pmap.c revision 1.93 1 /* $NetBSD: pmap.c,v 1.93 2002/04/10 17:08:13 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.93 2002/04/10 17:08:13 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 /*
271 * Structure that describes and L1 table.
272 */
273 struct l1pt {
274 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
275 struct pglist pt_plist; /* Allocated page list */
276 vaddr_t pt_va; /* Allocated virtual address */
277 int pt_flags; /* Flags */
278 };
279 #define PTFLAG_STATIC 0x01 /* Statically allocated */
280 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
281 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
282
283 static void pmap_free_l1pt __P((struct l1pt *));
284 static int pmap_allocpagedir __P((struct pmap *));
285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
286 static void pmap_remove_all __P((struct vm_page *));
287
288 static int pmap_alloc_ptpt(struct pmap *);
289 static void pmap_free_ptpt(struct pmap *);
290
291 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
292 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
293 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
294
295 extern paddr_t physical_start;
296 extern paddr_t physical_freestart;
297 extern paddr_t physical_end;
298 extern paddr_t physical_freeend;
299 extern unsigned int free_pages;
300 extern int max_processes;
301
302 vaddr_t virtual_avail;
303 vaddr_t virtual_end;
304 vaddr_t pmap_curmaxkvaddr;
305
306 vaddr_t avail_start;
307 vaddr_t avail_end;
308
309 extern pv_addr_t systempage;
310
311 /* Variables used by the L1 page table queue code */
312 SIMPLEQ_HEAD(l1pt_queue, l1pt);
313 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
314 static int l1pt_static_queue_count; /* items in the static l1 queue */
315 static int l1pt_static_create_count; /* static l1 items created */
316 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
317 static int l1pt_queue_count; /* items in the l1 queue */
318 static int l1pt_create_count; /* stat - L1's create count */
319 static int l1pt_reuse_count; /* stat - L1's reused count */
320
321 /* Local function prototypes (not used outside this file) */
322 void pmap_pinit __P((struct pmap *));
323 void pmap_freepagedir __P((struct pmap *));
324
325 /* Other function prototypes */
326 extern void bzero_page __P((vaddr_t));
327 extern void bcopy_page __P((vaddr_t, vaddr_t));
328
329 struct l1pt *pmap_alloc_l1pt __P((void));
330 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
331 vaddr_t l2pa, boolean_t));
332
333 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
334 static void pmap_unmap_ptes __P((struct pmap *));
335
336 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
337 pt_entry_t *, boolean_t));
338 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
339 pt_entry_t *, boolean_t));
340 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
341 pt_entry_t *, boolean_t));
342
343 /*
344 * real definition of pv_entry.
345 */
346
347 struct pv_entry {
348 struct pv_entry *pv_next; /* next pv_entry */
349 struct pmap *pv_pmap; /* pmap where mapping lies */
350 vaddr_t pv_va; /* virtual address for mapping */
351 int pv_flags; /* flags */
352 struct vm_page *pv_ptp; /* vm_page for the ptp */
353 };
354
355 /*
356 * pv_entrys are dynamically allocated in chunks from a single page.
357 * we keep track of how many pv_entrys are in use for each page and
358 * we can free pv_entry pages if needed. there is one lock for the
359 * entire allocation system.
360 */
361
362 struct pv_page_info {
363 TAILQ_ENTRY(pv_page) pvpi_list;
364 struct pv_entry *pvpi_pvfree;
365 int pvpi_nfree;
366 };
367
368 /*
369 * number of pv_entry's in a pv_page
370 * (note: won't work on systems where NPBG isn't a constant)
371 */
372
373 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
374 sizeof(struct pv_entry))
375
376 /*
377 * a pv_page: where pv_entrys are allocated from
378 */
379
380 struct pv_page {
381 struct pv_page_info pvinfo;
382 struct pv_entry pvents[PVE_PER_PVPAGE];
383 };
384
385 #ifdef MYCROFT_HACK
386 int mycroft_hack = 0;
387 #endif
388
389 /* Function to set the debug level of the pmap code */
390
391 #ifdef PMAP_DEBUG
392 void
393 pmap_debug(int level)
394 {
395 pmap_debug_level = level;
396 printf("pmap_debug: level=%d\n", pmap_debug_level);
397 }
398 #endif /* PMAP_DEBUG */
399
400 __inline static boolean_t
401 pmap_is_curpmap(struct pmap *pmap)
402 {
403
404 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
405 pmap == pmap_kernel())
406 return (TRUE);
407
408 return (FALSE);
409 }
410
411 #include "isadma.h"
412
413 #if NISADMA > 0
414 /*
415 * Used to protect memory for ISA DMA bounce buffers. If, when loading
416 * pages into the system, memory intersects with any of these ranges,
417 * the intersecting memory will be loaded into a lower-priority free list.
418 */
419 bus_dma_segment_t *pmap_isa_dma_ranges;
420 int pmap_isa_dma_nranges;
421
422 /*
423 * Check if a memory range intersects with an ISA DMA range, and
424 * return the page-rounded intersection if it does. The intersection
425 * will be placed on a lower-priority free list.
426 */
427 static boolean_t
428 pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
429 psize_t *sizep)
430 {
431 bus_dma_segment_t *ds;
432 int i;
433
434 if (pmap_isa_dma_ranges == NULL)
435 return (FALSE);
436
437 for (i = 0, ds = pmap_isa_dma_ranges;
438 i < pmap_isa_dma_nranges; i++, ds++) {
439 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
440 /*
441 * Beginning of region intersects with this range.
442 */
443 *pap = trunc_page(pa);
444 *sizep = round_page(min(pa + size,
445 ds->ds_addr + ds->ds_len) - pa);
446 return (TRUE);
447 }
448 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
449 /*
450 * End of region intersects with this range.
451 */
452 *pap = trunc_page(ds->ds_addr);
453 *sizep = round_page(min((pa + size) - ds->ds_addr,
454 ds->ds_len));
455 return (TRUE);
456 }
457 }
458
459 /*
460 * No intersection found.
461 */
462 return (FALSE);
463 }
464 #endif /* NISADMA > 0 */
465
466 /*
467 * p v _ e n t r y f u n c t i o n s
468 */
469
470 /*
471 * pv_entry allocation functions:
472 * the main pv_entry allocation functions are:
473 * pmap_alloc_pv: allocate a pv_entry structure
474 * pmap_free_pv: free one pv_entry
475 * pmap_free_pvs: free a list of pv_entrys
476 *
477 * the rest are helper functions
478 */
479
480 /*
481 * pmap_alloc_pv: inline function to allocate a pv_entry structure
482 * => we lock pvalloc_lock
483 * => if we fail, we call out to pmap_alloc_pvpage
484 * => 3 modes:
485 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
486 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
487 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
488 * one now
489 *
490 * "try" is for optional functions like pmap_copy().
491 */
492
493 __inline static struct pv_entry *
494 pmap_alloc_pv(struct pmap *pmap, int mode)
495 {
496 struct pv_page *pvpage;
497 struct pv_entry *pv;
498
499 simple_lock(&pvalloc_lock);
500
501 pvpage = TAILQ_FIRST(&pv_freepages);
502
503 if (pvpage != NULL) {
504 pvpage->pvinfo.pvpi_nfree--;
505 if (pvpage->pvinfo.pvpi_nfree == 0) {
506 /* nothing left in this one? */
507 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
508 }
509 pv = pvpage->pvinfo.pvpi_pvfree;
510 KASSERT(pv);
511 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
512 pv_nfpvents--; /* took one from pool */
513 } else {
514 pv = NULL; /* need more of them */
515 }
516
517 /*
518 * if below low water mark or we didn't get a pv_entry we try and
519 * create more pv_entrys ...
520 */
521
522 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
523 if (pv == NULL)
524 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
525 mode : ALLOCPV_NEED);
526 else
527 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
528 }
529
530 simple_unlock(&pvalloc_lock);
531 return(pv);
532 }
533
534 /*
535 * pmap_alloc_pvpage: maybe allocate a new pvpage
536 *
537 * if need_entry is false: try and allocate a new pv_page
538 * if need_entry is true: try and allocate a new pv_page and return a
539 * new pv_entry from it. if we are unable to allocate a pv_page
540 * we make a last ditch effort to steal a pv_page from some other
541 * mapping. if that fails, we panic...
542 *
543 * => we assume that the caller holds pvalloc_lock
544 */
545
546 static struct pv_entry *
547 pmap_alloc_pvpage(struct pmap *pmap, int mode)
548 {
549 struct vm_page *pg;
550 struct pv_page *pvpage;
551 struct pv_entry *pv;
552 int s;
553
554 /*
555 * if we need_entry and we've got unused pv_pages, allocate from there
556 */
557
558 pvpage = TAILQ_FIRST(&pv_unusedpgs);
559 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
560
561 /* move it to pv_freepages list */
562 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
563 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
564
565 /* allocate a pv_entry */
566 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
567 pv = pvpage->pvinfo.pvpi_pvfree;
568 KASSERT(pv);
569 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
570
571 pv_nfpvents--; /* took one from pool */
572 return(pv);
573 }
574
575 /*
576 * see if we've got a cached unmapped VA that we can map a page in.
577 * if not, try to allocate one.
578 */
579
580
581 if (pv_cachedva == 0) {
582 s = splvm();
583 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
584 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
585 splx(s);
586 if (pv_cachedva == 0) {
587 return (NULL);
588 }
589 }
590
591 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
592 UVM_PGA_USERESERVE);
593
594 if (pg == NULL)
595 return (NULL);
596 pg->flags &= ~PG_BUSY; /* never busy */
597
598 /*
599 * add a mapping for our new pv_page and free its entrys (save one!)
600 *
601 * NOTE: If we are allocating a PV page for the kernel pmap, the
602 * pmap is already locked! (...but entering the mapping is safe...)
603 */
604
605 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
606 VM_PROT_READ|VM_PROT_WRITE);
607 pmap_update(pmap_kernel());
608 pvpage = (struct pv_page *) pv_cachedva;
609 pv_cachedva = 0;
610 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
611 }
612
613 /*
614 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
615 *
616 * => caller must hold pvalloc_lock
617 * => if need_entry is true, we allocate and return one pv_entry
618 */
619
620 static struct pv_entry *
621 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
622 {
623 int tofree, lcv;
624
625 /* do we need to return one? */
626 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
627
628 pvp->pvinfo.pvpi_pvfree = NULL;
629 pvp->pvinfo.pvpi_nfree = tofree;
630 for (lcv = 0 ; lcv < tofree ; lcv++) {
631 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
632 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
633 }
634 if (need_entry)
635 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
636 else
637 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
638 pv_nfpvents += tofree;
639 return((need_entry) ? &pvp->pvents[lcv] : NULL);
640 }
641
642 /*
643 * pmap_free_pv_doit: actually free a pv_entry
644 *
645 * => do not call this directly! instead use either
646 * 1. pmap_free_pv ==> free a single pv_entry
647 * 2. pmap_free_pvs => free a list of pv_entrys
648 * => we must be holding pvalloc_lock
649 */
650
651 __inline static void
652 pmap_free_pv_doit(struct pv_entry *pv)
653 {
654 struct pv_page *pvp;
655
656 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
657 pv_nfpvents++;
658 pvp->pvinfo.pvpi_nfree++;
659
660 /* nfree == 1 => fully allocated page just became partly allocated */
661 if (pvp->pvinfo.pvpi_nfree == 1) {
662 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
663 }
664
665 /* free it */
666 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
667 pvp->pvinfo.pvpi_pvfree = pv;
668
669 /*
670 * are all pv_page's pv_entry's free? move it to unused queue.
671 */
672
673 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
674 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
675 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
676 }
677 }
678
679 /*
680 * pmap_free_pv: free a single pv_entry
681 *
682 * => we gain the pvalloc_lock
683 */
684
685 __inline static void
686 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
687 {
688 simple_lock(&pvalloc_lock);
689 pmap_free_pv_doit(pv);
690
691 /*
692 * Can't free the PV page if the PV entries were associated with
693 * the kernel pmap; the pmap is already locked.
694 */
695 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
696 pmap != pmap_kernel())
697 pmap_free_pvpage();
698
699 simple_unlock(&pvalloc_lock);
700 }
701
702 /*
703 * pmap_free_pvs: free a list of pv_entrys
704 *
705 * => we gain the pvalloc_lock
706 */
707
708 __inline static void
709 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
710 {
711 struct pv_entry *nextpv;
712
713 simple_lock(&pvalloc_lock);
714
715 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
716 nextpv = pvs->pv_next;
717 pmap_free_pv_doit(pvs);
718 }
719
720 /*
721 * Can't free the PV page if the PV entries were associated with
722 * the kernel pmap; the pmap is already locked.
723 */
724 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
725 pmap != pmap_kernel())
726 pmap_free_pvpage();
727
728 simple_unlock(&pvalloc_lock);
729 }
730
731
732 /*
733 * pmap_free_pvpage: try and free an unused pv_page structure
734 *
735 * => assume caller is holding the pvalloc_lock and that
736 * there is a page on the pv_unusedpgs list
737 * => if we can't get a lock on the kmem_map we try again later
738 */
739
740 static void
741 pmap_free_pvpage(void)
742 {
743 int s;
744 struct vm_map *map;
745 struct vm_map_entry *dead_entries;
746 struct pv_page *pvp;
747
748 s = splvm(); /* protect kmem_map */
749
750 pvp = TAILQ_FIRST(&pv_unusedpgs);
751
752 /*
753 * note: watch out for pv_initpage which is allocated out of
754 * kernel_map rather than kmem_map.
