checking pg != NULL.
2537 */
2538 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2539
2540 /* get lock */
2541 PMAP_MAP_TO_HEAD_LOCK();
2542
2543 /*
2544 * map the ptes. If there's not already an L2 table for this
2545 * address, allocate one.
2546 */
2547 ptes = pmap_map_ptes(pmap); /* locks pmap */
2548 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2549 struct vm_page *ptp;
2550
2551 /* kernel should be pre-grown */
2552 KASSERT(pmap != pmap_kernel());
2553
2554 /* if failure is allowed then don't try too hard */
2555 ptp = pmap_get_ptp(pmap, va & PD_MASK);
2556 if (ptp == NULL) {
2557 if (flags & PMAP_CANFAIL) {
2558 error = ENOMEM;
2559 goto out;
2560 }
2561 panic("pmap_enter: get ptp failed");
2562 }
2563 }
2564 opte = ptes[arm_btop(va)];
2565
2566 nflags = 0;
2567 if (prot & VM_PROT_WRITE)
2568 nflags |= PVF_WRITE;
2569 if (wired)
2570 nflags |= PVF_WIRED;
2571
2572 /* Is the pte valid ? If so then this page is already mapped */
2573 if (l2pte_valid(opte)) {
2574 /* Get the physical address of the current page mapped */
2575 opa = l2pte_pa(opte);
2576
2577 /* Are we mapping the same page ? */
2578 if (opa == pa) {
2579 /* Has the wiring changed ? */
2580 if (pg != NULL) {
2581 simple_lock(&pg->mdpage.pvh_slock);
2582 (void) pmap_modify_pv(pmap, va, pg,
2583 PVF_WRITE | PVF_WIRED, nflags);
2584 simple_unlock(&pg->mdpage.pvh_slock);
2585 }
2586 } else {
2587 struct vm_page *opg;
2588
2589 /* We are replacing the page with a new one. */
2590 cpu_idcache_wbinv_range(va, NBPG);
2591
2592 /*
2593 * If it is part of our managed memory then we
2594 * must remove it from the PV list
2595 */
2596 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2597 simple_lock(&opg->mdpage.pvh_slock);
2598 pve = pmap_remove_pv(opg, pmap, va);
2599 simple_unlock(&opg->mdpage.pvh_slock);
2600 } else {
2601 pve = NULL;
2602 }
2603
2604 goto enter;
2605 }
2606 } else {
2607 opa = 0;
2608 pve = NULL;
2609 pmap_pte_addref(pmap, va);
2610
2611 /* pte is not valid so we must be hooking in a new page */
2612 ++pmap->pm_stats.resident_count;
2613
2614 enter:
2615 /*
2616 * Enter on the PV list if part of our managed memory
2617 */
2618 if (pg != NULL) {
2619 if (pve == NULL) {
2620 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2621 if (pve == NULL) {
2622 if (flags & PMAP_CANFAIL) {
2623 error = ENOMEM;
2624 goto out;
2625 }
2626 panic("pmap_enter: no pv entries "
2627 "available");
2628 }
2629 }
2630 /* enter_pv locks pvh when adding */
2631 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2632 } else {
2633 if (pve != NULL)
2634 pmap_free_pv(pmap, pve);
2635 }
2636 }
2637
2638 /* Construct the pte, giving the correct access. */
2639 npte = (pa & PG_FRAME);
2640
2641 /* VA 0 is magic. */
2642 if (pmap != pmap_kernel() && va != vector_page)
2643 npte |= PT_AP(AP_U);
2644
2645 if (pg != NULL) {
2646 #ifdef DIAGNOSTIC
2647 if ((flags & VM_PROT_ALL) & ~prot)
2648 panic("pmap_enter: access_type exceeds prot");
2649 #endif
2650 npte |= pte_cache_mode;
2651 if (flags & VM_PROT_WRITE) {
2652 npte |= L2_SPAGE | PT_AP(AP_W);
2653 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2654 } else if (flags & VM_PROT_ALL) {
2655 npte |= L2_SPAGE;
2656 pg->mdpage.pvh_attrs |= PVF_REF;
2657 } else
2658 npte |= L2_INVAL;
2659 } else {
2660 if (prot & VM_PROT_WRITE)
2661 npte |= L2_SPAGE | PT_AP(AP_W);
2662 else if (prot & VM_PROT_ALL)
2663 npte |= L2_SPAGE;
2664 else
2665 npte |= L2_INVAL;
2666 }
2667
2668 ptes[arm_btop(va)] = npte;
2669
2670 if (pg != NULL) {
2671 simple_lock(&pg->mdpage.pvh_slock);
2672 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2673 simple_unlock(&pg->mdpage.pvh_slock);
2674 }
2675
2676 /* Better flush the TLB ... */
2677 cpu_tlb_flushID_SE(va);
2678 error = 0;
2679 out:
2680 pmap_unmap_ptes(pmap); /* unlocks pmap */
2681 PMAP_MAP_TO_HEAD_UNLOCK();
2682
2683 return error;
2684 }
2685
2686 /*
2687 * pmap_kenter_pa: enter a kernel mapping
2688 *
2689 * => no need to lock anything assume va is already allocated
2690 * => should be faster than normal pmap enter function
2691 */
2692 void
2693 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2694 {
2695 pt_entry_t *pte;
2696
2697 pte = vtopte(va);
2698 KASSERT(!pmap_pte_v(pte));
2699 *pte = L2_PTE(pa, AP_KRW);
2700 }
2701
2702 void
2703 pmap_kremove(vaddr_t va, vsize_t len)
2704 {
2705 pt_entry_t *pte;
2706
2707 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2708
2709 /*
2710 * We assume that we will only be called with small
2711 * regions of memory.
2712 */
2713
2714 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2715 pte = vtopte(va);
2716 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2717 *pte = 0;
2718 cpu_tlb_flushID_SE(va);
2719 }
2720 }
2721
2722 /*
2723 * pmap_page_protect:
2724 *
2725 * Lower the permission for all mappings to a given page.
2726 */
2727
2728 void
2729 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2730 {
2731
2732 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2733 VM_PAGE_TO_PHYS(pg), prot));
2734
2735 switch(prot) {
2736 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2737 case VM_PROT_READ|VM_PROT_WRITE:
2738 return;
2739
2740 case VM_PROT_READ:
2741 case VM_PROT_READ|VM_PROT_EXECUTE:
2742 pmap_clearbit(pg, PVF_WRITE);
2743 break;
2744
2745 default:
2746 pmap_remove_all(pg);
2747 break;
2748 }
2749 }
2750
2751
2752 /*
2753 * Routine: pmap_unwire
2754 * Function: Clear the wired attribute for a map/virtual-address
2755 * pair.
2756 * In/out conditions:
2757 * The mapping must already exist in the pmap.
2758 */
2759
2760 void
2761 pmap_unwire(struct pmap *pmap, vaddr_t va)
2762 {
2763 pt_entry_t *ptes;
2764 struct vm_page *pg;
2765 paddr_t pa;
2766
2767 PMAP_MAP_TO_HEAD_LOCK();
2768 ptes = pmap_map_ptes(pmap); /* locks pmap */
2769
2770 if (pmap_pde_v(pmap_pde(pmap, va))) {
2771 #ifdef DIAGNOSTIC
2772 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2773 panic("pmap_unwire: invalid L2 PTE");
2774 #endif
2775 /* Extract the physical address of the page */
2776 pa = l2pte_pa(ptes[arm_btop(va)]);
2777
2778 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2779 goto out;
2780
2781 /* Update the wired bit in the pv entry for this page. */
2782 simple_lock(&pg->mdpage.pvh_slock);
2783 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
2784 simple_unlock(&pg->mdpage.pvh_slock);
2785 }
2786 #ifdef DIAGNOSTIC
2787 else {
2788 panic("pmap_unwire: invalid L1 PTE");
2789 }
2790 #endif
2791 out:
2792 pmap_unmap_ptes(pmap); /* unlocks pmap */
2793 PMAP_MAP_TO_HEAD_UNLOCK();
2794 }
2795
2796 /*
2797 * Routine: pmap_extract
2798 * Function:
2799 * Extract the physical page address associated
2800 * with the given map/virtual_address pair.