755 */
756 if (pvp == pv_initpage)
757 map = kernel_map;
758 else
759 map = kmem_map;
760 if (vm_map_lock_try(map)) {
761
762 /* remove pvp from pv_unusedpgs */
763 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
764
765 /* unmap the page */
766 dead_entries = NULL;
767 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
768 &dead_entries);
769 vm_map_unlock(map);
770
771 if (dead_entries != NULL)
772 uvm_unmap_detach(dead_entries, 0);
773
774 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
775 }
776 if (pvp == pv_initpage)
777 /* no more initpage, we've freed it */
778 pv_initpage = NULL;
779
780 splx(s);
781 }
782
783 /*
784 * main pv_entry manipulation functions:
785 * pmap_enter_pv: enter a mapping onto a vm_page list
786 * pmap_remove_pv: remove a mappiing from a vm_page list
787 *
788 * NOTE: pmap_enter_pv expects to lock the pvh itself
789 * pmap_remove_pv expects te caller to lock the pvh before calling
790 */
791
792 /*
793 * pmap_enter_pv: enter a mapping onto a vm_page lst
794 *
795 * => caller should hold the proper lock on pmap_main_lock
796 * => caller should have pmap locked
797 * => we will gain the lock on the vm_page and allocate the new pv_entry
798 * => caller should adjust ptp's wire_count before calling
799 * => caller should not adjust pmap's wire_count
800 */
801
802 __inline static void
803 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
804 vaddr_t va, struct vm_page *ptp, int flags)
805 {
806 pve->pv_pmap = pmap;
807 pve->pv_va = va;
808 pve->pv_ptp = ptp; /* NULL for kernel pmap */
809 pve->pv_flags = flags;
810 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
811 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
812 pg->mdpage.pvh_list = pve; /* ... locked list */
813 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
814 if (pve->pv_flags & PVF_WIRED)
815 ++pmap->pm_stats.wired_count;
816 }
817
818 /*
819 * pmap_remove_pv: try to remove a mapping from a pv_list
820 *
821 * => caller should hold proper lock on pmap_main_lock
822 * => pmap should be locked
823 * => caller should hold lock on vm_page [so that attrs can be adjusted]
824 * => caller should adjust ptp's wire_count and free PTP if needed
825 * => caller should NOT adjust pmap's wire_count
826 * => we return the removed pve
827 */
828
829 __inline static struct pv_entry *
830 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
831 {
832 struct pv_entry *pve, **prevptr;
833
834 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
835 pve = *prevptr;
836 while (pve) {
837 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
838 *prevptr = pve->pv_next; /* remove it! */
839 if (pve->pv_flags & PVF_WIRED)
840 --pmap->pm_stats.wired_count;
841 break;
842 }
843 prevptr = &pve->pv_next; /* previous pointer */
844 pve = pve->pv_next; /* advance */
845 }
846 return(pve); /* return removed pve */
847 }
848
849 /*
850 *
851 * pmap_modify_pv: Update pv flags
852 *
853 * => caller should hold lock on vm_page [so that attrs can be adjusted]
854 * => caller should NOT adjust pmap's wire_count
855 * => caller must call pmap_vac_me_harder() if writable status of a page
856 * may have changed.
857 * => we return the old flags
858 *
859 * Modify a physical-virtual mapping in the pv table
860 */
861
862 static /* __inline */ u_int
863 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
864 u_int bic_mask, u_int eor_mask)
865 {
866 struct pv_entry *npv;
867 u_int flags, oflags;
868
869 /*
870 * There is at least one VA mapping this page.
871 */
872
873 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
874 if (pmap == npv->pv_pmap && va == npv->pv_va) {
875 oflags = npv->pv_flags;
876 npv->pv_flags = flags =
877 ((oflags & ~bic_mask) ^ eor_mask);
878 if ((flags ^ oflags) & PVF_WIRED) {
879 if (flags & PVF_WIRED)
880 ++pmap->pm_stats.wired_count;
881 else
882 --pmap->pm_stats.wired_count;
883 }
884 return (oflags);
885 }
886 }
887 return (0);
888 }
889
890 /*
891 * Map the specified level 2 pagetable into the level 1 page table for
892 * the given pmap to cover a chunk of virtual address space starting from the
893 * address specified.
894 */
895 static __inline void
896 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
897 {
898 vaddr_t ptva;
899
900 /* Calculate the index into the L1 page table. */
901 ptva = (va >> L1_S_SHIFT) & ~3;
902
903 /* Map page table into the L1. */
904 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
905 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
906 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
907 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
908
909 /* Map the page table into the page table area. */
910 if (selfref)
911 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
912 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
913 }
914
915 #if 0
916 static __inline void
917 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
918 {
919 vaddr_t ptva;
920
921 /* Calculate the index into the L1 page table. */
922 ptva = (va >> L1_S_SHIFT) & ~3;
923
924 /* Unmap page table from the L1. */
925 pmap->pm_pdir[ptva + 0] = 0;
926 pmap->pm_pdir[ptva + 1] = 0;
927 pmap->pm_pdir[ptva + 2] = 0;
928 pmap->pm_pdir[ptva + 3] = 0;
929
930 /* Unmap the page table from the page table area. */
931 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
932 }
933 #endif
934
935 /*
936 * Used to map a range of physical addresses into kernel
937 * virtual address space.
938 *
939 * For now, VM is already on, we only need to map the
940 * specified memory.
941 */
942 vaddr_t
943 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
944 {
945 while (spa < epa) {
946 pmap_kenter_pa(va, spa, prot);
947 va += NBPG;
948 spa += NBPG;
949 }
950 pmap_update(pmap_kernel());
951 return(va);
952 }
953
954
955 /*
956 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
957 *
958 * bootstrap the pmap system. This is called from initarm and allows
959 * the pmap system to initailise any structures it requires.
960 *
961 * Currently this sets up the kernel_pmap that is statically allocated
962 * and also allocated virtual addresses for certain page hooks.
963 * Currently the only one page hook is allocated that is used
964 * to zero physical pages of memory.
965 * It also initialises the start and end address of the kernel data space.
966 */
967 extern paddr_t physical_freestart;
968 extern paddr_t physical_freeend;
969
970 char *boot_head;
971
972 void
973 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
974 {
975 pt_entry_t *pte;
976 int loop;
977 paddr_t start, end;
978 #if NISADMA > 0
979 paddr_t istart;
980 psize_t isize;
981 #endif
982
983 pmap_kernel()->pm_pdir = kernel_l1pt;
984 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
985 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
986 simple_lock_init(&pmap_kernel()->pm_lock);
987 pmap_kernel()->pm_obj.pgops = NULL;
988 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
989 pmap_kernel()->pm_obj.uo_npages = 0;
990 pmap_kernel()->pm_obj.uo_refs = 1;
991
992 /*
993 * Initialize PAGE_SIZE-dependent variables.
994 */
995 uvm_setpagesize();
996
997 loop = 0;
998 while (loop < bootconfig.dramblocks) {
999 start = (paddr_t)bootconfig.dram[loop].address;
1000 end = start + (bootconfig.dram[loop].pages * NBPG);
1001 if (start < physical_freestart)
1002 start = physical_freestart;
1003 if (end > physical_freeend)
1004 end = physical_freeend;
1005 #if 0
1006 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1007 #endif
1008 #if NISADMA > 0
1009 if (pmap_isa_dma_range_intersect(start, end - start,
1010 &istart, &isize)) {
1011 /*
1012 * Place the pages that intersect with the
1013 * ISA DMA range onto the ISA DMA free list.
1014 */
1015 #if 0
1016 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1017 istart + isize - 1);
1018 #endif
1019 uvm_page_physload(atop(istart),
1020 atop(istart + isize), atop(istart),
1021 atop(istart + isize), VM_FREELIST_ISADMA);
1022
1023 /*
1024 * Load the pieces that come before
1025 * the intersection into the default
1026 * free list.
1027 */
1028 if (start < istart) {
1029 #if 0
1030 printf(" BEFORE 0x%lx -> 0x%lx\n",
1031 start, istart - 1);
1032 #endif
1033 uvm_page_physload(atop(start),
1034 atop(istart), atop(start),
1035 atop(istart), VM_FREELIST_DEFAULT);
1036 }
1037
1038 /*
1039 * Load the pieces that come after
1040 * the intersection into the default
1041 * free list.
1042 */
1043 if ((istart + isize) < end) {
1044 #if 0
1045 printf(" AFTER 0x%lx -> 0x%lx\n",
1046 (istart + isize), end - 1);
1047 #endif
1048 uvm_page_physload(atop(istart + isize),
1049 atop(end), atop(istart + isize),
1050 atop(end), VM_FREELIST_DEFAULT);
1051 }
1052 } else {
1053 uvm_page_physload(atop(start), atop(end),
1054 atop(start), atop(end), VM_FREELIST_DEFAULT);
1055 }
1056 #else /* NISADMA > 0 */
1057 uvm_page_physload(atop(start), atop(end),
1058 atop(start), atop(end), VM_FREELIST_DEFAULT);
1059 #endif /* NISADMA > 0 */
1060 ++loop;
1061 }
1062
1063 virtual_avail = KERNEL_VM_BASE;
1064 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1065
1066 /*
1067 * now we allocate the "special" VAs which are used for tmp mappings
1068 * by the pmap (and other modules). we allocate the VAs by advancing
1069 * virtual_avail (note that there are no pages mapped at these VAs).
1070 * we find the PTE that maps the allocated VA via the linear PTE
1071 * mapping.
1072 */
1073
1074 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1075
1076 csrcp = virtual_avail; csrc_pte = pte;
1077 virtual_avail += PAGE_SIZE; pte++;
1078
1079 cdstp = virtual_avail; cdst_pte = pte;
1080 virtual_avail += PAGE_SIZE; pte++;
1081
1082 memhook = (char *) virtual_avail; /* don't need pte */
1083 virtual_avail += PAGE_SIZE; pte++;
1084
1085 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1086 virtual_avail += round_page(MSGBUFSIZE);
1087 pte += atop(round_page(MSGBUFSIZE));
1088
1089 /*
1090 * init the static-global locks and global lists.
1091 */
1092 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1093 simple_lock_init(&pvalloc_lock);
1094 simple_lock_init(&pmaps_lock);
1095 LIST_INIT(&pmaps);
1096 TAILQ_INIT(&pv_freepages);
1097 TAILQ_INIT(&pv_unusedpgs);
1098
1099 /*
1100 * initialize the pmap pool.
1101 */
1102
1103 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1104 &pool_allocator_nointr);
1105
1106 cpu_dcache_wbinv_all();
1107 }
1108
1109 /*
1110 * void pmap_init(void)
1111 *
1112 * Initialize the pmap module.
1113 * Called by vm_init() in vm/vm_init.c in order to initialise
1114 * any structures that the pmap system needs to map virtual memory.
1115 */
1116
1117 extern int physmem;
1118
1119 void
1120 pmap_init(void)
1121 {
1122
1123 /*
1124 * Set the available memory vars - These do not map to real memory
1125 * addresses and cannot as the physical memory is fragmented.
1126 * They are used by ps for %mem calculations.
1127 * One could argue whether this should be the entire memory or just
1128 * the memory that is useable in a user process.
1129 */
1130 avail_start = 0;
1131 avail_end = physmem * NBPG;
1132
1133 /*
1134 * now we need to free enough pv_entry structures to allow us to get
1135 * the kmem_map/kmem_object allocated and inited (done after this
1136 * function is finished). to do this we allocate one bootstrap page out
1137 * of kernel_map and use it to provide an initial pool of pv_entry
1138 * structures. we never free this page.
1139 */
1140
1141 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1142 if (pv_initpage == NULL)
1143 panic("pmap_init: pv_initpage");
1144 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1145 pv_nfpvents = 0;
1146 (void) pmap_add_pvpage(pv_initpage, FALSE);
1147
1148 pmap_initialized = TRUE;
1149
1150 /* Initialise our L1 page table queues and counters */
1151 SIMPLEQ_INIT(&l1pt_static_queue);
1152 l1pt_static_queue_count = 0;
1153 l1pt_static_create_count = 0;
1154 SIMPLEQ_INIT(&l1pt_queue);
1155 l1pt_queue_count = 0;
1156 l1pt_create_count = 0;
1157 l1pt_reuse_count = 0;
1158 }
1159
1160 /*
1161 * pmap_postinit()
1162 *
1163 * This routine is called after the vm and kmem subsystems have been
1164 * initialised. This allows the pmap code to perform any initialisation
1165 * that can only be done one the memory allocation is in place.
1166 */
1167
1168 void
1169 pmap_postinit(void)
1170 {
1171 int loop;
1172 struct l1pt *pt;
1173
1174 #ifdef PMAP_STATIC_L1S
1175 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1176 #else /* PMAP_STATIC_L1S */
1177 for (loop = 0; loop < max_processes; ++loop) {
1178 #endif /* PMAP_STATIC_L1S */
1179 /* Allocate a L1 page table */
1180 pt = pmap_alloc_l1pt();
1181 if (!pt)
1182 panic("Cannot allocate static L1 page tables\n");
1183
1184 /* Clean it */
1185 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1186 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1187 /* Add the page table to the queue */
1188 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1189 ++l1pt_static_queue_count;
1190 ++l1pt_static_create_count;
1191 }
1192 }
1193
1194
1195 /*
1196 * Create and return a physical map.