2801 */
2802 boolean_t
2803 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2804 {
2805 pd_entry_t *pde;
2806 pt_entry_t *pte, *ptes;
2807 paddr_t pa;
2808 boolean_t rv = FALSE;
2809 int l1_ptype, l2_ptype;
2810
2811 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
2812
2813 /*
2814 * Get the pte for this virtual address.
2815 */
2816 pde = pmap_pde(pmap, va);
2817 ptes = pmap_map_ptes(pmap);
2818 pte = &ptes[arm_btop(va)];
2819
2820 l1_ptype = *pde & L1_MASK;
2821
2822 if (l1_ptype == L1_SECTION) {
2823 /* Extract the physical address from the pde */
2824 pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
2825 rv = TRUE;
2826 } else if (l1_ptype == L1_PAGE) {
2827
2828 l2_ptype = *pte & L2_MASK;
2829
2830 if (l2_ptype == L2_LPAGE) {
2831 /* Extract the physical address from the pte */
2832 pa = *pte & ~(L2_LPAGE_SIZE - 1);
2833 pa |= va & (L2_LPAGE_SIZE - 1);
2834 rv = TRUE;
2835 } else if (l2_ptype == L2_SPAGE) {
2836 /* Extract the physical address from the pte */
2837 pa = *pte & ~(L2_SPAGE_SIZE - 1);
2838 pa |= va & (L2_SPAGE_SIZE - 1);
2839 rv = TRUE;
2840 };
2841 };
2842 /* if `rv' is still false then it wasnt meant to be .. and return FALSE */
2843
2844 if (rv && (pap != NULL)) *pap = pa; /* only return when valid */
2845
2846 pmap_unmap_ptes(pmap);
2847 return (rv);
2848 }
2849
2850
2851 /*
2852 * pmap_copy:
2853 *
2854 * Copy the range specified by src_addr/len from the source map to the
2855 * range dst_addr/len in the destination map.
2856 *
2857 * This routine is only advisory and need not do anything.
2858 */
2859 /* Call deleted in <arm/arm32/pmap.h> */
2860
2861 #if defined(PMAP_DEBUG)
2862 void
2863 pmap_dump_pvlist(phys, m)
2864 vaddr_t phys;
2865 char *m;
2866 {
2867 struct vm_page *pg;
2868 struct pv_entry *pv;
2869
2870 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
2871 printf("INVALID PA\n");
2872 return;
2873 }
2874 simple_lock(&pg->mdpage.pvh_slock);
2875 printf("%s %08lx:", m, phys);
2876 if (pg->mdpage.pvh_list == NULL) {
2877 printf(" no mappings\n");
2878 return;
2879 }
2880
2881 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
2882 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
2883 pv->pv_va, pv->pv_flags);
2884
2885 printf("\n");
2886 simple_unlock(&pg->mdpage.pvh_slock);
2887 }
2888
2889 #endif /* PMAP_DEBUG */
2890
2891 static pt_entry_t *
2892 pmap_map_ptes(struct pmap *pmap)
2893 {
2894 struct proc *p;
2895
2896 /* the kernel's pmap is always accessible */
2897 if (pmap == pmap_kernel()) {
2898 return (pt_entry_t *)PTE_BASE;
2899 }
2900
2901 if (pmap_is_curpmap(pmap)) {
2902 simple_lock(&pmap->pm_obj.vmobjlock);
2903 return (pt_entry_t *)PTE_BASE;
2904 }
2905
2906 p = curproc;
2907 KDASSERT(p != NULL);
2908
2909 /* need to lock both curpmap and pmap: use ordered locking */
2910 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
2911 simple_lock(&pmap->pm_obj.vmobjlock);
2912 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2913 } else {
2914 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2915 simple_lock(&pmap->pm_obj.vmobjlock);
2916 }
2917
2918 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
2919 FALSE);
2920 cpu_tlb_flushD();
2921 cpu_cpwait();
2922 return (pt_entry_t *)APTE_BASE;
2923 }
2924
2925 /*
2926 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
2927 */
2928
2929 static void
2930 pmap_unmap_ptes(struct pmap *pmap)
2931 {
2932
2933 if (pmap == pmap_kernel()) {
2934 return;
2935 }
2936 if (pmap_is_curpmap(pmap)) {
2937 simple_unlock(&pmap->pm_obj.vmobjlock);
2938 } else {
2939 KDASSERT(curproc != NULL);
2940 simple_unlock(&pmap->pm_obj.vmobjlock);
2941 simple_unlock(
2942 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2943 }
2944 }
2945
2946 /*
2947 * Modify pte bits for all ptes corresponding to the given physical address.
2948 * We use `maskbits' rather than `clearbits' because we're always passing
2949 * constants and the latter would require an extra inversion at run-time.
2950 */
2951
2952 static void
2953 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2954 {
2955 struct pv_entry *pv;
2956 pt_entry_t *ptes;
2957 vaddr_t va;
2958 int tlbentry;
2959
2960 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
2961 VM_PAGE_TO_PHYS(pg), maskbits));
2962
2963 tlbentry = 0;
2964
2965 PMAP_HEAD_TO_MAP_LOCK();
2966 simple_lock(&pg->mdpage.pvh_slock);
2967
2968 /*
2969 * Clear saved attributes (modify, reference)
2970 */
2971 pg->mdpage.pvh_attrs &= ~maskbits;
2972
2973 if (pg->mdpage.pvh_list == NULL) {
2974 simple_unlock(&pg->mdpage.pvh_slock);
2975 PMAP_HEAD_TO_MAP_UNLOCK();
2976 return;
2977 }
2978
2979 /*
2980 * Loop over all current mappings setting/clearing as appropos
2981 */
2982 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2983 va = pv->pv_va;
2984 pv->pv_flags &= ~maskbits;
2985 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
2986 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
2987 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2988 if ((pv->pv_flags & PVF_NC)) {
2989 /*
2990 * Entry is not cacheable: reenable
2991 * the cache, nothing to flush
2992 *
2993 * Don't turn caching on again if this
2994 * is a modified emulation. This
2995 * would be inconsitent with the
2996 * settings created by
2997 * pmap_vac_me_harder().
2998 *
2999 * There's no need to call
3000 * pmap_vac_me_harder() here: all
3001 * pages are loosing their write
3002 * permission.
3003 *
3004 */
3005 if (maskbits & PVF_WRITE) {
3006 ptes[arm_btop(va)] |= pte_cache_mode;
3007 pv->pv_flags &= ~PVF_NC;
3008 }
3009 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3010 /*
3011 * Entry is cacheable: check if pmap is
3012 * current if it is flush it,
3013 * otherwise it won't be in the cache
3014 */
3015 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3016 }
3017
3018 /* make the pte read only */
3019 ptes[arm_btop(va)] &= ~PT_AP(AP_W);
3020 }
3021
3022 if (maskbits & PVF_REF)
3023 ptes[arm_btop(va)] =
3024 (ptes[arm_btop(va)] & ~L2_MASK) | L2_INVAL;
3025
3026 if (pmap_is_curpmap(pv->pv_pmap)) {
3027 /*
3028 * if we had cacheable pte's we'd clean the
3029 * pte out to memory here
3030 *
3031 * flush tlb entry as it's in the current pmap
3032 */
3033 cpu_tlb_flushID_SE(pv->pv_va);
3034 }
3035 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3036 }
3037 cpu_cpwait();
3038
3039 simple_unlock(&pg->mdpage.pvh_slock);
3040 PMAP_HEAD_TO_MAP_UNLOCK();
3041 }
3042
3043 /*
3044 * pmap_clear_modify:
3045 *
3046 * Clear the "modified" attribute for a page.