1197 *
1198 * If the size specified for the map is zero, the map is an actual physical
1199 * map, and may be referenced by the hardware.
1200 *
1201 * If the size specified is non-zero, the map will be used in software only,
1202 * and is bounded by that size.
1203 */
1204
1205 pmap_t
1206 pmap_create(void)
1207 {
1208 struct pmap *pmap;
1209
1210 /*
1211 * Fetch pmap entry from the pool
1212 */
1213
1214 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1215 /* XXX is this really needed! */
1216 memset(pmap, 0, sizeof(*pmap));
1217
1218 simple_lock_init(&pmap->pm_obj.vmobjlock);
1219 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1220 TAILQ_INIT(&pmap->pm_obj.memq);
1221 pmap->pm_obj.uo_npages = 0;
1222 pmap->pm_obj.uo_refs = 1;
1223 pmap->pm_stats.wired_count = 0;
1224 pmap->pm_stats.resident_count = 1;
1225 pmap->pm_ptphint = NULL;
1226
1227 /* Now init the machine part of the pmap */
1228 pmap_pinit(pmap);
1229 return(pmap);
1230 }
1231
1232 /*
1233 * pmap_alloc_l1pt()
1234 *
1235 * This routine allocates physical and virtual memory for a L1 page table
1236 * and wires it.
1237 * A l1pt structure is returned to describe the allocated page table.
1238 *
1239 * This routine is allowed to fail if the required memory cannot be allocated.
1240 * In this case NULL is returned.
1241 */
1242
1243 struct l1pt *
1244 pmap_alloc_l1pt(void)
1245 {
1246 paddr_t pa;
1247 vaddr_t va;
1248 struct l1pt *pt;
1249 int error;
1250 struct vm_page *m;
1251 pt_entry_t *pte;
1252
1253 /* Allocate virtual address space for the L1 page table */
1254 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1255 if (va == 0) {
1256 #ifdef DIAGNOSTIC
1257 PDEBUG(0,
1258 printf("pmap: Cannot allocate pageable memory for L1\n"));
1259 #endif /* DIAGNOSTIC */
1260 return(NULL);
1261 }
1262
1263 /* Allocate memory for the l1pt structure */
1264 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1265
1266 /*
1267 * Allocate pages from the VM system.
1268 */
1269 TAILQ_INIT(&pt->pt_plist);
1270 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1271 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1272 if (error) {
1273 #ifdef DIAGNOSTIC
1274 PDEBUG(0,
1275 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1276 error));
1277 #endif /* DIAGNOSTIC */
1278 /* Release the resources we already have claimed */
1279 free(pt, M_VMPMAP);
1280 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1281 return(NULL);
1282 }
1283
1284 /* Map our physical pages into our virtual space */
1285 pt->pt_va = va;
1286 m = TAILQ_FIRST(&pt->pt_plist);
1287 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1288 pa = VM_PAGE_TO_PHYS(m);
1289
1290 pte = vtopte(va);
1291
1292 /*
1293 * Assert that the PTE is invalid. If it's invalid,
1294 * then we are guaranteed that there won't be an entry
1295 * for this VA in the TLB.
1296 */
1297 KDASSERT(pmap_pte_v(pte) == 0);
1298
1299 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(m) |
1300 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1301
1302 va += NBPG;
1303 m = m->pageq.tqe_next;
1304 }
1305
1306 #ifdef DIAGNOSTIC
1307 if (m)
1308 panic("pmap_alloc_l1pt: pglist not empty\n");
1309 #endif /* DIAGNOSTIC */
1310
1311 pt->pt_flags = 0;
1312 return(pt);
1313 }
1314
1315 /*
1316 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1317 */
1318 static void
1319 pmap_free_l1pt(struct l1pt *pt)
1320 {
1321 /* Separate the physical memory for the virtual space */
1322 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1323 pmap_update(pmap_kernel());
1324
1325 /* Return the physical memory */
1326 uvm_pglistfree(&pt->pt_plist);
1327
1328 /* Free the virtual space */
1329 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1330
1331 /* Free the l1pt structure */
1332 free(pt, M_VMPMAP);
1333 }
1334
1335 /*
1336 * pmap_alloc_ptpt:
1337 *
1338 * Allocate the page table that maps the PTE array.
1339 */
1340 static int
1341 pmap_alloc_ptpt(struct pmap *pmap)
1342 {
1343 struct vm_page *pg;
1344 pt_entry_t *pte;
1345
1346 KASSERT(pmap->pm_vptpt == 0);
1347
1348 pmap->pm_vptpt = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1349 if (pmap->pm_vptpt == 0) {
1350 PDEBUG(0,
1351 printf("pmap_alloc_ptpt: no KVA for PTPT\n"));
1352 return (ENOMEM);
1353 }
1354
1355 for (;;) {
1356 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1357 if (pg != NULL)
1358 break;
1359 uvm_wait("pmap_ptpt");
1360 }
1361
1362 pmap->pm_pptpt = VM_PAGE_TO_PHYS(pg);
1363
1364 pte = vtopte(pmap->pm_vptpt);
1365
1366 KDASSERT(pmap_pte_v(pte) == 0);
1367
1368 *pte = L2_S_PROTO | pmap->pm_pptpt |
1369 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1370
1371 return (0);
1372 }
1373
1374 /*
1375 * pmap_free_ptpt:
1376 *
1377 * Free the page table that maps the PTE array.
1378 */
1379 static void
1380 pmap_free_ptpt(struct pmap *pmap)
1381 {
1382
1383 pmap_kremove(pmap->pm_vptpt, L2_TABLE_SIZE);
1384 pmap_update(pmap_kernel());
1385
1386 uvm_pagefree(PHYS_TO_VM_PAGE(pmap->pm_pptpt));
1387
1388 uvm_km_free(kernel_map, pmap->pm_vptpt, L2_TABLE_SIZE);
1389 }
1390
1391 /*
1392 * Allocate a page directory.
1393 * This routine will either allocate a new page directory from the pool
1394 * of L1 page tables currently held by the kernel or it will allocate
1395 * a new one via pmap_alloc_l1pt().
1396 * It will then initialise the l1 page table for use.
1397 */
1398 static int
1399 pmap_allocpagedir(struct pmap *pmap)
1400 {
1401 paddr_t pa;
1402 struct l1pt *pt;
1403 int error;
1404
1405 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1406
1407 /* Do we have any spare L1's lying around ? */
1408 if (l1pt_static_queue_count) {
1409 --l1pt_static_queue_count;
1410 pt = l1pt_static_queue.sqh_first;
1411 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1412 } else if (l1pt_queue_count) {
1413 --l1pt_queue_count;
1414 pt = l1pt_queue.sqh_first;
1415 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1416 ++l1pt_reuse_count;
1417 } else {
1418 pt = pmap_alloc_l1pt();
1419 if (!pt)
1420 return(ENOMEM);
1421 ++l1pt_create_count;
1422 }
1423
1424 /* Store the pointer to the l1 descriptor in the pmap. */
1425 pmap->pm_l1pt = pt;
1426
1427 /* Get the physical address of the start of the l1 */
1428 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1429
1430 /* Store the virtual address of the l1 in the pmap. */
1431 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1432
1433 /* Clean the L1 if it is dirty */
1434 if (!(pt->pt_flags & PTFLAG_CLEAN))
1435 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1436
1437 /* Allocate a page table to map all the page tables for this pmap */
1438 if ((error = pmap_alloc_ptpt(pmap)) != 0) {
1439 pmap_freepagedir(pmap);
1440 return (error);
1441 }
1442
1443 /* need to lock this all up for growkernel */
1444 simple_lock(&pmaps_lock);
1445
1446 /* Duplicate the kernel mappings. */
1447 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1448 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1449 KERNEL_PD_SIZE);
1450
1451 /* Wire in this page table */
1452 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1453
1454 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1455
1456 /*
1457 * Map the kernel page tables into the new PT map.
1458 */
1459 bcopy((char *)(PTE_BASE
1460 + (PTE_BASE >> (PGSHIFT - 2))
1461 + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1462 (char *)pmap->pm_vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1463 (KERNEL_PD_SIZE >> 2));
1464
1465 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1466 simple_unlock(&pmaps_lock);
1467
1468 return(0);
1469 }
1470
1471
1472 /*
1473 * Initialize a preallocated and zeroed pmap structure,
1474 * such as one in a vmspace structure.
1475 */
1476
1477 void
1478 pmap_pinit(struct pmap *pmap)
1479 {
1480 int backoff = 6;
1481 int retry = 10;
1482
1483 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1484
1485 /* Keep looping until we succeed in allocating a page directory */
1486 while (pmap_allocpagedir(pmap) != 0) {
1487 /*
1488 * Ok we failed to allocate a suitable block of memory for an
1489 * L1 page table. This means that either:
1490 * 1. 16KB of virtual address space could not be allocated
1491 * 2. 16KB of physically contiguous memory on a 16KB boundary
1492 * could not be allocated.
1493 *
1494 * Since we cannot fail we will sleep for a while and try
1495 * again.
1496 *
1497 * Searching for a suitable L1 PT is expensive:
1498 * to avoid hogging the system when memory is really
1499 * scarce, use an exponential back-off so that
1500 * eventually we won't retry more than once every 8
1501 * seconds. This should allow other processes to run
1502 * to completion and free up resources.
1503 */
1504 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1505 NULL);
1506 if (--retry == 0) {
1507 retry = 10;
1508 if (backoff)
1509 --backoff;
1510 }
1511 }
1512
1513 if (vector_page < KERNEL_BASE) {
1514 /*
1515 * Map the vector page. This will also allocate and map
1516 * an L2 table for it.
1517 */
1518 pmap_enter(pmap, vector_page, systempage.pv_pa,
1519 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1520 pmap_update(pmap);
1521 }
1522 }
1523
1524
1525 void
1526 pmap_freepagedir(struct pmap *pmap)
1527 {
1528 /* Free the memory used for the page table mapping */
1529 if (pmap->pm_vptpt != 0)
1530 pmap_free_ptpt(pmap);
1531
1532 /* junk the L1 page table */
1533 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1534 /* Add the page table to the queue */
1535 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1536 ++l1pt_static_queue_count;
1537 } else if (l1pt_queue_count < 8) {
1538 /* Add the page table to the queue */
1539 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1540 ++l1pt_queue_count;
1541 } else
1542 pmap_free_l1pt(pmap->pm_l1pt);
1543 }
1544
1545
1546 /*
1547 * Retire the given physical map from service.
1548 * Should only be called if the map contains no valid mappings.
1549 */
1550
1551 void
1552 pmap_destroy(struct pmap *pmap)
1553 {
1554 struct vm_page *page;
1555 int count;
1556
1557 if (pmap == NULL)
1558 return;
1559
1560 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1561
1562 /*
1563 * Drop reference count
1564 */
1565 simple_lock(&pmap->pm_obj.vmobjlock);
1566 count = --pmap->pm_obj.uo_refs;
1567 simple_unlock(&pmap->pm_obj.vmobjlock);
1568 if (count > 0) {
1569 return;
1570 }
1571
1572 /*
1573 * reference count is zero, free pmap resources and then free pmap.
1574 */
1575
1576 /*
1577 * remove it from global list of pmaps
1578 */
1579
1580 simple_lock(&pmaps_lock);
1581 LIST_REMOVE(pmap, pm_list);
1582 simple_unlock(&pmaps_lock);
1583
1584 if (vector_page < KERNEL_BASE) {
1585 /* Remove the vector page mapping */
1586 pmap_remove(pmap, vector_page, vector_page + NBPG);
1587 pmap_update(pmap);
1588 }
1589
1590 /*
1591 * Free any page tables still mapped
1592 * This is only temporay until pmap_enter can count the number
1593 * of mappings made in a page table. Then pmap_remove() can
1594 * reduce the count and free the pagetable when the count
1595 * reaches zero. Note that entries in this list should match the
1596 * contents of the ptpt, however this is faster than walking a 1024
1597 * entries looking for pt's
1598 * taken from i386 pmap.c
1599 */
1600 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1601 KASSERT((page->flags & PG_BUSY) == 0);
1602 page->wire_count = 0;
1603 uvm_pagefree(page);
1604 }
1605
1606 /* Free the page dir */
1607 pmap_freepagedir(pmap);
1608
1609 /* return the pmap to the pool */
1610 pool_put(&pmap_pmap_pool, pmap);
1611 }
1612
1613
1614 /*
1615 * void pmap_reference(struct pmap *pmap)
1616 *
1617 * Add a reference to the specified pmap.
1618 */
1619
1620 void
1621 pmap_reference(struct pmap *pmap)
1622 {
1623 if (pmap == NULL)
1624 return;
1625
1626 simple_lock(&pmap->pm_lock);
1627 pmap->pm_obj.uo_refs++;
1628 simple_unlock(&pmap->pm_lock);
1629 }
1630
1631 /*
1632 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1633 *
1634 * Return the start and end addresses of the kernel's virtual space.
1635 * These values are setup in pmap_bootstrap and are updated as pages
1636 * are allocated.
1637 */
1638
1639 void
1640 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1641 {
1642 *start = virtual_avail;
1643 *end = virtual_end;
1644 }
1645
1646 /*
1647 * Activate the address space for the specified process. If the process
1648 * is the current process, load the new MMU context.
1649 */
1650 void
1651 pmap_activate(struct proc *p)
1652 {
1653 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1654 struct pcb *pcb = &p->p_addr->u_pcb;
1655
1656 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1657 (paddr_t *)&pcb->pcb_pagedir);
1658
1659 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1660 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1661
1662 if (p == curproc) {
1663 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1664 setttb((u_int)pcb->pcb_pagedir);
1665 }
1666 }
1667
1668 /*
1669 * Deactivate the address space of the specified process.
1670 */
1671 void
1672 pmap_deactivate(struct proc *p)
1673 {
1674 }
1675
1676 /*
1677 * Perform any deferred pmap operations.
1678 */
1679 void
1680 pmap_update(struct pmap *pmap)
1681 {
1682
1683 /*
1684 * We haven't deferred any pmap operations, but we do need to
1685 * make sure TLB/cache operations have completed.
1686 */
1687 cpu_cpwait();
1688 }
1689
1690 /*
1691 * pmap_clean_page()
1692 *
1693 * This is a local function used to work out the best strategy to clean
1694 * a single page referenced by its entry in the PV table. It's used by
1695 * pmap_copy_page, pmap_zero page and maybe some others later on.
1696 *
1697 * Its policy is effectively:
1698 * o If there are no mappings, we don't bother doing anything with the cache.
1699 * o If there is one mapping, we clean just that page.
1700 * o If there are multiple mappings, we clean the entire cache.
1701 *
1702 * So that some functions can be further optimised, it returns 0 if it didn't
1703 * clean the entire cache, or 1 if it did.
1704 *
1705 * XXX One bug in this routine is that if the pv_entry has a single page
1706 * mapped at 0x00000000 a whole cache clean will be performed rather than
1707 * just the 1 page. Since this should not occur in everyday use and if it does
1708 * it will just result in not the most efficient clean for the page.
1709 */
1710 static int
1711 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1712 {
1713 struct pmap *pmap;
1714 struct pv_entry *npv;
1715 int cache_needs_cleaning = 0;
1716 vaddr_t page_to_clean = 0;
1717
1718 if (pv == NULL)
1719 /* nothing mapped in so nothing to flush */
1720 return (0);
1721
1722 /* Since we flush the cache each time we change curproc, we
1723 * only need to flush the page if it is in the current pmap.
1724 */
1725 if (curproc)
1726 pmap = curproc->p_vmspace->vm_map.pmap;
1727 else
1728 pmap = pmap_kernel();
1729
1730 for (npv = pv; npv; npv = npv->pv_next) {
1731 if (npv->pv_pmap == pmap) {
1732 /* The page is mapped non-cacheable in
1733 * this map. No need to flush the cache.
1734 */
1735 if (npv->pv_flags & PVF_NC) {
1736 #ifdef DIAGNOSTIC
1737 if (cache_needs_cleaning)
1738 panic("pmap_clean_page: "
1739 "cache inconsistency");
1740 #endif
1741 break;
1742 }
1743 #if 0
1744 /* This doesn't work, because pmap_protect
1745 doesn't flush changes on pages that it
1746 has write-protected. */
1747
1748 /* If the page is not writable and this
1749 is the source, then there is no need
1750 to flush it from the cache. */
1751 else if (is_src && ! (npv->pv_flags & PVF_WRITE))
1752 continue;
1753 #endif
1754 if (cache_needs_cleaning){
1755 page_to_clean = 0;
1756 break;
1757 }
1758 else
1759 page_to_clean = npv->pv_va;
1760 cache_needs_cleaning = 1;
1761 }
1762 }
1763
1764 if (page_to_clean)
1765 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1766 else if (cache_needs_cleaning) {
1767 cpu_idcache_wbinv_all();
1768 return (1);
1769 }
1770 return (0);
1771 }
1772
1773 /*
1774 * pmap_zero_page()
1775 *
1776 * Zero a given physical page by mapping it at a page hook point.
1777 * In doing the zero page op, the page we zero is mapped cachable, as with
1778 * StrongARM accesses to non-cached pages are non-burst making writing
1779 * _any_ bulk data very slow.
1780 */
1781 #if ARM_MMU_GENERIC == 1
1782 void
1783 pmap_zero_page_generic(paddr_t phys)
1784 {
1785 #ifdef DEBUG
1786 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1787
1788 if (pg->mdpage.pvh_list != NULL)
1789 panic("pmap_zero_page: page has mappings");
1790 #endif
1791
1792 KDASSERT((phys & PGOFSET) == 0);
1793
1794 /*
1795 * Hook in the page, zero it, and purge the cache for that
1796 * zeroed page. Invalidate the TLB as needed.
1797 */
1798 *cdst_pte = L2_S_PROTO | phys |
1799 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1800 cpu_tlb_flushD_SE(cdstp);
1801 cpu_cpwait();
1802 bzero_page(cdstp);
1803 cpu_dcache_wbinv_range(cdstp, NBPG);
1804 }
1805 #endif /* ARM_MMU_GENERIC == 1 */
1806
1807 #if ARM_MMU_XSCALE == 1
1808 void
1809 pmap_zero_page_xscale(paddr_t phys)
1810 {
1811 #ifdef DEBUG
1812 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1813
1814 if (pg->mdpage.pvh_list != NULL)
1815 panic("pmap_zero_page: page has mappings");
1816 #endif
1817
1818 KDASSERT((phys & PGOFSET) == 0);
1819
1820 /*
1821 * Hook in the page, zero it, and purge the cache for that
1822 * zeroed page. Invalidate the TLB as needed.
1823 */
1824 *cdst_pte = L2_S_PROTO | phys |
1825 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1826 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1827 cpu_tlb_flushD_SE(cdstp);
1828 cpu_cpwait();
1829 bzero_page(cdstp);
1830 xscale_cache_clean_minidata();
1831 }
1832 #endif /* ARM_MMU_XSCALE == 1 */
1833
1834 /* pmap_pageidlezero()
1835 *
1836 * The same as above, except that we assume that the page is not
1837 * mapped. This means we never have to flush the cache first. Called
1838 * from the idle loop.
1839 */
1840 boolean_t
1841 pmap_pageidlezero(paddr_t phys)
1842 {
1843 int i, *ptr;
1844 boolean_t rv = TRUE;
1845 #ifdef DEBUG
1846 struct vm_page *pg;
1847
1848 pg = PHYS_TO_VM_PAGE(phys);
1849 if (pg->mdpage.pvh_list != NULL)
1850 panic("pmap_pageidlezero: page has mappings");
1851 #endif
1852
1853 KDASSERT((phys & PGOFSET) == 0);
1854
1855 /*
1856 * Hook in the page, zero it, and purge the cache for that
1857 * zeroed page. Invalidate the TLB as needed.
1858 */
1859 *cdst_pte = L2_S_PROTO | phys |
1860 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1861 cpu_tlb_flushD_SE(cdstp);
1862 cpu_cpwait();
1863
1864 for (i = 0, ptr = (int *)cdstp;
1865 i < (NBPG / sizeof(int)); i++) {
1866 if (sched_whichqs != 0) {
1867 /*
1868 * A process has become ready. Abort now,
1869 * so we don't keep it waiting while we
1870 * do slow memory access to finish this
1871 * page.
1872 */
1873 rv = FALSE;
1874 break;
1875 }
1876 *ptr++ = 0;
1877 }
1878
1879 if (rv)
1880 /*
1881 * if we aborted we'll rezero this page again later so don't
1882 * purge it unless we finished it
1883 */
1884 cpu_dcache_wbinv_range(cdstp, NBPG);
1885 return (rv);
1886 }
1887
1888 /*
1889 * pmap_copy_page()
1890 *
1891 * Copy one physical page into another, by mapping the pages into
1892 * hook points. The same comment regarding cachability as in
1893 * pmap_zero_page also applies here.
1894 */
1895 #if ARM_MMU_GENERIC == 1
1896 void
1897 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1898 {
1899 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1900 #ifdef DEBUG
1901 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1902
1903 if (dst_pg->mdpage.pvh_list != NULL)
1904 panic("pmap_copy_page: dst page has mappings");
1905 #endif
1906
1907 KDASSERT((src & PGOFSET) == 0);
1908 KDASSERT((dst & PGOFSET) == 0);
1909
1910 /*
1911 * Clean the source page. Hold the source page's lock for
1912 * the duration of the copy so that no other mappings can
1913 * be created while we have a potentially aliased mapping.
1914 */
1915 simple_lock(&src_pg->mdpage.pvh_slock);
1916 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1917
1918 /*
1919 * Map the pages into the page hook points, copy them, and purge
1920 * the cache for the appropriate page. Invalidate the TLB
1921 * as required.
1922 */
1923 *csrc_pte = L2_S_PROTO | src |
1924 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1925 *cdst_pte = L2_S_PROTO | dst |
1926 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1927 cpu_tlb_flushD_SE(csrcp);
1928 cpu_tlb_flushD_SE(cdstp);
1929 cpu_cpwait();
1930 bcopy_page(csrcp, cdstp);
1931 cpu_dcache_inv_range(csrcp, NBPG);
1932 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1933 cpu_dcache_wbinv_range(cdstp, NBPG);
1934 }
1935 #endif /* ARM_MMU_GENERIC == 1 */
1936
1937 #if ARM_MMU_XSCALE == 1
1938 void
1939 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1940 {
1941 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1942 #ifdef DEBUG
1943 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1944
1945 if (dst_pg->mdpage.pvh_list != NULL)
1946 panic("pmap_copy_page: dst page has mappings");
1947 #endif
1948
1949 KDASSERT((src & PGOFSET) == 0);
1950 KDASSERT((dst & PGOFSET) == 0);
1951
1952 /*
1953 * Clean the source page. Hold the source page's lock for
1954 * the duration of the copy so that no other mappings can
1955 * be created while we have a potentially aliased mapping.
1956 */
1957 simple_lock(&src_pg->mdpage.pvh_slock);
1958 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1959
1960 /*
1961 * Map the pages into the page hook points, copy them, and purge
1962 * the cache for the appropriate page. Invalidate the TLB
1963 * as required.
1964 */
1965 *csrc_pte = L2_S_PROTO | src |
1966 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
1967 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1968 *cdst_pte = L2_S_PROTO | dst |
1969 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1970 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1971 cpu_tlb_flushD_SE(csrcp);
1972 cpu_tlb_flushD_SE(cdstp);
1973 cpu_cpwait();
1974 bcopy_page(csrcp, cdstp);
1975 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1976 xscale_cache_clean_minidata();
1977 }
1978 #endif /* ARM_MMU_XSCALE == 1 */
1979
1980 #if 0
1981 void
1982 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1983 {
1984 pd_entry_t *pde;
1985 paddr_t pa;
1986 struct vm_page *m;
1987
1988 if (pmap == pmap_kernel())
1989 return;
1990
1991 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
1992 pa = pmap_pte_pa(pde);
1993 m = PHYS_TO_VM_PAGE(pa);
1994 ++m->wire_count;
1995 #ifdef MYCROFT_HACK
1996 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1997 pmap, va, pde, pa, m, m->wire_count);
1998 #endif
1999 }
2000
2001 void
2002 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2003 {
2004 pd_entry_t *pde;
2005 paddr_t pa;
2006 struct vm_page *m;
2007
2008 if (pmap == pmap_kernel())
2009 return;
2010
2011 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
2012 pa = pmap_pte_pa(pde);
2013 m = PHYS_TO_VM_PAGE(pa);
2014 --m->wire_count;
2015 #ifdef MYCROFT_HACK
2016 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2017 pmap, va, pde, pa, m, m->wire_count);
2018 #endif
2019 if (m->wire_count == 0) {
2020 #ifdef MYCROFT_HACK
2021 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2022 pmap, va, pde, pa, m);
2023 #endif
2024 pmap_unmap_in_l1(pmap, va);
2025 uvm_pagefree(m);
2026 --pmap->pm_stats.resident_count;
2027 }
2028 }
2029 #else
2030 #define pmap_pte_addref(pmap, va)
2031 #define pmap_pte_delref(pmap, va)
2032 #endif
2033
2034 /*
2035 * Since we have a virtually indexed cache, we may need to inhibit caching if
2036 * there is more than one mapping and at least one of them is writable.
2037 * Since we purge the cache on every context switch, we only need to check for
2038 * other mappings within the same pmap, or kernel_pmap.
2039 * This function is also called when a page is unmapped, to possibly reenable
2040 * caching on any remaining mappings.
2041 *
2042 * The code implements the following logic, where:
2043 *
2044 * KW = # of kernel read/write pages
2045 * KR = # of kernel read only pages
2046 * UW = # of user read/write pages
2047 * UR = # of user read only pages
2048 * OW = # of user read/write pages in another pmap, then
2049 *
2050 * KC = kernel mapping is cacheable
2051 * UC = user mapping is cacheable
2052 *
2053 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2054 * +---------------------------------------------
2055 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2056 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2057 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2058 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2059 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2060 *
2061 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2062 */
2063 __inline static void
2064 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2065 boolean_t clear_cache)
2066 {
2067 if (pmap == pmap_kernel())
2068 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2069 else
2070 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2071 }
2072
2073 static void
2074 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2075 boolean_t clear_cache)
2076 {
2077 int user_entries = 0;
2078 int user_writable = 0;
2079 int user_cacheable = 0;
2080 int kernel_entries = 0;
2081 int kernel_writable = 0;
2082 int kernel_cacheable = 0;
2083 struct pv_entry *pv;
2084 struct pmap *last_pmap = pmap;
2085
2086 #ifdef DIAGNOSTIC
2087 if (pmap != pmap_kernel())
2088 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2089 #endif
2090
2091 /*
2092 * Pass one, see if there are both kernel and user pmaps for
2093 * this page. Calculate whether there are user-writable or
2094 * kernel-writable pages.