3047 */
3048 boolean_t
3049 pmap_clear_modify(struct vm_page *pg)
3050 {
3051 boolean_t rv;
3052
3053 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3054 rv = TRUE;
3055 pmap_clearbit(pg, PVF_MOD);
3056 } else
3057 rv = FALSE;
3058
3059 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3060 VM_PAGE_TO_PHYS(pg), rv));
3061
3062 return (rv);
3063 }
3064
3065 /*
3066 * pmap_clear_reference:
3067 *
3068 * Clear the "referenced" attribute for a page.
3069 */
3070 boolean_t
3071 pmap_clear_reference(struct vm_page *pg)
3072 {
3073 boolean_t rv;
3074
3075 if (pg->mdpage.pvh_attrs & PVF_REF) {
3076 rv = TRUE;
3077 pmap_clearbit(pg, PVF_REF);
3078 } else
3079 rv = FALSE;
3080
3081 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3082 VM_PAGE_TO_PHYS(pg), rv));
3083
3084 return (rv);
3085 }
3086
3087 /*
3088 * pmap_is_modified:
3089 *
3090 * Test if a page has the "modified" attribute.
3091 */
3092 /* See <arm/arm32/pmap.h> */
3093
3094 /*
3095 * pmap_is_referenced:
3096 *
3097 * Test if a page has the "referenced" attribute.
3098 */
3099 /* See <arm/arm32/pmap.h> */
3100
3101 int
3102 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3103 {
3104 pt_entry_t *ptes;
3105 struct vm_page *pg;
3106 paddr_t pa;
3107 u_int flags;
3108 int rv = 0;
3109
3110 PDEBUG(2, printf("pmap_modified_emulation\n"));
3111
3112 PMAP_MAP_TO_HEAD_LOCK();
3113 ptes = pmap_map_ptes(pmap); /* locks pmap */
3114
3115 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3116 PDEBUG(2, printf("L1 PTE invalid\n"));
3117 goto out;
3118 }
3119
3120 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3121
3122 /* Check for a invalid pte */
3123 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3124 goto out;
3125
3126 /* This can happen if user code tries to access kernel memory. */
3127 if ((ptes[arm_btop(va)] & PT_AP(AP_W)) != 0)
3128 goto out;
3129
3130 /* Extract the physical address of the page */
3131 pa = l2pte_pa(ptes[arm_btop(va)]);
3132 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3133 goto out;
3134
3135 /* Get the current flags for this page. */
3136 simple_lock(&pg->mdpage.pvh_slock);
3137
3138 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3139 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3140
3141 /*
3142 * Do the flags say this page is writable ? If not then it is a
3143 * genuine write fault. If yes then the write fault is our fault
3144 * as we did not reflect the write access in the PTE. Now we know
3145 * a write has occurred we can correct this and also set the
3146 * modified bit
3147 */
3148 if (~flags & PVF_WRITE) {
3149 simple_unlock(&pg->mdpage.pvh_slock);
3150 goto out;
3151 }
3152
3153 PDEBUG(0,
3154 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3155 va, ptes[arm_btop(va)]));
3156 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3157
3158 /*
3159 * Re-enable write permissions for the page. No need to call
3160 * pmap_vac_me_harder(), since this is just a
3161 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3162 * We've already set the cacheable bits based on the assumption
3163 * that we can write to this page.