2095 */
2096 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2097 if (pv->pv_pmap != pmap) {
2098 user_entries++;
2099 if (pv->pv_flags & PVF_WRITE)
2100 user_writable++;
2101 if ((pv->pv_flags & PVF_NC) == 0)
2102 user_cacheable++;
2103 } else {
2104 kernel_entries++;
2105 if (pv->pv_flags & PVF_WRITE)
2106 kernel_writable++;
2107 if ((pv->pv_flags & PVF_NC) == 0)
2108 kernel_cacheable++;
2109 }
2110 }
2111
2112 /*
2113 * We know we have just been updating a kernel entry, so if
2114 * all user pages are already cacheable, then there is nothing
2115 * further to do.
2116 */
2117 if (kernel_entries == 0 &&
2118 user_cacheable == user_entries)
2119 return;
2120
2121 if (user_entries) {
2122 /*
2123 * Scan over the list again, for each entry, if it
2124 * might not be set correctly, call pmap_vac_me_user
2125 * to recalculate the settings.
2126 */
2127 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2128 /*
2129 * We know kernel mappings will get set
2130 * correctly in other calls. We also know
2131 * that if the pmap is the same as last_pmap
2132 * then we've just handled this entry.
2133 */
2134 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2135 continue;
2136 /*
2137 * If there are kernel entries and this page
2138 * is writable but non-cacheable, then we can
2139 * skip this entry also.
2140 */
2141 if (kernel_entries > 0 &&
2142 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2143 (PVF_NC | PVF_WRITE))
2144 continue;
2145 /*
2146 * Similarly if there are no kernel-writable
2147 * entries and the page is already
2148 * read-only/cacheable.
2149 */
2150 if (kernel_writable == 0 &&
2151 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2152 continue;
2153 /*
2154 * For some of the remaining cases, we know
2155 * that we must recalculate, but for others we
2156 * can't tell if they are correct or not, so
2157 * we recalculate anyway.
2158 */
2159 pmap_unmap_ptes(last_pmap);
2160 last_pmap = pv->pv_pmap;
2161 ptes = pmap_map_ptes(last_pmap);
2162 pmap_vac_me_user(last_pmap, pg, ptes,
2163 pmap_is_curpmap(last_pmap));
2164 }
2165 /* Restore the pte mapping that was passed to us. */
2166 if (last_pmap != pmap) {
2167 pmap_unmap_ptes(last_pmap);
2168 ptes = pmap_map_ptes(pmap);
2169 }
2170 if (kernel_entries == 0)
2171 return;
2172 }
2173
2174 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2175 return;
2176 }
2177
2178 static void
2179 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2180 boolean_t clear_cache)
2181 {
2182 struct pmap *kpmap = pmap_kernel();
2183 struct pv_entry *pv, *npv;
2184 int entries = 0;
2185 int writable = 0;
2186 int cacheable_entries = 0;
2187 int kern_cacheable = 0;
2188 int other_writable = 0;
2189
2190 pv = pg->mdpage.pvh_list;
2191 KASSERT(ptes != NULL);
2192
2193 /*
2194 * Count mappings and writable mappings in this pmap.
2195 * Include kernel mappings as part of our own.
2196 * Keep a pointer to the first one.
2197 */
2198 for (npv = pv; npv; npv = npv->pv_next) {
2199 /* Count mappings in the same pmap */
2200 if (pmap == npv->pv_pmap ||
2201 kpmap == npv->pv_pmap) {
2202 if (entries++ == 0)
2203 pv = npv;
2204 /* Cacheable mappings */
2205 if ((npv->pv_flags & PVF_NC) == 0) {
2206 cacheable_entries++;
2207 if (kpmap == npv->pv_pmap)
2208 kern_cacheable++;
2209 }
2210 /* Writable mappings */
2211 if (npv->pv_flags & PVF_WRITE)
2212 ++writable;
2213 } else if (npv->pv_flags & PVF_WRITE)
2214 other_writable = 1;
2215 }
2216
2217 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2218 "writable %d cacheable %d %s\n", pmap, entries, writable,
2219 cacheable_entries, clear_cache ? "clean" : "no clean"));
2220
2221 /*
2222 * Enable or disable caching as necessary.
2223 * Note: the first entry might be part of the kernel pmap,
2224 * so we can't assume this is indicative of the state of the
2225 * other (maybe non-kpmap) entries.
2226 */
2227 if ((entries > 1 && writable) ||
2228 (entries > 0 && pmap == kpmap && other_writable)) {
2229 if (cacheable_entries == 0)
2230 return;
2231 for (npv = pv; npv; npv = npv->pv_next) {
2232 if ((pmap == npv->pv_pmap
2233 || kpmap == npv->pv_pmap) &&
2234 (npv->pv_flags & PVF_NC) == 0) {
2235 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2236 npv->pv_flags |= PVF_NC;
2237 /*
2238 * If this page needs flushing from the
2239 * cache, and we aren't going to do it
2240 * below, do it now.
2241 */
2242 if ((cacheable_entries < 4 &&
2243 (clear_cache || npv->pv_pmap == kpmap)) ||
2244 (npv->pv_pmap == kpmap &&
2245 !clear_cache && kern_cacheable < 4)) {
2246 cpu_idcache_wbinv_range(npv->pv_va,
2247 NBPG);
2248 cpu_tlb_flushID_SE(npv->pv_va);
2249 }
2250 }
2251 }
2252 if ((clear_cache && cacheable_entries >= 4) ||
2253 kern_cacheable >= 4) {
2254 cpu_idcache_wbinv_all();
2255 cpu_tlb_flushID();
2256 }
2257 cpu_cpwait();
2258 } else if (entries > 0) {
2259 /*
2260 * Turn cacheing back on for some pages. If it is a kernel
2261 * page, only do so if there are no other writable pages.
2262 */
2263 for (npv = pv; npv; npv = npv->pv_next) {
2264 if ((pmap == npv->pv_pmap ||
2265 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2266 (npv->pv_flags & PVF_NC)) {
2267 ptes[arm_btop(npv->pv_va)] |=
2268 pte_l2_s_cache_mode;
2269 npv->pv_flags &= ~PVF_NC;
2270 }
2271 }
2272 }
2273 }
2274
2275 /*
2276 * pmap_remove()
2277 *
2278 * pmap_remove is responsible for nuking a number of mappings for a range
2279 * of virtual address space in the current pmap. To do this efficiently
2280 * is interesting, because in a number of cases a wide virtual address
2281 * range may be supplied that contains few actual mappings. So, the
2282 * optimisations are:
2283 * 1. Try and skip over hunks of address space for which an L1 entry
2284 * does not exist.
2285 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2286 * maybe do just a partial cache clean. This path of execution is
2287 * complicated by the fact that the cache must be flushed _before_
2288 * the PTE is nuked, being a VAC :-)
2289 * 3. Maybe later fast-case a single page, but I don't think this is
2290 * going to make _that_ much difference overall.
2291 */
2292
2293 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2294
2295 void
2296 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2297 {
2298 int cleanlist_idx = 0;
2299 struct pagelist {
2300 vaddr_t va;
2301 pt_entry_t *pte;
2302 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2303 pt_entry_t *pte = 0, *ptes;
2304 paddr_t pa;
2305 int pmap_active;
2306 struct vm_page *pg;
2307
2308 /* Exit quick if there is no pmap */
2309 if (!pmap)
2310 return;
2311
2312 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2313 pmap, sva, eva));
2314
2315 /*
2316 * we lock in the pmap => vm_page direction
2317 */
2318 PMAP_MAP_TO_HEAD_LOCK();
2319
2320 ptes = pmap_map_ptes(pmap);
2321 /* Get a page table pointer */
2322 while (sva < eva) {
2323 if (pmap_pde_page(pmap_pde(pmap, sva)))
2324 break;
2325 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2326 }
2327
2328 pte = &ptes[arm_btop(sva)];
2329 /* Note if the pmap is active thus require cache and tlb cleans */
2330 pmap_active = pmap_is_curpmap(pmap);
2331
2332 /* Now loop along */
2333 while (sva < eva) {
2334 /* Check if we can move to the next PDE (l1 chunk) */
2335 if (!(sva & L2_ADDR_BITS))
2336 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2337 sva += L1_S_SIZE;
2338 pte += arm_btop(L1_S_SIZE);
2339 continue;
2340 }
2341
2342 /* We've found a valid PTE, so this page of PTEs has to go. */
2343 if (pmap_pte_v(pte)) {
2344 /* Update statistics */
2345 --pmap->pm_stats.resident_count;
2346
2347 /*
2348 * Add this page to our cache remove list, if we can.
2349 * If, however the cache remove list is totally full,
2350 * then do a complete cache invalidation taking note
2351 * to backtrack the PTE table beforehand, and ignore
2352 * the lists in future because there's no longer any
2353 * point in bothering with them (we've paid the
2354 * penalty, so will carry on unhindered). Otherwise,
2355 * when we fall out, we just clean the list.
2356 */
2357 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2358 pa = pmap_pte_pa(pte);
2359
2360 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2361 /* Add to the clean list. */
2362 cleanlist[cleanlist_idx].pte = pte;
2363 cleanlist[cleanlist_idx].va = sva;
2364 cleanlist_idx++;
2365 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2366 int cnt;
2367
2368 /* Nuke everything if needed. */
2369 if (pmap_active) {
2370 cpu_idcache_wbinv_all();
2371 cpu_tlb_flushID();
2372 }
2373
2374 /*
2375 * Roll back the previous PTE list,
2376 * and zero out the current PTE.
2377 */
2378 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2379 *cleanlist[cnt].pte = 0;
2380 pmap_pte_delref(pmap, cleanlist[cnt].va);
2381 }
2382 *pte = 0;
2383 pmap_pte_delref(pmap, sva);
2384 cleanlist_idx++;
2385 } else {
2386 /*
2387 * We've already nuked the cache and
2388 * TLB, so just carry on regardless,
2389 * and we won't need to do it again
2390 */
2391 *pte = 0;
2392 pmap_pte_delref(pmap, sva);
2393 }
2394
2395 /*
2396 * Update flags. In a number of circumstances,
2397 * we could cluster a lot of these and do a
2398 * number of sequential pages in one go.
2399 */
2400 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2401 struct pv_entry *pve;
2402 simple_lock(&pg->mdpage.pvh_slock);
2403 pve = pmap_remove_pv(pg, pmap, sva);
2404 pmap_free_pv(pmap, pve);
2405 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2406 simple_unlock(&pg->mdpage.pvh_slock);
2407 }
2408 }
2409 sva += NBPG;
2410 pte++;
2411 }
2412
2413 pmap_unmap_ptes(pmap);
2414 /*
2415 * Now, if we've fallen through down to here, chances are that there
2416 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2417 */
2418 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2419 u_int cnt;
2420
2421 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2422 if (pmap_active) {
2423 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2424 NBPG);
2425 *cleanlist[cnt].pte = 0;
2426 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2427 } else
2428 *cleanlist[cnt].pte = 0;
2429 pmap_pte_delref(pmap, cleanlist[cnt].va);
2430 }
2431 }
2432 PMAP_MAP_TO_HEAD_UNLOCK();
2433 }
2434
2435 /*
2436 * Routine: pmap_remove_all
2437 * Function:
2438 * Removes this physical page from
2439 * all physical maps in which it resides.
2440 * Reflects back modify bits to the pager.
2441 */
2442
2443 static void
2444 pmap_remove_all(struct vm_page *pg)
2445 {
2446 struct pv_entry *pv, *npv;
2447 struct pmap *pmap;
2448 pt_entry_t *pte, *ptes;
2449
2450 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2451
2452 /* set vm_page => pmap locking */
2453 PMAP_HEAD_TO_MAP_LOCK();
2454
2455 simple_lock(&pg->mdpage.pvh_slock);
2456
2457 pv = pg->mdpage.pvh_list;
2458 if (pv == NULL) {
2459 PDEBUG(0, printf("free page\n"));
2460 simple_unlock(&pg->mdpage.pvh_slock);
2461 PMAP_HEAD_TO_MAP_UNLOCK();
2462 return;
2463 }
2464 pmap_clean_page(pv, FALSE);
2465
2466 while (pv) {
2467 pmap = pv->pv_pmap;
2468 ptes = pmap_map_ptes(pmap);
2469 pte = &ptes[arm_btop(pv->pv_va)];
2470
2471 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2472 pv->pv_va, pv->pv_flags));
2473 #ifdef DEBUG
2474 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2475 pmap_pte_v(pte) == 0 ||
2476 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2477 panic("pmap_remove_all: bad mapping");
2478 #endif /* DEBUG */
2479
2480 /*
2481 * Update statistics
2482 */
2483 --pmap->pm_stats.resident_count;
2484
2485 /* Wired bit */
2486 if (pv->pv_flags & PVF_WIRED)
2487 --pmap->pm_stats.wired_count;
2488
2489 /*
2490 * Invalidate the PTEs.
2491 * XXX: should cluster them up and invalidate as many
2492 * as possible at once.
2493 */
2494
2495 #ifdef needednotdone
2496 reduce wiring count on page table pages as references drop
2497 #endif
2498
2499 *pte = 0;
2500 pmap_pte_delref(pmap, pv->pv_va);
2501
2502 npv = pv->pv_next;
2503 pmap_free_pv(pmap, pv);
2504 pv = npv;
2505 pmap_unmap_ptes(pmap);
2506 }
2507 pg->mdpage.pvh_list = NULL;
2508 simple_unlock(&pg->mdpage.pvh_slock);
2509 PMAP_HEAD_TO_MAP_UNLOCK();
2510
2511 PDEBUG(0, printf("done\n"));
2512 cpu_tlb_flushID();
2513 cpu_cpwait();
2514 }
2515
2516
2517 /*
2518 * Set the physical protection on the specified range of this map as requested.
2519 */
2520
2521 void
2522 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2523 {
2524 pt_entry_t *pte = NULL, *ptes;
2525 struct vm_page *pg;
2526 int armprot;
2527 int flush = 0;
2528 paddr_t pa;
2529
2530 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2531 pmap, sva, eva, prot));
2532
2533 if (~prot & VM_PROT_READ) {
2534 /* Just remove the mappings. */
2535 pmap_remove(pmap, sva, eva);
2536 /* pmap_update not needed as it should be called by the caller
2537 * of pmap_protect */
2538 return;
2539 }
2540 if (prot & VM_PROT_WRITE) {
2541 /*
2542 * If this is a read->write transition, just ignore it and let
2543 * uvm_fault() take care of it later.
2544 */
2545 return;
2546 }
2547
2548 /* Need to lock map->head */
2549 PMAP_MAP_TO_HEAD_LOCK();
2550
2551 ptes = pmap_map_ptes(pmap);
2552 /*
2553 * We need to acquire a pointer to a page table page before entering
2554 * the following loop.
2555 */
2556 while (sva < eva) {
2557 if (pmap_pde_page(pmap_pde(pmap, sva)))
2558 break;
2559 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2560 }
2561
2562 pte = &ptes[arm_btop(sva)];
2563
2564 while (sva < eva) {
2565 /* only check once in a while */
2566 if ((sva & L2_ADDR_BITS) == 0) {
2567 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2568 /* We can race ahead here, to the next pde. */
2569 sva += L1_S_SIZE;
2570 pte += arm_btop(L1_S_SIZE);
2571 continue;
2572 }
2573 }
2574
2575 if (!pmap_pte_v(pte))
2576 goto next;
2577
2578 flush = 1;
2579
2580 armprot = 0;
2581 if (sva < VM_MAXUSER_ADDRESS)
2582 armprot |= L2_S_PROT_U;
2583 else if (sva < VM_MAX_ADDRESS)
2584 armprot |= L2_S_PROT_W; /* XXX Ekk what is this ? */
2585 *pte = (*pte & 0xfffff00f) | armprot;
2586
2587 pa = pmap_pte_pa(pte);
2588
2589 /* Get the physical page index */
2590
2591 /* Clear write flag */
2592 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2593 simple_lock(&pg->mdpage.pvh_slock);
2594 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2595 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2596 simple_unlock(&pg->mdpage.pvh_slock);
2597 }
2598
2599 next:
2600 sva += NBPG;
2601 pte++;
2602 }
2603 pmap_unmap_ptes(pmap);
2604 PMAP_MAP_TO_HEAD_UNLOCK();
2605 if (flush)
2606 cpu_tlb_flushID();
2607 }
2608
2609 /*
2610 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2611 * int flags)
2612 *
2613 * Insert the given physical page (p) at
2614 * the specified virtual address (v) in the
2615 * target physical map with the protection requested.
2616 *
2617 * If specified, the page will be wired down, meaning
2618 * that the related pte can not be reclaimed.
2619 *
2620 * NB: This is the only routine which MAY NOT lazy-evaluate
2621 * or lose information. That is, this routine must actually
2622 * insert this page into the given map NOW.
2623 */
2624
2625 int
2626 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2627 int flags)
2628 {
2629 pt_entry_t *ptes, opte, npte;
2630 paddr_t opa;
2631 boolean_t wired = (flags & PMAP_WIRED) != 0;
2632 struct vm_page *pg;
2633 struct pv_entry *pve;
2634 int error, nflags;
2635
2636 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2637 va, pa, pmap, prot, wired));
2638
2639 #ifdef DIAGNOSTIC
2640 /* Valid address ? */
2641 if (va >= (pmap_curmaxkvaddr))
2642 panic("pmap_enter: too big");
2643 if (pmap != pmap_kernel() && va != 0) {
2644 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2645 panic("pmap_enter: kernel page in user map");
2646 } else {
2647 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2648 panic("pmap_enter: user page in kernel map");
2649 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2650 panic("pmap_enter: entering PT page");
2651 }
2652 #endif
2653
2654 KDASSERT(((va | pa) & PGOFSET) == 0);
2655
2656 /*
2657 * Get a pointer to the page. Later on in this function, we
2658 * test for a managed page by checking pg != NULL.
2659 */
2660 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2661
2662 /* get lock */
2663 PMAP_MAP_TO_HEAD_LOCK();
2664
2665 /*
2666 * map the ptes. If there's not already an L2 table for this
2667 * address, allocate one.
2668 */
2669 ptes = pmap_map_ptes(pmap); /* locks pmap */
2670 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2671 struct vm_page *ptp;
2672
2673 /* kernel should be pre-grown */
2674 KASSERT(pmap != pmap_kernel());
2675
2676 /* if failure is allowed then don't try too hard */
2677 ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
2678 if (ptp == NULL) {
2679 if (flags & PMAP_CANFAIL) {
2680 error = ENOMEM;
2681 goto out;
2682 }
2683 panic("pmap_enter: get ptp failed");
2684 }
2685 }
2686 opte = ptes[arm_btop(va)];
2687
2688 nflags = 0;
2689 if (prot & VM_PROT_WRITE)
2690 nflags |= PVF_WRITE;
2691 if (wired)
2692 nflags |= PVF_WIRED;
2693
2694 /* Is the pte valid ? If so then this page is already mapped */
2695 if (l2pte_valid(opte)) {
2696 /* Get the physical address of the current page mapped */
2697 opa = l2pte_pa(opte);
2698
2699 /* Are we mapping the same page ? */
2700 if (opa == pa) {
2701 /* Has the wiring changed ? */
2702 if (pg != NULL) {
2703 simple_lock(&pg->mdpage.pvh_slock);
2704 (void) pmap_modify_pv(pmap, va, pg,
2705 PVF_WRITE | PVF_WIRED, nflags);
2706 simple_unlock(&pg->mdpage.pvh_slock);
2707 }
2708 } else {
2709 struct vm_page *opg;
2710
2711 /* We are replacing the page with a new one. */
2712 cpu_idcache_wbinv_range(va, NBPG);
2713
2714 /*
2715 * If it is part of our managed memory then we
2716 * must remove it from the PV list
2717 */
2718 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2719 simple_lock(&opg->mdpage.pvh_slock);
2720 pve = pmap_remove_pv(opg, pmap, va);
2721 simple_unlock(&opg->mdpage.pvh_slock);
2722 } else {
2723 pve = NULL;
2724 }
2725
2726 goto enter;
2727 }
2728 } else {
2729 opa = 0;
2730 pve = NULL;
2731 pmap_pte_addref(pmap, va);
2732
2733 /* pte is not valid so we must be hooking in a new page */
2734 ++pmap->pm_stats.resident_count;
2735
2736 enter:
2737 /*
2738 * Enter on the PV list if part of our managed memory
2739 */
2740 if (pg != NULL) {
2741 if (pve == NULL) {
2742 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2743 if (pve == NULL) {
2744 if (flags & PMAP_CANFAIL) {
2745 error = ENOMEM;
2746 goto out;
2747 }
2748 panic("pmap_enter: no pv entries "
2749 "available");
2750 }
2751 }
2752 /* enter_pv locks pvh when adding */
2753 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2754 } else {
2755 if (pve != NULL)
2756 pmap_free_pv(pmap, pve);
2757 }
2758 }
2759
2760 /* Construct the pte, giving the correct access. */
2761 npte = pa;
2762
2763 /* VA 0 is magic. */
2764 if (pmap != pmap_kernel() && va != vector_page)
2765 npte |= L2_S_PROT_U;
2766
2767 if (pg != NULL) {
2768 #ifdef DIAGNOSTIC
2769 if ((flags & VM_PROT_ALL) & ~prot)
2770 panic("pmap_enter: access_type exceeds prot");
2771 #endif
2772 npte |= pte_l2_s_cache_mode;
2773 if (flags & VM_PROT_WRITE) {
2774 npte |= L2_S_PROTO | L2_S_PROT_W;
2775 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2776 } else if (flags & VM_PROT_ALL) {
2777 npte |= L2_S_PROTO;
2778 pg->mdpage.pvh_attrs |= PVF_REF;
2779 } else
2780 npte |= L2_TYPE_INV;
2781 } else {
2782 if (prot & VM_PROT_WRITE)
2783 npte |= L2_S_PROTO | L2_S_PROT_W;
2784 else if (prot & VM_PROT_ALL)
2785 npte |= L2_S_PROTO;
2786 else
2787 npte |= L2_TYPE_INV;
2788 }
2789
2790 ptes[arm_btop(va)] = npte;
2791
2792 if (pg != NULL) {
2793 simple_lock(&pg->mdpage.pvh_slock);
2794 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2795 simple_unlock(&pg->mdpage.pvh_slock);
2796 }
2797
2798 /* Better flush the TLB ... */
2799 cpu_tlb_flushID_SE(va);
2800 error = 0;
2801 out:
2802 pmap_unmap_ptes(pmap); /* unlocks pmap */
2803 PMAP_MAP_TO_HEAD_UNLOCK();
2804
2805 return error;
2806 }
2807
2808 /*
2809 * pmap_kenter_pa: enter a kernel mapping
2810 *
2811 * => no need to lock anything assume va is already allocated
2812 * => should be faster than normal pmap enter function
2813 */
2814 void
2815 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2816 {
2817 pt_entry_t *pte;
2818
2819 pte = vtopte(va);
2820 KASSERT(!pmap_pte_v(pte));
2821
2822 *pte = L2_S_PROTO | pa |
2823 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2824 }
2825
2826 void
2827 pmap_kremove(vaddr_t va, vsize_t len)
2828 {
2829 pt_entry_t *pte;
2830
2831 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2832
2833 /*
2834 * We assume that we will only be called with small
2835 * regions of memory.
2836 */
2837
2838 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2839 pte = vtopte(va);
2840 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2841 *pte = 0;
2842 cpu_tlb_flushID_SE(va);
2843 }
2844 }
2845
2846 /*
2847 * pmap_page_protect:
2848 *
2849 * Lower the permission for all mappings to a given page.
2850 */
2851
2852 void
2853 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2854 {
2855
2856 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2857 VM_PAGE_TO_PHYS(pg), prot));
2858
2859 switch(prot) {
2860 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2861 case VM_PROT_READ|VM_PROT_WRITE:
2862 return;
2863
2864 case VM_PROT_READ:
2865 case VM_PROT_READ|VM_PROT_EXECUTE:
2866 pmap_clearbit(pg, PVF_WRITE);
2867 break;
2868
2869 default:
2870 pmap_remove_all(pg);
2871 break;
2872 }
2873 }
2874
2875
2876 /*
2877 * Routine: pmap_unwire
2878 * Function: Clear the wired attribute for a map/virtual-address
2879 * pair.
2880 * In/out conditions:
2881 * The mapping must already exist in the pmap.
2882 */
2883
2884 void
2885 pmap_unwire(struct pmap *pmap, vaddr_t va)
2886 {
2887 pt_entry_t *ptes;
2888 struct vm_page *pg;
2889 paddr_t pa;
2890
2891 PMAP_MAP_TO_HEAD_LOCK();
2892 ptes = pmap_map_ptes(pmap); /* locks pmap */
2893
2894 if (pmap_pde_v(pmap_pde(pmap, va))) {
2895 #ifdef DIAGNOSTIC
2896 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2897 panic("pmap_unwire: invalid L2 PTE");
2898 #endif
2899 /* Extract the physical address of the page */
2900 pa = l2pte_pa(ptes[arm_btop(va)]);
2901
2902 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2903 goto out;
2904
2905 /* Update the wired bit in the pv entry for this page. */
2906 simple_lock(&pg->mdpage.pvh_slock);
2907 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
2908 simple_unlock(&pg->mdpage.pvh_slock);
2909 }
2910 #ifdef DIAGNOSTIC
2911 else {
2912 panic("pmap_unwire: invalid L1 PTE");
2913 }
2914 #endif
2915 out:
2916 pmap_unmap_ptes(pmap); /* unlocks pmap */
2917 PMAP_MAP_TO_HEAD_UNLOCK();
2918 }
2919
2920 /*
2921 * Routine: pmap_extract
2922 * Function:
2923 * Extract the physical page address associated
2924 * with the given map/virtual_address pair.