3164 */
3165 ptes[arm_btop(va)] =
3166 (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3167 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3168
3169 simple_unlock(&pg->mdpage.pvh_slock);
3170
3171 cpu_tlb_flushID_SE(va);
3172 cpu_cpwait();
3173 rv = 1;
3174 out:
3175 pmap_unmap_ptes(pmap); /* unlocks pmap */
3176 PMAP_MAP_TO_HEAD_UNLOCK();
3177 return (rv);
3178 }
3179
3180 int
3181 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3182 {
3183 pt_entry_t *ptes;
3184 struct vm_page *pg;
3185 paddr_t pa;
3186 int rv = 0;
3187
3188 PDEBUG(2, printf("pmap_handled_emulation\n"));
3189
3190 PMAP_MAP_TO_HEAD_LOCK();
3191 ptes = pmap_map_ptes(pmap); /* locks pmap */
3192
3193 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3194 PDEBUG(2, printf("L1 PTE invalid\n"));
3195 goto out;
3196 }
3197
3198 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3199
3200 /* Check for invalid pte */
3201 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3202 goto out;
3203
3204 /* This can happen if user code tries to access kernel memory. */
3205 if ((ptes[arm_btop(va)] & L2_MASK) != L2_INVAL)
3206 goto out;
3207
3208 /* Extract the physical address of the page */
3209 pa = l2pte_pa(ptes[arm_btop(va)]);
3210 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3211 goto out;
3212
3213 simple_lock(&pg->mdpage.pvh_slock);
3214
3215 /*
3216 * Ok we just enable the pte and mark the attibs as handled
3217 * XXX Should we traverse the PV list and enable all PTEs?
3218 */
3219 PDEBUG(0,
3220 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3221 va, ptes[arm_btop(va)]));
3222 pg->mdpage.pvh_attrs |= PVF_REF;
3223
3224 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE;
3225 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3226
3227 simple_unlock(&pg->mdpage.pvh_slock);
3228
3229 cpu_tlb_flushID_SE(va);
3230 cpu_cpwait();
3231 rv = 1;
3232 out:
3233 pmap_unmap_ptes(pmap); /* unlocks pmap */
3234 PMAP_MAP_TO_HEAD_UNLOCK();
3235 return (rv);
3236 }
3237
3238 /*
3239 * pmap_collect: free resources held by a pmap
3240 *
3241 * => optional function.
3242 * => called when a process is swapped out to free memory.
3243 */
3244
3245 void
3246 pmap_collect(struct pmap *pmap)
3247 {
3248 }
3249
3250 /*
3251 * Routine: pmap_procwr
3252 *
3253 * Function:
3254 * Synchronize caches corresponding to [addr, addr+len) in p.
3255 *
3256 */
3257 void
3258 pmap_procwr(struct proc *p, vaddr_t va, int len)
3259 {
3260 /* We only need to do anything if it is the current process. */
3261 if (p == curproc)
3262 cpu_icache_sync_range(va, len);
3263 }
3264 /*
3265 * PTP functions
3266 */
3267
3268 /*
3269 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3270 *
3271 * => pmap should NOT be pmap_kernel()
3272 * => pmap should be locked
3273 */
3274
3275 static struct vm_page *
3276 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3277 {
3278 struct vm_page *ptp;
3279
3280 if (pmap_pde_page(pmap_pde(pmap, va))) {
3281
3282 /* valid... check hint (saves us a PA->PG lookup) */
3283 if (pmap->pm_ptphint &&
3284 (pmap->pm_pdir[pmap_pdei(va)] & PG_FRAME) ==
3285 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3286 return (pmap->pm_ptphint);
3287 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3288 #ifdef DIAGNOSTIC
3289 if (ptp == NULL)
3290 panic("pmap_get_ptp: unmanaged user PTP");
3291 #endif
3292 pmap->pm_ptphint = ptp;
3293 return(ptp);
3294 }
3295
3296 /* allocate a new PTP (updates ptphint) */
3297 return(pmap_alloc_ptp(pmap, va));
3298 }
3299
3300 /*
3301 * pmap_alloc_ptp: allocate a PTP for a PMAP
3302 *
3303 * => pmap should already be locked by caller
3304 * => we use the ptp's wire_count to count the number of active mappings
3305 * in the PTP (we start it at one to prevent any chance this PTP
3306 * will ever leak onto the active/inactive queues)
3307 */
3308
3309 /*__inline */ static struct vm_page *
3310 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3311 {
3312 struct vm_page *ptp;
3313
3314 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3315 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3316 if (ptp == NULL)
3317 return (NULL);
3318
3319 /* got one! */
3320 ptp->flags &= ~PG_BUSY; /* never busy */
3321 ptp->wire_count = 1; /* no mappings yet */
3322 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3323 pmap->pm_stats.resident_count++; /* count PTP as resident */
3324 pmap->pm_ptphint = ptp;
3325 return (ptp);
3326 }
3327
3328 vaddr_t
3329 pmap_growkernel(vaddr_t maxkvaddr)
3330 {
3331 struct pmap *kpm = pmap_kernel(), *pm;
3332 int s;
3333 paddr_t ptaddr;
3334 struct vm_page *ptp;
3335
3336 if (maxkvaddr <= pmap_curmaxkvaddr)
3337 goto out; /* we are OK */
3338 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3339 pmap_curmaxkvaddr, maxkvaddr));
3340
3341 /*
3342 * whoops! we need to add kernel PTPs
3343 */
3344
3345 s = splhigh(); /* to be safe */
3346 simple_lock(&kpm->pm_obj.vmobjlock);
3347 /* due to the way the arm pmap works we map 4MB at a time */
3348 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3349 pmap_curmaxkvaddr += 4 * NBPD) {
3350
3351 if (uvm.page_init_done == FALSE) {
3352
3353 /*
3354 * we're growing the kernel pmap early (from
3355 * uvm_pageboot_alloc()). this case must be
3356 * handled a little differently.
3357 */
3358
3359 if (uvm_page_physget(&ptaddr) == FALSE)
3360 panic("pmap_growkernel: out of memory");
3361 pmap_zero_page(ptaddr);
3362
3363 /* map this page in */
3364 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3365
3366 /* count PTP as resident */
3367 kpm->pm_stats.resident_count++;
3368 continue;
3369 }
3370
3371 /*
3372 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3373 * pmap_initialized == FALSE CASE! WE MAY BE
3374 * INVOKED WHILE pmap_init() IS RUNNING!
3375 */
3376
3377 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3378 panic("pmap_growkernel: alloc ptp failed");
3379
3380 /* distribute new kernel PTP to all active pmaps */
3381 simple_lock(&pmaps_lock);
3382 LIST_FOREACH(pm, &pmaps, pm_list) {
3383 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3384 VM_PAGE_TO_PHYS(ptp), TRUE);
3385 }
3386
3387 simple_unlock(&pmaps_lock);
3388 }
3389
3390 /*
3391 * flush out the cache, expensive but growkernel will happen so
3392 * rarely
3393 */
3394 cpu_tlb_flushD();
3395 cpu_cpwait();
3396
3397 simple_unlock(&kpm->pm_obj.vmobjlock);
3398 splx(s);
3399
3400 out:
3401 return (pmap_curmaxkvaddr);
3402 }
3403
3404 /************************ Utility routines ****************************/
3405
3406 /*
3407 * vector_page_setprot:
3408 *
3409 * Manipulate the protection of the vector page.
3410 */
3411 void
3412 vector_page_setprot(int prot)
3413 {
3414 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3415 pt_entry_t *pte;
3416
3417 pte = vtopte(vector_page);
3418
3419 *pte = (*pte & ~PT_AP(AP_KRW)) | PT_AP(ap);
3420 cpu_tlb_flushD_SE(vector_page);
3421 cpu_cpwait();
3422 }
3423
3424 /************************ Bootstrapping routines ****************************/
3425
3426 /*
3427 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3428 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3429 * find them as necessary.
3430 *
3431 * Note that the data on this list is not valid after initarm() returns.
3432 */
3433 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3434
3435 static vaddr_t
3436 kernel_pt_lookup(paddr_t pa)
3437 {
3438 pv_addr_t *pv;
3439
3440 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3441 if (pv->pv_pa == pa)
3442 return (pv->pv_va);
3443 }
3444 return (0);
3445 }
3446
3447 /*
3448 * pmap_map_section:
3449 *
3450 * Create a single section mapping.