2925 */
2926 boolean_t
2927 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2928 {
2929 pd_entry_t *pde;
2930 pt_entry_t *pte, *ptes;
2931 paddr_t pa;
2932
2933 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
2934
2935 ptes = pmap_map_ptes(pmap); /* locks pmap */
2936
2937 pde = pmap_pde(pmap, va);
2938 pte = &ptes[arm_btop(va)];
2939
2940 if (pmap_pde_section(pde)) {
2941 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
2942 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
2943 goto out;
2944 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
2945 PDEBUG(5, printf("no mapping\n"));
2946 goto failed;
2947 }
2948
2949 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
2950 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2951 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
2952 goto out;
2953 }
2954
2955 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2956 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
2957
2958 out:
2959 if (pap != NULL)
2960 *pap = pa;
2961
2962 pmap_unmap_ptes(pmap); /* unlocks pmap */
2963 return (TRUE);
2964
2965 failed:
2966 pmap_unmap_ptes(pmap); /* unlocks pmap */
2967 return (FALSE);
2968 }
2969
2970
2971 /*
2972 * pmap_copy:
2973 *
2974 * Copy the range specified by src_addr/len from the source map to the
2975 * range dst_addr/len in the destination map.
2976 *
2977 * This routine is only advisory and need not do anything.
2978 */
2979 /* Call deleted in <arm/arm32/pmap.h> */
2980
2981 #if defined(PMAP_DEBUG)
2982 void
2983 pmap_dump_pvlist(phys, m)
2984 vaddr_t phys;
2985 char *m;
2986 {
2987 struct vm_page *pg;
2988 struct pv_entry *pv;
2989
2990 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
2991 printf("INVALID PA\n");
2992 return;
2993 }
2994 simple_lock(&pg->mdpage.pvh_slock);
2995 printf("%s %08lx:", m, phys);
2996 if (pg->mdpage.pvh_list == NULL) {
2997 printf(" no mappings\n");
2998 return;
2999 }
3000
3001 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3002 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3003 pv->pv_va, pv->pv_flags);
3004
3005 printf("\n");
3006 simple_unlock(&pg->mdpage.pvh_slock);
3007 }
3008
3009 #endif /* PMAP_DEBUG */
3010
3011 static pt_entry_t *
3012 pmap_map_ptes(struct pmap *pmap)
3013 {
3014 struct proc *p;
3015
3016 /* the kernel's pmap is always accessible */
3017 if (pmap == pmap_kernel()) {
3018 return (pt_entry_t *)PTE_BASE;
3019 }
3020
3021 if (pmap_is_curpmap(pmap)) {
3022 simple_lock(&pmap->pm_obj.vmobjlock);
3023 return (pt_entry_t *)PTE_BASE;
3024 }
3025
3026 p = curproc;
3027 KDASSERT(p != NULL);
3028
3029 /* need to lock both curpmap and pmap: use ordered locking */
3030 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3031 simple_lock(&pmap->pm_obj.vmobjlock);
3032 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3033 } else {
3034 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3035 simple_lock(&pmap->pm_obj.vmobjlock);
3036 }
3037
3038 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
3039 FALSE);
3040 cpu_tlb_flushD();
3041 cpu_cpwait();
3042 return (pt_entry_t *)APTE_BASE;
3043 }
3044
3045 /*
3046 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3047 */
3048
3049 static void
3050 pmap_unmap_ptes(struct pmap *pmap)
3051 {
3052
3053 if (pmap == pmap_kernel()) {
3054 return;
3055 }
3056 if (pmap_is_curpmap(pmap)) {
3057 simple_unlock(&pmap->pm_obj.vmobjlock);
3058 } else {
3059 KDASSERT(curproc != NULL);
3060 simple_unlock(&pmap->pm_obj.vmobjlock);
3061 simple_unlock(
3062 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3063 }
3064 }
3065
3066 /*
3067 * Modify pte bits for all ptes corresponding to the given physical address.
3068 * We use `maskbits' rather than `clearbits' because we're always passing
3069 * constants and the latter would require an extra inversion at run-time.
3070 */
3071
3072 static void
3073 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3074 {
3075 struct pv_entry *pv;
3076 pt_entry_t *ptes;
3077 vaddr_t va;
3078 int tlbentry;
3079
3080 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3081 VM_PAGE_TO_PHYS(pg), maskbits));
3082
3083 tlbentry = 0;
3084
3085 PMAP_HEAD_TO_MAP_LOCK();
3086 simple_lock(&pg->mdpage.pvh_slock);
3087
3088 /*
3089 * Clear saved attributes (modify, reference)
3090 */
3091 pg->mdpage.pvh_attrs &= ~maskbits;
3092
3093 if (pg->mdpage.pvh_list == NULL) {
3094 simple_unlock(&pg->mdpage.pvh_slock);
3095 PMAP_HEAD_TO_MAP_UNLOCK();
3096 return;
3097 }
3098
3099 /*
3100 * Loop over all current mappings setting/clearing as appropos
3101 */
3102 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3103 va = pv->pv_va;
3104 pv->pv_flags &= ~maskbits;
3105 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3106 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3107 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3108 if ((pv->pv_flags & PVF_NC)) {
3109 /*
3110 * Entry is not cacheable: reenable
3111 * the cache, nothing to flush
3112 *
3113 * Don't turn caching on again if this
3114 * is a modified emulation. This
3115 * would be inconsitent with the
3116 * settings created by
3117 * pmap_vac_me_harder().
3118 *
3119 * There's no need to call
3120 * pmap_vac_me_harder() here: all
3121 * pages are loosing their write
3122 * permission.
3123 *
3124 */
3125 if (maskbits & PVF_WRITE) {
3126 ptes[arm_btop(va)] |=
3127 pte_l2_s_cache_mode;
3128 pv->pv_flags &= ~PVF_NC;
3129 }
3130 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3131 /*
3132 * Entry is cacheable: check if pmap is
3133 * current if it is flush it,
3134 * otherwise it won't be in the cache
3135 */
3136 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3137 }
3138
3139 /* make the pte read only */
3140 ptes[arm_btop(va)] &= ~L2_S_PROT_W;
3141 }
3142
3143 if (maskbits & PVF_REF)
3144 ptes[arm_btop(va)] =
3145 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_TYPE_INV;
3146
3147 if (pmap_is_curpmap(pv->pv_pmap)) {
3148 /*
3149 * if we had cacheable pte's we'd clean the
3150 * pte out to memory here
3151 *
3152 * flush tlb entry as it's in the current pmap
3153 */
3154 cpu_tlb_flushID_SE(pv->pv_va);
3155 }
3156 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3157 }
3158 cpu_cpwait();
3159
3160 simple_unlock(&pg->mdpage.pvh_slock);
3161 PMAP_HEAD_TO_MAP_UNLOCK();
3162 }
3163
3164 /*
3165 * pmap_clear_modify:
3166 *
3167 * Clear the "modified" attribute for a page.
3168 */
3169 boolean_t
3170 pmap_clear_modify(struct vm_page *pg)
3171 {
3172 boolean_t rv;
3173
3174 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3175 rv = TRUE;
3176 pmap_clearbit(pg, PVF_MOD);
3177 } else
3178 rv = FALSE;
3179
3180 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3181 VM_PAGE_TO_PHYS(pg), rv));
3182
3183 return (rv);
3184 }
3185
3186 /*
3187 * pmap_clear_reference:
3188 *
3189 * Clear the "referenced" attribute for a page.
3190 */
3191 boolean_t
3192 pmap_clear_reference(struct vm_page *pg)
3193 {
3194 boolean_t rv;
3195
3196 if (pg->mdpage.pvh_attrs & PVF_REF) {
3197 rv = TRUE;
3198 pmap_clearbit(pg, PVF_REF);
3199 } else
3200 rv = FALSE;
3201
3202 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3203 VM_PAGE_TO_PHYS(pg), rv));
3204
3205 return (rv);
3206 }
3207
3208 /*
3209 * pmap_is_modified:
3210 *
3211 * Test if a page has the "modified" attribute.
3212 */
3213 /* See <arm/arm32/pmap.h> */
3214
3215 /*
3216 * pmap_is_referenced:
3217 *
3218 * Test if a page has the "referenced" attribute.
3219 */
3220 /* See <arm/arm32/pmap.h> */
3221
3222 int
3223 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3224 {
3225 pt_entry_t *ptes;
3226 struct vm_page *pg;
3227 paddr_t pa;
3228 u_int flags;
3229 int rv = 0;
3230
3231 PDEBUG(2, printf("pmap_modified_emulation\n"));
3232
3233 PMAP_MAP_TO_HEAD_LOCK();
3234 ptes = pmap_map_ptes(pmap); /* locks pmap */
3235
3236 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3237 PDEBUG(2, printf("L1 PTE invalid\n"));
3238 goto out;
3239 }
3240
3241 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3242
3243 /* Check for a invalid pte */
3244 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3245 goto out;
3246
3247 /* This can happen if user code tries to access kernel memory. */
3248 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3249 goto out;
3250
3251 /* Extract the physical address of the page */
3252 pa = l2pte_pa(ptes[arm_btop(va)]);
3253 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3254 goto out;
3255
3256 /* Get the current flags for this page. */
3257 simple_lock(&pg->mdpage.pvh_slock);
3258
3259 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3260 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3261
3262 /*
3263 * Do the flags say this page is writable ? If not then it is a
3264 * genuine write fault. If yes then the write fault is our fault
3265 * as we did not reflect the write access in the PTE. Now we know
3266 * a write has occurred we can correct this and also set the
3267 * modified bit
3268 */
3269 if (~flags & PVF_WRITE) {
3270 simple_unlock(&pg->mdpage.pvh_slock);
3271 goto out;
3272 }
3273
3274 PDEBUG(0,
3275 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3276 va, ptes[arm_btop(va)]));
3277 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3278
3279 /*
3280 * Re-enable write permissions for the page. No need to call
3281 * pmap_vac_me_harder(), since this is just a
3282 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3283 * We've already set the cacheable bits based on the assumption
3284 * that we can write to this page.
3285 */
3286 ptes[arm_btop(va)] =
3287 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3288 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3289
3290 simple_unlock(&pg->mdpage.pvh_slock);
3291
3292 cpu_tlb_flushID_SE(va);
3293 cpu_cpwait();
3294 rv = 1;
3295 out:
3296 pmap_unmap_ptes(pmap); /* unlocks pmap */
3297 PMAP_MAP_TO_HEAD_UNLOCK();
3298 return (rv);
3299 }
3300
3301 int
3302 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3303 {
3304 pt_entry_t *ptes;
3305 struct vm_page *pg;
3306 paddr_t pa;
3307 int rv = 0;
3308
3309 PDEBUG(2, printf("pmap_handled_emulation\n"));
3310
3311 PMAP_MAP_TO_HEAD_LOCK();
3312 ptes = pmap_map_ptes(pmap); /* locks pmap */
3313
3314 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3315 PDEBUG(2, printf("L1 PTE invalid\n"));
3316 goto out;
3317 }
3318
3319 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3320
3321 /* Check for invalid pte */
3322 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3323 goto out;
3324
3325 /* This can happen if user code tries to access kernel memory. */
3326 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3327 goto out;
3328
3329 /* Extract the physical address of the page */
3330 pa = l2pte_pa(ptes[arm_btop(va)]);
3331 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3332 goto out;
3333
3334 simple_lock(&pg->mdpage.pvh_slock);
3335
3336 /*
3337 * Ok we just enable the pte and mark the attibs as handled
3338 * XXX Should we traverse the PV list and enable all PTEs?
3339 */
3340 PDEBUG(0,
3341 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3342 va, ptes[arm_btop(va)]));
3343 pg->mdpage.pvh_attrs |= PVF_REF;
3344
3345 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3346 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3347
3348 simple_unlock(&pg->mdpage.pvh_slock);
3349
3350 cpu_tlb_flushID_SE(va);
3351 cpu_cpwait();
3352 rv = 1;
3353 out:
3354 pmap_unmap_ptes(pmap); /* unlocks pmap */
3355 PMAP_MAP_TO_HEAD_UNLOCK();
3356 return (rv);
3357 }
3358
3359 /*
3360 * pmap_collect: free resources held by a pmap
3361 *
3362 * => optional function.
3363 * => called when a process is swapped out to free memory.
3364 */
3365
3366 void
3367 pmap_collect(struct pmap *pmap)
3368 {
3369 }
3370
3371 /*
3372 * Routine: pmap_procwr
3373 *
3374 * Function:
3375 * Synchronize caches corresponding to [addr, addr+len) in p.