3451 */
3452 void
3453 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3454 {
3455 pd_entry_t *pde = (pd_entry_t *) l1pt;
3456 pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3457 pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3458
3459 KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
3460
3461 pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
3462 }
3463
3464 /*
3465 * pmap_map_entry:
3466 *
3467 * Create a single page mapping.
3468 */
3469 void
3470 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3471 {
3472 pd_entry_t *pde = (pd_entry_t *) l1pt;
3473 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3474 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3475 pt_entry_t *pte;
3476
3477 KASSERT(((va | pa) & PGOFSET) == 0);
3478
3479 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3480 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3481
3482 pte = (pt_entry_t *)
3483 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3484 if (pte == NULL)
3485 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3486
3487 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
3488 }
3489
3490 /*
3491 * pmap_link_l2pt:
3492 *
3493 * Link the L2 page table specified by "pa" into the L1
3494 * page table at the slot for "va".
3495 */
3496 void
3497 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3498 {
3499 pd_entry_t *pde = (pd_entry_t *) l1pt;
3500 u_int slot = va >> PDSHIFT;
3501
3502 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3503
3504 pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
3505 pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
3506 pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
3507 pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
3508
3509 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3510 }
3511
3512 /*
3513 * pmap_map_chunk:
3514 *
3515 * Map a chunk of memory using the most efficient mappings
3516 * possible (section, large page, small page) into the
3517 * provided L1 and L2 tables at the specified virtual address.
3518 */
3519 vsize_t
3520 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3521 int prot, int cache)
3522 {
3523 pd_entry_t *pde = (pd_entry_t *) l1pt;
3524 pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3525 pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3526 pt_entry_t *pte;
3527 vsize_t resid;
3528 int i;
3529
3530 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3531
3532 if (l1pt == 0)
3533 panic("pmap_map_chunk: no L1 table provided");
3534
3535 #ifdef VERBOSE_INIT_ARM
3536 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3537 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3538 #endif
3539
3540 size = resid;
3541
3542 while (resid > 0) {
3543 /* See if we can use a section mapping. */
3544 if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
3545 resid >= L1_SEC_SIZE) {
3546 #ifdef VERBOSE_INIT_ARM
3547 printf("S");
3548 #endif
3549 pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
3550 va += L1_SEC_SIZE;
3551 pa += L1_SEC_SIZE;
3552 resid -= L1_SEC_SIZE;
3553 continue;
3554 }
3555
3556 /*
3557 * Ok, we're going to use an L2 table. Make sure
3558 * one is actually in the corresponding L1 slot
3559 * for the current VA.
3560 */
3561 if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3562 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3563
3564 pte = (pt_entry_t *)
3565 kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3566 if (pte == NULL)
3567 panic("pmap_map_chunk: can't find L2 table for VA"
3568 "0x%08lx", va);
3569
3570 /* See if we can use a L2 large page mapping. */
3571 if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
3572 resid >= L2_LPAGE_SIZE) {
3573 #ifdef VERBOSE_INIT_ARM
3574 printf("L");
3575 #endif
3576 for (i = 0; i < 16; i++) {
3577 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3578 L2_LPTE(pa, ap, fl);
3579 }
3580 va += L2_LPAGE_SIZE;
3581 pa += L2_LPAGE_SIZE;
3582 resid -= L2_LPAGE_SIZE;
3583 continue;
3584 }
3585
3586 /* Use a small page mapping. */
3587 #ifdef VERBOSE_INIT_ARM
3588 printf("P");
3589 #endif
3590 pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
3591 va += NBPG;
3592 pa += NBPG;
3593 resid -= NBPG;
3594 }
3595 #ifdef VERBOSE_INIT_ARM
3596 printf("\n");
3597 #endif
3598 return (size);
3599 }
3600