3376 *
3377 */
3378 void
3379 pmap_procwr(struct proc *p, vaddr_t va, int len)
3380 {
3381 /* We only need to do anything if it is the current process. */
3382 if (p == curproc)
3383 cpu_icache_sync_range(va, len);
3384 }
3385 /*
3386 * PTP functions
3387 */
3388
3389 /*
3390 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3391 *
3392 * => pmap should NOT be pmap_kernel()
3393 * => pmap should be locked
3394 */
3395
3396 static struct vm_page *
3397 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3398 {
3399 struct vm_page *ptp;
3400
3401 if (pmap_pde_page(pmap_pde(pmap, va))) {
3402
3403 /* valid... check hint (saves us a PA->PG lookup) */
3404 if (pmap->pm_ptphint &&
3405 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3406 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3407 return (pmap->pm_ptphint);
3408 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3409 #ifdef DIAGNOSTIC
3410 if (ptp == NULL)
3411 panic("pmap_get_ptp: unmanaged user PTP");
3412 #endif
3413 pmap->pm_ptphint = ptp;
3414 return(ptp);
3415 }
3416
3417 /* allocate a new PTP (updates ptphint) */
3418 return(pmap_alloc_ptp(pmap, va));
3419 }
3420
3421 /*
3422 * pmap_alloc_ptp: allocate a PTP for a PMAP
3423 *
3424 * => pmap should already be locked by caller
3425 * => we use the ptp's wire_count to count the number of active mappings
3426 * in the PTP (we start it at one to prevent any chance this PTP
3427 * will ever leak onto the active/inactive queues)
3428 */
3429
3430 /*__inline */ static struct vm_page *
3431 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3432 {
3433 struct vm_page *ptp;
3434
3435 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3436 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3437 if (ptp == NULL)
3438 return (NULL);
3439
3440 /* got one! */
3441 ptp->flags &= ~PG_BUSY; /* never busy */
3442 ptp->wire_count = 1; /* no mappings yet */
3443 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3444 pmap->pm_stats.resident_count++; /* count PTP as resident */
3445 pmap->pm_ptphint = ptp;
3446 return (ptp);
3447 }
3448
3449 vaddr_t
3450 pmap_growkernel(vaddr_t maxkvaddr)
3451 {
3452 struct pmap *kpm = pmap_kernel(), *pm;
3453 int s;
3454 paddr_t ptaddr;
3455 struct vm_page *ptp;
3456
3457 if (maxkvaddr <= pmap_curmaxkvaddr)
3458 goto out; /* we are OK */
3459 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3460 pmap_curmaxkvaddr, maxkvaddr));
3461
3462 /*
3463 * whoops! we need to add kernel PTPs
3464 */
3465
3466 s = splhigh(); /* to be safe */
3467 simple_lock(&kpm->pm_obj.vmobjlock);
3468 /* due to the way the arm pmap works we map 4MB at a time */
3469 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3470 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3471
3472 if (uvm.page_init_done == FALSE) {
3473
3474 /*
3475 * we're growing the kernel pmap early (from
3476 * uvm_pageboot_alloc()). this case must be
3477 * handled a little differently.
3478 */
3479
3480 if (uvm_page_physget(&ptaddr) == FALSE)
3481 panic("pmap_growkernel: out of memory");
3482 pmap_zero_page(ptaddr);
3483
3484 /* map this page in */
3485 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3486
3487 /* count PTP as resident */
3488 kpm->pm_stats.resident_count++;
3489 continue;
3490 }
3491
3492 /*
3493 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3494 * pmap_initialized == FALSE CASE! WE MAY BE
3495 * INVOKED WHILE pmap_init() IS RUNNING!
3496 */
3497
3498 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3499 panic("pmap_growkernel: alloc ptp failed");
3500
3501 /* distribute new kernel PTP to all active pmaps */
3502 simple_lock(&pmaps_lock);
3503 LIST_FOREACH(pm, &pmaps, pm_list) {
3504 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3505 VM_PAGE_TO_PHYS(ptp), TRUE);
3506 }
3507
3508 simple_unlock(&pmaps_lock);
3509 }
3510
3511 /*
3512 * flush out the cache, expensive but growkernel will happen so
3513 * rarely
3514 */
3515 cpu_tlb_flushD();
3516 cpu_cpwait();
3517
3518 simple_unlock(&kpm->pm_obj.vmobjlock);
3519 splx(s);
3520
3521 out:
3522 return (pmap_curmaxkvaddr);
3523 }
3524
3525 /************************ Utility routines ****************************/
3526
3527 /*
3528 * vector_page_setprot:
3529 *
3530 * Manipulate the protection of the vector page.
3531 */
3532 void
3533 vector_page_setprot(int prot)
3534 {
3535 pt_entry_t *pte;
3536
3537 pte = vtopte(vector_page);
3538
3539 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3540 cpu_tlb_flushD_SE(vector_page);
3541 cpu_cpwait();
3542 }
3543
3544 /************************ Bootstrapping routines ****************************/
3545
3546 /*
3547 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3548 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3549 * find them as necessary.
3550 *
3551 * Note that the data on this list is not valid after initarm() returns.
3552 */
3553 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3554
3555 static vaddr_t
3556 kernel_pt_lookup(paddr_t pa)
3557 {
3558 pv_addr_t *pv;
3559
3560 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3561 if (pv->pv_pa == pa)
3562 return (pv->pv_va);
3563 }
3564 return (0);
3565 }
3566
3567 /*
3568 * pmap_map_section:
3569 *
3570 * Create a single section mapping.
3571 */
3572 void
3573 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3574 {
3575 pd_entry_t *pde = (pd_entry_t *) l1pt;
3576 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3577
3578 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3579
3580 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3581 L1_S_PROT(PTE_KERNEL, prot) | fl;
3582 }
3583
3584 /*
3585 * pmap_map_entry:
3586 *
3587 * Create a single page mapping.
3588 */
3589 void
3590 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3591 {
3592 pd_entry_t *pde = (pd_entry_t *) l1pt;
3593 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3594 pt_entry_t *pte;
3595
3596 KASSERT(((va | pa) & PGOFSET) == 0);
3597
3598 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3599 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3600
3601 pte = (pt_entry_t *)
3602 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3603 if (pte == NULL)
3604 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3605
3606 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3607 L2_S_PROT(PTE_KERNEL, prot) | fl;
3608 }
3609
3610 /*
3611 * pmap_link_l2pt:
3612 *
3613 * Link the L2 page table specified by "pa" into the L1
3614 * page table at the slot for "va".
3615 */
3616 void
3617 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3618 {
3619 pd_entry_t *pde = (pd_entry_t *) l1pt;
3620 u_int slot = va >> L1_S_SHIFT;
3621
3622 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3623
3624 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3625 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3626 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3627 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3628
3629 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3630 }
3631
3632 /*
3633 * pmap_map_chunk:
3634 *
3635 * Map a chunk of memory using the most efficient mappings
3636 * possible (section, large page, small page) into the
3637 * provided L1 and L2 tables at the specified virtual address.
3638 */
3639 vsize_t
3640 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3641 int prot, int cache)
3642 {
3643 pd_entry_t *pde = (pd_entry_t *) l1pt;
3644 pt_entry_t *pte, fl;
3645 vsize_t resid;
3646 int i;
3647
3648 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3649
3650 if (l1pt == 0)
3651 panic("pmap_map_chunk: no L1 table provided");
3652
3653 #ifdef VERBOSE_INIT_ARM
3654 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3655 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3656 #endif
3657
3658 size = resid;
3659
3660 while (resid > 0) {
3661 /* See if we can use a section mapping. */
3662 if (((pa | va) & L1_S_OFFSET) == 0 &&
3663 resid >= L1_S_SIZE) {
3664 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3665 #ifdef VERBOSE_INIT_ARM
3666 printf("S");
3667 #endif
3668 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3669 L1_S_PROT(PTE_KERNEL, prot) | fl;
3670 va += L1_S_SIZE;
3671 pa += L1_S_SIZE;
3672 resid -= L1_S_SIZE;
3673 continue;
3674 }
3675
3676 /*
3677 * Ok, we're going to use an L2 table. Make sure
3678 * one is actually in the corresponding L1 slot
3679 * for the current VA.
3680 */
3681 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3682 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3683
3684 pte = (pt_entry_t *)
3685 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3686 if (pte == NULL)
3687 panic("pmap_map_chunk: can't find L2 table for VA"
3688 "0x%08lx", va);
3689
3690 /* See if we can use a L2 large page mapping. */
3691 if (((pa | va) & L2_L_OFFSET) == 0 &&
3692 resid >= L2_L_SIZE) {
3693 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3694 #ifdef VERBOSE_INIT_ARM
3695 printf("L");
3696 #endif
3697 for (i = 0; i < 16; i++) {
3698 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3699 L2_L_PROTO | pa |
3700 L2_L_PROT(PTE_KERNEL, prot) | fl;
3701 }
3702 va += L2_L_SIZE;
3703 pa += L2_L_SIZE;
3704 resid -= L2_L_SIZE;
3705 continue;
3706 }
3707
3708 /* Use a small page mapping. */
3709 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3710 #ifdef VERBOSE_INIT_ARM
3711 printf("P");
3712 #endif
3713 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3714 L2_S_PROT(PTE_KERNEL, prot) | fl;
3715 va += NBPG;
3716 pa += NBPG;
3717 resid -= NBPG;
3718 }
3719 #ifdef VERBOSE_INIT_ARM
3720 printf("\n");
3721 #endif
3722 return (size);
3723 }
3724
3725 /********************** PTE initialization routines **************************/
3726
3727 /*
3728 * These routines are called when the CPU type is identified to set up
3729 * the PTE prototypes, cache modes, etc.
3730 *
3731 * The variables are always here, just in case LKMs need to reference
3732 * them (though, they shouldn't).
3733 */
3734
3735 pt_entry_t pte_l1_s_cache_mode;
3736 pt_entry_t pte_l1_s_cache_mask;
3737
3738 pt_entry_t pte_l2_l_cache_mode;
3739 pt_entry_t pte_l2_l_cache_mask;
3740
3741 pt_entry_t pte_l2_s_cache_mode;
3742 pt_entry_t pte_l2_s_cache_mask;
3743
3744 pt_entry_t pte_l2_s_prot_u;
3745 pt_entry_t pte_l2_s_prot_w;
3746 pt_entry_t pte_l2_s_prot_mask;
3747
3748 pt_entry_t pte_l1_s_proto;
3749 pt_entry_t pte_l1_c_proto;
3750 pt_entry_t pte_l2_s_proto;
3751
3752 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3753 void (*pmap_zero_page_func)(paddr_t);
3754
3755 #if ARM_MMU_GENERIC == 1
3756 void
3757 pmap_pte_init_generic(void)
3758 {
3759
3760 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3761 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3762
3763 pte_l2_l_cache_mode = L2_B|L2_C;
3764 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3765
3766 pte_l2_s_cache_mode = L2_B|L2_C;
3767 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3768
3769 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3770 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3771 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3772
3773 pte_l1_s_proto = L1_S_PROTO_generic;
3774 pte_l1_c_proto = L1_C_PROTO_generic;
3775 pte_l2_s_proto = L2_S_PROTO_generic;
3776
3777 pmap_copy_page_func = pmap_copy_page_generic;
3778 pmap_zero_page_func = pmap_zero_page_generic;
3779 }
3780
3781 #if defined(CPU_ARM9)
3782 void
3783 pmap_pte_init_arm9(void)
3784 {
3785
3786 /*
3787 * ARM9 is compatible with generic, but we want to use
3788 * write-through caching for now.
3789 */
3790 pmap_pte_init_generic();
3791
3792 pte_l1_s_cache_mode = L1_S_C;
3793 pte_l2_l_cache_mode = L2_C;
3794 pte_l2_s_cache_mode = L2_C;
3795 }
3796 #endif /* CPU_ARM9 */
3797 #endif /* ARM_MMU_GENERIC == 1 */
3798
3799 #if ARM_MMU_XSCALE == 1
3800 void
3801 pmap_pte_init_xscale(void)
3802 {
3803
3804 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3805 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
3806
3807 pte_l2_l_cache_mode = L2_B|L2_C;
3808 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
3809
3810 pte_l2_s_cache_mode = L2_B|L2_C;
3811 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
3812
3813 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
3814 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
3815 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
3816
3817 pte_l1_s_proto = L1_S_PROTO_xscale;
3818 pte_l1_c_proto = L1_C_PROTO_xscale;
3819 pte_l2_s_proto = L2_S_PROTO_xscale;
3820
3821 pmap_copy_page_func = pmap_copy_page_xscale;
3822 pmap_zero_page_func = pmap_zero_page_xscale;
3823 }
3824
3825 #if defined(CPU_XSCALE_80200)
3826 void
3827 pmap_pte_init_i80200(void)
3828 {
3829
3830 /*
3831 * Use write-through caching on the i80200.
3832 */
3833 pmap_pte_init_xscale();
3834 pte_l1_s_cache_mode = L1_S_C;
3835 pte_l2_l_cache_mode = L2_C;
3836 pte_l2_s_cache_mode = L2_C;
3837 }
3838 #endif /* CPU_XSCALE_80200 */
3839
3840 /*
3841 * xscale_setup_minidata:
3842 *
3843 * Set up the mini-data cache clean area. We require the
3844 * caller to allocate the right amount of physically and
3845 * virtually contiguous space.
3846 */
3847 void
3848 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
3849 {
3850 extern vaddr_t xscale_minidata_clean_addr;
3851 extern vsize_t xscale_minidata_clean_size; /* already initialized */
3852 pd_entry_t *pde = (pd_entry_t *) l1pt;
3853 pt_entry_t *pte;
3854 vsize_t size;
3855
3856 xscale_minidata_clean_addr = va;
3857
3858 /* Round it to page size. */
3859 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
3860
3861 for (; size != 0;
3862 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
3863 pte = (pt_entry_t *)
3864 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3865 if (pte == NULL)
3866 panic("xscale_setup_minidata: can't find L2 table for "
3867 "VA 0x%08lx", va);
3868 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3869 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3870 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
3871 }
3872 }
3873 #endif /* ARM_MMU_XSCALE == 1 */
3874